Port Kembla Bulk Liquids Terminal

Navigation Assessment

Manildra Group

28 April 2022 311010-00294

advisian.com

Disclaimer

This report has been prepared on behalf of and for the exclusive use of Manildra Group, and is subject to and issued in accordance with the agreement between Manildra Group and Advisian Pty Ltd. Advisian Pty Ltd accepts no liability or responsibility whatsoever for it in respect of any use of or reliance upon this report by any third party. Copying this report without the permission of Manildra Group and Advisian Pty Ltd is not permitted.

Company details

Advisian Pty Ltd ABN 50 098 008 818

Level 17, 141 Walker Street North Sydney NSW 2060 Australia

T: +61 2 9495 0500 F: +61 2 9810 5777

PROJECT 311010-00294 - MA-REP-0001: Port Kembla Bulk Liquids Terminal - Navigation Assessment

Rev	Description	Author	Review	Advisian approval	Revision date	Client approval	Approval date
0	Issue for Use	G. Tooker	D. Aubourg	P. McCallum	28.04.22		
_							

Table of Contents

Execut	ive Sun	ımary	. 4
Acrony	yms and	I Abbreviations	. 5
1	Introd	uction	. 6
	1.1	Scope of Work	7
2	Intend	ed Operations	. 9
3	Water	side Requirements of an Ethanol Facility	10
	3.1	Examples of Existing Ethanol Facilities	10
		3.1.1 Mackay	10
		3.1.2 Port Botany	11
4	Impac	ts to Existing Operations	13
5	Berthi	ng Assessment	16
6	Naviga	ation Assessment	18
	6.1	Existing Channel and Turning Basin	18
	6.2	Existing Berth Box	19
	6.3	Outer Harbour Development	20
7	Conclu	isions	21
8	Refere	nces	22

Appendices

Appendix A Berthing Energy Calculations

Table list

Table 2-1: Design ship particulars	9
Table 5-1: Design ship particulars and berthing conditions	. 16

Figure list

Figure 1-1: Port Kembla Outer Harbour (Nearmap, 1/11/2021)	6
Figure 1-2: Port Kembla Berth 206 and public facilities (Nearmap, 9/02/2022)	7
Figure 3-1: Port of Mackay bulk liquid terminal (Nearmap 02/10/2021)	11
Figure 3-2: Port Botany bulk liquid berths and tank farm	12
Figure 4-1: Map showing Berth 206 exclusions zones when the Golden Unity is alongside with the existing marked channel from the boat ramp to the harbour entrance	14
Figure 4-2: Port Kembla port passage plan [4]	15
Figure 5-1: Design berthing conditions and loads as presented on the Issued For Construction drawings [6]	16
Figure 6-1: Port Kembla Outer Harbour turning basin and assumed approach	19
Figure 6-2: Outer Harbour emplacement cell proximity to Berth 206, where the green shaded area is submerged, and the red is emergent reclamation	20

Executive Summary

Manildra Group are undergoing the NSW Department of Planning and Environment Secretary's Environmental Assessment Requirements (SEARs) for an ethanol export facility in Port Kembla to identify the specific environmental assessments for the Environmental Impact Statement (EIS). It is proposed to export beverage grade ethanol via Berth 206 in the Outer Harbour of Port Kembla. As a part of the SEARs, a study investigating the navigability of the port, required waterside infrastructure and impacts to existing operations is required.

Manildra Group are proposing to export ethanol in ships up to 155 m length overall (LOA), which is less than the port maximum and within the suitable vessel size for the existing infrastructure on Berth 206. The facility is proposed to have up to 30 shipments of 4-10 ML per year.

Port Kembla is designed to cater for Capesize bulk carriers, with a maximum size of 300 m LOA and 50 m beam, to be able to transit the port. The port also currently imports fuels and other dangerous goods as a part of standard operations. The existing and future tug fleet are suitable for ethanol loading operations as per Australian Standards, however a risk assessment reviewing the combined landside and waterside infrastructure should be conducted to determine the required safety and firefighting infrastructure.

Typical petrochemical facilities require a 40 m exclusion zone around the ship manifold during operations with a 25 m exclusions zone around the whole ship for unauthorised vessels. These two zones are not greater than what is currently in place at the berth and do not impact the existing public boat ramp or port entrance channel. However, this will need to be validated with a risk assessment.

It is not expected that the proposed facility will impact existing operations in the port or require any additional infrastructure at the berth to support waterside operations (Figure 1-1).

Acronyms and Abbreviations

Acronym/abbreviation	Definition
BLB	Bulk Liquids Berth
DUKC	Dynamic Underkeel Clearance
DWT	Deadweight Tonnage
EIS	Environmental Impact Statement
FiFi	Firefighting
LAT	Lowest Astronomical Tide
LBP	Length Between Perpendiculars
LOA	Length Overall
LPG	Liquefied Petroleum Gas
SEAR	NSW Department of Planning and Environment Secretary's Environmental Assessment Requirements
UKC	Underkeel Clearance

1 Introduction

Manildra Group are undergoing the NSW Department of Planning and Environment Secretary's Environmental Assessment Requirements (SEARs) for a beverage grade ethanol export facility in Port Kembla to identify the specific environmental assessments for the Environmental Impact Statement (EIS). It is proposed to utilise the existing Berth 206 bulk liquids berth (BLB) as the proposed export berth (Figure 1-1 and Figure 1-2).

The proposed export facility will have the ethanol tank storage on land, transfer the product via pipeline to the berth, and load ships via hoses. An estimated maximum of 30 ships will arrive per year.

Part of the SEARs require the completion of several studies outlined by the Department of Planning. These studies include, but are not limited to, a shipping hazard, risk, and navigation assessment.

Figure 1-1: Port Kembla Outer Harbour (Nearmap, 1/11/2021)

Figure 1-2: Port Kembla Berth 206 and public facilities (Nearmap, 9/02/2022)

1.1 Scope of Work

Listed below are the key areas investigated in this report.

- Navigation Assessment
 - Desktop navigation assessment for the arrival, berthing (including berthing speed), and departure of ethanol ships, including impacts from the Port Kembla Gas Terminal and emplacement cell
 - Location of the loading arm/hose connection in relation to the existing berth face

- Any plans to upgrade the fendering on the wharf and any other changes that may have an impact on the ships
- Impacts to existing Port Operations
 - Desktop assessment on the impacts of the proposed ethanol export facility on existing operations in the port, such as exclusions zones during operations
 - High level assessment of existing tug ship suitability based on other Australian ports handling similar sized ethanol ships
- Discussion of findings with Harbour Master
 - Prepare summary presentation
 - Workshop/meeting with the Harbour Master to determine if they have any comments or questions regarding the findings/outcomes of the studies.

