

DEICORP PROJECTS SHOWGROUND PTY LTD

Detailed Site Investigation

Doran Drive Precinct, 2 Mandala Parade, Castle Hill NSW

E24724.E02_Rev2 9 July 2021

Document Control

Report Title:	Detailed Site Investigation;
	Doran Drive Precinct, 2 Mandala Parade, Castle Hill NSW
Report No:	E24724.E02_Rev2

Сс	pies	Recipient
1	Soft Copy (PDF – Secured, issued by email)	Deicorp Projects Showground Pty Ltd Level 4, 161 Redfern Street, Redfern NSW 2016
2	Original (Saved to Digital Archives)	El Australia
	Original (Saved to Digital Archives)	Suite 6.01, 55 Miller Street,
		PYRMONT NSW 2009

Author

Technical Reviewer

(Swe)

MJDale

Li Wei Environmental Engineer		Malcolm Dale Senior Principal-Contaminated Land	
Revision	Details	Date	Amended By
0	Original	28 August 2020	-
1	Updated entity name and design plans	21 May 2021	LW/BA
2	Updated plans and client comments	9 July 2021	BA

© 2021 El Australia (El) ABN: 42 909 129 957

This report is protected by copyright law and may only be reproduced, in electronic or hard copy format, if it is copied and distributed in full and with prior written permission by El.

Table of Contents

Page Number

EX	ECUT	IVE SUMMARY	1
1.	INTR 1.1 1.2 1.3 1.4 1.5	RODUCTION Background and Purpose Proposed Development Regulatory Framework Project Objectives Scope of Works	1 1 1 2 2
2.	SITE 2.1 2.2 2.3 2.4 2.5	DESCRIPTION Property Identification, Location, and Physical Setting Surrounding Land Use Regional Setting Groundwater Bore Records and Groundwater Use Site Inspection	3 3 4 5 5
3.	PRE	VIOUS INVESTIGATIONS	7
4.	SITE 4.1 4.2	HISTORY AND SEARCHES Land Titles Information / Historical Aerial Photography ReviewEPA Online Records4.2.1Record of Notices Under Section 58 of CLM Act 19974.2.2List of NSW Contaminated Sites Notified to EPA4.2.3POEO Public Register	10 10 13 13 13 13
5.	CON 5.1 5.2 5.3	OCEPTUAL SITE MODELOverviewSubsurface ConditionsPotential Contamination Sources5.3.1PFAS Assessment5.3.2Emerging Chemicals	15 15 15 15 15 15
	5.4 5.5 5.6 5.7 5.8	Potential Contaminants Potential Contamination in the Context of the Site Potential Receptors Preliminary Conceptual Site Model Data Gaps	17 17 18 18 18
6.	MET 6.1 6.2 6.3 6.4	HODOLOGY Sampling, Analysis and Quality Plan (SAQP) Data Quality Objectives (DQO) Data Quality Indicators Sampling Rationale	20 20 20 23 24

	6.5 6.6 6.7	Soil Inve	nent Criteria estigation vater Investigation	24 26 27	
7.	DAT 7.1 7.2	Quality (ITY ASSESSMENT Control Process Overview	29 29 30	
8.	RES 8.1	ULTS Soil Inve 8.1.1 8.1.2	estigation Results Subsurface Conditions Field Observations and PID Results	31 31 32 31 31	
	8.2	Groundv 8.2.1 8.2.2	water Investigation Results Monitoring Well Construction Field Observations	32 32 32	
	8.3	Laborato 8.3.1 8.3.2 8.3.3	ory Analytical Results Soil Analytical Results Soil salinity Groundwater Analytical Results	33 33 34 34	
9.	SITE 9.1 9.2 9.3 9.4 9.5 9.6	Subsurfa Soil Imp Salinity Groundy Review	ACTERISATION ace Conditions acts water Impacts of Conceptual Site Model ary Waste Classification	37 37 37 37 37 38 38	
10.	CON	CLUSIO	NS	39	
11.	REC	OMMEN	DATIONS	41	
12.	STA	TEMENT	OF LIMITATIONS	42	
13.	REFI	ERENCE	ES	43	
14.	. ABBREVIATIONS 45				

Schedule of Tables

Table 2-1	Site Identification	3
Table 2-2	Surrounding Land Uses	4
Table 2-3	Regional Setting	4
Table 2-4	Summary of Proximate Registered Groundwater Bores	5
Table 3-1	Summary of Previous Investigation Works and Findings	7
Table 4-1	Summary of Aerial Photograph	10
Table 5-1	PFAS Decision Tree	15
Table 5-2	Emerging or Controlled Chemicals	16
Table 5-3	Assessment of Potential Contamination Risk	17
Table 5-4	Preliminary Conceptual Site Model	19
Table 6-1	Summary of Project Data Quality Objectives	21
Table 6-2	Data Quality Indicators	23
Table 6-3	Adopted Investigation Levels for Soil and Groundwater	25
Table 6-4	Summary of Soil Investigation Methodology	26
Table 6-5	Summary of Groundwater Investigation Methodology	27
Table 7-1	Quality Control Process	29
Table 8-1	Generalised Subsurface Profile (mBGL)	31
Table 8-2	Monitoring Well Construction Details	32
Table 8-3	Groundwater Field Data	32
Table 8-4	Summary of Soil Analytical Results	33
Table 8-5	Summary of Groundwater Analytical Results	35

Appendices

- **APPENDIX A FIGURES**
- **APPENDIX B TABLES**
- **APPENDIX C DEVELOPMENT PLANS**
- **APPENDIX D GROUNDWATER BORE SEARCH**
- **APPENDIX E SITE PHOTOGRAPHY**
- APPENDIX F TEST PIT AND BOREHOLE LOGS
- **APPENDIX G FIELD DATA SHEETS**
- **APPENDIX H CHAIN OF CUSTODY AND SAMPLE RECEIPT FORMS**
- APPENDIX I LABORATORY ANALYTICAL REPORTS
- APPENDIX J QA/QC ASSESSMENT
- APPENDIX K LABORATORY QA/AC POLICIES AND DQOS

Executive Summary

Background

Deicorp Projects Showground Pty Ltd ('the client') engaged EI Australia (EI) to undertake a Detailed Site Investigation (DSI) for the property located at Doran Drive Precinct, 2 Mandala Parade, Castle Hill NSW ('the site') to allow redevelopment of the site.

It was understood that redevelopment of the site is a State Significant Development (SSD). The site (Doran Drive Precinct) is situated in the central portion of the Hills Showground Station Precinct development area, covering a total area of 7,969 m². At the time of this investigation the site was a vacant lot, cleared of all structures. The development includes construction of multi-storey, mixed use commercial and residential apartment buildings, overlying a common podium structure with six-levels of basement.

Objectives

The main objective of this investigation was to:

 Investigate the degree of any potential contamination by means of intrusive sampling and laboratory analysis, for relevant contaminants of concern.

A further objective, should site contamination be confirmed, was to make recommendations for the appropriate management of any contaminated soils and/or groundwater.

Key Findings

- The site was found to be a rectangular vacant block, secured by construction hoarding and security fencing. It was elevated above the surrounding land, which displayed a moderate downslope towards the southwest. The ground surface was covered by exposed fill materials, with limited vegetation present onsite. No visual evidence of gross contamination, UPSS or UST was observed on the site during the site inspection.
- A review of historical information indicated the site was used as rural residential, agricultural, vacant pastoral and public open space (playing fields) until the late 1980s. Since 2013, significant ground disturbance works (bulk earthworks and material storage) have been completed as a result of the Sydney Metro North West (SMNW) Project activities ('Metro Northwest Link'). The site was used for a holding and processing yard during that period, which included excavated water treatment basins, material/equipment storage and site sheds. During 2019, the current site configuration was established and cleared of all previous structures. The site surface was significantly filled and raised above the surrounding land.
- The site and surrounding lands were not listed on any of the EPA records reviewed.
- Soil sampling and analysis were conducted at 19 locations across the site.
 - The sub-surface layers observed comprised of fill materials (up to 4.0m depth) overlying natural clay and sandstone bedrock;
 - Laboratory results for all the soil samples collected reported concentrations below the most conservative human health and ecological based SILs;

- Laboratory results indicated that natural soils on site were non-saline. Soils were found to be slightly acidic (pH ranged from 4.6 to 6.1), with the exception of soil sample at BH3M reported pH at 9.4
- Four groundwater monitoring wells were installed on the site.
 - Standing Water Levels (SWL) were observed between 2.58 and 4.48 mBGL;
 - Groundwater was likely to flow hydraulically south-westerly towards Cattai Creek;
 - Concentrations of PAHs, BTEX, TRHs and VOCs were reported below the adopted criteria;
 - Concentrations of heavy metals were reported below the adopted freshwater criteria, with the exception of chromium, copper, lead, nickel and zinc. However, the detected concentrations are considered to be indicative of background conditions, rather than site specific impacts.
 - Therefore the identified groundwater concentrations are not considered to present a cause for human health and environmental concern.
- Based on the analytical results, the following preliminary classifications were provided (with reference to the EPA (2014) Waste Classification Guidelines):
 - The fill materials on the site were classified as *General Solid Waste (Non-Putrescible)*; and
 - The underlying natural soils on the site were classified as Virgin Excavated Natural Material (VENM).

Based on the findings of this investigation, EI conclude that the site is suitable for the proposed mixed commercial and residential development provided the recommendations detailed in **Section 11** are implemented.

1. Introduction

1.1 Background and Purpose

Deicorp Projects Showground Pty Ltd ('the client') engaged EI Australia (EI) to undertake a Detailed Site Investigation (DSI) of the land parcel located at Doran Drive Precinct, 2 Mandala Parade, Castle Hill NSW ('the site') to allow redevelopment of the site.

The site is located within the Local Government Area (LGA) of The Hills Shire Council, as shown in **Figure 1** (**Appendix A**), and covers a total area of 7,969 m^2 , as shown on the survey plan attached in **Appendix C**. The site can be further identified as Lot 55 in Deposited Plan (DP) 1253217.

El understands that redevelopment of the site is a State Significant Development (SSD). The site (Doran Drive Precinct) is situated in the central portion of the Hills Showground Station Precinct development area, with Hills Showground Metro Station to the south, Hills Showground Precinct East and Hills Showground Precinct West to the east and west, respectively. At the time of this investigation the site was a vacant rectangular block, cleared of all structures.

1.2 Proposed Development

Based on the supplied plans (**Appendix C**), the proposed development would include construction of multi-storey, mixed use commercial and residential apartment buildings, overlying a common podium structure with six-levels of basement car park.

The basements were to be constructed to the site boundaries, with the lowest basement level (B06) will require a Finished Floor Level (FFL) of 70.20m Australian Height Datum (AHD). It is understood that a Bulk Excavation Level (BEL) of RL 69.10mAHD will be required for the lowest basement level, which includes allowance for the construction of the basement slab. To achieve the BEL, excavation depths of 19 m Below Existing Ground Level (mBGL) at the Doran Drive end of the site to 26.6 mBGL at the Andalusian Way end of the site have been estimated. Locally deeper excavations may be required for footings, services trenches, crane pads and lift overrun pits.

1.3 Regulatory Framework

The following regulatory framework and guidelines were considered during the preparation of this report:

- Contaminated Land Management Act 1997 (the CLM Act);
- Protection of the Environment Operations Act 1997 (the POEO Act);
- State Environmental Planning Policy 55 (SEPP 55) Remediation of Land;
- State Environmental Planning Policy (State and Regional Development) 2011;
- EPA (1995) Sampling Design Guidelines;
- EPA (2017) Guidelines for the NSW Site Auditor Scheme;
- EPA (2020) Consultants Reporting on Contaminated Land: Contaminated Land Guidelines;
- NEPC (2013) Schedule B(2) Guideline on Site Characterisation, in Amended National Environmental Protection (Assessment of Site Contamination) Measure 1999;
- NEPC (2013) Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater,

- Sydney Regional Environmental Plan No 20—Hawkesbury-Nepean River (No 2-1997);
- The Hills Local Environmental Plan 2019; and
- The Hills Development Control Plan (DCP) 2012.

1.4 Project Objectives

The main objective of this investigation was therefore to:

 Investigate the degree of any potential contamination by means of intrusive sampling and laboratory analysis, for relevant contaminants of concern.

A further objective, should site contamination be confirmed, was to make recommendations for the appropriate management of any contaminated soils and/or groundwater.

1.5 Scope of Works

In order to achieve the above objectives, the following scope of works was completed:

- Preparation of a Work, Health, Safety & Environment Plan;
- A review of existing underground services on site ('Dial-before-you-dig' DBYD) and carry out an underground search for buried services using elector-magnetic equipment;
- A review of relevant geological, hydrogeological and soil landscape maps for the project area;
- A search of groundwater bore records within close vicinity to the site;
- A review of previous environmental reports;
- A site inspection;
- Excavation of test pits and drilling of boreholes at 19 locations distributed in a triangular grid pattern across accessible areas of the site;
 - Drilling of boreholes to assess salinity at 3 locations to approximately 1m below the proposed bulk excavation (or prior refusal on bedrock);
- Installation of four groundwater monitoring wells, both up-gradient and down-gradient of the proposed development area. Groundwater monitoring wells would be constructed to standard environmental protocols to investigate potential groundwater contamination;
- Multiple level soil sampling within fill and natural soils and one round of groundwater sampling from the constructed groundwater monitoring wells;
- Laboratory analysis of selected soil and groundwater samples for relevant analytical parameters as determined from the site history survey and field observations during the investigation programme; and
- Data interpretation and reporting.

This DSI report has been prepared in accordance with the EPA (2020) to document desk study findings, the conceptual site model, data quality objectives, investigation methodologies and results. The report also provides a record of observations made during the detailed site walkover inspection, borehole and test pit logs, and a discussion of laboratory analytical results in regards to potential risks to human health, the environment and the aesthetic uses of the land.

2. Site Description

2.1 Property Identification, Location, and Physical Setting

The site identification details and associated information are presented in **Table 2-1**, while the site locality is shown in **Figure 1 (Appendix A)**.

Attribute Description Street Address Doran Drive Precinct, 2 Mandala Parade, Castle Hill NSW Location Description 10 km north-west of Parramatta CBD, bound by De Clambe Drive to the north, Andalusian Way to the east, Mandala Parade to the south and Doran Drive to the west. Coordinates Northeast corner of site: GDA2020-MGA56 Easting: 313544.048; Northing: 6266325.101. (Source: http://maps.six.nsw.gov.au) 7,969 m² Site Area Lot and Deposited Plan (DP) Lot 55 in DP 1253217 Two State Survey (SS) marks are situated within close proximity to the site: State Survey Marks SS62672N: at the roundabout of Carrington Road and Andalusian Way (approximately 63m southeast); and SS180257: on Carrington Road (approximately 83m southwest). (Source: http://maps.six.nsw.gov.au) Local Government Authority The Hills Shire Council Parish Castle Hill Cumberland County **B2: Local Centre** Current Zoning (The Hills Local Environmental Plan 2019)

 Table 2-1
 Site Identification

2.2 Surrounding Land Use

The site is situated within the Hills Showground Station Precinct development area as described in **Table 2-2**. The sensitive receptors within close proximity of the site (approximately 250m) are also identified.

Direction	Land Use Description	Sensitive Receptors (& distance from site)
North	Castle Hill ShowgroundResidential properties	 Residential (approximately 250m north)
South	 Hills Showground Metro Station and associated station plaza Residential properties Carrington Preschool 	 Residential (approximately 70m south) Preschool (approximately 110m southwest)
East	 Hills Showground Precinct East, which consists of the former The Hills Shire Council administration building and associated parking Residential properties 	 Residential (approximately 200m east)
West	 Hills Showground Precinct West, which consists of a commuter carpark and plaza Cattai Creek Commercial properties, including warehouse, 	 Cattai Creek (approximately 200m west)
	 commercial properties, including warehouse, car & motorcycle repair shops and restaurants. 	

Table 2-2 Surrounding Land Uses

2.3 Regional Setting

The local topography, regional hydrogeology, geology and soil landscape information are summarised in **Table 2-3**.

