

Report on Detailed Site Investigation (Contamination)

John Palmer Public School Upgrade 85 The Ponds Boulevard, The Ponds

Prepared for NSW Department of Education

Project 94624.01 October 2021

Douglas Partners Geotechnics | Environment | Groundwater

Document History

Document details

Project No.	94624.01	Document No.	R.002.Rev0 final
Document title	Report on Detailed Site Investigation (Contamination)		
	John Palmer Public School Upgrade		
Site address	85 The Ponds Boulevard, The Ponds		
Report prepared for	NSW Department of Education		
File name	94624.01.R.002.Rev1.docx		

Document status and review

Status	Prepared by	Reviewed by	Date issued
Revision 0	Petrina Fielding	Tim Wright	11 August 2021
Revision 1	Gavin Boyd	Dean Woods	12 October 2021

Distribution of copies

Status	Electronic	Paper	Issued to
Revision 0	1	0	Mr Matthew Wood, NSW Department of Education
Revision 1	1	0	Mr Matthew Wood, NSW Department of Education

The undersigned, on behalf of Douglas Partners Pty Ltd, confirm that this document and all attached drawings, logs and test results have been checked and reviewed for errors, omissions and inaccuracies.

	Signature	Date
Author	Gage	12 October 2021
Reviewer	Page pp DW	12 October 2021
	00	

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au 43 Hobart Street Riverstone NSW 2765 PO Box 267 Riverstone NSW 2765 Phone (02) 4666 0450

Table of Contents

Page

1.	Introduction	1	
2.	Proposed Development	2	
3.	Background2		
4.	Scope of Work	3	
5.	Site Information	4	
6.	Environmental Setting	7	
	6.1 Topography	7	
	6.2 Site Geology	7	
	6.3 Acid Sulphate Soils	7	
	6.4 Salinity	7	
	6.5 Surface Water and Groundwater	7	
7.	Previous Reports and Site History	8	
8.	Site Walkover	8	
9.	Preliminary Conceptual Site Model	9	
10.	Sampling and Analysis Quality Plan1	0	
	10.1 Data Quality Objectives1	0	
	10.2 Soil Sampling Rationale1	0	
11.	Site Assessment Criteria1	0	
12.	Results1	1	
	12.1 Field Work Results1	1	
	12.2 Laboratory Analytical Results1	2	
13.	Discussion1		
	13.1 Soils 12		
	13.2 Asbestos1	3	
	13.3 Preliminary Waste Classification1	3	
	13.4 Data Quality Assurance and Quality Control1	4	
14.	Conclusions and Recommendations1	4	
15.	References1	5	
16.	Limitations1	5	

Appendix A:	Drawing
Appendix B:	About this Report
Appendix C:	Site Photographs
Appendix D:	Data Quality Objectives
Appendix E:	Field Work Methodology
Appendix F:	Site Assessment Criteria
Appendix G:	Summary of Laboratory Results
Appendix H:	Borehole Logs
Appendix I:	Laboratory Certificates of Analysis, Chain of Custody Documentation and Sample Receipt Advice
Appendix J:	Quality Assurance and Quality Control

Report on Detailed Site Investigation (Contamination) John Palmer Public School Upgrade 85 The Ponds Boulevard, The Ponds

1. Introduction

This detailed site investigation (contamination) report - accompanies an Environmental Impact Statement (EIS) pursuant to Part 4 of the Environmental Planning and Assessment Act 1979 (EP&A Act) in support of a State Significant Development Application (SSD - 23330227).

The development is for upgrading works comprising alterations and additions to John Palmer Public School at 85 The Ponds Boulevard, The Ponds. The site is legally described as Lot 1 DP 1131340.

The site is roughly rectangular in shape, with a total area of 29,830m² and street frontages to Pebble Crescent to the west, Jetty Street to the south and The Ponds Boulevard to the east. The Ponds Shopping Centre adjoins the northern property boundary of the school.

This report addresses the relevant Secretary's Environmental Assessment Requirements (SEARs), specifically:

- State Environmental Planning Policy No. 55 Remediation of Land (1998);
- Blacktown Local Environment Plan 2015.

The following key guidelines were consulted in the preparation of this report:

- NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM] (NEPC, 2013); an
- NSW EPA Guidelines for Consultants Reporting on Contaminated Land (NSW EPA, 2020).
- Waste Classification Guidelines (EPA, 2014).
- Acid Sulphate Soil Manual (NSW Acid Sulfate Soil Management Advisory Committee 1998).
- Sampling Design Guidelines (EPA, 1995)
- Consultants Reporting on Contamination Land-Contaminated Land Guidelines (EPA, 2020).

The objective of the DSI is to assess the suitability of the site for the proposed development and whether further investigation and/or management is required. It is understood that the report will be used to support a development application for the proposed development. This DSI includes the results of additional sampling carried out on the site. A preliminary waste classification was also undertaken to assist in planning and budgeting for the disposal of surplus soils.

This report must be read in conjunction with all appendices including the notes provided in Appendix B.

A geotechnical investigation was undertaken concurrently with this investigation. The results of the geotechnical investigation are reported separately (DP Report Reference 94624.01.R.001.Rev0).

2. Proposed Development

The proposed development seeks to upgrade John Palmer Public School. The upgrade consists of the following alterations and additions:

- Construction of a new three storey building facing The Ponds Boulevarde which will accommodate 29 Permanent Learning Spaces and 1 new staff room;
- Construction of a one storey new library building;
- Relocation of service access to staff car park off The Ponds Boulevarde, including alterations to the existing car park to accommodate service vehicle;
- One-storey extension to and refurbishment of existing School Hall building. The School Hall extension will accommodate ancillary spaces for Out of Hours School Care;
- Building Block D will be re-purposed from an existing library to special program spaces and administration;
- Refurbishment of Building F to provide 1 new support unit;
- Minor additions and internal refurbishments to Building A;
- Removal of all 20 existing demountable classroom buildings once alterations and additions have been completed; and
- Ancillary works to support the alterations and additions including landscaping and service provision.

3. Background

DP has carried out the following previous investigations on-site and in the broader area:

- "Report on Preliminary Contamination Assessment: Proposed Primary School: The Ponds Boulevard, Second Ponds Creek" dated 30 April 2007 (Project Reference 44777).
- "Report on Geotechnical Investigation: Proposed Primary School: The Ponds Boulevarde, Second Ponds Creek" dated 2 March 2007 (Project Reference 41177A).
- "Report on Preliminary Contamination Assessment, Second Ponds Creek, Schofields" dated October 2001 (Project 29867A):

The Preliminary Contamination Assessment in 2007, the most recent site assessment, included a review of previous reports, NSW DEC notices, selected historical aerial photographs and sampling and analysis of samples from six test pits. The following comments were provided:

• The review of previous information indicated that the site has previously been used for grazing. Minimal filling was encountered during the geotechnical investigation, with most bores recording topsoil underlain by silty clay. Stockpiled material was noted along the western boundary during the geotechnical field work (and remnant stockpiles were still present during field work for the current assessment), and two of the geotechnical test pits were excavated through the stockpiled material. During the assessment, site personnel indicated that the stockpiled materials were locally sourced and intended for use on surrounding sites;

- In general, most test pits at the site encountered topsoil underlain by natural silty clay. Filling was
 encountered to maximum depths of 0.4 0.8 m in three of the test pits from the current
 investigation, all located in the northern portion of the site. Two of the test pits from the previous
 investigation were excavated through stockpiled material in the west of the site, and therefore
 recorded filling to depths of 0.4 and 0.7 m below ground surface;
- Laboratory analysis was conducted on selected samples for the various combinations of: heavy metals, Total Recoverable Hydrocarbons (TRH), Benzene, Toluene, Ethyl Benzene and Total Xylenes (BTEX), Polycyclic Aromatic Hydrocarbons (PAH), Phenols, Polychlorinated biphenyls (PCB), Organochlorine pesticides (OCP), Organophosphorus pesticides (OPP) and Asbestos;
- In consideration of the sensitive site use, laboratory results were compared with the most sensitive DEC endorsed criteria viz: the lower values of Health based Investigation levels for residential with gardens and accessible soil landuse and Provisional phytotoxicity based investigation levels for sandy loams. All laboratory results were within the relevant site assessment criteria applicable at the time of the investigation; and
- The report concluded "On the basis of the site history, observations and laboratory results the site is generally considered suitable for the proposed primary school and child care centre.

It is understood that the site was subject to a site audit assessment by Mr Graeme Nyland, however, the results of this audit are not recorded on DP's files. DP were not made aware of any issues associated with the contamination assessment or the audit. Given that the development of the school progressed, it is assumed that the site audit provided approval for the school development.

A previous DSI was carried out on site for an overlapping development presented in a report dated 8 September 2020 (Project Reference 94624.00.R.002.Rev0). This report includes the results of this previous investigation for the new proposed development.

4. Scope of Work

The scope of work for the DSI comprised:

- A review of previous contamination reports, including the following site history information:
 - Geological, soil, acid sulfate soil, salinity and hydrogeological published information to assess and document the site's environmental setting;
 - o Current and historical title deeds;
 - Historical aerial photographs;
 - Search of the NSW EPA Land Information public databases held under the Contaminated Land Management Act 1997 and the Protection of the Environment Operations Act 1997;
 - Records held by SafeWork NSW;
 - Council Section 10.7 Planning Certificate;
- Search for groundwater bores on or adjacent to the site registered with the NSW Department of Primary Industries (DPI) Water;

- A site walkover to identify conditions that may indicate potential areas of environmental concern (PAEC);
- Completion of a Dial Before You Dig underground services records search and scan of underground services carried out by a Telstra accredited services locator;
- Drilling of thirty-two boreholes (Bores 101 to 124, 201 to 210) and excavation of ten pits (Pits 211 to 221) across the site;
- Collection of soil samples from each borehole location. Samples were collected at regular depth intervals, change of strata or indicators of potential contamination based on field observation;
- Survey of borehole and pit locations using a differential GPS;
- Laboratory analysis of selected soil samples for a range of the following contaminants and physiochemical properties:
 - Metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel, zinc);
 - Polycyclic aromatic hydrocarbons (PAH);
 - Total recoverable hydrocarbons (TRH);
 - Benzene, toluene, ethylbenzene and xylene (BTEX);
 - o Phenols;
 - Organochlorine pesticides (OCP), organophosphorus pesticides (OPP);
 - Polychlorinated biphenyls (PCB);
 - ∘ **pH**;
 - Cation exchange capacity (CEC); and
 - o Asbestos.
- Field sampling and laboratory analysis included a quality assurance/quality control (QA/QC) plan consisting of approximately 10% intra-laboratory replicates and appropriate Chain of Custody procedures and in-house laboratory QA/QC testing;
- Interpretation of laboratory results in accordance with current NSW EPA endorsed guidelines; and
- Preparation of this DSI report outlining the methodology and results of the investigation, an assessment of the site's suitability for the proposed development and recommendations for further works if considered necessary.

5. Site Information

A summary of the site identification details is presented in Table 1 with the proposed building footprint (the site) shown on Figure 1.

Table 1: Site Identification

Site Address	85 The Ponds Boulevard, The Ponds	
Legal Description	Lot 1 D.P. 1131340	
Area	Larger school site 3.0 hectares (approximately)	
	Development site 0.5 hectare (approximately)	
Zoning	SP2 Educational Establishment	
Local Council Area	Blacktown City Council (BCC)	
Current Use	Primary School	
Surrounding Uses	North – Commercial	
	East – Residential	
	South – Existing School	
	West – Existing School	

Figure 1: Site Location Plan (Source: Metro Map)

6. Environmental Setting

6.1 Topography

The regional topography generally comprises undulating hills with elevations to 60 m and 70 m Australian Height Datum (AHD). Site surface levels generally slope down to the north-west at gradients estimated to be less than 3° with the maximum elevation at about RL 59.7 (m AHD) in the south-east corner and the minimum elevation at about RL 58.1 (m AHD) in the north-west corner.

6.2 Site Geology

Reference to the Penrith 1: 100 000 scale Soil Landscape Series Sheet indicates that the site is located within the Blacktown soil landscape group. The Blacktown Group is characterised by moderately reactive, highly plastic subsoil with poor drainage characteristics.

Reference to the Penrith 1:100 000 scale Geological Series Sheet indicates that the site is underlain by Ashfield Shale of Triassic Age. Ashfield Shale typically comprises dark grey to black shale, siltstone and laminite which weathers to a residual clay profile of medium to high plasticity.

6.3 Acid Sulphate Soils

Review of published mapping indicates that the site is in an area of 'no known occurrence of acid sulfate soils'. The NSW Acid Sulfate Soils Manual 1998 published by the Acid Sulfate Soils Management Advisory Committee (ASSMAC) indicates that acid sulfate soils (ASS) (and potential acid sulfate soils – PASS) normally occur in alluvial or estuarine soils below RL 5 m AHD although occasionally are encountered up to RL 12 m AHD. Considering the ASS mapping and given that the site soils are at site elevations above RL 50 m AHD, it is considered unlikely that ASS is present on-site.

6.4 Salinity

The Department of Infrastructure, Planning and Natural Resources (DIPNR) "Map of Salinity Potential in Western Sydney 2002" suggests that the site is in an area of "moderate salinity potential" with a higher potential in the lower elevations area in close proximity to the Second Ponds Creek system.

6.5 Surface Water and Groundwater

The closest surface water receptor to the site is Second Ponds Creek located about 270 m west of the site.

Based on the local topography, groundwater is anticipated to flow to the west towards Seconds Ponds Creek.

A search of the NSW Department of Primary Industries Water (DPI Water) online map of registered groundwater works was undertaken as part of the investigation. The search carried out on 30 June 2021

identified one registered groundwater borehole within 500 m of the site that contained groundwater information. A standing groundwater level of 6.5 m was measured in the groundwater borehole located about 420 m south-west of the site.

7. Previous Reports and Site History

As part of the scope of works of this DSI, a review of the DSI report by DP dated 8 September 2020 (Project Reference 94624.00) DP (2020) was caried out.

DP (2020) comprised of a DSI of the larger school site with the purpose of identifying the potential risk of contamination. A site walkover, review of historical aerial photographs, review of EPA records, historical title deeds search, and appraisal of local geology and hydrogeology was undertaken.

A review of site history indicated that the land was predominantly used for grazing up until late 1970. From late 1970 to early 1973 the land use was not known. In early 1973 the land was marked for future development and from mid-2006 it was used for educational purposes. Prior to development for educational use, the previous known land uses were considered to have low or limited potential for contamination impact.

The site was not found on any NSW EPA published databases relating to contamination at the time the searches were carried out. Both the Section 10.7 Certificate received from Blacktown City Council and a search of Blacktown City Council's website did not indicate any contaminated land activities at the time of the reviews.

The most significant risks associated with contamination on the site were:

- Uncontrolled filling of unknown origin; and
- Previous agricultural activities on parts of the site.

It should be noted that DP (2020) did not identify any evidence of chemical storage on the site at the time. SafeWork records which were sourced following completion of DP (2020) showed no records of the storage of hazardous chemicals within the site.

Intrusive investigation was undertaken on the site in accordance with NSW EPA (1995). Samples were tested for the main contaminants of concern including heavy metals, TRH, BTEX, PAH, OCP, OPP, phenols and asbestos. Based on the findings of the investigation, including the absence of significant soil contamination, it was considered the potential for contamination on the site was relatively low.

8. Site Walkover

A site walkover was undertaken by an environmental engineer (Mr Grant Russell) and geotechnical engineer (Mr Gavin Boyd) on 31 July 2020, 29 June 2021 and 27 September 2021.

The site comprises five irregular shaped area of approximately 0.5 hectares. The site was occupied by landscaped areas, open grassed areas and concrete pavements. Some mature trees were observed on-site up to an estimated height of 20 m.

The general site topography was consistent with that described in Section 5.1. The site layout appears to have remained unchanged since the DP (2020) site walkover. No evidence of staining or other anthropogenic materials was evident during DP's site visit.

The shopping centre to the north of the school includes a single-level basement which is at approximate ground level on the western side. The basement extends to the south to the property boundary with the larger school site. A review of the shops within the shopping centre did not indicate evidence of dry cleaners, fuel points or other common retail outlets that are often sources of contamination.

Site photographs are included in Appendix C.

9. Preliminary Conceptual Site Model

A conceptual site model (CSM) is a representation of site-related information regarding contamination sources, receptors and exposure pathways between those sources and receptors. The CSM provides the framework for identifying how the site became contaminated and how potential receptors may be exposed to contamination either in the present or the future ie: it enables an assessment of the potential source – pathway – receptor linkages (complete pathways).

A summary of the conceptual site model (CSM) for the site is presented below as adapted from DP (2020).

Source and COPC	Transport Pathway	Receptor	Risk Management Action
S1: Fill Metals, TRH, BTEX, PAH, OCP, PCB, phenols and	P1: Ingestion and dermal contact P2: Inhalation of dust and/or vapours	R1: Current and users [Education Facility R2: Construction and maintenance workers	An intrusive investigation is
asbestos S2: Previous Agricultural Activities Metals, OCP and OPP	P3: Ingestion, dermal contact and adsorption	R3: Terrestrial ecology	recommended to assess possible contamination including testing of the soils.

Table 2: Summary of Potentially	Complete Exposure Pathways
---------------------------------	----------------------------

10. Sampling and Analysis Quality Plan

10.1 Data Quality Objectives

The DSI was devised with reference to the seven-step data quality objective process which is provided in Appendix B Schedule B2, NEPC (2013). The DQO process is outlined in Appendix D.

10.2 Soil Sampling Rationale

Based on the CSM and DQO the following sampling rationale was adopted.

A systematic sampling strategy based on NSW EPA *Contaminated Sites, Sampling Design Guidelines* (NSW EPA, 1995) to determine borehole locations was adapted based on areas of access. Borehole locations are shown on Drawing 1, in Appendix A.

Table A of NSW EPA (1995) recommends a minimum of thirteen sampling points for a site of 0.5 ha for site characterisation based on the detection of circular hot spots using a systemic grid sampling pattern. A total of thirteen sampling locations (including three geotechnical boreholes) were therefore positioned across accessible areas of the site.

A total of 76 primary soil samples were selected for analysis with the majority from fill and three from the natural soil, given that field observations suggest that contamination is more likely to be associated with fill rather than natural soil. Five intra-laboratory replicate sample, one laboratory prepared trip spike and one laboratory prepared trip blank sample were submitted to a NATA accredited laboratory, ELS. Soil samples were analysed for COPC selected based on the potential contamination sources associated with former site uses and/or activities as identified during the site history information review and site walkover and discussed in the CSM as presented in Section 8.

Eight additional sampling points (Pits 214 to 221) were carried out around Bore 205 where an exceedance of B(a)P was previously encountered.

Soil samples were collected from each borehole and pits at depths of approximately 0.1 m, 0.5 m, 1.0 m and every 0.5 m thereafter, and changes in lithology or signs of contamination.

The general sampling methods are described in the field work methodology, included in Appendix E.

11.Site Assessment Criteria

The site assessment criteria (SAC) applied in the current investigation are informed by the CSM (Section 8) which identified human and environmental receptors to potential contamination on the site. Analytical results are assessed (as a Tier 1 assessment) against the SAC comprising primarily the investigation and screening levels of Schedule B1 of NEPC (2013).

The investigation and screening levels applied in the current investigation comprise levels adopted for a generic residential land use scenario. The derivation of the SAC is included in Appendix F and the adopted SAC are listed on the summary analytical results tables in Appendix G.

12.Results

12.1 Field Work Results

The borehole logs for this investigation are included in Appendix H. The logs recorded the following general sub-surface profile:

- Topsoil:

 silty clay, clayey silt or sandy silt topsoil to depths of between 0.08 m and 0.2 m in all boreholes except Bore 206;
- Fill: fill to depths of between 0.5 m and 1.3 m in all boreholes except Bore 201, Bore 205 and Bore 206.
 - asphaltic concrete ranging from 20 mm to 40 mm thick at Bores 101 and 110 overlying roadbase gravel to 0.4 m depth;
 - silty clay topsoil fill with gravel, sand and vegetation to depths of 50 mm to 150 mm in all boreholes except Bores 101, 110 and 112;
 - silty clay or gravelly clay fill to depths of 0.2 m to 0.9 m in all boreholes except Bores 108, 123 and 124 where the fill was from 2.0 m to 2.2 m. Inclusions of sand, silt and gravel were encountered within the fill;
 - Concrete to depths of 150 mm to 190 mm was encountered in Bores 209 and 210;
 - A concrete fragment was encountered within the fill in Bore 203.
- Natural Clay: typically stiff to very stiff silty clay in all boreholes to depths of between 1.0 m and 5.6 m;
- Weathered Bedrock: weathered siltstone from depths of between 2.7 m and 5.6 m in Bores 201, 202 and 207 to termination depths of between 9.62 m and 11.56 m.

There were no other apparent records of visual or olfactory evidence (eg: staining, odours, free phase product) to suggest the presence of contamination within the soils observed in the investigation.

No free groundwater was observed during the drilling of boreholes. Backfilling of the boreholes at the completion of drilling precluded long term monitoring of the groundwater levels. It should be noted that groundwater levels are affected by climatic conditions and soil permeability and will therefore vary with time.

Review of previous relevant borehole logs from the DP (2020) investigation indicated similar sub-surface conditions except the depths of fill material were observed to be generally deeper in the northern portion of the site. No apparent signs of visual indicators of the presence of contamination were observed at the time of the investigation.

12.2 Laboratory Analytical Results

The results of laboratory analysis from the current investigation along with the relevant results from the DP (2020) investigation, are summarised in the following tables in Appendix G:

- Table G1 and G2, R1 and R2: Summary of Results of Soil Analysis; and
- Table G3: Summary of Waste Classification Assessment.

The laboratory certificates of analysis for the current investigation together with the chain of custody and sample receipt information are provided in Appendix I.

13. Discussion

13.1 Soils

The analytical results for contaminants cadmium, mercury, BTEX, TRH, naphthalene, phenols, OCP, OPP, PCB and asbestos in the soil samples were below the practical quantitation limit (PQL).

The analytical results for contaminants arsenic, chromium, copper, lead, nickel, zinc and total PAH were reported above the laboratory PQL but within the relevant SAC with the exception of two samples.

The analytical results for benzo(a)pyrene B(a)P and TEQ were all below the laboratory PQL or within the SAC except for one sample. The concentration of benzo(a)pyrene B(a)P in sample BH205/0.1 was 2.2 mg/kg which exceeded the ESL – A of 0.7 mg/kg and the concentration of benzo(a)pyrene TEQ of 3.1 mg/kg exceeded the HIL – A of 3 mg/kg. Subsequent testing around Bore 205 indicated that this exceedance was localised to BH205/0.1m depth. Statistical analysis of the B(a)P results from the previous and current investigations of the fill material across the site was undertaken, using the USEPA ProUCL program. The 95% UCL of the arithmetic mean for benzo(a)pyrene B(a)P in the samples was within the EIL of 0.7 mg/kg;

It is noted that the B(a)P ESL is a low reliability value. Higher reliability screening levels have been published in CRC CARE *Risk-based Management and Remediation Guidance for Benzo(a)pyrene* (CRC CARE, 2017). The high reliability value of 33 mg/kg (or ranging from 21 mg/kg to 135 mg/kg) for fresh B(a)P suggests that the concentrations of B(a)P detected at the site are unlikely to pose an unacceptable risk to terrestrial ecology and therefore the exceedance is not considered to be of concern.

A minor exceedance of Copper in Bore 212/0.2-0.3 m was 66 mg/kg with which exceeded the ESL-A value of 55 mg/kg. Statistical analysis of the Copper from the previous and current investigations of the fill material across the site was undertaken, using the USEPA ProUCL program. The 95% UCL of the arithmetic mean for copper in the samples was within the EIL of 55 mg/kg;

Based on the above, the benzo(a)pyrene and copper exceedances of the HILs and EILs are not considered to be statistically significant.

13.2 Asbestos

Reported concentrations of asbestos in the soil samples were below the laboratory limit of reporting of 0.1 g/kg.

13.3 Preliminary Waste Classification

In order to assess the potential waste classification for fill soils to be removed as part of the proposed development, a preliminary waste classification of fill soils in the boreholes was undertaken.

The NSW EPA (2014) *Waste Classification Guidelines* contains a six-step procedure for determining the type of waste and the waste classification. Part of the procedure, for materials not classified as special waste or pre-classified waste, is a comparison of analytical data initially against contaminant threshold (CT) values specific to a waste category. Alternatively, the data can be assessed against specific contaminant concentration (SCC) thresholds when used in conjunction with TCLP thresholds.

The CT, SCC, and TCLP values relevant to this preliminary waste classification are shown in Table G3, Appendix G.

The following Table 3 presents the results of the six-step procedure outlined in EPA (2014) for determining the type of waste and the waste classification. This process applies to the fill at the site.

	Step	Comments	Rationale
1.	Is it special waste?	No	No asbestos-containing materials (ACM), coal tar, clinical or related waste, or waste tyres were detected in any samples or observed on the site surface or in any of the boreholes
			Asbestos was not detected by the analytical laboratory.
2.	Is it liquid waste?	No	Materials composed of a soil matrix.
3.	Is the waste "pre-classified"?	No	The fill is not pre-classified with reference to NSW EPA (2014).
4.	Does the Waste have hazardous waste characteristics	No	The fill was not observed to contain or considered at risk to contain explosives, gases, flammable solids, oxidising agents, organic peroxides, toxic substances, corrosive substances, coal tar, batteries, lead paint or dangerous goods containers.
5.	Chemical Assessment	Conducted	Refer to Table G3 in Appendix G.
6. pu	Is the waste putrescible or non- trescible?	Non- putrescible	The fill does not contain materials considered to be putrescible ^a .

Table 3: Six Step Classification

Note: a wastes that are generally not classified as putrescible include soils, timber, garden trimmings, agricultural, forest and crop materials, and natural fibrous organic and vegetative materials (NSW EPA, 2014).

All sample analysis was conducted by Envirolab Services in accordance with the chain-of-custody prepared by DP.

As shown in Table G3, all contaminant concentrations for the analysed fill samples were within the contaminant thresholds (CT1s) for General Solid Waste (GSW), except for benzo(a)pyrene in BH205 at 0.1 m. A TCLP test was conducted for benzo(a)pyrene on sample BH205/0.1. The SCC and TCLP concentrations for BH205/0.1 were within the contaminant thresholds SCC1 and TCLP1, for GSW, respectively.

With respect to the classification of the natural soils, the samples collected and analysed from the natural soils reported concentrations below the PQL apart from some metals, which were considered to be within background concentrations for Sydney. The natural soils did not display signs of contamination (i.e., odours, staining). Given this and that the fill recorded low levels of contamination, the natural soils encountered within the depth of this investigation are therefore considered to have a preliminary classification of virgin excavated natural material (VENM).

Note: The information provided in this section does not constitute a formal waste classification for offsite disposal purposes. Should any fill or soils require off-site disposal a formal waste classification assessment must be undertaken and reported. In addition, if any soil or fill materials are designated for off-site re-use (other than VENM) then a formal classification must be undertaken under the appropriate Resource Recovery Order.

13.4 Data Quality Assurance and Quality Control

The data quality assurance and quality control (QA/QC) results are included in Appendix J. Based on the results of the field QA and field and laboratory QC, and evaluation against the data quality indicators (DQI) it is concluded that the field and laboratory test data obtained are reliable and useable for this assessment.

14. Conclusions and Recommendations

The DSI comprised a review of previous contamination reports including site history, a site walkover and an intrusive soil investigation to provide recommendations and data on the contamination status at the site proposed for redevelopment.

Contaminant concentrations in all the soil samples tested were below the adopted PQL and or SAC except for an exceedance of benzo(a)pyrene TEQ at BH205 and copper at BH214. Based on the above, the benzo(a)pyrene and copper exceedances of the HILs and EILs are not considered to be statistically significant.

Based on the findings of this investigation and the comments provided in Section 13, DP concludes that the potential for contamination constraints at the site is considered to be relatively low. Given the absence of any indicators of significant soil contamination at the site, groundwater investigations are not considered to be required at this time.

However, as with any site, there is always the potential that concealed structures and / or contaminated materials may be present at the site, and this should be considered during bulk earthworks for the proposed development. Furthermore, an Unexpected Finds Protocol will need to be established for use

during earthworks, to ensure that due process is carried out in the event of a possible contaminated find.

Based on the results of the DSI it is considered that the site can be made suitable for the proposed development subject to implementation of the recommendations above.

15. References

CRC CARE. (2017). *Risk-based Management and Remediation Guidance for Benzo(a)pyrene.* Technical Report no. 39: Cooperative Research Centre for Contamination Assessment and Remediation of the Environment.

NEPC. (2013). National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]. Australian Government Publishing Services Canberra: National Environment Protection Council.

NSW EPA. (1995). *Contaminated Sites, Sampling Design Guidelines.* NSW Environment Protection Authority.

NSW EPA. (2014). *Waste Classification Guidelines, Part 1: Classifying Waste.* NSW Environment Protection Authority.

NSW EPA. (2020). *Guidelines for Consultants Reporting on Contaminated Land.* Contaminated Land Guidelines: NSW Environment Protection Authority.

16. Limitations

Douglas Partners (DP) has prepared this report for this project at John Palmer Public School, The Ponds in accordance with DP's proposal dated 2 June 2021 and was commissioned by the NSW Department of Education – Schools Infrastructure. The work was carried out under School Infrastructure NSW Standard Form Agreement SINSW02064/21 dated 6 July 2021. This report is provided for the exclusive use of NSW Department of Education for this project only and for the purposes as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage. In preparing this report DP has necessarily relied upon information provided by the client and/or their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and/or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after DP's field testing has been completed.

DP's advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by DP in this report may be affected by undetected variations in ground conditions

across the site between and beyond the sampling and/or testing locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.

The assessment of atypical safety hazards arising from this advice is restricted to the (geotechnical / environmental / groundwater) components set out in this report and based on known project conditions and stated design advice and assumptions. While some recommendations for safe controls may be provided, detailed 'safety in design' assessment is outside the current scope of this report and requires additional project data and assessment.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

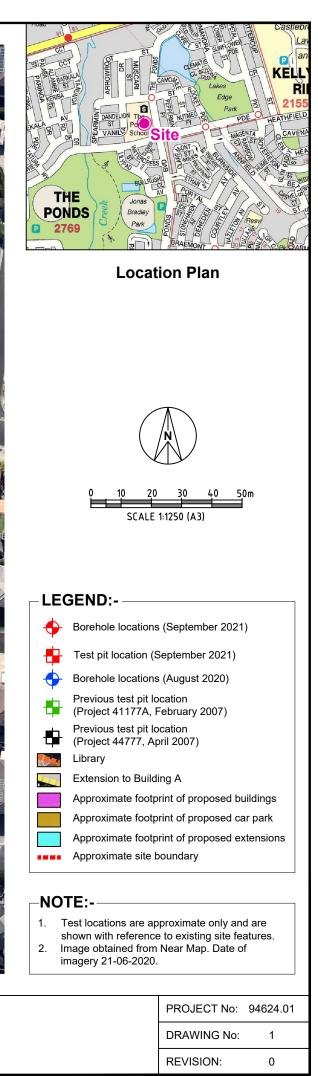
This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

Asbestos has not been detected by observation or by laboratory analysis, either on the surface of the site, or in filling materials at the test locations sampled and analysed. Building demolition materials, such as concrete, were, however, located in previous below-ground filling and these are considered as indicative of the possible presence of hazardous building materials (HBM), including asbestos.

Although the sampling plan adopted for this investigation is considered appropriate to achieve the stated project objectives, there are necessarily parts of the site that have not been sampled and analysed. This is either due to undetected variations in ground conditions or to budget constraints (as discussed above), or to parts of the site being inaccessible and not available for inspection/sampling, or to vegetation preventing visual inspection and reasonable access. It is therefore considered possible that HBM, including asbestos, may be present in unobserved or untested parts of the site, between and beyond sampling locations, and hence no warranty can be given that asbestos is not present.

Douglas Partners Pty Ltd

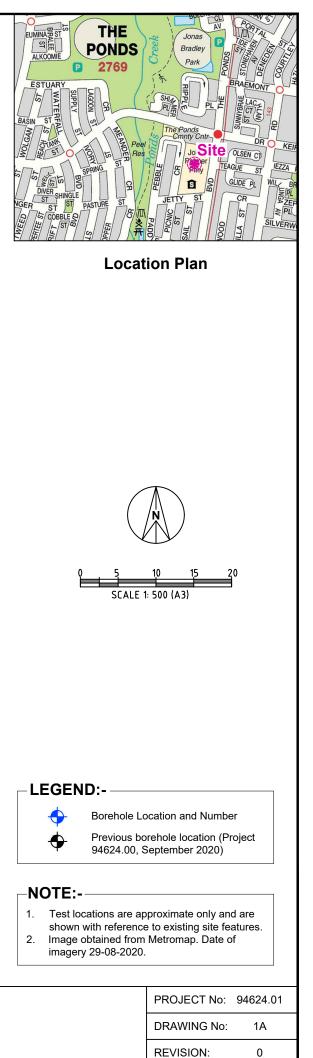
Appendix A


Drawing

dD	Doug	las Pa	rtners
NY	Geotechnics	Environment	Groundwater

CLIENT: Woolacotts Consulting Engineers Pty Ltd		
OFFICE: North West Sydney	DRAWN BY: JST	
SCALE: As shown	DATE: 8 October 2021	

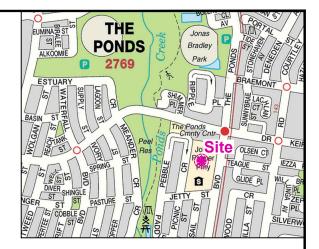
TITLE: Site and Test Location Plan John Palmer Public School Upgrade 85 The Ponds Boulevard, The Ponds

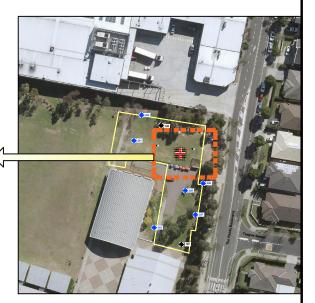


dh	Douq	las Pa	rtners I Groundwater
<u>v</u> p	Geotechnics	I Environment	Groundwater

CLIENT: NSW Department of Education						
OFFICE: North West Sydney	DRAWN BY: JST					
SCALE: As shown	DATE: 8 October 2021					

TITLE:Site and Test Location PlanJohn Palmer Public School Upgrade85 The Ponds Boulevard, The Ponds


P:\NSW\94624.01\94624.01.D.001A.Rev0.dwg


	Douglas Partners	
<u> </u>	Douglas Partners Geotechnics Environment Groundwater	

CLIENT: NSW Department of Education						
OFFICE: North West Sydney	DRAWN BY: JST					
SCALE: NTS	DATE: 8 October 2021					

TITLE:Site and Test Location PlanJohn Palmer Public School Upgrade85 The Ponds Boulevard, The Ponds

Location Plan

LEGEND:-

Borehole locations (September 2021)

Previous borehole location (July 2021)

Previous borehole location (Project 94624.00, September 2020)

NOTE:-

 Test locations are approximate only and are shown with reference to existing site features.
 Image obtained from Metromap. Date of imagery 29-08-2020.

> PROJECT No: 94624.01 DRAWING No: 1B

JRAWING NO:

REVISION:

0

Appendix B

About This Report

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report; and
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on borehole or pit spacing and sampling frequency;
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

DATA FOR DESCRIPTION AND CLASSIFICATION OF SOILS – Page 1

Major Divisions			ivisions Description			Field Identification					
				Group Symbol*	Typical Name	Grading		Nature of Fines	Dry Strength		
(mm §		VEL	an	GW	Well graded gravels and gravel-sand mixtures, little or no fines.	Good	Wide range in grain size	'Clean' materials (not	Nee		
SRAINED SOILS (excluding that larger than 63 mm)	r than 63	GRAVEL	e than 50% of coarse ins are greater than 2.36 mm	GP	Poorly graded gravels and gravel-sand mixtures, little or no fines.	Poor	Predominantly one size or gap graded	enough fines to bind grains)	None		
	hat large mm	LS LLY	More than 50 grains are g 2.36	GM	Silty gravels, gravel-sand-silt mixtures.		'Dirty' materials with	Fines are non-plastic	None to medium		
AINED S	cluding t in 0.075 i	GRAVELLY SOILS	More grair	GC	Clay gravels, gravel-sand-clay mixtures.	 Good to Fair 	excess of fines	Fines are plastic	Medium to high		
COARSE-GRAINED SOILS	y mass, (ex greater tha	<u> 9</u>	nse 6 mm	SW	Well graded sands and gravelly sands, little or no fines.	Good Wide range in grai	Wide range in grain size	'Clean' materials (not			
COAF by dry n	는 는 으	SAND	% of coarse than 2.36 mm	SP	Poorly graded sands and gravelly sands, little or no fines.	Poor	Predominantly one size or gap graded	enough fines to bind grains)	None		
	More than 65% by	SOILS	SANDY SOILS More than 50% of grains are less than	SM	Silty sand, sand-silt mixtures.	Cood to Fair 'Dirty' materials with	Fines are non-plastic	None to medium			
		SAND	More grains	SC	Clayey sands, sand-clay mixtures.	 Good to Fair 	excess of fines	Fines are plastic	Medium to high		
	or coarse g Il classifica		ed soils where the fines content is between 5% and 12%, the soil shall be given a Dry Strength			Dilatancy	Toughness				
	han 63			ML	Inorganic silts, very fine sands, rock flour, silty or clayey fine sands.	None to low		Slow to rapid	Low		
	mass, (excluding that larger than 63 mm	Liquid Limit E Liquid Limit E less than 35		Liquid Limit less than 35%		CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays.	Medium to high Low to medium		None to slow	Medium
SOILS	uding the			OL	Organic silts and organic silty clays of low plasticity	Slow	Low				
FINE-GRAINED SOILS	ass, (exc m			CI	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays.	Medium to high		None to slow	Medium		
FINE-G	by dry mi 0.075 m			III C/0.0		MH	Inorganic silts, micaceous or diatomaceous fine sands or silts, elastic silts.	Low to medium		None to slow	Low to medium
	than 35% by dry is less than 0.075	great	d Limit er than 0%	СН	Inorganic clays of high plasticity, fat clays.	High to very hig	h	None	High		
	More th mm) is l			ОН	Organic clays of medium to high plasticity.	Medium to high		None to very slow	Low to medium		
Pt Peat muck and other highly organic soils.				Best much and other bights second a sile	Roadily identifie	d by colour, adour, apop	gy feel and generally fibrous text				

ORDER OF DESCRIPTION

In the soil description the terms should be given in the following order: SOIL NAME & UNIFIED CLASSIFICATION SYMBOL.

