Appendix R Preliminary Site Investigation

-un

III

cert annut team annu

Report on Preliminary Site Investigation (Contamination)

Powerhouse Ultimo Renewal Powerhouse Ultimo, 500 Harris Street, Ultimo

Prepared for Department of Enterprise, Investment and Trade

Project 86874.02 May 2022

Douglas Partners Geotechnics | Environment | Groundwater

Document History

Document details					
Project No.	86874.02	Document No.	R.001.Rev2		
Document title	Report on Prelin	Report on Preliminary Site Investigation			
	Powerhouse Ultimo Renewal				
Site address	Powerhouse Ultimo, 500 Harris Street, Ultimo				
Report prepared for	Department of Enterprise, Investment and Trade				
File name	86874.02.R.001.Rev2				

Document status and review

Status	Prepared by	Reviewed by	Date issued	
Revision 0	David Walker	Paul Gorman	01 April 2022	
Revision 1	David Walker	Paul Gorman	27 April 2022	
Revision 2	David Walker	Paul Gorman	05 May 2022	

Distribution of copies

Distribution of	000100		
Status	Electronic	Paper	Issued to
Revision 0	0	-	Stephen Fabling, Department of Enterprise, Investment and Trade
Revision 1	0	-	Stephen Fabling, Department of Enterprise, Investment and Trade
Revision 2	0	-	Stephen Fabling, Department of Enterprise, Investment and Trade

The undersigned, on behalf of Douglas Partners Pty Ltd, confirm that this document and all attached drawings, logs and test results have been checked and reviewed for errors, omissions and inaccuracies.

	Signature	Date
Author	P. Walk	05 May 2022
Reviewer	P. Sorman	05 May 2022

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au 96 Hermitage Road West Ryde NSW 2114 PO Box 472 West Ryde NSW 1685 Phone (02) 9809 0666

Executive Summary

This report presents the results of a Preliminary Site Investigation (Contamination) undertaken for the Powerhouse Ultimo Renewal project at the Powerhouse Ultimo, 500 Harris Street, Ultimo. The purpose of the investigation was to assess the contamination status of the site with respect to proposed land uses.

This investigation included soil sampling from 11 designated sampling points (Boreholes 101 to 109 and Boreholes 201 and 202). Boreholes 104 and 105 were designated as groundwater monitoring wells and were subject to one round of groundwater sampling. The investigation is considered to be preliminary in nature. Drawing 1, Appendix A shows the borehole locations. Fill was observed to be up to 5 m in depth, comprise various soil types, and commonly containing anthropogenic materials.

Soil samples were selected for analysis for potential contaminants including eight metals; total recoverable hydrocarbons (TRH); TRH with silica gel clean-up; benzene, toluene, ethylbenzene and xylenes (BTEX), polycyclic aromatic hydrocarbons (PAH); organochlorine pesticides (OCP); organophosphorus pesticides (OPP); polychlorinated biphenyls (PCB), phenols; volatile organic compounds (VOC); and asbestos. Groundwater samples from each groundwater monitoring well were analysed for potential contaminants including eight metals, TRH, BTEX, PAH, OCP, OPP, PCB, total phenols, ammonia and VOC.

The majority of the analytes were either not detected or found at low concentrations in the soil and groundwater samples analysed. Elevated concentrations of PAH, TRH, metals and OCP (above adopted assessment criteria) were identified in fill samples. In addition, an elevated concentration of ammonia in groundwater (above the adopted assessment criteria) was encountered at one sample location.

Overall, results indicate that remediation or management of contamination will be required for site development although the extent of remediation / management will likely depend on the layout of future site uses as well as the results of additional investigation.

The following is recommended for the Stage 2 detailed development application:

• A detailed site investigation (including soil and groundwater sampling).

The results of the detailed site investigation would be used to determine remediation or management requirements to address site contamination. On this basis, it is considered that the site can be made suitable for the proposed Powerhouse Ultimo Renewal development.

Table of Contents

Page

1.	Introduction1			
2.	Scope	e of Wor	ks	1
3.	Site lo	dentifica	tion and Description	2
4.	Sumr	nary of F	Previous Contamination Report	3
	4.1	Region	al Geology, Hydrogeology and Soils	3
	4.2	Site His	story Information	5
		4.2.1	Historical Aerial Photographs	
		4.2.2	Historical Title Deeds	
		4.2.3	Records for Storage of Hazardous Chemicals	
		4.2.4 4.2.5	Council Records Previous Reports	
	4.3		alkover Observations	
	4.4	Potenti	al Sources of Contamination and Potential Contaminants	10
5.	Prelin	ninary C	onceptual Site Model	11
	5.1	Potenti	al Contamination Sources	11
	5.2	Potenti	al Receptors	11
	5.3	Potenti	al Pathways	12
	5.4	Prelimi	nary Conceptual Site Model	12
6.	Field	Work an	nd QA / QC	13
	6.1	Sample	e Locations and Rationale	13
	6.2	Soil Sa	mpling Procedures	13
	6.3	Ground	water Monitoring Well Installation and Development	14
	6.4	Ground	lwater Sampling	14
	6.5	Quality	Assurance and Quality Control	15
7.	Site A	ssessm	ent Criteria	15
	7.1	Soil		15
		7.1.1	Health Investigation Levels	16
		7.1.2	Health Screening Levels for Vapour Intrusion	17
		7.1.3	Ecological Investigation Levels	17
		7.1.4	Ecological Screening Levels	
		7.1.5	Management Limits	
		7.1.6	Asbestos in Soil	
	7.2		lwater	
		7.2.1	Default Guideline Values	20

		7.2.2 7.2.3	Guidelines for Recreational Water Health Screening Levels for Vapour Intrusion	
8.	Field	Work Re	esults	24
	8.1	Soil Ob	oservations and Field Results	24
	8.2	Ground	dwater Observations and Field Results	26
9.	Labor	atory Ar	nalytical Rationale and Results	27
	9.1	Analytic	cal Rationale	27
	9.2	Labora	tory Results	28
	9.3 Soil Contaminants			32
	9.4	Ground	dwater Contaminants	34
10.	Discu	ssion		35
11.	Conclusion			36
12.	Limitations			

Appendix A:	Drawing
Appendix B:	Borehole Logs, About this Report
Appendix C:	Groundwater Field Sheets
Appendix D:	QA / QC Report
Appendix E:	Laboratory Certificates & Chain of Custody
Appendix F:	ProUCL 5.1 Inputs & Outputs

Report on Preliminary Site Investigation (Contamination) Powerhouse Ultimo Renewal Powerhouse Ultimo, 500 Harris Street, Ultimo

1. Introduction

This report presents the results of a Preliminary Site Investigation (PSI) undertaken for the Powerhouse Ultimo Renewal project at the Powerhouse Ultimo, 500 Harris Street, Ultimo. This report was commissioned by the Department of Enterprise, Investment and Trade (ref: PROC 8007294 - 16) and was undertaken in accordance with Douglas Partners Pty Ltd (DP) proposal dated 23 February 2022 (ref: 86874.02.P.001.Rev1).

This report has been prepared to support a State Significant Development (SSD) Development Application (DA) for alterations and additions to Powerhouse Ultimo. It is understood that delivery of the Powerhouse Ultimo Renewal project will occur in stages, including a concept DA (Stage 1), an architectural design competition, and a detailed DA (Stage 2). Concept DA approval is being sought.

This report has been prepared to address item 18 of Planning Secretary's Environmental Assessment Requirements for the Powerhouse Ultimo Renewal project (application number SSD-32927319, issued on 18 January 2022), which states that *In accordance with SEPP 55, assess and quantify any soil and groundwater contamination and demonstrate that the site is suitable (or will be suitable, after remediation) for the development.* This report is the PSI listed as "documentation" under Condition 18.

The purpose of the PSI was to assess the contamination status of the site with respect to proposed land uses from the available soil and groundwater sampling (on the basis that untested parts of the site will be investigated for the Stage 2 detailed DA). The investigation was undertaken in conjunction with a geotechnical investigation by DP (ref: 86874.03.R.001.Rev3).

2. Scope of Works

The scope of works for the investigation was as follows:

- Review DP, Desktop Study for Contamination, Powerhouse Museum Study of Alternate Uses, 500 Harris Street, Ultimo, Prepared for CBRE Pty Ltd, September 2016 (ref: 85601.00.R.002.Rev0) [DP, 2016];
- Review Powerhouse Ultimo plans and Dial-Before-You-Dig plans to determine possible sampling locations;
- Set out a total of 11 borehole locations and scan each location for buried services using electromagnetic scanners;
- Collect soil samples at regular depths from each borehole drilled using a drilling rig and / or hand tools;
- Install groundwater monitoring wells at two boreholes;

- Screen all samples for volatile chemicals using a photoionisation detector (PID);
- Develop each groundwater monitoring well;
- Collect groundwater samples from each monitoring well using low flow techniques;
- Analysis of selected soil samples at a NATA accredited laboratory for various combinations of the following:
 - o Metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc);
 - o Total recoverable hydrocarbons (TRH);
 - o TRH with silica gel clean-up;
 - o Benzene, toluene, ethylbenzene and xylenes (BTEX);
 - o Polycyclic aromatic hydrocarbons (PAH);
 - o Organochlorine pesticides (OCP);
 - o Organophosphorus pesticides (OPP);
 - o Polychlorinated biphenyls (PCB);
 - o Phenols (total);
 - o Volatile organic compounds (VOC);
 - o Asbestos (40 g soil sample);
 - o pH; and
 - o Cation exchange capacity (CEC).
- Analysis of two groundwater samples at a NATA accredited laboratory for metals, TRH, BTEX, PAH, OCP, OPP, PCB, total phenols, ammonia, VOC and hardness;
- Analysis of QA / QC samples including trip spikes, trip blanks and inter-laboratory replicate samples and intra-laboratory samples; and
- Preparation of this report.

3. Site Identification and Description

The site is defined by the following land parcels that are owned by The Trustees of the Museum of Applied Arts and Sciences:

- Lot 1, Deposited Plan 770031;
- Lot 1, Deposited Plan 781732;
- Lots 1 and 3, Deposited Plan 631345;
- Lot 3, Deposited Plan 216854; and
- Lot 37, Deposited Plan 822345.

Powerhouse Ultimo has a street address of 500 Harris Street, Ultimo. It is noted, however, that Lot 1 in Deposited Plan 770031 (the former post office building) has street address 494 Harris Street, Ultimo according to SIX Maps (NSW Government Spatial Services). Drawing 1, Appendix A shows the site location and approximate site boundary.

The site covers approximately 2.45 ha and adjoins William Henry Street (and Lot 1 Deposited Plan 801428) to the north; Harris Street, Macarthur Street and Omnibus Lane to the west, and Mary Ann Street to the south. The surrounding area is used for a mix of residential and commercial purposes. A light rail line and pedestrian access adjoins the eastern site boundary. The lan Thorpe Aquatic Centre is present on the northern side of William Henry Street.

The Powerhouse Ultimo site comprises the following:

- The Harwood Building which is a large standalone structure at the south of the site that was formerly the Ultimo Tram Depot. The building has a basement, ground level and mezzanine. The basement is mainly used for storage of museum items. The building also has workshops, a laboratory and associated offices and amenities;
- Interlinked buildings at the north which include the Boiler House, Engine House, Turbine House, Switch House, Wran Building and North Annex. The buildings have seven levels (according to drawings provided by the client) and are used for museum exhibits and associated offices, education facilities and amenities. A courtyard is present at the north-west corner of the site (to the north of the Boiler House);
- The former Post Office which is a standalone building on the north-west corner of the site. A courtyard is present between the former Post Office and the Wran Building;
- The Grace Brothers Courtyard and Kiosk (café) at the east of the site;
- A gatehouse and vehicular access from Macarthur Street; and
- Parking areas located to the east and south of the Harwood Building.

It is understood that no substantive works or changes in use are proposed to the Harwood building located between Macarthur Street and Mary Ann Street.

4. Summary of Previous Contamination Report

DP (2016) presents a desktop study for contamination which was undertaken to inform a study of future alternative uses for the site. Findings and identified potential sources of contamination presented in DP (2016) are summarised in the following subsections.

4.1 Regional Geology, Hydrogeology and Soils

The Sydney 1:100 000 Geology Sheet indicates that the site is underlain by Hawkesbury Sandstone to the west and stream alluvial and estuarine sediment to the east as shown on Figure 1. Hawkesbury sandstone comprises medium to course grained quartz sandstone, very minor shale and laminite lenses. Stream alluvial and estuarine sediment comprises silty to peaty quartz sand, silt, and clay with ferruginous and humic cementation in places and common shell layers.

Figure 1: Geology Sheet

According to the Sydney 1:100 000 Soils Landscape Sheet, the site is located within the Gymea soil landscape where natural soils are formed from the erosion of rock.

The land surrounding the site has gentle slopes down to the east and north-east. Groundwater flow at the site is anticipated to be towards the north-east, in the general direction of Darling Harbour. Stormwater at the site is expected to enter the local stormwater system.

A search of the NSW Office of Water groundwater database revealed that there are no registered groundwater bores within 400 m of the site.

Based on published 1:25 000 Acid Sulfate Soil Risk mapping data (1994-1998), the site is an area of no known occurrences of acid sulfate soils. As shown on Figure 2, Disturbed Terrain is located approximately 40 m to the east of the site where the depth to acid sulfate soils is unknown and soil investigations are required to assess for acid sulfate soils.

Figure 2: Acid Sulfate Soil Risk Mapping

According to the Sydney Local Environment Plan 2012, Acid Sulfate Soils Map, the site is located in a 'Class 5' area. Acid sulfate soils are not typically found in Class 5 areas but are within 500 m of lands associated with a risk of acid sulfate soils (Class 1, 2, 3 or 4 areas). Works in a Class 5 area that are likely to lower the water table below 1 m AHD on adjacent Class 1, 2, 3 or 4 land will trigger the requirement for assessment and may require management.

4.2 Site History Information

4.2.1 Historical Aerial Photographs

Aerial photographs from 1930, 1943, 1955, 1970, 1982, 1991 and 2014 were reviewed to determine possible previous uses of the site and surrounding land.

The 1930 aerial photograph showed the power station at the northern part of the site (including the Boiler House, Engine House, Turbine House and Switch House) with two stacks at the southern part of the Boiler House and a separate stack at the north. The Post Office building was present at the westernmost corner of the site. The tram depot building (with a saw-tooth roof) was present at the south of the site. An industrial / commercial building was present to the south of the Post Office building. Some of the eastern part of the site (adjoining Harris Street) and the southern end of the site appeared to have been undeveloped.

The 1943 aerial photograph showed that a building appeared to have been constructed to the south of the Boiler House since 1930. A commercial / industrial building had also been constructed at the eastern part of the site (at the corner of Harris Street and Macarthur Street). The land to the north of this building appears to have been used for a yard. A small structure was also present at the south-eastern corner of the site.

The 1970 aerial photograph showed that commercial / industrial buildings had been constructed at the western part of the site since 1955 (in the area that was previously used as a yard). The stack at the north of the site appeared to have been demolished for the realignment of the roadway to the north.

The 1991 aerial photograph showed that the site had been subject to significant change since 1982. New roofing was present on the Boiler House, Engine House, Turbine House and Switch House. The building to the south of the Boiler House had been demolished and replaced by a courtyard, walkways and small structures. Buildings at the eastern part of the site had been replaced by the Wran Building and the Forecourt.

The 2014 aerial photograph showed that the Kiosk had been constructed at the eastern part of the site since 1994.

4.2.2 Historical Title Deeds

A historical title deed search was conducted in order to provide an indication of possible previous site uses.

Between 1898 and 1964, Lot 3 Deposited Plan 216854 was owned by government entities (Minister for Public Works, Commissioner for Government Transport and Commissioner for Government Transport) presumably associated with the tramway and tram depot. The Trustees of the Museum of Applied Arts and Sciences were the registered owners from 1964.

Between 1924 and 1978, Lot 1 Deposited Plan 781732 was owned by commercial or industrial companies including Sydney Glass Company Limited, Hermann Haege Pty Limited, Carmichael Paper Agencies Pty Limited. The Trustees of the Museum of Applied Arts and Sciences were the registered owners from 1988.

Between 1923 and 1938, the majority of Lot 3 Deposited Plan 631345 was owned by Maurice Henry Newstead (Merchant). The majority of this Lot was then owned by Maize Products Proprietary Limited to 1967 and then Manassen Investments Pty Limited to 1980. The Trustees of the Museum of Applied Arts and Sciences were the registered owners from 1988.

Sydney Glass Company Limited owned the south-western part of Lot 1 Deposited Plan 631345 between 1924 and 1948, before being owned by Commissioner for Railways 1948 to 1983. From circa 1900 to 1983, the majority of Lot 1 Deposited Plan 631345 was owned by government entities (Minister for Public Works, Chief Commissioner for Railways and Tramways, Electricity Commission of New South Wales, Commissioner for Railways) presumably associated with power generation and the tramway. The Trustees of the Museum of Applied Arts and Sciences were the registered owners from 1988.

4.2.3 Records for Storage of Hazardous Chemicals

A search of the SafeWork NSW database for the storage of hazardous chemicals at the site was requested. The search returned documents for record number 35/034632.

According to a licence amendment application to keep dangerous goods at 500 Harris Street, Ultimo, dated 20 June 2002, there were four dangerous goods storage depots including a roofed store (Depot 1), and three flammable liquids cabinets (Depots 2 to 4). A list of 14 other storage areas (identified as A, B, C, D, E, F, H, I, J, L, M, O, P and Q) was also provided.

According to the plan attached to the application, the roofed store (Depot 1) was located at the eastern side of the Harwood Building and was used to store petroleum spirit (typcally100 L), paint or paint thinners (typically 100 L), kerosene (typically 200 L), turpentine substitute (typically 160 L), toluene (typically 25 L), ethanol (typically 20 L) and nitrocellulose solution (typically 200 L). Depot 2 was located at the western part of the Boiler House basement and this cabinet was used to store paint (typically 160 L) and kerosene (typically 60 L). Depot 3 and 4 were located at the northern part of the Harwood Building and these cabinets were used to store paint (typically 160 L at each Depot), kerosene (typically 60 L at Depot 3) and turpentine substitute (typically 60 L at Depot 4).

Other storage areas identified at the Harwood Building (according to the plan attached to the application) were listed as:

- Flammable liquid cabinets (A, B, C, E, F, I);
- Cabinet (H);
- Roofed store (D);
- Gas cylinder store (J, L, M); and
- Roofed store (O).

The roofed store (O) was shown to be next to Depot 1 and was used for the storage of 7500 L of combustible oil.

Other storage areas identified at the Boiler House basement were listed as:

- Flammable liquid cabinet (P); and
- Roofed store (Q).

4.2.4 Council Records

Selected documents and plans relating to 500 Harris Street, Ultimo were retrieved by Council for review. Relevant site history information obtained from the review was summarised as follows:

- According to a document stamped May 1980, it was noted that for 64 years, the Power House had generated electricity for the tramway and provided power for domestic and industrial purposes. The Power House had been vacant since 1963;
- An Interim Development Application, dated May 1981, was for major alterations and additions to the Ultimo Tram Depot and Power House Building;

- A Development Application, dated April 1987, was for major alterations and additions to the Ultimo Tram Depot and Power House Building; and
- A Draft Environmental Impact Statement (associated with the above-listed Development Application) for the northern part of the site concluded that no significant negative impacts on the local environment were associated with the proposed Power House Museum. The Darling Harbour Goods Yard and Darling Harbour Goods Railway were noted to be present at neighbouring land to the east of the site at that time.

4.2.5 **Previous Reports**

According to Government Architect's Office (NSW), *Powerhouse: a study of the relocation of the Museum of Applied Arts and Sciences, in a development of the Ultimo Power Station and the Ultimo Tramway Depot, Sydney,* 1978:

- Site drilling was carried out to establish the nature of the foundation material and the level of hard stratum. Sandstone was located at an average of 4 m below the ground level on the region of the Boiler House, Turbine Hall and Coal Store Bunker. On the Tram Depot site, an investigation carried out in 1977 indicated hard stratum at an average 'level' of 3 m;
- The Ultimo Power Station was the original source of electricity for the Sydney tramway system. The original building dates from 1899, with later additions in 1916. A major reconstruction begun in 1927 and was completed in 1931. The station ceased operation in circa 1960 and was damaged during subsequent demolition, salvage operations, decay and vandalism. The power station consisted primarily of two adjacent halls, each approximately 85 m long by 25 m wide. The western hall (Turbine Hall) contained the engine room and turbine room. The eastern hall was originally the Boilerhouse and had one major floor positioned level with the old railway track diversion which ran into the building from the Darling Harbour Goods Yard lines. Towards the southern end of the Boilerhouse were two 5 m diameter masonry stacks which were then recently demolished to approximately roof level. Running down the centre of the Boilerhouse for almost the entire length of the hall were large steel coalhoppers. The main floor level was penetrated in a number of areas to a deep basement level below. An office annex was located at the northern end of the western hall. A switchhouse, approximately 60 m long by 20 m wide, was located at the southern end of the western wall;
- Between the power station and Harris Street a number of one and two storey commercial buildings, a petrol service station and the Ultimo Post Office were located;
- The Ultimo Tram Depot was a large single-level building for tramcar storage, constructed in 1910. The Small brick amenity areas were also present at the Darling Harbour railway boundary with a two-storey brick building on the Mary Ann Street frontage; and
- At 496-502 Harris Street (presumably the western part of the site, now part of 500 Harris Street), there was an office and warehouse building of three levels, including first floor offices, a ground floor warehouse area and basement. Adjoining this area were various older-style warehouses and workshops. The lease to Ampol at the southern section of the property was to expire in February 1979.

According to Architectural Projects Pty Ltd, Conservation Management Plan for The Powerhouse Museum, 2002:

- The location of the Powerhouse near the head of Darling Harbour gave it an adequate supply of salt water for condensers and proximity to the goods yards for coal supply and ash disposal;
- In 1980, the NSW government decided to develop the Power House and Tram Depot into the Museum. The Stage 1 work for the project saw the rebuilding and refurbishment of the Tram Depot. The Harwood building became a purpose-built museum structure. Photographic evidence indicated that nothing remained of the lines or tramway trenches at the Harwood building, although it was noted that a tiny section of track could be viewed from relatively inaccessible service areas;
- Stage 2 works included refurbishment of the power station and construction of The Wran Building (The Wran Building) which was opened in 1988; and
- The former Ultimo Post Office, built by 1901 was adapted to house a child care centre (at the time of preparing the conservation management plan).

Hibbs & Associates Pty Ltd, *Powerhouse Museum Asbestos Survey*, September 2014, provided a register and qualitative risk assessment of building materials containing asbestos. The survey did not include an assessment of potential contamination of soil from asbestos. It is noted that no friable asbestos was encountered during the inspection and no asbestos material (bonded asbestos) required short to medium term remedial works.

4.3 Site Walkover Observations

The site was subject to a walkover by a DP Environmental Engineer on 16 August 2016. The walkover was limited to external areas and ground and basement level areas that were shown by museum maintenance staff at that time. Not all ground and basement level areas were accessed. Noteworthy observations are listed as follows:

- The remnant stack at the northern end of the site could be observed from Pier Street (above). Litter and (probably) soil were observed to partially fill the remnant stack;
- The pedestrian access way at the eastern site boundary had been improved and a remnant railway track was observed to align with the Kiosk;
- A sandstone cutting was observed at the exterior to a fire passage at the western side of Level 3 of the Wran Building;
- Brick structures, similar in appearance to fireplaces, were observed at lowest part of the north-east corner of the Boiler House. These may have been used for the collection of ash from chutes above. The base of these structures appeared to be concrete;
- Two stacks were present at the southern end of the Boiler House. The inside of the easternmost stack appeared to have a concrete base. The inside of the other stack was not observed;
- The basement (Level 1) of the former power station housed boilers, pumps and a series of plant rooms. This area appeared to be well kept with concrete floors generally absent of staining. Chemicals were kept in cabinets. Water was observed in open drains. A room was used for the storage of chlorine and was next to the seawater room which had a grid mesh floor;
- Soil and rubble were observed at the southern end of the Harwood building basement. A possible remnant tram track was also observed amongst the soil and rubble;

- Glass pipes (amongst other pipes) were observed at the perimeter of the Harwood building basement, presumably to drain wastewater (potentially containing corrosives) from the laboratory (to a location unknown to the maintenance worker at the time); and
- Roots from trees at the courtyard next to the Kiosk appeared to be causing damage to the courtyard surface. It was understood that a concrete slab exists beneath the soil in which the trees were planted.

It was understood at the time of the inspection that there are no fuel storage tanks at the site.

4.4 Potential Sources of Contamination and Potential Contaminants

From a review of site information and the site walkover, identified potential sources of contamination and potential contaminants were summarised as in Table 1.

Potential Source of Contamination	Potential Contaminants	Comments
Coal ash from the previous power station operation.	Ash can contain metals and PAH.	Most of the ash is likely to have been removed and disposed off-site during the operation of the power station, however, some ash may have been used as filling or been placed (stockpiled) on surface soils during the power station's operation.
Former tram depot and railway use.	Total petroleum hydrocarbons (TPH), PAH, metals, phenolics (creosote), nitrates, ammonia and asbestos.	Asbestos may have been used in brake pads.
(Former) Switch House and other areas that housed electrical equipment.	PCB.	PCB are associated with transformers and capacitors.
Previous demolition of buildings.	Hazardous building materials including asbestos, lead and PCB.	Significant demolition occurred prior to the development of the museum, particularly at the western part of the site. Surface soils may have been impacted during demolition.
Imported contaminated filling to form the site.	Various possible such as TPH, PAH, metals, phenols, pesticides, asbestos and PCB.	The sandstone cutting and existing basement constructions indicated significant filling across much of the site is unlikely. Filling was considered more likely to be present at eastern parts of the site (where sandstone cuttings were not observed).

Table 1: Potential Sources of Contamination and Potential Contamina	nts
---	-----

Potential Source of Contamination	Potential Contaminants	Comments
Previous petrol service station	TPH, VOC, lead, PAH and phenols.	The exact location of previous service station (present in 1978) is not known, but was adjacent Harris Street, to the south of the Post Office. A property at this part of the site was leased to Ampol. The lease was probably terminated in 1979. Potential TPH and VOC contamination may have dispersed since the service station ceased operation.
Previous general industrial use and workshops	Various possible such as TPH, VOC and metals.	Apart from the previous petrol service station, the western part of the site was previously used for (unknown) industrial purposes and workshops.
Chemicals including oils used by the museum (particularly at the Harwood Building which has workshops and a laboratory)	VOC and TPH	Contamination from chemicals and oils used in current operations is considered unlikely given that the museum appears to be well kept and maintained.

5. Preliminary Conceptual Site Model

A Conceptual Site Model (CSM) is a representation of site-related information regarding contamination sources, receptors and exposure pathways between those sources and receptors. The CSM provides the framework for identifying how the site became contaminated and how potential receptors may be exposed to contamination either in the present or the future i.e., it enables an assessment of the potential source - pathway - receptor linkages.

5.1 Potential Contamination Sources

Potential contamination sources at the site are listed in Section 4.4. No obvious potential off-site sources of contamination were identified in DP (2016).

5.2 Potential Receptors

Given that the proposed development layout is yet to be confirmed, potential future receptors to contamination cannot be clearly established, however, in general, potential receptors of contamination for the proposed development may include:

- (R1) Future site users (guests, workers and visitors);
- (R2) Construction workers (for the proposed development);
- (R3) Future maintenance workers (post-construction);

- (R4) Adjacent land users (including residents, pedestrians, workers and visitors);
- (R5) Groundwater;
- (R6) Surface water body (Darling Harbour);
- (R7) Terrestrial ecosystem; and
- (R8) In ground building structures.

5.3 Potential Pathways

Potential pathways for contamination to impact receptors include:

- (P1) Ingestion and dermal contact;
- (P2) Inhalation of dust;
- (P3) Inhalation of vapours;
- (P4) Surface water runoff (particularly during construction);
- (P5) Leaching of contaminants and vertical migration into groundwater;
- (P6) Lateral migration of groundwater;
- (P7) Contact of contaminated ground with terrestrial organism; and
- (P8) Contact of contaminated ground within ground structures.

5.4 Preliminary Conceptual Site Model

A 'source - pathway - receptor' approach has been used to assess the potential risks of harm being caused to human or environmental receptors from contamination sources via exposure pathways (complete pathways). The possible pathways between the above listed sources and receptors are provided in Table 2.

Source	Transport Pathway	Receptor
	P1 - Ingestion and dermal contact	R1 - Future site users
	P2 - Inhalation of dust	R2 - Construction workers
	P3 - Inhalation of vapours	R3 - Future maintenance workers
Contaminated	P2 - Inhalation of dust	
ground from	P3 - Inhalation of vapours	R4 - Adjacent site users
previous and current site use (see Table 1,	P5 - Leaching of contaminants and vertical migration into groundwater	R5 - Groundwater
Section 4.4 for list	P4 - Surface water runoff	
of potential sources)	P6 - Lateral migration of groundwater	R6 - Surface water body
,	P7 - Contact of contaminated ground with terrestrial organisms	R7 - Terrestrial ecosystem
	P8 - Contact of contaminated ground within ground structures	R8 - In ground building structures

Table 2: Preliminary Conceptual Site Model

6. Field Work and QA / QC

6.1 Sample Locations and Rationale

The site covers approximately 2.45 ha. According to NSW EPA, *Sampling Design Guidelines*, 1995, a minimum of 35 systematic sampling points is recommended to characterise a site of this size. This investigation included 11 designated sampling points and, therefore, this investigation is considered to be preliminary in nature. Positioning of boreholes was limited by existing structures and site operations (i.e., for the museum). Boreholes 101 to 106, 201 and 202 were positioned for both geotechnical and contamination assessment purposes to provide coverage of external areas that were accessible to a drilling rig. To provide some further site coverage, Borehole 107 was positioned at the external area at the northern corner of the site (which was not accessible to a drilling rig) and Boreholes 108 and 109 were positioned in the basement of the Harwood Building.

Boreholes 104 and 105 were designated as groundwater monitoring wells as these were drilled to depths at which groundwater was likely to be encountered on the lower side of the site.

6.2 Soil Sampling Procedures

Soil sampling was undertaken on 22, 23 and 28 October 2019 (Boreholes 101 to 109); and 15 and 26 November 2019 (Boreholes 201 and 202).

Boreholes 101 to 106 and 202 were drilled using Bobcat-mounted drill rig and Borehole 201 was drilled using a truck-mounted drill rig. Soil samples of the fill were collected from the solid flight auger at regular depth intervals (at least one soil sample per metre depth). At least one sample of natural soil was collected from the solid flight auger where natural soil was encountered.

Boreholes 107, 108 and 109 were drilled using hand tools. Soil samples of fill were collected from the hand auger where fill was encountered.

All sampling data was recorded on DP's borehole logs provided in Appendix B which also has notes about this report. The general sampling procedure adopted for the collection of soil samples for chemical analysis was:

- Collect soil samples directly from the solid flight auger or hand auger using disposable gloves;
- Transfer samples into laboratory-prepared glass jars with Teflon-lined lids, filled to minimise the headspace within the sample jar, and capping immediately to minimise the loss of volatiles;
- Label sample containers with individual and unique identification, including project number, sample location and sample depth; and
- Place the glass jars into a cooled, insulated and sealed container for transport to the laboratory.

Replicate samples were collected in zip-lock bags for screening of VOC using a calibrated PID and asbestos analysis. Samples were also collected in zip-lock bags for asbestos analysis.

6.3 Groundwater Monitoring Well Installation and Development

Groundwater monitoring well construction details are provided on the borehole logs in Appendix B.

The wells were constructed of 50 mm diameter acid washed, Class 18, PVC casing and machine slotted well screen intervals. Joints were screw threaded, thereby avoiding the use of glues and solvents which may contaminate the groundwater. The wells were completed with a gravel pack extending above the well screen and then a bentonite plug. A Gatic cover and concrete was used at the ground surface to complete the installation.

Each groundwater monitoring well was developed (on 13 November 2019) by using a submersible pump. Prior to groundwater well development, an interface dip-meter was used to measure the groundwater level and check for light non-aqueous phase liquids (LNAPL).

6.4 Groundwater Sampling

Prior to groundwater sample collection, an interface dip-meter was used to measure the groundwater level and check for light non-aqueous phase liquids (LNAPL).

Groundwater sampling at Borehole 104 and 105 was undertaken (on 15 November 2019) using a lowflow geo-pump (peristaltic pump) and disposable tubing, following stabilisation (or near stabilisation) of field parameters. Field parameters were obtained using a calibrated water quality meter with probes placed inside a flow-through cell. The field parameters included temperature, dissolved oxygen (DO), electrical conductivity (EC), pH, oxidation reduction potential (redox) and turbidity. Disposable sampling

equipment (tubing) was used between collection of samples to avoid the need for decontamination. Samples were collected from the upper part of the water column in each well.

Samples were collected in laboratory prepared bottles and vials. The groundwater samples collected for metals testing were filtered in the field through a 45 µm membrane filter into nitric acid preserved bottles. Sample containers were labelled with individual and unique identification, including project number and sample number. Samples were placed in cooled, insulated and sealed containers for transport to the laboratory.

Groundwater field sheets were used to record groundwater depths, sample depths, field parameters, observations and samples collected. The groundwater field sheets are provided in Appendix C.

6.5 Quality Assurance and Quality Control

The field QC procedures for sampling were undertaken as prescribed in DP's *Field Procedures Manual* and included the use of trip spikes and trip blanks as well as the collection of blind replicate samples. The results of field QA / QC procedures as well as a discussion of data quality objectives (DQO) and data quality indicators (DQI) for the assessment are provided in Appendix D.

The analytical laboratories, accredited by NATA, are required to conduct in-house QA / QC procedures. These are normally incorporated into every analytical run and include reagent blanks, spike recovery, surrogate recovery and duplicate samples. These results are included in the laboratory certificates in Appendix E and results are discussed in Appendix D.

7. Site Assessment Criteria

7.1 Soil

The site assessment criteria applied to soils are informed by the preliminary CSM which identified receptors to potential contamination at the site. Analytical results were assessed (as a Tier 1 assessment) against the site assessment criteria comprising the investigation levels, screening levels and management limits of Schedule B1 of the National Environment Protection Council, National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended 2013 (NEPC, 2013). The investigation levels, screening levels and management limits are applicable to generic land use settings and include consideration of, where relevant, the soil type and the depth of contamination. The investigation levels, screening levels and management limits are not intended to be used as clean up levels. Rather, they establish concentrations above which further appropriate investigation (e.g., Tier 2 assessment) should be undertaken. They are intentionally conservative and are based on a reasonable worst-case scenario.

The site assessment criteria for soil adopted for this investigation are listed in the following sub-sections.

Page 16 of 37

7.1.1 Health Investigation Levels

Health investigation levels (HIL) are applicable to assessing health risk arising via all relevant pathways of exposure for a range of metals and organic substances. The HIL are generic to all soil types and apply generally to a depth of 3 m below the surface. From a contamination assessment perspective, 'information and education facilities' are considered to be commercial usage. However, as the project is at the conceptual stage, for the purpose of this assessment we have assumed a potential partial residential type land use (such as accommodation) incorporated into the Powerhouse Ultimo Renewal project. Therefore, HIL B (applicable to a residential land use scenario with minimal opportunities for soil access) and HIL D (applicable to a commercial or industrial land use scenario) have been adopted as site assessment criteria. The adopted HIL are shown in Table 3.

Contaminant		HIL B Residential (mg/kg)	HIL D Commercial/Industrial (mg/kg)
	Arsenic	500	3000
	Cadmium	150	900
	Chromium (VI)	500	3600
	Copper	30 000	240 000
Metals	Lead	1200	1 500
	Mercury (inorganic)	120	80
	Nickel	1200	6 000
	Zinc	60 000	400 000
PAH	Benzo(a)pyrene TEQ ¹	4	40
РАН	Total PAH	400	4000
	Pentachlorophenol	130	660
Phenol	Phenol	45 000	240 000
	Cresols	4 700	25 000
	Aldrin + Dieldrin	10	45
	Chlordane	90	530
	DDT+DDE+DDD	600	3600
005	Endosulfan	400	2000
OCP	Endrin	20	100
	Heptachlor	10	50
	НСВ	15	80
	Methoxychlor	500	2500
OPP	Chlorpyrifos	340	2000
Other Organics	PCB ²	1	7

Table 3: Health Investigation Levels

Notes: ¹ sum of carcinogenic PAH

² non-dioxin-like PCB only

7.1.2 Health Screening Levels for Vapour Intrusion

Health screening levels (HSL) for vapour intrusion are applicable to selected petroleum compounds and fractions to assess the risk to human health via the inhalation pathway. HSL have been developed for different land uses, soil types and depths to contamination.

The proposed ground floor or basement use of the proposed development is likely to be for nonresidential purposes, and, therefore, HSL D (for a commercial or industrial land use scenario) have been adopted as site assessment criteria. Given that ground-level residential use has not been ruled out at this stage, HSL B (for a residential land use scenario with minimal opportunities for soil access) have also been adopted as site assessment criteria (for comparative purposes). The adopted HSL shown in Table 4 are for contamination at a depth of 0 m to <1 m, and are the most conservative for sand, silt or clay soils given that various soil types are present at the site. Less conservative HSL may be appropriate depending on the contamination depth and actual soil type.

	Contaminant	HSL B Residential (mg/kg)	HSL D Commercial /Industrial (mg/kg)
PAH	Naphthalene	3	NL
три	TPH C6-C10 less BTEX	40	250
TRH	TPH >C10-C16 less Naphthalene	110	NL
	Benzene	0.5	3
DTEV	Toluene	160	NL
BTEX	Ethylbenzene	55	NL
	Xylenes	40	230

Table 4: Health Screening Levels for Vapour Intrusion

Note: The soil saturation concentration is defined as the soil concentration at which the porewater phase cannot dissolve any more of an individual chemical. The soil vapour that is in equilibrium with the porewater will be at its maximum. If the derived soil HSL exceeds Csat, a soil vapour source concentration for a petroleum mixture could not exceed a level that would result in the maximum allowable vapour risk for the given scenario. For these scenarios, no HSL is presented for these chemicals and the HSL is shown as 'not limiting' or 'NL'.

7.1.3 Ecological Investigation Levels

Ecological investigation levels (EIL) have been derived for selected metals and organic compounds and are applicable for assessing risk to terrestrial ecosystems (NEPC, 2013). EIL depend on specific soil physiochemical properties and land use scenarios and generally apply to the top 2 m of soil, which corresponds to the root zone and habitation zone of many species. The EIL is determined for a contaminant based on the sum of the ambient background concentration (ABC) and an added contaminant limit (ACL). The ABC of a contaminant is the soil concentration in a specific locality that is the sum of naturally occurring background levels and the contaminants levels that have been introduced from diffuse or non-point sources (e.g., motor vehicle emissions). The ACL is the added concentration (above the ABC) of a contaminant above which further appropriate investigation and evaluation of the impact on ecological values is required.

The EIL is calculated using the following formula:

EIL = ABC + ACL,

The ABC is determined through direct measurement at an appropriate reference site or through the use of methods defined by Olszowy et al, *Trace element concentrations in soils from rural and urban areas of Australia*, Contaminated Sites monograph no. 4, South Australian Health Commission, Adelaide, Australia 1995 (Olszowy, 1995) or Hamon et al, *Geochemical indices allow estimation of heavy metal background concentrations in soils*, Global Biogeochemical Cycles, vol. 18, GB1014, (Hamon, 2004). ACL is based on soil characteristics.

An *Interactive (Excel) Calculation Spreadsheet* may be used for calculating site-specific EIL and has been provided in the ASC NEPM Toolbox available on the NEPC website.

The adopted EIL, derived from the Interactive (Excel) Calculation Spreadsheet are shown in Table 5.

The following input data and assumptions have been used to determine the adopted EIL:

- Given that all elements of the proposed development are yet to be confirmed, adopted EIL for urban residential and commercial / industrial land use scenarios is have been adopted;
- Given the site history, the contamination is considered as "aged" (>2 years);
- NSW is the state;
- The traffic volume is high;
- A pH of 9 has been use as an input value. This is the average of the three pH values obtained from testing of fill (see laboratory certificates 229301 and 229472, Appendix E, for test results);
- A CEC of 22 meq/100g has been adopted. This is the rounded average of the three CEC values obtained from testing of fill (see laboratory certificates 229301 and 229472, Appendix E, for test results);
- An organic carbon content of 1% has been adopted as a default value in the absence of site-specific data;
- An ABC of 160 mg/kg for lead has been adopted from Table 67 of Schedule B5c of NEPC (2013); and
- A clay content of 1% has been used as a conservative value in the absence of site-specific test results.

С	contaminant	EIL Urban Residential (mg/kg)	EIL Commercial / Industrial (mg/kg)
Metals	Arsenic	100	160
	Copper	240	340
	Nickel	290	490
	Chromium III	200	320
	Lead	1300	2000
	Zinc	870	1300
PAH	Naphthalene	170	370
OCP	DDT	180	640

Table 5: Ecological Investigation Levels

It is noted that EIL do not apply at areas of the site that will have limited ecological value under the proposed development (such as at basements, building footprints, etc.).

7.1.4 Ecological Screening Levels

Ecological screening levels (ESL) are used to assess the risk of selected hydrocarbon compounds to terrestrial ecosystems. ESL generally apply to the top 2 m of the soil profile as for EIL. ESL have been derived in NEPC (2013) for TPH fractions as well as BTEX and benzo(a)pyrene. Given that all elements of the proposed development are yet to be confirmed, adopted ESL for urban residential and commercial / industrial land use scenarios is have been adopted. The ESL shown in Table 6 are the more conservative for coarse and fine texture soils given that various soil types are present at the site.

c	Contaminant	ESL – Urban Residential (mg/kg)	ESL – Commercial / Industrial (mg/kg)
	C ₆ -C ₁₀ (less BTEX)	180*	215*
TDU	>C ₁₀ -C ₁₆	120*	170*
TRH	>C16-C34	300	1700
	>C ₃₄ -C ₄₀	2800	3300
	Benzene	50	75
DTEV	Toluene	85	135
BTEX	Ethylbenzene	70	165
	Xylenes	105	180
PAH	Benzo(a)pyrene	0.7	1.4

Table 6: Ecological Screening Levels

Note: ESL are low reliability apart from those marked with * which indicates that the ESL is of moderate reliability.

It is noted that ESL do not apply at areas of the site that will have limited ecological value under the proposed development (such as at basements, building footprints, etc.).

7.1.5 Management Limits

In addition to appropriate consideration and application of the health-based and ecological assessment criteria, there are additional considerations which reflect the nature and properties of petroleum hydrocarbons, including:

- Formation of observable light non-aqueous phase liquid (LNAPL);
- Fire and explosion hazards; and
- Effects on buried infrastructure e.g., penetration of, or damage to, in-ground services.

'Management limits' to avoid or minimise these potential effects have been adopted in NEPC (2013) as Tier 1 guidance. Given that all elements of the proposed development are yet to be confirmed, management limits for a commercial / industrial land use scenario and an urban residential scenario have been adopted. The more conservative management limits for coarse and fine texture soils have been adopted given that various soil types are present at the site. Management limits may apply to any depth within the soil profile and are shown in Table 7.

Table 7: Management Limits

	Analyte	Management Limit Residential (mg/kg)	Management Limit Commercial / Industrial (mg/kg)
TRH	$C_{6} - C_{10}$	700	700
	>C ₁₀ -C ₁₆	1000	1000
	>C16-C34	2500	3500
	>C ₃₄ -C ₄₀	10 000	10 000

7.1.6 Asbestos in Soil

A detailed asbestos assessment has not been undertaken. Visual observations for possible asbestoscontaining materials (ACM) and the presence / absence of asbestos at a limit of reporting of 0.1 g/kg have been adopted as assessment criteria for this investigation as an initial screen.

7.2 Groundwater

The assessment criteria used for contamination in groundwater are based on the potential uses or risks posed by contaminated groundwater at or down-gradient of the site. The potential receptors (informed by the preliminary CSM) are considered to be:

- The surface water body ecosystem at Darling Harbour (a marine water ecosystem);
- Recreational water use at Darling Harbour; and
- Human receptors (site users and adjacent site users) via the vapour intrusion pathway.

The adopted assessment criteria for groundwater based on the above potential receptors are listed in the following sub-sections.

7.2.1 Default Guideline Values

For the protection of surface water body ecosystems, freshwater default guideline values (DGV) recommended for a slightly to moderately disturbed ecosystem or, otherwise, an unknown level of species protection from the Australian and New Zealand Governments (ANZG), Australian and New Zealand Guidelines for Fresh and Marine Water Quality website (accessed on 8 March 2022) have been adopted. The DGV are shown in Table 8.

Table 8: Default Guideline Values

	Contaminant	Marine Water DGV (µg/L)
Metals	Cadmium	0.7
	Chromium (III)	27
	Chromium (VI)	4.4
	Copper	1.3
	Lead	4.4
	Mercury	0.1
	Nickel	7
	Zinc	8
PAH	Anthracene	0.01
	Naphthalene	50
	Fluoranthene	1
	Benzo(a)pyrene	0.1
	Phenanthrene	0.6
BTEX & VOC	Benzene	500
	Toluene	180
	Ethylbenzene	80
	m-xylene	75
	o-xylene	350*
	p-xylene	200*
	Isopropylbenzene	30
	Tetrachloroethene	70
	Trichloroethene	330
	1,1-Dichloroethene	700
	Chloroethene (vinyl chloride)	100
	1,2,4-Trichlorobenzene	20
	1,2-Dichlorobenzene	160*
	1,3-Dichlorobenzene	260*
	1,4-Dichlorobenzene	60*
	1,1,2,2-Tetrachloroethane	400
	1,1,1-Trichloroethane	270
	1,1,2-Trichloroethane	1900
	1,2-Dichloroethane	1900
	Carbon tetrachloride	240
	Chloroform	370
	1,2-Dichloropropane	900
	1,3-Dichloropropane	1100
	Monochlorobenzene (chlorobenzene)	55
OCP	Aldrin	0.003
001	Chlordane	0.001
	DDT	0.0004
	Dieldrin	0.01*
	Endosulfan	0.005
	Endosulian	0.003
	Heptachlor	0.004
	Methoxychlor	0.0004
	weuroxychior	0.004

(Contaminant	Marine Water DGV (µg/L)
OPP	Azinphos methyl	0.01*
	Chlorpyrifos	0.01
	Diazinon	0.01*
	Dimethoate	0.15
	Fenitrothion	0.001
	Malathion	0.05*
	Parathion	0.004*
PCB	Aroclor 1242	0.3*
	Aroclor 1254	0.01*
Non-metallic Inorganics	Ammonia (total) as N	5070 at pH 6.6**

Note: * DGV for fresh water in the absence of marine water DGV.

** DGV can be adjusted for pH. The DGV for a pH of 6.6 has been adopted based on field results.

Note that there are DGV for individual phenolic compounds which are not listed in Table 8.

7.2.2 Guidelines for Recreational Water

The National Health and Medical Research Council (NHMRC), *Guidelines for Managing Risks in Recreational Water*, 2008 adopts drinking water guideline values for managing risks in recreational waters. It is stated, however, that guideline values applicable for drinking water quality are based on a daily consumption of 2 L and when applying these values to recreational water exposure, consumption of 0.1 to 0.2 L per day should be taken into consideration. The adopted guidelines for the protection of recreational water shown in Table 9 are sourced from the National Health and Medical Research Council and National Resource Management Ministerial Council (NHMRC & NRMMC), *Australian Drinking Water Guidelines Paper 6 National Water Quality Management Strategy*, 2011, updated January 2022, with health-based drinking water guideline values multiplied by 10 to account for consumption for recreational water exposure.

