

Our Ref: 23022022_RtS_Biodiversity2022

23 February 2022

Marianne Gibbons Development Manager – Environment & Approvals Energy Markets Origin Energy

Marianne.gibbons@originenergy.com.au

Dear Marianne

RE: Major Projects – Eraring Battery Energy Storage System (SSD-15950052)

I refer to the document dated 15 December 2021 entailing the recommendations from Biodiversity and Conservation Division (BCD), with our responses in italics as follows.

1. The proponent should either:

(i) consider Vegetation Zone 3 as 'not planted vegetation' and assess it appropriately under BAM 2020 to determine the biodiversity credit requirement, or

(ii) provide evidence that this zone was subject to revegetation, in the form of hard copy plans / reports, surveys, vehicle / machinery logs, invoices, photographs or monitoring reports (or similar).

Vegetation assessed as planted native vegetation.

Additional supporting documentation was provided by EPS to BCD on 24 January 2022 in the form of plans (Annual Reports from 2011 and 2012), invoices for tubestock and records of on-ground works beginning in 2011. It is Origin's understanding that the rehabilitation was undertaken broadly in accordance with a Rehabilitation, Vegetation and Landscape Management Plan. Umwelt acknowledges that swamp oak is not a 'usual' species in revegetation, however, importantly, swamp oak (Casuarina glauca) was one of the dominant species planted during revegetation works as shown on the invoices and records, plus Sydney golden wattle (Acacia longifolia), large-leaf hop bush (Dodonaea triquetra) and crimson bottlebrush (Callistemon citrinus), all of which are overwhelmingly the dominant species in the vegetation zone at present.

The invoices and records show that some Eucalyptus species were planted between 2010 and 2013. These Eucalypt species are no longer present within vegetation zone 3, except for isolated individuals that have survived. Given the very poor soil, with no

Inspired People. Dedicated Team. Quality Outcomes.

Umwelt (Australia) Pty Limited ABN 18 059 519 041

T| 1300 793 267 E| info@umwelt.com.au

www.umwelt.com.au

topsoil present (see photos in BDAR), it is likely that swamp oak was one of the only canopy species hardy enough to survive.

The Project Approval (Major Project Application 06_238) for the original disturbance in the Development Footprint specifies in Clause 2.22 "As soon as practicable after the completion of construction works, the Proponent shall stabilise and rehabilitate disturbed areas associated with the attemperation reservoir and borrow pit using locally endemic native species". This explains why the vegetation within zone 3 cannot be assigned to a PCT, because the purpose of the vegetation was not to recreate a naturally occurring vegetation community but rather, it was for stabilisation and therefore the assemblage of species were chosen based on ease of propagation and hardiness to survive in poor conditions, regardless of whether these species occur naturally together or not.

Origin's understanding based on personal communications with those involved at the time, is that the rehabilitation was undertaken broadly in accordance with a Rehabilitation, Vegetation and Landscape Management Plan. It is also understood that the plan for the rehabilitation of the borrow-pit location was limited by lack of topsoil due to prior disturbance and that surplus topsoil from a disturbed pine plantation and non-native areas of the attemperation dam would be applied to the site followed by sterile cover crops and finally transitional shrubs and grassland native planting would be applied. While the plan does not specify swamp oak as a suggested species, the invoices and planting numbers supplied by EPS show that swamp oak was indeed one of the most commonly planted species for these works.

If the swamp oak has regenerated naturally via suckers as suggested by BCD, there would have to be mature swamp oak present in the immediate vicinity, of which there are none, and which discounts the swamp oak fringing Lake Eraring due to its distance of approximately one kilometre. Umwelt inspected the entire area surrounding the Development Footprint in 2020 in a constraints assessment (refer to BDAR), and no swamp oak community is present in the immediate surrounds (see Figure attached). The only area mapped as swamp oak is vegetation zone 3 in question, and a very minor portion on the western boundary of the area, which is approximately 300 metres away and therefore could not be the source of suckering due to distance. The area between vegetation zone 3 and this area of swamp oak vegetation is also heavily vegetated with prickly- leaved paperbark forest, and it is therefore highly unlikely that seed from the swamp oak would reach the Development Footprint via wind dispersal.

The adjoining Estuarine Swamp Paperbark Forest mapped by Bell is a monoculture of paperbarks including Melaleuca styphelioides, M. nodosa, M. linarifolia and M. sieberi with a native understorey. It is not the source of any mature Casuarina or suckers.

Furthermore, the swamp oak that is present within PCT 1716 within the Development Footprint is very young and therefore could not be the source of suckers. Rather, these young swamp oaks appear on the edge of this community where it borders the planted native vegetation.

It is more likely that the original swamp oaks planted ten years ago are now the source of copious suckers that have created a dense monoculture in vegetation zone 3, again because this is one of the few hardy species that can survive in such a poor substrate. This is also true of Acacia longifolia, Dodonaea triquetra and Callistemon citrinus, which are all very common revegetation species due to the ease of propagation and their hardiness to survive in unsuitable conditions.

Updated in BDAR in Section 3.2.2.

2. If resolution of recommendation 1 determines that the vegetation is planted, BCD recommends the accredited assessor provide appropriate justification as to why the planted vegetation would not be considered as functional given it is for soil erosion control and stabilisation purposes, and therefore require further assessment under Part D2 of Appendix D (Planted Vegetation) of the BAM.

BDAR has been updated to reflect the notion that the vegetation is functional for erosion control and stabilisation. The wording in the BAM is unclear on 'functional' and all the examples provided are for windbreaks, privacy, street trees, sporting fields etc. When considered in relation to erosion control, the planted vegetation would be considered functional and has been updated to reflect this. BDAR Table 3.2 has been updated to consider Part D2 of Appendix 4, with a summary below.

Consideration of Part D2

The presence of threatened flora in this vegetation zone is considered extremely unlikely. Given that the topsoil was completely removed in 2010, no surviving seedbank is likely to be present. Therefore, threatened species could only occur by regenerating close to areas in which they occur. The nearby individuals of black-eyed Susan (Tetratheca juncea) and small- flower grevillea (Grevillea parviflora subsp. parviflora) are considered highly unlikely to regenerate in this vegetation zone, given their location away from ecotones or edges. No other threatened flora were detected within the Development Footprint.

No use by threatened fauna species in this vegetation was observed during any surveys. It is not considered to provide any habitat for threatened fauna species, given the very young age and homogenous nature of the swamp oak, no hollows being present, no standing water available, a general paucity of logs and the only leaf litter being from swamp oak (i.e., needles that provide low functional value).

No scats or nests, from either threatened or non-threatened entities were detected, which is not surprising given the age and quality of the revegetation. The vegetation is not yet old or tall enough to support the nests of threatened raptors, and the dominant tree species, Casuarina glauca, does not support the foraging habits of small, threatened woodland birds. No habitat for frogs is present in this vegetation zone.

