

Manildra – Port Kembla Bulk Liquid Terminal Bulk Liquid Terminal

Groundwater Assessment and Management Report

Client Reference No. 30013038-R06 Prepared for: Manildra Group Pty Ltd 26 May 2022

Through our specialist expertise, we deliver advanced infrastructure solutions for our clients and partners.

Leveraging our 70-year history of delivering nation-building infrastructure, we provide technical expertise and advanced engineering services to resolve complex challenges.

Through our network of global specialists collaborating with local partners, we connect you with the best teams and capabilities to deliver innovative and sustainable solutions.

We're redefining exceptional

Document Control

Document Type	Manildra – Port Kembla Bulk Liquid Terminal Bulk Liquid Terminal
Project Title	Groundwater Assessment and Management Report
Project Number	30013038
File Location	\\filer.nasuni.local\SMECANZ\Projects\300130\30013038 - Ethanol Tank Farm, Port Kembla\140 Data\Reporting\R06 Groundwater Investigation
Revision Number	Rev 1 Draft

Revision History

Revision No.	Date	Prepared By	Reviewed By	Approved for Issue By
Rev 1 Draft	26/05/2022	Ruolin Wu (Modelling) / Joel Reynolds / Alexander Williams	Andrew Paffard	Alexander Williams

Issue Register

Distribution List	Date Issued	Number of Copies
Manildra Group Pty Ltd	26/05/2022	1 PDF

SMEC Company Details

Approved by	Alexander Williams
Address	Level 2, 6-8 Regent Street, Wollongong NSW
Phone	+61 2 9900 7039
Email	Alex.williams@smec.com
Website	www.smec.com
Signature	

The information within this document is and shall remain the property of: SMEC Australia Pty Ltd $% \mathcal{A}_{\mathrm{S}}$

Important Notice

This report is confidential and is provided solely for the purposes of documenting a Groundwater Assessment and Management Report for Part of Lot 6 DP1236743 and Part of Lot 2 DP 1182823 Foreshore Road, Port Kembla This report is provided pursuant to a Consultancy Agreement between SMEC Australia Pty Limited ("SMEC") and Manildra Group Pty Ltd, under which SMEC undertook to perform a specific and limited task for Manildra Group Pty Ltd. This report is strictly limited to the matters stated in it and subject to the various assumptions, qualifications and limitations in it and does not apply by implication to other matters. SMEC makes no representation that the scope, assumptions, qualifications and exclusions set out in this report will be suitable or sufficient for other purposes nor that the content of the report covers all matters which you may regard as material for your purposes.

This report must be read as a whole. The executive summary is not a substitute for this. Any subsequent report must be read in conjunction with this report.

The report supersedes all previous draft or interim reports, whether written or presented orally, before the date of this report. This report has not and will not be updated for events or transactions occurring after the date of the report or any other matters which might have a material effect on its contents, or which come to light after the date of the report. SMEC is not obliged to inform you of any such event, transaction or matter nor to update the report for anything that occurs, or of which SMEC becomes aware, after the date of this report.

Unless expressly agreed otherwise in writing, SMEC does not accept a duty of care or any other legal responsibility whatsoever in relation to this report, or any related enquiries, advice or other work, nor does SMEC make any representation in connection with this report, to any person other than Manildra Group Pty Ltd. Any other person who receives a draft or a copy of this report (or any part of it) or discusses it (or any part of it) or any related matter with SMEC, does so on the basis that he or she acknowledges and accepts that he or she may not rely on this report nor on any related information or advice given by SMEC for any purpose whatsoever.

The findings of this this report are the result of methodologies used in accordance with normal practices and standards. We consider that they represent a reasonable interpretation of the general conditions of the Site at the time they were assessed and at the time of writing this report, but under no circumstances, can it be considered that these findings represent the actual state of the Site in all areas.

In preparing this report, current guidelines for assessment and management of groundwater were followed. This work has been conducted in good faith in accordance with SMECs understanding of the client's brief and general accepted practice for environmental consulting.

Contents

1.	Intro	oduction	1
	1.1	General	1
	1.2	Project background	1
	1.3	Project objectives	2
	1.4	Scope of work	2
2.	Site	information	
	2.1	Site identification and description	3
	2.2	Previous reports	5
	2.3	Site information	5
	2.4	Groundwater contamination	7
		2.4.1 Historic monitoring – 1996 to 2011	7
		2.4.2 Baseline monitoring – 2021	11
	2.5	Acid sulfate soils	11
		2.5.1 Subsurface conditions	12
		2.5.2 ASS occurrence and extent	12
	2.6	Groundwater wells	13
3.	Envir	ironmental activities and impacts	14
	3.1	Proposed development	14
		3.1.1 Main terminal	14
		3.1.2 Pipeline route	15
	3.2	Construction details	15
		3.2.1 Construction activities	15
		3.2.2 Excavations	15
		3.2.3 Dewatering	16
	3.3	Construction impacts	17
	3.4	Operational impacts	17
4.	Field	d investigations	
	4.1	General	
	4.2	Well installation and development	
	4.3	Groundwater monitoring event	19
		4.3.1 Monitoring objectives	19
		4.3.2 Sampling and analysis plan	19
		4.3.3 Monitoring locations	19
		4.3.4 Water Quality Objectives and assessment criteria	
		4.3.5 Monitoring methods	
		4.3.0 Laboratory and quality control	۲۱ ۲۵
	1 1	4.5.7 Quality assurance and quality control	22 25
	4.4	Dormoshility tosting	25
F	4.0		
5.	Char	racterisation of Groundwater	
	5.1	Standing water level	
	5.2	Groundwater flow direction	
	5.3	Permeability observation	
	5.4	Groundwater quality	

		5.4.1	Field observation	
		5.4.2	Laboratory results	
	5.5	Ground	water quality summary	
6.	Exca	vation stra	ategy	
	6.1	General	l	
	6.2	Method	dology	
	6.3	Results	and discussion	
		6.3.1	Calibration results	
		6.3.2	Groundwater inflow to the excavation	
		6.3.3	Drawdown	
	6.4	Discussi	ion	
7.	Grou	ndwaterN	Management Procedures	
	7.1	Constru	iction	
		7.1.1	General	
		7.1.2	Excavation	
		7.1.3	Dewatering	
	7.2	Water n	nonitoring	41
		7.2.1	Water quality monitoring	41
		7.2.2	Visual monitoring	
	7.3	Operatio	onal requirements	
8.	Refer	ences		44

Appendices

Appendix A	Figures
Appendix B	Assessment criteria
Appendix C	Data Quality Indicators
Appendix D	Borehole logs
Appendix E	Laboratory summary tables
Appendix F	Equipment calibration certificates
Appendix G	Laboratory reports
Appendix H	Dewatering Factsheet
Appendix I	Hydrographs

Figures

Figure 2–1: Site portions for description purposes – Main terminal	4
Figure 6–1: Model domain, mesh and boundaries	34
Figure 6–2: Calibrated hydraulic head distribution map and scatter plot	36
Figure 6–3: Cumulative groundwater inflow to the pit during excavation for the three SPW design scenarios	36
Figure 6–4: Drawdown contour (m) map at end of excavation for scenario 1	37

Figure 6–5: Drawdown contour (m) map at end of excavation for scenario 2	38
Figure 6–6: Drawdown contour (m) map at end of excavation for scenario 3	38

Tables

Table 1-1: Summary of issues required by SEARs	1
Table 2-1: Summary of Site information	3
Table 2-2: Site information summary	5
Table 2-3: Summary of site historical groundwater monitoring data	9
Table 2-4 Summary of groundwater wells onsite	13
Table 3-1 Summary of proposed deep excavations	16
Table 4-1 Summary of well installation details	19
Table 4-2 Summary of groundwater monitoring events	19
Table 4-3 Summary of monitoring locations – Groundwater quality	20
Table 4-4 Summary of laboratory analysis	22
Table 4-5 Summary of monitoring locations – Groundwater levels	26
Table 5-1 Summary of groundwater standing water level	27
Table 5-2 Summary of analysis concentration ranges and criteria exceedances	29
Table 6-1 Excavation 3 modelling assumptions	33
Table 6-2 Hydrogeological parameters for each layer	34
Table 6-3 Calibrated hydraulic conductivity	35

Executive Summary

Manildra Group Pty Ltd (Manildra) is proposing to construct an ethanol storage facility and pipeline located on Part of Lot 6 DP1236743 and Part of Lot 2 DP 1182823, Foreshore Road, Port Kembla (herein known as 'the Site').

This report presents a Groundwater Assessment and Management Report prepared by SMEC Australia Pty Ltd (SMEC) in support of the State Significant Development application for the proposed redevelopment of Manildra - Port Kembla Bulk Liquid Terminal ('the Project'). This report is written to address the Secretary Environmental Assessment Requirements (SEARs) and specifically to provide advice relating to potential groundwater interactions (dewatering) during construction. The Site is currently leased by Manildra from NSW Ports.

SMEC undertook groundwater investigations including:

- Desktop review of Site information sources pertaining to groundwater
- Installation of five groundwater wells to supplement existing available onsite wells within the Site main terminal
- Continuous water level logging for a period of 3 months within available wells (pending completion)
- One groundwater monitoring event carried out at eight wells. This constituted the third baseline monitoring event, supplementing two previous rounds (April and October 2021).

SMEC consider that the main development activities which could impact upon groundwater are three localised deep excavations for installation of stormwater features (including gross pollutant traps and an underground storage tank) and linear excavations for installation of gravity retaining wall foundations and underground stormwater pipework. In most cases, excavations and foundations would be installed 'wet' or using prefabricated material. A single excavation for installation of proposed stormwater underground storage tank (identified as 'Excavation 3') would have a significant interaction with groundwater requiring dewatering.

Remaining construction activities within the main terminal and pipeline route are not expected to involve direct interaction below the groundwater table. Driven piles foundations would not involve excavation but may displace sediments and groundwater.

The 'baseline' groundwater quality at the Site main terminal is characterised by elevated concentrations of heavy metals and nutrients (nitrogen and phosphorus) which exceeded adopted groundwater investigation levels at the 95% protection level. The groundwater quality considered a regional issue related to long term historical industrial activities and land reclamation with poorer quality fill in Port Kembla, including beneath and surrounding the Site. The quality of the groundwater is not likely to have an impact to the proposed development itself, but there is potential for impact to downgradient ecological receptors.

Site information was used to input to numerical modelling to inform the excavation strategy for 'Excavation 3'. Based on the modelling results, SMEC recommended sheet piles be installed to the depth of the basal clay layer (i.e. bottom of the aquifer at -7.5m AHD) in order to limit drawdown and the volume of water required to be pumped and treated. The likely volume of water which may be required to be pumped and treated is estimated to be as little as 500 m³ and less than 2000 m³ over a five-day installation period excluding installation of the sheet pile wall.

This Groundwater Management Procedures contained in this report includes proposed mitigation measures for excavations and dewatering which have potential for groundwater interaction during construction. Water quality monitoring would be carried out on a minimum quarterly basis during and post-construction to assess potential impacts to groundwater quality.

Impacts on groundwater are less likely to occur during operation of the proposed development. This assumes all plant and equipment designed, commissioned, operated and maintained to prevent and capture spills and leakages of bulk liquids during normal operational. Operational requirements consider exceptional events outside of normal operation as triggers for additional (event based) monitoring to enable further assessment of potential impacts.

Abbreviations

Abbreviation / Acronym	Description
AHD	Australian Height Datum
ASS	Acid sulfate soils
ASSMP	Acid Sulfate Soils Management Plan
BTEX	Benzene, toluene, ethylbenzene and xylenes
CEMP	Construction Environmental Management Plan
CoC	Chain of Custody
DO	Dissolved Oxygen
DQI	Data Quality Indicators
DQO	Data Quality Objectives
DSI	Detailed Site Investigation
EC	Electrical Conductivity
EPA	Environment Protection Authority
GIL	Groundwater investigation level
LCS	Laboratory Control Sample
LOR	Limit of reporting
m	Metres
m bgl	Metres below ground level
m bTOC	Metres below top of casing
mg/L	milligrams per litre
mV	milli-volts
µg/L	micrograms per litre
µS/cm	micro siemens per centimetre
ML	Megalitres
NEPC	National Environment Protection Council
NEPM	National Environment Protection (Assessment of Site Contamination) Measure
РАН	Polycyclic Aromatic Hydrocarbons
PCB	Polychlorinated biphenyls
PFAS	Per- and Poly- Fluoro Alkyl Substances
PFOA	Perflourooctanoic Acid
PFOS	Perfluorooctane sulfonic acid
PPE	Personal protective equipment
RAP	Remedial Action Plan
RPD	Relative percent difference
SFA	Solid Flight Auger
SOP	Standard Operating Procedure
SPW	Sheet pile wall
SRA	Sample Receipt Advice

Abbreviations

Abbreviation / Acronym	Description
SWL	Standing Water Level
SWMS	Safe work method statement
TEQ	Toxic Equivalency Quotient
TRH	Total recoverable hydrocarbons
TPH	Total Petroleum Hydrocarbons
VHC	Volatile halogenated compounds

х

1. Introduction

1.1 General

Manildra Group Pty Ltd (Manildra) is proposing to construct an ethanol storage facility and pipeline located on Part of Lot 6 DP1236743 and Part of Lot 2 DP 1182823, Foreshore Road, Port Kembla (herein known as 'the Site'). The Site locality is shown on Figure 1, Appendix A.

The proposed development will consist of installation of six above ground storage tanks, associated bunds and features, construction of a new bridge crossing, a gravity retaining wall adjacent the existing tidal stormwater channel, installation of buried stormwater infrastructure including an underground storage tank and two stormwater treatment devices, construction of service road and driveway pavements, drainage and grading features. Earthworks activities associated with the development are expected to include deep excavations for stormwater infrastructure, a network of linear utilities trenches and foundation excavations for gravity retaining wall, and shallow site recontouring and timber driven piles beneath bridge and tank structures. The development includes construction of a new pipeline route connecting to existing Jetty No. 4. The Site layout is shown on Figure 2, Appendix A.

This report presents a Groundwater Assessment and Management Report prepared by SMEC Australia Pty Ltd (SMEC) in support of the State Significant Development application for the proposed redevelopment of Manildra - Port Kembla Bulk Liquid Terminal ('the Project'). This report is written to address the Secretary Environmental Assessment Requirements (SEARs) and specifically to provide advice relating to potential groundwater interactions (dewatering) during construction. The Site is currently leased by Manildra from NSW Ports. The scope of works was carried out in general accordance with SMEC's '*Fee Proposal – Groundwater assessment, Part of Lot 6 DP1236743, Foreshore Road, Port Kembla NSW*', dated 07/03/2022 (ref: 30013038-V05 Rev 2).

1.2 Project background

SMEC has previously undertaken investigations at two portions of the Site (identified herein as the 'main terminal' and 'pipeline route') to fulfil the planning process and requirements of NSW Ports Development Code, pertaining to contamination assessment and acid sulfate soils assessment information for the proposed design. These include:

- Preliminary Geotechnical and Contamination Investigation (SMEC, 2021a), ref: 30013028-R01)
- Detailed Site Investigation (DSI) (main terminal) in December 2021 (SMEC, 2021b, ref: 30013038-R04)
- Targeted Site Investigation (pipeline route) in April 2022 (SMEC, 2022a, ref: 30013038-R05)
- Acid Sulfate Soils Management Plan (ASSMP) (SMEC, 2022b, ref: 30013038-R03)
- Remedial Action Plan (RAP) (SMEC, 2022c, ref: 30013038-R02)

The Planning Secretary's Environmental Assessment Requirements (SEARS) were issued on 23 December 2021. The SEARs have identified several key issues including a groundwater assessment which are outlined in Table 1-1.. This Groundwater Assessment and Management Report was written to address the SEARs and specifically to provide advice relating to groundwater dewatering during construction.

Item	Key Issues required by SEARS	Where addressed in report
18	Soils and Water – a surface and groundwater assessment, including:	
18.1	an assessment of potential surface and groundwater impacts associated with the development, including potential impacts on receiving waters	Section 3
18.2	an assessment of contaminated groundwater and acid sulfate soils	Section 2.4 and 2.5
18.3	details of all proposed mitigation, monitoring and management measures	Section 7
18.4	characterisation of water quality at the point of discharge to surface and/or groundwater against the relevant NSW Water Quality Objectives and values for the waters of Port Kembla and demonstrate how the project will be designed and operated to protect, maintain or restore these requirements	Section 5

Table 1-1: Summary of issues required by SEARs

1.3 Project objectives

The objectives of this Groundwater Assessment and Management Report include:

- Carrying out a groundwater baseline characterisation assessment
- Identification of possible impacts to and develop proposed mitigation, monitoring and management measures for groundwater; and
- Prepare a dewatering strategy associated with installation of a proposed underground stormwater storage tank (UST).

Key issues identified by the SEARs relating to surface water are dealt with by others are therefore beyond the scope of this report.

1.4 Scope of work

To fulfill the above objectives, SMEC carried out the following scope:

- Desktop review of Site information sources pertaining to groundwater information including previous investigations by SMEC
- Installation of five groundwater wells (designated SMW02 to SMW06) to supplement existing available onsite wells within the Site main terminal
- Continuous water level logging for a period of 3 months within available wells

(Note: At the time of this draft, water level logging had occurred for an initial period of approximately 1 month, noting monitoring is continuing for 2 more months)

- One groundwater monitoring event carried out to supplement previous groundwater monitoring at three existing wells (OHMW20, OHMW28 and SMW01) and including five installed wells (SMW02 to SMW06). This constituted the third baseline monitoring event, supplementing two previous rounds (April and October 2021).
- Modelling of groundwater to inform the dewatering strategy associated with installation of one underground storage tank within the Site main terminal.
- Groundwater assessment and interpretation discussing potential impacts on groundwater and waters of Port Kembla, stating the proposed mitigation, monitoring and management measures to be implemented during construction and operation stages.

2. Site information

2.1 Site identification and description

The proposed development is located at Part of Lot 6 DP1236743 and Part of Lot 2 DP 1182823 Foreshore Road, Port Kembla, NSW. The Site consists of two portions identified as 'main terminal' and 'pipeline route' as shown on Figure 2, Appendix A.

Figure 1 and Figure 2, Appendix A show the Site locality and Site layout, respectively.

A summary of Site information is presented below in Table 2-1:.

Table 2-1: Summary	of Site information
--------------------	---------------------

Aspect	Details
Title identifier	Part of Lot 6 DP1236743 and Part of Lot 2 DP 1182823 (pipeline route only)
Address	Foreshore Road, Port Kembla NSW
	 Main terminal Manildra supplied drawings showing a Site area of approximately 2.3ha (which excludes the stormwater channel). It is noted that the stormwater channel (approx. 0.14ha) is excluded from the lease. For Site description purposes, the Site has been divided into the three portions shown below on Figure 2–1including: Western portion – Areas west of the stormwater channel (0.83ha)
Area	 Central portion – A centrally located area east of the stormwater channel (0.44 ha) differentiated by a historical property boundary
	 Eastern portion – An easterly located area east of the stormwater channel (1.02 ha). Pipeline route
	Manildra supplied drawings showing a proposed linear pipeline route of approximately 460m between the main terminal and Jetty No. 4 west to east with a 4m corridor along the route.
	The pipeline route occupies an area of approximately 0.18 ha.
Zoning	The Site is located within Port Kembla state significant precinct in NSW. The State Environmental Planning Policy (Three Ports) 2013 is the principal environmental planning instrument applying to the Site.
Current Land use	 Main terminal The Site currently consists of vacant industrial land previously used for storage of miscellaneous maritime/port equipment. An open concrete lined stormwater channel passes through the Site, which discharges to the Port Kembla Outer Harbour immediately north of the Site (but does not form part of the lease area). A relatively large crushed or coarse fill stockpile up to about 11m high above current land platform level currently occupies most of the eastern portion of the Site. The coarse fill stockpile appears to comprise largely coarse sandstone boulders up to about 1m diameter. Pipeline route The pipeline route part of the Site is currently unused part of industrial foreshore land in the vicinity of harbour jetty operations.
Proposed land use	The proposed land use is for a bulk liquid (beverage grade ethanol) storage facility and product pipeline route as described further in Section 3.1
Surrounding land use	 Main terminal The Site is presently surrounded by: Remaining NSW Ports foreshore land on Lot 6 (west) currently containing several large soil stockpiles Foreshore Road (south), then beyond this and further south various industrial facilities including: Ixom (sulfuric acid plant)

Aspect	Details
	 Cleanaway waste recycling facility
	 Morgan Cement International Pty Ltd (cement manufacturing and grinding facility)
	Other former industrial facilities such as the former copper smelter and fertiliser production facilities
	Remaining stockpiled material and vacant land on Lot 6 (east)
	Port Kembla Outer Harbour shoreline (north).
	Pipeline route
	The Site is surrounded by:
	 Vacant foreshore land, a sandstone stockpile and paved road to former jetty No. 3 on Part of Lot 6
	 Vacant foreshore land, training conference centres, marine compounds/equipment stores and paved road/carparking areas on Part of Lot 2
	 An acid production pipeline route bisects the Site (Chainage 390m) and diverts in similar alignment towards Jetty No. 4 (Chainage 390m to 460m)
	• Port Kembla Outer Harbour shoreline is north approximately between 5m and 25m from the centreline of the pipeline route.

Figure 2–1: Site portions for description purposes – Main terminal

2.2 Previous reports

Background information contained in this Groundwater Assessment and Monitoring Report was sourced from the following previous reports:

- SMEC Australia Pty Ltd (2021a) Preliminary Geotechnical and Contamination Investigation, Part of Lot 6 DP1236743 Foreshore Road, Port Kembla, prepared for Manildra Group Pty Ltd, ref: 30013038-R01, Revision 2, dated 05 May 2021
- SMEC Australia Pty Ltd (2021b) Detailed Site Investigation, Part of Lot 6 DP1236743 Foreshore Road, Port Kembla, prepared for Manildra Group Pty Ltd, ref: 30013038-R04, Revision 1, dated 22 December 2021
- SMEC Australia Pty Ltd (2022a) Targeted Site Investigation Pipeline Route, Part of Lot 6 DP1236743 and Part of Part of Lot 2 DP 1182823, Foreshore Road, Port Kembla, prepared for Manildra Group Pty Ltd, ref: 30013038-R05, Revision 1, dated 02 May 2022
- SMEC Australia Pty Ltd (2022b) Acid Sulfate Soil Management Plan, Manildra Port Kembla Bulk Liquid Terminal, prepared for Manildra Group Pty Ltd, ref: 30013038-R03, Revision 2, dated 06 May 2022
- SMEC Australia Pty Ltd (2022c) Remedial Action Plan, Manildra Port Kembla Bulk Liquid Terminal, prepared for Manildra Group Pty Ltd, ref: 30013038-R02, Revision 1, dated 9 May 2022

A summary of relevant information from these reports are included in this Groundwater Assessment and Management Report. SMEC (2021b) also previously undertook a review of several environmental reports pertaining to the Site and nearby surrounding areas. Reference should be made to the original reports for further detailed information.

2.3 Site information

Relevant Site information is summarised in Table 2-2 below.

Table 2-2: Site information summary

Aspect	Description
Topography	 Main terminal The Site terrain appears to have been filled and levelled with a surface elevation between 3.5-4.5 metres above Australian Height Datum (m AHD). The Site surface is predominantly hardstand granulated slag material except for a concrete slab present in the central portion of the Site, and some localised grassed terrain. Other features of the Site include: A large rock stockpile with steep batters (to a height of approximately +14m AHD) within the eastern portion East and west of the channel there are localised steep slopes down to the edges of the concrete lined stormwater channel (approximately +2m AHD) A fill embankment is noted west of the stormwater channel approximately 1.5m to 2m above top of the stormwater channel, indicating the Site terrain appears to have been filled and levelled. Pipeline route Based on survey carried out by Masters Surveying (Drawing 64146-2), the Site is relatively flat with some slight undulations at elevations ranging between 2.9m AHD (Chainage 90) and 4.3m AHD (Chainage 340m).
Vegetation	Main terminal The Site contains a stand of mature trees on the southern Site boundary adjacent to Foreshore Road. Sparsely scattered trees were noted elsewhere, noting most of the Site is hardstand gravel and pavements with some patches of exotic grass vegetation. Pipeline route Except some minor areas of grass coverage, the Site is mainly hardstand gravel and pavements with little or no vegetation.

Aspect	Description
	The 1:100,000 scale geological series sheet of Wollongong to Port Hacking indicates that the Site is underlain by Quaternary quartz and lithic fluvial sand, silt and clay which most likely will overlay either or both the rock formations of:
	• The Dapto Latite Member, comprising of a melanocratic coarse grained to porphyritic latite
Geology	• The Budgong Sandstone formation, comprising red-brown and grey volcanic sandstones.
	Reference to previous drilling in the area of Port Kembla Outer Harbour indicates that the Site is likely underlain by the Budgong Sandstone Formation. However, the Site is also located very close to the boundary between the overlying Dapto Latite and it is possible that some Dapto Latite could be encountered in some parts of this Site particularly towards the southern portion of the Site.
Soil Landscape	Reference to the 1:100,000 Soil Landscape Series Sheet for Central and Eastern NSW (OEH 2019) indicates the Site is within the disturbed terrain soil landscape.
	 Reference to Acid Sulfate Soil (ASS) risk mapping (NSW Government eSPADE, accessed 23/03/2021) indicates that the Site is located within areas mapped as 'disturbed terrain' with an unknown probability of ASS occurrence. Risk map guidance indicates that 'disturbed terrain may include filled areas, which often occur during reclamation of low-lying swamps for urban development. Other disturbed terrain includes areas which have been mined or dredged or have undergone heavy development or construction of dams or levees. Soil investigations are required to assess these areas for acid sulfate potential.' Figure 3, Appendix A shows the acid sulfate soils risk mapping for the Site and surrounding areas. The map indicates the following: Main terminal The Site western, central and eastern portion is primarily underlain by disturbed terrain (X) at an elevation (2) of 2 to 4m AHD A relatively smaller northern portion of the Site identifies disturbed terrain (X) at an elevation (1) of 1 to 2m AHD.
Acid Sulfate Soil	 From preliminary investigation by SMEC (2021a), acid sulfate soils were assessed to be present at the main terminal portion of the Site within relatively thin layers of natural estuarine soils beneath the fill. Further consideration and management of acid sulfate soils was recommended where these soils are to be intersected via excavation or if dewatering will occur which could lower the water table and expose soils to oxidation. Pipeline route Between Chainage 0 to 180m, the Site is underlain by disturbed terrain (X) at an elevation (2) of 2 to 4m AHD
	• Between Chainage 180 to 430m, the Site is underlain by disturbed terrain (X) at an elevation (2) of greater than 4m AHD.
	Based on the Site topography and proposed disturbance depths (refer to Section 3.1), excavations depths were assessed as:
	 Base level 1.9 to 2.6m AHD (Above ground section of pipeline route - Shallow concrete footings, approximately 1m deep)
	 Base level 2.3 to 3.3m AHD (Underground section of pipeline route – Cut and cover trenching, approximately 1.8m deep).
	At these earthworks' levels, acid sulfate soils (if present) within the Site area were assessed to be greater than the depth of proposed disturbance.
	Main terminal
Groundwater	Based on previous groundwater monitoring that has occurred at the Site, groundwater beneath the Site were historically recorded typically between 1.5m and 3.0m below ground surface with an inferred groundwater flow in a north-easterly direction towards Port Kembla Outer Harbour. Groundwater depths and directions may vary based on Site specific conditions, including tidal influences.
	A search of the Department of Water and Energy Online Database [accessed 22 March 2021] was carried out to identify registered groundwater bores within the vicinity of the Site. The search indicated multiple registered bores are within industrial properties for monitoring purposes located within 500m of the Site including:

Aspect	Description
	 One registered bore (GW114085) located 100m south of the Site (within Morgan Cement International property)
	Greater than 50 registered bores between 300m and 600m south of the Site (former Port Kembla Copper Smelter)
	Six registered bores 450m south-east of the Site (Vesuvius manufacturing facility. Pipeline route
	Based on Site topography, the depth of groundwater along the pipeline route is expected to be at depths between 2-3m below ground level based on the proximity to the open harbour environment.
	Main terminal
	Surface water at the main terminal Site is likely to infiltrate into Site soils or shed as runoff partly to Foreshore Road (south), partly to Port Kembla harbour (north) and partly into the adjacent open concrete lined drain (west).
Surface Water	The open drain receives stormwater from upslope areas offsite and runs through the Ixom sulfuric acid plant as an open drain, and underground beyond, including through the former copper smelter land further upslope.
	Pipeline route
	towards Port Kembla harbour. At asphalt paved areas (Chainage 320 to 460m), surface water runoff is expected to enter urban stormwater drainage pits and pipework prior to discharge at the harbour.
	From previous investigations by SMEC (2021a, 2021b and 2022a), contamination was identified in soils and groundwater beneath the site including:
Contamination	• Soil recorded elevated concentrations of heavy metals (including lead and arsenic) within fill and underlying natural soils at four test locations (TP5, TP6, TP13, TP14 and TP23 – main terminal) and one test location (BH06 – pipeline route) exceeding human health investigation levels for the proposed industrial land use. Depths of contamination appeared to be within fill/natural clayey soils (typically between 1m bgl and 2.2m bgl) except at one location (TP13) where elevated lead concentrations were recorded within natural sand at a depth of at least 3.0 m bgl (TP13) suggesting deeper lead impact in this area.
	 The results of two groundwater monitoring events in March and October 2021 recorded elevated concentrations of heavy metals (including cadmium, copper, lead, nickel and zinc) and ammonia which exceeded adopted groundwater investigation levels for protection of marine aquatic ecosystems at the 95% species protection level.
	Existing soil contamination issues at the Site will be managed under the RAP (SMEC, 2022c).

2.4 Groundwater contamination

2.4.1 Historic monitoring – 1996 to 2011

Groundwater monitoring events were carried out previously for broader foreshore lands which included the Site (main terminal only), between 1996 and 2011. The monitoring data is presented within reports by Groundwater Technology Australia (1996), Flour Daniel GTI (1996 to 1997), IT Environmental (2001 and 2002), URS (2004 to 2006), Douglas Partners (DP, 2009) and SLR (2011). During this period, at least seven groundwater monitoring wells have been installed and monitored at the Site, some of which have now been lost.

The following relevant summary information is noted for this assessment:

- Groundwater monitoring data is available on selected monitoring reports for up to 7 onsite monitoring wells (MW4, MW5, MW7, OHMW20, OHMW28, OHMW26 and MW317) and one nearby offsite monitoring well (MW3) located just down-gradient. Figure 4A, Appendix A shows the historic groundwater well locations and details are summarised below:
 - In 1996, one onsite wells (MW7) was installed within the western portion of the Site, two onsite wells (MW4 and MW5) were installed with the eastern and central portions of the Site, respectively, and one

offsite well (MW3) was installed just east at down gradient location (GTA, 1996). Note: Monitoring at MW5 and MW7 appeared to have discontinued after 1997 and 2006 respectively.

- Prior to 2003, two onsite wells (OHMW28* and OHMW26) were installed in the eastern and northern portion of the Site (URS, 2006). (*Note: The original location indicated on the URS 2006 plan shows OHMW28 in the eastern portion of the Site).
- In 2009, an onsite well (OHMW28-1**) was reinstalled in the central portion of the Site (Douglas Partners, 2009). A second onsite well designated (OHMW20) was sampled in the eastern portion of the Site. (**Note: The revised location indicated on the DP 2009 plan shows OHMW28 in the central portion of the Site, the original location now appears to be identified as OHMW20 in subsequent rounds).
- In 2011, an onsite well (MW317) in the eastern portion of the Site was monitored (SLR, 2011). Monitoring at
 offsite monitoring well (MW3) and onsite monitoring well (OHMW26) appeared to have discontinued.
- Groundwater samples were analysed for selected heavy metals including arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), mercury (Hg) and zinc (Zn), selenium (Se), antimony (Sb), polycyclic aromatic hydrocarbons (PAH), total recoverable hydrocarbons (TRH) and/or benzene, toluene, ethylbenzene, xylene (BTEX). During DP (2009) and SLR (2011) Arsenic speciation was carried out on selected samples (OHMW28 and MW3).
- Table 2-3 includes a summary of historical groundwater monitoring data, including the highest recorded heavy
 metals concentrations recorded by each consultant within onsite or nearby offsite (less than 10m) well locations
 (including arsenic, cadmium, chromium, copper, lead, nickel, antimony, selenium, and zinc). They provided an
 indication for preliminary comparison purposes to monitoring data obtained during further baseline
 groundwater quality assessment (Refer to Section 5.5).
- During Douglas Partners (2009) and SLR (2011) Arsenic speciation was carried out on selected samples indicating the main components was Arsenous Acid (As III) followed by Arsenic Acid (As V). It is noted that ANZG (2018) 95% protection levels criteria for As III and As V apply to freshwater only and have not been assigned for marine ecosystems. The report concluded that some of the metal exceedances may be representative of contamination that may warrant further investigation.

SMEC (2021b) concluded the findings of the desktop contamination study indicated widespread historical industrial land use in the surrounds and elevated concentrations of contaminants of potential concern (particularly heavy metals) within groundwater beneath the Site from past monitoring.

Table 2-3: Summary of site historical groundwater monitoring data

Source	Dotails of groundwater	Contaminants	Contaminant concentrations (highest recorded) (mg/L)						Contaminant concentrations (highest recorded) (mg/L)	Inferred	
reference	monitoring locations	of concern	As	Cd	Cr	Cu	Pb	Other	Ni	Zn	flow direction
Groundwater Technology Australia Pty Ltd (1996)	Onsite wells (3): (MW4 MW5, MW7)	TRH, BTEX, Heavy metals (As, Cd, Cr, Cu,	0.190	<lor< td=""><td>0.002</td><td>0.006</td><td>0.029</td><td>0.010 (Sb)</td><td>-</td><td>0.458</td><td></td></lor<>	0.002	0.006	0.029	0.010 (Sb)	-	0.458	
Fluor Daniel GTI (1997) 2 monitoring events	Offsite wells (1): (MW3) - near eastern Site boundary (inferred down-gradient)	Pb, Zn) (+ Bi, Hg, Sb) (1997 only)	0.170	0.003	0.003	0.122	0.020	0.004 (Sb)	-	3.250	North-east
IT Environment al Pty Ltd (2002)	Onsite wells (2): (MW4, MW7)	TRH, BTEX, Heavy metals (As, Cd, Cr, Cu, Pb, Zn, Hg)	0.270	<lor< td=""><td>0.006</td><td>0.003</td><td>0.001</td><td>-</td><td>-</td><td>0.170</td><td>Not</td></lor<>	0.006	0.003	0.001	-	-	0.170	Not
1 monitoring event	Offsite wells (1): (MW3) - near eastern Site boundary (inferred down-gradient)		Cd, Cr, Cu, Pb, Zn, Hg)	0.008	0.002	ND	0.190	0.069	-	-	2.200
URS (2006) – Note: 3 monitoring	Onsite wells (4): (MW4, MW7, OHMW28, OHMW26)	TRH, BTEX, Heavy metals (As, Cd, Cr, Cu,	0.273	0.002 (note 4)	ND	0.150	ND	-	0.312	1.41	North
events in 2003, 2004 and 2006 (summary data)	Offsite wells (1): (MW3) - near eastern Site boundary (inferred down-gradient)	Cd, Cr, Cu, Pb, Ni, Zn, Hg) + Hexavalent Cr6+	0.011	0.004	<lor< td=""><td>0.293</td><td>0.101</td><td>-</td><td>0.307</td><td>3.54</td><td>North-east</td></lor<>	0.293	0.101	-	0.307	3.54	North-east

Manildra – Port Kembla Bulk Liquid Terminal Groundwater Assessment and Management Report Prepared for Manildra Group Pty Ltd

Client Reference No. 30013038-R06 SMEC Internal Ref. 30013038 26 May 2022

Source	Datails of groundwater	Contaminants	Contaminant concentrations (highest recorded) (mg/L)						Inferred		
reference	monitoring locations	of concern	As	Cd	Cr	Cu	Pb	Other	Ni	Zn	flow direction
Douglas Partners (2009)	Onsite wells (3): (OHMW28, OHMW26 and OHMW20 – see note 3)	TRH, BTEX, PAH, Heavy metals (As, Cd, Cr, Cu, Pb, Ni, Zn, Hg + Se)	0.094 (0.055 As III) (0.007 As V)	0.0004	<lor< td=""><td>0.013</td><td>0.0011</td><td>0.019 (Se)</td><td>0.023</td><td>0.420</td><td>Not</td></lor<>	0.013	0.0011	0.019 (Se)	0.023	0.420	Not
	Offsite wells (1): (MW3) - near eastern Site boundary (inferred down-gradient)	Arsenic speciation As (III) and As(V) – See note 2	0.036* (0.037 As III) (0.055 As V)	0.0015	<lor< td=""><td>0.055</td><td>ND</td><td>0.025 (Se)</td><td>0.150</td><td>0.170</td><td>specified</td></lor<>	0.055	ND	0.025 (Se)	0.150	0.170	specified
SLR (2011)	Onsite wells (3): (OHMW28, OHMW20 and MW317)	TRH, BTEX, PAH, Heavy metals (As, Cd, Cr, Cu, Pb, Ni, Zn, Hg + Se)	0.058 (0.056 As III) 0.013 As V)	0.0023	<lor< td=""><td>0.160</td><td>ND</td><td>0.019 (Se)</td><td>0.260</td><td>0.880</td><td>North-east</td></lor<>	0.160	ND	0.019 (Se)	0.260	0.880	North-east
5lk (2011)	Offsite wells (0): Nil	Arsenic speciation As (III) and As(V)	-	-	-	-	-	-	-	-	

Note 1: Highest recorded heavy metals concentrations are included for summary purposes noting this may represent more than one monitoring location or groundwater monitoring event. No detections above the laboratory reporting limit were recorded for remaining heavy metals (including mercury), TRH, BTEX and/or PAHs (where tested).

Note 2: DP (2009) noted that speciated arsenic samples were not field filtered. This explains comparatively higher concentration than dissolved arsenic which were field filtered.

Note 3: DP (2009) indicates another onsite well identified on map as MW317 however this was not sampled.

Note 4: URS (2006) recorded a cadmium result of 0.0684mg/L within the primary sample, but not the corresponding duplicate 0.0001mg/L. The primary has been disregarded based on historical trends.

LOR – Limit of reporting

2.4.2 Baseline monitoring – 2021

Baseline groundwater quality and levels were assessed at the Site (main terminal) by SMEC during two previous groundwater monitoring events; one in March 2021 during the preliminary investigation (SMEC, 2021a) and an additional groundwater monitoring event in October 2021 (SMEC, 2021b).

During one or both rounds, contamination laboratory testing of groundwater samples was carried out at three wells (OHMW28, OHMW20 and SMW01) for potential contaminants of concern and additional 'baseline' monitoring parameters including:

- Total recoverable hydrocarbons (TRH)
- Benzene, Toluene, Ethylbenzene, Xylenes (BTEX),
- Polycyclic aromatic hydrocarbons (PAH)
- Speciated Phenols
- Organochlorine pesticides (OCP) and organophosphorus pesticides (OPP) and Polychlorinated Biphenyls (PCB)
- Volatile halogenated compounds (VHCs)
- Nitrogen (ammonia, nitrate, nitrite)
- Total phosphorus*, Reactive phosphorus
- Hardness, Total Dissolved Solids (TDS)
- Major cations (calcium, magnesium, potassium, sodium)
- Major anions (chloride, sulphate and fluoride)
- Alkalinity
- Dissolved heavy metals (aluminium, arsenic, cadmium, chromium (total), cobalt*, copper, iron, lead, mercury, nickel, selenium, uranium* and zinc)
- Total heavy metals (aluminium*, manganese* and iron*)
- Ammonium ion*
- Total acidity*
- Per and poly fluoro alkyl substances (PFAS)

*Note: In October 2021, additional groundwater analysis was also carried out for baseline parameters recommended in the draft Acid Sulfate Soil Management Plan (SMEC, 2021c) including selected additional dissolved heavy metals (cobalt, uranium), total metals (aluminium, iron and manganese), ammonium ion and total phosphorus, and total acidity.

Table E1, Appendix E includes a laboratory summary table for previous groundwater samples sampled and tested during the March and October 2021 events. Figure 4A, Appendix A shows the baseline monitoring 2021 locations and previous monitoring results. Reference should be made to the DSI (SMEC, 2021b) for factual details on monitoring data, including laboratory reports and quality assurance and quality control data evaluation.

2.5 Acid sulfate soils

Acid sulfate soil (ASS) materials are naturally occurring soil and sediment, distinguished from other soil or sediment materials by having properties and behaviour that have either:

- 1. Been affected considerably by the oxidation of Reduced Inorganic Sulfur (RIS) (principally the mineral iron pyrite), or
- 2. The capacity to be affected considerably by the oxidation of their RIS constituents.

The factor common to all ASS materials is that RIS components have either had, or may have, a major influence on the properties or behaviour of these soil materials. These soils are typically found in low-lying coastal areas and saline inland areas; however, they have been identified in a wide range of environmental settings.

Acid sulfate soil materials include Potential acid sulfate soils (PASS or sulfidic soil materials) and Actual acid sulfate soils (AASS or sulfuric soil materials). These are often found in the same profile, with AASS overlying PASS.

2.5.1 Subsurface conditions

The subsurface soil conditions across the Site have been summarised by SMEC (2021a, 2021b and 2022a) with five main lithological units, summarised below.

- Unit 1 Fill, which is divided into the following main subunits Unit 1A (Filling Cemented slag), Unit 1B (General fill) within the main terminal, Unit 1C (Stockpile fill) over the eastern portion, Unit 1D (Inferred location of PAH contamination) localised in the western portion. Along the pipeline route, fill consisted of topsoil, Unit 1A (Cemented slag) and Fill (variable)
- Unit 2 Aeolian Sands consisting typically of poorly graded, fine to coarse grained sand with some black carbonaceous and dark grey clay laminations, moist to wet. Prior to land reclamation, these materials are inferred to have been deposited in a combination of beach and dune environments. This unit is inferred to be generally in a loose to medium dense condition.
- Unit 3 Estuarine soils (sand and clay) high plasticity, firm and loose to medium dense, fine to coarse grained sand with some black carbonaceous and dark grey clay laminations, moist to wetter than the plastic limit. Estuarine clays were typically encountered as a relatively thin layer (typically less than 0.3m thick) from depths of 1.2m bgl, whereas estuarine sands were typically encountered beyond depths of 2.4 m bgl.
- Unit 5 Residual Soil which is clay/gravelly clay/sandy clay derived from in-situ weathered latite. The consistency of this unit ranges from very stiff to hard. This unit tends to grade from residual soil to extremely weathered rock with increasing depth. Residual clays were typically encountered during preliminary geotechnical boreholes SMEC (2021a) at depths below 8.5 to 9.0m bgl.
- Unit 6 Extremely weathered rock, consisting of extremely to distinctly weathered Latite.

For further details, reference should be made to engineering logs presented within previous investigation reports by SMEC (2021a, 2021b and 2022a).

2.5.2 ASS occurrence and extent

SMEC (2021a) previously carried out soil sampling and testing to assess the potential for ASS within two suspected units based on geological origin; Unit 2 (Aeolian sands) and Unit 3 (Estuarine soils). A summary of ASS laboratory soil data is presented on Figure 4B, Appendix A and factual details are included within the Acid Sulfate Soils Management Plan (ASSMP) (SMEC, 2022b). In summary:

- Potential ASS was likely to be present within:
 - A relatively thin estuarine layer (Unit 3) described as dark grey/grey sandy clay/clay at depths between 1.9-2.2 m bgl.
 - Deeper estuarine sand layers (Unit 3) described as pale grey, medium to coarse grained sand encountered within BH5 and BH7 at depths of 6.0-6.45m bgl and 7.2-7.65 m bgl. Relatively high acid neutralising capacity was noted within these sands, suggesting the potential ASS may be self-buffering.
- The upper natural layers inferred to be Unit 2 (Aeolian sands) in origin (described as pale brown, fine to coarse grained) were not considered to be ASS.
- Due to the expected reduced scale of the soil earthworks, delineation of ASS lateral extents was not assessed as part of SMEC's preliminary investigation. For the purposes of the ASSMP (SMEC, 2022b), the inferred extents of ASS have been assessed from previous investigation findings as follows:
 - Horizontally: Site wide within the extent of works
 - Vertically: At depths greater than 1.2m below ground level (m bgl) within estuarine clays and sands (Unit 3).
 Previous survey shows the top of Unit 3 (Estuarine soils) is expected to be in the general range of about +1.2 mAHD to 0 mAHD.
- SMEC (2021a) previously recommended that further consideration and management of ASS should be implemented during Site development where the above soils are to be intersected via excavation or if dewatering will occur which could lower the water table and expose soils to oxidation. Groundwater table drawdown can occur from excavation dewatering and affect ASS as they can be exposed to oxygen and oxidise.

2.6 Groundwater wells

Twelve groundwater monitoring wells are onsite (including six existing historic wells and six new wells installed by SMEC 2021-2022). Eleven wells appear to be still useable for monitoring and one well was damaged and partially buried under a drum ('MW damaged' shown on Figure 4A, Appendix A). Where previous survey was carried out to some of the monitoring wells, a summary of survey details is provided in Table 2-4.

	Inferred			Rec	duced Level (m		
vveii no.	monitoring well ID	Easting	Northing	Ground level	Top of well casing	Well stickup (m)	Details
1	MW316 (note 1)	307769.09	6183022.99	2.54	2.46	-0.12	Gatic well - Hex- key metal gatic flush with ground surface
2	MW5 (Note 2)	NS	NS	NS	NS	NS	Gatic well – 'Older style' metal gatic flush with ground surface
3	OHMW28 (Note 3)	307778.51	6182987.64	2.41	3.09	0.68	Monument Well
4	ID Unknown (Note 4)	307814.26	6183015.20	2.66	3.23	0.57	Monument Well
5	OHMW20 (Note 3)	307832.75	6183030.30	2.89	3.83	0.94	Monument Well
6	<i>MW Damaged</i> (Note 4)	307826.72	6183045.32	3.31	NS	NS	Monument Well – Well damaged
7	SMW01	307771.69	6183048.65	2.57	3.33	0.76	Monument Well
8	SMW02	307889.38	6183043.42	NS	3.63	0.74	Monument Well
9	SMW03	307881.90	6183114.52	NS	3.78	0.69	Monument Well
10	SMW04	307848.12	6183124.30	NS	3.61	0.65	Monument Well
11	SMW05	307825.76	6183134.07	NS	3.58	0.72	Monument Well
12	SMW06	307734.25	6183055.70	NS	4.17	0.76	Monument Well

Table 2-4 Summary of groundwater wells onsite

Note 1: Well location MW316 was labelled on the well cap, noting this location was not formerly shown on historical monitoring reports.

Note 2: Well locations MW5 was inferred from maps within contamination assessment (CMPS&F, 1996).

Note 3: Well location OHMW28 and OHMW20 were inferred from maps within historical groundwater monitoring report (DP, 2009 and SLR, 2011).

Note 4: Remaining well identification remains unknown.

NS - Not surveyed

Gatic well = well finished level with ground surface with a steel gatic type cover

Monument well = well finished above ground surface with a steel monument

3. Environmental activities and impacts

3.1 Proposed development

3.1.1 Main terminal

Manildra propose to lease and redevelop the Site into an ethanol storage facility. Based on information provided by Manildra, the proposed development is expected to comprise:

- Six above ground storage tanks (2.5ML to 5ML capacity for beverage grade alcohol) located inside a raised bunded area, plus two slops tanks
- Demolition of existing bridge and construction of one new proposed bridge crossing over the adjacent stormwater channel to the west, to connect to a service road with Foreshore Road
- A gravity retaining wall installed along the boundary with the stormwater channel (approx. 220m length) including either side of the proposed bridge and along the western Site boundary adjacent to the adjoining sewer pump station (offsite)
- New stormwater network including pipework, underground storage tank, two stormwater treatment devices and outlet structures
- Perimeter roadways/pavements
- Firefighting system including foam suppressant system and water supply tanks
- Ancillary features such as substation, workshop and sheds which would be small and single storey.

Figure 2, Appendix A shows the approximate position of proposed Site development features relative to the Site boundaries.

Some Site recontouring involving both 'cut to fill' earthworks are required to achieve design ground levels. SMEC understand 'site won' excavated soils are proposed for reuse with the balance imported material proposed to be used to raise existing ground levels as fill. Alternatively, if contaminated, onsite containment of soils in designated areas is proposed as outlined in the RAP (SMEC, 2022c). It is understood the proposed development layout includes Site earthworks which seek to minimise ground and groundwater disturbance by minimising the quantity and depth of excavations/cuts. An exception applies to deeper localised excavations associated with stormwater pipework, underground tank and gross pollutant traps; these areas will generate surplus excavated spoil to be managed onsite.

SMEC understand that timber driven piles will be used for foundations of the tank structures. Except for minor disturbances at the surface, these are expected to result in minimal ground disturbance as soils are displaced laterally to accommodate the pile.

A Fire Safety Study prepared by Pinnacle Risk Management Pty Ltd (2022), indicates the proposed facility would be also equipped with a foam suppressant system at the bulk ethanol storage facility which will contain Per and Poly Fluoro Alkyl Substances (PFAS). The Site will also store non-PFAS (fluorine free) firefighting foam for certain applications and scenarios where effective. The Fire Safety Study indicates that no PFAS foam would be used for testing, training and commissioning but only for an actual fire event. Firewater in the tank farm will be contained in the bunds and pumped to the slops tank for offsite disposal at the Shoalhaven Starches facility.

Regarding the foam chemical constituents, the current excerpt from the Fire Safety Study is below:

'All firefighting foams will be stored in containers within the foam house near the fire tanks to east of the site. This store will include secondary containment for potential loss of foam from any container. The type of foam will be a 3/3 alcohol resistant foam suitable for the application required. Under the Environment Protection Authority (EPA) regulations, firefighting foams are expected to be PFAS (per and polyfluoroalkyl substances) free unless needed for 'catastrophic fires'. As such, the site will store non PFAS (fluorine free) firefighting foam for all applications for which this foam has been shown to have adequate efficacy. This will be applied to the truck loading bays, transfer pumps, monitors at the tank bund and the marine berth area.

However, for the potential larger fires such as the large storage tanks, the use of PFAS free foam is still being trialled. As such it is proposed to use a current PFAS foam for this purpose unless evidence is provided that would prove efficacy for this application such as planned to be carried out by LASTFire in April 2022. To reduce environmental exposure, no

PFAS foam will be used for testing, training or commissioning but only for an actual fire event. To achieve this the type of proportioner (FireDOS) will enable proof of foam mixing ratio without the need to transfer the foam into a water solution. All testing will be done using water only simulating foam/water pressures and only controlled samples will be produced in a contained area to provide foam test records. ' (Pinnacle Risk Management Pty Ltd, 2022, pp30)

Regarding the management of contaminated firewater retained at the Site, the First Safety Study stated, '*Firewater in the tank farm will be contained in the bunds and pumped to the slops tank for offsite disposal at the Shoalhaven Starches facility.*' (Pinnacle Risk Management Pty Ltd, 2022, pp16).

3.1.2 Pipeline route

The Site boundary extends to the east of the main terminal along a 4m wide easement for construction of a new pipeline route connecting to existing Jetty No. 4, including a parcel of land within Part of Lot 2 DP 1182823 owned by Transport for NSW (TfNSW).

Based on the current set of design drawings (20399-DA-P01 to P05, dated 10 March 2022) prepared by TFA Group Pty Ltd., the pipeline route would consist of:

- Approximately 180m above-ground pipeline mounted on footings between the main terminal (Chainage 0m) and a dive thrust block (Chainage 180m). Along this portion, shallow foundation excavations are anticipated to be 1.0m deep (each 0.4m wide x 1.0m length) at regular intervals (roughly every 5-6m spacing)
- Approximately 280m underground pipeline between dive thrust block (Chainage 180m) and Jetty No. 4 (Chainage 460m) Trench excavations are anticipated to be 1.8m deep by 2.0m wide. Installation is expected to involve 'cut and cover' trenches reusing materials excavated during backfill (minimum 1.2m compacted backfill) and removal of surplus spoil material for reuse/containment within main terminal.

Figure 2, Appendix A shows the proposed layout of the pipeline route (including marking of Chainage 0 to 460m) relative to the Site boundaries.

3.2 Construction details

3.2.1 Construction activities

The Project's construction activities can have a direct impact on the environment and can contribute to a larger environmental change.

SMEC consider that the main development activities which could impact upon groundwater are localised deep excavation for installation of stormwater features and linear excavation for installation of gravity retaining wall foundations and underground stormwater pipework.

3.2.2 Excavations

SMEC consider the following expected areas and scale of groundwater interaction disturbance based on preliminary drawings provided by Manildra:

• Three localised deeper excavations to depths between 3.0m and 4.5 m bgl for installation of stormwater treatment devices and an underground storage tank are likely to extend below the current groundwater table. Specifically, the underground storage tank (Excavation 3) which requires dewatering. Based on information supplied to SMEC, preliminary estimated dimensions for excavations are included within Table 3-1 below.

Excavation ID	Proposed feature	Dimensions	Estimated depth below water table	Dewatering required
Excavation 1	Excavation 1- Stormwater Gross Pollutant Trap (GPT 1/D Southern)	Approximately 3m x 3m x 3.3m depth	Less than 0.5m	No – Short duration wet installation (< 1 day)
Excavation 2	Excavation 2 – Stormwater Gross Pollutant Trap (GPT 1/A Northern)	Approximately 3m x 3m x 3.0m depth	Less than 0.5m	No – Short duration wet installation (< 1 day)
Excavation 3	Stormwater underground storage tank	Approximately 10m x 5m x 4.5m depth	Approximately 2.0m	Yes – Extended duration dry installation (estimated 3-5 days)

- Multiple linear excavations up to 2 m bgl allowing for installation of gravity retaining wall foundations and underground stormwater pipework. Linear excavations and installations have potential to extend slightly below the groundwater table (less than 0.5m) and not expected to require dewatering. Concreting of foundation piers /shallow piles may be required below groundwater table.
- Multiple driven timber piles (approximately 700) are to be installed for foundations for bridge and tanks, with some potential additional screw piles or steel posts (along proposed retaining walls, if required) are expected to extend to bedrock to below current groundwater table. No dewatering activities or disturbances are proposed at individual pile locations.

Figure 5, Appendix A shows the indicative locations of deeper excavations.

Except for the above, remaining construction activities within the main terminal are not expected to involve direct interaction below the groundwater table. Site recontouring will involve sitewide shallow excavation (typically less than 1m bgl) and therefore interacting with groundwater is unlikely.

Along the pipeline route, groundwater was not intersected by the Targeted Site Investigation (SMEC, 2022a) and is unlikely to be intersected as part of the proposed development based on Site topography and subsurface observations. An assessment of groundwater was therefore not carried out or considered relevant in these areas.

3.2.3 Dewatering

Dewatering is likely to be required for installation of the underground storage tank (Excavation 3) which occurs below the groundwater level (Excavation 3 shown on Figure 5, Appendix A). This excavation is expected to be approximately 4.5m below the existing ground level, noting standing water levels are expected at around 1.8 m bgl based on previous groundwater monitoring near this proposed excavation. Dewatering may be required for a period of less than 5 days to facilitate excavation, installation/commissioning and backfilling following initial excavation to base depth (estimated between 2-5 days subject to confirmation of installer methods and requirements). Based on discussions with Manildra, temporary shoring/retention of the excavation (Excavation 3) would include sheet piles to minimise:

- inflows to the excavation;
- drawdown of the surrounding aquifer; and
- changes to the groundwater flow regime.

An assessment of the potential dewatering requirements for Excavation 3 is included based on modelling in Section 6. Manildra has indicated a preliminary estimated duration for each excavation is between two and five days (subject to confirmation of installer methods and requirements). The excavation strategy includes modelling to assess the potential radius of influence and inflows based on proposed mitigation measures consisting of sheet piling.

Dewatering is unlikely to be required for remaining installations of gross pollutant traps (Excavation 1 and Excavation 2) which may occur below groundwater levels, noting these will be installed as 'wet installations' without the need for dewatering. Stormwater pipework excavations are not expected to extend below groundwater levels and do not require dewatering.

SMEC note that if retention systems such as sheet piles that limit impacts from drawdown are not used, then to address impacts of deeper dewatering, a further assessment of the implications of dewatering on groundwater would need to be carried out. Where the results of assessment indicate further control measures beyond those described in this ASSMP, then an addendum will be required.

3.3 Construction impacts

If construction activities are not managed correctly, potential impacts on groundwater may include:

- Lowering of groundwater table during dewatering
- Impacts to groundwater quality from excavations/disturbances:
 - Draw down of groundwater table below depths of PASS with the potential to generate acid upon exposure to oxygen and acidify
 - Increase acidity from ASS disturbance (i.e. low pH groundwater) or
 - Decreased acidity from concreting (i.e. higher pH groundwater)
 - Change to existing groundwater contaminant concentrations (i.e. increased dissolved metals)
 - Mobilisation/leaching of contaminated soil disturbed during development
- Impacts to groundwater quality from other Site activities:
 - Spillage/uncontrolled release of chemicals stored at the Site
- Impacts to receiving waters (i.e. Port Kembla harbour) during groundwater dewatering
 - Spillage/uncontrolled release of contaminated groundwater during 'dewatering'
 - Uncontrolled discharges of extracted groundwater via stormwater drains affecting surface water quality.

Management procedures have been developed to mitigate these potential impacts and are outlined in Section 7. A construction water quality monitoring programme, including groundwater monitoring during and post construction, has been recommended to compare to baseline (refer to Section 7.2).

3.4 Operational impacts

Impacts on groundwater are less likely to occur during operation of the proposed development. SMEC understand that the proposed development includes all plant and equipment designed, commissioned, operated and maintained to prevent and capture spills and leakages of bulk liquids during normal operational. The ethanol storage tanks will be within a fully bunded area with greater than 100% capacity to contain any spills. Storm water within the bunded areas is captured assessed and treated if required before disposal.

In exceptional circumstances, such as an emergency fire, controlled releases of firefighting foams (non PFAS based) from the fire suppressant system are expected to occur. The potential release of firefighting foams (containing PFAS) is possible in certain circumstances such as 'catastrophic fire'. Such an event is expected to trigger an environmental site condition assessment, including additional groundwater quality assessment.

If operational activities are not managed correctly, potential impacts on groundwater may include:

- Impacts to groundwater quality from Site operational activities:
 - Spillage/uncontrolled release of chemicals stored at the Site
 - Discharge of firefighting foams from fire suppressant systems (potentially containing PFAS)
- Impacts to groundwater quality from non-Site activities (i.e. offsite development/ operational activities)
 - Migration of offsite groundwater contamination

In the case of certain events, additional 'operational' groundwater monitoring requirements are proposed to be implemented to monitor possible impacts to groundwater as outlined in Section 7.3.

4. Field investigations

4.1 General

SMEC undertook field investigations in April 2022 to inform this Groundwater Assessment and Management Report, which consisted of:

- Five new groundwater monitoring well installations (SMW02 to SMW06) in April 2022
- One additional groundwater monitoring event carried out at eight well locations, including three existing monitored wells (OHMW20, OHMW28 and SMW01) and five additional wells (SMW02 to SMW06). This was considered a third 'baseline' water quality monitoring event, supplementing two previous rounds (April and October 2021).
- Continuous water level logging for a period of three months within available existing/additional wells

(Note: At the time of this draft, water level logging had occurred for an initial period of approximately 1 month, noting monitoring is continuing for 2 more months)

• Permeability testing to assess groundwater flow characteristics.

Figure 2, Appendix A shows the location of existing and new wells utilised during the field investigations. Details of well locations are summarised in Table 2-4.

Prior to the commencement of fieldwork, SMEC prepared a Safe Work Method Statement (SWMS) to manage the potential risks to Work Health and Safety (WHS) associated with the fieldwork. Subcontractor drillers were engaged who were approved under SMEC's supplier register.

Drilling and logging were undertaken under the constant observation of SMEC engineer/geologists. Groundwater monitoring was undertaking by a trained and experienced graduate environmental scientist (Mr Joel Reynolds). Test location coordinates were undertaken by SMEC surveyors.

4.2 Well installation and development

Five boreholes (SMW02 to SMW06) were drilled to facilitate installation of new monitoring wells including:

- Two boreholes (SMW02 and SMW06) were drilled using hollow flight auger (SFA) techniques through clayey fill and sandy natural soils.
- Three boreholes (SMW03, SMW04 and SMW05) were drilled using sonic drilling techniques to penetrate through a buried layer of boulders encountered approximately 3.0m bgl near the harbour foreshore. Casing were used to retain the hole during well installation where collapsing sandy soils were encountered.

The boreholes were logged in general accordance with AS 1726-2017 and in conjunction with SMEC's geotechnical explanatory notes, as provided in Appendix D together with piezometer details. In summary, the subsurface conditions encountered were generally consistent with that of previous geotechnical studies by SMEC (2021a and 2021b), comprising layers of fill, aeolian sand and/or estuarine sand deposit.

Installation of monitoring wells occurred following the drilling of boreholes. The monitoring wells were constructed generally as per the *'Minimum Construction Requirements for Water Bores in Australia, 3rd ED 2012'* using Class 18 uPVC casing and machine slotted screens, clean washed 2 mm to 4 mm bagged sand, bentonite seals and a grouted collar with lockable steel monument. Details of installation are included within Table 4-1 below.

Following installation, wells were developed to remove sediment/debris from the well by purging at least 40 litres of water (minimum 3 well volumes) using a decontaminated stainless-steel bailer. The groundwater recharge was observed to be relatively rapid with a minimal drop in groundwater level during well development.

The spatial position of existing/new groundwater wells were captured by Masters Surveying on 26 April 2022 noting coordinates are in GDA94. Easting, northing and reduced levels were reported on the borehole logs in Appendix D and included in summary Table 2-4.

Table 4-1 Summary of well installation details

Monitoring Well ID	Date installed	Total well Depth (m bgl)	Screened Interval (m bgl)	Groundwater inflow (m bgl)
SMW01	3 March 2021 (SMEC, 2021a)	4.5	1.5-4.5	2.5
SMW02	5 April 2022	4.0	1.0-4.0	1.5
SMW03	20 April 2022	4.5	1.5-4.5	2.6
SMW04	20 April 2022	4.5	1.5-4.5	2.5
SMW05	20 April 2022	4.5	1.5-4.5	2.7
SMW06	5 April 2022	4.5	1.5-4.5	2.5

4.3 Groundwater monitoring event

4.3.1 Monitoring objectives

A groundwater monitoring event was carried out on 26 April 2022 to assess the groundwater quality across the main terminal Site and compare with adopted assessment criteria applicable to the relevant NSW Water Quality Objectives and values for the waters of Port Kembla.

This was also considered a third 'baseline' water quality monitoring event, supplementing two previous rounds (April and October 2021) reported within the DSI (SMEC, 2021b) (refer to Section 2.4.2). Table 4-2 includes a summary of previous / current groundwater monitoring events carried out by SMEC at the Site include.

Table 4-2 Summary of groundwater monitoring events

Round	Date	Purpose	Wells monitored
Round 1	10 March 2021	Baseline	3 (SMW01, OHMW20 and OHMW28)
Round 2	21 October 2021	Baseline	3 (SMW01, OHMW20 and OHMW28)
Round 3 (this 'Groundwater monitoring event')	26 April 2022	Baseline and Characterisation of groundwater	8 (SMW01 to SMW)6, OHMW20 and OHMW28)

4.3.2 Sampling and analysis plan

The groundwater monitoring event was carried out generally consistent with the previous Sampling and Analysis Plan outlined in Section 5 of the DSI (SMEC, 2021b) which was based on the requirements described in ASC NEPM (1999). Data Quality Indicators (DQIs) are included in Appendix C.

The following changes were adopted during this monitoring round 3:

- Five additional groundwater monitoring wells were monitored with the three existing wells
- Adjustment to monitoring suite by removal of pesticides (OCP/OPP) and PCB –
- Adjust to adopted assessment criteria Following initial liaison with NSW Ports and NSW EPA, adopted assessment criteria were confirmed to be protective of 'slightly to moderately disturbed ecosystems' apply to Port Kembla outer harbour waters.

Further details on sampling methodology are provided in subsequent sections.

4.3.3 Monitoring locations

One groundwater monitoring event was carried out at eight wells (SMW01 to SMW06, OHMW20 and OHMW28) on 26 April 2022, approximately one week after installation/development of the five new wells (SMW02 to SMW06).

The sampling design including locating wells 'judgmentally', targeting areas surrounding the proposed development features and to provide spatial coverage across the Site. The sampling design consisted of monitoring locations at both 'control' (inferred upgradient monitoring locations) and 'impact' (inferred down-gradient monitoring locations) relative to the Site main terminal features and existing known contaminated areas.

Table 4-3 below outlines the selected monitoring locations and rationale. Figure 2, Appendix A includes the groundwater monitoring locations.

Table 4-3 Summary of monitoring locations – Groundwater quality

Location ID	Location relative to Site main terminal features	Control or impact
SMW01	East of the tidal stormwater channel. Up-gradient of proposed ethanol tanks / Down-gradient of proposed gantry	Impact
SMW02	Southern Site boundary Up-gradient of the Site main terminal	Control
SMW03	Northern Site boundary Down-gradient of proposed ethanol tanks	Impact
SMW04	Northern Site boundary Down-gradient of proposed ethanol tanks	Impact
SMW05	Northern Site boundary Down-gradient of proposed ethanol tanks	Impact
SMW06	West of the tidal stormwater channel. Note: Location is down-gradient of an inferred location of PAH site contamination identified previously within the DSI (SMEC, 2021b)	Impact
OHMW28	Southern Site boundary Up-gradient of the Site main terminal	Control
OHMW20	Southern Site boundary Up-gradient of the Site main terminal	Control

4.3.4 Water Quality Objectives and assessment criteria

SMEC note that Illawarra Water Quality Objectives for harbours, including Port Kembla harbour, (URL <u>Water Quality</u> <u>Objectives - Illawarra (nsw.gov.au</u>) Water Quality Objectives - Illawarra (nsw.gov.au) access 22/04/2022) includes:

- Aquatic ecosystems Maintaining or improving the ecological condition of waterbodies and their riparian zones over the long term
- Visual amenity The objective applies to all waters, particularly those used for aquatic recreation and where scenic qualities are important.

On 3 May 2022, SMEC liaised with a representative of NSW EPA (Chris Kelly) who confirmed NSW EPA's position to assess Port Kembla Outer Harbour under water quality criteria protective of 'slightly to moderately disturbed ecosystems', with the aim for improvement to the water quality even though the area has historically been disturbed.

Groundwater quality assessment criteria were therefore adopted for 'slightly moderately disturbed systems' for groundwater assessment based on the receiving environment (Port Kembla Outer Harbour). The adopted Groundwater Investigation Levels (GILs) were generally consistent with previous assessment criteria and rationale outlined the DSI (SMEC, 2021b) which were based on the following assumptions:

- Default Guideline Values for toxicants applying to 'marine' aquatic ecosystems were considered most applicable for the Site which is adjacent to Port Kembla Outer Harbour
- Based on the industrial setting of the Site, the 95% level of species protection applying to slightly moderately disturbed systems was considered applicable for initial screening. Where available, low or unknown reliability trigger values were adopted from ANZG (2018) for toxicants assigning protection 95% of species (or unknown).

Furthermore, where toxicants are noted to be potentially bio-accumulative (i.e. cadmium, mercury), the trigger value for the protection of 99% of species was adopted.

- The ANZG (2018) have not yet published default guideline values for Physical and Chemical Stressors for all Australian inland waters and bioregions (http://waterquality.gov.au/anz-guidelines/your-location/australiainland). Therefore, this assessment adopts the previous ANZECC & ARMCANZ (2000) Default trigger values for physical and chemical stressors for South-east Australia for slightly disturbed marine ecosystems (applying to estuaries).
- ANZECC & ARMCANZ (2000) have not published guidelines for total petroleum hydrocarbons or total recoverable hydrocarbons in groundwater. For this assessment, the laboratory limits of reporting have been adopted as initial screening criteria.
- The PFAS National Environment Plan (Version 2.0 January 2020) interim ecological water quality guideline values were adopted for the groundwater assessment at the Site. SMEC adopted the 95% criteria for species protection within a slightly to moderately disturbed system for the receiving environment (Outer Harbour). It is noted that the PFAS NEMP (2020) considers the bio accumulative nature of PFAS and suggests that 99% be used for slightly to moderately disturbed ecosystems. Due to the extremely low laboratory limits of reporting required to assess with respect to these criteria, SMEC have adopted 95% protection levels as Tier 1 investigation levels. Where investigation levels are exceeded, the bioaccumulation potential of this contaminant would be considered as part of a Tier 2 assessment (if required).

Adopted groundwater assessment criteria for this Site is included within Appendix B.

4.3.5 Monitoring methods

Groundwater samples were collected using low flow sampling techniques in general accordance with Victoria EPA (2000) Groundwater sampling guidelines. The sampling method was as follows:

- The depth to groundwater standing water level (SWL) was gauged using a water interface probe meter, accurate to the nearest 0.01m. The total well depth and 'well stickup' relative to ground surface were also measured. Observations were made for visual or olfactory evidence of contamination such as Light/Dense Non-aqueous Phase Liquids (LNAPL/DNAPL), oily sheens or hydrocarbon odours.
- A peristaltic pump with dedicated tubing at each sample point was used to collect a representative water sample
 - Prior to sample collection, 3 consecutive field parameter readings were recorded, along with several 'equipment' volumes being purged from the well
 - Field parameters were measured at volume intervals using a calibrated water quality meter which included dissolved oxygen (DO), electrical conductivity (EC), pH, redox potential, and temperature.
 - Groundwater samples were then collected once groundwater parameters had stabilised, using a new clean pair of nitrile gloves.
 - Samples were transferred directly into sampling containers supplied by contract laboratories which contained appropriate preservatives for the analysis undertaken. Sample containers were filled to the brim and sample lids were sealed to prevent exposure to atmosphere. Samples requiring analysis of heavy metals and cations were field filtered to 45µm prior to filling sample containers.
 - Samples were then immediately placed in an ice-filled chest to keep the samples chilled until transport to the laboratory.
- Observations of groundwater were also made including water clarity, colour, odours, presence of staining and groundwater recharge.

4.3.6 Laboratory analysis

Laboratory analysis for environmental testing was carried out by the following contract laboratories which are NATA accredited for the tests performed.

ALS Environmental Laboratory, Smithfield NSW (Primary laboratory)

• Eurofins Environmental Laboratories, West Lane Cove NSW (Secondary laboratory)

Eight primary samples were selected for laboratory analysis of the groundwater contaminants of potential concern identified within the DSI (SMEC, 2021b). An exception was analysis of pesticides (OCP, OPP) and polychlorinated biphenyls (PCB) were excluded during this groundwater monitoring event. Based on the findings of the DSI, these contaminants of potential concern were considered less likely based on desktop site history information and soil contamination data at the Site.

Additional laboratory analysis of the following parameters was also carried out for 'baseline' purposes:

- Per- and Poly-Fluor Alkyl Substances (PFAS) Due to the proposed firefighting sprinkler system including foam suppressant system, analysis of PFAS was recommended to Manildra as part of 'baseline' groundwater quality testing.
- Heavy metals (AI, Fe, Mn total unfiltered), Heavy metals (Co, U dissolved), total phosphorus, ammonium and total acidity These additional groundwater analysis parameters was carried out concurrently to supplement 'baseline' parameters recommended in the Acid Sulfate Soil Management Plan (SMEC, 2022b).

In addition to the primary samples, an additional intra-laboratory duplicate (QA1) and inter-laboratory duplicate (QA1A) duplicates were collected and submitted to the primary and secondary laboratory respectively. These quality assurance samples were analysed for the same suite of contaminants as the primary samples. Table 4-4 presents a summary of laboratory analysis carried out during Round 3.

	No. of Primary analysis		
Analytes	Primary sample	Intra- laboratory duplicate	Inter- laboratory duplicate (Eurofins)
Heavy metals (Al, As, Cd, Cr, Co, Cu, Fe, Pb, Hg, Ni, Se, U, Zn) - dissolved	8	1	1
Heavy metals (Al, Fe, Mn) – total unfiltered	8	1	1
TRH, BTEX, PAH	8	1	1
Phenolic compounds	8	1	1
VHCs	8	1	1
Nitrogen compounds (Ammonia, Nitrite, Nitrate, Ammonium ion)	8	1	1
Other inorganics (TDS, Hardness, Total Phosphorus Reactive Phosphorus	8	1	1
Major cations (Calcium, magnesium, potassium, sodium)	8	1	1
Major anions (Chloride, fluoride, sulphate)	8	1	1
Alkalinity	8	1	1
Total acidity	8	1	1
Per- and Poly-Fluor Alkyl Substances (PFAS)	8	1	1

Table 4-4 Summary of laboratory analysis

4.3.7 Quality assurance and quality control

4.3.7.1 QAQC plan

The following quality assurance and quality control (QAQC) plan was adopted for the work in general accordance with the Assessment of Site Contamination – National Environment Protection Measure 2013:

• Field monitoring instruments used to collect data were calibrated in accordance with manufacturers calibration requirements. Calibration certificates are included in Appendix F.

- Well installations and sampling of groundwater was carried out by trained and experienced environmental staff
 using sampling protocols which minimise potential cross contamination occurring in between sampling locations.
 The following was carried out during field investigations:
 - During well installation, the drill rods were decontaminated between sample locations by removing soil, particles, washing in a solution with Liquinox detergent and rinsing with potable water using a high pressure gurney. Drillers handled well installation materials in original sealed packaging and/or wearing nitrile gloves during installation.
 - During well development and groundwater sampling, reusable sampling equipment (including stainless steel bailer and interface probe to gauge wells) were decontaminated between sample locations by removing soil particles, washing in a solution with Liquinox detergent, rinsing with potable water and then rinsing with distilled water.
 - A rinsate blank was collected from the interface probe and tested to assess the effectiveness of decontamination for heavy metals and PFAS only (results are presented within Table E3, Appendix E)
 - Equipment rinsate samples were collected from reusable sampling equipment to assess the effectiveness of decontamination. Rinsate samples were collected off Stainless steel bailer (2 samples), Drillers rod (1 sample) and interface probe (1 sample). Rinsates were analysed for heavy metals and PFAS only (results are presented within Table E3, Appendix E)
 - Groundwater samples were collected with dedicated disposable tubing for each monitoring location.
- As the investigation involved sampling for PFAS analysis in groundwater, additional precautions outlined within Section 18 of the PFAS NEMP (2020) were adopted. In summary:
 - Prior to sample collection, any personnel that handled decontaminated groundwater sampling equipment that directly contacted the environmental media to be sampled washed their hands with plain soap and rinse thoroughly with tap water before donning a clean, new pair of disposable nitrile gloves.
 - A selection of PFAS-suitable sampling equipment was used including HDPE tubing for low flow sampling and PFAS-free detergents (i.e. Liquinox detergent). Sampling containers for PFAS analysis were supplied by the laboratory (no Teflon lined).
 - Care was taken to avoid the handling of additional sources of PFAS within the sampling area (such as sunscreen, Teflon products, aluminium foil, stain/water resistant fabrics and ice bricks) as per the requirements of the PFAS NEMP (2020).
 - Field blank samples were collected from drillers tank water to assess the potential for PFAS to have been introduced whilst drilling. Field blank samples were analysed for PFAS only (results are presented within Table E3, Appendix E).
- During fieldworks, all samples were placed in an ice-filled chest to keep the samples cool. Samples were kept on ice until delivered to the testing laboratory.
- Samples were then transported to the laboratory with relevant Chain of Custody (CoC) documentation. The CoC form was completed with the sample names, sampling date and required analyses. The samples were sent to the laboratory for analysis within the prescribed analyte holding times
- Duplicate samples were collected and tested for each analyte to assess precision in field sampling techniques and laboratory methods. Duplicate samples (comprising both intra-laboratory duplicates and intra-laboratory duplicates) were analysed at a frequency of 1 in every 20 samples (minimum 5%) as recommended in NEPM. The duplicate analysis summary is summarised in Table 4-4. Relative precent differences (RPD) were calculated using the method in Section 8.2.6 of AS4482.1-2005 and presented in Table E2, Appendix E.