Plasticity, behavioural or particle characteristics of the primary soil component Colour

Secondary soil components' name(s), estimated proportion(s), plasticity, behavioural or particle characteristics, colour and where practical, its plasticity

Moisture Condition (disturbed or undisturbed state)

Consistency of fine-grained soils (undisturbed state only)

Relative density of coarse-grained soils (determined by in situ tests)

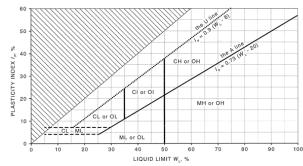
Structure of soil (in undisturbed state)

Zoning

Defects

Cementing

Origin of soil


Additional observations

EXAMPLES:

Silty SAND SM: fine to coarse grained, light brown, 15% non-plastic fines, with gravel, 20% angular particles, moist, apparently dense in place, alluvial.

SILT ML: low plasticity, brown, trace fine sand, w > PL, firm, estuarine.

PLASTICITY CHART (after AS 1726:2017)

PARTICLE SIZES

Silt and Clay

> 200 mm

< 0.075 mm

63 mm to 200 mm

2.36 mm to 63 mm 0.075 mm to 2.36 mm

The classification system excludes the boulder and cobble	Boulders
fractions of the soil and classifies only the materials less than 63 mm in size.	Cobbles
	Gravel
	Sand

	SAND		SILT
COARSE	MEDIUM	FINE	SILT
2.36-0.6 mm	0.6-0.2 mm	0.2-0.075 mm	0.075-0.002 mm

DATA FOR DESCRIPTION AND CLASSIFICATION OF SOILS – Page 2

		GRAVEL
Density	Field Test	
LOOSE	During position of voids and particle position	
DENSE	By inspection of voids and particle packing.	

	SAN	1D					
Density	Field Test	DPT Blows per 300 mm ⁽¹⁾ Dry ⁽²⁾ Wet ⁽³⁾		SPT N Blows	CPT q _c MPa	Relative Density %	Estimated Friction Angle
VERY LOOSE	Easily penetrated with 13 mm reinforcing rod pushed by hand.	< 1	0	0 - 4	0 – 2	0 – 15	25 - 30
LOOSE	Easily penetrated with 13 mm reinforcing rod pushed by hand. Can be excavated with a spade; 50 mm wooden peg can be easily driven.	1 - 3	< 1	4 – 10	2 – 5	15 – 35	27 - 32
MEDIUM DENSE	Penetrated 300 mm with 13 mm reinforcing rod driven by 2 kg hammer – hard shovelling.	3 - 8	1 - 6	10 – 30	5 – 15	35 – 65	30 - 35
DENSE	Penetrated 300 mm with 13 mm reinforcing rod driven with 2 kg hammer, requires pick for excavation; 50 mm wooden peg hard to drive	8 – 15	6 - 10	30 – 50	15 – 25	65 – 85	35 - 40
VERY DENSE	Penetrated only 25 – 50 mm with 13 mm reinforcing rod driven by 2 kg hammer.	> 15	> 10	> 50	> 25	85 – 100	38 - 43

-

⁽¹⁾Valid for depths up to approx 1m bgl; ⁽²⁾At a mc of approx. 3%-5%; ⁽³⁾At a mc of approx. 15%.

		CLA'	

Consistency	Field Test		DCP Blows per 150 mm	SPT N Blows	Undrained Shear Strength C _u Shear Vane (kPa)	Unconfined Compressive Strength qu PP* (kPa)	CPT q _c kPa
VERY SOFT	Easily penetrated > 40 mm by thumb. Exudes between thumb and fingers when squeezed in hand	Shear Vane Preferred	< 1	< 2	< 12	< 25	0 - 180
SOFT	Easily penetrated 10 mm by thumb. Moulded by light finger pressure.		1 – 1.5	2 – 4	12 – 25	25 – 50	180 - 375
FIRM	Impression by thumb with r effort. Moulded by strong fi		1.5 – 3	4 – 8	25 – 50	50 – 100	375 - 750
STIFF	Slight impression by thumb moulded with finger	cannot be	3-6	8 – 16	50 – 100	100 – 200	750 - 1500
VERY STIFF	Very tough. Readily indente thumbnail.	ed by	6 – 12	16 – 32	100 – 200	200 - 400	1500 - 3000
HARD	Brittle. Indented with difficu thumbnail.	Ity by	> 12	> 32	> 200	> 400	> 3000
FRIABLE	Easily crumbled or broken i	nto small pieces	s by hand.				

* Pocket Penetrometer (**PP**) may overestimate q_u by a factor of 1.5 to 2.0. Note: Visual-tactile assessment is indicative only. Use in-situ testing for logging

MOISTURE OF FINE GRAINED SOILS

Moist, dry of plastic limit	w < PL	Wet, near liquid limit	w≈LL
Moist, near plastic limit	w≈PL	Wet, wet of liquid limit	w > LL
Moist, wet of plastic limit	w > PL		

DEGREE OF SATURATION OF SANDS

Condition of Sand	Criteria	Degree of Saturation (%)
Dry	Non-cohesive and free-running	0 – 25%
Moist	Feels cool, darker colour, grains tend to adhere to one another	25 – 75%
Wet	Feels cold, makes hands wet, should be close to water table	75 – 99%

FIELD IDENTIFICATION PROCEDURE FOR FINE GRAINED SOILS OR FRACTIONS

These procedures are to be performed on the minus 0.4 mm sieve size particles. For field classification purposes, screening is not intended, simply remove by hand the coarse particles that interfere with the tests.

Dilatancy (Reaction to shaking):

After removing particles larger than 0.4 mm sieve size, prepare a pat of moist soil with a volume of about 8000 mm³. Add enough water if necessary to make the soil soft but not sticky. Place the pat in the open palm of one hand and shake horizontally, striking vigorously against the other hand several times. A positive reaction consists of the appearance of water on the surface of the pat which changes to a livery consistency and becomes glossy. When the sample is squeezed between the fingers, the water and gloss disappear from the surface, the pat stiffens and finally it cracks or crumbles. The rapidity of appearance of water during shaking and of its disappearance during squeezing assist in identifying the character of the fines in a soil. Very fine clean sands give the quick eraction. Inorganic silts, such as a typical rock flour, show a moderately quick reaction.

Dry Strength (Crushing characteristics):

After removing particles larger than 0.4 mm sieve size, mould a pat of soil to the consistency of putty, adding water if necessary. Allow the pat to dry completely by oven sun or air drying, and then test its strength by breaking and crumbling between the fingers. This strength is a measure of the character and quantity of the colloidal fraction contained in the soil. The dry strength increases with increasing plasticity.

High dry strength is characteristic for clays of the CH group. A typical inorganic silt possesses only very slight dry strength. Silty fine sands and silts have about the same dry strength but can be distinguished by the feel when powdering the dried specimen. Fine sand feels gritty whereas a typical silt has the smooth feel of flour.

Toughness (Consistency near plastic limit):

After removing particles larger than the 0.4 mm sieve size, a specimen of soil about 12 mm cube in size, is moulded to the consistency of putty. If too dry, water must be added and if sticky, the specimen should be spread out in a thin layer and allowed to lose some moisture by evaporation. Then the specimen is rolled out by hand on a smooth surface or between the palms into a thread about 3 mm in diameter. The thread is then folded and re-rolled repeatedly. During this manipulation the moisture content is gradually reduced, and the specimen stiffens, finally loses its plasticity, and crumbles when the plastic limit is reached. After the thread crumbles, the pieces should be lumped together, and a slight kneading action continued until the lump crumbles. The toucher the thread near the plastic limit and the stiffer the lump when it finally crumbles, the more potent is the colloidal clay

The tougher the thread near the plastic limit and the stiffer the lump when it finally crumbles, the more potent is the colloidal clay fraction in the soil. Weakness of the thread at the plastic limit and quick loss of coherence of the lump below the plastic limit indicate either inorganic clay or low plasticity, or materials such as kaolin-type clays and organic clays which occur below the Aline.

Highly organic clays have a very weak and spongy feel at the plastic limit.

PROPORTION OF MINOR AND SECONDARY COMPONENTS

Term	Meaning	Approximate Proportion	
		Coarse Soils	Fine Soils
Trace	Just detectable by feel or eye. Soil properties of main component virtually unaffected.	< 5% fines < 15 % coarse fraction	< 15% sand / gravel
With	Easily detectable by feel or eye. Soil properties only slightly affected by minor components.	5% – 12% fines 15% – 30% coarse fraction	15% – 30% sand / gravel
Prefix	Easily detected by feel or eye. Soil properties significantly affected by secondary components.	> 12% fines > 30% coarse fraction	> 30% sand / gravel

PROPORTIONS OF SECONDARY COMPONENTS

5%	12%	35%	

DATA FOR DESCRIPTION AND CLASSIFICATION OF ROCK

SEDIMENTARY ROCK TYPE DEFINITIONS

Rock Type	Definition
Conglomerate	More than 50% of the rock consists of gravel sized (greater than 2 mm) fragments.
Sandstone	More than 50% of the rock consists of sand sized (0.06 mm to 2 mm) grains.
Siltstone	More than 50% of the rock consists of silt-sized (less than 0.06 mm) granular particles and the rock is not laminated.
Claystone	More than 50% of the rock consists of clay or sericitic material and the rock is not laminated.
Shale	More than 50% of the rock consists of silt or clay sized particles and the rock is laminated.

Rocks possessing characteristics of two groups are described by their predominant particle size with reference also to the minor constituents, e.g. Clayey SANDSTONE, Sandy SHALE.

DEGREE OF WEATHERING

Term	Abbrev	viation	Definition
Residual soil	RS		Material is weathered to such an extent that it has soil properties. Mass structure, material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.
Extremely Weathered	XW		Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible.
Highly Weathered	HW	DW*	The whole of the rock is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching or may be decreased due to deposition of weathering products in pores.
Moderately Weathered	MW	,	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable but shows little or no change of strength from fresh rock.
Slightly Weathered	SW		Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.
Fresh	FR		Rock shows no sign of decomposition of individual minerals or colour changes.

STRATIFICATION

Term

Thinly laminated

Thinly bedded

Medium bedded

Thickly bedded

Very thickly bedded

Very thinly bedded

Laminated

Separation of

Stratification Planes

< 6 mm

6 mm to 20 mm

20 mm to 60 mm

60 mm to 0.2 m

0.2 m to 0.6 m

0.6 m to 2 m

> 2 m

*If highly and moderately weathered rock cannot be differentiated use the term, 'Distinctly Weathered (DW)'.

ORDER OF DESCRIPTION

In the rock description the terms should be		
given in the following order:		
ROCK NAME		
Grain size and type		
Colour		
Fabric and texture		
Inclusions and minor components		
Moisture content		
Durability		
Strength		
Weathering and/or alteration		
Defects - type, orientation, spacing, roughness		
Stratigraphic unit		
Geological structure		

DEGREE OF FRACTURING

This classification applies to diamond drill cores and refers to the spacing of all types of natural fractures along which the core discontinuous. These include bedding plane partings, joints and other rock defects, but exclude artificial fractures such as drilling breaks.

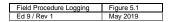
Term	Description
Fragmented	The core is comprised primarily of fragments of length less than 20 mm, and mostly of width less than the core diameter
Highly Fractured	Core lengths are generally less than 20 mm to 40 mm with occasional fragments
Fractured	Core lengths are mainly 30 mm to 100 mm with occasional shorter and longer sections
Slightly Fractured	Core lengths are generally 300 mm or longer with occasional sections of 100 mm to 300 mm
Unbroken	The core contains very few fractures

ROCK STRENGTH

Rock strength is classified using the unconfined compressive strength (UCS). Where adequate UCS data are not available then the classification may be based on the Point Load Strength (I_{s(50)}) and refers to the strength of the rock substance in the direction normal to the bedding.

Strength Term	UCS MPa	Field Guide	Approx I _{S(50)} MPa
		Material less than very low strength is to be described using soil properties	
Very Low	2	Material crumbles under firm blows with sharp end of pick; can be peeled with knife. Pieces up to 30 mm thick can be broken by finger pressure.	0.1
Low	6	Easily scored with a knife; indentations 1 mm to 3 mm show in the specimen with firm blows of the pick point; has dull sound under hammer. A piece of core 150 mm long by 50 mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.	0.3
Medium		Readily scored with a knife; a piece of core 150 mm long by 50 mm diameter can be broken by hand with difficulty.	
	20		1.0
High		A piece of core 150 mm long by 50 mm diameter cannot be broken by hand but can be broken by a pick with a single firm blow; rock rings under hammer.	
	60		3.0
Very High	7	Hand specimen breaks with pick after more than one blow; rock rings under hammer.]
	200		10.0
Extremely High]	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.	1

The approximate point load strength (I_{S(50)}) is based on an assumed ratio to UCS of 1:20. This ratio may vary widely and should be determined for each site and rock type.


DISCONTINUITIES / DEFECTS

The actual defect is described not the process which formed or may have formed it, e.g. 'sheared zone', not	Coating or Infilling: Clean: no visible coating or infilling.	Roughness: Very Rough
'zone of shearing'; the latter suggests a currently active process.	Stained: no visible coating or infilling but surfaces are	Rough
Spacing*:	discoloured by mineral staining.	Smooth Polished
A measure of the spacing of discontinuities. Measure mean and range of spacings for each set where possible (do not use descriptive terms).	Veneer: a visible coating or infilling of soil or mineral substance but usually unable to be measured (less than 1 mm).	Slickensided
Thickness, openness:	Patchy Veneer: if discontinuous over the plane.	Shape*:
Measured in millimetres normal to plane of the discontinuity.	Coating: a visible coating or infilling of soil or mineral substance, greater than 1 mm thick. Describe composition and	Planar Curved
Persistence*:	thickness.	Undulating
The areal extent of a discontinuity. Give trace lengths in metres.		Stepped Irregular
Roughness and Shape*:		
A measure of the inherent surface unevenness and waviness of the defect relative to its mean plane.	* Usually determined in field exposures	

Discontinuity Spacing in Three Dimensions:

The spacing of discontinuities in exposures may be described with reference to the size and shape of rock bounded by the discontinuities.

Equidimensional	Same size in all directions
Tabular	Thickness much less than length or width
Columnar	Height much greater than cross section
Polyhedral	Irregular defects without obvious pattern

Sampling

Sampling is carried out during drilling or test pitting to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thinwalled sample tube into the soil and withdrawing it to obtain a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Test Pits

Test pits are usually excavated with a backhoe or an excavator, allowing close examination of the insitu soil if it is safe to enter into the pit. The depth of excavation is limited to about 3 m for a backhoe and up to 6 m for a large excavator. A potential disadvantage of this investigation method is the larger area of disturbance to the site.

Large Diameter Augers

Boreholes can be drilled using a rotating plate or short spiral auger, generally 300 mm or larger in diameter commonly mounted on a standard piling rig. The cuttings are returned to the surface at intervals (generally not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube samples.

Continuous Spiral Flight Augers

The borehole is advanced using 90-115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow sampling or in-situ testing. This is a relatively economical means of drilling in clays and sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are disturbed and may be mixed with soils from the sides of the hole. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively low reliability, due to the remoulding, possible mixing or softening of samples by groundwater.

Non-core Rotary Drilling

The borehole is advanced using a rotary bit, with water or drilling mud being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from the rate of penetration. Where drilling mud is used this can mask the cuttings and reliable identification is only possible from separate sampling such as SPTs.

Continuous Core Drilling

A continuous core sample can be obtained using a diamond tipped core barrel, usually with a 50 mm internal diameter. Provided full core recovery is achieved (which is not always possible in weak rocks and granular soils), this technique provides a very reliable method of investigation.

Standard Penetration Tests

Standard penetration tests (SPT) are used as a means of estimating the density or strength of soils and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, Methods of Testing Soils for Engineering Purposes - Test 6.3.1.

The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300 mm. In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form.

 In the case where full penetration is obtained with successive blow counts for each 150 mm of, say, 4, 6 and 7 as:

 In the case where the test is discontinued before the full penetration depth, say after 15 blows for the first 150 mm and 30 blows for the next 40 mm as:

15, 30/40 mm

Sampling Methods

The results of the SPT tests can be related empirically to the engineering properties of the soils.

Dynamic Cone Penetrometer Tests / Perth Sand Penetrometer Tests

Dynamic penetrometer tests (DCP or PSP) are carried out by driving a steel rod into the ground using a standard weight of hammer falling a specified distance. As the rod penetrates the soil the number of blows required to penetrate each successive 150 mm depth are recorded. Normally there is a depth limitation of 1.2 m, but this may be extended in certain conditions by the use of extension rods. Two types of penetrometer are commonly used.

- Perth sand penetrometer a 16 mm diameter flat ended rod is driven using a 9 kg hammer dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the density of sands and is mainly used in granular soils and filling.
- Cone penetrometer a 16 mm diameter rod with a 20 mm diameter cone end is driven using a 9 kg hammer dropping 510 mm (AS 1289, Test 6.3.2). This test was developed initially for pavement subgrade investigations, and correlations of the test results with California Bearing Ratio have been published by various road authorities.

Symbols & Abbreviations

Introduction

These notes summarise abbreviations commonly used on borehole logs and test pit reports.

Drilling or Excavation Methods

С	Core Drilling
R	Rotary drilling
SFA	Spiral flight augers
NMLC	Diamond core - 52 mm dia
NQ	Diamond core - 47 mm dia
HQ	Diamond core - 63 mm dia
PQ	Diamond core - 81 mm dia

Water

\triangleright	Water seep
\bigtriangledown	Water level

Sampling and Testing

- Auger sample А
- В Bulk sample
- D Disturbed sample Е
- Environmental sample
- U₅₀ Undisturbed tube sample (50mm)
- W Water sample
- pocket penetrometer (kPa) рр
- PID Photo ionisation detector
- PL Point load strength Is(50) MPa
- S Standard Penetration Test V Shear vane (kPa)

Description of Defects in Rock

The abbreviated descriptions of the defects should be in the following order: Depth, Type, Orientation, Coating, Shape, Roughness and Other. Drilling and handling breaks are not usually included on the logs.

Defect Type

В	Bedding plane
Cs	Clay seam
Cv	Cleavage
Cz	Crushed zone
Ds	Decomposed seam
F	Fault
J	Joint
Lam	lamination
Pt	Parting
Sz	Sheared Zone
V	Vein

Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

h horizonta

21

- vertical ٧
- sub-horizontal sh
- sub-vertical sv

Coating or Infilling Term

cln	clean
со	coating
he	healed
inf	infilled
stn	stained
ti	tight
vn	veneer

Coating Descriptor

ca	calcite
cbs	carbonaceous
cly	clay
fe	iron oxide
mn	manganese
slt	silty

Shape

cu	curved
ir	irregular
pl	planar
st	stepped
un	undulating

Roughness

ро	polished
ro	rough
sl	slickensided
sm	smooth
vr	very rough

Other

fg	fragmented
bnd	band
qtz	quartz

Symbols & Abbreviations

Graphic Symbols for Soil and Rock

General

Asphalt Road base

Concrete

Filling

Soils

Topsoil

Peat

Clay

Silty clay

Sandy clay

Gravelly clay

Shaly clay

Silt

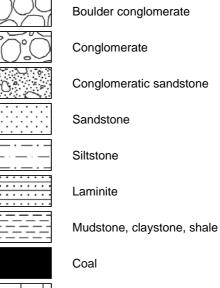
Clayey silt

Sandy silt

Sand

Clayey sand

Silty sand


Gravel

Sandy gravel

Cobbles, boulders

Talus

Sedimentary Rocks

Limestone

Metamorphic Rocks

Slate, phyllite, schist

Quartzite

Gneiss

Igneous Rocks

Granite

Dolerite, basalt, andesite

Dacite, epidote

Tuff, breccia

Porphyry

Appendix C

Site Photographs

Photo 1 - Site looking towards the north

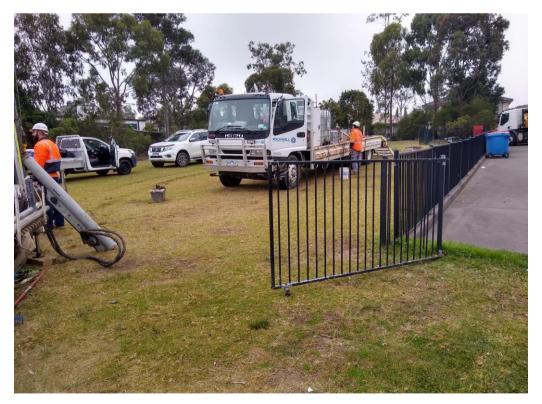


Photo 2 - Site looking towards the north-east

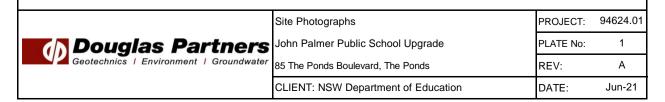


Photo 3 - Site looking towards the north-west

Photo 4 - Site looking towards the south-east

S	Site Photographs	PROJECT:	94624.01		
	John Palmer Public School Upgrade	PLATE No:	2		
	85 The Ponds Boulevard, The Ponds	REV:	А		
	CLIENT: NSW Department of Education	DATE:	Jun-21		

Appendix D

Data Quality Objectives

Appendix D Data Quality Objectives 85 The Ponds Boulevard, The Ponds

D1.0 Data Quality Objectives

The DSI has been devised broadly in accordance with the seven-step data quality objective (DQO) process which is provided in Appendix B, Schedule B2 of NEPC *National Environment Protection* (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM] (NEPC, 2013).

	Step	Summary
		The objective of the investigation is to confirm the contamination status of the site with respect to the proposed land use. The report is being undertaken as the land is to be redeveloped for the expansion of John Palmer Public School.
1:	State the problem	A preliminary conceptual site model (CSM) has previously been prepared (Section 8) for the proposed development.
		The project team consisted of experienced environmental engineers, geotechnical engineers and scientists working in the roles of Project Principal, Project Reviewer, Project Manager, field staff.
2:	Identify the decisions / goal	The site history has identified possible contaminating previous uses which are identified in the CSM (Section 8). The CSM identifies the associated contaminants of potential concern (COPC) and the likely impacted media. The site assessment criteria (SAC) for each of the COPC are detailed in Appendix F.
	of the study	The decision is to establish whether or not the results fall below the SAC or whether or not the 95% upper confidence limit of the sample population falls below the SAC. On this basis, an assessment of the site's suitability from a contamination perspective and whether (or not) further assessment and / or remediation will be derived.
3:	Identify the information inputs	Inputs to the investigation will be the results of analysis of samples to measure the concentration of COPC identified in the CSM (Section 8) at the site using NATA accredited laboratories and methods, where possible. The SAC for each of the COPC are detailed in Appendix F.
4:	Define the study boundaries	The lateral boundaries of the investigation area are shown on Drawing 1, Appendix A. The vertical boundaries are to the extent of contamination impact as determined from the site history assessment and site observations. The assessment is limited to the timeframe over which the field investigation was undertaken.
5:	Develop the analytical	The decision rule is to compare all analytical results with SAC (Appendix F, based on NEPC (2013)). Where guideline values are absent, other sources of guideline values accepted by NEPC (2013) shall be adopted where possible.
	approach (or decision rule)	Where a sample result exceeds the adopted criterion, a further site-specific assessment will be made as to the risk posed by the presence of that contaminant(s).
	· · · · · · · · · · · · · · · · · · ·	Initial comparisons will be with individual results then, where required, summary statistics (including mean, standard deviation and 95% upper confidence limit (UCL) of the arithmetic

	Step	Summary
		mean (95% UCL) to assess potential risks posed by the site contamination. Quality control results are to be assessed according to their relative percent difference (RPD) values. For field duplicates, triplicates and laboratory results, RPDs should generally be below 30%; for field blanks and rinsates, results should be at or less than the limits of reporting (NEPC, 2013). The field and laboratory quality assurance assessment is included in Appendix J.
6:	Specify the performance or acceptance criteria	Baseline condition: Contaminants at the site exceed human health and environmental SAC and poses a potentially unacceptable risk to receptors (null hypothesis). Alternative condition: Contaminants at the site comply with human health and environmental SAC and as such, do not pose a potentially unacceptable risk to receptors (alternative hypothesis). Unless conclusive information from the collected data is sufficient to reject the null
		hypothesis, it is assumed that the baseline condition is true.
7:	Optimise the design for obtaining data	As the purpose of the sampling program is to assess for potential contamination across the site, the sampling program is reliant on professional judgement to identify and sample the potentially affected areas.
	5	Further details regarding the proposed sampling plan are presented in Section 9.

References

NEPC. (2013). *National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]*. Australian Government Publishing Services Canberra: National Environment Protection Council.

Douglas Partners Pty Ltd

Appendix E

Field Work Methodology

Appendix E Field Work Methodology 85 The Ponds Boulevard, The Ponds

E1.0 Guidelines

The following key guideline was consulted for the field work methodology:

• NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM] (NEPC, 2013).

E2.0 Soil Sampling

Soil sampling is carried out in accordance with DP standard operating procedures. The general sampling and sample management procedures comprise:

- Collect soil samples directly from the solid flight auger at the nominated sample depths;
- Transfer samples in laboratory-prepared glass jars with Teflon lined lids by hand, capping immediately and minimising headspace within the sample jar;
- Collect ~40 g to 50 g samples in zip-lock bags for asbestos (presence / absence) analysis;
- Wear a new disposable nitrile glove for each sample point thereby minimising potential for crosscontamination;
- Collect 10% replicate samples for QC purposes;
- Label sample containers with individual and unique identification details, including project number, sample location and sample depth (where applicable);
- Place samples into a cooled, insulated and sealed container for transport to the laboratory;
- Laboratory-prepared trip blanks and spikes were taken and subject to the same jar storage and transfer as the field samples;
- Use chain of custody documentation so that sample tracking and custody can be cross-checked at any point in the transfer of samples from the field to the laboratory; and
- Dispatching primary and replicate samples to Envirolab Services Pty Ltd (ELS) a National Association of Testing Authorities (NATA) accredited laboratory for the tests performed.

E3.0 References

NEPC. (2013). National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]. Australian Government Publishing Services Canberra: National Environment Protection Council.

Page 2 of 2

Douglas Partners Pty Ltd

Appendix F

Site Assessment Criteria

Appendix F Site Assessment Criteria 85 The Ponds Boulevard, The Ponds

F1.0 Introduction

F1.1 Guidelines

The following key guidelines were consulted for deriving the site assessment criteria (SAC):

- NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM] (NEPC, 2013).
- CRC CARE Health screening levels for petroleum hydrocarbons in soil and groundwater (CRC CARE, 2011).

F1.2 General

The SAC applied in the current investigation are informed by the CSM which identified human and environmental receptors to potential contamination at the site. Analytical results are assessed (as a Tier 1 assessment) against the SAC comprising primarily the investigation and screening levels of Schedule B1 of NEPC (2013).

The following inputs are relevant to the selection and/or derivation of the SAC:

- Land use: Primary School
 - Corresponding to land use category 'A', residential with garden / accessible soil (home grown produce <10% fruit and vegetable intake, (no poultry)), also includes children's day care centres, preschools and primary schools.
- Soil type: clay.

F2.0 Soils

F2.1 Health Investigation and Screening Levels

The generic health investigation levels (HIL) and health screening levels (HSL) are considered to be appropriate for the assessment of human health risk via all relevant pathways of exposure associated with contamination at the site. The adopted soil HILp and HSL for the contaminants of concern are in Table 1 and Table 2.

Contaminant	HIL-A
Metals	
Arsenic	100
Cadmium	20
Chromium (VI)	100
Copper	6000
Lead	300
Mercury (inorganic)	40
Nickel	400
Zinc	7400
РАН	
B(a)P TEQ	3
Total PAH	300
Phenols	
Phenol	3000
Pentachlorophenol	100
ОСР	
DDT+DDE+DDD	240
Aldrin and dieldrin	6
Chlordane	50
Endosulfan	270
Endrin	10
Heptachlor	6
НСВ	10
Methoxychlor	300
OPP	
Chlorpyrifos	160
РСВ	
РСВ	1

Table 1: Health Investigation Levels (mg/kg)

Contaminant	HSL-A&B
CLAY	0 m to <1 m
Benzene	0.7
Toluene	480
Ethylbenzene	NL
Xylenes	110
Naphthalene	5
TRH F1	50
TRH F2	280

Table 2: Health Screening Levels (mg/kg)

Notes: TRH F1 is TRH C₆-C₁₀ minus BTEX

TRH F2 is TRH > C_{10} - C_{16} minus naphthalene

The soil saturation concentration (Csat) is defined as the soil concentration at which the porewater phase cannot dissolve any more of an individual chemical. The soil vapour that is in equilibrium with the porewater will be at its maximum. If the derived soil HSL exceeds Csat, a soil vapour source concentration for a petroleum mixture could not exceed a level that would results in the maximum allowable vapour risk for the given scenario. For these scenarios, no HSL is presented for these chemicals and the HSL is shown as 'not limiting' or 'NL'

The HSL for direct contact derived from CRC CARE (2011) are in 3.

Contaminant	DC HSL-A	DC HSL-B						
Benzene	100	140						
Toluene	14 000	21 000						
Ethylbenzene	4500	5900						
Xylenes	12 000	17 000						
Naphthalene	1400	2200						
TRH F1	4400	5600						
TRH F2	3300	4200						
TRH F3	4500	5800						
TRH F4	6300	8100						

Table 3: Health Screening Levels for Direct Contact (mg/kg)

Notes: TRH F1 is TRH C6-C10 minus BTEX

TRH F2 is TRH > C_{10} - C_{16} minus naphthalene

F2.2 Asbestos in Soil

Based on the CSM and/or current site access limitations, a detailed asbestos assessment was not considered to be warranted at this stage. However, due to the history of widespread use of ACM products across Australia, ACM can be encountered unexpectedly and sporadically at a site. Therefore,

the presence or absence of asbestos at a limit of reporting of 0.1 g/kg (AS:4964) has been adopted for this investigation / assessment as an initial screen.

F2.3 Ecological Investigation Levels

Ecological investigation levels (EIL) and added contaminant limits (ACL), where appropriate, have been derived in NEPC (2013) for arsenic, copper, chromium (III), nickel, lead, zinc, DDT and naphthalene. The adopted EIL, derived using the interactive (excel) calculation spreadsheet on the NEPM toolbox website are shown in Table 6, with inputs into their derivation shown in Table 5.

Variable	Input	Rationale
Age of contaminants	"Aged" (>2 years)	Given the potential sources of soil contamination are from historic use, the contamination is considered as "aged" (>2 years);
рН	7.3	12 samples were tested for pH as part of the current DSI. 10 samples were tested as part of the previous investigation (DP2020). The average pH value has been used as an initial screening. The pH value adopted is a pH of 7.3.
CEC	15.4 cmol₀/kg	Three selected samples were tested for CEC as part of the current DSI and three were tested in the previous investigation (DP2020). The average CEC value has been used as an initial screening. The CEC value adopted is 15.4 cmol _c /kg.
Clay content	10%	Conservative value for initial screening
Traffic volumes	High	The site is considered to be located within a high traffic area
State / Territory	NSW	-

 Table 5: Inputs to the Derivation of the Ecological Investigation Levels

Table 6: Ecological Investigation Levels (mg/kg)

Contaminant	EIL-A-B-C
Metals	
Arsenic	100
Copper	230
Nickel	230
Chromium III	410

Contaminant	EIL-A-B-C
Lead	1100
Zinc	690
РАН	
Naphthalene	170
OCP	
DDT	180

F2.4 Ecological Screening Levels

Ecological screening levels (ESL) are used to assess the risk of selected petroleum hydrocarbon compounds, BTEX and benzo(a)pyrene to terrestrial ecosystems. The adopted ESL are shown in Table7.

Contaminant	Soil Type	ESL-A-B-C
Benzene	Fine	65
Toluene	Fine	105
Ethylbenzene	Fine	125
Xylenes	Fine	45
TRH F1	Coarse/ Fine	180*
TRH F2	Coarse/ Fine	120*
TRH F3	Fine	1300
TRH F4	Fine	5600
B(a)P	Fine	0.7

 Table7:
 Ecological Screening Levels (mg/kg)

Notes: ESL are of low reliability except where indicated by * which indicates that the ESL is of moderate reliability TRH F1 is TRH C_6 - C_{10} minus BTEX

TRH F2 is TRH > C_{10} - C_{16} including naphthalene

F2.5 Management Limits

In addition to appropriate consideration and application of the HSL and ESL, there are additional considerations which reflect the nature and properties of petroleum hydrocarbons, including:

- Formation of observable light non-aqueous phase liquids (LNAPL);
- Fire and explosion hazards;
- Effects on buried infrastructure e.g.: penetration of, or damage to, in-ground services.

The adopted management limits are in Table8.

Contaminant	Soil Type	ML-A-B-C
TRH F1	Fine	800
TRH F2	Fine	1000
TRH F3	Fine	3500
TRH F4	Fine	10 000

Table 8: Management Limits (mg/kg)

Notes: TRH F1 is TRH C_6 - C_{10} including BTEX TRH F2 is TRH > C_{10} - C_{16} including naphthalene

F3.0 References

CRC CARE. (2011). *Health screening levels for petroleum hydrocarbons in soil and groundwater.* Parts 1 to 3, Technical Report No. 10: Cooperative Research Centre for Contamination Assessment and Remediation of the Environment.

NEPC. (2013). National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]. Australian Government Publishing Services Canberra: National Environment Protection Council.