All survey techniques outlined in the BDAR were conducted within this vegetation zone. While a less intensive effort was placed in this vegetation zone, due to the far lower quality of habitat provided, the zone was nevertheless searched for threatened species during all seasons of survey.

Gliders were detected on camera within this vegetation zone, and the potential occurrence of the squirrel glider (Petaurus norfolcensis) was carefully considered. All the gliders detected were considered to be sugar gliders, a more generalist species of the two.

However, in accordance with the precautionary principle, should squirrel gliders infrequently utilise this vegetation zone, they are already being assumed present within the surrounding Development Footprint because they are known from the area. Therefore, in accordance with Section 8.4. of the BAM regarding mitigation and minimisation of impacts on this species, this has already been considered in Section 4.0. of the BDAR.

No other threatened species were considered likely to occur in this vegetation zone.

4

3. BCD recommends the accredited assessor submits the credit calculator via the NSW Biodiversity Accredited Assessor System prior to the submission of the response to submissions report.

BAM Calculator submitted 28 October 2021 and should have been available at time of BCD review. GIS files and copies of BAM data submitted to <u>huntercentralcoast@environment.nsw.gov.au</u> on 24 November 2021.

4. BCD recommends the accredited assessor includes the plot field data sheets in the Biodiversity Development Assessment Report (BDAR).

Field data sheets transcribed onto paper and appended to this letter.

5. BCD recommends the accredited assessor update Figure 3.1 in the BDAR to show the plots with their unique plot identifier against the Plant Community Types.

Addressed in BDAR Figure 3.1.

6. The accredited assessor needs to demonstrate what actions and measures they have undertaken to avoid the direct and indirect impact on swift parrot important habitat mapping. BCD recommends the development footprint is redesigned to cover the more disturbed areas of the site and avoid the important mapped areas for the swift parrot.

Addressed in BDAR Section 5.3 with additional wording and figure showing large area of swift parrot habitat avoided within EPS landholdings.

While a small area (3.1 ha) of swift parrot (Lathamus discolor) mapped important habitat is proposed to be removed, this represents a very minor area of important habitat mapped within the EPS landholdings, being a total of 306.3 ha (refer to Figure 5.1. of BDAR). The area to be removed therefore represents 1% of this mapped habitat and this is the habitat within EPS- owned land alone. Swift parrot important habitat mapping extends outside this area in the locality also, and therefore the total to be removed would be less than 1%.

If the Development Footprint was placed anywhere else on EPS- owned land, it would in fact remove more swift parrot habitat (refer to Figure 5.1.).

According to the National Recovery Plan for the Swift Parrot (Saunders and Tzaros, 2011), important foraging habitat in NSW includes woodland and forest with the following key tree species:

- Mugga ironbark (Eucalyptus sideroxylon)
- Grey box (Eucalyptus microcarpa)
- White box (Eucalyptus albens)
- Yellow box (Eucalyptus melliodora)
- Swamp mahogany (Eucalyptus robusta)
- Forest red gum (Eucalyptus tereticornis)
- Blackbutt (Eucalyptus pilularis)

• Spotted gum (Corymbia maculata).

The BESS project occurs in an area where the swift parrot important habitat mapping does not align with important foraging habitat according to the National Recovery Plan. Figure 5.1 attached shows a 2 km buffer of important habitat around a Bionet record from 2011 within Eraring- owned land. The surveyed habitat in the Project Area comprises the following PCTs and tree species:

- 1636 Scribbly Gum Red Bloodwood Angophora inopina heathy woodland on lowlands of the Central Coast moderate condition
- 1716 Prickly-leaved Paperbark Forest on coastal lowlands of the Central Coast andLower North Coast low condition
- Planted native vegetation dominated by swamp oak (Casuarina glauca).

None of the above listed tree species are considered by the recovery plan as forming important habitat for the swift parrot. The only important feed tree present in the vicinity of the Project Area is the swamp mahogany (Eucalyptus robusta), but this species has been excluded from the Development Footprint as part of the Swamp Sclerophyll Forest EEC on the east boundary, therefore further avoiding and minimising swift parrot habitat. No mature swamp mahoganies were observed to occur within PCT 1717 in the Development Footprint.

7. The additional actions should be added to the tree clearing protocols outlined in Section 4.2.2 of the BDAR.

Addressed in BDAR Section 4.2.1.

8. BCD recommends that the BDAR should provide a more detailed appraisal of what the potential impacts of any relocations / translocations of displaced fauna (particularly threatened species) may be on adjoining habitat and what measures (e.g. monitoring) will be employed to minimise any detrimental effects on existing faunal populations that utilise such areas.

Umwelt acknowledges the risks identified by the BCD in relation to moving displaced fauna species though the risk of injury or death. However, the only other alternative, that is leaving uninjured animals to relocate by themselves through a construction area, would be a profoundly greater risk to the individual and potentially the local population.

Moving displaced fauna is the last step in the pre-clearance/tree felling mitigation process identified in the BDAR and all the prior steps, clearing non-habitat trees, creating disturbance around habitat trees, preclearance inspections and lastly the shaking of the habitat tree prior to felling have all been included specifically to provide opportunity and incentive for fauna to relocate prior to the tree being felled. This method is widely utilised in the industry and, in our experience, reduces the likelihood that habitat remains occupied when it is eventually removed.

In the unlikely event that the other measures aren't successful, the only likely threatened fauna species identified within the Development Footprint that could potentially be displaced during the clearing process is the squirrel glider (Petaurus norfolcensis). This species lives in groups which defend an average home range in coastal environments of 4-9 hectares and within this range the group can utilise up to 20 different hollow-bearing trees over a six-month period (NSW Scientific Committee 2008). Considering that approximately 4.6 hectares of potential habitat for this species will be removed it is considered unlikely this

would form a distinct territorial boundary for a population. Therefore, considering it is proposed that the displaced fauna is simply being assisted in moving away from harm, the risk in moving an individual, or multiple individuals, in relation to other individuals or groups in the adjoining areas, whether it be through competition for resources, introduction of potential disease or social disruption to other animals already utilising available habitat, must be lower than risk created by simply leaving the individual or group to relocate.

We note that BCD also discuss Translocation operational policy' (DPIE 2019) in their submission and incorporation of that policy into the mitigation section of the BDAR. Formal translocation has never been proposed and the action identified in the mitigation measure relates purely to moving uninjured animals out of harm's way. Upon review of the policy cited by the department we consider that the proposed approach, being the capture and release of animals at risk of harm, is not covered by that policy where, on page 3, it states that "This policy does not apply to the following actions, though a biodiversity conservation licence or other authority may be required to undertake them: intentional movement of animals to a nearby location for the purpose of moving them out of harm's way".

The policy mentions that a biodiversity conservation licence may be required for such activities, and this was considered in the proposed mitigation measures when it was documented that "tree felling supervision will be undertaken by an appropriately qualified and experienced person".