4.3.7.2 QAQC Data evaluation

Quality assurance and quality controls (QAQC) data evaluation was carried out in general accordance with the National Environment Protection (Assessment of Site Contamination) Measure 1999. The results were assessed with respect to predetermined DQIs as referenced in the in the ASC NEPM, 2013 and as presented in Appendix C.

The following non-compliances were noted:

- Due to incomplete field records retain for groundwater sampling location SMW06, field parameters were not recorded. This is unlikely to affect the useability of the data for baseline characterisation.
- Trip spike and trip blank samples were not analysed together with samples collected during the groundwater quality
 monitoring event. The potential for loss of volatiles during transport was therefore unable to be assessed. The
 omission of these samples is unlikely to affect usability of the data noting samples were transported to the primary
 laboratory at recommended temperatures and sample concentrations indicated a low likelihood for volatile
 contaminants to be present.
- Some samples were noted as being analysed outside of holding times, including;
 - Primary sample batch (ALS EW2201994) Primary samples were analysed outside of holding times for pH (overdue by 3 days) and Nitrite as N and Reactive Phosphorus as P (overdue by 1 day). The analysis of pH by the laboratory has been omitted in preference for field measured pH The results of Nitrite as N and Reactive Phosphorus appeared similar to previous monitoring concentrations at the same locations (refer to Table E1, Appendix E).
 - Secondary sample batch (Eurofins 884366) This single sample was analysed outside of holding times for analysis of TRH, VOCs, PAHs, Phenols (non-halogenated) (overdue by 2 days) and Nitrite as N and Reactive Phosphorus as P (overdue by 6 days). Secondary sample analysis results are considered useable for purposes of precision assessment, noting concentrations of these parameters appeared similar to corresponding primary and duplicate samples.
- Some sample batches were noted as being received with temperatures higher than 6°C upon receipt at the laboratory, including Eurofins batch 882352 (Equipment rinsate Well installation second round) and Eurofins batch 884366 (QA1A Round 3 inter-laboratory duplicate) with temperatures of 10.3°C and 18.7°C respectively. Elevated sample temperatures are unlikely to affect useability of data in these batches, noting PFAS and heavy metals within rinsates data are not volatile (batch 882352). In Eurofins batch 884366, the concentrations recorded within QA1A appeared similar to corresponding primary and duplicate samples (refer to Table E2, Appendix E).
- Equipment rinsate samples in Eurofins batch 882352 returned detectable concentrations of heavy metals during the second round of well installation of wells SMW03, SMW04 and SMW05. The sample taken from the drilling rod (Rinsate 01 Drill rod) recorded detections of heavy metals (aluminium, copper and iron) and the sample taken from the stainless-steel bailer (Rinsate 02 Bailer) recorded detections of heavy metals (aluminium, copper, iron, lead, manganese and nickel). Slight detections of heavy metals in equipment rinsates may have originated from ineffective equipment decontamination (i.e. groundwater or soil residues) or from within the rinsate water itself.

SMEC consider rinsate detects are minor and unlikely to indicate potential cross contamination to have occurred based on the following:

- Potential for cross contamination was minimised between groundwater sampling locations, noting decontamination procedures were implemented in between well installations and well development (refer to Section 4.3.7.1).
- Groundwater sample concentrations at these locations during the April 2022 monitoring event recorded elevated heavy metals (including aluminium, copper and manganese) above adopted GILs, suggesting a source of these contaminants in groundwater. Remaining heavy metals (including nickel, chromium and lead) were either below criteria or not detected suggesting a low potential for cross contamination to have occurred.
- Field and laboratory groundwater duplicates recorded relative percentage differences (RPDs) outside of adopted control limits (30%) for some analytes, including:

- Field duplicate RPDs ranging from 59% to 74% for Ammonia and Ammonium ion as N between the primary sample (OHMW28) and corresponding intra-laboratory duplicate (QA1) and inter-laboratory duplicate (QA1A) samples. Some variability is noted for ammonia.
- Field duplicate RPDs ranging from 99% to 154% for other inorganic analytes between the primary sample (OHMW28) and corresponding inter-laboratory duplicate (QA1A) sample, including Total Phosphorus as P (99%), Nitrite + Nitrate as N (152%) and Nitrate as N (154%). RPDs were within control limits between corresponding primary (OHMW28) and intra-laboratory duplicate (QA1) suggesting slight variability for these groundwater analytes between laboratory test methods.
- Field duplicate RPD of 196% was recorded for iron (total) between the primary sample (OHMW28) and corresponding inter-laboratory duplicate (QA1A) sample. Upon query with the laboratory, Eurofins indicated that the sample container submitted for total metals analysis appear of much greater clarity than corresponding bottles, suggesting sample heterogeneity may be reason for variability. The interlaboratory duplicate data for iron (total) (QA1A) has therefore been disregarded (not useable), noting remaining total metals analysed (manganese and aluminium) recorded RPDs within control limits and appear useable
- In batch 884366, laboratory duplicate RPDs recorded from 40% to 73% above the control limit of 30% for several PAH compounds. Further analysis indicated that sample heterogeneity was the cause of the PAH exceedances. It is noted this sample corresponded to another project Site and has therefore been disregarded.
- Several RPDs which were recorded above the field or laboratory acceptance limits have been disregarded where sample concentrations were less than 10 times the laboratory limit of reporting.
- Laboratory quality assurance and quality control testing was carried out and the following was noted:
 - In batch 882352, a reduced frequency of laboratory duplicates and matrix spikes were analysed for heavy metals due to small batch size. The omission of these tests is unlikely to affect useability of these rinsate samples.
 - In batch 884366, a reduced frequency of matrix spikes was analysed for BTEX and VOC due to small batch size. A sufficient number of laboratory control spikes were analysed, and recoveries were within laboratory acceptance limits.
 - In batch EW2201994, matrix spike recoveries were unable to be determined in Sulfate and Nitrite + Nitrite as N due to background levels being greater than or equal to 4x spike level in both cases. A sufficient number of laboratory control spikes were analysed, and recoveries were within laboratory acceptance limits.

Based on the above data evaluation, SMEC consider the remaining data to be useable for the objectives of this assessment to assess the baseline groundwater quality.

4.4 Groundwater level monitoring

Continuous groundwater level monitoring was carried out at eight wells (SMW01 to SMW06, OHMW20 and OHMW28) for a period of up to three months. Additional monitoring was carried out at an available onsite well (ID unknown) for a period of 2 weeks. Table 4-5 provides a summary of monitoring locations and periods.

Table 4-5 Summary of monitoring locations – Groundwater levels

Location ID	Date commenced	Date ended	Period (weeks)
SMW01	6/04/22	11/05/22 (continued)	5
SMW02	6/04/22	11/05/22 (continued)	5
SMW03	20/04/22	11/05/22 (continued)	3
SMW04	27/04/22	11/05/22 (continued)	2
SMW05	20/04/22	11/05/22 (continued)	3
SMW06	6/04/22	11/05/22 (continued)	5
OHMW28	6/04/22	11/05/22 (continued)	5
OHMW20	6/04/22	11/05/22 (continued)	5
ID Unknown	6/04/22	20/04/22	2

Continuous water level monitoring was carried out at the wells by the following method:

- Loggers were initially setup to record at 1-hour recording intervals, recorded on the hour.
- Loggers were installed to approximately 0.5m above the base of the well. A single logger was installed at the top of the well for atmospheric correction.
- Manuel water level measurements were carried out over three discrete events; approximately 3 weeks, 5 weeks and 12 weeks* from logger installation (**Note: Not completed at the time of this draft report*).
- Manual water level measurements we carried out with a water dip meter to measure standing water levels to the nearest 0.01m, below the top of well casing (m bTOC). Water level measurements were corrected to reduced level (mAHD) using well survey information.
- Continuous logger data was processed within Excel and presented on groundwater hydrographs.

4.5 Permeability testing

Permeability testing was carried out at selected wells (including SMW01, SMW02, SMW05, SMW06 and OHMW20) using the rising head test method as follows:

- Loggers were initially setup to record at 1-second recording intervals, recorded every second
- Loggers were installed to approximately 0.5m above the base of the well.
- Twin bailers were inserted and used to rapidly remove 2L of water from the well
- Discrete water level measurements were carried out within a water dip meters to measure SWLs at regular intervals (typically every 30s) or until the water had return to original level

Permeability tests were inconclusive with recovery of the water level almost instantaneous in all tested wells. The permeability of the sand aquifer was estimated to be over 10 m/day.
5. Characterisation of Groundwater

5.1 Standing water level

Groundwater depths to standing water level (SWL) recorded during the water level monitoring (discrete measurements) are summarised in Table 5-1. Hydrographs showing standing water levels (continuous) for each of the wells are included in Appendix I.

Depths to standing water level appeared relatively consistent between monitoring rounds typically within ±0.1m, suggesting groundwater level changes do appear to change. The following was observed from hydrographs in Appendix I:

- Tidal influences appear the more dominant factor on SWLs within wells along the northern boundary of the Site (i.e. SMW03 to SMW05) with obvious periodic fluctuations (typically ±0.5m). Groundwater SWLs in the southern part of the Site (i.e. OHMW28, OHMW20, SMW02) appear relatively stable noting tidal influences appear to have minimal influence on water levels in these wells.
- Rainfall influences appear more dominant factor on SWLs within wells within the centre and southern part of the Site (SMW01, SMW02, SMW06, OHMW28 and OHMW20). For example, an increase of approximately 0.3m in water level is noted in response to heavy rainfall in early April.

Location ID	Date / Time	Standing water level				
Location ib		m bTOC	m AHD			
	10/03/21 11:33	2.83	0.50			
	21/10/21 13:05	2.87	0.46			
21/10/01	26/04/2022 12:26	2.726	0.604			
	Date / Time 10/03/21 11:33 21/10/21 13:05 26/04/2022 12:26 11/05/2022 10:52 26/04/2022 11:30 11/05/2022 8:04 26/04/2022 13:06 11/05/2022 14:40 26/04/2022 13:19 27/04/2022 8:14 11/05/2022 14:30 26/04/2022 13:00 11/05/2022 13:30 11/05/2022 13:31 26/04/2022 13:00 11/05/2022 13:30 11/05/2022 12:28 11/05/2022 12:28 10/03/21 13:19 21/10/2021 10:00 26/04/2022 12:10 11/05/2022 15:30 10/03/21 13:59 21/10/21 12:00 26/04/2022 11:50	2.725	0.605			
SMMA/00	26/04/2022 11:30	2.783	0.847			
31010002	11/05/2022 8:04	2.816	0.814			
SNAVA (0.2	26/04/2022 13:06	3.487	0.293			
31717703	11/05/2022 14:40	3.33	0.45			
SMW04	26/04/2022 13:19	3.455	0.155			
	27/04/2022 8:14	3.145	0.465			
	11/05/2022 14:30	3.28	0.33			
	26/04/2022 13:00	3.574	0.006			
31/1//00	11/05/2022 13:31	3.394	0.186			
SN/N/04	26/04/2022 11:06	3.555	0.615			
31/1//00	11/05/2022 12:28	3.545	0.625			
	10/03/21 13:19	2.44	0.65			
	21/10/2021 10:00	2.53	0.56			
OHMW28	26/04/2022 12:10	2.107	0.983			
	11/05/2022 15:30	2.135	0.955			
	10/03/21 13:59	3.30	0.53			
OHMW20	21/10/21 12:00	3.36	0.47			
	26/04/2022 11:50	3.001	0.829			

Table 5-1 Summary of groundwater standing water level

	11/05/2022 9:50	3.045	0.785		
	20/04/2022 15:35	2.29	0.94		
ID Unknown	26/04/2022 12:15	2.322	0.908		
	11/05/2022 15:40	2.38	0.85		
m bTOC – Metres below top of casing					

5.2 Groundwater flow direction

Figure 6, Appendix A shows the inferred groundwater contours and flow direction based on well gauging data during groundwater monitoring event on 26 April 2022.

Inferred groundwater contours indicate flow in a northerly direction towards the Port Kembla Outer Harbour. Groundwater levels beneath the Site ranged between 0.98m AHD (OHMW28) at the southern boundary and 0.01mAHD (SMW05) at the northern boundary. By comparison, a similar north-easterly groundwater flow direction was noted from historic monitoring by others (refer to Section 2.4.1).

5.3 Permeability observation

A rising head recovery test was undertaken on fives bores (including SMW01, SMW02, SMW05, SMW06 and OHMW20) on the 11 May 2022. At each well, the groundwater level was reduced by removing 2L of water and the change in groundwater level over time was monitored. The recovery was nearly 'instantaneous' indicating a high permeability sand aquifer, as observed in the subsurface logs. Analysis of the data was not carried out as the limited recovery data provided a low level of confidence in the results; suffice to say they indicate permeabilities well over 10 m/day. Modelling inputs were based on assumed hydraulic conductivities typical of 'beach sand' (refer to Section 6.2) and adjusted during calibration to the observed heads.

5.4 Groundwater quality

5.4.1 Field observation

Field observations during groundwater monitoring did not observe evidence of contamination such as hydrocarbon odours, oily sheen or evidence of phase separate hydrocarbons (i.e. Light Non-Aqueous Phase Liquids/Dense Non-Aqueous Phase Liquids).

5.4.2 Laboratory results

A laboratory summary table is included within Table E1, Appendix E, including the previous results (Rounds 1 and 2) and current April 2022 results (Round 3). Laboratory analytical reports from April 2022 (Round 3 only) are included within Appendix G. Groundwater sampling locations are shown on Figure 2, Appendix A.

The analytical results across each Rounds 1 to Round 2 are summarised below:

- Physical parameters typically exceeded adopted ANZECC 2000 threshold ranges for physical and chemical stressors (applying to estuaries) including:
 - pH concentrations were less than 7 (lower limit) within some wells
 - Dissolved oxygen concentrations were below 90-110% (range)
- Nutrient concentrations exceeded adopted ANZECC 2000 threshold for physical and chemical stressor (applying to estuaries) including Nitrate/Nitrite (NOx), Ammonium ion (as N), Reactive phosphorus (FRP) and/or Total Phosphorus (TP) at several sampling locations.
- Electrical conductivity ranged between 1,840 and 2,880µs/cm within most groundwater well locations (excluding OHMW20 which ranged 14,274 and 23,158 µs/cm). The data suggest a lower electrical conductivity at wells located in the central and western portion (<3,000 µS/cm) and higher conductivity localised at well OHMW20 located in the eastern portion (>14,000µS/cm) suggesting likely saline influences.

- PFAS compounds did not exceed adopted PFAS NEMP (2020) Ecological (interim marine) 95% protection level at all groundwater location for PFOS and PFOA criteria. Slight detections of PFOS were noted to exceed the adopted limit of reporting (0.01µg/L) at four wells (SMW01, SMW03, SMW05 and SMW06).
- Ammonia was recorded at 0.85-1.3mg/L¹ slightly above the adopted GIL (95% protection level) at OHMW28 only, including corresponding inter-laboratory duplicate data (QA1A October 2021). Further testing at this location during October 2021 recorded ammonium ion between 0.81-1.4mg/L, suggesting the ammonia is mainly present in the ionised ammonium ion form. The ANZG (2018) states 'The toxicity of ammonia is primarily attributed to the un-ionised ammonia NH3...however, ammonium ion can also contribute significantly to ammonia toxicity under certain conditions.' (ANZG, 2018, URL Ammonia in freshwater and marine water (waterquality.gov.au)). It is also noted that a lower pH (pH<8), the marine trigger value for total ammonia-N increases.
- Elevated concentrations of dissolved heavy metals (including aluminium, cadmium, cobalt, copper, lead, nickel, selenium, uranium and zinc) and total heavy metals (including aluminium and manganese) were recorded which exceeded adopted GILs at the 95% protection level.
- Organic compounds were typically below laboratory detection limits and did not exceed adopted ANZG 95% protection level (or 99% bio accumulative) including TRH, BTEX, PAHs*, Phenolic compounds and VHC. *The exception was for detections of PAHs above laboratory limits of reporting.
- Some limitations are noted for comparison of groundwater concentrations reported to laboratory limits of reporting which exceed adopted GILs for selected PAHs (Anthracene), dissolved heavy metal (Aluminium and Uranium), ammonium ion as N, nitrate and nitrite as N, Filterable Reactive Phosphorus due to (refer to Section 4.3.7.2).

Table 5-2 presents a summary of monitoring parameters and monitoring points which exceeded the adopted assessment criteria during both rounds of the DSI. Bold text indicates concentration exceeded.

Apoluto	Concentrations of contaminant (mg/L) (Note 1)		Assessment criteria summary			
Analyte	Min	Max	Locations exceeded criteria	Criteria exceeded / comment		
Field parameters						
pH (units)	6.38	7.40	OHMW20, OHMW28, SMW01	ANZECC (2000) *Lower pH noted		
Electrical conductivity (specific) (µS/cm))	1,840	23,158	N/A	*Saline influences at OHMW20 noted		
Dissolved oxygen (%)	0.9	18.7	Nil	ANZECC (2000)		
Inorganic compounds						
Ammonia (as N)	<0.01	1.33	OHMW28 (March and October 2021 only) * Included inter-laboratory duplicate date (QA1A – October 2021)	ANZG (2018)		
Ammonium ion (as N)	<0.01	0.81	OHMW20, OHMW28, SMW01, SMW03,	ANZECC (2000)		
Nitrate and Nitrite (as N)	<0.01	7.77	OHMW20, OHMW28, SMW01, SMW02, SMW03, SMW04, SMW05, SMW06	ANZECC (2000)		

Table 5-2 Summary of analysis concentration ranges and criteria exceedances

¹ Inter-laboratory duplicate data included for ammonia and ammonium ion (QA1A, duplicate of OHMW28 – October 2021).

	Concentratic contaminant (Note 1)	ons of t (mg/L)	Assessment criteria summary		
Analyte	Min	Max	Locations exceeded criteria	Criteria exceeded / comment	
Filterable reactive phosphorus (as P)	<0.01	0.17	SMW02 (April 26 only)	ANZECC (2000)	
Total Phosphorus (as P)	0.02	0.39	OHMW20, OHMW28, SMW01, SMW02, SWM05, SMW06	ANZECC (2000)	
Total Hardness (as CaCO3)	458	3040	N/A		
Total Acidity (as CaCO3)	1	57	N/A		
Total Dissolved Solids	610	14,800	N/A		
Calcium	111	567	N/A		
Magnesium	25	525	N/A		
Sodium	24	5,000	N/A		
Potassium	4	95	N/A		
Chloride	9	7,550	N/A		
Fluoride	1.3	8.1	N/A		
Sulphate as SO4	45	2,080	N/A		
Total Alkalinity (as CaC03)	214	489	Alkalinity consists of Bicarbonate alkalinity only.		
Metals					
Aluminium	<0.005	0.030	OHM28, SMW01, SMW02, SMW05, SMW06	ANZG (2018)	
Aluminium (total)	0.02	0.93	OHMW20, OHMW28, SMW01, SMW02, SMW03, SMW04, SMW05, SMW06	ANZG (2018)	
Arsenic	<0.001	0.068	N/A	ANZG (2018)	
Cadmium	<0.0001	0.0053	OHMW20, SMW01, SMW02, SMW06	ANZG (2018)	
Chromium (III+IV)	<0.001	0.002	Nil	ANZG (2018)	
Cobalt	<0.001	0.137	OHMW20, OHMW28, SMW01,	ANZG (2018)	
Copper	<0.001	0.036	OHMW20, OHMW28, SMW01, SMW02, SMW03, SMW04, SMW05, SMW06	ANZG (2018)	
Iron	<0.05	17.4	N/A		
Iron (total)	<0.05	20.2	N/A		
Lead	<0.001	0.016	SMW01, SMW02	ANZG (2018)	
Manganese	0.021	3.72	OHMW20, OHMW28, SMW01, SMW03, SMW04, SMW05	ANZG (2018)	
Manganese (total)	0.036	6.71	OHMW20, OHMW28, SMW01, SMW03, SMW04, SMW05	ANZG (2018)	

Archite	Concentrations of contaminant (mg/L) (Note 1)		Assessment criteria summary			
Analyte	Min	Max	Locations exceeded criteria	Criteria exceeded / comment		
Mercury	Not detected	(<0.0001)	Nil	ANZG (2018)		
Nickel	0.005	0.127	SMW01	ANZG (2018)		
Selenium	<0.0002	0.144	OHMW28. SMW01, SMW02, SMW03, SMW04, SMW05, SMW06	ANZG (2018)		
Uranium	0.00021 0.00811		OHMW28. SMW01, SMW02, SMW03, SMW04, SMW05, SMW06	ANZG (2018)		
Zinc	<0.005 0.849		OHMW20, SMW01, SMW02, SMW03, SMW04, SMW05, SMW06	ANZG (2018)		
Organic compounds						
BTEX	Not detected (<0.001 to <0.002)		Nil	ANZG (2018)		
TRH	Not detected <0.1)	(<0.02 to	Nil	ANZG (2018)		
Polycyclic aromatic hydrocarbons (PAHs)	<0.000001	0.000183	Nil	ANZG (2018)		
Phenolic compounds	Not detected <0.002)	(<0.001 to	Nil	ANZG (2018)		
Volatile Halogenated Compounds (VHC)	Not detected	(<0.005)	Nil	ANZG (2018)		
PFAS						
PFOS	<0.01	0.08	Nil	PFAS NEMP (2020)		
Sum of PFHxS and PFOS	<0.01	0.09	Nil	PFAS NEMP (2020)		
PFOA	<0.01	<0.01	Nil	PFAS NEMP (2020)		

Note 1: Units are milligrams per litre (mg/L) unless otherwise specified.

5.5 Groundwater quality summary

The 'baseline' groundwater quality at the Site main terminal is characterised by elevated concentrations of heavy metals and nutrients (nitrogen and phosphorus) which exceeded adopted GILs.

The results of groundwater monitoring events in March, October 2021 and April 2022 recorded elevated concentrations of heavy metals (including aluminium, cadmium, cobalt, copper, lead, manganese, nickel, selenium and zinc) which exceeded adopted GILs for protection of marine aquatic ecosystems at the 95% species protection level (ANZG 2018). Total Ammonia (as N) also slightly exceeded adopted GIL (95% protection level) at one location OHMW28 during both March and October 2021 events.

Nutrient concentrations exceeded adopted ANZECC 2000 threshold for physical and chemical stressor (applying to estuaries) including Nitrate/Nitrite (NOx), Ammonium ion (as N), Reactive phosphorus (FRP) and/or Total Phosphorus (TP).

As identified in the DSI (SMEC, 2021b), heavy metal concentrations in groundwater were typically below or within the range of historical groundwater monitoring data (refer to Table 2-3), with exception of slightly higher selenium. Heavy

metal exceedances have also been recorded in the broader Port Kembla foreshore lands. The groundwater quality considered a regional issue related to long term historical industrial activities and land reclamation with poorer quality fill in Port Kembla, including beneath and surrounding the Site. The quality of the groundwater is not likely to have an impact to the proposed development itself, but there is potential for impact to downgradient ecological receptors.

PFAS compounds did not exceed adopted PFAS NEMP (2020) Ecological (interim marine) 95% protection level at all groundwater locations for PFOS and PFOA criteria. Slight detections of PFOS were noted to exceed the adopted laboratory limit of reporting (0.01µg/L) at four wells (SMW01, SMW03, SMW05 and SMW06). It is noted the bioaccumulation potential of this contaminant has not been assessed, for which lower laboratory limits of reporting are required to assess with respect to 99% protection levels in accordance with PFAS NEMP (2020).

SMEC recommend NSW Ports should be made aware of the results of the groundwater quality and as the landowner, they should confirm their acceptance of the development given these groundwater conditions. We understand the pre-existing groundwater contamination (if any) is the responsibility of NSW Ports and may be required to be assessed or managed at a later stage. With respect to baseline conditions, SMEC note that groundwater concentrations can fluctuate over time and during different temporal conditions.

It was beyond the scope of this groundwater assessment to assess the risks currently posed to the aquatic ecosystems by existing groundwater quality conditions. The proposed development activities should be managed to minimise groundwater interaction, thereby reducing potential exacerbation of existing contamination issues. Further it is recommended that groundwater quality monitoring would be carried out during construction stages to assess potential changes in groundwater quality through direct or indirect interactions from the development.

6. Excavation strategy

6.1 General

Based on Site information and results of field investigation, SMEC undertook numerical modelling to inform the excavation strategy for Excavation 3 installation of proposed stormwater underground storage tank. Key assumptions of numerical model were based on agreed inputs from Manildra regarding assumed excavation dimensions and duration as outlined within Table 6-1.

Table 6-1 Excavation 3 modelling assumptions

Modelling input	Assumption
Size of excavation	5m wide x 10m long
Depth of excavation	5m (max) below ground level (Ground level 2.9m AHD, Excavation base -2.1m AHD)
Depth of sheet piling	Variable - To be assessed
Depth of groundwater	Assume 1.835m bgl (highest recorded 6/04 - subject to variability once water level logger data is obtained)
Duration of open excavation	5 days (maximum)
	Modelling assumes simplified soil layers at this excavation would include: • Fill -0.0 to 1.5m bgl* (1.5m thick)
Soil profile	 Beach Sand (unit identified as 'Aeolian/Estuarine') – 1.5 to 10.5m bgl* (9m thickness)
	 Clay (unit identified as 'Residual Soil' layer) – 10.5 to 23.5m bgl* (13m thickness)
	*Depths based on previous borehole logs at the Site and as per generalised subsurface conditions (Section 2.5.1)

6.2 Methodology

A numerical three-dimensional model was been developed using FEFLOW code (Version 7.5) in saturated mode to assess:

- The impact of excavation of a pit (Excavation 3) for the installation of a below ground storage tank on the local groundwater system; and
- Estimate the groundwater inflow to the pit during excavation under different sheet pile wall (SPW) design scenarios; being
 - fully drained (no sheet pile wall);
 - sheet pile wall to 2m below the excavation depth; and
 - sheet pile wall to the bottom of the aquifer (-7.5m AHD)

The adopted model domain extends 200 m to the East and South of the project site to capture the extent of drawdown impact of pit excavation on the groundwater system. The model mesh is shown on Figure 6–1with mesh sizes around 8 m over most of the model domain and refined to 1 m around the proposed excavation.

Figure 6–1: Model domain, mesh and boundaries

The hydrogeological layers and elevation of each unit were based on a review of available borehole logs for the Site during Preliminary Geotechnical investigations (SMEC, 2021a) and generalised subsurface conditions (refer to Section 2.5.1). Three hydrogeological layers are included in the model, including Fill, Beach Sand (unit identified as 'Aeolian/Estuarine') and Clay (unit identified as 'Residual Soil' layer). The bottom elevation is assumed to be -20 mAHD. The average thickness of the three layers are 1.5 m, 9 m and 13 m respectively from top to bottom. The hydrogeological parameters used for each hydrogeological unit are based on literature (A.R.Costall, et al 2020, Duffield,G, 2019), and summarised in Table 6-2.

Constant Head Boundary Conditions are defined on the coast (Northern), canal and Southern edges of the model domain to allow exchange of groundwater between the model and its surroundings, as shown on Figure 6–1. The constant head value assigned to the coastal edge and canal edge is 0 mAHD, representing mean sea level. For the Southern edge, the constant head value is based on groundwater head measurements and adjusted in the model calibration.

Layer	Material	Horizontal Hydrau (m/d)	lic Conductivity	Porosity (%)	Specific Storage (1/m)
		Min	Max		
Fill	Fill Gravelly silt with sand Fill clayey sand	0.0005	0.5	30	0.000005
Beach sand	Beach fine sand with gravel	5	3000	25	0.000005
Clay	Clayey sand, gravelly clay with sand	0.0005	0.5	30	0.000005

Table 6-2 Hydrogeological parameters for each layer

The average rainfall for the site area is 1,272 mm/year based on rainfall record from Port Kembla Signal station (068053) from Bureau of Meteorology.

The model has been calibrated manually in steady state and the calibrated hydraulic head distribution is assigned as the initial head condition for excavation simulation. The Southern boundary head and hydrogeological parameters were adjusted through trial and error to obtain a reasonable match between calculated groundwater level and observed groundwater level measurements collected on 26/04/2022.

The modelling relies on the following assumptions:

- The excavation is assumed to be 5 m below ground elevation (-2.1 m AHD)
- Is wished in place instantly and
- Is open for 5 days.

To simulate the excavation, the Constant Head Boundary Condition is assigned to the nodes within the excavation, and active for 5 days. After 5 days, the groundwater head around the pit will recover to its natural condition over time. Three design options have been simulated as below:

- Scenario A: Without sheet pile wall around the excavation considered the base (worst) case
- Scenario B: With sheet pile wall around the pit extending from ground surface to 2 m below bottom of excavation (-4.1 mAHD)
- Scenario C: With sheet pile wall around the excavation extending from ground surface to the bottom of sand layer (-7.5 mAHD, within Clay)

The hydraulic conductivity of sheet pile wall is assumed to be 0.001 m/d (ArcelorMittal Sheet Piling), representing an impermeable barrier with small gaps between each sheet. The thickness of sheet pile wall is assumed to be 0.1 m for modelling purposes.

6.3 Results and discussion

6.3.1 Calibration results

The Southern edge boundary head is calibrated to be 4 mAHD, and the recharge rate is 0.1 mm/d (16% of rainfall). For hydraulic conductivity, the upper range values of Table 6-2 are used for a conservative assessment. Calibrated hydraulic conductivity are summarized in Table 6-3. The calibrated hydraulic head distribution contour and scatter plot of observed and calculated head is shown on Figure 6–2. The calculated heads match with the observed heads reasonably well.

Table 6-3 Calibrated hydraulic conductivity

Layer	Horizontal Hydraulic Conductivity (m/d)	Vertical Hydraulic Conductivity (m/d)
Fill	0.5	0.05
Beach sand	100	20
Clay	0.5	0.05

Figure 6–2: Calibrated hydraulic head distribution map and scatter plot

6.3.2 Groundwater inflow to the excavation

The cumulative groundwater inflows to the excavation, are 16,868m³, 13,917m³ and 2,008 m³ for the three scenarios (Scenario A, B and C respectively) and are plotted on Figure 6–3. The average inflow rates are 39L/s, 32.2 L/s and 4.6 L/s respectively. These results are considered conservative as the excavation is wished in place and remains open for five days. In reality inflow would not commence until the excavation reaches the water table at day two and would peak when the excavation reaches maximum depth at day three and cease on or about day five when the excavation is closed.

The simulated scenarios clearly indicate the benefit of sheet pile wall installation in controlling inflows with Scenarios B and C effectively reducing groundwater inflow by 18% and 89%, respectively, effectively cutting off the lateral and vertical flow.

Figure 6–3: Cumulative groundwater inflow to the pit during excavation for the three SPW design scenarios

6.3.3 Drawdown

The drawdown contours at end of excavation for the three Scenarios are shown for Scenario 1 (Figure 6–4), Scenario 2 (Figure 6–5), and Scenario 3 (Figure 6–6). As the drawdown extent is restricted by the coast and canal in the Northern and Western direction and groundwater flows towards the North, it extends further in the Eastern direction. For Scenario A, B and C, the 0.2 m drawdown contour line extends out to 160 m, 150 m and 10 m, respectively, from the excavation. The drawdown adjacent to the excavation outside the SPW is estimated to be approximately 2.8 m, 2.2 m and 0.6 m respectively for scenarios A to C.

As with the inflows this is considered conservative and likely overestimates the drawdown.

6.4 Discussion

The modelling undertaken demonstrates the benefit of installing sheet piles to support the excavation, limit inflows and reduce drawdown. The results provided are considered conservative, that is they overestimate the inflows and associated drawdown as the assessment assumes the excavation reaches full depth at time zero and inflows are consistent over the modelled five days. In reality, inflows will not commence till the excavation intercepts the water table likely on day two and would increase to reach a maximum when the excavation reaches full depth on day three. The tank would be installed, and the excavation backfilled on days four and five.

It is recommended that Scenario C, sheet piles installed to the basal clay layer, will be employed as the management and mitigation measures for the excavation in order to limit drawdown and the volume of water required to be pumped and treated. The likely volume of water which may be required to be pumped and treated is estimated to be as little as 500 m³ and less than 2000 m³ over a five-day installation period excluding installation of the sheet pile wall. If the excavation remains open for more than five days additional inflows are likely to be realised.

Figure 6–5: Drawdown contour (m) map at end of excavation for scenario 2

Client Reference No. 30013038-R06 SMEC Internal Ref. 30013038 26 May 2022

7. Groundwater Management Procedures

The details of all proposed mitigation, monitoring and management measures are outlined in this section based on the identified activities and impacts for both construction and operation (Section 3) and findings of the groundwater assessment.

7.1 Construction

The construction methodology to be adopted by Manildra is to minimise interactions with groundwater where possible. To achieve this construction would be undertaken at ground surface above the water table with the exception of three excavations, the gravity retaining wall and driven timber piles (refer to Section 3.2.2).

Driven piles would not involve excavation but may displace sediments and groundwater and yet will maintain saturated conditions. The gravity retaining wall would be excavated and foundations installed 'wet' or using prefabricated material. Of the three excavations, only Excavation 3 (stormwater underground storage tank) would have a significant interaction with groundwater. To minimise the interaction, the excavation would have a sheet pile cut off wall installed.

7.1.1 General

Environmental management measures would be employed during construction to mitigate potential impacts on groundwater including, but not limited to, the following:

- A Construction Environmental Management Plan (CEMP) should be prepared outlining the environmental management measures to be adopted during construction, including any groundwater management procedures outlined in the following sections of this report.
- Plant and machinery refuelling should be carried out at designated areas to prevent uncontrolled discharges to the groundwater.
- Fuels and chemicals should be sealed in labelled container and stored within suitable bunded storage areas with construction compound.
- Emergency spill response equipment and procedures should be implemented during all construction, installation and commissioning activities to contain liquid spillages.
- Groundwater abstraction should not be carried out except as outlined for construction dewatering within Excavation 3 (refer to Section 7.1.3)
- Uncontrolled discharges to groundwater should not be permitted during construction.
- All groundwater monitoring locations are required to be maintained and protected during construction to enable continued groundwater monitoring as required (Section 7.2).

7.1.2 Excavation

Excavations would be carried out to facilitate the construction of the proposed development features as outlined within Section 3.2.2.

The following mitigation measures would be employed to minimise impacts to groundwater:

- Excavations should be limited to required depth of installations to avoid direct interaction below the groundwater table within the design requirements.
- Excavations for installation of proposed development features which are slightly below water table should adopt methods which avoid the need for groundwater dewatering including:
 - Gross pollutant traps (Excavation 1 and Excavation 2) which are slightly below water table, would be installed as 'wet installations' within relative short duration (estimated less than 1 day each)
 - Construction of gravity retaining wall foundations would be constructed using either 'wet concreting' methods and/or using prefabricated materials

- Excavations of contaminated soil materials should be carried out in accordance with requirements of the RAP (SMEC, 2022c) to assess, treat and/or manage surplus soils for onsite reuse and/or containment, where appropriate. In particular, excavated contaminated soils are required to be placed within designated onsite containment locations at depths no greater than 1.5m below ground surface or below 1m AHD, whichever is shallower as outlined within the RAP.
- Excavations of acid sulfate soil (ASS) should be carried out in accordance with requirements of Acid Sulfate Soils Management Plan (SMEC, 2022b) to assess, treat and/or manage surplus soils for onsite reuse, where appropriate. In particular, excavated ASS impacted materials are required to be stockpiled within a containment area, treated using lime neutralisation and validated prior to onsite reuse as backfill within excavations.

7.1.3 Dewatering

Groundwater dewatering is likely to be required to facilitate the installation of the underground storage tank (Excavation 3 only) which occurs below the groundwater levels as outlined within Section 3.2.3. An assessment of the potential dewatering requirements for Excavation 3 is included based on modelling in Section 6 based on stated assumptions.

The following mitigation measures would be employed to minimise impacts to groundwater:

- Temporary shoring/retention of Excavation 3 using sheet piles installed be installed to the depth of the basal clay layer (i.e. bottom of the aquifer at -7.5m AHD), designed and installed to minimise:
 - inflows to the excavation;
 - drawdown of the surrounding aquifer; and
 - changes to the groundwater flow regime.
- Dewatering activities would be carried out in accordance with the planning approval conditions. Dewatering activities are not expected to trigger a need for licence/permits considering the anticipated small volume of groundwater expected (estimated less than 2000m³). WaterNSW website states construction dewatering may trigger the need for a water access licence (WAL), unless an exemption applies. The WaterNSW factsheet *Water access licence exemption for aquifer interference activities taking 3ML or less of groundwater per year*, Factsheet 250920 (copy in Appendix H) further outlines when a small volume of groundwater may be taken through certain aquifer interference activities without the need for a water access licence.
- Details of proposed sheet piling and groundwater dewatering methods should be documented within the CEMP. Based on current information, it is understood that the following procedure (or similar) would generally be adopted for dewatering:
 - 1. Installation of temporary sheet piles to required depth
 - 2. Excavate soil materials inside sheet piling. Once below water table, wet soils removed to required depth should be placed in bunded stockpile area and water runoff retained.
 - 3. Commence monitoring of groundwater inflow volumes and quality
 - 4. Submersible pump (or equivalent) installed to extract the groundwater from excavation prior to facilitate dry installation activities (i.e. underground storage tank and foundations etc).
 - 5. Retain the pumped water within holding tank
 - 6. Following installation, backfill excavation with suitable backfill materials
 - 7. Remove temporary sheet piles
 - 8. Complete dewatering record forms as required by the CEMP including record groundwater dewatering volumes, quality and disposal method.
- All wastewater generated from dewatering the excavations should be contained within suitable capacity holding tanks to prevent runoff into creeks and drainage lines or return to the groundwater system. Wastewater should be tested and disposed offsite appropriately which may include:
 - Disposal via a licensed liquid waste contractor to an appropriate facility
 - Disposal to stormwater under relevant guidelines and approval from Council or relevant Authority with any supporting testing and monitoring requirements.

7.2 Water monitoring

7.2.1 Water quality monitoring

SMEC recommend that a construction water quality monitoring programme be carried out to comply with the planning approval conditions and NSW Ports specific requirements (refer to Section 11 Water Quality and Stormwater of Port Kembla Development Code – June 2021). The construction water quality monitoring programme should be developed and documented within the CEMP (or sub plan) along with monitoring criteria and response actions. It should also address any additional construction water quality monitoring requirements required by a licence or approval which are not specified here.

The following groundwater monitoring would be carried out to monitor impacts to groundwater during construction stage:

- Monitoring objectives: Groundwater monitoring events would be carried out during and post-construction with the monitoring objectives to:
 - Monitor for potential changes in groundwater quality by comparison pre-construction baselines
 - Monitoring water table changes during dewatering activities
 - Assess potential impacts associated with construction activities
 - Decide whether additional monitoring (post-construction) is required to further assess impacts (if any).
- Sampling and analysis plan: Table 7-1 outlines the proposed minimum frequency and number of groundwater monitoring events during construction/post-construction stages of the proposed development. Groundwater monitoring events would be generally consistent with Section 4.3.2 to Section 4.3.7 to enable comparison with the baseline groundwater quality data. Predetermined DQIs would continue to be adopted consistent with Appendix C of this report.

Table 7-1 Summary of proposed groundwater monitoring

Development stage	Frequency (no. of monitoring)	Monitored parameters
During construction/	Quarterly During construction (minimum. 4 quarterly events) – Assumes at least 1- year construction period. One round is recommended within 2 weeks after deep excavations and/or dewatering activities	Field parameters + Water quality analysis
	 Dewatering-specific During dewatering of Excavation 3 – Additional specific monitoring to include: Field measurements using calibrated water quality meter short intervals during dewatering (Daily - minimum 5 daily) Continuous water level monitoring should commence during and after dewatering (Hourly - minimum 14 days) Assumes groundwater returns to original water level within approximately within 1 week after dewatering of Excavation 3. Continued measurements at longer intervals (e.g. weekly) is required until groundwater returns to original water level and no impacts observed. 	Field parameters + Water level (continuous)
Post-construction	Post-construction (min. 2 rounds) – Monitoring to continue for a minimum 6 months beyond construction subject to the final assessment.	Field parameters + Water quality analysis

- Monitoring locations: Groundwater monitoring event locations would include at a minimum the eight monitoring locations (SMW01 to SMW06, OHMW20 and OHMW28) adopted within Section 4.3.3 to enable comparison with baseline groundwater quality data. Further, the following is noted during construction:
 - Any construction activities requiring placement of additional fill materials adjacent to selected monitoring locations should ensure protection, access and modifications can be carried out by a licensed driller (i.e. increasing the height of the well standpipe to new ground level)

- NSW Ports should be consulted on the need for Manildra to protect, retain or appropriately decommission remaining existing wells during development (refer to Section 2.6). Unless required for ongoing monitoring, wells should be decommissioned in accordance with Guidelines on Minimum Construction Requirements for Water Bores in Australia, 3rd ED 2012' so that they do not act as a direct pathway for groundwater contamination during Manildra's lease of the Site.
- Monitoring Parameters: Table 7-2 outlines the proposed monitoring parameters to be carried out during groundwater monitoring events. Laboratory analysis would be adopted the same as Section 4.3.6 to enable comparison with baseline groundwater quality data.

Table 7-2 Proposed monitoring parameters

Monitoring parameters	Description
Water level (continuous)	Continuous standing water level measurement using data loggers (recorded hourly) to be carried out during the dewatering activities as per Section 4.4
Field parameters	 Field measurements including: Discrete measurements of standing water level using water level dipper Water quality parameter using a calibrated water quality meter at short intervals during dewatering (e.g. daily) including pH, specific electrical conductivity, redox potential, dissolved oxygen and redox potential. Visual observations including olfactory (odour) observations of povious gases.
Water quality analysis	Groundwater sampling and testing for same laboratory analytical suite adopted for the baseline
	water quality parameters outlined within Table 4-4.

- Reporting: Groundwater monitoring and assessment would be reported according to the following minimum reporting frequency:
 - Following each groundwater monitoring events, monitoring results should be presented within brief factual
 monitoring reports and include a comparison to baseline groundwater characteristics (water level and
 groundwater quality) within Section 5of this report. The report should include an assessment of potential
 change from baseline conditions.
 - A groundwater assessment report should be prepared to summarise findings of all groundwater monitoring events and assessment of potential impacts. The assessment should conclude whether additional monitoring (post-construction) is required to further assess impacts.

7.2.2 Visual monitoring

Due to proximity of works to Port Kembla Outer Harbour, the CEMP should also include regular visual monitoring inspections of sensitive nearby water receptors (including adjacent harbour, stormwater drains and onsite/nearby stormwater pits) to enable early detection of possible impacts. These should be carried out at frequent intervals (e.g. daily) during excavations, dewatering, stockpiling, lime neutralisation/treatment where ASS is disturbed. Outside of these activities, the frequency may be reduced (e.g. weekly or monthly) checks as required by the CEMP.

The CEMP (or subplan) should include contingency response actions for addressing any visual signs of unusual discolouration, odour or significant change to baseline water quality within sensitive nearby water receptors as a result of construction activities

7.3 Operational requirements

As outlined within Section 3.4, impacts on groundwater are less likely to occur during operation of the proposed development. This assumes all plant and equipment designed, commissioned, operated and maintained to prevent and capture spills and leakages of bulk liquids during normal operational.

To account for possible groundwater impacts following exceptional events outside of normal operation, additional groundwater monitoring would be carried out to monitor possible impacts to groundwater. Additional 'event based' groundwater monitoring event(s) would be employed following one of the trigger events including:

- Trigger 1 A product or chemical spillage* or uncontrolled discharge exceeding 100L to ground outside of bunded areas (*Sampling and analysis requirements would be adjusted to suit likely chemical constituents of the spill).
- Trigger 2 A product or chemical spillage* or uncontrolled discharge exceeding 50% bund capacity inside of tank bunded areas (*Sampling and analysis requirements would be adjusted to suit likely chemical constituents of the spill).
- Trigger 3 Following activation of firefighting systems in an emergency fire scenario and/or as required to inform an environmental condition assessment (event-based).
- Trigger 4 At a minimum once prior to change of lease arrangements and/or to fulfil environmental requirements of the lease.

Additional monitoring would be carried out as per Section 7.2.1 and a groundwater assessment report would be prepared to summarise findings of the additional groundwater monitoring events and assessment of potential impacts. The assessment should conclude whether additional monitoring (post-event) is required to further assess impacts.

8. References

ANZG (2018), Australian and New Zealand Guidelines for Fresh and Marine Water Quality, August 2018, accessed 18 May 2022, URL: http://waterquality.gov.au/anz-guidelines

ANZG (2018b), (web page) Ammonia in freshwater and marine water, accessed 20 December 2021, URL: Ammonia in freshwater and marine water (waterquality.gov.au)

ANZECC & ARMCANZ (2000), National Water Quality Management Strategy, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Protection of Aquatic Ecosystems

Bowman, H.N. and Stewart T.R., Wollongong 1: 50,000 Geological Sheet 9028-1 (1974) Geological Survey of New South Wales, Sydney.

Canadian Council of Ministers of the Environment (2008), Canada-wide standards for petroleum hydrocarbons (PHC) in soil, endorsed by CCME Council of Ministers, 30 April-1 May 2001, Table 1 Revised January 2008

CMPS&F Environmental (1994) MSB Illawarra Ports Authority, Contamination Assessment of Port Kembla Outer Harbour, Vacant Land Parcels (October 1994)

Dear, S-E., Ahern, C. R., O'Brien, L. E., Dobos, S. K., McElnea, A. E., Moore, N. G. & Watling, K. M., (2014). Queensland Acid Sulfate Soil Technical Manual: Soil Management Guidelines. Brisbane: Department of Science, Information Technology, Innovation and the Arts, Queensland Government.

Friebel and Nadebaum (2011) Health screening levels for petroleum hydrocarbons in soil and groundwater, part 1: Technical development document, Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE Pty Ltd) Technical Report Series No. 10

Geological Survey of New South Wales, Department of Mines, Sydney (1985). Geological Map of Wollongong – Port Hacking, 1:100,000

National Working Party on Acid Sulfate Soils (2000). National Strategy for the Management of Coastal Acid Sulfate Soils. NSW Agriculture, Wollongbar, NSW, Australia.

NEPC (2013) National Environmental Protection (Assessment of Site Contamination) Measure 1999, as amended in 2013, National Environment Protection Council

NSW EPA (2020), Consultants Reporting on Contaminated Land, Contaminated Land Guidelines, April 2020

NSW Department of Finance and Services, Spatial Services, as viewed on Sixviewer, 22 March 2021, URL: http://maps.six.nsw.gov.au/

NSW Ports (2016) Port Kembla Development Code – June 2016, Port Kembla NSW

Office of Environment and Heritage, 2019, Soil Landscapes of Central and Eastern NSW - v2, NSW Office of Environment and Heritage, Sydney.

Pinnacle Risk Management Pty Ltd (2022), Fire Safety Study, Port Kembla Ethanol Terminal, Manildra, Revision H Dated 14 May 2022.

Shand, P, Appleyard, S, Simpson, SL, Degens, B, Mosley, LM (2018), National Acid Sulfate Soils Guidance: Guidance for the dewatering of acid sulfate soils in shallow groundwater environments, Department of Agriculture and Water Resources, Canberra, ACT. CC BY 4.0

SMEC (2018) Report on Preliminary Geotechnical Site Investigation, Proposed Ethanol Storage Silos, Port Kembla, Project 3001553.

SMEC Australia Pty Ltd (2021a) Preliminary Geotechnical and Contamination Investigation, Part Lot 6 DP 1236743 Foreshore Road, Port Kembla, prepared for Manildra Group Pty Ltd (Ref: 30013038-R01, Rev 3 dated 19 October 2021)

SMEC Australia Pty Ltd (2021b) Detailed Site Investigation, Part of Lot 6 DP1236743 Foreshore Road, Port Kembla, prepared for Manildra Group Pty Ltd, ref: 30013038-R04, Revision 1, dated 22 December 2021

SMEC Australia Pty Ltd (2022) Targeted Site Investigation – Pipeline Route, Part of Lot 6 DP1236743 and Part of Part of Lot 2 DP 1182823, Foreshore Road, Port Kembla, prepared for Manildra Group Pty Ltd, ref: 30013038-R05, Revision 1, dated 02 May 2022

SMEC Australia Pty Ltd (2022b) Acid Sulfate Soils Management Plan, Manildra – Port Kembla Bulk Liquid Terminal, Foreshore Road, Port Kembla, prepared for Manildra Group Pty Ltd, ref:30013038-R03, Revision 2, dated 06 May 2022

SMEC Australia Pty Ltd (2022c) Remedial Action Plan, Manildra – Port Kembla Bulk Liquid Terminal, prepared for Manildra Group Pty Ltd, ref: 30013038-R02, Revision 1, dated 9 May 2022

State Environmental Planning Policy (Three Ports) 2013

Stone Y, Ahern C R and Blunden B (1998). Acid Sulfate Soils Manual 1998. Acid Sulfate Soils Management Advisory Committee (ASSMAC), Wollongbar, NSW, Australia

Sullivan, L, Ward, N, Toppler, N and Lancaster, G (2018), National Acid Sulfate Soils guidance: National acid sulfate soils sampling and identification methods manual, Department of Agriculture and Water Resources, Canberra ACT. CC BY 4.0.

Sullivan, L, Ward, N, Toppler, N and Lancaster, G (2018a), National Acid Sulfate Soils Guidance: National acid sulfate soils identification and laboratory methods manual, Department of Agriculture and Water Resources, Canberra, ACT. CC BY 4.0.

TFA Group Pty Ltd (2021), Civil Drawing Set – Issued for Tender, Drawing ref: 20399-C00 to C17, C20 and C21, dated 23.11.21

TFA Group Pty Ltd (2022), Proposed Pipeline Route – D.A Issue, Drawing ref: 20399-DA-P01 to P05, dated 11.03.2022

WaterNSW (2020) Fact Sheet, Water access licence exemption for aquifer interference activities taking 3ML or less groundwater per year, ref 250920, accessed 1 November 2021, URL Construction dewatering - WaterNSW

Appendix A Figures

								A
			ار و معین به مین این مین مرکز این مینی					N
Fe	Pb		g Ni	i Se	Z	n Amm	nonia	цр
0.57	0.01	L 6 < 0.0	001 0.12	27 0.0	5 0.4	94 <0.	.01	
0.18		4 <0.0	001 0.0	94 0.0	0 0.8	49 <0.	.01	
						Ares		A HE
s St	ockpile	9			at and	a line of the		N. N.
			· Contraction					The second second
			Foreshore Re	oad				
11	E	1						The second secon
u	Fe	Pb	Hg	Ni	Se	Zn	Ammonia	21
001	0.19	<0.002	1 < 0.000	1 0.010	< 0.01	0.034	0.69	1
26	4.31	<0.002	1 <0.000	0.013	< 0.01	<0.005	0.77	
	Y	/			13			1 the
Τ	Pb	Hg	Ni	Se	Zn	Ammoni	a	W/L
<	0.001 <	<0.0001	0.019	<0.01	<0.005	0.99	- A A	1
<	0.001	<0.0001	0.027	<0.01	<0.005	0.85 (1.3*	*) • // ,	
Aust	ralia Ptv	I td 2021						

All Rights Reserved

Disclaimer: While all reasonable care has been taken to Disclamer: While all reasonable care has been taken to ensure the information contained on this map is up to date and accurate, this map contains data from a number of sources - no warranty is given that the information contained on this map is free from error or omission. Any reliance placed on such information shall be at the sole risi of the user. Please verify the accuracy of all information pri to using it. This map is not a design document.

Location: V:IProjectzl30013038 - Ethanol Tank Farm, Port Kembla\Maps\ASSMP\30013038_ASSMP_F004_ASSResults.mxd

Location: V:\Projectz\30013038 - Ethanol Tank Farm, Port Kembla\Maps\GAMR\30013038_GAMR_F004_Groundwater.mxd

Appendix B Assessment criteria

30013038 - Port Kembla Manildra Foreshore Road NSW

0-1	Arreliste		Laborate a line ite			41170 2010	ANIZC 2010		
Category	Analyte	Units of	Laboratory limits	PEAS NEMP 2020	NEPM SchB1	ANZG 2018	ANZG 2018	ANZECC &	Adopted Assessment
		measurement	of reporting -	Table 5 Ecological	Table 1A(4)	Default Guidelines	Default Guidelines	ARMCANZ (2000)	Criteria
			adopted screening	water quality	Groundwater HSLs	Values for	Values for	Default trigger	
			level for Total	guideline values	for vapour	toxicants (Marine	toxicants (Marine	values for physical	
			Recoverable	developed by	intrusion	water - 99%	water - 95%	and chemical	
			Hydrocarbons	water regulators	(Commercial	species	species	stressors for	
			i i yai ocai boli s	(Interim Marine	/industrial 2. <td>protection)</td> <td>nrotection)</td> <td>South-past</td> <td></td>	protection)	nrotection)	South-past	
				wator 05%		protection	protection	Australia for	
				water – 95%	AND 4m-<8m,			Australia for	
				species	Sand)			slightly disturbed	
				protection)				marine	
								ecosystems,	
								applying to	
								estuaries	
	۶H							7095	7095
	рн							7.0-8.5	7.0-8.5
	Specific Conductivity (Ec @ 25°C)	µS/cm							
Field parameters	Temperature	°C							
	Dissolved Oxygen	%						80-110	80-110
	Podov Potontial	10							
				0.12					0.10
	PFUS	µg∕L		0.13					0.13
PFAS	Sum of PFHxS and PFOS	μg/L							
	PFOA	μg/L		220					220
	Ammonia (as N)	ma/l					0.91		0.91
	Ammonium ion (as N)	mg/L					0.71	0.015	0.015
	Ammonium ion (as N)	ing/L						0.015	0.015
	Nitrate & Nitrite (as N)	mg/L			<u> </u>			0.015	0.015
	Nitrate (as N)	mg/L							
N 10 14 10 1 10 10 10	Nitrite (as N)	mg/L							
Nutrients	Organic Nitrogen (as N)	ma/l							
	Dhoshbato total (as D)	mg/L	1	1	1			0.020	0.020
	Filosphate total (as P)	ing/L						0.030	0.030
	Filterable reactive phosphorus (as P)	mg/L	1			ļ	ļ	0.005	0.005
	Total Kjeldahl Nitrogen (as N)	mg/L							
	Total Nitrogen (as N)	ma/L						0.300	0.300
	Total Dissolved Solids	mg/l	1	1	1	1	1		
Inorganic		mg/L	+						
	Hardness (as CaC03)	mg/L							
	Chloride	mg/L							
	Fluoride	ma/L							
	Sulphato (as SO4)	mg/L							
	Suprate (as 504)	nig/L							
	Calcium	mg/L	1		<u> </u>				
	Magnesium	mg/L							
Cations/Anions	Potassium	mg/L							
	Sodium	ma/l							
	Bisarbapata Alkalinity (as CaCO2)	mg/L							
	Dicarbonate Aikalinity (as CaCO3)	ing/L							
	Carbonate Alkalinity (as CaCO3)	mg/L							
	Hydroxide Alkalinity (as CaCO3)	mg/L							
	Total Alkalinity (as CaCO3)	ma/L							
	Benzene	mg/l			5		0.7		0.7
	Telvere	ing/L			NI		0.7		0.100
	loluene	mg/L			NL		0.185		0.180
	Ethylbenzene	mg/L			NL		0.08 ^B		0.080
DIEV	m+p-xylene	ma/L					0.075 ^B		0.075
BIEX							0.010		
							o ar ^B		0.250
	- under -						0.35		0.350
	o-xylene	mg/L							
	Xylenes (total)	mg/L			NL				NL
	TRH C6 - C9	mg/L	0.02						0.02
	TRH C10 - C14	mg/l	0.05						0.05
ТРН	TPH C15 - C28	mg/L	0.1						0.1
	TRIL 020 02/	nig/L	0.1						0.1
	TRH C29 - C36	mg/L	0.1		<u> </u>		ļ		0.1
	Sum of TPH C10-C36	mg/L	0.1						0.1
	TRH C6 - C10	mg/L	0.02						
	TRH C6 - C10 less BTFX (F1)	ma/L	0.02		6	1			6
	TRH \C10_C16	mg/l	0.1			1	İ		
TPU 2012 frontiers		ing/L	0.1						
			0.1		NL				NL
	ואח >כוט - כוס iess Naphthalene (F2)	mg/L	1		<u> </u>		ļ		
	TRH >C16 - C34	mg/L	0.1						
	TRH >C34 - C40	mg/L	0.1						
			1			1	0 0005 ^{B,E}		0.0005
	Aluminium	ma/l	1			1	0.0000		0.0000
	7301111011	ing/ L			+				
	Arrente						0.0023 ^{B,C,E}		0.0023
	Arsenic	mg/L				Å			
	Cadmium	mg/L				0.0007 ^A	0.0055 ^A		0.0007
							0.05 · · · P		0.0011
	Chromium (total)	ma/l					0.0044		0.0044
	Cobalt	mg/L	1	1	1	1	0.001	1	0.001
	cobait	ing/L	1				0.001		0.001
	Copper	mg/L	1				0.0013		0.0013
Metals (GW discolued)	Iron	mg/L							
	Lead	ma/L					0.0044		0.0044
	Mangaposo	ma/l	1		1	1	0.00 ^{B,E}		0.08
	ivialiyaliese	iiig/L				A	0.08		0.00
	Mercury	mg/L	1			0.0001 ^A	0.0004 ^A		0.0001
	Nickel	mg/L					0.07		0.07
						A	A		0.005
	Selenium	ma/L	1			0.005^	0.011^		0.005
		J	1	1	1	1	†	1	
									0.0005
	Irophum	ma /l					0.0005		0.0005
	Uranium	mg/L							
							0.008		0.008
	Zinc	mg/L					0.000		0.000
							o ocor ^B F		0.0005
	Aluminium	mg/L					0.00055,2		0.0005
Metals (Total)	Iron	ma/l	1	1	1	1	1	1	
	NA	/I	1	1	+	1	o oo ^{B F}	1	0.00
	ivianganese	mg/L		1			0.08-1-	1	0.08

30013038 - Port Kembla Manildra Foreshore Road NSW

Category	Analyte	Units of	Laboratory limits	PEAS NEMP 2020	NFPM SchB1	AN7G 2018	AN7G 2018	ANZECC &	Adopted Assessment
category	, unaly to	measurement	of reporting -	Table 5 Ecological	Table 1A(4)	Default Guidelines	Default Guidelines	ARMCANZ (2000)	Criteria
			adopted screening	water quality	Groundwater HSLs	Values for	Values for	Default trigger	
			level for Total	guideline values	for vapour	toxicants (Marine	toxicants (Marine	values for physical	
			Recoverable	developed by	intrusion	water – 99%	water – 95%	and chemical	
			Hydrocarbons	water regulators	(Commercial	species	species	stressors for	
				(Interim Marine	/industrial, 2-<4m	protection)	protection)	South-east	
				water – 95%	AND 4m-<8m,			Australia for	
				species	Sand)			slightly disturbed	
				protection)				marine	
								ecosystems,	
								apprying to estuaries	
								cstuaries	
	Acenaphthene	µg/L							
	Acenaphthylene	µg/L							
	Anthracene	µg/L				0.01 ^{AB}	0.4 ^B		0.01
	Benz(a)anthracene	µg/L							
	Benzo(a)pyrene	µg/L				0.1 ^{AB}	0.2 ^B		0.1
	Benzo(b&j)fluoranthene	μg/L							
	Benzo(g.h.i)perylene	μg/L							
	Benzo(k)fluoranthene	μg/L							
PAHs	Chrysene	μg/L							
	Dibenz(a.h)anthracene	μg/L							
	Fluoranthene	µg/L				1.0 ^{AB}	1.4 ^B		1.0
	Fluorene	μg/L							
	Indeno(1.2.3-cd)pyrene	μg/L							
	Naphthalene	µg/L			NL	50 ^A	70 ^A		50
	Phenanthrene	µg/L				0.6 ^{AB}	2.0 ^B		0.6
	Pyrene	µg/L							
	Total PAH	µg/L							
Phenols	2,3,4,6-Tetrachlorophenol	µg/L				10 ^{A,B,E}	20		10
	2,4,6-Trichlorophenol	µg/L				3 ^{A,B,E}	20		3
	2,4-Dichlorophenol	µg/L					160 ^{B,E}		160
	2,4-Dimethylphenol	μg/L					20 ^{A,B,E}		20
	2,6-Dichlorophenol	µg/L					34 ^{A,B,E}		34
	2-Chlorophenol	µg/L					490 ^{A,B,E}		490
	4-Chlorophenol	µg/L					220 ^{A,B,E}		220
	Pentachlorophenol	µg/L				11 ^A	22 ^A		11
	Phenol	μg/L					400 ^A		400

Notes

^A ANZG recommend taking into account potential bioaccumulative effects

^B Low or unknown reliability value ^C Based on As (III) (lower of the AS(III) and As(V) criteria)

^D Default guideline value assumes chromium (VI)

^E Level of species protection unknown

Appendix C Data Quality Indicators

Data Quality Indicators

DQIs for the project will be based on the field and laboratory considerations in NEPM Schedule B2 Appendix B, (NEPC 1999), which include:

- Completeness a measure of the amount of useable data (expressed as %) from a data collection activity
- Comparability the confidence (expressed qualitatively) that data may be considered to be equivalent for each sampling and analytical event
- Representativeness the confidence (expressed qualitatively) that data are representative of each media present on the site
- Precision A quantitative measure of the variability (or reproducibility) of data
- Accuracy a quantitative measure of the closeness of reported data to the true value.

The DQIs adopted for this assessment and checking of compliance is discussed in Table C-1 to C-5 below.

Table C-1: Data quality indicators - Completeness

Completeness					
Field considerations	DQI	DQI Compliance	Laboratory considerations	DQI	DQI Compliance
All critical locations will be sampled	Samples will be collected as per Section 4.3	Yes	All critical samples analysed.	Samples will be analysed as per Section 4.3	Yes
All samples collected	Samples will be collected from relevant media as per Section 4.3	Yes	All analytes analysed according to sampling plan	Samples will be analysed as per Section 4.3	Yes
SOPs appropriate and complied with	SMEC SOPs/Field instructions will be implemented	Yes	Appropriate methods and limits of reporting	Samples will be analysed by laboratories NATA accredited for the analyses to be performed and appropriate methods will be used. LORs will be less than or equal to the assessment criteria.	Yes (minor exceptions noted in Section 4.3.7.1)
Experienced sampler	An experienced SMEC environmental consultant will conduct the sampling	Yes (refer to Section 4.1).	Sample documentation complete	CoCs will be returned, signed, and dated by laboratory. NATA endorsed laboratory certificates will be completed in accordance with NEPC (1999). Field documentation will be completed in accordance with SMEC SOPs.	Yes
Documentation correct	Samples will be handled and transported under appropriate chain of custody documentation. Sample Receipt Advice (SRA) (or equivalent) from the laboratory will be reviewed to assess that samples are received cool and in good condition. Calibration certificates for the field instruments will be provided daily (or in accordance with manufacturers recommended calibration interval).	Yes Equipment calibration (refer to Section 4.3.7.1) Minor exception for missing field parameters for SMW06 (Section 4.3.7.1)	Sample holding times complied with	Samples will be analysed within holding times specified by NEPC (1999, amended 2013)	Yes (minor exceptions noted in Section 4.3.7.1)

Table C-2: Data quality indicators - Comparability

Comparability					
Field considerations	DQI	DQI Compliance	Laboratory considerations	DQI	DQI Compliance
Same SOPs used on each occasion	SMEC SOPs/field instructions will be implemented	Yes	Same sample analytical methods used	The same NATA accredited laboratory will be used to undertake analyses of all	Yes
Experienced sampler	An experienced SMEC environmental consultant will conduct the sampling.	Yes (refer to Section 4.1).	Same sample limits of reporting (LOR)	primary samples collected for this study. The laboratory will use the same analytical methods for each sample for each analytical parameter	Yes (minor exceptions noted in Section 4.3.7.1)
Climatic conditions (temperature, rainfall, wind)	Sampling for this work will be completed when necessary. Climatic conditions are not expected to cause issues for comparability of data	Yes.	Same laboratories (justify/quantify if different)		Yes (refer to Section 4.3).
Same types of samples collected	Samples will be collected in the appropriate laboratory supplied container specific to the analyses performed.	Yes	Same units (justify/quantify if different)		Yes

Table C-3: Data quality indicators – Representativeness

Representativeness								
Field considerations	DQI	DQI Compliance	Laboratory considerations	DQI	DQI Compliance			
Appropriate media sampled according to sample plan	Samples will be collected and analysed as listed in Section 4.3. Any variations will be justified.	Yes	All samples analysed according to sample plan	Samples will be collected and analysed as listed in Section 4.3. NATA accredited environmental testing laboratories will implement a quality control plan conforming to Schedule B (3) 'Guideline on Laboratory Analysis of Potentially Contaminated Soils' of the National Environment Protection (Assessment of Site Contamination) Measure 1999.	Yes			
All media identified in sample plan sampled	Samples will be collected and analysed as listed in Section 4.3	Yes	All samples analysed according to sample plan	Samples will be collected and analysed as listed in Section 4.3	Yes			

Table C-4: Data quality indicators – Precision

Precision					
Field considerations	DQI	DQI Compliance	Laboratory considerations	DQI	DQI Compliance
SOPs appropriate and complied with	SMEC SOPs/field instructions will be implemented	Yes	Analysis of laboratory duplicates	The number of duplicate analyses should be the smaller of one per process batch or one per 10 samples.	Yes (refer to Section 4.3
Analysis of: field duplicates	 Collection of field duplicate samples including: Field intra-laboratory duplicate samples (1 in 20 samples). Field inter-laboratory duplicate samples (1 in 20 samples). 	Yes (refer to Section 4.3 and Table 4-4)	Analysis of: field duplicates	 Field duplicates have relative percentage difference (RPD) control limits: Less than 30% (groundwater), where result is greater than 10 times limit of reporting (LOR). No limit where result is less than 10 times LOR. 	No (refer to Section 4.3.7.2)
	Experienced and trained staff to carry out sampling. Sampling methodologies appropriate and complied with.		Analysis of: laboratory duplicates	 Laboratory duplicates have relative percentage difference (RPD) control limits: Results <10 times the LOR: No Limit Results between 10-20 times the LOR: RPD must lie between 0-50% Results >20 times the LOR: RPD must lie between 0-30% In accordance with laboratory specific QC Acceptance criteria. 	No (refer to Section 4.3.7.2)
			Analysis of: laboratory- prepared volatile trip spikes	Trip spikes recoveries were recorded between 60% and 110% for volatile contaminants (TRHC6-C10/BTEX)	No – Trip spike not analysed (refer to Section 4.3.7.2)
			Analysis of: laboratory- prepared volatile trip blanks	Trip blanks were free of detectable concentrations of volatile contaminants (TRHC6-C10/BTEX)	No – Trip blank not analysed (refer to Section 4.3.7.2)
Table C-5: Data quality indicators - Accuracy (Bias)

Accuracy (bias)					
Field considerations	DQI	DQI Compliance	Laboratory considerations	DQI	DQI Compliance
SOP appropriate and complied with	SMEC SOPs/field instructions will be implemented	Yes	Analysis of field blanks	A laboratory prepared trip blank will be analysed for soil sampling (as defined in AS4482.2-1999 and NEPC (1999). Results are to be less than the LOR	No – Trip blank not analysed (refer to Section 4.3.7.2)
Rinsate blank	Where reusable sampling equipment is utilised (if any) a rinsate blank will be analysed and results compared against the PQL	Yes (Refer to Section 4.3.7.2)	Analysis of method blank	Method blanks will be analysed as per NEPC (1999) at least 1 per process batch (typically 1 in 20). Results to be less than LOR	Yes
Trip spike	Trip spikes are collected and analysed together with samples	No – Trip spike not analysed (refer to Section 4.3.7.2)	Analysis of matrix spike	Matrix spikes will be analysed as per NEPC (1999) (one matrix spike per soil type per process batch). Results to be within laboratory acceptance limits based on NEPC (1999). Acceptance limits are on the laboratory certificates (typically 70-130%, depends on analyte. A lower range typically accepted for phenols 30%-130%)	Yes (minor exceptions, refer to Section 4.3.7.2)
Preservation, transport, and storage	Samples appropriately preserved in laboratory supplied containers, stored, and transported correctly and within holding times	Yes (minor exceptions, Refer to Section 4.3.7.2	Analysis of surrogate spike	Surrogates will be analysed as per NEPC Schedule B3 (1999). All samples spiked where appropriate (e.g. chromatographic analysis of organics). Acceptance limits 70% to 130% (inorganics), or 50% to 150% (organics).	Yes
			Analysis of laboratory control samples	Laboratory control samples (LCS) will be analysed as per NEPC Schedule B3 (1999) (at least 1 per batch). Results to be within laboratory acceptance limits based on NEPC (1999). Acceptance limits are on the laboratory certificates (typically 70-130%, depends on analyte)	Yes
			Analysis of laboratory-prepared spikes	Spikes will be analysed as per NEPC Schedule B3 (1999). Recovery results to be within laboratory acceptance limits based on NEPC Schedule B3 (1999). Acceptance limits are on the laboratory certificates.	Yes

Appendix D Borehole logs

	(En	Ge Igi	olo ne	ogica ering	l & Log	Projec Client Site Job N	t Pipeli Manil Port I o 3001	ine Route TSI ldra Group Kembla 3174						East Nort Elev Datu	307771.690 m Start Date 03/03/2021 Contractor Numa 6183048.650 m End Date 03/03/2021 Rig Type Coma ation 2.570 m Mounting Track m MGA94 Zone 56/AHD	ic icchio 20	5	Inclina Azimu North Surve	ation 🤤 Ith Y	90°		SMEC
				(~			Testing		_ No	_	ð					Ś		0		Borehole Identifier:	
	g	D	t	Loss	rcr)	ling		PP (kPa)		& Inf	h (m) ation	iic Lo	ode			tion	stenc	tion	iering	đth	Origin Stratigraphic	SMW01
_	Metho	Casin	Suppo	Water (Gain/	Run (Samp	SPT	VS (kPa) Peak / Remoulded PID (ppm)	DCP	Water Level	Dept	Graph	Soil C	epth RL	Soil / Rock Material Description	Moistu Condi	Consi Densi	Altera	Weath	Rock Streng	Unit & General Observations	Installation
	•										2.6			2.57	FILL GRAVEL: fine to medium grained, angular, pale grey, grey.						FILL (CEMENTED SLAG)	LL01
														2.37	FILL Gravelly CLAY trace cobbles: medium plasticity, dark grey, dark brown, gravel is fine to coarse grained, angular, iron slag.						FILL — — — — — — — — — — — — — — — — — —	- NE
SMEC 2.10.8 2020-09-10	- АĎТ	114.3 mm) —									1.0 - 1.6			0.50 2.07	FILL Sandy GRAVEL with clay: fine to coarse grained, poorly graded, brown, gravel is iron slag, sand is medium to coarse grained.							1.0
s Lib: SMEC 2.10.9 2021-08-30 Prj: 5											•											1.5
04 Datgel Tool	X										2.0 - 0.6		2	2.00	Clayey SAND clay: fine to coarse grained, dark grey, black, material smelling of hydrocarbons.	M	L - MD				ESTUARINE?	- 2.0-
28 10.02.00.0										03/03/21			sc									
27/04/2022 16		•											(2.50	SAND: fine to coarse grained, pale grey, grey, slight hydrocarbon odour.	w						
DrawingFile>>	_										3.0											3.0-
13174.GPJ <<	— WB —										-0.4											
ENV WOL 3001													SP									
SOIL SMECT																						
											4.0 — -1.4											4.0
01001																						
C HYBK	-	+	+										4	.50	Hole Terminated at 4.50 m							4.5
3 Log_SME															raiger debru							
											<u>5.0</u>									1.8-		
SMEC 2.10.13	Ubse Possible Proteciv	rvati e hydi ve ste	ons a rocarb el mo	and Com oon contami nument cer	iments nants encour nented in pla	ntered at 2-2 ce, 0.73m st	.5m. ick up above s	surface level.							Classifications compliant with AS1726-2017: Geotechnical Site Investigal Defect Log Abridged. Additional detail in digital dataset. Lugeon: BS5930 For Inclined Holes: Angles reported in defects are apparent dip from core Refer to explanatory notes for SMEC logs for details of abbreviations or t	ions unles 1999 horizontal asis of de	s otherwis unless as scription.	e noted. sα.orβ.	Appr Statu	ea By oved E Is	By SRM Date 3 Pag	e 03/03/2021 e 31/03/2021 e 1 of 1

	(En	Geo gin	ologi leeri	cal & ng Log	Project Client Site Job No	Pipeline F Manildra Port Kem 30013174	Route TSI Group nbla 4						East North Elevatio Datum	307889.380 m 6183043.420 m n 2.890 m MGA94 Zone 56/A	Start Date 04 End Date 04	1/06/2022 1/06/2022	Contractor Rig Type Mounting	Epoca Geoprot	be 7822	DT	Inclina Azimu North Surve	ition 9 th y)0°	Wamber of the Surf	SMEC	
			ī				Testing		low L		bc									сy		D		Borehole Identifier:		р 0
	p	n t		TCR	ling		PP (kPa)		, m	h (m ation	lic Lo	ode							ure	sten. ty	tion	Jerin	gth	Origin Stratigraph	SIVIVU2	2
	Metho		Water	Run (Samp	Pe	vs (kPa) eak / Remoulded PID (ppm)	DCP	Water	Dept	Grapł	Soil O	epth	Soi	il / Rock Material	Description			Moist Condi	Consi Densi	Altera	Weatl	Rock	Unit & General Observations	Installation	
									Ĺ	0.0 - 2.9		0	10 FIL	L SLAG: grey, fine to coarse	grained, angular sand	I matrix.			W <pl< td=""><td>VL</td><td></td><td>-</td><td></td><td>FILL (CEMENTED SLAC</td><td>G)</td><td>٦</td></pl<>	VL		-		FILL (CEMENTED SLAC	G)	٦
GLB Log_SMEC HYBRID LOG LANDSCAPE_SOIL SMEC ENV WOL 30013174.GPJ < <drawingfile> 27/04/2022 16:28 10.02.00.04 Datget Tools Lib: SMEC 2:10.92021-08-30 Prj: SMEC 2:10.8 zuzu-us-10</drawingfile>										1.0- 1.9- 1.9- 			90	L CLAY: high plasticity, brow b-rounded gravel.	m to black, trace fine to medium grained, sub-	o coarse grained	ow plasticity clay.			S L				FILL		
2.10.13 LIE	Obse PVC pi	vation e stick	ns and (up 0.74m	comments										Classifications	compliant with AS1 idged. Additional de	726-2017: Geot etail in digital dat	echnical Site Inv taset. Lugeon: B	vestigation S5930:19	s unless 99	otherwise	e noted.	Logg	ed By	BP Da	ate 04/06/2022	Ĩ
SMEC														Por Inclined Ho Refer to explar	oles: Angles reported natory notes for SME	d in defects are EC logs for deta	apparent dip fro ils of abbreviatio	m core ho ons or bas	is of des	unless as cription.	α.orβ.	Statu	IS	3 Pa	age 1 of 1	

