

Detailed site investigation

46-52 Raymond Avenue, Matraville NSW

September 2020

Servicing projects throughout Australia and internationally

SYDNEY

Ground Floor, 20 Chandos Street St Leonards NSW 2065 T 02 9493 9500

NEWCASTLE

Level 3, 175 Scott Street Newcastle NSW 2300 T 02 4907 4800

BRISBANE

Level 1, 87 Wickham Terrace Spring Hill QLD 4000 T 07 3648 1200

ADELAIDE

Level 4, 74 Pirie Street Adelaide SA 5000 T 08 8232 2253

MELBOURNE

Ground Floor, 188 Normanby Road Southbank VIC 3006 T 03 9993 1905

PERTH

Suite 9.02, Level 9, 109 St Georges Terrace Perth WA 6000 T 02 9339 3184

CANBERRA

PO Box 9148
Deakin ACT 2600

Detailed site investigation

46-52 Raymond Avenue, Matraville, NSW

10 September 2020

Report Number	
J200432 DSI	
Client	
Epsom Enterprises	
Date	
10 September 2020	
Version	
v2 Final	
Prepared by	Approved by
	500
Lachlan Lewis	Susan Dillon
Environmental Scientist	Associate

This report has been prepared in accordance with the brief provided by the client and has relied upon the information collected at the time and under the conditions specified in the report. All findings, conclusions or recommendations contained in the report are based on the aforementioned circumstances. The report is for the use of the client and no responsibility will be taken for its use by other parties. The client may, at its discretion, use the report to inform regulators and the public.

10 September 2020

© Reproduction of this report for educational or other non-commercial purposes is authorised without prior written permission from EMM provided the source is fully acknowledged. Reproduction of this report for resale or other commercial purposes is prohibited without EMM's prior written permission.

Executive Summary

EMM Consulting Pty Limited (EMM) was engaged by Epsom Enterprises (Epsom) to undertake a Detailed Site Investigation (DSI) at a property known as 42-52 Raymond Avenue, Matraville, NSW (the Site). Epsom intends to divest the Site and required assessment of contamination as part of vendor due diligence.

The Site comprises approximately 2 hectares of land in a generally industrial area. A large building previously located at Site was demolished in May/June 2020 and only the concrete slab remains. A small area of exposed soil is present at the western boundary of the Site, between the concrete slab and a stormwater channel (the Bunnerong Stormwater Channel No. 11, off-site).

Investigations undertaken by others identified that the Site was developed in the 1950s and has been occupied by paper and packaging manufacturing operations.

During the DSI, EMM identified four underground storage tanks (USTs) and associated infrastructure at the western boundary of the Site. Three of the USTs contained black oily product while the fourth contained rubble and glass. In the vicinity of the UPSS, oil was observed to be seeping through the stormwater channel brickwork and an oily sheen was observed on the surface of water in this area.

EMM completed 30 soil sampling locations across the Site and installed three groundwater monitoring wells in the vicinity of the UPSS. Soil and/or groundwater sampling locations could not be installed to the west (down-gradient) of the UPSS due to access constraints around a steep embankment.

The results indicate that the Site is underlain by shallow fill material which contained concentrations of lead (at one location) and B(a)P (at another location) greater than the assessment criteria for commercial/industrial land use within the southern portion of the Site. The calculated 95% upper confidence limit (UCL) for both CoPC was less than the SAC. Therefore, this contamination is not considered to be widespread or significant.

Asbestos was detected in fill material in the south-east corner of the Site and was observed at five other locations across the Site. It is considered possible that the asbestos observed could be associated with the former building on-site (which was reported to contain asbestos and has since been demolished) or could be attributable to imported fill materials. Given that most of the Site is covered by a concrete slab, the detection of asbestos in fill material is not considered to present a significant risk to future Site users, provided a management plan is in place for any future construction works where the slab may be penetrated. However, at the western Site boundary where exposed soils are present, further management measures such as a capping layer may need to be installed to prevent unintended exposure of asbestos containing material (ACM). EMM notes that a surface clearance was provided for asbestos on the western ground surfaces however, ACM fragments were observed during the DSI fieldwork.

Soil and groundwater investigation locations to the north, east and south of the UPSS did not identify significant contamination and therefore impacts, if present, are considered to be localised to the western (down-gradient) side.

Development of a remediation strategy and associated environmental management measures are required for the redundant UPSS infrastructure under relevant legislation. EMM notes heritage considerations associated with the Bunnerong Stormwater Channel No 11 adjacent to the remediation area must be incorporated into the remedial strategy.

Table of Contents

Exe	cutive	Summary	ES.1
1	Intro	oduction	1
	1.1	Introduction and background	1
	1.2	Objectives	3
	1.3	Scope of work	3
	1.4	Data quality objectives	3
	1.5	Regulatory framework	3
	1.6	Guidelines	4
2	Site	details	5
	2.1	Site identification	5
	2.2	Site description and surrounding area	7
	2.3	Site history and previous investigations	7
	2.4	Underground petroleum Storage Systems (UPSS)	8
	2.5	Environmental setting	10
3	Preli	minary conceptual site model	12
	3.1	Sources of contamination	12
	3.2	Migration and exposure pathways	14
	3.3	Sensitive receptors	14
	3.4	Preliminary CSM	15
4	Field	l investigation	20
	4.1	Soil investigation	20
	4.2	Intrusive work	20
	4.3	Groundwater investigation	22
	4.4	Chain of custody protocols	24
	4.5	Decontamination of field equipment	25
5	Asse	essment criteria and QA/QC	26
	5.1	Site context	26
	5.2	Soil investigation criteria	26
	5.3	Groundwater assessment criteria	27
	5.4	Quality assurance and quality control	27

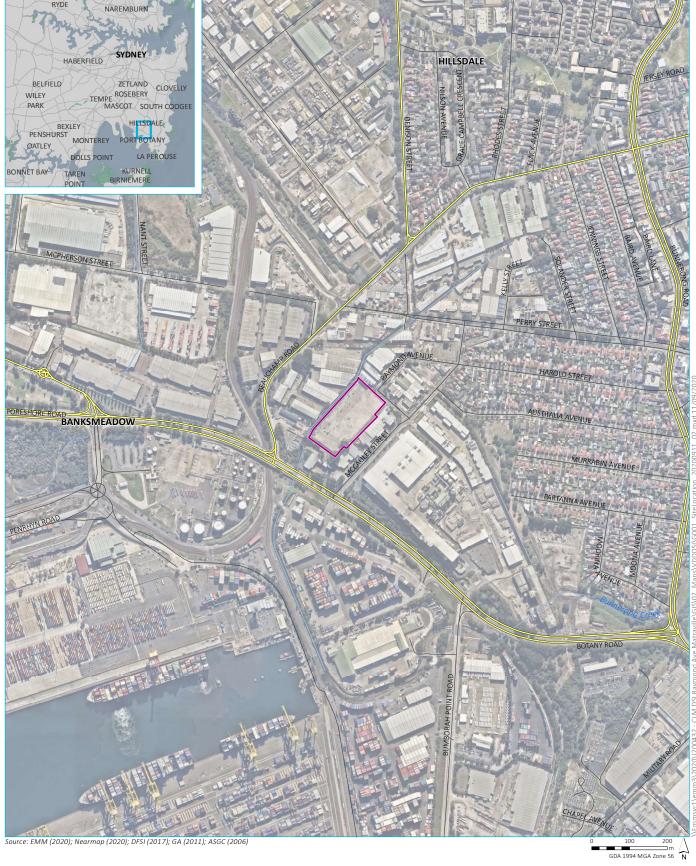
	6.1	Field observations – soil	29
	6.2	Soil analytical results	29
	6.3	Field observations – groundwater	31
	6.4	Groundwater analytical results	31
7		eptual site model	33
,			
	7.1	Source-pathway-receptor evaluation	33
8		usions and recommendations	38
9	Refer	ences	39
App	endice	S	
App	endix A	Data quality objectives and assessment criteria	
App	endix E	B QA/QC report	
App	endix (Calibration certificates	
App	endix [D Borelogs	
App	endix E	Analytical result tables	
Арр	endix F	Laboratory documentation	
Tab	les le 2.1	Site Identification	5
	le 4.1	Soil analytical suite	22
	le 5.1		
		Human health-based soil assessment criteria (SAC)	26
	le 5.2	Groundwater Assessment Criteria	27
	le 6.1	Summary of criteria exceedances	29
Tab	le 6.2	Groundwater well gauging	31
Tab	le 6.3	Groundwater quality field parameters	31
Tab	le 7.1	Contamination sources	33
Tab	le 7.2	CoPC and applicable exposure pathways	35
Tab	le 7.3	Source-pathway-receptor model	36
Tab	le A.1	HIL summary	A.4
Tab	le A.2	Soil HSLs for vapour intrusion	A.4
Tab	le A.3	Soil HSLs for direct contact	A.5
Tab	le A.4	Groundwater HSL summary	A.7

29

6 Results

Table A.5	Data Quality Indicators	A.8
Figures		
Figure 1.1	Site location	2
Figure 2.1	Site layout	6
Figure 6.1	Soil analytical results	30
Figure 6.2	Groundwater analytical results	32
Figure 7.1	Conceptual site model schematic	37

1 Introduction


1.1 Introduction and background

EMM Consulting Pty Limited (EMM) was engaged by Epsom Enterprises (Epsom) to undertake a Detailed Site Investigation (DSI) at a property known as 42-52 Raymond Avenue, Matraville, NSW (the Site). The Site location is shown on Figure 1.1. Epsom intends to divest the Site and required assessment of contamination as part of vendor due diligence.

A preliminary site investigation (PSI) and limited DSI (JBS&G 2019a) and a Hazardous Building Materials Survey (HBMS) (JBS&G 2019b) were undertaken at the Site in 2019. Following these investigations, data gaps remaining at the Site included:

- the location of a 3,000 gallon underground storage tank (UST) was unknown. Additionally, the 3,000 gallon
 UST, a 1,000 gallon UST, a liquid petroleum gas (LPG) tank and a former substation were not specifically
 targeted during the PSI and limited DSI as the results of a SafeWork NSW Dangerous Goods search were not
 received before field work was undertaken;
- the number of soil sampling locations across the Site was less than the recommended minimum number in accordance with the NSW EPA Sampling Design Guidelines, which recommends a minimum of 30 sampling locations for a 2-hectare (ha) site; and
- the nature and extent of groundwater contamination beneath the Site was not assessed. The Site is located within the Orica Botany Groundwater Extraction Exclusion Area (GEEA) and therefore the potential exposure pathways associated with groundwater contamination would likely be limited to vapour migration, which was assessed as part of the PSI and limited DSI. However, there is also a potential for contaminant sources at the Site (USTs, transformer, etc) to be sources of groundwater contamination.

The PSI and limited DSI and HMBS are discussed in more detail in Section 2.3.

KEY

Site location

Site boundary

— Major road

— Minor road

— Watercourse/drainage line

INSET KEY

— Main road

NPWS reserve

State forest

42-52 Raymond Avenue, Matraville NSW Vendor due diligence detailed site investigation Figure 1.1

1.2 Objectives

The objective of this DSI was to assess the nature and extent of contamination at the Site, in accordance with the requirements of the National Environment Protection Council (NEPC) National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended in 2013 (the ASC NEPM).

1.3 Scope of work

To achieve the project objective, EMM undertook the following scope of work:

- preparation of health and safety documentation, obtaining dial before you dig (DBYD) plans and clearance of proposed sampling locations for subsurface services;
- completion of a ground penetrating radar (GPR) survey to identify subsurface anomalies that may represent the location(s) of the USTs;
- drilling of 25 boreholes up to 5.5 metres (m) below ground level (bgl) and collection of soil samples. The boreholes were targeted to the potential USTs as well as providing general coverage across the Site;
- conversion of 3 boreholes to groundwater monitoring wells targeting the area of the USTs;
- collection of five soil samples using hand tools from a garden bed at the western boundary of the Site;
- laboratory analysis of selected soil and groundwater samples for a range of contaminants of potential concern (CoPC);
- assessment of laboratory results against nominated site assessment criteria (SAC); and
- preparation of this DSI report.

1.4 Data quality objectives

In determining the type, quantity and quality of data needed to support decisions relating to the environmental condition of the Site, EMM undertook the seven-step process outlined in the ASC NEPM to develop the data quality objectives (DQOs).

In developing the DQOs for the investigation, an initial phase of review was undertaken to appraise relevant and available background information and to develop a preliminary conceptual site model. The DQOs are discussed in Appendix A.

1.5 Regulatory framework

An overview of NSW legislation informing the DSI is provided below.

1.5.1 NSW Contaminated Land Management Act 1997

The NSW Contaminated Land Management Act 1997 (CLM Act) aims to promote the better management of contaminated land. The objectives of the CLM Act are to establish a process for investigating and (where appropriate) remediating land areas where contamination presents a significant risk of harm to human health or some factor of the environment.

The NSW Environment Protection Authority (EPA) has powers to respond to contamination that is causing significant risk of harm to human health or the environment. The NSW EPA can direct landowners to investigate or remediate contaminated land and requires landowners to report contamination where there is a significant risk of harm (duty to report). The CLM Act may be triggered if contamination migrates beyond site boundaries.

1.5.2 NSW Protection of the Environment Operations Act 1997

The NSW *Protection of the Environment Operations Act 1997* (POEO Act) is administered by the NSW EPA. It prohibits any person to cause pollution of waters, land or air and provides penalties for specified offences. The POEO Act enables the NSW Government to set out explicit protection of the environment policies and adopt more innovative approaches to reducing pollution. The POEO Act also requires "scheduled activities" listed at Schedule 1 to the POEO Act to be carried out in accordance with an Environment Protection Licence (EPL).

1.5.3 Environmental Planning and Assessment Act (2000) and State Environmental Planning Policy (SEPP) no.55 – Remediation of Land

State Environmental Planning Policy 55 – Remediation of Land (SEPP 55) is a planning instrument under the *Environmental Planning and Assessment Act 2000* (EPA Act) that applies to State land.

SEPP 55 Clause 7 outlines considerations regarding contamination and remediation in determining development applications by local government authorities and provides requirements for investigations to be undertaken where a change of land use is proposed.

SEPP 55 also specifies when remediation works will require Development Consent from the Local Government Authority (LGA).

1.6 Guidelines

The DSI has been completed in general accordance with the requirements of:

- the ASC NEPM;
- NSW EPA (2020) Guidelines for Consultants Reporting on Contaminated Land;
- NSW Department of Environment and Conservation (2007) Guidelines for the Assessment and Management of Groundwater Contamination:
- Standards Australia (2005) Australian Standard AS4482.1 Guide to the Investigation and Sampling of sites with Potentially Contaminated Soil. Part 1: Non-volatile and Semi-Volatile Compounds;
- Australian and New Zealand Guidelines for Fresh and Marine Water Quality (2018) Guidelines for Fresh and Marine Water Quality Australian and New Zealand and Australian State and Territory Governments;
- Standards Australia (1999) Australian Standard AS 4482.2 Guide to the sampling and investigation of potentially contaminated soil. Part 2: Volatile substances; and other relevant guidelines and legislation; and
- NSW EPA (1995) Sampling Design Guidelines.

2 Site details

2.1 Site identification

Site identification details are listed in Table 2.1 and a layout of the Site (including borehole locations) is provided in Figure 2.1.

Table 2.1 Site Identification

Item	Description
Site address	42-52 Raymond Avenue, Matraville NSW
Legal description ¹	Lot 1 in Deposited Plan (DP) 369668, Lot 1 in DP 511092 and Lot 32 in DP8313.
Site area ¹	Approximately 2 ha
Site owner	Epsom Enterprises Pty Ltd
Local government authority	Randwick City Council
Current zoning ²	IN1: General industrial
Current land use	Vacant (formerly industrial)
Proposed land use	Industrial/commercial
Site location	Refer to Figure 1.1.
Site layout	Refer to Figure 2.1.

Notes:

- 1. Spatial Information Exchange Viewer (www.maps.six.nsw.gov.au)
- 2. State Environmental Planning Policy (Port Botany) Amendment 2013

KEY

☐ Site boundary

— Major road

— Minor road

— Watercourse/drainage line

Waterbody

Sampling location

Borehole

Monitoring well

Site layout and sampling locations

42-52 Raymond Avenue, Matraville NSW Vendor due diligence detailed site investigation Figure 2.1

2.2 Site description and surrounding area

The Site was formerly occupied by a large industrial/warehouse building, which was demolished around May/June 2020. The Site is now predominantly covered with hardstand comprising a concrete slab with a bitumen driveway along the eastern boundary. The western boundary of the Site comprises unsealed ground/garden bed which slopes steeply towards the north-west. A small vegetated area is present at the southern extent of the Site.

A small electrical substation is located at the south-western corner of the Site, enclosed by a chain-wire fence.

A stormwater drainage channel is present immediately adjacent to the Site's western boundary and a retention pond/lagoon is located to the south. The stormwater channel is known as the Bunnerong Stormwater Channel No. 11 and is listed on the Sydney Water State Agency Section 170 Heritage and Conservation Register Properties immediately to the east, south-east and north are industrial.

The surrounding area is largely industrial/commercial, with Port Botany (including a fuel depot and container storage) located approximately 500 m to the south of the Site, a paper mill and packaging manufacturing plant approximately 100 m to the east and the Botany Freight railway line approximately 150 m to the west.

The closest residential properties are approximately 200 m to the east/north-east in the suburb of Matraville. The Penrhyn Estuary is approximately 700 m to the south-west of the Site.

2.3 Site history and previous investigations

A review of the Site history was included in the PSI and limited DSI (JBS&G, 2019a). A summary of key findings is provided below.

The PSI and limited DSI included a historical review, soil sampling from five locations, installation and screening of sub-slab soil vapour probes at 20 locations and soil vapour sampling at four locations.

The historical review identified that the Site has been occupied by an industrial building/warehouse since the 1950s. Previous landowners included Sydney Paper Mills Limited, The Australian Paper and Pulp Company, Australian Paper Manufacturers and Fibre Containers Pty Ltd.

The limited DSI identified fill materials in each of the five boreholes, and concentrations of zinc (Zn) and benzo(a)pyrene (B(a)P) were reported to be greater than the ecological assessment criteria in one sample each. No CoPC were reported in soil at concentrations greater than the human health assessment criteria. Readings using a photoionisation detector (PID) reported volatile organic compounds (VOCs) up to 18.9 parts per million (ppm) at soil vapour probe locations. Volatile total recoverable hydrocarbons (TRH) were reported in the four soil vapour samples, but at concentrations less than the adopted assessment criteria.

The HBMS (JBS&G, 2019b) identified fragments of asbestos containing materials (ACM) in a garden bed at the western Site boundary. Sources of asbestos were also identified in the warehouse building including roofing, which was found to be significantly weathered and a source of friable asbestos within dust identified in the building.

The PSI and limited DSI concluded that contamination was not identified that would prevent continued commercial use of the Site, although it was noted that some areas of concern were not assessed and further investigations were recommended to comply with NSW EPA (1995). Removal of visible asbestos from the Site surface was also advised.

The HMBS recommended remediation of the friable asbestos containing dust and sealing of the roof materials to prevent recontamination. The building has since been demolished and clearance certificates and updated asbestos register¹ provided.

Asbestos Register Epsom Enterprises Pty Ltd 42-46 Raymond Avenue, Matraville NSW 2036. Amended 13 June 2020.

2.4 Underground petroleum Storage Systems (UPSS)

A GPR survey was undertaken to identify anomalies that may indicate the location of the presence of a former 3,000 gallon UST and a 1,000 gallon UST which were recorded in a SafeWork NSW Dangerous Goods records search previously completed for the Site (JBS&G 2019a). The survey targeted the areas where potential infrastructure may remain as indicated by the plans contained within the Safework NSW documents. No anomalies were detected within these areas.

However, EMM visually located UPSS infrastructure along the western site boundary adjacent to the edge of the concrete slab and stormwater canal wall, covering an area of approximately 150 m². An overview of the infrastructure is provided in Figure 2.2 and a register of identified USTs in Table 2.2.

EMM also observed liquid seeping through the brick wall of the stormwater canal downgradient of the 3,000 gallon UST. A hydrocarbon sheen was also visible on the surface of the water in the canal from the area of seepage. This may indicate that the UST or other UPSS infrastructure was leaking.

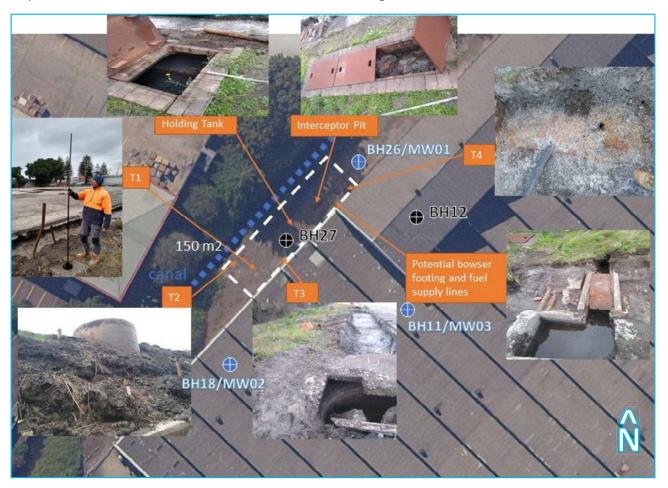


Figure 2.2 UPSS infrastructure overview

Table 2.2 UPSS register

Tank ID	Contents/volume	Dimensions (m)	Direction	Photograph
T1	UST containing 3,000 gallons (11,356 L) of black oil, medium-high viscosity	Unknown, but dipstick max measurement is 4,000 gallons	S	
T2	UST containing solid	2 m Ø	S	
	waste, top cut open, no liquid visible.	depth unknown		
T3	UST <50% full of liquid with oily sheen, mostly	1.45 m Ø	S	
	filled with solid waste	depth unknown but assumed approximately 2 m		
Т4	Full of liquid with sheen, ~887 L based on dimensions	1.75 length (I) x 0.65 width (w) x 0.78 depth (d)	NW	
Holding Tank	<50% full of high viscosity black oily sludge	~2 I x 0.9 w depth unknown	SE	
Interceptor Pit	Filled with glass fragments, no liquid visible	2.5 l x 0.55 w depth unknown	SE	

2.5 Environmental setting

The following information on the environmental context of the Site has been summarised from the background information searches previously undertaken (JBS&G 2019a), in combination with observations and data collected on the Site during the DSI.

2.5.1 Topography

The Site is relatively flat and level, with an elevation of approximately 6 m Australian Height Datum (AHD). The Site features a stormwater drainage channel running along the western border of the Site (outside the Site boundary), which flows into a stormwater retention basin adjacent to the southern Site boundary. The surrounding area slopes gently to the south-west, towards Port Botany.

2.5.2 Geology and soils

The following geology and soils are present at the Site:

- the Site and surrounds are mostly underlain by highly disturbed Quaternary deposits comprising medium to fine grained marine sands with podsols;
- soils are described as coastal sand plains and dunes, lagoons, and swampy areas with generally leached, siliceous, and/or calcareous sands; and
- drillers logs from nearby groundwater bores indicated that lithology comprises sands with some peat, clay and sandstone.

2.5.3 Hydrogeology

The Site is within Botany Groundwater Management Zone 1, which is an extraction exclusion zone. The aquifer is described as a porous and extensive highly productive aquifer.

A large number of registered bores were located within a 1.5 km radius of the Site. Additionally, two monitoring bores were registered as being present on Site, installed in 1975 although these were not located during the DSI. While the purposes of the bores within the surrounding area appears to be varied, the Botany Sands Aquifer has been banned for domestic purposes since 2006, therefore no beneficial use of groundwater is expected on the Site or in the surrounding area.

2.5.4 Hydrology

The closest surface water bodies are the Sydney Water Corporation (SWC) owned Bunnerong Stormwater Channel No 11 adjacent to the western boundary of the Site, and the SWC stormwater retention basin adjacent to the southern boundary of the Site. Botany Bay is approximately 750 m downgradient to the south of the Site.

Most of the site is sealed by concrete slab and a bitumen driveway. As such, precipitation falling onto the Site is expected to pool on the slab and evaporate or enter preferential pathways (eg drainage lines, cracks or holes). Runoff along the western and southern boundaries would be expected to follow the topographic gradient and infiltrate surface soils where exposed at a rate reflective of the permeability of the underlying soils. Excess water, especially during periods of heavy or prolonged rainfall, may spill into the stormwater channel and pond to the west and south of the Site, respectively.

2.5.5 Acid sulfate soils

The Site has a low probability of occurrence of acid sulfate soils (ASS) (JBS&G 2019). This is consistent with the topographic and geologic setting of the Site. Therefore, land management activities are not likely to be affected by acid sulfate soil materials.

2.5.6 Climate

The Site is located within the following meteorological setting:

- average minimum temperatures vary from 7°C in July to 19°C in February;
- average maximum temperatures vary from 17°C in July to 27°C in January;
- average annual rainfall is approximately 1081 mm; and
- monthly rainfall varies from 60 mm in September to 125 mm in June, with the period from January to June receiving the most rainfall on average.

3 Preliminary conceptual site model

A conceptual site model (CSM) is a qualitative description of the mechanisms by which potential and/or complete exposure pathways exist between known or potential sources of Site contamination, and human or environmental receptors.

In order for a human receptor to be exposed to a chemical contaminant derived from the Site, a complete exposure pathway must exist. An exposure pathway describes the course a chemical or physical agent takes from the source to the exposed individual and generally includes the following elements (USEPA, 1989):

- a source and mechanism of chemical release;
- a retention or transport medium (or media where chemicals are transferred between media);
- a point of potential human contact with the contaminated media; and
- an exposure route (eg ingestion, inhalation) at the point of exposure).

Where one or more of the above elements is missing, the exposure pathway is considered to be incomplete and there is therefore no direct risk to the receptors. Where this is identified, the exposure pathway does not warrant further assessment.

A preliminary CSM was generated based on our understanding of the Site, to inform the DSI design. Further investigations are considered to be necessary where potentially complete source-pathway-receptor (S-P-R) linkages are identified.

3.1 Sources of contamination

Potential sources of contamination at the Site are summarised below, with associated CoPC.

Table 3.1 Summary of potential sources of contamination and CoPC

Potential sources of contamination	CoPCs	Likelihood of contamination/release mechanisms
UPSS infrastructure:	BTEX ¹ /TRH ² /PAHs ³ /	Likely
1. $1 \times 3,000$ gallon (11,356 L) UST full of black oil, medium viscosity, referred to as T1;	VOCs ⁴ /phenols/lead	As noted in Table 2.2, USTs were observed to contain black oily product and their integrity is unknown. The USTs are
2. 2 x approximate 1,000 gallon (3,785 L) USTs, referred to as T2 and T3 respectively;		estimated to be up to 40 years old (based on Dangerous Goods records from 1970).
3. 1 x 887 L UST full of water/oil mixture, referred to as T4; and		Leaking of oil through the stormwater canal brickwork (off- site to the west) was observed in the vicinity of the UPSS.
remnant ancillary infrastructure including supply lines, vent pipes and potential dispensing bowser footing.		
Refer to Table 2.2 for further details.		

Table 3.1 Summary of potential sources of contamination and CoPC

Potential sources of contamination	CoPCs	Likelihood of contamination/release mechanisms
Electrical substation (and former substation) containing transformers	PCBs ⁵	Unlikely It is unknown if the transformers were PCB containing, however, based on the age of the facility it is considered possible. Leaking from the former transformer and substation infrastructure was considered possible but significant contamination is unlikely due to the size of the facilities and no observations of leakage.
ACM used in former buildings, utilities and pipework and impacted soils Site wide	Asbestos	Likely
pipework and impacted soils site wide		Confirmed ACM present throughout many of the buildings based on the HBMS (JBS&G 2019a). Clearance certificates were issued for recently demolished buildings, however, some asbestos pipes were noted to remain in-situ.
Former use of lead paint on buildings, based	Lead	Unlikely
on the age of the former buildings (pre 1980s) and historical application of lead- based paints during that time.		Flaking and/or lead dust cannot be precluded. As most of the Site is occupied by a concrete slab and driveways, impacts would likely be limited to small areas of exposed soil.
Potential application of pesticides for pest	OCP ⁶ /OPP ⁷	Possible
control		Pesticides may have been applied to building footings and void spaces with the potential to impact surrounding soils, including beneath the concrete slab.
Use of aqueous film-forming foam (AFFF) containing per and poly fluoroalkyl substances (PFAS) in fire suppression (the Site is understood to formerly be used to store significant quantities of Dangerous Goods), possible use of PFAS containing products in paper/packaging manufacturing	PFAS ⁸	Possible PFAS and AFFF were generally introduced in Australia for civilian use in the late 1970s until gradual phasing out commenced in the 2000s. It is unknown if AFFF was historically stored or applied at the Site. PFAS has been used in surface coatings for paper to repel grease and/or moisture, such as pizza boxes. It is unknown
Chaminal standard bull, standard of shows include	DTEV/TDLL/DALIs/NOCs/	if these products were manufactured at the Site.
Chemical storage – bulk storage of chemicals at the Site. Dangerous Goods records indicate large quantities of dangerous goods have been historically stored at the Site.	BTEX/TRH/PAHs/VOCs/ metals/phenols/OCP/ OPP	Possible. Spills and leaks may have resulted in seepage into underlying soils, discharge into surface water and infiltration to groundwater.
Use/importation of fill material Site wide	BTEX/TRH/PAHs/VOCs/	Likely
Fill materials may have been imported to the Site for levelling and grading. JBS&G (2019a) identified fill materials across the Site. The presence of contaminants within fill cannot be precluded.	phenols/heavy metals/PCBs/ Asbestos/PFAS	Based on the potential leachability of CoPC within fill material and the historical use of the Site, vertical migration of contamination from the fill materials/surface soils into the underlying natural soils is potential. Fill material imported from unknown origins may also contain contaminants such as asbestos.

- 1. BTEX Benzene, toluene, ethylbenzene, and xylene
- 2. TRH Total recoverable hydrocarbons
- 3. PAHs Polycyclic aromatic hydrocarbons
- 4. VOCs Volatile organic compounds
- 5. PCB Polychlorinated biphenyl
- 6. OCP Organochlorine pesticides
- 7. OPP Organophosphorus pesticides
- 8. PFAS Per- and polyfluoroalkyl substances

3.2 Migration and exposure pathways

The following transport mechanisms may apply at the Site:

- surface run-off of CoPC into surface water channels adjacent to the Site;
- excavation and re-location of soil during future construction activities;
- vertical seepage of CoPC into the underlying soils and into the local groundwater system;
- migration of CoPC via groundwater transport, inferred to flow in a south-westerly direction;
- migration and infiltration of vapours from contaminants in soil and/or groundwater beneath the Site; and
- atmospheric dispersion (aeolian transport) of dust, derived from contaminated soil or hazardous building materials (HBM), eg asbestos or lead.

Identified potential exposure pathways for the nominated CoPC include:

- dermal contact and incidental ingestion of soil;
- inhalation of dust (including soil derived) or fibres;
- dermal contact and incidental ingestion of groundwater/surface water;
- inhalation of soil/groundwater vapours in indoor air;
- inhalation of soil/groundwater/surface water vapours in outdoor air;
- inhalation of soil/groundwater vapours within a trench;
- plant uptake and/or ingestion by animals; and
- uptake of CoPC from groundwater (stygofauna and microorganisms).

3.3 Sensitive receptors

The nearest sensitive human receptors identified at the Site comprise:

- current and future Site users (industrial);
- future construction workers involved in the development of the Site;
- users of surrounding properties; and
- down-gradient users of surface water (such as recreational users of Penrhyn Estuary and Botany Bay).

Based on the GEEA, there are not considered to be sensitive human health receptors associated with groundwater beneath the Site and/or downgradient.

The Site is generally covered by hardstand pavements and building footprints. On this basis, there are limited on-Site ecological receptors that could be exposed to environmental impacts at the Site. Possible off-site ecological receptors are limited to potential impacts associated with groundwater or surface water runoff migrating from the Site into the following adjacent water bodies:

- Bunnerong Stormwater Channel No 11, along the western Site boundary, which subsequently discharges into the Penrhyn Estuary and Botany Bay; and
- the stormwater retention basin immediately south of the Site.

3.4 Preliminary CSM

Table 3.2 Preliminary CSM

Source	Pathway	Receptor	Potentially complete S-P-R?
UPSS – USTs and ancillary underground infrastructure (eg pits and supply lines). Observations of potential leakage	Seepage into underlying soils and inhalation of soil vapour/dust	 Future Site users Future construction workers involved in the development of the Site Users of surrounding properties 	Yes
through stormwater channel wall in the vicinity of the UPSS.	Direct contact/ingestion of soils	 Future Site users Future construction workers involved in the development of the Site 	Yes
BTEX/TRH/PAHs/VOCs	Migration through surface water runoff	 Future construction workers involved in the development of the Site Current and future users of surface water Off-site downgradient surface water ecology (Penrhyn Estuary and Botany Bay) 	Yes
	Seepage through soil profile into groundwater and migration through groundwater flow – direct contact or incidental ingestion of groundwater or inhalation of vapours	 Future construction workers involved in the development of the Site Adjoining land users/occupants Groundwater ecosystem Off-site downgradient surface water ecology (Penrhyn Estuary and Botany Bay) 	Possible Groundwater would be managed during future construction (if required) and is unlikely to be abstracted due to the GEEA.
Substation and former substation CoPC include PCBs and TRH	Seepage into underlying soils and inhalation of soil vapour/dust	 Future Site users Future construction workers involved in the development of the Site Users of surrounding properties 	Possible

Table 3.2 Preliminary CSM

Source	Pathway	Receptor	Potentially complete S-P-R?
	Direct contact/ingestion of soils	 Future Site users Future construction workers involved in the development of the Site 	Possible
	Migration through surface water runoff	 Future construction workers involved in the development of the Site Current and future users of surface water Off-site downgradient surface water ecology (Penrhyn Estuary and Botany Bay) 	Possible
	Seepage through soil profile into groundwater and migration through groundwater flow – direct contact or incidental ingestion of groundwater or inhalation of vapours	 Future construction workers involved in the development of the Site Adjoining land users/occupants Groundwater ecosystem Off-site downgradient surface water ecology (Penrhyn Estuary and Botany Bay) 	Unlikely
Potential ACM in former buildings, fragments on surface and potential asbestos impacted soil	Inhalation of dust and/or fibres through atmospheric dispersion and incidental ingestion	 Future construction workers involved in the development of the site Future Site users Users of surrounding properties 	Yes
Potential residual lead- based paint on former buildings	Paint flaking – dermal contact/incidental ingestion and inhalation of lead entrained dust	 Future Site users Future construction workers involved in the development of the Site Users of surrounding properties 	Yes
	Direct contact/ingestion of soils	 Future Site users Future construction workers involved in the development of the Site 	Yes
	Migration through surface runoff	 Future construction workers involved in the development of the Site Off-Site current and future users near surface water flow Off-site downgradient surface water ecology (Penrhyn Estuary and Botany Bay) 	Unlikely

Table 3.2 Preliminary CSM

Source	Pathway	Receptor	Potentially complete S-P-R?
	Seepage through soil profile into groundwater and migration through groundwater flow – direct contact or incidental ingestion of groundwater or inhalation of vapours	 Future construction workers involved in the development of the Site Adjoining land users/occupants Groundwater ecosystem Off-site downgradient surface water ecology (Penrhyn Estuary and Botany Bay) 	Possible
Potential application of pesticides for pest control	Seepage into underlying soils and inhalation of soil vapour/dust	 Future Site users Future construction workers involved in the development of the Site 	Possible
	Direct contact/ingestion of soils	 Future Site users Future construction workers involved in the development of the Site 	Possible
	Migration through surface runoff	 Future construction workers involved in the development of the Site Off-site current and future users near surface water flow Off-site downgradient surface water ecology (Penrhyn Estuary and Botany Bay) 	Possible
	Seepage through soil profile into groundwater and migration through groundwater flow – direct contact or incidental ingestion of groundwater or inhalation of vapours	 Future construction workers involved in the development of the Site Adjoining land users/occupants Groundwater ecosystem Off-site downgradient surface water ecology (Penrhyn Estuary and Botany Bay) 	Unlikely
Use of aqueous film- forming foam (AFFF) containing per and poly fluoroalkyl substances	Seepage into underlying soils and inhalation of soil vapour/dust	 Future Site users Future construction workers involved in the development of the Site 	Possible
(PFAS) in fire suppression infrastructure or PFAS in paper/packaging manufacturing process	Direct contact/ingestion of soils	 Future Site users Future construction workers involved in the development of the Site 	Possible
	Migration through surface runoff	 Future construction workers involved in the development of the Site Current and future users of surface water 	Possible

Table 3.2 Preliminary CSM

Source	Pathway	Receptor	Potentially complete S-P-R?
		 Off-site downgradient surface water ecology (Penrhyn Estuary and Botany Bay) 	
	Seepage through soil profile into groundwater and migration through groundwater flow – direct contact or incidental ingestion of groundwater or inhalation of vapours	 Future construction workers involved in the development of the Site Adjoining land users/occupants Groundwater ecosystem Off-site downgradient surface water ecology (Penrhyn Estuary and Botany Bay) 	Unlikely
Chemical storage — ormer bulk storage of chemicals at the Site	Seepage into underlying soils and inhalation of soil vapour/dust	 Future Site users Future construction workers involved in the development of the Site Users of surrounding properties 	Yes
	Direct contact/ingestion of soils	 Future Site users Future construction workers involved in the development of the Site 	Yes
	Migration through surface runoff	 Future construction workers involved in the development of the Site Current and future users of surface water Off-site downgradient surface water ecology (Penrhyn Estuary and Botany Bay) 	Possible
	Seepage through soil profile into groundwater and migration through groundwater flow – direct contact or incidental ingestion of groundwater or inhalation of vapours	 Future construction workers involved in the development of the Site Adjoining land users/occupants Groundwater ecosystem Off-site downgradient surface water ecology (Penrhyn Estuary and Botany Bay) 	Unlikely
Jse/importation of fill material Site wide	Seepage into underlying soils and inhalation of soil vapour/dust	 Future Site users Future construction workers involved in the development of the Site Users of surrounding properties 	Yes
	Direct contact/ingestion of soils	 Future Site users Future construction workers involved in the development of the Site 	Yes

Table 3.2 Preliminary CSM

Source	Pathway	Receptor	Potentially complete S-P-R?	
Migration through surface runoff		Future construction workers involved in the development of the Site	Possible	
		 Current and future users near surface water flow 		
		 Off-site downgradient surface water ecology (Penrhyn Estuary and Botany Bay) 		
	Seepage through soil profile into groundwater and migration through groundwater flow – direct	• Future construction workers involved in the development of the Site	Unlikely	
	contact or incidental ingestion of groundwater or inhalation of vapours	Adjoining land users/occupants		
		 Groundwater ecosystem 		
		 Off-site downgradient surface water ecology (Penrhyn Estuary and Botany Bay) 		

4 Field investigation

4.1 Soil investigation

4.1.1 Rationale

The DSI was deigned to assess potentially complete S-P-R linkages as identified in the preliminary CSM. Thirty (30) soil bores were installed at the Site to meet the minimum recommendations for sampling points on a site of approximately 2 ha (NSW EPA, 1995). The soil bores were located to provide general coverage of the Site and to target areas of potential concern, such as the old transformer and LPG tank locations (BH22 and BH21, respectively), possible locations of USTs based on SafeWork NSW records (BH06 and BH24).Boreholes BH01 – BH05 were located in the garden bed at the western Site boundary to assess potential asbestos impacts in this area.

Following identification of the UPSS (discussed in Section 2.4) three boreholes (BH 12, BH26 and BH27) were located close to the infrastructure to assess potential contamination impacts. Access around the UPSS was hindered by the steep slope and unstable ground at the western Site boundary, which affected the locations of the boreholes.

4.1.2 Service location and clearance

All borehole locations were cleared for subsurface utilities as follows:

- plans of underground utilities were requested from the Dial-Before-You-Dig service and relevant utility representatives were contacted to confirm proposed sample points were clear of subsurface utilities. All plans were reviewed by EMM prior to the commencement of service location clearance. Any borehole locations potentially located in the vicinity of identified underground services were changed at this time;
- all sampling points were located in consultation with on-site personnel (RMA Group) and previously obtained subsurface utility maps. All sample locations were marked on the ground with spray paint. All locations were measured from nearby building reference points;
- each sampling location was cleared using an accredited underground services location contractor; and
- each location was cleared using non-destructive drilling (NDD) techniques (hand auger) to at least 1 m bgl prior to mechanical drilling by a competent subcontractor (Epoca Environmental Pty Ltd).

4.2 Intrusive work

EMM completed boreholes BH01 – BH05 using a hand auger. Each bore was advanced to between 0.5 m bgl and 1 m bgl with at least one sample collected by gloved hand from the auger head and placed in laboratory supplied containers.

Epoca Environmental Pty Ltd were engaged to carry out the mechanical drilling scope. Drilling techniques consisted of a combination of auger and push tube methods. Where push tube techniques were employed, continuous soil samples were collected. Soil was collected in disposable plastic liners and representative soil samples were transferred from liners into laboratory supplied sampling containers by nitrile-gloved hand. Samples were collected based on their location, distribution within the soil/fill profile and suitability for sampling. Boreholes were drilled at least 1 m into natural material, resulting in a maximum soil investigation depth of 5.5 m bgl.

Borehole locations that were not converted to monitoring wells (refer to Section 4.3) were reinstated with soil cuttings that had been drilled out from that location. All boreholes were reinstated to original surface level and condition. Any excess soil generated from the drilling, monitoring well development and monitoring well purging process was placed in drums pending classification and disposal to an appropriately licenced facility.

All soil samples were placed in laboratory prepared glass sampling containers using single use disposable nitrile gloves. Field duplicates (intra laboratory) and triplicates (inter laboratory) were prepared in the field by splitting soil samples. In order to minimise the loss of volatiles, samples were not mixed or homogenised during collection or splitting and jars were filled to minimise the amount of headspace where sample recovery allowed. Where materials potentially containing asbestos were noted, a sample of the material and the soil at the location where it was sampled was collected in separate plastic zip lock bags for laboratory analysis for asbestos.

4.2.1 Soil sample labelling, preservation, storage and transport

All samples were clearly labelled with unique sample identification numbers consisting of the date, sample location, depth of sample and samplers' initials. In the case of field duplicates and triplicates, sample containers were labelled to not reveal their purpose or sample location to the laboratory. All samples were kept chilled in an ice-filled esky prior to dispatch to the NATA registered laboratory under chain of custody (COC) procedures.

Samples for asbestos analysis were collected in laboratory supplied zip lock bags and double bagged.

All samples collected are stored at the laboratory (3 months for metals [28 days for mercury]), or 14 days for organics).

4.2.2 Field screening

For each sample depth, additional soil was screened for head space vapours and the presence of VOCs, using a calibrated PID. The headspace reading was taken at ambient temperature and was recorded on the borelogs provided in Appendix D. The PID readings were considered when selecting soil samples for laboratory analysis.

The PID was calibrated with isobutylene gas at 100 ppm at the commencement of each day of sampling and, if necessary, during the day in accordance with the procedure provided by the supplier. Calibration records are provided in Appendix C.

4.2.3 Field logging

Lithology descriptions were recorded on EMM's standard field sheets for uniformity in descriptions, presentation and to aid in any future interpretations based on lithological data. Borelogs are provided in Appendix D.

Observations of contamination were recorded on the borelogs at the depth intervals encountered. The field identification of contamination consisted primarily of visual and olfactory observations. Additionally, a PID was used to screen for the presence of VOCs (see above) and these readings are recorded on the borelogs.

Any unusually coloured or textured material, residues, staining or the presence of non-aqueous phase liquids (LNAPL/DNAPL) was recorded on the borehole logs for each investigation location, if present. Likewise, any unusual odours were recorded and the character of the odour (eg sweet, solvent-like, hydrocarbon-like) and strength noted.

4.2.4 Borehole survey

The borehole ground level was surveyed by a registered surveyor from Stuart De Nett Land Surveyors Pty Ltd with reference to the AHD and Australia Map Grid (AMG).

The elevation and position of the boreholes are recorded on the borelogs provided in provided in Appendix D.

4.2.5 Soil sample analysis

Analysis of the samples collected during the investigation works was conducted by Envirolab Service Pty Ltd (Envirolab) and secondary analysis by ALS Environmental Pty Ltd (ALS). The laboratories were NATA accredited and registered for the analyses proposed.

One sample from each borehole BH01 – BH05 and two samples from borehole BH06 – BH30 were selected for analysis as sown in Table 4.1.

Table 4.1 Soil analytical suite

CoPC	No of samples analysed		
Total recoverable hydrocarbons (TRH)	55 primary samples		
Benzene, toluene, ethylbenzene, xylenes and naphthalene (BTEXN)	55 primary samples		
Polycyclic aromatic hydrocarbons (PAHs)	55 primary samples		
Metals (arsenic, cadmium, chromium, coper, lead, mercury, nickel and zinc)	55 primary samples		
Volatile chlorinated hydrocarbons (VCHs)	27 primary samples		
Organochlorine and organophosphate pesticides (OCP/OPP)	27 primary samples		
Polychlorinated biphenyls (PCBs)	27 primary samples		
Per- and polyfluoroalkyl substances (PFAS)	20 primary samples		
Asbestos (presence/absence)	31 primary samples		

4.3 Groundwater investigation

4.3.1 Rationale

Three groundwater monitoring wells were installed at borehole locations adjacent to the UPSS to assess potential contamination impacts. No monitoring well could be installed between the UPSS and the stormwater channel due to uneven ground at the western Site boundary and access constraints.

4.3.2 Monitoring well installation

Groundwater monitoring wells were constructed using machine slotted (0.5 mm aperture), 50 mm uPVC screens, placed from 1 m above the estimated standing water level (SWL) of groundwater to the base of the monitoring well. The monitoring wells were installed to depths of between 5.35 m bgl and 5.4 m bgl. The monitoring well locations are shown on Figure 2.1.

Prior to installation, the total depth of the borehole was measured with a weighted tape. The monitoring well casing was lowered in the borehole and suspended. Graded filter sand (2-mm diameter) was added to the annulus between the uPVC casing and the wall of borehole to approximately 0.5 m above the top of the screened interval. A minimum of 0.5 m hydrated bentonite seal was added above the filter sand. All monitoring wells were finished with a lockable PVC cap and concrete encased steel cover that was traffic rated and flush to grade (but slightly mounded at location MW01 for increased visibility in a grassed area).

4.3.3 Monitoring well development

Groundwater monitoring wells were developed using disposable polyethylene bailers. Approximately 10 well volumes of groundwater were removed from each well. Wastewater collected during development was placed into dedicated 200 L waste drums pending classification for off-site disposal.

4.3.4 Groundwater monitoring wells standing water level measurement

The measurement of SWL in all groundwater monitoring bores was conducted using an oil-water interface probe. The measurements, as reported in Section 8.4.1, were taken in as close succession as possible to account for natural fluctuations in groundwater flow dynamics.

No light non-aqueous phase liquid (LNAPL) or dense non-aqueous phase liquid (DNAPL) was identified to be present.

All measuring instruments (probe and surface of the tape) were decontaminated between monitoring wells as outlined in Section 4.5.

The time of measurement at each bore was recorded. All measurements were taken from the top of the inner uPVC casing, at the same point (a notch, or black mark was placed into the edge of the casing to assure consistency in measurement).

4.3.5 Groundwater purging

Groundwater monitoring wells were purged using low-flow sampling techniques approximately one week after their development. Monitoring wells were purged using a submersible bladder pump (with a disposable high-density polyethylene (HDPE) bladder). Dedicated HDPE tubing was used to purge and sample the monitoring wells. The purged water from each bore was assessed for the stabilisation of physical parameters (pH, electrical conductivity (EC), temperature, redox and dissolved oxygen) prior to sample collection and any other physical characteristics identified during sampling was recorded on the field sheets. Excess purge water was placed in drums pending classification for disposal to a licensed waste facility.

4.3.6 Groundwater sample collection

Groundwater samples were collected using low-flow sampling techniques. The following sampling method was followed, which is applicable to both inorganic and organic analytes:

- groundwater samples were collected directly from the discharge line while the pump was operating, with the pumping rate reduced to less than 1 litre per minute;
- samples were placed into appropriate containers provided by the laboratory, as described below (which is also the order of collection of samples (ie VOCs samples collected first):
 - water samples to be tested for TRH (C₆-C₁₀), BTEXN and VOCs were placed in 40 ml glass amber vial with zero headspace;
 - water samples to be tested for TRH (C_{10} - C_{40}), SVOCs and PAHs were collected in a 100 ml glass amber vial; and
 - water samples to be tested for metals were filtered in the field using a $0.45 \mu m$ pore size prior to filling a HNO₃ preserved sample bottle;
- samples were labelled with details including:

- date and time sampled;
- project number;
- field ID; and
- sample preservatives used.

Samples were obtained immediately upon purging the bores (once achieving sufficient stabilisation of water quality parameters).

4.3.7 Groundwater sample analysis

Analysis of the samples collected during the investigation works was conducted by ALS and secondary analysis by Envirolab. The laboratories were NATA accredited and registered for the analyses undertaken.

Groundwater samples were analysed for the following:

- dissolved heavy metals (arsenic, cadmium, chromium, copper, nickel, lead, zinc and mercury);
- TRH (C₆-C₄₀) and BTEXN;
- PAHs;
- SVOCs; and
- VOCs.

4.3.8 Survey of monitoring wells

The top of each monitoring well casing and adjacent ground level was surveyed by Stuart De Nett Land Surveyors, with reference to the AHD and AMG to allow calculation of groundwater flow direction.

The elevation and position of the monitoring wells are recorded on the borelogs provided in Appendix D.

4.4 Chain of custody protocols

Samples collected in the field were traceable from the time of collection until the analytical laboratory receives them. To maintain and document sample possession, chain of custody (CoC) procedures were followed. CoC documentation can be found in Appendix F.

CoC records accompanied samples at all times once the samples were collected by the receiving laboratory. When transferring possession of the samples, the individuals relinquishing and receiving the samples signed, dated and noted the time of transfer on the CoC record.

The EMM field staff, prior to dispatch to the laboratory, reviewed all CoC. The laboratory was contacted to return (by email) appropriately signed CoC records to confirm sample delivery.

4.5 Decontamination of field equipment

EMM field staff are responsible for ensuring that all field equipment is appropriately decontaminated prior to use on any environmental soil or groundwater investigation. Decontamination is performed for field equipment to eliminate the possibility of cross-contamination from previous jobs or between sampling locations. In general, decontamination consists of either a high pressure, hot water wash (steam-cleaning) or a non-phosphate detergent solution (Liquinox) wash followed by a deionised/potable/demineralised water rinse.

The decontamination procedures were performed before initial use of any equipment at a site and after each subsequent use.

Decontamination procedures utilised during drilling, sampling and using monitoring equipment are as follows:

- hand trowels and hand augers or any other reusable sampling equipment were washed with a mixture of water and phosphate free detergent prior to use at each location;
- all sampling and measurement field equipment were hand washed with a mixture of water and phosphate
 free detergent. This was followed by a double deionised water rinse prior to use in each borehole/monitoring
 well, between sampling and between each measurement event. Where possible, equipment was wiped with
 disposable paper towel prior to, and after, decontamination as above;
- disposable push tubes (approximately 1.2 m length) were used for collection of soil samples at each location and did not require decontamination (ie dedicated equipment);
- drill rods were brushed down between drilling locations to remove drilling cuttings and pressure washed where sheen, oil or odorous contamination was observed on the drill rods. The washing of equipment was not undertaken on surfaces that drain to storm water drains;
- the fluid line tubing used in the low flow purging and sampling system was replaced between monitoring wells and did not require decontamination (ie dedicated equipment); and
- following completion of sampling and decontamination of sampling equipment described above, one rinsate blank sample (from an item of sampling equipment, ie hand auger) was collected per day of sampling by running laboratory supplied distilled water over the selected undedicated sampling item and decanting directly into the sample bottle. At a minimum, rinsate samples were analysed for TRH, BTEXN and metals.

5 Assessment criteria and QA/QC

5.1 Site context

In the context of the continued commercial/industrial land use and in accordance with the DQOs outlined in Appendix A, assessment criteria have been selected based on the following:

- to assess the suitability of the Site in its current condition for the most sensitive of the proposed land use, being commercial/industrial use; and
- to inform any potential remediation and/or management strategies required.

5.2 Soil investigation criteria

The following guidelines were used to select assessment criteria for the evaluation of the soil analytical results:

- the ASC NEPM Soil Health Investigation Levels (HILs) (for metals, PAHs, VOCs, SVOCs, OCPs);
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE) Technical Report No.10 Health Screening Levels for Petroleum Hydrocarbons in Soil and Groundwater. September 2011. (Friebel, E. and Nadebaum, P., 2011) Soil Health Screening Levels (HSLs) (for TPH and naphthalene);
- United States Environmental Protection Agency (USEPA, 2018). Regional Screening Levels (RSLs) for Industrial Soil, as updated January 2015 (SVOCs and VOCs without HILs or HSLs); and
- Heads of EPA Australia and New Zealand (HEPA, 2020). PFAS National Environmental Management Plan (NEMP) Version 2.0 (for PFAS).

Selection of SAC is discussed in detail in Appendix A. The adopted SAC are summarised in Table 5.1 and included in the laboratory results tables in Appendix D.1.

Table 5.1 Human health-based soil assessment criteria (SAC)

Guideline	Level adopted	СоРС	
ASC NEPM	HIL D (commercial/industrial)	Metals, PAHs, VOCs, SVOCs, OCPs, PCBs	
Friebel, E. and Nadebaum, P. (2011)	Vapour Intrusion: HIL D (commercial/industrial) petroleum/non-petroleum sites ¹ Direct Contact: HSL D (commercial/industrial)	TRH, BTEX, Naphthalene	
	Intrusive Maintenance Worker HSL (petroleum/non-petroleum), 0 to 2 $\rm m^1$ Intrusive Maintenance Worker HSL D (commercial/industrial), 0 to 1 m, sand $\rm ^1$		
USEPA (2018)	Regional Screening Levels (RSLs)	SVOCs, VOCs (without HSLs or HILs)	
ASC NEPM	Management Limits for TPH fractions F1 to F4 in soil – coarse textured soils	TPH fractions	

^{9.} Non-petroleum screening criteria will be adopted based on whether or not the source is considered to be a petroleum source. Aesthetic conditions listed in Appendix A have also been considered.

5.3 Groundwater assessment criteria

The ASC NEPM has been adopted as the primary guidance document for the assessment of groundwater concentrations. The following guidelines were utilised for the assessment of groundwater concentrations, based on the ASC NEPM, as required:

- Australian Drinking Water Guidelines Paper 6, National Water Quality Management Strategy. NHMRC National Resource Management Ministerial Council (NRMMC), Commonwealth of Australia, Canberra Version 3.5, August 2018. (NHMRC, 2018);
- Drinking Water Guidelines. World Health Organisation, 2011 (WHO, 2011);
- Petroleum Products in Drinking Water. World Health Organisation, 2008. (WHO, 2008); and
- Australian and New Zealand and Australian State and Territory Governments (ANZG, 2018) *Guidelines for Fresh and Marine Water Quality*.

Based on ongoing industrial land use at the Site and a marine water receiving environment, adopted groundwater assessment criteria (GAC) for this investigation are summarised below and included in the laboratory results tables in Appendix D.1. Further details on the selection of SAC are included in Appendix A.

Table 5.2 Groundwater Assessment Criteria

Receptor	Guideline	Level Adopted
Human health	Friebel, E. and Nadebaum, P. (2011)	Vapour Intrusion: HSL D (residential with minimal opportunities for soil access)
	ANZECC (2000)	Recreational primary contact
	USEPA (2018)	Regional Screening Levels
Ecological	ANZG (2018)	Marine water, 95% level of species protection where applicable, including moderate and low reliability trigger values

5.4 Quality assurance and quality control

The field and laboratory quality assurance and quality control (QA/QC) plan adopted for the investigation has been designed to achieve pre-determined data quality indicators (DQIs) that demonstrate the precision, accuracy, representativeness, completeness and comparability of the data set and that the data set is of acceptable quality to meet the objectives of the DQI.

5.4.1 QA/QC data validation

The QA/QC program implemented as part of this DQI was generated as the outcome of the seven-step DQO process, as described in Appendix A.

Analyses of primary and intra-laboratory duplicate soil and groundwater samples were undertaken by ALS. Interlaboratory samples were analysed by Envirolab. All laboratories are NATA accredited for the analyses undertaken.

Details of the QA/QC data validation are presented in Appendix B.

5.4.2 Data useability

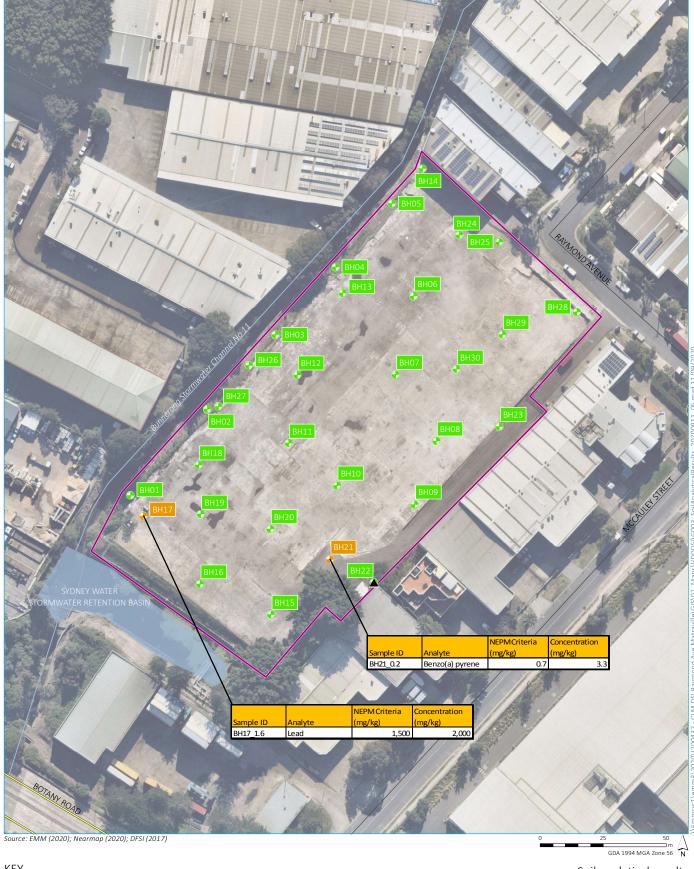
The data validation procedures employed for the assessment of the EMM field and laboratory QA/QC data indicated that the reported analytical results are representative of soil and groundwater conditions at the sample locations, and that the overall quality of the analytical data produced is acceptably reliable for the purpose of the investigation.

6 Results

6.1 Field observations – soil

Encountered stratigraphic conditions were generally found to comprise gravelly sand fill material (ranging between 0.5 m and 2 m thickness) overlying natural sand with some peat inclusions. At one location (BH13) fill was recorded to 1.5 m bgl, where refusal on concrete was encountered. Anthropogenic materials were observed in the fill material, including ceramic, brick, asphalt, concrete, glass and potential asbestos containing material (ACM) fragments. PID readings ranged from 0.0 ppm to 1.7 ppm, indicating very low volatile contaminant concentrations. No staining or odours were noted, with the exception of some minor black staining within fill material at BH17 (1.6 m depth, possible associated with traces of asphalt identified). Bore logs are included in Appendix D.

6.2 Soil analytical results


A total of 54 primary samples from 30 locations, with a minimum of at least two samples per borehole (except for shallow hand auger locations), were submitted for laboratory analysis for CoPC. The laboratory analytical results are presented in Appendix E and laboratory certificates of analysis are included in Appendix F.

A summary of the SAC exceedances is provided in Table 6.1 and a spatial distribution of soil analytical results is shown in Figure 6.1.

Asbestos was detected in fill material at one location (BH22_1.2), identified as chrysolite, commonly known as white asbestos.

Table 6.1 Summary of criteria exceedances

Analyte	Adopted criteria	Criteria value (mg/kg)	Sample ID (location_depth)	Material type	Concentration (mg/kg)
Benzo(a) pyrene	ASC NEPM Table 1B(6) ESLs for Industrial, Coarse Soil	0.7	BH21_0.2	Fill	3.3
Lead	ASC NEPM Table 1A(1) HILs Comm/Ind D Soil	1,500	BH17_1.6	Fill	2,000

KEY

☐ Site boundary

■ Major road

— Minor road

Watercourse/drainage line

Waterbody

Soil results

Below adopted guidelines

◆ Exceeds adopted NEPM guidelines

▲ Asbestos present

Soil analytical results

42-52 Raymond Avenue, Matraville NSW Vendor due diligence detailed site investigation Figure 6.1

6.3 Field observations – groundwater

6.3.1 Groundwater level gauging

Results from groundwater well gauging completed prior to sampling are shown in Table 6.2.

Table 6.2 Groundwater well gauging

Well ID	Total well Depth	Stabilised depth to water	Top of casing	Groundwater depth	PID well head reading	Well comments
Units	m bgl	m bgl	m AHD	m AHD	ррт	-
MW01	5.400	3.282	5.750	2.468	0.2	Flush
MW02	5.350	3.286	5.615	2.239	1.9	Flush
MW03	5.380	3.130	5.630	2.500	0.4	Flush

Based on the well gauging results, groundwater appears to flow in a south-westerly direction towards Botany Bay. Inferred groundwater contours are shown on Figure 6.2.

6.3.2 Groundwater water quality parameters

Groundwater quality field parameters collected during the sampling event are shown in Table 6.3.

Table 6.3 Groundwater quality field parameters

Point ID	Temperature	рН	EC	DO	Corrected Redox
	°C		μs/cm	mg/L	Eh
MW01	18.3	6.05	189.6	0.95	389.4
MW02	20.1	6.30	7686	0.10	59.3
MW03	18.5	5.86	226.9	1.39	51.3

Notes: EC – electrical conductivity, DO – dissolved oxygen, Redox – oxidation reduction potential (converted to Eh by +200 milliVolts based on equipment supplier specifications)

In MW01 and MW03, electrical conductivity results indicate freshwater, while in MW02 (the most down-gradient well) saline conditions were recorded. These results may indicate tidal influences on groundwater beneath the Site.

6.4 Groundwater analytical results

A total of three primary samples (one per location) and two duplicate samples were submitted for laboratory analysis for CoPC associated with the identified source of potential contamination (UPSS). The analytical results are presented in Appendix E and laboratory certificates of analysis are included in Appendix F.

No exceedances of the adopted criteria for groundwater assessment were recorded.

KEY

☐ Site boundary

— Major road

— Minor road

--- Watercourse/drainage line

Waterbody

XXX Groundwater level (metres Australian Height Datum)

Inferred groundwater elevation contour

→ Inferred groundwater flow direction

Groundwater results

Below adopted guidelines

Groundwater analytical results

42-52 Raymond Avenue, Matraville NSW Vendor due diligence detailed site investigation Figure 6.2

7 Conceptual site model

The CSM has been revised based on the findings of the DSI.

7.1 Source-pathway-receptor evaluation

7.1.1 Sources

Based on the findings of the DSI, the identified sources of contamination at the Site have been evaluated as follows.

Table 7.1 Contamination sources

Source and CoPC	Evaluation
UPSS TRH, BTEXN, PAHs, VOC, lead	Tanks were observed to contain oily product and possible leakage was observed in the adjacent stormwater channel wall.
, 2.2,	Observations during the soil and groundwater investigation and laboratory analytical results do not indicate the presence of widespread contamination (no analytical results were reported above the SAC or GAC).
	Due to access limitations for soil boring (ie the embankment was not safely accessible), sampling was not completed between the UPSS and the stormwater canal (inferred to be downgradient). It is possible that localised soil and/or groundwater impact associated with the on-site UPSS may be encountered in this area.
Substations/transformers PCBs, TRH	No evidence of contamination associated with the former and/or current substation/transformers was identified during the DSI.
ACM in buildings, utilities and pipework, and impacted soils Asbestos	ACM was visually identified in fill material at the Site, and chrysotile was positively identified by laboratory analysis in one sample of fill. The distribution of ACM was not confined to any particular fill type or location.
Former use of lead-based paint Lead	One sample of fill material reported a concentration of lead greater than the SAC for industrial land use. This sample was collected at 1.6 m bgl and is considered unlikely to be associated with the weathering of lead-based paint from buildings on the Site. Rather, it is considered likely to be attributable to inclusions in the fill material. The 95% upper confidence limit (UCL) for lead in fill material was less than the SAC, and lead was not reported in groundwater above the laboratory LOR, indicating that lead is not a contaminant of concern at the Site.
Potential application of pesticides OCP, OPP, metals	Trace concentrations of OCPs were reported in two samples (surface soil and fill). No SAC were available for the OCPs reported, however the concentrations reported are not considered to represent a significant risk to Site users in an industrial land use setting. All other OCP results, including groundwater, were reported to be less than the laboratory LOR.
Use of PFAS in fire suppression or paper manufacturing PFAS	Trace concentrations of PFOS and PFOA were reported in 11 soil samples and 4 soil samples, respectively, collected at a range of depths form both fill and natural soil. The reported concentrations were three to four orders of magnitude lower than the SAC and are PFAS not considered to represent an unacceptable risk to future Site users.
Former bulk chemical storage BTEX, TRH, PAH, VOC, metals, OCP, OPP	No evidence of contamination resulting from the bulk storage of chemicals at the Site was identified during this DSI. One concentration of B(a)P greater than the SAC was reported in a sample of fill, which was considered likely to be associated with the asphalt ground surface in this area and a concentration of lead greater than the SAC was attributed to inclusions in fill. No other CoPC were reported above the SAC or GAC.

Table 7.1 Contamination sources

Source and CoPC	Evaluation
Use/importation of fill TRH, BTEXN, PAH, VOC, metals, PCBs, asbestos, PFAS	Fill was identified across the Site ranging between 0.5 m and 2 m thickness. Fragments of potential ACM were observed within the fill at six locations across the Site and laboratory analysis confirmed chrysotile asbestos in one sample. Lead and B(a)P were also reported at concentrations exceeding the SAC in one sample each, although the 95% UCL for both contaminants was less than the SAC and neither CoPC was reported in groundwater above the laboratory LORs.

Based on the above, UPSS, asbestos in former buildings and fill materials (CoPC comprising asbestos only) are considered to be potential sources of contamination at the Site.

7.1.2 Pathways

The following transport mechanisms may apply at the Site:

- surface run-off of CoPC into surface water channels adjacent to the Site;
- excavation and re-location of soil/fill during future construction activities;
- vertical seepage of CoPC into the underlying soils and into the local groundwater system;
- migration of CoPC via groundwater transport, inferred to flow in a south-westerly direction;
- migration and infiltration of vapours from soil and/or groundwater beneath the Site; and
- atmospheric dispersion (aeolian transport) of dust or fibres, derived from contaminated soil or hazardous building materials (HBM), eg asbestos or lead.

Identified potential exposure pathways for the nominated CoPC include:

- i) dermal contact and incidental ingestion of soil;
- ii) inhalation of dust (including soil derived) or fibres;
- iii) dermal contact and incidental ingestion of groundwater/surface water;
- iv) inhalation of soil/groundwater/surface water vapours in outdoor air;
- v) inhalation of soil/groundwater vapours within a trench;
- vi) plant uptake and/or ingestion by animals; and
- vii) uptake of CoPC from groundwater (stygofauna and microorganisms).

Based on the physical and chemical features of the CoPC associate with the confirmed sources of contamination, the exposure pathways that may be applicable at the Site are presented in Table 7.2.

Table 7.2 CoPC and applicable exposure pathways

CoPC	Applicable pathways	
Asbestos	ii	
TRH/BTEX	i, iii, iv, v, vi, vii	
PAH	i, iii, vi, vii	
VOCs	i, iii, iv, v, vi, vii	

7.1.3 Potential receptors

Potential sensitive receptors at the Site, in the context of continued industrial land use, comprise:

- current and future Site users;
- future construction workers involved in the development of the Site;
- users of adjacent properties;
- users of surface water downgradient from the Site (ie Penrhyn Estuary/Botany Bay); and
- surface water ecology.

7.1.4 Source-pathway-receptor model

 Table 7.3
 Source-pathway-receptor model

Source	Pathway	Receptor	Potentially complete S-P-R?
UPSS – USTs and ancillary underground infrastructure (eg pits and supply lines) -	Seepage into underlying soils and inhalation of soil vapour/dust in outdoor air or construction trench	 Future Site users Future construction workers involved in the development of the Site 	Potential – no laboratory results above SAC, possible localised impact on downgradient edge of UPSS
BTEX/TRH/PAHs/VOCs	Direct contact/ingestion of soils	 Future Site users Future construction workers involved in the development of the Site 	Potential – no laboratory results above SAC, possible localised impact on downgradient edge of UPSS where samples could not be collected
	Migration through surface water runoff, direct contact with impacted surface water	 Future construction workers involved in the development of the Site Users of surface water Downgradient surface water ecology 	Potential - oil observed leaking through stormwater channel brickwork adjacent to southern and western boundaries (near on-site UPSS)
	Seepage through soil profile into groundwater and migration through groundwater flow – direct contact or incidental ingestion of groundwater or inhalation of vapours	 Future construction workers involved in the development of the Site Adjoining land users/occupants Groundwater ecosystems 	Unlikely - CoPC identified in groundwater, but below the GAC. Investigations could not be completed directly downgradient of UPSS due to access constraints, however impacts likely to be localised.
		Surface water ecosystems at point of groundwater discharge	Groundwater would be managed during future construction (if required) and is unlikely to be abstracted surrounding the Site due to the GEEA. Other contaminants in the area and dilution effects suggests impacts to receiving surface waters attributable to the Site would be negligible
Potential ACM in former buildings, fragments on surface and potential asbestos impacted soil	Inhalation of dust and/or fibres through atmospheric dispersion	 Future construction workers involved in the development of the site Future Site users 	Yes, asbestos was observed and detected in soils
Use/importation of fill material Site wide - asbestos	Inhalation of dust and/or fibres through atmospheric dispersion	 Future Site users Future construction workers involved in the development of the Site 	Yes - asbestos was observed and detected in soil
	Direct contact/ingestion of soils	 On-Site future Site users Future construction workers involved in the development of the Site 	Unlikely, individual concentrations of CoPC(lead and BaP) exceeded g the SAC but the 95% UCL was less than the SAC

A schematic diagram of the conceptual site model is presented in Figure 7.1.

8 Conclusions and recommendations

This DSI was undertaken to provide information on soil and groundwater contamination conditions within the Site, for the purpose of vendor's due diligence. EMM considers that the DSI has derived sufficient data to confirm the general characteristics of soil, fill and groundwater underlying the Site.

The results indicate that the Site is underlain by shallow fill material which contained concentrations of lead (at one location) and B(a)P (at another location) greater than the assessment criteria for commercial/industrial land use within the southern portion of the Site. The calculated 95% UCL for both CoPC was less than the SAC. Therefore, this contamination is not considered to be widespread or significant.

Asbestos was detected in fill material in the south-east corner of the Site and was observed at five other locations across the Site. It is considered possible that the asbestos observed could be associated with the former building on-site (which was reported to contain asbestos and has since been demolished) or could be attributable to imported fill materials. Given that most of the Site is covered by a concrete slab, the detection of asbestos in fill material is not considered to present a significant risk to future Site users, provided a management plan is in place for any future construction works where the slab may be penetrated. However, at the western Site boundary where exposed soils are present, a capping layer may need to be installed to prevent unintended exposure of ACM. EMM notes that a surface clearance was provided for asbestos on the western ground surfaces however, ACM fragments were observed during the DSI fieldwork.

UPSS was identified at the western boundary of the Site as described in Section 2.4. The potential for off-Site migration of CoPC from the identified UPSS source area was unable to be assessed due to access constraints on a steep embankment along the western boundary of the Site. Soil and groundwater investigation locations to the north, east and south of the UPSS did not identify significant contamination and therefore impacts, if present, are considered to be localised to the western (down-gradient) edge.

Development of a remediation strategy and associated environmental management measures is required for the redundant UPSS infrastructure under relevant legislation. EMM notes heritage considerations associated with the Bunnerong Stormwater Channel No 11 adjacent to the remediation area must be incorporated into the remedial strategy.

EMM recommends the following:

- preparation of a remediation action plan (RAP) detailing options for remediation and/or management and a recommended preferred strategy that will:
 - decommission redundant UPSS infrastructure in accordance with relevant standards and/or guidelines;
 - detail requirements for the appropriate treatment, management and offsite disposal of soils;
 - detail validation requirements to be implemented to demonstrate successful completion of the remedial works (including bulk excavation, if undertaken);
 - detail the requirement (if any) for future/ongoing monitoring or management; and
 - include a Construction Environmental Management Plan for the management of impacts (and any unexpected finds) during remediation works.

9 References

Australian and New Zealand and Australian State and Territory Governments (ANZG) 2018. *Guidelines for Fresh and Marine Water Quality Australian and New Zealand and Australian State and Territory Governments*, Canberra ACT.

enHealth, 2004. Environmental Health Risk Assessment Guidelines for assessing human health risks from environmental hazards. Department of Health and Ageing, Canberra ACT.

enHealth, 2005. *Management of asbestos in the non-occupational environment*. Department of Health and Ageing, Canberra ACT.

Friebel, E. & Nadebaum, P., 2011. *Health Screening Levels for petroleum hydrocarbons in soil and groundwater*. Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE). Technical report series No. 10.

Herbert C., 1983, Sydney 1:100 000 Geological Sheet 9130, 1st edition. Geological Survey of New South Wales, Sydney.

Imray & Langley, 1996. Health-based Soil Investigation Levels. National Environmental Health Forum. 1996.

JBS&G Australia Pty Ltd (JBS&G) 2019a, Draft Preliminary Site Investigation, 42-52 Raymond Avenue, Matraville, NSW, Lot 1 DP369668, Lot 32 DP8313 and Lot 1 DP 511091. 20 September 2019.

JBS&G 2019b, Hazardous Building Materials Survey, 42-52 Raymond Avenue, Matraville, NSW, 20 September 2019.

National Environment Protection Council (NEPC) 1999. *National Environment Protection (Assessment of Site Contamination) Measure 2013* (ASC NEPM, 2013).

National Health and Medical Research Council (NHMRC) 2011. *National Water Quality Management Strategy. Australian Drinking Water Guidelines* 6. National Health and Medical Research Council and Natural Resource Management Ministerial Council (NHMRC/NRMMC). January 2011.

National Uniform Drillers Licensing Committee (NUDLC), 2012. *Minimum Construction Requirements for Water Bores in Australia*, third edition.

NSW Department of Environment and Conservation (DEC) 2007. *Guidelines for the Assessment and Management of Groundwater Contamination*, March 2007.

NSW Department of Environment and Climate Change (DECC) 2009. *Guidelines on the Duty to Report Contamination under the Contaminated Land Management Act 1997*.

NSW Environment Protection Authority (EPA) 2020. Guidelines for Consultants Reporting on Contaminated Sites.

NSW EPA 2014. Waste Classification Guidelines, Part 1: Classifying Waste.

NSW EPA 1995. Sampling Design Guidelines, September 1995.

SafeWork Australia 2018. How to safely remove asbestos Code of Practice, October.

Standards Australia 2005. Australian Standard AS4482.1 - Guide to the Investigation and Sampling of sites with Potentially Contaminated Soil. Part 1: Non-volatile and Semi-Volatile Compounds.

Standards Australia 1999. Australian Standard AS 4482.2 *Guide to the sampling and investigation of potentially contaminated soil. Part 2: Volatile substances.*

Western Australia (WA) Department of Health (DOH) 2009. *Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Study Areas in Western Australia*. Dept. Of Health, Perth. May 2009.

World Health Organisation (WHO), 2008. Petroleum Products in Drinking-water.

United States Environmental Protection Agency (USEPA) 2018. Regional Screening Levels (RSLs) for Industrial Soil, as updated May 2018 (SVOCs and VOCs without HILs or HSLs).

Appendix A

Data quality objectives and assessment criteria

To ensure that data of adequate type and reliability are collected and assessed for the DSI, the seven-step Data Quality Objective (DQO) approach, endorsed in the NSW EPA (2017) Guidelines for the NSW Site Auditor Scheme 3rd Edition, will be adopted. The DQOs have set quality assurance and quality control parameters for the field and laboratory programs to ensure data of appropriate reliability will be used to assess the environmental condition of the Site. The DQOs are presented in the following paragraphs.

A.1 Data quality objectives

A.1.1 Step 1 – State the problem

Epsom Enterprises seeks to undertake vendor's due diligence prior to the sale of the Site. The problem is that CoPC may be present in soil, fill and groundwater at the Site at concentrations which are not consistent with the proposed land use. Additionally, the presence of UPSS infrastructure was unknown.

The Stage 2 DSI to be carried out within the Site aims to:

- identify potential contamination issues that may impact the development and future use of the Site;
- evaluate the suitability of the Site for the intended land use; and
- assist with the development of a remediation strategy (if required).

A.1.2 Step 2 – Identification of the goals (decisions) of the study

The decisions to be made based on the results of the Stage 2 DSI are as follows:

- 1. Is the Site suitable for continued industrial/commercial land use?
- 2. Is remediation required within the Site to make it suitable for its intended land use?
- 3. Are further investigations required to assess the suitability of the Site or to assess the need for remediation?
- 4. Are the data reliable and adequate for decisions to be made about the future use of the Site?

A.1.3 Step 3 – Identify information inputs to the decision or goal of the study

The inputs required to make the above decisions listed in Step 2 are as follows:

- 1. existing data for the Site [from previous investigations including JBS&G (2019a,b)];
- 2. Site boundaries;
- 3. appropriate NSW EPA guideline documents;
- 4. appropriate assessment criteria;
- 5. appropriately experienced environmental consultants;
- 6. geological and geotechnical data and information relevant to subsurface structures;
- 7. hydrogeological data;
- 8. concentrations of CoPC in different sampled media (eg fill/soil types and groundwater);

- 9. observations regarding the presence of building materials or other waste materials including materials potentially containing ash, asbestos, staining, odours and discolouration of the soil media;
- 10. observation data for presence of light and dense non-aqueous phase liquids (LNAPL/DNAPL), odours and discolouration of the groundwater and surface water media;
- 11. distribution of identified contamination both laterally and vertically;
- 12. identification of potential contamination below permanent structures; and
- 13. QA/QC data.

A.1.4 Step 4 – Define the study boundaries

The boundaries of the investigation have been identified as follows:

- 1. Spatial boundaries The lateral assessment is limited to the boundary of the Site as shown on Figure 2.1.
- 2. Vertical boundaries The vertical study boundary will be limited to the deepest proposed depth required for the DSI which is anticipated to be 2 m below depth of groundwater (where groundwater monitoring wells are proposed to be installed).
- 3. Temporal boundaries the temporal boundaries of the assessment have been determined based on application of current guidelines and that no new contamination sources arise at the Site that could cause significant contamination between the time of this investigation and the transfer of ownership of the property.

Step 5 – Develop a Decision Rule

The decision rules for this investigation are as follows:

- 1. If it is determined that data generated through this investigation are reliable and suitably characterise soil and groundwater contamination the data set will be compared against the adopted Site Assessment Criteria (SAC).
 - a) If comparison of data generated through this investigation meets the adopted SAC, then the Site will be considered suitable for ongoing land use;
 - b) If comparison of data generated through this investigation does not meet the adopted SAC, then further assessments or remediation may be recommended as a basis for making the Site suitable.
- 2. If it is determined that data generated through this investigation are not reliable and/or do not suitably characterise soil and groundwater contamination as required for determining land use suitability, then further investigations may be recommended prior to comparison against the SAC.

A.1.5 Step 6 – Specify performance or acceptance criteria that the data need to achieve

Acceptable limits on decision errors must be applied based on the Data Quality Indicators (DQIs) of precision, accuracy, representativeness, comparability and completeness (PARCC).

The tolerable limits on decision errors for data that EMM considers acceptable are:

- 1. Probability that 95% of data satisfied the DQIs, therefore the limit on the decision error is 5% that a conclusive statement may be incorrect.
- 2. In applying statistical analysis of a data set (where applicable/sufficient data set exists):
 - a) No individual sample will report a concentration that exceeds 250% of the SAC.
 - b) A normal distribution will only be used if the coefficient of variance is not greater than 1.2.
 - c) The standard deviation of a sample population will not exceed 50% of the SAC.
- 3. A robust QA/QC program will be implemented and that appropriate sampling and analytical density for the purposes of the investigations and representative sampling is undertaken.

The possible outcomes on making an error in the decision are:

- a) Basing decisions on unreliable data and consequently making incorrect decisions regarding land use suitability.
- b) Basing decisions on unreliable data and inappropriately defining a remedial or management strategy.

This could result in the following outcomes:

- i) Confirmation that the Site is suitable for the proposed land uses when it is not (or vice versa).
- ii) Possible underestimation (or overestimation) of remediation extent required resulting in cost implications for the client.
- iii) Adoption of inappropriate remediation strategies for the identified contamination resulting in cost implications for the client.

Relevant performance and/or acceptance criteria were determined for QA/QC purposes and comparison of soil and groundwater analytical results to appropriate assessment criteria. The DQIs are described in Section A.2 below. The adopted SAC are described in Section 5.

A.1.6 Step 7 – Optimise the design

Based on the previous steps 1 to 6 of the DQO process, the design (ie scope of works or sample and analysis quality plan) for obtaining the required data (ie proposed field and laboratory programs) is presented in Section 4.

A.2 Selection of Site Assessment Criteria – soil

A.2.1 Health Investigation Levels (HILs)

The HILs described in the ASC NEPM (2013) are scientifically-based generic assessment criteria designed to be used in the first stage of an assessment of potential risks to human health from chronic exposure to contaminants. They are intentionally conservative and are based on a reasonable worst-case scenario for four generic land use settings, as summarised in Table A.1. It is understood that the site is zoned for industrial land use, with limited access to soil.

Table A.1 HIL summary

HIL	Land Use
HILA	Residential with garden/accessible soil (home grown produce <10% fruit and vegetable intake, (no poultry), also includes children's day care centres, preschools and primary schools.
HILB	Residential with minimal opportunities for soil access includes dwellings with fully and permanently paved yard space such as high-rise buildings and flats.
HILC	Public open space such as parks, playgrounds, playing fields (eg ovals), secondary schools and footpaths.
HILD	Commercial/industrial such as shops, offices, factories and industrial sites.

A.2.2 Health Screening Levels (HSLs)

The HSLs (presented in the ASC NEPM and Friebel and Nadebaum, 2011) for petroleum hydrocarbons in soil and groundwater were developed to be protective of human health by determining the reasonable maximum concentration from on-site sources for a range of situations commonly encountered on contaminated sites The HSLs also include consideration of soil texture and depth to source to determine the appropriate soil, groundwater and soil vapour criteria for the exposure scenario as summarised in Table A.2 below.

As above, selection of appropriate HSLs require identification of the soil type affected by contamination. Identifying the appropriate soil texture is important for volatile chemicals as saturation porosity (a factor of soil particulate size) will directly influence the rate of vapour transport and consequently determine the HSL value for vapour inhalation. The adopted soil description is based on the Unified Soil Classification System (USCS), which is determined by the ratio of sand, silt and clay particles in the soil.

Table A.2 Soil HSLs for vapour intrusion

HSL	Land use	Soil depths	Soil types (all land uses)
HSL _A	Refer to Appendix A	0 m to <1 m	Sand (including sand, sandy clay, sandy
HSL _B		1 m to <2 m	clay loam, sandy loam, loamy sand, loam, sandy silt and silty sand)
HSL_C		2 m to <4 m	Silt (including silt, silty clay and silty)
HSL _D		>4 m	

Friebel and Nadebaum (2011) included two key assumptions in the derivation of the HSLs that limit their use to assessing impacts from petroleum sources:

- An aliphatic: aromatic ratio of 80: 20 within each TPH fraction was adopted based on representative data for fresh petrol and diesel fuels typical of those available in Australia. CRC CARE states that the HSLs may be applied to other fuel types (e.g. kerosene, aviation fuel and fuel oil); however, it should be confirmed that the aliphatic/aromatic speciation is similar to that assumed in the derivation of the HSLs (80:20) (Friebel and Nadebaum, 2011).
- The soil saturation and water solubility limits used in the derivation of the HSLs were based on an assumed mixture composition. The HSLs are therefore not applicable to pure compound solvents, as solubility limits incorporated into the HSLs were derived based on typical petrol and diesel fuel mixtures.

On this basis, Friebel and Nadebaum (2011) states that 'HSLs cannot be applied to non-petroleum sources such as pure solvents or gasworks wastes, where the solubility limits may be much higher' but also states that 'HSLs for BTEX and naphthalene may be used to assess risk for contamination present from non-petroleum based activities such as gas manufacture subject to adopting the HSL values (which are not limited by theoretical solubility or saturation concentrations). EMM considers that a similar approach may be justified for TPH constituents, provided that the HSL values for the aromatic/aliphatic fractions are adopted rather than the weighted total fractions.

Where the HSL value is non-limiting (NL), the Friebel and Nadebaum (2011) direct contact values were adopted. Direct contact HSLs have been developed for the incidental soil ingestion, dermal and inhalation exposure pathways. The direct contact HSLs are generally not the risk drivers for further site assessment for the same contamination source as the HSLs for vapour intrusion. The HSLs for direct contact are summarised in Table A.3.

Table A.3 Soil HSLs for direct contact

HSL	Land Use
HSL _A	Refer to Appendix A
HSL _B	
HSL _C	
HSL_D	
Shallow Trench Worker	Utility/intrusive maintenance workers involved in shallow trenches (to a maximum depth of 1 m). It is noted that this is also considered to be appropriate for the assessment of exposure to intrusive maintenance workers in tunnel and dive structures > 1 m depth.

Note: Loam soils are not usually considered in Australian assessments.

As the future land use is anticipated to be industrial with minimal opportunities for residual soil access, and the soil type is variable across the investigation area, the following HSLs were adopted in the following hierarchy:

- HSL D for vapour intrusion, 0 to <1 m, sand;
- HSL D for direct contact; and
- HSL for intrusive maintenance worker direct contact.

A.2.3 Ecological Soil Assessment Criteria

i Ecological Investigation Levels (EILs)

The ASC NEPM provides ecological investigation levels (EILs) for the protection of terrestrial ecosystems. EILs have been derived for arsenic, copper, chromium (III), dichlorodiphenyltrichloroethane, naphthalene, nickel, lead and zinc and have been developed for the following three generic land use settings:

- national parks and areas of ecological significance;
- urban residential areas and public open space; and
- commercial and industrial land uses.

The EILs have been derived to protect soil, soil processes and terrestrial species using a risk-based approach. Toxicity data for each chemical was compiled and used to calculate an added contaminant limit (ACL) either using a species sensitivity distribution (SSD) or assessment factor (AF) approach depending upon the level of available toxicological data. It is noted that the EILs conservatively assume 100% bioavailability as this factor can be highly variable and dependent upon site-specific conditions.

The ASC NEPM outlines the effects of soil characteristics (specifically pH, cation exchange capacity (CEC) and clay content) on bioavailability and toxicity of contaminants to terrestrial and soil organisms. For contaminants where sufficient data is available with regard to the effects of soil characteristics on toxicity the ASC NEPM provides a method to enable ACL values to be adjusted based on site-specific soil properties. The ASC NEPM outlines that where there is insufficient data to support adjustment of EILs these chemicals cannot be adjusted based on Site-specific soil properties.

EILs apply principally to contaminants in the top 2 m of soil at the finished surface/ground level which corresponds to the root zone and habitation zone of many terrestrial species.

The EILs applicable to this investigation are those for industrial land use.

i Ecological Screening Levels (ESLs)

Ecological screening levels (ESLs) are provided in the ASC NEPM and are based on the review of Canadian guidance (derived by the Canadian Council for Ministers of the Environment (CCME)) for petroleum hydrocarbons in soils and comparison of the derivation methodology with Australian methodology. It was determined that the derivation of ecological screening values by the CCME was in accordance with Australian methodology and thus the CCME values for BTEX, B(a)P and F1 (carbon chain fractions C_6-C_{10}) and F2 ($>C_{10}-C_{16}$) were adopted in the ASC NEPM.

ESLs are provided for four TPH fractions (F1 to F4, [F3 >C₁₆-C₃₄ and F4 >C₃₄-C₄₀]) and for coarse and fine-grained soil types. As per the EILs, the ESLs apply from the surface to 2 m depth below finished surface/ground level and apply to fresh petroleum contamination.

A.2.4 Aesthetics

In accordance with the ASC NEPM, the following are the type of findings that would trigger the requirement for assessment of aesthetic considerations where further assessment hasn't been triggered by an exceedance of an investigation or screening criteria:

- highly odorous soil or groundwater;
- hydrocarbon sheens on groundwater;
- discoloured soil or chemical deposits;
- large monolithic deposits of otherwise low risk material; and
- soils containing residue from animal or abattoir waste burial.

A.2.5 Management limits for petroleum hydrocarbons

Petroleum hydrocarbon management limits are screening levels from the ASC NEPM that are applicable following evaluation of human health and ecological risks and risks to groundwater resources. They are intended to assess other impacts that are not considered in the application of HSLs or ESLs, such as explosive or fire hazards, impacts to subsurface infrastructure and the formation of LNAPL.

They are applicable for operating sites where significant sub-surface leakage of petroleum compounds has occurred and when decommissioning industrial and commercial sites.

Soil analytical results for petroleum hydrocarbons were screened against the management limits for industrial land use. As the soil and fill conditions within the Site are variable, the limits for coarse textured soils have been adopted, which are most conservative.

A.3 Selection of Sie Assessment Criteria – Groundwater

9.1.2 Human health

i HSLs

Friebel, E. and Nadebaum, P. (2011) have been referred to for the assessment of petroleum hydrocarbon contamination, which are applicable for assessing vapour intrusion risks from contaminated groundwater. The HSLs are based on five specific land uses/receptors; three soil types and three depth ranges for groundwater, as summarised in Appendix A.

Table A.4 Groundwater HSL summary

HSL	Land use	Depth to groundwater	Soil types (all land uses)
Α	Low density residential with direct access to soils	2 m to <4 m	Sand (sand, sandy clay, sandy
В	High-density residential with limited direct access to soils	4 m to <8 m 8 m +	clay loam, sandy loam, loamy sand, loam, sandy silt and silty sand)
С	Public open space including parklands and ovals		Silt (silt, silty clay and silty clay
D	Commercial/Industrial land		loam)
Shallow Trench Worker	Utility/intrusive maintenance workers involved in shallow tranches to a maximum depth of 1 m		Clay (clay, clay loam and silt loam)

ii Drinking water quality guidelines

For the assessment of drinking water, the ASC NEPM references the use of the *Australian Drinking Water Guidelines* which were most recently updated in 2018 (NHMRC, 2018). These guidelines have been developed for health and aesthetic quality levels for supplying good quality drinking water.

The Australian Drinking Water Guidelines (ADWG) do not present guideline values for TPH in drinking water. In the absence of other Australian guidance relating to drinking water standards, the World Health Organisation (WHO) Petroleum Products in Drinking Water (2008) have been adopted for the following reasons:

- the ADWG are based on the WHO drinking water guidelines; and
- the ASC NEPM notes that Australia is a party to the WHO process and has incorporated their material in a variety of environmental health criteria.

The drinking water quality guidelines are not considered applicable to the Site, based on the location of the Site within the Orica Botany Groundwater Extraction Exclusion Area (GEEA). Groundwater extraction is restricted within the GEEA and therefore, potential exposure pathways would be limited to vapour intrusion.

A.3.1 Ecological

The ANZG (2018) provide 'trigger' values for chemicals within the water, which represent the best current estimates of the concentration of chemicals that should have no significant adverse effects on the aquatic ecosystem. ANZG indicates that an exceedance of a trigger values does not necessarily imply that there is an inherent risk, rather that further assessment and monitoring may be required prior to implementing appropriate management actions. EMM notes that according to ANZG, low reliability trigger values are interim levels only because "low reliability trigger values were derived, in the absence of a data set of sufficient quantity, using larger assessment factors to account for greater uncertainty", and, "low reliability values should not be used as default guidelines".

Whilst ANZG provide an interim, low reliability trigger level of 7 μ g/L for crude oil in water; there is no trigger level for TPH. EMM notes that current laboratory limits of reporting (LOR) cannot quantify TPH to this concentration. As a consequence, no assessment criteria for TPH have been adopted.

A.3.2 Rationale

The following rationale was applied in the selection of these human-health based GAC:

- HSL D for industrial land use with minimal opportunities for soil access has been adopted for human health assessment as this is the most sensitive proposed land use. Sand was selected as the soil type and shallowest presented groundwater depth (3.13 m) as a conservative measure to be protective of deeper groundwater. For the purpose of this assessment the Friebel and Nadebaum, (2011) extension model will not be applied for groundwater less than 2 m deep as it is unlikely that the value (for vapour intrusion) would be less than the drinking water guideline.
- ANZECC (2000) values for recreational primary contact due potential primary contact with site workers and future or off-site exposure to recreational receptors.

Based on review of available information and consideration of the Site location in accordance with Table 5 of Schedule B1 of the ASC NEPM, the groundwater environmental values to be adopted for this assessment include:

• ANZG (2018) 95% level of species protection trigger values for marine water ecosystems, given the location of Botany Bay <500 m downgradient of the site.

A.4 Data quality indicators

The project DQIs have been established to set acceptance limits on field and laboratory data collected as part of this investigation. For both field and laboratory procedures acceptance limits are set at different levels for different projects and by the laboratories. Non-compliances with acceptance limits are to be documented and discussed in the report. The DQIs are presented in Table A.5 below.

Table A.5 Data Quality Indicators

DQI	Field	Laboratory	Acceptability Limits
npleteness	 All critical locations sampled All samples collected SOPs appropriate and complied with Experienced sampler 	 All critical samples analysed and for all CoPC Appropriate methods implemented Appropriate laboratory limits of reporting (LORs) 	As per ASC NEPM (2013)< nominated criteria
Com	Documentation correct	Sample documentation complete Compliance with sample helding times.	
		 Compliance with sample holding times 	

Table A.5 Data Quality Indicators

DQI	Field	Laboratory	Acceptability Limits
Comparability	 Sample SOPs used on each occasion Experienced sampler Climatic conditions Same types of samples collected 	 Same analytical methods used (including clean-up) Sample laboratory LORs (justify/quantify if different) Same laboratories (NATA accredited) Consistent reported units of measurement 	 As per ASC NEPM (2013) < nominated criteria
Representativeness	Appropriate media sampled	All critical samples analysed and for all CoPC as required for the project objectives	Appropriate samples analysed
Precision	 SOPs appropriate and complied Collection of blind and split duplicate samples 	 Analysis of: Blind duplicate samples (1 in 20 samples) Split duplicate samples (1 in 20 samples) Laboratory duplicate sample 	 RPD of < 30%(organics) and <50% (inorganics) RPD of < 30% (organics) and <50% (inorganics) RPD of < 50%
Accuracy	 SOPs appropriate and complied Collection of rinsate blanks 	 Analysis of: Field/trip blanks (1/day) Method blanks Matrix spikes Matrix spike duplicates Surrogate spikes Laboratory control samples Laboratory prepared spikes Reagent blank 	 Non-detect for CoPC Non-detect for CoPC 70 to 130% RPD of <30% 70 to 130% 70 to 130% 70 to 130% Non-detect for CoPC

All reporting must comply with NSW EPA (2020) *Guidelines for Consultants Reporting on Contaminated Land*, as applicable.

Appendix B

QA/QC report

Sampling event:

Data quality assurance and quality control report

Project number: J200432 Matrix type: Water

Client: **Epsom Enterprises** Samples collected: MW01, MW02, MW03, QC103, QC203, QC304, TB04, TS04.

Site(s): 42-52 Raymond Avenue, Laboratory: ALS (primary)

> Matraville, Sydney Envirolab (secondary)

Groundwater sampling -Lab reference: ES2026409 (ALS) 30 July 2020

248214 (Envirolab)

Validation by: Yik Cheong Date: 12/08/2020 Verification by: Alex Tennant Date: 18/08/2020

	-,,					
Field QA/QC						
Sampling personnel	Groundwater sampling was conducted by L Lewis and K Brodie on 30 July 2020.					
Sampling methodology	Groundwater sampling was conducted with low flow sampling pump.					
Chain of custody (COC)	Chain of custody documents were completed by EMM (L Lewis).					
Analysis request	Laboratory analysis request and sample receipt notification reviewed and approved by EMM.					
Field blanks	No field blanks were collected as part of this assessment.					
Rinsate blanks (QC304)	Rinsate blank sample was collected at a frequency of one per day of sampling (one in total). The rinsate sample QC304 was collected from the interface probe. Concentrations reported below the LOR for all analytes tested.					
Trip blanks (TB04)	One water trip blank was submitted to the laboratory for analysis. Concentrations were not detected above the LOR for all analytes tested, with the exception of TPH C6-C9 fraction which concentration was 20 μ g/L. It is noted that this concentration is very low trace amount at the LOR value (<20 μ g/L).					
Trip spikes (TS04)	One water trip spike was submitted to the laboratory for analysis. Recoveries were within acceptable control limits.					
Intra-laboratory duplicates (QC103) Interlaboratory duplicates (QC203)	Intra- and inter-laboratory field duplicate samples were collected at a frequency of one in three primary samples (one of each in total).					
Handling and preservation	All samples were received at the laboratories in appropriate sample containers.					
	Primary, duplicate and triplicate soil samples were received preserved and chilled at the laboratories.					
	Water samples were received preserved with attempt to chill at ALS (primary laboratory) with a recorded temperature of 2.3°C.					
	The triplicate water sample was received at Envirolab (secondary laboratory) at 11.7°C. These samples were received outside the recommended range (< 6°C). Attempt to chill was evident for all sample batches and the higher temperature is not expected to have a significant implication on data quality. Additionally, the samples were received appropriately preserved with seals intact and were extracted within holding times.					