Based on the above, it is not considered necessary for any changes to this section in the BDAR.

9. BCD recommends that the accredited assessor update the BDAR to include measures proposed to address the offset obligations.

Addressed in BDAR in Section 6.4. EPS is likely to pay into the fund, however other options outlined in BDAR.

We trust this information meets with your current requirements. Please do not hesitate to contact me should you require clarification or further information.

Yours sincerely

P. Hing

Philippa Fagan Senior Ecologist

400 m ²	plot: Sheet _ of _	Survey Name	Plot Identifier	1		Recorde	ers		
Date	1 44	Erang DESS	POI	PF					
						1	1	1	
GF Code	Top 3 native species in All other native and exc	each growth form group: F otic species: Full species na	ull species name mandatory me where practicable		E or ITE	Cover	Abund	stratu m	vouch er
	Acacia fal	reater				0.1	1		
	Andropogon. Breynia oble Contella Centella	Signia S				2.1	20		
	Breynia oble	ongiplia				0.1	3	100.24	
	Casuring gla	vie				50	80		
	Centella ,	asiatica				0.1	50		
	Confudera	se lleana				0.1	1		
	Dantsia J Gahnia sie	liciplic				0.1	2		
	Gahnia sic	beiana				0.1	3		
	Mardenberg	a violacea				0.1	15		
	Imperata	a vislacea cylindrica			1	0.1	50		
	tinas s	pp. polygal.fol. juspenus Nbii pl. 2				0.1	1		
	Leptosperni	m polygal. fol.	in			0.1	1 -		
	levespagan	jospennos				0-1	2		
	Mibelia	Nhiple				0.1	3		
		1							
_					_				
								-	
						1.1.1.1			

	BAM Site – Field Survey Form						Site Sheet no:			
		Survey Name Plot Identifier		Recorders			4 · · · ·			
Date		Eraing BES	55	POL		PF				
Zone	Datum	IBRA region			Photo #	\checkmark	Z	Zone ID		
Easting					Orientation of from the 0	A CONTRACTOR AND A CONTRACTOR OF A	58	-0		
Vegetation Class		Planted						Confidence: H M L		
Plant Community Type							EEC	:	Confidence: H M L	

	Attribute m² plot)	Sum values
	Trees	١
	Shrubs	7
Count of Native	Grasses etc.	2
Richness	Forbs	١
	Ferns	0
	Other	1
•	Trees	50
Sum of Cover	Shrubs	0.7
of native vascular	Grasses etc.	0.2
plants by growth	Forbs	0.1
form group	Ferns	0
	Other	0.1
High Threat	0.2	

BAM Attribute	(20 x 50	m plot)	# Tree Sterr	is Count	Record number of		
dbh		Euc*	Non Euc	Hollows [†]	living eucalypt*		
large trees for 80 + Euc* & Non Euc cm					(Euc*) and living native non-eucalypt (Non Euc) stems		
50 —	79 cm				separately * includes all species		
30 – 49 cm					of Eucalyptus, Corymbia, Angophora,		
20 – 29 cm					Lophostemon and Syncarpia		
10 – 19 cm	~	/			^I Record total number of stems by size class with		
5 – 9 cm 🧹				n/a	hollows (including dead stems/trees)		
< 5 cm	\checkmark	/		n/a			
Length of logs	(m)				total		
(凶0 cm diameter, in length)	>50 cm				١		
Counts must apply	to each s	size class when	n the number of living t	tree stems with	in the size class is ≤10.		

Counts must apply to each size class when the number of living tree stems within the size class is \leq 10. Estimates can be used when the number of living tree stems within a class is > 10. Estimates should draw from the number series: 10, 20, 30..., 100, 200, 300

For a multi-stemmed tree, only the largest living stem is included in the count/estimate. For hollows count only the presence of a stem containing hollows, not the count of hollows in that stem. Only count as 1 stem per tree where tree is multi-stemmed. The hollow-bearing stem may be a dead stem.

BAM Attribute (1 x 1 m plots)	tribute (1 x 1 m plots) Litter cover (%) Bare ground cover (%)		Cryptogam cover (%)	Rock cover (%)
Subplot score (% in each)				
Average of the 5 subplots	56%			

Litter cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots located on alternate sides and 5 m from the plot midline at the locations 5, 15, 25, 35, and 45 m along the midline. Litter cover includes leaves, seeds, twigs, branchlets and branches (less than 10 cm in diameter). Within these 1 m x 1 m plots assessors may also record the cover of rock, bare ground and cryptogam soil crusts. Collection of these data is optional - the data do not currently contribute to assessment scores, they hold potential value for future vegetation integrity assessment attributes and henchmarks, and for enhancing PCT description

Physiograph	y + site features that may	help in determining PCT a	and Management Zone (optional)
Morphological	Landform	Landform	Microrelief
Type	Element	Pattern	
Lithology	Soil Surface	Soil	Soil
	Texture	Colour	Depth
Slope .	Aspect	Site Drainage	Distance to nearest water and type

Plot Disturbance	Severity code	Age code	Observational evidence:
Clearing (inc. logging)			
Cultivation (inc. pasture)			
Soil erosion			
Firewood / CWD removal			
Grazing (identify native/stock)			
Fire damage			
Storm damage			
Weediness			
Other			

Severity: 0=no evidence. 1=light, 2=moderate, 3=severe

Age: R=recent (<Syrs), NR=not recent (3-10yrs), O=old (>10yrs)

Form version 5 - designed March 2017

Printed 12 June 2019

1	plot: Sheet _ of _	Survey Name	Plot Identifier			Recorde	ers		
Date	415/2020	Eminy DESI	POZ	PF					
GF Code	Top 3 native species in		ull species name mandatory ame where practicable		N, E or HTE	Cover	Abund	stratu m	voucl er
	Acacia lo	inciplia		-		15	50		
	Casuarha a	stauco				40	200		
	Centella as	gauco atica		1		0.1	20		
	CoAndena	sellorna				0.1	(
	Cynodon da					10	500	-	
	Dilluynia re	lata				0.1	5		
	Dodonnen 1	igete				0.1	()		
	Erapostis 5	nomnii				0.1	0		
		urvula				0.1	20		
	Gahn, a sieb	eriana					(0		
	Gono corps.	Lebagynus				0.1	0		
	Hypartenia	hinta				5	100		
	Imperata a	lindica			· · · · · · ·	5	500		
	Kinza and					1	50		
	Lercoposa ;	miperinor				0.1	2		
	Milbelian	biplia				0.1	0		
	Pappal-a di					0,1	10		
	Pullenaea pe	leacen				0.1	20		
	Schoenes ap	leecen ogon nde				0,1	6		
	Themeda tic	nde				0.1	,0		
			2						
									1

