

YPI2B OWNERSHIP TRUST NO 6

Geotechnical Investigation

175-177 Cleveland St & 6-8 Woodburn Street, Redfern, NSW

> E25342.G03 3 August 2022

Document Control

Report Title: Geotechnical Investigation, 175-177 Cleveland St & 6-8 Woodburn Street, Redfern, NSW

Report No: E25342.G03

Copies	Recipient	
1 Soft Copy (PDF – Secured, issued by email)	James McBride YPI2B Ownership Trust No 6 Level 12, 179 Elizabeth Street, SYDNEY NSW 2000	
2 Original (Saved to Digital Archives) (\Pah\ei-au\$\07 - Projects\E25342_YPI2B Ownership_Redfern_GI_PSI_DSI_RAP_AQI\05_Deliverables\Work in Progress\G03 - GI\E25342.G03 - Geotechnical Investigation Report.docx)	El Australia Suite 6.01, 55 Miller Street, PYRMONT NSW 2009	

Author

Technical Reviewer

Amittos

Goul

Anthony Camillos Geotechnical Engineer		Stephen Kim Senior Geotechnical Engineer		
Revision	Details	Date		
	Original	3 August 2022		

© 2022 El Australia (El) ABN: 42 909 129 957

This report is protected by copyright law and may only be reproduced, in electronic or hard copy format, if it is copied and distributed in full and with prior written permission by El.

Table of Contents

Page Number

1.	INTE	RODUC	TION	1
	1.1	Backgr	round	1
	1.2	Propos	sed Development	1
	1.3	Objecti	ives	1
	1.4	Scope	of Works	2
	1.5	Constra	aints	3
2.	SITE	E DESCI	RIPTION	4
	2.1	Site De	escription and Identification	4
	2.2	Local L	Land Use	5
	2.3	Region	nal Setting	5
3.	INV	ESTIGA	TION RESULTS	7
	3.1	Stratigr	raphy	7
	3.2	Ground	dwater Observations	8
	3.3	Test Re	esults	8
4.	REC	COMME	NDATIONS	10
	4.1	Geotec	chnical Issues	10
	4.2	Dilapid	lation Surveys	10
	4.3	Existing	g Footings	10
	4.4	Excava	ation Methodology	10
		4.4.1	Excavation Assessment	10
		4.4.2	Excavation Monitoring	11
	4.5	Ground	dwater Considerations	11
	4.6	Excava	ation Retention	12
		4.6.1	Support Systems	12
		4.6.2	Retaining Wall Design Parameters	13
	4.7	Founda	ations	16
	4.8	Basem	ent Floor Slab	16
5.	FUR	THER C	GEOTECHNICAL INPUTS	17
6.	STA	TEMEN	IT OF LIMITATIONS	18
RE	FERE	INCES		19
AB	BRE		٧S	19

Schedule of Figures

Plate 1: Aerial photograph of the site (source: SIX Maps, accessed 7/12/21) **Plate 2**: Excerpt of geological map showing location of site.

Schedule of Tables

Table 1-1	Augering and Rock Coring Depths	2
Table 2-1	Summary of Site Information	4
Table 2-2	Summary of Local Land Use	5
Table 2-3	Topographic and Geological Information	5
Table 3-1	Summary of Subsurface Conditions	7
Table 3-3	Summary of Soil Laboratory Test Results	9
Table 4-1	Geotechnical Design Parameters	15

Appendices

FIGURES

- Figure 1 Site Locality Plan
- Figure 2 Borehole Location Plan

APPENDIX A – BOREHOLE LOGS AND EXPLANATORY NOTES

APPENDIX B – LABORATORY CERTIFICATES

APPENDIX C – IMPORTANT INFORMATION

1. Introduction

1.1 Background

At the request of James McBride on behalf of YPI2B Ownership Trust No 6 (the Client), EI Australia (EI) has carried out a Geotechnical Investigation (GI) for the proposed development at 175-177 Cleveland St & 6-8 Woodburn Street, Redfern, NSW (the Site).

This GI report has been prepared to provide advice and recommendations to assist in the preparation of designs for the proposed development. The investigation has been carried out in accordance with the agreed scope of works outlined in El's proposals referenced;

- P19736.1, dated 24 August 2021, with the Client's signed authorisation to proceed, dated 24 August 2021; and
- P19736.2, dated 31 March 2022, with the Client's authorisation to proceed emailed on 23 March 2022.

1.2 Proposed Development

The following documents, supplied by the Client, were used to assist with the preparation of this GI report:

- Architectural Drawings prepared by Mark Shapiro Architects Project No. 21022, Drawing Numbers SK00 to SK14, latest revision P2, Dated 4 November 2021, was supplied by the Client, and
- Stage 1 and Stage 2 Environmental Site Assessment, prepared by geo-environmental engineering – Project number E14002RED (Appendix I).

Based on the provided documents, El understands that the proposed development involves the demolition of the existing site structures and the construction of a five to six-storey mixed-use boarding house development overlying a common single-level basement. The basement level is proposed to have a finished floor level (FFL) of RL 16.1m. A Bulk Excavation Level (BEL) of RL 15.8m is assumed, which includes allowance for the construction of the basement slab. To achieve the BEL, excavation depths from 1.6m to 7.1m Below Existing Ground Level (BEGL) have been estimated. Locally deeper excavations may be required for footings, lift overrun pits, crane pads, and service trenches. The basement extends up to all boundaries, except the western boundary which has an irregular shape ranging between none to 20m set back.

1.3 Objectives

The objective of the GI was to assess site surface and subsurface conditions at five borehole locations, and to provide geotechnical advice and recommendations addressing the following:

- Dilapidation Surveys;
- Excavation methodologies and monitoring requirements;
- Groundwater considerations;
- Vibration considerations;
- Excavation support requirements, including geotechnical design parameters for retaining walls and shoring systems;

- Building foundation options, including;
 - Design parameters.
 - Earthquake loading factor in accordance with AS1170.4:2007.
- The requirement for additional geotechnical works.

1.4 Scope of Works

The scope of works for the GI included:

- Preparation of a Work Health and Safety Plan;
- Review of relevant geological maps for the project area;
- Site walkover inspection by a Geotechnical Engineer to assess topographical features and site conditions;
- Auger drilling of six boreholes (BH1, BH2M, BH3M, BH4, BH201M and BH202M) by a
 portable hand rig using solid flight augers equipped with a 'Tungsten-Carbide' (T-C) bit. The
 boreholes were auger drilled to depths as shown in **Table1-1** below:

	A	ugering	F	Rock Coring
Borehole ID	Depth (m)	RL (m AHD)	Depth (m)	RL (m AHD)
BH1	1.00	16.40	7.43	9.97
BH2M	9.00	11.40	13.52	6.88
BH3M	5.50	12.00	8.86	8.64
BH4	0.60	21.60	13.63	8.57
BH201M	0.50	16.90	10.22	7.18
BH202M	0.50	20.30	13.33	7.47

Table 1-1 Augering and Rock Coring Depths

- Measurements of groundwater seepage/levels, where possible, in the augered sections of the boreholes during and shortly after completion of auger drilling;
- The strength of the bedrock in the augered sections of the boreholes was assessed by observation of the auger penetration resistance using a T-C drill bit and examination of the recovered rock cuttings. It should be noted that rock strengths assessed from augered boreholes are approximate and strength variances can be expected.
- Continuation of BH1, BH2M, BH3M, BH4, BH201M and BH202M using NMLC diamond coring techniques to termination depths shown above in **Table 1-1**. The rock core photographs are presented in **Appendix A**;
- One Dynamic Cone Penetrometer (DCP) tests (DCP1) was carried out adjacent to BH1 and were carried out to a refusal depth of 1.6m BEGL;
- Boreholes BH2M, BH3M, BH201M and BH202M were converted into groundwater monitoring well with a depth of 10.8m (RL 9.6m), 6.8m (RL 10.75m), 3.3m (RL14.1m) and 6.0m (RL 11.4m) BEGL respectively, to allow for long-term groundwater monitoring;

- Boreholes BH1, and BH4 were backfilled with spoils and capped with concrete upon completion;
- Soil and rock samples were sent to STS Geotechnics Pty Ltd (STS) and SGS Australia (SGS), which are National Australian Testing Authority (NATA) accredited laboratories, for testing and storage.
- Preparation of this GI report.

El's Geotechnical Engineer was present full-time onsite to set out the borehole locations, direct the testing and sampling, log the subsurface conditions and record groundwater levels.

1.5 Constraints

The GI was limited by the intent of the investigation and presence of the existing structure. The discussions and advice presented in this report are intended to assist in the preparation of designs for the proposed development. Further geotechnical inspections should be carried out during construction to confirm the geotechnical and groundwater models, and the preliminary design parameters provided in this report.

2. Site Description

2.1 Site Description and Identification

The site identification details and associated information are presented in **Table 2-1** below while the site locality is shown on **Figure 1**. An aerial photograph of the site is presented in **Plate 1** below.

Table 2-1 Summary of Site Information

Information	Detail		
Street Address	175-177 Cleveland St & 6-8 Woodburn Street, Redfern, NSW		
Lot and Deposited P	an Lot 1 DP 724328		
(DP) Identification	Lot 1 DP1093304		
	Lot 15 DP 57107		
	Lot 10 DP 809537		
	Lot 3 Section 2 DP 977379		
	Lot 4 Section 2 DP 977379		
	Lot 5 DP68798		
	Lot 1 in DP 780307		
	Lot1 in DP 121029		
Brief Site Description	At the time of our investigation, the site was occupied by four, two to four- storey brick and brick rendered buildings. An asphalt-paved ground-floor carpark is located on the north-eastern corner of the site. 6-8 Woodburn Street had a single basement carpark level in the south-western portion of the site, accessed from Eveleigh Street.		
Site Area	The site area is approximately 2020m ² (based on the provided Architectural Drawings referenced above).		

Plate 1: Aerial photograph of the site (source: SIX Maps, accessed 7/12/21)

2.2 Local Land Use

The site is situated within an area of a mixed commercial and residential use. Current uses on surrounding land at the time of our presence on site are described in **Table 2-2** below. For the sake of this report, the site boundary adjacent to Woodburn Street shall be adopted as the eastern site boundary.

 Table 2-2
 Summary of Local Land Use

Direction Relative to Site	Land Use Description
North	Cleveland Street a six-lane asphalt road with no parking on either side of the roadway Cleveland Street is a TfNSW asset road.
	Beyond Cleveland Street are two to three-storey commercial and residential buildings and a basement car park was noted for the residential apartment building.
West	Eveleigh Street a single lane asphalt road with a dedicated timed parking lane along the western boundary of the site. The road is one way with traffic able to travel south to north.
	Beyond Eveleigh Street is a three storey residential apartment building with at least one basement level, the building is offset from the site boundary by approximately 10.0m
South	13-31 Eveleigh Street a three storey commercial building of brick construction, with no apparent basement levels. The building abuts the site boundary.
	9 Woodburn Street a two storey residential dwelling of brick rendered construction. The dwelling abuts the site boundary.
	10 Woodburn Street a two storey residential dwelling of brick rendered construction with a common wall with 9 Woodburn Street. The building is offset approximately 4.5m from the site boundary.
East	Woodburn Street is a two lane asphalt road with a dedicated parking lane on the eastern side of the road. Woodburn Street is a "no through road".
	Beyond Woodburn Street is a retaining wall, set back about 8m from the site that is approximately 1.2m high, which leads into a rail corridor. The rail corridor adjoins Redferr and Central Station and the closest track lies about 12m from the closest site boundary An overhead wire gantry is located approximately 8.5m from the site.
	Additionally a mix use (residential and commercial) building is located to the north east of the site, which is three-storey high, with a partially underground car park.

2.3 Regional Setting

The site topography and geological information for the locality is summarised in **Table 2-3** below.

Table 2-3	Topographic	and Geological	Information
	i opogi apino	and everegiea	

Attribute	Description
Topography	The site is located on the low south side of Cleveland Street within gently (3° to 5°), southwes dipping topography.
Regional Geology	Information on regional sub-surface conditions, referenced from the Department of Minera Resources Geological Map Sydney 1:100,000 Geological Series Sheet 9130 (DMR 1983 indicates the site to be underlain by Ashfield Shale, which consists of black to dark grey shale and laminite. It should be noted that the site lies close to a geological boundary with Cainozoid Holocene material (Qhd) which comprises medium to fine grained "marine" sands with podsols to north and a Dyke is located approximately 70m to the south of the site.

Plate 2: Excerpt of geological map showing location of site.

3. Investigation Results

3.1 Stratigraphy

For the development of a site-specific geotechnical model, the stratigraphy observed in the GI has been grouped into four geotechnical units. A summary of the subsurface conditions across the site, interpreted from the assessment results, is presented in **Table 3-1** below. More detailed descriptions of subsurface conditions at each borehole location are available on the borehole logs presented in **Appendix A**. The details of the methods of soil and rock classifications, explanatory notes and abbreviations adopted on the borehole logs are also presented in **Appendix A**.

		,, j			
Unit	Material ²	Depth to Top of Unit (m BEGL) ¹	RL of Top of Unit (m AHD) ¹	Observed Thickness (m)	Comments
1	Fill	Surface	17.4 to 22.2	0.5 to 1.3	Concrete pavements of 100mm to 350mm thickness, underlain by gravelly sands, sand and silty clay. DCP's within this material range in value from 0 to 11 indicating that the material is poorly compacted. Fill was not encountered in BH1, BH3, BH202M beneath the pavements.
2	Residual Soil	0.2 to 1.3	16.1 to 21.6	3.9 to 8.32	Silty and sandy clay low to medium plasticity, of firm to hard consistency, grading in to extremely weathered shale with depth. DCP within this material range from 2 to refusal, and SPT values of 8 to 30. Bands of very low strength shale and ironstone was encountered in the boreholes.
3	Very Low to Low Strength Shale / Sandstone	4.2 to 9.32	10.5 to 17.7	0.12 to 2.6	Distinctly weathered, very low to low strength shale and sandstone. The core consists of closely spaced defects including gentle to steep joints, sub-horizontal bedding partings, and fractured/decomposed zones. core loss was observed in boreholes between 50mm to 920mm thickness, which are inferred to be zones of extremely weathered or highly fractured rock.
4	Medium to High Strength Shale / Sandstone	6.22 to 10.05	10.05 to 15.42	_ 3	Slightly weathered to fresh sandstone/shale of medium to high strength sandstone. The sandstone/shale generally consisted of moderately spaced defects consisting of gentle to sub-vertical joints, sub-horizontal bedding partings, and fractured/decomposed seams.

Table 3-1 Summary of Subsurface Conditions

Note 1 Approximate depth and level at the time of our assessment. Depths and levels may vary across the site.

Note 2 For more detailed descriptions of the subsurface conditions, reference should be made to the borehole logs attached to Appendix A.

Note 3 Observed up to termination depth in all boreholes.

3.2 Groundwater Observations

Following completion of auger drilling, the boreholes were left open and free standing groundwater levels were then measured within the boreholes after a period of time. No groundwater or significant seepage was observed during or after auger drilling of the boreholes.

Groundwater monitoring wells were installed in the location of BH2M, BH3M, BH201M and BH202M. However, water circulation due to coring within the boreholes prevented further observations of groundwater levels within the wells.

A return visit for groundwater monitoring in borehole BH2M was conducted on 13 October 2021 and 29 June 2022. A summary of the encountered groundwater upon the return visit is summarised below in **Table 3-2** below. Additionally, groundwater data from geo-environmental (GE) engineering report has also been included and measured during our site works.

Measurement Date	Depth to Groundwater (m BEGL)	Groundwater RL (m AHD)	
1/5/2014	4.20	18.6	
29/6/2022	29/6/2022 4.20		
1/5/2014	4.15	18.25	
13/10/2019	3.95	16.45	
29/6/2022	4.30	16.1	
8/7/2022	1.5	15.9	
8/7/2022	2.7	18.1	
	29/6/2022 1/5/2014 13/10/2019 29/6/2022 8/7/2022	1/5/2014 4.20 29/6/2022 4.20 1/5/2014 4.15 13/10/2019 3.95 29/6/2022 4.30 8/7/2022 1.5	

Table 3-2 Groundwater Levels

3.3 Test Results

Three soil samples were selected for laboratory testing to assess the following:

- Atterberg Limits and Linear Shrinkage
- Soil aggressivity (pH, chloride and sulfate content and electrical conductivity).
- Moisture Content.

A summary of the soil test results is provided in **Table 3-2** below. Laboratory test certificates are presented in **Appendix B**.

Test/	Sample ID	BH2M_1.5- 1.95	BH3M_3.0- 3.45	BH3M_4.5- 4.95	BH201M_1.4 -1.5	BH202M_ 1.1-1.2	BH202M_1. 5-1.6
Unit		2	2	2	2	2	2
Mate	rial Description ¹	Silty Clay	Silty Clay	Silty Clay	Silty Clay	Silty Clay	Silty Clay
	Chloride Cl (ppm)	12	-	22	22	14	-
Aggressivity	Sulfate SO ₄ (ppm)	66	-	58	590	140	-
jĝre	рН	7.5	-	6.0	6.8	5.1	-
Âg	Electrical Conductivity (µS/cm)	160	-	44	390	140	-
	Moisture Content (%)	14.3	16.1	15.1	14	15.3	23.6
Attergerg Limits	Liquid Limit (%)	-	44	-	-	-	42
	Plastic Limit (%)	-	21	-	-	-	15
	Plasticity Index (%)	-	23	-	-	-	27
	Linear Shrinkage (%)	-	11	-	-	-	12.5

Table 3-3 Summary of Soil Laboratory Test Results

Note 1 More detailed descriptions of the subsurface conditions at each borehole location are available on the borehole logs presented in **Appendix A**.

The Atterberg Limits result on the selected clay samples indicated clays to be of medium plasticity and of moderate shrink-swell potential.

The assessment indicated low permeability soil was present above the groundwater table. In accordance with Tables 6.4.2(C) and 6.5.2(C) of AS 2159:2009 'Piling – Design and Installation', the results of the pH, chloride and sulfate content and electrical conductivity of the soil provided the following exposure classifications:

- 'Mild' for buried concrete structural elements; and
- 'Non-Aggressive' for buried steel structural elements.

29 selected rock core samples were tested by STS to estimate the Point Load Strength Index (Is_{50}) values to assist with rock strength assessment. The results of the testing are summarised on the attached borehole logs.

The point load strength index tests correlated reasonably well with our field assessments of rock strength. The approximate Unconfined Compressive Strength (UCS) of the rock core, estimated from correlations with the point load strength index test results, varied from <1 MPa to 44 MPa.