2 Intended Operations

The ethanol export facility is intending to conduct approximately 30 shipments of beverage grade ethanol per year from Berth 206 in the Outer Harbour of Port Kembla. Each shipment will consist of between 4-10 ML of ethanol with a loading rate up to 1 ML per hour. The two design ships' particulars are presented in Table 2-1.

Particular	Golden Leader	Golden Unity
Length Overall (LOA)	124.0 m	155.0 m
Length Between Perpendiculars (LBP)	116.1 m	145.0 m
Beam	20.0 m	24.8 m
Moulded Depth	11.2 m	13.35 m
Ballast Draught	4.83 m	6.27 m
Summer Draught	8.77 m	10.22 m
Ballast Displacement	8,384 t	17,847 t
Summer Displacement	16,270 t	30,122 t
Cargo Capacity	13,355 m ³	23,325 m ³
Bow to Centre of Manifold	61.1 m	74.85 m

3 Waterside Requirements of an Ethanol Facility

Ethanol as a bulk liquid cargo is not considered any different to other High Hazard Class Volatile Petrochemicals, and therefore follows the same guidelines and standards as a typical bulk liquids facility [1]. Outlined below are the typical waterside requirements:

- For preliminary planning purposes, an exclusion zone of at least 40 m from the manifold centre is required [1]
- No unauthorised small craft or ships within 25 m of the ethanol ship [2]
 - One or more warning signs with legible signage from at least 30 m distance in any direction that ships may approach from are required
- Class B firefighting capable tug boat [2]
- Number of tugs dictated by the difficulty in berthing and manoeuvrability of the ship
- Spill kits on standby in the event of a leak/spill to contain ethanol.

It is noted that only a review of other similar facilities, and the relevant standards and guidelines pertaining to waterside requirements has been completed. No risk assessment has been conducted considering both landside and waterside infrastructure, but a risk assessment should be undertaken as the project develops.

3.1 Examples of Existing Ethanol Facilities

3.1.1 Mackay

The Port of Mackay bulk liquids berth (Berth M1) is located north of the small craft harbour, as shown in Figure 3-1, and is used to export ethanol. Like Port Kembla Berth 206, Berth M1 has a public marina located to the south of the berth with the public access channel running in close proximity to the east of the BLB.

There are two tugs available for towage stationed in Mackay provided by Smit Lamnalco. The requirement for the number of tugs is related to the LOA and maneuverability of the tanker, such as having an operational bow thruster [3], and the discretion of the Harbour Master.

For the export of ethanol, no additional waterside provisions are outlined in the port procedures compared to general cargo operations. The berth has two firefighting towers installed either side of the manifold.

Figure 3-1: Port of Mackay bulk liquid terminal (Nearmap 02/10/2021)

3.1.2 Port Botany

Ethanol is imported into Sydney via the two BLBs in Port Botany (BLB1 and BLB2), and stored in tanks onsite as shown in Figure 3-2. The two berths handle several liquid commodities including chemicals, petroleum fuels and LPG.

These berths are located close to the international container terminals and approach channels. Port Botany has several firefighting capable tugs for towage provided by Svitzer and Smit Lamnalco. The two bulk liquids berths also have firefighting towers installed either side of the manifold. The required terminal firefighting capabilities are set by the transfer of LPG, which has higher volatility compared to other products.

The landside and waterside commercial areas of Port Botany are restricted access with no public access or facilities located near to the BLBs unlike Port Kembla.

Figure 3-2: Port Botany bulk liquid berths and tank farm

4 Impacts to Existing Operations

Port Kembla currently imports fuels into Berth 201 and acids into Berth 206 in the Outer Harbour. The port's maximum vessel size is a Capesize bulk carrier of 300 m LOA and 50 m beam and Berth 206 has a berth pocket length of 220 m and 50 m width [4]. Therefore, the design vessel sizes (Table 2-1) are within the berth and port limits.

The existing Svitzer tug fleet in Port Kembla is firefighting capable, with the Svitzer Ruby firefighting (FiFi) Class 1 compliant with up to 2,750 m³/hr water capacity with up to 680 L/min foam discharge. Svitzer Ruby also meets the requirements for FiFi Class A as per [2], however is not currently carrying all the required equipment to be certified as Class A. The Svitzer Bass and Svitzer Flinders are FiFi capable with up to 600 m³/hr water discharge each. However, a risk assessment is required to review both landside and waterside infrastructure and determine the requirements of the waterside FiFi capabilities.

Additionally, As discussed in Section 3, ethanol cargo is not considered any different to other High Hazard Class Volatile Petrochemicals which are currently imported via Berth 201 on the Northern Breakwater of Port Kembla Outer Harbour. Therefore, the ethanol cargo can be considered within the existing port cargo profile.

As discussed in Section 3, the recommended exclusion zones are 40 m from the ship's manifold location and 25 m around the perimeter of the vessel as shown in Figure 4-1. This is approximately within the existing exclusions zones as noted in [5], therefore no change with the existing berth exclusion zone is required. Additionally, the public boat ramp and moorings are at least approximately 200 m away from the vessel and will pass at a greater than 50 m distance to the berth, similar to Port of Mackay. The pilot vessel berths are also located outside the 40 m exclusions area.

Figure 4-1: Map showing Berth 206 exclusions zones when the Golden Unity is alongside with the existing marked channel from the boat ramp to the harbour entrance

Currently, Berth 206 has a utilisation of approximately 1.3%, which is one service that imports acid. The proposed ethanol facility will have approximately 30 shipments of 4-10 ML of ethanol per year with a maximum design loading rate of 1 ML/hr, depending on the vessel capacity. This results in the proposed ethanol export facility requiring up to 10% utilisation, or a total of up to 11.3% utilisation which will not result in over-utilisation of the berth.

As shown in Figure 4-2, Berth 206 is located approximately 200 m from the Outer Harbour swing basin and at least 700 m from other berths. Therefore, the proposed ethanol facility should pose minimal risk to visiting cruise vessels transiting to the Inner Harbour and passing cargo vessels.

Figure 4-2: Port Kembla port passage plan [4]

5 Berthing Assessment

A berthing assessment was conducted on the two design vessels shown in Table 5-1 using the design berthing conditions outlined on the For Construction Drawing 5782DECP-D002-B [6] (Figure 5-1). The berthing energy calculations are shown in Appendix A utilising the methodology outlined in [7].