J200432 | RP2 | v1 1

QC203 as stated on the COC.

It was noted that triplicate sample was labelled as "QC200", the label had been corrected to

Project number:	J200432	Matrix type: Water		Water	
Client:	Epsom Enterprises		Samples collected:	MW01, MW02, MW03, QC103, QC203, QC304, TB04, TS04.	
Site(s): Sampling event:	42-52 Raymond Avenue, Matraville, Sydney		Laboratory:	ALS (primary) Envirolab (secondary)	
Jamping event.	Groundwater sa 30 July 2020	amping	Lab reference.	ES2026409 (ALS) 248214 (Envirolab)	
Validation by:	Yik Cheong		Date:	12/08/2020	
Verification by:	Alex Tennant		Date:	18/08/2020	
Laboratory QA/Q	С				
Tests requested/re	eported	Samples we	ere analysed and repor	ted as requested on the COC.	
Holding time com	pliance	Samples we	ere extracted and anal	ysed within recommended holding times.	
Laboratory accred	itation		secondary lab), both N	ucted by ALS Environmental Pty Ltd (primary lab) and ational Association of Testing Authorities (NATA) accredited	
Frequency of labo	ratory QC	The laboratories reported a sufficient frequency of quality control samples to assess whether the results have been reported to an acceptable accuracy and precision, with the exception of:			
		minimal		r frequency of quality control samples. There outliers are dataset and are therefore not expected to have a material	
	 Laboratory duplicates were not assessed for the triplicate sample subn The lack of assessment of laboratory duplicates for triplicate samples is affect the interpretation of the results. 		ratory duplicates for triplicate samples is not anticipated to		
Method blank Method blank concentrations		ink concentrations we	re not detected above the LOR for all analytes		
Laboratory duplica	ate RPDs		duplicate (LD) Relative	Percentage Differences (RPD) (where reported) were within	
Laboratory contro	l spike recovery	LCS recover	ries were within contro	ol limits, with the exception of:	
			nple ID QC-3173546-00 ontrol limit:	22 where recoveries for the following analytes were less than	
		• 2.4-Dime	ethylphenol - 25.8% (lii	mit 50.0-94.0%)	
		• N-Nitros	odiethylamine - 56.0%	(limit 60.6-113%)	
			rilene - 21.8% (limit 2		
			zene - 64.1% (limit 68	·	
		• Bis(2-chloroethyl) ether - 55.7% (limit 69.1-112%)			
		• Aniline - 45.7% (limit 50.0-104%)			
		These exceptions are not expected to have a material impact on the data integrity.			
Matrix spike recov	very	ALS - Matrix spike (MS) recoveries (where reported) were within control limits.			
Surrogate spike recovery		Surrogate spike recoveries were within control limits for all analytes with the exception of the following:			
		• 2-Chlorophenol-D4 - 64.4 % (limit 66.0-122%)			
		As all other surrogate spike recoveries met control limits, this exception is not expected to have a material impact on the data integrity.			

J200432 | RP1 | v1

Project number: J200432 Matrix type: Client: **Epsom Enterprises** Samples collected: MW01, MW02, MW03, QC103, QC203, QC304, TB04, TS04. Site(s): 42-52 Raymond Avenue, ALS (primary) Laboratory: Matraville, Sydney Envirolab (secondary) ES2026409 (ALS) Sampling event: Groundwater sampling -Lab reference: 30 July 2020 248214 (Envirolab) 12/08/2020 Validation by: Yik Cheong Date: Verification by: **Alex Tennant** Date: 18/08/2020 **Data validation**

Comparison of field observations and laboratory results	No anomalous results between field observations and analysis results were noted.
Data transcription	A random check of the laboratory results identified no anomalies between the electronic data, the laboratory reports, and tables generated by EMM.
Limits of reporting (LOR)	LORs were sufficiently low to enable assessment against adopted guideline criteria.
Intra-laboratory duplicate RPDs (QC103, MW02_200730)	Intra-laboratory duplicates RPDs were reported within control limits.
Inter-laboratory duplicate RPDs (QC203, MW02 200730)	Inter-laboratory duplicates RPDs were reported within control limits.

Chromatograms

N/A

Comments

Based on EMM's review, it is considered that an acceptable degree of QAQC information has been collected and reported in accordance with EMM and the laboratory internal standard operating procedures. The assessment of field and laboratory QA/QC data indicated that the reported analytical results are representative of the conditions at the sample locations analysed and that the overall quality of the data produced is considered to be acceptably reliable for the purpose of this investigation. Despite the minor variations/outliers summarised above, the laboratory data are considered to provide and appropriate level of confidence in the accuracy, comparability, completeness and precision of the analytical results, and are considered suitable for interpretive use.

J200432 | RP1 | v1 3

Project number:	J200432		Matrix type:	Soil		
Client:	Epsom Enterpri	ses	Samples collected:	BH01_0.4, BH02_0.5, BH03_0.9, BH04_0.9, BH05_0.5, BH06_0.3, BH06_1.3, BH06_3.9, BH07_0.3, BH07_1.0, BH07_3.5, BH08_0.3, BH08_2.7, BH09_0.3, BH09_1.5, BH10_0.3, BH10_0.8, BH10_2.7, BH11_0.5, BH11_3.9, BH11_5.5, BH12_0.5, BH12_1.6, BH14_0.3, BH14_0.8, BH14_3.9, BH15_0.3, BH15_3.9, BH16_0.9, BH16_1.7, BH17_0.3, BH17_1.6, BH17_2.1, BH17_3.9, BH18_0.3, BH18_1.6, BH18_3.3, BH18_5.5, BH19_1.0, BH19_1.8, BH19_3.9, BH20_0.3, BH20_0.9, BH20_1.6, BH21_0.2, BH21_1.3, BH22_1.2, BH22_3.9, BH23_0.9, BH23_1.5, BH24_0.3, BH24_1.4, BH24_2.7, BH25_0.3, BH25_0.9, BH26_0.1, BH26_1.0, BH26_1.8, BH26_4.4, BH27_0.5, BH27_2.0, BH27_2.7, BH28_0.3, BH28_1.0, BH29_0.3, BH29_2.6, BH30_0.3, BH30_0.9, BH30_2.7, BH13_0.3, BH13_1.5, QC100, QC101, QC102, QC200, QC201, QC202, QC300, QC301, QC302, QC303, TB01, TB02, TB03, TS01, TS02, TS03.		
Site(s):	42-52 Raymond Matraville, Sydr		Laboratory:	Envirolab (primary) ALS (secondary)		
Campalina accepts			Lab reference:			
Sampling event:	Detailed Site In	vestigation	Lab reference:	247142, 247834 (Envirolab) ES2025385 (ALS)		
Malidation bu	Vil. Channa		Data	,		
Validation by:	Yik Cheong		Date:	11/08/2020		
Verification by:	Alex Tennant		Date:	18/08/2020		
Field QA/QC						
Sampling personne	el 		g was conducted by L ed as the drilling subc	Lewis on 15 July and 22-24 July 2020. Epoca Environmental ontractor.		
Sampling methodo	ology	Soil samplin	g was conducted with	hand auger and push tube		
Chain of Custody (COC)	Chain of cus	stody documents were	e completed by EMM (L Lewis).		
Analysis request		Laboratory	aboratory analysis request and sample receipt notification reviewed and approved by EMM.			
Field blanks		No field bla	No field blanks were collected as part of this assessment.			
(QC300, QC301, QC302, QC303) The ring were constitution with the constitution of the c		The rinsate	nsate blank samples were collected at a frequency of one per day of sampling (four in total). He rinsate sample QC300 was collected from the hand auger and QC301, QC302, and QC303 here collected from the hand trowel. Concentrations reported below the LOR for all analytes sted.			
Trip blanks (TB01, TB02, TB03))	•	were included at a fre d above the LOR for a	quency of one per cooler (three in total). Concentrations were II analytes tested.		
		were included at a fre otable control limits.	quency of one per cooler (three in total). Recoveries were			
Intra-laboratory do (QC100, QC101, Q Interlaboratory du (QC200, QC201, Q	C102) plicates		nter-laboratory field d nary samples (three of	uplicate samples were collected at a frequency of one in feach in total).		

J200432 | RP2 | v1

Project number:	J200432		Matrix type:	Soil		
Client: Epsom Enterprises		ises	Samples collected:	BH01_0.4, BH02_0.5, BH03_0.9, BH04_0.9, BH05_0.5, BH06_0.3, BH06_1.3, BH06_3.9, BH07_0.3, BH07_1.0, BH07_3.5, BH08_0.3, BH08_2.7, BH09_0.3, BH09_1.5, BH10_0.3, BH10_0.8, BH10_2.7, BH11_0.5, BH11_3.9, BH11_5.5, BH12_0.5, BH12_1.6, BH14_0.3, BH14_0.8, BH14_3.9, BH15_0.3, BH15_3.9, BH16_0.9, BH16_1.7, BH17_0.3, BH17_1.6, BH17_2.1, BH17_3.9, BH18_0.3, BH18_1.6, BH18_3.3, BH18_5.5, BH19_1.0, BH19_1.8, BH19_3.9, BH20_0.3, BH20_0.9, BH20_1.6, BH21_0.2, BH21_1.3, BH22_1.2, BH22_3.9, BH23_0.9, BH23_1.5, BH24_0.3, BH24_1.4, BH24_2.7, BH25_0.3, BH25_0.9, BH26_0.1, BH26_1.0, BH26_1.8, BH26_4.4, BH27_0.5, BH27_2.0, BH27_2.7, BH28_0.3, BH28_1.0, BH29_0.3, BH29_2.6, BH30_0.3, BH30_0.9, BH30_2.7, BH13_0.3, BH13_1.5, QC100, QC101, QC102, QC200, QC201, QC202, QC300, QC301, QC302, QC303, TB01, TB02, TB03, TS01, TS02, TS03.		
Site(s):	42-52 Raymond Matraville, Syd	•	Laboratory:	Envirolab (primary) ALS (secondary)		
Sampling event:	ling event: Detailed Site Investigation		Lab reference:	247142, 247834 (Envirolab) ES2025385 (ALS)		
Validation by:	Yik Cheong		Date:	11/08/2020		
Verification by:	Alex Tennant		Date:	18/08/2020		
Handling and pres	ervation	All samples	were received at the	laboratories in appropriate sample containers.		
		Primary, du laboratorie		soil samples were received preserved and chilled at the		
			First batch of primary samples were received preserved with attempt to chill at Envirolab			

(primary laboratory) with a recorded temperature of 8.2°C which is outside the recommended range (< 6°C). However, it is noted a slightly elevated temperature is not expected to have a significant implication on data quality. Additionally, the samples were received appropriately preserved with seals intact and were extracted within holding times.

Second batch of primary samples was received at 1.5°C at Envirolab. The triplicate sample was received at ALS (secondary laboratory) at 4°C. These samples were received within the recommended temperature range (< 6°C).

Laboratory QA/QC	
Tests requested/reported	Samples were analysed and reported as requested on the COC, with the exception of BH29_2.6_200724 which was reported missing.
Holding time compliance	Samples were extracted and analysed within recommended holding times.
Laboratory Accreditation	The laboratory analysis was conducted by Envirolab (primary lab) and ALS Environmental Pty Ltd (secondary lab), both National Association of Testing Authorities (NATA) accredited laboratories.
Frequency of laboratory QC	The laboratories reported a sufficient frequency of quality control samples to assess whether the results have been reported to an acceptable accuracy and precision.
Method Blank	Method blank concentrations were not detected above the LOR for all analytes

J200432 | RP1 | v1 2

Project number:	J200432		Matrix type:	Soil
Client:	Epsom Enterpri	ses	Samples collected:	BH01_0.4, BH02_0.5, BH03_0.9, BH04_0.9, BH05_0.5, BH06_0.3, BH06_1.3, BH06_3.9, BH07_0.3, BH07_1.0, BH07_3.5, BH08_0.3, BH08_2.7, BH09_0.3, BH09_1.5, BH10_0.3, BH10_0.8, BH10_2.7, BH11_0.5, BH11_3.9, BH11_5.5, BH12_0.5, BH12_1.6, BH14_0.3, BH14_0.8, BH14_3.9, BH15_0.3, BH15_3.9, BH16_0.9, BH16_1.7, BH17_0.3, BH17_1.6, BH17_2.1, BH17_3.9, BH18_0.3, BH18_1.6, BH18_3.3, BH18_5.5, BH19_1.0, BH19_1.8, BH19_3.9, BH20_0.3, BH20_0.9, BH20_1.6, BH21_0.2, BH21_1.3, BH22_1.2, BH22_3.9, BH23_0.9, BH23_1.5, BH24_0.3, BH24_1.4, BH24_2.7, BH25_0.3, BH25_0.9, BH26_0.1, BH26_1.0, BH26_1.8, BH26_4.4, BH27_0.5, BH27_2.0, BH27_2.7, BH28_0.3, BH28_1.0, BH29_0.3, BH29_2.6, BH30_0.3, BH30_0.9, BH30_2.7, BH13_0.3, BH13_1.5, QC100, QC101, QC102, QC200, QC201, QC202, QC300, QC301, QC302, QC303, TB01, TB02, TB03, TS01, TS02, TS03.
Site(s):	42-52 Raymond Matraville, Sydi		Laboratory:	Envirolab (primary) ALS (secondary)
Sampling event:	Detailed Site Investigation		Lab reference:	247142, 247834 (Envirolab) ES2025385 (ALS)
Validation by:	Yik Cheong		Date:	11/08/2020
Verification by:	Alex Tennant		Date:	18/08/2020
Laboratory duplic	ate RPDs	 all analytes, Envirolate BH04_0.9 Envirolate BH17_1.0 Envirolate BH21_0.3 	with the exception of 2 - The laboratory RPD 9_200715 (Lab ID 247) 3 - The laboratory RPD 6_200723 (Lab ID2478) 3 - The laboratory RPD 2_200723 (Lab ID 247) 2_200723-[TRIPLICATE	acceptance criteria had been exceeded for sample 142-4) for Hg; acceptance criteria had been exceeded for sample 334-27) for Pb & Zn; acceptance criteria had been exceeded for sample 834-40) for Pb. Therefore, a triplicate result has been issued as [2] (Lab ID 247834-76).
		[TRIPLICATE Triplicate sa], BH17_1.6_200723- Imples were within th	e laboratory for these samples (BH04_0.9_200715- [TRIPLICATE], BH21_0.2_200723-[TRIPLICATE], respectively). e control limits for all acid extractable metals.
Matrix spike recovery ALS - Matrix exception of			s (where reported) were within control limits, with the acid (PFPeA) (Lab ID ES2025385-002) which had a recovery of	
Surrogate spike re	ecovery	Surrogate s	pike recoveries were v	within control limits.
Data Validation				
Comparison of fie and laboratory res		No anomalo	ous results between fi	eld observations and analysis results were noted.
Data transcription	1	A random check of the laboratory results identified no anomalies between the electronic data the laboratory reports, and tables generated by EMM.		
Limits of reporting	g (LOR)	LORs were	sufficiently low to ena	ble assessment against adopted guideline criteria.

J200432 | RP1 | v1

Project number:	J200432	Matrix type:	Soil
Client:	Epsom Enterprises	Samples collected:	BH01_0.4, BH02_0.5, BH03_0.9, BH04_0.9, BH05_0.5, BH06_0.3, BH06_1.3, BH06_3.9, BH07_0.3, BH07_1.0, BH07_3.5, BH08_0.3, BH08_2.7, BH09_0.3, BH09_1.5, BH10_0.3, BH10_0.8, BH10_2.7, BH11_0.5, BH11_3.9, BH11_5.5, BH12_0.5, BH12_1.6, BH14_0.3, BH14_0.8, BH14_3.9, BH15_0.3, BH15_3.9, BH16_0.9, BH16_1.7, BH17_0.3, BH17_1.6, BH17_2.1, BH17_3.9, BH18_0.3, BH18_1.6, BH18_3.3, BH18_5.5, BH19_1.0, BH19_1.8, BH19_3.9, BH20_0.3, BH20_0.9, BH20_1.6, BH21_0.2, BH21_1.3, BH22_1.2, BH22_3.9, BH23_0.9, BH23_1.5, BH24_0.3, BH24_1.4, BH24_2.7, BH25_0.3, BH25_0.9, BH26_0.1, BH26_1.0, BH26_1.8, BH26_4.4, BH27_0.5, BH27_2.0, BH27_2.7, BH28_0.3, BH28_1.0, BH29_0.3, BH29_2.6, BH30_0.3, BH30_0.9, BH30_2.7, BH13_0.3, BH13_1.5, QC100, QC101, QC102, QC200, QC201, QC202, QC300, QC301, QC302, QC303, TB01, TB02, TB03, TS01, TS02, TS03.
Site(s):	42-52 Raymond Avenue, Matraville, Sydney	Laboratory:	Envirolab (primary) ALS (secondary)
Sampling event:	Detailed Site Investigation	Lab reference:	247142, 247834 (Envirolab)
			ES2025385 (ALS)
Validation by:	Yik Cheong	Date:	11/08/2020
Verification by:	Alex Tennant	Date:	18/08/2020

Intra-laboratory duplicate RPDs (QC100, BH03_0.9_200715) (QC101, BH26_1_200724) (QC102, BH27_2_200724)

Intra-laboratory duplicates RPDs were reported within control limits, with the exception of the following:

- QC100 (primary sample: BH03_0.9_200715): lead (108%) and zinc (55%);
- QC101 (primary sample: BH26_1_200724): copper (100%) and zinc (51%);
- QC102 (primary sample: BH27_2_200724): zinc (32%).

Exceedances of the RPD are likely attributed to soil heterogeneity. For RPD exceedances in QC100, QC101 and QC102, concentrations of lead, zinc and copper were below the adopted assessment criteria by 2-3 order of magnitudes, confirming the absence of significant impacts. As a conservative measure, the highest reported concentrations have been used in the assessment.

Inter-laboratory duplicate RPDs (QC200, BH17_1.6_200723) (QC201, BH19_1.8_200723) (QC202, BH29_0.3_200724)

Inter-laboratory duplicates RPDs were reported within control limits, with the exception of the following:

- QC200 (primary sample: BH17_1.6_200723): C10-C40 (Sum of total) (131%), C16-C34 (82%), copper (99%), lead (160%) and zinc (103%);
- QC202 (primary sample: BH29_0.3_200724): lead (67%) and zinc (55%).

Exceedances of the RPD are attributed to soil heterogeneity. For RPD exceedances in QC200, concentrations of C16-C34, zinc and copper were below the adopted assessment criteria by 1-2 order of magnitudes. For RPD exceedances in QC202, concentrations of lead and zine were below the adopted assessment criteria by 2-3 order of magnitudes. These RPD exceedances will have insignificant impacts to the assessment.

For RPD exceedances of lead in QC200, its' concentration in the primary sample BH17_1.6 was above the adopted assessment criteria. It is noted that for all compounds, with the exception of zinc, concentrations were higher in the results reported by the primary laboratory than those reported by the secondary laboratory. This indicates that concentrations reported by the primary laboratory are conservative. As a conservative measure, the highest reported concentrations have been used in the assessment.

J200432 | RP1 | v1 4

Project number: J200432 Matrix type: Soil

Client: Epsom Enterprises **Samples collected:** BH01_0.4, BH02_0.5, BH03_0.9, BH04_0.9, BH05_0.5,

BH06_0.3, BH06_1.3, BH06_3.9, BH07_0.3, BH07_1.0, BH07_3.5, BH08_0.3, BH08_2.7, BH09_0.3, BH09_1.5, BH10_0.3, BH10_0.8, BH10_2.7, BH11_0.5, BH11_3.9, BH11_5.5, BH12_0.5, BH12_1.6, BH14_0.3, BH14_0.8, BH14_3.9, BH15_0.3, BH15_3.9, BH16_0.9, BH16_1.7, BH17_0.3, BH17_1.6, BH17_2.1, BH17_3.9, BH18_0.3,

BH18_1.6, BH18_3.3, BH18_5.5, BH19_1.0, BH19_1.8, BH19_3.9, BH20_0.3, BH20_0.9, BH20_1.6, BH21_0.2, BH21_1.3, BH22_1.2, BH22_3.9, BH23_0.9, BH23_1.5,

BH24_0.3, BH24_1.4, BH24_2.7, BH25_0.3, BH25_0.9, BH26_0.1, BH26_1.0, BH26_1.8, BH26_4.4, BH27_0.5, BH27_2.0, BH27_2.7, BH28_0.3, BH28_1.0, BH29_0.3, BH29_2.6, BH30_0.3, BH30_0.9, BH30_2.7, BH13_0.3, BH13_1.5, QC100, QC101, QC102, QC200, QC201, QC202,

QC300, QC301, QC302, QC303, TB01, TB02, TB03, TS01, TS02, TS03.

Site(s): 42-52 Raymond Avenue, Laboratory: Envirolab (primary)

Matraville, Sydney

Envirolab (primary)

ALS (secondary)

Sampling event: Detailed Site Investigation Lab reference: 247142, 247834 (Envirolab)

ES2025385 (ALS)

Validation by:Yik CheongDate:11/08/2020Verification by:Alex TennantDate:18/08/2020

Chromatograms

N/A

Comments

Based on EMM's review, it is considered that an acceptable degree of QAQC information has been collected and reported in accordance with EMM and the laboratory internal standard operating procedures. The assessment of field and laboratory QA/QC data indicated that the reported analytical results are representative of the conditions at the sample locations analysed and that the overall quality of the data produced is considered to be acceptably reliable for the purpose of this investigation. Despite the minor variations/outliers summarised above, the laboratory data are considered to provide and appropriate level of confidence in the accuracy, comparability, completeness and precision of the analytical results, and are considered suitable for interpretive use.

J200432 | RP1 | v1 5

Appendix C

Calibration certificates

Certificate of Service and Calibration

Interface Meter Heron H.Oil

Company Name	WAM Scientific
Office Address	16 Lawn Avenue, Clemton Park NSW 2206
Phone Number	+61 405 241 484
Contact Name	William Pak
Instrument	Heron H.Oil Interface Meter (30m)
Serial Number	01-7876
Client Name	Lachlan Lewis (EMM Consulting)
Project Number	J200432 w26

	Instrument Check					
Item	Test	Test Passed	Comments			
9V Battery	Klein Tools MM300 Multimeter	✓	Battery voltage reading above 7.9V			
Battery Box	Check	✓	No damage			
Face and Back Plates	Check	✓	No damage			
Thumb Screws	Check	✓	Rubber ends intact			
Tape Hangar/Protector	Check	✓	No damage			
On/Off Button	Operation	✓	Button is functional			
Buzzer	Operation	✓	Intermittent tone in H ₂ O, solid tone in product			
LED Signal Light	Operation	✓	LED light functional – green and red			
Probe	Operation/Check	✓	Decontaminated, cleaned and tested			
Tape	Condition/Check	✓	Decontaminated and cleaned, no damage			
Connection	Check	✓	Probe and link connected correctly and tightly			
РСВ	Operation	√	Unit is fully functional			
Electronics Panel	Orientation	✓	Correctly aligned			

Instrument Readings				
Product	Buzzer	LED Light		
H₂O	Intermittent	Blinking – Red		
Petroleum Solid Steady – Red				

Declaration

WAM Scientific certifies that the above instrument was successfully tested according to manufacturer's standards and all necessary checks were conducted to ensure the instrument was fully operational prior to dispatch. The interface meter was decontaminated, cleaned and tested with a mixture of tap water and petrol, shielded from ambient light.

Checked By	William Pak
Calibration Date	28/07/2020
Calibration Due	28/07/2021

WAM Scientific: Sydney Office - Clemton Park 16 Lawn Avenue CLEMTON PARK NSW 2206 T: +61 405 241 484 E: rentals@wamscientific.com.au Website: www.wamscientific.com.au Alternate Email Addresses: admin@wamscientific.com.au accounts@wamscientific.com.au sales@wamscientific.com.au service@wamscientific.com.au

Certificate of Service and Calibration

Water Quality Meter YSI Professional Plus

Company Name	WAM Scientific	
Office Address	16 Lawn Avenue, Clemton Park NSW 2206	
Phone Number	+61 405 241 484	
Contact Name	William Pak	
Instrument	'SI Professional Plus Water Quality Meter w/ 1m Quatro Cable	
Serial Number	20D101036	
Client Name	Lachlan Lewis (EMM Consulting)	
Project Number	J200432 w26	
Comments	-	

Instrument Check				
Item	Test	Test Passed	Comments	
2 x Alkaline C-size Batteries	Klein Tools MM300 Multimeter	✓	Both batteries reading above 2.9V	
Battery Saver Function	Operation	✓	Automatically turns off after 60 minutes if idle	
Unit Display	Operation	✓	Screen visible, no damage	
Keypad	Operation	✓	Responsive, no damage	
Connection Port and Cable	Condition/Check	✓	Clean, no damage	
Monitor Housing	Condition/Check	✓	No damage	
Firmware	Version	✓	4.0.0	
pH Probe	Condition/Calibration	✓	Calibrated and conforms to manufacturer's specs	
pH millivolts for pH 7.00	Calibration	✓	pH 7.00 calibration range between 0 mV ± 50 mV	
pH millivolts for pH 4.00	Calibration	✓	pH 4 mV range +165 to +180 from 7 buffer mV value	
pH slope	Calibration	✓	Range between 55 to 60 mV/pH (ideal value 59 mV)	
Response time < 90 seconds	Calibration	✓	Responds to correct value within 90 seconds	
ORP Probe	Condition/Calibration	✓	Calibrated and conforms to manufacturer's specs	
ORP Reading	Calibration	✓	Within ± 80 mV of reference Zobell Reading	
Response time < 90 seconds	Calibration	✓	Responds to correct value within 90 seconds	
Conductivity/Temp Probe	Condition/Calibration	✓	Calibrated and conforms to manufacturer's specs	
Conductivity Cell	Calibration	✓	Conductivity cell constant 5.0 ± 1.0 in GLP file	
Clean Sensor Readings	Calibration	✓	Clean sensor reads less than 3 uS/cm in dry air	
Dissolved Oxygen Probe	Condition/Calibration	✓	Calibrated and conforms to manufacturer's specs	
DO Cap	Condition/Calibration	✓	1.25 mil PE membrane (yellow membrane)	
DO Sensor in Use	Condition	✓	Polarographic DO sensor	
DO Sensor Value	Calibration	✓	(min 4.31 uA - max 8.00 uA) Avg 6.15 uA	

Instrument Readings

instrument readings							
Parameter	Standard Used	Reference No.	Calibration Value	Observed	Actual	Units	
Temperature	Centre 370 Thermometer	Room Temp.	17.7	17.7	17.7	°C	
рН	pH 4.00	336722	4.01	4.01	4.01	рН	
рН	pH 7.00	329744	7.00	7.03	7.00	рН	
Conductivity	2760 μs/cm at 25°C	332208	2760	2745	2760	μs/cm	
ORP (Ref. check only)	Zobell A & B	340526/340529	241.6	235.2	241.6	mV	
Zero Dissolved O ₂	NaSO₃ in Distilled H₂O	5928	0.0	0.3	0.0	%	
100% Dissolved O ₂	100% Air Saturated H₂O	Fresh Air	100.0	106.2	100.0	%	

Declaration

WAM Scientific certifies that the above instrument was successfully tested according to manufacturer's standards and all necessary checks were conducted to ensure the instrument was fully operational prior to dispatch. The calibration data supplied was obtained in accordance with manufacturer's specifications using solutions of known values.

Calibrated By	William Pak
Calibration Date	20/07/2020
Calibration Due	20/01/2021

WAM Scientific: Sydney Office - Clemton Park 16 Lawn Avenue CLEMTON PARK NSW 2206 T: +61 405 241 484 E: rentals@wamscientific.com.au

Website: www.wamscientific.com.au Alternate Email Addresses: admin@wamscientific.com.au accounts@wamscientific.com.au sales@wamscientific.com.au service@wamscientific.com.au

Certificate of Service and Calibration Gas Detector MiniRAE 3000

Company Name	WAM Scientific
Office Address	16 Lawn Avenue, Clemton Park NSW 2206
Phone Number	+61 405 241 484
Contact Name	William Pak
Instrument	MiniRAE 3000 (PGM 7320)
Serial Number	592-908350
Client Name	Lachlan Lewis (EMM Consulting)
Project Number	J200432 w26

Instrument Check					
Item	Item Test		Comments		
Li-Ion Rechargeable Battery	Battery Charge and Drain	✓	Unit runs for > 8 hours on a full charge		
Charger and Power Supply	Operation/Check	✓	No damage		
Unit Display	Operation	✓	Screen visible, no damage		
Keypad	Operation	✓	Responsive, no damage		
Pump	Flow Check	✓	Flow rate > 0.5 L/min		
Monitor Housing Condition/Check		✓	No damage		
Rubber Boot	Rubber Boot Check		Clean, no damage		
Flexi Probe Condition/Check		✓	No leaks, no damage		
Water Trap Filter	Visual Check	✓	Clean		
Alarms	Audible, Visual, Vibration Check	✓	All modes of alarms are functional		
Data Logger Operation		✓	Unit records data, default set at 60 seconds		
Lamp and Sensor Clean and Calibration		✓	Lamp and PID sensor cleaned and calibrated		
PCB	Operation	✓	Unit is fully functional		
Firmware	Version	✓	v2.20A		

Ì	Instrument Readings						
Ì	Parameter Calibration Gas Concentration Reference No. Zero Reading Span Reading						
	PID (10.6eV) Isobutylene 100 ppm 980514 0 ppm 100.3 ppm						

Declaration

WAM Scientific certifies that the above instrument was successfully tested according to manufacturer's standards and all necessary checks were conducted to ensure the instrument was fully operational prior to dispatch. The calibration data supplied was obtained in accordance with manufacturer's specifications using gases of known concentrations.

Calibrated By	William Pak
Calibration Date	09/05/2020
Calibration Due	09/11/2020

WAM Scientific: Sydney Office - Clemton Park 16 Lawn Avenue CLEMTON PARK NSW 2206 T: +61 405 241 484 E: rentals@wamscientific.com.au Website: www.wamscientific.com.au Alternate Email Addresses: admin@wamscientific.com.au accounts@wamscientific.com.au sales@wamscientific.com.au service@wamsclentific.com.au

Certificate of Service and Calibration Peristaltic Pump Geotech Geopump 2

Company Name	WAM Scientific	
Office Address	16 Lawn Avenue, Clemton Park NSW 2206	
Phone Number	+61 405 241 484	
Contact Name	William Pak	
Instrument	eotech Geopump Peristaltic Pump	
Cable Length	.5m	
Serial Number	Pump: 5810	
Serial Number	Head: -	
Client Name	Lachlan Lewis (EMM Consulting)	
Project Number	J200432 w26	

	Instrument Check				
Item	Item Test		Comments		
2 x 12V Batteries	Klein Tools MM300 Multimeter	✓	Both batteries reading above 12V		
Battery Terminals	Check	✓	No damage		
Charger	Condition/Check	✓	Functioning		
Cabling	Check	✓	No damage		
Alligator Clips	Check	✓	Protected, no damage		
Casing	Check	✓	Clean, no damage		
Handle	Check ✓ No damage		No damage		
Pump Head	Check	✓	EZ2 Head, no damage		
Pump Condition	Decontamination	✓	Decontaminated		
Pump Operation	Operation	✓	Peristaltic pump functional		
Pump Tubing	Replacement	✓	New 0.5m ¼" OD LDPE silicon tubing		
Pump Speed	Operation	✓	Speed knob functional		

Inclusions

- 2 x Sealed lead acid 12V batteries included
- 1x Carry case for 12V batteries included
- 1x Intrinsically safe charger (clips) included

Declaration

WAM Scientific certifies that the above instrument was successfully tested according to manufacturer's standards and all necessary checks were conducted to ensure the instrument was fully operational prior to dispatch. The pump has been decontaminated and cleaned upon return from the previous hire and is in good working order.

Checked By	William Pak
Calibration Date	28/07/2020
Calibration Due	28/01/2021

WAM Scientific: Sydney Office - Clemton Park 16 Lawn Avenue CLEMTON PARK NSW 2206 T: +61 405 241 484 E: rentals@wamscientific.com.au Website: www.wamscientific.com.au Alternate Email Addresses: admin@wamscientific.com.au accounts@wamscientific.com.au sales@wamscientific.com.au service@wamsclentific.com.au

Appendix D

Borelogs

PROJECT NUMBER J200432
PROJECT NAME Matraville due dilligence
CLIENT Epsom Enterprises

ADDRESS 42-52 Raymond Ave, Matraville NSW LOCATION Garden bed, far southeast corner

DRILLING DATE 15/07/2020
DRILLING CONTRACTOR N/A
DRILLING METHOD Hand auger

COORDINATES 33°57'43.9"S 151°13'15.4"E LOGGED BY L Lewis CHECKED BY S Dillon

COIVIN							
Method	Depth (m)	PID (ppm)	Samples	Analysed?	Graphic log	nscs	Material description
Hand auger	- - -	1.2	BH01_0.4	Y		FILL	FILL: SAND; medium to coarse grain, grey to brown, minor organics (wood), loose to medium dense, moist, no odour or staining.
	1						End of investigation at 0.5 m (target).

PROJECT NUMBER J200432 PROJECT NAME Matraville due dilligence **CLIENT** Epsom Enterprises

DRILLING DATE 15/07/2020 **DRILLING CONTRACTOR N/A DRILLING METHOD** Hand auger ADDRESS 42-52 Raymond Ave, Matraville NSW LOCATION Garden bed, near USTs **COORDINATES** 33�57'42.8"S 151�13'16.6"E **LOGGED BY** L Lewis **CHECKED BY** S Dillon

COIVIIV						_	
Method	Depth (m)	PID (ppm)	Samples	Analysed?	Graphic log	nscs	Material description
Hand		0.6	BH02_0.5	Y		FILL	FILL: Gravelly SAND; medium grain, grey to brown, with organics (fibrous roots, ~30%), angular asphalt and concrete gravels, trace glass, brick and potential ACM fragments, loose to medium dense, dry to moist, no odour or staining.
	- - -1						End of investigation at 0.6 m (target).

PROJECT NUMBER J200432
PROJECT NAME Matraville due dilligence
CLIENT Epsom Enterprises

ADDRESS 42-52 Raymond Ave, Matraville NSW LOCATION Garden bed, northeast of USTs

DRILLING DATE 15/07/2020
DRILLING CONTRACTOR N/A
DRILLING METHOD Hand auger

COORDINATES 33�57'41.9"S 151�13'17.6"E LOGGED BY L Lewis CHECKED BY S Dillon

Method	Depth (m)	PID (ppm)	Samples	Analysed?	Graphic log	nscs	Material description
Hand auger	_					FILL	FILL: SAND; medium grain, grey, minor gravels (angular, asphaltic concrete, <20%), minor organics (fibrous roots, <20%), loose, dry to moist, no odour or staining.
	-	0.3					FILL: GRAVEL; angular, dark grey, with asphaltic concrete inclusions, with medium grain sand (~20%), loose, dry to moist, no odour or staining. FILL: SAND; medium grain, brown, trace gravels, loose to medium dense, dry to moist, no odour or staining.
	- - 0.5 -						Fibrous roots (<30%) from 0.4 to 0.6 m.
	-	0.5	BH03_0.9 QC100	Υ			End of investigation at 1.0 m (target).

PROJECT NUMBER J200432

PROJECT NAME Matraville due dilligence

CLIENT Epsom Enterprises

ADDRESS 42-52 Raymond Ave, Matraville NSW LOCATION Garden bed, near northwest boundary

DRILLING DATE 15/07/2020 **DRILLING CONTRACTOR N/A DRILLING METHOD** Hand auger

LOGGED BY L Lewis

CHECKED BY S Dillon

COORDINATES 33�57'41.0"S 151�13'18.6"E

Method	Depth (m)	PID (ppm)	Samples	Analysed?	Graphic log	nscs	Material description
and uger		0.1	BH04_0.9	Y		FILL	FILL: SAND; medium to coarse grain, grey, minor gravels (concrete), trac asphalt and potential ACM fragments on surface, loose, moist, no odour of staining.
	1				" * Y		End of investigation at 1.0 m (target).

PROJECT NUMBER J200432 PROJECT NAME Matraville due dilligence **CLIENT** Epsom Enterprises

ADDRESS 42-52 Raymond Ave, Matraville NSW LOCATION Garden bed, northern corner of site

DRILLING DATE 15/07/2020 **DRILLING CONTRACTOR N/A DRILLING METHOD** Hand auger

COORDINATES 33�57'40.1"S 151�13'19.6"E

LOGGED BY L Lewis **CHECKED BY** S Dillon

Method	Depth (m)	PID (ppm)	Samples	Analysed?	Graphic log	nscs	Material description
Hand auger	-					FILL	FILL: SAND; medium to coarse grain, grey, minor gravels (angular, <20%), loose to medium dense, moist, no odour or staining.
	_						Colour change to light grey and trace gravels from 0.3 m
	— 0. 5	0.2	BH05_0.5				Colour change to yellow-brown, no gravels
	1						End of investigation at 0.6 m (target).

DRILLING DATE 22/07/2020

PROJECT NUMBER J200432 PROJECT NAME Matraville due dilligence **CLIENT** Epsom Enterprises

DRILLING METHOD Push tube ADDRESS 42-52 Raymond Ave, Matraville NSW LOCATION Northern portion of site

COORDINATES 33�57'41.3"S 151�13'19.8"E DRILLING CONTRACTOR Epoca Environmental LOGGED BY L Lewis

CHECKED BY S Dillon

Method	Depth (m)	PID (ppm)	Samples	Analysed?	Graphic log	USCS	Material description
Core	_					FILL	CONCRETE; 150 mm.
Hand auger	- - - 0.5	0.2	BH06_0.3	Y		FILL	FILL: SAND; medium grain, grey, trace gravels (sub-rounded, <30 mm), loose, dry, no odour or staining.
	- - - 1						Colour change to dark brown, increased gravels from 0.9 m.
Push tube	- - 1.5 - - -	0.1	BH06_1.3	Y		SP	SAND; medium grain, grey to brown, loose, dry to moist, no odour or staining.
	2 2.5						Colour change to yellow-brown and moist from 2.0 m.
	- - - - -3 -						
	- - 3.5 - -	0.1	BH06_3.9	N			▼ Wet from 3,3 m.
		0.1	21100_0.0			1	End of investigation at 3.9 m (target).

PROJECT NUMBER J200432
PROJECT NAME Matraville due dilligence
CLIENT Epsom Enterprises

ADDRESS 42-52 Raymond Ave, Matraville NSW LOCATION Central portion of site

DRILLING DATE 22/07/2020

DRILLING CONTRACTOR Epoca Environmental LOGGED BY L Lewis DRILLING METHOD Push tube CHECKED BY S Dillo

COORDINATES 33♦57'42.3"S 151♦13'19.5"E LOGGED BY L Lewis CHECKED BY S Dillon

Method	Depth (m)	PID (ppm)	Samples	Analysed?	Graphic log	nscs	Material description
ore	_					FILL	CONCRETE; 150 mm.
and uger	- - - - 0 . 5	0.2	BH07_0.3	Y		FILL	FILL: SAND; medium grain, grey, trace gravels (sub-rounded, <30 mm), loose, dry, no odour or staining.
ush be							Colour change to dark brown, minor peat inclusions from 0.6 to 0.7 m.
-	1 	0	BH07_1.0	N		SP	SAND; medium grain, brown, loose, dry to moist, no odour or staining.
-	- 1.5 -						Colour change to yellow-brown and moist from 1.6 m.
-	- - 2 - - -						
-	- 2.5 - - -						
-	- 3 - -						abla
-	- 3.5 - - -	0.1	BH07_3.5	Y			Wet from 3.4 m.
					• • • • •		End of investigation at 3.9 m (target).

PROJECT NUMBER J200432
PROJECT NAME Matraville due dilligence
CLIENT Epsom Enterprises

ADDRESS 42-52 Raymond Ave, Matraville NSW LOCATION Central/eastern portion of site

DRILLING DATE 22/07/2020 COORDINATES 33♦
DRILLING CONTRACTOR Epoca Environmental LOGGED BY L Lewis

DRILLING CONTRACTOR Epoca Environmental **DRILLING METHOD** Push tube

COORDINATES 33�57'43.3"S 151�13'20.2"E

LOGGED BY L Lewis
CHECKED BY S Dillon

Method	Depth (m)	PID (ppm)	Samples	Analysed?	Graphic log	nscs	Material description
Core	=					FILL	CONCRETE; 130 mm.
Hand auger	=	0.1	BH08_0.3	Υ	\bowtie	FILL	FILL: SAND; medium grain, brown, minor peat inclusions (dark brown, very dense), trace gravels, loose, dry, no odour or staining.
	- 0.5						
	=	0				SP	SAND; medium grain, brown, loose, dry, no odour or staining.
	-						
	- 1						
	-						
	=						
Push tube	_ 1.5						Colour change to yellow-brown and dry to moist from 1.5 m.
	-						
	-						
	-2						
	=						
	-						
	2 . 5		DLI09 2.7	N			
		0.1	BH08_2.7	IN			End of investigation at 2.7 m (target).
	- -						
	-3						

PROJECT NUMBER J200432 PROJECT NAME Matraville due dilligence **CLIENT** Epsom Enterprises

ADDRESS 42-52 Raymond Ave, Matraville NSW LOCATION Southeastern boundary

DRILLING DATE 22/07/2020 DRILLING CONTRACTOR Epoca Environmental LOGGED BY L Lewis

DRILLING METHOD Push tube

COORDINATES 33�57'44.1"S 151�13'19.8"E

CHECKED BY S Dillon

Method	Depth (m)	PID (ppm)	Samples	Analysed?	Graphic log	nscs	Material description
Core	=					FILL	CONCRETE; 130 mm.
Hand auger	-	0.3	BH09_0.3	Υ	\bigotimes	FILL	FILL: Gravelly SAND; medium grain, dark grey, asphaltic concrete gravels (sub-angular), loose, dry to moist, no odour or staining.
	- 0.5						
	— 0 . 5 -	0				FILL	FILL: SAND; medium grain, light grey, trace gravels, loose, dry, no odour or staining.
	_						
	- 1	0.1			(XX)	SM	SAND; very fine to medium grain, brown, with peat inclusions (~30%, very dense, dark brown), medium dense to loose, dry, no odour or staining.
	=						
Push tube	_						
	_ _ 1.5	0.2	BH09_1.5	Υ		SP	SAND; medium grain, yellow-brown, loose, dry to moist, no odour or staining.
	-						
	=						
	- 2						
	_						
	=						
	– 2. 5						
	-	0.1					End of investigation at 2.7 m (target).
	- -						and or involugation at 211 in (target).
	-3						

PROJECT NUMBER J200432 PROJECT NAME Matraville due dilligence **CLIENT** Epsom Enterprises

ADDRESS 42-52 Raymond Ave, Matraville NSW LOCATION Central/southern portion of site

DRILLING DATE 22/07/2020

DRILLING CONTRACTOR Epoca Environmental LOGGED BY L Lewis **DRILLING METHOD** Push tube

COORDINATES 33�57'43.8"S 151�13'18.5"E

CHECKED BY S Dillon

COMIN	21110						
Method	Depth (m)	PID (ppm)	Samples	Analysed?	Graphic log	nscs	Material description
Core	_					FILL	CONCRETE; 130 mm.
Hand auger	-	0.1	BH10_0.3	Y		FILL	FILL: SAND; medium grain, brown, trace gravels, trace terracotta fragments, loose, dry to moist, no odour or staining.
	- 0.5 						
Push tube	-	0.1	BH10_0.8	Υ	~~	SP	SAND; medium grain, yellow-brown, very loose, dry, no odour or staining.
	- 1 						
	- - 1.5 						
	- - - 2 -						
	- - 2.5 -	0.1	BH10_2.7	N			
	- - -3						End of investigation at 2.7 m (target).

PROJECT NUMBER J200432 PROJECT NAME Matraville due dilligence

CLIENT Epsom Enterprises

ADDRESS 42-52 Raymond Ave, Matraville NSW LOCATION Central/southern portion of site

DRILLING DATE 22/07/2020

DRILLING CONTRACTOR Epoca Environmental LOGGED BY L Lewis **DRILLING METHOD** Push tube

COORDINATES 33�57'42.5"S 151�13'17.8"E

CHECKED BY S Dillon

Method	Depth (m)	PID (ppm)	Samples	Analysed?	Graphic log	sosn	Material description
Core Hand auger	-					FILL	CONCRETE; 150 mm. FILL: Gravelly SAND; medium grain, grey, trace concrete cobbles (<70 mm), trace clay (medium plasticity, brown), loose to medium dense, dry to moist, no odour or staining.
	- 0.5 -	0.1	BH12_0.5	Y			Potential ACM fragment at 0.5 m.
	- - -1					SP	SAND; medium grain, light grey, loose, dry, no odour or staining.
Push	-					31	of the fine draining frame, might grey, needed, or stamming.
tube	1.5 	0.4	BH12_1.6	Y		SM	SAND; very fine to medium grain sand, dark brown, minor peat inclusions (dense), dry to moist, no odour or staining. SAND; medium grain, yellow-brown, loose, dry to moist, no odour or
	- - - 2 -					G	staining.
	- - - 2.5						
	-	0					End of investigation at 2.7 m (target).
	- 3						

PROJECT NUMBER J200432 PROJECT NAME Matraville due dilligence **CLIENT** Epsom Enterprises

ADDRESS 42-52 Raymond Ave, Matraville NSW LOCATION Near northwestern boundary

DRILLING DATE 24/07/2020

DRILLING CONTRACTOR Epoca Environmental LOGGED BY L Lewis **DRILLING METHOD** Push tube

CHECKED BY S Dillon

COORDINATES 33�57'41.1"S 151�13'18.9"E

COMIN	LINIO						
Method	Depth (m)	PID (ppm)	Samples	Analysed?	Graphic log	nscs	Material description
Core	-					FILL	CONCRETE; 210 mm.
Hand auger	-	0.1	BH13_0.3	Y		FILL	FILL: SAND; medium grain, brown, minor gravels (<20 mm, sub-angular), trace asphalt, loose, dry to moist, no odour or staining. Potential ACM fragment at 0.2 m.
	— 0.5 -						
	-						
	- 1 -						
	-						
Push tube	- - 1.5	0.3	BH13_1.5	Υ			End of investigation at 1.5 m (refusal on concrete)
	_						End of investigation at 1.5 in (leidsal on conclete)
	=						
	-2						

PROJECT NUMBER J200432 PROJECT NAME Matraville due dilligence **CLIENT** Epsom Enterprises

ADDRESS 42-52 Raymond Ave, Matraville NSW LOCATION Northern corner of the site

DRILLING DATE 22/07/2020 DRILLING CONTRACTOR Epoca Environmental LOGGED BY L Lewis **DRILLING METHOD** Push tube

COORDINATES 33�57'39.8"S 151�13'20.0"E

CHECKED BY S Dillon

COMM	IENIS	ı	Γ				T
Method	Depth (m)	PID (ppm)	Samples	Analysed?	Graphic log	nscs	Material description
Core	-					FILL	CONCRETE; 160 mm.
Hand auger	-	0.1	BH14_0.3	Y		FILL	FILL: SAND; medium grain, grey, minor gravels (<10 mm, sub-angular), trace glass fragments, loose, dry to moist, no odour or staining.
	— 0.5 - -						
	- - 1	0.1	BH14_0.8	N	(XX)	SP	SAND; medium grain, light grey to brown, loose to medium dense, dry to moist, no odour or staining.
	-						Colour change to yellow-brown from 1.1 m.
Push tube	- 1.5 -						
	-						
	- 2 - -						
	- - 2.5						
	=						
	- 3 -						77
	- -						Moist-wet from 3.2 m.
	- 3.5 - -						
	_	0.2	BH14_3.9	Υ			End of investigation at 3.9 m (target).
	<u> </u>						Lind of investigation at 3.3 in (target).

PROJECT NUMBER J200432 PROJECT NAME Matraville due dilligence **CLIENT** Epsom Enterprises

ADDRESS 42-52 Raymond Ave, Matraville NSW LOCATION Southern corner of the site

DRILLING DATE 23/07/2020

DRILLING CONTRACTOR Epoca Environmental LOGGED BY L Lewis **DRILLING METHOD** Push tube

COORDINATES 33�57'45.4"S 151�13'17.5"E

CHECKED BY S Dillon

Hand auger 0.5 BH15_0.3 Y FILL CONCRETE; 160 mm grain, dark grey, sub-angular <50 mm gravels and cobbles, loose, dry, no odour or staining. SP SAND: medium grain, grey to brown, loose to medium dense, dry, no odour or staining. Colour change to dark brown with minor peat inclusions from 1.1 to 1.3 m. Dry to moist from 1.3 m. Colour change to dark brown with minor peat inclusions from 1.1 to 1.3 m. Dry to moist from 1.3 m. As a second or staining. Colour change to dark brown with minor peat inclusions from 1.1 to 1.3 m. Dry to moist from 1.3 m. Whose to wet from 3.5 m.	Method	Depth (m)	PID (ppm)	Samples	Analysed?	Graphic log	nscs	Material description
Push lube - 0.5 Push lube - 1 - 1 - 1.5 - 2 - 2.5 - 3.5	Core	_					FILL	CONCRETE; 160 mm.
SP SAND; medium grain, grey to brown, loose to medium dense, dry, no odour or staining. Colour change to dark brown with minor peat inclusions from 1.1 to 1.3 m. Dry to moist from 1.3 m.		_	0.1	BH15_0.3	Y		FILL	FILL: Gravelly SAND; medium grain, dark grey, sub-angular <50 mm gravels and cobbles, loose, dry, no odour or staining.
SP SAND; medium grain, grey to brown, loose to medium dense, dry, no odour or staining. Colour change to dark brown with minor peat inclusions from 1.1 to 1.3 m. Dry to moist from 1.3 m. 2 -2.5 -3.5 Moist to wet from 3.5 m.		=				\bowtie		
-1.5 -2 -2.5 -3 -3.5 -3.5 -3.5	tube	- - 1					SP	or staining.
-2 -2.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3		_						Colour change to dark brown with minor peat inclusions from 1.1 to 1.3 m. Dry to moist from 1.3 m.
-2.5 -3		1 . 5						
		- - - 2						
		-						
		- 2.5 -						
Moist to wet from 3.5 m.		- - - -3						
Moist to wet from 3.5 m.		-						
- 0.1 BH15_3.9 Y		3.5 						
		=	0.1	BH15_3.9	Y			

PROJECT NUMBER J200432 PROJECT NAME Matraville due dilligence **CLIENT** Epsom Enterprises

ADDRESS 42-52 Raymond Ave, Matraville NSW LOCATION Southern site boundary

DRILLING DATE 23/07/2020 DRILLING CONTRACTOR Epoca Environmental LOGGED BY L Lewis **DRILLING METHOD** Push tube

COORDINATES 33�57'45.0"S 151�13'16.4"E **CHECKED BY** S Dillon

poi	Depth (m)	PID (ppm)	Samples	Analysed?	Graphic log	S	Material description
Method	Dept	PID (Anal	Grap	USCS	
Core	_					FILL	CONCRETE; 130 mm.
Hand auger	-	0.1				FILL	FILL: Gravelly SAND; medium grain, dark grey, sub-angular <50 mm gravels and cobbles, loose, dry, no odour or staining.
	0.5 						
	- 1 	0.5	BH16_0.9	Y		SP	SAND; medium grain, light grey to brown, loose to medium dense, dry to moist, no odour or staining.
Push tube	- - 1.5 						
	- - - - 2	0.5	BH16_1.7	Y		SM	SAND; very fine to medium grain, dark brown, peat inclusions, medium dense, dry to moist, no odour or staining.
	- - -					SM	SAND; medium grain, yellow-brown, medium dense to loose, dry to moist, no odour or staining.
	2.5 						
	- - -3						End of investigation at 2.7 m (target).

PROJECT NUMBER J200432 PROJECT NAME Matraville due dilligence **CLIENT** Epsom Enterprises

ADDRESS 42-52 Raymond Ave, Matraville NSW LOCATION Southwestern corner of site

DRILLING DATE 23/07/2020

DRILLING CONTRACTOR Epoca Environmental LOGGED BY L Lewis **DRILLING METHOD** Push tube

COORDINATES 33�57'45.0"S 151�13'16.4"E

CHECKED BY S Dillon

Method	Depth (m)	PID (ppm)	Samples	Analysed?	Graphic log	nscs	Material description
Core	-					FILL	CONCRETE; 200 mm.
Hand auger	- - - 0.5 -	0.1	BH17_0.3	Y		FILL	FILL: SAND; medium grain, dark grey, minor sub-angular <50 mm gravels, trace cobbles (<60 mm), medium dense to loose, dry to moist, no odour or staining.
Push tube	- - 1 - - - - - 1.5		√BH17_1.6			FILL	FILL: SAND; medium grain, light grey to brown, loose to medium dense, dry to moist, no odour or staining.
		0.9	QC200	Y		FILL	FILL: Sandy GRAVEL; sub-angular, dark grey, medium grain grey sand, trace asphalt, medium dense to loose, moist, no odour, very slight black staining.
	2 2.5 	0.3	BH17_2.1	N		SP	SAND; medium grain, yellow-brown, medium dense, moist, no odour or staining.
	- - 3 - - - - - - 3.5						☑ Moist to wet from 3.5 m.
	-	0.3	BH17_3.9	N			
		<u> </u>	<u>-</u>				End of investigation at 3.9 m (target).

PROJECT NUMBER J200432 PROJECT NAME Matraville due dilligence

CLIENT Epsom Enterprises

DRILLING DATE 23/07/2020 DRILLING CONTRACTOR Epoca Environmental LOGGED BY L Lewis **DRILLING METHOD** Push tube

ADDRESS 42-52 Raymond Ave, Matraville NSW LOCATION Southwestern corner of site

COORDINATES 33�57'44.1"S 151�13'16.4"E

CHECKED BY S Dillon

Method	Depth (m)	PID (ppm)	Samples	Analysed?	Graphic log	nscs	Material description
Core						FILL	CONCRETE; 150 mm.
Hand auger	- - - - 0.5 - - -	0.1				FILL	FILL: Sandy GRAVEL; conglomerate <20 mm, sub-angular, dark grey, minor cobbles (<60 mm), minor asphalt, loose, dry to moist, no odour or staining.
	— 1 -	0.7	BH19_1.0	Y		FILL	FILL: Gravelly SAND; medium grain, grey, angular <10 mm gravels, medium dense to loose, dry to moist, no odour or staining.
	- - -						
oush ube	— 1.5 - -				X X)	SP	SAND; medium grain, grey, loose, moist, no odour or staining.
	- - - 2 - -	0.5	BH19_1.8 QC201	Y			Consistency change to dense, colour change to dark brown-black from 1.8 to 2m. Colour change to dark brown, loose-medium dense from 2 to 2.7 m.
	- 2. 5 						
	- - - - 3						Colour change to yellow-brown from 2.7 to 3.2 m.
	- - -						☑ Colour change to light grey and moist to wet from 3.5 m.
	- 3.5 - -						
	=	0.3	BH19_3.9	N			

PROJECT NUMBER J200432 PROJECT NAME Matraville due dilligence **CLIENT** Epsom Enterprises

ADDRESS 42-52 Raymond Ave, Matraville NSW LOCATION Southern portion of site

DRILLING DATE 23/07/2020 DRILLING CONTRACTOR Epoca Environmental LOGGED BY L Lewis **DRILLING METHOD** Push tube

COORDINATES 33°57'44.3"S 151°13'17.5"E

CHECKED BY S Dillon

Method	Depth (m)	PID (ppm)	Samples	Analysed?	Graphic log	nscs	Material description
Core	_					FILL	CONCRETE; 130 mm.
Hand auger	- - - 0.5	0.1	BH20_0.3	Υ		SP	SAND; medium grain, light grey, very loose to loose, dry, no odour or staining.
Push tube	- - - -1	0.1	BH20_0.9	N		PEAT	Sandy PEAT; fine to medium grain sand, dark brown, stiff to hard peat, loose to medium dense sand, dry, no odour or staining.
	- - - - 1.5					SP	SAND; medium grain, yellow-brown to light grey, loose to medium dense, dry to moist, no odour or staining.
	- - - - - 2	0.2	BH20_1.6	Y			dry to moist, no odour or staining.
	- - - 2.5 -						moist
	- - -3				•••		End of investigation at 2.7 m (target).

PROJECT NUMBER J200432 PROJECT NAME Matraville due dilligence **CLIENT** Epsom Enterprises

ADDRESS 42-52 Raymond Ave, Matraville NSW LOCATION Southern portion of site

DRILLING DATE 23/07/2020 DRILLING CONTRACTOR Epoca Environmental LOGGED BY L Lewis

DRILLING METHOD Push tube

COORDINATES 33�57'44.7"S 151�13'18.4"E

CHECKED BY S Dillon

Method	Depth (m)	PID (ppm)	Samples	Analysed?	Graphic log	nscs	Material description
Core Hand auger	_	0.4	BH21_0.2	Y		FILL FILL	Asphaltic CONCRETE; 40 mm. FILL: Gravelly SAND; grey-brown, trace of glass, ceramic and paint flakes, <20mm angular gravels, medium grain sand, dry to moist, no odour, minor blue staining from paint flakes on gravel
	- - 0.5 - - - -						
	- -					PEAT	Sandy PEAT; fine to medium grain sand, dark brown, stiff to hard peat, loose to medium dense sand, dry, no odour or staining.
Push tube	- 1.5 	0	BH21_1.3	Y		SP	SAND; yellow-brown, medium grain, dry to moist, medium dense to loose, no odour or staining.
	- - 2 -						
	- 2.5 						
	-						End of investigation at 2.7 m (target).
	-3						

PROJECT NUMBER J200432 PROJECT NAME Matraville due dilligence

CLIENT Epsom Enterprises

ADDRESS 42-52 Raymond Ave, Matraville NSW LOCATION Fire shed

DRILLING DATE 23/07/2020

DRILLING CONTRACTOR Epoca Environmental LOGGED BY L Lewis **DRILLING METHOD** Push tube

COORDINATES 33�57'45.1"S 151�13'19.0"E

CHECKED BY S Dillon

Method	Depth (m)	PID (ppm)	Samples	Analysed?	Graphic log	nscs	Material description
Solid stem Hand auger	- - - - 0.5	0.1				FILL	Asphaltic CONCRETE; 40 mm. FILL: Gravelly SAND; brown-grey, medium grain, <30mm gravels, trace of ceramic, asphalt fragments, potential ACM fragment, loose, medium censity, no odour or staining colour change to black from 0.2-0.3m
Push tube	- - -1						colour change to light grey, minor gravels (<15%) from 0.8m
	- - - 1.5 - - -	0.3	BH22_1.2	Y			potential ACM fragments at 1.2m
	— 2 - -	0.1				PEAT	Sandy PEAT; fine to medium grain sand, dark brown, stiff to hard peat, loose to medium dense sand, dry, no odour or staining.
	- -2.5 - - - - - - - - -				3	SP	SAND; yellow-brown, medium grain, dry to moist, medium dense to loose, no odour or staining.
	- 3 . 5 - - -	0.2	BH22_3.9	Y			moist to wet from 3.5m
	-4		-				End of investigation at 3.9 m (target).

PROJECT NUMBER J200432

PROJECT NAME Matraville due dilligence

DRILLING DATE 23/07/2020

DRILLING CONTRACTOR Epoca Environmental LOGGED BY L Lewis **DRILLING METHOD** Push tube

CHECKED BY S Dillon

COORDINATES 33�57'43.1"S 151�13'21.1"E

CLIENT Epsom Enterprises

ADDRESS 42-52 Raymond Ave, Matraville NSW LOCATION Driveway - eastern site boundary

Method	Depth (m)	PID (ppm)	Samples	Analysed?	Graphic log	nscs	Material description
Core						FILL	Asphaltic CONCRETE: 50 mm.
Hand auger	- 0.5	0.1				FILL	FILL: Sand GRAVEL; dark grey, angular, <20mm gravels, minor concrete fragments, trace of brick fragments, trace of asphalt, loose, dry to moist, no odour or staining
-					$\overset{\times\times\times}{\times}$	FILL	FILL: Gravelly SAND; medium grain, grey, <10mm gravels, moist, no odour
F		0.1	BH23_0.9	Y	XXX	' '	or staining, medium dense to loose
	- 1	0.1					
Push tube						PEAT	Sandy PEAT; fine to medium grain sand, dark brown, stiff to hard peat, loose to medium dense sand, dry, no odour or staining.
	- 1 . 5					SP	SAND; yellow-brown, medium grain, dry to moist, medium dense to loose,
		1.5	BH23_1.5	Y			no odour or staining.
-	- 2 - 2.5						-
-	-3						colour change to light grey to yellow-brown from 2.5m
- - - - -	- 3.5						▼
	- 4						End of investigation at 3.9 m (target).

PROJECT NUMBER J200432 PROJECT NAME Matraville due dilligence **CLIENT** Epsom Enterprises

ADDRESS 42-52 Raymond Ave, Matraville NSW LOCATION Northern portion of site

DRILLING DATE 23/07/2020

DRILLING CONTRACTOR Epoca Environmental LOGGED BY L Lewis **DRILLING METHOD** Push tube

COORDINATES 33�57'40.5"S 151�13'20.5"E

CHECKED BY S Dillon

Method	Depth (m)	PID (ppm)	Samples	Analysed?	Graphic log	nscs	Material description
Core	=					FILL	CONCRETE; 140 mm.
Hand auger	- - - 0.5	0.4	BH24_0.3	Y		FILL	FILL: Gravelly SAND; medium grain, grey, angular gravels <20mm, minor concrete, ceramic, brick and potential ACM fragment inclusions, dry to moist, loose, no odour or staining.
Push tube	- - - 1						increased gravels (40%) and colour change to dark grey from 0.7m
	-					F I LL SP	Asphalt and gravels; black, dry to moist, shiny, <15mm gravels, medium dense, no odour or staining SAND; medium grain, brown, loose to medium dense, moist, no odour or
	_	0.4	BH24_1.4	N		SF .	staining.
	— 1.5 - - - - -						colour change to yellow-brown to light grey from 1.5m
	- - - - - 2.5						
	-	0.3	BH24_2.7	Y			
	_				F		End of investigation at 2.7 m (target).
	- 3						

PROJECT NUMBER J200432 PROJECT NAME Matraville due dilligence **CLIENT** Epsom Enterprises

ADDRESS 42-52 Raymond Ave, Matraville NSW LOCATION Northeast boundary

DRILLING DATE 23/07/2020

DRILLING CONTRACTOR Epoca Environmental LOGGED BY L Lewis **DRILLING METHOD** Push tube

CHECKED BY S Dillon

COORDINATES 33�57'40.8"S 151�13'21.3"E

Method	Depth (m)	PID (ppm)	Samples	Analysed?	Graphic log	nscs	Material description
Hand auger	- - - - 0.5	0.1	BH25_0.3	Y		FILL FILL	CONCRETE; 150 mm. FILL: Gravelly SAND; medium grain, <20mm sub-angular gravels, medium dense, grey, dry to moist, no odour or staining Sandy PEAT; fine to medium grain sand, dark brown, stiff to hard peat, loose to medium dense sand, dry, no odour or staining.
Push tube	- - 1 -	0.1	BH25_0.9	Y	9 // <u>/</u>	SP	SAND; medium grain, grey-brown, loose, dry to moist, no odour or staining. colour change to yellow-brown to light grey from 1.2m
	- 1.5 - - - -						
	- - - - 2.5						
	- - -3						End of investigation at 2.7 m (target).

PROJECT NUMBER J200432
PROJECT NAME Matraville due dilligence
CLIENT Epsom Enterprises

ADDRESS 42-52 Raymond Ave, Matraville NSW LOCATION Between T3 and HT

DRILLING DATE 24/07/2020 COORDINATES 33 DRILLING CONTRACTOR Epoca Environmental LOGGED BY L Lewis

DRILLING METHOD Hand auger only **LOCATION** Between T3 and HT

COORDINATES 33�57'42.7"S 151�13'16.8"E

LOGGED BY L Lewis CHECKED BY S Dillon

Method	Depth (m)	PID (ppm)	Samples	Analysed?	Graphic log	nscs	Material description
Hand auger on l y	=					TOPSO SM	Silty SAND (topsoil); fine to medium grain sand, grey-brown, minor roots (grass) < 20%, minor sub-angular gravels < 20%, dry, loose, no odour or staining
	_					FILL	FILL: Asphalt gravels; dark grey to black, medium dense, moist, no odour or staining
	- 0.5					SP	SAND; medium grain, grey-brown, trace roots, moist, medium dense to loose, no odour or staining.
	- -	0.4	BH27_0.5	Y			
	- - -1						minor sandy peat inclusions, 0.8-1m
	- - - 1.5						colour change to light grey from 1.2m
	-						colour change to brown from 1.7m
	- 2 - - -	1.7	BH27_2.0 QC102	Y			colour change to yellow-brown from 2.0m
	2 . 5	0.9	BH27_2.7	N			
	_						End of investigation at 2.7 m (target).
	- - 3						

PROJECT NUMBER J200432 PROJECT NAME Matraville due dilligence **CLIENT** Epsom Enterprises

ADDRESS 42-52 Raymond Ave, Matraville NSW LOCATION Northeast corner of site

DRILLING DATE 24/07/2020

DRILLING CONTRACTOR Epoca Environmental LOGGED BY L Lewis **DRILLING METHOD** Push tube

COORDINATES 33�57'41.6"S 151�13'22.3"E

CHECKED BY S Dillon

Method	Depth (m)	PID (ppm)	Samples	Analysed?	Graphic log	nscs	Material description
Core	_				\bowtie	FILL	CONCRETE; 150 mm.
Hand auger	=					SM	SAND; brown, fine to medium grain, with sandy peat inclusions (<30%), stiff to hard peat, dry to moist, medium dense to loose, no odour or staining
	=	0.2	BH28_0.3	Y			
	- 0.5						
	_						
	=						
	- 1		BH28_1.0	Y		SP	SAND; medium grain, yellow-brown, loose, dry to moist, no odour or
	_	0.1	BH20_1.0			SF	staining.
Push	-						
tube	=						
	— 1 . 5						
	=						
	=						
	-2						change to medium dense, moist from 2.0m
	_						
	=						
	- 	0.1					
	- -						End of investigation at 2.5 m (refusal on very compact sand).
	=						
	=						
	-3						

PROJECT NUMBER J200432 PROJECT NAME Matraville due dilligence **CLIENT** Epsom Enterprises

ADDRESS 42-52 Raymond Ave, Matraville NSW LOCATION Northeast corner of site

DRILLING DATE 24/07/2020

DRILLING CONTRACTOR Epoca Environmental LOGGED BY L Lewis **DRILLING METHOD** Push tube

COORDINATES 33�57'41.9"S 151�13'21.2"E

CHECKED BY S Dillon

Method	Depth (m)	PID (ppm)	Samples	Analysed?	Graphic log	nscs	Material description
Core	-					FILL	CONCRETE; 150 mm.
Hand auger		0.7	BH29_0.3	Y		FILL	FILL: SAND; medium grain, grey-brown, minor gravels sub-angular (<15%), trace of charcoal, trace of asphaltic concrete fragments, loose, dry to moist, no odour or staining
	_ _ 0.5 _ _	0.1					
	- - -1	0.2			××	SM	SAND; brown, fine to medium grain, with peat (<20%), medium dense to very stiff peat, dry to moist, no odour or staining
Push tube	_ _ 1.5 _ _					SP	SAND; medium grain, light grey to yellow-brown, medium dense, moist, no odour or staining.
	- 2 - - -						
	- 2.5	0.2	BH29_2.6	Y			End of investigation at 2.6 m (refusal on compact sand).
	-						

PROJECT NUMBER J200432 PROJECT NAME Matraville due dilligence **CLIENT** Epsom Enterprises

ADDRESS 42-52 Raymond Ave, Matraville NSW LOCATION Central portion of site

DRILLING DATE 24/07/2020 DRILLING CONTRACTOR Epoca Environmental LOGGED BY L Lewis **DRILLING METHOD** Push tube

COORDINATES 33�57'42.2"S 151�13'20.4"E

CHECKED BY S Dillon

Method	Depth (m)	PID (ppm)	Samples	Analysed?	Graphic log	nscs	Material description
Core						FILL	CONCRETE; 140 mm.
Hand auger	- - - - 0.5	0.3	BH30_0.3	Y		FILL	FILL: Gravelly SAND; medium grain, brown, minor concrete fragment inclusions (<70mm gravels), trace of potential ACM fragments, loose, dry to moist, no odour or staining
Push tube	- - - -1	0.2	BH30_0.9	N		SP	SAND; medium grain, brown, minor medium dense to stiff peat inclusions (<20%), dry to moist, medium dense to loose, no odour or staining
	- - - - - 1.5						
	- - - - -						colour change to light grey to brown-yellow and no peat inclusions from 1.5m
	- - - - 2.5						moist from 2.5m
		0.2	BH30_2.7	Y			End of investigation at 2.7 m (target)
	_						End of investigation at 2.7 m (target)
	- 3						

Monitoring well log MW01/BH26

PROJECT NUMBER J200432

PROJECT NAME Matraville due dilligence DSI

CLIENT Epsom Enterprises

ADDRESS 42-52 Raymond Ave, Matraville NSW DIAMETER 50 mm

DRILLING DATE 24/07/2020

DRILLING METHOD Solid stem auger DRILLING CONTRACTOR Epoca Environmental CHECKED BY S Dillon


CASING uPVC, 5.75 m AHD

COORDINATES 335673.5, 6240662.8

LOGGED BY L Lewis

SCREEN uPVC Factory Slotted, 2.5 to 5.5 m bgs

COMMENTS Located within garden bed immediately northeast of UST area along western site boundary

Monitoring well log MW02/BH18

PROJECT NUMBER J200432

PROJECT NAME Matraville due dilligence DSI

CLIENT Epsom Enterprises

ADDRESS 42-52 Raymond Ave, Matraville NSW DIAMETER 50 mm

DRILLING DATE 23/07/2020 - 24/07/2020

DRILLING METHOD Solid stem auger DRILLING CONTRACTOR Epoca Environmental CHECKED BY S Dillon

CASING uPVC, 5.615 m AHD

COORDINATES 335649.0, 6240629.1

LOGGED BY L Lewis

SCREEN uPVC Factory Slotted, 2.5 to 5.5 m bgs

COMMENTS South of UST area in southwest corner of site. Note bore relocated at 3.9 m depth to new position 1 m north for hollow flight auger groundwater monitoring well installation.

Method	Depth (m)	PID (ppm)	Samples	Analysed?	Graphic log	nscs	Material description	Well diagram
Core						FILL	CONCRETE; 140 mm.	-Gatic (void)
Hand auger	- - - - 0.5 - -	0.1	BH18_0.3	Y		FILL	FILL: SAND; medium grain, grey to brown, trace gravels, trace clay (medium plasticity, orange), very loose, dry, no odour or staining.	Concrete
Push tube	- 1 - - -						Increased gravels, colour change to dark grey and dry to moist from 1 to 1.5 m.	cement grout
tube	1.5 	0.1	BH18_1.6	z		SP	SAND; medium grain, light grey, loose, dry to moist, no odour or staining.	Bentonite seal
	- 2 - - - 2.5 - - - - 3 - -		DIMO 0 0	(:	Minor sandy peat and colour change to dark brown from 2 to 2.3 m. Colour change to yellow-brown from 2.3 m.	
Hollov flight auger	3.5 4 4.5 4.5 	1.6	BH18_3.3	N			Note bore relocated at 3.9 m depth to new position 1 m north for hollow flight auger groundwater monitoring well installation.	Filter pack (1-2 mm)
	- - - 5.5 -	1.4	BH18_5.5	Ŷ			End of investigation at 5.5 m (target).	

Monitoring well log MW03/BH11

PROJECT NUMBER J200432

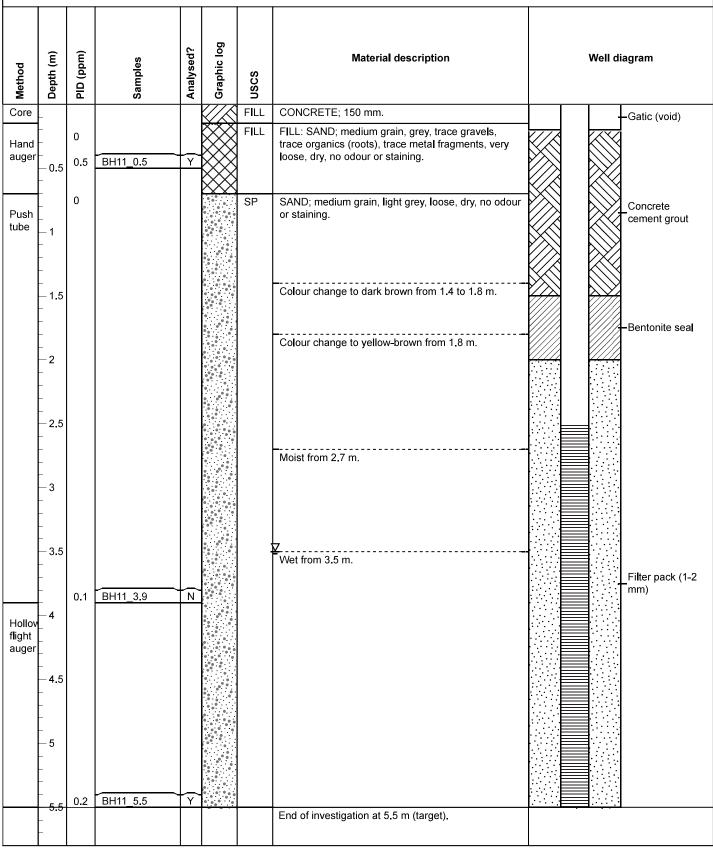
PROJECT NAME Matraville due dilligence DSI

CLIENT Epsom Enterprises

ADDRESS 42-52 Raymond Ave, Matraville NSW DIAMETER 50 mm

DRILLING DATE 22/07/2020 - 24/07/2020

DRILLING METHOD Solid stem auger DRILLING CONTRACTOR Epoca Environmental CHECKED BY S Dillon


CASING uPVC, 5.63 m AHD

COORDINATES 335684.0, 6240637.2

LOGGED BY L Lewis

SCREEN uPVC Factory Slotted, 2.5 to 5.5 m bgs

COMMENTS Located within garden bed immediately northeast of UST area along western site boundary

Appendix E

Analytical result tables

		Asbestos	Inorganic	s			Metals	tals															П
		sərdif zotzəc	fine Content	sisture Content		(IV+III) muimo	bber	рі	Lcni		2 Fluorotelomer 5:01) Asion (10:2	Fluorotelomer fonic acid (4:2 FTS)	Fluorotelomer fonic acid (6:2 FTS)	Fluorotelomer fonic acid (8:2 FTS)	riluorooctane flonamide EtFOSA) sthyl- fluorooctanesulfo	midoacetic acid EtFOSAA) ylperfluorooctane fonamidoethanol	££FOSE) Methyl fluorooctane fonamide MeFOSA)	thylperfluorooctan ulfonamidoacetic d (NMeFOSA)	thylperfluoroocta sulfonamidoethano	fluorobutane fonic acid (PFBS)	fluorobutanoic d (PFBA) fluorodecanesulfo	acid (PFDS)	(AQ49)
ō		Detect C	PW % -	\forall	mg/kg mg/kg	Ε	mg/kg	- mg/kg	E .	ng/kg mg/k	01 H C	113 % ET!	mg/kg	ıns 🎉 🖂	N-N (Ni kg ani	N) & (N)	N-I Fg/kg an	-N	au 🥸 E	ıns 🏖 🗟	DE 30 ~	oin ਨੂੰ ~	pe 💥 "
NEPM 2013 Table 1A(1) HILs Comm/Ind D Soi	nd D Soil		•		900 3,000	3,600	240,000	1,500	730 6	6,000 400,0	00.	*	10000	70000	,	,			1000	*0000	200		
4EPM 2013 Table 1A(3) Comm/Ind D : 0-1m	2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand																			\dagger	+	+	П
1-2m 2-4m																				H	H	$\frac{1}{1}$	
NEDM 2013 Table 1 D/S) General Ell Comm/lod	Committee				160																		
VEPM 2013 Table 1B(6) ESLs for Com	m/ind, Coarse Soil				4																		
0.2m NEPM 2013 Table 18(7) Management	Limits Comm / Ind. Coarse Soil																				+		Ī
PFAS NEMP 2020 Industrial/commerc	nercial (HIL D)																						
	Field ID																						
ВНОІ		·		8.7	10.4 <4	~	2	F	<0.1	ŀ	L	-		F	\mid	-	-		r	ŀ	ŀ	F	Γ
		0		5.2	40.4	8	20	18	<0.1	17 39													П
вноз		0	\dagger	3.4	20.4	1 2	e 5	. OI	<0.1	+	+												Ī
Pond		0	H	19	10.4	4	22	47	0.7	_	<0.2	<0.1	<0.0001	<0.0002	1>	3.2 <5	<1	<0.2	<0.001	<0.0001	<0.2 <(0.2 <0	22
			\dagger		<0.4	2 4	29	49		24 36		+	1	1	+	+	-	1	1				
		0	\dagger	10	<0.4 <4	7 92	15	23 0	<0.1 <0.1	+	<0.2	<0.1	<0.0001	<0.0002	V	12 <5	1	<0.2	<0.001	<0.0001	00.2	1.2 <0	LC
вное			T	6.7	20.4 <4		\ \	8	<0.1	_													Γ
8H07		0		3.4	<0.4 <4	4	<1	<1	<0.1	<1 <1													П
		-		13	20.4	1 6	∀ ₹	∀ ₹	0.1	7 7	<0.2	<0.1	<0.0001	<0.0002	7	0.2 <5	7	<0.2	<0.001	<0.0001	<0.2	0.2 <0	ın.
ВН08		Ī	t	4.3	30.4	-	17	17	<0.1	<1 2													
ВН09				11	±0.4 <4	1	2	,	<0.1	6 18													П
		0	\dagger	5.3	70.4	4	7 7	2	<0.1	2 3	7'0'S	1.0>	100000	<0.0002	15	65 7:1	Ty	7'0'>	T00'05	1000'0>	7.05	77	n
BH10			H	12	00.4 <4	1	77	17	<0.1	<1 <1									H				П
BH11		0	T	12	<0.4		2	4 4	<0.1	1 13	<0.2	<0.1	<0.001	<0.0002	1	1.2 <5	12	<0.2	<0.001	<0.0001	<0.2	1.2 <0	Ln
RH12		0		6.5	10.4	2	8	12	<0.1	2 120													П
		Ť	\dagger	5.2	50.4	7	7 7		60.1	10	1	\downarrow	1	1	+	+	\downarrow		†		+	1	Т
BH13			t	5 2	0.4	7	7 7	, ,	<0.1	0 0	<0.2	<0.1	<0.0001	<0.0002	7	7.2 <5	~1	<0.2	<0.001	<0.0001	<0.2	0.2 <0	LO
BH14		0	H	5.9	c0.4 <4	1	2	7	<0.1	1 11					H								П
		0	\dagger	e 23	20.4	1	30	32	0.2	20 55	7/05	T'0>	*000.00	200005	T	0.2	1>	7.02	100'05	70000	7.05	77	0
BH15			H	50	40.4	1	7	7	<0.1	Н									H				П
BH16	BH16_0.9_200723 23/07/2020 BH16_1.7_200723 23/07/2020	•		4.4	0.4	7	⊽ ⊽	7	0.1	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	<0.2	<0.1	<0.0001	<0.0002	7	0.2	7	<0.2	<0.001	<0.0001	<0.2	0.2	ın
				2	<0.4	1	4	9	<0.1	2 13													П
BH17		0	18.8	16	<0.4 10	5 6	790	221	0.7	8 190						+			\dagger				T
				Н	0.5 11	7	480	630	0.3	10 340													П
BH18		0	\dagger	13	20.4	7	4	s =	<0.1	1 15	<0.2	1.0>	<0.001	<0.0007	0	12 <5	12	200	<0.001	<0.0001	00.2	0> <0	Lr
				6.2	10.4 <4	2	V	3	<0.1	<1 3	<0.2	<0.1	<0.0001	<0.0002	7	3.2 <5	<1	<0.2	<0.001	<0.0001	<0.2 <(0.2 <0	15
BH19			7.5		100	2	9	\$.	<0.1	4	<0.5	<0.5	<0.0005	<0.0005	+	+	-	1		<0.0002	<1		
OCHE		0	+	1.2	:0.4 <4	7 7	<1	2	<0.1	4 2					$\frac{1}{1}$								
		,		3.1	30.4	77	<1	17	<0.1	17	0.00		70000	00000				0	0000				
BH21		-	\dagger	71	20.4	7	12	82	40.1	+	7.0>	40.1	40.0001	<0.0002	V	52	Ü	7.0>	10007	10000	7.05	77	0
			H	5.8	d0.4 <4	41	<1	-	<0.1	H				H	H	\prod			H				П
BH22		-	\dagger	77	20.4	2	7 7	7 7	<0.1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	7.0>	40.1	<0.0001	200005	7	52	Ţ	7.05	10007	10000	7.00	7.7	n
BH23		0	H	28	<0.4 <4	- 1	<1	<1	<0.1	1 3									H				П
			\dagger	9.6	40.0		7 2	∀ ₹	0.1	20 20	+			1	+	1							T
BH24			\dagger) EE	70.4	• 7	Q 🗸	1 4	<0.1	90 T	_			\dagger									Τ
BH25		0		4.7	00.4	-	1	2	<0.1	<1 4	<0.2	<0.1	<0.0001	<0.0002	\ \	7.2 <5	<1	<0.2	<0.001	<0.0001	<0.2 <(0.2 <0	LS.
			+	2.2	4.00	7 7		,	0.1	1 2	6.07	ç	*00000	00000	,	-	47	ç	10000	10000		9	
BH26			T	4.9	10.4	7 7	۳,	4	40.1	2 22	70.7	100	<0.0001	<0.0002	7	20	7	7105	×0.00.4	20,000	7	21	
				19	00.4 <4	1	<1	<1	<0.1														П
2003		•	\dagger	6.3	50.4	e -	26	9 ,	0.1	10 25	000	100	10000	00000	7	5	7	000	10000	100001	000	0	
		Ī	T	11 3	20.4	-	+ m	1	40.1	3 43	70.7	4.00	<0.0001	<0.0002	7	20	7	7105	×0.00.4	20,000	7	21	
BH28		0	H	5.7	c0.4 <4	2		4	<0.1	5 14	<0.2	<0.1	<0.0001	<0.0002	<1 ×	0.2 <5	<1	<0.2	<0.001	<0.0001	<0.2 <(0.2 <0	LO.
		0	+	7.8	40.4	- -	₩.	₽ \$	1.00	4 6	+		1										T
BH29		-	4.2	25	4.00	2 4	چ چ	2 E	40.1	2 17					+		-						T
ВНЗО		0		8.2	0.4 <4	'n	4	4	<0.1	6 10													П
		Ť	\dagger	23	<0.4	-	⊽	1	<0.1	1	<0.2	<0.1	<0.0001	<0.0002	4	0.2 <5	7	<0.2	<0.001	<0.0001	<0.2	0.2 <0	20
		T	†	t	\downarrow	+	\prod	ľ	+	\perp	\perp		I	†	+	+		I	<u> </u>	H	H	H	Т
			H	Н	H																		

>	į.
F	
缸	
	1
W.	