Douglas Partners Pty Ltd

Appendix G

Summary of Laboratory Results

Table G1: Summary of Laboratory Results - Metals, TRH, BTEX, PAH

			Metals								TRH						BTEX					PAH		
			Arsenic	Cadmium	Total Chromium	Oopp er	Lead	Mercury (in organic)	Nckel	Zino	TRH C6 - C10	TRH>C10-C16	F1 ((C6-C10)- BTEX)	P2 (>C10-C16 less Naphthalene)	F3 (>C16-C34)	F4 (>C34-C40)	Benzere	Toluene	Ethylberzene	Total Xytenes	Naphthraiten e ^b	Berzo(a)pyrene (BaP)	Berzo(a)p/rene TEQ	Total PMHs
		PQL	4	0.4	1	1	1	0.1	1	1	25	50	25	50	100	100	0.2	0.5	1	1	1	0.05	0.5	0.05
Sample ID	Depth	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mgikg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mgikg	mgikg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mgikg	mg/kg
BH201	0.2 m	29-Jun-21	9 100 100	<0.4	16 100 410	14 6000 230	15 300 1100	<0.1 40 ·	7 400 230	26 7400 690	<25	⊲50	<25 50 180	<50 280 120	<100	<100	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1	<1	<0.05	<0.5 3 ·	<0.05 300 ·
BH201	0.5 m	29-Jun-21	6	<0.4	7	22 6000 230	12	<0.1	13	50 7400 690	<25	⊲50	<25	<50 280 120	<100	<100	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1	<1	<0.05	<0.5	<0.05
BH202	0.2 m	29-Jun-21	7	<0.4	13 100 410	12 6000 230	12 300 1100	<0.1	5 400 230	25	-25	<50	<25	<50 280 120	<100	<100	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1 110 45	<1 5 170	<0.05	<0.5	<0.05
BH203	0 - 0.1 m	29-Jun-21	6	<0.4	11	6	11	<0.1	4	20	<25	⊲50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05
BH203	0.5 - 0.6 m	29-Jun-21	100 100 6	20 - ≺0.4	100 410 11	6000 230 11	300 1100 11	40 - <0.1	400 230 4	7400 690 19	- · ·	 ⊲50	50 180 <25	280 120 <50	- 1300 <100	 5600 <100 	0.7 65 <0.2	480 105 <0.5	NL 125 <1	110 45 <1	5 170 <1	• 0.7 <0.05	3 - <0.5	300 · <0.05
BH204	0.4 - 0.5 m	29-Jun-21	100 100 7	20 · <0.4	100 410 10	6000 230 18	300 1100 14	40 · <0.1	400 230 6	7400 690 34	<25	450	50 180 <25	280 120 <50	1300 <100	5600 <100	0.7 65 <0.2	480 105 <0.5	NL 125 <1	110 45 <1	5 170 <1	• 0.7 <0.05	3 . <0.5	300 · <0.05
			100 100 <4	20 - <0.4	100 410 10	6000 230 41	300 1100 8	40 ·	400 230 7	7400 690 21	· · ·	 ⊲50	50 180 <25	280 120 <50	 1300 <100 	 5600 <100 	0.7 65 <0.2	480 105 <0.5	NL 125	110 45 <1	5 170 <1	• 0.7 2.2	3 - 3.1	300 · 22
BH205	0.1 m	29-Jun-21	100 100 7	20 · - <0.4	100 410 12	6000 230 12	300 1100 15	40 · ·	400 230 6	7400 690 27	<25	 <50	50 180 <25	280 120 <50	 1300 <100 	 5600 <100 	0.7 65 <0.2	480 105 <0.5	NL 125 <1	110 45 <1	5 170 <1	• 0.7 <0.05	3 · <0.5	300 · <0.05
BH206	0 - 0.1 m	29-Jun-21	100 100	20 •	100 410	6000 230	300 1100	40 •	400 230	7400 690		1.00	50 180	280 120	• 1300	• 5600	0.7 65	480 105	NL 125	110 45	5 170	• 0.7	3 •	300 •
BD2/20210629	0 m	29-Jun-21	6 100 100	<0.4	10 100 410	9 6000 230	12 300 1100	<0.1 40 ·	4 400 230	21 7400 690	<25	<50 · ·	<25 50 180	<50 280 120	<100	<100	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1 110 45	<1 5 170	<0.05 • 0.7	<0.5	<0.05 300 ·
BH206	0.4 - 0.5 m	29-Jun-21	4	<0.4	6 100 410	10 6000 230	8 300 1100	<0.1	6	31	<25	⊲50	<25 50 180	<50 290 120	<100	<100	<0.2 0.7 65	<0.5	<1 NL 125	<1 110 45	<1	<0.05	<0.5	<0.05
BH206	0.5 - 0.6 m	29-Jun-21	5	<0.4	7	20 6000 230	13 300 1100	<0.1	23 400 230	67 7400 690	<25	⊲50	<25 50 180	<50 280 120	<100	<100	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1 110 45	<1 5 170	<0.05	<0.5	<0.05
BH207	0 - 0.1 m	29-Jun-21	5	<0.4	9	5	10	40 · <0.1	4	15	- 25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	d	<1	<0.05	<0.5	<0.05
BD1/20210629	0 m	29-Jun-21	100 100 8	<u>20</u> - ≺0.4	100 410 12	6000 230 9	300 1100 10	40 - <0.1	400 230 3	7400 690 19		<50	50 180 <25	280 120 <50	1300	 5600 <100 	0.7 65 <0.2	480 105 <0.5	NL 125 <1	110 45 <1	5 170 <1	- 0.7 <0.05	3 · <0.5	300 · <0.05
			100 100 5	<0.4	100 410 8	6000 230 16	300 1100 9	40 ·	400 230 13	7400 690 40	· · ·	450	50 180 <25	280 120 <50	1300	 5600 <100 	0.7 65 <0.2	480 105 <0.5	NL 125 <1	110 45 <1	5 170 <1	• 0.7 <0.05	3 ·	300 · <0.05
BH207	0.4 - 0.5 m	29-Jun-21	100 100 7	20 · <0.4	100 410 15	6000 230 18	300 1100 13	40 ·	400 230 17	7400 690 54	· · ·	 <50	50 180 <25	280 120 <50	- 1300 <100	 5600 <100 	0.7 65 <0.2	480 105 <0.5	NL 125 <1	110 45 <1	5 170 <1	• 0.7 <0.05	3 - <0.5	300 · <0.05
BH208	0.4 - 0.5 m	29-Jun-21	100 100	20 •	100 410	6000 230	300 1100	40 •	400 230	7400 690		1.00	50 180	280 120	• 1300	- 5600	0.7 65	480 105	NL 125	110 45	5 170	• 0.7	3 -	300 •
BH208 - [TRIPLICATE]	0.4 - 0.5 m	29-Jun-21	6 100 100	<0.4 20 ·	10 100 410	17 6000 230	12 300 1100	<0.1 40 ·	8 400 230	25 7400 690			- 50 180	280 120	- 1300	- 5600	0.7 65	480 105	NL 125	110 45	5 170	• 0.7	3 •	300
107	0.1 - 0.2 m	01/08/2020	10 100 100	<0.4 20 ·	16 100 410	15 6000 230	21 300 1100	<0.1 40 ·	6 400 230	35 7400 690	-25	<50	<25 50 180	<50 280 120	<100	<100	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1 110 45	<1 5 170	<0.05 0.7	<0.5 3 -	<0.05 300 ·
107	0.25 - 0.35 m	01/08/2020	8	<0.4	14 100 410	10 5000 230	11 300 1100	<0.1	3	16 7400 690	-25	⊲50	<25	<50 280 120	<100	<100	-0.2	<0.5 480 105	<1 NL 125	<1	<1	<0.05	<0.5	<0.05
108	0.4 - 0.5 m	01/08/2020	10 100	<0.4	100 410 100 410	14 6000 230	12	<0.1	5 400 230	35	-25	<50	<25	<50 280 120	<100	<100	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1 110 45	<1 5 170	<0.05	<0.5	<0.05
108	0.9 - 1 m	01/08/2020	7	<0.4	8	29	15	40 · <0.1	15	56	-25		<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	3 - <0.5	300 · <0.05
109	0 - 0.1 m	01/08/2020	100 100 8	20 - ≺0.4	100 410 15	6000 230 12	300 1100 19	40 · <0.1	400 230 7	7400 690 41		 ⊲50	50 180 <25	280 120 ⊲50	- 1300 <100	 5600 <100 	0.7 65 <0.2	480 105 <0.5	NL 125 <1	110 45 <1	5 170 <1	• 0.7 <0.05	3 · <0.5	300 · <0.05
109	0.2 - 0.3 m	01/08/2020	100 100 9	<0.4	100 410 15	6000 230 8	300 1100 14	40 - <0.1	400 230 4	7400 690 16		450	50 180 <25	280 120 <50	- 1300 <100	- 5600 <100	0.7 65 <0.2	480 105 <0.5	NL 125 <1	110 45 <1	5 170 <1	- 0.7 <0.05	3 -	300 · <0.05
			100 100 5	20 - <0.4	100 410 9	6000 230 22	300 1100 12	40 · -	400 230 16	7400 690 44	· · ·	 <50	50 180 <25	280 120 <50	 1300 <100 	 5600 <100 	0.7 65 <0.2	480 105 <0.5	NL 125 <1	110 45 <1	5 170 <1	• 0.7 <0.05	3 - <0.5	300 · <0.05
109	0.6 - 0.7 m	01/08/2020	100 100	20 •	100 410	6000 230	300 1100	40 •	400 230	7400 690			50 180	280 120	• 1300	- 5600	0.7 65	480 105	NL 125	110 45	5 170	• 0.7	3 •	300
123	0 - 0.1 m	01/08/2020	7	<0.4 20 ·	15 100 410	13 6000 230	17 300 1100	<0.1 40 ·	6 400 230	27 7400 690	-25	<50 · ·	<25 50 180	<50 280 120	<100	<100	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1 110 45	<1 5 170	0.06	<0.5 3 -	0.3 300 ·
BD120200801	0 m	01/08/2020	5	<0.4	12	18 6000 230	20	<0.1	7	38	-25	<50	<25	<50 280 120	<100	<100	<0.2	<0.5	<1 NL 125	<1	<1	<0.05	<0.5	<0.05

Lab result L/HSL value EIL/ESL value

HIL/HSL exceedance 📕 EIL/ESL exceedance 📕 HIL/HSL and EIL/ESL exceedance 📕 ML exceedance 📕 ML and HIL/HSL or EIL/ESL exceedance

Indicates that asbestos has been detected by the lab, refer to the lab report Blue = DC exceedance 🗌 HSL 0-<1 Exceedance

Bold = Lab detections -= Not tested or No HIL/HSL/EIL/ESL (as applicable) or Not applicable NL = Non limiting AD = Asbestos detected NAD = No Asbestos detected

HIL = Health investigation level HSL = Health screening level (excluding DC) EIL = Ecological investigation level ESL = Ecological screening level ML = Management Limit DC = Direct Contact HSL

- Notes a
- QA/QC replicate of sample listed directly below the primary sample Reported naphthalene laboratory result obtained from BTEXN suite ь
- с
- Criteria applies to DDT only

Site Assessment Criteria (SAC):

Refer to the SAC section of report for information of SAC sources and rationale. Summary information as follows:

- SAC based on generic land use thresholds for Residential A with garden/accessible soil
- HL A Residential /Low High Density (NePC, 2013) HSL AB Residential /Low High Density (NePC, 2013) DC HSL A Direct contact HSL A Residential (Low density) (direct contact) (CRC CARE, 2011)
- EIL/ESL UR/POS Urban Residential and Public Open Space (NEPC, 2013)
- ML R/P/POS Residential, Parkland and Public Open Space (NEPC, 2013)

Table G2: Summary of Laboratory Results - Phenol, OCP, OPP, PCB, Asbestos

			Phenol						OCP						OPP	PCB ASRESTO									
			Phenol	000	00T+00E+000 °	DDE	DDT	Aldrin & Dieldrin	Total Chlodtane	Endin	To tal Endosulfan	Hepeachlor	Hexachioo benzene	Methoxychior	Chlopyriphos	Auchior 1016	Total PCB	Arachior 1221	Auctivor 1232	Auchior 1242	Auchior 1248	Auchior 1254	Aroclor 1260	Asbestos (50 g)	
		PQL	5	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1		
Sample ID	Depth	Sample Date	mgikg	mgikg	mg/kg	mg/kg	mgikg	mg/kg	mg/kg	mgikg	mg/kg	mg/kg	mgikg	mg/kg	mg/kg	mgikg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg		
BH201	0.2 m	29-Jun-21	<5 100 ·	<0.1	<0.1 240 180	<0.1	<0.1	<0.1 6 ·	<0.1	<0.1	<0.1 270 ·	<0.1	<0.1	<0.1 300 ·	<0.1 160 ·	<0.1	<0.1 1 ·	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	
BH201	0.5 m	29-Jun-21	100		- 240 180		- 180	6 .	50 -	10 .	270	6 .	10	300	160		1							NAD	
BH202	0.2 m	29-Jun-21	<5	-0.1	<0.1 240 180	<0.1	<0.1 • 180	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	⊲0.1	<0.1	<0.1	NAD	
BH203	0 - 0.1 m	29-Jun-21	<5	-0.1	<0.1	⊲0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	⊲0.1	<0.1	<0.1	⊲0.1	⊲0.1	<0.1	NAD	
BH203	0.5 - 0.6 m	29-Jun-21	100					6	50	10	270	6	10	300	160		1							NAD	
BH204	0.4 - 0.5 m	29-Jun-21	100 · <5	<0.1	240 180 <0.1	∢0.1	- 180 <0.1	€ . ≪0.1	<0.1	10 - <0.1	270 - ≺0.1	6 - ≼0.1	10 · · · · · · · · · · · · · · · · · · ·	300 · <0.1	160 - ⊲0.1	<0.1	1 · ⊲0.1	⊲0.1	<0.1	<0.1	<0.1	<0.1	⊲0.1	NAD	
BH205	0.1 m	29-Jun-21	100 · <5	<0.1	240 180 <0.1	<0.1	• 180 <0.1	6 ·	50 · ⊲0.1	10 · <0.1	270 · <0.1	6 - ⊲0.1	10 · <0.1	300 · <0.1	160 - ⊲0.1		40.1		<0.1	<0.1	<0.1	<0.1	40.1	NAD	
BH206	0-0.1 m	29-Jun-21	100 · <5	- · · ·	240 180 <0.1	<0.1	• 180 <0.1	6 - <0.1	50 · <0.1	10 · <0.1	270 - <0.1	6 - ⊲0.1	10 · <0.1	300 · <0.1	160 - ⊲0.1		1 - <0.1		<0.1	 <0.1	 	 <0.1		NAD	
BD2/20210629	0 m	29-Jun-21	100 · NT	NT ·	240 180 NT	NT .	- 180 NT	6 - NT	50 - NT	10 - NT	270 - NT	6 - NT	10 · NT	300 - NT	160 - NT	NT ·	1 · NT	NT ·	NT .	NT ·	NT ·	NT ·	NT .	NT	
BH206	0.4 - 0.5 m	29-Jun-21	100 · <5		240 180 <0.1	- · ·	- 180 <0.1	6 - <0.1	50 · <0.1	10 · · · · · · · · · · · · · · · · · · ·	270 - <0.1	6 - <0.1	10 · <0.1	300 ·	160 - <0.1	- · ·	1 ·	۰۰۰ م0.1	- · ·	- · ·	 <0.1	 <0.1	- · ·	NAD	
			100		240 180		• 180	6 •	50 •	10	270	6	10	300	160		1								
BH206	0.5 - 0.6 m	29-Jun-21	100 · <5		240 180 <0.1	- · ·	• 180 <0.1	6 ·	50 · <0.1	10 · · · · · · · · · · · · · · · · · · ·	270 - <0.1	6 - <0.1	10 · <0.1	300 - <0.1	160 - ⊲0.1	- · · · · · · · · · · · · · · · · · · ·	1 ·	 	<0.1	- · ·	- · ·			NAD	
BH207	0 - 0.1 m	29-Jun-21	100 · NT	NT	240 180 NT	 NT	- 180 NT	6 ·	50 ·	10 - NT	270 - NT	6 - NT	10 · NT	300 · NT	160 - NT	 NT	1 ·	 NT	 NT	 NT	 NT	NT	 NT	NAD	
BD1/20210629	0 m	29-Jun-21	100 •		240 180		• 180	6 •	50 •	10 •	270 •	6 •	10 •	300 •	160 •	100 A	1 .		1.00	1. A.		1. A.		NT	
BH207	0.4 - 0.5 m	29-Jun-21	<5 100 ·	<0.1	<0.1 240 180	<0.1	<0.1 • 180	<0.1 6 ·	<0.1 50 ·	<0.1 10 ·	<0.1 270 -	<0.1 6 ·	<0.1 10 ·	<0.1 300 -	<0.1 160 -	<0.1	<0.1 1 ·	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	
BH208	0.4 - 0.5 m	29-Jun-21	<5 100 ·	-40.1	<0.1 240 180	<0.1	<0.1 • 180	<0.1 6 ·	<0.1	<0.1 10 -	<0.1 270 ·	<0.1 6 ·	<0.1 10 ·	<0.1 300 -	<0.1 160 -	-0.1	<0.1 1 ·	<0.1 · ·	<0.1	-0.1	<0.1	-0.1	<0.1	NAD	
BH208 - [TRIPLICATE]	0.4 - 0.5 m	29-Jun-21	100		- 240 180		· 180	6 •	50 •	10 -	270 •	6 •	10 •	300 •	160 •		4							NT	
107	0.1 - 0.2 m	01/08/2020	<5 100 ·	<0.1	<0.1 240 180	<0.1	<0.1 • 180	<0.1 6 ·	<0.1	<0.1 10 ·	<0.1 270 -	<0.1 6 -	<0.1 10 ·	<0.1 300 -	<0.1 160 -	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	
107	0.25 - 0.35 m	01/08/2020	100		- 240 180		- 180	6 .	50 .	10	270	6	10	300	160		4							NT	
108	0.4 - 0.5 m	01/08/2020	<5	<0.1	240 180 <0.1 240 180	≼0.1	<0.1 180	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	⊲0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	
108	0.9 - 1 m	01/08/2020	<5	<0.1	240 180 <0.1 240 190	⊲0.1	<0.1 180	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	40.1	NAD	
109	0 - 0.1 m	01/08/2020	100 · <5	<0.1	<0.1	<0.1	<0.1	6 - <0.1	<0.1	10 - <0.1	<0.1	<0.1	10 · · · · · · · · · · · · · · · · · · ·	300 · <0.1	<0.1	<0.1	40.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	
109	0.2 - 0.3 m	01/08/2020	100 · <5	<0.1	240 180 <0.1	<0.1	• 180 <0.1	€ . ⊲0.1	<0.1	10 · <0.1	270 - <0.1	6 - ⊲0.1	10 · <0.1	300 - <0.1	160 - ⊲0.1	<0.1	40.1		<0.1	<0.1	<0.1	<0.1		NAD	
109	0.6 - 0.7 m	01/08/2020	100		240 180		- 180	6	50	10	270	6	10	300	160		1							NT	
123	0-0.1 m	01/08/2020	100 · <5		240 180 <0.1	<0.1	 180 <0.1 	6 . <0.1	50 · <0.1	10 - <0.1	270 - <0.1	6 - ⊲0.1	10 · · · · · · · · · · · · · · · · · · ·	300 - <0.1	160 - ⊲0.1	<0.1	1 · ⊲0.1	۰۰۰۰ ۵۵.1	<0.1		<0.1	<0.1	۰. ۵۵.1	NAD	
BD120200801	0 ° 0.1 m	01/08/2020	100 · NT	NT ·	240 180 NT	NT ·	• 180 NT	6 - NT	50 · NT	10 - NT	270 - NT	6 - NT	10 · NT	300 · NT	160 - NT	NT ·	1 - NT	NT ·	NT ·	NT ·	NT .	NT ·	NT ·	NT	
BD120200801	om	01/06/2020	100 •		240 180	100 A.	• 180	6 •	50 +	10 •	270 -	6 •	10 •	300 •	160 •	1.00	4		1.0	10 A.	1. A.	1.00		nd .	

HIL/HSL exceedance 📕 EIL/ESL exceedance = HIL/HSL and EIL/ESL exceedance = ML exceedance = ML and HIL/HSL or EIL/ESL exceedance

Indicates that asbestos has been detected by the lab, refer to the lab report Blue = DC exceedance 🗌 HSL 0-<1 Exceedance

Bold = Lab detections - = Not tested or No HIL/HSL/EIL/ESL (as applicable) or Not applicable NL = Non limiting AD = Asbestos detected NAD = No Asbestos detected

HIL = Health investigation level HSL = Health screening level (excluding DC) EIL = Ecological investigation level ESL = Ecological screening level ML = Management Limit DC = Direct Contact HSL

- Notes:
 - a QA/QC replicate of sample listed directly below the primary sample
 - b Reported naphthalene laboratory result obtained from BTEXN suite
 - Criteria applies to DDT only

Site Assessment Criteria (SAC):

Refer to the SAC section of report for information of SAC sources and rationale. Summary information as follows:

- SAC based on generic land use thresholds for Residential A with garden/accessible soil
- HIL A Residential / Low High Density (NEPC, 2013) HSL A/B Residential / Low - High Density (vapour intrusion) (NEPC, 2013)
- DC HSL A Direct contact HSL A Residential (Low density) (direct contact) (CRC CARE, 2011)
- EIL/ESL UR/POS Urban Residential and Public Open Space (NEPC, 2013)
- ML R/P/POS Residential, Parkland and Public Open Space (NEPC, 2013)

Table G3: Preliminary Waste Classification Results - Metals, TRH, BTEX, PAH, Phenol, OCP, OPP, PCB, Asbestos

						M	ais				т	ю			atto											РАН							Phenol	0	œ	099				к	CR				Albeitos	
			Arsenic	Cedition	Total Oxervium	Octore	Leed	Mercen (norganic)	Note	Zee	10 · 10 H 8	C to C M R cox er th le hydrocar been	Bardere	Tekere	Ebylecowe	rsp-Addres	o Xjitete	Noteres (14.44)	(m)	Accession	Athenas		Berlock) in dir som e Berlock) + K fluor set Neter hare	backy), (geoleen	Onsere	36 er 20 (). Juritran er e	Pastee	Phone	kárcí (1,3- últjýra e	Naptrake	Pheardren	Pyreee Total Poles	Preci	Total Endorulian	Td M Araly set O.CP	Treat Arabysed CPP	Acceler 10-16	Acchie 121	Mathier 1232	Acchie 124	Arcehor 13-46	Accessor 1214	Ards 1310	Test POD	Anteres ID In Prainfab	T cal hales a
																		61	TCLP																											
		PQL	4	0.4	1	1	1	0.1	1	1	25	50	0.2	0.5	1	2	1	3 0.05	0.001 0	1 0.	s 0.	4	0.1 0.2	0.5	0.1	0.1	0.1	0.1	0.1	1	0.1	0.1 0.0	5 5	0.1	0.1	0.1	0.1	0.1	0.5	0.1	0.1	0.1	0.1	0.1	0	0
Sample D	Depth	Sample Date	ngAg	nghg	mphp	nghg	nghą	mphq	maka	nghg	mghg	maka	ngkg	nghg	mphg	naka	nghą	mghg mghg	mpL ng	kg mg/	ng mg	No 1	nging mging	nghg	e neke	nghą	nghg	maka	nghg	mg%g	ngkg m	aha ma	ka maka	pége	nghg	mphg	maka	nghg	mghg	maka	ngkg	nghg	mphp	ngAg		
£9-0001	42 m	29-341-21		+0.4	16	14	15	-4.1	7	28	+25	+90	+0.2	+0.5	-1	-2	*1	-a -oas	4	1 +0	5 +0		-0.1 -0.2	+0.1	+0.1	+0.1	+0.1	+0.1	+0.1	-1	-0.1	0.1 v2	ni si	+0.1	+0.1	-4.1	+0.1	+0.1	+0.1	+0.1	+0.1	+0.1	+0.1	+0.1		NT
\$84D01	4.5 m	28-340-21	6	+0.4	7	22	12	+0.1		50	+25	-50	102	1.0+	-1	-2	*1	v3 v035	4	1 +0	1 v0		×0.1 ×0.2	+0.1	+0.1			+0.1	×0.1	-	+6.1 ·		ni -	-												NT
64002	42 m	29-341-21	7	v0.4	13	12	12	-4.1	5	25	×25	-50	+0.2	+0.5	-1	-4	*1	-a -eas	-	1 +0	1 40		+0.1 +0.2	+0.1	+0.1	×0.1	-4.1	+0.1	×0.1	-	-4.1		ni -1	+0.1	×0.1	-4.1	vil.1	×0.1	+0.1	+0.1	+0.1	+0.1	v0.1	+0.1		NT
66-003	0-0.1 m	29-341-21		+0.4	11		11	+4.1	4	20	-25	+52	+0.2	+0.5	-1	+2	*1	+3 +0.35	4	1 +0	1 +0		+0.1 +0.2	+0.1	+0.1	+0.1	-4.1	+0.1	+0.1	-	+0.1	-0.1 +0		+0.1	+0.1	-4.1	+0.1	+0.1	+0.1	+6.1	+0.1	+0.1	+4.1	+0.1		N
\$6-@03	0.5-0.6 m	29-341-21		+0.4	11	11	11	+0.1		19	+25	+50	+0.2	+0.5	+1	+2	*1	v3 v035	-	.1 vD	1 40		+0.1 +0.2	+0.1	+0.1			+0.1	w0.1	-		0.1 vI.					-			· · ·	لسنسم		<u> </u>		· ·	NT
84001	0.4-0.5m	29-349-21 78-349-21	,	+0.4	10	18	14	41		24	×25	+50	+0.2	+0.5 +0.5		-2		-0.035	-0.000 -0				+0.1 +0.2 1.8 3.2				4.1	+0.1	v0.1 14	-1	-4.1			+0.1	×0.1	411	-11	s0.1	+0.1	+0.1	+0.1	+0.1		+0.1		NT
	416	29-349-21	el.	+0.4	10	4	1	-41.1	7	21	+25	+50	+0.2	+0.5	-1	-2	*1	3 11	vD301 v0	1 6.			13 13	1.9	1.7	6.3	15	-0.1	14	-1	13			+0.1	+0.1	-4.1	v0.1	+0.1	+0.1	+0.1		+0.1	+0.1	+0.1	<u> </u>	N
84006 90020210629	0-0.1 m	29-340-21 29-340-21	7	+0.4	12	12	15	-4.1		27	-25	-50	+0.2	+0.5 +0.5	-1	-2	-1	-0.035	4	1 -0	1 -0	11	-0.1 -0.2	+0.1	-0.1	+0.1	41	-0.1	+0.1		-41		ni di	+0.1 NT	+0.1 NT	-0.1 M	+0.1 AF	+0.1 NY	+0.1 NT	+0.1 All	+0.1 AV	+0.1	+0.1 MT	+0.1	NT	NT
	0.4-0.5m	29-340-21		+0.4							-25	-00	-0.2	+0.5		4	-1	-3 -033					+0.1 +0.2										25 NT		NT 10.1	-4.1	NF	-01	NT -0.1	-11	NT	NT 10.1		-01	<u> </u>	MT
in more	0.6.0.0.0	an an an								-			003					4 4045						14.1	90.1			90.1			-	01 02		90.1	190.1	94.1	99.1	90.1	10.1	\rightarrow		10.1				10
66.000		20-20-21					14	-		- 15			-07	-0.5									0.1 002		-01	96.1		-01			-11		m 1											-01	NT	
and an and a second second	40	28-34-21 78-34-21		-04		:	10				- 15	-50	-07	10.5		-	-1	4 4041		1			-0.1 -0.1	-11					-0.1					NY.	N/Y	NI NI	NL I	90.1 NY	NY	NT NT		NY		NT		
64027	0.4-0.5 m	29-349-21	5	10.4		18		-4.1			123	- 10	10.2	10.5	1	-2	*1	10 10 20		1 10	1 12		-0.1 -0.2	-11	-0.1	10.1	-4.1	+0.1	+9.1	-	10.1		10 11	+0.1	10.1	-4.1	+0.1	+0.1	+0.1		+9.1	10.1	14.1	+0.1		NT
61-0208	0.4-0.5 m	29-349-21	7	+0.4	15	18	12	-4.1	17	54	-25	-92	+0.2	-0.5	-1	-2	*1	-0.035	4	1 -0	1 12		-0.1 -0.2	-1.1	-0.1	-0.1	-4.1	+0.1	+0.1	-	-0.1	0.1 -2	n vi	+0.1	+0.1	-4.1	+0.1	+0.1	+0.1	-0.1	-0.1	+0.1	+4.1	+0.1		NT
8-028 -	0.4-0.5 m	29-349-21		+0.4	10	17	12	-4.1		25																														<u> </u>	,		(· · · ·			
207	0.1 - 0.2 m	0108/2020	19	+0.4	14	15	21	-4.1		25	123	-92	+0.2	10.5	-1	-2	*1	-1 -0.03	4	1 10	1 12		-0.1 -0.2	-0.1	-0.1	+0.1	-4.1	+0.1	+0.1	-1	-0.1	a1 +2		+0.1	+0.1	-4.1	+0.1	+0.1	+0.1	-0.1	+0.1	+0.1	+0.1	+0.1		N
307	25-0.35 m	01082020		+0.4	14	10	11	-4.1	1	18	125	-90	10.2	+0.5	-1	-2	*1	10.00	-	1 =0	1 -0		-0.1 -0.2	-0.1	-0.1	+0.1	-4.1	-0.1	+0.1	-1	v0.1	0.1 -2	a .	-						$\overline{}$			· · ·		-	
208	0.4 - 0.5 m	01082020	10	+0.4	10	14	12	-4.1	5	25	125	-92	+0.2	10.5	-1	-2	-1	10.00	-	1 -0	1 -0		-0.1 -0.2	-0.1	-0.1	+0.1	-4.1	-0.1	+0.1	-1	-1.1	0.1 -2	n si	+0.1	+0.1	-4.1	-0.1	+0.1	+0.1	-0.1	+0.1	+0.1	-4.1	+0.1		NT
108	0.8 - 1 m	01/08/2020	7	+0.4		29	15	-0.1	15	56	+25	-50	+0.2	+0.5	-1	-2	*1	-0.35	4	.1 +0	1 40		•0.1 •0.2	+8.1	+0.1	+D.1	-4.1	+0.1	+0.1	-1	-0.1	0.1 =0.1	25 v.5	+0.1	+0.1	-4.1	+0.1	+0.1	+0.1	-0.1	+0.1	+0.1	+0.1	+0.1		NT
109	0-0.1m	01/08/2020		+0.4	15	12	19	-0.1	7	41	×25	+50	+0.2	+0.5	+1	-2	*1	-0.05	4	1 =0	5 v0		-0.1 -0.2	+8.1	+0.1	+0.1	-0.1	+0.1	×0.1	-1	+0.1	0.1 v2.	25 +5	×0.1	+0.1	-0.1	v0.1	w0.1	+0.1	v0.1	+0.1	+0.1	+0.1	+0.1	-	NT
129	02-03m	61/08/2020		+0.4	15		14	-4.1	4	16	-25	+90	+0.2	+0.5	-1	4	1	v3 v035	5	1 +0	5 40		-0.1 -0.2	+0.1	-0.1	+0.1	-4.1	+0.1	+0.1	4	+0.1	-0.1 v2	ni vi	+0.1	+0.1	-4.1	+0.1	=0.1	+0.1	+8.1	+0.1	+0.1	+4.1	+0.1		NT
129	0.6 - 0.7 m	01/08/2020	5	+0.4	9	22	12	-4.1	36	44	s25	-50	102	+0.5	4	-12	*1	s3 s035	4	1 -0	1 43		-0.1 -0.2				-4.1	+0.1	+0.1	4	- 41.1 ·		a .	-						(·)			(\cdot)			
123	0-0.1m	61/08/2020	7	v0.4		13	17			27	×25	+90	102	+0.5	+1	-2	*1	-J 8.86	Å.	1 v0			+0.1 +0.2							4			a 45		×0.1	41	vil.1	±0.1	+0.1	v0.1	v0.1	+0.1	+0.5	+0.1	NT	N
80120200801	4.0	0108/0020	5	+0.4	12	18	20	41	7	28	+25	-50	40.2	+0.5	- 1	-2	*1	v3 v035	4	1 +0	1 43		+0.1 +0.2		+0.1	s0.1	-4.1	+0.1	+0.1	-1	- 1.1	0.1 v2	m N	NĬ	NT	N	N	NÏ	NT	N	NT	NT	I NI	NT		-
																							Waste Classific																			-				
	CT1 9001		100	20	100	NC	100	4	40	NC	650	10000	10	288	800	NC	NC	1000 0.8	N	: N			NC NC					NC	NC	NC	NC	NC 20	0 288	60	*50	4	NC	NC	NC	NC	NC	NC M	NC NC	-52	NC NC	NC
	TOLP1		500	100	1900	NC	1500	50	1060	NC	650	10000	18	\$18	1080	NC	NC	1800 10	N	: N	. N	c	NC NC	NC	NC	NC	NC	NC	NC	NC		NC 20	0 518	108	*50	7.5	NC	NC	NC NC	NC	NC	NC	NC	+90	NC	NC
	CT2		NA 401	NA.	NA	NC	NA	NA.	NA	NC	3400	NA 49393	NA.	NA 1151	NA	NC	NC	NA NA	034 N	. N	- N	C	NC NC	NC	NC	NC	NC .	NC NC	NC NC	NC NC		NC N		NA	NA.	NA.	NC	NC	NC .	NC	NC	NC	NC	NA	NC	NC
	9002		400	80		NC	450	14	162	NC NC			40 22	2073		NC	NC NC	4000 3.2 7200 23	N	- N	: N	с	NC NC	NC NC	NC	NC NC	NC NC						0 1112	432	+50	14	NG NG	NC NC	NC IC	NC NC	NC	NC NC	NC NC	-50	NC III	NC NC
	TOLP2		2000 MA	400 N/A	7600	MC MC	w.00	200		10- MC	2600	40000	72	2073	4020	Mr.	NC NC	7200 23	0.14 N			c .	n. NC N° N°	NC NC	NC	NC NC	NC NC	NC NC		NC NC		NC R		A32 NA	~50 NA	30 NA	76- NC	aŭ M						NA NA		
·							- 40						~					- AA				-		75-	76-			1 74		~					~~											

🗮 CT1 eccentarios 🗮 TCLP1 andro SC1 eccentarios 🗮 CT2 eccentarios 🗮 TCLP2 andro SC22 eccentarios 🗮 Albertos detection NT - NET encel N.- Nos linking INC - No caleria IN- NET applicable

Control Contro Control Control Control Control Control Control Control Control Co

Table R1: Summary of Laboratory Results – Metals, TRH, BTEX, PAH

			Metals							1		1	TI	RH	1	1		BT	EX			PA	λH	
			Arsenic	Cadmium	Total Chromium	Copper	Lead	Mercury (inorganic)	Nickel	Zinc	TRH C6 - C10	TRH >C10-C16	F1 ((C6-C10)- BTEX)	F2 (>C10-C16 less Naphthalene)	F3 (>C16-C34)	F4 (>C34-C40)	Benzene	Toluene	Ethylbenzene	Total Xylenes	Naphthalene ^b	Benzo(a)pyrene (BaP)	Benzo(a)pyrene TEQ	Total PAHs
		PQL	4	0.4	1	1	1	0.1	1	1	25	50	25	50	100	100	0.2	0.5	1	1	1	0.05	0.5	0.05
Sample ID	Depth	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
101	0.1 - 0.2 m	02/08/2020	<4 100 100	<0.4 20 NC	12 100 410	36 6000 210	10 300 1100	<0.1 40 NC	26 400 190	51 7400 520	<25 NC NC	<50 NC NC	<25 45 180	<50 110 120	130 NC 300	<100 NC 2800	<0.2 0.5 50	<0.5 160 85	<1 55 70	<1 40 105	<1 3 170	<0.05 NC 0.7	<0.5 3 NC	<0.05 300 NC
101	0.4 - 0.5 m	02/08/2020	10 100 100	<0.4 20 NC	8 : 100 410	14 6000 210	6 300 1100	<0.1 40 NC	4 400 190	15 7400 520	<25 NC NC	<50 NC NC	<25 45 180	<50 110 120	<100 NC 300	<100 NC 2800	<0.2 0.5 50	<0.5 160 85	<1 55 70	<1 40 105	<1 3 170	<0.05 NC 0.7	<0.5 3 NC	<0.05 300 NC
102	0 - 0.1 m	02/08/2020	6	<0.4	9	21	12	<0.1	12	50	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05
102	0.2 - 0.3 m	02/08/2020	100 100 NT	20 NC NT	100 410 NT	6000 210 NT	300 1100 NT	40 NC NT	400 190 NT	7400 520 NT	NC NC NT	NC NC NT	45 180 NT	110 120 NT	NC 300 NT	NC 2800 NT	0.5 50 NT	160 85 NT	55 70 NT	40 105 NT	3 170 NT	NC 0.7 NT	3 NC NT	300 NC NT
		02,00,2020	100 100 <4	20 NC <0.4	100 410 10	6000 210 23	300 1100 13	40 NC <0.1	400 190 9	7400 520 52	NC NC <25	NC NC <50	45 180 <25	110 120 <50	NC 300 <100	NC 2800 150	0.5 50 <0.2	160 85 <0.5	55 70 <1	40 105 <1	3 170 <1	NC 0.7 <0.05	3 NC <0.5	300 NC <0.05
103	0 - 0.15 m	02/08/2020	100 100	20 NC	100 410	6000 210	300 1100	40 NC	400 190	7400 520	NC NC	NC NC	45 180	110 120	NC 300	NC 2800	0.5 50	160 85	55 70	40 105	3 170	NC 0.7	3 NC	300 NC
104	0 - 0.1 m	02/08/2020	6 100 100	<0.4 20 NC	12 100 410	36 6000 210	38 300 1100	<0.1 40 NC	9 400 190	110 7400 520	<25 NC NC	<50 NC NC	<25 45 180	<50 110 120	<100 NC 300	<100 NC 2800	<0.2 0.5 50	<0.5 160 85	<1 55 70	<1 40 105	<1 3 170	<0.05 NC 0.7	<0.5 3 NC	<0.05 300 NC
104	0.2 - 0.3 m	02/08/2020	NT 100 100	NT 20 NC	NT 100 410	NT 6000 210	NT 300 1100	NT 40 NC	NT 400 190	NT 7400 520	NT NC NC	NT NC NC	NT 45 180	NT 110 120	NT NC 300	NT NC 2800	NT 0.5 50	NT 160 85	NT 55 70	NT 40 105	NT 3 170	NT NC 0.7	NT 3 NC	NT 300 NC
105	0 - 0.12 m	01/08/2020	9	<0.4	14	9	18	<0.1	4	21	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05
105	0.15 - 0.25 m	01/08/2020	100 100 6	20 NC <0.4	4	6000 210 5	<u>300</u> 1100 5	40 NC <0.1	400 190 <1	7400 520 7	NC NC <25	NC NC <50	45 180 <25	<u>110</u> 120 <50	NC 300 <100	NC 2800 <100	0.5 50 <0.2	160 85 <0.5	55 70 <1	40 105 <1	3 170 <1	NC 0.7 <0.05	3 NC <0.5	300 NC <0.05
106	0.05 - 0.15 m	01/08/2020	100 100 7	20 NC <0.4	100 410 13	6000 210 7	300 1100 15	40 NC <0.1	400 190 4	7400 520 15	NC NC <25	NC NC <50	45 180 <25	110 120 <50	NC 300 <100	NC 2800 <100	0.5 50 <0.2	160 85 <0.5	55 70 <1	40 105 <1	3 170 <1	NC 0.7 <0.05	3 NC <0.5	300 NC <0.05
		01/00/2020	100 100 10	20 NC <0.4	: <u>100</u> 410	6000 210 13	300 1100 12	40 NC <0.1	400 190 3	7400 520 21	NC NC <25	NC NC <50	45 180 <25	110 120 <50	NC 300 <100	NC 2800 <100	0.5 50 <0.2	160 85 <0.5	55 70 <1	40 105 <1	3 170 <1	NC 0.7 <0.05	3 NC <0.5	300 NC <0.05
106	0.15 - 0.25 m	01/08/2020	100 100	20 NC		6000 210	300 1100	40 NC	400 190	7400 520	NC NC	NC NC	45 180	110 120	NC 300	NC 2800	0.5 50	160 85	55 70	40 105	3 170	NC 0.7	3 NC	300 NC
107	0.1 - 0.2 m	01/08/2020	10 100 100	<0.4 20 NC	16 100 410	15 6000 210	21 300 1100	<0.1 40 NC	6 400 190	35 7400 520	<25 NC NC	<50 NC NC	<25 45 180	<50 110 120	<100 NC 300	<100 NC 2800	<0.2 0.5 50	<0.5 160 85	<1 55 70	<1 40 105	<1 3 170	<0.05 NC 0.7	<0.5 3 NC	<0.05 300 NC
107	0.25 - 0.35 m	01/08/2020	8 100 100	<0.4 20 NC	14 100 410	10 6000 210	11 300 1100	<0.1 40 NC	3 400 190	16 7400 520	<25 NC NC	<50 NC NC	<25 45 180	<50 110 120	<100 NC 300	<100 NC 2800	<0.2 0.5 50	<0.5 160 85	<1 55 70	<1 40 105	<1 3 170	<0.05 NC 0.7	<0.5 3 NC	<0.05 300 NC
108	0.4 - 0.5 m	01/08/2020	10	<0.4	10	14	12	<0.1	5	35	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05
108	0.9 - 1 m	01/08/2020	100 100 7	20 NC <0.4	2 <u>100</u> 410 8	6000 210 29	300 1100 15	40 NC <0.1	400 190 15	7400 520 56	NC NC <25	NC NC <50	45 180 <25	110 120 <50	NC 300 <100	NC 2800 <100	0.5 50 <0.2	160 85 <0.5	55 70 <1	40 105 <1	3 170 <1	NC 0.7 <0.05	3 NC <0.5	300 NC <0.05
			100 100 8	20 NC <0.4	100 410 15	6000 210 12	300 1100 19	40 NC <0.1	400 190 7	7400 520 41	NC NC <25	NC NC <50	45 180 <25	110 120 <50	NC 300 <100	NC 2800 <100	0.5 50 <0.2	160 85 <0.5	55 70 <1	40 105 <1	3 170 <1	NC 0.7 <0.05	3 NC <0.5	300 NC <0.05
109	0 - 0.1 m	01/08/2020	100 100	20 NC		6000 210				7400 520		NC NC	45 180		NC 300		0.5 50	160 85		40 105	••	NC 0.7	3 NC	300 NC
109	0.2 - 0.3 m	01/08/2020	9 100 100	<0.4 20 NC	15 100 410	8 6000 210	14 300 1100	<0.1 40 NC	4 400 190	16 7400 520	<25 NC NC	<50 NC NC	<25 45 180	<50 110 120	<100 NC 300	<100 NC 2800	<0.2 0.5 50	<0.5 160 85	<1 55 70	<1 40 105	<1 3 170	<0.05 NC 0.7	<0.5 3 NC	<0.05 300 NC
109	0.6 - 0.7 m	01/08/2020	5 100 100	<0.4 20 NC	9 100 410	22 6000 210	12 300 1100	<0.1 40 NC	16 400 190	44 7400 520	<25 NC NC	<50 NC NC	<25 45 180	<50 110 120	<100 NC 300	<100 NC 2800	<0.2 0.5 50	<0.5 160 85	<1 55 70	<1 40 105	<1 3 170	<0.05 NC 0.7	<0.5 3 NC	<0.05 300 NC
111	0.05 - 0.1 m	01/08/2020	9	<0.4	15	10	13	<0.1	6	25	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05
113	0.1 - 0.2 m	01/08/2020	100 100 12	20 NC <0.4	100 410 11	6000 210 12	300 1100 11	40 NC <0.1	400 190 5	7400 520 25	<u>NC</u> NC <25	NC NC <50	45 180 <25	110 120 <50	NC 300 <100	NC 2800 <100	0.5 50 <0.2	160 85 <0.5	55 70 <1	40 105 <1	3 170 <1	NC 0.7 <0.05	3 NC <0.5	300 NC <0.05
113		01/08/2020	100 100 11	20 NC <0.4	20 100	6000 210 6	300 1100 10	40 NC <0.1	400 190 4	7400 520 14	NC NC <25	NC NC <50	45 180 <25	110 120 <50	NC 300 <100	NC 2800 <100	0.5 50 <0.2	160 85 <0.5	55 70 <1	40 105 <1	3 170 <1	NC 0.7 <0.05	3 NC <0.5	300 NC <0.05
	0.5 - 0.6 m		100 100 11	20 NC <0.4	100 410 18	6000 210 6	300 1100 11	40 NC <0.1	400 190 6	7400 520 27	NC NC <25	NC NC <50	45 180 <25	110 120 <50	NC 300 <100	NC 2800 <100	0.5 50 <0.2	160 85 <0.5	55 70 <1	40 105 <1	3 170 <1	NC 0.7 <0.05	3 NC <0.5	300 NC <0.05
114	0.3 - 0.4 m	01/08/2020	100 100	20 NC	100 410	6000 210	300 1100	40 NC	400 190	7400 520	NC NC	NC NC	45 180	110 120	NC 300	NC 2800	0.5 50	160 85	55 70	40 105	3 170	NC 0.7	3 NC	300 NC
115	0 - 0.1 m	01/08/2020	<4 100 100	<0.4 20 NC	10 : 100 410	20 6000 210	16 300 1100	<0.1 40 NC	10 400 190	53 7400 520	<25 NC NC	<50 NC NC	<25 45 180	<50 110 120	<100 NC 300	<100 NC 2800	<0.2 0.5 50	<0.5 160 85	<1 55 70	<1 40 105	<1 3 170	<0.05 NC 0.7	<0.5 3 NC	<0.05 300 NC
115	0.2 - 0.3 m	01/08/2020	8 100 100	<0.4 20 NC	14 100 410	8 6000 210	11 300 1100	<0.1 40 NC	5 400 190	20 7400 520	<25 NC NC	<50 NC NC	<25 45 180	<50 110 120	<100 NC 300	<100 NC 2800	<0.2 0.5 50	<0.5 160 85	<1 55 70	<1 40 105	<1 <mark>3</mark> 170	<0.05 NC 0.7	<0.5 3 NC	<0.05 300 NC
115	0.5 - 0.6 m	01/08/2020	9 100 100	<0.4 20 NC	13 100 410	5 6000 210	10 300 1100	<0.1 40 NC	2 400 190	15 7400 520	<25 NC NC	<50 NC NC	<25 45 180	<50 110 120	<100 NC 300	<100 NC 2800	<0.2 0.5 50	<0.5 160 85	<1 55 70	<1 40 105	<1 3 170	<0.05 NC 0.7	<0.5 3 NC	<0.05 300 NC
116	0 - 0.1 m	01/08/2020	6	<0.4	11	15	13	<0.1	7	35	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05
_			100 100	20 NC	: 100 410	6000 210	300 1100	40 NC	400 190	7400 520	NC NC	NC NC	45 180	110 120	NC 300	NC 2800	0.5 50	160 85	55 70	40 105	3 170	NC 0.7	3 NC	300 NC