Table 5-1: Design ship po	articulars and	berthing	conditions
---------------------------	----------------	----------	------------

Particular	Golden Leader	Golden Unity
Length Overall (LOA)	124.0 m	155.0 m
Length Between Perpendiculars (LBP)	116.1 m	145.0 m
Beam	20.0 m	24.8 m
Moulded Depth	11.2 m	13.35 m
Summer Draught	8.77 m	10.22 m
Summer Displacement	16,270 t	30,122 t
Berthing Angle	7	7
Berthing Velocity	0.17 m/s	0.17 m/s
Abnormal Berthing Factor	1.75	1.75
Berthing Type	Quarter Point	Quarter Point
Abnormal Berthing Energy	395 kNm	791 kNm

C. DESIGN BERTHING CONDITIONS

- 1 DESIGN VESSEL FULLY LADEN = 35,000 DWT
- 2 DESIGN APPROACH VELOCITY = 0.175m/sec
- 3 DESIGN BERTHING ENERGY = 792 kNm
- 4 ANGLE OF APPROACH TO BERTH = 7°

D. FENDER DESIGN LOADS

1	BERTHING DOLPHINS	BERTHING	ENERGY	=	792	kNm.
		REACTION	FORCE	=	150	TONNES
2	CENTRAL WORKING PLATFORM	BERTHING	ENERGY	=	396	kNm
		REACTION	FORCE	=	100	TONNES

Figure 5-1: Design berthing conditions and loads as presented on the Issued For Construction drawings [6]

As shown in Table 5-1, the calculated fully loaded abnormal berthing energies are less than the fender design limits as specified on the design drawings. This assumes that due to ship and berth geometry the Golden Leader berths alongside the central platform fenders and the Golden Unity berths alongside the berthing dolphins. It is noted that no structural assessment of the wharf infrastructure has been conducted to confirm the values presented in Figure 5-1 are correct.

The fender panel area for both the berthing dolphins and the central working platform dolphins are 12 m² as shown on [6]. Therefore, the maximum hull pressure that can be applied on a moored ship is approximately 120 MPa as the design reaction force is 150 t (Figure 5-1). As this pressure is less than the typical allowable hull pressure of 300 MPa for a tanker as outlined in [7], it is suitable to moor the two design ships alongside Berth 206.

6 Navigation Assessment

6.1 Existing Channel and Turning Basin

The existing channels and turning basins in Port Kembla are designed for Capesize bulk carriers (300 m LOA and 50 m beam) with a maintained depth of 15.7-16 m in the Outer Harbour. The water depth between the Outer Harbour turning basin and Berth 206 is greater than 12 m. Therefore, the existing channel and turning basin are sufficient for the design ships to navigate at a laden draught through the port to Berth 206 with a 10% static underkeel clearance (UKC).

Port Kembla utilises a Dynamic Underkeel Clearance (DUKC) system to monitor the dynamic UKC during transit and loading. This system accounts for real-time water levels, environmental conditions and ship hydrodynamics to ensure sufficient UKC.

Figure 6-1 shows the Outer Harbour channel and turning basin with the Golden Unity assumed travel path to the berth. It has been assumed that the ship will be turned upon arrival into to allow starboard-side-to berthing, allowing for quick egress in case of an emergency.

Figure 6-1: Port Kembla Outer Harbour turning basin and assumed approach

6.2 Existing Berth Box

The existing Berth 206 berth box dimensions are 220*50*11.1 m centred about the centre of the loading platform. The ship manifold is located at approximately midships for both design ships and therefore will be located central to the loading platform.

The Outer Harbour berths require a minimum UKC of 10% of the vessel draught. The summer draught of the Golden Unity is 10.22 m which will require a depth alongside the berth of 11.2 m which is 0.1 m deeper than the declared depth. Therefore, the Golden Unity will be tidally restricted to tides 0.1 m above lowest astronomical tide (LAT) water level, when loaded to summer displacement.

6.3 Outer Harbour Development

The construction of an emergent and submerged emplacement cell in the Outer Harbour has been approved for development as a part of the Port Kembla Gas Terminal and is shown in Figure 6-2. The green shaded area is submerged emplacement, and the red area is emergent reclamation. The toe of the bund is approximately 60 m clear of the berth box, however as the Golden Unity is smaller than the existing maximum design vessel for Berth 206, there is approximately 105 m clearance when berthed alongside.

It is not expected that the Outer Harbour emplacement cell will impact navigability in the Outer Harbour for the export of ethanol, for the proposed ships (Table 2-1).

Figure 6-2: Outer Harbour emplacement cell proximity to Berth 206, where the green shaded area is submerged, and the red is emergent reclamation

7 Conclusions

Based on the above assessment, the proposed ethanol export facility operations are similar to operations currently undertaken in the port. Berth 201 and 206 currently import fuels and acids respectively with ships of similar sizes to the design ethanol export ships.

Exclusion zones are required around both the manifold and vessel of 40 m and 25 m respectively. These zones are within the existing boundaries at Berth 206. Therefore, the proposed facility will not cause additional impact on existing operations in the port and the surrounding waters.

The existing and future tug fleet of Port Kembla has sufficient bollard pull and FiFi capabilities to service the ethanol ships and operations, however a risk assessment should be conducted to review the whole facility, including landside infrastructure.

The existing fenders at Berth 206 are sufficient to safely berth both the Golden Leader and Golden Unity at summer displacement. No structural assessment of the wharf has been conducted to confirm the provided design loads for the berth.

The existing channel, turning basin, and berth pocket are sufficient to service the maximum design ship. Additionally, the approved Outer Harbour emplacement cell development will not impact the navigability to and from Berth 206.

Based on the above assessment, the proposed ethanol export facility operations can be safely conducted at Berth 206 in Port Kembla Outer Harbour with minimal impact to existing port operations.

8 References

- [1] PIANC, "Recommendations for the Design and Assessment of Maine Oil and Petrochemical Terminals WG 153," PIANC Secrétariat Général, Bruxelles, 2016.
- [2] Australian Standard, "3846-2005 The Handling and Transport of Dangerous Cargoes in Port Area," Standards Australia, 2005.
- [3] Maritime Safety Queensland, "Port Procedures and Information for Shipping Port of Mackay," 2019.
- [4] Port Authority of New South Wales, "Port Kembla Harbour Master Directions," 2021.
- [5] Department of Primary Industries, "Re: SSD-33042483 Manildra Port Kembla Bulk Liquid Terminal - Request for Secretary's environmental Assessment Requirements (SEARs)," 2021.
- [6] Connell Wagner, "Contract No. PK 98/24 Jetty No. 4 Bulk Liquids Berth 5782DECP," 1999.
- [7] PIANC, "Guidelines for the Design of Fender Systems WG 33," PIANC Secrétariat Général, Bruxelles, 2002.