	BAM Site – Field Survey Form					Site Sheet no:				
		Survey Name Plot Identifier		Recorders						
Date Erang BESS PO2			PF							
Zone	Datum	IBRA region	IBRA region Photo #		Photo #	\checkmark	Zone ID			
Easting	Northing	Din	Dimensions			Orientation of mid from the 0 m po		SZ°		
Vegetation Class		Planted						Confide H M	ence: L	
Plant Community Type							EEC:		Confide H M	

BAM	Attribute	Sum values	BAM Attribute	(20 x 50 m plot)	# Tree Ster	ms Count	Record number of	
(400	m² plot)	Sull values	dbh	Euc*	Non Euc	Hollows [†]	fiving eucalypt*	
	Trees	1	large trees for Euc* & Non Euc	80 +			(Euc*) and living native non-eucalypt	
	Shrubs	6		cm			(Non Euc) stems separately	
Count of Native	Grasses etc.	6	50 -	- 79 cm			* includes all species of <i>Eucalyptus</i> .	
Richness	Forbs	2	30 – 49 cm				Corymbia, Angophora,	
6	Ferns	0	20 – 29 cm				Lophostemon and Syncarpia	
	Other	0	10 – 19 cm	~			I Record total	
	Trees	40					number of stems by size class with	
Sum of Cover	Shrubs	(6.4	5 – 9 cm			n/a	hollows (including dead stems/trees)	
of native vascular	Grasses etc.	(6.3	< 5 cm	\checkmark		n/a		
plants by growth	Forbs	0.2	Length of logs		aliteri felanari e Alitera Enderita Zollicera		total	
form group	Ferns	0	(≱0 cm diameter in length)	r, >50 cm			3	
	Other	0		y to each size class when used when the number of			in the size class is ≤10. . Estimates should draw	
High Threat	Weed cover	5.3	from the number	series: 10, 20, 30, 100,	200, 300			
		3.)	count only the pre	med tree, only the larges esence of a stem containing here tree is multi-stemme	ng hollows, not the cou	int of hollows in t	hat stem. Only count as	
	(3) (3) (3) (3) (3) (3)	Der debuik	1-11	1		1011		

BAM Attribute (1 x 1 m plots)	Litter cover (%)	Bare ground cover (%)	Cryptogam cover (%)	Rock cover (%)
Subplot score (% in each)				
Average of the 5 subplots	17			

Litter cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots located on alternate sides and 5 m from the plot midline at the locations 5, 15, 25, 35, and 45 m along the midline. Litter cover includes leaves, seeds, twigs, branchlets and branches (less than 10 cm in diameter). Within these 1 m x 1 m plots assessors may also record the cover of rock, bare ground and cryptogam soil crusts. Collection of these data is optional - the data do not currently contribute to assessment scores, they hold potential value for future vegetation integrity assessment attributes and henchmarks, and for enhancing PCT description

Physiograph	y + site features that may	help in determining PCT a	and Management Zone (optional)
Morphological	Landform	Landform	Microrelief
Type	Element	Pattern	
Lithology	Soll Surface	Soil	Soil
	Texture	Colour	Depth
Slope	Aspect	Site Drainage	Distance to nearest water and type

Plot Disturbance	Severity code	Age code	Observational evidence:
Clearing (inc. logging)			
Cultivation (inc. pasture)			
Soil erosion			
Firewood / CWD removal			
Grazing (identify native/stock)			
Fire damage			
Storm damage			
Weediness			
Other			

Severity: 0=no evidence, 1=light, 2=moderate, 3=severe

100 m²	plot: Sheet _ of _	Survey Name	Plot Identifier		Recorde	ers		
Date	4/5/2020	Graing BESS	P03	PF				
GF Code	Top 3 native species in		ull species name mandatory me where practicable	N, E or HTE	Cover	Abund	stratu m	voucł er
	Acacia (on	c.plia		1 / /	0.2	20		
	Acadia sú	avedens			0.1	2		
	Agentina	avedens aderophore	•		0.1	10	5.163	
	Mashore a	State			0.1	1	1.1.1.1.1	
-	Sidens pilo)	r Javen Siatica			0.1	(0		
	Casuaring a	avea			60	100		
	Centella a	siatica			0.1	20	26.00	
	chloris gay	anc			50	3000		
	Dodonaca t	ngiela			0.2	20		
	Dodonaca + Gahnin sieb	enjana			0.2	5		
	Unla seri				0.2	5		
	Makea Spo				0.1	3		
	Hyparchenia	nita			5	(20		
	Hakea Sp Hakea Sp Hyparrhenia Kunzea a	mbiqua			0.2	(0		
	Leb. poly				0.1	2		
		S Max.			0.1	10		
	Megathyrs. Phragmites	astralis			0.2	50	- 1	
	Senna pende	la			0.1	5		
	Setaria am	la ila vritianon			0.1	0		
	Solarm ma	writianon			0.1	5		
		- Secondation			5	100		
								10.1
								6.87
					-	1		
						-		

	BAM Site – Field Survey Form					heet no:	. 1.
Survey Name Plot Identifier					R	ecorders	a di terda se di se d Si se di s
Date		Erning DESS PO3 P		PF			
Zone	Datum	IBRA region		Photo #	\checkmark	Zone ID	
Easting	Northing	Dimensions	Dimensions			ine nt. 29	40
Vegetation CI	ass	Planted	Planted				Confidence: H M L
Plant Community Type					EEC:	Confidence: H M L	

BAM Attribute		Sum values	BAM Attribute	(20 x 50 m plot)	# Tree Stem	ns Count	Record number of	
(400	m² plot)	Sum values	dbh	Euc*	Non Euc	Hollows [†]	living eucalypt*	
	Trees	2	large trees for	80 +			(Euc*) and living native non-eucalypt	
	Shrubs	7	Euc* & Non Euc	cm			(Non Euc) stems separately	
Count of	Grasses etc.	2	50 -	- 79 cm			* includes all species	
Native Richness	Forbs	١	30 – 49 cm				of Eucalyptus, Corymbia, Angophora,	
	Ferns	0	20 – 29 cm				Lophostemon and Syncarpia	
	Other	0	10 – 19 cm	/			I Record total	
	Trees	60.1	10 - 15 cm				number of stems by size class with	
Sum of Cover	Shrubs	1.1	5 – 9 cm			n/a	hollows (including dead stems/trees)	
of native vascular	Grasses etc.	0.4	< 5 cm	\checkmark		n/a		
plants by growth	Forbs	0.1	Length of logs			มีขางการและการหรือมีกรุงสุดครายการการจะเห	total	
form group	Ferns	0	(≥ 0 cm diameter in length)	, >50 cm			0	
	Other	0			en the number of living t of living tree stems whhir			
High Threat	Weed cover	60.3	from the number s	series: 10, 20, 30, 10	0, 200, 300			
L		00.)	count only the pre	sence of a stem contain	est living stem is included ning hollows, not the cour ned. The hollow-bearing s	nt of hollows in t	ihat stem. Only count as	