	1		10	0.4	10	45	10				05	50	05	50	100	100		0.5				0.05	0.5	0.05
117	0 - 0.03 m	01/08/2020	10	<0.4	13	15	12	<0.1	8	36	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05
			100 100	20 NC	100 410	6000 210	300 1100	40 NC	400 190	7400 520	NC NC	NC NC	45 180		NC 300		0.5 50	160 85	55 70	40 105	3 170	NC 0.7	3 NC	300 NC
118	0.05 - 0.1 m	01/08/2020	10	<0.4	14	16	12	<0.1	6	30	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05
			100 100	20 NC	100 410	6000 210	300 1100	40 NC	400 190	7400 520	NC NC	NC NC	45 180) 110 120	NC 300	NC 2800	0.5 50	160 85	55 70	40 105	3 170	NC 0.7	3 NC	300 NC
BD2/20200801	0.05 - 0.1 m	01/08/2020	9	<0.4	13	15	12	<0.1	6	30	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05
			100 100	20 NC	100 410	6000 210	300 1100	40 NC	400 190	7400 520	NC NC	NC NC	45 180	0 110 120	NC 300	NC 2800	0.5 50	160 85	<u>55</u> 70	40 105	3 170	NC 0.7	3 NC	300 NC
118	0.2 - 0.3 m	01/08/2020	7	<0.4	4	23	12	<0.1	5	28	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05
110	0.2 0.0 11	01/00/2020	100 100	20 NC	100 410	6000 210	300 1100	40 NC	400 190	7400 520	NC NC	NC NC	45 180) 110 120	NC 300	NC 2800	0.5 50	160 85	55 70	40 105	3 170	NC 0.7	3 NC	300 NC
119	0 - 0.5 m	02/08/2020	5	<0.4	10	44	13	<0.1	8	38	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05
113	0 - 0.5 111	02/00/2020	100 100	20 NC	100 410	6000 210	300 1100	40 NC	400 190	7400 520	NC NC	NC NC	45 180	110 120	NC 300	NC 2800	0.5 50	160 85	55 70	40 105	3 170	NC 0.7	3 NC	300 NC
119	0.2 - 0.3 m	02/08/2020	4	<0.4	8	10	10	<0.1	5	22	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05
119	0.2 - 0.3 m	02/06/2020	100 100	20 NC	100 410	6000 210	300 1100	40 NC	400 190	7400 520	NC NC	NC NC	45 180	110 120	NC 300	NC 2800	0.5 50	160 85	55 70	40 105	3 170	NC 0.7	3 NC	300 NC
119	00.07.	00/00/2020	9	<0.4	23	7	9	<0.1	4	13	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	< 0.05	<0.5	<0.05
119	0.6 - 0.7 m	02/08/2020	100 100	20 NC	100 410	6000 210	300 1100	40 NC	400 190	7400 520	NC NC	NC NC	45 180	110 120	NC 300	NC 2800	0.5 50	160 85	55 70	40 105	3 170	NC 0.7	3 NC	300 NC
			4	<0.4	10	22	13	<0.1	9	56	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	< 0.05	<0.5	<0.05
120	0 - 0.1 m	02/08/2020	100 100	20 NC	100 410	6000 210	300 1100	40 NC	400 190	7400 520	NC NC	NC NC	45 180	110 120	NC 300	NC 2800	0.5 50	160 85	55 70	40 105	3 170	NC 0.7	3 NC	300 NC
			8	<0.4	13	17	12	<0.1	6	27	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	< 0.05	<0.5	<0.05
120	0.2 - 0.3 m	02/08/2020	100 100	20 NC	100 410	6000 210	300 1100	40 NC	400 190	7400 520	NC NC	NC NC	45 180	110 120	NC 300	NC 2800	0.5 50	160 85	55 70	40 105	3 170	NC 0.7	3 NC	300 NC
			5	<0.4	11	24	19	<0.1	10	62	<25	<50	<25	<50	160	230	<0.2	<0.5	<1	<1	<1	< 0.05	<0.5	<0.05
121	0 - 0.1 m	02/08/2020	100 100	20 NC	100 410	6000 210	300 1100	40 NC	400 190	7400 520	NC NC	NC NC	45 180		NC 300		0.5 50	160 85	55 70	40 105	3 170	NC 0.7	3 NC	300 NC
			NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT NT	NT	NT
122	0 - 0.1 m	01/08/2020	100 100	20 NC	100 410	6000 210	300 1100	40 NC	400 190	7400 520	NC NC	NC NC	45 180		NC 300		0.5 50	160 85	55 70	40 105	3 170	NC 0.7	3 NC	300 NC
			NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT NT	NT NT	0.5 50 NT	NT	NT	NT	NT	NT NT	NT	NT
122	0.2 - 0.3 m	01/08/2020	100 100	20 NC	100 410	6000 210	300 1100	40 NC	400 190	7400 520		NC NC	45 180		NC 300		0.5 50	160 85	55 70		3 170	NC 0.7	3 NC	300 NC
			7	<0.4	100 410	13	17	<0.1	400 190	27	NC NC <25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	40 105	<1	0.06	<0.5	0.3
123	0 - 0.1 m	01/08/2020				-			Ĩ		-													
			100 100	20 NC	100 410	6000 210	300 1100	40 NC	400 190	7400 520	NC NC	NC NC	45 180		NC 300	+	0.5 50	160 85	55 70	40 105		NC 0.7	3 NC	300 NC
BD120200801	0 - 0.1 m	01/08/2020	5	<0.4	12	18	20	<0.1		38	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	< 0.05	<0.5	<0.05
			100 100	20 NC	100 410	6000 210	300 1100	40 NC	400 190	7400 520	NC NC		45 180		NC 300			160 85	55 70	40 105		NC 0.7	3 NC	300 NC
124	0 - 0.1 m	01/08/2020	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
			100 100	20 NC	100 410	6000 210	300 1100	40 NC	400 190	7400 520	NC NC	NC NC	45 180) 110 120	NC 300	NC 2800	0.5 50	160 85	55 70	40 105	3 170	NC 0.7	3 NC	300 NC

Lab result
HIL/HSL value EIL/ESL value

HIL/HSL exceedance 📕 EIL/ESL exceedance 📕 HIL/HSL and EIL/ESL exceedance 📕 ML exceedance 📕 ML and HIL/HSL or EIL/ESL exceedance

Indicates that asbestos has been detected by the lab below the PQL, refer to the lab report Blue = DC exceedance

Bold = Lab detections NT = Not tested NL = Non limiting NC = No criteria NA = Not applicable NAD = No asbestos detected

Notes:	
HIL/HSL/DC	NEPC, Schedule B1 - HIL A (undefined), HSL A/B (undefined), DC HSL A (undefined)
EIL/ESL	NEPC, Schedule B1 - EIL UR/POS (undefined), ESL UR/POS (undefined)
ML	NEPC, Schedule B1 - ML R/P/POS (undefined)
а	QA/QC replicate of sample listed directly below the primary sample
b	reported naphthalene laboratory result obtained from BTEXN suite
С	criteria applies to DDT only

Table R2: Summary of Laboratory Results – Phenol, OCP, OPP, PCB, Asbestos

n n	Asbest	stos
Sample ID Depth Sample Date mg/kg mg/kg	Asbestos ID in soil >0.1g/kg Trace Analysis	Asbestos (50 g)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	NAD NAD	D NAD
102 0 - 0.1 m 02082020 e^{-6} 90.1 90.1	NT NT	T NT
102 0.2.0.3 m 02/08/202 NT	NAD NAD	D NAD
103 0 - 0.15 m 02/08/2020 c5 c0.1	NAD NAD	D NAD
104 0 - 0.1m 0208/2021 c5 c0.1	NAD NAD	.D NAD
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	NAD NAD	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		
105 0 - 0.12 m 01/08/2020 100 NC 240 180 NC NC NC NC NC 180 6 NC 50 NC 270 NC 10 NC 6 NC 10 NC 10 NC 50 NC 11 NC 106 0.15 - 0.25 m 01/08/2020 100 NC 240 180 NC NC NC NC	NAD NAD	D NAD
105 0.15 - 0.25 m 01/08/2020 100 NC 240 180 NC NC NC NC NC 180 6 NC 50 NC 270 NC 10 NC 6 NC 100 NC 240 180 NC NC NC NC NC 180 60.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	NAD NAD	D NAD
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	NT NT	T NT
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	NAD NAD	D NAD
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	NT NT	T NT
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	NAD NAD	D NAD
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	NT NT	T NT
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	NAD NAD	D NAD
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	NAD NAD	.D NAD
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	NAD NAD	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	NAD NAD	D NAD
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	NT NT	T NT
113 0.1 - 0.2 m 01/08/2020 100 NC 240 180 NC NC NC NC NC 180 6 NC 50 NC 270 NC 10 NC 6 NC 10 NC 300 NC 160 NC 1 NC NT NT <td>NAD NAD</td> <td>D NAD</td>	NAD NAD	D NAD
NT N	NAD NAD	D NAD
113 0.5 - 0.6 m 01/08/2020 100 NC 240 180 NC NC NC NC NC 180 6 NC 50 NC 270 NC 10 NC 6 NC 10 NC 300 NC 160 NC 1 NC	NT NT	T NT
114 0.3 - 0.4 m 01/08/2020 NT NT <td>NT NT</td> <td>r nt</td>	NT NT	r nt
	NAD NAD	D NAD

115	0.2 - 0.3 m	01/08/2020	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	N
110	0.2 0.0 m	01/00/2020	100 NC	240 180	NC NC	NC NC	NC 180	6 NC	50 NC	270 NC	10 NC	6 NC	10 NC	300 NC	160 NC	1 NC	10.00	
115	0.5 - 0.6 m	01/08/2020	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	١
115	0.5 - 0.0 m	01/00/2020	100 NC	240 180	NC NC	NC NC	NC 180	6 NC	50 NC	270 NC	10 NC	6 NC	10 NC	300 NC	160 NC	1 NC		1
116	0 - 0.1 m	01/08/2020	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	N
110	0-0.111	01/00/2020	100 NC	240 180	NC NC	NC NC	NC 180	6 NC	50 NC	270 NC	10 NC	6 NC	10 NC	300 NC	160 NC	1 NC	INAD	IN
117	0 - 0.03 m	01/08/2020	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	N
117	0 - 0.03 11	01/00/2020	100 NC	240 180	NC NC	NC NC	NC 180	6 NC	50 NC	270 NC	10 NC	6 NC	10 NC	300 NC	160 NC	1 NC	INAD	IN
118	0.05 - 0.1 m	01/08/2020	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	N
110	0.05 - 0.1 11	01/06/2020	100 NC	240 180	NC NC	NC NC	NC 180	6 NC	50 NC	270 NC	10 NC	6 NC	10 NC	300 NC	160 NC	1 NC	NAD	IN
BD2/20200801	0.05 0.1 m	01/08/2020	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	Ν
BD2/20200601	0.05 - 0.1 m	01/08/2020	100 NC	240 180	NC NC	NC NC	NC 180	6 NC	50 NC	270 NC	10 NC	6 NC	10 NC	300 NC	160 NC	1 NC	N I	r
110	0.0.0.0.m	01/08/2020	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	N
118	0.2 - 0.3 m	01/08/2020	100 NC	240 180	NC NC	NC NC	NC 180	6 NC	50 NC	270 NC	10 NC	6 NC	10 NC	300 NC	160 NC	1 NC	NAD	N
110	0.05 m	00/00/0000	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	
119	0 - 0.5 m	02/08/2020	100 NC	240 180	NC NC	NC NC	NC 180	6 NC	50 NC	270 NC	10 NC	6 NC	10 NC	300 NC	160 NC	1 NC	NAD	N
440	0.0.0.0.m	00/00/0000	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	
119	0.2 - 0.3 m	02/08/2020	100 NC	240 180	NC NC	NC NC	NC 180	6 NC	50 NC	270 NC	10 NC	6 NC	10 NC	300 NC	160 NC	1 NC	NAD	N
440	0.0.07m	00/00/0000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	
119	0.6 - 0.7 m	02/08/2020	100 NC	240 180	NC NC	NC NC	NC 180	6 NC	50 NC	270 NC	10 NC	6 NC	10 NC	300 NC	160 NC	1 NC	NT	١
400	0.01 m	00/00/0000	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	N
120	0 - 0.1 m	02/08/2020	100 NC	240 180	NC NC	NC NC	NC 180	6 NC	50 NC	270 NC	10 NC	6 NC	10 NC	300 NC	160 NC	1 NC	NAD	N
100	0.2.0.2 m	02/08/2020	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	
120	0.2 - 0.3 m	02/08/2020	100 NC	240 180	NC NC	NC NC	NC 180	6 NC	50 NC	270 NC	10 NC	6 NC	10 NC	300 NC	160 NC	1 NC	NT	Ν
101	0.01 m	02/08/2022	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	
121	0 - 0.1 m	02/08/2020	100 NC	240 180	NC NC	NC NC	NC 180	6 NC	50 NC	270 NC	10 NC	6 NC	10 NC	300 NC	160 NC	1 NC	NAD	N
100	0.01 m	01/08/2020	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NAD	
122	0 - 0.1 m	01/08/2020	100 NC	240 180	NC NC	NC NC	NC 180	6 NC	50 NC	270 NC	10 NC	6 NC	10 NC	300 NC	160 NC	1 NC	NAD	N
400	0.0.00 m	04/00/0000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NAD	
122	0.2 - 0.3 m	01/08/2020	100 NC	240 180	NC NC	NC NC	NC 180	6 NC	50 NC	270 NC	10 NC	6 NC	10 NC	300 NC	160 NC	1 NC	NAD	N
400	0.01 m	04/00/0000	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	
123	0 - 0.1 m	01/08/2020	100 NC	240 180	NC NC	NC NC	NC 180	6 NC	50 NC	270 NC	10 NC	6 NC	10 NC	300 NC	160 NC	1 NC	NAD	N
BD120200001	0.01-	01/08/0000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	
BD120200801	0 - 0.1 m	01/08/2020	100 NC	240 180	NC NC	NC NC	NC 180	6 NC	50 NC	270 NC	10 NC	6 NC	10 NC	300 NC	160 NC	1 NC	NT	Γ
404	0.04.5	04/00/0000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NAD	
124	0 - 0.1 m	01/08/2020	100 NC	240 180	NC NC	NC NC	NC 180	6 NC	50 NC	270 NC	10 NC	6 NC	10 NC	300 NC	160 NC	1 NC	NAD	N
L							50				•							

Lab result

HIL/HSL exceedance EIL/ESL exceedance HIL/HSL and EIL/ESL exceedance ML exceedance ML and HIL/HSL or EIL/ESL exceedance

HIL/HSL value EIL/ESL value

Indicates that asbestos has been detected by the lab below the PQL, refer to the lab report Blue = DC exceedance

Bold = Lab detections NT = Not tested NL = Non limiting NC = No criteria NA = Not applicable NAD = No asbestos detected

Notes:

- NEPC, Schedule B1 HIL A (undefined), HSL A/B (undefined), DC HSL A (undefined) HIL/HSL/DC EIL/ESL NEPC, Schedule B1 - EIL UR/POS (undefined), ESL UR/POS (undefined) ML
 - NEPC, Schedule B1 ML R/P/POS (undefined)
- QA/QC replicate of sample listed directly below the primary sample а
- reported naphthalene laboratory result obtained from BTEXN suite b
- criteria applies to DDT only С

NAD	NAD
NT	NT
NAD	NAD
NAD	NAD
NAD	NAD
NT	NT
NAD	NAD
NAD	NAD
NAD	NAD
NT	NT
NAD	NAD
NT	NT
NAD	NAD
NT	NT
NAD	NAD

Appendix H

Borehole Logs

Woolacotts Consulting Engineers Pty Ltd

John Palmer Public School Upgrade

85 The Ponds Boulevard, The Ponds

SURFACE LEVEL: 56.2 mAHD **EASTING:** 306364.7 **NORTHING:** 6268242.3 **DIP/AZIMUTH:** 90°/-- BORE No: 103 PROJECT No: 94624.00 DATE: 2/8/2020 SHEET 1 OF 1

Sampling & In Situ Testing Graphic Log Description Dynamic Penetrometer Test Water Depth 뭅 Sample of Depth (blows per 150mm) Results & Comments (m) Type Strata 20 10 D/E 0.0 FILL / TOPSOIL: Silty CLAY: brown, trace fine gravel and 0.05 0.05 \rootlets, w > PL, surficial vegetation 0.1 0.2 D FILL / Silty CLAY CH: grey-brown, with fine to coarse D/E siltstone gravel, trace sand, w < PL, appears generally 0.3 moderately-well compacted 0.4 D 0.5 0.6 Silty CLAY CH: high plasticity, pale brown and red-brown, w < PL, stiff, residual 0.9 D 1.0 1 1 1.0m: becoming pale grey mottled orange 6,7,8 S N = 151.45 1.5 1.5 Silty CLAY CH: medium to high plasticity, pale grey and D 16 orange-brown, with bands of very low strength siltstone, w < PL, very stiff, residual</p> 1.9 D - 2 20 -2.0 Bore discontinued at 2.0m .4 . 3 - 3 -23 -4 - 4 2 RIG: Hanjin D&B 8-D DRILLER: Rockwell LOGGED: JY CASING: Uncased

TYPE OF BORING:150mm diameter SFAWATER OBSERVATIONS:No free ground water observedREMARKS:

G P U,x W

₽

A Auger sample B Bulk sample BLK Block sample

CDE

Core drilling Disturbed sample Environmental sample

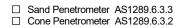
SAMPLING & IN SITU TESTING LEGEND

Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level

CLIENT:

PROJECT:

LOCATION:


SURFACE LEVEL: 57.2 mAHD EASTING: 306407.1 NORTHING: 6268256.3 DIP/AZIMUTH: 90°/--

BORE No: 104 **PROJECT No: 94624.00** DATE: 2/8/2020 SHEET 1 OF 1

Sampling & In Situ Testing Graphic Description Dynamic Penetrometer Test Water Depth Log Sample 뭅 of Depth (blows per 150mm) Results & Comments (m) Type Strata 15 20 10 0.0 FILL / TOPSOIL: Silty CLAY CH: brown, trace fine gravel D/E 0.1 0.1 and rootlets, w > PL, surficial vegetation 0.2 FILL / Silty CLAY CH: medium to high plasticity, brown D/E and red-brown, w > PL, appears generally poorly 0.3 compacted 0.5 Silty CLAY CH: medium to high plasticity, pale brown and red-brown, w < PL, stiff, residual - becoming very stiff below 0.9m 1.0 1 1 3,20 S refusal <u>.</u>... 1.3 1.4 Silty CLAY CH: medium to high plasticity, pale grey and orange-brown, with very low strength siltstone bands, w < PL, hard, residual - 2 20 2.0 -2 11,15/60 SILTSTONE: grey, very low strength, moderately S refusal weathered, Ashfield Shale 15/60mm refusal 2.2 <u>.</u>... 2.4 D 2.5 2.5 Bore discontinued at 2.5m 3 - 3 -5 -4 - 4 RIG: Hanjin D&B 8-D DRILLER: Rockwell LOGGED: JY CASING: Uncased TYPE OF BORING: 150mm diameter SFA

WATER OBSERVATIONS: No free ground water observed **REMARKS:**

SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level G P U,x W Core drilling Disturbed sample Environmental sample CDE ₽

Douglas Partners

Geotechnics | Environment | Groundwater

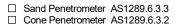
CLIENT: PROJECT: LOCATION:

Woolacotts Consulting Engineers Pty Ltd John Palmer Public School Upgrade 85 The Ponds Boulevard, The Ponds

SURFACE LEVEL: 58.5 mAHD EASTING: 306494.7 **NORTHING:** 6268314.9 DIP/AZIMUTH: 90°/--

BORE No: 105 PROJECT No: 94624.00 DATE: 1/8/2020 SHEET 1 OF 1

Γ		Description	. <u>0</u>		Sam	ipling &	& In Situ Testing	_	_		
R	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynan (b	lows per 1	meter Test 50mm)
		Strata			ළ 	Sar			5	10	15 20 : :
-	0.12	\fine sand, w < PL		A/E A/E	0.12 0.15 0.25		< 1.0 pp 1.0 pp				
ł	0.35	Silty CLAY CI-CH: medium to high plasticity, red-brown, trace fine ironstone gravel, trace rootlets, stiff, residual			0.25						
58	-	0.25m: pale grey and red-brown, with fine sandstone and ironstone gravel, trace fine sand	• • •	D	0.4						
ţ	-	SILTSTONE: grey-brown, very low strength, moderately weathered, with clay seams, Ashfield Shale		ļ						•	
ŀ	-	weathered, with day seams, Astricia Onlice	 • • •								
ļ	- 1			D	0.9 1.0				-1		
ł	-									•	
ŀ	-									•	
57	- 1.5			D	1.4 —1.5—						
ľ	-	Bore discontinued at 1.5m			1.0						
ļ	-									•	
ŀ											
-	-2								-2		
ŀ	-										
ŀ	F										
56	-										
ł	ŀ										
-	F								-		
ŀ	-3								-3		
ł	-									•	
ļ	-									•	
55	-										
-	[-		
ŀ	-										
ł	-4								-4		
ļ	-										
ŀ	ŀ										
- 12	-								ŀ		
ŀ	ŀ										
ł	F										
Ľ	[
R	G: Hanj	in D&B 8-D DRILLER: Rockwell		LOG	GED	: JY/K	R Casing) : U	ncased		


TYPE OF BORING: 150mm diameter SFA WATER OBSERVATIONS: No free ground water observed **REMARKS:**

A Auger sample B Bulk sample BLK Block sample

CDE

Core drilling Disturbed sample Environmental sample

Geotechnics | Environment | Groundwater

CLIENT: **PROJECT:**

Woolacotts Consulting Engineers Pty Ltd

John Palmer Public School Upgrade LOCATION: 85 The Ponds Boulevard, The Ponds

SURFACE LEVEL: 58.5 mAHD EASTING: 306487.3 **NORTHING:** 6268317.4 DIP/AZIMUTH: 90°/--

BORE No: 106 PROJECT No: 94624.00 DATE: 1/8/2020 SHEET 1 OF 1

	5 //	Description	Sampling & In Situ Testing La bit La bit				& In Situ Testing	L.	Dynamic Penetrometer Test
RL	Depth (m)	of	Graph Log	Type	Depth	Sample	Results & Comments	Water	(blows per 150mm)
		Strata FILL / TOPSOIL: Silty CLAY CL-CI: low to medium			0.05	Sa	1.3 pp		5 10 15 20
	- 0.15	FILL / TOPSOIL: Silty CLAY CL-CI: low to medium plasticity, dark brown, with rootlets, trace igneous gravel, fine sand, w < PL		_A/E_	0.1 0.15		1.3 pp		
58	- - 0.5	Silty CLAY CI-CH: medium to high plasticity, red-brown, trace rootlets, fine ironstone gravel, w <pl, residual<br="" stiff,="">0.35m: pale grey and red-brown</pl,>		A/E	0.25 0.4 0.5		1.3 pp		
-	-	Silty CLAY CH: medium to high plasticity, pale grey mottled orange-brown, trace sand, trace ironstone gravel, w < PL, hard, residual			0.0				
-	- -1 1.0 -	SILTSTONE: grey, very low to low strength, moderately weathered, Ashfield Shale			1.0		00.01.05		-1
-	-		• • • • • • _	S	1.45		20,24,25 N = 49		
	-		· _ · -		1.10				
-	- - -2 2.0		· · _						2
-	-	Bore discontinued at 2.0m							
56	-								
-	-								
-	- 3								-3
-	-								
55	-								
-	-								
-	- 4								-4
	-								
54	-								
-	-								
									i i i i

RIG: Hanjin D&B 8-D DRILLER: Rockwell TYPE OF BORING: 150mm diameter SFA WATER OBSERVATIONS: No free ground water observed **REMARKS:**

G P U, W

₽

A Auger sample B Bulk sample BLK Block sample

CDE

Core drilling Disturbed sample Environmental sample

LOGGED: JY/KR

CASING: Uncased

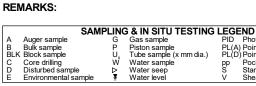
□ Sand Penetrometer AS1289.6.3.3 Cone Penetrometer AS1289.6.3.2

Geotechnics | Environment | Groundwater

Woolacotts Consulting Engineers Pty Ltd CLIENT:

PROJECT: John Palmer Public School Upgrade LOCATION: 85 The Ponds Boulevard, The Ponds

Woolacotts Consulting Engineers Pty Ltd


John Palmer Public School Upgrade

LOCATION: 85 The Ponds Boulevard, The Ponds

CLIENT: **PROJECT:** SURFACE LEVEL: 58.6 mAHD **EASTING:** 306513.2 **NORTHING:** 6268364.9 DIP/AZIMUTH: 90°/--

BORE No: 107 PROJECT No: 94624.00 DATE: 1/8/2020 SHEET 1 OF 1

Γ		Description	. <u></u>		Sam	pling &	& In Situ Testing	_	
Ч	Dept (m)	th · · · · · · · · · · · · · · · · · · ·	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)
L	Ĺ	Olidid	U O	Ļ	De	San	Comments		5 10 15 20
ŀ	. 0.	D.08 FILL / TOPSOIL:Silty CLAY CL-CI: low to medium plasticity, trace rootlets, fine igneous gravel, w < PL	\bigotimes	A/E	0.1		< 1.0 pp		
ŀ	- 0	0.2 FILL / Silty CLAY CH: medium to high plasticity, yellow-brown and dark brown, trace rootlets		A/E A/G	0.2 0.25		< 1.0 pp		
ŀ	- 0	0.4 Silty CLAY CI-CH: medium to high plasticity, red-brown, w		70	0.35		1.0 pp		
- 28	-	Silty CLAY CH: medium to high plasticity, mottled							
ŀ	-	red-brown and grey, w < PL, firm, residual							
ł	-								
ŀ	-1	Silty Clay CI-CH: medium to high plasticity, pale grey and orange, trace ironstone gravel, w < PL, very stiff, residual			1.0				
ŀ	-								. I
ŀ	-				1.45				-
57	-								-
ŀ	-								-
ŀ									
ŀ	-2 2	2.0 SILTSTONE: grey-brown, very low strength, moderately weathered, Ashfield Shale	· _ · ·						-2
ŀ	-		· · _						
ŀ	-		· · ·						-
56	-								
ŀ	-		· · ·						-
ŀ			· · · ·						
ŀ	-3 3	Bore discontinued at 3.0m							-
ŀ	-								-
ŀ	-								-
55	-								
ŀ	-								-
ŀ	-								-
ŀ	-4								-4
ŀ	-								
ŀ	-								
54	-								
ŀ	_								
[-								
	• • •								· · · · · ·
		anjin D&B 8-D DRILLER: Rockwell DF BORING: 150mm diameter SFA		LOG	GED:	: JY/K	KR CASING	i: U	ncased
W	ATER	ROBSERVATIONS: No free ground water observed							

LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level G P U, W ₽

Woolacotts Consulting Engineers Pty Ltd

John Palmer Public School Upgrade

85 The Ponds Boulevard, The Ponds

SURFACE LEVEL: 58.7 mAHD **EASTING:** 306501.7 **NORTHING:** 6268423.3 **DIP/AZIMUTH:** 90°/-- BORE No: 108 PROJECT No: 94624.00 DATE: 1/8/2020 SHEET 1 OF 1

Sampling & In Situ Testing Graphic Description Dynamic Penetrometer Test Water Depth Log Sample 뭅 of Depth (blows per 150mm) Results & Comments (m) Type Strata 20 15 0.0 FILL / TOPSOIL: Silty CLAY CH: brown, with fine to 0.1 0.1 medium sand and fine to medium siltstone gravel, trace rootlets, w > PL, surficial vegetation 0.2 FILL / Silty CLAY CH: brown, with gravel, trace sand, w < 0.3 PL, appears variably compacted 0.4 0.4 D FILL / Silty CLAY CH: grey, orange and brown, with sand and siltstone gravel, w < PL, generally moderately-well 0.5 compacted 0.9 D 1.0 1 7,7,10 N = 17 S 1.45 1.5 D 16 1.9 D - 2 20 -2.0 Bore discontinued at 2.0m 56 3 - 3 <u>.</u>22. 4 4 RIG: Hanjin D&B 8-D DRILLER: Rockwell LOGGED: JY CASING: Uncased

TYPE OF BORING: 150mm diameter SFA WATER OBSERVATIONS: No free ground water observed REMARKS:

> G P U,x W

₽

A Auger sample B Bulk sample BLK Block sample

CDE

Core drilling Disturbed sample Environmental sample

SAMPLING & IN SITU TESTING LEGEND

Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level

CLIENT:

PROJECT:

LOCATION:

Woolacotts Consulting Engineers Pty Ltd

John Palmer Public School Upgrade

LOCATION: 85 The Ponds Boulevard, The Ponds

CLIENT: **PROJECT:** SURFACE LEVEL: 59.1 mAHD **EASTING:** 306521 **NORTHING:** 6268420.1 DIP/AZIMUTH: 90°/--

BORE No: 109 PROJECT No: 94624.00 DATE: 1/8/2020 SHEET 1 OF 1

		Description	ic		Sam		& In Situ Testing	-	
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm) 5 10 15 20
-29-	- 0.1	FILL / TOPSOIL: Silty CLAY CH: brown, with fine to medium sand and fine to medium siltstone gravel, trace rootlets, w > PL, surficial vegetation FILL / Silty CLAY CH: brown, trace fine to coarse siltstone, w > PL, variably compacted		D/E D/E	0.0 0.1 0.2 0.3				
-	- - 0.6 -			D/E	0.6 0.7				
- - - -	- 1 - -			S	1.0		7,9,11 N = 20		
-	- 1.4 - -	SILTSTONE: grey, very low to low strength, moderately weathered, with clay seams, Ashfield Shale		· ·	1.45				
57	- - 2 2.0 -	Bore discontinued at 2.0m							2
-	-								
	- -3 - -								-3
-	- - -								
55	- 4								-4
-	- - -								
RI	 G : Hani	in D&B 8-D DRILLER: Rockwell		LOC	GED	: JY	CASING	 i: U	

TYPE OF BORING: 150mm diameter SFA WATER OBSERVATIONS: No free ground water observed **REMARKS:**

G P U, W

₽

A Auger sample B Bulk sample BLK Block sample

CDE

Core drilling Disturbed sample Environmental sample

SAMPLING & IN SITU TESTING LEGEND

Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level

SURFACE LEVEL: 58.0 mAHD EASTING: 306446.3 NORTHING: 6268255.9 DIP/AZIMUTH: 90°/--

PROJECT No: 94624.00 DATE: 2/8/2020 SHEET 1 OF 1

Sampling & In Situ Testing Well Description Graphic Log Water Depth 뭅 Sample Construction of Depth Results & Comments (m) Type Details Strata 0.02 ASPHALTIC CONCRETE 0.1 FILL / ROADBASE: Sandy GRAVEL: grey-brown, fine to coarse grained sand and fine to coarse igneous gravel, D/E 0.2 D/E dry 0.3 0.4 0.4 Silty Clay CH: medium to high plasticity, pale brown, with D 0.5 very low strength siltstone bands, w < PL, very stiff, residual 0.8 SILTSTONE: grey-brown, very low strength, moderately weathered, with clay seams, Ashfield Shale 0.9 D 1.0 -6-1 • 1 S 20/80mm refusal _ . 1.08 _ . _ 14 D _ 15 · ___ __ . 17 Bore discontinued at 1.7m -2 -ନ୍ତ - 3 - 3 -25-4 - 4

LOGGED: JY

RIG: Hanjin D&B 8-D DRILLER: Rockwell TYPE OF BORING: 150mm diameter SFA WATER OBSERVATIONS: No free ground water observed **REMARKS:**

SAMPLING & IN SITU TESTING LEGEND Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample G P U_x W Core drilling Disturbed sample Environmental sample CDE ₽

CASING: Uncased

BORE No: 110

PROJECT:

CLIENT:

Woolacotts Consulting Engineers Pty Ltd John Palmer Public School Upgrade LOCATION: 85 The Ponds Boulevard, The Ponds

Woolacotts Consulting Engineers Pty Ltd

John Palmer Public School Upgrade

85 The Ponds Boulevard, The Ponds

SURFACE LEVEL: 58.2 mAHD **EASTING:** 306445.8 **NORTHING:** 6268264.4 **DIP/AZIMUTH:** 90°/-- BORE No: 111 PROJECT No: 94624.00 DATE: 1/8/2020 SHEET 1 OF 1

DIP/AZIMUTH: 90°/--Sampling & In Situ Testing Graphic Log Description Dynamic Penetrometer Test Water Depth Sample 뭅 of Depth (blows per 150mm) Results & Comments (m) Type Strata 15 20 10 FILL / TOPSOIL: Silty CLAY CL-CI: low to medium 0.05 0.05 < 1.0 pp A/E plasticity, dark brown, with rootlets, trace fine sandstone gravel, fine sand, $w < \mathsf{PL}$ 0.1 28 0.2 A/E < 1.0 pp FILL / Silty CLAY CI: medium plasticity, yellow, red and 0.3 brown, with fine to medium sandstone and ironstone 0.4 \gravel, w < PL 0.45 A/E < 1.0 pp -0.55 0.55 N Silty CLAY CI-CH: medium to high plasticity, red-brown, w V< PL, stiff, residual</p> Bore discontinued at 0.55m 1 1 5 - 2 -2 -92 - 3 - 3 55 -4 - 4 -12

RIG: Hand Tools

A Auger sample B Bulk sample BLK Block sample

CDF

Core drilling Disturbed sample Environmental sample

CLIENT:

PROJECT:

LOCATION:

DRILLER: KR Hand Auger (100mm) to 0.55m LOGGED: KR

CASING: Uncased

 TYPE OF BORING:
 Hand Auger (100mm) to 0.55m

 WATER OBSERVATIONS:
 No free ground water observed whilst augering

 REMARKS:
 Image: Comparison of the second s

 SAMPLING & IN SITU TESTING LEGEND

 P
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 U
 Tube sample (x mm dia.)
 PL(A) Point load diametral test Is(50) (MPa)

 W
 Water sample
 PD
 Pocket penetrometer (kPa)

 Mple
 ¥
 Water level
 V
 Sharadra penetration test

□ Sand Penetrometer AS1289.6.3.3□ Cone Penetrometer AS1289.6.3.2

Geotechnics | Environment | Groundwater

Woolacotts Consulting Engineers Pty Ltd

John Palmer Public School Upgrade

LOCATION: 85 The Ponds Boulevard, The Ponds

CLIENT: PROJECT: **SURFACE LEVEL:** 58.0 mAHD **EASTING:** 306437.6 **NORTHING:** 6268239.1 **DIP/AZIMUTH:** 90°/-- BORE No: 112 PROJECT No: 94624.00 DATE: 1/8/2020 SHEET 1 OF 1

Π		Description	. <u>0</u>	Sampling & In Situ Testing						
R	Depth (m)	of	Graphic Log	e	Ę	ple	Results &	Water	Dynamic Penetrometer Test (blows per 150mm)	
	(11)	Strata	0 0	Type	Depth	Sample	Results & Comments	5	5 10 15 20	
	-	FILL / Silty CLAY CI: medium plasticity, brown and dark brown, trace fine sandstone gravel, w ~ PL, 50mm bark cover		_A/E_	0.08 0.15		< 1.0 pp			
	0.25			A/E	0.25 0.35		< 1.0 pp			
$\left \right $	- 0.5		\mathbb{H}	A/E	0.5		< 1.0 pp			
ŀ	- 0.6		<u> </u>	742	-0.6		4 1.0 pp			
	-	Bore discontinued at 0.6m								
-	-								│ │ │	
57	-1									
ŀ	-									
[-									
$\left \right $	-									
ŀ	-									
	-									
-	-									
\mathbf{F}	-									
56	-2								-2	
	-									
$\left \right $	-									
ŀ	-									
	-									
$\left \right $	-									
$\left \right $	_									
55	-									
-33	- 3								-3	
$\left \right $	-									
ŀ	-									
t	-									
	-									
$\left \right $	-									
ŀ	-									
54	-4								4	
-	-									
$\left \right $	-									
t	-									
	-									
$\left \right $	-									
$\left \right $	-									
	-									
	.						0.4.0.11/			

RIG: Hand Tools **TYPE OF BORING:**

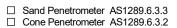
DRILLER: KR Hand Auger (100mm) to 0.6m LOGGED: KR

CASING: Uncased

WATER OBSERVATIONS: No free ground water observed whilst augering REMARKS:

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)


 B
 Bulk sample
 P
 Piston sample
 PID
 Photo ionisation detector (ppm)

 BLK Block sample
 U
 Tube sample (x mm dia.)
 PL(A) Point load axial test ls(50) (MPa)

 BLK Block sample
 U
 Tube sample (x mm dia.)
 PL(D) Point load diametral test ls(50) (MPa)

 D
 Disturbed sample
 P
 Water sample
 pp
 Pocket penetrometer (kPa)

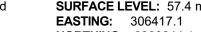
 D
 E
 Environmental sample
 Water level
 V
 Shear vane (kPa)

SURFACE LEVEL: 57.4 mAHD 306417.1 NORTHING: 6268244.1 DIP/AZIMUTH: 90°/--

BORE No: 113 PROJECT No: 94624.00 DATE: 1/8/2020 SHEET 1 OF 1

Sampling & In Situ Testing Graphic Log Description Dynamic Penetrometer Test Water Depth Sample 뭅 of Depth (blows per 150mm) Results & Comments (m) Type Strata 15 20 10 FILL / TOPSOIL: Silty CLAY CL-CI: low to medium 0.05 0.1 plasticity, dark brown, with rootlets, trace fine sandstone gravel, fine sand, $w < \mathsf{PL}$ A/E < 1.0 pp 0.2 0.2 FILL / Silty CLAY CI: medium plasticity, yellow, red and A/E < 1.0 pp brown, trace fine sandstone gravel, w < PL 0.4 0.45 FILL / Silty CLAY CI: medium plasticity, brown and dark 0.5 A/E < 1.0 pp brown, trace fine sandstone gravel, w ~ PL 0.6 0.6 Silty CLAY CI-CH: medium to high plasticity, red-brown, w < PL, stiff to very stiff, residual Bore discontinued at 0.6m 1 1 - 2 -2 3 - 3 5 -4 - 4 RIG: Hand Tools DRILLER: KR LOGGED: KR CASING: Uncased

Hand Auger (100mm) to 0.6m


WATER OBSERVATIONS: No free ground water observed whilst augering **REMARKS:**

TYPE OF BORING:

CDF

SAMPLING & IN SITU TESTING LEGEND Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample G P U_x W **Douglas Partners** Core drilling Disturbed sample Environmental sample ₽ Geotechnics | Environment | Groundwater

□ Sand Penetrometer AS1289.6.3.3 □ Cone Penetrometer AS1289.6.3.2

Woolacotts Consulting Engineers Pty Ltd

CLIENT:

PROJECT: LOCATION:

John Palmer Public School Upgrade 85 The Ponds Boulevard, The Ponds

Woolacotts Consulting Engineers Pty Ltd

John Palmer Public School Upgrade

85 The Ponds Boulevard, The Ponds

SURFACE LEVEL: 57.5 mAHD **EASTING:** 306418.4 **NORTHING:** 6268254.1 **DIP/AZIMUTH:** 90°/-- BORE No: 114 PROJECT No: 94624.00 DATE: 1/8/2020 SHEET 1 OF 1

Sampling & In Situ Testing Description Well Graphic Log Water Depth Ъ Sample Construction of Depth Type Results & Comments (m) Details Strata FILL / TOPSOIL: Silty CLAY: low to medium plasticity, 0.05 0.05 A/E < 1.0 pp dark brown, with rootlets, fine sandstone gravel, fine sand, 0.15 ∖w < PL 0.27 FILL / Silty CLAY CI: medium plasticity, brown, grey and 0.3 A/E < 1.0 pp red, trace fine sandstone gravel, w < PL 0.4 0.4 Silty CLAY CI-CH: medium to high plasticity, red-brown, w < PL, stiff to very stiff, residual Bore discontinued at 0.4m • 1 1 - 2 -2 3 - 3 5 -4 - 4

RIG: Hand Tools

CLIENT:

PROJECT:

LOCATION:

DRILLER: KR Hand Auger (100mm) to 0.4m LOGGED: KR

CASING: Uncased

 TYPE OF BORING:
 Hand Auger (100mm) to 0.4m

 WATER OBSERVATIONS:
 No free ground water observed whilst augering

 REMARKS:
 Image: Comparison of the second se

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PILD
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PILD
 Photo ionisation detector (ppm)

 BLK Block sample
 U
 Tube sample (xmm dia.)
 PL(A) Point load axial test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (KPa)

 D
 Disturbed sample
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 Water level
 V
 Shear vane (kPa)

Woolacotts Consulting Engineers Pty Ltd

John Palmer Public School Upgrade

85 The Ponds Boulevard, The Ponds

SURFACE LEVEL: 57.3 mAHD **EASTING:** 306408.7 **NORTHING:** 6268277.3 **DIP/AZIMUTH:** 90°/-- BORE No: 115 PROJECT No: 94624.00 DATE: 1/8/2020 SHEET 1 OF 1

Sampling & In Situ Testing Graphic Log Description Well Water Depth Ъ Sample Construction of Depth Results & Comments (m) Type Details Strata 0.0 FILL / TOPSOIL: Silty CLAY CH: brown, trace fine gravel D/E 0.1 and rootlets, w > PL, surficial vegetation 0.12 0.2 FILL / Silty CLAY CH: medium to high plasticity, brown, D/E trace fine gravel, w > PL 0.3 0.5 0.5 Silty CLAY CH: medium to high plasticity, brown and D/E 0.6 red-brown, w < PL, very stiff, residual 1.0 1 Bore discontinued at 1.0m -2 -2 22 - 3 - 3 5 -4 - 4 LOGGED: JY CASING: Uncased

 RIG: Hanjin D&B 8-D
 DRILLER: Rockwell

 TYPE OF BORING:
 150mm diameter SFA

 WATER OBSERVATIONS:
 No free ground water observed

 REMARKS:

CLIENT:

PROJECT:

LOCATION:

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PIL(A) Point load axial test Is(50) (MPa)

 BLK
 Block sample
 U,
 Tube sample (x mm dia.)
 PL(A) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp

 D
 Disturbed sample
 V
 Water seep
 S

 E
 Environmental sample
 Water level
 V
 Shear vane (kPa)

Woolacotts Consulting Engineers Pty Ltd

John Palmer Public School Upgrade

85 The Ponds Boulevard, The Ponds

SURFACE LEVEL: 57.0 mAHD EASTING: 306399.1 NORTHING: 6268280.3 DIP/AZIMUTH: 90°/--

BORE No: 116 PROJECT No: 94624.00 DATE: 1/8/2020 SHEET 1 OF 1

Sampling & In Situ Testing Graphic Log Description Well Water Depth 뭅 Sample Construction of Depth Results & Comments (m) Type Details Strata 0.0 FILL / TOPSOIL: Silty CLAY CH: brown, trace fine gravel D/E 0.1 0.1 and rootlets, w > PL, surficial vegetation 0.2 FILL / Silty CLAY CH: brown, trace sand and fine to D/E medium sandstone and siltstone gravel, w < PL 0.3 0.7 Silty CLAY CH: medium to high plasticity, pale brown and red-brown, w < PL, very stiff, residual 56 - 1 1.0 Bore discontinued at 1.0m -2 -22-3 - 3 -ന്ന-4 - 4

LOGGED: JY

RIG: Hanjin D&B 8-D **DRILLER:** Rockwell TYPE OF BORING: 150mm diameter SFA WATER OBSERVATIONS: No free ground water observed **REMARKS:**

CDE

CLIENT:

PROJECT:

LOCATION:

SAMPLING & IN SITU TESTING LEGEND Gas sample Piston sample Tube sample Water sample Water seep Water level LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample G P U_x W Core drilling Disturbed sample Environmental sample ₽

CASING: Uncased

Woolacotts Consulting Engineers Pty Ltd

John Palmer Public School Upgrade

LOCATION: 85 The Ponds Boulevard, The Ponds

CLIENT: PROJECT: **SURFACE LEVEL:** 56.6 mAHD **EASTING:** 306379.3 **NORTHING:** 6268275.9 **DIP/AZIMUTH:** 90°/-- BORE No: 117 PROJECT No: 94624.00 DATE: 1/8/2020 SHEET 1 OF 1

Γ		Description	0		Sam	pling 8	& In Situ Testing				
RL	Depth (m)	of	Graphic Log	e	÷	<u>e</u>	Posulte &	Water	Dynamic Pen (blows pe	etrometer er 150mm)	Test
	(11)	Strata	5	Type	Depth	Sample	Results & Comments	5	5 10		20
-	- 0.08 - - -	FILL / TOPSOIL: Silty CLAY CH: brown, trace fine gravel and rootlets, w > PL, surficial vegetation FILL / Silty CLAY CH: medium to high plasticity, brown, trace gravel, w < PL, appears variably compacted		D/E	0.0						
56	- 0.8	Silty CLAY CH: medium to high plasticity, pale brown and red-brown, trace ironstone gravel, w < PL, very stiff, residual, appears generally well compacted		U50	0.6 0.9						
-	- 1 - - - - 1.5								-1		
55		Bore discontinued at 1.5m									:
	- - - - - -								-2		
54	- - - - 3								- 3		
	-								-		
	- 4 								-4		
-25 - - -	-	in D&B 8-D DRILLER: Rockwell		LOC	GED	: JY	CASING	: U	ncased		

TYPE OF BORING: 150mm diameter SFA WATER OBSERVATIONS: No free ground water observed REMARKS:

> G P U, W

₽

A Auger sample B Bulk sample BLK Block sample

CDE

Core drilling Disturbed sample Environmental sample

SAMPLING & IN SITU TESTING LEGEND

Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level

□ Sand Penetrometer AS1289.6.3.3

Woolacotts Consulting Engineers Pty Ltd John Palmer Public School Upgrade

85 The Ponds Boulevard, The Ponds

SURFACE LEVEL: 56.4 mAHD EASTING: 306370.4 NORTHING: 6268276.6 DIP/AZIMUTH: 90°/--

BORE No: 118 PROJECT No: 94624.00 DATE: 1/8/2020 SHEET 1 OF 1

Sampling & In Situ Testing Graphic Log Description Well Water Depth 뭅 Sample Construction of Depth Results & Comments (m) Type Details Strata FILL / TOPSOIL: Silty CLAY CH: brown, trace fine gravel 0.05 0.05 D/E* \and rootlets, w > PL, surficial vegetation 0.1 0.2 FILL / Silty CLAY CH: medium to high plasticity, grey and D/E brown, trace sand and fine to medium gravel, w < PL 0.3 0.9 0.9 Silty CLAY CH: medium to high plasticity, pale brown and D/E 1.0 1 • 1 red-brown, w < PL, very stiff, residual 1.5 Bore discontinued at 1.5m - 2 -2 4 - 3 - 3 .හ -4 - 4 2

RIG: Hanjin D&B 8-D **DRILLER:** Rockwell TYPE OF BORING: 150mm diameter SFA

LOGGED: JY

CASING: Uncased

WATER OBSERVATIONS: No free ground water observed REMARKS: *BD2/20200801 sampled at 0.05-0.1m

CLIENT:

PROJECT:

LOCATION:

SAMPLING & IN SITU TESTING LEGEND Gas sample Piston sample Tube sample Water sample Water seep Water level LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample G P U_x W Core drilling Disturbed sample Environmental sample CDE ₽

Woolacotts Consulting Engineers Pty Ltd

John Palmer Public School Upgrade

85 The Ponds Boulevard, The Ponds

SURFACE LEVEL: 56.4 mAHD **EASTING:** 306375 **NORTHING:** 6268242.8 **DIP/AZIMUTH:** 90°/-- BORE No: 119 PROJECT No: 94624.00 DATE: 2/8/2020 SHEET 1 OF 1

Sampling & In Situ Testing Graphic Log Well Description Water Depth Construction 뭅 Sample of Depth Results & Comments (m) Type Details Strata D/E 0.0 FILL / TOPSOIL: Silty CLAY CH: brown, trace fine gravel 0.05 0.05 and rootlets, w > PL, surficial vegetation 0.2 FILL / Silty CLAY CH: grey-brown, with fine to coarse D/E siltstone gravel, trace sand, w < PL 0.3 0.6 0.6 Silty CLAY CH: medium to high plasticity, pale brown and D/E 0.7 red-brown, w < PL, stiff, residual - 1 1 1.0m: becoming pale grey mottled orange 1.5 Silty CLAY CH: medium to high plasticity, pale grey and orange-brown, with bands of very low strength siltstone, w <PL, very stiff, residual - 2 -2 3 - 3 3.1 SILTSTONE: grey, very low to low strength, moderately weathered, Ashfield Shale 3.9 D •4 4.0 4 0 Bore discontinued at 4.0m

RIG: Hanjin D&B 8-D DRILLER: Rockwell

CLIENT:

PROJECT:

LOCATION:

LOGGED: JY

CASING: Uncased

TYPE OF BORING: 150mm diameter SFA WATER OBSERVATIONS: No free ground water observed REMARKS:

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PILO
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 U
 Tube sample (x mm dia.)
 PL(A) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 p

 D
 Disturbed sample
 V
 Water seep
 S

 E
 Environmental sample
 ¥
 Water level
 V

Woolacotts Consulting Engineers Pty Ltd

John Palmer Public School Upgrade

85 The Ponds Boulevard, The Ponds

SURFACE LEVEL: 54.3 mAHD **EASTING:** 306379.1 **NORTHING:** 6268269.1 **DIP/AZIMUTH:** 90°/-- BORE No: 120 PROJECT No: 94624.00 DATE: 2/8/2020 SHEET 1 OF 1

Sampling & In Situ Testing Well Description Graphic Log Water Depth Ъ Sample Construction of Depth Type Results & Comments (m) Details Strata 0.0 FILL / TOPSOIL: Silty CLAY CH: brown, trace fine gravel D/E 0.1 0.1 and rootlets, w > PL, surficial vegetation 0.2 FILL / Silty CLAY CH: grey-brown, with fine to coarse D/E 0.3 siltstone gravel, trace sand, w < PL -0.3 54 Bore discontinued at 0.3m 1 • 1 53 -2 -2 2 - 3 - 3 -4 - 4 -12

RIG: Hand Tools

CLIENT:

PROJECT:

LOCATION:

DRILLER: Rockwell

LOGGED: JY

CASING: Uncased

TYPE OF BORING: 150mm diameter Hand Auger WATER OBSERVATIONS: No free ground water observed REMARKS:

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PID
 Photo ionisation detector (pPm)

 B
 Bulk sample
 P
 Vitage sample
 PL(A) Point load axial test Is(50) (MPa)

 B
 C Core drilling
 W
 Water sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 D
 Disturbed sample
 P
 Water sample
 S Standard penetrometer (kPa)

 E
 Environmental sample
 ¥
 Water level
 V
 Shear vane (kPa)

Woolacotts Consulting Engineers Pty Ltd John Palmer Public School Upgrade

85 The Ponds Boulevard, The Ponds

SURFACE LEVEL: 56.9 mAHD **EASTING:** 306391 **NORTHING:** 6268268.2 **DIP/AZIMUTH:** 90°/-- BORE No: 121 PROJECT No: 94624.00 DATE: 2/8/2020 SHEET 1 OF 1

Sampling & In Situ Testing Graphic Log Well Description Water Depth Ъ Sample Construction of Depth Type Results & Comments (m) Details Strata FILL / TOPSOIL: Silty CLAY CH: brown, trace fine gravel 0.1 and rootlets, w > PL, surficial vegetation FILL / Silty CLAY CH: grey-brown, with fine to coarse 0.3 siltstone gravel, trace sand, w < PL Bore discontinued at 0.3m -20 • 1 1 55 - 2 -2 54-3 - 3 -8 •4 - 4

RIG: Hand Tools

CLIENT:

PROJECT:

LOCATION:

DRILLER: Rockwell

LOGGED: JY

CASING: Uncased

TYPE OF BORING: 150mm diameter Hand Auger WATER OBSERVATIONS: No free ground water observed REMARKS:

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PID
 Photo ionisation detector (pPm)

 B
 BLK Block sample
 P
 Tube sample (x mm dia.)
 PL(A) Point load axial test Is(50) (MPa)

 B
 C
 Core drilling
 W
 Water sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 D
 Disturbed sample
 P
 Water sample
 S
 Standard penetration test

 E
 Environmental sample
 ¥
 Water level
 V
 Shear vane (kPa)

Woolacotts Consulting Engineers Pty Ltd John Palmer Public School Upgrade

85 The Ponds Boulevard, The Ponds

SURFACE LEVEL: 58.5 mAHD EASTING: 306499.8 NORTHING: 6268413.3 DIP/AZIMUTH: 90°/--

BORE No: 122 PROJECT No: 94624.00 DATE: 1/8/2020 SHEET 1 OF 1

Sampling & In Situ Testing Graphic Log Description Well Water Depth 뭅 Sample Construction of Depth Results & Comments (m) Type Details Strata 0.0 FILL / TOPSOIL: Sandy CLAY CH: grey-brown, fine to D/E 0.1 0.1 coarse sand, with fine to medium gravel, w > PL, surficial vegetation 0.2 D/E FILL / Silty CLAY CH: grey-brown, trace fine to medium 0.3 gravel, w > PL 1.0 • 1 1 5,7,10 N = 17 S 1.45 1.5 1.5 Silty CLAY CH: medium to high plasticity, grey and orange, trace fine to medium sand, w < PL, stiff to very stiff, residual D/E 16 в - 2 20 -2.0 Bore discontinued at 2.0m 20 3 - 3 22. •4 - 4 LOGGED: JY CASING: Uncased

RIG: Hanjin D&B 8-D **DRILLER:** Rockwell TYPE OF BORING: 150mm diameter SFA WATER OBSERVATIONS: No free ground water observed **REMARKS:**

CDE

CLIENT:

PROJECT:

LOCATION:

SAMPLING & IN SITU TESTING LEGEND Gas sample Piston sample Tube sample Water sample Water seep Water level LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample G P U_x W Core drilling Disturbed sample Environmental sample ₽

SURFACE LEVEL: 58.9 mAHD **EASTING:** 306510 **NORTHING:** 6268420.3 DIP/AZIMUTH: 90°/--

BORE No: 123 **PROJECT No: 94624.00** DATE: 1/8/2020 SHEET 1 OF 1

			DIF			1: 90°/		SHEET 1 OF 1
	Description	Dic		Sam		& In Situ Testing	ŗ	Well
Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
- 0.1 - - - 0.5 -	FILL / TOPSOIL: Silty CLAY CH: brown, with fine to medium sand and fine to medium siltstone gravel, trace rootlets, w > PL, surficial vegetation FILL / Silty CLAY CH: brown, trace sand and gravel, w > PL FILL / Silty CLAY CH: brown, trace sand and fine to coarse siltstone gravel, w < PL		D/E*	0.0 0.1 0.2 0.3				
- 8- - 1 1.0 - - -	FILL / Gravelly CLAY CH: grey-brown, gravel is fine to coarse siltstone, trace sand and silt, w < PL		D/E S	0.9		8,7,9 N = 16		- - 1 - 1
-			D/E	1.45				
- 2 - 2.2 - 	Silty CLAY CH: medium plasticity, pale grey and orange, trace fine to medium sand, w < PL, stiff to very stiff, residual		S	2.0		6,7,9 N = 16		-2
- 3			D	2.9				-3
								4
- 4.5 -	Bore discontinued at 4.5m	ĽŹZ						
,								

RIG: Hanjin D&B 8-D **DRILLER:** Rockwell TYPE OF BORING: 150mm diameter SFA WATER OBSERVATIONS: No free ground water observed REMARKS: *BD1/20200801 sampled at 0-0.1m

LOGGED: JY

CASING: Uncased

PROJECT:

CLIENT:

Woolacotts Consulting Engineers Pty Ltd John Palmer Public School Upgrade LOCATION: 85 The Ponds Boulevard, The Ponds

SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level A Auger sample B Bulk sample BLK Block sample G P U, W Core drilling Disturbed sample Environmental sample CDE ₽

SURFACE LEVEL: 59.2 mAHD EASTING: 306517.6 NORTHING: 6268412.1 DIP/AZIMUTH: 90°/--

BORE No: 124 PROJECT No: 94624.00 DATE: 1/8/2020 SHEET 1 OF 1

Sampling & In Situ Testing Graphic Log Description Well Water Depth Sample 뭅 Construction of Depth Results & Comments (m) Type Details Strata FILL / TOPSOIL: Sandy CLAY CL: grey-brown, fine to 0.0 D/E 0.1 coarse sand, with fine to medium gravel, w > PL, surficial 0.12 59 vegetation 0.2 D/E FILL / Silty CLAY CH: grey-brown, trace fine to medium 0.3 gravel, w > PL В 1.0 1.0 • 1 1 FILL / Silty CLAY CH: grey-brown, with fine to coarse siltstone gravel, w < PL, appears generally well compacted 7,8,10 -89 S N = 181.45 1.9 D/E - 2 20 2.0 Bore discontinued at 2.0m - 3 - 3 -29 -4 - 4 - in RIG: Hanjin D&B 8-D **DRILLER:** Rockwell LOGGED: JY CASING: Uncased

TYPE OF BORING: 150mm diameter SFA WATER OBSERVATIONS: No free ground water observed **REMARKS:**

SAMPLING & IN SITU TESTING LEGEND Gas sample Piston sample Tube sample Water sample Water seep Water level LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample G P U_x W Core drilling Disturbed sample Environmental sample CDE ₽

PROJECT: LOCATION:

CLIENT: Woolacotts Consulting Engineers Pty Ltd John Palmer Public School Upgrade 85 The Ponds Boulevard, The Ponds

CLIENT: PROJECT:

Woolacotts Consulting Engineers Pty Ltd John Palmer Public School Upgrade LOCATION: 85 The Ponds Boulevard, The Ponds

SURFACE LEVEL: 58.0 mAHD **EASTING:** 306446.4 NORTHING: 6268249 **DIP/AZIMUTH:** 90°/--

BORE No: 101 **PROJECT No:** 94624.00 **DATE:** 2/8/2020 SHEET 1 OF 2

Π			Description	Degree of		Rock	Fracture	Discontinuities	Se	ampli	na &	In Situ Testing
RL	De		of	Weathering	phic od		Spacing				-	-
Ľ.	(n	n)	Strata		Gra	Ex Low Very Low Low Medium Very High Ex High	(m)	B - Bedding J - Joint S - Shear F - Fault	Type	ы С С С С С	RQD %	&
8		0.04		A A A A A A A A A A A A A A A A A A A		EX CONTRACTOR	0.01			۳ م	<u> </u>	Comments
	- - -	0.04 -	FILL / ROADBASE: Sandy GRAVEL: fine to coarse grained sand and fine to coarse igneous gravel, grey-brown, dry Silty CLAY CH: medium to high						D/E D/E D/E			
	- - -	0.8	plasticity, pale brown, with very low strength siltstone bands, w <pl, very<br="">stiff, residual SILTSTONE: grey-brown, very low</pl,>									
57	- - 1 -		strength, moderately weathered, with clay seams, Ashfield Shale		· ·				S			20/80mm refusal
	- - -	1.6-			· _ ·			Note: Unless stated otherwise all defects are bedding planes dipping 0-10°, pl, ro, fe stn or cly vn				
56	- - - 2		SANDSTONE: fine grained, pale brown then grey, low strength, moderately weathered, fractured, with clay seam (350mm) and a high strength band, Ashfield Shale					1.8m: J, 80°, pl, ro, cly, ct 2.05m: Cs, 350mm				PL(A) = 0.3
	- - - -	2.8-						2.44m: Cs, 30mm	С	93	35	PL(A) = 2.3
	- - 3 -		SILTSTONE: grey-brown, low strength, slightly weathered, fractured, Ashfield Shale		· _ · · · · · · · · · · · · · · · · · ·			2.82m: J, 75°, pl, ro, fe ∖stn \2.9m: J, 75°, cu, ro, cln \2.97m: J, 80-90°, un, he				
	- - -				· ·			3.3m: J, 70-90°, un, ro, he				PL(A) = 0.2
54	- - - 4	4.0	CII TSTONE: the grained		· - ·			3.71m: J, 65°, cu, ro, fe stn				
	-		SILTSTONE: fine grained, grey-brown, medium strength, slightly weathered, fractured, with 30% sandstone laminations, Ashfield Shale					4.32m: Cs, 10mm	С	100	68	PL(A) = 0.4
					· ·			h				

RIG: Hanjin D&B 8-D

DRILLER: Rockwell

LOGGED: JY

CASING: 0-1.6m

TYPE OF BORING: 150mm diameter SFA to 1.6m then NMLC coring to 5.63m WATER OBSERVATIONS: No free ground water observed **REMARKS:**

	SAM	PLINC	3 & IN SITU TESTING	LEG	END					
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_		_	
В	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)					Partners
BLK	K Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test ls(50) (MPa)	7				
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)				7.40	
D	Disturbed sample	⊳	Water seep	S	Standard penetration test					
E	Environmental sample	¥	Water level	V	Shear vane (kPa)			Geotechnics	s I Envii	ronment Groundwater
E	Environmental sample	÷	water lever	v	Sileal valle (KFa)		_	000100111100		

CLIENT: PROJECT:

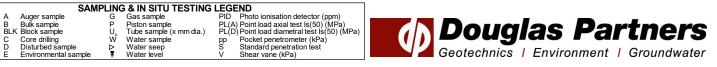
Woolacotts Consulting Engineers Pty Ltd John Palmer Public School Upgrade LOCATION: 85 The Ponds Boulevard, The Ponds

SURFACE LEVEL: 58.0 mAHD **EASTING:** 306446.4 NORTHING: 6268249 **DIP/AZIMUTH:** 90°/--

BORE No: 101 **PROJECT No: 94624.00** DATE: 2/8/2020 SHEET 2 OF 2

Π		Description	Degree of Weathering ﷺ ≩ ≸ ⊗ ღ ಱ	0	Rock Strength ਰਹ	Fracture	Discontinuities	S	amoli	na &	In Situ Testing
RL	Depth	of	Weathering	aphic og	Strength Very Low High Very High Very High Ex High	Spacing	B - Bedding J - Joint				
Ľ	(m)	Strata	223200	Gra L	A High	0.01 0.100 1.00 (W)	S - Shear F - Fault	Type	Core	RQD %	&
8			E E M M M M M M M M M M M M M M M M M M	<u> </u> .	Ŭ [™] יציציצייש	- 0.01 - 0.05 - 0.10 - 0.10 - 1.00	^L 4.97m: Ds, 30mm				Comments
	- 5.13 - - -	SILTSTONE: grey, high strength, fresh, slightly fractured, Ashfield Shale		· · · · ·				с	100	68	PL(A) = 2.1
$\left \right $	5.63	Bore discontinued at 5.63m	╞┊┊┊┊	· —							
52	- - - - - - -										
	- 7 - 7 										
20 20	- 8 										
	- - - - - - - - - -										

RIG: Hanjin D&B 8-D


CDE

DRILLER: Rockwell

LOGGED: JY

CASING: 0-1.6m

TYPE OF BORING: 150mm diameter SFA to 1.6m then NMLC coring to 5.63m WATER OBSERVATIONS: No free ground water observed **REMARKS:**

CLIENT: PROJECT:

Woolacotts Consulting Engineers Pty Ltd John Palmer Public School Upgrade LOCATION: 85 The Ponds Boulevard, The Ponds

SURFACE LEVEL: 56.3 mAHD **EASTING:** 306367.9 NORTHING: 6268264 **DIP/AZIMUTH:** 90°/--

BORE No: 102 **PROJECT No:** 94624.00 DATE: 2/8/2020 SHEET 1 OF 2

	<u> </u>	Description	Degree of Weathering	i.e	Rock Strength	Fracture	Discontinuities			-	n Situ Testing
Ż	Depth (m)	of		Graphic Log	Strength Very Low Medium High Ex High Ex High O.01	Spacing (m)	B - Bedding J - Joint	Type	ore :. %	RQD %	Test Results &
		Strata	A M M M M M M M M M M M M M M M M M M M	e ط	Ex Low Very Low Medium High Ex High 0.01	0.10 0.10 1.00	S - Shear F - Fault	È	ပိမ္ရွိ	Я°	Comments
-	0.1	FILL / TOPSOIL: Silty CLAY: brown, trace fine gravel and rootlets, w > PL, surficial vegetation	-	\bigotimes				D/E			
- 26		FILL / Silty CLAY: grey-brown, with fine to coarse siltstone gravel, trace sand, w < PL						D/E D			
-	0.6	Silty CLAY CH: medium to high plasticity, pale brown and red-brown, w < PL, very stiff, residual						D/E D			
	- 1							S			7,9,12 N = 21
-	1.5	SILTSTONE: grey-brown, very low strength, moderately weathered, Ashfield Shale					Note: Unless stated otherwise all defects are bedding planes dipping 0-10°, pl, ro, fe stn or cly vn	D			
F	2 2.0	SANDSTONE: fine grained, pale		<u>. </u>	┟┏┿┛╎╴╎╴╎╴╎╴╎╴╎		2m: Cs, 180mm				
54		grey and red-brown, very low strength, highly weathered, sandstone with alternating bands of hard clay, Ashfield Shale					2.26-3.15m: Cs (x9), 10-60mm 2.7m: J, 90°, pl, ro, cln	C	100	0	20
-	- 3 3.18 -	SANDSTONE: fine grained,					3.04m: J, 70°, pl, ro, cly ct				PL(A) = 0.05
- 23	3.6	grey-brown, low strength, moderately weathered, fractured, 30% siltstone laminations, Ashfield Shale					3.34m: J, 45°, pl, ro, cly ct 3.42m: Cs, 20mm				PL(A) = 0.25
-	3.0	SILTSTONE: grey-brown, medium strength, moderately weathered, fractured, 30% sandstone laminations, Ashfield Shale		· _ ·			3.6m: J, 80-90°, cu, ro, cly vn 3.84m: Cs, 10mm	с	96	58	PL(A) = 0.85
	- 4			•			3.97m: Cs, 30mm 4.18m: Ds, 20mm				
70 I I I I I	4.34 -	SILTSTONE: grey, high strength, fresh, slightly fractured, Ashfield Shale	· · · · · · · · · · · · · · · · · · ·								PL(A) = 1.07

RIG: Hanjin D&B 8-D

DRILLER: Rockwell

LOGGED: JY

CASING: 0-2.0m

TYPE OF BORING: 150mm diameter SFA to 2.0m then NMLC coring to 5.7m WATER OBSERVATIONS: No free ground water observed **REMARKS:**

	SAN	/IPLIN	G & IN SITU TESTING	LEGI	END				
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	_	-	-	
E	Bulk sample	P	Piston sample) Point load axial test Is(50) (MPa)				Partners
E	LK Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test ls(50) (MPa)	11.			
	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		Dody		
	Disturbed sample	⊳	Water seep	S	Standard penetration test	11			
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics	I Envi	ronment Groundwater

CLIENT: PROJECT:

Woolacotts Consulting Engineers Pty Ltd John Palmer Public School Upgrade LOCATION: 85 The Ponds Boulevard, The Ponds

SURFACE LEVEL: 56.3 mAHD **EASTING:** 306367.9 **NORTHING:** 6268264 **DIP/AZIMUTH:** 90°/--

BORE No: 102 PROJECT No: 94624.00 DATE: 2/8/2020 SHEET 2 OF 2

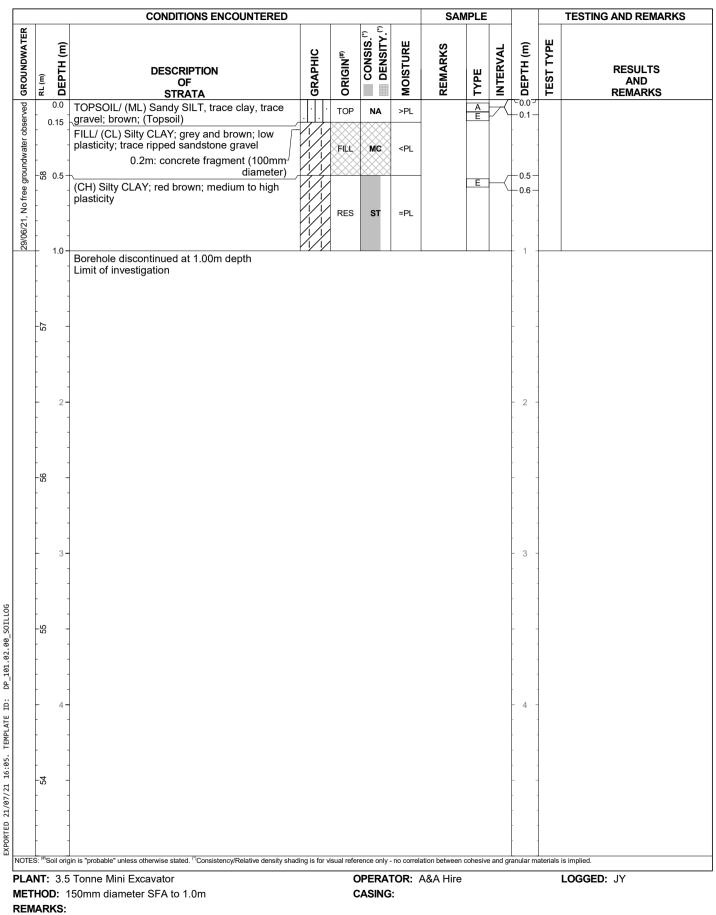
					Deale							
	Danth	Description	Degree of Weathering ﷺ ≩ ≩ ਨ ፼ ଝ	ic	Rock Strength	5	Fracture Spacing	Discontinuities				n Situ Testing
RL	Depth (m)	of		Loc	High High	Vate	(m)	B - Bedding J - Joint	Type	ore S. %	RQD %	Test Results &
	``	Strata	H M M M M M M M M M M M M M M M M M M M	Q	Strength Very Low High Kery High Kery High			S - Shear F - Fault	<u>≻</u>	ы С Я	Я°	Comments
51	- - - -	SILTSTONE: grey, high strength, fresh, slightly fractured, Ashfield Shale <i>(continued)</i>						5.35m: J, 40°, pl, ro, cln	с	96	58	DI (A) = 1.01
	5.7			— ·		┥┝						PL(A) = 1.01
50	- - - -	Bore discontinued at 5.7m										
49	- 7											
4												
48 1	- 8 - - - - -											
47	- -9 - - - - -											
-	-											