4. Recommendations

4.1 Geotechnical Issues

Based on the results of the assessment, we consider the following to be the main geotechnical issues for the proposed development:

- Basement excavation and retention to limit lateral deflections and ground loss as a result of excavations, resulting in damage to nearby structures;
- Deepening of existing basement in south-eastern portion of the site.
- Rock excavation;
- Foundation design for building loads.

4.2 Dilapidation Surveys

Prior to excavation and construction, we recommend that detailed dilapidation surveys be carried out on all structures and infrastructures surrounding the site that falls within the zone of influence of the excavation to allow assessment of the recommended vibration limits and protect the client against spurious claims of damage. The zone of influence of the excavation is defined by a distance back from the excavation perimeter of twice the total depth of the excavation. The reports would provide a record of existing conditions prior to commencement of the work. A copy of each report should be provided to the adjoining property owner who should be asked to confirm that it represents a fair assessment of existing conditions. The reports should be carefully reviewed prior to demolition and construction.

4.3 Excavation Methodology

4.3.1 Excavation Assessment

Prior to any excavation commencing, we recommend that reference be made to the Safe Work NSW Excavation Work Code of Practice, dated January 2020.

El assumes that the proposed development will require a BEL of RL 15.8m for the basement, or an excavation depth of about 1.6m to 7.1m BEGL. Locally deeper excavations for footings, service trenches, crane pads and lifts overrun pits may be required.

Based on the borehole logs, the proposed basement excavations will therefore extend through Units 1, 2 and possibly Unit 3 as outlined in **Table 3-1** above. As such, an engineered retention system must be installed prior to excavation commencing.

Units 1 and 2 (and 3 if encountered) could be excavated using buckets of large earthmoving Hydraulic Excavators, particularly if fitted with 'Tiger Teeth'. Should rock hammers be required for the excavation of the high strength bedrock, further advice should be sought from El regarding vibration mitigation and monitoring.

Groundwater seepage monitoring should be carried out during bulk excavation works and prior to finalising the design of a pump out facility. Outlets into the stormwater system will require Council approval.

Furthermore, any existing buried services, which run below the site, will require diversion prior to the commencement of excavation or alternatively be temporarily supported during excavation, subject to permission or other instructions from the relevant service authorities.

Enquiries should also be made for further information and details, such as invert levels, on the buried services.

4.3.2 Excavation Monitoring

Consideration should be made to the impact of the proposed development upon neighbouring structures, roadways and services. Basement excavation retention systems should be designed so as to limit lateral deflections.

Contractors should also consider the following limits associated with carrying out excavation and construction activities:

- Limit lateral deflection of temporary or permanent retaining structures;
- Limit vertical settlements of ground surface at common property boundaries and services easement; and
- Limit Peak Particle Velocities (PPV) from vibrations, caused by construction equipment or excavation, experienced by any nearby structures and services.

Monitoring of deflections of retaining structures and surface settlements should be carried out by a registered surveyor at agreed points along the excavation boundaries and along existing building foundations / services/ pavements and other structures located within or near the zone of influence of the excavation. Owners of existing services adjacent to the site should be consulted to assess appropriate deflection limits for their infrastructures. Measurements should be taken in the following sequence:

- Before commencing installation of retaining structures where appropriate to determine the baseline readings. Two independent sets of measurements must be taken confirming measurement consistency;
- After installation of the retaining structures, but before commencement of excavation;
- After excavation to the first row of supports or anchors, but prior to installation of these supports or anchors;
- After excavation to any subsequent rows of supports or anchors, but prior to installation of these supports or anchors;
- After excavation to the base of the excavation;
- After de-stressing and removal of any rows of supports or anchors; and
- One month after completion of the permanent retaining structure or after three consecutive measurements not less than a week apart showing no further movements, whichever is the latter.

4.4 Groundwater Considerations

Groundwater was encountered as detailed in **Table 3-2**, which are both above or just below the BEL. El recommends that long-term monitoring and a pump out test are conducted to assess the expected seepage during construction and the long-term.

Based on the encountered subsurface conditions, due to the low permeability of the soil and bedrock profile any groundwater inflows into the excavation should not have an adverse impact on the proposed development or on the neighbouring sites and should be manageable. However, we expect that some groundwater inflows into the excavation along the soil/rock interface and through any defects within the shale bedrock (such as jointing, and bedding planes, etc.) particularly following a period of heavy rainfall. The initial flows into the excavation

may be locally high, but would be expected to decrease considerably with time as the bedding seams/joints are drained. We recommend that monitoring of seepage be implemented during the excavation works to confirm the capacity of the drainage system.

We expect that any seepage that does occur will be able to be controlled by a conventional sump and pump system. We recommend that a sump-and-pump system be used both during construction and for permanent groundwater control below the basement floor slab. In the long term, drainage should be provided behind all basement retaining walls, around the perimeter of the basement and below the basement slab. The completed excavation should be inspected by the hydraulic engineer to confirm that adequate drainage has been allowed for. Drainage should be connected to the sump-and-pump system and discharging into the stormwater system. The permanent groundwater control system should take into account any possible soluble substances in the groundwater which may dictate whether or not groundwater can be pumped into the stormwater system.

The design of drainage and pump systems should take the above issues into account along with careful ongoing inspections and maintenance programs.

4.5 Excavation Retention

4.5.1 Support Systems

From a geotechnical perspective, it is critical to maintain the stability of all adjacent structures and infrastructures during demolition, excavation and construction works.

Based on the provided architectural plans, the proposed basement outline abuts all boundaries and has a maximum setback 21.4m from the western boundary.

Based on the above, the encountered subsurface conditions, the depth of excavation, temporary batters of no steeper than a safe angle of 1 Vertical (V) to 1 Horizontal (H) may be feasible in the central portion of the western boundary of the proposed basement, where the offsets to the boundary is larger, which allows space allows for the fill and residual soil profile. The above temporary batters should remain stable provided that all surcharge loads, including construction loads, are kept at a distance of at least 2h (where 'h' is the height of the batter in metres) from the crest of the batter. If steeper batters are to be used, then these must be supported by shotcrete and soil nail system designed by a suitable structural or geotechnical engineer. The stability of these batters can be assessed using computer slope stability analysis software such as Slope/W. we can complete such analysis, if commissioned to do so.

Where batters are used, the space between the batters and the permanent retaining walls will need to be carefully backfilled to reduce future settlement of the backfill. Only light compaction equipment should be used for compaction behind retaining walls so that excessive lateral pressures are not placed on the walls. This will require the backfill to be placed in thin layers, say 100mm loose thickness, appropriate to the compaction equipment being used. The compaction specification for the backfill will depend on whether paving or structures are to be supported on the fill. If the fill is to support paved areas it should be compacted to a density of at least 98% of Standard Maximum Dry Density (SMDD) for granular fill materials, but if it is only to support landscaped areas of lower compaction specification, say 95% of SMDD, may be appropriate, provided the risk of future settlement and maintenance can be accepted. An alternative for backfill would also be to use a uniform granular material, wrapped in a geofabric.

Where space for temporary batters is not available, a suitable retention system will be required for the support of the entire depth of the excavation. For this site, we consider that an anchored and/or propped soldier pile wall with mass concrete in between the piles installed to below BEL to be the most suitable. Anchors/props and shotcrete panels must be installed progressively as excavation proceeds.

Due to the presence of the basement structures adjacent to the site, anchors installation may not be possible and internal props may be required. Details of nearby basements, shoring pile walls and anchors must be obtained prior to final design.

El also notes the presence of the existing basement walls in the south-eastern portion of the site. Whether the boundary walls along the southern and eastern boundaries are being retained or replaced, these walls must be assessed by a structural engineer and possible internal bracing or anchors may be required for additional lateral restraint prior to demolition of the ground floor slab. Removal or replacement of the existing retaining wall should be completed with a set sequence, say in a hit-one-miss-three sequence, and El can provide further comment and geotechnical advice.

Bored piles are considered to be the most suitable for this site. Tremie pumps may be required where high groundwater seepage inflows are present during the drilling of the bored piles. However, relatively large capacity piling rigs will be required for drilling through the sandstone or shale bedrock. The proposed pile locations should take into account the presence of buried services. Further advice should be sought from prospective piling contractors who should be provided with a copy of this report.

4.5.2 Retaining Wall Design Parameters

The following parameters may be used for static design of temporary and permanent retaining walls at the subject site:

- Conventional free-standing cantilever walls which support areas where movement is of little concern (i.e. where only gardens or open areas are to be retained), may be designed using a triangular lateral earth pressure distribution and an 'active' earth pressure coefficient, K_a, as shown in Table 4-1;
- Cantilevered walls, where the tops of which are restrained by the floor slabs of the permanent structure or which support movement sensitive elements, should be designed using a triangular lateral earth pressure distribution and an 'at rest' earth pressure coefficient, K_o, as shown in **Table 4-1** below.
- For progressively anchored or propped walls where minor movements can be tolerated (provided there are no buried movement sensitive services), we recommend the use of a trapezoidal earth pressure distribution of 5H kPa for soil, where H is the retained height in meters. These pressures should be assumed to be uniform over the central 50% of the support system, tapering to nil at top and bottom;
- For progressively anchored or propped walls which support areas which are highly sensitive to movement (such as areas where movement sensitive structures or infrastructures or buried services are located in close proximity), we recommend the use of a trapezoidal earth pressure distribution of 8H kPa for soil, where 'H' is the retained height in meters. These pressures should be assumed to be uniform over the central 50% of the support system, tapering to nil at top and bottom;
- All surcharge loading affecting the walls (including from construction equipment, construction loads, adjacent high level footings, etc.) should be adopted in the retaining wall design as an additional surcharge using an 'at rest' earth pressure coefficient, Ko.
- The retaining walls should be designed as drained and measures are to be taken to provide complete and permanent drainage behind the walls. Strip drains protected with a nonwoven geotextile fabric should be used behind the shotcrete infill panels for soldier pile walls. Alternatively, for the contiguous pile walls, weepholes comprising 20mm diameter,

slotted PVC pipes installed into holes or gaps between adjacent piles at 1.2m centres (horizontal and vertical), may be used. The embedded pipes must, however, be wrapped with a non-woven geotextile fabric (such as Bidim A34) to act as a filter against subsoil erosion;

- For piles embedded into Unit 4 or better, the allowable lateral toe resistance values outlined in **Table 4-1** below may be adopted. These values assume excavation is not carried out within the zone of influence of the wall toe and the rock does not contain adverse defects etc. The upper 0.3m depth of the socket should not be taken into account to allow for tolerance and disturbance effects during excavation.
- If temporary anchors extend beyond the site boundaries, then permission from the neighbouring properties would need to be obtained prior to installation. Also, the presence of neighbouring basements and/or services and their levels must be confirmed prior to finalising anchor design.
- Anchors should have their bond length within Unit 3 or better. For the design of anchors bonded into Unit 3 or better, the allowable bond stress value outlined in Table 4-1 below may be used, subject to the following conditions:
 - 1. Anchor bond lengths of at least 3m behind the 'active' zone of the excavation (taken as a 45 degree zone above the base of the excavation) is provided;
 - 2. Overall stability, including anchor group interaction, is satisfied;
 - 3. All anchors should be proof loaded to at least 1.33 times the design working load before locked off at working load. Such proof loading is to be witnessed by and engineer independent of the anchoring contractor. We recommend that only experienced contractors be considered for anchor installation with appropriate insurances;
 - 4. If permanent anchors are to be used, these must have appropriate corrosion provisions for longevity.

	Material ¹	Unit 1 Fill	Unit 2 Residual Soil	Unit 3 Very Low To Low Strength Shale	Unit 4 Medium to High Strength Shale/ Sandstone
RL of To	op of Unit (m AHD) ²	17.4 to 22.2	16.1 to 21.6	10.5 to 17.7	10.05 to 15.42
Bulk U	Init Weight (kN/m ³)	20	19	24	24
Frict	tion Angle, φ' (°)	30	27	35	40
Earth Pressure Coefficients	At rest, K _o ³	0.5	0.55	0.43	-
	Active, K _a ³	0.33	0.38	0.27	-
	Passive, Kp ³	-	2.66	3.69	-
Allowable Bea	aring Pressure (kPa) ⁵	-	-	700	3000
Allowable Sha		-	-	70	300
Adhesion (kP 4, 5	a) in Uplift	-	-	35	150
Allowable Toe	e Resistance (kPa)	-	-	-	300
Allowable Bo	nd Stress (kPa)	-	-	50	250

Table 4-1 Geotechnical Design Parameters

AS 1170.4:2007 indicates that the hazard factor (z) for Sydney is 0.09.

Notes:

More detailed descriptions of subsurface conditions are available on the borehole logs presented in Appendix A.

2 Earth pressures are provided on the assumption that the ground behind the retaining walls is horizontal.

3 Side adhesion values given assume there is intimate contact between the pile and foundation material and should achieve a clean socket roughness category R2 or better. Design engineer to check both 'piston pull-out' and 'cone liftout' mechanics in accordance with AS4678-2002 Earth Retaining Structures. To adopt these parameters we have assumed that: 4

- Footings have a nominal socket of at least 0.3m, into the relevant founding material;
- For piles, there is intimate contact between the pile and foundation material (a clean socket roughness category of R2 or better);
- Potential soil and groundwater aggressivity will be considered in the design of piles and footings;
- Piles should be drilled in the presence of a Geotechnical Engineer prior to pile construction to verify that ground conditions meet design assumptions. Where groundwater ingress is encountered during pile excavation, concrete is to be placed as soon as possible upon completion of pile excavation. Pile excavations should be pumped dry of water prior to pouring concrete, or alternatively a tremmie system could be used; The bases of all pile, pad and strip footing excavations are cleaned of loose and softened material and water is
- pumped out prior to placement of concrete;
- The concrete is poured on the same day as drilling, inspection and cleaning.
- The allowable bearing pressures given above are based on serviceability criteria of settlements at the footing base/pile toe of less than or equal to 1% of the minimum footing dimension (or pile diameter).

4.6 Foundations

Upon reaching the BEL of the basement, it is expected that Unit 2 will be exposed at this level.

In view of the expected loads and moderate depths to the bedrock, we recommend that building is supported on pile footings founded into Unit 4 (Medium to High Strength bedrock).

For piles founded Unit 4 bedrock, these must be embedded a minimum of 0.5m, and can be designed for a maximum allowable bearing pressure of 3000kPa. The allowable shaft adhesion in Unit 4 bedrock may be designed as 10% of the allowable bearing pressure (or 5% for uplift) for the socket length in excess of 0.5m.

At least the initial drilling of piles should be completed in the presence of a geotechnical engineer to verify that ground conditions meet design assumptions.

Where groundwater ingress is encountered during pile excavation, concrete is to be placed as soon as possible upon completion of pile excavation. Pile excavations should be pumped dry of water prior to pouring concrete, or alternatively a tremmie system could be used. Concrete must be poured on the same day as drilling, inspection and drilling.

The aggressivity of natural soils and groundwater (if encountered) should be taken into consideration in the design.

4.7 Basement Floor Slab

Following bulk excavations for the proposed basement, residual soil is expected to be exposed at the basement floor BEL.

Following the removal of all loose and softened materials, we recommend that underfloor drainage be provided and should comprise a strong, durable, single sized washed aggregate such as 'blue metal gravel'. Joints in the concrete floor slab should be designed to accommodate shear forces but not bending moments by using dowelled and keyed joints. The basement floor slab should be isolated from columns. The completed excavation should be inspected by the hydraulic engineer to confirm the extent of the drainage required.

In addition, a system of sub-soil drains comprising a durable single sized aggregate with perforated drains/pipes leading to sumps should be provided. The basement floor slab should be isolated from columns.

Permission may need to be obtained from the NSW Department of Primary Industries (DPI) and possibly Council for any permanent discharge of seepage into the drainage system. Given the subsurface conditions, we expect that seepage volumes would be low and within the DPI limits. However, if permission for discharge is not obtained, the basement may need to be designed as a tanked basement.

5. Further Geotechnical Inputs

Below is a summary of the previously recommended additional work that needs to be carried out:

- Long term groundwater monitoring and seepage modelling;
- Stability assessment of temporary batters using computer modelling, if required;
- Dilapidation surveys;
- Classification of all excavated material transported off site;
- Witnessing installation of support measures and proof-testing of anchors (if required).
- Geotechnical inspections of all new footings/piles by an experienced geotechnical professional before concrete or steel are placed to verify their bearing capacity and the insitu nature of the founding strata; and
- Ongoing monitoring of groundwater inflows into the bulk excavation;

We recommend that a meeting be held after initial structural design has been completed to confirm that our recommendations have been correctly interpreted. We also recommend a meeting at the commencement of construction to discuss the primary geotechnical issues and inspection requirements.

6. Statement of Limitations

This report has been prepared for the exclusive use of James McBride and YPI2B Ownership Trust No 6 who is the only intended beneficiary of El's work. The scope of the assessment carried out for the purpose of this report is limited to those agreed with James McBride and YPI2B Ownership Trust No 6

No other party should rely on the document without the prior written consent of EI, and EI undertakes no duty, or accepts any responsibility or liability, to any third party who purports to rely upon this document without EI's approval.

El has used a degree of care and skill ordinarily exercised in similar investigations by reputable members of the geotechnical industry in Australia as at the date of this document. No other warranty, expressed or implied, is made or intended. Each section of this report must be read in conjunction with the whole of this report, including its appendices and attachments.

The conclusions presented in this report are based on a limited investigation of conditions, with specific sampling and test locations chosen to be as representative as possible under the given circumstances.

EI's professional opinions are reasonable and based on its professional judgment, experience, training and results from analytical data. EI may also have relied upon information provided by the Client and other third parties to prepare this document, some of which may not have been verified by EI.

El's professional opinions contained in this document are subject to modification if additional information is obtained through further investigation, observations, or validation testing and analysis during construction. In some cases, further testing and analysis may be required, which may result in a further report with different conclusions.

We draw your attention to the document "Important Information", which is included in **Appendix C** of this report. The statements presented in this document are intended to advise you of what your realistic expectations of this report should be. The document is not intended to reduce the level of responsibility accepted by EI, but rather to ensure that all parties who may rely on this report are aware of the responsibilities each assumes in so doing.

Should you have any queries regarding this report, please do not hesitate to contact El.

References

AS1289.6.3.1:2004, Methods of Testing Soils for Engineering Purposes, Standards Australia.

AS1726:2017, Geotechnical Site Investigations, Standards Australia.

