

Remediation Action Plan

46-52 Raymond Avenue, Matraville NSW

March 2021

Servicing projects throughout Australia and internationally

SYDNEY

Ground Floor, 20 Chandos Street St Leonards NSW 2065 T 02 9493 9500

NEWCASTLE

Level 3, 175 Scott Street Newcastle NSW 2300 T 02 4907 4800

BRISBANE

Level 1, 87 Wickham Terrace Spring Hill QLD 4000 T 07 3648 1200

ADELAIDE

Level 4, 74 Pirie Street Adelaide SA 5000 T 08 8232 2253

MELBOURNE

Ground Floor, 188 Normanby Road Southbank VIC 3006 T 03 9993 1905

PERTH

Suite 9.02, Level 9, 109 St Georges Terrace Perth WA 6000 T 02 9339 3184

CANBERRA

PO Box 9148
Deakin ACT 2600

Remediation Action Plan

46-52 Raymond Avenue, Matraville NSW

10 March 2021

Report Number		
J200432 RAP		
Client		
Epsom Enterprises		
Date		
10 March 2021		
Version		
v3 Final		
Prepared by	Approved by	
1/1-	500	
Andrew Treasure	Susan Dillon	
Senior Environmental Scientist	Associate Director	

This report has been prepared in accordance with the brief provided by the client and has relied upon the information collected at the time and under the conditions specified in the report. All findings, conclusions or recommendations contained in the report are based on the aforementioned circumstances. The report is for the use of the client and no responsibility will be taken for its use by other parties. The client may, at its discretion, use the report to inform regulators and the public.

10 March 2021

© Reproduction of this report for educational or other non-commercial purposes is authorised without prior written permission from EMM provided the source is fully acknowledged. Reproduction of this report for resale or other commercial purposes is prohibited without EMM's prior written permission.

Table of Contents

1	Intro	duction	1
	1.1	Background	1
	1.2	Objectives	1
	1.3	Scope of work	1
	1.4	Regulatory and legislative requirements	3
	1.5	Summary	4
2	Site s	etting	6
	2.1	Site Identification	6
	2.2	Environmental setting	10
	2.3	Site history	10
3	Previ	ous site investigations	11
	3.1	JBS&G Preliminary Site Investigation (PSI) and limited Detailed Site Investigation (DSI) (JBS&G 2019a)	11
	3.2	Hazardous Building Materials Survey (HBMS) (JBS&G 2019b)	11
	3.3	Friable Asbestos Removal – Conditional Partial Clearance Certificates (Units 1 – Unit 4) (Pickford and Rhyder, 2020a, 2020b, 2020c, 2020d, 2020e)	11
	3.4	EMM Detailed Site Investigation (EMM, 2020)	12
4	Envir	onmental site status	17
	4.1	Nature and extent of contamination	17
	4.2	Geotechnical conditions	17
5	Conc	eptual site model	18
	5.1	Sources of contamination and contaminants of potential concern	18
	5.2	Migration and exposure pathways	20
	5.3	Sensitive receptors	20
	5.4	Conceptual site model	21
6	Reme	ediation strategy	26
	6.1	Data quality objectives	26
	6.2	Remedial options assessment	29
	6.3	Preferred remedial strategy	30
7	Reme	ediation strategy implementation	32
	7.1	Step 1: stakeholder consultation	32

	7.2	Step 2: site establishment	32
	7.3	Step 3: remediation works	32
8	Conti	ngencies	37
	8.1	Excavation contingencies	37
	8.2	Remediation contingencies	38
9	Waste	e management	39
	9.1	Waste classification	39
	9.2	Imported soils	39
	9.3	Materials handling	39
10	Valida	ation	40
	10.1	Validation sampling and analysis plan	40
	10.2	Validation criteria	41
	10.3	Quality assurance and quality control	44
	10.4	Validation report	45
11	Site e	nvironmental management plan	46
	11.1	Health and safety	46
	11.2	Erosion and sediment control	47
	11.3	Stockpile management	47
	11.4	Soil haulage	47
	11.5	Noise	47
	11.6	Odour and dust	48
	11.7	Communication	48
12	Appro	ovals and licences	49
13	Concl	usions	50
Refe	erences		51
Арр	endice	S S	
Арр	endix A	A Historical data	
Арр	endix E	Supporting information	

6 7

Tables
Table 2.1

Table 2.2

Site identification

UPSS infrastructure

Table 2.3	Environmental setting	10
Table 3.1	Summary of Former UPSS Analytical Results	12
Table 5.2	Conceptual site model	21
Table 6.1	Data quality objectives	26
Table 6.2	Data quality indicators	28
Table 6.3	Soil remediation options assessment	29
Table 6.4	Tank remediation strategy	30
Table 7.1	Excavated material characterisation	35
Table 8.1	Summary of remediation contingencies	38
Table 10.1	Validation and characterisation sampling	40
Table 10.2	Soil validation criteria	42
Table 10.3	Groundwater validation criteria	43
Figures		
Figure 1.1	Site location	2
Figure 2.1	Site layout	8
Figure 2.2	Layout of identified UPSS infrastructure	9
Figure 3.1	Soil analytical results (EMM, 2020)	15
Figure 3.2	Groundwater elevation and analytical results (EMM, 2020)	16

J200432 | RAP | v3 iii

1 Introduction

1.1 Background

EMM Consulting Pty Limited (EMM) was engaged by Epsom Enterprises (Epsom) to prepare this Remediation Action Plan (RAP) to inform the removal of redundant underground petroleum storage system (UPSS) infrastructure and remediate surrounding soils at a property known as 42-52 Raymond Avenue, Matraville, NSW (the Site). The Site location is provided in Figure 1.1.

Epsom intends to divest the Site, which is comprised of approximately 1.98 hectares (ha) of land in an industrial area of Matraville in southern Sydney. The Site was previously occupied by a warehouse building which has recently been demolished.

A preliminary site investigation and limited detailed site investigation (JBS&G 2019a) and a Hazardous Building Materials Survey (HBMS) (JBS&G 2019b) were completed at the Site in 2019. A former 3,000-gallon underground storage tank (UST), a 1,000-gallon UST and related infrastructure was identified in a Safe Work NSW Dangerous Goods records search. These search results were not received before field work was undertaken for JBS&G (2019a).

EMM was engaged by Epsom to undertake a detailed site investigation (DSI) at the Site to address data gaps identified in the previous investigations and to support divestment of the Site. The DSI field works were completed in September 2020 and are reported under a separate cover (EMM, 2020). During the September 2020 DSI fieldworks, UPSS infrastructure was identified in the western portion of the Site. This RAP details the proposed remediation of this UPSS infrastructure and surrounding soils.

1.2 Objectives

The objective of this RAP is to present a plan which documents the proposed remedial works at the Site which would render the site suitable for redevelopment in accordance with the current zoning (general industrial) at the time of preparation of this report (Section 2.1). This RAP sets specific remediation goals and documents management procedures and mitigation measures for end uses consistent with the National Environment Protection (Assessment of Site Contamination) Amendment Measure 1999, amended 2013 (NEPC, 2013) (herein referred to as the ASC NEPM (2013)).

1.3 Scope of work

To meet the above remediation objectives, the scope of work for this RAP is to:

- summarise the environmental setting, Site investigation history and conceptual site model (CSM) to identify remediation options (Section 6.1.1);
- evaluate available remediation options and discuss the preferred remedial strategy which would render the Site suitable for the end uses consistent with the current zoning;
- identify remediation end points including soil validation criteria that are required to meet the remedial objectives (Section 10.2); and
- detail the procedures required to validate the proposed remedial works, specifically validation of soils from excavations resulting from the removal of the current UPSS.

KEY

☐ Site boundary

— Major road

--- Minor road

Watercourse/drainage line

INSET KEY

— Main road

NPWS reserve

Site location

42-52 Raymond Avenue, Matraville NSW Remediation action plan Figure 1.1

1.4 Regulatory and legislative requirements

Relevant legislation and regulations that were used to guide this RAP are summarised below.

1.4.1 NSW Protection of the Environment Operations Act 1997

The NSW Protection of the *Environment Operations Act 1997* (POEO Act) is administered by the NSW Environment Protection Authority (EPA). It prohibits any person to cause pollution of waters, land or air and provides penalties for specified offences. The POEO Act enables the NSW Government to set out explicit protection of the environment policies and adopt more innovative approaches to reducing pollution. The POEO Act also requires "scheduled activities" listed at Schedule 1 to the POEO Act to be carried out in accordance with an Environment Protection Licence (EPL).

1.4.2 Protection of the Environment Operations (Underground Petroleum Storage Systems) Regulation 2019 (UPSS Regulation)

The UPSS Regulation aims to minimise the risk to human health and the environment by requiring best practice design, installation, maintenance, and monitoring of UPSS in NSW.

Since 1 September 2019, most sites with UPSS in NSW are regulated by local councils, in accordance with legislation and guidance published or endorsed by NSW EPA (or their predecessor agencies). The Site is within the Randwick City Council local government area (LGA).

The NSW Department of Environment, Climate Change and Water NSW (DECCW) 2010 *UPSS Technical Note: Decommissioning, Abandonment and Removal of UPSS* provides information on legislative requirements for the decommissioning of underground tanks, including references to the relevant regulatory requirements.

1.4.3 Environmental Planning and Assessment Act (2000) and State Environmental Planning Policy (SEPP) no.55 – Remediation of Land

State Environmental Planning Policy 55 – Remediation of Land (SEPP 55) is a planning instrument under the *Environmental Planning and Assessment Act 2000* (EPA Act) that applies to State land. SEPP 55 also specifies when remediation works will require Development Consent from the Local Government Authority (LGA).

SEPP 55 provides guidance on the requirements for remediation works in NSW, including where remediation works require development consent (Category 1 remediation works) or not (Category 2 remediation works).

The proposed works are considered to be Category 2 works, which require:

- notification to Council at least 30 days prior to works commencing; and
- at least 14 days prior to works commencing, provide copies of investigations reports and a remediation action plan, plus contact details, to Council.

1.4.4 Heritage Act 1977 (NSW)

This act provides for the identification and registration of items of State or Local Heritage significance. The *Heritage Act 1977* provides for a State Heritage Register where items of State or Local Heritage significance can be listed and also provides for the issue of Heritage Orders by the Minister or the Heritage Council to control potential developments that may harm the heritage value of the item.

The proposed remediation area near the western edge of the Site is adjacent to a Sydney Water Corporation (SWC) stormwater drainage canal and is listed on the Sydney Water State Agency Section 170 Heritage and Conservation Register (discussed further in Section 12).

1.5 Summary

The following key legislation and guidelines are relevant to the works proposed as part of this RAP:

- POEO Act.
- UPSS Regulation.
- POEO (Waste) Regulation 2005.
- Contaminated Land Management Act 1997 (CLM Act).
- Clean Air Regulation 2002.
- Work Health and Safety Regulation 2017 (WHS Regulation).
- Work Health and Safety Act 2011 (WHS Act).
- NSW Protection of the Environment Operations (waste) Regulation 2014.
- Code of Practice: Demolition Work SafeWork New South Wales 2016.
- Code of Practice: How to Safely Remove Asbestos, SafeWork New South Wales 2016.
- Code of Practice: How to Manage and Control Asbestos in the Workplace, SafeWork New South Wales 2016.
- Guidance Note on the Membrane Filter Method for Estimating Airborne Asbestos Fibres 2nd Edition [NOHSC:3003(2005)].
- Relevant Codes of practice for working with lead including SafeWork Australia/NIOSH (1994) National Code of Practice for the Control and Safe Use of Inorganic Lead at Work and Demolition Work.
- National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended on 16 May 2013 (ASC NEPM, 2013).
- CRC CARE, 2011. Health Screening Levels for petroleum hydrocarbons in soil and groundwater. CRC CARE, Technical report series No. 10. Friebel, E. and Nadebaum, P., 2011 (CRC CARE, 2011).
- NSW Department of Environment and Conservation (DEC) 2007. Guidelines for the Assessment and Management of Groundwater Contamination March 2007 (NSW DEC, 2007).
- NSW EPA 2017. Guidelines for the NSW Site Auditor Scheme (3rd Edition), October 2017 (NSW EPA, 2017).
- NSW Environment Protection Authority (EPA) 1995. Sampling Design Guidelines, September 1995 (NSW EPA, 1995).
- NSW Environment Protection Authority (EPA) 2020. Consultants reporting on contaminated land, April 2020 (NSW EPA, 2020).

- NSW EPA Waste Classification Guidelines 2014 Part 1: Classification of Waste (NSW EPA 2014) as amended October 2016.
- NSW EPA (2014a) Technical Note: Investigation of Service Station Sites, dated April 2014.
- NSW Department of Environment, Climate Change and Water (DECCW) (June 2008), Protection of the Environment Operations (Underground Petroleum Storage Systems) Regulation 2008 (the 'UPSS Regulation') (as revised in September 2014).
- NSW EPA (December 2020), Guidelines for Implementing the Protection of the Environment Operations (Underground Petroleum Storage Systems) Regulation 2019.
- NSW DECCW (January 2010) UPSS Technical Note: Decommissioning, Abandonment and Removal of UPSS.
- NSW DECCW (January 2010) UPSS Technical Note: Site Validation Reporting.
- Environmental Planning and Assessment Act 1979, State Environmental Planning Policy (SEPP) No. 55 Remediation of Land.
- AS 1940–2004: Storage and handling of flammable and combustible liquids (AS 2004b).
- AS 4976–2008: The removal and disposal of underground petroleum storage tanks (AS 2008b).
- AS 2601-2001: The demolition of structures- summary.
- NSW WorkCover Authority 2005, Code of Practice: Storage and handling of dangerous goods.

2 Site setting

2.1 Site Identification

The Site is a rectangular shaped land parcel located between Raymond Avenue and Botany Road. The Site identification details are provided below in Table 2.1 and the Site layout is presented in Figure 2.1.

Table 2.1 Site identification

Item	Description	
Site address	42-52 Raymond Avenue, Matraville NSW	
Legal description ¹	Lot 1 in Deposited Plan (DP) 369668, Lot 1 in DP 511092 and Lot 32 in DP8313	
Site area ¹	Approximately 2 hectares	
Site owner	Epsom Enterprises Pty Ltd	
Local government authority	Randwick City Council	
Current zoning ²	IN1: General industrial	
Current land use	Vacant (formerly industrial)	
Proposed land use	Industrial/commercial	
Site location	Refer Figure 1.1	
Site layout	Refer Figure 2.1 and Figure 2.2	

Notes:

- 1. Spatial Information Exchange Viewer (www.maps.six.nsw.gov.au)
- 2. State Environmental Planning Policy (Three Ports) 2013

The Site is predominantly covered with hardstand consisting of concrete slab and bitumen driveways at the northern and eastern boundaries. The western boundary of the Site comprises unsealed ground/garden beds with a small vegetated area at the southern portion of the Site (Figure 2.2). The Site was formerly occupied by a large industrial building which was demolished between May to June 2020.

A small electrical substation is located at the south-western corner of the Site, enclosed by a chain-wire fence.

A stormwater drainage channel is present immediately adjacent to the Site's western boundary and a retention pond is located to the south. The drainage channel has been identified as a SWC asset called the Bunnerong Stormwater Channel No. 11 and is listed on the Sydney Water State Agency Section 170 Heritage and Conservation Register.

2.1.1 UPSS Infrastructure September 2020

During the September 2020 DSI investigations, EMM located UPSS infrastructure along the western site boundary adjacent to the edge of the concrete slab and stormwater channel wall across an area of approximately 150 m². The infrastructure was visually observed between the concrete slab and drainage channel along the western boundary of the Site. The approximate layout of the observed UPSS infrastructure is summarised in Table 2.2 below and presented in Figure 2.2

Table 2.2 UPSS infrastructure

Tank ID	Volume	Contents	Dimensions (m)	Photograph (Direction)
T1	UST containing 3,000 gallons (11,356 L)	Black oil, medium-high viscosity	Unknown, but dipstick max measurement is 4,000 gallons	(S)
T2	Unknown	UST containing solid waste, top cut open, no liquid visible.	2 m ø depth unknown	(S)
Т3	Unknown	UST <50 % full of liquid with oily sheen, mostly filled with solid waste	1.45 m Ø depth unknown but assumed approximately 2 m	(S)
T4	~887 L based on dimensions	Full of liquid with sheen,	1.75 length (I) x 0.65 width (w) x 0.78 depth (d)	(NW)
Holding Tank	Unknown	<50 % full of high viscosity black oily sludge	~2 l x 0.9 w depth unknown	(SE)
Interceptor Pit	Unknown	Filled with glass fragments, no liquid visible	2.5 l x 0.55 w depth unknown	(SE)

KEY

☐ Site boundary

Area with identified former UPSS infrastructure (July 2020)

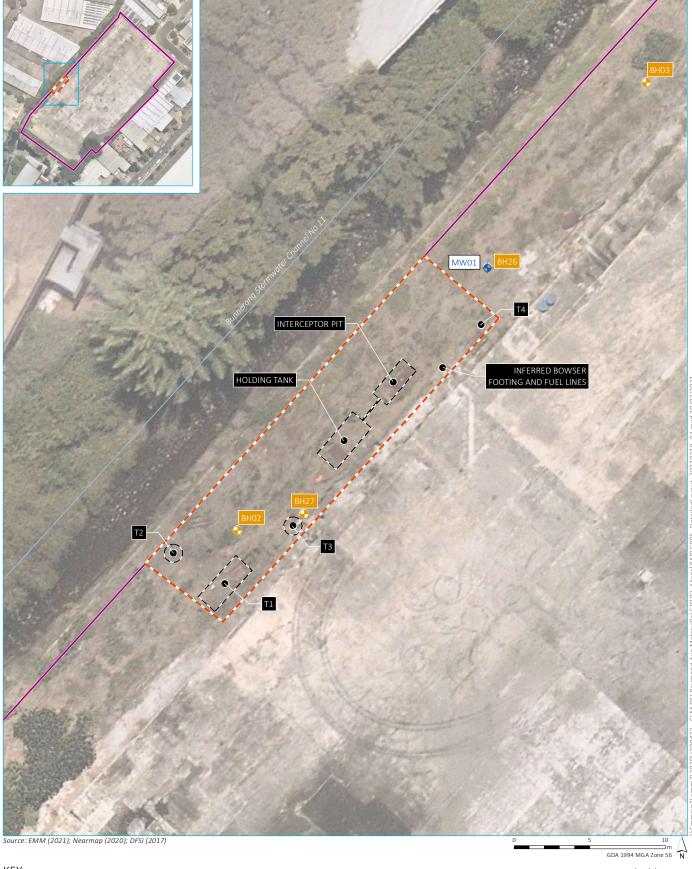
— Major road

— Minor road

— Watercourse/drainage line

Waterbody

Sampling location


Borehole

Monitoring well

Site layout and sampling locations

42-52 Raymond Avenue, Matraville NSW Remediation action plan Figure 2.1

KEY

☐ Site boundary

Area with identified former UPSS infrastructure (July 2020)

☐☐ Approximate tank outline

UPSS feature

— Watercourse/drainage line

Sampling location

Borehole

Monitoring well

Detailed layout

42-52 Raymond Avenue, Matraville NSW Remediation action plan Figure 2.2

2.2 Environmental setting

The environmental setting and landscape at the Site is summarised in Table 2.3 below.

Table 2.3 Environmental setting

Topography	The Site is relatively flat and level, with an elevation of approximately 6 m Australian Height Datum (mAHD). The Site features a stormwater drainage channel running along the western border of the Site, which flows into a stormwater retention basin adjacent to the southern Site boundary (Figure 2.1). The surrounding area slopes gently to the southwest, towards Port Botany approximately 500 m to the south.
Geology and Soils	The Site and surrounds are mostly underlain by highly disturbed Quaternary deposits comprising medium to fine grained marine sands with podsols (Herbert, 1983). The soil type is described as coastal sand plains and dunes, lagoons, and swampy areas, with generally leached, siliceous, and/or calcareous sands.
	Based on the completion of 30 soil bores across the Site in the September 2020 DSI (EMM, 2020), fill is typically encountered from surface (or the base of the concrete slab) to 0.9 m below ground level (m bgl). This fill was predominantly gravelly sand comprised of ceramic, brick, asphalt, concrete, glass and potential ACM fragments (EMM, 2020). Underlying the fill was medium grained sand and minor peat.
Hydrogeology	The Site is within the Botany Groundwater Management Zone 1, which is an extraction exclusion zone. The Botany Sands Aquifer is described as a porous and highly productive aquifer.
	A large number of registered bores were located within a 1.5 km radius of the Site. The Botany Sands Aquifer has been banned for domestic purposes since 2006, therefore no beneficial use of groundwater is expected on the Site or in the surrounding area.
	Three monitoring wells installed in September 2020 indicated groundwater levels at the Site ranged from 3.286 to 3.130 m bgl (2.439 to 2.5 mAHD) and the indicative groundwater flow direction is towards the west (EMM, 2020).
Surface water and drainage	The nearest surface water bodies are the SWC owned Bunnerong Stormwater Channel No 11 adjacent to the western boundary of the Site, and the SWC stormwater retention basin adjacent to the southern boundary of the Site (Figure 2.1). Port Botany is approximately 515 m downgradient to the south of the Site.
	Most of the Site is sealed by concrete slab. As such, precipitation falling onto the Site is expected to pool on the slab and evaporate or enter preferential pathways (eg drainage lines, cracks or holes). Runoff along the western and southern boundaries would be expected to follow the topographic gradient and infiltrate surface soils where exposed at a rate reflective of the permeability of the underlying soils. Excess water, especially during periods of heavy or prolonged rainfall, is expected to be collected by the Site's stormwater drainage network, or into the stormwater channel west and south of the Site.
Acid sulfate soils	The Site has a low probability of occurrence of ASS (JBS&G 2019a). This is consistent with the topographic and geologic setting of the Site. Therefore, land management activities are not likely to be affected by acid sulfate soil materials.

2.3 Site history

A review of the Site history was included in the PSI and limited DSI (JBS&G 2019a). In summary, the Site has been occupied by an industrial building/warehouse since the 1950s. Previous landowners included Sydney Paper Mills Limited, The Australian Paper and Pulp Company, Australian Paper Manufacturers and Fibre Containers Pty Ltd. Since 2005 Epsom has had sole ownership of the Site.

3 Previous site investigations

3.1 JBS&G Preliminary Site Investigation (PSI) and limited Detailed Site Investigation (DSI) (JBS&G 2019a)

JBS&G (2019a) included a historical review, soil sampling from five locations, installation and screening of sub-slab soil vapour probes at 20 locations and soil vapour sampling at four locations. Groundwater was not assessed during these investigations.

Fill materials were identified in each of the five boreholes, and concentrations of zinc (Zn) and benzo(a)pyrene (B(a)P) were reported to be greater than the ecological assessment criteria in one sample each. No contaminants of potential concern (CoPC) were reported in soil at concentrations greater than the human health assessment criteria. Readings using a photoionisation detector (PID) reported volatile organic compounds (VOCs) up to 18.9 parts per million (ppm) at soil vapour probe locations. Volatile total recoverable hydrocarbons (TRH) were reported in the four soil vapour samples, but at concentrations less than the assessment criteria.

JBS&G (2019a) concluded that contamination was not identified which could prevent continued commercial use of the Site, although it was noted that some areas of concern were not assessed and further investigations were recommended to comply with NSW EPA 1995.

A former 3,000-gallon UST and a 1,000-gallon UST were identified in a Safe Work NSW Dangerous Goods records search; however, the search results were not available at the time the fieldwork was undertaken at the Site. Furthermore, the records did not indicate the location of the 3,000-gallon UST. Potential impacts associated with the USTs were unknown as these features were not specifically targeted by the JBS&G (2019a) soil or soil vapour investigations.

3.2 Hazardous Building Materials Survey (HBMS) (JBS&G 2019b)

The HBMS was completed on the large warehouse located on the Site at the time of reporting. The HBMS identified fragments of asbestos containing materials (ACM) in a garden bed at the western Site boundary. Sources of asbestos were also identified in the warehouse building that has since been demolished at the Site. This included roofing that was found to be significantly weathered and a source of friable asbestos within dust identified in the building.

Removal of visible asbestos from the Site surface was advised and the remediation of friable asbestos containing dust and sealing of the roof materials to prevent recontamination.

3.3 Clearance Certificate Friable Asbestos Removal (Pickford and Rhyder, 2020)

A final asbestos clearance certificate was completed by Pickford and Rhyder (2020) for the Site following removal of asbestos containing material from the former building and structures and from the exposed ground along the western boundary of the Site. Both friable and non-friable asbestos was removed. An excavation approximately 1.5m wide was made along the western boundary of the concrete pad footprint and cleared to a depth where no further friable asbestos was present. The clearance certificate concludes the Site safe for re-occupation.

3.4 EMM Detailed Site Investigation (EMM, 2020)

EMM was engaged by Epsom Enterprises in September 2020 to undertake a DSI for due diligence to address the identified data gaps of the previous investigations undertaken by JBS&G in 2019. The objective of the DSI was to gather sufficient information to provide Epsom with an understanding of contamination impacts and potential remedial requirements at the Site and to support divestment of the Site.

The DSI works completed in September 2020 included:

- completion of a ground penetrating radar (GPR) survey to identify subsurface anomalies that may represent the locations of the USTs;
- drilling of 25 boreholes up to 5.5 m bgl and collection of soil samples. The boreholes were targeted to the potential USTs as well as providing general coverage across the Site;
- conversion of 3 boreholes to groundwater monitoring wells targeting the area of the USTs; and
- collection of five soil samples using hand tools form a garden bed at the western boundary of the Site.

3.4.1 UPSS infrastructure

A GPR survey completed in September 2020 did not identify the 3,000-gallon UST or the 1,000-gallon UST in the areas indicated on the plan in the SafeWork NSW Dangerous Goods record (originally obtained by JBS&G (2019a)). The USTs are estimated to be up to 40 years old (based on Dangerous Goods records from 1970).

Visual observations by EMM located UPSS infrastructure along the western Site boundary adjacent to the edge of the concrete slab and the stormwater canal wall (Bunnerong Stormwater Channel No 11), covering an area of approximately 150 m² (Table 2.2 and Figure 2.2). EMM observed liquid seeping through the brick wall of the stormwater canal downgradient (west) of the 3000-gallon UST (T1). A hydrocarbon sheen was also visible on the surface of the water in the canal from the area of seepage and may indicate that the UST or related UPSS infrastructure is leaking.

Grab samples were collected where practicable of product within the former UPSS tanks on 30 September 2020 by EMM. A summary of these analytical results are provided in Table 3.1 below with detailed results provided in Appendix A1. As indicated in Table 3.1, product sampled within the former UPSS tanks is predominantly composed of the heavier TRH fractions C_{16} - C_{34} and C_{34} - C_{40} . UST T1 is noted to contain elevated BTEX compounds. Based on the industrial land use at the Site and the heavier hydrocarbon fractions identified, the original product in these USTs may have been diesel or fuel oils.