RIG: Hanjin D&B 8-D

CDE

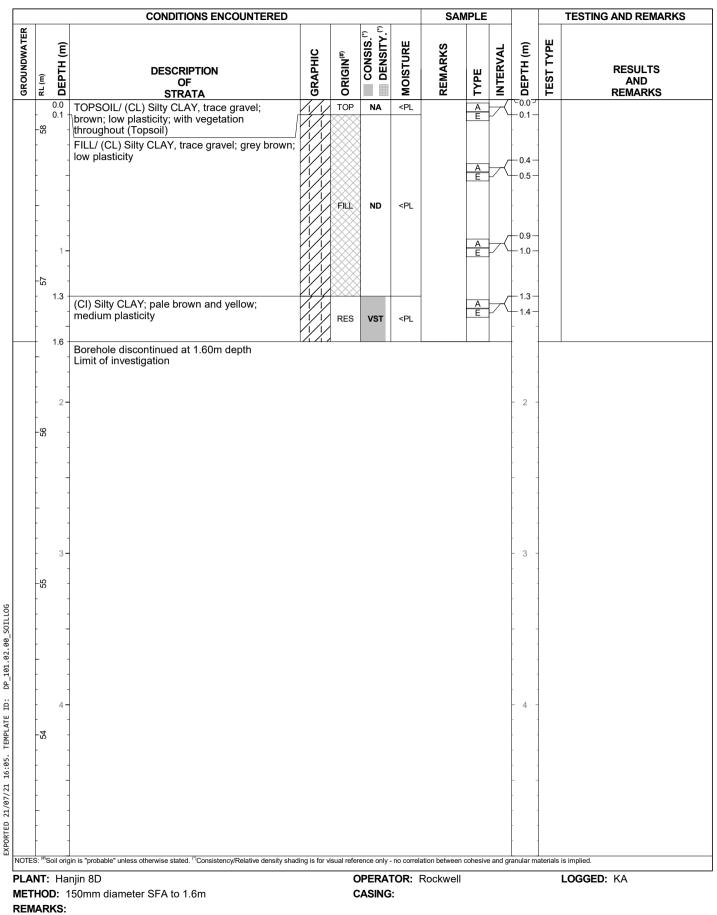
DRILLER: Rockwell

LOGGED: JY

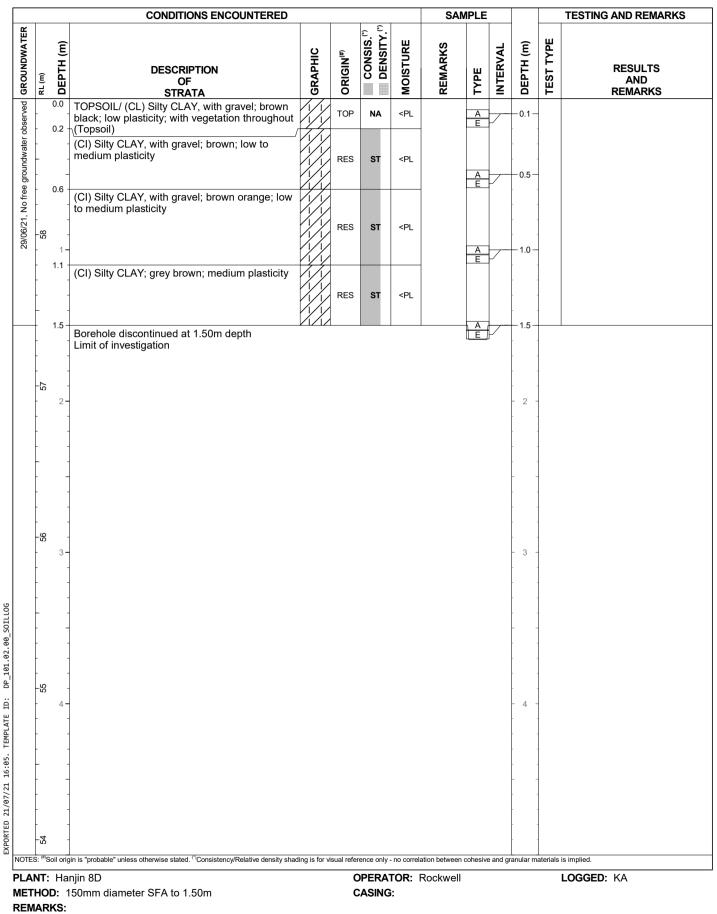

CASING: 0-2.0m

TYPE OF BORING: 150mm diameter SFA to 2.0m then NMLC coring to 5.7m WATER OBSERVATIONS: No free ground water observed **REMARKS:**

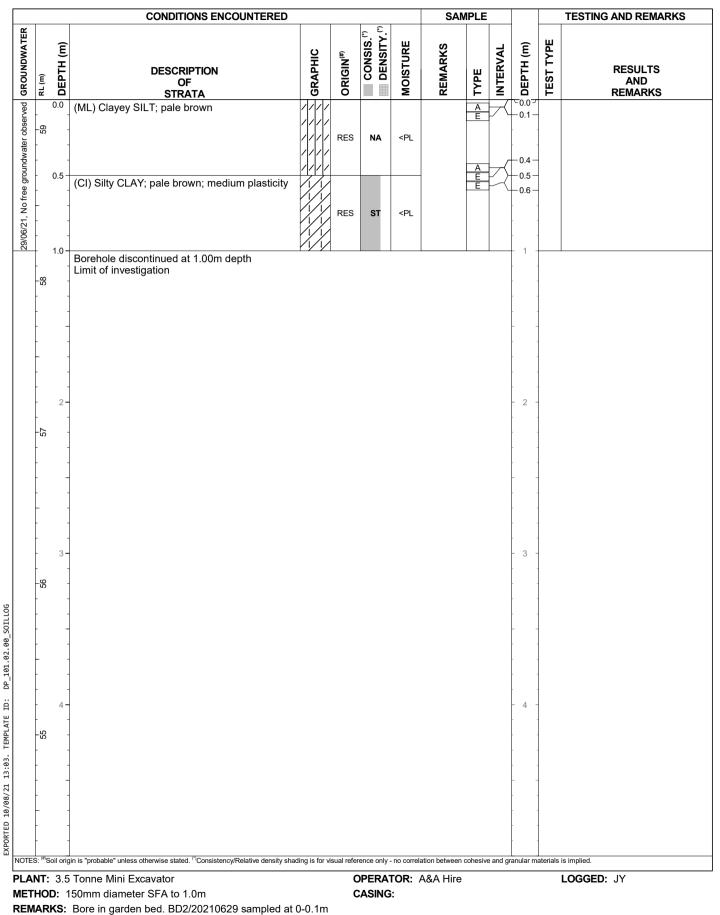
SAMPLING & IN SITU TESTING LEGEND Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample G P U_x W Core drilling Disturbed sample Environmental sample ₽



CLIENT: NSW Department of Education PROJECT: John Palmer Public School Upgrade LOCATION: 85 The Ponds Boulevard, The Ponds SURFACE LEVEL: 58.5 COORDINATE E:306499.1 N: 6268371.3 DATUM/GRID: GDA2020 Zone 56 DIP/AZIMUTH: 90°/--- LOCATION ID: 203 PROJECT No: 94624.01 DATE: 29/06/21 SHEET: 1 of 1



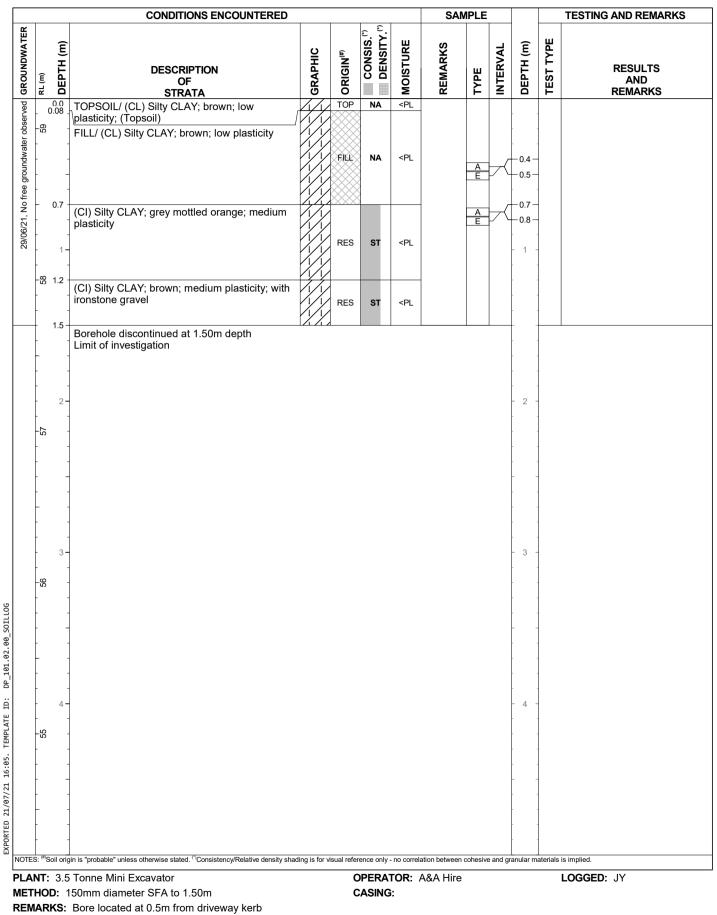
CLIENT: NSW Department of Education PROJECT: John Palmer Public School Upgrade LOCATION: 85 The Ponds Boulevard, The Ponds SURFACE LEVEL: 58.2 COORDINATE E:306492 N: 6268426.9 DATUM/GRID: GDA2020 Zone 56 DIP/AZIMUTH: 90°/--- LOCATION ID: 204 PROJECT No: 94624.01 DATE: 29/06/21 SHEET: 1 of 1


CLIENT: NSW Department of Education PROJECT: John Palmer Public School Upgrade LOCATION: 85 The Ponds Boulevard, The Ponds SURFACE LEVEL: 58.9 COORDINATE E:306511.3 N: 6268408.1 DATUM/GRID: GDA2020 Zone 56 DIP/AZIMUTH: 90°/--- LOCATION ID: 205 PROJECT No: 94624.01 DATE: 29/06/21 SHEET: 1 of 1

CLIENT:NSW Department of EducationPROJECT:John Palmer Public School UpgradeLOCATION:85 The Ponds Boulevard, The Ponds

SURFACE LEVEL: 59.2 COORDINATE E:306522.7 N: 6268396 DATUM/GRID: GDA2020 Zone 56 DIP/AZIMUTH: 90°/--- LOCATION ID: 206 PROJECT No: 94624.01 DATE: 29/06/21 SHEET: 1 of 1

CLIENT:NSW Department of EducationPROJECT:John Palmer Public School UpgradeLOCATION:85 The Ponds Boulevard, The Ponds


SURFACE LEVEL: 59.4 COORDINATE E:306519.6 N: 6268378.2 DATUM/GRID: GDA2020 Zone 56 DIP/AZIMUTH: 90°/--- LOCATION ID: 207 PROJECT No: 94624.01 DATE: 29/06/21 SHEET: 1 of 1

-			CONDITIONS ENCOUNTERED					SAM	LE				TESTING AND REMARKS
RL (m)		DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	ORIGIN ^(#)	CONSIS. ^(*)	MOISTURE	REMARKS	ТҮРЕ	INTERVAL	DEPTH (m)	TEST TYPE	RESULTS AND REMARKS
-	(0.0 0.1 -	TOPSOIL / (ML) Sandy SILT trace clay trace		TOP	NA	<pl< td=""><td></td><td>A E</td><td>Х</td><td>⁻0.0⊐ -0.1-</td><td>-</td><td></td></pl<>		A E	Х	⁻ 0.0⊐ -0.1-	-	
	2	-	gravel; orange; with vegetation throughout (Topsoil) FILL/ (CL) Silty CLAY, trace clay, trace gravel; brown; low plasticity		FILL	wc	<pl< td=""><td>-</td><td>A E</td><td>\prec</td><td></td><td>-</td><td></td></pl<>	-	A E	\prec		-	
-	C	0.8 - - 1 -	(CI) Silty CLAY, trace sand, trace gravel; brown; medium plasticity					-	A E	~	0.9 1.0	-	
- 282	8	-			RES	ST TO VST	<pl< td=""><td>-</td><td>A E</td><td>~</td><td>- 1.4 - - 1.5 -</td><td>-</td><td></td></pl<>	-	A E	~	- 1.4 - - 1.5 -	-	
-		- 2.0	(CI) Silty CLAY; red brown; medium plasticity		RES	VST	<pl< td=""><td>-</td><td>A E E</td><td>X</td><td></td><td>-</td><td></td></pl<>	-	A E E	X		-	
57	5	2.3 - - 2.7 -	(CI) Silty CLAY; pale grey mottled orange; medium plasticity		RES	VST	<pl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></pl<>						
ł		-	SILTSTONE; grey; very low strength, (Ashfield-Shale)	· · _	NA	NA	NA					-	
56		2.9 -	Borehole discontinued at 2.90m depth Limit of investigation					i			- 3 -	-	
-	,	-										-	
55	2	4 -									- 4 -	-	
-		-									 	-	
S: (#)	⁾ Soi	il orig	in is "probable" unless otherwise stated. ${}^{(\prime)} \textsc{Consistency}/Relative density shares the state of the state o$	ling is for vi	isual refe	rence only -	no correla	ation between co	hesive	and gra	anular m	aterials	is implied.
NT	:	3.5	Tonne Mini Excavator 50mm diameter SFA to 2.90m			DPERAT		A&A Hire					LOGGED: JY

REMARKS: BD1/20210629 sampled at 0-0.1m

CLIENT: NSW Department of Education PROJECT: John Palmer Public School Upgrade LOCATION: 85 The Ponds Boulevard, The Ponds SURFACE LEVEL: 59.2 COORDINATE E:306513.9 N: 6268391.1 DATUM/GRID: GDA2020 Zone 56 DIP/AZIMUTH: 90°/--- LOCATION ID: 208 PROJECT No: 94624.01 DATE: 29/06/21 SHEET: 1 of 1

CLIENT:NSW Department of EducationPROJECT:John Palmer Public School UpgradeLOCATION:85 The Ponds Boulevard, The Ponds

BOREHOLE LOG

SURFACE LEVEL: 58.1 COORDINATE E:306488.2 N: 6268414 DATUM/GRID: GDA2020 Zone 56 DIP/AZIMUTH: 90°/--- LOCATION ID: 201 PROJECT No: 94624.01 DATE: 29/06/21 SHEET: 1 of 2

		CO	NDITIO	-	SOIL		ERED)		6	ROCK				SA	AMPL	E	-		TESTING
RL (m)	DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	ORIGIN ^(#)		MOISTURE	WEATH.	DEPTH (m)		т	RECOVERY (%)		848 SPACING 848 SPACING	DEFECTS & REMARKS	SAMPLE	ТҮРЕ	INTERVAL	DEPTH (m)	TEST TYPE	RESUL AND REMAR
-28	0.0	FILL/ Silty CLAY, with gravel; brown; with vegetation throughout (Topsoil)	1/1/	FILL	NA	<pl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>i l</td><td></td><td></td><td></td><td>- 0.2 -</td><td></td><td></td></pl<>								i l				- 0.2 -		
-	0.2	(CI) Silty CLAY, trace gravel; pale brown grey; medium plasticity; trace vegetation; stiff	$\frac{1}{1}$											i l		A E		- 0.3	-	
-		-														A		- 0.5 -	-	
-		-														E U50		- 0.6 - - 0.75-		
-		-		RES	ST	<pl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td></pl<>												-		
57	1	-												i I		A	\downarrow	- 1.0 - 1.1 -	-	
-		-														SPT	+	-	SPT	4,5,8 N=13
-	1.5	-					_							i i				- 	-	
_		(CI) Silty CLAY; pale brown; medium plasticity; stiff to very stiff														A E		- 1.6-		
		_		RES	ST TO VST	<pl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>i I</td><td></td><td></td><td></td><td>-</td><td></td><td></td></pl<>								i I				-		
	2.0	(CI-CH) Silty CLAY; grey mottled		1			-											- 2		
-29		orange and yellow; medium to high plasticity; hard												i I				-		
-		-																-		
-		-		RES	н	<pl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>i I</td><td></td><td></td><td></td><td>- 2.5 -</td><td></td><td></td></pl<>								i I				- 2.5 -		
-		-														SPT	+(-	SPT	8,18,18 N=36
-	3.0	CH) Silty CLAY, with gravel: grey:					-							i I				- - 3	-	
55		(CH) Silty CLAY, with gravel; grey; high plasticity; (extremely weathered siltstone)												1				-	-	
-		-																-		
-		-		RES	н	<pl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td></td></pl<>												-	-	
-		-												i I				-		
-	4													 	s otherwise			- 4.0-		
-5	4.2	-						- 4.2 -							s otherwise I all defects edding plane ig at 0-10 ees	es SPT		4.15-	SPT	25,2/0 refusal
	2	SILTSTONE; brown grey; fine; low to medium strength, (Ashfield Shale)	<u> </u>											1 50-4	.34m: J 10° PL, SM, TN					
_		-									100	00	h ff		4.5m: CS n			_		
F		-					MW		L-IV		100	82						-]	
-		1	· · ·															-	-PLT-	— PL(A)=0.13
		gin is "probable" unless otherwise stated. ^(*) Co anjin 8D	nsistency/R	elative	density s	shading	is for vi	isual re				relatior	between c	ohesive an	d granular m		s implie			

CLIENT:NSW Department of EducationPROJECT:John Palmer Public School UpgradeLOCATION:85 The Ponds Boulevard, The Ponds

BOREHOLE LOG

SURFACE LEVEL: 58.1 COORDINATE E:306488.2 N: 6268414 DATUM/GRID: GDA2020 Zone 56 DIP/AZIMUTH: 90°/--- LOCATION ID: 201 PROJECT No: 94624.01 DATE: 29/06/21 SHEET: 2 of 2

Т			CON	IDITIO	NS	ENCO SOIL		ERED)		ROC	<			SA	MPL	E 			TESTING
									~	Ŧ			а В С	٥ð	 			_		
		DEPTH (m)		HIC	(#) NI	CONSIS. ⁽¹⁾ DENSITY. ⁽¹⁾	MOISTURE	Ξ	DEPTH (m)	STRENGTH			800 FRACTURE 876 SPACING 870 (m)	DEFECTS 8 REMARKS	SAMPLE REMARKS		INTERVAL	DEPTH (m)	тезт түре	RESULT
(m) 10	(III) 1	DEPT	DESCRIPTION OF STRATA	GRAPHIC		о В С	NOIS	WEATH.	DEP	STF	SECC	ROD	R C C	E M	SAMF	ТҮРЕ	NTEI	DEPT	IEST	AND
	53	-	SILTSTONE; brown grey; fine; low to medium strength, (Ashfield Shale)				-	-			~				0, 11		-	-		
-	Ω	_	(continued)										iijiii							
-		-						MW		L-M ⊠								-		PL(A)=0.72
ł		-											i ii ii i			С		-		FL(A)=0.72
F	5.	.52 -	SILTSTONE; pale grey; fine; high	· · ·					-5.52-											
F		-	strength, (Ashfield Shale)	· ·									li F ii i					-		
ŀ		-		· _ ·														-		
ſ		-									100	82						-		
		6-																- 6 -		
-2	22			<u> </u>	-													-		
-		-			-		:	\$W-FF	R	н								-		
ł		-		· _ · ·	1													-		
ł		-		· · ·	1					×								-	-PLT-	— PL(A)=1.5
ł		-		· _ ·																
F		-										-	-lij j iii					6.62-		
ł	6.	.77							-6.77-									-		
Ì	0.		SILTSTONE; grey; fine; high strength, (Ashfield shale)						•									-		
ĺ		7-												-4.2-9.6 0°-5° P CLY/C	2m: B x40 L SM N STN			- 7 -		
-2	5			— · -														. '		
ļ	1)	_																_		
-		-		· — · ·	1													-		
ł		-		· · ·						Ø								-	-PLT-	PL(A)=1.7
ł		-		· — ·																
ŀ		-											iiiii					-		
ŀ		-			1													-		
ŀ		-											i ii i i					-		
Ì				— · –	-															
-	2	8-																- 8 -]	
ľ	1)							FR		н	100	98	1 11 11 1			С		_		
-		-		· ·														-		
ł		-		· — ·														-	-PLT-	– PL(A)=1.5
ł		-			1															
+		-			1								l di i	8.58-8	69m: J			-		
ł		-												CLN	69m: J ° PL, SM,			-		
ł		-			-													-		
ſ				· · _	1															
	49	9-		· _ · ·	1													- 9 -]	
	4	_		· _ ·																
ļ		-			-									9,21-9 85°-90 CLN	26m: J x3 *PL, SM,				 	
ŀ		-			1					×								-		PL(A)=1.6
$\left \right $		-			1															
┢	9.	.62 -	Deschalt de la comp		-				-9.62-									9.62-		
ŀ		-	Borehole discontinued at 9.62r Limit of investigation	n dept	h													-		
+		-																-		
S: (^(#) Soi	il orig	in is "probable" unless otherwise stated. ^(*) Cons	istency/R	elative	density	shading	is for vi	isual ref	ference o		orrelatio	n between coh	esive and	granular ma	terials is	s implie	L d.		
	т٠	Hai	njin 8D							OPER	ATOR	• Ro	ckwell				OG	GED:	KΔ	

REMARKS:

	Douglas Pa Geotechnics Environment		Project No BH ID: Depth: Core Box I	201 4.2m-9m No.: 1/2		
-	DI BHZOI SCHOOL START 4.2m					
5					DIDAL	
7						
8		d kanana				

CLIENT: NSW Department of Education PROJECT: John Palmer Public School Upgrade

BOREHOLE LOG

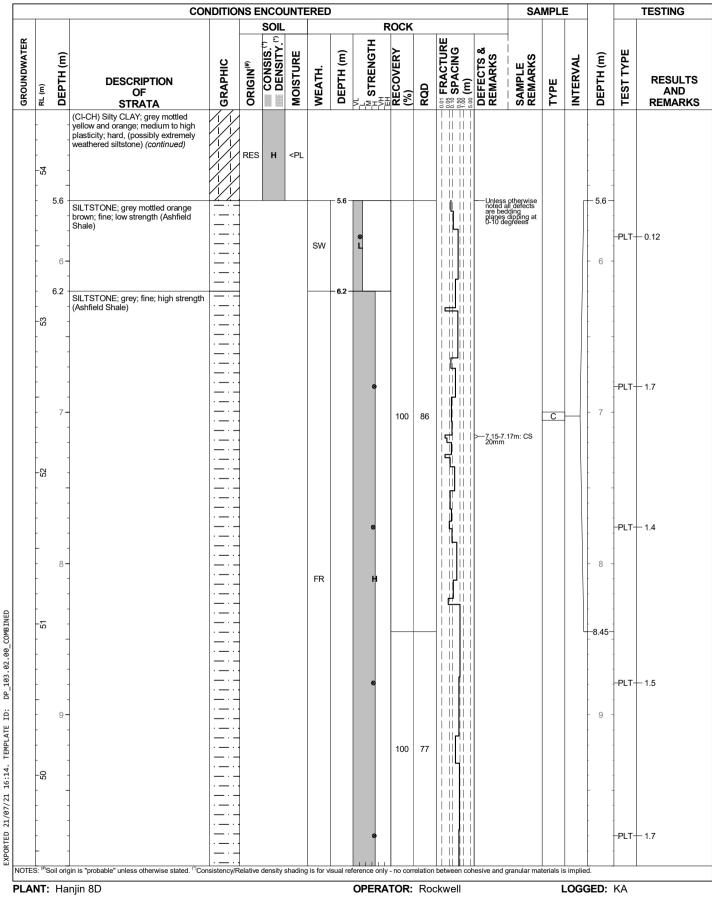
SURFACE LEVEL: 59.4 COORDINATE E:306526.6 N: 6268415.3 DATUM/GRID: GDA2020 Zone 56 DIP/AZIMUTH: 90°/---

LOCATION ID: 202 PROJECT No: 94624.01 DATE: 29/06/21 SHEET: 1 of 3

	CO	NDITION				RED)					SA	MPLE	=			TESTING
RL (m) DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	RIGIN ^(#)			WEATH.	DEPTH (m)	Ŧ	RECOVERY 0 (%)	RQD	001 FRACTURE 003 SPACING 003 SPACING 003 SPACING 004 SPACING 004 <t< th=""><th>SAMPLE</th><th>ТҮРЕ</th><th>INTERVAL</th><th>DEPTH (m)</th><th>TEST TYPE</th><th>RESULTS AND REMARKS</th></t<>	SAMPLE	ТҮРЕ	INTERVAL	DEPTH (m)	TEST TYPE	RESULTS AND REMARKS
(W) H1430 (W) 12 0.0 - 0.2 - 0.2 - 0.2 - 0.7 - 0.7 - 0.7	FILL/ (CL) Silty CLAY, with gravel; brown; low plasticity; with vegetation		FILL	NA ND	<pl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>A E A E</td><td>- </td><td>- 0.2 - ~0.25~ - 0.5 - ~0.55~</td><td></td><td></td></pl<>								A E A E	- 	- 0.2 - ~0.25~ - 0.5 - ~0.55~		
- 0.7 - 1	(CI) Silty CLAY; grey mottled yellow; - medium plasticity; very stiff		~~~										A E SPT		- 1.0 ~1.05∽	SPT	6,13,12 N=25
- <u>- </u> - <u>8</u> 			RES	VST	<pl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>A E</td><td></td><td>−1.45− ~ 1.5<i>-</i>″ `1.55″</td><td>5 1</td><td>N=25</td></pl<>								A E		−1.45− ~ 1.5 <i>-</i> ″ `1.55″	5 1	N=25
- 2 - 2 - <u>2</u> - <u>2</u>	(CI-CH) Silty CLAY; pale yellow mottled orange and brown; medium to high plasticity; very stiff		RES	vst	<pl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Γ</td><td>- 2 - </td><td></td><td></td></pl<>									Γ	- 2 - 		
- - - 3.0	(CI-CH) Silty CLAY; grey mottled yellow and orange; medium to high plasticity; hard, (possibly extremely weathered siltstone)												SPT		- 2.95	SPT	8,10,12 N=22
29 															· · ·		
- 4 			RES	н	<pl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>SPT</td><td></td><td>-4.0-</td><td>SPT</td><td>10,21,29 N=50</td></pl<>								SPT		-4.0-	SPT	10,21,29 N=50
= = ==================================	rigin is "probable" unless otherwise stated. ^(*) Cor	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	lative d	lensity s	shading	is for vi	isual refe	ence only	- no corr	elation		nd granular ma	terials is	simplied	 		

METHOD: 110mm diameter SFA to 5.5m, NMLC coring to 11.56m **REMARKS**:

CASING: HQ to 5.5m



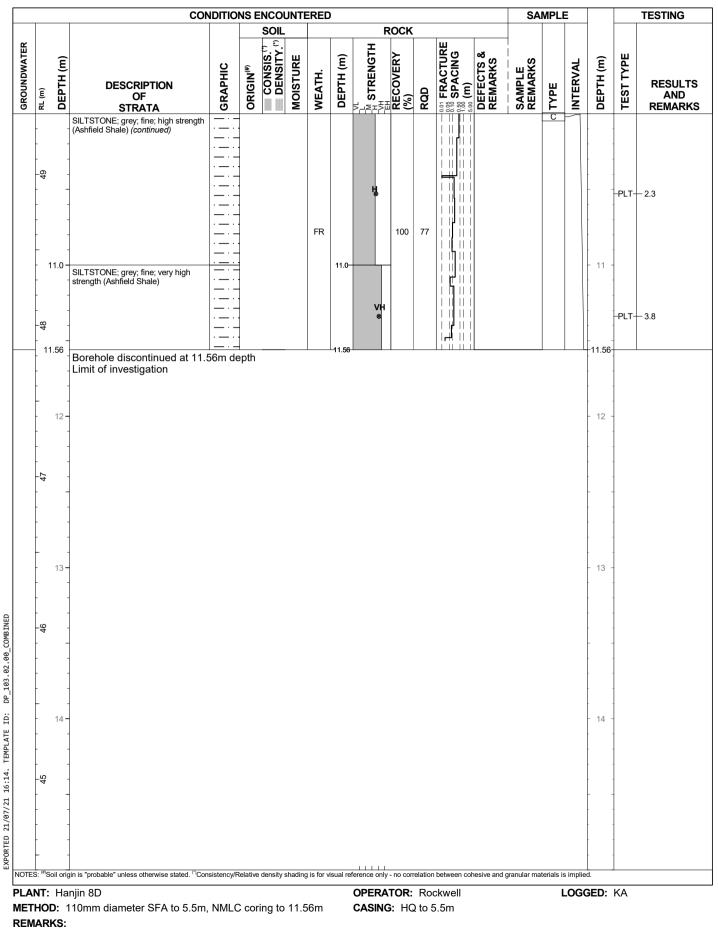
LOCATION: 85 The Ponds Boulevard, The Ponds

CLIENT:NSW Department of EducationPROJECT:John Palmer Public School UpgradeLOCATION:85 The Ponds Boulevard. The Ponds

BOREHOLE LOG

SURFACE LEVEL: 59.4 COORDINATE E:306526.6 N: 6268415.3 DATUM/GRID: GDA2020 Zone 56 DIP/AZIMUTH: 90°/--- LOCATION ID: 202 PROJECT No: 94624.01 DATE: 29/06/21 SHEET: 2 of 3

METHOD: 110mm diameter SFA to 5.5m, NMLC coring to 11.56m **REMARKS:**


CASING: HQ to 5.5m

CLIENT:NSW Department of EducationPROJECT:John Palmer Public School UpgradeLOCATION:85 The Ponds Boulevard. The Ponds

BOREHOLE LOG

SURFACE LEVEL: 59.4 COORDINATE E:306526.6 N: 6268415.3 DATUM/GRID: GDA2020 Zone 56 DIP/AZIMUTH: 90°/--- LOCATION ID: 202 PROJECT No: 94624.01 DATE: 29/06/21 SHEET: 3 of 3

Douglas Partners Geotechnics | Environment | Groundwater

(Douglas Pa Geotechnics Environmer	artners t Groundwater	Project No: 94624.4 BH ID: 202 Depth: 5.6m-10 Core Box No.: 1/2	
	2401 24/06/21 BH202	START	5.6m	
61				and the france of the state of the state of the
7				
8.				
9	a the name of the first		na na mangana na mangana na mangana katang katan	

Appendix I

Laboratory Certificates of Analysis, Chain of Custody Documentation and Sample Receipt Advice

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 273223

Client Details	
Client	Douglas Partners Pty Ltd (Riverstone)
Attention	Gavin Boyd
Address	43 Hobart St, Riverstone, NSW, 2765

Sample Details	
Your Reference	<u>94624.01, The Ponds</u>
Number of Samples	25 Soil
Date samples received	02/07/2021
Date completed instructions received	02/07/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details

Date of Issue

Date results requested by

09/07/2021

NATA Accreditation Number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Panika Wongchanda Authorised by Asbestos Approved Signatory: Lucy Zhu

Results Approved By

Diego Bigolin, Team Leader, Inorganics Dragana Tomas, Senior Chemist Giovanni Agosti, Group Technical Manager Hannah Nguyen, Senior Chemist Lucy Zhu, Asbestos Supervisor Priya Samarawickrama, Senior Chemist Steven Luong, Organics Supervisor Thomas Beenie, Lab Technician

Authorised By

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		273223-1	273223-2	273223-3	273223-4	273223-5
Your Reference	UNITS	BH201	BH202	BH203	BH204	BH205
Depth		0.2m	0.2m	0-0.1m	0.4-0.5m	0.1m
Date Sampled		29/06/2021	29/06/2021	29/06/2021	29/06/2021	29/06/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	05/07/2021	05/07/2021	05/07/2021	05/07/2021	05/07/2021
Date analysed	-	06/07/2021	06/07/2021	06/07/2021	06/07/2021	06/07/2021
TRH C6 - C9	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	92	93	93	89	91
vTRH(C6-C10)/BTEXN in Soil						
Our Reference		273223-6	273223-7	273223-8	273223-9	273223-10
Your Reference	UNITS	BH206	BH206	BH207	BH207	BH208
Depth		0-0.1m	0.4-0.5m	0-0.1m	0.4-0.5m	0.4-0.5m
Date Sampled		29/06/2021	29/06/2021	29/06/2021	29/06/2021	29/06/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	05/07/2021	05/07/2021	05/07/2021	05/07/2021	05/07/2021
Date analysed	-	06/07/2021	06/07/2021	06/07/2021	06/07/2021	06/07/2021
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
	%					

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		273223-11	273223-12	273223-13	273223-14	273223-15
Your Reference	UNITS	BH201	BH203	BH206	BD1/20210629	BD2/20210629
Depth		0.5m	0.5-0.6m	0.5-0.6m	-	-
Date Sampled		29/06/2021	29/06/2021	29/06/2021	29/06/2021	29/06/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	05/07/2021	05/07/2021	05/07/2021	05/07/2021	05/07/2021
Date analysed	-	06/07/2021	06/07/2021	06/07/2021	06/07/2021	06/07/2021
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	115	86	81	86	97

vTRH(C6-C10)/BTEXN in Soil			
Our Reference		273223-16	273223-17
Your Reference	UNITS	Trip Spike	Trip Blank
Depth		-	-
Date Sampled		28/06/2021	28/06/2021
Type of sample		Soil	Soil
Date extracted	-	05/07/2021	05/07/2021
Date analysed	-	06/07/2021	06/07/2021
TRH C6 - C9	mg/kg	[NA]	<25
TRH C ₆ - C ₁₀	mg/kg	[NA]	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	[NA]	<25
Benzene	mg/kg	81%	<0.2
Toluene	mg/kg	89%	<0.5
Ethylbenzene	mg/kg	86%	<1
m+p-xylene	mg/kg	86%	<2
o-Xylene	mg/kg	89%	<1
naphthalene	mg/kg	[NA]	<1
Total +ve Xylenes	mg/kg	[NA]	<3
Surrogate aaa-Trifluorotoluene	%	85	97

svTRH (C10-C40) in Soil						
Our Reference		273223-1	273223-2	273223-3	273223-4	273223-5
Your Reference	UNITS	BH201	BH202	BH203	BH204	BH205
Depth		0.2m	0.2m	0-0.1m	0.4-0.5m	0.1m
Date Sampled		29/06/2021	29/06/2021	29/06/2021	29/06/2021	29/06/202
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	05/07/2021	05/07/2021	05/07/2021	05/07/2021	05/07/202
Date analysed	-	06/07/2021	06/07/2021	06/07/2021	06/07/2021	06/07/202
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C10 -C16	mg/kg	<50	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	74	75	81	82	77
svTRH (C10-C40) in Soil			1			
Our Reference		273223-6	273223-7	273223-8	273223-9	273223-1
Your Reference	UNITS	BH206	BH206	BH207	BH207	BH208
Depth		0-0.1m	0.4-0.5m	0-0.1m	0.4-0.5m	0.4-0.5m
Date Sampled		29/06/2021	29/06/2021	29/06/2021	29/06/2021	29/06/202

Depth		0-0.1m	0.4-0.5m	0-0.1m	0.4-0.5m	0.4-0.5m
Date Sampled		29/06/2021	29/06/2021	29/06/2021	29/06/2021	29/06/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	05/07/2021	05/07/2021	05/07/2021	05/07/2021	05/07/2021
Date analysed	-	06/07/2021	06/07/2021	06/07/2021	06/07/2021	06/07/2021
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	83	85	85	80	80

svTRH (C10-C40) in Soil						
Our Reference		273223-11	273223-12	273223-13	273223-14	273223-15
Your Reference	UNITS	BH201	BH203	BH206	BD1/20210629	BD2/20210629
Depth		0.5m	0.5-0.6m	0.5-0.6m	-	-
Date Sampled		29/06/2021	29/06/2021	29/06/2021	29/06/2021	29/06/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	05/07/2021	05/07/2021	05/07/2021	05/07/2021	05/07/2021
Date analysed	-	06/07/2021	06/07/2021	06/07/2021	06/07/2021	06/07/2021
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C15 - C28	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C10 -C16	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C34 -C40	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	81	80	81	82	80

PAHs in Soil						
Our Reference		273223-1	273223-2	273223-3	273223-4	273223-5
Your Reference	UNITS	BH201	BH202	BH203	BH204	BH205
Depth		0.2m	0.2m	0-0.1m	0.4-0.5m	0.1m
Date Sampled		29/06/2021	29/06/2021	29/06/2021	29/06/2021	29/06/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	05/07/2021	05/07/2021	05/07/2021	05/07/2021	05/07/2021
Date analysed	-	06/07/2021	06/07/2021	06/07/2021	06/07/2021	06/07/2021
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.2
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	1.5
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.5
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	3.5
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	3.6
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	1.9
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	1.7
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	3.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	2.2
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	1.4
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.2
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	1.9
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	22
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	3.1
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	3.1
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	3.1
Surrogate p-Terphenyl-d14	%	115	110	109	109	108