BAM Attribute (1 x 1 m plots)	Litter cover (%)	Bare ground cover (%) Cryptogam cover (%) Rock		Rock cover (%)
Subplot score (% in each)				
Average of the 5 subplots	21			

Litter cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots located on alternate sides and 5 m from the plot midline at the locations 5, 15, 25, 35, and 45 m along the midline. Litter cover includes leaves, seeds, twigs, branchlets and branches (less than 10 cm in diameter). Within these 1 m x 1 m plots assessors may also record the cover of rock, bare ground and cryptogam soil crusts. Collection of these data is optional - the data do not currently contribute to assessment scores, they hold potential value for future vegetation integrity assessment attributes and henchmarks, and for enhancing PCT description

Physiograph	y + site features that may	help in determining PCT a	and Management Zone (optional)
Morphological	Landform	Landform	Microrelief
Type	Element	Pattern	
Lithology	Soll Surface	Soil	Soil
	Texture	Colour	Depth
Slope	Aspect	Site Drainage	Distance to nearest water and type

Plot Disturbance	Severity code	Age code	Observational evidence:
Clearing (inc. logging)		arta danya yang dan kana kanang kanang kan	
Clearing (inc. logging) Cultivation (inc. pasture)			
Soil erosion			
Firewood / CWD removal			
Grazing (identify native/stock)			
Fire damage			
Storm damage			
Weediness			
Other			

Severity: 0=no evidence, 1=light, 2=moderate, 3=severe

	plot: Sheet _ of _	Survey Name	Plot Identifier		Recorde	515		
Date	4/5/2020	Eraring BESS	PO4	PF				
GF Code		each growth form group: F tic species: Full species na	ull species name mandatory ame where practicable	N, E o HTE	Cover	Abund	stratu m	voucl er
	Acacia long	ji folia			0.1	2		
	Allocasurin	tonlosa			0-2	1		
	Anisopogon a				30	(200		
	Banksia dola.	nziplia			0.1	5		
	Dillardiera S.	ngiplia cundens			0.1	5		
	Cassytha gla	bella			0.\	1		
	Commbia gu				15	8		
	Cyahochaet				30	(000)		
					0.1	10		
	Dampiere prop Diarella lore	aiblia			0.1	5		
	Dilluynia ret	forte			0.1	2		
		rycha			10	20		
	Enblasia sh				1	500		
	E. copitellat				5	2		
	E harmosta	Me		_	5	3		
	Gahnie sche	na enana			0.1	1		
	Aprilia 1	ectional.			0-1	1		
	Alphidian . 1 Olycine tab				6.1	10		
	60mphalaba	n lat			0.1	1		
	Maker dact	ylides			0.1	3		
	Haken Sp.	flat			0.1	3		
	Millio A.G. G	aner			0.1	10		
	Mibbertia a Imperata cy	lindice			0.1	50		
	Kneep and	Law			0.7	5		
	Land ali	sigon			2	3		
	Leodosano.	jamosa lat.			0.1			1
-	lado perma				10	3		
	leab ing.				10 0.1	5		
	lepic. wine	l'an			0.2			
	Mol land	oliqua odosa			0-15			
	Opsalana	as a sum			10.1			
	Pro chann	apera			0-1	2		-
	Province the	miren			0-1			-
	Polising 10	wis						
	Pal	wleatin			0.2	-		
	Planta prop.				0.1			
	Frendin esi	willan	1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		20			+
	Themede in	Intiplia			0.2			-
	Jan horrbea	int plin			0.0	7		

	BAM Site – Field Survey Form					heet no:	- 141 - 141
		Survey Name Plot Identifier		Recorders of			
Date		Eraning BESS	404		PF		
Zone	Datum	IBRA region		Photo #	/	Zone ID)
Easting	Northing	Dimensions	Dimensions		Orientation of midline from the 0 m point.		0
Vegetation Cl	ass	1636					Confidence: H M L
Plant Commu	Plant Community Type					EEC:	Confidence: H M L

	Attribute	Sum values	BAM Attribute	(20 x 50	m plot)	# Tree Sterr	is Count	Record number of
(400	m² plot)	Sull values	dbh		Euc*	Non Euc	Hollows [†]	fiving eucalypt*
	Trees	5	large trees for	80 +				(Euc*) and living native non-eucalypt
	Shrubs	15	Euc* & Non Euc	cm				(Non Euc) stems separately
Count of	Grasses etc.	8	50 -	- 79 cm	3			* includes all species
Native Richness	Forbs	4	30 – 49 cm		/			of Eucalyptus, Corymbia, Angophora,
-	Ferns	1	20 – 29 cm		/			Lophostemon and Syncarpia
	Other	5	10 – 19 cm		/			Record total
*	Trees	25.3						number of stems by size class with
Sum of Cover	Shrubs	18.4	5 – 9 cm		·		n/a	hollows (including dead stems/trees)
of native vascular	Grasses etc.	71.6	< 5 cm				n/a	
plants by growth	Forbs	0.4	Length of logs			alay interchangedy along terms in the second statements		total
form group	Ferns	20	(⊴0 cm diameter, in length)	, >50 cm				11
	Other	0.6						in the size class is ≤10. . Estimates should draw
High Threat	Weed cover	0	from the number s	eries: 10,	20, 30, 100,	200, 300		
		<u> </u>	count only the pre	sence of a	stem containii	t living stem is included ng hollows, not the cour ed. The hollow-bearing s	it of hollows in t	hat stem. Only count as

BAM Attribute (1 x 1 m plots)	Litter cover (%)	Bare ground cover (%)	Cryptogam cover (%)	Rock cover (%)
Subplot score (% in each)				
Average of the 5 subplots	58		· · · · · · · · · · · · · · · · · · ·	

Litter cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots located on alternate sides and 5 m from the plot midline at the locations 5, 15, 25, 35, and 45 m along the midline. Litter cover includes leaves, seeds, twigs, branchiets and branches (less than 10 cm in diameter). Within these 1 m x 1 m plots assessors may also record the cover of rock, bare ground and cryptogam soil crusts. Collection of these data is optional - the data do not currently contribute to assessment scores, they hold potential value for future vegetation integrity assessment attributes and henchmarks, and for enhancing PCT description

Physiograph	y + site features that may	help in determining PCT a	and Management Zone (optional)
Morphological	Landform	Landform	Microrelief
Type	Element	Pattern	
Lithology	Soil Surface	Soil	Soil
	Texture	Colour	Depth
Slope	Aspect	Site Drainage	Distance to nearest water and type

	746.041011.040.000.000.000	The rest for the second se	
Plot Disturbance	Severity code	Age code	Observational evidence:
Clearing (inc. logging)			
Clearing (inc. logging) Cultivation (inc. pasture)			
Soil erosion			
Firewood / CWD removal			
Grazing (identify native/stock)			
Fire damage			
Storm damage			
Weediness			
Other			