Contaminant Health Acstructure Metals Arsenic (total) Cadmium Chromium (VI) 100 - Copper 20 000 1000 Copper 20 000 1000 Lead 100 - Mercury 10 - Nickel 200 - Zinc - 3000 PAH Benzone 10 - BTEX & VOC Benzene 10 - BTEX & VOC Benzene 100 - Totuene 8000 25 - Theinorborbene 500 - - 1.1-Dichloroethene 500 - - 1.2-Dichloroethene 300 10 - Theinorbenzene 3000 10 - 1.3-Dichlorobenzene 3000 10 - 1.3-Dichlorobenzene 300 - - Chlorobenzene 300 - - 1.4-Dichlorobenzene 30	C	enteminent	Guideline for Recre	ational Water (µg/L)
Cadmium 20 - Chromium (VI) 500 - Copper 20 000 1000 Lead 100 - Mercury 10 - Nickel 2000 - Zinc - 3000 PAH Benzo(a)pyrene 0.1 - BTEX & VOC Benzene 10 - Toluene 8000 25 - Ethylbenzene 3000 3 Xylene (total) 6000 - 1.1-Dichloroethene 500 - - - - 1.2-Dichloroethene 600 - - - - 1.3-Dichloroptenzene 3000 10 - - - Chlorobenzene 15.000 1 - - - - 1.2-Dichlorobenzene 300 - - - - - 1.3-Dichlorobenzene 300 - - - - - <th>C.</th> <th>ontaminant</th> <th>Health</th> <th>Aesthetic</th>	C.	ontaminant	Health	Aesthetic
Chromium (VI) 500 - Copper 20 000 1000 Lead 100 - Mercury 10 - Nickel 200 - Zinc - 3000 PAH Benze(a)pyrene 0.1 - BTEX & VOC Benzene 10 - Toluene 8000 25 - Ethylbenzene 3000 3 - Tetrachloroethene 500 - - 1,1-Dichloroethene 3000 - - 1,2-Dichloroethene 3000 10 - Chloroethene (vinyl chloride) 3 - - Chlorobenzenes (total) 300 10 - 1,2-Dichlorobenzene 400 0.3 - 1,2-Dichlorobenzene 15 000 1 - 1,2-Dichlorobenzene 300 - - 1,2-Dichlorobenzene 30 - - 1,2-Dichlorobenzene	Metals	Arsenic (total)	100	-
Copper Lead 20 000 1000 Lead 100 - Mercury 10 - Nickel 200 - Zinc - 3000 PAH Benzene 10 - BTEX & VOC Benzene 10 - BTEX & VOC Benzene 3000 25 Ethylbenzene 3000 20 - Tetrachloroethene 500 - - 1.2-Dichloroethene 6000 20 - Tetrachloroethene 300 - - 1.3-Dichlorophenzene 300 - - 1.3-Dichlorobenzene 3000 10 - Trichlorobenzene 15000 1 - 1.3-Dichlorobenzene - 20 - 1.4-Dichlorobenzene 30 - - Chlorobenzene 300 4 - 1.2-Dichlorobenzene 7 - - Carbon tetrachloride </td <td></td> <td>Cadmium</td> <td>20</td> <td>-</td>		Cadmium	20	-
Lead 100 - Mercury 10 - Nickel 200 - Zinc - 3000 PAH Benzo(a)pyrene 0.1 - BTEX & VOC Benzene 10 - BTEX & VOC Benzene 10 - Totleane 3000 25 - BTEX & VOC Benzene 3000 20 Tetrachloroethene 500 - - 1.1 - Dichloroethene 600 - - 1.2 - Dichloroethene 600 - - 1.3 - Dichloroethene 000 - - 1.3 - Dichlorobenzene 1000 - - Chlorobenzene 15 000 1 - 1.4 - Dichlorobenzene 10 - - 1.4 - Dichlorobenzene 300 - - 1.4 - Dichlorobenzene 20 - - 1.4 - Dichlorobenzene 300 - -		Chromium (VI)	500	-
Mercury Nickel 10 200 - Zinc - 3000 PAH Benzo(a)pyrene 0.1 - BTEX & VOC Benzene 10 - BTEX & VOC Benzene 10 - BTEX & VOC Benzene 3000 25 Ethylbenzene 3000 3 - Allene (total) 6600 20 - Tetrachloroethene 500 - - 1,1-Dichloroethene 6000 - - 1,2-Dichloroethene 1000 - - 1,3-Dichloropenzenes (total) 300 10 - Trichlorobenzenes (total) 300 5 - 1,2-Dichlorobenzene - 20 - 1,4-Dichlorobenzene 30 - - 1,2-Dichlorobenzene 300 - - 1,2-Dichlorobenzene 30 - - 1,2-Dichlorobenzene 300 - - Kiyrene		Copper	20 000	1000
Nickel Zinc 200 - BAH Benzo(a)pyrene 0.1 - BTEX & VOC Benzene 10 - BTEX & VOC Benzene 10 - BTEX & VOC Benzene 3000 25 Ethylbenzene 3000 20 Tetrachloroethene 500 - 1,1-Dichloroethene 500 - 1,2-Dichloroethene 300 - 1,3-Dichloropene 1000 - Chloroethene (vinyl chloride) 3 - 1,3-Dichlorobenzenes (total) 3000 5 1,2-Dichlorobenzene - 20 Trichlorobenzenes (total) 300 - 1,2-Dichlorobenzene - 20 1,2-Dichlorobenzene - 20 1,2-Dichlorobenzene 30 - Garbon tetrachloride 30 - Styrene 300 - - Aldrin & Dieldrin (combined) 3 - Endosulfan		Lead	100	-
Zinc - 3000 PAH Benzo(a)pyrene 0.1 - BTEX & VOC Benzene 10 - Toluene 8000 25 Ethylbenzene 3000 3 Xylene (total) 6000 20 Tetrachloroethene 500 - 1,1-Dichloroethene 600 - 1,2-Dichloroethene 600 - 1,2-Dichloroethene 600 - Chlorobenzene 1000 - Chlorobenzene 3000 10 Trichlorobenzene 3000 10 Trichlorobenzene 500 1 1,2-Dichlorobenzene - 20 1,4-Dichlorobenzene - 20 1,4-Dichlorobenzene - 20 1,4-Dichlorobenzene 30 - Carbon tetrachloride 30 - Styrene 300 4 Hexachlorobutadiene 7 - DDT 90 - <td></td> <td>Mercury</td> <td>10</td> <td>-</td>		Mercury	10	-
PAH Benzo(a)pyrene 0.1 - BTEX & VOC Benzene 10 - Toluene 8000 25 Ethylbenzene 3000 3 Xylene (total) 6000 20 Tetrachloroethene 500 - 1,1-Dichloroethene 600 - 1,2-Dichloroethene 600 - 1,3-Dichloroppene 1000 - Chlorobenzene 3000 10 Trichioroethezene (total) 300 5 1,2-Dichlorobenzene 15 000 1 1,3-Dichlorobenzene - 20 1,4-Dichlorobenzene 30 - Carbon tetrachloride 30 - Carbon tetrachloride 30 - Carbon tetrachloride 30 - Carbon tetrachloride 30 - DDT 90 - DDT 90 - DDT 300 - Dichlorovs 50 <td< td=""><td></td><td>Nickel</td><td>200</td><td>-</td></td<>		Nickel	200	-
BTEX & VOC Benzene Toluene 10 - Toluene 8000 25 Ethylbenzene 3000 3 Xylene (total) 6000 20 Tetrachloroethene 500 - 1,1-Dichloroethene 6000 - 1,2-Dichloroethene 6000 - 1,2-Dichloroethene 6000 - 1,3-Dichloropepene 1000 - Chlorobenzene 3000 10 Trichlorobenzene 15000 1 1,3-Dichlorobenzene - 20 1,4-Dichlorobenzene 400 0.3 1,2-Dichlorobenzene 30 - Carbon tetrachloride 30 - Carbon tetrachloride 30 - Styrene 3000 4 Hexachlorobutadiene 7 - OCP Chlordane 20 - DDT 90 - - DDT 3000 - - Dic		Zinc	-	3000
Toluene 8000 25 Ethylbenzene 3000 3 Xylene (total) 6000 20 Tetrachloroethene 500 - 1,1-Dichloroethene 300 - 1,2-Dichloroethene 6000 - 1,2-Dichloroptene 1000 - Chloroethene (vinyl vlhoride) 3 - Chlorobenzenes (total) 3000 5 1,2-Dichlorobenzene 15 000 1 1,3-Dichlorobenzene 400 0.3 1,2-Dichlorobenzene 30 - 1,3-Dichlorobenzene 30 - 1,3-Dichlorobenzene 400 0.3 1,2-Dichlorobenzene 30 - Carbon tetrachloride 30 - Trihalomethanes (total) 25500 - DDT 90 - DDT 90 - DDT 90 - Endosulfan 200 - Lendosulfan 200 -	PAH	Benzo(a)pyrene	0.1	-
Ethylbenzene 3000 3 Xylene (total) 6000 20 Tetrachloroethene 500 - 1,1-Dichloroethene 300 - 1,2-Dichloroethene 600 - 1,3-Dichloroethene 600 - 1,3-Dichloroethene (vinyl chloride) 3 - Chlorobenzene 3000 10 Trichlorobenzenes (total) 300 5 1,2-Dichlorobenzene 15 000 1 1,3-Dichlorobenzene 400 0.3 1,4-Dichlorobenzene 400 0.3 1,2-Dichlorobenzene 400 0.3 1,4-Dichlorobenzene 300 - Carbon tetrachloride 30 - Trinalomethanes (total) 2500 - Styrene 300 4 Hexachlorobutadiene 7 - DDT 90 - Boldrin & Dieldrin (combined) 3 - Endosulfan 200 - Endosulfan	BTEX & VOC	Benzene	10	-
Xylene (total) 6000 20 Tetrachloroethene 500 - 1,1-Dichloroethene 300 - 1,2-Dichloroethene 6000 - 1,3-Dichloropropene 1000 - Chloroethene (vinyl chloride) 3 - Chlorobenzene 3000 10 Trichlorobenzenes (total) 300 5 1,2-Dichlorobenzene 15 000 1 1,2-Dichlorobenzene 400 0.3 1,2-Dichlorobenzene 30 - 200 1,4-Dichlorobenzene 400 0.3 1,2-Dichlorobenzene 30 - - Carbon tetrachloride 30 - - Carbon tetrachloride 30 - - DT 90 - - - DDT 90 - - - Aldrin & Dieldrin (combined) 3 - - DDT 90 - - - Heptachlor & Loroytrifo		Toluene	8000	25
Tetrachloroethene 500 - 1,1-Dichloroethene 300 - 1,2-Dichloropthene 600 - 1,3-Dichloropthene 1000 - Chloroethene (vinyl chloride) 3 - Chlorobenzene 3000 10 Trichlorobenzenes (total) 3000 5 1,2-Dichlorobenzene 15 000 1 1,3-Dichlorobenzene 400 0.3 1,2-Dichlorobenzene 400 0.3 1,2-Dichlorobenzene 400 0.3 1,2-Dichlorobenzene 300 - Carbon tetrachloride 30 - Trihalomethanes (total) 2500 - Styrene 300 4 Hexachlorobutadiene 7 - DDT 90 - Aldrin & Dieldrin (combined) 3 - Endosulfan 200 - Wethoxychlor 3000 - OCP Azinphos methyl 300 - Dichloro		Ethylbenzene	3000	3
Tetrachloroethene 500 - 1,1-Dichloroethene 300 - 1,2-Dichloropthene 600 - 1,3-Dichloropthene 1000 - Chloroethene (vinyl chloride) 3 - Chlorobenzene 3000 10 Trichlorobenzenes (total) 3000 5 1,2-Dichlorobenzene 15 000 1 1,3-Dichlorobenzene 400 0.3 1,2-Dichlorobenzene 400 0.3 1,2-Dichlorobenzene 400 0.3 1,2-Dichlorobenzene 300 - Carbon tetrachloride 30 - Trihalomethanes (total) 2500 - Styrene 300 4 Hexachlorobutadiene 7 - DDT 90 - Aldrin & Dieldrin (combined) 3 - Endosulfan 200 - Wethoxychlor 3000 - OCP Azinphos methyl 300 - Dichloro		-	6000	20
1,2-Dichloroethene 600 - 1,3-Dichloropropene 1000 - Chloroethene (vinyl chloride) 3 - Chlorobenzene 3000 10 Trichlorobenzenes (total) 300 5 1,2-Dichlorobenzene 15 000 1 1,3-Dichlorobenzene - 20 1,4-Dichlorobenzene 400 0.3 1,2-Dichlorobenzene 400 0.3 1,2-Dichlorobenzene 30 - Carbon tetrachloride 30 - Carbon tetrachloride 30 - Styrene 300 4 Hexachlorobutadiene 7 - OCP Chlordane 20 - DDT 90 - - Aldrin & Dieldrin (combined) 3 - - Endosulfan 200 - - Methoxychlor 3000 - - Dichlorovs 100 - - Dichlorovs 50<			500	-
1,2-Dichloroethene 600 - 1,3-Dichloropropene 1000 - Chloroethene (vinyl chloride) 3 - Chlorobenzenee 3000 10 Trichlorobenzenes (total) 300 5 1,2-Dichlorobenzene 15 000 1 1,3-Dichlorobenzene - 20 1,4-Dichlorobenzene 400 0.3 1,2-Dichloroethane 30 - Carbon tetrachloride 30 - Carbon tetrachloride 30 - Styrene 300 4 Hexachlorobutadiene 7 - OCP Chlordane 20 - DDT 90 - - Aldrin & Dieldrin (combined) 3 - - DDT 90 - - - Methoxychlor 3000 - - Dichlorovs 100 - - Dichlorovs 100 - - Dichlorovs </td <td></td> <td>1,1-Dichloroethene</td> <td>300</td> <td>-</td>		1,1-Dichloroethene	300	-
1,3-Dichloropropene 1000 - Chloroetnene (vinyl chloride) 3 - Chlorobenzene 3000 10 Trichlorobenzenes (total) 300 5 1,2-Dichlorobenzene 15 000 1 1,3-Dichlorobenzene - 20 1,4-Dichlorobenzene - 20 1,4-Dichlorobenzene 400 0.3 1,2-Dichloroetnane 30 - Carbon tetrachloride 30 - Trinalomethanes (total) 2500 - Styrene 300 4 Hexachlorobutadiene 7 - OCP Chlordane 20 - DDT 90 - - Aldrin & Dieldrin (combined) 3 - - DDT 90 - - Methoxychlor 3000 - - Dichlorovis 100 - - Dichlorovis 100 - - Dichlorovis			600	-
Chloroethene (vinyl chloride) 3 - Chlorobenzene 3000 10 Trichlorobenzenes (total) 300 5 1,2-Dichlorobenzene 15 000 1 1,3-Dichlorobenzene - 20 1,4-Dichlorobenzene 400 0.3 1,4-Dichlorobenzene 400 0.3 1,2-Dichlorobenzene 300 - Carbon tetrachloride 30 - Carbon tetrachloride 30 - Styrene 300 4 Hexachlorobutadiene 7 - OCP Chlordane 20 - DDT 90 - - Aldrin & Dieldrin (combined) 3 - Endosulfan 200 - Methoxychlor 3000 - OPP Azinphos methyl 300 - Chlorpyrifos 100 - - Dichlorovos 50 - - Dibelorovos 50 -			1000	-
Chlorobenzene 3000 10 Trichlorobenzenes (total) 300 5 1,2-Dichlorobenzene 15 000 1 1,3-Dichlorobenzene 20 1 1,3-Dichlorobenzene 20 1 1,4-Dichlorobenzene 400 0.3 1,2-Dichlorobenzene 300 - Carbon tetrachloride 30 - Carbon tetrachloride 30 - Styrene 3000 4 Hexachlorobutadiene 7 - OCP Chlordane 20 - DDT 90 - - Aldrin & Dieldrin (combined) 3 - - Endosulfan 2000 - - Heptachlor & Heptachlor Epoxide 3 - - Methoxychlor 3000 - - - Dichlorovos 50 - - - Dichlorovos 50 - - - Dichlorovos 50				-
Trichlorobenzenes (total) 300 5 1,2-Dichlorobenzene 15 000 1 1,3-Dichlorobenzene - 20 1,4-Dichlorobenzene 400 0.3 1,2-Dichlorobenzene 400 0.3 1,2-Dichlorobenzene 400 0.3 1,2-Dichlorobenzene 30 - Carbon tetrachloride 30 - Styrene 300 4 Hexachlorobutadiene 7 - OCP Chlordane 20 - DDT 90 - - Aldrin & Dieldrin (combined) 3 - Endosulfan 200 - Heptachlor & Heptachlor Epoxide 3 - Methoxychlor 3000 - - Dizinon 40 - - Dichlorovos 50 - - Dichlorovos 50 - - Dichlorovos 50 - - Dimethoate 70				10
1,2-Dichlorobenzene15 00011,3-Dichlorobenzene-201,4-Dichlorobenzene4000.31,2-Dichloroethane30-Carbon tetrachloride30-Styrene3004Hexachlorobutadiene7-OCPChlordane20DDT90-Aldrin & Dieldrin (combined)3-Endosulfan200-Heptachlor & Heptachlor Epoxide3-OPPAzinphos methyl300-OPPAzinphos methyl300-Dichlorovos50-Diazinon40-Malathion70-Parathion70-Bromophos ethyl100-Endosulfan200-OPPAzinphos methyl300OPPAzinphos methyl300OPPAzinphos methyl300OPPAzinphos methyl100Diazinon40-Dichlorovos50-Dimethoate70-Fenitrothion70-Bromophos ethyl100-Ethion40-		Trichlorobenzenes (total)		
1,3-Dichlorobenzene - 20 1,4-Dichlorobenzene 400 0.3 1,2-Dichloroethane 30 - Carbon tetrachloride 30 - Trihalomethanes (total) 2500 - Trihalomethanes (total) 2500 - Styrene 300 4 Hexachlorobutadiene 7 - OCP Chlordane 20 - DDT 90 - - Aldrin & Dieldrin (combined) 3 - - Heptachlor & Heptachlor Epoxide 3 - - Methoxychlor 3000 - - OPP Azinphos methyl 300 - Dichlorovos 50 - - Dichlorovos 50 - - Dimethoate 70 - - Malathion 700 - - Fenitrothion 70 - - Bromophos ethyl 100 - <td></td> <td></td> <td></td> <td></td>				
1,4-Dichlorobenzene4000.31,2-Dichloroethane30-Carbon tetrachloride30-Trihalomethanes (total)2500-Styrene3004Hexachlorobutadiene7-OCPChlordane20-DDT90-Aldrin & Dieldrin (combined)3-Endosulfan200-Heptachlor & Heptachlor Epoxide3-OPPAzinphos methyl3000-OPPAzinphos methyl300-Diazinon40Dichlorovos50-Dimethoate70-Parathion70-Fenitrothion70-Bromophos ethyl100-Endosulfan200-OPPAzinphos methyl300OPPAzinphos methyl300OPPAzinphos methyl300OPPAzinphos methyl300OPPAzinphos methyl300OPPAzinphos methyl300OPPAzinphos methyl300OPPAzinphos methyl100OPPAzinphos methyl300OPPAzinphos methyl300OPPAzinphos methyl300OPAzinphos methyl300OPBizinon40OPAzinphos-OPAzinphos-OPAzinphos-OPAzinphos- <td></td> <td></td> <td>-</td> <td>20</td>			-	20
1,2-Dichloroethane30-Carbon tetrachloride30-Trihalomethanes (total)2500-Styrene3004Hexachlorobutadiene7-OCPChlordane20-DDT90-Aldrin & Dieldrin (combined)3-Endosulfan200-Heptachlor & Heptachlor Epoxide3-Methoxychlor3000-OPPAzinphos methyl300OPPDiazinon40Diazhon70-Fenitrothion70-Malathion70-Methyl parathion7-Bromophos ethyl100-Endosulfan200-OPPAzinphos methyl300OPPAzinphos methyl300OPPAzinphos methyl300OPPAzinphos methyl300OPPAzinphos methyl300OPPAzinphos methyl300OPPAzinphos methyl300OPPAzinphos methyl300OPDiazinon40OPFenitrothion70Fenitrothion70-Bromophos ethyl100-Ethion40-			400	
Carbon tetrachloride30-Trihalomethanes (total)2500-Styrene3004Hexachlorobutadiene7-OCPChlordane20-DDT90Aldrin & Dieldrin (combined)3-Endosulfan200-Heptachlor & Heptachlor Epoxide3-Methoxychlor3000-OPPAzinphos methyl300-OPPAzinphos methyl300-Diazinon40-Dinchlorovos50-Dimethoate70-Malathion700-Parathion200-Methyl parathion7-Bromophos ethyl100-Ethion40-				-
Trihalomethanes (total)2500-Styrene3004Hexachlorobutadiene7-OCPChlordane20-DDT90Aldrin & Dieldrin (combined)3-Endosulfan200-Heptachlor & Heptachlor Epoxide3-Methoxychlor3000-OPPAzinphos methyl300-OPPAzinphos methyl300-Dichlorovos50Dichlorovos50Fenitrothion70Malathion700Methyl parathion70Eromophos ethyl100Eromophos ethyl100<				-
Styrene3004Hexachlorobutadiene7-OCPChlordane20-DDT90-Aldrin & Dieldrin (combined)3-Endosulfan200-Heptachlor & Heptachlor Epoxide3-Methoxychlor3000-OPPAzinphos methyl300OPPAzinphos methyl300OPDiazinon40OPDiazinon70OPParathion70OPParathion70OPBromophos ethyl100OPEthion40				-
Hexachlorobutadiene7-OCPChlordane20-DDT90-Aldrin & Dieldrin (combined)3-Endosulfan200-Heptachlor & Heptachlor Epoxide3-Methoxychlor3000-OPPAzinphos methyl300-OPPAzinphos methyl300-Diazinon40Dichlorovos50-Dimethoate70-Fenitrothion70-Parathion200-Methyl parathion7-Bromophos ethyl100-Ethion40-				4
DDT90-Aldrin & Dieldrin (combined)3-Endosulfan200-Heptachlor & Heptachlor Epoxide3-Methoxychlor3000-OPPAzinphos methyl300-Chlorpyrifos100-Diazinon40-Dichlorovos50-Dimethoate70-Parathion700-Methyl parathion70-Bromophos ethyl100-Ethion40-		-		-
Aldrin & Dieldrin (combined)3-Endosulfan200-Heptachlor & Heptachlor Epoxide3-Methoxychlor3000-OPPAzinphos methyl300-Chlorpyrifos100-Diazinon40-Dichlorovos50-Dimethoate70-Fenitrothion70-Malathion700-Methyl parathion7-Bromophos ethyl100-Ethion40-	OCP	Chlordane	20	-
Endosulfan200Heptachlor & Heptachlor Epoxide3Methoxychlor3000OPPAzinphos methyl300Chlorpyrifos100Diazinon40Dichlorovos50Dimethoate70Fenitrothion70Malathion700Parathion200Methyl parathion7Bromophos ethyl100Ethion40		DDT	90	-
Heptachlor & Heptachlor Epoxide Methoxychlor3-OPPAzinphos methyl300-OPPAzinphos methyl300-Chlorpyrifos100-Diazinon40-Dichlorovos50-Dimethoate70-Fenitrothion70-Parathion200-Methyl parathion7-Bromophos ethyl100-Ethion40-		Aldrin & Dieldrin (combined)	3	-
Methoxychlor3000-OPPAzinphos methyl300-Chlorpyrifos100-Diazinon40-Dichlorovos50-Dimethoate70-Fenitrothion70-Malathion700-Parathion200-Methyl parathion7-Bromophos ethyl100-Ethion40-		Endosulfan	200	-
Methoxychlor3000-OPPAzinphos methyl300-Chlorpyrifos100-Diazinon40-Dichlorovos50-Dimethoate70-Fenitrothion70-Malathion700-Parathion200-Methyl parathion7-Bromophos ethyl100-Ethion40-		Heptachlor & Heptachlor Epoxide	3	-
Chlorpyrifos100Diazinon40Dichlorovos50Dimethoate70Fenitrothion70Malathion700Parathion200Methyl parathion7Bromophos ethyl100Ethion40			3000	-
Diazinon40Dichlorovos50Dimethoate70Fenitrothion70Malathion700Parathion200Methyl parathion7Bromophos ethyl100Ethion40	OPP	Azinphos methyl	300	-
Dichlorovos50Dimethoate70Fenitrothion70Fenitrothion700Malathion700Parathion200Methyl parathion7Bromophos ethyl100Ethion40		Chlorpyrifos	100	-
Dimethoate70-Fenitrothion70-Malathion700-Parathion200-Methyl parathion7-Bromophos ethyl100-Ethion40-		Diazinon	40	-
Fenitrothion70-Malathion700-Parathion200-Methyl parathion7-Bromophos ethyl100-Ethion40-		Dichlorovos	50	-
Malathion700-Parathion200-Methyl parathion7-Bromophos ethyl100-Ethion40-		Dimethoate	70	-
Parathion200-Methyl parathion7-Bromophos ethyl100-Ethion40-		Fenitrothion	70	-
Methyl parathion7-Bromophos ethyl100-Ethion40-		Malathion	700	-
Bromophos ethyl 100 - Ethion 40 -		Parathion	200	-
Ethion 40 -		Methyl parathion	7	-
		Bromophos ethyl	100	-
Non-metallic Inorganics Ammonia - 500		Ethion	40	-
	Non-metallic Inorganics	Ammonia	-	500

Table 9: Guidelines for Managing Risks to Users of Recreational Waters

Note that there are guidelines for individual phenolic compounds which are not listed in Table 9.

7.2.3 Health Screening Levels for Vapour Intrusion

The proposed ground floor or basement use of the proposed development is likely to be for nonresidential purposes, and, therefore, HSL D (for a commercial or industrial land use scenario) have been adopted as site assessment criteria. Given that ground-level residential use has not been ruled out at this stage, HSL B (for a residential land use scenario with minimal opportunities for soil access) have also been adopted as site assessment criteria (for comparative purposes). The adopted HSL shown in Table 10 are for groundwater at a depth of 2 m to <4 m; and are the most conservative for sand, silt and clay. Less conservative HSL may be applicable where groundwater is present at the site at a depth of 4 m or greater, however, (less conservative) site specific HSL may need to be considered where groundwater is within 2 m of the lowest floor level of the proposed building(s) or groundwater is to contact the proposed basement.

	Contaminant	HSL B Residential (µg/L)	HSL D Commercial / Industrial (µg/L)
PAH	Naphthalene	NL	NL
TRH	TRH C6-C10 less BTEX	1000	6000
ІКП	TRH >C10-C16 less Naphthalene	1000	NL
	Benzene	800	5000
BTEX	Toluene	NL	NL
BIEX	Ethylbenzene	NL	NL
	Xylenes	NL	NL

Table 10: Health Screening Levels for Vapour Intrusion

Note: The solubility limit is defined as the groundwater concentration at which the water cannot dissolve any more of an individual chemical based on a petroleum mixture. The soil vapour which is in equilibrium with the groundwater will be at its maximum. If the derived groundwater HSL exceeds the water solubility limit, a soil-vapour source concentration for a petroleum mixture could not exceed a level that would result in the maximum allowable vapour risk for a given scenario. For these scenarios no HSL is presented for these chemicals. These are denoted as not limiting 'NL'.

8. Field Work Results

8.1 Soil Observations and Field Results

Borehole logs are provided in Appendix B and should be referred to for detailed descriptions of soil and rock.

At Borehole 101, brown silty sand fill and red-brown sandstone boulder fill was underlain by concrete at depth of 0.55 m. The borehole was discontinued in this concrete at a depth of 0.78 m. The borehole was discontinued and not relocated nearby as the concrete may be associated with an unknown service or buried structure.

Borehole 102 was drilled through a surface layer of asphaltic concrete (0.05 m thick) then brown silty sand fill, grey sand fill and grey clayey sand fill to a depth of 1 m. Concrete fragments were observed in the fill at a depth of 0.3 m to 0.8 m. The borehole was discontinued at a depth of 1 m due to the presence of concrete.

Borehole 103 was drilled through a surface layer of asphaltic concrete (0.05 m thick) then grey-brown sand fill and red-brown sandstone boulder fill to a depth of 1.6 m. Building rubble (brick fragments) and steel rebars were observed at depths of 0.8 m and 1.1 - 1.2 m, respectively. The borehole was discontinued at a depth of 1.7 m in concrete which was encountered from a depth of 1.6 m. Two other attempts were made to drill through the fill, but these were unsuccessful due to the presence of buried obstructions at approximately 0.7 m depth.

Borehole 104 was drilled through a surface layer of concrete (0.1 m thick) which was underlain by fill to a depth of 4.5 m. Observed fill materials included brown sand, grey and brown clayey sand, black and grey coal wash gravel, grey and brown gravel and grey-brown sand. Coal wash was observed at depths of 1.5 - 1.6 m and 2.5 - 3.8 m. Building rubble (such as fragments of terracotta, brick, glass, ceramics and concrete) were observed at depths of 0.4 - 1.0 m and 2.5 - 4.5 m. Fill was underlain by alluvial grey silty clay and silty sand to a depth of 6.8 m, then residual grey mottled yellow-brown sandy clay and grey clay to a depth of 11.8 m. Yellow-brown sandstone was encountered from a depth of 11.8 m to 12.3 m. The borehole was discontinued in sandstone at a depth of 12.3 m.

Borehole 105 was drilled through a surface layer of concrete (0.23 m thick) which was underlain by fill to a depth of 3.5 m. Fill comprised yellow-brown, brown and grey sand and sandstone boulders / cobbles. Trace building rubble (fragments of brick, terracotta and ceramics) was observed at a depth of 1.4 m. Fill was underlain by alluvial grey-brown sand clay to a depth of 4 m, then residual yellow brown sandy clay to a depth of 4.5 m. Yellow- brown, grey and red-brown sandstone was encountered from a depth of 4.5 m to 10.5 m with siltstone beds at depths of 9.33 - 9.45 m and 9.55 - 9.61 m. The borehole was discontinued in sandstone at a depth of 10.5 m.

Borehole 106 was drilled through a surface layer of brick pavers (0.1 m thick) which was underlain by brown-grey sand fill to a depth of 1.5 m. This fill was underlain by residual yellow-brown and grey-yellow sandy clay to a depth of 3.5 m. Yellow, brown, yellow-brown and grey sandstone was encountered from a depth of 3.5 m to 10.06 m. The borehole was discontinued in sandstone at a depth of 10.06 m.

Borehole 107 was drilled through a concrete slab which was suspended over an apparent old storage space. The floor of the storage space was approximately 3.1 m below the ground surface. No soil samples were retrieved due to the significant void space.

Boreholes 108 and 109 were drilled through the concrete slab in the basement of the Harwood Building which was 0.1 to 0.15 m thick. The concrete slab was underlain by a thin layer of grey gravel fill (0.1 m to 0.15 m thick). Each borehole was discontinued on the underlying sandstone which may be sandstone boulders in fill.

Borehole 201 was drilled through brick pavers (0.05 m thick) which were underlain by a thin layer of yellow-brown sand fill (0.11 m thick) and then concrete (0.09 m thick). The concrete was underlain by brown sand fill which was observed to have a trace of coal at a depth of 0.5 m and tile at a depth of 1 m. This fill was underlain by red-brown sandy clay (possibly fill) at a depth of 1.3 - 1.5 m. Yellow-brown, grey, orange-brown and red-brown sandstone was encountered between depths of 1.5 m and 10 m. The borehole was discontinued in sandstone at a depth of 10 m.

Borehole 202 was drilled through a concrete slab (0.1 m thick) which was underlain by fill to a depth of 3.1 m. Observed fill materials included brown and grey clayey sand, grey gravelly sand and grey-brown silty sand. A hydrocarbon odour was associated with the fill at a depth of 1.2 - 2.0 m. Terracotta and ceramic fragments were observed in the fill at a depth of 2.3 m. Fill was underlain by (probably) alluvial (possibly residual) grey mottled yellow-brown silty clay to a depth of 5.7 m, then residual grey sandy clay to a depth of 5.7 m. Grey and yellow-brown sandstone was encountered from between depths of 5.7 m to 10 m. The borehole was discontinued in sandstone at a depth of 10 m.

Although asbestos containing materials were not observed in the fill, building rubble such as concrete, brick, tile, terracotta and ceramics (mentioned above) were identified in fill and asbestos contamination can be associated with building rubble in fill.

PID results were either less than or equal to 1 ppm indicating a low potential for the presence of volatile organic compounds.

8.2 Groundwater Observations and Field Results

Free groundwater was observed at a depth of 4 m whilst drilling at Borehole 104. No free groundwater was observed at the other boreholes whilst drilling. It is noted that the method of rock coring introduces tap water to the borehole which prevents making groundwater observations.

Well development and sampling field data is shown on the groundwater field sheets in Appendix C.

Approximately 100 L of water was removed from Borehole 104 for its development. For the development of Borehole 105, the well was dry after the removal of approximately 50 L of water. LNAPL was not identified from use of the dip-meter prior to development of each well.

Table 11 shows the measured groundwater levels at each monitoring well immediately prior to sampling. It is noted that the observed free groundwater whilst drilling at a depth of 4 m at Borehole 104 is considered likely to have been perched groundwater (i.e., groundwater in the sand fill, perched on the silty clay). The low groundwater depth at Borehole 104, as shown in Table 11, may reflect the collection of perched groundwater seeping into the well. As only two groundwater wells were installed, the direction of groundwater flow could not be determined from the groundwater measurements.

	Crowned Sweferen Lawel	Groundwater Level	(15 November 2019)
Borehole	Ground Surface Level (m AHD)	Depth (m bgl)	Water Level (m AHD)
104	5.8	6.42	-0.6
105	6.2	3.79	2.4

Table 11: Groundwater Levels Prior to Sampling

Notes: m bgl metres below ground level

m AHD metres Australian Height Datum

9. Laboratory Analytical Rationale and Results

9.1 Analytical Rationale

Soil samples were selected for analysis for potential contaminants based on field observations. The majority of selected samples for analysis were from fill as fill was considered to be a significant potential source of contamination at the site. Consequentially, multiple samples from boreholes with the greater fill depths were subject to analysis.

One soil sample from each borehole (except Borehole 109 where no soil samples were retrieved) was analysed for eight priority metals, TRH, BTEX, PAH, OCP, OPP, PCB, total phenols and asbestos to obtain data from each sample point (i.e., to provide site coverage). Four of these samples were analysed for VOC. Additional samples were analysed for a shorter suite of contaminants (typically eight priority metals, TRH, BTEX, PAH and asbestos). In particular:

- The sample from Borehole 102, depth 0.5 m, was analysed for asbestos given that concrete fragments were observed in the fill at this depth (and asbestos contamination may be associated with building rubble in fill);
- The sample from Borehole 103, depth 1 m, was analysed for asbestos given that building rubble (brick fragments) was observed in the fill at this depth;
- The samples from Borehole 104 at depths 0.5 m, 3 m and 4 m were analysed for asbestos given that building rubble (such as terracotta, brick, glass, ceramics and concrete) was observed in the fill at these depths;
- The samples from Borehole 104 at depths 1.5 m and 3 m were analysed for PAH given that coal wash was observed at these depths;
- Three samples of fill from Borehole 105 were analysed for asbestos given that building rubble (brick, terracotta and ceramics) were identified in the fill at this location;
- The sample from Borehole 201, depth 0.9 1.0 m, was analysed for PAH given the presence of coal in the fill at this location. This sample was analysed for asbestos given that tile was identified in the fill;
- The sample from Borehole 202, depth 1.2 13 m, was analysed for TRH, BTEX, PAH and VOC given that a hydrocarbon odour was associated with the fill at this depth; and
- The sample from Borehole 202, depth 2.0 1.2 m, was analysed for asbestos given the presence of terracotta and ceramic fragments at this depth.

Following review of initial laboratory results, the soil sample from Borehole 102, depth 0.5 m, was analysed for TRH C_{10} - C_{40} with silica gel clean-up given that a somewhat elevated concentration of TRH C_{10} - C_{40} was recorded in this sample.

Three fill samples from different sample locations (Borehole 102, depth 0.5 m; Borehole 104, depth 1.5 m; and Borehole 106, depth 1.0 m) were analysed for the soil parameters: pH and CEC.

A groundwater sample from each groundwater monitoring well was subject to analysis for a suite of potential contaminants including metals, TRH, BTEX, PAH, OCP, OPP, PCB, VOC, ammonia and phenols. Samples were also analysed for hardness.

9.2 Laboratory Results

Laboratory results are presented in the laboratory certificates in Appendix E.

Table 12 summarises laboratory results for contaminants in soil compared to the site assessment criteria for soil.

Table 13 summarises the laboratory results for contaminants in groundwater compared to the site assessment criteria.

Table 12: Summary of Results of Soil Analysis for Contamination (All results in mg/kg unless otherwise stated)

						Me	etals				Polyc	yclic Aroma	atic Hydroca	arbons		Total Re	ecoverable	Hydrocabo	ons	Т	otal Petrol (TRH C	eum Hydr C10-C40 Si	ocarbons ilica)	BT	EX and oth Cor	er Volatile npounds	e Organic							Organoch	Iorine Pesticio	les						Organopho Pestici		/
Sample ntification/ .ocation	Sample Depth (m)		Arsenic	Cadmium	Chromium (III + VI)	Copper	Lead	Mercury	Nickel	Zinc	Benzo(a)pyrene	Benzo(a)pyrene TEQ	Naphthalene	Total PAHs	TRH C6-C10 less BTEX	TRH >C10-C16 less Naphthalene		TRH >C10-C16	TRH >C16-C34	TRH >C34-C40 TPH >C10-C16 less	Naphthalene TDU >CAACAE	TPH >C10-C10	TPH >C34-C40	Benzene	Toluene	Ethylbenzene	Total Xylene	Other VOC	DDE	000	Aldrin	Dieldrin	Gamma-chlordane	Alpha-chlordane	Endosulfan I Endosulfan II	Endosulfan Sulphate	Endrin	Heptachlor	НСВ	Methoxychlor	Other OCP	Ch lorpy rip hos	Other OPP	PCB (total) Phenols (total)
BH101	0.1	Fill	<4	<0.4	8	21	100	<0.1	7	72	0.1	<0.5	<0.1	1	<25	<50	<25	<50 <	100 <	100				<0.2	<0.5	<1	<3	- <0	.1 <0.	.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.	1 <0.1	<0.1	<0.1	<0.1	<0.1	<pql< td=""><td><0.1</td><td><pql< td=""><td><0.1 <5</td></pql<></td></pql<>	<0.1	<pql< td=""><td><0.1 <5</td></pql<>	<0.1 <5
BH102	0.5	Fill	7	0.8	12	130	170	0.3	13	360	1.2	1.8	0.2	12	<25	63	<25	63 (540 2	200 <	50 <	50 44	18 0) <0.2	<0.5	<1	<3 <		.1 <0.	.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.	1 <0.1	<0.1	<0.1	<0.1	<0.1	<pql< td=""><td><0.1</td><td><pql< td=""><td><0.1 <5</td></pql<></td></pql<>	<0.1	<pql< td=""><td><0.1 <5</td></pql<>	<0.1 <5
BH103	1	Fill	4		36	21	42	_	_	69	0.1	<0.5	<0.1	0.79	<25	<50				100				<0.2	<0.5			PQL <0	.1 <0.	.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.	1 <0.1	<0.1	<0.1	<0.1	<0.1	<pql< td=""><td><0.1</td><td><pql< td=""><td><0.1 <5</td></pql<></td></pql<>	<0.1	<pql< td=""><td><0.1 <5</td></pql<>	<0.1 <5
_20191022	1	Fill	5		36	17	47	_	_	62	-	-	<1	-	<25	<50				100				<0.2	<0.5		<3		-	-	-	-	-	-		-	-	-	-	-	<u> </u>		-	
BH104	0.5			<0.4	4	3	36	_	_	21	<0.05	<0.5	<0.1	<0.05	<25	<50		_	_	100			· ·	<0.2	<0.5		<3	- <0	.1 <0.	.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.	1 <0.1	<0.1	<0.1	<0.1	<0.1	<pql< td=""><td><0.1</td><td><pql< td=""><td><0.1 <5</td></pql<></td></pql<>	<0.1	<pql< td=""><td><0.1 <5</td></pql<>	<0.1 <5
_20191023	0.5	Fill	<4		8	4	33	_	_	22	-	-	<1	-	<25	<50		_		100			· ·	<0.2	<0.5		<3			-	-	· ·	-	-		-	-	-	•	-	<u> </u>	-	-	
BH104	1.5			<0.4	43	66	120	_	40	150	0.54	0.8	<0.1	5.7	<25	<50			_	160		· ·	· ·	<0.2	<0.5	_	<3	· ·	-		· ·	· ·	-	-		-	-	-	·	-			-	
BH104	3	Fill	12	<0.4	32	280	1100	_	24	460	1.3	1.9	0.1	13	<25	<50		_	_	100		· ·	· ·	<0.2	<0.5	_	<3	· ·	-		· ·	· ·	-	-		-	-	-	·	-			-	
BH104	4	Fill	5	<0.4	16	29	160			99	0.4	0.5	<0.1	4.1	<25	<50			_	100			· · ·	<0.2	<0.5	_	<3	· ·	-	-	-	-	•	•		-	-	-	•	-			-	
3H105 3H105	1	Fill	8	< 0.4	37	42	74	-	_	87	2	2.8	0.2	21	<25	<50				140				<0.2	<0.5		<3	- <0	.1 <0.	.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.	1 <0.1	<0.1	<0.1	<0.1	<0.1	<pql< td=""><td><0.1</td><td><pql< td=""><td><0.1 <5</td></pql<></td></pql<>	<0.1	<pql< td=""><td><0.1 <5</td></pql<>	<0.1 <5
H105	2	Fill	18	0.6 <0.4	16 12	51 45	130 95	0.4	_	160 150	7.9 5.8	11 7.9	3.9 & 2 1.9 & 4	100 67	<25 <25	<50 <50			_	190 150				<0.2	<0.5 <0.5		<3 <3				-	· ·	-	-		-	-		-	-	<u> </u>		-	
H105	0.1			<0.4	11	43	15	_	86	41	0.2	<0.5	<0.1	1.4	<25	<50				100	-			<0.2	<0.5			PQL <0	.1 <0.	.1 <0.1	<0.1	<0.1	< 0.1	< 0.1	<0.1 <0.	1 <0.1	<0.1	<0.1	<0.1	< 0.1	- - POI	<0.1	<pql< td=""><td><0.1 <5</td></pql<>	<0.1 <5
H106	1	Fill	7	<0.4	15	45			_	120	0.91	1.3	<0.1	7.7	<25	<50				100				<0.2	<0.5		<3			-	-	-	-	-		-	-	-	-	-		-	-	
106	2	Natural	<4		14	3	7	<0.1	_	8	0.1	<0.5	0.1	1.4	<25	<50				100				<0.2	< 0.5		<3		-	-	-	-	-	-		-	-	-	-	-	<u> </u>		-	
108	0.1-0.2	2 Fill	<4	<0.4	34	10	6	<0.1	37	20	< 0.05	< 0.5	<0.1	< 0.05	<25	<50	<25	<50 <	100 <	100				<0.2	< 0.5	<1	<3	- <0	.1 <0.	.1 <0.1	7.9	15	<0.1	<0.1	<0.1 <0.	1 <0.1	<0.1	<0.1	<0.1	<0.1	<pql< td=""><td><0.1</td><td><pql< td=""><td><0.1 <5</td></pql<></td></pql<>	<0.1	<pql< td=""><td><0.1 <5</td></pql<>	<0.1 <5
0191022	0.1-0.2	2 Fill	<2	<0.4	67	22	14	<0.1	67	31	-	-	<0.5	-	<20	<50	<20	<50 <	100 <	100				<0.1	<0.1	<0.1	<0.3			-	-	-	-	-		-	-	-	-	-	- 1		-	
1109	0.15-0.2	2 Fill	<4	<0.4	48	14	5	<0.1	50	25	< 0.05	<0.5	<0.1	< 0.05	<25	<50	<25	<50 <	100 <	100				<0.2	<0.5	<1	<3	- <0	.1 <0.	.1 <0.1	2.2	4.1	<0.1	<0.1	<0.1 <0.	1 <0.1	<0.1	<0.1	<0.1	<0.1	<pql< td=""><td><0.1</td><td><pql< td=""><td><0.1 <5</td></pql<></td></pql<>	<0.1	<pql< td=""><td><0.1 <5</td></pql<>	<0.1 <5
01	0.9-1.0) Fill	<4	<0.4	8	9	25	0.2	2	23	0.2	<0.5	<0.1	1.5	<25	<50	<25	<50 <	100 <	100				<0.2	<0.5	<1	<3	- <0	.1 <0.	.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.	1 <0.1	<0.1	<0.1	<0.1	<0.1	<pql< td=""><td><0.1</td><td><pql< td=""><td><0.1 <5</td></pql<></td></pql<>	<0.1	<pql< td=""><td><0.1 <5</td></pql<>	<0.1 <5
01	1.4-1.5	5 Natural (possible fill)	9	<0.4	19	54	38	0.1	5	100	<0.05	<0.5	<0.1	< 0.05	<25	<50	<25	<50 <	100 <	100				<0.2	<0.5	<1	<3		-	-	-	-	-	-		-	-	-	-	-	-	-	-	
02	1.2-1.3		<4		45	130		<0.1	_	96	290	420	100 & 73	5700	<25	1000				300				<0.2	<0.5			PQL <	1 <1	1 <1	<1	<1	<1	<1	<1 <1	<1	1	<1	<1	<1	<pql< td=""><td><1</td><td><pql< td=""><td><1 <5</td></pql<></td></pql<>	<1	<pql< td=""><td><1 <5</td></pql<>	<1 <5
202	2.0-2.1		4		30	70		_	_	120	21	31	8 & 6	400	<25	76			_	100			· ·	<0.2			<3		-	-	-	· ·	-	-		-	-	-	-	-	<u> </u>		-	
5112019	2.0-2.1	1 Fill	8	<0.4	45	120	1300	3.9	40	240	•	-	26	-	<200	<500	<200	<500 2	300 <1		- e Assess	ment Cr	riteria	<0.5	<0.5	<0.5	<1.5	- -	-	-	-	-	-	-		-	-	-	-	-	-	-	-	
	Residential		500	150	500	30000	1200	120	1200	60000		4		400															60	10		10		0	400	1	20	10	15	500	, <u> </u>	340		1 130*
					3600 for	-		-	-		-	4	-			-	-	-	-	-			-	-	-		-	-			-			30	200		-						-	
		Istrial HIL D	3000	900	Cr(VI)	240000	0 1500	730	6000	400000	-	40	-	4000	-	-	-	-	-	-			· · ·	-	-	-	-	-	360	00		45	5.	30	200	0	100	50	80	2500	-	2000	-	7 660*
		Vapour Intrusion	•	-	-	-	-		-	-	-	-	3	-	40	110	-	-	-		10		· ·	0.5	160		40	· ·	-	-	-	-	-	-		-	-	-	-	-	-	-	-	
cial/Indu	ustrial HSL	D for Vapour Intrusion		-	-	-	-	-	-	-	-	-	NL	-	250	NL	-	-	-	- 1	NL ·	· ·	· ·	3	NL	NL	230	· ·	-	-	-	-	-	-		-	-	-	-	-	-	-	-	
Url	rban Reside	ential EIL	100	-	200 for Cr(III)	240	1300	-	290	870			170	-	•	-		-	-	-				-	-		-	- 18	- 0	-	-	-	-	-		-	-	-	-	-	-	-	-	
Comm	mercial & In	idustrial EIL	160	-	320 for Cr(III)	340	2000	-	490	1300		-	370	-	•	-		-	-	-		· ·	· ·	-	-	•	-	- 64	0 -	-	-	-	-	-		-	-	-	-	-	-	-	-	
	ban Resider		-	-	-	-	·	-	-	-	0.7	-	-	-	180	-	•			800	_	20 30	_		85	-	45		-	-	-	-	-	-		-	-	-	-	-	-	-	-	
	nercial & Inc			-	-	-	-	-	-	-	1.4	-	-	·	215	·				300		70 17	_	-	135	165	95	· ·	-	-	-	·	-	-		-	-	-	-	-		-	-	
		gement Limits		-	-	-	-	-	-	-	-	-	-	-	-	-			_	0000	-	00 25		-	-	-	-	- -	-	-	-	-	-	-		-	-	-	-	-	-	-	-	
mmercial/	l/Industrial M	Management Limit	-	-	-	-	-	-	· ·	· ·	-	-	-		-	-	700	1000 3	500 10	0000	- 10	00 35	00 1000	0 -	-	-	-	- -		· ·	-	-	-	-		-	-	-	-	-		- /	-	

 BD2_20191022
 Blind replicate of sample from BH103, depth 1 m

 BD3_20191023
 Blind replicate of sample from BH104, depth 0.5 m

- Not tested / Not applicable

TEQ Toxicity Equivalent Quotient PQL Practical quantitation limit

B0A/2019/0122 Blind replicate of sample from BH104, depth 0.1-0.2 m BD26112019 Blind replicate of sample from 202, depth 2.0-2.1 m NAD No asbestos detected at limit of reporting (0.1g/kg)

 BOLD
 Exceeds Residential ecological criterion

 BOLD
 Exceeds Residential and Commercial & Industrial ecological criteria

 BOLD
 Exceeds Residential health-based criterion

 BOLD
 Exceeds Residential and Commercial & Industrial health-based criterion

 BOLD
 Exceeds Residential and Commercial & Industrial health-based criterion

 BOLD
 Exceeds Residential and Commercial & Industrial ecological criteria and management limits

Table 13: Summary of Results of Groundwater Analysis (All results in μ g/L)

				Meta	s (dissol	lved)				Polyc	cylic A	romati	ic Hydro	ocarbo	ons													Т	Total Re	cover	able H	lydroca	arbons	, BTEX	and V	olatile	organ	ic Com	pound	s													
Sample Idea (Borehole or		Arsenic	Cadmium	Chromium (III + VI)	Copper	Lead	Mercury	Nickel	Zinc	Naphthalene	Anthracene	Fluoranthene	Benzo(a)pyrene	Phenanthrene	Other PAH	TRH C6-C10 less BTEX	TRH >C10-C16 less Naphthalene	TRH C6-C10	TRH >C10-C16	TRH >C16-C34	TRH >C34-C40	Benzene	Toulene	Ethylbenzene	o-xylene	m+p-xylene	Isopropylbenzene	1,1-Dichloroethene	8	trans-1,2-Uichloroetnene	uaiis-1,3-Dichloropropene cis-1 3-Dichloropropene	Vinvl chloride	Tetrachloroethene	Trichloroethene	1,2,3-Trichlorobenzene	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	Chlorobenzene	1,1,2,2-Tetrachloroethane	1,1,1-Trichloroethane	1.1.2-Trichloroethane	1,2-Dichloroethane	Carbon tetrachloride	3	Bromodichloromethane	Dibromochloromethane	Bromoform	1,2-Dichloropropane	1,3-Dichloropropane	Styrene	Hexachlorobutadiene	Other VOC
MW1	104	<1	<0.1	<1	1	<1	<0.05	<1	11	<0.2	<0.1	<0.1	<0.1	<0.1	<pql< td=""><td><10</td><td><50</td><td><10</td><td><50</td><td><100</td><td><100</td><td><1</td><td><1</td><td><1</td><td><1</td><td><2</td><td><1</td><td><1</td><td><1 <</td><td><1 <</td><td>:1 <</td><td>1 <1</td><td>0 <1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1 <</td><td>1 <1</td><td> <1</td><td><1</td><td><1</td><td> <1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1 <</td><td><pql< td=""></pql<></td></pql<>	<10	<50	<10	<50	<100	<100	<1	<1	<1	<1	<2	<1	<1	<1 <	<1 <	:1 <	1 <1	0 <1	<1	<1	<1	<1	<1 <	1 <1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1 <	<pql< td=""></pql<>
MW1	105	1	<0.1	2	4	5	0.06	12	18	<0.2	<0.1	<0.1	<0.1	<0.1	<pql< td=""><td><10</td><td><50</td><td><10</td><td><50</td><td><100</td><td><100</td><td><1</td><td><1</td><td><1</td><td><1</td><td><2</td><td><1</td><td><1</td><td><1 <</td><td><1 <</td><td>:1 <</td><td>1 <1</td><td>0 <1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1 <</td><td>1 <1</td><td> <1</td><td><1</td><td><1</td><td> <1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1 <</td><td><pql< td=""></pql<></td></pql<>	<10	<50	<10	<50	<100	<100	<1	<1	<1	<1	<2	<1	<1	<1 <	<1 <	:1 <	1 <1	0 <1	<1	<1	<1	<1	<1 <	1 <1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1 <	<pql< td=""></pql<>
BD1/201	91115	<1	<0.1	<1	2	<1	<0.05	11	11	<1	-	-	-	-	-	<10	<50	<10	<50	<100	<100	<1	<1	<1	<1	<2	-	-	-				-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-
				1							1		1 1			1				I			A	ssessr	nent Cr	iteria	<u> </u>	1	1			- 1	-1	1 1			1		-	1	1				1	1	1 1						
Marine Wa	iter DGV	-	0.7	27 for Cr(III) 4.4 for Cr(VI)	1.3	4.4	0.1	7	8	50	0.01	1	0.1	0.6	-	-	-	-	-	-	-	500	180	80	350 2	75 for m- xylene 200 for p- xylene	30	700	-	-	-	100	0 70	330	-	20	160	260 6	0 55	5 400	0 270) 190	00 190	0 240	370	-	-	-	900	1100	-	-	-
Guidelines for Recreational	Health	100	20	500 for Cr(VI)	20000	100	10	200	-	-	-	-	0.1	-	-	-	-	-	-	-	-	10	8000	3000	60	000	-	300	600		1000	3	500	-	300) 1	5000	- 40	00 300)0 -	-	-	30	30		25	500		-	- 3	300	7	-
Water	Aesthetic	; -	-	-	1000	-	-	- (3000	-	-	-	-	-	-	-	-	-	-	-	-	-	25	3	2	20	-	-	-		-	-	-	-	5		1	20 0.	3 10) -	-	-	-	-			-		-	-	4	-	-
HSL B for Intrus (depth 2 m	sion	-	-	-	-	-	-	-	-	NL	-	-	-	-	-	1000	1000	-	-	-	-	800	NL	NL	N	IL	-	-	-				-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
HSL D for Intrus (depth 2 m	sion	-	-	-	-	-	-	-	-	NL	-	-	-	-	-	6000	NL	-	-	-	-	5000	NL	NL	N	IL	-	-	-				-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Notes:

BD1/20191115 is blind replicate of the sample from 105

BOLD Exceeds DGV

PQL Practical Quantitation Limit

- not defined/ not analysed/ not applicable

Table 13 (continued): Summary of Results of Groundwater Analysis (All results in µg/L)

							Orga		ne Pestio						Organophosphorus Pesticides									Polychlorinated Biphenyls			Phenols	Non-metallic Inorganics			
		ification Replicate)	Aldrin	Dieldrin	gamma-Chlordane	alpha-Chlordane	pp-DDT	Endosulfan I	Endosulfan II	Endrin	Heptachlor	Heptachlor Epoxide	Methoxychlor	Other OCP	Azinphos-methyl	Bromophos-ethyl	Chlorpyrifos	Diazinon	Dichlorovos	Dimethoate	Ethion	Fenitrothion	Malathion	Parathion	Methyl Parathion	Other OPP	Aroclor 1242	Aroclor 1254	Other PCB	Total Phenols	Ammonia (total) as N
	MW10)4	<0.01	<0.01	<0.01	<0.01	<0.006	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<pql< td=""><td><0.02</td><td><0.2</td><td><0.01</td><td><0.01</td><td><0.2</td><td><0.15</td><td><0.2</td><td><0.2</td><td><0.05</td><td><0.01</td><td><0.2</td><td><pql< td=""><td><0.1</td><td><0.1</td><td><pql< td=""><td><50</td><td>8300</td></pql<></td></pql<></td></pql<>	<0.02	<0.2	<0.01	<0.01	<0.2	<0.15	<0.2	<0.2	<0.05	<0.01	<0.2	<pql< td=""><td><0.1</td><td><0.1</td><td><pql< td=""><td><50</td><td>8300</td></pql<></td></pql<>	<0.1	<0.1	<pql< td=""><td><50</td><td>8300</td></pql<>	<50	8300
	MW10)5	<0.01	<0.01	<0.01	<0.01	<0.006	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<pql< td=""><td><0.02</td><td><0.2</td><td><0.01</td><td><0.01</td><td><0.2</td><td><0.15</td><td><0.2</td><td><0.2</td><td><0.05</td><td><0.01</td><td><0.2</td><td><pql< td=""><td><0.1</td><td><0.1</td><td><pql< td=""><td><50</td><td>220</td></pql<></td></pql<></td></pql<>	<0.02	<0.2	<0.01	<0.01	<0.2	<0.15	<0.2	<0.2	<0.05	<0.01	<0.2	<pql< td=""><td><0.1</td><td><0.1</td><td><pql< td=""><td><50</td><td>220</td></pql<></td></pql<>	<0.1	<0.1	<pql< td=""><td><50</td><td>220</td></pql<>	<50	220
BD	1/2019	01115	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Assessment Criteria																															
Mari	ne Wate	er DGV	0.003	0.01	0.0	001	0.0004	0.0	005	0.004	0.0004	-	0.004	-	0.01	-	0.01	0.01	-	0.15	-	0.001	0.05	0.004	-	-	0.3	0.01	-	-	5070 at pH 6.6
Guidelin Recreat		Health	ć	3	2	20	90	2	00	-	3	}	3000	-	300	100	100	40	50	70	40	70	700	200	7	-	-	-	-	-	-
Wate	er	Aesthetic	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	500
	-	ur Intrusion o <4 m)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	•	ur Intrusion o <4 m)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Notes:

BD1/20191115 is blind replicate of the sample from 105

BOLD Exceeds DGV and guideline for recreational water

PQL Practical Quantitation Limit

- not defined/ not analysed/ not applicable

9.3 Soil Contaminants

Concentrations of arsenic, chromium, nickel and zinc were within the respective HIL B, HIL D, urban residential EIL, commercial/industrial EIL in analysed soil samples. Concentrations of cadmium and mercury were within HIL B and HIL D.