Table 3.1 Summary of Former UPSS Analytical Results

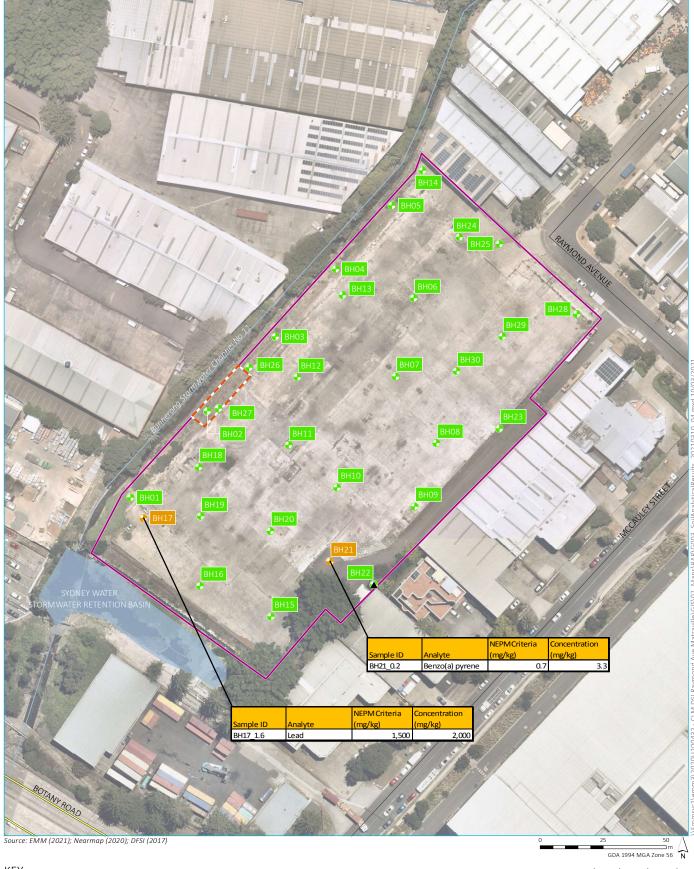
Tank ID	Description	BTEX	PAH's (Sum of Total)	TRH
T1	Black, medium to high viscosity oil, product volume of ~ 11,356 L.	Xylene Total – 176 mg/kg	1,230 mg/kg	C ₁₀ -C ₄₀ (Sum of total): 186,000 mg/kg
		Benzene – 142 mg/kg		C ₃₄ -C ₄₀ : 9,900 mg/kg
		Ethylbenzene – 1.4 mg/kg		C ₁₆ -C ₃₄ : 97,200 mg/kg
		Toluene – 11.4 mg/kg		C ₆ -C ₁₀ : 1,280 mg/kg
T3	Low viscosity, unknown product volume.	Below LOR	Below LOR	C ₁₀ -C ₄₀ (Sum of total): 5,740 μg/L
				C ₃₄ -C ₄₀ : 820 μg/L
				C ₁₆ -C ₃₄ : 4,760 μg/L
				C ₆ -C ₁₀ : below LOR

Table 3.1 Summary of Former UPSS Analytical Results

Tank ID	Description	ВТЕХ	PAH's (Sum of Total)	TRH
T4	Low viscosity, product	Below LOR except for	Below LOR	C_{10} - C_{40} (Sum of total): 2,620 µg/L
	volume of ~ 887 L.	Benzene – 1 ug/L		C ₃₄ -C ₄₀ : 370 μg/L
				C ₁₆ -C ₃₄ : 1,460 μg/L
				C ₆ -C ₁₀ : 80 μg/L
Holding	Low viscosity, unknown	Below LOR	Below LOR	C ₁₀ -C ₄₀ (Sum of total): 62,800 μg/L
Tank	product volume.			C ₃₄ -C ₄₀ : 34,100 μg/L
				C ₁₆ -C ₃₄ : 28,700 μg/L
				C ₆ -C ₁₀ : below LOR

3.4.2 Soil assessment results

A total of 54 primary samples from 30 soil bore locations across the Site (Figure 3.1) were submitted for laboratory analysis for contaminants of potential concern (CoPC). The following soil analytical results were reported:


- one soil sample at BH21/0.2 m representing fill reported benzo(a) pyrene with a concentration of 3.3 mg/kg exceeded the ASC NEPM Table 1B(6) Ecological Screening Level (ESL) for industrial coarse soil of 1.4 mg/kg;
- one soil sample at BH17/1.6 m representing fill reported lead with a concentration of 2,000 mg/kg exceeded the ASC NEPM Table 1A(1) Health Investigation Level (HIL) for industrial D soil of 1.4 mg/kg;
- the 95% upper confidence limit (UCL) for both benzo(a)pyrene and lead was less than the relevant screening criteria;
- soil samples at BH02/0.5 m and BH03/0.9 m, located adjacent to the observed UPSS infrastructure, had the highest detections of TPH and TRH during the DSI investigations but did not exceed the adopted criteria¹. These results indicate potentially elevated petroleum hydrocarbons in soil within proximity to the UPSS:
 - at BH02/0.5 m, TPH concentrations for the C_{15} - C_{28} and C_{29} - C_{36} fractions were 420 mg/kg and 660 mg/kg respectively while TRH concentration for C_{10} - C_{40} (sum total) was 1,500 mg/kg; and
 - at BH03/0.9 m, TPH concentrations for the C_{15} - C_{28} and C_{29} - C_{36} fractions were 270 mg/kg and 300 mg/kg respectively while TRH concentration for C_{10} - C_{40} (sum total) was 630 mg/kg;
- asbestos was detected in fill material at one location (BH22_1.2), identified as chrysolite, commonly known as white asbestos; and
- all remaining soil samples reported concentrations of CoPC below the adopted investigation and screening levels.

¹ ASC NEPM (2013) Health Screening Levels (HSL) D (Commercial / Industrial), Ecological Screening Levels (ESL) Commercial / Industrial, and Table 1 B(7) Management Limits (Commercial/Industrial)

3.4.3 Groundwater assessment results

Three groundwater wells were installed (MW01, MW02, MW03) with samples collected and analysed for CoPC associated with the identified source of potential contamination (Figure 3.2). The following observations and analytical results are noted:

- groundwater levels at the site ranged from 3.286 to 3.130 m bgl (2.439 to 2.5 m AHD) and the inferred groundwater flow direction was towards the west;
- the three groundwater monitoring wells were installed in accessible locations close to the UPSS, noting steep and uneven terrain along the western Site boundary (between the UPSS and the stormwater channel). The wells were located either up or across hydraulic gradient of the observed UPSS infrastructure;
- there were no odours detected or notable PID results to indicate hydrocarbon impact in groundwater (<2 ppm); and
- there were no exceedances of the adopted criteria for the groundwater assessment. Benzene was reported at a concentration of 3 μ g/L and TRH C₆-C₁₀ was reported at 40 μ g/L in a groundwater sample collected at MW02.

KEY

☐ Site boundary

Area with identified former UPSS infrastructure (July 2020)

— Major road

— Minor road

— Watercourse/drainage line

Waterbody

Soil results

- Below adopted guidelines
- ← Exceeds adopted NEPM guidelines
- ▲ Asbestos present

Soil analytical results

42-52 Raymond Avenue, Matraville NSW Remediation action plan Figure 3.1

KEY

☐ Site boundary

Area with identified former UPSS infrastructure (July 2020)

— Major road

— Minor road

— Watercourse/drainage line

Waterbody

 $\begin{array}{ll} \mbox{XXX} & \mbox{Groundwater level (metres Australian} \\ \mbox{Height Datum)} \end{array}$

Inferred groundwater elevation contour

→ Inferred groundwater flow direction

Groundwater

Below adopted guidelines

Groundwater analytical results

42-52 Raymond Avenue, Matraville NSW Remediation action plan Figure 3.2

4 Environmental site status

4.1 Nature and extent of contamination

4.1.1 Soil

Historical soil data indicates there are petroleum hydrocarbons present in soil in proximity to the former USTs identified along the western boundary the site (ie BH02 and BH03 in Figure 3.1). The hydrocarbon impact is characterised by elevated TRH concentrations of C_{16} - C_{34} and C_{34} - C_{40} but concentrations do not exceed the adopted soil assessment criteria. Concentrations of TRH beyond the proximity of the former USTs is reported to be below or only slightly above the limit of reporting (EMM, 2020).

Due to access limitations for soil boring during the September 2020 DSI (ie the embankment considered unsafe), soil sampling was not completed between the UPSS and the stormwater canal. It is possible that some localised soil and/or groundwater impact associated with the UPSS may be encountered during any potential removal/excavation works adjacent to the stormwater canal.

Based on historical building inspections (JBS&G 2019b) and intrusive investigations (JBS&G 2019a and EMM, 2020), there is potential for ACM fragments within shallow fill material, particularly along the garden bed adjacent to the western Site boundary.

4.1.2 Groundwater

There have been limited groundwater investigations completed at the Site. Based on data obtained from three wells installed in the south west of the Site in September 2020 (EMM, 2020), there are indications of limited hydrocarbon impacts in the vicinity of the UPSS infrastructure (MW02 and MW03 – Figure 3.2 and Appendix A1), with contaminant concentrations not reported to be greater than the adopted assessment criteria.

It is noted that the three monitoring wells are located up or across hydraulic gradient of the identified UPSS infrastructure and it is possible that groundwater impact could exist in close proximity to, or down hydraulic gradient from, the UPSS infrastructure.

4.2 Geotechnical conditions

EMM commissioned Douglas Partners to complete a geotechnical analysis report to understand the potential risks to the Bunnerong Stormwater Channel No 11 from excavation activities. Numerical modelling using PLAXIS 2D was used to estimate the induced displacements on the stormwater channel wall as a result of excavation works. The modelled excavation scenario, based on the proposed work method provided by the remediation contractor, included a plant exclusion area of 7 m from the channel wall. The reports findings are:

- total deflections of up to 7 mm at the top of the wall and 6 mm at the base of the wall during excavation;
 and
- final deflections reducing to approximately 2 mm of the initial positions at the completion of the remediation works.

5 Conceptual site model

Based on historical investigations and the intrusive investigation works completed by EMM (2020), a conceptual site model (CSM) has been developed to evaluate the nature and extent of contamination and to inform remediation options at the Site.

The CSM is summarised below.

5.1 Sources of contamination and contaminants of potential concern

A summary of the potential sources of contamination and associated contaminants of potential concern (CoPC) identified as an outcome of the historical investigations is presented in Table 5.1.

Table 5.1 Summary of potential sources of contamination and CoPC

Potential sources of contamination	CoPCs	Likelihood of contamination/release mechanisms
UPSS infrastructure:	BTEX/TRH/PAHs/VOCs/	Likely.
 1 x 3,000-gallon (11,356 L) UST full of black oil, medium viscosity, referred to as T1; 	phenols/lead	As shown in Table 2.2, USTs were observed to contain black oily product and their integrity is unknown.
 2 x approximate 1,000-gallon (3,785 L) USTs, referred to as T2 and T3 respectively; 		Leaking of oil through the stormwater canal brickwork (off-site to the west) was observed in the vicinity of the UPSS (EMM, 2020).
 1 x 887 L UST full of water/oil mixture, referred to as T4; and 		Leaking of the other USTs and ancillary infrastructure is considered possible particularly given the age of the
 remnant ancillary infrastructure including supply lines, vent pipes and potential dispensing bowser footing. 		infrastructure (1970s).
Refer to Table 2.2 and Table 3.1 for further details.		
Electrical substation containing transformers	PCBs	Unlikely.
(south-western corner of the Site)		It is unknown if the transformers contained PCB, however, based on the age of the facility it is possible. Leaking from the former transformer and substation infrastructure was considered possible but significant contamination is unlikely due to the size of the facilities and no observations of leakage.
		No concentrations of PCBs in soils were recorded above the laboratory LOR (EMM, 2020).
ACM used in former buildings, utilities and	Asbestos	Likely.
pipework and impacted soils Site wide		Confirmed ACM present throughout many of the buildings based on the HBMS (JBS&G, 2019). Clearance certificates were issued for recently demolished buildings; however, some asbestos pipes were noted to remain in-situ.
		EMM (2020) observed relatively widespread potential ACM fragments in shallow fill material, mostly along the garden bed adjacent to the western Site boundary. Asbestos fibres were positively identified by the laboratory at one sample location (BH22).

Table 5.1 Summary of potential sources of contamination and CoPC

Potential sources of contamination	CoPCs	Likelihood of contamination/release mechanisms
Former use of lead paint on buildings, based	Lead	Unlikely.
on the age of the former buildings (pre- 1980s) and historical application of lead- based paints during that time.		Flaking and/or lead dust cannot be precluded. As most of the Site is occupied by a concrete slab and driveways, impacts would likely be limited to small areas of exposed soil.
		Only one soil sample exceeded the adopted assessment criteria (EMM, 2020). Lead was not recorded above the laboratory LOR in groundwater.
Potential application of pesticides for pest	OCP/OPP	Possible.
control		Pesticides may have been applied to building footings and void spaces with the potential to impact surrounding soils, including beneath the concrete slab.
		Trace concentrations of OCP were recorded in soil at two locations within the surface soil (0.2-0.3 m depth) at the southern portion of the site (EMM, 2020). Pesticides were not recorded above the laboratory LOR in groundwater.
Use of aqueous film-forming foam (AFFF)	PFAS	Possible.
containing per and poly fluoroalkyl substances (PFAS) in fire suppression (the Site is understood to formerly be used to store significant quantities of Dangerous Goods),		PFAS and AFFF were generally introduced in Australia for civilian use in the late 1970s until gradual phasing out commenced in the 2000s. It is unknown if AFFF was historically stored or applied at the Site.
possible use of PFAS containing products in paper/packaging manufacturing		Trace concentrations of PFAS compounds in soil, primarily perfluorooctanesulfonic acid (PFOS), were reported at 11 locations across the site at varying depths during the September 2020 DSI (EMM, 2020). However, none of these exceeded the adopted assessment criteria.
Chemical storage – bulk storage of chemicals	BTEX/TRH/PAHs/VOCs/met	Possible.
at the Site	als/phenols/OCP/OPP	Spills and leaks may have resulted in seepage into underlying soils, discharge into surface water and infiltration to groundwater.
Use/importation of fill material Site wide	BTEX/TRH/PAHs/VOCs/	Likely
Fill materials may have been imported to the Site for levelling and grading. JBS&G (2019a) identified fill materials across the Site. The presence of contaminants within fill cannot be precluded.	phenols/heavy metals/PCBs/ Asbestos/PFAS	Based on the potential leachability of CoPC within fill material and the historical use of the Site, vertical migration of contamination from the fill materials/surface soils into the underlying natural soils is possible. Fill material imported from unknown origins may also contain contaminants such as asbestos.

5.2 Migration and exposure pathways

The following transport mechanisms may apply at the Site:

- surface run-off of CoPC into surface water channels adjacent to the Site;
- excavation and re-location of soil during future construction activities;
- vertical seepage of CoPC into the underlying soils and into the local groundwater system;
- migration of CoPC via groundwater transport, inferred to flow in a south-westerly direction;
- migration and infiltration of vapours from contaminants in soil and/or groundwater beneath the Site; and
- atmospheric dispersion (aeolian transport) of dust, derived from contaminated soil or hazardous building materials (HBM), eg asbestos or lead.

Identified potential exposure pathways for the nominated CoPC include:

- dermal contact and incidental ingestion of soil;
- inhalation of dust (including soil derived) or fibres;
- dermal contact and incidental ingestion of groundwater/surface water;
- inhalation of soil/groundwater vapours in indoor air;
- inhalation of soil/groundwater/surface water vapours in outdoor air;
- inhalation of soil/groundwater vapours within a trench;
- plant uptake and/or ingestion by animals; and
- uptake of CoPC from groundwater (stygofauna and microorganisms).

5.3 Sensitive receptors

The nearest sensitive human receptors identified at the Site include:

- current and future Site users (industrial);
- future construction workers involved in the development of the Site;
- users of surrounding properties; and
- down-gradient users of surface water (such as recreational users of Penrhyn Estuary and Botany Bay).

Based on the Orica Botany Groundwater Extraction Exclusion Area (GEEA), there are not considered to be sensitive human health receptors associated with groundwater beneath the Site and/or downgradient.

The Site is mostly covered by hardstand pavement and building footprints. On this basis, there are limited on-site ecological receptors that could be exposed to environmental impacts at the Site. Possible off-site ecological receptors are limited to potential impacts to flora and fauna associated with groundwater or surface water runoff migrating from the Site into the following adjacent water bodies:

- Bunnerong Stormwater Channel No 11, along the western Site boundary; and
- the stormwater retention basin immediately south of the Site.

5.4 Conceptual site model

Table 5.2 Conceptual site model

Source	Pathway	Receptor	Potentially complete S-P-R?
UPSS – USTs and ancillary underground infrastructure (eg pits and supply lines). Observations of potential leakage	Seepage into underlying soils and inhalation of soil vapour/dust	 Future Site users Future construction workers involved in the development of the Site Users of surrounding properties 	Yes
through stormwater channel wall in the vicinity of the UPSS. CoPC include: BTEX/TRH/PAHs/VOCs/p	Direct contact/ingestion of soils	 Future Site users Future construction workers involved in the development of the Site 	
henols	Migration through surface water runoff	 Future construction workers involved in the development of the Site Current and future users of surface water Off-site downgradient surface water ecology (Penrhyn Estuary and Botany Bay) 	Yes
	Seepage through soil profile into groundwater and migration through groundwater flow – direct contact or incidental ingestion of groundwater or inhalation of vapours	 Future construction workers involved in the development of the Site Off-Site adjoining land users/occupants Groundwater ecosystem 	Possible CoPC were detected in groundwater (EMM, 2020), but were below the adopted groundwater assessment criteria (GAC). Groundwater would be managed during future construction (if required) and is unlikely to be abstracted due to the GEEA.
Substation – transformers CoPC include PCBs and TRH	Seepage into underlying soils and inhalation of soil vapour/dust	 Future Site users Future construction workers involved in the development of the Site Users of surrounding properties 	Possible It is noted that concentrations of PCBs in soils were below the laboratory LOR (EMM, 2020).

Table 5.2Conceptual site model

Source	Pathway	Receptor	Potentially complete S-P-R?
	Direct contact/ingestion of soils	• Future Site users	Possible
		 Future construction workers involved in the development of the Site 	
	Migration through surface water runoff	• Future construction workers involved in the development of the Site	Possible
		• Current and future users of surface water	
		Off-site downgradient surface water ecology (Penrhyn Estuary and Botany Bay)	
	Seepage through soil profile into groundwater and migration through groundwater flow – direct contact	• Future construction workers involved in the development of the Site	Possible
	or incidental ingestion of groundwater or inhalation of	 Adjoining land users/occupants 	
	vapours	Groundwater ecosystem	
		 Off-site downgradient surface water ecology (Penrhyn Estuary and Botany Bay) 	
Potential ACM in former buildings, fragments on surface and potential	Inhalation of dust and/or fibres through atmospheric dispersion and incidental ingestion	• Future construction workers involved in the development of the site	Yes
asbestos impacted soil		• Future site users	
		Users of surrounding properties	
Potential residual lead-	Paint flaking – dermal contact/incidental ingestion and inhalation of lead entrained dust	• Future Site users	Yes
based paint on former buildings		 Future construction workers involved in the development of the Site 	
		 Users of surrounding properties 	
	Direct contact/ingestion of soils	• Future Site users	Yes
		 Future construction workers involved in the development of the Site 	
	Migration through surface runoff	• Future construction workers involved in the development of the Site	Unlikely
		Off-Site current and future users near surface water flow	
		Off-site downgradient surface water ecology (Penrhyn Estuary and Botany Bay)	

Table 5.2 Conceptual site model

Source	Pathway	Receptor	Potentially complete S-P-R?
	Seepage through soil profile into groundwater and migration through groundwater flow – direct contact or incidental ingestion of groundwater or inhalation of vapours	• Future construction workers involved in the development of the Site	Unlikely
		Adjoining land users/occupants Croundwater acceptation	
Potential application of	Seepage into underlying soils and	Groundwater ecosystem On Site future Site users	Possible
pesticides for pest control	inhalation of soil vapour/dust	Future construction workers involved in the development of the Site	rossine
	Direct contact/ingestion of soils	 On Site future Site users Future construction workers involved in the development of the Site 	Possible
	Migration through surface runoff	• Future construction workers involved in the development of the Site	Possible
		 Off-Site current and future site users near surface water flow 	
		Off-site downgradient surface water ecology (Penrhyn Estuary and Botany Bay)	
	Seepage through soil profile into groundwater and migration through groundwater flow – direct contact or incidental ingestion of groundwater or inhalation of vapours	• Future construction workers involved in the development of the Site	Unlikely
		Adjoining land users/occupants	
		Groundwater ecosystem	
		Off-site downgradient surface water ecology (Penrhyn Estuary and Botany Bay)	
Use of aqueous film- forming foam (AFFF)	Seepage into underlying soils and inhalation of soil vapour/dust	 On Site future Site users Future construction workers involved in the development of the Site 	Possible
containing per and poly fluoroalkyl substances (PFAS) in fire suppression infrastructure or PFAS in paper/packaging	Direct contact/ingestion of soils		Possible
	Migration through surface runoff	• Future construction workers involved in the development of the Site	Possible
manufacturing process		Current and future users of surface water	
		Off-site downgradient surface water ecology (Penrhyn Estuary and Botany Bay)	

Table 5.2 Conceptual site model

Source	Pathway	Receptor	Potentially complete S-P-R?
	Seepage through soil profile into groundwater and migration through groundwater flow – direct contact	• Future construction workers involved in the development of the Site	Unlikely
	groundwater or inhalation of	 Adjoining land users/occupants 	
	vapours	Groundwater ecosystem	
		Off-site downgradient surface water ecology (Penrhyn Estuary and Botany Bay)	
Chemical storage –	Seepage into underlying soils and	• Future Site users	Yes
former bulk storage of chemicals at the Site	inhalation of soil vapour/dust	• Future construction workers involved in the development of the Site	
		 Users of surrounding properties 	
	Direct contact/ingestion of soils	• Future Site users	Yes
		 Future construction workers involved in the development of the Site 	
	Migration through surface runoff	• Future construction workers involved in the development of the Site	Possible
		Current and future users of surface water	
		Off-site downgradient surface water ecology (Penrhyn Estuary and Botany Bay)	
	Seepage through soil profile into groundwater and migration through groundwater flow – direct contact	• Future construction workers involved in the development of the Site	Unlikely
	or incidental ingestion of groundwater or inhalation of vapours	 Adjoining land users/occupants 	
		Groundwater ecosystem	
		Off-site downgradient surface water ecology (Penrhyn Estuary and Botany Bay)	
Use/importation of fill	Seepage into underlying soils and	On Site future Site users	Yes
material Site wide	inhalation of soil vapour/dust	• Future construction workers involved in the development of the Site	
		Users of surrounding properties	
	Direct contact/ingestion of soils	Future Site users	Yes
		• Future construction workers involved in the development of the Site	

Table 5.2 Conceptual site model

Source	Pathway	Receptor	Potentially complete S-P-R?
	Migration through surface runoff	• Future construction workers involved in the development of the Site	Possible
		• Current and future users near surface water flow	
		Off-site downgradient surface water ecology (Penrhyn Estuary and Botany Bay)	
	Seepage through soil profile into groundwater and migration through groundwater flow – direct contact	• Future construction workers involved in the development of the Site	Unlikely
	or incidental ingestion of groundwater or inhalation of	Adjoining land users/occupants	
	vapours	• Groundwater ecosystem	
		 Off-site downgradient surface water ecology (Penrhyn Estuary and Botany Bay) 	

6 Remediation strategy

The following section details the proposed remedial strategy to meet the objectives of preparing the Site to a condition suitable for redevelopment in accordance with the current land zoning.

6.1 Data quality objectives

Data Quality Objectives (DQO) have been developed to define the type, quantity and quality of data required to achieve the project objectives. The DQOs have been prepared in accordance with the seven-step DQO process outlined in the ASC NEMP (2013). The adopted DQOs for the proposed remediation at the site are provided below in Table 6.1.

Table 6.1 Data quality objectives

DQO steps	Details of DQO process
State the Problem	The Site has been identified for future divestment by Epsom. UPSS and associated contamination needs to be removed from the Site and soil (and potentially groundwater) conditions further assessed to understance if any further remediation is required, or if the investigation area is suitable for the current land zoning (IN1 General industrial).
Identify the Goals	Decisions to be made to meet anticipated future uses are:
(decisions)	 Have the identified primary sources of contamination (i.e. UPSS) been adequately mitigated in accordance with the objectives of this RAP?
	 Does residual contamination in soils, groundwater or surface water associated with UPSS pose an unacceptable risk to human health or the environment under the future end use?
Identify the	The inputs required to make the above decisions listed in Step 2 are as follows:
information inputs	 existing Site data (from previous investigations);
	proposed land uses and Site boundaries;
	appropriate NSW EPA endorsed guideline documents;
	appropriately experienced environmental consultants;
	 geological data and information relevant to subsurface structures;
	hydrogeological data;
	geotechnical data;
	 concentrations of CoPC in different fill/soil types and groundwater;
	 distribution of identified contamination both laterally and vertically;
	• plans showing the location of underground services and known, present subsurface infrastructure; and
	Quality Assurance and Quality Control (QA/QC) data.
Define the Study	The boundaries of the investigation have been identified as follows:
Boundaries	 Spatial boundaries – The lateral boundary of the remediation area is limited to the area of UPSS infrastructure shown on Figure 2.2. The western extent of this area is constrained by the Bunnerong Stormwater Channel No 11. The vertical boundary for soil will be the base of tank excavations and validation soil samples collected; and
	• <i>Temporal boundaries</i> – data collected from previous soil and groundwater investigations undertaken in 2019 and 2020 and data collected during remediation works.

Table 6.1 Data quality objectives

DQO steps	Details of DQO process
Develop a Decision	The remedial activities described by the RAP will be considered a success if:
Rule	• it is established that there are no on-going primary sources of petroleum hydrocarbon contamination remaining at the Site;
	 soil materials excavated from the UST excavations have been adequately characterised and that no heavily impacted materials are returned to the tank excavations during reinstatement; and
	 groundwater concentrations of CoPCs do not indicate a potential risk to identified human health and environmental receptors.
Specify performance or acceptance criteria that the data need to	Acceptable limits on decision errors and the approach to addressing possible decision errors developed are based on the Data Quality Indicators (DQIs) of sensitivity, precision, accuracy, representativeness, comparability and completeness (SPARCC).
achieve	The tolerable limits on decision errors for data are that EMM considers acceptable are:
	• probability that 95% of data satisfied the DQIs, therefore the limit on the decision error was 5% that a conclusive statement may be incorrect.
	In applying statistical analysis of a data set (where appropriate):
	• no individual sample will report a concentration that exceeds 250% of Site assessment criteria;
	• a normal distribution will only be used if the coefficient of variance is not greater than 1.2;
	• the standard deviation of a sample population will not exceed 50% of the Site assessment criteria; and
	• a robust QA/QC program for soil and groundwater will be designed and implemented.
	The possible outcomes of making an error in the decision are:
	basing decisions on unreliable data and consequently making incorrect decisions; and
	• basing decisions on unreliable data and inappropriately recommending the need for further remediation.
	Relevant performance and/or acceptance criteria will be determined for QA/QC purposes and comparison of soil and groundwater analytical results to appropriate assessment criteria.
Optimise the Design	Based on Steps 1 to 6 of the DQO process, the design (ie scope of works or sample and analysis quality plan) for obtaining the required data (ie proposed field and laboratory programs) is presented in Section 7.3.

6.1.1 Data quality indicators

The project DQIs have been established to set acceptance limits on field and laboratory data collected as part of this investigation. For both field and laboratory procedures acceptance limits are set at different levels for different projects and by the laboratories. Non-compliances with acceptance limits are to be documented and discussed in the report. The DQIs are presented in Table 6.2 below.