Severity: 0=no evidence. 1=light, 2=moderate, 3=severe

00 m-	plot: Sheet _ of _	Survey Name	Plot Identifier		Recorde	ers		
Date	4/5/2020	Eran, DESS	P05	PF				
GF Code	Top 3 native species in		ull species name mandatory me where practicable	N, E or HTE	Cover	Abund	stratu m	vouch er
	Acaina longit	olia			5	15		
	Acada longi que	wicatz			0.1	-1		_
	Allocasuarina	littoalis	•	30-01-0	0.1	2		
	Angophor cost				10	2		
	Anstida rage	us			1	500		
	Anstida rage Billerdiera si	condens			0.1	(0		
	Pariesia ulic		ne na politice i Spine e e		0.2	10		
1	Dianella (or	victolia		1	0.1	5		
	Dianella (or Echinoposon Entolasia s	raeso.			0.1	10		
	Entologia s	tricta			15	1000		
	Epacris pulch	ella			0.2	50		- 10
	F. harmosta	26			30	7		
	Comps. let				0.2	1		-
	Mardonheaig	lon			0.1	1		
	Compho. leit Hardonbergia Hibbertia a	SPECTA			0.1	10		
	Hyparchenia	hite			30	(000		
	Insperite a	lidação			0.2	50		
	Imperta cy Kunzee and	in prices			0.1	1520		
	Les dasse cons	Jat			0.2	50		
	Leviana				0.1	3		
	Lobel in aug	-np.			0.1	()		
	henrida porp	lave			0.1	10		
	Lepidosperma Levicopogon j Lobelia prop Lomandra g Mirbelia ne	ilalic			0.1	10		
	Parian simi	10			5	500		
	Patesonia S.				0.1	5		
	Dentin	e look			30	1000		
	Pllancism est	Lown			0.1	20		
	Mendian es. Pollenaee pa memeda fria				0.2	20		
	Thereac tra	nava			0.2	-20		
							×	
								-
								-
								-
								-

	BAM Site – Field Survey Form					heet no:	х 4 Гуз	
		Survey Name Plot Identifier			Recorders			
Date		Eraing BESS	POS		PF			
Zone	Datum	IBRA region		Photo #	\checkmark	Zone II)	
Easting	Northing	Dimensions			Orientation of mid from the 0 m po		9°	
Vegetation CI	ass	1636					Confidence: H M L	
Plant Community Type						EEC:	Confidence: H M L	

BAM	Attribute	Sum values	BAM Attribute	(20 x 50	m plot)	# Tree Stem	s Count	Record number of
(400	m² plot)	Sum values	dbh	E	Euc*	Non Euc	Hollows [†]	fiving eucalypt*
	Trees	3	large trees for Euc* & Non Euc	80 +	, , , , , , , , , , , , , , , , , , ,			(Euc*) and living native non-eucalypt
	Shrubs	10		cm				(Non Euc) stems separately
Count of	Grasses etc.	8	50 –	79 cm	2			* includes all species
Native Richness	Forbs	3	30 – 49 cm		/			of Eucalyptus, Corymbia, Angophora,
	Ferns	(20 – 29 cm					Lophostemon and Syncarpia
	Other	2	10 – 19 cm		/			I Record total
×	Trees	40.1						number of stems by size class with
Sum of Cover	Shrubs	6.1	5 – 9 cm				n/a	hollows (including dead stems/trees)
of native vascular	Grasses etc.	21.8	< 5 cm				n/a	
plants by growth	Forbs	0.3	Length of logs			an ann an tao an tao ann ann ann an tao ann ann an tao ann an tao ann an tao ann an tao ann ann ann ann ann ann		total
form group	Ferns	30	(⊠0 cm diameter, in length)	>50 cm				2
	Other	0.2						in the size class is ≤10. . Estimates should draw
High Threat	Weed cover	30	from the number s For a multi-stemm	eries: 10, . ned tree, o	20. 30, 100, only the larges	200, 300 t living stem is included	in the count/est	
						d The hollow-bearing s		

BAM Attribute (1 x 1 m plots)	Litter cover (%)	Bare ground cover (%)	Rock cover (%)
Subplot score (% in each)			
Average of the 5 subplots	67		

Litter cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots located on alternate sides and 5 m from the plot midline at the locations 5, 15, 25, 35, and 45 m along the midline. Litter cover includes leaves, seeds, twigs, branchlets and branches (less than 10 cm in diameter). Within these 1 m x 1 m plots assessors may also record the cover of rock, bare ground and cryptogam soil crusts. Collection of these data is optional - the data do not currently contribute to assessment scores, they hold potential value for future vegetation integrity assessment attributes and branchers, and for enhancing PCT description

Physiograph	y + site features that may	help in determining PCT :	and Management Zone (optional)
Morphological	Landform	Landform	Microrelief
Type	Element	Pattern	
Lithology	Soil Surface	Soil	Soil
	Texture	Colour	Depth
Slope	Aspect	Site Drainage	Distance to nearest water and type

Plot Disturbance	Severity code	Age code	Observational evidence:
Clearing (inc. logging)			
Cultivation (inc. pasture)			
Soil erosion			
Firewood / CWD removal			
Grazing (identify native/stock)			
Fire damage			
Storm damage			
Weediness			
Other			

Severity: 0=no evidence, 1=light, 2=moderate, 3=severe

1	plot: Sheet _ of _	Survey Name	Plot Identifier		Recorde	ers		
Date	4/5/2020	Eraring DESS	P06	PF				
GF Code	Top 3 native species in All other native and exc	each growth form group: F tic species: Full species na	Full species name mandatory ame where practicable	N, E or HTE	Cover	Abund	stratu m	vouc er
	Adjartin a	ethisian			0.7	50		-
	Angonborn a	stata			2	1		
	Deppia oblo	rifolia Camphora			0.1	2		1.1
	Ginamanin	Campborn			0.1			
	Dianella cae	ntee			0.1	5	1	
	Entolasia	stricta			0.1	10		
	E. haenosta	ma			5	2		
					20	11		
	Gamia siche	Mane			10	20		
	achidion f				20	50		
	Impeate cylin	drice			0.1	10		
	Inpeate cylin				١	10	-	
	Ligston Sine	nse			0.1	5		
	Ligistra Sire Livistona au	stalis			0.1	(
	Labelia pro	Vra sciens			D-1	5		
	Melalerca li	\ •			5	20		
	Melalerica no	odosa			45	200		
					0.1	20		
	Optismenus are	hipoides andres indealis	5		3	1000		1.00
1	Parsonsia stra	innea		1.1	1	3		
	Pittosponn and				2	10		
	1							
N	7.2							5.0
	24 -							
								<u>6.</u> 5
	1. QL							115
	35							
	- 							
	цē.		1		4			
							4	
			5					
				. 1				
							Y	