				PFOS/PFOA	S/PFOA																		
			d (PFDoDA)	fonic acid (PFHpS)	d (PFHpA)		d (PFHxA)	d (PFNA) diluorooctane	riluorooctanesulfo	rfluorooctanoic	rfluoropentane fonic acid (PFPeS)				(AGnU49) d		t) m of PFHxS and	2A44 A43 2U to m		enahthene	enaphthylene	enesendt	enecentine(s)sn
The contract of the contract o	EQL NPM 2013 Table 1A(1) HII s.Comm/	nd D. Soil	+H		ре 0.1	Hg/L 0.01	pe 39	9d ∰		\mathbf{H}	Hg/kg	DE kg sci	Peg/kg	hg/kg ad	\dashv	\mathbf{H}	siJ % 2	ns 🛐 o	-	ng/kg	mg/kg	mg/kg	mg/kg 0.1
The state of the s	NEPM 2013 Table 1A(3) Comm/Ind E 0-1m	i Soll HSL for Vapour Intrusion, Sand																					
The control of the	1-2m 2-4m >=4m																	\blacksquare	Щ				
Continue	NEPM 2013 Table 1B(5) Generic EIL- NEPM 2013 Table 1B(6) ESIs for Com 0.2m	Comm/ind im/ind. Coarse Soil																	370				
1	18(7) Managemer Industrial/comme	t Limits Comm / Ind, Coarse Soil cei (HL D)								50							20,0	00					
Ministry	on ID																						
The control of the							\prod							H					0 0	<0.1	<0.1	<0.1	0.1
The control of the				\prod			\parallel	\prod	\prod	+				\parallel			\prod	$\frac{1}{1}$	V0.1	<0.1	<0.1	<0.1	<0.1
Mathematical Mat			<0.5	<0.1	<0.1	$\left \cdot \right $	20.1	27	0.00	+	<0.1	<0.2	5	9.5	<0.5	2.9	5	2.9	0.1	<0.1	<0.1	<0.1	<0.1
Mathematical Continues Mathematical Contin			<0.5	<0.1	:0.1		30.1	11	<0.00(1000001	<0.1	<0.2	<5	<0.5	<0.5	:0.1	0>	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1 1 1 1 1 1 1 1 1 1						\parallel	\parallel		$\frac{1}{1}$					\parallel			$\frac{1}{1}$		0.1	<0.1	<0.1	<0.1	<0.1
1971 1971			<0.5	<0.1	<0.1 <0.1	+	0.1	2.0	0.000	<0.0001	<0.1	<0.2	5	<0.5	<0.5	0.4	o o	4.0	<0.1	<0.1	<0.1	<0.1	<0.1
1971 1972															\parallel				0.0	<0.1	<0.1	<0.1	<0.1
			<0.5	<0.1	:0.1 <0.1		30.1	1.1	1 <0.001	1000001	<0.1	<0.2	<5>	<0.5	<0.5	<0.1	0>	1 <0.1	<0.1	0.1	<0.1	1.0>	40.1
				\parallel		\parallel	\parallel	\parallel	\parallel	\parallel			\parallel	\dagger	\parallel	\parallel	\parallel	$\frac{1}{1}$	9 0	0.0	0.1	0.1	0.1
			<0.5	<0.1	(0.1 <0.1		10.1 <€	11 <1	>00:00	11 <0.0001	<0.1	<0.2	<5>	<0.5	<0.5	:0.1	0>	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1			\downarrow	+	+	+	+	+	+	+			\dagger	\dagger	+	+	+	+	<0.1	<0.1	<0.1	<0.1	<0.1
			×0.5	<0.1	0.1 <0.1		0.1	1	<0.00	1 <0.0001	<0.1	<0.2	50	<0.5	<0.5	:0:1	8	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1
					9				000	10000	,	e q		L G					<0.1	0.1	<0.1	<0.1	0.1
			c.0.5	1.02	1.02	\prod	1.05	11	non.	100000	7.05	2.0.2	0	c.u.>	<0.05	50	j	5	<0.1	<0.1	<0.1	<0.1	<0.1
1971 1972			<0.5	<0.1	:0.1		30.1 <c< th=""><th>17</th><th>0.000</th><th>5 <0.0001</th><th><0.1</th><th><0.2</th><th>₽</th><th><0.5</th><th><0.5</th><th>0.5</th><th>0.0</th><th>5 0.5</th><th>40.1 40.1</th><th><0.1</th><th><0.1</th><th><0.1</th><th>40.1 40.1</th></c<>	17	0.000	5 <0.0001	<0.1	<0.2	₽	<0.5	<0.5	0.5	0.0	5 0.5	40.1 40.1	<0.1	<0.1	<0.1	40.1 40.1
The continue of the continue				\parallel			\parallel	+						\parallel	\parallel	\parallel	\parallel		0.1	<0.1	<0.1	<0.1	<0.1
				+		\parallel	+	+	+	\parallel		\parallel	\parallel	\parallel	+	+	+		4.1	00.1	1.00	1.00	0.7
Mathematical Supplication			ç		9				000	0000	Š	ę			i e		Ş	ç	<0.1	<0.1	<0.1	<0.1	<0.1
Heat 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			<0.5	<0.1	0.1 <0.1		0.1 <		<0.000	11 <0.0001	40.1	<0.2	<5 <5	<0.5	<0.5	:0.1	0 0	1 00.1	<0.1	<0.1	<0.1	<0.1	<0.1
Harri 0.5, 200733 2407/12000 Harri 0.5, 200733 Harri 0.5, 20073 Harri 0.5, 200				V	<0.2 <0.2		:0.2		<0.00	20.0002		<0.2				V	0.2 <0	2	1>0>	0>1	<0.1	<0.1	<0.1
18.21 0. 20072 Part 1.0 Par								\parallel											0.0	<0.1	<0.1	<0.1	<0.1
1912 13 3 50022 12 10 1 1 1 2 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2			<0.5	<0.1	(0.1 <0.1	\parallel	0.1	1.1	1 <0.000	1000000	<0.1	<0.2	<55	<0.5	<0.5	<0.1	0>	1 <0.1	<0.1	0.7	<0.1	14	3.6
Hours 2, 2, 200733 2, 2007			<0.5	50.1	0.1		0.1	1.	0.000	2 <0.0001	<0.1	<0.2	\$	20.5	<0.5	0.2		0.2	0 0	<0.1	¢0.1	¢0.1	<0.1
Horizontal Supplemental Displace Horizontal Displace Horizon																			0.00	0.1	<0.1	<0.1	40.1
Nat. 27.20073				\parallel		\parallel	\parallel	\parallel	\parallel	\parallel		I	\parallel	\dagger	\parallel	$\frac{1}{1}$	\parallel	$\frac{1}{1}$	00.1	0.1	<0.1	<0.1	<0.1
Histo, 50, 2007733 Story 12,000 Histo, 50, 2007734 History 10, 200774 History 10, 2				\prod_{j}		\parallel	\prod	$\frac{1}{1}$		Н				\parallel			\prod		<0.1	<0.1	<0.1	<0.1	<0.1
House, 2 above			<0.5	<0.1	<0.1 <0.1		00.1	2	0.001		<0.1	<0.2	\$	<0.5	<0.5	1.2	1.	1.2	<0.1	<0.1	<0.1	<0.1	<0.1
Horize, Account Horize, Ac			<0.5	<0.1	<0.1 <0.1 <0.1 <0.1		10.1	1.1	0.003	2 <0.0001	<0.1	<0.2	\$	<0.5	<0.5	3.2	ei ei	3.1	40.1	<0.1	<0.1	<0.1	<0.1
Heart 2, 200744 Apply 2000 Grant 2, 20074 Apply 2, 20							+		+								+		00.1	0.1	<0.1	<0.1	<0.1
Part 2 day			<0.5	0.3	c0.1 <0.1		10.1	2	0.01,	H	<0.1	<0.2	\$	<0.5	<0.5	19	11 96	H	0.1	<0.1	<0.1	<0.1	<0.1
HILES 0.2, 2007 M			<0.5	<0.1	:0.1 <0.1		30.1	1.1	1 <00:00	Ė	<0.1	<0.2	<5>	<0.5	<0.5	<0.1	0>	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH3Q 0.3_200724 2A/07/2020 BH3Q 0.3_200724 A/07/2020 BH3Q 0.3_200724 A/07				+			+	H	\parallel				\parallel	\dagger	+	+	\parallel		0.1	<0.1	<0.1	<0.1	<0.1
15/01/2020 3.4A/2020			5.0>	102	0.1		0.1	1	0000	<0.0001	<0.1	<0.2	5>	<0.5	5.0>	0.4		1 0.4	<0.1	<0.1	<0.1	<0.1	<0.1
																	5		7				e j
			\parallel	\parallel		H	\parallel	$ \parallel $	$\ $	\prod		$\ $	\parallel	\parallel	H	H	$ \parallel $	\parallel	7 🗸	\coprod		Ī	

DSI Raymond Ave Matraville

		ΙH	۱H	I⊢) -	uə						\parallel		ТРН						ткн		
							- 0			to mu2) sHA9 (sewifized)	Phenanthrene 9		-			ටෙ-93	Z C10-C16	C10-C16 (F2 minus		9	012-92 g	g CG-C10 (F1 minus 장BTEX)
		-								0.05	0.1					10	S	8 8			10	10
																						370
																						60
																	1,000	170	3,1	700 3,300 500 10,000	700	215
	\neg																					
1	$^{+}$	<0.5 <0.5 <0.5	5 <0.5	<0.2	0.1	<0.1	0.1 <0.1	<0.1	<0.1	<0.05	<0.1	<0.1		<50 <100		<25	× 500 × 500	<50		\perp	<25	<25
	H	<0.5 <0	5 <0.5	<0.2	<0.1	<0.1 <0	7.1 <0.1	<0.1	<0.1	<0.0>	<0.1	<0.1		<50 270	H	<25	<50	×50	H	H	<25	<25
	-	<0.5	5 <0.5	<0.2	<0.1	<0.1	1.1 <0.1	<0.1	<0.1	<0.0>	<0.1	<0.1		<50 <100	ľ	<25	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	<50	ļ.	-	<25	<25
	-	200	9	000	6	6.00	0.0	9	100	30 07	0.00	0	H	0000	90	30,7	937	01	047	0000	207	,
		<0.5	5 <0.5	<0.2	<0.1	<0.1	1.1 <0.1	<0.1	<0.1	<0.05	<0.1	40.1		<50 <100	<100	<25	\$20 V	<50	<50	100 <100	<25	<25
		<0.5 <0	5 <0.5	<0.2	<0.1	<0.1 <0	7.1 <0.1	<0.1	<0.1	<0.05	<0.1	<0.1		<50 <100	<100	<25	<50	<50	<50 <1	100 <100	<25	<25
	- 1	<0.5 <c< td=""><td>.5 <0.5</td><td><0.2</td><td>40.1</td><td>0.1</td><td>0.1 <0.1</td><td>1 <0.1</td><td><0.1</td><td><0.05</td><td><0.1</td><td><0.1</td><td></td><td><50 <100</td><td><100</td><td><25</td><td><50</td><td><50</td><td><50</td><td>100 <100</td><td><25</td><td><25</td></c<>	.5 <0.5	<0.2	40.1	0.1	0.1 <0.1	1 <0.1	<0.1	<0.05	<0.1	<0.1		<50 <100	<100	<25	<50	<50	<50	100 <100	<25	<25
1	- 1	<0.5	5 <0.5	<0.2	<0.1	<0.1	7.1 <0.1	<0.1	<0.1	<0.05	<0.1	<0.1	1	<50 <100	<100	<25	<50	05 05	<50	100 <100	<25	<25
	1 1	<0.5 <0	5 <0.5	<0.2	<0.1	<0.1 <0	7.1 <0.1	<0.1	<0.1	<0.05	<0.1	<0.1		<50 <100	<100	<25	<50	<50	<50 <1	100 <100	<25	<25
1	- 1	0.5	.5 <0.5	0.5	1.0>	\$ 0.1	0.1	<0.1	<0.1	0.3	0.1	0.1		<50 <100	2100 2100	<25	050	05 05 05 05 05 05 05 05 05 05 05 05 05 0	<50	100 <100	<25	<25
1		<0.5	5 <0.5	<0.2	1.0>	0.1	1.1 <0.1	<0.1	<0.1	<0.05	<0.1	<0.1		<50 <100	<100	<25	950	05 05	200	100 <100	<25	<25
1	∀.	0.5 <0	.5 <0.5	<0.2	<0.1	<0.1 <0	0.1 <0.1	1 <0.1	<0.1	<0.05	<0.1	<0.1		<50 <100	<100	<25	<50	<50	<50 <1	100 <100	<25	<25
1	V V	0.5	5 <0.5	<0.2 <0.2	40.1	0.1	1,1 <0,1	<0.1	<0.1	<0.05	<0.1	<0.1		50 <100	<100	<25	05 × 30	8 8	<50	100 <100	<25	<25
1	0	.5 <0	.5 <0.5	<0.2	<0.1	<0.1 <0	0.1 <0.1	1 <0.1	<0.1	<0.0>	<0.1	<0.1		<50 <100	<100	<25	<50	<50	<50 <1	100 <100	<25	V
1	8 8	5.0	5 <0.5	<0.2	1.00	0.1	1.1	<0.1	<0.1	<0.05	0.1	<0.1	ľ	<50 <100	<100	<25	05 V	98 98	200	100 <100	<25	7 0
1	0	.5 <0	5 <0.5	<0.2	<0.1	<0.1 <0	7.1 <0.1	<0.1	<0.1	<0.05	<0.1	<0.1		<50 <100	1 <100	<25	<50	<50	<50 <1	100 <100	<25	
1	ΔI,	0.5 <0	5 <0.5	<0.2	0.1	0.1	0.1 <0.1	100.0	<0.1	<0.05	<0.1	0.1		<50 <100	<100	<25	<50	05>	<50 <1	100 <100	<25	2>
1	T	0.5	5 <0.5	<0.2	1.0>	0.1	0.1	<0.1	<0.1	0.2	<0.1	0.1	ľ	S0 <100	<100	<25	05>	> 05>	2000	100 <100	<25	<25
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	1 1	<0.5 <0	5 <0.5	<0.2	<0.1	<0.1	1.0 < 0.1	<0.1	<0.1	<0.05	<0.1	<0.1		<50 <100	<100	<25	<50	<50	<50 <1	100 <100	<25	<25
1		<0.5 <0	5 <0.5	40.2 40.2	0.1	9 6	0.1	0.1	40.1 CO 1	<0.05	0.1	0.1		<50 <100	4100 ×100	<25	05 05 05 05 05 05 05 05 05 05 05 05 05 0	05 05	50	100 <100	<25	<25
1		Ė	1 10	<0.2	<0.1	<0.1	7.1 <0.1	<0.1	<0.1	<0.05	<0.1	<0.1	ľ	<50 <100	<100	<25	<50	<50	<50 <1	100 <100	<25	<25
				1	0.2	0.7 ⊲	0.1	<0.1	0.2	5.7	9.0	8.0		<50 <100		<25	<50	<50		100 <100	<25	<25
1 1 1 1 1 1 1 1 1 1			+			+	+	+			T		087	250	+	OTS	062	965	+	2007	OTS	OI >
1	Н	<0.5 <0	5 <0.5	<0.2	<0.1	<0.1 <0	7.1 <0.1	<0.1	<0.1	<0.05	<0.1	<0.1		<50 <100	1 <100	<25	<50	<50	<50 <1	100 <100	<25	<25
1	H	<0.5 <0	.5 <0.5	<0.2	<0.1	<0.1 <0	0.1 <0.1	1 <0.1	<0.1	<0.05	<0.1	<0.1		<50 <100	<100	<25	<50	<50	<50 <3	100 <100	<25	<25
1	+	<0.5	<0.5	200.5	40.1	0.1	1.0	40.1	<0.1	<0.05	40.1	40.1	052	<50 <100	<100	2Z> 210	95 95	05 05	\$0 \$1	100 <100	<25	<25
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	٠	<0.5 <0	5 <0.5	<0.2	<0.1	<0.1 <0	7.1 <0.1	<0.1	<0.1	<0.05	<0.1	<0.1		<50 <100	<100	<25	<50	<50	<50 <1	100 <100	<25	<25
4.4 34 34 34 34 34 34 34	H	<0.5 <0	.5 <0.5	<0.2	<0.1	<0.1 <0	0.1 <0.1	1 <0.1	<0.1	<0.05	<0.1	<0.1	H	<50 <100	<100	<25	<50	<50	<50 <1	100 <100	<25	<25
1	+	+	+	40.2 3.0	1.0	3.0	2 <0.5	0.1	<0.1	<0.05	4.1	0.1		<50 <100	<100	<25	05>	×50	1	100 <100	<25	<25
	t	+			-																	
Columbia Columbia	H	<0.5 <0	.5 <0.5	<0.2	<0.1	<0.1 <0	0.1 <0.1	1 <0.1	<0.1	<0.05	<0.1	<0.1		<50 <100	<100	<25	<50	<50	<50 <1	100 <100	<25	<25
Col.	+	<0.5	5 0.5	40.2	1.00	8 6 1 6	1.0	40.1	<0.1	40.05 40.05	0.1	0.1	1	<50 <100	×100	<25	05 05	95 05	<50	100 <100	<25	<25
	+	<0.5 <0.	5 <0.5	<0.2	<0.1	<0.1 <0	7.1 <0.1	<0.1	<0.1	<0.05	<0.1	<0.1		<50 <100	1 <100	<25	<50	05>	<50	100 <100	<25	<25
	T	<0.5 <0	.5 <0.5	<0.2	<0.1	<0.1	9.1 <0.1	<0.1	<0.1	<0.05	<0.1	40.1		<50 <100	<100	<25	<50	<50	Ť	100 <100	<25	<25
Column C	+	<0.5	5 0 5	40.2	1.05	0.2	0.7	40.1 40.1	<0.1	1.1	5 6	7.0		<50 - 100 - 100	V100	572	95 95	050	ľ	100 <100	<25	<25
Column C	٠	<0.5 <0.5	5 <0.5	<0.2	<0.1	<0.1	7.1 <0.1	<0.1	<0.1	<0.05	<0.1	<0.1	ľ	<50 <100	1 <100	<25	<50	<50	<50	100 <100	<25	<25
40 40 40 40 40 40 40 40	Н	<0.5 <0	5 <0.5	<0.2	<0.1	<0.1 <0	7.1 <0.1	<0.1	<0.1	<0.05	<0.1	<0.1		<50 <100	<100	<25	<50	<50	<50 <1	100 <100	<25	<25
Column C	Н	<0.5 <0	.5 <0.5	<0.2	<0.1	<0.1 <0	9.1 <0.1	1 <0.1	<0.1	<0.05	<0.1	<0.1		<50 <100) <100	<25	<50	<50	<50 <1	100 <100	<25	<25
4.5 4.5	+			4						0				<50 <100	<100	<25	<50	<50	<50 <1	100 <100	<25	<25
Column C	+	40.5 40.5	5.00	2.02	40.1	0.1	1.1	100	<0.1	<0.05	40.1	40.1	1	<50 <100	×100	<25 27 27 27 27 27 27 27 27 27 27 27 27 27	06>	× > 20	050	100 <100	<25	V 1
1	۰	<0.5	5 <0.5	<0.2	<0.1	<0.1	7.1 <0.1	<0.1	<0.1	<0.05	40.1	<0.1	ľ	<50 <100	<100	<25	950	<50	<50	100 <100	<25	
43 43 43 43 43 43 43 43	Н													<50 <100	<100	<25	<50	<50	<50 <1	100 <100	<25	<25
40 40 40 40 40 40 40 40		<0.5 <6	.5 <0.5	<0.2	<0.1	<0.1 <0	0.1 <0.1	1 <0.1	<0.1	<0.05	<0.1	<0.1		<50 <100) <100	<25	<50	<50	<50 <1	100 <100	<25	<25
1,10 1,10	†	<0.5	5 <0.5	<0.2	1.00	0.1	0.1	<0.1	<0.1	<0.05	40.1	40.1		<50 <100	×100	<25	\$ \$20 \$20 \$20 \$30	05	<50	100 <100	<25	<25
43 45 45 45 45 45 45 45	T	2000	0.07	70.7	Y0.7	70.7	10/	10/	100	00:00	40.4	1107	05>	550 <100	<100	<10	957	8 5	050	100	<10	012
45 45 45 45 45 45 45 45	l	<0.5 <0.	5 <0.5	<0.2	<0.1	<0.1 <0	1.1 <0.1	<0.1	<0.1	<0.0>	<0.1	<0.1	3	<50 <100	1 <100	<25	<50	×50	<50 <1	100 <100	<25	<25
	1	<0.5 <0	.5 <0.5	<0.2	<0.1	<0.1 <c< td=""><td>0.1 <0.1</td><td>1 <0.1</td><td><0.1</td><td><0.05</td><td><0.1</td><td><0.1</td><td></td><td><50 <100</td><td><100</td><td><25</td><td><50</td><td><50</td><td><50 <1</td><td>100 <100</td><td><25</td><td><25</td></c<>	0.1 <0.1	1 <0.1	<0.1	<0.05	<0.1	<0.1		<50 <100	<100	<25	<50	<50	<50 <1	100 <100	<25	<25
	Ť	+	+	1	+	1	1	+				\dagger		1	+	225					<25	<25
	Ť	+	+	† †	\dagger	+	+	+	f	I	†	+	+	 	\downarrow	<25		t	+	 	<25	<25

\sum	VIII II
\equiv	
6	
۳	10 00
	1000

State Stat					BTEX						P	PCBs			F									
The control of the					-	ənəuloT.					SASS 10ld201A	8ÞSI 10lrloo1A,	Arochlor 1254	Oasi 10ldoo1A.	(lefof fo mu2) s839		enedfeooldcerter					Bromodichlorometha an	тю того того д	Serbon tetrachloride
### 1999 PAGE SERVING NO VARIATION OF CONTROL AND CONTROL CONTROL AND CONTROL	EQL NEPM 2013 Table 1A(1) HILs Comm/In	ind D Soil	-		+H	mg/kg 0.5					mg/kg 0.1	mg/kg 0.1	mg/kg 0.1	mg/kg 0.1	mg/kg 0.1		88				-	mg/kg	mg/kg 1	mg/kg 1
2013 Table 18(5) Generic Elt Comm/Ind. 2013 Table 18(5) Generic Elt Comm/Ind. 2013 Table 18(6) Els for Comm/Ind. Coarse Soil 2013 Table 18(6) Els for Comm/Ind. Coarse Soil 2013 Table 18(6) Els for Comm/Ind. Coarse Soil 2013 Table 18(7) Management Ind. Soil 2014 2015 Soil 18(1) Soil 2015 So	NEPM 2013 Table 1A(3) Comm/Ind D 0-1m	Soil HSL for Vapour Intrusion, Sand		230	3														+					
2013 Table 18(5) Generic Ell - Comm/Ind	1-2m 2-4m				8 8														\parallel		\parallel			
Control Cont	NEPM 2013 Table 1B(5) Generic EIL - (Comm/Ind			F																			
Control of the Cont	NEPM 2013 Table 18(b) ESLS for Com 0-2m	m/Ind, Coarse Soil		180	75 165	135																		
BHOLO 0.5. 200715	Table 2020	Limits Comm / Ind, Coarse Soil																	ł	_	ļ			
BHOLD 0.6.3 00715 BHOLD 0.6.3 00715 CCLOS_200715 CCCOS_200715 CCCOS_200	On ID																							
CCCCO_2_200715			\parallel	× × ×	<0.2 <1	<0.5	2 0	7 7	0.1 <0.	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1	12	<1	1	<1	<1	<1	<1	\
STATEST STATEST			\dagger	2 8	<0.2 <1	<0.5	70	7 7	0.1 <0.	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1.	7	4	7	1	7	77	Ţ	7
BIOLO 19, 200715. TRIPLICATE BIOLO 19, 200715. TRIPLICATE BIOLO 19, 200717. BIOLO 19, 200717. BIOLO 19, 200717.				V	<0.2 <1	<0.5 <0.5	9 8	4 4																
BHIGG 1.3, 2007.2 BHIGG 1.3, 2007.3 BHIG				9	100	300	9	7																
BHING 1, 2, 20072 BHING 1, 2, 20072 BHING 1, 2, 20072 BHING 2, 2, 20072 BHING 2, 2, 20072 BHING 2, 2, 20072 BHING 0, 3, 20072 BHIN			\parallel	2 0	<0.2 <1	<0.5	7 0	7 7	0.1 <0.	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1	1	41	7	^	7	77	7	7
BHOT 35, 20072 BHOS 21, 20073 BHOS 21, 20073 BHOS 22, 20073 BHOS 23, 20073 BHOS			\dagger	~ ~	<0.2 <1	<0.5	9 8	7 7	+	+				T		+	+	+						
BINDER 2.7, 20072 BIND			H	×3	<0.2 <1	<0.5	<2	<1 >	0.1 <0.	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1	<1	<1 <	<1	^1	· 1	1	\	1
BHOD 0.3 20072 BHOD 0.4 20073 BHOD			\dagger		<0.2 <1	<0.5	9 8	7 7	0.1	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Ţ	V	V	7	V	7	7	V	7
BHILD 13, 200721 BHILD 13, 200722 BHILD 13, 200722 BHILD 14, 200723 BHILD 15, 200724 BHILD 15, 200724 BHILD 15, 200724 BHILD 15, 200727 BHILD 15,				3	<0.2 <1	<0.5	2 5	1		* 07	* 0	9	4 9	1						1	,	,	*	ų
BH10 0, 20072 BH11 0, 5, 20074 BH12 0, 5, 20074 BH12 0, 5, 200774 BH13 0, 5, 200774 BH14 0, 5, 200772 BH15 0, 5, 200773 BH14 0, 5, 200773 BH15 0, 5, 200774 BH15 0, 5,				23 03	<0.2	<0.5	7 7	7 7	0.1	1 <0.1	<0.1	40.1		1.00	<0.1	Ţ.	7	V	7	7	7	7	7	7
				e 0	<0.2 <1	<0.5	2.2	V 7	0.1 <0.	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1	7	<1	7	<1	^7	^7	<1	7
811.20, 2.00722				\$ \$	<0.2 <1	<0.5	2 2	4	7.1 <0.	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1	4	10	7	^1	^1	1>	7	7
HILLS 2, 200734			\parallel	e (<0.2 <1	<0.5	9 0	7 7	0.1 <0.	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1	Į.	7	7	7	7	77	7	V
Hell 13, 2007 24				33 5	<0.2 <1	<0.5	2	1																
BH14.3.5.2 20072 BH15.0.3.2 20073 BH18.0.3.2 20073 BH18.0.3.2 20073 BH18.3.2 20073 BH19.3.2 20073			\dagger	v v	<0.2 <1	<0.5	2	4 4	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	7	7	7	7	7	7	7	7	7
HILL 12, 200723			\parallel	2 8 9	<0.2 <1	<0.5	7 7 9	17								<1	1>	1	7	<1	7	77	<1	7
BHIS 0.0, 2007.23 BHIS 0.0, 2007.23 BHIS 0.1, 2007.24 BHIS			\dagger	×3.	<0.2 <1	<0.5	42	7	0.1	1 <0.1	<0.1	1.0>	1:0>	<0.1	<0.1	1>	1>	<1	1>	<1	<1	1>	<1	T>
BHIT 0.1.2 2007.3 BHIT 0.1.2 2007.3 BHIT 0.1.2 2007.3 BHIS 0.1.2 2007.3			+	×3 ×3	<0.2 <1	<0.5	2 2	10 10	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	12	7	12	1	12	1	12	1>	\ \
GR17.15, GR723 GR17.25 GR723 GR17.25 Hell 12, 2, 2, 2007.23 Hell 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,				×3	<0.2 <1	<0.5	<2	41																
BH12 16, 20073			<0.2	<3 <0.5	<0.2 <1	<0.5	<0.5	<1 <	0.1 <0.	1 <0.1	<0.1	<0.1	<0.1	40.1	<0.1	7	V	7	7	7	7	7	7	7
BHIR10_1_2			H											Ħ										
RH19.11, 2007.23 QC201, 2007.23 RH19.12, 2007.24 RH19.12, 2007.24				2 0	<0.2 <1	<0.5	2 2	4	7.1	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1	7	4	7	7	4	7	7	7
HILE 2.00723				<3	<0.2 <1	<0.5	<2	<1 <	0.1 <0.	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1	41	41	1>	<1	<1	<1	<1	7
BH120_13_B00733 BH120_14_B00733 BH120_14_B00733 BH120_12_B00733 BH120_12_B00733 BH120_12_B00733 BH120_12_B00733 BH120_12_B00733 BH120_12_B00733 BH120_12_B00734 BH120_12_B00734			\parallel	es	<0.2 <1	<0.5	<2	7						Ħ	H		\prod							
Hert 2, 0.2 000723 Hert 2, 0.2 000724 Hert 2, 1.2 000725 Hert 2, 0.2 000725 Hert 2, 0.2 000725 Hert 2, 0.2 000726 Hert 2,			\dagger	3 03	<0.2 <1	<0.5	2 2	V V	0.1 <0.	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	7	V	V .	7	7	V	V	1>	V
BH12.1.2, 200723 BH12.1.3, 200724 BH12.2, 200724 BH12.2, 200724 BH12.3, 200724 BH13.3, 200724			H	<3	<0.2 <1	<0.5	<2	\	0.1 <0.	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	^1	Ţ	<1	1>	~1	7	7	<1>	Ţ
He12.1.2, 2007.33 He12.1.2, 2007.32 He12.1.2, 2007.32 He12.1.2, 2007.32 He12.1.2, 2007.32 He12.2.2, 2007.32 He12.2.2, 2007.32 He12.2.2, 2007.34 He12.2, 2007.34 He12.2				\$	<0.2 <1	<0.5	2	7																
Berl 2 2 2 2007 2			\dagger	e e	<0.2 <1	<0.5	2 2	7 7	0.1 <0.	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	7	Ţ	7	7	7	7	7	7	Ţ
He12_1,2, 2007.24				ç	<0.2 <1	<0.5	2	4	0.1 <0.	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	41	4	4	7	7	7	7	V	V
BHA2 2,7 20073 BHA2 0,3 20073 BHA3 0,3 20073 BHA3 0,9 20073 BHA3 0,9 200734 BHA3 0,2 200734 BHA3 0,3 200734			\dagger	Ç Ç	< 0.2 < 0.2 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 <	<0.5	2 2	7 7).1 <0.3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1,	1	10	7	7	7	7	Ţ	7
BH12.0, 200724				3	<0.2 <1	<0.5	2 5	7																
RH24.1, 200724				\$ \$	<0.2 <1	<0.5	2 2	4	7.1 <0.	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1	1	10	1	^1	7	7	7	V
RETUL_200734 RETUL_200734 RETUL_2_200734 RETUL_2_200734 RETUL_2_2_200734 RETUL_2_2_200734 RETUL_2_2_200734 RETUL_2_200734 RETUL_2_2_200734 RETUL_2_2_200734 RETUL_2_2_200734 RETUL_2_2_2_200734 RETUL_2_2_200734 RETUL_2_2_200734 RETUL_2_2_200734 RETUL_2_2_20			H	<3	<0.2 <1	<0.5	<2	\ \ \	0.1 <0.	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1	12	<1	1>	7	77	^7	1>	Ţ
BH27 0.5 200724				\$ \$	<0.2 <1	<0.5	75	7 7	7.1 <0.	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1	7	10		~	~	^1	7	7
QC102,240724 QC102,240724 BH128_0,230724 BH128_0,230724 QC102,240724 QC102,240724 BH190_0,220724 BH190_0,220724 BH190_0,230724 BH190_0,240724			\parallel	23	<0.2 <1	<0.5	2 5	7		4 07	* 07	q	4 (1	4 9	107			1	1	3	7	97	1	97
BH2.0.2, 200724 BH2.0.2, 200774 BH2.0.2, 200774 CC2.0.2, 200774 BH3.0.2, 200774 BH3.0.2, 200724 BH3.2, 200724 BH3.2, 200724			\dagger	2 5	<0.2 <1	<0.5	7 7	7 7	70.7	7.05	7.00	7'0'S	T'0>	7.05	T'05	17	15	7	75	7	7	7	75	7
			\parallel	°2	<0.2 <1	<0.5	<2	<1 o	0.1 <0.	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1	<1	<1 <	<1	^1	<1	1>	\ \	7
042.02,2007.84 BH30_03_2007.24 BH30_2,2007.82 TH30_2,2007.84 TH30_2,2007.84			\dagger	× 23	<0.2 <1	<0.5	2 2	4	0.1 <0.	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1	<1	10	1>	<1	<1	<1	<1	<1
BH30_27_200724 TB01_200715 TB02_200734 TB03_200724			<0.2	<0.5	<0.2 <0.5	<0.5	<0.5	<0.5																
				7 💎	<0.2 <1	<0.5	7 0	7 7																
			\dagger	0.0	<0.2 <1	<0.5	80	7 7	+					T		+		+						
			H	2 8	<0.2 <1	<0.5	<2	7 7	\perp					Ħ	H	$\frac{1}{1}$	H		H					

2	9
>	100
ÍΠ	0000
	311
	1 Pa
	5

						Chlorinated H	ed Hydrocarbons																Halogenate
			entsemomordiborold ane		-S,t-eio	-£,1-2iɔ dichloropropene			-5,£-enert		anartraoroldzinT		etrachloroethane		ensqorqorolhirit -E-omordib-2,£	3-4ichloropropane	9neqorqoroldɔib-2,2	Bromorohoromethane	Dibromomethane		ensznedorolńcirż		9n9zn9d01old2ib-4,1
	EQL		mg/kg r	E	89 E	mg/kg 1	E	E	8 E	mg/kg 1	mg/kg 1	mg/kg	ng/kg m.	99	/kg mg/	mg/kg	mg/kg 1	mg/kg	mg/kg 1	\mathbb{H}	\$°	8 mg/k	mg/kg 1
Part Page	NEPM 2013 Table 1A(1) HILS Comm/li NEPM 2013 Table 1A(3) Comm/Ind D	nd D Soil Soil HSL for Vapour Intrusion, Sand																		80	_		
The bills General Ell. Comm/Ind	0-1m 1-2m		\dagger																	\parallel		\perp	
The BLANCE CONTINUITY CON	2-4m >=4m																					H	
Park RET And Connot Park Connot Pa	NEPM 2013 Table 1B(5) Generic EIL - NEPM 2013 Table 1B(6) ESLs for Comi	ommylnd n/Ind, Coarse Soil																					
Held ID	18(7) Manageme Industrial/comm	Limits Comm / Ind., Coarse Soil sia (HILD)																					
HeND, 0.6, 200715 HEND, 0.6, 2007175 HEND, 0.6, 200777 HEND, 0.6, 200777 HEND, 0.6, 2007772 HEND, 0.6, 2007773 HEND, 0.6, 2007773 HEND, 0.6, 2007773 HEND, 0.6, 2007773 HEND, 0.6, 2007774																							
CCCOQ_2007515			<1	<1 <	41	41	41	<1 <1	77	<1	77	<1	<1	12	1 <1	<1	77	17	77	<0.1	<1 <1	^7	<1
MINIOTO			4	12	1	7	<1	<1	7	· 1	7	1,	<1	1	1 <1	77	7	<1	7	<0.1	<1 <1	⊽	<1
BHOS 0.5.2007.15								+			\dagger	\parallel	+	+									
BINDS BINDS			7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	107	1	7	7
HeINTO 24, 200722 HEINTO 24, 200724			7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	T'0.5	7	7	7/
Hellor 0, 2, 20072 Hellor 0, 2, 20073			<1	<1	1 <1	<1	<1	<1 <1	<1	<1	<1	<1	<1	\ \	1 <1	<1	1>	<1	<1	<0.1	<1 <1	<1	<1
Heisto 1.5 20072 Heisto 2.5 20073			<1	<1 >	1 41	7	41	<1 <1	1>	<1	7	<1	<1	17	1 <1	<1	77	17	77	<0.1	<1 <1	1>	17
BH101_0_3_00772 BH10_0_3_00772 BH10_0_3_00772 BH10_0_3_00772 BH10_0_3_00772 BH11_0_3_00772 BH11_1_1_0_00772 BH11_1_1_0_00772 BH11_1_1_0_00772 BH11_1_1_0_00772 BH11_1_1_0_00772 BH11_0_3_00772 BH11_0_3_00772			4		4							4					ų			* 0			
BH10.0, 5.0072 BH12.0, 5.0072 BH12.0, 5.0072 BH13.0, 5.0073 BH13.0, 5.0073 BH13.0, 5.0073 BH13.0, 5.0073 BH13.0, 5.0073 BH13.0, 5.0073 BH14.0, 5.0073 BH14.0, 5.0073 BH14.0, 5.0073 BH15.0, 5.0073 BH15.0, 5.0073 BH15.0, 5.0073 BH15.0, 5.0073 BH13.0, 5.0073			₹	7	7	7	TV	7	₹	T.	▽	7	₹	V	7	₹	₹	7	7	×0.1	17	7	15
##115.5.2007A ##115.12.2007B ##125.2007B ##125.2007			1>	<1 <	1 <1	<1	<1	<1 <1	7	<1	1>	1>	<1	41	1 <1	77	77	17	17	<0.1	1>	1>	<1
BH112.05, 200722			<1	<1 <	1 <1	<1	<1	<1 <1	<1	<1	<1	<1	1>	<1	1 <1	<1	<1	<1	<1	<0.1	<1 <1	<1	<1
Hell 10, 200724 Hell 11, 5, 200724 Hell 12, 5, 200724 Hell 12, 200722 Hell 12, 200722 Hell 12, 200722 Hell 12, 200723 Hell 12, 200724 Hell			7	×1	7	V	7	1	7	\ 1	7	77	77	7	1	7	⊽	7	⊽	<0.1	1>	7	7
BH14.5.2.20772 BH14.5.2.20772 BH14.5.2.20772 BH14.5.2.20773 BH14.5.2.20774 BH14.5.2.20			7	7	7	7	7	7	7	7	7	7	7	-	7	7	7	7	7	107	7	7	7
Helt 3, 2, 2007 22			4					7			4	7	7				7	7		<0.1	4	7	7
BH113.3, 2007.33 BH114.3, 2, 2007.33 BH115.0, 2, 2007.33 BH115.0, 2, 2007.33 BH12.0, 2, 2007.33 BH12.0, 2, 2007.33 BH12.0, 2, 2007.33 BH12.0, 2, 2007.33 BH13.0, 2, 2007.34 BH13.0, 2, 2007.34			41	<1	1 4	<1	4	4	41	17	<1	<1	4		1 <1	77	7 7	4	77	<0.1	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	7 7	<1
HILE 1.7 20073							+	+	+		\dagger	+	+	+	+			\dagger	\dagger				
COLOR			<1	7	1	7	▽	1>	7	7	7	×1	<1	7	1 <1	7	∇	<1	▽	<0.1	12	Ţ	₽
Heart 1, 2, 20073			7	7	7	7	4	10	⊽	7	7	7	7	7	1	⊽	⊽	7	⊽	<0.1	1	V	⊽
BH118_0.5_2.007.23 BH118_0.5_2.007.23 GC10_2.007.23 GC10_2.007.24 GC10_2.007.24												\parallel		\prod									
Heli 11, 2, 200723			<1	<1	1.	<1	7	1 41	7	7	12	1>	7	12	1 <1	7	7	7	1>	<0.1	<1 <1	Ţ	<1
He1131, 200723 He1131, 200723 He1121, 0.2, 200723 He121, 0.2, 200723 He121, 0.2, 200723 He121, 0.2, 200723 He121, 0.2, 200723 He122, 0.2, 200723 He123, 0.2, 200723 He123, 0.2, 200723 He123, 0.2, 200723 He123, 0.2, 200724 He12			41	<1	10	77	7	1	7	41	41	7	⊽	7	1 <1	₹	77	7	77	<0.1	<1	₹	77
BH12.0, 2, 20073.3 BH12.0, 2, 20073.4 BH12.0,			1>	<1	1	<1	4	<1 <1	1	<1	17	<1	-1	12	1	77	7	1	1	<0.1	<1 <1	<1	<1
Bell 21, 22, 20073-1 [TREPLICATE]			<1	12	.1	<1	4	41 <1	7	<1	<1	<1	<1	7	1 <1	1>	77	7	1>	<0.1	<1 <1	<1	<1
Heriz 1, 2, 2007.23 Heriz 2, 3, 2, 2007.23 Heriz 2, 3, 2, 2007.23 Heriz 2, 1, 2, 2007.23 Heriz 2, 2, 2007.23 Heriz 2, 2, 2007.24 Heriz 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,				+		\prod		+	+			+	+	+	+	$oxed{T}$		\dagger	\dagger				
Perit 2, 15, 2007.23			<1	<1	12	77	41	41 41	17	<1	77	<1	<1	7	1 <1	77	7	17	77	<0.1	<1 <1	17	77
BILLA 0.2. 200773			7	<1	1	41	4	41	7	<1	7	41	7	7	1 41	1	7	77	77	<0.1	<1 <1	7	<1
101.2 (2.00.72)			<1	> 1>	1	<1	17	<1 <1	7	^1	77	1,	<1	7	1 41	77	7	77	77	<0.1	<1 <1	1>	<1
Helt2_0, 200723 Helt2_0, 200724 Helt2_0, 200724																							
CCCO.2, 200724			7 7	7 7	7 7	7 7	7 7	∇ ∇ ∇ ∇	7 7	7 7	7 7	7 7	7 7	7 7	7 7	7 7	4 4	7 7	7 7	<0.1	1 1	7 7	7 7
BH22_0.5.2007a BH22_0.5.2007a BH22_0.5.2007a GC10_2.2007a GC10_2.2007a GH22_0.5.2007a GH20_0.5.2007a GH20_0.5.2007a GH20_0.5.2007a GH20_0.5.2007a GH20_0.5.2007a GH20_0.5.2007a GH20_0.5.2007a			7		7	7	7	7	7	7	7	7	7	-	7	7	7	7	7	107	7	7	7
			4		4	7	7	7	7	7	4	4	7		4	7	4	7	7	407	4	1	4
Helt2.0, 200734			T>	ī		7	T T	15	TV	TV	T>	TV.	17	1>	17	15	17	T/	17	7.02	15	17	1>
			77	<1	12	77	7	41 41	7	~1	7	77	7	7	1 <1	7	7	7	7	<0.1	<1 <1	7	<1
H140 0.3_200724 H140_2_7_200724 180_2_200724 180_3_200724 180_3_200724			1>	<1 >	1 41	7	<1	<1 <1	17	<1	17	<1	<1	12	1 <1	<1	77	1>	77	<0.1	1> 1>	1>	1>
			H	\parallel							\parallel	\parallel	\parallel	\parallel				\parallel	\parallel			Н	
			t	+	+	1	+	+	+	1	\dagger	\dagger	+	+	+	I	Ť	†	\dagger	t	+	+	ļ

Σ	Tri bare
5	
ш	
	and the
V	

		d Benzenes					Halogenated Hydrocarbons	tydrocarbons										Organochlorine Pesticide	ne Pesticides					
		əuəzi					thane	htsmorouli	edfemorou						(snert)				aaa+		Įu			ətenqlus n
		E Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	-E,2,1 g Adoroldoint 36	otonolda-S & & & & & & & & & & & & & & & & & & &	g Bromoben	mordib-2,t 2	Bromomet	Bichlorodii	litoroldzivi E an 32/	3/kg 4,4.DDE	Heptachlor	% SHHC SM-6 SM-6 SM-6 SM-6 SM-6 SM-6 SM-6 SM-6	ninblA 3/8	3 P-BHC	g/SChlordane	ЭН8-Р	mg/kg	Tad ge	+300+T00 g %	B Dieldrin	Endosulfar	ble nirbn3 %	reflusobn3 %	neflusobn3 / 8
EQL NFPM 2013 Table 1A(1) HII s Comm/In	rd D Soil	1	Н	1 1	1	Н	1	1	1	0.1	.1 0.	1 0.1	0.1	0.1	0.1	0.1	0.1	0.1	3.600	0.1	0.1	0.1	0.1	0.1
NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand	Soil HSL for Vapour Intrusion, Sand																							
1-2m																								П
7-4m >=4m													\parallel											
NEPM 2013 Table 18(5) Generic EIL - Comm/Ind NEPM 2013 Table 18(6) ESLs for Comm/Ind, Coarse Soil	Comm/Ind n/Ind, Coarse Soil																	640						
0-2m NEPM 2013 Table 1B(7) Management	Limits Comm / Ind. Coarse Soil												ļ											
PFAS NEMP 2020 Industrial/commerc	mercial (HIL D)																							
OI ID																								
BH01 BH02		7	V.	41	V	77	7	^1	<1	<0.1	0.1	1 <0.0	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1.00	<0.1
		7	<1	<1 <1	V	7	17	<1	<1	<0.1	0.1	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	.0.1	<0.1
ВНО												\parallel									\parallel			П
											-	+					I						+	
		7	<1	<1 <1	7	7	17	<1	<1	<0.1	0.1	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	.0.1	<0.1
	BH07_0.3_200722 22,07,2020																				\parallel		+	
		4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	<0.1	0.1	1 00.1	0.1	<0.1	0.1	<0.1	<0.1	0.1	60.1	<0.1	0.1	<0.1	0.1	<0.1
8Н08		7	7	1	7	7	7	1	7	40/	7	4	100	4.00	100	100	1.00	7.0°	100	Y0.Y	4.0%	7.07	4.0	40.4
ВН09			-	10	7	7	7	12	-	101	11	100	6	<0.1	100	<0.1	-0.1	- CO 1	1 (0)	<0.1	100	<0.1	0.1	101
0110		4	4	*	4	7	4	1	7	400	410	4	4100	407	4100	400	4.00	4004	4100	400	2017	700	4.0	4100
		77	77	12	7	12	77	<1	<1	<0.1	0.1 <0	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	10.1	<0.1
ВН11		41	<1	<1 <1	V	<1	7	<1	<1	<0.1 <(0.1 <0.	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1
BH12		7	7	4	∀	7	∀	77	7	<0.1	0.1	1 <0.1	0.1	<0.1	<0.1	<0.1	<0.1	40.1	.0°1	<0.1	40.1	<0.1	0.1	40.1
BH13					ų.		ų.			4.0	9	9	9	9.0	q	4.0	* 9	q	4 9	9.07	e q			
		Ty	T.	15	7	7	T/	T	T ₂	<0.1	0.1	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1
		17	17	41 41	7 7	7	7	<1	<1	102	02	1 001	0	<0.1	- US	<0.1	-01	-U-3	-0.1	<0.1	1 0>	<0.1	0.1	10.1
BH15																								П
BH16		7	1	1>	7	7	7	^1	17	<0.1 <(1.1	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0,1	0.1	:0.1
					1		,				9	9	9	9.0	q	9.0			9	* 0				
BH17		V	71	7	7	V	Į.	7	V	v0.1	0.1	.10	<0.1	<0.1	00.1	<0.1	<0.1	<0.1	V0.1	1.0>	1.05	1.0>	1.00	<0.1
			\parallel			1	1				1	+								\dagger	+	1	+	
BH18		7	<1	<1 <1	7	7	7	<1	<1	<0.1	0.1 <0.	1 <0.1	1.0>	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1
BH19		₹	Ų	0	₹	₹	₹	Ų	7	<0.1	0.1	40.5	<0.1	<0.1	40.1	<0.1	<0.1	40.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1
		7	-	17	7	7	7		7	101	1.1	100	90	<0.1	<0.1	<0.1	-0.1	-0.1	102	90	<0.1	100	0.1	1 00
ВН20													8	5				400		5	6	400		
BH21		7	7	41	7	7	77	~1	1>	<0.1	0.1	<0	1 <0.1	<0.1	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1.00	0.1
		7	-	-	7	7	7	-	7	107	7.1	1 00	100	107	100	107	100	0.1	107	-01	100	107	10	10,
ВН22																								
BH23		⊽	7	4	⊽	⊽	♥	17	⊽	<0.1	0.1	40.0	0.1	<0.1	40.1	<0.1	<0.1	0.1	<0.1	<0.1	0.1	<0.1	0.1	40.1
ВН24		<1	<1	<1 <1	1>	<1	<1	<1	<1	<0.1 <1	0.1 <0	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	10.1	<0.1
BH25			\parallel		\prod		\prod	Ħ			\parallel	\parallel	H						Ħ	\parallel	\parallel		\parallel	П
		7 7	7 7	2 2	7 7	7 7	7 7	7 7	7 7	<0.1	0.1	1 00.1	0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	0.1	×0.1	0.1	0.1
BH26																								
		⊽	Ţ	₹	7	7	₹	7	7	<0.1	0.1	100	40.1	<0.1	40.1	<0.1	<0.1	40.1	0.1	<0.1	1.05	<0.1	100	1.0>
BH27	BH27_2_200724 24/07/2020	77	<1 <1	<1 <4	7	7	77	<1	<1	<0.1 <4	0.1	1 <0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1
8428		41	<1	<1 <1	V	<1	7	<1	<1	<0.1 <(0.1 <0.	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1
		7	-	12	7	7	7		-	50.1	11	100	6	<0.1	100	10>	-0.1	100	1 0>	<0.1	1.00	10>	0.1	101
ВН29																								
ВН30			+	+	+	+	I	t	\dagger		+	+	+	+					1	\dagger	\dagger	+	\dagger	T
																			Ħ				\parallel	
						<u> </u>						+		-							+		+	T

DSI Raymond Ave Matraville

EM	EM	$\overline{}$	2
	The country	_	- =
5	ating on	2	0.10
		ш	Э

Column C				Ĺ				ĮÁų						-					
State of the content of the conten				Methoxychlor	ninbn3	(ansbniJ) JH8-3	Heptachlor	Chlorpyrifos-metl	Dichlorvos	Ethion	Fenitrothion	noidteleM	Ronnel	lydłem sodqonisA	Chlorpyrifos	Βιοmophos-ethyl	nonizeiQ	Dimethoate	Parathion
The state of the control of the cont				mg/kg 0.1	mg/kg 0.1	mg/kg 0.1	mg/kg 0.1	mg/kg 0.1	mg/kg 0.1	mg/kg 0.1	mg/kg 0.1	mg/kg 0.1	mg/kg 0.1	mg/kg 0.1	mg/kg 0.1	mg/kg 0.1	mg/kg 0.1	mg/kg 0.1	mg/kg 0.1
Annaly Annaly	PM 2013 Table 1A(1) HLS COMM/III PM 2013 Table 1A(3) Comm/Ind D	for Vapour Intrusion,		7,500	100		200								2,000				
An image State Comm/Intd	-Im -2m																		
Annual Community Annual Community Annual Community Annual Community Annual Community Annual Community Annual Compared Soil	-4m										Ī				Ť	Ť	Ť	Ī	
Period P	PM 2013 Table 1B(5) Generic EIL - PM 2013 Table 1B(6) ESLs for Comr	Comm/Ind m/Ind, Coarse Soil																	
Heart 2000 Industrial/Commercial (HED)	PM 2013 Table 18(7) Management	Limits Comm / Ind. Coarse Soil					Ī					Ī		Ī	Ī	Ī	Ī	Ī	
BHO1_0.6. 200715	m m	cial (HILD)													Ī	Ī		Ī	
BINDLO, 0.5, 200715	ion ID		Date												Ì	Ì	İ	Ì	
Heirig 10, 200731			15/07/2020	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BINDLE BINDLE			15/07/2020	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BINGS 0.2 200715 TREPLICATE			15/07/2020					\dagger		\dagger				1					
BHING 0, 2, 20073			15/07/2020																
HeING 1.3 2007.2 HEING 1.3 2007.2 HEING 2.3 2007.3 HEING 2.3 2			15/07/2020	40.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1
BHIND 12, 200722			22/07/2020																
BHORG 0.3 20072 BHORG 0.3 200772 BHORG 0.3 200773			22/07/2020	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BHORG 2, 2, 2007.2 BHORG 2, 2, 2007.2 BHORG 1, 2, 2007.2 BHORG 2, 2007.3 B			22/07/2020	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heiro 11, 2 20072			22/07/2020		1		\dagger	\dagger	\dagger	1	1	1	1	1	ı			Ť	
BHILL 0.2, 2007.2 BHILL 0.2, 2007.3 BHIL			22/07/2020	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH11.0.5.2007.2 BH11.0.5.2007.2 BH12.0.2.2007.2 BH12.0.2.2007.2 BH13.0.2.2007.2 BH14.0.2.2007.2 BH14.0.2.2007.2 BH14.0.2.2007.2 BH14.0.2.2007.2 BH14.0.2.2007.2 BH15.0.2.2007.2 BH15.0.2.2007.2 BH15.0.2.2007.2 BH15.0.2.2007.2 BH17.0.2.2007.2 BH12.0.2.2007.2 BH12.0.2.2007.2 BH12.0.2.2007.2 BH12.0.2.2007.2 BH12.0.2.2007.2 BH12.0.2.2007.2 BH12.0.2.2007.2 BH12.0.2.2007.2 BH12.0.2.2007.2 BH12.0.2.2007.3			22/07/2020	<0.1	<0.1	<0.1	<0.1	1.0>	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Hell 2 (2, 2007)2 Hell 2 (2, 2007)2 Hell 3 (2, 2007)3 Hell			22/07/2020	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	0.1	<0.1	<0.1	02
BH113_16_20072 BH113_16_20072 BH113_16_20072 BH114_3_16_20072 BH114_3_16_20072 BH116_3_16_20072 BH116_3_16_20072			22/07/2020	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	40.1	<0.1	<0.1	<0.1
HILL 13, 2007.34			24/07/2020						\parallel										
BH14.5.2.2.200723 BH15.2.2.2.200723 BH15.2.2.2.200723 BH15.2.2.200723 BH15.2.2.200723 BH15.2.2.200723 BH15.2.2.200723 BH15.2.2.200723 BH15.2.2.200723 BH15.2.2.200723 BH15.2.2.200724 BH15.2.2.200724 BH15.2.2.200724 BH15.2.2.2.200724 BH15.2.2.200724 BH15.2.200724 BH			24/07/2020	0.1	<0.1	<0.1	40.1	0.1	0.1	40.1	<0.1	<0.1	<0.1	40.1	<0.1	0.1	<0.1	<0.1	1.0>
HILL 51.2 2007.23 HILL 51.2 2007.24 HILL 51.2 2007.25 HILL 51.2 2007.26			22/07/2020						1										
BHIS 0.9, 2007.33			23/07/2020	1.0>	<0.1	1.0>	<0.1	1.0>	1:0>	1.0>	<0.1	<0.1	<0.1	1.0>	<0.1	1.0>	<0.1	<0.1	<0.1
Hell 7, 16, 2007.3 Hell 7, 16, 2007.3 Hell 7, 16, 2007.3 Hell 8, 2, 2007.3 Hell 9, 2, 2007.3			23/07/2020	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0,1	0.1
GLOS.200723 GRIV.1.2, 200723 GRIV.2, 2, 200724 GRIV.2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2			23/07/2020																4
BH11.2, 6.2073-1 (RRPLICATE]			23/07/2020	1.00	<0.1	<0.1	V0.1	<0.1	1:00	<0.1	1.0>	<0.1	<0.1	1.00	<0.1	<0.1	<0.1	<0.1	40.1
HHIS 5,5 2007A HHIS 1,5 2007B HHIS 0,5 2007B			23/07/2020				1	\dagger											
MIN			24/07/2020	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heli13, 200723			23/07/2020	1.05	1.02	1.0>	1.00	1100	1.05	1100	1.0>	1.0>	1.02	1.05	1.02	1.05	1.00	7.U.>	
BH20.16.2 000723			23/07/2020	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1
BH12, 12, 200733 BH12, 13, 200734 BH12, 200734 BH12, 200734 BH12, 200734 BH12, 200734 BH			23/07/2020						4 0										
He12, 1, 2, 2007.23 He12, 3, 2, 2007.23 He12, 3, 2, 2007.23 He12, 3, 2, 2007.23 He12, 0, 2, 2007.23 He12, 0, 2, 2007.24 He12, 1, 2007.24 He12, 2, 2			23/07/2020	1.0>	×0.1	1.02	1:02	1.00	1:0>	1.00	1.0>	1.05	170	1.00	170	1.00	1.0>	Z.U.2	1:0>
He12.2 0.0 200733 He12.1 0.2 200723 He12.1 0.2 200723 He12.1 0.3 200723 He12.0 0.3 200724 He12.0 0.7 200724			23/07/2020	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
			23/07/2020	<0.1	<0.1	<0.1	<0.1	<0.1	100	<0.1	<0.1	<0.1	<0.1	100	1.0>	1.00	<0.1	<0.1	02
BH124_0.5_200723 BH124_0.5_200723 BH126_0.5_200723 BH126_0.5_200724 BH126_0.5_200724 GC10_2.200724 GC10_2.200724			23/07/2020																
BH12.0, 2, 200723 BH12.0, 2, 200724 BH12.0, 2, 200724 CCC10, 200724 BH12.0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,			23/07/2020	40.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	40.1	<0.1	<0.1	<0.1	<0.1	0.1
			23/07/2020		0.0		9		9 9	4 9	0.07	* 97	100	0		9	* 07	* 67	9
64.016.2.00734 614.02.44.2.00734 614.2.44.2.00734 614.2.2.2.00734 614.2.2.2.00734 614.2.2.2.00734 614.2.2.2.00734 614.2.2.2.00734 614.2.2.2.2.00734 614.2.2.2.2.00734 614.2.2.2.2.00734 614.2.2.2.2.2.00734 614.2.2.2.2.2.00734 614.2.2.2.2.2.2.00734			24/07/2020	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	×0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BHZ 0.5, 200794			24/07/2020	100	<0.1	<0.1	100	- O	100	1 0>	<0.1	<0.1	<0.1	100	-0.1	1 02	<0.1	<0.1	100
			24/07/2020																2
He12.0.2.3.2007.04 He12.0.2.3.2007.04 He12.0.2.3.2007.04 He12.0.3.2007.04 He13.0.2.2.2007.04 He13.0.2.2.2007.04 He13.0.2.2.2007.04 He13.0.2.2.2007.04 He13.0.0.2.2.2007.04 He13.0.2.2.2.2007.04 He13.0.2.2.2.2.2.2.2.007.04 He13.0.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.			24/07/2020	0.1	<0.1	<0.1	40.1	1.0>	<0.1	<0.1	<0.1	<0.1	<0.1	40.1	<0.1	40.1	<0.1	<0.1	0.1
BH22_2, 2007.44 BH22_0, 3, 2007.34 BH20_0, 3, 2007.34 BH20_2, 2007.24 BH20_2, 2007.24 BH20_2, 2007.24 BH20_2, 2007.24			24/07/2020	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
CACAD. 2007.24 HH30_0.3_2007.24 HH30_2.3_2007.24 TB01_2007.24 TB02_2007.34			24/07/2020	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH30_2.7_200724 TB01_200715 TB02_200724			23/07/2020								T							İ	
			24/07/2020					\parallel		Ħ	\parallel				T		Ħ	Ť	
			24/07/2020						İ								İ	Ī	

			EQL	ANZG (2018) Marine v	NEPM 2013 Table 1A(2-4m	NEPM 2013 Table 1C GILs, Marine Waters	Location ID	MW01	MW02	2078184	MW02	MW03						
				ZG (2018) Marine water 95% toxicant DGVs	VEPM 2013 Table 1A(4) Comm/Ind HSL D GW for Vapour Intrusion, Sand		ILS, Marine Waters	Field ID	MW01_200730	MW02_200730	QC103_200730	QC203_200730	MW03_200730	QC300_200715	QC301_200722	QC302_200723	QC303_200724	QC304_200730	TR04 200730
					/apour Intrusion, Sand			Date	30/07/2020	30/07/2020	30/07/2020	30/07/2020	30/07/2020	15/07/2020	22/07/2020	23/07/2020	24/07/2020	30/07/2020	30/07/2020
	X3T8 lefoT	hg/L	1						<1	8			^7					1>	-
	Xylene Total	1/8rl	2						<2	<2	<2		<2					<2	0
	geuzeue	1/8n	1	200	5,000	2,000	200		<1	3	3	3	7	<1	<1	<1	<1	<1	- 12
втех	Εζμληρευzeue	1/8π	1						<2	<2	<2	<1	<2	<1	<1	<1	<1	<2	0
	ənəuloT	1/8rl	1						<2	<2	<2	<1	<2	<1	^1	<1	^1	<2	0
	χλlene (m & p)	1 1/8rl	2						<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	0
	Xylene (o)	/Bw ∥ n/Br/	1 0.0001	0.0			0000		<2 <0.0	<2 <0.0	<2 <0.0	<1 <0.0	<2 <0.0	<1 <0.0	<1 <0.	<1 <0.	<1 <0.	<2 <0.0	0
	Cadmium (filtered)	/Bu J/B	1001	0.0055			200		0001 <0.00	0000 0000	0.00	0000 0000	0001 <0.00	0001 <0.00	<0.01 <0.0	<0.01 <0.05	<0.01 <0.05	0001 <0.00	
	(IV+III) (IV+II)	\r mg/r	100.0						100.0>	0000	05 0.002	0.002	100.0>	100.001	10.0> <0.01	05 <0.01	05 <0.01	00.0> 100	
۷	Copper (filtered)	. mg/L	10000	0.0013			0.0013		1 <0.001	<0.001	<0.001	<0.001	1 <0.001	1 <0.001	10.0>	10.0>	1 <0.01	1 <0.001	
Metals	Lead (filtered)	mg/L	0.001	0.0044			0.0044		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.03	<0.03	<0.03	<0.001	
	Mercury (filtered)	mg/L	0.00005	0.0004			0.0001		<0.0001	<0.0001	<0.0001	0.0001	<0.0001	<0.00005	<0.0005	<0.0005	<0.0005	<0.0001	
	Nickel (filtered)	mg/L	0.001	0.07			0.007		<0.001	<0.001	<0.001	0.001	<0.001	<0.001	<0.02	<0.02	<0.02	<0.001	
	Zinc (filtered)	mg/L	0.001	0.015	Ī		0.015		0.011	<0.005	0.005	800.0	<0.005	<0.001	<0.02	<0.02	<0.02	<0.005	
	6:2 Fluorotelomer sulfonic acid (6:2 FTS)	mg/L	0.00001												<0.00001	<0.00001	<0.00001		
	8:2 Fluorotelomer sulfonic acid (8:2 FTS)	mg/L	0.00002												<0.00002	<0.00002	<0.00002		
	Perfluorohexane sulfonic acid (PFHxS)	1/8rl	0.01												<0.01	<0.01	<0.01		

Environmental Standards ANZG, 2018, ANZG (2018) Marine water 95% toxicant DGVs

			70	4ZG (2018) Marine water 95% toxicant DGVs	NEPM 2013 Table 1A(4) Comm/Ind HSL D GW for Vapour Intrusion, Sand	2-4m	NEPM 2013 Table 1C GILs, Marine Waters	Location ID Field ID	MW01 MW01_200730	MW02_200730	QC103_200730	QC203_200730	MW03 MW03_200730	QC300_200715	QC301_200722	QC302_200723	QC303_200724	
•					apour Intrusion, Sand			Date	30/07/2020	30/07/2020	30/07/2020	30/07/2020	30/07/2020	15/07/2020	22/07/2020	23/07/2020	24/07/2020	
PFOS/PFOA	Perfluorooctanesulfo nic acid (PFOS)	Н	0.00001 0.0	-											<0.00001 <0.	<0.00001 <0.	<0.00001 <0.	
8	Perfluorooctanoic acid (PFOA)	_	0.00001 0.01												.00001 <0.01	.00001 <0.01	.00001 <0.03	
	SA39 to mus	3/L µg/	0.01												10.0> 10.01	.01 <0.01	.0.0> 10.	
	PFOS Sum of US EPA PFAS (PFOS + PFOA)*	1/8H 1,	1 0.01												10 <0.01	10.0> 10	10 <0.01	
	1,2,4- trimethylbenzene	Hg/L	2						5	\$			<5>					
	1,3,5- eneznedlyntemirt	Hg/L	2						<5	5>			<5					
	Styrene	hg/L	2						5	5			\$>					
	sob.ob\ penzene	hg/L	2						<5>	\$			<5					
MAH	o-pritylbenzene	hg/L	2						₹	5			5					
	u-brobylbenzene	<u> </u>	2						<5	- 22			<5>					
	p-isopropyltoluene	_	5 5						<5 <5	<5			<5 <5					
	tert-butylbenzene	_	2						5>	5 <5			5 <5					
	Pophthalene	hg/L	1	70	L		20		<1.0	<1.0	\$	-1	<1.0	<1	^7	<1	7	
	2-chloronaphthalene	µg/L	2	L					<2	<2			<2					
	2-methylnaphthalene	hg/L	2	L					<2	<2			<2					
	3- methylcholanthrene	hg/r	2	L					<2	<2			<2					

Environmental Standards ANZG, 2018, ANZG (2018) Marine water 95% toxicant DGVs

								PAH										
		7,12- dimethylbenz(a)anthr acene	Acenahtrhene	Acenaphthylene	anasenttnA	Benz(a)anthracene	Benzo(a) pyrene		Benzo(b+])fluoranthe	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene Dibenz(a,h)anthracen	ə	Fluoranthene		Fluorene	hndeno(1,2,3-	-£,2,2,0n9bnl
		η/g/L	hg/L	1/8H	η/βπ	Hg/L	<u>.</u>	3/1	1/2	_	1		ng/L p	πg/L	1 -	_	л/8m л	1/8m 1/8m 1
EQL		2	1	1	1	1	0.5 0.0	0.0005	0.001	1	1	1	1	1		1	1	
ANZG (2018) Marine wa	ZG (2018) Marine water 95% toxicant DGVs							-								-		
NEPM 2013 Table 1A(4)	NEPM 2013 Table 1A(4) Comm/Ind HSL D GW for Vapour Intrusion, Sand																	
2-4m																		
NEPM 2013 Table 1C GILS, Marine Waters	GILs, Marine Waters																	
Location ID	Field ID Date																	
MW01	MW01_200730 30/07/2020	<2	<1.0	<1.0	<1.0	<1.0	<0.5 <0.5	0> 50 00.0	00100	> 0.1.>	<1.0	> 0.1.>	> 0.1>	> 0.1>	<1.0	Ĺ	<1.0	<1.0 <0.5 <1.0
MW02	MW02_200730 30/07/2020	<2	<1.0	<1.0	<1.0	<1.0	<0.5 <0.5	0> 50000	.0010	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	ľ	<1.0	<1.0 <0.5 <1.0
2000	QC103_200730 30/07/2020																	
7000101	QC203_200730 30/07/2020																	
MW03	MW03_200730 30/07/2020	<2	<1.0	<1.0	<1.0	<1.0	<0.5 <0.	0> 90000	> 010010	<1.0	<1.0	> 0.1>	> 0.1>	<1.0	<1.0	ľ	<1.0	<1.0 <0.5 <1.0
	QC300_200715 15/07/2020															L		
																L		
	QC302_200723 23/07/2020																	
	QC303_200724 24/07/2020																	
	TB04_200730 30/07/2020															L		

Environmental Standards ANZG, 2018, ANZG (2018) Marine water 95% toxicant DGVs

			EQL	ANZG (2018) Man	NEPM 2013 Table	2-4m	NEPM 2013 Table	Location ID	MW01	MW02	2074	NIW UZ	MW03						
				2G (2018) Marine water 95% toxicant DGVs	NEPM 2013 Table 1A(4) Comm/Ind HSL D GW for Vapour Intrusion, Sand		NEPM 2013 Table 1C GILs, Marine Waters	Field ID Date	MW01_200730 30/07/2020	MW02_200730 30/07/2020		QC203_200730 30/07/2020	MW03_200730 30/07/2020		QC301_200722 22/07/2020		QC303_200724 24/07/2020	QC304 200730 30/07/2020	
	+C10-C36 (Sum of	hg/L	20						<50	<50	<50		<50					<50	
	C10-C1¢	hg/L	20						<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	
трн	872-513	Hg/L	100	ŀ					<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	ŀ
	965-625	hg/L hg/	50 1	-					> 05>	<50 2	<50	<100	<50 <	<100	<100	<100	<1000 <	<50	
	912-013	/3/r ∥ μg/	10 50						<20 <100	20 <100	40 <100	11 <50	<20 <100	<10 <50	<10 <50	<10 <50	<10 <50	<20 <100	
	C10-C16 (F2 minus	1/8m 1,	20						0 <100	00 <100	00 <100	05> <0	0 <100	05> <50	0 <50	05> <50	05> <50	0 <100	
	C10-C40 (Sum of	. µg/L	100						<100	<100	<100		<100					<100	
TRH	C16-C34	η/g/L	100						<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	
	C34-C40	hg/L	100	L					<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	
	012-92	1/8rl	10						<20	20	40	12	<20	<10	<10	<10	<10	<20	000
	C6-C10 (F1 minus	hg/L	10			9'000			<20	<20	40	<10	<20	<10	<10	<10	<10	<20	000
	lonədqoroldɔi٦T-Z,Φ,Σ	Hg/L	2						<2	<2			<2						
	lonadqoroldɔiาT-a,&,S	hg/L	2	ŀ					<2	<2			<2						
	lonardorold-5,2	hg/L	2	ŀ					<2	<2			<2						
	lonərlqiyriəmid-5,2		2	ŀ					<2	<2			<2						
	2,6-Dichlorophenol	µg/L	2						2	2			<2						

Environmental Standards ANZG, 2018, ANZG (2018) Marine water 95% toxicant DGVs

		lonsh	lone		lon	iouaudo	əuimelyd	-n-ii		o Ali phati		грујегруја	elyństyńt animel spinesł 8. Wydelyński spinesłył 8. Wydelył	Amino Amino	Amine Amine Milphenyl & S	Ambodyta Jamine Miphenyl & S	Amino Aronatics Indiplicant & Amino Aronatics Indiplicant & India Amino
		Z-Methylpl	9riqoɔtiN-S	3&4-Methy (m&p-cres	4-chloro-3- methylphe	Pentachlor	Phenol	Phenol N- nitrosodiet	-N	-N deibosoviin deibosoviin-M	-M nitrosodiet bozortin-M butylamine	-N -N -N -N -N -N -N -N -N -N -N -N -N -	nitrosodiet N-nitrosod Butylamine Propylamin N-N Nitrosome Mine	nitrosodiet bozortin-N burylamine N-nitrosod propsylamine N-N mime mime mine mine	N. Nimosodiet Naminalyud Norotonino No	.v Neposotiin .v	. N halbosotiin . N halbosotii
		hg/L	η/βπ	Hg/L	hg/L µg/	1	ы	hg/L	ı,	ı	l/gµ 1	1/8t 1/8t 1/8t 1,	1/8m 1/8m 1/8m 1/8m 1,	1/8m 1/8m 1/8m 1/8m 1/8m 1,	1 1/8H 1/8H 1/8H 1/8H 1/8H 1/8H 1,	1 1/8m 1/8m 1/8m 1/8m 1/8m 1/8m 1/8m 1/8	1 1/8rd 1/8rd 1/8rd 1/8rd 1/8rd 1/8rd 1/8rd 1/8rd 1/8rd 1.
		2	2	4	. 2	4 2		2	2 2		2	2 2	2 2 2	2 2 2 2	2 2 2 4	2 2 2 4 2	2 2 2 4 2 4
ZG (2018) Marine water 95% toxicant DGVs	\$1		l	ŀ	_	22 400	L		-								
NEPM 2013 Table 1A(4) Comm/Ind HSL D GW for Vapour Intrusion, Sand	/ for Vapour Intrusion, Sand																
NEPM 2013 Table 1C GILs, Marine Waters						.1 400											
Field ID	Date																
MW01_200730	30/07/2020	<2	<2	<4	<2 <	<4 <2	<2		<2	<2 <2		<2	<2 <2	<2 <2 <2	<2 <2 <4	<2 <2 <4 <2	<2 <2 <4 <2 <4
MW02_200730	30/07/2020	<2	<2	<4	<2 <	<4 <2	<2		<2	<2 <2		<2	<2 22	42 42 42	42 42 42 13	42 42 42 43 42	<2 <2 <3 13 <2 <4
QC103_200730	30/07/2020																
QC203_200730	30/07/2020																
MW03_200730	30/07/2020	<2	<2	<4	<2	<4 <2	<2		<2	<2 <2		<2	<2 <2	<2 <2 <2	<2 <2 <4	<2 <2 <4 <2	<2 <2 <4 <2 <4
QC300_200715	15/07/2020																
QC301_200722	22/07/2020																
QC302_200723	23/07/2020																
QC303_200724	24/07/2020																
QC304_200730	30/07/2020							ч									
OCTOOL NOT	0506/20/06					_	_										

Environmental Standards ANZG, 2018, ANZG (2018) Marine water 95% toxicant DGVs

																Chlorinated Hydrocarbons	밁	rocarbons
		1,1,1-trichloroethane	1,1,2,2- fetrachloroethane	1,1,2,2-trichloroethane	9ner13eoroldzib-1,1	1,1-dichloroethene	1,2-dichloroethane	1,2-dichloropropane	Bromodichlorometha an	Bromoform	Carbon tetrachloride	Chlorodibromometha ne	Сһіогое thane	Chloromethane	dichloroethene	dichloropropene	1111010101111	Hexachlorobutadiene
		hg/L	1/8rl	1/8H	η/8π	HB/L		<u> </u>	hg/L i	_	_	1 /8n			η 1/8μ	/8rl 1/8rl	٧	/8rd
EQ.		2	2	2	2	2	2	2	2	2	2	2	20	20	2	2	2	2
ANZG (2018) Marine wa	(2018) Marine water 95% toxicant DGVs			1,900	ŀ	ŀ	ŀ	ŀ	ŀ	ŀ	ŀ	ŀ	ŀ	ŀ	ŀ	ŀ	L	
NEPM 2013 Table 1A(4,	VEPM 2013 Table 1A(4) Comm/Ind HSL D GW for Vapour Intrusion, Sand																	
2-4m																		
NEPM 2013 Table 1C GILS, Marine Waters	GILs, Marine Waters			1,900														
Location ID	Field ID Date																	
MW01	MW01_200730 30/07/2020	\$	\$	5	5	55	55	\$	5	5	\$	\$	<50	<50	5	5	<5 <2	\sim
MW02	MW02_200730 30/07/2020	45	5>	5	5	55	5	5	45	45	8	5	200	<50	_	5	<5 <2	0.1
10000	QC103_200730 30/07/2020																	
700010																		
MW03	MW03_200730 30/07/2020	\$	<5	<5	<5	<5	<5	<5	<5	<5	\$	<5	< 20	- 20	- 5>	<5	<5 <2	
	QC300_200715 15/07/2020																	
																		ı
	QC302_200723 23/07/2020																	
	QC303_200724 24/07/2020																	ı
	QC304_200730 30/07/2020																	
	TB04_200730 30/07/2020																	

Environmental Standards ANZG, 2018, ANZG (2018) Marine water 95% toxicant DGVs

														L				
		trans-1,2- dichloroethene	trans-1,3- dichloropropene	Trichloroethene	Vinyl chloride	1,1,1,2- tetrachloroethane	1,1-dichloropropene	1,2,3- trichloropropane trichloropropane	1,2-dibromo-3- chloropropane	1,3-dichloropropane	2,2-dichloropropane	Hexachlorocyclopent	adiene Hexachloroethane	Hexachlorobenzene	1,2,4- trichlorobenzene		1,2-dichlorobenzene	1,2-dichlorobenzene
				HB/L	hg/L		L		7/	_	_	911	_	. μg/ι	181	Г	η/gπ	_
EQ.		2	2	2	SS	2	2	2	2	5	5	10	2	4	2	L	7	
ANZG (2018) Marine	ZG (2018) Marine water 95% toxicant DGVs														80	ŀ		
NEPM 2013 Table 1A	NEPM 2013 Table 1A(4) Comm/Ind HSL D GW for Vapour Intrusion, Sand																	
2-4m																		
NEPM 2013 Table 1C	NEPM 2013 Table 1C GILs, Marine Waters														20			
Location ID	Field ID Date																	
MW01	MW01_200730 30/07/2020	\$	<5	<5	<50	\$	<5	<5	\$	5>	5	< 10	<2	<4	<2	<2		<2
MW02	MW02_200730 30/07/2020	<5	<5	<5	<50	<5	<5	<5	<5	<5	<5 <5	< 10	<2	<4	<2	<2		<2
2079	QC103_200730 30/07/2020																	
700010	QC203_200730 30/07/2020																	
MW03	MW03_200730 30/07/2020	<5	<5	<5	<50	<5	<5	<5	<5	<5 <	<5 <5	> 10	<2	<4	<2	<2		<2
	QC300_200715 15/07/2020																	
	QC301_200722 22/07/2020																	
	QC303_200724 24/07/2020																	
	QC304_200730 30/07/2020																	

Environmental Standards ANZG, 2018, ANZG (2018) Marine water 95% toxicant DGVs

OSS) Mannewater 255/1000 Configuration Sand OSS) Mannewater 255/1000 Configuration Sand OSS) Mannewater 255/1000 Configuration Sand OSS) Mannewater 255/1000 Configuration Sand OSS) SS S S S S S S S S S S S S S S S S			genated Benzenes	enes	ľ			1	+	Halogenated Hydrocarbons	drocarbons		Herbicides	es	es		Nitroaromatics	Nitroaromatics
He/l He/l			Chlorobenzene		2-chlorotoluene	4-chlorotoluene				Dichlorodifluoromet	Trichlorofluorometh		эчеглэторог	Pronamide		Pronamide	Pronamide	eninosidee 2-Picoline 4-aminobiphenyl
\$ 2 2 2 2 80 80 E			hg/L	hg/L	1/8H	η/8π	_	_	יי	_	1/8m .	1/8rl		η/8π	T/8π Hg/L		1/8m 1	1/8m 1/8m 1
NZG (2015) Marine water 95% Concern th GOVs NZG (2015) Marine water 95% Concern the GOVs EMP 70213 Table 14/4) Comm/hal HSL DGW for Vapour Intrusion, Sand 2-4m	EQL		2	2	2	2	2	2 5			20	2	H	2	2 2	2 2 2	2 2 2 2	
EPM 2013 Table 1A(4) Comm/Ind HSL, D GW for Vapour Intrusion, Sand	ANZG (2018) Marine	e water 95% toxicant DGVs		Ī	ľ		ŀ	L	ŀ	-	L	L	L					
2-4m	NEPM 2013 Table 1.	14(4) Comm/Ind HSL D GW for Vapour Intrusion, Sand			l								L					
	2-4m																	
	Location ID	Field ID Date																
Field ID	1001	MW01_200730 30/07/2020	<5>	\$	<5	<5	5	L	F	50 <50	<50	\$	<2		<2	<2 <2	H	4
Field ID Date MW00_200730 30/07/2020 45 <th< td=""><th>IW02</th><th></th><td><5></td><td><5</td><td><5</td><td><5</td><td><5</td><td></td><td></td><td></td><td><50</td><td><5</td><td><2</td><td></td><td><2</td><td><2 <2</td><td></td><td><2</td></th<>	IW02		<5>	<5	<5	<5	<5				<50	<5	<2		<2	<2 <2		<2
Field D Date	20/81																	
Fleid ID Date	7000																	
Fleid ID Date	1W03		<5>	<5	<5	<5	<5				<50	5>	<2		<2	<2 <2		<2
Hadd Date Date																		
Field ID Date CS		QC303_200724 24/07/2020																
HAMOL 200730 BOATE		0																
Heid ID Date MANOT, 200730 30/07/2020 C C C C C C C C C		TB04 200730 30/07/2020																

Environmental Standards ANZG, 2018, ANZG (2018) Marine water 95% toxicant DGVs

									Organ	Organochlorine Pesticides	ticides							
			300-t/t	Heptachlor epoxide	9-ВНС	Aldrin OHB-b	р-внс	aaa	100	DDT+DDE+DDD	Dieldrin	I neilusobn3	LUBURGONIA	II neilusobn3		II neilusobn3	Endosulfan II	II neflusobn3 Endosulfan sulphate
			hg/L	η/βπ	1/8H	/Brl hg/	1/8m 1,	η/βή	η/βπ	η/βη	1/8rl	η/βri	Н	η/βπ	1/8rl h8/r	1	1/8m 1	1/8m 1/8m 1
EQL			2	2	2	2 2	2	2	4	4	2	2		2	2 2	2 2 2	2	2 2
ANZG (2018) Marine	IZG (2018) Marine water 95% toxicant DGVs			ŀ	ŀ		ŀ	-	L							0:008	0.008	800'0
NEPM 2013 Table 1	VEPM 2013 Table 1A(4) Comm/Ind HSL D GW for Vapour Intrusion, Sand	Sand											L					
2-4m																		
NEPM 2013 Table 1	NEPM 2013 Table 1C GILS, Marine Waters															0.004	0.004	0.004
4	G Flori																	
rocation 1D					ŀ	ŀ	ŀ							ŀ	ŀ		-	
MW01			<2	<2	<2	<2 <2	<2	<2	<4	<4	2	<2	2		<2		<2	<2 <2
MW02	MW02_200730 30/07/2020		<2	<2	<2	<2 <2	<2	<2	<4	<4	<2	<2			<2		<2	<2 <2
207100	QC103_200730 30/07/2020																	
MINAOS	QC203_200730 30/07/2020													H				
MW03	MW03_200730 30/07/2020		<2	<2	<2	<2 <2	<2	<2	<4 4	<4	2	<2	\$		<2		<2	<2 <2
	QC300_200715 15/07/2020													r				
	QC301_200722 22/07/2020																	
	QC302_200723 23/07/2020																	
	QC304_200730 30/07/2020																	
														l				

Environmental Standards ANZG, 2018, ANZG (2018) Marine water 95% toxicant DGVs

				Org	Organophosphorous Pesticides	us Pesticides					a	Explosives				Phth	Phthalates	
		Dichlorvos	noidī	noidteleM	Chlorpyrifos	nonizeiQ	Dimethoate	Chlorfenvinphos	Fenthion solothiofos	eneznedoviiniT-Z,£,£	9nəulotortiniG-Þ,C	9neulototinitro2,2	PinsznadottiN	Bis(2-ethylhexyl) phthalate	Butyl benzyl phthalate	Diethylphthalate	Dimethyl phthalate	
		Hg/L	1/8rl	HB/L	η/βπ			_	_	1/Bm 1/	1/8rl	1/8rl	1/8rl	hg/L	1/811	hg/L	1/8#	/8H
EQL		2	2	2	2	2	2	2	2 2	0.002	4	4	2	10	2	2	2	2
ANZG (2018) Marine	ZG (2018) Marine water 95% toxicant DGVs				600.0													
NEPM 2013 Table 1A	NEPM 2013 Table 1A(4) Comm/ind HSL D GW for Vapour Intrusion, Sand			l										L				
2-4m																		
NEPM 2013 Table 10	NEPM 2013 Table 1C GLS, Marine Waters				600'0													
Location ID	Field ID Date																	
MW01	MW01_200730 30/07/2020	<2	<2	<2	<2	<2	<2	<2	<2 <2	<0.002	2 <4	42	<2	<10	<2	<2	<2	~
MW02	MW02_200730 30/07/2020	<2	<2	<2	<2	<2	<2	<2 <	<2 <2	<0.002	2 <4	42	<2	<10	<2	<2	<2	<2
20/4/03	QC103_200730 30/07/2020																	
70000	QC203_200730 30/07/2020																	
MW03		<2	<2	<2	<2	<2	<2 <	<2 <	<2 <2	2 <0.002	2 <4	42	<2	<10	<2	<2	<2	<2
	QC300_200715 15/07/2020																	
	QC302_200723 23/07/2020																	
	QC303_200724 24/07/2020																	
	QC304_200730 30/07/2020																	

Environmental Standards ANZG, 2018, ANZG (2018) Marine water 95% toxicant DGVs

		į	a		Solvents			Other		VOCs	-7			әu	əu	əu	
		Di-n-octyl phthalate	Methyl Ethyl Keton	Vinyl acetate	d-Methyl-Z-	pentanone	Carbon disulfide	ənonəhqofəəA	cis-1,4-Dichloro-2-	Pentachloroethane	trans-1,4-Dichloro-	pntene		butene 2-(acetylamino)	Purene 2-(acetylamino) fluorene fluoreneidi 3,3-Dichlorobenzidi	Putene 2-(acetylamino) fluorene 3,3-Dichlorobenzidi	onimelylasse)-2. Filourene anavouh discensioninorobenzidi (onimelyylamile)-4. Instructioninorot-6.
		hg/L	hg/L	ng/L	L	1/	,	1/8m .	- mg	η/g/L			Вщ	hg/L	вн 1/8н 1/8н	ви 1/8и 1/8и пв/г	8m 1/8m 1/8m 1/8m
EQ.		2	20	20	20	20 2	2	2	2	2	2		2	2 2		2	2 2
ANZG (2018) Marine	2G (2018) Marine water 95% toxicant DGVs											H					
NEPM 2013 Table 1.	NEPM 2013 Table 1A(4) Comm/Ind HSL D GW for Vapour Intrusion, Sand							_				H					
2-4m												L					
NEPM 2013 Table 1	NEPM 2013 Table 1C GILs, Marine Waters											L					
Location ID	Field ID Date																
MW01	200730	<2	<50	<50	<50	> 05>	<5 <2	<2	\$	∜	\$	L	0	2 <2	ŀ	<2	<2 <2
MW02	MW02_200730 30/07/2020	<2	<50	<50	<50	<50 <5	5 <2	<2	5	5	\$	Ľ	2	2 <2		<2	<2 <2
207103	QC103_200730 30/07/2020																
NIW UZ	QC203_200730 30/07/2020																
MW03	MW03_200730 30/07/2020	<2	<50	<50	<50	<50	<5 <2	<2	5	Ÿ	\$		2	<2 <2		<2	<2 <2
	QC301_200722 22/07/2020																
	QC302_200723 23/07/2020																
	QC303_200724 24/07/2020																
	QC304_200730 30/07/2020																
	TB04 200730 30/07/2020											г					

Environmental Standards ANZG, 2018, ANZG (2018) Marine water 95% toxicant DGVs

			SVOCS	١							
			Bis(2-chloroethoxy) methane	Bis(2- chloroethyl)ether	nerułoznadiO	Hexachloropropene	Methapyrilene	9nilodqromosortin-V	enibi se i que se i dine	9-nibilo13-yqoso3-tin-M	Phenacetin
			hg/L	hg/L	Hg/L	hg/L	Hg/L	hg/L	Hg/L	hg/L	µg/L
EQ.			2	2	2	2	2	2	2	4	2
ANZG (2018) Marine water	(2018) Marine water 95% toxicant DGVs										
NEPM 2013 Table 1A(4) Co	VEPM 2013 Table 1A(4) Comm/Ind HSL D GW for Vapour Intrusion, Sand	your Intrusion, Sand									
2-4m											
NEPM 2013 Table 1C GILS, Marine Waters	Marine Waters										
Location ID	Field ID	Date									
MW01	MW01_200730	30/07/2020	<2	<2	<2	<2	<2	<2	<2	<4	<2
MW02	MW02_200730	30/07/2020	<2	<2	<2	<2	<2	<2	<2	<4	<2
207404	QC103_200730	30/07/2020									
7000	QC203_200730	30/07/2020									
MW03	MW03_200730	30/07/2020	<2	<2	<2	<2	<2	<2	<2	<4	<2
	QC300_200715	15/07/2020									
	QC301_200722	22/07/2020									
	QC302_200723	23/07/2020									
	QC303_200724	24/07/2020									
	QC304_200730	30/07/2020									
	ТВ04_200730	30/07/2020									

Environmental Standards ANZG, 2018, ANZG (2018) Marine water 95% toxicant DGVs

								BTEX										PFOS/PFOA	FOA
		X3T8 lstoT	lstoT 9n9lγX		geuzeue		Ethylbenzene		ən∋uloT		χλlene (m & p)		χλjene (o)	χλ _l eue (ο)	6:2 Fluorotelomer sulfonic acid (6:2 FTS)	S:2 Fluorotelomer sulfonic acid (S:2 FTS)	Perfluorohexane sulfonic acid (PFHxS)	Perfluorooctanesulfo nic acid (PFOS)	Perfluorooctanoic acid (PFOA)
		hg/L	mg/kg	hg/L	hg/L	mg/kg	hg/L	mg/kg	hg/L	mg/kg	η/gπ	mg/kg	hg/L	mg/kg	mg/L	mg/L	hg/L	mg/L	
EQL		1	3	2	1	0.2	1	1	1	0.5	2	2	1	1	0.00001	0.00002	0.01	0.00001	0.0000
Field ID	Date																		
QC300_200715	15/07/2020				^1		^1		<1		<2		<1						
QC301_200722	22/07/2020				^7		^7		^1		<2		\1 1		<0.00001	<0.00002	<0.01	<0.00001	<0.000(
QC302_200723	23/07/2020				\		\		<1		<2		\1		<0.00001	<0.00002	<0.01	<0.00001	<0.0000
QC303_200724	24/07/2020				<1 -		_1		<1		<2		-T>		<0.00001	<0.00002	<0.01	<0.00001	<0.0000
QC304_200730	30/07/2020	<1		<2	-T>		<2		<2		<2		<2						
TB01_200715	15/07/2020		8			<0.2		<1		<0.5		<2		1>					
TB02_200724	24/07/2020		<3			<0.2		<1		<0.5		<2		<1					
TB03_200724	24/07/2020		<3			<0.2		<1		<0.5		<2		<1					
TB04_200730	30/07/2020	7		<2	1>		<2		<2		<2		<2						

	es
\leq	uniti
2	port
Ш	0 0
	reating

РАН	Naphthalene	mg/kg	1							\	7	<1	
b/	Pophthalene	η/βή	1		\ 1	\ 1	\ 1	1×	<5>				\$
	Zinc (filtered)	mg/L	0.001		<0.001	<0.02	<0.02	<0.02	<0.005				
	Nickel (filtered)	mg/L	0.001		<0.001	<0.02	<0.02	<0.02	<0.001				
	Mercury (filtered)	mg/L	0.00005		<0.00005	<0.0005	<0.0005	<0.0005	<0.0001				
ıls	Lead (filtered)	mg/L	0.001		<0.001	<0.03	<0.03	<0.03	<0.001				
Metals	Copper (filtered)	mg/L	0.001		<0.001	<0.01	<0.01	<0.01	<0.001				
	(IV+III) muimordD (filtered)		0.001		<0.001	<0.01	<0.01	<0.01	<0.001				
	(filtered)	mg/L	0.001		<0.001	<0.05	<0.05	<0.05	<0.001				
	(filtered) muimbs2	mg/L	0.0001		<0.0001	<0.01	<0.01	<0.01	<0.0001				
	CG-C10 (F1 minus	mg/kg	22							<25	<25	<25	
	cunim LT) (FZ minus RTEX)	hg/L	10		<10	<10	<10	<10	<20				<20
		mg/kg	25							<25	<25	<25	
	07:-90	µg/L	10		<10	<10	<10	<10	<20				<20
TRH	C34-C40	Hg/L	100		<100	<100	<100	<100	<100				
	C16-C34	Hg/L	100		<100	<100	<100	<100	<100				
	C10-C40 (Sum of		100						<100				
	C10-C16 (F2 minus Naphthalene)	1/8m	20		<50	<50	<50	<50	<100				
	C10-C16	Hg/L	20		<50	<50	<50	<50	<100				
	Sum of US EPA PFAS (PFOS + PFOA)*	HB/L	0.01			<0.01	<0.01	<0.01					
•													
				Date	15/07/2020	22/07/2020	23/07/2020	24/07/2020	30/07/2020	15/07/2020	24/07/2020	24/07/2020	30/07/2020
			٦,	Field ID	C300_200715	QC301_200722	C302_200723	2C303_200724	QC304_200730	TB01_200715	TB02_200724	TB03_200724	TB04 200730

				F	ТРН		
		fo mu2) 655-010+	C10-C1 4	872-513	965-675	63-93	63-93
		HB/L	Hg/L	Hg/L	µg/L	Hg∕L	mg/kg
EQ.		50	20	100	20	10	25
Field ID	Date						
QC300_200715	15/07/2020		<50	<100	<100	<10	
QC301_200722	22/07/2020		<50	<100	<100	<10	
QC302_200723	23/07/2020		<50	<100	<100	<10	
QC303_200724	24/07/2020		<50	<100	<100	<10	
QC304_200730	30/07/2020	<50	<50	<100	<50	<20	
TB01_200715	15/07/2020						<25
TB02_200724	24/07/2020						<25
TB03_200724	24/07/2020						<25
TB04 200730	30/07/2020					20	

	98 Org-023 - BTEX and C6-C10 alkanes in soil & water OO Org-023 - BTEX and C6-C10 alkanes in soil & water OO Org-023 - BTEX and C6-C10 alkanes in soil & water OO Org-023 - BTEX and C6-C10 alkanes in soil & water 96 Org-023 - BTEX and C6-C10 alkanes in soil & water 81 Org-023 - BTEX and C6-C10 alkanes in soil & water 81 Org-023 - BTEX and C6-C10 alkanes in soil & water 84 Org-023 - BTEX and C6-C10 alkanes in soil & water 84 Org-023 - BTEX and C6-C10 alkanes in soil & water 81 Org-023 - BTEX and C6-C10 alkanes in soil & water 81 Org-023 - BTEX and C6-C10 alkanes in soil & water 81 Org-023 - BTEX and C6-C10 alkanes in soil & water 81 Org-023 - BTEX and C6-C10 alkanes in soil & water 81 Org-023 - BTEX and C6-C10 alkanes in soil & water	and C6-C10 alkanes in soil & water and C6-C10 alkanes in soil & water and C6-C10 alkanes in soil & water and C6-C10 alkanes in soil & water and C6-C10 alkanes in soil & water and C6-C10 alkanes in soil & water and C6-C10 alkanes in soil & water and C6-C10 alkanes in soil & water and C6-C10 alkanes in soil & water and C6-C10 alkanes in soil & water and C6-C10 alkanes in soil & water and C6-C10 alkanes in soil & water and C6-C10 alkanes in soil & water and C6-C10 alkanes in soil & water and C6-C10 alkanes in soil & water and C6-C10 alkanes in soil & water and C6-C10 alkanes in soil & water	and C6-C10 alkanes in soil & water and C6-C10 alkanes in soil & water	and C6-C10 alkanes in soil & water and C6-C10 alkanes in soil & water	and C6-C10 alkanes in soil & water and C6-C10 alkanes in soil & water
97 Org-023 - BTEX and C6-C10 alkanes in soil & wat:	90 Org-023 - DITA and CG-CL0 alkanes in Sori & water 197 Org-023 - BTEX and CG-CL10 alkanes in soil & water 100 Org-023 - BTEX and CG-CL10 alkanes in soil & water 26 Org-023 - BTEX and CG-CL0 alkanes in soil & water 84 Org-023 - BTEX and CG-CL10 alkanes in soil & water 81 Org-023 - BTEX and CG-CL10 alkanes in soil & water 84 Org-023 - BTEX and CG-CL10 alkanes in soil & water 84 Org-023 - BTEX and CG-CL10 alkanes in soil & water 81 Org-023 - BTEX and CG-CL10 alkanes in soil & water 81 Org-023 - BTEX and CG-CL10 alkanes in soil & water 81 Org-023 - BTEX and CG-CL10 alkanes in soil & water 81 Org-023 - BTEX and CG-CL10 alkanes in soil & water	97 Org-023 - BITKS and CG-C10 alkanes in soil & water 100 Org-023 - BITKS and CG-C10 alkanes in soil & water 100 Org-023 - BITKS and CG-C10 alkanes in soil & water 100 Org-023 - BITKS and CG-C10 alkanes in soil & water 84 Org-023 - BITKS and CG-C10 alkanes in soil & water 81 Org-023 - BITKS and CG-C10 alkanes in soil & water 84 Org-023 - BITKS and CG-C10 alkanes in soil & water 84 Org-023 - BITKS and CG-C10 alkanes in soil & water 81 Org-023 - BITKS and CG-C10 alkanes in soil & water 94 Org-023 - BITKS and CG-C10 alkanes in soil & water 94 Org-023 - BITKS and CG-C10 alkanes in soil & water 95 Org-023 - BITKS and CG-C10 alkanes in soil & water 95 Org-023 - BITKS and CG-C10 alkanes in soil & water 95 Org-023 - BITKS and CG-C10 alkanes in soil & water 95 Org-023 - BITKS and CG-C10 alkanes in soil & water 95 Org-023 - BITKS and CG-C10 alkanes in soil & water	90 Org-023 - BITKS and CG-C10 alkanes in soil & water 100 Org-023 - BITKS and CG-C10 alkanes in soil & water 100 Org-023 - BITKS and CG-C10 alkanes in soil & water 100 Org-023 - BITKS and CG-C10 alkanes in soil & water 84 Org-023 - BITKS and CG-C10 alkanes in soil & water 84 Org-023 - BITKS and CG-C10 alkanes in soil & water 84 Org-023 - BITKS and CG-C10 alkanes in soil & water 84 Org-023 - BITKS and CG-C10 alkanes in soil & water 84 Org-023 - BITKS and CG-C10 alkanes in soil & water 94 Org-023 - BITKS and CG-C10 alkanes in soil & water 95 Org-023 - BITKS and CG-C10 alkanes in soil & water 95 Org-023 - BITKS and CG-C10 alkanes in soil & water 93 Org-023 - BITKS and CG-C10 alkanes in soil	97 Org-023 - BTRX and CG-C10 alkanes in soil & water 100 Org-023 - BTRX and CG-C10 alkanes in soil & water 100 Org-023 - BTRX and CG-C10 alkanes in soil & water 100 Org-023 - BTRX and CG-C10 alkanes in soil & water 80 Crg-023 - BTRX and CG-C10 alkanes in soil & water 81 Org-023 - BTRX and CG-C10 alkanes in soil & water 84 Org-023 - BTRX and CG-C10 alkanes in soil & water 84 Org-023 - BTRX and CG-C10 alkanes in soil & water 84 Org-023 - BTRX and CG-C10 alkanes in soil & water 95 Org-023 - BTRX and CG-C10 alkanes in soil & water 95 Org-023 - BTRX and CG-C10 alkanes in soil & water 95 Org-023 - BTRX and CG-C10 alkanes in soil & water 95 Org-023 - BTRX and CG-C10 alkanes in soil & water 95 Org-023 - BTRX and CG-C10 alkanes in soil & water 85 Org-023 - BTRX and CG-C10	97 Org-023 - BTKS and CG-C10 alkanes in soil & water 100 Org-023 - BTKS and CG-C10 alkanes in soil & water 100 Org-023 - BTKS and CG-C10 alkanes in soil & water 100 Org-023 - BTKS and CG-C10 alkanes in soil & water 96 Org-023 - BTKS and CG-C10 alkanes in soil & water 81 Org-023 - BTKS and CG-C10 alkanes in soil & water 81 Org-023 - BTKS and CG-C10 alkanes in soil & water 84 Org-023 - BTKS and CG-C10 alkanes in soil & water 94 Org-023 - BTKS and CG-C10 alkanes in soil & water 95 Org-023 - BTKS and CG-C10 alkanes in soil & water 95 Org-023 - BTKS and CG-C10 alkanes in soil & water 95 Org-023 - BTKS and CG-C10 alkanes in soil & water 95 Org-023 - BTKS and CG-C10 alkanes in soil & water 95 Org-023 - BTKS and CG-C10 alkanes in soil & water 85 Org-023 - BTKS and CG-C10 alkanes in soil & water 85 Org-023 - BTKS and CG-C10 alkanes in soil & water 85 Org-023 - BTKS and CG-C10 alkanes in soil & water 100 Org-
	0 Org-023 - BTEX and CG-C10 alkanes in so Org-023 - BTEX and CG-C10 alkanes in so G Org-023 - BTEX and CG-C10 alkanes in so 1 Org-023 - BTEX and CG-C10 alkanes in so 1 Org-023 - BTEX and CG-C10 alkanes in so 1 Org-023 - BTEX and CG-C10 alkanes in so 1 Org-023 - BTEX and CG-C10 alkanes in so 1 Org-023 - BTEX and CG-C10 alkanes in so 1 Org-023 - BTEX and CG-C10 alkanes in so	0 Org-023 - BTEX and C6-C10 alkanes in so Org-023 - BTEX and C6-C10 alkanes in so G Org-023 - BTEX and C6-C10 alkanes in so I Org-023 - BTEX and C6-C10 alkanes in so I Org-023 - BTEX and C6-C10 alkanes in so I Org-023 - BTEX and C6-C10 alkanes in so I Org-023 - BTEX and C6-C10 alkanes in so I Org-023 - BTEX and C6-C10 alkanes in so I Org-023 - BTEX and C6-C10 alkanes in so I Org-023 - BTEX and C6-C10 alkanes in so I Org-023 - BTEX and C6-C10 alkanes in so I Org-023 - BTEX and C6-C10 alkanes in so I Org-023 - BTEX and C6-C10 alkanes in so I Org-023 - BTEX and C6-C10 alkanes in so I Org-023 - BTEX and C6-C10 alkanes in so I Org-023 - BTEX and C6-C10 alkanes in so	0 Org-023 - BTEX and C6-C10 alkanes in so Org-023 - BTEX and C6-C10 alkanes in so G Org-023 - BTEX and C6-C10 alkanes in so G Org-023 - BTEX and C6-C10 alkanes in so I Org-023 - BTEX and C6-C10 alkanes in so I Org-023 - BTEX and C6-C10 alkanes in so I Org-023 - BTEX and C6-C10 alkanes in so I Org-023 - BTEX and C6-C10 alkanes in so I Org-023 - BTEX and C6-C10 alkanes in so I Org-023 - BTEX and C6-C10 alkanes in so Org-023 - BTEX and C6-C10 alkanes in so Org-023 - BTEX and C6-C10 alkanes in so Org-023 - BTEX and C6-C10 alkanes in so I Org-023 - BTEX and C6-C10 alkanes in so I Org-023 - BTEX and C6-C10 alkanes in so I Org-023 - BTEX and C6-C10 alkanes in so I Org-023 - BTEX and C6-C10 alkanes in so I Org-023 - BTEX and C6-C10 alkanes in so I Org-023 - BTEX and C6-C10 alkanes in so	0 Org-023 - BTEX and C6-C10 alkanes in so Org-023 - BTEX and C6-C10 alkanes in so Org-023 - BTEX and C6-C10 alkanes in so 10 Grg-023 - BTEX and C6-C10 alkanes in so 10 Grg-023 - BTEX and C6-C10 alkanes in so 10 Grg-023 - BTEX and C6-C10 alkanes in so 10 Grg-023 - BTEX and C6-C10 alkanes in so 10 Grg-023 - BTEX and C6-C10 alkanes in so 10 Grg-023 - BTEX and C6-C10 alkanes in so 3 Grg-023 - BTEX and C6-C10 alkanes in so 3 Grg-023 - BTEX and C6-C10 alkanes in so 3 Grg-023 - BTEX and C6-C10 alkanes in so 3 Grg-023 - BTEX and C6-C10 alkanes in so 3 Grg-023 - BTEX and C6-C10 alkanes in so 5 Grg-023 - BTEX and C6-C10 alkanes in so 5 Grg-023 - BTEX and C6-C10 alkanes in so 5 Grg-023 - BTEX and C6-C10 alkanes in so 5 Grg-023 - BTEX and C6-C10 alkanes in so 5 Grg-023 - BTEX and C6-C10 alkanes in so 5 Grg-023 - BTEX and C6-C10 alkanes in so	0 Org-023 - BTEX and C6-C10 alkanes in so Org-023 - BTEX and C6-C10 alkanes in so Org-023 - BTEX and C6-C10 alkanes in so I Org-023 - BTEX and C6-C10 alkanes in so I Org-023 - BTEX and C6-C10 alkanes in so I Org-023 - BTEX and C6-C10 alkanes in so I Org-023 - BTEX and C6-C10 alkanes in so I Org-023 - BTEX and C6-C10 alkanes in so I Org-023 - BTEX and C6-C10 alkanes in so I Org-023 - BTEX and C6-C10 alkanes in so I Org-023 - BTEX and C6-C10 alkanes in so I Org-023 - BTEX and C6-C10 alkanes in so I Org-023 - BTEX and C6-C10 alkanes in so I Org-023 - BTEX and C6-C10 alkanes in so I Org-023 - BTEX and C6-C10 alkanes in so I Org-023 - BTEX and C6-C10 alkanes in so I Org-023 - BTEX and C6-C10 alkanes in so I Org-023 - BTEX and C6-C10 alkanes in so I Org-023 - BTEX and C6-C10 alkanes in so I Org-023 - BTEX and C6-C10 alkanes in so I Org-023 - BTEX and C6-C10 alkanes in so I Org-023 - BTEX and C6-C10 alkanes in so
7-023 - BTEX and C6-C10 alkanes in s	1-023 - BTEX and C6-C10 alkanes in s 1-023 - BTEX and C6-C10 alkanes in s	1-023 - BTEX and C6-C10 alkanes in s 1-023 - BTEX and C6-C10 alkanes in s	1-023 - BTEX and C6-C10 alkanes in section 2-3 BTEX and C	1-023 - BTEX and C6-C10 alkanes in s 1-023 - BTEX and C6-C10 alkanes in s	1-023 - BTEX and C6-C10 alkanes in si-023 - BTEX and C6-C10 alkanes in si-0203 - BTEX and C6-
STEX and C6-C10 alkanes in	3TEX and CG-C10 alkanes in signature and CG-C10 alkanes in signature and CG-C10 alkanes in BTEX and CG-C10 alkanes in BTEX and CG-C10 alkanes in BTEX and CG-C10 alkanes in BTEX and CG-C10 alkanes in BTEX and CG-C10 alkanes in	iTK and C6-C10 alkanes in siTK and C6-C10 alkanes in jTK and C6-C10 alkanes in jTK and C6-C10 alkanes in siTK and C6-C10 alkanes in SiTK and C6-C10 alkanes in BTK and C6-C10 alkanes in BTK and C6-C10 alkanes in BTK and C6-C10 alkanes in BTK and C6-C10 alkanes in BTK and C6-C10 alkanes in BTK and C6-C10 alkanes in BTK and C6-C10 alkanes in BTK and C6-C10 alkanes in	itTX and C6-C10 alkanes in sitEX and C6-C10 alkanes in sitEX and C6-C10 alkanes in sitEX and C6-C10 alkanes in sitEX and C6-C10 alkanes in BITX and C6-C10 a	iffx and C6-C10 alkanes in siftx and C6-C10 alkanes in siftx and C6-C10 alkanes in siftx and C6-C10 alkanes in siftx and C6-C10 alkanes in siftx and C6-C10 alkanes in siftx and C6-C10 alkanes in BIFX and C6-C10	iffX and C6-C10 alkanes in iffX and C6-C10 alkan
- BTEX and C6-C10 alkane	- BTEX and CG-C10 alkane - BTEX and CG-C10 alkane - BTEX and CG-C10 alkane - BTEX and CG-C10 alkane - BTEX and CG-C10 alkane - BTEX and CG-C10 alkane - BTEX and CG-C10 alkane	BTRX and C6-C10 alkane - BTRX and C6-C10 alkane - BTRX and C6-C10 alkane - BTRX and C6-C10 alkane - BTRX and C6-C10 alkane - BTRX and C6-C10 alkane - BTRX and C6-C10 alkane - BTRX and C6-C10 alkane - BTRX and C6-C10 alkane	BTRX and C6-C10 alkane BTRX and C6-C10 alkane	BTEX and GG-C10 alkane BTEX and GG-C10 alkane	BTRX and GG-(10 alkane BTRX and GG-(10 alkane
3-023 - BTEX and C6-C1	1-023 - BTEX and C6-C1 1-023 - BTEX and C6-C1 1-023 - BTEX and C6-C1 1-023 - BTEX and C6-C1 2-023 - BTEX and C6-C1	1923 BTKX and G6-C11 1923 BTKX and G6-C11	1-023 BTRX and GG-C11 1-023 BTRX and GG-C11	1023 BTRX and GG-C11 1023 BTRX and GG-C11	1023 BITK and GG-C11 (2023 BITK and GG-C11 (
96 Org-023 - B	81 Org-023 - B 81 Org-023 - B 84 Org-023 - B 81 Org-023 - B 81 Org-023 - B	81 Org-023 - 8 81 Org-023 - 8 84 Org-023 - 8 81 Org-023 - 8 81 Org-023 - 8 94 Org-023 - 8 93 Org-023 - 8 95 Org-023 - 8	81 Org-023 - 8 84 Org-023 - 8 81 Org-023 - 8 81 Org-023 - 8 81 Org-023 - 8 94 Org-023 - 8 95 Org-023 - 8 95 Org-023 - 8 95 Org-023 - 8 95 Org-023 - 8 95 Org-023 - 8	81 Org-023 - 6 81 Org-023 - 6 81 Org-023 - 6 81 Org-023 - 6 81 Org-023 - 8 93 Org-023 - 8 93 Org-023 - 8 95 Org-023 - 8 95 Org-023 - 8 95 Org-023 - 8 85 Org-023 - 8 85 Org-023 - 8	81 Org-023 - B 84 Org-023 - B 81 Org-023 - B 81 Org-023 - B 81 Org-023 - B 92 Org-023 - B 93 Org-023 - B 95 Org-023 - B 95 Org-023 - B 96 Org-023 - B 97 Org-023 - B 98 Org-023 - B 99 Org-023 - B 99 Org-023 - B 99 Org-023 - B 99 Org-023 - B 99 Org-023 - B 99 Org-023 - B 99 Org-023 - B 99 Org-023 - B 99 Org-023 - B 99 Org-023 - B
J)	∞ ∞ ∞ ∞ ∞	∞ ∞ ∞ ∞ σ σ σ σ σ		∞ ∞ ∞ ∞ ∞ σ σ σ σ σ ω ω	∞
A N	Z V V V V V V V V V V V V V V V V V V V	NA NA NA NA NA NA	N N N N N N N N N N N N N N N N N N N	N N A A N A A A A A A A A A A A A A A A	N N N N N N N N N N N N N N N N N N N
Y V	A N N N N N N N N N N N N N N N N N N N	A A A A A A A A	A N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	A
N N N	N N N N	N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	X X X X X X X X X X X X X X X X X X X
A A A	4 4 4 X	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	N N N N N N N N N N N N N N N N N N N	A A A A A A A A A A A A A A A A A A A
15/07/2020 Toluene 15/07/2020 Benzene 15/07/2020 Xylene (o)	24/07/2020 Ethylbenzene 24/07/2020 Xylene (m & p) 24/07/2020 Toluene 24/07/2020 Benzene 24/07/2020 Xylene (o)	24/07/2020 Ethylbenzene 24/07/2020 Yelene (m & p) 24/07/2020 Velene (m & p) 24/07/2020 Toluene 24/07/2020 Wylene (o) 24/07/2020 Klyblenzene 24/07/2020 Wylene (m & p) 24/07/2020 Toluene	24/07/2020 Ethylbenzene 24/07/2020 Velene (m & p) 24/07/2020 Velene (e p) 24/07/2020 Toluene 24/07/2020 Xylene (o) 24/07/2020 Xylene (m & p) 24/07/2020 Xylene (m & p) 24/07/2020 Vylene (m & p) 24/07/2020 Vylene (m & p) 24/07/2020 Xylene (o) 24/07/2020 Xylene (o) 24/07/2020 Xylene (o)	24/07/2020 Ethylbenzene 24/07/2020 Yelene (m & p) 24/07/2020 Yelene (m & p) 24/07/2020 Tolucie (a) 24/07/2020 Senzene 24/07/2020 Wiene (o) 24/07/2020 Wiene (o) 24/07/2020 Wiene (m & p) 24/07/2020 Senzene 24/07/2020 Benzene 24/07/2020 Benzene 24/07/2020 Ethylbenzene 24/07/2020 Ethylbenzene 24/07/2020 Senzene 24/07/2020 Senzene 24/07/2020 Wiene (o) 30/07/2020 Senzene 24/07/2020 Wiene (o) 30/07/2020 Senzene 24/07/2020 Wiene (m & p)	24/07/2020 Ethylbenzene 24/07/2020 Valene (im & p) 24/07/2020 Toluene 24/07/2020 Toluene 24/07/2020 Senzene 24/07/2020 Senzene 24/07/2020 Xylene (io) 24/07/2020 Toluene 24/07/2020 Toluene 24/07/2020 Toluene 24/07/2020 Toluene 24/07/2020 Toluene 24/07/2020 Xylene (io) 30/07/2020 Xylene (iii & p) 30/07/2020 Toluene 33/07/2020 Senzene 30/07/2020 Benzene 30/07/2020 Benzene
15/07/2020 Toluene 15/07/2020 Benzene 15/07/2020 Xylene (o)	24/07/202 24/07/202 24/07/202 24/07/202 24/07/203	24/01/202 24/07/202 24/07/202 24/07/202 24/07/205 24/07/205 24/07/205	24/01/202 24/07/202 24/07/202 24/07/202 24/07/202 24/07/202 24/07/202 24/07/202	24/01/202 24/07/202 24/07/202 24/07/202 24/07/202 24/07/202 24/07/202 30/07/202 30/07/202	24/01/202 24/07/202 24/07/202 24/07/202 24/07/202 24/07/202 24/07/202 24/07/202 30/07/202 30/07/202 30/07/202
TS01_200715 TS01_200715 TS01_200715	1502_200724 1502_200724 1502_200724 1502_200724 1502_200724	1592_200724 1592_200724 1592_200724 1592_200724 1592_200724 1593_200724 1593_200724	1502_200724 1502_200724 1502_200724 1502_200724 1502_200724 1503_200724 1503_200724 1503_200724 1503_200724	1502_200724 1502_200724 1502_200724 1502_200724 1502_200724 1503_200724 1503_200724 1503_200724 1503_200724 1503_200724 1503_200724 1503_200730	1502_200724 1502_200724 1502_200724 1502_200724 1502_200724 1503_200724 1503_200724 1503_200724 1503_200724 1503_200724 1503_200724 1503_200724 1503_200730 1504_200730
TS01 TS01 TS01	TS02 TS02 TS02 TS02	TS02 TS02 TS02 TS03 TS03 TS03	1502 1502 1502 1502 1503 1503 1503	1502 1502 1502 1502 1503 1503 1503 1503 1503 1504 1504	1502 1502 1502 1502 1503 1503 1503 1503 1503 1503 1503 1503
soil soil	soil soil soil soil	soil soil soil soil soil soil soil soil	soil soil soil soil soil soil soil soil		11111111111
Trip_S Trip_S Trip_S	Trip_S Trip_S Trip_S		111111111	soil soil soil soil soil soil soil soil	soil soil soil soil soil soil soil soil
		7 17 17 17 17 17 17 17 17 17 17 17 17 17	2 0 17 1 2 0 0 17 1 2 0 0 17 1 2 0 0 17 1 2 0 17		
		7 17 17 17 17 17 17 17 17 17 17 17 17 17			2 d or 1

Sample Code
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8
247142-8

Trip Spike Recoveries. Where no lab LCL and UCL is available, user defined limits between 30% and 150% have been adopted for non-compliance.