Table 6.2 Data quality indicators

DQI	Field	Laboratory	Acceptability Limits
Completeness	 All critical locations sampled All samples collected SOPs appropriate and complied with Experienced sampler Documentation correct 	 All critical samples analysed and for all CoPC Appropriate methods implemented Appropriate laboratory limits of reporting (LORs) Sample documentation complete Compliance with sample holding times 	As per ASC NEPM (2013) <nominated criteria<="" th=""></nominated>
Comparability	 Sample SOPs used on each occasion Experienced sampler Climatic conditions Same types of samples collected 	 Same analytical methods used (including clean-up) Sample laboratory LORs (justify/quantify if different) Same laboratories (NATA accredited) Consistent reported units of measurement 	As per ASC NEPM (2013) <nominated criteria<="" th=""></nominated>
Representativeness	Appropriate media sampled	 All critical samples analysed and for all CoPC as required for the project objectives 	Appropriate samples analysed
Precision	 SOPs appropriate and complied Collection of blind and split duplicate samples 	 Analysis of: Blind duplicate samples (1 in 20 samples) Split duplicate samples (1 in 20 samples) Laboratory duplicate sample 	 RPD of < 30%(organics) and <50% (inorganics) RPD of < 30% (organics) and <50% (inorganics) RPD of < 50%
Accuracy	 SOPs appropriate and complied Collection of rinsate blanks 	 Analysis of: Field/trip blanks (1/day) Method blanks Matrix spikes Matrix spike duplicates Surrogate spikes Laboratory control samples Laboratory prepared spikes Reagent blank 	 Non-detect for CoPC Non-detect for CoPC 70 to 130% RPD of <30% 70 to 130% 70 to 130 % 70 to 130% Non-detect for CoPC

6.2 Remedial options assessment

Hierarchical management of contaminated land is preferred by the NSW EPA and is detailed in Contaminated Land Management: Guidelines for the NSW Site Auditor Scheme, 3rd Edition (NSW EPA, 2017). This order of preference for soil remediation and management is as follows:

- 1. On-site treatment of soil so the CoPC is either destroyed or the hazard is reduced to an acceptable level;
- 2. Off-site treatment of excavated soil so the CoPC is either destroyed or the hazard is reduced to an acceptable level and then returned to the Site;
- 3. Removal of contaminated soil to an approved site or facility and where applicable replacement with clean fill; and
- 4. Consolidation and isolation of the on-site soil by containment.

The suitability of available soil remediation methods is presented below in Table 6.3.

 Table 6.3
 Soil remediation options assessment

Option	Details	Suitability
On-site treatment	The Site is large and has sufficient space for this option.	Partly suitable
	There is not expected to be a significant volume of contaminated soils requiring treatment (based on the findings of the September 2020 DSI (EMM, 2020).	
	Both in-situ and ex-situ remediation methods may take an extended period to complete and may not be compatible with development at the Site.	
	Off-site disposal of contaminated soil is not required. However, importation of clean fill will be required at this Site to backfill excavations resulting from the tank removal.	
Off-site treatment	In-situ and ex-situ remediation methods as per on Site treatment but more suitable for sites with limited space.	Partly suitable
	Requires excavation and transport of contaminated soils and reinstatement of excavations. Timeframes may be an issue with redevelopment plans at the Site.	
	Requires transportation of contaminated soils within an urban area to a suitable treatment facility.	
Excavation and off-site disposal	Landfill disposal which will be the simplest remediation method. Will involve excavation, tank removal and disposal at a licenced facility. Excavation is then back filled with clean, validated fill.	Suitable
	Removes secondary source of contamination (impacted soils) to the extent practicable.	
On-site capping/containment	Involves installation of a physical barrier around the contaminated area to contain potential migration.	Contingency action
	Does not remove source of contamination.	
	Requires ongoing management to maintain cap or barrier.	
	Not preferred given more suitable options available.	

6.3 Preferred remedial strategy

In assessing the remedial options to meet the key objectives for the Site, the preferred approach to remediating the Site is a mixed approach including excavation, tank removal, off-site disposal and in-situ UPSS abandonment, as detailed in Table 6.4

Table 6.4 Tank remediation strategy

Tank	Approach	
Tank 1	Tank removal and off-site disposal	
Tank 2	In-situ remediation (UPSS abandonment)	
Tank 3	Tank removal and off-site disposal	
Tank 4	Tank removal and off-site disposal	
Holding tank	Tank removal and off-site disposal	
Interceptor pit	Tank removal and off-site disposal	

This option would allow removal of the primary contamination source (ie UPSS contents) at five tanks and impacted soil immediately surrounding the excavated tanks, while removing any in-situ contamination from within Tank 2. This option provides the most structural protection to the Bunnerong Stormwater Channel No 11, which may be damaged if wider soil excavation works were completed.

6.3.1 Primary source control

Primary source control involves the removal of primary sources of petroleum hydrocarbon related CoPCs at the Site to the extent practicable. As discussed in Section 2.1.1, former UPSS infrastructure identified near the western Site boundary could result in release of petroleum hydrocarbons to the ground contributing to soil, surface water and groundwater impacts at the Site. Primary source control will focus on excavation, tank removal and in-situ remediation as detailed in Table 6.4, of the former UPSS infrastructure along the western Site boundary. It is noted that T2, which is closest to the stormwater channel and proposed for in situ abandonment, was observed to be filled with inert waste (see Table 3.1). As a result, it is considered unlikely that T2 would present an ongoing primary source of contamination following abandonment. Additionally, the presence of grossly impacted soil around T2 (which will not be excavated) is also considered unlikely based on the observed contents and condition of the tank.

6.3.2 Soil data gap analysis

The presence of the UPSS infrastructure and safety concerns from the unstable/sloping grounds surface has hindered investigations of soil beneath the areas with former UPSS infrastructure. Once the infrastructure has been removed, soil samples will be collected, analysed for CoPCs and assessed against validation criteria as outlined in Section 10. This sampling will provide supplementary data to evaluate if the investigation Site is suitable for the current land zoning or if further remediation works (ie excavation of impacted soils) are required.

6.3.3 Groundwater data gaps

Three groundwater monitoring wells are located at the Site (Figure 2.1). Based on the September 2020 DSI (EMM, 2020), these monitoring wells are located up hydraulic gradient (MW01 and MW03) or across hydraulic gradient (MW02) of the area with the former UPSS infrastructure. Without monitoring locations down hydraulic gradient of the UPSS infrastructure is unclear if there are hydrocarbon impacts in groundwater.

Following removal of the tanks an assessment will be made to consider the likelihood of groundwater contamination resulting from the UPSS (ie the presence of significantly impacted soil, visual presence of contamination, etc). Should groundwater contamination be considered likely, all efforts will be made to install a fourth groundwater monitoring well to the west (downgradient) of the UPSS to assess conditions.

7 Remediation strategy implementation

The proposed remediation scope of works includes the following stages:

- 1. Stakeholder engagement;
- 2. Site establishment;
- 3. Soil remediation works including former UPSS tank removal and abandonment; and
- 4. Validation.

7.1 Step 1: stakeholder consultation

Before the implementation of this RAP, it will be necessary to secure all relevant approvals and licences and submit a notification of the works to Randwick City Council. Sydney Water, the asset owner of Bunnerong Stormwater Channel No 11, will be engaged to ensure any proposed works do not interfere with Sydney Water infrastructure adjacent to the Site. EMM has commenced the process of engagement with Randwick Council (notification made on 13 August 2020) and Sydney Water, which can take up to 60 days (refer to Appendix B for current documentation).

7.2 Step 2: site establishment

Initial activities at the Site will include preparation of all health and safety documentation and the engagement of all plant and equipment required for the proposed remediation works. Before commencing any earthmoving activities, environmental protection safeguards and Site security measures should be in place. These measures are detailed in the Site Environmental Management Plan (SEMP) in Section 11 of this RAP.

The general Site establishment activities will include:

- mobilise to the Site with a suitably sized excavator, equipment and personnel to undertake the works;
- any above or below ground services located in the works area will be identified and disconnected (if required)
 prior to works starting;
- installation of temporary fencing around the works area;
- installation of Site safety requirements and warning signage (Section 11); and
- installation of Site environmental controls as per Section 11 (ie silt fencing, bunding and odour controls).

7.3 Step 3: remediation works

7.3.1 HAZMAT removal (if required)

Hazardous materials in the form of asbestos containing material (ACM) has been found in garden beds along the western Site boundary in the vicinity of the former UPSS infrastructure (JBS&G, 2029b and EMM, 2020). In addition, lead concentrations in soil have been found to exceed ASC NEMP (2013) criteria in at least one location, BH17 in Figure 3.1 (EMM, 2020). Based on the Site history and previous investigations, it is possible that ACM and elevated lead concentrations in soils may be encountered during excavation works and therefore mitigation measures have been included in this RAP under Section 11.1.1.

7.3.2 UST removal and remediation

The removal of the USTs and associated infrastructure will be undertaken by a suitably licenced contractor in accordance with NSW environmental and safety requirements and industry best practice, including:

- Australian Standard AS 4976 (2008): The removal and disposal of underground petroleum storage tanks;
- AS 1940–2004: Storage and handling of flammable and combustible liquids (AS, 2004);
- AS 4976–2008: The removal and disposal of underground petroleum storage tanks (AS, 2008); and
- Code of Practice: Storage and handling of dangerous goods (NSW WorkCover Authority, 2005).

The remediation of former USTs will include the infrastructure identified in the September 2020 DSI (EMM, 2020) (Table 2.2) and Table 6.4. It is possible that additional infrastructure may be identified during the excavation works. The general process for remediation will be:

- any pavements across the former UPSS area will be removed and disposed of at a licensed disposal facility or sent to landfill;
- if applicable, geophysical methods will be used to delineate the size and orientation of the former UPSS infrastructure:
- all USTs which contain liquids (ie T1, T3 and T4 in Figure 2.2) will be decommissioned in accordance with UPSS Technical Note: Decommissioning, Abandonment and Removal of UPSS (DECCW, 2010). The currently proposed method for removal of liquid will be via vacuum extraction, and will be completed before any disturbance to the in-situ position of each UST;
- tanks to be remediated in-situ (ie T2) which contains soil will have soil removed by air or water blading with vacuum extraction, waste material will be disposed of at a licensed landfill;
- tanks will be confirmed to be gas free. If tanks are not gas free, degassing will be undertaken using applicable methodologies (ie compressed CO₂);
- T2 will be filled with an inert material, such as concrete slurry, sand or foam;
- at each remaining UST, the subsurface will be excavated to expose the top of the UTS and related fuel lines;
- the use of pneumatic tools (drill and/or reciprocating saw) will be used to cold cut the top of tanks and create an opening large enough to inspect the tanks' interior;
- all concrete anchors (if any) associated with tanks will be removed;
- the UST will be lifted from the subsurface under supervision of an EMM Site supervisor. Fuel lines, remote fill points and vent pipes will be removed. The Site supervisor will inspect and document the UST condition;
- the walls and base of the excavations will be validated by a suitably qualified EMM Site supervisor in accordance with the validation plan presented in Section 10.1;
- overburden material will be stockpiled on waterproof lining in an agreed location with environmental controls installed. This material will be sampled and put back in situ if it meets validation criteria (Section 10.2). If it does not meet validation criteria it will be kept stockpiled and recommendations made on remediation options; and

• tanks will again be confirmed to be gas free and mechanically cut-up on site by an excavator using shears and/or rippers and disposed offsite at an appropriately licensed recycling facility.

7.3.3 Pipework decommissioning

The following methodology will be applied for fuel related infrastructure:

- bulk product will be removed from the lines if present using a vacuum extraction truck (existing pumps not operational);
- residual product if present in the lines will be flushed with the use of a vacuum truck which connects to the pipe work and flushes the lines with water. This recovered water/product will be classified in line with NSW EPA Waste Classification and disposed of to a suitably licensed facility;
- piping is drained and disconnected, and all fittings and internal tubes that are not specifically required for the selected purging method are removed and plugged;
- gaskets will be assumed to have asbestos containing materials and will be disposed at an appropriate off-site facility;
- cut and remove fuel line infrastructure and dispose off-site at an appropriate recycling or disposal facility; and
- remove all other associated fuel related infrastructure, including lines.

7.3.4 Notification to SafeWork NSW

SafeWork NSW will be notified within 7 days of the UPSS removal and abandonment. Information provided to SafeWork will include:

- tank size and location;
- abandonment method;
- Site plan identifying abandoned tank location and site boundaries; and
- copy of the letter from the suitably qualified contractor confirming the abandonment.

7.3.5 Source removal validation/characterisation

Following removal of each of the USTs and related subsurface infrastructure, material beneath will be sampled and analysed for CoPCs. If samples meet validation criteria the material will be considered validated, if they do not meet validation criteria samples will characterise the material and inform further remediation options.

Validation and characterisation sampling, including sampling frequencies is presented in Section 10.1.

7.3.6 Soil investigation – test pitting

On completion of all demolition works, EMM will conduct an investigation by test pitting to close out identified data gaps in soil to the extent practicable which include, but are not limited to:

- locations down gradient of the UPSS infrastructure. EMM notes that the Site slopes to the west and south west and that a brick lined storm water wall lies immediately west of the former UPSS infrastructure. It is possible that impact may have migrated along the stormwater wall to the south and south west; and
- any other area where the potential for contamination is identified after demolition which may include locations of staining, distressed plants or locations where filling is likely.

Based on the above criteria test pitting is proposed at up to 8 locations. EMM notes that this may change dependent on the findings after the demolition works.

EMM notes that the extent of excavation works to the west may be limited by the requirements of Sydney Water to maintain the integrity of the stormwater channel. Any specific requirements will be incorporated into the RAP prior to works commencing.

7.3.7 Characterisation of excavated soils

Excavated soils will be stockpiled and segregated according to the area they have been removed and based on visual observations, odour and PID readings during the remedial works. Stockpiles will be sampled and characterised. If samples meet validation criteria, material will be reinstated into the excavation voids. If samples do not meet validation criteria, analytical results will be used to further inform remediation options. The sampling and analysis requirements for excavated material is provided in Table 7.1 below.

Table 7.1 Excavated material characterisation

Item	Description
Sample collection	Samples will be collected by the use of an excavator bucket. Disturbed samples will be retrieved from the bulk sample within the bucket by the use of a trowel. Larger "blocks" of soil will be broken apart in order to obtain a sample from the centre which has not been in contact with the bucket.
Field screening	Use of a calibrated PID and visual assessment.
Rate/ frequency	Stockpiles will typically be sampled at a ratio of one sample per 25 m ³ of material, in line with Table 4 within ASC NEPM (2013) Schedule B2; Guideline on Site Characterisation stockpile based on stockpile volume and homogeneity.
Analytical suite	All samples for TRH, BTEXN and lead.
	Select samples will also be analysed for asbestos and heavy metals.

7.3.8 Reinstatement of excavations

Overburden soils removed from around the tanks will be replaced in the area the tank was removed from after it has been suitably validated and/or used on-site to fill excavations if required. Clean fill validated as virgin excavated natural materials (VENM) or excavated natural materials (ENM) may also be used to reinstate the excavations. Compaction will be completed by track rolling.

7.3.9 Monitoring well installation

The following methodology will be applied if additional monitoring well installations are required to monitor contamination related to the former UPSS:

- service location will be completed at each monitoring well location;
- non-intrusive digging will be undertaken for the first 1.5 m bgl or to refusal at bedrock;

- wells will be progressed to their target depths using an appropriate method for the Site conditions by a licenced driller; and
- when the target depth is achieved, groundwater wells will be constructed in accordance with the "Minimum Construction Requirements for Water Bores in Australia, 4th ed, 2020."².

² Minimum Construction Requirements for Water Bores in Australia 2020, Fourth edition, National Uniform Drillers Licensing Committee 2020

8 Contingencies

8.1 Excavation contingencies

8.1.1 Dewatering

Based on the September 2020 DSI (EMM, 2020), groundwater lies at approximately 3.1–3.3 m bgl in the vicinity of the former UPSS infrastructure. It is possible that groundwater could be intersected during the tank removals. As such, the following management measures will be implemented in the event that groundwater is intersected:

- where practicable, sumps will be created at the base of the excavations to collect groundwater;
- groundwater will be sampled and classified to facilitate appropriate off-site disposal prior to the collection of the validation samples from the floor and walls of the excavation pits;
- sediment control measures will be implemented to mitigate potential runoff off-site;
- a discharge to stormwater licence will be sought from the local council, provided the sample analysis indicates compliance with council criteria;
- if the sampled groundwater does not comply with council criteria, a licence to discharge to the sewer as trade waste will be sought from Sydney Water; and
- if the sampled groundwater does not comply with Sydney Water criteria then the groundwater will be pumped and disposed off-site at an appropriate licenced treatment facility.

8.1.2 Management of soil impacts

The excavation works will be supervised by EMM to facilitate on-site recommendations regarding the fate of the excavated soil materials. Recommendations will be made based on PID field screening measurements and by field observations (visual and olfactory).

The following approach will be followed to address soil impacts:

- removed overburden soils will be stockpiled separately and visual/olfactory impacted material segregated to an agreed location on-site;
- excavation of any vents and product line trenches to a nominal 600 mm depth to allow validation sampling,
 these materials also be transported to a relevant stockpile area; and
- representative samples from the stockpiles will be collected for laboratory analysis, with an analysis rate of:
 - a minimum of three for stockpiles <75 m³;
 - one per 25 m³ of stockpiled soils >75 m³; and
 - as per the ASC NEPM (2013), lower sampling rates may be derived for soil quantities >200 m³ by applying statistical analysis.

8.2 Remediation contingencies

It is anticipated that the proposed remedial methodology will be effective in characterising the hydrocarbon impact present. However, additional contingencies may be required should the scenarios detailed in Table 8.1 arise:

 Table 8.1
 Summary of remediation contingencies

Scenario	Contingencies/actions required
Significantly contaminated water (ie free product) is identified during remediation works.	Work will be suspended until EMM can further assess the impacted perched/groundwater and the associated risks. Once the assessment is completed, a decision on any changes to the remediation approach will be made.
Additional underground tanks or fuel infrastructure are encountered at the Site.	All information relating to additional tanks and/or infrastructure will be recorded and discussed with Epsom regarding the course of action to be taken. The objective of the remediation is to remove all redundant UPSS to the extent practicable.
Additional hazardous material is encountered which was not previously identified.	All information relating to additional ACM identified during the remediation will be recorded for provision to regulatory bodies and EMM will consult with Epsom on the course of action to be taken.
Excessive vapours emanating from excavated and stockpiled soil or excavation pits.	Works will be suspended and EMM will advise on how best to proceed regarding safe management of contaminant vapours to remove risks posed to onsite workers. Once the assessment is completed, a decision on any changes to the remediation approach will be issued to Epsom for review and implementation.
Contamination found in areas previously not identified.	Work will be suspended and EMM will consult with Epsom on how best to proceed regarding the newly identified contamination. Once the contaminant is evaluated, a decision on any changes to the remediation approach will be issued for review and implantation.

9 Waste management

Waste disposal activities will be conducted in accordance with the Waste Classification Guidelines (NSW EPA, 2014) and other relevant legislation.

9.1 Waste classification

Representative soil samples will be collected and analysed from excavated or stockpiled material at an approximate rate of:

- a minimum of three for stockpiles <75 m³;
- one per 25 m³ of stockpiled soils >75 m³; and
- as per the ASC NEPM (2013) lower sampling rates may be derived for soil quantities >200 m³ by applying statistical analysis.

Soil samples collected for waste classification purposes will be analysed for metals, TRH, BTEX, OC/OP, PCB and asbestos. Selected samples will also be analysed using the Toxicity characteristics Leaching Procedure (TCLP) for metals and PAH. Laboratory results will be compared against Tables 1 and 2 of the waste classification guidelines (NSW EPA, 2014).

Soils that require off-site disposal during the remediation works will be disposed of at a suitably licenced facility. Disposal documents will be provided by the remediation contractor to confirm the source, type and quantity of material and will be included in the validation report.

Validation sampling of surface soils within stockpile footprints will be completed at a rate of one sample per 50 m^2 with the samples analysed for the relevant CoPCs.

9.2 Imported soils

Imported fill materials to reinstate excavations must be Virgin Extracted Natural Material (VENM) or excavated natural materials (ENM). These materials must have a validation certificate from the supplier which confirms the material is VENM or ENM, otherwise the material must be subject to validation sampling prior to importation to site. Imported materials will be observed by a suitably qualified environmental consultant when it is delivered to site to confirm:

- the material is consistent with the VENM source; and
- there are no visual of olfactory indications of contamination (ie staining or odours).

Soil importation dockets will be provided by the remediation contractor to confirm the source, type and quality of material to be included in the validation report.

9.3 Materials handling

In accordance with the POEO Act 1997, removal of waste material from the Site will only be conducted by contractors holding appropriate licences or approvals to handle and dispose of the materials. Contractors will track the movement of all materials excavated and handled as part of the remediation works. This will include stockpile locations, off-site disposal records for soils and volume estimates for exported or imported soils.

10 Validation

Validation sampling will be required for the following areas:

- UST pit excavations, fuel line trenches and bowser footprints; and
- petroleum hydrocarbon impacted soil excavations areas (if applicable).

Validation works will be completed in accordance with the DQOs in Section 6.1.

10.1 Validation sampling and analysis plan

Validation sampling and visual inspections will be required for the excavations created by removal of UPSS infrastructure, including the USTs, fuel lines and fill points. Where applicable, visual indications of contamination (staining, odours or asbestos) may be used to guide more intensive validation sampling.

Validation sampling methodology, frequency and analysis is summarised below in Table 10.1.

Table 10.1 Validation and characterisation sampling

Item	Description
Sample Collection	Samples will be collected by the use of the excavator bucket. Samples will be retrieved from the bulk sample within the bucket by the use of a trowel. Larger "blocks" of soil will be broken apart in order to obtain a sample from the centre which has not been in contact with the bucket
Field Screening	Use a calibrated PID, field screening will be used to inform soil material segregation and stockpiling, with the following nominal categories:
	• 0–100 ppm
	• >100 ppm-450 ppm
	 >450 ppm (based on an indirect indicator of LNAPL being 500 ppm after Davis et al. (2009))
Rate / Frequency	Soil validation/characterisation samples will be collected in accordance with the Technical Note: Investigation of Service Station Sites (NSW EPA, 2014) as follows:
	 UST excavations/excavations - created during removal of tank sands will require samples per excavation as follows:
	 UST <4 m long: at least one sample from each wall and one from the floor in the centre of the tank;
	 UST is 4–10 m long: at least two samples from each long wall, at least one from each short wall, and one under each end of the tank; and
	 fuel lines - one sample every 5 m of line.
	 Other soil excavations (outside UPSS excavations - if required):
	 Base: minimum of one sample per 10 m x 10 m grid; and
	 Walls: minimum of one sample from each wall per 10 linear metres.
	Samples will also be collected from depths in line with the soil validation criteria discussed in Section 10.2 to allow comparison of the analytical data to the depth appropriate criteria.
Analytical Suite	All samples for TRH and BTEXN, PAHs and lead.
	Samples collected of fill materials (not natural material) should be analysed for asbestos and heavy metals.

Table 10.1 Validation and characterisation sampling

Item	Description
Soil Sample Labelling, Storage and Transport	All samples will be clearly labelled with unique sample identification numbers consisting of the date, sample location, depth of sample and samplers initials. In the case of field duplicates and triplicates sample containers will be labelled so as to not reveal their purpose or sample location to the laboratory.
	All samples will be kept chilled in an ice-filled cooler or dedicated site refrigerator prior to dispatch to a National Association of Testing Authorities (NATA) registered laboratory under standard chain of custody procedures.
	All samples collected during remediation works will be stored at the laboratory (3 months for metals [28 days for mercury] or 14 days for organics) and could potentially be selected for analysis if further delineation of identified contamination is required.
Field logging	The soil profile will be logged in the field and will be conducted in accordance with AS1726-1993. Any soils sampled will be classified in accordance with the Unified Soil Classification System (USCS) <i>Procedure for Determining Unified Soil Classification (Visual Method)</i> , United States Department of the Interior, Bureau of Reclamation (USBR) 5005-86, including observation of any anthropogenic material (ie asbestos cement (AC) sheeting etc.) or olfactory evidence of contamination if it is observed.
	Descriptions will be recorded on field log sheets for uniformity in descriptions, presentation and to aid in any future interpretations.
Decontamination	Decontamination procedures will be performed before initial use of re-useable equipment and after each subsequent use (eg the use of a trowel).
	All re-usable sampling equipment (eg metal trowel or spatula etc.) will be decontaminated between each sample by scrubbing with a solution of Decon-90 followed by a rinse in potable water.
	For each day of sampling, following decontamination procedures, a rinsate blank will be completed by running laboratory prepared deionised water over the re-usable sampling equipment for collection directly into laboratory prepared sampling containers for analysis.
	At each sample location a new set of disposable nitrile gloves will be used to directly collect soil samples from the re-useable sampling equipment for placement into the laboratory prepared glass sampling containers.

If results from the validation sampling indicate that there is residual contamination, the tank pit (s) will be further excavated and re-validated at the following sampling rates:

- one sample per wall and base, or one sample per 5 linear meters (whichever is greater); and
- one sample per 2 m depth interval (ie 0-2m, 2-4 m, etc)

10.2 Validation criteria

The primary reference for environmental site assessment in Australia is the ASC NEPM (2013). This document includes criteria for use in evaluating potential risk to human health and ecosystems from chemical impacts, which are presented as generic investigation levels and screening levels appropriate to a Tier 1 risk-based assessment applicable to the first stage of site assessment. The application of these investigation levels and screening levels is subject to limitations, and their selection and use should be in the context of a CSM relating to the nature and distribution of impacts and potential exposure pathways (as summarised in Section 5).

10.2.1 Soil validation criteria

Soil validation criteria adopted for the proposed remediation works are summarised below in Table 10.2. The criteria are primarily Tier 1 screening criteria and are not designed to be remediation criteria. An exceedance of a criterion would trigger additional evaluation of the site-specific circumstances, and not necessarily indicate that large scale remediation is required.

Table 10.2 Soil validation criteria

Adopted Validation Criteria	Rationale and Selection
Health Investigation Levels (HILs), ASC NEPM (2013)	ASC NEPM (2013) HILs provide a framework for the use of investigation and screening levels. The framework is applicable for assessing human health risk via all relevant pathways of exposure and covers a broad range of metals and organic substances.
Health Screening Levels (HSLs), ASC NEPM (2013)	ASC NEPM (2013) presents HSLs for petroleum compounds which have been derived through consideration of risks to human health, with the main focus being on the vapour exposure pathway. The HSLs have been calculated using parameters that generally correspond to data available and as such aim to provide levels that are realistic rather than overly conservative.
	The Site is zoned as IN1: General industrial (Table 2.1) and it is understood the Site will be divested and it is assumed the land will be used for commercial or industrial purposes in future. HSL D Commercial/Industrial are deemed to be suitable validation criteria.
	Subsoil conditions (beneath the paved areas) is characterised by gravelly sand fill to 0.9 m bgl followed by naturals sands with minor peat inclusions to a depth of at least 3.0 m bgl.
	Where the value is non-limiting (NL) for depth range 0 to <2 m, direct contact values will be adopted (CRC CARE #10, part 2, Friebel, E. and Nadebaum, P., 2011): HSL D Direct Contact.
Ecological Investigation Levels (EILs) and Ecological Screening Levels (ESLs),	ASC NEPM (2013): Ecological Investigation Levels (EILs) and ecological screening levels (ESLs) apply to the top 2m of soil.
ASC NEPM (2013)	EILs and ESLs protective of Areas of Ecological Significance have been selected for soil samples collected in the site.
	EILs and ESLs protective of Commercial/Industrial have been selected.
Intrusive Maintenance Worker (Shallow Trench) Health Screening Levels, CRC CARE Technical Report No. 10, Part 2	intrusive work into shallow soil onsite.
and recomment report no. 10, rare 2	Adopted Validation Criteria: Soil HSLs – Intrusive Maintenance Worker (Sand) 0-<2 m bgs.
	Where the value is non-limiting (NL) for depth range 0 to <2 m, direct contact values will be adopted (the Friebel, E. and Nadebaum, P., 2011): HSL Intrusive Maintenance Worker Direct Contact.