Concentrations of copper in soil were within HIL B and HIL D and the commercial/industrial EIL. Concentrations of copper were within the urban residential EIL (240 mg/kg) except for the fill sample from Borehole 104, depth 3 m (280 mg/kg). Statistical analysis on fill samples using ProUCL 5.1 indicates that this exceedance of the urban residential EIL is not significant given that the 95% Adjusted Gamma Upper Confidence Limit (UCL) of 104 mg/kg is less than the urban residential EIL and the standard deviation of 68.96 mg/kg is less than half of the urban residential EIL. The input values and output values are shown in Appendix F. Note that, to be conservative, the higher recorded concentration for replicate pairs was used as input values.

Concentrations of lead were within HIL D, urban residential EIL and commercial/industrial EIL. Concentrations of lead were within HIL B (1200 mg/kg) except for the replicate fill sample (BD26112019) from Borehole 202, depth 2 - 2.1 m (1300 mg/kg). Statistical analysis on fill samples using ProUCL 5.1 indicates that this exceedance of the urban residential EIL is not significant given that the 95% Chebyshev Upper Confidence Limit (UCL) of 607.6 mg/kg is less than the urban residential EIL and the standard deviation of 378.9 mg/kg is less than half of the urban residential EIL. The input values and output values are shown in Appendix F. Note that, to be conservative, the higher recorded concentration for replicate pairs was used as input values. It is also noted that the primary sample from Borehole 202, depth 2 - 2.1 m, had a concentration of 320 mg/kg which is well within HIL B.

Concentrations of benzo(a)pyrene TEQ were within HIL B (4 mg/kg) except for samples from Borehole 105, depth 2 m (11 mg/kg); Borehole 105, depth 3 m (7.9 mg/kg); Borehole 202, depth 1.2 - 1.3 m (420 mg/kg); and Borehole 202, depth 2 - 2.1 m (31 mg/kg). Concentrations of benzo(a)pyrene TEQ were within HIL D (40 mg/kg) except for sample from Borehole 202, depth 1.2 - 1.3 m (420 mg/kg). Concentrations of total PAH were within HIL B (400 mg/kg) and HIL D (4000 mg/kg) except for the sample from Borehole 202, depth 1.2 - 1.3 m (5700 mg/kg).

Concentrations of benzo(a)pyrene exceeded the urban residential ESL (0.7 mg/kg) in eight of nineteen analysed samples. Concentrations of benzo(a)pyrene exceeded the commercial/industrial ESL (1.4 mg/kg) in five of these samples. CRC CARE 2017, Technical Report No. 39, Risk-based management and remediation guidance for benzo(a)pyrene, 2017 provides a high reliability ecological guidelines for fresh benzo(a)pyrene of 33 mg/kg for public open space and 172 mg/kg for commercial/industrial sites (and the bioavailability and bio-accessibility of aged benzo(a)pyrene tends to be less than that of fresh benzo(a)pyrene which means that the ecological guideline is conservative for aged benzo(a)pyrene). (It is considered that the benzo(a)pyrene in fill is aged given the site history). The recorded concentrations of benzo(a)pyrene for all analysed samples were within the CRC CARE ecological guidelines for residential sites and commercial / industrial sites except for the sample from Borehole 202, depth 1.2 - 1.3 m (290 mg/kg). In addition to CRC Care remediation guidance for benzo(a)pyrene, the Canadian Council of Ministers of the Environment, Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health, Polycyclic Aromatic Hydrocarbons, 2010 provides Environmental Soil Quality Guidelines (SQGE) of 20 mg/kg for residential sites and 72 mg/kg for commercial and industrial sites. The recorded concentrations of benzo(a)pyrene for all analysed samples are within the commercial / industrial SQGE except for the sample from Borehole 202,

depth 1.2 - 1.3 m. Concentrations were within the residential SQG_E except for the samples from Borehole 202, depth 1.2 - 1.3 m and Borehole 202, depth 2.0 - 2.1 mg/kg (21 mg/kg).

Concentrations of naphthalene were within the urban residential EIL, commercial/industrial EIL and HSL D for vapour intrusion. Concentrations of naphthalene were within HSL B for vapour intrusion (3 mg/kg) except for samples from Borehole 105, depth 2 m (3.9 mg/kg); Borehole 105, depth 3 m (4 mg/kg); Borehole 202, depth 1.2 - 1.3 m (100 mg/kg and 73 mg/kg); Borehole 202, depth 2 - 2.1 m (8 mg/kg and 6 mg/kg for the primary samples and 26 mg/kg for the replicate sample). It is noted that samples from depths of 2 m and 3 m from Borehole 105 also had recorded naphthalene concentrations of 2 mg/kg and 1.9 mg/kg, respectively.

Concentrations of TRH C₆-C₁₀ and BTEX were less than PQL in analysed samples, however, it is noted that the PQL for TRH C₆-C₁₀ for the replicate sample BD26112019 was significantly raised due to matrix interference. The PQL of 200 mg/kg for TRH C₆-C₁₀ in sample BD26112019 is greater than the HSL B for vapour intrusion and residential ESL. Apart from this, concentrations of TRH C₆-C₁₀ and BTEX were within the respective HSL B for vapour intrusion, HSL D for vapour intrusion, residential ESL, commercial/industrial ESL, residential management limit and commercial / industrial management limit. Concentrations of VOC (in addition to BTEX) were less than the PQL in analysed samples.

Concentrations of TRH >C₁₀-C₁₆ were less than the PQL except for samples from Borehole 102, depth 0.5 m (63 mg/kg); Borehole 202, depth 1.2 - 1.3 m (1100 mg/kg); and Borehole 202, depth 2.0 - 2.1 m (82 mg/kg). The concentration of TRH >C₁₀-C₁₆ with silica gel clean-up in the sample from Borehole 102, depth 0.5 m, was less than the PQL. It is noted that the PQL for TRH >C₁₀-C₁₆ for the replicate sample BD26112019 was significantly raised due to matrix interference. The PQL of 500 mg/kg for TRH >C₁₀-C₁₆ in sample BD26112019 is greater than the HSL B for vapour intrusion, residential ESL, and commercial/industrial ESL. Concentrations of TRH >C₁₀-C₁₆ (less naphthalene) were within the HSL D for vapour intrusion. Concentrations of TRH >C₁₀-C₁₆ (less naphthalene) were within HSL B for vapour intrusion (110 mg/kg) except for the sample from Borehole 202, depth 1.2 - 1.3 m (1000 mg/kg). Concentrations of TRH >C₁₀-C₁₆ were within residential ESL (120 mg/kg), commercial/industrial ESL (170 mg/kg), residential management limit (1000 mg/kg) and commercial / industrial management limit (1000 mg/kg) except for the sample from Borehole 202, depth 1.2 - 1.3 m.

Concentrations of TRH >C₁₆-C₃₄ were within the urban residential ESL (300 mg/kg) except for the samples from Borehole 102, depth 0.5 m (640 mg/kg); Borehole 105, depth 2 m (390 mg/kg); Borehole 105, depth 3 m (340 mg/kg); Borehole 202, depth 1.2 - 1.3 m (8500 mg/kg); and Borehole 202, depth 2.0 - 2.1 m (780 mg/kg for the primary sample and 2300 mg/kg for the replicate sample). The concentration of TRH >C₁₆-C₃₄ with silica gel clean-up for the sample from Borehole 102, depth 0.5 m (440 mg/kg) exceeded the urban residential ESL. Concentrations of TRH >C₁₆-C₃₄ were within the industrial /commercial ESL (1700 mg/kg) except for the sample from Borehole 202, depth 1.2 - 1.3 m, and the replicate sample from Borehole 202, depth 2.0 - 2.1 m. Concentrations of TRH >C₁₆-C₃₄ were within the urban residential management limit (2500 mg/kg) and commercial / industrial management limit (3500 mg/kg) except for the sample from Borehole 202, depth 1.2 - 1.3 m.

Concentrations of TRH $>C_{34}-C_{40}$ were within the urban residential ESL, industrial / commercial ESL, urban residential management limit and commercial / industrial management limit.

Concentrations of aldrin and dieldrin were less than the PQL except for the samples from Borehole 108, depth 0.1 - 0.2 m, and Borehole 109, depth 0.15 - 0.2 m. The concentrations of aldrin (7.9 mg/kg) and dieldrin (15 mg/kg) in the sample from Borehole 108 were above HIL B (10 mg/kg) but below HIL D (45 mg/kg). The concentrations of aldrin (2.2 mg/kg) and dieldrin (4.1 mg/kg) in the sample from Borehole 109 were within HIL B and HIL D.

Concentrations of OCP other than aldrin and dieldrin were less than the PQL in analysed samples. Hence, concentrations of DDT were within the urban residential EIL and commercial / industrial EIL; and concentrations of DDT, DDE, DDD, chlordane, endosulfan, endrin, heptachlor, HCB and methoxychlor were within HIL B and HIL D.

Concentrations of PCB, OPP and total phenols were less than the PQL, and, hence, concentrations of total PCB, phenols and chlorpyriphos were within the respective HIL B and HIL D.

Asbestos was not detected at the laboratory limits of reporting in analysed samples.

9.4 Groundwater Contaminants

Concentrations of arsenic were below the PQL except in the primary sample from Borehole 105. The concentration $(1 \ \mu g/L)$ in this sample was well within the guideline for recreational water. There is no DGV for marine water for arsenic. It is noted, however, that the recorded concentration for the primary sample from Borehole 105 is within the freshwater DGV for a slightly to moderately disturbed ecosystem which are 24 for arsenic III and 13 for arsenic V.

Concentrations of cadmium were below the PQL in all analysed samples.

Concentrations of chromium were below the PQL except in the primary sample from Borehole 105. The concentration (2 μ g/L) in this sample was within the DGV and guideline for recreational water.

The copper concentration $(1 \ \mu g/L)$ for the sample from Borehole 104 was within the DGV and guideline for recreational water. The copper concentrations in the primary sample $(4 \ \mu g/L)$ and replicate sample $(2 \ \mu g/L)$ from Borehole 105 were above the DGV $(1.3 \ \mu g/L)$ but well within the guidelines for recreational water use. The recorded copper concentrations are considered to be consistent with typical background ranges for groundwater in Sydney.

Concentrations of lead were below the PQL except in the primary sample from Borehole 105. The concentration (5 μ g/L) in this sample was marginally above the DGV (4.4 μ g/L) but well within the guideline for recreational water. It is noted that the replicate sample from BH105 had a concentration (<1 μ g/L) within the DGV. The recorded lead concentrations are considered to be consistent with typical background ranges for groundwater in Sydney.

Concentrations of mercury were below the PQL except in the primary sample from Borehole 105. The concentration (0.06 μ g/L) in this sample was within the DGV and guideline for recreational water.

The nickel concentration in the sample from Borehole 104 was less than the PQL. The nickel concentrations in the primary sample (12 μ g/L) and the replicate sample (11 μ g/L) from BH105 were above the DGV (7 μ g/L) but well within the guideline for recreational water. The recorded nickel concentrations are considered to be consistent with typical background ranges for groundwater in Sydney.

The recorded zinc concentrations (11 μ g/L in the sample from Borehole 104, and 11 μ g/L and 18 μ g/L in the samples from Borehole 105) were above the DGV (8 μ g/L) but well within the guideline for recreational water. The recorded zinc concentrations are considered to be consistent with typical background ranges for groundwater in Sydney.

Concentrations of TRH, BTEX, VOC, OCP, OPP, PCB and total phenols were less than the PQL in all analysed samples.

The concentration of total ammonia in the sample from Borehole 105 (220 μ g/L as N) was well within the DGV and guideline for recreational use. The concentration of total ammonia (8300 μ g/L as N) in the sample from Borehole 104 was above the DGV (5070 μ g/L as N at pH 6.6) and the guideline for recreational water (500 μ g/L).

10. Discussion

Given the presence of a hydrocarbon odour and the observed absence of coal or a similar substance, the primary source of the high concentrations of PAH and TRH in fill at Borehole 202 may be coal tar, although this is not confirmed. Coal tar is pre-classified as hazardous waste according to NSW EPA, *Waste Classification Guidelines*, 2014. It is noted that concentrations of PAH and TRH were below the PQL in samples from the two groundwater monitoring wells (Boreholes 104 and 105) which are inferred to be down-gradient of Borehole 202 which indicates that the PAH and TRH contaminated fill at Borehole 202 has not impacted groundwater.

Apart from the potential coal tar at Borehole 202 discussed above, elevated concentrations of metals (in particular, copper and lead), PAH and TRH in fill may be attributed to the nature of the fill which was observed to contain various soil types and commonly contained anthropogenic materials. Coal and coal wash (which has a component of coal) was observed in fill and may be a source of PAH which was recorded at concentrations above the PQL in the majority of fill samples. The results for groundwater samples indicate that the fill with elevated concentrations of metals, PAH and TRH has not impacted groundwater at the southern part of the site.

The two fill samples with aldrin and dieldrin concentrations above the PQL (from Boreholes 108 and 109) were from directly beneath the concrete slab in the basement of the Harwood Building which indicates that these pesticides have been applied beneath the slab for the purpose of pest control. These chemicals were not identified in the groundwater at Borehole 105 which is inferred to be down-gradient of the Harwood Building, which indicates that groundwater has not been impacted from the use of these pesticides.

The source of ammonia in groundwater at Borehole 105 is not known and could potentially be from offsite. It is noted that the samples were not filtered and, thus, the elevated concentration in the sample from BH104 could be from particulate matter (soil) rather than dissolved ammonia.

Overall, results indicate that remediation or management of contamination will be required for site development although the extent of remediation / management will likely depend on the layout of future site uses and the presence or absence of accessible soil (for landscaping).

Prior to establishing plans for remediation / management of contamination, a detailed site investigation (including soil and groundwater sampling) should be undertaken.

11. Conclusion

Limited intrusive investigations have revealed the presence of fill up to 5 m in depth. Fill comprised various soil types and commonly contained anthropogenic materials. Elevated concentrations of PAH, TRH, metals and OCP have been identified in fill. In addition, an elevated concentration of ammonia in groundwater was encountered at one sample location.

Overall, results indicate that remediation or management of contamination will be required for site development although the extent of remediation / management will likely depend on the layout of future site uses as well as the results of additional investigation.

The following is recommended for the Stage 2 detailed DA:

• A detailed site investigation (including soil and groundwater sampling).

The results of the detailed site investigation would be used to determine remediation or management requirements to address site contamination. On this basis, it is considered that the site can be made suitable for the proposed Powerhouse Ultimo Renewal development.

12. Limitations

Douglas Partners (DP) has prepared this report for the Powerhouse Ultimo Renewal project at 500 Harris Street, Ultimo in general accordance with DP's proposals dated 23 February 2022 and acceptance received from Department of Premier and Cabinet. This report is provided for the exclusive use of Department of Premier and Cabinet for this project only and for the purposes as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage. In preparing this report DP has necessarily relied upon information provided by the client and/or their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and/or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after DP's field testing has been completed.

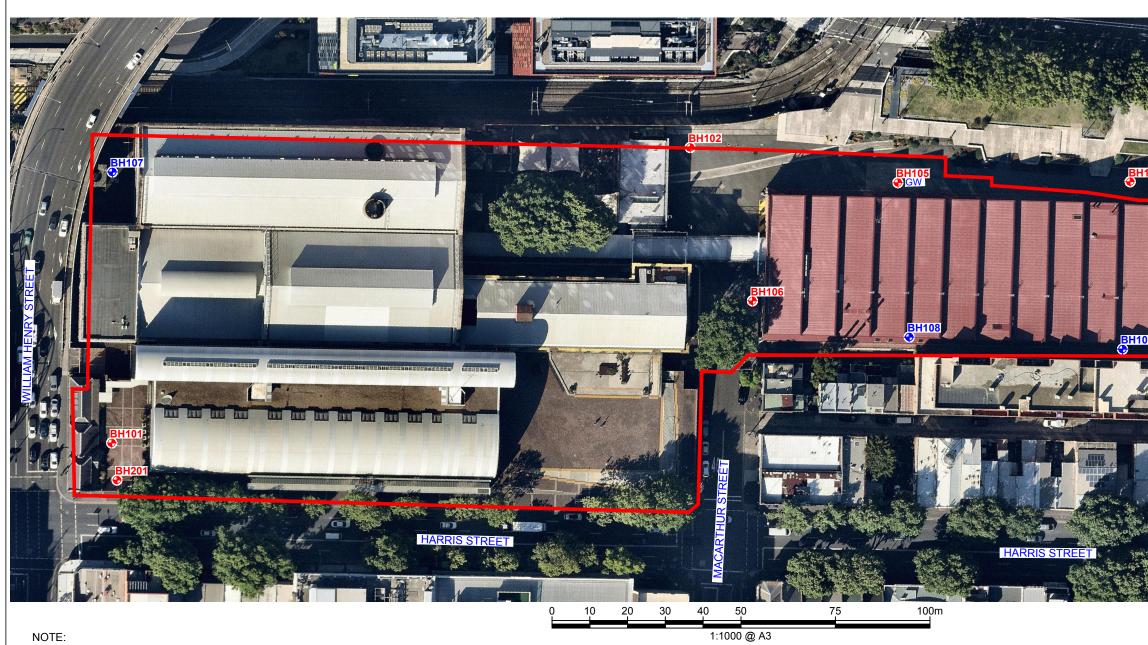
Page 36 of 37

DP's advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by DP in this report may be affected by undetected variations in ground conditions across the site between and beyond the sampling and/or testing locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.

The assessment of atypical safety hazards arising from this advice is restricted to the (environmental) components set out in this report and based on known project conditions and stated design advice and assumptions. While some recommendations for safe controls may be provided, detailed 'safety in design' assessment is outside the current scope of this report and requires additional project data and assessment.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

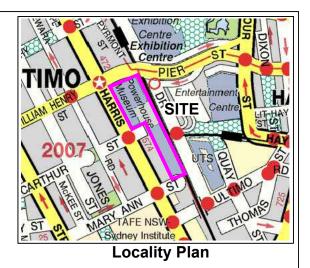

Asbestos has not been detected by observation or by laboratory analysis, either on the surface of the site, or in filling materials at the test locations sampled and analysed. Building demolition materials, such as concrete, brick, terracotta and ceramics, were, however, located in previous below-ground fill, and these are considered as indicative of the possible presence of hazardous building materials (HBM), including asbestos.

Although the sampling plan adopted for this investigation is considered appropriate to achieve the stated project objectives, there are necessarily parts of the site that have not been sampled and analysed. This is either due to undetected variations in ground conditions or to budget constraints (as discussed above), or to parts of the site being inaccessible and not available for inspection/sampling. It is therefore considered possible that HBM, including asbestos, may be present in unobserved or untested parts of the site, between and beyond sampling locations, and hence no warranty can be given that asbestos is not present.

Douglas Partners Pty Ltd

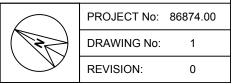
Appendix A

Drawing


NOTE:

1: Base image from Nearmap.com (Dated 22.10.2019)

2: Test locations are approximate only and are shown with reference to existing features.



CLIENT: Create NSW, Department of Premier and Cabinet | TITLE: Location of Tests **Powerhouse Museum** OFFICE: Sydney DRAWN BY: PSCH 500 Harris Street, ULTIMO SCALE: 1;1000 @ A3 DATE: 18.11.2019

LEGEND

- Borehole location
- 🔶 Hand auger bore
- GW Groundwater well

Appendix B

Borehole Logs

About this Report

CLIENT:

PROJECT:

LOCATION:

Ultimo Creative Industries Precinct

Powerhouse Museum, 500 Harris Street,

Creat NSW, Department of Premier and Cabinet SURFACE LEVEL: 15.2 AHD EASTING: 333431 NORTHING: 6249918 DIP/AZIMUTH: 90°/--

BORE No: BH101 PROJECT No: 86874.00 DATE: 22/10/2019 SHEET 1 OF 1

Ultimo Sampling & In Situ Testing Well Description Graphic Log Water Depth 뭅 Sample Construction of Depth Results & Comments (m) Type Details Strata FILL/Silty SAND: fine, brown-dark brown, trace fine mixed A/E 0.1 PID<1 origin gravel, moist 0.4 FILL/SANDSTONE BOULDER: fine to medium, A/E* 0.5 PID<1 red-brown, dry 0.55 4 Ä CONCRETE: pale grey, aggregate diameter from 10-25mm, 8mm steel reinforcement 00 0.78 Bore discontinued at 0.78m No further drilling after encountering concrete • 1 1 -2 -2 . m - 3 -3 _⊇ -4 - 4

RIG: Bobcat DRILLER: JE TYPE OF BORING: Solid Flight Auger (TC-bit) to 0.55m, NMLC to 0.78m WATER OBSERVATIONS: No free groundwater observed during augering REMARKS: *replicate BD1 20191022

G P U_x W

₽

A Auger sample B Bulk sample BLK Block sample

CDE

Core drilling Disturbed sample Environmental sample

LOGGED: RK

CASING: HW to 0.5m, HQ to 0.5m

SAMPLING & IN SITU TESTING LEGEND Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa)

		s Partne	rs Proje BH II	ct No: 86874 0 BH 101 h: 0.55 - 0.7	0 8 m	
			Core	Box No.: 1		
owerhouse						
86874.00	BHIOI	Start at 0.5	5m 22/10/19	sie.		ind of hole of 0.78m
1.2.1.	-37					and the second second
				a and another the formation of a survey		
-						
		and the second	and the second			1

Creat NSW, Department of Premier and Cabinet SURFACE LEVEL: 6.1 AHD EASTING: 333572 NORTHING: 6249819 DIP/AZIMUTH: 90°/--

BORE No: BH102 PROJECT No: 86874.00 DATE: 22/10/2019 SHEET 1 OF 1

Ultimo Sampling & In Situ Testing Graphic Well Description Water Depth Log Sample Construction 뭅 of Depth Results & Comments (m) Type Details Strata ASPHALTIC CONCRETE: dark grey-black 0.05 A/E 0.1 PID<1 FILL/Silty SAND: fine, dark brown-brown with fine to coarse mixed origin gravel, dry-moist 0.3 FILL/SAND: fine to coarse, dark grey with concrete fragments (20-70mm diameter) and fine to coarse mixed origin gravel, moist A/E 0.5 PID<1 0.8 FILL/Clayey SAND: fine to coarse, low plasticity, dark grey with fine to coarse mixed origin gravel, moist 1.0 PID<1 1.0 ·A/E Bore discontinued at 1.0m S 1/20mm refusal No further drilling after encountering concrete HB - 2 -2 . 3 - 3 -4 - 4

RIG: Bobcat DRILLER: JE TYPE OF BORING: Solid Flight Auger (TC-bit) to 1.00m WATER OBSERVATIONS: No free groundwater observed during augering **REMARKS:** HB = SPT hammer bouncing

SAMPLING & IN SITU TESTING LEGEND

Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level

G P U_x W

₽

A Auger sample B Bulk sample BLK Block sample

CDE

Core drilling Disturbed sample Environmental sample

CLIENT:

PROJECT:

LOCATION:

Ultimo Creative Industries Precinct

Powerhouse Museum, 500 Harris Street,

LOGGED: RK

CASING: none

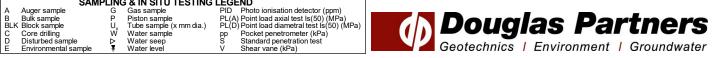
CLIENT: **PROJECT:** LOCATION:

Creat NSW, Department of Premier and Cabinet SURFACE LEVEL: 6.3 AHD **Ultimo Creative Industries Precinct** Powerhouse Museum, 500 Harris Street, Ultimo

EASTING: 333618 **NORTHING:** 6249712 DIP/AZIMUTH: 90°/--

BORE No: BH103 PROJECT No: 86874.00 DATE: 22/10/2019 SHEET 1 OF 1

	,								1
	Depth	Description	hic				& In Situ Testing	e	Well
RL	(m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
\vdash	0.05					s		-	Details
$\left \right $	0.05 -	ASPHALTIC CONCRETE: black-dark grey EILL/SAND: fine to coarse dark grey/dark brown with fine		ΑÆ	0.1		PID<1		- I
	-	FILL/SAND: fine to coarse, dark grey-dark brown with fine to coarse mixed origin gravel, dry-moist							F
-9	- 0.4 -								[
	- 0.4	FILL/SANDSTONE BOULDERS: fine to medium, red-brown, with fine to coarse mixed origin gravel, moist		A/E	0.5		PID<1		
-	-	reu-brown, with the to coarse mixed origin gravel, moist							-
-	-								-
ŀ	-	0.80m: with building rubble (brick fragments)		A	0.8				
	•			A/F*	10				
	-1			A/E* S	1.0		PID<1 3/20mm		['
	-	1.10-1.20m: steel rebars (x2) in sidewall					refusal HB		
-9	-	1.20-1.30m: dimensioned sandstone block							
+	-								
	. 16			E	1.5		PID<1		
	- 1.6 - 1.7	CONCRETE: pale grey	4.4						
-	-	Bore discontinued at 1.7m No further drilling after encountering concrete							-
+	-								
	-2								-2
-4	-								-
-	-								-
+									
	-								
t	.								
	_								
-	-3								-3
+	-								
+	-								
-0	-								
	-								- I
$\left \right $	-								- I
	.								†
	-4								-4
	-								
	-								- I
-~	-								- I
	-								F
	.								
	-								
	-								-
$\left \right $	-								- I
	l			I	I		1	I	1
RIC	G: Bobca	at DRILLER: JE		1.00	GGED	· PK	CASING	2. n	000


RIG: Bobcat TYPE OF BORING: Solid Flight Auger (TC-bit) to 1.70m

DRILLER: JE

LOGGED: RK

WATER OBSERVATIONS: No free groundwater observed during augering

REMARKS: *replicate BD2 20191022, borehole location moved three times, about 0.5m apart, first two attempts refused on steel at a depth of 0.8m, HB = SPT hammer bouncing SAMPLING & IN SITU TESTING LEGEND

CLIENT: PROJECT: LOCATION:

Creat NSW, Department of Premier and Cabinet SURFACE LEVEL: 5.8 AHD Ultimo Creative Industries Precinct Powerhouse Museum, 500 Harris Street, Ultimo

EASTING: 333630 NORTHING: 6249665 **DIP/AZIMUTH:** 90°/--

BORE No: BH104 **PROJECT No: 86874.00** DATE: 23/10/2019 SHEET 1 OF 2

	Depth	Description	d d				& In Situ Testing	te	Well
	(m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
-	0.1	CONCRETE: pale grey, aggregate diameter from	/	A/E	0.1	00	PID<1		Flush Gatic Cover
	0.4			A/E*	0.5		PID<1		Gravel
- 1	1 1.0	FILL/Clayey SAND: fine to medium, low plasticity, pale grey, trace building rubble (fragments of terracotta, brick and glass), moist		A/E S	1.0		PID<1 4,5,7 N = 12		Gravel
	1.5 1.6	FILL/CLAY: low plasticity, brown-dark brown with fine to medium clayey sand and fine to coarse mixed origin gravel, w <pl< td=""><td></td><td>ΑÆ</td><td>1.5</td><td></td><td>PID<1</td><td></td><td>Blank</td></pl<>		ΑÆ	1.5		PID<1		Blank
-2	2	FILL/COAL WASH: fine to coarse coal wash gravel, black-dark grey with fine to coarse sand, moist		ΑÆ	2.0		PID<1		- Bentonite
	2.5	FILL/GRAVEL: fine to coarse mixed origin, dark grey and brown with igneous cobbles and fine to coarse sand, moist FILL/SAND: fine to coarse, dark grey-dark brown, trace		ES	2.5		1,2,5 N = 7		
- 3	3	clay, coal wash, fine to coarse mixed origin gravel and building rubble (fragments of terracotta, brick, ceramics and concrete), moist		Е	3.0		PID<1		
				Е	3.5		PID<1		
4	3.8 1	FILL/SAND: fine to medium, dark grey-dark brown, trace building rubble (fragments of terracotta and ceramics), moist 4.00m: becoming wet		E S	4.0		PID<1 5,6,8 N = 14		
	4.5	Silty CLAY CH: high plasticity, dark grey with fine sand, w <pl, alluvial<="" firm,="" td=""><td></td><td>Е</td><td>4.5</td><td></td><td>PID<1</td><td></td><td></td></pl,>		Е	4.5		PID<1		
- 5	5	v - E, inn, alevia		A/E	5.0		PID<1		
- 6	5.5	Silty SAND SP: fine to medium, dark grey with clay, wet, loose, alluvial		S	5.5		2,3,6 N = 9	Ţ	
	6.8							13-11-19	
.7	7	Sandy CLAY CL: low plasticity, fine, pale grey mottled yellow-brown, w <pl, residual<="" stiff,="" td="" very=""><td></td><td>S</td><td>7.0</td><td></td><td>8,11,12 N = 23</td><td></td><td>-7 Gravel</td></pl,>		S	7.0		8,11,12 N = 23		-7 Gravel
8	8.2								
-9)	CLAY CH: high plasticity, dark grey-grey with fine sand, w <pl, residual<="" stiff,="" td="" very=""><td></td><td>S</td><td>8.5</td><td></td><td>5,10,14 N = 24</td><td></td><td></td></pl,>		S	8.5		5,10,14 N = 24		
	9.6	Sandy CLAY CI: low plasticity, fine to medium, pale grey, w <pl, residual<="" stiff,="" td="" very=""><td></td><td>_s_</td><td>_10.0_</td><td></td><td>7,11,12</td><td></td><td></td></pl,>		_s_	_10.0_		7,11,12		

TYPE OF BORING: Diatube to 0.10m, Solid Flight Auger (TC-bit) to 6.00m, wash boring to 12.30m WATER OBSERVATIONS: Free groundwater encountered at 4.00m

REMARKS: *replicate BD3_20191023, HB = SPT hammer bouncing

	SAN	IPLINO	3 & IN SITU TESTING	LEG	END		
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	_	
В	Bulk sample	Р	Piston sample	PL(/	A) Point load axial test Is(50) (MPa)		Bouglas Borthoore
BLH	Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test Is(50) (MPa)		Doublas Partners
C	Core drilling	Ŵ	Water sample	aq (Pocket penetrometer (kPa)		Douglas Partners
D	Disturbed sample	⊳	Water seep	s	Standard penetration test		
E	Environmental sample	Ţ	Water level	V	Shear vane (kPa)		Geotechnics Environment Groundwater
	· · · ·						

CLIENT:

PROJECT:

LOCATION:

Ultimo Creative Industries Precinct

Powerhouse Museum, 500 Harris Street,

Creat NSW, Department of Premier and Cabinet SURFACE LEVEL: 5.8 AHD EASTING: 333630 NORTHING: 6249665 DIP/AZIMUTH: 90°/--

BORE No: BH104 PROJECT No: 86874.00 DATE: 23/10/2019 SHEET 2 OF 2

Ultimo Sampling & In Situ Testing Well Description Graphic Log Water Depth Sample Ъ Construction of Depth Type Results & Comments (m) Strata Details Sandy CLAY CI: low plasticity, fine to medium, pale grey, w<PL, very stiff, residual *(continued)* N = 23 11 -11 End Cap 11.8 SANDSTONE: fine to medium, yellow-brown, inferred 7,5/50mm refusal HB 12 low-medium strength 12.1 S 12.3 Bore discontinued at 12.3m Groundwater monitoring well installed - 13 13 14 14 15 -15 ___ 16 -16 17 - 17 - 18 18 19 - 19

DRILLER: JE LOGGED: RK RIG: Bobcat TYPE OF BORING: Diatube to 0.10m, Solid Flight Auger (TC-bit) to 6.00m, wash boring to 12.30m WATER OBSERVATIONS: Free groundwater encountered at 4.00m REMARKS: *replicate BD3 20191023, HB = SPT hammer bouncing

CASING: HW to 6.0m

A Auger sample G Gas sample P Di D Photo ionisation detector (ppm) B Bulk sample P Piston sample PL(A) Point load axial test Is(50) (MPa) BLK Block sample U, Tube sample (x mm dia.) C Core drilling W Vater sample p Pocket penetrometer (kPa)	
B Bulk sample P Piston sample PL(A) Point load axial test Is(50) (MPa) BLK Block sample U Tube sample (x mm dia.) PL(D) Point load diametral test Is(50) (MPa) Du Tube sample (x mm dia.) PL(D) Point load diametral test Is(50) (MPa) Deckt ametrication (x mm dia.) PL(D) Point load diametral test Is(50) (MPa)	_
	artnerg
D Disturbed sample D Water seep S Standard penetration test	1 1 0
E Environmental sample Water level V Shear vane (kPa)	t Groundwater

CLIENT: PROJECT: LOCATION:

Creat NSW, Department of Premier and Cabinet SURFACE LEVEL: 6.2 AHD **Ultimo Creative Industries Precinct** Powerhouse Museum, 500 Harris Street, Ultimo

EASTING: 333589 NORTHING: 6249766 **DIP/AZIMUTH:** 90°/-- BORE No: BH105 **PROJECT No: 86874.00** DATE: 28/10/2019 SHEET 1 OF 2

$\left[\right]$			Description	Degree of Weathering	<u>.</u>	Rock Strength	ŗ	Fracture	Discontinuities	Sa	amplir	ng & I	n Situ Testing
R	De (n		of	Weathering	iraph Log	Ex Low Very Low Medium Very High Ex High	Water	Spacing (m)	B - Bedding J - Joint	Type	Core Rec. %	۵°	Test Results &
		,	Strata	H M M M M M M M M M M M M M M M M M M M	G	Ex Low Very Low Medium High Very High Ex High		0.05	S - Shear F - Fault	È	с я	Ж°́	Comments
- 9 -		0.23	CONCRETE: pale grey, aggregate size from 15-45mm, 8mm reinforcing steel FILL/ SAND: fine to coarse, yellow							A/E A/E			PID<1 PID<1
	- - - - 1	-	brown, with fine to coarse mixed origin gravel, moist (wet at top from diatube)		\bigotimes					A/E			PID<1
-0-			θ.79m: sandstone boulders		\bigotimes					s	1		2,4,4
			θ.9m: colour change to dark brown dark grey, trace fine to coarse mixed origin gravel		\bigotimes					E	-		N = 8 PID<1
	-2	-	1.4m: trace building rubble (fragments of brick, terracotta and (ceramics)		\bigotimes					E*			PID<1
			2.0m: with low plasticity clay, trace sandstone cobbles		\bigotimes					E			PID<1
					\bigotimes					s			1,2,5 N = 7
	-3				\bigotimes					A/E			PID<1
		3.5	Sandy CLAY CL: low plasticity, fine to medium, dark grey dark brown,				-			E			PID<1
	-4	4.0	w <pl, alluvial<br="" firm,="" soft="" to="">Sandy CLAY CL-CI: low to medium</pl,>		<u>.</u>		19			E			PID<1
-~-			plasticity, fine to medium, yellow brown, w <pl, residual<="" stiff,="" td=""><td></td><td>· / · /</td><td></td><td>13-11-19</td><td></td><td></td><td>s</td><td></td><td></td><td>1,4,11 N = 15</td></pl,>		· / · /		13-11-19			s			1,4,11 N = 15
		4.5	SANDSTONE: medium to coarse, yellow-brown, iron stained, low						4.55m: J 40°, cln, pl, vr				PL(A) = 0.2
	-5	5.0	strength, moderately weathered, Hawkesbury Sandstone		\ge				4.8m: CORE LOSS: 200mm				
		E 20			\bowtie				5.11m: CORE LOSS: 270mm				
	-6	5.38 -	SANDSTONE: medium to coarse, pale grey and yellow-brown some red-brown, iron stained, indistinctly bedded, medium then high strength, slightly weathered, slightly fractured, Hawkesbury Sandstone						5.62m: J 35°, cln. pl \5.85m: J 65°, cln, pl 5.92m: B 10°, cln, pl	с	82	80	PL(A) = 0.5
					· · · · · · · · · · · · · · · · · · ·			┆┊╎┎╝╎	6.59m: B 10°, cln, pl, ro				PL(A) = 0.9
	-7								6.84m: Cs, h 20mm 7.04m: B 5°, cln, pl, ro				
													PL(A) = 1
									7.75m: J 45°, cln, pl, ro				
-7	- 8	8.0	SANDSTONE: as above		· · · · · · · · · · · · · · · · · · ·			┆┊┆┎┛┆	8.25m: J 30°, cln, pl, ro				
Ę									8.47m: B 10°, cln, pl, ro	с	100	93	PL(A) = 1.4
-3	-9	8.62 -	SANDSTONE: medium to coarse, pale grey, indistinctly bedded, high strength, fresh, slightly fractured, Hawkesbury Sandstone					· · · · _ · · · · · · · · · · · · · · · · · · ·	8.64m: B h, cln, pl, ro				
Ē		9.33	9.33-9.45m: siltstone bed			│ ┎┼┼┼┙ │ │ │ ┎┼┼┼┙ │ │ │			9.33m: Cs h 35mm				PL(A) = 0.8
			9.55-9.61m: siltstone bed										
					:::::								

RIG: Bobcat

DRILLER: JE

LOGGED: RK

CASING: HW to 4.0m, HQ to 4.5m

TYPE OF BORING: Diatube to 0.23m, Solid Flight Auger (TC-bit) to 4.00m, wash boring to 4.50m, NMLC coring to 10.15m WATER OBSERVATIONS: No free groundwater observed during augering REMARKS: *replicate BD4_20191028

A Auger sample G Gas sample PID Photo ionisation detector (ppm)	
B Bulk sample P Piston sample PL(A) Point load axial test Is(50) (MPa)	N Develoe Develoere
BLK Block sample U, Tube sample (x mm dia.) PL(D) Point load diametral test ls(50) (MPa)	A Doublas Pariners
C Core drilling W Water sample pp Pocket penetrometer (kPa)	Douglas Partners
D Disturbed sample D Water seep S Standard penetration test	
E Environmental sample 📱 Water level V Shear vane (kPa)	Geotechnics Environment Groundwater

CLIENT:
PROJECT:
LOCATION
LOCATION

Creat NSW, Department of Premier and Cabinet SURFACE LEVEL: 6.2 AHD Ultimo Creative Industries Precinct N: Powerhouse Museum, 500 Harris Street, Ultimo

EASTING: 333589 NORTHING: 6249766 **DIP/AZIMUTH:** 90°/-- BORE No: BH105 **PROJECT No: 86874.00** DATE: 28/10/2019 SHEET 2 OF 2

Γ		Description	Degre Weathe	e of	υ	S	Rocl treng	K nth	_	Fracture	Discontinuities	Sa	ampli	ng & l	n Situ Testing
R	Depth (m)	of	vveatrie	enng	aphi			jui jej	Water	Spacing (m)	B - Bedding J - Joint	e	e %	0	Test Results
	(11)	Strata	MW HW	ξ N H	<u>ق</u> _	Ex Low	Vediu		B⊔ ×	0.005 0.100	S - Shear F - Fault	Type	Re C	RQD %	& Comments
F	10.15	SANDSTONE: fine to medium, pale						Ī				С	100	93	PL(A) = 1.3
	- 10.10 	grey, indistinctly bedded, high strength with very low to low strength beds, fresh, Hawkesbury Sandstone <i>(continued)</i> Bore discontinued at 10.15m Target depth reached													
· Υ·	- 12														
9	- 13														
2	- - - - - - - - - - - - - - - -														
- 89-	- - - - - - - - - - - - -														
- 6- 	- 16														
	- - - - - - - - - - - - - - - - - - -														
	- - - - - - - - -														
	- 18														
	- 19 - - - - - - -														

RIG: Bobcat

DRILLER: JE

LOGGED: RK

CASING: HW to 4.0m, HQ to 4.5m

TYPE OF BORING: Diatube to 0.23m, Solid Flight Auger (TC-bit) to 4.00m, wash boring to 4.50m, NMLC coring to 10.15m WATER OBSERVATIONS: No free groundwater observed during augering REMARKS: *replicate BD4_20191028

	SAN	IPLIN	3 & IN SITU TESTING	LEG	END				
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	_		-	— –
В	Bulk sample	P	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)				Partners
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(C	D) Point load diametral test ls(50) (MPa)				
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			140	
D	Disturbed sample	⊳	Water seep	S	Standard penetration test				
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics	Envii	ronment Groundwater

Geo	ouglas Pal	Groundwater	Project No: BH ID: GH 10 Depth: 4.5 Core Box No.	0 - 9.00 m		
Powerhouse N 86 874.00	luseum	tart at 4.5m			Core Loss J 0.2m	
5m 1	Core Los 0.27m		10			
7m	Criterie La constantina de la constantina de la Constantina de la constantina de la const					

BORE	: 105	PROJE	CT: ULTIM	о осто	BER 2019	-
	IS Part	ners	Project No: BH ID: BH 10 Depth: 9.0	5 - 10.15 m		
hindun	hún	hmb	Core Box No.	2		u luñ
						1110
n	End a	of hole at	10.15m	BH105	28/10/19	
1-1-1- HP		1	An owner of the local division of the			
· · · · · · · · · · · · · · · · · · ·		1.12				
			0 - 10.15			

CLIENT: PROJECT: LOCATION:

Creat NSW, Department of Premier and Cabinet SURFACE LEVEL: 6.2 AHD Ultimo Creative Industries Precinct Powerhouse Museum, 500 Harris Street, Ultimo

EASTING: 333589 NORTHING: 6249766 **DIP/AZIMUTH:** 90°/--

BORE No: BH105 **PROJECT No: 86874.00** DATE: 28/10/2019 SHEET 1 OF 2

	_		Description	.c.		Sam		& In Situ Testing	<u> </u>	Well	
봅	Dej (n		of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construct	ion
		<i>`</i>	Strata	G	Ţ	Del	San	Comments		Details	i
-9-		0.23	CONCRETE: pale grey, aggregate size from 15-45mm, 8mm reinforcing steel		A/E	0.3		PID<1		Flush Gatic Cover	00000
			FILL/ SAND: fine to coarse, yellow brown, with fine to coarse mixed origin gravel, moist (wet at top from diatube)		A/E	0.5		PID<1		-	200000
			0.79m: sandstone boulders							-	0000
	•1		0.9m: colour change to dark brown dark grey, trace fine to coarse mixed origin gravel		<u>A/E</u> S	, 1.0		PID<1 2,4,4 N = 8		⁻¹ Gravel	
			1.4m: trace building rubble (fragments of brick, terracotta and ceramics)		E	1.45 1.5		PID<1		- - - -	6.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0
-4-	2		2.0m: with low plasticity clay, trace sandstone cobbles		E*	2.0		PID<1		- 2 Blank	1000 m
					E S	2.5		PID<1 1,2,5		- - - - Bentonite	
	3				A/E	2.95 3.0		N = 7 PID<1		-3	
		3.5 -	Sandy CLAY CL: low plasticity, fine to medium, dark grey		E	3.5		PID<1			04
	4	4.0	dark brown, w <pl, alluvial="" cl-ci:="" clay="" fine="" firm,="" low="" medium="" plasticity,="" sandy="" soft="" td="" to="" to<=""><td>· · / · · · / ·</td><td></td><td>4.0</td><td></td><td>PID<1</td><td>-19</td><td>- 4</td><td></td></pl,>	· · / · · · / ·		4.0		PID<1	-19	- 4	
			medium, yellow brown, w <pl, residual<="" stiff,="" td=""><td>·/·/·</td><td>s</td><td>4.45</td><td></td><td>1,4,11 N = 15</td><td>13-11-19</td><td>-</td><td></td></pl,>	·/·/·	s	4.45		1,4,11 N = 15	13-11-19	-	
		4.5 -	SANDSTONE: medium to coarse, yellow-brown, iron stained, low strength, moderately weathered, Hawkesbury Sandstone			4.5 4.55		PL(A) = 0.2		- - - -	
	•5	5.0 5.38 -	SANDSTONE: medium to coarse, pale grey and		2					-5 - - -	
	- 6		yellow-brown some red-brown, iron stained, indistinctly bedded, medium then high strength, slightly weathered, slightly fractured, Hawkesbury Sandstone		С	5.5		PL(A) = 0.5		- - - - - - - - - - - - - - - - - - -	
					•	6.6		PL(A) = 0.9		- - - Gravel	
	7					7.11				-7 Slotted Pipe	
					• • • • •	7.5		PL(A) = 1		- - - -	
	8	8.0 -	SANDSTONE: as above			8.5		PL(A) = 1.4		- 8 - 8 	
	· 9	8.62 -	SANDSTONE: medium to coarse, pale grey, indistinctly bedded, high strength, fresh, slightly fractured, Hawkesbury Sandstone		C	0.0				- 9	0.000000000000000000000000000000000000
		9.33 -	SANDSTONE: fine to medium, pale grey, indistinctly bedded, high strength with very low to low strength beds, fresh, Hawkesbury Sandstone		- - - - - - -	9.45		PL(A) = 0.8		- - - - -	
			9.33-9.45m: siltstone bed		•	10.0		PL(A) = 1.3		-	

DRILLER: JE LOGGED: RK CASING: HW to 4.0m, HQ to 4.5m RIG: Bobcat TYPE OF BORING: Diatube to 0.23m, Solid Flight Auger (TC-bit) to 4.00m, wash boring to 4.50m, NMLC coring to 10.15m WATER OBSERVATIONS: No free groundwater observed during augering REMARKS: *replicate BD4_20191028

	SA	AMPLING	3 & IN SITU TESTING	LEG]		
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_	
В	Bulk sample	Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)			
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(C	D) Point load diametral test ls(50) (MPa)	1		Douglas
С	Core drilling	Ŵ	Water sample	`qq	Pocket penetrometer (kPa)			Doagiao
D	Disturbed sample	⊳	Water seep	S	Standard penetration test			
E	Environmental sampl	le 📱	Water level	V	Shear vane (kPa)			Geotechnics Envi
						-		

s Partners rironment | Groundwater

BOREHOL	E LOG
---------	-------

CLIENT:

PROJECT:

LOCATION:

Ultimo Creative Industries Precinct

Creat NSW, Department of Premier and Cabinet SURFACE LEVEL: 6.2 AHD **EASTING:** 333589 Powerhouse Museum, 500 Harris Street,

NORTHING: 6249766 **DIP/AZIMUTH:** 90°/--

BORE No: BH105 **PROJECT No: 86874.00** DATE: 28/10/2019 SHEET 2 OF 2

_`		Ultimo					6249766 H: 90°/		SHEET 2 OF 2	9
		Description	<u>.</u>		Sam	npling &	& In Situ Testing	5	Well	
R	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details	1
-	10.15	9.55-9.61m: siltstone bed		С	-10.15-				End Cap ′	
	- 11	Bore discontinued at 10.15m Target depth reached			10.13					
-φ	- 12								- 12	
-φ -	-									
	- 13								- 13	
-φ	- 14								- 14 	
	- 15								- 15	
-10	- 16								- 16	
	- 17								-17	
-12	- 18 								-18	
	- 19								- 19	
	-								-	

CASING: HW to 4.0m, HQ to 4.5m DRILLER: JE LOGGED: RK RIG: Bobcat TYPE OF BORING: Diatube to 0.23m, Solid Flight Auger (TC-bit) to 4.00m, wash boring to 4.50m, NMLC coring to 10.15m WATER OBSERVATIONS: No free groundwater observed during augering **REMARKS:** *replicate BD4_20191028