	(En	Geo gin	olog ieei	gical ring	& Log	Projec Client Site Job No	t Pipeli Manil Port F 3001	ine Route TSI ldra Group Kembla 3174						Eas Nor Elev Dati	t 307881.900 m Start Date 20/04/2022 Contractor Numac D h 6183114.520 m End Date 20/04/2022 Rig Type Sonic ation 3.090 m MGA94 Zone 56/AHD Mounting Track	Drilling		Inclina Azimu North Surve	ation S Ith Y	10°	s	MEC
				~		_		Testing		<u>></u>		Ð					2		-		Nember of the Surban Borebole Identifier:	a jurong Group
	ethod	asirig innort	ater	ater iain/Loss	In (TCR)	ampling _		PP (kPa) VS (kPa) Peak / Remoulded		ater _	lepth (m)	aphic Lo	oil Code	Depth		oisture ondition	onsistenc ensity	teration	eathering	ock rength	Origin, Stratigraphic Unit & General	SMW03
Г	ž (זֿי כֿ	5 ≥	<u>50</u>	Ř	Š	SPT	PID (ppm)	DCP	_≥ ≞	ш – 0.0	Ū	Ň	RL 3.09	Soil / Rock Material Description	žŭ	ŏă	Ā	3	ᅗᅘ	Observations	Installation
LOG LYNDSCAPE SOLL SMEC ENV WOL 30131745FJ << Drawngries> Z/YMZZ122 1632 10120U/04 Dagel Iools [LID: SMEC Z:10.9 2027-05-30 FF; SMEC Z:10.8 2020-09-10		- Guilden								4 20/04/22	$\begin{array}{c} 0.0 - \\ 3.1 \end{array}$			0.80 2.29 2.30 0.79 3.30 -0.21	FILL Gravelly CLAY: low to medium plasticity, pale brown, fine to coarse grained, angular gravel, with fine to coarse grained sand, with cobbles (60-80mm) comprising sandstone. FILL Sandy CLAY: low to medium plasticity, brown mottled orange, fine to coarse grained sand, with fine to medium grained gravel. FILL Sandy CLAY: low to medium plasticity, brown mottled orange, fine to coarse grained sand, with fine to medium grained gravel. 2.00-2.30: SAND, medium grained, pale brown observed FILL Gravelly SILT: low plasticity, dark grey, fine to coarse grained gravel, with cobbles and boulders comprising latite (dark grey-black with shiny inclusions). 3.00-3.30: Boulder encountered/penetrated SAND: medium grained, yellow-red.	Μ	F St				FILL 1.50: Driller noted some resistance 3.00-3.30: Driller cored through boulder ESTUARINE	1.0 1.5 1.5 1.5 1.1 1.5 1.5 1.1 1.5 1.1 1.5 1.1 1.5 1.1 1.5 1.1 1.5 1.1 1.1
HABKIL	*		_					+		+				4.50	Hole Terminated at 4.50 m							4.5
LB.GLB LOG SMECT											5.0	-			Target Depth (standpipe installed)							_
SMEC 2.10.131	Obse Standpi Develo	vation pe Surf oment N	ns and ace Cor Aethod:	d Comr mpletion: Bailer; V	nents Monument /ell Develop	Hole Flushe ment - Purg	ed, PVC pipe s ed 40L, brown	stick up 0.69m; No Wat n, torbid water; Well Vo	ter Sample colle lume ~13L	ected					 Classifications compliant with AS1726-2017: Geotechnical Site Investigations Defect Log Abridged. Additional detail in digital dataset. Lugeon: BS5900 Por For Inclined Holes: Angles reported in defects are apparent dip from core hor c	s unless 99 rizontal s of des	s otherwis unless as scription.	e noted. α or β	Logo Appr Statu	ed By oved B ıs	AW Date y AW Date 3 Page	20/04/2022 27/04/2022 1 of 1

	(En	Geo gir	olo neo	ogica erinç	al & g Log	Proje Clien Site Job N	ect Pip It Ma Po No 30	peline Route TSI anildra Group ort Kembla)013174						Eas Norf Elev Dati	307848.120 mStart Date20/04/2022Contractor Numac Dh6183124.300 mEnd Date20/04/2022Rig TypeSonication2.960 mMountingTrackmMGA94 Zone 56/AHDKig TypeSonic	Drilling		Inclina Azimu North Surve	ation s uth y	90°	S	MEC
								Testing		Ň		_									Member of the Surban	a Jurong Group
				(ssc	(R)	ے م		Testing		⊓ lµ	٤ (E	Log	e			o 5	ency	E	ring	_	Borehole Identifier:	SMW04
	, hod	sing	podd	in/Lo	Ĕ	nplir		VS (kPa) VS (kPa)		ter el &	pth svati	phic	ő			sture	nsist nsity	eratio	athe	sk ength	Origin, Stratigraphic	
_	S G	c a	dns N	(Ga	Rur	Sar	SPT	PlD (ppm)	DCP	Va. Lev	Ъщ	Gra	Soi	Depth <i>RL</i>	Soil / Rock Material Description	Cor	Der	Alte	We	Stre	Observations	Installation
0.0G LANDSCAPE_SOIL SMEC ENV WOL 30013174.GPJ < <drawngfile>> 27/04/2022 16:32 10.02.00.04 Datjel Tools [LB: SMEC 2:10.9 2021-08-30 Ptj: SMEC 2:10.8 zucu-us-10</drawngfile>		Casing								X 20/04/22	3.0 1.0 2.0 1.0 - 2.0 - 1.0 - - - - - - - - - - - - -		SP	<u>1.00</u> <u>1.96</u> <u>2.70</u> <u>0.26</u>	FILL Gravelly SAND: fine to coarse grained, brown, fine to coarse grained gravel. FILL Sandy CLAY: low to medium plasticity, brown, medium to coarse grained sand, with fine to medium grained gravel. 2.30-2.50: Boulder encountered, Latite, dark grey, angular borken edges SAND: medium grained, yellow-red. 3.50-4.50: becoming pale yellow	М	F L				FILL 1.00: Driller noted increased resistance (possible boulders) ESTUARINE	1.0 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
GLB Log _SMEC HYBRIL	<u>*</u>	¥									-			4.50	Hole Terminated at 4.50 m Target Depth (standpipe installed)							4.5
SMEC 2.10.13 LIB	Obse PVC Pi Develop Well De	pe Stic oment l evelopr	DINS 2 k Up: Meth ment	and Con : 0.65m; Ho od: Bailer; - Purged 4	nments ole Flushed; Well Volume 0L, brown, to	No Water S ~13.4L orbid water (Sample colle 0-20L; pale l	ected brown, slightly cloudy 20-4	OL (improved cl	larity)	<u>5.0</u>	<u>.</u>			Classifications compliant with AS1726-2017: Geotechnical Site Investigations Defect Log Abridged. Additional detail in digital dataset. Lugeon: BS5930:199 For Inclined Holes: Angles reported in defects are apparent dip from core hor Refer to explanatory notes for SMEC logs for details of abbreviations or basis	s unless 99 rizontal s of des	otherwis unless as cription.	e noted. α or β	Logo Appi State	ged By roved E us	AW Date by AW Date 3 Page	20/04/2022 27/04/2022 1 of 1

	(En	Geo gir	olo nee	ogica ering	l & Log	Proje Clier Site Job I	ect nt No	Pipeline I Manildra Port Kem 3001317	Route TSI Group ıbla 4						East Nort Elev Datu	307825.760 m 6183134.070 m ation 2.860 m m MGA94 Zone 56/AH	Start Date 20/04/2022 End Date 20/04/2022	Contractor Rig Type Mounting	Numac I Sonic Track	Drilling		Inclina Azimut North Survey	tion 9 th /	90°	S	MEC
									Testing		Ň		_												Member of the Surbar	a Jurong Group
	lethod	asirig	Troddn	/ater 3ain/Loss)	un (TCR)	ampling		Pe	PP (kPa) VS (kPa) eak / Remoulded		/ater _	Depth (m) Elevation	raphic Log	oil Code	Depth					loisture ondition	onsistency ensity	Iteration	/eathering	ock trength	Borehole Identifier: Origin, Stratigraphic Unit & General	SMW05
Γ	≥ (▲ /		∧ │	59	~	S	SP	, 	PID (ppm)	DCP	د < 	0.0 -	ы Т	s N	RL 0.10	FILL SILT with gravel: with fine to	coarse grained gravel, trace coa	ON arse grained, sub-angu	lar to	≥O D	L	<	\$	ഹര	FILL	Installation
												-			2.76 0.40	angular gravel					VD				FILL (CEMENTED SLAG) 0.10-0.40: heavily pulverised cemented material	
MEC 2.10.9 2021-08-30 Prj: SMEC 2.10.8 2020-09-10												1.0 — 1.9 -			1.70	FILL Gravelly CLAY: black, pale g sand, trace rootlets.	rey, fine to coarse, sub-angular i	to sub-rounded gravel	with	Μ	F				FILL — — — — — — — — — — — — — — — — — —	
.02.00.04 Datgei Ioois Lip: >n	- SD	asırıg										2.0 — 0.9			2.30	FILL Clayey GRAVEL: fine to coar	rse grained, sub-angular, black, y	yellow brown, with sar	d.	D						20-
wingFile>> 27/04/2022 16:32 10											20/04/22	-			3.00	FILL Gravelly SAND: fine to coars sub-rounded gravel, trace pebbles	e grained, brown, red brown, fin , trace clay.	e grained, sub-angular	to	Μ	L					
~Ora												-0.1	\bigcirc		-0.14	LATITE BOULDERS / COBBLES.				w	VD				PULVERISED MATERIAL AROUND FRAGMENTS	
ENV WOL 30013174.GPC												· ·			3.70	SAND: fine grained, red, yellow, p	ale brown.		+	М	L				ESTUARINE (QUARTZ BASED)	
DG LANDSCAPE_SUIL SMEC												4.0 — -1.1		· SP	-0.84	SAND: fine grained, yellow, pale b	prown to pale grey.			W						4.0
3RID LL															4.50											4.5
B.GLB Log_SMEC HTL												-5 0				Hole Terminated at 4.50 m Target Depth (standpipe installed)										-
SMEC 2. 10. 13 L	Obser PVC Pip Develop	vatio be Stick oment I	ns a k Up: Meth	and Com 0.72m; Ho od: Bailer;	i <mark>ments</mark> ble Flushed; I Well Volume	No Water S 13.4L	Sample co	ollected								Classifications co Defect Log Abrid For Inclined Hole Refer to explanat	ompliant with AS1726-2017: (lged. Additional detail in digita s: Angles reported in defects tory notes for SMEC logs for	Geotechnical Site In al dataset. Lugeon: I s are apparent dip fro details of abbreviati	vestigation 3S5930:19 om core ho ons or bas	s unless 99 orizontal u is of des	otherwise unless as cription.	e noted. α or β.	Logg Appr Statu	jed By oved E ເຣ	KH Date By AW Date 3 Page	20/04/2022 27/04/2022 1 of 1

	(En	Geo gir	olo 1ee	gica ering	ıl & J Log	Proje Client Site Job N	t P t N P No 3	Pipeline Route TS Manildra Group Port Kembla 80013174	I					Eas Nor Ele ^v Dat	t 307734.250 m th 6183055.700 m vation 3.410 m um MGA94 Zone 56/A	Start Date 04/06/ End Date 04/06/	/2022 /2022	Contractor E Rig Type C Mounting	Epoca Geoprobe 7822	2DT	Inclina Azimu North Surve	ation 9 ith 9	90°	S	MEC
	lethod	asing	npport	Vater Gain/Loss)	tun (TCR)	ampling		Testing PP (kPa) VS (kPa) Peak / Remou	ded	Vater evel & Inflow	Depth (m) Elevation	sraphic Log	oil Code	Depth	Sa	il / Rock Material Dec	porintion		Aoisture condition	consistency ensity	lteration	Veathering	tock trength	Member of the Surbar Borehole Identifier: Origin, Stratigraphic Unit & General	SMW06
SMEC FYBRID LOG LANDSCAPE_SOIL SMEC ENV WOL 30013174.6PJ << DrawingFile> 27/04/2022 16:32 10.02.00.04 Dagel Toole [Lib: SMEC 2.10.9 2021-08-30 Prj: SMEC 2.10.8 2020-08-10							571				0.0- 3.4 1.0- 2.4 2.0- 1.4 3.0- 0.4 4.0- -0.6		5 SP	RL 3.31 0.30 2.97 2.97 1.41	FILL Silty SAND: grey, abundar FILL Clayey SAND: fine to coar FILL Silty Gravelly SAND: fine t FILL Silty Gravelly CLAY: red rounded coarse furnace slag gr FILL Silty SAND: grey.	d)	guartz/lithic.	grey, trace gravel. ngular, black, coalv ilar to rounded san	W <pl< th=""><th></th><th></th><th></th><th></th><th>AEOLIAN</th><th></th></pl<>					AEOLIAN	
13 LIB.GLB Log_S	Obse	vatio	ins a	nd Corr	ments						5.0				n Classifications	compliant with AS1726-2	2017; Geote	echnical Site Inve	estigations unless	otherwis	e noted	Load	red By	BPDate	- 04/06/2022
SMEC 2.10.	PVC pi	be stick	c up 0	.76m											Defect Log Abi For Inclined Ho Refer to explar	ridged. Additional detail in oles: Angles reported in o natory notes for SMEC lo	in digital dat defects are ogs for detai	aset. Lugeon: BS apparent dip fron ils of abbreviatior	55930:1999 n core horizontal ns or basis of des	unless as cription.	sαtorβ	Appr Statu	roved E us	By AW Date 3 Page	27/04/2022 a 1 of 1

Explanatory Notes of Abbreviations and Terms

Used on Borehole and Excavation Logs

General

The "Geological and Engineering Log" presents data from drilling or excavation operations where material recovery is soil and or rock. Data presented is a combination of material recovered, regular sampling and insitu testing. Excavations may present data obtained on the subsurface profile from observations of natural or man-made excavations. Logs may contain scaled graphical presentations, photography, or downhole imagery results. Logs may not contain all data types presented in these notes.

The "Non Core Drill Hole Engineering Log" presents data from drilling operations where a core barrel has not been used. The material is penetrated using methods other than those designed to recover core and is commonly soil or extremely to highly weathered. The "Cored Drill Hole Engineering Log" presents data from drilling operations where a core barrel has been used. The "Excavation - Geological Log" presents data obtained on the subsurface profile from observations of excavations, either natural or anthropogenic.

As far as is practicable, the data contained on the log sheet is factual. Some interpretation is inevitable with respect to the:

- a. assessment of material boundaries in areas of partial sampling and recovery,
- b. location of areas of core loss,
- c. description and classification of material,
- d. estimate of field strength, and
- e. identification of drilling induced fractures.

Material description and classification is generally based on AS1726-2017 (as amended).

Drilling Method

Code	Description
ADT	Auger drilling with TC-bit
ADV	Auger drilling V-bit
AS	Auger screwing
AT	Air track
CA	Casing advancer
CC	Concrete core
CTR	Cable tool rig
DB	Wash bore drag bit
HA	Hand auger
HAND	Hand methods
HF	Hollow flight auger
HMLC	Diamond core 63.5 mm diameter
HQ/ HRQ	Wire line core barrel 63.5 mm diameter
HQ3	Wire line core barrel 61.1 mm diameter
NDD	Non destructive drilling
NMLC	Diamond core 51.9 mm diameter
NQ	Wire line core barrel 47.6 mm diameter
NQ3	Wire line core barrel 45.1 mm diameter
PT	Continuous push tube
PQ	Wire line core barrel 85.0 mm diameter
RAB	Rotary air blast
RC	Reverse circulation
RD	Rotary blade or drag bit
RR	Rock roller
RT	Rotary tricone bit
SD	Sonic drilling
ТВХ	Tube-X
VC	Vibro-core drilling
WB	Wash bore drilling

Drilling Penetration

Ease of penetration in non-core drilling

Term	Description
VE	Very easy
E	Easy
F	Firm
Н	Hard
VH	Verv hard

Support and Casing

Code	Description	Code	Description
С	Casing	Hw	114.3 mm
M	Mud	Nw	88.9 mm
W	Water	PVC 150	150 mm

Core Run

Core lifts are identified by a line and depth with core loss per run as a percentage. Core loss is shown in the core run unless otherwise indicated.

Defect Spacing

The average distance between defects is measured parallel to the core axis in mm and may be expressed as a range or average.

Angle / Orientation

Angle from horizontal and orientation to magnetic north.

For inclined cored boreholes the Alpha and Beta angles are presented for orientated core. Alpha (α) is measured relative to the core axis, whilst Beta (β) is measured clockwise from the reference line looking down the core axis in the direction of drilling.

Excavation Method

Term	Definition
Ν	Natural exposure
Х	Existing excavation
BB	Tractor mounted backhoe bucket
EX	Hydraulic excavator
EH	Hydraulic excavator with hammer
В	Bulldozer blade
R	Ripper

Water / Drilling Fluid

The drilling fluid used is identified and loss of return to the surface is estimated as a percentage, generally of each core lift.

Symbol	Description
	Water inflow
	Water outflow
	Water level: during drilling or immediately after completion of drilling
	Groundwater level with date observed prior to introduction of fluids or after standpipe construction
Not observed	The observation of groundwater, whether present or not, was not possible due to drilling water, surface seepage or cave in of the borehole / test pit.
Not encountered	The borehole / test pit was dry soon after excavation, however groundwater could be present in less permeable strata. Inflow may have been observed had the borehole / test pit been left open for a longer period.

Colour

The colour of a soil or rock is described in a moist/wet condition using simple terms, such as black, white, grey, red, brown, orange, yellow green or blue. These are modified as necessary by 'pale', 'dark' or 'mottled'. Borderline colours are described as a combination of these colours (e.g. orange-brown). Where a soil or rock consists of a primary colour with a secondary mottling it is described as (primary colour) mottled (first colour) and (secondary colour). Where colour is described outside of the material description it is for the interval.

Description of Soil

- vi. Soil name (BLOCK LETTERS)
- vii. Plasticity or particle size of soil
- viii. Colour (i.e. dominant colour of material)
- ix. Secondary soil components names & estimated proportions, including their plasticity / particle characteristics, colour
- x. Minor soil components name, estimated proportions, including their plasticity / particle characteristics, colour
- xi. Other minor soil components
- xii. Moisture condition
- xiii. Consistency / density
- xiv. Structure of soil, geological origin
- xv. Additional observations

Particle Size

Term		Grain Size	
Clay		< 2 µm	
Silt		2 – 75 µm	
	Fine	0.075 – 0.21 mm	
Sand	Medium	0.21 – 0.6 mm	
	Coarse	0.6 – 2.36 mm	
	Fine	2.36 – 6.7 mm	
Gravel	Medium	6.7 – 19 mm	
	Coarse	19 – 63 mm	
Cobbles		63 – 200 mm	
Boulders		> 200 mm	

Fine Grained and Coarse Grained Soils

Term	Description
Fine Grained Soil (cohesive)	More than 35% of the material less than 63 mm is smaller than 0.075 mm (silts and clays)
Coarse Grained Soil	More than 65% of the material less than 63 mm is larger than 0.075 mm (sands, gravels and cobbles)

Descriptive Terms for Secondary and Minor Components

	In coarse grained soils				In fine grained soils	
Designation of Components	% Fines	Terminology	% Accessory coarse fraction	Terminology	% Sand / Gravel	Terminology
	≤5	trace	≤ 15	trace	≤ 15	trace
Minor	> 5, ≤ 12	with	> 15, ≤ 30	with	> 15, ≤ 30	with
Secondary	> 12	prefix	> 30	prefix	> 30	prefix

Plasticity - Fine Grained Soils

Liquid Limit (LL) %	Description	
≤ 35	Low plasticity (L)	
$> 35 \text{ to} \le 50$	Medium plasticity (I)	
> 50	High plasticity (H)	

Plasticity Chart- Fine Grained Soils

Consistency Terms – Fine Grained Soils

Term	Undrained shear strength (kPa)	Indicative SPT (N) Blow Count	Field Guide to Co
Very Soft (VS)	< 12	0 – 2	Easily penetrated s squeezed in fist
Soft (S)	12 – 25	2 – 4	Easily penetrated s finger pressure
Firm (F)	25 – 50	4 - 8	Can be penetrated moulded between
Stiff (St)	50 – 100	8 – 15	Readily indented b moulded by fingers
Very Stiff (VSt)	100 – 200	15 – 30	Readily indented b
Hard (H)	> 200	> 30	Indented with diffic
Friable (Fr)	-		Can be easily crum

Density Terms – Coarse Grained Soils

Term	Density Index (%)	SPT (N) Blow Count
Very Loose (VL)	< 15	0 - 4
Loose (L)	15 – 35	4 – 10
Medium Dense (MD)	35 – 65	10 – 30
Dense (D)	65 – 85	30 – 50
Very Dense (VD)	> 85	> 50

Particle Characteristics – Coarse Grained Soils

Term	Description
Well graded	Having good representation of all particle sizes
Poorly graded	With one or more intermediate size poorly represented
Gap graded	With one or more intermediate sizes absent
Uniform	Essentially of one size

Angularity – Coarse Grained Soils

	Rounded
6	Sub-rounded
	Angular
ø ø	Sub-angular

Origin of Soil

Fill	Formed by anthropogenic activity	
Aeolian	Formed by wind	
Alluvial	Formed by streams and rivers	
Colluvial	Formed on slopes (talus)	
Estuarine	Formed in marine environments	
Lacustrine	Formed in lakes	
Residual	Formed by weathering insitu	

Field Guide to Consistency
Easily penetrated several centimetres by fist, exudes between fingers when squeezed in fist
Easily penetrated several centimetres by thumb, easily moulded by light finger pressure
Can be penetrated several centimetres by thumb with moderate effort, and moulded between the fingers by strong pressure
Readily indented by thumb but penetrated only with difficultly. Cannot be moulded by fingers
Readily indented by thumb nail, still very tough
Indented with difficulty by thumb nail, brittle

an be easily crumbled or broken into small pieces

Soil Moisture

	Term	Code	Description	
q	Dry	D	Looks and feels dry and free running	
ırse Graine	Moist	Μ	Soil feels cool, darkened in colour, soils tend to stick together, soil grains do not run freely through fingers and no visible free water	
Соа	Wet W		Soil feels cool, darkened in colour, soils tend to stick together, free water on remoulding	
	Moist, Less than Plastic Limit	W < PL	Hard and friable or powdery, moisture content well below Plastic Limit	
ined	Moist, Near Plastic Limit	W ≈ PL	Soil feels cool, darkened in colour, can be moulded, near Plastic Limit	
Fine Grai	Moist, Wet of Plastic Limit W > PL		Soil feels cool, dark, usually weakened, free water, moisture content well above Plastic Limit	
	Wet, Near Liquid Limit	W ≈ LL	Soil exudes easily	
	Wet, Wet of Liquid Limit	W > LL	Soil behaves as a liquid	

Boundary Classifications

Soils possessing characteristics of two groups are designated by combinations of group symbols. For example, GW-GC, well graded gravel-sand mixture with clay binder.

Graphic Symbols

	Asphalt	$^{(1)}_{(1)}^{(1$	МН
	СН		ML
7/,	CI	10100 10100	ОН
	CL	12 전 1 전 2 전 2	OL
	Concrete	12 주주 : 223 2	PT
***	Fill		SC
5 6 % 7 8 6 7 8 6	GC	\boxtimes	SM
1900 990 990	GM		SP
200	GP		SW
0.0	GW	<u></u> <u>b</u> <u>b_</u>	Topsoil

4 Revision 3, August 2019 SMEC Soil and Rock Logging Explanatory Notes.

Soil Classification

Soils are described in general accordance with AS1726-2017 as shown below.

GROUP PRIMARY FIELD IDENTIFICATION PROCEDURES SYMBOL NAME (Excluding particles larger than 63 mm and basing fractions on estimated mass) Wide range in grain size and substantial amounts More than 65% of the material is less than 63 mm and is larger than 0.075 GW GRAVEL <u>0</u> of all intermediate particle sizes, not enough fines **GRAVELS** More than half of coarse fraction i larger than 2.36 mm to bind coarse grains, no dry strength; \leq 5% fines **CLEAN GRAVELS** Predominantly one size or a range of sizes with (Little or no fines) more intermediate sizes missing, not enough fines GP GRAVEL to bind coarse grains, no dry strength; $\leq 5\%$ fines particle size of 0.075 is about the smallest size distinguishable to the naked eye GRAVELS w/ 'Dirty' materials with excess of non-plastic fines, GM SILTY GRAVEL **FINES** none to medium dry strength; $\geq 12\%$ silty fines (Appreciable amount of fines) 'Dirty' materials with excess of plastic fines, CLAYEY GC GRAVEL medium to high dry strength; \geq 12% clayey fines Wide range in grain size and substantial amounts <u>.ഗ</u> SW SAND SANDS More than half of coarse fraction smaller than 2.36 mm of all intermediate particle sizes, not enough fines to bind coarse grains, no dry strength; \leq 5% fines **COARSE GRAINED SOILS CLEAN SANDS** Predominantly one size or a range of sizes with (Little or no fines) more intermediate sizes missing, not enough fines SP SAND to bind coarse grains, no dry strength; $\leq 5\%$ fines 'Dirty' materials with excess of non-plastic fines, SANDS w/ FINES SM SILTY SAND none to medium dry strength; \geq 12% silty fines (Appreciable amount of fines) 'Dirty' materials with excess of plastic fines, mm SC CLAYEY SAND medium to high dry strength; \geq 12% clayey fines **IDENTIFICATION PROCEDURES ON FRACTIONS** < 0.075 mm less than GROUP PRIMARY DRY STRENGTH DILATANCY TOUGHNESS SYMBOL NAME **SILTS AND CLAYS** Liquid Limit < 50% More than 35% of the material mm is less than 0.075 mm SILT None to low Slow to rapid I ow MI FINE GRAINED SOILS Medium to high ≥ 12% clayey fines Medium CL, CI* CLAY $\overline{\triangleleft}$ Low to medium Slow Low OL ORGANIC SILT Liquid Limit > 50% SILT Low to medium None to slow Low to medium MH SILTS AND СН High to very high None High CLAY CLAYS ORGANIC Medium to high Low to medium OH None to very slow 63 CLAY

HIGHLY ORGANIC SOILS: readily identified by colour, odour, spongy feel and frequently fibrous texture

* CL is low plasticity clay, Cl is medium plasticity clay

PT

PEAT

Description of Rock

- i. Rock name (BLOCK LETTERS)
- ii. Grain size and mineralogy
- iii. Colour (i.e. dominant colour of material)
- iv. Fabric and texture
- v. Features, inclusions, minor components, moisture content and durability
- vi. Strength
- vii. Weathering and/or alteration
- viii. Rock mass properties discontinuities and structure of rock
- ix. Interpreted stratigraphic unit
- x. Additional observations including geological structure

Simple rock names are used to provide a reasonable engineering description, rather than a precise geological classification. The rock name is chosen by considering the nature and shape of the grains or crystals, the texture and fabric of the rock material, the geological structure and setting, and information from the geological map of the area. Further guidance on the naming of rocks can be found in AS1726-2017, Tables 15, 16, 17 and 18. Typical rock types are described below, though subject to site specific variations.

Rock Type	Description	Example of Rock Name	
Sedimentary	Formed by deposited beds of sediments, have grains that are cemented together and often rounded. Significant porosity	COMMON: Conglomerate, Breccia, Sandstone, Mudstone, Siltstone, Claystone ≥90% CARBONATE: Limestone, Dolomite, Calcirudite, Calcarenite, Calcisiltite, Calcilutite PYROCLASTIC: Agglomerate, Volcanic Breccia Tuff	
Igneous	Formed from molten rock and have a crystalline texture. Typically massive and low porosity. Rock types are from coarse to fine grained.	HIGH QUARTZ CONTENT: Granite, Microgranite, Rhyolite MODERATE QUARTZ CONTENT: Diorite, Microdiorite, Andesite LOW QUARTZ CONTENT: Gabbro, Dolerite, Basalt	
Metamorphic	Formed when rocks are subject to heat and/or pressure and have typically have directional fabric. Typically have low porosity and crystalline structure. Rock types are from coarse to fine grained	FOLIATED: Gneiss, Schist, Phyllite, Slate NON-FOLIATED: Marble, Quartzite, Serpentinite, Hornfels	
Duricrust	Formed as part of a weathering profile and show evidence of being cemented in situ. Cementation is typically irregular and exhibits replacement textures.	Ferricrete (Iron oxides and hydroxides) Silicrete (Silica) Calcrete (Calcium carbonate) Gypcrete (Gypsum)	

Note: () denotes dominant cementing mineralogy

Grain Size

Terms describing dominate grain size in sedimentary rocks.

Term	Grain size
Coarse	Mainly 0.6 mm to 2.0 mm
Medium	Mainly 0.2 mm to 0.6 mm
Fine	Mainly 0.06 mm (just visible) to 0.2 mm

Terms describing dominate grain size in igneous and metamorphic rocks

Term	Grain size
Coarse	Mainly greater than 2 mm
Medium	0.06 mm to 2 mm
Fine	Mainly less than 0.06 mm (just visible) to 0.2 mm

Texture and Fabric

Sedimentary rocks

Thickness	Bedding Term
< 6 mm	Thinly laminated
6 – 20 mm	Laminated
20 – 60 mm	Very thinly bedded
60 – 200 mm	Thinly bedded
0.2 – 0.6 m	Medium bedding
0.6 – 2 m	Thickly bedded
> 2 m	Very thickly bedded

Igneous rocks

Term	Definition
Amorphous	Indicates that the rock has no obvious crystalline structure
Crystalline	A regular molecular structure, showing crystal structure and symmetry.
Cryptocrystalline	The texture comprises crystals that are too small to recognise under an ordinary microscope. Indistinctly crystalline.
Porphyritic	Indicates the presence of phenocrysts (relatively large crystals in a fine grained ground mass) in igneous rocks.
Flow banded	Indicates visible flow lines in volcanic rocks and some intrusive rocks
Glassy	Entirely glass like. No crystalline units and without crystalline structure.
Vesicular	A texture of volcanic rocks that indicates the presence of vesicles (small gas bubbles). Where the vesicles are filled with a mineral substance they are termed Amygdales and the texture is Amygdaloidal.

Metamorphic

Term	Definition
Foliation	The parallel arrangement of minerals due to metamorphic process, which shall be defined by the terms in weak, moderate and strongly foliated.
Porphyroblastic	A texture indicating the presence of porphyroblasts (larger crystals formed by recrystallization during metamorphism, such as garnet or staurolite in a mica schist).
Cleavage	A type of foliation developed in fine grained metamorphic rocks such as slates.

Bedding and Fabric Development

Туре	Definition
Massive	No obvious development of bedding – rock appears homogeneous
Poorly Developed	Bedding is barely obvious as faint mineralogical layering or grain size banding, but bedding planes are poorly defined.
Well Developed	Bedding is apparent in outcrops or drill core as distinct layers or lines marked by mineralogical or grain size layering.
Very Well Developed	Bedding is often marked by a distinct colour banding as well as by mineralogical or grain size layering.
Indistinct Fabric	There is little effect on strength properties
Distinct Fabric	The rock may break more easily parallel to the fabric

Rock Strength

Term (Code)	UCS (MPa)	Is ₍₅₀₎ (MPa)	Field Guide to Strength
Very Low (VL)	0.6 - 2	> 0.03 to ≤ 0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 3 cm thick can be broken by finger pressure.
Low (L)	2 - 6	> 0.1 to ≤ 0.3	Easily scored with a knife; indentations 1 mm to 3 mm show in the specimen with firm blow of the pick point; has dull sound under hammer. A piece of core 150 mm long 50 mm in diameter may be broken by hand. Sharp edges of core may be friable and break during handling.
Medium (M)	6 - 20	> 0.3 to ≤ 1.0	Readily scored with a knife; a piece of core 150 mm long by 50 mm in diameter can be broken by hand with difficulty.
High (H)	20 - 60	> 1 to ≤ 3	A piece of core 150 mm long by 50 mm in diameter cannot be broken by hand but can be broken by a pick with a single firm blow; rock rings under hammer.
Very High (VH)	60 - 200	> 3 to ≤ 10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.
Extremely High (EH)	> 200	> 10	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.

Rock strength is assessed by laboratory Uniaxial Compressive Strength (UCS) testing and/or Point Load Strength Index (PLT) testing to obtain the $I_{S_{(50)}}$ the strength table implies a 20 times correlation between $I_{S_{(50)}}$ and UCS used for classification. Note however, multiplier may range from 4 (e.g. some carbonated and low strength rocks) to 40 (e.g. some igneous rocks and/or some high strength rocks). A site specific correlation based on testing, previous investigation or literature may be used where available. These terms refer to the strength of the rock material and not to the strength of the rock defects.

Visual Log

A diagrammatic plot of defects showing type, spacing and orientation in relation to the core axis.

Defects open in situ or clay sealed
 Defects closed in-situ
 Drill induced fractures or handling breaks
 Infilled seam

Rock Weathering and or Alteration Classification

Term (Code)		Definition	
Residual soil (RS)		Soil developed on extremely weathered rock. The rock mass structure and substance fabric are no longer evident but the soil has not been significantly transported.	
Extremely v (XW) Extremely a	veathered Itered (XA)	Rock is weathered to s that it has 'soil' proper disintegrates or can be but the texture of origi	such an extent ties, i.e, it either e remoulded in water, nal rock is still evident.
Highly weathered (HW) Highly Altered (HA) Moderately weathered (MW) Moderately Altered (MA)	Distinctly weathered (DW)* Distinctly Altered (DA)	Whole rock material is discoloured usually by extent that iron staining or bleaching and other signs of chemical or physical decomposition are evident. Porosity and strength may be increased or decreased compared to the fresh rock usually as a result of iron leaching or deposition. The colour and strength of the original rock substance is no longer recognisable Whole rock material is discoloured usually by staining that original colour of the fresh rock is no longer recognisable	*Where is it not practical to distinguish between 'HW' and MW'. Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores
Slightly weathered (SW) Slightly altered (SA)		Rock is slightly discolo or no change of streng	bured but shows little gth from fresh rock
Fresh rock ((FR)	Rock shows no sign o	f decomposition or

Rock Core Recovery

TCR = Total Core Recovery (%)

```
Length of Core Recovered
```

```
Length of Core run
```

SCR = Solid Core Recovery (%)

```
Sum Length of Cylindrical Core Recovered x 100
```

Length of Core run

RQD = Rock Quality Designation (%)

```
Sum Length of Sound Core Pieces > 100mm in length x 100
```

x 100

Length of Core run

Types of Defects

Term		Code	Description
Parting		PT	A surface or crack across which the rock has little or no tensile strength. Parallel or sub-parallel to layering (e.g. bedding) or a planar anisotropy in the rock material (i.e. cleavage). May be opened or closed.
Joint		JT	A surface or crack with no apparent shear displacement and across which the rock has little or no tensile strength, but which is not parallel or sub-parallel to layering or to planar anisotropy in the rock material. May be open or closed.
Sheared Su	rface	SR	A near planar, curved or undulating surface which is usually smooth, polished or slickensided and which shows evidence of shear displacement.
Sheared Zor	ne	SZ	Zone of rock material with roughly parallel, near planar, curved, or undulating boundaries cut by closely spaced joints, sheared surfaces or other defects. Some of the defects are usually curved and intersect to divide the mass into lenticular or wedge-shaped blocks.
Crushed Zo	ne ^a	CZ	A zone of broken and disturbed ground containing more than one identifiable Crushed Seam.
Fracture Zone ^a		FZ	A zone of broken ground with parallel to opposing boundaries dominated by abundant, extremely closely to closely spaced defects, which may be intact or open, and planar, curved, undulating, irregular, or stepped, resulting in a dissected rock mass of angular trapezoidal, triangular or rectangular fragments.
Seam (SE)	Sheared Seam	SS	Seam of soil material with roughly parallel almost planar boundaries, composed of soil materials with roughly parallel near planar, curved or undulating boundaries cut by closely spaced joints, sheared surfaces or other defects. Some of the defects are usually curved and intersect to divide the mass into lenticular or wedge-shaped blocks.
	Crushed Seam	CS	Seam of soil material with roughly parallel almost planar boundaries, composed of disoriented, usually angular fragments of the host rock material which may be more weathered than the host rock. The seam has soil properties.
	Infilled Seam	IS	Seam of soil material usually with distinct roughly parallel boundaries formed by the migration of soil into an open cavity or joint, infilled seams less than 1 mm thick may be described as a veneer or coating on a joint surface.
	Extremely Weathered Seam	XS	Seam of soil material, often with gradational boundaries. Formed by weathering of the rock material in place.
Fault ^b		FT	A fracture (defect) or fracture zone along which there has been an observable amount of displacement.
Vein ^C		VE	Any fracture that contains mineralized material. Veins can display either crack-normal extension or shear displacement coupled with crack-normal extension.
Vugh ^a		VG	An open void with secondary crystallisation which may be coated, partly or nearly completely filled.
Void ^a		VO	An open space created through natural or anthropogenic processes, including, but not limited to, caves, kettles, tunnels, mines, pipes, piping, landslides, faulting, shearing, dissolution, & erosion.
Mechanical Break		MB	A fracture or break induced or created by the sampling process (i.e. drilling (DB) handling (HB), drill lift (DL), excavation, or blasting).

All definitions as per AS1726-2017, except:

a SMEC Field Manual, b British Standard BS 5930:2015, and ^c Glossary of Geology (Fifth Edition - revised) (2011), American Geosciences Institute.

Defect Planarity

Code	Description
CR	Curved – A defect with a gradual change in orientation
IR	Irregular – A defect with many sharp changes in orientation
PL	Planar – Defect forms a continuous plane without variation in orientation
ST	Stepped – A defect with distinct sharp steps or step
UN	Undulose – A defect with undulations

Defect Roughness

Code	Description
RO	Rough – Many small surface irregularities generally related to the grain size of the parent rock
SM	Smooth – Few or no surface irregularities related to the grain size of the parent rock
PO	Polished – Planes have a distinct sheen or a smoothness
SL	Slickensided – Planes have a polished, grooved or striated surface consistent with differential movement of the parent rock along the plane
VR	Very rough – many large surface irregularities, amplitude generally more than 1mm

Type of Structures

Term	Code	Description
Bedding	BD	A layered arrangement of minerals parallel to the surface of deposition which has caused planar anisotropy in the rock substance.
Cleavage	CV	An alignment of fine grained minerals caused by deformation.
Schistosity	SH	A layered arrangement of minerals to each other
Foliation	FO	A planar alignment of minerals caused by deformation.
Void	VO	A completely empty space
Dyke	DK	Sheet-like bodies of igneous rock that cut across sedimentary bedding or foliations in rocks. They may be single or multiple in nature
Sill	SL	A sill is an intrusion of magma that spreads underground between the layers of another kind of rock
Contact	CX	A contact between intrusive and stratigraphic units.
Boundary	BN	A distinct boundary between two stratigraphic units
Vugh	VG	An open void with crystalisation

Note: Drill breaks (DB) and handling breaks (HB) are not included as natural discontinuity.

Discontinuity Spacing

Spacing (mm)	Description								
> 6000	Extremely Widely Spaced								
2000 - 6000	Very Widely Spaced								
600 - 2000	Widely Spaced								
200 - 600	Medium Spaced								
60 - 200	Closely Spaced								
20 - 60	Very Closely Spaced								
< 20	Extremely Closely Spaced								

Infill Material

Code	Name	Code	Name
Ар	Apatite	Ga	Galena
Ca	Calcite	Gp	Gypsum
Ch	Chlorite	Mn	Manganese
CI	Clay	MnO	Manganese Oxide
Со	Coal	MS	Secondary mineral
Ep	Epidote	Ру	Pyrite
Fe	Limonite/ Ironstone/ Goethite	Um	Unidentified mineral
FeO	Iron oxide	Qz	Quartz
Fs	Feldspar	Х	Carbonaceous
		Ze	Zeolite

Discontinuity Observation

Term	Code	Description									
Clean	CN	No visible coating or infill									
Stain	SN	No visible coating or infill but surfaces are discoloured by mineral staining									
Veneer < 1 mm	VN	A visible coating or soil or mineral substance but usually unable to be measured. If discontinuous over the plane, patchy veneer.									
Coating > 1 mm to < 10 mm	СТ	A visible coating or infilling of soil or mineral substance. Describe composition and thickness.									
Filling (Filled) > 10 mm	FD	A visible filling of soil or mineral substance. Describe composition and thickness.									

Discontinuity Orientation

Code	Description
VT	Vertical
НО	Horizontal
RL	Top right to bottom left
LR	Top left to bottom right

Samples and Field Tests

Code	Description
В	Bulk disturbed sample
BLK	Block sample
С	Core sample
CBR	CBR Mould Sample
CPTu	Cone Penetration Test (with pore pressure)
DT	Dilatometer
DS	Small disturbed sample
ES	Soil sample for environmental testing
EW	Water sample for environmental testing
FP	Pressuremeter
G	Gas sample
Н	Hydraulic fracturing
HP	Hand penetrometer test
	Impression device
IS(50)	Point Load Index
К	Permeability
LB	Large bulk disturbed sample
Ν	Standard penetration test result (N* denotes SPT sample recovery)
0	Core orientation
Ρ	Piston sample
PID	Photoionisation detector reading in ppm
PP	Penetrometer
R	Hammer bouncing / refusal
SPT	Standard Penetration Test
U	Undisturbed push in sample
UCS	Uniaxial Compressive Strength
U50	Undisturbed tube sample (50 mm diameter)
U75	Undisturbed tube sample (75 mm diameter)
U100	Undisturbed tube sample (100 mm diameter)
VS	Vane shear test
• (A)	Axial Test
O (D)	Diametral Test
	Irregular Lump test

Laboratory Tests

Code	Description
ACM	Asbestos Containing Material
CD	Consolidated Drained
CU	Consolidated Undrained
LL	Liquid Limit
LS	Linear Shrinkage
MC	Moisture Content
MDD	Maximum Dry Density
OMC	Optimum Moisture Content
PBT	Plate Bearing Test
PI	Plasticity Index
PL	Plastic Limit
PSD	Particle Size Distribution
$\rho_{\rm b}$	Bulk Density
ρ_{p}	Particle Density
ρ_{d}	Dry Density
UU	Undrained Unconsolidated

Backfill / Standpipe Detail

Symbol	Description	Symbol	Description
	Cement seal		Filter pack: sand filter
	Grout backfill GP -Cement BE - Bentonite Cement		Filter pack: gravel filter
	Un-slotted pipe		Bentonite seal
	Slotted pipe		Cutting – excavated material backfill
	Surface Completion: Monument Above Ground		Surface Completion: Gatic Ground Monument

Status

Code	Description
-2	Historic
-1	For information
0	Preliminary
1	Checked
2	Draft
3	Final

Completion Details

Туре	Description
Collapse	Exploratory hole collapsed before reaching planned depth
Equipment Failure	Boring or excavator equipment operational failure
Flooding	Flooding of excavation
Machine Limit	Limit of machine capability reached
Obstruction	Obstruction preventing further advancement
Operator Limit	Limit of operator limit/safety reached
Possible services	Indication of possible services below
Services present	Services encountered during exploratory hole
Squeezing	Hole squeezing boring equipment
Target Depth	Depth reached as planned
Target Depth (Instrumentation Installed)	Depth reached as planned instrumentation installed
Target Depth (Standpipe Installed)	Depth reached as planned open standpipe constructed
Material Refusal	Material preventing further advancement

10 Revision 3, August 2019 SMEC Soil and Rock Logging Explanatory Notes.

Appendix E Laboratory summary tables

									Field parameters					Inorganics																		
									Temperature	Dissolved Oxygen	Redox Potential	Ammonia as N	Ammonium as N	Nitrate and Nitrite as N (Sum)	Nitrite as N	Nitrate as N	Reactive Phosphorus as P	Total Phosphorus as P	Total Hardness as CaCO3	Total Acidity as CaCO3	Total Dissolved Solids (Calc.)	Calcium	Magnesium	Sodium	Potassium	Chloride	Fluoride	Sulphate as SO4 - Turbidimetric	Bicarbonate Alkalinity as CaCO3	Carbonate Alkalinity as CaCO3	Hydroxide Alkalinity as CaCO3	Total Alkalinity as CaCO3
					Units of	measurement		µS/cm	°C	%	mv	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
				Limit of I	reporting (A	LS laboratory)	0.01	1	0.1	0.1	0.1	0.01	0.01	0.01	0.01	0.01	0.01	0.01	1	1	1	1	1	1	1	1	0.1	1	1	1	1	1
A	-1-		L	imit of repo	rting (Eurof	ins laboratory)						0.01	0.01	0.02	0.02	0.02	0.01	0.01	5	10	10	0.5	0.5	0.5	0.5	1	0.5	5	20	10	20	20
Laboratory limits of	reporting - adopte	ed screening lev	el for Total Recoverable Hydrocarbo	ons								1			1																<u> </u>	
PFAS NEMP (2020)	Ecological water of	uality guideline	values (Table 5 Interim Marine - 95	% Species I	Protection)	d)																										
Friedel & Nadebaur	in 2011 Table A2 G	roundwater HSI	LS for vapour intrusion (Commercial	moustrial,	2-<4m San	u)																										
ANZG 2018 Default	Guidelines Values	for toxicants (N	Marine water – 95% species protecti	on)								0.91																				
ANZECC & ARMCAN	NZ (2000) Default	trigger values fo	or physical and chemical stressors for	or South-eas	st Australia f	for slightly	7.0-8.5			80-110			0.015	0.015			0.005	0.03													i – – – – – – – – – – – – – – – – – – –	
disturbed marine ed	cosystems, applyin	g to estuaries	1	Standin	na water	T																										
Water Sample I D	Sample Date	Lab Batch	Observations	Depth (m bgl)	Vel Reduced Level (m AHD)	Evidence of oily sheen or NAPL?																										
OHMW20	10/03/2021	EW2101111	Clear, no odour	2.36	0.53	Ν	6.82	14,224	21.8	5.9	129.8	0.69		0.11	0.02	0.09	<0.01		1720		10,100	227	279	2950	73	4770	3.2	1560	475	<1	<1	475
OHMW20	21/10/2021	EW2104433 / ES2140160	Slight yellowish colour, slight rotten egg odour	2.42	0.47	Ν	6.38	23,158	20.6	4.8	72.16	0.77	0.71	0.05	<0.01	0.05	<0.01	0.07	3040	53	14,800	354	525	5000	95	7550	2.2	2080	428	<1	<1	428
OHMW20	26/04/2022	EW2201994	Very slightly turbid, grey, sweet (possible hydrocarbon) odour	2.06	0.83	N	6.78	18,390	21.6	1.2	-97.5	0.67	0.67	<0.01	<0.01	<0.01	<0.01	0.22	1,640	3	9,820	204	274	2,880	76	4,490	4	1,670	436	<1	<1	436
OHMW28	10/03/2021	EW2101111	Clear, no odour	1.76	0.65	Ν	6.48	2,880	23.6	3.7	-72.6	0.99		0.12	<0.01	0.12	< 0.01		1460		1960	503	50	108	29	45	7.4	1460	398	<1	<1	398
OHMW28	21/10/2021	EW2104433 / ES2140160	Clear- moderate rotten egg odour	1.85	0.56	Ν	6.61	2,960	20.6	3.0	-75.4	0.85- 1.33 Note1	0.81	0.03	<0.01	0.03	<0.02	0.22	1600	57	1880	567	46	102	29	38	6.6	1570	402	<1	<1	402
OHMW28	26/04/2022	EW2201994	Clear, very mild organic odour	1.43	0.98	Ν	6.67	2,577	23.1	2.2	-81.6	0.22	0.22	1.98	<0.01	1.98	<0.01	0.24	1,470	2	1,720	489	60	122	24	40	7.8	1,170	383	<1	<1	383
SMW01	10/03/2021	EW2101111	Slightly turbid brown, no odour	2.07	0.50	N	6.46	2,019	23.9	5.6	122.8	<0.01		2.33	1.03	1.3	<0.01		1120		1380	396	33	52	12	38	7.5	692	489	<1	<1	489
SMW01	21/10/2021	EW2104433 / ES2140160	Clear, no odour	2.11	0.46	N	6.75	1,901	20.8	2.1	137	<0.01	<0.01	3.82	0.06	3.76	0.02	0.19	1070	44	1230	383	28	49	8	37	8.1	721	459	<1	<1	459
SMW01	26/04/2022	EW2201994		1.97	0.60	N	6.79	1,840	23.3	0.9	-86.5	0.04	0.04	2.82	0.03	2.79	<0.01	0.11	1,060	2	1,180	385	25	33	8	27	8.1	670	379	<1	<1	379
SMW02	26/04/2022	EW2201994	Modertately turbid, brown/grey colour, no odour	2.04	0.85	N	7.11	2,065	20.8	1.1	-102.4	<0.01	<0.01	6.82	0.03	6.79	0.17	0.39	1,030	2	1,280	309	62	105	6	33	1.3	825	214	<1	<1	214
SMW03	26/04/2022	EW2201994	Mild turbidity (cloudy), grey, no odour	2.80	0.29	N	7.4	1,913	19.7	18.7	-92.9	0.02	0.02	7.77	0.06	7.71	< 0.01	0.02	610	3	1,230	175	42	186	8	198	3	445	266	<1	<1	266
SMW04	26/04/2022	EW2201994	Clear, no odour	2.81	0.16	N	7.11	2,488	19.4	12.7	-99.3	<0.01	<0.01	4.56	0.17	4.39	0.01	0.02	1,120	2	1,600	332	72	170	8	91	2.4	930	329	<1	<1	329
SMW05 26/04/2022 EW2201994 Mild turbidity (cloudy), grey, no odour 2.85 0.01 N					N	7.35	2,249	20.1	14.8	-91.2	0.01	<0.01	0.83	0.05	0.78	< 0.01	0.14	1,160	1	1,480	320	89	129	10	52	3.5	981	227	<1	<1	227	
SMW06 26/04/2022 EW2201994 2.80 0.62 N							#	#	#	#	#	< 0.01	< 0.01	4.08	< 0.01	4.08	0.01	0.1	458	2	610	111	44 25	24	4	9	1.5	45 45	410	<1	<1	410
Max								23,158	23.9	18.7	137	1.33	0.81	7.77	1.03	7.71	0.17	0.02	458 3,040	57	14,800	567	25 525	24 5,000	4 95	9 7550	8.1	45	489	<1 <1	<1	489

Colour legend: centration exceeds HSLs Friebel & Nadebaum (2011) Human-health

Table Notes:

Friebel & Nadebaum (2011) Friebel & Nadebaum (2011) Health Screening Levels for Petroleum Hydrocarbons in Soil and Groundwater (technical paper No.10) Guidelines, CRC for Contamination Assessment and Remediation of the Environment (CRC CARE)

ANZECC & ARMCANZ 2000, National Water Quality Management Strategy, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Protection of Aquatic Ecosystems

```
ANZG (2018)
```

Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG, August 2018), accessed 8 October 2018, URL: http://waterquality.gov.au/anz-guidelines ANZECC & ARMCANZ (2000)

PFAS NEMP (2020) PFAS National Environmental Management Plan, Version 2.0 - January 2020, National Chemicals Working Group of the Heads of EPAs Australia and New Zealand

centration exceeds ANZG (2018) Aquatic ecosystems - 80% species protection

ncentration exceeds ANZECC / & ARMCANZ (2000) Physical and chemical ressors

entration exceeds ANZG (2018) Aquatic ecosystems - 95% species protection

- Concentration exceeds PFAS NEMP

aboratory limits of reporting exceed adopted criteria

^A No hardness corrections applied to default guideline values. Assumed 30mg/L CaCO3 applies.

 $^{\rm B}$ 99% protection of species adopted to account for potential bioaccumulative effects

- # Field parameters not recorded for SMW06 on 26 April 2022 Note1 Includes corresponding inter-laboratory duplicate data (QA1A October 2021)

Г									BTEXN								TRH - 1999 fractions						TRH - 2013 fractions						
F																													
							Benzene	Toluene	Ethylbenzene	m+p-xylene	o-xylene	Xylenes (total)	Naphthalene	TRH C6 - C9	TRH C10 - C14	TRH C15 - C28	TRH C29 - C36	Sum of TPH C10-C36	TRH C6 - C10	TRH C6 - C10 less BTEX (F1)	TRH >C10 - C16	TRH >C10 - C16 less Naphthalene (F2)	TRH >C16 - C34	TRH >C34 - C40					
					Units of	measurement	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L					
				Limit of r	eporting (A	LS laboratory)	0.001	0.002	0.002	0.002	0.001	0.002	0.005	0.02	0.05	0.1	0.1	0.1	0.02	0.02	0.1	0.1	0.1	0.1					
			Li	mit of repor	ting (Eurofi	ns laboratory)	0.001	0.001	0.001	0.002	0.001	0.003	0.01	0.02	0.05	0.1	0.1	0.1	0.02	0.02	0.05	0.05	0.1	0.1					
Assessment crite	ria Freporting - adopt	ed screenina lev	el for Total Recoverable Hydrocarbo	ns				1	1	1			0.005	0.02	0.05	0.1	0.1	0.1	0.02	0.02	0.1	0.1	0.1	0.1					
PFAS NEMP (2020)	Ecological water of	uality guideline	values (Table 5 Interim Marine - 95	% Species P	rotection)								0.000	0.02	0.00	0.1	0.1	0.1	0.02	0.02	0.1	0.1	0.1	0.1					
Friebel & Nadebaun	n 2011 Table A2 G	roundwater HSI	Ls for vapour intrusion (Commercial	/industrial, :	2-<4m San	d)	4.9	NL	NL			NL								6.2		NL							
ANZG 2018 Default	Guidelines Values	for toxicants (N	Marine water – 95% species protectio	n)			0.7	0.18	0.08	0.075	0.35		0.050 ^B																
ANZECC & ARMCAN	NZ (2000) Default	trigger values fo	or physical and chemical stressors fo	r South-east	Australia f	or slightly	0.7	0.10	0.00	0.070	0.00		0.030																
disturbed marine ed	cosystems, applyir	g to estuaries																											
Water Sample I D	Sample Date	Lab Batch	Observations	Standin lev Depth (m bgl)	g water r <u>el</u> Reduced Level (m AHD)	Evidence of oily sheen or NAPL?																							
OHMW20	10/03/2021	EW2101111	Clear, no odour	2.36	0.53	Ν	<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.005	<0.02	<0.05	<0.1	<0.05	<0.05	<0.02	<0.02	<0.1	<0.1	<0.1	<0.1					
OHMW20	21/10/2021	EW2104433 / ES2140160	Slight yellowish colour, slight rotten egg odour	2.42	0.47	N	<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.005	<0.02	<0.05	<0.1	<0.05	<0.05	<0.02	<0.02	<0.1	<0.1	<0.1	<0.1					
OHMW20	26/04/2022	EW2201994	Very slightly turbid, grey, sweet (possible hydrocarbon) odour	2.06	0.83	Ν	<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.005	<0.02	<0.05	<0.1	<0.05	<0.05	<0.02	<0.02	<0.1	<0.1	<0.1	<0.1					
OHMW28	10/03/2021	EW2101111	Clear, no odour	1.76	0.65	N	<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.005	<0.02	<0.05	<0.1	<0.05	<0.05	<0.02	<0.02	<0.1	<0.1	<0.1	<0.1					
OHMW28	21/10/2021	EW2104433 / ES2140160	Clear- moderate rotten egg odour	1.85	0.56	Ν	<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.005	<0.02	<0.05	<0.1	<0.05	<0.05	<0.02	<0.02	<0.1	<0.1	<0.1	<0.1					
OHMW28	26/04/2022	EW2201994	Clear, very mild organic odour	1.43	0.98	N	<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.005	<0.02	<0.05	<0.1	<0.05	<0.05	<0.02	<0.02	<0.1	<0.1	<0.1	<0.1					
SMW01	10/03/2021	EW2101111	Slightly turbid brown, no odour	2.07	0.50	N	<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.005	<0.02	<0.05	<0.1	<0.05	<0.05	<0.02	<0.02	<0.1	<0.1	<0.1	<0.1					
SMW01	21/10/2021	EW2104433 / ES2140160	Clear, no odour	2.11	0.46	N	<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.005	<0.02	<0.05	<0.1	<0.05	<0.05	<0.02	<0.02	<0.1	<0.1	<0.1	<0.1					
SMW01	26/04/2022	EW2201994		1.97	0.60	N	<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.005	<0.02	<0.05	<0.1	<0.05	<0.05	<0.02	<0.02	<0.1	<0.1	<0.1	<0.1					
SMW02	26/04/2022	EW2201994	Modertately turbid, brown/grey colour, no odour	2.04	0.85	N	<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.005	<0.02	<0.05	<0.1	<0.05	<0.05	<0.02	<0.02	<0.1	<0.1	<0.1	<0.1					
SMW03	26/04/2022	EW2201994	Mild turbidity (cloudy), grey, no odour	2.80	0.29	N	<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.005	<0.02	<0.05	<0.1	<0.05	<0.05	<0.02	<0.02	<0.1	<0.1	<0.1	<0.1					
SMW04	26/04/2022	EW2201994	Clear, no odour	2.81	0.16	N	<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.005	<0.02	<0.05	<0.1	<0.05	<0.05	<0.02	<0.02	<0.1	<0.1	<0.1	<0.1					
SMW05	26/04/2022	EW2201994	Mild turbidity (cloudy), grey, no odour	2.85	0.01	N	<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.005	<0.02	<0.05	<0.1	<0.05	<0.05	<0.02	<0.02	<0.1	<0.1	<0.1	<0.1					
SMW06	26/04/2022	EW2201994		2.80	0.62	N	<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.005	<0.02	<0.05	<0.1	<0.05	<0.05	<0.02	<0.02	<0.1	<0.1	<0.1	<0.1					
						Min	<0.001	<0.002	<0.002	<0.002	< 0.002	< 0.002	<0.005	<0.02	< 0.05	<0.1	< 0.05	<0.05	<0.02	< 0.02	<0.1	<0.1	<0.1	<0.1					
						Max	< 0.001	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.005	< 0.02	< 0.05	< 0.1	< 0.05	< 0.05	< 0.02	< 0.02	< 0.1	< 0.1	<0.1	< 0.1					

Colour legend:

entration exceeds HSLs Friebel & Nadebaum (2011) Human-health ntration exceeds ANZG (2018) Aquatic ecosystems - 95% species protection

entration exceeds ANZG (2018) Aquatic ecosystems - 80% species protection

Table Notes: Friebel & Nadebaum (2011) Friebel & Nadebaum (2011) Health Screening Levels for Petroleum Hydrocarbons in Soil and Groundwater (technical paper No.10) Guidelines, CRC for Contamination Assessment and Remediation of the Environment (CRC CARE)

Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG, August 2018), accessed 8 October 2018, URL: http://waterquality.gov.au/anz-guidelines ANZECC & ARMCANZ (2000)

PFAS NEMP (2020) PFAS National Environmental Management Plan, Version 2.0 - January 2020, National Chemicals Working Group of the Heads of EPAs Australia and New Zealand

ANZECC & ARMCANZ 2000, National Water Quality Management Strategy, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Protection of Aquatic Ecosystems

ncentration exceeds ANZECC / & ARMCANZ (2000) Physical and chemical ressors

aboratory limits of reporting exceed adopted criteria

- Concentration exceeds PFAS NEMP

 $^{\rm B}$ 99% protection of species adopted to account for potential bioaccumulative effects

^A No hardness corrections applied to default guideline values. Assumed 30mg/L CaCO3 applies.

Note1

Table E1 - Summary of groundwater analytical results

																						Matala	Tatal									
											He	avv Metal	s (Dissol	ved)							Heavy	nfiltered	notai,			PΔ	۱Hs			Phen	olic comr	ounds
									Г	1			3 (81330)										Í			1.7		1		THERE		Janas
							mnir		щ	ium (total)	(filtered)				nese	~		ш	m (filtered)		ium		nese	cene	(a)pyrene	nthene	nalene	nthrene	АН	thor ophenol		Phenols
							Iumir	rseni	admi	hrom	obalt	obbe	5	ead	langa	lercu	ickel	eleni	ranic	с	Iumir	Ŀ.	langa	nthra	enzo	luora	aphtl	hena	otal F	entad	heno	ther
					Units of	measurement	t mg/L	≪ mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	≥ mg/L	≥ mg/L	z mg/L	ා mg/L	⊃ mg/L	mg/L	≪ mg/L	 mg/L	≥ mg/L	⊲ µg/L	μg/L	μg/L	z µg/L	μg/L	⊢ µg/L	μg/L	 µg/L	ο μg/L
				Limit of	reporting (A	LS laboratory)	0.01	0.001	0.0001	0.001	0.001	0.001	0.05	0.001	0.001	0.0001	0.001	0.01/	0.001	0.005	0.01	0.05	0.001	0.1	0.05	0.1	0.1	0.1	0.1	0.05	0.1	0.05 to
			l	imit of repo	rting (Eurof	ins laboratory)	0.05	0.001	0.0002	0.001	0.001	0.001	0.05	0.001	0.005	0.0001	0.001	0.0002	0.005	0.005	0.05	0.05	0.005	0.01	0.01	0.01	0.01	0.01	0.01			0.1
Assessment crite	ria																								1	1	1					
PFAS NEMP (2020)	f reporting - adopt Ecological water of	ed screening le quality quideline	vel for Total Recoverable Hydrocarb e values (Table 5 Interim Marine - 9	ons 5% Species	Protection)																											
Friebel & Nadebaur	m 2011 Table A2 0	Groundwater HS	SLs for vapour intrusion (Commercia	I /industrial,	2-<4m San	id)																					NL					
	Cuidalia an Maluar		Marine water OF0(and in anti-	:			0.0005		e eee=B	0.0044	0.001	0.0012			0.00	e eeesB	0.07	e eesB	0.0005	0.000	0.0005		0.00	e e B	e dB	a eB	e e B	e (B		a a B	100	
ANZE 2018 Default	VZ (2000) Default	trigger values f	Marine water – 95% species protect or physical and chemical stressors f	ion) or South-eas	st Australia I	for slightly	0.0005		0.0007	0.0044	0.001	0.0013		0.0044°	0.08	0.0001	0.07	0.005	0.0005	0.008	0.0005		0.08	0.015	0.1	1.0°	50°	0.6		11-	400	
disturbed marine e	cosystems, applyir	ng to estuaries				J - J																										
				Standir	ng water	Evidonco of																										
Water Sample I D	Sample Date	Lab Batch	Observations	Depth (m bgl)	Reduced Level (m AHD)	oily sheen or NAPL?																								<u>.</u>		
OHMW20	10/03/2021	EW2101111	Clear, no odour	2.36	0.53	Ν	<0.01	<0.001	0.0053	<0.001		<0.001	0.19	<0.001		<0.0001	0.010	<0.01		0.034				<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	< 0.05	<0.1	<lor< td=""></lor<>
OHMW20	21/10/2021	EW2104433 / ES2140160	/ Slight yellowish colour, slight rotten egg odour	2.42	0.47	N	<0.01	<0.001	0.0007	<0.001	0.137	0.026	4.31	<0.001		<0.0001	0.013	<0.01	<0.001	<0.005	0.13	4.78	6.71	<0.001	<0.001	<0.001	<0.004	<0.002	<0.001	<0.05	<0.1	<lor< td=""></lor<>
OHMW20	26/04/2022	EW2201994	Very slightly turbid, grey, sweet (possible hydrocarbon) odour	2.06	0.83	Ν	<0.005	<0.001	0.0003	<0.001	0.053	0.001	4.07	<0.001	3.72	<0.0001	0.005	<0.0002	0.00021	<0.005	0.67	5.45	4.18	<0.001	<0.001	<0.001	<0.004	<0.002	<0.001	<2.0	<1.0	<lor< td=""></lor<>
OHMW28	10/03/2021	EW2101111	Clear, no odour	1.76	0.65	N	<0.01	0.066	<0.0001	<0.001		0.004	15.4	<0.001		<0.0001	0.019	<0.01		<0.005				<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.05	<0.1	<lor< td=""></lor<>
OHMW28	21/10/2021	EW2104433 / ES2140160	Clear- moderate rotten egg odour	1.85	0.56	Ν	<0.01	0.052	<0.0001	<0.001	0.006	<0.001	17.4	<0.001		<0.0001	0.027	<0.01	0.001	<0.005	0.07	20.2	1.15	<0.001	<0.001	<0.001	<0.004	<0.002	<0.001	<0.05	<0.1	<lor< td=""></lor<>
OHMW28	26/04/2022	EW2201994	Clear, very mild organic odour	1.43	0.98	N	0.006	0.068	<0.0001	<0.001	0.012	<0.001	12.6	<0.001	0.86	<0.0001	0.066	0.0061	0.00072	<0.005	0.07	12.4	0.922	<0.001	<0.001	<0.001	<0.004	<0.002	<0.001	<2.0	<1.0	<lor< td=""></lor<>
SMW01	10/03/2021	EW2101111	Slightly turbid brown, no odour	2.07	0.50	N	0.03	0.044	0.0034	<0.001		0.019	0.57	0.016		<0.0001	0.127	0.05		0.494				<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.05	<0.1	<lor< td=""></lor<>
SMW01	21/10/2021	EW2104433 / ES2140160	Clear, no odour	2.11	0.46	Ν	0.02	0.017	0.0030	<0.001	0.008	0.036	0.18	0.014		<0.0001	0.094	0.06	0.008	0.849	0.66	2.38	0.072	<0.001	<0.001	<0.001	<0.004	<0.002	<0.001	<0.05	<0.1	<lor< td=""></lor<>
SMW01	26/04/2022	EW2201994		1.97	0.60	N	0.017	0.036	0.0014	<0.001	0.003	0.032	0.48	0.010	0.174	<0.0001	0.043	0.0636	0.00811	0.708	0.21	1.39	0.192	0.002	<0.001	0.008	0.004	0.003	0.029	<2.0	<1.0	<lor< td=""></lor<>
SMW02	26/04/2022	EW2201994	Modertately turbid, brown/grey colour, no odour	2.04	0.85	N	0.005	0.038	0.0028	<0.001	0.001	0.007	<0.05	0.010	0.039	<0.0001	0.018	0.0348	0.00101	0.448	0.84	2.08	0.047	0.008	0.009	0.047	0.006	0.017	0.183	<2.0	<1.0	<lor< td=""></lor<>
SMW03	26/04/2022	EW2201994	Mild turbidity (cloudy), grey, no odour	2.80	0.29	Ν	<0.005	0.005	0.0001	<0.001	<0.001	0.004	<0.05	<0.001	0.121	<0.0001	0.017	0.144	0.00185	0.031	0.27	0.61	0.125	0.001	0.002	0.007	<0.004	0.004	0.027	<2.0	<1.0	<lor< td=""></lor<>
SMW04	26/04/2022	EW2201994	Clear, no odour	2.81	0.16	N	<0.005	0.009	0.0003	<0.001	<0.001	0.014	<0.05	<0.001	0.114	<0.0001	0.042	0.0889	0.00343	0.112	0.02	<0.05	0.107	0.001	<0.001	0.004	<0.004	0.005	0.015	<2.0	<1.0	<lor< td=""></lor<>
SMW05	26/04/2022	EW2201994	Mild turbidity (cloudy), grey, no odour	2.85	0.01	N	0.010	0.007	0.0002	<0.001	<0.001	0.004	0.47	<0.001	0.102	<0.0001	0.030	0.0817	0.00364	0.048	0.93	3.49	0.158	0.002	<0.001	0.014	<0.004	0.014	0.047	<2.0	<1.0	<lor< td=""></lor<>
SMW06	26/04/2022	EW2201994		2.80	0.62	N	0.006	0.016	0.0016	0.002	<0.001	0.028	0.06	0.004	0.021	<0.0001	0.022	0.0365	0.00177	0.078	0.44	1.02	0.036	0.002	<0.001	0.005	0.005	0.006	0.030	<2.0	<1.0	<lor< td=""></lor<>
						Min	<0.005	<0.001	<0.0001	<0.001	<0.001	<0.001	<0.05	<0.001	0.021	<0.0001	0.005	<0.0002	0.00021	< 0.005	0.02	<0.05	0.036	<0.001	<0.001	<0.001	<0.004	<0.002	<0.001	<2.0	<1.0	<lor< td=""></lor<>
						Max	0.03	0.068	0.0053	0.002	0.137	0.036	17.4	0.016	3.72	< 0.0001	0.127	0.144	0.00811	0.849	0.93	20.2	6.71	0.008	0.009	0.047	0.006	0.017	0.183	< 2.0	<1.0	<lor< td=""></lor<>

Colour legend: centration exceeds HSLs Friebel & Nadebaum (2011) Human-health Table Notes:

Friebel & Nadebaum (2011) Friebel & Nadebaum (2011) Health Screening Levels for Petroleum Hydrocarbons in Soil and Groundwater (technical paper No.10) Guidelines, CRC for Contamination Assessment and Remediation of the Environment (CRC CARE)

Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG, August 2018), accessed 8 October 2018, URL: http://waterquality.gov.au/anz-guidelines ANZECC & ARMCANZ (2000)

PFAS NEMP (2020) PFAS National Environmental Management Plan, Version 2.0 - January 2020, National Chemicals Working Group of the Heads of EPAs Australia and New Zealand

centration exceeds ANZG (2018) Aquatic ecosystems - 80% species protection ANZECC & ARMCANZ 2000, National Water Quality Management Strategy, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Protection of Aquatic Ecosystems

ncentration exceeds ANZECC / & ARMCANZ (2000) Physical and chemical ressors

Laboratory limits of reporting exceed adopted criteria

centration exceeds ANZG (2018) Aquatic ecosystems - 95% species protection

- Concentration exceeds PFAS NEMP

 $^{\rm B}$ 99% protection of species adopted to account for potential bioaccumulative effects

^A No hardness corrections applied to default guideline values. Assumed 30mg/L CaCO3 applies.

Note1

ANZG (2018)

																	T					Volatile	a Haloger	nated Cor	npounds	1			
									-		0	CP						0	PP		PCBs	(aka Vo	latile Org	janic Con	pounds)	\square	PF	AS	
							Aldrin	chlordane	DDT	: ndosulfan	Endrin	leptachlor	indane	dethoxychlor	Toxaphene	rotal OCP	chlorpyrifos	enitrothion	Temephos	Other OPP	rotal PCBs	fotal Fumigants	dalogenated Allphatic Compounds	talogenated Aromatic Compounds	rihaiomethanes	FOS	sum of PEHxS and PFOS	PFOA	
					Units of	f measurement	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	μ
				Limit of I	reporting (A	ALS laboratory)	0.01	0.01	0.01	0.01	0.01	0.005		0.01		0.005-0.1	0.02	2	0.02	0.2 to 10	0.1	5	5 to 50	5	5	0.01	0.01	0.01	0
Assessment crite	ria		l	imit of repo	rting (Eurof	ins laboratory)																				0.01	0.01	0.01	0
Laboratory limits of	reporting - adopt	ed screening lev	vel for Total Recoverable Hydrocarb	ons																									Т
PFAS NEMP (2020) Friebel & Nadebaun	Ecological water on 2011 Table A2 C	uality guideline roundwater HS	values (Table 5 Interim Marine - 9 Ls for vapour intrusion (Commercia	5% Species I /industrial,	Protection) 2-<4m Sar	nd)																				0.13		220	
ANZG 2018 Default	Guidelines Values	for toxicants (I	Marine water – 95% species protect or physical and chemical stressors for	ion) or South-eas	st Australia	for slightly	0.003 ^F	0.001 ^F	0.0004 ^F	0.005 ^B	0.004 ^B	0.0004 ^F	0.007 ^F	0.004 ^F	0.0006 ^F		0.009	0.001 ^F	0.05										Ŧ
disturbed marine ed	cosystems, applyin	ig to estuaries	- provide and entermidel stressors in		- nastrand																								
Water Sample I D	Sample Date	Lab Batch	Observations	Depth (m bgl)	Reduced Level (m AHD)	Evidence of oily sheen or NAPL?				1			1		1	1	1		1	1	-	1							
OHMW20	10/03/2021	EW2101111	Clear, no odour	2.36	0.53	Ν	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.005		<0.01		<lor< td=""><td><0.02</td><td><2</td><td><0.02</td><td><lor< td=""><td><0.1</td><td><5</td><td><lor< td=""><td><5</td><td><5</td><td></td><td></td><td></td><td></td></lor<></td></lor<></td></lor<>	<0.02	<2	<0.02	<lor< td=""><td><0.1</td><td><5</td><td><lor< td=""><td><5</td><td><5</td><td></td><td></td><td></td><td></td></lor<></td></lor<>	<0.1	<5	<lor< td=""><td><5</td><td><5</td><td></td><td></td><td></td><td></td></lor<>	<5	<5				
OHMW20	21/10/2021	EW2104433 / ES2140160	Slight yellowish colour, slight rotten egg odour	2.42	0.47	Ν	<0.01	<0.01	<0.01	<0.01	<0.01	<0.005		<0.01	-	<lor< td=""><td><0.02</td><td><2</td><td><0.02</td><td><lor< td=""><td><0.1</td><td><5</td><td><lor< td=""><td><5</td><td><5</td><td><0.01</td><td><0.01</td><td><0.01</td><td></td></lor<></td></lor<></td></lor<>	<0.02	<2	<0.02	<lor< td=""><td><0.1</td><td><5</td><td><lor< td=""><td><5</td><td><5</td><td><0.01</td><td><0.01</td><td><0.01</td><td></td></lor<></td></lor<>	<0.1	<5	<lor< td=""><td><5</td><td><5</td><td><0.01</td><td><0.01</td><td><0.01</td><td></td></lor<>	<5	<5	<0.01	<0.01	<0.01	
OHMW20	26/04/2022	EW2201994	Very slightly turbid, grey, sweet (possible hydrocarbon) odour	2.06	0.83	Ν																<5	<lor< td=""><td><5</td><td><5</td><td><0.01</td><td><0.01</td><td><0.01</td><td></td></lor<>	<5	<5	<0.01	<0.01	<0.01	
OHMW28	10/03/2021	EW2101111	Clear, no odour	1.76	0.65	Ν	<0.01	<0.01	<0.01	<0.01	<0.01	<0.005		<0.01		<lor< td=""><td><0.02</td><td><2</td><td><0.02</td><td><lor< td=""><td><0.1</td><td><5</td><td><lor< td=""><td><5</td><td><5</td><td></td><td></td><td></td><td></td></lor<></td></lor<></td></lor<>	<0.02	<2	<0.02	<lor< td=""><td><0.1</td><td><5</td><td><lor< td=""><td><5</td><td><5</td><td></td><td></td><td></td><td></td></lor<></td></lor<>	<0.1	<5	<lor< td=""><td><5</td><td><5</td><td></td><td></td><td></td><td></td></lor<>	<5	<5				
OHMW28	21/10/2021	EW2104433 / ES2140160	Clear- moderate rotten egg odour	1.85	0.56	Ν	<0.01	<0.01	<0.01	<0.01	<0.01	<0.005		<0.01	-	<lor< td=""><td><0.02</td><td><2</td><td><0.02</td><td><lor< td=""><td><0.1</td><td><5</td><td><lor< td=""><td><5</td><td><5</td><td><0.01</td><td><0.01</td><td><0.01</td><td></td></lor<></td></lor<></td></lor<>	<0.02	<2	<0.02	<lor< td=""><td><0.1</td><td><5</td><td><lor< td=""><td><5</td><td><5</td><td><0.01</td><td><0.01</td><td><0.01</td><td></td></lor<></td></lor<>	<0.1	<5	<lor< td=""><td><5</td><td><5</td><td><0.01</td><td><0.01</td><td><0.01</td><td></td></lor<>	<5	<5	<0.01	<0.01	<0.01	
OHMW28	26/04/2022	EW2201994	Clear, very mild organic odour	1.43	0.98	Ν																<5	<lor< td=""><td><5</td><td><5</td><td><0.01</td><td><0.01</td><td><0.01</td><td></td></lor<>	<5	<5	<0.01	<0.01	<0.01	
SMW01	10/03/2021	EW2101111	Slightly turbid brown, no odour	2.07	0.50	Ν	<0.01	<0.01	<0.01	<0.01	<0.01	<0.005		<0.01		<lor< td=""><td><0.02</td><td><2</td><td><0.02</td><td><lor< td=""><td><0.1</td><td><5</td><td><lor< td=""><td><5</td><td><5</td><td></td><td></td><td></td><td></td></lor<></td></lor<></td></lor<>	<0.02	<2	<0.02	<lor< td=""><td><0.1</td><td><5</td><td><lor< td=""><td><5</td><td><5</td><td></td><td></td><td></td><td></td></lor<></td></lor<>	<0.1	<5	<lor< td=""><td><5</td><td><5</td><td></td><td></td><td></td><td></td></lor<>	<5	<5				
SMW01	21/10/2021	EW2104433 / ES2140160	Clear, no odour	2.11	0.46	Ν	<0.01	<0.01	<0.01	<0.01	<0.01	<0.005		<0.01	-	<lor< td=""><td><0.02</td><td><2</td><td><0.02</td><td><lor< td=""><td><0.1</td><td><5</td><td><lor< td=""><td><5</td><td><5</td><td>0.08</td><td>0.08</td><td><0.01</td><td></td></lor<></td></lor<></td></lor<>	<0.02	<2	<0.02	<lor< td=""><td><0.1</td><td><5</td><td><lor< td=""><td><5</td><td><5</td><td>0.08</td><td>0.08</td><td><0.01</td><td></td></lor<></td></lor<>	<0.1	<5	<lor< td=""><td><5</td><td><5</td><td>0.08</td><td>0.08</td><td><0.01</td><td></td></lor<>	<5	<5	0.08	0.08	<0.01	
SMW01	26/04/2022	EW2201994		1.97	0.60	Ν																<5	<lor< td=""><td><5</td><td><5</td><td>0.06</td><td>0.06</td><td><0.01</td><td></td></lor<>	<5	<5	0.06	0.06	<0.01	
SMW02	26/04/2022	EW2201994	Modertately turbid, brown/grey colour, no odour	2.04	0.85	Ν																<5	<lor< td=""><td><5</td><td><5</td><td><0.01</td><td><0.01</td><td><0.01</td><td>_</td></lor<>	<5	<5	<0.01	<0.01	<0.01	_
SMW03	26/04/2022	EW2201994	Mild turbidity (cloudy), grey, no odour	2.80	0.29	N																<5	<lor< td=""><td><5</td><td><5</td><td>0.01</td><td>0.01</td><td><0.01</td><td>╞</td></lor<>	<5	<5	0.01	0.01	<0.01	╞
SMW04	26/04/2022	EW2201994	Clear, no odour	2.81	0.16	N																<5	<lor< td=""><td><5</td><td><5</td><td><0.01</td><td><0.01</td><td><0.01</td><td>+</td></lor<>	<5	<5	<0.01	<0.01	<0.01	+
SMW05	26/04/2022	EW2201994	Mild turbidity (cloudy), grey, no odour	2.85	0.01	N																<5	<lor< td=""><td><5</td><td><5</td><td><0.01</td><td>0.02</td><td><0.01</td><td>+</td></lor<>	<5	<5	<0.01	0.02	<0.01	+
SMW06	26/04/2022	EW2201994		2.80	0.62	N									-							<5	<lor< td=""><td><5</td><td><5</td><td>0.07</td><td>0.09</td><td><0.01</td><td></td></lor<>	<5	<5	0.07	0.09	<0.01	
						Min	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.005		< 0.01		<lor< td=""><td>< 0.02</td><td><2</td><td>< 0.02</td><td><lor< td=""><td><0.1</td><td><5</td><td><lor< td=""><td><5</td><td><5</td><td>< 0.01</td><td><0.01</td><td>< 0.01</td><td>╇</td></lor<></td></lor<></td></lor<>	< 0.02	<2	< 0.02	<lor< td=""><td><0.1</td><td><5</td><td><lor< td=""><td><5</td><td><5</td><td>< 0.01</td><td><0.01</td><td>< 0.01</td><td>╇</td></lor<></td></lor<>	<0.1	<5	<lor< td=""><td><5</td><td><5</td><td>< 0.01</td><td><0.01</td><td>< 0.01</td><td>╇</td></lor<>	<5	<5	< 0.01	<0.01	< 0.01	╇
						Max	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.005		< 0.01	l	<lor< td=""><td>< 0.02</td><td><2</td><td>< 0.02</td><td><lor< td=""><td><0.1</td><td><5</td><td><lor< td=""><td><5</td><td><5</td><td>0.08</td><td>0.09</td><td>< 0.01</td><td></td></lor<></td></lor<></td></lor<>	< 0.02	<2	< 0.02	<lor< td=""><td><0.1</td><td><5</td><td><lor< td=""><td><5</td><td><5</td><td>0.08</td><td>0.09</td><td>< 0.01</td><td></td></lor<></td></lor<>	<0.1	<5	<lor< td=""><td><5</td><td><5</td><td>0.08</td><td>0.09</td><td>< 0.01</td><td></td></lor<>	<5	<5	0.08	0.09	< 0.01	

Colour legend: entration exceeds HSLs Friebel & Nadebaum (2011) Human-health ntration exceeds ANZG (2018) Aquatic ecosystems - 95% species protection entration exceeds ANZG (2018) Aquatic ecosystems - 80% species protection centration exceeds ANZECC / & ARMCANZ (2000) Physical and chemical

- Concentration exceeds PFAS NEMP

Table Notes:

Friebel & Nadebaum (2011) Friebel & Nadebaum (2011) Health Screening Levels for Petroleum Hydrocarbons in Soil and Groundwater (technical paper No.10) Guidelines, CRC for Contamination Assessment and Remediation of the Environment (CRC CARE)

Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG, August 2018), accessed 8 October 2018, URL: http://waterquality.gov.au/anz-guidelines ANZECC & ARMCANZ (2000)

PFAS NEMP (2020) PFAS National Environmental Management Plan, Version 2.0 - January 2020, National Chemicals Working Group of the Heads of EPAs Australia and New Zealand

ANZECC & ARMCANZ 2000, National Water Quality Management Strategy, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Protection of Aquatic Ecosystems

essors

aboratory limits of reporting exceed adopted criteria

 $^{\rm B}$ 99% protection of species adopted to account for potential bioaccumulative effects

^A No hardness corrections applied to default guideline values. Assumed 30mg/L CaCO3 applies.