Table 10.2 Soil validation criteria

Adopted Validation Criteria	Rationale and Selection
Management Limits, Amended ASC NEPM (2013)	The ASC NEPM (2013) Management Limits for TRH are applied after the consideration of the relevant HSLs as there are a number of policy considerations which reflect the nature and properties of petroleum hydrocarbons. There are Management Limits for specific soil types (coarse and fine) and land uses in the Amended ASC NEPM (NEPC, 2013). The Management Limits avoid or minimise the potential effects of the following and require consideration of site-specific factors to determine the maximum depth to which the limits should apply:
	Formation of observable LNAPL.
	Fire and explosive hazards.
	• Effects on buried infrastructure, eg penetration of, or damage to, in-ground services by hydrocarbons.
	This guideline is considered relevant for the upper 2 m of soil for the majority of the Site.
	As the Site geology is dominated by sandy fill and natural sands, the soil texture 'coarse' will be adopted.
Soil Aesthetic Issues	In accordance with the Amended ASC NEPM (NEPC, 2013), the aesthetic state of sites is required to be taken into account. Aesthetic issues generally relate to the presence of materials with a negligible risk or non-hazardous inert foreign material in soil or fill resulting from human activity. Sites that have been assessed as being acceptable from a human health and environmental perspective may still contain such foreign material. An assessment of the site aesthetics requires consideration of the natural state of soil on any given site, and a comparison between it and the soil encountered during investigation works. In particular, soils onsite should not exhibit discolouration (staining), a malodorous nature (odours) or abnormal consistency (rubble and asbestos).
	Both odours and staining should be considered for commercial end use.

10.2.2 Groundwater validation criteria

Table 10.3 below summarises the groundwater validation criteria adopted for the remediation validation works.

 Table 10.3
 Groundwater validation criteria

Adopted Validation Criteria	Rationale and Selection
Health Screening Levels (HSLs), ASC NEPM (2013)	The Amended NEPM 2013 (NEPC, 2013) presents health screening levels (HSLs) for petroleum compounds which have been derived through consideration of risks to human health, with the main focus being on the vapour exposure pathway.
	Adopted HSL to be protective of future onsite and offsite receptors is:
	HSL D Commercial Industrial, strata type Sand, with depth profile of 2-4m for groundwater encountered at the site at a maximum depth of 3.3 m bgl.
Protection of Aquatic Ecosystems – Moderate to Highly Disturbed Level of Protection (ANZG, 2018)	Guidelines for the protection of Aquatic Ecosystems provide trigger values for organic and inorganic chemicals for the protection of freshwater and marine aquatic ecosystems (ANZG, 2018).
	The Amended ASC NEPM (NEPC, 2013) Schedule B2 suggests a search radius of 500 m from a site boundary for ecological receptors. This guidance gives a maximum screening distance for viable receptors.
	Adopted as a conservative measure to screen shallow groundwater which may enter nearby moderate to highly disturbed surface water ecosystems.

10.3 Quality assurance and quality control

10.3.1 Field methods and quality control measures

The following QA/QC procedures will be incorporated into the validation sampling and analysis program:

- intra-laboratory duplicates (at a rate one per 20 samples analysed) will be submitted to the primary National Association of Testing Authorities (NATA) accredited external analytical laboratory (ALS) for analysis of CoPC;
- inter-laboratory duplicates (at a rate one per 20 samples analysed) will be submitted to the secondary NATA
 accredited external analytical laboratory (Envirolab) for analysis of CoPC;
- collection and analysis of rinsate samples (collected following decontamination of field sampling equipment) at a rate of one per media, per day; and
- trip blank and trip spike samples will be analysed at a rate of one per day.

10.3.2 Laboratory QA/QC

Details of the specific analytical techniques utilised by EnviroLab and ALS are provided in the laboratory reports with each sampling event. Chain of Custody documentation accompanies all analytical data provided by EnviroLab and ALS.

As part of the QA/QC programme, relative percent differences (RPD) between the duplicate and its primary sample will be calculated. To be acceptable, the RPD must be within the limits detailed in Table 6.2, which is recommended in Australian Standard 4482.1-2005. The RPD results and an EMM data QA/QC report will be presented with the DSI report.

10.3.3 Analytical data validation

Analytical data validation is the process of assessing if data are in compliance with method requirements and Project specifications. The primary objectives of this process are to ensure that data of known quality are reported, and to identify if the data can be used to fulfil the overall Project objectives.

Specific elements of data validation that will be checked and assessed for this Project are:

- preservation and storage of samples upon collection and during transport to the laboratory;
- sample holding times;
- required limits of reporting;
- frequency of conducting quality control measurements;
- laboratory blanks;
- rinsate blanks:
- trip blanks;
- field duplicates;
- laboratory duplicates;

- inter-laboratory duplicates;
- laboratory control samples;
- surrogates; and
- the occurrence of apparently unusual or anomalous results, eg laboratory results that appear to be inconsistent with field observations or measurements.

The overall reliability of the analytical data will be assessed against the DQIs as required by NSW EPA.

10.3.4 Corrective actions

Analytical data that fail to meet the predetermined data quality objectives and acceptable limits of accuracy and precision will be managed using the following corrective actions on a case-by-case basis:

- reanalyse suspect samples, provided sample or extract is within holding time;
- evaluate and amend sampling and/or analytical procedures;
- resampling and reanalysis;
- accept the data as an estimate with an acknowledged level of bias and imprecision; and
- discard the data.

In the event that data of questionable reliability are used, restrictions and limitations associated with the use of such data will be clearly identified. Failure to meet the DQOs will be reported and the significance to the outcome of the program will be addressed.

10.4 Validation report

Upon completion of the remediation works, a validation report will be prepared by EMM to validate the remedial works in accordance with the Consultants reporting on contaminated land – Contaminated land guidelines (NSW EPA, 2020).

11 Site environmental management plan

The remediation contractor will be responsible for preparing Remediation Work Method Statements (RWMS) to manage environmental, health and safety hazards. The RWMS will address the issues and controls presented in the following items of the Site Environmental Management Plan (SEMP).

11.1 Health and safety

A project specific health and safety plan for the remediation works will be prepared and available on-Site. The plan will identify all potential risks associated with the works and detail safety measures to be adopted to protect both on-Site workers and the general public.

11.1.1 Asbestos management

During the remediation works, ACM may be encountered and will require management and disposal to an off-site landfill licenced to receive 'Special Waste – Asbestos' under the Waste Classification Guidelines (NSW EPA, 2014). Detailed health and safety measures will be provided in the health and safety plan developed of the remediation works.

11.1.2 Hours of operation

Operational hours for any remediation work will be in consultation with Randwick City Council and is likely to be as follows:

Monday to Friday: 7:00 am to 5:00 pm

Saturday: 7:00 am to 4:00 pm

Sunday or Public Holidays: Not permitted

11.1.3 Site access

Site access will be restricted to authorised staff and contractors who have completed the Site induction and are suitably trained for the remediation works. Perimeter fencing must be installed and maintained around the remediation area and secured from outside entry outside of operational hours. Signage will include key contact details and be erected at the Site entry gate.

11.1.4 Personal protective equipment

Appropriate personal protective equipment (PPE) must be worn by all workers. The minimum PPE when working or visiting remediation areas will be disposable overalls, steel cap boots, gloves, eye protection. Hard hats and high visibility clothing must be worn on-site at all times.

First aid and safety equipment including fire extinguishers will be provided at the Site for emergency use.

11.1.5 Training

All Site workers and visitors will be inducted so as to be aware of potential hazards at the Site. As part of the Site induction, all employees, sub-contractors and visitors will be made aware of the emergency protocols for the project.

11.2 Erosion and sediment control

Erosion and sediment control measures will be in place during the remediation works in accordance with Managing Urban Stormwater, Soils and Construction, 4th edition (Landcom, 2004). EMM notes the close proximity of the former UPSS infrastructure to a stormwater drain (Bunnerong Stormwater Channel No 11) and therefore strict adherence to appropriate sediment control measures will be critical during the remediation works.

Erosion and sediment control measures may include:

- installation of silt fencing and bunding as appropriate for the Site;
- silt fences must be installed upright and securely fixed. Accumulated sediments behind silt fences must be periodically removed to maintain the retention capacity of the fencing;
- inspections of the control measures in place must be completed daily during the remediation works or immediately following heavy rainfall events to confirm the measures are in good condition; and
- the surface area of exposed soils at a given time should be minimised by adopting a controlled sequence of works and progressive approach to excavations.

11.3 Stockpile management

Stockpiles are to be appropriately located and tracked to avoid mixing of difference classes of waste material. Bunding and sediment controls will be installed as appropriate to minimise runoff from stockpiles to surrounding areas. Stockpiles should be formed in a manner that reduces the potential from stockpile erosion.

11.4 Soil haulage

Soil tracked off the Site due to vehicles and plant should be avoided. The following measures are to be adopted to minimise the risk of tracking soils off-Site:

- the number of vehicles and plant on-site should be minimised where practicable;
- the frequency of vehicles and plant entering and exiting the site should be minimised where practicable;
- equipment and plant should be washed down before leaving the Site; and
- covers should be used on vehicles transporting soils for off-site disposal.

11.5 Noise

Vehicles and equipment which produce substantial noise will only be used during the approved operational hours for the remediation works. Equipment and plant used must be fitted with noise attenuating devises and adopt measures to minimise noise being produced at the Site as much as practicable. Vehicles and equipment should be maintained and operated in an efficient manner and should be switched off or throttled to a minimum when not in use.

11.6 Odour and dust

Measures to reduce dust and odour from the Site may include:

- covering contaminated excavation faces or stockpiles with barriers or applying water during high winds; and
- apply odour suppressant sprays. Where strong odours are present on or off the Site, work may need to stop and the odour source covered or treated.

11.7 Communication

If complaints are made to the on-site workers or sub-contractors, the complaint will be documented in a complaints register. Incident reporting will be completed for complaints regarding environmental issues such as pollution related to the works. Corrective actions will be taken as soon as practicable. Complaints and incidents should be reported to local Council as soon as practicable.

12 Approvals and licences

State Environmental Planning Policy (SEPP) No. 55 – Remediation of Land, relates to the decision-making process for conducting remediation activities and making planning decisions regarding contaminated land. Category 1 remediation works require development consent while Category 2 remediation works do not. The proposed works at the Site are considered to be Category 2 works under SEPP 55, which require:

- notification to Council at least 30 days prior to works commencing; and
- at least 14 days prior to works commencing, provide copies of investigations reports and a remediation action plan, including contact details, to Council.

Randwick City Council was provided with notification of the proposed Category 2 remediation works by EMM on 13 August 2020. The rational for Category 2 remediation works is based on a review of Clauses 9, 14 and 15(1) of the SEPP, and is provided in detail in Appendix B.

The proposed remediation area is adjacent to a Sydney Water stormwater drainage canal (Bunnerong Stormwater Channel No. 11), which is listed on the Sydney Water State Agency Section 170 Heritage and Conservation Register. EMM has commenced engagement with Sydney Water and will incorporate requirements for the protection of the stormwater channel as required in this RAP.

13 Conclusions

The Site will be considered suitable for land use purposes under the current land zoning (IN1: General industrial) subject to appropriate remediation implemented according to this RAP and SEPP 55.

This RAP

- has been developed in accordance with current industry practice;
- has selected a preferred remediation strategy (excavation and offsite disposal) based on the site-specific nature of the Site and currently available remediation technologies; and
- details a plan which will validate that the completed works were successful.

EMM notes that Sydney Water requirements may affect the remediation methodology proposed, for example, limitations to the extent of excavation that can be conducted adjacent to the stormwater channel. Any necessary amendments will be made following receipt of Sydney Water advice.

References

AS 2004, AS1940-2004: Storage and handling of flammable and combustible liquids, Standards Australia, Sydney

AS 2008, AS4976–2008: The removal and disposal of underground petroleum storage tanks, Standards Australia, Sydney

ANZG, 2018. Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australian and New Zealand Governments and Australian state and territory governments, Canberra ACT, Australia

DECCW, 2010. UPSS Technical Note: Decommissioning, Abandonment and Removal of UPSS, Department of Environment, Climate Change and Water NSW, Sydney, January 2010

EMM Consulting (EMM), 2020. Detailed Site Investigation - 46-52 Raymond Avenue, Matraville, NSW. 28 August 2020

enHealth, 2004. Environmental Health Risk Assessment Guidelines for assessing human health risks from environmental hazards. Department of Health and Ageing, Canberra ACT

enHealth, 2005. Management of asbestos in the non-occupational environment. Department of Health and Ageing, Canberra ACT

Davis, GB, Wright, J & Patterson, BM 2009, Field assessment of vapours, CRC CARE Technical Report no. 13, CRC for Contamination Assessment and Remediation of the Environment, Adelaide, Australia

Friebel, E. & Nadebaum, P., 2011. *Health Screening Levels for petroleum hydrocarbons in soil and groundwater*. Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE). Technical report series No. 10

Herbert C., 1983, Sydney 1:100 000 Geological Sheet 9130, 1st edition. Geological Survey of New South Wales, Sydney

Imray & Langley, 1996. Health-based Soil Investigation Levels. National Environmental Health Forum. 1996

Herbert C., 1983, Sydney 1:100 000 Geological Sheet 9130, 1st edition. Geological Survey of New South Wales, Sydney

Heritage NSW, 2020. *NSW State Agency Heritage Register*, available at https://www.heritage.nsw.gov.au/search-for-heritage/search-for-nsw-heritage/, accessed on 24 August 2020

JBS&G Australia Pty Ltd (JBS&G) 2019a, Draft Preliminary Site Investigation and Limited Detailed Site Investigation, 42-52 Raymond Avenue, Matraville, NSW, Lot 1 DP369668, Lot 32 DP8313 and Lot 1 DP 511091. 20 September 2019

JBS&G Australia Pty Ltd (JBS&G) 2019b, Hazardous Building Materials Survey, 42-52 Raymond Avenue, Matraville, NSW, 20 September 2019

Landcom, 2004. Managing Urban Stormwater: Soils and Construction, 4th Edition. Printed March 2004

National Environment Protection Council (NEPC) 1999. National Environment Protection (Assessment of Site Contamination) Measure 2013 (ASC NEPM, 2013)

National Health and Medical Research Council (NHMRC) 2011. *National Water Quality Management Strategy. Australian Drinking Water Guidelines* 6. National Health and Medical Research Council and Natural Resource Management Ministerial Council (NHMRC/NRMMC). January 2011

National Uniform Drillers Licensing Committee (NUDLC), 2020. *Minimum Construction Requirements for Water Bores in Australia*, Fourth edition

NSW Department of Environment and Climate Change (DECC) 2009. *Guidelines on the Duty to Report Contamination under the Contaminated Land Management Act 1997*

NSW EPA 2020a. Underground Petroleum Storage Systems Guidelines for implementing the Protection of the Environment Operations (Underground Petroleum Storage Systems) Regulation 2019, December 2020

NSW EPA 2020. Guidelines for Consultants Reporting on Contaminated Sites. Updated 5 May 2020

NSW EPA 2014a. Waste Classification Guidelines, Part 1: Classifying Waste

NSW EPA 2014b. *Technical Note: Investigation of Service Station Sites.* NSW Environment Protection Authority, Sydney, April 2014

NSW EPA 1995. Sampling Design Guidelines, September 1995

NSW WorkCover Authority 2005, Code of Practice: Storage and handling of dangerous goods, Gosford

Pickford and Rhyder (2020a). Friable asbestos removal, Unit 1 (Warehouse Area), 42-46 Raymond Avenue, Matraville NSW 2036, Conditional partial clearance certificate (ref. RMA-200519-Unit 1 Warehouse Area (Demolition of Structure)-Partial Asbestos Clearance)

Pickford and Rhyder (2020b). Friable asbestos removal, Unit 1 (Administration/Office Complex), 42-46 Raymond Avenue, Matraville NSW 2036, Conditional partial clearance certificate (ref. RMA-200519-Unit 1 Warehouse Area (Demolition of Structure)-Partial Asbestos Clearance)

Pickford and Rhyder (2020c). Friable asbestos removal, Unit 2, 42-46 Raymond Avenue, Matraville NSW 2036, Conditional partial clearance certificate (ref. RMA-200513-Unit 2 (Demolition of Structure)-Partial Asbestos Clearance)

Pickford and Rhyder (2020d). Friable asbestos removal, Unit 3, 42-46 Raymond Avenue, Matraville NSW 2036, Conditional partial clearance certificate (ref. RMA-200507-Unit 3 (Demolition of Structure)-Partial Asbestos Clearance)

Pickford and Rhyder (2020e). Friable asbestos removal, Unit 3, 42-46 Raymond Avenue, Matraville NSW 2036, Conditional partial clearance certificate (ref. RMA-200603-Unit 4 (Demolition of Structure)-Partial Asbestos Clearance)

SafeWork Australia 2018. How to safely remove asbestos Code of Practice, October

Standards Australia 2005. Australian Standard AS4482.1 - Guide to the Investigation and Sampling of sites with Potentially Contaminated Soil. Part 1: Non-volatile and Semi-Volatile Compounds

Standards Australia 1999. Australian Standard AS 4482.2 *Guide to the sampling and investigation of potentially contaminated soil. Part 2: Volatile substances*

Western Australia (WA) Department of Health (DOH) 2009. *Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Study Areas in Western Australia*. Dept. Of Health, Perth. May 2009

World Health Organisation (WHO), 2008. Petroleum Products in Drinking-water

United States Environmental Protection Agency (USEPA) 2018. Regional Screening Levels (RSLs) for Industrial Soil, as updated May 2018 (SVOCs and VOCs without HILs or HSLs)

Appendix A

Historical data

Column C	creating opportunities			Asbestos
2013 Table A(I) Comm/red D Soil Sci 185, for Vapore Intension, Sand				andii sotsədzA
70.13 Table 14(3) Conney and 200 Soil 145 for Vapore Introducing Sand Anti-Table 14(3) Conney and 200 Soil 145 for Vapore Introducing Sand Anti-Table 15(3) State	EQL NEPM 2013 Table 1A(1) HILs Com			
2013 Table 18(6) Eick for Commyford Casare Sold	NEPM 2013 Table 1A(3) Comm/lic 0-1m 1-2m 2-4m	r Intrusion,		
Act Color Deta Deta Color Deta Deta	>=4m NEPM 2013 Table 1B(5) Generic E NEPM 2013 Table 1B(6) ESLs for C 0-2m	IL - Comm/Ind omm/Ind, Coarse Soil		
Part	NEPM 2013 Table 1B(7) Managen PFAS NEMP 2020 Industrial/ com	ent Limits Comm / Ind, Coarse Soil nercial (HIL D)		
BIND 04, 200715 15/07/2000	Location ID	Field ID	Date	
Berris 0.9 200715 1560/12020	BH01 BH07	BH01_0.4_200715 RH02_0.5_200715	15/07/2020	0 0
BRIOL 0.3 20775 15501/2020	BH03	BH03_0.9_200715	15/07/2020	0
BHIS G. S. 200715 THENLICATE 15/01/2000 BHIS G. S. 200715 THENLICATE 15/01/2000 BHIS G. S. 200712 Z./01/2000 BHIS G. S. 200713 Z./01/2000 BHIS G. S. 200714 Z./01	BH04	BH04_0.9_200715	15/07/2020	0
BHOS 0.3 20072 2101/1020 BHOS 0.3 20072	BHOS	BH04_0.9_200715 - [TRIPLICATE] BH05_0.5_200715	15/07/2020	c
BHIO 1.3 A0072 22/01/2020	BH06	BH06_0.3_200722	22/07/2020	0
BHOR 3 & 20072 21/01/200	BH07	BH07_0.3_200722	22/07/2020	0
Heirit 2.7 200772 21/01/2020 Heirit 2.7 200772 21/01/2020 Heirit 2.2 200772 21/01/2020 Heirit 0.12 200722 21/01/2020 Heirit 0.12 200723 21/01/2020 Heirit 0.12 200724 21/01/2020 Heirit 1.02 200724 21/01/2020 Heirit 1.02 200725 21/01/2020 Heirit 1.02 200725 21/01/2020 Heirit 1.02 200726 21/01/2020 Heirit 2.02 200727 21/01/2020 Heirit 2.02 200727 21/01/2020 Heirit 0.12 200727 21/01/2020		BH07_3.5_200722 BH08_0.3_200722	22/07/2020	c
BHOD 0.3, 20072 21/01/2000	BH08	BH08_2.7_200722	22/07/2020	
BHIO 0.3 200722 22/07/2000	BH09	BH09_0.3_200722 BH09_1.5_200722	22/07/2020	0
BHI D.S. 20072 22071/2000 BHI D.S. 20072 22071/2000 BHI D.S. 20072 22071/2000 BHI D.S. 20072 22071/2000 BHI S.S. 20072 22071/2000 BHI D.S. 20072 22071/2000 BHI	BH10	BH10_0.3_200722	22/07/2020	0
BH11, 55, 20072 21/01/2020	BH11	BH11_0.5_200722	22/07/2020	0
BH13 15 A00724 A10712000	21.0	BH11_5.5_200724 BH12_0.5_200722	24/07/2020 22/07/2020	0
Heart 2 200721 24071200 2	21Ug	BH12_1.6_200722	22/07/2020	
BH14, 0.3, 20072 21/01/2020	BH13	BH13_1.5_200724	24/07/2020	0
BHIS 0.3 200733 23/01/2020	BH14	BH14_0.3_200722 BH14_3.9_200722	22/07/2020	0
Heir 6 19, 20073 24071200	BH15	BH15_0.3_200723 BH15_3 9_200723	23/07/2020	0
Hear J. J. 20073 23/01/2020 Hear J. 20074 23/01/2020 Hear J. 20	BH16	BH16_0.9_200723	23/07/2020	0
Cont. 1 & 20073		BH16_1.7_200723 BH17_0.3_200723	23/07/2020	
Heat D. 20073 Color Color	BH17	BH17_1.6_200723	23/07/2020	0
BH15 0.3 200733 23/07/2000		BH17_1.6_200723 - [TRIPLICATE]	23/07/2020	
BH19 1.8, 20073 23(01/2020 11	BH18	BH18_0.3_200723 BH18_5.5_200724	23/07/2020	٥
HILLY J. 200723 23/01/2020 HILLY J. 200724 23/01/2020	21	BH19_1.8_200723	23/07/2020	
BH20 03 A00733 23497/2000	er in	BH19_1_200723	23/07/2020	0
Hart Date 200731	BH20	BH20_0.3_200723	23/07/2020	0
Bell 10, 2, 20073 Safety (2000)		BH21_0.2_200723	23/07/2020	0
BILL 1.2, 20073 23 071/2020 BILL 1.2, 20073 23 071/2020 BILL 2, 3.2, 20073 23 071/2020 BILL 2, 3.2, 20073 23 071/2020 BILL 2, 0.2, 20073 23 071/2020 BILL 2, 2.2, 20074 24 071/2020 BILL 2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2,	BH21	BH21_0.2_200723 - [TRIPLICATE]	23/07/2020	
Hears 3 a, 200733 23/60/12020 Hears 3 0.9 200733 23/60/12020 Hears 1 0.9 200733 23/60/12020 Hears 2 1.5 200733 23/60/12020 Hears 2 1.5 200733 23/60/12020 Hears 0 2.5 200733 23/60/12020 Hears 0 2.5 200734 23/60/12020 Hears 0 2.	BH22	BH22_1.2_200723	23/07/2020	1
Hart 0.5 200724 250071200 Hart 0.5 200734 250071200 Hart 0.5 200733 250071200 Hart 0.5 200733 250071200 Hart 0.5 200734 250071200 Hart 0.5 200734 250071200 Hart 0.5 200734 240071200 Hart 0.5 200734 240077200 Hart 0.5 200734 24007720 Hart 0.5 200734 24007720 Hart 0.5 200734 24007720		BH22_3.9_200723	23/07/2020	c
Held, 0.3, 200733 23 1917/2000 Held, 0.3, 200733 23 1917/2000 Held, 0.3, 200733 23 1917/2000 Held, 0.3, 200734 23 1917/2000 Held, 0.3, 200774 23 1917/2000 CQLID, 200774 24 1917/2000 Held, 0.3, 24 19	BH23	BH23_1.5_200723	23/07/2020	0
Heriz 6.3 20073 25 601/2020 25 607/202	BH24	BH24_0.3_200723	23/07/2020	0
BH S. G. S. 200733 23.017.2020 BH S. G. S. 200724 24.017.2020 CLOL _200724 24.017.2020 BH S. G. S. 200724 24.017.2020 BH S. G. S. 200724 24.017.2020 BH S. G. S. 200724 24.017.2020 CLOL _200724 24.017.2020	BH25	BH25_0.3_200723	23/07/2020	0
CGL01_200724		BH25_0.9_200723 BH26_1_200724	23/07/2020	0
Hartz 4.4, 200724 A491712020 Hartz 0.5, 200724 A49172020	BH26	QC101_200724	24/07/2020	
BH72_2,00774		BH27_0.5_200724	24/07/2020	0
BH28_0.3_200724 24/07/2020	BH27	BH27_2_200724 OC102_200724	24/07/2020	
	аспа	BH28_0.3_200724	24/07/2020	0