SAM	PLIN	G & IN SITU TESTING	G LEGEND	
A Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
B Bulk sample	P	Piston sample	PL(A) Point load axial test Is(50) (MPa)	
BLK Block sample C Core drilling D Disturbed sample E Environmental sample	V ₩ ₽	Tube sample (x mm dia.) Water sample Water seep Water level	PL(D) Point load diametral test ls(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa)	Douglas Partners Geotechnics Environment Groundwater

CLIENT: PROJECT: LOCATION:

Creat NSW, Department of Premier and Cabinet SURFACE LEVEL: 7.0 AHD Ultimo Creative Industries Precinct Powerhouse Museum, 500 Harris Street, Ultimo

EASTING: 333544 NORTHING: 6249786 **DIP/AZIMUTH:** 90°/-- BORE No: BH106 **PROJECT No: 86874.00** DATE: 28/10/2019 SHEET 1 OF 2

Π	_		Description	Degree of Weathering	.cj	Rock Strength	Fracture	Discontinuities			_	n Situ Testing
뭑	Deptl (m)		of	Weathering	Log	Strendth Very Low Medium High Ex High Ex High O.01	Spacing (m)	B - Bedding J - Joint	Type	ore . %	RQD %	Test Results &
	()		Strata	FIS NAW HW	G	Ex Lo Low Very Ex High	0.05 0.10 0.50	S - Shear F - Fault	♪	ŭ ğ	Я°	Comments
E	- 0).1	_BRICKS PAVERS						A/E			PID<1
	-		FILL/ SAND: fine to coarse grained, dark brown-dark grey. trace fine to coarse mixed origin gravel, moist		\bigotimes				A/E			PID<1
-9-	- 1 - 1 -				\bigotimes				A/E			PID<1
	-	1.5	Sandy CLAY CL-CI: low to medium plasticity, fine to medium grained, yellow brown, w <pl, firm="" stiff,<br="" to="">residual</pl,>		· / ·				A/E A/E*			PID<1 PID<1
	- 2	2.5			· / ·				s			4,4,6 N = 10
- 4	-3		Sandy CLAY CL-CI: low to medium plasticity, fine to medium grained, pale grey -yellow, w <pl, stiff,<br="">residual</pl,>									N - 10
	- 3	3.5	SANDSTONE: medium to coarse grained, yellow and pale-brown, inferred low-medium strength									
	-	4.0	SANDSTONE: medium to coarse grained, pale grey and yellow-brown, indistinctly bedded to massive, medium to high strength, slightly weathered, Hawkesbury Sandstone					4.52m: J 40°, cln, pl, ro ϡ 4.86m: J 40°, cln, pl, ro				PL(A) = 1
	-5 - 5.: 	35 -	SANDSTONE: medium to coarse grained, pale grey, indistinctly bedded, high strength, fresh, Hawkesbury Sandstone					4.91m: J 40°, 4.91m: J 40°, cln, pl, ro 5.03m: J 30°, cln, pl, ro 5.09m: J 30°, cln, pl, ro 5.29m: J 30°, cln, pl, ro 5.39m: J 25°, vn, cly 5.45m: B 10°, cln, pl, ro 5.48m: Cs h 20mm	С	100	92	PL(A) = 1
	- - - -							6.6m: J 60°, cln, pl, ro				PL(A) = 1.9
	- - 7 - 7 				· · · · · · · · · · · · · · · · · · ·			7.12m: J 45°, cln, pl, ro	с	100	91	
	- 8						╺╼╧┛╌┓┆┆ ╵╵╴┨┆	7.65m: B 10°, cln, pl, ro 7.75m: B 10°, vn, cly 7.83m: B 10°,cln, pl, ro				PL(A) = 1.8
	-							7.84m: B 10°, cln, pl, ro 7.86m: B 10°, cln, pl, ro 8.27m: J 40°, cln, pl, ro 8.31m: J 55°, cln, pl, ro 8.36m: B 10°, cln, pl, ro 8.83m: B 10°, cln, pl, ro	с	100	92	PL(A) = 2.1
	-9							9.45m: B 5°, cln, pl, ro	с	100	100	PL(A) = 2.8

RIG: Bobcat

DRILLER: JE

LOGGED: RK

CASING: HW to 2.5, HQ to 4.0m

TYPE OF BORING: Hand auger to 1.3m, Solid Flight Auger (TC-bit) to 2.5m, wash boring to 4.0m, NMLC coring to 10.06m WATER OBSERVATIONS: No free groundwater observed during augering **REMARKS:** *replicate BD5-20191028

	SAM	PLINC	3 & IN SITU TESTING	LEG	END					
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_		-	
В	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)				100	Doutrono
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test ls(50) (MPa)	7	11.			Pariners
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)				140	Partners
D	Disturbed sample	⊳	Water seep	S	Standard penetration test					
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			Geotechnics	Envir	onment Groundwater
	1	-								

CLIENT: PROJECT: LOCATION:

Creat NSW, Department of Premier and Cabinet SURFACE LEVEL: 7.0 AHD Ultimo Creative Industries Precinct Powerhouse Museum, 500 Harris Street, Ultimo

EASTING: 333544 NORTHING: 6249786 **DIP/AZIMUTH:** 90°/-- BORE No: BH106 **PROJECT No: 86874.00** DATE: 28/10/2019 SHEET 2 OF 2

Γ		Description	De	egree	ejof	Graphic Log		Ro	ick ngth			Fract	ure	Discontinuities	Sa	ampli	ng & I	n Situ Testing
R	Depth	of	VVe	eathe	ring	aphic	Ex Low CO				ater	Spac	ing	B - Bedding J - Joint				Test Results
	(m)	Strata	≥≥	MM SW	ഗല	ر ق	× Low	lediur		ery H X Hig		9:6 (m)) <u>5</u> ;6	S - Shear F - Fault	Typ	ပ္က ပ္လ	RQD %	& Comments
- "	_ 10.06	Bore discontinued at 10.06m		≥ ø - -			ш'>'	212		<u>>'ш</u>		0.10		9.9m: B 5°, cln, pl, ro /		-		PL(A) = 1.5
ŧ	-	Target depth reached																
F	-	C .	i	i i	İİ				ii	i	i	ii	ii					
E																		
-4	- 11		i	i i	i i				ii	i	i	ii	ii					
ţ	-																	
E			i	i i	i i				ii	i	i	ii	ii					
ł	-																	
È.			l i	i i	ii		ii		11	i	lli	ii	ii					
Ē	- 12																	
E	-		l i	i i	İİ		l i i		ii	i	ļļį	ij	ii					
ŀ	-																	
Ē	E		ļ	İİ	İ				ij	į	!	ii	ij.					
_φ -	- 13																	
ŧ									ļİ									
E	Ē									ì								
ł	-																	
	- 14									i								
Ē																		
ŧ	-		li	i i						ï	i	ii						
ŧ	-																	
Ē	- 15		i	i i					ii	i	i	ii	ii					
Ę	- 13																	
È	-		l i	i i	İİ		l i i		ii	i	ļļį	ij	ii					
Ē																		
ł	-		ļ	i i	İİ		l i i		ij	į	li	ij	ij					
_ရာ -	- 16																	
Ē			ļį	i i	İİ		l i i	i	ij	į	i	ij	ij					
ŧ																		
ŧ	ŧ				ļ	1			ļļ	Ì			ļ					
-9	-17																	
ŧ										-								
ŧ			l i	İİ	İİ													
Ē	[
÷	- - 18		I.							Ì	İ	İİ						
ŧ																		
Ē	[I	11						
ŧ																		
- -											İ							
Ē	- 19																	
ŧ								Ì	İİ	Ì	İ							
ŧ																		
Ē	E					1			ij		l li		ij					
Ľ						1												

RIG: Bobcat

DRILLER: JE

LOGGED: RK

CASING: HW to 2.5, HQ to 4.0m

TYPE OF BORING: Hand auger to 1.3m, Solid Flight Auger (TC-bit) to 2.5m, wash boring to 4.0m, NMLC coring to 10.06m WATER OBSERVATIONS: No free groundwater observed during augering REMARKS: *replicate BD5-20191028

	SAN	IPLIN	3 & IN SITU TESTING	LEG	END			
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	_		
B	Bulk sample	P	Piston sample	PL(A) Point load axial test Is(50) (MPa)		-	Douglas Partners
BL	< Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test ls(50) (MPa)			Loudias Pariners
C	Core drilling	Ŵ	Water sample	΄ αα	Pocket penetrometer (kPa)			
D	Disturbed sample	⊳	Water seep	s	Standard penetration test		/	
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			🗖 Geotechnics Environment Groundwate

հուրա	dund	ndwater		0 - 8.00		houled
Powerhouse Mus	eum 86	874.00	BHIO6	Start at	4.00m	28/10/19
tm 1						111
m	Contraction of the second		<u>.</u>	T		1
m						738.m

		ent I Grou	undwater	BH ID: 6H Depth: 8. Core Box N	00 - 10.06 m	
	1	1	1B			
ni P T	End of hole	e ot	10.06m	BHIO6	28/10/19	
				<u>Caracteric Constantino de la cons</u> tantino de la constantino de la constantino de la constantino de la constantino		

Ρ	LIENT: ROJEC OCATI	CT: Ultimo Creative Industries Precinct	abinet	EA NC	STIN RTH	g: Ing:	EVEL: 5.8 AHD 333494 6249446 H: 90°/		BORE No: BH107 PROJECT No: 86874.0 DATE: 22/10/2019 SHEET 1 OF 1	00
		Description	.ci		San	npling a	& In Situ Testing	L	Well	
Ā	Depth (m)	of	Graphic Log	e	Ę	ple	Posulte &	Water	Construction	
	(11)	Strata	Ω_	Type	Depth	Sample	Results & Comments	5	Details	
\vdash		CONCRETE: suspended slab	<u>.</u>			0)				
ł	F		0.0.0.						-	
ł	-		4.4						-	
f	- 0.3	VOID: probable disused storage space							-	
[[
									_	
ŀ	-								-	
-4									-	
ł	-								-	
ł	- 1								-1	
ł	-								-	
ł	-								-	
t	Ī								-	
[[-	
									-	
ŀ	-								-	
+-	-								-	
ł	-								-	
ł	-2								-2	
ł	F								-	
ł	T								-	
Į	[
									-	
ŀ	-								-	
ł	-								-	
- "									-	
ł	-								-	
ł	-3								-3	
f	- 3.1	Bore discontinued at 3.1m								
[[Test Bore discontinued due to substantial void space							-	
ļ	_								-	
ł	-								-	
ł	-								-	
ł	ł								-	
-	1 -								-	
ł	t.								-	
Ī	-4								-4	
ĺ										
ŀ	-									
ł	+									
ł	ŀ									
ł	ł									
ł	ł									
F.	-									
Ľ	[

RIG: Hand tools

TYPE OF BORING: Diatube to 0.3m

DRILLER: TG

LOGGED: TG

CASING: Uncased

WATER OBSERVATIONS: No free groundwater observed during augering REMARKS: Level interpolated from LTS Lockley drawing 50686 001DT, 30/05/19

	SAM	PLIN	G & IN SITU TESTING	LEG	END			
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_	
B	Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)			Douglas Partners
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(C	D) Point load diametral test Is(50) (MPa)	1	1.	Douolas Parlners
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			
D	Disturbed sample	⊳	Water seep	S	Standard penetration test			Castashning I Environment I Crevendurater
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			Geotechnics Environment Groundwater

BOREHOLE	E LOG
----------	-------

Creat NSW, Department of Premier and Cabinet SURFACE LEVEL: 3.5 AHD EASTING: NORTHING:

BORE No: BH108 **PROJECT No: 86874.00** DATE: 22/10/2019 SHEET 1 OF 1

Ľ	JUA		VII Powernouse Museum, 500 Harris Street, Ultimo			P/AZI		H: 90°/		SHEET 1 OF 1
			Description	<u>.</u>		Sam		& In Situ Testing	L	Well
R	Dep (m	th	of	Graphic Log	e	oth	Sample	Results &	Water	Construction
	(Strata	ō	Type	Depth	Sam	Results & Comments	>	Details
			CONCRETE	Q Q		0.1				
-	Ļ	0.1	FILL/ GRAVEL: dense, grey angular igneous gravel with $\$ trace sand		E*	0.1 0.2		PID<1		-
ł	-		Bore discontinued at 0.25m							-
	[refusal on sandstone or sandstone boulder in fill							
ſ	[[
ŀ	-									-
ł	-									-
ł	-									-
ł	-1									-1
t	-									
[Ĺ									
ŀ	ļ									ļ
-~	-									-
ł	-									-
ł	-									-
t	[
	-2									-2
ŀ	-									-
ł	-									-
ł	-									-
ł	-									
	-									
[[
-	-									
ł	-									-
ł	-3									-3
ł	-									-
Į	[
	[
-0	-									-
ł	-									
ł	ŀ									F
ł	-									†
ĺ	4									
ŀ	-									ļ.
ł	ŀ									-
ł	-									- I
ł	-									- I
۲-	t									
[[
ŀ	ļ									ļ
ł	-									

RIG: Hand tools

CLIENT:

PROJECT:

LOCATION:

Ultimo Creative Industries Precinct

Powerhouse Museum, 500 Harris Street,

DRILLER: TG **TYPE OF BORING:** Diatube to 0.1m; Hand auger to 0.25m LOGGED: TG

CASING: Uncased

WATER OBSERVATIONS: No free groundwater observed during augering

REMARKS: *replicate BDA/2019022, Level from drawing titled PLAN BASEMENT LEVEL, May 2005

	S	SAMPL	INC	3 & IN SITU TESTING	LEG							
A	Auger sample		G	Gas sample	PID	Photo ionisation detector (ppm)		_		_	_	_
В	Bulk sample		Р	Piston sample		A) Point load axial test Is(50) (MPa)						artners
BL	K Block sample		U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test ls(50) (MPa)						arthers
C	Core drilling		Ŵ	Water sample	pp	Pocket penetrometer (kPa)						
D	Disturbed sample		⊳	Water seep	S	Standard penetration test			O t t t			
E	Environmental samp	ple	Ŧ	Water level	V	Shear vane (kPa)			Geotecnnic	s I Env	ironmer	nt Groundwater
							-					

BOREHOLE	LOG
----------	-----

Creat NSW, Department of Premier and Cabinet SURFACE LEVEL: 3.5 AHD EASTING: NORTHING:

BORE No: BH109 **PROJECT No: 86874.00** DATE: 22/10/2019 SHEET 1 OF 1

_`			VII Powernouse Museum, 500 Harris Street, Ultimo			P/AZI		H: 90°/		SHEET 1 OF 1
			Description	.ci		San		& In Situ Testing	_	Well
RL	De (r	pth n)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
┢			CONCRETE						1	
[-	0.15 0.25	FILL/ GRAVEL: grey angular igneous gravel with trace							
ŀ	-		Bore discontinued at 0.25m							_
-0	-		refusal on sandstone or sandstone boulder in fill							-
ŀ	-									-
[-									
ŀ	-									-
ŀ	-1									-1
İ	-									
ŀ	-									-
ŀ	-									-
-~	-									
ļ	-									-
ŀ	-									-
ŀ	-									
ļ	-2									-2
ŀ	-									-
ŀ	-									-
Ļ	_									
ŀ	-									-
ŀ	-									-
t	-									
ŀ	-3									-3
ŀ	-									-
ŀ	-									-
[-									
-0	-									-
-	_									-
[_									[
ŀ	-									-
ŀ	-4									-4
[-									-
ŀ	_									-
ŀ	_									-
[~	-									
ŀ	_									-
ŀ	_									-
ŀ	-									

DRILLER: TG RIG: Hand tools **TYPE OF BORING:** Diatube to 0.15m; Hand auger to 0.25m WATER OBSERVATIONS: No free groundwater observed during augering

CLIENT:

PROJECT:

LOCATION:

Ultimo Creative Industries Precinct

Powerhouse Museum, 500 Harris Street,

LOGGED: TG

CASING: Uncased

REMARKS: Level from drawing titled PLAN BASEMENT LEVEL, May 2005

	SAM	PLING	S& IN SITU LESTING	3 LEGE	ND	
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	
В	Bulk sample	Р	Piston sample	PL(A)	Point load axial test Is(50) (MPa)	
BLł	< Block sample	U,	Tube sample (x mm dia.)	PL(D)	Point load diametral test ls(50) (MPa)	
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)	

CLIENT: **PROJECT:** LOCATION:

Creat NSW, Department of Premier and Cabinet SURFACE LEVEL: 15.6 AHD **Ultimo Creative Industries Precinct** Powerhouse Museum, 500 Harris Street, Ultimo

EASTING: 333423 **NORTHING:** 6249912 **DIP/AZIMUTH:** 90°/--

BORE No: BH201 PROJECT No: 86874.00 DATE: 15/11/2019 SHEET 1 OF 1

ן נ	Depth				Strength 🛛 🚡						
1	(m)	of	Weathering	iraph Log	Strength High Kety High Kety High Kety High Kety High Kety High Kety High Kety High Kety High Kety High Kety High Kety Kety Kety Kety Kety Kety Kety Kety Kety Kety Kety Kety Kety	Spacing (m)	B - Bedding J - Joint	Type	ore 2. %	RQD %	Test Resul &
		Strata	M M M M M M M M M M M M M M M M M M M	i O	Ex Low Very Low Medium Ex High Ex High	0.05	S - Shear F - Fault	È	ŭ Å	Я,	Comment
-	0 16+	Bick Paver		Ι.Χ.Υ				D			
	0.25	FILL/SAND: fine to medium, yellow brown, dry, possibly cemented						A/E*			PID<1
		CONCRETE: 20 mm igneous gravel, 12 mm Reinforcement at 0.24 m						A/E	-		PID<1
1	ľ	FILL/SAND: fine to coarse, brown,		\otimes					1		18,24/150
	1.3 1.5	trace of silt and sandstone gravel (3-20 mm), dry, apparently compacted		Ż				S A/E			refusal PID<1
		0.5 m: trace of coal									
2	1.8-	1.0 m: increased silt content, with cement fragments and igneous gravel (20-40 mm) and tile					2.06m: Cs,10mm	A	l		PL(A) = 1
		(3-20 mm)									PL(A) = 1
		Sandy CLAY CL: low plasticity, red brown, fine to coarse sand, trace of ironstone gravel (10-30mm), w <pl,< td=""><td></td><td></td><td></td><td></td><td>2.74m: Cs,10mm</td><td></td><td>100</td><td>07</td><td></td></pl,<>					2.74m: Cs,10mm		100	07	
3		possibly fill SANDSTONE: yellow brown, very						С	100	97	
		low becoming high strength					3.18m: Cs,10mm				
		SANDSTONE: medium to coarse, pale grey with orange brown									
		patches, indistinctly to distinctly bedded at 0-10°, slightly weathered									
4		with moderately weathered band to									PL(A) = 1
		fresh, slightly fractured and									
		unbroken, high strength, Hawkesbury Sandstone					>>				
		-									
											PL(A) = 1
5											
								С	100	99	
			i i i i i		iiiii	i ii ii					
~											PL(A) = 2
6	6.12	SANDSTONE: medium to coarse,	┤╎╎┏┿┿┿				6.07m: B,0°,pl,ro,cly vn				
		orange brown and red brown, thinly									
		bedded at 0-5°, moderately weathered, slightly fractured and									PL(A) = 1
		unbroken, high strength,					6.72m: B,0°,pl,ro,cly				
7		Hawkesbury Sandstone					1mm				
							7.32m: B,0°,pl,ro,cly				
							3mm				
	7.88										PL(A) =
8		SANDSTONE: medium to coarse,									× /
		pale grey, thinly bedded at 0-5°, slightly weathered becoming fresh,					8.10-8.18m: B(x2),0°,pl,ro,cly 3mm				
		slightly fractured and unbroken, high	l i i i i i i			i i Li	8.44m: Cs,15mm	с	100	95	
	Γ	strength, Hawkesbury Sandstone 8.51-8.70 m: bedding at 20°					0.77111.03,1011111				
											PL(A) = 1
9						∣	∫ 9.05-9.09m:				
					╽╎┏╧╧╧┛╎╎││	╎╵╹┻╌┧	B(x3`),0°,pl,ro,cly				
							1-3mm 9.06m: Cs,10mm				
							9.22m: Ds,100mm				PL(A) = 2
	10.0										FL(A) - 2

TYPE OF BORING: Diatube 0.4m, Solid Flight Auger (TC-bit) to 1.8m, NMLC coring to 10.0m WATER OBSERVATIONS: No free groundwater observed during augering

REMARKS: *BD20191115-1

SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level A Auger sample B Bulk sample BLK Block sample G P U, W **Douglas Partners** Core drilling Disturbed sample Environmental sample CDE ₽ Geotechnics | Environment | Groundwater

				BH ID: Depth: Core Bo	1.8-6.0 , x No.: 10	M FZ.	uh			
	ULTIMO			START						
2.0			1				1000			
3.0				11						Ì
4.0				Renter	(Instead	Margare .	HIV	 1	1	
5.0		11/1			a starte		Second			

			Project No: 8689 BH ID: 84207 Depth: 6.0 - (0.0 m. Core Box No.: 2 0 F	2	
6.0					
7.0			The West	N. Alla	+ 1171112
301					
9.0	Adapted States	he shirts			

CLIENT: PROJECT: LOCATION:

Creat NSW, Department of Premier and Cabinet SURFACE LEVEL: 5.4 AHD Ultimo Creative Industries Precinct Powerhouse Museum, 500 Harris Street, Ultimo

EASTING: 333613 NORTHING: 6249647 **DIP/AZIMUTH:** 90°/-- BORE No: BH202 **PROJECT No: 86874.00** DATE: 26/11/2019 SHEET 1 OF 2

\square			Description	Degree of Weathering	<u>.0</u>	Rock Strength	Fracture	Discontinuities	Sa	ampli	ng & l	n Situ Testing
Ч	Dep (m		of	Weathering	Sraph Log	Strendth Very Low Medium Very High Ex High High High High High High High High	Spacing (m)	B - Bedding J - Joint	Type	ore c. %	RQD %	Test Results &
			Strata	H M M M M M M M M M M M M M M M M M M M	·	Ex L High Ex H	0.05	S - Shear F - Fault	ЃГ	ΟĐ	Ϋ́ς	Comments
		0.1	CONCRETE: pale grey, aggregate 10-40mm, 8mm diameter steel reinforcement		Ŕ				A/E			PID<1
		0.8	FILL/Clayey SAND: fine to medium, pale brown-brown, low plasticity clay, with fine sandstone gravel,		\bigotimes				A/E			PID<1 PID<1
- 4 -	- 1	1.2	trace silt, dry FILL/Gravelly SAND: fine to coarse, grey-dark grey, fine to coarse igneous gravel with clay, moist		\bigotimes				AVE S A/E			24/120 refusal HB PID<1
	-2	2.0	FILL/Clayey SAND: fine to coarse, dark grey, low plasticity clay, with fine igneous gravel and silt, moist, slight hydrocarbon odour		X				A/E*			PID=1
		-	FILL/Silty SAND: fine to medium, dark grey-dark brown, with fine sandstone gravel, moist 2.30m: with terracotta and ceramic		\bigotimes				E			PID<1 3,6,14
	-3		fragments and clay		\bigotimes				E			N = 20 PID<1
- 7		3.1	Silty CLAY CH: high plasticity, grey mottled yellow-brown, trace fine ironstone gravel, w <pl, stiff,<br="">appears alluvial (possibly residual)</pl,>						A/E			PID<1
	- 4		appears anuviar (possibly residuar)									
									s	-		3,4,7 N = 11
	- 5	5.0	Sandy CLAY CL: low plasticity, pale grey, fine to medium sand, w <pl, hard,="" residual<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>									
		5.7										5,11/50
	-6	5.7	SANDSTONE: medium to coarse, pale grey, indistinctly bedded, high strength, fresh, slightly fractured,					5.77m: B, 10°, cln pl ro 5.91m: B, 10°, cln, pl, ro	S	-		refusal HB PL(A) = 1.1
			Hawkesbury Sandstone 6.03m: becoming yellow-brown and pale grey, slightly weathered					6.29m: B, 15°, cln, pl, ro 6.47m: B, 15°, vn, cly, pl 6.55m: B, 15°, cln, pl, ro	с	100	88	$\mathbf{P}(\mathbf{A}) = \mathbf{A} \mathbf{Q}$
	-7							6.65m: B, 15°, cln, pl, ro				PL(A) = 1.8
	-							7.1m: B, 5°, cln, pl, ro				
	-8											PL(A) = 1.5
								8.36m: B, 15°, cln, pl, ro	с	10	93	
												PL(A) = 1
	-9							9.02m: B, 10°, cln, pl, ro				
-4		9.48	9.22m: carbonaceous bed (5mm _thick)									
		10.0	SANDSTONE: fine to medium, pale grey-pale brown, distinct carbonaceous laminations at 0-5°,									PL(A) = 0.2

RIG: Scout 1

DRILLER: JE

LOGGED: RK

CASING: HW to 4.3m, HQ to 5.5m

TYPE OF BORING: Diatube to 0.1m, Solid Flight Auger (TC-bit) to 4.5m, wash boring to 5.7m, NMLC to 10.0m WATER OBSERVATIONS: No free groundwater observed during augering

REMARKS: *BD26112019, HB = SPT hammer bouncing

	SAM	IPLING	3 & IN SITU TESTING	LEGEND	
A	Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
B	Bulk sample K Block sample	P U	Piston sample Tube sample (x mm dia.)	PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa)	Douglas Partners
C	Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S Standard penetration test	Ocatastarias I Environment I Orangetaria
E	Environmental sample	Ŧ	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwater

CLIENT: PROJECT: LOCATION:

Creat NSW, Department of Premier and Cabinet SURFACE LEVEL: 5.4 AHD Ultimo Creative Industries Precinct Powerhouse Museum, 500 Harris Street, Ultimo

EASTING: 333613 NORTHING: 6249647 **DIP/AZIMUTH:** 90°/-- BORE No: BH202 **PROJECT No: 86874.00** DATE: 26/11/2019 SHEET 2 OF 2

		Description	Degree of Weathering ﷺ ≩ ≩ ⊗ ∞ ₭	<u>.0</u>	Rock Strength	Fracture	Discontinuities	Sa	ampling &	In Situ Testing
님	Depth (m)	of	literationing	Log	Strengt Medium High Ex High Ex High Near 100 001	Spacing (m)	B - Bedding J - Joint	ec	e%Ö	Test Results
	(,	Strata	HW HW EW	<u>ତ</u>		0.10	S - Shear F - Fault	Ţ	Core Rec. % RQD	% & Comments
2	- - - - -	Very low strength, highly weathered, Hawkesbury Sandstone 9.70m: becoming indistinctly bedded, low strength Bore discontinued at 10.0m								
9-	- 11 - 11 	Target depth reached								
-	- 12									
2	- - - - - - 13									
- - @- -	- - - - -									
6-	- - - 14 - - -									
- 10	- - - 15 - - -									
	- - 16 									
-12	- - - 17 - -									
3	- - - - 18 -									
1	- - - - - - 19 -									
-14	- - - -									

RIG: Scout 1

DRILLER: JE

LOGGED: RK

CASING: HW to 4.3m, HQ to 5.5m

TYPE OF BORING: Diatube to 0.1m, Solid Flight Auger (TC-bit) to 4.5m, wash boring to 5.7m, NMLC to 10.0m WATER OBSERVATIONS: No free groundwater observed during augering

REMARKS: *BD26112019, HB = SPT hammer bouncing

	SAM	PLINO	3 & IN SITU TESTING	LEG	END				
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	_		-	
В	Bulk sample	Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)				Doutroovo
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(C	0) Point load diametral test ls(50) (MPa)	1.			Pariners
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			140	Partners
D	Disturbed sample	⊳	Water seep	S	Standard penetration test				
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics	I Envir	onment Groundwater

	BORE: 202	PROJE	CT: ULTI	MO	NOVEM	BER 2019	
	Douglas P Geotechnics Environme		BH ID: Depth: Core B	t No: 86874 8H202 570-10.00 fox No.: 1/1			
-	86874.00						
6m							643m
7m			-	n Stational			
8m	All'and				1		
9m R				- And			11
		Ę	5.70 - 10	. 0 0 m			

Sampling

Sampling is carried out during drilling or test pitting to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thinwalled sample tube into the soil and withdrawing it to obtain a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Test Pits

Test pits are usually excavated with a backhoe or an excavator, allowing close examination of the insitu soil if it is safe to enter into the pit. The depth of excavation is limited to about 3 m for a backhoe and up to 6 m for a large excavator. A potential disadvantage of this investigation method is the larger area of disturbance to the site.

Large Diameter Augers

Boreholes can be drilled using a rotating plate or short spiral auger, generally 300 mm or larger in diameter commonly mounted on a standard piling rig. The cuttings are returned to the surface at intervals (generally not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube samples.

Continuous Spiral Flight Augers

The borehole is advanced using 90-115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow sampling or in-situ testing. This is a relatively economical means of drilling in clays and sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are disturbed and may be mixed with soils from the sides of the hole. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively low reliability, due to the remoulding, possible mixing or softening of samples by groundwater.

Non-core Rotary Drilling

The borehole is advanced using a rotary bit, with water or drilling mud being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from the rate of penetration. Where drilling mud is used this can mask the cuttings and reliable identification is only possible from separate sampling such as SPTs.

Continuous Core Drilling

A continuous core sample can be obtained using a diamond tipped core barrel, usually with a 50 mm internal diameter. Provided full core recovery is achieved (which is not always possible in weak rocks and granular soils), this technique provides a very reliable method of investigation.

Standard Penetration Tests

Standard penetration tests (SPT) are used as a means of estimating the density or strength of soils and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, Methods of Testing Soils for Engineering Purposes - Test 6.3.1.

The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300 mm. In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form.

 In the case where full penetration is obtained with successive blow counts for each 150 mm of, say, 4, 6 and 7 as:

 In the case where the test is discontinued before the full penetration depth, say after 15 blows for the first 150 mm and 30 blows for the next 40 mm as:

15, 30/40 mm

Sampling Methods

The results of the SPT tests can be related empirically to the engineering properties of the soils.

Dynamic Cone Penetrometer Tests / Perth Sand Penetrometer Tests

Dynamic penetrometer tests (DCP or PSP) are carried out by driving a steel rod into the ground using a standard weight of hammer falling a specified distance. As the rod penetrates the soil the number of blows required to penetrate each successive 150 mm depth are recorded. Normally there is a depth limitation of 1.2 m, but this may be extended in certain conditions by the use of extension rods. Two types of penetrometer are commonly used.

- Perth sand penetrometer a 16 mm diameter flat ended rod is driven using a 9 kg hammer dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the density of sands and is mainly used in granular soils and filling.
- Cone penetrometer a 16 mm diameter rod with a 20 mm diameter cone end is driven using a 9 kg hammer dropping 510 mm (AS 1289, Test 6.3.2). This test was developed initially for pavement subgrade investigations, and correlations of the test results with California Bearing Ratio have been published by various road authorities.

Soil Descriptions

Description and Classification Methods

The methods of description and classification of soils and rocks used in this report are generally based on Australian Standard AS1726:2017, Geotechnical Site Investigations. In general, the descriptions include strength or density, colour, structure, soil or rock type and inclusions.

Soil Types

Soil types are described according to the predominant particle size, qualified by the grading of other particles present:

Туре	Particle size (mm)
Boulder	>200
Cobble	63 - 200
Gravel	2.36 - 63
Sand	0.075 - 2.36
Silt	0.002 - 0.075
Clay	<0.002

The sand and gravel sizes can be further subdivided as follows:

Туре	Particle size (mm)
Coarse gravel	19 - 63
Medium gravel	6.7 - 19
Fine gravel	2.36 - 6.7
Coarse sand	0.6 - 2.36
Medium sand	0.21 - 0.6
Fine sand	0.075 - 0.21

Definitions of grading terms used are:

- Well graded a good representation of all particle sizes
- Poorly graded an excess or deficiency of particular sizes within the specified range
- Uniformly graded an excess of a particular particle size
- Gap graded a deficiency of a particular particle size with the range

The proportions of secondary constituents of soils are described as follows:

In fine grained soils	(>35% fines)
-----------------------	--------------

Term	Proportion	Example
	of sand or	
	gravel	
And	Specify	Clay (60%) and
		Sand (40%)
Adjective	>30%	Sandy Clay
With	15 – 30%	Clay with sand
Trace	0 - 15%	Clay with trace
		sand

In coarse grained soils (>65% coarse)

with	clays	or	silts	

Term	Proportion of fines	Example
And	Specify	Sand (70%) and Clay (30%)
Adjective	>12%	Clayey Sand
With	5 - 12%	Sand with clay
Trace	0 - 5%	Sand with trace
		clay

In coarse grained soils (>65% coarse)
 with coarser fraction

Term	Proportion	Example	
	of coarser		
	fraction		
And	Specify	Sand (60%) and	
		Gravel (40%)	
Adjective	>30%	Gravelly Sand	
With	15 - 30%	Sand with gravel	
Trace	0 - 15%	Sand with trace	
		gravel	

The presence of cobbles and boulders shall be specifically noted by beginning the description with 'Mix of Soil and Cobbles/Boulders' with the word order indicating the dominant first and the proportion of cobbles and boulders described together.

Soil Descriptions

Cohesive Soils

Cohesive soils, such as clays, are classified on the basis of undrained shear strength. The strength may be measured by laboratory testing, or estimated by field tests or engineering examination. The strength terms are defined as follows:

Description	Abbreviation	Undrained shear strength (kPa)
Very soft	VS	<12
Soft	S	12 - 25
Firm	F	25 - 50
Stiff	St	50 - 100
Very stiff	VSt	100 - 200
Hard	Н	>200
Friable	Fr	-

Cohesionless Soils

Cohesionless soils, such as clean sands, are classified on the basis of relative density, generally from the results of standard penetration tests (SPT), cone penetration tests (CPT) or dynamic penetrometers (PSP). The relative density terms are given below:

Relative Density	Abbreviation	Density Index (%)
Very loose	VL	<15
Loose	L	15-35
Medium dense	MD	35-65
Dense	D	65-85
Very dense	VD	>85

Soil Origin

It is often difficult to accurately determine the origin of a soil. Soils can generally be classified as:

- Residual soil derived from in-situ weathering of the underlying rock;
- Extremely weathered material formed from in-situ weathering of geological formations. Has soil strength but retains the structure or fabric of the parent rock;
- Alluvial soil deposited by streams and rivers;

- Estuarine soil deposited in coastal estuaries;
- Marine soil deposited in a marine environment;
- Lacustrine soil deposited in freshwater lakes;
- Aeolian soil carried and deposited by wind;
- Colluvial soil soil and rock debris transported down slopes by gravity;
- Topsoil mantle of surface soil, often with high levels of organic material.
- Fill any material which has been moved by man.

Moisture Condition – Coarse Grained Soils For coarse grained soils the moisture condition

should be described by appearance and feel using the following terms:

- Dry (D) Non-cohesive and free-running.
- Moist (M) Soil feels cool, darkened in colour.

Soil tends to stick together. Sand forms weak ball but breaks easily.

Wet (W) Soil feels cool, darkened in colour.

Soil tends to stick together, free water forms when handling.

Moisture Condition – Fine Grained Soils

For fine grained soils the assessment of moisture content is relative to their plastic limit or liquid limit, as follows:

- 'Moist, dry of plastic limit' or 'w <PL' (i.e. hard and friable or powdery).
- 'Moist, near plastic limit' or 'w ≈ PL (i.e. soil can be moulded at moisture content approximately equal to the plastic limit).
- 'Moist, wet of plastic limit' or 'w >PL' (i.e. soils usually weakened and free water forms on the hands when handling).
- 'Wet' or 'w ≈LL' (i.e. near the liquid limit).
- 'Wet' or 'w >LL' (i.e. wet of the liquid limit).

Rock Descriptions

Rock Strength

Rock strength is defined by the Unconfined Compressive Strength and it refers to the strength of the rock substance and not the strength of the overall rock mass, which may be considerably weaker due to defects.

The Point Load Strength Index $Is_{(50)}$ is commonly used to provide an estimate of the rock strength and site specific correlations should be developed to allow UCS values to be determined. The point load strength test procedure is described by Australian Standard AS4133.4.1-2007. The terms used to describe rock strength are as follows:

Strength Term	Abbreviation	Unconfined Compressive Strength MPa	Point Load Index * Is ₍₅₀₎ MPa
Very low	VL	0.6 - 2	0.03 - 0.1
Low	L	2 - 6	0.1 - 0.3
Medium	М	6 - 20	0.3 - 1.0
High	Н	20 - 60	1 - 3
Very high	VH	60 - 200	3 - 10
Extremely high	EH	>200	>10

* Assumes a ratio of 20:1 for UCS to $Is_{(50)}$. It should be noted that the UCS to $Is_{(50)}$ ratio varies significantly for different rock types and specific ratios should be determined for each site.

Degree of Weathering

The degree of weathering of rock is classified as follows:

Term	Abbreviation	Description
Residual Soil	RS	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.
Extremely weathered	XW	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible
Highly weathered	HW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.
Moderately weathered	MW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.
Slightly weathered	SW	Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.
Fresh	FR	No signs of decomposition or staining.
Note: If HW and MW cannot be differentiated use DW (see below)		
Distinctly weathered	DW	Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching or may be decreased due to deposition of weathered products in pores.

Rock Descriptions

Degree of Fracturing

The following classification applies to the spacing of natural fractures in diamond drill cores. It includes bedding plane partings, joints and other defects, but excludes drilling breaks.

Term	Description
Fragmented	Fragments of <20 mm
Highly Fractured	Core lengths of 20-40 mm with occasional fragments
Fractured	Core lengths of 30-100 mm with occasional shorter and longer sections
Slightly Fractured	Core lengths of 300 mm or longer with occasional sections of 100-300 mm
Unbroken	Core contains very few fractures

Rock Quality Designation

The quality of the cored rock can be measured using the Rock Quality Designation (RQD) index, defined as:

RQD % = <u>cumulative length of 'sound' core sections ≥ 100 mm long</u> total drilled length of section being assessed

where 'sound' rock is assessed to be rock of low strength or stronger. The RQD applies only to natural fractures. If the core is broken by drilling or handling (i.e. drilling breaks) then the broken pieces are fitted back together and are not included in the calculation of RQD.

Stratification Spacing

For sedimentary rocks the following terms may be used to describe the spacing of bedding partings:

Term	Separation of Stratification Planes
Thinly laminated	< 6 mm
Laminated	6 mm to 20 mm
Very thinly bedded	20 mm to 60 mm
Thinly bedded	60 mm to 0.2 m
Medium bedded	0.2 m to 0.6 m
Thickly bedded	0.6 m to 2 m
Very thickly bedded	> 2 m

Symbols & Abbreviations

Introduction

These notes summarise abbreviations commonly used on borehole logs and test pit reports.

Drilling or Excavation Methods

С	Core drilling
R	Rotary drilling
SFA	Spiral flight augers
NMLC	Diamond core - 52 mm dia
NQ	Diamond core - 47 mm dia
HQ	Diamond core - 63 mm dia
PQ	Diamond core - 81 mm dia

Water

\triangleright	Water seep
\bigtriangledown	Water level

Sampling and Testing

- A Auger sample
- B Bulk sample
- D Disturbed sample
- E Environmental sample
- Undisturbed tube sample (50mm)
- W Water sample
- pp Pocket penetrometer (kPa)
- PID Photo ionisation detector
- PL Point load strength Is(50) MPa
- S Standard Penetration Test V Shear vane (kPa)

Description of Defects in Rock

The abbreviated descriptions of the defects should be in the following order: Depth, Type, Orientation, Coating, Shape, Roughness and Other. Drilling and handling breaks are not usually included on the logs.

Defect Type

В	Bedding plane
Cs	Clay seam
Cv	Cleavage
Cz	Crushed zone
Ds	Decomposed seam
F	Fault
J	Joint
Lam	Lamination
Pt	Parting
Sz	Sheared Zone
V	Vein

Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

h horizontal

21

- v vertical
- sh sub-horizontal
- sv sub-vertical

Coating or Infilling Term

cln	clean
со	coating
he	healed
inf	infilled
stn	stained
ti	tight
vn	veneer

Coating Descriptor

ca	calcite
cbs	carbonaceous
cly	clay
fe	iron oxide
mn	manganese
slt	silty

Shape

cu	curved
ir	irregular
pl	planar
st	stepped
un	undulating

Roughness

ро	polished
ro	rough
sl	slickensided
sm	smooth
vr	very rough

Other

fg	fragmented
bnd	band
qtz	quartz

Symbols & Abbreviations

Graphic Symbols for Soil and Rock

General

0	

Asphalt Road base

Concrete

Filling

Soils

Topsoil

Peat Clay

Silty clay

Sandy clay

Gravelly clay

Shaly clay

Silt

Clayey silt

Sandy silt

Sand

Clayey sand

Silty sand

Gravel

Sandy gravel

Talus

Sedimentary Rocks

Limestone

·-----

Metamorphic Rocks

 >
 >
 >

 >
 >
 >
 >

 +
 +
 +
 +
 +

 ·
 ·
 ·
 ·
 ·

 ·
 ·
 ·
 ·
 ·

Slate, phyllite, schist

Quartzite

Gneiss

Igneous Rocks

Granite

Dolerite, basalt, andesite

Dacite, epidote

Tuff, breccia

Porphyry

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report; and
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on borehole or pit spacing and sampling frequency;
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

Appendix C

Groundwater Field Sheets

Douglas Partners Geotechnics | Environment | Groundwater

Groundwater Field Sheet

Groundwater Field She	et			Bore	/olume = casing volu	me + filter pack
Project and Bore Installation		Ø			volume $= \pi h d^2/4 + r$	$(\pi h_1 d_1^2/4 - \pi h_2 d_2^2/4)$
Bore / Standpipe ID:	Dotano	MINIO	1	Where	$= \pi n_1 a_2 / 4 + r$ = 3.14	(AB10) /4-AB202 /4)
Project Name:	Pou	Jerhouse A		******	n = porosity (0.3 fc	r most filter pack
	On	86874.	Meum		material)	
Project Number:					h _i = height of wate	r column
Site Location:		MA	mo		d ₁ = diameter of an	
Bore GPS Co-ord:					h ₂ = length of filter d ₂ = diameter of ca	-
Installation Date:				Borg	Vol Normally:	
GW Level (during drilling):	-	m bgl		BUIE	vor Normany.	7.2 11
Well Depth:		m bgl				
Screened Interval:		m bgl				
Contaminants/Comments:	-					
Bore Development Details						
Date/Time:		3/11/0	11-30an)		
Purged By:		' CL	1.0			
GW Level (pre-purge):	6.0	m bgl	~			
GW Level (post-purge):	9.69	m bgl				
PSH observed:	Yes / No (interface /	visual). Thickne	ess if observed:		
Observed Well Depth:	11.89	m bgl				
Estimated Bore Volume:	41	L				
Total Volume Purged:	(target: no drill	mud, min 3 w	ell vol. or dry)	a GVOI	5 /	yoon
Equipment:					ofer	
Micropurge and Sampling D		VIII Y		the second	Kare I	
Date/Time:	151	11/18	KASIO (1)	Soan		
Sampled By:		C		300000		
Weather Conditions:		ún (,	. Ares A			
GW Level (pre-purge):	6-67	m bgl	nng .			
GW Level (post sample):	7.89	m bgl				
PSH observed:			visual). Thickne	ess if observed:		
Observed Well Depth:			visual). Thickne	ess il observed.		
Estimated Bore Volume:	38	m bgl				
Total Volume Purged:		L				
Total volume Purged.	27.4	L		7	A Day	(
Equipment:	Low flow	Dump, TF	is moler, I	nterface met	er, Dout	e
		Weter Ovelite	Devenue			
T : / N / I		Water Quality		-11	T. 1144	Deday (m)()
Time / Volume	Temp (°C)	DO (mg/L)	EC (µS or mS/cm)	pН	Turbidity	Redox (mV)
Stabilisation Criteria (3 readings)	0.1°C	+/- 0.3 mg/L	+/- 3%	+/- 0.1	+/- 10%	+/- 10 mV
11:40	38.5	6.30	1467	0.62	200	-53
11:61	ろから	4104	1535	6.60	-00.300	-56
11= 42	26-3	7147	1626	658	153	-68
11:45	1.5.6	1-40	1643	657	187.1	-70
11:04	2125	1.32	16 ber	6:56	149	- 73
,	0400		001			
Additional Readings Following	DO % Sat	SPC	TDS			
stabilisation:						
	1	Sample	Details			
Sampling Depth (rationale):	7.5	m bgl,				
Sample Appearance (e.g.	(->					
colour, siltiness, odour):		a/113				
Sample ID:		MWI	nll			
QA/QC Samples:		IV VV I	04			
			NA			
Sampling Containers and filtration:	1.5	Amber		Vols,	7. 4.5	alter
	I I./	the wet	4×	vas,	SXP	10- 0
intration.						
Comments / Observations:						

Douglas Partners Geotechnics | Environment | Groundwater

Bore Volume = casing volume + filter pack **Groundwater Field Sheet** volume Project and Bore Installation Details $= \pi h_1 d_2^2 / 4 + n(\pi h_1 d_1^2 / 4 - \pi h_2 d_2^2 / 4)$ Bore / Standpipe ID: MINIOC Where: $\pi = 3.14$ n = porosity (0.3 for most filter pack Museum Project Name: Towerhouse material) Project Number: 86574.01 h, = height of water column Site Location: altimo d = diameter of annulus Bore GPS Co-ord: h = length of filter pack d₂ = diameter of casing Installation Date: Bore Vol Normally: 7.2*h GW Level (during drilling): m bgl Well Depth: m bal m bgl Screened Interval: Contaminants/Comments: Bore Development Details Date/Time: 12/11 10:20 am Purged By: GW Level (pre-purge): 🖻 🛞 m bgl GW Level (post-purge): m bgl 0 PSH observed: Yes No (interface / visual). Thickness if observed: Observed Well Depth: 10-2 m bgl Estimated Bore Volume: 4 7.8 L ~ 508 Total Volume Purged: (target: no drill mud, min 3 well vol. or dry) don Call twither moler Equipment: TUNDELOIL OWNO Micropurge and Sampling Details Date/Time: 5 11 1 112=30 am Sampled By: Weather Conditions: Sunn 3.79 GW Level (pre-purge): m bgl GW Level (post sample): m bgl 1.0 visual). Thickness if observed: PSH observed: Yes 1(No (interface / Observed Well Depth: m bgl °b Estimated Bore Volume: (V) L Total Volume Purged: L 36 pump, Interface meter, TPS meter, Boiler Lowflow Equipment: Water Quality Parameters Turbidity Redox (mV) DO (mg/L) EC((µS)or mS/cm) Volume pH Time Temp (°C) +/- 0.3 mg/L Stabilisation Criteria (3 readings) +/- 3% +/- 0.1 +/- 10% +/- 10 mV 0.1°C 1.11 34.8 (0:43 1161 33 26. 18 2 (15 34.3 10=44 183 1174 2 U, 34.3 1.35 10=45 180 176 7. 1.19 6.3 175 10=46 2 10:47 2 **LOKA** 36.8. 170 77 6.3 Additional Readings Following DO % Sat SPC TDS stabilisation: Sample Details Mid-Column Sampling Depth (rationale): m bgl, Sample Appearance (e.g. N/A colour, siltiness, odour): MW 105 Sample ID: BDI 2019111 QA/QC Samples: plastic Sampling Containers and ZXVOS BX filtration: Comments / Observations:

0

Appendix D

QA / QC Report

QA / QC PROCEDURES AND RESULTS

Q1. Data Quality Objectives

The contamination investigation was prepared with reference to the seven step data quality objective (DQO) process which is provided in Appendix B, Schedule B2 of the *National Environment Protection* (Assessment of Site Contamination) Measure 1999 as amended 2013 (NEPC, 2013). The DQO process is outlined as follows:

- Stating the Problem;
- Identifying the Decision;
- Identifying Inputs to the Decision;
- Defining the Boundary of the Assessment;
- Developing a Decision Rule;
- Specifying Acceptable Limits on Decision Errors; and
- Optimising the Design for Obtaining Data.

The DQOs have been addressed within the report as shown in Table Q1.

Data Quality Objective	Report Section where Addressed
State the Problem	S1 Introduction
Identify the Decision	S10 Discussion
	S11 Conclusion
Identify Inputs to the Decision	S1 Introduction
	S3 Site Identification and Description
	S4 Summary of Previous Contamination Report
	S5 Preliminary Conceptual Site Model
	S8 Field Work Results
	S9 Laboratory Analytical Rational and Results
Define the Boundary of the Assessment	S3 Site Identification and Description
Develop a Decision Rule	S7 Site Assessment Criteria
Specify Acceptable Limits on Decision Errors	S6 Field Work and QA/QC
Optimise the Design for Obtaining Data	S2 Scope of Works
	S6 Field Work and QA/QC

Table Q1: Data Quality Objectives

Q2. FIELD AND LABORATORY QUALITY CONTROL

The field and laboratory QC procedures and results are described below. Field work procedures are documented in Section 6. Laboratory certificates are provided in Appendix E.

Q2.1 Trip Spike and Blank

During the course of soil sampling, two sets of soil trip spikes and soil trip blanks were taken into the field and subject to the same conditions as the soil samples that were collected in jars. Similarly, one water trip blank and water trip spike was take into the field and subject to the same conditions as the groundwater samples.

The results of analysis of the trip spike and trip blank is shown in Tables Q2 and Q3. Trip spike recoveries between 60% to 140% and trip blank results of less than the practical quantitation limits were achieved.

Sample	Media	Benzene	Toluene	Ethylbenzene	m+p-Xylene	o-Xylene
229301-12 TS	Soil	113	108	109	116	125
230944-4 TS	Water	103	108	100	95	101
231640-3 TS	Soil	103	103	107	106	106

Table Q2: Trip Spike Results (%)

Table Q3 Trip Blank Results

Sample	Media	Benzene	Toluene	Ethylbenzene	m+p-Xylene	o-Xylene
229301-13 TB	Soil	<0.2 mg/kg	<0.5 mg/kg	<1 mg/kg	<2 mg/kg	<1 mg/kg
230944-5 TB	Water	<1 µg/L	<1 µg/L	<1 µg/L	<2 µg/L	<1 µg/L
231640-4 TB	Soil	<0.2 mg/kg	<0.5 mg/kg	<1 mg/kg	<2 mg/kg	<1 mg/kg

Q2.2 Intra-laboratory Analysis

An intra-laboratory replicate was analysed as an internal check of the reproducibility within the primary laboratory (Envirolab Services) and as a measure of consistency of sampling techniques. The comparative results of analysis between the primary samples and intra-laboratory replicate samples are summarised in Tables Q4 to Q6.