			Lab Report Number		ES2026409		ES2026409	248214	
				MW02_200730	QC103_200730		MW02_200730	QC203_200730	
			Matrix Type Date	water 30/07/2020	water 30/07/2020	RPD	water 30/07/2020	water 30/07/2020	RPD
			5410	50,07,2020	30/0//2020	1 2	150,01,2020	150/0//2020	1 5
DEEN .	Unit	EQL			1				
BTEX Total BTEX	μg/L	1		3	3	0	3		-
Xylene Total	μg/L	2		<2	<2	0	<2		
Benzene	μg/L	1		3	3	0	3	3	0
Ethylbenzene	μg/L	1		<2	<2	0	<2	<1	0
Toluene Xylene (m & p)	μg/L μg/L	2		<2 <2	<2 <2	0	<2	<1 <2	0
Xylene (o)	μg/L	1		<2	<2	0	<2	<1	0
Phenols									
2,4,5-Trichlorophenol	μg/L	2		<2			<2		
2,4,6-Trichlorophenol 2,4-Dichlorophenol	μg/L μg/L	2		<2 <2			<2 <2		+
2,4-Dimethylphenol	μg/L	2		<2			<2		+
2,6-Dichlorophenol	μg/L	2		<2			<2		
2-Chlorophenol	μg/L	2		<2			<2		_
2-Methylphenol 2-Nitrophenol	μg/L μg/L	2		<2 <2		+	<2 <2		+
2-introphenor	P6/ L	<u> </u>		~~			~2		_
3&4-Methylphenol (m&p-cresol)	μg/L	4		<4			<4		
4-chloro-3-methylphenol	μg/L	2		<2			<2		
Pentachlorophenol Phenol	μg/L μg/L	2		<4 <2		+	<4 <2		-
TRH	11.01 -	 		72	1	+		1	+
C10-C16	μg/L	50		<100	<100	0	<100	<50	0
C10-C16 (F2 minus Naphthalene)	μg/L	50		<100	<100	0	<100	<50	0
C10-C40 (Sum of total) C16-C34	μg/L μg/L	100 100		<100 <100	<100 <100	0	<100 <100	<100	0
C34-C40	μg/L μg/L	100		<100	<100	0	<100	<100	0
C6-C10	μg/L	10		20	40	67	20	12	50
C6-C10 (F1 minus BTEX)	μg/L	10		<20	40	67	<20	<10	0
Amino Aliphatics	ug/I	2		<2		+	<2	1	_
N-nitrosodiethylamine N-nitrosodi-n-butylamine	μg/L μg/L	2		<2	+	+	<2	+	+
N-nitrosodi-n-propylamine	μg/L	2		<2			<2		
N-Nitrosomethylethylamine	μg/L	2		<2		<u> </u>	<2		
Amino Aromatics		2		-2			-2		
1-naphthylamine	μg/L	2		<2			<2		+
N-Nitrosodiphenyl & Diphenylamine	μg/L	4		13			13		
Anilines									
2-methyl-5-nitroaniline	μg/L	2		<2			<2		_
2-nitroaniline 3-nitroaniline	μg/L μg/L	4		<4 <4		+	<4 <4		_
4-chloroaniline	μg/L	2		<2			<2		+
4-nitroaniline	μg/L	2		<2			<2		
Aniline	μg/L	2		<2			<2		
Chlorinated Hydrocarbons 1,1,1-trichloroethane	μg/L	5		<5		_	<5		
1,1,2,2-tetrachloroethane	μg/L	5		<5			<5		+
1,1,2-trichloroethane	μg/L	5		<5			<5		
1,1-dichloroethane	μg/L	5		<5			<5		
1,1-dichloroethene 1,2-dichloroethane	μg/L μg/L	5 5		<5 <5		+	<5 <5		+
1,2-dichloropropane	μg/L	5		<5			<5		
Bromodichloromethane	μg/L	5		<5			<5		
Bromoform	μg/L	5		<5			<5		
Carbon tetrachloride Chlorodibromomethane	μg/L μg/L	5 5		<5 <5		+	<5	+	+
Chloroethane	μg/L	50		<50			<50		
Chloromethane	μg/L	50		<50			<50		
cis-1,2-dichloroethene	μg/L	5		7			7		
cis-1,3-dichloropropene Chloroform	μg/L μg/L	5 5		<5 <5	+		<5 <5	+	_
Hexachlorobutadiene	μg/L μg/L	2		<2		+	<2	1	+
Tetrachloroethene	μg/L	5		<5			<5		
trans-1,2-dichloroethene	μg/L	5		<5	_		<5	_	
trans-1,3-dichloropropene Trichloroethene	μg/L μg/L	5 5		<5 <5	1	+	<5 <5	+	+
Vinyl chloride	μg/L μg/L	50		<50	1		<50	1	+
1,1,1,2-tetrachloroethane	μg/L	5		<5			<5		
1,1-dichloropropene	μg/L	5		<5			<5	_	
1,2,3-trichloropropane 1,2-dibromo-3-chloropropane	μg/L μg/L	5 5		<5 <5	1		<5 <5	+	+
1,3-dichloropropane	μg/L	5		<5			<5	1	+
2,2-dichloropropane	μg/L	5		<5			<5		
Dibromomethane	μg/L	5		<5		_	<5	_	
Hexachlorocyclopentadiene Hexachloroethane	μg/L μg/L	10 2		<10 <2	1		<10 <2	+	+
Explosives	11-0/ -	<u> </u>		74		+		1	+-
1,3,5-Trinitrobenzene	mg/L	0.002		<0.002			<0.002		
2,4-Dinitrotoluene	μg/L	4		<4		_	<4	1	
2,6-dinitrotoluene Nitrobenzene	μg/L μg/L	2		<4 <2	1	+	<4 <2	+	+
Halogenated Benzenes	11.01 -	 		72	†	+		†	+
Hexachlorobenzene	μg/L	4		<4			<4		
1,2,4-trichlorobenzene	μg/L	2		<2			<2		
1,2-dichlorobenzene 1,3-dichlorobenzene	μg/L	2		<2 <2	1	+	<2 <2	+	
1,4-dichlorobenzene	μg/L μg/L	2		<2		+	<2	+	1
Chlorobenzene	μg/L	5		<5			<5		
1,2,3-trichlorobenzene	μg/L	5		<5			<5		
2-chlorotoluene	μg/L	5 5		<5 <5	1	+	<5	1	+
4-chlorotoluene Bromobenzene	μg/L μg/L	5		<5 <5	1	+	<5 <5	1	+
Pentachlorobenzene	μg/L	2		<2			<2	<u> </u>	
Halogenated Hydrocarbons									1

DSI Raymond Ave Matraville 1 of 3

	Unit	EQL
2-dibromoethane	μg/L	5
omomethane	μg/L	50
chlorodifluoromethane ichlorofluoromethane	μg/L	50 50
domethane	μg/L μg/L	50
icides	μg/ L	3
onamide	μg/L	2
2,4-trimethylbenzene	μg/L	5
3,5-trimethylbenzene	μg/L	5
yrene	μg/L	5
opropylbenzene butylbenzene	μg/L μg/L	5
propylbenzene	μg/L	5
isopropyltoluene	μg/L	5
c-butylbenzene	μg/L	5
rt-butylbenzene	μg/L	5
dmium (filtered)	mg/L	0.0001
senic (filtered)	mg/L mg/L	0.0001
romium (III+VI) (filtered)	mg/L	0.001
ppper (filtered)	mg/L	0.001
ad (filtered)	mg/L	0.001
ercury (filtered)	mg/L	0.00005
ckel (filtered)	mg/L	0.001
nc (filtered) aromatics	mg/L	0.001
Picoline	μg/L	2
aminobiphenyl	μg/L	2
ntachloronitrobenzene	μg/L	2
nochlorine Pesticides		
4-DDE	μg/L	2
eptachlor epoxide BHC	μg/L μg/L	2
drin	μg/L μg/L	2
внс	μg/L	2
внс	μg/L	2
DD	μg/L	2
OT+DDE+DDD	μg/L μg/L	4
eldrin	μg/L μg/L	2
dosulfan I	μg/L μg/L	2
dosulfan II	μg/L	2
dosulfan sulphate	μg/L	2
drin	μg/L	2
BHC (Lindane)	μg/L	2
eptachlor drin + Dieldrin	μg/L μg/L	4
nophosphorous Pesticides	IP6/ -	*
lorpyrifos-methyl	mg/L	0.002
chlorvos	μg/L	2
hion	μg/L	2
alathion llorpyrifos	μg/L μg/L	2
azinon	μg/L μg/L	2
methoate	μg/L	2
lorfenvinphos	μg/L	2
nthion	μg/L	2
othiofos	μg/L	2
r etophenone	μg/L	2
	100/-	-
phthalene	μg/L	1
chloronaphthalene	μg/L	2
methylnaphthalene	μg/L	2
methylcholanthrene	μg/L	2
12-dimethylbenz(a)anthracene	μg/L	2
enaphthene	μg/L	1
enaphthylene	μg/L	1
nthracene	μg/L	1
enz(a)anthracene enzo(a) pyrene	μg/L μg/L	0.5
enzo(a) pyrene TEQ calc (Zero)	μg/L mg/L	0.0005
nzo(b+j)fluoranthene	mg/L	0.001
	μg/L	1
nzo(g,h,i)perylene	μg/L	1
nzo(k)fluoranthene		1
enzo(k)fluoranthene erysene	μg/L	
nzo(k)fluoranthene rysene benz(a,h)anthracene	μg/L μg/L	1
enzo(k)fluoranthene erysene benz(a,h)anthracene uoranthene	μg/L μg/L μg/L	1
enzo(k)fluoranthene erysene benz(a,h)anthracene uoranthene uorene	μg/L μg/L μg/L μg/L	1
enzo(k)fluoranthene erysene benz(a,h)anthracene uoranthene	μg/L μg/L μg/L μg/L μg/L μg/L	1
nzo(k)fluoranthene rrysene benz(a,h)anthracene uoranthene uorene deno(1,2,3-c,d)pyrene Hki (Sum of total) nenanthrene	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	1 1 1 0.5
enzo(k)fluoranthene rrysene benz(a,h)anthracene boranthene borene deno(1,2,3-c,d)pyrene this (Sum of total) benanthrene rrene	μg/L μg/L μg/L μg/L μg/L μg/L	1 1 1 0.5
nzo(k)fluoranthene rysene benz(a,h)anthracene poranthene porene deno(1,2,3-c,d)pyrene tHs (Sum of total) tenanthrene rene	µg/L µg/L µg/L µg/L µg/L µg/L µg/L	1 1 0.5 1
nzo(k)fluoranthene rysene benz(a,h)anthracene uoranthene uorene deno(1,2,3-c,d)pyrene Hks (Sum of total) tenanthrene rene cides rbazole	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	1 1 0.5 1 1
nzo(k)fluoranthene rrysene benz(a,h)anthracene uoranthene uorene deno(1,2,3-c,d)pyrene His (Sum of total) uenanthrene rene cides rbazole	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	1 1 0.5 1
nzo(k)fluoranthene rysene benz(a,h)anthracene uoranthene uorene deno(1,2,3-c,d)pyrene Hks (Sum of total) tenanthrene rene cides rbazole	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	1 1 0.5 1 1 2
nzo(k)fluoranthene ryrsene benz(a,h)anthracene uoranthene uorene deno(1,2,3-c,d)pyrene Hks (Sum of total) tenanthrene rene cides rbazole torobenzilate imphos-ethyl alates	нg/L нg/L нg/L нg/L нg/L нg/L нg/L нg/L	1 1 0.5 1 1 2 2 2
nzo(k)fluoranthene ryrsene benz(a,h)anthracene uoranthene uorene deno(1,2,3-c,d)pyrene tHs (Sum of total) tenanthrene rene cides rbazole tlorobenzilate rimphos-ethyl alates s(2-ethylhexyl) phthalate	Hg/L Hg/L	1 1 0.5 1 1 2 2 2 2 2
nzo(k)fluoranthene ryrysene benz(a,h)anthracene boranthene boranthene borane deno(1,2,3-c,d)pyrene tels (Sum of total) benanthrene rene cides rbazole lorobenzilate rimphos-ethyl alates (\$Z-ethylhexyl) phthalate ttyl benzyl phthalate ethylphthalate	Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L	1 1 0.5 1 1 2 2 2 2 2 2
nzo(k)fluoranthene ryrsene benz(a,h)anthracene uoranthene uorene deno(1,2,3-c,d)pyrene tHs (Sum of total) tenanthrene rene cides rbazole tlorobenzilate rimphos-ethyl alates s(2-ethylhexyl) phthalate	Hg/L Hg/L	1 1 0.5 1 1 2 2 2 2 2

DSI Raymond Ave Matraville 2 of 3

		Ī	Lab Report Number	ES2026409	ES2026409		ES2026409	248214	
				MW02 200730	QC103 200730	_	MW02 200730	QC203 200730	
			Matrix Type		water	_	water	water	
				30/07/2020	30/07/2020	RPD	30/07/2020	30/07/2020	RPD
					10,00,000	1 =	,,	100,007	1000
	Unit	EQL							
Solvents						- 1			
2-hexanone (MBK)	μg/L	50		<50			<50		
Methyl Ethyl Ketone	μg/L	50		<50			<50		
Vinyl acetate	μg/L	50		<50			<50		
4-Methyl-2-pentanone	μg/L	50		<50			<50		
Carbon disulfide	μg/L	5		<5			<5		
Isophorone	μg/L	2		<2			<2		
SVOCs									
2-(acetylamino) fluorene	μg/L	2		<2			<2		
3,3-Dichlorobenzidine	μg/L	2		<2			<2		
4-(dimethylamino) azobenzene	μg/L	2		<2			<2		
4-bromophenyl phenyl ether	μg/L	2		<2			<2		
4-chlorophenyl phenyl ether	μg/L	2		<2			<2		
4-Nitroquinoline-N-oxide	μg/L	2		<2			<2		
Azobenzene	μg/L	2		<2			<2		
Bis(2-chloroethoxy) methane	μg/L	2		<2			<2		
Bis(2-chloroethyl)ether	μg/L	2		<2			<2		
Dibenzofuran	μg/L	2		<2			<2		
Hexachloropropene	μg/L	2		<2			<2		
Methapyrilene	μg/L	2		<2			<2		
N-nitrosomorpholine	μg/L	2		<2			<2		
N-nitrosopiperidine	μg/L	2		<2			<2		
N-nitrosopyrrolidine	μg/L	4		<4			<4		
Phenacetin	μg/L	2		<2			<2		
ТРН									
+C10-C36 (Sum of total)	μg/L	50		<50	<50	0	<50		
C10-C14	μg/L	50		<50	<50	0	<50	<50	0
C15-C28	μg/L	100		<100	<100	0	<100	<100	0
C29-C36	μg/L	50		<50	<50	0	<50	<100	0
C6-C9	μg/L	10		20	40	67	20	11	58
VOCs									
cis-1,4-Dichloro-2-butene	μg/L	5		<5			<5		
Pentachloroethane	μg/L	5		<5			<5		
trans-1,4-Dichloro-2-butene	μg/L	5		<5			<5		

DSI Raymond Ave Matraville 3 of 3

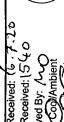
^{*}RPDs have only been considered where a concentration is greater than 1 times the EQL.

**Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for each EQL multiplier range are: 81 (1 - 10 x EQL); 50 (10 - 30 x EQL); 30 (> 30 x EQL))

***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

			Lab Report Number Field ID Matrix Type		247142 QC100_200715 soil 15/07/2020			247834 QC101_200724 soil 24/07/2020			247834 QC102_200724 soil 24/07/2020			E52025385 QC200_200723 soil 23/07/2020			ES2025385 QC201_200723 soil 23/07/2020		247834 8H29_0.3_200724 soil 24/07/2020	E52025385 QC202_200724 soil 23/07/2020	1
	Unit	EQL	Date	15/07/2020	15/07/2020	RPD	24/07/2020	24/07/2020	jit/O	24/07/2020	24/07/2020	jaro	23/07/2020	23/07/2020	1800	23/07/2020	23/07/2020	RPD	24/07/2020	23/07/2020	JAPO
Asbestos Asbestos fibres NA	Detect			•			0						0						0		=
Moisture Content BTEX	% 	1 02	-											18.8			7.5			42	\equiv
Total BTEX Xylene Total Benzene Ethylbenzene	mg/kg mg/kg mg/kg	0.2 0.5 0.2 0.5		d d2	d d2	0 0		- 3 - <0.2	0	62	- d - d)2	0 0		<0.5 <0.2	0	d -0.2	40.5 40.2	0	- d - d)2	<0.5 <0.2	0
Toluene Xylene (m & p) Xylene (o)	mg/kg mg/kg mg/kg	0.5 0.5 0.5		- 0.5 - 2	40.5	0 0	- 0.5 - 2	<0.5	0 0	40.5	-05	0 0	-0.5	40.5 40.5	0 0	40.5 -Q	<0.5 <0.5	0	-0.5 -0.2	40.5 40.5	0
10:2 Fluorotelomer sulfonic acid				d	d	-	- a	- a	-	d	d	-	d	40.5	0	- a	40.5		d	<0.5	±°
(10:2 FTS) 4:2 Fluor otelomer sulfonic acid (4:2 FTS)	µg/kg µg/kg	0.2	1				<0.2 <0.1			<0.1						-0.2	-0.5	0			\vdash
6/2 Elucrotalomar sulfonir arid (6/2	mg/kg	0.0001					<0.0001	<0.0001	0	<0.0001	<0.0001	0				<0.0001	<0.0005	0			
FTS) 8:2 Pluorotelomer sulfonic acid (8:2 FTS) N-Ethyl perfluorooctane	mg/kg	0.0002	-				<0.0002	<0.0002	0	<0.0002	<0.0002	0				<0.0002	<0.0005	0			+
sulfonamide (NEtFOSA) N-ethyl perfluorooctanesulfonamidoacetic	не/че	1					4			- G						- a					
acid (NEIFOSAA) N- ethylperfluorooctanesulfonamidoet	µg/kg	0.2	1				40.2			-0.2						-0.2					
hanol (NEtFOSE) N-Methyl perfluorooctane sulfonamide (NMeFOSA)	HE/NE	5	1				d d			d d						d d					+
N-methylperfluorocctane		0.2	1				r0.2			r0.2						-0.2					
N- Methylperfluorooctanesulfonamido		0.001																			
ethanol (N-Mef OSE) Perfluorobutane suffonic acid (PFBS) Perfluorobutanoic acid (PFBA)	mg/kg mg/kg	0.0001					<0.0001			<0.0001						40.0001	<0.0002	0			
Perfluorodecanesulfonic acid (PFDS)	µg/kg µg/kg	0.2					<0.2			<0.2						<0.2	a	0			
		0.5					-0.5			<0.5						40.5					
Perfluorododecanoic acid (PFDoDA) Perfluoroheptane sulfonic acid (PFHpS)	µg/kg	0.1	1				≪1.1			0.3						<0.1					
Perfluoroheptanoic acid (PFHpA) Perfluorohexane sulfonic acid	не/че	0.1	-				<0.1		l .	<0.1						-0.1	<0.2	0			+
Perfuorohexane sulfonic acid (PPMS) Perfuorohexanoic acid (PPMA) Perfuoronomanoic acid (PPMA) Perfuorocotane sulfonamide (PFOSA)	HE/RE HE/RE HE/RE	0.1 0.1 0.1	1				©.1 ©.1 ©.1	<0.1	0	<0.1 <0.1 <0.1	0.1	0				40.1 40.1 40.1	<0.2 <0.2	0			
	µg/kg	1	-				d			d						a					\Box
Perfluorooctanesulfonic acid (PFOS) Perfluorooctanoic acid (PFOA) Perfluoropentane sulfonic acid	mg/kg mg/kg	0.0001 0.0001	1				0.0031 <0.0001	0.0032	3	0.016 0.0027	0.016	0 14				<0.0001 <0.0001	<0.0002 <0.0002	0			=
	HE/RE HE/RE	0.1	1				<0.1 <0.2			<0.1 <0.2						-0.1 -0.2	<0.2	0			\vdash
Perfluorotetradecanoic acid (PFTeDA)	µg/kg	5	-				d			d						-5					\vdash
Perfluorotridecanoic acid (PFTrDA) Perfluoroundecanoic acid (PFUnDA)	HE/NE HE/NE	0.5	1				-0.5 -0.5			-0.5						-0.5 -0.5					+
Sum of PFAS Sum of PFAS (WA DER List) Sum of PFAS (WA DER List)	HE/NE HE/NE HE/NE	0.1	1				3.1	3.2	3	19	19 16	0				<0.1	-0.2	0			=
		0.1	1				3.1	3.2	3	16	16 19	0				<0.1	40.2	Ů			
		50 50	1	<50 <50	-50 -50	0	<50 <50	<50	0	<50	<50 <50	0	-50	-50 -50	0	-50 -50	<50 <50	0	<50 <50	-50 -50	0
C10-C40 (Sum of total) C16-C34 C34-C40	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	50 50 100 100 100 10		630 510 120	620 450 180	2 12 40	<50 <100 <100	<50 <100 ×100	0	<50 <100	<50 <000 <000	0	<00 <00 <00	240 240	131 82	<00 <000 <100	<50 <100 <100	0	-50 -100 -100	<50 <100	0
CB4 C40 CB-C10 CB-C10 (F1 minus BTEX)	mg/kg mg/kg	10 10	1	- 25 - 25	- 25 - 25	0	d5 d5	<25 <25	0	- 25 - 25	- 25 - 25	0	25 25	<10 <10	0	-25 -25	<10 <10	0	- 25 - 25	<10 <10	0
1,1,1-trichloroethane	mg/kg	1	1	d d			d d			d d			d d			<u>a</u>			d d		
1,1,2-trichloroethane 1,1-dichloroethane 1,1-dichloroethane	mg/kg mg/kg mg/kg mg/kg	1 1 1		d d			d d			d d			d d			d d			d d		=
1,2-dichloroethane 1,2-dichloropropane Bromodichloromethane	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 1 1		d d			d d			d d			d d			d d			d d		\equiv
Bromoform Carbon tetrachloride		1		d d			d d			d d			d d			a a a			d d		
Carbon tetrachloride Chlorodibromomethane Chloroethane Chloromethane	mg/kg mg/kg mg/kg	1 1		d 			d d			d d			4 4 4			- d - d - d			d d		=
cis-1,2-dichloroethene cis-1,3-dichloropropene Chloroform	mg/kg mg/kg mg/kg mg/kg	1 1 1		d d			d d			d d			d d			d d			d d		=
		1 1		d d			d d			d d			d d			d d			d d		
trans-1,2-dichloroethene trans-1,3-dichlorogropene Trichloroethene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 1		d d			d d			d d			d d			a a			d		=
Trichloroethese Viryl chloride 1,1,1,2-tetrachloroethase 1,1,1-divloropropene 1,2,3-trichloropropane	mg/kg mg/kg mg/kg mg/kg	1 1 1		- d - d - d			d d			d d			- d - d - d			a a a			d d		
1,2,3-trichloropropane 1,2-dibromo-3-chloropropane 1,3-dichloropropane	mg/kg mg/kg mg/kg	1 1		d d d			d d			d d			d d			d d			d d		=
1,2,1-cricinoropropane 1,2-dibromo-3-chicopropane 1,3-dichloropropane 2,2-dichloropropane Beomochloromethane Dibromomethane	mg/kg mg/kg mg/kg mg/kg	1 1 1		d d			d d			d d			d d			d d			d d		=
		0.1		₫.1			<0.1			<0.1			≪0.1			<0.1			<0.1		=
1,2,4-trichlorobenzene 1,2-dichlorobenzene 1,3-dichlorobenzene 1,4-dichlorobenzene	mg/kg mg/kg mg/kg mg/kg	1 1 1		- d - d - d			- d - d			d d			- d - d - d			a a a			d d		=
		1 1		d d d			d d			d d			d d			d d d			d d d		=
2-chlorotoluene 4-chlorotoluene Bromobenzene	mg/kg mg/kg mg/kg mg/kg mg/kg	1 1		d d			d d			d d			d d			d d			d d		\equiv
Halogenated Hydrocarbons		1	1	d			d			d			d d			d d			d		
Dichlorodifluoromethane Trichlorofluoromethane	mg/kg mg/kg mg/kg mg/kg	1 1		d d			d d			d d			d d			d d			d d		=
Inorganics Moisture Metals	×	0.1		3.4	4.5	28	5.2	4.9	6	7.6	- 11	37	16			6.2			43		=
Cadmium Arsenic Chromium (III+VI)	mg/kg mg/kg mg/kg	0.4 4		40.4 44	<0.4 <4	0 0	40.4 44	<0.4 <4 <1	0	<0.4 64	<0.4 <4	0 0	10	7 3	0 35 50	<0.4 +0.4 2	d d	0	40.4 44	d d	0 0 67 18
Mosteure Metals Cadmium Arsenic Chromium (IE+VI) Copper Lead Marcury Nickel	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.4 4 1 1 1 0.1 1	1	3 3	5 10	50	1 2	3 4	100 67	10.1	3	29 67	790 2,000	267 221	99	- a	6	0	6 26	13	18 67
ZHC	mg/kg mg/kg	1 1		1 8	2 14	0 67 55	1 13	2 22	0 67 51	6 43	5 31	0 18 32	0.2 8 190	0.4 5 591	67 46 103	-d- -d-	3	0	4 30	2 17	67 55
		0.1	1	<0.1 <0.1			<0.1			<0.1			<0.1 <0.1			<0.1			<0.1 <0.1		
4,4-DDE Heptachlor epoxide Chlordane (cis) a-BHC Aldrin Chlordane (trans)	mg/kg mg/kg mg/kg	0.1 0.1 0.1		©.1 ©.1			<0.1 <0.1 <0.1			<0.1 <0.1 <0.1			40.1 40.1 40.1			<0.1 <0.1 <0.1			<0.1 <0.1		$\pm \exists$
Chlordane (trans) d-BHC b-BHC	mg/vg mg/vg	01 01 01 01 01 01 01 01 01 01 01 01 01 0	1	0.1 0.1 0.1			<0.1 <0.1 <0.1			<0.1 <0.1 <0.1			40.1 40.1 40.1			<0.1 <0.1 <0.1			<0.1 <0.1 <0.1		=
Chicodeme (trans) d 48E b 88E DDD DDD DDD Dollation Double 100 Double 100 Double 100 Double 100 Tendoutlan I Tendoutlan II Tendout	mg/kg mg/kg mg/ko	0.1		<0.1 <0.1 <0.1			<0.1 <0.1 <0.1			<0.1 <0.1 <0.1			40.1 40.1 40.1			<0.1 <0.1			<0.1 <0.1 <0.1		\equiv
Dieldrin Endosulfan I	mg/kg mg/kg	0.1 0.1		-0.1 -0.1 -0.1			<0.1 <0.1			(0.1 (0.1			4.1 4.1 4.1			<0.1 <0.1			-0.1 -0.1 -0.1		=
Endosulfan sulphate Endrin	mg/kg mg/kg mg/kg	0.1 0.1 0.1	1	<0.1 <0.1 <0.1			<0.1 <0.1 <0.1			<0.1 <0.1 <0.1			40.1 40.1 40.1			<0.1 <0.1 <0.1			-0.1 -0.1		
Endrin aldehyde g-BHC (Lindane) Heptachlor	mg/kg mg/kg mg/kg	0.1 0.1 0.1	1	<0.1 <0.1 <0.1			<0.1 <0.1 <0.1			<0.1 <0.1 <0.1			40.1 40.1 40.1			<0.1 <0.1 <0.1			-0.1 -0.1		$\pm \exists$
Methasychlor Organophosphorous Pesticides Chlorpyrifes-mathol				<0.1 <0.1			<0.1			<0.1 <0.1			<0.1			<0.1			<0.1		\blacksquare
Methosychice Oganophosphorous Praticides Obiospyrifes methyl Dickhorous Ethion Fenirochien Malabben Ronnel Alinophos methyl Chiorpyrifes Ethion Dickhorous	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	1	40.1 40.1			<0.1 <0.1			<0.1 <0.1			40.1 40.1			<0.1 <0.1			40.1 40.1		\blacksquare
Malathion Ronnel	mg/kg mg/kg	0.1 0.1	1	0.1 0.1 0.1			<0.1 <0.1 <0.1			<0.1 <0.1 <0.1			40.1 40.1 40.1			<0.1 <0.1			-0.1 -0.1		
Azinophos methyl Chlorpyrifos Bromophos ethyl	mg/kg mg/kg mg/ka	0.1 0.1 0.1		<0.1 <0.1 <0.1		Ē	<0.1 <0.1 <0.1		F	<0.1 <0.1 <0.1		F	<0.1 <0.1 <0.1			<0.1 <0.1 <0.1			<0.1 <0.1		=
Diszinon Dimethoate				<0.1 <0.1			<0.1 <0.1			<0.1			<0.1 <0.1			<0.1 <0.1			<0.1 <0.1		
PAM Naphthalene Acenaphthane Acenaphthylene Anthracene Bendjajanthracene	mg/kg mg/kg	01 01 01 01 01 02 05 05 05 05 02 01 01 01 01 01 01	1	<0.1 <0.1	d	0	<0.1 <0.1	d	0	<0.1 <0.1	<1	0	40.1 40.1	d	0	<0.1	- d	0	<0.1 <0.1	<1	0
Anthracene Benz(a)anthracene	mg/ng mg/ng	0.1 0.1 0.1	1	<0.1 <0.1 <0.1			<0.1 <0.1 <0.1			<0.1 <0.1 <0.1			<0.1 <0.1 0.7			<0.1 <0.1 <0.1			40.1 40.1 40.1		
Benzia janthracene Benzo(a) pyrene Benzo(a) pyrene TEQ (LOR) Benzo(a) pyrene TEQ calc (Half) Benzo(a) pyrene TEQ calc (Zero) Benzo(b-j-k)fluoranthene	mg/kg mg/kg mg/ka	0.05 0.5 0.5	1	-0.05 -0.5 -0.5			<0.05 <0.5 <0.5			<0.05 <0.5 <0.5		F	0.5 0.8		Ē	<0.05 <0.5 <0.5			-0.05 -0.5 -0.5		=
Benzo(a)pyrene TEQ calc (Zero) Benzo(b+j+k)fluoranthene Benzo(ch-jloerylana	mg/kg mg/kg mg/k²	0.5	1	<0.5 <0.2 <0.1			<0.5 <0.2 <0.1		F	<0.5 <0.2			0.7 0.7 1 0.2			<0.5 <0.2 <0.1			40.5 40.2 40.1		\blacksquare
Benacija-ji-kjilucranihne Benacija-ji-parejene Chrysene Dibancija-ji-parthracene Plate anthene Plate anthene Plate (Sum of positives) Premathrane Pyene	mg/kg mg/kg	0.1	1	40.1 40.1			<0.1 <0.1			<0.1			0.2 0.7			<0.1			40.1 40.1		=
Fluorene Indeno(1,2,3-c,d)pyrene	mg/kg mg/kg	0.1 0.1		0.1 0.1			<0.1 <0.1			<0.1 <0.1			0.1 0.2 5.7			<0.1 <0.1			40.1 40.1		
Phenanthrene Pyrene	mg/kg mg/kg mg/kg	0.05 0.1 0.1	1	40.05 40.1 40.1			<0.1 <0.1			<0.1 <0.1			5.7 0.6 0.8		Ē	<0.05 <0.1 <0.1			40.05 40.1 40.1		
		0.1	1	<0.1			<0.1 <0.1			<0.1			<0.1 <0.1			<0.1			<0.1		=
Arochlor 2016 Arochlor 1221 Arochlor 1222 Arochlor 1232 Arochlor 1242 Arochlor 1248	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1	1	0.1 0.1			<0.1 <0.1			<0.1 <0.1			40.1 40.1			<0.1 <0.1			40.1 40.1		\equiv
Arochior 1248 Arochior 1254 Arochior 1260 PCBs (Sum of total)	mg/kg mg/kg	0.1 0.1	1	40.1 40.1			<0.1 <0.1			-0.1 -0.1			-0.1 -0.1			<0.1 <0.1			-0.1 -0.1 -0.1		=
PCBs (Sum of total) Pesticides Parathion	mg/kg mg/kg	0.1	1	40.1 40.1			<0.1		E	<0.1		E	40.1 40.1		E	<0.1			-0.1		=
тен	1		1	×50	250	0	250	250	-	-40	250	0	260	280	0	-50	<50	0	250	-50 -40	
C10-C14 C15-C28 C29-C36 C6-C9	mg/kg mg/kg mg/kg mg/kg mg/kg	50 50 100 100 100	1	270 300	210 290	0 25 3	<100 <100	<100 <100	0 0	<100 <100	<000 <000	0 0	<100 <100	140 140	0 33 33	<100 <100	400 400	0 0	-100 -100	<100 <100	0 0
. 0.01	mg/kg	10		- (25	- 25		- 45	<25		- 425	-25		- 25	<10		-25	<10		- 25	<10	1 0

*80% have only been considered where a concentration is greater than 1 times the EQL


***Cleared BTOs are highlighted as per CACC Profile settings (Acceptable BTOs for each EQL multiplier range are: EL (1 - 10 x EQL); 50 (0 - 30 x EQL); 50 (> 3

Appendix F

Laboratory documentation

Job No: 247 | 42

4	_
1	_ 1)
-	=
7	3
	l
>	_
	3
C)
È	_ _
_	3
Ţ	رر
Ц	<u>_</u>
)
7	-
F	3
<	ζ
	Ċ
Ī	j

	Date Received: (6 . 7.70	(
N OF CUSTODY - Client	Time Received: (540	
	Received By: //	Fniver
	Temp/Cool/Ambient	
ENVIROLAB SERVICES	Cooling: Colling: Col	\ /
)

									PERIOR TOTAL NOONE	Koken/Nor	16
Client:	EMM Consulting Pty Ltd			Client Project Name and Number:	ne and Number:	Matraville	e		EIIVII OIAD 3EIVIK	S S	
Project Mgr:	Susan Dillon		Y	1200432					12 Ashley St, Chatswood, NSW, 2067	wood, N	SW, 2067
Sampler:	Lachlan Lewis			PO No.:							
Address:	G/20 Chandos St			Envirolab Services Quote No.:	s Quote No. :	20SY259			Phone: 02 9910 6200	8	
	ST LEONARDS NSW 2065			Date results required:	red:				Fax: 02 9910 6201	10	
ļ 	sqiilon@emmconsulting.com.au, llewis@emmconsulting.com.au,	<u>.com.au,</u> ɔom.au,									
Email:	emmconsulting@esdat.net	net .				Sta	Standard TAT		E-mail: jhurst@envirolabservices.com.au	virolabse	ervices.com.au
Phone:	61401638848 Fax:	Fax:		Note: Inform lab in advance if urgent turnaround is required -	ance if urgent turnar.	und is required		surcharge applies	S Contact: Jacinta Hurst	ırst	
	Sample information	rmation	-				Tests Required	red			Comments
Envirolab	Client Sample ID	Date sampled	Type of sample	est _s	8 06 5 06 5 06 7 06 7 06 7 06 7 06 7 06 7 06 7 06 7	1	128/4 128/4				Provide as much information about the
Sample 1D				jd A	MO)	HON W8/	0/~				sample as you can
٠,	BH01_0.4_200715	15/07/2020	Soil	X	ξ X	X	У				
2	BH02 0.5 200715	15/07/2020	Soil	/			·				
~	BH03 0.9 200715	15/07/2020	Soil			У Х	Ý				
ナ	BH04 0.9 200715	15/07/2020	Soil				Х				
b	BH05 0.5 200715	15/07/2020	Soil	€	→				-		
؈	QC300 200715	15/07/2020	Water		X						
	TB01_200715	15/07/2020	Soil		χ			-			
œ.	TS01 200715	15/07/2020	Soil		X						
0	QC100-200715	15/7/20	\								
,		`	\								
						-	†				
					-	-	-				
							<u> </u>				
										-	
Relinquished by (company):		EMM		Received by (company):	pany): E	رح>			Samples Received: Cool or Ambient (circle one)	or Ambien	t (circle one)
Print Name:		Lachlan Lewis		Print Name:	michael		2010		Temperature Recieved at: $\S \cdot 2$ (if applicable)	#3.2	(if applicable)
Date & Time:		16/07/2020	2:00	Date & Time: (6.7.20	5)	ارز		Transported by: Hand delivered / courier	elivered /	courier
Signature:				Signature:			V			ا ا	Page No:

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	EMM Consulting Pty Ltd
Attention	Susan Dillon

Sample Login Details	
Your reference	J200432, Matraville
Envirolab Reference	247142
Date Sample Received	16/07/2020
Date Instructions Received	16/07/2020
Date Results Expected to be Reported	23/07/2020

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	8 Soil, 1 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	8.2
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments	
Nil	

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au

www.envirolab.com.au

Sample ID	VHC's in soil	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBsin Soil	Acid Extractable metalsin soil	Asbestos ID - soils	PFAS in Soils Extended	vTRH(C6-C10)/BTEXN in Water	svTRH (C10-C40) in Water	HM in water - dissolved
BH01_0.4_200715	✓	✓	✓	✓	✓	✓	✓	✓	✓				
BH02_0.5_200715		✓	✓	✓				✓	✓				
BH02_0.5_200715 BH03_0.9_200715	✓	✓	√	√	✓	✓	✓	√	√				
	✓	,	-	Ľ	✓	✓	✓		-	√			
BH03_0.9_200715	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓			
BH03_0.9_200715 BH04_0.9_200715	✓	√ √	√ ✓	√ √	✓	✓	✓	√ √	√ √	√	✓	✓	✓
BH03_0.9_200715 BH04_0.9_200715 BH05_0.5_200715	✓ ✓	√ √	√ ✓	√ √	✓	✓	√	√ √	√ √	✓	✓	✓	✓

The 'V' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

QC100_200715

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

CERTIFICATE OF ANALYSIS 247142

Client Details	
Client	EMM Consulting Pty Ltd
Attention	Susan Dillon
Address	188 Normanby Rd, SOUTHBANK, VIC, 3006

Sample Details	
Your Reference	J200432, Matraville
Number of Samples	8 Soil, 1 Water
Date samples received	16/07/2020
Date completed instructions received	16/07/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details					
Date results requested by	23/07/2020				
Date of Issue	22/07/2020				
NATA Accreditation Number 2901. This document shall not be reproduced except in full.					
Accredited for compliance with ISC	/IEC 17025 - Testing Tests not covered by NATA are denoted with *				

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Lucy Zhu Authorised by Asbestos Approved Signatory: Lucy Zhu

Results Approved By

Dragana Tomas, Senior Chemist
Jaimie Loa-Kum-Cheung, Metals Supervisor
Josh Williams, Senior Chemist
Lucy Zhu, Asbestos Supervisor
Manju Dewendrage, Chemist
Phalak Inthakesone, Organics Development Manager, Sydney
Steven Luong, Organics Supervisor

Authorised By

Nancy Zhang, Laboratory Manager

VHC's in soil			
Our Reference		247142-1	247142-3
Your Reference	UNITS	BH01_0.4_20071	BH03_0.9_20071 5
Date Sampled		15/07/2020	15/07/2020
Type of sample		Soil	Soil
Date extracted	-	17/07/2020	17/07/2020
Date analysed	-	17/07/2020	17/07/2020
Dichlorodifluoromethane	mg/kg	<1	<1
Chloromethane	mg/kg	<1	<1
Vinyl Chloride	mg/kg	<1	<1
Bromomethane	mg/kg	<1	<1
Chloroethane	mg/kg	<1	<1
Trichlorofluoromethane	mg/kg	<1	<1
1,1-Dichloroethene	mg/kg	<1	<1
trans-1,2-dichloroethene	mg/kg	<1	<1
1,1-dichloroethane	mg/kg	<1	<1
cis-1,2-dichloroethene	mg/kg	<1	<1
bromochloromethane	mg/kg	<1	<1
chloroform	mg/kg	<1	<1
2,2-dichloropropane	mg/kg	<1	<1
1,2-dichloroethane	mg/kg	<1	<1
1,1,1-trichloroethane	mg/kg	<1	<1
1,1-dichloropropene	mg/kg	<1	<1
carbon tetrachloride	mg/kg	<1	<1
dibromomethane	mg/kg	<1	<1
1,2-dichloropropane	mg/kg	<1	<1
trichloroethene	mg/kg	<1	<1
bromodichloromethane	mg/kg	<1	<1
trans-1,3-dichloropropene	mg/kg	<1	<1
cis-1,3-dichloropropene	mg/kg	<1	<1
1,1,2-trichloroethane	mg/kg	<1	<1
1,3-dichloropropane	mg/kg	<1	<1
dibromochloromethane	mg/kg	<1	<1
1,2-dibromoethane	mg/kg	<1	<1
tetrachloroethene	mg/kg	<1	<1
1,1,1,2-tetrachloroethane	mg/kg	<1	<1
chlorobenzene	mg/kg	<1	<1
bromoform	mg/kg	<1	<1
1,1,2,2-tetrachloroethane	mg/kg	<1	<1
1,2,3-trichloropropane	mg/kg	<1	<1
bromobenzene	mg/kg	<1	<1

VHC's in soil			
Our Reference		247142-1	247142-3
Your Reference	UNITS	BH01_0.4_20071 5	BH03_0.9_20071 5
Date Sampled		15/07/2020	15/07/2020
Type of sample		Soil	Soil
2-chlorotoluene	mg/kg	<1	<1
4-chlorotoluene	mg/kg	<1	<1
1,3-dichlorobenzene	mg/kg	<1	<1
1,4-dichlorobenzene	mg/kg	<1	<1
1,2-dichlorobenzene	mg/kg	<1	<1
1,2-dibromo-3-chloropropane	mg/kg	<1	<1
1,2,4-trichlorobenzene	mg/kg	<1	<1
hexachlorobutadiene	mg/kg	<1	<1
1,2,3-trichlorobenzene	mg/kg	<1	<1
Surrogate Dibromofluorometha	%	99	98
Surrogate aaa-Trifluorotoluene	%	106	104
Surrogate Toluene-d₃	%	99	98
Surrogate 4-Bromofluorobenzene	%	100	101

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		247142-1	247142-2	247142-3	247142-4	247142-5
Your Reference	UNITS	BH01_0.4_20071 5	BH02_0.5_20071 5	BH03_0.9_20071 5	BH04_0.9_20071 5	BH05_0.5_20071 5
Date Sampled		15/07/2020	15/07/2020	15/07/2020	15/07/2020	15/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	17/07/2020	17/07/2020	17/07/2020	17/07/2020	17/07/2020
Date analysed	-	17/07/2020	17/07/2020	17/07/2020	17/07/2020	17/07/2020
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	106	103	104	100	105

vTRH(C6-C10)/BTEXN in Soil				
Our Reference		247142-7	247142-8	247142-9
Your Reference	UNITS	TB01_200715	TS01_200715	QC100_200715
Date Sampled		15/07/2020	15/07/2020	15/07/2020
Type of sample		Soil	Soil	Soil
Date extracted	-	17/07/2020	17/07/2020	17/07/2020
Date analysed	-	17/07/2020	17/07/2020	17/07/2020
TRH C ₆ - C ₉	mg/kg	<25	[NA]	<25
TRH C ₆ - C ₁₀	mg/kg	<25	[NA]	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	[NA]	<25
Benzene	mg/kg	<0.2	100%	<0.2
Toluene	mg/kg	<0.5	100%	<0.5
Ethylbenzene	mg/kg	<1	98%	<1
m+p-xylene	mg/kg	<2	97%	<2
o-Xylene	mg/kg	<1	96%	<1
naphthalene	mg/kg	<1	[NA]	<1
Total +ve Xylenes	mg/kg	<3	[NT]	<3
Surrogate aaa-Trifluorotoluene	%	111	104	74

svTRH (C10-C40) in Soil						
Our Reference		247142-1	247142-2	247142-3	247142-4	247142-5
Your Reference	UNITS	BH01_0.4_20071 5	BH02_0.5_20071 5	BH03_0.9_20071 5	BH04_0.9_20071 5	BH05_0.5_20071 5
Date Sampled		15/07/2020	15/07/2020	15/07/2020	15/07/2020	15/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	17/07/2020	17/07/2020	17/07/2020	17/07/2020	17/07/2020
Date analysed	-	18/07/2020	18/07/2020	18/07/2020	18/07/2020	18/07/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	420	270	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	660	300	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	930	510	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	610	120	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	1,500	630	<50	<50
Surrogate o-Terphenyl	%	87	127	114	100	91

svTRH (C10-C40) in Soil		
Our Reference		247142-9
Your Reference	UNITS	QC100_200715
Date Sampled		15/07/2020
Type of sample		Soil
Date extracted	-	17/07/2020
Date analysed	-	18/07/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50
TRH C ₁₅ - C ₂₈	mg/kg	210
TRH C ₂₉ - C ₃₆	mg/kg	290
TRH >C ₁₀ -C ₁₆	mg/kg	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50
TRH >C ₁₆ -C ₃₄	mg/kg	450
TRH >C ₃₄ -C ₄₀	mg/kg	180
Total +ve TRH (>C10-C40)	mg/kg	620
Surrogate o-Terphenyl	%	127

PAHs in Soil						
Our Reference		247142-1	247142-2	247142-3	247142-4	247142-5
Your Reference	UNITS	BH01_0.4_20071	BH02_0.5_20071	BH03_0.9_20071	BH04_0.9_20071	BH05_0.5_20071
Date Sampled		15/07/2020	15/07/2020	15/07/2020	15/07/2020	15/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	17/07/2020	17/07/2020	17/07/2020	17/07/2020	17/07/2020
Date analysed	-	17/07/2020	17/07/2020	17/07/2020	17/07/2020	17/07/2020
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	107	103	109	108	109

Organochlorine Pesticides in soil			
Our Reference		247142-1	247142-3
Your Reference	UNITS	BH01_0.4_20071 5	BH03_0.9_20071 5
Date Sampled		15/07/2020	15/07/2020
Type of sample		Soil	Soil
Date extracted	-	17/07/2020	17/07/2020
Date analysed	-	17/07/2020	17/07/2020
alpha-BHC	mg/kg	<0.1	<0.1
нсв	mg/kg	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1
Surrogate TCMX	%	99	106

Organophosphorus Pesticides in Soil			
Our Reference		247142-1	247142-3
Your Reference	UNITS	BH01_0.4_20071	BH03_0.9_20071 5
Date Sampled		15/07/2020	15/07/2020
Type of sample		Soil	Soil
Date extracted	-	17/07/2020	17/07/2020
Date analysed	-	17/07/2020	17/07/2020
Dichlorvos	mg/kg	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1
Surrogate TCMX	%	99	106

PCBs in Soil			
Our Reference		247142-1	247142-3
Your Reference	UNITS	BH01_0.4_20071 5	BH03_0.9_20071 5
Date Sampled		15/07/2020	15/07/2020
Type of sample		Soil	Soil
Date extracted	-	17/07/2020	17/07/2020
Date analysed	-	17/07/2020	17/07/2020
Aroclor 1016	mg/kg	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1
Surrogate TCMX	%	99	106

Acid Extractable metals in soil						
Our Reference		247142-1	247142-2	247142-3	247142-4	247142-5
Your Reference	UNITS	BH01_0.4_20071 5	BH02_0.5_20071 5	BH03_0.9_20071 5	BH04_0.9_20071 5	BH05_0.5_20071 5
Date Sampled		15/07/2020	15/07/2020	15/07/2020	15/07/2020	15/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	17/07/2020	17/07/2020	17/07/2020	17/07/2020	17/07/2020
Date analysed	-	17/07/2020	17/07/2020	17/07/2020	17/07/2020	17/07/2020
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	2	3	1	4	1
Copper	mg/kg	2	20	3	25	2
Lead	mg/kg	3	18	3	47	8
Mercury	mg/kg	<0.1	<0.1	<0.1	0.7	<0.1
Nickel	mg/kg	8	17	1	22	2
Zinc	mg/kg	13	39	8	38	17

Acid Extractable metals in soil			
Our Reference		247142-9	247142-10
Your Reference	UNITS	QC100_200715	BH04_0.9_20071 5 -
			[TRIPLICATE]
Date Sampled		15/07/2020	15/07/2020
Type of sample		Soil	Soil
Date prepared	-	17/07/2020	17/07/2020
Date analysed	-	17/07/2020	17/07/2020
Arsenic	mg/kg	<4	<4
Cadmium	mg/kg	<0.4	<0.4
Chromium	mg/kg	2	5
Copper	mg/kg	5	29
Lead	mg/kg	10	49
Mercury	mg/kg	<0.1	0.8
Nickel	mg/kg	2	24
Zinc	mg/kg	14	36

Moisture						
Our Reference		247142-1	247142-2	247142-3	247142-4	247142-5
Your Reference	UNITS	BH01_0.4_20071 5	BH02_0.5_20071 5	BH03_0.9_20071 5	BH04_0.9_20071 5	BH05_0.5_20071 5
Date Sampled		15/07/2020	15/07/2020	15/07/2020	15/07/2020	15/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	17/07/2020	17/07/2020	17/07/2020	17/07/2020	17/07/2020
Date analysed	-	20/07/2020	20/07/2020	20/07/2020	20/07/2020	20/07/2020
Moisture	%	7.8	5.2	3.4	19	8.9

Moisture		
Our Reference		247142-9
Your Reference	UNITS	QC100_200715
Date Sampled		15/07/2020
Type of sample		Soil
Date prepared	-	17/07/2020
Date analysed	-	20/07/2020
Moisture	%	4.5

Asbestos ID - soils						
Our Reference		247142-1	247142-2	247142-3	247142-4	247142-5
Your Reference	UNITS	BH01_0.4_20071 5	BH02_0.5_20071	BH03_0.9_20071 5	BH04_0.9_20071 5	BH05_0.5_20071 5
Date Sampled		15/07/2020	15/07/2020	15/07/2020	15/07/2020	15/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	17/07/2020	17/07/2020	17/07/2020	17/07/2020	17/07/2020
Sample mass tested	g	Approx. 20g	Approx. 20g	Approx. 25g	Approx. 25g	Approx. 30g
Sample Description	-	Brown sandy soil	Brown sandy soil	Brown sandy soil	Brown sandy soil	Beige sandy soil
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres	No asbestos detected at reporting limit of 0.1g/kg Organic fibres	No asbestos detected at reporting limit of 0.1g/kg Organic fibres	No asbestos detected at reporting limit of 0.1g/kg Organic fibres	No asbestos detected at reporting limit of 0.1g/kg Organic fibres
		detected	detected	detected	detected	detected
Trace Analysis	-	No asbestos detected				

PFAS in Soils Extended		
Our Reference		247142-4
Your Reference	UNITS	BH04_0.9_20071
Date Sampled		15/07/2020
Type of sample		Soil
Date prepared	-	17/07/2020
Date analysed	-	18/07/2020
Perfluorobutanesulfonic acid	μg/kg	<0.1
Perfluoropentanesulfonic acid	μg/kg	<0.1
Perfluorohexanesulfonic acid - PFHxS	μg/kg	<0.1
Perfluoroheptanesulfonic acid	μg/kg	<0.1
Perfluorooctanesulfonic acid PFOS	μg/kg	2.7
Perfluorodecanesulfonic acid	μg/kg	<0.2
Perfluorobutanoic acid	μg/kg	<0.2
Perfluoropentanoic acid	μg/kg	<0.2
Perfluorohexanoic acid	μg/kg	<0.1
Perfluoroheptanoic acid	μg/kg	<0.1
Perfluorooctanoic acid PFOA	μg/kg	0.2
Perfluorononanoic acid	μg/kg	<0.1
Perfluorodecanoic acid	μg/kg	<0.5
Perfluoroundecanoic acid	μg/kg	<0.5
Perfluorododecanoic acid	μg/kg	<0.5
Perfluorotridecanoic acid	μg/kg	<0.5
Perfluorotetradecanoic acid	μg/kg	<5
4:2 FTS	μg/kg	<0.1
6:2 FTS	μg/kg	<0.1
8:2 FTS	μg/kg	<0.2
10:2 FTS	μg/kg	<0.2
Perfluorooctane sulfonamide	μg/kg	<1
N-Methyl perfluorooctane sulfonamide	μg/kg	<1
N-Ethyl perfluorooctanesulfon amide	μg/kg	<1
N-Me perfluorooctanesulfonamid oethanol	μg/kg	<1
N-Et perfluorooctanesulfonamid oethanol	μg/kg	<5
MePerfluorooctanesulf- amid oacetic acid	μg/kg	<0.2
EtPerfluorooctanesulf amid oacetic acid	μg/kg	<0.2
Surrogate ¹³ C ₈ PFOS	%	94
Surrogate ¹³ C ₂ PFOA	%	101
Extracted ISTD ¹³ C ₃ PFBS	%	108
Extracted ISTD 18 O ₂ PFHxS	%	103
Extracted ISTD ¹³ C ₄ PFOS	%	102
Extracted ISTD ¹³ C ₄ PFBA	%	120

PFAS in Soils Extended		
Our Reference		247142-4
Your Reference	UNITS	BH04_0.9_20071 5
Date Sampled		15/07/2020
Type of sample		Soil
Extracted ISTD 13 C ₃ PFPeA	%	114
Extracted ISTD 13 C ₂ PFHxA	%	97
Extracted ISTD 13 C4 PFHpA	%	105
Extracted ISTD 13 C4 PFOA	%	108
Extracted ISTD 13 C ₅ PFNA	%	109
Extracted ISTD ¹³ C ₂ PFDA	%	106
Extracted ISTD ¹³ C ₂ PFUnDA	%	108
Extracted ISTD 13 C2 PFDoDA	%	91
Extracted ISTD 13 C2 PFTeDA	%	57
Extracted ISTD ¹³ C ₂ 4:2FTS	%	114
Extracted ISTD ¹³ C ₂ 6:2FTS	%	112
Extracted ISTD ¹³ C ₂ 8:2FTS	%	130
Extracted ISTD 13 C8 FOSA	%	107
Extracted ISTD d ₃ N MeFOSA	%	85
Extracted ISTD ds N EtFOSA	%	74
Extracted ISTD d ₇ N MeFOSE	%	99
Extracted ISTD d ₉ N EtFOSE	%	92
Extracted ISTD d ₃ N MeFOSAA	%	113
Extracted ISTD ds N EtFOSAA	%	113
Total Positive PFHxS & PFOS	μg/kg	2.7
Total Positive PFOS & PFOA	μg/kg	2.9
Total Positive PFAS	μg/kg	2.9

vTRH(C6-C10)/BTEXN in Water		
Our Reference		247142-6
Your Reference	UNITS	QC300_200715
Date Sampled		15/07/2020
Type of sample		Water
Date extracted	-	17/07/2020
Date analysed	-	17/07/2020
TRH C ₆ - C ₉	μg/L	<10
TRH C ₆ - C ₁₀	μg/L	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10
Benzene	μg/L	<1
Toluene	μg/L	<1
Ethylbenzene	μg/L	<1
m+p-xylene	μg/L	<2
o-xylene	μg/L	<1
Naphthalene	μg/L	<1
Surrogate Dibromofluoromethane	%	123
Surrogate toluene-d8	%	96
Surrogate 4-BFB	%	87

svTRH (C10-C40) in Water		
Our Reference		247142-6
Your Reference	UNITS	QC300_200715
Date Sampled		15/07/2020
Type of sample		Water
Date extracted	-	17/07/2020
Date analysed	-	18/07/2020
TRH C ₁₀ - C ₁₄	μg/L	<50
TRH C ₁₅ - C ₂₈	μg/L	<100
TRH C ₂₉ - C ₃₆	μg/L	<100
TRH >C ₁₀ - C ₁₆	μg/L	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	μg/L	<50
TRH >C ₁₆ - C ₃₄	μg/L	<100
TRH >C ₃₄ - C ₄₀	μg/L	<100
Surrogate o-Terphenyl	%	106

HM in water - dissolved		
Our Reference		247142-6
Your Reference	UNITS	QC300_200715
Date Sampled		15/07/2020
Type of sample		Water
Date prepared	-	17/07/2020
Date analysed	-	17/07/2020
Arsenic-Dissolved	μg/L	<1
Cadmium-Dissolved	μg/L	<0.1
Chromium-Dissolved	μg/L	<1
Copper-Dissolved	μg/L	<1
Lead-Dissolved	μg/L	<1
Mercury-Dissolved	μg/L	<0.05
Nickel-Dissolved	μg/L	<1
Zinc-Dissolved	μg/L	<1

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.

Envirolab Reference: 247142

Revision No: R00

Method ID	Methodology Summary
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql "total="" 'eq="" +ve="" 2.="" 3.="" <pql="" a="" above.="" actually="" all="" and="" approach="" approaches="" are="" as="" assuming="" at="" be="" below="" between="" but="" calculation="" can="" conservative="" contribute="" contributing="" false="" give="" given="" half="" hence="" individual="" is="" least="" lowest="" may="" mid-point="" more="" most="" negative="" not="" note,="" of="" pahs="" pahs"="" pahs.<="" positive="" pql="" pql'values="" pql.="" present="" present.="" reflective="" reported="" simply="" stipulated="" sum="" susceptible="" td="" teq="" teqs="" that="" the="" therefore="" this="" to="" total="" when="" zero'values="" zero.=""></pql>
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.
Org-029	Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. Analysis is undertaken with LC-MS/MS. PFAS results include the sum of branched and linear isomers where applicable.
	Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.3 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components.
	Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.

Envirolab Reference: 247142

Revision No: R00

QUA	LITY CONTROL	ITY CONTROL: VHC's in soil				Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	[NT]	
Date extracted	-			17/07/2020	[NT]		[NT]	[NT]	17/07/2020		
Date analysed	-			17/07/2020	[NT]		[NT]	[NT]	17/07/2020		
Dichlorodifluoromethane	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
Chloromethane	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
Vinyl Chloride	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
Bromomethane	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
Chloroethane	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
Trichlorofluoromethane	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,1-Dichloroethene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
trans-1,2-dichloroethene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,1-dichloroethane	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	92		
cis-1,2-dichloroethene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
bromochloromethane	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
chloroform	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	85		
2,2-dichloropropane	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,2-dichloroethane	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	83		
1,1,1-trichloroethane	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	91		
1,1-dichloropropene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
carbon tetrachloride	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
dibromomethane	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,2-dichloropropane	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
trichloroethene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	91		
bromodichloromethane	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	76		
trans-1,3-dichloropropene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
cis-1,3-dichloropropene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,1,2-trichloroethane	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,3-dichloropropane	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
dibromochloromethane	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	71		
1,2-dibromoethane	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
tetrachloroethene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	88		
1,1,1,2-tetrachloroethane	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
chlorobenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
bromoform	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,1,2,2-tetrachloroethane	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,2,3-trichloropropane	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
bromobenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
2-chlorotoluene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
4-chlorotoluene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,3-dichlorobenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,4-dichlorobenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		

QUALITY CONTROL: VHC's in soil						Duplicate Spike Red			
Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	[NT]
mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
%		Org-023	102	[NT]		[NT]	[NT]	103	
%		Org-023	110	[NT]		[NT]	[NT]	103	
%		Org-023	98	[NT]		[NT]	[NT]	100	
%		Org-023	100	[NT]		[NT]	[NT]	99	
	Units mg/kg mg/kg mg/kg mg/kg % %	Units PQL mg/kg 1 mg/kg 1 mg/kg 1 mg/kg 1 mg/kg 1 mg/kg 1 % %	Units PQL Method mg/kg 1 Org-023 % Org-023 % Org-023 % Org-023 % Org-023	Units PQL Method Blank mg/kg 1 Org-023 <1	Units PQL Method Blank # mg/kg 1 Org-023 <1	Units PQL Method Blank # Base mg/kg 1 Org-023 <1	Units PQL Method Blank # Base Dup. mg/kg 1 Org-023 <1	Units PQL Method Blank # Base Dup. RPD mg/kg 1 Org-023 <1	Units PQL Method Blank # Base Dup. RPD LCS-7 mg/kg 1 Org-023 <1

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil			Du	p l icate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	[NT]
Date extracted	-			17/07/2020	4	17/07/2020	17/07/2020		17/07/2020	
Date analysed	-			17/07/2020	4	17/07/2020	17/07/2020		17/07/2020	
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	4	<25	<25	0	80	
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	4	<25	<25	0	80	
Benzene	mg/kg	0.2	Org-023	<0.2	4	<0.2	<0.2	0	81	
Toluene	mg/kg	0.5	Org-023	<0.5	4	<0.5	<0.5	0	81	
Ethylbenzene	mg/kg	1	Org-023	<1	4	<1	<1	0	79	
m+p-xylene	mg/kg	2	Org-023	<2	4	<2	<2	0	79	
o-Xylene	mg/kg	1	Org-023	<1	4	<1	<1	0	78	
naphthalene	mg/kg	1	Org-023	<1	4	<1	<1	0	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-023	110	4	100	105	5	88	

QUAL I TY CO	NTROL: svT	RH (C10-	-C40) in Soi l			Du	p l icate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	[NT]
Date extracted	-			17/07/2020	4	17/07/2020	17/07/2020		17/07/2020	
Date analysed	-			17/07/2020	4	18/07/2020	18/07/2020		17/07/2020	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	4	<50	<50	0	110	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	4	<100	<100	0	104	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	4	<100	<100	0	108	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	4	<50	<50	0	110	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	4	<100	<100	0	104	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	4	<100	<100	0	108	
Surrogate o-Terphenyl	%		Org-020	89	4	100	85	16	123	

QUA	LITY CONTRO	L: PAHs	in Soi l			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	[NT]
Date extracted	-			17/07/2020	4	17/07/2020	17/07/2020		17/07/2020	
Date analysed	-			17/07/2020	4	17/07/2020	17/07/2020		17/07/2020	
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	102	
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	[NT]	
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	[NT]	
Fluorene	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	98	
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	104	
Anthracene	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	[NT]	
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	100	
Pyrene	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	106	
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	[NT]	
Chrysene	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	90	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	4	<0.2	<0.2	0	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	4	<0.05	<0.05	0	112	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	119	4	108	109	1	105	

QUALITY Co	ONTROL: Organo	ch l orine F	Pesticides in soi l			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	[NT]
Date extracted	-			17/07/2020	[NT]		[NT]	[NT]	17/07/2020	
Date analysed	-			17/07/2020	[NT]		[NT]	[NT]	17/07/2020	
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	102	
НСВ	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	98	
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	96	
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Aldrin	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	128	
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	98	
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	102	
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	102	
Endrin	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	86	
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	90	
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	94	
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-022/025	105	[NT]		[NT]	[NT]	100	

QUAL I TY CONTI	ROL: Organopl	nosphorus	Pesticides in Soil			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	[NT]
Date extracted	-			17/07/2020	[NT]		[NT]	[NT]	17/07/2020	
Date analysed	-			17/07/2020	[NT]		[NT]	[NT]	17/07/2020	
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	114	
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Diazinon	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Ronnel	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	114	
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	110	
Malathion	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	96	
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	110	
Parathion	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	110	
Bromophos-ethyl	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	
Ethion	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	100	
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-022/025	105	[NT]		[NT]	[NT]	100	

QUALI	TY CONTRO	L: PCBs	in Soil			Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	[NT]
Date extracted	-			17/07/2020	[NT]		[NT]	[NT]	17/07/2020	
Date analysed	-			17/07/2020	[NT]		[NT]	[NT]	17/07/2020	
Aroclor 1016	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1221	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1232	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1242	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1248	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1254	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	90	
Aroclor 1260	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-021	105	[NT]		[NT]	[NT]	100	

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	[NT]
Date prepared	-			17/07/2020	4	17/07/2020	17/07/2020		17/07/2020	
Date analysed	-			17/07/2020	4	17/07/2020	17/07/2020		17/07/2020	
Arsenic	mg/kg	4	Metals-020	<4	4	<4	<4	0	102	
Cadmium	mg/kg	0.4	Metals-020	<0.4	4	<0.4	<0.4	0	102	
Chromium	mg/kg	1	Metals-020	<1	4	4	6	40	99	
Copper	mg/kg	1	Metals-020	<1	4	25	34	31	100	
Lead	mg/kg	1	Metals-020	<1	4	47	50	6	99	
Mercury	mg/kg	0.1	Metals-021	<0.1	4	0.7	0.4	55	90	
Nickel	mg/kg	1	Metals-020	<1	4	22	25	13	98	
Zinc	mg/kg	1	Metals-020	<1	4	38	44	15	101	[NT]

QUALITY CO	NTROL: PF	AS in Soi	ls Extended			Du	o l icate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	247142-4
Date prepared	-			17/07/2020	4	17/07/2020	17/07/2020		17/07/2020	17/07/2020
Date analysed	-			18/07/2020	4	18/07/2020	18/07/2020		18/07/2020	18/07/2020
Perfluorobutanesulfonic acid	μg/kg	0.1	Org-029	<0.1	4	<0.1	<0.1	0	79	105
Perfluoropentanesulfonic acid	μg/kg	0.1	Org-029	<0.1	4	<0.1	<0.1	0	81	98
Perfluorohexanesulfonic acid - PFHxS	μg/kg	0.1	Org-029	<0.1	4	<0.1	<0.1	0	83	92
Perfluoroheptanesulfonic acid	μg/kg	0.1	Org-029	<0.1	4	<0.1	<0.1	0	86	105
Perfluorooctanesulfonic acid PFOS	μg/kg	0.1	Org-029	<0.1	4	2.7	2.6	4	84	106
Perfluorodecanesulfonic acid	μg/kg	0.2	Org-029	<0.2	4	<0.2	<0.2	0	73	96
Perfluorobutanoic acid	μg/kg	0.2	Org-029	<0.2	4	<0.2	<0.2	0	80	96
Perfluoropentanoic acid	μg/kg	0.2	Org-029	<0.2	4	<0.2	<0.2	0	81	100
Perfluorohexanoic acid	μg/kg	0.1	Org-029	<0.1	4	<0.1	<0.1	0	79	99
Perfluoroheptanoic acid	μg/kg	0.1	Org-029	<0.1	4	<0.1	<0.1	0	74	93
Perfluorooctanoic acid PFOA	μg/kg	0.1	Org-029	<0.1	4	0.2	0.3	40	86	101
Perfluorononanoic acid	μg/kg	0.1	Org-029	<0.1	4	<0.1	<0.1	0	78	101
Perfluorodecanoic acid	μg/kg	0.5	Org-029	<0.5	4	<0.5	<0.5	0	84	102
Perfluoroundecanoic acid	μg/kg	0.5	Org-029	<0.5	4	<0.5	<0.5	0	84	107
Perfluorododecanoic acid	μg/kg	0.5	Org-029	<0.5	4	<0.5	<0.5	0	79	106
Perfluorotridecanoic acid	μg/kg	0.5	Org-029	<0.5	4	<0.5	<0.5	0	65	88
Perfluorotetradecanoic acid	μg/kg	5	Org-029	<5	4	<5	<5	0	78	98
4:2 FTS	μg/kg	0.1	Org-029	<0.1	4	<0.1	<0.1	0	83	87
6:2 FTS	μg/kg	0.1	Org-029	<0.1	4	<0.1	<0.1	0	72	105
8:2 FTS	μg/kg	0.2	Org-029	<0.2	4	<0.2	<0.2	0	95	98
10:2 FTS	μg/kg	0.2	Org-029	<0.2	4	<0.2	<0.2	0	87	88
Perfluorooctane sulfonamide	μg/kg	1	Org-029	<1	4	<1	<1	0	79	87
N-Methyl perfluorooctane sulfonamide	μg/kg	1	Org-029	<1	4	<1	<1	0	87	104
N-Ethyl perfluorooctanesulfon amide	μg/kg	1	Org-029	<1	4	<1	<1	0	83	104
N-Me perfluorooctanesulfonamid oethanol	μg/kg	1	Org-029	<1	4	<1	<1	0	82	100
N-Et perfluorooctanesulfonamid oethanol	μg/kg	5	Org-029	<5	4	<5	<5	0	84	97
MePerfluorooctanesulf- amid oacetic acid	μg/kg	0.2	Org-029	<0.2	4	<0.2	<0.2	0	78	107
EtPerfluorooctanesulf amid oacetic acid	μg/kg	0.2	Org-029	<0.2	4	<0.2	<0.2	0	79	93
Surrogate ¹³ C ₈ PFOS	%		Org-029	96	4	94	93	1	97	96
Surrogate ¹³ C ₂ PFOA	%		Org-029	103	4	101	101	0	102	104

Test Description Units PQL Method Blank # Base Dup. RPD LCS-1 247142-4 Extracted ISTD ® C ₁ PFBS % Org-029 105 4 108 111 3 104 102 Extracted ISTD ® O ₂ PFHxS % Org-029 105 4 103 104 1 99 106 Extracted ISTD ® O ₂ PFHxS % Org-029 110 4 1 102 106 4 102 110 1 114 116 Extracted ISTD ® O ₂ PFBA % Org-029 110 4 1 102 110 1 114 116 Extracted ISTD ® O ₂ PFBA % Org-029 110 4 1 114 110 4 108 107 Extracted ISTD ® O ₂ PFHxA % Org-029 110 4 1 114 110 4 108 107 Extracted ISTD ® O ₂ PFHxA % Org-029 98 4 97 99 2 97 98 Extracted ISTD ® O ₂ PFHxA % Org-029 105 4 105 108 3 103 103 Extracted ISTD ® O ₂ PFDA % Org-029 105 4 105 108 3 103 103 Extracted ISTD ® O ₂ PFDA % Org-029 105 4 106 110 2 103 102 Extracted ISTD ® O ₂ PFDA % Org-029 105 4 109 110 2 103 102 Extracted ISTD ® O ₂ PFDA % Org-029 114 4 106 112 6 101 103 Extracted ISTD ® O ₂ PFDA % Org-029 104 4 106 112 6 101 103 Extracted ISTD ® O ₂ PFDA % Org-029 104 4 106 112 6 101 103 Extracted ISTD ® O ₂ PFDA % Org-029 104 4 106 112 6 101 103 Extracted ISTD ® O ₂ PFDA % Org-029 104 4 106 112 6 101 103 Extracted ISTD ® O ₂ PFDA % Org-029 101 4 1 108 110 2 105 96 Extracted ISTD ® O ₂ PFDA % Org-029 101 4 1 108 110 2 105 96 Extracted ISTD ® O ₂ PFDA % Org-029 101 4 1 114 112 2 106 105 105 Extracted ISTD ® O ₂ PFDA % Org-029 107 4 108 110 12 12 106 105 Extracted ISTD ® O ₂ O ₂ PFTAD % Org-029 118 4 111 112 2 100 105 Extracted ISTD ® O ₂ O ₂ PFTAD % Org-029 118 4 111 112 123 9 113 113 Extracted ISTD ® O ₂ O ₂ PFSA % Org-029 118 4 110 110 103 113 Extracted ISTD ® O ₂ O ₂ FFSA % Org-029 118 4 110 110 103 113 113 Extracted ISTD ® O ₂ O ₂ FFSA % Org-029 118 4 110 110 110 110 110 110 110 110 110 1	QUALITY CC	NTROL: PF.	AS in Soi	ls Extended			Du	plicate		Spike Re	covery %
Extracted ISTD 19 Cs. PFHxS	Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	247142-4
Extracted ISTD ¹³ C ₄ PFOS	Extracted ISTD ¹³ C ₃ PFBS	%		Org-029	105	4	108	111	3	104	102
Extracted ISTD ¹³ C ₄ PFBA	Extracted ISTD ¹⁸ O ₂ PFHxS	%		Org-029	102	4	103	104	1	99	106
Extracted ISTD 13 C ₃ PFPeA	Extracted ISTD ¹³ C ₄ PFOS	%		Org-029	104	4	102	106	4	102	101
Extracted ISTD ¹³ C ₂ PFHxA	Extracted ISTD ¹³ C ₄ PFBA	%		Org-029	116	4	120	119	1	114	116
Extracted ISTD 13 C4 PFHpA	Extracted ISTD ¹³ C ₃ PFPeA	%		Org-029	110	4	114	110	4	108	107
Extracted ISTD ¹³ C ₄ PFOA	Extracted ISTD ¹³ C ₂ PFHxA	%		Org-029	96	4	97	99	2	97	98
Extracted ISTD 13 C ₆ PFNA % Org-029 103 4 109 107 2 105 100 Extracted ISTD 13 C ₂ PFDA % Org-029 114 4 106 112 6 101 103 Extracted ISTD 13 C ₂ PFUnDA % Org-029 104 4 108 110 2 105 96 Extracted ISTD 13 C ₂ PFUnDA % Org-029 101 4 91 99 8 96 88 Extracted ISTD 13 C ₂ PFTeDA % Org-029 107 4 57 58 2 73 114 Extracted ISTD 13 C ₂ PFTeDA % Org-029 114 4 114 112 2 106 105 Extracted ISTD 13 C ₂ 4:2FTS % Org-029 118 4 112 123 9 113 113 Extracted ISTD 13 C ₂ 8:2FTS % Org-029 128 4 130 112 15 100 107 Extracted ISTD 13 C ₆ FOSA % Org-029 107 4 107 108 1 101 103 Extracted ISTD 13 C ₆ FOSA % Org-029 85 4 85 95 11 83 96	Extracted ISTD 13 C ₄ PFHpA	%		Org-029	105	4	105	108	3	103	103
Extracted ISTD ¹³ C ₂ PFDA	Extracted ISTD ¹³ C ₄ PFOA	%		Org-029	106	4	108	110	2	103	102
Extracted ISTD ¹³ C ₂ PFUnDA	Extracted ISTD 13 C ₅ PFNA	%		Org-029	103	4	109	107	2	105	100
Extracted ISTD ¹³ C ₂ PFDoDA % Org-029 101 4 91 99 8 96 88 Extracted ISTD ¹³ C ₂ PFTeDA % Org-029 107 4 57 58 2 73 114 Extracted ISTD ¹³ C ₂ 4:2FTS % Org-029 114 4 114 112 2 106 105 Extracted ISTD ¹³ C ₂ 6:2FTS % Org-029 118 4 112 123 9 113 113 Extracted ISTD ¹³ C ₂ 8:2FTS % Org-029 128 4 130 112 15 100 107 Extracted ISTD ¹³ C ₆ FOSA % Org-029 107 4 107 108 1 101 103 Extracted ISTD ¹³ C ₆ FOSA % Org-029 85 4 85 95 11 83 96	Extracted ISTD ¹³ C ₂ PFDA	%		Org-029	114	4	106	112	6	101	103
Extracted ISTD ¹³ C ₂ PFTeDA	Extracted ISTD ¹³ C ₂ PFUnDA	%		Org-029	104	4	108	110	2	105	96
Extracted ISTD ¹³ C ₂ 4:2FTS	Extracted ISTD ¹³ C ₂ PFDoDA	%		Org-029	101	4	91	99	8	96	88
Extracted ISTD ¹³ C ₂ 6:2FTS	Extracted ISTD ¹³ C ₂ PFTeDA	%		Org-029	107	4	57	58	2	73	114
Extracted ISTD ¹³ C ₂ 8:2FTS	Extracted ISTD ¹³ C ₂ 4:2FTS	%		Org-029	114	4	114	112	2	106	105
Extracted ISTD 13 C ₈ FOSA % Org-029 107 4 107 108 1 101 103 Extracted ISTD d ₃ N MeFOSA % Org-029 85 4 85 95 11 83 96	Extracted ISTD ¹³ C ₂ 6:2FTS	%		Org-029	118	4	112	123	9	113	113
Extracted ISTD d ₃ N MeFOSA	Extracted ISTD ¹³ C ₂ 8:2FTS	%		Org-029	128	4	130	112	15	100	107
	Extracted ISTD ¹³ C ₈ FOSA	%		Org-029	107	4	107	108	1	101	103
Extracted ISTD d ₅ N EtFOSA % Org-029 74 4 74 89 18 71 91	Extracted ISTD d ₃ N MeFOSA	%		Org-029	85	4	85	95	11	83	96
	Extracted ISTD d₅ N EtFOSA	%		Org-029	74	4	74	89	18	71	91
Extracted ISTD d7 N MeFOSE % Org-029 90 4 99 95 4 94 98	Extracted ISTD d ₇ N MeFOSE	%		Org-029	90	4	99	95	4	94	98

QUALITY CO	NTROL: PF.	AS in Soil	ls Extended			Duj	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	247142-4
Extracted ISTD d ₉ N EtFOSE	%		Org-029	84	4	92	91	1	81	91
Extracted ISTD d ₃ N MeFOSAA	%		Org-029	108	4	113	112	1	112	101
Extracted ISTD d ₅ N EtFOSAA	%		Org-029	115	4	113	108	5	108	109

QUALITY CONT	ROL: vTRH(C6 - C10)/E	BTEXN in Water			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W4	[NT]
Date extracted	-			17/07/2020	[NT]		[NT]	[NT]	17/07/2020	
Date analysed	-			17/07/2020	[NT]		[NT]	[NT]	17/07/2020	
TRH C ₆ - C ₉	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	107	
TRH C ₆ - C ₁₀	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	107	
Benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	107	
Toluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	107	
Ethylbenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	101	
m+p-xylene	μg/L	2	Org-023	<2	[NT]		[NT]	[NT]	109	
o-xylene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	110	
Naphthalene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	111	[NT]		[NT]	[NT]	98	
Surrogate toluene-d8	%		Org-023	95	[NT]		[NT]	[NT]	95	
Surrogate 4-BFB	%		Org-023	91	[NT]		[NT]	[NT]	109	

QUALITY CON	ITROL: svTF	RH (C10-0	C40) in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			17/07/2020	[NT]		[NT]	[NT]	17/07/2020	
Date analysed	-			18/07/2020	[NT]		[NT]	[NT]	18/07/2020	
TRH C ₁₀ - C ₁₄	μg/L	50	Org-020	<50	[NT]		[NT]	[NT]	78	
TRH C ₁₅ - C ₂₈	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	71	
TRH C ₂₉ - C ₃₆	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	92	
TRH >C ₁₀ - C ₁₆	μg/L	50	Org-020	<50	[NT]		[NT]	[NT]	78	
TRH >C ₁₆ - C ₃₄	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	71	
TRH >C ₃₄ - C ₄₀	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	92	
Surrogate o-Terphenyl	%		Org-020	110	[NT]		[NT]	[NT]	92	

QUALITY CO	NTROL: HI	/I in water	- dissolved			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	<u>-</u>			17/07/2020	[NT]		[NT]	[NT]	17/07/2020	
Date analysed	-			17/07/2020	[NT]		[NT]	[NT]	17/07/2020	
Arsenic-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	89	
Cadmium-Dissolved	μg/L	0.1	Metals-022	<0.1	[NT]		[NT]	[NT]	91	
Chromium-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	103	
Copper-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	107	
Lead-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	100	
Mercury-Dissolved	μg/L	0.05	Metals-021	<0.05	[NT]		[NT]	[NT]	94	
Nickel-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	94	
Zinc-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	92	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% - see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 247142 R00

Report Comments

Asbestos: Excessive sample volume was provided for asbestos analysis. A portion of the supplied sample was sub-sampled according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g (50mL) of sample in its own container as per AS4964-2004.

Note: Samples were sub-sampled from bags provided by the client.

Acid Extractable Metals in Soil: The laboratory RPD acceptance criteria has been exceeded for 247142-4 for Hg. Therefore a triplicate result has been issued as laboratory sample number 247142-10.

Envirolab Reference: 247142 Page | 37 of 37 Revision No: R00

٠,			
•	•	_	
ì	4	_	
	:		
	3	7	
	5	Ų,	
	••		
	7	₹	
	┕)	
		1	
		•	
		_	
•		_	
	C	3	
	7	=	
	C	3	
	č		
	r	_	
	u	n	
	2	-	
	Ξ	_	
	ī	7	
	•		
	ti		
	ш		
	ſ	•	
	•		
		_	
•	4	_	
	Ξ	3	
	5	3	
	4	ſ	
	=	Ē	
	4		
	()	
	•		

polaled (OC

		7. ¥	-	ENVIROLAB SERVICES	SERVIC	ES	,	in and	\mathcal{L}	רווא זו מוממ	
Client:	EMM Consulting Pty Ltd			Client Project Name and Number:	nd Number:	Matraville	/ille		Envirolab Services		
Project Mgr:	Susan Dillon	,	V	3200432					12 Ashley St, Chatswood, NSW, 2067	d, NSW, 2067	
Sampler:	Lachlan Lewis	;		PO No.:		1	(1		
Address:	G/20 Chandos St			Envirolab Services Quote No. :	ote No. :	20SY259	29		Phone: 02 9910 6200		
;	ST LEONARDS NSW 2065	ne uc		Date resufts required:	۵.		\		Fax: 02 9910 6201		
Email:	llewis@emmconsulting.com.au. emmconsulting@esdat.net	m.au.	-1			-,	Standard TAT	-	E-mail: jhurst@envirolabservices.com.au	abservices.com.au	
Phone:	61401638848 Fax:	;xe		Note: Inform lab in advance if ungent tumaround is required -	i if ungent tuman	und is requi	- <i>p</i> a	surcharge applies	Contact: Jacinta Hurst		
	Sample Information	ation		i i			Tests Required	uired	y *	Comments	
Envirolab Sample ID	Client Sample ID	Date sampled	Type of sample	w droll	C Odmos	204/49/D	the strate short	164/878W 19408/ 104/878W		Provide as much information about the sample as you can	
-	BH06-30-3-20072	01/4/22	1605		XXX	X	X			ACM, PFAS .	,
٦	BHO6_1.3~200722			, , , , , , , , , , , , , , , , , , ,	×						
ጥ	100			1787				(Environal Services 12 Ashley St		
æ	8HO7-0,3-200722			\ \ \	X X					ACM	
ل ا	BH07-1.0-100722			7&7				6 :0N del	Fn: (02) 93 n 6200		_
و	8/407-3.5-200722			Ú	\ \ X	Y X	X	7	¥ 0 / 1	PFAS	
7	BH08_0.3_200722				X	X X		Date Received		40M	
Ø	ւ, դ			V	×	$\frac{1}{1}$		Time Received	Q () ,		-,
, J	13409-0.3-100722			\ \tag{4}	X			San Control			
9	- 11			X		X	X	Constitution of the second		ACM, MAS	_
1/	BHO_03-20722			X	X			Carry June 8	d/Broken/None	402	
۲,	BHO_0.8-20072				<u>^</u>	X				ACM, PIM2	_
5	123-		-	> V(>		$\frac{1}{1}$				4 . 4 .	- 1
S.	10.5				X	$\frac{1}{1}$				AC/W	
ووا	1841-3,9-200722	,		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1	-				1 77 77 3 10 10 10 10 10 10 10 10 10 10 10 10 10 1	_
Relinquished by (company):		EMM Consulting		Received by (company):					Samples Received: Cool of Ambient (Circle One)	mblent (arcle one)	
Print Name:	LA CALLET	Lachlan Lewis	(7	Sailhean!	2 2	L	Î	Temperature Recieved at:	licable)	
Date & Time:	2.4/1/1		20	Date & Time: Th.	77.77			0	Transported by: Hand delivered / courier Page No:	red / courier $(1)_{6} + 5$	``
Signature:				organica c							1

Updated by lachlan Lewis on 28/7/20 0800 Form: 302 - Chain of Custodv-Client. Issued 14/02/08. Version 3. Page 1 of 1.

Client Sample Date Community Pty Lat Community Day Lat Client Sample				CHAIN 0	I OF CUSTODY - Client	STO	7	<u></u>	lient				Fnithralah	
Environmental Port Lock Column					ENVIROLA	8 SEF	IVIC	S					TIIA)I Alda	
12 Ashley St, Chatswood, NSW, 2067 Early marked statements Early	Client:	EMM Consulting Pty Ltd			Client Project Na	ne and N	umber:	Matr	aville			Envirolab Services	8	Τ
Client Sample Information Date sample Type of sampl	Project Mgr:	Susan Dillon			3200432							12 Ashley St, Chatswo	ood, NSW, 2067	
Client Sample Information Commany	Sampler:	Lachlan Lewis			PO No.:							•	•	
Standard Total Stan	Address:	G/20 Chandos St			Envirolab Service	Quote A	. : 0	20SY	259			Phone: 02 9910 6200	-	
Separation 2017 Separation		ST LEONARDS NSW 2065			Date results requ	red:						Fax: 02 9910 6201		
Sandard TAT E-mail: jhurst@envirolabservices.com a statis@esdate.iii. Sandard TAT Sandard TAT Sandard TAT Sandard Inc. Sandard Statis@esdate.iii. Sandard Statis@esdate.iii. Sandard Statis@esdate.iii. Sandard Statis@esdate.iii. Sandard Statis@esdate.iii. Sandard Statis@esdate.iii. Sandard Statis@esdate.ii. Sandard Statis@esdate.ii. Sandard Statis@esdate.ii. Sandard Statis@esdate.ii. Sandard Statis@esdate.ii. Sandard Statis@esdate.ii. Sandard Statis Sandard		Housing Commonstitution	COIII.au,											
Sample information Collect Sample information Collect Sample information Collect Sample Collect Sa	Email:	emmconsulting@esdat.i	coman, net						Standard TA	1.1	-	E-mail: jhurst@envin	olabservices.com.au	
Comment Sample Information Common Sample Information Common Com	Phone:	61401638848	Fax:		Note: Inform lab in adv	ance if ung	ent turnaro	und is requ	ijred	surcharg		Contact: Jacinta Hurs	+	
Client Sample ID Date samples Type of sample Date sample Date sample Date sample Date sample Date sample Date sample Date	Sample Infor	rmation						Tests Re	quired	1			T	
SHIL 5.5.2100324 24/4/26 SO SO SO SO SO SO SO S	Envirolab Sample ID	Client Sample ID	Date sampled	Type of sample	TOF		+x2 <+4	5-0gmg	713(Provide as much information about th sample as you can	60
BPA 5		1	7	,		_	성	رد ر	-+					\neg
Shit = -05-200712	۾	5.5	14.147	Soll	K	-	X	X X	X				PF4-S	
344121.6-1.003712	נז	BH12-0,5-200722	7	1	M	k	,		×					Г
Philips	99				N		H	X						
3HH - 0.8.1&724 94. *** 94.	6				Y	X	X.						ACM	
別州4-3-9-100712 W W W W W W W W W	જ	- 11			ハサハ								AC.M	
8/115_0.3_2-200723 23/7/20	a	1814-3-9-200712	>		<u> </u>		Х	ኣ					PHYS	
Sitt5 - 3, 9 - 100 3 to 3 to 3 to 3 to 3 to 3 to 3 to 3	77	18115-0.3-200723	13/17		<u>-</u> ^	X		\ X	X				ACM	
Bit Lo. 4-200723	23	13:415-3.9-200 723			<u> </u>			X					PPAFS	<u> </u>
3446-1,4-200723	な	BH16-0.9-200923			Ą		X	X						Γ
34/7-20-3 150723	Ş	BH6-1.9-200723			ς.		_ <u>X</u>	イメ	X					
24/7-j.6-200723	ጎጎ				_			X					ACM	
[3#17-2.4-260723	IJ	. 4			لم	X	0	Ϋ́	X				ACM	
SH3-3-20323 ACM SH8-0-3-200723 ACM ACM SH8-0-3-200723 ACM ACM BH Consulting Received by (company): ECI Samples Received: & Acm Acm Date & Time: 24-7.20 1750 Transported by: Hand delivered courier Signature: Signature: Signature: Signature: Page No: Courier Date & Time: 24-7.20 Transported by: Hand delivered courier Date & Time: 24-7.20 Transported by: Hand delivered courier Date & Time: 24-7.20 Transported by: Hand delivered courier Date & Time: 24-7.20 Transported by: Hand delivered courier Date & Time: 24-7.20 Transported by: Hand delivered courier Date & Time: 24-7.20 Transported by: Hand delivered courier Date & Time: 24-7.20 Transported by: Hand delivered courier Date & Time: 24-7.20 Transported by: Hand delivered courier Date & Time: 24-7.20 Transported by: Hand delivered courier Date & Time: 24-7.20 Transported by: Hand delivered courier Date & Time: 24-7.20 Transported by: Hand delivered courier Date & Time: 24-7.20 Table Transported by: Hand delivered courier Date & Time: 24-7.20 Table Transported by: Hand delivered courier Date & Time: 24-7.20 Table Ta	7	[3H172,1_260723		,	127		_							
BHS_0-3_106723 V	ર્સ	BIH 7-3.9-100723	, , ,		ク掛く		-						P.Ms	Γ
by (company): EMM Consulting Received by (company): EU Samples Received: Edglor Ambient (circle one) Lachlan Lewis Print Name: ハバヴャル Cカル Temperature Recieved at: いて (if applicable) Transported by: Hand delivered / courier C Page No: (2)	36	BH18_0.3_200723	Ą	Δ	*	X		X					ACM	
Lachlan Lewis Print Name: Michael Cyl. 24/7/20 Transported by: Hand delivered / courier Page No: (2)	Relinquished b	y (company):	EMM Consulting		Received by (com	any):	N				ľ	Samples Received: 2000 or 1	Ambient (circle one)	<u> </u>
24/7/20 1730 Date & Time: 24-7.20 1750 Transported by: Hand delivered / courier 2	Print Name:		Lachlan Lewis		Print Name: $\mathcal{M}_{ec{l}}$	cher 21	Ö	3				Temperature Recieved at:	(if applicable)	
Signature: A Signature: Page No: \ 2	Date & Time:	24/72		-30	Date & Time: 2	1	2		250			ransported by: Hand deliv		
	Signature:		,		Signature:		M		M				1	7

CHAIN OF CUSTODY - Client

			_	ENVIROLAB SERVICES	CINYTOIAU
Client:	EMM Consulting Pty Ltd			Client Project Name and Number: Matraville	Envirolab Services
Project Mgr:	Susan Dillon			1200432	12 Ashley St, Chatswood, NSW, 2067
Sampler:	Lachlan Lewis			PO No.:	
Address:	G/20 Chandos St			Envirolab Services Quote No. : 20SY259	Phone: 02 9910 6200
	ST LEONARDS NSW 2065 SOMIOTIC PROTECTION OF THE	om.au.		Date results required:	Fax: 02 9910 6201
Email:	emmconsulting@esdat.net	et eur.		Standard TAT	E-mail: jhurst@envirolabservices.com.au
Phone:	61401638848 Fax:	ax:		Note: Inform lab in advance if urgent tumaround is required -	Mes Contact: Jacinta Hurst
	Sample information	nation		Tests:Required	Comments
Envirolab Sample ID	Clent Sa	Date sampled	Type of sample	Asbestor 1D PFAS ext. Combo-3 UCH	Provide as much information about the sample as you can
1	2418 16 2009, 2148	13/4/20	1607		ACM. PLAS
25	3,3_100723	11			
25	424001-5.5	24/4/10			PEAS
30	22400170	23/7/20		X	ACM
1	13H19_1.8_200723	-		X X X X X X X X X X	PFA-5
36	RH19-3,9-100723				
E	BH20,0,3,100923			XXX X	グンサ
36	BH20-0,9-100713			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Á	BH70-1.6-200713			X	- 1
O.J	BH21-0-1-100723			XXXXX	×27.7.5
ź	BH21-1,3-200723			X	
3	BH12-1.1-100723			N X X X X V	AC41, 14785
3	BHZZ-3.9-200723			スプレ	· · · · · · · · · · · · · · · · · · ·
す	BH13-0.9-200723	(''		XXX X Y	404
3	BH23-1-5-200723	W	7		
Refinanished		EMM Consulting		Received by (company): \mathcal{ECS}	Samples Received: Cool or Ambient (circle one)
Print Name:				and Opic	Temperature Recieved at: (. [(if applicable)
Date & Time:	24/7/20	H	30	Date & Time: 24-7-20 (150	Transported by: Hand delivered / courier (3) $c dagger 5$
Signature:		4		Signature:	
)				

247834

CHAIN OF CUSTODY - Client

			m	ENVIROLAB SERVICES	S		
Client:	EMM Consulting Pty Ltd		0		Matraville	Envirolab Services	
Project Mgr:	Susan Dillon			J200432		12 Ashley St, Chatswood, NSW, 2067	
Sampler:	Lachlan Lewis	,		PO No.:			
Address:	G/20 Chandos St			Envirolab Services Quote No. :	20SY259	ë	•
	ST LEONARDS NSW 2065 SQHIOMQJERITHICONSUMING. CONT. BU	com.au.		Date results required:		Fax: 02 9910 6201	
Email:	llewis@emmconsulting.com.au.emmconsulting@esdat.net	om.au. et			Standard TAT	E-mail: jhurst@envirolabservices.com.au	m:an
Phone:	61401638848 Fax:	Fax:		Note: Inform lab in advance if urgent turnaround is required -	nd is required •	Contact: Jacinta Hurst	
	Sample Information	mation			Tests Required	Comr	Comments
Envirolab Sample ID	Client Sample ID	Date sampled	Type of sample	HOLD 10 Asbess for 10 PFAS ext. PPAS ext.	#70 8-09WO)	Provide information sample a	Provide as much information about the sample as you can
1,0	BH24-0,3,20072	24/70	5611	X X	XXX	ACM	
£	1 ~			The state of		4cm	
3	NH174-2.7-200723			4	X		
3	81725_0.3_200,323			XX X	X	ACM, PPAS	PPAS
Š	131425_0,9_200923	, D.		Ø	X	00 /	
S	BA26-6-1-200724	07/4/40		767		- 17	×
52	174002-0-1-9241	-1		X X X	1 X X	7CM 113	2
S)	BI+26_1.8_200724	_			\	2,5/0	
, A	-14			X			
S	18427 6.5 200714			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	XX,	46.7. 34.44	4.5
26.	[5						
5	7.			;;; ;; ;; ;	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	John DE	DEAC
58	18th 0.3 200724			X X X		- 1	(1)
	47F007-011-82				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	AC &	
g g	181429-0.3-200724	^	>				
Relinquished t	Relinquished by (company):	EMM Consulting		Received by (company):		Samples Received Cool or Ambient (Circle one))
Print Name:		Lachlan Lewis		Print Name: / Vh Christ	COR	Temperature Recieved at: \ _ \ (if applicable)	,,,
Date & Time:	24/120	173	0	Date & Time: 150	1/30	Transported by: Hand delivered / couner	今 (チ)よい
Signature:		V		Signature:			

Client: Project Mgr: Sampler:				ENVIROLAB SERVICES	RVICE	U.	TROLAB SERVICES			(Eniv)rolab)
Project Mgr: Sampler:	EMM Consulting Pty Ltd			Client Project Name and Number	Numbon					
Sampler:	Susan Dillon			3200432		Matraville			Envirolab Services	
Addrage.	Lachlan Lewis			PO No.:					12 Ashley St, Chatswood, NSW, 2067	od, NSW, 2067
	G/20 Chandos St			Envirolab Services Onote No	No .	010000				
	ST LEONARDS NSW 2065			Date results required:		4031439			ë	
Email:	llewis@emmconsulting.com.au.	com.au,							Fax: 02 9910 6201	
Phone:	61401638848 Fax:	Fax:		Modes Information to the contract	:	Stanc	Standard TAT		E-mail: jhurst@envirolabservices.com.au	labservices.com.au
	Sample Information	mation		note. Illiam ku ki dukike li urgan tumaround is required	рел питагошо	is required -	8	surcharge applies	Contact: Jacinta Hurst	
Envirolab Sample ID	Client Sample ID	Date sampled	Type of sample	E Oque	(1) 20/23d2	=/01/KB	Shem 3	WATE 67-92 A		Comments Provide as much information about the
12	13429-2,6-200724	24/4/50		ツ) Ž		-	44			campie as you can
(3	BH30_0.3_200924	-		1	;	+				
Ę	BH30 0.9-20274			T TO	X X	+				ACM
	BH20-2,7-200724			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		1				AcM
٦٩	BH13_0.3_200724					{	+			PAS
	BM13_1.5_200924			13	х) }				Acm, PPAS
3 6	QC161_260724					<u>{</u>	X			JOS. PPAS
T	37±007-7075	>	,			_	X			
5	GC300-200722	17	Water	\			X			
T		77		4			-			
9 (34/40	>				7			
	1803 - 200 FET		100	A				X		
1,1	1 :			1	1					
7	ďΊ	+		4	1					
Relinquished by (company):		EMM Consulting	*	Poceinal his feet						
Print Name: Date & Time: Signature:	37/4/4	Lachlan Lewis		Print Name: / W. Ch. Date & Time: 26 17	200	Opie	750		Samples Received: Cool or Ambient (circle one) Temperature Recieved at: Transported by: Hand delivered / courter	lica)
	RAILS I PA			Signature:				()		Page No: (5) of 5

Form: 302 - Chain of Custody-Cilent, Issued 14/02/08, Version 3, Page 1 of 1.