Attribute	Description		
Topography	The site displays a moderate downslope towards the southwest, with site levels varying from 98.13m AHD in the north-eastern site corner to 90.63m AHD in the south-western site corner (Appendix C). The batters along the site boundaries have an average 1-1.5m drop towards the surrounding roads. Regionally, the area slopes south-westerly towards Cattai Creek.		
Site Drainage	Site drainage is likely to be consistent with the general slope of the site. Any run off would be expected to flow into the new constructed stormwater pits on the site, which flows into the municipal stormwater system and then into Cattai Creek approximately 130m southwest of the site.		
Regional Geology	The Department of Mineral Resources <i>Penrith 1:100,000 Geological Series Sheet 9030</i> indicates the site is underlain by Hawkesbury Sandstone (<i>Rh</i>), consisting of medium to very coarse-grained quartz sandstone, minor laminated mudstone and siltstone lenses.		
	However, the eastern end of the site is close to a boundary with Ashfield Shale (Rwa), consisting of dark-grey to black claystone-siltstone and fine sandstone-siltstone laminite. The thin Mittagong Formation may or may not be present between the Ashfield Sahel and Hawkesbury Sandstone.		
Soil Landscapes	The Soil Conservation Service of NSW <i>Soil Landscapes of the Penrith</i> 1:100,000 Sheet (Bannerman SM and Hazelton PA, 1990) indicates that the eastern portion of the site overlies an erosional Glenorie (<i>gn</i>) soil landscape, characterised by undulating to rolling low hills on Wianamatta Group shales, while the western portion of the site overlies a colluvial Hawkesbury (<i>ha</i>) soil landscape, characterised by rugged, rolling to very steep hills on Hawkesbury Sandstone.		

Table 2-3 Regional Setting

Attribute	Description
Acid Sulfate Soil Risk	With reference to the <i>Prospect/Parramatta River Acid Sulfate Soil Risk Map</i> (1:25,000 scale; Murphy, 1997) and <i>The Hills Local Environmental Plan 2019</i> , the site is not situated in an ASS classed area. As such, ASS is unlikely to be encountered during development works at the site.
	The contamination report previously prepared for the site (JBS&G, 2019) also concluded that no further management for the potential presence of ASS is required during future ground disturbance works.
Salinity Potential	Based on the DIPNR (2003) <i>Salinity Potential in Western Sydney Map 2002</i> , the site is situated within an area of very low to moderate salinity potential. EI conducted a salinity assessment during this investigation, as discussed in Section 8 .
Nearest Surface Water Feature	Cattai Creek, located approximately 130m southwest of the site.
Groundwater Flow Direction	Interred to flow south-westerly towards Cattai Creek.

2.4 Groundwater Bore Records and Groundwater Use

An online search of groundwater bores registered with WaterNSW was conducted by EI on 31 July 2020 (Ref. <u>https://realtimedata.waternsw.com.au/water.stm</u>). There was one registered bore within a 500 m radius of the site, as summarised in **Table 2-4**. A groundwater bore location plan and detailed information are presented in **Appendix D**.

Table 2-4	Summary of	f Proximate	Registered	Groundwater Bores
	Summary O	I I I UXIIIIate	Negistereu	Groundwater Dores

Bore No.	Distance & Direction	Date Drilled	Drilled Depth (m)	SWL(m BGL) / Salinity	Bore Purpose
GW107601	150m northwest	24.10.2002	35.34	-/-	Monitoring bore

Contamination report prepared by JBS&G (2019) also identified one groundwater bore (GW100981) approximately 550m northeast from the site, which was authorized for domestic use. The water table (as indicated by standing water levels, SWL) was recorded at 8.0m BGL.

Therefore it is anticipated that groundwater is present at a shallow to moderate depth below the site.

2.5 Site Inspection

Site observations were recorded during an inspection of the site on 8 July 2020. These are summarised below. Site photographs taken during the inspection are presented in **Appendix E**.

- The site was a rectangular vacant block, secured by construction hoarding and security fencing (**Photograph 6**). It was situated at the north side of the Hills Showground Metro Station.
- The site was found to be elevated above the surrounding land, which displayed a moderate downslope towards the southwest. Constructed batters were present along the site boundaries, which elevated the site at up to approximately 1-1.5m above the surrounding roads (**Photographs 3** and **5**).
- The whole site was vacant, cleared of all structures. The ground surface was covered by exposed fill materials (**Photographs 1, 2** and **4**).
- Limited vegetation was present on the site. The vegetation did not appear stressed.

- Constructed stormwater pits were present along the site boundaries (**Photograph 5**), collecting surface runoff to the municipal stormwater system.
- No unusual odours were detected during the inspection. No visual signs of contamination (i.e. cement sheet fragments) were identified on site surfaces.
- No evidence of an underground petroleum storage system (UPSS), or an underground storage tank (UST), was observed on the site.
- Surrounding areas consisted of Castle Hill Showground to the north, Hills Showground Precinct East and Hills Showground Precinct West to the east and west, and Hills Showground Metro Station to the south. Residential properties were mainly present to the south, east and north of the site, while commercial properties were mainly to the west of the site.
- There was no NSW Fire and Rescue Station (or Training College) in the vicinity (<100m) of the site.

3. Previous Investigations

EI was provided with previous investigation reports carried out within portions of the Hills Showground Station Precinct development area, including:

- JBS&G (2009) Phase 1 and 2 Environmental Site Assessment,
- JBS&G (2013) Contamination Due Diligence Advice, Former Hills Shire Depot, Carrington Road, Castle Hill, NSW, Report Ref. 42829/54994 (Rev1), dated 26 August 2013;
- Arup (2015) *Showground Precinct Desktop Contamination Review*, dated 1 September 2015;
- Douglas Partners (2016) Report on UST Validation Sydney Metro Northwest, Showground Station, Carrington Road, Castle Hill NSW, Ref. 73315.03.R.001.Rev0.UST Validation, dated 6 May 2016; and
- JBS&G (2019) Soil and Contamination Report, Ref. 54813/125497 (Rev1), dated 29 October 2019.

The JBS&G (2009 and 2013), Arup (2015) and DP (2016) investigations referenced above were conducted at the former Hills Council Depot (now Hills Showground Precinct West and the newly constructed commuter car park to the west of the site).

The JBS&G (2019) report identified that significant ground disturbance occurred at the site (Doran Drive Precinct) as a results of Sydney Metro North West (SMNW) Project activities ('Metro Northwest Link') and concluded that further contamination assessment was required. A summary of works and key findings from this report is outlined in **Table 3-1**.

Table 3-1	Summary of	Provinue	Investigation	Worke	and Findings
	Ourrinally Of	11041043	mvconganon	WOIN3	ana i manigo

Assessment Details	Project Tasks and Findings				
Soil and Contamir	nation Report (JBS&G, 2019)				
Objectives	 Collate and review available data, including previous investigations and supplement this with current information to identify areas of potential environmental concern (AECs) and associated contaminants of potential concern (COPCs) as may be present at the site; 				
	 Review and document regional geological, hydrogeological, topographical and services infrastructure information to identify site media and potential contaminant transportation pathways at the site; 				
	 Identify potential data gaps across the site and assess the potential for near surface contamination as a result of the SMNW works; 				
	 Address the key contamination issues in the SEARs and the requirements of SEPF 55 to demonstrate the suitability of the site for development, or provide recommendations that will enable the site to be considered suitable prior to commencement of future use(s); and 				
	 Develop and document a preliminary conceptual site model (CSM) of contamination to facilitate comments on potential issues that may require further consideration, including assessment, management and/or remediation to make the site suitable for its proposed uses. 				
Scope of Works	The site comprised of three development precincts, including the Hills Showground Precinct West, Doran Drive Precinct and Hills Showground Precinct East. The scope of works included:				

Assessment Details	Project Tasks and Findings
	 A review of available historical site use, background information and previous investigations to identify potential areas of environmental and chemical concern;
	 Review and collation of available regional and site specific information in relation t geology, hydrogeology, etc. including previous environmental and geotechnical sit investigation data to confirm site conditions and the presence of potential AECs;
	 Development of a site-wide CSM based on the available information specific to the site; and
	 Preparation of a preliminary environmental site assessment report in general accordance with relevant EPA Guidelines.
Site History	Review of available site history indicated the majority of the site was historically utilised as rural residential and agricultural (orchards) land prior to being acquired by the Baulkham Hills Shire Council between the 1960s and 1970s. Until approximately 2013, the site was used for a combination of public open space (playing fields) prior use for commercial (office spaces and performing arts centre) and industrial (use as Council Depot) activities. The site was transferred Transport for NSW in 2013 following which the central and western portions have undergone redevelopment works associated with the construction of the SMNW Project train tunnels and statio infrastructure.
Conclusions and Recommendations	 Prior to the commencement of the SMNW Project activities, the site comprised three main areas: the Hills Shire Council Chambers and Administration building ar surrounds (Hills Showground Precinct East); the former performing arts centre and associated car parking area (central portion including Showground Station and Doran Drive Precinct); and the Council Works Depot (Hills Showground Precinct West and constructed carpark infrastructure).
	Historical site investigation reports available for assessment were limited to the former Council Works Depot footprint. These investigations identified the presence of small scale soil and groundwater contamination and underground fuel infrastructure (considered significant point sources of potential contamination), prior to the commencement of the SMNW Project activities. Records obtained from SafeWork NSW and validation documentation have indicated removal of the majority of the identified fuel infrastructure. Notwithstanding, in the absence of further validation documentation and/or a RAP as may have been prepared as required by Project Approval consent conditions, there remains uncertainty on the fate of previously identified asbestos impacts and the current contamination status of this portion of this site.
	 In addition, significant ground disturbance works have been completed within the central portion of the site (Doran Drive Precinct) during the SMNW Project activitie This site portion is currently surfaced with exposed fill material. Subject to the availability of validation documentation confirming the status of ground conditions this portion of the site, there is also a remaining data gap as to the current characterisation of this site portion given the potentially contaminating activities the have occurred within this area.
	 Within the eastern portion of the site, occupied by the former Council Chambers and Administration building, the potential for site contamination has been identified as relatively low, being associated with historical agricultural/open space management, the historical use of hazardous building materials (asbestos and lea paint) and the potential presence of limited profile of fill material of unknown origin However, the absence of existing characterisation data, again remains an open data gap with regard to drawing conclusions on the suitability of the site for the proposed landuses.

Assessment Details	Project Tasks and Findings				
	for the proposed land uses, subject to implementation of an appropriate staged data gap contamination assessment (that may include verification reviews of SMNW stage validation reports) and appropriate management of any small scale remaining contamination issues in accordance with NSW EPA guidance as appropriate prior to commencement of future final construction activities.				
	 Review of acid sulfate soil (ASS) conditions identified there is no appreciable risk of ASS presence within natural residual soils at the site given the formation environment, and therefore no future management for the potential presence of ASS is required during future ground disturbance works. 				

4. Site History and Searches

4.1 Land Titles Information / Historical Aerial Photography Review

A historical title and aerial photography review of the Hills Showground Station Precinct development area was carried out by JBS&G (2019) as summarised in **Section 3**. A summary of the information obtained from the historical aerial photographs in relation to the history of the site is presented in **Table 4-1** below.

Table 4-1	Summary of Aerial Photograph	
Aerial Photograph	Site Description	Land Use
1930	The site appeared to consist of densely timbered vegetation, rural residential properties and agricultural land. Surrounding areas appeared to be used for similar rural residential / agricultural purposes, with orchard groves noted to the east, south and west of the site. The Castle Hill Showground was located to the north of the site.	Rural residential / agricultural
1950	The site was largely cleared of timbered vegetation. The majority of the site appeared to be covered by grass. Previous rural residential structures remained unchanged. Surrounding areas were also largely cleared of vegetation and orchards. A series of sheds were constructed to the west of the site.	Rural residential / vacant
1961	The site appeared to be unchanged (consistent with the 1950 image). Surrounding areas were largely unchanged, with the exception of some scattered timber and/or waste materials noted to the east of the site.	Rural residentia / vacant
1970	Previous rural residential properties had been demolished. The land appeared to be largely vacant with a turfed football field constructed in the eastern portion of the site. Surrounding areas to the east was also part of the new playing field. More stockpiled timber/waste materials were noted to the east of the site. More sheds were constructed within the Castle Hill Showground (north of the site).	Vacant / part of the playing field
1986	The site was largely vacant. The playing field had been removed from the site and replaced by an oval sports track. The south-western corner of the site appeared to be used for car parking. Surrounding areas appeared to be undergoing redevelopment. Doran Drive had been constructed to the west of the site (forming the western site boundary). Beyond was the Council Depot, comprising two warehouse structures and associated car parking at grade. The Council Chambers had been constructed to the east of the site (consistent with the current structures). More residential properties were constructed to the south, east and north of the site, while commercial/industrial warehouses were constructed to the west of the site.	Vacant / car parking
1994	A large square-shaped building was constructed in the eastern portion of the site and a L-shaped building was present in the north-western site corner. The reminder of the site consisted of handstand pavements and landscaping areas. Surrounding areas were largely unchanged. The current metro station area (south of the site) appeared to be part of the car parking and landscaping area.	Commercial (performing arts centre)

Table 4-1 Summary of Aerial Photograph

Aerial Photograph	Site Description	Land Use
2002, 2009, 2012	The site appeared to be unchanged. Surrounding areas were largely unchanged.	Commercial (performing arts centre)
2014	Previous site structures had been demolished. The site appeared to be redeveloped, as associated with initial SMNW Project works. Two large warehouse buildings were constructed in the western portion and eastern corner of the site and two constructed water treatment basins were present in the central portion of the site. An above ground storage tank (AST) (potentially water/concrete batching) was constructed in the north-eastern site corner.	Construction storage yard
	An elongated excavation had been formed adjacent to the southern site boundary (Carrington Road), as associated with the construction of underground railway infrastructure. The Council Depot area to the west of the site appeared to be utilised as a storage compound for adjacent SMNW redevelopment activities. Two water retention ponds were noted to the southwest and northwest of the site. The Council Chambers to the east of the site appeared to be unchanged.	
2015	A network of shafts was observed onsite which led to a storage yard/load out area where presumably excess spoil was being transported off-site. A series of cylindrical black plastic storage tanks and several tall sheet metal ASTs had been installed adjacent to the AST and water treatment basins, indicative of a water treatment plant.	Construction storage yard
	Further material/equipment storage was present within the Council Depot area.	
2016	The network of shafts and the large warehouse (western portion) had been removed from the site, indicating bulk subsurface excavation of the Hills Showground Station had likely been completed. The series of plastic and sheet metal ASTs (water treatment plant) had also been removed. The single large AST and two water treatment basins remained onsite. The site appeared to be utilised as material/equipment storage yard. The shadowing in this image indicated that several ground levels occurred within the site during this period.	Construction storage yard
	Surrounding areas were largely unchanged, with the exception of former site structures had been demolished within the Council Depot area.	
2017	A significant increase in material storage had occurred onsite, with several large stockpiles of soil observed within the central portion of the site. The former Council Depot area was also utilised as an equipment holding and storage yard.	Construction storage yard
2018	Significant materials storage activities were in progress within the site. The commuter car park to the west of the site was undergoing construction. Construction of the Hills Showground Metro Station (built form) had begun, with the placement of concrete slab panels across the majority of the open excavation.	Construction storage yard
2019	The current site configuration had been established. The streets around the site had been constructed, sealed with hardstand pavement and lined with landscaped garden beds and vegetation. The site was cleared of all structures and filled to raise the level, with constructed batters noted along the site boundaries. Several minor stockpiles of soil/waste were noted on the ground surface.	Vacant

Aerial Photograph	Site Description	Land Use
	The construction of the Showground Metro Station (south of the site) and	

The construction of the Showground Metro Station (south of the site) and commuter carpark (west of the site) had been completed.

In summary, key findings related to the site indicated that the site was historically used as rural residential, agricultural, vacant pastoral and public open space (playing fields) until the late 1980s. The site was then developed into a commercial property (the former performing arts centre) between the 1990s and 2010s. Since 2013, significant ground disturbance works (bulk earthworks and material storage) have been completed as a result of the SMNW Project activities. The site was used for a holding and processing yard, which included excavated water treatment basins, material/equipment storage and site sheds (shown in **Photograph 4-1** below). During 2019, the current site configuration was established. The water treatment basins were removed and the site surface was significantly filled and raised above the surrounding land, as shown in **Photograph 4-2** below.