Contaminant	Sample BH103 / 1m	Sample BD2_20191022		
	Concentration (mg/kg)	Concentration (mg/kg)	Difference (mg/kg)	RPD (%)
Arsenic	4	5	1	22
Cadmium	<0.4	<0.4	0	0
Chromium	36	36	0	0
Copper	21	17	4	21
Lead	42	47	5	11
Mercury	<0.1	<0.1	0	0
Nickel	16	14	2	13
Zinc	69	62	7	11
TRH C ₆ - C ₁₀	<25	<25	0	0
TRH >C10-C16	<50	<50	0	0
TRH >C16-C34	<100	<100	0	0
TRH >C34-C40	<100	<100	0	0
Benzene	<0.2	<0.2	0	0
Toluene	<0.5	<0.5	0	0
Ethylbenzene	<1	<1	0	0
Total Xylenes	<3	<3	0	0
Naphthalene	<1	<1	0	0

Contaminant	Sample BH104 / 0.5m	Sample BD3_20191023		
	Concentration (mg/kg)	Concentration (mg/kg)	Difference (mg/kg)	RPD (%)
Arsenic	<4	<4	0	0
Cadmium	<0.4	<0.4	0	0
Chromium	4	8	4	67
Copper	3	4	1	29
Lead	36	33	3	9
Mercury	<0.1	<0.1	0	0
Nickel	<1	1	0	0
Zinc	21	22	1	5
TRH C ₆ - C ₁₀	<25	<25	0	0
TRH >C10-C16	<50	<50	0	0
TRH >C16-C34	<100	<100	0	0
TRH >C34-C40	<100	<100	0	0
Benzene	<0.2	<0.2	0	0
Toluene	<0.5	<0.5	0	0
Ethylbenzene	<1	<1	0	0
Total Xylenes	<3	<3	0	0
Naphthalene	<1	<1	0	0

Table Q5: Relative Percentage Difference for Intra-laboratory Replicate BD3_20191023

Contaminant	Sample MW105	Sample BD1/20191115		
	Concentration (µg/L)	Concentration (µg/L)	Difference (µg/L)	RPD (%)
Arsenic	1	<1	0	0
Cadmium	<0.1	<0.1	0	0
Chromium	2	<1	1	50
Copper	4	2	2	67
Lead	5	<1	4	133
Mercury	0.06	<0.05	0.01	18
Nickel	12	11	1	9
Zinc	18	11	7	48
TRH C ₆ - C ₁₀	<10	<10	0	0
TRH >C10-C16	<50	<50	0	0
TRH >C ₁₆ -C ₃₄	<100	<100	0	0
TRH >C34-C40	<100	<100	0	0
Benzene	<1	<1	0	0
Toluene	<1	<1	0	0
Ethylbenzene	<1	<1	0	0
o-Xylene	<1	<1	0	0
m+p xylene	<2	<2	0	0
Naphthalene	<1	<1	0	0

Table Q6: Relative Percentage Difference for Intra-laboratory Replicate BD1/20191115

The calculated relative percentage difference (RPD) values were less than 50% for organics. A number of calculated RPD values were greater than 30% for inorganics (metals) as shown in bold, however, these are not considered to be significant because the actual concentration differences between samples is small indicating little variation in concentrations between replicate pairs. Overall, the intra-laboratory replicate comparisons indicate that the sampling techniques were generally consistent and repeatable.

Q2.3 Inter-laboratory Analysis

Inter-laboratory replicates were conducted as a check of the reproducibility of results between the primary laboratory (Envirolab Services) and the secondary laboratory (Eurofins) and as a measure of consistency of sampling techniques. The comparative results of analysis between the primary and inter-laboratory replicate samples are summarised in Tables Q7 and Q8.

Contaminant	Sample BH108 / 0.1-0.2 m	Sample BDA/20191022		
	Concentration (mg/kg)	Concentration (mg/kg)	Difference (mg/kg)	RPD (%)
Arsenic	<4	<2	0	0
Cadmium	<0.4	<0.4	0	0
Chromium	34	67	33	65
Copper	10	22	12	75
Lead	6	14	8	80
Mercury	<0.1	<0.1	0	0
Nickel	37	67	30	58
Zinc	20	31	11	43
TRH C ₆ - C ₁₀	<25	<20	0	0
TRH >C10-C16	<50	<50	0	0
TRH >C ₁₆ -C ₃₄	<100	<100	0	0
TRH >C34-C40	<100	<100	0	0
Benzene	<0.2	<0.1	0	0
Toluene	<0.5	<0.1	0	0
Ethylbenzene	<1	<0.1	0	0
Total Xylenes	<3	<0.3	0	0
Naphthalene	<1	<0.5	0	0

Table Q7: Relative Percentage Difference for Inter-laboratory Replicate BDA/20191022

Contaminant	Sample 202 / 2.0-2.1	Sample BD26112019		
	Concentration (mg/kg)	Concentration (mg/kg)	Difference (mg/kg)	RPD (%)
Arsenic	4	8	4	67
Cadmium	<0.4	<0.4	0	0
Chromium	30	45	15	40
Copper	70	120	50	52
Lead	320	1300	980	121
Mercury	1.4	3.9	2.5	94
Nickel	36	40	4	11
Zinc	120	240	120	67
TRH C ₆ - C ₁₀	<25	<200	0	0
TRH >C10-C16	82	<500	0	0
TRH >C ₁₆ -C ₃₄	780	2300	1520	99
TRH >C34-C40	<100	<1000	0	0
Benzene	<0.2	<0.5	0	0
Toluene	<0.5	<0.5	0	0
Ethylbenzene	<1	<0.5	0	0
Total Xylenes	<3	<1.5	0	0
Naphthalene	6	26	20	163

Table Q8: Relative Percentage Difference for Inter-laboratory Replicate BD26112019

A number of calculated RPD values were above 50% for organics and 30% for inorganics (metals) as shown in bold. These are not considered to be significant because:

- In many cases, the actual concentration differences (in mg/kg) between samples is small;
- The replicate pairs are from fill soils which is heterogeneous in nature; and
- Soil replicates, rather than homogenised soil duplicates, were used to minimise the risk of possible volatile loss, hence variability can be expected.

Overall, the inter-laboratory replicate comparisons indicate that the sampling techniques were generally consistent and repeatable and the sampling handling and analytical methods for the two laboratories are comparable.

Q2.4 Laboratory QC

A summary of laboratory QC is shown in Table Q9.

Table Q9: Laboratory QC

ltem	Frequency	Acceptance Criteria	Achievement
Analytical laboratories used		NATA accreditation	Yes
Holding times		In accordance with NEPC (2013) which references various Australian and international standards	Yes
Laboratory / Reagent Blanks	1 per lab batch	<pql< td=""><td>Yes</td></pql<>	Yes
Laboratory duplicates	10% primary samples	Laboratory specific	Yes
Matrix Spikes	1 per lab batch	70-130% recovery (inorganics);	Generally yes
		60-140% (organics);	(see comments
		10-140% (SVOC, speciated phenols)	below)
Surrogate Spikes	organics by GC	70-130% recovery (inorganics);	Generally yes
		60-140% (organics);	(see comments
		10-140% (SVOC, speciated phenols)	below)
Control Samples	1 per lab batch	70-130% recovery (inorganics);	Yes
		60-140% (organics);	
		10-140% (SVOC, speciated phenols)	

Where laboratory QA / QC results were unable to be achieved by the laboratory, report comments were made by the laboratory. These included:

- Percent recovery in the matrix spike for sample 231640-1 was not possible to report due to the inhomogeneous nature of the element/s in the sample/s. However an acceptable recovery was obtained for the laboratory control sample (LCS).
- For TRH C₁₀-C₄₀, percent recovery for the surrogate and matrix spike was not possible to report as the high concentration of analytes in sample 231640-1 caused interference.
- For OCP, OPP and PCB, the PQL was raised due to interferences from analytes (other than those being tested) in sample 231640-1. Percent recovery for the matrix spike was not possible to report due to interference from analytes (other than those being tested) in sample 231640-1.
- For sample S19-No38471, RPD results for arsenic, copper and zinc were outside the acceptable range, however, the RPD reported passes Eurofins Environment Testing's QC Acceptance Criteria.
- The limits of reporting were raised due to matrix interference in sample S19-No38471.

Overall, laboratory QA / QC results indicate that laboratory results are usable for this assessment.

Q3. Data Quality Indicators

The reliability of field procedures and analytical results was assessed against the following data quality indicators (DQIs):

- Completeness a measure of the amount of usable data from a data collection activity;
- Comparability the confidence (qualitative) that data may be considered to be equivalent for each sampling and analytical event;
- Representativeness the confidence (qualitative) of data representativeness of media present onsite;
- Precision a measure of variability or reproducibility of data; and
- Accuracy a measure of closeness of the data to the 'true' value.

The DQIs were assessed as outlined in the following Table Q10.

Data Quality Indicator	Method(s) of Achievement
Completeness	Preparation of borehole logs, sample location plan and chain of custody records;
	Preparation of field groundwater sampling sheets;
	Laboratory sample receipt information received confirming receipt of samples intact and appropriateness of the chain of custody;
	Samples analysed for identified potential contaminants;
	Completion of chain of custody (COC) documentation;
	NATA accredited laboratory results certificates provided by the laboratory;
	Satisfactory frequency and results for field and laboratory quality control (QC) samples.
Comparability	Using appropriate techniques for sample recovery, storage and transportation, which were the same for the duration of the project;
	Experienced samplers used;
	Use of NATA registered laboratories, with test methods the same or similar between laboratories;
	Satisfactory results for field and laboratory QC samples.
Representativeness	Target media sampled;
	Sample numbers recovered and analysed are considered to be representative of the target media and complying with DQOs;
	Samples were extracted and analysed within holding times;
	Samples were analysed in accordance with the COC.

Table Q10: Data Quality Indicators

Data Quality Indicator	Method(s) of Achievement
Precision	Field staff followed standard operating procedures;
	Acceptable RPD between original samples and replicates;
	Satisfactory results for all other field and laboratory QC samples.
Accuracy	Field staff followed standard operating procedures;
	Satisfactory results for all field and laboratory QC samples.

Based on the above, it is considered that the DQIs have been complied with. As such, it is concluded that the field and laboratory test data obtained are reliable and useable for this assessment.

Appendix E

Laboratory Certificates

Chain of Custody

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 229301

Client Details	
Client	Douglas Partners Pty Ltd
Attention	David Walker
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	<u>86874.01, Ultimo</u>
Number of Samples	13 Soil
Date samples received	25/10/2019
Date completed instructions received	25/10/2019

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details	
Date results requested by	01/11/2019
Date of Issue	01/11/2019
Reissue Details	This report replaces R00 created on 31/10/2019 due to: sample ID error
NATA Accreditation Number 2901.	This document shall not be reproduced except in full.
Accredited for compliance with ISC	D/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Lucy Zhu Authorised by Asbestos Approved Signatory: Lucy Zhu **Results Approved By** Diego Bigolin, Team Leader, Inorganics Jaimie Loa-Kum-Cheung, Metals Supervisor Josh Williams, Chemist Loren Bardwell, Senior Chemist Lucy Zhu, Senior Asbestos Analyst Priya Samarawickrama, Senior Chemist Steven Luong, Organics Supervisor

Authorised By

Nancy Zhang, Laboratory Manager

VOCs in soil			
Our Reference		229301-2	229301-3
Your Reference	UNITS	BH102	BH103
Depth		0.5	1.0
Date Sampled		22/10/2019	22/10/2019
Type of sample		Soil	Soil
Date extracted	-	28/10/2019	28/10/2019
Date analysed	-	29/10/2019	29/10/2019
Dichlorodifluoromethane	mg/kg	<1	<1
Chloromethane	mg/kg	<1	<1
Vinyl Chloride	mg/kg	<1	<1
Bromomethane	mg/kg	<1	<1
Chloroethane	mg/kg	<1	<1
Trichlorofluoromethane	mg/kg	<1	<1
1,1-Dichloroethene	mg/kg	<1	<1
trans-1,2-dichloroethene	mg/kg	<1	<1
1,1-dichloroethane	mg/kg	<1	<1
cis-1,2-dichloroethene	mg/kg	<1	<1
bromochloromethane	mg/kg	<1	<1
chloroform	mg/kg	<1	<1
2,2-dichloropropane	mg/kg	<1	<1
1,2-dichloroethane	mg/kg	<1	<1
1,1,1-trichloroethane	mg/kg	<1	<1
1,1-dichloropropene	mg/kg	<1	<1
Cyclohexane	mg/kg	<1	<1
carbon tetrachloride	mg/kg	<1	<1
Benzene	mg/kg	<0.2	<0.2
dibromomethane	mg/kg	<1	<1
1,2-dichloropropane	mg/kg	<1	<1
trichloroethene	mg/kg	<1	<1
bromodichloromethane	mg/kg	<1	<1
trans-1,3-dichloropropene	mg/kg	<1	<1
cis-1,3-dichloropropene	mg/kg	<1	<1
1,1,2-trichloroethane	mg/kg	<1	<1
Toluene	mg/kg	<0.5	<0.5
1,3-dichloropropane	mg/kg	<1	<1
dibromochloromethane	mg/kg	<1	<1
1,2-dibromoethane	mg/kg	<1	<1
tetrachloroethene	mg/kg	<1	<1
1,1,1,2-tetrachloroethane	mg/kg	<1	<1
chlorobenzene	mg/kg	<1	<1

VOCs in soil			
Our Reference		229301-2	229301-3
Your Reference	UNITS	BH102	BH103
Depth		0.5	1.0
Date Sampled		22/10/2019	22/10/2019
Type of sample		Soil	Soil
Ethylbenzene	mg/kg	<1	<1
bromoform	mg/kg	<1	<1
m+p-xylene	mg/kg	<2	<2
styrene	mg/kg	<1	<1
1,1,2,2-tetrachloroethane	mg/kg	<1	<1
o-Xylene	mg/kg	<1	<1
1,2,3-trichloropropane	mg/kg	<1	<1
isopropylbenzene	mg/kg	<1	<1
bromobenzene	mg/kg	<1	<1
n-propyl benzene	mg/kg	<1	<1
2-chlorotoluene	mg/kg	<1	<1
4-chlorotoluene	mg/kg	<1	<1
1,3,5-trimethyl benzene	mg/kg	<1	<1
tert-butyl benzene	mg/kg	<1	<1
1,2,4-trimethyl benzene	mg/kg	<1	<1
1,3-dichlorobenzene	mg/kg	<1	<1
sec-butyl benzene	mg/kg	<1	<1
1,4-dichlorobenzene	mg/kg	<1	<1
4-isopropyl toluene	mg/kg	<1	<1
1,2-dichlorobenzene	mg/kg	<1	<1
n-butyl benzene	mg/kg	<1	<1
1,2-dibromo-3-chloropropane	mg/kg	<1	<1
1,2,4-trichlorobenzene	mg/kg	<1	<1
hexachlorobutadiene	mg/kg	<1	<1
1,2,3-trichlorobenzene	mg/kg	<1	<1
Surrogate Dibromofluorometha	%	112	110
Surrogate aaa-Trifluorotoluene	%	98	127
<i>Surrogate</i> Toluene-d ₈	%	112	111
Surrogate 4-Bromofluorobenzene	%	119	114

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		229301-1	229301-2	229301-3	229301-4	229301-5
Your Reference	UNITS	BH101	BH102	BH103	BH104	BH104
Depth		0.1	0.5	1.0	0.5	1.5
Date Sampled		22/10/2019	22/10/2019	22/10/2019	23/10/2019	23/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Date analysed	-	29/10/2019	29/10/2019	29/10/2019	29/10/2019	29/10/2019
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	115	98	127	127	114

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		229301-6	229301-7	229301-8	229301-9	229301-10
Your Reference	UNITS	BH104	BH104	BH108	BH109	BD2_20191022
Depth		3.0	4.0	0.1-0.2	0.15-0.2	-
Date Sampled		23/10/2019	23/10/2019	22/10/2019	22/10/2019	23/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Date analysed	-	29/10/2019	29/10/2019	29/10/2019	29/10/2019	30/10/2019
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	115	126	132	128	86

vTRH(C6-C10)/BTEXN in Soil				
Our Reference		229301-11	229301-12	229301-13
Your Reference	UNITS	BD3_20191023	TS	тв
Depth		-	-	-
Date Sampled		23/10/2019	22/10/2019	22/10/2019
Type of sample		Soil	Soil	Soil
Date extracted	-	28/10/2019	28/10/2019	28/10/2019
Date analysed	-	29/10/2019	29/10/2019	29/10/2019
TRH C6 - C9	mg/kg	<25		[NA]
TRH C6 - C10	mg/kg	<25		[NA]
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25		[NA]
Benzene	mg/kg	<0.2	113%	<0.2
Toluene	mg/kg	<0.5	108%	<0.5
Ethylbenzene	mg/kg	<1	109%	<1
m+p-xylene	mg/kg	<2	116%	<2
o-Xylene	mg/kg	<1	125%	<1
naphthalene	mg/kg	<1		<1
Total +ve Xylenes	mg/kg	<3		<3
Surrogate aaa-Trifluorotoluene	%	132	82	131

svTRH (C10-C40) in Soil						
Our Reference		229301-1	229301-2	229301-3	229301-4	229301-5
Your Reference	UNITS	BH101	BH102	BH103	BH104	BH104
Depth		0.1	0.5	1.0	0.5	1.5
Date Sampled		22/10/2019	22/10/2019	22/10/2019	23/10/2019	23/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Date analysed	-	28/10/2019	28/10/2019	29/10/2019	29/10/2019	29/10/2019
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	380	<100	<100	150
TRH C ₂₉ - C ₃₆	mg/kg	<100	350	<100	<100	160
TRH >C10 -C16	mg/kg	<50	63	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	63	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	640	<100	<100	150
TRH >C ₃₄ -C ₄₀	mg/kg	<100	200	<100	<100	160
Total +ve TRH (>C10-C40)	mg/kg	<50	900	<50	<50	310
Surrogate o-Terphenyl	%	119	129	111	110	97
svTRH (C10-C40) in Soil						
		229301-6	229301-7	229301-8	229301-9	229301-10

Our Reference		229301-6	229301-7	229301-8	229301-9	229301-10
Your Reference	UNITS	BH104	BH104	BH108	BH109	BD2_20191022
Depth		3.0	4.0	0.1-0.2	0.15-0.2	-
Date Sampled		23/10/2019	23/10/2019	22/10/2019	22/10/2019	23/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Date analysed	-	29/10/2019	29/10/2019	29/10/2019	29/10/2019	29/10/2019
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	110	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	110	<50	<50	<50	<50
Surrogate o-Terphenyl	%	99	95	96	92	93

svTRH (C10-C40) in Soil		
Our Reference		229301-11
Your Reference	UNITS	BD3_20191023
Depth		-
Date Sampled		23/10/2019
Type of sample		Soil
Date extracted	-	28/10/2019
Date analysed	-	29/10/2019
TRH C ₁₀ - C ₁₄	mg/kg	<50
TRH C15 - C28	mg/kg	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100
TRH >C10 -C16	mg/kg	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100
Total +ve TRH (>C10-C40)	mg/kg	<50
Surrogate o-Terphenyl	%	107

PAHs in Soil					_	
Our Reference		229301-1	229301-2	229301-3	229301-4	229301-5
Your Reference	UNITS	BH101	BH102	BH103	BH104	BH104
Depth		0.1	0.5	1.0	0.5	1.5
Date Sampled		22/10/2019	22/10/2019	22/10/2019	23/10/2019	23/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Date analysed	-	29/10/2019	29/10/2019	29/10/2019	29/10/2019	29/10/2019
Naphthalene	mg/kg	<0.1	0.2	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	0.9	0.1	<0.1	0.4
Anthracene	mg/kg	<0.1	0.2	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.2	1.8	0.2	<0.1	1
Pyrene	mg/kg	0.2	2.0	0.2	<0.1	1
Benzo(a)anthracene	mg/kg	0.1	1.2	0.1	<0.1	0.5
Chrysene	mg/kg	0.1	1.1	<0.1	<0.1	0.5
Benzo(b,j+k)fluoranthene	mg/kg	0.2	2	<0.2	<0.2	1
Benzo(a)pyrene	mg/kg	0.1	1.2	0.1	<0.05	0.54
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	0.6	<0.1	<0.1	0.3
Dibenzo(a,h)anthracene	mg/kg	<0.1	0.2	<0.1	<0.1	0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	0.8	<0.1	<0.1	0.4
Total +ve PAH's	mg/kg	1.0	12	0.79	<0.05	5.7
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	1.8	<0.5	<0.5	0.8
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	1.8	<0.5	<0.5	0.8
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	1.8	<0.5	<0.5	0.8
Surrogate p-Terphenyl-d14	%	124	105	120	114	112

PAHs in Soil					
Our Reference		229301-6	229301-7	229301-8	229301-9
Your Reference	UNITS	BH104	BH104	BH108	BH109
Depth		3.0	4.0	0.1-0.2	0.15-0.2
Date Sampled		23/10/2019	23/10/2019	22/10/2019	22/10/2019
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Date analysed	-	29/10/2019	29/10/2019	29/10/2019	29/10/2019
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	1.3	0.3	<0.1	<0.1
Anthracene	mg/kg	0.4	0.1	<0.1	<0.1
Fluoranthene	mg/kg	2.2	0.8	<0.1	<0.1
Pyrene	mg/kg	2.2	0.7	<0.1	<0.1
Benzo(a)anthracene	mg/kg	1.2	0.4	<0.1	<0.1
Chrysene	mg/kg	1	0.3	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	2	0.6	<0.2	<0.2
Benzo(a)pyrene	mg/kg	1.3	0.4	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	0.7	0.2	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	0.2	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.9	0.3	<0.1	<0.1
Total +ve PAH's	mg/kg	13	4.1	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	1.9	0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	1.9	0.6	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	1.9	0.6	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	118	113	123	125

Organochlorine Pesticides in soil						
Our Reference		229301-1	229301-2	229301-3	229301-4	229301-8
Your Reference	UNITS	BH101	BH102	BH103	BH104	BH108
Depth		0.1	0.5	1.0	0.5	0.1-0.2
Date Sampled		22/10/2019	22/10/2019	22/10/2019	23/10/2019	22/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Date analysed	-	29/10/2019	29/10/2019	29/10/2019	29/10/2019	29/10/2019
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	7.9
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	15
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	71	104	76	77	78

Organochlorine Pesticides in soil		
Our Reference		229301-9
Your Reference	UNITS	BH109
Depth		0.15-0.2
Date Sampled		22/10/2019
Type of sample		Soil
Date extracted	-	28/10/2019
Date analysed	-	29/10/2019
alpha-BHC	mg/kg	<0.1
НСВ	mg/kg	<0.1
beta-BHC	mg/kg	<0.1
gamma-BHC	mg/kg	<0.1
Heptachlor	mg/kg	<0.1
delta-BHC	mg/kg	<0.1
Aldrin	mg/kg	2.2
Heptachlor Epoxide	mg/kg	<0.1
gamma-Chlordane	mg/kg	<0.1
alpha-chlordane	mg/kg	<0.1
Endosulfan I	mg/kg	<0.1
pp-DDE	mg/kg	<0.1
Dieldrin	mg/kg	4.1
Endrin	mg/kg	<0.1
Endosulfan II	mg/kg	<0.1
pp-DDD	mg/kg	<0.1
Endrin Aldehyde	mg/kg	<0.1
pp-DDT	mg/kg	<0.1
Endosulfan Sulphate	mg/kg	<0.1
Methoxychlor	mg/kg	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1
Surrogate TCMX	%	77

Organophosphorus Pesticides in Soil						
Our Reference		229301-1	229301-2	229301-3	229301-4	229301-8
Your Reference	UNITS	BH101	BH102	BH103	BH104	BH108
Depth		0.1	0.5	1.0	0.5	0.1-0.2
Date Sampled		22/10/2019	22/10/2019	22/10/2019	23/10/2019	22/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Date analysed	-	29/10/2019	29/10/2019	29/10/2019	29/10/2019	29/10/2019
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	71	104	76	77	78

Organophosphorus Pesticides in Soil		
Our Reference		229301-9
Your Reference	UNITS	BH109
Depth		0.15-0.2
Date Sampled		22/10/2019
Type of sample		Soil
Date extracted	-	28/10/2019
Date analysed	-	29/10/2019
Dichlorvos	mg/kg	<0.1
Dimethoate	mg/kg	<0.1
Diazinon	mg/kg	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1
Ronnel	mg/kg	<0.1
Fenitrothion	mg/kg	<0.1
Malathion	mg/kg	<0.1
Chlorpyriphos	mg/kg	<0.1
Parathion	mg/kg	<0.1
Bromophos-ethyl	mg/kg	<0.1
Ethion	mg/kg	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1
Surrogate TCMX	%	77

PCBs in Soil						
Our Reference		229301-1	229301-2	229301-3	229301-4	229301-8
Your Reference	UNITS	BH101	BH102	BH103	BH104	BH108
Depth		0.1	0.5	1.0	0.5	0.1-0.2
Date Sampled		22/10/2019	22/10/2019	22/10/2019	23/10/2019	22/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Date analysed	-	29/10/2019	29/10/2019	29/10/2019	29/10/2019	29/10/2019
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	71	104	76	77	78

PCBs in Soil		
Our Reference		229301-9
Your Reference	UNITS	BH109
Depth		0.15-0.2
Date Sampled		22/10/2019
Type of sample		Soil
Date extracted	-	28/10/2019
Date analysed	-	29/10/2019
Aroclor 1016	mg/kg	<0.1
Aroclor 1221	mg/kg	<0.1
Aroclor 1232	mg/kg	<0.1
Aroclor 1242	mg/kg	<0.1
Aroclor 1248	mg/kg	<0.1
Aroclor 1254	mg/kg	<0.1
Aroclor 1260	mg/kg	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1
Surrogate TCMX	%	77

Acid Extractable metals in soil						
Our Reference		229301-1	229301-2	229301-3	229301-4	229301-5
Your Reference	UNITS	BH101	BH102	BH103	BH104	BH104
Depth		0.1	0.5	1.0	0.5	1.5
Date Sampled		22/10/2019	22/10/2019	22/10/2019	23/10/2019	23/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Date analysed	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Arsenic	mg/kg	<4	7	4	<4	<4
Cadmium	mg/kg	<0.4	0.8	<0.4	<0.4	<0.4
Chromium	mg/kg	8	12	36	4	43
Copper	mg/kg	21	130	21	3	66
Lead	mg/kg	100	170	42	36	120
Mercury	mg/kg	<0.1	0.3	<0.1	<0.1	0.1
Nickel	mg/kg	7	13	16	<1	40
Zinc	mg/kg	72	360	69	21	150

Acid Extractable metals in soil						
Our Reference		229301-6	229301-7	229301-8	229301-9	229301-10
Your Reference	UNITS	BH104	BH104	BH108	BH109	BD2_20191022
Depth		3.0	4.0	0.1-0.2	0.15-0.2	-
Date Sampled		23/10/2019	23/10/2019	22/10/2019	22/10/2019	23/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Date analysed	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Arsenic	mg/kg	12	5	<4	<4	5
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	32	16	34	48	36
Copper	mg/kg	280	29	10	14	17
Lead	mg/kg	1,100	160	6	5	47
Mercury	mg/kg	11	1.2	<0.1	<0.1	<0.1
Nickel	mg/kg	24	17	37	50	14
Zinc	mg/kg	460	99	20	25	62

Acid Extractable metals in soil		
Our Reference		229301-11
Your Reference	UNITS	BD3_20191023
Depth		-
Date Sampled		23/10/2019
Type of sample		Soil
Date prepared	-	28/10/2019
Date analysed	-	28/10/2019
Arsenic	mg/kg	<4
Cadmium	mg/kg	<0.4
Chromium	mg/kg	8
Copper	mg/kg	4
Lead	mg/kg	33
Mercury	mg/kg	<0.1
Nickel	mg/kg	1
Zinc	mg/kg	22

Misc Soil - Inorg						
Our Reference		229301-1	229301-2	229301-3	229301-4	229301-8
Your Reference	UNITS	BH101	BH102	BH103	BH104	BH108
Depth		0.1	0.5	1.0	0.5	0.1-0.2
Date Sampled		22/10/2019	22/10/2019	22/10/2019	23/10/2019	22/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Date analysed	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5

Misc Soil - Inorg		
Our Reference		229301-9
Your Reference	UNITS	BH109
Depth		0.15-0.2
Date Sampled		22/10/2019
Type of sample		Soil
Date prepared	-	28/10/2019
Date analysed	-	28/10/2019
Total Phenolics (as Phenol)	mg/kg	<5

Moisture						
Our Reference		229301-1	229301-2	229301-3	229301-4	229301-5
Your Reference	UNITS	BH101	BH102	BH103	BH104	BH104
Depth		0.1	0.5	1.0	0.5	1.5
Date Sampled		22/10/2019	22/10/2019	22/10/2019	23/10/2019	23/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Date analysed	-	29/10/2019	29/10/2019	29/10/2019	29/10/2019	29/10/2019
Moisture	%	5.0	11	5.2	7.7	12
Moisture						
Our Reference		229301-6	229301-7	229301-8	229301-9	229301-10
Your Reference	UNITS	BH104	BH104	BH108	BH109	BD2_20191022
Depth		3.0	4.0	0.1-0.2	0.15-0.2	-
Date Sampled		23/10/2019	23/10/2019	22/10/2019	22/10/2019	23/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Date analysed	-	29/10/2019	29/10/2019	29/10/2019	29/10/2019	29/10/2019
Moisture	%	22	15	3.7	4.4	6.3
Moisture						-
Our Reference		229301-11				
Your Reference	UNITS	BD3_20191023				

23/10/2019

Soil

28/10/2019

29/10/2019

8.6

-

-

%

Date Sampled

Type of sample

Date prepared

Date analysed

Moisture

Asbestos ID - soils						
Our Reference		229301-1	229301-2	229301-3	229301-4	229301-5
Your Reference	UNITS	BH101	BH102	BH103	BH104	BH104
Depth		0.1	0.5	1.0	0.5	1.5
Date Sampled		22/10/2019	22/10/2019	22/10/2019	23/10/2019	23/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	31/10/2019	31/10/2019	31/10/2019	31/10/2019	31/10/2019
Sample mass tested	g	Approx. 50g	Approx. 30g	Approx. 40g	Approx. 35g	Approx. 40g
Sample Description	-	Brown sandy soil & rocks	Brown sandy soil & rocks	Brown sandy soil & rocks	Beige sandy soil & rocks	Brown coarse- grained soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Asbestos comments	-	NO	NO	NO	NO	NO
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected

Asbestos ID - soils					
Our Reference		229301-6	229301-7	229301-8	229301-9
Your Reference	UNITS	BH104	BH104	BH108	BH109
Depth		3.0	4.0	0.1-0.2	0.15-0.2
Date Sampled		23/10/2019	23/10/2019	22/10/2019	22/10/2019
Type of sample		Soil	Soil	Soil	Soil
Date analysed	-	31/10/2019	31/10/2019	31/10/2019	31/10/2019
Sample mass tested	g	Approx. 35g	Approx. 30g	Approx. 75g	Approx. 75g
Sample Description	-	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks	Grey bituminous soil & rocks	Grey bituminous soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres	No asbestos detected at reporting limit of 0.1g/kg Organic fibres	No asbestos detected at reporting limit of 0.1g/kg Organic fibres	No asbestos detected at reporting limit of 0.1g/kg Organic fibres
		detected	detected	detected	detected
Asbestos comments	-	NO	NO	NO	NO
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected

Misc Inorg - Soil			
Our Reference		229301-2	229301-5
Your Reference	UNITS	BH102	BH104
Depth		0.5	1.5
Date Sampled		22/10/2019	23/10/2019
Type of sample		Soil	Soil
Date prepared	-	28/10/2019	28/10/2019
Date analysed	-	28/10/2019	28/10/2019
pH 1:5 soil:water	pH Units	8.9	9.1

CEC			
Our Reference		229301-2	229301-5
Your Reference	UNITS	BH102	BH104
Depth		0.5	1.5
Date Sampled		22/10/2019	23/10/2019
Type of sample		Soil	Soil
Date prepared	-	29/10/2019	29/10/2019
Date analysed	-	29/10/2019	29/10/2019
Exchangeable Ca	meq/100g	21	24
Exchangeable K	meq/100g	0.4	0.5
Exchangeable Mg	meq/100g	2.9	2.8
Exchangeable Na	meq/100g	0.39	0.40
Cation Exchange Capacity	meq/100g	25	28

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
AT-008	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Metals-009	Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-AES analytical finish.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-012/017	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS.

Method ID	Methodology Summary
Org-012/017	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS and/or GC-MS/MS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-012/017	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<br="" teq="" teqs="" that="" the="" this="" to="">2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<br="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.="">3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<br="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" the="">Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUAI	LITY CONTRC	L: VOCs	in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	229301-3
Date extracted				28/10/2019	2	28/10/2019	28/10/2019		28/10/2019	28/10/2019
Date analysed	-			29/10/2019	2	29/10/2019	29/10/2019		29/10/2019	29/10/2019
Dichlorodifluoromethane	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	[NT]
Chloromethane	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	[NT]
Vinyl Chloride	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	[NT]
Bromomethane	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	[NT]
Chloroethane	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	[NT]
Trichlorofluoromethane	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	[NT]
1,1-Dichloroethene	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	[NT]
trans-1,2-dichloroethene	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	[NT]
1,1-dichloroethane	mg/kg	1	Org-014	<1	2	<1	<1	0	128	134
cis-1,2-dichloroethene	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	[NT]
bromochloromethane	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	[NT]
chloroform	mg/kg	1	Org-014	<1	2	<1	<1	0	107	110
2,2-dichloropropane	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	[NT]
1,2-dichloroethane	mg/kg	1	Org-014	<1	2	<1	<1	0	108	108
1,1,1-trichloroethane	mg/kg	1	Org-014	<1	2	<1	<1	0	108	112
1,1-dichloropropene	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	[NT]
Cyclohexane	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	[NT]
carbon tetrachloride	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	[NT]
Benzene	mg/kg	0.2	Org-014	<0.2	2	<0.2	<0.2	0	[NT]	[NT]
dibromomethane	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	[NT]
1,2-dichloropropane	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	[NT]
trichloroethene	mg/kg	1	Org-014	<1	2	<1	<1	0	106	110
bromodichloromethane	mg/kg	1	Org-014	<1	2	<1	<1	0	103	105
trans-1,3-dichloropropene	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	[NT]
cis-1,3-dichloropropene	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	[NT]
1,1,2-trichloroethane	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	[NT]
Toluene	mg/kg	0.5	Org-014	<0.5	2	<0.5	<0.5	0	[NT]	[NT]
1,3-dichloropropane	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	[NT]
dibromochloromethane	mg/kg	1	Org-014	<1	2	<1	<1	0	108	109
1,2-dibromoethane	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	[NT]
tetrachloroethene	mg/kg	1	Org-014	<1	2	<1	<1	0	120	126
1,1,1,2-tetrachloroethane	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	[NT]
chlorobenzene	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	[NT]
Ethylbenzene	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	[NT]
bromoform	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	[NT]
m+p-xylene	mg/kg	2	Org-014	<2	2	<2	<2	0	[NT]	[NT]
styrene	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	[NT]
1,1,2,2-tetrachloroethane	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	[NT]

QUALITY CONTROL: VOCs in soil						Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	229301-3		
o-Xylene	mg/kg	1	Org-014	<1	2	<1	<1	0		[NT]		
1,2,3-trichloropropane	mg/kg	1	Org-014	<1	2	<1	<1	0		[NT]		
isopropylbenzene	mg/kg	1	Org-014	<1	2	<1	<1	0		[NT]		
bromobenzene	mg/kg	1	Org-014	<1	2	<1	<1	0		[NT]		
n-propyl benzene	mg/kg	1	Org-014	<1	2	<1	<1	0		[NT]		
2-chlorotoluene	mg/kg	1	Org-014	<1	2	<1	<1	0		[NT]		
4-chlorotoluene	mg/kg	1	Org-014	<1	2	<1	<1	0		[NT]		
1,3,5-trimethyl benzene	mg/kg	1	Org-014	<1	2	<1	<1	0		[NT]		
tert-butyl benzene	mg/kg	1	Org-014	<1	2	<1	<1	0		[NT]		
1,2,4-trimethyl benzene	mg/kg	1	Org-014	<1	2	<1	<1	0		[NT]		
1,3-dichlorobenzene	mg/kg	1	Org-014	<1	2	<1	<1	0		[NT]		
sec-butyl benzene	mg/kg	1	Org-014	<1	2	<1	<1	0		[NT]		
1,4-dichlorobenzene	mg/kg	1	Org-014	<1	2	<1	<1	0		[NT]		
4-isopropyl toluene	mg/kg	1	Org-014	<1	2	<1	<1	0		[NT]		
1,2-dichlorobenzene	mg/kg	1	Org-014	<1	2	<1	<1	0		[NT]		
n-butyl benzene	mg/kg	1	Org-014	<1	2	<1	<1	0		[NT]		
1,2-dibromo-3-chloropropane	mg/kg	1	Org-014	<1	2	<1	<1	0		[NT]		
1,2,4-trichlorobenzene	mg/kg	1	Org-014	<1	2	<1	<1	0		[NT]		
hexachlorobutadiene	mg/kg	1	Org-014	<1	2	<1	<1	0		[NT]		
1,2,3-trichlorobenzene	mg/kg	1	Org-014	<1	2	<1	<1	0		[NT]		
Surrogate Dibromofluorometha	%		Org-014	111	2	112	119	6	101	101		
Surrogate aaa-Trifluorotoluene	%		Org-014	138	2	98	123	23	124	126		
Surrogate Toluene-d ₈	%		Org-014	110	2	112	109	3	103	100		
Surrogate 4-Bromofluorobenzene	%		Org-014	111	2	119	111	7	105	100		

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	229301-3
Date extracted	-			28/10/2019	2	28/10/2019	28/10/2019		28/10/2019	28/10/2019
Date analysed	-			29/10/2019	2	29/10/2019	29/10/2019		29/10/2019	29/10/2019
TRH C ₆ - C ₉	mg/kg	25	Org-016	<25	2	<25	<25	0	123	125
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	<25	2	<25	<25	0	123	125
Benzene	mg/kg	0.2	Org-016	<0.2	2	<0.2	<0.2	0	115	120
Toluene	mg/kg	0.5	Org-016	<0.5	2	<0.5	<0.5	0	120	125
Ethylbenzene	mg/kg	1	Org-016	<1	2	<1	<1	0	126	126
m+p-xylene	mg/kg	2	Org-016	<2	2	<2	<2	0	126	126
o-Xylene	mg/kg	1	Org-016	<1	2	<1	<1	0	123	122
naphthalene	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-016	113	2	98	123	23	124	126

QUALITY CONT	ROL: vTRH	(C6-C10)/	BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	8	28/10/2019	28/10/2019			[NT]
Date analysed	-			[NT]	8	29/10/2019	29/10/2019			[NT]
TRH C ₆ - C ₉	mg/kg	25	Org-016	[NT]	8	<25	<25	0		[NT]
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	[NT]	8	<25	<25	0		[NT]
Benzene	mg/kg	0.2	Org-016	[NT]	8	<0.2	<0.2	0		[NT]
Toluene	mg/kg	0.5	Org-016	[NT]	8	<0.5	<0.5	0		[NT]
Ethylbenzene	mg/kg	1	Org-016	[NT]	8	<1	<1	0		[NT]
m+p-xylene	mg/kg	2	Org-016	[NT]	8	<2	<2	0		[NT]
o-Xylene	mg/kg	1	Org-016	[NT]	8	<1	<1	0		[NT]
naphthalene	mg/kg	1	Org-014	[NT]	8	<1	<1	0		[NT]
Surrogate aaa-Trifluorotoluene	%		Org-016	[NT]	8	132	78	51		[NT]

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	229301-3	
Date extracted	-			28/10/2019	2	28/10/2019	28/10/2019		28/10/2019	28/10/2019	
Date analysed	-			28/10/2019	2	28/10/2019	28/10/2019		28/10/2019	29/10/2019	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	<50	2	<50	<50	0	129	117	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	<100	2	380	400	5	107	116	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	<100	2	350	370	6	108	86	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	<50	2	63	59	7	129	117	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	<100	2	640	680	6	107	116	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	<100	2	200	220	10	108	86	
Surrogate o-Terphenyl	%		Org-003	118	2	129	112	14	115	111	

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	8	28/10/2019	28/10/2019			
Date analysed	-			[NT]	8	29/10/2019	29/10/2019			
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	[NT]	8	<50	<50	0		
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	[NT]	8	<100	<100	0		
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	[NT]	8	<100	<100	0		
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	[NT]	8	<50	<50	0		
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	[NT]	8	<100	<100	0		
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	[NT]	8	<100	<100	0		
Surrogate o-Terphenyl	%		Org-003	[NT]	8	96	94	2		

QUAL	ITY CONTRC	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	229301-3
Date extracted	-			28/10/2019	2	28/10/2019	28/10/2019		28/10/2019	28/10/2019
Date analysed	-			29/10/2019	2	29/10/2019	29/10/2019		29/10/2019	29/10/2019
Naphthalene	mg/kg	0.1	Org-012/017	<0.1	2	0.2	0.2	0	116	121
Acenaphthylene	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Fluorene	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	118	124
Phenanthrene	mg/kg	0.1	Org-012/017	<0.1	2	0.9	0.9	0	106	122
Anthracene	mg/kg	0.1	Org-012/017	<0.1	2	0.2	0.3	40	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-012/017	<0.1	2	1.8	2.2	20	104	120
Pyrene	mg/kg	0.1	Org-012/017	<0.1	2	2.0	2.5	22	104	120
Benzo(a)anthracene	mg/kg	0.1	Org-012/017	<0.1	2	1.2	1.6	29	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-012/017	<0.1	2	1.1	1.4	24	106	120
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012/017	<0.2	2	2	2.5	22	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-012/017	<0.05	2	1.2	1.7	34	114	126
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012/017	<0.1	2	0.6	0.8	29	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012/017	<0.1	2	0.2	0.3	40	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012/017	<0.1	2	0.8	1	22	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-012/017	123	2	105	104	1	109	107

QUALI	TY CONTRC	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	8	28/10/2019	28/10/2019			[NT]
Date analysed	-			[NT]	8	29/10/2019	29/10/2019			[NT]
Naphthalene	mg/kg	0.1	Org-012/017	[NT]	8	<0.1	<0.1	0		[NT]
Acenaphthylene	mg/kg	0.1	Org-012/017	[NT]	8	<0.1	<0.1	0		[NT]
Acenaphthene	mg/kg	0.1	Org-012/017	[NT]	8	<0.1	<0.1	0		[NT]
Fluorene	mg/kg	0.1	Org-012/017	[NT]	8	<0.1	<0.1	0		[NT]
Phenanthrene	mg/kg	0.1	Org-012/017	[NT]	8	<0.1	<0.1	0		[NT]
Anthracene	mg/kg	0.1	Org-012/017	[NT]	8	<0.1	<0.1	0		[NT]
Fluoranthene	mg/kg	0.1	Org-012/017	[NT]	8	<0.1	<0.1	0		[NT]
Pyrene	mg/kg	0.1	Org-012/017	[NT]	8	<0.1	<0.1	0		[NT]
Benzo(a)anthracene	mg/kg	0.1	Org-012/017	[NT]	8	<0.1	<0.1	0		[NT]
Chrysene	mg/kg	0.1	Org-012/017	[NT]	8	<0.1	<0.1	0		[NT]
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012/017	[NT]	8	<0.2	<0.2	0		[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-012/017	[NT]	8	<0.05	<0.05	0		[NT]
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012/017	[NT]	8	<0.1	<0.1	0		[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012/017	[NT]	8	<0.1	<0.1	0		[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012/017	[NT]	8	<0.1	<0.1	0		[NT]
Surrogate p-Terphenyl-d14	%		Org-012/017	[NT]	8	123	123	0		[NT]

QUALITY CONTR	OL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	229301-3
Date extracted	-			28/10/2019	2	28/10/2019	28/10/2019		28/10/2019	28/10/2019
Date analysed	-			29/10/2019	2	29/10/2019	29/10/2019		29/10/2019	29/10/2019
alpha-BHC	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	116	118
НСВ	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	[NT]	
beta-BHC	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	92	89
gamma-BHC	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	[NT]	
Heptachlor	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	92	93
delta-BHC	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	[NT]	
Aldrin	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	106	108
Heptachlor Epoxide	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	104	102
gamma-Chlordane	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	[NT]	
alpha-chlordane	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	[NT]	
Endosulfan I	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	[NT]	
pp-DDE	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	104	104
Dieldrin	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	128	114
Endrin	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	116	116
Endosulfan II	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	[NT]	
pp-DDD	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	104	102
Endrin Aldehyde	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	[NT]	
pp-DDT	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	[NT]	
Endosulfan Sulphate	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	96	85
Methoxychlor	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	[NT]	
Surrogate TCMX	%		Org-012/017	72	2	104	99	5	132	112

QUALITY CO	ONTROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	8	28/10/2019	28/10/2019			[NT]
Date analysed	-			[NT]	8	29/10/2019	29/10/2019			[NT]
alpha-BHC	mg/kg	0.1	Org-012/017	[NT]	8	<0.1	<0.1	0		[NT]
НСВ	mg/kg	0.1	Org-012/017	[NT]	8	<0.1	<0.1	0		[NT]
beta-BHC	mg/kg	0.1	Org-012/017	[NT]	8	<0.1	<0.1	0		[NT]
gamma-BHC	mg/kg	0.1	Org-012/017	[NT]	8	<0.1	<0.1	0		[NT]
Heptachlor	mg/kg	0.1	Org-012/017	[NT]	8	<0.1	<0.1	0		[NT]
delta-BHC	mg/kg	0.1	Org-012/017	[NT]	8	<0.1	<0.1	0		[NT]
Aldrin	mg/kg	0.1	Org-012/017	[NT]	8	7.9	13	49		[NT]
Heptachlor Epoxide	mg/kg	0.1	Org-012/017	[NT]	8	<0.1	<0.1	0		[NT]
gamma-Chlordane	mg/kg	0.1	Org-012/017	[NT]	8	<0.1	<0.1	0		[NT]
alpha-chlordane	mg/kg	0.1	Org-012/017	[NT]	8	<0.1	<0.1	0		[NT]
Endosulfan I	mg/kg	0.1	Org-012/017	[NT]	8	<0.1	<0.1	0		[NT]
pp-DDE	mg/kg	0.1	Org-012/017	[NT]	8	<0.1	<0.1	0		[NT]
Dieldrin	mg/kg	0.1	Org-012/017	[NT]	8	15	24	46		[NT]
Endrin	mg/kg	0.1	Org-012/017	[NT]	8	<0.1	<0.1	0		[NT]
Endosulfan II	mg/kg	0.1	Org-012/017	[NT]	8	<0.1	<0.1	0		[NT]
pp-DDD	mg/kg	0.1	Org-012/017	[NT]	8	<0.1	<0.1	0		[NT]
Endrin Aldehyde	mg/kg	0.1	Org-012/017	[NT]	8	<0.1	<0.1	0		[NT]
pp-DDT	mg/kg	0.1	Org-012/017	[NT]	8	<0.1	<0.1	0		[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-012/017	[NT]	8	<0.1	<0.1	0		[NT]
Methoxychlor	mg/kg	0.1	Org-012/017	[NT]	8	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-012/017	[NT]	8	78	81	4		[NT]

QUALITY CONTRO	L: Organoph	osphorus	s Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	229301-3
Date extracted	-			28/10/2019	2	28/10/2019	28/10/2019		28/10/2019	28/10/2019
Date analysed	-			29/10/2019	2	29/10/2019	29/10/2019		29/10/2019	29/10/2019
Dichlorvos	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	106	106
Dimethoate	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	114	116
Fenitrothion	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	116	116
Malathion	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	117	113
Chlorpyriphos	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	128	130
Parathion	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	122	122
Bromophos-ethyl	mg/kg	0.1	AT-008	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	124	128
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-012/017	72	2	104	99	5	132	112

QUALITY CONTRC	L: Organopł	nosphorus	s Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	8	28/10/2019	28/10/2019			[NT]
Date analysed	-			[NT]	8	29/10/2019	29/10/2019			[NT]
Dichlorvos	mg/kg	0.1	Org-012/017	[NT]	8	<0.1	<0.1	0		[NT]
Dimethoate	mg/kg	0.1	Org-012/017	[NT]	8	<0.1	<0.1	0		[NT]
Diazinon	mg/kg	0.1	Org-012/017	[NT]	8	<0.1	<0.1	0		[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-012/017	[NT]	8	<0.1	<0.1	0		[NT]
Ronnel	mg/kg	0.1	Org-012/017	[NT]	8	<0.1	<0.1	0		[NT]
Fenitrothion	mg/kg	0.1	Org-012/017	[NT]	8	<0.1	<0.1	0		[NT]
Malathion	mg/kg	0.1	Org-012/017	[NT]	8	<0.1	<0.1	0		[NT]
Chlorpyriphos	mg/kg	0.1	Org-012/017	[NT]	8	<0.1	<0.1	0		[NT]
Parathion	mg/kg	0.1	Org-012/017	[NT]	8	<0.1	<0.1	0		[NT]
Bromophos-ethyl	mg/kg	0.1	AT-008	[NT]	8	<0.1	<0.1	0		[NT]
Ethion	mg/kg	0.1	Org-012/017	[NT]	8	<0.1	<0.1	0		[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-012/017	[NT]	8	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-012/017	[NT]	8	78	81	4		[NT]

QUALI	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	229301-3
Date extracted	-			28/10/2019	2	28/10/2019	28/10/2019		28/10/2019	28/10/2019
Date analysed	-			29/10/2019	2	29/10/2019	29/10/2019		29/10/2019	29/10/2019
Aroclor 1016	mg/kg	0.1	Org-006	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-006	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-006	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-006	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-006	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-006	<0.1	2	<0.1	<0.1	0	80	76
Aroclor 1260	mg/kg	0.1	Org-006	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-006	72	2	104	99	5	132	112

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	8	28/10/2019	28/10/2019			
Date analysed	-			[NT]	8	29/10/2019	29/10/2019			
Aroclor 1016	mg/kg	0.1	Org-006	[NT]	8	<0.1	<0.1	0		
Aroclor 1221	mg/kg	0.1	Org-006	[NT]	8	<0.1	<0.1	0		
Aroclor 1232	mg/kg	0.1	Org-006	[NT]	8	<0.1	<0.1	0		
Aroclor 1242	mg/kg	0.1	Org-006	[NT]	8	<0.1	<0.1	0		
Aroclor 1248	mg/kg	0.1	Org-006	[NT]	8	<0.1	<0.1	0		
Aroclor 1254	mg/kg	0.1	Org-006	[NT]	8	<0.1	<0.1	0		
Aroclor 1260	mg/kg	0.1	Org-006	[NT]	8	<0.1	<0.1	0		
Surrogate TCMX	%		Org-006	[NT]	8	78	81	4	[NT]	[NT]

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Duj	plicate		Spike Re	covery %
Test Description	Units	PQL Method Blank		#	Base	Dup.	RPD	LCS-7	229301-3	
Date prepared	-			28/10/2019	2	28/10/2019	28/10/2019		28/10/2019	28/10/2019
Date analysed	-			28/10/2019	2	28/10/2019	28/10/2019		28/10/2019	28/10/2019
Arsenic	mg/kg	4	Metals-020	<4	2	7	9	25	108	107
Cadmium	mg/kg	0.4	Metals-020	<0.4	2	0.8	0.6	29	107	93
Chromium	mg/kg	1	Metals-020	<1	2	12	13	8	112	95
Copper	mg/kg	1	Metals-020	<1	2	130	120	8	107	110
Lead	mg/kg	1	Metals-020	<1	2	170	180	6	110	91
Mercury	mg/kg	0.1	Metals-021	<0.1	2	0.3	0.3	0	81	72
Nickel	mg/kg	1	Metals-020	<1	2	13	17	27	105	89
Zinc	mg/kg	1	Metals-020	<1	2	360	380	5	106	97

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	8	28/10/2019	28/10/2019			[NT]
Date analysed	-			[NT]	8	28/10/2019	28/10/2019			[NT]
Arsenic	mg/kg	4	Metals-020	[NT]	8	<4	<4	0		[NT]
Cadmium	mg/kg	0.4	Metals-020	[NT]	8	<0.4	<0.4	0		[NT]
Chromium	mg/kg	1	Metals-020	[NT]	8	34	44	26		[NT]
Copper	mg/kg	1	Metals-020	[NT]	8	10	12	18		[NT]
Lead	mg/kg	1	Metals-020	[NT]	8	6	6	0		[NT]
Mercury	mg/kg	0.1	Metals-021	[NT]	8	<0.1	<0.1	0		[NT]
Nickel	mg/kg	1	Metals-020	[NT]	8	37	41	10		[NT]
Zinc	mg/kg	1	Metals-020	[NT]	8	20	20	0	[NT]	[NT]

QUALITY	Duplicate				Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	[NT]
Date prepared	-			28/10/2019	1	28/10/2019	28/10/2019		28/10/2019	
Date analysed	-			28/10/2019	1	28/10/2019	28/10/2019		28/10/2019	
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	<5	1	<5	<5	0	100	[NT]

QUALITY	Duplicate				Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	[NT]
Date prepared	-			28/10/2019	[NT]		[NT]	[NT]	28/10/2019	
Date analysed	-			28/10/2019	[NT]		[NT]	[NT]	28/10/2019	
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	[NT]	[NT]	[NT]	[NT]	102	[NT]

QU	ALITY CONT	ROL: CE	Duplicate				Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	[NT]
Date prepared	-			29/10/2019	[NT]		[NT]	[NT]	29/10/2019	
Date analysed	-			29/10/2019	[NT]		[NT]	[NT]	29/10/2019	
Exchangeable Ca	meq/100g	0.1	Metals-009	<0.1	[NT]		[NT]	[NT]	83	
Exchangeable K	meq/100g	0.1	Metals-009	<0.1	[NT]		[NT]	[NT]	93	
Exchangeable Mg	meq/100g	0.1	Metals-009	<0.1	[NT]		[NT]	[NT]	80	
Exchangeable Na	meq/100g	0.1	Metals-009	<0.1	[NT]		[NT]	[NT]	108	

Result Definiti	Result Definitions								
NT	Not tested								
NA	Test not required								
INS	Insufficient sample for this test								
PQL	Practical Quantitation Limit								
<	Less than								
>	Greater than								
RPD	Relative Percent Difference								
LCS	Laboratory Control Sample								
NS	Not specified								
NEPM	National Environmental Protection Measure								
NR	Not Reported								

Quality Contro	Quality Control Definitions									
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.									
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.									
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.									
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.									
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.									
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform Faecal Enterococci. & E Coli levels are less than									

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sam When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Report Comments

Asbestos: A portion of the supplied sample was sub-sampled for asbestos analysis according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g of sample in its own container.