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	EMM Consulting Pty Ltd
Attention	Susan Dillon, Lachlan Lewis

Sample Login Details	
Your reference	J200432, Matraville
Envirolab Reference	247834
Date Sample Received	24/07/2020
Date Instructions Received	28/07/2020
Date Results Expected to be Reported	04/08/2020

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	71 Soil, 3 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	1.5
Cooling Method	Ice Pack, Ice
Sampling Date Provided	YES

Comments

BH29_2.6_200724 Not received.

BH15_3.9_200723 No depth on the samples.

BH26_1.0_200724 PFAS jar mislabelled.

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645

12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	VHC's in soil	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBsin Soil	Acid Extractable metalsin soil	Asbestos ID - soils	PFAS in Soils Extended	PFAS in Soils Short	vTRH(C6-C10)/BTEXN in Water	svTRH (C10-C40) in Water	Metals in Water - Dissolved	PFAS in Waters Short	On Hold
BH06_0.3_200722	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓						
BH06_1.3_200722		✓	✓	✓				✓								
BH06_3.9_200722																✓
BH07_0.3_200722		✓	✓	✓				✓	✓							
BH07_1_200722																✓
BH07_3.5_200722	✓	✓	✓	✓	✓	✓	✓	✓		✓						
BH08_0.3_200722	✓	✓	✓	✓	✓	✓	✓	✓	✓							
BH08_2.7_200722		✓	✓	✓				✓								
BH09_0.3_200722		✓	✓	✓				✓								
BH09_1.5_200722	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓						
BH10_0.3_200722		✓	✓	✓				✓	✓							
BH10_0.8_200722	✓	✓	✓	✓	✓	✓	✓	✓								
BH10_2.7_200722																✓
BH11_0.5_200722		✓	✓	✓				✓	✓							
BH11_3.9_200722																✓
BH11_5.5_200724	✓	✓	✓	✓	✓	✓	✓	✓		✓						
BH12_0.5_200722	✓	✓	✓	✓	✓	✓	✓	✓	✓							
BH12_1.6_200722		✓	✓	✓				✓								
BH14_0.3_200722		✓	✓	✓	✓	✓	✓	✓	✓							
BH14_0.8_200722																✓
BH14_3.9_200722	✓	✓	✓	✓				✓		✓						
BH15_0.3_200723	✓	✓	✓	✓	✓	✓	✓	✓	✓							
BH15_3.9_200723		✓	✓	✓				✓								
BH16_0.9_200723		✓	✓	✓				✓	✓	✓						
BH16_1.7_200723	✓	✓	✓	✓	✓	✓	✓	✓								
BH17_0.3_200723		✓	✓	✓				✓								
BH17_1.6_200723	✓	✓	✓	✓	✓	✓	✓	✓	✓							
BH17_2.1_200723																✓
BH17_3.9_200723																✓
BH18_0.3_200723		✓	✓	✓				✓	✓							
BH18_1.6_200723																✓
BH18_3.3_200723																✓

Envirolab Services Pty Ltd ABN 37 112 535 645

ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

Sample ID	VHC's in soil	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBsin Soil	Acid Extractable metalsin soil	Asbestos ID - soils	PFAS in Soils Extended	PFAS in Soils Short	vTRH(C6-C10)/BTEXN in Water	svTRH (C10-C40) in Water	Metals in Water - Dissolved	PFAS in Waters Short	On Hold
BH18_5.5_200724	✓	✓	✓	✓	✓	✓	✓	✓		✓						
BH19_1_200723		✓	✓	✓				✓	✓							
BH19_1.8_200723	✓	✓	✓	✓	✓	✓	✓	✓		✓						
BH19_3.9_200723																✓
BH20_0.3_200723	✓	✓	✓	✓	✓	✓	✓	✓	✓							
BH20_0.9_200723																✓
BH20_1.6_200723		✓	✓	✓				✓								
BH21_0.2_200723	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓						
BH21_1.3_200723		✓	✓	✓				✓								
BH22_1.2_200723	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓						
BH22_3.9_200723		✓	✓	✓				✓								
BH23_0.9_200723	✓	✓	✓	✓	✓	✓	✓	✓	✓							
BH23_1.5_200723		✓	✓	✓				✓								
BH24_0.3_200723	✓	✓	✓	✓	✓	✓	✓	✓	✓							
BH24_1.4_200723																✓
BH24_2.7_200723		✓	✓	✓				✓								
BH25_0.3_200723		✓	✓	✓				✓	✓	✓						
BH25_0.9_200723	✓	✓	✓	✓	✓	✓	✓	✓								
BH26_0.1_200724																✓
BH26_1_200724	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓						
BH26_1.8_200724																✓
BH26_4.4_200724	✓	✓	✓	✓	✓	✓	✓	✓								
BH27_0.5_200724		✓	✓	✓				✓	✓							
BH27_2_200724	✓	✓	✓	✓	✓	✓	✓	✓		✓						
BH27_2,7_200724																√
BH28_0.3_200724	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓						
BH28_1_200724		✓	✓	✓					✓							
BH29_0.3_200724	✓	✓	✓	✓	✓	✓	✓	✓	✓							
BH30_0.3_200724		✓	✓	✓				1	1							
BH30 0.9 200724																✓
BH30_2.7_200724		✓	✓	✓				✓		✓						
BH13_0.3_200724		✓	✓	✓				1								

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au

www.envirolab.com.au

Sample ID	VHC's in soil	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBsin Soil	Acid Extractable metalsin soil	Asbestos ID - soils	PFAS in Soils Extended	PFAS in Soils Short	vTRH(C6-C10)/BTEXN in Water	svTRH (C10-C40) in Water	Metals in Water - Dissolved	PFAS in Waters Short	On Hold
BH13_1.5_200724	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓						
QC101_200724		✓	✓					✓			✓					
QC102_200724		✓	✓					✓			✓					
QC301_200722												✓	✓	✓	✓	
QC302_200723												✓	✓	✓	✓	
QC303_200724												✓	✓	✓	✓	
TB02_200724		✓														
TS02_200724		✓														
TB03_200724		✓														
TS03_200724		✓														

The 'V' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Envirolab Services Pty Ltd ABN 37 112 535 645 shley St Chatswood NSW 2067

12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 247834

Client Details	
Client	EMM Consulting Pty Ltd
Attention	Susan Dillon, Lachlan Lewis
Address	188 Normanby Rd, SOUTHBANK, VIC, 3006

Sample Details	
Your Reference	J200432, Matraville
Number of Samples	71 Soil, 3 Water
Date samples received	24/07/2020
Date completed instructions received	28/07/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details		
Date results requested by	04/08/2020	
Date of Issue	05/08/2020	
NATA Accreditation Number 2901	. This document shall not be reproduced except in full.	
Accredited for compliance with ISC	D/IEC 17025 - Testing. Tests not covered by NATA are denoted with *	

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Lucy Zhu Authorised by Asbestos Approved Signatory: Lucy Zhu

Results Approved By

Dragana Tomas, Senior Chemist
Hannah Nguyen, Senior Chemist
Ken Nguyen, Reporting Supervisor
Loren Bardwell, Senior Chemist
Lucy Zhu, Asbestos Supervisor
Phalak Inthakesone, Organics Development Manager, Sydney

Authorised By

Nancy Zhang, Laboratory Manager

VHC's in soil						
Our Reference		247834-1	247834-6	247834-7	247834-10	247834-12
Your Reference	UNITS	BH06_0.3_20072	BH07_3.5_20072	BH08_0.3_20072	BH09_1.5_20072	BH10_0.8_20072
Date Sampled		22/07/2020	22/07/2020	22/07/2020	22/07/2020	22/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	31/07/2020	31/07/2020	31/07/2020	31/07/2020	31/07/2020
Dichlorodifluoromethane	mg/kg	<1	<1	<1	<1	<1
Chloromethane	mg/kg	<1	<1	<1	<1	<1
Vinyl Chloride	mg/kg	<1	<1	<1	<1	<1
Bromomethane	mg/kg	<1	<1	<1	<1	<1
Chloroethane	mg/kg	<1	<1	<1	<1	<1
Trichlorofluoromethane	mg/kg	<1	<1	<1	<1	<1
1,1-Dichloroethene	mg/kg	<1	<1	<1	<1	<1
trans-1,2-dichloroethene	mg/kg	<1	<1	<1	<1	<1
1,1-dichloroethane	mg/kg	<1	<1	<1	<1	<1
cis-1,2-dichloroethene	mg/kg	<1	<1	<1	<1	<1
bromochloromethane	mg/kg	<1	<1	<1	<1	<1
chloroform	mg/kg	<1	<1	<1	<1	<1
2,2-dichloropropane	mg/kg	<1	<1	<1	<1	<1
1,2-dichloroethane	mg/kg	<1	<1	<1	<1	<1
1,1,1-trichloroethane	mg/kg	<1	<1	<1	<1	<1
1,1-dichloropropene	mg/kg	<1	<1	<1	<1	<1
carbon tetrachloride	mg/kg	<1	<1	<1	<1	<1
dibromomethane	mg/kg	<1	<1	<1	<1	<1
1,2-dichloropropane	mg/kg	<1	<1	<1	<1	<1
trichloroethene	mg/kg	<1	<1	<1	<1	<1
bromodichloromethane	mg/kg	<1	<1	<1	<1	<1
trans-1,3-dichloropropene	mg/kg	<1	<1	<1	<1	<1
cis-1,3-dichloropropene	mg/kg	<1	<1	<1	<1	<1
1,1,2-trichloroethane	mg/kg	<1	<1	<1	<1	<1
1,3-dichloropropane	mg/kg	<1	<1	<1	<1	<1
dibromochloromethane	mg/kg	<1	<1	<1	<1	<1
1,2-dibromoethane	mg/kg	<1	<1	<1	<1	<1
tetrachloroethene	mg/kg	<1	<1	<1	<1	<1
1,1,1,2-tetrachloroethane	mg/kg	<1	<1	<1	<1	<1
chlorobenzene	mg/kg	<1	<1	<1	<1	<1
bromoform	mg/kg	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	mg/kg	<1	<1	<1	<1	<1
1,2,3-trichloropropane	mg/kg	<1	<1	<1	<1	<1
bromobenzene	mg/kg	<1	<1	<1	<1	<1

VHC's in soil						
Our Reference		247834-1	247834-6	247834-7	247834-10	247834-12
Your Reference	UNITS	BH06_0.3_20072 2	BH07_3.5_20072 2	BH08_0.3_20072 2	BH09_1.5_20072 2	BH10_0.8_20072 2
Date Sampled		22/07/2020	22/07/2020	22/07/2020	22/07/2020	22/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
2-chlorotoluene	mg/kg	<1	<1	<1	<1	<1
4-chlorotoluene	mg/kg	<1	<1	<1	<1	<1
1,3-dichlorobenzene	mg/kg	<1	<1	<1	<1	<1
1,4-dichlorobenzene	mg/kg	<1	<1	<1	<1	<1
1,2-dichlorobenzene	mg/kg	<1	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	mg/kg	<1	<1	<1	<1	<1
1,2,4-trichlorobenzene	mg/kg	<1	<1	<1	<1	<1
hexachlorobutadiene	mg/kg	<1	<1	<1	<1	<1
1,2,3-trichlorobenzene	mg/kg	<1	<1	<1	<1	<1
Surrogate Dibromofluorometha	%	99	94	95	95	93
Surrogate aaa-Trifluorotoluene	%	96	97	99	96	101
Surrogate Toluene-ds	%	106	100	103	102	99
Surrogate 4-Bromofluorobenzene	%	92	93	93	93	94

VHC's in soil						
Our Reference		247834-16	247834-17	247834-21	247834-22	247834-25
Your Reference	UNITS	BH11_5.5_20072	BH12_0.5_20072	BH14_3.9_20072	BH15_0.3_20072	BH16_1.7_20072
Date Sampled		24/07/2020	22/07/2020	22/07/2020	23/07/2020	23/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	31/07/2020	31/07/2020	31/07/2020	31/07/2020	31/07/2020
Dichlorodifluoromethane	mg/kg	<1	<1	<1	<1	<1
Chloromethane	mg/kg	<1	<1	<1	<1	<1
Vinyl Chloride	mg/kg	<1	<1	<1	<1	<1
Bromomethane	mg/kg	<1	<1	<1	<1	<1
Chloroethane	mg/kg	<1	<1	<1	<1	<1
Trichlorofluoromethane	mg/kg	<1	<1	<1	<1	<1
1,1-Dichloroethene	mg/kg	<1	<1	<1	<1	<1
trans-1,2-dichloroethene	mg/kg	<1	<1	<1	<1	<1
1,1-dichloroethane	mg/kg	<1	<1	<1	<1	<1
cis-1,2-dichloroethene	mg/kg	<1	<1	<1	<1	<1
bromochloromethane	mg/kg	<1	<1	<1	<1	<1
chloroform	mg/kg	<1	<1	<1	<1	<1
2,2-dichloropropane	mg/kg	<1	<1	<1	<1	<1
1,2-dichloroethane	mg/kg	<1	<1	<1	<1	<1
1,1,1-trichloroethane	mg/kg	<1	<1	<1	<1	<1
1,1-dichloropropene	mg/kg	<1	<1	<1	<1	<1
carbon tetrachloride	mg/kg	<1	<1	<1	<1	<1
dibromomethane	mg/kg	<1	<1	<1	<1	<1
1,2-dichloropropane	mg/kg	<1	<1	<1	<1	<1
trichloroethene	mg/kg	<1	<1	<1	<1	<1
bromodichloromethane	mg/kg	<1	<1	<1	<1	<1
trans-1,3-dichloropropene	mg/kg	<1	<1	<1	<1	<1
cis-1,3-dichloropropene	mg/kg	<1	<1	<1	<1	<1
1,1,2-trichloroethane	mg/kg	<1	<1	<1	<1	<1
1,3-dichloropropane	mg/kg	<1	<1	<1	<1	<1
dibromochloromethane	mg/kg	<1	<1	<1	<1	<1
1,2-dibromoethane	mg/kg	<1	<1	<1	<1	<1
tetrachloroethene	mg/kg	<1	<1	<1	<1	<1
1,1,1,2-tetrachloroethane	mg/kg	<1	<1	<1	<1	<1
chlorobenzene	mg/kg	<1	<1	<1	<1	<1
bromoform	mg/kg	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	mg/kg	<1	<1	<1	<1	<1
1,2,3-trichloropropane	mg/kg	<1	<1	<1	<1	<1
bromobenzene	mg/kg	<1	<1	<1	<1	<1

VHC's in soil						
Our Reference		247834-16	247834-17	247834-21	247834-22	247834-25
Your Reference	UNITS	BH11_5.5_20072 4	BH12_0.5_20072 2	BH14_3.9_20072 2	BH15_0.3_20072 3	BH16_1.7_20072 3
Date Sampled		24/07/2020	22/07/2020	22/07/2020	23/07/2020	23/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
2-chlorotoluene	mg/kg	<1	<1	<1	<1	<1
4-chlorotoluene	mg/kg	<1	<1	<1	<1	<1
1,3-dichlorobenzene	mg/kg	<1	<1	<1	<1	<1
1,4-dichlorobenzene	mg/kg	<1	<1	<1	<1	<1
1,2-dichlorobenzene	mg/kg	<1	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	mg/kg	<1	<1	<1	<1	<1
1,2,4-trichlorobenzene	mg/kg	<1	<1	<1	<1	<1
hexachlorobutadiene	mg/kg	<1	<1	<1	<1	<1
1,2,3-trichlorobenzene	mg/kg	<1	<1	<1	<1	<1
Surrogate Dibromofluorometha	%	91	96	88	88	92
Surrogate aaa-Trifluorotoluene	%	93	113	86	91	94
Surrogate Toluene-ds	%	97	104	93	96	99
Surrogate 4-Bromofluorobenzene	%	94	94	96	94	94

VHC's in soil						
Our Reference		247834-27	247834-33	247834-35	247834-37	247834-40
Your Reference	UNITS	BH17_1.6_20072	BH18_5.5_20072	BH19_1.8_20072	BH20_0.3_20072	BH21_0.2_20072
Date Sampled		23/07/2020	24/07/2020	23/07/2020	23/07/2020	23/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	31/07/2020	31/07/2020	31/07/2020	31/07/2020	31/07/2020
Dichlorodifluoromethane	mg/kg	<1	<1	<1	<1	<1
Chloromethane	mg/kg	<1	<1	<1	<1	<1
Vinyl Chloride	mg/kg	<1	<1	<1	<1	<1
Bromomethane	mg/kg	<1	<1	<1	<1	<1
Chloroethane	mg/kg	<1	<1	<1	<1	<1
Trichlorofluoromethane	mg/kg	<1	<1	<1	<1	<1
1,1-Dichloroethene	mg/kg	<1	<1	<1	<1	<1
trans-1,2-dichloroethene	mg/kg	<1	<1	<1	<1	<1
1,1-dichloroethane	mg/kg	<1	<1	<1	<1	<1
cis-1,2-dichloroethene	mg/kg	<1	<1	<1	<1	<1
bromochloromethane	mg/kg	<1	<1	<1	<1	<1
chloroform	mg/kg	<1	<1	<1	<1	<1
2,2-dichloropropane	mg/kg	<1	<1	<1	<1	<1
1,2-dichloroethane	mg/kg	<1	<1	<1	<1	<1
1,1,1-trichloroethane	mg/kg	<1	<1	<1	<1	<1
1,1-dichloropropene	mg/kg	<1	<1	<1	<1	<1
carbon tetrachloride	mg/kg	<1	<1	<1	<1	<1
dibromomethane	mg/kg	<1	<1	<1	<1	<1
1,2-dichloropropane	mg/kg	<1	<1	<1	<1	<1
trichloroethene	mg/kg	<1	<1	<1	<1	<1
bromodichloromethane	mg/kg	<1	<1	<1	<1	<1
trans-1,3-dichloropropene	mg/kg	<1	<1	<1	<1	<1
cis-1,3-dichloropropene	mg/kg	<1	<1	<1	<1	<1
1,1,2-trichloroethane	mg/kg	<1	<1	<1	<1	<1
1,3-dichloropropane	mg/kg	<1	<1	<1	<1	<1
dibromochloromethane	mg/kg	<1	<1	<1	<1	<1
1,2-dibromoethane	mg/kg	<1	<1	<1	<1	<1
tetrachloroethene	mg/kg	<1	<1	<1	<1	<1
1,1,1,2-tetrachloroethane	mg/kg	<1	<1	<1	<1	<1
chlorobenzene	mg/kg	<1	<1	<1	<1	<1
bromoform	mg/kg	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	mg/kg	<1	<1	<1	<1	<1
1,2,3-trichloropropane	mg/kg	<1	<1	<1	<1	<1
bromobenzene	mg/kg	<1	<1	<1	<1	<1

VHC's in soil						
Our Reference		247834-27	247834-33	247834-35	247834-37	247834-40
Your Reference	UNITS	BH17_1.6_20072 3	BH18_5.5_20072 4	BH19_1.8_20072 3	BH20_0.3_20072 3	BH21_0.2_20072 3
Date Sampled		23/07/2020	24/07/2020	23/07/2020	23/07/2020	23/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
2-chlorotoluene	mg/kg	<1	<1	<1	<1	<1
4-chlorotoluene	mg/kg	<1	<1	<1	<1	<1
1,3-dichlorobenzene	mg/kg	<1	<1	<1	<1	<1
1,4-dichlorobenzene	mg/kg	<1	<1	<1	<1	<1
1,2-dichlorobenzene	mg/kg	<1	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	mg/kg	<1	<1	<1	<1	<1
1,2,4-trichlorobenzene	mg/kg	<1	<1	<1	<1	<1
hexachlorobutadiene	mg/kg	<1	<1	<1	<1	<1
1,2,3-trichlorobenzene	mg/kg	<1	<1	<1	<1	<1
Surrogate Dibromofluorometha	%	92	91	96	90	101
Surrogate aaa-Trifluorotoluene	%	98	103	103	97	107
Surrogate Toluene-ds	%	100	98	104	99	109
Surrogate 4-Bromofluorobenzene	%	93	94	92	93	94

VHC's in soil						
Our Reference		247834-42	247834-44	247834-46	247834-50	247834-52
Your Reference	UNITS	BH22_1.2_20072	BH23_0.9_20072	BH24_0.3_20072	BH25_0.9_20072	BH26_1_200724
Date Sampled		23/07/2020	23/07/2020	23/07/2020	23/07/2020	24/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	31/07/2020	31/07/2020	31/07/2020	31/07/2020	31/07/2020
Dichlorodifluoromethane	mg/kg	<1	<1	<1	<1	<1
Chloromethane	mg/kg	<1	<1	<1	<1	<1
Vinyl Chloride	mg/kg	<1	<1	<1	<1	<1
Bromomethane	mg/kg	<1	<1	<1	<1	<1
Chloroethane	mg/kg	<1	<1	<1	<1	<1
Trichlorofluoromethane	mg/kg	<1	<1	<1	<1	<1
1,1-Dichloroethene	mg/kg	<1	<1	<1	<1	<1
trans-1,2-dichloroethene	mg/kg	<1	<1	<1	<1	<1
1,1-dichloroethane	mg/kg	<1	<1	<1	<1	<1
cis-1,2-dichloroethene	mg/kg	<1	<1	<1	<1	<1
bromochloromethane	mg/kg	<1	<1	<1	<1	<1
chloroform	mg/kg	<1	<1	<1	<1	<1
2,2-dichloropropane	mg/kg	<1	<1	<1	<1	<1
1,2-dichloroethane	mg/kg	<1	<1	<1	<1	<1
1,1,1-trichloroethane	mg/kg	<1	<1	<1	<1	<1
1,1-dichloropropene	mg/kg	<1	<1	<1	<1	<1
carbon tetrachloride	mg/kg	<1	<1	<1	<1	<1
dibromomethane	mg/kg	<1	<1	<1	<1	<1
1,2-dichloropropane	mg/kg	<1	<1	<1	<1	<1
trichloroethene	mg/kg	<1	<1	<1	<1	<1
bromodichloromethane	mg/kg	<1	<1	<1	<1	<1
trans-1,3-dichloropropene	mg/kg	<1	<1	<1	<1	<1
cis-1,3-dichloropropene	mg/kg	<1	<1	<1	<1	<1
1,1,2-trichloroethane	mg/kg	<1	<1	<1	<1	<1
1,3-dichloropropane	mg/kg	<1	<1	<1	<1	<1
dibromochloromethane	mg/kg	<1	<1	<1	<1	<1
1,2-dibromoethane	mg/kg	<1	<1	<1	<1	<1
tetrachloroethene	mg/kg	<1	<1	<1	<1	<1
1,1,1,2-tetrachloroethane	mg/kg	<1	<1	<1	<1	<1
chlorobenzene	mg/kg	<1	<1	<1	<1	<1
bromoform	mg/kg	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	mg/kg	<1	<1	<1	<1	<1
1,2,3-trichloropropane	mg/kg	<1	<1	<1	<1	<1
bromobenzene	mg/kg	<1	<1	<1	<1	<1

VHC's in soil						
Our Reference		247834-42	247834-44	247834-46	247834-50	247834-52
Your Reference	UNITS	BH22_1.2_20072 3	BH23_0.9_20072 3	BH24_0.3_20072 3	BH25_0.9_20072 3	BH26_1_200724
Date Sampled		23/07/2020	23/07/2020	23/07/2020	23/07/2020	24/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
2-chlorotoluene	mg/kg	<1	<1	<1	<1	<1
4-chlorotoluene	mg/kg	<1	<1	<1	<1	<1
1,3-dichlorobenzene	mg/kg	<1	<1	<1	<1	<1
1,4-dichlorobenzene	mg/kg	<1	<1	<1	<1	<1
1,2-dichlorobenzene	mg/kg	<1	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	mg/kg	<1	<1	<1	<1	<1
1,2,4-trichlorobenzene	mg/kg	<1	<1	<1	<1	<1
hexachlorobutadiene	mg/kg	<1	<1	<1	<1	<1
1,2,3-trichlorobenzene	mg/kg	<1	<1	<1	<1	<1
Surrogate Dibromofluorometha	%	89	94	97	91	93
Surrogate aaa-Trifluorotoluene	%	94	103	115	109	112
Surrogate Toluene-ds	%	95	102	107	99	100
Surrogate 4-Bromofluorobenzene	%	94	94	92	92	93

VHC's in soil						
Our Reference		247834-54	247834-56	247834-58	247834-60	247834-65
Your Reference	UNITS	BH26_4.4_20072 4	BH27_2_200724	BH28_0.3_20072 4	BH29_0.3_20072 4	BH13_1.5_20072 4
Date Sampled		24/07/2020	24/07/2020	24/07/2020	24/07/2020	24/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	31/07/2020	31/07/2020	31/07/2020	31/07/2020	31/07/2020
Dichlorodifluoromethane	mg/kg	<1	<1	<1	<1	<1
Chloromethane	mg/kg	<1	<1	<1	<1	<1
Vinyl Chloride	mg/kg	<1	<1	<1	<1	<1
Bromomethane	mg/kg	<1	<1	<1	<1	<1
Chloroethane	mg/kg	<1	<1	<1	<1	<1
Trichlorofluoromethane	mg/kg	<1	<1	<1	<1	<1
1,1-Dichloroethene	mg/kg	<1	<1	<1	<1	<1
trans-1,2-dichloroethene	mg/kg	<1	<1	<1	<1	<1
1,1-dichloroethane	mg/kg	<1	<1	<1	<1	<1
cis-1,2-dichloroethene	mg/kg	<1	<1	<1	<1	<1
bromochloromethane	mg/kg	<1	<1	<1	<1	<1
chloroform	mg/kg	<1	<1	<1	<1	<1
2,2-dichloropropane	mg/kg	<1	<1	<1	<1	<1
1,2-dichloroethane	mg/kg	<1	<1	<1	<1	<1
1,1,1-trichloroethane	mg/kg	<1	<1	<1	<1	<1
1,1-dichloropropene	mg/kg	<1	<1	<1	<1	<1
carbon tetrachloride	mg/kg	<1	<1	<1	<1	<1
dibromomethane	mg/kg	<1	<1	<1	<1	<1
1,2-dichloropropane	mg/kg	<1	<1	<1	<1	<1
trichloroethene	mg/kg	<1	<1	<1	<1	<1
bromodichloromethane	mg/kg	<1	<1	<1	<1	<1
trans-1,3-dichloropropene	mg/kg	<1	<1	<1	<1	<1
cis-1,3-dichloropropene	mg/kg	<1	<1	<1	<1	<1
1,1,2-trichloroethane	mg/kg	<1	<1	<1	<1	<1
1,3-dichloropropane	mg/kg	<1	<1	<1	<1	<1
dibromochloromethane	mg/kg	<1	<1	<1	<1	<1
1,2-dibromoethane	mg/kg	<1	<1	<1	<1	<1
tetrachloroethene	mg/kg	<1	<1	<1	<1	<1
1,1,1,2-tetrachloroethane	mg/kg	<1	<1	<1	<1	<1
chlorobenzene	mg/kg	<1	<1	<1	<1	<1
bromoform	mg/kg	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	mg/kg	<1	<1	<1	<1	<1
1,2,3-trichloropropane	mg/kg	<1	<1	<1	<1	<1
bromobenzene	mg/kg	<1	<1	<1	<1	<1

VHC's in soil						
Our Reference		247834-54	247834-56	247834-58	247834-60	247834-65
Your Reference	UNITS	BH26_4.4_20072 4	BH27_2_200724	BH28_0.3_20072 4	BH29_0.3_20072 4	BH13_1.5_20072 4
Date Sampled		24/07/2020	24/07/2020	24/07/2020	24/07/2020	24/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
2-chlorotoluene	mg/kg	<1	<1	<1	<1	<1
4-chlorotoluene	mg/kg	<1	<1	<1	<1	<1
1,3-dichlorobenzene	mg/kg	<1	<1	<1	<1	<1
1,4-dichlorobenzene	mg/kg	<1	<1	<1	<1	<1
1,2-dichlorobenzene	mg/kg	<1	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	mg/kg	<1	<1	<1	<1	<1
1,2,4-trichlorobenzene	mg/kg	<1	<1	<1	<1	<1
hexachlorobutadiene	mg/kg	<1	<1	<1	<1	<1
1,2,3-trichlorobenzene	mg/kg	<1	<1	<1	<1	<1
Surrogate Dibromofluorometha	%	93	93	93	93	96
Surrogate aaa-Trifluorotoluene	%	112	105	98	105	107
Surrogate Toluene-ds	%	101	101	98	101	104
Surrogate 4-Bromofluorobenzene	%	94	93	94	93	93

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		247834-1	247834-2	247834-4	247834-6	247834-7
Your Reference	UNITS	BH06_0.3_20072 2	BH06_1.3_20072 2	BH07_0.3_20072 2	BH07_3.5_20072 2	BH08_0.3_20072 2
Date Sampled		22/07/2020	22/07/2020	22/07/2020	22/07/2020	22/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	31/07/2020	31/07/2020	31/07/2020	31/07/2020	31/07/2020
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	96	93	97	97	99

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		247834-8	247834-9	247834-10	247834-11	247834-12
Your Reference	UNITS	BH08_2.7_20072 2	BH09_0.3_20072 2	BH09_1.5_20072 2	BH10_0.3_20072 2	BH10_0.8_2007 2
Date Sampled		22/07/2020	22/07/2020	22/07/2020	22/07/2020	22/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	31/07/2020	31/07/2020	31/07/2020	31/07/2020	31/07/2020
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	100	99	96	96	101

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		247834-14	247834-16	247834-17	247834-18	247834-19
Your Reference	UNITS	BH11_0.5_20072 2	BH11_5.5_20072 4	BH12_0.5_20072 2	BH12_1.6_20072 2	BH14_0.3_20072 2
Date Sampled		22/07/2020	24/07/2020	22/07/2020	22/07/2020	22/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	31/07/2020	31/07/2020	31/07/2020	31/07/2020	31/07/2020
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	104	93	113	92	109

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		247834-21	247834-22	247834-23	247834-24	247834-25
Your Reference	UNITS	BH14_3.9_20072 2	BH15_0.3_20072 3	BH15_3.9_20072 3	BH16_0.9_20072 3	BH16_1.7_20072 3
Date Sampled		22/07/2020	23/07/2020	23/07/2020	23/07/2020	23/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	31/07/2020	31/07/2020	31/07/2020	31/07/2020	31/07/2020
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	86	91	98	107	94

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		247834-26	247834-27	247834-30	247834-33	247834-34
Your Reference	UNITS	BH17_0.3_20072	BH17_1.6_20072 3	BH18_0.3_20072 3	BH18_5.5_20072 4	BH19_1_200723
Date Sampled		23/07/2020	23/07/2020	23/07/2020	24/07/2020	23/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	31/07/2020	31/07/2020	31/07/2020	31/07/2020	31/07/2020
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	101	98	107	103	96

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		247834-35	247834-37	247834-39	247834-40	247834-41
Your Reference	UNITS	BH19_1.8_20072	BH20_0.3_20072 3	BH20_1.6_20072 3	BH21_0.2_20072 3	BH21_1.3_2007
Date Sampled		23/07/2020	23/07/2020	23/07/2020	23/07/2020	23/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	31/07/2020	31/07/2020	31/07/2020	31/07/2020	31/07/2020
TRH C6 - C9	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	103	97	111	107	107

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		247834-42	247834-43	247834-44	247834-45	247834-46
Your Reference	UNITS	BH22_1.2_20072 3	BH22_3.9_20072 3	BH23_0.9_20072 3	BH23_1.5_20072 3	BH24_0.3_20072 3
Date Sampled		23/07/2020	23/07/2020	23/07/2020	23/07/2020	23/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	31/07/2020	31/07/2020	31/07/2020	31/07/2020	31/07/2020
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	94	103	103	112	115

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		247834-48	247834-49	247834-50	247834-52	247834-54
Your Reference	UNITS	BH24_2.7_20072 3	BH25_0.3_20072 3	BH25_0.9_20072 3	BH26_1_200724	BH26_4.4_2007 4
Date Sampled		23/07/2020	23/07/2020	23/07/2020	24/07/2020	24/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	31/07/2020	31/07/2020	31/07/2020	31/07/2020	31/07/2020
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	108	104	109	112	112

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		247834-55	247834-56	247834-58	247834-59	247834-60
Your Reference	UNITS	BH27_0.5_20072 4	BH27_2_200724	BH28_0.3_20072 4	BH28_1_200724	BH29_0.3_20072 4
Date Sampled		24/07/2020	24/07/2020	24/07/2020	24/07/2020	24/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	31/07/2020	31/07/2020	31/07/2020	31/07/2020	31/07/2020
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	112	105	98	104	105

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		247834-61	247834-63	247834-64	247834-65	247834-66
Your Reference	UNITS	BH30_0.3_20072 4	BH30_2.7_20072 4	BH13_0.3_20072 4	BH13_1.5_20072 4	QC101_200724
Date Sampled		24/07/2020	24/07/2020	24/07/2020	24/07/2020	24/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	31/07/2020	31/07/2020	31/07/2020	31/07/2020	31/07/2020
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	125	120	119	107	116

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		247834-67	247834-71	247834-72	247834-73	247834-74
Your Reference	UNITS	QC102_200724	TB02_200724	TS02_200724	TB03_200724	TS03_200724
Date Sampled		24/07/2020	24/07/2020	24/07/2020	24/07/2020	24/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	31/07/2020	31/07/2020	31/07/2020	31/07/2020	31/07/2020
TRH C ₆ - C ₉	mg/kg	<25	<25		<25	[NA]
TRH C ₆ - C ₁₀	mg/kg	<25	<25		<25	[NA]
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25		<25	[NA]
Benzene	mg/kg	<0.2	<0.2	81%	<0.2	92%
Toluene	mg/kg	<0.5	<0.5	84%	<0.5	95%
Ethylbenzene	mg/kg	<1	<1	81%	<1	94%
m+p-xylene	mg/kg	<2	<2	81%	<2	93%
o-Xylene	mg/kg	<1	<1	81%	<1	93%
naphthalene	mg/kg	<1	<1		<1	[NA]
Total +ve Xylenes	mg/kg	<3	<3		<3	[NA]
Surrogate aaa-Trifluorotoluene	%	125	117	102	113	106

svTRH (C10-C40) in Soil						
Our Reference		247834-1	247834-2	247834-4	247834-6	247834-7
Your Reference	UNITS	BH06_0.3_20072 2	BH06_1.3_20072 2	BH07_0.3_20072 2	BH07_3.5_20072 2	BH08_0.3_20072 2
Date Sampled		22/07/2020	22/07/2020	22/07/2020	22/07/2020	22/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	95	92	89	90	90

svTRH (C10-C40) in Soil						
Our Reference		247834-8	247834-9	247834-10	247834-11	247834-12
Your Reference	UNITS	BH08_2.7_20072 2	BH09_0.3_20072 2	BH09_1.5_20072 2	BH10_0.3_20072 2	BH10_0.8_20072 2
Date Sampled		22/07/2020	22/07/2020	22/07/2020	22/07/2020	22/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	91	91	91	91	92

svTRH (C10-C40) in Soil						
Our Reference		247834-14	247834-16	247834-17	247834-18	247834-19
Your Reference	UNITS	BH11_0.5_20072 2	BH11_5.5_20072 4	BH12_0.5_20072 2	BH12_1.6_20072 2	BH14_0.3_20072 2
Date Sampled		22/07/2020	24/07/2020	22/07/2020	22/07/2020	22/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	98	90	91	92	89

svTRH (C10-C40) in Soil						
Our Reference		247834-21	247834-22	247834-23	247834-24	247834-25
Your Reference	UNITS	BH14_3.9_20072 2	BH15_0.3_20072 3	BH15_3.9_20072 3	BH16_0.9_20072 3	BH16_1.7_20072 3
Date Sampled		22/07/2020	23/07/2020	23/07/2020	23/07/2020	23/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	89	89	93	92	92

svTRH (C10-C40) in Soil						
Our Reference		247834-26	247834-27	247834-30	247834-33	247834-34
Your Reference	UNITS	BH17_0.3_20072 3	BH17_1.6_20072 3	BH18_0.3_20072 3	BH18_5.5_20072 4	BH19_1_200723
Date Sampled		23/07/2020	23/07/2020	23/07/2020	24/07/2020	23/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	90	105	95	89	96

svTRH (C10-C40) in Soil						
Our Reference		247834-35	247834-37	247834-39	247834-40	247834-41
Your Reference	UNITS	BH19_1.8_20072 3	BH20_0.3_20072 3	BH20_1.6_20072 3	BH21_0.2_20072 3	BH21_1.3_20072 3
Date Sampled		23/07/2020	23/07/2020	23/07/2020	23/07/2020	23/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	29/07/2020	29/07/2020	29/07/2020	30/07/2020	29/07/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	180	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	230	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	230	<50
Surrogate o-Terphenyl	%	95	93	91	94	87

svTRH (C10-C40) in Soil						
Our Reference		247834-42	247834-43	247834-44	247834-45	247834-46
Your Reference	UNITS	BH22_1.2_20072 3	BH22_3.9_20072 3	BH23_0.9_20072 3	BH23_1.5_20072 3	BH24_0.3_20072 3
Date Sampled		23/07/2020	23/07/2020	23/07/2020	23/07/2020	23/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	120
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	200
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	200
Surrogate o-Terphenyl	%	81	78	78	79	81

svTRH (C10-C40) in Soil						
Our Reference		247834-48	247834-49	247834-50	247834-52	247834-54
Your Reference	UNITS	BH24_2.7_20072 3	BH25_0.3_20072 3	BH25_0.9_20072 3	BH26_1_200724	BH26_4.4_20072 4
Date Sampled		23/07/2020	23/07/2020	23/07/2020	24/07/2020	24/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	77	83	81	89	77

svTRH (C10-C40) in Soil						
Our Reference		247834-55	247834-56	247834-58	247834-59	247834-60
Your Reference	UNITS	BH27_0.5_20072 4	BH27_2_200724	BH28_0.3_20072 4	BH28_1_200724	BH29_0.3_20072 4
Date Sampled		24/07/2020	24/07/2020	24/07/2020	24/07/2020	24/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	81	80	79	81	79

svTRH (C10-C40) in Soil						
Our Reference		247834-61	247834-63	247834-64	247834-65	247834-66
Your Reference	UNITS	BH30_0.3_20072 4	BH30_2.7_20072 4	BH13_0.3_20072 4	BH13_1.5_20072 4	QC101_200724
Date Sampled		24/07/2020	24/07/2020	24/07/2020	24/07/2020	24/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	29/07/2020	29/07/2020	30/07/2020	30/07/2020	30/07/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	79	80	77	81	81

svTRH (C10-C40) in Soil		
Our Reference		247834-67
Your Reference	UNITS	QC102_200724
Date Sampled		24/07/2020
Type of sample		Soil
Date extracted	-	29/07/2020
Date analysed	-	30/07/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100
Total +ve TRH (>C10-C40)	mg/kg	<50
Surrogate o-Terphenyl	%	85

PAHs in Soil						
Our Reference		247834-1	247834-2	247834-4	247834-6	247834-7
Your Reference	UNITS	BH06_0.3_20072 2	BH06_1.3_20072 2	BH07_0.3_20072 2	BH07_3.5_20072 2	BH08_0.3_20072
Date Sampled		22/07/2020	22/07/2020	22/07/2020	22/07/2020	22/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	30/07/2020	30/07/2020	30/07/2020	30/07/2020	30/07/2020
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	96	103	98	107	109

PAHs in Soil						
Our Reference		247834-8	247834-9	247834-10	247834-11	247834-12
Your Reference	UNITS	BH08_2.7_20072 2	BH09_0.3_20072 2	BH09_1.5_20072 2	BH10_0.3_20072 2	BH10_0.8_20072 2
Date Sampled		22/07/2020	22/07/2020	22/07/2020	22/07/2020	22/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	30/07/2020	30/07/2020	30/07/2020	30/07/2020	30/07/2020
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	0.3	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	105	104	97	96	101

PAHs in Soil						
Our Reference		247834-14	247834-16	247834-17	247834-18	247834-19
Your Reference	UNITS	BH11_0.5_20072 2	BH11_5.5_20072 4	BH12_0.5_20072 2	BH12_1.6_20072 2	BH14_0.3_20072 2
Date Sampled		22/07/2020	24/07/2020	22/07/2020	22/07/2020	22/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	30/07/2020	30/07/2020	30/07/2020	30/07/2020	30/07/2020
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	97	99	99	111	92

PAHs in Soil						
Our Reference		247834-21	247834-22	247834-23	247834-24	247834-25
Your Reference	UNITS	BH14_3.9_20072 2	BH15_0.3_20072	BH15_3.9_20072	BH16_0.9_20072	BH16_1.7_20072
Date Sampled		22/07/2020	23/07/2020	23/07/2020	23/07/2020	23/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	30/07/2020	30/07/2020	30/07/2020	30/07/2020	30/07/2020
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	0.2	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	103	100	108	110	101

PAHs in Soil						
Our Reference		247834-26	247834-27	247834-30	247834-33	247834-34
Your Reference	UNITS	BH17_0.3_20072	BH17_1.6_20072 3	BH18_0.3_20072 3	BH18_5.5_20072 4	BH19_1_200723
Date Sampled		23/07/2020	23/07/2020	23/07/2020	24/07/2020	23/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	30/07/2020	30/07/2020	30/07/2020	30/07/2020	30/07/2020
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	0.6	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	1.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	0.8	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	0.7	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	0.7	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	1	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	0.5	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	0.2	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	0.2	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	5.7	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	0.7	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	0.7	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	0.8	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	101	100	95	99	100

PAHs in Soil						
Our Reference		247834-35	247834-37	247834-39	247834-40	247834-41
Your Reference	UNITS	BH19_1.8_20072	BH20_0.3_20072	BH20_1.6_20072 3	BH21_0.2_20072	BH21_1.3_20072 3
Date Sampled		23/07/2020	23/07/2020	23/07/2020	23/07/2020	23/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	30/07/2020	30/07/2020	30/07/2020	30/07/2020	30/07/2020
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	0.7	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	0.3	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	4.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	1.4	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	6.0	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	9.4	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	3.6	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	3.9	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	3.9	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	3.3	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	0.9	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	0.3	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	1.5	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	39	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	4.4	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	4.4	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	4.4	<0.5
Surrogate p-Terphenyl-d14	%	103	104	106	95	102

PAHs in Soil						
Our Reference		247834-42	247834-43	247834-44	247834-45	247834-46
Your Reference	UNITS	BH22_1.2_20072	BH22_3.9_20072 3	BH23_0.9_20072 3	BH23_1.5_20072 3	BH24_0.3_20072
Date Sampled		23/07/2020	23/07/2020	23/07/2020	23/07/2020	23/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	30/07/2020	30/07/2020	30/07/2020	30/07/2020	30/07/2020
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.3
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.2
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.2
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.2
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	0.06
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	1.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	102	98	102	104	95

PAHs in Soil						
Our Reference		247834-48	247834-49	247834-50	247834-52	247834-54
Your Reference	UNITS	BH24_2.7_20072	BH25_0.3_20072	BH25_0.9_20072 3	BH26_1_200724	BH26_4.4_20072 4
Date Sampled		23/07/2020	23/07/2020	23/07/2020	24/07/2020	24/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	30/07/2020	30/07/2020	30/07/2020	30/07/2020	30/07/2020
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	104	105	109	100	109

PAHs in Soil						
Our Reference		247834-55	247834-56	247834-58	247834-59	247834-60
Your Reference	UNITS	BH27_0.5_20072 4	BH27_2_200724	BH28_0.3_20072 4	BH28_1_200724	BH29_0.3_2007 4
Date Sampled		24/07/2020	24/07/2020	24/07/2020	24/07/2020	24/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	30/07/2020	30/07/2020	30/07/2020	30/07/2020	30/07/2020
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	105	101	97	101	103

PAHs in Soil					
Our Reference		247834-61	247834-63	247834-64	247834-65
Your Reference	UNITS	BH30_0.3_20072 4	BH30_2.7_20072 4	BH13_0.3_20072 4	BH13_1.5_20072 4
Date Sampled		24/07/2020	24/07/2020	24/07/2020	24/07/2020
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	30/07/2020	30/07/2020	30/07/2020	30/07/2020
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	101	106	97	103

Organochlorine Pesticides in soil						
Our Reference		247834-1	247834-6	247834-7	247834-10	247834-12
Your Reference	UNITS	BH06_0.3_20072 2	BH07_3.5_20072 2	BH08_0.3_20072 2	BH09_1.5_20072 2	BH10_0.8_20072 2
Date Sampled		22/07/2020	22/07/2020	22/07/2020	22/07/2020	22/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	30/07/2020	30/07/2020	30/07/2020	30/07/2020	30/07/2020
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
нсв	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	102	115	121	122	116

Organochlorine Pesticides in soil						
Our Reference		247834-16	247834-17	247834-19	247834-22	247834-25
Your Reference	UNITS	BH11_5.5_20072 4	BH12_0.5_20072 2	BH14_0.3_20072 2	BH15_0.3_20072 3	BH16_1.7_20072 3
Date Sampled		24/07/2020	22/07/2020	22/07/2020	23/07/2020	23/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	30/07/2020	30/07/2020	30/07/2020	30/07/2020	30/07/2020
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
нсв	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	109	98	112	110	115

Organochlorine Pesticides in soil						
Our Reference		247834-27	247834-33	247834-35	247834-37	247834-40
Your Reference	UNITS	BH17_1.6_20072	BH18_5.5_20072 4	BH19_1.8_20072 3	BH20_0.3_20072 3	BH21_0.2_20072
Date Sampled		23/07/2020	24/07/2020	23/07/2020	23/07/2020	23/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	30/07/2020	30/07/2020	30/07/2020	30/07/2020	30/07/2020
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
нсв	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	0.6	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	0.2
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	0.4	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	123	108	105	108	105

Organochlorine Pesticides in soil						
Our Reference		247834-42	247834-44	247834-46	247834-50	247834-52
Your Reference	UNITS	BH22_1.2_20072	BH23_0.9_20072 3	BH24_0.3_20072 3	BH25_0.9_20072 3	BH26_1_200724
Date Sampled		23/07/2020	23/07/2020	23/07/2020	23/07/2020	24/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	30/07/2020	30/07/2020	30/07/2020	30/07/2020	30/07/2020
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
нсв	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	108	101	114	110	107

Organochlorine Pesticides in soil						
Our Reference		247834-54	247834-56	247834-58	247834-60	247834-65
Your Reference	UNITS	BH26_4.4_20072 4	BH27_2_200724	BH28_0.3_20072 4	BH29_0.3_20072 4	BH13_1.5_20072 4
Date Sampled		24/07/2020	24/07/2020	24/07/2020	24/07/2020	24/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	30/07/2020	30/07/2020	30/07/2020	30/07/2020	30/07/2020
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
нсв	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	120	107	99	117	104

Organophosphorus Pesticides in Soil						
Our Reference		247834-1	247834-6	247834-7	247834-10	247834-12
Your Reference	UNITS	BH06_0.3_20072 2	BH07_3.5_20072 2	BH08_0.3_20072 2	BH09_1.5_20072 2	BH10_0.8_20072 2
Date Sampled		22/07/2020	22/07/2020	22/07/2020	22/07/2020	22/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	30/07/2020	30/07/2020	30/07/2020	30/07/2020	30/07/2020
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	102	115	121	122	116

Organophosphorus Pesticides in Soil						
Our Reference		247834-16	247834-17	247834-19	247834-22	247834-25
Your Reference	UNITS	BH11_5.5_20072 4	BH12_0.5_20072 2	BH14_0.3_20072 2	BH15_0.3_20072 3	BH16_1.7_20072 3
Date Sampled		24/07/2020	22/07/2020	22/07/2020	23/07/2020	23/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	30/07/2020	30/07/2020	30/07/2020	30/07/2020	30/07/2020
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	109	98	112	110	115

Organophosphorus Pesticides in Soil						
Our Reference		247834-27	247834-33	247834-35	247834-37	247834-40
Your Reference	UNITS	BH17_1.6_20072	BH18_5.5_20072 4	BH19_1.8_20072	BH20_0.3_20072	BH21_0.2_20072
Date Sampled		23/07/2020	24/07/2020	23/07/2020	23/07/2020	23/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	30/07/2020	30/07/2020	30/07/2020	30/07/2020	30/07/2020
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	123	108	105	108	105

Organophosphorus Pesticides in Soil						
Our Reference		247834-42	247834-44	247834-46	247834-50	247834-52
Your Reference	UNITS	BH22_1.2_20072 3	BH23_0.9_20072 3	BH24_0.3_20072 3	BH25_0.9_20072 3	BH26_1_200724
Date Sampled		23/07/2020	23/07/2020	23/07/2020	23/07/2020	24/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	30/07/2020	30/07/2020	30/07/2020	30/07/2020	30/07/2020
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	108	101	114	110	107

Overananhaanhawya Baatiaidaa in Sail						
Organophosphorus Pesticides in Soil Our Reference		247834-54	247834-56	247834-58	247834-60	247834-65
Your Reference	UNITS	BH26_4.4_20072	BH27_2_200724	BH28_0.3_20072 4	BH29_0.3_20072 4	BH13_1.5_20072 4
Date Sampled		24/07/2020	24/07/2020	24/07/2020	24/07/2020	24/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	30/07/2020	30/07/2020	30/07/2020	30/07/2020	30/07/2020
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	120	107	99	117	104

PCBs in Soil						
Our Reference		247834-1	247834-6	247834-7	247834-10	247834-12
Your Reference	UNITS	BH06_0.3_20072 2	BH07_3.5_20072 2	BH08_0.3_20072 2	BH09_1.5_20072 2	BH10_0.8_20072 2
Date Sampled		22/07/2020	22/07/2020	22/07/2020	22/07/2020	22/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	30/07/2020	30/07/2020	30/07/2020	30/07/2020	30/07/2020
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	102	115	121	122	116

PCBs in Soil						
Our Reference		247834-16	247834-17	247834-19	247834-22	247834-25
Your Reference	UNITS	BH11_5.5_20072 4	BH12_0.5_20072 2	BH14_0.3_20072 2	BH15_0.3_20072 3	BH16_1.7_20072
Date Sampled		24/07/2020	22/07/2020	22/07/2020	23/07/2020	23/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	30/07/2020	30/07/2020	30/07/2020	30/07/2020	30/07/2020
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	109	98	112	110	115

PCBs in Soil						
Our Reference		247834-27	247834-33	247834-35	247834-37	247834-40
Your Reference	UNITS	BH17_1.6_20072 3	BH18_5.5_20072 4	BH19_1.8_20072 3	BH20_0.3_20072 3	BH21_0.2_20072 3
Date Sampled		23/07/2020	24/07/2020	23/07/2020	23/07/2020	23/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	30/07/2020	30/07/2020	30/07/2020	30/07/2020	30/07/2020
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	123	108	105	108	105

PCBs in Soil						
Our Reference		247834-42	247834-44	247834-46	247834-50	247834-52
Your Reference	UNITS	BH22_1.2_20072 3	BH23_0.9_20072 3	BH24_0.3_20072 3	BH25_0.9_20072 3	BH26_1_200724
Date Sampled		23/07/2020	23/07/2020	23/07/2020	23/07/2020	24/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	30/07/2020	30/07/2020	30/07/2020	30/07/2020	30/07/2020
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	108	101	114	110	107

PCBs in Soil						
Our Reference		247834-54	247834-56	247834-58	247834-60	247834-65
Your Reference	UNITS	BH26_4.4_20072 4	BH27_2_200724	BH28_0.3_20072 4	BH29_0.3_20072 4	BH13_1.5_20072 4
Date Sampled		24/07/2020	24/07/2020	24/07/2020	24/07/2020	24/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	30/07/2020	30/07/2020	30/07/2020	30/07/2020	30/07/2020
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	120	107	99	117	104

Acid Extractable metals in soil						
Our Reference		247834-1	247834-2	247834-4	247834-6	247834-7
Your Reference	UNITS	BH06_0.3_20072 2	BH06_1.3_20072 2	BH07_0.3_20072 2	BH07_3.5_20072 2	BH08_0.3_20072 2
Date Sampled		22/07/2020	22/07/2020	22/07/2020	22/07/2020	22/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Arsenic	mg/kg	12	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	26	3	<1	1	2
Copper	mg/kg	15	<1	<1	<1	<1
Lead	mg/kg	23	3	<1	<1	<1
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	15	<1	<1	<1	<1
Zinc	mg/kg	41	2	<1	1	8

Acid Extractable metals in soil						
Our Reference		247834-8	247834-9	247834-10	247834-11	247834-12
Your Reference	UNITS	BH08_2.7_20072 2	BH09_0.3_20072 2	BH09_1.5_20072 2	BH10_0.3_20072 2	BH10_0.8_20072 2
Date Sampled		22/07/2020	22/07/2020	22/07/2020	22/07/2020	22/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	1	1	1	4	1
Copper	mg/kg	<1	5	<1	<1	<1
Lead	mg/kg	<1	7	<1	2	<1
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	<1	6	<1	2	<1
Zinc	mg/kg	2	18	<1	3	<1

Acid Extractable metals in soil								
Our Reference		247834-14	247834-16	247834-17	247834-18	247834-19		
Your Reference	UNITS	BH11_0.5_20072 2	BH11_5.5_20072 4	BH12_0.5_20072 2	BH12_1.6_20072 2	BH14_0.3_20072 2		
Date Sampled		22/07/2020	24/07/2020	22/07/2020	22/07/2020	22/07/2020		
Type of sample		Soil	Soil	Soil	Soil	Soil		
Date prepared	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020		
Date analysed	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020		
Arsenic	mg/kg	<4	<4	<4	<4	<4		
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4		
Chromium	mg/kg	<1	1	2	2	1		
Copper	mg/kg	2	<1	3	<1	2		
Lead	mg/kg	4	<1	12	1	7		
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1		
Nickel	mg/kg	1	<1	2	<1	1		
Zinc	mg/kg	13	3	120	10	11		

Acid Extractable metals in soil						
Our Reference		247834-21	247834-22	247834-23	247834-24	247834-25
Your Reference	UNITS	BH14_3.9_20072 2	BH15_0.3_20072 3	BH15_3.9_20072 3	BH16_0.9_20072 3	BH16_1.7_20072 3
Date Sampled		22/07/2020	23/07/2020	23/07/2020	23/07/2020	23/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	1	7	1	<1	2
Copper	mg/kg	<1	30	<1	<1	<1
Lead	mg/kg	<1	35	<1	<1	1
Mercury	mg/kg	<0.1	0.2	<0.1	<0.1	<0.1
Nickel	mg/kg	<1	20	<1	<1	<1
Zinc	mg/kg	6	55	1	1	2

Acid Extractable metals in soil						
Our Reference		247834-26	247834-27	247834-30	247834-33	247834-34
Your Reference	UNITS	BH17_0.3_20072 3	BH17_1.6_20072 3	BH18_0.3_20072 3	BH18_5.5_20072 4	BH19_1_200723
Date Sampled		23/07/2020	23/07/2020	23/07/2020	24/07/2020	23/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Arsenic	mg/kg	<4	10	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	1	5	<1	<1	<1
Copper	mg/kg	4	790	4	<1	3
Lead	mg/kg	6	2,000	5	<1	2
Mercury	mg/kg	<0.1	0.2	<0.1	<0.1	<0.1
Nickel	mg/kg	2	8	1	<1	<1
Zinc	mg/kg	13	190	13	5	6

Acid Extractable metals in soil						
Our Reference		247834-35	247834-37	247834-39	247834-40	247834-41
Your Reference	UNITS	BH19_1.8_20072 3	BH20_0.3_20072 3	BH20_1.6_20072 3	BH21_0.2_20072 3	BH21_1.3_20072 3
Date Sampled		23/07/2020	23/07/2020	23/07/2020	23/07/2020	23/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	2	<1	<1	10	<1
Copper	mg/kg	<1	<1	<1	12	<1
Lead	mg/kg	3	2	<1	430	1
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	<1	<1	<1	47	<1
Zinc	mg/kg	3	2	<1	29	<1

Acid Extractable metals in soil						
Our Reference		247834-42	247834-43	247834-44	247834-45	247834-46
Your Reference	UNITS	BH22_1.2_20072 3	BH22_3.9_20072 3	BH23_0.9_20072 3	BH23_1.5_20072 3	BH24_0.3_20072 3
Date Sampled		23/07/2020	23/07/2020	23/07/2020	23/07/2020	23/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	<1	2	<1	1	6
Copper	mg/kg	<1	<1	<1	<1	25
Lead	mg/kg	<1	<1	<1	<1	41
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	<1	<1	1	<1	36
Zinc	mg/kg	3	3	3	1	53

Acid Extractable metals in soil						
Our Reference		247834-48	247834-49	247834-50	247834-52	247834-54
Your Reference	UNITS	BH24_2.7_20072 3	BH25_0.3_20072 3	BH25_0.9_20072 3	BH26_1_200724	BH26_4.4_20072 4
Date Sampled		23/07/2020	23/07/2020	23/07/2020	24/07/2020	24/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	<1	<1	<1	<1	1
Copper	mg/kg	<1	1	1	1	<1
Lead	mg/kg	1	2	1	2	<1
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	<1	<1	1	1	<1
Zinc	mg/kg	3	4	2	13	2

Acid Extractable metals in soil						
Our Reference		247834-55	247834-56	247834-58	247834-59	247834-60
Your Reference	UNITS	BH27_0.5_20072 4	BH27_2_200724	BH28_0.3_20072 4	BH28_1_200724	BH29_0.3_20072 4
Date Sampled		24/07/2020	24/07/2020	24/07/2020	24/07/2020	24/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	29/07/2020	29/07/2020	29/07/2020	05/08/2020	29/07/2020
Date analysed	-	29/07/2020	29/07/2020	29/07/2020	05/08/2020	29/07/2020
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	3	1	2	1	4
Copper	mg/kg	26	4	1	<1	6
Lead	mg/kg	10	2	4	<1	26
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	10	6	5	<1	4
Zinc	mg/kg	25	43	14	4	30

Acid Extractable metals in soil						
Our Reference		247834-61	247834-63	247834-64	247834-65	247834-66
Your Reference	UNITS	BH30_0.3_20072 4	BH30_2.7_20072 4	BH13_0.3_20072 4	BH13_1.5_20072 4	QC101_200724
Date Sampled		24/07/2020	24/07/2020	24/07/2020	24/07/2020	24/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	5	1	1	<1	<1
Copper	mg/kg	4	<1	<1	<1	3
Lead	mg/kg	4	1	3	1	4
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	6	<1	<1	<1	2
Zinc	mg/kg	10	1	5	9	22

Acid Extractable metals in soil				
Our Reference		247834-67	247834-75	247834-76
Your Reference	UNITS	QC102_200724	BH17_1.6_20072 3 - [TRIPLICATE]	BH21_0.2_20072 3 - [TRIPLICATE]
Date Sampled		24/07/2020	23/07/2020	23/07/2020
Type of sample		Soil	Soil	Soil
Date prepared	-	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	29/07/2020	29/07/2020	29/07/2020
Arsenic	mg/kg	<4	11	<4
Cadmium	mg/kg	<0.4	0.5	<0.4
Chromium	mg/kg	1	7	7
Copper	mg/kg	3	480	16
Lead	mg/kg	1	630	82
Mercury	mg/kg	<0.1	0.3	<0.1
Nickel	mg/kg	5	10	36
Zinc	mg/kg	31	340	33

Moisture						
Our Reference		247834-1	247834-2	247834-4	247834-6	247834-7
Your Reference	UNITS	BH06_0.3_20072 2	BH06_1.3_20072 2	BH07_0.3_20072 2	BH07_3.5_20072 2	BH08_0.3_20072 2
Date Sampled		22/07/2020	22/07/2020	22/07/2020	22/07/2020	22/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	30/07/2020	30/07/2020	30/07/2020	30/07/2020	30/07/2020
Moisture	%	10	6.7	3.4	13	4.3
Moisture						
Our Reference		247834-8	247834-9	247834-10	247834-11	247834-12
Your Reference	UNITS	BH08_2.7_20072 2	BH09_0.3_20072 2	BH09_1.5_20072 2	BH10_0.3_20072 2	BH10_0.8_20072 2
Date Sampled		22/07/2020	22/07/2020	22/07/2020	22/07/2020	22/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	30/07/2020	30/07/2020	30/07/2020	30/07/2020	30/07/2020
Moisture	%	4.3	11	5.3	4.1	12
Moisture						
Our Reference		247834-14	247834-16	247834-17	247834-18	247834-19
Your Reference	UNITS	BH11_0.5_20072	BH11_5.5_20072 4	BH12_0.5_20072	BH12_1.6_20072 2	BH14_0.3_20072 2
Date Sampled		22/07/2020	24/07/2020	22/07/2020	22/07/2020	22/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	30/07/2020	30/07/2020	30/07/2020	30/07/2020	30/07/2020
Moisture	%	<0.1	12	6.5	5.2	5.9
Moisture						
Our Reference		247834-21	247834-22	247834-23	247834-24	247834-25
Your Reference	UNITS	BH14_3.9_20072 2	BH15_0.3_20072	BH15_3.9_20072	BH16_0.9_20072	BH16_1.7_20072
Date Sampled		22/07/2020	23/07/2020	23/07/2020	23/07/2020	23/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	30/07/2020	30/07/2020	30/07/2020	30/07/2020	30/07/2020
Moisture	%	15	5.3	20	2.2	4.4
Moisture						
Our Reference		247834-26	247834-27	247834-30	247834-33	247834-34
Your Reference	UNITS	BH17_0.3_20072	BH17_1.6_20072	BH18_0.3_20072	BH18_5.5_20072 4	BH19_1_200723
Date Sampled		23/07/2020	23/07/2020	23/07/2020	24/07/2020	23/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	30/07/2020	30/07/2020	30/07/2020	30/07/2020	30/07/2020
Moisture	%	5.0	16	2.9	13	5.4

	Olicher	Ciciciciice. 020	5702, Matiaviii			
Moisture						
Our Reference		247834-35	247834-37	247834-39	247834-40	247834-41
Your Reference	UNITS	BH19_1.8_20072	BH20_0.3_20072	BH20_1.6_20072	BH21_0.2_20072	BH21_1.3_20072
Date Sampled		23/07/2020	23/07/2020	23/07/2020	23/07/2020	23/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	30/07/2020	30/07/2020	30/07/2020	30/07/2020	30/07/2020
Moisture	%	6.2	1.2	3.1	12	2.8
Moisture						
Our Reference		247834-42	247834-43	247834-44	247834-45	247834-46
Your Reference	UNITS	BH22_1.2_20072	BH22_3.9_20072	BH23_0.9_20072	BH23_1.5_20072	BH24_0.3_20072
Date Sampled		23/07/2020	23/07/2020	23/07/2020	23/07/2020	23/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	30/07/2020	30/07/2020	30/07/2020	30/07/2020	30/07/2020
Moisture	%	2.2	17	28	9.9	37
Moisture						
Our Reference		247834-48	247834-49	247834-50	247834-52	247834-54
Your Reference	UNITS	BH24_2.7_20072 3	BH25_0.3_20072 3	BH25_0.9_20072 3	BH26_1_200724	BH26_4.4_20072 4
Date Sampled		23/07/2020	23/07/2020	23/07/2020	24/07/2020	24/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	_	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	_	30/07/2020	30/07/2020	30/07/2020	30/07/2020	30/07/2020
Moisture	%	13	4.7	2.2	5.2	19
Moisture						
Our Reference		247834-55	247834-56	247834-58	247834-59	247834-60
Your Reference	UNITS	BH27_0.5_20072 4	BH27_2_200724	BH28_0.3_20072 4	BH28_1_200724	BH29_0.3_20072 4
Date Sampled		24/07/2020	24/07/2020	24/07/2020	24/07/2020	24/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	30/07/2020	30/07/2020	30/07/2020	30/07/2020	30/07/2020
Moisture	%	6.3	7.6	5.7	7.8	43
Moisture						
Our Reference		247834-61	247834-63	247834-64	247834-65	247834-66
Your Reference	UNITS	BH30_0.3_20072 4	BH30_2.7_20072 4	BH13_0.3_20072 4	BH13_1.5_20072 4	QC101_200724
Date Sampled		24/07/2020	24/07/2020	24/07/2020	24/07/2020	24/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	30/07/2020	30/07/2020	30/07/2020	30/07/2020	30/07/2020
	i .	1	i .	i contract of the contract of	i .	i .

Envirolab Reference: 247834 Revision No: R00 %

8.2

23

8.5

Moisture

4.9

5.0

Moisture		
Our Reference		247834-67
Your Reference	UNITS	QC102_200724
Date Sampled		24/07/2020
Type of sample		Soil
Date prepared	-	29/07/2020
Date analysed	-	30/07/2020
Moisture	%	11

Asbestos ID - soils						
Our Reference		247834-1	247834-4	247834-7	247834-10	247834-11
Your Reference	UNITS	BH06_0.3_20072 2	BH07_0.3_20072 2	BH08_0.3_20072 2	BH09_1.5_20072 2	BH10_0.3_20072
Date Sampled		22/07/2020	22/07/2020	22/07/2020	22/07/2020	22/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Sample mass tested	g	Approx. 30g	Approx. 25g	Approx. 30g	Approx. 40g	Approx. 30g
Sample Description	-	Brown sandy soil	Beige sandy soil	Brown sandy soil	Brown sandy soil	Brown sandy soil
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected			
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected

Ashada ID ash						
Asbestos ID - soils Our Reference		247834-14	247834-17	247834-19	247834-22	247834-24
Your Reference	UNITS	BH11_0.5_20072	BH12_0.5_20072	BH14_0.3_20072	BH15_0.3_20072	BH16_0.9_20072
Date Sampled		22/07/2020	22/07/2020	22/07/2020	23/07/2020	23/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Sample mass tested	g	Approx. 35g	Approx. 20g	Approx. 45g	Approx. 20g	Approx. 35g
Sample Description	-	Brown sandy soil	Brown sandy soil	Brown sandy soil	Grey fine-grained soil & rocks	Beige sandy soil
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg
		Organic fibres detected	Organic fibres detected	Organic fibres detected	Organic fibres detected	Organic fibres detected
Trace Analysis	-	No asbestos detected				
Asbestos ID - soils						
Our Reference		247834-27	247834-30	247834-34	247834-37	247834-40
Your Reference	UNITS	BH17_1.6_20072	BH18_0.3_20072	BH19_1_200723	BH20_0.3_20072	BH21_0.2_20072
Date Sampled		23/07/2020	23/07/2020	23/07/2020	23/07/2020	23/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Sample mass tested	g	Approx. 20g	Approx. 25g	Approx. 30g	Approx. 30g	Approx. 25g
Sample Description	-	Brown sandy soil				
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg
		Organic fibres detected				
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected

Asbestos ID - soils						
Our Reference		247834-42	247834-44	247834-46	247834-49	247834-52
Your Reference	UNITS	BH22_1.2_20072 3	BH23_0.9_20072 3	BH24_0.3_20072 3	BH25_0.3_20072 3	BH26_1_200724
Date Sampled		23/07/2020	23/07/2020	23/07/2020	23/07/2020	24/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Sample mass tested	9	17.44g	Approx. 25g	Approx. 30g	Approx. 35g	Approx. 30g
Sample Description	-	Brown sandy soil	Brown sandy soil	Brown sandy soil	Brown sandy soil	Brown sandy soil
Asbestos ID in soil	-	Chrysotile asbestos detected Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected			
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected

Asbestos ID - soils						
Our Reference		247834-55	247834-58	247834-59	247834-60	247834-61
Your Reference	UNITS	BH27_0.5_20072	BH28_0.3_20072 4	BH28_1_200724	BH29_0.3_20072 4	BH30_0.3_20072 4
Date Sampled		24/07/2020	24/07/2020	24/07/2020	24/07/2020	24/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	29/07/2020	29/07/2020	29/07/2020	29/07/2020	29/07/2020
Sample mass tested	9	Approx. 30g	Approx. 30g	Approx. 30g	Approx. 30g	Approx. 35g
Sample Description	-	Brown sandy soil				
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg
		Organic fibres detected				
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected

Asbestos ID - soils		
Our Reference		247834-65
Your Reference	UNITS	BH13_1.5_20072 4
Date Sampled		24/07/2020
Type of sample		Soil
Date analysed	-	29/07/2020
Sample mass tested	g	Approx. 45g
Sample Description	-	Brown sandy soil
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg
		Organic fibres detected
Trace Analysis	-	No asbestos detected

PFAS in Soils Extended						
Our Reference		247834-1	247834-6	247834-10	247834-16	247834-21
Your Reference	UNITS	BH06_0.3_20072 2	BH07_3.5_20072 2	BH09_1.5_20072 2	BH11_5.5_20072 4	BH14_3.9_20072 2
Date Sampled		22/07/2020	22/07/2020	22/07/2020	24/07/2020	22/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	03/08/2020	03/08/2020	03/08/2020	03/08/2020	03/08/2020
Date analysed	-	04/08/2020	04/08/2020	04/08/2020	04/08/2020	04/08/2020
Perfluorobutanesulfonic acid	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluoropentanesulfonic acid	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluorohexanesulfonic acid - PFHxS	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluoroheptanesulfonic acid	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluorooctanesulfonic acid PFOS	μg/kg	<0.1	0.4	<0.1	<0.1	0.9
Perfluorodecanesulfonic acid	μg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Perfluorobutanoic acid	μg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Perfluoropentanoic acid	μg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Perfluorohexanoic acid	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluoroheptanoic acid	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluorooctanoic acid PFOA	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluorononanoic acid	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluorodecanoic acid	μg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Perfluoroundecanoic acid	μg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Perfluorododecanoic acid	μg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Perfluorotridecanoic acid	μg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Perfluorotetradecanoic acid	μg/kg	<5	<5	<5	<5	<5
4:2 FTS	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
6:2 FTS	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
8:2 FTS	μg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
10:2 FTS	μg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Perfluorooctane sulfonamide	μg/kg	<1	<1	<1	<1	<1
N-Methyl perfluorooctane sulfonamide	μg/kg	<1	<1	<1	<1	<1
N-Ethyl perfluorooctanesulfon amide	μg/kg	<1	<1	<1	<1	<1
N-Me perfluorooctanesulfonamid oethanol	μg/kg	<1	<1	<1	<1	<1
N-Et perfluorooctanesulfonamid oethanol	μg/kg	<5	<5	<5	<5	<5
MePerfluorooctanesulf- amid oacetic acid	μg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
EtPerfluorooctanesulf amid oacetic acid	μg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Surrogate ¹³ C ₈ PFOS	%	112	105	98	100	98
Surrogate ¹³ C ₂ PFOA	%	103	106	116	108	103
Extracted ISTD 13 C3 PFBS	%	83	86	90	87	85
Extracted ISTD 18 O ₂ PFHxS	%	90	90	96	88	90
Extracted ISTD 13 C4 PFOS	%	86	90	91	90	90
Extracted ISTD ¹³ C ₄ PFBA	%	68	82	84	82	82

PFAS in Soils Extended Our Reference		247834-1	247834-6	247834-10	247834-16	247834-21
Your Reference	UNITS	BH06_0.3_20072 2	BH07_3.5_20072 2	2 BH09_1.5_20072	BH11_5.5_20072 4	BH14_3.9_20072 2
Date Sampled		22/07/2020	22/07/2020	22/07/2020	24/07/2020	22/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Extracted ISTD 13 C3 PFPeA	%	85	84	88	85	81
Extracted ISTD 13 C2 PFHxA	%	87	86	92	86	84
Extracted ISTD 13 C4 PFHpA	%	89	84	95	87	85
Extracted ISTD 13 C4 PFOA	%	96	91	95	95	94
Extracted ISTD 13 C ₅ PFNA	%	90	87	91	87	88
Extracted ISTD 13 C2 PFDA	%	100	95	94	91	90
Extracted ISTD 13 C2 PFUnDA	%	108	89	90	94	92
Extracted ISTD 13 C2 PFDoDA	%	106	81	76	90	82
Extracted ISTD 13 C2 PFTeDA	%	58	44	45	62	69
Extracted ISTD 13 C ₂ 4:2FTS	%	97	90	92	90	92
Extracted ISTD ¹³ C ₂ 6:2FTS	%	111	92	102	98	97
Extracted ISTD 13 C ₂ 8:2FTS	%	119	96	100	95	81
Extracted ISTD ¹³ C ₈ FOSA	%	76	77	82	84	83
Extracted ISTD d ₃ N MeFOSA	%	77	71	79	83	82
Extracted ISTD d₅ N EtFOSA	%	79	69	75	84	80
Extracted ISTD d ₇ N MeFOSE	%	85	80	87	98	92
Extracted ISTD d ₉ N EtFOSE	%	79	70	77	84	79
Extracted ISTD d ₃ N MeFOSAA	%	116	95	88	93	92
Extracted ISTD d₅ N EtFOSAA	%	101	85	73	90	82
Total Positive PFHxS & PFOS	μg/kg	<0.1	0.4	<0.1	<0.1	0.9
Total Positive PFOS & PFOA	μg/kg	<0.1	0.4	<0.1	<0.1	0.9
Total Positive PFAS	μg/kg	<0.1	0.4	<0.1	<0.1	0.9

PFAS in Soils Extended						
Our Reference		247834-24	247834-33	247834-35	247834-40	247834-42
Your Reference	UNITS	BH16_0.9_20072	BH18_5.5_20072 4	BH19_1.8_20072	BH21_0.2_20072	BH22_1.2_20072 3
Date Sampled		23/07/2020	24/07/2020	23/07/2020	23/07/2020	23/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	03/08/2020	03/08/2020	03/08/2020	03/08/2020	03/08/2020
Date analysed	-	04/08/2020	04/08/2020	04/08/2020	04/08/2020	04/08/2020
Perfluorobutanesulfonic acid	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluoropentanesulfonic acid	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluorohexanesulfonic acid - PFHxS	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluoroheptanesulfonic acid	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluorooctanesulfonic acid PFOS	μg/kg	0.5	<0.1	<0.1	<0.1	0.2
Perfluorodecanesulfonic acid	μg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Perfluorobutanoic acid	μg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Perfluoropentanoic acid	μg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Perfluorohexanoic acid	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluoroheptanoic acid	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluorooctanoic acid PFOA	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluorononanoic acid	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluorodecanoic acid	μg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Perfluoroundecanoic acid	μg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Perfluorododecanoic acid	μg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Perfluorotridecanoic acid	μg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Perfluorotetradecanoic acid	μg/kg	<5	<5	<5	<5	<5
4:2 FTS	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
6:2 FTS	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
8:2 FTS	μg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
10:2 FTS	μg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Perfluorooctane sulfonamide	μg/kg	<1	<1	<1	<1	<1
N-Methyl perfluorooctane sulfonamide	μg/kg	<1	<1	<1	<1	<1
N-Ethyl perfluorooctanesulfon amide	μg/kg	<1	<1	<1	<1	<1
N-Me perfluorooctanesulfonamid oethanol	μg/kg	<1	<1	<1	<1	<1
N-Et perfluorooctanesulfonamid oethanol	μg/kg	<5	<5	<5	<5	<5
MePerfluorooctanesulf- amid oacetic acid	μg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
EtPerfluorooctanesulf amid oacetic acid	μg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Surrogate ¹³ C ₈ PFOS	%	97	101	100	103	101
Surrogate ¹³ C ₂ PFOA	%	110	102	108	107	107
Extracted ISTD 13 C3 PFBS	%	86	83	90	85	94
Extracted ISTD 18 O ₂ PFHxS	%	96	83	97	91	103
Extracted ISTD ¹³ C ₄ PFOS	%	96	87	92	94	99
Extracted ISTD 13 C4 PFBA	%	80	80	89	69	80

PFAS in Soils Extended Our Reference		247834-24	247834-33	247834-35	247834-40	247834-42
	LINITO					
Your Reference	UNITS	3 BH16_0.9_20072	BH18_5.5_20072 4	3 BH19_1.8_20072	BH21_0.2_20072 3	3 BH22_1.2_2007
Date Sampled		23/07/2020	24/07/2020	23/07/2020	23/07/2020	23/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Extracted ISTD 13 C3 PFPeA	%	88	82	87	82	96
Extracted ISTD 13 C2 PFHxA	%	89	85	89	86	97
Extracted ISTD 13 C4 PFHpA	%	91	83	91	90	96
Extracted ISTD 13 C4 PFOA	%	94	88	98	93	108
Extracted ISTD ¹³ C₅ PFNA	%	89	86	90	95	105
Extracted ISTD 13 C2 PFDA	%	104	85	92	96	114
Extracted ISTD 13 C2 PFUnDA	%	97	95	113	106	118
Extracted ISTD 13 C2 PFDoDA	%	94	82	96	93	123
Extracted ISTD 13 C2 PFTeDA	%	72	64	58	57	95
Extracted ISTD 13 C2 4:2FTS	%	91	87	82	85	105
Extracted ISTD ¹³ C ₂ 6:2FTS	%	109	101	104	108	138
Extracted ISTD 13 C2 8:2FTS	%	93	87	107	101	130
Extracted ISTD 13 C8 FOSA	%	87	80	86	86	96
Extracted ISTD d₃ N MeFOSA	%	85	81	81	84	103
Extracted ISTD d₅ N EtFOSA	%	90	81	80	83	107
Extracted ISTD d ₇ N MeFOSE	%	101	93	93	97	111
Extracted ISTD d ₉ N EtFOSE	%	87	84	80	86	102
Extracted ISTD d₃ N MeFOSAA	%	101	90	96	98	122
Extracted ISTD d₅ N EtFOSAA	%	82	80	97	90	111
Total Positive PFHxS & PFOS	μg/kg	0.5	<0.1	<0.1	<0.1	0.2
Total Positive PFOS & PFOA	μg/kg	0.5	<0.1	<0.1	<0.1	0.2
Total Positive PFAS	μg/kg	0.5	<0.1	<0.1	<0.1	0.2

PFAS in Soils Extended						
Our Reference		247834-49	247834-52	247834-56	247834-58	247834-63
Your Reference	UNITS	BH25_0.3_20072	BH26_1_200724	BH27_2_200724	BH28_0.3_20072 4	BH30_2.7_20072 4
Date Sampled		23/07/2020	24/07/2020	24/07/2020	24/07/2020	24/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	03/08/2020	03/08/2020	03/08/2020	03/08/2020	03/08/2020
Date analysed	-	04/08/2020	04/08/2020	04/08/2020	04/08/2020	04/08/2020
Perfluorobutanesulfonic acid	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluoropentanesulfonic acid	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluorohexanesulfonic acid - PFHxS	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluoroheptanesulfonic acid	μg/kg	<0.1	<0.1	0.3	<0.1	<0.1
Perfluorooctanesulfonic acid PFOS	μg/kg	1.1	3.1	16	<0.1	0.4
Perfluorodecanesulfonic acid	μg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Perfluorobutanoic acid	μg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Perfluoropentanoic acid	μg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Perfluorohexanoic acid	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluoroheptanoic acid	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluorooctanoic acid PFOA	μg/kg	0.1	<0.1	2.7	<0.1	<0.1
Perfluorononanoic acid	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluorodecanoic acid	μg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Perfluoroundecanoic acid	μg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Perfluorododecanoic acid	μg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Perfluorotridecanoic acid	μg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Perfluorotetradecanoic acid	μg/kg	<5	<5	<5	<5	<5
4:2 FTS	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
6:2 FTS	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
8:2 FTS	μg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
10:2 FTS	μg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Perfluorooctane sulfonamide	μg/kg	<1	<1	<1	<1	<1
N-Methyl perfluorooctane sulfonamide	μg/kg	<1	<1	<1	<1	<1
N-Ethyl perfluorooctanesulfon amide	μg/kg	<1	<1	<1	<1	<1
N-Me perfluorooctanesulfonamid oethanol	μg/kg	<1	<1	<1	<1	<1
N-Et perfluorooctanesulfonamid oethanol	μg/kg	<5	<5	<5	<5	<5
MePerfluorooctanesulf- amid oacetic acid	μg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
EtPerfluorooctanesulf amid oacetic acid	μg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Surrogate ¹³ C ₈ PFOS	%	98	101	99	99	102
Surrogate ¹³ C ₂ PFOA	%	109	107	102	99	104
Extracted ISTD 13 C3 PFBS	%	104	100	101	99	97
Extracted ISTD 18 O2 PFHxS	%	99	100	96	100	95
Extracted ISTD ¹³ C ₄ PFOS	%	101	102	99	101	98
Extracted ISTD 13 C4 PFBA	%	98	99	98	99	98

PFAS in Soils Extended						
Our Reference		247834-49	247834-52	247834-56	247834-58	247834-63
Your Reference	UNITS	BH25_0.3_20072	BH26_1_200724	BH27_2_200724	BH28_0.3_20072 4	BH30_2.7_20072
Date Sampled		23/07/2020	24/07/2020	24/07/2020	24/07/2020	24/07/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Extracted ISTD 13 C ₃ PFPeA	%	102	104	99	101	99
Extracted ISTD 13 C ₂ PFHxA	%	90	94	90	88	86
Extracted ISTD 13 C ₄ PFHpA	%	97	105	96	98	97
Extracted ISTD 13 C ₄ PFOA	%	92	102	93	95	93
Extracted ISTD ¹³ C ₅ PFNA	%	94	100	90	93	94
Extracted ISTD ¹³ C ₂ PFDA	%	90	97	90	89	87
Extracted ISTD 13 C2 PFUnDA	%	89	108	88	88	88
Extracted ISTD ¹³ C ₂ PFDoDA	%	99	124	99	88	84
Extracted ISTD ¹³ C ₂ PFTeDA	%	74	112	87	82	69
Extracted ISTD 13 C ₂ 4:2FTS	%	94	99	97	94	85
Extracted ISTD ¹³ C ₂ 6:2FTS	%	101	124	103	101	97
Extracted ISTD ¹³ C ₂ 8:2FTS	%	87	134	97	91	91
Extracted ISTD ¹³ C ₈ FOSA	%	98	97	96	94	94
Extracted ISTD d ₃ N MeFOSA	%	72	67	71	72	72
Extracted ISTD ds N EtFOSA	%	59	58	59	62	57
Extracted ISTD d ₇ N MeFOSE	%	79	75	80	81	80
Extracted ISTD d ₉ N EtFOSE	%	81	76	80	80	79
Extracted ISTD d ₃ N MeFOSAA	%	106	109	95	98	96
Extracted ISTD ds N EtFOSAA	%	103	107	94	95	92
Total Positive PFHxS & PFOS	μg/kg	1.1	3.1	16	<0.1	0.4
Total Positive PFOS & PFOA	μg/kg	1.2	3.1	19	<0.1	0.4
Total Positive PFAS	µg/kg	1.2	3.1	19	<0.1	0.4

PFAS in Soils Extended		
Our Reference		247834-65
Your Reference	UNITS	BH13_1.5_20072
Date Sampled		24/07/2020
Type of sample		Soil
Date prepared	-	03/08/2020
Date analysed	-	04/08/2020
Perfluorobutanesulfonic acid	μg/kg	<0.1
Perfluoropentanesulfonic acid	μg/kg	<0.1
Perfluorohexanesulfonic acid - PFHxS	μg/kg	<0.1
Perfluoroheptanesulfonic acid	μg/kg	<0.1
Perfluorooctanesulfonic acid PFOS	μg/kg	<0.1
Perfluorodecanesulfonic acid	μg/kg	<0.2
Perfluorobutanoic acid	μg/kg	<0.2
Perfluoropentanoic acid	μg/kg	<0.2
Perfluorohexanoic acid	μg/kg	<0.1
Perfluoroheptanoic acid	μg/kg	<0.1
Perfluorooctanoic acid PFOA	μg/kg	<0.1
Perfluorononanoic acid	μg/kg	<0.1
Perfluorodecanoic acid	μg/kg	<0.5
Perfluoroundecanoic acid	μg/kg	<0.5
Perfluorododecanoic acid	μg/kg	<0.5
Perfluorotridecanoic acid	μg/kg	<0.5
Perfluorotetradecanoic acid	μg/kg	<5
4:2 FTS	μg/kg	<0.1
6:2 FTS	μg/kg	<0.1
8:2 FTS	μg/kg	<0.2
10:2 FTS	μg/kg	<0.2
Perfluorooctane sulfonamide	μg/kg	<1
N-Methyl perfluorooctane sulfonamide	μg/kg	<1
N-Ethyl perfluorooctanesulfon amide	μg/kg	<1
N-Me perfluorooctanesulfonamid oethanol	μg/kg	<1
N-Et perfluorooctanesulfonamid oethanol	μg/kg	<5
MePerfluorooctanesulf- amid oacetic acid	μg/kg	<0.2
EtPerfluorooctanesulf amid oacetic acid	μg/kg	<0.2
Surrogate ¹³ C ₈ PFOS	%	100
Surrogate ¹³ C ₂ PFOA	%	110
Extracted ISTD 13 C ₃ PFBS	%	98
Extracted ISTD 18 O ₂ PFHxS	%	96
Extracted ISTD 13 C4 PFOS	%	98
Extracted ISTD 13 C4 PFBA	%	98

PFAS in Soils Extended		
Our Reference		247834-65
Your Reference	UNITS	BH13_1.5_20072 4
Date Sampled		24/07/2020
Type of sample		Soil
Extracted ISTD 13 C ₃ PFPeA	%	98
Extracted ISTD 13 C ₂ PFHxA	%	89
Extracted ISTD 13 C4 PFHpA	%	88
Extracted ISTD 13 C4 PFOA	%	89
Extracted ISTD 13 C ₅ PFNA	%	89
Extracted ISTD 13 C2 PFDA	%	86
Extracted ISTD 13 C ₂ PFUnDA	%	84
Extracted ISTD 13 C2 PFDoDA	%	80
Extracted ISTD 13 C ₂ PFTeDA	%	76
Extracted ISTD 13 C2 4:2FTS	%	83
Extracted ISTD ¹³ C ₂ 6:2FTS	%	101
Extracted ISTD ¹³ C ₂ 8:2FTS	%	85
Extracted ISTD 13 C8 FOSA	%	94
Extracted ISTD d ₃ N MeFOSA	%	71
Extracted ISTD ds N EtFOSA	%	64
Extracted ISTD d ₇ N MeFOSE	%	81
Extracted ISTD de N EtFOSE	%	82
Extracted ISTD d ₃ N MeFOSAA	%	93
Extracted ISTD ds N EtFOSAA	%	92
Total Positive PFHxS & PFOS	μg/kg	<0.1
Total Positive PFOS & PFOA	μg/kg	<0.1
Total Positive PFAS	μg/kg	<0.1

PFAS in Soils Short			
Our Reference		247834-66	247834-67
Your Reference	UNITS	QC101_200724	QC102_200724
Date Sampled		24/07/2020	24/07/2020
Type of sample		Soil	Soil
Date prepared	-	03/08/2020	03/08/2020
Date analysed	-	04/08/2020	04/08/2020
Perfluorohexanesulfonic acid - PFHxS	μg/kg	<0.1	0.1
Perfluorooctanesulfonic acid PFOS	μg/kg	3.2	16
Perfluorooctanoic acid PFOA	μg/kg	<0.1	3.1
6:2 FTS	μg/kg	<0.1	<0.1
8:2 FTS	μg/kg	<0.2	<0.2
Surrogate ¹³ C ₈ PFOS	%	99	103
Surrogate ¹³ C ₂ PFOA	%	107	109
Extracted ISTD ¹⁸ O ₂ PFHxS	%	95	94
Extracted ISTD ¹³ C ₄ PFOS	%	96	98
Extracted ISTD ¹³ C ₄ PFOA	%	94	86
Extracted ISTD ¹³ C ₂ 6:2FTS	%	111	91
Extracted ISTD ¹³ C ₂ 8:2FTS	%	95	89
Total Positive PFHxS & PFOS	μg/kg	3.2	16
Total Positive PFOS & PFOA	μg/kg	3.2	19
Total Positive PFAS	μg/kg	3.2	19

vTRH(C6-C10)/BTEXN in Water				
Our Reference		247834-68	247834-69	247834-70
Your Reference	UNITS	QC301_200722	QC302_200723	QC303_200724
Date Sampled		22/07/2020	23/07/2020	24/07/2020
Type of sample		Water	Water	Water
Date extracted	-	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	29/07/2020	29/07/2020	29/07/2020
TRH C ₆ - C ₉	μg/L	<10	<10	<10
TRH C ₆ - C ₁₀	μg/L	<10	<10	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10	<10	<10
Benzene	μg/L	<1	<1	<1
Toluene	μg/L	<1	<1	<1
Ethylbenzene	μg/L	<1	<1	<1
m+p-xylene	μg/L	<2	<2	<2
o-xylene	μg/L	<1	<1	<1
Naphthalene	μg/L	<1	<1	<1
Surrogate Dibromofluoromethane	%	115	118	118
Surrogate toluene-d8	%	102	104	101
Surrogate 4-BFB	%	96	96	96

svTRH (C10-C40) in Water				
Our Reference		247834-68	247834-69	247834-70
Your Reference	UNITS	QC301_200722	QC302_200723	QC303_200724
Date Sampled		22/07/2020	23/07/2020	24/07/2020
Type of sample		Water	Water	Water
Date extracted	-	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	29/07/2020	29/07/2020	30/07/2020
TRH C ₁₀ - C ₁₄	μg/L	<50	<50	<50
TRH C ₁₅ - C ₂₈	μg/L	<100	<100	<100
TRH C ₂₉ - C ₃₆	μg/L	<100	<100	<100
TRH >C ₁₀ - C ₁₆	μg/L	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	μg/L	<50	<50	<50
TRH >C ₁₆ - C ₃₄	μg/L	<100	<100	<100
TRH >C ₃₄ - C ₄₀	μg/L	<100	<100	<100
Surrogate o-Terphenyl	%	89	93	86

Metals in Water - Dissolved				
Our Reference		247834-68	247834-69	247834-70
Your Reference	UNITS	QC301_200722	QC302_200723	QC303_200724
Date Sampled		22/07/2020	23/07/2020	24/07/2020
Type of sample		Water	Water	Water
Date digested	-	29/07/2020	29/07/2020	29/07/2020
Date analysed	-	29/07/2020	29/07/2020	29/07/2020
Arsenic - Dissolved	mg/L	<0.05	<0.05	<0.05
Cadmium - Dissolved	mg/L	<0.01	<0.01	<0.01
Chromium - Dissolved	mg/L	<0.01	<0.01	<0.01
Copper - Dissolved	mg/L	<0.01	<0.01	<0.01
Lead - Dissolved	mg/L	<0.03	<0.03	<0.03
Mercury - Dissolved	mg/L	<0.0005	<0.0005	<0.0005
Nickel - Dissolved	mg/L	<0.02	<0.02	<0.02
Zinc - Dissolved	mg/L	<0.02	<0.02	<0.02

PFAS in Waters Short				
Our Reference		247834-68	247834-69	247834-70
Your Reference	UNITS	QC301_200722	QC302_200723	QC303_200724
Date Sampled		22/07/2020	23/07/2020	24/07/2020
Type of sample		Water	Water	Water
Date prepared	-	28/07/2020	31/07/2020	28/07/2020
Date analysed	-	28/07/2020	31/07/2020	28/07/2020
Perfluorohexanesulfonic acid - PFHxS	μg/L	<0.01	<0.01	<0.01
Perfluorooctanesulfonic acid PFOS	μg/L	<0.01	<0.01	<0.01
Perfluorooctanoic acid PFOA	μg/L	<0.01	<0.01	<0.01
6:2 FTS	μg/L	<0.01	<0.01	<0.01
8:2 FTS	μg/L	<0.02	<0.02	<0.02
Surrogate ¹³ C ₈ PFOS	%	105	100	92
Surrogate ¹³ C ₂ PFOA	%	96	101	94
Extracted ISTD 18 O2 PFHxS	%	94	97	100
Extracted ISTD 13 C4 PFOS	%	91	104	97
Extracted ISTD 13 C4 PFOA	%	93	108	98
Extracted ISTD 13 C2 6:2FTS	%	79	111	91
Extracted ISTD ¹³ C ₂ 8:2FTS	%	139	93	131
Total Positive PFHxS & PFOS	μg/L	<0.01	<0.01	<0.01
Total Positive PFOA & PFOS	μg/L	<0.01	<0.01	<0.01
Total Positive PFAS	μg/L	<0.01	<0.01	<0.01

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Stainir Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of positive individual TRH fractions (>C10-C40).
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum the positive individual PCBs.
Org-022	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide analysed by GC-MS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum the positive individually report DDD+DDE+DDT.

Method ID	Methodology Summary
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql "total="" 'eq="" +ve="" 2.="" 3.="" <pql="" a="" above.="" actually="" all="" and="" approach="" approaches="" are="" as="" assuming="" at="" be="" below="" between="" but="" calculation="" can="" conservative="" contribute="" contributing="" false="" give="" given="" half="" hence="" individual="" is="" least="" lowest="" may="" mid-point="" more="" most="" negative="" not="" note,="" of="" pahs="" pahs"="" pahs.<="" positive="" pql="" pql'values="" pql.="" present="" present.="" reflective="" reported="" simply="" stipulated="" sum="" susceptible="" td="" teq="" teqs="" that="" the="" therefore="" this="" to="" total="" when="" zero'values="" zero.=""></pql>
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.
Org-029	Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. Analysis is undertaken with LC-MS/MS.
	PFAS results include the sum of branched and linear isomers where applicable.
	Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.3 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components.
	Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.