Note1

ANZG (2018)

		Date Field ID	26/04/2022 OHMW28	26/04/2022 QA1		26/04/2022 OHMW28	26/04/2022 QA1A	-
		Lab Report Number Matrix Type	EW2201994 Water	EW2201994 Water	RPD	EW2201994 Water	884366 Water	RPD
	Unit	EQL						
Inorganics Ammonium Ion (as N)	ma/l	0.01	0.22	0.12	50	0.22	0.48	74
Total Phosphorus as P (Organic	mg/L	0.01	0.22	0.12	29	0.22	0.48	99
Sulfate as SO4 - Turbidimetric (filtered)	mg/L	1	1,170	1,200	3	1,170	-	-
Alkalinity (Bicarbonate as CaCO3)	mg/L	1	383	398	4	383	390	2
Alkalinity (Carbonate as CaCO3)	mg/L	1	<1	<1	0	<1	<10	0
Alkalinity (Hydroxide) as CaCO3 Alkalinity (total) as CaCO3	mg/L mg/L	1	383	398	4	383	<20 390	0
Ammonia as N	mg/L	0.01	0.22	0.12	59	0.22	0.45	69
Anions Total Cations Total	meq/L meq/L	0.01	<u> </u>	34.0	3	33.1 35.2	-	-
Chloride	mg/L	1	40	37	8	40	49	20
Electrical Conductivity (Lab)	µS/cm ma/l	1	2,640	2,610	1	2,640	- 6.2	- 23
Ionic Balance	%	0.01	3.10	0.58	137	3.10	-	-
Kjeldahl Nitrogen Total	mg/L	0.2	- 1 09	- 1 79	-	- 1.09	<0.2	-
Nitrite (as N)	mg/L	0.01	<0.01	<0.01	0	< 0.01	< 0.02	0
Organic Nitrogen as N	mg/L	0.2	-	-	-	-	<0.2	-
pH (Lab)		0.2	7.78	7.76	0	7.78	-	-
Reactive Phosphorus as P	mg/L	0.01	<0.01	<0.01	0	<0.01	0.01	0
Sodium Sodium (filtered)	mg/L mg/L	0.5	- 122	- 118	- 3	- 122	-	-
Sulphate	mg/L	5	-	-	-	-	1,200	-
Total Dissolved Solids (Inorganic) Hardness as CaCO3	mg/L mg/L	1	1,720	1,700	-	1,720	1,600	7
Hardness as CaCO3 (filtered)	mg/L	1	1,470	1,430	3	1,470	-	-
Metals	ma/l	0.005	0.072	0.064	12	0.072	<0.05	27
Aluminium (filtered)	mg/L	0.005	0.006	0.005	18	0.006	< 0.05	0
Arsenic	mg/L	0.001	-	-	-	-	0.002	-
Cadmium	mg/L	0.001	-	-	-		<0.0002	-
Cadmium (filtered)	mg/L	0.0001	<0.0001	<0.0001	0	<0.0001	< 0.0002	0
Calcium Calcium (filtered)	mg/L mg/L	0.5	- 489	- 477	- 2	- 489	- 470	-
Chromium (III+VI)	mg/L	0.001	•	-	-	-	<0.001	-
Chromium (III+VI) (filtered) Cobalt	mg/L mg/l	0.001	<0.001	<0.001	0	<0.001	<0.001	0
Cobalt (filtered)	mg/L	0.001	0.012	0.011	9	0.012	0.010	18
Copper Copper (filtered)	mg/L	0.001	-0.001	-0.001	-	-0.001	< 0.001	-
Iron	mg/L	0.05	12.4	12.6	2	12.4	0.12	196
Iron (filtered)	mg/L	0.05	12.6	11.7	7	12.6	12	5
Lead (filtered)	mg/L	0.001	< 0.001	< 0.001	0	<0.001	<0.001	- 0
Magnesium	mg/L	0.5	-	-	-	-	59	-
Magnesium (filtered) Manganese	mg/L mg/L	0.5	0.922	0.900	2	0.922	- 1.1	- 18
Manganese (filtered)	mg/L	0.001	0.860	0.874	2	0.860	0.79	8
Mercury Mercury (filtered)	mg/L mg/L	0.0001	-<0.0001	<0.0001	- 0	<0.0001	<0.0001	- 0
Nickel	mg/L	0.001	-	-	-	-	0.093	-
Nickel (filtered)	mg/L	0.001	0.066	0.075	13	0.066	0.060	10
Potassium (filtered)	mg/L	0.5	24	23	4	24	-	-
Selenium	mg/L	0.0002	-	-	-	-	0.003	-
Uranium	µg/L	0.002	-	-	-		<5	- 20
Uranium (filtered)	µg/L	0.05	0.72	0.78	8	0.72	<5	0
Zinc Zinc (filtered)	mg/L mg/L	0.005	-<0.005	< 0.005	- 0	- <0.005	<0.005 <0.005	- 0
BTEX								
Naphthalene (VOC) Benzene	mg/L ug/L	0.01	- <1	- <1	- 0	<1	<0.01	- 0
Toluene	μg/L	1	<2	<2	0	<2	<1	0
Ethylbenzene	μg/L μg/l	1	<2	<2	0	<2	<1	0
Xylene (o)	μg/L	1	<2	<2	0	<2	<1	0
Xylene Total	µg/L	2	<2	<2	0	<2	<3	0
ТРН	µg/L	1	<	<	0	< 1	-	-
C6-C9 Fraction	µg/L	20	<20	<20	0	<20	<20	0
C10-C14 Fraction C15-C28 Fraction	μg/L μg/L	50	<50	<50 <100	0	<50 <100	<50 <100	0
C29-C36 Fraction	μg/L	50	<50	<50	0	<50	<100	0
CT0-C36 Fraction (Sum)	µg/L	50	<50	<50	0	<50	<100	0
C6-C10 Fraction (F1)	µg/L	20	<20	<20	0	<20	<20	0
C6-C10 (F1 minus BTEX)	µg/L	20	<20	<20	0	<20	<20	0
>c10-c16 Fraction (F2) >C10-C16 Fraction (F2 minus	μg/L μg/L	50 50	<100	<100	0	<100	<50 <50	0
>C16-C34 Fraction (F3)	µg/L	100	<100	<100	0	<100	<100	0
>C34-C40 Fraction (F4) >C10-C40 Fraction (Sum)	µg/L µa/L	100	<100 <100	<100 <100	0	<100 <100	<100 <100	0
VOCs	1"0" =			\$100			100	
cis-1,4-Dichloro-2-butene trans-1.4-Dichloro-2-butene	µg/L	5	<5	<5 ~ E	0	<5	-	-
Pentachloroethane	μg/L μg/L	5	<5	<5	0	<5		-
Chlorinated Hydrocarbons								

		Date	26/04/2022	26/04/2022		26/04/2022	26/04/2022	
		Field ID Lab Report Number	OHMW28 EW2201994	QA1 EW2201994	-	OHMW28 EW2201994	QA1A 884366	-
		Matrix Type	Water	Water	RPD	Water	Water	RPD
	Unit	FOL						
Other chlorinated hydrocarbons EPAVic	μg/L	5	-	-	-	-	<5	- 1
Chlorinated hydrocarbons EPAVic	μg/L	5	-	-	-	-	<5	-
1,1,1,2-tetrachloroethane	µg/L	1	<5	<5	0	<5	<1	0
1,1,2,2-tetrachloroethane	µg/L ua/L	1	<5 <5	<5 <5	0	<5	<1	0
1,1,2-trichloroethane	μg/L	1	<5	<5	0	<5	<1	0
1,1-dichloroethane	µg/L	1	<5	<5	0	<5	<1	0
1,1-dichloroethene	µg/L	1	<5	<5	0	<5	<1	0
1,2.3-trichloropropane	μg/L μg/L	5	<5	<5 <5	0	<5	<1	- 0
1,2-dibromo-3-chloropropane	μg/L	5	<5	<5	0	<5	-	-
1,2-dichloroethane	µg/L	1	<5	<5	0	<5	<1	0
1,2-dichloropropane	µg/L	1	<5	<5	0	<5	<1	0
2.2-dichloropropane	µg/L ua/L	5	<5	<5 <5	0	<5	<	-
Bromochloromethane	μg/L	1	-	-	-	-	<1	-
Bromodichloromethane	µg/L	1	<5	<5	0	<5	<1	0
Bromoform Carbon totrachlorido	µg/L	1	<5	<5	0	<5	<1	0
Chlorodibromomethane	μg/L μα/L	1	<5	<5	0	<5	<1	0
Chloroethane	μg/L	5	<50	<50	0	<50	<5	0
Chloroform	µg/L	5	<5	<5	0	<5	<5	0
Chloromethane	μg/L	5	<50	<50	0	<50	<5	0
cis-1,3-dichloropropene	μg/L μα/L	1	<5	<5	0	<5	<1	0
Dibromomethane	μg/L	1	<5	<5	0	<5	<1	0
Dichloromethane	µg/L	5	-	-	-	-	<5	-
Hexachiorobutadiene Trichloroethene	μg/L μα/l	5	<5 ~5	<5	0	<5	1	-
Tetrachloroethene	μg/L	1	<5	<5	0	<5	<1	0
trans-1,2-dichloroethene	μg/L	1	<5	<5	0	<5	<1	0
trans-1,3-dichloropropene	μg/L	1	<5	<5	0	<5	<1	0
Vinyi chioride	µg/L	5	<50	<50	0	<50	<5	0
1.2.3-trichlorobenzene	ua/L	5	<5	<5	0	<5	-	-
1,2,4-trichlorobenzene	μg/L	5	<5	<5	0	<5	-	-
1,2-dichlorobenzene	µg/L	1	<5	<5	0	<5	<1	0
1,3-dichlorobenzene	μg/L	1	<5	<5	0	<5	<1	0
2-chlorotoluene	µg/L µa/L	5	<5	<5	0	<5	< -	-
4-chlorotoluene	µg/L	1	<5	<5	0	<5	<1	0
Bromobenzene	µg/L	1	<5	<5	0	<5	<1	0
	µg/L	1	<5	<5	0	<5	<1	0
1.2-dibromoethane	ua/L	1	<5	<5	0	<5	<1	0
Bromomethane	μg/L	5	<50	<50	0	<50	<5	0
Dichlorodifluoromethane	µg/L	5	<50	<50	0	<50	<5	0
Iodomethane Trichlorofluoromethane	μg/L μg/l	1	<5	<5	0	<5	<1	0
Herbicides	μ9/ L	5	<50	<50	0	<50	<0	0
Dinoseb	µg/L	100	-	-	-	-	<100	-
MAH								
Total MAH	mg/L	0.003	-	-	-	-	< 0.003	-
1.3.5-trimethylbenzene	μg/L μg/L	1	-	-	-	-	<1	-
Isopropylbenzene	μg/L	1	-	-	-	-	<1	-
Styrene	µg/L	1	-	-	-	-	<1	-
Other	ma/l	1	2	2	40	2	100	102
PAH	iiiy/L		2	3	40	Ζ	100	192
Sum of 16 USEPA Priority PAHs	µg/L	0.001	<0.001	<0.001	0	<0.001	-	-
Benzo(b+j+k)fluoranthene	mg/L	0.000004	<0.00004	<0.00004	0	< 0.000004	-	-
2-methylnaphthalene	μg/L	0.002	< 0.002	< 0.002	0	< 0.002	-	-
7.12-dimethylbenz(a)anthracene	μg/L μg/L	0.004	<0.004	< 0.004	0	< 0.004	-	-
Acenaphthene	μg/L	0.002	< 0.002	< 0.002	0	< 0.002	< 0.01	0
Acenaphthylene	µg/L	0.002	< 0.002	< 0.002	0	< 0.002	< 0.01	0
Anthracene	µg/L	0.001	< 0.001	< 0.001	0	< 0.001	<0.01	0
Benz(a)anthracene	µg/L µa/L	0.002	< 0.002	< 0.002	0	< 0.002	< 0.01	0
Benzo(a) pyrene	μg/L	0.001	< 0.001	< 0.001	0	<0.001	< 0.01	0
Benzo(b+j)fluoranthene	mg/L	0.000004	<0.00004	< 0.000004	0	< 0.000004	<0.00001	0
Benzo(e)pyrene Benzo(a b i)pervlepe	µg/L	0.001	< 0.001	< 0.001	0	< 0.001	-0.01	-
Benzo(g,n,)pergiene Benzo(k)fluoranthene	µg/L µg/L	0.002	< 0.002	< 0.002	0	< 0.002	<0.01	0
Chrysene	μg/L	0.001	< 0.001	< 0.001	0	<0.001	< 0.01	0
Dibenz(a,h)anthracene	µg/L	0.001	< 0.001	< 0.001	0	< 0.001	< 0.01	0
riuoranthene Fluorene	μg/L μg/l	0.001	<0.001	< 0.001	0	< 0.001	< 0.01	0
Indeno(1,2,3-c,d)pyrene	μg/L μg/L	0.002	< 0.002	<0.002	0	<0.002	< 0.01	0
Naphthalene	μg/L	0.004	< 0.004	< 0.004	0	<0.004	<0.01	0
Phenanthrene	µg/L	0.002	< 0.002	<0.002	0	< 0.002	<0.01	0
Perylene Pyrene	µg/L	0.002	<0.002	<0.002	0	<0.002	-	-
Benzo(a)pyrene TEQ calc (Half)	mg/L	0.00001	<0.00001	<0.0001	0	<0.00001	-	-
Benzo(a)pyrene TEQ (LOR)	mg/L	0.000001	< 0.000001	< 0.000001	0	<0.000001		-
Benzo(a)pyrene TEQ calc (Zero)	mg/L	0.000001	<0.000001	<0.000001	0	<0.000001		-
r Ans (Sull UI (UId)) Perfluoroalkane Carboyulic Acide	µy/L	0.01	-	-	-	-	<0.01	-
Perfluorobutanoic acid (PFBA)	µq/L	0.1	<0.1	<0.1	0	<0.1	-	-
Perfluorohexanoic acid (PFHxA)	µg/L	0.02	< 0.02	< 0.02	0	< 0.02	-	-
Perfluoropentanoic acid (PEPeA)	ua/L	0.02	0.02	0.02	0	0.02	-	-

		Date	26/04/2022	26/04/2022		26/04/2022	26/04/2022	
		Field ID	OHMW28	QA1		OHMW28	QA1A	
		Lab Report Number	EW2201994	EW2201994	Ť	EW2201994	884366	
		Matrix Type	Water	Water	RPD	Water	Water	RPD
	Unit	EQL						
Perfluoroheptanoic acid (PFHpA)	µg/L	0.02	< 0.02	< 0.02	0	< 0.02	-	-
Perfluorooctanoic acid (PFOA)	µg/L	0.01	< 0.01	<0.01	0	< 0.01	< 0.01	0
Perfluoroalkane Sulfonic Acids								
Perfluorobutane sulfonic acid (PFBS)	µg/L	0.02	< 0.02	< 0.02	0	< 0.02	-	-
Perfluorohexane sulfonic acid (PFHxS)	µg/L	0.01	< 0.01	< 0.01	0	< 0.01	< 0.01	0
Perfluorooctane sulfonic acid (PFOS)	µg/L	0.01	<0.01	<0.01	0	< 0.01	< 0.01	0
PFAS								
Sum of PFHxS and PFOS	µg/L	0.01	< 0.01	<0.01	0	< 0.01	< 0.01	0
Sum of PFAS (WA DER List)	µg/L	0.01	0.02	0.02	0	0.02	-	-
Sum of enHealth PFAS (PFHxS + PFOS +	µg/L	0.01	-	-	-	-	< 0.01	-
Sum of PFAS (PFOS + PFOA)	µg/L	0.01	-	-	-	-	< 0.01	-
(n:2) Fluorotelomer Sulfonic Acids								
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	µg/L	0.05	< 0.05	< 0.05	0	< 0.05	-	-
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	µg/L	0.05	< 0.05	< 0.05	0	< 0.05	< 0.05	0
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	µg/L	0.05	< 0.05	< 0.05	0	< 0.05	-	-
FTS)	µg/L	0.05	< 0.05	<0.05	0	<0.05	-	-
Phenols								
3&4-Methylphenol (m&p-cresol)	µg/L	2	<2.0	<2.0	0	<2.0	<6	0
2,4,5-Trichlorophenol	µg/L	1	<1.0	<1.0	0	<1.0	<10	0
2,4,6-Trichlorophenol	µg/L	1	<1.0	<1.0	0	<1.0	<10	0
2,4-Dichlorophenol	µg/L	1	<1.0	<1.0	0	<1.0	<3	0
2,4-Dimethylphenol	µg/L	1	<1.0	<1.0	0	<1.0	<3	0
2,4-Dinitrophenol	mg/L	0.03	-	-	-	-	< 0.03	-
2,6-Dichlorophenol	µg/L	1	<1.0	<1.0	0	<1.0	<3	0
2-Chlorophenol	µg/L	1	<1.0	<1.0	0	<1.0	<3	0
2-Methylphenol	µg/L	1	<1.0	<1.0	0	<1.0	<3	0
2-Nitrophenol	µg/L	1	<1.0	<1.0	0	<1.0	<10	0
4,6-Dinitro-2-methylphenol	µg/L	30	-	-	-	-	<30	-
4,6-Dinitro-o-cyclohexyl phenol	µg/L	100	-	-	-	-	<100	-
4-chloro-3-methylphenol	µg/L	1	<1.0	<1.0	0	<1.0	<10	0
4-Nitrophenol	µg/L	30	-	-	-	-	<30	-
Cresol Total	mg/L	0.01	-	-	-	-	<0.01	-
Pentachlorophenol	µg/L	2	<2.0	<2.0	0	<2.0	<10	0
Tetrachlorophenols	µg/L	30	-	-	-	-	<30	-
Phenol	µg/L	1	<1.0	<1.0	0	<1.0	<3	0
Phenols (Total Halogenated)	mg/L	0.01	-	-	-	-	<0.01	-
Phenols (Total Non Halogenated)	mg/L	0.1	-	-	-	-	<0.1	-
Solvents								
Methyl Ethyl Ketone	µg/L	5	-	-	-	-	<5	-
4-Methyl-2-pentanone	µg/L	5	-	-	-	-	<5	-
Acetone	mg/L	0.005	-	-	-	-	<0.005	-
Allyl chloride	mg/L	0.001	-	-	-	-	<0.001	-
Carbon disulfide	µg/L	1	-	-	-	-	<1	-

*RPDs have only been considered where a concentration is greater than 1 times the EQL. **Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for each EQL multiplier range are: 999 (1 - 10 x EQL); 50 (10 - 20 x EQL); 50 (> 20 x EQL))

***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

																	Metals													
				Maluminium Maluminium	Aluminium (filtered)	B Arsenic		Cadmium mg/L	Cadmium (filtered)	G Chromium (III+VI)	B Chromium (III+VI) 거 (filtered)	D/bu T/bu	Cobalt (filtered)	Copper mg/L	Gopper (filtered)	uo_1 mg/L	a J Iron (filtered)	Lead WJ/F	Lead (filtered)	amganese	A Manganese (filtered)	mg/L	Mickel	Mickel (filtered)	a Zelenium	Selenium (filtered)	ل T/قارس	년 Dranium (filtered)	Zinc	Zinc (filtered)
EQL				0.005	0.005	0.001	0.001	0.0001	0.0001	0.001	0.001	0.001	0.001	0.001	0.001	0.05	0.05	0.001	0.001	0.001	0.001	0.0001	0.001	0.001	0.0002	0.0002	0.05	0.05	0.005	0.005
Lab Report Number	Field ID	QC Туре	Date	1	1	1	1	1	I		1	I	I	1	1		1	1	1	1	1	1	1	1	1	1				
878309	BAILER	Rinsate - Stainless steel bailer	6/04/2022	<0.05	-	<0.001	-	<0.0002	-	<0.001	-	<0.001	-	<0.001	-	<0.05	-	<0.001	-	< 0.005	-	< 0.0001	< 0.001	-	< 0.001	-	<5	-	<0.005	-
878309	ТАР	Field blank - Drill tank water	6/04/2022	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-
882352	BLANK 01 - TANK	Field blank - Drill tank water	20/04/2022	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	
882352	RINSATE 01 - DRILL ROD	Rinsate - Drill rods	20/04/2022	0.06	-	<0.001	-	<0.0002	-	<0.001	-	<0.001	-	0.001	-	0.12	-	<0.001	-	<0.005	-	<0.0001	<0.001	-	<0.001	-	<5	-	< 0.005	_
882352	RINSATE 02 - BAILER	Rinsate - Stainless steel bailer	20/04/2022	0.08	-	<0.001	-	<0.0002	-	0.004	-	<0.001	-	0.002	-	0.20	-	0.005	-	0.006	-	<0.0001	0.003	-	<0.001	-	<5	-	<0.005	-
EW2201994	Rinsate 01	Rinsate - Interface probe	26/04/2022	-	< 0.005	-	<0.001	-	< 0.0001	-	< 0.001	-	<0.001	-	< 0.001	-	< 0.05	-	<0.001	-	< 0.001	-	-	< 0.001	-	< 0.0002	-	< 0.05	-	< 0.005

probe

30013038 Groundwater Assessment and Management Report Manildra - Port Kembla Bulk Liquid Terminal Port Kembla NSW

					PI	FAS		(n:2) Flu	uorotelor	ner Sulfo	nic Acids	Pe	rfluoroall	kane Carb	oxylic Ac	ids	Perfluo	roalkane	Sulfonic
				Sum of PFHxS and PFOS	Sum of PFAS (WA DER List)	Sum of enHealth PFAS (PFHXS + PFOS + PFOA)	Sum of PFAS (PFOS + PFOA)	4:2 Fluorotelomer sulfonic acid (4:2 FTS)	6:2 Fluorotelomer sulfonic acid (6:2 FTS)	8:2 Fluorotelomer sulfonic acid (8:2 FTS)	10:2 Fluorotelomer sulfonic acid (10:2 FTS)	Perfluorobutanoic acid (PFBA)	Perfluorohexanoic acid (PFHxA)	Perfluoropentanoic acid (PFPeA)	Perfluoroheptanoic acid (PFHpA)	Perfluorooctanoic acid (PFOA)	Perfluorobutane sulfonic acid (PFBS)	Perfluorohexane sulfonic acid (PFHxS)	Perfluorooctane sulfonic acid (PFOS)
				µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
EQL				0.01	0.01	0.01	0.01	0.05	0.05	0.05	0.05	0.1	0.02	0.02	0.02	0.01	0.02	0.01	0.01
Lab Report Number	Field ID	QC Туре	Date																
878309	BAILER	Rinsate - Stainless steel bailer	6/04/2022	<0.01	_	<0.01	<0.01	_	<0.05	-	-	-	-	-	-	<0.01	-	<0.01	<0.01
878309	ТАР	Field blank - Drill tank water	6/04/2022	< 0.01	-	< 0.01	< 0.01	-	< 0.05	-	-	-	-	-	-	<0.01	-	<0.01	<0.01
882352	BLANK 01 - TANK	Field blank - Drill tank water	20/04/2022	< 0.01	-	< 0.01	< 0.01	-	< 0.05	-	-	-	-	-	-	<0.01	-	<0.01	< 0.01
882352	RINSATE 01 - DRILL ROD	Rinsate - Drill rods	20/04/2022	<0.01	-	<0.01	< 0.01	-	< 0.05	-	-	-	-	-	-	< 0.01	-	<0.01	< 0.01
882352	RINSATE 02 - BAILER	Rinsate - Stainless steel bailer	20/04/2022	<0.01	-	<0.01	< 0.01	-	< 0.05	-	-	-	-	-	-	< 0.01	-	<0.01	< 0.01
EW2201994	Rinsate 01	Rinsate - Interface	26/04/2022																

Table E3 - Equipment Rinsate and Blank Results

Equipment calibration certificates

Water Quality Meter YSI Professional Plus

Company Name	WAM	Scientific									
Office Address	26 Bu	ngarra Crescent, Chi	ipping Norton	NSW 2	2170						
Phone Number	+61 40	05 241 484									
Contact Name	Willia	m Pak									
Instrument	YSI Pro	ofessional Plus Wate	er Quality Met	ter w/	1m Quatr	o Cable					
Serial Number	21A10)2653		,							
Client Name	loel R	evnolds (SMFC Aust	ralia)								
Project Number	30013	174									
Comments	-	271									
connicito			Instrum	nent Cl	neck						
Item		Test		Test	Passed		Comme	ents			
2 x Alkaline C-size Batt	teries	Klein Tools MM300) Multimeter		✓	Both batter	ies reading above	e 2.9V			
Battery Saver Funct	ion	Operatio	on		\checkmark	Automatica	lly turns off after	60 minutes if id	dle		
Unit Display		Operatio	on		✓	Screen visik	ole, no damage				
Keypad		Operatio	on		\checkmark	Responsive	, no damage				
Connection Port and C	Cable	Condition/C	Check		\checkmark	Clean, no d	amage				
Monitor Housing		Condition/C	Check		✓	No damage					
Firmware		Versior	ו		✓	4.0.0					
pH Probe	Condition/Calibration ✓ Calibrated and conforms to manufacturer's specs										
pH millivolts for pH 7	7.00	Calibrati	on		✓	pH 7.00 cal	ibration range be	tween 0 mV ± 5	50 mV		
pH millivolts for pH 4	4.00 Calibration ✓ pH 4 mV range +165 to +180 from 7 buffer mV value										
pH slope	Calibration ✓ Range between 55 to 60 mV/pH (ideal value 59 mV) econds Calibration ✓ Responds to correct value within 90 seconds										
Response time < 90 se	econds Calibration Responds to correct value within 90 seconds Calibration Cal										
ORP Probe	Condition/Calibration ✓ Calibrated and conforms to manufacturer's specs										
ORP Reduing	anda	Calibrati	on on		• •	Posponds t	no or reference	ZODEII Reauling	,		
Conductivity/Tomp B	roho	Condition/Cal	ibration		▼ √	Calibrated	and conforms to r	manufacturor's	snocs		
Conductivity Cell	IODE	Collucion/Cal	on		• ✓	Conductivit	v cell constant 5 (1 + 1.0 in GLP fi	specs lo		
Clean Sensor Readir	าฮร	Calibrati	on		· ✓	Clean senso	y cell collstatt 5:	$3 \pm 1.0 \text{ m OLI m}$	air		
Dissolved Oxygen Pr	obe	Condition/Cal	ibration		✓	Calibrated a	and conforms to r	nanufacturer's	specs		
DO Cap	0.00	Condition/Cal	ibration		✓	1.25 mil PE	membrane (vello	w membrane)	00000		
DO Sensor in Use		Conditio	on		✓	Polarograp	nic DO sensor	,			
DO Sensor Value		Calibrati	on		√	(min 4.31 u	A - max 8.00 uA)	Avg 6.15 uA			
			Instrume	nt Rea	ndings						
Parameter	S	tandard Used	Reference	No.	Calibrat	tion Value	Observed	Actual	Units		
Temperature	Centr	e 370 Thermometer	Room Tem	ıp.	1	19.2	19.0	19.2	°C		
рН		pH 4.00	351750		4	1.01	3.94	4.01	рН		
рН		рН 7.00	351621		7	7.00	7.09	7.00	рН		
Conductivity	27	60 μs/cm at 25°C	362912		2	760	2650	2760	µs/cm		
ORP (Ref. check only)		Zobell A & B	364644/363	903	2	39.5	224.1	239.5	mV		
Zero Dissolved O ₂	NaS	O ₃ in Distilled H ₂ O	362832			0.0	-2.3	0.0	%		
100% Dissolved O ₂	100%	6 Air Saturated H ₂ O	Fresh Air		1	00.0	93.0	100.0	%		
			Decl	aratio	n		-	-			
WAM Scientific cert	ifies th	at the above instru	ment was suc	ccessfu	Illy tested	d according	to manufacture	er's standards	s and all		
necessary checks wer	e cond	ucted to ensure the	instrument wa	as fully	operatio	nal prior to c	lispatch. The cal	libration data	supplied		
was obtained in acco	rdance	with manufacturer'	s specification	ns usin	g solutior	ns of known	values.				
Calibrated By					William F	Pak					
Calibration Date					21/04/20)22					
Calibration Due					21/10/20)22					

WAM Scientific: 26 Bungarra Crescent CHIPPING NORTON NSW 2170 T: +61 405 241 484 | +61 424 198 667 E: rentals@wamscientific.com.au E: accounts@wamscientific.com.au

Geotech Geopump 2

Company Name	WAM Scientific
Office Address	26 Bungarra Crescent, Chipping Norton NSW 2170
Phone Number	+61 405 241 484
Contact Name	William Pak
Instrument	Geotech Geopump Peristaltic Pump
Cable Length	4.5m
Serial Number	Pump: 6496
Serial Number	Head: -
Client Name	Joel Reynolds (SMEC Australia)
Project Number	30013174

	Instrun	nent Check	
Item	Test	Test Passed	Comments
2 x 12V Batteries	Klein Tools MM300 Multimeter	✓	Both batteries reading above 12V
Battery Terminals	Check	✓	No damage
Charger	Condition/Check	✓	Functioning
Cabling	Check	✓	No damage
Alligator Clips	Check	✓	Protected, no damage
Casing	Check	✓	Clean, no damage
Handle	Check	✓	No damage
Pump Head	Check	✓	EZ2 Head, no damage
Pump Condition	Decontamination	✓	Decontaminated
Pump Operation	Operation	✓	Peristaltic pump functional
Pump Tubing	Replacement	✓	New 0.5m ¼" OD LDPE silicon tubing
Pump Speed	Operation	✓	Speed knob functional

Inclusions

2 x Sealed lead acid 12V batteries included

 $\ensuremath{\texttt{1x}}\xspace$ Carry case for $\ensuremath{\texttt{12V}}\xspace$ batteries included

1x Intrinsically safe charger (clips) included

Declaration

WAM Scientific certifies that the above instrument was successfully tested according to manufacturer's standards and all necessary checks were conducted to ensure the instrument was fully operational prior to dispatch. The pump has been decontaminated and cleaned upon return from the previous hire and is in good working order.

Checked By	William Pak
Calibration Date	21/04/2022
Calibration Due	21/10/2022

WAM Scientific: 26 Bungarra Crescent CHIPPING NORTON NSW 2170 T: +61 405 241 484 | +61 424 198 667 E: rentals@wamscientific.com.au E: accounts@wamscientific.com.au Appendix G Laboratory reports

Environment Testing

SMEC Australia Pty Ltd (WOLL) Level 2, 6-8 Regent Street Wollongong NSW 2500

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention:

Alexander Williams

Report Project name Project ID Received Date 878309-W PORT KEMBLA MANILDRA 30013174 Apr 07, 2022

Client Sample ID			ТАР	BAILER
Sample Matrix			Water	Water
Eurofins Sample No.			W22- Ap0016360	W22- Ap0016361
Date Sampled			Apr 06, 2022	Apr 06, 2022
Test/Reference	LOR	Unit		
Per- and Polyfluoroalkyl Substances (PFASs) - Shor	t			
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05
13C2-6:2 FTSA (surr.)	1	%	117	75
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	0.01	ug/L	< 0.01	< 0.01
Perfluorooctanesulfonic acid (PFOS) ^{N11}	0.01	ug/L	< 0.01	< 0.01
18O2-PFHxS (surr.)	1	%	93	89
13C8-PFOS (surr.)	1	%	96	88
Perfluorooctanoic acid (PFOA) ^{N11}	0.01	ug/L	< 0.01	< 0.01
13C8-PFOA (surr.)	1	%	106	98
Sum (PFHxS + PFOS)*	0.01	ug/L	< 0.01	< 0.01
Sum of US EPA PFAS (PFOS + PFOA)*	0.01	ug/L	< 0.01	< 0.01
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	0.01	ug/L	< 0.01	< 0.01
Heavy Metals				
Aluminium	0.05	mg/L	-	< 0.05
Cobalt	0.001	mg/L	-	< 0.001
Iron	0.05	mg/L	-	< 0.05
Manganese	0.005	mg/L	-	< 0.005
Selenium	0.001	mg/L	-	< 0.001
Uranium	0.005	mg/L	-	< 0.005
Metals M8				
Arsenic	0.001	mg/L	-	< 0.001
Cadmium	0.0002	mg/L	-	< 0.0002
Chromium	0.001	mg/L	-	< 0.001
Copper	0.001	mg/L	-	< 0.001
Lead	0.001	mg/L	-	< 0.001
Mercury	0.0001	mg/L	-	< 0.0001
Nickel	0.001	mg/L	-	< 0.001
Zinc	0.005	mg/L	-	< 0.005

Environment Testing

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Testing Site	Extracted	Holding Time
Sydney	Apr 13, 2022	28 Days
Sydney	Apr 13, 2022	28 Days
Sydney	Apr 13, 2022	28 Days
	Testing Site Sydney Sydney Sydney	Testing SiteExtractedSydneyApr 13, 2022SydneyApr 13, 2022SydneyApr 13, 2022

Eurofins Environm					ent Te	sting /	Austra	lia Pty	Ltd					Eurofins ARL Pty Ltd	Eurofins Environment Testing NZ Limited		
web: www.eurofins.com.au email: EnviroSales@eurofins.com		Melbourne 6 Monterey Road Dandenong South VIC 3 Phone : +61 3 8564 500 NATA # 1261 Site # 125	Sydney 179 Magowar Road 3175 Girraween NSW 2066 00 Phone : +61 2 9900 8400 54 NATA # 1261 Site # 18217				Bi 1/ M 0 Pi 17 N/	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794			Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 6253 4444 NATA # 2377 Site # 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290			
Company Name: SMEC Australia Pty Ltd (WOLL) Address: Level 2, 6-8 Regent Street Wollongong NSW 2500					Order No.: Report #: Phone: Fax:				8 0	878309 02 4243 4405				Received: Due: Priority: Contact Name:	Apr 7, 2022 3:07 ₽№ Apr 14, 2022 5 Day Alexander Williams	1	
Project Name:PORT KEMBLA MANILDRAProject ID:30013174												E	urofins Analytical Se	ervices Manager : Emr	na Beesley		
Sample Detail					Aluminium	Cobalt	Iron	Manganese	Selenium	Uranium	Metals M8	Per- and Polyfluoroalkyl Substances (PFASs) - Short					
Melbourne Laboratory - NATA # 1261 Site # 1254						×		X									
Sydr	ey Laboratory	· NATA # 1261	Site # 1821/ 1 Site # 2070/	1		X	X	X	X	X	X	X	X				
Mavf	ield Laboratory	- NATA # 1261	Site # 25079	•													
Perth Laboratory - NATA # 2377 Site # 2370																	
External Laboratory																	
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID												
1	ТАР	Apr 06, 2022		Water	W22- Ap0016360								x				
2	BAILER	Apr 06, 2022		Water	W22- Ap0016361	х	x	х	х	х	х	x	х				
Test	Counts					1	1	1	1	1	1	1	2				

Environment Testing

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	μg/L: micrograms per litre
ppm: parts per million	ppb: parts per billion	%: Percentage
org/100 mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100 mL: Most Probable Number of organisms per 100 millilitres

Terms

APHA	American Public Health Association
coc	Chain of Custody
СР	Client Parent - QC was performed on samples pertaining to this report
CRM	Certified Reference Material (ISO17034) - reported as percent recovery.
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
LOR	Limit of Reporting.
LCS	Laboratory Control Sample - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
SRA	Sample Receipt Advice
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
твто	Tributyltin oxide (<i>bis</i> -tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.
TCLP	Toxicity Characteristic Leaching Procedure
TEQ	Toxic Equivalency Quotient or Total Equivalence
QSM	US Department of Defense Quality Systems Manual Version 5.4
US EPA	United States Environmental Protection Agency
WA DWER	Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank				•		
Per- and Polyfluoroalkyl Substances (PFASs) - Short						
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA)	ug/L	< 0.05		0.05	Pass	
Perfluorohexanesulfonic acid (PFHxS)	ug/L	< 0.01		0.01	Pass	
Perfluorooctanesulfonic acid (PFOS)	ug/L	< 0.01		0.01	Pass	
Perfluorooctanoic acid (PFOA)	ug/L	< 0.01		0.01	Pass	
Method Blank		•				
Heavy Metals						
Aluminium	mg/L	< 0.05		0.05	Pass	
Cobalt	mg/L	< 0.001		0.001	Pass	
Iron	mg/L	< 0.05		0.05	Pass	
Manganese	mg/L	< 0.005		0.005	Pass	
Selenium	mg/L	< 0.001		0.001	Pass	
Uranium	mg/L	< 0.005		0.005	Pass	
Method Blank	· • •	•				
Metals M8						
Arsenic	mg/L	< 0.001		0.001	Pass	
Cadmium	mg/L	< 0.0002		0.0002	Pass	
Chromium	mg/L	< 0.001		0.001	Pass	
Copper	mg/L	< 0.001		0.001	Pass	
Lead	mg/L	< 0.001		0.001	Pass	
Mercury	mg/L	< 0.0001		0.0001	Pass	
Nickel	mg/L	< 0.001		0.001	Pass	
Zinc	mg/L	< 0.005		0.005	Pass	
LCS - % Recovery	, ,					
Per- and Polyfluoroalkyl Substances (PFASs) - Short						
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA)	%	97		50-150	Pass	
Perfluorohexanesulfonic acid (PFHxS)	%	95		50-150	Pass	
Perfluorooctanesulfonic acid (PFOS)	%	97		50-150	Pass	
Perfluorooctanoic acid (PFOA)	%	106		50-150	Pass	
LCS - % Recovery		•				
Heavy Metals						
Aluminium	%	108		80-120	Pass	
Cobalt	%	109		80-120	Pass	
Iron	%	109		80-120	Pass	
Manganese	%	108		80-120	Pass	
Selenium	%	109		80-120	Pass	
Uranium	%	113		80-120	Pass	
LCS - % Recovery				_		
Metals M8						
Arsenic	%	106		80-120	Pass	
Cadmium	%	107		80-120	Pass	
Chromium	%	108		80-120	Pass	
Copper	%	107		80-120	Pass	
Lead	%	104		80-120	Pass	
Mercury	%	103		80-120	Pass	
Nickel	%	110		80-120	Pass	
Zinc	%	109		80-120	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery				1			1		
Per- and Polyfluoroalkyl Substand	es (PFASs) - Shor	t		Result 1					
1H.1H.2H.2H- perfluorooctanesulfonic acid (6:2 FTSA)	S22-Ap0026391	NCP	%	98			50-150	Pass	
Perfluorohexanesulfonic acid (PFHxS)	S22-Ap0026391	NCP	%	92			50-150	Pass	
Perfluorooctanesulfonic acid (PFOS)	S22-Ap0026391	NCP	%	102			50-150	Pass	
Perfluorooctanoic acid (PFOA)	S22-Ap0026391	NCP	%	107			50-150	Pass	
Spike - % Recovery				1			1		
Heavy Metals				Result 1					
Aluminium	W22-Ap0016361	CP	%	106			75-125	Pass	
Cobalt	W22-Ap0016361	CP	%	107			75-125	Pass	
Iron	W22-Ap0016361	CP	%	107			75-125	Pass	
Manganese	W22-Ap0016361	CP	%	107			75-125	Pass	
Selenium	W22-Ap0016361	CP	%	102			75-125	Pass	
Uranium	W22-Ap0016361	CP	%	110			75-125	Pass	
Spike - % Recovery				1			1		
Metals M8				Result 1					
Arsenic	S22-Ma00300	NCP	%	97			75-125	Pass	
Cadmium	S22-Ma00300	NCP	%	100			75-125	Pass	
Chromium	S22-Ma00300	NCP	%	96			75-125	Pass	
Copper	S22-Ma00300	NCP	%	98			75-125	Pass	
Lead	S22-Ma00300	NCP	%	93			75-125	Pass	
Mercury	S22-Ma00300	NCP	%	95			75-125	Pass	
Nickel	S22-Ma00300	NCP	%	97			75-125	Pass	
Zinc	S22-Ma00300	NCP	%	94			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate				1	1		1		
Per- and Polyfluoroalkyl Substand	es (PFASs) - Shor	t		Result 1	Result 2	RPD			
1H.1H.2H.2H- perfluorooctanesulfonic acid (6:2 FTSA)	S22-Ap0026390								
Perfluorohexanesulfonic acid (PFHxS)		NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
· · · · ·	S22-Ap0026390	NCP	ug/L ug/L	< 0.05 0.02	< 0.05 0.02	<1 1.0	30% 30%	Pass Pass	
Perfluorooctanesulfonic acid (PFOS)	S22-Ap0026390 S22-Ap0026390	NCP NCP NCP	ug/L ug/L ug/L	< 0.05 0.02 0.22	< 0.05 0.02 0.22	<1 1.0 1.0	30% 30% 30%	Pass Pass Pass	
Perfluorooctanesulfonic acid (PFOS) Perfluorooctanoic acid (PFOA)	S22-Ap0026390 S22-Ap0026390 S22-Ap0026390	NCP NCP NCP	ug/L ug/L ug/L ug/L	< 0.05 0.02 0.22 < 0.01	< 0.05 0.02 0.22 < 0.01	<1 1.0 1.0 <1	30% 30% 30% 30%	Pass Pass Pass Pass	
Perfluorooctanesulfonic acid (PFOS) Perfluorooctanoic acid (PFOA) Duplicate	S22-Ap0026390 S22-Ap0026390 S22-Ap0026390	NCP NCP NCP	ug/L ug/L ug/L ug/L	< 0.05 0.02 0.22 < 0.01	< 0.05 0.02 0.22 < 0.01	<1 1.0 1.0 <1	30% 30% 30% 30%	Pass Pass Pass Pass	
Perfluorooctanesulfonic acid (PFOS) Perfluorooctanoic acid (PFOA) Duplicate Heavy Metals	S22-Ap0026390 S22-Ap0026390 S22-Ap0026390	NCP NCP NCP	ug/L ug/L ug/L ug/L	< 0.05 0.02 0.22 < 0.01 Result 1	< 0.05 0.02 0.22 < 0.01 Result 2	<1 1.0 1.0 <1 RPD	30% 30% 30% 30%	Pass Pass Pass Pass	
Perfluorooctanesulfonic acid (PFOS) Perfluorooctanoic acid (PFOA) Duplicate Heavy Metals Aluminium	S22-Ap0026390 S22-Ap0026390 S22-Ap0026390 S22-Ap0026388	NCP NCP NCP NCP	ug/L ug/L ug/L ug/L mg/L	< 0.05 0.02 0.22 < 0.01 Result 1 0.63	< 0.05 0.02 0.22 < 0.01 Result 2 0.63	<1 1.0 <1 RPD 1.0	30% 30% 30% 30%	Pass Pass Pass Pass Pass	
Perfluorooctanesulfonic acid (PFOS) Perfluorooctanoic acid (PFOA) Duplicate Heavy Metals Aluminium Cobalt	S22-Ap0026390 S22-Ap0026390 S22-Ap0026390 S22-Ap0026388 S22-Ap0026388	NCP NCP NCP NCP NCP NCP	ug/L ug/L ug/L ug/L mg/L mg/L	< 0.05 0.02 0.22 < 0.01 Result 1 0.63 < 0.001	< 0.05 0.02 0.22 < 0.01 Result 2 0.63 < 0.001	<1 1.0 <1 RPD 1.0 <1	30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass	
Perfluorooctanesulfonic acid (PFOS) Perfluorooctanoic acid (PFOA) Duplicate Heavy Metals Aluminium Cobalt Iron	S22-Ap0026390 S22-Ap0026390 S22-Ap0026390 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388	NCP NCP NCP NCP NCP NCP NCP	ug/L ug/L ug/L mg/L mg/L mg/L	< 0.05 0.02 0.22 < 0.01 Result 1 0.63 < 0.001 < 0.05	< 0.05 0.02 0.22 < 0.01 Result 2 0.63 < 0.001 < 0.05	<1 1.0 <1 RPD 1.0 <1 <1 <1	30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass	
Perfluorooctanesulfonic acid (PFOS) Perfluorooctanoic acid (PFOA) Duplicate Heavy Metals Aluminium Cobalt Iron Manganese	S22-Ap0026390 S22-Ap0026390 S22-Ap0026390 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388	NCP NCP NCP NCP NCP NCP NCP NCP	ug/L ug/L ug/L ug/L mg/L mg/L mg/L	< 0.05 0.02 0.22 < 0.01 Result 1 0.63 < 0.001 < 0.05 < 0.005	< 0.05 0.02 < 0.01 Result 2 0.63 < 0.001 < 0.05 < 0.005	<1 1.0 <1 <1 RPD 1.0 <1 <1 <1 <1	30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Perfluorooctanesulfonic acid (PFOS) Perfluorooctanoic acid (PFOA) Duplicate Heavy Metals Aluminium Cobalt Iron Manganese Selenium	S22-Ap0026390 S22-Ap0026390 S22-Ap0026390 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388	NCP NCP NCP NCP NCP NCP NCP NCP NCP	ug/L ug/L ug/L ug/L mg/L mg/L mg/L mg/L	< 0.05 0.02 0.22 < 0.01 Result 1 0.63 < 0.001 < 0.05 < 0.005 < 0.001	< 0.05 0.02 0.22 < 0.01 Result 2 0.63 < 0.001 < 0.05 < 0.005 < 0.001	<1 1.0 <1 RPD 1.0 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Perfluorooctanesulfonic acid (PFOS) Perfluorooctanoic acid (PFOA) Duplicate Heavy Metals Aluminium Cobalt Iron Manganese Selenium Uranium	S22-Ap0026390 S22-Ap0026390 S22-Ap0026390 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	ug/L ug/L ug/L mg/L mg/L mg/L mg/L mg/L mg/L	< 0.05 0.02 0.22 < 0.01 Result 1 0.63 < 0.001 < 0.05 < 0.005 < 0.001 < 0.005	< 0.05 0.02 0.22 < 0.01 Result 2 0.63 < 0.001 < 0.05 < 0.005 < 0.001 < 0.005	<1 1.0 <1 RPD 1.0 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Perfluorooctanesulfonic acid (PFOS) Perfluorooctanoic acid (PFOA) Duplicate Heavy Metals Aluminium Cobalt Iron Manganese Selenium Uranium Duplicate	S22-Ap0026390 S22-Ap0026390 S22-Ap0026390 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	ug/L ug/L ug/L mg/L mg/L mg/L mg/L mg/L	< 0.05 0.02 0.22 < 0.01 Result 1 0.63 < 0.001 < 0.05 < 0.005 < 0.001 < 0.005	< 0.05 0.02 0.22 < 0.01 Result 2 0.63 < 0.001 < 0.05 < 0.005 < 0.001 < 0.005	<1 1.0 <1 RPD 1.0 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Perfluorooctanesulfonic acid (PFOS) Perfluorooctanoic acid (PFOA) Duplicate Heavy Metals Aluminium Cobalt Iron Manganese Selenium Uranium Duplicate Metals M8	S22-Ap0026390 S22-Ap0026390 S22-Ap0026390 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	ug/L ug/L ug/L ug/L mg/L mg/L mg/L mg/L mg/L	< 0.05 0.02 0.22 < 0.01 Result 1 0.63 < 0.001 < 0.05 < 0.005 < 0.005 < 0.005 Result 1	< 0.05 0.02 0.22 < 0.01 Result 2 0.63 < 0.001 < 0.05 < 0.005 < 0.001 < 0.005 Result 2	<1 1.0 <1 RPD 1.0 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Perfluorooctanesulfonic acid (PFOS) Perfluorooctanoic acid (PFOA) Duplicate Heavy Metals Aluminium Cobalt Iron Manganese Selenium Uranium Duplicate Metals M8 Arsenic	S22-Ap0026390 S22-Ap0026390 S22-Ap0026390 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	ug/L ug/L ug/L mg/L mg/L mg/L mg/L mg/L mg/L	< 0.05 0.02 0.22 < 0.01 Result 1 0.63 < 0.001 < 0.05 < 0.005 < 0.001 < 0.005 Result 1 0.002	< 0.05 0.02 0.22 < 0.01 Result 2 0.63 < 0.001 < 0.05 < 0.005 < 0.001 < 0.005 Result 2 0.005	<1 1.0 1.0 <1 RPD 1.0 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Perfluorooctanesulfonic acid (PFOS) Perfluorooctanoic acid (PFOA) Duplicate Heavy Metals Aluminium Cobalt Iron Manganese Selenium Uranium Duplicate Metals M8 Arsenic Cadmium	S22-Ap0026390 S22-Ap0026390 S22-Ap0026390 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	ug/L ug/L ug/L ug/L mg/L mg/L mg/L mg/L mg/L mg/L	< 0.05 0.02 0.22 < 0.01 Result 1 0.63 < 0.001 < 0.005 < 0.005 < 0.001 < 0.005 Result 1 0.002 < 0.0002	< 0.05 0.02 0.22 < 0.01 Result 2 0.63 < 0.001 < 0.005 < 0.005 < 0.001 < 0.005 Result 2 0.005 < 0.001 < 0.002 < 0.002 < 0.0002	<1 1.0 1.0 <1 RPD 1.0 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Perfluorooctanesulfonic acid (PFOS) Perfluorooctanoic acid (PFOA) Duplicate Heavy Metals Aluminium Cobalt Iron Manganese Selenium Uranium Duplicate Metals M8 Arsenic Cadmium	S22-Ap0026390 S22-Ap0026390 S22-Ap0026390 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	ug/L ug/L ug/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L m	< 0.05 0.02 0.22 < 0.01 Result 1 0.63 < 0.001 < 0.005 < 0.005 < 0.001 < 0.005 Result 1 0.002 < 0.0002 0.0002	< 0.05 0.02 0.22 < 0.01 Result 2 0.63 < 0.001 < 0.05 < 0.005 Result 2 0.005 < 0.002 < 0.002 < 0.002 0.005	<1 1.0 1.0 <1 RPD 1.0 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Perfluorooctanesulfonic acid (PFOS) Perfluorooctanoic acid (PFOA) Duplicate Heavy Metals Aluminium Cobalt Iron Manganese Selenium Uranium Duplicate Metals M8 Arsenic Cadmium Chromium	S22-Ap0026390 S22-Ap0026390 S22-Ap0026390 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	ug/L ug/L ug/L ug/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L m	< 0.05 0.02 0.22 < 0.01 Result 1 0.63 < 0.001 < 0.005 < 0.001 < 0.005 Second Result 1 0.002 < 0.0002 0.006 0.004	< 0.05 0.02 0.22 < 0.01 Result 2 0.63 < 0.001 < 0.05 < 0.005 < 0.001 < 0.005 Result 2 0.002 < 0.002 0.005 0.005	<1 1.0 1.0 <1 RPD 1.0 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Perfluorooctanesulfonic acid (PFOS) Perfluorooctanoic acid (PFOA) Duplicate Heavy Metals Aluminium Cobalt Iron Manganese Selenium Uranium Duplicate Metals M8 Arsenic Cadmium Chromium Copper Lead	S22-Ap0026390 S22-Ap0026390 S22-Ap0026390 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	ug/L ug/L ug/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L m	< 0.05 0.02 0.22 < 0.01 Result 1 0.63 < 0.001 < 0.005 < 0.001 < 0.005 < 0.001 < 0.005 Result 1 0.002 < 0.0002 0.006 0.004 < 0.004 < 0.001	< 0.05 0.02 0.22 < 0.01 Result 2 0.63 < 0.001 < 0.005 < 0.005 < 0.001 < 0.005 Result 2 0.005 < 0.001 < 0.005 0.002 < 0.002 0.002 0.004 < 0.001	<1 1.0 1.0 <1 RPD 1.0 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Perfluorooctanesulfonic acid (PFOS) Perfluorooctanoic acid (PFOA) Duplicate Heavy Metals Aluminium Cobalt Iron Manganese Selenium Uranium Duplicate Metals M8 Arsenic Cadmium Chromium Copper Lead Mercury	S22-Ap0026390 S22-Ap0026390 S22-Ap0026390 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	ug/L ug/L ug/L ug/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L m	< 0.05 0.02 0.22 < 0.01 Result 1 0.63 < 0.001 < 0.005 < 0.005 < 0.001 < 0.005 Result 1 0.002 < 0.0002 0.006 0.004 < 0.001 < 0.001 < 0.001	< 0.05 0.02 0.22 < 0.01 Result 2 0.63 < 0.001 < 0.005 < 0.005 < 0.001 < 0.002 0.002 0.002 0.005 0.004 < 0.001 < 0.001 < 0.001	<1 1.0 1.0 <1 RPD 1.0 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Perfluorooctanesulfonic acid (PFOS) Perfluorooctanoic acid (PFOA) Duplicate Heavy Metals Aluminium Cobalt Iron Manganese Selenium Uranium Duplicate Metals M8 Arsenic Cadmium Chromium Chromium Copper Lead Mercury Nickel	S22-Ap0026390 S22-Ap0026390 S22-Ap0026390 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388 S22-Ap0026388	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	ug/L ug/L ug/L ug/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L m	< 0.05 0.02 0.22 < 0.01 Result 1 0.63 < 0.001 < 0.005 < 0.001 < 0.005 Result 1 0.002 < 0.0002 0.006 0.004 < 0.001 < 0.001 < 0.001 < 0.001	< 0.05 0.02 0.22 < 0.01 Result 2 0.63 < 0.001 < 0.005 < 0.005 < 0.001 < 0.002 < 0.002 0.005 0.004 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	<1 1.0 1.0 <1 RPD 1.0 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Temperature of Chilled samples on receipt	4.1°C
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

Isotope dilution is used for calibration of each native compound for which an exact labelled analogue is available (Isotope Dilution Quantitation). The isotopically labelled analogues allow identification and recovery correction of the concentration of the associated native PFAS compounds.
 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised by:

Emma Beesley Gabriele Cordero Charl Du Preez Analytical Services Manager Senior Analyst (NSW) Senior Analyst (NSW)

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521						
Melbourne						
6 Monterey Road						
Dandenong South V/IC 3						

Dandenong South VIC 3175 Girraween NSW 2066 Phone : +61 3 8564 5000 Phone : +61 2 9900 84 NATA # 1261 Site # 1254

Sydney Brisbane 179 Magowar Road Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293

Phone : +61 2 4968 8448

NATA # 1261 Site # 25079

www.eurofins.com.au

Eurofins ARL Pty Ltd ABN: 91 05 0159 898

Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 **Eurofins Environment Testing NZ Limited** NZBN: 9429046024954

EnviroSales@eurofins.com

Auckland

35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290

Sample Receipt Advice

Company name:	SMEC Australia Pty Ltd (WOLL)
Contact name:	Alexander Williams
Project name:	PORT KEMBLA MANILDRA
Project ID:	30013174
Turnaround time:	5 Day
Date/Time received	Apr 7, 2022 3:07 PM
Eurofins reference	878309

Sample Information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table. 1
- Sample Temperature of chilled sample on the batch as recorded by Eurofins Sample Receipt : 4.1 degrees Celsius.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace. 1
- X Split sample sent to requested external lab.
- X Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager: Emma Beesley on phone : or by email: EmmaBeesley@eurofins.com Results will be delivered electronically via email to Alexander Williams - alex.williams@smec.com. Note: A copy of these results will also be delivered to the general SMEC Australia Pty Ltd (WOLL) email address.

Global Leader - Results you can trust

•••	ourofi				Eurofins Environme	nt Tes	sting A	ustral	lia Pty	Ltd					Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environment NZBN: 9429046024954	Testing NZ Limited
web: www.eurofins.com.au email: EnviroSales@eurofins.		Environment Testing		Melbourne 6 Monterey Road Dandenong South VIC 3 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254	Sy 17 175 Gi 175 Pł 4 N/	Sydney 179 Magowar Road 5 Girraween NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217			8 1/ M 0 P 17 N	risbane /21 Sma lurarrie (hone : + ATA # 1	llwood I QLD 41 61 7 39 261 Site	Place 72 02 4600 è # 20794	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 6253 4444 NATA # 2377 Site # 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290	
Co Ad	mpany Name: dress:	SMEC Austr Level 2, 6-8 Wollongong NSW 2500	alia Pty Ltd (V Regent Street	VOLL)			Or Re Ph Fa	der N eport none: 1x:	lo.: #:	8 (37830)2 424	9 3 440	5		Received: Due: Priority: Contact Name:	Apr 7, 2022 3:07 PM Apr 14, 2022 5 Day Alexander Williams	1
Pro Pro	oject Name: oject ID:	PORT KEME 30013174	BLA MANILDF	RA										E	urofins Analytical Se	rvices Manager : Emn	na Beesley
		Sa	mple Detail			Aluminium	Cobalt	Iron	Manganese	Selenium	Uranium	Metals M8	Per- and Polyfluoroalkyl Substances (PFASs) - Short				
Melb	ourne Laborato	ry - NATA # 12	61 Site # 125	4		X	×	X	×	X	× ×	X					
Briel	hane Laboratory	· ΝΑΤΑ # 1261	Site # 18217	1		X	~	~		×	~	~	~				
Mavf	field Laboratory	- NATA # 1261	Site # 25079	•													
Pert	h Laboratory - N	ATA # 2377 Si	te # 2370														
Exte	rnal Laboratory																
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID												
1	ТАР	Apr 06, 2022		Water	W22- Ap0016360								х				
2	BAILER	Apr 06, 2022		Water	W22- Ap0016361	Х	х	х	х	х	x	х	х				
Test	Counts					1	1	1	1	1	1	1	2				

s	MEC						CHAIN O	FCUSTO	DY FO	ORM											
Member of the Surbana	ber of the Surbana Jurong Group																				
SMEC OFFICE: W	longong			TURNARC	UND RE	UIREMENTS :	Standard Turnarour	nd time								LAB:	Eurofins	Laborato	ry - Wollon	gong	
PROJECT: Port K	embla Manildra					No	n-Standard Turnarou	ind time								DISP	ATCH TO	Sample F	ESS & PHO	NE NO.):	еу
PROJECT NUMB	ER: 30013174			LAB QUO	TE NO.: S	MEC 2022 Pricelist					C	OC SEQU	ENCE NU	MBER	(Circle)	Eurofi	ns Labor	atory			
PROJECT MANAG	SER: Alexander Williams			CONTACT	PH: 041	5 188 089 (Alex Will	iams)				0	OC: 4 F: 4			t ^d	Unit 1	6/7 Inves Ierra NS\	stigator D W 2526	r		
SAMPLED BY: Be	en Potter															Mobile	+61 4	459 816 7	743 (John)		
DATE SAMPLED: Email Reports an	06/04/2022 d invoice to: alex.williams@sm	ac.com. elvis.d	souza@smec.c	om			RELINQUISHED BY DATE/ TIME:07/04/2	7: SMEC E 2022	Ivis DS	ouza	R	eceived Ate/Time	BY: Euro	ins	RELINQU DATE/TI	JISHEC ME:	BY:				RECEIVED BY: Lily Cains DATE/TIME:
			ee la																		7/4/22 @ 3:07pm
Special Laborato	ry instructions: Heavy metals (/	Al, As, Cd, Cr, C	o, Cu, Fe, Pb, H	lg, Mn Ni, S	e, U, Z)																
			SAMPLE DE	TAILS								Contamin	ation ana	lysis rea	uested:						COMMENTS
LAB ID	SAMPLE ID	Depth (m)	DATE /		_	CONTAINER T	YPE & PRESERVATIVE						1			1		1			
			TIME						S I	₂	als										
				<u>۳</u>	×			2		2 2 2	mer										
				SAMP	MATR			TOTAL	CONT	PFAS Suite # Standa	Heavy (14)				1			_			
	TAP	-	6/04/2022	Water	Drock	1x F	PFAS Bottle		1	x											
	BAILER	· ·	6/04/2022	Water	Drock	1x amber, 2x via	ais, 1x metals, 1x P	FAS	5	X	х	1			-			-	<u> </u>		
							TOTAL			2	1	0	0	0	0	0	0	0	0	0	
Notes:																					
L																		10	~		

Temp 41°C

Report: 878309

5*

,1

ý

ŕ

hilifairs

SMEC Australia Pty Ltd (WOLL) Level 2, 6-8 Regent Street Wollongong NSW 2500

Alexander Williams

Report Project name Project ID Received Date 882352-W PORT KEMBLA MANILDRA 30013174 Apr 22, 2022

Client Sample ID			RINSATE 01 - DRILL ROD	RINSATE 02 - BAILER	BLANK 01 - TANK
Sample Matrix			Water	Water	Water
Eurofins Sample No.			S22- Ap0047955	S22- Ap0047956	S22- Ap0047957
Date Sampled			Apr 20, 2022	Apr 20, 2022	Apr 20, 2022
Test/Reference	LOR	Unit			
Heavy Metals	·	-1			
Aluminium	0.05	mg/L	0.06	0.08	-
Arsenic	0.001	mg/L	< 0.001	< 0.001	-
Cadmium	0.0002	mg/L	< 0.0002	< 0.0002	-
Chromium	0.001	mg/L	< 0.001	0.004	-
Cobalt	0.001	mg/L	< 0.001	< 0.001	-
Copper	0.001	mg/L	0.001	0.002	-
Iron	0.05	mg/L	0.12	0.20	-
Lead	0.001	mg/L	< 0.001	0.005	-
Manganese	0.005	mg/L	< 0.005	0.006	-
Mercury	0.0001	mg/L	< 0.0001	< 0.0001	-
Nickel	0.001	mg/L	< 0.001	0.003	-
Selenium	0.001	mg/L	< 0.001	< 0.001	-
Uranium	0.005	mg/L	< 0.005	< 0.005	-
Zinc	0.005	mg/L	< 0.005	< 0.005	-
Per- and Polyfluoroalkyl Substances (PFASs) - Sho	rt				
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05	< 0.05
13C2-6:2 FTSA (surr.)	1	%	174	145	INT
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01
Perfluorooctanesulfonic acid (PFOS) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01
18O2-PFHxS (surr.)	1	%	128	108	103
13C8-PFOS (surr.)	1	%	122	98	97
Perfluorooctanoic acid (PFOA) ^{N11}	0.01	ug/L	< 0.01	< 0.01	< 0.01
13C8-PFOA (surr.)	1	%	141	116	113
Sum (PFHxS + PFOS)*	0.01	ug/L	< 0.01	< 0.01	< 0.01
Sum of US EPA PFAS (PFOS + PFOA)*	0.01	ug/L	< 0.01	< 0.01	< 0.01
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	0.01	ug/L	< 0.01	< 0.01	< 0.01

NATA

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Heavy Metals	Testing Site Sydney	Extracted May 09, 2022	Holding Time 28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS Metals M8	Sydney	May 09, 2022	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS Per- and Polyfluoroalkyl Substances (PFASs) - Short - Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)	Sydney	May 09, 2022	28 Days

•••	ourofi				Eurofins Environme	ent Te	sting /	Austra	lia Pty	Ltd					Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environment	Testing NZ Limited
web: www.eurofins.com.au email: EnviroSales@eurofins.cor		Env	Environment Testing			1 175 G 0 P 4 N	Sydney 179 Magowar Road 25 Girraween NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217		8 1/ M 0 P 17 N	Brisbane 1/21 Smallwood Place Murarie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794			Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 4 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 6253 4444 NATA # 2377 Site # 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290	
Cor Ade	mpany Name: dress:	SMEC Austr Level 2, 6-8 Wollongong NSW 2500	alia Pty Ltd (V Regent Stree	VOLL) t			O Re Pl Fa	rder I eport hone: ax:	No.: #:	8 (38235)2 424	2 43 44()5		Received: Due: Priority: Contact Name:	Apr 22, 2022 12:00 May 9, 2022 Same day Alexander Williams	PM
Pro Pro	oject Name: oject ID:	PORT KEMI 30013174	BLA MANILDF	RA										E	Eurofins Analytical Se	rvices Manager : Em	ma Beesley
		Sa	Imple Detail			Aluminium	Cobalt	Iron	Manganese	Selenium	Uranium	Metals M8	Per- and Polyfluoroalkyl Substances (PFASs) - Short				
Melb	ourne Laborato	ory - NATA # 12	261 Site # 125	4													
Sydr	ey Laboratory	- NATA # 1261	Site # 18217	4		X	X	X	X	X	X	X	X				
Brisi	ield Laborator	y - ΝΑΤΑ # 126 / - ΝΑΤΑ # 1261	1 Site # 20/9	4													
Pert	Laboratory - N	NATA # 2377 Si	te # 2370														
Exte	rnal Laboratory	,															
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID												
1	RINSATE 01 - DRILL ROD	Apr 20, 2022		Water	S22- Ap0047955	x	x	х	x	х	x	x	x				
2	RINSATE 02 - BAILER	Apr 20, 2022		Water	S22- Ap0047956	x	x	х	x	х	x	x	x				
3	BLANK 01 - TANK	Apr 20, 2022		Water	S22- Ap0047957								x				
Test	Counts					2	2	2	2	2	2	2	3				
								_			_	_					

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	μg/L: micrograms per litre
ppm: parts per million	ppb: parts per billion	%: Percentage
org/100 mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100 mL: Most Probable Number of organisms per 100 millilitres

Terms

АРНА	American Public Health Association
сос	Chain of Custody
СР	Client Parent - QC was performed on samples pertaining to this report
CRM	Certified Reference Material (ISO17034) - reported as percent recovery.
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
LOR	Limit of Reporting.
LCS	Laboratory Control Sample - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
SRA	Sample Receipt Advice
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
ТВТО	Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.
TCLP	Toxicity Characteristic Leaching Procedure
TEQ	Toxic Equivalency Quotient or Total Equivalence
QSM	US Department of Defense Quality Systems Manual Version 5.4
US EPA	United States Environmental Protection Agency
WA DWER	Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank				1	I I I			
Heavy Metals								
Aluminium	mg/L	< 0.05		0.05	Pass			
Arsenic	mg/L	< 0.001		0.001	Pass			
Cadmium	mg/L	< 0.0002		0.0002	Pass			
Chromium			mg/L	< 0.001		0.001	Pass	
Cobalt			mg/L	< 0.001		0.001	Pass	
Copper			mg/L	< 0.001		0.001	Pass	
Iron			mg/L	< 0.05		0.05	Pass	
Lead			mg/L	< 0.001		0.001	Pass	
Manganese			mg/L	< 0.005		0.005	Pass	
Mercury			mg/L	< 0.0001		0.0001	Pass	
Nickel			mg/L	< 0.001		0.001	Pass	
Selenium			mg/L	< 0.001		0.001	Pass	
Uranium			ma/L	< 0.005		0.005	Pass	
Method Blank					I			
Per- and Polyfluoroalkyl Substance	es (PFASs) - Shor	t						
1H.1H.2H.2H-perfluorooctanesulfon	ic acid (6:2 FTSA)		ua/l	< 0.05		0.05	Pass	
Perfluorohexanesulfonic acid (PEHx	S)		ua/l	< 0.01		0.01	Pass	
Perfluorooctanesulfonic acid (PEOS)		ug/1	< 0.01		0.01	Pass	
Perfluorooctanoic acid (PEOA)	/			< 0.01		0.01	Pass	
LCS - % Recovery			ug/L	<u> </u>		0.01	1 400	
Heavy Metals								
			0/_	05		80-120	Pass	
Arsenic			0/_	05		80-120	Pass	
Codmium	70 0/	100		80.120	Pass			
Chromium	/0	100		80.120	Pass			
Cabalt	-70	100		80.120	Pass			
Copper			70 0/	105		80-120	Pass	
Copper			70 0/	90		80-120	Pass	
Iron			%	110		80-120	Pass	
Lead			%	108		80-120	Pass	<u> </u>
Manganese			%	98		80-120	Pass	
Mercury			%	104		80-120	Pass	
			%	100		80-120	Pass	
			%	116		80-120	Pass	
Zinc			%	99		80-120	Pass	
LCS - % Recovery				1		-		
Per- and Polyfluoroalkyl Substance	es (PFASs) - Shor	t					_	
1H.1H.2H.2H-perfluorooctanesulfon	ic acid (6:2 FTSA)		%	102		50-150	Pass	
Perfluorohexanesulfonic acid (PFHx	S)		%	94		50-150	Pass	
Perfluorooctanesulfonic acid (PFOS)		%	96		50-150	Pass	
Perfluorooctanoic acid (PFOA)			%	102		50-150	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Per- and Polyfluoroalkyl Substance	es (PFASs) - Shor	t		Result 1				
1H.1H.2H.2H- perfluorooctanesulfonic acid (6:2 FTSA)	S22-Ap0047956	СР	%	90		50-150	Pass	
Perfluorohexanesulfonic acid (PFHxS)	S22-Ap0047956	СР	%	88		50-150	Pass	
Perfluorooctanesulfonic acid (PFOS)	S22-Ap0047956	СР	%	84		50-150	Pass	
Perfluorooctanoic acid (PFOA)	S22-Ap0047956	CP	%	94		 50-150	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Per- and Polyfluoroalkyl Substanc	es (PFASs) - Shor	t		Result 1	Result 2	RPD			
1H.1H.2H.2H- perfluorooctanesulfonic acid (6:2 FTSA)	S22-Ap0047955	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
Perfluorohexanesulfonic acid (PFHxS)	S22-Ap0047955	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorooctanesulfonic acid (PFOS)	S22-Ap0047955	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorooctanoic acid (PFOA)	S22-Ap0047955	CP	ug/L	< 0.01	< 0.01	<1	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Temperature of Chilled samples on receipt	10.3°C
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

N11
 Isotope dilution is used for calibration of each native compound for which an exact labelled analogue is available (Isotope Dilution Quantitation). The isotopically labelled analogues allow identification and recovery correction of the concentration of the associated native PFAS compounds.
 Q02
 The duplicate %RPD is outside the recommended acceptance criteria. Further analysis indicates sample heterogeneity as the cause

Authorised by:

Emma Beesley Charl Du Preez Gabriele Cordero Analytical Services Manager Senior Analyst (NSW) Senior Analyst (NSW)

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Brisbane

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521 Melbourne 6 Monterey Road

NATA # 1261 Site # 1254

Sydney 179 Magowar Road Dandenong South VIC 3175 Girraween NSW 2066 Phone : +61 3 8564 5000 Phone : +61 2 9900 84 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079 www.eurofins.com.au

Eurofins ARL Pty Ltd ABN: 91 05 0159 898

Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370

Eurofins Environment Testing NZ Limited NZBN: 9429046024954 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51

IANZ # 1327

EnviroSales@eurofins.com

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290

Sample Receipt Advice

Company name:	SMEC Australia Pty Ltd (WOLL)
Contact name:	Alexander Williams
Project name:	PORT KEMBLA MANILDRA
Project ID:	30013174
Turnaround time:	10 Day
Date/Time received	Apr 22, 2022 12:00 PM
Eurofins reference	882352

Sample Information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table. 1
- Sample Temperature of chilled sample on the batch as recorded by Eurofins Sample Receipt : 10.3 degrees Celsius.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace. 1
- X Split sample sent to requested external lab.
- X Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

Analysis updated as per provided COC.