Photograph 4-1: Aerial photograph of the site showing previous site structures during the SMNW Project works (central portion of the development area) (dated 24/12/2014, Google Earth)

Photograph 4-2: Aerial photograph of the site showing established site configuration and levelled surface (dated 07/04/2019, Nearmap)

4.2 EPA Online Records

Searches of public registers maintained by the EPA for statutory notices and licensing agreements issued under the *Contaminated Land Management Act 1997* and *Protection of the Environment Operations Act 1997* were conducted by EI for this DSI.

4.2.1 Record of Notices Under Section 58 of CLM Act 1997

An on-line search of the contaminated land public record was conducted on 31 July 2020. The contaminated land public record is a searchable database of:

- Orders made under Part 3 of the CLM Act 1997;
- Notices available to the public under Section 58 of the CLM Act 1997;
- Approved voluntary management proposals under the CLM Act 1997 that have not been fully carried out and where the approval of the EPA has not been revoked;
- Site audit statements provided to the EPA under Section 53B of the CLM Act 1997 that relate to significantly contaminated land;
- Where practicable, copies of anything formerly required to be part of the public record; and
- Actions taken by the EPA under Section 35 or 36 of the Environmentally Hazardous Chemicals Act 1985 (the EHC Act 1985).

The search confirmed that the site and surrounding lands within close proximity (≤250m) were not subject to any regulatory notices relevant to the above legislations.

4.2.2 List of NSW Contaminated Sites Notified to EPA

A search through the *List of NSW Contaminated Sites Notified to the EPA* under Section 60 of the CLM Act 1997 was conducted on 31 July 2020. This list is maintained by the EPA and

includes properties on which contamination has been identified, but not deemed to be impacted significantly enough to warrant regulation. The site and surrounding lands within close proximity (≤250m) had not been notified as contaminated to the EPA (i.e. were not included in the list).

4.2.3 POEO Public Register

A search of the *Protection of the Environment Operations Act 1997* public register was conducted on 31 July 2020. This public register contains records related to environmental protection licences, applications, notices, audits, pollution studies and reduction programs. The search confirmed that the site and surrounding lands within close proximity (<250m) were not subject to any licensing agreements / notices / programs etc. relevant to this legislation.

5. Conceptual Site Model

5.1 Overview

In accordance with NEPC (2013) Schedule B2 – Guideline on Site Characterisation and to aid in the assessment of data collected for the site, EI developed a conceptual site model (CSM) that assessed plausible linkages between potential contamination sources, migration pathways, and receptors. The CSM provides a framework for the review of the reliability and useability of the data collected and to identify gaps in the existing site characterisation.

5.2 Subsurface Conditions

The sub-surface conditions across the site were expected to be a layer of fill, overlying natural clay and shale / sandstone bedrock. Groundwater was likely to be at a shallow to moderate depth below the site, flowing in a south-westerly direction towards Cattai Creek.

5.3 Potential Contamination Sources

On the basis of the DSI findings, potential contamination sources were as follows:

- Unknown type and concentration of contaminants within imported fill soils across the site;
- Hazardous building materials (including potential asbestos) present in the site soils as a result of historic demolitions;
- Historical pesticide use;
- Spills or leaks associated with former onsite storage of material/equipment;
- Former AST in the north-eastern site corner; and
- Former water treatment basins in the central portion of the site.

5.3.1 **PFAS** Assessment

EPA (2017) requires that PFAS are considered in assessing land contamination. A desktop survey of the probability for PFAS occurrence is provided in **Table 5-1**. This survey is based on guidelines from the *PFAS National Environmental Management Plan* (NEMP 2020). From this survey a decision can be made as to whether PFAS sampling of soil and groundwater is required. In this instance, the potential for PFAS to be present on-site was low and subsequently PFAS sampling / analysis of soil and water was unwarranted.

Preliminary Screening	Probability of Occurrence ¹
Is the past or present site activity listed in the NEMP $(2020)^2$ as being an activity associated with PFAS contamination. If so list activity: N/A	L
Is the past or present off-site activity up-gradient or adjacent to the site listed in the NEMP (2020) ² as being an activity associated with PFAS contamination. If so list activity:	L
Did fire training involving the use of suppressants occur on-site between 1970 and 2010?	L
Did fire training occur up-gradient of or adjacent to the site between 1970 and 2010? ³	L

Table 5-1 PFAS Decision Tree

Preliminary Screening	Probability of Occurrence ¹
Have "fuel" fires ever occurred on-site between 1970 and 2010? e.g. ignition of fuel (solvent, petrol, diesel, kero) tanks?	L
Have PFAS been used in manufacturing or stored on-site ?4	L
Could PFAS have been imported to the site in fill materials from a site with activity listed in NEMP (2020)?	L
Could PFAS-contaminated groundwater or run-off have migrated on to the site?	L
Is the site or adjacent sites listed in the NSW EPA PFAS Investigation Program? 5	L
If the probability is medium or high in any of the rows, does the site analytical suite need to be optimised to include preliminary sampling and testing for PFAS in soil (incl. ASLP testing) and waters?	No

Note 1 Probability: L – low (all necessary documentation has been reviewed and there is no recorded instance or compelling rationale), M – medium/moderate (all necessary documentation has been reviewed and there is potential evidence of a recorded instance with compelling rationale); H – high (all necessary documentation has been reviewed and there is evidence of a recorded instance with compelling rationale); risk, N/A – not applicable (or "-")].

Note 2 Activities listed in Appendix B of the NEMP (2020). Further information, refer to

https://www.oecd.org/env/ehs/risk-management/PFC_FINAL-Web.pd

Note 3 Runoff from up-gradient PFAS use may impact surface water, soil, sediment and groundwater.

Note 4 PFAS is used wide range of industrial processes and consumer products, including in the manufacture of nonstick cookware, specialised garments and textiles, Scotchguard[™] and similar products (used to protect fabric, furniture, leather and carpets from oils and stains), metal plating and in some types of fire-fighting foam (<u>https://www.nicnas.gov.au/chemical-information/factsheets/chemical-name/perfluorinated-chemicals-pfas</u>).

Note 5 https://www.epa.nsw.gov.au/your-environment/contaminated-land/pfas-investigation-program

5.3.2 Emerging Chemicals

The EPA uses Chemical Control Orders (CCOs) as a primary legislative tool under the EHC Act 1985 to control chemicals of concern and limit their potential impact on the environment. Considerations for chemicals controlled by CCOs, and other potential emerging chemicals, are outlined in **Table 5-2**. In this instance, the potential for an emerging chemical of concern to be present on-site was low and subsequently corresponding sampling / analysis of soil and water was unwarranted.

 Table 5-2
 Emerging or Controlled Chemicals

Chemicals of Concern (CCO or emerging)	Decision
Were aluminium smelter wastes used or stored on site (CCO, 1986)?	No
Do dioxin contaminated wastes (CCO, 1986) have the potential to impact the site? ¹	No
Were organotin products (CCO, 1989) used or stored on site? ²	No
Were polychlorinated biphenyls (PCBs) used or PCB wastes (CCO, 1997) stored on-site? ³	No
Were scheduled chemical or wastes (CCO, 2004) used or stored ⁴	Potential for small quantity pesticides to have been used on the land.
Are other emerging chemicals suspected? 5	No
If Yes to any questions, has site sampling suite been optimised to include specific sampling for other chemicals of concern in soil, air and water	-

Note 1 From burning of certain chemicals, smelting or chemical manufacturing or fire on or near the site.

Note 2 From anti-fouling paints used or removed at boat and ship yards and marinas.

Note 3 From older transformer oils and electrical capacitors

Note 4 Twenty-four mostly organochlorine pesticides and industrial by-products

Note 5 Other chemicals considered as emerging e.g. 1,4 dioxane (associated with some chlorinated VOCs).

5.4 Potential Contaminants

The potential contaminants at the site resulting from the site filling and previous site use were considered to be:

- Metals (M) arsenic, cadmium, chromium, copper, lead, mercury, nickel, zinc;
- Total Recoverable Hydrocarbons (TRH);
- Volatile Organic Compounds (VOC);
- Benzene, Toluene, Ethylbenzene and Xylenes (BTEX);
- Polycyclic Aromatic Hydrocarbons (PAH);
- Organochlorine and Organophosphorus Pesticides (OCP/OPP);
- Polychlorinated Biphenyls (PCB); and
- Asbestos.

5.5 Potential Contamination in the Context of the Site

An assessment of the potential contamination risks for the site is outlined in Table 5-3.

qualityPCB and asbestos(see logs, Appendix F).Hazardous buildingBuildingMetals (lead inLow				
unknown origin and qualitygroundwaterPAH, OCP, OPP, PCB and asbestosFilling was observed in all locations sample (see logs, Appendix F).Hazardous building products from demolition of historic site structuresBuilding fabricMetals (lead in particular), asbestos and PCBLowHistorical pesticide useShallow soilMetals (arsenic), OCP, OPPLowHistorical pesticide useShallow soilMetals (arsenic), OCP, OPPLowFormer onsite storage of material/equipmentSoils and groundwaterMetals, TRH, VOCs, BTEX, PAHModerate Impacts are likely to the soil layers and groundwaterFormer vater treatment basins in the central portion of the siteSoils and groundwaterMetals, TRH, VOCs, BTEX, PAHModerate Impacts are likely and considered of moderate risk.Former water treatment basins in the central portion of the siteSoils and groundwaterMetals, TRH, VOCs, BTEX, PAHModerate Potential spills and leaks from the former water treatment basins are likely. The	Potential Sources		•••••••	Likelihood for Contamination
products from demolition of historic site structuresfabricparticular), asbestos and PCBHistoric demolition of former structures hav occurred onsite. However, given no visual signs of contamination (i.e. cement sheet fragments) was observed during site visit, the overall risk is considered low.Historical pesticide useShallow soilMetals (arsenic), OCP, OPPLow If present, pesticides are expected to be limited to shallow soils considering the nature of their application.Former onsite storage of material/equipmentSoils and groundwaterMetals, TRH, VOCs, BTEX, PAHModerate Impacts are likely to the soil layers and groundwater groundwaterFormer AST in the north-eastern site cornerSoils and groundwaterMetals, TRH, VOCs, BTEX, PAHModerate Impacts to the soil layers and groundwater are likely and considered of moderate risk.Former water treatment basins in the central portion of the siteSoils and groundwaterMetals, TRH, VOCs, BTEX, PAHModerate Potential spills and leaks from the former water treatment basins are likely. The	unknown origin and		PAH, OCP, OPP,	Filling was observed in all locations sampled
Former onsite storage of material/equipmentSoils and groundwaterMetals, TRH, VOCs, BTEX, PAHModerate Impacts are likely to the soil layers and groundwater given significant materials storage activities happened onsite.Former AST in the north-eastern site cornerSoils and groundwaterMetals, TRH, VOCs, BTEX, PAHModerate Impacts are likely to the soil layers and groundwater given significant materials storage activities happened onsite.Former AST in the north-eastern site cornerSoils and groundwaterMetals, TRH, VOCs, BTEX, PAHModerate Impacts to the soil layers and groundwater are likely and considered of moderate risk.Former water treatment basins in the central portion of the siteSoils and groundwaterMetals, TRH, VOCs, BTEX, PAHModerate Potential spills and leaks from the former water treatment basins are likely. The	products from demolition of historic	0	particular), asbestos	Historic demolition of former structures have occurred onsite. However, given no visual signs of contamination (i.e. cement sheet fragments) was observed during site visit,
Former AST in the north-eastern site cornerSoils and groundwaterMetals, TRH, VOCs, BTEX, PAHModerate Impacts are likely to the soil layers and groundwater given significant materials storage activities happened onsite.Former AST in the north-eastern site cornerSoils and groundwaterMetals, TRH, VOCs, BTEX, PAHModerate Impacts to the soil layers and groundwater 	Historical pesticide use	Shallow soil	· · · ·	If present, pesticides are expected to be limited to shallow soils considering the
north-eastern site corner groundwater BTEX, PAH Impacts to the soil layers and groundwater are likely and considered of moderate risk. Former water treatment basins in the central portion of the site Soils and groundwater Metals, TRH, VOCs, BTEX, PAH Moderate Potential spills and leaks from the former water treatment basins are likely. The	•			Impacts are likely to the soil layers and groundwater given significant materials
basins in the central groundwater BTEX, PAH Potential spills and leaks from the former water treatment basins are likely. The	north-eastern site		, , ,	Impacts to the soil layers and groundwater
	basins in the central			Potential spills and leaks from the former water treatment basins are likely. The

5.6 Potential Receptors

The following potential receptors of contamination from the site were identified as:

- Construction and maintenance workers;
- Users of the adjacent land during construction works;
- Future site users; and
- Ecological receptors in areas of exposed soil / landscaping.

5.7 Preliminary Conceptual Site Model

A summary of EI's CSM, identifying the potential contamination sources, exposure pathways and human and environmental receptors is presented in **Table 5-4**.

5.8 Data Gaps

Based on the CSM derived for the site and the qualitative assessment of risks, the degree of any contamination associated with the potential contamination sources identified in **Section 5.3** constitute current investigation data gaps. These data gaps will require further assessment by intrusive investigation to quantify possible risks to further site receptors.

Potential Sources	Impacted Media	Contaminants of Potential Concern	Transport mechanism	Exposure pathway	Potential receptor
 Fill soils of unknown origin and quality Hazardous materials from demolition of historic structures Historical pesticide use 	Soil	Metals, TRH, VOCs, BTEX, PAH, OCP, OPP, PCB and asbestos	OCP, soils during site redevelopment, future • Dermal contact	 Dermal contact Inhalation of particulates Inhalation of vapour 	 Construction and maintenance workers Adjacent site users Future site users (within landscaping areas) Ecological receptors in areas of exposed soil / landscaping
 Former onsite storage of material/equipment 			outdoor and indoor air spaces	_	
 Former AST in the north-eastern site corner 			Volatilisation of contamination from soil and diffusion to indoor air spaces		
 Former water treatment basins in the central portion of the site 	Groundwater Dissolved Metals, TRH, VOCs, BTEX	Volatilisation of contamination from groundwater to indoor or outdoor air spaces (onsite and offsite)	IngestionDermal contactInhalation of vapours	 Construction and maintenance workers Future site users (basement users) 	
			Migration of dissolved phase impacts in groundwater	 Biota uptake 	 Aquatic ecosystems
			Potential seepage into deep basement intercepting water table (on and offsite)	_	

Table 5-4 Preliminary Conceptual Site Model

Page | 19

6. Methodology

6.1 Sampling, Analysis and Quality Plan (SAQP)

The SAQP ensures that the data collected as part of this DSI, and ongoing environmental works carried out at the site are representative, and provide a robust basis for site assessment decisions. This SAQP includes the following:

- Data quality objectives, including a summary of the objectives of the DSI;
- Investigation methodology including media to be sampled, details of analytes and parameters to be monitored, and a description of intended sampling points;
- Sampling methods and procedures;
- Field screening methods;
- Laboratory analysis methods;
- Sample handling, preservation and storage; and
- Analytical QA/QC.

6.2 Data Quality Objectives (DQO)

In accordance with the US EPA (2006) *Data Quality Assessment* and the EPA (2017) *Guidelines for the NSW Site Auditor Scheme*, Data Quality Objectives (DQO) were established by the EI team to determine the appropriate level of data quality needed for the specific data requirements of the project. The DQO process that was applied for this assessment is documented in **Table 6-1**.