creating opportunities			Asbestos	Inorganic	8			Metals	als												
			Aspesios		2							ı	(ST:		(ST:		əut	ın) ji	eta	(:
			sə.	ntent	ntent		(1/1+11					elome (10:2	omer (4:2 F			nsəue	stooor	aue	ooroo	oorou	
			diì sote9	oD eture	oD eruts		ojua	ber	F			Fluoroti bise scid	Fluorotel	Fluorotel bise sind	Fluorotel onic acid thyl iluorooct	onamide tFOSA) 'luorooct	(AASOR)	namido FOSE) lethyl luorooct onamide	(A2O39) hylperflu lfonamio	(VIMeFC hylperfli imeroìlu MeFOSE	luorobut onic acid
			Detect	ioM %	ioM %	nks Cad	Arse mg/kg	ag/kg	mg/kg	Mer m	R/kg Zinc	S:01 phus /g (STH %	hlus 상	-	13-N	Saufte (NEt N-et M-et	程 Gth)	N-M Fg pert	-N tem tam A	-N Tem Tem Tem Tem Tem Tem Tem Tem Tem Tem	
EQL				1	0.1	Н	Н	1	Ţ	Н	1	0.2	0.1	Н	0002	1 0	2 5	1	0.2	0.001	0.0001
NEPM 2013 Table 1A(1) HILs Comm/Ind D Soi NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL	'M 2013 Table 1A(1) HILs Comm/Ind D Soil 'M 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand					m	000,	240,000	1,500	730 6	,000 400,000										
0-1m 1-2m																					
2-4m >=4m																					
NEPM 2013 Table 1B(S) Generic EIL - Comm/Ind NEPM 2013 Table 1B(S) ESLs for Comm/Ind, Coarse Soil	Comm/Ind n/Ind, Coarse Soil					1	160														
NEPM 2013 Table 18(7) Management PFAS NEMP 2020 Industrial/ commerci	Limits Comm / Ind, Coarse Soil																				
location ID	Cipleia	Date																			
	BH01_0.4_200715		0	H	7.8	<0.4	2 2	2 5	e 5	<0.1	8 13			\parallel	\parallel	\parallel	\parallel	\parallel			
	BH03_0.9_200715 BH03_0.9_200715	15/07/2020	0		3.4	<0.4	1 0	3 8	8 18	<0.1	1 8 39				\parallel	\parallel					
	QC100_200715 BH04_0.9_200715		0		19	<0.4	2 4 2	25	10	0.7	22 38	<0.2	<0.1	<0.0001 <0.	0002 <	1 40	.2	∀	<0.2	<0.001	<0.0001
	BH04_0.9_200715 - [TRIPLICATE]		c			<0.4	5 5	29	49												
	BH06_0.3_200722		0		10	40.4	12 26	51	23	40.1	15 4	<0.2	40.1	<0.0001 <0.	.0002	100	5	7	<0.2	<0.001	<0.0001
BH07	BH07_0.3_200722		0		3.4	<0.4	24 <1	7 0	• 4	<0.1	7 7										
	BH07 3.5 200722 BH08 0.3 200722		0	\dagger	13	40.4	2 2	7 7	7 7	0.1	- *	<0.2	<0.1	<0.0001	> 2000	8	2	∀	<0.2	<0.001	<0,0001
	BH08_2.7_200722				4.3	<0.4	1	∀ .	7	<0.1	7										
ВН09	BH09_0.3_200722 BH09_1.5_200722		0		5.3	<0.4	1 1	o ∀	, \	<0.1	6 18	<0.2	<0.1	<0,0001 <0.	> 2000	1 40	.2 <5	7	<0.2	<0.001	<0,0001
BH10	BH10_0.3_200722 BH10_0.8_200722		0		4.1	<0.4	4 4	7 7	2	<0.1	2 3										
BH11	BH11_0.5_200722		0		0.1	<0.4	17	2	4	40.1	1 13	9	Š	2000	0000	1		4	<	1000	2000
BH12	BH12_0.5_200722		0		6.5	<0.4	2 2	en .	12	<0.1	2 120	2007	Tiny	TOOOO	70007	7	7	7	7:05	T00'05	TOOMYOS
	BH12_1.6_200722 BH13_0.3_200724				8.5	<0.4	1 2	0 0	3 1	<0.1	10										
	BH13 1.5 200724 BH14 0.3 200722		0 0		2.9	<0.4	24	7	1 7	<0.1	1 9	<0.2	1.0>	<0.0001 <0.	.0002	6	2	⊽	<0.2	<0.001	<0.0001
BH14	BH14_3.9_200722		,		15	40.4	1	∀	∀	H	H	<0.2	1.0>	<0.0001 <0.	0002 <	11	.2 <5	₹	<0.2	<0.001	<0.0001
BH15	BH15_0.3_200723 BH15_3.9_200723		0		20	<0.4	7 2	30	35	<0.1	20 55					+					
BH16	BH16_0.9_200723 BH16_1.7_200723		0		4.4	<0.4	2 4 A	∀ ∀	₽ ₽	<0.1	∆ ∆ ∆	<0.2	<0.1	<0.0001 <0	.0002	8	22	∀	<0.2	<0.001	<0.0001
	BH17_0.3_200723 BH17_1.6_200723		c		5 16	<0.4	1 1 2	790	2 000	<0.1	2 13					\parallel					
BH17	QC200_200723 QC200_200723 BH17_16_200723 - [TBIBI ICATE]	23/07/2020	,	18.8			7 3	267	221	0.4	5 591										
BH18	BH18_0.3_200723		0		2.9	<0.4	T	4	2 2	30.1	H		3	3000	000					000	000
0110	BH19_1.8_200723			1	6.2	<0.4	2 2	7 0 4	ž m t	<0.1	7 5 5	<0.2	10.1	<0.0001 <0.	20002	9 5	7 8	7 7	<0.2	<0.001	<0.0001
	BH19_1_200723		0	2	5.4	<0.4	2 4	m	7 7	<0.1	9 V V	C'ON	0.00	COOLOGS COOLOG	2000	\parallel	\parallel				700000
ВН20	BH20_0.3_200723 BH20_1.6_200723		0		3.1	<0.4	4 4 2 2	⊽ ∀	2 	<0.1							\parallel				
BH21	BH21_0.2_200723 BH21_0.2_200723 - [TRIPLICATE]		0		12	<0.4	cd 10	12	430	<0.1	47 29 36 33	<0.2	<0.1	<0.0001 <0	.0002	70	62 65	₹	<0.2	<0.001	<0.0001
BH22	BH21_1.3_200723 BH22_1.2_200723	23/07/2020	1		2.2	<0.4	4 4 0 0	₽ ₽	. □	<0.1	♥ 8	<0.2	<0.1	<0.0001 <0.	> 2000	1 <0.	.2 <5	⊽	<0.2	<0.001	<0,0001
	BH22_3.9_200723 BH23_0.9_200723	- 1 1	0		17	<0.4	2 2	∀ ∀	7 7	<0.1	g g										
	BH23_1.5_200723 BH24_0.3_200723	- 1 1	0		37	<0.4	9 9	∀ 52	₽ 4	<0.1	36 53										
	BH24_2.7_200723 BH25_0.3_200723		o		13	<0.4	42 42	∀ -	1 2	×0.1	₩ 7	<0.2	1.0>	<0.0001	0000	0	2	V	C.0>	<0.001	<0.0001
BH25	BH25_0.9_200723				2.2	<0.4	4			<0.1	1 2										
BH26	BH26_1_200724 QC101_200724		٥		4.9	<0.4	4 4	3	4 4	<0.1	2 22	<0.2	100	<0.0001 <0.	2000	8	2	▽	<0.2	<0.001	<0.0001
	BH26 4.4 200724		c		19	<0.4	24	∀ 8	∀ 5	<0.1	2 2										
BH27	BH27_2_200724 BH27_2_200724	24/07/2020			7.6	50.4	1 2 2	3 4 0	7 7 7	40.1	6 43 23	<0.2	<0.1	<0.00001	20002	100	22	7	<0.2	<0.001	<0.0001
BH28	BH28_0.3_200724	1 1	0		5.7	<0.4	2 2	7	4 4	<0.1	5 14	<0.2	<0.1	<0.0001 <0.	2000	1 40.	.2 <5	∀	<0.2	<0.001	<0.0001
	BH28_1_200724 BH29_0.3_200724	- 1 1	0 0		43	<0.4	24 4	∀ 9	7 79	<0.1	4 30										
	QC202_200724 BH30_0.3_200724		٥	4.2	8.2	↑ V	\$ 2	θ. 4	13	<0.1	2 17										
внзо	BH30_2.7_200724	1 1			23	<0.4	1	P	1	<0.1	1	<0.2	<0.1	<0.0001 <0.	.0002	4	2 3	7	<0.2	<0.001	<0.0001
	TB02_200724	1 1		\parallel		\parallel	\prod		\parallel	\parallel	\prod			\prod	\prod	\parallel	\prod	\parallel	$\prod_{i=1}^{n}$		
	TB03_200724	- 11		-	1	-										$\frac{1}{2}$	$\frac{1}{2}$	-			

\sum	ities =
Σ	Dortur
Ш	000
	ating

усеизриднеие	mg/kg 0.1						<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	00.1	40.1	<0.1	0.1	40.1	40.1	<0.1	<0.1	40.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0	<0.1	<0.1	<0.1	40.1	<0.1	<0.1	0.07	<0.1	<0.1	20.1	2001	<0.1 <0.1		
ənəleritiqei	mg/kg 0.1		370				<0.1	40.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	40.1	40.1	<0.1	<0.1	40.1	<0.1	40.1	0.1	<0.1	0,0	<0.1	0.1	<0.1	<0.1	Tiny	<0.1	<0.1	<0.1	<0.1	<0.1	40.1	40.1	<0.1	0.1	40.1	į	<0.1	₽,	1 4
SATA ATE SU to mui	0.1								2.9	<0.1		0.4		<0.1			1.0>		1.0		6.0	0.5			1.0>	<0.1			T'0>	0.2			;	1.2	3.2	1	19	1.0			0.4		
bns 2xH39 fo mui 2O3	Mg/kg 0.1				20,000				7.7	<0.1		0.4		<0.1			<0,1		1.0>		6.0	0.5			<0.1	<0.1			7.00	0.2				1.1	3.1		16	91			0.4		
ABO AW) 2A99 to mui																										<0.2																	
2A19 to mui	м g/kg 0.1								5.9	<0.1		0.4		<0.1			<0.1		1.0>		6.0	0.5			<0.1	<0.1			1.05	0.2				1.2	3.1	1	19	1.0>			0.4		
oionsosbnuorouhe (AGnU39) bio	P. R UE/kg								<0.5	<0.5		<0.5		<0.5			<0.5		<0.5		<0.5	<0.5			<0.5	<0.5			505	<0.5				<0.5	<0.5	Ш	<0.5	<0.5			<0.5		
oionsoabirtoroulha (AG1T39) bio	ug/kg 0.5								<0.5	<0.5		<0.5		<0.5			<0.5		<0.5		<0.5	<0.5			<0.5	<0.5			505	<0.5				<0.5	<0.5		<0.5	<0.5			<0.5		
onsoabstatoroultra (AG9T79) bios	ug/kg								8	V		9		v			V		40		0	Ą			Ø	V			0	8				Ð	V		8	V			V		
oionestragoroulta (A9979) bioi	р. в µg/kg 0.2								<0.2	<0.2		<0.2		<0.2			<0.2		000		Z:0>	<0.2			<0.2	<0.2			7:05	<0.2				<0.2	<0.2		<0.2	<0.2			<0.2		
Perfluoropentane (PFPeS)	д и и g/kg 0.1								<0.1	<0.1		<0.1		<0.1			<0.1		V0.1		1.0>	<0.1			<0.1	<0.1			1.05	<0.1			4	<0.1	<0.1		<0.1	<0.1			<0.1		
oionstooordihe (AO39) bio	mg/kg 0.0001				20				0.0002	<0.0001		<0,0001		<0.0001			<0,0001		<0.0001		1000.0>	<0.0001			<0.0001	<0.0001			1000.0>	<0.0001				0.0001	<0.0001		0.0027	<0.0031			<0.0001		
Perfluorooctanesulfo ic acid (PFOS)	mg/kg 0.0001								0.0027	<0.0001		0.0004		<0.0001			<0,0001		10000×		0.0009	0,0005			<0.0001	<0.0001			T000.0>	0.0002				0.0011	0.0031	1	0.016	0.016 <0.0001			0.0004		
9erfluorooctane Ulfonamide (PFOSA)	ъ м µg/kg 1								∀	P		T>		₽			₽		⊽		TV.	∀			⊽	₽			D	₽			,	V	∀		77	₽			₽		
oinsnononanoic (PFNA)									<0.1	<0.1		<0.1		<0.1			<0.1		40.1		<0.1	<0.1			<0.1	<0.1			<0.1	<0.1				<0.1	<0.1		<0.1	<0.1			<0.1		
oionexanovorlita (AxH34) bio	р. я µg/kg 0.1								<0.1	<0.1		<0.1		<0.1			<0.1		<0.1		40.1	<0.1			<0.1	<0.1			1705	<0.1				<0.1	<0.1		<0.1	<0.1			<0.1		
(2xH19) bise sinotlus	ж/L 0.01																																										
Perfluorohexane	цg/kg 0.1								<0.1	<0.1		<0.1		<0.1			<0.1		<0.1		1.0>	<0.1			<0.1	<0.1			T:0>	<0.1				<0,1	40.1 40.1		<0.1	0.1 <0.1			<0.1		
oionestanoroulhe (AqH1q) bio									<0.1	<0.1		<0.1		<0.1			<0.1		<0.1		1.0>	<0.1			<0.1	<0.1			1.05	<0.1				<0.1	<0.1		<0.1	<0.1			<0.1		
Perfluoroheptane uffonic acid (PFHpS)	д и и g/kg 0.1								<0.1	<0.1		<0.1		<0.1			<0.1		<0.1		7.0>	<0.1			<0.1	<0.1			1.05	<0.1				<0.1	<0.1		0.3	<0.1			<0.1		
oionsoaboboroulhe (AGoG19) bio	μg/kg 0.5								<0.5	<0.5		<0.5		<0.5			<0.5		<0.5		<0.05	<0.5			<0.5	<0.5			90.5	<0.5				<0.5	<0.5		<0.5	<0.5			<0.5		
oionecabovoulha (AG19) bio	ug/kg 0.5								<0.5	<0.5		<0.5		<0.5			<0.5		<0.5		<0.5	<0.5			<0.5	<0.5			<0.5	<0.5				<0.5	<0.5		<0.5	<0.5			<0.5		
Perfluorodecanesulfo iic acid (PFDS)	μg/kg 0.2								<0.2	<0.2		<0.2		<0.2			<0.2		200>		<0.7	<0,2			<0.2	<0.2			7705	<0.2				<0.2	<0.2		<0.2	<0.2			<0.2		
oioneshudoroultre (A879) bio									<0.2	<0.2		<0.2		<0.2			<0.2		0.0>		<0.2	<0.2			<0.2	<0.2			7.02	<0.2				<0.2	<0.2		<0.2	<0.2			<0.2		
		NEMI 2013 Table 1A(1) HIS Comm/ind D'Soil NEMI 2013 Table 1A(3) Comm/ind D'Soil HSL for Vapour Intrusion, Sand	Ell-Comm/lind	r Comm/Ind, Coarse Soil	ement Umits Camm / Ind, Coarse Soil mmercial (HIL D)		- 1 - 1											- 1 - 1		1 1	- 1		1 1	BH17_0.3_200723 23/07/2020 BH17_1.6_200723 23/07/2020 GC200_200723 23/07/2020	 - 1 1	- 1			- 1 - 1	- 1 - 1	- 1 - 1	- 1 1		- 1 - 1	- 1	1 1				1 1			
	EQL	NEPM 2013 Table 1A(1) HILS CO. NEPM 2013 Table 1A(3) Comm/I	0-1m 1-24m 2-4m >=-4m	NEPM 2013 Table 18(6) ESLs for 0-2m	NEPM 2013 Table 18(7) Manages PFAS NEMP 2020 Industrial/ com	Location ID	BH01 BH02	вноз	BH04	BHOS	0010	200	BH08	BH09	BH10	-	TTUG	BH12	BH13	BH14	BH15		BH16	BH17	BH18	BH19		BH20	BH21	BH22	BH23	VC na	+7UG	BH25	BH26		BH27	60110	87119	BH29	ВН30		

NEW 2013 Table 14(1) His Committed D Soil NEW 2013 Table 14(2) Committed D Soil His Lev Vapour Introdon, Sand 1 mm	creating opportu	S s s s s s s s s s s s s s s s s s s s	
2013 Table JA(5) Hits Committed D Soil HSL for Vapour Introseon, Sand Committed	10 <u>3</u>		
Milk 2000 industrial Commenced Intel Com	NEPM 2013 Table 14(1) NEPM 2013 Table 14(3) 0-1m 1-2m 2-4m >=4m NEPM 2013 Table 1B(5) N PPM 2013 Table 1B(6) N PPM 2013 Table 1B(6)	for Vapour Intrusion, for Sapour Intrusion, defended to the saper soil	
Peter Pete		agement Limits Comm / Ind, C commercial (HIL D)	
BHOLD 0.4, 200715 BHOLD 0.4, 200715 GLOOD 200717 GLOOD 200	Location ID	Field ID	Date
Method of 200715	BH01	4.0	15/07/2020
CCLOB_200715	BH03	0.9 20071	15/07/2020
BHOM GO 2500715.		QC100_200715	15/07/2020
BHOS 0.5 SOUTS BHOS 0.2 SOUTS BHOS 1.2 SOUTS BHOS 1.2 SOUTS BHOS 1.2 SOUTS BHOS 1.2 SOUTS BHOS 0.2 SOUTS BHOS	BH04	BH04_0.9_200715 - [TRIPLICATE]	15/07/2020
Hende, 0.3, 200772 Hende, 0.3, 200773 Hende,	ВНОЅ	BH05_0.5_200715	15/07/2020
PRIOR_ALS_ALS_ALS_ALS_ALS_ALS_ALS_ALS_ALS_ALS	BH06	BH06_0.3_200722	22/07/2020
BHIO 35, 200722		BH07 0.3 200722	22/07/2020
Herita 6.2 2, 200772 Herita 6.2 2, 200722 Herita 6.2 2, 200723	ВНОЛ	BH07_3.5_200722	22/07/2020
BHOD 51, 500772	BH08	6 7	22/07/2020
BHO9 12, 200722	oona	e e	22/07/2020
HHIO 0.5 20072 HHIO 0.5 20072 HHI 0.5 20072	2	BH09_1.5_200722	22/07/2020
HILL 0.5 (2007) 2.	BH10	BH10_0.3_200722 BH10_0.8_200722	22/07/2020
Herri S. 62, 200724		8	22/07/2020
Hell 2, 16, 20072.	TTUG	5.5	24/07/2020
BH13 0.2 200724	BH12	5.0	22/07/2020
BHI3 14,5 200724	00110	18	24/07/2020
Hell 4, 23, 200723	CTIO	1.5	24/07/2020
HHIS 5.3 200723 HHIS 5.3 200723 HHIS 5.3 200723 HHIS 6.2 200723	BH14	3.9	22/07/2020
Helt 5,0 2,000733 Helt 6,0 2,000733 Helt 6,0 2,000733 Helt 6,1 2,000733 Helt 7,0 2,000733 Helt 7,0 2,000733 Helt 8,2 2,000734 Helt 9,1 2,000734 Helt 9,1 2,000737 Helt 9,1 2,000737 Helt 0,2 2,000737 Helt 0,2 2,000737 Helt 0,2 2,000737 Helt 1,1 2,0	RH15	[8]	23/07/2020
HEILE, 17, 200723 HEILE, 17, 200723 HEILT, 12, 200723 HEILT, 16, 200723 HEILT, 16, 200723 HEILE, 12, 200723		BH15 3.9 200723	23/07/2020
BHIT 0.2 20023	BH16	BH16_1.7_200723	23/07/2020
HIT JA 6.200733		BH17_0.3_200723	23/07/2020
Herro, 1.6, 200723 - [TRRPLCATE] HHR 0.2, 200723 HHR 0.2, 200724 HHR 0.1, 2, 200724 HHR 0.1, 2, 200724 HHR 0.1, 2, 200723	BH17	BH17_1.6_200723	23/07/2020
HH 5.0.3 20073 HH 18.5.3 20073 HH 18.5.3 20073 HH 19.1 2.0073 HH 19.1 20073 HH 19.1 3.0073 HH 19.1 3.0073		2	23/07/2020
BHIS 5.5 20024 BHIS 1.2 20023 BHIS 1.2 20023 BHIS 1.2 20023 BHIS 1.2 20073 BHIS 1.2 20073 BHIS 1.2 20073 BHIS 1.3 20073 FIRPLICATE BHIS 1.3 20073		0.3 200723	23/07/2020
BHI9.14, 20073 QCOL, 200723 BHI9.14, 200723 BHI9.14, 200723 BHID.14, 200723 BHID.10, 200723 BHID.10, 200723 BHID.10, 100723 BHID.10, 10072	BH18	5.5	24/07/2020
#4411_200713 #H191_1_200713 #H20_1_2_200723 #H21_0_2_200723 #H21_0_2_200723 #H21_0_2_200723 #H21_1_3_200773	9	BH19_1.8_200723	23/07/2020
8410 0.3 200733 8410 0.1 2, 200733 8411 0.2, 200733 - IRRULCATE 8412 0.3, 200733 - IRRULCATE 8412 1.3, 200733	CTIO	BH19 1 200723	23/07/2020
8H20_16_200723 8H21_02_200723 8H21_02_200723-[TRIPLICATE] 8H21_13_200723	BH20	BH20_0.3_200723	23/07/2020
BH21_0.2_200723 - [TRIPLICATE] BH21_1.3_200723		BH20_1.6_200723	23/07/2020
1.3_200723	BH21	BH21_0.2_200723 - [TRIPLICATE]	23/07/2020
		1.3_200723	23/07/2020

Table 1 - Soil Results

creating opportunities									PAH											TPH				
			еиэрһұһуһепе	згризсепе	ens/a)anthracene	nzo(a) pyrene	DR) inzo(a)pyrene TEQ ic (Half)	nzo(a)pyrene TEQ	nso(b+j+k)fluorant	eualyiaq(i,ti,8)ozna	идзбиб	neosithne(d,k)snebn	noranthene	enero.	deno(1,2,3- d)pyrene d) yrene d) sene	seitives)	onorhtrene enorhtrene	10 mu2) 9ED-01:		2-cz8	983-6	63-	0-сте	sunim C1) 612-0.
EQL			mg/kg 0.1	mg/kg 0.1		98 E O)1) 2	+	98 E 0	mg/kg 0.1	mg/kg 0.1	mg/kg 0.1	mg/kg 0.1	50	o,o 🛣 ⁻¹	7 kg po		o+ ⊑ ₀ ∑	20 kg cr		mg/kg	10 gg/ce	20 kg	mg/kg So vs
NEPM 2013 Table 1A(1) HILs Comm/ NEPM 2013 Table 1A(3) Comm/Ind D 0-1m	NEPM 2013 Table 1A(1) HILs Comm/Ind D Soil NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand					40	40	40														Ī		
1-2m 2-4m																								
NEPM 2013 Table 1B(5) Generic EIL - Comm/Ind NEPM 2013 Table 1B(6) ESLs for Comm/Ind, Coarse Soil	· Comm/Ind m/Ind, Coarse Soil					1.4																		170
NEPM 2013 Table 18(7) Managemen PFAS NEMP 2020 Industrial/ commen	agement Limits Comm / Ind, Coarse Soil commercial (HIL D)					*																	1,000	0/1
Location ID	Field ID	Date	-	Š		-	i.	i.	ç	3	3	3		Ş			3			3	007	L.C.	Ę	Ç.
	- 1	15/07/2020	40.1	0.1	40.1	105	5 <0.5	<0.5	<0.2	40.1	0.1	<0.1	0.1	<0.1	0.1	05	1 <0.1		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	420	099	5 5	20 050	\$200
		15/07/2020	<0.1	<0.1	<0,1 <(0> <0	5 <0.5	<0.5	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1)> <u>501</u>	.1 <0.5	1	V20	270	300	<25	<50	<50
BH04		15/07/2020	<0.1	<0.1	<0.1	0> <0'	5 <0.5	<0.5	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	D> 501	1 <0.3		<50	<100	<100	<25	<50	\$2000
		15/07/2020	<0.1	<0.1	<0.1	.05	3 <0.5	<0.5	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0> <0:	1 <0.1		<50	<100	<100	<25	<50	<50
		22/07/2020	40.1	40.1	1.05	0.05	5 <0.5	<0.5	0.2	<0.1	0.1	<0.1	<0.1	<0.1	0.1	20.05	1000		050	<100	<100	425	×50	450 450
внот		22/07/2020	<0.1	<0.1	<0.1	.05	5 <0.5	<0.5	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	.05 <0	.1 <0.1	1	<50	<100	<100	<25	<50	<50
	- 1	22/07/2020	6 6.1	0.1	100	05 0	5 <0.5	<0.5	0.2	40.1	0.0	<0.1	40.1	<0.1	0.1	203	10 40.5	-	<50	×100	<100	<25	<50	\$50 \$50
8H08		22/07/2020	<0.1	<0.1	<0.1	.05 <0.	5 <0.5	<0.5	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	D> 50'	1 <0.1		<50	<100	<100	<25	<50	<50
BH09		22/07/2020	0.1	<0.1 <0.1	0.1	05 00.05	5 40.5	<0.5	<0.2	<0.1	1.0	<0.1	0.1	<0.1	<0.1	13	10 0.1		\$50 \$50	V 100	<100	<25 <25	<50 <50 <50	<50 <50
BH10		22/07/2020	0.1	40.1	1.00	05 <0	5 00.5	2.05	9.7	<0.1	1.0	0.1	40.1	1.00	60.1	203	1 0 0		050	<100	<100	222 735	×50	\$ 650
1110		22/07/2020	<0.1	40.1	40.1 <(105	5 <0.5	<0.5	<0.2	<0.1	40.1	<0.1	<0.1	<0.1	40.1	105	.1 <0.1		<50	<100	<100	<25	<50	<50
		24/07/2020	40.1	40.1	<0.1	0.05 <0	5 <0.5	<0.5	<0.2	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	201	1 <0.5		<50	<100	<100	<25	<50	<50 20
BH12		22/07/2020	<0.1	<0.1	<0.1	.05 <0.	5 <0.5	<0.5	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	.05 <0	.1 <0.1	1 1	<50	<100	<100	<25	<50	<50
BH13		24/07/2020	<0.1	40.1	0.1	1.05	5 <0.5	40.5	<0.2	40.1	40.1	40.1	40.1	<0.1	40.1	1.05	1.00.0		V20	<100	<100	<25	Q20	\$50
	1 1	22/07/2020	0.0	<0.1	<0.1	105	5 40.5	<0.5	<0.2	<0.1	1.0	<0.1	<0.1	<0.1	<0.1	105	1 40.1	1.0	050	<100	<100	5 55	<50	<50
	- 1	22/07/2020	60.1	0.1	50.1	005	5 0.5	40.5	<0.2	40.1	1.0	40.1	60.1	40.1	40.1	20.05	40.1		\$50 \$50	<100	<100	<25 <25	050	\$50
	1 1	23/07/2020	<0.1	<0.1	<0.1	005 <0	5 <0.5	<0.5	<0.2	<0.1	1.0>	<0.1	<0.1	<0.1	<0.1	0> <0	.1 <0.1		<50	<100	<100	<25	<50	<50
BH16	- 1 1	23/07/2020	<0.1	<0.1	<0.1	105	5 40.5	<0.5	<0.2	<0.1	1.05	\$0.1 \$0.1	<0.1	40.1	<0.1	105	.1 <0.1		<50	<100	<100	<25 <25	\$20 \$20	<50
217	- 1	23/07/2020	<0.1	<0.1	0.7	0.5 0.8	0.7	0.7	<0.2	0.2	0.7	<0.1 <0.1	1.1	<0.1	0.2	7. 0. d	0.6 0.8	1	\$ \$0	100 100	<100	<25	\$20 \$20 \$20	\$20
		23/07/2020																280	<50	140	140	<10	<50	<50
BH18		23/07/2020	40.1	<0.1	0.1	0.05	5 <0.5	<0.5	<0.2	<0.1	40.1	<0.1	<0.1	<0.1	0.1	201	11 <0.3	-	<50	<100	<100	<25	050	<50
	- 1	23/07/2020	0.1	<0.1	<0.1	105	5 <0.5	<0.5	<0.2	<0.1	40.1	<0.1	<0.1	<0.1	<0.1	105	.1 <0.1		95	<100	<100	<25	2005	<50
BH19		23/07/2020	<0.1	<0,1	<0.1	.05	3 <0.5	<0.5	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	.05	1 <0.1	280	\$ \$2 \$2	0017	<100	97 57	05 05	\$20 \$20
BH20		23/07/2020	<0.1	40.1	100.1	05 <0	5 <0.5	<0.5	40.2	<0.1	0.1	<0.1	<0.1	<0.1	0.1	20.05	10 <0.0	-	V20	<100	<100	<25	<50	V20
		23/07/2020	<0.1	1,4	3.6	4.4	4.4	4.4	3.9	1.5	3.9	0.3	9	0.3	6.0	39 4.1	1 9.4		250	180	<100	425	3 05	V20
BH21	- 1 - 1	23/07/2020	<0.1	<0.1	<0.1	:05 <0:	5 <0.5	<0.5	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0> <0:	.1 <0.1	1	<50	<100	<100	<25	<50	<50
ВН22	- 1	23/07/2020	0.1	1,00	100	05 05	5 40.5	<0.5	80.2	40.1	1.0	<0.1	1.05	<0.1	0.1	20.05	100		\$50	×100	<100	<25	<50	<50
BH23		23/07/2020	40.1	40.1	0.1	0.05 <0	5 <0.5	40.5	<0.2	<0.1	0.1	100	<0.1	40.1	0.1	201	1 000		VEO VEO	<100	<100	<25	×50	<50
BH24	1 1	23/07/2020	<0.1	<0.1	0.1	0.06	5 <0.5	<0.5	<0.2	<0.1	0.2	<0.1	0.2	<0.1	<0.1	.1 0.3	3 0.2		<50	120	<100	<25	<50	<50
		23/07/2020	<0.1	0.0	0.1	05 <0.	3 40.5	<0.5	<0.2	40.1	0.1	<0.1	0.1	<0.1	0.1	05 <0	1 <0.1		<50	0017	<100	52 52	\$20 \$20 \$20	\$20
BH25	1 1	23/07/2020	<0.1	<0.1	<0.1	1.05 <0.	5 <0.5	<0.5	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1.05 <0	.1 <0.1		<50	<100	<100	<25	<50	<50
ВН26	- 1 - 1	24/07/2020	<0.1	<0.1	<0.1	30.05	2002	<0.5	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	50%	70>		<50	<100	<100	<25	<50	<50
		24/07/2020	6.1	100	1.05	20.0	5 40.5	<0.5	9.2	40.1	0.1	<0.1	1,00	<0.1	20.1	20.05	1000		050	V100	<100	<25	050	\$ 50
BH27		24/07/2020	<0.1	<0.1	<0.1 <1	0> <0	5 <0.5	<0.5	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	30.05	.1 <0.3	1	250	V100	<100	<25	\$ \$0 \$ \$0	\$50 \$10 \$10 \$10 \$10 \$10 \$10 \$10 \$10 \$10 \$1
BH28	1 1	24/07/2020	0.1	40.1	0.1	005	5 <0.5	<0.5	40.2	<0.1	40.1	100	<0.1	40.1	<0.1	000	1000		9 9	001V	<100	25	220	8 8 6
9CHa		24/07/2020	<0.1	<0.1	<0.1	.05 <0.	5 <0.5	<0.5	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	.05 <0	.1 <0.1	1 1	<50	<100	<100	<25	<50	<50
		23/07/2020	107	107	200	20	200	0,	000	107	6	- 07	- 07	107	2	0.5	107	<50	050	7100	<100	410	250	\$50
ВН30	1 1	24/07/2020	<0.1	<0.1	<0.1 <	105	5 <0.5	<0.5	<0.2	<0.1	40.1	<0.1	<0.1	<0.1	40.1	105	1 <0.1		<50	<100	<100	52 5	- P	\$20 \$20
		15/07/2020				+	+	+				+		+	+	+	+	<u> </u>	+			52 52		
	1 1	24/07/2020		H	H	H		$\ $				H							L	\parallel		<25	r	