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager: Emma Beesley on phone : or by email: EmmaBeesley@eurofins.com Results will be delivered electronically via email to Alexander Williams - alex.williams@smec.com. Note: A copy of these results will also be delivered to the general SMEC Australia Pty Ltd (WOLL) email address.

Global Leader - Results you can trust

•••	ourofi			E	Eurofins Environme ABN: 50 005 085 521	ent Te	sting A	Austra	lia Pty	Ltd					Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environment	Testing NZ Limited
web: wy email: E	ww.eurofins.com.au	Env s.com	ironment	Testing	Melbourne Monterey Road Dandenong South VIC 3 Phone : +61 3 8564 500 NATA # 1261 Site # 125	1 175 G 0 P 4 N	Sydney 79 Mago Birrawee Phone : + IATA # 1	owar Ro n NSW ⊦61 2 99 1261 Sit	oad 2066 900 840 te # 182	8 1/ M 0 P 17 N	risbane /21 Sma lurarrie (hone : + ATA # 1	Ilwood F QLD 41 61 7 39 261 Site	Place 72 02 4600 e # 20794	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 6253 4444 NATA # 2377 Site # 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290
Coi Ade	mpany Name: dress:	SMEC Austr Level 2, 6-8 Wollongong NSW 2500	ralia Pty Ltd (V Regent Stree	NOLL) t			O Re Pl Fa	rder I eport hone: ax:	No.: #:	8 (38235))2 424	2 -3 440	5		Received: Due: Priority: Contact Name:	Apr 22, 2022 12:00 May 9, 2022 Same day Alexander Williams	PM
Pro Pro	oject Name: oject ID:	PORT KEMI 30013174	BLA MANILDF	RA										E	urofins Analytical Se	rvices Manager : Em	ma Beesley
		Sa	ample Detail			Aluminium	Cobalt	Iron	Manganese	Selenium	Uranium	Metals M8	Per- and Polyfluoroalkyl Substances (PFASs) - Short				
Melb	ourne Laborato	ory - NATA # 12	261 Site # 125	54													
Sydr	ey Laboratory	- NATA # 1261	Site # 18217			X	X	X	X	X	X	Х	Х				
Brist	bane Laborator	y - NATA # 126	1 Site # 2079	4													
Mayf	ield Laboratory	/ - NATA # 1261	Site # 25079)													
Perth	h Laboratory - N	NATA # 2377 Si	te # 2370														
Exte No	rnal Laboratory Sample ID	/ Sample Date	Sampling	Matrix	LAB ID												
1	RINSATE 01 - DRILL ROD	Apr 20, 2022	Time	Water	S22- Ap0047955	x	x	x	x	x	x	х	х				
2	RINSATE 02 - BAILER	Apr 20, 2022		Water	S22- Ap0047956	х	x	x	x	x	х	х	x				
3	BLANK 01 - TANK	Apr 20, 2022		Water	S22- Ap0047957								x				
Test	Counts					2	2	2	2	2	2	2	3				

18 18	CHAIN OF CUSTODY RECORD	Sydnay Leboratory Unit F3 Rki F 16 Man Rond Lane Cover West N/19 206 D2 9900 B400 EnviroSampleNSW@gestreEns.com	 Brisbane Leboratory Unit 1 21 Smallweyd Place Muranie QLD 411 67 3902 4700 - EuwroSangruQLD(Breardin) 	Perth Laboratory Ueid 2 41 Lauch Redway Kew Soon	isle WA 6105 WARbumfina com	Melbourne Laboratory 6 Monkey Scrob Dandarong South VIC 3175 03 REAL ROOM. Carron S match inflational and a
Company	SMECAOSTRAUA P/L	Project No 300 [317	Project Manager	Alex Williams	Sampler(s)	Alexander Williams
Address	WOULDAY CAUS	Project Name Port Femblu	Monida Botar Edus etc	Tes	Handed over by	Ir u Olox william Que
Contact Name	Alex Williams	and an			Email ter Results	11 II II
Phone №	0415 188 089	Hyses han score 7 B 11 L			Contai Change container type	ners Required Turnaround Time (TAT) o & sciel finenessary Devlaut waite 5 days diroct Noves.
Special Directio	ns	And the sense of t				
Purchase Orde	r	AAL UNA UNA UNA		le la constance de la constance	hil. Plantic nil. Plantic mil. Plantic Mrhher Gla	La VOA VIA BARRA CARACTER CONTRACTOR CONTRA
-	Client Sample ID DataTime	Matrix			500 250 125 200mL	9004 1910 Commerce
D	dianty is no	Waser (VI)				I Dangerous Goods Hazard Warning
2 Ri	nsate (1-unitral 20/4/22 0	NATER			×	Part filled StomL
3 Bla	nROI-Tank 20/4/22 W	ATER		Ĭ.	1 1	11
•						
6						
7						
5				d.		
9						
	Total Coun	nts				
Method of Shipme	nt 🔲 Courier (#	d Delivered Postal Name	Signa	iture	Date	Têne
Laboratory Use	Only Received By Mannah	SYD BNE MEL PER ADL NTL DRW	Signature HM	Date 21/09/	12 Time 2	2.00 PM Temperature 10=3
Eurofins Environment	Received By	SYD BNE MEL PER ADL NTL DRW	Signature	Dale	Time	Report Ne

COSTRE, R10 Minihestov Or R Similaris Accordiación G Jackson Accessed en August 2010

à.

brieseon of samples to the laboratory will be deemaid as acceptance of EuroRns J Environment Tealing Standard Terms and Conditions unless agreed othernise. A copy a available on request.

882352

.

	AEC
	/IEC
Member of the Surbana Ju	rong Group

CHAIN OF CUSTODY FORM

ROJECT: Port K	/ollongong embla Manildra			TURNAROUND R	EQUIREMENTS : No	Standard Turnaround time on-Standard Turnaround time	<u>e</u>							LAB: ATTE	Eurofins NTION: S	Laborator Sample R	y - Wollong eceipt - Ha	ong nnah Mawbe	4
ROJECT NUMB	ER: 30013174			LAB QUOTE NO.	SMEC 2022 Pricelis	t			C	OC SEQU	ENCE N	UMBER	(Circle)	Eurofi	ns Labora	atory		NE 110.).	
ROJECT MANA	GER: Alexander Williams	415 188 089 (Alex Wi	lliams)			C(OC: 5				Unit 1	6/7 Inves	tigator Dr						
AMPLED BY: A	exander Williams								0	r. J				Mobile	erra NSN e : +61 4	iv 2526 159 816 7	43 (John)		
ATE SAMPLED:	20/04/2022					RELINQUISHED BY: SME	C Alexa	nder Willia	ms RI	ECEIVED	BY: Euro	ofins	RELINQU	JISHED	BY:		. ,		RECEIVED BY:
mail Reports an		DATE/ TIME:21/04/2022			D/	ATE/TIME	:		DATE/TI	ME:					DATE/TIME:				
pecial Laborato	ry Instructions: Heavy metals (/	Al, As, Cd, Cr, C	Co, Cu, Fe, Pb, H	lg, Mn Ni, Se, U, Z															
			SAMPLE DE	TAILS					(Contamin	ation and	alysis rec	quested:						COMMENT
LAB ID	SAMPLE ID	Depth (m)	DATE / TIME	SAMPLE MATRIX	CONTAINER T	YPE & PRESERVATIVE	TOTAL NO. CONTAINERS	PFAS Short Suite #2 Standard	Heavy metals (14)										
	Rinsate 01 - Drill rod	-	20/04/2022	Water	1x amber, 2x vi 500mL unpre	als, 1x metals, 1x PFAS, eserved, 100ml purple	7	X	Х										
	Rinsate 02 - Bailer	-	20/04/2022	Water	1x amber, 2x vi 500mL unpre	als, 1x metals, 1x PFAS, eserved, 100ml purple	7	Х	Х										
	Blank 01 - Tank	-	20/04/2022	Water	1x amber, 2x vi 500mL unpre	als, 1x metals, 1x PFAS, eserved, 100ml purple	7	Х											
		•		•		TOTAL		3	1	0	0	0	0	0	0	0	0	0	

SMEC Australia Pty Ltd (WOLL) Level 2, 6-8 Regent Street Wollongong NSW 2500

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention:

Alexander Williams

Report Project name Project ID Received Date 884366-W PORT KEMBLA MANILDRA 30013174 Apr 28, 2022

Client Sample ID QA1A Sample Matrix Water Eurofins Sample No. Xate Sampled Date Sampled Apr 26, 2022 Test/Reference LOR Unit Total Recoverable Hydrocarbons mg/L < 0.02 TRH C6-C9 0.02 mg/L < 0.05 TRH C10-C14 0.05 mg/L < 0.01 TRH C15-C28 0.1 mg/L < 0.1 TRH C16-C36 (Total) 0.1 mg/L < 0.02 TRH C6-C10 0.02 mg/L < 0.02 TRH C6-C10 less BTEX (F1) ^{N04} 0.05 mg/L < 0.02 TRH >C10-C16 less Naphthalene (F2) ^{N01} 0.05 mg/L < 0.01 TRH >C10-C16 less Naphthalene (F2) ^{N01} 0.05 mg/L < 0.01 TRH >C10-C16 less Naphthalene (F2) ^{N01} 0.05 mg/L < 0.01 TRH >C10-C16 less Naphthalene (F2) ^{N01} 0.05 mg/L < 0.01 TRH >C10-C16 less Naphthalene (F2) ^{N01} 0.05 mg/L < 0.01 TRH >C10-C16 less Naphthalene (F2) ^{N01} 0.05	r		r	
Sample Matrix Water Eurofins Sample No. S22. Date Sampled LOR Unit Total Recoverable Hydrocarbons TRH C6-C9 0.02 mg/L <0.02 TRH C10-C14 0.05 mg/L <0.02 TRH C15-C28 0.1 mg/L <0.1 TRH C15-C28 0.1 mg/L <0.1 TRH C5-C36 0.1 mg/L <0.01 TRH C5-C36 0.1 mg/L <0.02 TRH C5-C10 0.02 mg/L <0.02 TRH C5C-C10 0.02 mg/L <0.02 TRH SC10-C16 0.05 mg/L <0.05 TRH SC10-C16 less Naphthalene (F2) ^{N01} 0.05 mg/L <0.01 TRH SC10-C40 (total)* 0.1 mg/L <0.01 Benzene 0.001 mg/L <0.01 TRH SC10-C40 (total)* 0.1 mg/L <0.001 Benzene 0.001 mg/L <0.001 TRH SC10-C40 (total)*	Client Sample ID			QA1A
Eurofins Sample No. S22- My0002668 Date Sampled Apr 26, 2022 Test/Reference LOR Unit Total Recoverable Hydrocarbons	Sample Matrix			Water
Date Sampled Apr 26, 2022 Test/Reference LOR Unit Total Recoverable Hydrocarbons	Eurofins Sample No.			S22- Mv0002668
LOR LOR Unit Test/Reference LOR Unit TRH C6-C9 0.02 mg/L < 0.02 TRH C10-C14 0.05 mg/L < 0.05 TRH C15-C28 0.1 mg/L < 0.1 TRH C29-C36 0.1 mg/L < 0.1 Naphthalene ^{N02} 0.01 mg/L < 0.02 TRH C6-C10 0.02 mg/L < 0.02 TRH C6-C10 less BTEX (F1) ^{N04} 0.02 mg/L < 0.02 TRH >C10-C16 0.05 mg/L < 0.02 TRH >C10-C16 less Naphthalene (F2) ^{N01} 0.05 mg/L < 0.1 TRH >C10-C40 (total)* 0.1 mg/L < 0.1 TRH >C10-C40 (total)* 0.1 mg/L < 0.001 Benzene 0.001 mg/L < 0.001 TRH SC10-C40 (total)* 0.1 mg/L < 0.001 Benzene 0.001 mg/L < 0.001 TRH >C10-C40 (total)* 0.001 mg/L < 0.001 <	Date Sampled			Apr 26, 2022
Test Network Product LOR Ori TRH C6-C9 0.02 mg/L < 0.02	Test/Reference	LOP	Unit	
Total Records Try accurate to a set of the	Total Recoverable Hydrocarbons	LOIN	Onit	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0.02	ma/l	< 0.02
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TRH C10-C14	0.02	mg/L	< 0.02
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TRH C15-C28	0.05	mg/L	< 0.05
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TRH C29-C36	0.1	mg/L	< 0.1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TRH C10-C36 (Total)	0.1	mg/L	< 0.1
Indprint intende 0.01 Img/L < 0.01 TRH C6-C10 0.02 mg/L < 0.02	Nanhthalene ^{N02}	0.01	mg/L	< 0.01
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TRH C6-C10	0.02	mg/L	< 0.02
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TRH C6-C10 less BTEX (E1) ^{N04}	0.02	mg/L	< 0.02
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TRH >C10-C16	0.05	mg/L	< 0.02
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05
Intervention Intervention<	TRH >C16-C34	0.1	ma/l	< 0.1
Interview Interview Interview RH > C10-C40 (total)* 0.1 mg/L < 0.1	TRH >C34-C40	0.1	ma/l	< 0.1
In the problem of the	TRH >C10-C40 (total)*	0.1	ma/L	< 0.1
Benzene 0.001 mg/L < 0.001 Toluene 0.001 mg/L < 0.001 Ethylbenzene 0.001 mg/L < 0.001 m&p-Xylenes 0.002 mg/L < 0.002 o-Xylene 0.001 mg/L < 0.002 o-Xylene 0.001 mg/L < 0.002 o-Xylene 0.001 mg/L < 0.001 Xylenes - Total* 0.003 mg/L < 0.003 4-Bromofluorobenzene (surr.) 1 % 78 Volatile Organics 1 % 78 1.1-Dichloroethane 0.001 mg/L < 0.001 1.1-Dichloroethane 0.001 mg/L < 0.001 1.1.1-Trichloroethane 0.001 mg/L < 0.001 1.1.2-Tetrachloroethane 0.001 mg/L < 0.001 1.2-Dichlorobenzene 0.001 mg/L < 0.001 1.2-Dichlorobenzene 0.001 mg/L < 0.001 1.2-Dichloropropane	BTEX			
Toluene 0.001 mg/L < 0.001 Ethylbenzene 0.001 mg/L < 0.001 m&p-Xylenes 0.002 mg/L < 0.002 o-Xylene 0.001 mg/L < 0.002 o-Xylene 0.001 mg/L < 0.001 Xylenes - Total* 0.003 mg/L < 0.003 4-Bromofluorobenzene (surr.) 1 % 78 Volatile Organics 1 % 78 1.1-Dichloroethane 0.001 mg/L < 0.001 1.1.1-Trichloroethane 0.001 mg/L < 0.001 1.1.2-Tetrachloroethane 0.001 mg/L < 0.001 1.2-Dichloroethane 0.001 mg/L < 0.001 1.2-Dichloropenzene 0.001 mg/L < 0.001 1.2	Benzene	0.001	mg/L	< 0.001
Ethylbenzene 0.001 mg/L < 0.001 m&p-Xylenes 0.002 mg/L < 0.002	Toluene	0.001	mg/L	< 0.001
m&p-Xylenes 0.002 mg/L < 0.002 o-Xylene 0.001 mg/L < 0.001	Ethylbenzene	0.001	mg/L	< 0.001
o-Xylene 0.001 mg/L < 0.001 Xylenes - Total* 0.003 mg/L < 0.003	m&p-Xylenes	0.002	mg/L	< 0.002
Xylenes - Total* 0.003 mg/L < 0.003 4-Bromofluorobenzene (surr.) 1 % 78 Volatile Organics 1 % 78 1.1-Dichloroethane 0.001 mg/L < 0.001 1.1-Dichloroethane 0.001 mg/L < 0.001 1.1-Dichloroethane 0.001 mg/L < 0.001 1.1.1-Trichloroethane 0.001 mg/L < 0.001 1.1.2-Tetrachloroethane 0.001 mg/L < 0.001 1.1.2-Trichloroethane 0.001 mg/L < 0.001 1.1.2.2-Tetrachloroethane 0.001 mg/L < 0.001 1.1.2.2-Tetrachloroethane 0.001 mg/L < 0.001 1.2-Dibromoethane 0.001 mg/L < 0.001 1.2-Dichlorobenzene 0.001 mg/L < 0.001 1.2-Dichloropenane 0.001 mg/L < 0.001 1.2-Dichloropropane 0.001 mg/L < 0.001 1.2-Dichloropropane 0.001 mg/L < 0.001 1.2-A-Trimethylbenzene 0.001 mg/L	o-Xylene	0.001	mg/L	< 0.001
4-Bromofluorobenzene (surr.) 1 % 78 Volatile Organics 1.1-Dichloroethane 0.001 mg/L < 0.001 1.1-Dichloroethane 0.001 mg/L < 0.001 1.1-Dichloroethane 0.001 mg/L < 0.001 1.1.1-Trichloroethane 0.001 mg/L < 0.001 1.1.2-Tetrachloroethane 0.001 mg/L < 0.001 1.1.2-Trichloroethane 0.001 mg/L < 0.001 1.1.2-Tetrachloroethane 0.001 mg/L < 0.001 1.1.2-Trichloroethane 0.001 mg/L < 0.001 1.2-Dibromoethane 0.001 mg/L < 0.001 1.2-Dichlorobenzene 0.001 mg/L < 0.001 1.2-Dichloroptopane 0.001 mg/L < 0.001 1.2-Dichloroptopane 0.001 mg/L < 0.001 1.2-Dichloroptopane 0.001 mg/L < 0.001 1.2-A-Trimethylbenzene 0.001 mg/L < 0.001 1.3-Dichlorobenzene 0.001 mg/L < 0.001 <	Xylenes - Total*	0.003	mg/L	< 0.003
Volatile Organics 1.1-Dichloroethane 0.001 mg/L < 0.001	4-Bromofluorobenzene (surr.)	1	%	78
1.1-Dichloroethane 0.001 mg/L< 0.001 1.1-Dichloroethane 0.001 mg/L< 0.001 1.1.1-Trichloroethane 0.001 mg/L< 0.001 1.1.2-Tetrachloroethane 0.001 mg/L< 0.001 1.1.2-Trichloroethane 0.001 mg/L< 0.001 1.1.2-Trichloroethane 0.001 mg/L< 0.001 1.1.2-Trichloroethane 0.001 mg/L< 0.001 1.1.2-Tetrachloroethane 0.001 mg/L< 0.001 1.2-Dichloroethane 0.001 mg/L< 0.001 1.2-Dichlorobenzene 0.001 mg/L< 0.001 1.2-Dichloropthane 0.001 mg/L< 0.001	Volatile Organics			
1.1-Dichloroethene 0.001 mg/L < 0.001 1.1.1-Trichloroethane 0.001 mg/L < 0.001 1.1.2-Tetrachloroethane 0.001 mg/L < 0.001 1.1.2-Trichloroethane 0.001 mg/L < 0.001 1.1.2-Trichloroethane 0.001 mg/L < 0.001 1.1.2-Tetrachloroethane 0.001 mg/L < 0.001 1.1.2-Tetrachloroethane 0.001 mg/L < 0.001 1.2-Dibromoethane 0.001 mg/L < 0.001 1.2-Dichlorobenzene 0.001 mg/L < 0.001 1.2-Dichloroethane 0.001 mg/L < 0.001 1.2-Dichloroptopane 0.001 mg/L < 0.001 1.2-Dichloropropane 0.001 mg/L < 0.001 1.2-Dichloropropane 0.001 mg/L < 0.001 1.2.3-Trichloropropane 0.001 mg/L < 0.001 1.2.4-Trimethylbenzene 0.001 mg/L < 0.001 1.3-Dichlorobenzene 0.001 mg/L < 0.001	1.1-Dichloroethane	0.001	mg/L	< 0.001
1.1.1-Trichloroethane 0.001 mg/L < 0.001 1.1.1.2-Tetrachloroethane 0.001 mg/L < 0.001 1.1.2-Trichloroethane 0.001 mg/L < 0.001 1.1.2-Trichloroethane 0.001 mg/L < 0.001 1.1.2-Trichloroethane 0.001 mg/L < 0.001 1.2-Dithoroethane 0.001 mg/L < 0.001 1.2-Dibromoethane 0.001 mg/L < 0.001 1.2-Dichlorobenzene 0.001 mg/L < 0.001 1.2-Dichloroethane 0.001 mg/L < 0.001 1.2-Dichloroptopane 0.001 mg/L < 0.001 1.2-Dichloropropane 0.001 mg/L < 0.001 1.2-Dichloroptopane 0.001 mg/L < 0.001 1.2.3-Trichloropropane 0.001 mg/L < 0.001 1.2.4-Trimethylbenzene 0.001 mg/L < 0.001 1.3-Dichlorobenzene 0.001 mg/L < 0.001	1.1-Dichloroethene	0.001	mg/L	< 0.001
1.1.1.2-Tetrachloroethane 0.001 mg/L < 0.001 $1.1.2$ -Trichloroethane 0.001 mg/L < 0.001 $1.1.2$ -Tetrachloroethane 0.001 mg/L < 0.001 1.2 -Dibromoethane 0.001 mg/L < 0.001 1.2 -Dibromoethane 0.001 mg/L < 0.001 1.2 -Dichlorobenzene 0.001 mg/L < 0.001 1.2 -Dichloroethane 0.001 mg/L < 0.001 1.2 -Dichloroptopane 0.001 mg/L < 0.001 $1.2.3$ -Trichloroptopane 0.001 mg/L < 0.001 $1.2.4$ -Trimethylbenzene 0.001 mg/L < 0.001 1.3 -Dichlorobenzene 0.001 mg/L < 0.001	1.1.1-Trichloroethane	0.001	mg/L	< 0.001
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.1.1.2-Tetrachloroethane	0.001	mg/L	< 0.001
1.1.2.2-Tetrachloroethane 0.001 mg/L < 0.001 1.2-Dibromoethane 0.001 mg/L < 0.001	1.1.2-Trichloroethane	0.001	mg/L	< 0.001
1.2-Dibromoethane 0.001 mg/L < 0.001 1.2-Dichlorobenzene 0.001 mg/L < 0.001	1.1.2.2-Tetrachloroethane	0.001	mg/L	< 0.001
1.2-Dichlorobenzene 0.001 mg/L < 0.001 1.2-Dichloroethane 0.001 mg/L < 0.001	1.2-Dibromoethane	0.001	mg/L	< 0.001
1.2-Dichloroethane 0.001 mg/L < 0.001 1.2-Dichloropropane 0.001 mg/L < 0.001	1.2-Dichlorobenzene	0.001	mg/L	< 0.001
1.2-Dichloropropane 0.001 mg/L < 0.001 1.2.3-Trichloropropane 0.001 mg/L < 0.001	1.2-Dichloroethane	0.001	mg/L	< 0.001
1.2.3-Trichloropropane 0.001 mg/L < 0.001 1.2.4-Trimethylbenzene 0.001 mg/L < 0.001	1.2-Dichloropropane	0.001	mg/L	< 0.001
1.2.4-Trimethylbenzene 0.001 mg/L < 0.001 1.3-Dichlorobenzene 0.001 mg/L < 0.001	1.2.3-Trichloropropane	0.001	mg/L	< 0.001
1.3-Dichlorobenzene 0.001 mg/L < 0.001	1.2.4-Trimethylbenzene	0.001	mg/L	< 0.001
	1.3-Dichlorobenzene	0.001	mg/L	< 0.001

Client Sample ID			QA1A
Sample Matrix			Water
			S22-
Eurofins Sample No.			My0002668
Date Sampled			Apr 26, 2022
Test/Reference	LOR	Unit	
Volatile Organics			
1.3-Dichloropropane	0.001	mg/L	< 0.001
1.3.5-Trimethylbenzene	0.001	mg/L	< 0.001
1.4-Dichlorobenzene	0.001	mg/L	< 0.001
2-Butanone (MEK)	0.005	mg/L	< 0.005
2-Propanone (Acetone)	0.005	mg/L	< 0.005
4-Chlorotoluene	0.001	mg/L	< 0.001
4-Methyl-2-pentanone (MIBK)	0.005	mg/L	< 0.005
Allyl chloride	0.001	mg/L	< 0.001
Benzene	0.001	mg/L	< 0.001
Bromobenzene	0.001	mg/L	< 0.001
Bromochloromethane	0.001	mg/L	< 0.001
Bromodichloromethane	0.001	mg/L	< 0.001
Bromoform	0.001	mg/L	< 0.001
Bromomethane	0.005	mg/L	< 0.005
Carbon disulfide	0.001	mg/L	< 0.001
Carbon Tetrachloride	0.001	mg/L	< 0.001
Chlorobenzene	0.001	mg/L	< 0.001
Chloroethane	0.005	mg/L	< 0.005
Chloroform	0.005	mg/L	< 0.005
Chloromethane	0.005	mg/L	< 0.005
cis-1.2-Dichloroethene	0.001	mg/L	< 0.001
cis-1.3-Dichloropropene	0.001	mg/L	< 0.001
Dibromochloromethane	0.001	mg/L	< 0.001
Dibromomethane	0.001	mg/L	< 0.001
Dichlorodifluoromethane	0.005	mg/L	< 0.005
Ethylbenzene	0.001	mg/L	< 0.001
Iodomethane	0.001	mg/L	< 0.001
Isopropyl benzene (Cumene)	0.001	mg/L	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002
Methylene Chloride	0.005	mg/L	< 0.005
o-Xylene	0.001	mg/L	< 0.001
Styrene	0.001	mg/L	< 0.001
Tetrachloroethene	0.001	mg/L	< 0.001
Toluene	0.001	mg/L	< 0.001
trans-1.2-Dichloroethene	0.001	mg/L	< 0.001
trans-1.3-Dichloropropene	0.001	mg/L	< 0.001
Trichloroethene	0.001	mg/L	< 0.001
Trichlorofluoromethane	0.005	mg/L	< 0.005
Vinyl chloride	0.005	mg/L	< 0.005
Xylenes - Total*	0.003	mg/L	< 0.003
Total MAH*	0.003	mg/L	< 0.003
Vic EPA IWRG 621 CHC (Total)*	0.005	mg/L	< 0.005
Vic EPA IWRG 621 Other CHC (Total)*	0.005	mg/L	< 0.005
4-Bromofluorobenzene (surr.)	1	%	78
Toluene-d8 (surr.)	1	%	77

Client Sample ID			QA1A
Sample Matrix			Water
			S22-
Eurofins Sample No.			My0002668
Date Sampled			Apr 26, 2022
Test/Reference	LOR	Unit	
Phenols (Halogenated)			
2-Chlorophenol	0.003	mg/L	< 0.003
2.4-Dichlorophenol	0.003	mg/L	< 0.003
2.4.5-Trichlorophenol	0.01	mg/L	< 0.01
2.4.6-Trichlorophenol	0.01	mg/L	< 0.01
2.6-Dichlorophenol	0.003	mg/L	< 0.003
4-Chloro-3-methylphenol	0.01	mg/L	< 0.01
Pentachlorophenol	0.01	mg/L	< 0.01
Tetrachlorophenols - Total	0.03	mg/L	< 0.03
Total Halogenated Phenol*	0.01	mg/L	< 0.01
Phenols (non-Halogenated)			
2-Cyclohexyl-4.6-dinitrophenol	0.1	mg/L	< 0.1
2-Methyl-4.6-dinitrophenol	0.03	mg/L	< 0.03
2-Nitrophenol	0.01	mg/L	< 0.01
2.4-Dimethylphenol	0.003	mg/L	< 0.003
2.4-Dinitrophenol	0.03	mg/L	< 0.03
2-Methylphenol (o-Cresol)	0.003	mg/L	< 0.003
3&4-Methylphenol (m&p-Cresol)	0.006	mg/L	< 0.006
Total cresols*	0.01	mg/L	< 0.01
4-Nitrophenol	0.03	mg/L	< 0.03
Dinoseb	0.1	mg/L	< 0.1
Phenol	0.003	mg/L	< 0.003
Phenol-d6 (surr.)	1	%	47
Total Non-Halogenated Phenol*	0.1	mg/L	< 0.1
Polycyclic Aromatic Hydrocarbons (Trace level)			
Acenaphthene	0.00001	mg/L	< 0.00001
Acenaphthylene	0.00001	mg/L	< 0.00001
Anthracene	0.00001	mg/L	< 0.00001
Benz(a)anthracene	0.00001	mg/L	< 0.00001
Benzo(a)pyrene	0.00001	mg/L	< 0.00001
Benzo(b&j)fluoranthene	0.00001	mg/L	< 0.00001
Benzo(g.h.i)perylene	0.00001	mg/L	< 0.00001
Benzo(k)fluoranthene	0.00001	mg/L	< 0.00001
Chrysene	0.00001	mg/L	< 0.00001
Dibenz(a.h)anthracene	0.00001	mg/L	< 0.00001
Fluoranthene	0.00001	mg/L	< 0.00001
	0.00001	mg/L	< 0.00001
Indeno(1.2.3-cd)pyrene	0.00001	mg/L	< 0.00001
Naphthalene	0.00001	mg/L	< 0.00001
Phenanthrene	0.00001	mg/L	< 0.00001
Pyrene	0.00001	mg/L	< 0.00001
1 Otal PAH"	0.00001	mg/L	< 0.00001
Z-Fluorobiphenyi (surr.)	1	%	66
p-rerphenyl-a14 (surf.)	1	%	/6
	40		400
	10	mg/L	100 8090 45
	0.01	mg/L	0.45
Annonium ion (as N)	0.01	mg/L	0.48
	1	mg/L	49
	0.5	⊔ mg/L	0.2

Sample Matrix Water Eurofins Sample No. My0002668 Date Sampled Apr 26, 2022 Test/Reference LOR Unit Unit
Eurofins Sample No. S22- My0002668 Date Sampled Apr 26, 2022 Test/Reference LOR Unit Operation of the second
Eurofins Sample No. My0002668 Date Sampled Apr 26, 2022 Test/Reference LOR Unit Unit
Date Sampled Apr 26, 2022 Test/Reference LOR Unit Unit
Test/Reference LOR Unit Nitrate 8 Nitrite (as N) 0.05 0.07
INITIATE & INITITE (AS IN) 0.05 Mg/L 0.27
Nitrate (as N) 0.02 mg/L 0.26
Nitrite (as N) 0.02 mg/L < 0.02
Organic Nitrogen (as N)* 0.2 mg/L < 0.2
Phosphate total (as P) 0.01 mg/L 0.71
Phosphorus reactive (as P) 0.01 mg/L 0.01
Sulphate (as SO4) 5 mg/L 1200
Total Dissolved Solids Dried at 180°C ± 2°C 10 mg/L 1600
Total Kjeldahl Nitrogen (as N)0.2mg/LR09<0.2
Total Nitrogen (as N)* 0.2 mg/L 0.27
Hardness mg equivalent CaCO3/L 5 mg/L 1400
Alkalinity (speciated)
Bicarbonate Alkalinity (as CaCO3) 20 mg/L 390
Carbonate Alkalinity (as CaCO3) 10 mg/L < 10
Hydroxide Alkalinity (as CaCO3) 20 mg/L < 20
Total Alkalinity (as CaCO3) 20 mg/L 390
Heavy Metals
Aluminium 0.05 mg/L < 0.05
Aluminium (filtered) 0.05 mg/L < 0.05
Arsenic 0.001 mg/L 0.002
Arsenic (filtered) 0.001 mg/L 0.068
Cadmium 0.0002 mg/L < 0.0002
Cadmium (filtered) 0.0002 mg/L < 0.0002
Chromium 0.001 mg/L < 0.001
Chromium (filtered) 0.001 mg/L < 0.001
Cobalt 0.001 mg/L 0.014
Cobalt (filtered) 0.001 mg/L 0.010
Copper 0.001 mg/L < 0.001
Copper (filtered) 0.001 mg/L < 0.001
Iron 0.05 mg/L 0.12
Iron (filtered) 0.05 mg/L 12
Lead 0.001 mg/L < 0.001
Lead (filtered) 0.001 mg/L < 0.001
Manganese 0.005 mg/L 1.1
Manganese (mered) 0.005 mg/L 0.79
Mercury 0.0001 mg/L < 0.0001
Mercury (mered) 0.0001 mg/L < 0.001 Nickel 0.001 mg/L 0.002
Nickel (filtered)
Nickel (intered) 0.001 Ing/L 0.003 Selenium 0.001 mg/L 0.002
Ocientum 0.001 Img/L 0.003 Selenium (filtered) 0.001 mg/L 0.005
Uranium (intered) 0.001 (intered) 0.005
Uranium (filtered) 0.005 mg/l < 0.005
Oranian (morea) 0.003 mg/L < 0.003 Zinc 0.005 mg/L < 0.005
Zinc (filtered) 0.005 mg/l < 0.005
Alkali Metals
Magnasium 0.5 mg/L 4/0
Imagine sium U.3 Imagine sium 59 Potassium 0.5 mg/l 22
Sodium 0.5 mg/L 22

Client Sample ID			QA1A
Sample Matrix			Water
Eurofins Sample No.			S22- My0002668
Date Sampled			Apr 26, 2022
Test/Reference	LOR	Unit	
Per- and Polyfluoroalkyl Substances (PFASs) - Shor	ť		
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11}	0.05	ug/L	< 0.05
13C2-6:2 FTSA (surr.)	1	%	158
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	0.01	ug/L	< 0.01
Perfluorooctanesulfonic acid (PFOS) ^{N11}	0.01	ug/L	< 0.01
18O2-PFHxS (surr.)	1	%	100
13C8-PFOS (surr.)	1	%	99
Perfluorooctanoic acid (PFOA) ^{N11}	0.01	ug/L	< 0.01
13C8-PFOA (surr.)	1	%	103
Sum (PFHxS + PFOS)*	0.01	ug/L	< 0.01
Sum of US EPA PFAS (PFOS + PFOA)*	0.01	ug/L	< 0.01
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	0.01	ug/L	< 0.01

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins Suite B1			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions - Method: LTM-ORG-2010 TRH C6-C40	Sydney	May 05, 2022	7 Days
Total Recoverable Hydrocarbons - 2013 NEPM Fractions - Method: LTM-ORG-2010 TRH C6-C40	Sydney	May 05, 2022	7 Days
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	May 05, 2022	7 Days
BTEX	Sydney	May 05, 2022	14 Days
- Method: LTM-ORG-2010 BTEX and Volatile TRH	, ,		,
Volatile Organics	Sydney	May 05, 2022	7 Days
- Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices			
Polycyclic Aromatic Hydrocarbons (Trace level)	Melbourne	May 04, 2022	7 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water (trace)		-	-
Acidity (as CaCO3)	Melbourne	May 04, 2022	14 Days
- Method: LTM-INO-4210 Acidity			
Ammonium Ion (as N)	Melbourne	May 05, 2022	28 Days
- Method: APHA 4500-NH3 Ammonia Nitrogen by FIA			
Phosphate total (as P)	Melbourne	May 05, 2022	28 Days
- Method: LTM-INO-4040 Phosphate by CFA			
Phosphorus reactive (as P)	Melbourne	May 04, 2022	2 Days
- Method: APHA 4500-P			
Heavy Metals	Sydney	May 05, 2022	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Heavy Metals (filtered)	Sydney	May 05, 2022	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Metals M8	Sydney	May 05, 2022	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Metals M8 filtered	Sydney	May 02, 2022	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Eurofins Suite B11C: Na/K/Ca/Mg	Melbourne	May 05, 2022	180 Days
- Method: LTM-MET-3010 Alkali Metals by ICP-AES			
Per- and Polyfluoroalkyl Substances (PFASs) - Short	Sydney	May 05, 2022	28 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
Phenols (Halogenated)	Sydney	May 02, 2022	7 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Phenols (non-Halogenated)	Sydney	May 05, 2022	7 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Nitrogens (speciated)			
Ammonia (as N)	Melbourne	May 05, 2022	28 Days
- Method: APHA 4500-NH3 Ammonia Nitrogen by FIA			
Nitrate & Nitrite (as N)	Melbourne	May 05, 2022	28 Days
- Method: LTM-INO-4120 Analysis of NOx NO2 NH3 by FIA			
Nitrate (as N)	Melbourne	May 05, 2022	28 Days
- Method: LTM-INO-4120 Analysis of NOx NO2 NH3 by FIA			
Nitrite (as N)	Melbourne	May 05, 2022	2 Days
- Method: LTM-INO-4120 Analysis of NOx NO2 NH3 by FIA		May 00, 0000	7.0
Organic Nitrogen (as N) [*]	webourne	way 02, 2022	7 Days
- Method: APHA 4500 Organic Nitrogen (N)		Mar. 04, 0000	00 D
i otal Kjeldani Nitrogen (as N)	webourne	may 04, 2022	28 Days
- Method: APHA 4500-Norg B,D Total Kjeldahl Nitrogen by FIA			

Eurofins Suite B11F: CI/SO4/Alkalinity/Total F

Description	Testing Site	Extracted	Holding Time
Chloride	Melbourne	May 05, 2022	28 Days
- Method: LTM-INO-4090 Chloride by Discrete Analyser			
Fluoride (Total)	Melbourne	May 04, 2022	28 Days
- Method: APHA 4500 F-C Fluoride by Ion Selective Electrode			
Sulphate (as SO4)	Melbourne	May 05, 2022	28 Days
- Method: LTM-INO-4110 Sulfate by Discrete Analyser			
Alkalinity (speciated)	Melbourne	May 04, 2022	14 Days
- Method: LTM-INO-4250 Alkalinity by Electrometric Titration			
Total Dissolved Solids Dried at 180°C ± 2°C	Melbourne	May 05, 2022	28 Days
- Method: LTM-INO-4170 Total Dissolved Solids in Water			
Hardness Set			
Hardness mg equivalent CaCO3/L	Melbourne	May 05, 2022	28 Days
- Method: APHA 2340B Hardness by Calculation			

	eurofi			l	Eurofins Environme ABN: 50 005 085 521	ent T	estin	ıg Au	strali	a Pty	Ltd										Eu AB	rofin N: 91 (<mark>s AR</mark> I 05 015	L Pty 9 898	Ltd	<mark>Eur</mark> NZB	ofins N: 942	. <mark>Envi</mark> 29046(ronm)24954	ent T	Festin	ig NZ	Limited
web: w email: I	ww.eurofins.com.au	Env s.com	Environment Testing		Melbourne 3 Monterey Road Dandenong South VIC 3 Phone : +61 3 8564 500 NATA # 1261 Site # 125	3175)0 54	Sydn 179 M Girray Phone NATA	ey Magow ween I e : +6' A # 126	var Roa NSW 2 1 2 990 61 Site	ad 2066 20 840 9 # 182	1 N 0 F 17 N	Brisba /21 Si Murarr Phone NATA	mallwo ie QLD : +61 # 1261	od Pl 417 7 390 Site	Newcastle Perth lace 4/52 Industrial Drive 46-48 '2 Mayfield East NSW 2304 Welsh !2 4600 PO Box 60 Wickham 2293 Phone # 20794 Phone : +61 2 4968 8448 NATA NATA # 1261 Site # 25079 Phone 1000000000000000000000000000000000000		Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 6253 4444 NATA # 2377 Site # 2370			444 370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327		1	Christchurch 43 Detroit Drive Rolleston, Christchurch 767 Phone : 0800 856 450 IANZ # 1290									
Co Ad	ompany Name: Idress:	SMEC Austi Level 2, 6-8 Wollongong NSW 2500	ralia Pty Ltd (V Regent Stree	WOLL) t				Ord Rep Pho Fax	ler N bort # bne: ::	o.: #:		8843 02 4	366 243 4	1405	i						R D P C	ecei ue: riori onta	ved: ty: ict N	ame	:	Ap M 2 Al	or 28 ay 6, Day exan	, 202 , 202: nder \	:2 6:0 2 /Villia	18 PN ms	М		
Pro Pro	oject Name: oject ID:	PORT KEM 30013174	BLA MANILDI	RA																,	Furo	fins	∆nal	vtica	al Se	rvice	s M:	anad	er · F	-mm	na Re	esle	N
															_		-		-	_				ynce				Tag					y
		Sa	ample Detail			Acidity (as CaCO3)	Aluminium	Aluminium (filtered)	Ammonium Ion (as N)	Cobalt	Cobalt (filtered)	ron	ron (filtered)	Vanganese	Manganese (filtered)	Phosphate total (as P)	Phosphorus reactive (as P)	Selenium	Selenium (filtered)	Uranium	Uranium (filtered)	Metals M8	Metals M8 filtered	Phenols (Speciated)	Hardness Set	Vitrogens (speciated)	Volatile Organics	Eurofins Suite B1	Eurofins Suite B11F: Cl/SO4/Alkalinity/Total	Per- and Polyfluoroalkyl Substances (PFASs)	Eurofins Suite B11C: Na/K/Ca/Mg	Polycyclic Aromatic Hydrocarbons (Trace evel)	Total Dissolved Solids Dried at 180°C ± 2°C
Melb	oourne Laborate	ory - NATA # 12	261 Site # 125	54		Х			X							X	X								X	X			X		X	x	х
Sydr	ney Laboratory	- NATA # 1261	Site # 18217				X	X		X	X	X	X	X	X			X	X	X	X	X	X	X			X	X	\square	Х			<u> </u>
Bris	bane Laborator	y - NATA # 126	1 Site # 2079	4			\downarrow	_			-		-			-		-		<u> </u>								<u> </u>	\square	'			<u> </u>
May	field Laboratory	y - NATA # 126 ⁻	1 Site # 25079)		_	4	_			_		_			\square	_		_	<u> </u>							\square	'	$\left - \right $	'		$\mid = \mid$	<u> </u>
Pert	h Laboratory - I	NATA # 2377 Si	ite # 2370				_	_	_	_	-		-	-	_	_	_	-		-							\vdash	\vdash	\vdash	'	\vdash	\vdash	<u> </u>
Exte No	Sample ID	/ Sample Date	Sampling	Matrix	LAB ID			+	+			$\left \right $		$\left \right $	+		+	+										$\left \right $	\vdash				
1	QA1A	Apr 26, 2022		Water	S22- My0002668	х	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	х	x	x	x
Test	Counts		•	•		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	μg/L: micrograms per litre
ppm: parts per million	ppb: parts per billion	%: Percentage
org/100 mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100 mL: Most Probable Number of organisms per 100 millilitres

Terms

АРНА	American Public Health Association
coc	Chain of Custody
СР	Client Parent - QC was performed on samples pertaining to this report
CRM	Certified Reference Material (ISO17034) - reported as percent recovery.
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
LOR	Limit of Reporting.
LCS	Laboratory Control Sample - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
SRA	Sample Receipt Advice
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
ТВТО	Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.
TCLP	Toxicity Characteristic Leaching Procedure
TEQ	Toxic Equivalency Quotient or Total Equivalence
QSM	US Department of Defense Quality Systems Manual Version 5.4
US EPA	United States Environmental Protection Agency
WA DWER	Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank		1	1	 -	-	
Total Recoverable Hydrocarbons						
TRH C6-C9	mg/L	< 0.02		0.02	Pass	
TRH C10-C14	mg/L	< 0.05		0.05	Pass	
TRH C15-C28	mg/L	< 0.1		0.1	Pass	
TRH C29-C36	mg/L	< 0.1		0.1	Pass	
Naphthalene	mg/L	< 0.01		0.01	Pass	
TRH C6-C10	mg/L	< 0.02		0.02	Pass	
TRH >C10-C16	mg/L	< 0.05		0.05	Pass	
TRH >C16-C34	mg/L	< 0.1		0.1	Pass	
TRH >C34-C40	mg/L	< 0.1		0.1	Pass	
Method Blank		1	1			
BTEX						
Benzene	mg/L	< 0.001		0.001	Pass	
Toluene	mg/L	< 0.001		0.001	Pass	
Ethylbenzene	mg/L	< 0.001		0.001	Pass	
m&p-Xylenes	mg/L	< 0.002		0.002	Pass	
o-Xylene	mg/L	< 0.001		0.001	Pass	
Xylenes - Total*	mg/L	< 0.003		0.003	Pass	
Method Blank					-	
Volatile Organics						
1.1-Dichloroethane	mg/L	< 0.001		0.001	Pass	
1.1-Dichloroethene	mg/L	< 0.001		0.001	Pass	
1.1.1-Trichloroethane	mg/L	< 0.001		0.001	Pass	
1.1.1.2-Tetrachloroethane	mg/L	< 0.001		0.001	Pass	
1.1.2-Trichloroethane	mg/L	< 0.001		0.001	Pass	
1.1.2.2-Tetrachloroethane	mg/L	< 0.001		0.001	Pass	
1.2-Dibromoethane	mg/L	< 0.001		0.001	Pass	
1.2-Dichlorobenzene	mg/L	< 0.001		0.001	Pass	
1.2-Dichloroethane	mg/L	< 0.001		0.001	Pass	
1.2-Dichloropropane	mg/L	< 0.001		0.001	Pass	
1.2.3-Trichloropropane	mg/L	< 0.001		0.001	Pass	
1.2.4-Trimethylbenzene	mg/L	< 0.001		0.001	Pass	
1.3-Dichlorobenzene	mg/L	< 0.001		0.001	Pass	
1.3-Dichloropropane	mg/L	< 0.001		0.001	Pass	
1.3.5-Trimethylbenzene	mg/L	< 0.001		0.001	Pass	
1.4-Dichlorobenzene	mg/L	< 0.001		0.001	Pass	
2-Butanone (MEK)	mg/L	< 0.005		0.005	Pass	
2-Propanone (Acetone)	mg/L	< 0.005		0.005	Pass	
4-Chlorotoluene	mg/L	< 0.001		0.001	Pass	
4-Methyl-2-pentanone (MIBK)	mg/L	< 0.005		0.005	Pass	
Allyl chloride	mg/L	< 0.001		0.001	Pass	
Bromobenzene	mg/L	< 0.001		0.001	Pass	
Bromochloromethane	mg/L	< 0.001		0.001	Pass	
Bromodichloromethane	mg/L	< 0.001		0.001	Pass	
Bromoform	mg/L	< 0.001		0.001	Pass	
Bromomethane	mg/L	< 0.005		0.005	Pass	
Carbon disulfide	mg/L	< 0.001		0.001	Pass	
Carbon Tetrachloride	mg/L	< 0.001		0.001	Pass	
Chlorobenzene	mg/L	< 0.001		0.001	Pass	
Chloroethane	mg/L	< 0.005		0.005	Pass	
Chloroform	mg/L	< 0.005		0.005	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Chloromethane	mg/L	< 0.005	0.005	Pass	
cis-1.2-Dichloroethene	mg/L	< 0.001	0.001	Pass	
cis-1.3-Dichloropropene	mg/L	< 0.001	0.001	Pass	
Dibromochloromethane	mg/L	< 0.001	0.001	Pass	
Dibromomethane	mg/L	< 0.001	0.001	Pass	
Dichlorodifluoromethane	mg/L	< 0.005	0.005	Pass	
Iodomethane	mg/L	< 0.001	0.001	Pass	
Isopropyl benzene (Cumene)	mg/L	< 0.001	0.001	Pass	
Methylene Chloride	mg/L	< 0.005	0.005	Pass	
Styrene	mg/L	< 0.001	0.001	Pass	
Tetrachloroethene	mg/L	< 0.001	0.001	Pass	
trans-1.2-Dichloroethene	mg/L	< 0.001	0.001	Pass	
trans-1.3-Dichloropropene	mg/L	< 0.001	0.001	Pass	
Trichloroethene	mg/L	< 0.001	0.001	Pass	
Trichlorofluoromethane	mg/L	< 0.005	0.005	Pass	
Vinyl chloride	mg/L	< 0.005	0.005	Pass	
Method Blank		1			
Polycyclic Aromatic Hydrocarbons (Trace level)					
Acenaphthene	mg/L	< 0.00001	0.00001	Pass	
Acenaphthylene	mg/L	< 0.00001	0.00001	Pass	
Anthracene	mg/L	< 0.00001	0.00001	Pass	
Benz(a)anthracene	mg/L	< 0.00001	0.00001	Pass	
Benzo(a)pyrene	mg/L	< 0.00001	0.00001	Pass	
Benzo(b&j)fluoranthene	mg/L	< 0.00001	0.00001	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.00001	0.00001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.00001	0.00001	Pass	
Chrysene	mg/L	< 0.00001	0.00001	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.00001	0.00001	Pass	
Fluoranthene	mg/L	< 0.00001	0.00001	Pass	
Fluorene	mg/L	< 0.00001	0.00001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.00001	0.00001	Pass	
Naphthalene	mg/L	< 0.00001	0.00001	Pass	
Phenanthrene	mg/L	< 0.00001	0.00001	Pass	
Pyrene	mg/L	< 0.00001	0.00001	Pass	
Total PAH*	mg/L	-	0.00001	N/A	
Method Blank		1			
Acidity (as CaCO3)	mg/L	< 10	10	Pass	
Ammonia (as N)	mg/L	< 0.01	0.01	Pass	
Ammonium Ion (as N)	mg/L	< 0.01	0.01	Pass	
Chloride	mg/L	< 1	1	Pass	
Fluoride (Total)	mg/L	< 0.5	0.5	Pass	
Nitrate & Nitrite (as N)	mg/L	< 0.05	0.05	Pass	
Nitrate (as N)	mg/L	< 0.02	0.02	Pass	
Nitrite (as N)	mg/L	< 0.02	0.02	Pass	
Phosphate total (as P)	mg/L	< 0.01	0.01	Pass	
Phosphorus reactive (as P)	mg/L	0.01	0.01	Pass	
Suppate (as SU4)	mg/L	< 5	5	Pass	
I otal Kjeldahl Nitrogen (as N)	mg/L	< 0.2	0.2	Pass	
Method Blank					
Aikalinity (speciated)	//			D	
Bicarbonate Alkalinity (as CaCO3)	mg/L	< 20	20	Pass	
Carbonate Alkalinity (as CaCO3)	mg/L	< 10	10	Pass	
	mg/L	< 20	20	Pass	
Total Alkalinity (as CaCO3)	mg/L	< 20	20	Pass	

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank		1	1	1	r	
Heavy Metals						
Aluminium	mg/L	< 0.05		0.05	Pass	
Arsenic	mg/L	< 0.001		0.001	Pass	
Cadmium	mg/L	< 0.0002		0.0002	Pass	
Chromium	mg/L	< 0.001		0.001	Pass	
Cobalt	mg/L	< 0.001		0.001	Pass	
Copper	mg/L	< 0.001		0.001	Pass	ļ
Iron	mg/L	< 0.05		0.05	Pass	ļ
Lead	mg/L	< 0.001		0.001	Pass	
Manganese	mg/L	< 0.005		0.005	Pass	
Mercury	mg/L	< 0.0001		0.0001	Pass	ļ
Nickel	mg/L	< 0.001		0.001	Pass	
Selenium	mg/L	< 0.001		0.001	Pass	
Uranium	mg/L	< 0.005		0.005	Pass	ļ
Zinc	mg/L	< 0.005		0.005	Pass	
Method Blank		-	I I	1		
Alkali Metals						ļ
Calcium	mg/L	< 0.5		0.5	Pass	
Magnesium	mg/L	< 0.5		0.5	Pass	
Potassium	mg/L	< 0.5		0.5	Pass	
Sodium	mg/L	< 0.5		0.5	Pass	
Method Blank		1	1	T	1	
Per- and Polyfluoroalkyl Substances (PFASs) - Short	1					
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA)	ug/L	< 0.05		0.05	Pass	
Perfluorohexanesulfonic acid (PFHxS)	ug/L	< 0.01		0.01	Pass	
Perfluorooctanesulfonic acid (PFOS)	ug/L	< 0.01		0.01	Pass	
Perfluorooctanoic acid (PFOA)	ug/L	< 0.01		0.01	Pass	ļ
LCS - % Recovery		-	I I	1	-	
Total Recoverable Hydrocarbons	1					
TRH C6-C9	%	123		70-130	Pass	
TRH C10-C14	%	74		70-130	Pass	
Naphthalene	%	101		70-130	Pass	
TRH C6-C10	%	113		70-130	Pass	
TRH >C10-C16	%	97		70-130	Pass	
LCS - % Recovery		1				
втех	1					ļ
Benzene	%	99		70-130	Pass	ļ
Toluene	%	94		70-130	Pass	
Ethylbenzene	%	92		70-130	Pass	
m&p-Xylenes	%	92		70-130	Pass	
o-Xylene	%	92		70-130	Pass	
Xylenes - Total*	%	92		70-130	Pass	
LCS - % Recovery		1	· · · · ·	1		
Volatile Organics						
1.1-Dichloroethene	%	98		70-130	Pass	
1.1.1-Trichloroethane	%	106		70-130	Pass	
1.2-Dichlorobenzene	%	118		70-130	Pass	
1.2-Dichloroethane	%	113		70-130	Pass	
Trichloroethene	%	98		70-130	Pass	
LCS - % Recovery		1				
Polycyclic Aromatic Hydrocarbons (Trace level)						
Acenaphthene	%	78		70-130	Pass	
Acenaphthylene	%	95		70-130	Pass	1

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Anthracene	%	87	70-130	Pass	
Benz(a)anthracene	%	77	70-130	Pass	
Benzo(a)pyrene	%	108	70-130	Pass	
Benzo(b&j)fluoranthene	%	86	70-130	Pass	
Benzo(g.h.i)perylene	%	103	70-130	Pass	
Benzo(k)fluoranthene	%	98	70-130	Pass	
Chrysene	%	92	70-130	Pass	
Dibenz(a.h)anthracene	%	94	70-130	Pass	
Fluoranthene	%	91	70-130	Pass	
Fluorene	%	97	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	87	70-130	Pass	
Naphthalene	%	82	70-130	Pass	
Phenanthrene	%	87	70-130	Pass	
Pyrene	%	92	70-130	Pass	
LCS - % Recovery			_		
Acidity (as CaCO3)	%	95	70-130	Pass	
Ammonia (as N)	%	97	70-130	Pass	
Chloride	%	103	70-130	Pass	
Fluoride (Total)	%	82	70-130	Pass	
Nitrate & Nitrite (as N)	%	98	70-130	Pass	
Nitrate (as N)	%	98	70-130	Pass	
Nitrite (as N)	%	99	70-130	Pass	
Phosphate total (as P)	%	121	70-130	Pass	
Phosphorus reactive (as P)	%	118	70-130	Pass	
Sulphate (as SO4)	%	109	70-130	Pass	
Total Kjeldahl Nitrogen (as N)	%	118	70-130	Pass	
LCS - % Recovery					
Alkalinity (speciated)					
Carbonate Alkalinity (as CaCO3)	%	96	70-130	Pass	
Total Alkalinity (as CaCO3)	%	103	70-130	Pass	
LCS - % Recovery					
Heavy Metals					
Aluminium	%	111	80-120	Pass	
Arsenic	%	105	80-120	Pass	
Cadmium	%	99	80-120	Pass	
Chromium	%	96	80-120	Pass	
Cobalt	%	94	80-120	Pass	
Copper	%	90	80-120	Pass	
Iron	%	99	80-120	Pass	
Lead	%	92	80-120	Pass	
Manganese	%	98	80-120	Pass	
Mercury	%	93	80-120	Pass	
Nickel	%	93	80-120	Pass	
Selenium	%	93	80-120	Pass	
Uranium	%	95	80-120	Pass	
Zinc	%	94	80-120	Pass	
LCS - % Recovery					
Alkali Metals					
Calcium	%	105	80-120	Pass	
Magnesium	%	104	80-120	Pass	
Potassium	%	95	80-120	Pass	
Sodium	%	101	80-120	Pass	
LCS - % Recovery					
Per- and Polyfluoroalkyl Substances (PFASs) - Short					

Test		Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code	
1H.1H.2H.2H-perfluorooctanesulfon	ic acid (6:2 FTSA)		%	96		50-150	Pass	
Perfluorohexanesulfonic acid (PFHx	(S)		%	96		50-150	Pass	
Perfluorooctanesulfonic acid (PFOS	;) ·		%	94		50-150	Pass	
Perfluorooctanoic acid (PFOA)			%	102		50-150	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Total Recoverable Hydrocarbons				Result 1				
TRH C10-C14	S22-Ap0059356	NCP	%	114		70-130	Pass	
TRH >C10-C16	S22-Ap0059356	NCP	%	117		70-130	Pass	
Spike - % Recovery				1	i	i.		
	1			Result 1				
Ammonia (as N)	S22-My0003260	NCP	%	73		70-130	Pass	
Ammonium Ion (as N)	M22-My0002843	NCP	%	122		70-130	Pass	
Nitrate & Nitrite (as N)	S22-My0003260	NCP	%	91		70-130	Pass	
Nitrate (as N)	S22-My0003260	NCP	%	91		70-130	Pass	
Nitrite (as N)	S22-My0003260	NCP	%	85		70-130	Pass	
Total Kjeldahl Nitrogen (as N)	M22-My0005753	NCP	%	115		70-130	Pass	
Spike - % Recovery				i	1 1	1	r	
Heavy Metals	1			Result 1				
Aluminium	S22-My0002668	CP	%	99		75-125	Pass	
Aluminium (filtered)	S22-My0002668	CP	%	91		75-125	Pass	
Arsenic	S22-My0002668	CP	%	105		75-125	Pass	
Arsenic (filtered)	S22-My0002668	CP	%	96		75-125	Pass	
Cadmium	S22-My0002668	CP	%	106		75-125	Pass	
Cadmium (filtered)	S22-My0002668	CP	%	95		75-125	Pass	
Chromium	S22-My0002668	CP	%	93		75-125	Pass	
Chromium (filtered)	S22-My0002668	CP	%	90		75-125	Pass	
Cobalt	S22-My0002668	CP	%	94		75-125	Pass	
Cobalt (filtered)	S22-My0002668	CP	%	88		75-125	Pass	
Copper	S22-My0002668	CP	%	90		75-125	Pass	
Copper (filtered)	S22-My0002668	CP	%	85		75-125	Pass	
Iron	S22-My0007021	NCP	%	104		75-125	Pass	
Lead	S22-My0002668	CP	%	99		75-125	Pass	
Lead (filtered)	S22-My0002668	CP	%	90		75-125	Pass	
Manganese	S22-Ap0054745	NCP	%	107		75-125	Pass	
Mercury	S22-My0002668	CP	%	109		75-125	Pass	
Mercury (filtered)	S22-My0002668	CP	%	102		75-125	Pass	
Nickel	S22-My0002668	CP	%	95		75-125	Pass	
Nickel (filtered)	S22-My0002668	CP	%	84		75-125	Pass	
Selenium	S22-My0002668	CP	%	84		75-125	Pass	
Selenium (filtered)	S22-My0002668	CP	%	87		75-125	Pass	
Uranium	S22-My0002668	CP	%	117		75-125	Pass	
Uranium (filtered)	S22-My0002668	CP	%	100		75-125	Pass	
Zinc	S22-My0002668	CP	%	90		75-125	Pass	
Zinc (filtered)	S22-My0002668	CP	%	86		75-125	Pass	
Spike - % Recovery								
Alkali Metals				Result 1				
Calcium	B22-My0005495	NCP	%	105		75-125	Pass	
Magnesium	B22-My0005495	NCP	%	87		75-125	Pass	
Potassium	B22-My0005495	NCP	%	86		75-125	Pass	
Sodium	B22-My0005495	NCP	%	97		75-125	Pass	
Spike - % Recovery								

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Per- and Polyfluoroalkyl Substand	es (PFASs) - Shor	t		Result 1					
1H.1H.2H.2H- perfluorooctanesulfonic acid (6:2 FTSA)	S22-My0009541	NCP	%	100			50-150	Pass	
Perfluorohexanesulfonic acid (PFHxS)	S22-My0009541	NCP	%	95			50-150	Pass	
Perfluorooctanesulfonic acid (PFOS)	S22-My0009541	NCP	%	97			50-150	Pass	
Perfluorooctanoic acid (PFOA)	S22-My0009541	NCP	%	105			50-150	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate				-					
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
TRH C6-C9	S22-My0002625	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH C10-C14	S22-Ap0059355	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH C15-C28	S22-Ap0059355	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH C29-C36	S22-Ap0059355	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Naphthalene	S22-My0002625	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
TRH C6-C10	S22-My0002625	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH >C10-C16	S22-Ap0059355	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH >C16-C34	S22-Ap0059355	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH >C34-C40	S22-Ap0059355	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate				•					
BTEX				Result 1	Result 2	RPD			
Benzene	S22-My0002625	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	S22-My0002625	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	S22-My0002625	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	S22-My0002625	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	S22-My0002625	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total*	S22-My0002625	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
Duplicate									
Volatile Organics				Result 1	Result 2	RPD			
1.1-Dichloroethane	S22-My0002625	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.1-Dichloroethene	S22-My0002625	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.1.1-Trichloroethane	S22-My0002625	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.1.1.2-Tetrachloroethane	S22-My0002625	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.1.2-Trichloroethane	S22-My0002625	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.1.2.2-Tetrachloroethane	S22-My0002625	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.2-Dibromoethane	S22-My0002625	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.2-Dichlorobenzene	S22-My0002625	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.2-Dichloroethane	S22-My0002625	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.2-Dichloropropane	S22-My0002625	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.2.3-Trichloropropane	S22-My0002625	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.2.4-Trimethylbenzene	S22-My0002625	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.3-Dichlorobenzene	S22-My0002625	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.3-Dichloropropane	S22-My0002625	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.3.5-Trimethylbenzene	S22-My0002625	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.4-Dichlorobenzene	S22-My0002625	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
2-Butanone (MEK)	S22-My0002625	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
2-Propanone (Acetone)	S22-My0002625	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
4-Chlorotoluene	S22-My0002625	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
4-Methyl-2-pentanone (MIBK)	S22-My0002625	NCP	mg/L	< <u>0.0</u> 05	< 0.005	<1	30%	Pass	
Allyl chloride	S22-My0002625	NCP	mg/L	< <u>0.0</u> 01	< 0.001	<1	30%	Pass	
Bromobenzene	S22-My0002625	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Bromochloromethane	S22-My0002625	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Bromodichloromethane	S22-My0002625	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	

Duplicate									
Volatile Organics				Result 1	Result 2	RPD			
Bromoform	S22-My0002625	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Bromomethane	S22-My0002625	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Carbon disulfide	S22-My0002625	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Carbon Tetrachloride	S22-My0002625	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chlorobenzene	S22-My0002625	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chloroethane	S22-My0002625	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Chloroform	S22-My0002625	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Chloromethane	S22-My0002625	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
cis-1.2-Dichloroethene	S22-My0002625	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
cis-1.3-Dichloropropene	S22-My0002625	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dibromochloromethane	S22-My0002625	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dibromomethane	S22-My0002625	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dichlorodifluoromethane	S22-My0002625	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Iodomethane	S22-My0002625	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Isopropyl benzene (Cumene)	S22-My0002625	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Methylene Chloride	S22-My0002625	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Styrene	S22-My0002625	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Tetrachloroethene	S22-My0002625	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
trans-1.2-Dichloroethene	S22-My0002625	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
trans-1.3-Dichloropropene	S22-My0002625	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Trichloroethene	S22-My0002625	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Trichlorofluoromethane	S22-My0002625	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Vinyl chloride	S22-My0002625	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Duplicate				-				•	
Polycyclic Aromatic Hydrocarbons	s (Trace level)			Result 1	Result 2	RPD			
Acenaphthene	M22-Ap0045599	NCP	mg/L	0.00040	0.00030	40	30%	Fail	Q02
Acenaphthylene	M22-Ap0045599	NCP	mg/L	0.0026	0.0012	73	30%	Fail	Q02
Anthracene	M22-Ap0045599	NCP	mg/L	0.0040	0.0022	59	30%	Fail	Q02
Benz(a)anthracene	M22-Ap0045599	NCP	mg/L	0.0089	0.0052	53	30%	Fail	Q02
Benzo(a)pyrene	M22-Ap0060546	NCP	mg/L	< 0.00001	< 0.00001	<1	30%	Pass	
Benzo(b&j)fluoranthene	M22-Ap0045599	NCP	mg/L	0.0063	0.0039	48	30%	Fail	Q02
Benzo(g.h.i)perylene	M22-Ap0045599	NCP	mg/L	0.0093	0.0051	58	30%	Fail	Q02
Benzo(k)fluoranthene	M22-Ap0045599	NCP	mg/L	0.0055	0.0034	48	30%	Fail	Q02
Chrysene	M22-Ap0045599	NCP	mg/L	0.014	0.0086	44	30%	Fail	Q02
Dibenz(a.h)anthracene	M22-Ap0045599	NCP	mg/L	0.00080	0.00040	59	30%	Fail	Q02
Fluoranthene	M22-Ap0045599	NCP	mg/L	0.016	0.0097	49	30%	Fail	Q02
Fluorene	M22-Ap0045599	NCP	mg/L	0.0019	0.0012	45	30%	Fail	Q02
Indeno(1.2.3-cd)pyrene	M22-Ap0045599	NCP	mg/L	0.0040	0.0023	55	30%	Fail	Q02
Naphthalene	M22-Ap0045599	NCP	mg/L	0.0010	0.00050	73	30%	Fail	Q02
Phenanthrene	M22-Ap0045599	NCP	mg/L	0.014	0.0080	52	30%	Fail	Q02
Pyrene	M22-Ap0045599	NCP	mg/L	0.014	0.0079	55	30%	Fail	Q02
Duplicate								1	
	1			Result 1	Result 2	RPD			
Ammonia (as N)	S22-My0003260	NCP	mg/L	0.02	0.01	44	30%	Fail	Q15
Ammonium Ion (as N)	S22-My0003260	NCP	mg/L	0.02	0.01	44	30%	Fail	Q15
Chloride	M22-My0001173	NCP	mg/L	550	550	<1	30%	Pass	
Fluoride (Total)	S22-My0002668	CP	mg/L	6.2	5.7	9.0	30%	Pass	
Nitrate & Nitrite (as N)	S22-My0003260	NCP	mg/L	0.30	0.29	1.0	30%	Pass	
Nitrate (as N)	S22-My0003260	NCP	mg/L	0.29	0.29	<1	30%	Pass	
Nitrite (as N)	S22-My0003260	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Phosphate total (as P)	B22-My0003282	NCP	mg/L	4.6	4.3	7.0	30%	Pass	
Sulphate (as SO4)	M22-My0001173	NCP	mg/L	30	30	1.0	30%	Pass	
Total Kjeldahl Nitrogen (as N)	M22-My0005203	NCP	mg/L	18	22	18	30%	Pass	

Duplicate									
Alkalinity (speciated)				Result 1	Result 2	RPD			
Bicarbonate Alkalinity (as CaCO3)	M22-Mv0000769	NCP	ma/L	280	270	3.0	30%	Pass	
Carbonate Alkalinity (as CaCO3)	M22-My0000769	NCP	ma/L	< 10	< 10	<1	30%	Pass	
Hydroxide Alkalinity (as CaCO3)	M22-My0000769	NCP	ma/l	< 20	< 20	<1	30%	Pass	
Total Alkalinity (as CaCO3)	M22-My0000769	NCP	ma/l	280	270	3.0	30%	Pass	
	,								
Heavy Metals				Result 1	Result 2	RPD			
Aluminium	S22-Ap0055433	NCP	ma/L	< 0.05	< 0.05	<1	30%	Pass	
Aluminium (filtered)	S22-Ap0060536	NCP	ma/L	< 0.05	< 0.05	<1	30%	Pass	
Arsenic	S22-Ap0055433	NCP	ma/L	< 0.001	< 0.001	<1	30%	Pass	
Arsenic (filtered)	S22-Ap0060536	NCP	ma/L	< 0.001	< 0.001	<1	30%	Pass	
Cadmium	S22-Ap0055433	NCP	ma/L	< 0.0002	< 0.0002	<1	30%	Pass	
Cadmium (filtered)	S22-Ap0060536	NCP	ma/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium	S22-Ap0055433	NCP	ma/L	< 0.001	< 0.001	<1	30%	Pass	
Chromium (filtered)	S22-Ap0060536	NCP	ma/L	< 0.001	< 0.001	<1	30%	Pass	
Cobalt	S22-Ap0055433	NCP	ma/L	< 0.001	< 0.001	<1	30%	Pass	
Cobalt (filtered)	S22-Ap0060536	NCP	ma/l	0.004	0.004	2.0	30%	Pass	
Copper	S22-Ap0055433	NCP	ma/l	0.001	0.001	17	30%	Pass	
Copper (filtered)	S22-Ap0060536	NCP	ma/l	0.002	0.002	1.0	30%	Pass	
Iron	S22-Ap0055433	NCP	ma/l	< 0.05	< 0.05	<1	30%	Pass	
Iron (filtered)	S22-Ap0060536	NCP	ma/l	< 0.05	< 0.05	<1	30%	Pass	
Lead	S22-Ap0055433	NCP	ma/l	< 0.001	< 0.001	<1	30%	Pass	
Lead (filtered)	S22-Ap0060536	NCP	ma/l	< 0.001	< 0.001	<1	30%	Pass	
Manganese	S22-Ap0055433	NCP	ma/l	< 0.005	< 0.005	<1	30%	Pass	
Manganese (filtered)	S22-Ap0060536	NCP	ma/l	0.38	0.38	1.0	30%	Pass	
Mercury	S22-Ap0055433	NCP	ma/l	< 0.0001	< 0.0001	<1	30%	Pass	
Mercury (filtered)	S22-Ap0060536	NCP	ma/l	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel	S22-Ap0055433	NCP	ma/l	< 0.001	< 0.001	<1	30%	Pass	
Nickel (filtered)	S22-Ap0060536	NCP	ma/L	0.006	0.006	<1	30%	Pass	
Selenium	S22-Ap0055433	NCP	ma/L	< 0.001	< 0.001	<1	30%	Pass	
Selenium (filtered)	S22-Ap0060536	NCP	ma/L	< 0.001	< 0.001	<1	30%	Pass	
Uranium	S22-Ap0055433	NCP	ma/L	< 0.005	< 0.005	<1	30%	Pass	
Uranium (filtered)	S22-Ap0060536	NCP	ma/L	< 0.005	< 0.005	<1	30%	Pass	
Zinc	S22-Ap0055433	NCP	ma/L	< 0.005	< 0.005	<1	30%	Pass	
Zinc (filtered)	S22-Ap0060536	NCP	ma/L	0.072	0.080	11	30%	Pass	
Duplicate								1	
Alkali Metals				Result 1	Result 2	RPD			
Calcium	B22-Mv0005495	NCP	ma/L	38	51	30	30%	Pass	
Magnesium	B22-Mv0005495	NCP	ma/L	19	21	9.0	30%	Pass	
Potassium	B22-My0005495	NCP	mg/L	6.4	6.9	6.0	30%	Pass	
Sodium	B22-My0005495	NCP	mg/L	370	370	<1	30%	Pass	
Duplicate				1					
Per- and Polyfluoroalkyl Substances (PFASs) - Short				Result 1	Result 2	RPD			
1H.1H.2H.2H-									
perfluorooctanesulfonic acid (6:2 FTSA)	S22-My0009540	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
Perfluorohexanesulfonic acid (PFHxS)	S22-My0009540	NCP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorooctanesulfonic acid	S22 My0000540		110/	- 0.01	- 0.01	-1	200/	Bass	
Perfluorooctanoic acid (PEOA)	S22-My0009540	NCP			< 0.01	~1	30%	Pass	
	1 022 Wy 0003040 1	1101	սց/ե		<u> </u>	<u></u>	0070	1 433	(

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Temperature of Chilled samples on receipt	18.7°C
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.

Isotope dilution is used for calibration of each native compound for which an exact labelled analogue is available (Isotope Dilution Quantitation). The isotopically labelled N11 analogues allow identification and recovery correction of the concentration of the associated native PFAS compounds.

Q02 The duplicate %RPD is outside the recommended acceptance criteria. Further analysis indicates sample heterogeneity as the cause

Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

R09 Theoretically the TKN result should be greater or equal to the ammonia concentration. However the difference reported is within the measurement uncertainty of the individual tests

Authorised by:

Emma Beesley	Analytical Services Manager
Caitlin Breeze	Senior Analyst (VIC)
Mary Makarios	Senior Analyst (NSW)
Charl Du Preez	Senior Analyst (NSW)
Roopesh Rangarajan	Senior Analyst (NSW)
Joseph Edouard	Senior Analyst (VIC)
Raymond Siu	Senior Analyst (NSW)
Scott Beddoes	Senior Analyst (NSW)

Hill -

Glenn Jackson General Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Eurofins Environment Testing Australia Pty Ltd

Melbourne 6 Monterey Road

NATA # 1261 Site # 1254

ABN: 50 005 085 521

Sydney 179 Magowar Road Dandenong South VIC 3175 Girraween NSW 2066 Phone : +61 3 8564 5000 Phone : +61 2 9900 84 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 www.eurofins.com.au

Eurofins ARL Pty Ltd ABN: 91 05 0159 898

Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370

NZBN: 9429046024954 Auckland 35 O'Rorke Road

Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327

Eurofins Environment Testing NZ Limited

EnviroSales@eurofins.com

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290

Sample Receipt Advice

Company name:	SMEC Australia Pty Ltd (WOLL)
Contact name:	Alexander Williams
Project name:	PORT KEMBLA MANILDRA
Project ID:	30013174
Turnaround time:	5 Day
Date/Time received	Apr 28, 2022 6:08 PM
Eurofins reference	884366

Sample Information

A detailed list of analytes logged into our LIMS, is included in the attached summary table. 1

Newcastle

4/52 Industrial Drive

Mayfield East NSW 2304

PO Box 60 Wickham 2293

NATA # 1261 Site # 25079

Phone : +61 2 4968 8448

- Sample Temperature of chilled sample on the batch as recorded by Eurofins Sample Receipt : 18.7 degrees Celsius.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace. 1
- X Split sample sent to requested external lab.
- X Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

Samples received by the laboratory after 5.30pm are deemed to have been received the following working day.

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager: Emma Beesley on phone : or by email: EmmaBeesley@eurofins.com Results will be delivered electronically via email to Alexander Williams - alex.williams@smec.com. Note: A copy of these results will also be delivered to the general SMEC Australia Pty Ltd (WOLL) email address.