Appendix A Berthing Energy Calculations

Calculation Cover Sheet

Custom	er	Manildra Group			Proj No	311010-002	294					
Project	Title	Port Kembla Bulk Liqui	ids Terminal		Calc No	00-MA-CAL-0001						
Calculat	tion Title	Berthing Energies Sun	nmary		Phase/CTP							
	Location https://worleyparsons.sharepoint.com/sites/PK Nav Asses/Shared Documents/11.0 Engineering/Berthing Energies/311010-00294-											
	e Location	00-MA-CAL-0001_Berthing_	_Summary.xlsx		g	,						
					Page	1 of	5					
Calculat	tion Objectiv	e										
The purp	pose of this ca	alculation is to determine	e if the existing f	fenders on Berth 206 ca	n safely berth	the design ethanol s	ships, or if					
any berthing controls are required												
Calculation Method												
- Utilising	g PIANC and	AS4997 method										
Assum	otions											
- lanores	s enerav abso	orbed by wharf structure	and vessel hull									
- The fer	nder design la	ads noted on the Berth	Number 4 cons	truction Drawings includ	e energy redu	ction factors for tem	perature.					
angle, m	nanufacturing	tolerances and velocity		<u>j</u>	<i></i>		,					
	· ·											
Softwar	o Llood											
Sonwar	6 0260	Title			Varaian	Validation /V / N						
		IITIE			version	valluation (Y / N	n / IN/A)					
/ WA												
Deferre												
Referen	ices	WC 22										
Referen	i ces WG 153 and	WG 33										
Referen - PIANC - Trelleb	i ces 3 WG 153 and 9 Fender B	WG 33 rochure										
Referen - PIANC - Trelleb	i ces WG 153 and org Fender B	WG 33 rochure			<u> </u>							
Referen - PIANC - Trelleb	ices 3 WG 153 and borg Fender B	WG 33 rochure										
Referen - PIANC - Trelleb	ices SWG 153 and org Fender B	WG 33 rochure										
Referen - PIANC - Trelleb	ices 3 WG 153 and org Fender B	WG 33 rochure										
Referen - PIANC - Trelleb	ices WG 153 and org Fender B	WG 33 rochure										
Referen - PIANC - Trelleb Conclus - Existin	ices WG 153 and org Fender B sions g cell fenders	WG 33 rochure located on the central v	vorking platform	are suitable to berth the	e laden Golder	Leader at a 7deg b	perthing					
Referen - PIANC - Trelleb Conclus - Existing angle at	ices WG 153 and borg Fender B sions g cell fenders the specified	WG 33 rochure located on the central v 0.17m/s berthing veloci	vorking platform ity	are suitable to berth the	e laden Golder	Leader at a 7deg b	erthing					
Referen - PIANC - Trelleb Conclus - Existing angle at - Existing	ices WG 153 and borg Fender B sions g cell fenders the specified g cell fenders sified 0 17m/c	WG 33 rochure located on the central v 0.17m/s berthing veloci located on the berthing berthing velocity	vorking platform ity dolphins are su	are suitable to berth the laden	e laden Golder Golden Unity	Leader at a 7deg b at a 7deg berthing a	erthing angle at					
Referen - PIANC - Trelleb Conclus - Existing angle at - Existing the spec	ices WG 153 and borg Fender B sions g cell fenders the specified g cell fenders sified 0.17m/s	WG 33 rochure located on the central v 0.17m/s berthing veloci located on the berthing berthing velocity	vorking platform ity dolphins are su	are suitable to berth the laden	e laden Golden Golden Unity	Leader at a 7deg b at a 7deg berthing a	erthing angle at					
Referen - PIANC - Trelleb Conclus - Existing angle at - Existing the spec	ices WG 153 and borg Fender B sions g cell fenders the specified g cell fenders cified 0.17m/s	WG 33 rochure located on the central v 0.17m/s berthing veloci located on the berthing berthing velocity	vorking platform ity dolphins are su	are suitable to berth the itable to berth the laden	e laden Golden Golden Unity	Leader at a 7deg b at a 7deg berthing a	erthing angle at					
Referen - PIANC - Trelleb Conclus - Existing angle at - Existing the spec	ices WG 153 and borg Fender B sions g cell fenders the specified g cell fenders cified 0.17m/s	WG 33 rochure located on the central v 0.17m/s berthing veloci located on the berthing berthing velocity	vorking platform ity dolphins are su	are suitable to berth the	e laden Golden Golden Unity	Leader at a 7deg b at a 7deg berthing a	erthing angle at					
Conclus - Existing angle at - Existing the spec	sions g cell fenders the specified g cell fenders the specified g cell fenders	WG 33 rochure located on the central w 0.17m/s berthing veloci located on the berthing berthing velocity	vorking platform ity dolphins are su	are suitable to berth the laden	e laden Golder Golden Unity	Leader at a 7deg b at a 7deg berthing a	erthing angle at					
Referen - PIANC - Trelleb - Trelleb - Existing angle at - Existing the spec	ices WG 153 and org Fender B sions g cell fenders the specified g cell fenders cified 0.17m/s to a Safety C	WG 33 rochure located on the central w 0.17m/s berthing veloci located on the berthing berthing velocity ritical System?	vorking platform ity dolphins are su No	are suitable to berth the laden itable to berth the laden Status of Supplie	e laden Golden Golden Unity	Leader at a 7deg b at a 7deg berthing a N/A	erthing angle at					
Referen - PIANC - Trelleb - Trelleb - Existing angle at - Existing the spec Related HOLDS	ices WG 153 and borg Fender B sions g cell fenders the specified g cell fenders sified 0.17m/s to a Safety C	WG 33 rochure located on the central v 0.17m/s berthing veloci located on the berthing berthing velocity	vorking platform ity dolphins are su No	are suitable to berth the laden itable to berth the laden	e laden Golder Golden Unity ^r Data used	Leader at a 7deg b at a 7deg berthing a N/A	erthing angle at					
Referen - PIANC - Trelleb - Trelleb - Existing angle at - Existing the spec Related HOLDS	to a Safety C	WG 33 rochure located on the central v 0.17m/s berthing veloci located on the berthing berthing velocity	vorking platform ity dolphins are su No	are suitable to berth the laden	e laden Golden Golden Unity r Data used	Leader at a 7deg b at a 7deg berthing a N/A	erthing angle at					
Referen - PIANC - Trelleb Conclus - Existing angle at - Existing the spec Related HOLDS	ices WG 153 and borg Fender B sions g cell fenders the specified g cell fenders sified 0.17m/s to a Safety C	WG 33 rochure located on the central v 0.17m/s berthing veloci located on the berthing berthing velocity	vorking platform ity dolphins are su No	are suitable to berth the laden	e laden Golden Golden Unity r Data used	Leader at a 7deg b at a 7deg berthing a N/A	erthing angle at					
Referen - PIANC - Trelleb Conclus - Existing angle at - Existing the spec Related HOLDS	to a Safety C	WG 33 rochure located on the central v 0.17m/s berthing veloci located on the berthing berthing velocity ritical System?	vorking platform ity dolphins are su <u>No</u>	are suitable to berth the laden	e laden Golder Golden Unity r Data used	Leader at a 7deg b at a 7deg berthing a N/A	erthing angle at					
Referen - PIANC - Trelleb Conclus - Existing angle at - Existing the spec Related HOLDS	to a Safety C	WG 33 rochure located on the central v 0.17m/s berthing veloci located on the berthing berthing velocity	vorking platform ity dolphins are su	are suitable to berth the iaden	e laden Golden Golden Unity	Leader at a 7deg b at a 7deg berthing a N/A	erthing angle at					
Referen - PIANC - Trelleb Conclus - Existing angle at - Existing the spec Related HOLDS	to a Safety C	WG 33 rochure located on the central v 0.17m/s berthing veloci located on the berthing berthing velocity	vorking platform ity dolphins are su	are suitable to berth the laden	e laden Golden Golden Unity	Leader at a 7deg b at a 7deg berthing a N/A	erthing angle at					
Referen - PIANC - Trelleb Conclus - Existing angle at - Existing the spec Related HOLDS	to a Safety C	I WG 33 rochure	vorking platform ity dolphins are su	are suitable to berth the laden	e laden Golden Golden Unity	Leader at a 7deg b at a 7deg berthing a N/A	erthing ingle at					
Referen - PIANC - Trellebo Conclus - Existing angle at - Existing the spect Related HOLDS	ices WG 153 and borg Fender B sions g cell fenders the specified g cell fenders cified 0.17m/s to a Safety C	I WG 33 rochure	vorking platform ity dolphins are su No	are suitable to berth the laden	e laden Golden Golden Unity	Leader at a 7deg b at a 7deg berthing a N/A	erthing ingle at					