Note: Samples 229301-8 & 9 were sub-sampled from jars provided by the client.

CHAIN OF CUSTODY DESPATCH SHEET

Project No: 86874-01					Suburb: 01 time				To: Envirolab Services						
Project Name:	515	mo				lumber				12 Ashley Street, Chatswood NSW 2067					
Project Manager			Waller		Sampler: T. Waham, R. Keavery			Attn:							
Emails:	<u>davi</u>	d.walker@do	uglaspartne						, e	Phone:		910 6200			
				ours 🛛	72 hou		Standard		Email:			virolab.com.au			
Prior Storage:					No 🖅	(If YES, the	n handle, tr	ransport and store in accordance with FPM HAZID)							
		pled	Sample Type	Container Type				r	Analytes						
Sample ID defh (~)	Lab ID	Date Sampled	S - soil W - water	G - głass P - plastic	lom Sa Ba	1/0C-5	Cen bo 39	Conto Conto	TRN/ DEX	metuls (8)	BIEX	PH+ CEC	Notes/preservation		
BN101 001		22/10/19	5	GP	1							~	subsample OK fer astertos analyjis		
BH102 0.5	2	22/10/19	2	CIP	1	\checkmark							astestos analysis		
BH103 1.0	3	22/10/19	S	6/P	\checkmark					<u> </u>	-	`¥			
BH104 0.5	4	23/10/19	S	ζ / P_{\perp}									Envirolab Services Envirolab 12 Ashley St Chatswood NSW 2067		
DH104 1.5	2	23/10/19	Ś	ĊĮP						<u> </u>			Ph: (02) 9910 6200		
BH104 3.0	<u>į</u>	23/10/15	2	LP				· ·	(Job No: 219 30 (Date Received: 22/10/15		
BH104 40	ک	23/10/19	2	Gle									Time Received: 116120		
SK108 0.1-02		2-10/19	<u>ک</u> ک	4							<u> </u>		Received by: <u>Fr</u>		
ANIOG 10-15-02	5 (0	22/10/19					<u> </u>				<u> </u>		Cooling: Ice//g6pack Security: /ntact/Broken/None		
BD2_20191022 BD3-20191023		22/10/19	>	<u> </u>											
BDA /20191022		22/10/19		<u>с</u>			· ·						Send sample to		
TS	(2	•	S	-4				<u> </u>	<u>v</u>				Euro Ans for		
TB	13		5	Ĝ.							V/		analysis		
PQL (S) mg/kg											 		CC PQLs req'd for all water analytes		
PQL = practical	quanti	tation limit.	lf none g	jiven, defaul	t to Labor	atory Met	hod Dete	ction Limi	t	Lah R	eport/Re	ference N			
Metals to Analy					<u> </u>					ł	-		Courier		
Total number of					nguished		DW			aboratory	/ by:	Phone			
Send Results to Signed:	: D	ouglas Part		Received b			e Road, W	est Ryde			Date &		(1)0/19		

•

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Pty Ltd
Attention	David Walker

Sample Login Details	
Your reference	86874.01, Ultimo
Envirolab Reference	229301
Date Sample Received	25/10/2019
Date Instructions Received	25/10/2019
Date Results Expected to be Reported	01/11/2019

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	13 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	12.7
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments	
Nil	

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Sample ID	VOCs in soil	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBsin Soil	Acid Extractable metalsin soil	Misc Soil - Inorg	Asbestos ID - soils	Misc Inorg - Soil	CEC
BH101-0.01		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
BH102-0.5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
BH103-1.0	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
BH104-0.5		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
BH104-1.5		\checkmark	\checkmark	\checkmark				\checkmark		\checkmark	\checkmark	\checkmark
BH104-3.0		\checkmark	\checkmark	\checkmark				\checkmark		\checkmark		
BH104-4.0		\checkmark	\checkmark	\checkmark				\checkmark		\checkmark		
BH108-0.1-0.2		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
BH109-0.15-0.2		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
BD2_20191022		\checkmark	\checkmark					\checkmark				
BD3_20191023		\checkmark	\checkmark					\checkmark				
TS		\checkmark										
ТВ		\checkmark										

The '\sciller' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

CERTIFICATE OF ANALYSIS 229301-A

Client Details	
Client	Douglas Partners Pty Ltd
Attention	David Walker
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	<u>86874.01, Ultimo</u>
Number of Samples	13 Soil
Date samples received	25/10/2019
Date completed instructions received	01/11/2019

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details			
Date results requested by	08/11/2019		
Date of Issue	05/11/2019		
NATA Accreditation Number 2901. This document shall not be reproduced except in full.			
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *			

<u>Results Approved By</u> Josh Williams, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager

sTPH in Soil (C10-C40)-Silica		
Our Reference		229301-A-2
Your Reference	UNITS	BH102
Depth		0.5
Date Sampled		22/10/2019
Type of sample		Soil
Date extracted	-	04/11/2019
Date analysed	-	05/11/2019
TPH C ₁₀ - C ₁₄	mg/kg	<50
TPH C ₁₅ - C ₂₈	mg/kg	260
TPH C ₂₉ - C ₃₆	mg/kg	240
TPH >C ₁₀ -C ₁₆	mg/kg	<50
TPH >C ₁₆ -C ₃₄	mg/kg	440
TPH >C ₃₄ -C ₄₀	mg/kg	180
Surrogate o-Terphenyl	%	90

Method ID	Methodology Summary
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.

QUALITY CONT	ROL: sTPH	in Soil (C	10-C40)-Silica			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			04/11/2019	[NT]		[NT]	[NT]	04/11/2019	
Date analysed	-			05/11/2019	[NT]		[NT]	[NT]	05/11/2019	
TPH C ₁₀ - C ₁₄	mg/kg	50	Org-003	<50	[NT]		[NT]	[NT]	111	
TPH C ₁₅ - C ₂₈	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	130	
TPH C ₂₉ - C ₃₆	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	121	
TPH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	<50	[NT]		[NT]	[NT]	111	
TPH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	130	
TPH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	121	
Surrogate o-Terphenyl	%		Org-003	70	[NT]		[NT]	[NT]	122	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control Definitions					
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.				
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.				
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.				
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.				
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.				
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform Eaecal Enterococci. & E Coli levels are less than				

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sam When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Andrew Fitzsimons

From: Sent: To: Subject:

Follow Up Flag: Flag Status:

David Walker <David.Walker@douglaspartners.com.au> Friday, 1 November 2019 2:03 PM Samplereceipt Analysis request

2

Follow up Flagged

Ref: 229301-A TAT: Stal Due: 8/11/19 Fele

Hi

Please conduct TRH with silica gel clean up analysis on 229301-2 BH102 0.5m. Standard t/a.

thanks

David Walker | Associate / Environmental Engineer Douglas Partners Pty Ltd | ABN 75 053 980 117 | www.douglaspartners.com.au INMANI KIMUN 96 Hermitage Road West Ryde NSW 2114 | PO Box 472 West Ryde NSW 1685 P: 02 9809 0666 | M: 0407 540 537 | E: David Walker@douglaspartners.com.au

CLIENT CHOICE	AWARDS	2019
WINNER	b	eaton

This email is confidential. If you are not the intended recipient, please notify us immediately and be aware that any disclosure, copying, distribution or use of the contents of this information is prohibited. Please note that the company does not make any commitment through emails not confirmed by fax or letter.

Disclaimer

The information contained in this communication from the sender is confidential. It is intended solely for use by the recipient and others authorized to receive it. If you are not the recipient, you are hereby notified that any disclosure, copying, distribution or taking action in relation of the contents of this information is strictly prohibited and may be unlawful.

This email has been scanned for viruses and malware, and may have been automatically archived by Mimecast Ltd, an innovator in Software as a Service (SaaS) for business. Providing a safer and more useful place for your human generated data. Specializing in; Security, archiving and compliance. To find out more Click Here.

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Pty Ltd
Attention	David Walker

Sample Login Details	
Your reference	86874.01, Ultimo
Envirolab Reference	229301-A
Date Sample Received	25/10/2019
Date Instructions Received	01/11/2019
Date Results Expected to be Reported	08/11/2019

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	13 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	12.7
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comr	nents
Nil	

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	sTPH in Soil (C10-C40)-Silica	On Hold
BH101-0.1		\checkmark
BH102-0.5	\checkmark	
BH103-1.0		✓
BH104-0.5		✓
BH104-1.5		✓
BH104-3.0		✓
BH104-4.0		✓
BH108-0.1-0.2		 <
BH109-0.15-0.2		✓
BD2_20191022		✓
BD3_20191023		\checkmark
TS		✓
ТВ		✓

The '\screw' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 229472

Client Details	
Client	Douglas Partners Pty Ltd
Attention	David Walker
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	<u>86874.01</u>
Number of Samples	6 Soil
Date samples received	29/10/2019
Date completed instructions received	29/10/2019

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details Date results requested by 05/11/2019 04/11/2019 Date of Issue NATA Accreditation Number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Aida Marner Authorised by Asbestos Approved Signatory: Lucy Zhu

Results Approved By

Diego Bigolin, Team Leader, Inorganics Dragana Tomas, Senior Chemist Jaimie Loa-Kum-Cheung, Metals Supervisor Josh Williams, Chemist Loren Bardwell, Senior Chemist Lucy Zhu, Senior Asbestos Analyst Priya Samarawickrama, Senior Chemist Steven Luong, Organics Supervisor

Authorised By

Nancy Zhang, Laboratory Manager

VOCs in soil		
Our Reference		229472-3
Your Reference	UNITS	BH105
Depth		3.0
Date Sampled		28/10/2019
Type of sample		Soil
Date extracted	-	31/10/2019
Date analysed	-	01/11/2019
Dichlorodifluoromethane	mg/kg	<1
Chloromethane	mg/kg	<1
Vinyl Chloride	mg/kg	<1
Bromomethane	mg/kg	<1
Chloroethane	mg/kg	<1
Trichlorofluoromethane	mg/kg	<1
1,1-Dichloroethene	mg/kg	<1
trans-1,2-dichloroethene	mg/kg	<1
1,1-dichloroethane	mg/kg	<1
cis-1,2-dichloroethene	mg/kg	<1
bromochloromethane	mg/kg	<1
chloroform	mg/kg	<1
2,2-dichloropropane	mg/kg	<1
1,2-dichloroethane	mg/kg	<1
1,1,1-trichloroethane	mg/kg	<1
1,1-dichloropropene	mg/kg	<1
Cyclohexane	mg/kg	<1
carbon tetrachloride	mg/kg	<1
Benzene	mg/kg	<0.2
dibromomethane	mg/kg	<1
1,2-dichloropropane	mg/kg	<1
trichloroethene	mg/kg	<1
bromodichloromethane	mg/kg	<1
trans-1,3-dichloropropene	mg/kg	<1
cis-1,3-dichloropropene	mg/kg	<1
1,1,2-trichloroethane	mg/kg	<1
Toluene	mg/kg	<0.5
1,3-dichloropropane	mg/kg	<1
dibromochloromethane	mg/kg	<1
1,2-dibromoethane	mg/kg	<1
tetrachloroethene	mg/kg	<1
1,1,1,2-tetrachloroethane	mg/kg	<1
chlorobenzene	mg/kg	<1

VOCs in soil		
Our Reference		229472-3
Your Reference	UNITS	BH105
Depth		3.0
Date Sampled		28/10/2019
Type of sample		Soil
Ethylbenzene	mg/kg	<1
bromoform	mg/kg	<1
m+p-xylene	mg/kg	<2
styrene	mg/kg	<1
1,1,2,2-tetrachloroethane	mg/kg	<1
o-Xylene	mg/kg	<1
1,2,3-trichloropropane	mg/kg	<1
isopropylbenzene	mg/kg	<1
bromobenzene	mg/kg	<1
n-propyl benzene	mg/kg	<1
2-chlorotoluene	mg/kg	<1
4-chlorotoluene	mg/kg	<1
1,3,5-trimethyl benzene	mg/kg	<1
tert-butyl benzene	mg/kg	<1
1,2,4-trimethyl benzene	mg/kg	<1
1,3-dichlorobenzene	mg/kg	<1
sec-butyl benzene	mg/kg	<1
1,4-dichlorobenzene	mg/kg	<1
4-isopropyl toluene	mg/kg	<1
1,2-dichlorobenzene	mg/kg	<1
n-butyl benzene	mg/kg	<1
1,2-dibromo-3-chloropropane	mg/kg	<1
1,2,4-trichlorobenzene	mg/kg	<1
hexachlorobutadiene	mg/kg	<1
1,2,3-trichlorobenzene	mg/kg	<1
Surrogate Dibromofluorometha	%	107
Surrogate aaa-Trifluorotoluene	%	92
<i>Surrogate</i> Toluene-d ₈	%	109
Surrogate 4-Bromofluorobenzene	%	118

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		229472-1	229472-2	229472-3	229472-4	229472-5
Your Reference	UNITS	BH105	BH105	BH105	BH106	BH106
Depth		1.0	2.0	3.0	0.1	1.0
Date Sampled		28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	31/10/2019	31/10/2019	31/10/2019	31/10/2019	31/10/2019
Date analysed	-	01/11/2019	01/11/2019	01/11/2019	01/11/2019	01/11/2019
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	2	4	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	85	121	92	85	96

vTRH(C6-C10)/BTEXN in Soil		
Our Reference		229472-6
Your Reference	UNITS	BH106
Depth		2.0
Date Sampled		28/10/2019
Type of sample		Soil
Date extracted	-	31/10/2019
Date analysed	-	01/11/2019
TRH C ₆ - C ₉	mg/kg	<25
TRH C ₆ - C ₁₀	mg/kg	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
naphthalene	mg/kg	<1
Total +ve Xylenes	mg/kg	<3
Surrogate aaa-Trifluorotoluene	%	123

svTRH (C10-C40) in Soil						
Our Reference		229472-1	229472-2	229472-3	229472-4	229472-5
Your Reference	UNITS	BH105	BH105	BH105	BH106	BH106
Depth		1.0	2.0	3.0	0.1	1.0
Date Sampled		28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	30/10/2019	30/10/2019	30/10/2019	30/10/2019	30/10/2019
Date analysed	-	31/10/2019	31/10/2019	31/10/2019	31/10/2019	31/10/2019
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	240	210	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	110	210	170	<100	<100
TRH >C10 -C16	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	160	390	340	<100	100
TRH >C ₃₄ -C ₄₀	mg/kg	140	190	150	100	<100
Total +ve TRH (>C10-C40)	mg/kg	300	570	480	100	100
Surrogate o-Terphenyl	%	75	77	76	78	76

svTRH (C10-C40) in Soil		
Our Reference		229472-6
Your Reference	UNITS	BH106
Depth		2.0
Date Sampled		28/10/2019
Type of sample		Soil
Date extracted	-	30/10/2019
Date analysed	-	31/10/2019
TRH C ₁₀ - C ₁₄	mg/kg	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100
TRH >C10 -C16	mg/kg	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100
Total +ve TRH (>C10-C40)	mg/kg	<50
Surrogate o-Terphenyl	%	81

PAHs in Soil						
Our Reference		229472-1	229472-2	229472-3	229472-4	229472-5
Your Reference	UNITS	BH105	BH105	BH105	BH106	BH106
Depth		1.0	2.0	3.0	0.1	1.0
Date Sampled		28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	30/10/2019	30/10/2019	30/10/2019	30/10/2019	30/10/2019
Date analysed	-	31/10/2019	31/10/2019	31/10/2019	31/10/2019	31/10/2019
Naphthalene	mg/kg	0.2	3.9	1.9	<0.1	<0.1
Acenaphthylene	mg/kg	0.2	0.8	0.6	<0.1	0.1
Acenaphthene	mg/kg	0.1	0.6	0.3	<0.1	<0.1
Fluorene	mg/kg	0.1	1.2	0.6	<0.1	<0.1
Phenanthrene	mg/kg	2.3	17	10	0.1	0.6
Anthracene	mg/kg	0.4	3.2	2.0	<0.1	0.2
Fluoranthene	mg/kg	4.2	20	13	0.3	1.3
Pyrene	mg/kg	4.0	18	12	0.3	1.3
Benzo(a)anthracene	mg/kg	1.6	6.2	4.6	0.2	0.7
Chrysene	mg/kg	1.4	5.5	4.3	0.2	0.7
Benzo(b,j+k)fluoranthene	mg/kg	1	5.5	4.1	<0.2	0.7
Benzo(a)pyrene	mg/kg	2.0	7.9	5.8	0.2	0.91
Indeno(1,2,3-c,d)pyrene	mg/kg	1.2	4.7	3.3	<0.1	0.5
Dibenzo(a,h)anthracene	mg/kg	0.3	1.0	0.9	<0.1	0.2
Benzo(g,h,i)perylene	mg/kg	1.7	6.7	4.6	0.1	0.6
Total +ve PAH's	mg/kg	21	100	67	1.4	7.7
Benzo(a)pyrene TEQ calc (zero)	mg/kg	2.8	11	7.9	<0.5	1.3
Benzo(a)pyrene TEQ calc(half)	mg/kg	2.8	11	7.9	<0.5	1.3
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	2.8	11	7.9	<0.5	1.3
Surrogate p-Terphenyl-d14	%	94	96	96	94	95

PAHs in Soil		
Our Reference		229472-6
Your Reference	UNITS	BH106
Depth		2.0
Date Sampled		28/10/2019
Type of sample		Soil
Date extracted	-	30/10/2019
Date analysed	-	31/10/2019
Naphthalene	mg/kg	0.1
Acenaphthylene	mg/kg	<0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	0.4
Anthracene	mg/kg	<0.1
Fluoranthene	mg/kg	0.4
Pyrene	mg/kg	0.3
Benzo(a)anthracene	mg/kg	0.1
Chrysene	mg/kg	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2
Benzo(a)pyrene	mg/kg	0.1
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1
Total +ve PAH's	mg/kg	1.4
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5
Surrogate p-Terphenyl-d14	%	98

Organochlorine Pesticides in soil			
Our Reference		229472-1	229472-4
Your Reference	UNITS	BH105	BH106
Depth		1.0	0.1
Date Sampled		28/10/2019	28/10/2019
Type of sample		Soil	Soil
Date extracted	-	30/10/2019	30/10/2019
Date analysed	-	31/10/2019	31/10/2019
alpha-BHC	mg/kg	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1
Surrogate TCMX	%	93	93

Organophosphorus Pesticides in Soil			
Our Reference		229472-1	229472-4
Your Reference	UNITS	BH105	BH106
Depth		1.0	0.1
Date Sampled		28/10/2019	28/10/2019
Type of sample		Soil	Soil
Date extracted	-	30/10/2019	30/10/2019
Date analysed	-	31/10/2019	31/10/2019
Dichlorvos	mg/kg	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1
Surrogate TCMX	%	93	93

PCBs in Soil			
Our Reference		229472-1	229472-4
Your Reference	UNITS	BH105	BH106
Depth		1.0	0.1
Date Sampled		28/10/2019	28/10/2019
Type of sample		Soil	Soil
Date extracted	-	30/10/2019	30/10/2019
Date analysed	-	31/10/2019	31/10/2019
Aroclor 1016	mg/kg	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1
Surrogate TCMX	%	93	93

Acid Extractable metals in soil						
Our Reference		229472-1	229472-2	229472-3	229472-4	229472-5
Your Reference	UNITS	BH105	BH105	BH105	BH106	BH106
Depth		1.0	2.0	3.0	0.1	1.0
Date Sampled		28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	30/10/2019	30/10/2019	30/10/2019	30/10/2019	30/10/2019
Date analysed	-	30/10/2019	30/10/2019	30/10/2019	30/10/2019	30/10/2019
Arsenic	mg/kg	8	18	10	<4	7
Cadmium	mg/kg	<0.4	0.6	<0.4	<0.4	<0.4
Chromium	mg/kg	37	16	12	11	15
Copper	mg/kg	42	51	45	44	45
Lead	mg/kg	74	130	95	15	99
Mercury	mg/kg	0.2	0.4	0.4	0.1	0.4
Nickel	mg/kg	17	28	41	86	29
Zinc	mg/kg	87	160	150	41	120

Acid Extractable metals in soil		
Our Reference		229472-6
Your Reference	UNITS	BH106
Depth		2.0
Date Sampled		28/10/2019
Type of sample		Soil
Date prepared	-	30/10/2019
Date analysed	-	30/10/2019
Arsenic	mg/kg	<4
Cadmium	mg/kg	<0.4
Chromium	mg/kg	14
Copper	mg/kg	3
Lead	mg/kg	7
Mercury	mg/kg	<0.1
Nickel	mg/kg	3
Zinc	mg/kg	8

Misc Soil - Inorg			
Our Reference		229472-1	229472-4
Your Reference	UNITS	BH105	BH106
Depth		1.0	0.1
Date Sampled		28/10/2019	28/10/2019
Type of sample		Soil	Soil
Date prepared	-	30/10/2019	30/10/2019
Date analysed	-	30/10/2019	30/10/2019
Total Phenolics (as Phenol)	mg/kg	<5	<5

Misc Inorg - Soil		
Our Reference		229472-5
Your Reference	UNITS	BH106
Depth		1.0
Date Sampled		28/10/2019
Type of sample		Soil
Date prepared	-	30/10/2019
Date analysed	-	30/10/2019
pH 1:5 soil:water	pH Units	9.0

CEC		
Our Reference		229472-5
Your Reference	UNITS	BH106
Depth		1.0
Date Sampled		28/10/2019
Type of sample		Soil
Date prepared	-	31/10/2019
Date analysed	-	31/10/2019
Exchangeable Ca	meq/100g	11
Exchangeable K	meq/100g	0.1
Exchangeable Mg	meq/100g	0.98
Exchangeable Na	meq/100g	<0.1
Cation Exchange Capacity	meq/100g	12

Moisture						
Our Reference		229472-1	229472-2	229472-3	229472-4	229472-5
Your Reference	UNITS	BH105	BH105	BH105	BH106	BH106
Depth		1.0	2.0	3.0	0.1	1.0
Date Sampled		28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	30/10/2019	30/10/2019	30/10/2019	30/10/2019	30/10/2019
Date analysed	-	31/10/2019	31/10/2019	31/10/2019	31/10/2019	31/10/2019
Moisture	%	9.0	9.4	9.7	7.1	6.7

Moisture		
Our Reference		229472-6
Your Reference	UNITS	BH106
Depth		2.0
Date Sampled		28/10/2019
Type of sample		Soil
Date prepared	-	30/10/2019
Date analysed	-	31/10/2019
Moisture	%	15

Asbestos ID - soils						
Our Reference		229472-1	229472-2	229472-3	229472-4	229472-5
Your Reference	UNITS	BH105	BH105	BH105	BH106	BH106
Depth		1.0	2.0	3.0	0.1	1.0
Date Sampled		28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	31/10/2019	31/10/2019	31/10/2019	31/10/2019	31/10/2019
Sample mass tested	g	Approx. 30g	Approx. 35g	Approx. 55g	Approx. 45g	Approx. 55g
Sample Description	-	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Asbestos comments	-	NO	NO	NO	NO	NO
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
AT-008	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Metals-009	Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-AES analytical finish.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-012/017	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS.

Method ID	Methodology Summary
Org-012/017	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS and/or GC-MS/MS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-012/017	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<br="" teq="" teqs="" that="" the="" this="" to="">2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<br="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.="">3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<br="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" the="">Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUAL	ITY CONTRO	L: VOCs	in soil			Dı	uplicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]
Date extracted	-			31/10/2019	[NT]		[NT]	[NT]	31/10/2019	[NT]
Date analysed	-			01/11/2019	[NT]		[NT]	[NT]	01/11/2019	[NT]
Dichlorodifluoromethane	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]		[NT]
Chloromethane	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]		[NT]
Vinyl Chloride	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]		[NT]
Bromomethane	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]		[NT]
Chloroethane	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]		[NT]
Trichlorofluoromethane	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]		[NT]
1,1-Dichloroethene	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]		[NT]
trans-1,2-dichloroethene	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]		[NT]
1,1-dichloroethane	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]	99	[NT]
cis-1,2-dichloroethene	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]		[NT]
bromochloromethane	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]		[NT]
chloroform	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]	90	[NT]
2,2-dichloropropane	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]		[NT]
1,2-dichloroethane	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]	91	[NT]
1,1,1-trichloroethane	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]	97	[NT]
1,1-dichloropropene	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]		[NT]
Cyclohexane	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]		[NT]
carbon tetrachloride	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]		[NT]
Benzene	mg/kg	0.2	Org-014	<0.2	[NT]		[NT]	[NT]		[NT]
dibromomethane	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]		[NT]
1,2-dichloropropane	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]		[NT]
trichloroethene	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]	104	[NT]
bromodichloromethane	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]	92	[NT]
trans-1,3-dichloropropene	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]		[NT]
cis-1,3-dichloropropene	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]		[NT]
1,1,2-trichloroethane	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]		[NT]
Toluene	mg/kg	0.5	Org-014	<0.5	[NT]		[NT]	[NT]		[NT]
1,3-dichloropropane	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]		[NT]
dibromochloromethane	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]	108	[NT]
1,2-dibromoethane	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]		[NT]
tetrachloroethene	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]	117	[NT]
1,1,1,2-tetrachloroethane	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]		[NT]
chlorobenzene	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]		[NT]
Ethylbenzene	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]		[NT]
bromoform	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]		[NT]
m+p-xylene	mg/kg	2	Org-014	<2	[NT]		[NT]	[NT]		[NT]
styrene	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]		[NT]
1,1,2,2-tetrachloroethane	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]		[NT]

QUALI	TY CONTRC	L: VOCs	in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]
o-Xylene	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]		[NT]
1,2,3-trichloropropane	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]		[NT]
isopropylbenzene	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]		[NT]
bromobenzene	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]		[NT]
n-propyl benzene	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]		[NT]
2-chlorotoluene	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]		[NT]
4-chlorotoluene	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]		[NT]
1,3,5-trimethyl benzene	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]		[NT]
tert-butyl benzene	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]		[NT]
1,2,4-trimethyl benzene	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]		[NT]
1,3-dichlorobenzene	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]		[NT]
sec-butyl benzene	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]		[NT]
1,4-dichlorobenzene	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]		[NT]
4-isopropyl toluene	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]		[NT]
1,2-dichlorobenzene	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]		[NT]
n-butyl benzene	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]		[NT]
1,2-dibromo-3-chloropropane	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]		[NT]
1,2,4-trichlorobenzene	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]		[NT]
hexachlorobutadiene	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]		[NT]
1,2,3-trichlorobenzene	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]		[NT]
Surrogate Dibromofluorometha	%		Org-014	108	[NT]		[NT]	[NT]	97	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-014	101	[NT]		[NT]	[NT]	120	[NT]
Surrogate Toluene-d ₈	%		Org-014	109	[NT]		[NT]	[NT]	101	[NT]
Surrogate 4-Bromofluorobenzene	%		Org-014	122	[NT]		[NT]	[NT]	123	[NT]

QUALITY CONT	ROL: vTRH	(C6-C10)	BTEXN in Soil			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]
Date extracted	-			31/10/2019	[NT]		[NT]	[NT]	31/10/2019	
Date analysed	-			01/11/2019	[NT]		[NT]	[NT]	01/11/2019	
TRH C ₆ - C ₉	mg/kg	25	Org-016	<25	[NT]		[NT]	[NT]	123	
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	<25	[NT]		[NT]	[NT]	123	
Benzene	mg/kg	0.2	Org-016	<0.2	[NT]		[NT]	[NT]	102	
Toluene	mg/kg	0.5	Org-016	<0.5	[NT]		[NT]	[NT]	110	
Ethylbenzene	mg/kg	1	Org-016	<1	[NT]		[NT]	[NT]	134	
m+p-xylene	mg/kg	2	Org-016	<2	[NT]		[NT]	[NT]	134	
o-Xylene	mg/kg	1	Org-016	<1	[NT]		[NT]	[NT]	132	
naphthalene	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-016	101	[NT]		[NT]	[NT]	120	

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Duj	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]
Date extracted	-			31/10/2019	[NT]		[NT]	[NT]	30/10/2019	
Date analysed	-			01/11/2019	[NT]		[NT]	[NT]	31/10/2019	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	<50	[NT]		[NT]	[NT]	119	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	103	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	108	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	<50	[NT]		[NT]	[NT]	119	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	103	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	108	
Surrogate o-Terphenyl	%		Org-003	79	[NT]	[NT]	[NT]	[NT]	96	[NT]

QUAL	ITY CONTRC	L: PAHs	in Soil			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]
Date extracted	-			30/10/2019	[NT]		[NT]	[NT]	30/10/2019	
Date analysed	-			31/10/2019	[NT]		[NT]	[NT]	31/10/2019	
Naphthalene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	108	
Acenaphthylene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Acenaphthene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluorene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	98	
Phenanthrene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	100	
Anthracene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluoranthene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	98	
Pyrene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	100	
Benzo(a)anthracene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Chrysene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	102	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012/017	<0.2	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-012/017	<0.05	[NT]		[NT]	[NT]	100	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-012/017	95	[NT]		[NT]	[NT]	100	

QUALITY CONT	ROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]
Date extracted	-			30/10/2019	[NT]		[NT]	[NT]	30/10/2019	
Date analysed	-			31/10/2019	[NT]		[NT]	[NT]	31/10/2019	
alpha-BHC	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	110	
НСВ	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
beta-BHC	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	92	
gamma-BHC	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Heptachlor	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	92	
delta-BHC	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Aldrin	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	104	
Heptachlor Epoxide	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	96	
gamma-Chlordane	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
alpha-chlordane	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Endosulfan I	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
pp-DDE	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	100	
Dieldrin	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	106	
Endrin	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	90	
Endosulfan II	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
pp-DDD	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	96	
Endrin Aldehyde	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
pp-DDT	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Endosulfan Sulphate	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	94	
Methoxychlor	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-012/017	97	[NT]		[NT]	[NT]	95	

QUALITY CONTRO	L: Organoph	nosphorus	s Pesticides in Soil			Du	olicate		Spike Red	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]
Date extracted	-			30/10/2019	[NT]	[NT]		[NT]	30/10/2019	
Date analysed	-			31/10/2019	[NT]	[NT]		[NT]	31/10/2019	
Dichlorvos	mg/kg	0.1	Org-012/017	<0.1	[NT]	[NT]		[NT]	91	
Dimethoate	mg/kg	0.1	Org-012/017	<0.1	[NT]	[NT]		[NT]	[NT]	
Diazinon	mg/kg	0.1	Org-012/017	<0.1	[NT]	[NT]		[NT]	[NT]	
Chlorpyriphos-methyl	mg/kg	0.1	Org-012/017	<0.1	[NT]	[NT]		[NT]	[NT]	
Ronnel	mg/kg	0.1	Org-012/017	<0.1	[NT]	[NT]		[NT]	112	
Fenitrothion	mg/kg	0.1	Org-012/017	<0.1	[NT]	[NT]		[NT]	96	
Malathion	mg/kg	0.1	Org-012/017	<0.1	[NT]	[NT]		[NT]	67	
Chlorpyriphos	mg/kg	0.1	Org-012/017	<0.1	[NT]	[NT]		[NT]	124	
Parathion	mg/kg	0.1	Org-012/017	<0.1	[NT]	[NT]		[NT]	122	
Bromophos-ethyl	mg/kg	0.1	AT-008	<0.1	[NT]	[NT]		[NT]	[NT]	
Ethion	mg/kg	0.1	Org-012/017	<0.1	[NT]	[NT]		[NT]	112	
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-012/017	<0.1	[NT]	[NT]		[NT]	[NT]	
Surrogate TCMX	%		Org-012/017	97	[NT]	[NT]		[NT]	95	

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]
Date extracted	-			30/10/2019	[NT]		[NT]	[NT]	30/10/2019	
Date analysed	-			31/10/2019	[NT]		[NT]	[NT]	31/10/2019	
Aroclor 1016	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1221	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1232	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1242	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1248	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1254	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	86	
Aroclor 1260	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-006	97	[NT]	[NT]	[NT]	[NT]	95	[NT]

QUALITY CONT	ROL: Acid E	xtractable	e metals in soil			Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-9	[NT]
Date prepared	-			30/10/2019	[NT]		[NT]	[NT]	30/10/2019	
Date analysed	-			30/10/2019	[NT]		[NT]	[NT]	30/10/2019	
Arsenic	mg/kg	4	Metals-020	<4	[NT]		[NT]	[NT]	108	
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]		[NT]	[NT]	105	
Chromium	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	110	
Copper	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	110	
Lead	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	114	
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]		[NT]	[NT]	87	
Nickel	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	107	
Zinc	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	105	

QUALITY	CONTROL	Misc Soi	I - Inorg			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]
Date prepared	-			30/10/2019	[NT]		[NT]	[NT]	30/10/2019	[NT]
Date analysed	-			30/10/2019	[NT]		[NT]	[NT]	30/10/2019	[NT]
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	<5	[NT]	[NT]	[NT]	[NT]	103	[NT]

QUALITY	CONTROL	Misc Ino	rg - Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]
Date prepared	-			30/10/2019	[NT]		[NT]	[NT]	30/10/2019	
Date analysed	-			30/10/2019	[NT]		[NT]	[NT]	30/10/2019	
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	[NT]	[NT]	[NT]	[NT]	102	[NT]

QU.	ALITY CONT	ROL: CE	C			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]
Date prepared	-			31/10/2019	[NT]		[NT]	[NT]	31/10/2019	
Date analysed	-			31/10/2019	[NT]		[NT]	[NT]	31/10/2019	
Exchangeable Ca	meq/100g	0.1	Metals-009	<0.1	[NT]		[NT]	[NT]	108	
Exchangeable K	meq/100g	0.1	Metals-009	<0.1	[NT]		[NT]	[NT]	110	
Exchangeable Mg	meq/100g	0.1	Metals-009	<0.1	[NT]		[NT]	[NT]	107	
Exchangeable Na	meq/100g	0.1	Metals-009	<0.1	[NT]		[NT]	[NT]	110	

Result Definitions					
NT	Not tested				
NA	Test not required				
INS	Insufficient sample for this test				
PQL	Practical Quantitation Limit				
<	Less than				
>	Greater than				
RPD	Relative Percent Difference				
LCS	Laboratory Control Sample				
NS	Not specified				
NEPM	National Environmental Protection Measure				
NR	Not Reported				

Quality Control Definitions						
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.					
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.					
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.					
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.					
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.					
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & F. Coli levels are less than					

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sam When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Report Comments

Asbestos: Excessive sample volume was provided for asbestos analysis. A portion of the supplied sample was sub-sampled according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g (50mL) of sample in its own container as per AS4964-2004. Note: Samples 229472-1 to 5 were sub-sampled from bags provided by the client.

Douglas Partners Geotechnics | Environment | Groundwater

CHAIN OF CUSTODY DESPATCH SHEET

Project No: 86874.01 Suburb: Othing					To:	Envi	rolab Ser	vices						
Project Name: 1) (timo			Order Number				12 Ashley Street, Chatswood NSW 2067							
Project Manager: David Libeler			Sampler: Decet Abb R.K.				Attn:							
Emails: david.walker@douglaspartners.com.au			<u>-</u>					Phone:	02 9	910 6200)			
			ours D 72 hours D Standard				Email:	syd	ney@en	virolab.co	om.au			
Prior Storage:	🗆 Esk		je 🗆 Sh			oles contai	n 'potentia	al' HBM?	· Yes · 🖯	No	(If YES, the	n handle, t	ansport and	store in accordance with FPM HAZID)
			Sample Type	Container Type			·		Analytes					
Sample ID (A)	Lab ID	Date Sampled	S - soil W - water	G - glass P - plastic	lougo 84	lombo Za	loubo 3	70 N	PK+ CEC					Notes/preservation
AN105 1.0	1	28.10.19	S	GR										OK to gub sample
BH105 2.0	2	1		C.D		./								OK to gub sample for asbestos.
BH105 3.0	3			GIP				1/						
BH106 0-1	4			(IP				-					<u> </u>	
AL106 1-0	5			r FD							-	_		· · · · ·
BH 106 200	6													
DR IUD LOU		<u>.</u>												Envirolab Services
									\					Enviroiab Services ROLINB 12 Ashley St "" Chatsword NSW 2067 "" Chatsword NSW 2067 "" Chatsword NSW 2067
								er"					Job	No: 2291472
-											_			Received: 29/10/2019
· · · ·					<u>-</u> .			-			-			Received: 10-32
														o: Coal/Ambient B
· · ·													Seci	urity: IntacDBroken/None 11-6
	t— ——-	·		i	·									· · · · · · · · · · · · · · · · · · ·
 			м. К ²	† . .	1						_			• "
PQL (S) mg/kg												ANZEC	C PQLs	req'd for all water analytes 🏾
PQL = practical	-			-	t to Labor	atory Met	hod Dete	ction Limi	it	Lab R	eport/Re	erence N	lo:	
Metals to Analy Total number o					nguished	l by:	DW 1	Transpo	orted to la	l aboratory	by:			Courier
Send Results to		ouglas Part						Vest Ryde			<i>.</i>	Phone	: 9	8090666 Fax: 98094095
Signed:				Received b				naj			Date &	ime:	29/10	2019 10.32
		×,			-			5					_	· ·

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Pty Ltd
Attention	David Walker

Sample Login Details	
Your reference	86874.01
Envirolab Reference	229472
Date Sample Received	29/10/2019
Date Instructions Received	29/10/2019
Date Results Expected to be Reported	05/11/2019

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	6 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	11.6
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst					
Phone: 02 9910 6200	Phone: 02 9910 6200					
Fax: 02 9910 6201	Fax: 02 9910 6201					
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au					

Analysis Underway, details on the following page:

Sample ID	VOCs in soil	VTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBsin Soil	Acid Extractable metalsin soil	Misc Soil - Inorg	Misc Inorg - Soil	CEC	Asbestos ID - soils
BH105-1.0		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			✓
BH105-2.0		✓	 ✓ 	\checkmark				✓				\checkmark
BH105-3.0	\checkmark	\checkmark	\checkmark	\checkmark				\checkmark				\checkmark
BH106-0.1		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark
BH106-1.0		✓	✓	\checkmark				\checkmark		\checkmark	\checkmark	\checkmark
BH106-2.0		\checkmark	\checkmark	✓				✓				

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

CERTIFICATE OF ANALYSIS 230944

Client Details	
Client	Douglas Partners Pty Ltd
Attention	David Walker
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	<u>86874.01, Ultimo</u>
Number of Samples	5 Water
Date samples received	15/11/2019
Date completed instructions received	15/11/2019

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details	
Date results requested by	22/11/2019
Date of Issue	22/11/2019
NATA Accreditation Number 2901. This	s document shall not be reproduced except in full.
Accredited for compliance with ISO/IEO	C 17025 - Testing. Tests not covered by NATA are denoted with *

Results Approved By

Diego Bigolin, Team Leader, Inorganics Jaimie Loa-Kum-Cheung, Metals Supervisor Josh Williams, Senior Chemist Loren Bardwell, Senior Chemist Nick Sarlamis, Inorganics Supervisor Steven Luong, Organics Supervisor

Authorised By

Nancy Zhang, Laboratory Manager

VOCs in water			
Our Reference		230944-1	230944-2
Your Reference	UNITS	MW105	MW104
Date Sampled		15/11/2019	15/11/2019
Type of sample		Water	Water
Date extracted	-	19/11/2019	19/11/2019
Date analysed	-	20/11/2019	20/11/2019
Dichlorodifluoromethane	µg/L	<10	<10
Chloromethane	µg/L	<10	<10
Vinyl Chloride	µg/L	<10	<10
Bromomethane	µg/L	<10	<10
Chloroethane	µg/L	<10	<10
Trichlorofluoromethane	μg/L	<10	<10
1,1-Dichloroethene	µg/L	<1	<1
Trans-1,2-dichloroethene	μg/L	<1	<1
1,1-dichloroethane	μg/L	<1	<1
Cis-1,2-dichloroethene	μg/L	<1	<1
Bromochloromethane	μg/L	<1	<1
Chloroform	µg/L	<1	<1
2,2-dichloropropane	μg/L	<1	<1
1,2-dichloroethane	µg/L	<1	<1
1,1,1-trichloroethane	µg/L	<1	<1
1,1-dichloropropene	µg/L	<1	<1
Cyclohexane	µg/L	<1	<1
Carbon tetrachloride	µg/L	<1	<1
Benzene	μg/L	<1	<1
Dibromomethane	μg/L	<1	<1
1,2-dichloropropane	μg/L	<1	<1
Trichloroethene	µg/L	<1	<1
Bromodichloromethane	µg/L	<1	<1
trans-1,3-dichloropropene	µg/L	<1	<1
cis-1,3-dichloropropene	μg/L	<1	<1
1,1,2-trichloroethane	μg/L	<1	<1
Toluene	μg/L	<1	<1
1,3-dichloropropane	μg/L	<1	<1
Dibromochloromethane	μg/L	<1	<1
1,2-dibromoethane	μg/L	<1	<1
Tetrachloroethene	µg/L	<1	<1
1,1,1,2-tetrachloroethane	µg/L	<1	<1
Chlorobenzene	µg/L	<1	<1
Ethylbenzene	µg/L	<1	<1

VOCs in water			
Our Reference		230944-1	230944-2
Your Reference	UNITS	MW105	MW104
Date Sampled		15/11/2019	15/11/2019
Type of sample		Water	Water
Bromoform	μg/L	<1	<1
m+p-xylene	µg/L	<2	<2
Styrene	µg/L	<1	<1
1,1,2,2-tetrachloroethane	µg/L	<1	<1
o-xylene	µg/L	<1	<1
1,2,3-trichloropropane	µg/L	<1	<1
Isopropylbenzene	µg/L	<1	<1
Bromobenzene	µg/L	<1	<1
n-propyl benzene	µg/L	<1	<1
2-chlorotoluene	µg/L	<1	<1
4-chlorotoluene	μg/L	<1	<1
1,3,5-trimethyl benzene	µg/L	<1	<1
Tert-butyl benzene	µg/L	<1	<1
1,2,4-trimethyl benzene	μg/L	<1	<1
1,3-dichlorobenzene	μg/L	<1	<1
Sec-butyl benzene	µg/L	<1	<1
1,4-dichlorobenzene	μg/L	<1	<1
4-isopropyl toluene	μg/L	<1	<1
1,2-dichlorobenzene	µg/L	<1	<1
n-butyl benzene	µg/L	<1	<1
1,2-dibromo-3-chloropropane	μg/L	<1	<1
1,2,4-trichlorobenzene	µg/L	<1	<1
Hexachlorobutadiene	µg/L	<1	<1
1,2,3-trichlorobenzene	µg/L	<1	<1
Surrogate Dibromofluoromethane	%	83	91
Surrogate toluene-d8	%	62	66
Surrogate 4-BFB	%	100	106

vTRH(C6-C10)/BTEXN in Water						
Our Reference		230944-1	230944-2	230944-3	230944-4	230944-5
Your Reference	UNITS	MW105	MW104	BD1/20191115	TS	ТВ
Date Sampled		15/11/2019	15/11/2019	15/11/2019	15/11/2019	15/11/2019
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	19/11/2019	19/11/2019	19/11/2019	19/11/2019	19/11/2019
Date analysed	-	20/11/2019	20/11/2019	20/11/2019	20/11/2019	20/11/2019
TRH C ₆ - C ₉	µg/L	<10	<10	<10		[NA]
TRH C ₆ - C ₁₀	µg/L	<10	<10	<10		[NA]
TRH C ₆ - C ₁₀ less BTEX (F1)	µg/L	<10	<10	<10		[NA]
Benzene	µg/L	<1	<1	<1	103%	<1
Toluene	µg/L	<1	<1	<1	108%	<1
Ethylbenzene	µg/L	<1	<1	<1	100%	<1
m+p-xylene	µg/L	<2	<2	<2	95%	<2
o-xylene	µg/L	<1	<1	<1	101%	<1
Naphthalene	µg/L	<1	<1	<1		<1
Surrogate Dibromofluoromethane	%	83	91	84	106	105
Surrogate toluene-d8	%	62	66	85	106	103
Surrogate 4-BFB	%	100	106	102	104	105

svTRH (C10-C40) in Water				
Our Reference		230944-1	230944-2	230944-3
Your Reference	UNITS	MW105	MW104	BD1/20191115
Date Sampled		15/11/2019	15/11/2019	15/11/2019
Type of sample		Water	Water	Water
Date extracted	-	18/11/2019	18/11/2019	18/11/2019
Date analysed	-	19/11/2019	19/11/2019	19/11/2019
TRH C ₁₀ - C ₁₄	µg/L	<50	<50	<50
TRH C ₁₅ - C ₂₈	µg/L	<100	<100	<100
TRH C ₂₉ - C ₃₆	µg/L	<100	<100	<100
TRH >C ₁₀ - C ₁₆	µg/L	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	µg/L	<50	<50	<50
TRH >C ₁₆ - C ₃₄	µg/L	<100	<100	<100
TRH >C ₃₄ - C ₄₀	µg/L	<100	<100	<100
Surrogate o-Terphenyl	%	92	86	78

PAHs in Water - Low Level			
Our Reference		230944-1	230944-2
Your Reference	UNITS	MW105	MW104
Date Sampled		15/11/2019	15/11/2019
Type of sample		Water	Water
Date extracted	-	18/11/2019	18/11/2019
Date analysed	-	19/11/2019	19/11/2019
Naphthalene	µg/L	<0.2	<0.2
Acenaphthylene	µg/L	<0.1	<0.1
Acenaphthene	µg/L	<0.1	<0.1
Fluorene	µg/L	<0.1	<0.1
Phenanthrene	µg/L	<0.1	<0.1
Anthracene	µg/L	<0.1	<0.1
Fluoranthene	µg/L	<0.1	<0.1
Pyrene	µg/L	<0.1	<0.1
Benzo(a)anthracene	µg/L	<0.1	<0.1
Chrysene	µg/L	<0.1	<0.1
Benzo(b,j+k)fluoranthene	µg/L	<0.2	<0.2
Benzo(a)pyrene	µg/L	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	µg/L	<0.1	<0.1
Dibenzo(a,h)anthracene	µg/L	<0.1	<0.1
Benzo(g,h,i)perylene	µg/L	<0.1	<0.1
Benzo(a)pyrene TEQ	µg/L	<0.5	<0.5
Total +ve PAH's	µg/L	<0.1	<0.1
Surrogate p-Terphenyl-d14	%	76	77

OCPs in Water - Low Level			
Our Reference		230944-1	230944-2
Your Reference	UNITS	MW105	MW104
Date Sampled		15/11/2019	15/11/2019
Type of sample		Water	Water
Date extracted	-	18/11/2019	18/11/2019
Date analysed	-	19/11/2019	19/11/2019
alpha-BHC	µg/L	<0.01	<0.01
нсв	µg/L	<0.01	<0.01
beta-BHC	µg/L	<0.01	<0.01
gamma-BHC	µg/L	<0.01	<0.01
Heptachlor	µg/L	<0.01	<0.01
delta-BHC	µg/L	<0.01	<0.01
Aldrin	µg/L	<0.01	<0.01
Heptachlor Epoxide	µg/L	<0.01	<0.01
gamma-Chlordane	μg/L	<0.01	<0.01
alpha-Chlordane	µg/L	<0.01	<0.01
Endosulfan I	µg/L	<0.01	<0.01
pp-DDE	µg/L	<0.01	<0.01
Dieldrin	µg/L	<0.01	<0.01
Endrin	µg/L	<0.01	<0.01
Endosulfan II	µg/L	<0.01	<0.01
pp-DDD	µg/L	<0.01	<0.01
Endrin Aldehyde	µg/L	<0.01	<0.01
pp-DDT	µg/L	<0.006	<0.006
Endosulfan Sulphate	µg/L	<0.01	<0.01
Methoxychlor	µg/L	<0.01	<0.01
Surrogate TCMX	%	69	64