Global Leader - Results you can trust
•••	ourofi				Eurofins Environme ABN: 50 005 085 521	ent T	estin	ig Au	strali	a Pty	Ltd										Eu ABI	rofin: N: 91 (s ARI	L Pty 9 898	Ltd	Eur NZB	ofins	Envii 290460	r <mark>onm</mark>)24954	ent 1	⊺estin	ig NZ	Limited
web: w email: f	ww.eurofins.com.au	.com	ironment	Testing	Melbourne 6 Monterey Road Dandenong South VIC 3 Phone : +61 3 8564 500 NATA # 1261 Site # 125	3175)0 54	Sydn 179 M Girrav Phone NATA	ey Magowa ween N e : +61 N # 126	ar Roa NSW 2 2 990 31 Site	id 066 00 840 # 182	1 N D F 17 N	Brisba 1/21 Si Murarr Phone NATA	mallwo ie QLD : +61 7 # 1261	ood Pla 0 4172 7 3902 Site a	ace 2 2 4600 # 2079	4/: 4/: PC 4 Pt N/	ewcas 52 Ind ayfield O Box hone : ATA #	tle ustrial East I 60 Wid +61 2 1261 \$	Drive NSW 2 ckham 4968 8 Site # 2	2304 2293 3448 25079	Per 46- We Pho NA	th 48 Bar Ishpoc one : + TA # 2	nksia F ol WA 6 61 8 6 377 Si	Road 6106 6253 44 ite # 23	444 370	Auc 35 C Pen Phor IAN2	kland VRorke rose, A ne : +6 Z # 132	∋ Road \ucklar 34 9 52 27	nd 1061 6 45 5	1 1	Chris 43 De Rolles Phon IANZ	ston, C e : 080 # 1290	ch rive hristchurch 767 0 856 450)
Co Ad	mpany Name: dress:	SMEC Austr Level 2, 6-8 Wollongong NSW 2500	alia Pty Ltd (V Regent Street	VOLL) t				Ord Rep Pho Fax	er No ort # one: :	0.: #:		8843 02 4	366 243 4	4405							R D P C	ecei ue: riori onta	ved: ty: ict Na	ame	:	Ap M 2 Al	or 28, ay 6, Day exan	, 202 2022 Ider V	2 6:0 2 Nillia)8 Pl ms	М		
Pro Pro	oject Name: oject ID:	PORT KEM 30013174	BLA MANILDF	RA																E	Euro	ins /	Anal	ytica	al Sei	rvice	es Ma	anag	er : E	Emm	າa Be	esle	y
		Sa	mple Detail			Acidity (as CaCO3)	Aluminium	Aluminium (filtered)	Ammonium Ion (as N)	Cobalt	Cobalt (filtered)	Iron	Iron (filtered)	Manganese	Manganese (filtered)	Phosphate total (as P)	Phosphorus reactive (as P)	Selenium	Selenium (filtered)	Uranium	Uranium (filtered)	Metals M8	Metals M8 filtered	Phenols (Speciated)	Hardness Set	Nitrogens (speciated)	Volatile Organics	Eurofins Suite B1	Eurofins Suite B11F: Cl/SO4/Alkalinity/Total	Per- and Polyfluoroalkyl Substances (PFASs) - Short	Eurofins Suite B11C: Na/K/Ca/Mg	Polycyclic Aromatic Hydrocarbons (Trace level)	Total Dissolved Solids Dried at 180°C ± 2°C
Melb	ourne Laborato	ory - NATA # 12	61 Site # 125	4		Х			Х							X	X								X	X			х		X	X	х
Sydr	ney Laboratory	- NATA # 1261	Site # 18217				X	X		X	X	X	X	X	X	<u> </u>	<u> </u>	X	X	X	X	X	X	X	<u> </u>		X	X	\vdash	Х		\parallel	
Bris	bane Laboratory	y - NATA # 126	1 Site # 20794	4						_		_	_		_	<u> </u>	-								<u> </u>		\square	\square	\vdash			\vdash	
May	field Laboratory	- NATA # 1261	Site # 25079							-							-										\vdash	\vdash	\vdash		<u> </u>	\vdash	
Pert	h Laboratory - N	IATA # 2377 Si	te # 2370							+			+		+												\vdash		\vdash			\parallel	
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID																												
1	QA1A	Apr 26, 2022		Water	S22- My0002668	х	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	х	x	x	х
Test	Counts					1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Control Turing of the standard Turing of the standa		MEC				CHAIN OF CU	STODY	FORM									
SMACE OPEIC Wolkinging TURNAPOUND BECUREVENTS Standard (Turational time Mo-Standard Tarannon time Mo-Standard Taranno time Mo-Standard Tarannon time Mo-Standard Tarannon	Member of the Surbana	Jurong Group													-		
ORDER CLUE: ORDER Manual Clumanian Climatical Clumanian Climatical Clumanian Climatical Clim	SMEC OFFICE: V	Vollongong			TURNAROUND REC	QUIREMENTS : Standard Turnaround time	2						LAB: Eurofi	ns Laborator	y - Wollong eceint	ong	
ORDER TWANNEE Cold GOURE NO. SWEE 2002 Pricial Cold GOURA MULTINE Cold MULINE Cold MULINE <thc< td=""><td>PROJECT: Port K</td><td>embla Manildra</td><td></td><td></td><td></td><td>Non-Standard Turnaround tim</td><td>e</td><td></td><td></td><td></td><td></td><td></td><td>DISPATCH</td><td>TO (ADDRE</td><td>SS & PHON</td><td>IE NO.):</td><td></td></thc<>	PROJECT: Port K	embla Manildra				Non-Standard Turnaround tim	e						DISPATCH	TO (ADDRE	SS & PHON	IE NO.):	
OPCOLECT MANAGER Awardon VITILINE OPT 0 WEST VARIE DATE: MANAGER Awardon VITILINE OPT 0 WEST VARIE DATE: MANAGER Awardon VITILINE WEST VARIE DATE: MANAGER AWARDON VITILINE WEST VARIE DATE: MANAGER AWARDON VITILINE MECHANDE MANAGER AWARDON VITILINE MECHAND	PROJECT NUMB	ER: 30013174			LAB QUOTE NO .: S	SMEC 2022 Pricelist			C	C SEQUI	ENCE NUMBER	(Circle)	Eurofins La	ooratory			
SAMPLE DIFY: Joint Reynolds RECEIVED BY: Joint Reynolds RECEIVED BY: ALS DATE/TIME 27/04/2022 COMMENTS QA1A Date / Date / Sample Information (AR) PAS 20mL HOPE, 500mL unpreserved, DOTEL aurals Sample Information (AR) PFAS 20mL HOPE, 500mL unpreserved, DOTEL aurals Sample Information (AR) PFAS 20mL HOPE, 500mL unpreserved, PFAS 20mL HOPE, 500mL unpreserved, PFAS 20mL HOPE, 500mL unpreserved, PFAS 20mL HOPE, 500mL unpreserved, DATE/TIME 27/04/2022 Sample Information (AR) PFAS 20mL HOPE, 500mL Unpreserved, PFAS 20mL HOPE, 500mL Unpreserved, PFAS 20mL HOPE, 500mL Unpreserved, PFAS 20mL HOPE, 500mL Unpreserved, PFAS 20mL HOPE	PROJECT MANA	GER: Alexander Williams			CONTACT PH: 0418	5 188 089 (Alex Williams)			0	F: 6			WEST LAN	E COVE NS	W		
DATE SAMPLED:::::000/0022 DELEVIDUE DY:::SMEC_Jood Reyrolds DELEVIDUE DY:::SMEC_JON REYROLDS	SAMPLED BY: Jo	oel Reynolds										1	• • • • • • • • • • • • • • • • • • •				
Bindli Reports and involds to: josi nynobst@ame.com, alsex.Willars@gene.com Def of all all of all all all all all all all all all al	DATE SAMPLED	26/04/2022				RELINQUISHED BY: SME	EC Joel F	Reynolds	R	ECEIVED I	BY: ALS 27/04/2022		JISHED BY: ME: Timina ta	ALS be confirma	ed		DATE/TIME:
Special Laboratory Instructions: Disolved Heavy metals (AI, AS, CG, CC, CG, CG, FG, FD, HG, MG, NI, Se, U 2), "Trace requirested for AI, Se, U only: Contamination analysis requested: Contenerget Contamination analysis reque	Email Reports ar	nd Invoice to: joel.reynolds@si	mec.com, alex.willia	ams@smec.com		DATE TIME. 20042022											
SAMPLE DETAILS Contamination analysis requested: COMMENTS LAB ID SAMPLE ID Depth (m) DATE / TIME SAMPLE MATRIX CONTAINER TYPE & PRESERVATIVE (V C C) gr	Special Laborato	ry Instructions: Dissolved He	avy metals (AI. As,	Cd, Cr, Co, Cu,	Fe, Pb, Hg, Mn Ni, Se	, U Z). "Trace requested for AI, Se, U only											
LAB ID SAMPLE ID Depth (m) DATE / TIME SAMPLE MATRIX CONTAINER TYPE & PRESERVATIVE g <td></td> <td></td> <td></td> <td>SAMPLE DE</td> <td>TAILS</td> <td></td> <td></td> <td></td> <td></td> <td>Contamin</td> <td>ation analysis r</td> <td>equested:</td> <td></td> <td></td> <td></td> <td></td> <td>COMMENTS</td>				SAMPLE DE	TAILS					Contamin	ation analysis r	equested:					COMMENTS
QA1A 28/04/2022 Water 1x amber 100mL, 2x vials H2S04, 1x metals (fitterd), 1x metal (unfitted), 2x PFAS 20mL H0PE, 500mL unpreserved, 100mL purple 9 X Table 1 Port Kembla Triplicate analysis Acidity Ammonium Ion (as N) Call 28/04/2022 Water 1x amber 100mL, 2x vials H2S04, 1x metals (fitterd), 1x metal (unfitted), 2x PFAS 20mL H0PE, 500mL unpreserved, 	LAB ID	SAMPLE ID	Depth (m)	DATE / TIME	SAMPLE MATRIX	CONTAINER TYPE & PRESERVATIVE	ers.	n Table									
QA1A 26/04/2022 Water 1x amber 100mL, 2x valie H2204, 1x, 2 metals (liftered), 1x metal (liftered), 2x, 2 metals (liftered), 1x metal (liftered), 2x, 12 metals (liftered), 1x metal (liftered), 2x, 12 metals (liftered), 1x metal (liftered), 2x, 10 metals (liftered), 1x, 1x 1x, 1x, 1x, 1x, 1x, 1x, 1x, 1x							TOTAL NC	Selected analytes i									
Image: Set of the solution of the soluticant of the solution of the solution of the solution of		QA1A	(*)	26/04/2022	Water	1x amber 100mL, 2x vials H2S04, 1x metals (filtered), 1 x metal (unfiltred), 2x PFAS 20mL HDPE, 500mL unpreserved, 100ml purple	9	X			Table 1 P	Port Kemb Ac Ammoniur fins Suite E	la Triplicate idity m lon (as N) 311C Na/K/0	analysis Ca/Mg			
Notes: Image: Content of the second seco											Eurofins Su	lite B11G (Hardn	CI/SO4/Alka	inity/Total I	-		
Notes: 1 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>٦</td> <td>Fotal metal</td> <td>s - Al, Fe, M</td> <td>n</td> <td></td> <td>ŀ</td> <td></td>							-				٦	Fotal metal	s - Al, Fe, M	n		ŀ	
Image: Notes: Image: Notes: Image: Notes: Image: Notes: Notes: Image: Notes: Note:											Filtered me "Trace ana PFA	etals - M8 · lysis requ Nitrogens AS Short S	+ Al Co, Fe rested for A (speciated) uite #2 Stan	, Mn, Se, U I, Se and L dard	I		-1
Notes: B1 (TRH/BTEX) VOC											Phe	Reactive PAH (Tr enols spec T	Phosphorus Phosphorus race level) iated (Stand DS) ard)			ې مە
Notes:						Juszi -							H/BTEX)		0		
Notes:			N Stranger	Nation 1 B			2		0	0	0 0	0		0	U	U	
	Notes:																

J.DAM By 28/4/2 6108/ # 884366

CERTIFICATE OF ANALYSIS Work Order : EW2201994 Page : 1 of 23 Amendment :1 Client Laboratory SMEC AUSTRALIA PTY LTD : Environmental Division NSW South Coast Contact : JOEL REYNOLDS Contact : Katie Davis Address Address : 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia : LEVEL 2 6-8 REGENT STREET WOLLONGONG 2500 Telephone Telephone : 02 42253125 · ____ Project : Port Kembla GME **Date Samples Received** : 27-Apr-2022 15:30 Order number : -Date Analysis Commenced : 29-Apr-2022 C-O-C number · 36757 Issue Date : 16-May-2022 13:05 Sampler : JOEL REYNOLDS Site : Port Kembla Manildra April 2022 Quote number : SY/080/21 V3 Accreditation No. 825 No. of samples received : 13 Accredited for compliance with ISO/IEC 17025 - Testing No. of samples analysed : 10

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Franco Lentini	LCMS Coordinator	Sydney Organics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW
Wisam Marassa	Inorganics Coordinator	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

• Analytical work for this work order will be conducted at ALS Sydney.

- EP075 (SIM): Where reported, Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.
- EP231X Per- and Polyfluoroalkyl Substances (PFAS): Samples received in 20ml or 125ml bottles have been tested in accordance with the QSM5.3 compliant, NATA accredited method. 60mL or 250mL bottles have been tested to the legacy QSM 5.1 aligned, NATA accredited method.
- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP074: Where reported, Total Trihalomethanes is the sum of the reported concentrations of all Trihalomethanes at or above the LOR.
- EP074: Where reported, Total Trimethylbenzenes is the sum of the reported concentrations of 1.2.3-Trimethylbenzene, 1.2.4-Trimethylbenzene and 1.3.5-Trimethylbenzene at or above the LOR.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.
- EG020: It is recognised that total concentration is less than dissolved for some metal analytes. However, the difference is within experimental variation of the methods.
- Amendment (16/05/2022): This report has been amended following the removal of analytes not required per Alex Williams. All other analysis results are as per the previous report.
- EA016: Calculated TDS is determined from Electrical conductivity using a conversion factor of 0.65.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.
- EP231: Stable isotope enriched internal standards are added to samples prior to extraction. Target compounds have a direct analogous internal standard with the exception of PFPeS, PFHpA, PFDS, PFTrDA and 10:2 FTS. These compounds use an internal standard that is chemically related and has a retention time close to that of the target compound. The DQO for internal standard response is 50-150% of that established at initial calibration. PFOS is quantified using a certified, traceable standard consisting of linear and branched PFOS isomers. These practices are in line with recommendations in the National Environmental Management Plan for PFAS (Australian HEPA) and also conform to QSM 5.3 (US DoD) requirements.

Sub-Matrix: GROUNDWATER			Sample ID	OHMW28	SMW02	OHMW20	SMW05	SMW03
(Matrix: WATER)				additional pfas bottles				
				for lab qaqc				
		Sampli	ng date / time	26-Apr-2022 10:02	26-Apr-2022 12:17	26-Apr-2022 12:51	26-Apr-2022 13:26	26-Apr-2022 14:08
Compound	CAS Number	LOR	Unit	EW2201994-001	EW2201994-002	EW2201994-003	EW2201994-004	EW2201994-005
				Result	Result	Result	Result	Result
EA005P: pH by PC Titrator								
pH Value		0.01	pH Unit	7.78	7.81	7.99	7.93	7.98
EA010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	µS/cm	2640	1970	15100	2280	1890
EA016: Calculated TDS (from Electrical C	Conductivity)							
Total Dissolved Solids (Calc.)		1	mg/L	1720	1280	9820	1480	1230
EA065: Total Hardness as CaCO3								
Total Hardness as CaCO3		1	mg/L	1470	1030	1640	1160	610
ED037P: Alkalinity by PC Titrator	ľ							
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	383	214	436	227	266
Total Alkalinity as CaCO3		1	mg/L	383	214	436	227	266
ED038: Acidity								
Acidity as CaCO3		1	mg/L	2	2	3	1	3
ED041C: Sulfate (Turbidimetric) as SO4			5	_	-	_	-	-
Sulfate as SO4 - Turbidimetric	1/18/08 70 8	1	ma/l	1170	825	1670	981	445
	14000-79-0	•	iiig/E	1110	020	1010	301	
ED045G: Chloride by Discrete Analyser	40007.00.0	1	ma/l	40	22	4400	F 2	409
Chionde	16887-00-6	I	IIIg/L	40	33	4490	52	130
ED093F: Dissolved Major Cations		-		100				
	7440-70-2	1	mg/L	489	309	204	320	175
Magnesium	7439-95-4	1	mg/L	60	62	274	89	42
Sodium	7440-23-5	1	mg/L	122	105	2880	129	186
Potassium	7440-09-7	1	mg/L	24	6	76	10	8
EG020F: Dissolved Metals by ICP-MS								
Arsenic	7440-38-2	0.001	mg/L	0.068	0.038	<0.001	0.007	0.005
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.0028	0.0003	0.0002	0.0001
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Copper	7440-50-8	0.001	mg/L	<0.001	0.007	0.001	0.004	0.004
Cobalt	7440-48-4	0.001	mg/L	0.012	0.001	0.053	<0.001	<0.001
Nickel	7440-02-0	0.001	mg/L	0.066	0.018	0.005	0.030	0.017
Lead	7439-92-1	0.001	mg/L	<0.001	0.010	<0.001	<0.001	<0.001
Zinc	7440-66-6	0.005	mg/L	<0.005	0.448	<0.005	0.048	0.031

Sub-Matrix: GROUNDWATER			Sample ID	OHMW28	SMW02	OHMW20	SMW05	SMW03
(Matrix: WATER)				additional pfas bottles				
				for lab qaqc				
		Sampli	ng date / time	26-Apr-2022 10:02	26-Apr-2022 12:17	26-Apr-2022 12:51	26-Apr-2022 13:26	26-Apr-2022 14:08
Compound	CAS Number	LOR	Unit	EW2201994-001	EW2201994-002	EW2201994-003	EW2201994-004	EW2201994-005
				Result	Result	Result	Result	Result
EG020F: Dissolved Metals by ICP-MS - C	Continued							
Manganese	7439-96-5	0.001	mg/L	0.860	0.039	3.72	0.121	0.114
Iron	7439-89-6	0.05	mg/L	12.6	<0.05	4.07	0.47	<0.05
EG020T: Total Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	0.07	0.84	0.67	0.93	0.27
Manganese	7439-96-5	0.001	mg/L	0.922	0.047	4.18	0.158	0.125
Iron	7439-89-6	0.05	mg/L	12.4	2.08	5.45	3.49	0.61
EG035F: Dissolved Mercury by FIMS								
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
EG094F: Dissolved Metals in Fresh Wate	er by ORC-ICPMS	3						
Aluminium	7429-90-5	5	µg/L	6	5	<5	10	<5
Selenium	7782-49-2	0.2	µg/L	6.1	34.8	<0.2	81.7	144
Uranium	7440-61-1	0.05	µg/L	0.72	1.01	0.21	3.64	1.85
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	7.8	1.3	4.0	3.5	3.0
EK055G: Ammonia as N by Discrete Ana	alyser							
Ammonia as N	7664-41-7	0.01	mg/L	0.22	<0.01	0.67	0.01	0.02
EK055G-NH4: Ammonium as N by DA								
Ammonium as N	14798-03-9 N	0.01	mg/L	0.22	<0.01	0.67	<0.01	0.02
EK057G: Nitrite as N by Discrete Analys	ser							
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	0.03	<0.01	0.05	0.06
EK058G: Nitrate as N by Discrete Analy	vser							
Nitrate as N	14797-55-8	0.01	mg/L	1.98	6.79	<0.01	0.78	7.71
EK059G: Nitrite plus Nitrate as N (NOv)	by Discrete Ana	lysor	_					
Nitrite + Nitrate as N		0.01	mg/L	1.98	6.82	<0.01	0.83	7.77
EK067G: Total Phosphorus as P by Disc	croto Analysor		U					
Total Phosphorus as P		0.01	ma/L	0.24	0.39	0.22	0.14	0.02
EK071C: Poactive Phoenhorus as P by	discroto analysor							
Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	0.17	<0.01	<0.01	<0.01
EN055: Ionic Balance								
Ø Total Anions		0.01	meq/L	33.1	22.4	170	26.4	20.2
Ø Total Cations		0.01	meq/L	35.2	25.2	160	29.2	20.5
Ø Ionic Balance		0.01	%	3.10	6.00	3.09	4.92	0.78
L								

Sub-Matrix: GROUNDWATER			Sample ID	OHMW28	SMW02	OHMW20	SMW05	SMW03
(Matrix: WATER)				additional pfas bottles				
				for lab qaqc				
		Sampli	ng date / time	26-Apr-2022 10:02	26-Apr-2022 12:17	26-Apr-2022 12:51	26-Apr-2022 13:26	26-Apr-2022 14:08
Compound	CAS Number	LOR	Unit	EW2201994-001	EW2201994-002	EW2201994-003	EW2201994-004	EW2201994-005
				Result	Result	Result	Result	Result
EP074D: Fumigants								
2.2-Dichloropropane	594-20-7	5	µg/L	<5	<5	<5	<5	<5
1.2-Dichloropropane	78-87-5	5	µg/L	<5	<5	<5	<5	<5
cis-1.3-Dichloropropylene	10061-01-5	5	µg/L	<5	<5	<5	<5	<5
trans-1.3-Dichloropropylene	10061-02-6	5	μg/L	<5	<5	<5	<5	<5
1.2-Dibromoethane (EDB)	106-93-4	5	µg/L	<5	<5	<5	<5	<5
EP074E: Halogenated Aliphatic Compound	nds							
Dichlorodifluoromethane	75-71-8	50	µg/L	<50	<50	<50	<50	<50
Chloromethane	74-87-3	50	µg/L	<50	<50	<50	<50	<50
Vinyl chloride	75-01-4	50	μg/L	<50	<50	<50	<50	<50
Bromomethane	74-83-9	50	µg/L	<50	<50	<50	<50	<50
Chloroethane	75-00-3	50	µg/L	<50	<50	<50	<50	<50
Trichlorofluoromethane	75-69-4	50	µg/L	<50	<50	<50	<50	<50
1.1-Dichloroethene	75-35-4	5	µg/L	<5	<5	<5	<5	<5
lodomethane	74-88-4	5	µg/L	<5	<5	<5	<5	<5
trans-1.2-Dichloroethene	156-60-5	5	µg/L	<5	<5	<5	<5	<5
1.1-Dichloroethane	75-34-3	5	µg/L	<5	<5	<5	<5	<5
cis-1.2-Dichloroethene	156-59-2	5	µg/L	<5	<5	<5	<5	<5
1.1.1-Trichloroethane	71-55-6	5	µg/L	<5	<5	<5	<5	<5
1.1-Dichloropropylene	563-58-6	5	µg/L	<5	<5	<5	<5	<5
Carbon Tetrachloride	56-23-5	5	µg/L	<5	<5	<5	<5	<5
1.2-Dichloroethane	107-06-2	5	µg/L	<5	<5	<5	<5	<5
Trichloroethene	79-01-6	5	µg/L	<5	<5	<5	<5	<5
Dibromomethane	74-95-3	5	µg/L	<5	<5	<5	<5	<5
1.1.2-Trichloroethane	79-00-5	5	µg/L	<5	<5	<5	<5	<5
1.3-Dichloropropane	142-28-9	5	µg/L	<5	<5	<5	<5	<5
Tetrachloroethene	127-18-4	5	µg/L	<5	<5	<5	<5	<5
1.1.1.2-Tetrachloroethane	630-20-6	5	µg/L	<5	<5	<5	<5	<5
trans-1.4-Dichloro-2-butene	110-57-6	5	µg/L	<5	<5	<5	<5	<5
cis-1.4-Dichloro-2-butene	1476-11-5	5	µg/L	<5	<5	<5	<5	<5
1.1.2.2-Tetrachloroethane	79-34-5	5	µg/L	<5	<5	<5	<5	<5
1.2.3-Trichloropropane	96-18-4	5	µg/L	<5	<5	<5	<5	<5
Pentachloroethane	76-01-7	5	µg/L	<5	<5	<5	<5	<5
1.2-Dibromo-3-chloropropane	96-12-8	5	µg/L	<5	<5	<5	<5	<5

Sub-Matrix: GROUNDWATER			Sample ID	OHMW28	SMW02	OHMW20	SMW05	SMW03
(Matrix: WATER)				additional pfas bottles				
				for lab qaqc				
		Samplii	ng date / time	26-Apr-2022 10:02	26-Apr-2022 12:17	26-Apr-2022 12:51	26-Apr-2022 13:26	26-Apr-2022 14:08
Compound	CAS Number	LOR	Unit	EW2201994-001	EW2201994-002	EW2201994-003	EW2201994-004	EW2201994-005
				Result	Result	Result	Result	Result
EP074E: Halogenated Aliphatic Compounds	- Continued							
Hexachlorobutadiene	87-68-3	5	µg/L	<5	<5	<5	<5	<5
EP074F: Halogenated Aromatic Compounds								
Chlorobenzene	108-90-7	5	µg/L	<5	<5	<5	<5	<5
Bromobenzene	108-86-1	5	µg/L	<5	<5	<5	<5	<5
2-Chlorotoluene	95-49-8	5	µg/L	<5	<5	<5	<5	<5
4-Chlorotoluene	106-43-4	5	µg/L	<5	<5	<5	<5	<5
1.3-Dichlorobenzene	541-73-1	5	µg/L	<5	<5	<5	<5	<5
1.4-Dichlorobenzene	106-46-7	5	µg/L	<5	<5	<5	<5	<5
1.2-Dichlorobenzene	95-50-1	5	µg/L	<5	<5	<5	<5	<5
1.2.4-Trichlorobenzene	120-82-1	5	µg/L	<5	<5	<5	<5	<5
1.2.3-Trichlorobenzene	87-61-6	5	µg/L	<5	<5	<5	<5	<5
EP074G: Trihalomethanes								
Chloroform	67-66-3	5	µg/L	<5	<5	<5	<5	<5
Bromodichloromethane	75-27-4	5	µg/L	<5	<5	<5	<5	<5
Dibromochloromethane	124-48-1	5	µg/L	<5	<5	<5	<5	<5
Bromoform	75-25-2	5	µg/L	<5	<5	<5	<5	<5
EP075(SIM)A: Phenolic Compounds								
Phenol	108-95-2	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
2-Chlorophenol	95-57-8	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
2-Methylphenol	95-48-7	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
3- & 4-Methylphenol	1319-77-3	2.0	µg/L	<2.0	<2.0	<2.0	<2.0	<2.0
2-Nitrophenol	88-75-5	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
2.4-Dimethylphenol	105-67-9	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
2.4-Dichlorophenol	120-83-2	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
2.6-Dichlorophenol	87-65-0	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
4-Chloro-3-methylphenol	59-50-7	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
2.4.6-Trichlorophenol	88-06-2	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
2.4.5-Trichlorophenol	95-95-4	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Pentachlorophenol	87-86-5	2.0	µg/L	<2.0	<2.0	<2.0	<2.0	<2.0
EP080/071: Total Petroleum Hydrocarbons								
C6 - C9 Fraction		20	µg/L	<20	<20	<20	<20	<20
C10 - C14 Fraction		50	µg/L	<50	<50	<50	<50	<50
C15 - C28 Fraction		100	µg/L	<100	<100	<100	<100	<100

Sub-Matrix: GROUNDWATER			Sample ID	OHMW28	SMW02	OHMW20	SMW05	SMW03
(Matrix: WATER)				additional pfas bottles				
				for lab qaqc				
		Sampli	ng date / time	26-Apr-2022 10:02	26-Apr-2022 12:17	26-Apr-2022 12:51	26-Apr-2022 13:26	26-Apr-2022 14:08
Compound	CAS Number	LOR	Unit	EW2201994-001	EW2201994-002	EW2201994-003	EW2201994-004	EW2201994-005
				Result	Result	Result	Result	Result
EP080/071: Total Petroleum Hydrocarb	ons - Continued							
C29 - C36 Fraction		50	μg/L	<50	<50	<50	<50	<50
^ C10 - C36 Fraction (sum)		50	µg/L	<50	<50	<50	<50	<50
EP080/071: Total Recoverable Hydroca	arbons - NEPM 201	3 Fractio	าร					
C6 - C10 Fraction	C6_C10	20	µg/L	<20	<20	<20	<20	<20
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	20	µg/L	<20	<20	<20	<20	<20
(F1)								
>C10 - C16 Fraction		100	μg/L	<100	<100	<100	<100	<100
>C16 - C34 Fraction		100	µg/L	<100	<100	<100	<100	<100
>C34 - C40 Fraction		100	µg/L	<100	<100	<100	<100	<100
^ >C10 - C40 Fraction (sum)		100	µg/L	<100	<100	<100	<100	<100
^ >C10 - C16 Fraction minus Naphthalene		100	µg/L	<100	<100	<100	<100	<100
(F2)								
EP080: BTEXN								
Benzene	71-43-2	1	µg/L	<1	<1	<1	<1	<1
Toluene	108-88-3	2	µg/L	<2	<2	<2	<2	<2
Ethylbenzene	100-41-4	2	µg/L	<2	<2	<2	<2	<2
meta- & para-Xylene	108-38-3 106-42-3	2	µg/L	<2	<2	<2	<2	<2
ortho-Xylene	95-47-6	2	µg/L	<2	<2	<2	<2	<2
^ Total Xylenes		2	µg/L	<2	<2	<2	<2	<2
^ Sum of BTEX		1	µg/L	<1	<1	<1	<1	<1
Naphthalene	91-20-3	5	µg/L	<5	<5	<5	<5	<5
EP132B: Polynuclear Aromatic Hydroc	arbons							
Naphthalene	91-20-3	0.004	µg/L	<0.004	0.006	<0.004	<0.004	<0.004
2-Methylnaphthalene	91-57-6	0.002	µg/L	<0.002	0.002	<0.002	<0.002	<0.002
Acenaphthylene	208-96-8	0.002	µg/L	<0.002	0.002	<0.002	<0.002	<0.002
Acenaphthene	83-32-9	0.002	µg/L	<0.002	0.003	<0.002	<0.002	<0.002
Fluorene	86-73-7	0.002	µg/L	<0.002	0.003	<0.002	0.002	<0.002
Phenanthrene	85-01-8	0.002	µg/L	<0.002	0.017	<0.002	0.014	0.004
Anthracene	120-12-7	0.001	µg/L	<0.001	0.008	<0.001	0.002	0.001
Fluoranthene	206-44-0	0.001	µg/L	<0.001	0.047	<0.001	0.014	0.007
Pyrene	129-00-0	0.001	µg/L	<0.001	0.041	<0.001	0.010	0.006
Benz(a)anthracene	56-55-3	0.002	µg/L	<0.002	0.010	<0.002	0.002	0.003
Chrysene	218-01-9	0.001	µg/L	<0.001	0.010	<0.001	0.003	0.002

Sub-Matrix: GROUNDWATER			Sample ID	OHMW28	SMW02	OHMW20	SMW05	SMW03
(Matrix: WATER)				additional pfas bottles				
				for lab qaqc				
		Sampli	ng date / time	26-Apr-2022 10:02	26-Apr-2022 12:17	26-Apr-2022 12:51	26-Apr-2022 13:26	26-Apr-2022 14:08
Compound	CAS Number	LOR	Unit	EW2201994-001	EW2201994-002	EW2201994-003	EW2201994-004	EW2201994-005
				Result	Result	Result	Result	Result
EP132B: Polynuclear Aromatic Hyd	rocarbons - Continued							
7.12-Dimethylbenz(a)anthracene	57-97-6	0.001	µg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.004	µg/L	<0.004	0.008	<0.004	<0.004	<0.004
Benzo(k)fluoranthene	207-08-9	0.004	µg/L	<0.004	0.005	<0.004	<0.004	<0.004
Benzo(e)pyrene	192-97-2	0.001	µg/L	<0.001	0.006	<0.001	<0.001	0.001
Benzo(a)pyrene	50-32-8	0.001	µg/L	<0.001	0.009	<0.001	<0.001	0.002
Perylene	198-55-0	0.002	µg/L	<0.002	0.002	<0.002	<0.002	<0.002
3-Methylcholanthrene	56-49-5	0.004	µg/L	<0.004	<0.004	<0.004	<0.004	<0.004
Indeno(1.2.3.cd)pyrene	193-39-5	0.002	µg/L	<0.002	0.005	<0.002	<0.002	<0.002
Dibenz(a.h)anthracene	53-70-3	0.001	µg/L	<0.001	0.002	<0.001	<0.001	<0.001
Benzo(g.h.i)perylene	191-24-2	0.002	µg/L	<0.002	0.007	<0.002	<0.002	0.002
Coronene	191-07-1	0.002	µg/L	<0.002	<0.002	<0.002	<0.002	<0.002
^ Sum of 16 US EPA Priority PAHs		0.001	µg/L	<0.001	0.183	<0.001	0.047	0.027
^ Benzo(a)pyrene TEQ (zero)		0.001	µg/L	<0.001	0.014	<0.001	<0.001	0.002
^ Benzo(a)pyrene TEQ (half LOR)		0.001	µg/L	<0.001	0.014	<0.001	<0.001	0.002
^ Benzo(a)pyrene TEQ (LOR)		0.001	µg/L	<0.001	0.014	<0.001	<0.001	0.002
EP132B: Polynuclear Aromatic Hyd	rocarbons (super trac	e)						
^ Benzo(b+j) &	205-99-2 207-08-9	0.004	µg/L	<0.004	0.013	<0.004	<0.004	<0.004
Benzo(k)fluoranthene								
EP231A: Perfluoroalkyl Sulfonic Ac	ids							
Perfluorobutane sulfonic acid	375-73-5	0.02	µg/L	<0.02	<0.02	<0.02	<0.02	<0.02
(PFBS)								
Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.01	µg/L	<0.01	<0.01	<0.01	0.02	<0.01
Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.01	µg/L	<0.01	<0.01	<0.01	<0.01	0.01
EP231B: Perfluoroalkyl Carboxylic	Acids							
Perfluorobutanoic acid (PFBA)	375-22-4	0.1	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	µg/L	0.02	<0.02	<0.02	<0.02	<0.02
Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	µg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	µg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Perfluorooctanoic acid (PFOA)	335-67-1	0.01	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
EP231D: (n:2) Fluorotelomer Sulfor	nic Acids							

Sub-Matrix: GROUNDWATER			Sample ID	OHMW28	SMW02	OHMW20	SMW05	SMW03
(Matrix: WATER)				additional pfas bottles				
				for lab qaqc				
		Sampli	ng date / time	26-Apr-2022 10:02	26-Apr-2022 12:17	26-Apr-2022 12:51	26-Apr-2022 13:26	26-Apr-2022 14:08
Compound	CAS Number	LOR	Unit	EW2201994-001	EW2201994-002	EW2201994-003	EW2201994-004	EW2201994-005
				Result	Result	Result	Result	Result
EP231D: (n:2) Fluorotelomer Sulfon	ic Acids - Continued							
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.05	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.05	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.05	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
EP231P: PFAS Sums								
Sum of PFHxS and PFOS	355-46-4/1763-23- 1	0.01	µg/L	<0.01	<0.01	<0.01	0.02	0.01
Sum of PFAS (WA DER List)		0.01	μg/L	0.02	<0.01	<0.01	0.02	0.01
EP074S: VOC Surrogates								
1.2-Dichloroethane-D4	17060-07-0	5	%	101	95.9	109	90.4	88.9
Toluene-D8	2037-26-5	5	%	119	109	125	104	104
4-Bromofluorobenzene	460-00-4	5	%	111	106	118	99.9	101
EP075(SIM)S: Phenolic Compound S	Surrogates							
Phenol-d6	13127-88-3	1.0	%	22.0	24.3	21.7	25.2	27.4
2-Chlorophenol-D4	93951-73-6	1.0	%	47.0	50.4	45.0	53.0	57.4
2.4.6-Tribromophenol	118-79-6	1.0	%	51.8	45.8	47.6	62.0	60.6
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	1.0	%	56.8	60.6	54.9	69.7	72.5
Anthracene-d10	1719-06-8	1.0	%	75.7	74.1	67.4	81.8	88.0
4-Terphenyl-d14	1718-51-0	1.0	%	73.2	67.7	64.7	81.6	85.2
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	2	%	102	96.6	110	90.8	89.5
Toluene-D8	2037-26-5	2	%	120	110	126	104	104
4-Bromofluorobenzene	460-00-4	2	%	121	116	127	110	109
EP132T: Base/Neutral Extractable S	urrogates							
2-Fluorobiphenyl	321-60-8	0.002	%	84.0	92.1	80.6	90.9	87.1
Anthracene-d10	1719-06-8	0.002	%	109	112	110	105	107
4-Terphenyl-d14	1718-51-0	0.002	%	98.6	93.1	98.6	92.6	95.5
EP231S: PFAS Surrogate								

Sub-Matrix: GROUNDWATER (Matrix: WATER)			Sample ID	OHMW28	SMW02	OHMW20	SMW05	SMW03
(for lab gage				
		Samoli	na date / time	26_Apr-2022 10:02	26_Apr_2022 12:17	26-Apr-2022 12:51	26-Apr-2022 13·26	26-Apr-2022 1/:08
		Sampi	ig date / time	20-Api-2022 10:02	20-Api-2022 12.17	20-Api-2022 12.31	20-Api-2022 15:20	20-Apr-2022 14.00
Compound	CAS Number	LOR	Unit	EW2201994-001	EW2201994-002	EW2201994-003	EW2201994-004	EW2201994-005
				Result	Result	Result	Result	Result
EP231S: PFAS Surrogate - Continued								
13C4-PFOS		0.02	%	102	89.4	101	102	106
13C8-PFOA		0.02	%	104	99.2	106	109	97.9

Sub-Matrix: GROUNDWATER		Sample ID	SMW04	SMW01	SMW06	QA1	
(Matrix: WATER)					additional pfas bottles	additional pfas bottles	
					for lab qaqc	for lab qaqc	
	Sampli	ng date / time	26-Apr-2022 14:39	26-Apr-2022 15:10	26-Apr-2022 16:09	26-Apr-2022 18:56	
Compound CAS Number	LOR	Unit	EW2201994-006	EW2201994-007	EW2201994-008	EW2201994-009	
			Result	Result	Result	Result	
EA005P: pH by PC Titrator							
pH Value	. 0.01	pH Unit	7.98	7.93	7.99	7.76	
EA010P: Conductivity by PC Titrator							
Electrical Conductivity @ 25°C	. 1	µS/cm	2460	1810	938	2610	
EA016: Calculated TDS (from Electrical Conductivity)							
Total Dissolved Solids (Calc.)	. 1	mg/L	1600	1180	610	1700	
EA065: Total Hardness as CaCO3							
Total Hardness as CaCO3	. 1	mg/L	1120	1060	458	1430	
ED037P: Alkalinity by PC Titrator							
Hydroxide Alkalinity as CaCO3 DMO-210-00	1	mg/L	<1	<1	<1	<1	
Carbonate Alkalinity as CaCO3 3812-32-6	1	mg/L	<1	<1	<1	<1	
Bicarbonate Alkalinity as CaCO3 71-52-3	1	mg/L	329	379	410	398	
Total Alkalinity as CaCO3	. 1	mg/L	329	379	410	398	
ED038: Acidity							
Acidity as CaCO3	. 1	mg/L	2	2	2	3	
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA							
Sulfate as SO4 - Turbidimetric 14808-79-8	1	mg/L	930	670	45	1200	
ED045G: Chloride by Discrete Analyser							
Chloride 16887-00-6	1	mg/L	91	27	9	37	
ED093F: Dissolved Maior Cations							
Calcium 7440-70-2	1	mg/L	332	385	111	477	
Magnesium 7439-95-4	. 1	mg/L	72	25	44	59	
Sodium 7440-23-5	1	mg/L	170	33	24	118	
Potassium 7440-09-7	1	mg/L	8	8	4	23	
EG020F: Dissolved Metals by ICP-MS							
Arsenic 7440-38-2	0.001	mg/L	0.009	0.036	0.016	0.064	
Cadmium 7440-43-5	0.0001	mg/L	0.0003	0.0014	0.0016	<0.0001	
Chromium 7440-47-3	0.001	mg/L	<0.001	<0.001	0.002	<0.001	
Copper 7440-50-8	0.001	mg/L	0.014	0.032	0.028	<0.001	
Cobalt 7440-48-4	0.001	mg/L	<0.001	0.003	<0.001	0.011	
Nickel 7440-02-0	0.001	mg/L	0.042	0.043	0.022	0.075	
Lead 7439-92-*	0.001	mg/L	<0.001	0.010	0.004	<0.001	
Zinc 7440-66-6	0.005	mg/L	0.112	0.708	0.078	<0.005	

	A1
(Matrix: WATER) additional pfas bottles additional	pfas bottles
for lab qaqc for lab	b qaqc
Sampling date / time 26-Apr-2022 14:39 26-Apr-2022 15:10 26-Apr-2022 16:09 26-Apr-202	2022 18:56
Compound CAS Number LOR Unit EW2201994-006 EW2201994-007 EW2201994-008 EW2201	1994-009
Result Result Result Result Result	esult
EG020F: Dissolved Metals by ICP-MS - Continued	
Manganese 7439-96-5 0.001 mg/L 0.102 0.174 0.021 0.87	74
Iron 7439-89-6 0.05 mg/L <0.05 0.48 0.06 11.7	.7
EG020T: Total Metals by ICP-MS	
Aluminium 7429-90-5 0.01 mg/L 0.02 0.21 0.44 0.09	
Manganese 7439-96-5 0.001 mg/L 0.107 0.192 0.036 0.90	00
Iron 7439-89-6 0.05 mg/L <0.05 1.39 1.02 12.6	.6
EG035F: Dissolved Mercury by FIMS	
Mercury 7439-97-6 0.0001 mg/L <0.0001	001
EG094F: Dissolved Metals in Fresh Water by ORC-ICPMS	
Aluminium 7429-90-5 5 μg/L <5	
Selenium 7782-49-2 0.2 µg/L 88.9 63.6 36.5 7.2	2
Uranium 7440-61-1 0.05 µg/L 3.43 8.11 1.77 0.74	/8
EK040P: Fluoride by PC Titrator	
Fluoride 16984-48-8 0.1 mg/L 2.4 8.1 1.5 8.3	3
EK055G: Ammonia as N by Discrete Analyser	
Ammonia as N 7664-41-7 0.01 mg/L <0.01	2
EK055G-NH4: Ammonium as N by DA	
Ammonium as N 14798-03-9_N 0.01 mg/L <0.01	
Ammonium as N 14798-03-9_N 0.01 mg/L <0.01	2
EK057G: Nitrite as N by Discrete Analyser	
Nitrite as N 14797-65-0 0.01 mg/L 0.17 0.03 <0.01	01
EK058G: Nitrate as N by Discrete Analyser	
Nitrate as N 14797-55-8 0.01 mg/L 4.39 2.79 4.08 1.76	78
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser	
Nitrite + Nitrate as N 0.01 mg/L 4.56 2.82 4.08 1.76	/8
EK067G: Total Phosphorus as P by Discrete Analyser	· · · · · · · · · · · · · · · · · · ·
Total Phosphorus as P 0.01 mg/L 0.02 0.11 0.10 0.11	8
EK071G: Reactive Phosphorus as P by discrete analyser	
Reactive Phosphorus as P 14265-44-2 0.01 mg/L 0.01 <0.01	01
EN055: Ionic Balance	
Ø Total Anions 0.01 meq/L 28.5 22.3 9.38 34.0	.0
ø Total Cations 0.01 meq/L 30.1 22.9 10.3 34.4	.4

Sub-Matrix: GROUNDWATER			Sample ID	SMW04	SMW01	SMW06	QA1	
(Matrix: WATER)						additional pfas bottles	additional pfas bottles	
						for lab qaqc	for lab qaqc	
		Samplii	ng date / time	26-Apr-2022 14:39	26-Apr-2022 15:10	26-Apr-2022 16:09	26-Apr-2022 18:56	
Compound	CAS Number	LOR	Unit	EW2201994-006	EW2201994-007	EW2201994-008	EW2201994-009	
				Result	Result	Result	Result	
EN055: Ionic Balance - Continued								
Ø Ionic Balance		0.01	%	2.71	1.38	4.69	0.58	
EP074D: Fumigants								
2.2-Dichloropropane	594-20-7	5	µg/L	<5	<5	<5	<5	
1.2-Dichloropropane	78-87-5	5	µg/L	<5	<5	<5	<5	
cis-1.3-Dichloropropylene	10061-01-5	5	µg/L	<5	<5	<5	<5	
trans-1.3-Dichloropropylene	10061-02-6	5	µg/L	<5	<5	<5	<5	
1.2-Dibromoethane (EDB)	106-93-4	5	µg/L	<5	<5	<5	<5	
EP074E: Halogenated Aliphatic Compour	nds							
Dichlorodifluoromethane	75-71-8	50	µg/L	<50	<50	<50	<50	
Chloromethane	74-87-3	50	µg/L	<50	<50	<50	<50	
Vinyl chloride	75-01-4	50	µg/L	<50	<50	<50	<50	
Bromomethane	74-83-9	50	µg/L	<50	<50	<50	<50	
Chloroethane	75-00-3	50	µg/L	<50	<50	<50	<50	
Trichlorofluoromethane	75-69-4	50	µg/L	<50	<50	<50	<50	
1.1-Dichloroethene	75-35-4	5	µg/L	<5	<5	<5	<5	
lodomethane	74-88-4	5	µg/L	<5	<5	<5	<5	
trans-1.2-Dichloroethene	156-60-5	5	µg/L	<5	<5	<5	<5	
1.1-Dichloroethane	75-34-3	5	µg/L	<5	<5	<5	<5	
cis-1.2-Dichloroethene	156-59-2	5	µg/L	<5	<5	<5	<5	
1.1.1-Trichloroethane	71-55-6	5	µg/L	<5	<5	<5	<5	
1.1-Dichloropropylene	563-58-6	5	µg/L	<5	<5	<5	<5	
Carbon Tetrachloride	56-23-5	5	µg/L	<5	<5	<5	<5	
1.2-Dichloroethane	107-06-2	5	µg/L	<5	<5	<5	<5	
Trichloroethene	79-01-6	5	µg/L	<5	<5	<5	<5	
Dibromomethane	74-95-3	5	µg/L	<5	<5	<5	<5	
1.1.2-Trichloroethane	79-00-5	5	µg/L	<5	<5	<5	<5	
1.3-Dichloropropane	142-28-9	5	µg/L	<5	<5	<5	<5	
Tetrachloroethene	127-18-4	5	µg/L	<5	<5	<5	<5	
1.1.1.2-Tetrachloroethane	630-20-6	5	µg/L	<5	<5	<5	<5	
trans-1.4-Dichloro-2-butene	110-57-6	5	µg/L	<5	<5	<5	<5	
cis-1.4-Dichloro-2-butene	1476-11-5	5	µg/L	<5	<5	<5	<5	
1.1.2.2-Tetrachloroethane	79-34-5	5	µg/L	<5	<5	<5	<5	
1.2.3-Trichloropropane	96-18-4	5	µg/L	<5	<5	<5	<5	

Sub-Matrix: GROUNDWATER		Sample ID	SMW04	SMW01	SMW06	QA1	
(Matrix: WATER)					additional pfas bottles	additional pfas bottles	
					for lab qaqc	for lab qaqc	
	Samp	ling date / time	26-Apr-2022 14:39	26-Apr-2022 15:10	26-Apr-2022 16:09	26-Apr-2022 18:56	
Compound CAS Num	er LOR	Unit	EW2201994-006	EW2201994-007	EW2201994-008	EW2201994-009	
			Result	Result	Result	Result	
EP074E: Halogenated Aliphatic Compounds - Continu	d						
Pentachloroethane 76-0	-7 5	µg/L	<5	<5	<5	<5	
1.2-Dibromo-3-chloropropane 96-1	2-8 5	µg/L	<5	<5	<5	<5	
Hexachlorobutadiene 87-6	3-3 5	µg/L	<5	<5	<5	<5	
EP074F: Halogenated Aromatic Compounds							
Chlorobenzene 108-9)-7 5	µg/L	<5	<5	<5	<5	
Bromobenzene 108-8	6-1 5	µg/L	<5	<5	<5	<5	
2-Chlorotoluene 95-4	-8 5	µg/L	<5	<5	<5	<5	
4-Chlorotoluene 106-4	3-4 5	µg/L	<5	<5	<5	<5	
1.3-Dichlorobenzene 541-7	5 5	µg/L	<5	<5	<5	<5	
1.4-Dichlorobenzene 106-4	6-7 5	µg/L	<5	<5	<5	<5	
1.2-Dichlorobenzene 95-5)-1 5	µg/L	<5	<5	<5	<5	
1.2.4-Trichlorobenzene 120-8	2-1 5	µg/L	<5	<5	<5	<5	
1.2.3-Trichlorobenzene 87-6	-6 5	µg/L	<5	<5	<5	<5	
EP074G: Trihalomethanes							
Chloroform 67-6	6-3 5	µg/L	<5	<5	<5	<5	
Bromodichloromethane 75-2	'-4 5	µg/L	<5	<5	<5	<5	
Dibromochloromethane 124-4	8-1 5	µg/L	<5	<5	<5	<5	
Bromoform 75-2	5-2 5	µg/L	<5	<5	<5	<5	
EP075(SIM)A: Phenolic Compounds							
Phenol 108-9	5-2 1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
2-Chlorophenol 95-5	'-8 1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
2-Methylphenol 95-4	3-7 1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
3- & 4-Methylphenol 1319-7	-3 2.0	µg/L	<2.0	<2.0	<2.0	<2.0	
2-Nitrophenol 88-7	5-5 1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
2.4-Dimethylphenol 105-6	' -9 1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
2.4-Dichlorophenol 120-8	3-2 1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
2.6-Dichlorophenol 87-6	5-0 1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
4-Chloro-3-methylphenol 59-5)-7 1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
2.4.6-Trichlorophenol 88-0	6-2 1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
2.4.5-Trichlorophenol 95-9	5-4 1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
Pentachlorophenol 87-8	5-5 2.0	µg/L	<2.0	<2.0	<2.0	<2.0	
EP080/071: Total Petroleum Hydrocarbons							
C6 - C9 Fraction	20	µg/L	<20	<20	<20	<20	

Sub-Matrix: GROUNDWATER		Sample ID	SMW04	SMW01	SMW06	QA1	
(Matrix: WATER)					additional pfas bottles	additional pfas bottles	
					for lab qaqc	for lab qaqc	
	Sampl	ing date / time	26-Apr-2022 14:39	26-Apr-2022 15:10	26-Apr-2022 16:09	26-Apr-2022 18:56	
Compound CAS Number	r LOR	Unit	EW2201994-006	EW2201994-007	EW2201994-008	EW2201994-009	
			Result	Result	Result	Result	
EP080/071: Total Petroleum Hydrocarbons - Continued							
C10 - C14 Fraction	- 50	µg/L	<50	<50	<50	<50	
C15 - C28 Fraction	- 100	µg/L	<100	<100	<100	<100	
C29 - C36 Fraction	- 50	µg/L	<50	<50	<50	<50	
^ C10 - C36 Fraction (sum)	- 50	µg/L	<50	<50	<50	<50	
EP080/071: Total Recoverable Hydrocarbons - NEPM 2	013 Fractio	ns					
C6 - C10 Fraction C6_C1) 20	µg/L	<20	<20	<20	<20	
^ C6 - C10 Fraction minus BTEX C6_C10-BTE	χ 20	µg/L	<20	<20	<20	<20	
(F1)							
>C10 - C16 Fraction	- 100	µg/L	<100	<100	<100	<100	
>C16 - C34 Fraction	- 100	µg/L	<100	<100	<100	<100	
>C34 - C40 Fraction	- 100	µg/L	<100	<100	<100	<100	
^ >C10 - C40 Fraction (sum)	- 100	µg/L	<100	<100	<100	<100	
^ >C10 - C16 Fraction minus Naphthalene	- 100	µg/L	<100	<100	<100	<100	
(F2)							
EP080: BTEXN							
Benzene 71-43-	2 1	µg/L	<1	<1	<1	<1	
Toluene 108-88-	3 2	µg/L	<2	<2	<2	<2	
Ethylbenzene 100-41-	1 2	µg/L	<2	<2	<2	<2	
meta- & para-Xylene 108-38-3 106-42-	3 2	µg/L	<2	<2	<2	<2	
ortho-Xylene 95-47-	3 2	µg/L	<2	<2	<2	<2	
^ Total Xylenes	- 2	µg/L	<2	<2	<2	<2	
^ Sum of BTEX	- 1	µg/L	<1	<1	<1	<1	
Naphthalene 91-20-	3 5	µg/L	<5	<5	<5	<5	
EP132B: Polynuclear Aromatic Hydrocarbons							
Naphthalene 91-20-	3 0.004	µg/L	<0.004	0.004	0.005	<0.004	
2-Methylnaphthalene 91-57-	6 0.002	µg/L	<0.002	<0.002	0.003	<0.002	
Acenaphthylene 208-96-	3 0.002	µg/L	<0.002	<0.002	<0.002	<0.002	
Acenaphthene 83-32-	0.002	µg/L	<0.002	0.002	0.003	<0.002	
Fluorene 86-73-	7 0.002	µg/L	<0.002	<0.002	<0.002	<0.002	
Phenanthrene 85-01-	3 0.002	µg/L	0.005	0.003	0.006	<0.002	
Anthracene 120-12-	7 0.001	µg/L	0.001	0.002	0.002	<0.001	
Fluoranthene 206-44-	0.001	µg/L	0.004	0.008	0.005	<0.001	
Pyrene 129-00-	0.001	µg/L	0.004	0.008	0.005	<0.001	

Sub-Matrix: GROUNDWATER			Sample ID	SMW04	SMW01	SMW06	QA1	
(Matrix: WATER)						additional pfas bottles	additional pfas bottles	
						for lab qaqc	for lab qaqc	
		Sampli	ng date / time	26-Apr-2022 14:39	26-Apr-2022 15:10	26-Apr-2022 16:09	26-Apr-2022 18:56	
Compound	CAS Number	LOR	Unit	EW2201994-006	EW2201994-007	EW2201994-008	EW2201994-009	
				Result	Result	Result	Result	
EP132B: Polynuclear Aromatic Hydro	ocarbons - Continued							
Benz(a)anthracene	56-55-3	0.002	µg/L	<0.002	<0.002	0.002	<0.002	
Chrysene	218-01-9	0.001	µg/L	0.001	0.002	0.002	<0.001	
7.12-Dimethylbenz(a)anthracene	57-97-6	0.001	µg/L	<0.001	<0.001	<0.001	<0.001	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.004	µg/L	<0.004	<0.004	<0.004	<0.004	
Benzo(k)fluoranthene	207-08-9	0.004	µg/L	<0.004	<0.004	<0.004	<0.004	
Benzo(e)pyrene	192-97-2	0.001	µg/L	<0.001	<0.001	<0.001	<0.001	
Benzo(a)pyrene	50-32-8	0.001	µg/L	<0.001	<0.001	<0.001	<0.001	
Perylene	198-55-0	0.002	µg/L	<0.002	<0.002	<0.002	<0.002	
3-Methylcholanthrene	56-49-5	0.004	µg/L	<0.004	<0.004	<0.004	<0.004	
Indeno(1.2.3.cd)pyrene	193-39-5	0.002	µg/L	<0.002	<0.002	<0.002	<0.002	
Dibenz(a.h)anthracene	53-70-3	0.001	µg/L	<0.001	<0.001	<0.001	<0.001	
Benzo(g.h.i)perylene	191-24-2	0.002	µg/L	<0.002	<0.002	<0.002	<0.002	
Coronene	191-07-1	0.002	µg/L	<0.002	<0.002	<0.002	<0.002	
^ Sum of 16 US EPA Priority PAHs		0.001	µg/L	0.015	0.029	0.030	<0.001	
^ Benzo(a)pyrene TEQ (zero)		0.001	µg/L	<0.001	<0.001	<0.001	<0.001	
^ Benzo(a)pyrene TEQ (half LOR)		0.001	µg/L	<0.001	<0.001	<0.001	<0.001	
^ Benzo(a)pyrene TEQ (LOR)		0.001	µg/L	<0.001	<0.001	<0.001	<0.001	
EP132B: Polynuclear Aromatic Hydro	ocarbons (super trac	e)						
^ Benzo(b+j) &	205-99-2 207-08-9	0.004	µg/L	<0.004	<0.004	<0.004	<0.004	
Benzo(k)fluoranthene								
EP231A: Perfluoroalkyl Sulfonic Acid	ls							
Perfluorobutane sulfonic acid	375-73-5	0.02	µg/L	<0.02	<0.02	<0.02	<0.02	
(PFBS)								
Perfluorohexane sulfonic acid (PEHxS)	355-46-4	0.01	µg/L	<0.01	<0.01	0.02	<0.01	
Perfluorooctane sulfonic acid	1763-23-1	0.01	ua/L	<0.01	0.06	0.07	<0.01	
(PFOS)	1100 20 1		F-3-					
EP231B: Perfluoroalkyl Carboxylic A	Acids							
Perfluorobutanoic acid (PFBA)	375-22-4	0.1	µg/L	<0.1	<0.1	<0.1	<0.1	
Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	µg/L	<0.02	<0.02	<0.02	0.02	
Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	µg/L	<0.02	<0.02	<0.02	<0.02	
Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	µg/L	<0.02	<0.02	<0.02	<0.02	
Perfluorooctanoic acid (PFOA)	335-67-1	0.01	µg/L	<0.01	<0.01	<0.01	<0.01	

Sub-Matrix: GROUNDWATER			Sample ID	SMW04	SMW01	SMW06	QA1	
(Matrix: WATER)						additional pfas bottles	additional pfas bottles	
						for lab qaqc	for lab qaqc	
		Sampli	ng date / time	26-Apr-2022 14:39	26-Apr-2022 15:10	26-Apr-2022 16:09	26-Apr-2022 18:56	
Compound	CAS Number	LOR	Unit	EW2201994-006	EW2201994-007	EW2201994-008	EW2201994-009	
				Result	Result	Result	Result	
EP231D: (n:2) Fluorotelomer Sulfonio	c Acids							
4:2 Fluorotelomer sulfonic acid	757124-72-4	0.05	µg/L	<0.05	<0.05	<0.05	<0.05	
(4:2 FTS)								
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05	µg/L	<0.05	<0.05	<0.05	<0.05	
8:2 Fluorotelomer sulfonic acid	39108-34-4	0.05	µg/L	<0.05	<0.05	<0.05	<0.05	
(8:2 FTS)								
10:2 Fluorotelomer sulfonic acid	120226-60-0	0.05	µg/L	<0.05	<0.05	<0.05	<0.05	
(10:2 FTS)								
EP231P: PFAS Sums								
Sum of PFHxS and PFOS	355-46-4/1763-23- 1	0.01	µg/L	<0.01	0.06	0.09	<0.01	
Sum of PFAS (WA DER List)		0.01	µg/L	<0.01	0.06	0.09	0.02	
EP074S: VOC Surrogates								
1.2-Dichloroethane-D4	17060-07-0	5	%	111	99.3	83.4	100	
Toluene-D8	2037-26-5	5	%	115	114	95.1	119	
4-Bromofluorobenzene	460-00-4	5	%	104	106	95.0	111	
EP075(SIM)S: Phenolic Compound Su	urrogates							
Phenol-d6	13127-88-3	1.0	%	26.3	24.8	25.3	26.0	
2-Chlorophenol-D4	93951-73-6	1.0	%	56.2	53.9	53.1	56.4	
2.4.6-Tribromophenol	118-79-6	1.0	%	58.1	59.5	52.7	62.6	
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	1.0	%	68.8	69.7	64.4	71.7	
Anthracene-d10	1719-06-8	1.0	%	80.3	80.9	81.5	87.9	
4-Terphenyl-d14	1718-51-0	1.0	%	79.0	78.6	74.9	79.4	
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	2	%	99.2	99.9	83.6	101	
Toluene-D8	2037-26-5	2	%	105	114	95.4	119	
4-Bromofluorobenzene	460-00-4	2	%	112	116	102	121	
EP132T: Base/Neutral Extractable Su	rrogates							
2-Fluorobiphenyl	321-60-8	0.002	%	93.3	82.6	91.4	81.3	
Anthracene-d10	1719-06-8	0.002	%	107	104	105	87.7	
4-Terphenyl-d14	1718-51-0	0.002	%	104	97.0	96.6	84.5	
EP231S: PFAS Surrogate								

Sub-Matrix: GROUNDWATER			Sample ID	SMW04	SMW01	SMW06	QA1	
(Matrix: WATER)						additional pfas bottles	additional pfas bottles	
						for lab qaqc	for lab qaqc	
		Sampli	ng date / time	26-Apr-2022 14:39	26-Apr-2022 15:10	26-Apr-2022 16:09	26-Apr-2022 18:56	
Compound	CAS Number	LOR	Unit	EW2201994-006	EW2201994-007	EW2201994-008	EW2201994-009	
				Result	Result	Result	Result	
EP231S: PFAS Surrogate - Continued								
13C4-PFOS		0.02	%	97.5	100	101	104	
13C8-PFOA		0.02	%	97.9	105	102	105	

Sub-Matrix: WATER (Matrix: WATER)	Sample ID			Rinsate 01						
	Sampling date / time			26-Apr-2022 19:29						
Compound	CAS Number	LOR	Unit	EW2201994-013						
				Result						
EG020F: Dissolved Metals by ICP-MS										
Arsenic	7440-38-2	0.001	mg/L	<0.001						
Cadmium	7440-43-9	0.0001	mg/L	<0.0001						
Chromium	7440-47-3	0.001	mg/L	<0.001						
Copper	7440-50-8	0.001	mg/L	<0.001						
Cobalt	7440-48-4	0.001	mg/L	<0.001						
Nickel	7440-02-0	0.001	mg/L	<0.001						
Lead	7439-92-1	0.001	mg/L	<0.001						
Zinc	7440-66-6	0.005	mg/L	<0.005						
Manganese	7439-96-5	0.001	mg/L	<0.001						
Iron	7439-89-6	0.05	mg/L	<0.05						
EG094F: Dissolved Metals in Fresh Water by ORC-ICPMS										
Aluminium	7429-90-5	5	µg/L	<5						
Selenium	7782-49-2	0.2	µg/L	<0.2						
Uranium	7440-61-1	0.05	µg/L	<0.05						
EP231A: Perfluoroalkyl Sulfonic Acids										
Perfluorobutane sulfonic acid	375-73-5	0.02	µg/L	<0.02						
(PFBS)										
Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.01	µg/L	<0.01						
Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.01	µg/L	<0.01						
EP231B: Perfluoroalkyl Carboxylic Acid	ls									
Perfluorobutanoic acid (PFBA)	375-22-4	0.1	µg/L	<0.1						
Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	μg/L	<0.02						
Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	µg/L	<0.02						
Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	µg/L	<0.02						
Perfluorooctanoic acid (PFOA)	335-67-1	0.01	µg/L	<0.01						
EP231D: (n:2) Fluorotelomer Sulfonic A	cids									
4:2 Fluorotelomer sulfonic acid	757124-72-4	0.05	µg/L	<0.05						
(4:2 FTS)										
6:2 Fluorotelomer sulfonic acid	27619-97-2	0.05	µg/L	<0.05						
(6:2 FTS)										
8:2 Fluorotelomer sulfonic acid	39108-34-4	0.05	µg/L	<0.05						
(8:2 FTS)										

Page	: 20 of 23
Work Order	: EW2201994 Amendment 1
Client	: SMEC AUSTRALIA PTY LTD
Project	: Port Kembla GME

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	Rinsate 01	 	
		Sampli	ng date / time	26-Apr-2022 19:29	 	
Compound	CAS Number	LOR	Unit	EW2201994-013	 	
				Result	 	
EP231D: (n:2) Fluorotelomer Sulfon	ic Acids - Continued					
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.05	µg/L	<0.05	 	
EP231P: PFAS Sums						
Sum of PFHxS and PFOS	355-46-4/1763-23-	0.01	µg/L	<0.01	 	
	1					
Sum of PFAS (WA DER List)		0.01	µg/L	<0.01	 	
EP231S: PFAS Surrogate						
13C4-PFOS		0.02	%	91.1	 	
13C8-PFOA		0.02	%	96.6	 	

Surrogate Control Limits

Sub-Matrix: GROUNDWATER		Recovery	/ Limits (%)
Compound	CAS Number	Low	High
EP074S: VOC Surrogates			
1.2-Dichloroethane-D4	17060-07-0	78	133
Toluene-D8	2037-26-5	79	129
4-Bromofluorobenzene	460-00-4	81	124
EP075(SIM)S: Phenolic Compound Surrog	gates		
Phenol-d6	13127-88-3	10	44
2-Chlorophenol-D4	93951-73-6	14	94
2.4.6-Tribromophenol	118-79-6	17	125
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	20	104
Anthracene-d10	1719-06-8	27	113
4-Terphenyl-d14	1718-51-0	32	112
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	71	137
Toluene-D8	2037-26-5	79	131
4-Bromofluorobenzene	460-00-4	70	128
EP132T: Base/Neutral Extractable Surrog	ates		
2-Fluorobiphenyl	321-60-8	70	130
Anthracene-d10	1719-06-8	70	130
4-Terphenyl-d14	1718-51-0	70	130
EP231S: PFAS Surrogate			
13C4-PFOS		60	120
13C8-PFOA		60	120
Sub-Matrix: WATER		Recover	/ Limits (%)
Compound	CAS Number	Low	High
EP231S: PFAS Surrogate			
13C4-PFOS		60	120
13C8-PFOA		60	120

Inter-Laboratory Testing Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology). (WATER) EP074E: Halogenated Aliphatic Compounds (WATER) EP074F: Halogenated Aromatic Compounds (WATER) EP074G: Trihalomethanes (WATER) EP074S: VOC Surrogates (WATER) EG035F: Dissolved Mercury by FIMS (WATER) EP080/071: Total Petroleum Hydrocarbons (WATER) EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (WATER) EP080: BTEXN (WATER) EP080S: TPH(V)/BTEX Surrogates (WATER) EG020F: Dissolved Metals by ICP-MS (WATER) EK067G: Total Phosphorus as P by Discrete Analyser (WATER) EG094F: Dissolved Metals in Fresh Water by ORC-ICPMS (WATER) EP075(SIM)A: Phenolic Compounds (WATER) EP075(SIM)T: PAH Surrogates (WATER) EP075(SIM)S: Phenolic Compound Surrogates (WATER) EG020T: Total Metals by ICP-MS (WATER) EA005P: pH by PC Titrator (WATER) ED037P: Alkalinity by PC Titrator (WATER) EA016: Calculated TDS (from Electrical Conductivity) (WATER) EA010P: Conductivity by PC Titrator (WATER) EK040P: Fluoride by PC Titrator (WATER) ED045G: Chloride by Discrete Analyser (WATER) ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (WATER) EK071G: Reactive Phosphorus as P by discrete analyser (WATER) EK055G: Ammonia as N by Discrete Analyser (WATER) EN055: Ionic Balance (WATER) EK058G: Nitrate as N by Discrete Analyser (WATER) EK057G: Nitrite as N by Discrete Analyser (WATER) EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (WATER) ED093F: Dissolved Major Cations (WATER) EA065: Total Hardness as CaCO3 (WATER) EK055G-NH4: Ammonium as N by DA (WATER) ED038: Acidity (WATER) EP132B: Polynuclear Aromatic Hydrocarbons (WATER) EP132B: Polynuclear Aromatic Hydrocarbons (super trace) (WATER) EP132T: Base/Neutral Extractable Surrogates (WATER) EP231A: Perfluoroalkyl Sulfonic Acids (WATER) EP231B: Perfluoroalkyl Carboxylic Acids

(WATER) EP231D: (n:2) Fluorotelomer Sulfonic Acids

(WATER) EP231P: PFAS Sums

(WATER) EP231S: PFAS Surrogate

(WATER) EP074D: Fumigants

QUALITY CONTROL REPORT

Work Order	: EW2201994	Page	: 1 of 22
Amendment	: 1		
Client	SMEC AUSTRALIA PTY LTD	Laboratory	: Environmental Division NSW South Coast
Contact	: JOEL REYNOLDS	Contact	: Katie Davis
Address	LEVEL 2 6-8 REGENT STREET	Address	: 1/19 Ralph Black Dr, North Wollongong 2500 NSW Australia
	WOLLONGONG 2500		
Telephone	:	Telephone	: 02 42253125
Project	: Port Kembla GME	Date Samples Received	: 27-Apr-2022
Order number	:-	Date Analysis Commenced	: 29-Apr-2022
C-O-C number	: 36757	Issue Date	16-May-2022
Sampler	: JOEL REYNOLDS		Hac-MRA NATA
Site	: Port Kembla Manildra April 2022		
Quote number	: SY/080/21 V3		Accreditation No. 825
No. of samples received	: 13		Accredited for compliance with
No. of samples analysed	: 10		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Franco Lentini	LCMS Coordinator	Sydney Organics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW
Wisam Marassa	Inorganics Coordinator	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EA005P: pH by PC T	itrator (QC Lot: 4310930)								
ES2214511-002	Anonymous	EA005-P: pH Value		0.01	pH Unit	7.01	6.99	0.3	0% - 20%
ES2214511-003	Anonymous	EA005-P: pH Value		0.01	pH Unit	7.16	7.11	0.7	0% - 20%
EA005P: pH by PC T	itrator (QC Lot: 4310933)								
EW2201994-008	SMW06 additional pfas bottles for lab qaqc	EA005-P: pH Value		0.01	pH Unit	7.99	8.01	0.2	0% - 20%
EA010P: Conductivi	ty by PC Titrator(QC Lot: 43	310929)							
ES2214490-002	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	1000	1000	0.0	0% - 20%
EW2201994-002	SMW02	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	1970	1970	0.0	0% - 20%
ED037P: Alkalinity b	y PC Titrator (QC Lot: 4310	932)							
ES2214511-003	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	74	66	11.5	0% - 20%
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	74	66	11.5	0% - 20%
EW2201994-002	SMW02	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	214	204	5.2	0% - 20%
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	214	204	5.2	0% - 20%
ED038: Acidity (QC	Lot: 4310924)								
ES2214322-008	Anonymous	ED038-P: Acidity as CaCO3		1	mg/L	2	2	0.0	No Limit
EW2201994-002	SMW02	ED038-P: Acidity as CaCO3		1	mg/L	2	2	0.0	No Limit
ED041G: Sulfate (Tu	rbidimetric) as SO4 2- by DA	(QC Lot: 4312125)							
EW2201994-006	SMW04	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	930	932	0.2	0% - 20%
ME2200630-001	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	39	38	0.0	0% - 20%

Page	: 3 of 22
Work Order	: EW2201994 Amendment 1
Client	: SMEC AUSTRALIA PTY LTD
Project	: Port Kembla GME

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
ED045G: Chloride by	Discrete Analyser (QC Lot	4312126)							
EW2201994-006	SMW04	ED045G: Chloride	16887-00-6	1	mg/L	91	91	0.0	0% - 20%
ME2200630-001	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	4	4	0.0	No Limit
ED093F: Dissolved M	aior Cations (QC Lot: 4315	683)			<u> </u>				
ES2214512-001	Anonymous	ED093E: Calcium	7440-70-2	1	ma/L	109	108	0.0	0% - 20%
		ED003E: Magnesium	7439-95-4	1	mg/L	152	154	0.9	0% - 20%
		ED093E: Sodium	7440-23-5	1	mg/L	565	566	0.0	0% - 20%
		ED093E: Potassium	7440-09-7	1	mg/L	24	24	0.0	0% - 20%
ES2214636-004	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	39	40	3.9	0% - 20%
		ED093F: Magnesium	7439-95-4	1	mg/L	227	235	3.3	0% - 20%
		ED093F: Sodium	7440-23-5	1	mg/L	1670	1710	2.6	0% - 20%
		ED093F: Potassium	7440-09-7	1	mg/L	30	31	3.3	0% - 20%
ED093F: Dissolved M	aior Cations (QC Lot: 4315	688)			<u> </u>				
EW2201994-008	SMW06 additional pfas	ED093E: Calcium	7440-70-2	1	mg/L	111	109	1.3	0% - 20%
	bottles for lab gage				5				
		ED093F: Magnesium	7439-95-4	1	mg/L	44	44	0.0	0% - 20%
		ED093F: Sodium	7440-23-5	1	mg/L	24	24	0.0	0% - 20%
		ED093F: Potassium	7440-09-7	1	mg/L	4	4	0.0	No Limit
EW2202001-010	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	2	2	0.0	No Limit
	-	ED093F: Magnesium	7439-95-4	1	mg/L	2	2	0.0	No Limit
		ED093F: Sodium	7440-23-5	1	mg/L	9	9	0.0	No Limit
		ED093F: Potassium	7440-09-7	1	mg/L	<1	<1	0.0	No Limit
EG020F: Dissolved M	etals by ICP-MS(QC Lot: 4	315684)							
ES2214512-001	Anonymous	EG020A-E [:] Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Cobalt	7440-48-4	0.001	mg/L	0.004	0.004	0.0	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.195	0.196	0.6	0% - 20%
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.029	0.028	0.0	0% - 20%
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.015	0.015	0.0	No Limit
		EG020A-F: Iron	7439-89-6	0.05	mg/L	0.22	0.22	0.0	No Limit
ES2214636-004	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	0.0002	0.0002	0.0	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	0.002	0.002	0.0	No Limit
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Cobalt	7440-48-4	0.001	mg/L	0.036	0.038	3.6	0% - 20%
		EG020A-F: Copper	7440-50-8	0.001	mg/L	0.023	0.024	4.4	0% - 20%
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.313	0.328	4.5	0% - 20%
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.020	0.020	0.0	0% - 20%

Page	4 of 22
Work Order	EW2201994 Amendment 1
Client	SMEC AUSTRALIA PTY LTD
Project	Port Kembla GME

Sub-Matrix: WATER			Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EG020F: Dissolved M	letals by ICP-MS (QC Lot: 4	315684) - continued							
ES2214636-004	Anonymous	EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.021	0.018	17.5	No Limit
		EG020A-F: Iron	7439-89-6	0.05	mg/L	<0.05	<0.05	0.0	No Limit
EG020F: Dissolved M	letals by ICP-MS (QC Lot: 4	315687)				1	<u> </u>		
EW2201994-008	SMW06 additional pfas	EG020A-E: Cadmium	7440-43-9	0.0001	ma/l	0.0016	0.0016	0.0	0% - 50%
	bottles for lab gage			010001		0.0010	0.0010	0.0	
		EG020A-E ⁻ Arsenic	7440-38-2	0.001	mg/L	0.016	0.016	0.0	0% - 50%
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	0.002	0.002	0.0	No Limit
		EG020A-F: Cobalt	7440-48-4	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	0.028	0.028	0.0	0% - 20%
		EG020A-F: Lead	7439-92-1	0.001	mg/L	0.004	0.003	0.0	No Limit
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.021	0.021	0.0	0% - 20%
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.022	0.021	0.0	0% - 20%
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.078	0.078	0.0	0% - 50%
		EG020A-F: Iron	7439-89-6	0.05	ma/L	0.06	0.06	0.0	No Limit
EW2202001-010	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
	,	EG020A-F: Arsenic	7440-38-2	0.001	ma/L	< 0.001	<0.001	0.0	No Limit
		EG020A-F: Chromium	7440-47-3	0.001	ma/L	< 0.001	<0.001	0.0	No Limit
		EG020A-F: Cobalt	7440-48-4	0.001	mg/L	< 0.001	<0.001	0.0	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	< 0.001	<0.001	0.0	No Limit
		EG020A-F: Lead	7439-92-1	0.001	mg/L	< 0.001	<0.001	0.0	No Limit
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.048	0.048	0.0	0% - 20%
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.001	0.001	0.0	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	ma/L	0.008	0.007	0.0	No Limit
		EG020A-F: Iron	7439-89-6	0.05	mg/L	0.37	0.36	0.0	No Limit
EG020E: Dissolved M	Antals by ICP-MS (OC Lot: 4	320315)			U				1
ES2215204-001			7440-43-0	0.0001	ma/l	0.0001	<0.0001	0.0	No Limit
132213204-001	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
			7440-30-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit
			7440 48 4	0.001	mg/L	0.001	0.001	0.0	No Limit
		EG020A-F. Coball	7440-50-8	0.001	mg/L	<0.001	<0.001	0.0	No Limit
			7/30-02-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Lead	7439-96-5	0.001	mg/L	0.001	0.001	0.0	No Limit
			740-02-0	0.001	mg/L	<0.000	<0.000	0.0	No Limit
			7440-66-6	0.001	mg/L	0.001	0.010	0.0	No Limit
			7/30-80-6	0.000	mg/L	0.010	0.010	0.0	No Limit
ECO20T. Total Matel			7409-09-0	0.05	iiig/L	0.23	0.20	0.0	
	S by ICP-MS (QC Lot: 43155		7.00.00	0.001		0.500	0.500	0.5	00/ 000/
ES2214932-001	Anonymous	EG020A-T: Manganese	7439-96-5	0.001	mg/L	0.582	0.568	2.5	0% - 20%
		EG020A-T: Aluminium	7429-90-5	0.01	mg/L	4.61	4.37	5.3	0% - 20%
		EG020A-T: Iron	7439-89-6	0.05	mg/L	16.3	15.6	4.1	0% - 20%
EW2201977-003	Anonymous	EG020A-T: Manganese	7439-96-5	0.001	mg/L	3.50	3.48	0.5	0% - 20%

Page	5 of 22
Work Order	EW2201994 Amendment 1
Client	: SMEC AUSTRALIA PTY LTD
Project	: Port Kembla GME