Table 6-1 Summary of Project Data Quality Objectives

DQO Steps	Details	Comments (changes during investigation)
1. State the Problem Summarise the contamination problem that will require new environmental data, and identify the resources available to resolve the problem; develop a conceptual site model	 The site is to be redeveloped into multi-storey, mixed use commercial and residential apartment buildings with six-levels of basement, as outlined in Section 1.2. Historical information and site inspection observations identified the potential for soil and/or groundwater contamination due to various possible sources, as listed in Section 5.2. In light of the available historical information, a conceptual site model has been developed (Table 5-4) for the site. The findings of the investigation must provide supportive information on the environmental conditions of the site to determine the site's suitability for the proposed redevelopment. 	-
2. Identify the Goal of the Study (Identify the decisions) Identify the decisions that need to be made on the contamination problem and the new environmental data required to make them	 Based on the objectives outlined in Section 1.4, the following decisions are identified: Has the site been adequately characterised with sufficient and appropriate sampling coverage (vertical and lateral) to assess for the presence of potential contamination sources? Has the nature, source and extent of any onsite impacts (soil, groundwater, and/or vapour) been defined? What influence do site-specific, geologic conditions have on the fate and transport of any impacts that may be identified? Does the degree of impact coupled with the fate and transport of identified contaminants represent an unacceptable risk to identified human and/or environmental receptors on or offsite? Does the collected data provide sufficient information to allow the selection and design of an appropriate remedial strategy, assuming remedial action is necessary? If not, what are the remaining data gaps requiring closure? 	Given the site area (7,969 m ²) a minimum of 19 sampling points is required (based on NSW EPA Sampling Design Guidelines).
3. Identify Information Inputs (Identify inputs to decision) Identify the information needed to support any decision and specify which inputs require new environmental measurements	 Inputs to the decision making process include: Proposed development and land use; Aerial photographs and historical information; Previous investigations; Areas of concern identified during the site inspection, prior to intrusive investigations; National and NSW EPA guidelines endorsed under the NSW Contaminated Land Management Act 1997; Investigation sampling (soils and/or groundwater) and laboratory analysis for potential contaminants to verify the presence of onsite contamination and to evaluate the potential risks to sensitive receptors; and At the end of the investigation, a decision must be made regarding whether the soils and/or groundwater are suitable for the proposed development, or if additional investigation or remedial works are required to make the site suitable for the proposed use. 	-

DQO Steps	Details	Comments (changes during investigation)
4. Define the Boundaries of the Study Specify the spatial and temporal aspects of the environmental media that the data must represent to support decision	 Lateral – the investigation will be conducted within the cadastral boundaries of the site (Figure 2). Vertical – Investigations will be advanced to the depth of natural soils or rock. Temporal – Results are valid on the day of data / sample collection and remain valid as long as no changes occur on site or contamination (if present) does not migrate on site or on to the site from off-site sources. 	-
5. Develop the Analytic Approach (Develop a decision rule) To define the parameter of interest, specify the action level, and integrate previous DQO outputs into a single statement that describes a logical basis for choosing from alternative actions	 The decision rules for the investigation were: If the concentrations of contaminants in the soil and/or groundwater data exceed the adopted criteria; then assess the need to further investigate the extent of impacts onsite. Decision criteria for QA/QC measures are defined by the Data Quality Indicators (DQI) in Table 5-2. 	-
6. Specify Performance or Acceptance Criteria (Specify limits on decision errors) Specify the decision-maker's acceptable limits on decision errors, which are used to establish performance goals for limiting uncertainties in the data	 Based on the qualitative data gathered via site history review and site walkover observations, a non- statistical judgemental sampling design was selected for performing soil and groundwater sampling. The sampling will target identified as areas of environmental concern (AEC) based identified contamination sources, known contaminants of concern, and professional judgement. 	-
7. Develop the Detailed Plan for Obtaining Data (Optimise the design for obtaining data) Identify the most resource-effective sampling and analysis design for general data that are expected to satisfy the DQOs	 Conduct 19 soil sampling locations, distributed in a triangular grid pattern across the site. One round of groundwater sampling from the constructed four groundwater monitoring wells. An upper soil profile sample will be collected at each location and tested for chemicals of concern, to assess the environmental condition of the fill layer, and for potential impacts from historical, above-ground activities. Further sampling was also performed in deeper soil layers. Samples were selected for analytical testing based on field observations (including visual and olfactory evidence). Representative groundwater samples will be collected and analysed for groundwater characterisation. 	-

6.3 Data Quality Indicators

To ensure that the investigation data collected was of an acceptable quality, the investigation data set was assessed against the data quality indicators (DQI) outlined in **Table 6-2**, which related to both field and laboratory-based procedures. The assessment of data quality is discussed in **Section 7**.

Table 6-2 Data Quality Indicators

QA/QC Measure	Data Quality Indicator
Precision – A quantitative measure of the variability (or reproducibility) of data	 Data precision would be assessed by reviewing the performance of blind field duplicate sample sets, through calculation of relative percentage differences (RPD). Data precision would be deemed acceptable if RPDs are found to be less than 30%. RPDs that exceed this range may be considered acceptable where: Results are less than 10 times the limits of reporting (LOR). Results are less than 20 times the LOR and the RPD is less than 50%. Heterogeneous materials or volatile compounds are encountered. In cases where RPD values were considered unacceptable, the analytical results of primary and duplicate samples were both reviewed against the adopted assessment criteria. If the review indicates the variations in data between the primary and duplicate samples would result in a different conclusion (e.g. the higher concentration is failing the assessment criteria), the need for re-sampling / validation would be considered. Duplicate samples are to be collected at a rate of 5% (1 duplicate sample per 20 samples collected).
Accuracy – A quantitative measure of the closeness of reported data to the "true" value	 Data accuracy would be assessed through the analysis of: Method blanks, which are analysed for the analytes targeted in the primary samples. Matrix spike and matrix spike duplicate sample sets. Laboratory control samples. Calibration of instruments against known standards. Variation in results reported by the primary and secondary laboratories for primary and duplicate samples.
Representativeness – The confidence (expressed qualitatively) that data are representative of each medium present onsite	 To ensure the data produced by the laboratory is representative of conditions encountered in the field, the laboratory would carry out the following: Collect samples that are representative of the material being sampled and biased to any suspect locations based on physical evidence. Blank samples will be run in parallel with field samples to confirm there are no unacceptable instances of laboratory artefacts. Review of relative percentage differences (RPD) values for field and laboratory duplicates to provide an indication that the samples are generally homogeneous, with no unacceptable instances of significant sample matrix heterogeneities. The appropriateness of collection methodologies, handling, storage and preservation techniques will be assessed to ensure/confirm there was minimal opportunity for sample interference or degradation (i.e. volatile loss during transport due to incorrect preservation / transport methods). Consistency between field vapour screening information and laboratory results.

QA/QC Measure Data Quality Indicator		
Completeness – A measure of the amount of	Analytical data sets acquired during the assessment will be evaluated as complete, upon confirmation that:	
useable data from a data collection activity	 Standard operating procedures for sampling protocols were adhered to. 	
	 Copies of all COC documentation are presented, reviewed and found to be properly completed. 	
	 It can therefore be considered whether the proportion of "useable data" generated in the data collection activities is sufficient for the purposes of the land use assessment. 	
Comparability – The confidence (expressed qualitatively) that data may be considered to be equivalent for each sampling and analytical	Given that a reported data set can comprise several data sets from separate sampling episodes, issues of comparability between data sets are reduced through adherence to standard operation procedure and regulator-endorsed or published guidelines and standards on each data gathering activity. Sampling was conducted by the same sampler where possible to enhance project continuity and minimise variability in sampling technique.	
event	Sampling under inclement weather conditions were avoided to minimise variability contributed by weather conditions.	
	Samples to be collected using procedures meeting NSW EPA endorsed guidelines.	
	In addition the data will be collected by experienced samplers and NATA- accredited laboratory methodologies will be employed in all laboratory testing programs.	
Required Sampling	 Intra-laboratory Duplicate – 1 in 20 samples 	
Frequency	 Inter-laboratory Duplicate – 1 in 20 samples 	
	 Rinsate Blanks – 1 per batch where non-dedicated sampling equipment used 	
	 Trip Blanks – 1 sample per batch 	
	Trip Spike – 1 sample per batch	

6.4 Sampling Rationale

With reference to the CSM described in **Section 5.7**, soil and groundwater investigations were planned in accordance with the following rationale:

- Sampling of the widespread fill and underlying natural soils from 19 locations, distributed in a triangular grid pattern across the site;
- Installation of four groundwater monitoring wells in targeted locations and a single groundwater monitoring event (GME) to assess the impacts (if any) to groundwater; and
- Laboratory analysis of representative soil and groundwater samples for the identified potential contaminants.

6.5 Assessment Criteria

The assessment criteria proposed for this project are outlined in **Table 6-3**. These were selected from available published guidelines that are endorsed by national or state regulatory authorities, with due consideration of the exposure scenarios that are expected for various parts of the site, the likely exposure pathways, and the identified potential receptors.

Table 6-3	Adopted Investigation Levels for Soil and Groundwater

Environmental Media	Adopted Guidelines	Rationale
Soil	NEPM (2013)	Soil Health-based Investigation Levels (HILs)
	Soil HILs, EILs, HSLs, ESLs & Management Limits for TPHs	NEPM (2013) HIL-A thresholds for residential with garden/accessible soil were applied to assess the site as the most conservative approach. Soil Health-based Screening Levels (HSLs)
	DLWC (2002)	As a conservative approach, the NEPM (2013) Soil HSL-A&B thresholds for vapour intrusion at low to high density residential sites were applied to assess potential human health impacts from residual vapours resulting from petroleum, BTEX and naphthalene.
		For asbestos:
		 No visible asbestos for surface soils.
		 HSL-A: for bonded ACM.
		 0.001% w/w for friable asbestos in soil.
		Ecological Investigation Levels (EILs) / Ecological Screening Levels (ESLs)
		All soil samples would also be assessed against the NEPM (2013) EILs for urban residential and public open space land us as a conservative approach. EILs / ESLs only apply to the top 2 m (root zone). The derived EIL criteria presented by EI are calculated based on the average results of pH (6.1) and CEC (7.8 meq/100g). The adopted ESL criteria presented by EI are based on fine grained criteria.
		Management Limits for Petroleum Hydrocarbons
		Should the ESLs and HSLs be exceeded for petroleum hydrocarbons, soil samples would also assessed against the NEPM 2013 <i>Management Limits</i> for the TRH fractions F1 – F4 to assess propensity for phase-separated hydrocarbons (PSH) fire and explosive hazards & adverse effects on buried infrastructure.
		Soil Salinity
		Soil salinity classes were calculated from the Indicators of Urba Salinity (DLWC).
Groundwater	NEPM (2013) GILs for Fresh Waters	Groundwater Investigation Levels (GILs) for Fresh Water NEPM 2013 provides GILs for typical, slightly-moderately disturbed aquatic ecosystems, which are based on the ANZEC & ARMCANZ 2000 Trigger Values (TVs) for the 95% level of protection of aquatic ecosystems; however, the 99% TVs were applied for the bio-accumulative metals <i>cadmium</i> and <i>mercury</i> . The fresh water criteria were considered relevant as the Cattai Creek was the closest surface water receptor to the site.
	NEPM (2013) Groundwater HSLs for Vapour Intrusion	Groundwater Health-Based Screening Levels (HSLs) As a conservative approach, HSL-A&B thresholds for vapour intrusion in sand at low to high density residential sites were applied for groundwater to assess potential human health impacts from residual vapours resulting from petroleum, BTEX, and naphthalene.

6.6 Soil Investigation

The soil investigation works conducted at the site are described in **Table 6-4**. Test bore locations are illustrated in **Figure 2**.

 Table 6-4
 Summary of Soil Investigation Methodology

Activity/Item	Details
Fieldwork	Field works were conducted from 8 July to 22 July 2020 and comprised 19 soil sampling locations.
Investigation Method	Test bores BH1 to BH6 were drilled using a solid flight auger drilling rig, while test pits TP7 to TP19 were completed using an excavator.
Soil Logging	Collected soils were classified in the field with respect to lithological characteristics and evaluated on a qualitative basis for odour and visual signs of contamination. Soil classifications and descriptions were based on Australian Standard (AS) 1726-2017. Logs are presented in Appendix F .
Field Observations	A summary of field observations compiled during intrusive investigations is provided on the logs in Appendix F . Field observations are summarised in Section 8.1.2 .
Soil Sampling	 Soil samples were collected using a dry grab method (unused, dedicated nitrile gloves) & placed into laboratory-supplied, acid-washed, solvent-rinsed glass jars.
	 Blind field duplicates were separated from the primary samples and placed into glass jars.
	 A small amount of sample was separated from all fill samples and placed into a zip-lock bag for asbestos analysis.
	 A small amount of duplicate was collected from each soil samples and placed into zip-lock bag for Photo-ionisation Detector (PID) screening.
Decontamination Procedures	Nitrile sampling gloves were replaced between each sampling location. Samples were collected from a different part of the solid flight auger and the auger was cleaned from all residual soil waste between each location.
Sample Preservation	Samples were stored in a chilled chest (with frozen ice packs), whilst on-site and in transit to the laboratory. All samples were submitted and analysed within the required holding period, as documented in laboratory reports discussed in a later section.
Management of Soil Cuttings	Soil cuttings were used as backfill for completed boreholes and test pits.
Quality Control & Laboratory Analysis	A number of soil samples were submitted for analysis of previously-identified chemicals of concern by SGS Laboratories (SGS). QA/QC testing comprised intra- laboratory duplicates ('field duplicates') tested blind by SGS and an inter-laboratory field duplicate tested blind by Envirolab Services (Envirolab).
	All samples were transported under strict COC conditions and COC certificates and laboratory sample receipt documentation were provided to EI for confirmation purposes, as discussed in Section 7 .
Soil Vapour Screening	Screening for potential VOCs in collected soil samples was conducted using a pre- calibrated Photoionisation Detector (PID) with a 10.6 mV ionisation lamp.

6.7 Groundwater Investigation

The groundwater investigation works conducted at the site are described in **Table 6-5**. Monitoring well locations are illustrated in **Figure 2**.

Table 6-5	Summary of	Groundwater	Investigation	Methodology
-----------	------------	-------------	---------------	-------------

Activity/Item	Details	
Fieldwork	Groundwater monitoring wells were installed on 17, 21 & 22 July 2020. Groundwater sampling for all the monitoring wells was conducted on 29 July 2020. Additional sampling was conducted on 18 August 2020 for BH4M-a (after fulling developing the well).	
Well Construction	Well construction details are summarised as follows:	
	 BH3M-a (located hydraulically down-gradient) installed to a total depth of 6.1 mBGL (screened from 3.1-6.1 mBGL). 	
	 BH4M-a (located hydraulically up-gradient) installed to a total depth of 7.7 mBGL (screened from 4.7-7.7 mBGL). 	
	 BH5M (located hydraulically down-gradient) installed to a total depth of 6.5 mBGL (screened from 2.5-6.5 mBGL). 	
	 BH7M (located hydraulically down-gradient) installed to a total depth of 4.9 mBGL (screened from 1.9-4.9 mBGL). 	
	Well construction was in general accordance with the standards described in NUDLC (2012) and involved the following:	
	 50 mm, Class 18 uPVC, threaded, machine-slotted screen and casing; 	
	 Base and top of each well was sealed with a uPVC cap; 	
	 Annular, graded sand filter was used to approximately 300 mm above top of screen interval; 	
	 Granular bentonite was applied above annular filter to seal the screened interval; 	
	 Cuttings backfill just below ground level; and 	
	Surface completion comprised a PVC stick-up pipe, with plastic cap.	
Well Development	Well development was conducted for each well directly following installation. This involved agitation within the full length of the water column using a dedicated, HDPE, disposable bailer, followed by removal of water and accumulated sediment using a 12V, HDPE submersible bore pump (Proactive Environmental, model Super Twister). Pumping was continued until no further reduction in suspended sediment was observed (i.e. after removal of several well volumes).	
Well Survey	No well survey having been completed at the site. The monitoring well locations were compared to the reduced levels (mAHD) given on the survey plan (see Appendix C).	
Well Gauging and Groundwater Flow	Monitoring wells were gauged for standing water level (SWL) prior to sampling at the commencement of the GME on 29 July 2020.	
Direction	Based on the water level measured at each monitoring well (Table 8-3), groundwater was inferred to flow south-westerly.	
Well Purging and Field Testing	No volatile or organic odours were detected during any stage of well purging or sampling. The measurement of water quality parameters was conducted repeatedly during purging and the details were recorded onto field data sheets, once water quality parameters stabilised. Field measurements for Dissolved Oxygen (DO), Electrical Conductivity (EC) and pH of the purged water were also recorded during well purging. Purged water volumes removed from each well and field test results are summarised in Table 8-3 .	