Envirolab Reference: 247834

Revision No: R00

QUALIT	Y CONTRO	L: VHC's	in soi l			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	247834-6
Date extracted	-			29/07/2020	1	29/07/2020	29/07/2020		29/07/2020	29/07/2020
Date analysed	-			31/07/2020	1	31/07/2020	31/07/2020		31/07/2020	31/07/2020
Dichlorodifluoromethane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Chloromethane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Vinyl Chloride	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Bromomethane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Chloroethane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Trichlorofluoromethane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,1-Dichloroethene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
trans-1,2-dichloroethene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,1-dichloroethane	mg/kg	1	Org-023	<1	1	<1	<1	0	97	78
cis-1,2-dichloroethene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
bromochloromethane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
chloroform	mg/kg	1	Org-023	<1	1	<1	<1	0	89	72
2,2-dichloropropane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,2-dichloroethane	mg/kg	1	Org-023	<1	1	<1	<1	0	93	78
1,1,1-trichloroethane	mg/kg	1	Org-023	<1	1	<1	<1	0	94	81
1,1-dichloropropene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
carbon tetrachloride	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
dibromomethane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,2-dichloropropane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
trichloroethene	mg/kg	1	Org-023	<1	1	<1	<1	0	83	76
bromodichloromethane	mg/kg	1	Org-023	<1	1	<1	<1	0	83	71
trans-1,3-dichloropropene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
cis-1,3-dichloropropene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,1,2-trichloroethane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,3-dichloropropane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
dibromochloromethane	mg/kg	1	Org-023	<1	1	<1	<1	0	78	74
1,2-dibromoethane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
tetrachloroethene	mg/kg	1	Org-023	<1	1	<1	<1	0	105	86
1,1,1,2-tetrachloroethane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
chlorobenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
bromoform	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,1,2,2-tetrachloroethane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,2,3-trichloropropane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
bromobenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
2-chlorotoluene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
4-chlorotoluene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,3-dichlorobenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,4-dichlorobenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]

QUALIT	Y CONTRO	L: VHC's	in soi l			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	247834-6
1,2-dichlorobenzene	mg/kg	1	Org-023	<1	1	<1	<1	0		[NT]
1,2-dibromo-3-chloropropane	mg/kg	1	Org-023	<1	1	<1	<1	0		[NT]
1,2,4-trichlorobenzene	mg/kg	1	Org-023	<1	1	<1	<1	0		[NT]
hexachlorobutadiene	mg/kg	1	Org-023	<1	1	<1	<1	0		[NT]
1,2,3-trichlorobenzene	mg/kg	1	Org-023	<1	1	<1	<1	0		[NT]
Surrogate Dibromofluorometha	%		Org-023	93	1	99	95	4	97	92
Surrogate aaa-Trifluorotoluene	%		Org-023	116	1	96	94	2	122	104
Surrogate Toluene-d ₈	%		Org-023	100	1	106	102	4	100	93
Surrogate 4-Bromofluorobenzene	%		Org-023	94	1	92	94	2	95	100

QUAL	ITY CONTRO	L: VHC's	in soi l			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	247834-33
Date extracted	-			[NT]	16	29/07/2020	29/07/2020		29/07/2020	29/07/2020
Date analysed	-			[NT]	16	31/07/2020	31/07/2020		31/07/2020	31/07/2020
Dichlorodifluoromethane	mg/kg	1	Org-023	[NT]	16	<1	<1	0	[NT]	[NT]
Chloromethane	mg/kg	1	Org-023	[NT]	16	<1	<1	0	[NT]	[NT]
Vinyl Chloride	mg/kg	1	Org-023	[NT]	16	<1	<1	0	[NT]	[NT]
Bromomethane	mg/kg	1	Org-023	[NT]	16	<1	<1	0	[NT]	[NT]
Chloroethane	mg/kg	1	Org-023	[NT]	16	<1	<1	0	[NT]	[NT]
Trichlorofluoromethane	mg/kg	1	Org-023	[NT]	16	<1	<1	0	[NT]	[NT]
1,1-Dichloroethene	mg/kg	1	Org-023	[NT]	16	<1	<1	0	[NT]	[NT]
trans-1,2-dichloroethene	mg/kg	1	Org-023	[NT]	16	<1	<1	0	[NT]	[NT]
1,1-dichloroethane	mg/kg	1	Org-023	[NT]	16	<1	<1	0	89	78
cis-1,2-dichloroethene	mg/kg	1	Org-023	[NT]	16	<1	<1	0	[NT]	[NT]
bromochloromethane	mg/kg	1	Org-023	[NT]	16	<1	<1	0	[NT]	[NT]
chloroform	mg/kg	1	Org-023	[NT]	16	<1	<1	0	78	70
2,2-dichloropropane	mg/kg	1	Org-023	[NT]	16	<1	<1	0	[NT]	[NT]
1,2-dichloroethane	mg/kg	1	Org-023	[NT]	16	<1	<1	0	83	78
1,1,1-trichloroethane	mg/kg	1	Org-023	[NT]	16	<1	<1	0	84	81
1,1-dichloropropene	mg/kg	1	Org-023	[NT]	16	<1	<1	0	[NT]	[NT]
carbon tetrachloride	mg/kg	1	Org-023	[NT]	16	<1	<1	0	[NT]	[NT]
dibromomethane	mg/kg	1	Org-023	[NT]	16	<1	<1	0	[NT]	[NT]
1,2-dichloropropane	mg/kg	1	Org-023	[NT]	16	<1	<1	0	[NT]	[NT]
trichloroethene	mg/kg	1	Org-023	[NT]	16	<1	<1	0	78	77
bromodichloromethane	mg/kg	1	Org-023	[NT]	16	<1	<1	0	77	71
trans-1,3-dichloropropene	mg/kg	1	Org-023	[NT]	16	<1	<1	0	[NT]	[NT]
cis-1,3-dichloropropene	mg/kg	1	Org-023	[NT]	16	<1	<1	0	[NT]	[NT]
1,1,2-trichloroethane	mg/kg	1	Org-023	[NT]	16	<1	<1	0	[NT]	[NT]
1,3-dichloropropane	mg/kg	1	Org-023	[NT]	16	<1	<1	0	[NT]	[NT]
dibromochloromethane	mg/kg	1	Org-023	[NT]	16	<1	<1	0	71	70
1,2-dibromoethane	mg/kg	1	Org-023	[NT]	16	<1	<1	0	[NT]	[NT]
tetrachloroethene	mg/kg	1	Org-023	[NT]	16	<1	<1	0	96	83
1,1,1,2-tetrachloroethane	mg/kg	1	Org-023	[NT]	16	<1	<1	0	[NT]	[NT]
chlorobenzene	mg/kg	1	Org-023	[NT]	16	<1	<1	0	[NT]	[NT]
bromoform	mg/kg	1	Org-023	[NT]	16	<1	<1	0	[NT]	[NT]
1,1,2,2-tetrachloroethane	mg/kg	1	Org-023	[NT]	16	<1	<1	0	[NT]	[NT]
1,2,3-trichloropropane	mg/kg	1	Org-023	[NT]	16	<1	<1	0	[NT]	[NT]
bromobenzene	mg/kg	1	Org-023	[NT]	16	<1	<1	0	[NT]	[NT]
2-chlorotoluene	mg/kg	1	Org-023	[NT]	16	<1	<1	0	[NT]	[NT]
4-chlorotoluene	mg/kg	1	Org-023	[NT]	16	<1	<1	0	[NT]	[NT]
1,3-dichlorobenzene	mg/kg	1	Org-023	[NT]	16	<1	<1	0	[NT]	[NT]
1,4-dichlorobenzene	mg/kg	1	Org-023	[NT]	16	<1	<1	0	[NT]	[NT]

QUALIT	Y CONTRO	L: VHC's	in soil			Du	p l icate		Spike Re	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	247834-33
1,2-dichlorobenzene	mg/kg	1	Org-023	[NT]	16	<1	<1	0		[NT]
1,2-dibromo-3-chloropropane	mg/kg	1	Org-023	[NT]	16	<1	<1	0		[NT]
1,2,4-trichlorobenzene	mg/kg	1	Org-023	[NT]	16	<1	<1	0		[NT]
hexachlorobutadiene	mg/kg	1	Org-023	[NT]	16	<1	<1	0		[NT]
1,2,3-trichlorobenzene	mg/kg	1	Org-023	[NT]	16	<1	<1	0		[NT]
Surrogate Dibromofluorometha	%		Org-023	[NT]	16	91	93	2	93	88
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	16	93	97	4	110	101
Surrogate Toluene-d ₈	%		Org-023	[NT]	16	97	100	3	97	89
Surrogate 4-Bromofluorobenzene	%		Org-023	[NT]	16	94	93	1	95	97

QUA	LITY CONTRO	L: VHC's	in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	27	29/07/2020	29/07/2020			[NT]
Date analysed	-			[NT]	27	31/07/2020	31/07/2020			[NT]
Dichlorodifluoromethane	mg/kg	1	Org-023	[NT]	27	<1	<1	0		[NT]
Chloromethane	mg/kg	1	Org-023	[NT]	27	<1	<1	0		[NT]
Vinyl Chloride	mg/kg	1	Org-023	[NT]	27	<1	<1	0		[NT]
Bromomethane	mg/kg	1	Org-023	[NT]	27	<1	<1	0		[NT]
Chloroethane	mg/kg	1	Org-023	[NT]	27	<1	<1	0		[NT]
Trichlorofluoromethane	mg/kg	1	Org-023	[NT]	27	<1	<1	0		[NT]
1,1-Dichloroethene	mg/kg	1	Org-023	[NT]	27	<1	<1	0		[NT]
trans-1,2-dichloroethene	mg/kg	1	Org-023	[NT]	27	<1	<1	0		[NT]
1,1-dichloroethane	mg/kg	1	Org-023	[NT]	27	<1	<1	0		[NT]
cis-1,2-dichloroethene	mg/kg	1	Org-023	[NT]	27	<1	<1	0		[NT]
bromochloromethane	mg/kg	1	Org-023	[NT]	27	<1	<1	0		[NT]
chloroform	mg/kg	1	Org-023	[NT]	27	<1	<1	0		[NT]
2,2-dichloropropane	mg/kg	1	Org-023	[NT]	27	<1	<1	0		[NT]
1,2-dichloroethane	mg/kg	1	Org-023	[NT]	27	<1	<1	0		[NT]
1,1,1-trichloroethane	mg/kg	1	Org-023	[NT]	27	<1	<1	0		[NT]
1,1-dichloropropene	mg/kg	1	Org-023	[NT]	27	<1	<1	0		[NT]
carbon tetrachloride	mg/kg	1	Org-023	[NT]	27	<1	<1	0		[NT]
dibromomethane	mg/kg	1	Org-023	[NT]	27	<1	<1	0		[NT]
1,2-dichloropropane	mg/kg	1	Org-023	[NT]	27	<1	<1	0		[NT]
trichloroethene	mg/kg	1	Org-023	[NT]	27	<1	<1	0		[NT]
bromodichloromethane	mg/kg	1	Org-023	[NT]	27	<1	<1	0		[NT]
trans-1,3-dichloropropene	mg/kg	1	Org-023	[NT]	27	<1	<1	0		[NT]
cis-1,3-dichloropropene	mg/kg	1	Org-023	[NT]	27	<1	<1	0		[NT]
1,1,2-trichloroethane	mg/kg	1	Org-023	[NT]	27	<1	<1	0		[NT]
1,3-dichloropropane	mg/kg	1	Org-023	[NT]	27	<1	<1	0		[NT]
dibromochloromethane	mg/kg	1	Org-023	[NT]	27	<1	<1	0		[NT]
1,2-dibromoethane	mg/kg	1	Org-023	[NT]	27	<1	<1	0		[NT]
tetrachloroethene	mg/kg	1	Org-023	[NT]	27	<1	<1	0		[NT]
1,1,1,2-tetrachloroethane	mg/kg	1	Org-023	[NT]	27	<1	<1	0		[NT]
chlorobenzene	mg/kg	1	Org-023	[NT]	27	<1	<1	0		[NT]
bromoform	mg/kg	1	Org-023	[NT]	27	<1	<1	0		[NT]
1,1,2,2-tetrachloroethane	mg/kg	1	Org-023	[NT]	27	<1	<1	0		[NT]
1,2,3-trichloropropane	mg/kg	1	Org-023	[NT]	27	<1	<1	0		[NT]
bromobenzene	mg/kg	1	Org-023	[NT]	27	<1	<1	0		[NT]
2-chlorotoluene	mg/kg	1	Org-023	[NT]	27	<1	<1	0		[NT]
4-chlorotoluene	mg/kg	1	Org-023	[NT]	27	<1	<1	0		[NT]
1,3-dichlorobenzene	mg/kg	1	Org-023	[NT]	27	<1	<1	0		[NT]
1,4-dichlorobenzene	mg/kg	1	Org-023	[NT]	27	<1	<1	0		[NT]

QUALIT	Y CONTRO	L: VHC's	in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
1,2-dichlorobenzene	mg/kg	1	Org-023	[NT]	27	<1	<1	0	[NT]	
1,2-dibromo-3-chloropropane	mg/kg	1	Org-023	[NT]	27	<1	<1	0	[NT]	
1,2,4-trichlorobenzene	mg/kg	1	Org-023	[NT]	27	<1	<1	0	[NT]	
hexachlorobutadiene	mg/kg	1	Org-023	[NT]	27	<1	<1	0	[NT]	
1,2,3-trichlorobenzene	mg/kg	1	Org-023	[NT]	27	<1	<1	0	[NT]	
Surrogate Dibromofluorometha	%		Org-023	[NT]	27	92	88	4	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	27	98	85	14	[NT]	
Surrogate Toluene-d ₈	%		Org-023	[NT]	27	100	94	6	[NT]	
Surrogate 4-Bromofluorobenzene	%		Org-023	[NT]	27	93	94	1	[NT]	[NT]

QUA	LITY CONTRO	L: VHC's	in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	40	29/07/2020	29/07/2020			[NT]
Date analysed	-			[NT]	40	31/07/2020	31/07/2020			[NT]
Dichlorodifluoromethane	mg/kg	1	Org-023	[NT]	40	<1	<1	0		[NT]
Chloromethane	mg/kg	1	Org-023	[NT]	40	<1	<1	0		[NT]
Vinyl Chloride	mg/kg	1	Org-023	[NT]	40	<1	<1	0		[NT]
Bromomethane	mg/kg	1	Org-023	[NT]	40	<1	<1	0		[NT]
Chloroethane	mg/kg	1	Org-023	[NT]	40	<1	<1	0		[NT]
Trichlorofluoromethane	mg/kg	1	Org-023	[NT]	40	<1	<1	0		[NT]
1,1-Dichloroethene	mg/kg	1	Org-023	[NT]	40	<1	<1	0		[NT]
trans-1,2-dichloroethene	mg/kg	1	Org-023	[NT]	40	<1	<1	0		[NT]
1,1-dichloroethane	mg/kg	1	Org-023	[NT]	40	<1	<1	0		[NT]
cis-1,2-dichloroethene	mg/kg	1	Org-023	[NT]	40	<1	<1	0		[NT]
bromochloromethane	mg/kg	1	Org-023	[NT]	40	<1	<1	0		[NT]
chloroform	mg/kg	1	Org-023	[NT]	40	<1	<1	0		[NT]
2,2-dichloropropane	mg/kg	1	Org-023	[NT]	40	<1	<1	0		[NT]
1,2-dichloroethane	mg/kg	1	Org-023	[NT]	40	<1	<1	0		[NT]
1,1,1-trichloroethane	mg/kg	1	Org-023	[NT]	40	<1	<1	0		[NT]
1,1-dichloropropene	mg/kg	1	Org-023	[NT]	40	<1	<1	0		[NT]
carbon tetrachloride	mg/kg	1	Org-023	[NT]	40	<1	<1	0		[NT]
dibromomethane	mg/kg	1	Org-023	[NT]	40	<1	<1	0		[NT]
1,2-dichloropropane	mg/kg	1	Org-023	[NT]	40	<1	<1	0		[NT]
trichloroethene	mg/kg	1	Org-023	[NT]	40	<1	<1	0		[NT]
bromodichloromethane	mg/kg	1	Org-023	[NT]	40	<1	<1	0		[NT]
trans-1,3-dichloropropene	mg/kg	1	Org-023	[NT]	40	<1	<1	0		[NT]
cis-1,3-dichloropropene	mg/kg	1	Org-023	[NT]	40	<1	<1	0		[NT]
1,1,2-trichloroethane	mg/kg	1	Org-023	[NT]	40	<1	<1	0		[NT]
1,3-dichloropropane	mg/kg	1	Org-023	[NT]	40	<1	<1	0		[NT]
dibromochloromethane	mg/kg	1	Org-023	[NT]	40	<1	<1	0		[NT]
1,2-dibromoethane	mg/kg	1	Org-023	[NT]	40	<1	<1	0		[NT]
tetrachloroethene	mg/kg	1	Org-023	[NT]	40	<1	<1	0		[NT]
1,1,1,2-tetrachloroethane	mg/kg	1	Org-023	[NT]	40	<1	<1	0		[NT]
chlorobenzene	mg/kg	1	Org-023	[NT]	40	<1	<1	0		[NT]
bromoform	mg/kg	1	Org-023	[NT]	40	<1	<1	0		[NT]
1,1,2,2-tetrachloroethane	mg/kg	1	Org-023	[NT]	40	<1	<1	0		[NT]
1,2,3-trichloropropane	mg/kg	1	Org-023	[NT]	40	<1	<1	0		[NT]
bromobenzene	mg/kg	1	Org-023	[NT]	40	<1	<1	0		[NT]
2-chlorotoluene	mg/kg	1	Org-023	[NT]	40	<1	<1	0		[NT]
4-chlorotoluene	mg/kg	1	Org-023	[NT]	40	<1	<1	0		[NT]
1,3-dichlorobenzene	mg/kg	1	Org-023	[NT]	40	<1	<1	0		[NT]
1,4-dichlorobenzene	mg/kg	1	Org-023	[NT]	40	<1	<1	0		[NT]

QUALIT	Y CONTRO	L: VHC's	in soil			Du	ıp l icate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
1,2-dichlorobenzene	mg/kg	1	Org-023	[NT]	40	<1	<1	0	[NT]	
1,2-dibromo-3-chloropropane	mg/kg	1	Org-023	[NT]	40	<1	<1	0	[NT]	
1,2,4-trichlorobenzene	mg/kg	1	Org-023	[NT]	40	<1	<1	0	[NT]	
hexachlorobutadiene	mg/kg	1	Org-023	[NT]	40	<1	<1	0	[NT]	
1,2,3-trichlorobenzene	mg/kg	1	Org-023	[NT]	40	<1	<1	0	[NT]	
Surrogate Dibromofluorometha	%		Org-023	[NT]	40	101	99	2	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	40	107	116	8	[NT]	
Surrogate Toluene-d ₈	%		Org-023	[NT]	40	109	108	1	[NT]	
Surrogate 4-Bromofluorobenzene	%		Org-023	[NT]	40	94	94	0	[NT]	[NT]

QUALIT	Y CONTRO	L: VHC's	in soil			Du	plicate		Spike Re	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	54	29/07/2020	29/07/2020			[NT]
Date analysed	-			[NT]	54	31/07/2020	31/07/2020			[NT]
Dichlorodifluoromethane	mg/kg	1	Org-023	[NT]	54	<1	<1	0		[NT]
Chloromethane	mg/kg	1	Org-023	[NT]	54	<1	<1	0		[NT]
Vinyl Chloride	mg/kg	1	Org-023	[NT]	54	<1	<1	0		[NT]
Bromomethane	mg/kg	1	Org-023	[NT]	54	<1	<1	0		[NT]
Chloroethane	mg/kg	1	Org-023	[NT]	54	<1	<1	0		[NT]
Trichlorofluoromethane	mg/kg	1	Org-023	[NT]	54	<1	<1	0		[NT]
1,1-Dichloroethene	mg/kg	1	Org-023	[NT]	54	<1	<1	0		[NT]
trans-1,2-dichloroethene	mg/kg	1	Org-023	[NT]	54	<1	<1	0		[NT]
1,1-dichloroethane	mg/kg	1	Org-023	[NT]	54	<1	<1	0		[NT]
cis-1,2-dichloroethene	mg/kg	1	Org-023	[NT]	54	<1	<1	0		[NT]
bromochloromethane	mg/kg	1	Org-023	[NT]	54	<1	<1	0		[NT]
chloroform	mg/kg	1	Org-023	[NT]	54	<1	<1	0		[NT]
2,2-dichloropropane	mg/kg	1	Org-023	[NT]	54	<1	<1	0		[NT]
1,2-dichloroethane	mg/kg	1	Org-023	[NT]	54	<1	<1	0		[NT]
1,1,1-trichloroethane	mg/kg	1	Org-023	[NT]	54	<1	<1	0		[NT]
1,1-dichloropropene	mg/kg	1	Org-023	[NT]	54	<1	<1	0		[NT]
carbon tetrachloride	mg/kg	1	Org-023	[NT]	54	<1	<1	0		[NT]
dibromomethane	mg/kg	1	Org-023	[NT]	54	<1	<1	0		[NT]
1,2-dichloropropane	mg/kg	1	Org-023	[NT]	54	<1	<1	0		[NT]
trichloroethene	mg/kg	1	Org-023	[NT]	54	<1	<1	0		[NT]
bromodichloromethane	mg/kg	1	Org-023	[NT]	54	<1	<1	0		[NT]
trans-1,3-dichloropropene	mg/kg	1	Org-023	[NT]	54	<1	<1	0		[NT]
cis-1,3-dichloropropene	mg/kg	1	Org-023	[NT]	54	<1	<1	0		[NT]
1,1,2-trichloroethane	mg/kg	1	Org-023	[NT]	54	<1	<1	0		[NT]
1,3-dichloropropane	mg/kg	1	Org-023	[NT]	54	<1	<1	0		[NT]
dibromochloromethane	mg/kg	1	Org-023	[NT]	54	<1	<1	0		[NT]
1,2-dibromoethane	mg/kg	1	Org-023	[NT]	54	<1	<1	0		[NT]
tetrachloroethene	mg/kg	1	Org-023	[NT]	54	<1	<1	0		[NT]
1,1,1,2-tetrachloroethane	mg/kg	1	Org-023	[NT]	54	<1	<1	0		[NT]
chlorobenzene	mg/kg	1	Org-023	[NT]	54	<1	<1	0		[NT]
bromoform	mg/kg	1	Org-023	[NT]	54	<1	<1	0		[NT]
1,1,2,2-tetrachloroethane	mg/kg	1	Org-023	[NT]	54	<1	<1	0		[NT]
1,2,3-trichloropropane	mg/kg	1	Org-023	[NT]	54	<1	<1	0		[NT]
bromobenzene	mg/kg	1	Org-023	[NT]	54	<1	<1	0		[NT]
2-chlorotoluene	mg/kg	1	Org-023	[NT]	54	<1	<1	0		[NT]
4-chlorotoluene	mg/kg	1	Org-023	[NT]	54	<1	<1	0		[NT]
1,3-dichlorobenzene	mg/kg	1	Org-023	[NT]	54	<1	<1	0		[NT]
1,4-dichlorobenzene	mg/kg	1	Org-023	[NT]	54	<1	<1	0		[NT]

QUALIT	Y CONTRO	L: VHC's	in soil			Du	ıp l icate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
1,2-dichlorobenzene	mg/kg	1	Org-023	[NT]	54	<1	<1	0	[NT]	
1,2-dibromo-3-chloropropane	mg/kg	1	Org-023	[NT]	54	<1	<1	0	[NT]	
1,2,4-trichlorobenzene	mg/kg	1	Org-023	[NT]	54	<1	<1	0	[NT]	
hexachlorobutadiene	mg/kg	1	Org-023	[NT]	54	<1	<1	0	[NT]	
1,2,3-trichlorobenzene	mg/kg	1	Org-023	[NT]	54	<1	<1	0	[NT]	
Surrogate Dibromofluorometha	%		Org-023	[NT]	54	93	92	1	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	54	112	106	6	[NT]	
Surrogate Toluene-d ₈	%		Org-023	[NT]	54	101	100	1	[NT]	
Surrogate 4-Bromofluorobenzene	%		Org-023	[NT]	54	94	94	0	[NT]	[NT]

QUALIT	Y CONTRO	L: VHC's	in soi l			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	65	29/07/2020	29/07/2020			[NT]
Date analysed	-			[NT]	65	31/07/2020	31/07/2020			[NT]
Dichlorodifluoromethane	mg/kg	1	Org-023	[NT]	65	<1	<1	0		[NT]
Chloromethane	mg/kg	1	Org-023	[NT]	65	<1	<1	0		[NT]
Vinyl Chloride	mg/kg	1	Org-023	[NT]	65	<1	<1	0		[NT]
Bromomethane	mg/kg	1	Org-023	[NT]	65	<1	<1	0		[NT]
Chloroethane	mg/kg	1	Org-023	[NT]	65	<1	<1	0		[NT]
Trichlorofluoromethane	mg/kg	1	Org-023	[NT]	65	<1	<1	0		[NT]
1,1-Dichloroethene	mg/kg	1	Org-023	[NT]	65	<1	<1	0		[NT]
trans-1,2-dichloroethene	mg/kg	1	Org-023	[NT]	65	<1	<1	0		[NT]
1,1-dichloroethane	mg/kg	1	Org-023	[NT]	65	<1	<1	0		[NT]
cis-1,2-dichloroethene	mg/kg	1	Org-023	[NT]	65	<1	<1	0		[NT]
bromochloromethane	mg/kg	1	Org-023	[NT]	65	<1	<1	0		[NT]
chloroform	mg/kg	1	Org-023	[NT]	65	<1	<1	0		[NT]
2,2-dichloropropane	mg/kg	1	Org-023	[NT]	65	<1	<1	0		[NT]
1,2-dichloroethane	mg/kg	1	Org-023	[NT]	65	<1	<1	0		[NT]
1,1,1-trichloroethane	mg/kg	1	Org-023	[NT]	65	<1	<1	0		[NT]
1,1-dichloropropene	mg/kg	1	Org-023	[NT]	65	<1	<1	0		[NT]
carbon tetrachloride	mg/kg	1	Org-023	[NT]	65	<1	<1	0		[NT]
dibromomethane	mg/kg	1	Org-023	[NT]	65	<1	<1	0		[NT]
1,2-dichloropropane	mg/kg	1	Org-023	[NT]	65	<1	<1	0		[NT]
trichloroethene	mg/kg	1	Org-023	[NT]	65	<1	<1	0		[NT]
bromodichloromethane	mg/kg	1	Org-023	[NT]	65	<1	<1	0		[NT]
trans-1,3-dichloropropene	mg/kg	1	Org-023	[NT]	65	<1	<1	0		[NT]
cis-1,3-dichloropropene	mg/kg	1	Org-023	[NT]	65	<1	<1	0		[NT]
1,1,2-trichloroethane	mg/kg	1	Org-023	[NT]	65	<1	<1	0		[NT]
1,3-dichloropropane	mg/kg	1	Org-023	[NT]	65	<1	<1	0		[NT]
dibromochloromethane	mg/kg	1	Org-023	[NT]	65	<1	<1	0		[NT]
1,2-dibromoethane	mg/kg	1	Org-023	[NT]	65	<1	<1	0		[NT]
tetrachloroethene	mg/kg	1	Org-023	[NT]	65	<1	<1	0		[NT]
1,1,1,2-tetrachloroethane	mg/kg	1	Org-023	[NT]	65	<1	<1	0		[NT]
chlorobenzene	mg/kg	1	Org-023	[NT]	65	<1	<1	0		[NT]
bromoform	mg/kg	1	Org-023	[NT]	65	<1	<1	0		[NT]
1,1,2,2-tetrachloroethane	mg/kg	1	Org-023	[NT]	65	<1	<1	0		[NT]
1,2,3-trichloropropane	mg/kg	1	Org-023	[NT]	65	<1	<1	0		[NT]
bromobenzene	mg/kg	1	Org-023	[NT]	65	<1	<1	0		[NT]
2-chlorotoluene	mg/kg	1	Org-023	[NT]	65	<1	<1	0		[NT]
4-chlorotoluene	mg/kg	1	Org-023	[NT]	65	<1	<1	0		[NT]
1,3-dichlorobenzene	mg/kg	1	Org-023	[NT]	65	<1	<1	0		[NT]
1,4-dichlorobenzene	mg/kg	1	Org-023	[NT]	65	<1	<1	0		[NT]

QUALIT	Y CONTRO	L: VHC's	in soi l			Dι	ıplicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
1,2-dichlorobenzene	mg/kg	1	Org-023	[NT]	65	<1	<1	0	[NT]	
1,2-dibromo-3-chloropropane	mg/kg	1	Org-023	[NT]	65	<1	<1	0	[NT]	
1,2,4-trichlorobenzene	mg/kg	1	Org-023	[NT]	65	<1	<1	0	[NT]	
hexachlorobutadiene	mg/kg	1	Org-023	[NT]	65	<1	<1	0	[NT]	
1,2,3-trichlorobenzene	mg/kg	1	Org-023	[NT]	65	<1	<1	0	[NT]	
Surrogate Dibromofluorometha	%		Org-023	[NT]	65	96	92	4	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	65	107	98	9	[NT]	
Surrogate Toluene-d ₈	%		Org-023	[NT]	65	104	100	4	[NT]	
Surrogate 4-Bromofluorobenzene	%		Org-023	[NT]	65	93	92	1	[NT]	

QUALITY CONT	ROL: vTRH	(C6-C10).	/BTEXN in Soi l			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	247834-6
Date extracted	-			29/07/2020	1	29/07/2020	29/07/2020		29/07/2020	29/07/2020
Date analysed	-			31/07/2020	1	31/07/2020	31/07/2020		31/07/2020	31/07/2020
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	1	<25	<25	0	85	88
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	1	<25	<25	0	85	88
Benzene	mg/kg	0.2	Org-023	<0.2	1	<0.2	<0.2	0	79	81
Toluene	mg/kg	0.5	Org-023	<0.5	1	<0.5	<0.5	0	88	85
Ethylbenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	91	94
m+p-xylene	mg/kg	2	Org-023	<2	1	<2	<2	0	84	89
o-Xylene	mg/kg	1	Org-023	<1	1	<1	<1	0	82	86
naphthalene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	116	1	96	94	2	108	104

QUALITY CONT	ROL: vTRH	(C6-C10).	/BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	247834-33
Date extracted	-			[NT]	16	29/07/2020	29/07/2020		29/07/2020	29/07/2020
Date analysed	-			[NT]	16	31/07/2020	31/07/2020		31/07/2020	31/07/2020
TRH C ₆ - C ₉	mg/kg	25	Org-023	[NT]	16	<25	<25	0	86	77
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	[NT]	16	<25	<25	0	86	77
Benzene	mg/kg	0.2	Org-023	[NT]	16	<0.2	<0.2	0	79	70
Toluene	mg/kg	0.5	Org-023	[NT]	16	<0.5	<0.5	0	91	85
Ethylbenzene	mg/kg	1	Org-023	[NT]	16	<1	<1	0	91	81
m+p-xylene	mg/kg	2	Org-023	[NT]	16	<2	<2	0	84	75
o-Xylene	mg/kg	1	Org-023	[NT]	16	<1	<1	0	82	72
naphthalene	mg/kg	1	Org-023	[NT]	16	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	16	93	97	4	111	103

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	247834-46
Date extracted	<u>-</u>			[NT]	27	29/07/2020	29/07/2020		29/07/2020	29/07/2020
Date analysed	-			[NT]	27	31/07/2020	31/07/2020		31/07/2020	31/07/2020
TRH C ₆ - C ₉	mg/kg	25	Org-023	[NT]	27	<25	<25	0	95	88
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	[NT]	27	<25	<25	0	95	88
Benzene	mg/kg	0.2	Org-023	[NT]	27	<0.2	<0.2	0	87	80
Toluene	mg/kg	0.5	Org-023	[NT]	27	<0.5	<0.5	0	103	98
Ethylbenzene	mg/kg	1	Org-023	[NT]	27	<1	<1	0	100	92
m+p-xylene	mg/kg	2	Org-023	[NT]	27	<2	<2	0	92	85
o-Xylene	mg/kg	1	Org-023	[NT]	27	<1	<1	0	90	82
naphthalene	mg/kg	1	Org-023	[NT]	27	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	27	98	85	14	118	117

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	40	29/07/2020	29/07/2020			[NT]
Date analysed	-			[NT]	40	31/07/2020	31/07/2020			[NT]
TRH C ₆ - C ₉	mg/kg	25	Org-023	[NT]	40	<25	<25	0		[NT]
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	[NT]	40	<25	<25	0		[NT]
Benzene	mg/kg	0.2	Org-023	[NT]	40	<0.2	<0.2	0		[NT]
Toluene	mg/kg	0.5	Org-023	[NT]	40	<0.5	<0.5	0		[NT]
Ethylbenzene	mg/kg	1	Org-023	[NT]	40	<1	<1	0		[NT]
m+p-xylene	mg/kg	2	Org-023	[NT]	40	<2	<2	0		[NT]
o-Xylene	mg/kg	1	Org-023	[NT]	40	<1	<1	0		[NT]
naphthalene	mg/kg	1	Org-023	[NT]	40	<1	<1	0		[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	40	107	116	8		[NT]

QUALITY CON	rol: vtrh	(C6-C10).	BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	54	29/07/2020	29/07/2020		[NT]	
Date analysed	-			[NT]	54	31/07/2020	31/07/2020		[NT]	
TRH C ₆ - C ₉	mg/kg	25	Org-023	[NT]	54	<25	<25	0	[NT]	
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	[NT]	54	<25	<25	0	[NT]	
Benzene	mg/kg	0.2	Org-023	[NT]	54	<0.2	<0.2	0	[NT]	
Toluene	mg/kg	0.5	Org-023	[NT]	54	<0.5	<0.5	0	[NT]	
Ethylbenzene	mg/kg	1	Org-023	[NT]	54	<1	<1	0	[NT]	
m+p-xylene	mg/kg	2	Org-023	[NT]	54	<2	<2	0	[NT]	
o-Xylene	mg/kg	1	Org-023	[NT]	54	<1	<1	0	[NT]	
naphthalene	mg/kg	1	Org-023	[NT]	54	<1	<1	0	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	54	112	106	6	[NT]	

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	65	29/07/2020	29/07/2020			[NT]
Date analysed	-			[NT]	65	31/07/2020	31/07/2020			[NT]
TRH C ₆ - C ₉	mg/kg	25	Org-023	[NT]	65	<25	<25	0		[NT]
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	[NT]	65	<25	<25	0		[NT]
Benzene	mg/kg	0.2	Org-023	[NT]	65	<0.2	<0.2	0		[NT]
Toluene	mg/kg	0.5	Org-023	[NT]	65	<0.5	<0.5	0		[NT]
Ethylbenzene	mg/kg	1	Org-023	[NT]	65	<1	<1	0		[NT]
m+p-xylene	mg/kg	2	Org-023	[NT]	65	<2	<2	0		[NT]
o-Xylene	mg/kg	1	Org-023	[NT]	65	<1	<1	0		[NT]
naphthalene	mg/kg	1	Org-023	[NT]	65	<1	<1	0		[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	65	107	98	9		[NT]

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soi l			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	247834-6
Date extracted	-			29/07/2020	1	29/07/2020	29/07/2020		29/07/2020	29/07/2020
Date analysed	-			29/07/2020	1	29/07/2020	29/07/2020		29/07/2020	29/07/2020
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	1	<50	<50	0	125	116
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	1	<100	<100	0	100	84
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	1	<100	<100	0	123	83
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	1	<50	<50	0	125	116
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	1	<100	<100	0	100	84
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	1	<100	<100	0	123	83
Surrogate o-Terphenyl	%		Org-020	82	1	95	93	2	85	75

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	247834-33
Date extracted	-			[NT]	16	29/07/2020	29/07/2020		29/07/2020	29/07/2020
Date analysed	<u>-</u>			[NT]	16	29/07/2020	29/07/2020		29/07/2020	29/07/2020
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	[NT]	16	<50	<50	0	127	121
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	[NT]	16	<100	<100	0	89	85
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	[NT]	16	<100	<100	0	92	78
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	[NT]	16	<50	<50	0	127	121
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	[NT]	16	<100	<100	0	89	85
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	[NT]	16	<100	<100	0	92	78
Surrogate o-Terphenyl	%		Org-020	[NT]	16	90	90	0	79	100

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	247834-46
Date extracted	-				27	29/07/2020	29/07/2020		29/07/2020	29/07/2020
Date analysed	-				27	29/07/2020	29/07/2020		29/07/2020	29/07/2020
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020		27	<50	<50	0	96	92
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020		27	<100	<100	0	84	90
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020		27	<100	<100	0	92	110
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020		27	<50	<50	0	96	92
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020		27	<100	<100	0	84	90
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020		27	<100	<100	0	92	110
Surrogate o-Terphenyl	%		Org-020		27	105	106	1	120	118

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soi l			Du	p l icate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	40	29/07/2020	29/07/2020		[NT]	[NT]
Date analysed	-			[NT]	40	30/07/2020	30/07/2020		[NT]	[NT]
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	[NT]	40	<50	<50	0	[NT]	[NT]
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	[NT]	40	180	190	5	[NT]	[NT]
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	[NT]	40	<100	<100	0	[NT]	[NT]
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	[NT]	40	<50	<50	0	[NT]	[NT]
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	[NT]	40	230	250	8	[NT]	[NT]
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	[NT]	40	<100	<100	0	[NT]	[NT]
Surrogate o-Terphenyl	%		Org-020	[NT]	40	94	94	0	[NT]	[NT]

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	54	29/07/2020	29/07/2020			
Date analysed	-			[NT]	54	29/07/2020	29/07/2020			
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	[NT]	54	<50	<50	0		
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	[NT]	54	<100	<100	0		
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	[NT]	54	<100	<100	0		
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	[NT]	54	<50	<50	0		
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	[NT]	54	<100	<100	0		
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	[NT]	54	<100	<100	0		
Surrogate o-Terphenyl	%		Org-020	[NT]	54	77	78	1		

QUALITY CC	NTROL: svT	RH (C10	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	65	29/07/2020	29/07/2020			[NT]
Date analysed	-			[NT]	65	30/07/2020	30/07/2020			[NT]
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	[NT]	65	<50	<50	0		[NT]
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	[NT]	65	<100	<100	0		[NT]
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	[NT]	65	<100	<100	0		[NT]
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	[NT]	65	<50	<50	0		[NT]
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	[NT]	65	<100	<100	0		[NT]
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	[NT]	65	<100	<100	0		[NT]
Surrogate o-Terphenyl	%		Org-020	[NT]	65	81	83	2		[NT]

QUALI	TY CONTRO	L: PAHs	in Soi l			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	247834-6
Date extracted	-			29/07/2020	1	29/07/2020	29/07/2020		29/07/2020	29/07/2020
Date analysed	-			30/07/2020	1	30/07/2020	30/07/2020		30/07/2020	30/07/2020
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	98	96
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fluorene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	102	96
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	100	98
Anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	94	96
Pyrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	96	100
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	92	88
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	1	<0.05	<0.05	0	104	90
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	105	1	96	102	6	97	95

QUALI	TY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	247834-33
Date extracted	-			[NT]	16	29/07/2020	29/07/2020		29/07/2020	29/07/2020
Date analysed	-			[NT]	16	30/07/2020	30/07/2020		30/07/2020	30/07/2020
Naphthalene	mg/kg	0.1	Org-022/025	[NT]	16	<0.1	<0.1	0	98	92
Acenaphthylene	mg/kg	0.1	Org-022/025	[NT]	16	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	[NT]	16	<0.1	<0.1	0	[NT]	[NT]
Fluorene	mg/kg	0.1	Org-022/025	[NT]	16	<0.1	<0.1	0	94	76
Phenanthrene	mg/kg	0.1	Org-022/025	[NT]	16	<0.1	<0.1	0	100	96
Anthracene	mg/kg	0.1	Org-022/025	[NT]	16	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	[NT]	16	<0.1	<0.1	0	92	96
Pyrene	mg/kg	0.1	Org-022/025	[NT]	16	<0.1	<0.1	0	98	96
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	[NT]	16	<0.1	<0.1	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-022/025	[NT]	16	<0.1	<0.1	0	88	88
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	[NT]	16	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	[NT]	16	<0.05	<0.05	0	108	96
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	[NT]	16	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	[NT]	16	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	[NT]	16	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	[NT]	16	99	105	6	98	101

QUALIT	TY CONTRO	L: PAHs	in Soi l			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	247834-46
Date extracted	-			[NT]	27	29/07/2020	29/07/2020		29/07/2020	29/07/2020
Date analysed	-			[NT]	27	30/07/2020	30/07/2020		30/07/2020	30/07/2020
Naphthalene	mg/kg	0.1	Org-022/025	[NT]	27	<0.1	<0.1	0	100	96
Acenaphthylene	mg/kg	0.1	Org-022/025	[NT]	27	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	[NT]	27	<0.1	<0.1	0	[NT]	[NT]
Fluorene	mg/kg	0.1	Org-022/025	[NT]	27	<0.1	<0.1	0	90	104
Phenanthrene	mg/kg	0.1	Org-022/025	[NT]	27	0.6	0.6	0	102	97
Anthracene	mg/kg	0.1	Org-022/025	[NT]	27	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	[NT]	27	1.1	0.9	20	94	90
Pyrene	mg/kg	0.1	Org-022/025	[NT]	27	0.8	0.6	29	106	90
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	[NT]	27	0.7	0.6	15	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-022/025	[NT]	27	0.7	0.6	15	92	82
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	[NT]	27	1	0.8	22	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	[NT]	27	0.5	0.4	22	104	80
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	[NT]	27	0.2	0.2	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	[NT]	27	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	[NT]	27	0.2	0.2	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	[NT]	27	100	91	9	107	95

QUA	LITY CONTRO	L: PAHs	in Soi l			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	40	29/07/2020	29/07/2020			[NT]
Date analysed	-			[NT]	40	30/07/2020	30/07/2020			[NT]
Naphthalene	mg/kg	0.1	Org-022/025	[NT]	40	<0.1	<0.1	0		[NT]
Acenaphthylene	mg/kg	0.1	Org-022/025	[NT]	40	<0.1	<0.1	0		[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	[NT]	40	0.7	0.5	33		[NT]
Fluorene	mg/kg	0.1	Org-022/025	[NT]	40	0.3	0.2	40		[NT]
Phenanthrene	mg/kg	0.1	Org-022/025	[NT]	40	4.1	4.4	7		[NT]
Anthracene	mg/kg	0.1	Org-022/025	[NT]	40	1.4	1.3	7		[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	[NT]	40	6.0	7.6	24		[NT]
Pyrene	mg/kg	0.1	Org-022/025	[NT]	40	9.4	11	16		[NT]
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	[NT]	40	3.6	4.9	31		[NT]
Chrysene	mg/kg	0.1	Org-022/025	[NT]	40	3.9	4.5	14		[NT]
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	[NT]	40	3.9	4.6	16		[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	[NT]	40	3.3	3.9	17		[NT]
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	[NT]	40	0.9	1.2	29		[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	[NT]	40	0.3	0.3	0		[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	[NT]	40	1.5	1.8	18		[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	[NT]	40	95	103	8		[NT]

QUA	ALITY CONTRO	L: PAHs	in Soi l			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	54	29/07/2020	29/07/2020			[NT]
Date analysed	-			[NT]	54	30/07/2020	30/07/2020			[NT]
Naphthalene	mg/kg	0.1	Org-022/025	[NT]	54	<0.1	<0.1	0		[NT]
Acenaphthylene	mg/kg	0.1	Org-022/025	[NT]	54	<0.1	<0.1	0		[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	[NT]	54	<0.1	<0.1	0		[NT]
Fluorene	mg/kg	0.1	Org-022/025	[NT]	54	<0.1	<0.1	0		[NT]
Phenanthrene	mg/kg	0.1	Org-022/025	[NT]	54	<0.1	<0.1	0		[NT]
Anthracene	mg/kg	0.1	Org-022/025	[NT]	54	<0.1	<0.1	0		[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	[NT]	54	<0.1	<0.1	0		[NT]
Pyrene	mg/kg	0.1	Org-022/025	[NT]	54	<0.1	<0.1	0		[NT]
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	[NT]	54	<0.1	<0.1	0		[NT]
Chrysene	mg/kg	0.1	Org-022/025	[NT]	54	<0.1	<0.1	0		[NT]
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	[NT]	54	<0.2	<0.2	0		[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	[NT]	54	<0.05	<0.05	0		[NT]
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	[NT]	54	<0.1	<0.1	0		[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	[NT]	54	<0.1	<0.1	0		[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	[NT]	54	<0.1	<0.1	0		[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	[NT]	54	109	98	11		[NT]

QUALI	TY CONTRO	L: PAHs	in Soi l			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	65	29/07/2020	29/07/2020			[NT]
Date analysed	-			[NT]	65	30/07/2020	30/07/2020			[NT]
Naphthalene	mg/kg	0.1	Org-022/025	[NT]	65	<0.1	<0.1	0		[NT]
Acenaphthylene	mg/kg	0.1	Org-022/025	[NT]	65	<0.1	<0.1	0		[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	[NT]	65	<0.1	<0.1	0		[NT]
Fluorene	mg/kg	0.1	Org-022/025	[NT]	65	<0.1	<0.1	0		[NT]
Phenanthrene	mg/kg	0.1	Org-022/025	[NT]	65	<0.1	<0.1	0		[NT]
Anthracene	mg/kg	0.1	Org-022/025	[NT]	65	<0.1	<0.1	0		[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	[NT]	65	<0.1	<0.1	0		[NT]
Pyrene	mg/kg	0.1	Org-022/025	[NT]	65	<0.1	<0.1	0		[NT]
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	[NT]	65	<0.1	<0.1	0		[NT]
Chrysene	mg/kg	0.1	Org-022/025	[NT]	65	<0.1	<0.1	0		[NT]
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	[NT]	65	<0.2	<0.2	0		[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	[NT]	65	<0.05	<0.05	0		[NT]
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	[NT]	65	<0.1	<0.1	0		[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	[NT]	65	<0.1	<0.1	0		[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	[NT]	65	<0.1	<0.1	0		[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	[NT]	65	103	100	3		[NT]

QUALITY CO	NTROL: Organo	ch l orine F	Pesticides in soi l			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	247834-6
Date extracted	-			29/07/2020	1	29/07/2020	29/07/2020		29/07/2020	29/07/2020
Date analysed	=			30/07/2020	1	30/07/2020	30/07/2020		30/07/2020	30/07/2020
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	114	100
НСВ	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	110	100
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	98	100
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	110	112
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	102	108
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	102	108
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	100	94
Endrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	90	88
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	98	96
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	90	86
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	108	1	102	104	2	110	113

QUAL I TY CO	ONTROL: Organo	ch l orine F	Pesticides in soi l			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	247834-33
Date extracted	-			[NT]	16	29/07/2020	29/07/2020		29/07/2020	29/07/2020
Date analysed	-			[NT]	16	30/07/2020	30/07/2020		30/07/2020	30/07/2020
alpha-BHC	mg/kg	0,1	Org-022/025	[NT]	16	<0.1	<0.1	0	106	84
НСВ	mg/kg	0.1	Org-022/025	[NT]	16	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-022/025	[NT]	16	<0.1	<0.1	0	112	86
gamma-BHC	mg/kg	0.1	Org-022/025	[NT]	16	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-022/025	[NT]	16	<0.1	<0.1	0	94	100
delta-BHC	mg/kg	0.1	Org-022/025	[NT]	16	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-022/025	[NT]	16	<0.1	<0.1	0	110	112
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	[NT]	16	<0.1	<0.1	0	104	110
gamma-Chlordane	mg/kg	0.1	Org-022/025	[NT]	16	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	[NT]	16	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	[NT]	16	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-022/025	[NT]	16	<0.1	<0.1	0	106	110
Dieldrin	mg/kg	0.1	Org-022/025	[NT]	16	<0.1	<0.1	0	100	102
Endrin	mg/kg	0.1	Org-022/025	[NT]	16	<0.1	<0.1	0	106	108
Endosulfan II	mg/kg	0.1	Org-022/025	[NT]	16	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-022/025	[NT]	16	<0.1	<0.1	0	100	98
Endrin Aldehyde	mg/kg	0.1	Org-022/025	[NT]	16	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-022/025	[NT]	16	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	[NT]	16	<0.1	<0.1	0	72	90
Methoxychlor	mg/kg	0.1	Org-022/025	[NT]	16	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	[NT]	16	109	118	8	100	95

QUALITY CO	ONTROL: Organo	chlorine F	Pesticides in soi l			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	247834-46
Date extracted	-			[NT]	27	29/07/2020	29/07/2020		29/07/2020	29/07/2020
Date analysed	-			[NT]	27	30/07/2020	30/07/2020		30/07/2020	30/07/2020
alpha-BHC	mg/kg	0.1	Org-022/025	[NT]	27	<0.1	<0.1	0	72	112
НСВ	mg/kg	0.1	Org-022/025	[NT]	27	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-022/025	[NT]	27	<0.1	<0.1	0	96	112
gamma-BHC	mg/kg	0.1	Org-022/025	[NT]	27	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-022/025	[NT]	27	<0.1	<0.1	0	92	96
delta-BHC	mg/kg	0.1	Org-022/025	[NT]	27	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-022/025	[NT]	27	<0.1	<0.1	0	106	106
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	[NT]	27	<0.1	<0.1	0	102	104
gamma-Chlordane	mg/kg	0.1	Org-022/025	[NT]	27	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	[NT]	27	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	[NT]	27	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-022/025	[NT]	27	<0.1	<0.1	0	114	106
Dieldrin	mg/kg	0.1	Org-022/025	[NT]	27	<0.1	<0.1	0	112	102
Endrin	mg/kg	0.1	Org-022/025	[NT]	27	<0.1	<0.1	0	120	114
Endosulfan II	mg/kg	0.1	Org-022/025	[NT]	27	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-022/025	[NT]	27	<0.1	<0.1	0	94	100
Endrin Aldehyde	mg/kg	0.1	Org-022/025	[NT]	27	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-022/025	[NT]	27	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	[NT]	27	<0.1	<0.1	0	82	76
Methoxychlor	mg/kg	0.1	Org-022/025	[NT]	27	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	[NT]	27	123	101	20	98	109

QUALITY C	ONTROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				40	29/07/2020	29/07/2020			[NT]
Date analysed	-				40	30/07/2020	30/07/2020			[NT]
alpha-BHC	mg/kg	0.1	Org-022/025		40	<0.1	<0.1	0		[NT]
нсв	mg/kg	0.1	Org-022/025		40	<0.1	<0.1	0		[NT]
beta-BHC	mg/kg	0.1	Org-022/025		40	<0.1	<0.1	0		[NT]
gamma-BHC	mg/kg	0.1	Org-022/025		40	<0.1	<0.1	0		[NT]
Heptachlor	mg/kg	0.1	Org-022/025		40	<0.1	<0.1	0		[NT]
delta-BHC	mg/kg	0.1	Org-022/025		40	<0.1	<0.1	0		[NT]
Aldrin	mg/kg	0.1	Org-022/025		40	<0.1	<0.1	0		[NT]
Heptachlor Epoxide	mg/kg	0.1	Org-022/025		40	<0.1	<0.1	0		[NT]
gamma-Chlordane	mg/kg	0.1	Org-022/025		40	0.2	0.2	0		[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025		40	0.1	0.1	0		[NT]
Endosulfan I	mg/kg	0.1	Org-022/025		40	<0.1	<0.1	0		[NT]
pp-DDE	mg/kg	0.1	Org-022/025		40	<0.1	<0.1	0		[NT]
Dieldrin	mg/kg	0.1	Org-022/025		40	<0.1	<0.1	0		[NT]
Endrin	mg/kg	0.1	Org-022/025		40	<0.1	<0.1	0		[NT]
Endosulfan II	mg/kg	0.1	Org-022/025		40	<0.1	<0.1	0		[NT]
pp-DDD	mg/kg	0.1	Org-022/025		40	<0.1	<0.1	0		[NT]
Endrin Aldehyde	mg/kg	0.1	Org-022/025		40	<0.1	<0.1	0		[NT]
pp-DDT	mg/kg	0.1	Org-022/025		40	<0.1	<0.1	0		[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025		40	<0.1	<0.1	0		[NT]
Methoxychlor	mg/kg	0.1	Org-022/025		40	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-022/025		40	105	112	6		[NT]

QUALITY CO	ONTROL: Organo	ch l orine F	Pesticides in soi l			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	54	29/07/2020	29/07/2020			[NT]
Date analysed	-			[NT]	54	30/07/2020	30/07/2020			[NT]
alpha-BHC	mg/kg	0.1	Org-022/025	[NT]	54	<0.1	<0.1	0		[NT]
НСВ	mg/kg	0.1	Org-022/025	[NT]	54	<0.1	<0.1	0		[NT]
beta-BHC	mg/kg	0.1	Org-022/025	[NT]	54	<0.1	<0.1	0		[NT]
gamma-BHC	mg/kg	0.1	Org-022/025	[NT]	54	<0.1	<0.1	0		[NT]
Heptachlor	mg/kg	0.1	Org-022/025	[NT]	54	<0.1	<0.1	0		[NT]
delta-BHC	mg/kg	0.1	Org-022/025	[NT]	54	<0.1	<0.1	0		[NT]
Aldrin	mg/kg	0.1	Org-022/025	[NT]	54	<0.1	<0.1	0		[NT]
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	[NT]	54	<0.1	<0.1	0		[NT]
gamma-Chlordane	mg/kg	0.1	Org-022/025	[NT]	54	<0.1	<0.1	0		[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	[NT]	54	<0.1	<0.1	0		[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	[NT]	54	<0.1	<0.1	0		[NT]
pp-DDE	mg/kg	0.1	Org-022/025	[NT]	54	<0.1	<0.1	0		[NT]
Dieldrin	mg/kg	0.1	Org-022/025	[NT]	54	<0.1	<0.1	0		[NT]
Endrin	mg/kg	0.1	Org-022/025	[NT]	54	<0.1	<0.1	0		[NT]
Endosulfan II	mg/kg	0.1	Org-022/025	[NT]	54	<0.1	<0.1	0		[NT]
pp-DDD	mg/kg	0.1	Org-022/025	[NT]	54	<0.1	<0.1	0		[NT]
Endrin Aldehyde	mg/kg	0.1	Org-022/025	[NT]	54	<0.1	<0.1	0		[NT]
pp-DDT	mg/kg	0.1	Org-022/025	[NT]	54	<0.1	<0.1	0		[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	[NT]	54	<0.1	<0.1	0		[NT]
Methoxychlor	mg/kg	0.1	Org-022/025	[NT]	54	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-022/025	[NT]	54	120	101	17		[NT]

QUALITY CO	ONTROL: Organo	ch l orine F	Pesticides in soi l			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	65	29/07/2020	29/07/2020			[NT]
Date analysed	-			[NT]	65	30/07/2020	30/07/2020			[NT]
alpha-BHC	mg/kg	0.1	Org-022/025	[NT]	65	<0.1	<0.1	0		[NT]
НСВ	mg/kg	0.1	Org-022/025	[NT]	65	<0.1	<0.1	0		[NT]
beta-BHC	mg/kg	0.1	Org-022/025	[NT]	65	<0.1	<0.1	0		[NT]
gamma-BHC	mg/kg	0.1	Org-022/025	[NT]	65	<0.1	<0.1	0		[NT]
Heptachlor	mg/kg	0.1	Org-022/025	[NT]	65	<0.1	<0.1	0		[NT]
delta-BHC	mg/kg	0.1	Org-022/025	[NT]	65	<0.1	<0.1	0		[NT]
Aldrin	mg/kg	0.1	Org-022/025	[NT]	65	<0.1	<0.1	0		[NT]
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	[NT]	65	<0.1	<0.1	0		[NT]
gamma-Chlordane	mg/kg	0.1	Org-022/025	[NT]	65	<0.1	<0.1	0		[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	[NT]	65	<0.1	<0.1	0		[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	[NT]	65	<0.1	<0.1	0		[NT]
pp-DDE	mg/kg	0.1	Org-022/025	[NT]	65	<0.1	<0.1	0		[NT]
Dieldrin	mg/kg	0.1	Org-022/025	[NT]	65	<0.1	<0.1	0		[NT]
Endrin	mg/kg	0.1	Org-022/025	[NT]	65	<0.1	<0.1	0		[NT]
Endosulfan II	mg/kg	0.1	Org-022/025	[NT]	65	<0.1	<0.1	0		[NT]
pp-DDD	mg/kg	0.1	Org-022/025	[NT]	65	<0.1	<0.1	0		[NT]
Endrin Aldehyde	mg/kg	0.1	Org-022/025	[NT]	65	<0.1	<0.1	0		[NT]
pp-DDT	mg/kg	0.1	Org-022/025	[NT]	65	<0.1	<0.1	0		[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	[NT]	65	<0.1	<0.1	0		[NT]
Methoxychlor	mg/kg	0.1	Org-022/025	[NT]	65	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-022/025	[NT]	65	104	102	2		[NT]

QUALITY CONTRO	L: Organoph	osphorus	Pesticides in Soi l			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	247834-6
Date extracted	-			29/07/2020	1	29/07/2020	29/07/2020		29/07/2020	29/07/2020
Date analysed	-			30/07/2020	1	30/07/2020	30/07/2020		30/07/2020	30/07/2020
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	72	108
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Diazinon	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Ronnel	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	114	114
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	94	94
Malathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	84	81
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	116	116
Parathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	100	104
Bromophos-ethyl	mg/kg	0.1	Org-022	<0.1	1	<0.1	<0.1	0	[NT]	
Ethion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	98	96
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Surrogate TCMX	%		Org-022/025	108	1	102	104	2	110	113

QUALITY CONTRO	L: Organoph	nosphorus	Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	247834-33
Date extracted	-			[NT]	16	29/07/2020	29/07/2020		29/07/2020	29/07/2020
Date analysed	-			[NT]	16	30/07/2020	30/07/2020		30/07/2020	30/07/2020
Dichlorvos	mg/kg	0.1	Org-022/025	[NT]	16	<0.1	<0.1	0	75	110
Dimethoate	mg/kg	0.1	Org-022/025	[NT]	16	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-022/025	[NT]	16	<0.1	<0.1	0	[NT]	[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025	[NT]	16	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-022/025	[NT]	16	<0.1	<0.1	0	106	110
Fenitrothion	mg/kg	0.1	Org-022/025	[NT]	16	<0.1	<0.1	0	92	94
Malathion	mg/kg	0.1	Org-022/025	[NT]	16	<0.1	<0.1	0	80	79
Chlorpyriphos	mg/kg	0.1	Org-022/025	[NT]	16	<0.1	<0.1	0	106	108
Parathion	mg/kg	0.1	Org-022/025	[NT]	16	<0.1	<0.1	0	110	112
Bromophos-ethyl	mg/kg	0.1	Org-022	[NT]	16	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-022/025	[NT]	16	<0.1	<0.1	0	106	106
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	[NT]	16	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	[NT]	16	109	118	8	100	95

QUALITY CONTRO	L: Organoph	osphorus	Pesticides in Soi l			Du	p l icate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	247834-46
Date extracted	-				27	29/07/2020	29/07/2020		29/07/2020	29/07/2020
Date analysed	-				27	30/07/2020	30/07/2020		30/07/2020	30/07/2020
Dichlorvos	mg/kg	0.1	Org-022/025		27	<0.1	<0.1	0	114	136
Dimethoate	mg/kg	0.1	Org-022/025		27	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-022/025		27	<0.1	<0.1	0	[NT]	[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025		27	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-022/025		27	<0.1	<0.1	0	104	108
Fenitrothion	mg/kg	0.1	Org-022/025		27	<0.1	<0.1	0	82	102
Malathion	mg/kg	0.1	Org-022/025		27	<0.1	<0.1	0	84	86
Chlorpyriphos	mg/kg	0.1	Org-022/025		27	<0.1	<0.1	0	98	108
Parathion	mg/kg	0.1	Org-022/025		27	<0.1	<0.1	0	100	114
Bromophos-ethyl	mg/kg	0.1	Org-022		27	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-022/025		27	<0.1	<0.1	0	106	118
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025		27	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025		27	123	101	20	98	109

QUALITY CONTRO	L: Organopl	nosphorus	s Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	40	29/07/2020	29/07/2020			[NT]
Date analysed	-			[NT]	40	30/07/2020	30/07/2020			[NT]
Dichlorvos	mg/kg	0.1	Org-022/025	[NT]	40	<0.1	<0.1	0		[NT]
Dimethoate	mg/kg	0.1	Org-022/025	[NT]	40	<0.1	<0.1	0		[NT]
Diazinon	mg/kg	0.1	Org-022/025	[NT]	40	<0.1	<0.1	0		[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025	[NT]	40	<0.1	<0.1	0		[NT]
Ronnel	mg/kg	0.1	Org-022/025	[NT]	40	<0.1	<0.1	0		[NT]
Fenitrothion	mg/kg	0.1	Org-022/025	[NT]	40	<0.1	<0.1	0		[NT]
Malathion	mg/kg	0.1	Org-022/025	[NT]	40	<0.1	<0.1	0		[NT]
Chlorpyriphos	mg/kg	0.1	Org-022/025	[NT]	40	<0.1	<0.1	0		[NT]
Parathion	mg/kg	0.1	Org-022/025	[NT]	40	<0.1	<0.1	0		[NT]
Bromophos-ethyl	mg/kg	0.1	Org-022	[NT]	40	<0.1	<0.1	0		[NT]
Ethion	mg/kg	0.1	Org-022/025	[NT]	40	<0.1	<0.1	0		[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	[NT]	40	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-022/025	[NT]	40	105	112	6		[NT]

QUALITY CONTRO	L: Organoph	nosphorus	Pesticides in Soi l			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				54	29/07/2020	29/07/2020			
Date analysed	-				54	30/07/2020	30/07/2020			
Dichlorvos	mg/kg	0,1	Org-022/025		54	<0.1	<0.1	0		
Dimethoate	mg/kg	0.1	Org-022/025		54	<0.1	<0.1	0		
Diazinon	mg/kg	0.1	Org-022/025		54	<0.1	<0.1	0		
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025		54	<0.1	<0.1	0		
Ronnel	mg/kg	0.1	Org-022/025		54	<0.1	<0.1	0		
Fenitrothion	mg/kg	0.1	Org-022/025		54	<0.1	<0.1	0		
Malathion	mg/kg	0.1	Org-022/025		54	<0.1	<0.1	0		
Chlorpyriphos	mg/kg	0.1	Org-022/025		54	<0.1	<0.1	0		
Parathion	mg/kg	0.1	Org-022/025		54	<0.1	<0.1	0		
Bromophos-ethyl	mg/kg	0.1	Org-022		54	<0.1	<0.1	0		
Ethion	mg/kg	0.1	Org-022/025		54	<0.1	<0.1	0		
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025		54	<0.1	<0.1	0		
Surrogate TCMX	%		Org-022/025		54	120	101	17		

QUALITY CONTR	ROL: Organopl	nosphorus	s Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	65	29/07/2020	29/07/2020			[NT]
Date analysed	-			[NT]	65	30/07/2020	30/07/2020			[NT]
Dichlorvos	mg/kg	0.1	Org-022/025	[NT]	65	<0.1	<0.1	0		[NT]
Dimethoate	mg/kg	0.1	Org-022/025	[NT]	65	<0.1	<0.1	0		[NT]
Diazinon	mg/kg	0.1	Org-022/025	[NT]	65	<0.1	<0.1	0		[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025	[NT]	65	<0.1	<0.1	0		[NT]
Ronnel	mg/kg	0.1	Org-022/025	[NT]	65	<0.1	<0.1	0		[NT]
Fenitrothion	mg/kg	0.1	Org-022/025	[NT]	65	<0.1	<0.1	0		[NT]
Malathion	mg/kg	0.1	Org-022/025	[NT]	65	<0.1	<0.1	0		[NT]
Chlorpyriphos	mg/kg	0.1	Org-022/025	[NT]	65	<0.1	<0.1	0		[NT]
Parathion	mg/kg	0.1	Org-022/025	[NT]	65	<0.1	<0.1	0		[NT]
Bromophos-ethyl	mg/kg	0.1	Org-022	[NT]	65	<0.1	<0.1	0		[NT]
Ethion	mg/kg	0.1	Org-022/025	[NT]	65	<0.1	<0.1	0		[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	[NT]	65	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-022/025	[NT]	65	104	102	2		[NT]

QUALIT	Y CONTRO	L: PCBs	in Soi l			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	247834-6
Date extracted	-			29/07/2020	1	29/07/2020	29/07/2020		29/07/2020	29/07/2020
Date analysed	-			30/07/2020	1	30/07/2020	30/07/2020		30/07/2020	30/07/2020
Aroclor 1016	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	90	90
Aroclor 1260	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-021	108	1	102	104	2	110	113

QUALIT	Y CONTRO	L: PCBs	in Soi l			Duj	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	247834-33
Date extracted	-			[NT]	16	29/07/2020	29/07/2020		29/07/2020	29/07/2020
Date analysed	-			[NT]	16	30/07/2020	30/07/2020		30/07/2020	30/07/2020
Aroclor 1016	mg/kg	0.1	Org-021	[NT]	16	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021	[NT]	16	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021	[NT]	16	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021	[NT]	16	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021	[NT]	16	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021	[NT]	16	<0.1	<0.1	0	94	94
Aroclor 1260	mg/kg	0.1	Org-021	[NT]	16	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-021	[NT]	16	109	118	8	100	95

QUALIT	Y CONTRO	L: PCBs	in Soi l			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	247834-46
Date extracted	-			[NT]	27	29/07/2020	29/07/2020		29/07/2020	29/07/2020
Date analysed	-			[NT]	27	30/07/2020	30/07/2020		30/07/2020	30/07/2020
Aroclor 1016	mg/kg	0.1	Org-021	[NT]	27	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021	[NT]	27	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021	[NT]	27	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021	[NT]	27	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021	[NT]	27	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021	[NT]	27	<0.1	<0.1	0	90	92
Aroclor 1260	mg/kg	0.1	Org-021	[NT]	27	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-021	[NT]	27	123	101	20	98	109

QUALIT	TY CONTRO	L: PCBs	in Soi l			Du	p l icate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	40	29/07/2020	29/07/2020			[NT]
Date analysed	-			[NT]	40	30/07/2020	30/07/2020			[NT]
Aroclor 1016	mg/kg	0.1	Org-021	[NT]	40	<0.1	<0.1	0		[NT]
Aroclor 1221	mg/kg	0.1	Org-021	[NT]	40	<0.1	<0.1	0		[NT]
Aroclor 1232	mg/kg	0.1	Org-021	[NT]	40	<0.1	<0.1	0		[NT]
Aroclor 1242	mg/kg	0.1	Org-021	[NT]	40	<0.1	<0.1	0		[NT]
Aroclor 1248	mg/kg	0.1	Org-021	[NT]	40	<0.1	<0.1	0		[NT]
Aroclor 1254	mg/kg	0.1	Org-021	[NT]	40	<0.1	<0.1	0		[NT]
Aroclor 1260	mg/kg	0.1	Org-021	[NT]	40	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-021	[NT]	40	105	112	6		[NT]

QUALIT	TY CONTRO	L: PCBs	in Soi l			Du	p l icate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	54	29/07/2020	29/07/2020		[NT]	
Date analysed	-			[NT]	54	30/07/2020	30/07/2020		[NT]	
Aroclor 1016	mg/kg	0.1	Org-021	[NT]	54	<0.1	<0.1	0	[NT]	
Aroclor 1221	mg/kg	0.1	Org-021	[NT]	54	<0.1	<0.1	0	[NT]	
Aroclor 1232	mg/kg	0.1	Org-021	[NT]	54	<0.1	<0.1	0	[NT]	
Aroclor 1242	mg/kg	0.1	Org-021	[NT]	54	<0.1	<0.1	0	[NT]	
Aroclor 1248	mg/kg	0.1	Org-021	[NT]	54	<0.1	<0.1	0	[NT]	
Aroclor 1254	mg/kg	0.1	Org-021	[NT]	54	<0.1	<0.1	0	[NT]	
Aroclor 1260	mg/kg	0.1	Org-021	[NT]	54	<0.1	<0.1	0	[NT]	
Surrogate TCMX	%		Org-021	[NT]	54	120	101	17	[NT]	

QU	ALITY CONTRO	L: PCBs	in Soi l			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	65	29/07/2020	29/07/2020			[NT]
Date analysed	-			[NT]	65	30/07/2020	30/07/2020			[NT]
Aroclor 1016	mg/kg	0.1	Org-021	[NT]	65	<0.1	<0.1	0		[NT]
Aroclor 1221	mg/kg	0.1	Org-021	[NT]	65	<0.1	<0.1	0		[NT]
Aroclor 1232	mg/kg	0.1	Org-021	[NT]	65	<0.1	<0.1	0		[NT]
Aroclor 1242	mg/kg	0.1	Org-021	[NT]	65	<0.1	<0.1	0		[NT]
Aroclor 1248	mg/kg	0.1	Org-021	[NT]	65	<0.1	<0.1	0		[NT]
Aroclor 1254	mg/kg	0.1	Org-021	[NT]	65	<0.1	<0.1	0		[NT]
Aroclor 1260	mg/kg	0.1	Org-021	[NT]	65	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-021	[NT]	65	104	102	2		[NT]

QUALITY CONT	ROL: Acid E	Extractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	247834-6
Date prepared	<u>-</u>			05/08/2020	1	29/07/2020	29/07/2020		29/07/2020	29/07/2020
Date analysed	-			05/08/2020	1	29/07/2020	29/07/2020		29/07/2020	29/07/2020
Arsenic	mg/kg	4	Metals-020	<4	1	12	9	29	96	105
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	<0.4	<0.4	0	94	104
Chromium	mg/kg	1	Metals-020	<1	1	26	20	26	102	101
Copper	mg/kg	1	Metals-020	<1	1	15	16	6	101	102
Lead	mg/kg	1	Metals-020	<1	1	23	18	24	105	110
Mercury	mg/kg	0.1	Metals-021	<0.1	1	<0.1	<0.1	0	94	103
Nickel	mg/kg	1	Metals-020	<1	1	15	14	7	103	104
Zinc	mg/kg	1	Metals-020	<1	1	41	39	5	101	103

QUALITY CONT	ROL: Acid E	Extractab l	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	247834-33
Date prepared	-			[NT]	16	29/07/2020	29/07/2020		29/07/2020	29/07/2020
Date analysed	-			[NT]	16	29/07/2020	29/07/2020		29/07/2020	29/07/2020
Arsenic	mg/kg	4	Metals-020	[NT]	16	<4	<4	0	101	91
Cadmium	mg/kg	0.4	Metals-020	[NT]	16	<0.4	<0.4	0	104	99
Chromium	mg/kg	1	Metals-020	[NT]	16	1	<1	0	98	91
Copper	mg/kg	1	Metals-020	[NT]	16	<1	<1	0	109	100
Lead	mg/kg	1	Metals-020	[NT]	16	<1	<1	0	115	105
Mercury	mg/kg	0.1	Metals-021	[NT]	16	<0.1	<0.1	0	85	93
Nickel	mg/kg	1	Metals-020	[NT]	16	<1	<1	0	102	94
Zinc	mg/kg	1	Metals-020	[NT]	16	3	2	40	103	93

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	247834-46
Date prepared	-			[NT]	27	29/07/2020	29/07/2020		29/07/2020	29/07/2020
Date analysed	-			[NT]	27	29/07/2020	29/07/2020		29/07/2020	29/07/2020
Arsenic	mg/kg	4	Metals-020	[NT]	27	10	24	82	86	89
Cadmium	mg/kg	0.4	Metals-020	[NT]	27	<0.4	0.6	40	92	102
Chromium	mg/kg	1	Metals-020	[NT]	27	5	7	33	79	73
Copper	mg/kg	1	Metals-020	[NT]	27	790	540	38	96	99
Lead	mg/kg	1	Metals-020	[NT]	27	2000	3500	55	92	118
Mercury	mg/kg	0.1	Metals-021	[NT]	27	0.2	0.3	40	89	92
Nickel	mg/kg	1	Metals-020	[NT]	27	8	11	32	81	73
Zinc	mg/kg	1	Metals-020	[NT]	27	190	290	42	83	101

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	<u>-</u>			[NT]	40	29/07/2020	29/07/2020		[NT]	
Date analysed	-			[NT]	40	29/07/2020	29/07/2020		[NT]	
Arsenic	mg/kg	4	Metals-020	[NT]	40	<4	<4	0	[NT]	
Cadmium	mg/kg	0.4	Metals-020	[NT]	40	<0.4	<0.4	0	[NT]	
Chromium	mg/kg	1	Metals-020	[NT]	40	10	7	35	[NT]	
Copper	mg/kg	1	Metals-020	[NT]	40	12	13	8	[NT]	
Lead	mg/kg	1	Metals-020	[NT]	40	430	61	150	[NT]	
Mercury	mg/kg	0.1	Metals-021	[NT]	40	<0.1	<0.1	0	[NT]	
Nickel	mg/kg	1	Metals-020	[NT]	40	47	34	32	[NT]	
Zinc	mg/kg	1	Metals-020	[NT]	40	29	31	7	[NT]	

QUALITY CONT	ROL: Acid E	Extractab l	e metals in soil			Du	p l icate		Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]		
Date prepared	-			[NT]	54	29/07/2020	29/07/2020		[NT]			
Date analysed	-			[NT]	54	29/07/2020	29/07/2020		[NT]			
Arsenic	mg/kg	4	Metals-020	[NT]	54	<4	<4	0	[NT]			
Cadmium	mg/kg	0.4	Metals-020	[NT]	54	<0.4	<0.4	0	[NT]			
Chromium	mg/kg	1	Metals-020	[NT]	54	1	1	0	[NT]			
Copper	mg/kg	1	Metals-020	[NT]	54	<1	<1	0	[NT]			
Lead	mg/kg	1	Metals-020	[NT]	54	<1	<1	0	[NT]			
Mercury	mg/kg	0.1	Metals-021	[NT]	54	<0.1	<0.1	0	[NT]			
Nickel	mg/kg	1	Metals-020	[NT]	54	<1	<1	0	[NT]			
Zinc	mg/kg	1	Metals-020	[NT]	54	2	1	67	[NT]			

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	65	29/07/2020	29/07/2020		[NT]	
Date analysed	-			[NT]	65	29/07/2020	29/07/2020		[NT]	
Arsenic	mg/kg	4	Metals-020	[NT]	65	<4	<4	0	[NT]	
Cadmium	mg/kg	0.4	Metals-020	[NT]	65	<0.4	<0.4	0	[NT]	
Chromium	mg/kg	1	Metals-020	[NT]	65	<1	1	0	[NT]	
Copper	mg/kg	1	Metals-020	[NT]	65	<1	<1	0	[NT]	
Lead	mg/kg	1	Metals-020	[NT]	65	1	1	0	[NT]	
Mercury	mg/kg	0.1	Metals-021	[NT]	65	<0.1	<0.1	0	[NT]	
Nickel	mg/kg	1	Metals-020	[NT]	65	<1	<1	0	[NT]	
Zinc	mg/kg	1	Metals-020	[NT]	65	9	9	0	[NT]	[NT]

QUAL I TY CO	NTROL: PF	AS in Soi	ls Extended			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	247834-6
Date prepared	-			03/08/2020	1	03/08/2020	03/08/2020		03/08/2020	03/08/2020
Date analysed	-			04/08/2020	1	04/08/2020	04/08/2020		04/08/2020	04/08/2020
Perfluorobutanesulfonic acid	μg/kg	0.1	Org-029	<0.1	1	<0.1	<0.1	0	98	101
Perfluoropentanesulfonic acid	μg/kg	0.1	Org-029	<0.1	1	<0.1	<0.1	0	102	101
Perfluorohexanesulfonic acid - PFHxS	μg/kg	0.1	Org-029	<0.1	1	<0.1	<0.1	0	101	100
Perfluoroheptanesulfonic acid	μg/kg	0.1	Org-029	<0.1	1	<0.1	<0.1	0	103	104
Perfluorooctanesulfonic acid PFOS	μg/kg	0.1	Org-029	<0.1	1	<0.1	<0.1	0	99	98
Perfluorodecanesulfonic acid	μg/kg	0.2	Org-029	<0.2	1	<0.2	<0.2	0	98	92
Perfluorobutanoic acid	μg/kg	0.2	Org-029	<0.2	1	<0.2	<0.2	0	107	105
Perfluoropentanoic acid	μg/kg	0.2	Org-029	<0.2	1	<0.2	<0.2	0	99	100
Perfluorohexanoic acid	μg/kg	0.1	Org-029	<0.1	1	<0.1	<0.1	0	106	100
Perfluoroheptanoic acid	μg/kg	0.1	Org-029	<0.1	1	<0.1	<0.1	0	106	107
Perfluorooctanoic acid PFOA	μg/kg	0.1	Org-029	<0.1	1	<0.1	<0.1	0	104	101
Perfluorononanoic acid	μg/kg	0.1	Org-029	<0.1	1	<0.1	<0.1	0	104	104
Perfluorodecanoic acid	μg/kg	0.5	Org-029	<0.5	1	<0.5	<0.5	0	101	94
Perfluoroundecanoic acid	μg/kg	0.5	Org-029	<0.5	1	<0.5	<0.5	0	101	95
Perfluorododecanoic acid	μg/kg	0.5	Org-029	<0.5	1	<0.5	<0.5	0	110	107
Perfluorotridecanoic acid	μg/kg	0.5	Org-029	<0.5	1	<0.5	<0.5	0	116	123
Perfluorotetradecanoic acid	μg/kg	5	Org-029	<5	1	<5	<5	0	101	104
4:2 FTS	μg/kg	0.1	Org-029	<0.1	1	<0.1	<0.1	0	106	105
6:2 FTS	μg/kg	0.1	Org-029	<0.1	1	<0.1	<0.1	0	109	123
8:2 FTS	μg/kg	0.2	Org-029	<0.2	1	<0.2	<0.2	0	114	123
10:2 FTS	μg/kg	0.2	Org-029	<0.2	1	<0.2	<0.2	0	101	115
Perfluorooctane sulfonamide	μg/kg	1	Org-029	<1	1	<1	<1	0	108	106
N-Methyl perfluorooctane sulfonamide	μg/kg	1	Org-029	<1	1	<1	<1	0	104	103
N-Ethyl perfluorooctanesulfon amide	μg/kg	1	Org-029	<1	1	<1	<1	0	100	94
N-Me perfluorooctanesulfonamid oethanol	μg/kg	1	Org-029	<1	1	<1	<1	0	105	108
N-Et perfluorooctanesulfonamid oethanol	μg/kg	5	Org-029	<5	1	<5	<5	0	117	117
MePerfluorooctanesulf- amid oacetic acid	μg/kg	0.2	Org-029	<0.2	1	<0.2	<0.2	0	93	104
EtPerfluorooctanesulf amid oacetic acid	μg/kg	0.2	Org-029	<0.2	1	<0.2	<0.2	0	110	103
Surrogate ¹³ C ₈ PFOS	%		Org-029	99	1	112	93	19	102	99
Surrogate ¹³ C ₂ PFOA	%		Org-029	108	1	103	101	2	108	109

QUALITY C	ONTROL: PF	AS in S <u>o</u> i	ls Extended			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	247834-6	
Extracted ISTD 13 C ₃ PFBS	%		Org-029	87	1	83	87	5	85	83	
Extracted ISTD 18 O ₂ PFHxS	%		Org-029	92	1	90	87	3	91	87	
Extracted ISTD 13 C ₄ PFOS	%		Org-029	95	1	86	98	13	95	91	
Extracted ISTD 13 C ₄ PFBA	%		Org-029	66	1	68	66	3	64	81	
Extracted ISTD 13 C ₃ PFPeA	%		Org-029	87	1	85	84	1	83	83	
Extracted ISTD 13 C ₂ PFHxA	%		Org-029	91	1	87	88	1	87	85	
Extracted ISTD 13 C ₄ PFHpA	%		Org-029	89	1	89	91	2	90	83	
Extracted ISTD 13 C ₄ PFOA	%		Org-029	98	1	96	101	5	96	92	
Extracted ISTD 13 C ₅ PFNA	%		Org-029	90	1	90	92	2	93	86	
Extracted ISTD 13 C ₂ PFDA	%		Org-029	108	1	100	104	4	104	94	
Extracted ISTD 13 C ₂ PFUnDA	%		Org-029	102	1	108	104	4	101	93	
Extracted ISTD 13 C ₂ PFDoDA	%		Org-029	94	1	106	115	8	92	82	
Extracted ISTD 13 C ₂ PFTeDA	%		Org-029	64	1	58	56	4	78	58	
Extracted ISTD 13 C ₂ 4:2FTS	%		Org-029	95	1	97	103	6	101	91	
Extracted ISTD 13 C ₂ 6:2FTS	%		Org-029	102	1	111	110	1	115	87	
Extracted ISTD 13 C ₂ 8:2FTS	%		Org-029	112	1	119	109	9	125	95	
Extracted ISTD 13 C ₈ FOSA	%		Org-029	86	1	76	80	5	87	80	
Extracted ISTD d ₃ N MeFOSA	%		Org-029	81	1	77	79	3	89	82	
Extracted ISTD d₅ N EtFOSA	%		Org-029	81	1	79	79	0	90	80	
Extracted ISTD d ₇ N MeFOSE	%		Org-029	95	1	85	88	3	102	94	

QUALITY CO	NTROL: PF.	AS in Soi	s Extended			Duplicate Base Dup. RPD 79 83 5 116 120 3			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	247834-6	
Extracted ISTD d ₉ N EtFOSE	%		Org-029	85	1	79	83	5	88	80	
Extracted ISTD d ₃ N MeFOSAA	%		Org-029	106	1	116	120	3	109	92	
Extracted ISTD d ₅ N EtFOSAA	%		Org-029	91	1	101	102	1	86	86	

QUALITY CO	NTROL: PF	AS in Soi	ls Extended			Du		Spike Re	ke Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	40	03/08/2020	03/08/2020			[NT]
Date analysed	-			[NT]	40	04/08/2020	04/08/2020			[NT]
Perfluorobutanesulfonic acid	μg/kg	0.1	Org-029	[NT]	40	<0.1	<0.1	0		[NT]
Perfluoropentanesulfonic acid	μg/kg	0.1	Org-029	[NT]	40	<0.1	<0.1	0		[NT]
Perfluorohexanesulfonic acid - PFHxS	μg/kg	0.1	Org-029	[NT]	40	<0.1	<0.1	0		[NT]
Perfluoroheptanesulfonic acid	μg/kg	0.1	Org-029	[NT]	40	<0.1	<0.1	0		[NT]
Perfluorooctanesulfonic acid PFOS	μg/kg	0.1	Org-029	[NT]	40	<0.1	0.1	0		[NT]
Perfluorodecanesulfonic acid	μg/kg	0.2	Org-029	[NT]	40	<0.2	<0.2	0		[NT]
Perfluorobutanoic acid	μg/kg	0.2	Org-029	[NT]	40	<0.2	<0.2	0		[NT]
Perfluoropentanoic acid	μg/kg	0.2	Org-029	[NT]	40	<0.2	<0.2	0		[NT]
Perfluorohexanoic acid	μg/kg	0.1	Org-029	[NT]	40	<0.1	<0.1	0		[NT]
Perfluoroheptanoic acid	μg/kg	0.1	Org-029	[NT]	40	<0.1	<0.1	0		[NT]
Perfluorooctanoic acid PFOA	μg/kg	0.1	Org-029	[NT]	40	<0.1	<0.1	0		[NT]
Perfluorononanoic acid	μg/kg	0.1	Org-029	[NT]	40	<0.1	<0.1	0		[NT]
Perfluorodecanoic acid	μg/kg	0.5	Org-029	[NT]	40	<0.5	<0.5	0		[NT]
Perfluoroundecanoic acid	μg/kg	0.5	Org-029	[NT]	40	<0.5	<0.5	0		[NT]
Perfluorododecanoic acid	μg/kg	0.5	Org-029	[NT]	40	<0.5	<0.5	0		[NT]
Perfluorotridecanoic acid	μg/kg	0.5	Org-029	[NT]	40	<0.5	<0.5	0		[NT]
Perfluorotetradecanoic acid	μg/kg	5	Org-029	[NT]	40	<5	<5	0		[NT]
1:2 FTS	μg/kg	0.1	Org-029	[NT]	40	<0.1	<0.1	0		[NT]
S:2 FTS	μg/kg	0.1	Org-029	[NT]	40	<0.1	<0.1	0		[NT]
3:2 FTS	μg/kg	0.2	Org-029	[NT]	40	<0.2	<0.2	0		[NT]
10:2 FTS	μg/kg	0.2	Org-029	[NT]	40	<0.2	<0.2	0		[NT]
Perfluorooctane sulfonamide	μg/kg	1	Org-029	[NT]	40	<1	<1	0		[NT]
N-Methyl perfluorooctane sulfonamide	μg/kg	1	Org-029	[NT]	40	<1	<1	0		[NT]
N-Ethyl perfluorooctanesulfon amide	μg/kg	1	Org-029	[NT]	40	<1	<1	0		[NT]
N-Me perfluorooctanesulfonamid oethanol	μg/kg	1	Org-029	[NT]	40	<1	<1	0		[NT]
I-Et perfluorooctanesulfonamid oethanol	μg/kg	5	Org-029	[NT]	40	<5	<5	0		[NT]
MePerfluorooctanesulf- amid oacetic acid	μg/kg	0.2	Org-029	[NT]	40	<0.2	<0.2	0		[NT]
EtPerfluorooctanesulf amid oacetic acid	μg/kg	0.2	Org-029	[NT]	40	<0.2	<0.2	0		[NT]
Surrogate ¹³ C ₈ PFOS	%		Org-029	[NT]	40	103	105	2		[NT]
Surrogate ¹³ C ₂ PFOA	%		Org-029	[NT]	40	107	95	12		[NT]

QUALITY C	ONTROL: PF	AS in Soil	s Extended			Dι	ıp l icate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Extracted ISTD ¹³ C ₃ PFBS	%		Org-029	[NT]	40	85	33	88		[NT]
Extracted ISTD ¹⁸ O ₂ PFHxS	%		Org-029	[NT]	40	91	36	87		[NT]
Extracted ISTD 13 C ₄ PFOS	%		Org-029	[NT]	40	94	37	87		[NT]
Extracted ISTD 13 C ₄ PFBA	%		Org-029	[NT]	40	69	32	73		[NT]
Extracted ISTD 13 C ₃ PFPeA	%		Org-029	[NT]	40	82	34	83		[NT]
Extracted ISTD 13 C ₂ PFHxA	%		Org-029	[NT]	40	86	35	84		[NT]
Extracted ISTD ¹³ C ₄ PFHpA	%		Org-029	[NT]	40	90	36	86		[NT]
Extracted ISTD ¹³ C ₄ PFOA	%		Org-029	[NT]	40	93	38	84		[NT]
Extracted ISTD ¹³ C ₅ PFNA	%		Org-029	[NT]	40	95	37	88		[NT]
Extracted ISTD ¹³ C ₂ PFDA	%		Org-029	[NT]	40	96	38	87		[NT]
Extracted ISTD ¹³ C ₂ PFUnDA	%		Org-029	[NT]	40	106	40	90		[NT]
Extracted ISTD ¹³ C ₂ PFDoDA	%		Org-029	[NT]	40	93	39	82		[NT]
Extracted ISTD ¹³ C ₂ PFTeDA	%		Org-029	[NT]	40	57	46	21		[NT]
Extracted ISTD ¹³ C ₂ 4:2FTS	%		Org-029	[NT]	40	85	31	93		[NT]
Extracted ISTD ¹³ C ₂ 6:2FTS	%		Org-029	[NT]	40	108	45	82		[NT]
Extracted ISTD ¹³ C ₂ 8:2FTS	%		Org-029	[NT]	40	101	35	97		[NT]
Extracted ISTD ¹³ C ₈ FOSA	%		Org-029	[NT]	40	86	33	89		[NT]
Extracted ISTD d ₃ N MeFOSA	%		Org-029	[NT]	40	84	31	92		[NT]
Extracted ISTD d₅ N EtFOSA	%		Org-029	[NT]	40	83	33	86		[NT]
Extracted ISTD d ₇ N MeFOSE	%		Org-029	[NT]	40	97	34	96		[NT]

QUALITY CO	NTROL: PF.	AS in Soi	s Extended			Duj	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Extracted ISTD d ₉ N EtFOSE	%		Org-029	[NT]	40	86	35	84		
Extracted ISTD d ₃ N MeFOSAA	%		Org-029	[NT]	40	98	38	88		
Extracted ISTD d₅ N EtFOSAA	%		Org-029	[NT]	40	90	38	81	[NT]	[NT]

QUALITY (CONTROL: I	PFAS in S	oi l s Short			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			03/08/2020	[NT]		[NT]	[NT]	03/08/2020	
Date analysed	-			04/08/2020	[NT]		[NT]	[NT]	04/08/2020	
Perfluorohexanesulfonic acid - PFHxS	μg/kg	0.1	Org-029	<0.1	[NT]		[NT]	[NT]	101	
Perfluorooctanesulfonic acid PFOS	μg/kg	0.1	Org-029	<0.1	[NT]		[NT]	[NT]	99	
Perfluorooctanoic acid PFOA	μg/kg	0.1	Org-029	<0.1	[NT]		[NT]	[NT]	104	
6:2 FTS	μg/kg	0.1	Org-029	<0.1	[NT]		[NT]	[NT]	109	
B:2 FTS	μg/kg	0.2	Org-029	<0.2	[NT]		[NT]	[NT]	114	
Surrogate ¹³ C ₈ PFOS	%		Org-029	99	[NT]		[NT]	[NT]	102	
Surrogate ¹³ C ₂ PFOA	%		Org-029	108	[NT]		[NT]	[NT]	108	
Extracted ISTD ¹⁸ O ₂ PFHxS	%		Org-029	92	[NT]		[NT]	[NT]	91	
Extracted ISTD 13 C ₄ PFOS	%		Org-029	95	[NT]		[NT]	[NT]	95	
Extracted ISTD ¹³ C ₄ PFOA	%		Org-029	98	[NT]		[NT]	[NT]	96	
Extracted ISTD ¹³ C ₂ 6:2FTS	%		Org-029	102	[NT]		[NT]	[NT]	115	
Extracted ISTD ¹³ C ₂ 8:2FTS	%		Org-029	112	[NT]		[NT]	[NT]	125	

QUALITY CONT	ROL: vTRH(C6-C10 <u>)</u> /E	BTEXN in Water			Du	plicate		Spike Red	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			29/07/2020	[NT]		[NT]	[NT]	29/07/2020	
Date analysed	-			29/07/2020	[NT]		[NT]	[NT]	29/07/2020	
TRH C ₆ - C ₉	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	112	
TRH C ₆ - C ₁₀	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	112	
Benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	102	
Toluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	113	
Ethylbenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	115	
m+p-xylene	μg/L	2	Org-023	<2	[NT]		[NT]	[NT]	116	
o-xylene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	115	
Naphthalene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	108	[NT]		[NT]	[NT]	99	
Surrogate toluene-d8	%		Org-023	103	[NT]		[NT]	[NT]	105	
Surrogate 4-BFB	%		Org-023	97	[NT]		[NT]	[NT]	112	

QUALITY CON	ITROL: svTF	RH (C10-0	C40) in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			29/07/2020	[NT]		[NT]	[NT]	29/07/2020	
Date analysed	-			29/07/2020	[NT]		[NT]	[NT]	29/07/2020	
TRH C ₁₀ - C ₁₄	μg/L	50	Org-020	<50	[NT]		[NT]	[NT]	98	
TRH C ₁₅ - C ₂₈	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	82	
TRH C ₂₉ - C ₃₆	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	87	
TRH >C ₁₀ - C ₁₆	μg/L	50	Org-020	<50	[NT]		[NT]	[NT]	98	
TRH >C ₁₆ - C ₃₄	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	82	
TRH >C ₃₄ - C ₄₀	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	87	
Surrogate o-Terphenyl	%		Org-020	96	[NT]		[NT]	[NT]	94	

QUALITY CON	TROL: Meta	ı l s in Wate	er - Dissolved			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date digested	-			29/07/2020	[NT]		[NT]	[NT]	29/07/2020	
Date analysed	-			29/07/2020	[NT]		[NT]	[NT]	29/07/2020	
Arsenic - Dissolved	mg/L	0.05	Metals-020	<0.05	[NT]		[NT]	[NT]	106	
Cadmium - Dissolved	mg/L	0.01	Metals-020	<0.01	[NT]		[NT]	[NT]	102	
Chromium - Dissolved	mg/L	0.01	Metals-020	<0.01	[NT]		[NT]	[NT]	104	
Copper - Dissolved	mg/L	0.01	Metals-020	<0.01	[NT]		[NT]	[NT]	104	
Lead - Dissolved	mg/L	0.03	Metals-020	<0.03	[NT]		[NT]	[NT]	106	
Mercury - Dissolved	mg/L	0.0005	Metals-021	<0.0005	[NT]		[NT]	[NT]	98	
Nickel - Dissolved	mg/L	0.02	Metals-020	<0.02	[NT]		[NT]	[NT]	106	
Zinc - Dissolved	mg/L	0.02	Metals-020	<0.02	[NT]	[NT]	[NT]	[NT]	112	[NT]

QUALITY C	ONTROL: P	FAS in Wa	aters Short			Dι	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	247834-69
Date prepared	-			28/07/2020	[NT]		[NT]	[NT]	28/07/2020	28/07/2020
Date analysed	-			28/07/2020	[NT]		[NT]	[NT]	28/07/2020	28/07/2020
Perfluorohexanesulfonic acid - PFHxS	μg/L	0.01	Org-029	<0.01	[NT]		[NT]	[NT]	103	99
Perfluorooctanesulfonic acid PFOS	μg/L	0.01	Org-029	<0.01	[NT]		[NT]	[NT]	92	90
Perfluorooctanoic acid PFOA	µg/L	0.01	Org-029	<0.01	[NT]		[NT]	[NT]	99	96
6:2 FTS	μg/L	0.01	Org-029	<0.01	[NT]		[NT]	[NT]	110	113
8:2 FTS	μg/L	0.02	Org-029	<0.02	[NT]		[NT]	[NT]	101	88
Surrogate ¹³ C ₈ PFOS	%		Org-029	101	[NT]		[NT]	[NT]	94	97
Surrogate ¹³ C ₂ PFOA	%		Org-029	100	[NT]		[NT]	[NT]	96	104
Extracted ISTD ¹⁸ O ₂ PFHxS	%		Org-029	96	[NT]		[NT]	[NT]	88	97
Extracted ISTD 13 C ₄ PFOS	%		Org-029	104	[NT]		[NT]	[NT]	98	107
Extracted ISTD 13 C ₄ PFOA	%		Org-029	102	[NT]		[NT]	[NT]	88	103
Extracted ISTD ¹³ C ₂ 6:2FTS	%		Org-029	117	[NT]		[NT]	[NT]	87	111
Extracted ISTD ¹³ C ₂ 8:2FTS	%		Org-029	85	[NT]		[NT]	[NT]	138	88

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Asbestos: A portion of the supplied sample was sub-sampled for asbestos analysis according to Envirolab procedures.

We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g of sample in its own container.

Note: Sample 247834-59 was sub-sampled from a jar provided by the client.

Asbestos: Excessive sample volume was provided for asbestos analysis. A portion of the supplied sample was sub-sampled according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g (50mL) of sample in its own container as per AS4964-2004.

Note: Samples 247834-1, 4, 7, 10, 11, 14, 17, 19, 22, 24, 27, 30, 34, 37, 40, 42, 44, 46, 49, 52, 55, 58, 60, 61, 65 were subsampled from bags provided by the client.

Sample 247834-42; Chrysotile asbestos identified embedded in several fragments of fibre cement, it is estimated to be 76.14g/kg in 17.44g of soil (i.e. > reporting limit for the method of 0.1g/kg).

Acid Extractable Metals in Soil:

- -The laboratory RPD acceptance criteria has been exceeded for 247834-27 for Pb & Zn. Therefore a triplicate result has been issued as laboratory sample number 247834-75.
- -The laboratory RPD acceptance criteria has been exceeded for 247834-40 for Pb. Therefore a triplicate result has been issued as laboratory sample number 247834-76.

For PFAS Extracted Internal Standards denoted with # or outside the 50-150% acceptance range, the respective target analyte results may be unaffected, in other circumstances the PQL has been raised to accommodate the outlier(s).