This Calculation represents the work of WorleyParsons performed to recognized engineering principles and practices appropriate for the terms of reference provided by WorleyParsons contractual Customer. This Calculation is confidential and prepared solely for the use of the Customer. The contents of this Calculation may not be disclosed to or relied upon by any party other than the Customer, and neither WorleyParsons, its subconsultants nor their respective employees assume any liability for any reason, including, but not limited to, negligence, to any other party for any information or representation herein.

Calculation Checklist

Customer			Manildra Group		Proj No	311010-00294				
Project Title			Port Kembla Bulk Liquids Terminal		Calc No 00	с No 00-MA-CAL-0001				
Calculation Title		е	Berthing Energies Summary		Phase/CTR					
Elec File Location			https://worleyparsons.sharepoint.com/sites/PK Nav 00-MA-CAL-0001_Berthing_Summary.xlsx	Asses/Shared Documents	/11.0 Engineering/Berthing	Energies/31	1010-00294-			
					Page 2	of	5			
Please	check b	oxes fo	or all applicable items checked or mark	as "N/A" if not appr	opriate:					
Calcula	tions:	1								
Originator	Checker									
x	X Calculation number assigned and registered. refer to project numbering system or Document Number Standa (DPP-0031-COR-EN) for format.									
X	Х	All req	All required information on Cover Sheet provided.							
x	x	Revision of Origin	on history box complete and signed. (Typed nator, Checker, Approver; to be initialled beside at si	d names (minimum of first i gn-off) (Dates in standard i	initial and last name e.g. A. format (DD-MM-YY)	Wood)				
X	X	Table	of Contents.							
N/A	N/A	Approp	priate stamp for preliminary issues.							
Х	х	Source	e of input data stated (with revision numbe	er and date if relevant)).					
х	Х	Custor	ner's requirements included/addressed.							
X	Х	Approa	ach used is appropriate for problem being	solved.						
X	х	Metho	d clear and easy to follow.							
X	х	Input d	lata correct.							
х	х	Calcul	ation arithmetically correct OR software p	eviously verified and	reference to verification	on checked	d.			
x	Х	Calcul	ation result within expected limits.							
N/A	N/A	Calcul	ation tolerances stated if significant.							
X	X	Units u	used as required by customer. Unit conver	sions correctly perform	med.					
X	X	Approp	oriate cross-references.							
N/A	N/A	Sketch	nes included and clearly labelled, where re	quired.						
x	X	Appen	dices included and referenced, as require	d.						
N/A	N/A	Consid	dered design reviews, Hazop actions, cust	omer input, safety an	d environmental issue	s, etc.				
N/A	N/A	Safety	in Design (SID) and Sustainable Design a	are addressed. Refer	relevant SID Discipline	e Standaro	d.			
X	Х	Conclu	usions and recommendations are appropr	ate.						
Checki	ng Reco	ords:								
		Check	ed and annotated copy of calculation filed	(use "Doc Check Prin	nt" stamp).					
		Correc	tions made as required and calculation da	ated and signed on co	over sheet by checker.					
		Alterna	ative method calculation and/or representa	ative check performed	l and filed, as required					
Revisio	ns:	Char								
		Changes clouded.								
		Revision	on history block updated.							
			ation re-checked if required.							
			r	1	r					
Roy 0	10.0	1-22	lesue for Lise	G Tookor						
Rev	Da	+-22 ite	Description	Bv	Checked		proved			
		-	.	· · ·		1 · · · · · ·				

This Calculation represents the work of WorleyParsons performed to recognized engineering principles and practices appropriate for the terms of reference provided by WorleyParsons contractual Customer. This Calculation is confidential and prepared solely for the use of the Customer. The contents of this Calculation may not be disclosed to or relied upon by any party other than the Customer, and neither WorleyParsons, its subconsultants nor their respective employees assume any liability for any reason, including, but not limited to, negligence, to any other party for any information or representation herein.