Activity/Item	Details		
Groundwater sampling	Groundwater was sampled using a micro-purge system (with the exception of the additional round of sampling for BH4M-a, which was sampled using a HDPE base for heavy metal testing only). Water was continuously measured for four parameters (Temperature, EC, Redox, DO, pH). Once three consecutive field measurements were recorded for the purged waters to within \pm 10% for DO, \pm 3 for EC, \pm 0.2 for pH, \pm 0.2° for temperature and \pm 20 for redox, this was considered to indicate that representative groundwater quality had been achieve and final physio-chemical measurements were recorded. Groundwater samples were then collected from the micro-purge sampling pump discharge point.		
Decontamination Procedure	 The micro-purge pump is decontaminated in a solution of potable water and Decon 90 and then rinsed with potable water between each location. The micro-purge system employs a disposable bladder and tubing system to further minimise potential cross contamination. All sample containers were supplied by the laboratory and were only opened once, immediately prior to sampling. Ice packs kept in an insulated chest were used to keep the samples cool; and The water level probe and sampling kit were washed in a solution of potable water and Decon 90 and then rinsed with potable water between uses. 		
Sample Preservation	 Sample containers were supplied by the laboratory with the following preservatives: One, 1 litre amber glass, acid-washed and solvent-rinsed bottle; Two, 40ml glass vials, pre-preserved with dilute hydrochloric acid, Teflon-sealed; and One, 250mL, HDPE bottle, pre-preserved with dilute nitric acid (1 mL). Samples for metals analysis were field-filtered using 0.45 µm pore-size filters. All containers were filled with sample to the brim then capped and stored in ice-filled chests, until completion of the fieldwork and during sample transit to the laboratory. 		
Sample Transport	After sampling, the ice brick filled coolers were transported to SGS Australia Pty Ltd using Chain-of-Custody (COC) procedures. Inter-laboratory duplicate (ILD) samples were forwarded to Envirolab Services Pty Ltd (Envirolab) for QA/QC analysis. A Sample Receipt Advice (SRA) was provided by each laboratory to document sample condition upon receipt. Copies of SRA and COC certificates are presented in Appendix H .		
Quality Control and Laboratory Analysis	All groundwater samples were submitted for analysis of previously-identified chemicals of concern by SGS Laboratories (SGS). QA/QC testing comprised intra- laboratory duplicates ('field duplicates') tested blind by SGS and an inter-laboratory field duplicate tested blind by Envirolab Services (Envirolab). All samples were transported under strict Chain-of-Custody (COC) conditions and COC certificates and laboratory sample receipt documentation were provided to EI for confirmation purposes.		

7. Data Quality Assessment

7.1 Quality Control Process

The assessment of data quality is defined as the scientific and statistical evaluation of environmental data to determine if the data meets the objectives for the project (USEPA 2006). Data quality assessment included an evaluation of the compliance of the field sampling, field and laboratory duplicates and laboratory analytical procedures and an assessment of the accuracy and precision of these data from the laboratory quality control measurements. The findings of the data quality assessment in relation to the current investigation at the site are discussed in detail in **Appendix J**.

The QC measures generated from the field sampling and laboratory analytical program are summarised in **Table 7-1**.

Data Quality	Control	Conformance [Yes, Part, No]	Report Sections
Preliminaries	Data Quality Objectives established	Yes	See DQO/DQI, Section 6.2,6.3
Field work	Suitable documentation of fieldwork observations including borehole logs, sample register, field notes	Yes	See Appendix F & G
Sampling Plan	Use of relevant and appropriate sampling plan (density, type, and location)	Yes	See sample rationale, Section 6.4
	All media sampled and duplicates collected	Part	See Appendix G and H, BH7M did not have enough water for sampling.
	Use of approved and appropriate sampling methods (soil, groundwater, air quality)	Yes	See methodology, Section 6.6 and 6.7
	Preservation and storage of samples upon collection and during transport to the laboratory	Yes	See methodology, Section 6.6 and 6.7
	Appropriate Rinsate, Field and Trip Blanks taken	Yes	See Appendix H
	Completed field and analytical laboratory sample COC procedures and documentation	Yes	See Appendix H
Laboratory	Sample holding times within acceptable limits	Yes	See laboratory QA, Appendix J.3
	Use of appropriate analytical procedures and NATA-accredited laboratories	Yes	See laboratory report, Appendix I

Table 7-1 Quality Control Process

Data Quality	Control	Conformance [Yes, Part, No]	Report Sections
	LOR/PQL low enough to meet adopted criteria	Yes	See laboratory report, Appendix I
	Laboratory blanks	Yes	See laboratory QA, Appendix J.3
	Laboratory duplicates	Yes	See laboratory QA, Appendix J.3
	Matrix spike/matrix spike duplicates (MS/MSDs)	Yes	See laboratory QA, Appendix J.3
	Surrogates (or System Monitoring Compounds)	Yes	See laboratory QA, Appendix J.3
	Analytical results for replicated samples, including field and laboratory duplicates and inter-laboratory duplicates, expressed as Relative Percentage Difference (RPD)	Yes	See laboratory QA, Appendix J.3
	Checking for the occurrence of apparently unusual or anomalous results, e.g. laboratory results that appear to be inconsistent with field observations or measurements	Yes	See Appendices B and F
Reporting	Report reviewed by senior staff to assess project meets desired quality, EPA guidelines and project outcomes.	Yes	See document control

7.2 Quality Overview

On the basis of the field and analytical data validation procedure employed, the overall quality of the analytical data produced for the site was considered to be of an acceptable standard for interpretive use and preparation of a conceptual site model (CSM).

8. Results

8.1 Soil Investigation Results

8.1.1 Subsurface Conditions

The general site lithology encountered during the soil investigations may be described as a layer of anthropogenic filling, overlying residual clay and sandstone bedrock. More detailed description is summarised in **Table 8-1** and the logs from these works are presented in **Appendix F**.

Table 8-1	Generalised	Subsurface	Profile	(mBGL)
-----------	-------------	------------	---------	--------

Layer	Description	Average depth to top and bottom of layer (mBGL)
	Silty CLAY; low plasticity, pale grey to red brown/dark brown, with sandstone, gravels and sand, no odour.	0.0-4.0
Fill	Gravelly SAND; fine to medium grained, brown, with gravels, clay, sandstone and foreign materials (brick, metal, concrete, plastic and steel wires), no odour.	0.0-1.8
	Silty SAND; fine to medium grained, brown, with low plasticity clay and concrete fragments, no odour.	0.0-2.0
Residual	Silty CLAY; low to medium plasticity, light brown mottled orange, no odour.	1.0-1.4
	Silty CLAY; medium plasticity, pale grey, with gravels and sand, grading to extremely weathered sandstone, no odour.	0.6-4.6
	Sandy CLAY; low to medium plasticity, pale grey and orange-brown, grading to extremely weathered sandstone, no odour.	2.6-5.0+
Bedrock	SANDSTONE; fine to medium grained, pale grey and orange-brown, low to medium strength, slightly to distinctly weathered, no odour.	2.1-3.95+

+ Termination depth of test pit and borehole.

8.1.2 Field Observations and PID Results

Soil samples were obtained from the test bores and test pits at various depths ranging between 0.1 to 5.0 mBGL. All examined soil samples were evaluated on a qualitative basis for odour and visual signs of contamination (e.g. hydrocarbon odours, oil staining, petrochemical filming, asbestos fragments, ash, charcoal) and the following observations were noted:

- Hydrocarbon odour was noted in fill at test pits: TP12 (from depth at 1.7m) and TP13 (from depth at 1.8m);
- Weak odour was noted in fill and natural soils at BH2 (from depth 1.0m to 2.0m);
- Steel wires were noted in fill at test pits: TP10, TP13 and TP15;
- Concrete footing was noted at the bottom of the test pit at TP 16; and
- VOC concentrations from collected soil samples were low, ranging between 0.3 and 1.6 parts per million (ppm). VOC concentrations were field-screened using a portable Photo-ionisation Detector (PID). The PID results are shown in the logs (Appendix F).

8.2 Groundwater Investigation Results

8.2.1 Monitoring Well Construction

A total of four groundwater monitoring wells were installed on the site on 17, 21 &22 July 2020. Well construction details for the installed groundwater monitoring wells are summarised in **Table 8-2**.

Well ID	Well Depth (mBGL)	Well Stick up (m)	Screen Interval (mBGL)	Lithology Screened
BH3M-a	6.1	+1.0	3.1-6.1	Sandstone
BH4M-a	7.7	+0.96	4.7-7.7	Sandstone
BH5M	6.5	+0.6	2.5-6.5	Sandstone
BH7M	4.9	+1.0	1.9-4.9	Sandstone

Table 8-2 Monitoring Well Construction Details

mBGL- Metres Below Ground Level.

8.2.2 Field Observations

A groundwater monitoring event (GME) was conducted on 29 July 2020 for all the monitoring wells installed. In addition, another round of sampling for BH4M-a was conducted on 18 August to confirm the heavy metal results. Field data was recorded before sampling, as presented in **Table 8-3**. Field data sheets are attached in **Appendix G**. Samples were then evaluated on the basis of odour and visual signs of contamination, with the following observations noted:

- Groundwater in monitoring well BH3M-a and BH5M was noted to be light brown, with low to medium turbidity, while in BH4M-a, groundwater was noted to be brown, with medium to high turbidity;
- No sufficient water was in monitoring well BH7M for sampling and field observation;
- No olfactory or visual evidence of contamination was noted in the monitoring wells;
- No sheens were noted within the groundwater of any monitoring well sampled; and
- Additional round of sampling of BH4M-a recorded the groundwater in this well was noted to be light brown, with low to medium turbidity on 18 August 2020.

Well ID	SWL (mBTOC)	SWL (mBGL)	SWL (mAHD)	DO (mg/L)	Field pH	Field EC (μS/cm)	Temp (°C)	Redox (mV)
BH3M-a	3.58	2.58	88.92	0.59	5.15	2809	21.08	106.2
BH4M-a	5.44	4.48	93.02	0.91	5.24	3088	20.95	97.03
BH5M	4.64	4.04	89.96	0.80	5.29	2782	20.90	92.4
BH7M	-	-	-	-	-	-	-	-

 Table 8-3
 Groundwater Field Data

SWL – Standing Water Levels as measured from TOC (top of well casing) prior to groundwater sampling. BGL – Below Ground Level.

AHD – Australian Height Datum (approximate).

8.3 Laboratory Analytical Results

8.3.1 Soil Analytical Results

A summary of the laboratory results showing number of tested samples, minimum/maximum analyte concentrations for primary samples and samples found to exceed the SILs, is presented in **Table 8-4**. More detailed tabulations of results showing the tested concentrations for individual samples alongside the adopted soil criteria are presented in **Table T1** in **Appendix B**.

Completed documentation used to track soil sample movements and laboratory receipt (i.e. COC and SRA forms) are copied in **Appendix H** and all laboratory analytical reports for tested soil samples are presented in **Appendix I**.

No. of Primary Samples	Analyte	Min. Conc. (mg/kg)	Max. Conc. (mg/kg)	Sample(s) Exceeding SILs
Priority Metals				
43	Arsenic	<1	14	None
43	Cadmium	<0.3	<0.3	None
43	Chromium (Total)	2.3	42	None
43	Copper	<0.5	130	None
43	Lead	2	23	None
43	Nickel	<0.5	34	None
43	Zinc	<2	87	None
43	Mercury	<0.05	<0.05	None
PAHs				
42	Benzo(α)pyrene	<0.1	0.5	None
42	Carcinogenic PAHs	<0.3	0.8	None
42	Naphthalene	<0.1	<0.1	None
42	Total PAHs	<0.8	8	None
TRHs (including	BTEX)			
42	TRH C ₆ -C ₁₀ minus BTEX (F1)	<25	<25	None
42	TRH >C10-C16 (F2) minus Naphthalene	<25	<25	None
42	TRH >C ₁₆ -C ₃₄ (F3)	<90	280	None
42	TRH >C ₃₄ -C ₄₀ (F4)	<120	370	None
42	Benzene	<0.1	<0.1	None
42	Toluene	<0.1	<0.1	None
42	Ethylbenzene	<0.1	<0.1	None
42	Total Xylenes	<0.3	<0.3	None
OCPs				

Table 8-4 Summary of Soil Analytical Results

No. of Primary Samples	Analyte	Min. Conc. (mg/kg)	Max. Conc. (mg/kg)	Sample(s) Exceeding SILs
38	OCPs	<1	<1	None
OPPs				
38	OPPs	<1.7	<1.7	None
PCBs				
38	PCBs	<1	<1	None
Asbestos (prese	nce/absence)			
39	Asbestos	Not Detected	Not Detected	None

8.3.2 Soil salinity

Laboratory results indicated that natural soils on site were non-saline. Soils were found to be slightly acidic (pH ranged from 4.6 to 6.1), with the exception of soil sample at BH3M reported pH at 9.4.

8.3.3 Groundwater Analytical Results

Laboratory analytical results for groundwater samples are summarised in **Table 8-5**, which also include the test sample quantities, minimum/maximum analyte concentrations for primary samples and samples found to exceed the GILs. More detailed tabulations of results showing the tested concentrations for individual samples alongside the adopted groundwater criteria are presented in **Table T2** in **Appendix B**.

Completed documentation used to track groundwater sample movements and laboratory receipt (COC and SRA forms) are copied in **Appendix H**. Copies of the laboratory analytical reports are attached in **Appendix I**.

Table 8-5	Summary of Ground	water Analytic	al Results	
No. of Primary Samples	Analyte	Min. Conc. (µg/L) ¹	Max. Conc. (µg/L) ¹	Sample(s) Exceeding GILs
Priority Me	etals			
3	Arsenic	<1	2	None
3	Cadmium	<0.1	0.2	None
3	Chromium (Total)	1	3	BH5M (3μg/L) exceeded fresh water criteria for Cr VI (1 μg/L)
3	Copper	22	23	BH3M-a (22 μg/L), BH4M-a (22 μg/L) and BH5M (23 μg/L) exceeded fresh water criteria (1.4 μg/L)
3	Lead	<1	30	BH4M-a (30 μg/L) and BH5M (11μg/L) exceeded fresh water criteria (3.4μg/L)
3	Nickel	26	38	BH3M-a (26µg/L), BH4M-a (38 µg/L) and BH5M (27µg/L) exceeded fresh water criteria (11µg/L)
3	Zinc	74	240	BH3M-a (74 µg/L), BH4M-a (240 µg/L) and BH5M (180 µg/L) exceeded fresh water criteria (8µg/L)
3	Mercury	<0.1	<0.1	None
PAHs				
3	Benzo(α)pyrene	<0.1	<0.1	None
3	Naphthalene	<0.1	<0.1	None
3	Total PAHs	<1	<1	None
TRHs (incl	uding BTEX)			
3	TRH C ₆ -C ₁₀ minus BTEX (F1)	<50	52	None
3	TRH >C10-C16 (F2) minus Naphthalene	<60	76	None
3	TRH >C ₁₆ -C ₃₄ (F3)	<500	<500	None
3	TRH >C ₃₄ -C ₄₀ (F4)	<500	<500	None
3	Benzene	<0.5	<0.5	None
3	Toluene	<0.5	<0.5	None
3	Ethylbenzene	<0.5	<0.5	None
3	o-xylene	<0.5	<0.5	None
3	m/p-xylene	<1	<1	None
VOCs				

Table 8-5 Summary of Groundwater Analytical Results

No. of Primary Samples	Analyte	Min. Conc. (µg/L) ¹	Max. Conc. (μg/L) ¹	Sample(s) Exceeding GILs
3	Chloroform (THM)	1.7	39	None
3	Bromodichloromethane (THM)	<0.5	6.6	None
3	Dibromochloromethane (THM)	<0.5	1.6	None
3	Total VOC	<10	48	None

Note 1 Reported minimum and maximum concentrations shows results after resampling of BH4M-a.

9. Site Characterisation

9.1 Subsurface Conditions

The general site lithology encountered during this investigation can be described as a layer of anthropogenic filling overlying residual clay and sandstone bedrock. The depth of fill soils at the site ranged from 0.6 mBGL in the south-eastern corner at BH1 to 4.0 mBGL in the north-eastern corner at BH4M. The fill soils at the central portion of the site (TP15 and TP18) and south-western corner of the site (BH3M, TP12 and TP13) were also noted to be of moderate depths (ranged between 2.1m and 3.0m BGL).