Envirolab Reference: 247834 Page | 118 of 118 Revision No: R00

	de Preserved Glass;	turic Preserved Plastic; F = Formaldehy	t Unpreserved Pla	er Glass Unpreserved; AP - Airfreigh astic; HS = HCI preserved Speciatic m Thiosulfate Preserved Bottles.	served Plastic; AG = Amb ss: H = HCl preserved P ottles; STT = Sterile Sodiu	dium Hydroxide Pres eserved Amber Glas lodine Preserved Bo	ilum Hydroxide/Cd Preserved; S = Sα jht Unpreserved Vial SG = Sulfuric Pr sils; B ≈ Unpreserved Bag; Ll = Lugols	ed ORC; SH = Sor erved; AV = Airfreig or Acid Sulphate So	Plastic; ORC = Nitric Present; VS = VOA Vial Sulfuric Presile Bottle; ASS = Plastic Bag	Water Confainer Codes: P = Unpreserved Plastic; N = Nitric Preserved ORC; SH = Sodium HydroxidelCd Preserved; S = Sodium Hydroxide Preserved; AG = Amber Glass Unpreserved; AP - Artreight Unpreserved Plastic; N = Nitric Preserved Plastic; N = VOA Vial Sodium Bisulphate Preserved; VS = VOA Vial Sodium Bisulphate Preserved; VS = VOA Vial Sodium Bisulphate Preserved; VS = VOA Vial Sodium Preserved; AV = Artreight Unpreserved Vial SG = Sulfunc Preserved Plastic; NS = HC preserved Spaciation bottle; SP = Sulfunc Preserved Plastic; NS = HC preserved Spaciation bottle; SP = Sulfunc Preserved Plastic; NS = VOA Vial Sodium Preserved Plastic; NS = VIA Vial Sodium Plastic; NS = VIA VIA VIA VIA VIA VIA VIA VIA VIA VIA	Water Container Codes: I V = VOA Vial HCl Preserved Z = Zinc Acetate Preserved
						TOTAL					
	1 0000										
		Telephone : + 61-2-8784 9656									
	25385	ES2025385									
	al Division	Environmental Division Sydney Work Order Betransia									
		_			X			N	1	QC201_200723	4
					X	-		S	23/7/20	00200-200723	
					TRH/ISTEXM 8metals	TOTAL BOTTLES	TYPE & PRESERVATIVE (refer to codes below)	MATRIX	DATE / TIME	SAMPLEID	LABID
rels, fic QC	Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis etc.	Comm dilution analys									
5	Additional Information	be listed to attract suite price) d (field fillered bottle required).	Suite Codes must	ANALYSIS REQUIRED including SUITES (NB. Suite Codes must be listed to attract suite price) Where Metals are required, specify Total (unfiltered bottle required) or Dissolved (field filtered bottle required).	ANALYSIS REQ	ATION	CONTAINER INFORMATION		SAMPLE DETAILS MATRIX: Solid(S) Water(W)	SAMPLE MATRIX: Solic	ALS USE ONLY
							Emm consulting & es dat ones	11 FO B.	l e	COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL:	COMMENTS/SPECIAL
	DATE/TIME:	DATE/TIME:	1660 DATE	75/07/2020 // 75/07/2020 //	01/4	ETIME:	Addition to the contract of th	o Markon C		Email Reports to (will default to PM if no other addresses are listed): Email Invoice to (will default to PM if no other addresses are listed):	Email Reports to (will d
			-	X 2	26	_	1.	EDD FORMAT (or default):		(YES / NO)	COC Emailed to ALS? (YES / NO)
	RECEIVED BY:	RELINQUISHED BY:	-	RECEIVED BY:		848 RELINQUISHED BY:	883	SAMPLER MOBILE: 040)	SAMPLER	achlar / en-1s	SAMPLER: /
	40	Other comment:	6 7				FORIGIN: AUS	COUNTRY OF ORIGIN:	CONTACT BU		PURCHASE ORDER:
N/A		receipt? Random Sample Temperature on Receipt:	(Circle)	COC SEQUENCE NUMBER			NO:	ALS QUOTE NO.:	07 M 70		SITE: Ma
(N)	(Circ	FOR LABORATORY USE ONLY (Circle) Custody Seal Intact? Y		ate):	☑ Standard TAT (List due date): ☐ Non Standard or urgent TAT (List due date):	Standard TAT (List due date): Non Standard or urgent TAT (L	TURNAROUND REQUIREMENTS: (Standard TAT may be longer for some tests e.g Ultra Trace Organics)	TURNAROL (Standard TAT e.g Ultra Trac		Actual Loyal Mus	
2600	LEVERSE CATALOS Woodbook Road Enviroles (ASS, 2004) 12 CATALOS ASSES Exemples sychesyllesyllesis con 14 CATALOS ASSES Exemples sychesyllesyllesis con 15 CATALOS ASSES Exemples controllesyllesyllesis con 15 CATALOS ASSES Exemples acontrollesyllesyllesis con 15 CATALOS ASSES Exemples acontrollesis (ASSES Exemples acontrollesis con 15 CATALOS ASSES Exemples acontrollesis (ASSES EXEMPLES ACONTROLL	75.1 . 15.4	Alighe com	AMENICATE E 695 Nation Rechter, fac when NSY 2004 En. (22. d. 1. 1/20 d. septement and septement and end of the Co. 1. 1/20 deep Prue Nation Annua NSY 2541 En. (2. 14.02 2003 E. sevenig and com ETERTH TO Had Way Makaga Wa (20)6 Pru (2. 2007 Tige E. samples partiglate) to an orm	con Time Con Time System of Time Egalsylvisticon Systems Systems Systems	PH 07 1454-017 The modern forces of such as PH 1971-1454-017 The modern forces of such as Philippine Vict. 3171 PH 37 344-9 990 El samphia melbourin Balsplotel com PH 37 344-9 990 El samphia melbourin Balsplotel com PH 37 347-347-35 El skulley Kont Mulopia VAT7 1850 PH 37 347-347-35 El skulley Kont Mulopia VAT7 1850 PH 37 347-347-35 El skulley Kont Mulopia VAT7 1850 PH 37 347-347-35 El skulley Kont Mulopia VAT7 1850	30	STIP BEFORE SA PARE TO THE BEFORE SA PARE TO THE STATE OF THE STATE SA STATE OF THE STATE SA	June Julius of Buring Misse Porcess so push on 1988 Septices. Et evaluation School Sch	ALS X	

401725 OS/E/HZ Comments on liftely contaminant levels, dilutions, or samples requiring specific QC analysis etc. De DLCNGDNC 1, 19-21 Raph Black Dr. North Wese, go 政 NSW 2000 Ptr. Mt. 42-26 0128 E. kodskyponyiji kisyatabili and 1 wo Additional Information ŝ DTOYOUGHUR 14-18 Desire Cost Book 7: Dustre Ph. 07-1786 DECO III nonsecutariori membrilli designation RECEIVED BY: Water Container Codes: P = Unpreserved Plastic. N = Nitric Preserved ORC. SH = Sodium Hydroxide/Cd Preserved Plastic. AG = Amber Class Unpreserved Plastic. N = Nitric Preserved Plastic. N = Nitric Preserved AV = VOA VIal Microsorved AV = VOA VIal Microsorved AV = Affreight Unpreserved VIal SG = Sulfunc Preserved Available Preserved Plastic. F = Formaldehyde Preserved AV = VOA VIal Microsorved AV = VOA VIal Microsorved AV = VOA VIal Microsorved Bastic. F = Formaldehyde Preserved Spaciation bothle; SP = Sulfunc Preserved Plastic. F = Formaldehyde Preserved Spaciation bothle; SP = Sulfunc Preserved Bastic. F = Formaldehyde Preserved Spaciation Bastic. F = Formaldehyde Preserved Bastic. F = Formaldehyde Preserv Work Order Reference ES2025385 **Environmental Division** LSNOHERY INTERSO Newsload Road Breinfactingsy 213 Proceedings and semples sydneyskasylood one DATE/TIME: FOR LABORATORY USE ONLY (Circle) Telephone: +61-2-9784 8555 andom Sample Temperature on Receipt Free ice / frazen ice bricks present upon receipt? ANALYSIS REQUIRED including SUITES (NB. Suite Codes must be listed to attract suite price) Sydney Where Motals are required, specify Total (unfiltered bottle required) or Dissolved (field filtered bottle required). Custody Seal Intact? RELINQUISHED BY Other comment: DATE/TIME: GNPVCAETT E8 885Nakant Rock Mayako Maturio PPL 73 40, 4 2600 色 Responsion on material Businession CACWARA 4113 Gaeth Place Noth Stone ASKT 2521 Ph. of 4423 2080 Et towas 244 ownson 「THEN TO THE WAY MADE TO A SUM PLANCE WAY ONE MISSELESS OF THE AND THE SUM TO THE THE SUM TO THE THE SUM TO THE SUM 89/ COC SEQUENCE NUMBER (Carcle) 23/07/2020 Yes M RĘGEIVED BY: DATE/TIME: ☐ Non Standard or urgent TAT (List due date): X Standard TAT (List due date): JANEL POLITINE ZIII WESTEI BOSO SIPINGMENTO ON THE ST. CO. COLGE SPECIE SERVICES CONTRACTOR SPECIES SERVICES CONTRACTOR SPECIES SERVICES CONTRACTOR SPECIES SERVICES CONTRACTOR SPECIES SERVICES CONTRACTOR SPECIES SERVICES CONTRACTOR SPECIES SERVICES CONTRACTOR SPECIES SERVICES CONTRACTOR SPECIES SERVICES SERV PORTETIME: 13/7/ Delicio del 1124 oydray Road Braque Mari, 1850 Plu de 8818 6709 El madase Assagnasias den ** phydolydd 78 melgeur Reisi Melekey (200 Phyl Philof Abak (2777 El medely, Sangereallogn TOTAL SAMPLER MOBILE: 840) 638 848 RELINQUISHED BY: CONTAINER INFORMATION TYPE & PRESERVATIVE (refer to codes below) Sallant Consulting Bestatinet Aus (Standard TAT may be longer for some tests e.g., Ultra Trace Organics) TURNAROUND REQUIREMENTS: COUNTRY OF ORIGIN: JOUADSTONERS Calemondon Droe Olekon OLD 1890 Pht. 27 74" (1880) G. gestsone glakonske som ALS QUOTE NO.: 1987 98ANG 1 8AN SUBBLISHING CLD 1656 Print of 3242 1127 El sembles frishere (Subgrober onn EDD FORMAT (or default): TADELLADE AL BUTTRE RISE Pontaise On 1996 Oh od 680 ones. Et englishespanishenn MATRIX S V CONTACT PH: 7 M 23/7/20 DATE / TIME SAMPLE DETAILS MATRIX: Solid(S) Water(W) イナ Email Reports to (will default to PM if no other addresses are listed): Sidney 5200432 Email Invoice to (will default to PM if no other addresses are listed): COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL: \$C100-100423 QC202-200724 CHAIN OF CUSTODY D)((ar QC201_200723 21mg CONSULTING) ALS Laboratory: please fick -> SAMPLEID Susan Matraville COC Emailed to ALS? (YES / NO) achlan PROJECT MANAGER: PURCHASE ORDER: ALS USE ONLY 3 SAMPLER: LABID PROJECT OFFICE CLIENT SITE

SAMPLE RECEIPT NOTIFICATION (SRN)

: ES2025385 Work Order

Client : EMM CONSULTING PTY LTD Laboratory : Environmental Division Sydney

Contact : SUSAN DILLON Contact : Customer Services ES

Address : Ground Floor Suite 1 20 Chandos Address : 277-289 Woodpark Road Smithfield

NSW Australia 2164

Street St Leonards NSW NSW 2065

E-mail : sdillon@emmconsulting.com.au : ALSEnviro.Sydney@ALSGlobal.com

Telephone Telephone : +61-2-8784 8555 Facsimile Facsimile : +61-2-8784 8500

Project : J200432 W26 Page : 1 of 2 Order number Quote number

C-O-C number QC Level : NEPM 2013 B3 & ALS QC Standard

: MATRAVILLE Sampler : Lachlan Lewis

Dates

Date Samples Received : 23-Jul-2020 16:00 Issue Date : 27-Jul-2020 Scheduled Reporting Date : 30-Jul-2020 Client Requested Due 03-Aug-2020

Date

Delivery Details

Mode of Delivery Security Seal : Client Drop Off : Not Available No. of coolers/boxes : 1 Temperature : 4.0'C - Ice present

Receipt Detail No. of samples received / analysed : 3/3

General Comments

This report contains the following information:

- Sample Container(s)/Preservation Non-Compliances
- Summary of Sample(s) and Requested Analysis
- Proactive Holding Time Report
- Requested Deliverables
- This is an updated SRN which indicates the addition of extra samples.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Sample(s) requiring volatile organic compound analysis received in airtight containers (ZHE).
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

Issue Date : 27-Jul-2020

Page : 2 of 2

Work Order : ES2025385 Amendment 0
Client : EMM CONSULTING PTY LTD

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package. If no sampling time is provided, the sampling time will SOIL - EP231 (solids)
PFAS - Short Suite (12 analytes) default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time SOIL - S-05 FRH/BTEXN/8 Metals component 3OIL - EA055-103 **loisture Content** Matrix: SOIL Client sample ID Laboratory sample Client sampling ID date / time ES2025385-001 23-Jul-2020 00:00 QC200_200723 ES2025385-002 23-Jul-2020 00:00 QC201_200723 ES2025385-003 23-Jul-2020 00:00 QC202_200724

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

ALL ESDAT REPORTS		
- EDI Format - ESDAT (ESDAT)	Email	emmconsulting@esdat.net
ALL INVOICES		
- A4 - AU Tax Invoice (INV)	Email	finance@emmconsulting.com.au
Lachlan Lewis		
 *AU Certificate of Analysis - NATA (COA) 	Email	llewis@emmconsulting.com.au
 - *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	llewis@emmconsulting.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	llewis@emmconsulting.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	llewis@emmconsulting.com.au
- A4 - AU Tax Invoice (INV)	Email	llewis@emmconsulting.com.au
- Chain of Custody (CoC) (COC)	Email	llewis@emmconsulting.com.au
- EDI Format - ENMRG (ENMRG)	Email	llewis@emmconsulting.com.au
- EDI Format - ESDAT (ESDAT)	Email	llewis@emmconsulting.com.au
SUSAN DILLON		
- *AU Certificate of Analysis - NATA (COA)	Email	sdillon@emmconsulting.com.au
 - *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	sdillon@emmconsulting.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	sdillon@emmconsulting.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	sdillon@emmconsulting.com.au
- A4 - AU Tax Invoice (INV)	Email	sdillon@emmconsulting.com.au
- Chain of Custody (CoC) (COC)	Email	sdillon@emmconsulting.com.au
- EDI Format - ENMRG (ENMRG)	Email	sdillon@emmconsulting.com.au
- EDI Format - ESDAT (ESDAT)	Email	sdillon@emmconsulting.com.au

CERTIFICATE OF ANALYSIS

Laboratory **EMM CONSULTING PTY LTD** ES2025385 **Work Order** Contact Client

277-289 Woodpark Road Smithfield NSW Australia 2164 Address Ground Floor Suite 1 20 Chandos Street

Environmental Division Sydney

: 1 of 5

Customer Services ES +61-2-8784 8555 Telephone Contact St Leonards NSW NSW 2065 SUSAN DILLON

03-Aug-2020 16:16 24-Jul-2020 Date Analysis Commenced Issue Date

23-Jul-2020 16:00

Date Samples Received

J200432 W26

C-O-C number

Sampler

Order number

Telephone

Project

Address

EN/333 - SECONDARY WORK ONLY Lachlan Lewis MATRAVILLE

Accreditation No. 825 Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

General Comments

No. of samples analysed No. of samples received

Quote number

- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11. Signatories

orginatories	Control	
Celine Conceicao	Senior Spectroscopist	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Franco Lentini	LCMS Coordinator	Sydney Inorganics, Smithfield, NSW
Franco Lentini	LCMS Coordinator	Sydney Organics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW
Sanjeshni Jyoti	Senior Chemist Volatiles	Sydney Organics, Smithfield, NSW

General Comments

In house developed procedures The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. are fully validated and are often at the client request

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Key:

LOR = Limit of reporting

This result is computed from individual analyte detections at or above the level of reporting

Ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

EP080: Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.

EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.

EP071: Results of sample QC200_200723 have been confirmed by re-extraction and re-analysis.

EP231: Stable isotope enriched internal standards are added to samples prior to extraction. Target compounds have a direct analogous internal standard with the exception of PFPeS, PFHpA, PFDS, PFTrDA and 10:2 FTS. These compounds use an internal standard that is chemically related and has a retention time close to that of the target compound. The DQO for internal standard response is 50-150% of that established at initial calibration. PFOS is quantified using a certified, traceable standard consisting of linear and branched PFOS isomers. These practices are in line with recommendations in the National Environmental Management Plan for PFAS (Australian HEPA) and also conform to QSM 5.3 (US DoD) requirements.

Analytical Results

Project Client

: 3 of 5 : ES2025385 : EMM CONSULTING PTY LTD : J200432 W26

Page Work Order

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	Client sample ID	QC200_200723	QC201_200723	QC202_200724	l	ļ
	Clic	ent samplir.	Client sampling date / time	23-Jul-2020 00:00	23-Jul-2020 00:00	23-Jul-2020 00:00		
Compound	CAS Number	TOR	Unit	ES2025385-001	ES2025385-002	ES2025385-003		
				Result	Result	Result		
EA055: Moisture Content								
Moisture Content		1.0	%	18.8	7.5	4.2	i	1
EG005(ED093)T: Total Metals by ICP-AES	S							
Arsenic	7440-38-2	2	mg/kg	7	<5	<5	-	
Cadmium	7440-43-9	-	mg/kg	٧	₹	₹		
Chromium	7440-47-3	2	mg/kg	က	2	2		
Copper	7440-50-8	2	mg/kg	267	<5	~ 5		
Lead	7439-92-1	2	mg/kg	221	<5	13		
Nickel	7440-02-0	7	mg/kg	2	<2	2	i	1
Zinc	7440-66-6	2	mg/kg	591	<5	17		
EG035T: Total Recoverable Mercury by FIMS	FIMS							
Mercury	7439-97-6	0.1	mg/kg	0.4	<0.1	<0.1		
EP080/071: Total Petroleum Hydrocarbons	uns							
C6 - C9 Fraction		10	mg/kg	<10	<10	<10		
C10 - C14 Fraction		20	mg/kg	<50	<50	<50	-	
C15 - C28 Fraction		100	mg/kg	140	<100	<100		
C29 - C36 Fraction	1	100	mg/kg	140	<100	<100		1
^ C10 - C36 Fraction (sum)		20	mg/kg	280	<50	<50	-	
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions	bons - NEPM 2013	8 Fraction	S					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	-	
^ C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	10	mg/kg	<10	<10	<10		
>C10 - C16 Fraction		20	mg/kg	<50	<50	<50	-	
>C16 - C34 Fraction		100	mg/kg	240	<100	<100		
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100		
^ >C10 - C40 Fraction (sum)		20	mg/kg	240	<50	<50		
^ >C10 - C16 Fraction minus Naphthalene	-	20	mg/kg	<50	<50	<50		
(F2)								
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2		
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5		
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5		
-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5		
ortho-Xylene	92-41-6	0.5	mg/kg	<0.5	<0.5	<0.5		
^ Sum of BTEX	-	0.2	mg/kg	<0.2	<0.2	<0.2		

Analytical Results

Project Client

: 4 of 5 : ES2025385 : EMM CONSULTING PTY LTD : J200432 W26

Page Work Order

		Č		001000	70000	701000		
Sub-Matrix: SOIL (Matrix: SOIL)		Cler	Cilent sample ID	QC200_200723	QC201_200/23	QC202_200724	1	-
	Clie	ent sampling	Client sampling date / time	23-Jul-2020 00:00	23-Jul-2020 00:00	23-Jul-2020 00:00		
Compound	CAS Number	LOR	Unit	ES2025385-001	ES2025385-002	ES2025385-003		1
				Result	Result	Result		
EP080: BTEXN - Continued								
△ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	-	-
Naphthalene	91-20-3	_	mg/kg	7	<1	۲,	-	-
EP231A: Perfluoroalkyl Sulfonic Acids								
Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.0002	mg/kg		<0.0002			
Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.0002	mg/kg		<0.0002	-		
Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.0002	mg/kg		<0.0002	-		
EP231B: Perfluoroalkyl Carboxylic Acids								
Perfluorobutanoic acid (PFBA)	375-22-4	0.001	mg/kg		<0.001			
Perfluoropentanoic acid (PFPeA)	2706-90-3	0.0002	mg/kg		<0.0002	-		
Perfluorohexanoic acid (PFHxA)	307-24-4	0.0002	mg/kg		<0.0002			
Perfluoroheptanoic acid (PFHpA)	375-85-9	0.0002	mg/kg		<0.0002			
Perfluorooctanoic acid (PFOA)	335-67-1	0.0002	mg/kg		<0.0002	-	-	-
EP231D: (n:2) Fluorotelomer Sulfonic Acids	sp							
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.0005	mg/kg		<0.0005			
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.0005	mg/kg		<0.0005			
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.0005	mg/kg		<0.0005			
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.0005	mg/kg		<0.0005			
Sum of PFHxS and PFOS	355-46-4/1763-23- 1	0.0002	mg/kg		<0.0002			
Sum of PFAS (WA DER List)		0.0002	mg/kg		<0.0002	-	-	-
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	116	103	98.7		
Toluene-D8	2037-26-5	0.2	%	122	105	114	-	
4-Bromofluorobenzene	460-00-4	0.2	%	121	108	118	:	:
EP231S: PFAS Surrogate								
13C4-PFOS	-	0.0002	%	-	89.0		-	-
13C8-PFOA	1	0.0002	%		91.0			

Recovery Limits (%) : 5 of 5 : ES2025385 : EMM CONSULTING PTY LTD : J200432 W26 Surrogate Control Limits Project Client

Page Work Order

Sub-Matrix: SOIL Recovery Limits (%) Combound Low High EP080S: TPH(V)/BTEX Surrogates 17060-07-0 73 133 1.2-Dichloroethane-D4 2037-26-5 74 132 4-Bromofiluorobenzene 460-00-4 72 130 EP231S: PFAS Surrogate 13C4-PFOS 120 13C8-PFOA 60 120 13C8-PFOA 60 120				
CAS Number Low C Surrogates 17060-07-0 73 2037-26-5 74 460-00-4 72 gate 60 60	Sub-Matrix: SOIL		Recovery	Limits (%)
C Surrogates 17060-07-0 73 2037-26-5 74 460-00-4 72 gate 60 60	Compound	CAS Number	Low	High
17060-07-0 73 2037-26-5 74 460-00-4 72 gate 60 60	EP080S: TPH(V)/BTEX Surrogates			
2037-26-5 74 72 add	1.2-Dichloroethane-D4	17060-07-0	73	133
gate 72 72 gate 60 60 60	Toluene-D8	2037-26-5	74	132
FAS Surrogate 60 60	4-Bromofluorobenzene	460-00-4	72	130
09	EP231S: PFAS Surrogate			
09	13C4-PFOS	-	09	120
	13C8-PFOA	-	09	120

QA/QC Compliance Assessment to assist with Quality Review

Environmental Division Sydney +61-2-8784 8555 03-Aug-2020 23-Jul-2020 : 1 of 5 No. of samples analysed Date Samples Received No. of samples received Issue Date Laboratory Telephone EMM CONSULTING PTY LTD SUSAN DILLON ES2025385 MATRAVILLE Lachlan Lewis J200432 W26 Order number **Work Order** Contact Sampler Project Client Site

reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

NO Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

NO Quality Control Sample Frequency Outliers exist.

EMM CONSULTING PTY LTD J200432 W26 ES2025385 Work Order Project Client

Outliers: Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: SOIL

Compound Group Name	Laboratory Sample ID Client Sample	Client Sample ID	Analyte	CAS Number Data	Data	Limits Comment	Comment
Matrix Spike (MS) Recoveries							
EP231B: Perfluoroalkyl Carboxylic Acids	ES2025385002	QC201_200723	Perfluoropentanoic	2706-90-3 139 %	139 %	69.0-132% R	Recovery greater than upper data
			acid (PFPeA)				quality objective

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

organics Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters. Holding times for <u>Voc. in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL					Evaluation:	= Holding time	Evaluation: x = Holding time breach;	holding time.
Method		Sample Date	Ext	Extraction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content								
Soil Glass Jar - Unpreserved (EA055) QC200_200723, QC202_200724	QC201_200723,	23-Jul-2020	-			30-Jul-2020	06-Aug-2020	>
EG005(ED093)T: Total Metals by ICP-AES								
Soil Glass Jar - Unpreserved (EG005T) QC200_200723, QC202_200724	QC201_200723,	23-Jul-2020	30-Jul-2020	19-Jan-2021	>	30-Jul-2020	19-Jan-2021	>
EG035T: Total Recoverable Mercury by FIMS								
Soil Glass Jar - Unpreserved (EG035T) QC200_200723, QC202_200724	QC201_200723,	23-Jul-2020	30-Jul-2020	20-Aug-2020	>	31-Jul-2020	20-Aug-2020	>
EP080/071: Total Petroleum Hydrocarbons								
Soil Glass Jar - Unpreserved (EP080) QC200_200723,	QC201_200723	23-Jul-2020	24-Jul-2020	06-Aug-2020	>	24-Jul-2020	06-Aug-2020	>
Soil Glass Jar - Unpreserved (EP071) QC200_200723,	QC201_200723	23-Jul-2020	25-Jul-2020	06-Aug-2020	>	27-Jul-2020	03-Sep-2020	>
Soil Glass Jar - Unpreserved (EP071) QC202_200724		23-Jul-2020	28-Jul-2020	06-Aug-2020	>	28-Jul-2020	06-Sep-2020	>
Soil Glass Jar - Unpreserved (EP080) QC202_200724		23-Jul-2020	29-Jul-2020	06-Aug-2020	>	29-Jul-2020	06-Aug-2020	>

: 3 of 5 : ES2025385 Page Work Order Client Project

: EMM CONSULTING PTY LTD	· .1200432 W26
ient	oject

Matrix: SOIL					Evaluation	× = Holding time	Evaluation: x = Holding time breach;	holding time.
Method		Sample Date	Ext	Extraction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions	ractions							
Soil Glass Jar - Unpreserved (EP080) QC200_200723,	QC201_200723	23-Jul-2020	24-Jul-2020	06-Aug-2020	>	24-Jul-2020	06-Aug-2020	>
Soil Glass Jar - Unpreserved (EP071) QC200_200723,	QC201_200723	23-Jul-2020	25-Jul-2020	06-Aug-2020	>	27-Jul-2020	03-Sep-2020	>
Soil Glass Jar - Unpreserved (EP071) QC202_200724		23-Jul-2020	28-Jul-2020	06-Aug-2020	>	28-Jul-2020	06-Sep-2020	>
Soil Glass Jar - Unpreserved (EP080) QC202_200724		23-Jul-2020	29-Jul-2020	06-Aug-2020	>	29-Jul-2020	06-Aug-2020	>
EP080: BTEXN								
Soil Glass Jar - Unpreserved (EP080) QC200_200723,	QC201_200723	23-Jul-2020	24-Jul-2020	06-Aug-2020	>	24-Jul-2020	06-Aug-2020	>
Soil Glass Jar - Unpreserved (EP080) QC202_200724		23-Jul-2020	29-Jul-2020	06-Aug-2020	>	29-Jul-2020	06-Aug-2020	>
EP231A: Perfluoroalkyl Sulfonic Acids								
HDPE Soil Jar (EP231X) QC201_200723		23-Jul-2020	28-Jul-2020	19-Jan-2021	>	30-Jul-2020	06-Sep-2020	>
EP231B: Perfluoroalkyl Carboxylic Acids								
HDPE Soil Jar (EP231X) QC201_200723		23-Jul-2020	28-Jul-2020	19-Jan-2021	>	30-Jul-2020	06-Sep-2020	>
EP231D: (n:2) Fluorotelomer Sulfonic Acids								
HDPE Soil Jar (EP231X) QC201_200723		23-Jul-2020	28-Jul-2020	19-Jan-2021	>	30-Jul-2020	06-Sep-2020	>
EP231P: PFAS Sums								
HDPE Soil Jar (EP231X) QC201_200723		23-Jul-2020	28-Jul-2020	19-Jan-2021	>	30-Jul-2020	06-Sep-2020	>

EMM CONSULTING PTY LTD J200432 W26 ES2025385 Work Order Project Client

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Evaluation: * = Quality Control frequency not within specification; NEPM 2013 B3 & ALS QC Standard NEPM 2013 B3 & ALS QC Standard NEPM 2013 B3 & ALS QC Standard NEPM 2013 B3 & ALS QC Standard NEPM 2013 B3 & ALS QC Standard NEPM 2013 B3 & ALS QC Standard NEPM 2013 B3 & ALS QC Standard NEPM 2013 B3 & ALS QC Standard NEPM 2013 B3 & ALS QC Standard NEPM 2013 B3 & ALS QC Standard NEPM 2013 B3 & ALS QC Standard NEPM 2013 B3 & ALS QC Standard NEPM 2013 B3 & ALS QC Standard NEPM 2013 B3 & ALS QC Standard NEPM 2013 B3 & ALS QC Standard NEPM 2013 B3 & ALS QC Standard NEPM 2013 B3 & ALS QC Standard NEPM 2013 B3 & ALS QC Standard NEPM 2013 B3 & ALS QC Standard Quality Control Specification Evaluation Rate (%) Expected 10.00 10.00 10.00 10.00 10.00 5.00 5.00 5.00 5.00 2.00 5.00 5.00 5.00 5.00 10.00 15.00 10.00 11.11 **Actual** 10.00 5.00 5.00 7.41 5.00 5.00 5.00 6.67 7.41 5.00 6.67 Regular 30 20 20 30 30 30 30 30 20 20 20 30 30 20 20 27 27 30 3 2 2 2 8 Count 90 က က 4 EP231X EP231X EP231X EG035T EG005T EP071 EP080 EG035T EP071 EP080 EP231X EG035T EG005T EP071 EP080 EG035T EG005T EG005T Method Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS -aboratory Control Samples (LCS) -aboratory Duplicates (DUP) TRH - Semivolatile Fraction TRH - Semivolatile Fraction TRH - Semivolatile Fraction Total Metals by ICP-AES Total Metals by ICP-AES Total Metals by ICP-AES Quality Control Sample Type Total Metals by ICP-AES Total Mercury by FIMS Total Mercury by FIMS Total Mercury by FIMS Total Mercury by FIMS TRH Volatiles/BTEX TRH Volatiles/BTEX Method Blanks (MB) TRH Volatiles/BTEX Analytical Methods Moisture Content

NEPM 2013 B3 & ALS QC Standard

5.00 5.00

7.41 6.67

EP071

TRH - Semivolatile Fraction

TRH Volatiles/BTEX

NEPM 2013 B3 & ALS QC Standard

 Page
 : 5 of 5

 Work Order
 : ES2025385

 Client
 : EMM CONSULTING PTY LTD

 Project
 : J200432 W26

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 6.1 and Table 1 (14 day holding time).
Total Metals by ICP-AES	EG005T	NOS	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM (2013) Schedule B(3)
Total Mercury by FIMS	EG035T	NOS	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2) (Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
TRH - Semivolatile Fraction	EP071	SOIL	In house: Referenced to USEPA SW 846 - 8015A Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40. Compliant with NEPM amended 2013.
TRH Volatiles/BTEX	EP080	SOIL	In house: Referenced to USEPA SW 846 - 8260D. Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. Compliant with NEPM amended 2013.
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	SOIL	In-house: Analysis of soils by solvent extraction followed by LC-Electrospray-MS-MS, Negative Mode using MRM using internal standard quantitation. Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to a portion of soil which is then extracted with MTBE and an ion pairing reagent. A portion of extract is exchanged into the analytical solvent mixture, combined with an equal volume reagent water and filtered for analysis. Method procedures and data quality objectives conform to US DoD QSM 5.3, table B-15 requirements.
Preparation Methods	Method	Matrix	Method Descriptions
Hot Block Digest for metals in soils sediments and sludges	EN69	NOS	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM (2013) Schedule B(3) (Method 202)
Methanolic Extraction of Soils for Purge and Trap	ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.
Sample Extraction for PFAS in solid matrices	ORG73	SOIL	In-house: Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to a portion of soil which is then extracted with MTBE and an ion pairing reagent. A portion of extract is exchanged into the analytical solvent mixture, combined with an equal volume reagent water and filtered for analysis. Method procedures conform to US DoD QSM 5.3, table B-15 requirements.

QUALITY CONTROL REPORT

Environmental Division Sydney Customer Services ES : 1 of 9 Laboratory Contact **EMM CONSULTING PTY LTD** SUSAN DILLON ES2025385 **Work Order** Contact Client

277-289 Woodpark Road Smithfield NSW Australia 2164 Address Ground Floor Suite 1 20 Chandos Street

+61-2-8784 8555 03-Aug-2020 23-Jul-2020 24-Jul-2020 Date Analysis Commenced Date Samples Received Telephone Issue Date St Leonards NSW NSW 2065 J200432 W26 C-O-C number Order number

Telephone

Project

Address

EN/333 - SECONDARY WORK ONLY Lachlan Lewis MATRAVILLE No. of samples received

Accreditation No. 825 Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

No. of samples analysed

Quote number

Sampler

- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	TOSTION	Accreditation Category
Celine Conceicao	Senior Spectroscopist	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Franco Lentini	LCMS Coordinator	Sydney Inorganics, Smithfield, NSW
Franco Lentini	LCMS Coordinator	Sydney Organics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW
Sanieshni Jvoti	Senior Chemist Volatiles	Sydney Organics, Smithfield, NSW

 Page
 : 2 of 9

 Work Order
 : ES2025385

 Client
 : EMM CONSULTING PTY LTD

 Project
 : J200432 W26

General Comments

In house developed procedures The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to primary sample

Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot Key:

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL						Laboratory D	Laboratory Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG005(ED093)T: Tot	EG005(ED093)T: Total Metals by ICP-AES (QC Lot: 3169565)	Lot: 3169565)							
ES2025385-001	QC200_200723	EG005T: Lead	7439-92-1	22	mg/kg	221	191	14.6	0% - 20%
ES2025385-001	QC200_200723	EG005T: Cadmium	7440-43-9	_	mg/kg	₹	V	0.00	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	က	4	30.0	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	2	∞	40.8	No Limit
		EG005T: Arsenic	7440-38-2	Ω.	mg/kg	7	∞	0.00	No Limit
		EG005T: Copper	7440-50-8	22	mg/kg	267	270	1.25	0% - 20%
		EG005T: Zinc	7440-66-6	22	mg/kg	591	619	4.66	0% - 20%
ES2025631-008	Anonymous	EG005T: Cadmium	7440-43-9	_	mg/kg	₹	₹	0.00	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	46	47	2.58	0% - 20%
		EG005T: Nickel	7440-02-0	2	mg/kg	14	19	27.9	No Limit
		EG005T: Arsenic	7440-38-2	r2	mg/kg	<5	^	00:0	No Limit
		EG005T: Copper	7440-50-8	ß	mg/kg	244	202	19.0	0% - 20%
		EG005T: Lead	7439-92-1	Ω.	mg/kg	o	10	0.00	No Limit
		EG005T: Zinc	7440-66-6	22	mg/kg	138	150	8.44	0% - 20%
EA055: Moisture Co	EA055: Moisture Content (Dried @ 105-110°C) (QC Lot: 3169567)	(QC Lot: 3169567)							
ES2025385-003	QC202_200724	EA055: Moisture Content	-	1.0	%	4.2	3.8	7.51	No Limit
ES2025631-011	Anonymous	EA055: Moisture Content	-	0.1	%	61.8	61.6	0.382	0% - 20%
EG035T: Total Reco	EG035T: Total Recoverable Mercury by FIMS (QC Lot: 3169564)	(QC Lot: 3169564)							
ES2025385-001	QC200_200723	EG035T: Mercury	7439-97-6	0.1	mg/kg	0.4	0.4	0.00	No Limit
ES2025631-008	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	0.2	0.1	0.00	No Limit
EP080/071: Total Per	EP080/071: Total Petroleum Hydrocarbons (QC Lot: 3158472)	C Lot: 3158472)							
ES2024943-011	Anonymous	EP080: C6 - C9 Fraction	-	10	mg/kg	<10	<10	00:00	No Limit
ES2025385-002	QC201_200723	EP080: C6 - C9 Fraction	-	10	mg/kg	<10	<10	0.00	No Limit
EP080/071 Total Per	FP080/071 · Total Petroleum Hydrocarhons (QC Lot: 3159360)	C. Lot: 3159360)							

ES2025385

Work Order

3 of 9

J200432 W26

Client Project

Recovery Limits (%) No Limit RPD (%) 0.00 Laboratory Duplicate (DUP) Report Duplicate Result <100 <100 <100 <100 <100 <100 <50 < 100 <100 <100 <100 <50 110 <0.5 <0.5 700 4 0 5 \$50 <10 410 <0.5 <0.5 <0.2 <50 ²20 450 <0.2 ₹ Original Result <100 <100 <100 <100 <100 <100 <50 < 100 <100 <100 <100 < 100 <50 °20 <0.5 <0.5 <0.2 <50 5 5 5 410 22 ×50 10 10 10 10 <0.2 <0.5 ×10 v mg/kg Unit LOR 5 5 5 6 6 6 2 2 2 9 6 5 10 20 5 5 2 0.2 20 5 5 5 5 5 5 0.2 0.5 0.5 0.5 0.5 _ C6_C10 71-43-2 C6_C10 106-42-3 91-20-3 CAS Number -1 -| C6_C10 71-43-2 108-38-3 95-47-6 108-88-3 100-41-4 EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QC Lot: 3158472) EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions(QC Lot: 3159360) EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QC Lot: 3163990) EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QC Lot: 3167261 EP080: meta- & para-Xylene EP071: >C10 - C16 Fraction EP071: >C34 - C40 Fraction EP071: >C10 - C16 Fraction EP071: >C16 - C34 Fraction EP071: >C10 - C16 Fraction EP071: >C16 - C34 Fraction EP071: >C34 - C40 Fraction EP071: >C16 - C34 Fraction EP071: >C34 - C40 Fraction EP080/071: Total Petroleum Hydrocarbons (QC Lot: 3159360) - continued EP071: C15 - C28 Fraction EP071: C29 - C36 Fraction EP071: C10 - C14 Fraction EP071: C15 - C28 Fraction EP071: C29 - C36 Fraction EP071: C10 - C14 Fraction EP071: C15 - C28 Fraction EP071: C29 - C36 Fraction EP071: C10 - C14 Fraction EP080: C6 - C10 Fraction EP080: C6 - C10 Fraction EP080: C6 - C10 Fraction EP080: C6 - C10 Fraction EP080: C6 - C9 Fraction EP080: C6 - C9 Fraction EP080: Ethylbenzene EP080: Naphthalene EP080: ortho-Xylene EP080: Benzene EP080: Benzene EP080: Toluene EP080/071: Total Petroleum Hydrocarbons (QC Lot: 3163990) EP080/071: Total Petroleum Hydrocarbons (QC Lot: 3167261) QC201_200723 Client sample ID QC202_200724 QC202_200724 QC201_200723 EP080: BTEXN (QC Lot: 3158472) Anonymous Anonymous Anonymous Anonymous Anonymous Anonymous Anonymous Anonymous Anonymous Anonymous Laboratory sample ID ES2025733-012 ES2024943-011 ES2025385-003 ES2025385-002 ES2025385-003 ES2025385-002 ES2025472-001 ES2025733-012 ES2024943-011 ES2025472-001 ES2025168-001 Sub-Matrix: SOIL ES2025168-001 ES2025136-001 ES2025136-001

ES2025385

Work Order

J200432 W26

Client Project

Recovery Limits (%) No Limit No Limit No Limit No Limit No Limit % - 20% 2% - 20% No Limit RPD (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 12.8 0.00 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Laboratory Duplicate (DUP) Report Original Result Duplicate Result <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 0.0034 <0.001 <0.0002 <0.001 <0.0002 <0.0002 <0.5 <0.5 <0.5 <0.2 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 < 0.2 <0.5 ₹ ž v <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.001 0.0030 <0.0002 <0.5 <0.5 <0.5 <0.2 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 ĭ v ٧ mg/kg Unit 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.001 0.001 LOR 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 ~ 0.2 0.5 _ 0.2 0.5 0.5 ~ 375-85-9 335-67-1 108-38-3 108-38-3 91-20-3 375-85-9 2706-90-3 307-24-4 375-22-4 375-73-5 1763-23-1 2706-90-3 307-24-4 CAS Number 108-88-3 100-41-4 95-47-6 91-20-3 71-43-2 108-88-3 106-42-3 95-47-6 91-20-3 71-43-2 108-88-3 108-38-3 95-47-6 355-46-4 763-23-1 355-46-4 335-67-1 375-22-4 106-42-3 100-41-4 100-41-4 106-42-3 EP231X: Perfluorohexane sulfonic acid (PFHxS) EP231X: Perfluorohexane sulfonic acid (PFHxS) EP231X: Perfluorooctane sulfonic acid (PFOS) EP231X: Perfluorobutane sulfonic acid (PFBS) EP231X: Perfluorobutane sulfonic acid (PFBS) EP231X: Perfluorooctane sulfonic acid (PFOS) EP231X: Perfluoroheptanoic acid (PFHpA) EP231X: Perfluoropentanoic acid (PFPeA) EP231X: Perfluoropentanoic acid (PFPeA) EP231X: Perfluorohexanoic acid (PFHxA) EP231X: Perfluoroheptanoic acid (PFHpA) EP231X: Perfluorohexanoic acid (PFHxA) EP231X: Perfluorooctanoic acid (PFOA) EP231X: Perfluorobutanoic acid (PFBA) EP231X: Perfluorooctanoic acid (PFOA) EP231X: Perfluorobutanoic acid (PFBA) EP080: meta- & para-Xylene EP080: meta- & para-Xylene EP080: meta- & para-Xylene EP080: Ethylbenzene EP080: Ethylbenzene EP080: Ethylbenzene EP080: Naphthalene EP080: ortho-Xylene EP080: Naphthalene EP080: ortho-Xylene EP080: ortho-Xylene EP080: Naphthalene Method: Compound EP080: Benzene EP080: Benzene EP080: Toluene EP080: Toluene EP080: Toluene EP231D: (n:2) Fluorotelomer Sulfonic Acids (QC Lot: 3164800) EP231B: Perfluoroalkyl Carboxylic Acids (QC Lot: 3164800) EP231A: Perfluoroalkyl Sulfonic Acids (QC Lot: 3164800) EP080: BTEXN (QC Lot: 3158472) - continued QC201_200723 Client sample ID QC201_200723 QC202_200724 QC201_200723 EP080: BTEXN (QC Lot: 3167261) Anonymous Anonymous Anonymous Laboratory sample ID ES2025733-012 ES2025385-002 ES2025385-002 ES2025385-003 ES2025435-012 ES2025435-012 ES2025385-002 Sub-Matrix: SOIL

5 of 9 ES2025385

Work Order

J200432 W26

Client Project

Recovery Limits (%) No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit RPD (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Laboratory Duplicate (DUP) Report Original Result Duplicate Result <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Unit 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 LOR 120226-60-0 27619-97-2 120226-60-0 39108-34-4 757124-72-4 27619-97-2 757124-72-4 CAS Number 39108-34-4 EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 EP231D: (n:2) Fluorotelomer Sulfonic Acids (QC Lot: 3164800) - continued QC201_200723 Client sample ID Anonymous Laboratory sample ID ES2025435-012 Sub-Matrix: SOIL ES2025385-002

 Page
 : 6 of 9

 Work Order
 : ES2025385

 Client
 : EMM CONSULTING PTY LTD

 Project
 : J200432 W26

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this document of the control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target

analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

-		-		,				
Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LCS) Report	SS) Report	
	-			иероп	Spike	Spike Recovery (%)	Recovery Limits (%)	imits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	SO7	Low	High
EG005(ED093)T: Total Metals by ICP-AES (QCLot: 3169565)								
EG005T: Arsenic	7440-38-2	2	mg/kg	<5	98 mg/kg	109	70.0	130
EG005T: Cadmium	7440-43-9	-	mg/kg	\	0.74 mg/kg	72.0	70.0	130
EG005T: Chromium	7440-47-3	2	mg/kg	<2	15.4 mg/kg	116	70.0	130
EG005T: Copper	7440-50-8	D.	mg/kg	<5	48 mg/kg	120	70.0	130
EG005T: Lead	7439-92-1	2	mg/kg	<5	50 mg/kg	102	70.0	130
EG005T: Nickel	7440-02-0	2	mg/kg	~	12.4 mg/kg	102	70.0	130
EG005T: Zinc	7440-66-6	5	mg/kg	<5	115 mg/kg	97.4	70.0	130
EG035T: Total Recoverable Mercury by FIMS (QCLot: 3169564)	34)							
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	0.0847 mg/kg	73.0	70.0	105
EP080/071: Total Petroleum Hydrocarbons (QCLot: 3158472)								
EP080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	110	68.4	128
EP080/071: Total Petroleum Hydrocarbons (QCLot: 3159360)								
EP071: C10 - C14 Fraction		90	mg/kg	<50	300 mg/kg	87.5	75.0	129
EP071: C15 - C28 Fraction	1	100	mg/kg	<100	450 mg/kg	92.2	77.0	131
EP071: C29 - C36 Fraction	-	100	mg/kg	<100	300 mg/kg	8.06	71.0	129
EP080/071: Total Petroleum Hydrocarbons (QCLot: 3163990)								
EP071: C10 - C14 Fraction	-	20	mg/kg	<50	300 mg/kg	102	75.0	129
EP071: C15 - C28 Fraction		100	mg/kg	<100	450 mg/kg	8.06	77.0	131
EP071: C29 - C36 Fraction		100	mg/kg	<100	300 mg/kg	92.6	71.0	129
EP080/071: Total Petroleum Hydrocarbons (QCLot: 3167261)								
EP080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	111	68.4	128
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QCLot: 3158472)	actions (QCLc	it: 3158472)						
EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	31 mg/kg	110	68.4	128
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QCLot: 3159360)	actions (QCLc	it: 3159360)						
EP071: >C10 - C16 Fraction		20	mg/kg	<50	375 mg/kg	9.68	77.0	125
EP071: >C16 - C34 Fraction		100	mg/kg	<100	525 mg/kg	92.7	74.0	138
EP071: >C34 - C40 Fraction		100	mg/kg	<100	225 mg/kg	76.4	63.0	131
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QCLot: 3163990)	actions (QCLc	t: 3163990)						
EP071: >C10 - C16 Fraction		50	mg/kg	<50	375 mg/kg	93.3	77.0	125
EP071: >C16 - C34 Fraction		100	mg/kg	<100	525 mg/kg	95.2	74.0	138
EP071: >C34 - C40 Fraction		100	mg/kg	<100	225 mg/kg	8.96	63.0	131
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QCLot: 3167261)	actions (QCLo	it: 3167261)						
EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	31 mg/kg	111	68.4	128

 Page
 : 7 of 9

 Work Order
 : ES2025385

 Client
 : EMM CONSULTING PTY LTD

 Project
 : J200432 W26

Sub-Matrix:				Method Blank (MB)		Laboratory Control Spike (LCS) Report	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery Limits (%)	imits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	SOT	Low	High
EP080: BTEXN (QCLot: 3158472)								
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	105	62.0	116
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	1 mg/kg	106	67.0	121
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1 mg/kg	108	65.0	117
EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	2 mg/kg	108	66.0	118
	106-42-3							
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	1 mg/kg	110	68.0	120
EP080: Naphthalene	91-20-3	_	mg/kg	۲	1 mg/kg	116	63.0	119
EP080: BTEXN (QCLot: 3167261)								
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	108	62.0	116
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	1 mg/kg	110	67.0	121
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1 mg/kg	109	65.0	117
EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	2 mg/kg	109	0.99	118
	106-42-3							
EP080: ortho-Xylene	92-47-6	0.5	mg/kg	<0.5	1 mg/kg	110	68.0	120
EP080: Naphthalene	91-20-3	_	mg/kg	٧	1 mg/kg	102	63.0	119
EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 3164800)	6							
EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.0002	mg/kg	<0.0002	0.00125 mg/kg	92.4	72.0	128
EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.0002	mg/kg	<0.0002	0.00125 mg/kg	85.2	67.0	130
EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.0002	mg/kg	<0.0002	0.00125 mg/kg	102	68.0	136
EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 3164800)	800)							
EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.001	mg/kg	<0.001	0.00625 mg/kg	2.96	71.0	135
EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.0002	mg/kg	<0.0002	0.00125 mg/kg	92.4	69.0	132
EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.0002	mg/kg	<0.0002	0.00125 mg/kg	104	70.0	132
EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.0002	mg/kg	<0.0002	0.00125 mg/kg	102	71.0	131
EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.0002	mg/kg	<0.0002	0.00125 mg/kg	111	0.69	133
EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 3164800)	164800)							
EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.0005	mg/kg	<0.0005	0.00125 mg/kg	92.6	62.0	145
EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.0005	mg/kg	<0.0005	0.00125 mg/kg	120	64.0	140
EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.0005	mg/kg	<0.0005	0.00125 mg/kg	103	65.0	137
EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.0005	mg/kg	<0.0005	0.00125 mg/kg	109	69.2	143

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Matrix Spike (MS) Report

Sub-Matrix: SOIL

Laboratory sample ID Client sample ID Concentration Concentration ID Concentration CAS Number Concentration					Spike	spikerecovery(%)	Recovery LII	nits (%)
	boratory sample I	nt sample ID	Method: Compound	CAS Number	Concentration	MS	Tow	High

ES2025385

Work Order

J200432 W26

Client Project

High 130 130 130 130 30 130 130 137 131 137 132 130 130 137 131 137 131 130 Recovery Limits (%) 70.0 70.0 70.0 70.0 73.0 53.0 52.0 53.0 52.0 70.0 73.0 53.0 52.0 73.0 53.0 70.0 70.0 70.0 70.0 73.0 70W 70.0 70.0 Matrix Spike (MS) Report SpikeRecovery(%) 87.4 9.96 87.9 8.89 73.2 87.7 82.8 75.4 91.4 126 85.2 86.2 55.4 79.7 114 110 116 NIS 5 5 110 129 102 112 102 126 3223 mg/kg 1058 mg/kg Concentration 2319 mg/kg 1714 mg/kg 1714 mg/kg 1058 mg/kg 37.5 mg/kg 32.5 mg/kg 2319 mg/kg 37.5 mg/kg 3223 mg/kg 50 mg/kg 523 mg/kg 523 mg/kg 32.5 mg/kg 860 mg/kg 50 mg/kg 250 mg/kg 250 mg/kg 250 mg/kg 860 mg/kg 2.5 mg/kg 50 mg/kg 50 mg/kg 5 mg/kg Spike CAS Number 7440-43-9 7440-38-2 7440-47-3 7440-50-8 7440-02-0 7440-66-6 7439-97-6 7439-92-1 C6_C10 C6_C10 71-43-2 11 | 1 EP071: >C34 - C40 Fraction EP071: >C34 - C40 Fraction EP071: >C16 - C34 Fraction EP071: >C10 - C16 Fraction EP071: >C16 - C34 Fraction EP071: >C10 - C16 Fraction EP071: C15 - C28 Fraction EP071: C29 - C36 Fraction EP071: C10 - C14 Fraction EP071: C15 - C28 Fraction EP071: C29 - C36 Fraction EP071: C10 - C14 Fraction EP080: C6 - C10 Fraction EP080: C6 - C10 Fraction EP080: C6 - C9 Fraction EP080: C6 - C9 Fraction EG005T: Chromium EG005T: Cadmium Method: Compound EG035T: Mercury EG005T: Arsenic EP080: Benzene EG005T: Copper EG005T: Nickel EG005T: Lead EG005T: Zinc EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QCLot: 3158472) EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QCLot: 3163990) EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QCLot: 3167261) EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions(QCLot: 3159360) EG035T: Total Recoverable Mercury by FIMS (QCLot: 3169564) EP080/071: Total Petroleum Hydrocarbons (QCLot: 3158472) EP080/071: Total Petroleum Hydrocarbons (QCLot: 3159360) EP080/071: Total Petroleum Hydrocarbons (QCLot: 3163990) EP080/071: Total Petroleum Hydrocarbons (QCLot: 3167261) EG005(ED093)T: Total Metals by ICP-AES (QCLot: 3169565) Laboratory sample ID | Client sample ID QC202_200724 QC200_200723 QC200_200723 EP080: BTEXN (QCLot: 3158472) Anonymous Anonymous Anonymous Anonymous Anonymous Anonymous Anonymous ES2025385-001 ES2025385-003 ES2025385-001 ES2024943-011 ES2024943-011 ES2025136-001 ES2025472-001 ES2025385-003 ES2024943-011 ES2025472-001 ES2025136-001 Sub-Matrix: SOIL

ES2025385

Work Order

9 of 9

J200432 W26

Client Project

High 130 130 130 130 130 128 130 136 132 145 140 137 133 143 130 130 135 132 Recovery Limits (%) 70.0 70.07 70.0 70.0 70.0 70.0 70.0 72.0 67.0 69.0 70.0 71.0 69.0 62.0 64.0 65.0 69.2 70W Matrix Spike (MS) Report SpikeRecovery(%) # 139 117 98.4 4 11 4 11 4 11 120 118 118 116 121 119 120 120 125 106 NIS 115 7 0.00125 mg/kg 0.00125 mg/kg 0.00125 mg/kg 0.00125 mg/kg 0.00125 mg/kg 0.00125 mg/kg 0.00125 mg/kg 0.00625 mg/kg 0.00125 mg/kg 0.00125 mg/kg 0.00125 mg/kg 0.00125 mg/kg Concentration 2.5 mg/kg 2.5 mg/kg 2.5 mg/kg 2.5 mg/kg 2.5 mg/kg 2.5 mg/kg 2.5 mg/kg 2.5 mg/kg 2.5 mg/kg 2.5 mg/kg 2.5 mg/kg Spike 120226-60-0 757124-72-4 27619-97-2 CAS Number 39108-34-4 2706-90-3 1763-23-1 375-22-4 375-85-9 108-88-3 100-41-4 108-38-3 106-42-3 108-88-3 100-41-4 108-38-3 106-42-3 375-73-5 355-46-4 307-24-4 335-67-1 95-47-6 91-20-3 91-20-3 71-43-2 95-47-6 EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS) EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS) EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS) EP231X: Perfluorohexane sulfonic acid (PFHxS) EP231X: Perfluorooctane sulfonic acid (PFOS) EP231X: Perfluorobutane sulfonic acid (PFBS) EP231X: Perfluoropentanoic acid (PFPeA) EP231X: Perfluoroheptanoic acid (PFHpA) EP231X: Perfluorohexanoic acid (PFHxA) EP231X: Perfluorobutanoic acid (PFBA) EP231X: Perfluorooctanoic acid (PFOA) EP080: meta- & para-Xylene EP080: meta- & para-Xylene EP080: Ethylbenzene EP080: Ethylbenzene EP080: Naphthalene EP080: ortho-Xylene EP080: ortho-Xylene EP080: Naphthalene Method: Compound EP080: Benzene EP080: Toluene EP080: Toluene EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 3164800) EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 3164800) EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 3164800) EP080: BTEXN (QCLot: 3158472) - continued Laboratory sample ID | Client sample ID QC201_200723 QC201_200723 QC201_200723 QC202_200724 EP080: BTEXN (QCLot: 3167261) Anonymous ES2025385-002 ES2025385-002 ES2025385-002 ES2024943-011 ES2025385-003 Sub-Matrix: SOIL

ರ	Ą
	₽
<	(3)

AIN OF CUSTODY

DADELAIDE 21 Burma Road Pooraka(50/68/56/1 78 Harbour Road Mackay (DLD 4 Ph. 08 8359 0890 E. adelaide@alsgloßi.86/4644 0177 E. mackay@alsglobal.com

DNEWCASTI, E 51585 Walland Road Mayfreld West**IIS/W28EM 277**-289 Woodpark Road Smithfield NSW 216-Ph: 02 4014 2500 E: samples newcastle@alsgobal.69m02 6784 8555 E; samples sydney@alsgobal.com

26171201850 RECEIVED BY THUS $\ddot{\wp}$ $^{\circ}$ DATE/TIME: ngvele VICGMCRVRA 4/13 Geary Place North Nowra NSW 2541 DTOWNSVILLE 14-15 Dasma Court Bohle QLD 4818 ne@alsgib@htcDpt-4/23 2063 E. nowra@alsgibbal.com Phr 07 4795 0600 E. townesville envirormental@alsgibbal.com CIPERTH 10 Hod Way Malaga WA 8290 CIVVOLLONGONG 99 Kenny Street Wolforgong NSW 2500 Ph; 08 9209 7655 E; samples, perth@alegiobal.com Ph; 08 4225 3125 E; welfortgong@alegiobal.com FOR LABORATORY USE ONLY (Circle) Random Sample Temperature on Receipt: Free ice / frozen ice bricks present upon receipt? RELINQUISHED BY: Other comment: DATE/TIME: COC SEQUENCE NUMBER (Circle) 1645 1645 30/07/2020 Sp.M. RECEIVED BY: Standard or urgent TAT (List due date):

Non Standard or urgent TAT (List due date): CIMELBOURNE 2-4 Westall Road Spr Ph. 03 8549 9600 E: samples.melbour IDSLADSTONE 48 Callemendah Drive Clinton QLDJBBB/DGEE 1129 Sydney Road Mudgee NSW 2850 Ph: 07 7471 5600 E: gladstone@alsglobal.com Ph: 02 6372 6735 E: mudgee.mail@alsglobal.com 30/4/20 RELINQUISHED BY: Lachlan Lewis DATE/TIME: EN-112-19 (Standard TAT may be longer for some tests e.g., Ultra Trace Organics) ⊒BRISBANE 2 8vth Street Stafford OLD 4053 Ph: 07 3243 7222 E: samples. brisbane@alsglobal.com TURNAROUND REQUIREMENTS: COUNTRY OF ORIGIN: Australia SAMPLER MOBILE: 0401 638 848 EDD FORMAT (or default): Esdat ALS QUOTE NO.: CONTACT PH: 0401638848 Email invoice to (will default to PM if no other addresses are listed); as above Email Reports to (wil default to PM if no other addresses are listed); sdillon@emmconsulting.com.au, llewis@emmconsulting.com.au S Laboratory: please tick + PROJECT MANAGER: Susan Dillon / Lachlan Lewis OFFICE: 20 Chandos Street, St Leonards NSW 2066 510043 COC Emailed to ALS? (YES / NO) PROJECT: MCATRAUNILE CLIENT: EMM Consulting Pty Ltd SAMPLER: Lachlan Lewis ORDER NUMBER:

ALS LISE ONLY	SAMPLE	SAMPLE DETAILS	~	CONTAINER INFORMATION	AN	ALYSIS REQU	JIRED including SUI	TES (NB. Suit.	Codes must be	ANALYSIS REQUIRED including SUITES (NB. Suite Codes must be listed to attract suite price)	Additional Information
	MAIRIX: SOIP	MATRIX: Solid(S) Water(W)	•			Where Metals are	Where Metals are required, specify Total (unfiltered bottle required) or Dissolved (field filtered bottle required).	terad bottle requir	id) or Dissolved (fi	eld filtered bottle required).	
LABID	SAMPLEID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE TOT	BOTTAL BOTTLES HAS 3 metals, PAHs,		2002/20V ₂	1/BTEXN (w-18/s-18)		67-97 H7]	Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis etc.
			9		IST.	ьс	ile:	ЯT	15FT 8-8)	Ź	

SE2 ихэтв ,нят

ихэта⁄нят

MW01_200730 30/

MW02-200730 MW8-100730 3000 100730 QC203-120730 QC304, 200730 TBOY_100730

大

11-200730

T3 - 200730 TY-200430

3

200430

T

15年1200年0

Environmental Division

*Sedt Research

Sydney Work Order Reference Work Order Reference

Coloredo - delos

7

T Paragram

Telephone: +61-2-8784 9555

Water Container Codes: P = Unpreserved Plastic; N = Nitric Preserved ORC; SH = Sodium Hydroxide/Cd Preserved; S = Sodium Hydroxide Preserved Plastic; N = Nitricipal Unpreserved ORC; SH = Sodium Hydroxide/Cd Preserved; S = Sodium Hydroxide Preserved A = Sodium Hydroxide Preserved Hydroxide Preserved; M = Mitricipal Unpreserved W = VOA Vial Sodium Bisulphate Preserved W = VOA Vial Sodium Bisulphate Sodie; B = Unpreserved Bigg; U = Lugols Iodine Preserved Bottles; STF = Signiff Throsulfate Preserved Bottles; STF = Signiff Throsulfate Preserved Bottles; W = Signiff Throsulfate Preserved Bo WO MON 一日本のことの いちょうかん

Form Page 1 of 1

ALS Laboratory: please tick >>

ORDER NUMBER:

CHAIN OF CUSTODY

OBRISBANE 2 Byth Street Stafford QLD 4053 Ph. 07 3243 7222 E. samples brisbane@alsglobel.com

DADELAIDE 21 Burma Road Poorata (фИжевей V 18 Harbour Road Mackay OLD 47 Ph: 08 8359 0890 E: adataide@aisglof8fr.487/4944 0177 E: mackay@atsglobat.com

ENEWCASTLE 5/885 Mattend Road Mayfield VivestUSYDXBH 277-289 Woodpark Road Smithfield NSW 216-Ph. 02 4014 25/00 E. samyles, newtaatle@olsglobal.&hm2 8784 8555 E. samples sythely@olsglobal.com CMELBOURNE 24 Wiestall Road Springvale VIOZNIDWRA 4/13 Geery Place North Nowra NSW 2541 Ph; 03 8549 9600 E: samples melbourne@aleglof8tx39A023 2063 E: novra@aleglobal.com CIGLADSTONE 46 Callemendah Drive Clinton QLDAMADGEE 1/29 Sybney Road Musigee NSV/2850 Ph. 07 7471 5600 E. gladstone@alsglobal.com Ph. 02 6372 6735 E. mudgee.mail@alsglobal.com

CTOVANSVILLE 14-15 Desma Court Bohle QLD 4818 Ptr. 07 4796 0600 E: tovaresville.envirormental@alsglobal.com CIPERTH 10 Hod Way Malaga WA 8090 CIWJOLLONGONIS 89 Kenny Sheet Welengong NSW 2500 Ph. 08 9209 7655 E. samptrs perth@alsglotak.com Ph. 02 4225 9125 E. wellongong@alsglotak.com (2) Š

2617120 1850 RECEIVED BY HAVE ž $\mathring{\wp}$ @ $\overset{*}{\ \ }$ DATE/TIME: FOR LABORATORY USE ONLY (Circle) Random Sample Temperature on Receipt: ree Ice / frozen ice bricks present upon eceipt? Sustody Seal Intact? RELINQUISHED BY: DATE/TIME: COC SEQUENCE NUMBER (Circle) 1645 30/07/2020 Sep M. RECEIVED BY: Non Standard or urgent TAT (List due date): Standard or urgent TAT (List due date): RELINQUISHED BY: achlan Lewis DATE/TIME: B D EN-112-19 Standard TAT may be longer for some tests 2.9.. Ultra Trace Organics) TURNAROUND REQUIREMENTS: COUNTRY OF ORIGIN: Australia SAMPLER MOBILE: 0401 638 848 EDD FORMAT (or default): Esdat ALS QUOTE NO .: CONTACT PH: 0401638848 Email Invoice to (will default to PM if no other addresses are listed); as above Email Reports to (will default to PM if no other addresses are listed): sdillon@emmconsulting.com.au, llewis@emmconsulting.com.au COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL: PROJECT MANAGER: Susan Dillon / Lachian Lewis OFFICE: 20 Chandos Street, St Leonards NSW 2065 510043 PROJECT: Matraville COC Emailed to ALS? (YES / NO) CLIENT: EMM Consulting Pty Ltd SAMPLER: Lachlan Lewis

* Yead to Design * Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis etc. **Environmental Division** Additional Information ANALYSIS REQUIRED Including SUITES (NB. Suite Codes must be listed to attract suite price) Where Metals are required, specify Total (unfiltered bottle required) or Dissolved (field filtered bottle required). THY] Calviolate - acros ,ихэта ,нят (N-18/8-18) 5002/20V ьсва 7 TOTAL CONTAINER INFORMATION TYPE & PRESERVATIVE (refer to codes below) MATRIX MWO1_200730 30/4/20 DATE / TIME SAMPLE DETAILS MATRIX: Solid(S) Water(W) QC16 100730 QC26 100730 QC304, 200730 MW02-200730 TBO7-1200730 MW8-120730 ~200730 15 120 to 3-200730 T4-200430 200730 SAMPLE ID ALS USE ONLY 大 LAB ID 长 3

Telephone: +61-2-8784 8555

TOTAL

WO KON

Transact .

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : ES2026409

Client : EMM CONSULTING PTY LTD Laboratory : Environmental Division Sydney

Contact : SUSAN DILLON Contact : Customer Services ES

Address : Ground Floor Suite 1 20 Chandos Address : 277-289 Woodpark Road Smithfield

NSW Australia 2164

Street St Leonards NSW NSW 2065

E-mail : sdillon@emmconsulting.com.au E-mail : ALSEnviro.Sydney@ALSGlobal.com

 Telephone
 : --- Telephone
 : +61-2-8784 8555

 Facsimile
 : --- Facsimile
 : +61-2-8784 8500

Project : Matraville Page : 1 of 3

Primary work only)

C-O-C number : --- QC Level : NEPM 2013 B3 & ALS QC Standard

Site : ----

Sampler : Lachlan Lewis

Dates

Date Samples Received : 30-Jul-2020 16:45 Issue Date : 31-Jul-2020 Client Requested Due : 06-Aug-2020 Scheduled Reporting Date : 06-Aug-2020

Date

Delivery Details

Mode of Delivery : Client Drop Off Security Seal : Not Available

No. of coolers/boxes : 2 Temperature : 2.3'C - Ice present

Receipt Detail : No. of samples received / analysed : 11 / 10

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Sample QC203_200730 has been forwarded to Envirolab.
- Metals analysis will not be conducted for samples T3_200730, T4_200730 and HT_200730 as no suitable sampling container was received.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Sample(s) requiring volatile organic compound analysis received in airtight containers (ZHE).
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical
 analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this
 temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS
 recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

Issue Date : 31-Jul-2020

Page : 2 of 3

ES2026409 Amendment 0 Work Order Client : EMM CONSULTING PTY LTD

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component

Matrix: PRODUCT

ES2026409-009

ES2026409-012

Client sample ID Laboratory sample Client sampling date / time T1_200730 30-Jul-2020 00:00

30-Jul-2020 00:00

Matrix: WATER Laboratory sample	Client sampling	Client sample ID	WATER - EP080 BTEXN	WATER - W-05 TRH/BTEXN/8 Metals	WATER - W-07 TRH/BTEXN/PAH	WATER - W-18 TRH(C6 - C9)/BTEXN	WATER - W-23 minus BTEX SVOC/VOC without BTEX	WATER - W-26 TRH/BTEXN/PAH/8 Metals
ID	date / time	•	WATER	MA TRH	MA TR TR	WAT TRH	SVC	MA TRH
ES2026409-001	30-Jul-2020 00:00	MW01_200730					✓	1
ES2026409-002	30-Jul-2020 00:00	MW02_200730					1	1
ES2026409-003	30-Jul-2020 00:00	MW03_200730					1	✓
ES2026409-004	30-Jul-2020 00:00	QC103_200730		✓				
ES2026409-006	30-Jul-2020 00:00	QC304_200730		✓				
ES2026409-007	30-Jul-2020 00:00	TB04_200730				✓		
ES2026409-008	30-Jul-2020 00:00	TS04_200730	✓					
ES2026409-010	30-Jul-2020 00:00	T3_200730			✓			
ES2026409-011	30-Jul-2020 00:00	T4_200730			✓			

HT_200730

On Hold) PRODUCT

Issue Date : 31-Jul-2020

Page

: 3 of 3 : ES2026409 Amendment 0 Work Order Client : EMM CONSULTING PTY LTD

Polychlorinated Biphenyls (PCB) WATER - EP066-PCB-WA Matrix: WATER Client sample ID Laboratory sample Client sampling date / time ES2026409-010 T3_200730 30-Jul-2020 00:00 ES2026409-011 30-Jul-2020 00:00 T4_200730 ES2026409-012 30-Jul-2020 00:00 HT_200730

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

ALL ESDAT REPORTS		
- EDI Format - ESDAT (ESDAT)	Email	emmconsulting@esdat.net
ALL INVOICES		
- A4 - AU Tax Invoice (INV)	Email	finance@emmconsulting.com.au
Lachlan Lewis		
 *AU Certificate of Analysis - NATA (COA) 	Email	llewis@emmconsulting.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	llewis@emmconsulting.com.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	llewis@emmconsulting.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	llewis@emmconsulting.com.au
- A4 - AU Tax Invoice (INV)	Email	llewis@emmconsulting.com.au
- Chain of Custody (CoC) (COC)	Email	llewis@emmconsulting.com.au
- EDI Format - ENMRG (ENMRG)	Email	llewis@emmconsulting.com.au
- EDI Format - ESDAT (ESDAT)	Email	llewis@emmconsulting.com.au
SUSAN DILLON		
 *AU Certificate of Analysis - NATA (COA) 	Email	sdillon@emmconsulting.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	sdillon@emmconsulting.com.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	sdillon@emmconsulting.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	sdillon@emmconsulting.com.au
- A4 - AU Tax Invoice (INV)	Email	sdillon@emmconsulting.com.au
- Chain of Custody (CoC) (COC)	Email	sdillon@emmconsulting.com.au
- EDI Format - ENMRG (ENMRG)	Email	sdillon@emmconsulting.com.au
- EDI Format - ESDAT (ESDAT)	Email	sdillon@emmconsulting.com.au

SAMPLE RECEIPT NOTIFICATION (SRN)

: ES2026409 Work Order

Client : EMM CONSULTING PTY LTD Laboratory : Environmental Division Sydney

Contact : SUSAN DILLON Contact : Customer Services ES

Address : Ground Floor Suite 1 20 Chandos Address : 277-289 Woodpark Road Smithfield Street

NSW Australia 2164

St Leonards NSW NSW 2065

E-mail : sdillon@emmconsulting.com.au : ALSEnviro.Sydney@ALSGlobal.com

Telephone Telephone : +61-2-8784 8555 Facsimile Facsimile : +61-2-8784 8500

Project : Matraville Page : 1 of 3

Order number : J200432 Quote number : ES2019EMGAMM0002 (EN/112/18 -

Primary work only)

C-O-C number QC Level : NEPM 2013 B3 & ALS QC Standard

Sampler : Lachlan Lewis

Dates

Date Samples Received Issue Date : 30-Jul-2020 16:45 : 04-Aug-2020 Scheduled Reporting Date Client Requested Due : 06-Aug-2020 06-Aug-2020

Date

Delivery Details

Mode of Delivery Security Seal : Client Drop Off : Not Available No. of coolers/boxes : 2 Temperature : 2.3'C - Ice present

Receipt Detail No. of samples received / analysed : 11 / 11

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- This is an updated SRN which indicates the addition of analysis for sample T1_200730.
- Sample QC203 200730 has been forwarded to Envirolab.
- Metals analysis will not be conducted for samples T3_200730, T4_200730 and HT_200730 as no suitable sampling container was received.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Sample(s) requiring volatile organic compound analysis received in airtight containers (ZHE).
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

Issue Date : 04-Aug-2020

Page : 2 of 3

Work Order ES2026409 Amendment 0
Client : EMM CONSULTING PTY LTD

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

Method Client sample ID	Sample Container Received	Preferred Sample Container for Analysis
PAH/Phenols (SIM) : EP075(SIM)		
T1_200730	- Amber Glass Bottle - Unpreserved	- Soil Glass Jar - Unpreserved
Polychlorinated Biphenyls (PCB) : EP066		
T1_200730	 Amber Glass Bottle - Unpreserved 	- Soil Glass Jar - Unpreserved
Total Mercury by FIMS : EG035T		
T1_200730	- Amber Glass Bottle - Unpreserved	- Soil Glass Jar - Unpreserved
Total Metals by ICP-AES : EG005T		
T1_200730	- Amber Glass Bottle - Unpreserved	- Soil Glass Jar - Unpreserved
TRH - Semivolatile Fraction : EP071		
T1_200730	- Amber Glass Bottle - Unpreserved	- Soil Glass Jar - Unpreserved

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package. If no sampling time is provided, the sampling time will olychlorinated Biphenyls by GCMS default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the metals/TRH/BTEXN/PAH laboratory and displayed in brackets without a time SOIL - EP066 (solids) component Matrix: SOIL 3OIL - S-26 Client sample ID Laboratory sample Client sampling ID date / time T1_200730 ES2026409-009 30-Jul-2020 00:00

Matrix: WATER <i>Laboratory sample</i>	Client sampling	Client sample ID	WATER - EP080	WATER - W-05		WATER - W-18 TRH(C6 - C9)/BTEXN	NATER - W-23 minus BTEX SVOC/VOC without BTEX	NATER - W-26 FRH/BTEXN/PAH/8 Metals
ID ES2026409-001	date / time 30-Jul-2020 00:00	MW01_200730	<u> </u>)	F	S F	<u> </u>	≶ F
		_	-	+			-	
ES2026409-002	30-Jul-2020 00:00	MW02_200730		+			✓	✓
ES2026409-003	30-Jul-2020 00:00	MW03_200730					✓	✓
ES2026409-004	30-Jul-2020 00:00	QC103_200730			✓			
ES2026409-006	30-Jul-2020 00:00	QC304_200730			✓			
ES2026409-007	30-Jul-2020 00:00	TB04_200730				✓		
ES2026409-008	30-Jul-2020 00:00	TS04_200730	✓					

: 04-Aug-2020 Issue Date

Page

: 3 of 3 : ES2026409 Amendment 0 Work Order Client : EMM CONSULTING PTY LTD

Matrix: WATER <i>Laboratory sample ID</i>	Client sampling date / time	Client sample ID	WATER - EP066-PCB-WA Polychlorinated Biphenyls (PCB)	WATER - W-07 TRH/BTEXN/PAH
ES2026409-010	30-Jul-2020 00:00	T3_200730	1	1
ES2026409-011	30-Jul-2020 00:00	T4_200730	1	✓
ES2026409-012	30-Jul-2020 00:00	HT_200730	✓	✓

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

ALL ESDAT REPORTS		
- EDI Format - ESDAT (ESDAT)	Email	emmconsulting@esdat.net
ALL INVOICES		
- A4 - AU Tax Invoice (INV)	Email	finance@emmconsulting.com.au
Lachlan Lewis		
 *AU Certificate of Analysis - NATA (COA) 	Email	llewis@emmconsulting.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	llewis@emmconsulting.com.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	llewis@emmconsulting.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	llewis@emmconsulting.com.au
- A4 - AU Tax Invoice (INV)	Email	llewis@emmconsulting.com.au
- Chain of Custody (CoC) (COC)	Email	llewis@emmconsulting.com.au
- EDI Format - ENMRG (ENMRG)	Email	llewis@emmconsulting.com.au
- EDI Format - ESDAT (ESDAT)	Email	llewis@emmconsulting.com.au
SUSAN DILLON		
 *AU Certificate of Analysis - NATA (COA) 	Email	sdillon@emmconsulting.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	sdillon@emmconsulting.com.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	sdillon@emmconsulting.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	sdillon@emmconsulting.com.au
- A4 - AU Tax Invoice (INV)	Email	sdillon@emmconsulting.com.au
- Chain of Custody (CoC) (COC)	Email	sdillon@emmconsulting.com.au
- EDI Format - ENMRG (ENMRG)	Email	sdillon@emmconsulting.com.au
- EDI Format - ESDAT (ESDAT)	Email	sdillon@emmconsulting.com.au

CERTIFICATE OF ANALYSIS

Environmental Division Sydney

: 1 of 17

Laboratory **EMM CONSULTING PTY LTD** SUSAN DILLON ES2026409 **Work Order** Contact Client

277-289 Woodpark Road Smithfield NSW Australia 2164 Customer Services ES Contact Address Ground Floor Suite 1 20 Chandos Street

30-Jul-2020 16:45 +61-2-8784 8555 Date Samples Received Telephone St Leonards NSW NSW 2065 Matraville

03-Aug-2020 Date Analysis Commenced

06-Aug-2020 16:48 Issue Date

Lachlan Lewis

J200432

C-O-C number

Sampler

Order number

Telephone

Project

Address

EN/112/18 - Primary work only No. of samples analysed No. of samples received Quote number

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Signatories

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Accreditation Category Position Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Sydney Organics, Smithfield, NSW	Sydney Inorganics, Smithfield, NSW
Organic Coordinator	Analyst
Edwandy Fadjar	Ivan Taylor

General Comments

In house developed procedures analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. are fully validated and are often at the client request

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Key:

LOR = Limit of reporting

- This result is computed from individual analyte detections at or above the level of reporting

Ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- EP075 (SIM): Where reported, Benzo(a) pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1.), Chrysene (0.01), Benzo(b)fuoranthene (0.1.), Benzo(a)pyrene (1.0),
 - EP075. Where reported, Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for TEQ Zero' are treated as zero

indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for TEQ Zero' are treated as zero.

- Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.11, Chrysene (0.01), Benzo(b+i) & Benzo(k)fluoranthene (0.11, Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.11), equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs
- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP074: Where reported, Total Trihalomethanes is the sum of the reported concentrations of all Trihalomethanes at or above the LOR.
- EP074: Where reported, Total Trimethylbenzenes is the sum of the reported concentrations of 1.2.3-Trimethylbenzene, 1.2.4-Trimethylbenzene and 1.3.5-Trimethylbenzene at or above the LOR.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR
- EP075(SIM): Surrogate recovery bias low due to sample matrix interferences.
- EP071: Particular sample required dilution due to the presence of high level contaminants. LOR values have been adjusted accordingly.
- EP075(SIM): Particular sample required dilution due to sample matrix and the presence of high level contaminants. LOR values have been adjusted accordingly
- EP080: Sample TRIP SPIKE contains volatile compounds spiked into the sample containers prior to dispatch from the laboratory. BTEXN compounds spiked at 20 ug/L.
- EP066 : Particular samples required dilution due to sample matrix . LOR values have been adjusted accordingly.
- EP066: Particular samples required dilution due to sample matrix. LOR values have been adjusted accordingly. Surrogatescannot be determined due to samples matrix.
- EP075: Where reported, 'Sum of PAH' is the sum of the USEPA 16 priority PAHs

Project Client

: 3 of 17 : ES2026409 : EMM CONSULTING PTY LTD : Matraville

Sub-Matrix: PRODUCT (Matrix: SOIL)		Clier	Client sample ID	T1_200730	-	-		
	Clie	nt samplin	Client sampling date / time	30-Jul-2020 00:00				
Compound	CAS Number	LOR	Unit	ES2026409-009	-			
				Result				
EG005(ED093)T: Total Metals by ICP-AES								
Arsenic	7440-38-2	2	mg/kg	<5				
Cadmium	7440-43-9	-	mg/kg	۲>				
Chromium	7440-47-3	2	mg/kg	<2				
Copper	7440-50-8	2	mg/kg	10				
Lead	7439-92-1	2	mg/kg	<5			-	
Nickel	7440-02-0	2	mg/kg	<2				
Zinc	7440-66-6	2	mg/kg	9				
EG035T: Total Recoverable Mercury by FIMS	10							
Mercury	7439-97-6	0.1	mg/kg	<0.1			-	-
EP066: Polychlorinated Biphenyls (PCB)								
Total Polychlorinated biphenyls		0.1	mg/kg	<4.5			-	-
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons	ırbons							
Naphthalene	91-20-3	0.5	mg/kg	412			-	
Acenaphthylene	208-96-8	0.5	mg/kg	<40.0				
Acenaphthene	83-32-9	0.5	mg/kg	103				
Fluorene	86-73-7	0.5	mg/kg	154				
Phenanthrene	85-01-8	0.5	mg/kg	514				
Anthracene	120-12-7	0.5	mg/kg	<40.0				
Fluoranthene	206-44-0	0.5	mg/kg	<40.0				-
Pyrene	129-00-0	0.5	mg/kg	49.6				
Benz(a)anthracene	56-55-3	0.5	mg/kg	<40.0	-			
Chrysene	218-01-9	0.5	mg/kg	<40.0				
Benzo(b+j)fluoranthene 205-99	205-99-2 205-82-3	0.5	mg/kg	<40.0				
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<40.0				
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<40.0				
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<40.0				
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<40.0				
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<40.0				
A Sum of polycyclic aromatic hydrocarbons		0.5	mg/kg	1230				
A Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<10.0				
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	48.4				
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	8.96				-
EP080/071: Total Petroleum Hydrocarbons								
C6 - C9 Fraction		10	mg/kg	718		-	-	i

Project Client

: 4 of 17 : ES2026409 : EMM CONSULTING PTY LTD : Matraville

Sub-Matrix: PRODUCT (Matrix: SOIL)		Client s	Client sample ID	T1_200730	1	-		1
	Client sa	Client sampling date / time	ate / time	30-Jul-2020 00:00				
CAS Number	nber LOR	œ	Unit	ES2026409-009				
				Result				
EP080/071: Total Petroleum Hydrocarbons - Continued	þ							
C10 - C14 Fraction	20		mg/kg	44900				
C15 - C28 Fraction	100		mg/kg	119000				
C29 - C36 Fraction			mg/kg	15300				
^ C10 - C36 Fraction (sum)	20		mg/kg	179000				
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions	M 2013 Fra	ctions						
C6 - C10 Fraction	C6_C10 10		mg/kg	1280				
^ C6 - C10 Fraction minus BTEX C6_C10-BTEX (F1)	TEX 10	0	mg/kg	1100		-	:	:
>C10 - C16 Fraction	20		mg/kg	78600				
>C16 - C34 Fraction	100		mg/kg	97200				
>C34 - C40 Fraction	100		mg/kg	0066				
^ >C10 - C40 Fraction (sum)	20		mg/kg	186000				
^ >C10 - C16 Fraction minus Naphthalene	20		mg/kg	78400	1	1	1	1
(F2)		-						
EP080: BTEXN								
	71-43-2 0.2		mg/kg	1.4				
Toluene 108-88-3			mg/kg	11.4				
Ethylbenzene 100-41-4			mg/kg	20.9				
meta- & para-Xylene 108-38-3 106-42-3	42-3 0.5		mg/kg	108				
ortho-Xylene 95-4	95-47-6 0.5		mg/kg	33.9				
^ Sum of BTEX			mg/kg	176				
^ Total Xylenes			mg/kg	142				
Naphthalene 91-2	91-20-3		mg/kg	177				
EP066S: PCB Surrogate								
Decachlorobiphenyl 2051-24-3	24-3 0.1	1	%	Not Determined				-
EP075(SIM)S: Phenolic Compound Surrogates								
Phenol-d6 13127-88-3		10	%	Not Determined				
2-Chlorophenol-D4 93951-73-6		10	%	64.4				:
2.4.6-Tribromophenol 118-79-6	79-6 0.5	2	%	Not Determined				
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl 321-60-8		22	%	9.98				
Anthracene-d10 1719-06-8		10	%	89.3				
4-Terphenyl-d14 1718-51-0	51-0 0.5	2	%	86.9				
EP080S: TPH(V)/BTEX Surrogates								

Project Client

: 5 of 17 : ES2026409 : EMM CONSULTING PTY LTD : Matraville

T1_200730	30-Jul-2020 00:00	ES2026409-009	Result		89.5	98.9	109
Client sample ID	Client sampling date / time	Unit			%	%	%
-	Client san	CAS Number LOR		EP080S: TPH(V)/BTEX Surrogates - Continued	17060-07-0 0.2	2037-26-5 0.2	460-00-4

Project Client

: 6 of 17 : ES2026409 : EMM CONSULTING PTY LTD : Matraville

Sub-Matrix: WATER (Matrix: WATER)		Clie	Client sample ID	MW01_200730	MW02_200730	MW03_200730	QC103_200730	QC304_200730
	Cli	ent samplir	Client sampling date / time	30-Jul-2020 00:00	30-Jul-2020 00:00	30-Jul-2020 00:00	30-Jul-2020 00:00	30-Jul-2020 00:00
Compound	CAS Number	LOR	Unit	ES2026409-001	ES2026409-002	ES2026409-003	ES2026409-004	ES2026409-006
				Result	Result	Result	Result	Result
EG020F: Dissolved Metals by ICP-MS								
Arsenic	7440-38-2	0.001	mg/L	<0.001	9000	<0.001	0.005	<0.001
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Chromium	7440-47-3	0.001	mg/L	<0.001	0.002	<0.001	0.002	<0.001
Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Zinc	7440-66-6	0.005	mg/L	0.011	<0.005	<0.005	0.005	<0.005
EG035F: Dissolved Mercury by FIMS								
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
EP074A: Monocyclic Aromatic Hydrocarbons								
Styrene	100-42-5	2	hg/L	<5	<5	<5		
Isopropylbenzene	98-85-8	2	hg/L	<5	<5	<5		
n-Propylbenzene	103-65-1	2	hg/L	<5	<5	<5		
1.3.5-Trimethylbenzene	108-67-8	2	hg/L	<5	<5	<5		
sec-Butylbenzene	135-98-8	2	hg/L	<5	<5	<5		
1.2.4-Trimethylbenzene	92-63-6	2	hg/L	<5	<5	<5		
tert-Butylbenzene	9-90-86	2	hg/L	<5	<5	<5		
p-IsopropyItoluene	9-84-66	2	hg/L	<5	<5	<5		
n-Butylbenzene	104-51-8	2	hg/L	<5	<5	<5		
EP074B: Oxygenated Compounds								
Vinyl Acetate	108-05-4	20	hg/L	<50	<50	<50		
2-Butanone (MEK)	78-93-3	20	hg/L	<50	<50	<50		
4-Methyl-2-pentanone (MIBK)	108-10-1	20	hg/L	<50	<50	<50		
2-Hexanone (MBK)	591-78-6	20	hg/L	<50	<50	<50		
EP074C: Sulfonated Compounds								
Carbon disulfide	75-15-0	2	hg/L	<5	<5	<5		
EP074D: Fumigants								
2.2-Dichloropropane	594-20-7	2	hg/L	<5	<5	<5		
1.2-Dichloropropane	78-87-5	2	hg/L	<5	<5	<5		
cis-1.3-Dichloropropylene	10061-01-5	2	hg/L	<5	<5	<5		
trans-1.3-Dichloropropylene	10061-02-6	2	hg/L	<5	<5	<5		
1.2-Dibromoethane (EDB)	106-93-4	2	hg/L	<5	<5	<5		
EP074E: Halogenated Aliphatic Compounds	spu							
Dichlorodifluoromethane	75-71-8	20	hg/L	<50	<50	<50	1	

: 7 of 17 : ES2026409 : EMM CONSULTING PTY LTD : Matraville

Project

Page Work Order

Client

Sub-Matrix: WATER (Matrix: WATER)		Clier	Client sample ID	MW01_200730	MW02_200730	MW03_200730	QC103_200730	QC304_200730
	Clie	ent sampling	Client sampling date / time	30-Jul-2020 00:00	30-Jul-2020 00:00	30-Jul-2020 00:00	30-Jul-2020 00:00	30-Jul-2020 00:00
Compound	CAS Number	LOR	Unit	ES2026409-001	ES2026409-002	ES2026409-003	ES2026409-004	ES2026409-006
				Result	Result	Result	Result	Result
EP074E: Halogenated Aliphatic Compounds - Continued	- Continued							
Chloromethane	74-87-3	20	hg/L	<50	<50	<50	-	1
Vinyl chloride	75-01-4	20	hg/L	<50	<50	<50		
Bromomethane	74-83-9	20	hg/L	<50	<50	<50	-	
Chloroethane	75-00-3	20	hg/L	<50	<50	<50	-	
Trichlorofluoromethane	75-69-4	20	hg/L	<50	<50	<50		:
1.1-Dichloroethene	75-35-4	2	hg/L	\$	₹2	<5		
lodomethane	74-88-4	2	hg/L	<5	<5	<5		
trans-1.2-Dichloroethene	156-60-5	2	hg/L	\ 5	<5	<5		
1.1-Dichloroethane	75-34-3	2	hg/L	\ 5	<5	<5		i
cis-1.2-Dichloroethene	156-59-2	2	hg/L	\$	7	<5		
1.1.1-Trichloroethane	71-55-6	2	hg/L	<5	<5	<5	-	
1.1-Dichloropropylene	563-58-6	52	hg/L	<5	<5	<5		
Carbon Tetrachloride	56-23-5	2	hg/L	\$	<5 <5	<5		
1.2-Dichloroethane	107-06-2	2	hg/L	\	<5	<5		
Trichloroethene	79-01-6	2	hg/L	\ 5	<5	<5		i
Dibromomethane	74-95-3	2	hg/L	<5	<5	<5	-	-
1.1.2-Trichloroethane	2-00-62	2	hg/L	<5	<5	<5		
1.3-Dichloropropane	142-28-9	2	hg/L	<5	<5	<5		1
Tetrachloroethene	127-18-4	2	hg/L	<5	<5	<5		
1.1.1.2-Tetrachloroethane	630-20-6	2	hg/L	\	<5	<5		
trans-1.4-Dichloro-2-butene	110-57-6	2	hg/L	\ 5	<5	<5		i
cis-1.4-Dichloro-2-butene	1476-11-5	2	hg/L	<5	<5	<5		
1.1.2.2-Tetrachloroethane	79-34-5	2	hg/L	<5	<5	<5		-
1.2.3-Trichloropropane	96-18-4	2	hg/L	<5	<5	<5		1
Pentachloroethane	76-01-7	2	hg/L	<5	<5	<5		
1.2-Dibromo-3-chloropropane	96-12-8	5	hg/L	\$	~	<5	:	:
EP074F: Halogenated Aromatic Compounds								
Chlorobenzene	108-90-7	2	hg/L	<5	<5	<5		i
Bromobenzene	108-86-1	2	hg/L	<5	<5	<5		
2-Chlorotoluene	95-49-8	2	hg/L	<5	<5	<5	-	
4-Chlorotoluene	106-43-4	2	hg/L	<5	<5	<5	-	
1.2.3-Trichlorobenzene	87-61-6	C)	hg/L	<5	<5	<5		1
EP074G: Trihalomethanes								
Chloroform	67-66-3	2	hg/L	<5	<5	<5		

: 8 of 17 : ES2026409 : EMM CONSULTING PTY LTD : Matraville

Page Work Order Client Project

Sub-Matrix: WATER		Clie	Client sample ID	MW01 200730	MW02 200730	MW03 200730	QC103 200730	QC304 200730
(Matrix: WATER)				-	1	-		-
	Clie	nt samplir	Client sampling date / time	30-Jul-2020 00:00	30-Jul-2020 00:00	30-Jul-2020 00:00	30-Jul-2020 00:00	30-Jul-2020 00:00
Compound	CAS Number	LOR	Unit	ES2026409-001	ES2026409-002	ES2026409-003	ES2026409-004	ES2026409-006
				Result	Result	Result	Result	Result
EP074G: Trihalomethanes - Continued								
Bromodichloromethane	75-27-4	2	hg/L	<5	<5	<5		
Dibromochloromethane	124-48-1	2	hg/L	<5	<5	<5		
Bromoform	75-25-2	2	hg/L	<5	<5	<5		
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons	rocarbons							
Naphthalene	91-20-3	1.0	hg/L	<1.0	<1.0	<1.0		
Acenaphthylene	208-96-8	1.0	µg/L	<1.0	<1.0	<1.0	-	
Acenaphthene	83-32-9	1.0	µg/L	<1.0	<1.0	<1.0	-	-
Fluorene	86-73-7	1.0	hg/L	<1.0	<1.0	<1.0	-	
Phenanthrene	82-01-8	1.0	µg/L	<1.0	<1.0	<1.0	-	
Anthracene	120-12-7	1.0	µg/L	<1.0	<1.0	<1.0		-
Fluoranthene	206-44-0	1.0	hg/L	<1.0	<1.0	<1.0		
Pyrene	129-00-0	1.0	hg/L	<1.0	<1.0	<1.0		
Benz(a)anthracene	56-55-3	1.0	hg/L	<1.0	<1.0	<1.0	1	-
Chrysene	218-01-9	1.0	hg/L	<1.0	<1.0	<1.0		
Benzo(b+j)fluoranthene 20	205-99-2 205-82-3	1.0	hg/L	<1.0	<1.0	<1.0		
Benzo(k)fluoranthene	207-08-9	1.0	hg/L	<1.0	<1.0	<1.0	-	
Benzo(a)pyrene	50-32-8	0.5	hg/L	<0.5	<0.5	<0.5		
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	hg/L	<1.0	<1.0	<1.0		
Dibenz(a.h)anthracene	53-70-3	1.0	hg/L	<1.0	<1.0	<1.0		
Benzo(g.h.i)perylene	191-24-2	1.0	hg/L	<1.0	<1.0	<1.0		
^ Sum of polycyclic aromatic hydrocarbons		0.5	hg/L	<0.5	<0.5	<0.5	-	
A Benzo(a)pyrene TEQ (zero)		0.5	hg/L	<0.5	<0.5	<0.5	-	
EP075A: Phenolic Compounds								
Phenol	108-95-2	2	hg/L	<2	<2	<2		
2-Chlorophenol	8-22-96	2	hg/L	<2	<2	<2		
2-Methylphenol	95-48-7	2	hg/L	<2	<2	<2	-	
3- & 4-Methylphenol	1319-77-3	4	hg/L	<4	4>	4 >	-	-
2-Nitrophenol	88-75-5	2	hg/L	<2	<2	<2		
2.4-Dimethylphenol	105-67-9	2	hg/L	<2	<2	<2		
2.4-Dichlorophenol	120-83-2	2	hg/L	<2	<2	<2		
2.6-Dichlorophenol	87-65-0	2	hg/L	<2	<2	<2		
4-Chloro-3-methylphenol	29-20-2	2	hg/L	<2	<2	<2		
2.4.6-Trichlorophenol	88-06-2	7	hg/L	<2	<2	<2	1	-
2.4.5-Trichlorophenol	95-95-4	2	hg/L	<2	<2	<2	-	-

Project Client

: 9 of 17 : ES2026409 : EMM CONSULTING PTY LTD : Matraville

Sub-Matrix: WATER (Matrix: WATER)		Cji	Client sample ID	MW01_200730	MW02_200730	MW03_200730	QC103_200730	QC304_200730
	Clie	ent sampli.	Client sampling date / time	30-Jul-2020 00:00	30-Jul-2020 00:00	30-Jul-2020 00:00	30-Jul-2020 00:00	30-Jul-2020 00:00
Compound	CAS Number	LOR	Unit	ES2026409-001	ES2026409-002	ES2026409-003	ES2026409-004	ES2026409-006
			_	Result	Result	Result	Result	Result
EP075A: Phenolic Compounds - Continued	pen							
Pentachlorophenol	87-86-5	4	hg/L	45	4>	<4	-	
EP075B: Polynuclear Aromatic Hydrocarbons	arbons							
2-Methylnaphthalene	91-57-6	2	hg/L	<2	<2	<2	1	
2-Chloronaphthalene	91-58-7	2	hg/L	<2	~	₹	i	
N-2-Fluorenyl Acetamide	53-96-3	2	hg/L	<2	42	₽	-	
7.12-Dimethylbenz(a)anthracene	9-26-29	2	hg/L	<2	~	\$	-	
3-Methylcholanthrene	56-49-5	2	hg/L	4	~	₹	-	
EP075C: Phthalate Esters								
Dimethyl phthalate	131-11-3	2	hg/L	<2	<2	\$		
Diethyl phthalate	84-66-2	2	hg/L	<2	<2	\$	-	
Di-n-butyl phthalate	84-74-2	2	hg/L	<2	<2	<2		
Butyl benzyl phthalate	85-68-7	2	hg/L	<2	<2	<2	1	
bis(2-ethylhexyl) phthalate	117-81-7	10	hg/L	<10	<10	<10	i	
Di-n-octylphthalate	117-84-0	2	hg/L	<2	<2	~ 5	i	
EP075D: Nitrosamines								
N-Nitrosomethylethylamine	10595-95-6	2	hg/L	<2	<2	<2	-	
N-Nitrosodiethylamine	55-18-5	2	hg/L	<2	<2	<2		
N-Nitrosopyrrolidine	930-55-2	4	hg/L	4>	4>	4>	-	
N-Nitrosomorpholine	59-89-2	2	hg/L	<2	<2	<2		
N-Nitrosodi-n-propylamine	621-64-7	2	hg/L	<2	<2	~ 5	i	
N-Nitrosopiperidine	100-75-4	2	hg/L	<2	<2	<2		
N-Nitrosodibutylamine	924-16-3	2	hg/L	<2	<2	<2		
N-Nitrosodiphenyl & Diphenylamine	86-30-6 122-39-4	4	hg/L	4 4	13	4>		
Methapyrilene	91-80-5	2	hg/L	<2	<2	<2		
EP075E: Nitroaromatics and Ketones								
2-Picoline	109-06-8	2	hg/L	<2	<2	<2		
Acetophenone	98-86-2	2	hg/L	<2	<2	<2		
Nitrobenzene	8-92-3	2	hg/L	<2	<2	<2		
Isophorone	78-59-1	2	hg/L	<2	<2	<2		
2.6-Dinitrotoluene	606-20-2	4	hg/L	< 4	4>	4>		
2.4-Dinitrotoluene	121-14-2	4	hg/L	4>	4>	4>		
1-Naphthylamine	134-32-7	2	hg/L	<2	<2	<2		
4-Nitroquinoline-N-oxide	29-22-2	2	hg/L	<2	<2	<2	-	

Client : EN Project : Ma

Page Work Order

: 10 of 17 : ES2026409 : EMM CONSULTING PTY LTD : Matraville

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)		Clie	Client sample ID	MW01_200730	MW02_200730	MW03_200730	QC103_200730	QC304_200730
	Clie	ent samplin	Client sampling date / time	30-Jul-2020 00:00	30-Jul-2020 00:00	30-Jul-2020 00:00	30-Jul-2020 00:00	30-Jul-2020 00:00
Compound	CAS Number	LOR	Unit	ES2026409-001	ES2026409-002	ES2026409-003	ES2026409-004	ES2026409-006
				Result	Result	Result	Result	Result
EP075E: Nitroaromatics and Ketones - Continued	ontinued							
5-Nitro-o-toluidine	8-22-8	2	hg/L	<2	<2	<2		
Azobenzene	103-33-3	2	hg/L	<2	~	~		1
1.3.5-Trinitrobenzene	99-35-4	2	hg/L	<2	<2	<2		1
Phenacetin	62-44-2	2	hg/L	<2	<2	<2		
4-Aminobiphenyl	92-67-1	2	hg/L	<2	~	~		1
Pentachloronitrobenzene	82-68-8	2	hg/L	<2	<2	<2		
Pronamide	23950-58-5	2	hg/L	<2	<2	<2		
Dimethylaminoazobenzene	60-11-7	2	hg/L	<2	<2	<2		
Chlorobenzilate	510-15-6	2	hg/L	<2	\$	\$		1
EP075F: Haloethers								
Bis(2-chloroethyl) ether	111-44-4	2	hg/L	<2	<2	<2		
Bis(2-chloroethoxy) methane	111-91-1	2	hg/L	<2	<2	<2		
4-Chlorophenyl phenyl ether	7005-72-3	2	hg/L	<2	<2	<2		
4-Bromophenyl phenyl ether	101-55-3	2	hg/L	<2	<2	<2		
EP075G: Chlorinated Hydrocarbons								
1.3-Dichlorobenzene	541-73-1	2	hg/L	<2	<2	<2		
1.4-Dichlorobenzene	106-46-7	2	hg/L	<2	<2	<2		
1.2-Dichlorobenzene	95-50-1	2	hg/L	<2	<2	<2		
Hexachloroethane	67-72-1	2	hg/L	<2	<2	<2		
1.2.4-Trichlorobenzene	120-82-1	2	hg/L	<2	<2	<2		
Hexachloropropylene	1888-71-7	2	hg/L	<2	<2	<2		
Hexachlorobutadiene	87-68-3	2	hg/L	<2	<2	<2		
Hexachlorocyclopentadiene	77-47-4	10	hg/L	<10	<10	<10		
Pentachlorobenzene	608-93-5	2	hg/L	<2	<2	<2		
Hexachlorobenzene (HCB)	118-74-1	4	hg/L	4 7	4>	4>		
EP075H: Anilines and Benzidines								
Aniline	62-53-3	2	hg/L	<2	<2	<2		
4-Chloroaniline	106-47-8	2	hg/L	<2	<2	<2		
2-Nitroaniline	88-74-4	4	hg/L	<4	4>	4>		
3-Nitroaniline	2-60-66	4	hg/L	44	4>	4>		
Dibenzofuran	132-64-9	2	hg/L	<2	<2	<2		
4-Nitroaniline	100-01-6	2	hg/L	<2	<2	<2		
Carbazole	86-74-8	2	hg/L	<2	<2	<2		
3.3'-Dichlorobenzidine	91-94-1	2	hg/L	<2	<2	\$		

Project Client

: 11 of 17 : ES2026409 : EMM CONSULTING PTY LTD : Matraville Page Work Order

סמט-ואומנוועי ארט ו בוי		;	Cheft sample in		WWW.Z_2007.30	00,7007_004141	GC 1002 500 50	-
(Matrix: WATER)								
	Clie	ınt samplir	Client sampling date / time	30-Jul-2020 00:00	30-Jul-2020 00:00	30-Jul-2020 00:00	30-Jul-2020 00:00	30-Jul-2020 00:00
Compound	CAS Number	LOR	Unit	ES2026409-001	ES2026409-002	ES2026409-003	ES2026409-004	ES2026409-006
				Result	Result	Result	Result	Result
EP0751: Organochlorine Pesticides	ides							
alpha-BHC	319-84-6	2	hg/L	<2	<2	<2		-
beta-BHC	319-85-7	7	µg/L	<2	<2	<2		1
gamma-BHC	28-89-9	2	hg/L	<2	7	<2		1
delta-BHC	319-86-8	2	hg/L	<2	7	<2		1
Heptachlor	76-44-8	2	hg/L	<2	7	<2		1
Aldrin	309-00-2	2	hg/L	<2	7	<2		
Heptachlor epoxide	1024-57-3	2	hg/L	<2	7	<2		-
alpha-Endosulfan	8-86-626	2	hg/L	<2	7	<2		1
4.4`-DDE	72-55-9	2	hg/L	<2	7	<2		1
Dieldrin	60-57-1	2	hg/L	<2	~	<2		1
Endrin	72-20-8	2	hg/L	<2	~	<2		i
beta-Endosulfan	33213-65-9	7	hg/L	<2	<2	<2		!
4.4`-DDD	72-54-8	7	hg/L	<2	<2	<2		
Endosulfan sulfate	1031-07-8	2	hg/L	<2	<2	<2		-
4.4`-DDT	50-29-3	4	hg/L	<4	4>	<4		-
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	4	µg/L	4>	4>	4>		1
^ Sum of DDD + DDE + DDT	72-54-8/72-55-9/5 0-2	4	hg/L	^	4>	4>		1
EP075J: Organophosphorus Pesticides	esticides							
Dichlorvos	62-73-7	2	hg/L	<2	<2	<2		-
Dimethoate	60-51-5	2	hg/L	<2	<2	<2		-
Diazinon	333-41-5	7	hg/L	<2	<2	<2		!
Chlorpyrifos-methyl	5598-13-0	7	hg/L	~	<2	<2		1
Malathion	121-75-5	2	hg/L	<2	~	<2		1
Fenthion	55-38-9	7	hg/L	<2	<2	<2		1
Chlorpyrifos	2921-88-2	7	hg/L	<2	<2	<2		1
Pirimphos-ethyl	23505-41-1	2	hg/L	<2	<2	<2		!
Chlorfenvinphos	470-90-6	7	hg/L	<2	<2	<2		!
Prothiofos	34643-46-4	7	hg/L	~	<2	<2	***	1
Ethion	563-12-2	2	hg/L	<2	<2	<2		
EP080/071: Total Petroleum Hydrocarbons	drocarbons							
C6 - C9 Fraction	-	20	hg/L	<20	20	<20	40	<20
C10 - C14 Fraction	1	20	hg/L	<50	<50	<50	<50	<50
C15 - C28 Fraction		100	µg/L	<100	<100	<100	<100	<100
, , ,		220	/ui	\R\ \R\	750	750	Ç	Ç.