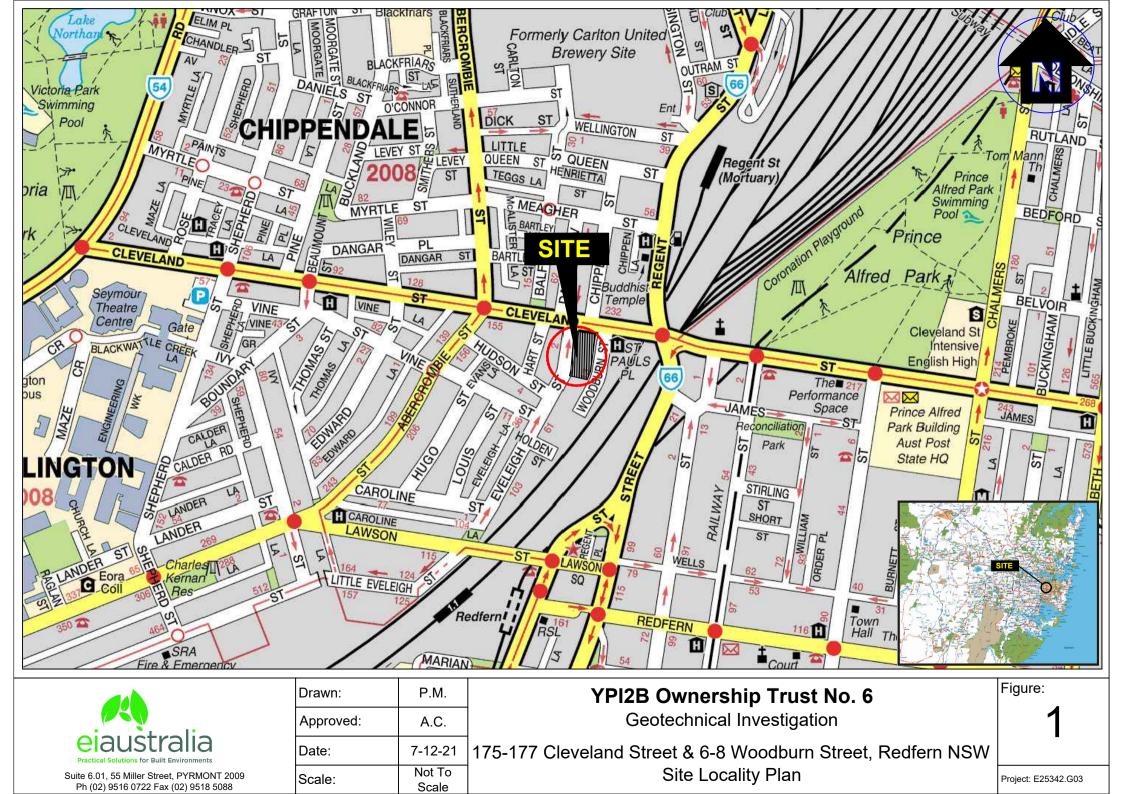
AS2159:2009, Piling - Design and Installation, Standards Australia.

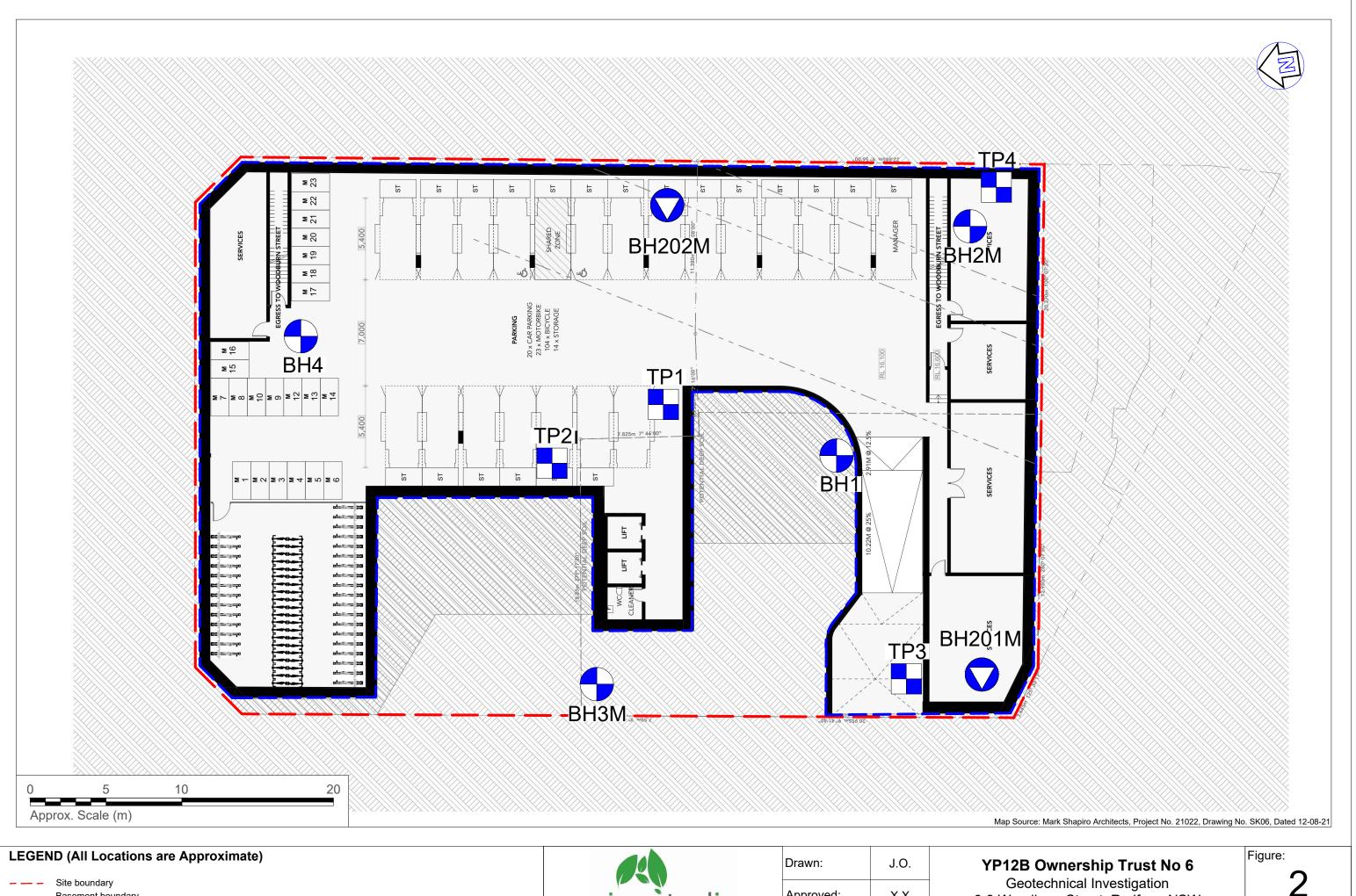
AS3600:2009, Concrete Structures, Standards Australia

Safe Work NSW Excavation Work Code of Practice, dated January 2020 - WorkCover NSW

NSW Department of Finance and Service, Spatial Information Viewer, maps.six.nsw.gov.au.

NSW Department of Mineral Resources (1983) Sydney 1:100,000 Geological Series Sheet 9130 (Edition 1). Geological Survey of New South Wales, Department of Mineral Resources.


Abbreviations


AHD	Australian Height Datum
AS	Australian Standard
BEL	Bulk Excavation Level
BEGL	Below Existing Ground Level
BH	Borehole
DBYD	Dial Before You Dig
DP	Deposited Plan
EI	El Australia
GI	Geotechnical Investigation
NATA	National Association of Testing Authorities, Australia
RL	Reduced Level
SPT	Standard Penetration Test
T-C	Tungsten-Carbide
UCS	Unconfined Compressive Strength

Figures

- Figure 1 Site Locality Plan
- Figure 2 Borehole Location Plan

- Site boundary
- Basement boundary
- Borehole locations 0
- Ø Monitoring Well Borehole locations
- Test Pit locations

Geotechnical Investigation 6-8 Woodburn Street, Redfern, NSW

Borehole Location Plan

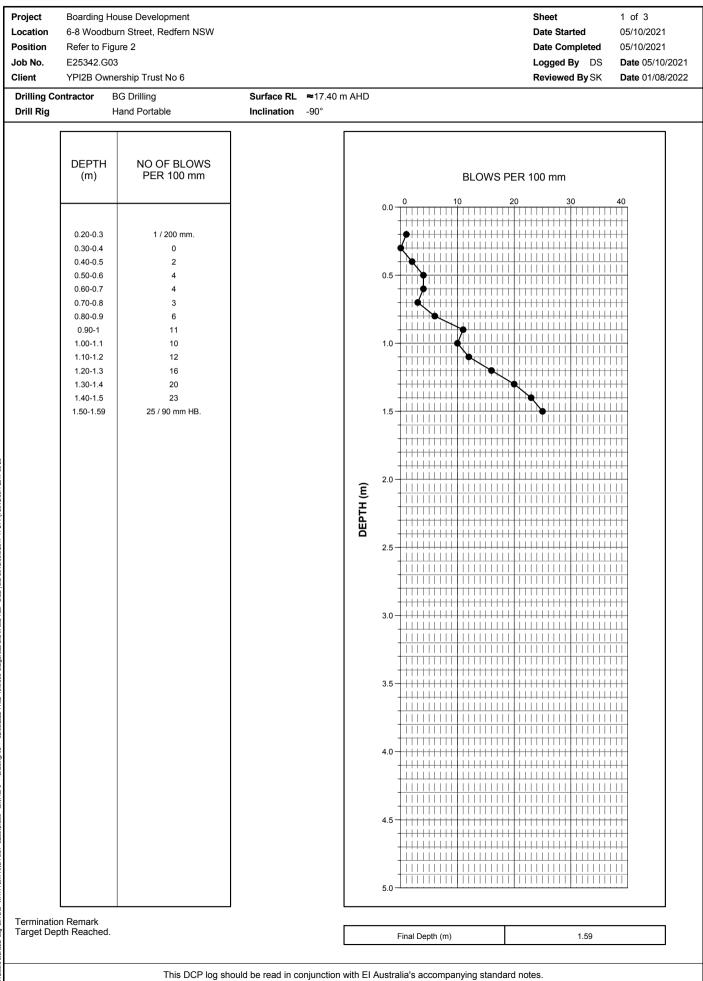
Project: E25342.G03

Appendix A – Borehole Logs And Explanatory Notes

BOREHOLE LOG

BH NO. BH1

	Loo Po:	oject catio sitio	tion 6-8 Woodburn Street, Redfern NSW ion Refer to Figure 2										ו נ	Sheet Date Started Date Completed	1 of 2 05/10/2021 05/10/2021
		o No. ent	•			rship Tru	st No 6							.ogged By DS Reviewed By SK	Date 05/10/2021 Date 01/08/2022
┢			q Co	ntracto		G Drilling				Sur	face RL ≈17.40 m AHD			teviewed by or	Date 01/00/2022
		rill Ri				and Porta					lination -90°				
			Dril	lling		s	ampling				Field Material De				
	MEIHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	FIE	IPLE OR LD TEST	RECOVERED	GRAPHIC LOG	GROUP SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY REL. DENSITY	STRU(ADI OBSE	CTURE AND DITIONAL RVATIONS
		-		0	17.40 0.23					-	CONCRETE: 230mm.	-	-	PAVEMENT	
	AU/I	-	GWNE	-	17.17	BH1 0.3	0-0.40 m			CI	Silty CLAY: medium plasticity, pale grey and red-brown.	M (<pl< th=""><th>S - F</th><th>RESIDUAL</th><th></th></pl<>	S - F	RESIDUAL	
	_			1	1.00	BH1 0.9	0-1.00 m		///		Continued as Cored Borehole		VSt		
				-											
				2											
				-											
				3-											
-26				-											
2.00.1 2017-05				-											
DGD Lib: EIA 2.00.3 2017-11-21 Prj: EIA 2.00.1 2017-09-26				4											
EIA 2.00.3 2017				-											
				5 —											
and In Situ Too				-											
100 Datgel Lab				6											
22 12:51 10.0.				-											
ile>> 02/08/20.				7											
J < <drawingf.< p=""></drawingf.<>				-											
G03 - GINT.GP				8-											
LE 1 E25342.0				-											
RED BOREHO				9											
EIA NON-CO.				-											
EA 2003 LIB.GLB Lug EA NON-CORED BOREHOLE 1 E25342.C03 - GINT.GPJ < <drawingfile>> 02/08/2022 12:51 10.0.000 Datgel Lab and In Situ Tool</drawingfile>															
EIA 2.00.				10			This boreh	ole lo	g shoi	uld b	e read in conjunction with EI Australia's accompanying	standa	ird no	tes.	


CORED BOREHOLE LOG

BH NO. BH1

Lo Po Jo Cli	oject catio sitio o No ent	n	6-8 Ref E25 YPI	Wood fer to F 5342.G 2B Ow	igure 2 :03 /nership	eet, Re	edfern NSW No 6					Sheet Date Started Date Completed Logged By DS Reviewed By SK	2 OF 2 05/10/2021 05/10/2021 Date 05/10/2 Date 01/08/2	
	illin ill R	g Co ig	ntrac	tor	BG Dri Hand I	•	e Rig Inclination -90°							
			Drilli	ng	1		Field Material Description					Defect Information	ו ו	
METHOD	WATER	TCR	RQD (SCR)	DEPTH (metres)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	STR Is ₍₅		TH DEFEC & Addition	T DESCRIPTION onal Observations	De Spa	erage efect acing nm)
		33	0		1.00 16.40 1.92 15.48 2.37		Continuation from non-cored borehole CORE LOSS: 920mm. Silty CLAY: medium plasticity, pale grey/orange-brown.	RS			I I I I I I I I I I I I I I I I I I I			
		88	0		14.98		CORE LOSS: 50mm. / Silty CLAY: medium plasticity, pale grey/orange-brown.	RS		ii.				
	ßN	90	0	3-	2.80 2.93 14.47		CORE LOSS: 130mm. Sitly CLAY; medium plasticity, grey with iron stone bands (EXTREMELY WEATHERED)	xw	-<< - - - - - - - - - - -		2.95-3.04: XWS, 90 mn 3.09-3.14: XWS, 50 mn 3.16: JT, 45°, Fe SN, IF 3.21-3.29: XWS, 80 mn 3.34-3.62: XWZ, 280 m 3.53: JT, 30°, Clay VNF 3.64: JT, 15°, Fe SN, P 3.64: JT, 15°, Fe SN, P	n ξ, RO n m ,, IR, RO L, RO 1		
NMLC	80% RETURN	75	0	4 — · · ·	4.20 4.38 13.02 4.64 12.76		SHALE; pale grey and red, thinly bedded, with iron stained bands. CORE LOSS: 260mm. SHALE: dark grey/ red-brown, very thinly bedded with sub-horizontal siltstone laminations and ironstaining.	DW XW DW			3.93-4.03: XWZ, 100 m 4.05-4.10: XWS, 50 mn 4.13: JT, 60°, Fe SN, IF 4.13-4.14: XWS, 10 nn 4.17-4.31: XWZ, 140 m 4.64-4.73: XWS, 90 mn 4.78: JT, 30°, Fe SN, P 4.86-5.08: XWZ, 220 m	1 ξ, RO 1 m 1 L, RO		
		60	0	6 —	5.08 12.32 5.52 11.88		CORE LOSS: 440mm. SHALE: dark grey/ red-brown, very thinly bedded with sub-horizontal siltstone laminations and ironstaining.	DW			 5.52-5.72: XWZ, 200 m 5.77: JT, 75°, PL 5.80-5.82: XWS, 20 mn 5.93-5.95: XWS, 20 mn 6.12-6.17: XWS, 50 mn	ו ז		
		92	44	7	6.49 10.81 6.80 10.60		CORE LOSS: 100mm. SANDSTONE; fine-grained, pale grey, laminated. From 6.80m, thickly to medium bedded.	SW DW FR			6.18-6.22: XWS, 40 mn 6.24: JT, 30 - 40°, Fe S 6.61-6.67: XWZ, 60 mn	n N, CU, RO		
					<u>7.43</u> 9.97		Hole Terminated at 7.43 m Target Depth Reached.							
				10 —	-	Th	is borehole log should be read in conjunction with F					notos		

DYNAMIC CONE PENETROMETER TEST RESULTS eiaustralia DCP N

DCP NO. BH1

2003 LIB GLB Log ELA DOP WITH TEXT AND PLOT E2532.030- GNT/GPJ ~ <a href="color:col

CORE PHOTOGRAPH OF BOREHOLE: BH1

Project	Proposed Boarding House Development	Depth Range	ange 1.0m to 7.43m BEGL						
Location	175-177 Cleveland St & 6-8 Woodburn Street, Redfern, NSW	Contractor	BG Drilling						
Position	See Figure 2	Surface RL	≈ 17.40m	Drill Rig	Hand Port	able Rig			
Job No.	E25342.G03	Inclination	- 90°	Logged	DS	Date	5 / 10 / 2021		
Client	YPI2B Ownership Trust No 6	Box	1 & 2 of 2	Checked	SK	Date	2 / 8 / 2022		