9.2 Soil Impacts

No visual signs of contamination (e.g. oil staining, petrochemical filming, asbestos fragments) were noted during the soil investigation.

Contaminant concentrations in soils, sampled across the site, were all found to be below the most conservative human health (HIL A / HSL A&B) and ecological criteria.

9.3 Salinity

Laboratory results indicated that natural soils on site were non-saline. Soils were found to be slightly acidic (pH ranged from 4.6 to 6.1), with the exception of soil sample at BH3M reported pH at 9.4.

9.4 Groundwater Impacts

With reference to **Table 8-5** and **Table T2**, concentrations of PAHs, BTEX, TRHs and VOCs were reported below the adopted criteria.

For heavy metals, chromium, copper, lead, nickel and zinc were detected in groundwater at levels above the adopted GILs. However, as the elevation of metal concentrations are common in urban groundwater environments, the detected concentrations are considered to be indicative of background conditions, rather than site specific impacts. In addition, no on-site sources in relation to heavy metals were identified in site soils.

Tested TRH concentrations were below the PQL, with the exception of TRH-F1 fraction was detected in BH4M-a ($52\mu g/L$) and TRH-F2 fraction was detected in BH5M ($76\mu g/L$), which slightly exceeded the laboratory PQL ($50\mu g/L$ for TRH-F1 and $60\mu g/L$ for TRH-F2).

For the proposed mixed use, residential and commercial land use, the TRH-F1 and TRH-F2 results can be compared to the HSL-A&B (low to high density residential) and HSL-D (commercial/industrial) criteria. In such a comparison, the TRH-F1 HSL-A&B and HSL-D criteria are 1,000µg/L and 6,000µg/L, and the TRH-F2 HSL-A&B and HSL-D criteria are 1,000µg/L and Not-Limiting, so the results are below these criteria and thus the TRH in groundwater is not considered to pose human health risk to the current land use.

Total VOC concentrations were detected in BH3M-a $(13\mu g/L)$ and BH4M-a $(48\mu g/L)$ for Trihalomethanes (THMs). As the detected THMs concentrations were low, it is not considered to pose human health risk at the site.

9.5 Review of Conceptual Site Model

Preliminary CSM discussed in **Sections 5.7** generally identified a low to moderate contamination risk on the site, relating to the widespread fill across the site, hazardous materials from demolition of historic structures, historical pesticide use, former onsite storage of material/equipment, former AST and water treatment basins in the north-eastern site corner and central portion of the site. On the basis of investigation findings, the preliminary CSM was considered to appropriately identify contamination sources, migration mechanisms and exposure pathways, as well as potential receptors. Previously known data gaps, as discussed in **Section 5.8** have largely been addressed, with the exception of the following:

- Groundwater quality in monitoring well BH7M is not known due to insufficient water for sampling;
- No well survey having been completed at the site. Based on the limited survey data and depth to water the groundwater appears to be flowing to the south west toward Cattai Creek in a similar direction to the overall topography.

9.6 Preliminary Waste Classification

Preliminary waste classification was conducted during this investigation. This information is for the purpose of development planning and does not constitute a formal waste classification certificate, as required by the *NSW Waste Regulations 2014*. A table with tabulated data can be found in **Appendix B**.

It is recommended that the fill soils on the site classified as General Soil Waste (GSW). The analytical results were below CT1 criteria and depending on the receiving facility might be classified as GSW-recyclable. The results also met the Excavated Natural Material (ENM) criteria but testing is needed for pH, EC and foreign material. The underlying natural soils on the site can be classified as Virgin Excavated Natural Material (VENM).

10. Conclusions

The property located at Doran Drive Precinct, 2 Mandala Parade, Castle Hill NSW was the subject of a Detailed Site Investigation, which was conducted in order to assess the nature and degree of on-site contamination associated with current and former uses of the property. Based on the findings of this DSI it was concluded that:

- The site was found to be a rectangular vacant block, secured by construction hoarding and security fencing. It was elevated above the surrounding land, which displayed a moderate downslope towards the southwest. The ground surface was covered by exposed fill materials, with limited vegetation present onsite. No visual evidence of gross contamination, UPSS or UST was observed on the site during the site inspection.
- A review of historical information indicated the site was used as rural residential, agricultural, vacant pastoral and public open space (playing fields) until the late 1980s. Since 2013, significant ground disturbance works (bulk earthworks and material storage) have been completed as a result of the SMNW Project activities. The site was used for a holding and processing yard during that period, which included excavated water treatment basins, material/equipment storage and site sheds. During 2019, the current site configuration was established and cleared of all previous structures. The site surface was significantly filled and raised above the surrounding land.
- The site and surrounding lands were not listed on any of the EPA records reviewed.
- Soil sampling and analysis were conducted at 19 locations across the site.
 - The sub-surface layers observed comprised of fill materials (up to 4.0m depth) overlying natural clay and sandstone bedrock;
 - Laboratory results for all the soil samples collected reported concentrations below the most conservative human health and ecological based SILs;
 - Laboratory results indicated that natural soils on site were non-saline. Soils were found to be slightly acidic (pH ranged from 4.6 to 6.1), with the exception of soil sample at BH3M reported pH at 9.4
- Four groundwater monitoring wells were installed on the site.
 - Standing Water Levels (SWL) were observed between 2.58 and 4.48 mBGL;
 - Groundwater was likely to flow south-westerly towards Cattai Creek;
 - Concentrations of PAHs, BTEX, TRHs and VOCs were reported below the adopted criteria;
 - Concentrations of heavy metals were reported below the adopted freshwater criteria, with the exception of chromium, copper, lead, nickel and zinc. However, the detected concentrations are considered to be indicative of background conditions, rather than site specific impacts.
 - Therefore the identified groundwater concentrations are not considered to present a cause for human health and environmental concern.
- Based on the analytical results, the following preliminary classifications were provided (with reference to the EPA (2014) Waste Classification Guidelines):

- The fill materials on the site were classified as *General Solid Waste (Non-Putrescible)*; and
- The underlying natural soils on the site were classified as *Virgin Excavated Natural Material* (VENM).

Based on the findings of this investigation, EI conclude that the site is suitable for the proposed mixed commercial and residential development provided the recommendations detailed in **Section 11** are implemented.

11. Recommendations

In view of the above findings and in accordance with the NEPM 2013 guidelines, it is considered that the site is suitable for the proposed mixed commercial and residential development on completion of the following recommendations:

- Any fill or natural soil materials that are required to be removed from site as surplus materials (including virgin excavated natural materials or VENM) as part of any excavation and foundation works are to be classified for off-site disposal in accordance the EPA (2014) *Waste Classification Guidelines* and *Protection of the Environmental Operations (Waste) Regulations* (2014);
- Any material imported to the site should be validated as suitable for the intended use in accordance with EPA guidelines.

12. Statement of Limitations

The findings presented in this report are the result of discrete and specific sampling methodologies used in accordance with best industry practices and standards. Due to the site-specific nature of soil sampling from point locations, it is considered likely that all variations in subsurface conditions across a site cannot be fully defined, no matter how comprehensive the field investigation program.

While normal assessments of data reliability have been made, EI assumes no responsibility or liability for errors in any data obtained from previous assessments conducted on site, regulatory agencies (e.g. Council, EPA), statements from sources outside of EI, or developments resulting from situations outside the scope of works of this project.

Despite all reasonable care and diligence, the ground conditions encountered and concentrations of contaminants measured may not be representative of conditions between the locations sampled and investigated. In addition, site characteristics may change at any time in response to variations in natural conditions, chemical reactions and other events, e.g. groundwater movement and or spillages of contaminating substances. These changes may occur subsequent to El's investigations and assessment.

EI's assessment is necessarily based upon the result of the site investigation and the restricted program of surface and subsurface sampling, screening and chemical testing which was set out in the proposal. Neither EI, nor any other reputable consultant, can provide unqualified warranties nor does EI assume any liability for site conditions not observed or accessible during the time of the investigations.

This report was prepared for the above named client and no responsibility is accepted for use of any part of this report in any other context or for any other purpose or by other third parties. This report does not purport to provide legal advice.

This report and associated documents remain the property of EI subject to payment of all fees due for this assessment. The report shall not be reproduced except in full and with prior written permission by EI.

13. References

Bannerman, S.M. and Hazelton, P.A. (1990) *Soil Landscapes of the Penrith 1:100,000 Sheet map and report*, Soil Conservation Service of NSW, Sydney.

Daw & Walton Consulting Surveyors (2020) *Detail Survey* @ 2 *Mandala Parade, Castle Hill NSW 2154*, Job No. 5042-20, Revision 01, dated 07 August 2020.

DIPNR (2003) Salinity Potential in Western Sydney 2002, dated March 2003.

DMR (1991) *Penrith 1:100,000 Geological Series Sheet 9030 (Edition 1)*, Geological Survey of New South Wales, Department of Mineral Resources.

EPA (1995) *Sampling Design Guidelines*, Contaminated Sites Unit, Environment Protection Authority of New South Wales, EPA 95/59, September 1995.

EPA (2014) Waste Classification Guidelines – Part 1: Classifying waste, Environment Protection Authority of New South Wales, Doc. EPA 2014/0796, November 2014.

EPA (2017) Contaminated Land Management: Guidelines for the NSW Site Auditor Scheme (3rd Edition), NSW EPA, October 2017.

EPA (2020) Consultants Reporting on Contaminated Land: Contaminated Land Guidelines, NSW EPA, EPA 2020P2233, April 2020.

Murphy CL (1997) *Prospect/Parramatta River Acid Sulfate Soil Risk Map*, Department of Land and Water Conservation, Sydney, Second Edition, supplied by the Sydney South Coast, Geographical Information Systems Unit.

NEMP (2020) *PFAS National Environmental Management Plan*, National Chemicals Working Group of the Heads of the EPAs Australia and New Zealand (HEPA), January 2020.

NEPC (2013) Schedule B1 Guideline on Investigation Levels for Soil and Groundwater, Schedule B2 Guideline on Site Characterisation and Schedule B4 Guideline on Site-Specific Health Risk Assessments, from the National Environmental Protection (Assessment of Site Contamination) Amendment Measure 1999, National Environmental Protection Council, April 2013.

NHMRC (2018) Australian Drinking Water Guidelines Paper 6 National Water Quality Management Strategy, National Health and Medical Research Council, National Resource Management Ministerial Council, Commonwealth of Australia, Canberra. Version 3.5, August 2018.

NSW Government (1997) Contaminated Land Management Act 1997 No 140.

NUDLC (2012) *Minimum Construction Requirements for Water Bores in Australia*, National Uniform Drillers Licensing Committee 2011, Third edition, February 2012.

RPS Australia East Pty Ltd (2019) *Plan Showing Detail & Contour Survey Showground Road Castle Hill*, Drawing No. PR144385-DET-001b.dwg, Revision A, dated 4 October 2019.

SEPP 55 (1997) *State Environmental Planning Policy 55*, Remediation of Land under the Environmental Planning and Assessment Act 1997.

Sydney Regional Environmental Plan No 20—Hawkesbury-Nepean River (No 2-1997).

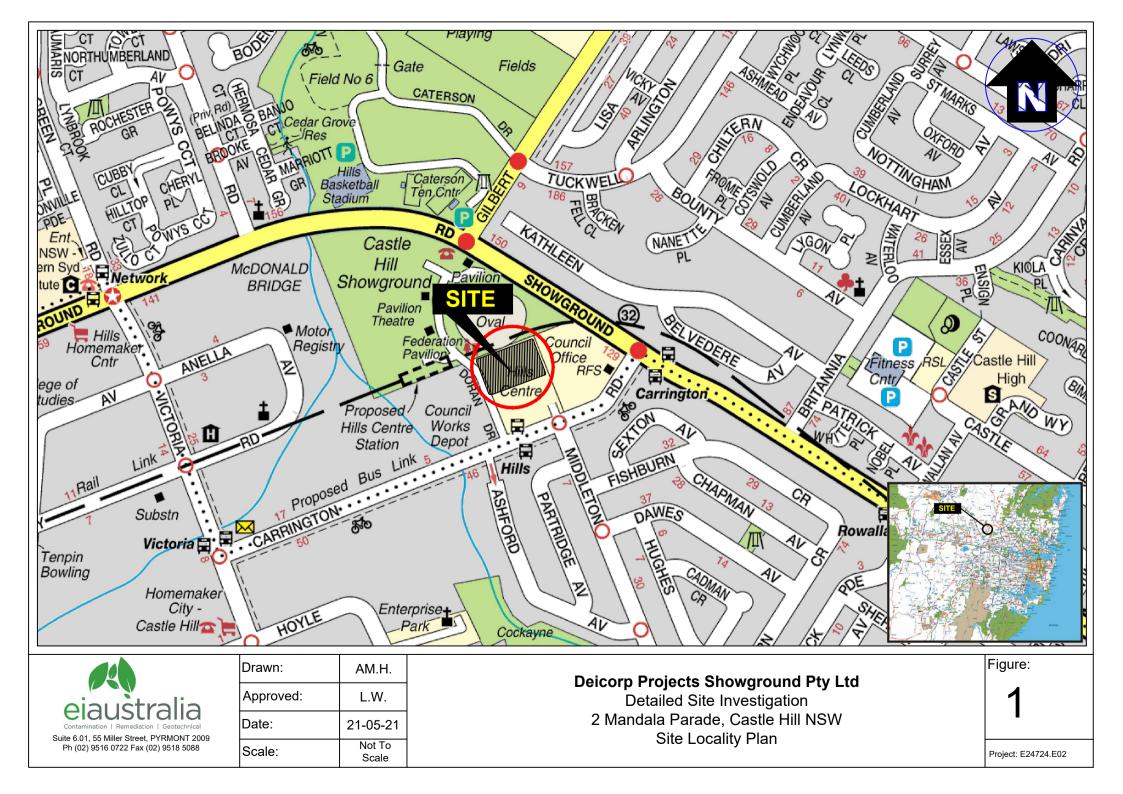
The Hills Development Control Plan (DCP) 2012.

The Hills Local Environmental Plan 2019.

USEPA (2006) *Data Quality Assessment: A Reviewers Guide – EPA QA/G-9R*. USEPA Office of Environmental Information, EPA/240/B-06/002, February 2006.