Calculation Sheet

Customer	Manild	Ira Group				Pr	oj No		311010-0	00294
Project Title	Port Ke	embla Bulk I	Liquids	Termina	1	Ca	lc No		00-MA-CA	L-0001
Calculation Title	Berthir	ng Energies	Summ	ary		Ph	ase/C	TR		
Elec File Location	https://w	orleyparsons.sl	harepoin	t.com/sites/	PK Nav Asses/	Shared Documen	ts/11.0 E	Engineering/E	Berthing Energ	gies/311010-
	00294-0	0-MA-CAL-000	1_Berthi	ng_Summa	ry.xlsx			D	•	- f - f
Davi Data	Du	Chaskad	David	Dete	Du	Cheaked	David	Page	3 	OT 5
Rev Date	ву	Спескеа	Rev	Date	Ву	Спескеа	Rev	Date	Ву	Спескеа
Rev 0 13-04-22 G.	TUUKEI	D. Auboury								
				Tab	le of Conte	nte				
				145					Page	
1.0 Bad	karound								4	
1.1 Sur	nmarv of	Provided In	formati	on					4	
2.0 Fer	ider Deta	ails							5	
2.1 Dol	phin Fen	der							5	
3.0 Ves	sel Berth	ning Eneraie	s						5	
3.1 Gol	den Lead	der							5	
3.2 Gol	den Unity	у							5	
				4	opendices					
									Pages	;
A 3	11010-0	0294-00-MA	-CAL-	0002_En	ergy_Leade	r			2	
B 3	11010-0	0294-00-MA	A-CAL-	0003_En	ergy_Unity				2	

This Calculation represents the work of WorleyParsons performed to recognized engineering principles and practices appropriate for the terms of reference provided by WorleyParsons contractual Customer. This Calculation is confidential and prepared solely for the use of the Customer. The contents of this Calculation may not be disclosed to or relied upon by any party other than the Customer, and neither WorleyParsons, its subconsultants nor their respective employees assume any liability for any reason, including, but not limited to, negligence, to any other party for any information or representation herein.

Calculation Sheet

Customer	Customer Manildra Group						roj No	311010-00294			
Project Title	Port K	Kembla Bulk I	_iquids	Terminal		C	alc No		00-MA-C	AL-00	001
Calculation Title	e Berthi	ng Energies	Summa	ary		P	hase/C	TR			
Elec File Locati	https://v	worleyparsons.sl	harepoin	t.com/sites/I	PK Nav Asse	es/Shared Docum	ents/11.0	Engineerin	g/Berthing E	nergies	s/311010-
	00294-0	00-MA-CAL-000	1_Berthi	ng_Summai	ry.xlsx			Dawa	4	- 6	F
Bay Data	D.r	Cheeked	Davi	Deta	Bv	Checked	Bay	Page	4 	or	5 Sheeked
Rev Date	By O Taskar	Checked	Rev	Date	Ву	Спескеа	Rev	Date	Ву		лескеа
Rev 0 19-04-22	G. TUUKEI	D. Aubourg									
Berthi	ng Energies	s Calculatio	ns in A	ppendix	A and B						
1.0 Ba	ckground										
Drav	vings										
5782	DECP - Jetty I	No 4 Bulk Liquid	s Berth (Construction	Drawings						
110	mmany of Dr	ovided Inform	nation								
1.1 Sui	ninary of Pl		πατιΟΠ								
Draw	/ing notes belo	w outlined the li	miting de	sign berthin	ng conditions	and fender desig	n loads				
B. G	ENERAL										
1	LOAD PER	R BOLLARD	= 1000	KN AT I	MAXIMUM	ANGLE OF 3)*				
2	CURRENT	ON BERTHE	D VES	SEL = 2.9	9 KNOTS	APPLIED IN A	CCORD	ANCE			
				W	ITH BS63	49, PART1, 1	984.				
3	LIMITING	WIND VELOC	ITY AT	BERTH	= 40 KN0	DTS					
C DI	SIGN REDT		TIONS								
1	DESIGN V	FSSEL FULL	YIAD	FN - 35	000 DWT						
2	DESIGN A	PPROACH VI		Y = 0.179	Sm/ser						
3	DESIGN B	ERTHING ENE	RGY :	792 kN	m						
4	ANGLE OF	APPROACH	TO B	ERTH = 7	7.						
D 55											
U. FE	NUER DESI	UN LUAUS			COTUNC		21.11-				
1	BERTHING	DULPHINS		5	FACTION	ENERGY = 75 FORCE = 150	ZKNM	IFS			
2	CENTRAL	WORKING PI	ATEOR	M B	REACTION	ENERGY = 39	6kNm				
-	CENTRAL	noninite i i		R	REACTION	FORCE = 10°) TONN	IES			
This Calculation repres	ents the work of W	orlevParsons perform	ed to record	nized engineerir	ng principles and	practices appropriate f	or the terms	of reference pr	ovided by Worley	Parsons	contractual

Customer. This Calculation represents the work of woneyParsons performed to recognized engineering principles and practices appropriate for the terms of reference provided by woneyParsons contractual Customer. This Calculation is confidential and prepared solely for the use of the Customer. The contents of this Calculation may not be disclosed to or relied upon by any party other than the Customer, and neither WorleyParsons, its subconsultants nor their respective employees assume any liability for any reason, including, but not limited to, negligence, to any other party for any information or representation herein.