- 2	
	4
	- 0
	- 1
- >	- 1
	_ 0
1.1	11 0
-	
	b
1	
W.	
	۸ ۰
\sim	
	4 0

	creating opportunities				TRH						BTEX						PCB	,					
				ot			snu					, v	(,									
The control of the co				(lstot 🥱	-	-	-	X3T8 lstoT	Kylene Total	əuəzuəg				Arochlor 1016	Arochlor 1221	Arochlor 1232	Arochlor 1242	Arochlor 1248		Arochlor 1260	PCBs (Sum of t	1,1,2,2-	A.1.2-trichloro
The control of the	tl PM 2013 Table 1A(1) HILs Comm/	(Ind D Soil		05				0.2	0.5	0.5				0.1	0.1	0.1	0.1	0.1					
Note the company of	PM 2013 Table 1A(5) CommyInd 1-1m -2m	D soil HSL for Vapour Intrusion, sand	111				2		230	m m r													
Part December Part Par	-4m =4m						Ш			e e								t					
Part	PM 2013 Table 1B(S) Generic EIL PM 2013 Table 1B(6) ESLs for Cor 12m	- Comm/Ind mm/Ind, Coarse Soil				300			180	27		135											
Head D	PM 2013 Table 1B(7) Manageme. AS NEMP 2020 Industrial/ comme				3,500 10	0000					Н												
BHOLD, ASS, 200715 HSPOLIZAZIO HSPOLIZAZIO LSPOLIZAZIO BHOLD, ASS, 200715 HSPOLIZAZIO 15/01/2020 620 450 BHOLD, ASS, 200717 <	cation ID	Date																			-		
Heart 2.5 200715 15/01/2009 650 550 65	10			<50	H	100 <22	5 <25		S <3	<0.2	4 4	<0.5	2 4	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	0.1	7	V
CACTOL ADDRESS 15/01/2020 CACTOL ADDRESS CACTOL ADDR	03	1 1		630	\parallel	120	5 <25		7 0	<0.2	7 0	<0.5	7 0	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	0.1	V	V
Bellet 0.3 200715 TRIGHTANDE				920		180	225	<u> </u>	0 0	<0.2	4 4	50.5	4 2										
Head, 50, 2007153 15/01/2020 5/05	04			3																			
BHOT 3.5 200722 22/01/2020 CO.	50			25 65	4100	100	25 25	<u> </u>	7 7	<0.2	V V	20,5	00	×0.1	<0.1	40.1	<0.1	<0.1	0.1	0.1	0.1	7	V
BH09, 34, 200722 22/01/2020 SC	90			250	<100	100	5 <25		7 0	<0.2		<0.5	7 7			100	***************************************		100				
Heart O. 200722 24/07/2020 100/17/2020	70			<50	4100	100 <2.	5 25		0 0	<0.2	7 7	<0.5	4 4	ç	6	100	100	100	100		7	7	,
BHO 63, 200722 22/07/2020 5/05				<50	<100	100 <25	. 425		9 8	<0.2	7 0	<0.5	7 0	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	100.1	0.1	7 0	/ V
March 12	2	- 1		<50	<100	100 <21	5 <25	_	7	<0.2	∀ *	<0.5	2 2	1	1		1					1	
BH10 0.8.2 200722 22/01/2020 CS	6			\$20	<100	100 <25	525		0 0	<0.2	7 7	<0.5	2 2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	0.1	7	V
Heart 2, 200724 24/01/2020 10/01/2020	0			92 93	<100	100 <21	5 225		9 9	<0.2	4	40.5	4 4	0,	ç	0,	100	100	100		7	7	Ì
Heart, 26, 200724 24/07/2020 650	1	1 1		450	<100	100 <25	5 <25		7 89	<0.2	77	40.5	42 4		100	700	700	TOP	100				
Hear 20, 200724 20,070200 10,00000000000000000000000000000000				65 65	4100	100	25	<u> </u>	7	<0.2	4 4	50.5	Q 0	0,1	0,1	0.1	0,0	40.1	0.1	0.1	0.1	V 0	V V
Hear St. 200724 A407/2020 Co.	2			<50	<100	100 <25	5 <25		2 8	<0.2	. 4	<0.5	7 7				100	400	100				
BH44 0.3 200722 22/01/2000 CO.	8	- 1		20 050	4100 100	100	52 53	<u> </u>	0 0	<0.2	V V	0.5	8 8	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	0,1	7	V
Hear St. 200724 24017200 25	4	1 1		920	<100	100 <25	5 25		0 9	<0.2	4 4	50.5	2 2	40.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	100	7)
Heat 5.03 200723 234071200 CS				V20	<100	100 <25	. <25		9 8	<0.2	7 7	40.5	7 0	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	10.1	0.1	7 0	/ V
Heart 1.2 200723 2340/17020 Co. Heart 0.2 200723 2340/17020 Co. Co. Co. Co. Co. Co. Heart 0.2 200723 Co. Co. Heart 0.2 200724 Co.		- 1		8 8	4100	100	52 625	1	7	<0.2	7	0.5	2 0 0 0	1				Ì			1	-	
Harry 0.5 200723 24007200 CONTROL OF C		1 1		<50	<100	100 <21	5 <25		\$	<0.2	7	<0.5	2	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	0.1	0.1	▽	V
QC000_200723 Z49077200 Z400 BH1 0.4 200723 THRPUCATE Z49077200 Z400 BH2 0.4 200723 Z49077200 Z400 BH2 0.5 200723 Z49077200 Z400 CC01_200723 Z49077200 Z49077200 Z400 BH2 0.5 200723 Z49077200 Z49077200 Z490 BH2 0.5 200724 Z49077200 Z49077200 Z490 BH2 0.5 200724 Z49077200 Z49				20 050	4100	100	52 25	_	W W	<0.2	4 4	0.5	2 2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	0.1	7	V
Heat 0.2, 200723 240072200 25007220 2500722007220 2500722007220 2500722007220 2500722007220 2500722007220 2500722007220 2500722007220 2500722007220 2500722007220 2500722007220 250072200722007220 250072200722007220072200722007220072200				240	240	100 <10	01> <10	<0.2	<0.5	<0.2	<0.5	> 5.0>	0.5 <0.5										
BHIS 5.2 20072A 2407/200 5407/200 5407/200 5407/200 5407/200 5407/200 550 <td></td> <th></th> <th></th> <td><50</td> <td><100</td> <td>100 <25</td> <td>. <25</td> <td></td> <td><3</td> <td><0.2</td> <td><1</td> <td><0.5</td> <td>2 4</td> <td></td>				<50	<100	100 <25	. <25		<3	<0.2	<1	<0.5	2 4										
Column	•			220	<100	100 <21	5 <25		80 6	<0.2	7	<0.5	4 4	<0.1	40.1	<0.1	<0.1	<0.1	<0.1	0.1	0.1	7	V .
BHOD 0.3, 200723 23407/2020 650	6	- 1 - 1		<50	<100	100 <10	<10	<0.2	<0.5	<0.2	<0.5	<0.5 40.5	0.5 <0.5	T'05	T'05	1705	T'05	TOS	YOU'T	S T'OS	170	7	v
Hard 1, 2, 2007.2 24/07/2020 24/07/202				920	<100	100 <21	5 225	1	50 63	<0.2	7	40.5	2 4	0,	6	6	107	4			7	7)
Hear1_0.2_200723 Reput_CATE SAFOT 7220 Reput_CATE Reput_CATE	Q.	1 1			<100	100 <25	5 <25		7 0	<0.2	7 0	<0.5	7 0	100	TON	1.02	100	100	100	7100	7	7	
Heart 2.1 200723 24/01/2020 Co. Heart 2.2 200724 24/01/2020 Co. Hear	51			+	230	100 <2:	225		7	<0.2	7	40.5	2	<0.1	40.1	<0.1	<0.1	<0.1	v0.1	0.1	0.1	7	V
Hartz 24, 200723 24107/2020 550 Hartz 24, 200724 24107/2020 550 Hartz 52, 200724 24107/2020 550 Hart				<50	<100	100 <25	5 <25		\$	<0.2	17	<0.5	2										
Head 20 200723 234017200 CO. Head 20 200723 234017200 CO. Head 21 200723 234017200 CO. Head 22 200723 234017200 CO. Head 22 200724 234017200 CO. Head 20 2	2			9 99	4100	100	52 52	<u> </u>	0 0	<0.2	7 7	40.5	2 2	V0.1	700	<0.1	100	100	001	100	Til.	7	Y
Heart 0.2, 2007.24 24/01/2020 200 Heart 0.2, 2007.25 24/01/2020 200 Heart 0.2, 2007.25 24/01/2020 200 Heart 0.2, 2007.24 24/01/2	3			<50	<100	100 <21	5 <25		8	<0.2	0	<0.5	2 4	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	0.1	⊽	V
Heat, 2.1, 200733 23407/2020 CSC Heat, 5.0, 200733 23407/2020 CSC Heat, 5.0, 200733 23407/2020 CSC Heat, 5.0, 200734 23407/2020 CSC Heat, 5.2, 200734 CSC				500	200	100	525		2 0	<0.2	7 7	40.5	7 7	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	0.1	7	V
HIT2.0.3.4007154 HIT2.0.3.4007124 HITS.0.3.4007124 HITS.0.3.400713 HITS.0.400713 HITS.0.400714 HITS.0.400714 HITS.0.400714 HITS.0.400714 HITS.0.400715 HITS.0.400714 HITS.0.400715 HITS.0.400714 HITS.0	ŧ			<50	<100	100 <25	5 <25		50	<0.2	Į.	40.5	2 4										
Herbs 1, 200724 QCI01 200724 Herbs 4,4. 200734 Herbs 2,200724 Herbs 2,2,200724 Herbs 2,2,200724 Herbs 2,2,200724 Herbs 2,2,200724 Herbs 2,2,200724 Herbs 2,2,200724	FJ.			20 050	4100 1000	100	52 53	<u> </u>	0 0	<0.2	V V	60.5	0 0	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	0.1	7	V
64761_200734 64761_200734 6472_0_25_200734 6472_0_25_200774 6472_0_25_200774 6472_0_25_200774 6472_0_25_200774 6472_0_25_200774 6472_0_27_200724 6472_0_27_200724 6472_0_27_200724 6472_0_27_200724 6472_0_27_200724 6472_0_27_200724				<50	<100	100 <25	5 <25		8	<0.2	7	<0.5	<2 <1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	0.1	7	·
BHZ 0.5.200734 BHZ 0.2.200734 CQUID. 200734 BHZ 0.3.200734 BHZ 0.3.200734 CQUID. 200734 CQUID. 200734 BHZ 0.2.200734 BHZ 0.2.200734 BHZ 0.2.200734 BHZ 0.2.200734 BHZ 0.2.200734	e.			250 650	4100 100	100 <25	52 53		0 0	<0.2	V V	0.5	2 2	<0,1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	0,1	7	V
				<50	<100	100 <25	5 <25		8	<0.2	4	40.5	2 4	1			7						
HEY.26.2.3.200734 HEY.26.2.2.300734 HEY.26.2.3.200734 HEY.26.2.200734 HEY.26.2.2.200734 HEY.26.2.2.200734 HEY.26.2.2.200734 HEY.26.2.2.200734				2005	4100	100	1 425		2 0	<0.2	7 7	40.5	7 0	10.	7007	100	1.05	170%	707	7	7		1
#128.2_200724 #128.2_200724 #128.2_201724 #128.2_201724 #128.2_200724 #128.2_200724 #128.2_200724		1 1		<50	<100	100 <21	5 <25		9	<0.2	V	<0.5	2 4	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	0.1	V	V
00.0022,200724 00.0022,200724 00.00222,200724 00.00222 00.00224 00.00224 00.00224	90			<50	<1000	100 <25	525		<3	<0.2	7 7	40.5	22	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	0.1	4	V
H130_15_2.00174 H130_15_12_000724 T1801_200715 T1802_200724				<50	4100	100	0 <10	<0.2	<0.5	<0.2	<0.5	40.5	0.5 <0.5										
	30			25 050	<100	100 <25	5 25		0 0	<0.2	4	40.5	0 0								<u> </u>		
- 1						<21	5 <25		\$	<0.2	12	<0.5	<2 <1				Ħ						
		- 1			+	425	25 25	<u> </u>	0 0	<0.2	V V	40.5	2 2										

Σ	ities =
Σ	= = =
Щ] 8
	creating

		L			L	әр	eų;	L			The state of the s	i Adi Ocal Dolls	əι							_	_	F
	enertheoroldzib	enertheoroldzib	enedteoroldzib	nsqorqoroldsib-	msofom	oinoldsettes mod	prodibromomet	proethane	oromethane	1,2- noroethene	1,3- noropropene	mioform	neibetudoroldse	enetheorolice	-2,1-2r anarltaorolr	-£,1-2r eneqorqorolr	hloroethene	yl chloride	.1,2- schloroethane	-dichloropropen 3-	-dibromo-3-	neqorqorolh3ib-
	99	-1	-	o18 E	9n %	\perp	ag/kg ne	\perp	mg/kg	ag/kg dict	ag/kg dict	- CPI	mg/kg	ag/kg	atrai g/k dict	ieri g/k dict	#	-H	#	- bo	+	E
ica. NEPM 2013 Table 1A(1) HHs Comm/Ind D Soil HSI for Vanour Intrusion. Sand	1	4	,				1		-		•		,	,		,	4	,	,	1		
																						\perp
NEPM 2013 Table 18(5) Generic ElL - Comm/Ind NEPM 2013 Table 18(6) ESIs for Comm/Ind, Coarse Soil																						
-0-2m NEPM 2013 Table 18(7) Management Limits Comm / Ind, Coarse Soil																						
MP 2020 Industrial/ commercial (HIL D)																						
			-				-	-						-	-	-	-	-	-	-		-
BH01_0.4_200715 BH02_0.5_200715	7	∀	7	4	1	∀	₹	₹	₽	∀	⊽	₹	ī	7	7	7	V	7	7	7	7	1
BH03 0.9 200715	⊽	∀	₽	Ū.	1	∀	7	Ţ	7	⊽	₽	⊽	1	7	7	7	∀	1	1	1 4	7	ľ
	⊽	∀	V	9	1	∀	₹	Ţ	7	₹	⊽	V	7	7	∀	7	V	V	7	4	⊽	ľ
																						+
	7 7	∀ ∀	44	- V	4 4	∀ ∀	∀ ∀	4 4	∇ ∇	∀ ∀	4 4	∇ ∇	∀ ∀	7 7	V V	7 7	V V	7 7	44	7 7	4 4	1
																						Н
	7	∀	7	1	1 <1	∀	₹	₽	7	∀	∀	₽	7	1>	∀	-1>	∀	7	4	1	7	
	,			<u> </u>						,		,	,	,		,	,		,			
	⊽	√	7		7	7	7	₹	V	7	7	V	V	7	7	V	∀	7	₹	7	V	+
	7 7	∇ 7	V 7		4	∀ ₹	7 7	4	7 7	∇ ₹	7 7	∇ 7	7 7	7 7	7 7	V 7	∇ V	7 7	4	7 7	7 7	
	d	2			1	2		4			4		4	4	2	d	1	d	4	1		+
	4	∀	1	1	1 <1	∀	7	1	<1	₽	₽	Ţ	<1	<1	V	1>	7	<1	1	1 4	4	ľ
	7	7	7	-	1	V	7	7	-	7	V	7	1>	1	7	7	7	7		-	7	
	7 0	7 0	7 5	7 8	7 7	7 7	7 4	7 7	7 7	7 7	7 7	7 🗸	7 17	7 7	7 7	7 7	7 7	7 7	7 7	7.0	7	ľ
	7	∀	7	7	1	∀	⊽	V	V	₹	⊽	Ţ	∀	7	∀	7	∀	7	7	4	7	1
BH17_16_200723 23/07/2020 0C30_200723 23/07/2020	⊽	⊽	⊽	5	_	⊽	7	⊽	⊽	⊽	⊽	⊽	⊽	⊽	⊽	▽	▽	⊽	2	4	▽	Ĥ
	▽	⊽	₩.	1	1 <1	∀	⊽	⊽	<1	₽	⊽	D	<1	17	∀	~1	∀	7	7	12	7	ľ
	7	∀	₹	4	1	∀	7	∀	₹	∀	∀	∀	Ţ	7	7	7	∀	V	7	4	7	_
		,	,	,		,	,	,		,	,	ļ			,		,		,		,	
	1>	V	15	5	17	Ī	ī	T	TV.	Ţ	To .	ī	1>	T>	T	To	ī	T>	V	TV TV	10	
	₹	∀	7	Ę.	1 <1	∀	7	D	V	₽	V	₽	V	77	∀	17	V	V	V	12	D	ľ
	7	∀	▽	-	7	∀	7	⊽	7	∀	⊽	∀	∀	7	7	▽	∀	7	∇	7	∀	1
	7	∀	1	10	1 <1	∀	₽	₽	<1	⊽	₽	₽	1	1>	∀	7	∀	7	1	1	7	ľ
	∀	∀	7	-	1	7	∀	7	₽	∇	∀	∇	7	7	∀	7	∀	7	4	4	7	ľ
	7	∀	4	-	1 <1	∀	₽	Ţ	<1	∀	⊽	₽	<1	7	∀	-1	∀	7	7	4	D	ľ
	1>	∀	1	T.	1 4	∀	7	₽	-1	₽	₽	Ţ	1>	7	7	7	7	<1	7	1 4	P	ľ
	7	∇	V	T.	1	∀	₽	7	17	⊽	⊽	₽	7	1>	∀	7	∀	17	7	1	⊽	ľ
	7	7	7	-	-	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
	77															7	2				7	
	7	∀	⊽	7	7	∀	∇	⊽	∇	⊽	⊽	V	V	⊽	∀	V	∀	77	7	T T	▽	1
	V	∀	7	8	1 <1	∀	⊽	₹	1	₹	∀	₽	Ţ	1	∀	1>	∀	7	7	1	7	ľ
		+	+	+	+		+										+					
		+	+	+	+	+	+										+					+
																						-

\sum	nities
Σ	pportu
	creating o

	creating opportunities					-				Helogenet	N Renzenee					Helogenete	ad Hudrocarbone							
				əı	əue		ə	-							a		цъэ	eq	L	ə				
				neqorqoroldɔib-2	shramorolhaomo	promomethane		chlorobenzene			lorobenzene	2,3- chlorobenzene	enlorotoluene				chlorodifluorome e					ninb	ВНС	(crest) enebyol
Control Cont				mg/kg	mg/kg	mg/kg	D0	kg të	E	E	mg/kg	a,t. g/k trio	p-z/kg	. E	E	E	mg/kg and	en 🦠		+	-	nA kg sy/kg	mg/kg ⊡-q	ng/kg
The control of the	EQL NEPM 2013 Table 1A(1) HIIs Comm/Ind	D Soil		1	1	-	0.1	-	1	1	1	1	1	-	1	1	1	1	+	+	+	0.1	0.1	0.1
The content content of the content content content of the content conte	NEPM 2013 Table 1A(3) Comm/Ind D So	oil HSL for Vapour Intrusion, Sand																						
Particular	0-1m 1-2m																							
The control co	2-4m																							
The control of the	MEDIA 2002 Table 4D(E) Counsis Ell Co	the state of the s																						
The contribution of the	NEPM 2013 Table 1B(6) ESLs for Comm,	find, Coarse Soil																						
Particulary	0-2m																				 			
Mathematical Part	a 8	mits Comm / Ind, Coarse Soil																						
Mathematical Control of Section Math																	-				-			
1971 1971			Jate																					
Note 1985		- 1	5/07/2020	7	∀	7	<0.1	<1 <	7	∀	∀	7	∀	7	17	7	∀	<1	<0.1	0.1 <0	0.1 <0.1	<0.1	<0.1	<0.1
Mathematical Control of Math			5/07/2020	Ţ						1	I	,		1		-	1							
Mathematical Mat		- 1	5/07/2020	7	V	7	<0.1	7	7	7	V	7	7	V	7	7	7	7	<0.1	0.1	77	<0.1	- TO-	40.1
Mathematical Mat			5/07/2020																					
1			5/07/2020																					
May 1, 1979. May 1		- 1	5/07/2020										+											
1971 1971			22/07/2020	⊽	∀	V	<0.1	4	4	7	Ţ	₽	∀	7	4	⊽	∀	⊽	40.1	0.1	0.1	0.1	40.1	0.1
1971 1972		- 1	3/07/2020		j	I					Ī				I		+	I						
1975 1975			2/07/2020	7	∀	- 1>	<0,1	2	7	V	D	<1	₽	∀	1	1>	V	V	<0.1	0.1 <0.	0.1	<0.1	<0,1	<0.1
Mathematical Continues Mathematical Contin			2/07/2020	7	7	7	<0.1	2	1	⊽	7	₽	₽	₽	₽ V	7	∀	Ţ	<0.1	0.1 <0.	1.0> 1.0	<0.1	<0.1	<0.1
Mathematical Solution		- 1	2/07/2020				+	1	+				+			+			+					
Helicology Maria (Mariano) Higher Maria (Maria (Maria Maria (Maria Maria Maria Maria (Maria Maria Maria Maria Maria Maria Maria (Maria Maria Maria Maria Maria Maria Maria Maria (Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria (Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria (Maria Maria (Maria Maria Mar			2/07/2020	-	7	7	100		7		7	5	7	1	-	7	7	7	100	6	6	0	9	8
Fig. 2 may March			2/07/2020			7	TON	1	7		,		1			1	7	7	100	70	100	Tin	100	TO
Half de Sention (1974)			2/07/2020	1>	P	1>	<0.1	<1 <	1	<1	<1	<1	P	<1	1	1>	₽	1	<0.1 <(0.1 <0.	1.0> 1.0	<0.1	<0.1	<0.1
This is present		- 1	2/07/2020			1						,			1	-								-
			24/07/2020	7 7	∀ ∀	7 7	0.1	V .	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	7	7 7	7 7	4 4	4	Q 7	7	V 7	V .	0.00	0.1	100	0.1	0,1	9 6
The continue of the continue			2/07/2020	7	7	7	7.05	7	7	7	7	7	7	7	7	7	7	7	700	30.1	777	T:05	7.05	70.7
14.1 1. 1. 1. 1. 1. 1. 1			4/07/2020																					
Marit 2-1, 2007-19 Marit 2		- 1	4/07/2020	V	∀	⊽	<0.1	7	1	7	₹	7	⊽	7	4	7	▽	⊽	<0.1	0.1 <0	1.0> 1.0	40.1	<0.1	0.0
			2/01/2020	7	7	7	<0.1	2	7	7	2	-	7		2	7	7	7	<0.1	0.1	100	<0.1	7.05	40.1
1			3/07/2020	V	₽	<1	<0.1	41	1	<1	17	<1	P	1	10	<1	₽	41	<0.1	0.1 <0.	0.1 <0.1	<0.1	<0.1	<0.1
No. 11.2 Series			3/07/2020				+				1		\dagger		<u> </u>	+		1	+					
Head of the control			3/07/2020	⊽	∀	7	<0.1	2	7	7	<1	7	⊽	1	17	7	7	V	<0.1	0.1	1.0>	<0.1	<0.1	40.1
			3/07/2020																					
Fig. 12 Particular English State Engli			33/07/2020	⊽	⊽	V	<0.1	7	1	▽	▽	7	V	7	4	7	▽	▽	<0.1	0.1	7.1 <0.1	40.1	<0.1	<0.1
18.15 2. 2007 2. 200			3/07/2020						+						<u> </u>	-			1					
Heart 3, 2000000			3/07/2020																					
Head 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,			4/07/2020	<1	V	1	<0.1	<1 <	1	<1	<1	<1	Ţ	1	1 41	1>	D	<1	<0.1 <1	0.1 <0	1.0> 1.0	<0.1	<0.1	<0.1
Harrier Martine Harrier Harr		- 1	3/07/2020	∀	∀	7	40.1	7	∀	7	∀	7	∀	7	7	7	∀	7	<0.1	0.1	7.1	<0.1	<0.1	9.1
Hand, big Approximation Hand, big Approx			3/07/2020														+							
HINDEAL STATES MININGE			3/07/2020	4	V	<1	<0.1	<1	1 4	<1	<1	<1	Ţ	<1.	10	<1	Þ	<1	<0.1 <0	0.1 <0.	1.0> 1.0	9.0	<0.1	<0.1
HAT 23, 2007-15 HAT 13, 20			3/07/2020													\parallel			\parallel					
Heli 1,3 20073			3/07/2020	V	V	Ų	<0.1	7	7	⊽	V	U	V	∀	7	7	∀	V	<0.1	0.1	T. 00.1	<0.1	<0.1	0.2
BH22 12, 90.0723 BH23 02, 90.0723 BH23 02, 90.0723 BH24 02, 90.0733 BH24 02, 90.0733 BH24 02, 90.0733 BH24 02, 90.0733 BH25 03, 90.0733 BH25 03, 90.0734 BH25 02, 90.0724 BH29 02, 90.0724			3/07/2020																					
H12.2 3, 2007.33 H12.2 10, 2007.34 H12.2 2, 2007.34 H13.2 2, 2007.34 H13.3 2, 2007.34			3/07/2020	⊽	∀	7	<0.1	7	1	<1	₽	7	⊽	P	10	7	7	7	<0.1 <1	0.1 <0	0,1 <0,1	<0.1	<0.1	<0.1
			3/01/2020	1	-	7	100	1	7	7	-	7	-	1	-	7	7	7	100	0.0	0,0	0	07	0.4
Belt 0.2 200723 Belt 0.2 200723 Belt 0.2 200723 Belt 0.2 200724 Belt 0.2 200724 Belt 0.2 200724 CGL01 200724 CGL02 200724 CGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC			3/07/2020	,		,	700		4			7					,	/	1	100	100	1100	102	100
BH142_27_2 000733			3/07/2020	⊽	∀	1	<0.1	4	1	-7	7	-1	₽	1	10	7	∀	1	<0.1 <4	0.1 <0	0,1 <0,1	<0.1	<0.1	<0.1
Herizo 12, 2007124			3/07/2020	Ţ		1	+								 	+	+	1	+	+				
1945 1,20074		- 1	3/07/2020	-	V	-	100		-	4	2	0	0	4	2	-	2		0.1	01	10	1.00	00	0
QCCL01_200724 BH25_6.4.3_00724 BH27_0.5_200724 BH27_0.5_200724 BH27_0.5_200724 GCC_2_200724 BH28_0.5_200724 BH28_0.5_200724 BH29_0.5_200724 BH29_0.5_200724 BH20_0.5_200724 BH20_0.5_200724 BH20_0.5_200724 BH20_0.5_200724 BH20_0.5_200724 BH20_0.5_200724 BH20_0.5_200724 BH20_0.5_200724 BH20_0.5_200724			4/07/2020	7	7	7	<0.1		1	7	7	- 1>	7		4	7	4		<0.1	0.1 <0.	1.0>	<0.1	<0.1	<0.1
RH26 4.4 200724 RH27 0.5, 200724 RH27 0.5, 200724 CC10_2, 200724 CC10_2, 200724 RH28_0.2, 200724 RH28_0.2, 200724 CC10_2, 2007			4/07/2020																					
BH17 2,280724 CG102,280724 CG102,280724 BH18 0,3,280724 GH28,2,280724 GH38,2,280724 GH38,2,280724 GH38,2,280724 GH38,2807224 TB38,2807224		- 1	4/07/2020	₹	V	7	<0.1	7	7	7	⊽	7	V	V	7	7	7	7	<0.1	0.1	77	0.1	<0.1	0.1
CCTICA_200724			4/07/2020	⊽	∀	1>	<0.1	2	7	7	<1	<1	V	1	1	7	7	V	<0.1	0.1	1.0>	1.0>	<0.1	0.0
BH/28.0.2, 200724 BH/29.1, 200724 BH/29.1, 200724 QC2C_200724 BH/20.2, 200724 BH/20.2, 200724 BH/20.2, 200724 BH/20.2, 200724 BH/20.2, 200724			4/07/2020																					
PILO 2, 2007.4 PILO 2, 2007.4 CACO2, 2007.8 PIRO 2, 2007.4 PIRO 2, 2007.5 PIRO, 2007.2 PIRO, 2007.2		- 1	44/07/2020	⊽	∀	▽	<0.1	7	7	⊽	⊽	▽	▽	V	7	⊽	⊽	₩	<0.1	0.1	1.0 <0.1	<0.1	<0.1	<0.1
(QC202_200724 BH30_0.3_200724 BH30_0.2_27_200724 BH30_200715 TH302_200724 TH303_200724			4/07/2020	V	V	17	<0.1	2	V	7		1	V	\[\frac{1}{\sqrt{1}}\]	1	1	7	7	<0.1	0.1	1.0>	1.0>	<0.1	<0.1
BH30 0.3 200724 BH30 2.7 200724 TB01_200715 TB03_200724 TB03_200724			3/07/2020																					
8H30_27_200724 TB01_200715 TB02_200724 TB03_200724			4/07/2020																					
			24/07/2020				+		+				1		<u> </u>	+			+	+				
			4/07/2020																					
ı		I II	4/07/2020	Ц					Н							Ц				H				Ц