14. Abbreviations

ACM AHD AS ASS B(a)P BGL BH BTEX COC CSM DA DP DSI EIL ENM	Asbestos-Containing Materials Australian Height Datum Australian Standard Acid Sulfate Soils Benzo(a)Pyrene (a PAH compound), - B(a)P TEQ Toxicity Equivalent Quotient Below Ground Level Borehole Benzene, Toluene, Ethylbenzene, Xylene Chain of Custody Conceptual Site Model Development Application Deposited Plan Detailed Site Investigation Ecological Investigation Level Excavated Natural Material
EPA	Environment Protection Authority NSW
ESL	Ecological Screening Level
F1	TRH $C_6 - C_{10}$ less the sum of BTEX concentrations (Ref. NEPM 2013, Schedule B1)
F2	TRH > $C_{10} - C_{16}$ less the concentration of naphthalene (Ref. NEPM 2013, Schedule B1)
F3	TRH >C16-C34
F4	TRH >C34-C40
FFL	Finished Floor Level
GIL	Groundwater Investigation Level
GME	Groundwater Monitoring Event
GSW HIL	General Solid Waste Health-based Investigation Level
HSL	Health-based Screening Level
km	Kilometres
LEP	Local Environmental Plan
LGA	Local Government Area
m	Metres
NATA	National Association of Testing Authorities, Australia
NEPC	National Environmental Protection Council
NEPM	National Environmental Protection Measure
NSW	New South Wales
OCP/OPP	Organochlorine and Organophosphorus Pesticides
PAHs	Polycyclic Aromatic Hydrocarbons
PFAS	Per- and Poly-Fluoroalkyl Substances
PID	Photo-ionisation Detector
ppm	Parts Per Million
PQL	Practical Quantitation Limit (limit of detection for respective laboratory instruments)
QA/QC	Quality Assurance / Quality Control
SIL SMNW	Soil Investigation Level Metro North West
SRA	Sample receipt advice (document confirming laboratory receipt of samples)
SWL	Standing Water Level
TP	Test Pit
TPH	Total Petroleum Hydrocarbons (superseded term equivalent to TRH)
TRH	Total Recoverable Hydrocarbons (non-specific analysis of organic compounds)
UCL	Upper Confidence Limit of the mean
UPSS	Underground Petroleum Storage System
-	5 5 7



USEPA United States Environmental Protection Agency

- UST Underground Storage Tank
- VENM Virgin Excavated Natural Material
- VOC Volatile Organic Compounds

Appendix A - Figures

- Approximate Sydney Metro Tunnel
- Approximate Showground Station Footprint
- Approximate 1st & 2nd tunnel reserve extents 5m & 25m away from the tunnel boundaries -----
- Approximate test pit location
- Approximate borehole / monitoring well location
- Approximate borehole location

Drawn:	AM.H.	
Approved:	L.W.	
Date:	21-05-21	

Deicorp Projects Showground Pty Ltd Detailed Site Investigation 2 Mandala Parade, Castle Hill NSW Sampling Location Plan

Project: E24724.E02

Appendix B - Tables

Table T1 – Summary of Soil Test Results

					Priorit	y Metals					F	PAHs			BT	EX				TR	Hs			Pesti	icides		Asbestos
Sample ID	Sampling Date	As	Cd	Cr [#]	Cu	Pb	Hg	Ni	Zn	Carcinogenic PAHs (as B(α)P TEQ)	Benzo(α)pyrene	Total PAHs	Naphthalene	Benzene	Toluene	Ethylbenzene	Total Xylenes	FI	F2	F3	F4	C6-C9	C10-C36	OCPs	Opps	PCBs	Presence / absence
Fill BH1_0.1-0.2	8/07/2020	5	< 0.3	8.8	9.8	12	< 0.05	5.4	16	< 0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<20	<110	<1	<1.7	<1	No
BH2_0.1-0.2	9/07/2020	4	<0.3	14	21	11	< 0.05	17	27	< 0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<20	<110	<1	<1.7	<1	No
BH2_1.2-1.3 BH3M_0.1-0.2		7	< 0.3	25 24	2.3 9.2	12 14	<0.05 <0.05	2.9 6.9	6.9 21	<0.3 N.A.	<0.1 N.A.	<0.8 N.A.	<0.1 N.A.	<0.1 N.A.	<0.1 N.A.	<0.1 N.A.	<0.3 N.A.	<25 N.A.	<25 N.A.	<90 N.A.	<120 N.A.	<20 N.A.	<110 N.A.	N.A. N.A.	N.A.	N.A.	N.A. No
BH3M_0.7-0.8	13/07/2020	3	< 0.3	16	16	16	< 0.05	10	26	< 0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<20	<110	<1	<1.7	<1	No
BH3M_1.7-1.8 BH4M_0.3-0.5		4	<0.3 <0.3	13 15	12 19	17 16	<0.05 <0.05	7.8 8.5	32 35	<0.3 <0.3	<0.1 <0.1	<0.8 <0.8	<0.1 <0.1	<0.1	<0.1	<0.1	<0.3 <0.3	<25 <25	<25 <25	<90 <90	<120 <120	<20 <20	<110 <110	<1 <1	<1.7 <1.7	<1 <1	No
BH4M_1.4-1.5	14/07/2020	2	< 0.3	6.3	2.8	6	< 0.05	0.9	5.3	< 0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	< 0.3	<25	<25	<90	<120	<20	<110	N.A.	N.A.	N.A.	N.A.
BH4M_2.9-3.0 BH5M_0.1-0.2	16/07/2020	5	<0.3 <0.3	18 9.5	5.3 14	10 11	<0.05 <0.05	3.6 7.2	9.5 22	<0.3 0.8	<0.1 0.5	<0.8	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.3 <0.3	<25 <25	<25 <25	<90 <90	<120 <120	<20 <20	<110 <110	<1 <1	<1.7 <1.7	<1 <1	No
BH5M_1.5-1.6 BH6_0.1-0.2	20/07/2020	6 4	< 0.3	11 12	14 15	11 23	<0.05 <0.05	16 9.9	24 45	<0.3 <0.3	<0.1 <0.1	<0.8 <0.8	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.3 <0.3	<25 <25	<25 <25	<90 <90	<120 <120	<20 <20	<110 <110	N.A. <1	N.A. <1.7	N.A. <1	N.A. No
TP7_0.1-0.2	20/07/2020	4	< 0.3	12	24	12	< 0.05	13	34	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	< 0.3	<25	<25	<90	<120	<20	<110	<1	<1.7	<1	No
TP8_0.1-0.2 TP9_0.1-0.2	_	5	< 0.3	24 8.4	26 16	12 11	<0.05 <0.05	18 5.7	27 22	0.3 <0.3	0.2 <0.1	1.7 <0.8	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1	<0.3 <0.3	<25 <25	<25 <25	<90 <90	<120 <120	<20 <20	<110 <110	<1 <1	<1.7 <1.7	<1 <1	No
TP10_0.1-0.2		4	< 0.3	14	16	12	< 0.05	10	31	< 0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<20	<110	<1	<1.7	<1	No
TP11_0.1-0.2 TP11_0.8-0.9	-	4	< 0.3	42 29	12 130	12 4	<0.05 <0.05	10 34	39 39	< 0.3	0.1 <0.1	<0.8	<0.1	<0.1	<0.1	<0.1 <0.1	< 0.3	<25 <25	<25 <25	<90 <90	<120 <120	<20 <20	<110 <110	<1 <1	<1.7	<1 <1	No
TP12_0.1-0.2		4	< 0.3	11	22	15	< 0.05	20	42	< 0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<20	<110	<1	<1.7	<1	No
TP12_0.8-0.9 TP12_1.7-1.8	-	3	<0.3 <0.3	12 12	19 13	13 13	<0.05 <0.05	18 10	38 25	<0.3 <0.3	0.1 <0.1	1.2 <0.8	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1 <0.1	<0.3 <0.3	<25 <25	<25 <25	<90 <90	<120 <120	<20 <20	<110 <110	<1 <1	<1.7 <1.7	<1 <1	No No
TP13_0.1-0.2	8/07/2020	3	< 0.3	8.1	9.4	10	< 0.05	8.6	20	< 0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<20	<110	<1	<1.7	<1	No
TP13_1.2-1.3 TP13_2.0-2.1		4	<0.3 <0.3	10 14	14 12	13 17	<0.05 <0.05	8.3 8.2	28 28	<0.3 <0.3	<0.1 <0.1	<0.8 <0.8	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.3 <0.3	<25 <25	<25 <25	<90 <90	<120 <120	<20 <20	<110 <110	<1 <1	<1.7 <1.7	<1 <1	No No
TP14_0.1-0.2 TP15_0.1-0.2	-	4	<0.3 <0.3	13 11	15 15	14 16	<0.05 <0.05	13 9.3	35 87	<0.3 <0.3	0.1 <0.1	0.8 <0.8	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.3 <0.3	<25 <25	<25 <25	<90 <90	<120 <120	<20 <20	<110 <110	<1 <1	<1.7	<1 <1	No No
TP15_1.7-1.8		4	< 0.3	16	22	15	< 0.05	6.8	36	<0.3	0.1	1.7	<0.1	<0.1	<0.1	<0.1	< 0.3	<25	<25	280	370	<20	430	<1	<1.7	<1	No
TP16_0.1-0.2 TP17_0.1-0.2	_	3	<0.3 <0.3	15 10	24 12	9 12	<0.05 <0.05	18 9.8	50 32	<0.3 <0.3	<0.1 <0.1	<0.8 <0.8	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.3 <0.3	<25 <25	<25 <25	<90 <90	<120 <120	<20 <20	<110 <110	<1 <1	<1.7 <1.7	<1	No No
TP18_0.1-0.2		3	<0.3	9.1	12	11	< 0.05	9	30	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<20	<110	<1	<1.7	<1	No
TP18_1.8-1.9 TP19_0.1-0.2	-	6	<0.3 <0.3	11 32	16 23	14 11	<0.05 <0.05	9.2 15	44 43	< 0.3	<0.1 <0.1	<0.8	<0.1 <0.1	<0.1	<0.1	<0.1 <0.1	<0.3 <0.3	<25 <25	<25 <25	<90 <90	<120 <120	<20 <20	<110 <110	<1 <1	<1.7	<1 <1	No
												Statistical	Analysis														
Maximum co Natural	oncentration	7	<0.3	42	130	23	< 0.05	34	87	0.8	0.5	8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	280	370	<20	430	<1	<1.7	<1	No
BH1_0.7-0.8	8/07/2020	6	< 0.3	7.9	8.9	14	< 0.05	0.8	7.8	< 0.3	<0.1	<0.8	<0.1	< 0.1	< 0.1	< 0.1	< 0.3	<25	<25	<90	<120	<20	<110	<1	<1.7	<1	No
BH2_1.6-1.7 BH3M_2.8-2.9	9/07/2020 13/07/2020	14 2	<0.3 <0.3	9.8 13	2.9 14	21 5	<0.05 <0.05	<0.5 3.5	2.4 17	<0.3 <0.3	<0.1 <0.1	<0.8 <0.8	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.3 <0.3	<25 <25	<25 <25	<90 <90	<120 <120	<20 <20	<110 <110	<1 <1	<1.7 <1.7	<1 <1	No No
BH4M_4.9-5.0 BH5M_1.9-2.0	14/07/2020 16/07/2020	2	<0.3 <0.3	4.5 15	2.7 3.8	7	<0.05 <0.05	4 2.3	25 6.8	<0.3 <0.3	<0.1 <0.1	<0.8 <0.8	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1 <0.1	<0.3 <0.3	<25 <25	<25 <25	<90 <90	<120 <120	<20 <20	<110 <110	N.A. <1	N.A. <1.7	N.A.	N.A. No
BH6_1.4-1.5	20/07/2020	4	<0.3	2.5	0.6	2	< 0.05	< 0.5	<2	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	< 0.3	<25	<25	<90	<120	<20	<110	<1	<1.7	<1	No
TP7_1.3-1.4 TP8_0.9-1.0	-	14 5	<0.3 <0.3	20 4.6	9.6 6.9	17 18	<0.05 <0.05	<0.5 <0.5	7.1	<0.3 <0.3	<0.1 <0.1	<0.8 <0.8	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1 <0.1	<0.3 <0.3	<25 <25	<25 <25	<90 <90	<120 <120	<20 <20	<110 <110	<1 <1	<1.7 <1.7	<1 <1	No
TP9_1.2-1.3	8/07/2020	<1	< 0.3	2.3	2.1	15	< 0.05	<0.5	<2	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<20	<110	<1	<1.7	<1	No
TP14_1.5-1.6 TP19_1.4-1.5	-	4	<0.3 <0.3	6.1 16	<0.5 1.9	5 13	<0.05 <0.05	<0.5 0.7	<2 2.9	<0.3 <0.3	<0.1 <0.1	<0.8 <0.8	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1 <0.1	<0.3 <0.3	<25 <25	<25 <25	<90 <90	<120 <120	<20 <20	<110 <110	<1 <1	<1.7	<1	No
												Statistical	Analysis														
Maximum co	oncentration	14	<0.3	20	14	21	< 0.05	4	25	<0.3	<0.1	<0.8 NEPM (201	<0.1 13) Criteria	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<20	<110	<1	<1.7	<1	No
HIL A - Residential with g	garden / accessible soil	100	20	100 Cr(VI)	6,000	300	40	400	7,400	3		300												240		1	
HIL B - Residential with	h minimal soil access	500	150	500 Cr(VI)	30,000	1,200	120	1,200	60,000	4		400												600		1	
HIL C - Rec	creational	300	90	300 Cr(VI)	17,000	600	80	1,200	30,000	3		300												400		1	
HIL D - Commerce	rcial / industrial	3,000	900	3,600 Cr(VI)	240,000	1,500	730	6,000	400,000	40		4,000												3,600		7	
							depths (0 m t	,					5	0.7	480	NL	110	50	280								
HSL A & B - Low to hig Soil texture class							depths (1 m t depths (2 m t	,					NL NL	1	NL NL	NL NL	310 NL	90 150	NL NL								0.01 / 0.001
							irce depths (4 depths (0 m t						NL NL	3 NL	NL NL	NL NL	NL NL	290 NL	NL NL								
HSL C - Recreation							depths (0 m t depths (1 m t						NL	NL	NL	NL	NL	NL	NL								0.02 /
Soil texture class	sification – Clay						depths (2 m t irce depths (4						NL NL	NL NL	NL NL	NL	NL NL	NL NL	NL NL								0.001
							depths (0 m t	,					NL	4	NL	NL	NL	310	NL								
								0.0013						6	NL	NL	NL	480	NL								0.05 / 0.001
HSL D - Commer Soil texture class						Source	depths (1 m t depths (2 m t						NL NL	9	NL	NL	NL	NL	NL								
Soil texture class	sification - Clay			8		Source Source	depths (1 m t	o <4 m. BGL)	1					-			NL NL	NL NL	NL NL								000000000000000000000000000000000000000
Soil texture class EILs / ESLs - Urban Resid Space	sification – Clay idential and Public Open e ¹²	100		410	180	Source Source	depths (1 m t depths (2 m t	o <4 m. BGL)	450		0.7		NL	9	NL	NL				1,300	5,600			180			
Soil texture class EILs / ESLs - Urban Resid	sification – Clay idential and Public Open $e^{1/2}$ esidential, parkland and	100		410	180	Source Source Sou	depths (1 m t depths (2 m t	o <4 m. BGL) m + BGL)	450		0.7		NL NL	9	NL NL	NL NL	NL	NL	NL	1,300 3,500	5,600			180			
Soil texture class EILs / ESLs - <i>Urban Resid</i> <i>Space</i> Management Limits – <i>Re</i> .	sification – Clay idential and Public Open $e^{1/2}$ esidential, parkland and	100		410	180	Source Source Sou	depths (1 m t depths (2 m t	o <4 m. BGL) m + BGL)	450			EPA (2014) Waste	NL NL 170	9 20 65	NL NL	NL NL	NL	NL 180	NL 120					180			
Soil texture class EILs / ESLs - <i>Urban Resid</i> <i>Space</i> Management Limits – <i>Re</i> .	dential and Public Open e ⁻¹⁻² esidential, parkland and in space ¹ CT1 (mg/kg)	100	20	100	180	Source Source Sou 1,100	depths (1 m t depths (2 m t rrce depths (4	o <4 m. BGL) m + BGL) 100 40	450		NSW E 0.8	200	NL NL 170	9 20 65 on Criteria 10	NL NL 105 288	NL NL 125 600	NL 45 1,000	NL 180	NL 120			650	10,000	<50	250	<50	
Soil texture class EILs / ESLs - <i>Urban Resic Space</i> Management Limits - <i>Re.</i> <i>public oper</i>	sification – Clay idential and Public Open e ^{1 2} esidential, parkland and in space ¹ CT1 (mg/kg) TCLP1 (mg/k) / SCC1 (mg/kg)	100 5 / 500	1 / 100	100 5 / 1,900	180	Source Source Source 1,100 100 5 / 1,500	depths (1 m t) depths (2 m t) rrce depths (4 4 0.2 / 50	0 <4 m. BGL) m + BGL) 100 40 2 / 1,050	450		NSW E 0.8 0.04 / 10	200 NR / 200	NL NL 170	9 20 65 on Criteria 10 0.5 / 18	NL NL 105 288 14.4 / 518	NL NL 125 600 30 / 1,080	NL 45 1,000 50 / 1,800	NL 180	NL 120			NR / 650	NR / 10,000	<50 NR / <50	NR / 250	NR / <50	If detected material is
Soil texture class EILs / ESLs - <i>Urban Resic Space</i> Management Limits - <i>Re.</i> <i>public oper</i>	sification - Clay idential and Public Open e ¹⁻² esidential, parkland and in space ¹ TCLP1 (mg/kg) TCLP1 (mg/kg) CT2 (mg/kg)	100 5 / 500 400	1 / 100 80	100 5 / 1,900 400		Source Source Sou 1,100 5 / 1,500 400	depths (1 m l depths (2 m l rcc depths (4 4 0.2 / 50 16	0 <4 m. BGL) m + BGL) 100 40 2 / 1,050 160	450		NSW F 0.8 0.04 / 10 3.2	200 NR / 200 800	NL NL 170	9 20 65 00 Criteria 10 0.5 / 18 40	NL NL 105 288 14.4 / 518 1,152	NL NL 125 600 30 / 1,080 2,400	NL 45 1,000 50 / 1,800 4,000	NL 180	NL 120			NR / 650 2,600	NR / 10,000 40,000	<50 NR / <50 NR	NR / 250 1,000	NR / <50 NR	If detected material is Special Waste -
Soll texture class EILs / ESLs - Urban Resid Space Management Limits – Re public oper General Solid Waste	sification – Clay idential and Public Open e ^{1 2} esidential, parkland and in space ¹ CT1 (mg/kg) TCLP1 (mg/k) / SCC1 (mg/kg)	100 5 / 500	1 / 100	100 5 / 1,900		Source Source Source 1,100 100 5 / 1,500	depths (1 m t) depths (2 m t) rrce depths (4 4 0.2 / 50	0 <4 m. BGL) m + BGL) 100 40 2 / 1,050	450		NSW E 0.8 0.04 / 10	200 NR / 200	NL NL 170	9 20 65 on Criteria 10 0.5 / 18	NL NL 105 288 14.4 / 518	NL NL 125 600 30 / 1,080	NL 45 1,000 50 / 1,800	NL 180	NL 120			NR / 650	NR / 10,000	<50 NR / <50 NR NR / <50	NR / 250	NR / <50 NR NR / <50	If detected material is Special
Soll texture class EILs / ESLs - Urban Resid Space Management Limits – Re public oper General Solid Waste	sification – Clay idential and Public Open e ^{1 2} scidential, parkland and in space ¹ CT1 (mg/kg) TCLP1 (mg/L) / SCC1 (mg/kg) TCLP2 (mg/L) / SCC2 (mg/kg)	100 5 / 500 400	1 / 100 80	100 5 / 1,900 400		Source Source Sou 1,100 5 / 1,500 400	depths (1 m l depths (2 m l rcc depths (4 4 0.2 / 50 16	0 <4 m. BGL) m + BGL) 100 40 2 / 1,050 160	450		NSW F 0.8 0.04 / 10 3.2	200 NR / 200 800	NL NL 170	9 20 65 00 Criteria 10 0.5 / 18 40	NL NL 105 288 14.4 / 518 1,152 57.6 /	NL NL 125 600 30 / 1,080 2,400	NL 45 1,000 50 / 1,800 4,000	NL 180	NL 120			NR / 650 2,600	NR / 10,000 40,000 NR /	<50 NR / <50 NR NR > 2 mg/kg - Scheduled	NR / 250 1,000	NR / <50 NR	If detected material is Special Waste - Asbestos
Soil texture class EILs / ESLs - Urban Resid Space Management Limits – Re- public oper General Soild Waste Restricted Solid Waste	sification – Clay idential and Public Open e ^{1 2} scidential, parkland and in space ¹ CT1 (mg/kg) TCLP1 (mg/L) / SCC1 (mg/kg) TCLP2 (mg/L) / SCC2 (mg/kg) Scheduled Waste Maximum Average	100 5 / 500 400 20 / 2,000	1 / 100 80 4 / 400	100 5 / 1,900 400 20 / 7,600		Source Source Sou 1,100 5 / 1,500 400 20 / 6,000	depths (1 m i depths (2 m i rce depths (4 0.2 / 50 16 0.8 / 200	o <4 m. BGL) m + BGL) 100 2 / 1,050 2 / 1,050 160 8 / 4,200			NSW E 0.8 0.04 / 10 3.2 0.16 / 23	200 NR / 200 800 NR / 800	NL NL 170	9 20 65 00 Criteria 10 0.5 / 18 40	NL NL 105 288 14.4 / 518 1,152 57.6 /	NL NL 125 600 30 / 1,080 2,400	NL 45 1,000 50 / 1,800 4,000	NL 180	NL 120			NR / 650 2,600	NR / 10,000 40,000 NR / 40,000	<50 NR / <50 NR NR / <50 > 2 mg/kg -	NR / 250 1,000	NR / <50 NR NR / <50 > 2 mg/kg -	If detected material is Special Waste - Asbestos
Soll texture class EILs / ESLs - Urban Resid Space Management Limits - Re- public oper General Solid Waste Restricted Solid Waste Special Waste / Sc NSW EPA	sification - Clay idential and Public Open e ¹⁻² esidential, parkland and in space ¹ CT1 (mg/kg) TCLP1 (mg/kg) CT2 (mg/kg) TCLP2 (mg/k) / SCC2 (mg/kg) Scheduled Waste Maximum Average Concentration (mg/kg)	100 5 / 500 400	1 / 100 80	100 5 / 1,900 400		Source Source Sou 1,100 5 / 1,500 400	depths (1 m l depths (2 m l rcc depths (4 4 0.2 / 50 16	0 <4 m. BGL) m + BGL) 100 40 2 / 1,050 160	450		NSW F 0.8 0.04 / 10 3.2	200 NR / 200 800	NL NL 170	9 20 65 00 Criteria 10 0.5 / 18 40	NL NL 105 288 14.4 / 518 1,152 57.6 /	NL NL 125 600 30 / 1,080 2,400	NL 45 1,000 50 / 1,800 4,000	NL 180	NL 120			NR / 650 2,600	NR / 10,000 40,000 NR /	<50 NR / <50 NR NR > 2 mg/kg - Scheduled	NR / 250 1,000	NR / <50 NR NR / <50 > 2 mg/kg -	If detected material is Special Waste - Asbestos
Soll texture class EILs / ESLs - Urban Resid Space Management Limits – Re public oper General Solid Waste Restricted Solid Waste Special Waste / So	sification – Clay idential and Public Open e ¹² esidential, parkland and en space ¹ CT1 (mg/kg) TCLP1 (mg/kg) CT2 (mg/kg) CT2 (mg/kg) TCLP2 (mg/L) / SCC2 (mg/kg) Scheduled Waste Maximum Average Concentration	100 5 / 500 400 20 / 2,000	1 / 100 80 4 / 400	100 5 / 1,900 400 20 / 7,600		Source Source Sou 1,100 5 / 1,500 400 20 / 6,000	depths (1 m i depths (2 m i rce depths (4 0.2 / 50 16 0.8 / 200	o <4 m. BGL) m + BGL) 100 2 / 1,050 2 / 1,050 160 8 / 4,200			NSW E 0.8 0.04 / 10 3.2 0.16 / 23	200 NR / 200 800 NR / 800	NL NL 170	9 20 65 00 Criteria 10 0.5 / 18 40	NL NL 105 288 14.4 / 518 1,152 57.6 /	NL NL 125 600 30 / 1,080 2,400	NL 45 1,000 50 / 1,800 4,000	NL 180	NL 120			NR / 650 2,600	NR / 10,000 40,000 NR / 40,000	<50 NR / <50 NR NR > 2 mg/kg - Scheduled	NR / 250 1,000	NR / <50 NR NR / <50 > 2 mg/kg -	If detected material is Special Waste - Asbestos