BOREHOLE LOG

BH NO. BH2M

	Loc Pos Job	ojectBoarding House Developmentcation6-8 Woodburn Street, Redfern NSWsitionRefer to Figure 2o No.E25342.G03entYPI2B Ownership Trust No 6										[[]	Sheet Date Started Date Completed Logged By DS Reviewed By SK	1 of 3 05/10/2021 05/10/2021 Date 05/10/2021 Date 01/08/2022	
		illin ill R	-	ntracto		G Drilling g CE 180				face RL ≈20.40 m AHD lination -90°					
			-	ling		Sampling				Field Material Desc	criptio	on			
METUOD		PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	Sample or Field test	RECOVERED	GRAPHIC LOG	GROUP SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE CONDITION	CONSISTENCY REL. DENSITY	STRUC ADD OBSEI	TURE AND ITIONAL RVATIONS	
μ	5	-		0	0.19				-	CONCRETE: 190mm.	-		PAVEMENT		
F	-	_		-	0.35 20.05				-	BRICK: 360mm. FILL: SAND: fine to coarse-grained, dark.	-	1_	BRICK FILL		-
				-		BH2M 0.50-0.60 m			\triangleleft		-				
				- 1	1.00			\bigotimes					DEOIDUAL		
				-	19.40	BH2M 1.10-1.20 m			CI	Sandy CLAY: medium plasticity, pale grey mottled orange brown, sand is fine to medium-grained.			RESIDUAL		
				-		SPT 1.50-1.95 m									
				_		3,4,5 N=9					M (<pl< td=""><td>St</td><td></td><td></td><td></td></pl<>	St			
				2 —											-
				-	2.40										
				_	18.00			\square	CI	Silty CLAY: medium plasticity, pale grey/red-brown with fine to medium ironstone gravels.					
				-											
				3		SPT 3.00-3.45 m 4,7,10									-
9-26				_	3.50	N=17									
DGD Ltb: EIA 2.00.3 2017-11-21 Prj: EIA 2.00.1 2017-09-26 A D/T				-	16.90					From 3.50m, less ironstone gravels.	1				
EIA 2.00.				4											
-21 Prj: E				4 _								VSt			
2017-11			GWNE	-		007 4 50 4 05									
A 2.00.3		-	õ	-		SPT 4.50-4.95 m 5,11,15 N=26									
Lib: El				5 —					1						-
				-											
n Situ To				-											
ab and				-							M (<pl< td=""><td>.)</td><td></td><td></td><td></td></pl<>	.)			
Datgel L				6 —	6.00 14.40	SPT 6.00-6.45 m				From 6.0m, grading to extremely weathered shale.	-	-	-		-
0.0.000				-		11,13,17 N=30									
2 12:51				-											
/08/2022				_											
ile>> 02				7											-
DrawingF				-								н			
GPJ <<				-											
- GINT				- 8											_
342.G03				-											
E 1 E26				-											
OREHOL				_											
EA 2003 LIB.GLB Log EA NON-CORED BOREHOLE 1 E25342.003 - GINT.GPJ < <drawingfile>> 02/08/2022 12:51 10.0000 DargelLab and In Shu Tool</drawingfile>	+	_			9.00		+	Ţ <i>ĹĹ</i>	1	Continued as Cored Borehole		-			+
NON-C				-											
Log El/				-											
LIB.GLB				-											
A 2.00.3 I				10 —		This boreho	ble lo	bg sho	uld b	↓ e read in conjunction with EI Australia's accompanying s	tanda	rd no	otes.		
ΰ										. , , ,					

CORED BOREHOLE LOG

BH NO. BH2M

	Loc Pos	ject atio sitio No	n n	6-8 Rei E2	Woodl fer to F 5342.G	igure 2	eet, Re	edfern NSW				Sheet Date Started Date Completed Logged By DS Reviewed By SK		2021
	Dr	illin	-	ntrac		BG Dr	lling	Surface RL ≈20.40 m AHD					Duto	1100/2022
	Dr	ill R	-	Drilli	ng	Rig CE	180	Inclination -90° Field Material Description		Defect Information				
-	METHOD	WATER	TCR	RQD (SCR)	DEPTH (metres)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	INFERRED STRENGTH Is ₍₅₀₎ MPa	DEFECT & Addition	DESCRIPTION al Observations		Average Defect Spacing (mm)
			79	26	10	10:95 <u>10.38</u> 10.02	· · · · · · · · · · · · · · · · · · ·	SANDSTONE: fine to medium-grained, grey, very thinly to thinly bedded, with pale orange-brown ironstaining and dark grey sub horizontal siltstone laminations. From 10.38m, no iron staining.	SW		9.99-10.05: XWS, 60 mm			
	NMLC	90-95% RETURN	100	65	- 11 - - 12	<u>11.93</u> 8.47		From 11.93m, medium to thickly bedded.	FR		10.73-10.76: XWS, 30 mr 11.02-11.07: XWS, 50 mr 11.31: JT, 10°, CN, IR, Rt 11.38-11.44: XWS, 60 mr 11.69: JT, 45 - 80°, CN, S 11.89-11.90: XWS, 10 mr	n D n ST, RO		
		90-95% RETURN	100	96		13.52		From Fr.93in, medium to tricky bedded.			12.26-12.27: XWS, 10 mr	n		
EX 20.3 LIB GLB Log EIA CORED BOREHCIE 1 E25322G03-GINT/GPJ < Comminglies> 2008/2021256 10.0000 Dalgel Lab and In Situ Tool-DGD [LIb: EIA 20.3 2017-11-21 Prj: EIA 20.0 120769-26								Hole Terminated at 13.52 m Target Depth Reached.						
EIA 2.00.3					20 —		Th	is borehole log should be read in conjunction with l	ELA	ustralia's ac	companying standard n	otes.		

CORED BOREHOLE LOG

BH NO. BH2M

		oject		Boarding House DevelopmentSheet2 OF 36-8 Woodburn Street, Redfern NSWDate Started05/10/2021														
		catio sitio				ourn Str igure 2	eet, Re	edfern NSW						Started Completed	05/10/2 05/10/2			
		o No.			5342.G									ed By DS	Date 0		021	
	Clie					nership							Revie	wed By SK	Date 0	1/08/20)22	
		illing ill Ri		ntrac	ctor	BG Dri Rig CE			≈20.40 m AHD -90°									
┢			-	Drilli	na	Ttig OL	100		Field Material Description Defect Information									
										U	INFE	RRED				Ave	rage fect	
	METHOD	WATER	TCR	RQD (SCR)	DEPTH (metres)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DES	SCRIPTION	WEATHERING	IS(50	ERRED ENGTH "MPa ⊊ m S = ±	& Additional Obs	RIPTION servations		Spa	cing m)	
EA 200.3 LBIGLB Log EA CORED BOREHOLE 1 E25342G0.3 GINT.GPJ < <drawingfile>> 0208/2022 12:56 10.0.000 DatgeLab and in Situ Tool - DGD LIb: EM 2.00.3 2017-11-21 Ph; EA 2.00.1 2017-09:26</drawingfile>						9.00 11.40		Continuation from non-cored borehole CORE LOSS: 320mm.										
RED BC		NRI			9		$\left \right\rangle$	CORE LOSS: 320mm.		-							$\left \right $	
EIA COF	NMLC	90-95% RETURN	79	26	-	9.32 11.08		SHALE; dark grey, very thinly laminate	ed to laminated.	DW	, - I I		9.32-9.94: XWZ, 580 mm		Ī		.	
LB Log	≥Z	95%	19	20	-													
3 LIB.GL		-06 -06			- 10													
EIA 2.00.					10-		Th	is borehole log should be read in c	onjunction with I	El Ai	ustrali	ia's ac	companying standard notes.					

MONITORING WELL LOG

MW NO. BH2M

Lo Po Jo Cli	oject catic sitio b No ient	on n	6-8 Wo Refer to E25342 YPI2B (odburn 5 Figure 2.G03 Owners	hip Trust No 6	Ifem NSW D					
	rillin: rill R	-	tractor		Drilling Surface RL ≈20.40 m AH CE 180 Inclination -90°	D					
METHOD	WATER	DEPTH (m)	RL (m AHD)	GRAPHIC LOG	SOIL/ROCK MATERIAL DESCRIPTION	ID Type	COMETER CO Stick Up & RL 0.10 m 20.50 m	NSTRUCTION DET/ Tip Depth & RL Instal 10.80 m 9.60 m	AILS lation Date Static Water Le		
DT		-0-			CONCRETE: 190mm.			Gatic Cov	er		
_			- 20-		BRICK: 360mm.						
			-		FILL: SAND: fine to coarse-grained, dark.						
		2-	_		Sandy CLAY: medium plasticity, pale grey mottled orange brown, sand is fine to medium-grained.						
			- 18 <i>-</i>		Silty CLAY: medium plasticity, pale grey/red-brown with fine to medium ironstone gravels.						
			-								
			-		From 3.50m, less ironstone gravels.						
		4 -	-	$\langle / / \rangle$				uPVC Cas	sing 50 mm.		
F	GWNE		- 16 -								
AD/T	G		-	$\langle / /$							
			-	$\langle / /$							
			_	$\langle / /$							
		6-	_	$\langle / /$							
			- 14 -		From 6.0m, grading to extremely weathered shale.			Bentonite			
			_				· · · · ·	· · · · · · · · · · · · · · · · · · ·			
			_								
		0				7.80 m					
		8 -		\mathbb{V}/\mathbb{V}							
			- 12-	$\mathbb{V}//$							
			-	K	CORE LOSS: 320mm.			Sand			
	90-95% RETURN		-	14	SHALE; dark grey, very thinly laminated to laminated.			uPVC Scr	een 50 mm.		
	RET		-								
	0-95%	10-	_		SANDSTONE: fine to medium-grained, grey, very thinly to thinly						
			- 10-		bedded, with pale orange-brown ironstaining and dark grey sub horizontal siltstone laminations.						
	TURN		-	-	From 10.38m, no iron staining.	<u>10.80 m</u>					
NMLC	% RE		-	-							
د	90-95% RETURN		-	-							
		12-	-	-	From 11.93m, medium to thickly bedded.			- Bentonite			
	90-95% RETURN		- 8-	-				- Demonite			
	% RE		-								
	90-95		_	-							
		14 -	-		Hole Terminated at 13.52 m Target Depth Reached.						
		14									
			- 6-								
_		l	7	٦	This well log should be read in conjunction with		a standard	toc			

CORE PHOTOGRAPH OF BOREHOLE: BH2M

Project	Proposed Boarding House Development	Depth Range	h Range 9.0m to 13.52m BEGL						
Location	175-177 Cleveland St & 6-8 Woodburn Street, Redfern, NSW	Contractor	BG Drilling						
Position	See Figure 2	≈ 20.40m	Drill Rig	Rig CE 1					
Job No.	E25342.G03	Inclination	- 90°	Logged	DS	Date	5 / 10 / 2021		
Client	YPI2B Ownership Trust No 6	Box	1 & 2 of 2	Checked	SK	Date	2 / 8 / 2022		

BOREHOLE LOG

BH NO. BH3M

	Loc Pos	ject atio itior No. nt	n 1	6-8 W Refer E2534	oodbur to Figu 42.G03	use Development n Street, Redfern N: re 2 rship Trust No 6	SW					[[]	Sheet Date Started Date Completed Logged By EM Reviewed By SK	1 of 2 07/11/2021 07/11/2021 Date 07/11/2021 Date 01/08/2022	
		lling Il Ri	-	ntracto		G Drilling ig CE 180				face RL ≈17.50 m AHD lination -90°					
			-	lling		Sampling			-	Field Material Desc	riptio	on			
UCHT-TM		RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	Sample or Field test	RECOVERED	GRAPHIC LOG	GROUP SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE CONDITION	CONSISTENCY REL. DENSITY	STRUC ADD OBSEI	TURE AND ITIONAL RVATIONS	
Ľ	5	-		0-	17.50 0.24				-	CONCRETE: 240mm.	-	-	PAVEMENT		Γ
				-	17.26	BH3M 0.30-0.40 m BH3M 0.40-0.50 m			CI	Silty CLAY: medium plasticity, pale grey/red brown.			RESIDUAL		
				-	-	Brisw 0.40-0.30 m		\mathbb{V}/\mathbb{V}							
				- 1—								St			_
				-	-										
				-											
				-		SPT 1.50-1.95 m 4,8,12 N=20									
				2	2.00 15.50	N=20]						-
				-	15.50					From 2.0m, pale grey with angular to sub angular.					
				-	-										
Ę	-	-	GWNE	-							м				
4	AU/I		0	3—		SPT 3.00-3.45 m					(<pl< td=""><td>)</td><td></td><td></td><td>-</td></pl<>)			-
9				-	-	6,13,13 N=26									
017-09-2				_								VSt			
2.00.1 2				-	-										
Prj: EIA				4 —]						-
17-11-21				-											
.00.3 20				-	-	SPT 4.50-4.95 m 5.13.12									
ib: EIA 2				-	-	5,13,12 N=25									
DGD L				5	5.20										-
itu Tool -		L		-	12.30 5.50					From 5.20m, with very low strength, distinctly weathered shale gravel bands.					
and In S				-						Continued as Cored Borehole					
atgel Lat				6											-
0.000 Di				-											
2:52 10.				-											
3/2022 1:				-											
>> 02/0{				7 —											-
wingFile:				-											
J < <dra< th=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></dra<>				-											
GINT.GP.				-											
2.G03 - (8—											-
E25342				-											
HOLE 1				-											
ED BORE				-											
N-CORE				9											
EIA NO				-											
iLB Log				-											
EA 2003 LB.GLB Log EA NON-CORED BORE HOLE 1 E254/2 G03 - GINT.GPJ < <drawngrile>> 0208/2022 12:52 10.0000 Dagel Lab and in Situ Tool - DGD LB. EIA 2003 2017-11-21 Pr; EIA 2001 2017-09-26</drawngrile>				- 10	1										
EIA 2.0						This boreho	ole lo	og sho	uld b	e read in conjunction with EI Australia's accompanying sta	anda	rd no	ites.		

CORED BOREHOLE LOG

BH NO. BH3M

Diffing BCD Billing Surface RL P17 50 mAHD Diffing Proj C 1:00 Defect Information Output Description Output Description Defect Information Output Description Out	Lo Po Jo	ojeci catio sitio b No ent	on on	6-8 Ref E25	Woodl er to F 5342.G	ourn Sti igure 2 03 mership	reet, Ro	oment edfern NSW No 6			Sheet Date Started Date Completed Logged By EM Reviewed By SK	2 OF 2 07/11/2021 07/11/2021 Date 07/11/202 Date 01/08/202
Drilling Field Material Description Defect Information 0 <t< th=""><th></th><th></th><th>-</th><th>ntrac</th><th>tor</th><th></th><th>-</th><th></th><th></th><th></th><th></th><th></th></t<>			-	ntrac	tor		-					
Bit Ministry Bit Ministry Bit Ministry Defect DESCRIPTION Bit Ministry Defect Ministry Defect DESCRIPTION Bit Ministry			-	Drillir	ng						Defect Information	
0 0	METHOD	WATER			DEPTH (metres)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	Is ₍₅₀₎ MPa	& Additional Observations	Spaci (mm
0 0												
Image: Property of the state of th			0	0	- 6—	-	\mathbb{X}	CORE LOSS: 600mm.	-			
Image: state of the state		90-95% RETURN	100	100	- - - 7		· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·	to medium bedded with sub-horizontal dark grey				
- - <td>N</td> <td>% RETURN</td> <td>100</td> <td>100</td> <td>- - - 8—</td> <td></td> <td>· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · </td> <td></td> <td>FR</td> <td></td> <td>/.19-/.20: XVVS, /U mm</td> <td></td>	N	% RETURN	100	100	- - - 8—		· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·		FR		/.19-/.20: XVVS, /U mm	
		90-96			- - - 9						8.40: JT, 20°, CN, PL, RO 8.42: JT, 20°, CN, PL, RO	

MONITORING WELL LOG

MW NO. BH3M

Position Refer to Figure 2 Date Completed O Job No. E25342.603 Logged By EM D Client YP12B Ownership Trust No 6 Reviewed By SK D Drilling Contractor BG Drilling Surface RL =17.50 m AHD Drill Rig Rig CE 180 inclination -90° Inclination -90° From 2.0m, pale grey with angular to sub angular. ID Type Interviewed By SK D Standappe Get Up & Ru To Depth & RL Installation Interviewed By SK D SolL/ROCK MATERIAL DESCRIPTION ID Type Standappe Standappe Get Up & Ru To Depth & RL Installation Interviewed By SK D ID Type Standappe Standappe Get Up & Ru Installation Interviewed By SK D ID Type Standappe Standappe Get Up & Ru Standappe Interviewed By SK D ID Type Standappe Get Up & Ru Standappe Get Up & Ru Standappe Interviewed By SK D ID ID ID ID	7/11/2021 7/11/2021
Job No. E25342.603 Client YP12B Ownership Trust No 6 Drilling Contractor BG Drilling Surface RL =17.50 m AHD Drill Rig Rig CE 180 Inclination -90° U U U U U U U U U U U U U U U U U U U	1/11/2021
Client YPI2B Ownership Trust No 6 Reviewed By SK I Drilling Contractor BG Drilling Surface RL =17.50 m AHD Drill Rig Rig CE 180 Inclination -90° Inclination -90° PIEZOMETER CONSTRUCTION DETAILS Standpipe Standpipe Standpipe -0.10 m 12.60 m 6.80 m 10.70 m Inclination -90° Standpipe -0.10 m 12.60 m 6.80 m 10.70 m Inclination -90° -0.10 m 12.60 m 6.80 m 10.70 m -0.10 m Inclination -90° -0.10 m 12.60 m 6.80 m 10.70 m -0.10 m Inclination -90° -0.10 m 12.60 m 6.80 m 10.70 m -0.10 m Inclination -0.10 m -0.10 m 12.60 m 6.80 m 10.70 m -0.10 m Inclination -0.10 m -0.10 m -0.10 m -0.10 m -0.10 m Inclination -0.10 m -0.10 m -0.10 m -0.10 m -0.10 m -0.10 m Inclination -0.10 m -0.10 m -0.10 m -0.10 m -0.10 m -0.10 m Inclination -0.10 m -0.10 m -0.10 m<	ate 07/11/2021
Drilling Contractor BG Drilling Surface RL =17.50 m AHD Drill Rig Rig CE 180 Inclination -90° Image: Contractor BG Drilling Sol L/ROCK MATERIAL DESCRIPTION ID Type Standpipe Stack Up & RL Installation Optimized Optimized CONCRETE: 240mm. ID Type Billing Sol L/ROCK MATERIAL DESCRIPTION ID Type Standpipe Standpipe Generation Generation Intermediation Intermediation Intermediation Intermediation Intermediation Intermediation Intermediation Intermediation Intermediation Intermediation Intermediation Intermediation Intermediation Intermediation Intermediation Intermediation Intermediation Intermediation Intermediation Intermediation Intermediation Intermediation Intermediation Intermediation Intermediation Intermediation Intermediation Intermediation Intermediation Intermediation Intermediation Intermediation Intermediation Intermediation Intermediation Intermediation Intermediation <thintermedi< th=""><th>ate 01/08/2022</th></thintermedi<>	ate 01/08/2022
Drill Rig Rig CE 180 Inclination -90° 0	
No. No. PiezoMETER CONSTRUCTION DETAILS Stick Up & RL -0.10 m 17.60 m Try Depth & RL -0.10 m 17.60 m Installation 6.80 m 10.70 m No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. <th></th>	
Image: Stand pipe Image: Stand pipe Stand pipe <td< th=""><th></th></td<>	
Image: Description of the second s	Date Static Water Level
Image: Description of the second s	
Image: Description of the second s	
Silty CLAY: medium plasticity, pale grey/red brown.	
Slity CLAY: medium plasticity, pale grey/red brown.	
Let up to the second se	
Image: state	
Image: Second	
Example 2 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	
Example 2 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	50 mm.
2 From 2.0m, pale grey with angular to sub angular. 15	
From 2.0m, pale grey with angular to sub angular.	
This well log should be read in conjunction with El Australia's accompanying standard notes.	50 mm.
From 5.20m, with very low strength, distinctly weathered shale bands.	
Image: Second	
Image: State of the state o	
R - - SANDSTONE: fine to coarse-grained pale grey, thinly to medium bedded with sub-horizontal dark grey siltstone laminations. N - 11 - <th></th>	
The second s	
Hereinated at 8.86 m Sector	
Image: Barborn and the second and	
This well log should be read in conjunction with El Australia's accompanying standard notes.	