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EG020T: Total Metals	by ICP-MS (QC Lot: 4315	i11) - continued							
EW2201977-003	Anonymous	EG020A-T: Aluminium	7429-90-5	0.01	mg/L	10.6	10.6	0.2	0% - 20%
		EG020A-T: Iron	7439-89-6	0.05	mg/L	645	641	0.6	0% - 20%
EG020T: Total Metals	by ICP-MS (QC Lot: 43173	83)							
ES2214892-002	Anonymous	EG020A-T: Manganese	7439-96-5	0.001	mg/L	0.623	0.620	0.5	0% - 20%
		EG020A-T: Aluminium	7429-90-5	0.01	mg/L	1.22	1.16	4.8	0% - 20%
		EG020A-T: Iron	7439-89-6	0.05	mg/L	1.91	1.89	1.2	0% - 20%
EW2202001-004	Anonymous	EG020A-T: Manganese	7439-96-5	0.001	mg/L	0.054	0.056	4.4	0% - 20%
		EG020A-T: Aluminium	7429-90-5	0.01	mg/L	0.68	0.68	0.0	0% - 20%
		EG020A-T: Iron	7439-89-6	0.05	mg/L	1.61	1.68	4.4	0% - 20%
EG035F: Dissolved N	lercury by FIMS (QC Lot: 4	315685)							
ES2214512-004	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
ES2214636-003	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
EG035F: Dissolved N	lercury by FIMS (QC Lot: 4	315689)							
EW2201994-009	QA1 additional pfas bottles	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
	for lab qaqc	-							
EW2202009-008	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
EG094F: Dissolved N	letals in Fresh Water by OF	C-ICPMS (QC Lot: 4310821)							
ES2214228-001	Anonymous	EG094A-F: Uranium	7440-61-1	0.05	µg/L	2.54	2.52	1.1	0% - 20%
		EG094A-F: Aluminium	7429-90-5	5	μg/L	<5	<5	0.0	No Limit
EW2201994-003	OHMW20	EG094A-F: Uranium	7440-61-1	0.05	µg/L	0.21	0.21	0.0	No Limit
		EG094A-F: Aluminium	7429-90-5	5	µg/L	<5	<5	0.0	No Limit
EG094F: Dissolved N	letals in Fresh Water by OF	C-ICPMS (QC Lot: 4310822)							
ES2214228-001	Anonymous	EG094B-F: Selenium	7782-49-2	0.2	μg/L	<0.2	<0.2	0.0	No Limit
EW2201994-003	OHMW20	EG094B-F: Selenium	7782-49-2	0.2	µg/L	<0.2	<0.2	0.0	No Limit
EG094F: Dissolved N	letals in Fresh Water by OF	C-ICPMS (QC Lot: 4310823)							
WN2204899-004	Anonymous	EG094A-F: Uranium	7440-61-1	0.05	µg/L	<0.05	<0.05	0.0	No Limit
		EG094A-F: Aluminium	7429-90-5	5	µg/L	<5	<5	0.0	No Limit
EK040P: Fluoride by	PC Titrator (QC Lot: 43109	31)							
ES2214511-002	Anonymous	EK040P: Fluoride	16984-48-8	0.1	mg/L	<0.1	<0.1	0.0	No Limit
EW2201994-002	SMW02	EK040P: Fluoride	16984-48-8	0.1	mg/L	1.3	1.0	26.8	0% - 50%
EK055G: Ammonia a	s N by Discrete Analyser (QC Lot: 4317604)							
EW2201976-001	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.12	0.12	0.0	0% - 50%
EW2201992-014	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.17	0.17	0.0	0% - 50%
EK055G: Ammonia a	s N by Discrete Analyser (QC Lot: 4317606)							
EW2201994-002	SMW02	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	<0.01	0.0	No Limit
EK057G: Nitrite as N	by Discrete Analyser (QC	Lot: 4312124)							
ES2214469-001	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	ma/L	<0.01	<0.01	0.0	No Limit
EW2201994-006	SMW04	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	0.17	0.17	0.0	0% - 50%

Page	: 6 of 22
Work Order	: EW2201994 Amendment 1
Client	: SMEC AUSTRALIA PTY LTD
Project	: Port Kembla GME

Sub-Matrix: WATER					Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)	
EK059G: Nitrite plus	s Nitrate as N (NOx) by Dis	crete Analyser (QC Lot: 4317605)								
EW2201994-005	SMW03	EK059G: Nitrite + Nitrate as N		0.01	mg/L	7.77	7.89	1.5	0% - 20%	
EW2201994-002	SMW02	EK059G: Nitrite + Nitrate as N		0.01	mg/L	6.82	6.84	0.3	0% - 20%	
EK067G: Total Phos	phorus as P by Discrete An	alyser (QC Lot: 4317601)								
EW2201994-001	OHMW28 additional pfas	EK067G: Total Phosphorus as P		0.01	mg/L	0.24	0.26	9.1	0% - 20%	
	bottles for lab qaqc	·								
EW2201992-024	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	3.68	3.95	7.0	0% - 20%	
EK071G: Reactive Pl	hosphorus as P by discrete	analyser (QC Lot: 4312123)								
ES2214466-001	Anonymous	EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	0.11	0.11	0.0	0% - 50%	
ES2214466-010	Anonymous	EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	0.07	0.06	16.9	No Limit	
EK071G: Reactive Pl	hosphorus as P by discrete	analyser (QC Lot: 4312127)								
EW2201994-006	SMW04	EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	0.01	0.01	0.0	No Limit	
EP074D: Fumigants	(QC Lot: 4311096)									
ES2214286-002	Anonymous	EP074: 2.2-Dichloropropane	594-20-7	5	µg/L	<5	<5	0.0	No Limit	
		EP074: 1.2-Dichloropropane	78-87-5	5	µg/L	<5	<5	0.0	No Limit	
		EP074: cis-1.3-Dichloropropylene	10061-01-5	5	µg/L	<5	<5	0.0	No Limit	
		EP074: trans-1.3-Dichloropropylene	10061-02-6	5	µg/L	<5	<5	0.0	No Limit	
		EP074: 1.2-Dibromoethane (EDB)	106-93-4	5	µg/L	<5	<5	0.0	No Limit	
EW2201994-005	SMW03	EP074: 2.2-Dichloropropane	594-20-7	5	µg/L	<5	<5	0.0	No Limit	
		EP074: 1.2-Dichloropropane	78-87-5	5	µg/L	<5	<5	0.0	No Limit	
		EP074: cis-1.3-Dichloropropylene	10061-01-5	5	µg/L	<5	<5	0.0	No Limit	
		EP074: trans-1.3-Dichloropropylene	10061-02-6	5	µg/L	<5	<5	0.0	No Limit	
		EP074: 1.2-Dibromoethane (EDB)	106-93-4	5	µg/L	<5	<5	0.0	No Limit	
EP074E: Halogenate	d Aliphatic Compounds (Q	C Lot: 4311096)								
ES2214286-002	Anonymous	EP074: 1.1-Dichloroethene	75-35-4	5	µg/L	<5	<5	0.0	No Limit	
		EP074: lodomethane	74-88-4	5	µg/L	<5	<5	0.0	No Limit	
		EP074: trans-1.2-Dichloroethene	156-60-5	5	µg/L	<5	<5	0.0	No Limit	
		EP074: 1.1-Dichloroethane	75-34-3	5	µg/L	<5	<5	0.0	No Limit	
		EP074: cis-1.2-Dichloroethene	156-59-2	5	µg/L	<5	<5	0.0	No Limit	
		EP074: 1.1.1-Trichloroethane	71-55-6	5	µg/L	<5	<5	0.0	No Limit	
		EP074: 1.1-Dichloropropylene	563-58-6	5	µg/L	<5	<5	0.0	No Limit	
		EP074: Carbon Tetrachloride	56-23-5	5	µg/L	<5	<5	0.0	No Limit	
		EP074: 1.2-Dichloroethane	107-06-2	5	µg/L	<5	<5	0.0	No Limit	
		EP074: Trichloroethene	79-01-6	5	µg/L	<5	<5	0.0	No Limit	
		EP074: Dibromomethane	74-95-3	5	µg/L	<5	<5	0.0	No Limit	
		EP074: 1.1.2-Trichloroethane	79-00-5	5	µg/L	<5	<5	0.0	No Limit	
		EP074: 1.3-Dichloropropane	142-28-9	5	µg/L	<5	<5	0.0	No Limit	
		EP074: Tetrachloroethene	127-18-4	5	µg/L	<5	<5	0.0	No Limit	
		EP074: 1.1.1.2-Tetrachloroethane	630-20-6	5	µg/L	<5	<5	0.0	No Limit	
		EP074: trans-1.4-Dichloro-2-butene	110-57-6	5	µg/L	<5	<5	0.0	No Limit	

Page	: 7 of 22
Work Order	: EW2201994 Amendment 1
Client	: SMEC AUSTRALIA PTY LTD
Project	: Port Kembla GME

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP074E: Halogenated	d Aliphatic Compounds (Q	C Lot: 4311096) - continued							
ES2214286-002	Anonymous	EP074: cis-1.4-Dichloro-2-butene	1476-11-5	5	µg/L	<5	<5	0.0	No Limit
		EP074: 1.1.2.2-Tetrachloroethane	79-34-5	5	µg/L	<5	<5	0.0	No Limit
		EP074: 1.2.3-Trichloropropane	96-18-4	5	µg/L	<5	<5	0.0	No Limit
		EP074: Pentachloroethane	76-01-7	5	µg/L	<5	<5	0.0	No Limit
		EP074: 1.2-Dibromo-3-chloropropane	96-12-8	5	µg/L	<5	<5	0.0	No Limit
		EP074: Hexachlorobutadiene	87-68-3	5	µg/L	<5	<5	0.0	No Limit
		EP074: Dichlorodifluoromethane	75-71-8	50	µg/L	<50	<50	0.0	No Limit
		EP074: Chloromethane	74-87-3	50	µg/L	<50	<50	0.0	No Limit
		EP074: Vinyl chloride	75-01-4	50	µg/L	<50	<50	0.0	No Limit
		EP074: Bromomethane	74-83-9	50	µg/L	<50	<50	0.0	No Limit
		EP074: Chloroethane	75-00-3	50	µg/L	<50	<50	0.0	No Limit
		EP074: Trichlorofluoromethane	75-69-4	50	µg/L	<50	<50	0.0	No Limit
EW2201994-005	SMW03	EP074: 1.1-Dichloroethene	75-35-4	5	µg/L	<5	<5	0.0	No Limit
		EP074: lodomethane	74-88-4	5	µg/L	<5	<5	0.0	No Limit
		EP074: trans-1.2-Dichloroethene	156-60-5	5	µg/L	<5	<5	0.0	No Limit
		EP074: 1.1-Dichloroethane	75-34-3	5	µg/L	<5	<5	0.0	No Limit
		EP074: cis-1.2-Dichloroethene	156-59-2	5	µg/L	<5	<5	0.0	No Limit
		EP074: 1.1.1-Trichloroethane	71-55-6	5	µg/L	<5	<5	0.0	No Limit
		EP074: 1.1-Dichloropropylene	563-58-6	5	µg/L	<5	<5	0.0	No Limit
		EP074: Carbon Tetrachloride	56-23-5	5	µg/L	<5	<5	0.0	No Limit
		EP074: 1.2-Dichloroethane	107-06-2	5	µg/L	<5	<5	0.0	No Limit
		EP074: Trichloroethene	79-01-6	5	µg/L	<5	<5	0.0	No Limit
		EP074: Dibromomethane	74-95-3	5	μg/L	<5	<5	0.0	No Limit
		EP074: 1.1.2-Trichloroethane	79-00-5	5	µg/L	<5	<5	0.0	No Limit
		EP074: 1.3-Dichloropropane	142-28-9	5	μg/L	<5	<5	0.0	No Limit
		EP074: Tetrachloroethene	127-18-4	5	µg/L	<5	<5	0.0	No Limit
		EP074: 1.1.1.2-Tetrachloroethane	630-20-6	5	μg/L	<5	<5	0.0	No Limit
		EP074: trans-1.4-Dichloro-2-butene	110-57-6	5	µg/L	<5	<5	0.0	No Limit
		EP074: cis-1.4-Dichloro-2-butene	1476-11-5	5	μg/L	<5	<5	0.0	No Limit
		EP074: 1.1.2.2-Tetrachloroethane	79-34-5	5	μg/L	<5	<5	0.0	No Limit
		EP074: 1.2.3-Trichloropropane	96-18-4	5	µg/L	<5	<5	0.0	No Limit
		EP074: Pentachloroethane	76-01-7	5	µg/L	<5	<5	0.0	No Limit
		EP074: 1.2-Dibromo-3-chloropropane	96-12-8	5	µg/L	<5	<5	0.0	No Limit
		EP074: Hexachlorobutadiene	87-68-3	5	µg/L	<5	<5	0.0	No Limit
		EP074: Dichlorodifluoromethane	75-71-8	50	μg/L	<50	<50	0.0	No Limit
		EP074: Chloromethane	74-87-3	50	μg/L	<50	<50	0.0	No Limit
		EP074: Vinvl chloride	75-01-4	50	μg/L	<50	<50	0.0	No Limit
		EP074: Bromomethane	74-83-9	50	μg/L	<50	<50	0.0	No Limit
		EP074: Chloroethane	75-00-3	50	μg/L	<50	<50	0.0	No Limit
		EP074 [.] Trichlorofluoromethane	75-69-4	50	μg/L	<50	<50	0.0	No Limit

µg/L

EP074: Trichlorofluoromethane

Page	: 8 of 22
Work Order	EW2201994 Amendment 1
Client	: SMEC AUSTRALIA PTY LTD
Project	: Port Kembla GME

Sub-Matrix: WATER]	Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP074F: Halogenate	d Aromatic Compounds (QC	C Lot: 4311096)			·				
ES2214286-002	Anonymous	EP074: Chlorobenzene	108-90-7	5	µg/L	<5	<5	0.0	No Limit
		EP074: Bromobenzene	108-86-1	5	µg/L	<5	<5	0.0	No Limit
		EP074: 2-Chlorotoluene	95-49-8	5	µg/L	<5	<5	0.0	No Limit
		EP074: 4-Chlorotoluene	106-43-4	5	µg/L	<5	<5	0.0	No Limit
		EP074: 1.3-Dichlorobenzene	541-73-1	5	µg/L	<5	<5	0.0	No Limit
		EP074: 1.4-Dichlorobenzene	106-46-7	5	µg/L	<5	<5	0.0	No Limit
		EP074: 1.2-Dichlorobenzene	95-50-1	5	µg/L	<5	<5	0.0	No Limit
		EP074: 1.2.4-Trichlorobenzene	120-82-1	5	µg/L	<5	<5	0.0	No Limit
		EP074: 1.2.3-Trichlorobenzene	87-61-6	5	µg/L	<5	<5	0.0	No Limit
EW2201994-005	SMW03	EP074: Chlorobenzene	108-90-7	5	µg/L	<5	<5	0.0	No Limit
		EP074: Bromobenzene	108-86-1	5	µg/L	<5	<5	0.0	No Limit
		EP074: 2-Chlorotoluene	95-49-8	5	µg/L	<5	<5	0.0	No Limit
		EP074: 4-Chlorotoluene	106-43-4	5	µg/L	<5	<5	0.0	No Limit
		EP074: 1.3-Dichlorobenzene	541-73-1	5	µg/L	<5	<5	0.0	No Limit
		EP074: 1.4-Dichlorobenzene	106-46-7	5	µg/L	<5	<5	0.0	No Limit
		EP074: 1.2-Dichlorobenzene	95-50-1	5	µg/L	<5	<5	0.0	No Limit
		EP074: 1.2.4-Trichlorobenzene	120-82-1	5	μg/L	<5	<5	0.0	No Limit
		EP074: 1.2.3-Trichlorobenzene	87-61-6	5	μg/L	<5	<5	0.0	No Limit
EP074G: Trihalometh	nanes (QC Lot: 4311096)								
ES2214286-002	Anonymous	EP074: Chloroform	67-66-3	5	µg/L	<5	<5	0.0	No Limit
		EP074: Bromodichloromethane	75-27-4	5	µg/L	<5	<5	0.0	No Limit
		EP074: Dibromochloromethane	124-48-1	5	μg/L	<5	<5	0.0	No Limit
		EP074: Bromoform	75-25-2	5	µg/L	<5	<5	0.0	No Limit
EW2201994-005	SMW03	EP074: Chloroform	67-66-3	5	µg/L	<5	<5	0.0	No Limit
		EP074: Bromodichloromethane	75-27-4	5	µg/L	<5	<5	0.0	No Limit
		EP074: Dibromochloromethane	124-48-1	5	µg/L	<5	<5	0.0	No Limit
		EP074: Bromoform	75-25-2	5	µg/L	<5	<5	0.0	No Limit
EP075(SIM)A: Pheno	lic Compounds (QC Lot: 43	11086)							
EW2201994-002	SMW02	EP075(SIM): Phenol	108-95-2	1	µg/L	<1.0	<1.0	0.0	No Limit
		EP075(SIM): 2-Chlorophenol	95-57-8	1	µg/L	<1.0	<1.0	0.0	No Limit
		EP075(SIM): 2-Methylphenol	95-48-7	1	µg/L	<1.0	<1.0	0.0	No Limit
		EP075(SIM): 2-Nitrophenol	88-75-5	1	µg/L	<1.0	<1.0	0.0	No Limit
		EP075(SIM): 2.4-Dimethylphenol	105-67-9	1	µg/L	<1.0	<1.0	0.0	No Limit
		EP075(SIM): 2.4-Dichlorophenol	120-83-2	1	µg/L	<1.0	<1.0	0.0	No Limit
		EP075(SIM): 2.6-Dichlorophenol	87-65-0	1	µg/L	<1.0	<1.0	0.0	No Limit
		EP075(SIM): 4-Chloro-3-methylphenol	59-50-7	1	µg/L	<1.0	<1.0	0.0	No Limit
		EP075(SIM): 2.4.6-Trichlorophenol	88-06-2	1	µg/L	<1.0	<1.0	0.0	No Limit
		EP075(SIM): 2.4.5-Trichlorophenol	95-95-4	1	µg/L	<1.0	<1.0	0.0	No Limit
		EP075(SIM): 3- & 4-Methylphenol	1319-77-3	2	µg/L	<2.0	<2.0	0.0	No Limit

87-86-5

2

µg/L

<2.0

<2.0

0.0

No Limit

EP075(SIM): Pentachlorophenol

Page	: 9 of 22
Work Order	: EW2201994 Amendment 1
Client	: SMEC AUSTRALIA PTY LTD
Project	: Port Kembla GME

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)	
EP080/071: Total Pe	troleum Hydrocarbons (QC	Lot: 4311087)						(**)		
EW2201994-002	SMW02	EP071: C15 - C28 Fraction		100	µg/L	<100	<100	0.0	No Limit	
		EP071: C10 - C14 Fraction		50	µg/L	<50	<50	0.0	No Limit	
		EP071: C29 - C36 Fraction		50	µg/L	<50	<50	0.0	No Limit	
EP080/071: Total Pe	troleum Hydrocarbons (QC	Lot: 4311097)								
ES2214286-002	Anonymous	EP080: C6 - C9 Fraction		20	µg/L	<20	<20	0.0	No Limit	
EW2201994-005	SMW03	EP080: C6 - C9 Fraction		20	µg/L	<20	<20	0.0	No Limit	
EP080/071: Total Re	coverable Hydrocarbons - N	EPM 2013 Fractions (QC Lot: 4311087)								
EW2201994-002	SMW02	EP071: >C10 - C16 Fraction		100	µg/L	<100	<100	0.0	No Limit	
		EP071: >C16 - C34 Fraction		100	µg/L	<100	<100	0.0	No Limit	
		EP071: >C34 - C40 Fraction		100	µg/L	<100	<100	0.0	No Limit	
EP080/071: Total Re	coverable Hydrocarbons - N	EPM 2013 Fractions (QC Lot: 4311097)								
ES2214286-002	Anonymous	EP080: C6 - C10 Fraction	C6_C10	20	µg/L	<20	<20	0.0	No Limit	
EW2201994-005	SMW03	EP080: C6 - C10 Fraction	C6_C10	20	µg/L	<20	<20	0.0	No Limit	
EP080: BTEXN (QC	Lot: 4311097)									
ES2214286-002	Anonymous	EP080: Benzene	71-43-2	1	µg/L	<1	<1	0.0	No Limit	
		EP080: Toluene	108-88-3	2	µg/L	<2	<2	0.0	No Limit	
		EP080: Ethylbenzene	100-41-4	2	µg/L	<2	<2	0.0	No Limit	
		EP080: meta- & para-Xylene	108-38-3	2	µg/L	<2	<2	0.0	No Limit	
			106-42-3							
		EP080: ortho-Xylene	95-47-6	2	µg/L	<2	<2	0.0	No Limit	
		EP080: Naphthalene	91-20-3	5	µg/L	<5	<5	0.0	No Limit	
EW2201994-005	SMW03	EP080: Benzene	71-43-2	1	µg/L	<1	<1	0.0	No Limit	
		EP080: Toluene	108-88-3	2	µg/L	<2	<2	0.0	No Limit	
		EP080: Ethylbenzene	100-41-4	2	µg/L	<2	<2	0.0	No Limit	
		EP080: meta- & para-Xylene	108-38-3	2	µg/L	<2	<2	0.0	No Limit	
			106-42-3							
		EP080: ortho-Xylene	95-47-6	2	μg/L	<2	<2	0.0	No Limit	
		EP080: Naphthalene	91-20-3	5	μg/L	<5	<5	0.0	No Limit	
EP132B: Polynuclea	r Aromatic Hydrocarbons (s	uper trace) (QC Lot: 4311093)								
EW2201994-001	OHMW28 additional pfas	EP132-ST: Anthracene	120-12-7	0.001	µg/L	<0.001	<0.001	0.0	No Limit	
	bottles for lab qaqc									
		EP132-ST: Benzo(a)pyrene	50-32-8	0.001	µg/L	<0.001	<0.001	0.0	No Limit	
		EP132-ST: Benzo(e)pyrene	192-97-2	0.001	µg/L	<0.001	<0.001	0.0	No Limit	
		EP132-ST: Chrysene	218-01-9	0.001	µg/L	<0.001	<0.001	0.0	No Limit	
		EP132-ST: Dibenz(a.h)anthracene	53-70-3	0.001	µg/L	<0.001	<0.001	0.0	No Limit	
		EP132-ST: Fluoranthene	206-44-0	0.001	µg/L	<0.001	<0.001	0.0	No Limit	
		EP132-ST: Pyrene	129-00-0	0.001	µg/L	<0.001	<0.001	0.0	No Limit	
		EP132-ST: Sum of 16 US EPA Priority PAHs		0.001	ua/L	< 0.001	< 0.001	0.0	No Limit	

---- 0.001

µg/L

<0.001

<0.001

0.0

No Limit

EP132-ST: Benzo(a)pyrene TEQ (zero)

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)	
EP132B: Polynuclear	Aromatic Hydrocarbons (super trace) (QC Lot: 4311093) - continued								
EW2201994-001	OHMW28 additional pfas bottles for lab gagc	EP132-ST: Benzo(a)pyrene TEQ (half LOR)		0.001	µg/L	<0.001	<0.001	0.0	No Limit	
		EP132-ST: Benzo(a)pyrene TEQ (LOR)		0.001	µg/L	<0.001	<0.001	0.0	No Limit	
		EP132-ST: Acenaphthene	83-32-9	0.002	µg/L	<0.002	<0.002	0.0	No Limit	
		EP132-ST: Acenaphthylene	208-96-8	0.002	µg/L	<0.002	<0.002	0.0	No Limit	
		EP132-ST: Benz(a)anthracene	56-55-3	0.002	µg/L	<0.002	<0.002	0.0	No Limit	
		EP132-ST: Benzo(g.h.i)perylene	191-24-2	0.002	µg/L	<0.002	<0.002	0.0	No Limit	
		EP132-ST: Coronene	191-07-1	0.002	µg/L	<0.002	<0.002	0.0	No Limit	
		EP132-ST: 7.12-Dimethylbenz(a)anthracene	57-97-6	0.002	µg/L	<0.001	<0.001	0.0	No Limit	
		EP132-ST: Fluorene	86-73-7	0.002	µg/L	<0.002	<0.002	0.0	No Limit	
		EP132-ST: Indeno(1.2.3.cd)pyrene	193-39-5	0.002	µg/L	<0.002	<0.002	0.0	No Limit	
		EP132-ST: 2-Methylnaphthalene	91-57-6	0.002	µg/L	<0.002	<0.002	0.0	No Limit	
		EP132-ST: Phenanthrene	85-01-8	0.002	µg/L	<0.002	<0.002	0.0	No Limit	
		EP132-ST: Perylene	198-55-0	0.002	µg/L	<0.002	<0.002	0.0	No Limit	
		EP132-ST: Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.004	µg/L	<0.004	<0.004	0.0	No Limit	
		EP132-ST: Benzo(k)fluoranthene	207-08-9	0.004	µg/L	<0.004	<0.004	0.0	No Limit	
		EP132-ST: 3-Methylcholanthrene	56-49-5	0.004	µg/L	<0.004	<0.004	0.0	No Limit	
		EP132-ST: Naphthalene	91-20-3	0.004	µg/L	<0.004	<0.004	0.0	No Limit	
EP231A: Perfluoroall	yl Sulfonic Acids (QC Lot	: 4313023)								
EP2204836-001	Anonymous	EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.01	µg/L	0.10	0.11	0.0	0% - 50%	
		EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.01	µg/L	0.02	0.02	0.0	No Limit	
		EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.02	µg/L	<0.02	<0.02	0.0	No Limit	
EW2201994-001 OHMW bottles	OHMW28 additional pfas bottles for lab gagc	EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.01	µg/L	<0.01	<0.01	0.0	No Limit	
		EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.01	µg/L	<0.01	<0.01	0.0	No Limit	
		EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.02	µg/L	<0.02	<0.02	0.0	No Limit	
EP231A: Perfluoroall	yl Sulfonic Acids (QC Lot	:: 4313420)								
EP2204981-001	Anonymous	EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.01	µg/L	0.05	0.05	0.0	No Limit	
		EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.01	µg/L	0.08	0.08	0.0	No Limit	
		EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.02	µg/L	<0.02	<0.02	0.0	No Limit	
EP231B: Perfluoroal	kyl Carboxylic Acids (QC	Lot: 4313023)								
EP2204836-001	Anonymous	EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.01	µg/L	<0.01	<0.01	0.0	No Limit	
		EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	µg/L	<0.02	<0.02	0.0	No Limit	
		EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	µg/L	<0.02	<0.02	0.0	No Limit	
		EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	µg/L	<0.02	<0.02	0.0	No Limit	
		EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.1	µg/L	<0.1	<0.1	0.0	No Limit	
EW2201994-001	OHMW28 additional pfas bottles for lab qaqc	EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.01	µg/L	<0.01	<0.01	0.0	No Limit	
		EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	µg/L	0.02	<0.02	0.0	No Limit	

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP231B: Perfluoroal	kvl Carboxvlic Acids (QC L	.ot: 4313023) - continued							
EW2201994-001	OHMW28 additional pfas bottles for lab gage	EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	µg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	µg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.1	μg/L	<0.1	<0.1	0.0	No Limit
EP231B: Perfluoroal	kyl Carboxylic Acids (QC L	.ot: 4313420)							
EP2204981-001	Anonymous	EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.01	µg/L	<0.01	<0.01	0.0	No Limit
		EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	µg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	μg/L	<0.02	<0.02	0.0	No Limit
		EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.1	μg/L	<0.1	<0.1	0.0	No Limit
EP231D: (n:2) Fluoro	telomer Sulfonic Acids (Q	C Lot: 4313023)							
EP2204836-001	Anonymous	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.05	µg/L	<0.05	<0.05	0.0	No Limit
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05	µg/L	<0.05	<0.05	0.0	No Limit
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.05	µg/L	<0.05	<0.05	0.0	No Limit
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.05	µg/L	<0.05	<0.05	0.0	No Limit
EW2201994-001	OHMW28 additional pfas bottles for lab qaqc	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.05	µg/L	<0.05	<0.05	0.0	No Limit
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05	µg/L	<0.05	<0.05	0.0	No Limit
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.05	µg/L	<0.05	<0.05	0.0	No Limit
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.05	µg/L	<0.05	<0.05	0.0	No Limit
EP231D: (n:2) Fluoro	telomer Sulfonic Acids (Q	C Lot: 4313420)							
EP2204981-001	Anonymous	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.05	µg/L	<0.05	<0.05	0.0	No Limit
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05	µg/L	<0.05	<0.05	0.0	No Limit
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.05	µg/L	<0.05	<0.05	0.0	No Limit
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.05	µg/L	<0.05	<0.05	0.0	No Limit

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)) Laboratory Control Spike (LCS) Re			Report	
				Report	Spike	Spike Recovery (%)	e Limits (%)		
Method: Compound C/	AS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EA005P: pH by PC Titrator (QCLot: 4310930)									
EA005-P: pH Value			pH Unit		4 pH Unit	101	98.8	101	
					7 pH Unit	100	99.2	101	
EA005P: pH by PC Titrator (QCLot: 4310933)									
EA005-P: pH Value			pH Unit		4 pH Unit	101	98.8	101	
					7 pH Unit	100	99.2	101	
EA010P: Conductivity by PC Titrator (QCLot: 4310929)									
EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	<1	220 µS/cm	99.6	89.9	110	
				<1	2100 µS/cm	101	90.2	111	
ED037P: Alkalinity by PC Titrator (QCLot: 4310932)									
ED037-P: Total Alkalinity as CaCO3			mg/L		200 mg/L	88.6	81.0	111	
-					50 mg/L	112	80.0	120	
ED038: Acidity (QCLot: 4310924)									
ED038-P: Acidity as CaCO3		1	mg/L	<1	100 mg/L	86.7	70.0	130	
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (QCLot: 4312	125)								
ED041G: Sulfate as SO4 - Turbidimetric 14	808-79-8	1	mg/L	<1	25 mg/L	107	82.0	122	
				<1	500 mg/L	97.6	82.0	122	
ED045G: Chloride by Discrete Analyser (QCLot: 4312126)									
ED045G: Chloride 16	887-00-6	1	mg/L	<1	50 mg/L	95.8	80.9	127	
				<1	1000 mg/L	94.6	80.9	127	
ED093F: Dissolved Major Cations (QCLot: 4315683)									
ED093F: Calcium 7	440-70-2	1	mg/L	<1	50 mg/L	99.5	80.0	114	
ED093F: Magnesium 7	439-95-4	1	mg/L	<1	50 mg/L	106	90.0	116	
ED093F: Sodium 7	440-23-5	1	mg/L	<1	50 mg/L	104	82.0	120	
ED093F: Potassium 7	440-09-7	1	mg/L	<1	50 mg/L	107	85.0	113	
ED093F: Dissolved Major Cations (QCLot: 4315688)									
ED093F: Calcium 7	440-70-2	1	mg/L	<1	50 mg/L	104	80.0	114	
ED093F: Magnesium 7	439-95-4	1	mg/L	<1	50 mg/L	109	90.0	116	
ED093F: Sodium 7	440-23-5	1	mg/L	<1	50 mg/L	108	82.0	120	
ED093F: Potassium 7	440-09-7	1	mg/L	<1	50 mg/L	110	85.0	113	
EG020F: Dissolved Metals by ICP-MS (QCLot: 4315684)									
EG020A-F: Arsenic 7	440-38-2	0.001	mg/L	<0.001	0.1 mg/L	103	85.0	114	
EG020A-F: Cadmium 7	440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	102	84.0	110	
EG020A-F: Chromium 7	440-47-3	0.001	mg/L	<0.001	0.1 mg/L	102	85.0	111	

Page	: 13 of 22
Work Order	: EW2201994 Amendment 1
Client	: SMEC AUSTRALIA PTY LTD
Project	: Port Kembla GME

Sub-Matrix: WATER	Method Blank (MB) Laboratory Control Spike (LCS				ol Spike (LCS) Report			
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG020F: Dissolved Metals by ICP-MS (QCLot: 4315684)	- continued							
EG020A-F: Cobalt	7440-48-4	0.001	mg/L	<0.001	0.1 mg/L	102	82.0	112
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	102	81.0	111
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	99.6	83.0	111
EG020A-F: Manganese	7439-96-5	0.001	mg/L	<0.001	0.1 mg/L	100	82.0	110
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	100	82.0	112
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	102	81.0	117
EG020A-F: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	101	82.0	112
EG020F: Dissolved Metals by ICP-MS (QCLot: 4315687)								
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	108	85.0	114
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	105	84.0	110
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	106	85.0	111
EG020A-F: Cobalt	7440-48-4	0.001	mg/L	<0.001	0.1 mg/L	107	82.0	112
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	104	81.0	111
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	103	83.0	111
EG020A-F: Manganese	7439-96-5	0.001	mg/L	<0.001	0.1 mg/L	103	82.0	110
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	104	82.0	112
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	105	81.0	117
EG020A-F: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	105	82.0	112
EG020F: Dissolved Metals by ICP-MS (QCLot: 4320315)								
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	103	85.0	114
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	102	84.0	110
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	102	85.0	111
EG020A-F: Cobalt	7440-48-4	0.001	mg/L	<0.001	0.1 mg/L	101	82.0	112
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	100	81.0	111
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	102	83.0	111
EG020A-F: Manganese	7439-96-5	0.001	mg/L	<0.001	0.1 mg/L	100	82.0	110
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	101	82.0	112
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	101	81.0	117
EG020A-F: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	99.6	82.0	112
EG020T: Total Metals by ICP-MS (QCLot: 4315511)								
EG020A-T: Aluminium	7429-90-5	0.01	mg/L	<0.01	0.5 mg/L	97.5	82.0	120
EG020A-T: Manganese	7439-96-5	0.001	mg/L	<0.001	0.1 mg/L	98.4	85.0	113
EG020A-T: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	100	85.0	117
EG020T: Total Metals by ICP-MS (QCLot: 4317383)								
EG020A-T: Aluminium	7429-90-5	0.01	mg/L	<0.01	0.5 mg/L	105	82.0	120
EG020A-T: Manganese	7439-96-5	0.001	mg/L	<0.001	0.1 mg/L	105	85.0	113
EG020A-T: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	106	85.0	117
EG035F: Dissolved Mercury by FIMS (QCLot: 4315685)								

Page	: 14 of 22
Work Order	: EW2201994 Amendment 1
Client	: SMEC AUSTRALIA PTY LTD
Project	: Port Kembla GME

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC		
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG035F: Dissolved Mercury by FIMS (QCLot: 43156	85) - continued							
EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	90.5	83.0	105
EG035F: Dissolved Mercury by FIMS (QCLot: 43156	89)							
EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	86.8	83.0	105
EG094F: Dissolved Metals in Fresh Water by ORC-IC	CPMS (QCLot: 431082	1)						
EG094A-F: Aluminium	7429-90-5	5	µg/L	<5	50 µg/L	106	89.0	117
EG094A-F: Uranium	7440-61-1	0.05	μg/L	<0.05	10 µg/L	94.8	70.0	130
EG094F: Dissolved Metals in Fresh Water by ORC-IC	CPMS (QCLot: 431082	2)						
EG094B-F: Selenium	7782-49-2	0.2	μg/L	<0.2	10 µg/L	100	70.0	122
EG094F: Dissolved Metals in Fresh Water by ORC-IC	CPMS (QCLot: 431082	3)						
EG094A-F: Aluminium	7429-90-5	5	µg/L	<5	50 µg/L	102	89.0	117
EG094A-F: Uranium	7440-61-1	0.05	µg/L	<0.05	10 µg/L	92.7	70.0	130
EK040P: Fluoride by PC Titrator (QCLot: 4310931)								
EK040P: Fluoride	16984-48-8	0.1	mg/L	<0.1	5 mg/L	103	82.0	116
EK055G: Ammonia as N by Discrete Analyser (QCL	ot: 4317604)							
EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	1 mg/L	98.5	90.0	114
EK055G [•] Ammonia as N by Discrete Analyser (QCI)	ot: 4317606)							
EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	1 mg/L	95.7	90.0	114
EK057G: Nitrite as N by Discrete Analyser (OCI of:	4312124)							
EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	0.5 mg/L	98.9	82.0	114
EK059G: Nitrite plus Nitrate as N (NOx), by Discrete	Analyser (OCI of: 43	17605)						
EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.5 mg/L	101	91.0	113
EK067C: Total Phosphorus as P by Discrete Analysi	or (OCI at: 4317601)		5		, i i j			-
EK067G: Total Phosphorus as P		0.01	ma/l	<0.01	4 42 mg/l	98.3	71.3	126
		0.01		<0.01	0.442 mg/L	105	71.3	126
				<0.01	1 mg/L	104	71.3	126
EK071G: Reactive Phosphorus as P by discrete ana	lvser (QCLot: 431212)	3)						
EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	0.5 mg/L	95.1	85.0	117
EK071G: Reactive Phosphorus as P by discrete ana	lvser (QCLot: 431212)	7)						
EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	0.5 mg/L	94.0	85.0	117
EP074D: Fumigants (QCLot: 4311096)								
EP074: 2.2-Dichloropropane	594-20-7	5	µg/L	<5	10 µg/L	92.9	68.0	122
EP074: 1.2-Dichloropropane	78-87-5	5	μg/L	<5	10 µg/L	88.5	76.0	118
EP074: cis-1.3-Dichloropropylene	10061-01-5	5	μg/L	<5	10 µg/L	87.6	62.0	120
EP074: trans-1.3-Dichloropropylene	10061-02-6	5	µg/L	<5	10 µg/L	90.1	60.0	114
EP074: 1.2-Dibromoethane (EDB)	106-93-4	5	µg/L	<5	10 µg/L	95.2	69.0	117
EP074E: Halogenated Aliphatic Compounds (QCLot	t: 4311096)							
EP074: Dichlorodifluoromethane	75-71-8	50	μg/L	<50	100 µg/L	96.5	60.6	138

Page	: 15 of 22
Work Order	: EW2201994 Amendment 1
Client	: SMEC AUSTRALIA PTY LTD
Project	: Port Kembla GME

ub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report			
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP074E: Halogenated Aliphatic Compounds (QCLo	t: 4311096) - continued	d						
EP074: Chloromethane	74-87-3	50	µg/L	<50	100 µg/L	88.9	67.4	130
EP074: Vinyl chloride	75-01-4	50	µg/L	<50	100 µg/L	95.9	69.4	129
EP074: Bromomethane	74-83-9	50	μg/L	<50	100 µg/L	90.0	56.0	140
EP074: Chloroethane	75-00-3	50	μg/L	<50	100 µg/L	100	61.0	139
EP074: Trichlorofluoromethane	75-69-4	50	μg/L	<50	100 µg/L	86.8	69.0	131
EP074: 1.1-Dichloroethene	75-35-4	5	μg/L	<5	10 µg/L	87.7	70.0	124
EP074: lodomethane	74-88-4	5	μg/L	<5	10 µg/L	87.7	70.2	128
EP074: trans-1.2-Dichloroethene	156-60-5	5	μg/L	<5	10 µg/L	97.3	74.0	118
EP074: 1.1-Dichloroethane	75-34-3	5	μg/L	<5	10 µg/L	96.1	74.0	120
EP074: cis-1.2-Dichloroethene	156-59-2	5	μg/L	<5	10 µg/L	98.6	77.0	119
EP074: 1.1.1-Trichloroethane	71-55-6	5	μg/L	<5	10 µg/L	88.0	67.0	119
EP074: 1.1-Dichloropropylene	563-58-6	5	μg/L	<5	10 µg/L	93.3	73.0	119
EP074: Carbon Tetrachloride	56-23-5	5	μg/L	<5	10 µg/L	90.3	62.0	120
EP074: 1.2-Dichloroethane	107-06-2	5	μg/L	<5	10 µg/L	99.2	73.0	123
EP074: Trichloroethene	79-01-6	5	μg/L	<5	10 µg/L	87.2	76.0	118
EP074: Dibromomethane	74-95-3	5	μg/L	<5	10 µg/L	86.5	73.0	119
EP074: 1.1.2-Trichloroethane	79-00-5	5	μg/L	<5	10 µg/L	93.0	72.0	126
EP074: 1.3-Dichloropropane	142-28-9	5	μg/L	<5	10 µg/L	89.3	71.0	129
EP074: Tetrachloroethene	127-18-4	5	µg/L	<5	10 µg/L	105	72.0	124
EP074: 1.1.1.2-Tetrachloroethane	630-20-6	5	μg/L	<5	10 µg/L	93.0	66.0	114
EP074: trans-1.4-Dichloro-2-butene	110-57-6	5	μg/L	<5	10 µg/L	87.9	60.0	120
EP074: cis-1.4-Dichloro-2-butene	1476-11-5	5	µg/L	<5	10 µg/L	96.8	70.6	128
EP074: 1.1.2.2-Tetrachloroethane	79-34-5	5	μg/L	<5	10 µg/L	91.6	70.0	124
EP074: 1.2.3-Trichloropropane	96-18-4	5	µg/L	<5	10 µg/L	86.1	74.0	126
EP074: Pentachloroethane	76-01-7	5	µg/L	<5	10 µg/L	86.1	71.8	126
EP074: 1.2-Dibromo-3-chloropropane	96-12-8	5	µg/L	<5	10 µg/L	98.5	66.4	136
EP074: Hexachlorobutadiene	87-68-3	5	μg/L	<5	10 µg/L	88.0	58.0	130
EP074F: Halogenated Aromatic Compounds (QCLo	t: 4311096)							
EP074: Chlorobenzene	108-90-7	5	μg/L	<5	10 µg/L	95.6	79.0	117
EP074: Bromobenzene	108-86-1	5	μg/L	<5	10 µg/L	88.5	76.0	116
EP074: 2-Chlorotoluene	95-49-8	5	μg/L	<5	10 µg/L	92.0	73.0	119
EP074: 4-Chlorotoluene	106-43-4	5	μg/L	<5	10 µg/L	86.7	73.0	119
EP074: 1.3-Dichlorobenzene	541-73-1	5	μg/L	<5	10 µg/L	88.4	75.0	117
EP074: 1.4-Dichlorobenzene	106-46-7	5	μg/L	<5	10 µg/L	92.6	74.0	118
EP074: 1.2-Dichlorobenzene	95-50-1	5	μg/L	<5	10 µg/L	87.2	75.0	117
EP074: 1.2.4-Trichlorobenzene	120-82-1	5	μg/L	<5	10 µg/L	86.8	61.0	125
EP074: 1.2.3-Trichlorobenzene	87-61-6	5	µg/L	<5	10 µg/L	89.3	67.0	123
EP074G: Trihalomethanes (QCLot: 4311096)								
EP074: Chloroform	67-66-3	5	µg/L	<5	10 µg/L	93.8	72.0	120

Page	: 16 of 22
Work Order	EW2201994 Amendment 1
Client	: SMEC AUSTRALIA PTY LTD
Project	: Port Kembla GME

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Repor			ort	
				Report	Spike	Spike Recovery (%)	Acceptabl	e Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP074G: Trihalomethanes (QCLot: 4311096) - cont	tinued								
EP074: Bromodichloromethane	75-27-4	5	µg/L	<5	10 µg/L	87.2	64.0	118	
EP074: Dibromochloromethane	124-48-1	5	µg/L	<5	10 µg/L	85.7	65.0	115	
EP074: Bromoform	75-25-2	5	µg/L	<5	10 µg/L	90.4	73.5	126	
EP075(SIM)A: Phenolic Compounds (QCLot: 43110	86)								
EP075(SIM): Phenol	108-95-2	1	µg/L	<1.0	5 µg/L	40.5	24.5	61.9	
EP075(SIM): 2-Chlorophenol	95-57-8	1	µg/L	<1.0	5 µg/L	67.4	52.0	90.0	
EP075(SIM): 2-Methylphenol	95-48-7	1	µg/L	<1.0	5 µg/L	71.6	51.0	91.0	
EP075(SIM): 3- & 4-Methylphenol	1319-77-3	2	μg/L	<2.0	10 µg/L	68.4	44.0	88.0	
EP075(SIM): 2-Nitrophenol	88-75-5	1	µg/L	<1.0	5 µg/L	71.9	48.0	100	
EP075(SIM): 2.4-Dimethylphenol	105-67-9	1	µg/L	<1.0	5 µg/L	76.5	49.0	99.0	
EP075(SIM): 2.4-Dichlorophenol	120-83-2	1	µg/L	<1.0	5 µg/L	82.4	53.0	105	
EP075(SIM): 2.6-Dichlorophenol	87-65-0	1	µg/L	<1.0	5 µg/L	69.7	57.0	105	
EP075(SIM): 4-Chloro-3-methylphenol	59-50-7	1	µg/L	<1.0	5 µg/L	80.2	53.0	99.0	
EP075(SIM): 2.4.6-Trichlorophenol	88-06-2	1	µg/L	<1.0	5 µg/L	76.7	50.0	106	
EP075(SIM): 2.4.5-Trichlorophenol	95-95-4	1	μg/L	<1.0	5 µg/L	73.8	51.0	105	
EP075(SIM): Pentachlorophenol	87-86-5	2	μg/L	<2.0	10 µg/L	40.5	10.0	95.0	
EP080/071: Total Petroleum Hydrocarbons (QCLot	: 4311087)								
EP071: C10 - C14 Fraction		50	µg/L	<50	400 µg/L	66.1	55.8	112	
EP071: C15 - C28 Fraction		100	µg/L	<100	600 µg/L	88.7	71.6	113	
EP071: C29 - C36 Fraction		50	µg/L	<50	400 µg/L	89.9	56.0	121	
EP080/071: Total Petroleum Hydrocarbons (QCLot	: 4311097)								
EP080: C6 - C9 Fraction		20	µg/L	<20	260 µg/L	79.9	75.0	127	
EP080/071: Total Recoverable Hydrocarbons - NEP	M 2013 Fractions (QCL	ot: 4311087)							
EP071: >C10 - C16 Fraction		100	µg/L	<100	500 µg/L	71.2	57.9	119	
EP071: >C16 - C34 Fraction		100	µg/L	<100	700 µg/L	93.0	62.5	110	
EP071: >C34 - C40 Fraction		100	μg/L	<100	300 µg/L	76.8	61.5	121	
EP080/071: Total Recoverable Hydrocarbons - NEP	M 2013 Fractions (QCL	ot: 4311097)							
EP080: C6 - C10 Fraction	C6_C10	20	µg/L	<20	310 µg/L	85.1	75.0	127	
EP080: BTEXN (QCLot: 4311097)									
EP080: Benzene	71-43-2	1	µg/L	<1	10 µg/L	81.8	70.0	122	
EP080: Toluene	108-88-3	2	µg/L	<2	10 µg/L	95.2	69.0	123	
EP080: Ethylbenzene	100-41-4	2	µg/L	<2	10 µg/L	99.0	70.0	120	
EP080: meta- & para-Xylene	108-38-3	2	µg/L	<2	10 µg/L	96.7	69.0	121	
	106-42-3								
EP080: ortho-Xylene	95-47-6	2	µg/L	<2	10 µg/L	101	72.0	122	
EP080: Naphthalene	91-20-3	5	μg/L	<5	10 µg/L	105	70.0	120	
EP132B: Polynuclear Aromatic Hydrocarbons (sup	er trace) (QCLot: 43110	93)							
EP132-ST: Acenaphthene	83-32-9	0.002	µg/L	<0.002	0.01 µg/L	95.7	70.0	130	

Page	: 17 of 22
Work Order	EW2201994 Amendment 1
Client	: SMEC AUSTRALIA PTY LTD
Project	: Port Kembla GME

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP132B: Polynuclear Aromatic Hydrocarbons (super	trace) (QCLot: 43110	093) - continued							
EP132-ST: Acenaphthylene	208-96-8	0.002	µg/L	<0.002	0.01 µg/L	100.0	70.0	130	
EP132-ST: Anthracene	120-12-7	0.001	μg/L	<0.001	0.01 µg/L	101	70.0	130	
EP132-ST: Benz(a)anthracene	56-55-3	0.002	μg/L	<0.002	0.01 µg/L	100	70.0	130	
EP132-ST: Benzo(a)pyrene	50-32-8	0.001	µg/L	<0.001	0.01 µg/L	90.3	70.0	130	
EP132-ST: Benzo(b+j)fluoranthene	205-99-2	0.004	µg/L	<0.004	0.01 µg/L	92.0	70.0	130	
	205-82-3								
EP132-ST: Benzo(e)pyrene	192-97-2	0.001	μg/L	<0.001	0.01 µg/L	108	70.0	130	
EP132-ST: Benzo(g.h.i)perylene	191-24-2	0.002	μg/L	<0.002	0.01 µg/L	90.9	70.0	130	
EP132-ST: Benzo(k)fluoranthene	207-08-9	0.004	µg/L	<0.004	0.01 µg/L	93.3	70.0	130	
EP132-ST: Chrysene	218-01-9	0.001	µg/L	<0.001	0.01 µg/L	99.2	70.0	130	
EP132-ST: Coronene	191-07-1	0.002	µg/L	<0.002	0.01 µg/L	99.3	70.0	130	
EP132-ST: Dibenz(a.h)anthracene	53-70-3	0.001	µg/L	<0.001	0.01 µg/L	95.3	70.0	130	
EP132-ST: 7.12-Dimethylbenz(a)anthracene	57-97-6	0.002	µg/L	<0.002	0.01 µg/L	89.1	70.0	130	
EP132-ST: Fluoranthene	206-44-0	0.001	µg/L	<0.001	0.01 µg/L	105	70.0	130	
EP132-ST: Fluorene	86-73-7	0.002	µg/L	<0.002	0.01 µg/L	96.5	70.0	130	
EP132-ST: Indeno(1.2.3.cd)pyrene	193-39-5	0.002	µg/L	<0.002	0.01 µg/L	95.9	70.0	130	
EP132-ST: 3-Methylcholanthrene	56-49-5	0.004	µg/L	<0.004	0.01 µg/L	92.4	70.0	130	
EP132-ST: 2-Methylnaphthalene	91-57-6	0.002	µg/L	<0.002	0.01 µg/L	96.2	70.0	130	
EP132-ST: Naphthalene	91-20-3	0.004	µg/L	<0.004	0.01 µg/L	111	70.0	130	
EP132-ST: Phenanthrene	85-01-8	0.002	µg/L	<0.002	0.01 µg/L	104	70.0	130	
EP132-ST: Perylene	198-55-0	0.002	µg/L	<0.002	0.01 µg/L	89.6	70.0	130	
EP132-ST: Pyrene	129-00-0	0.001	µg/L	<0.001	0.01 µg/L	108	70.0	130	
EP132-ST: Sum of 16 US EPA Priority PAHs		0.001	µg/L	<0.001					
EP132-ST: Benzo(a)pyrene TEQ (zero)		0.001	µg/L	<0.001					
EP132-ST: Benzo(a)pyrene TEQ (half LOR)		0.001	µg/L	<0.001					
EP132-ST: Benzo(a)pyrene TEQ (LOR)		0.001	µg/L	<0.001					
EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 4313)	023)								
EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.02	µg/L	<0.02	0.25 µg/L	110	72.0	130	
EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.01	µg/L	<0.01	0.25 µg/L	108	68.0	131	
EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.01	μg/L	<0.01	0.25 µg/L	113	65.0	140	
EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 43134	420)								
EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.02	µg/L	<0.02	0.25 μg/L	108	72.0	130	
EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.01	µg/L	<0.01	0.25 µg/L	107	68.0	131	
EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.01	µg/L	<0.01	0.25 µg/L	115	65.0	140	
EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 43	313023)								
EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.1	µg/L	<0.1	1.25 µg/L	107	73.0	129	
EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	μg/L	<0.02	0.25 μg/L	123	72.0	129	
EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	µg/L	<0.02	0.25 μg/L	115	72.0	129	

ub-Matrix: WATER			Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 4	313023) - continued							
EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	µg/L	<0.02	0.25 µg/L	116	72.0	130
EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.01	µg/L	<0.01	0.25 µg/L	121	71.0	133
EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 4	1313420)							
EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.1	µg/L	<0.1	1.25 µg/L	105	73.0	129
EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	µg/L	<0.02	0.25 µg/L	111	72.0	129
EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	µg/L	<0.02	0.25 µg/L	118	72.0	129
EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	µg/L	<0.02	0.25 µg/L	117	72.0	130
EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.01	µg/L	<0.01	0.25 µg/L	120	71.0	133
EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLo	t: 4313023)							
EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.05	µg/L	<0.05	0.25 µg/L	121	63.0	143
EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05	µg/L	<0.05	0.25 µg/L	112	64.0	140
EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.05	µg/L	<0.05	0.25 µg/L	116	67.0	138
EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.05	µg/L	<0.05	0.25 µg/L	94.2	71.4	144
EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLo	t: 4313420)							
EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.05	µg/L	<0.05	0.25 µg/L	116	63.0	143
EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05	µg/L	<0.05	0.25 µg/L	112	64.0	140
EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.05	µg/L	<0.05	0.25 μg/L	103	67.0	138
EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.05	µg/L	<0.05	0.25 μg/L	88.8	71.4	144

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER				Ма	Matrix Spike (MS) Report			
				Spike	SpikeRecovery(%)	Acceptable I	Limits (%)	
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
ED041G: Sulfate (1	Furbidimetric) as SO4 2- by DA (QCLot: 4312125)							
EW2201994-006	SMW04	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	10 mg/L	# Not	70.0	130	
					Determined			
ED045G: Chloride	by Discrete Analyser (QCLot: 4312126)							
EW2201994-006	SMW04	ED045G: Chloride	16887-00-6	50 mg/L	120	70.0	130	
EG020F: Dissolved	d Metals by ICP-MS (QCLot: 4315684)							
ES2214512-002	Anonymous	EG020A-F: Arsenic	7440-38-2	1 mg/L	101	70.0	130	
		EG020A-F: Cadmium	7440-43-9	0.25 mg/L	96.3	70.0	130	
		EG020A-F: Chromium	7440-47-3	1 mg/L	97.6	70.0	130	
		EG020A-F: Cobalt	7440-48-4	1 mg/L	98.5	70.0	130	
		EG020A-F: Copper	7440-50-8	1 mg/L	98.9	70.0	130	
		EG020A-F: Lead	7439-92-1	1 mg/L	95.6	70.0	130	

Sub-Matrix: WATER				Ма	atrix Spike (MS) Report	1	
				Spike	SpikeRecovery(%)	Acceptable L	imits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG020F: Dissolved	Metals by ICP-MS (QCLot: 4315684) - continued						
ES2214512-002	Anonymous	EG020A-F: Manganese	7439-96-5	1 mg/L	96.1	70.0	130
		EG020A-F: Nickel	7440-02-0	1 mg/L	96.0	70.0	130
		EG020A-F: Zinc	7440-66-6	1 mg/L	97.2	70.0	130
EG020F: Dissolved	Metals by ICP-MS (QCLot: 4315687)						
EW2201994-009	QA1 additional pfas bottles for lab qaqc	EG020A-F: Arsenic	7440-38-2	1 mg/L	100	70.0	130
		EG020A-F: Cadmium	7440-43-9	0.25 mg/L	97.0	70.0	130
		EG020A-F: Chromium	7440-47-3	1 mg/L	97.5	70.0	130
		EG020A-F: Cobalt	7440-48-4	1 mg/L	98.4	70.0	130
		EG020A-F: Copper	7440-50-8	1 mg/L	99.4	70.0	130
		EG020A-F: Lead	7439-92-1	1 mg/L	97.0	70.0	130
		EG020A-F: Manganese	7439-96-5	1 mg/L	95.6	70.0	130
		EG020A-F: Nickel	7440-02-0	1 mg/L	96.3	70.0	130
		EG020A-F: Zinc	7440-66-6	1 mg/L	97.3	70.0	130
EG020F: Dissolved	Metals by ICP-MS (QCLot: 4320315)						
ES2215204-002	Anonymous	EG020A-F: Arsenic	7440-38-2	1 mg/L	93.1	70.0	130
		EG020A-F: Cadmium	7440-43-9	0.25 mg/L	95.9	70.0	130
		EG020A-F: Chromium	7440-47-3	1 mg/L	95.2	70.0	130
		EG020A-F: Cobalt	7440-48-4	1 mg/L	93.5	70.0	130
		EG020A-F: Copper	7440-50-8	1 mg/L	95.8	70.0	130
		EG020A-F: Lead	7439-92-1	1 mg/L	97.5	70.0	130
		EG020A-F: Manganese	7439-96-5	1 mg/L	98.2	70.0	130
		EG020A-F: Nickel	7440-02-0	1 mg/L	93.0	70.0	130
		EG020A-F: Zinc	7440-66-6	1 mg/L	94.7	70.0	130
EG020T: Total Meta	als by ICP-MS (QCLot: 4315511)						
ES2214932-002	Anonymous	EG020A-T: Manganese	7439-96-5	1 mg/L	87.5	70.0	130
EG020T: Total Meta	als by ICP-MS (QCLot: 4317383)						
ES2214994-001	Anonymous	EG020A-T: Manganese	7439-96-5	1 mg/L	99.8	70.0	130
EG035F: Dissolved	Mercury by FIMS (QCLot: 4315685)						
ES2214512-003	Anonymous	EG035F: Mercury	7439-97-6	0.01 mg/L	78.5	70.0	130
EG035F: Dissolved	Mercury by FIMS (QCLot: 4315689)						
EW2201994-008	SMW06 additional pfas bottles for lab qaqc	EG035F: Mercury	7439-97-6	0.01 mg/L	82.6	70.0	130
EK040P: Fluoride b	y PC Titrator (QCLot: 4310931)						
ES2214511-002	Anonymous	EK040P: Fluoride	16984-48-8	5 mg/L	89.8	70.0	130
EK055G: Ammonia	as N by Discrete Analyser (QCLot: 4317604)						
EW2201976-001	Anonymous	EK055G: Ammonia as N	7664-41-7	1 mg/L	88.6	70.0	130
EK055G: Ammonia	as N by Discrete Analyser (QCLot: 4317606)						

Page	: 20 of 22
Work Order	: EW2201994 Amendment 1
Client	: SMEC AUSTRALIA PTY LTD
Project	Port Kembla GME

Matrix Spike (MS) Report Sub-Matrix: WATER Spike SpikeRecovery(%) Acceptable Limits (%) Laboratory sample ID CAS Number Sample ID Concentration MS Method: Compound Low High EK055G: Ammonia as N by Discrete Analyser (QCLot: 4317606) - continued EW2201994-002 SMW02 7664-41-7 1 mg/L 98 1 70.0 130 EK055G: Ammonia as N EK057G: Nitrite as N by Discrete Analyser (QCLot: 4312124) ES2214469-001 0.5 mg/L Anonymous 14797-65-0 106 70.0 130 EK057G: Nitrite as N EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QCLot: 4317605) EW2201994-002 SMW02 0.5 mg/L 70.0 130 EK059G: Nitrite + Nitrate as N # Not Determined EK067G: Total Phosphorus as P by Discrete Analyser (QCLot: 4317601) EW2201992-027 Anonymous 105 70.0 130 EK067G: Total Phosphorus as P 1 ma/LEK071G: Reactive Phosphorus as P by discrete analyser (QCLot: 4312123) ES2214466-001 Anonymous 14265-44-2 0.5 mg/L 93.2 70.0 130 EK071G: Reactive Phosphorus as P EK071G: Reactive Phosphorus as P by discrete analyser (QCLot: 4312127) EW2201994-006 SMW04 14265-44-2 0.5 mg/L 95.8 70.0 130 EK071G: Reactive Phosphorus as P EP074E: Halogenated Aliphatic Compounds (QCLot: 4311096) ES2214286-002 Anonymous EP074: 1.1-Dichloroethene 75-35-4 25 ua/L 109 70.0 130 79-01-6 25 µg/L 84.0 70.0 130 EP074: Trichloroethene EP074F: Halogenated Aromatic Compounds (QCLot: 4311096) ES2214286-002 Anonymous 108-90-7 130 EP074: Chlorobenzene 25 µg/L 96.0 70.0 EP075(SIM)A: Phenolic Compounds (QCLot: 4311086) EW2201994-008 SMW06 additional pfas bottles for lab gagc EP075(SIM): Phenol 108-95-2 20 µg/L 34.3 20.0 130 76.0 60.0 130 EP075(SIM): 2-Chlorophenol 95-57-8 20 µg/L 88-75-5 20 µg/L 72.6 60.0 130 EP075(SIM): 2-Nitrophenol 82.8 130 59-50-7 20 µg/L 70.0 EP075(SIM): 4-Chloro-3-methylphenol 47.5 130 87-86-5 20 µg/L 20.0 EP075(SIM): Pentachlorophenol EP080/071: Total Petroleum Hydrocarbons (QCLot: 4311087) EW2201994-008 SMW06 additional pfas bottles for lab gagc 200 µg/L 103 70.0 130 EP071: C10 - C14 Fraction ----250 µg/L 124 71.0 130 EP071: C15 - C28 Fraction ----200 µg/L 85.4 67.0 130 EP071: C29 - C36 Fraction ____ EP080/071: Total Petroleum Hydrocarbons (QCLot: 4311097) ES2214286-002 Anonymous 325 µg/L 93.6 70.0 130 EP080: C6 - C9 Fraction ----EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QCLot: 4311087) EW2201994-008 SMW06 additional pfas bottles for lab gagc 70.0 130 250 µg/L 101 EP071: >C10 - C16 Fraction ----350 µg/L 105 75.0 130 EP071: >C16 - C34 Fraction ----93.6 67.0 130 EP071: >C34 - C40 Fraction 150 µg/L ----EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QCLot: 4311097) ES2214286-002 Anonymous C6 C10 375 ua/L 99.5 70.0 130 EP080: C6 - C10 Fraction

Sub-Matrix: WATER				M	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Acceptable I	.imits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP080: BTEXN (Q	CLot: 4311097)						
ES2214286-002	Anonymous	EP080: Benzene	71-43-2	25 µg/L	88.2	70.0	130
		EP080: Toluene	108-88-3	25 µg/L	99.1	70.0	130
		EP080: Ethylbenzene	100-41-4	25 µg/L	98.7	70.0	130
		EP080: meta- & para-Xylene	108-38-3	25 µg/L	97.5	70.0	130
			106-42-3				
		EP080: ortho-Xylene	95-47-6	25 µg/L	101	70.0	130
		EP080: Naphthalene	91-20-3	25 µg/L	78.0	70.0	130
EP132B: Polynucle	ar Aromatic Hydrocarbons (super trace) (QCLot: 4311)	093)					
EW2201994-003	OHMW20	EP132-ST: Acenaphthene	83-32-9	0.01 µg/L	116	70.0	130
		EP132-ST: Acenaphthylene	208-96-8	0.01 µg/L	119	70.0	130
		EP132-ST: Anthracene	120-12-7	0.01 µg/L	117	70.0	130
		EP132-ST: Benz(a)anthracene	56-55-3	0.01 µg/L	118	70.0	130
		EP132-ST: Benzo(a)pyrene	50-32-8	0.01 µg/L	108	70.0	130
		EP132-ST: Benzo(b+j)fluoranthene	205-99-2	0.01 µg/L	100	70.0	130
			205-82-3				
		EP132-ST: Benzo(e)pyrene	192-97-2	0.01 µg/L	106	70.0	130
		EP132-ST: Benzo(g.h.i)perylene	191-24-2	0.01 µg/L	106	70.0	130
		EP132-ST: Benzo(k)fluoranthene	207-08-9	0.01 µg/L	111	70.0	130
		EP132-ST: Chrysene	218-01-9	0.01 µg/L	107	70.0	130
		EP132-ST: Coronene	191-07-1	0.01 µg/L	95.9	70.0	130
		EP132-ST: Dibenz(a.h)anthracene	53-70-3	0.01 µg/L	102	70.0	130
		EP132-ST: 7.12-Dimethylbenz(a)anthracene	57-97-6	0.01 µg/L	107	70.0	130
		EP132-ST: Fluoranthene	206-44-0	0.01 µg/L	111	70.0	130
		EP132-ST: Fluorene	86-73-7	0.01 µg/L	115	70.0	130
		EP132-ST: Indeno(1.2.3.cd)pyrene	193-39-5	0.01 µg/L	105	70.0	130
		EP132-ST: 3-Methylcholanthrene	56-49-5	0.01 µg/L	115	70.0	130
		EP132-ST: 2-Methylnaphthalene	91-57-6	0.01 µg/L	97.5	70.0	130
		EP132-ST: Naphthalene	91-20-3	0.01 µg/L	101	70.0	130
		EP132-ST: Phenanthrene	85-01-8	0.01 µg/L	112	70.0	130
		EP132-ST: Perylene	198-55-0	0.01 µg/L	102	70.0	130
		EP132-ST: Pyrene	129-00-0	0.01 µg/L	118	70.0	130
EP231A: Perfluoro	alkyl Sulfonic Acids (QCLot: 4313023)						
EP2204837-001	Anonymous	EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.25 µg/L	107	72.0	130
		EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.25 µg/L	107	68.0	131
		EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.25 µg/L	102	65.0	140
EP231A: Perfluoro	alkyl Sulfonic Acids (QCLot: 4313420)						
EP2204981-001	Anonymous	EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.25 µg/L	110	72.0	130
		EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.25 µg/L	100	68.0	131
1					· · · · · · · · · · · · · · · · · · ·		

Page	: 22 of 22
Work Order	: EW2201994 Amendment 1
Client	: SMEC AUSTRALIA PTY LTD
Project	Port Kembla GME

Sub-Matrix: WATER	Matrix Spike (MS) Report						
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP231A: Perfluoro	alkyl Sulfonic Acids (QCLot: 4313420) - continued						
EP2204981-001	Anonymous	EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.25 µg/L	121	65.0	140
EP231B: Perfluoro	oalkyl Carboxylic Acids (QCLot: 4313023)						
EP2204837-001	Anonymous	EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	1.25 µg/L	104	73.0	129
		EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.25 µg/L	119	72.0	129
		EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.25 µg/L	121	72.0	129
		EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.25 µg/L	119	72.0	130
		EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.25 µg/L	116	71.0	133
EP231B: Perfluoro	oalkyl Carboxylic Acids (QCLot: 4313420)						
EP2204981-001 And	Anonymous	EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	1.25 µg/L	100	73.0	129
		EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.25 µg/L	118	72.0	129
		EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.25 µg/L	118	72.0	129
		EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.25 µg/L	118	72.0	130
		EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.25 µg/L	117	71.0	133
EP231D: (n:2) Flue	orotelomer Sulfonic Acids (QCLot: 4313023)						
EP2204837-001	Anonymous	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.25 µg/L	120	63.0	143
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.25 µg/L	118	64.0	140
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.25 µg/L	113	67.0	138
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.25 µg/L	94.4	71.4	144
EP231D: (n:2) Flu	orotelomer Sulfonic Acids (QCLot: 4313420)						
EP2204981-001	Anonymous	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.25 µg/L	106	63.0	143
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.25 µg/L	122	64.0	140
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.25 µg/L	119	67.0	138
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.25 µg/L	90.8	71.4	144

QA/QC Compliance Assessment to assist with Quality Review								
Work Order	: EW2201994	Page	: 1 of 16					
Amendment	: 1							
Client	SMEC AUSTRALIA PTY LTD	Laboratory	: Environmental Division NSW South Coast					
Contact	: JOEL REYNOLDS	Telephone	: 02 42253125					
Project	: Port Kembla GME	Date Samples Received	: 27-Apr-2022					
Site	: Port Kembla Manildra April 2022	Issue Date	: 16-May-2022					
Sampler	: JOEL REYNOLDS	No. of samples received	: 13					
Order number	:-	No. of samples analysed	: 10					

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- <u>NO</u> Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA	EW2201994006	SMW04	Sulfate as SO4 -	14808-79-8	Not		MS recovery not determined,
			Turbidimetric		Determined		background level greater than or
							equal to 4x spike level.
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete A	EW2201994002	SMW02	Nitrite + Nitrate as N		Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.