PAHs in Soil						
Our Reference		273223-6	273223-7	273223-8	273223-9	273223-10
Your Reference	UNITS	BH206	BH206	BH207	BH207	BH208
Depth		0-0.1m	0.4-0.5m	0-0.1m	0.4-0.5m	0.4-0.5m
Date Sampled		29/06/2021	29/06/2021	29/06/2021	29/06/2021	29/06/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	05/07/2021	05/07/2021	05/07/2021	05/07/2021	05/07/2021
Date analysed	-	06/07/2021	06/07/2021	06/07/2021	06/07/2021	06/07/2021
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	115	105	104	103	115

PAHs in Soil						
Our Reference		273223-11	273223-12	273223-13	273223-14	273223-15
Your Reference	UNITS	BH201	BH203	BH206	BD1/20210629	BD2/20210629
Depth		0.5m	0.5-0.6m	0.5-0.6m	-	-
Date Sampled		29/06/2021	29/06/2021	29/06/2021	29/06/2021	29/06/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	05/07/2021	05/07/2021	05/07/2021	05/07/2021	05/07/2021
Date analysed	-	06/07/2021	06/07/2021	06/07/2021	06/07/2021	06/07/2021
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	127	120	140	123	101

Organochlorine Pesticides in soil						
Our Reference		273223-1	273223-2	273223-3	273223-4	273223-5
Your Reference	UNITS	BH201	BH202	BH203	BH204	BH205
Depth		0.2m	0.2m	0-0.1m	0.4-0.5m	0.1m
Date Sampled		29/06/2021	29/06/2021	29/06/2021	29/06/2021	29/06/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	05/07/2021	05/07/2021	05/07/2021	05/07/2021	06/07/2021
Date analysed	-	06/07/2021	06/07/2021	06/07/2021	06/07/2021	07/07/2021
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	87	89	82	86	93

Organochlorine Pesticides in soil						
Our Reference		273223-6	273223-7	273223-8	273223-9	273223-10
Your Reference	UNITS	BH206	BH206	BH207	BH207	BH208
Depth		0-0.1m	0.4-0.5m	0-0.1m	0.4-0.5m	0.4-0.5m
Date Sampled		29/06/2021	29/06/2021	29/06/2021	29/06/2021	29/06/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	05/07/2021	05/07/2021	05/07/2021	05/07/2021	05/07/2021
Date analysed	-	06/07/2021	06/07/2021	06/07/2021	06/07/2021	06/07/2021
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	87	94	94	94	91

Organophosphorus Pesticides in Soil						
Our Reference		273223-1	273223-2	273223-3	273223-4	273223-5
Your Reference	UNITS	BH201	BH202	BH203	BH204	BH205
Depth		0.2m	0.2m	0-0.1m	0.4-0.5m	0.1m
Date Sampled		29/06/2021	29/06/2021	29/06/2021	29/06/2021	29/06/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	05/07/2021	05/07/2021	05/07/2021	05/07/2021	06/07/2021
Date analysed	-	06/07/2021	06/07/2021	06/07/2021	06/07/2021	07/07/2021
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	87	89	82	86	93

Organophosphorus Pesticides in Soil						
Our Reference		273223-6	273223-7	273223-8	273223-9	273223-10
Your Reference	UNITS	BH206	BH206	BH207	BH207	BH208
Depth		0-0.1m	0.4-0.5m	0-0.1m	0.4-0.5m	0.4-0.5m
Date Sampled		29/06/2021	29/06/2021	29/06/2021	29/06/2021	29/06/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	05/07/2021	05/07/2021	05/07/2021	05/07/2021	05/07/2021
Date analysed	-	06/07/2021	06/07/2021	06/07/2021	06/07/2021	06/07/2021
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	87	94	94	94	91

PCBs in Soil						
Our Reference		273223-1	273223-2	273223-3	273223-4	273223-5
Your Reference	UNITS	BH201	BH202	BH203	BH204	BH205
Depth		0.2m	0.2m	0-0.1m	0.4-0.5m	0.1m
Date Sampled		29/06/2021	29/06/2021	29/06/2021	29/06/2021	29/06/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	05/07/2021	05/07/2021	05/07/2021	05/07/2021	06/07/2021
Date analysed	-	06/07/2021	06/07/2021	06/07/2021	06/07/2021	07/07/2021
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	87	89	82	86	93

PCBs in Soil						
Our Reference		273223-6	273223-7	273223-8	273223-9	273223-10
Your Reference	UNITS	BH206	BH206	BH207	BH207	BH208
Depth		0-0.1m	0.4-0.5m	0-0.1m	0.4-0.5m	0.4-0.5m
Date Sampled		29/06/2021	29/06/2021	29/06/2021	29/06/2021	29/06/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	05/07/2021	05/07/2021	05/07/2021	05/07/2021	05/07/2021
Date analysed	-	06/07/2021	06/07/2021	06/07/2021	06/07/2021	06/07/2021
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	87	94	94	94	91

Acid Extractable metals in soil						
Our Reference		273223-1	273223-2	273223-3	273223-4	273223-5
Your Reference	UNITS	BH201	BH202	BH203	BH204	BH205
Depth		0.2m	0.2m	0-0.1m	0.4-0.5m	0.1m
Date Sampled		29/06/2021	29/06/2021	29/06/2021	29/06/2021	29/06/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	06/07/2021	06/07/2021	06/07/2021	06/07/2021	06/07/2021
Date analysed	-	07/07/2021	07/07/2021	07/07/2021	07/07/2021	07/07/2021
Arsenic	mg/kg	9	7	6	7	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	16	13	11	10	10
Copper	mg/kg	14	12	6	18	41
Lead	mg/kg	15	12	11	14	8
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	7	5	4	6	7
Zinc	mg/kg	26	25	20	34	21

Acid Extractable metals in soil						
Our Reference		273223-6	273223-7	273223-8	273223-9	273223-10
Your Reference	UNITS	BH206	BH206	BH207	BH207	BH208
Depth		0-0.1m	0.4-0.5m	0-0.1m	0.4-0.5m	0.4-0.5m
Date Sampled		29/06/2021	29/06/2021	29/06/2021	29/06/2021	29/06/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	06/07/2021	06/07/2021	06/07/2021	06/07/2021	06/07/2021
Date analysed	-	07/07/2021	07/07/2021	07/07/2021	07/07/2021	07/07/2021
Arsenic	mg/kg	7	4	5	5	7
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	12	6	9	8	15
Copper	mg/kg	12	10	5	16	18
Lead	mg/kg	15	8	10	9	13
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	6	6	4	13	17
Zinc	mg/kg	27	31	15	40	54

Acid Extractable metals in soil						
Our Reference		273223-11	273223-12	273223-13	273223-14	273223-15
Your Reference	UNITS	BH201	BH203	BH206	BD1/20210629	BD2/20210629
Depth		0.5m	0.5-0.6m	0.5-0.6m	-	-
Date Sampled		29/06/2021	29/06/2021	29/06/2021	29/06/2021	29/06/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	06/07/2021	06/07/2021	06/07/2021	06/07/2021	06/07/2021
Date analysed	-	07/07/2021	07/07/2021	07/07/2021	07/07/2021	07/07/2021
Arsenic	mg/kg	6	6	5	8	6
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	7	11	7	12	10
Copper	mg/kg	22	11	20	9	9
Lead	mg/kg	12	11	13	10	12
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	13	4	23	3	4
Zinc	mg/kg	50	19	67	19	21

Acid Extractable metals in soil		
Our Reference		273223-26
Your Reference	UNITS	BH208 - [TRIPLICATE]
Depth		0.4-0.5m
Date Sampled		29/06/2021
Type of sample		Soil
Date prepared	-	06/07/2021
Date analysed	-	07/07/2021
Arsenic	mg/kg	6
Cadmium	mg/kg	<0.4
Chromium	mg/kg	10
Copper	mg/kg	17
Lead	mg/kg	12
Mercury	mg/kg	<0.1
Nickel	mg/kg	8
Zinc	mg/kg	25

Misc Soil - Inorg						
Our Reference		273223-1	273223-2	273223-3	273223-4	273223-5
Your Reference	UNITS	BH201	BH202	BH203	BH204	BH205
Depth		0.2m	0.2m	0-0.1m	0.4-0.5m	0.1m
Date Sampled		29/06/2021	29/06/2021	29/06/2021	29/06/2021	29/06/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	05/07/2021	05/07/2021	05/07/2021	05/07/2021	05/07/2021
Date analysed	-	05/07/2021	05/07/2021	05/07/2021	05/07/2021	05/07/2021
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5
Misc Soil - Inorg						
Our Reference		273223-6	273223-7	273223-8	273223-9	273223-10
Your Reference	UNITS	BH206	BH206	BH207	BH207	BH208
Depth		0-0.1m	0.4-0.5m	0-0.1m	0.4-0.5m	0.4-0.5m
Date Sampled		29/06/2021	29/06/2021	29/06/2021	29/06/2021	29/06/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	05/07/2021	06/07/2021	06/07/2021	06/07/2021	06/07/2021
Date analysed	-	05/07/2021	06/07/2021	06/07/2021	06/07/2021	06/07/2021
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5

Moisture						
Our Reference		273223-1	273223-2	273223-3	273223-4	273223-5
Your Reference	UNITS	BH201	BH202	BH203	BH204	BH205
Depth		0.2m	0.2m	0-0.1m	0.4-0.5m	0.1m
Date Sampled		29/06/2021	29/06/2021	29/06/2021	29/06/2021	29/06/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	05/07/2021	05/07/2021	05/07/2021	05/07/2021	05/07/2021
Date analysed	-	06/07/2021	06/07/2021	06/07/2021	06/07/2021	06/07/2021
Moisture	%	15	11	13	12	11
Moisture						
Our Reference		273223-6	273223-7	273223-8	273223-9	273223-10
Your Reference	UNITS	BH206	BH206	BH207	BH207	BH208
Depth		0-0.1m	0.4-0.5m	0-0.1m	0.4-0.5m	0.4-0.5m
Date Sampled		29/06/2021	29/06/2021	29/06/2021	29/06/2021	29/06/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	05/07/2021	05/07/2021	05/07/2021	05/07/2021	05/07/2021
Date analysed	-	06/07/2021	06/07/2021	06/07/2021	06/07/2021	06/07/2021
Moisture	%	16	9.4	7.6	5.7	9.8
Moisture						
Our Reference		273223-11	273223-12	273223-13	273223-14	273223-15
Your Reference	UNITS	BH201	BH203	BH206	BD1/20210629	BD2/20210629
Depth		0.5m	0.5-0.6m	0.5-0.6m	-	-
Date Sampled		29/06/2021	29/06/2021	29/06/2021	29/06/2021	29/06/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	05/07/2021	05/07/2021	05/07/2021	05/07/2021	05/07/2021
Date analysed	-	06/07/2021	06/07/2021	06/07/2021	06/07/2021	06/07/2021
Moisture	%	7.2	13	8.6	3.2	2.2

Asbestos ID - soils						
Our Reference		273223-1	273223-2	273223-3	273223-4	273223-5
Your Reference	UNITS	BH201	BH202	BH203	BH204	BH205
Depth		0.2m	0.2m	0-0.1m	0.4-0.5m	0.1m
Date Sampled		29/06/2021	29/06/2021	29/06/2021	29/06/2021	29/06/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	09/07/2021	09/07/2021	09/07/2021	09/07/2021	09/07/2021
Sample mass tested	g	Approx. 40g	Approx. 40g	Approx. 40g	Approx. 55g	Approx. 50g
Sample Description	-	Brown coarse- grained soil & rocks				
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg				
		Organic fibres detected				
Trace Analysis	-	No asbestos detected				
Asbestos ID - soils						
Our Reference		273223-6	273223-7	273223-8	273223-9	273223-10
Your Reference	UNITS	BH206	BH206	BH207	BH207	BH208
Depth		0-0.1m	0.4-0.5m	0-0.1m	0.4-0.5m	0.4-0.5m
Date Sampled		29/06/2021	29/06/2021	29/06/2021	29/06/2021	29/06/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	09/07/2021	09/07/2021	09/07/2021	09/07/2021	09/07/2021
Sample mass tested	g	Approx. 75g	Approx. 55g	Approx. 45g	Approx. 65g	Approx. 50g
Sample Description	-	Brown coarse- grained soil & rocks				
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres				
Trace Analysis	-	No asbestos detected				

Asbestos ID - soils				
Our Reference		273223-11	273223-12	273223-13
Your Reference	UNITS	BH201	BH203	BH206
Depth		0.5m	0.5-0.6m	0.5-0.6m
Date Sampled		29/06/2021	29/06/2021	29/06/2021
Type of sample		Soil	Soil	Soil
Date analysed	-	09/07/2021	09/07/2021	09/07/2021
Sample mass tested	g	Approx. 30g	Approx. 25g	Approx. 30g
Sample Description	-	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg
		Organic fibres detected	Organic fibres detected	Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected

Misc Inorg - Soil						
Our Reference		273223-6	273223-7	273223-8	273223-9	273223-18
Your Reference	UNITS	BH206	BH206	BH207	BH207	BH208
Depth		0-0.1m	0.4-0.5m	0-0.1m	0.4-0.5m	0.7-0.8m
Date Sampled		29/06/2021	29/06/2021	29/06/2021	29/06/2021	29/06/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	06/07/2021	06/07/2021	06/07/2021	06/07/2021	06/07/2021
Date analysed	-	07/07/2021	07/07/2021	07/07/2021	07/07/2021	07/07/2021
pH 1:5 soil:water	pH Units	7.1	8.2	7.2	8.9	5.6
Chloride, Cl 1:5 soil:water	mg/kg	[NA]	[NA]	[NA]	[NA]	160
Sulphate, SO4 1:5 soil:water	mg/kg	[NA]	[NA]	[NA]	[NA]	200

Misc Inorg - Soil						
Our Reference		273223-19	273223-20	273223-21	273223-22	273223-23
Your Reference	UNITS	BH205	BH207	BH207	BH204	BH204
Depth		1m	0.9-1m	1.4-1.5m	0-0.1m	0.9-1m
Date Sampled		29/06/2021	29/06/2021	29/06/2021	29/06/2021	29/06/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	06/07/2021	06/07/2021	06/07/2021	06/07/2021	06/07/2021
Date analysed	-	07/07/2021	07/07/2021	07/07/2021	07/07/2021	07/07/2021
pH 1:5 soil:water	pH Units	8.6	8.4	6.8	8.2	6.7
Chloride, Cl 1:5 soil:water	mg/kg	400	[NA]	[NA]	[NA]	[NA]
Sulphate, SO4 1:5 soil:water	mg/kg	310	[NA]	[NA]	[NA]	[NA]

Misc Inorg - Soil			
Our Reference		273223-24	273223-25
Your Reference	UNITS	BH204	BH205
Depth		1.3-1.4m	0.5m
Date Sampled		29/06/2021	29/06/2021
Type of sample		Soil	Soil
Date prepared	-	06/07/2021	06/07/2021
Date analysed	-	07/07/2021	07/07/2021
pH 1:5 soil:water	pH Units	7.9	8.5

ESP/CEC				
Our Reference		273223-18	273223-19	273223-22
Your Reference	UNITS	BH208	BH205	BH204
Depth		0.7-0.8m	1m	0-0.1m
Date Sampled		29/06/2021	29/06/2021	29/06/2021
Type of sample		Soil	Soil	Soil
Date prepared	-	08/07/2021	08/07/2021	08/07/2021
Date analysed	-	08/07/2021	08/07/2021	08/07/2021
Exchangeable Ca	meq/100g	1.4	15	24
Exchangeable K	meq/100g	0.2	0.2	0.5
Exchangeable Mg	meq/100g	3.6	8.7	2.3
Exchangeable Na	meq/100g	0.98	1.2	0.13
Cation Exchange Capacity	meq/100g	6.2	25	27
ESP	%	16	5	<1

Texture and Salinity*						
Our Reference		273223-6	273223-7	273223-8	273223-9	273223-18
Your Reference	UNITS	BH206	BH206	BH207	BH207	BH208
Depth		0-0.1m	0.4-0.5m	0-0.1m	0.4-0.5m	0.7-0.8m
Date Sampled		29/06/2021	29/06/2021	29/06/2021	29/06/2021	29/06/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2021	07/07/2021	07/07/2021	07/07/2021	07/07/2021
Date analysed	-	07/07/2021	07/07/2021	07/07/2021	07/07/2021	07/07/2021
Electrical Conductivity 1:5 soil:water	μS/cm	120	220	97	450	250
Texture Value	-	9.0	9.0	9.0	9.0	7.0
Texture	-	CLAY LOAM	CLAY LOAM	CLAY LOAM	CLAY LOAM	MEDIUM CLAY
ECe	dS/m	<2	<2	<2	4.1	<2
Class	-	NON SALINE	NON SALINE	NON SALINE	MODERATELY SALINE	NON SALINE

Texture and Salinity*						
Our Reference		273223-19	273223-20	273223-21	273223-22	273223-23
Your Reference	UNITS	BH205	BH207	BH207	BH204	BH204
Depth		1m	0.9-1m	1.4-1.5m	0-0.1m	0.9-1m
Date Sampled		29/06/2021	29/06/2021	29/06/2021	29/06/2021	29/06/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2021	07/07/2021	07/07/2021	07/07/2021	07/07/2021
Date analysed	-	07/07/2021	07/07/2021	07/07/2021	07/07/2021	07/07/2021
Electrical Conductivity 1:5 soil:water	μS/cm	570	630	340	180	450
Texture Value	-	7.0	9.0	9.0	9.0	7.0
Texture	-	MEDIUM CLAY	CLAY LOAM	CLAY LOAM	CLAY LOAM	MEDIUM CLAY
ECe	dS/m	4.0	5.7	3.0	<2	3.2
Class	-	SLIGHTLY SALINE	MODERATELY SALINE	SLIGHTLY SALINE	NON SALINE	SLIGHTLY SALINE

Texture and Salinity*			
Our Reference		273223-24	273223-25
Your Reference	UNITS	BH204	BH205
Depth		1.3-1.4m	0.5m
Date Sampled		29/06/2021	29/06/2021
Type of sample		Soil	Soil
Date prepared	-	07/07/2021	07/07/2021
Date analysed	-	07/07/2021	07/07/2021
Electrical Conductivity 1:5 soil:water	µS/cm	280	370
Texture Value	-	7.0	9.0
Texture	-	MEDIUM CLAY	CLAY LOAM
ECe	dS/m	<2	3.3
Class	-	NON SALINE	SLIGHTLY SALINE

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.
INORG-123	Determined using a "Texture by Feel" method.
Metals-020	Determination of various metals by ICP-AES.
Metals-020	Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-AES analytical finish.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.

Method ID	Methodology Summary
Org-022	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-022/025	 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" li="" may="" most="" not="" pahs="" positive="" pql.="" present.<="" teq="" teqs="" that="" the="" this="" to=""> 2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" li="" more="" negative="" pahs="" pql.<="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""> 3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql "total="" +ve="" a="" above.="" and="" approaches="" are="" between="" conservative="" half="" hence="" individual="" is="" least="" li="" lowest="" mid-point="" most="" note,="" of="" pahs="" pahs"="" pahs.<="" positive="" pql="" pql.="" reflective="" simply="" stipulated="" sum="" the="" therefore="" total=""> </pql></pql></pql>
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil						Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-14	273223-2
Date extracted	-			05/07/2021	1	05/07/2021	05/07/2021		05/07/2021	05/07/2021
Date analysed	-			06/07/2021	1	06/07/2021	06/07/2021		06/07/2021	06/07/2021
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	1	<25	<25	0	103	111
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	1	<25	<25	0	103	111
Benzene	mg/kg	0.2	Org-023	<0.2	1	<0.2	<0.2	0	91	98
Toluene	mg/kg	0.5	Org-023	<0.5	1	<0.5	<0.5	0	99	106
Ethylbenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	107	114
m+p-xylene	mg/kg	2	Org-023	<2	1	<2	<2	0	109	118
o-Xylene	mg/kg	1	Org-023	<1	1	<1	<1	0	106	115
naphthalene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	102	1	92	107	15	97	100

QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil						Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
Date extracted	-			[NT]	10	05/07/2021	05/07/2021				
Date analysed	-			[NT]	10	06/07/2021	06/07/2021				
TRH C ₆ - C ₉	mg/kg	25	Org-023	[NT]	10	<25	<25	0			
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	[NT]	10	<25	<25	0			
Benzene	mg/kg	0.2	Org-023	[NT]	10	<0.2	<0.2	0			
Toluene	mg/kg	0.5	Org-023	[NT]	10	<0.5	<0.5	0			
Ethylbenzene	mg/kg	1	Org-023	[NT]	10	<1	<1	0			
m+p-xylene	mg/kg	2	Org-023	[NT]	10	<2	<2	0			
o-Xylene	mg/kg	1	Org-023	[NT]	10	<1	<1	0			
naphthalene	mg/kg	1	Org-023	[NT]	10	<1	<1	0			
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	10	92	78	16	[NT]	[NT]	

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-14	273223-2
Date extracted	-			05/07/2021	1	05/07/2021	05/07/2021		05/07/2021	05/07/2021
Date analysed	-			06/07/2021	1	06/07/2021	06/07/2021		06/07/2021	06/07/2021
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	1	<50	<50	0	87	77
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	1	<100	<100	0	100	88
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	1	<100	<100	0	80	71
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	1	<50	<50	0	87	77
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	1	<100	<100	0	100	88
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	1	<100	<100	0	80	71
Surrogate o-Terphenyl	%		Org-020	78	1	74	73	1	102	75

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	10	05/07/2021	05/07/2021			
Date analysed	-			[NT]	10	06/07/2021	06/07/2021			
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	[NT]	10	<50	<50	0		
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	[NT]	10	<100	<100	0		
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	[NT]	10	<100	<100	0		
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	[NT]	10	<50	<50	0		
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	[NT]	10	<100	<100	0		
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	[NT]	10	<100	<100	0		
Surrogate o-Terphenyl	%		Org-020	[NT]	10	80	82	2		

QUALI	TY CONTRC	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-14	273223-2
Date extracted	-			05/07/2021	1	05/07/2021	05/07/2021		05/07/2021	05/07/2021
Date analysed	-			06/07/2021	1	06/07/2021	06/07/2021		06/07/2021	06/07/2021
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	86	92
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	84	69
Fluorene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	93	89
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	91	97
Anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	88	78
Pyrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	82	76
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	67	66
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	1	<0.05	<0.05	0	86	79
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	109	1	115	113	2	115	106

QUALIT	Y CONTRC	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				5	05/07/2021	05/07/2021			[NT]
Date analysed	-				5	06/07/2021	06/07/2021			[NT]
Naphthalene	mg/kg	0.1	Org-022/025		5	<0.1	<0.1	0		[NT]
Acenaphthylene	mg/kg	0.1	Org-022/025		5	0.2	0.2	0		[NT]
Acenaphthene	mg/kg	0.1	Org-022/025		5	<0.1	0.1	0		[NT]
Fluorene	mg/kg	0.1	Org-022/025		5	<0.1	<0.1	0		[NT]
Phenanthrene	mg/kg	0.1	Org-022/025		5	1.5	1.7	12		[NT]
Anthracene	mg/kg	0.1	Org-022/025		5	0.5	0.5	0		[NT]
Fluoranthene	mg/kg	0.1	Org-022/025		5	3.5	4.3	21		[NT]
Pyrene	mg/kg	0.1	Org-022/025		5	3.6	4.3	18		[NT]
Benzo(a)anthracene	mg/kg	0.1	Org-022/025		5	1.9	2.2	15		[NT]
Chrysene	mg/kg	0.1	Org-022/025		5	1.7	1.9	11		[NT]
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025		5	3.2	4.4	32		[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025		5	2.2	3.5	46		[NT]
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025		5	1.4	1.9	30		[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025		5	0.2	0.4	67		[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025		5	1.9	2.4	23		[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025		5	108	110	2		[NT]

QUALI	TY CONTRC	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				10	05/07/2021	05/07/2021			[NT]
Date analysed	-				10	06/07/2021	06/07/2021			[NT]
Naphthalene	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0		[NT]
Acenaphthylene	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0		[NT]
Acenaphthene	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0		[NT]
Fluorene	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0		[NT]
Phenanthrene	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0		[NT]
Anthracene	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0		[NT]
Fluoranthene	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0		[NT]
Pyrene	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0		[NT]
Benzo(a)anthracene	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0		[NT]
Chrysene	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0		[NT]
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025		10	<0.2	<0.2	0		[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025		10	<0.05	<0.05	0		[NT]
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0		[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0		[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0		[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025		10	115	117	2		[NT]

QUALITY CON	ROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-14	273223-2
Date extracted	-			05/07/2021	1	05/07/2021	05/07/2021		05/07/2021	05/07/2021
Date analysed	-			06/07/2021	1	06/07/2021	06/07/2021		06/07/2021	06/07/2021
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	94	77
НСВ	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	92	74
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	89	89
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	92	85
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	99	90
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	99	96
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	99	93
Endrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	98	96
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	95	94
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	88	84
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	100	1	87	90	3	99	86

QUALITY CON	TROL: Organo	chlorine F	Pesticides in soil			Du	iplicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	10	05/07/2021	05/07/2021			[NT]
Date analysed	-			[NT]	10	06/07/2021	06/07/2021			[NT]
alpha-BHC	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0		[NT]
НСВ	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0		[NT]
beta-BHC	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0		[NT]
gamma-BHC	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0		[NT]
Heptachlor	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0		[NT]
delta-BHC	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0		[NT]
Aldrin	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0		[NT]
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0		[NT]
gamma-Chlordane	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0		[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0		[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0		[NT]
pp-DDE	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0		[NT]
Dieldrin	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0		[NT]
Endrin	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0		[NT]
Endosulfan II	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0		[NT]
pp-DDD	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0		[NT]
Endrin Aldehyde	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0		[NT]
pp-DDT	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0		[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0		[NT]
Methoxychlor	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-022/025	[NT]	10	91	94	3		[NT]

QUALITY CONTRO	L: Organopł	osphorus	Pesticides in Soil			Duj	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-14	273223-2
Date extracted	-			05/07/2021	1	05/07/2021	05/07/2021		05/07/2021	05/07/2021
Date analysed	-			06/07/2021	1	06/07/2021	06/07/2021		06/07/2021	06/07/2021
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	78	89
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	89	82
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	91	85
Malathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	116	104
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	101	95
Parathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	88	84
Bromophos-ethyl	mg/kg	0.1	Org-022	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	99	101
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	100	1	87	90	3	99	86

QUALITY CONTRO	L: Organopł	nosphorus	Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				10	05/07/2021	05/07/2021			[NT]
Date analysed	-				10	06/07/2021	06/07/2021			[NT]
Dichlorvos	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0		[NT]
Dimethoate	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0		[NT]
Diazinon	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0		[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0		[NT]
Ronnel	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0		[NT]
Fenitrothion	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0		[NT]
Malathion	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0		[NT]
Chlorpyriphos	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0		[NT]
Parathion	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0		[NT]
Bromophos-ethyl	mg/kg	0.1	Org-022		10	<0.1	<0.1	0		[NT]
Ethion	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0		[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-022/025		10	91	94	3		[NT]

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-14	273223-2
Date extracted	-			05/07/2021	1	05/07/2021	05/07/2021		05/07/2021	05/07/2021
Date analysed	-			06/07/2021	1	06/07/2021	06/07/2021		06/07/2021	06/07/2021
Aroclor 1016	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	100	100
Aroclor 1260	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-021	100	1	87	90	3	99	86

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	10	05/07/2021	05/07/2021		[NT]	
Date analysed	-			[NT]	10	06/07/2021	06/07/2021		[NT]	
Aroclor 1016	mg/kg	0.1	Org-021	[NT]	10	<0.1	<0.1	0	[NT]	
Aroclor 1221	mg/kg	0.1	Org-021	[NT]	10	<0.1	<0.1	0	[NT]	
Aroclor 1232	mg/kg	0.1	Org-021	[NT]	10	<0.1	<0.1	0	[NT]	
Aroclor 1242	mg/kg	0.1	Org-021	[NT]	10	<0.1	<0.1	0	[NT]	
Aroclor 1248	mg/kg	0.1	Org-021	[NT]	10	<0.1	<0.1	0	[NT]	
Aroclor 1254	mg/kg	0.1	Org-021	[NT]	10	<0.1	<0.1	0	[NT]	
Aroclor 1260	mg/kg	0.1	Org-021	[NT]	10	<0.1	<0.1	0	[NT]	
Surrogate TCMX	%		Org-021	[NT]	10	91	94	3	[NT]	[NT]

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-14	273223-2
Date prepared	-			06/07/2021	1	06/07/2021	06/07/2021		06/07/2021	06/07/2021
Date analysed	-			07/07/2021	1	07/07/2021	07/07/2021		07/07/2021	07/07/2021
Arsenic	mg/kg	4	Metals-020	<4	1	9	8	12	100	79
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	<0.4	<0.4	0	101	72
Chromium	mg/kg	1	Metals-020	<1	1	16	12	29	107	85
Copper	mg/kg	1	Metals-020	<1	1	14	13	7	108	101
Lead	mg/kg	1	Metals-020	<1	1	15	13	14	109	79
Mercury	mg/kg	0.1	Metals-021	<0.1	1	<0.1	<0.1	0	106	99
Nickel	mg/kg	1	Metals-020	<1	1	7	6	15	104	81
Zinc	mg/kg	1	Metals-020	<1	1	26	27	4	109	92

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil		Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	10	06/07/2021	06/07/2021			[NT]
Date analysed	-			[NT]	10	07/07/2021	07/07/2021			[NT]
Arsenic	mg/kg	4	Metals-020	[NT]	10	7	5	33		[NT]
Cadmium	mg/kg	0.4	Metals-020	[NT]	10	<0.4	<0.4	0		[NT]
Chromium	mg/kg	1	Metals-020	[NT]	10	15	10	40		[NT]
Copper	mg/kg	1	Metals-020	[NT]	10	18	16	12		[NT]
Lead	mg/kg	1	Metals-020	[NT]	10	13	12	8		[NT]
Mercury	mg/kg	0.1	Metals-021	[NT]	10	<0.1	<0.1	0		[NT]
Nickel	mg/kg	1	Metals-020	[NT]	10	17	6	96		[NT]
Zinc	mg/kg	1	Metals-020	[NT]	10	54	22	84	[NT]	[NT]

QUALITY CONTROL: Misc Soil - Inorg						Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	273223-2
Date prepared	-			05/07/2021	1	05/07/2021	05/07/2021		05/07/2021	05/07/2021
Date analysed	-			05/07/2021	1	05/07/2021	05/07/2021		05/07/2021	05/07/2021
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	<5	1	<5	<5	0	102	104

QUALITY	CONTROL:	Misc Ino	rg - Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			07/07/2021	6	06/07/2021	06/07/2021		07/07/2021	
Date analysed	-			07/07/2021	6	07/07/2021	07/07/2021		07/07/2021	
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	6	7.1	7.0	1	101	
Chloride, Cl 1:5 soil:water	mg/kg	10	Inorg-081	<10	[NT]		[NT]	[NT]	90	
Sulphate, SO4 1:5 soil:water	mg/kg	10	Inorg-081	<10	[NT]	[NT]	[NT]	[NT]	101	[NT]

QUALITY CONTROL: Misc Inorg - Soil				Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	24	06/07/2021	06/07/2021		[NT]	
Date analysed	-			[NT]	24	07/07/2021	07/07/2021		[NT]	
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	24	7.9	8.0	1	[NT]	[NT]

QUALITY CONTROL: ESP/CEC							Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	273223-19	
Date prepared	-			08/07/2021	18	08/07/2021	08/07/2021		08/07/2021	08/07/2021	
Date analysed	-			08/07/2021	18	08/07/2021	08/07/2021		08/07/2021	08/07/2021	
Exchangeable Ca	meq/100g	0.1	Metals-020	<0.1	18	1.4	1.5	7	113	#	
Exchangeable K	meq/100g	0.1	Metals-020	<0.1	18	0.2	0.2	0	123	109	
Exchangeable Mg	meq/100g	0.1	Metals-020	<0.1	18	3.6	3.8	5	116	#	
Exchangeable Na	meq/100g	0.1	Metals-020	<0.1	18	0.98	1.1	12	126	126	
ESP	%	1	Metals-020	[NT]	18	16	16	0	[NT]	[NT]	

QUALITY CONTROL: Texture and Salinity*					Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			07/07/2021	[NT]		[NT]	[NT]	07/07/2021	
Date analysed	-			07/07/2021	[NT]		[NT]	[NT]	07/07/2021	
Electrical Conductivity 1:5 soil:water	μS/cm	1	Inorg-002	<1	[NT]		[NT]	[NT]	106	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

ESP/CEC:

- # High spike recovery was obtained for this sample. The sample was re-digested and re-spiked and the high recovery was confirmed. This is suspected to be from matrix interferences. However, an acceptable recovery was obtained for the LCS.

Acid Extractable Metals in Soil: The laboratory RPD acceptance criteria has been exceeded for 273223-10 for Cr, Ni and Zn. Therefore a triplicate result has been issued as laboratory sample number 273223-26.

Asbestos: A portion of the supplied samples were sub-sampled for asbestos analysis according to Envirolab procedures. We cannot guarantee that these sub-samples are indicative of the entire sample. Envirolab recommends supplying 40-50g of sample in its own container. Note: Samples 273223-1-2 were sub-sampled from jars provided by the client

Asbestos: Excessive sample volumes were provided for asbestos analysis. A portion of the supplied samples were sub-sampled according to Envirolab procedures.

We cannot guarantee that these sub-samples are indicative of the entire sample. Envirolab recommends supplying 40-50g (50mL) of sample in its own container as per AS4964-2004. Note: Samples 273223-3-10 were sub-sampled from bags provided by the client.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 273223-A

Client Details	
Client	Douglas Partners Pty Ltd (Riverstone)
Attention	Gavin Boyd
Address	43 Hobart St, Riverstone, NSW, 2765

Sample Details	
Your Reference	<u>94624.01, The Ponds</u>
Number of Samples	additional analysis
Date samples received	02/07/2021
Date completed instructions received	13/07/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details					
Date results requested by	15/07/2021				
Date of Issue	15/07/2021				
NATA Accreditation Number 2901. This document shall not be reproduced except in full.					
Accredited for compliance with	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *				

Results Approved By Josh Williams, LC Supervisor Authorised By

Nancy Zhang, Laboratory Manager

PAHs in TCLP (USEPA 1311)		
Our Reference		273223-A-5
Your Reference	UNITS	BH205
Depth		0.1m
Date Sampled		29/06/2021
Type of sample		Soil
pH of soil for fluid# determ.	pH units	9.2
pH of soil TCLP (after HCl)	pH units	2.0
Extraction fluid used	-	1
pH of final Leachate	pH units	5.6
Date extracted	-	14/07/2021
Date analysed	-	14/07/2021
Naphthalene in TCLP	mg/L	<0.001
Acenaphthylene in TCLP	mg/L	<0.001
Acenaphthene in TCLP	mg/L	<0.001
Fluorene in TCLP	mg/L	<0.001
Phenanthrene in TCLP	mg/L	<0.001
Anthracene in TCLP	mg/L	<0.001
Fluoranthene in TCLP	mg/L	<0.001
Pyrene in TCLP	mg/L	<0.001
Benzo(a)anthracene in TCLP	mg/L	<0.001
Chrysene in TCLP	mg/L	<0.001
Benzo(bjk)fluoranthene in TCLP	mg/L	<0.002
Benzo(a)pyrene in TCLP	mg/L	<0.001
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	<0.001
Dibenzo(a,h)anthracene in TCLP	mg/L	<0.001
Benzo(g,h,i)perylene in TCLP	mg/L	<0.001
Total +ve PAH's	mg/L	NIL (+)VE
Surrogate p-Terphenyl-d14	%	93

Method ID	Methodology Summary
INORG-004	Toxicity Characteristic Leaching Procedure (TCLP) using Zero Headspace Extraction (zHE) using AS4439 and USEPA 1311.
Inorg-004	Toxicity Characteristic Leaching Procedure (TCLP) using AS 4439 and USEPA 1311.
	Please note that the mass used may be scaled down from default based on sample mass available.
	Samples are stored at 2-6oC before and after leachate preparation.
Org-022/025	Leachates are extracted with Dichloromethane and analysed by GC-MS/GC-MSMS.

QUALITY CONTROL: PAHs in TCLP (USEPA 1311)						Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]	
Date extracted	-			14/07/2021	[NT]		[NT]	[NT]	14/07/2021		
Date analysed	-			14/07/2021	[NT]		[NT]	[NT]	14/07/2021		
Naphthalene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	83		
Acenaphthylene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]		
Acenaphthene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	68		
Fluorene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	80		
Phenanthrene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	92		
Anthracene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]		
Fluoranthene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	76		
Pyrene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	80		
Benzo(a)anthracene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]		
Chrysene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	72		
Benzo(bjk)fluoranthene in TCLP	mg/L	0.002	Org-022/025	<0.002	[NT]		[NT]	[NT]	[NT]		
Benzo(a)pyrene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	80		
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]		
Dibenzo(a,h)anthracene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]		
Benzo(g,h,i)perylene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]		
Surrogate p-Terphenyl-d14	%		Org-022/025	81	[NT]		[NT]	[NT]	82		

Result Definitions				
NT	Not tested			
NA	Test not required			
INS	Insufficient sample for this test			
PQL	Practical Quantitation Limit			
<	Less than			
>	Greater than			
RPD	Relative Percent Difference			
LCS	Laboratory Control Sample			
NS	Not specified			
NEPM	National Environmental Protection Measure			
NR	Not Reported			

Quality Contro	Quality Control Definitions									
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.									
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.									
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.									
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.									
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.									