CORE PHOTOGRAPH OF BOREHOLE: BH3M

Project Location Position Job No. Client	Proposed Boarding House Development 175-177 Cleveland St & 6-8 Woodburn Street, Redfern, NSW See Figure 2 E25342.G03 YPI2B Ownership Trust No 6	Surface RL Inclination Box	≈ 17.50m -90° 1 of 1	Depth Range Contractor Drill Rig Logged Checked	6.10m to 8 BG Drillin Rig CE 18 EM SK	g	GL 07 / 11 / 2021 2 / 8 / 2022
Statement of the local division of the local	253A2 REDFERN BH3M						10 10 10 20 40 10 10 10 10 10 10 10 10 10 10 10 10 10

BOREHOLE LOG

BH NO. BH4

Lo	oject ocatio	on	6-8 W	oodbur	use Development n Street, Redfern NS	w					[Sheet Date Started	1 of 3 29/06/2022	
	ositio ob No			to Figu 12.G03	re 2							Date Completed	29/06/2022 Date 29/06/2022	
	ient	•			rship Trust No 6							Reviewed By SK	Date 01/08/2022	
D	rillin	g Co	ntracto	r G	eosense Drilling Pty	Ltd		Su	face RL ≈22.20 m AHD					
D	rill R	-		C	omacchio Geo 205			Inc	lination -90°					
			lling		Sampling	-			Field Material Desc					
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	GROUP SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY REL. DENSITY	STRUCT ADDIT OBSER	URE AND TONAL /ATIONS	
			0	<u>0.10</u> 22.10				-	ASPHALT PAVEMENT: 100mm.	-		ASPHALT PAVEMEN	Г	F
			-	0.50	DS 0.20-0.30 m				FILL: Gravelly SAND; fine to coarse-grained, gravel is angular, dark grey/grey.					
			-	21.70	SPT 0.50-0.95 m 4,5,7		\bigotimes		From 0.50m, pale grey.	м	-			
			-		N=12		\bigotimes							
			1	1.20										-
			-	21.00				CI	Silty CLAY; medium plasticity, pale grey/yellow-brown, with ironstaining.			RESIDUAL SOIL		
			-		SPT 1.50-1.95 m 1,3,5									
	VL		-		N=8									
			2								St			-
			-											
			-											
AD/T		GWNE	-	3.00						M (<pl)< td=""><td>)</td><td></td><td></td><td></td></pl)<>)			
AD		GV	3	19.20	SPT 3.00-3.45 m 10,12,15				From 3.0m, trace ironstone band.					
			-		N=27									
			-								VSt			.
			4											-
			-											
	L		-	4.50										
			-	17.70	SPT 4.50-4.94 m 3,15,30/140mm HB			-	SHALE; dark grey, very low strength, distinctly weathered			BEDROCK		
i			5-											_
8	<u> </u>		-		DS 5.20-5.40 m					-	-			
			-											
	м		-											
	-		-6	6.00	SPT 5.80-6.00 m 3,4/50mm HB	P			Continued as Cored Borehole	-				-
			-											
			-											'
			-											
			7 —											-
5			-											.
			-											
			8—											-
			-											.
]											
			-											
			9 —											-
			-											
j n			-											
			-											
	1		10 —		This boreho	le lo	u og shou	uld b	l e read in conjunction with El Australia's accompanying st	anda	rd no	ites.		L
i														

CORED BOREHOLE LOG

BH NO. BH4

Projec Locat Positi Job N Client	tion ion No.	6-8 Re E2	Wood fer to F 5342.G	igure 2	eet, Re	edfern NSW			Sheet Date Started Date Completed Logged By LL Reviewed By SK	2 OF 3 29/06/2022 29/06/2022 Date 29/06/2022 Date 01/08/2022
Drilli Drill	ing Co Rig	ontra	ctor			illing Pty LtdSurface RL≈22.20Geo 205Inclination-90°	m AHD			
		Drilli	ng			Field Material Descri	ption		Defect Information	1
METHOD WATER	TCR	RQD (SCR)	DEPTH (metres)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTI	MEATHERING	INFERREI STRENGTI Is ₍₅₀₎ MPa	& Additional Observations	Average Defect Spacing (mm)
EA 200 1 LB CLB LQ EA CORED BOREHOLE 1 E2532603 - GNT GPJ < <0mwngrillex> 02/08/2022 12:56 10.0 000 Dangel Lub EM 2.00 2 2017-11.21 PJ; EM 2.00 1 2017-09-26 79% RETURN 95% RETURN 95% RETURN	100			6.00 16.20 6.78		Continuation from non-cored borehole SHALE; dark grey, laminated. From 6.78m, thinly to medium bedded.	DV Ff		6.16: JT, 45°, CN, PL, RO 6.16: JT, 45°, CN, PL, RO 6.57-6.70: CZ, 130mm 6.87-6.90: CS, 30mm 7.06: BP, 0°, Sand infill PL, RO 7.37-7.41: CS, 40mm 7.58: BP, 0°, Sand infill PL, RO 7.37-7.41: CS, 40mm 7.58: BP, 0°, Sand infill PL, RO 7.86-7.91: CS, 50mm 8.15: JT, 20°, CN, PL, RO 8.19: JT, 10°, Healed RL 8.29: JT, 10°, Healed PL 8.94-9.00: CS, 60mm 9.29: JT, 10°, CN, IR, RO 9.48: JT, 85°, CN, ST, RO	
EA 2003 LIB GLB Log EA CORED BOREHOLE 1 E25342033 - GIN1. NM 79% RETURN	100	85	- - - 9 - - - - -		Th	is borehole log should be read in conjunctio	on with EI A	ustralia's a	8.29: JT, 10°, Healed PL 8.94-9.00: CS, 60mm 9.29: JT, 10°, CN, IR, RO 9.48: JT, 85°, CN, ST, RO	

CORED BOREHOLE LOG

BH NO. BH4

	Loc Pos Jok Clie		n	6-8 Ret E25 YP	Wood fer to F 5342.G I2B Ow	igure 2 03 mership	eet, Re	edfern NSW No 6				Sheet Date Started Date Completed Logged By LL Reviewed By SK		2022
		illing ill R	-	ntrac	ctor			• ,	≈22.20 m AHD •90°					
				Drilli	ng			Field Materia	I Description			Defect Information	I	
	METHOD	WATER	TCR	RQD (SCR)	DEPTH (metres)	<i>DEPTH</i> RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DES	SCRIPTION	WEATHERING	INFERRED STRENGTH Is ₍₅₀₎ MPa	DEFECT DESCRIPTION & Additional Observations		Average Defect Spacing (mm)
			100	85	10	-		SHALE; dark grey, laminated.		FR		9.95: JT, 80°, CN, PL, RO 10.08-10.13: BP, 50mm 10.15: JT, 50°, CN, PL, RO 10.58: BP, 0°, CN, PL, RO 10.58: BP, 0°, CS, 40mm		
	NMLC	80% RETURN	100	96	11 — - - 12 —	<u>11.00</u> 11.20		SANDSTONE; fine to medium-grained, medium to thickly bedded.	, pale grey,		+	10.95-11.00: XWS, 50mm Clay 11.16: BP, 50°, CN, PL, RO 11.42: JT, 50°, Healed ST 11.72-11.74: XWS, 20mm		
19-26 1		80% F			- - - 13 - -	<u>12.40</u> 9.80 		From 12.40m, coarse-grained.				13.02: BP, 0°, PL, RL 13.03: BP, 0°, PL, RL		
EA 2003 LIB GLB Log EA CORED BOREHOLE 1 E25342003 - GINTGPJ - <-OmwingFilex> 02/08/2022 12:84 10.0 000 Darge Lub and in Siu Tool - DGD LUb: EA 2003 2017-1121 PJ: EA 200 12017-0425						8.57		Hole Terminated at 13.63 m Target Depth Reached.						
EIA 2.00.3 L					20—	I	Th	is borehole log should be read in co	onjunction with E	El Au	Istralia's acc	companying standard notes.		

CORE PHOTOGRAPH OF BOREHOLE: BH4

Project	Proposed Boarding House Development		Depth Range 6.0m to 13.63m BEGL
Location	175-177 Cleveland St & 6-8 Woodburn Street, Redfern, NSV	V	Contractor Geosense Drilling Pty Ltd
Position	See Figure 2	Surface RL ≈ 22.20m	Drill Rig Comacchio Geo 205
Job No.	E25342.G03	Inclination -90°	Logged LL Date 07 / 11 / 2021
Client	YPI2B Ownership Trust No 6	Box 1 & 2 of 2	Checked SK Date 2/8/2022
E	25342 Redfern BH4	29-6-2022	Gring Starts from 6.0m -
6			
7		2 D M	
8			
9			
10		la der	
11			
12			
13			+ (oring terminated @ 13.63m
11	01 12 / 01 74 5 6 7 8 9 10 11 11 13 1 0 2 1 5 5 7 8 0 10 2 3 4 5 5 7 8 0 201 2 3 4 5 5 7 8 9 301 2 3 4 5 5	4 115 16 117 18 19 20 21 22 23 21 5 7 8 9 401 2 3 4 5 6 7 8 9 501 2 3 4 5 6 7 8 9 501	25 26 27 28 29 30 31 32 33 34 35 57 37 3 2 3 4 5 5 7 8 9 701 8 3 4 5 5 7 8 9 801 2 3 4 5 5 7 8 9 901 2 3 4 5 6 7

BOREHOLE LOG

BH NO. BH201M

Ρ	roject	t	Board	ling Hou	use Development						5	Sheet	1 of 3
	ocatio				n Street, Redfern NS	SW						Date Started	05/07/2022
	ositio			to Figu	re 2							Date Completed	08/07/2022
	ob No lient			42.G03 3 Ownei	rship Trust No 6							Logged By DD Reviewed By SK	Date 08/07/2022 Date 02/08/2022
		a Co	ntracto		ght Site Drilling			Sur	face RL ≈17.40 m AHD			,	
	Drill R	-			and Portable Rig				ination -90°				
		Dri	lling		Sampling				Field Material Desc	riptio	on		
МЕТНОD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	GROUP SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	AOISTURE CONDITION	CONSISTENCY REL. DENSITY	STRUC ADD OBSEI	TURE AND ITIONAL RVATIONS
_			0-	17.40 0.35				-	CONCRETE; 350mm thickness.	-	-	PAVEMENT	
			-	17.05				-	FILL: Silty CLAY; medium plasticity, orange-grey and red, with brick tile, concrete fragments.	м		FILL	
AD/T	-	GWNE	1	1.30						(=PL) -		
			-	16.10	DS 1.40-1.50 m DS 1.60-1.70 m			CI	Silty CLAY; medium plasticity, red-grey, trace fine to medium shale gravel.	M (<pl< td=""><td>St</td><td>RESIDUAL SOIL</td><td></td></pl<>	St	RESIDUAL SOIL	
			2	2.12	DS 1.90-2.00 m				Continued as Cored Borehole				
			-										
			- 3—										
017-09-26			-										
rj: EIA 2.00.1 2			- 4										
.3 2017-11-21 F			-										
· DGD Lib: EIA 2.00.3 2017-11-21 Prj: EIA 2.00.1 2017-09-26			- 5 —										
			-										
itgel Lab and In													
52 10.0.000 De			-										
02/08/2022 12::			- - 7—										
DrawingFile>>			-										
- GINT.GPJ <<			– م										
1 E25342.G03			8— - -										
D BOREHOLE 1			-										
A NON-COREL			9										
EA 2003 LB CLB Log EA NON-CORED BOREHOLE 1 E25342.033 - GINT.GPJ <-D0m/mgFile>> 02/08/2022 12:52 10.0000 Datget Lab and In Shu Tool			-										
EIA 2.00.3 L			10		This boreho	ble lo	g sho	uld b	e read in conjunction with EI Australia's accompanying st	l anda	ird no	tes.	

CORED BOREHOLE LOG

BH NO. BH201M

Lo Po Jo	oject catic sitio b No ient	n n	6-8 Ref E2	Woodl fer to F 5342.G	igure 2	eet, Re	edfern NSW			Sheet Date Started Date Completed Logged By DD Reviewed By SK		2022
	rillin rill R	-	ntrac	ctor	Tight S Hand F							
			Drilli	ng			Field Material Description			Defect Information	ı	
METHOD	WATER	TCR	RQD (SCR)	DEPTH (metres)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	INFERRED STRENGTH Is ₍₅₀₎ MPa	& Additional Observations		Average Defect Spacing (mm)
				0	2.12		Continuation from non-cored borehole					
		100	100	- - 3	15.28		Sity CLAY; medium plasticity, red-grey, trace fine to medium-grained Siltstone gravel.	RS				
		68	68	- 	-							
NMLC	90% RETURN	100	38	5 — - - 6 —	<u>5.30</u> 12.10		From 5.30m, iron stained shale bands (EXTREMELY WEATHERED SHALE)	xw		5.83: JT, 10°, PR, RO, CN		
		100	44	- - 7	6.95 10.45 7.35 10.05		SANDSTONE; fine to medium-grained, orange-grey, thinly bedded. From 7.35m, grey.	DW		7.17: JT, 90°, PR, CN		
NMLC		100	63	8 — - - - 9 —	8.60 8.80		From 8.60m, coarse-grained, medium to thickly bedded.	FR		8.42-8.43: XWS, 10mm		
		98	89	- - - 10	-	Thi	is borehole log should be read in conjunction with	EI Au		companying standard notes.		

CORED BOREHOLE LOG

BH NO. BH201M

	Loc Po: Jol Clic Di		on n g Co	6-8 Ref E2	Wood fer to F 5342.G I2B Ov	igure 2	eet, Re Trust I Site Dri	edfern NSW No 6 Iling Surface RL ≈ 17.40 m AHD			Sheet Date Started Date Completed Logged By DD Reviewed By SK	2022
-			-	Drilli	na			Field Material Description			Defect Information	
	METHOD	WATER	TCR	RQD (SCR)	DEPTH (metres)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	INFERRED STRENGTH Is ₍₅₀₎ MPa	DEFECT DESCRIPTION & Additional Observations	 Average Defect Spacing (mm)
EA 2003 LB GLB LQ EA CREED BORFHOLE 1 E25542603 - GINT GPJ << DBawingFiles> 02/08/2022 12:56 10:0.000 Datget Lab and In Stur Tool - DGD [LIb: EA 2003 2017-11:21 PJ; EA 2001 2017-09-26			98	89				Hole Terminated at 10.22 m Target Depth Reached.	FR			
EIA 2.							Th	is borehole log should be read in conjunction with	=I Au	ustralia's acc	companying standard notes.	

MONITORING WELL LOG

MW NO. BH201M

	roje		-	-	e Development		Sheet	1 of 2
	oca osit		6-8 Woo Refer to		Street, Redfern NSW		Date Started Date Completed	05/07/2022 08/07/2022
	ob N		E25342.	-	2		Logged By DD	Date 08/07/2022
	lien				nip Trust No 6		Reviewed By SK	Date 02/08/2022
	Drill	ing Cor	tractor	Tigh	tt Site Drilling Surface RL ≈17.40 m Al	HD		
	Drill	Rig		Han	d Portable Rig Inclination -90°			
METHOD	WATER	DEPTH (m)	RL (m AHD)	GRAPHIC LOG	SOIL/ROCK MATERIAL DESCRIPTION	PIEZOMETER CO ID Type Stick Up & RL BH201M Standpipe Piezometer 0.00 m 17.40 m		ILS ation Date Static Water Level 7/2022
F		-0-			CONCRETE; 350mm thickness.	۲ ۲	Gatic Cove	r
			- 17		FILL: Silty CLAY; medium plasticity, orange-grey and red, with	BH201 M	Concrete	
					brick tile, concrete fragments.			
AD/T	GWNF	1-					Bentonite	
			- 16-		Silty CLAY; medium plasticity, red-grey, trace fine to medium-grained Siltstone gravel.		······································	na 50mm
		2-				1.80 m, 15.80 m AHD		5.00
	+				Silty CLAY; medium plasticity, red-grey, trace fine to medium-grained Siltstone gravel.			
			- 15				Sand uPVC Scre	en 50mm
		3-						
			- 14			3.30 m, 14.10 m AHD		
2017-09-26							Bentonite	
IA 2.00.1		4 -						
1-21 Prj: E			- 13					
0.3 2017-1								
ib: EIA 2.0		5-						
I-DGD L			- 12		From 5.30m, iron stained shale bands (EXTREMELY WEATHERED SHALE)			
In Situ Too	Nall	6-						
NMLC	90% RETURN							
000 Datge								
EM 200.3 LIB GLB LOG ELA PIEZOMETER NSTALLATION LOG E28342.603 - GINT.GPJ <-ODewingFile>> 02082022 12.24 10.0 000 Daggel Lab and In Silu Tool - DGD LIb: EIA 2.00.3 2017-11-21 Prj: EIA 2.00.1 2017-09-26		7 -		Y <u>//</u>	SANDSTONE; fine to medium-grained, orange-grey, thinly		Sand	
08/2022 1:			- 10-		bedded. 			
File>> 02/								
<< Drawing		8-						
NT.GPJ <			- 9-					
2.G03 - GI			-		From 8.60m, coarse-grained, medium to thickly bedded.			
G E25342		9-						
ATION LO			- 8					
R INSTALL		10-						
ZOMETER	+			::::	Hole Terminated at 10.22 m			
g EIA PIE.			- 7-		Target Depth Reached.			
B.GLB Lo		11-						
A 2.00.3 LII					This well log should be read in conjunction with	El Australia's accompanying standard no	ites.	
Ξ					<u> </u>			

CORE PHOTOGRAPH OF BOREHOLE: BH201M

Project	Proposed Boarding House Development			Depth Range	2.12m to 1	0.22m BE	GL
Location	175-177 Cleveland St & 6-8 Woodburn Street, Redfern, NSW			Contractor	Tight Site	Drilling	
Position	See Figure 2	Surface RL	≈ 17.40m	Drill Rig	Hand Por	table Rig	
Job No.	E25342.G03	Inclination	- 90°	Logged	DD	Date	07 / 07 / 2022
Client	YPI2B Ownership Trust No 6	Box	1 & 2 of 2	Checked	SK	Date	2 / 8 / 2022

BOREHOLE LOG

BH NO. BH202M

Lo Po Jo	oject ocatic ositio ob No ient	on n	6-8 W Refer E2534	/oodbur to Figu 42.G03	use Development n Street, Redfern N re 2 rship Trust No 6	SW						Sheet Date Started Date Completed Logged By DD Reviewed By SK	1 of 3 06/07/2022 08/07/2022 Date 08/07/2022 Date 02/08/2022
		a Co	ntracto		ght Site Drilling			Su	face RL ≈20.80 m AHD				Date 02/00/2022
	rill R				and Portable Rig				lination -90°				
		Dri	lling		Sampling				Field Material Desc	riptio	on		
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	Sample or Field test	RECOVERED	GRAPHIC LOG	GROUP SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY REL. DENSITY	STRUC ADD OBSEI	TURE AND ITIONAL RVATIONS
			0 —	20.76				-	TILE & GROUT; 40mm thickness.	/		TILE	
			-	1				-	CONCRETE; 460mm thickness.	í -	-	CONCRETE	
			-	0.50 20.30	-		\mathbb{H}	CI	Silty CLAY; medium plasticity, grey-brown.	-		RESIDUAL SOIL	
AD/T		GWNE	-	-									
A		9 0	1—	1	DS 0.90-1.00 m					м			
			-		DS 1.10-1.20 m					M (=PL	.) St		
			-		DC 1 50 1 60 m								
			-	1.71	DS 1.50-1.60 m				Our facuard on Oursel Develope	-			
			2						Continued as Cored Borehole				
			-	-									
			-										
			-										
			-	1									
			3										
			-	-									
			-	-									
			-										
			4 —	-									
			-										
			_]									
			-	-									
			5 —	-									
			-	1									
			-										
			-										
			6 —	-									
			-	-									
			-										
			-	1									
			- 7	1									
			-										
			-	-									
			-	-									
			-										
			8	1									
			-										
			-										
			-	-									
			9 —	1									
			-	1									
			-	1									
			-	-									
			10 —										
			10 —		This boreh	ole lo) og sho	uld b	e read in conjunction with EI Australia's accompanying st	anda	I ard no	ptes.	