- >	
//	- 9
_	
_	
2	
_	
ш	
	١,
11	
N /	13
W	4
\sim	

	creating opportunities		11		Orga	Organochlorine Pesticides	,								L				Organoph	Organophosphorous Pesticid	ides			
)			nin	l neillus						achlor	lydram-solinyq	sonio	u	noirtton	noidh	jəi	ığınanı soudo			sthoate
				ша-р ка	95	- L	Dieid R/Kg	obn3 kg	9	- L		E DE	E N	д нерп	тоно Ж	IASIO E	Ethio	Eenit	ElsM &	mg/kg	+	- -		emid g
Control Cont	EQL			0.1	0.1	H	0.1	0.1			\mathbb{H}	Н	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	Н	Н	Н	0.1
Main	NEPM 2013 Table 1A(1) HILs Comm/Inc NEPM 2013 Table 1A(3) Comm/Ind D Sc	ID Soil ill HSL for Vapour Intrusion, Sand				3,600					2,5	H		20					Ī		2,	000		
March Marc	0-1m 1-2m								1	1	-								T		+	<u> </u>	_	1
Application	2-4m																							
April 2007 Apr	NEPM 2013 Table 1B(5) Generic EIL - Co	hul/mm				640																		
Control Court Co	NEPM 2013 Table 1B(6) ESLs for Comm 0-2m	/Ind, Coarse Soil																						
Petrol D	1B(7) Managemen ndustrial/ commer	mits Comm / Ind, Coarse Soil I (HIL D)																						
HeILD 0.5 200715																								
BHILD 10.3 200715			(2020	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1	0,1 <0	1 <0.1	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	> 1.0>	0.1 <0.1	<0.1	<0.1
GCTIOL_200715			/2020	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1	0.1 <0	.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1 <0.1	<0.1	<0.1
BIND 0.0 200715			/2020								+		+		1									
BHIGG 1.23 200712			/2020		\parallel				\prod		\prod		\parallel											Ш
BHOR 5.13 200722 BHOR 5.13 200723 BHOR 5.2 200724 BHOR 5.2 200724			(2020	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1	0.1	0.1	.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1 <0.1	<0.1	<0.1
BHOD 23, 200712			/2020	+	+				+	+	+	+	+	+	1	\downarrow			Ī		+		1	1
BHORG 0.2.2 000722 BHORG 0.2.2 000723 BHORG 0.2.2 000724 BHORG 0.2 000723 BHORG 0.2 000724 BHORG 0.2			/2020	1.0>	<0.1	<0.1 <0.1	<0.1	1.0>	<0.1	> 1.0>	0.1	.1 <0.1	1.0>	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	> 1.0>	0.1	<0.1	<0.1
BHOS 0.2.3 (2007)2 BHOS 0.2.3 (2007)3 BHOS 0.			/2020	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1	×0.1	0.1	1.0 <0.1	1.0>	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	40.1	0.1 <0.1	<0.1	<0.1
BHIO 13, 20072 BHIO 13, 20072 BHIO 10, 3, 20072 BHIO 10, 5, 20072 BHIO 10, 5, 20073 BHIO 10, 5, 200774 BHIO 10, 5, 200774 BHIO 10, 5, 200774 BHIO 10, 5, 200774 BHIO 10, 2, 2007774 BHIO 20, 2, 2007774 B			72020																					
BH10 0.5 200722			/2020	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1	0.1	1.00.1	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0,1	<0.1	<0.1
BH11 0.5 200722			72020	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1	1.0>	0.1	.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	> 1.0>	0.1 <0.1	<0.1	<0.1
BH11.25, 200724			/2020	3		4	,	4		1			ç	9	Š	3	* 0		* 4		-	4	,	3
Hell 1, 16, 200722			/2020	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1 <0.1	0.1	1.0 < 0.1	1 00.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1 <0.1	<0.1	0.1
BH13 15, 200724 BH14 15, 2007272 BH15 15, 2007272 BH15 15, 2007272 BH15 15, 2007273 BH15 15, 2007273 BH15 15, 2007233 BH17 15, 2007234 BH18 15, 2007234 BH18 15, 2007234 BH19 12, 2007234 BH20 12, 200			/2020								+		+											
BH141, 23, 200722 BH141, 23, 200723 BH15, 23, 200723 BH15, 23, 200723 BH15, 23, 200723 BH15, 23, 200723 BH17, 12, 200723 BH17, 12, 200723 BH17, 12, 200723 BH17, 12, 200723 BH18, 25, 200723 BH18, 25, 200723 BH29, 23, 200724 BH20, 23,			/2020	1.0>	<0.1	<0.1 <0.1	<0.1	1.0>	<0.1	<0.1	0.1	1 <0.1	1.0>	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	V V	0.1 <0.1	<0.1	1.0>
Hells 0.3 200723			/2020	0.1	40.1	<0.1	0.1	- T- CO.1	0.1	7.0	0.1	40.5	40.1	0.1	0.1	<0.1	40.1	<0.1	1.0>	<0.1	v 1.0>	0.1	V0.1	0.1
BH16 0.2 20073 BH16 0.2 20073 BH17 1.6 200733 BH17 1.6 200733 BH17 1.6 200733 BH18 5.5 200734 BH18 5.5 200734 BH18 5.5 200734 BH18 5.5 200734 BH18 5.5 200733 BH19 1.2 200734 BH19 1.2 200724			/2020	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1	0.1	1.0> 1.1	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1 <0.1	<0.1	<0.1
Hell 61, 200733			/2020																					
Rel17 15, 200733			/2020	1.00	40.1	<0.1	<0.1	1.0>	40.1	7.0	0.1	40.2	1.00	40.1	40.1	<0.1	<0.1	<0.1	¥0.1	<0.1	7.02	0.1	<0.1	¥0.1
Heart 1, 16, 200734 Heart 1, 16, 200734			/2020	<0.1	<0.1	<0.1 <0.1	<0.1	1.0>	<0.1	<0.1	0.1 <0	1 <0.1	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1.0>	0.1 <0.1	<0.1	<0.1
BHIS 0.3, 2007.33 BHIS 0.3, 2007.33 BHIS 0.3, 2007.33 CRUIL_2007.32 BHIS 0.3, 2007.33 BHIS 0.3, 2007.32 BHIS 0.3, 2007.33 BHIS 0.3, 2007.33 BHIS 0.3, 2007.33 BHIS 0.3, 2007.34 BH			(2020																					
Heris 1, 8, 20073			/2020	6	102	50.1	100	1.00	102	10	0.0	102	0.0	100	100	102	<0.1	<0.1	100	102	100	0.1	10>	0.7
HEALD_1_200723 HEALD_1_2_200723 HEALD_1_2_200733 HEALD_1_2_200733 HEALD_1_2_200733 HEALD_1_2_200733 HEALD_1_2_200733 HEALD_1_2_200733 HEALD_1_2_200733 HEALD_1_2_200733 HEALD_1_2_200734 HEALD_1_2_200734 HEALD_1_200744 HEALD_1_200744 HEALD_1_200774 HEALD_1_			/2020	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1	0.1 <0	1 <0.1	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1 <0.1	<0.1	<0.1
Herizo 1,5 000733			72020																					
Hell 20, 2, 20073 Hell			/2020	<0.1	<0.1	<0.1 <0.1	0.4	<0.1	<0.1	> 1.0>	0.1	1.0>	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	> 0.1	0.1 <0.1	<0.1	0.1
BH121_12_000731 BH121_12_000731 BH121_12_000731 BH123_01_0007331 BH123_01_0007331 BH124_01_02_0007731 BH124_01_02_0007731 BH124_01_02_0007731 BH124_01_02_0007731 BH126_01_02_0007731 BH126_01_02_0007			/2020	40.1	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1	40.1	0.1	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	×0.1	0.1 <0.1	<0.1	0.0
He12.2, 2.00733 He12.3, 2.00733 He12.4, 2.200733 He12.6, 2.200734			(2020																					
BH12 01 20073			/2020	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1	> 0.1	0.1	1.0 < 0.1	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0,1 <0,1	<0.1	0.1
Heriza 1,5, 200738 Heriza 1,5, 200738 Heriza 1,5, 200738 Heriza 0,3, 200738 Heriza 0,3, 200738 Heriza 0,3, 200734 Heriza 0,4, 200734 Heriza 1,2, 200734 Heriza 1,2, 200734 Heriza 1,2, 200734 Heriza 1,2, 200734 Heriza 0,3, 200734			(/2020	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1	0,1 <0	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0,1 <0,1	<0.1	0.1
BH143_27_2 BH143_27_2 BH143_27_2 BH142_20_3 200773 BH152_20_3 200773 BH152_20_3 200774 BH152_20_3 200774 BH152_20_3 200774 BH172_2 200774 BH172_2 200774 BH192_2			/2020	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1	9.1 <0.	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	> 0.1	0.1	<0.1	<0.1
BHYS 0.9 200733			/2020		\dagger	+				+	+		+		1									
			/2020	0.1	40.1	60.1	0.0	40.1	0.1	0.1	0.1	100	1.00.1	0.0	0.1	40.1	40.1	40.1	1.00	40.1	1.0	0.1	0.1	0.1
BHO5 4.4 200724 BH17 0.5 200724 BH17 0.5 200724 CG102,			72020	40.1	1.0>	<0.1	V0.1	40.1	<0.1	V 0.1	0.1	11	0,1	<0.1	0.1	0.0	<0.1	<0.1	<0.1	0,1	1.00	0.1	<0.1	0.0
He17.0.5,200724 He17.0.5,200724 He12.2,200724 He12.2,200724 He12.2,00724 He12.2,00724 He12.2,00724 He12.2,200724 He19.2,2,200724 He19.2,2,200724 He19.2,2,200724 He19.2,200724 He1			/2020	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1	0.1	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0,1 <0,1	<0,1	0.1
CCL02_200724 BH28_0.3_200724 BH28_1_2,200724 BH28_1_2,200724 CC22_200724 BH39_0.3_200724 BH39_0.2_2,200724 BH30_2,200724 BH30_2,200724 BH30_2,200724			/2020	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1	0> 1.0	.1 <0.1	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	> 0.1	0.1 <0.1	<0.1	0.1
			/2020		4.0	4	4 0	* 4	* 0	-	-	4		4		4	* 0	4.0	* **	Š		4		4
Birlia 0,3,2007.44 QC202_20077.44 Birlia 0,3,20077.44 Birlia 0,3,2007.84 Tirlia 2,2007.84 Tirlia 2,2007.84 Tirlia 2,2007.84			/2020	105	Tins	T'05	TiOy	Tins	Tins	Tins	10	T)	100	T/05	100	TOS	T'O>	T'05	Tins	1:05	T'OS	70.7	T'OS	707
BH30 0.3_200724 BH30_2.20724 1801_200715 1802_2007124 1803_200724			/2020	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1	> 1.0>	0.1	1.1 <0.1	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	0.1
			/2020		\parallel				\parallel	\parallel														Ц
			(2020																					
			/2020						+		+		+		1						1			

Table 1 - Soil Results

			nointsess g 8//g
ti. PM 2013 Table 1A(1) HIIs Comm/Ind D Soil PM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion. -2m	ID Soil oil HSL for Vapour Intrusion, Sand		0.1
Z-4m >-4m NEMA 2013 Table 18(5) Generic EL: Comm/Ind NEMA 2013 Table 18(6) ESIS for Comm/Ind, Coarse Soll O-2m REMA 2013 Table 18(6) ESIS for Comm/Ind, Coarse Soll PSI SHOW 2013 Table 18(7) Nahangement timis Comm/Ind, Coarse Soll PSIS NEMA 2013 Diudstrally Commercial (III. D)	Comm/Ind Inn/Ind, Coarse Soil Limits Comm / Ind, Coarse Soil roal (Hit D)		
On ID		Date	
		15/07/2020 15/07/2020	<0.1
BH03		15/07/2020	<0.1
BH04		15/07/2020	
BH05	BH05_0.5_200715 BH06_0.3_200722	15/07/2020 22/07/2020	<0.1
		22/07/2020	
		22/07/2020	<0.1
	BH08 2.7 200722	22/07/2020	4.00
ВН09		22/07/2020	<0.1
BH10		22/07/2020 22/07/2020	<0.1
BH11		22/07/2020	<0.1
BH12		22/07/2020	<0.1
BH13		24/07/2020	
		24/07/2020 22/07/2020	<0.1
		22/07/2020	107
BH15		23/07/2020	4
BH16		23/07/2020 23/07/2020	<0.1
BH17	BH17_0.3_200723 BH17_1.6_200723 QC200_200723	23/07/2020 23/07/2020 23/07/2020	<0.1
		23/07/2020	
8118		24/07/2020	<0.1
BH19		23/07/2020	170%
BH20	1 1	23/07/2020	<0.1
		23/07/2020	<0.1
BH21		23/07/2020	
BH22		23/07/2020	<0.1
BH23		23/07/2020	<0.1
BH24	11	23/07/2020	<0.1
		23/07/2020	
BHZS	1 1	23/07/2020	<0.1
BH26		24/07/2020 24/07/2020	<0.1
		24/07/2020	<0.1
BH27		24/07/2020	<0.1
		24/07/2020	100
BH28		24/07/2020	7100
BH29	BH29_0.3_200724	24/07/2020	<0.1
BH30		24/07/2020	
		24/07/2020	
		0000120111	

RAP Raymond Ave Matraville

Σ	ties
Σ	ortun
ш	ddo 8
	creating

						BTEX							Metals	sls			
			X3T8 lefoT	lstoT ənəlүX	geuzeue	Ethylbenzene	ənənloT	χγlene (m & p)	(o) Xylene	(besetlit) muimbeD	(heredif) oinszrA	Chromium (III+VI) (filtered)	Copper (filtered)	Lead (filtered)	Mercury (filtered)	Nickel (filtered)	Zinc (filtered)
			Hg/L	Hg/L	Hg/L	Hg/L	Hg/L	Hg/L	Hg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
EQ.			1	2	1	1	1	2	1	0.0001	0.001	0.001	0.001	0.001	0.00005	0.001	0.001
ANZG (2018) Marine water	18) Marine water 95% toxicant DGVs				700					0.0055			0.0013	0.0044	0.0004	20'0	0.015
NEPM 2013 Table 1A(4) Comm/Ind HSL D GW for Vapour In	am/Ind HSL D GW for Va	apour Intrusion, Sand		l	5,000		l	l		l		Ī	l				
2-4m					2,000												
NEPM 2013 Table 1C GILs, Marine Waters	darine Waters				200					0.0007			0.0013	0.0044	0.0001	0.007	0.015
Location ID	Field ID	Date															
MW01	MW01_200730	30/07/2020	7	<2	₽	<2	27	- 25	-25	<0.0001	<0.001	<0.001	<0.001	<0.001	<0.0001	<0.001	0.011
MW02	MW02_200730	30/07/2020	8	<2	3	<2	<2	20	<2	<0.0001	9000	0.002	<0.001	<0.001	<0.0001	<0.001	
CONTRACTO	QC103_200730	30/07/2020	8	<2	8	<2	<2	2	25	<0.0001	0.005	0.002	<0.001	<0.001	<0.0001	<0.001	0.005
	QC203_200730	30/07/2020			3	Ų	V	22	1>	<0.0001	9000	0.002	<0.001	<0.001	0.0001	0.001	0.008
MW03	MW03_200730	30/07/2020	1>	<2	7	<2	<2	-25	<2	<0.0001	<0.001	<0.001	<0.001	<0.001	<0.0001	<0.001	<0.005
	QC300_200715	15/07/2020			₹	7	V	2	17	<0.0001	<0.001	<0.001	<0.001	<0.001	<0.00005	<0.001	<0.001
	QC301 200722	22/07/2020			7	V	7	0	V	<0.01	<0.05	<0.01	<0.01	<0.03	<0.0005	<0.02	<0.02
	QC302_200723	23/07/2020			₽	17	V	25	-1>	<0.01	<0.05	<0.01	<0.01	<0.03	<0.0005	<0.02	<0.02
	QC303_200724	24/07/2020			7	17	V	77	17	<0.01	<0.05	<0.01	<0.01	<0.03	<0.0005	<0.02	<0.02
	QC304_200730	30/07/2020	~1	<2	7	<2	<2	<2	<2	<0.0001	<0.001	<0.001	<0.001	<0.001	<0.0001	<0.001	<0.005
	TB04 200730	30/07/2020	77	<2	4	<2	<2	2	25								

Table 2 - Groundwater Aanlytical Results

						PFOS/PFOA	Y A			1					MAH				Ì
			SET Fluorotelomer (S.2 FZF) (STT S.9) bios oidofice sufformer (STT S.8)	(ST3 S:8) bios oinoflus	Perfluorohexane sulfonic acid (PFHxS)	Perfluorooctanesulfo nic acid (PFOS)	Perfluorooctanoic acid (PFOA)	2A19 to mu2	Sum of PFHxS and PFOS	Sum of US EPA PFAS (PFOS + PFOA)*	1,5,4- trimethylbenzene	1,3,5- trimethylbenzene	Styrene	Isopropylbenzene	au-zu-guļķīnq-u	u-bropylbenzene	p-isopropyltoluene	sec-pn¢Alpeuseue	
			mg/L n	mg/L	Hg/L	mg/L	mg/L	Hg/L	Hg/L	Hg/L	1/8H	1 /9H	1/8H	1/8H	ng/∟	HB/r	1/8H	1/8H	
101			0.00001 0.0	0.00002	0.01 0	0.00001 0	0.00001	0.01	0.01	0.01	H	H	2	2	2	2	2	2	
ANZG (2018) Marine	IZG (2018) Marine water 95% toxicant DGVs																		
VEPM 2013 Table 1A	VEPM 2013 Table 1A(4) Comm/Ind HSL D GW for Vapour Intrusion, Sand	or Vapour Intrusion, Sand																	
2-4m						_													
VEPM 2013 Table 10	NEPM 2013 Table 1C GILs, Marine Waters																		
Location ID	Field ID	Date																	
MW01	MW01_200730	30/07/2020		F	L	l	H				9	5	55	5	50	50	50	9	ľ
MW02	MW02_200730	30/07/2020									9	8	50	45	ų.	50	50	9	
AA1AAO3	QC103_200730	30/07/2020																	
70	QC203_200730	30/07/2020																	
MW03	MW03_200730	30/07/2020									9	8	50	45	5	50	50	8	V
	QC300_200715	15/07/2020																	
	QC301 200722	22/07/2020	<0.00001 <0.	00000	<0.01 <0.0	10000	<0.00001	<0.01	<0.01	<0.01									
	QC302_200723	23/07/2020	<0.000001 <0.	00000	<0.01 <0.0	10000	<0.00001	<0.01	<0.01	<0.01									
	QC303_200724	24/07/2020	<0.000001 <0.	20002	<0.01 <0.	0>00001 <0	0.00001	<0.01	<0.01	<0.01									
	QC304_200730	30/07/2020																	
	TR04 200730	30/07/2020																	

Environmental Standards ANZG, 2018, ANZG (2018) Marine water 95% toxicant DGVs

Σ	nities
Σ	ortu
Ш	opp
	eating
X	Ü

												ľ											
			analedthqeN	enelsd#denovold>-2	analishthqsnlyhtam-S	3- methylcholanthrene 7,12-	dimethylbenz(a)anthr	Acenaphthene	Arceinghraire	Benz(a)anthracene	Benzo(a) pyrene	D3T enery(e)osne9 (orec) clero	g addresoult(i+d)ozna8	enslyneq(i,1,1,8)osns8	Benzo(k)fluoranthene	Сһгуѕепе	Dibenz(a,h)anthracen e	Fluoranthene	Fluorene	Indeno(1,2,3-	(listot to mu2) sHA9	Phenanthrene	Pyrene
			Hg/L	Hg/L	HB/L	HB/L		Hg/L Hg/	_	HB/I	Hg/L	mg/L	mg/L	Hg/L	Hg/L	Hg/L	Hg/L	Hg/L	Hg/L		HB/I	HB/L	HB/L
EQL				2	2	H	H	1	1	1	0.5	0.0005	0.001	1	ļ	-	,	-	1	1	0.5	-	ļ.
ANZG (2018) Marine wa	2018) Marine water 95% toxicant DGVs		20																				
NEPM 2013 Table 1A(4)	EPM 2013 Table 1A(4) Comm/Ind HSL D GW for Vapour Intrusion, Sand	- Vapour Intrusion, Sand																					
2-4m																							
NEPM 2013 Table 1C GILs, Marine Waters	ILS, Marine Waters		20																				
Location ID	Field ID	Date																					
MW01	MW01_200730	30/07/2020	<1.0	<2	42	0	4	<1.0 <1.0	0.1>	<1.0	<0.5	<0.0005	<0.0010	<1.0	<1.0	<1.0	0.1>	<1.0	<1.0	<1.0	<0.5	<t:0< th=""><th>0.15</th></t:0<>	0.15
MW02	MW02_200730	30/07/2020	<1.0	<2	<2	<2	2	<1.0 <1.0	0.1>	<1.0	<0.5	<0.0005	<0.0010	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.5	<1.0	0.15
CONTRACT	QC103_200730	30/07/2020	5>																			-	
70,00	QC203_200730	30/07/2020	<1																				
MW03	MW03_200730	30/07/2020	<1.0	<2	<2	<2	>	<1.0	.0 <1.0	<1.0	<0.5	<0.0005	<0.0010	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.5	<t.0< td=""><td><1.0</td></t.0<>	<1.0
	QC300_200715	15/07/2020	17																				
	QC301_200722	22/07/2020	<1																			-	
	QC302_200723	23/07/2020	<1																				
	QC303_200724	24/07/2020	<1																				
	QC304_200730	30/07/2020	<5>																				
	TB04_200730	30/07/2020	\$																				