OP in water LL ANZECCF/ADWG			
Our Reference		230944-1	230944-2
Your Reference	UNITS	MW105	MW104
Date Sampled		15/11/2019	15/11/2019
Type of sample		Water	Water
Date extracted	-	18/11/2019	18/11/2019
Date analysed	-	19/11/2019	19/11/2019
Dichlorovos	μg/L	<0.2	<0.2
Dimethoate	μg/L	<0.15	<0.15
Diazinon	μg/L	<0.01	<0.01
Chlorpyriphos-methyl	μg/L	<0.2	<0.2
Methyl Parathion	μg/L	<0.2	<0.2
Ronnel	μg/L	<0.2	<0.2
Fenitrothion	μg/L	<0.2	<0.2
Malathion	μg/L	<0.05	<0.05
Chlorpyriphos	μg/L	<0.01	<0.01
Parathion	μg/L	<0.01	<0.01
Bromophos ethyl	μg/L	<0.2	<0.2
Ethion	μg/L	<0.2	<0.2
Azinphos-methyl (Guthion)	μg/L	<0.02	<0.02
Surrogate TCMX	%	69	64

PCBs in Water - Low Level			
Our Reference		230944-1	230944-2
Your Reference	UNITS	MW105	MW104
Date Sampled		15/11/2019	15/11/2019
Type of sample		Water	Water
Date extracted	-	18/11/2019	18/11/2019
Date analysed	-	19/11/2019	19/11/2019
Aroclor 1016	μg/L	<0.1	<0.1
Aroclor 1221	μg/L	<0.1	<0.1
Aroclor 1232	μg/L	<0.1	<0.1
Aroclor 1242	µg/L	<0.1	<0.1
Aroclor 1248	μg/L	<0.1	<0.1
Aroclor 1254	µg/L	<0.1	<0.1
Aroclor 1260	μg/L	<0.1	<0.1
Surrogate TCMX	%	69	64

Total Phenolics in Water			
Our Reference		230944-1	230944-2
Your Reference	UNITS	MW105	MW104
Date Sampled		15/11/2019	15/11/2019
Type of sample		Water	Water
Date extracted	-	19/11/2019	19/11/2019
Date analysed	-	19/11/2019	19/11/2019
Total Phenolics (as Phenol)	mg/L	<0.05	<0.05

HM in water - dissolved				
Our Reference		230944-1	230944-2	230944-3
Your Reference	UNITS	MW105	MW104	BD1/20191115
Date Sampled		15/11/2019	15/11/2019	15/11/2019
Type of sample		Water	Water	Water
Date prepared	-	19/11/2019	19/11/2019	19/11/2019
Date analysed	-	19/11/2019	19/11/2019	19/11/2019
Arsenic-Dissolved	μg/L	1	<1	<1
Cadmium-Dissolved	µg/L	<0.1	<0.1	<0.1
Chromium-Dissolved	μg/L	2	<1	<1
Copper-Dissolved	µg/L	4	1	2
Lead-Dissolved	µg/L	5	<1	<1
Mercury-Dissolved	µg/L	0.06	<0.05	<0.05
Nickel-Dissolved	µg/L	12	<1	11
Zinc-Dissolved	µg/L	18	11	11

Miscellaneous Inorganics			
Our Reference		230944-1	230944-2
Your Reference	UNITS	MW105	MW104
Date Sampled		15/11/2019	15/11/2019
Type of sample		Water	Water
Date prepared	-	15/11/2019	15/11/2019
Date analysed	-	15/11/2019	15/11/2019
Ammonia as N in water	mg/L	0.22	8.3

Cations in water Dissolved			
Our Reference		230944-1	230944-2
Your Reference	UNITS	MW105	MW104
Date Sampled		15/11/2019	15/11/2019
Type of sample		Water	Water
Date digested	-	19/11/2019	19/11/2019
Date analysed	-	21/11/2019	21/11/2019
Calcium - Dissolved	mg/L	120	190
Magnesium - Dissolved	mg/L	23	48
Hardness	mgCaCO 3 /L	400	680

Method ID	Methodology Summary
AT-008	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a KCI extraction.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-012/017	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS.
Org-012/017	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-013	Water samples are analysed directly by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

QUAL	ITY CONTROL	.: VOCs i	n water			Du	plicate		Spike Re	coverv %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	· ·			19/11/2019	[NT]		[NT]	[NT]	19/11/2019	
Date analysed	-			20/11/2019	[NT]		[NT]	[NT]	20/11/2019	
Dichlorodifluoromethane	µg/L	10	Org-013	<10	[NT]		[NT]	[NT]	[NT]	
Chloromethane	µg/L	10	Org-013	<10	[NT]		[NT]	[NT]	[NT]	
Vinyl Chloride	µg/L	10	Org-013	<10	[NT]		[NT]	[NT]	[NT]	
Bromomethane	µg/L	10	Org-013	<10	[NT]		[NT]	[NT]	[NT]	
Chloroethane	µg/L	10	Org-013	<10	[NT]		[NT]	[NT]	[NT]	
Trichlorofluoromethane	µg/L	10	Org-013	<10	[NT]		[NT]	[NT]	[NT]	
1,1-Dichloroethene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Trans-1,2-dichloroethene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
1,1-dichloroethane	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	85	
Cis-1,2-dichloroethene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Bromochloromethane	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Chloroform	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	84	
2,2-dichloropropane	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
1,2-dichloroethane	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	80	
1,1,1-trichloroethane	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	78	
1,1-dichloropropene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Cyclohexane	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Carbon tetrachloride	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Benzene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Dibromomethane	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
1,2-dichloropropane	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Trichloroethene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	100	
Bromodichloromethane	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	93	
trans-1,3-dichloropropene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
cis-1,3-dichloropropene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
1,1,2-trichloroethane	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Toluene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
1,3-dichloropropane	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Dibromochloromethane	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	75	
1,2-dibromoethane	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Tetrachloroethene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	75	
1,1,1,2-tetrachloroethane	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Chlorobenzene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Ethylbenzene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Bromoform	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
m+p-xylene	µg/L	2	Org-013	<2	[NT]		[NT]	[NT]	[NT]	
Styrene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
1,1,2,2-tetrachloroethane	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	

QUALIT	Y CONTRO	L: VOCs ii	n water			Du	iplicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]	
o-xylene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]		
1,2,3-trichloropropane	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]		
Isopropylbenzene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]		
Bromobenzene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]		
n-propyl benzene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]		
2-chlorotoluene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]		
4-chlorotoluene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]		
1,3,5-trimethyl benzene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]		
Tert-butyl benzene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]		
1,2,4-trimethyl benzene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]		
1,3-dichlorobenzene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]		
Sec-butyl benzene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]		
1,4-dichlorobenzene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]		
4-isopropyl toluene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]		
1,2-dichlorobenzene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]		
n-butyl benzene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]		
1,2-dibromo-3-chloropropane	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]		
1,2,4-trichlorobenzene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]		
Hexachlorobutadiene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]		
1,2,3-trichlorobenzene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]		
Surrogate Dibromofluoromethane	%		Org-013	83	[NT]		[NT]	[NT]	74		
Surrogate toluene-d8	%		Org-013	83	[NT]		[NT]	[NT]	81		
Surrogate 4-BFB	%		Org-013	108	[NT]		[NT]	[NT]	97		

QUALITY CONT	ROL: vTRH((C6-C10)/E	BTEXN in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			19/11/2019	[NT]		[NT]	[NT]	19/11/2019	
Date analysed	-			20/11/2019	[NT]		[NT]	[NT]	20/11/2019	
TRH C ₆ - C ₉	µg/L	10	Org-016	<10	[NT]		[NT]	[NT]	96	
TRH C ₆ - C ₁₀	µg/L	10	Org-016	<10	[NT]		[NT]	[NT]	96	
Benzene	µg/L	1	Org-016	<1	[NT]		[NT]	[NT]	101	
Toluene	µg/L	1	Org-016	<1	[NT]		[NT]	[NT]	82	
Ethylbenzene	µg/L	1	Org-016	<1	[NT]		[NT]	[NT]	97	
m+p-xylene	µg/L	2	Org-016	<2	[NT]		[NT]	[NT]	96	
o-xylene	µg/L	1	Org-016	<1	[NT]		[NT]	[NT]	104	
Naphthalene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate Dibromofluoromethane	%		Org-016	83	[NT]		[NT]	[NT]	74	
Surrogate toluene-d8	%		Org-016	83	[NT]		[NT]	[NT]	81	
Surrogate 4-BFB	%		Org-016	108	[NT]		[NT]	[NT]	97	

QUALITY CON	ITROL: svTF	RH (C10-0	C40) in Water			Duj	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			18/11/2019	[NT]		[NT]	[NT]	18/11/2019	
Date analysed	-			18/11/2019	[NT]		[NT]	[NT]	18/11/2019	
TRH C ₁₀ - C ₁₄	µg/L	50	Org-003	<50	[NT]		[NT]	[NT]	104	
TRH C ₁₅ - C ₂₈	µg/L	100	Org-003	<100	[NT]		[NT]	[NT]	97	
TRH C ₂₉ - C ₃₆	µg/L	100	Org-003	<100	[NT]		[NT]	[NT]	108	
TRH >C ₁₀ - C ₁₆	µg/L	50	Org-003	<50	[NT]		[NT]	[NT]	104	
TRH >C ₁₆ - C ₃₄	µg/L	100	Org-003	<100	[NT]		[NT]	[NT]	97	
TRH >C ₃₄ - C ₄₀	µg/L	100	Org-003	<100	[NT]		[NT]	[NT]	108	
Surrogate o-Terphenyl	%		Org-003	78	[NT]		[NT]	[NT]	111	

QUALITY COI	NTROL: PAH	ls in Wate	er - Low Level			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]	
Date extracted	-			18/11/2019	[NT]		[NT]	[NT]	18/11/2019		
Date analysed	-			19/11/2019	[NT]		[NT]	[NT]	19/11/2019		
Naphthalene	µg/L	0.2	Org-012/017	<0.2	[NT]		[NT]	[NT]	116		
Acenaphthylene	µg/L	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]		
Acenaphthene	μg/L	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]		
Fluorene	µg/L	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	108		
Phenanthrene	μg/L	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	92		
Anthracene	µg/L	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]		
Fluoranthene	μg/L	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	82		
Pyrene	µg/L	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	94		
Benzo(a)anthracene	μg/L	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]		
Chrysene	µg/L	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	80		
Benzo(b,j+k)fluoranthene	μg/L	0.2	Org-012/017	<0.2	[NT]		[NT]	[NT]	[NT]		
Benzo(a)pyrene	µg/L	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	86		
Indeno(1,2,3-c,d)pyrene	μg/L	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]		
Dibenzo(a,h)anthracene	µg/L	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]		
Benzo(g,h,i)perylene	μg/L	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]		
Surrogate p-Terphenyl-d14	%		Org-012/017	72	[NT]		[NT]	[NT]	75		

QUALITY	CONTROL: OCF	Ps in Wate	er - Low Level			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]	
Date extracted	-			18/11/2019	[NT]		[NT]	[NT]	18/11/2019		
Date analysed	-			19/11/2019	[NT]		[NT]	[NT]	19/11/2019		
alpha-BHC	µg/L	0.01	Org-012/017	<0.01	[NT]		[NT]	[NT]	91		
НСВ	µg/L	0.01	Org-012/017	<0.01	[NT]		[NT]	[NT]	[NT]		
beta-BHC	µg/L	0.01	Org-012/017	<0.01	[NT]		[NT]	[NT]	88		
gamma-BHC	µg/L	0.01	Org-012/017	<0.01	[NT]		[NT]	[NT]	[NT]		
Heptachlor	µg/L	0.01	Org-012/017	<0.01	[NT]		[NT]	[NT]	84		
delta-BHC	µg/L	0.01	Org-012/017	<0.01	[NT]		[NT]	[NT]	[NT]		
Aldrin	μg/L	0.01	Org-012/017	<0.01	[NT]		[NT]	[NT]	94		
Heptachlor Epoxide	µg/L	0.01	Org-012/017	<0.01	[NT]		[NT]	[NT]	89		
gamma-Chlordane	μg/L	0.01	Org-012/017	<0.01	[NT]		[NT]	[NT]	[NT]		
alpha-Chlordane	µg/L	0.01	Org-012/017	<0.01	[NT]		[NT]	[NT]	[NT]		
Endosulfan I	μg/L	0.01	Org-012/017	<0.01	[NT]		[NT]	[NT]	[NT]		
pp-DDE	µg/L	0.01	Org-012/017	<0.01	[NT]		[NT]	[NT]	92		
Dieldrin	μg/L	0.01	Org-012/017	<0.01	[NT]		[NT]	[NT]	106		
Endrin	μg/L	0.01	Org-012/017	<0.01	[NT]		[NT]	[NT]	101		
Endosulfan II	μg/L	0.01	Org-012/017	<0.01	[NT]		[NT]	[NT]	[NT]		
pp-DDD	µg/L	0.01	Org-012/017	<0.01	[NT]		[NT]	[NT]	91		
Endrin Aldehyde	μg/L	0.01	Org-012/017	<0.01	[NT]		[NT]	[NT]	[NT]		
pp-DDT	µg/L	0.006	AT-008	<0.006	[NT]		[NT]	[NT]	[NT]		
Endosulfan Sulphate	μg/L	0.01	Org-012/017	<0.01	[NT]		[NT]	[NT]	98		
Methoxychlor	µg/L	0.01	Org-012/017	<0.01	[NT]		[NT]	[NT]	[NT]		
Surrogate TCMX	%		Org-012/017	70	[NT]		[NT]	[NT]	75		

QUALITY CONTR	OL: OP in w	ater LL Al	NZECCF/ADWG			Du	plicate		Spike Red	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			18/11/2019	[NT]		[NT]	[NT]	18/11/2019	
Date analysed	-			19/11/2019	[NT]		[NT]	[NT]	19/11/2019	
Dichlorovos	µg/L	0.2	Org-012/017	<0.2	[NT]		[NT]	[NT]	120	
Dimethoate	µg/L	0.15	Org-012/017	<0.15	[NT]		[NT]	[NT]	[NT]	
Diazinon	µg/L	0.01	Org-012/017	<0.01	[NT]		[NT]	[NT]	[NT]	
Chlorpyriphos-methyl	µg/L	0.2	Org-012/017	<0.2	[NT]		[NT]	[NT]	[NT]	
Methyl Parathion	µg/L	0.2	Org-012/017	<0.2	[NT]		[NT]	[NT]	[NT]	
Ronnel	µg/L	0.2	Org-012/017	<0.2	[NT]		[NT]	[NT]	78	
Fenitrothion	µg/L	0.2	Org-012/017	<0.2	[NT]		[NT]	[NT]	94	
Malathion	µg/L	0.05	Org-012/017	<0.05	[NT]		[NT]	[NT]	71	
Chlorpyriphos	µg/L	0.01	Org-012/017	<0.01	[NT]		[NT]	[NT]	108	
Parathion	µg/L	0.01	Org-012/017	<0.01	[NT]		[NT]	[NT]	96	
Bromophos ethyl	µg/L	0.2	Org-012/017	<0.2	[NT]		[NT]	[NT]	[NT]	
Ethion	µg/L	0.2	Org-012/017	<0.2	[NT]		[NT]	[NT]	124	
Azinphos-methyl (Guthion)	µg/L	0.02	Org-012/017	<0.02	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-012/017	78	[NT]		[NT]	[NT]	62	

QUALITY CON	ITROL: PCB	s in Wate	r - Low Level			Du		Spike Rec	overy %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			18/11/2019	[NT]		[NT]	[NT]	18/11/2019	
Date analysed	-			19/11/2019	[NT]		[NT]	[NT]	19/11/2019	
Aroclor 1016	µg/L	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1221	µg/L	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1232	µg/L	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1242	µg/L	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1248	µg/L	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1254	µg/L	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	73	
Aroclor 1260	µg/L	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-006	70	[NT]	[NT]	[NT]	[NT]	75	[NT]

QUALITY CO	Duplicate				Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			19/11/2019	[NT]		[NT]	[NT]	19/11/2019	
Date analysed	-			19/11/2019	[NT]		[NT]	[NT]	19/11/2019	
Total Phenolics (as Phenol)	mg/L	0.05	Inorg-031	<0.05	[NT]	[NT]	[NT]	[NT]	98	[NT]

QUALITY CC	NTROL: HN	1 in water	- dissolved			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	230944-2
Date prepared	-			19/11/2019	1	19/11/2019	19/11/2019		19/11/2019	19/11/2019
Date analysed	-			19/11/2019	1	19/11/2019	19/11/2019		19/11/2019	19/11/2019
Arsenic-Dissolved	µg/L	1	Metals-022	<1	1	1	1	0	96	97
Cadmium-Dissolved	µg/L	0.1	Metals-022	<0.1	1	<0.1	<0.1	0	99	104
Chromium-Dissolved	µg/L	1	Metals-022	<1	1	2	2	0	104	101
Copper-Dissolved	µg/L	1	Metals-022	<1	1	4	4	0	105	98
Lead-Dissolved	µg/L	1	Metals-022	<1	1	5	5	0	109	104
Mercury-Dissolved	µg/L	0.05	Metals-021	<0.05	1	0.06	0.06	0	102	95
Nickel-Dissolved	µg/L	1	Metals-022	<1	1	12	12	0	104	100
Zinc-Dissolved	µg/L	1	Metals-022	<1	1	18	18	0	100	96

QUALITY CO	Duplicate				Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			15/11/2019	[NT]		[NT]	[NT]	15/11/2019	
Date analysed	-			15/11/2019	[NT]		[NT]	[NT]	15/11/2019	
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	[NT]	[NT]	[NT]	[NT]	95	[NT]

QUALITY CON		Du	Spike Recovery %							
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date digested	-			19/11/2019	[NT]		[NT]	[NT]	19/11/2019	
Date analysed	-			21/11/2019	[NT]		[NT]	[NT]	21/11/2019	
Calcium - Dissolved	mg/L	0.5	Metals-020	<0.5	[NT]		[NT]	[NT]	91	
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	[NT]		[NT]	[NT]	93	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform Faecal Enterococci & E Coli levels are less than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sam When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

CHAIN OF CUSTODY DESPATCH SHEET

Project No:		86814.			Suburt): Ú(fimo			To:	Env	iroLab		
Project Name:	Rower	showse M	useun		Order I	lumber				12 Ashley Street, Chatswood 2067				
Project Manage	er:	DW.			Sample	er:	CL			Attn: Aileen Hie				
Emails: Www.el	. walka	5 a do	velas fa	mers a	pro . al	1				Phone:	Phone: (02) 9910 6200			
Date Required:	Same	day 🛛	24 hours	□ 48 hc	ours 🛛	72 hou	rs 🛛 🛛	Standard	\mathbf{V}	Email:	<u>Ahi</u>	e@envirola	ab.com.au	
Prior Storage:	□ Esk	y 📋 Fridg	ge 🗆 Sh	elved	Do sam	oles contai	n 'potential	' HBM?	Yes 🛛	No 🗆	(If YES, the	en handle, tran	sport and store in ac	cordance with FPM HAZID)
		pled	Sample Type	Container Type	Analytes									
Sample ID	Lab ID	Date Sampled	S - soil W - water	G - glass P - plastic	Combo 8L	Annai	ia Havidnes	. Voc	BLEX	TRH	Metal		No	otes/preservation
MW105	1	15/118	\mathbb{W}	GIP	×	\times	\times	\times						
MWIOU	2		1		\times	X	\sim	X						
BOILLOBINS	3	4	+						×	\times	\times			
TG TTB	4/5					ł			\times				_	
		_	r i	<i>.</i>					_				ENVIRO	
				-										Chatswood NSW 2067 Ph: (02) 9910 6200
													<u> </u>	230944
													Date Re	ceived: 15/11/19
								·					Receive	aby: CMA
													- Temp: C	
														tract/Broken/None
												-		
	†													
·														
								<u> </u>				ANZECC	PQLs req'd for	all water analytes 🏾
PQL = practical					t to Labor	atory Met	hod Detec	tion Limit		Lab R	eport/Ref	ference No		
Metals to Analy					naulabo	1 6.4	_	Tranan	Had to !-		-			
Total number o		ouglas Part			nquisheo ress:	i by:		ranspo		iboratory	<u></u>	Phone:		Fax:
Send Results to	en U	ougias Part	ners Fly L	Received b			UMI	ACT IM	ULONU		Date & 1		u ismin	
					<u></u>)	yunny								

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Pty Ltd
Attention	David Walker

Sample Login Details	
Your reference	86874.01, Ultimo
Envirolab Reference	230944
Date Sample Received	15/11/2019
Date Instructions Received	15/11/2019
Date Results Expected to be Reported	22/11/2019

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	5 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	21.5
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments
Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst				
Phone: 02 9910 6200	Phone: 02 9910 6200				
Fax: 02 9910 6201	Fax: 02 9910 6201				
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au				

Analysis Underway, details on the following page:

Sample ID	VOCs in water	vTRH(C6-C10)/BTEXN in Water	svTRH (C10-C40) in Water	PAHs in Water - Low Level	Organochlorine Pesticides in Water	OP Pesticides in Water	PCBs in Water	Total Phenolicsin Water	HM in water - dissolved	Ammonia as N in water	Cations in water Dissolved
MW105	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
MW104	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark
BD1/20191115		✓	✓						✓		
TS		✓									
ТВ		✓									

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

CERTIFICATE OF ANALYSIS 231002

Client Details	
Client	Douglas Partners Pty Ltd
Attention	David Walker
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	<u>86874.01, Ultimo</u>
Number of Samples	2 soil
Date samples received	18/11/2019
Date completed instructions received	18/11/2019

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details

 Date results requested by
 25/11/2019

 Date of Issue
 22/11/2019

 NATA Accreditation Number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Lucy Zhu Authorised by Asbestos Approved Signatory: Lucy Zhu **Results Approved By** Diego Bigolin, Team Leader, Inorganics Jaimie Loa-Kum-Cheung, Metals Supervisor Authorised By

Nancy Zhang, Laboratory Manager

Diego Bigolin, Team Leader, Inorganics Jaimie Loa-Kum-Cheung, Metals Supervisor Josh Williams, Senior Chemist Lucy Zhu, Senior Asbestos Analyst Steven Luong, Organics Supervisor

vTRH(C6-C10)/BTEXN in Soil			
Our Reference		231002-1	231002-2
Your Reference	UNITS	201	201
Depth		0.9-1.0	1.4-1.5
Date Sampled		15/11/2019	15/11/2019
Type of sample		soil	soil
Date extracted	-	19/11/2019	19/11/2019
Date analysed	-	20/11/2019	20/11/2019
TRH C ₆ - C ₉	mg/kg	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25
Benzene	mg/kg	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1
m+p-xylene	mg/kg	<2	<2
o-Xylene	mg/kg	<1	<1
naphthalene	mg/kg	<1	<1
Total +ve Xylenes	mg/kg	<3	<3
Surrogate aaa-Trifluorotoluene	%	91	91

svTRH (C10-C40) in Soil			
Our Reference		231002-1	231002-2
Your Reference	UNITS	201	201
Depth		0.9-1.0	1.4-1.5
Date Sampled		15/11/2019	15/11/2019
Type of sample		soil	soil
Date extracted	-	19/11/2019	19/11/2019
Date analysed	-	20/11/2019	20/11/2019
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100
TRH >C10 -C16	mg/kg	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50
Total +ve TRH (>C10-C40)	mg/kg	<50	<50
Surrogate o-Terphenyl	%	79	79

PAHs in Soil			
Our Reference		231002-1	231002-2
Your Reference	UNITS	201	201
Depth		0.9-1.0	1.4-1.5
Date Sampled		15/11/2019	15/11/2019
Type of sample		soil	soil
Date extracted	-	19/11/2019	19/11/2019
Date analysed	-	20/11/2019	20/11/2019
Naphthalene	mg/kg	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1
Phenanthrene	mg/kg	0.2	<0.1
Anthracene	mg/kg	<0.1	<0.1
Fluoranthene	mg/kg	0.3	<0.1
Pyrene	mg/kg	0.3	<0.1
Benzo(a)anthracene	mg/kg	0.2	<0.1
Chrysene	mg/kg	0.2	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	0.2	<0.2
Benzo(a)pyrene	mg/kg	0.2	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1
Total +ve PAH's	mg/kg	1.5	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	103	99

Organochlorine Pesticides in soil		
Our Reference		231002-1
Your Reference	UNITS	201
Depth		0.9-1.0
Date Sampled		15/11/2019
Type of sample		soil
Date extracted	-	19/11/2019
Date analysed	-	20/11/2019
alpha-BHC	mg/kg	<0.1
НСВ	mg/kg	<0.1
beta-BHC	mg/kg	<0.1
gamma-BHC	mg/kg	<0.1
Heptachlor	mg/kg	<0.1
delta-BHC	mg/kg	<0.1
Aldrin	mg/kg	<0.1
Heptachlor Epoxide	mg/kg	<0.1
gamma-Chlordane	mg/kg	<0.1
alpha-chlordane	mg/kg	<0.1
Endosulfan I	mg/kg	<0.1
pp-DDE	mg/kg	<0.1
Dieldrin	mg/kg	<0.1
Endrin	mg/kg	<0.1
Endosulfan II	mg/kg	<0.1
pp-DDD	mg/kg	<0.1
Endrin Aldehyde	mg/kg	<0.1
pp-DDT	mg/kg	<0.1
Endosulfan Sulphate	mg/kg	<0.1
Methoxychlor	mg/kg	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1
Surrogate TCMX	%	95

Organophosphorus Pesticides in Soil		
Our Reference		231002-1
Your Reference	UNITS	201
Depth		0.9-1.0
Date Sampled		15/11/2019
Type of sample		soil
Date extracted	-	19/11/2019
Date analysed	-	20/11/2019
Dichlorvos	mg/kg	<0.1
Dimethoate	mg/kg	<0.1
Diazinon	mg/kg	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1
Ronnel	mg/kg	<0.1
Fenitrothion	mg/kg	<0.1
Malathion	mg/kg	<0.1
Chlorpyriphos	mg/kg	<0.1
Parathion	mg/kg	<0.1
Bromophos-ethyl	mg/kg	<0.1
Ethion	mg/kg	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1
Surrogate TCMX	%	95

PCBs in Soil		
Our Reference		231002-1
Your Reference	UNITS	201
Depth		0.9-1.0
Date Sampled		15/11/2019
Type of sample		soil
Date extracted	-	19/11/2019
Date analysed	-	20/11/2019
Aroclor 1016	mg/kg	<0.1
Aroclor 1221	mg/kg	<0.1
Aroclor 1232	mg/kg	<0.1
Aroclor 1242	mg/kg	<0.1
Aroclor 1248	mg/kg	<0.1
Aroclor 1254	mg/kg	<0.1
Aroclor 1260	mg/kg	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1
Surrogate TCMX	%	95

Acid Extractable metals in soil			
Our Reference		231002-1	231002-2
Your Reference	UNITS	201	201
Depth		0.9-1.0	1.4-1.5
Date Sampled		15/11/2019	15/11/2019
Type of sample		soil	soil
Date prepared	-	19/11/2019	19/11/2019
Date analysed	-	19/11/2019	19/11/2019
Arsenic	mg/kg	<4	9
Cadmium	mg/kg	<0.4	<0.4
Chromium	mg/kg	8	19
Copper	mg/kg	9	54
Lead	mg/kg	25	38
Mercury	mg/kg	0.2	0.1
Nickel	mg/kg	2	5
Zinc	mg/kg	23	100

Misc Soil - Inorg		
Our Reference		231002-1
Your Reference	UNITS	201
Depth		0.9-1.0
Date Sampled		15/11/2019
Type of sample		soil
Date prepared	-	19/11/2019
Date analysed	-	19/11/2019
Total Phenolics (as Phenol)	mg/kg	<5

Moisture			
Our Reference		231002-1	231002-2
Your Reference	UNITS	201	201
Depth		0.9-1.0	1.4-1.5
Date Sampled		15/11/2019	15/11/2019
Type of sample		soil	soil
Date prepared	-	19/11/2019	19/11/2019
Date analysed	-	20/11/2019	20/11/2019
Moisture	%	7.5	3.7

Asbestos ID - soils		
Our Reference		231002-1
Your Reference	UNITS	201
Depth		0.9-1.0
Date Sampled		15/11/2019
Type of sample		soil
Date analysed	-	21/11/2019
Sample mass tested	g	Approx. 50g
Sample Description	-	Brown sandy soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg
		Organic fibres detected
Trace Analysis	-	No asbestos detected

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
AT-008	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-012/017	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS.
Org-012/017	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS and/or GC-MS/MS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.

Method ID	Methodology Summary
Org-012/017	 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" li="" may="" most="" not="" pahs="" positive="" pql.="" present.<="" teq="" teqs="" that="" the="" this="" to=""> 2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" li="" more="" negative="" pahs="" pql.<="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""> 3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" li="" mid-point="" most="" pql.="" stipulated="" the=""> Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs. </pql></pql></pql>
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

	QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil							Duplicate			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]	
Date extracted	-			19/11/2019	[NT]		[NT]	[NT]	19/11/2019		
Date analysed	-			20/11/2019	[NT]		[NT]	[NT]	20/11/2019		
TRH C ₆ - C ₉	mg/kg	25	Org-016	<25	[NT]		[NT]	[NT]	103		
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	<25	[NT]		[NT]	[NT]	103		
Benzene	mg/kg	0.2	Org-016	<0.2	[NT]		[NT]	[NT]	97		
Toluene	mg/kg	0.5	Org-016	<0.5	[NT]		[NT]	[NT]	105		
Ethylbenzene	mg/kg	1	Org-016	<1	[NT]		[NT]	[NT]	102		
m+p-xylene	mg/kg	2	Org-016	<2	[NT]		[NT]	[NT]	105		
o-Xylene	mg/kg	1	Org-016	<1	[NT]		[NT]	[NT]	103		
naphthalene	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]	[NT]		
Surrogate aaa-Trifluorotoluene	%		Org-016	81	[NT]		[NT]	[NT]	95		

QUALITY CO	QUALITY CONTROL: svTRH (C10-C40) in Soil								Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-10	[NT]
Date extracted	-			19/11/2019	[NT]		[NT]	[NT]	19/11/2019	
Date analysed	-			19/11/2019	[NT]		[NT]	[NT]	19/11/2019	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	<50	[NT]		[NT]	[NT]	97	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	68	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	92	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	<50	[NT]		[NT]	[NT]	97	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	68	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	92	
Surrogate o-Terphenyl	%		Org-003	81	[NT]		[NT]	[NT]	130	

QUALIT	QUALITY CONTROL: PAHs in Soil					Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-10	[NT]	
Date extracted	-			19/11/2019	[NT]		[NT]	[NT]	19/11/2019		
Date analysed	-			20/11/2019	[NT]		[NT]	[NT]	20/11/2019		
Naphthalene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	116		
Acenaphthylene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]		
Acenaphthene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]		
Fluorene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	106		
Phenanthrene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	104		
Anthracene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]		
Fluoranthene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	102		
Pyrene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	106		
Benzo(a)anthracene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]		
Chrysene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	106		
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012/017	<0.2	[NT]		[NT]	[NT]	[NT]		
Benzo(a)pyrene	mg/kg	0.05	Org-012/017	<0.05	[NT]		[NT]	[NT]	102		
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]		
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]		
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]		
Surrogate p-Terphenyl-d14	%		Org-012/017	101	[NT]		[NT]	[NT]	101		

QUALITY COM	NTROL: Organo	chlorine F	Pesticides in soil			Du	ıplicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-10	[NT]	
Date extracted	-			19/11/2019	[NT]		[NT]	[NT]	19/11/2019		
Date analysed	-			20/11/2019	[NT]		[NT]	[NT]	20/11/2019		
alpha-BHC	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	112		
НСВ	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]		
beta-BHC	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	118		
gamma-BHC	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]		
Heptachlor	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	82		
delta-BHC	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]		
Aldrin	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	108		
Heptachlor Epoxide	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	106		
gamma-Chlordane	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]		
alpha-chlordane	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]		
Endosulfan I	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]		
pp-DDE	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	108		
Dieldrin	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	106		
Endrin	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	96		
Endosulfan II	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]		
pp-DDD	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	104		
Endrin Aldehyde	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]		
pp-DDT	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]		
Endosulfan Sulphate	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	102		
Methoxychlor	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]		
Surrogate TCMX	%		Org-012/017	94	[NT]		[NT]	[NT]	91		

QUALITY CONTRO	L: Organoph	nosphorus	s Pesticides in Soil	ſ			plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-10	[NT]
Date extracted	-			19/11/2019	[NT]		[NT]	[NT]	19/11/2019	
Date analysed	-			20/11/2019	[NT]		[NT]	[NT]	20/11/2019	
Dichlorvos	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	87	
Dimethoate	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Diazinon	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Chlorpyriphos-methyl	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Ronnel	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	83	
Fenitrothion	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	85	
Malathion	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	82	
Chlorpyriphos	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	89	
Parathion	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	103	
Bromophos-ethyl	mg/kg	0.1	AT-008	<0.1	[NT]		[NT]	[NT]	[NT]	
Ethion	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	85	
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-012/017	94	[NT]		[NT]	[NT]	91	

QUALIT	Y CONTRO	L: PCBs i		Du		Spike Recovery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-10	[NT]
Date extracted	-			19/11/2019	[NT]		[NT]	[NT]	19/11/2019	
Date analysed	-			20/11/2019	[NT]		[NT]	[NT]	20/11/2019	
Aroclor 1016	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1221	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1232	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1242	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1248	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1254	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	83	
Aroclor 1260	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-006	94	[NT]		[NT]	[NT]	91	

QUALITY CONT	ROL: Acid E	xtractable	Duplicate				Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]
Date prepared	-			19/11/2019	[NT]		[NT]	[NT]	19/11/2019	
Date analysed	-			19/11/2019	[NT]		[NT]	[NT]	19/11/2019	
Arsenic	mg/kg	4	Metals-020	<4	[NT]		[NT]	[NT]	92	
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]		[NT]	[NT]	89	
Chromium	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	98	
Copper	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	91	
Lead	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	101	
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]		[NT]	[NT]	84	
Nickel	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	88	
Zinc	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	97	

QUALITY	Duplicate				Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-10	[NT]
Date prepared	-			19/11/2019	[NT]		[NT]	[NT]	19/11/2019	
Date analysed	-			19/11/2019	[NT]		[NT]	[NT]	19/11/2019	
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	<5	[NT]	[NT]	[NT]	[NT]	98	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	Quality Control Definitions								
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.								
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.								
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.								
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.								
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.								
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform Faecal Enterococci & E Coli levels are less than								

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sam When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Asbestos: A portion of the supplied sample was sub-sampled for asbestos analysis according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g of sample in its own container.

Note: Sample 231002-1 was sub-sampled from a jar provided by the client.

CHAIN OF CUSTODY DESPATCH SHEET

Projec	ect No: 86874.01 Suburb: ()11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1						To: Envirolab Services								
	t Name:	()15				Order N	lumber					12	2 Ashley Stre	et, Chats	swood NSW 2067
	t Manage		vid Walker			Sample	er: C.L	.i			Attn:				
Emails			d.walker@d	ouglaspartn	ers.com.au	· ·		. –			Phone: 02 9910 6200				
	Required:		day 🗤	24 hours		urs 🛛	72 hou	rs 🛛	Standard	5	Email:	Email: / sydney@envirolab.com.au			
	Storage:	Esky Fridge Shelved Do samples contain 'potential' HBM? Yes No 🕑 (If YES, then handle, transport and store in accordance with FPM HAZID)													
	U			Sample Type	Container Type					Analytes					
	mple ID defth.	Lab ID	Date Sampled	S - soil W - water	G - glass P - plastic	Conto	into 3,								Notes/preservation
201	0.9-1.0	}	15-11-19	S	G/P	1/									
201	1.4-1.5	2	15-11-19	S	C/P		\checkmark								
								а.						• •	
	•														
									1			,			
														ENVIROUNE	Envirolab Services
															Chatswood NSW 2067 Ph (02) 9910 6200
									<u> </u>					<u>Job No:</u>	231002
								-						Date Rece	
														Time Rece Received	hur p
														Temp: Co	Montient 14:1
														Security I	ntact/Broken/None
				Ĩ											
	S) mg/kg						L						ANZEC	C PQLs I	req'd for all water analytes 🛛
				-	jiven, defauli	to Labor	atory Met	hod Dete	ction Limi	t	Lab R	eport/R	eference N	о:	
			<u>/l unless sp</u>		ere:	nquished		DW-T	Tranona	inted to 1	 aboratory	•			Courier
	number o Results to		es in conta louglas Par						est Ryde		aboratory	<u></u>	Phone:	<u> </u>	8090666 Fax: 98094095
		J. U	ouylas Par	iners Fly L	Received b		ermage	n Nau, M			·T	Date &		211201	
loigite	igned: Received by: <u>An Date & Time: 18112019</u> 14														

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Pty Ltd
Attention	David Walker

Sample Login Details	
Your reference	86874.01, Ultimo
Envirolab Reference	231002
Date Sample Received	18/11/2019
Date Instructions Received	18/11/2019
Date Results Expected to be Reported	25/11/2019

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	2 soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	14.1
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	VTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBsin Soil	Acid Extractable metalsin soil	Misc Soil - Inorg	Asbestos ID - soils
201-0.9-1.0	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓
201-1.4-1.5	\checkmark	✓	✓				✓		

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 231640

Client Details	
Client	Douglas Partners Pty Ltd
Attention	David Walker
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	<u>86874.01, Ultimo</u>
Number of Samples	4 soil
Date samples received	26/11/2019
Date completed instructions received	26/11/2019

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details				
Date results requested by	29/11/2019			
Date of Issue	29/11/2019			
Reissue Details	This report replaces R00 created on 29/11/2019 due to: result entry error for Acenapthylene for sample 1.			
NATA Accreditation Number 2901. This document shall not be reproduced except in full.				
Accredited for compliance with ISO/	IEC 17025 - Testing. Tests not covered by NATA are denoted with *			

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Panika Wongchanda Authorised by Asbestos Approved Signatory: Lucy Zhu **Results Approved By**

Diego Bigolin, Team Leader, Inorganics Jaimie Loa-Kum-Cheung, Metals Supervisor Lucy Zhu, Senior Asbestos Analyst Steven Luong, Organics Supervisor

Authorised By

Nancy Zhang, Laboratory Manager

VOCs in soil		
Our Reference		231640-1
Your Reference	UNITS	202
Depth		1.2-1.3
Date Sampled		26/11/2019
Type of sample		soil
Date extracted	-	27/11/2019
Date analysed	-	28/11/2019
Dichlorodifluoromethane	mg/kg	<1
Chloromethane	mg/kg	<1
Vinyl Chloride	mg/kg	<1
Bromomethane	mg/kg	<1
Chloroethane	mg/kg	<1
Trichlorofluoromethane	mg/kg	<1
1,1-Dichloroethene	mg/kg	<1
trans-1,2-dichloroethene	mg/kg	<1
1,1-dichloroethane	mg/kg	<1
cis-1,2-dichloroethene	mg/kg	<1
bromochloromethane	mg/kg	<1
chloroform	mg/kg	<1
2,2-dichloropropane	mg/kg	<1
1,2-dichloroethane	mg/kg	<1
1,1,1-trichloroethane	mg/kg	<1
1,1-dichloropropene	mg/kg	<1
Cyclohexane	mg/kg	<1
carbon tetrachloride	mg/kg	<1
Benzene	mg/kg	<0.2
dibromomethane	mg/kg	<1
1,2-dichloropropane	mg/kg	<1
trichloroethene	mg/kg	<1
bromodichloromethane	mg/kg	<1
trans-1,3-dichloropropene	mg/kg	<1
cis-1,3-dichloropropene	mg/kg	<1
1,1,2-trichloroethane	mg/kg	<1
Toluene	mg/kg	<0.5
1,3-dichloropropane	mg/kg	<1
dibromochloromethane	mg/kg	<1
1,2-dibromoethane	mg/kg	<1
tetrachloroethene	mg/kg	<1
1,1,1,2-tetrachloroethane	mg/kg	<1
chlorobenzene	mg/kg	<1

VOCs in soil		
Our Reference		231640-1
Your Reference	UNITS	202
Depth		1.2-1.3
Date Sampled		26/11/2019
Type of sample		soil
Ethylbenzene	mg/kg	<1
bromoform	mg/kg	<1
m+p-xylene	mg/kg	<2
styrene	mg/kg	<1
1,1,2,2-tetrachloroethane	mg/kg	<1
o-Xylene	mg/kg	<1
1,2,3-trichloropropane	mg/kg	<1
isopropylbenzene	mg/kg	<1
bromobenzene	mg/kg	<1
n-propyl benzene	mg/kg	<1
2-chlorotoluene	mg/kg	<1
4-chlorotoluene	mg/kg	<1
1,3,5-trimethyl benzene	mg/kg	<1
tert-butyl benzene	mg/kg	<1
1,2,4-trimethyl benzene	mg/kg	<1
1,3-dichlorobenzene	mg/kg	<1
sec-butyl benzene	mg/kg	<1
1,4-dichlorobenzene	mg/kg	<1
4-isopropyl toluene	mg/kg	<1
1,2-dichlorobenzene	mg/kg	<1
n-butyl benzene	mg/kg	<1
1,2-dibromo-3-chloropropane	mg/kg	<1
1,2,4-trichlorobenzene	mg/kg	<1
hexachlorobutadiene	mg/kg	<1
1,2,3-trichlorobenzene	mg/kg	<1
Surrogate Dibromofluorometha	%	96
Surrogate aaa-Trifluorotoluene	%	76
<i>Surrogate</i> Toluene-d ₈	%	96
Surrogate 4-Bromofluorobenzene	%	75

vTRH(C6-C10)/BTEXN in Soil					
Our Reference		231640-1	231640-2	231640-3	231640-4
Your Reference	UNITS	202	202	TS	ТВ
Depth		1.2-1.3	2.0-2.1	-	-
Date Sampled		26/11/2019	26/11/2019	26/11/2019	26/11/2019
Type of sample		soil	soil	soil	soil
Date extracted	-	27/11/2019	27/11/2019	27/11/2019	27/11/2019
Date analysed	-	28/11/2019	28/11/2019	27/11/2019	27/11/2019
TRH C ₆ - C ₉	mg/kg	<25	<25	[NA]	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	[NA]	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	[NA]	<25
Benzene	mg/kg	<0.2	<0.2	103%	<0.2
Toluene	mg/kg	<0.5	<0.5	103%	<0.5
Ethylbenzene	mg/kg	<1	<1	107%	<1
m+p-xylene	mg/kg	<2	<2	106%	<2
o-Xylene	mg/kg	<1	<1	106%	<1
naphthalene	mg/kg	73	6	[NA]	<1
Total +ve Xylenes	mg/kg	<3	<3	[NA]	<3
Surrogate aaa-Trifluorotoluene	%	76	68	102	84

svTRH (C10-C40) in Soil			
Our Reference		231640-1	231640-2
Your Reference	UNITS	202	202
Depth		1.2-1.3	2.0-2.1
Date Sampled		26/11/2019	26/11/2019
Type of sample		soil	soil
Date extracted	-	27/11/2019	27/11/2019
Date analysed	-	28/11/2019	27/11/2019
TRH C ₁₀ - C ₁₄	mg/kg	380	<50
TRH C ₁₅ - C ₂₈	mg/kg	6,700	620
TRH C ₂₉ - C ₃₆	mg/kg	3,000	270
TRH >C10 -C16	mg/kg	1,100	82
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	1,000	76
TRH >C ₁₆ -C ₃₄	mg/kg	8,500	780
TRH >C ₃₄ -C ₄₀	mg/kg	1,300	<100
Total +ve TRH (>C10-C40)	mg/kg	11,000	860
Surrogate o-Terphenyl	%	#	83

PAHs in Soil			
Our Reference		231640-1	231640-2
Your Reference	UNITS	202	202
Depth		1.2-1.3	2.0-2.1
Date Sampled		26/11/2019	26/11/2019
Type of sample		soil	soil
Date extracted	-	27/11/2019	27/11/2019
Date analysed	-	28/11/2019	28/11/2019
Naphthalene	mg/kg	100	8.0
Acenaphthylene	mg/kg	2.0	2.5
Acenaphthene	mg/kg	220	12
Fluorene	mg/kg	240	13
Phenanthrene	mg/kg	1,200	83
Anthracene	mg/kg	390	25
Fluoranthene	mg/kg	1,000	71
Pyrene	mg/kg	830	60
Benzo(a)anthracene	mg/kg	430	31
Chrysene	mg/kg	340	22
Benzo(b,j+k)fluoranthene	mg/kg	480	33
Benzo(a)pyrene	mg/kg	290	21
Indeno(1,2,3-c,d)pyrene	mg/kg	73	1.2
Dibenzo(a,h)anthracene	mg/kg	24	3.2
Benzo(g,h,i)perylene	mg/kg	82	12
Total +ve PAH's	mg/kg	5,700	400
Benzo(a)pyrene TEQ calc (zero)	mg/kg	420	31
Benzo(a)pyrene TEQ calc(half)	mg/kg	420	31
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	420	31
Surrogate p-Terphenyl-d14	%	130	110

Organochlorine Pesticides in soil		
Our Reference		231640-1
Your Reference	UNITS	202
Depth		1.2-1.3
Date Sampled		26/11/2019
Type of sample		soil
Date extracted	-	27/11/2019
Date analysed	-	28/11/2019
alpha-BHC	mg/kg	<1
НСВ	mg/kg	<1
beta-BHC	mg/kg	<1
gamma-BHC	mg/kg	<1
Heptachlor	mg/kg	<1
delta-BHC	mg/kg	<1
Aldrin	mg/kg	<1
Heptachlor Epoxide	mg/kg	<1
gamma-Chlordane	mg/kg	<1
alpha-chlordane	mg/kg	<1
Endosulfan I	mg/kg	<1
pp-DDE	mg/kg	<1
Dieldrin	mg/kg	<1
Endrin	mg/kg	<1
Endosulfan II	mg/kg	<1
pp-DDD	mg/kg	<1
Endrin Aldehyde	mg/kg	<1
pp-DDT	mg/kg	<1
Endosulfan Sulphate	mg/kg	<1
Methoxychlor	mg/kg	<1
Total +ve DDT+DDD+DDE	mg/kg	<1
Surrogate TCMX	%	110

Organophosphorus Pesticides in Soi		
Our Reference		231640-1
Your Reference	UNITS	202
Depth		1.2-1.3
Date Sampled		26/11/2019
Type of sample		soil
Date extracted	-	27/11/2019
Date analysed	-	28/11/2019
Dichlorvos	mg/kg	<1
Dimethoate	mg/kg	<1
Diazinon	mg/kg	<1
Chlorpyriphos-methyl	mg/kg	<1
Ronnel	mg/kg	<1
Fenitrothion	mg/kg	<1
Malathion	mg/kg	<1
Chlorpyriphos	mg/kg	<1
Parathion	mg/kg	<1
Bromophos-ethyl	mg/kg	<1
Ethion	mg/kg	<1
Azinphos-methyl (Guthion)	mg/kg	<1
Surrogate TCMX	%	110

PCBs in Soil		
Our Reference		231640-1
Your Reference	UNITS	202
Depth		1.2-1.3
Date Sampled		26/11/2019
Type of sample		soil
Date extracted	-	27/11/2019
Date analysed	-	28/11/2019
Aroclor 1016	mg/kg	<1
Aroclor 1221	mg/kg	<1
Aroclor 1232	mg/kg	<1
Aroclor 1242	mg/kg	<1
Aroclor 1248	mg/kg	<1
Aroclor 1254	mg/kg	<1
Aroclor 1260	mg/kg	<1
Total +ve PCBs (1016-1260)	mg/kg	<1
Surrogate TCMX	%	110

Acid Extractable metals in soil			
Our Reference		231640-1	231640-2
Your Reference	UNITS	202	202
Depth		1.2-1.3	2.0-2.1
Date Sampled		26/11/2019	26/11/2019
Type of sample		soil	soil
Date prepared	-	27/11/2019	27/11/2019
Date analysed	-	27/11/2019	27/11/2019
Arsenic	mg/kg	<4	4
Cadmium	mg/kg	<0.4	<0.4
Chromium	mg/kg	45	30
Copper	mg/kg	130	70
Lead	mg/kg	30	320
Mercury	mg/kg	<0.1	1.4
Nickel	mg/kg	35	36
Zinc	mg/kg	96	120

Misc Soil - Inorg		
Our Reference		231640-1
Your Reference	UNITS	202
Depth		1.2-1.3
Date Sampled		26/11/2019
Type of sample		soil
Date prepared	-	27/11/2019
Date analysed	-	27/11/2019
Total Phenolics (as Phenol)	mg/kg	<5

Moisture			
Our Reference		231640-1	231640-2
Your Reference	UNITS	202	202
Depth		1.2-1.3	2.0-2.1
Date Sampled		26/11/2019	26/11/2019
Type of sample		soil	soil
Date prepared	-	27/11/2019	27/11/2019
Date analysed	-	28/11/2019	28/11/2019
Moisture	%	5.3	9.8

Asbestos ID - soils			
Our Reference		231640-1	231640-2
Your Reference	UNITS	202	202
Depth		1.2-1.3	2.0-2.1
Date Sampled		26/11/2019	26/11/2019
Type of sample		soil	soil
Date analysed	-	27/11/2019	27/11/2019
Sample mass tested	g	Approx. 45g	Approx. 25g
Sample Description	-	Brown fine- grained soil & rocks	Brown fine- grained soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg
		Organic fibres detected	Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
AT-008	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-012/017	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS.
Org-012/017	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS and/or GC-MS/MS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.