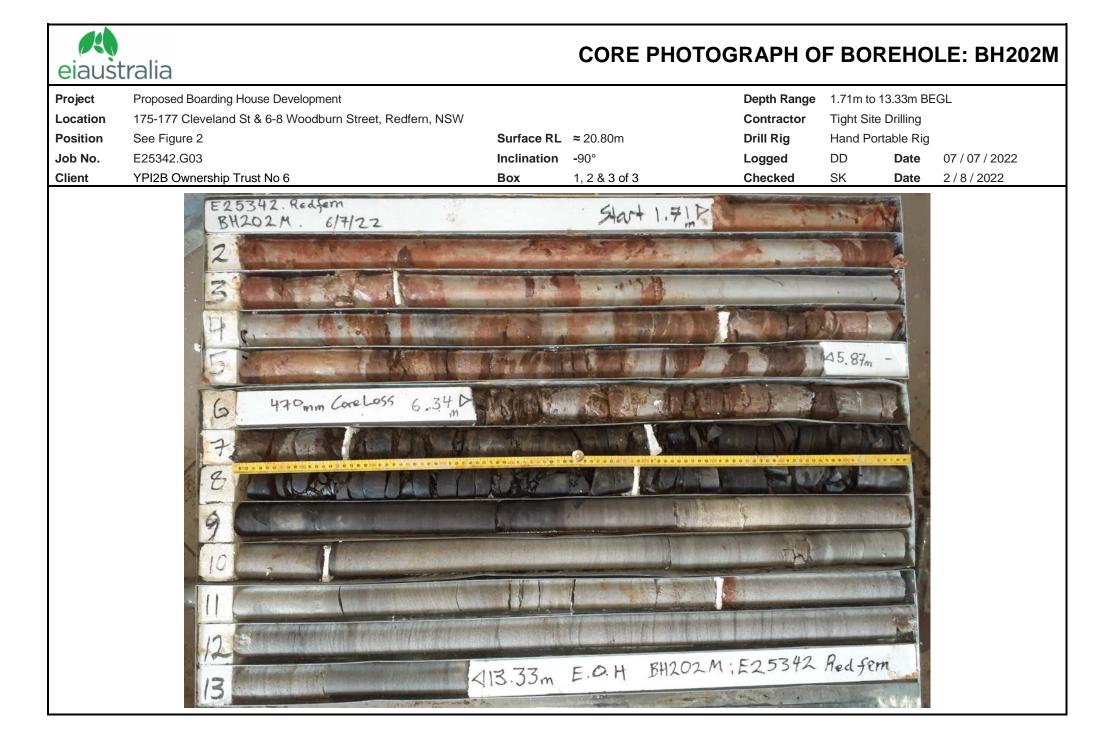
CORED BOREHOLE LOG

BH NO. BH202M

Lo Po Jol Cli	oject catic sitio b No ent rilling	n n	6-8 Ret E29 YP	Woodl fer to F 5342.G I2B Ow	igure 2	eet, Re Trust I	edfern NSW No 6			Sheet Date Started Date Completed Logged By DD Reviewed By SK		2022
D	rill R	-			Hand I	Portabl	e Rig Inclination -90°			1		
			Drilli	ng			Field Material Description	_		Defect Information	า	
METHOD	WATER	TCR	RQD (SCR)	DEPTH (metres)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	INFERRED STRENGTH Is ₍₅₀₎ MPa	& Additional Observations		Average Defect Spacing (mm)
		100	0		<u>1.71</u> 19.09		Continuation from non-cored borehole Sitly CLAY; medium plasticity, orange-red and grey, trace fine-grained sand.					
	90% RETURN	100	0	- - - 5	<u>4.70</u> 16.10		From 4.70m, with iron stained shale bands (EXTREMELY WEATHERED SHALE)	HW				
NMLC				-	5.87							
NN				6 —	14.93	\bigvee	CORELOSS; 470mm.					-
101-000 000 000 000 000		63	0	- - - 7—	6.34 14.46 7.14		Silty CLAY; medium plasticity, grey and red, with iron stained shale bands (EXTREMELY WEATHERED SHALE)	HW	-			
700 L-201 R		109	0	-	13.66		SHALE; grey to dark grey, very thinly bedded.	MW				
		100	0	- - 8 - -						7.60-7.65: CS, 50mm 8.07-8.13: CS, 60mm 8.27-8.28: CS, 10mm 8.35-8.44: CS, 90mm 8.46: JT, 80°, IR, CN 8.48-8.51: CS, 30mm		
	50% RETURN	100	75	- 9 - -	8.93 11.87 9.63		From 8.93m, thinly bedded.	sw		8.78: JT, 80°, IR, CN 8.85-8.91: CS, 60mm		
				-	11.17	· · · · · · · · · · · · · · · · · · ·	SANDSTONE; fine to medium-grained, grey to pale grey, medium to thickly bedded.	FR		9.62-9.62: XWS, 2mm 9.72-9.72: XWS, 3mm		
				10-		Th	is borehole log should be read in conjunction with	El Au	istralia's ac	companying standard notes.		

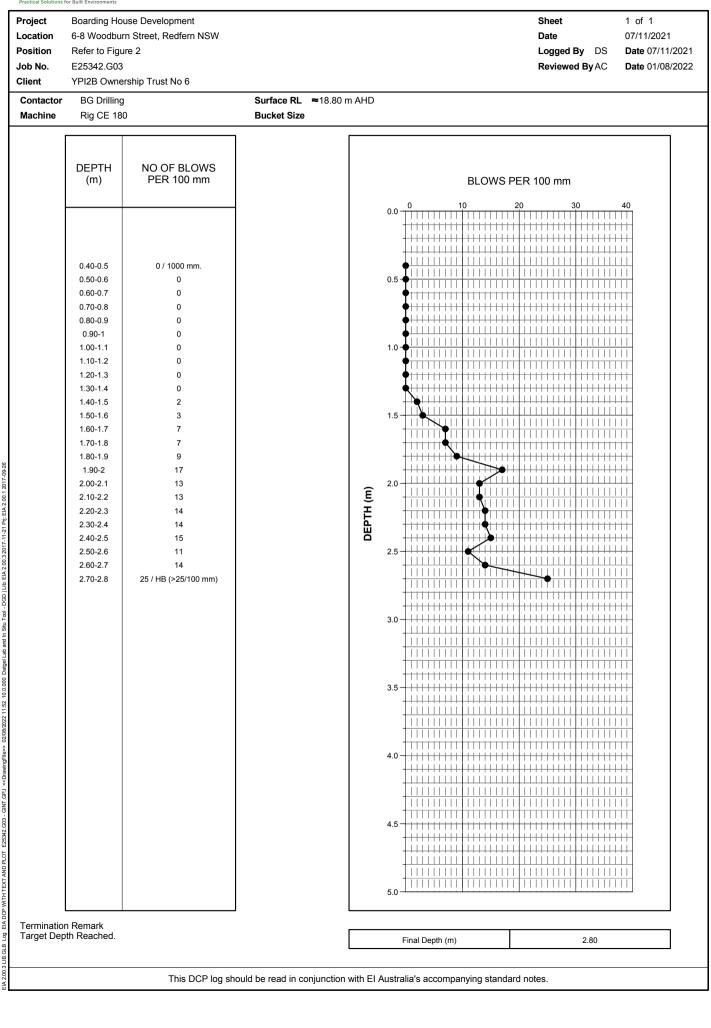
CORED BOREHOLE LOG

BH NO. BH202M

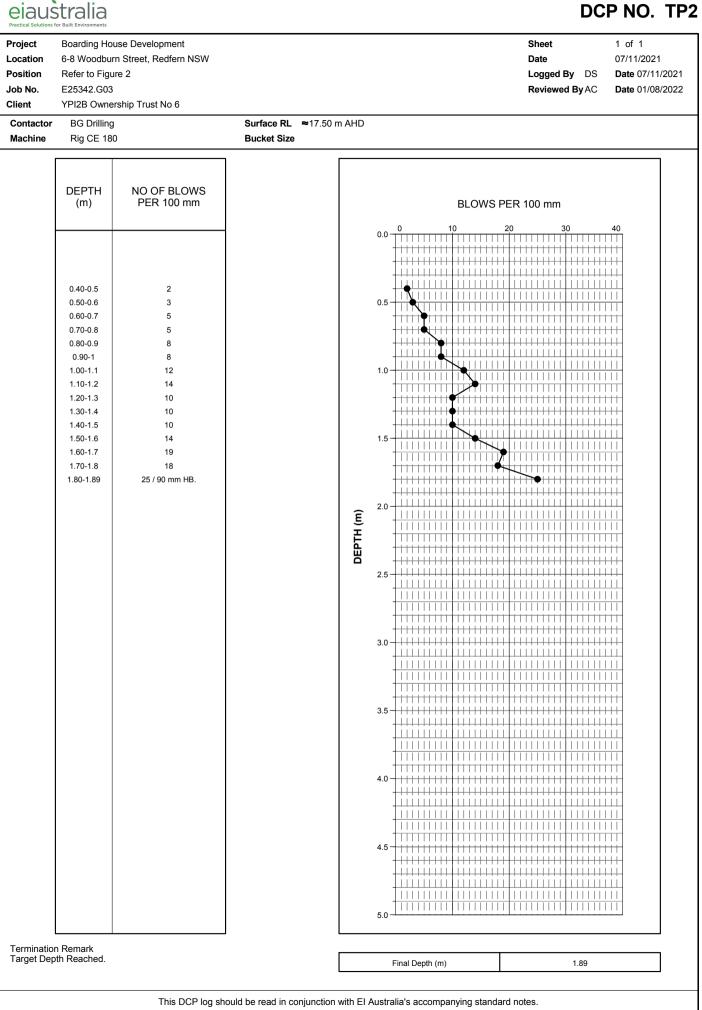

	Loc Pos Job Clie Dri		n g Co ig	6-8 Ref E29 YP	Woodl fer to F 5342.G I2B Ow	igure 2	eet, Re Trust	edfern NSW No 6 Iling Surface RL ≈ 20.80 m AHD e Rig Inclination -90°				Sheet Date Started Date Completed Logged By DD Reviewed By SK	Date 0	2022
				Drilli	ng			Field Material Description				Defect Information		
	MEIHOD	WATER	TCR	RQD (SCR)	DEPTH (metres)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	INFERRED STRENGTH Is ₍₅₀₎ MPa		DESCRIPTION Inal Observations		Average Defect Spacing (mm)
	NMLC	10% RETURN	101	95		-		SANDSTONE; fine to medium-grained, grey to pale grey, medium to thickly bedded.	FR					
		50% RETURN	100	79	12— - - 13—	13.33	1 1 1 2 2 2 3 3 3 3 4 3 4 3 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4							
EA 200.3 LB.GLB Log EA CORED BOREHOLE 1 E25342.603 - GNT/GPJ < <drawingfile>> 02082022 12:56 10.0.000 DaggeLab and in Siu Tool - DGD Lb: EA 2.0.3 2017-11-21 Pg: EA 2.00.1 2017-09-26</drawingfile>								Hole Terminated at 13.33 m Target Depth Reached.						
EIA 2.00.3 L					20—	I	Th	is borehole log should be read in conjunction with	EI Ai	ustralia's accon	npanying standard	notes.		

MONITORING WELL LOG

MW NO. BH202M

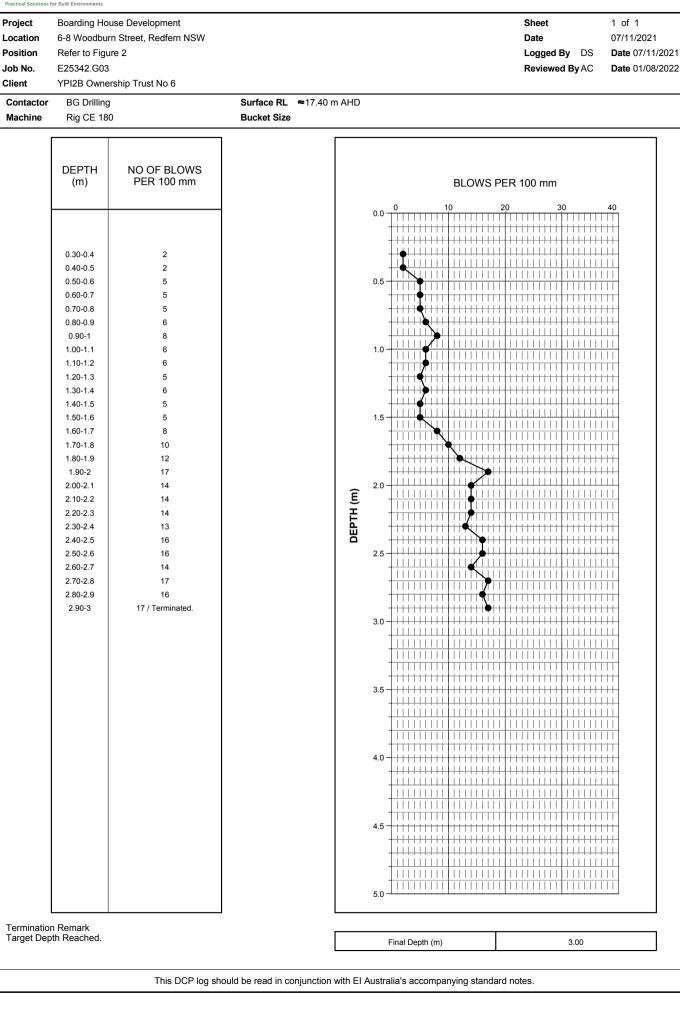

Lo Po	oject ocatio ositio	n (n	6-8 Woo Refer to	dburn \$ Figure	e Development Street, Redfern NSW 2		Sheet Date Started Date Completed	1 of 2 06/07/2022 08/07/2022
	b No. ient		E25342. YPI2B C		nip Trust No 6		Logged By DD Reviewed By SK	Date 08/07/2022 Date 02/08/2022
	orilling orill Ri		ractor		t Site Drilling Surface RL ≈20.80 m A d Portable Rig Inclination -90°	HD		
METHOD	WATER	DEPTH (m)	RL (m AHD)	GRAPHIC LOG	SOIL/ROCK MATERIAL DESCRIPTION	PIEZOMETER CO ID Type Stick Up & RL BH202M Standpipe Piezometer 0.09 m 20.71 m		ILS ation Date Static Water Level 17/2022
		-0-			TILE & GROUT; 40mm thickness.		Gatic Cove	r
AD/T	GWNE		- 20 		CONCRETE; 460mm thickness. Silty CLAY; medium plasticity, grey-brown.		uPVC Casi	ng 50mm
		2—	 - 18		Silty CLAY; medium plasticity, orange-red and grey, trace fine-grained sand.	3.00 m, 14.40 m AHD	- Bentonite	
2017-09-26	TURN	4 —	 - 16		From 4.70m, with iron stained shale bands (EXTREMELY WEATHERED SHALE)		Sand uPVC Scre	en 50mm
EA 2003 LIB GLB Lug EA PIEZONETER NSTALLATION LOG E25342 603- GINT GPJ <-OnavingFile>> 02082022 12.24 100.000 Daget Lab and in Silu Tool - DGD Ub; EA 2003 2017-11-21 PJ; EA 2001 2017-09-26	90% RETURN	6 —	 - 14		CORELOSS; 470mm. Silty CLAY; medium plasticity, grey and red, with iron stained shale bands (EXTREMELY WEATHERED SHALE)	6.00 m, 11.40 m AHD	Bentonite	
atgel Lab and In Situ Tool - DGD Lit NMLC		8—			SHALE; grey to dark grey, very thinly bedded.			
02/08/2022 12:24 10.0.000 E	50% RETURN	10	- 12		From 8.93m, thinly bedded. SANDSTONE; fine to medium-grained, grey to pale grey, medium to thickly bedded.			
2.G03 - GINT.GPJ < <drawingfile>></drawingfile>	10% RETURN	10 —	 - 10				Sand	
NETER INSTALLATION LOG E2534	50% RETURN	12-	 - 8					
LIB.GLB Log EIA PIEZOM		14 —			Hole Terminated at 13.33 m Target Depth Reached.			
EIA 2.00.3					This well log should be read in conjunction with	El Australia's accompanying standard no	tes.	