Outliers : Analysis Holding Time Compliance

Matrix: WATER

Method		Ex	Extraction / Preparation Analysis				
Container / Client Sample ID(s)		Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
				overdue			overdue
EA005P: pH by PC Titrator							
Clear Plastic Bottle - Natural							
OHMW28 - additional pfas bottles for lab qaqc,	SMW02,				30-Apr-2022	27-Apr-2022	3
OHMW20,	SMW05,						
SMW03,	SMW04,						
SMW01,	SMW06 - additional pfas bottles for lab qaqc,						
QA1 - additional pfas bottles for lab qaqc							
EK057G: Nitrite as N by Discrete Analyser							
Clear Plastic Bottle - Natural							
OHMW28 - additional pfas bottles for lab qaqc,	SMW02,				29-Apr-2022	28-Apr-2022	1
OHMW20,	SMW05,						
SMW03,	SMW04,						
SMW01,	SMW06 - additional pfas bottles for lab qaqc,						
QA1 - additional pfas bottles for lab qaqc							
EK071G: Reactive Phosphorus as P by discrete analyser							
Clear Plastic Bottle - Natural							
OHMW28 - additional pfas bottles for lab qaqc,	SMW02,				29-Apr-2022	28-Apr-2022	1
OHMW20,	SMW05,						
SMW03,	SMW04,						
SMW01,	SMW06 - additional pfas bottles for lab qaqc,						
QA1 - additional pfas bottles for lab qaqc							

Outliers : Frequency of Quality Control Samples

Matrix: WATER

Quality Control Sample Type		Count		e (%)	Quality Control Specification
Method	QC	Regular	Actual	Expected	
Matrix Spikes (MS)					
Dissolved Metals in Fresh Water -Suite A by ORC-ICPMS	0	28	0.00	5.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER					Evaluation	n: 🗴 = Holding time	breach ; < = Withi	n holding time.
Method		Sample Date	E>	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA005P: pH by PC Titrator								
Clear Plastic Bottle - Natural (EA005-P)								
OHMW28 - additional pfas bottles for lab qaqc,	SMW02,	26-Apr-2022				30-Apr-2022	27-Apr-2022	*
OHMW20,	SMW05,							
SMW03,	SMW04,							
SMW01,	SMW06 - additional pfas bottles for lab qaqc,							
QA1 - additional pfas bottles for lab qaqc								
EA010P: Conductivity by PC Titrator								
Clear Plastic Bottle - Natural (EA010-P)								
OHMW28 - additional pfas bottles for lab qaqc,	SMW02,	26-Apr-2022				30-Apr-2022	24-May-2022	✓
OHMW20,	SMW05,							
SMW03,	SMW04,							
SMW01,	SMW06 - additional pfas bottles for lab qaqc,							
QA1 - additional pfas bottles for lab qaqc								
EA065: Total Hardness as CaCO3								
Clear Plastic Bottle - Nitric Acid; Filtered (ED093F)								
OHMW28 - additional pfas bottles for lab qaqc,	SMW02,	26-Apr-2022				03-May-2022	24-May-2022	✓
OHMW20,	SMW05,							
SMW03,	SMW04,							
SMW01,	SMW06 - additional pfas bottles for lab qaqc,							
QA1 - additional pfas bottles for lab qaqc								
ED037P: Alkalinity by PC Titrator								
Clear Plastic Bottle - Natural (ED037-P)								
OHMW28 - additional pfas bottles for lab qaqc,	SMW02,	26-Apr-2022				30-Apr-2022	10-May-2022	✓
OHMW20,	SMW05,							
SMW03,	SMW04,							
SMW01,	SMW06 - additional pfas bottles for lab qaqc,							
QA1 - additional pfas bottles for lab qaqc								

Matrix: WATER					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
ED038: Acidity								
Clear Plastic Bottle - Natural (ED038-P) OHMW28 - additional pfas bottles for lab qaqc, OHMW20, SMW03, SMW01, QA1 - additional pfas bottles for lab qaqc	SMW02, SMW05, SMW04, SMW06 - additional pfas bottles for lab qaqc,	26-Apr-2022				02-May-2022	10-May-2022	~
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA								
Clear Plastic Bottle - Natural (ED041G) OHMW28 - additional pfas bottles for lab qaqc, OHMW20, SMW03, SMW01, QA1 - additional pfas bottles for lab qaqc	SMW02, SMW05, SMW04, SMW06 - additional pfas bottles for lab qaqc,	26-Apr-2022				29-Apr-2022	24-May-2022	~
ED045G: Chloride by Discrete Analyser								
Clear Plastic Bottle - Natural (ED045G) OHMW28 - additional pfas bottles for lab qaqc, OHMW20, SMW03, SMW01, QA1 - additional pfas bottles for lab qaqc	SMW02, SMW05, SMW04, SMW06 - additional pfas bottles for lab qaqc,	26-Apr-2022				29-Apr-2022	24-May-2022	~
ED093F: Dissolved Major Cations								
Clear Plastic Bottle - Nitric Acid; Filtered (ED093F) OHMW28 - additional pfas bottles for lab qaqc, OHMW20, SMW03, SMW01, QA1 - additional pfas bottles for lab qaqc	SMW02, SMW05, SMW04, SMW06 - additional pfas bottles for lab qaqc,	26-Apr-2022				03-May-2022	24-May-2022	~
EG020F: Dissolved Metals by ICP-MS								
Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F) OHMW28 - additional pfas bottles for lab qaqc, OHMW20, SMW03, SMW01, OA1 - additional pfas bottles for lab gage	SMW02, SMW05, SMW04, SMW06 - additional pfas bottles for lab qaqc,	26-Apr-2022				03-May-2022	23-Oct-2022	1
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG020A-F)								
Rinsate 01		26-Apr-2022				05-May-2022	23-Oct-2022	1

Page	5 of 16
Work Order	: EW2201994 Amendment 1
Client	: SMEC AUSTRALIA PTY LTD
Project	: Port Kembla GME

Matrix: WATER					Evaluation	n: × = Holding time	breach ; ✓ = Withi	n holding time		
Method		Sample Date	Cample Date Extraction / Preparation				Analysis			
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation		
EG020T: Total Metals by ICP-MS										
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG020A-T) OHMW28 - additional pfas bottles for lab qaqc, OHMW20.	SMW02, SMW05	26-Apr-2022	03-May-2022	23-Oct-2022	1	03-May-2022	23-Oct-2022	~		
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG020A-T) SMW03, SMW01, QA1 - additional pfas bottles for lab qaqc	SMW04, SMW06 - additional pfas bottles for lab qaqc,	26-Apr-2022	04-May-2022	23-Oct-2022	1	04-May-2022	23-Oct-2022	1		
EG035F: Dissolved Mercury by FIMS										
Clear Plastic Bottle - Nitric Acid; Filtered (EG035F) OHMW28 - additional pfas bottles for lab qaqc, OHMW20, SMW03, SMW01, QA1 - additional pfas bottles for lab qaqc	SMW02, SMW05, SMW04, SMW06 - additional pfas bottles for lab qaqc,	26-Apr-2022				03-May-2022	24-May-2022	~		
EG094F: Dissolved Metals in Fresh Water by ORC-ICPMS	5									
Clear Plastic Bottle - Nitric Acid; Filtered (EG094B-F) OHMW28 - additional pfas bottles for lab qaqc, OHMW20, SMW03, SMW01, QA1 - additional pfas bottles for lab qaqc	SMW02, SMW05, SMW04, SMW06 - additional pfas bottles for lab qaqc,	26-Apr-2022				29-Apr-2022	23-Oct-2022	~		
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG094B-F)										
Rinsate 01		26-Apr-2022				29-Apr-2022	23-Oct-2022	✓		
EK040P: Fluoride by PC Titrator			1	1		1				
Clear Plastic Bottle - Natural (EK040P) OHMW28 - additional pfas bottles for lab qaqc, OHMW20, SMW03, SMW01, QA1 - additional pfas bottles for lab qaqc	SMW02, SMW05, SMW04, SMW06 - additional pfas bottles for lab qaqc,	26-Apr-2022				30-Apr-2022	24-May-2022	1		
EK055G: Ammonia as N by Discrete Analyser										
Clear Plastic Bottle - Sulfuric Acid (EK055G) OHMW28 - additional pfas bottles for lab gagc, OHMW20, SMW03, SMW01, QA1 - additional pfas bottles for lab gagc.	SMW02, SMW05, SMW04, SMW06 - additional pfas bottles for lab qaqc,	26-Apr-2022				04-May-2022	24-May-2022	1		

Matrix: WATER					Evaluation	: × = Holding time	breach ; 🗸 = Withi	in holding time
Method		Sample Date	Ex	traction / Preparation		Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EK057G: Nitrite as N by Discrete Analyser								
Clear Plastic Bottle - Natural (EK057G) OHMW28 - additional pfas bottles for lab qaqc, OHMW20, SMW03, SMW01, QA1 - additional pfas bottles for lab qaqc	SMW02, SMW05, SMW04, SMW06 - additional pfas bottles for lab qaqc,	26-Apr-2022				29-Apr-2022	28-Apr-2022	×
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete A	Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK059G) OHMW28 - additional pfas bottles for lab qaqc, OHMW20, SMW03, SMW01, QA1 - additional pfas bottles for lab qaqc	SMW02, SMW05, SMW04, SMW06 - additional pfas bottles for lab qaqc,	26-Apr-2022				04-May-2022	24-May-2022	~
EK067G: Total Phosphorus as P by Discrete Analyser								
Clear Plastic Bottle - Sulfuric Acid (EK067G) OHMW28 - additional pfas bottles for lab qaqc, OHMW20, SMW03, SMW01, QA1 - additional pfas bottles for lab qaqc	SMW02, SMW05, SMW04, SMW06 - additional pfas bottles for lab qaqc,	26-Apr-2022	04-May-2022	24-May-2022	1	04-May-2022	24-May-2022	~
EK071G: Reactive Phosphorus as P by discrete analy	ser		1	1		1	1	
Clear Plastic Bottle - Natural (EK071G) OHMW28 - additional pfas bottles for lab qaqc, OHMW20, SMW03, SMW01, QA1 - additional pfas bottles for lab qaqc	SMW02, SMW05, SMW04, SMW06 - additional pfas bottles for lab qaqc,	26-Apr-2022				29-Apr-2022	28-Apr-2022	×
EP074D: Fumigants								
Amber VOC Vial - Sulfuric Acid (EP074) OHMW28 - additional pfas bottles for lab qaqc, OHMW20, SMW03, SMW01, QA1 - additional pfas bottles for lab qaqc	SMW02, SMW05, SMW04, SMW06 - additional pfas bottles for lab qaqc,	26-Apr-2022	03-May-2022	10-May-2022	~	03-May-2022	10-May-2022	✓
EP074E: Halogenated Aliphatic Compounds								
Amber VOC Vial - Sulfuric Acid (EP074) OHMW28 - additional pfas bottles for lab qaqc, OHMW20, SMW03, SMW01, QA1 - additional pfas bottles for lab qaqc	SMW02, SMW05, SMW04, SMW06 - additional pfas bottles for lab qaqc,	26-Apr-2022	03-May-2022	10-May-2022	1	03-May-2022	10-May-2022	~

Matrix: WATER					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time	
Method		Sample Date	Ex	traction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EP074F: Halogenated Aromatic Compounds									
Amber VOC Vial - Sulfuric Acid (EP074) OHMW28 - additional pfas bottles for lab qaqc, OHMW20, SMW03, SMW01, QA1 - additional pfas bottles for lab gaqc	SMW02, SMW05, SMW04, SMW06 - additional pfas bottles for lab qaqc,	26-Apr-2022	03-May-2022	10-May-2022	~	03-May-2022	10-May-2022	~	
EP074G: Tribalomethanes									
Amber VOC Vial - Sulfuric Acid (EP074) OHMW28 - additional pfas bottles for lab qaqc, OHMW20, SMW03, SMW01, QA1 - additional pfas bottles for lab qaqc	SMW02, SMW05, SMW04, SMW06 - additional pfas bottles for lab qaqc,	26-Apr-2022	03-May-2022	10-May-2022	1	03-May-2022	10-May-2022	~	
EP075(SIM)A: Phenolic Compounds									
Amber Glass Bottle - Unpreserved (EP075(SIM)) OHMW28 - additional pfas bottles for lab qaqc, OHMW20, SMW03, SMW01, QA1 - additional pfas bottles for lab qaqc	SMW02, SMW05, SMW04, SMW06 - additional pfas bottles for lab qaqc,	26-Apr-2022	02-May-2022	03-May-2022	1	05-May-2022	11-Jun-2022	~	
EP080/071: Total Petroleum Hydrocarbons									
Amber Glass Bottle - Unpreserved (EP071) OHMW28 - additional pfas bottles for lab qaqc, OHMW20, SMW03, SMW01, QA1 - additional pfas bottles for lab qaqc	SMW02, SMW05, SMW04, SMW06 - additional pfas bottles for lab qaqc,	26-Apr-2022	02-May-2022	03-May-2022	1	04-May-2022	11-Jun-2022	~	
Amber VOC Vial - Sulfuric Acid (EP080) OHMW28 - additional pfas bottles for lab qaqc, OHMW20, SMW03, SMW01, QA1 - additional pfas bottles for lab gage	SMW02, SMW05, SMW04, SMW06 - additional pfas bottles for lab qaqc,	26-Apr-2022	03-May-2022	10-May-2022	1	03-May-2022	10-May-2022	~	

Page	: 8 of 16
Work Order	: EW2201994 Amendment 1
Client	: SMEC AUSTRALIA PTY LTD
Project	: Port Kembla GME

Matrix: WATER					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method		Sample Date	Ex	traction / Preparation		Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080/071: Total Recoverable Hydrocarbons - NEPM :	2013 Fractions							
Amber Glass Bottle - Unpreserved (EP071)								
OHMW28 - additional pfas bottles for lab qaqc,	SMW02,	26-Apr-2022	02-May-2022	03-May-2022	1	04-May-2022	11-Jun-2022	✓
OHMW20,	SMW05,							
SMW03,	SMW04,							
SMW01,	SMW06 - additional pfas bottles for lab qaqc,							
QA1 - additional pfas bottles for lab gagc								
Amber VOC Vial - Sulfuric Acid (EP080)								
OHMW28 - additional pfas bottles for lab qaqc,	SMW02,	26-Apr-2022	03-May-2022	10-May-2022	✓	03-May-2022	10-May-2022	 ✓
OHMW20,	SMW05,							
SMW03,	SMW04,							
SMW01,	SMW06 - additional pfas bottles for lab gagc,							
QA1 - additional pfas bottles for lab qaqc								
EP080: BTEXN								
Amber VOC Vial - Sulfuric Acid (EP080)								
OHMW28 - additional pfas bottles for lab qaqc,	SMW02,	26-Apr-2022	03-May-2022	10-May-2022	1	03-May-2022	10-May-2022	✓
OHMW20,	SMW05,							
SMW03,	SMW04,							
SMW01,	SMW06 - additional pfas bottles for lab qaqc,							
QA1 - additional pfas bottles for lab qaqc								
EP132B: Polynuclear Aromatic Hydrocarbons								
Amber Glass Bottle - Unpreserved (EP132-ST)								
OHMW28 - additional pfas bottles for lab qaqc,	SMW02,	26-Apr-2022	02-May-2022	03-May-2022	~	02-May-2022	11-Jun-2022	 ✓
OHMW20,	SMW05,							
SMW03,	SMW04,							
SMW01,	SMW06 - additional pfas bottles for lab qaqc,							
QA1 - additional pfas bottles for lab qaqc								
EP132B: Polynuclear Aromatic Hydrocarbons (super	trace)							
Amber Glass Bottle - Unpreserved (EP132-ST)								
OHMW28 - additional pfas bottles for lab qaqc,	SMW02,	26-Apr-2022	02-May-2022	03-May-2022	~	02-May-2022	11-Jun-2022	✓
OHMW20,	SMW05,							
SMW03,	SMW04,							
SMW01,	SMW06 - additional pfas bottles for lab qaqc,							
QA1 - additional pfas bottles for lab qaqc								

Matrix: WATER					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time	
Method		Sample Date	Ex	traction / Preparation		Analysis			
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EP231A: Perfluoroalkyl Sulfonic Acids									
HDPE (no PTFE) (EP231X) Rinsate 01		26-Apr-2022	03-May-2022	23-Oct-2022	1	03-May-2022	23-Oct-2022	1	
HDPE (no PTFE) (EP231X) OHMW28 - additional pfas bottles for lab qaqc, OHMW20, SMW03, SMW01, QA1 - additional pfas bottles for lab qaqc	SMW02, SMW05, SMW04, SMW06 - additional pfas bottles for lab qaqc,	26-Apr-2022	30-Apr-2022	23-Oct-2022	~	03-May-2022	23-Oct-2022	1	
EP231B: Perfluoroalkyl Carboxylic Acids									
HDPE (no PTFE) (EP231X) Rinsate 01		26-Apr-2022	03-May-2022	23-Oct-2022	1	03-May-2022	23-Oct-2022	✓	
HDPE (no PTFE) (EP231X) OHMW28 - additional pfas bottles for lab qaqc, OHMW20, SMW03, SMW01, QA1 - additional pfas bottles for lab qaqc	SMW02, SMW05, SMW04, SMW06 - additional pfas bottles for lab qaqc,	26-Apr-2022	30-Apr-2022	23-Oct-2022	~	03-May-2022	23-Oct-2022	✓	
EP231D: (n:2) Fluorotelomer Sulfonic Acids									
HDPE (no PTFE) (EP231X) Rinsate 01		26-Apr-2022	03-May-2022	23-Oct-2022	1	03-May-2022	23-Oct-2022	~	
HDPE (no PTFE) (EP231X) OHMW28 - additional pfas bottles for lab qaqc, OHMW20, SMW03, SMW01, QA1 - additional pfas bottles for lab qaqc	SMW02, SMW05, SMW04, SMW06 - additional pfas bottles for lab qaqc,	26-Apr-2022	30-Apr-2022	23-Oct-2022	5	03-May-2022	23-Oct-2022	✓	
EP231P: PFAS Sums									
HDPE (no PTFE) (EP231X) Rinsate 01		26-Apr-2022	03-May-2022	23-Oct-2022	~	03-May-2022	23-Oct-2022	~	
HUPE (no PTFE) (EP231X) OHMW28 - additional pfas bottles for lab qaqc, OHMW20, SMW03, SMW01, OA1 - additional pfas bottles for lab gage	SMW02, SMW05, SMW04, SMW06 - additional pfas bottles for lab qaqc,	26-Apr-2022	30-Apr-2022	23-Oct-2022	1	03-May-2022	23-Oct-2022	~	

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER Evaluation: * = Quality Control frequency not within specification ; ✓ = Quality Control frequency within specification ; ✓								
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification	
Analvtical Methods	Method	00	Reaular	Actual	Expected	Evaluation		
Laboratory Duplicates (DUP)								
Acidity as Calcium Carbonate	ED038-P	2	17	11.76	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Alkalinity by Auto Titrator	ED037-P	2	16	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Ammonia as N by Discrete analyser	EK055G	3	28	10.71	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Chloride by Discrete Analyser	ED045G	2	14	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Conductivity by Auto Titrator	EA010-P	2	17	11.76	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Dissolved Mercury by FIMS	EG035F	4	31	12.90	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Dissolved Metals by ICP-MS - Suite A	EG020A-F	5	44	11.36	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Dissolved Metals in Fresh Water -Suite A by ORC-ICPMS	EG094A-F	3	28	10.71	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Dissolved Metals in Fresh Water -Suite B by ORC-ICPMS	EG094B-F	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Fluoride by Auto Titrator	EK040P	2	15	13.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Major Cations - Dissolved	ED093F	4	40	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	14	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Nitrite as N by Discrete Analyser	EK057G	2	14	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
PAH Compounds in Water	EP132-ST	1	9	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	9	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	3	23	13.04	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
pH by Auto Titrator	EA005-P	3	18	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Reactive Phosphorus as P-By Discrete Analyser	EK071G	3	24	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	14	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Metals by ICP-MS - Suite A	EG020A-T	4	28	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Phosphorus as P By Discrete Analyser	EK067G	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
TRH - Semivolatile Fraction	EP071	1	9	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
TRH Volatiles/BTEX	EP080	2	15	13.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Volatile Organic Compounds	EP074	2	11	18.18	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Laboratory Control Samples (LCS)								
Acidity as Calcium Carbonate	ED038-P	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Alkalinity by Auto Titrator	ED037-P	2	16	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Ammonia as N by Discrete analyser	EK055G	2	28	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Chloride by Discrete Analyser	ED045G	2	14	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Conductivity by Auto Titrator	EA010-P	2	17	11.76	8.33	✓	NEPM 2013 B3 & ALS QC Standard	
Dissolved Mercury by FIMS	EG035F	2	31	6.45	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Dissolved Metals by ICP-MS - Suite A	EG020A-F	3	44	6.82	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Dissolved Metals in Fresh Water -Suite A by ORC-ICPMS	EG094A-F	2	28	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Dissolved Metals in Fresh Water -Suite B by ORC-ICPMS	EG094B-F	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Fluoride by Auto Titrator	EK040P	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Major Cations - Dissolved	ED093F	2	40	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	

Matrix: WATER		Evaluation: * = Quality Control frequency not within specification ; ✓ = Quality Control frequency							
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification		
Analytical Methods	Method	00	Reaular	Actual	Expected	Evaluation			
Laboratory Control Samples (LCS) - Continued									
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	14	7.14	5.00	1	NEPM 2013 B3 & ALS QC Standard		
Nitrite as N by Discrete Analyser	EK057G	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
PAH Compounds in Water	EP132-ST	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	2	23	8.70	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
pH by Auto Titrator	EA005-P	4	18	22.22	10.00	1	NEPM 2013 B3 & ALS QC Standard		
Reactive Phosphorus as P-By Discrete Analyser	EK071G	2	24	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	14	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard		
Total Metals by ICP-MS - Suite A	EG020A-T	2	28	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Total Phosphorus as P By Discrete Analyser	EK067G	3	19	15.79	15.00	✓	NEPM 2013 B3 & ALS QC Standard		
TRH - Semivolatile Fraction	EP071	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
TRH Volatiles/BTEX	EP080	1	15	6.67	5.00	1	NEPM 2013 B3 & ALS QC Standard		
Volatile Organic Compounds	EP074	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Method Blanks (MB)									
Acidity as Calcium Carbonate	ED038-P	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Ammonia as N by Discrete analyser	EK055G	2	28	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Chloride by Discrete Analyser	ED045G	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Conductivity by Auto Titrator	EA010-P	1	17	5.88	1.67	✓	NEPM 2013 B3 & ALS QC Standard		
Dissolved Mercury by FIMS	EG035F	2	31	6.45	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Dissolved Metals by ICP-MS - Suite A	EG020A-F	3	44	6.82	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Dissolved Metals in Fresh Water -Suite A by ORC-ICPMS	EG094A-F	2	28	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Dissolved Metals in Fresh Water -Suite B by ORC-ICPMS	EG094B-F	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Fluoride by Auto Titrator	EK040P	1	15	6.67	5.00	1	NEPM 2013 B3 & ALS QC Standard		
Major Cations - Dissolved	ED093F	2	40	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Nitrite as N by Discrete Analyser	EK057G	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
PAH Compounds in Water	EP132-ST	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	9	11.11	5.00	1	NEPM 2013 B3 & ALS QC Standard		
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	2	23	8.70	5.00	1	NEPM 2013 B3 & ALS QC Standard		
Reactive Phosphorus as P-By Discrete Analyser	EK071G	2	24	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Total Metals by ICP-MS - Suite A	EG020A-T	2	28	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Total Phosphorus as P By Discrete Analyser	EK067G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
TRH - Semivolatile Fraction	EP071	1	9	11.11	5.00	1	NEPM 2013 B3 & ALS QC Standard		
TRH Volatiles/BTEX	EP080	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Volatile Organic Compounds	EP074	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Matrix Spikes (MS)									
Ammonia as N by Discrete analyser	EK055G	2	28	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Chloride by Discrete Analyser	ED045G	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Dissolved Mercury by FIMS	EG035F	2	31	6.45	5.00	~	NEPM 2013 B3 & ALS QC Standard		

Matrix: WATER	Evaluation: × = Quality Control frequency not within specification ; ✓ = Quality Control frequency within specific										
Quality Control Sample Type		Count		Rate (%)			Quality Control Specification				
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation					
Matrix Spikes (MS) - Continued											
Dissolved Metals by ICP-MS - Suite A	EG020A-F	3	44	6.82	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
Dissolved Metals in Fresh Water -Suite A by ORC-ICPMS	EG094A-F	0	28	0.00	5.00	×	NEPM 2013 B3 & ALS QC Standard				
Fluoride by Auto Titrator	EK040P	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
Nitrite as N by Discrete Analyser	EK057G	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
PAH Compounds in Water	EP132-ST	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	2	23	8.70	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
Reactive Phosphorus as P-By Discrete Analyser	EK071G	2	24	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
Total Metals by ICP-MS - Suite A	EG020A-T	2	28	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
Total Phosphorus as P By Discrete Analyser	EK067G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
TRH - Semivolatile Fraction	EP071	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
TRH Volatiles/BTEX	EP080	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
Volatile Organic Compounds	EP074	1	11	9.09	5.00	1	NEPM 2013 B3 & ALS QC Standard				

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH by Auto Titrator	EA005-P	WATER	In house: Referenced to APHA 4500 H+ B. This procedure determines pH of water samples by automated ISE. This method is compliant with NEPM Schedule B(3)
Conductivity by Auto Titrator	EA010-P	WATER	In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method is compliant with NEPM Schedule B(3)
Calculated TDS (from Electrical Conductivity)	EA016	WATER	In house: Calculation from Electrical Conductivity (APHA 2510 B) using a conversion factor specified in the analytical report. This method is compliant with NEPM Schedule B(3)
Alkalinity by Auto Titrator	ED037-P	WATER	In house: Referenced to APHA 2320 B This procedure determines alkalinity by automated measurement (e.g. PC Titrate) on a settled supernatant aliquot of the sample using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM Schedule B(3)
Acidity as Calcium Carbonate	ED038-P	WATER	In house: Referenced to APHA 2310 B Acidity is determined by titration automated titration (e.g. by PC Titrate) of a settled supernatant aliquot of the sample with a standardised alkali to an end-point pH of 8.3. This method is compliant with NEPM Schedule B(3)
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	WATER	In house: Referenced to APHA 4500-SO4. Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with NEPM Schedule B(3)
Chloride by Discrete Analyser	ED045G	WATER	In house: Referenced to APHA 4500 CI - G. The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride in the presence of ferric ions the librated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm APHA seal method 2 017-1-L
Major Cations - Dissolved	ED093F	WATER	In house: Referenced to APHA 3120 and 3125; USEPA SW 846 - 6010 and 6020; Cations are determined by either ICP-AES or ICP-MS techniques. This method is compliant with NEPM Schedule B(3) Sodium Adsorption Ratio is calculated from Ca, Mg and Na which determined by ALS in house method QWI-EN/ED093F. This method is compliant with NEPM Schedule B(3) Hardness parameters are calculated based on APHA 2340 B. This method is compliant with NEPM Schedule B(3)
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.

Analytical Methods	Method	Matrix	Method Descriptions
Dissolved Mercury by FIMS	EG035F	WATER	In house: Referenced to APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45µm filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3).
Dissolved Metals in Fresh Water -Suite A by ORC-ICPMS	EG094A-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020 Samples are 0.45µm filtered prior to analysis. The ORC-ICPMS technique removes interfering species through a series of chemical reactions prior to ion detection. Ions are passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to measurement by a discrete dynode ion detector. This method is compliant with NEPM Schedule B(3).
Dissolved Metals in Fresh Water -Suite B by ORC-ICPMS	EG094B-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020 Samples are 0.45µm filtered prior to analysis. The ORC-ICPMS technique removes interfering species through a series of chemical reactions prior to ion detection. Ions are passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to measurement by a discrete dynode ion detector. This method is compliant with NEPM Schedule B(3).
Fluoride by Auto Titrator	EK040P	WATER	In house: Referenced to APHA 4500-F C: CDTA is added to the sample to provide a uniform ionic strength background, adjust pH, and break up complexes. Fluoride concentration is determined by either manual or automatic ISE measurement. This method is compliant with NEPM Schedule B(3)
Ammonia as N by Discrete analyser	EK055G	WATER	In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Ammonium as N	EK055G-NH4	WATER	Ammonium in the sample is reported as the ionised / unionised fractions by the use of a nomograph and the initial pH and Temperature. Ammonia is determined by direct colorimetry by Discrete Analyser according to APHA 4500-NH3 G. This method is compliant with NEPM Schedule B(3)
Nitrite as N by Discrete Analyser	EK057G	WATER	In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Nitrate as N by Discrete Analyser	EK058G	WATER	In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM Schedule B(3)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Total Phosphorus as P By Discrete Analyser	EK067G	WATER	In house: Referenced to APHA 4500-P H, Jirka et al, Zhang et al. This procedure involves sulphuric acid digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM Schedule B(3)
Reactive Phosphorus as P-By Discrete Analyser	EK071G	WATER	In house: Referenced to APHA 4500-P F Ammonium molybdate and potassium antimonyl tartrate reacts in acid medium with othophosphate to form a heteropoly acid -phosphomolybdic acid - which is reduced to intensely coloured molybdenum blue by ascorbic acid. Quantification is by Discrete Analyser. This method is compliant with NEPM Schedule B(3)

Analytical Methods	Method	Matrix	Method Descriptions
Ionic Balance by PCT DA and Turbi SO4 DA	* EN055 - PG	WATER	In house: Referenced to APHA 1030F. This method is compliant with NEPM Schedule B(3)
TRH - Semivolatile Fraction	EP071	WATER	In house: Referenced to USEPA SW 846 - 8015 The sample extract is analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This method is compliant with the QC requirements of NEPM Schedule B(3)
Volatile Organic Compounds	EP074	WATER	In house: Referenced to USEPA SW 846 - 8260 Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3)
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	WATER	In house: Referenced to USEPA SW 846 - 8270 Sample extracts are analysed by Capillary GC/MS in SIM Mode and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3)
TRH Volatiles/BTEX	EP080	WATER	In house: Referenced to USEPA SW 846 - 8260 Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with the QC requirements of NEPM Schedule B(3)
PAH Compounds in Water	EP132-ST	WATER	In house, Samples are extracted into solvent in original containers. Determination by large volume injection GCMS in selected ion monitoring (SIM) mode.
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	WATER	In-house: Analysis of fresh and saline waters by Solid Phase Extraction (SPE) followed by LC-Electrospray-MS-MS, Negative Mode using MRM and internal standard quantitation. Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to the sample container. The entire contents are transferred to a solid phase extraction (SPE) cartridge. The sample container is successively rinsed with aliquots of the elution solvent. The eluted extract is combined with an equal volume of reagent water and a portion is filtered for analysis. Method procedures and data quality objectives conform to US DoD QSM 5.3, table B-15 requirements.
Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM Schedule B(3)
Digestion for Total Recoverable Metals	EN25	WATER	In house: Referenced to USEPA SW846-3005. Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM Schedule B(3)
Digestion for Total Recoverable Metals - ORC	EN25-ORC	WATER	In house: Referenced to USEPA SW846-3005. This is an Ultrapure Nitric acid digestion procedure used to prepare surface and ground water samples for analysis by ORC- ICPMS. This method is compliant with NEPM Schedule B(3)
Separatory Funnel Extraction of Liquids	ORG14	WATER	In house: Referenced to USEPA SW 846 - 3510 100 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM Schedule B(3). ALS default excludes sediment which may be resident in the container.
Liquid Liquid Extraction (in-bottle - trace) -	ORG14-IB-ST	WATER	In house: A 50 mL of representative portion of a 500 mL sample is discarded. A portion of solvent (less dense than water) is used to extract the sample (horizontal shaker for 30 minutes) and a portion of the extract analysed directly.
Volatiles Water Preparation	ORG16-W	WATER	A 5 mL aliquot or 5 mL of a diluted sample is added to a 40 mL VOC vial for purging.

Page	: 16 of 16
Work Order	: EW2201994 Amendment 1
Client	: SMEC AUSTRALIA PTY LTD
Project	: Port Kembla GME

Preparation Methods	Method	Matrix	Method Descriptions
Solid Phase Extraction (SPE) for PFAS in	ORG72	WATER	In-house: Isotopically labelled analogues of target analytes used as internal standards and surrogates are
water			added to the sample container. The entire contents are transferred to a solid phase extraction (SPE) cartridge.
			The sample container is successively rinsed with aliquots of the elution solvent. The eluted extract is combined
			with an equal volume of reagent water and a portion is filtered for analysis. Method procedures conform to US
			DoD QSM 5.3, table B-15 requirements.

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order	: EW2201994			
Client	SMEC AUSTRALIA PTY LTD	Laboratory	Environme Coast	ental Division NSW South
Contact	: JOEL REYNOLDS	Contact	: Katie Davi	s
Address	LEVEL 2 6-8 REGENT STREET WOLLONGONG 2500	Address	: 1/19 Ralph 2500 NSV	n Black Dr, North Wollongong V Australia
E-mail	: Joel.Reynolds@smec.com	E-mail	: katie.davis	@alsglobal.com
Telephone	:	Telephone	: 02 422531	25
Facsimile	:	Facsimile	: W 02 4225	53128 N 02 44232083
Project	: Port Kembla GME	Page	: 1 of 4	
Order number	: -	Quote number	: ES2021SM	MEAUS0001 (SY/080/21 V3)
C-O-C number	: 36757	QC Level	: NEPM 201	13 B3 & ALS QC Standard
Site	: Port Kembla Manildra April 2022			
Sampler	: JOEL REYNOLDS			
Dates				
Date Samples Receive	d : 27-Apr-2022 15:30	Issue Date		: 04-May-2022
Client Requested Due	: 06-May-2022	Scheduled Reporting	Date	06-Mav-2022
Date				···· , -·
Delivery Details	3			
Mode of Delivery	: Pickup	Security Seal		: Not Available
No. of coolers/boxes	: 3	Temperature		: 2.6'C - Ice present
Receipt Detail	:	No. of samples receiv	ed / analysed	: 12 / 10
		No. of samples NOT	collected	1

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- This is an updated SRN which indicates the addition of metals and PFAS analysis on RInsate sample.
- TB and TS received damaged, unable to conduct analysis.
- Unable to conduct NT-13 analysis on Rinsate sample as no green bottle received.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample QA1A PLEASE SEND TO EUROFINS FOR ANALYSIS was not received due to the following reason: Sample Not Received
- Sample Disposal Aqueous (3 weeks), Solid (2 months) from receipt of samples.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical
 analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this
 temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS
 recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The laboratory will process these samples unless instructions are received from you indicating you do not wish to proceed. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

Method Sample ID	Sample Container Received	Preferred Sample Container for Analysis
Dissolved Metals by ICP-MS - Suite A : EG020	A-F	
Rinsate 01	- Clear Plastic Bottle - Nitric Acid; Unfiltered	- Clear Plastic Bottle - Nitric Acid; Filtered
Dissolved Metals in Fresh Water -Suite A by C	DRC-ICPMS : EG094A-F	
Rinsate 01	- Clear Plastic Bottle - Nitric Acid; Unfiltered	- Clear Plastic Bottle - Nitric Acid; Filtered
Dissolved Metals in Fresh Water -Suite B by O	RC-ICPMS : EG094B-F	
Rinsate 01	- Clear Plastic Bottle - Nitric Acid; Unfiltered	- Clear Plastic Bottle - Filtered; Lab-acidified

by ORC - Ultra Trace in Fresh Water

etals by ICP/MS

ants, Hal Aliphatics, Hal Aromatics

-18)/BTEXN

074DEFG

iorus as P By Discrete Analyser

Any sample identifications that cannot be displayed entirely in the analysis summary table will be listed below.

EW2201994-001 : 26-Apr-2022 10:02 ; OHMW28 - additional pfas bottles for lab qaqc

EW2201994-008 : 26-Apr-2022 16:09 : SMW06 - additional pfas bottles for lab gage

EW2201994-009 · 26-Apr-2022 18:56 ; QA1 - additional pfas bottles for lab qaqc

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component 3020F

Matrix: WATER

component	displayed in bra	ckets without a time	OF s by IC	4-T ORC -	7G us as F	4DEFC ts, Hal	0	Metals	TEXN
Matrix: WATER			R - EG02 ed Metal	ג - EG09 etals by	k - EK06 hosphon	R - EP07 ⁻ umigan	2 - EP08	R - W-05	8 - W-18 5 - C9//E
Laboratory sample ID	Sampling date / time	Sample ID	WATEF Dissolv	WATEF Total M	WATEF Total PI	WATEF VOC - F	WATEF BTEXN	WATEF TRH/B1	WATEF TRH/C(
EW2201994-001	26-Apr-2022 10:02	OHMW28 additional p	1	✓	✓	1	✓	1	✓
EW2201994-002	26-Apr-2022 12:17	SMW02	✓	✓	✓	✓	✓	✓	✓
EW2201994-003	26-Apr-2022 12:51	OHMW20	✓	✓	✓	✓	✓	1	1
EW2201994-004	26-Apr-2022 13:26	SMW05	1	1	1	1	1	1	1
EW2201994-005	26-Apr-2022 14:08	SMW03	✓	1	1	✓	1	1	1
EW2201994-006	26-Apr-2022 14:39	SMW04	✓	1	1	1	1	1	1
EW2201994-007	26-Apr-2022 15:10	SMW01	✓	1	1	1	1	1	1
EW2201994-008	26-Apr-2022 16:09	SMW06 additional pf	✓	1	1	1	1	1	1
EW2201994-009	26-Apr-2022 18:56	QA1 additional pfas	✓	1	1	✓	1	1	1
EW2201994-013	26-Apr-2022 19:29	Rinsate 01	1						

Matrix: WATER Laboratory sample ID	Sampling date / time	sample ID	WATER - ED038P CaCO3 Acidity as CaCO3 only	WATER - EG020T Total Metals by ICP/MS (including digestion)	WATER - EG094-F Dissolved Metals by ORC - Ultra Trace in Fresh	WATER - EK055G-NH4 Ammonium as N	WATER - EP075 SIM Phenols only SIM - Phenols only	WATER - EP132-ST Super Trace PAHs	WATER - NT-13 Extended Water Suite A
EW2201994-001	26-Apr-2022 10:02	OHMW28 additional p	✓	✓	✓	✓	✓	✓	✓
EW2201994-002	26-Apr-2022 12:17	SMW02	✓	✓	✓	✓	✓	1	✓
EW2201994-003	26-Apr-2022 12:51	OHMW20	✓	✓	✓	✓	✓	✓	✓
EW2201994-004	26-Apr-2022 13:26	SMW05	✓	✓	✓	✓	✓	✓	✓
EW2201994-005	26-Apr-2022 14:08	SMW03	✓	1	✓	✓	1	✓	✓
EW2201994-006	26-Apr-2022 14:39	SMW04	1	1	1	✓	1	1	1
EW2201994-007	26-Apr-2022 15:10	SMW01	✓	✓	✓	✓	✓	✓	✓
EW2201994-008	26-Apr-2022 16:09	SMW06 additional pf	✓	✓	✓	✓	✓	✓	1
EW2201994-009	26-Apr-2022 18:56	QA1 additional pfas	✓	✓	1	✓	✓	✓	1
EW2201994-013	26 Apr 2022 10:20	Directo 01			1				

alytes)

Matrix: WATER Laboratory sample ID	Sampling date / time	Sample ID	(On Hold) WATER No analysis requested	WATER - EP231 PFAS - Short Suite (12 an:
EW2201994-001	26-Apr-2022 10:02	OHMW28 additional p		1
EW2201994-002	26-Apr-2022 12:17	SMW02		✓
EW2201994-003	26-Apr-2022 12:51	OHMW20		1
EW2201994-004	26-Apr-2022 13:26	SMW05		1
EW2201994-005	26-Apr-2022 14:08	SMW03		1
EW2201994-006	26-Apr-2022 14:39	SMW04		1
EW2201994-007	26-Apr-2022 15:10	SMW01		✓
EW2201994-008	26-Apr-2022 16:09	SMW06 additional pf		1
EW2201994-009	26-Apr-2022 18:56	QA1 additional pfas		1
EW2201994-011	26-Apr-2022 19:23	Trip blank	✓	
EW2201994-012	26-Apr-2022 19:24	Trip Spike	1	
EW2201994-013	26-Apr-2022 19:29	Rinsate 01		1

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

ACCOUNTS INVOICES

- A4 - AU Tax Invoice (INV)	Email	accounts.payable@smec.com
Elvis Dsouza		
 *AU Certificate of Analysis - NATA (COA) 	Email	Elvis.Dsouza@smec.com
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	Elvis.Dsouza@smec.com
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	Elvis.Dsouza@smec.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	Elvis.Dsouza@smec.com
- A4 - AU Tax Invoice (INV)	Email	Elvis.Dsouza@smec.com
- Chain of Custody (CoC) (COC)	Email	Elvis.Dsouza@smec.com
- EDI Format - ENMRG (ENMRG)	Email	Elvis.Dsouza@smec.com
- EDI Format - ESDAT (ESDAT)	Email	Elvis.Dsouza@smec.com
- Purchase Order Request Letter (PO_Request)	Email	Elvis.Dsouza@smec.com

1									10:06:12 PM	1 26, 2022	Tuesday, Ap
			×		No	ALS: 11 Non ALS: 1	Water	26/04/2022 06:56 PM	additional pfas bottles for lab qaqc	QA1	600
			×		No	ALS: 21 Non ALS: 0	Water	26/04/2022 04:09 PM	additional pfas bottles for lab qaqc	SMW06	800
			×		No.	ALS: 14 Non ALS: 0	Water	26/04/2022 03:10 PM		SMW01	007
			×		No	ALS: 9 Non ALS: 2	Water	26/04/2022 02:39 PM		SMW04	006
			×		No	ALS: 9 Non ALS: 2	Water	26/04/2022 02:08 PM		SMW03	005
			×		No	ALS: 9 Non ALS: 2	Water	26/04/2022 01:26 PM		SMW05	004
			×		No	ALS: 9 Non ALS: 2	Water	26/04/2022 12:51 PM		OHMW20	003
			×		No	ALS: 18 Non ALS: 0	Water	26/04/2022 12:17 PM		SMW02	002
(Hephane : 02 42263128			×		No	ALS: 11 Non ALS: 2	Water	26/04/2022 10:02 AM	additional pfas bottles for tab qaqc	OHMW28	001
Wolkongong Work Order Referen	ADDITIONAL	SISYJANA ƏVİTANAƏT.JA	ЯЭТАW sldmeX hoq	DƏRIVDƏR TON çirvisina	HOLD	TOTAL BOTTLES	MATRIX	DATE / TIME	DESCRIPTION	N AME	SAMPLE
	ED	ALYSIS REQUIR	ANA						SAMPLE DETAILS		
										DICES TO:	MAIL INVO
										ORTS TO:	MAIL REP
rature on Receipt: , 24 °C	dom Sample Tempe ar comments:	US0001 Othe	3ILE: 2021SMEA	LER MOB	SAMP	V21	PH: D: SY/080	CONTACT QUOTE NO	c, c,	MANAGER: Joel Reynol AMPLER: Joel Reynol	ROJECT N RIMARY S
ks present upon receipt? Yes No	ice / frozen ice bric	Free				info:	Biohazard				RDER NO
Yes No	ody Seal intact?	Cust							April 2022	Port Kembla Manildra /	ITE
VLY (Circle)	ORATORY USE ON	LAB	5 Days	VTS :	JIREMEN	JUND REQU	TURNARC			Port Kembla GME	ROJECT:
		12 18	23/0						STRALIA PTY LTD	SMEAUS - SMEC AUS	LIENT:
TIME: DATE TIME	DATE	IME:	DATET			Ŭ	DATE TIN		Laboratory: EW Wollongong	C#: 36757 ALS	Ars) do
IQUISHED BY: RECEIVED	RELIN	ED BY:	RECEIV			JISHED BY:	RELINQL		νםc	IAIN OF CUSTO	

										T			
	AIN OF CUSTO	YDC		RELINQU	ISHED BY:			RECEIVE	BANG		RELINQUISHED BY:	RECEIVED BY:	
ALS) coc#	: 36757 ALS	Laboratory: EW Wollongong		DATE TIN	Π.				s v Sv s Sv s Sv s Sv s Sv s Sv s Sv s S		DATE TIME:	DATE TIME:	
CLIENT: S	MEAUS - SMEC AUS	STRALIA PTY LTD						120	R1 7714	S.			
PROJECT: F	ort Kembla GME			URNARO	UND REQU	REMENT	ິ 5	Days	LAB	ORATORY U	SE ONLY (Circle))	
SITE	ort Kembla Manildra /	April 2022	1						Cust	ody Seal intac	12	Yes No NIA	
ORDER NO:				ionazard i	nio:				Free	be/ frozen ic	e bricks present upon recei	ipt? Yes No N/A	
PROJECT MA	NAGER: Joel Reynoli APLER: Joel Reynold	d's d's	CONTACT I QUOTE NO	PH; : SY/080,	21	SAMPLE	ER MOBIL / ES20	_E: 121SMEAU	S0001 Othe	dom Sample T r comments:	emperature on Receipt:	° and	
EMAIL REPOR	RTS TO:												
EMAIL INVOIC	ES TO:												
		SAMPLE DETAILS						ANAL	YSIS REQUIRI	ED			
SAMPLE	NAME	DESCRIPTION	DATE/ TIME	MATRIX	TOTAL BOTTLES	HOLD	Analysis NOT REQUIRED	Port Kembla WATER	SISYJANA ƏVITANRƏTJA	ADDITION	<u>ē</u> ŕ		
010	SSR	PLEASE SEND TO EUROFINS FOR ANALYSIS	26/04/2022 07:07 PM	Water	ALS: 9 Non ALS: 1	No.		×	LEASE SEND TO EUROFINS FOR ANALYSIS	PLEASE SEND EUROFINS FI ANALYSIS	OR OR		
011	Trip blank	Brohow	26/04/2022 07:23 PM	Water	ALS: 1 Non ALS: 0	No	•		BTEX Trip Blank				
012	Trip Spike	Brober	26/04/2022 07:24 PM	Water	ALS: 1 Non ALS: 0	No	•						
Q13	Rinsate 01		26/04/2022 07:29 PM	Water	ALS: 12 Non ALS: 0	No		×					

Tuesday, April 26, 2022

10:06:12 PM

2 of 7

002 SMW02 002 SMW02 002 SMW02	002 SMW02	002 SMW02	002 SMW02 002 SMW02 002 SMW02 002 SMW02 002 SMW02 002 SMW02	001 OHMW28 002 SMW02	OOT OTHWASE 001 OHMASE 002 SMW02	SAMPLE SAMPLE SAMPLE NAME 001 0HMV28 001 0HMV28 001 0HMV28 0HMV28 0HMV28 002 SMW02 SMW02 SMW02 002 SMW02 SMW02 <th>PROJECT MANAGER: Joel Re EMAIL REPORTS TO: EMAIL INVOICES TO: SAMPLE SAMPLE NAMEL 001 OHMV28 002 SMW02 0</th> <th>PROJECT: Port Kembla GME SITE: Port Kembla Manili ORDER NO: PROJECT MANAGER: Joel Rep PROJECT MANAGER: Joel Rep SAMPLE SAMPLER: Joel Rep EMAIL INVOICES TO: SAMPLE NAME 001 OHMV28 002 SMW02 002 SMW02</th>	PROJECT MANAGER: Joel Re EMAIL REPORTS TO: EMAIL INVOICES TO: SAMPLE SAMPLE NAMEL 001 OHMV28 002 SMW02 0	PROJECT: Port Kembla GME SITE: Port Kembla Manili ORDER NO: PROJECT MANAGER: Joel Rep PROJECT MANAGER: Joel Rep SAMPLE SAMPLER: Joel Rep EMAIL INVOICES TO: SAMPLE NAME 001 OHMV28 002 SMW02
Clear Plas Clear f	Clear Plast	Clear Pla	Amber Amber Amber Amber Amber Amber Clear Pla	Amber Amber Amber Amber Amber Amber Amber Amber Amber Amber	Clear Plast Ambe Amber	ME Clear Plas Clear Plas Clear Plas Clear Plas Clear Plas Amber Amber Amber Amber Amber Amber Amber Amber Amber Amber Amber Amber Amber	Reynolds Reynolds Q Reynolds Q Clear Plas Clear Plas Clear Plas Clear Plas Clear Plas Clear Plas Clear Plas Clear Plas Amber	ME Reynolds Reynolds Clear Plas Clear Plas Clear Plas Clear Plas Clear Plas Clear Plas Amber Amber Amber Amber Amber Amber Amber Amber Amber Amber Amber Amber Amber Amber Amber
Pastic Bottle - Nitric Acid; Unfiltered aar Plastic Bottle - Sulfuric Acid HDPE (no PTFE)	Plastic Bottle - Nitric Acid; Unfiltered	Plastic Bottle - Nitric Acid; Filtered	ber Glass Bottle - Unpreserved ber Glass Bottle - Unpreserved	HDPE (no PTFE) ber Glass Bottle - Unpreserved ber Glass Bottle - Unpreserved	Inser (Nor Fire) Inser (VOC Vial - Sulfuric Acid mber VOC Vial - Sulfuric Acid iber Glass Bottle - Unpreserved Clear Plastic Bottle - Natural HDPE (no PTFE) HDPE (no PTFE) HDPE (no PTFE) ber Glass Bottle - Unpreserved	Plastic Bottle - Nitric Acid; Filtered ar Plastic Bottle - Sulfuric Acid HDPE (no PTFE) HDPE (no PTFE) Pastic Bottle - Nitric Acid: Unfiltered mber VOC VIal - Sulfuric Acid mber VOC VIal - Sulfuric Acid clear Plastic Bottle - Unpreserved Clear Plastic Bottle - Unpreserved ber Glass Bottle - Unpreserved	CONTACT PH: QUOTE NO: SY/080/21 Plastic Bottle - Nitric Acid; Filtered HDPE (no PTFE) HDPE (no PTFE) Plastic Bottle - Nitric Acid: Unfiltered mber VOC Vial - Sulfuric Acid mber VOC Vial - Sulfuric Acid clear Plastic Bottle - Unpreserved Clear Plastic Bottle - Unpreserved ber Glass Bottle - Unpreserved	TURNAROUND REQU Biohazard info: CONTACT PH: QUOTE NO: SY/080/21 Plastic Bottle - Nitric Acid; Filtered Plastic Bottle - Nitric Acid; Filtered Plastic Bottle - Nitric Acid; Filtered Plastic Bottle - Nitric Acid; Unfiltered MDPE (no PTFE) HDPE (no PTFE) HD
60 mL 60 mL 20 mL	60 mL	100 mL	100 mL 100 ml 100 ml 100 ml 100 ml	20 mL 100 ml 100 ml 100 ml 100 ml 100 ml 100 ml 100 ml 100 ml	60 mL 60 mL 40 mL 250 ml 20 mL 20 mL 20 mL 20 mL 20 mL 100 ml 100 ml 100 ml 100 ml 100 ml 100 ml 100 ml 50 mL	VOLUM 60 mL 20 mL 20 mL 20 mL 20 mL 20 mL 100 mL 20 mL 20 mL 100 mL	SAMPLER MOBILE: / ES2021S 60 mL 60 mL 20 mL 20 mL 20 mL 20 mL 20 mL 20 mL 100 ml 20 mL 20 mL 20 mL 100 ml	REQUIREMENTS : 5 Da SAMPLER MOBILE: / ES2021S / ES2021S 60 mL 60 mL 60 mL 80 mL 60 mL 80 mL 20 mL 100 mL 20 mL 100 mL 20 mL 100 mL 100 mL
60 mL 00100121056601	60 mL 00121121036458	100 mL 00401121031382	OC mL OC401121031401 IO0 mL 00401121031388 IO0 mL 00401121031391 IO0 mL 00401121031391 IO0 mL 00401121031391 IO0 mL 00401121031391 IO0 mL 00401121031375 IO0 mL 00401121031381 IO0 mL 00401121031382 IO0 mL 00401121031382	20 mL 00350621010801 100 mL 00401121031389 100 mL 00401121031378 100 mL 00401121031395 100 mL 00401121031397 100 mL 00401121031397 100 mL 00401121031397 100 mL 00401121031397 100 mL 00401121031386 100 mL 00401121031386 100 mL 00401121031391 100 mL 00401121031375 100 mL 00401121031381 100 mL 00401121031382 100 mL 00401121031381 100 mL 00401121031382 100 mL 00401121031382	Control Control Control 60 mL 00121121035822 40 mL 00161121038153 40 mL 00161121038153 40 mL 00401121031384 50 mL 000070621153139 20 mL 00350621010801 20 mL 00350621010801 00 mL 00401121031384 00 mL 00401121031389 00 mL 00401121031386 00 mL 00401121031396 00 mL 00401121031396 00 mL 00401121031396 00 mL 00401121031396 00 mL 00401121031397 00 mL 00401121031391 00 mL 00401121031393 00 mL 00401121031391 00 mL 00401121031391 00 mL 00401121031393 00 mL 00401121031393 00 mL 00401121031393 00 mL 00401121031393	BARCODE 60 mL 00121121035922 60 mL 00100121056554 20 mL 00350621010804 20 mL 00350621010804 20 mL 00350621010397 60 mL 00161121035822 60 mL 00161121038153 40 mL 00161121038137 100 mL 000401121031384 20 mL 00350621010735 20 mL 003030621010735 20 mL 0030401121031384 100 mL 00401121031384 100 mL 00401121031385 100 mL 00401121031397 100 mL 00401121031397 100 mL 00401121031397 100 mL 00401121031391 100 mL 00401121031392 100 mL 00401121031393 100 mL 00401121031392	ILE: Random IO21SMEAUS0001 Other con 60 mL 00121121035922 60 mL 00121121035922 60 mL 00350621010804 20 mL 00350621010804 20 mL 00121121035922 60 mL 00121121035922 60 mL 0012112103804 20 mL 00121121038153 40 mL 00161121038137 100 mL 000401121031384 20 mL 00350621010801 00 mL 000401121031384 20 mL 00350621010801 00 mL 00401121031384 100 mL 00401121031384 100 mL 00401121031397 100 mL 00401121031391 100 mL 00401121031391 100 mL 00401121031391 100 mL 00401121031321 100 mL 002401121031321	5 Days LABORA Custody : Custody : 021SMEAUS0001 Free icy : 0021SMEAUS0001 Cher icy : 00121SMEAUS0001 Cher icy : 00121121035922 Cher icy : 60 mL 00121121035922 60 mL 00121121035922 60 mL 00161121035922 00 mL 000401121031384 20 mL 00350621010804 20 mL 00350621010804 20 mL 00350621010804 20 mL 0035062101031384 100 mL 00401121031384 100 mL 00401121031397 100 mL 00401121031391 100 mL 00401121031392
18 Red Purple	33 Red	32 Orange	11 Orange 13 Orange 14 Orange 15 Orange 15 Orange 11 Orange 12 Orange	M Grey V9 Orange V8 Orange V6 Orange V7 Orange V7 Orange V1 Orange V2 Orange	Creat 22 Red 33 Purple 34 Purple 37 Purple 38 Green 39 Green 39 Orange 36 Orange 37 Orange 31 Orange 31 Orange 31 Orange 31 Orange 32 Orange	TYPE 12 Red 14 Purple 14 Grey 17 Grey 17 Grey 17 Purple 13 Purple 13 Purple 13 Purple 14 Green 15 Green 16 Green 17 Orange 18 Orange 11 Orange 12 Orange 13 Orange 14 Orange 15 Orange 16 Orange 17 Orange 18 Orange 19 Orange 11 Orange 12 Orange	r comments: TYPE 2 Red 4 Purple 4 Grey 7 Grey 7 Grey 7 Grey 9 Green 9 Orange 9 Orange 1 Orange 9 Orange 1 Orange	ORATORY USE ONLY (C) ody Seal intact? ody Seal intact? ody Seal intact? ibe / frozen ice bricks pres iom Sample Temperature or rcomments: TYPE 22 Red 33 Purple 34 Purple 35 Grey 36 Orange 37 Orange 38 Orange 37 Orange 38 Orange 37 Orange 38 Orange 39 30 Orange 31 Orange 32 33 Orange 34 Orange 35 36 Orange 37 Orange 38 Orange 39 30 31 32 33 34 35 36 37 38 39 39 31
NO NO	Yes	No	N9 N9 N9 N9 N9 N9 N9 N9 N9 N9 N9 N9 N9 N	NO NO NO NO NO NO NO NO NO NO NO NO NO N	No No<	FILTERED	rre on Receipt: PILTERED Yes No No No No No No No No No No	r (Circle) present upon receipt? ure on Receipt: Pl_TERED Ves No No No No No No No No No No

)			
P of	IAIN OF CUSTODY		RELINQUISHED BY:		RECEIVED	XX - N	RELINQUISH	ED BY:	RECEIVED BY:
الله 200	C#: 36757 ALS Labora	tory: EW Wollongong	DATE TIME:	,	DATE TIME:	the set of	DATE TIME:		DATE TIME:
CLIENT:	SMEAUS - SMEC AUSTRALI,	A PTY LTD			n180	(1-123			
PROJECT:	Port Kembla GME		TURNAROUND REQUIRE	MENTS : 5	Days	LABORATO	RY USE ONLY (CI	rcle))
SITE	Port Kembla Manildra April 203	22				Gustody Seal	l intact?		Yes No (N/A)
ORDER NO:			Biohazard info:			Free ice / froz	zen ice bricks pres	ent upon receipt?	Yes No N/A
PROJECT M	ANAGER: Joel Reynolds		T PH: S/ IO: SY/080/21	AMPLER MOBIL / ES20	LE: 121SMEAUS00	Random Sarr 01 Other comme	nple Temperature o ents:	m Receipt:	0
EMAIL REPO	ORTS TO:								Ň
EMAIL INVO	ICES TO:								
002	SMW02	Clear Plastic	Bottle - Natural	25	0 mL 000	070621153162	Green	No	
002	SMW02	Amber VOC V	al - Sulfuric Acid	40	0 mL 00	161121037916	Purple	No	
002	SMW02	Amber VOC V	al - Sulfuric Acid	4(0 mL 00	161121038184	Purpte	No	
600	OHMW20	Clear Plastic Bottle	- Nitric Acid; Filtered	6	0 mL 00	121121035882	Red	Yes	
003	OHMW20	Clear Plastic Bottle -	Nitric Acid: Unfiltered	6(0 mL 00	121121035790	Red	No	
003	OHMW20	Amber VOC V	al - Sulfuric Acid	40	0 mL 00	161121037977	Purple	No	
003	OHMW20	Amber VOC V	al - Sulfuric Acid	40	0 mL 00	161121038003	Purple	No	
003	OHMW20	Clear Plastic Bo	ttle - Sulfuric Acid	60	0 mL 00	100121056571	Puple	No	
003	OHMW20	Clear Plastic	Bottle - Natural	25	0 mL 00	070621153166	Green	No	
003	OHMW20	Amber Glass Bo	ttle - Unpreserved	01	0 mL 00	101121031405	Orange	No	
003	OHMW20	HDPE (NO PTFE)	20	0 mL 00;	350621010898	Grey	No	
003	OHMW20	HDPE (10 PTFE)	20	0 mL 00;	350621010517	Grey	No	
004	SMW05	Clear Plastic Bo	tte - Sulfuric Acid	60	0 mL 00	100121056822	Purple	No	
004	SMW05	Clear Plastic Bottle	- Nitric Acid; Filtered	99	0 mL 00	121121035773	Red	Yes	
004	SMW05	Clear Plastic Bottle -	Nitric Acid; Unfiltered	6	0 mL 00	121121036410	Red	No	
004	SMW05	Clear Plastic	Bottle - Natural	25	0 mL 000	070621153044	Green	No	
004	SMW05	Amber Glass Bo	ttle - Unpreserved	10	0 mL 00-	101121031413	Orange	No	
004	SMW05	Amber VOC Vi	al - Sulfuric Acid	40) mL 00	161121038183	Purple	No	
004	SMW05	Amber VOC VI	al - Sulfuric Acid	40	0 mL 00	161121038165	Purple	No	
004	SMW05	HDPE ()	10 PTFE)	20	0 mL 003	350621010640	Grey	No	
004	SMW05	HDPE (10 PTFE)	20	0 mL 003	350621010879	Grey	No	
005	SMW03	Amber VOC Vi	al - Sulfuric Acid	40	0 mL 00	161121038206	Purple	No	
005	SMW03	Amber VOC Vi	al - Sulfuric Acid	40	0 mL 00	161121038173	Purple	No	
005	SMW03	Amber Glass Bo	ttle - Unpreserved	10	0 mL 00-	101121031374	Orange	No	
005	SMW03	Clear Plastic Bo	ttle - Sulfuric Acid	6	00 J mL	100121056574	Purple	No	
005	SMW03	Clear Plastic	Bottle - Natural	25	0 mL 00(070621153141	Green	No	
005	SMW03	Clear Plastic Bottle	- Nitric Acid; Filtered	60	00 mL	121121036466	Red	Yes	
Tuesday, April	26, 2022 10:06:12	PM							4 of 7

>	HAIN OF CUSTODY		RELINQUISHED BY;	RECE		RELINQUI	SHED BY:	RECEIVED BY:	
(Ars) (0	DC#: 36757 ALS Labor	atory: EW Wollongong	DATE TIME:	DATE	TIME: PYS	DATE TIM	ū	DATE TIME:	
CLIENT:	SMEAUS - SMEC AUSTRAL	IA PTY LTD		1 2	3 (4122 18	Ĩ.			
PROJECT:	Port Kembla GME		TURNAROUND REQUIREN	IENTS: 5 Davs	LABOF	ATORY USE ONLY	(Circle)		
SITE:	Port Kembla Manildra April 20	022			Custed	XSeal intact?		Yes No (N/A)	
ORDER NO	<u>)</u>	-	Biohazard info:		Freeiog	Trozen ice bricks pr	esent upon receipt?	Yes No N/A	
PROJECT I PRIMARY 8	MANAGER: Joel Reynolds SAMPLER: Joel Reynolds	CONTACT QUOTE N	C PH: SAI	MPLER MOBILE: / ES2021SME	AUS0001 Other c	n Sample Temperatur omments:	e on Receipt:	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
EMAIL REP	ORTS TO:								
EMAIL INVO	DICES TO:								
005	SMM03	Clear Plastic Bottle - I	Nitric Acid; Unfiltered	60 mL	00121121035965	Red	No		
005	SMW03	HDPE (n	10 PTFE)	20 mL	00350621010948	Grey	No		
005	SMW03	HDPE (n	ю PTFE)	20 mL	00350621010495	Grey	No		
006	SMW04	Clear Plastic Bott	fle - Sulfuric Acid	60 mL	00100121056757	Purple	No		
006	SMW04	Clear Plastic B	Bottle - Natural	250 mL	00070621153176	Green	No		
906	SMW04	Amber VOC Via	al - Sulfuric Acid	40 mL	00161121037841	Purple	No		
005	SMW04	Amber VOC Via	al - Sulfuric Acid	40 mL	00161121038079	Purple	No		
006	SMW04	HDPE (n	10 PTFE)	20 mL	00350621010942	Grey	No		
006	SMW04		IO PTFE)	20 mL	00350621011020	Grey	No		
006	SMW04	Clear Plastic Bottle -	- Nitric Acid; Filtered	60 mL	00121121035821	Red	Yes		
005	SMW04	Clear Plastic Bottle - I	Nitric Acid; Unfiltered	60 mL	00121121035813	Red	No		
006	SMW04	Amber Glass Bott	tte - Unpreserved	100 mL	00401121031410	Orange	No		
007	SMW01	Amber VOC Via	il - Sulfuric Acid	40 mL	00161121038101	puble	No		
007	SMW01	Amber VOC Via	I - Sulfuric Acid	40 mL	00161121038015	Purple	No		
007	SMW01	Clear Plastic Bottle -	 Nitric Acid; Filtered 	60 mL	00121121035928	Red	Yes		
007	SMW01	Clear Plastic Bottle - I	Nitric Acid; Unfiltered	60 mL	00121121035782	Red	No		
007	SMW01	Clear Plastic B	Sottle - Natural	250 mL	00070621153175	Green	No		
007	SMW01	Clear Plastic Bott	tle - Sulfuric Acid	60 mL	00100121056560	Purple	No		
007	SMW01	HDPE (no	o PTFE)	20 mL	00350621010647	Grey	No		
007	SMW01	HDPE (no	o PTFE)	20 mL	00350621011073	Grey	No		
007	SMW01	Amber Glass Bott	lle - Unpreserved	100 mL	00401121031403	Orange	No		
007	SMW01	Amber Glass Bott	lle - Unpreserved	100 mL	00401121031392	Orange	No		
007	SMW01	Amber Glass Bott	lle - Unpreserved	100 mL	00401121031383	Orange	No		
007	SMW01	Amber Glass Bott	lle - Unpreserved	100 mL	00401121031412	Orange	No		
007	SMW01	Amber Glass Bott	le - Unpreserved	100 mL	00401121031408	Orange	No		
007	SMW01	Amber Glass Bott	te - Unpreserved	100 mL	00401121031411	Orange	No		
800	SMW06	Clear Plastic Bottle -	Nitric Acid; Filtered	60 mL	00121121035896	Red	Yes		
Tuesday, Apr	il 26, 2022 10:06:1	12 PM						5 of 7	
								•	

ა ე -4
6 of 7)6:12 PM	126, 2022 10:00	Tuesday, Aprí
	No	Purple	61121037895) mL 00	4	Vial - Sulfuric Acid	Amber VO	QA1	600
	No	Orange	01121031396	0 mL 00/	10	Bottle - Unpreserved	Amber Glass	QA1	600
	No	Grey	50621010893) mL 003	2	Ϋ́Ε (no PTFΕ)	HDF	QA1	600
	No	Grey	50621010870	000 J mL	2	E (no PTFE)	HDF	QA1	600
	Yes	Red	21121035802	0 mL 00	5	Htle - Nitric Acid; Filtered	Clear Plastic Bo	QA1	600
	No	Purple	00121056638	0 mĽ 00	0	Bottle - Sulfuric Acid	Clear Plastic	QA1	600
	No	Green	70621153147	0 mL 000	25	stic Bottle - Natural	Clear Plas	QA1	600
	No	Orange	00621020946	0 mL 004	10	Bottle - Unpreserved	Amber Glass	SMW06	800
	No	Orange	01121031398	0 mL 00-	10	Bottle - Unpreserved	Amber Glass	SMW06	008
	No	Orange	01121031393	0 mL 00-	10	Bottle - Unpreserved	Amber Glass	SMW06	800
	No	Orange	01121031402	0 mL 00-	10	Bottle - Unpreserved	Amber Glass	SMW06	800
	No	Orange	01121031406	0 mL 00/	10	Bottle - Unpreserved	Amber Glass	SMW06	800
	No	Purple	61121038180) mL 00,	4	Vial - Sulfuric Acid	Amber VO	SMW06	800
	No	Purple	61121038143) mL 00	4	2 Vial - Sulfuric Acid	Amber VO	SMW06	800
	No	Green	170621153048	0 mL 000	25	stic Bottle - Natural	Clear Plat	SMW06	008
	No	Orange	01121031404	0 mL 004	10	Bottle - Unpreserved	Amber Glass	SMW06	800
	No	Grey	50621010844	0 mL 003	2	™E (no PTFE)	HDF	SMW06	800
	No	Grey	50621010992) mL 003	2	™E (no PTFE)	HDF	SMW06	800
	Νo	Grey	50621010916) mL 003	2	'E (no PTFE)	HDF	SMW06	008
	No	Grey	50621010997	0 mL 003	2	'E (no PTFE)	HDF	SMW06	008
	No	Red	21121035998	0 mL 00	9	te - Nitric Acid; Unfiltered	Clear Plastic Bot	SMW06	800
	No	Orange	00621020957	0 mL 00,	10	Bottle - Unpreserved	Amber Glass	SMW06	008
	No	Orange	00621020956	0 mL 00-	10	Bottle - Unpreserved	Amber Glass	SMW06	008
	No	Orange	00621020953	0 mL 00-	10	Bottle - Unpreserved	Amber Glass	SMW06	008
	No	Orange	00621020956	0 mL 00.	10	Bottle - Unpreserved	Amber Glass	SMW06	800
	No	Orange	00621020955	0 mL 00-	10	Bottle - Unpreserved	Amber Glass	SMW06	800
	No	Purple	00121057065	0 mL 00	6	Bottle - Sulfuric Acid	Clear Plastic	SMW06	800
								DICES TO:	EMAIL INVO
								ORTS TO:	EMAIL REP
2.6	on Kecelpt:	npie i emperature ents:	01 Other commo	LE: 121SMEAUS00	SAMPLER MOBI	ACT PH: E NO: SY/080/21	QUOT	AANAGER: Joel Reynolds	PROJECT N PRIMARY S
Yes No N/A	ent upon receipt?	zen ice bricks pres	Free ice / fro:			Biohazard info:			ORDER NO
Yes No NIA		l intact?	Cüstody Sea				12022	Port Kembla Manildra April	SITE:
1	ircle)	RY USE ONLY (C	LABORATO	Davs	QUIREMENTS :	TURNAROUND RE		Port Kembla GME	PROJECT:
			21852	JAN RO			ALIA PTY LTD	SMEAUS - SMEC AUSTR/	CLIENT:
DATE TIME:		DATE TIME:	. S.	DATE TIME:		DATE TIME:	ooratory: EW Wallongong	0C#: 36757 ALS Lab	(ALS) 00
RECEIVED BY:	HED BY:	RELINQUISI	> :: \	RECEIVED	3Y:	RELINQUISHED	Y	HAIN OF CUSTOD	> c

		10:06:12 PM	ril 26, 2022	Tuesday, Apr
00350621010912	20 mL	HDPE (no PTFE)	Rinsate 01	013
00350621011031	20 mL	HOPE (no PTFE)	Rinsate 01	013
00161121038226	40 mL	Amber VOC Vial - Sulfuric Acid	Rinsate 01	013
00100121057092	60 mL	Clear Plastic Bottle - Sulfuric Acid	Rinsate 01	013
00121121035890	60 mL	Clear Plastic Bottle - Nitric Acid; Unfiltered	Rinsate 01	013
00121121035904	60 mL	Clear Plastic Bottle - Nitric Acid; Untiltered	Rinsate U1	013

>	HAIN OF CUSTO	DY	RELINQUISHED BY:	RE		Υ.	RELINQUISI	HED BY:	RECEIVED BY:
Ars) 00	C#: 36757 ALS L	aboratory: EW Wollongong	DATE TIME:	סא		Ţ	DATE TIME:		DATE TIME:
CLIENT:	SMEAUS - SMEC AUST	RALIA PTY LTD			12/41	2 (2)			
PROJECT:	Port Kembla GME		TURNAROUND REQUIREME	NTS: 5 D	ays	LABORATOF	RY USE ONLY (C	lircle)	
SITE	Port Kembla Manildra Ap	oril 2022				Custody Seal	intact?		Yes No (NIA)
ORDER NO	••		Biohazard Into:			Free ide froz	ten ice bricks pres	sent upon receipt?	Yes No N/A
PROJECT N PRIMARY S	AANAGER: Joel Reynolds AMPLER: Joel Reynolds	CONTACT QUOTE N	F PH: SAMI O: SY/080/21	PLER MOBILE: / ES20218	MEAUS0001	Random Sam Other comme	ple Temperature ints:	on Receipt:	2.000
EMAIL REP	ORTS TO:								
EMAIL INVO	DICES TO:								
600	QA1	Amber VOC Via	al - Sulfuric Acid	40 mL	. 001611	21038158	Purple	No	
600	QA1	Clear Plastic Bottle -	Nitric Acid; Unfiltered	60 mL	. 001211	21035801	Red	No	
600	QA1	HDPE (r	NO PTEE)	20 mL	. 003506	21010586	Grey	No	
600	QA1	HDPE (r	ю PTFE)	20 ml	003506	21010574	Grey	No	
010	QA1A	Clear Plastic Bottle	- Nitric Acid; Filtered	60 mL	001211	21035786	Red	Yes	
010	QA1A	Clear Plastic Bottle -	Nitric Acid; Unfiltered	60 mL	. 001211	21035789	Red	No	
010	QA1A	Clear Plastic E	Bottle - Natural	250 m	L 000706	21153172	Green	No	
010	QA1A	Amber Glass Bot	tle - Unpreserved	100 m	004011	21031409	Orange	No	
010	QA1A	HDPE (r	10 PTFE)	20 mt	003506	21010672	Grey	No	
010	QA1A	HDPE (r	10 PTFE)	20 mL	003506	21010765	Grey	No	
010	QA1A	Clear Plastic Bot	te - Sulfuric Acid	60 mL	001001	21056607	Purple	No	
010	QA1A	Amber VOC Via	al - Sulfuric Acid	40 mL	001611	21038202	Purple	No	
010	QA1A	Amber VOC Via	al - Sulfuric Acid	40 mL	001611	21038176	Purple	No	
011	Trip blank	Amber VOC Via	al - Sulfuric Acid	40 mL	. 001611	21038122	Purple	No	
012	Trip Spike	Amber VOC Via	al - Sulfuric Acid	40 mL	. 001611	21037571	Purple	No	
013	Rinsate 01	Amber Glass Bot	tle - Unpreserved	100 m	004006	21020968	Orange	N	
013	Rinsate 01	Amber Glass Bot	tle - Unpreserved	100 m	- 004006	21084683	Orange	No	
013	Rinsate 01	Amber Glass Bot	tle - Unpreserved	100 m	004006	21020939	Orange	No	
013	Rinsate 01	Amber Glass Bot	tle - Unpreserved	100 m	- 004006	21020980	Orange	No	
013	Rinsate 01	Amber Glass Bot	tle - Unpreserved	100 m	004011	21031386	Orange	No	
013	Rinsate 01	Amber VOC Via	al - Sulfuric Acid	40 mL	. 001611	21038178	Purple	No	
013	Rinsate 01	Clear Plastic Bottle -	Nitric Acid; Unfiltered	60 mL	. 001211	21035904	Red	No	
013	Rinsate 01	Clear Plastic Bottle -	Nitric Acid; Unfiltered	60 mt	. 001211	21035890	Red	No	
013	Rinsate 01	Clear Ptastic Bot	tle - Sulfuric Acid	60 mL	. 001001	21057092	Purple	No	
013	Rinsate 01	Amber VOC Via	al - Sulfuric Acid	40 mL	. 001611	21038226	Purple	N	
013	Rinsate 01	HDPE (r	NO PTFE)	20 mL	. 003506	21011031	Grey	No	
013	Rinsate 01	HDPE (r	NO PTFE)	20 mL	003506	21010912	Grey	No	

	EMAIL INVOICES TO:	EMAIL REPORTS TO:	PROJECT MANAGER: Joel Reynolds PRIMARY SAMPLER: Joel Reynolds	ORDER NO:	SITE: Port Kembla Manildra April 2022	PROJECT: Port Kembia GME	CLIENT: SMEAUS - SMEC AUSTRALIA PTY LTD	ALS COC#: 36757 ALS Laboratory: EW Wollongong	A CHAIN OF CUSTODY
Total Bottle Count: ALS: 134, Non ALS: 12			CONTACT PH: SAMPLER MOBILE: QUOTE NO: SY/080/21 / ES2021SMEAUS0001	Biohazard info:			181		
			Random Sample Temperature on Receipt: Other comments:	Free ice / frozen ice bricks present upon receipt?	Custody Seal intact?	LABORATORY USE ONLY (Circle)	22/25	DATE TIME:	RELINQUISHED BY:
			0	Yes No N/A	Yes No NA			DATE TIME:	RECEIVED BY:

Tuesday, April 26, 2022

10:06:12 PM

	CHAIN OF CUSTODY	 Sydney: 277 Woodpark Ph. 02 8704 8555 E cample Newcastle: 5 Rosegum Ph 02 4968 9433 E sample 	c Rd. Smithfield NSW 21 les sydney@atsenviro.co h Rd. Warabrock NSW 23 es newcastle@atsenviro.	76 CI Brisbane: 32 S m Ph 07 3243 7222 E 304 CI Townsville: 14 com Ph 07 4796 0600 E	Shand St, Staffard QLD - Esamples bristane@afs 4-15 Decena Ct, Bohle Q	1053 D enviro com Ph LD 4318 D bueensro com Ph	Melbourne 2-4 West 03 8549 9600 E sampl Adetaide: 2-1 Burma I 1 08 8359 0850 E adeia	ilf Rd. Springvale VIC 3171 es matbourne@alsenviro.com rd. Pooraka SA 5035 idoædisenviro.com	E) Perth: 10 Hod Wa Ph 03 9209 7655 E : D) Launceston: 27 V Ph 03 6331 2158 E.	iy, Malaga WA 6090 samples.perth@alsen Nellington St. Launces Taunceston@alsenvire	wocom ion TAS 7250 ⊁oom
CLIENT: SN	VEC		TURNAROUND	REQUIREMENTS :	Standard TAT	(List due date):			FOR LABC	ORATORY USE O	NLY (Circle)
OFFICE:			(Standard TAT may b e.g., Ultra Trace Orga	e longer for some tests mics)	Non Standard	or urgent TAT (Li	st due date):		Custory Sea	l Inlaci?	Ves No (No
PROJECT: 3	2013038		ALS QUOTE NO.	••			c 000	EQUENCE NUMBER (Circl		zen ice bricks preser	NA Not Not NA
ORDER NUMBER:							coc: 1	2 3 4 5 6	7 Random San	nple Temperature on	Receipt IA 7 'C
PROJECT MANAGER:	Soci Reynakli	CONTACT F	¥:				99 	2 3 4 5 6	7 Other comm	ent.	- - - -
SAMPLER:	G	SAMPLER A	AOBILE;		RELINQUISHED E	37:	RECEIVED I	31:	RELINQUISHED	BY:	RECEIVED BY: 1/1
COC emailed to ALS? (YES / NO)	EDD FORM	AT (or default):				フラン				At Moses
Email Reports to (will de	fault to PM if no other addresses are lis	ted):			DATE/TIME:		DATE/TIME:		DATE/TIME:		DATE/TIME:
Email Invoice to (will def	ault to PM if no other addresses are list	ed);					27 42	2 [600			27 (4/22 (853
COMMENTS/SPECIAL h	ANDLING/STORAGE OR DISPOSAL		COC牛:	3675-	7						
ALS USE ONLY	SAMPLE MATRIX: Solid	DETAILS (S) Water(W)		CONTAINER INFO	ORMATION	ANALYS	IS REQUIRED incl	uding SUITES (NB, Suite C	odes must be fisted to a	altract suite price)	Additional information
											Comments on likely contaminant levels, dituitions, or samples requiring specific QC analysis atc
LABID	SAMPLEID	DATE /TIME	MATRIX	TYPE & PRESERVATI (refer to codes below		LES S		•			
							-			-	
								14			
				NAME AND A DESCRIPTION OF		-		-			
					τοτΑι						
V=VOA Vial HCI Preserved Bo Z = Zinc Acetate Preserved Bo	Unpreserved Plasiic; N = Ninic Preserved F /B = VOA Vial Sodium Bisulphate Preserved; Ue; E = EDTA Preserved Battles; ST = Steril	Itastic; ORC = Nitric Preserved VS = VOA Vial Sulfuric Preserved Bottle: ASS = Plastic Bag for.	ORC; SH = Sodium H /ed; AV = Ainfreight Ung Acid Sulphate Solls: B :	ydroxide/Cd Preserved; S yreserved Vial SG = Sulfu = Linnraservad Ban	i = Sodium Hydroxide F ric Preserved Amber (Preserved Plastic; A Slass; H × HCl pre	G = Amber Glass Unp served Plastic; HS = }	roserved, AP - Airfreight Unpre Cl presorved Speciation botti	served Plastic v; SP = Sulfuric Preserv	ved Plastic; F = Form	nadohyde Pressrved Glass;

)/Ebu (1/2)					05mm40	Smarch	SMW03	LAB ID SAMPLE ID	SAMPLE DETAILS	Client services notified by: DAT	NUMBER OF SAMPLES:	SAMPLER: ANA	CONNOTE REFERENCE: DAT	CARRIER:	CONTACT NUMBER: SAN	CONTACT NAME:	PROJECT: 2,001303X	CLIENT / SENDER: CANEC	Samples	
FormPage 1d1 Approved Date 1501/014								MATRIX NUMBER OF CONTAINE	PLE DETAILS Additional Information	DATE/TIME: IN OFFICE	washer samp /~	ANALYSIS RECEIVED BY:	DATERTIME: 2714122 1530 100 CUC	NATAN CONTROL		OF: 1 2 3 4 5 6 7	$coc:$ 1 2 3 4 5 6 7 $AT \leq AT $	COC SEQUENCE NUMBER (Circle) Comments	Samples received without CoC	

Appendix H

Dewatering Factsheet

WaterNSW

Water access licence exemption

for aquifer interference activities taking 3ML or less of groundwater per year

In December 2019 the NSW government introduced an exemption in the Water Management (General) Regulation 2018 that allows a small volume of groundwater to be taken through certain aquifer interference activities without the need for a water access licence.

Exemption from needing a water access licence

Under the exemption, a person can take up to 3 megalitres of groundwater through an aquifer interference activity per authorised project per water year without needing to obtain a water access licence, provided:

- a) the water is not taken primarily for consumption or supply; and b) the person claiming the exemption keeps a record of the water taken under the
- b) the person claiming the exemption keeps a record of the water taken under the exemption and provides this to the Minister within 28 days of the end of the water year; and
- c) the records are kept for 5 years.

Examples of aquifer interference activities to which the exemption may apply include:

- quarrying, excavating, dredging or exploring for stone, aggregate, sand or gravel;
- exploring for minerals, (including coal) or petroleum;
- excavation to construct or maintain a building, road or infrastructure;
- remediation of groundwater contamination;
- conducting pumping tests to investigate bore capacity or groundwater system characteristics;
- sampling for water quality from monitoring bores;
- ongoing dewatering of basements;
- creation of an artificial lake that intersects with groundwater and allows evaporation from it;
- investigation of groundwater resources or geotechnical investigation;
- operation of ground source heating or cooling systems.

The exemption provides a consistent, volume-based approach for the take of small volumes of groundwater and reduces red tape, delays and costs for businesses undertaking these aquifer interference activities.

Three megalitres per year is similar to the volume taken by landholders in accordance with domestic and stock rights held under section 52 of the *Water Management Act 2000*, for which a water access licence is not required to be held.

For mining and petroleum (including coal seam gas) activities, the exemption only applies to groundwater taken at the exploration stage. It does not apply to water taken during the production stage of mining and petroleum activities.

Fact sheet | 250920 | Page 1

waternsw.com.au

Fact sheet

Water access licence exemption for aquifer interference activities taking 3ML or less of groundwater per year

Claiming the exemption

The exemption only applies where groundwater is taken incidentally so that the aquifer interference activity can occur. That is, the purpose of taking the water must not be for its consumption or supply. The groundwater taken may subsequently be used for other purposes, for example for dust suppression or mixing concrete.

No application is needed to rely on the exemption, however proponents must record the water taken under the exemption on the <u>approved recording and reporting form</u> at the end of each period of take no later than 24 hours after the water is taken, for each water year in which an exemption is claimed. The form must be provided to the Minister's representative within 28 days of the end of the water year in which the water was taken.

Proponents must record the following information:

- The total amount of groundwater taken per year per authorised project under the exemption.
- The date or dates on which the groundwater was taken.
- A description of the method used to measure the volume of groundwater taken.
- The groundwater source from which the water was taken.
- The authority under which the water is being taken, for example water supply work approval, licence under the Water Act 1912, development consent, complying development or an approval exemption under legislation.
- The details of the person taking water.
- A description of the activity taking water.
- The location of the activity taking water.

Proponents of activities should check whether an approval and an assessment of impacts are required to carry out the activity regardless of whether this water access licence exemption applies.

More information

See FAQs for this exemption.

If you have any questions, please contact one of our friendly Customer Service team on 1300 662 077 or email <u>Customer.Helpdesk@waternsw.com.au</u>

Authorised project is defined in clause 7(5) of Schedule 4 to the Water Management (General) Regulation 2018, being an activity -

a) that is the subject of a consent, approval or other lawful authority conferred by or under an Act, or

b) to which Division 5.1 of the Environmental Planning and Assessment Act 1979 applies, or

c) that is exempt development under that Act.

Fact sheet 250920 | Page 2

waternsw.com.au

Appendix I Hydrographs

SMEC Wollongong

Level 2, 6-8 Regent Street, Wollongong NSW Phone: +61 2 4243 4400 Email: wollongong@smec.com