	BAN	I Site – Field	Surve	y Form		Site S	heet no:	
		Survey Na	me	Plot Ide	entifier	R	ecorders	1.
Date		Eraning BE	ss	P06		PF		
Zone	Datum	IBRA region			Photo #	\checkmark	Zone ID	
Easting	Northing	Dim	ensions			Orientation of midl from the 0 m po	200	20
Vegetation CI	ass	1716						Confidence: H M L
Plant Commu	nity Type						EEC:	Confidence: H M L

	BAM Attribute (400 m ² plot)			
	Trees	4		
	Shrubs	4		
Count of Native Richness	Grasses etc.	5		
	Forbs	2		
	Ferns	١		
	Other	2		
,	Trees	47		
Sum of Cover	Shrubs	52.1		
of native vascular	Grasses etc.	13.3		
plants by growth	Forbs	0.2		
form group	Ferns	0.2		
	Other	1.1		
High Threat	Weed cover	1.2		

BAM Attribute	(20 x 50 m plot)	# Tree Ste	ms Count	Record number of
dbh	Euc*	Non Euc	Hollows [†]	living eucalypt*
large trees for Euc* & Non Euc	80 + cm			(Euc*) and living native non-eucalypt (Non Euc) stems
50 —	79 cm			separately
			n in a state of the	* includes all species
30 – 49 cm				of Eucalyptus, Corymbia, Angophora,
20 – 29 cm	1			Lophostemon and Syncarpia
10 – 19 cm	1			¹ Record total number of stems by size class with
5 – 9 cm	1		n/a	hollows (including dead stems/trees)
< 5 cm	1		n/a	
Length of logs (≥0 cm diameter, in length)				total 37
Counte must apply	to each size class when	the number of livin	a trop atoma with	sin the size class is <10

Counts must apply to each size class when the number of living tree stems within the size class is \leq 10. Estimates can be used when the number of living tree stems within a class is > 10. Estimates should draw from the number series: 10, 20, 30..., 100, 200, 300

For a multi-stemmed tree, only the largest living stem is included in the count/estimate. For hollows count only the presence of a stem containing hollows, not the count of hollows in that stem. Only count as 1 stem per tree where tree is multi-stemmed. The hollow-bearing stem may be a dead stem.

BAM Attribute (1 x 1 m plots)	Litter cover (%)	Bare ground cover (%)	Cryptogam cover (%)	Rock cover (%)
Subplot score (% in each)				
Average of the 5 subplots	75			

Litter cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots located on alternate sides and 5 m from the plot midline at the locations 5, 15, 25, 35, and 45 m along the midline. Litter cover includes leaves, seeds, twigs, branchlets and branches (less than 10 cm in diameter). Within these 1 m x 1 m plots assessors may also record the cover of rock, bare ground and cryptogam soil crusts. Collection of these data is optional - the data do not currently contribute to assessment scores, they hold potential value for future vegetation integrity assessment attributes and benchmarks, and for enhancing PCT description

Physiography + site features that may help in determining PCT and Management Zone (optional)

Morphological Type	Landform	Landform Pattern	Microrelief
Lithology	Soil Surface Texture	Soil Colour	Soil Depth
Slope	Aspect	Site Drainage	Distance to nearest water and type

Plot Disturbance	Severity code	Age code	Observational evidence:
Clearing (inc. logging)			
Cultivation (inc. pasture)			
Soil erosion			
Firewood / CWD removal			
Grazing (identify native/stock)			
Fire damage			
Storm damage			
Weediness			
Other			

Severity: 0=no evidence, 1=light, 2=moderate, 3=severe

Age: R=recent (<3yrs), NR=not recent (3-10yrs), O=old (>10yrs)

Form version 5 - designed March 2017

Printed 12 June 2019

00 m ²	plot: Sheet _ of _	Survey Name	Plot Identifier		Record	ers	-1. A.	
Date	40/5/2020	Eraving BESS	P07	PF				
GF Code		each growth form group: F otic species: Full species na	ull species name mandatory ame where practicable	N, E or HTE	Cover	Abund	stratu m	vouch er
	Acada (on	siplia			1	()		
	1 Acadia (on 2 Acrobricle d	ivaricata			0.1	2		
	Anispoga	avenaceus			0.1	3		
	Anistide vac	sans			0.1	(0		
	¹ Aristider vac ⁵ Daviesia Ni ⁶ Diarella Ca	ablia			0.1	5		
	· Dignella Co	arvier			0.1	5		
	Dodonace ti	riqueta	s		25	20		-
	Entoldsig s	MCTZ			5	500		
	E. eas. Ellet	2			10	2		
	10 E. harmosto	20	2		30	30		
	9 E. eap. Ellat 10 E. harmostor 11 Gahria sieb	erma			0.2	5		
	12 Olycin tab				0.1	5		
	13 Mardenbergi	a viol.			1.0	2		
	14 Mypurrhenia				5	200		
	15 000000000000000000000000000000000000	1) obics			15	100		
	15 Inperate cy 16 Leucopogon	innervs			0.1	2		
	Thomandra g	lave			0.1	5		
	18 Lonardz 1	phiere			0.1	5		1.0
	1º Mirbelia n				0.1	3		
	6.6	a spera			6.1	10		
	21 phylkanths		y .		0.1	20		
	22 Pines radia	+)	1		
	23 Pitosparam				0.2	20	1.22	
	24 Polycics C	mbrciplia			0.1	3		
	25 percela for	- d-			0.2	20		
	26 Kantho la	1			0.2	5		-
	27	<u>т</u> ,)		
	28							-
	29							
	30							
	31							
	32							
	33				-			
	34		÷		1			
	35				-		-	
	38	r			-			+
	37				-			+
	36							
	39				1			
	40							+

BAM Site – Field Survey Form	Site Sheet no: 1 of

		Survey Na	ame	Plot Identifier		Recorders		
Date		Éreing DES	ss	P07		þF		
Zone	Datum	IBRA region		Photo #		Zone ID		
Easting	Northing	Dim	ensions	ď	ł	Orientation of midline from the 0 m point.		7° Magaetic "
Vegetation Class		1636						Confidence: H M L
Plant Community Type							EEC:	Confidence: H M L