DYNAMIC CONE PENETROMETER TEST RESULTS


eiaustralia

DCP NO. TP1

DYNAMIC CONE PENETROMETER TEST RESULTS


DCP NO. TP2

EIA 3 CVCBC VITH TFXT ≤

DYNAMIC CONE PENETROMETER TEST RESULTS eiaustralia

DCP NO. TP3

DYNAMIC CONE PENETROMETER TEST RESULTS eiaustralia

DCP NO. TP4

6-8 Woodburn Street, Redfern NSW Date Refer to Figure 2 Logged By DS E25342.G03 Reviewed By AC YPI2B Ownership Trust No 6 Client Contactor **BG** Drilling Surface RL ≈20.20 m AHD Machine Rig CE 180 Bucket Size DEPTH NO OF BLOWS PER 100 mm (m) BLOWS PER 100 mm 0 10 20 30 0.0 2 0 10-0 2 0.20-0.3 3 0.30-0.4 3 0.40-0.5 7 0.50-0.6 1 0.5 0.60-0.7 1 / 200 mm 0.70-0.8 0 0.80-0.9 1 / 200 mm. 0.90-1 0 1.00-1.1 1 1.0 1.10-1.2 1 / 200 mm. 1 20-1 3 0 1.30-1.4 2 1.40-1.5 Δ 1.50-1.6 6 1.5 1.60-1.7 6 1.70-1.8 8 1.80-1.9 10 1.90-2 14 2.00-2.1 11 2.0 DEPTH (m) 2.10-2.2 16 2.20-2.3 19 2.30-2.4 17 2.40-2.5 19 2.50-2.6 20 2.5 111111111 21 2.60-2.7 2.70-2.8 20 2.80-2.9 17 / Termiated 1111 3.0 111111 111111111 111111111 11111111 +++++ +++++++ 3.5 +++++ +++++++ +++++++++ +++++++++ +++++ 4.0 TITT 45 +++++ Ħ +++++ +++++++ +++++++++ 5.0 **Termination Remark** Target Depth Reached 2.90 Final Depth (m)

This DCP log should be read in conjunction with EI Australia's accompanying standard notes.

Project Boarding House Development Location Position Job No.

1 of 1 07/11/2021 Date 07/11/2021

Sheet

Date 01/08/2022

EXPLANATION OF NOTES, ABBREVIATIONS & TERMS USED ON BOREHOLE AND TEST PIT LOGS

DRILLING/EXCAVATION METHOD

HA	Hand Auger	ADH	Hollow Auger	NQ	Diamond Core - 47 mm
DT	Diatube Coring	RT	Rotary Tricone bit	NMLC	Diamond Core - 52 mm
NDD	Non-destructive digging	RAB	Rotary Air Blast	HQ	Diamond Core - 63 mm
AD*	Auger Drilling	RC	Reverse Circulation	HMLC	Diamond Core - 63 mm
*V	V-Bit	PT	Push Tube	EX	Tracked Hydraulic Excavator
*T	TC-Bit, e.g. AD/T	WB	Washbore	HAND	Excavated by Hand Methods
PENE	TRATION RESISTANCE				
L	Low Resistance	Rapid penet	ration/ excavation possible v	vith little effort from e	equipment used.
м	Medium Resistance	Penetration/	excavation possible at an a	cceptable rate with r	noderate effort from equipment used.
н	High Resistance	Penetration/ equipment u	excavation is possible but a sed.	t a slow rate and rec	quires significant effort from
R	Refusal/Practical Refusal	No further p	rogress possible without risk	of damage or unacc	ceptable wear to equipment used.
	e assessments are subjective and a g tools and experience of the operat		on many factors, including ed	quipment power and	weight, condition of excavation or
WATE	ER				
	aggreen Standing Water Le	evel		Partial v	vater loss
	➢ Water Seepage				te Water Loss
GWN			SERVED - Observation of g page or cave-in of the borel		r present or not, was not possible
GWN			COUNTERED - Borehole/ t		after excavation. However,
	groundwater could been left open for			w may have been ol	oserved had the borehole/ test pit
SAME	PLING AND TESTING	a longer perio	u.		
SPT		ration Test to	AS1289.6.3.1-2004		
4,7,11 N			N = Blows per 300mm pen		
30/80m RW			s, the blows and penetration ie rod weight only, N<1	for that interval are	reported, N Is not reported
HW	Penetration occ	urred under th	e hammer and rod weight or	nly, N<1	
HB Sampl		bouncing on	anvil, N is not reported		
DS	Disturbed Samp				
ES	Sample for envi Bulk disturbed S		ting		
BDS GS	Gas Sample	ample			
WS	Water Sample				
U50 Testin		e sample - nur	nber indicates nominal samp	ble diameter in millin	netres
Testing FP	9 Field Permeabil	ity test over se	ection noted		
FVS			sed as uncorrected shear str	ength (sv= peak val	ue, sr= residual value)
PID	Photoionisation Pressuremeter		0 11		
PM PP			ressed as instrument readin	g in kPa	
WPT	Water Pressure			-	
DCP CPT	Dynamic Cone Static Cone Per		test		
CPTu			vith pore pressure (u) measu	irement	
GEOL	OGICAL BOUNDARIES			2 2	2 Doundon
	= Observed Boundary (position known)		= Observed Bounda (position approxim	ai y	 ?= Boundary (interpreted or inferred)
ROCH			v -11 -	,	
	TCR=Total Core Reco	overy (%)		RQD = Rock Qu	ality Designation (%)
	Length of core recover	ed		$\sum Axial \ lengths$	of core > 100mm
	$=\frac{Length of core recover}{Length of core run}$	—×100		$=\frac{1}{Length of}$	of core > 100mm f core run × 100
L					

eiaus	tralia				METHO			SCRIPTION		
Contamination Rem	FILL		<u>46 46 46</u> 46 46		ANIC SOILS		 	CLAY (CL, C	CI or CH)	
\overline{Q}_{n}	COUBL BOULD				(ML or MH)			SAND (SP c	or SW)	
00000		L (GP or GW)	Combinat sandy cla		f these basic s	ymbols may	be used to	indicate mixed ma	aterials such as	
Soil is broa					Logs using the	e preferred n	nethod give	en in AS 1726:201	7, Section 6.1 –	
PARTICL	E SIZE CH	ARACTERISTIC	S		GROUP S	YMBOLS				
Fraction	Component	s Sub Division	Size mm		Major Di	visions	Symbol		vel and gravel-sand	
Oversize	BOULDERS	6	>200		- <u>p</u> _	% of on is	GW	mixtures, little o stre	or no fines, no dry ength.	
	COBBLES	Coarse	63 to 200		COARSE GRAINED SOILS More than 65% of soil excluding oversize fraction is greater than 0.075mm	GRAVEL More than 50% c coarse fraction i	GP	mixtures, little of	avel and gravel-sand or no fines, no dry ength.	
	GRAVEL	Medium	6.7 to 19		BD Soil e. Brea	GF ore th parse	GM		el-sand-silt mixtures, um dry strength.	
Coarse	ONVEL	Fine	2.36 to 6.7	7	ZAIN of s on is 75mr	Υ ^C Δ	GC	Clayey gravel,	gravel-sand-clay to high dry strength.	
grained soil		Coarse	0.6 to 2.36		COARSE GRAINED Coarse Graine ore than 65% of soil ∈ versize fraction is gree 0.075mm	6 of 1 is	SW	Well graded sand	d and gravelly sand, s, no dry strength.	
0011	SAND	Medium	0.21 to 0.6	6	DAR: e thai size	D 50% mm	SP	Poorly graded sar	nd and gravelly sand, s, no dry strength.	
		Fine	0.075 to 0.2	21	More over	SAND More than 50% of coarse fraction is <2.36 mm	SM	Silty sand, sand-	silt mixtures, zero to dry strength.	
Fine	SILT		0.002 to 0.0	75	-	More coar	SC	Clayey sand, sa	ndy-clay mixtures, gh dry strength.	
grained soil	CLAY		<0.002		in g an	∨ ss	ML	Inorganic silts of lo sands, rock flour	w plasticity, very fine , silty or clayey fine	
⁶⁰	PLAST		TIES		SOILS exclud less tha	imit les 50%	CL, CI	Inorganic clays plasticity, gravelly	edium dry strength. of low to medium y clays, sandy clays,	
50 -			5 (M. *		FINE GRAINED SOILS More than 35% of soil excluding oversized fraction is less than 0.075mm	Liquid Limit less < 50%	OL	Organic silts and	n to high dry strength. organic silty clays of ow to medium dry	
40 - 40 -		CH or OH	118 A 111, 200		3FAI 35% 1 frac 0.07		-	stre	ength. high plasticity, high to	
30 X INDE					INE (than sized	iid t > 50%	MH	very high	dry strength. high plasticity, high to	
PLASTICITY INDEX 1/9 07 00 07		CI or OI MH	or OH		Aore over	Liquid Limit > :han 50%	CH	very high	dry strength. of medium to high	
	CL or OL CL : ML 10 20 30	ML or OL 40 50 60 LIQUID LIMIT W _L , %	70 80 90	100	Higl Orga so	anic	OH PT	plasticity, medium Peat muck and o	to high dry strength. other highly organic oils.	
	RE CONDIT									
Symbol		Description								
D M		Non- cohesive and Soils feel cool, da	0	r Soil	tanda ta atiak t	agothar				
W		· · · · ·				0	water forn	ns when handling.		
Moisture content a	content of col as follows: Mo it ($w \approx LL$), We	nesive soils shall b	be described in mit (<i>w</i> < PL); M	relatio	n to plastic lim	it (PL) or liqu	id limit (LL) for soils with high plastic limit (<i>w</i> < F		
Symbol		Undrained Shear	SPT "N" #	┢	Symbol	Term		Density Index %	SPT "N" #	
VS	Very Soft	Strength (kPa) ≤ 12	SFIN# ≤2		VL	Very Lo		≤ 15	0 to 4	
s s	Soft	12 >12 to ≤ 25	≤ ∠ >2 to ≤ 4	\vdash	L	Loos		≤ 15 >15 to ≤ 35	4 to 10	
F	Firm	>25 to ≤ 50	>4 to 8		MD	Medium D		>35 to ≤ 65	10 to 30	
St VSt	Stiff Very Stiff	>50 to ≤ 100 >100 to ≤ 200	>8 to 15 >15 to 30	\vdash	D VD	Dens Very De		>65 to ≤ 85 >85	30 to 50 Above 50	
Н	Hard	>200	>30		VD	very De	1130	205	Above 30	
# SPT corr and equipr	relations are n ment type.	ot stated in AS172						served behaviour pressure, moisture	of the material. content of the soil,	
MINOR C							P-	oportion by Mass		
Proconce just detectable by feel or eve but a					operties little			se grained soils: \leq		
Add 'Trac	e or no diffe	rent to general pro easily detectable l	operties of prima	ary cor	mponent	Fine grained soil: ≤ 15%				
Add 'With	or no diffe	rent to general pro	perties of prima	ary cor	mponent	Fine grained soil: 15 - 30%				
Prefix sol name	Prefix soil Presence easily detectable by feel or eye in conjunction general properties of primary component						Coarse grained soils: >12% Fine grained soil: >30%			

TERMS FOR ROCK MATERIAL STRENGTH AND WEATHERING

CLASSIFICATION AND INFERRED STRATIGRAPHY

Rock is broadly classified and described in Borehole and Test Pit Logs using the preferred method given in AS1726 -2017, Section 6.2 - Rock identification, description and classification.

	Term	Point Load Index, Is ₍₅₀₎ (MPa) [#]	Field Guide
VL	Very Low	0.03 to 0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 30 mm can be broken by finger pressure.
L	Low	0.1 to 0.3	Easily scored with a knife; indentations 1 mm to 3 mm show in the specimen with firm blows of pick point; has dull sound under hammer. A piece of core 150 mm long by 50 mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.
М	Medium	0.3 to 1	Readily scored with a knife; a piece of core 150 mm long by 50 mm diameter can be broken by hand with difficulty.
н	High	1 to 3	A piece of core 150 mm long by 50 mm diameter cannot be broken by hand but can be broken with pick with a single firm blow; rock rings under hammer.
VH	Very High	3 to 10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.
EH	Extremely High	>10	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.
#Rock Str	ength Test Res	ults 🔻	Point Load Strength Index, Is ₍₅₀₎ , Axial test (MPa)

Relationship between rock strength test result $(Is_{(50)})$ and unconfined compressive strength (UCS) will vary with rock type and strength, and should be determined on a site-specific basis. However UCS is typically 20 x $Is_{(50)}$.

ROCK MATERIAL WEATHERING CLASSIFICATION

Sym	bol	Term	Field Guide
RS		Residual Soil	Soil developed on extremely weathered rock; the mass structure and substance fabric are no longer evident; there is a large change in volume but the soil has not been significantly transported.
XW	1	Extremely Weathered	Rock is weathered to such an extent that it has soil properties - i.e. it either disintegrates or can be remoulded, in water.
	HW		Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching, or
DW	MW	Distinctly Weathered	may be decreased due to deposition of weathering products in pores. In some environments it is convenient to subdivide into Highly Weathered and Moderately Weathered, with the degree of alteration typically less for MW.
SW		Slightly Weathered	Rock slightly discoloured but shows little or no change of strength relative to fresh rock.
FR		Fresh	Rock shows no sign of decomposition or staining.

ABBREVIATIONS AND DESCRIPTIONS FOR ROCK MATERIAL AND DEFECTS

CLASSIFICATION AND INFERRED STRATIGRAPHY

Rock is broadly classified and described in Borehole and Test Pit Logs using the preferred method given in AS1726 – 2017, Section 6.2 – Rock identification, description and classification.

DETAILED ROCK DEFE	ECT SF	ACING								
Defect Spacing					Bedd	ing Tl	hickness (Stra	tification		
Spacing/width (mm)	De	scriptor		Symbol	Term				Spacing (mm)	
				•	Thinly		nated		<6	
<20	-	tremely Clos	se	EC	Lamin				6 – 20	
20-60	-	ry Close		VC			bedded		20 – 60	
60-200		ose		С	Thinly				60 – 200	
200-600		edium		M W	Mediu Thick	dium bedded			200 - 600	
600-2000	Wi			600 - 2,000						
2000-6000		ry Wide		VW	Very 1	thickly	bedded		> 2,000	
ABBREVIATIONS AND	DESC			YPES						
Defect Type		Abbr.	Description							
Joint		JT		racture or parting, forme d or filled by air, water o		•			ne rock has little or no tensile strengtherement.	
Bedding Parting		BP	layering/ bedd		he layerir	ng or s			ength, parallel or sub-parallel to icating orientation during deposition,	
Contact		CO	The surface b	etween two types or age	es of rock	κ.				
Sheared Surface		SSU	A near planar	, curved or undulating s	urface wh	nich is	usually smooth	n, polishe	d or slickensided.	
Sheared Seam/ Zone (Fault)		SS/SZ		with roughly parallel alr and usually smooth or sl	•				ce cut by closely spaced (often <50	
Crushed Seam/ Zone (Fault) CS/CZ				•			•		rock substance, with roughly paralle or gravel sizes or mixtures of these.	
Extremely Weathered Seam/ Zone XWS/XW2			Seam of soil s	substance, often with gra	adational	bound	daries, formed l	by weathe	ring of the rock material in places.	
Infilled Seam		IS	Seam of soil substance, usually clay or clayey, with very distinct roughly parallel boundaries, formed by soil migrating into joint or open cavity.							
Vein		VN	Distinct sheet-like body of minerals crystallised within rock through typically open-space filling or crack-seal growth.							
NOTE: Defects size of	<100m	m SS, CS a	nd XWS. Defec	cts size of >100mm SZ,	CZ and >	KWZ.				
ABBREVIATIONS AND	DESC	RIPTIONS F	FOR DEFECT S	SHAPE AND ROUGHN	ESS					
Shape	Abbr	. Descrip	tion	Roughness	Abbr.	Des	cription			
Planar	PR	Consist	ent orientation	Polished	POL	Shin	y smooth surfa	ce		
Curved	CU	Gradua orientat	l change in ion	Slickensided	SL	Groo	oved or striated	surface,	usually polished	
Undulating	UN	Wavy s	urface	Smooth	SM	Smo	oth to touch. Fe	ew or no s	surface irregularities	
Stepped	ST	One or steps	more well defin	ed Rough	RO		y small surface s like fine to co	•	ties (amplitude generally <1mm).	
Irregular	IR	Many sł orientat	narp changes ir ion	ר Very Rough	VR		y large surface very coarse sar	•	ies, amplitude generally >1mm. Feels	
Drientation:				(inclination from horizont lination is measured as t						
ABBREVIATIONS AND	DESC	RIPTIONS F	OR DEFECT C	OATING			DEFECT APE	RTURE		
Coating	Abbr	. Descript	ion	_			Aperture	Abbr.	Description	
Clean	CN	No visible	coating or infilli	ing			Closed	CL	Closed.	
Stain	SN		coating but sur nite (orange-bro	faces are discoloured by own)	y staininę] ,	Open	OP	Without any infill material.	
Veneer	VNR		oating of soil or < 1 mm); may b	r mineral substance, usu be patchy	ually too t	thin to	Infilled	-	Soil or rock i.e. clay, silt, talc, pyrite, quartz, etc.	