Calculation Sheet

Custo	mer	Manilo	Ira	Group				Pr	oj No		311010-0	0294
Projec	t Title	Port K	em	ibla Bulk L	iquids	Termina	I	Ca	Ic No		00-MA-CA	L-0001
Calcul	lation Tit	le Berthii	ng	Energies	Summa	ary		Ph	ase/C1	R		
Eloc E	ilo Locat	https://w	/orle	eyparsons.sl	narepoint	.com/sites	/PK Nav Asses/S	hared Documer	nts/11.0 E	Ingineering	Berthing Energy	gies/311010-
LIEC	ne Local	00294-0)0-N	A-CAL-000	1_Berthi	ng_Summ	ary.xlsx			_	_	
										Page	5	of 5
Rev	Date	Ву	<u>C</u>	hecked	Rev	Date	Ву	Checked	Rev	Date	Ву	Checked
Rev 0	19-04-22	G. Tooker	0). Aubourg								
	Berthi	ing Energies	C	alculatior	ns in A	ppendix	A and B					
	2.1 Do	olphin Fender										
	As state	ed on Drawing 57	7821	DECP-D031	, the cen	tral loading	g platform fender o	energy capacity	is 396 kN	Nm and the	dolphin fender	is 792 kNm
	which h	as been assume	ed to	be factored	ł							
	Therefo	re, the berthing	ene	rgy has to b	e less tha	an 396 kNr	n and 792 kNm fo	or the central wo	rking plat	tform and b	erthing dolphin	s respectively
		-										
	3.0 Ve	ssel Berthin	g E	Energies								
	3.1 Go	olden Leader	-	-								
		Name	=	Golden Lea	der							
loa	aded displac	ement tonnage	=	16270	tonnes v	vhile berth	ing					
		length	=	124.0	m							
leng	gth between	perpendiculars	=	116.0	m							
		beam	=	20.0	m							
	dra	aught on arrival	=	8.8	m							
	mear	depth of water	=	11.1	m							
	b	erthing velocity	=	0.17	m/s	As	stated on Drawin	ig 5782DECP-D	031			
		berthing angle	=	7.0	degrees	As	stated on Drawin	ig 5782DECP-D	031			
Nor	mal Berthin	g Energy 7º, E _N	=	225.4	kNm							
Abnor	mal Berthin	g Energy 7º, E _A	=	394.5	kNm	Fa	ictor of 1.75 as pe	er PIANC				
	The abnorm	al berthing ener	gy f	or the Golde	n Leade	r for the de	sign conditions of	f the berth is 39	5 kNm wł	nich is less	than the desig	n limits
	Therefore, t	he design ship c	an I	perth at Bert	h 206 wit	h no addit	ional restrictions					
	3.2 GC	Diden Unity	_	Calder U	.							
loo	ded displac		_	30122	tonnos :	vhile borth	ing					
108	aca aishigo	length	_	155.0	m	THE DELLI						
lenc	th hetween	nernendiculare	-	145.0	m							
icity	,	heam	=	24.8	 m							
	dr	aught on arrival	=	10.2	m							
	mear	depth of water	=	11.1	m							
	b	erthing velocity	=	0.17	m/s	As	stated on Drawin	ig 5782DECP-D	031			
		berthing angle	=	7.0	degrees	As	stated on Drawin	ig 5782DECP-D	031			
		0 0			U							
Nor	mal Berthing	g Energy 7°, E _N	=	452.1	kNm							
Abnor	mal Berthin	g Energy 7º, E _A	=	791.1	kNm	Fa	ictor of 1.75 as pe	er PIANC				
	The abnorm	al berthing ener	gy f	or the Golde	n Unity f	or the desi	gn conditions of tl	ne berth is 791 k	Nm whic	h is less th	an the design I	imits
	Therefore, t	he design ship c	an I	perth at Bert	h 206 wit	h no addit	ional restrictions					

This Calculation represents the work of WorleyParsons performed to recognized engineering principles and practices appropriate for the terms of reference provided by WorleyParsons contractual Customer. This Calculation is confidential and prepared solely for the use of the Customer. The contents of this Calculation may not be disclosed to or relied upon by any party other than the Customer, and neither WorleyParsons, its subconsultants nor their respective employees assume any liability for any reason, including, but not limited to, negligence, to any other party for any information or representation herein.

Appendix

Custo	mer	Manil	dra Group				Pr	oj No		311010-00	294	
Projec	ct Title	Port k	Kembla Bulk I	Liquids	Terminal		Ca	alc No		00-MA-CAL-	0001	
Calcu	lation Tit	le Berth	ing Energies	Summa	ary		Ph	nase/C1	R			
Elec F	ile Locat	tion https:// 00294-	worleyparsons.s 00-MA-CAL-000	harepoin 1_Berthi	t.com/sites/F ng_Summary	PK Nav Asses y.xlsx	/Shared Documer	nts/11.0 E	Ingineering	/Berthing Energie	s/311010-	
										Appendix	Α	
Rev	Date	Ву	Checked	Rev	Date	Ву	Checked	Rev	Date	Ву	Checked	
Rev 0	19-04-22	G. Tooker	D. Aubourg									
					A	ppendix A						
			311(010-002	م 294-00-M	ppendix A A-CAL-000 2 Pages	2_Energy_Le	ader				
			311(010-00	A _l 294-00-M <i>l</i>	ppendix A A-CAL-000 2 Pages	2_Energy_Le	ader				
			3110	010-002	A _l 294-00-M <i>l</i>	ppendix A A-CAL-000 2 Pages	2_Energy_Le	ader				
			311(010-00	Aı 294-00-M <i>i</i>	ppendix A A-CAL-000 2 Pages	2_Energy_Le	ader				

This Calculation represents the work of WorleyParsons performed to recognized engineering principles and practices appropriate for the terms of reference provided by WorleyParsons contractual Customer. This Calculation is confidential and prepared solely for the use of the Customer. The contents of this Calculation may not be disclosed to or relied upon by any party other than the Customer, and neither WorleyParsons, its subconsultants nor their respective employees assume any liability for any reason, including, but not limited to, negligence, to any other party for any information or representation herein.

Method 1 - PIANC - Guidelines for the Design of Fenders Systems : 2002

(Recommended for use in AS4997-2005)

VESSEL DATA:

Vessel type / size	(from Data Input Sheet)	
	type =	

JI · (· · · · · · · · · · · · · · · · · · ·	1		
type	=	Ethano	ol
loaded displacement tonnage	=	16270	tonnes
length	=	124.00	m
length between perpendiculars	=	116.00	m
beam	=	20.00	m
full draught	=	8.77	m
mean depth of water	=	11.10	m
berthing velocity	=	0.17	m/s
berthing angle	=	7	degrees

BERTHING ENERGY:

	Ed	= $\frac{1}{2} M * v^2 * C_e * C_m * C_s * C_c$	Cl 4.2
where	Ed <u>M</u> V C _e C _m C _s C _c	 design energy under normal conditions to be absorbed by fender mass of design vessel (displacement in tonnes) at chosen confic approach velocity of the vessel perpendicular to berth (in m/s) (t eccentricity factor virtual mass factor softness factor berth configuration factor or cushion factor 	[∵] system (kNm) Jence level (usually 95%). use 50% confidence level).