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Ming To

From: Sent: To: Subject: Attachments:	Aileen Hie Tuesday, 13 July 2021 2:33 PM Ming To FW: Results for Registration 273223 94624 273223-[R00].pdf; 273223-COC.pdf; Doug Ponds.273223.header.xml; 94624.01 The F The Ponds.273223.Chemistry26.csv; 27322	las_273223.xlsx; 94624.01 The Ponds.273223.Sample26.csv; 94624.01
		Pef: 273223-A. 7A1: 2 days. Dre: 15/07/2021
	@douglaspartners.com.au>	
CAUTION: This email originated fro unless you recognise the sender a	om outside of the organisation. Do not act on ins nd know the content is authentic and safe.	tructions, click links or open attachments
Hi Aileen,		
Could you organise TCLP testing	g for PAH for BH205/0.1m – 2 day TAT	
Gavin Boyd Senior Associa	ate / Geotechnical Engineer	mau

Douglas Partners Pty Ltd | ABN 75 053 980 117 | www.douglaspartners.com.au 43 Hobart Street Riverstone NSW 2765 | PO Box 267 Riverstone NSW 2765 P: 02 4666 0450 | M: 0431 496 721 | E: <u>Gavin.Boyd@douglaspartners.com.au</u>

3100

To find information on our COVID-19 measures, please visit douglaspartners.com.au/news/covid-19

If you are not the intended recipient of this email, please notify us immediately and be aware that any disclosure, copying, distribution or use of the contents of this information is prohibited.

From: Greta Petzold <<u>GPetzold@envirolab.com.au</u>>

Sent: Friday, 9 July 2021 3:01 PM

To: Gavin Boyd < Gavin.Boyd@douglaspartners.com.au>; Kristine Nicodemus

<<u>Kristine.Nicodemus@douglaspartners.com.au</u>>

Subject: Results for Registration 273223 94624.01, The Ponds

Please refer to attached for: a copy of the Certificate of Analysis a copy of the COC/paperwork received from you ESDAT Extracts an Excel or .csv file containing the results

Please note that a hard copy will not be posted.

Enquiries should be made directly to: <u>customerservice@envirolab.com.au</u>

PAGE 1/2

CHAIN OF CUSTODY DESPATCH SHEET

۰.

	Project No:	94624.01 Proposed New Buildings					Suburb: The Ponds				To: Envirolab Services				
	Project Name:						Number				12 Ashley St Chatswood NSW 2067				
	Project Manager: Gavin Boyd					Sample	Sampler: Jeremie Young				Attn: Aileen Hie				
	Emails:	gavir	n.boyd@dou	uglaspartne	ers.com.au	kristine	e.nicodemu	us@dougla	aspartners.	com.au					
	Date Required:		day □	24 hours		ours 🛛	72 hou	rs 🛛	Standard	Ż	,,				
	Prior Storage:	⊡∕ Esk	y 🛃 Fridç	ge 🗆 Sh		Do sam	oles contai	n 'potentia	I' HBM?	Yes 🗆	No 🗹	(If YES, th	en handle, transp	oort and store in accordance with FPM HAZID)	
			pled	Sample Type	Container Type		-			Analytes					
	Samplè ID	Lab ID	Date Sampled	S - soil W - water	G - glass P - plastic	Combo 8A	Combo 3A	Combo 3	Chloride and Sulphate	Sodicity	pH, eCE & Textural classification	CEC & pH	TRH & BTEX	Notes/preservation	
۰	BH201/0.2m	1	29.6.21	S	G	•								No ziplock bag provided	
\$	BH202/0.2m	2	29.6.21	S	G	•								No ziplock bag provided	
ه	BH203/0-0.1m	3	29.6.21	S	G/P	. •							· .		
•	BH204/0.4-0.5m	4	, 29.6.21	°S	G/P	•									
-	BH205/0.1m	5	29.6.21	S	G/P	٠		,							
•	BH206/0-0.1m	6	29.6.21	S	G/P	٠		,			•i,				
•	BH206/0.4-0.5m	7	29.6.21	<u>S</u> [*]	'G/P	•			<i>k</i> .		•.			Envirolab Services	
•	BH207/0-0.1m	ซี	29.6.21	S	G/P	• •			· ·		•			ENVIROLAB 12 Ashley St Chatswood NSW 2057	
•	BH207/0.4-0.5m	9.	29.6.21	S	G/P	•		:			•			Ph: (02) 9910 6200	
æ	BH208/0.4-0.5m	10	29.6.21	S	G/P,	•					,			273223	
e	BH201/0.5m	Í (29.6.21	S ·	G		•							Date Received: 02-07.2021	
¢	BH203/0.5-0.6m	12	29.6.21	S	G		• •							Seceived By: Stan 5°C	
•	BH206/0.5-0.6m	17	<u>29.6.21</u>	S	G		•			,				Cooling: Ice/icepack	
	BD1/20210629	i4	29.6.21	S	G			•						Security: Interver None	
	BD2/20210629	٢]	29.6.21	S	G			•						<u>`````````````````````````````````</u>	
	PQL (S) mg/kg						L	L					ANZECC P	QLs req'd for all water analytes 🛛	
	PQL = practical					to Labor	atory Met	hod Dete	ction Limit		Lab Re	port/Re	ference No:	. · ·	
	Metals to Analyse: 8HM unless specified here: Total number of samples in container: 24 Relinquished by: JY Transported to la										boratory	by:		·	
	Send Results to		ouglas Part						e NSW 27		Solutory	~y	Phone:	Fax:	
	Signed: Anon Received by: 73 HAW (1) Enviroiah Date & Time:02-07-2021														
	0	107	• •				~~~~~		,						

41

۳ ,

PAGE 2/2

CHAIN OF CUSTODY DESPATCH SHEET

-

• [Project No:	94624	.01			Subur):	The Po	nds		То:	Env	virolab Ser	vices	·····
	Project Name: Proposed New Buildings				Order Number					12 Ashley St Chatswood NSW 2067					
ľ					Sample	Sampler: Jeremie Young				Attn:	Àile	en Hie			
F	Emails:	gavir	n.boyd@dou	uglaspartne	ers.com.au	kristine	e.nicodemu	is@dougla	spartners.	com.au					
	Date Required:			24 hours		ours 🛛	72 hou		Standard						
	Prior Storage:	Esk	y 🕑 Fridg	je 🗆 Sh		Do sam	ples contai	n 'potentia	I' HBM?	Yes 🗆	No 🔽	(If YES, th	en handle, tr	ansport and	store in accordance with FPM HAZID)
			Date	Sample Type	Container Type					Analytes			<u> </u>		
	Sample ID	Lab ID	Sampling Date	S - soil W - water	G - glass P - plastic	Combo 8A	Combo 3A	Combo 3	Chloride and Sulphate	Sodicity	pH, eCE & Textural classification	CEC & pH	TRH & BTEX		Notes/preservation
•	(८) (न्ने) Trip spike/blank	18	28/6/21	S -	G								•		
18	BH208/0.7-0.8m	5,17	29/6/21	S	P				•	•	•				
19	BH205/1m	18	29/6/21	S	P				•	•	•				
20	BH207/0.9-1m	JA .	29/6/21	s	P						٠				· ·
21	BH207/1.4-1.5m	20	29/6/21	S	Р						•				
22	BH204/0-0.1m	1	29/6/21	S	P		•				•	•			
23	BH204/0.9-1m	Z	29/6/21	S	Ρ			-			•				·
24	BH204/1.3-1.4m	137	29/6/21	S	G						•		<u> </u>		
25	BH205/0.5m	21	29/6/21	S	P						•				
	BUN														· F · Contra
					_									· · ·	- - - -
											λi.				
Ļ															
·	· ·									,°.*			L		· · · · · · · · · · · · · · · · · · ·
	- 4											2	-		
` '[PQL (S) mg/kg												ANZEC	C PQLs I	req'd for all water analytes
F	PQL = practical Metals to Analys	to Labor	atory Met	nod Deteo	tion Limit		Lab	eport/Ref	ference N	0:					
Ē	Total number of	sample	es in conta	iner:	Relir	nquished					laboratory by:				
···,	Send Results to		ouglas Parti				Hobart St I				<u> </u>	D-1- 6 7	Phone:		Fax:
` ' L	Signed:	ma	1		Received b	y: TS#	AW (Q)	envire	alab s	<u>ya</u>		Date &	Гіте: <i>02</i>	-07-20	1655

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Pty Ltd (Riverstone)
Attention	Gavin Boyd

Sample Login Details	
Your reference	94624.01, The Ponds
Envirolab Reference	273223
Date Sample Received	02/07/2021
Date Instructions Received	02/07/2021
Date Results Expected to be Reported	09/07/2021

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	25 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	5
Cooling Method	Ice
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst						
Phone: 02 9910 6200	Phone: 02 9910 6200						
Fax: 02 9910 6201	Fax: 02 9910 6201						
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au						

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	VTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBsin Soil	Acid Extractable metalsin soil	Misc Soil - Inorg	Asbestos ID - soils	Misc Inorg - Soil	ESP/CEC	Texture and Salinity*
BH201-0.2m	✓	✓	✓	✓	✓	✓	✓	✓	✓			
BH202-0.2m	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
BH203-0-0.1m	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark	\checkmark	\checkmark			
BH204-0.4-0.5m	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
BH205-0.1m	✓	\checkmark	\checkmark	\checkmark	✓	✓	✓	\checkmark	\checkmark			
BH206-0-0.1m	\checkmark	✓	\checkmark	\checkmark	✓	✓	✓	✓	\checkmark	\checkmark		✓
BH206-0.4-0.5m	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		✓
BH207-0-0.1m	✓	\checkmark	\checkmark	\checkmark	✓	✓	✓	\checkmark	\checkmark	\checkmark		✓
BH207-0.4-0.5m	\checkmark	✓	\checkmark	\checkmark	✓	✓	✓	✓	\checkmark	\checkmark		✓
BH208-0.4-0.5m	\checkmark	\checkmark	\checkmark	✓	\checkmark	✓	\checkmark	\checkmark	\checkmark			
BH201-0.5m	\checkmark	✓	\checkmark				✓		\checkmark			
BH203-0.5-0.6m	\checkmark	✓	\checkmark				\checkmark		\checkmark			
BH206-0.5-0.6m	\checkmark	\checkmark	\checkmark				\checkmark		\checkmark			
BD1/20210629	\checkmark	✓	\checkmark				\checkmark					
BD2/20210629	✓	✓	\checkmark				\checkmark					
Trip Spike	✓											
Trip Blank	✓											
BH208-0.7-0.8m										\checkmark	✓	✓
BH205-1m										\checkmark	\checkmark	✓
BH207-0.9-1m										✓		✓
BH207-1.4-1.5m										✓		✓
BH204-0-0.1m										✓	\checkmark	✓
BH204-0.9-1m										\checkmark		✓
BH204-1.3-1.4m										\checkmark		✓
BH205-0.5m										\checkmark		✓

The '\screw' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 279047

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Gavin Boyd
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	<u>94624.01, The Ponds</u>
Number of Samples	13 Soil
Date samples received	27/09/2021
Date completed instructions received	27/09/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details

 Date results requested by
 27/09/2021

 Date of Issue
 27/09/2021

 NATA Accreditation Number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Lucy Zhu, Asbestos Supervisor Steven Luong, Organics Supervisor

Analysed by Asbestos Approved Analyst: Panika Wongchanda Authorised by Asbestos Approved Signatory: Lucy Zhu <u>Results Approved By</u> Diego Bigolin, Inorganics Supervisor Hannah Nguyen, Metals Supervisor Josh Williams, LC Supervisor Authorised By

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		279047-1	279047-2	279047-3	279047-4	279047-5
Your Reference	UNITS	209	210	211	212	213
Depth		0-0.1	0-0.1	0-0.1	0.2-0.3	0.2-0.3
Date Sampled		27/09/2021	27/09/2021	27/09/2021	27/09/2021	27/09/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	27/09/2021	27/09/2021	27/09/2021	27/09/2021	27/09/2021
Date analysed	-	27/09/2021	27/09/2021	27/09/2021	27/09/2021	27/09/2021
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	92	87	83	79	95

svTRH (C10-C40) in Soil						
Our Reference		279047-1	279047-2	279047-3	279047-4	279047-5
Your Reference	UNITS	209	210	211	212	213
Depth		0-0.1	0-0.1	0-0.1	0.2-0.3	0.2-0.3
Date Sampled		27/09/2021	27/09/2021	27/09/2021	27/09/2021	27/09/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	27/09/2021	27/09/2021	27/09/2021	27/09/2021	27/09/2021
Date analysed	-	27/09/2021	27/09/2021	27/09/2021	27/09/2021	27/09/2021
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	110	<100	140	<100	<100
Total +ve TRH (C10-C36)	mg/kg	110	<50	140	<50	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	110	<100	180	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	110	<50	180	<50	<50
Surrogate o-Terphenyl	%	63	72	72	72	71

PAHs in Soil						
Our Reference		279047-1	279047-2	279047-3	279047-4	279047-5
Your Reference	UNITS	209	210	211	212	213
Depth		0-0.1	0-0.1	0-0.1	0.2-0.3	0.2-0.3
Date Sampled		27/09/2021	27/09/2021	27/09/2021	27/09/2021	27/09/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	27/09/2021	27/09/2021	27/09/2021	27/09/2021	27/09/2021
Date analysed	-	27/09/2021	27/09/2021	27/09/2021	27/09/2021	27/09/2021
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	91	92	92	105	96

PAHs in Soil						
Our Reference		279047-6	279047-7	279047-8	279047-9	279047-10
Your Reference	UNITS	214	215	216	217	218
Depth		0-0.1	0-0.1	0-0.1	0-0.1	0-0.1
Date Sampled		27/09/2021	27/09/2021	27/09/2021	27/09/2021	27/09/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	27/09/2021	27/09/2021	27/09/2021	27/09/2021	27/09/2021
Date analysed	-	27/09/2021	27/09/2021	27/09/2021	27/09/2021	27/09/2021
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.06	<0.05	0.06	0.1	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Total +ve PAH's	mg/kg	0.06	<0.05	0.06	0.3	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	91	83	84	89	93

PAHs in Soil				
Our Reference		279047-11	279047-12	279047-13
Your Reference	UNITS	219	220	221
Depth		0-0.1	0-0.1	0-0.1
Date Sampled		27/09/2021	27/09/2021	27/09/2021
Type of sample		Soil	Soil	Soil
Date extracted	-	27/09/2021	27/09/2021	27/09/2021
Date analysed	-	27/09/2021	27/09/2021	27/09/2021
Naphthalene	mg/kg	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	0.2	<0.1
Pyrene	mg/kg	0.2	0.2	0.1
Benzo(a)anthracene	mg/kg	<0.1	0.1	<0.1
Chrysene	mg/kg	<0.1	0.2	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	0.3	<0.2
Benzo(a)pyrene	mg/kg	0.1	0.2	0.09
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.1	0.2	<0.1
Total +ve PAH's	mg/kg	0.52	1.5	0.2
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	91	89	82

Organochlorine Pesticides in soil						
Our Reference		279047-1	279047-2	279047-3	279047-4	279047-5
Your Reference	UNITS	209	210	211	212	213
Depth		0-0.1	0-0.1	0-0.1	0.2-0.3	0.2-0.3
Date Sampled		27/09/2021	27/09/2021	27/09/2021	27/09/2021	27/09/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	27/09/2021	27/09/2021	27/09/2021	27/09/2021	27/09/2021
Date analysed	-	27/09/2021	27/09/2021	27/09/2021	27/09/2021	27/09/2021
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	86	77	82	97	86

Organophosphorus Pesticides in Soil						
Our Reference		279047-1	279047-2	279047-3	279047-4	279047-5
Your Reference	UNITS	209	210	211	212	213
Depth		0-0.1	0-0.1	0-0.1	0.2-0.3	0.2-0.3
Date Sampled		27/09/2021	27/09/2021	27/09/2021	27/09/2021	27/09/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	27/09/2021	27/09/2021	27/09/2021	27/09/2021	27/09/2021
Date analysed	-	27/09/2021	27/09/2021	27/09/2021	27/09/2021	27/09/2021
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	86	77	82	97	86

PCBs in Soil					_	
Our Reference		279047-1	279047-2	279047-3	279047-4	279047-5
Your Reference	UNITS	209	210	211	212	213
Depth		0-0.1	0-0.1	0-0.1	0.2-0.3	0.2-0.3
Date Sampled		27/09/2021	27/09/2021	27/09/2021	27/09/2021	27/09/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	27/09/2021	27/09/2021	27/09/2021	27/09/2021	27/09/2021
Date analysed	-	27/09/2021	27/09/2021	27/09/2021	27/09/2021	27/09/2021
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	86	77	82	97	86

Acid Extractable metals in soil						
Our Reference		279047-1	279047-2	279047-3	279047-4	279047-5
Your Reference	UNITS	209	210	211	212	213
Depth		0-0.1	0-0.1	0-0.1	0.2-0.3	0.2-0.3
Date Sampled		27/09/2021	27/09/2021	27/09/2021	27/09/2021	27/09/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	27/09/2021	27/09/2021	27/09/2021	27/09/2021	27/09/2021
Date analysed	-	27/09/2021	27/09/2021	27/09/2021	27/09/2021	27/09/2021
Arsenic	mg/kg	5	7	<4	<4	8
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	8	14	11	10	8
Copper	mg/kg	12	15	17	66	32
Lead	mg/kg	28	18	15	17	14
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	4	4	5	14	18
Zinc	mg/kg	42	43	76	77	54

Misc Soil - Inorg						
Our Reference		279047-1	279047-2	279047-3	279047-4	279047-5
Your Reference	UNITS	209	210	211	212	213
Depth		0-0.1	0-0.1	0-0.1	0.2-0.3	0.2-0.3
Date Sampled		27/09/2021	27/09/2021	27/09/2021	27/09/2021	27/09/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	27/09/2021	27/09/2021	27/09/2021	27/09/2021	27/09/2021
Date analysed	-	27/09/2021	27/09/2021	27/09/2021	27/09/2021	27/09/2021
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5

Moisture						
Our Reference		279047-1	279047-2	279047-3	279047-4	279047-5
Your Reference	UNITS	209	210	211	212	213
Depth		0-0.1	0-0.1	0-0.1	0.2-0.3	0.2-0.3
Date Sampled		27/09/2021	27/09/2021	27/09/2021	27/09/2021	27/09/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	27/09/2021	27/09/2021	27/09/2021	27/09/2021	27/09/2021
Date analysed	-	27/09/2021	27/09/2021	27/09/2021	27/09/2021	27/09/2021
Moisture	%	15	11	10	18	12
Moisture						
Our Reference		279047-6	279047-7	279047-8	279047-9	279047-10
Your Reference	UNITS	214	215	216	217	218
Depth		0-0.1	0-0.1	0-0.1	0-0.1	0-0.1
Date Sampled		27/09/2021	27/09/2021	27/09/2021	27/09/2021	27/09/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	27/09/2021	27/09/2021	27/09/2021	27/09/2021	27/09/2021
Date analysed	-	27/09/2021	27/09/2021	27/09/2021	27/09/2021	27/09/2021
Moisture	%	8.9	13	12	12	16
Moisture						
Our Reference		279047-11	279047-12	279047-13		
Your Reference	UNITS	219	220	221		
Depth		0-0.1	0-0.1	0-0.1		
Date Sampled		27/09/2021	27/09/2021	27/09/2021		
Type of sample		Soil	Soil	Soil		
Date prepared	-	27/09/2021	27/09/2021	27/09/2021		
Date analysed	-	27/09/2021	27/09/2021	27/09/2021		
Moisture	%	18	11	15		

Asbestos ID - soils						
Our Reference		279047-1	279047-2	279047-3	279047-4	279047-5
Your Reference	UNITS	209	210	211	212	213
Depth		0-0.1	0-0.1	0-0.1	0.2-0.3	0.2-0.3
Date Sampled		27/09/2021	27/09/2021	27/09/2021	27/09/2021	27/09/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	27/09/2021	27/09/2021	27/09/2021	27/09/2021	27/09/2021
Sample mass tested	g	Approx. 25g	Approx. 35g	Approx. 30g	Approx. 60g	Approx. 45g
Sample Description	-	Brown fine- grained soil & rocks	Brown fine- grained soil & rocks	Brown fine- grained soil & rocks	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected				
Asbestos comments	-	NO	NO	NO	NO	NO
Trace Analysis	-	No asbestos detected				

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.

Method ID	Methodology Summary
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<br="" teq="" teqs="" that="" the="" this="" to="">2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<br="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.="">3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<br="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" the="">Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil				Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-21	[NT]
Date extracted	-			27/09/2021	1	27/09/2021	27/09/2021		27/09/2021	
Date analysed	-			27/09/2021	1	27/09/2021	27/09/2021		27/09/2021	
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	1	<25	<25	0	83	
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	1	<25	<25	0	83	
Benzene	mg/kg	0.2	Org-023	<0.2	1	<0.2	<0.2	0	85	
Toluene	mg/kg	0.5	Org-023	<0.5	1	<0.5	<0.5	0	79	
Ethylbenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	85	
m+p-xylene	mg/kg	2	Org-023	<2	1	<2	<2	0	84	
o-Xylene	mg/kg	1	Org-023	<1	1	<1	<1	0	86	
naphthalene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-023	95	1	92	84	9	85	

QUALITY CO	NTROL: svT	RH (C10-		Du	plicate		Spike Recovery %			
Test Description	Units PQL Method Blank		Blank	#	Base	Dup.	RPD	LCS-21	[NT]	
Date extracted	-			27/09/2021	1	27/09/2021	27/09/2021		27/09/2021	
Date analysed	-			27/09/2021	1	27/09/2021	27/09/2021		27/09/2021	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	1	<50	<50	0	101	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	1	<100	<100	0	93	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	1	110	100	10	119	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	1	<50	<50	0	101	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	1	110	110	0	93	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	1	<100	<100	0	119	
Surrogate o-Terphenyl	%		Org-020	90	1	63	62	2	112	

QUALI	TY CONTRC	L: PAHs	in Soil			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-21	[NT]
Date extracted	-			27/09/2021	1	27/09/2021	27/09/2021		27/09/2021	
Date analysed	-			27/09/2021	1	27/09/2021	27/09/2021		27/09/2021	
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	107	
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	111	
Fluorene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	109	
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	108	
Anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	137	
Pyrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	111	
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Chrysene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	103	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	1	<0.05	<0.05	0	104	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	128	1	91	86	6	123	

QUALITY CO	NTROL: Organo	chlorine F	Pesticides in soil			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-21	[NT]
Date extracted	-			27/09/2021	1	27/09/2021	27/09/2021		27/09/2021	
Date analysed	-			27/09/2021	1	27/09/2021	27/09/2021		27/09/2021	
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	102	
НСВ	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	103	
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	91	
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Aldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	107	
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	100	
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	101	
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	98	
Endrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	107	
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	94	
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	84	
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Surrogate TCMX	%		Org-022/025	120	1	86	85	1	122	

QUALITY CONTRO	L: Organoph	nosphorus	Pesticides in Soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-21	[NT]	
Date extracted	-			27/09/2021	1	27/09/2021	27/09/2021		27/09/2021		
Date analysed	-			27/09/2021	1	27/09/2021	27/09/2021		27/09/2021		
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	62		
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]		
Diazinon	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]		
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]		
Ronnel	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	110		
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	61		
Malathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	63		
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	100		
Parathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	62		
Bromophos-ethyl	mg/kg	0.1	Org-022	<0.1	1	<0.1	<0.1	0	[NT]		
Ethion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	72		
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]		
Surrogate TCMX	%		Org-022/025	120	1	86	85	1	122		

QUALIT	Y CONTRO	L: PCBs	in Soil			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-21	[NT]
Date extracted	-			27/09/2021	1	27/09/2021	27/09/2021		27/09/2021	
Date analysed	-			27/09/2021	1	27/09/2021	27/09/2021		27/09/2021	
Aroclor 1016	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	
Aroclor 1221	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	
Aroclor 1232	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	
Aroclor 1242	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	
Aroclor 1248	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	
Aroclor 1254	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	100	
Aroclor 1260	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	
Surrogate TCMX	%		Org-021	120	1	86	85	1	122	

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]	
Date prepared	-			27/09/2021	1	27/09/2021	27/09/2021		27/09/2021		
Date analysed	-			27/09/2021	1	27/09/2021	27/09/2021		27/09/2021		
Arsenic	mg/kg	4	Metals-020	<4	1	5	5	0	91		
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	<0.4	<0.4	0	90		
Chromium	mg/kg	1	Metals-020	<1	1	8	9	12	95		
Copper	mg/kg	1	Metals-020	<1	1	12	11	9	91		
Lead	mg/kg	1	Metals-020	<1	1	28	29	4	97		
Mercury	mg/kg	0.1	Metals-021	<0.1	1	<0.1	<0.1	0	88		
Nickel	mg/kg	1	Metals-020	<1	1	4	3	29	93		
Zinc	mg/kg	1	Metals-020	<1	1	42	37	13	92	[NT]	

QUALITY	CONTROL	Misc Soi		Du	Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			27/09/2021	1	27/09/2021	27/09/2021		27/09/2021	
Date analysed	-			27/09/2021	1	27/09/2021	27/09/2021		27/09/2021	
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	<5	1	<5	<5	0	90	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Asbestos: Excessive sample volumes were provided for asbestos analysis. A portion of the supplied samples were sub-sampled according to Envirolab procedures.

We cannot guarantee that these sub-samples are indicative of the entire sample. Envirolab recommends supplying 40-50g (50mL) of sample in its own

container as per AS4964-2004. Note: Samples requested for asbestos testing were sub-sampled from bags provided by the client.

CHAIN OF CUSTODY DESPATCH SHEET

Projec	t No:	94624.0	1		Suburt):		· · ·	The Po	onds		• •	· · · · ·		To:	Envirol	ab Serv	ices
Projec	t Manager:		G Boyd		Order I	Number:					Samp	ler:	G Boyc			12 Ash	ley Stre	et, Chatswood, NSW 2067
Email	<u> </u>			laspartners				· · ·		- 141 			•		Attn:	Aileen	Hie	
	round time:	Standa		72 hour	48 hour			Same da			•	•	·					Ahie@envirolab.com.au
Prior	Storage: 🗹 Fr	idge 🗌	Freezer	Shelf		nples cor	ntain 'p	otenti	<u>al' HBI</u>	₩?	No	Yes	(If YES	, then ha	indle, trans	port and	store in	accordance with FPM HAZID)
	San	nple ID	······································	pled	Sample Type	Container Type						Analyte	es		. ·	•		
Lab ID	Location / Other ID	Depth From	Depth To	Date Sampled	S - soil W - water	G - glass P - plastic	Combo 8a	PAH	TRH/ BTEX	OCP/OPP/ PCB	Phenols	Asbestos (AS)	Asbestos (NEPM)	PFAS	pH, CEC.*			Notes/ Preservation/ Additional Requirements
•	209	0	0.1	27/09/21	S	G/P	٠				•			· · · ·	· · ·	· · · ·		
2	210	0	0.1	27/09/21	S	G/P	•						· · ·			· .		
3	211	0	0.1	27/09/21	S	G/P	• :	· .				-						
4	212	0.2	0.3	27/09/21	S	G/P	•							•			•	
5	213	0.2	0.3	27/09/21	S	G/P	•		<i>.</i>				N.,	÷				
G	214	0	0.1	27/09/21	S	G/P		•								·	· .	
7	215	0	0.1	27/09/21	S	G/P		•	· .	, , , , , , , , , , , , , , , , , , ,					•			
8	216	0	0.1	27/09/21	<u>S</u> .	G/P		•			•						•	Chatswood Ms. Ph: (02) 99%
9	217	0	0.1	27/09/21	S	G/P		- •	· ·		• •			· · ·				279047
10	218	0	0.1	27/09/21	S	G/P		•						·				Received: 1200
11	219	Ó	0.1	27/09/21	s	G/P		•										Temp: Cool Ambient
12	220	0	0.1	27/09/21	S	G/P		•					· ·				, ,	
<i>Í</i> 3	221	0	0.1	27/09/21	S	G/P		•			-		· · ·			· ·		
			·	[·	,			<u> </u>		а. — ^н а.				-,	 	<u> </u>		
	s to analyse: er of samples			Cu, Pb, Hg,	, Mn, Ni, 2			Johan		<u></u>	1. l				<u>LAB R</u> Lab Re			79047
						Transpo		apora	atory D	<u>y</u>	HUNTER	Express	5] '		Lab Re Receiv		2	
Addre	SS:		Partners itage Rd,	West Ryde	, 2114	Phone:	· · · · ·	02 980	9 0666	· · · ·	. <u> </u>		· <u>· · ·</u>		Date &			V. VEBA 27/9/22 () 1400
Relind	uished by:					Date:				Signed	:				Signed			

Appendix J

Quality Assurance and Quality Control

Appendix J Quality Assurance and Quality Control 85 The Ponds Boulevard, The Ponds

J1.0 Field and Laboratory Data Quality Assurance and Quality Control

The field and laboratory data quality assurance and quality control (QA/QC) procedures and results are summarised in the following Table 1. Reference should be made to the field work methodology and the laboratory results / certificates of analysis for further details. The relative percentage difference (RPD) results, along with the other filed QC samples are included at the end of this appendix in Table QA1.

ltem	Evaluation / Acceptance Criteria	Compliance
Analytical laboratories used	NATA accreditation	С
Holding times	Various based on type of analysis	С
Intra-laboratory replicates	10% of primary samples; <30% RPD	PC
Trip Spikes	1 per sampling event; 60-140% recovery	С
Trip Blanks	1 per sampling event; <pql< td=""><td>С</td></pql<>	С
Laboratory / Reagent Blanks	1 per batch; <pql< td=""><td>С</td></pql<>	С
Matrix Spikes	1 per lab batch; 70-130% recovery (inorganics); 60-140% recovery (organics)	С
Surrogate Spikes	All organics analysis; 70-130% recovery (inorganics); 60- 140% recovery (organics)	С
Control Samples	1 per lab batch; 70-130% recovery (inorganics); 60-140% recovery (organics)	С
Standard Operating Procedures (SOP)	Adopting SOP for all aspects of the sampling field work	С

Table 1: Field and Laboratory Quality Control

Notes:

C = compliance; PC = partial compliance; NC = non-compliance

The RPD results were all within the acceptable range, with the exception of those indicated in Table QA1. The exceedances are not, however, considered to be of concern given that:

- The typically low actual differences in the concentrations of the replicate pairs where some RPD exceedances occurred;
- The number of replicate pairs being collected from fill soils which by its nature is heterogeneous;

- Replicates, rather than homogenised duplicates, were used to minimise risk of volatile loss, hence greater variability can be expected;
- Most of the recorded concentrations being relatively close to the PQL;
- The majority of RPDs within a replicate pair being within the acceptable limits and
- All other QA/QC parameters met the DQIs.

In summary, the QC data is determined to be of sufficient quality to be considered acceptable for the assessment.

J2.0 Data Quality Indicators

The reliability of field procedures and analytical results was assessed against the following data quality indicators (DQIs) as outlined in NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM] (NEPC, 2013):

- Completeness: a measure of the amount of usable data from a data collection activity;
- Comparability: the confidence (qualitative) that data may be considered to be equivalent for each sampling and analytical event;
- Representativeness: the confidence (qualitative) of data representativeness of media present onsite;
- Precision: a measure of variability or reproducibility of data; and
- Accuracy: a measure of closeness of the data to the 'true' value.

Data Quality Indicator	Method(s) of Achievement									
Completeness	Systematic and selected target locations sampled.									
	Preparation of borehole logs, sample location plan and chain of custody records.									
	Preparation of field sampling sheets.									
	Laboratory sample receipt information received confirming receipt of samples intact and appropriateness of the chain of custody.									
	Samples analysed for contaminants of potential concern (COPC) identified in the conceptual site model (CSM).									
	Completion of chain of custody (COC) documentation.									
	NATA accredited laboratory results certificates provided by the laboratory.									
	Satisfactory frequency and results for field and laboratory quality control (QC) samples as discussed in Section 1.									
Comparability	Using appropriate techniques for sample recovery, storage and transportation, which were the same for the duration of the project.									
	Experienced sampler(s) used.									
	Use of NATA registered laboratories, with test methods the same or similar between laboratories.									
	Satisfactory results for field and laboratory QC samples.									
Representativeness	Target media sampled.									
	Sample numbers recovered and analysed are considered to be representative of the target media and complying with DQOs.									
	Samples were extracted and analysed within holding times.									
	Samples were analysed in accordance with the COC.									
Precision	Field staff followed standard operating procedures.									
	Acceptable RPD between original samples and replicates.									
	Satisfactory results for all other field and laboratory QC samples.									
Accuracy	Field staff followed standard operating procedures.									
	Satisfactory results for all field and laboratory QC samples.									

Table 2: Data Quality Indicators

Based on the above, it is considered that the DQIs have been generally complied with.

J3.0 Conclusion

Based on the results of the field QA and field and laboratory QC, and evaluation against the DQIs it is concluded that the field and laboratory test data obtained are reliable and useable for this assessment.

J4.0 References

NEPC. (2013). National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]. Australian Government Publishing Services Canberra: National Environment Protection Council.

Douglas Partners Pty Ltd

Douglas Partners

Table QA1: Relative Percentage Difference Results - Intra-laboratory Replicates

			Mean TGH												RTEX								PAH Plan								002	009						OPP				PCB				
			Answer	Cadmiun	Total Chron Lm	Otpe	Last	Manuel (Incepted)	Nide	22	TRH C6 - C10	TRH >CLOC 10	*1 (00-0 K)-BTE X)	P2(>C IOC (6kea Neph frakere)	R()-016-034)	R (+04 040)	Bergaro	Berane	Tokere	Tokere	Bhbezere	Bhbezee	Total Xy lanes	Nagathalana ^b	Benacolgyrane (BaP)	Beacilyree	Total PAHs	Precol	000	001+006+000 *	000		Molin & Delatin Tali Chèrdine	Eroin	To d Erobulian	Heplacher	Hoad locker ee	Metroschor	Oktypethon	Auction 1016	Total PC B	Accise 521	Arctice 020	Author 1242	Active 1245	Arochic IISA Arocke1200
Sample ID	Depth	Sample Due	a maka	mgkg	ngig	ngkg	maka	ngkg	ngilg	ngkg	maka	ngkg	ngkg	maka	ngkg	ngkg	mgkg	%	mgkg	~	nake	5	ngkg	mgkg	ngkg	ngkg	mgkg	ngkg	mgikg	ngkg	naka ma	ia i	maka maka	ngkg	ngkg	mgkg	ngkg	ngkg	maka	nglig	ngig	ngkg	maka	ngig	ngkg	maka maka
BD225510626	0.0	29-Jun-21		+0.4	10	9	12	-0.1	4	21	-26	<50	-25	-50	<100	<100	-0.2	NT	-0.5	NT	et	NT	-1	đ	+0.05	-0.5	-0.05	NT	NT	NT	NT N	r	NT NE	NT	NT	N	NT	NT	NT	NT	NT	NT	NT	NT	NT	NE NE
8+606	0-01m	29-Jun-21	1 7	+0.4	12	12	15	-0.1	6	27	44	-50	-25	-50	<100	<100	+0.2	NT	-0.5	NT		NT	-1	d	+0.05	-0.5	-0.06	-6	s0.1	-0.1	<0.1 <0	5	v0.1 v0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	+0.1	v0.1	+0.1	+0.1	-0.1	+0.1 +0.1
		Difference	1 1	0	2	3	2	0	2	6	0	0	0	0	0	0	0		0		0		0	0	0	0	0									-						-			-	
		RPD	15%	0%	18%	29%	22%	0%	40%	25%	0%	0%	0%	0%	0%	0%	0%		0%	-	0%		0%	0%	0%	0%	0%															-				100 C
BD1/20210826	0m	29-Jun-21		+0.4	12	9	10	-0.1	3	19	ŝ	-50	43	-50	<100	<100	-0.2	NT	-0.5	NT	-1	NT	4	d	4005	-0.5	-0.05	NT	NT	NT	NT N	r	NT NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT NT
8H807	0-01m	29-Jun-21	I ≦	+04	9	5	10	+0.1	4	15	44	<50	-25	49	<100	<100	+0.2	NT	-0.5	NT	<1	NT	-1	4	+0.05	-0.5	-0.05	4	×0.1	40.1	<0.1 <0	1	vù1 vù1	+0.1	s0.1	-0.1	+0.1	s0.1	+0.1	+0.1	s0.1	s0.1	+0.1	-0.1	+0.1	40.1 40.1
		Difference	. 2	0	3	4	0	0	1	4	0	0	0	0	0	0	0		0		0		0	0	0	0	0		-				1.0													100 C
		890	46%	0%	295	2%	0%	0%	29%	24%	0%	0%	0%	0%	0%	05	0%		0%	-	0%		0%	0%	0%	05	0%																	-		
RD120200801	0.0	01082020		+04	12	18	20	+0.1	7	28	-26	<50	-25	-50	<100	<100	+0.2	NT	+0.5	NT	*1	NT	*1	-1	×0.05	-0.5	~0.05	NT	NT		NT N		NT NT	NT	NT	NE	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT NT
123	0-01m	0108/2020		+04	15	13	17	+0.1	6	27	45	<50	-25	යා	<100	<100	-0.2	NT	-0.5	NT	-1	NT	<1	4	0.06	-0.5	03	-			<0.1 <0		+0.1 +0.1	+0.1	siD.1	+0.1	+0.1	s0.1	v0.1	+0.1	×0.1	v0.1	+0.1	×0.1	s0.1	40.1 40.1
		Difference		0	2	5	3	0	1	11	0	0	0	0	0	0	0	<u> </u>	0		0		0	0	0.01	0	0.25									-								-		
		890	22%	0%	22%	22%	16%	0%	19%	24%	0%	0%	0%	0%	0%	0%	0%	1 ·	0%		0%	1 ·	0%	0%	185	0%	142%			-					-	-								-	-	1 A A A A A A A A A A A A A A A A A A A