BAM	Attribute	Sum values	BAM Attribute	e (20 x 50	m plot)	# Tree Sten	ns Count	Record number of
(400	m² plot)	Sum values	dbh		Euc*	Non Euc	Hollows [†]	living eucalypt*
	Trees	872	large trees for Euc* & Non Euc	80 + cm	li _{nan} a.	No Leo	51 a 25	(Euc*) and living native non-eucalypt
	Shrubs	29		CIII				(Non Euc) stems separately
Count of Native Richness	Grasses etc.	98	50 – 79 cm		4		1	* includes all species
	Forbs	2	30 – 49 cm		/			of Eucalyptus, Corymbia, Angophora,
	Ferns	0	20 – 29 cm		1			Lophostemon and Syncarpia
	Other	3	10 – 19 cm					[†] Record total
× .	Trees	40						number of stems by size class with
Sum of Cover	Shrubs	26.8	5 – 9 cm	\checkmark	, 		n/a	hollows (including dead stems/trees)
of native vascular	Grasses etc.	20.8	< 5 cm		/		n/a	
plants by growth	Forbs	0.2	Length of logs					total
form group	Ferns	0	(≥10 cm diameter in length)	r, >50 cm				9
	Other	0.4				en the number of living of living tree stems within		in the size class is ≤10. . Estimates should draw
High Threat	High Threat Weed cover 6		from the number	series: 10,	20, 30, 100			
			count only the pre	esence of a	a stem contair	ning hollows, not the cour	nt of hollows in t	hat stem. Only count as

BAM Attribute (1 x 1 m plots)	Litter cover (%)	Bare ground cover (%)	Cryptogam cover (%)	Rock cover (%)
Subplot score (% in each)				
Average of the 5 subplots	81			

Litter cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots located on alternate sides and 5 m from the plot midline at the locations 5, 15, 25, 35, and 45 m along the midline. Litter cover includes leaves, seeds, twigs, branchlets and branches (less than 10 cm in diameter). Within these 1 m x 1 m plots assessors may also record the cover of rock, bare ground and cryptogam soil crusts. Collection of these data is optional - the data do not currently contribute to assessment scores, they hold potential value for future vegetation integrity assessment attributes and benchmarks, and for enhancing PCT description

Physiography + site features that may help in determining PCT and Management Zone (optional)

Morphological	Landform	Landform	Microrelief
Type	Element	Pattern	
Lithology	Soil Surface	Soil	Soil
	Texture	Colour	Depth
Slope	Aspect	Site Drainage	Distance to nearest water and type

Plot Disturbance	Severity code	Age code	Observational evidence:
Clearing (inc. logging)			,
Cultivation (inc. pasture)			
Soil erosion			
Firewood / CWD removal			
Grazing (identify native/stock)			
Fire damage			
Storm damage			
Weediness			
Other			

Severity: 0=no evidence, 1=light, 2=moderate, 3=severe

100 m² r	olot: Sheet _ of _	Survey Name	Plot Identifier		Recorde	rs		
Date	16/11/2020	Eraing DESS	POS	PF				
GF Code	Top 3 native species in		ull species name mandatory	N, E or HTE	Cover	Abund	stratu m	vouch er
ooue			The state of the s		9	50		
	Cabang gino	(CG			0.1	5		
	Cale la la	ie llogna			0.1	1		
	E ca tellad	IC NOGRA			0.2	1		
	C. Eqpitenate				25	50		
	Goodenia a	Gulatz	N		0.1	10		
	Homenthus	200			0.1	1		
-	KUNZER - ul	1646			0.5	()		
	Lastana	- Jul	*		0.1	(0		
					e	10		
			а. 2		50	(00		
	Mplalence S	sieben		1	0.2	(0		
					0.1	(
	Daggordin	acarthin			0.1	5		
	Parsonsia S	hamirea			0.1	2		
	Passalidin	Spp.	ю		0.2	50		
	Senecio ~	red.			0.1	5		
	Slanm m	auntionin.	1		0-1	2		
								-
								1
							1	
	N. 2				-			
	2							
	2 			-				

	BA	M Site – Field Su	Site Sheet no:					
		Survey Name	Plot I	dentifier	Reco	orders		
Date		Eraing BESS	808		PF			
Zone	Datum	IBRA region		Photo #	~	Zone ID		
Easting	Northing	Dimensio	ns		Orientation of midline from the 0 m point.		toau	
Vegetation Class		1716					Confidence:	
Plant Commur	nity Type		i.		EE	C:	H M L Confidence: H M L	

	Attribute	Sum values	BAM Attribute	e (20 x 50 m plot)	# Tree Ster	ns Count	
(400) m² plot)	oun values	dbh	Euc*	Non Euc	Hollows [†]	 Record number of living eucalypt*
	Trees	Z	large trees for	80 +			(Euc*) and living
	Shrubs	5	Euc* & Non Euc	cm			native non-eucalypt (Non Euc) stems separately
Count of Native Richness	Grasses etc.	3	50 -	– 79 cm			* includes all species
	Forbs	١	30 – 49 cm				of Eucalyptus, Corymbia,
	Ferns	0	20 – 29 cm				Angophora, Lophostemon and
	Other	1	10 – 19 cm				Syncarpia †Record total
	Trees	9.2	10 - 19 cm	1			number of stems by size class with
Sum of Cover	Shrubs	51.8	5 – 9 cm	_		n/a	hollows (including dead stems/trees)
of native vascular	Grasses etc.	25.3	< 5 cm	\checkmark		n/a	
plants by growth	Forbs	0.1	Length of logs	(m)			total
form group	Ferns	0	(≱0 cm diameter in length)	, >50 cm		*	2
	Other	0.1	Counts must apply	y to each size class when	the number of living	tree stems with	in the size class is ≤10.
High Threat	Weed cover	0.6	nom the number s	used when the number o series: 10, 20, 30, 100.	200, 300		
			count only the pre	med tree, only the largest sence of a stem containir here tree is multi-stemme	ng hellows, not the cour	it of hollows in th	hat stem. Only count as

BAM Attribute (1 x 1 m plots)	Litter cover (%)	Bare ground cover (%)	Cryptogam cover (%)	Rock cover (%)
Subplot score (% in each)				
Average of the 5 subplots	36			

Litter cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots located on alternate sides and 5 m from the plot midline at the locations 5, 15, 25, 35, and 45 m along the midline. Litter cover includes leaves, seeds, twigs, branchiets and branches (less than 10 cm in diameter). Within these 1 m x 1 m plots assessors may also record the cover of rock, bare ground and cryptogam soil crusts. Collection of these data is optional - the data do not currently contribute to assessment scores, they hold potential value for future vegetation integrity assessment attributes and benchmarks, and for enhancing PCT description

Physiography + site features that may help in determining PCT and Management Zone (optional)

Morphological	Landform	Landform	Microrelief
Type	Element	Pattern	
Lithology	Soil Surface	Soil	Soil
	Texture	Colour	Depth
Slope	Aspect	Sile Drainage	Distance to nearest water and type

Plot Disturbance	Severity code	Age code	Observational evidence:
Clearing (inc. logging)			
Cultivation (inc. pasture)			
Soil erosion			
Firewood / CWD removal			
Grazing (identify native/stock)			
Fire damage			
Storm damage			
Weediness			
Other			

Severity: 0=no evidence, 1=light, 2=moderate, 3=severe

Age: R=recent (<3yrs), NR=not recent (0-10yrs), O=old (>10yrs)

Form version 5 - designed March 2017

Printed 12 June 2019