COEFFICIENTS:

	C _m	: <u>Transverse approaches:</u>	
		For very large keel clearances i.e. 0.5D, $C_m = 1.5$	
		For small keel clearances ie 0.1D, $C_m = 1.8$	
		For keel clearances between 0.1D and 0.5 D linear interpolation is used.	
		Longitudinal approaches:	
		C _m = 1.1	
Keel Cleara	ance	= 2.33 m	
		= 0.27 D	
Therefore C	C _m	= Transverse approach	
		= 1.676	
	Ce	$= K^2 + R^2 \cos^2 \phi$	Cl 4.2.4
		K^2 + R^2	
where	K	= radius of gyration of the vessel	
		$= (0.19C_{b} + 0.11)L$	
and	Cb	= the block coefficient (usually between 0.5 -0.9)	
		diplacement/(length of vessel x beam x draught x density of water)	
		= 0.73	
Th f	K	- 20.00	
Inereiore	n.		
	φ	= angle between velocity vector and the line between the point of contact	and the centre of mass
	_		
	к	= distance of point of contact from the centre of mass in metres (measured	parallel to the wharf)
		= 1/4 Point Berthing	
		= 31.5 m	

ENERGY CALCULATION:

	=	225.42	kNm	(kJ)										
	=	0.5	*	16270	*	0.0289	*	0.57	*	1.68	*	1.00	*	1.0
Ed	=	0.5	*	M	*	v ²	*	C _e	*	C _m	*	Cs	*	C _c

For abnormal impact a factor should be applied to the design energy. The following tables provides general guidance on the selection of the factor

Type of Berth Impact	Vessel	Factor for Abnormal Impact Applied to Berthing Energy (Cab)
Tanker and Bulk Container	Largest Smallest	1.25 1.75
Container	Largest Smallest	1.5 2.0
General Cargo		1.75
Ro-Ro and Ferries		2.0 or higher
Tugs, Work Boats, etc.		2.0

Abnormal factor 1.75 = Therefore Abnormal Ed = 394.48 kNm (kJ)

NORMAL BERTHING ENERGY:

ABNORMAL BERTHING ENERGY:

225.4 kNm (kJ) E_{normal} =

394.5 Eabnormal =

kNm (kJ)

Appendix

Customer Manildra Group						Pr	oj No		311010-00)294	
Proje	ct Title	Port k	Port Kembla Bulk Liquids Terminal Calc No 00-MA-CAL-0001						-0001		
Calcu	lation Tit	ion Title Berthing Energies Summary Phase/CTR									
Elec File Location https://worleyparsons.sharepoint.com/sites/PK Nav Asses/Shared Documents/11.0 Engineering/Berthing Energies/311010- 00294-00-MA-CAL-0001_Berthing_Summary.xlsx								es/311010-			
										Appendix	(B
Rev	Date	Ву	Checked	Rev	Date	Ву	Checked	Rev	Date	Ву	Checked
Rev 0	19-04-22	G. Tooker	D. Aubourg								
	Rev 0 19-04-22 G. Tooker D. Aubourg Appendix B 311010-00294-00_MA_CAL_0003 Energy Unity										

2 Pages

This Calculation represents the work of WorleyParsons performed to recognized engineering principles and practices appropriate for the terms of reference provided by WorleyParsons contractual Customer. This Calculation is confidential and prepared solely for the use of the Customer. The contents of this Calculation may not be disclosed to or relied upon by any party other than the Customer, and neither WorleyParsons, its subconsultants nor their respective employees assume any liability for any reason, including, but not limited to, negligence, to any other party for any information or representation herein.

Method 1 - PIANC - Guidelines for the Design of Fenders Systems : 2002

(Recommended for use in AS4997-2005)

VESSEL DATA:

Vessel type / size	(from Data Inp	out Sheet)		
	type	=	Ethar	nol
loaded displacen	ent tonnade	-	30122	-

-71			
loaded displacement tonnage	=	30122	tonnes
length	=	155.00	m
length between perpendiculars	=	145.00	m
beam	=	24.80	m
full draught	=	10.22	m
mean depth of water	=	11.10	m
berthing velocity	=	0.17	m/s
berthing angle	=	7	degrees

BERTHING ENERGY:

	Ed	= $\frac{1}{2} M * v^2 * C_e * C_m * C_s * C_c$	Cl 4.2
where	Ed <u>M</u>	 design energy under normal conditions to be absorbed by fender mass of design vessel (displacement in tonnes) at chosen confide opproach velocity of the vessel perpendicular to berth (in m(a) (u 	system (kNm) ence level (usually 95%).
	v C _e	 approach velocity of the vessel perpendicular to berth (in m/s) (ull eccentricity factor 	se 50% confidence level).
	C _m C _s	 virtual mass factor softness factor 	
	C _c	 berth configuration factor or cushion factor 	

COEFFICIENTS:

	Cm	:	Transverse approaches:						
			For very large keel clearances i.e. 0.5D, $C_m = 1.5$						
			For small keel clearances ie 0.1D, $C_m = 1.8$						
			For keel clearances between 0.1D and 0.5 D linear interpolation is used.						
			Longitudinal approaches:						
			C _m = 1.1						
Keel Cleara	ance	=	0.88 m						
		=	0.09 D						
Therefore (Cm	=	Transverse approach						
		=	1.800						
	C _e	=	$K^2 + R^2 * \cos^2 \phi$ Cl 4.2.4						
			$-K^2 + R^2$						
where	К	=	radius of gyration of the vessel						
		=	(0.19C _b + 0.11)L						
and	Cb	=	the block coefficient (usually between 0.5 -0.9)						
		=	diplacement/(length of vessel x beam x draught x density of water)						
		=	0.75						
Therefore	K	=	39.06 m						
	ø	=	angle between velocity vector and the line between the point of contact and the centre of ma	ass					
		=	66.3						
	R	=	distance of point of contact from the centre of mass in metres (measured parallel to the wharf)						
		=	1/4 Point Berthing						
		=	39.4 m						

ENERGY CALCULATION:

	=	452.06	kNm	i (kJ)										
	=	0.5	*	30122	*	0.0289	*	0.58	*	1.80	*	1.00	*	1.0
Ed	=	0.5	*	M	*	v ²	*	C _e	*	C _m	*	Cs	*	C _c

For abnormal impact a factor should be applied to the design energy. The following tables provides general guidance on the selection of the factor

Type of Berth Impact	Vessel	Factor for Abnormal Impact Applied to Berthing Energy (Cab)
Tanker and Bulk Container	Largest Smallest	1.25 1.75
Container	Largest Smallest	1.5 2.0
General Cargo		1.75
Ro-Ro and Ferries		2.0 or higher
Tugs, Work Boats, etc.		2.0

Abnormal factor = 1.75 Therefore Abnormal Ed = 791.11 kNm (kJ)

NORMAL BERTHING ENERGY:

ABNORMAL BERTHING ENERGY:

E_{abnormal} = 79

791.1 kNm (kJ)