Appendix B – Laboratory Certificates

ANALYTICAL REPORT

- CLIENT DETAILS		LABORATORY DE	TAILS
Contact	David Saw	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 9516 0722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	david.saw@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E25342.G03 6-8 Woodburn St, Redfern	SGS Reference	SE224457 R0
Order Number	E25342.G03	Date Received	11/10/2021
Samples	2	Date Reported	18/10/2021

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES

Dong LIANG Metals/Inorganics Team Leader

iona

Shane MCDERMOTT Inorganic/Metals Chemist

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

Member of the SGS Group Page 1 of 6

Soluble Anions (1:5) in Soil/Solids by Ion Chromatography [AN245] Tested: 11/10/2021

			BH2M_1.5-1.95	BH3M_4.5-4.95
			SOIL	SOIL
			10/10/2021	10/10/2021
PARAMETER	UOM	LOR	SE224457.001	SE224457.002
Chloride	mg/kg	0.25	12	22
Sulfate	mg/kg	5	66	58

pH in soil (1:5) [AN101] Tested: 11/10/2021

			BH2M_1.5-1.95	BH3M_4.5-4.95
			SOIL	SOIL
			- 10/10/2021	- 10/10/2021
PARAMETER	UOM	LOR	SE224457.001	SE224457.002
pH	pH Units	0.1	7.5	6.0

Conductivity and TDS by Calculation - Soil [AN106] Tested: 11/10/2021

			BH2M_1.5-1.95	BH3M_4.5-4.95
			SOIL	SOIL
			- 10/10/2021	- 10/10/2021
PARAMETER	UOM	LOR	SE224457.001	SE224457.002
Conductivity of Extract (1:5 as received)	µS/cm	2	160	44

Moisture Content [AN002] Tested: 14/10/2021

			BH2M_1.5-1.95	BH3M_4.5-4.95
			SOIL	SOIL
			- 10/10/2021	- 10/10/2021
PARAMETER	UOM	LOR	SE224457.001	SE224457.002
% Moisture	%w/w	1	14.3	15.1

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN101	pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode and is calibrated against 3 buffers purchased commercially. For soils, sediments and sludges, an extract with water (or 0.01M CaCl2) is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.
AN106	Conductivity and TDS by Calculation: Conductivity is measured by meter with temperature compensation and is calibrated against a standard solution of potassium chloride. Conductivity is generally reported as µmhos /cm or µS/cm @ 25°C. For soils, an extract of as received sample with water is made at a ratio of 1:5 and the EC determined and reported on the extract, or calculated back to the as-received sample. Salinity can be estimated from conductivity using a conversion factor, which for natural waters, is in the range 0.55 to 0.75. Reference APHA 2510 B.
AN245	Anions by Ion Chromatography: A water sample is injected into an eluent stream that passes through the ion chromatographic system where the anions of interest ie Br, CI, NO2, NO3 and SO4 are separated on their relative affinities for the active sites on the column packing material. Changes to the conductivity and the UV-visible absorbance of the eluent enable identification and quantitation of the anions based on their retention time and peak height or area. APHA 4110 B

	FOOTNOTES	
_	FUUTINUTES	

*	NATA accreditation does not cover	-	Not analysed.	UOM	Unit of Measure.
	the performance of this service.	NVL	Not validated.	LOR	Limit of Reporting.
**	Indicative data, theoretical holding	IS	Insufficient sample for analysis.	¢↓	Raised/lowered Limit of
	time exceeded.	LNR	Sample listed, but not received.		Reporting.
***	Indicates that both * and ** apply.				

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

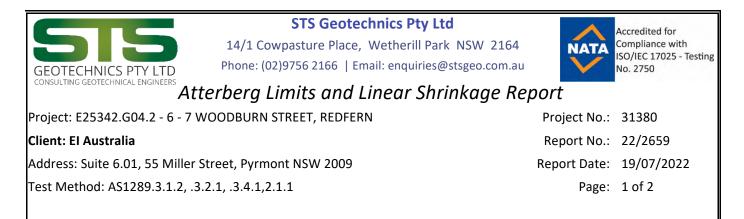
Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi


For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

Sampling Procedure: Samples Supplied By Client (Not covered under NATA Scope of Accreditation)

STS / Sample No.	6669D-L/1					
Sample Location	Borehole 202M					
Material Description	Silty Clay, grey/orange, trace of sand					
Depth (m)	1.5 - 1.6					
Sample Date	7/07/2022					
Sample History	Oven Dried					
Method of Preparation	Dry Sieved					
Liquid Limit (%)	42					
Plastic Limit (%)	15					
Plasticity Index	27					
Linear Shrinkage (%)	12.5					
Mould Size (mm)	254					
Crumbing	Ν					
Curling	Ν					
Remarks:						

Approved Signatory.....

Technician: DH

Orlando Mendoza - Laboratory Manager

STS Geotechnics Pty Ltd

14/1 Cowpasture Place, Wetherill Park NSW 2164 Phone: (02)9756 2166 | Email: enquiries@stsgeo.com.au

Accredited for Compliance with ISO/IEC 17025 - Testing No. 2750

Moisture Content of Soil and Aggregate Samples

Project No.:	31380
Report No.:	22/2659
Report Date:	19/07/2022
Page:	2 of 2
	Report No.: Report Date:

Sampling Procedure: Samples Supplied By Client (Not covered under NATA Scope of Accreditation)

STS / Sample No.	6669D-L/1			
Sample Location	Borehole 202M			
Material Description	Silty Clay, grey/orange, trace of sand			
Depth (mm)	1.5 - 1.6			
Sample Date	7/07/2022			
Moisture Content (%)	23.6			

Remarks:

Technician: DH

Approved Signatory.....

Orlando Mendoza - Laboratory Manager

GEOTECHNIC		14/1 Cowpastur	-	t y Ltd I Park NSW 2164 ries@stsgeo.com.au		Accredited for Compliance with ISO/IEC 17025 - Testing No. 2750
CONSULTING GEOTECH	NICAL ENGINEERS Atte	rberg Limits	and Linear	Shrinkage Re	eport	
Project: E25342	: 6 - 9 Woodburn	Street, Redfern			Project No.:	31380
Client: El Austra	alia Pty Ltd				Report No.:	21/3054
Address: Suite 6	5.01, 55 Miller Stre	eet, Pyrmont NSW	2009		Report Date:	27/10/2021
Test Method: A	S1289.3.1.2, 3.2.1	, 3.1.1, 3.4.1, 2.1.2	1		Page:	1 of 2
Sampling Proce	dure: Samples Sup	oplied By Client (N	ot covered under	NATA Scope of Ac	creditation)	
STS / Sample No.	5679D-L/1					
Sample Location	Borehole 3M					
Material Description	Silty Clay, pale grey trace of gravel					
Depth (m)	3.0 - 3.45					
Sample Date	7/10/2021					

Sample Date	7/10/2021				
Sample History	Air Dried				
Method of Preparation	Dry Sieved				
Liquid Limit (%)	44				
Plastic Limit (%)	21				
Plasticity Index	23				
Linear Shrinkage (%)	11				
Mould Size (mm)	128				
Crumbing	Ν				
Curling	Ν				
Remarks:					
			Approved Signate	pry	P

Technician: LL

David Ly - Senior Geotechnician

STS Geotechnics Pty Ltd

14/1 Cowpasture Place, Wetherill Park NSW 2164 Phone: (02)9756 2166 | Email: enquiries@stsgeo.com.au

Accredited for Compliance with ISO/IEC 17025 - Testing No. 2750

Moisture Content of Soil and Aggregate Samples

Project: E25342: 6 - 9 Woodburn Street, Redfern	Project No.: 3	1380
Client: El Australia Pty Ltd	Report No.: 2	1/3054
Address: Suite 6.01, 55 Miller Street, Pyrmont NSW 2009	Report Date: 2	7/10/2021
Test Method: AS1289.2.1.1	Page: 2	2 of 2

Sampling Procedure: Samples Supplied By Client (Not covered under NATA Scope of Accreditation)

STS / Sample No.	5679D-L/1			
Sample Location	Borehole 3M			
Material Description	Silty Clay, pale grey trace of gravel			
Depth (mm)	3.0 - 3.45			
Sample Date	7/10/2021			
Moisture Content (%)	16.1			

Remarks:

Approved Signatory.....

David Ly - Senior Geotechnician

Technician: LL

STS Geotechnics Pty Ltd Accredited GEOTECHNICS PTY LTD 14/1 Cowpasture Place, Wetherill Park NSW 2164 Compliance ISO/IEC 170 Phone: (02)9756 2166 Email: enquiries@stsgeo.com.au										iance with C 17025 - Testing		
Project: 6-8 W Client: El Austa Address: Suite Test Method: / Sampling Proc of Accreditatio	r alia Pty Ltd 6.01, 55 Mille AS4133.4.1 edure: Sample	er Street, Pyrm	oont NSW 200	342 09	gth Index I Sampling Proce of Accreditatio	edure: Sample	R	Report No.: Report Date: Page:	21/10/2021 1 OF 2			
						Date Samples Drilled / Taken: 07/10/2021						
Borehole No.	1					Borehole No.	2M					
Depth	Test Type	ls(50) (Mpa)	Rock Type	Failure Type	Moisture	Depth	Test Type	ls(50) (Mpa)	Rock Type	Failure Type	Moisture	
3.35	А	0.019	TS	3	Μ	9.37	А	0.046	TS	3	W	
3.76	А	0.220	SS	3	М	10.13	А	0.660	SS	3	D	
4.20	А	0.085	TS	3	М	10.77	А	0.970	SS	3	D	
5.70	А	0.190	SS	3	М	11.82	А	0.600	SS	3	D	
6.35	А	0.510	SH	3	D	12.50	А	1.400	SS	3	D	
6.82	А	0.310	SS	3	D	13.42	А	1.200	SS	3	D	
7.35	А	0.910	SS	3	D							
	2= FRACTURI 3= FRACTURI 4= FRACTURI	E THROUGH BE E ALONG BEDD E THROUGH RO	DING DCK MASS BY NATURAL	DEFECT OR D	TEST TYPE A= AXIAL D= DIAMETRAL I= IRREGULAR C= CUBE		MOISTURE CO W= WET M= MOIST D= DRY		ROCK TYPE SS= SANDSTC ST= SILTSTON SH= SHALE YS= CLAYSTO IG= IGNEOUS	IE NE		
Technician: ZW	Approved Signatory echnician: ZW Orlando Mendoza - Laboratory Manager											

	STS Geotechnics Pty Ltd Accredited for 14/1 Cowpasture Place, Wetherill Park NSW 2164 Not 2150 GEOTECHNICS PTY LTD Phone: (02)9756 2166 Email: enquiries@stsgeo.com.au											
Project: 6-8 W Client: El Aust Address: Suite Test Method: <i>i</i>	ralia Pty Ltd 6.01, 55 Mille AS4133.4.1	er Street, Pyrm	ont NSW 200	9		gth Index I		R	Report No.: Report Date: Page:	21/10/2021 2 OF 2		
Sampling Procedure: Samples Supplied By Client (Not covered under NATA Scope of Accreditation)						Sampling Procedure: Samples Supplied By Client (Not covered under NATA Scope of Accreditation)						
Date Samples Drilled / Taken: 07/10/2021						Date Samples Drilled / Taken:						
Borehole No.	3M					Borehole No.						
Depth	Test Type	Is(50) (Mpa)	Rock Type	Failure Type	Moisture	Depth	Test Type	ls(50) (Mpa)	Rock Type	Failure Type	Moisture	
6.25	А	3.700	SS	3	D							
7.03	А	0.920	SS	3	D							
7.58	А	1.200	SS	3	D							
8.06	А	1.300	SS	3	D							
	2= FRACTURI 3= FRACTURI 4= FRACTURI	E E THROUGH BI E ALONG BEDE E THROUGH R(E INFLUENCED RACTURE OR (DING DCK MASS BY NATURAL	DEFECT OR D	TEST TYPE A= AXIAL D= DIAMETRAI I= IRREGULAR C= CUBE	_	MOISTURE CC W= WET M= MOIST D= DRY	ONDITION Approved Sig	ROCK TYPE SS= SANDSTC ST= SILTSTON SH= SHALE YS= CLAYSTO IG= IGNEOUS	IE NE		
Technician: ZV												

Client: EI AUSTR/ Address: 6.01, 55 Test Method: AS	ALIA Miller Street, Pyr 4133.4.1	rmont	77 Cleveland Stre	et, Redfern		eport		Report No.: Report Date:	22/2468 08/07/2022
	Depth (m)	Date Sampled	Date Tested	Test Type	ls (MPa)	Is ₍₅₀₎ (MPa)	Rock Type	Failure Type	Moisture
BH4	7.05	29/06/2022	05/07/2022	А	1.1	1.0	SH	3	W
BH4	7.70	29/06/2022	05/07/2022	А	1.2	1.2	SH	3	W
BH4	8.70	29/06/2022	05/07/2022	А	1.1	1.2	SH	3	W
BH4	9.70	29/06/2022	05/07/2022	А	0.84	0.88	SH	3	М
BH4	10.45	29/06/2022	05/07/2022	А	0.55	0.54	SH	3	м
BH4	11.50	29/06/2022	05/07/2022	А	0.97	0.97	SS	3	м
BH4		29/06/2022	05/07/2022	A				3	M
2 = Fracture alon 3 = Fracture thro 4 = Fracture influ 5 = Partial fractur	g bedding ugh rock mass enced by natural	defect or drilling	<u> </u>	A = Axial D = Diametrial I = Irregular	<u> </u>	W = Wet M = Moist	n	SS = Sandstone ST = Siltstone SH = Shale YS = Claystoane	<u> </u>
Remarks: Technician: LS /	AB							tory Philip Ihnativ - Sen	P. Thunk ior Geotechnician

STS Geotechnics Pty Ltd

14/1 Cowpasture Place, Wetherill Park NSW 2164 Phone: (02)9756 2166 | Email: enquiries@stsgeo.com.au

Point Load Strength Index Report

Accredited for Compliance with ISO/IEC 17025 - Testing No. 2750

 Project No.:
 31380/6669D-L

 Report No.:
 22/2534

 Report Date:
 11/07/2022

 Page:
 1 OF 1

Project: E25342.G03 -6-7 WOODBURN STREET, REDFERN Client: EI AUSTRALIA

Address: Suite 6.01, 55 Miller Street, Pyrmont NSW 2009

Test Method: AS4133.4.1

Sampling Procedure: Samples Supplied By Client (Not covered under NATA Scope of Accreditation)

Borehole / Sample No.	Depth (m)	Date Sampled	Date Tested	Test Type	ls (MPa)	Is ₍₅₀₎ (MPa)	Rock Type	Failure Type	Moisture
BH101M	6.70	07/07/2022	11/07/2022	А	0.024	0.024	CLAY	3	М
BH101M	7.58	07/07/2022	11/07/2022	А	0.75	0.72	SS	3	D
BH101M	8.57	07/07/2022	11/07/2022	А	1.0	1.0	SS	3	D
BH101M	10.09	07/07/2022	11/07/2022	А	1.1	1.1	SS	3	D
BH202M	9.23	07/07/2022	11/07/2022	А	0.58	0.56	SH	3	D
BH202M	10.23	07/07/2022	11/07/2022	А	2.2	2.2	SS	3	D
BH202M	11.24	07/07/2022	11/07/2022	А	1.8	1.8	SS	3	D
BH202M	12.26	07/07/2022	11/07/2022	A	1.5	1.4	SS	3	D
BH202M	13.28	07/07/2022	11/07/2022	A	1.8	1.7	SS	3	D
BHEOLIN	13.20	01/01/2022	11,07,2022	~~~~~	1.0			3	
Failure Type				Test Type		Moisure Conditio		Rock Type	
	ugh bedding or w	veak plane		A = Axial		W = Wet	///	SS = Sandstone	
2 = Fracture alon				D = Diametrial		M = Moist ST = Siltstone			
B = Fracture thro				I = Irregular		D = Dry		SH = Shale	
		defect or drilling		C = Cube				YS = Claystoane	
	re or chip (invalid	result)						IG = Igneous	
Remarks:							Approved Signa	tony	P. Ihuntin
								tory	
echnician: LL								Philip Ihnativ - Sen	ior Geotechnicia

Form: RPS70

Appendix C – Important Information

Important Information

SCOPE OF SERVICES

The geotechnical report ("the report") has been prepared in accordance with the scope of services as set out in the contract, or as otherwise agreed, between the Client And El Australia ("El"). The scope of work may have been limited by a range of factors such as time, budget, access and/or site disturbance constraints.

RELIANCE ON DATA

El has relied on data provided by the Client and other individuals and organizations, to prepare the report. Such data may include surveys, analyses, designs, maps and plans. El has not verified the accuracy or completeness of the data except as stated in the report. To the extent that the statements, opinions, facts, information, conclusions and/or recommendations ("conclusions") are based in whole or part on the data, El will not be liable in relation to incorrect conclusions should any data, information or condition be incorrect or have been concealed, withheld, misrepresented or otherwise not fully disclosed to El.

GEOTECHNICAL ENGINEERING

Geotechnical engineering is based extensively on judgment and opinion. It is far less exact than other engineering disciplines. Geotechnical engineering reports are prepared for a specific client, for a specific project and to meet specific needs, and may not be adequate for other clients or other purposes (e.g. a report prepared for a consulting civil engineer may not be adequate for a construction contractor). The report should not be used for other than its intended purpose without seeking additional geotechnical advice. Also, unless further geotechnical advice is obtained, the report cannot be used where the nature and/or details of the proposed development are changed.

LIMITATIONS OF SITE INVESTIGATION

The investigation programme undertaken is a professional estimate of the scope of investigation required to provide a general profile of subsurface conditions. The data derived from the site investigation programme and subsequent laboratory testing are extrapolated across the site to form an inferred geological model, and an engineering opinion is rendered about overall subsurface conditions and their likely behaviour with regard to the proposed development. Despite investigation, the actual conditions at the site might differ from those inferred to exist, since no subsurface exploration program, no matter how comprehensive, can reveal all subsurface details and anomalies. The engineering logs are the subjective interpretation of subsurface conditions at a particular location and time, made by trained personnel. The actual interface between materials may be more gradual or abrupt than a report indicates.

SUBSURFACE CONDITIONS ARE TIME DEPENDENT

Subsurface conditions can be modified by changing natural forces or man-made influences. The report is based on conditions that existed at the time of subsurface exploration. Construction operations adjacent to the site, and natural events such as floods, or ground water fluctuations, may also affect subsurface conditions, and thus the continuing adequacy of a geotechnical report. El should be kept appraised of any such events, and should be consulted to determine if any additional tests are necessary.

VERIFICATION OF SITE CONDITIONS

Where ground conditions encountered at the site differ significantly from those anticipated in the report, either due to natural variability of subsurface conditions or construction activities, it is a condition of the report that El be notified of any variations and be provided with an opportunity to review the recommendations of this report. Recognition of change of soil and rock conditions requires experience and it is recommended that a suitably experienced geotechnical engineer be engaged to visit the site with sufficient frequency to detect if conditions have changed significantly.

REPRODUCTION OF REPORTS

This report is the subject of copyright and shall not be reproduced either totally or in part without the express permission of this Company. Where information from the accompanying report is to be included in contract documents or engineering specification for the project, the entire report should be included in order to minimize the likelihood of misinterpretation from logs.

REPORT FOR BENEFIT OF CLIENT

The report has been prepared for the benefit of the Client and no other party. El assumes no responsibility and will not be liable to any other person or organisation for or in relation to any matter dealt with or conclusions expressed in the report, or for any loss or damage suffered by any other person or organisation arising from matters dealt with or conclusions expressed in the report (including without limitation matters arising from any negligent act or omission of El or for any loss or damage suffered by any other party relying upon the matters dealt with or conclusions expressed in the report). Other parties should not rely upon the report or the accuracy or completeness of any conclusions and should make their own inquiries and obtain independent advice in relation to such matters.

OTHER LIMITATIONS

El will not be liable to update or revise the report to take into account any events or emergent circumstances or fact occurring or becoming apparent after the date of the report.