Environmental Standards

\geq	t e
\equiv	1 5
2	= 0
Ш	00
	n g
\bigvee	eat
- 1	L U

## C10-C126 (2nu ot,					Marine water 95% toxicant DGVs	NEPM 2013 Table 1A(4) Comm/Ind HSL D GW for Vapour Intrusion, Sand		NEPM 2013 Table 1C GILs, Marine Waters	Field ID Date	MW01_200730 30/07/2020	MW02_200730 30/07/2020	QC103_200730 30/07/2020	QC203_200730 30/07/2020	MW03_200730 30/07/2020	QC300_200715 15/07/2020	QC301_200722 22/07/2020	QC302_200723 23/07/2020		
## C10-C14 ## C10-C14 ## C10-C14 ## C10-C16 ## C10			1/8H	98						> <50	95>	95>		-SC					
### C15-C28 ### C15-C28 ### C15-C28 ### C15-C28 ### C15-C28 ### C15-C29 ### C				L						H			<50		<50	<50	<50	<50	
### Consideration of the control of	TPH			L						F							H		007
## C10-C16 (\$\frac{1}{2}\$ \text{ C10 C16} (\$\frac{1}{2}\$ \text{ C10 C10} (\$\frac{1}{2}\$ \text			_	ŀ						H	L	L	H			H	H	L	
The control of the co				ŀ						H	L	L		_	_	H	H	L	
Second S				L						H						L		L	L
The control of the co		C10-C16 (F2 minus	HE	_) <100	(100	<10	<50	P	<50	<50	<50	<50	
### Cate Cate 100		C10-C40 (Sum of		100) <100	1 <100	Ĺ							1000
### 1	#		1/8н	L						H			<100		<100	<100	<100	<100	
S	н	C34-C40	Hg/L	L						H		L				L	L		
Sunim IT 010-40 10 10 10 10 10 10 10		012-92	Hg/L	L						L		L				L	L	_	
IonariquotokishT-3,4,5, \$\frac{2}{3} \cdot \cd		C6-C10 (F1 minus	1				9000			L									
IonariquotokishT-3,4,5, \$\frac{2}{3} \cdot \cd		lon9hqorohtori7:-2,4,5	/ян нв/-	2						2	2			2					
IonafqvitismiQ-k,S, \(\frac{2}{3} \) \(\cdot \cdot \cdot \)			1 1	2						L									
Ionalqrouphenol 2		lonərdoroldəid-A,S	/gH -	2						<2	<2			<2					
Ionalqrouphenol 2			1	2															
lonesiquorihida Anti-Aprilio An				2						F									
2			_	2						2	0			0					
Comparing the state of the st	Phenols	lonadqlyd19M-S	Hg/L	2						0	<2			<2					
		lonahqoʻtiN-S	Hg/L	2						<2	<2			<2					
-£-0-014-b-mg		S&4-Methylphenol (los910-q&m)	Hg/L	4						>4	<4			>4					
2 2 2 2 4 Pentachlorophenol		4-chloro-3-	Hg/L	2						<2	<2			<2					
-N 2			HB/L	4	22			11		4>	<4			<4					-
		Phenol	Hg/L	2	400			400		2	2			0.0					-
			Hg/L	2						<2	<2			<2					

Environmental Standards ANZG, 2018, ANZG (2018) Marine water 95% toxicant DGVs

_	ı
>	
=	ľ
>	ľ
III	ì
	١
	١
W	ł

												25.0														
			liphatics		Amino Aromatics	omatics			Anilines																Chl	Chlorinated Hydroc
			-n-ibosotin-N animelyqorq	N- Nitrosomethylethyla mine	animslydthden-f	8 -Nitrosodiphenyl Diphenylamine	-S-lyntyl-S- nilineortin	9nilinsortin-2	9-nilinsortin-E	4-nitroanline	ənilinA	ansrtaoroldoirt-L,L,L	-S,S,Z,Z, enedłaovoldosrae	ansdtaoroldzitt-S,£,£	1,1-dichloroethane	9nərtəoroldəib-1,1	2,2-dichloroethane	ansqorqorohizib-S,Z.	sdramorohorometha an	Bromoform	Carbon tetrachionde	əu	Chloroethane Chloromethane	cinorometriane -2,2-sio	cis-1,3-	Chloroform
		4	μg/L	Hg/L	Hg/L	∥ 1/8n	Hg/L	1	g/L µg/	/L µg/L	1/8H .	Hg/L	1/8н	Hg/L	Hg/L	1/8n	н 1/8н	π //Bπ	/вн 1/вн	/8rl 1/8	/9H 1/2	1,	/8H 1/81	1/8H 1/3	1/8H	1/8H
FOL			2	2	2	4	2	4	4 2	2	2	2	s	2	2	H	ŀ	2	2	5 5	2	2 80	20 20	0 5	2	2
ANZG (2018) Marine wa	018) Marine water 95% toxicant DGVs													1,900												
NEPM 2013 Table 1A(4,	NEPM 2013 Table 1A(4) Comm/Ind HSL D GW for Vapour Intrusion, Sand	abour Intrusion, Sand																								
2-4m																										
NEPM 2013 Table 1C GILs, Marine Waters	Ls, Marine Waters													1,900												
Location ID	Field ID	Date																								
MW01	MW01_200730	30/07/2020	42	42	7	-4	9	42	<4	2	0	Ą	v	V	5	9	8	8	5	5	V	4	<50 <5	450 45	V	5
MW02	MW02_200730	30/07/2020	<2	<2	<2	13	2	45	<4 <2	42	<2	9	50	5	50	5	9	40	5	9	9	65 65	<50 <5	<50 7	150	9
MANAGOS	QC103_200730	30/07/2020				f																				
70	QC203_200730	30/07/2020																								
MW03	MW03_200730	30/07/2020	<2	<2	<2	<4	- 2	<4	<4 <2	< 2	0	<5	<5>	<5	<5	- 65		- 52	<5	<5	25	<5 <5	<50 <5	<50 <5	5	50
	QC300_200715	15/07/2020																								
	QC301_200722	22/07/2020																								
	QC302_200723	23/07/2020																								
	QC303_200724	24/07/2020																								
	QC304_200730	30/07/2020																								
	TB04_200730	30/07/2020																								

Environmental Standards ANZG, 2018, ANZG (2018) Marine water 95% toxicant DGVs

-	
	1

			eneibetudoroldzexeH	enertheoroldsertel	rans-1,2- dichlorethene	irans-1,3- dichloropropene	Pirichloroethene	Vinyl chloride	-S,t,t,l enediaonoldoenia	anaqorqoroldaib-£,£	-5.2,1 irichloropropane -5-omordib-2,1	chloropropane L3-dichloropropane	aneqorqoroldaib-2,5	Dibromomethane	Hexachlorocyclopenta	Hexachloroethane	Hexachlorobenzene	-p,2,1 Frichlorobenzene	eneznedoroldzib-S,I	9nasnadoroldsib-£,1	ənəznədoroldəlb-4,1	Halorobenzene Chlorobenzene	E.S.1. enasnadoroldziri	2-chlorotoluene	9-chlorotoldo-6	Bromobenzene	Pentachlorobenzene
			Hg/L	Hg/L	Hg/L	1/9н	Hg/L	Hg/L			1	1 1		_		Hg/L	Hg/L		Hg/L	Hg/L	Hg/L	Hg/L		Hg/L	Hg/L	Hg/L	Hg/L
EQL			2	5	8	- 5	2	20	2	5	2	5 5	2	2	10	2	4	2	2	2	2	5	2	2	2	2	2
ANZG (2018) Marine v	2018) Marine water 95% toxicant DGVs																	80									
NEPM 2013 Table 1A(LEPM 2013 Table 1A(4) Comm/Ind HSL D GW for Vapour Intrusion, Sand	or Vapour Intrusion, Sand																									
2-4m																											
NEPM 2013 Table 1C GILs, Marine Waters	SILs, Marine Waters																	20									
Location ID	Field ID	Date																									
MW01	MW01_200730	30/07/2020	<2	<5>	- 65	- 65	9	<50	<5	<5	- 9	65 65	5 <5	5>	<10	<2	<4	<2	<2	<2	<2	<5>	<5>	<5>	<5	<5	<2
MW02	MW02_200730	30/07/2020	<2	<5	- 55	- 9	- 5	<50	<5	<5	- 9	65 65	5 <5	<5>	<10	<2	40	<2	<2	<2	<2	- 55	- 55	55	55	<55	<2
MMOS	QC103_200730	30/07/2020																									
70	QC203_200730	30/07/2020																									
MW03	MW03_200730	30/07/2020	<2	<5>	55	- 65	5	<50	<5	<5		5 5	5> <5	<5>	<10	<2	<4	<2	<2	<2	<2	<5	5>	5	<5	<5	<2
	QC300_200715	15/07/2020																									
	QC301_200722	22/07/2020																									
	QC302_200723	23/07/2020																									
	QC303_200724	24/07/2020																									
	QC304_200730	30/07/2020																									
	TB04_200730	30/07/2020																									

Environmental Standards ANZG, 2018, ANZG (2018) Marine water 95% toxicant DGVs

Table 2 - Groundwater Aanlytical Results

				Halogena	Halogenated Hydrocarbons	rbons		Herbicides	z	Nitroaromatics			Pesticides	7
			9nsrt39omordib-2,£	Bromomethane	Dichlorodifluorometh ane	srichlorofluorometha an	ənshtəmobol	Pronsmide	9-Picoline	lynahqidonime-Þ	Pentachloronitrobenz ene	Sarbazole	Chlorobenzilate	Pirimphos-ethyl
			Hg/L	Hg/L	Hg/L	lπg/L	Hg/L	Hg/L	Hg/L	Hg/L	Hg/L	1/8n	lγ8/Γ	πg/L
EQ.			2	20	20	20	5	2	2	2	2	2	2	2
ANZG (2018) Marine wat	ne water 95% toxicant DGVs													
NEPM 2013 Table 1A(4)	IEPM 2013 Table 1A(4) Comm/Ind HSL D GW for Vapour Intrusion, Sand	Vapour Intrusion, Sand												
2-4m													_	
NEPM 2013 Table 1C GILs, Marine Waters	s, Marine Waters													
G.	G Fleis	440												
Location ID	rieia iū	Cate									2		ľ	
MW01	MW01_200730	30/07/2020	₹9	<50	<50	<50	9	<2	<2	<2	<2	<2	<2	<2
MW02	MW02_200730	30/07/2020	45	<50	<50	<50	9	<2	<2	<2	<2	<2	<2	<2
MANAGOS	QC103_200730	30/07/2020												
7000	QC203_200730	30/07/2020												
MW03	MW03_200730	30/07/2020	40	05>	-20	05>	8	<2	<2	<2	<2	<2	<2	42
	QC300_200715	15/07/2020												
	QC301_200722	22/07/2020												
	QC302_200723	23/07/2020												
	QC303_200724	24/07/2020												
	QC304_200730	30/07/2020												
	TB04_200730	30/07/2020												

Environmental Standards ANZG, 2018, ANZG (2018) Marine water 95% toxicant DGVs

\geq	ties
\equiv	ortuni
Ш	ddo 8
	creating

										Organoch	Organochlorine Pesticides	des							
			30G-b/b	Heptachlor epoxide	э-внс	nisblA	q-внc	р-внс	aaa	100	000+300+100	Dieldrin	I neillueobn3	II neilusobn3	esendius nestiusobna	ninbn3	(S-BHC (Lindane)	Heptachlor	ninbleiG + ninblA
			1/8н	HB/L	η/gπ	1/8n	Hg/L	Hg/L	Hg/L	η/gπ	1/8H	Hg/L	Hg/L	η/gπ	η/gπ	HB/F	1/8H	HB/L	Hg/L
it.			2	2	2	2	2	2	2	4	4	2	2	2	2	2	2	2	4
IZG (2018) Marine wa	(2018) Marine water 95% toxicant DGVs															800.0			
PM 2013 Table 1A(4)	Comm/Ind HSL D GW fo	IEPM 2013 Table 1A(4) Comm/Ind HSL D GW for Vapour Intrusion, Sand															l	l	
2-4m																			
VEPM 2013 Table 1C GILs, Marine Waters	Ls, Marine Waters															0.004			
l ocation ID	O Pleid	Date																	
MW01	MW01 200730	30/07/2020	0	~	0	0	0	0	~	44	45	0	0	0	0	<2	V	0	45
MW02	MW02_200730	30/07/2020	<2	<2	<2	2	0	22	<2	<4	45	0	0.0	2	<2	<2	0.0	0	45
COMMO	QC103_200730	30/07/2020																	
70.	QC203_200730	30/07/2020																	
MW03	MW03_200730	30/07/2020	<2	<2	<2	- 2	22	-25	<2	<4	<4	2	25	-25	<2	<2	<2	2	42
	QC300_200715	15/07/2020																	
	QC301 200722	22/07/2020																	
	QC302_200723	23/07/2020																	
	QC303_200724	24/07/2020																	
	QC304_200730	30/07/2020																	
	TB04_200730	30/07/2020																	

Environmental Standards

Σ	ities
Σ	portun
Щ	do 8
	creating

Table 2 - Groundwater Aanlytical Results

1		-	-	ganophosphor	Organophosphorous Pesticides		_	ŀ	+	-	Explosives		+		## -	Phthalates		
	Chlorpyrifos-mełhyl Dichlorvos	noidt3	noidtslsM	Chlorpyrifos	nonizsiQ	Dimethoste	chlorfenvinphos	Fenthion	soloidsorq	ensznadortinitT-Z,E,L ensznadortinid-P,L	9nəulotortinib-3,2	Nitrobenzene	(lyxərliyhtə-S)ei8 əselertərd	Butyl benzyl	Diethylphthalate	Dimethyl phthalate	əteleritid İytud-n-iQ	Di-n-octyl phthalate
	mg/L µg/	Hg/L	Hg/L	Hg/L	Hg/L	Hg/L	HE/L	hg/L μ	m ∥ 1/8m	mg/L µg/	/r µg/	l μg/L	Hg/L	Hg/L	1/8H	Hg/L	1/8H	1/8H
Ľ	0.002	2	2	2	2	2	2	2	2 0.	0.002 4	4	2	92	2	2	2	2	7
-				600'0														
L																		
				600.0														
Ľ	<0.002 <2	<2	42	25	42	<2	<2	<2	<2 <0	<0.002 <4	45	<2	<10	0	2	<2	<2	<2
Ľ	<0.002 <2	<2	0.0	0	2	<2	<2	<2	<2 <0	<0.002 <4	9>	<2	<10	0	0	<2	<2	
Ц																		
L																		
Ľ	<0.002 <2	<2	<2	- 2	0	<2	<2	<2	<2 <0	<0.002 <4	1 <4	<2	<10	2	0	<2	<2	<2
L																		
H																		
									_				_					
Н								_										
									_									

Environmental Standards ANZG, 2018, ANZG (2018) Marine water 95% toxicant DGVs

	0.1
- >	
//	
_	
	-
/	
_	
	0
ш	
_	b
1/ /	
\sim	
\sim	
\sim	0
	5

				Solvents			Other		NOCs	Ī		a						syocs					_	_
		Methyl Ethyl Ketone	Vinyl acetate	Z-hexanone (MBK)	pentanone pentanone	lsophorone	anonahqotacA	-S-orolhoid-A,1-zio	Pentachloroethane	-S-oroldɔid-P,L-znsrt ənətud	2-(acetylamino) fluorene	nibisnadoroldəid-E,E	4-(dimethylamino) asobensene 4-bromophenyl	phenyl ether	phenyl ether	ebixo eneznedosA	Bis(2-chloroethoxy)	Bis(2- chloroethyl)ether	nenutoznediQ	Hexachloropropene	Methapyrilene	onilodq romosortin-N	enibireqiqozortin-N	9nibilomyqosomin-N
		Hg/L	Hg/L	нв/г н	нв/г нв/	1		Hg/L	µg/L	Hg/L	Hg/L	_		-	_	_	Hg/L	Hg/L	µg/L	Hg/L	1/8π	η/gπ	Hg/L	ng/L
		20	50	50	50 5	2	2	2	5	5	2	H	H	2 2	2 2	2	2	2	2	2	2	2	2	4
LEPM 2013 Table 1A(4) Comm/Ind HSL D GW for Vapour Intrusion, Sand	P																							
Date																								
30/07/2020		<50	<50	> 05>	\$ 050	20	<2	9	9	5	2	2	- 7	42	2	9	2	7	2	0	0	0	<2	44
30/07/2020		<50	<50	> 05>	<50 <5	5	<2	10	9>	50	- 25	-25	<2	<2 <	2 2	0	<2	<2	<2	- 2	- 25	2	<2	<4
30/07/2020																								
30/07/2020																								
30/07/2020		<50	<50	> 05>	<50 <5	2	<2	50	\$	99	-25	<2	<2	<2 <	2 2	2	<2	<2	<2	25	25	22	<2	<4
15/07/2020																								
22/07/2020																								
23/07/2020																								
24/07/2020																								
30/07/2020																								
30/07/2020																								

Environmental Standards

		Field ID	HT_200730	Table 3 - UST Analytical Re	T1_200730	T3_200730	T4_200730
eating opportunities			30/07/2020	30/07/2020	30/07/2020	30/07/2020	30/07/2020
	Unit	EQL					
EX Total BTEX	μg/L	1	<1			<1	1
	mg/kg	0.2		176			
Xylene Total	μg/L mg/kg	2 0.5	<2	142		<2	<2
Benzene	μg/L mg/kg	0.2	<1	1.4		<1	1
Ethylbenzene	μg/L	1	<2			<2	<2
Toluene	mg/kg μg/L	0.5	<2	20.9		<2	<2
Xylene (m & p)	mg/kg μg/L	0.5	<2	11.4		<2	<2
	mg/kg	0.5		108			
Xylene (o) Xylene (o)	μg/L mg/kg	0.5	<2	33.9		<2	<2
RH SAS			.570			150	700
C10-C16	μg/L mg/kg	50 50	<570	78,600		160	790
C10-C16 (F2 minus Naphthalene)	μg/L mg/kg	50 50	<570	78,400		160	790
C10-C40 (Sum of total)	μg/L	100	62,800			5,740	2,620
C16-C34	mg/kg μg/L	50 100	28,700	186,000		4,760	1,460
C34-C40	mg/kg μg/L	100	34,100	97,200		820	370
	mg/kg	100		9,900			
C6-C10	μg/L mg/kg	10 10	<20	1,280		<20	80
C6-C10 (F1 minus BTEX) C6-C10 (F1 minus BTEX)	μg/L mg/kg	10 10	<20	1,100		<20	80
etals							
Cadmium Cadmium (filtered)	mg/kg mg/L	0.0001		<1			
Arsenic	mg/kg	5		<5			
Arsenic (filtered) Chromium (III+VI)	mg/L mg/kg	0.001		<2			
Chromium (III+VI) (filtered) Copper	mg/L mg/kg	0.001 5		10			
Copper (filtered)	mg/L	0.001					
Lead Lead (filtered)	mg/kg mg/L	5 0.001		<5			_
Mercury Mercury (filtered)	mg/kg mg/L	0.1 0.00005		<0.1			
Nickel	mg/kg	2		<2			
Nickel (filtered) Zinc	mg/L mg/kg	0.001 5		6			
Zinc (filtered)	mg/L	0.001					
AH Naphthalene	μg/L	1	<1.0			<1.0	<1.0
2-chloronaphthalene	mg/kg μg/L	0.5		177	412		
2-methylnaphthalene	μg/L	2					
3-methylcholanthrene	μg/L	2					
7,12-dimethylbenz(a)anthracene Acenaphthene	μg/L μg/L	2	<1.0			<1.0	<1.0
	mg/kg	0.5		103			
Acenaphthylene	μg/L mg/kg	0.5	<1.0	<40.0		<1.0	<1.0
Anthracene	μg/L	1	<1.0			<1.0	<1.0
Benz(a)anthracene	mg/kg μg/L	0.5	<1.0	<40.0		<1.0	<1.0
Benzo(a) pyrene	mg/kg μg/L	0.5 0.5	<0.5	<40.0		<0.5	<0.5
	mg/kg	0.5	X0.5	<40.0		10.5	
Benzo(a)pyrene TEQ (LOR) Benzo(a)pyrene TEQ calc (Half)	mg/kg mg/kg	0.5		96.8 48.4			+
Benzo(a)pyrene TEQ calc (Zero)	mg/L	0.0005 0.5	<0.0005			<0.0005	<0.0005
Benzo(b+j)fluoranthene	mg/kg mg/L	0.001	<0.0010	<10.0		<0.0010	<0.0010
Benzo(g,h,i)perylene	mg/kg μg/L	0.5	<1.0	<40.0		<1.0	<1.0
	mg/kg	0.5		<40.0			
Benzo(k)fluoranthene	μg/L mg/kg	0.5	<1.0	<40.0		<1.0	<1.0
Chrysene	μg/L mg/kg	1 0.5	<1.0	<40.0		<1.0	<1.0
Dibenz(a,h)anthracene	μg/L	1	<1.0			<1.0	<1.0
Fluoranthene	mg/kg μg/L	0.5	<1.0	<40.0		<1.0	<1.0
	mg/kg	0.5		<40.0			
Fluorene	μg/L mg/kg	0.5	<1.0	154		<1.0	<1.0
Indeno(1,2,3-c,d)pyrene	μg/L mg/kg	0.5	<1.0	<40.0		<1.0	<1.0
PAHs (Sum of total)	μg/L	0.5	<0.5			<0.5	<0.5
Phenanthrene	mg/kg μg/L	0.5	<1.0	1,230		<1.0	<1.0
Pyrene	mg/kg μg/L	0.5	<1.0	514		<1.0	<1.0
Pyrene	μg/L mg/kg	0.5	×1.0	49.6		<1.0	<1.0
Bs PCBs (Sum of total)	μg/L	1	<2			<1	<1
PCBs (Sum of total)	mg/kg	0.1	>4	<4.5		7.1	1
+C10-C36 (Sum of total)	μg/L	50	36,900			5,300	2,400
	mg/kg	50		179,000			
C10-C14	μg/L mg/kg	50 50	<570	44,900		70	500
C15-C28	μg/L	100	11,100			2,660	1,420
C29-C36	mg/kg μg/L	100 50	25,800	119,000		2,570	480
C6-C9	mg/kg μg/L	100 10	<20	15,300		<20	80
C6-C9	mg/kg	10	720	718		\ 20	- 00

Appendix B

Supporting information

Assessment of remediation category under SEPP No. 55

The proposed works at 42-52 Raymond Avenue, Matraville have been assessed as Category 2 remediation works based on a review of Clauses 9, 14 and 15(1) of the SEPP, as follows:

	Category 1 remediation work: work needing consent ourposes of this policy, a category 1 remediation work is a remediation work (not being work to	Proposed works
	ause 14(b) applies) that is -	
(a)		No
(b)	Carried out or to be carried out on land declared to be a critical habitat	No
(c)	Likely to have a significant effect on a critical habitat or a threatened species, population or	No
(0)	ecological community	INO
(d)		No
(u)	Development for which another State environmental planning policy or a regional environmental plan required development consent	INO
(e)	Carried out or to be carried out in an area or zone to which any classifications to the following	No
	effect apply under an environmental planning instrument –	
	(i) coastal protection	
	(ii) conservation or heritage conservation	
	(iii) habitat area, habitat protection area, habitat or wildlife corridor	
	(iv) environment protection	
	(v) escarpment, escarpment protection or escarpment preservation	
	(vi) floodway	
	(vii) littoral rainforest	
	(viii) nature reserve	
	(ix) scenic area or scenic protection	
	(x) wetland	
(f)	carried out or to be carried out on any land in a manner that does not comply with a policy	No
	made under the contaminated land planning guidelines by the council for any local	
	government area in which the land is situated (or if the land is within the unincorporated area,	
	the Minister)	
	4 Category 2 remediation work: work not needing consent	
For the p	ourposes of this Policy, a category 2 remediation work is -	
(a)	a remediation work that is not a work of a kind described in clause 9(a)-(f)	Yes
(b)	a remediation work (whether or not it is a work of a kind described in clause 9(a)-(f)) that -	No
	(i) by the terms of a remediation order, is required to be commenced before the expiry	
	of the usual period under the Contaminated Land Management Act 1997 for	1
	lodgement of an appeal against the order	
	(ii) may be carried out without consent under another State environmental planning	
	(ii) may be carried out without consent under another State environmental planning policy or a regional environmental plan (as referred to in clause 19(4))	
	 (ii) may be carried out without consent under another State environmental planning policy or a regional environmental plan (as referred to in clause 19(4)) (iii) is carried out or to be carried out by or on behalf of the Director-General of the 	
	 (ii) may be carried out without consent under another State environmental planning policy or a regional environmental plan (as referred to in clause 19(4)) (iii) is carried out or to be carried out by or on behalf of the Director-General of the Department of Agriculture on land contaminated by the use of a cattle dip under a 	
	 (ii) may be carried out without consent under another State environmental planning policy or a regional environmental plan (as referred to in clause 19(4)) (iii) is carried out or to be carried out by or on behalf of the Director-General of the Department of Agriculture on land contaminated by the use of a cattle dip under a program implemented in accordance with the recommendation or advice of the 	
	 (ii) may be carried out without consent under another State environmental planning policy or a regional environmental plan (as referred to in clause 19(4)) (iii) is carried out or to be carried out by or on behalf of the Director-General of the Department of Agriculture on land contaminated by the use of a cattle dip under a 	
	 (ii) may be carried out without consent under another State environmental planning policy or a regional environmental plan (as referred to in clause 19(4)) (iii) is carried out or to be carried out by or on behalf of the Director-General of the Department of Agriculture on land contaminated by the use of a cattle dip under a program implemented in accordance with the recommendation or advice of the 	
	 (ii) may be carried out without consent under another State environmental planning policy or a regional environmental plan (as referred to in clause 19(4)) (iii) is carried out or to be carried out by or on behalf of the Director-General of the Department of Agriculture on land contaminated by the use of a cattle dip under a program implemented in accordance with the recommendation or advice of the Board of Tick Control under Part 2 of the Stock Diseases Act 1923 	
	 (ii) may be carried out without consent under another State environmental planning policy or a regional environmental plan (as referred to in clause 19(4)) (iii) is carried out or to be carried out by or on behalf of the Director-General of the Department of Agriculture on land contaminated by the use of a cattle dip under a program implemented in accordance with the recommendation or advice of the Board of Tick Control under Part 2 of the Stock Diseases Act 1923 (iv) is carried out or to be carried out under the Public Land Remediation Programme administered by the Broken Hill Environmental Lead Centre 5 Remediation work that is ancillary to other development 	
A remed	 (ii) may be carried out without consent under another State environmental planning policy or a regional environmental plan (as referred to in clause 19(4)) (iii) is carried out or to be carried out by or on behalf of the Director-General of the Department of Agriculture on land contaminated by the use of a cattle dip under a program implemented in accordance with the recommendation or advice of the Board of Tick Control under Part 2 of the Stock Diseases Act 1923 (iv) is carried out or to be carried out under the Public Land Remediation Programme administered by the Broken Hill Environmental Lead Centre 5 Remediation work that is ancillary to other development iation work that would itself be a category 2 remediation work but which is ancillary to 	
A remed	 (ii) may be carried out without consent under another State environmental planning policy or a regional environmental plan (as referred to in clause 19(4)) (iii) is carried out or to be carried out by or on behalf of the Director-General of the Department of Agriculture on land contaminated by the use of a cattle dip under a program implemented in accordance with the recommendation or advice of the Board of Tick Control under Part 2 of the Stock Diseases Act 1923 (iv) is carried out or to be carried out under the Public Land Remediation Programme administered by the Broken Hill Environmental Lead Centre 5 Remediation work that is ancillary to other development 	
A remed	 (ii) may be carried out without consent under another State environmental planning policy or a regional environmental plan (as referred to in clause 19(4)) (iii) is carried out or to be carried out by or on behalf of the Director-General of the Department of Agriculture on land contaminated by the use of a cattle dip under a program implemented in accordance with the recommendation or advice of the Board of Tick Control under Part 2 of the Stock Diseases Act 1923 (iv) is carried out or to be carried out under the Public Land Remediation Programme administered by the Broken Hill Environmental Lead Centre 5 Remediation work that is ancillary to other development iation work that would itself be a category 2 remediation work but which is ancillary to 	No
A remed designat	 (ii) may be carried out without consent under another State environmental planning policy or a regional environmental plan (as referred to in clause 19(4)) (iii) is carried out or to be carried out by or on behalf of the Director-General of the Department of Agriculture on land contaminated by the use of a cattle dip under a program implemented in accordance with the recommendation or advice of the Board of Tick Control under Part 2 of the Stock Diseases Act 1923 (iv) is carried out or to be carried out under the Public Land Remediation Programme administered by the Broken Hill Environmental Lead Centre 5 Remediation work that is ancillary to other development iation work that would itself be a category 2 remediation work but which is ancillary to ed development that requires development consent may, as an applicant chooses- 	No