Method ID	Methodology Summary
Org-012/017	 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" li="" may="" most="" not="" pahs="" positive="" pql.="" present.<="" teq="" teqs="" that="" the="" this="" to=""> 2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" li="" more="" negative="" pahs="" pql.<="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""> 3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" li="" mid-point="" most="" pql.="" stipulated="" the=""> Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs. </pql></pql></pql>
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUA	LITY CONTRC	L: VOCs	in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	231640-1
Date extracted	-			27/11/2019	1	27/11/2019	27/11/2019	_	27/11/2019	27/11/2019
Date analysed	-			28/11/2019	1	28/11/2019	28/11/2019		28/11/2019	28/11/2019
Dichlorodifluoromethane	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
Chloromethane	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
Vinyl Chloride	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
Bromomethane	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
Chloroethane	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
Trichlorofluoromethane	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
1,1-Dichloroethene	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
trans-1,2-dichloroethene	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
1,1-dichloroethane	mg/kg	1	Org-014	<1	1	<1	<1	0	86	71
cis-1,2-dichloroethene	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
bromochloromethane	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
chloroform	mg/kg	1	Org-014	<1	1	<1	<1	0	70	60
2,2-dichloropropane	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
1,2-dichloroethane	mg/kg	1	Org-014	<1	1	<1	<1	0	92	77
1,1,1-trichloroethane	mg/kg	1	Org-014	<1	1	<1	<1	0	90	74
1,1-dichloropropene	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
Cyclohexane	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
carbon tetrachloride	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
Benzene	mg/kg	0.2	Org-014	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
dibromomethane	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
1,2-dichloropropane	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
trichloroethene	mg/kg	1	Org-014	<1	1	<1	<1	0	87	74
bromodichloromethane	mg/kg	1	Org-014	<1	1	<1	<1	0	92	80
trans-1,3-dichloropropene	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
cis-1,3-dichloropropene	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
1,1,2-trichloroethane	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
Toluene	mg/kg	0.5	Org-014	<0.5	1	<0.5	<0.5	0	[NT]	[NT]
1,3-dichloropropane	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
dibromochloromethane	mg/kg	1	Org-014	<1	1	<1	<1	0	88	74
1,2-dibromoethane	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
tetrachloroethene	mg/kg	1	Org-014	<1	1	<1	<1	0	95	77
1,1,1,2-tetrachloroethane	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
chlorobenzene	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
Ethylbenzene	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
bromoform	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
m+p-xylene	mg/kg	2	Org-014	<2	1	<2	<2	0	[NT]	[NT]
styrene	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
1,1,2,2-tetrachloroethane	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]

QUALIT	Y CONTRC	L: VOCs	in soil			Du	ıplicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	231640-1	
o-Xylene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
1,2,3-trichloropropane	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
isopropylbenzene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
bromobenzene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
n-propyl benzene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
2-chlorotoluene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
4-chlorotoluene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
1,3,5-trimethyl benzene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
tert-butyl benzene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
1,2,4-trimethyl benzene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
1,3-dichlorobenzene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
sec-butyl benzene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
1,4-dichlorobenzene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
4-isopropyl toluene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
1,2-dichlorobenzene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
n-butyl benzene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
1,2-dibromo-3-chloropropane	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
1,2,4-trichlorobenzene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
hexachlorobutadiene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
1,2,3-trichlorobenzene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
Surrogate Dibromofluorometha	%		Org-014	94	1	96	89	8	92	78	
Surrogate aaa-Trifluorotoluene	%		Org-014	79	1	76	88	15	80	69	
<i>Surrogate</i> Toluene-d ₈	%		Org-014	97	1	96	108	12	93	99	
Surrogate 4-Bromofluorobenzene	%		Org-014	72	1	75	79	5	88	89	

QUALITY CONT	ROL: vTRH	(C6-C10)	BTEXN in Soil			Spike Re	Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	231640-1
Date extracted	-			27/11/2019	1	27/11/2019	27/11/2019		27/11/2019	27/11/2019
Date analysed	-			28/11/2019	1	28/11/2019	28/11/2019		28/11/2019	28/11/2019
TRH C ₆ - C ₉	mg/kg	25	Org-016	<25	1	<25	<25	0	90	86
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	<25	1	<25	<25	0	90	86
Benzene	mg/kg	0.2	Org-016	<0.2	1	<0.2	<0.2	0	91	81
Toluene	mg/kg	0.5	Org-016	<0.5	1	<0.5	<0.5	0	92	90
Ethylbenzene	mg/kg	1	Org-016	<1	1	<1	<1	0	79	80
m+p-xylene	mg/kg	2	Org-016	<2	1	<2	<2	0	93	89
o-Xylene	mg/kg	1	Org-016	<1	1	<1	<1	0	91	87
naphthalene	mg/kg	1	Org-014	<1	1	73	56	26	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-016	79	1	76	88	15	80	69

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du	Spike Re	covery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	231640-1
Date extracted	-			27/11/2019	[NT]		[NT]	[NT]	27/11/2019	27/11/2019
Date analysed	-			27/11/2019	[NT]		[NT]	[NT]	27/11/2019	27/11/2019
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	<50	[NT]		[NT]	[NT]	94	#
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	77	#
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	77	#
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	<50	[NT]		[NT]	[NT]	94	#
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	77	#
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	77	#
Surrogate o-Terphenyl	%		Org-003	88	[NT]	[NT]	[NT]	[NT]	106	#

QUAL	ITY CONTRC	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	231640-1
Date extracted	-			27/11/2019	[NT]		[NT]	[NT]	27/11/2019	27/11/2019
Date analysed	-			28/11/2019	[NT]		[NT]	[NT]	28/11/2019	28/11/2019
Naphthalene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	116	#
Acenaphthylene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Fluorene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	114	#
Phenanthrene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	112	#
Anthracene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	114	#
Pyrene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	118	#
Benzo(a)anthracene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	116	#
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012/017	<0.2	[NT]		[NT]	[NT]	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-012/017	<0.05	[NT]		[NT]	[NT]	114	#
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-012/017	97	[NT]		[NT]	[NT]	109	130

QUALITY CON	ITROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	231640-1
Date extracted	-			27/11/2019	[NT]		[NT]	[NT]	27/11/2019	27/11/2019
Date analysed	-			28/11/2019	[NT]		[NT]	[NT]	28/11/2019	28/11/2019
alpha-BHC	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	132	#
НСВ	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	108	#
gamma-BHC	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	108	120
delta-BHC	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	118	#
Heptachlor Epoxide	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	116	125
gamma-Chlordane	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	120	114
Dieldrin	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	114	114
Endrin	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	98	#
Endosulfan II	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	118	#
Endrin Aldehyde	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	120	128
Methoxychlor	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Surrogate TCMX	%		Org-012/017	94	[NT]		[NT]	[NT]	105	125

QUALITY CONTRO	L: Organoph	nosphorus	Pesticides in Soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	231640-1	
Date extracted	-			27/11/2019	[NT]		[NT]	[NT]	27/11/2019	27/11/2019	
Date analysed	-			28/11/2019	[NT]		[NT]	[NT]	28/11/2019	28/11/2019	
Dichlorvos	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	104	106	
Dimethoate	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]	
Diazinon	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]	
Chlorpyriphos-methyl	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]	
Ronnel	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	90	100	
Fenitrothion	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	82	107	
Malathion	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	80	114	
Chlorpyriphos	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	106	#	
Parathion	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	98	100	
Bromophos-ethyl	mg/kg	0.1	AT-008	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]	
Ethion	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	92	#	
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-012/017	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-012/017	94	[NT]		[NT]	[NT]	105	125	

QUALIT	Y CONTRO	L: PCBs i	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	231640-1
Date extracted	-			27/11/2019	[NT]		[NT]	[NT]	27/11/2019	27/11/2019
Date analysed	-			28/11/2019	[NT]		[NT]	[NT]	28/11/2019	28/11/2019
Aroclor 1016	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	114	106
Aroclor 1260	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Surrogate TCMX	%		Org-006	94	[NT]		[NT]	[NT]	105	125

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	231640-1
Date prepared	-			27/11/2019	[NT]	[NT]		[NT]	27/11/2019	27/11/2019
Date analysed	-			27/11/2019	[NT]	[NT]		[NT]	27/11/2019	27/11/2019
Arsenic	mg/kg	4	Metals-020	<4	[NT]	[NT]		[NT]	106	84
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]	[NT]		[NT]	100	79
Chromium	mg/kg	1	Metals-020	<1	[NT]	[NT]		[NT]	110	72
Copper	mg/kg	1	Metals-020	<1	[NT]	[NT]		[NT]	108	92
Lead	mg/kg	1	Metals-020	<1	[NT]	[NT]		[NT]	113	80
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]	[NT]		[NT]	100	83
Nickel	mg/kg	1	Metals-020	<1	[NT]	[NT]		[NT]	101	73
Zinc	mg/kg	1	Metals-020	<1	[NT]	[NT]		[NT]	109	#

QUALITY	CONTROL	Misc Soi	I - Inorg			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			27/11/2019	[NT]		[NT]	[NT]	27/11/2019	[NT]
Date analysed	-			27/11/2019	[NT]		[NT]	[NT]	27/11/2019	[NT]
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	<5	[NT]	[NT]	[NT]	[NT]	103	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform Eaecal Enterococci. & E Coli levels are less than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Asbestos: A portion of the supplied samples were sub-sampled for asbestos analysis according to Envirolab procedures. We cannot guarantee that these sub-samples are indicative of the entire sample. Envirolab recommends supplying 40-50g of sample in its own container. Note: Samples requested for asbestos testing were sub-sampled from jars provided by the client.

8 metals in soil - # Percent recovery is not possible to report due to the inhomogeneous nature of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

TRH Soil C10-C40 NEPM - # Percent recovery for the surrogate and matrix spike is not possible to report as the high concentration of analytes in sample 231640-1 has caused interference.

PAHs in Soil - # Percent recovery for the matrix spike is not possible to report as the high concentration of analytes in samples 231640-1 has caused interference.

OC's in Soil - The PQL has been raised due to interferences from analytes (other than those being tested) in sample 231640-1. # Percent recovery for the matrix spike is not possible to report due to interference from analytes (other than those being tested) in sample 231640-1.

OP's in Soil - The PQL has been raised due to interferences from analytes (other than those being tested) in sample 231640-1. # Percent recovery for the matrix spike is not possible to report due to interference from analytes (other than those being tested) in sample 231640-1.

PCBs in Soil - The PQL has been raised due to interferences from analytes (other than those being tested) in sample 231640-1. # Percent recovery for the matrix spike is not possible to report due to interference from analytes (other than those being tested) in sample 231640-1.

Douglas Partners Geotechnics | Environment | Groundwater

CHAIN OF CUSTODY DESPATCH SHEET

Project No: 86	874	· 01			Suburb	: UH	philo			To:	Envi	irolab Ser	vices		
Project Name:	Order N	lumber					12 Ashley Street, Chatswood NSW 2067								
Project Manage		timo zvid hi	hlke		Sampler: Lob Keaveny Attn: Phone										
Emails:		id.walker@do		ers.com.au							02 9	910 6200)		
Date Required:	Same	eday 🗆									virolab.c	com.au			
Prior Storage:	elved	d Do samples contain potential' HBM? Yes 🗆 N							n handle, tr	ransport an	d store in accordance with FPM HAZID)				
		oled	Sample Type	Container Type					Analytes						
Sample ID	Lab ID	Date Sampled	S - soil W - water	G - glass P - plastic	louso Ba	lowbo 3a	λου	BTEX	Metals (E)	TRH GTEX			-	Notes/preservation	
202 1-2-1-3	١	26-11-19	S	LP	V									OK to subsample	
202 2:021		26-11-19	S	GP		\checkmark								for assestos.	
TS_	3	1	Ś	6											
тВ	Ą		5	6				$\overline{}$							
BD26112019	1	\downarrow	Ś	G					\checkmark					* send sample to	
												Envirolab St		Eurofins fer analysis 3 Day TAT	
								L			ROLAB	12 Asi	hley St W 2067	andysis 3 Day TAT	
											No:	Ph: (02) 991	0 6200		
							L	Ĺ				2316			
										Tim	e Received: e Received:	26.11	19		
										Rea	eived by:	TC.	<u> </u>		
								ļ 		Co	ling: Ice/Ice	packy			
										50			"" 		
								 			6ª	$\mu \rho$,			
PQL (S) mg/kg								 		·			C PQLs	req'd for all water analytes	
PQL = practical					to Labor	atory Met	hod Dete	ction Limit		Lab R	eport/Ref			31640	
	Metals to Analyse: 8HM unless specified here:										•				
Total number o					nquished			Transpo	rted to la	boratory	by:	Dhana		Courier 98090666 Fax: 98094095	
Send Results to Signed:	<u>); D</u>	ouglas Part	ners Pty Li	Received b				est Ryde		r	Date 9 T	Phone:		98090666 Fax: 98094095	

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Pty Ltd
Attention	David Walker

Sample Login Details	
Your reference	86874.01, Ultimo
Envirolab Reference	231640
Date Sample Received	26/11/2019
Date Instructions Received	26/11/2019
Date Results Expected to be Reported	29/11/2019

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	4 soil
Turnaround Time Requested	3 days
Temperature on Receipt (°C)	208
Cooling Method	Ice
Sampling Date Provided	YES

Со	mments
A 121	

Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	VOCs in soil	VTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBsin Soil	Acid Extractable metalsin soil	Misc Soil - Inorg	Asbestos ID - soils
202-1.2-1.3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
202-2.0-2.1		\checkmark	\checkmark	\checkmark				\checkmark		\checkmark
TS		\checkmark								
ТВ		\checkmark								

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

×

CHAIN OF CUSTODY DESPATCH SHEET

Date Required: Same of	mid () .walker@dougla day □ 24 ⊡Fridge	aspartners hours	of particular statements of the second statement of the second statement of the second statement of the second	Order N Sample	umber r: T. C		0.14		Second Street		irolab Servic	t, Chatswood NSW 2067			
Emails:davidDate Required:Same of	walker@dougla day 24 Intridge	aspartners	of particular statements of the second statement of the second statement of the second statement of the second	Sample	r: T. W	1	A 14								
Date Required: Same of	day 🗆 24 🛛 Fridge	hours 🗆	of particular statements of the second statement of the second statement of the second statement of the second	and the second		Sampler: T. Craham, R. Keavery					Attn:				
	Fridge	and the second se	48 ho		1					02 9	910 6200				
	and the second se	Chol	10 110	urs 🗆	72 hour	s 🗆	Standard	P	Phone: Email:	the second second second second second second second second second second second second second second second s		olab.com.au			
Prior Storage: Esky	6	u Sher	lved	Do samp	les contair	n 'potentia	I' HBM?	Yes 🗆				sport and store in accordance with FPM HAZID)			
	Dled 1	ample C Type	Container Type					Analytes							
Sample Lab ID ID depth (m)		V - water	G - glass P - plastic	lom50 Ba	VOCZ	Cembo 39	Conso (on so	TRN/ DIEX	metals (8)	BIEX	PN+ CEC	Notes/preservation			
	22/10/19 5	S	GP	1							×	subsample OK for			
BH102 0-5 2 -	22/10/19	S	CIP	1	\checkmark							subsample OK fe astertos analytis			
BH103 1.0 3.	22/10/19	S	LIP	N	/						V				
	23/10/19	S	C/P.	1								Envirolab Services ENVROLAB 12 Ashley St			
and a second sec	23/10/19	S	CIP			V					\bigvee	Chatswood NSW 2067 Ph: (02) 9910 6200			
	23/10/19 .	2	LIP			\checkmark						JOB NO: 229301			
	23/10/19	5	GIP			\checkmark						Date Received: 24/0/15 Time Received: 116130			
	22/10/19	5	4	/								Received by: Sz			
	22/10/19	S	6	V						(1997) 1997		Temp (Cool)Ambient			
	22/10/19	5	6				V					Security: Intact/Broken/None			
303-20191023 (1	23/10/19	5	G	and the second											
III Section in the sector is the sector is a sector in the sector is the	22/10/19	5	6					V	\checkmark			Send sample to			
TS 12		S	-4							1		Euro Ros for			
TB 13		5	6							V		analysis			
PQL (S) mg/kg		• • •									ANZECC	PQLs req'd for all water analytes			
PQL = practical quantita	tion limit. If	none give	en, default	to Labora	atory Meth	nod Dete	ction Limit								
Metals to Analyse: 8HM	unless specif	ified here	e:		A					The second second	ference No:	1			
Total number of sample Send Results to: Do				quished		DW			boratory	by:	Dharra	Courier			
Signed:	uglas Partners	and the second se	Received by		ermitage	Road, W	est Ryde			Date & 1	Phone:	98090666 Fax: 98094095			
Relinguisted	d by: Fis		K-Gore		19 12	00	set.		1		Vor 1	2/2/19			
FPM - ENVID/Form COC 02	auger 14/10/19														

Environment TestingMelbourne
6 Monterey Road
Dandenong South Vic 3175 16 Mars Road
Phone : +61 3 8564 5000
NATA # 1261
Site # 1254 & 14271Sydney
Unit F3, Building F
Lane Cove West NSW 2066
Phone : +61 2 9900 8400
NATA # 1261 Site # 122794Brisbane
1/21 Smallwood Place
Murarie QLD 4172
Phone : +61 7 3902 4600
NATA # 1261 Site # 122794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Sample Receipt Advice

Company name:	Douglas Partners (Syd)
Contact name:	David Walker
Project name:	ULTIMO
Project ID:	86874.01
COC number:	Not provided
Turn around time:	5 Day
Date/Time received:	Oct 28, 2019 4:11 PM
Eurofins reference:	684979

Sample information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- \mathbf{V} Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- \boxtimes Split sample sent to requested external lab.
- \times Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Ursula Long on Phone : or by e.mail: UrsulaLong@eurofins.com

Results will be delivered electronically via e.mail to David Walker - david.walker@douglaspartners.com.au.

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

Ade	Company Name: Douglas Partners (Syd) Address: 96 Hermitage Road West Ryde NSW 2114 Project Name: ULTIMO Project ID: 86874.01						Re	er No.: ort #: ne: :	684979 02 9809 0666		Received: Due: Priority: Contact Name:	Oct 28, 2019 4:11 PM Nov 4, 2019 5 Day David Walker
		5007 1.01								E	Eurofins Analytical S	Services Manager : Ursula Long
		Sa	mple Detail			Moisture Set	Eurofins mgt Suite B6					
	ourne Laborato			271								
	ey Laboratory					Х	X					
	Brisbane Laboratory - NATA Site # 20794											
	Perth Laboratory - NATA Site # 23736 External Laboratory											
No	Sample ID	Sample Date	Sampling	Matrix	LAB ID							
	-	-	Time	Matrix								
1	BDA/2019102 2	Oct 22, 2019		Rock	S19-Oc43532	х	х					
Test	Counts					1	1					

Douglas Partners (Syd) 96 Hermitage Road West Ryde NSW 2114

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

David Walker

Report Project name Project ID Received Date

684979-S
ULTIMO
86874.01
Oct 28, 2019

Client Sample ID			BDA/20191022
Sample Matrix			Rock
Eurofins Sample No.			S19-Oc43532
Date Sampled			Oct 22, 2019
Test/Reference	LOR	Unit	
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions		
TRH C6-C9	20	mg/kg	< 20
TRH C10-C14	20	mg/kg	< 20
TRH C15-C28	50	mg/kg	< 50
TRH C29-C36	50	mg/kg	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50
BTEX	·		
Benzene	0.1	mg/kg	< 0.1
Toluene	0.1	mg/kg	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2
o-Xylene	0.1	mg/kg	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3
4-Bromofluorobenzene (surr.)	1	%	84
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions		
Naphthalene ^{N02}	0.5	mg/kg	< 0.5
TRH C6-C10	20	mg/kg	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20
TRH >C10-C16	50	mg/kg	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50
TRH >C16-C34	100	mg/kg	< 100
TRH >C34-C40	100	mg/kg	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100
Heavy Metals			
Arsenic	2	mg/kg	< 2
Cadmium	0.4	mg/kg	< 0.4
Chromium	5	mg/kg	67
Copper	5	mg/kg	22
Lead	5	mg/kg	14
Mercury	0.1	mg/kg	< 0.1
Nickel	5	mg/kg	67
Zinc	5	mg/kg	31
% Moisture	1	%	3.7

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins mgt Suite B6			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Oct 30, 2019	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Oct 30, 2019	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Oct 30, 2019	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Oct 30, 2019	
- Method: LTM-ORG-2010 TRH C6-C40			
Metals M8	Sydney	Oct 30, 2019	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
% Moisture	Sydney	Oct 28, 2019	14 Days
- Method: LTM-GEN-7080 Moisture			-

- Method: LTM-GEN-7080 Moisture

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

Ad Pro	mpany Name: dress: bject Name: bject ID:	Douglas Part 96 Hermitage West Ryde NSW 2114 ULTIMO 86874.01					Or Re Ph Fa	Received: Due: Priority: Contact Name:	Oct 28, 2019 4:11 PM Nov 4, 2019 5 Day David Walker
	5,000 121	0007 1.01						Eurofins Analytical	Services Manager : Ursula Long
		Sa	mple Detail			Moisture Set	Eurofins mgt Suite B6		
	ourne Laborato			71					
	ey Laboratory -					Х	Х		
	pane Laboratory								
	n Laboratory - N	A I A Site # 237	30						
No	rnal Laboratory Sample ID	Sample Date	Sampling Time	Matrix	LAB ID				
1	BDA/2019102 2	Oct 22, 2019		Rock	S19-Oc43532	х	х		
Test	Counts					1	1		

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Limit of Reporting.
Addition of the analyte to the sample and reported as percentage recovery.
Relative Percent Difference between two Duplicate pieces of analysis.
Laboratory Control Sample - reported as percent recovery.
Certified Reference Material - reported as percent recovery.
In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
The addition of a like compound to the analyte target and reported as percentage recovery.
A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
United States Environmental Protection Agency
American Public Health Association
Toxicity Characteristic Leaching Procedure
Chain of Custody
Sample Receipt Advice
US Department of Defense Quality Systems Manual Version 5.3
Client Parent - QC was performed on samples pertaining to this report
Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Method Blank					
BTEX					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xylenes - Total	mg/kg	< 0.3	0.3	Pass	
Method Blank				•	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank			 		
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery				1 0.00	
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	%	97	70-130	Pass	
TRH C10-C14	%	124	70-130	Pass	
LCS - % Recovery	/0	1 .=.	10 100	1 400	
BTEX					
Benzene	%	104	70-130	Pass	
Toluene	%	104	70-130	Pass	
Ethylbenzene	%	105	70-130	Pass	
m&p-Xylenes	%	108	70-130	Pass	
o-Xylene	%	107	70-130	Pass	
Xylenes - Total	%	107	70-130	Pass	
LCS - % Recovery	/0			1 433	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	%	94	70-130	Pass	
TRH C6-C10	%	91	70-130	Pass	
TRH >C10-C16	%	122	70-130	Pass	
LCS - % Recovery	/0		10-130	1 455	
Heavy Metals					
Arsenic	%	94	70-130	Pass	
Cadmium	%	87	70-130	Pass	I

Test	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code		
Chromium			%	94			70-130	Pass	
Copper			%	96			70-130	Pass	
Lead			%	96			70-130	Pass	
Mercury			%	93			70-130	Pass	
Nickel			%	96			70-130	Pass	
Zinc			%	90			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
Total Recoverable Hydrocarbons -	1999 NEPM Fract	tions		Result 1					
TRH C6-C9	S19-Oc46824	NCP	%	98			70-130	Pass	
TRH C10-C14	S19-Oc38300	NCP	%	120			70-130	Pass	
Spike - % Recovery									
втех				Result 1					
Benzene	S19-Oc46824	NCP	%	98			70-130	Pass	
Toluene	S19-Oc46824	NCP	%	95			70-130	Pass	
Ethylbenzene	S19-Oc46824	NCP	%	96			70-130	Pass	
m&p-Xylenes	S19-Oc46824	NCP	%	99			70-130	Pass	
o-Xylene	S19-Oc46824	NCP	%	98			70-130	Pass	
Xylenes - Total	S19-Oc46824	NCP	%	99			70-130	Pass	
Spike - % Recovery								•	
Total Recoverable Hydrocarbons -	2013 NEPM Fract	tions		Result 1					
Naphthalene	S19-Oc46824	NCP	%	86			70-130	Pass	
TRH C6-C10	S19-Oc46824	NCP	%	98			70-130	Pass	
TRH >C10-C16	S19-Oc38300	NCP	%	118			70-130	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Arsenic	S19-Oc41515	NCP	%	110			70-130	Pass	
Cadmium	S19-Oc41515	NCP	%	104			70-130	Pass	
Chromium	S19-Oc41515	NCP	%	108			70-130	Pass	
Copper	S19-Oc41515	NCP	%	116			70-130	Pass	
Lead	S19-Oc41515	NCP	%	114			70-130	Pass	
Mercury	S19-Oc41515	NCP	%	109			70-130	Pass	
Nickel	S19-Oc41515	NCP	%	104			70-130	Pass	
Zinc	S19-Oc41515	NCP	%	113			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits		Qualifying Code
Duplicate									
Total Recoverable Hydrocarbons -	1999 NEPM Fract	tions		Result 1	Result 2	RPD			
TRH C6-C9	S19-Oc41514	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S19-Oc46822	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S19-Oc46822	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S19-Oc46822	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate					·				
BTEX				Result 1	Result 2	RPD			
Benzene	S19-Oc41514	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
		NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S19-Oc41514								
Toluene Ethylbenzene				< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S19-Oc41514	NCP	mg/kg	< 0.1 0.5	< 0.1 0.5	<1 4.0	30% 30%	Pass Pass	
				< 0.1 0.5 0.2	< 0.1 0.5 0.2	<1 4.0 6.0	30% 30% 30%	Pass Pass Pass	

Duplicate									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions	-	Result 1	Result 2	RPD			
Naphthalene	S19-Oc41514	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S19-Oc41514	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	S19-Oc46822	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S19-Oc46822	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S19-Oc46822	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S19-Oc41514	NCP	mg/kg	2.6	2.3	11	30%	Pass	
Cadmium	S19-Oc41514	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S19-Oc41514	NCP	mg/kg	15	16	7.0	30%	Pass	
Copper	S19-Oc41514	NCP	mg/kg	17	16	8.0	30%	Pass	
Lead	S19-Oc41514	NCP	mg/kg	12	12	3.0	30%	Pass	
Mercury	S19-Oc41514	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S19-Oc41514	NCP	mg/kg	28	24	18	30%	Pass	
Zinc	S19-Oc41514	NCP	mg/kg	44	44	1.0	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S19-Oc43487	NCP	%	11	12	6.0	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

 N01
 F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

 N01
 Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

No2 all QAQC acceptance criteria, and are entirely technically valid. F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX N04 analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.

Authorised By

Ursula Long Andrew Sullivan Gabriele Cordero Analytical Services Manager Senior Analyst-Organic (NSW) Senior Analyst-Metal (NSW)

Glenn Jackson General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be alarced to a solution from this report. This document shall not be reported excent in full and replaced ex

CHAIN OF CUSTODY DESPATCH SHEET

Project No: 86	874	.01			Suburb	<u> </u>	timo			To:	Envi	irolab Se	rvices	
Project Name:	Order Number						12 Ashley Street, Chatswood NSW 2067							
Project Manage	$r: D_{0}$	avid hi	hlke		Sample	er: Do	b keev	ener	1.5 1.	Attn:				
Emails:	dav	id.walker@do	ouglaspartn	ers.com.au		0		0		Phone	: 02 9	910 6200)	
Date Required:	Same	e day 🗆	24 hours	□ 48 hc	ours 🗆	(72 hou	rs	Standard		Email:	syd	ney@en	virolab.	.com.au
Prior Storage:	🗆 Esk	y 🛛 🖉 Fridg	je 🗆 Sł	nelved	Do sam	ples contai	in potenti	al' HBM?	Yes 🗆	No V	(If YES, the	en handle, t	ransport a	and store in accordance with FPM HAZI
		pled	Sample Type	Container Type					Analytes					
Sample ID Identh	Lab ID	Date Sampled	S - soil W - water	G - glass P - plastic	Conso	lowso 3a	JON	BTEX	Metals (B)	TRH GTEX	alar.			Notes/preservation
202 1-2-1.3	1	26.11.19	S	LP	1/		1				-	5.0		OK to subsample
202 2.02.1	2	26-11-19	S	CIP		V	V							for assestos.
TS	3	1	S	6	a service of	- 19 (24)					1 million			
TB	4		5	(11414		3.07					
5026112019	-		S	G	20008	- Aller				~				* send sample to
19 19 19 19 19 19 19 19 19 19 19 19 19 1	1054	1.5.5.5.5	Sec. 1		1000		14.18	1		A sure	1			Eurofus fer
the the						2014				EN	ROLAB	atswood NS	ley St V 2067	* send sample to Eurofins fer analysis 3 Day TI
										Jo	No:	Ph: (02) 991 2316		
	1.1							-		Da	te Received:	26.11	19	
							-				e Received:	17:15		
Mart State						5 m					ceived by:	TC		
					1. 24-54 m		-			Co	oling: Ice/Ice	pack		
	1.1						1.1.1.1.1			Se	curity intact	Broken/Non	e	
1 10 1703	1										Ea	uD.		
	-						-				0	t		
PQL (S) mg/kg												ANZEC	C PQLs	s req'd for all water analytes
PQL = practical					to Labor	atory Met	hod Dete	ection Limit	t	Lab R	eport/Ref	erence N	lo: 2	31640
Metals to Analys Total number of					nquished	by:	DW	Transpo	orted to la	boratory	/ by:			Courier
Send Results to		ouglas Parti	the second second second second second second second second second second second second second second second s					Vest Ryde				Phone		98090666 Fax: 98094095
Signed:	11111			Received b						1.1.1	Date & T	ime: 20	5.11-10	21:71,17

¥

Environment Testing Melbourne 6 Monterey Road Unit F3, Building F Unit F3, Building F Dandenong South Vis 3175 16 Mars Road Place Murarrie QLD 4172 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 NATA # 1261 Site # 16217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Sample Receipt Advice

Company name:	Douglas Partners (Syd)
Contact name:	David Walker
Project name:	ULTIMO
Project ID:	86874.01
COC number:	Not provided
Turn around time:	3 Day
Date/Time received:	Nov 27, 2019 2:40 PM
Eurofins reference:	690424

Sample information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- \mathbf{V} Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- \boxtimes Split sample sent to requested external lab.
- \times Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Ursula Long on Phone : or by e.mail: UrsulaLong@eurofins.com

Results will be delivered electronically via e.mail to David Walker - david.walker@douglaspartners.com.au.

Environment Testing Melbourne 6 Monterey Road Unit F3, Building F Unit F3, Building F Dandenong South Vis 3175 16 Mars Road Place Murarrie QLD 4172 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 NATA # 1261 Site # 16217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Sample Receipt Advice

Company name:	Douglas Partners (Syd)
Contact name:	David Walker
Project name:	ULTIMO
Project ID:	86874.01
COC number:	Not provided
Turn around time:	3 Day
Date/Time received:	Nov 27, 2019 2:40 PM
Eurofins reference:	690424

Sample information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- \mathbf{V} Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- \boxtimes Split sample sent to requested external lab.
- \times Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Ursula Long on Phone : or by e.mail: UrsulaLong@eurofins.com

Results will be delivered electronically via e.mail to David Walker - david.walker@douglaspartners.com.au.

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

		West Ryde NSW 2114	e Road				Or Re Ph Fa	690424 02 9809 0666	Received: Due: Priority: Contact Name:	Nov 27, 2019 2:40 PM Dec 2, 2019 3 Day David Walker
Pro	oject Name: oject ID:	ULTIMO 86874.01							Eurofins Analytical	Services Manager : Ursula Long
Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271					Moisture Set	Eurofins mgt Suite B6				
	Melbourne Laboratory - NATA Site # 1254 & 14271									
	Sydney Laboratory - NATA Site # 18217				Х	X				
	Brisbane Laboratory - NATA Site # 20794									
	Perth Laboratory - NATA Site # 23736									
	rnal Laboratory									
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID					
1	BD26112019	Nov 26, 2019		Soil	S19-No38471	х	Х			
Test	Counts					1	1			

Douglas Partners (Syd) 96 Hermitage Road West Ryde NSW 2114

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:

David Walker

Report Project name Project ID Received Date

690424-S
ULTIMO
86874.01
Nov 27, 2019

Client Sample ID			G01BD26112019
Sample Matrix			Soil
Eurofins Sample No.			S19-No38471
Date Sampled			Nov 26, 2019
Test/Reference	LOR	Unit	
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions	_	
TRH C6-C9	20	mg/kg	< 200
TRH C10-C14	20	mg/kg	< 200
TRH C15-C28	50	mg/kg	2000
TRH C29-C36	50	mg/kg	600
TRH C10-C36 (Total)	50	mg/kg	2600
втех			
Benzene	0.1	mg/kg	< 0.5
Toluene	0.1	mg/kg	< 0.5
Ethylbenzene	0.1	mg/kg	< 0.5
m&p-Xylenes	0.2	mg/kg	< 1
o-Xylene	0.1	mg/kg	< 0.5
Xylenes - Total	0.3	mg/kg	< 1.5
4-Bromofluorobenzene (surr.)	1	%	87
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions		
Naphthalene ^{N02}	0.5	mg/kg	26
TRH C6-C10	20	mg/kg	< 200
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 200
TRH >C10-C16	50	mg/kg	< 500
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 500
TRH >C16-C34	100	mg/kg	2300
TRH >C34-C40	100	mg/kg	< 1000
TRH >C10-C40 (total)*	100	mg/kg	2300
Heavy Metals			
Arsenic	2	mg/kg	8.0
Cadmium	0.4	mg/kg	< 0.4
Chromium	5	mg/kg	45
Copper	5	mg/kg	120
Lead	5	mg/kg	1300
Mercury	0.1	mg/kg	3.9
Nickel	5	mg/kg	40
Zinc	5	mg/kg	240
% Moisture	1	%	11

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins mgt Suite B6			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Nov 28, 2019	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Nov 28, 2019	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Nov 28, 2019	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Nov 28, 2019	
- Method: LTM-ORG-2010 TRH C6-C40			
Metals M8	Sydney	Nov 28, 2019	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
% Moisture	Sydney	Nov 27, 2019	14 Days
- Method: LTM-GEN-7080 Moisture			

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: Douglas Partners (Syd) Address: 96 Hermitage Road West Ryde NSW 2114							-	No.: t #: 690424 e: 02 9809 0666	Received: Due: Priority: Contact Name:	Nov 27, 2019 2:40 PM Dec 2, 2019 3 Day David Walker
	oject Name: oject ID:	ULTIMO 86874.01							Eurofins Analytical	Services Manager : Ursula Long
Sample Detail						Moisture Set	Eurofins mgt Suite B6			
	Melbourne Laboratory - NATA Site # 1254 & 14271									
	ney Laboratory					Х	Х			
	Brisbane Laboratory - NATA Site # 20794									
	Perth Laboratory - NATA Site # 23736									
	rnal Laboratory									
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID					
1	BD26112019	Nov 26, 2019		Soil	S19-No38471	Х	х			
Test	Test Counts					1	1			

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Limit of Reporting.
Addition of the analyte to the sample and reported as percentage recovery.
Relative Percent Difference between two Duplicate pieces of analysis.
Laboratory Control Sample - reported as percent recovery.
Certified Reference Material - reported as percent recovery.
In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
The addition of a like compound to the analyte target and reported as percentage recovery.
A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
United States Environmental Protection Agency
American Public Health Association
Toxicity Characteristic Leaching Procedure
Chain of Custody
Sample Receipt Advice
US Department of Defense Quality Systems Manual Version 5.3
Client Parent - QC was performed on samples pertaining to this report
Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank						
Total Recoverable Hydrocarbons - 1999 NEPM Fractions						
TRH C6-C9	mg/kg	< 20		20	Pass	
TRH C10-C14	mg/kg	< 20		20	Pass	
TRH C15-C28	mg/kg	< 50		50	Pass	
TRH C29-C36	mg/kg	< 50		50	Pass	
Method Blank						
BTEX						
Benzene	mg/kg	< 0.1		0.1	Pass	
Toluene	mg/kg	< 0.1		0.1	Pass	
Ethylbenzene	mg/kg	< 0.1		0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2		0.2	Pass	
o-Xylene	mg/kg	< 0.1		0.1	Pass	
Xylenes - Total	mg/kg	< 0.3		0.3	Pass	
Method Blank				•	•	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions						
Naphthalene	mg/kg	< 0.5		0.5	Pass	
TRH C6-C10	mg/kg	< 20		20	Pass	
TRH >C10-C16	mg/kg	< 50		50	Pass	
TRH >C16-C34	mg/kg	< 100		100	Pass	
TRH >C34-C40	mg/kg	< 100		100	Pass	
Method Blank			н I			
Heavy Metals						
Arsenic	mg/kg	< 2		2	Pass	
Cadmium	mg/kg	< 0.4		0.4	Pass	
Chromium	mg/kg	< 5		5	Pass	
Copper	mg/kg	< 5		5	Pass	
Lead	mg/kg	< 5		5	Pass	
Mercury	mg/kg	< 0.1		0.1	Pass	
Nickel	mg/kg	< 5		5	Pass	
Zinc	mg/kg	< 5		5	Pass	
LCS - % Recovery					1 400	
Total Recoverable Hydrocarbons - 1999 NEPM Fractions						
TRH C6-C9	%	86		70-130	Pass	
TRH C10-C14	%	98		70-130	Pass	
LCS - % Recovery	70	00		10100	1 400	
BTEX						
Benzene	%	89		70-130	Pass	
Toluene	%	90		70-130	Pass	
Ethylbenzene	%	96		70-130	Pass	
m&p-Xylenes	%	89		70-130	Pass	
o-Xylene	%	86		70-130	Pass	
Xylenes - Total	%	88		70-130	Pass	
LCS - % Recovery	/0				1 435	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions						
Naphthalene	%	112		70-130	Pass	
TRH C6-C10	%	87		70-130	Pass	
TRH >C10-C16	%	92		70-130	Pass	
LCS - % Recovery	/0	52		10-100	1 435	
Heavy Metals						
Arsenic	%	101		70-130	Pass	
	70		1 1	10-130	Fd33	1

Test	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code		
Chromium	Chromium						70-130	Pass	
Copper			%	113			70-130	Pass	
Lead	%	113			70-130	Pass			
Mercury	%	108			70-130	Pass			
Nickel	Nickel						70-130	Pass	
Zinc			%	110			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
Total Recoverable Hydrocarbons	1999 NEPM Fract	tions		Result 1					
TRH C6-C9	S19-No41937	NCP	%	81			70-130	Pass	
TRH C10-C14	S19-No35398	NCP	%	95			70-130	Pass	
Spike - % Recovery				-					
ВТЕХ				Result 1					
Benzene	S19-No41937	NCP	%	87			70-130	Pass	
Toluene	S19-No41937	NCP	%	85			70-130	Pass	
Ethylbenzene	S19-No41937	NCP	%	93			70-130	Pass	
m&p-Xylenes	S19-No41937	NCP	%	84			70-130	Pass	
o-Xylene	S19-No41937	NCP	%	83			70-130	Pass	
Xylenes - Total	S19-No41937	NCP	%	84			70-130	Pass	
Spike - % Recovery									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	tions		Result 1					
Naphthalene	S19-No41937	NCP	%	81			70-130	Pass	
TRH C6-C10	S19-No41937	NCP	%	83			70-130	Pass	
TRH >C10-C16	S19-No35398	NCP	%	91			70-130	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Arsenic	S19-No40801	NCP	%	100			70-130	Pass	
Cadmium	S19-No40801	NCP	%	108			70-130	Pass	
Chromium	S19-No40801	NCP	%	111			70-130	Pass	
Copper	S19-No40801	NCP	%	110			70-130	Pass	
Lead	S19-No40801	NCP	%	114			70-130	Pass	
Mercury	S19-No40801	NCP	%	121			70-130	Pass	
Nickel	S19-No40801	NCP	%	112			70-130	Pass	
Zinc	S19-No40801	NCP	%	105			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate					1		1		
Total Recoverable Hydrocarbons	1999 NEPM Fract	tions		Result 1	Result 2	RPD			
TRH C6-C9	S19-No37845	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S19-No36589	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S19-No36589	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S19-No36589	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate				1					
втех	1			Result 1	Result 2	RPD			
Benzene	S19-No37845	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S19-No37845	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S19-No37845	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S19-No37845	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S19-No37845	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total	S19-No37845	NCP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	

Duplicate									
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S19-No37845	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S19-No37845	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	S19-No36589	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S19-No36589	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S19-No36589	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate							-		
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S19-No40799	NCP	mg/kg	11	8.3	31	30%	Fail	Q15
Cadmium	S19-No40799	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S19-No40799	NCP	mg/kg	13	12	16	30%	Pass	
Copper	S19-No40799	NCP	mg/kg	30	77	88	30%	Fail	Q15
Lead	S19-No40799	NCP	mg/kg	26	25	1.0	30%	Pass	
Mercury	S19-No40799	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S19-No40799	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Zinc	S19-No40799	NCP	mg/kg	39	25	44	30%	Fail	Q15
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S19-No38860	NCP	%	17	17	1.0	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code	Description
G01	The LORs have been raised due to matrix interference
N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
Q15	The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised By

Ursula Long
Andrew Sullivan
Gabriele Cordero

Analytical Services Manager Senior Analyst-Organic (NSW) Senior Analyst-Metal (NSW)

Glenn Jackson General Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Appendix F

ProUCL 5.1 Inputs & Outputs

	А	В
1	sample	copper
2	BH101	21
3	BH102	130
4	BH103	21
5	BD3_20191	4
6	BH104	66
7	BH104	280
8	BH104	29
9	BH105	42
10	BH105	51
11	BH105	45
12	BH106	44
13	BH106	45
14	BDA/20191(22
15	BH109	14
16	201	9
17	202	130
18	BD2611201	120

	A B C	D E	F	G H I J K	L						
1			-	ensored Full Data Sets							
2											
3	User Selected Options										
4	Date/Time of Computation ProUCL 5.12/12/2019 2:00:08 PM										
5	From File copper fill input.xls										
6	Full Precision OF										
7	Confidence Coefficient 95										
8	Number of Bootstrap Operations 200	00									
9											
10											
11	copper										
12			Conorol	Statistics							
13	Total Nu	mber of Observations	17	Number of Distinct Observations	14						
14			17	Number of Missing Observations	0						
15		Minimum	4	Mean	63.12						
16		Maximum	280	Median	44						
17		SD	68.96	Std. Error of Mean	16.72						
18	С	oefficient of Variation	1.093	Skewness	2.206						
19 20					•						
			Normal C	GOF Test							
21 22	Shap	iro Wilk Test Statistic	0.74	Shapiro Wilk GOF Test							
22	5% Shap	iro Wilk Critical Value	0.892	Data Not Normal at 5% Significance Level							
24	L	illiefors Test Statistic	0.276	Lilliefors GOF Test							
25	5% L	illiefors Critical Value	0.207	Data Not Normal at 5% Significance Level							
26		Data Not	Normal at 5	% Significance Level							
27											
28		As	suming Nori	nal Distribution							
29	95% Norma			95% UCLs (Adjusted for Skewness)							
30		95% Student's-t UCL	92.32	95% Adjusted-CLT UCL (Chen-1995)	100.2						
31				95% Modified-t UCL (Johnson-1978)	93.81						
32											
33											
34		A-D Test Statistic	0.389	•							
35		K-S Test Statistic	0.763	Kolmogorov-Smirnov Gamma GOF Test							
36		5% K-S Critical Value	0.214	Detected data appear Gamma Distributed at 5% Significance							
37				stributed at 5% Significance Level	0,0						
38											
39 40			Gamma	Statistics							
40 41		k hat (MLE)	1.165	k star (bias corrected MLE)	0.999						
41		Theta hat (MLE)	54.19	Theta star (bias corrected MLE)	63.21						
42 43		nu hat (MLE)	39.6	nu star (bias corrected)	33.95						
43	MLE	Mean (bias corrected)	63.12	MLE Sd (bias corrected)	63.17						
45				Approximate Chi Square Value (0.05)	21.62						
46	Adjusted	Level of Significance	0.0346	Adjusted Chi Square Value	20.6						
47				· · · · · · · · · · · · · · · · · · ·							
48		Ass	suming Garr	ma Distribution							
	95% Approximate Gamma U	CL (use when n>=50)	99.09	95% Adjusted Gamma UCL (use when n<50)	104						
49	+7										
49 50											
			-								
50		iro Wilk Test Statistic	0.978	Shapiro Wilk Lognormal GOF Test							
50 51	5% Shap	iro Wilk Test Statistic iro Wilk Critical Value illiefors Test Statistic	-								

	А	В	С	D	E	F	G	Н		J	K	L
55			Ę	5% Lilliefors (0.207			0	at 5% Signif	icance Level	
56					Data appea	r Lognormal	at 5% Signif	icance Leve				
57												
58							I Statistics					
59				Minimum of		1.386					logged Data	3.658
60	Maximum of Logged Data 5.635 SD of logged Data 1.06									1.061		
61												
62												
63					95% H-UCL	141.7				, ,	MVUE) UCL	120.8
64				Chebyshev		146.1			97.5%	Chebyshev (MVUE) UCL	181.2
65			99%	Chebyshev	MVUE) UCL	250.1						
66												
67					•		tion Free UC					
68				Data appea	ar to follow a	Discernible	Distribution a	at 5% Signif	icance Leve			
69												
70					•		tribution Fre	e UCLs				
71					5% CLT UCL	90.63					ackknife UCL	92.32
72				Standard Bo		88.8						116.1
73				95% Hall's Bo		148.5			95%	Percentile Bo	ootstrap UCL	91.76
74				95% BCA Bo	•	102.2						
75				hebyshev(Me	,	113.3	95% Chebyshev(Mean, Sd) UCL					136
76			97.5% CI	hebyshev(Me	an, Sd) UCL	167.6			99% CI	nebyshev(Me	an, Sd) UCL	229.5
77												
78						Suggested	UCL to Use					
79			95	5% Adjusted	Gamma UCL	104						
80												
81	1	Note: Sugges	-	-		•		•			ate 95% UCL	•
82				Recommenda	ations are ba	sed upon dat	a size, data	distribution,	and skewne	SS.		
83		These recor	nmendation	s are based (upon the resu	Its of the sim	ulation studi	es summariz	zed in Singh	, Maichle, and	d Lee (2006).	
84	Но	wever, simul	ations resul	ts will not co	ver all Real V	/orld data se	ts; for additic	onal insight tl	he user may	want to cons	ult a statistici	an.
85												

	А	В
1	sample	lead
2	BH101	100
3	BH102	170
4	BD2_20191022	47
5	BH104	36
6	BH104	120
7	BH104	1100
8	BH104	160
9	BH105	74
10	BH105	130
11	BH105	95
12	BH106	15
13	BH106	99
14	BDA/20191022	14
15	BH109	5
16	201	25
17	202	30
18	BD26112019	1300

	A B C D E	F	G H I J K	L						
1	UCLS	Statistics for Uno	ensored Full Data Sets							
2										
3	User Selected Options									
4	Date/Time of Computation ProUCL 5.12/12/201	19 2:03:04 PM								
5	From File lead fill input.xls									
6	Full Precision OFF									
7	Confidence Coefficient 95%									
8	Number of Bootstrap Operations 2000									
9										
10	lead									
11										
12		General	Statistics							
13	Total Number of Observat		Number of Distinct Observations	17						
14			Number of Missing Observations	0						
15 16	Minin	num 5	Mean	207.1						
10	Maxin		Median	95						
17		SD 378.9	Std. Error of Mean	91.89						
19	Coefficient of Varia	ation 1.83	Skewness	2.562						
20		ļ								
21		Normal	GOF Test							
22	Shapiro Wilk Test Stat	tistic 0.521	Shapiro Wilk GOF Test							
23	5% Shapiro Wilk Critical V	alue 0.892	Data Not Normal at 5% Significance Level							
24	Lilliefors Test Stat		Lilliefors GOF Test							
25	5% Lilliefors Critical V		Data Not Normal at 5% Significance Level							
26	Data	a Not Normal at	5% Significance Level							
27										
28		Assuming Nor	mal Distribution							
29	95% Normal UCL		95% UCLs (Adjusted for Skewness)	440.0						
30	95% Student's-t	UCL 367.5	95% Adjusted-CLT UCL (Chen-1995)	419.2						
31			95% Modified-t UCL (Johnson-1978)	377						
32		Gommo	GOF Test							
33	A-D Test Stat		Anderson-Darling Gamma GOF Test							
34	5% A-D Tristal V		Data Not Gamma Distributed at 5% Significance Leve	el						
35	K-S Test Stat		Kolmogorov-Smirnov Gamma GOF Test							
36	5% K-S Critical V		Data Not Gamma Distributed at 5% Significance Leve	el						
37 38			ed at 5% Significance Level							
<u>38</u> 39			-							
39 40		Gamma	Statistics							
40	k hat (M	ILE) 0.599	k star (bias corrected MLE)	0.532						
41	Theta hat (M	ILE) 345.9	Theta star (bias corrected MLE)	389.1						
43	nu hat (M	ILE) 20.35	nu star (bias corrected)	18.09						
44	MLE Mean (bias correc	cted) 207.1	MLE Sd (bias corrected)	283.8						
45		I	Approximate Chi Square Value (0.05)	9.459						
46	Adjusted Level of Significa	ance 0.0346	Adjusted Chi Square Value	8.81						
47		· · · · · · · · · · · · · · · · · · ·								
48	Assuming Gamma Distribution									
49	95% Approximate Gamma UCL (use when n>=	:50)) 396.1	95% Adjusted Gamma UCL (use when n<50)	425.3						
50										
51			II GOF Test							
52	Shapiro Wilk Test Stat		Shapiro Wilk Lognormal GOF Test							
53	5% Shapiro Wilk Critical V	alue 0.892	Data appear Lognormal at 5% Significance Level							
00	Lilliefors Test Stat	tistic 0.162	Lilliefors Lognormal GOF Test							

	А	В	С	D	E	F	G	Н		J	K	L		
55	5% Lilliefors Critical Value 0.207 Data appear Lognormal at 5% Significance Level													
56	Data appear Lognormal at 5% Significance Level													
57														
58	Lognormal Statistics Minimum of Logged Data 1.609 Mean of logged Data 4.3													
59						1.609	Mean of logged Data 4.3							
60				Maximum of	Logged Data	7.17				SD of	logged Data	1.433		
61	Accurate Leansant Distribution													
62	Assuming Lognormal Distribution													
63					95% H-UCL	688.9	90% Chebyshev (MVUE) UCL 409							
64				Chebyshev		510.4	97.5% Chebyshev (MVUE) UCL 651.							
65			99%	Chebyshev ((MVUE) UCL	927.6								
66														
67	Nonparametric Distribution Free UCL Statistics													
68	Data appear to follow a Discernible Distribution at 5% Significance Level													
69														
70	Nonparametric Distribution Free UCLs													
71					5% CLT UCL	358.2					ackknife UCL	367.5		
72				Standard Bo		353.4					otstrap-t UCL	1187		
73				95% Hall's Bo		1365			95%	Percentile Bo	ootstrap UCL	362.6		
74				95% BCA Bo	•	424.3								
75				hebyshev(Me	,	482.7				• •	an, Sd) UCL	607.6		
76			97.5% CI	hebyshev(Me	an, Sd) UCL	780.9			99% CI	nebyshev(Me	an, Sd) UCL	1121		
77														
78						Suggested	UCL to Use							
79			95% Ch	ebyshev (Me	an, Sd) UCL	607.6								
80														
81	1	Note: Sugges	-	-		•		•			ate 95% UCL	•		
82				Recommenda	ations are ba	sed upon dat	ta size, data	distribution,	and skewnes	ss.				
83					-				-		d Lee (2006).			
84	Но	wever, simul	ations resul	ts will not co	ver all Real V	/orld data se	ts; for additic	onal insight tl	ne user may	want to cons	ult a statistici	an.		
85														