EMM CONSULTING PTY LTD

Matraville

12 of 17 ES2026409

> Work Order Client

QC304_200730 30-Jul-2020 00:00 ES2026409-006 ×100 100 ×100 ×100 <50 8 8 1 1 | 1 7 Ÿ ů ۲<u>۷</u> 7 ₹ \$ l 1 ŀ l 30-Jul-2020 00:00 QC103_200730 ES2026409-004 <100 ×100 ~100 <50 49 8 7 7 Ÿ 7 က 5 I | 111 I 30-Jul-2020 00:00 MW03_200730 ES2026409-003 < 100 <100 < 100 <100 68.4 55.5 87.8 91.0 51.4 110 30.3 82.8 98.7 ²20 8 8 $\frac{6}{2}$ 7 ۲, ₹ 3 30-Jul-2020 00:00 MW02_200730 ES2026409-002 < 100 <100 < 100 < 100 25.2 55.6 54.4 79.8 113 14 76.3 82.6 <50 104 38.4 **8** 8 0 0 0 0 m \$ 30-Jul-2020 00:00 MW01_200730 ES2026409-001 Result <100 <100 <100 <100 99.1 93.3 28.4 61.8 70.8 7.76 97.9 40.6 ²20 420 420 7.67 7 ç 7 Ÿ 7 7 ž \$ Client sample ID Client sampling date / time Unit hg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L % % % % % % % % % % EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions **LOR** 100 100 9 6 0. 0. 0. 1.0 0. 0. 20 8 8 2 N N 2 N 2 2 2 7 C6_C10 91-20-3 118-79-6 460-00-4 321-60-8 1718-51-0 2037-26-5 13127-88-3 93951-73-6 1719-06-8 367-12-4 C6_C10-BTEX 71-43-2 108-88-3 100-41-4 108-38-3 106-42-3 95-47-6 17060-07-0 CAS Number EP080/071: Total Petroleum Hydrocarbons - Continued EP075(SIM)S: Phenolic Compound Surrogates ^ >C10 - C16 Fraction minus Naphthalene EP075S: Acid Extractable Surrogates EP075(SIM)T: PAH Surrogates C6 - C10 Fraction minus BTEX EP074S: VOC Surrogates ^ >C10 - C40 Fraction (sum) ^ C10 - C36 Fraction (sum 4-Bromofluorobenzene 1.2-Dichloroethane-D4 2.4.6-Tribromophenol >C34 - C40 Fraction meta- & para-Xylene >C10 - C16 Fraction >C16 - C34 Fraction 2-Chlorophenol-D4 C6 - C10 Fraction 2-Fluorobiphenyl Sub-Matrix: WATER (Matrix: WATER) 4-Terphenyl-d14 Anthracene-d10 2-Fluorophenol **EP080: BTEXN** Ethylbenzene ^ Total Xylenes A Sum of BTEX ortho-Xylene Naphthalene Toluene-D8 Phenol-d6 Compound Benzene Toluene

EMM CONSULTING PTY LTD

Matraville

Project Client

: 13 of 17 : ES2026409

Page Work Order

QC304_200730 30-Jul-2020 00:00 ES2026409-006 119 103 98.1 ł 30-Jul-2020 00:00 QC103_200730 ES2026409-004 Result ł 1 I 30-Jul-2020 00:00 MW03_200730 ES2026409-003 Result 9.78 30.8 71.0 48.5 86.2 74.9 91.2 98.2 108 101 30-Jul-2020 00:00 MW02_200730 ES2026409-002 Result 58.3 48.5 59.9 70.4 81.0 136 122 115 94.2 30-Jul-2020 00:00 MW01_200730 ES2026409-001 Result 65.3 67.1 72.8 62.4 74.7 103 115 115 Client sample ID Client sampling date / time Unit % % % % % % % % % LOR 0 7 0 0 7 1718-51-0 17060-07-0 13127-88-3 93951-73-6 118-79-6 1719-06-8 4165-60-0 321-60-8 CAS Number 2199-69-1 EP075S: Acid Extractable Surrogates - Continued EP075T: Base/Neutral Extractable Surrogates EP080S: TPH(V)/BTEX Surrogates 1.2-Dichlorobenzene-D4 1.2-Dichloroethane-D4 2.4.6-Tribromophenol 2-Chlorophenol-D4 2-Fluorobiphenyl Sub-Matrix: WATER (Matrix: WATER) Nitrobenzene-D5 4-Terphenyl-d14 Anthracene-d10 Phenol-d6 Compound

120 109

97.2

% %

0

2037-26-5 460-00-4

α

4-Bromofluorobenzene

Toluene-D8

1.46

EMM CONSULTING PTY LTD

Matraville

Project Client

ES2026409

Work Order

30-Jul-2020 00:00 ES2026409-012 HT_200730 11100 34100 25800 36900 28700 62800 ۲-0.1 ۲.0 د ۲.0 د <0.5 <570 <570 ۸ 1.0 ۸ 1.0 ۲-0.1 <0.5 ۸ 1.0 ۸ 1.0 <0.5 <20 <20 ^20 ç 30-Jul-2020 00:00 ES2026409-011 T4_200730 Result ۸ 1.0 ۸ 1.0 ۸ 1.0 ۲.0 د ۲-0.1 ۲.0 د <1.0 <0.5 ۸ 1.0 ۲.0 د <0.5 1420 2400 1460 2620 <0.5 20 480 370 ₹ 80 790 8 30-Jul-2020 00:00 ES2026409-010 T3_200730 Result ۸ 1.0 ۸ 1.0 ۸ 1.0 ۸ 0. ۸ 0. ۸ 0. ۸ 1.0 ۸ 1.0 <0.5 ۸ 1.0 ۸ 0. ۸ 0. <0.5 <0.5 2660 2570 5300 4760 5740 820 ²20 2 [<]20 160 Ÿ 20 30-Jul-2020 00:00 ES2026409-008 TS04_200730 $| \cdot | \cdot | \cdot |$ 30-Jul-2020 00:00 ES2026409-007 TB04_200730 Result [<]20 İ l İ İ i i i i 2 i İ ²20 l l Client sample ID Client sampling date / time Unit hg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L µg/L hg/L hg/L hg/L hg/L hg/L hg/L EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions LOR 0.5 100 100 0. 0. 0.5 0. 0.1 100 0. 0. 0. 0. 0. 0. 0. 0. 1.0 1.0 20 20 20 20 20 20 206-44-0 83-32-9 86-73-7 205-99-2 205-82-3 207-08-9 191-24-2 | C6_C10 CAS Number 91-20-3 208-96-8 85-01-8 120-12-7 129-00-0 56-55-3 218-01-9 50-32-8 193-39-5 53-70-3 -C6_C10-BTEX EP075(SIM)B: Polynuclear Aromatic Hydrocarbons EP080/071: Total Petroleum Hydrocarbons EP066: Polychlorinated Biphenyls (PCB) Sum of polycyclic aromatic hydrocarbons ^ Total Polychlorinated biphenyls C6 - C10 Fraction minus BTEX A Benzo(a)pyrene TEQ (zero) ^ >C10 - C40 Fraction (sum) C10 - C36 Fraction (sum) Benzo(b+j)fluoranthene Indeno(1.2.3.cd)pyrene Dibenz(a.h)anthracene Benzo(k)fluoranthene Benzo(g.h.i)perylene >C16 - C34 Fraction >C34 - C40 Fraction >C10 - C16 Fraction Benz(a)anthracene C15 - C28 Fraction C29 - C36 Fraction C10 - C14 Fraction C6 - C10 Fraction Sub-Matrix: WATER (Matrix: WATER) C6 - C9 Fraction Benzo(a)pyrene Acenaphthylene Acenaphthene Phenanthrene Fluoranthene Naphthalene Anthracene Chrysene Fluorene Compound Pyrene

-

EMM CONSULTING PTY LTD

Matraville

15 of 17 ES2026409

> Work Order Client

30-Jul-2020 00:00 ES2026409-012 HT_200730 42.0 36.0 63.0 <570 21.1 58.9 109 0 0 0 0 0 117 105 ₹ 5 30-Jul-2020 00:00 ES2026409-011 T4_200730 Result 41.5 19.4 68.0 72.2 117 106 52.1 56.6 790 7 ů Ÿ ç ۲, _ 3 137 30-Jul-2020 00:00 ES2026409-010 T3_200730 Result 47.2 75.8 69.5 22.4 70.8 78.3 Ξ 103 8 123 0 0 0 0 0 ₹ 5 30-Jul-2020 00:00 ES2026409-008 TS04_200730 Result 9 | 9 1 8 2 4 30-Jul-2020 00:00 ES2026409-007 TB04_200730 Result İ γ γ ů 5 İ l l i l 125 105 5 7 7 ž EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions - Continued Client sample ID Client sampling date / time Unit hg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L % % % % % % % % % % LOR 100 0. 1.0 0. 0. 0. 0. 2 N N N 0 N 2 N 7 91-20-3 2051-24-3 71-43-2 13127-88-3 118-79-6 1718-51-0 17060-07-0 2037-26-5 460-00-4 100-41-4 1719-06-8 CAS Number 108-88-3 108-38-3 106-42-3 95-47-6 -93951-73-6 321-60-8 EP075(SIM)S: Phenolic Compound Surrogates ^ >C10 - C16 Fraction minus Naphthalene EP080S: TPH(V)/BTEX Surrogates EP075(SIM)T: PAH Surrogates **EP066S: PCB Surrogate** 4-Bromofluorobenzene 1.2-Dichloroethane-D4 2.4.6-Tribromophenol meta- & para-Xylene Decachlorobiphenyl 2-Chlorophenol-D4 2-Fluorobiphenyl Sub-Matrix: WATER (Matrix: WATER) 4-Terphenyl-d14 Anthracene-d10 **EP080: BTEXN** Ethylbenzene ^ Total Xylenes A Sum of BTEX ortho-Xylene Naphthalene Toluene-D8 Phenol-d6 Compound Benzene Toluene

: 16 of 17 : ES2026409 : EMM CONSULTING PTY LTD : Matraville Page Work Order Project Client

Surrogate Control Limits

Sub-Matrix: PRODUCT		Recovery	Recovery Limits (%)
Compound	CAS Number	Low	High
EP066S: PCB Surrogate			
Decachlorobiphenyl	2051-24-3	39	149
EP075(SIM)S: Phenolic Compound Surrogates			
Phenol-d6	13127-88-3	63	123
2-Chlorophenol-D4	93951-73-6	99	122
2.4.6-Tribromophenol	118-79-6	40	138
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	70	122
Anthracene-d10	1719-06-8	99	128
4-Terphenyl-d14	1718-51-0	65	129
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	73	133
Toluene-D8	2037-26-5	74	132
4-Bromofluorobenzene	460-00-4	72	130
Sub-Matrix: WATER		Recovery	Recovery Limits (%)
Compound	CAS Number	Low	High
EP066S: PCB Surrogate			
Decachlorobiphenyl	2051-24-3	45	134
EP074S: VOC Surrogates			
1.2-Dichloroethane-D4	17060-07-0	78	133
Toluene-D8	2037-26-5	62	129
4-Bromofluorobenzene	460-00-4	81	124
EP075(SIM)S: Phenolic Compound Surrogates			
Phenol-d6	13127-88-3	10	44
2-Chlorophenol-D4	93951-73-6	14	94
2.4.6-Tribromophenol	118-79-6	17	125
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	20	104
677	0 00	1	7

113 112

32 23

321-60-8 1719-06-8

1718-51-0

367-12-4 13127-88-3 93951-73-6

EP075S: Acid Extractable Surrogates

2-Fluorophenol

Phenol-d6

4-Terphenyl-d14 Anthracene-d10

117 69 130 151

10 10 10 10 10

118-79-6

142

22 23

4165-60-0

EP075T: Base/Neutral Extractable Surrogates Nitrobenzene-D5

2.4.6-Tribromophenol 2-Chlorophenol-D4

1.2-Dichlorobenzene-D4

2199-69-1

: 17 of 17 : ES2026409 : EMM CONSULTING PTY LTD : Matraville Page Work Order

Client Project

Sub-Matrix: WATER		Recovery Limits (%)	imits (%)
Compound	CAS Number	Low	High
EP075T: Base/Neutral Extractable Surrogates - Continued	Continued		
2-Fluorobiphenyl	321-60-8	27	135
Anthracene-d10	1719-06-8	27	113
4-Terphenyl-d14	1718-51-0	21	123
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	7.1	137
Toluene-D8	2037-26-5	79	131
4-Bromofluorobenzene	460-00-4	70	128

QA/QC Compliance Assessment to assist with Quality Review

Work Order	: ES2026409	Page	:1 of 10
Client	EMM CONSULTING PTY LTD	Laboratory	: Environmental Division Sydney
Contact	SUSAN DILLON	Telephone	: +61-2-8784 8555
Project	: Matraville	Date Samples Received	: 30-Jul-2020
Site		Issue Date	: 06-Aug-2020
Sampler	: Lachlan Lewis	No. of samples received	
Order number	: J200432	No. of samples analysed	

reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Matrix Spike outliers occur.
- Laboratory Control outliers exist please see following pages for full details.
- Surrogate recovery outliers exist for all regular sample matrices please see following pages for full details.

Outliers: Analysis Holding Time Compliance

NO Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

: 2 of 10 : ES2026409 : EMM CONSULTING PTY LTD Matraville Work Order Project Client

Outliers: Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name	Laboratory Sample ID Client Sample ID		Analyte	CAS Number	Data	CAS Number Data Limits Comment	Comment
Laboratory Control Spike (LCS) Recoveries							
EP075A: Phenolic Compounds	QC-3173546-002		2.4-Dimethylphenol	105-67-9 25.8 %	25.8 %	50.0-94.0%	50.0-94.0% Recovery less than lower control limit
EP075D: Nitrosamines	QC-3173546-002	-	N-Nitrosodiethylamine	55-18-5	26.0 %	60.6-113%	60.6-113% Recovery less than lower control limit
EP075D: Nitrosamines	QC-3173546-002	1	Methapyrilene	91-80-5 21.8 %	21.8 %	23.3-125%	23.3-125% Recovery less than lower control limit
EP075E: Nitroaromatics and Ketones	QC-3173546-002	1	Nitrobenzene	98-95-3 64.1 %	64.1 %	68.3-112%	68.3-112% Recovery less than lower control limit
EP075F: Haloethers	QC-3173546-002	-	Bis(2-chloroethyl) ether	111-44-4	25.7 %	69.1-112%	69.1-112% Recovery less than lower control limit
EP075H: Anilines and Benzidines	QC-3173546-002		Aniline	62-53-3 45.7 %	45.7 %	50.0-104%	50.0-104% Recovery less than lower control limit

Regular Sample Surrogates

Sub-Matrix: PRODUCT

		66.0-122 Recovery less than lower data quality % objective
Limits Comment		Recovery objective
Limits		66.0-122 %
Data		64.4 %
CAS Number Data		93951-73-6
Analyte		2-Chlorophenol-D4
aboratory Sample ID Client Sample ID		S2026409-009 T1_200730
Compound Group Name Lab	Samples Submitted	EP075(SIM)S: Phenolic Compound Surrogates ES:

Outliers: Frequency of Quality Control Samples

Matrix: SOIL

Quality Control Sample Type	Count	ınt	Rate (%)	(%)	Quality Control Specification
Method	ОС	Regular	Actual	Expected	
Matrix Spikes (MS)					
PAH/Phenols (SIM)	0	_	0.00	5.00	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	0	-	0.00	5.00	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	0	1	0.00	2.00	NEPM 2013 B3 & ALS QC Standard
Matrix: WATER					
Quality Control Sample Type	Count	ınt	Rate (%)	(%)	Quality Control Specification
Method	ac	Regular	Actual	Expected	
Laboratory Duplicates (DUP)					
PAH/Phenols (GC/MS - SIM)	0	9	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	0	က	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
Semivolatile Organic Compounds	0	က	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	0	8	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)					
PAH/Phenols (GC/MS - SIM)	0	9	0.00	2.00	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	0	က	0.00	5.00	NEPM 2013 B3 & ALS QC Standard
Semivolatile Organic Compounds	0	က	0.00	5.00	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	0	8	0.00	5.00	NEPM 2013 B3 & ALS QC Standard

EMM CONSULTING PTY LTD ES2026409 Matraville Work Order Project Client

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters. Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported.

Holding times for <u>Voc. in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and

should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL				Evaluation	x = Holding time	Evaluation: * = Holding time breach; < = Within holding time	holding time.
Method	Sample Date	Ext	Extraction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG005(ED093)T: Total Metals by ICP-AES							
Amber Glass Bottle - Unpreserved (EG005T) T1_200730	30-Jul-2020	04-Aug-2020	26-Jan-2021	>	05-Aug-2020	26-Jan-2021	>
EG035T: Total Recoverable Mercury by FIMS							
Amber Glass Bottle - Unpreserved (EG035T) T1_200730	30-Jul-2020	04-Aug-2020	27-Aug-2020	>	05-Aug-2020	27-Aug-2020	>
EP066: Polychlorinated Biphenyls (PCB)							
Amber Glass Bottle - Unpreserved (EP066) T1_200730	30-Jul-2020	05-Aug-2020	13-Aug-2020	>	05-Aug-2020	14-Sep-2020	>
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons							
Amber Glass Bottle - Unpreserved (EP075(SIM)) T1_200730	30-Jul-2020	05-Aug-2020	13-Aug-2020	>	05-Aug-2020	14-Sep-2020	>
EP080/071: Total Petroleum Hydrocarbons							
Amber Glass Bottle - Unpreserved (EP080)	30-Jul-2020	04-Aug-2020	13-Aug-2020	>	04-Aug-2020	13-Aug-2020	>
Amber Glass Bottle - Unpreserved (EP071) T1_200730	30-Jul-2020	05-Aug-2020	13-Aug-2020	>	05-Aug-2020	14-Sep-2020	>
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions							
Amber Glass Bottle - Unpreserved (EP080) T1_200730	30-Jul-2020	04-Aug-2020	13-Aug-2020	>	04-Aug-2020	13-Aug-2020	>
Amber Glass Bottle - Unpreserved (EP071) T1_200730	30-Jul-2020	05-Aug-2020	13-Aug-2020	>	05-Aug-2020	14-Sep-2020	>
EP080: BTEXN							
Amber Glass Bottle - Unpreserved (EP080) T1_200730	30-Jul-2020	04-Aug-2020	13-Aug-2020	>	04-Aug-2020	13-Aug-2020	>
Matrix: WATER				Evaluation	= Holding time	Evaluation: \times = Holding time breach; \checkmark = Within holding time.	holding time.
Method	Sample Date	Ext	Extraction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG020F: Dissolved Metals by ICP-MS							
Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F) MW02_200730, MW03_200730, QC304_200730	30-Jul-2020	l		l	03-Aug-2020	26-Jan-2021	>

EMM CONSULTING PTY LTD

Matraville

Client Project

ES2026409

Work Order

4 of 10

Evaluation: * = Holding time breach; </ = Within holding time Evaluation > > > > > > > > > > Due for analysis 12-Sep-2020 13-Aug-2020 27-Aug-2020 13-Aug-2020 13-Aug-2020 13-Aug-2020 13-Aug-2020 13-Aug-2020 13-Aug-2020 12-Sep-2020 03-Aug-2020 04-Aug-2020 Date analysed 03-Aug-2020 04-Aug-2020 03-Aug-2020 03-Aug-2020 03-Aug-2020 03-Aug-2020 03-Aug-2020 03-Aug-2020 Evaluation -> > > > > > > > > Date extracted Due for extraction Extraction / Preparation 13-Aug-2020 13-Aug-2020 06-Aug-2020 13-Aug-2020 13-Aug-2020 13-Aug-2020 13-Aug-2020 13-Aug-2020 06-Aug-2020 03-Aug-2020 03-Aug-2020 03-Aug-2020 03-Aug-2020 03-Aug-2020 03-Aug-2020 03-Aug-2020 03-Aug-2020 03-Aug-2020 l 30-Jul-2020 30-Jul-2020 30-Jul-2020 30-Jul-2020 30-Jul-2020 30-Jul-2020 30-Jul-2020 Sample Date 30-Jul-2020 30-Jul-2020 30-Jul-2020 QC103_200730, MW02_200730, MW02_200730, MW02_200730, MW02_200730, MW02_200730, MW02_200730, MW02_200730, MW02_200730, MW02_200730, HT_200730 T3_200730, T4_200730, EP075(SIM)B: Polynuclear Aromatic Hydrocarbons Clear Plastic Bottle - Nitric Acid; Filtered (EG035F) mber Glass Bottle - Unpreserved (EP075(SIM)) EP074A: Monocyclic Aromatic Hydrocarbons EP074E: Halogenated Aliphatic Compounds EP074F: Halogenated Aromatic Compounds Amber Glass Bottle - Unpreserved (EP066) EP066: Polychlorinated Biphenyls (PCB) Amber VOC Vial - Sulfuric Acid (EP074) Amber VOC Vial - Sulfuric Acid (EP074) Amber VOC Vial - Sulfuric Acid (EP074) Amber VOC Vial - Sulfuric Acid (EP074) Amber VOC Vial - Sulfuric Acid (EP074) mber VOC Vial - Sulfuric Acid (EP074) Amber VOC Vial - Sulfuric Acid (EP074) EG035F: Dissolved Mercury by FIMS EP074B: Oxygenated Compounds **EP074C: Sulfonated Compounds** Container / Client Sample ID(s) EP074G: Trihalomethanes EP074D: Fumigants MW01_200730, QC304_200730 MW03_200730 MW01_200730, MW01_200730, MW01_200730, MW03_200730 MW01_200730, MW01_200730, MW03_200730, MW03_200730 MW03_200730 MW03_200730 MW03_200730 MW01_200730, MW01_200730 MW03_200730 MW01_200730, MW03 200730 Matrix: WATER T3_200730, HT_200730 T4_200730,

EMM CONSULTING PTY LTD

Matraville

Client Project

ES2026409

Work Order

5 of 10

Evaluation: * = Holding time breach; </ = Within holding time Evaluation > > > > > > > > > > Due for analysis 12-Sep-2020 12-Sep-2020 12-Sep-2020 12-Sep-2020 12-Sep-2020 12-Sep-2020 12-Sep-2020 12-Sep-2020 12-Sep-2020 12-Sep-2020 Date analysed 04-Aug-2020 04-Aug-2020 04-Aug-2020 04-Aug-2020 04-Aug-2020 04-Aug-2020 04-Aug-2020 04-Aug-2020 04-Aug-2020 04-Aug-2020 Evaluation > > > > > > > > > > Date extracted Due for extraction Extraction / Preparation 06-Aug-2020 06-Aug-2020 06-Aug-2020 06-Aug-2020 06-Aug-2020 06-Aug-2020 06-Aug-2020 06-Aug-2020 06-Aug-2020 06-Aug-2020 03-Aug-2020 30-Jul-2020 30-Jul-2020 30-Jul-2020 30-Jul-2020 30-Jul-2020 30-Jul-2020 30-Jul-2020 30-Jul-2020 30-Jul-2020 30-Jul-2020 Sample Date MW02_200730, MW02_200730, MW02_200730, MW02_200730, MW02_200730, MW02_200730, MW02_200730, MW02_200730, MW02_200730, MW02_200730, EP075B: Polynuclear Aromatic Hydrocarbons Amber Glass Bottle - Unpreserved (EP075) mber Glass Bottle - Unpreserved (EP075) mber Glass Bottle - Unpreserved (EP075) mber Glass Bottle - Unpreserved (EP075) mber Glass Bottle - Unpreserved (EP075) Amber Glass Bottle - Unpreserved (EP075) Amber Glass Bottle - Unpreserved (EP075) mber Glass Bottle - Unpreserved (EP075) Amber Glass Bottle - Unpreserved (EP075) mber Glass Bottle - Unpreserved (EP075) EP075J: Organophosphorus Pesticides EP075E: Nitroaromatics and Ketones EP075G: Chlorinated Hydrocarbons EP075I: Organochlorine Pesticides **EP075H: Anilines and Benzidines** EP075A: Phenolic Compounds Container / Client Sample ID(s) EP075C: Phthalate Esters EP075D: Nitrosamines EP075F: Haloethers MW01_200730, MW01_200730, MW01_200730, MW03_200730 MW01_200730, MW03_200730 MW03_200730 MW01_200730, MW01_200730, MW03_200730 MW01_200730, MW03_200730 MW01_200730, MW01_200730, MW03_200730 MW01_200730, MW03_200730 MW03_200730 MW03_200730 MW03_200730 Matrix: WATER

NSULTING PTY LTD

: 6 of 10	: ES2026409	: EMM CONSI	: Matraville	
Page	Work Order	Client	Project	

Matrix: WATER					Evaluation	: x = Holding time	Evaluation: $\mathbf{x} = \text{Holding time breach}$; $\mathbf{v} = \text{Within holding time}$.	n holding time.
Method		Sample Date	Ext	Extraction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080/071: Total Petroleum Hydrocarbons								
Amber Glass Bottle - Unpreserved (EP071)								
MW01_200730,	MW02_200730,	30-Jul-2020	03-Aug-2020	06-Aug-2020	>	04-Aug-2020	12-Sep-2020	>
MW03_200730,	QC103_200730,							
QC304_200730,	T3_200730,							
T4_200730,	HT_200730							
Amber VOC Vial - Sulfuric Acid (EP080)								
MW01_200730,	MW02_200730,	30-Jul-2020	03-Aug-2020	13-Aug-2020	>	03-Aug-2020	13-Aug-2020	>
MW03_200730,	QC103_200730,							
QC304_200730,	TB04_200730,							
T3_200730,	T4_200730,							
HT_200730								
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions	2013 Fractions							
Amber Glass Bottle - Unpreserved (EP071)								
MW01_200730,	MW02_200730,	30-Jul-2020	03-Aug-2020	06-Aug-2020	>	04-Aug-2020	12-Sep-2020	>
MW03_200730,	QC103_200730,							
QC304_200730,	T3_200730,							
T4_200730,	HT_200730							
Amber VOC Vial - Sulfuric Acid (EP080)								
MW01_200730,	MW02_200730,	30-Jul-2020	03-Aug-2020	13-Aug-2020	>	03-Aug-2020	13-Aug-2020	>
MW03_200730,	QC103_200730,							
QC304_200730,	TB04_200730,							
T3_200730,	T4_200730,							
HT_200730								
EP080: BTEXN								
Amber VOC Vial - Sulfuric Acid (EP080)								
MW01_200730,	MW02_200730,	30-Jul-2020	03-Aug-2020	13-Aug-2020	>	03-Aug-2020	13-Aug-2020	>
MW03_200730,	QC103_200730,							
QC304_200730,	TB04_200730,							
TS04_200730,	T3_200730,							
T4_200730,	HT_200730							

: 7 of 10 : ES2026409 : EMM CONSULTING PTY LTD Matraville Work Order Project Client

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Clarity Control Sample Type					1/0/ 0/00		Ouglity Control Specification
Analytical Methods	Method	0	Regular	Actual	Expected Fx	Evaluation	Addity College Openingation
PAH/Phenols (SIM)	EP075(SIM)	-	-	100.00	10.00		NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	() 2	~	-	100.00	10.00		NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	5	13	15.38	10.00	,	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	2	13	15.38	10.00	,	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	~	-	100.00	10.00	>	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	_	9	16.67	10.00	>	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
PAH/Phenols (SIM)	EP075(SIM)	-	1	100.00	5.00	>	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	_	-	100.00	5.00	>	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	-	13	69.7	5.00	>	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	-	13	7.69	2.00	>	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	-	-	100.00	5.00	>	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	9	16.67	2.00	>	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
PAH/Phenols (SIM)	EP075(SIM)	-	1	100.00	5.00	>	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	-	-	100.00	2.00	>	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	-	13	7.69	5.00	>	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	-	13	7.69	2.00	>	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	_	_	100.00	5.00	>	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	9	16.67	5.00	>	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
PAH/Phenols (SIM)	EP075(SIM)	0	-	0.00	5.00	×	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	0	-	0.00	5.00	×	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	-	13	7.69	2.00	>	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	-	13	7.69	2.00	>	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	0	-	0.00	2.00	×	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	-	9	16.67	5.00	>	NEPM 2013 B3 & ALS QC Standard
Matrix: WATER				Evaluatio	n: x = Quality Cc	introl frequency i	Evaluation: 🗴 = Quality Control frequency not within specification ; 🗸 = Quality Control frequency within specification.
Quality Control Sample Type		CC	Count		Rate (%)		Quality Control Specification
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Dissolved Mercury by FIMS	EG035F	-	9	16.67	10.00	>	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	0	22.22	10.00	>	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	0	9	0.00	10.00	×	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	0	က	0.00	10.00	×	NEPM 2013 B3 & ALS QC Standard

 Page
 : 8 of 10

 Work Order
 : ES2026409

 Client
 : EMM CONSULTING PTY LTD

EMM CONSULTING PTY LTD	: Matraville
Client	Project

Matrix: WATER				Evaluation	: x = Quality Co	ntrol frequency n	Evaluation: x = Quality Control frequency not within specification;
Quality Control Sample Type		Count	unt		Rate (%)		Quality Control Specification
Analytical Methods	Method	00	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP) - Continued							
Semivolatile Organic Compounds	EP075	0	က	0.00	10.00	×	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	0	ω	0.00	10.00	×	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	15	13.33	10.00	>	NEPM 2013 B3 & ALS QC Standard
Volatile Organic Compounds	EP074	2	11	18.18	10.00	`	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Dissolved Mercury by FIMS	EG035F	-	9	16.67	5.00	>	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	-	o	11.11	5.00	>	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	-	9	16.67	5.00	`	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	-	က	33.33	5.00	>	NEPM 2013 B3 & ALS QC Standard
Semivolatile Organic Compounds	EP075	-	ო	33.33	5.00	>	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	_	80	12.50	5.00	>	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	-	15	6.67	5.00	>	NEPM 2013 B3 & ALS QC Standard
Volatile Organic Compounds	EP074	-	11	60'6	5.00	>	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Dissolved Mercury by FIMS	EG035F	٢	9	16.67	5.00	>	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	6	11.11	5.00	>	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	9	16.67	5.00	>	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	3	33.33	5.00	>	NEPM 2013 B3 & ALS QC Standard
Semivolatile Organic Compounds	EP075	-	က	33.33	5.00	>	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	-	∞	12.50	5.00	>	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	-	15	6.67	5.00	>	NEPM 2013 B3 & ALS QC Standard
Volatile Organic Compounds	EP074	_	11	60.6	5.00	>	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Dissolved Mercury by FIMS	EG035F	-	9	16.67	5.00	>	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	6	11.11	5.00	>	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	0	9	0.00	5.00	×	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	0	3	0.00	5.00	×	NEPM 2013 B3 & ALS QC Standard
Semivolatile Organic Compounds	EP075	0	က	0.00	5.00	×	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	0	80	00.0	5.00	×	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	_	15	6.67	5.00	>	NEPM 2013 B3 & ALS QC Standard
Volatile Organic Compounds	EP074	-		9.09	5.00	>	NEPM 2013 B3 & ALS QC Standard

 Page
 : 9 of 10

 Work Order
 : ES2026409

 Client
 : EMM CONSULTING PTY LTD

 Project
 : Matraville

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2) (Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3)
Polychlorinated Biphenyls (PCB)	EP066	SOIL	In house: Referenced to USEPA SW 846 - 8270 Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3).
TRH - Semivolatile Fraction	EP071	SOIL	In house: Referenced to USEPA SW 846 - 8015 Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40. Compliant with NEPM Schedule B(3).
PAH/Phenols (SIM)	EP075(SIM)	SOIL	In house: Referenced to USEPA SW 846 - 8270. Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3)
TRH Volatiles/BTEX	EP080	SOIL	In house: Referenced to USEPA SW 846 - 8260. Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. Compliant with NEPM Schedule B(3) amended.
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Dissolved Mercury by FIMS	EG035F	WATER	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45µm filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3).
Polychlorinated Biphenyls (PCB)	EP066	WATER	In house: Referenced to USEPA SW 846 - 8270 Sample extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3)
TRH - Semivolatile Fraction	EP071	WATER	In house: Referenced to USEPA SW 846 - 8015 The sample extract is analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This method is compliant with the QC requirements of NEPM Schedule B(3)

 Page
 : 10 of 10

 Work Order
 : ES2026409

 Client
 : EMM CONSULTING PTY LTD

 Project
 : Matraville

Analytical Methods	Method	Matrix	Method Descriptions
Volatile Organic Compounds	EP074	WATER	In house: Referenced to USEPA SW 846 - 8260 Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3)
Semivolatile Organic Compounds	EP075	WATER	In house: Referenced to USEPA SW 846 - 8270 Sample extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3)
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	WATER	In house: Referenced to USEPA SW 846 - 8270 Sample extracts are analysed by Capillary GC/MS in SIM Mode and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3)
TRH Volatiles/BTEX	EP080	WATER	In house: Referenced to USEPA SW 846 - 8260 Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with the QC requirements of NEPM Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
Hot Block Digest for metals in soils sediments and sludges	EN69	NOS	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM Schedule B(3).
Methanolic Extraction of Soils for Purge and Trap	ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.
Separatory Funnel Extraction of Liquids	ORG14	WATER	In house: Referenced to USEPA SW 846 - 3510 100 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM Schedule B(3). ALS default excludes sediment which may be resident in the container.
Volatiles Water Preparation	ORG16-W	WATER	A 5 mL aliquot or 5 mL of a diluted sample is added to a 40 mL VOC vial for sparging.

QUALITY CONTROL REPORT

Environmental Division Sydney Customer Services ES : 1 of 17 Laboratory Contact **EMM CONSULTING PTY LTD SUSAN DILLON** ES2026409 **Work Order** Contact

277-289 Woodpark Road Smithfield NSW Australia 2164 Address Ground Floor Suite 1 20 Chandos Street

+61-2-8784 8555 03-Aug-2020 30-Jul-2020 Date Analysis Commenced Date Samples Received Telephone St Leonards NSW NSW 2065 Matraville J200432 Order number

06-Aug-2020 Issue Date EN/112/18 - Primary work only Lachlan Lewis No. of samples received

Accreditation No. 825 Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

No. of samples analysed

Quote number

C-O-C number

Sampler

Telephone

Project

Address

Client

- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Accreditation Category	Sydney Organics, Smithfield, NSW	Sydney Inorganics, Smithfield, NSW
Position	Organic Coordinator	Analyst
Signatories	Edwandy Fadjar	Ivan Taylor

 Page
 : 2 of 17

 Work Order
 : ES2026409

 Client
 : EMM CONSULTING PTY LTD

 Project
 : Matraville

General Comments

In house developed procedures The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to primary sample

Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot Key:

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL						Laboratory L	Laboratory Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG005(ED093)T: Tot	EG005(ED093)T: Total Metals by ICP-AES(QC Lot: 3179369)	Lot: 3179369)							
ES2025604-135	Anonymous	EG005T: Cadmium	7440-43-9	-	mg/kg	₹	۲	0.00	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	26	22	14.9	%09 - %0
		EG005T: Nickel	7440-02-0	2	mg/kg	41	13	7.77	No Limit
		EG005T: Arsenic	7440-38-2	2	mg/kg	<5	<5	0.00	No Limit
		EG005T: Copper	7440-50-8	22	mg/kg	16	15	0.00	No Limit
		EG005T: Lead	7439-92-1	22	mg/kg	7	9	0.00	No Limit
		EG005T: Zinc	7440-66-6	22	mg/kg	12	11	12.2	No Limit
ES2025604-150	Anonymous	EG005T: Cadmium	7440-43-9	-	mg/kg	7	۲	0.00	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	28	26	7.73	%05 - %0
		EG005T: Nickel	7440-02-0	2	mg/kg	22	20	7.51	%09 - %0
		EG005T: Arsenic	7440-38-2	22	mg/kg	<5	<5	0.00	No Limit
		EG005T: Copper	7440-50-8	ß	mg/kg	20	18	11.4	No Limit
		EG005T: Lead	7439-92-1	22	mg/kg	7	7	0.00	No Limit
		EG005T: Zinc	7440-66-6	2	mg/kg	14	14	0.00	No Limit
EG035T: Total Reco	EG035T: Total Recoverable Mercury by FIMS (QC Lot: 3179370)	(QC Lot: 3179370)							
ES2025604-135	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
ES2025604-150	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
EP066: Polychlorina	EP066: Polychlorinated Biphenyls (PCB) (QC Lot: 3178392)	-ot: 3178392)							
ES2026409-009	T1_200730	EP066: Total Polychlorinated biphenyls	1	0.1	mg/kg	<4.5	<4.5	0.00	No Limit
EP075(SIM)B: Polyne	EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QC Lot: 3178390)	ons (QC Lot: 3178390)							
ES2026409-009	T1_200730	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	412	359	13.7	%05 - %0
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<40.0	<40.0	0.00	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	103	90.4	12.8	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	154	139	10.3	No Limit

EMM CONSULTING PTY LTD

Matraville

Client Project

ES2026409

Work Order

3 of 17

Recovery Limits (%) Recovery Limits (%) 0% - 20% 0% - 20% 0% - 20% No Limit No Limit 0% - 20% 0% - 20% %09 - %0 No Limit No Limit No Limit No Limit No Limit No Limit 0% - 20% 0% - 20% No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit RPD (%) RPD (%) 0.643 0.00 11.6 0.00 5.42 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 12.4 0.00 0.00 0.00 0.00 6.71 5.71 5.81 Laboratory Duplicate (DUP) Report Laboratory Duplicate (DUP) Report Original Result Duplicate Result **Duplicate Result** 111000 <40.0 <40.0 <40.0 <40.0 15400 <40.0 <40.0 <40.0 <40.0 <40.0 <10.0 42400 10400 <40.0 91800 74000 44.2 <0.5 <0.5 <0.5 1090 410 <0.2 <0.5 456 <10 Ÿ Original Result 119000 15300 <40.0 <40.0 <40.0 <40.0 <40.0 <40.0 <40.0 <40.0 <40.0 97200 78600 <40.0 <10.0 44900 49.6 1230 0066 <0.5 <0.5 <0.5 ٥.2 م <0.5 410 514 410 ۲ mg/kg Unit Unit LOR 0.5 0.5 0.5 LOR 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 5 5 8 9 6 0.5 0.5 0.5 9 20 9 0.2 0.5 ~ C6_C10 108-88-3 108-38-3 95-47-6 106-42-3 CAS Number 85-01-8 120-12-7 206-44-0 129-00-0 56-55-3 218-01-9 205-99-2 205-82-3 207-08-9 50-32-8 193-39-5 191-24-2 -71-43-2 91-20-3 CAS Number 100-41-4 EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QC Lot: 3178391) EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QC Lot: 3178433) EP075(SIM): Benzo(a)pyrene TEQ (zero) EP075(SIM): Sum of polycyclic aromatic EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QC Lot: 3178390) - continued EP075(SIM): Benzo(b+j)fluoranthene EP075(SIM): Indeno(1.2.3.cd)pyrene EP075(SIM): Dibenz(a.h)anthracene EP075(SIM): Benzo(k)fluoranthene EP075(SIM): Benzo(g.h.i)perylene EP075(SIM): Benz(a)anthracene EP075(SIM): Benzo(a)pyrene EP071: >C16 - C34 Fraction EP071: >C34 - C40 Fraction EP071: >C10 - C16 Fraction EP080: meta- & para-Xylene EP075(SIM): Phenanthrene EP071: C15 - C28 Fraction EP071: C29 - C36 Fraction EP071: C10 - C14 Fraction EP075(SIM): Fluoranthene EP080: C6 - C10 Fraction EP075(SIM): Anthracene EP080: C6 - C9 Fraction EP075(SIM): Chrysene EP080: Ethylbenzene hydrocarbons EP075(SIM): Pyrene EP080: Naphthalene EP080: ortho-Xylene Method: Compound EP080: Benzene EP080: Toluene EP080/071: Total Petroleum Hydrocarbons (QC Lot: 3178391) EP080/071: Total Petroleum Hydrocarbons (QC Lot: 3178433) EG020F: Dissolved Metals by ICP-MS (QC Lot: 3175104) Client sample ID Client sample ID EP080: BTEXN (QC Lot: 3178433) Anonymous Anonymous Anonymous T1_200730 T1_200730 T1_200730 Laboratory sample ID Laboratory sample ID Sub-Matrix: WATER ES2026802-024 ES2026409-009 ES2026409-009 ES2026409-009 ES2026802-024 Sub-Matrix: SOIL ES2026802-024

EMM CONSULTING PTY LTD

Matraville

Client Project

ES2026409

Work Order

4 of 17

Recovery Limits (%) 0% - 20% 0% - 20% 3% - 20% No Limit % - 20% 0% No Limit 0% - 20% No Limit RPD (%) 0.00 0.00 0.00 0.00 0.00 5.66 1.53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.91 Laboratory Duplicate (DUP) Report Original Result Duplicate Result <0.001 <0.0001 <0.001 <0.001 <0.001 <0.001 <0.0001 <0.0001 0.050 <0.001 0.004 0.017 27.6 0.021 0.212 \$20 \$50 \$ \$ \$ \$ \$ \$ \$ \$ \$ 2 \$ \$ ^2 **%** \$ \$ \$50 <50 <0.0001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.0001 0.017 0.047 0.004 0.208 <0.0001 27.2 0.021 <50 \$50 32 52 2 2 5 δ, \$ \$ \$ \$ \$ \$ 5 5 5 mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L Unit mg/L mg/L mg/L hg/L hg/L hg/L hg/L hg/L hg/L mg/L hg/L hg/L hg/L hg/L hg/L 0.0001 0.005 0.001 0.0001 0.0001 0.001 0.001 0.001 0.001 0.001 0.001 0.00 0.00 0.001 LOR 22 22 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 104-51-8 7439-97-6 78-93-3 7440-66-6 7440-43-9 7440-38-2 108-10-1 591-78-6 CAS Number 7440-43-9 7440-38-2 7440-47-3 7440-50-8 7440-02-0 7440-47-3 7440-50-8 7440-02-0 7440-66-6 100-42-5 135-98-8 95-63-6 9-90-86 9-88-66 100-42-5 98-82-8 108-67-8 135-98-8 95-63-6 9-90-86 9-88-66 108-05-4 7439-92-1 7439-92-1 98-82-8 108-67-8 103-65-1 EP074: 4-Methyl-2-pentanone (MIBK) EP074: 1.2.4-Trimethylbenzene EP074: 1.3.5-Trimethylbenzene EP074: 1.3.5-Trimethylbenzene EP074: 1.2.4-Trimethylbenzene EP074: 2-Butanone (MEK) EP074: 2-Hexanone (MBK) EP074: p-Isopropyltoluene EP074: p-Isopropyltoluene EP074: Isopropylbenzene EP074: sec-Butylbenzene EP074: Isopropylbenzene EP074: sec-Butylbenzene EP074: tert-Butylbenzene EP074: tert-Butylbenzene EP074: n-Propylbenzene EP074: n-Propylbenzene EP074: n-Butylbenzene EP074: n-Butylbenzene EG020A-F: Chromium EG020F: Dissolved Metals by ICP-MS(QC Lot: 3175104)- continued EG020A-F: Cadmium EG020A-F: Cadmium EG020A-F: Chromium EP074: Vinyl Acetate EG020A-F: Arsenic EG020A-F: Arsenic EG020A-F: Copper EG020A-F: Copper EG020A-F: Nickel EG020A-F: Nickel EG035F: Mercury EG020A-F: Lead EG020A-F: Lead EP074A: Monocyclic Aromatic Hydrocarbons (QC Lot: 3174070) EG020A-F: Zinc EG020A-F: Zinc EP074: Styrene EP074: Styrene EG035F: Dissolved Mercury by FIMS (QC Lot: 3175105) EP074B: Oxygenated Compounds (QC Lot: 3174070) Client sample ID MW01_200730 Anonymous Anonymous Anonymous Anonymous Anonymous Laboratory sample ID Sub-Matrix: WATER EW2003433-002 ES2026409-001 ES2026468-002 ES2026468-002 ES2026408-005 ES2026348-001

Matraville

Client Project

ES2026409

Work Order

5 of 17

Recovery Limits (%) No Limit RPD (%) 0.00 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 0.00 0.00 0.00 Laboratory Duplicate (DUP) Report Original Result Duplicate Result \$50 <50 <50 <50 \$ \$ \$ Ŝ \$ 2 \$ \$ ^2 \$ \$ \$ 3 3 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ **2** 5 5 \$ ^20 ^50 55 \$ \$ 5 \$ \$ 5 \$ \$ 5 5 5 5 5 5 2 \$ 2 2 δ, 5 \$ \$ 5 \$ 5 5 \$ \$ 5 \$ hg/L hg/L hg/L hg/L hg/L hg/L hg/L Unit hg/L µg/L hg/L hg/F LOR 20 20 22 22 78-87-5 78-93-3 75-15-0 79-01-6 76-01-7 75-15-0 74-95-3 CAS Number 108-05-4 108-10-1 591-78-6 594-20-7 78-87-5 10061-01-5 10061-02-6 594-20-7 10061-01-5 10061-02-6 75-35-4 156-60-5 75-34-3 156-59-2 71-55-6 563-58-6 56-23-5 107-06-2 79-00-5 142-28-9 127-18-4 630-20-6 110-57-6 476-11-5 79-34-5 96-18-4 96-12-8 106-93-4 106-93-4 74-88-4 EP074: 4-Methyl-2-pentanone (MIBK) EP074: 1.2-Dibromo-3-chloropropane EP074: trans-1.3-Dichloropropylene EP074: trans-1.3-Dichloropropylene EP074: trans-1.4-Dichloro-2-butene EP074: cis-1.3-Dichloropropylene EP074: cis-1.3-Dichloropropylene EP074: 1.1.1.2-Tetrachloroethane EP074: 1.2-Dibromoethane (EDB) EP074: 1.2-Dibromoethane (EDB) EP074: 1.1.2.2-Tetrachloroethane EP074: cis-1.4-Dichloro-2-butene EP074: trans-1.2-Dichloroethene EP074: 1.2.3-Trichloropropane EP074: cis-1.2-Dichloroethene EP074: 1.1-Dichloropropylene EP074: 1.1.1-Trichloroethane EP074: 1.1.2-Trichloroethane EP074: 1.2-Dichloropropane EP074: Carbon Tetrachloride EP074: 2.2-Dichloropropane EP074: 2.2-Dichloropropane EP074: 1.2-Dichloropropane EP074: 1.3-Dichloropropane EP074: 1.1-Dichloroethene EP074: 1.1-Dichloroethane EP074: 2-Butanone (MEK) EP074: 2-Hexanone (MBK) EP074: 1.2-Dichloroethane EP074: Pentachloroethane EP074: Tetrachloroethene EP074: Dibromomethane EP074: Carbon disulfide EP074: Carbon disulfide EP074: Trichloroethene EP074: Vinyl Acetate EP074: Iodomethane EP074B: Oxygenated Compounds (QC Lot: 3174070) - continued EP074E: Halogenated Aliphatic Compounds (QC Lot: 3174070) EP074C: Sulfonated Compounds (QC Lot: 3174070) EP074D: Fumigants (QC Lot: 3174070) Client sample ID Anonymous Anonymous Anonymous Anonymous Anonymous Anonymous Laboratory sample ID Sub-Matrix: WATER ES2026468-002 ES2026468-002 ES2026468-002 ES2026348-001 ES2026348-001 ES2026348-001

Matraville

Client Project

ES2026409

Work Order

6 of 17

Recovery Limits (%) No Limit No Limit No Limit No Limit No Limit No Limit 0% - 20% No Limit RPD (%) 0.00 3.64 Laboratory Duplicate (DUP) Report Original Result Duplicate Result <50 220 \$20 350 350 <50 \$50 \$50 \$ \$ \$ \$ \$ \$ \$ **%** 5 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$50 ²20 \$20 3 \$ 5 \$ \$ \$ ² <50 \$ <50 \$50 \$50 \$50 \$ δ, \$ \$ \$ 5 \$ 5 5 5 ^2 5 \$ 2 2 \$ 5 \$ δ, \$ \$ \$ \$ 5 5 \$ \$ hg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L Unit hg/L LOR 20 20 22 20 22 20 20 2 2 20 22 20 22 22 74-88-4 563-58-6 75-01-4 75-00-3 56-23-5 75-01-4 108-90-7 CAS Number 75-71-8 74-87-3 74-83-9 156-60-5 75-34-3 156-59-2 71-55-6 107-06-2 79-01-6 74-95-3 79-00-5 142-28-9 127-18-4 630-20-6 110-57-6 1476-11-5 79-34-5 96-18-4 76-01-7 96-12-8 75-71-8 74-87-3 74-83-9 75-00-3 75-69-4 95-49-8 106-43-4 87-61-6 75-69-4 75-35-4 108-90-7 108-86-1 EP074: 1.2-Dibromo-3-chloropropane EP074: trans-1.4-Dichloro-2-butene EP074: 1.1.1.2-Tetrachloroethane EP074: 1.1.2.2-Tetrachloroethane EP074: cis-1.4-Dichloro-2-butene EP074: trans-1.2-Dichloroethene EP074: Dichlorodifluoromethane EP074: Dichlorodifluoromethane EP074: Trichlorofluoromethane EP074: Trichlorofluoromethane EP074: 1.2.3-Trichlorobenzene EP074: 1.2.3-Trichloropropane EP074: cis-1.2-Dichloroethene EP074E: Halogenated Aliphatic Compounds (QC Lot: 3174070) - continued EP074: 1.1-Dichloropropylene EP074: 1.1.1-Trichloroethane EP074: 1.1.2-Trichloroethane EP074: Carbon Tetrachloride EP074: 1.3-Dichloropropane EP074: 1.1-Dichloroethane EP074: 1.2-Dichloroethane EP074: Pentachloroethane EP074: 1.1-Dichloroethene EP074: Tetrachloroethene EP074: Dibromomethane EP074: Trichloroethene EP074: Bromomethane EP074: 2-Chlorotoluene EP074: 4-Chlorotoluene EP074: Chlorobenzene EP074: Chloromethane EP074: Chloromethane EP074: Bromomethane EP074: Chlorobenzene EP074: Bromobenzene EP074: Vinyl chloride EP074: Chloroethane EP074: Chloroethane EP074: Iodomethane EP074: Vinyl chloride EP074F: Halogenated Aromatic Compounds (QC Lot: 3174070) Client sample ID Anonymous Anonymous Anonymous Anonymous Laboratory sample ID Sub-Matrix: WATER ES2026468-002 ES2026468-002 ES2026348-001 ES2026348-001

Matraville

Client Project

ES2026409

Work Order

7 of 17

Recovery Limits (%) No Limit RPD (%) 0.00 4.21 0.00 Laboratory Duplicate (DUP) Report Original Result Duplicate Result \$ 3 \$ 3 \$ \$ 5 4 38 6 0 2 4 5 5 7 γ γ γ Δ⁰ Ω⁰ Ÿ Ÿ ۲ ۲۷ ç, 3 ω 120 139 \$ 5 2 5 \$ 5 **2** 44 6 6 0 5 7 **% % ~** ۲ 7 ç ç 5 6 hg/L hg/L hg/L hg/L hg/L Unit hg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/F hg/L LOR 2 8 8 ន្តន 2 2 2 2 2 2 2 0 0 0 2 2 2 2 2 2 2 2 N N 75-25-2 C6_C10 91-20-3 87-61-6 67-66-3 75-25-2 75-27-4 C6_C10 95-47-6 108-38-3 CAS Number 95-49-8 106-43-4 75-27-4 67-66-3 124-48-1 108-88-3 100-41-4 108-38-3 106-42-3 91-20-3 108-88-3 95-47-6 124-48-1 71-43-2 100-41-4 108-86-1 EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QC Lot: 3174071) EP074: 1.2.3-Trichlorobenzene EP074: Bromodichloromethane EP074: Dibromochloromethane EP074: Dibromochloromethane EP074: Bromodichloromethane EP074F: Halogenated Aromatic Compounds (QC Lot: 3174070) - continued EP080: meta- & para-Xylene EP080: meta- & para-Xylene EP080: C6 - C10 Fraction EP080: C6 - C10 Fraction EP074: 4-Chlorotoluene EP080: C6 - C9 Fraction EP080: C6 - C9 Fraction EP074: 2-Chlorotoluene EP074: Bromobenzene EP080: Ethylbenzene EP080: Ethylbenzene EP080: Naphthalene EP080: ortho-Xylene EP080: Naphthalene EP080: ortho-Xylene EP074: Chloroform EP074: Bromoform EP074: Chloroform EP074: Bromoform EP080: Benzene EP080: Benzene EP080: Toluene EP080: Toluene EP080/071: Total Petroleum Hydrocarbons (QC Lot: 3174071) EP074G: Trihalomethanes (QC Lot: 3174070) Client sample ID EP080: BTEXN (QC Lot: 3174071) Anonymous Anonymous Anonymous Anonymous Anonymous Anonymous Anonymous Anonymous Anonymous Laboratory sample ID Sub-Matrix: WATER ES2026468-002 ES2026468-002 ES2026468-002 ES2026348-001 ES2026468-002 ES2026348-001 ES2026348-001 ES2026348-001 ES2026348-001

EMM CONSULTING PTY LTD ES2026409 8 of 17 Work Order Project Client

Matraville

Method Blank (MB) and Laboratory Control Spike (LCS) Report

parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target

The purpose of this QC High 105 126 129 30 130 130 130 130 130 127 126 127 127 128 123 116 126 121 118 121 129 Recovery Limits (%) 70.0 70.0 70.0 70.0 72.0 75.0 77.0 73.0 74.0 0.69 75.0 70.0 61.0 62.0 77.0 71.0 73.0 63.0 70.0 70.0 62.0 Low Laboratory Control Spike (LCS) Report The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. Spike Recovery (%) 9.68 9.06 93.0 93.9 87.5 88.8 83.6 81.6 95.2 93.8 83.2 90.5 125 106 115 88.2 89.4 77.3 79.9 SOT 91.8 94.8 99.2 analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS. 109 104 66 0.0847 mg/kg Concentration 0.74 mg/kg 15.4 mg/kg 12.4 mg/kg 115 mg/kg 450 mg/kg 300 mg/kg 98 mg/kg 48 mg/kg 50 mg/kg 300 mg/kg 6 mg/kg 6 mg/kg 6 mg/kg 6 mg/kg 6 mg/kg 6 mg/kg 1 mg/kg 6 mg/kg 6 mg/kg 6 mg/kg 6 mg/kg 6 mg/kg 6 mg/kg 6 mg/kg 6 mg/kg 6 mg/kg Spike Method Blank (MB) Result Report <0.5 <0.5 <0.5 <0.5 <0.5 <100 <100 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 ٥. 1. <0.5 <50 3 ٥. 1. \$ 5 5 mg/kg Unit LOR 0.1 0.1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 20 20 0.5 2 7 2 2 7 2 CAS Number 85-01-8 129-00-0 56-55-3 218-01-9 53-70-3 191-24-2 7440-47-3 7440-50-8 7440-66-6 7439-97-6 91-20-3 208-96-8 83-32-9 86-73-7 120-12-7 206-44-0 205-99-2 207-08-9 50-32-8 193-39-5 7440-43-9 7439-92-1 7440-02-0 205-82-3 7440-38-2 EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLot: 3178390) EG035T: Total Recoverable Mercury by FIMS (QCLot: 3179370) EP080/071: Total Petroleum Hydrocarbons (QCLot: 3178391) EG005(ED093)T: Total Metals by ICP-AES (QCLot: 3179369) EP066: Polychlorinated Biphenyls (PCB) (QCLot: 3178392) EP066: Total Polychlorinated biphenyls EP075(SIM): Indeno(1.2.3.cd)pyrene EP075(SIM): Benzo(b+j)fluoranthene EP075(SIM): Dibenz(a.h)anthracene EP075(SIM): Benzo(g.h.i)perylene EP075(SIM): Benzo(k)fluoranthene EP075(SIM): Benz(a)anthracene EP075(SIM): Benzo(a)pyrene EP075(SIM): Acenaphthylene EP075(SIM): Acenaphthene EP075(SIM): Phenanthrene EP071: C29 - C36 Fraction EP071: C10 - C14 Fraction EP071: C15 - C28 Fraction EP075(SIM): Fluoranthene EP075(SIM): Naphthalene EP075(SIM): Anthracene EP075(SIM): Chrysene EP075(SIM): Fluorene EP075(SIM): Pyrene EG005T: Chromium Method: Compound EG005T: Cadmium EG005T: Arsenic EG035T: Mercury EG005T: Copper Sub-Matrix: SOIL EG005T: Nickel EG005T: Lead EG005T: Zinc

EP080/071: Total Petroleum Hydrocarbons (QCLot: 3178433)

Matraville

Client Project

ES2026409

Work Order

9 of 17

High 128 138 117 119 High 110 112 105 113 118 119 116 119 116 125 128 121 118 120 111 7 7 117 Recovery Limits (%) Recovery Limits (%) 74.0 63.0 67.0 65.0 63.0 84.0 85.0 81.0 83.0 82.0 76.0 69.0 74.0 73.0 62.0 68.0 83.0 0.99 68.4 77.0 68.4 Low **Low** Laboratory Control Spike (LCS) Report Laboratory Control Spike (LCS) Report Spike Recovery (%) Spike Recovery (%) 91.7 91.8 9.06 83.3 97.5 91.1 86.0 88.0 88.3 SOT 89.2 87.4 86.9 82.8 98.7 88.5 90.0 99.0 89.3 88.9 86.7 86.1 SO7 100 100 102 225 mg/kg Concentration Concentration 31 mg/kg 26 mg/kg 375 mg/kg 525 mg/kg 0.1 mg/L 1 mg/kg 1 mg/kg 1 mg/kg 1 mg/kg 0.1 mg/L 0.1 mg/L 2 mg/kg 0.1 mg/L 0.1 mg/L 0.1 mg/L 1 mg/kg 0.1 mg/L 0.01 mg/L 10 µg/L 10 µg/L 10 µg/L 10 µg/L 10 µg/L 10 µg/L 10 µg/L Method Blank (MB) Method Blank (MB) Result Result <0.0001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.005 <0.0001 <0.5 Report Report 4100 <0.5 <100 410 <50 <0.2 <0.5 <0.5 V γ 5 5 55 \$ ₹ \$ \$ mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/L mg/L hg/L mg/L mg/L mg/L Unit Unit mg/L mg/L mg/L hg/L hg/L hg/L hg/L hg/L EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions(QCLot: 3178433) EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QCLot: 3178391 0.0001 0.0001 0.001 0.001 0.001 0.001 0.005 0.001 LOR 50 100 LOR 9 9 0.2 0.5 0.5 0.5 _ 2 2 2 2 2 2 EP080/071: Total Petroleum Hydrocarbons(QCLot: 3178433)- continued 95-63-6 CAS Number | 71-43-2 106-42-3 95-47-6 CAS Number 7439-97-6 | 108-67-8 135-98-8 C6_C10 108-88-3 108-38-3 91-20-3 7440-43-9 7440-47-3 7440-50-8 100-42-5 98-82-8 103-65-1 100-41-4 7440-38-2 7439-92-1 7440-02-0 7440-66-6 EP074A: Monocyclic Aromatic Hydrocarbons (QCLot: 3174070) EP066: Polychlorinated Biphenyls (PCB) (QCLot: 3173548) EG020F: Dissolved Metals by ICP-MS (QCLot: 3175104) EG035F: Dissolved Mercury by FIMS (QCLot: 3175105) EP066: Total Polychlorinated biphenyls EP080: BTEXN (QCLot: 3178433) EP074: 1.2.4-Trimethylbenzene EP074: 1.3.5-Trimethylbenzene EP080: meta- & para-Xylene EP071: >C16 - C34 Fraction EP071: >C10 - C16 Fraction EP071: >C34 - C40 Fraction EP080: C6 - C10 Fraction EP074: Isopropylbenzene EP074: sec-Butylbenzene EP074: n-Propylbenzene EP080: C6 - C9 Fraction EG020A-F: Chromium EP080: Ethylbenzene EG020A-F: Cadmium EP080: ortho-Xylene EP080: Naphthalene Sub-Matrix: WATER EG020A-F: Arsenic Method: Compound EG020A-F: Copper Method: Compound EG020A-F: Nickel EG035F: Mercury EP080: Benzene EG020A-F: Lead EG020A-F: Zinc Sub-Matrix: SOIL EP080: Toluene EP074: Styrene

Matraville

Client Project

ES2026409

Work Order

High 119 123 132 114 118 119 119 119 119 134 130 137 127 122 120 117 129 139 131 128 120 120 123 126 129 124 Recovery Limits (%) 65.0 73.6 0.99 76.0 62.0 0.09 70.0 70.2 74.0 74.0 77.0 67.0 73.0 62.0 73.0 76.0 73.0 65.0 72.8 Low 61.4 Laboratory Control Spike (LCS) Report Spike Recovery (%) 97.6 98.0 97.0 8.96 94.8 8.48 97.5 98.0 98.8 94.3 98.4 96.8 98.6 96.4 96.1 98.7 97.4 99.4 98.6 0.66 98.7 97.4 92.6 95.7 SO7 100 102 Concentration 100 µg/L 100 µg/L 100 µg/L 100 µg/L 100 µg/L 100 µg/L 100 µg/L 100 µg/L 10 µg/L 10 µg/L 10 µg/L 10 µg/L 10 µg/L 10 µg/L 10 µg/L 10 µg/L 100 µg/L 10 µg/L 10 µg/L 10 µg/L 10 µg/L 10 µg/L 10 µg/L 10 µg/L 10 µg/L 10 µg/L 10 µg/L 10 µg/L 10 µg/L 10 µg/L 10 µg/L 10 µg/L 10 µg/L Method Blank (MB) Result Report 20 \$20 လို လို \$50 <50 \$ <50 550 <50 <50 \$ \$ \$ \$ Ŝ \$ ^5 35 5 5 3 \$ 35 3 3 5 35 5 hg/L hg/L hg/L Hg/L Hg/L hg/L hg/L µg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L µg/L hg/L hg/L Unit LOR 20 20 20 2 20 20 20 20 2 ည 2 2 2 2 2 2 2 2 2 2 EP074A: Monocyclic Aromatic Hydrocarbons(QCLot: 3174070)- continued 104-51-8 75-15-0 CAS Number 9-88-66 108-05-4 78-93-3 108-10-1 78-87-5 74-87-3 75-00-3 75-69-4 74-88-4 71-55-6 79-01-6 74-95-3 79-00-5 9-90-86 591-78-6 594-20-7 10061-01-5 10061-02-6 106-93-4 75-34-3 156-59-2 563-58-6 142-28-9 74-83-9 75-35-4 156-60-5 56-23-5 107-06-2 EP074E: Halogenated Aliphatic Compounds (QCLot: 3174070) EP074B: Oxygenated Compounds (QCLot: 3174070) EP074C: Sulfonated Compounds (QCLot: 3174070) EP074D: Fumigants (QCLot: 3174070) EP074: 4-Methyl-2-pentanone (MIBK) EP074: trans-1.3-Dichloropropylene EP074: 1.2-Dibromoethane (EDB) EP074: 1.1.1.2-Tetrachloroethane EP074: cis-1.3-Dichloropropylene EP074: trans-1.2-Dichloroethene EP074: Dichlorodifluoromethane EP074: Trichlorofluoromethane EP074: cis-1.2-Dichloroethene EP074: 1.1-Dichloropropylene EP074: 1.1.1-Trichloroethane EP074: Carbon Tetrachloride EP074: 1.1.2-Trichloroethane EP074: 2.2-Dichloropropane EP074: 1.3-Dichloropropane EP074: 1.2-Dichloropropane EP074: 1.1-Dichloroethane EP074: 2-Hexanone (MBK) EP074: 1.1-Dichloroethene EP074: 1.2-Dichloroethane EP074: Tetrachloroethene EP074: p-Isopropyltoluene EP074: 2-Butanone (MEK) EP074: tert-Butylbenzene EP074: Dibromomethane EP074: Carbon disulfide EP074: n-Butylbenzene EP074: Trichloroethene EP074: Chloromethane EP074: Bromomethane EP074: Vinyl Acetate EP074: Vinyl chloride EP074: Chloroethane EP074: lodomethane Sub-Matrix: WATER Method: Compound

Matraville

Client Project

ES2026409

Work Order

11 of 17

88.0 High 116 119 119 118 115 115 116 116 118 118 116 118 117 118 64.1 120 124 126 126 136 123 120 126 117 119 115 Recovery Limits (%) 70.0 74.0 71.8 76.0 73.0 73.0 64.0 65.0 63.9 62.6 64.3 63.6 62.5 59.9 25.5 52.0 63.1 64.1 63.3 61.2 73.5 66.4 Low Laboratory Control Spike (LCS) Report Spike Recovery (%) 75.9 72.5 8.69 73.9 71.9 27.8 52.0 98.2 99.2 72.5 73.2 8.69 77.5 67.7 0.69 6.99 92.6 95.5 6.66 98.4 105 SOT 102 99.1 69.1 99.1 101 101 100 Concentration 10 µg/L 10 µg/L 10 µg/L 10 µg/L 10 µg/L 10 µg/L 10 µg/L 10 µg/L 10 µg/L 10 µg/L 10 µg/L 10 µg/L 10 µg/L 10 µg/L 10 µg/L 10 µg/L 5 µg/L 5 µg/L 5 µg/L 5 µg/L 5 µg/L 5 µg/L 5 µg/L 5 µg/L 5 µg/L 5 µg/L 5 µg/L 5 µg/L Method Blank (MB) Result ۲۱.0 Report <0.5 5 \$ 5 7 24 3 35 35 3 5 \$ 3 5 \$ \$ \$ hg/L hg/L hg/L hg/L µg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L µg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L Unit LOR 0.5 2 2 വ 2 2 2 Ŋ 2 2 2 2 2 _ _ 0 0 EP074E: Halogenated Aliphatic Compounds(QCLot: 3174070)- continued CAS Number 96-18-4 76-01-7 96-12-8 95-49-8 87-61-6 91-20-3 86-73-7 218-01-9 108-95-2 95-57-8 110-57-6 1476-11-5 79-34-5 67-66-3 75-25-2 208-96-8 83-32-9 85-01-8 120-12-7 206-44-0 129-00-0 56-55-3 205-99-2 193-39-5 108-90-7 75-27-4 124-48-1 205-82-3 207-08-9 50-32-8 53-70-3 191-24-2 108-86-1 106-43-4 EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLot: 3173545) EP074F: Halogenated Aromatic Compounds (QCLot: 3174070) EP075A: Phenolic Compounds (QCLot: 3173546) EP074G: Trihalomethanes (QCLot: 3174070) EP074: 1.2-Dibromo-3-chloropropane EP075(SIM): Benzo(b+j)fluoranthene EP075(SIM): Indeno(1.2.3.cd)pyrene EP075(SIM): Dibenz(a.h)anthracene EP074: trans-1.4-Dichloro-2-butene EP075(SIM): Benzo(k)fluoranthene EP075(SIM): Benzo(g.h.i)perylene EP074: 1.1.2.2-Tetrachloroethane EP074: cis-1.4-Dichloro-2-butene EP075(SIM): Benz(a)anthracene EP074: 1.2.3-Trichlorobenzene EP074: 1.2.3-Trichloropropane EP074: Bromodichloromethane EP074: Dibromochloromethane EP075(SIM): Benzo(a)pyrene EP075(SIM): Acenaphthylene EP075(SIM): Acenaphthene EP075(SIM): Phenanthrene EP074: Pentachloroethane EP075(SIM): Naphthalene EP075(SIM): Fluoranthene EP075(SIM): Anthracene EP074: 2-Chlorotoluene EP074: 4-Chlorotoluene EP074: Bromobenzene EP074: Chlorobenzene EP075(SIM): Chrysene EP075: 2-Chlorophenol EP075(SIM): Fluorene EP075(SIM): Pyrene Sub-Matrix: WATER EP074: Bromoform Method: Compound EP074: Chloroform EP075: Phenol

Matraville

Client Project

ES2026409

Work Order

12 of 17

91.0 High 98.0 94.0 112 110 95.0 110 110 41 115 125 112 112 109 108 107 80 90 108 7 122 132 100 108 107 108 109 Recovery Limits (%) 48.0 50.0 61.9 61.5 61.4 58.0 50.0 0.09 45.0 42.0 63.5 68.3 57.6 59.7 68.4 61.2 62.5 23.3 68.3 12.8 61.7 60.1 67.3 62.1 Laboratory Control Spike (LCS) Report Spike Recovery (%) # 25.8 # 56.0 # 21.8 51.0 6.69 73.2 61.8 73.0 71.6 84.8 69.3 90.5 97.9 51.9 6.79 71.8 # 64.1 98.8 90.4 97.3 53.7 71.1 67.7 74.7 93.4 95.7 115 67.1 45.8 SO7 Concentration 10 µg/L 20 µg/L 10 µg/L 20 µg/L Method Blank (MB) Result 9 9 9 0 0 0 00000000000 4 ů ů 3 3 3 çy Ÿ γ 3 4 3 3 3 Ÿ 7 Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L hg/L hg/L hg/L Hg/L Hg/L hg/L hg/L hg/L hg/L hg/L hg/L µg/L hg/L hg/L hg/L hg/L hg/L hg/L µg/L hg/L hg/L hg/F Unit LOR 7 7 0 4 0 0 0 0 7 0 0 N 0 N 7 4 7 7 7 7 7 0 0 0 CAS Number 88-75-5 105-67-9 59-50-7 95-95-4 87-86-5 91-58-7 53-96-3 57-97-6 56-49-5 55-18-5 86-30-6 91-80-5 109-06-8 98-86-2 98-95-3 120-83-2 87-65-0 88-06-2 91-57-6 117-84-0 0595-95-6 930-55-2 59-89-2 122-39-4 1319-77-3 131-11-3 84-66-2 84-74-2 117-81-7 621-64-7 924-16-3 85-68-7 100-75-4 95-48-7 EP075B: Polynuclear Aromatic Hydrocarbons (QCLot: 3173546) EP075A: Phenolic Compounds (QCLot: 3173546) - continued EP075E: Nitroaromatics and Ketones (QCLot: 3173546) EP075C: Phthalate Esters (QCLot: 3173546) EP075D: Nitrosamines (QCLot: 3173546) EP075: N-Nitrosodiphenyl & Diphenylamine EP075: 7.12-Dimethylbenz(a)anthracene EP075: N-Nitrosomethylethylamine EP075: N-Nitrosodi-n-propylamine EP075: bis(2-ethylhexyl) phthalate EP075: N-2-Fluorenyl Acetamide EP075: 4-Chloro-3-methylphenol EP075: N-Nitrosodibutylamine EP075: N-Nitrosodiethylamine EP075: 3-Methylcholanthrene EP075: Butyl benzyl phthalate EP075: 2.4.6-Trichlorophenol EP075: 2.4.5-Trichlorophenol EP075: 2-Methylnaphthalene EP075: 2-Chloronaphthalene EP075: N-Nitrosomorpholine EP075: 3- & 4-Methylphenol EP075: Di-n-butyl phthalate EP075: N-Nitrosopyrrolidine EP075: N-Nitrosopiperidine EP075: 2.4-Dimethylphenol EP075: 2.4-Dichlorophenol EP075: 2.6-Dichlorophenol EP075: Pentachlorophenol EP075: Dimethyl phthalate EP075: Di-n-octylphthalate EP075: Diethyl phthalate EP075: 2-Methylphenol EP075: Acetophenone EP075: Methapyrilene EP075: Nitrobenzene EP075: 2-Nitrophenol Sub-Matrix: WATER Method: Compound EP075: 2-Picoline

Matraville

Client Project

ES2026409

Work Order

13 of 17

112 95.0 96.0 6.96 99.5 112 112 109 108 96.0 88.0 96.0 110 110 108 601 102 106 5 601 109 108 110 9 107 107 104 107 Recovery Limits (%) 59.5 40.0 58.3 0.99 46.0 57.8 59.0 66.2 61.6 23.5 42.0 6.09 51.5 65.3 48.9 60.1 62.7 59.4 46.0 46.0 34.0 37.4 64.7 65.7 Laboratory Control Spike (LCS) Report Spike Recovery (%) 69.3 9.68 79.8 92.8 81.4 81.8 74.9 65.5 54.5 24.9 86.0 87.5 74.8 78.8 68.2 # 55.7 78.2 82.3 48.3 53.7 9.99 52.9 80.9 59.1 74.4 89.3 101 Concentration 10 µg/L Method Blank (MB) Result 410 ů 0 0 0 0 0 7 ^ ^ ^ Ÿ 0 0 0 0 0 0 0 0 7 7 ۲Ş ₩ ₩ ç Ÿ ∆
 4 0 0 4 4 0 Ÿ hg/L hg/L hg/L hg/L hg/L hg/L µg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L Unit LOR 9 7 7 7 7 0 0 0 N 0 7 7 0 7 N 7 4 4 4 7 7 7 99-22-8 62-44-2 92-67-1 60-11-7 101-55-3 95-50-1 62-53-3 106-47-8 CAS Number 121-14-2 134-32-7 56-57-5 103-33-3 99-35-4 82-68-8 23950-58-5 510-15-6 77-47-4 608-93-5 132-64-9 78-59-1 606-20-2 111-44-4 7005-72-3 87-68-3 118-74-1 88-74-4 99-09-2 106-46-7 541-73-1 67-72-1 120-82-1 888-71-7 111-91-1 EP075E: Nitroaromatics and Ketones (QCLot: 3173546) - continued EP075G: Chlorinated Hydrocarbons (QCLot: 3173546) EP075H: Anilines and Benzidines (QCLot: 3173546) EP075F: Haloethers (QCLot: 3173546) EP075: Bis(2-chloroethoxy) methane EP075: 4-Bromophenyl phenyl ether EP075: 4-Chlorophenyl phenyl ether EP075: Hexachlorocyclopentadiene EP075: Dimethylaminoazobenzene EP075: Hexachlorobenzene (HCB) EP075: Pentachloronitrobenzene EP075: 4-Nitroquinoline-N-oxide EP075: Bis(2-chloroethyl) ether EP075: 1.2.4-Trichlorobenzene EP075: 1.3.5-Trinitrobenzene EP075: Hexachloropropylene EP075: Hexachlorobutadiene EP075: Pentachlorobenzene EP075: 1.2-Dichlorobenzene EP075: 1.3-Dichlorobenzene EP075: 1.4-Dichlorobenzene EP075: Hexachloroethane EP075: 2.6-Dinitrotoluene EP075: 2.4-Dinitrotoluene EP075: 5-Nitro-o-toluidine EP075: 1-Naphthylamine EP075: 4-Aminobiphenyl EP075: Chlorobenzilate EP075: 4-Chloroaniline EP075: Dibenzofuran EP075: 2-Nitroaniline EP075: 3-Nitroaniline EP075: 4-Nitroaniline EP075: Azobenzene Sub-Matrix: WATER EP075: Isophorone EP075: Phenacetin Method: Compound EP075: Pronamide EP075: Carbazole EP075: Aniline

Matraville

Client Project

ES2026409

Work Order

14 of 17

High 119 108 118 111 115 115 114 116 115 114 114 601 113 116 115 109 116 118 113 11 111 124 11 117 121 Recovery Limits (%) 60.3 56.0 50.0 59.0 53.0 59.0 58.0 54.0 55.0 57.0 53.0 55.0 50.0 71.6 56.0 54.1 49.0 Low Laboratory Control Spike (LCS) Report Spike Recovery (%) 81.8 91.0 97.0 96.0 91.5 97.5 94.5 84.3 78.5 83.3 92.9 92.9 97.2 92.6 8.66 98.6 90.1 95.9 74.1 SOT 102 103 100 95.1 107 101 101 Concentration 400 µg/L 600 µg/L 400 µg/L 10 µg/L Method Blank (MB) Result <100 <50 <50 7 Ÿ ç ζV ů 7 7 ۲۷ ۲۷ 0 0 0 0 0 0 ů \$ \$ 7 7 ₩ ₩ ₩ ₩ Ÿ 7 4 hg/L hg/L hg/L hg/L µg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L µg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L Hg/L Unit hg/F hg/L hg/F LOR 2 2 2 0 7 7 0 N α 7 0 7 0 7 N α 0 N 0 0 CAS Number 91-94-1 76-44-8 72-55-9 60-57-1 72-20-8 62-73-7 -| | 319-84-6 58-89-9 319-86-8 309-00-2 929-98-8 33213-65-9 72-54-8/72-5 5-9/50-2 333-41-5 5598-13-0 121-75-5 55-38-9 470-90-6 563-12-2 319-85-7 024-57-3 72-54-8 1031-07-8 57-1 60-51-5 2921-88-2 23505-41-1 34643-46-4 50-29-3 309-00-2/60-EP075H: Anilines and Benzidines (QCLot: 3173546) - continued EP080/071: Total Petroleum Hydrocarbons (QCLot: 3174071) EP080/071: Total Petroleum Hydrocarbons(QCLot: 3173547) EP075J: Organophosphorus Pesticides (QCLot: 3173546) EP075I: Organochlorine Pesticides (QCLot: 3173546) EP075: Sum of DDD + DDE + DDT EP075: Sum of Aldrin + Dieldrin EP075: 3.3'-Dichlorobenzidine EP075: Heptachlor epoxide EP071: C29 - C36 Fraction EP075: Chlorpyrifos-methyl EP071: C15 - C28 Fraction EP071: C10 - C14 Fraction EP075: Endosulfan sulfate EP075: alpha-Endosulfan EP075: beta-Endosulfan EP075: Chlorfenvinphos EP075: Pirimphos-ethyl EP075: gamma-BHC EP075: Chlorpyrifos Sub-Matrix: WATER Method: Compound EP075: Dimethoate EP075: alpha-BHC EP075: Heptachlor EP075: Dichlorvos EP075: delta-BHC EP075: Prothiofos EP075: beta-BHC EP075: Malathion EP075: 4.4'-DDE EP075: 4.4'-DDD EP075: 4.4'-DDT EP075: Diazinon EP075: Fenthion EP075: Dieldrin EP075: Endrin EP075: Ethion EP075: Aldrin

 Page
 : 15 of 17

 Work Order
 : ES2026409

 Client
 : EMM CONSULTING PTY LTD

 Project
 : Matraville

Sub-Matrix: WATER			Method Blank (MB)		Laboratory Control Spike (LCS) Report	S) Report	
			Report	Spike	Spike Recovery (%)	Recovery Limits (%)	imits (%)
Method: Compound	LOR	Unit	Result	Concentration	SOT	Low	High
EP080/071: Total Petroleum Hydrocarbons (QCLot: 3174071) - continued	P						
EP080: C6 - C9 Fraction	20	hg/L	<20	260 µg/L	93.1	75.0	127
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QCLot: 3173547)	:Lot: 3173547)						
EP071: >C10 - C16 Fraction	100	hg/L	<100	500 µg/L	91.7	67.9	119
EP071: >C16 - C34 Fraction	100	hg/L	<100	700 µg/L	78.7	62.5	110
EP071: >C34 - C40 Fraction	100	hg/L	<100	300 µg/L	98.7	61.5	121
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QCLot: 3174071)	:Lot: 3174071)						
EP080: C6 - C10 Fraction C6_C10	20	hg/L	<20	310 µg/L	94.3	75.0	127
EP080: BTEXN (QCLot: 3174071)							
EP080: Benzene 71-43-2	-	hg/L		10 µg/L	112	70.0	122
EP080: Toluene 108-88-3	2	hg/L	<2	10 µg/L	97.5	69.0	123
EP080: Ethylbenzene	2	hg/L	<2	10 µg/L	95.4	70.0	120
EP080: meta- & para-Xylene	2	hg/L	<2	10 µg/L	93.2	0.69	121
106-42-3							
EP080: ortho-Xylene 95-47-6	2	hg/L	<2	10 µg/L	97.2	72.0	122
EP080: Naphthalene	5	hg/L	<5	10 µg/L	82.4	70.0	120

Matrix Spike (MS) Report

o The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Matrix Spike (MS) Report

Sub-Matrix: SOIL

			Spike	SpikeRecovery(%)	Recovery	Recovery Limits (%)
Laboratory sample ID Client sample ID	Method: Compound	CAS Number	Concentration	MS	Tow	High
EG005(ED093)T: Total Metals by ICP-AES (QCLot: 3179369)						
ES2025604-135 Anonymous	EG005T: Arsenic	7440-38-2	50 mg/kg	81.0	70.0	130
	EG005T: Cadmium	7440-43-9	50 mg/kg	83.0	70.0	130
	EG005T: Chromium	7440-47-3	50 mg/kg	78.0	70.0	130
	EG005T: Copper	7440-50-8	250 mg/kg	84.1	70.0	130
	EG005T: Lead	7439-92-1	250 mg/kg	82.5	70.0	130
	EG005T: Nickel	7440-02-0	50 mg/kg	84.1	70.0	130
	EG005T: Zinc	7440-66-6	250 mg/kg	81.7	70.0	130
EG035T: Total Recoverable Mercury by FIMS (QCLot: 3179370)						
ES2025604-135 Anonymous	EG035T: Mercury	7439-97-6	5 mg/kg	85.8	70.0	130
EP080/071: Total Petroleum Hydrocarbons (QCLot: 3178433)						
ES2026802-024 Anonymous	EP080: C6 - C9 Fraction		32.5 mg/kg	115	70.0	130
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QCLot: 3178433)	QCLot: 3178433)					
ES2026802-024 Anonymous	EP080: C6 - C10 Fraction	C6_C10	37.5 mg/kg	108	70.0	130

Matraville

Client Project

ES2026409

Work Order

16 of 17

High High 130 130 130 130 130 130 130 130 130 130 130 130 130 Recovery Limits (%) Recovery Limits (%) 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 TOW Low Matrix Spike (MS) Report Matrix Spike (MS) Report SpikeRecovery(%) SpikeRecovery(%) 91.9 99.2 97.2 95.3 96.7 95.7 84.6 98.9 98.6 98.9 108 | 108 | 108 | 108 | 106 101 102 106 111 108 NIS NIS 106 101 117 Concentration 2.5 mg/kg Concentration 2.5 mg/kg 2.5 mg/kg 2.5 mg/kg 2.5 mg/kg 0.01 mg/L 2.5 mg/kg 325 µg/L 375 µg/L 0.25 mg/l 1 mg/L 25 µg/L 25 µg/L 1 mg/L 1 mg/L 1 mg/L 25 µg/L 25 µg/L 25 µg/L 25 µg/L 25 µg/L 1 mg/L 1 mg/L 25 µg/L Spike CAS Number CAS Number 7439-97-6 7440-38-2 7440-43-9 7440-47-3 7440-50-8 7440-02-0 7439-92-1 7440-66-6 100-41-4 106-42-3 108-38-3 108-38-3 108-88-3 100-41-4 106-42-3 108-90-7 108-88-3 79-01-6 71-43-2 95-47-6 C6_C10 95-47-6 91-20-3 75-35-4 71-43-2 EP080: meta- & para-Xylene EP080: meta- & para-Xylene EP074: 1.1-Dichloroethene EP074: Trichloroethene EP080: C6 - C10 Fraction EP080: C6 - C9 Fraction EP074: Chlorobenzene EP080: Ethylbenzene EG020A-F: Cadmium EG020A-F: Chromium EP080: Ethylbenzene EP080: ortho-Xylene EP080: Naphthalene EP080: ortho-Xylene EG020A-F: Arsenic EG020A-F: Copper Method: Compound Method: Compound EG020A-F: Nickel EG035F: Mercury EP080: Benzene EG020A-F: Lead EP080: Benzene EP080: Toluene EG020A-F: Zinc EP080: Toluene EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions(QCLot: 3174071) EP074F: Halogenated Aromatic Compounds (QCLot: 3174070) EP074E: Halogenated Aliphatic Compounds (QCLot: 3174070) EP080/071: Total Petroleum Hydrocarbons (QCLot: 3174071) EG020F: Dissolved Metals by ICP-MS (QCLot: 3175104) EG035F: Dissolved Mercury by FIMS (QCLot: 3175105) Laboratory sample ID | Client sample ID Client sample ID EP080: BTEXN (QCLot: 3174071) EP080: BTEXN (QCLot: 3178433) MW01_200730 Anonymous Anonymous Anonymous Anonymous Anonymous Anonymous Laboratory sample ID Sub-Matrix: WATER ES2026408-005 ES2026802-024 ES2026348-001 ES2026348-001 ES2026348-001 ES2026348-001 ES2026348-001 ES2026409-001 Sub-Matrix: SOIL

: 17 of 17 : ES2026409 : EMM CONSULTING PTY LTD : Matraville

Page Work Order Client Project

Sub-Matrix: WATER				Ма	Matrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery Limits (%)	nits (%)
Laboratory sample ID Client sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP080: BTEXN (Q	EP080: BTEXN (QCLot: 3174071) - continued						
ES2026348-001 Anonymous	Anonymous	EP080: Naphthalene	91-20-3	25 µg/L	91.4	70.0	130

Se17120 1850 0029 0106 (20) :NA 1 Chatswood NSW 206 * Send も 同うのなる ≸ Envirolab Servio 12 Ashley Work Order Reference **ES2026409** nments on likely contaminant levels, tions, or samples requiring specific QC Intact/Broken/None **Environmental Division** RECEIVED BY A Additional Information Telephone: +61-2-8784 8555 Ime Received NV emb. Coolingabient ~ 6@≗ DATE/TIME: late Received: eceived By: DMELBOURNE 24 Westall Road Springvale VICI3RIZWRA 4/13 Geary Place North Novra NSW 2541 DTOWNSVILLE 14-15 Desma Court Bohie QLD 4818 Phr. 03 8549 9600 E; samples melboune@alsgodBecd04423 2058 E; novra@alsgodbacom CIPERTH 10 Hod Way Malaga WA 6990
Ph: 08 9209 7655 E: samples,perth@alsglobal.com Ph: 02 4225 5125 E: wallongong@alsglobal.com FOR LABORATORY USE ONLY (Circle) ob No: *gulloo ecurity: Sydney Random Sample Temperature on Receipt: Free ice / frozen ice bricks present upon receipt? ANALYSIS REQUIRED including SUITES (NB. Suite Codes must be listed to attract suite price) Where Metals are required, specify Total (unfiltered bottle required) or Dissolved (field filtered bottle required). ustody Seal Inlact? HUI RELINQUISHED BY: Colors a delas IRH, BTEXN, 8 metals COC SEQUENCE NUMBER (Circle) 30/4/20 1645 30/07/2020 1645 (81-2/81-W) WX3T8/HRT ત Sp.M. RECEIVED BY: **3**(-SOOCS/ TOTAL SOL ☐ Non Standard or urgent TAT (List due date): 77.23.1 Standard or urgent TAT (List due date): **bCB**2 디GLADSTONE 46 Callemondah Drive Clinton QLD진행사DGEE 1/29 Sydney Road Mudgee NSW 2850 Ph: 07 7471 5600 E: gladskone@alscubdal.com Ph: 02 6372 6735 E: mudgee.mail@alsglobal.com TRH, BTEXN, 8 metals, PAHs, TOTAL RELINQUISHED BY: Lachlan Lewis DATE/TIME: CONTAINER INFORMATION D TYPE & PRESERVATIVE (refer to codes below) EN-112-19 DBRISBANE 2 Byth Street Stafford QLD 4053 Ph: 07 3243 7222 E: samples brisbane@alsglobal.com (Standard TAT may be longer for some tests e.g., Ultra Trace Organics) 1. MULDER TURNAROUND REQUIREMENTS: COUNTRY OF ORIGIN: Australia SE SE SAMPLER MOBILE: 0401 638 848 EDD FORMAT (or default): Esdat ALS QUOTE NO.: 3 18702 CONTACT PH: 0401638848 115 MATRIX Becelved by 3/4 DATE / TIME Email Invoice to (will default to PM if no other addresses are listed): as above SAMPLE DETAILS MATRIX: Solid(S) Water(W) Email Reports to (will default to PM if no other addresses are listed): sdillon@emmconsulting.com.au, llewis@emmconsulting.com.au COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL: MW01_200730 CHAIN OF CUSTODY 200730 QC304, 20078c GC203-120730 TBOY_200730 -100730 -200730 AWS-100730 3-200730 TY-200430 12 120 to HT- 200730 ALS Laboratory: please tick >> OFFICE: 20 Chandos Street, St Leonards NSW 2065 PROJECT MANAGER: Susan Dillon / Lachlan Lewis 510043L SAMPLE ID 000 COC Emailed to ALS? (YES / NO) PROJECT: ACTIVEDING AWO? CLIENT: EMM Consulting Pty Ltd SAMPLER: Lachlan Lewis ORDER NUMBER: ALS USE ONLY 太 LABID 3

ENF/A (204/12)

WO POR ...

. A. 45.4

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

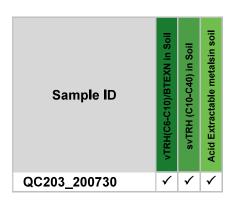
SAMPLE RECEIPT ADVICE

Client Details	
Client	EMM Consulting Pty Ltd
Attention	Susan Dillon, Lachlan Lewis

Sample Login Details	
Your reference	J200432, Matraville
Envirolab Reference	248214
Date Sample Received	03/08/2020
Date Instructions Received	03/08/2020
Date Results Expected to be Reported	10/08/2020

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	1 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	11.7
Cooling Method	Ice
Sampling Date Provided	YES

Comments
Sample Labelled as "QC200", confirmed COC ID correct.


Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

The '\sqrt{'} indicates the testing you have requested. **THIS IS NOT A REPORT OF THE RESULTS.**

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au

www.envirolab.com.au

CERTIFICATE OF ANALYSIS 248214

Client Details	
Client	EMM Consulting Pty Ltd
Attention	Susan Dillon, Lachlan Lewis
Address	188 Normanby Rd, SOUTHBANK, VIC, 3006

Sample Details	
Your Reference	J200432, Matraville
Number of Samples	1 Water
Date samples received	03/08/2020
Date completed instructions received	03/08/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details		
Date results requested by	10/08/2020	
Date of Issue	10/08/2020	
NATA Accreditation Number 2901	. This document shall not be reproduced except in full.	
Accredited for compliance with ISC	D/IEC 17025 - Testing. Tests not covered by NATA are denoted with *	

Results Approved By

Dragana Tomas, Senior Chemist Jaimie Loa-Kum-Cheung, Metals Supervisor **Authorised By**

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Water		
Our Reference		248214-1
Your Reference	UNITS	QC203_200730
Date Sampled		30/07/2020
Type of sample		Water
Date extracted	-	07/08/2020
Date analysed	-	07/08/2020
TRH C ₆ - C ₉	μg/L	11
TRH C ₆ - C ₁₀	μg/L	12
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10
Benzene	μg/L	3
Toluene	μg/L	<1
Ethylbenzene	μg/L	<1
m+p-xylene	μg/L	<2
o-xylene	μg/L	<1
Naphthalene	μg/L	<1
Surrogate Dibromofluoromethane	%	117
Surrogate toluene-d8	%	97
Surrogate 4-BFB	%	88

svTRH (C10-C40) in Water		
Our Reference		248214-1
Your Reference	UNITS	QC203_200730
Date Sampled		30/07/2020
Type of sample		Water
Date extracted	-	05/08/2020
Date analysed	-	05/08/2020
TRH C ₁₀ - C ₁₄	μg/L	<50
TRH C ₁₅ - C ₂₈	μg/L	<100
TRH C ₂₉ - C ₃₆	μg/L	<100
TRH >C ₁₀ - C ₁₆	μg/L	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	μg/L	<50
TRH >C ₁₆ - C ₃₄	μg/L	<100
TRH >C ₃₄ - C ₄₀	μg/L	<100
Surrogate o-Terphenyl	%	97

HM in water - dissolved		
Our Reference		248214-1
Your Reference	UNITS	QC203_200730
Date Sampled		30/07/2020
Type of sample		Water
Date prepared	-	05/08/2020
Date analysed	-	05/08/2020
Arsenic-Dissolved	μg/L	6
Cadmium-Dissolved	μg/L	<0.1
Chromium-Dissolved	μg/L	2
Copper-Dissolved	μg/L	<1
Lead-Dissolved	μg/L	<1
Mercury-Dissolved	μg/L	0.1
Nickel-Dissolved	μg/L	1
Zinc-Dissolved	μg/L	8

Method ID	Methodology Summary
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

Envirolab Reference: 248214 Page | 5 of 10

Revision No: R00

QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Water						Duplicate Spike R				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			07/08/2020	[NT]		[NT]	[NT]	07/08/2020	
Date analysed	-			07/08/2020	[NT]		[NT]	[NT]	07/08/2020	
TRH C ₆ - C ₉	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	105	
TRH C ₆ - C ₁₀	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	105	
Benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	105	
Toluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	99	
Ethylbenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	100	
m+p-xylene	μg/L	2	Org-023	<2	[NT]		[NT]	[NT]	110	
o-xylene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	112	
Naphthalene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	114	[NT]		[NT]	[NT]	104	
Surrogate toluene-d8	%		Org-023	94	[NT]		[NT]	[NT]	96	
Surrogate 4-BFB	%		Org-023	87	[NT]		[NT]	[NT]	116	

QUALITY CONTROL: svTRH (C10-C40) in Water						Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			05/08/2020	[NT]		[NT]	[NT]	05/08/2020	
Date analysed	-			05/08/2020	[NT]		[NT]	[NT]	05/08/2020	
TRH C ₁₀ - C ₁₄	μg/L	50	Org-020	<50	[NT]		[NT]	[NT]	98	
TRH C ₁₅ - C ₂₈	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	84	
TRH C ₂₉ - C ₃₆	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	92	
TRH >C ₁₀ - C ₁₆	μg/L	50	Org-020	<50	[NT]		[NT]	[NT]	98	
TRH >C ₁₆ - C ₃₄	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	84	
TRH >C ₃₄ - C ₄₀	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	92	
Surrogate o-Terphenyl	%		Org-020	84	[NT]		[NT]	[NT]	111	

QUALITY CONTROL: HM in water - dissolved						Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date prepared	-			05/08/2020	[NT]		[NT]	[NT]	05/08/2020	
Date analysed	-			05/08/2020	[NT]		[NT]	[NT]	05/08/2020	
Arsenic-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	95	
Cadmium-Dissolved	μg/L	0.1	Metals-022	<0.1	[NT]		[NT]	[NT]	94	
Chromium-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	99	
Copper-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	102	
Lead-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	106	
Mercury-Dissolved	μg/L	0.05	Metals-021	<0.05	[NT]		[NT]	[NT]	104	
Nickel-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	98	
Zinc-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	100	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