	Highlighted values exceed HIL / HSL
	Highlighted values exceed EIL / ESL
	Concentration exceeds highlighted criteria
Results are recorded i	in mgkg
HIL A	NEPC 1999 Amendment 2013 /HL A'- Health based Residential with garden / accessible soil, also includes children's day care centres, preschools and primary schools.
HIL B	NEPC 1999 Amendment 2013 'HIL B' - Health based Residential with minimal opportunities for soil access including dwellings with fully and permanenelly paved yard space such as high-rise buildings and apartments.
HIL C	NEPC 1999 Amendment 2013 'HIL C' - Health based public open space such as parks, playgrounds, playing fields, secondary schools and footpaths.
HIL D	NEPC 1999 Amendment 2013 'HIL D' - Health based commercial / industrial settings.
HSLA&B	NEPC 1999 Amendment 2013 'HSL A & B' Health Based Screening Levels applicable for vapour intrusion values applicable for low-high density residential settings.
HSL C	NEPC 1999 Amendment 2013 'HSL C' Health Based Screening Levels applicable for vapour intrusion values applicable for recreational/open space settings.
HSL D	NEPC 1999 Amendment 2013 'HSL D' Health Based Screening Levels applicable for vapour intrusion values applicable for commercial / industrial settings.
EIL	Ecological Investigation Level for urban residential and public open space land use.
ESL	Ecology Screening Level for urban residential and public open space land use.
GSW	NSW EPA 2014 General Solid Waste Thresholds, in Waste Classification Guidelines, Table 1 (CT1) and Table 2 (TCLP1 / SCC1)
RSW	NSW EPA 2014 Restricted Solid Waste Thresholds, in Waste Classification Guidelines, Table 1 (CT2) and Table 2 (TCLP2 / SCC2)
NA	Not Analysed
NL	Not Limiting if the derived soil vapour limit exceeds the soil concentration at which the pore water phase cannot dissolve any more of the individual chemical
NC	Not calculated
1	As strata is predominantly clay, fine grained soil assessment criteria values were applied.
2	EIL/ESL were calculated based on the average results of pH (6.1) and CEC (7.8 meq/100g) for a high traffic NSW suburb.
3	NSW EPA Scheduled Chemical Wastes Chemical Control Order 2004. Section 4.14
4	NSW EPA Polychiarinated Biphenyl (PCB) Chemical Control Order 1997. Where PCBs are reported at concentrations >2 mg/kg and <50 mg/kg, material is non-scheduled PCB waste. Where PCBs are reported at concentrations >50 mg/kg, material is scheduled PCB waste.
5	ENM Exemption and Order (NSW EPA, 2014).
F1	To obtain F1 subtract the sum of BTEX concentrations from the C6-C10 fraction.
F2	To obtain F2 subtract naphthalene from the >C10-C16 fraction.
F3	(>C16-C34)
F4	(>C34-C40)

		Electrical			Adopted		Cation Exchange Capacity	Exchangeable Sodium		C	ations (mg/kg	;)		Anions	(mg/kg)	
Sample	рН	Conductivity (EC - µs/cm)	Soil Texture	ECe (µS/cm)	Multiplication Factor	ECe (dS/m)	(CEC - meq/100)	Percentage (%)	Ca	Mg	Na	к	Mn	Chloride	Sulfate	Soil Salinity Class ¹
BH2_1.9-2.0	4.6	73	Sandy Clay	657	9	0.657	3.6	11.7	1900	590	170	280	51	18	110	Non-Saline
BH2_2.9-3.0	4.7	85	Sandy Clay	765	9	0.765	13	3.4	4400	1300	320	340	110	16	130	Non-Saline
BH3M_2.8-2.9	9.4	130	Sandy Clay Loam	1170	9	1.17	17	2.2	3400	650	130	240	47	22	92	Non-Saline
BH4M_4.4-4.5	5.5	60	Loamy Sand	840	14	0.84	2.9	27.5	1100	350	290	320	13	6.5	83	Non-Saline
BH4M_4.9-5.0	6.1	47	Loamy Sand	658	14	0.658	2.3	27.3	66	120	170	280	5	10	64	Non-Saline
¹ DLWC (2002)																

Table T2 - Summary of Groundwater Analytical Results

						Met	als					PAHs				BTEX				TR	RHs			vo	Cs			
Sample ID		Impling Date	As	Cd	Cr	Cu	Pb	Hg	Ni	Zn	Total PAHs	Benzo(ɑ)pyrene	Naphthalene	Benzene	Toluene	Ethylbenzene	o-xylene	m/p-xylene	F1	F2	F3	F4	Chloroform (THM) *	Bromodichloromethane (THM) *	Dibromochloromethane (THM) *	Total VOC	рН	EC (µS/cm)
Detailed Site Investigation	(EI, 2020)				T							1					1		1		1		1	1				
BH3M-a			<1	<0.1	1	22	<1	<0.1	26	74	<1	<0.1	<0.1	<0.5	<0.5	<0.5	<0.5	<1	<50	<60	<500	<500	9.2	2.3	0.6	13	5.1	1,200
BH4M-a	29	/7/2020	<1	<0.1	170	24	<1	<0.1	3	21	<1	<0.1	<0.1	<0.5	<0.5	<0.5	<0.5	<1	52	<60	<500	<500	39	6.6	1.6	48	6.3	980
BH5M			1	0.2	3	23	11	<0.1	27	180	<1	<0.1	<0.1	<0.5	<0.5	<0.5	<0.5	<1	<50	76	<500	<500	1.7	<0.5	<0.5	<10	4.6	4,100
BH4M-a	18	8/8/2020	2	0.2	1	22	30	<0.1	38	240	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
.	<u> </u>										L .	Statistica	,															
Maximum	Concentration		2	0.2	170	24	30	<0.1	38	240	<1	<0.1	<0.1	<0.5	<0.5	<0.5	<0.5	<1	52	76	<500	<500	39	6.6	1.6	48	6.3	4,100
							2m to	<1m				G	NL	800	NL	NL	NL	NL	1,000	1,000								
HSL A & B - Low to							4m to						NL	800	NL	NL	NL	NL	1,000	1,000	-							
Soil texture cl	lassification – Sand	t t					4111 to -						NL	900	NL	NL	NL	NL	1,000	1,000								
							2m to						NL	NL	NL	NL	NL	NL	NL	NL								
	ational / open space						4m to						NL	NL	NL	NL	NL	NL	NL	NL								
Soil texture cl	lassification – Sand	t t					8m-						NL	NL	NL	NL	NL	NL	NL	NL								
							2m to	<4m					NL	5,000	NL	NL	NL	NL	6,000	NL								
	nmercial / industrial lassification – Sand	1					4m to	<8m					NL	5,000	NL	NL	NL	NL	6,000	NL								
Soli lexture ci	lassification – Sanu	'					8m-	+					NL	5,000	NL	NL	NL	NL	7,000	NL								
	Fresh Wate	ers ¹	24 (AsIII) 13 (AsV)	0.2	1 ³ (Cr VI)	1.4	3.4	0.06 ²	11	8 ³			16	950	180 ⁴	80 ⁴	350	275 ⁴	50 ⁵	60 ⁵	500 ⁵	500 ⁵						
GILs	Marine Wate	ers ¹		0.7 ²	27 (Cr III) 4.4 (Cr IV)	1.3	4.4	0.1 ²	7	15 ³			50 ³	500 ³	180 ⁴	5 ⁴	350 ⁴	275 ⁴	50 ⁵	60 ⁵	500 ⁵	500 ⁵						
	Recreational W	Vater ⁶	100	20		1,000 *	100	10	200	3,000*				10	25*	3*	20 *	20 *						2,500				

Notes:

Notes:	
	Highlighted indicates criteria exceeded
All values are µg/L unles	ss stated otherwise
HSL A & B	NEPC 1999 Amendment 2013 'HSL A & B' Health Based Screening Levels for vapour intrusion applicable for low-high density residential settings.
HSL C	NEPC 1999 Amendment 2013 'HSL C' Health Based Screening Levels for vapour intrusion applicable for recreational/open space settings.
HSL D	NEPC 1999 Amendment 2013 'HSL D' Health Based Screening Levels for vapour intrusion applicable for commercial / industrial settings.
NL	Not Limiting
NA	'Not Analysed' i.e. the sample was not analysed.
ND	Not Detected - i.e. concentration below the laboratory PQL
F1	To obtain F1 subtract the sum of BTEX concentrations from the C6-C10 fraction.
F2	To obtain F2 subtract naphthalene from the >C10-C16 fraction.
F3	(>C16-C34)
F4	(>C34-C40)
*	Only thoes VOC values above the laboratory PQL have been tabulated.
1	NEPM (2013) Groundwater Investigation Levels for fresh and marine water quality, based on ANZECC & ARMCANZ (2000).
2	Chemical for which possible bioaccumulation and secondary poisoning effects should be considered, refer to ANZG (2018) for further guidance.
3	Figure may not protect key species from chronic toxicity, refer to ANZECC & ARMCANZ (2000) for further guidance
4	Low reliability toxicity data, refer to ANZECC & ARMCANZ (2000)
5	In lack of a criteria the laboratory PQL has been used (DEC, 2007).
6	Based on NHMRC (2011 - update August 2018 v.3.5) Drinking Water Guidelines. The lowest of the Health Guideline x10 or the Aesthetic Guideline has been chosen as the assessment criteria. Aesthetic based criteria have been indicated by *

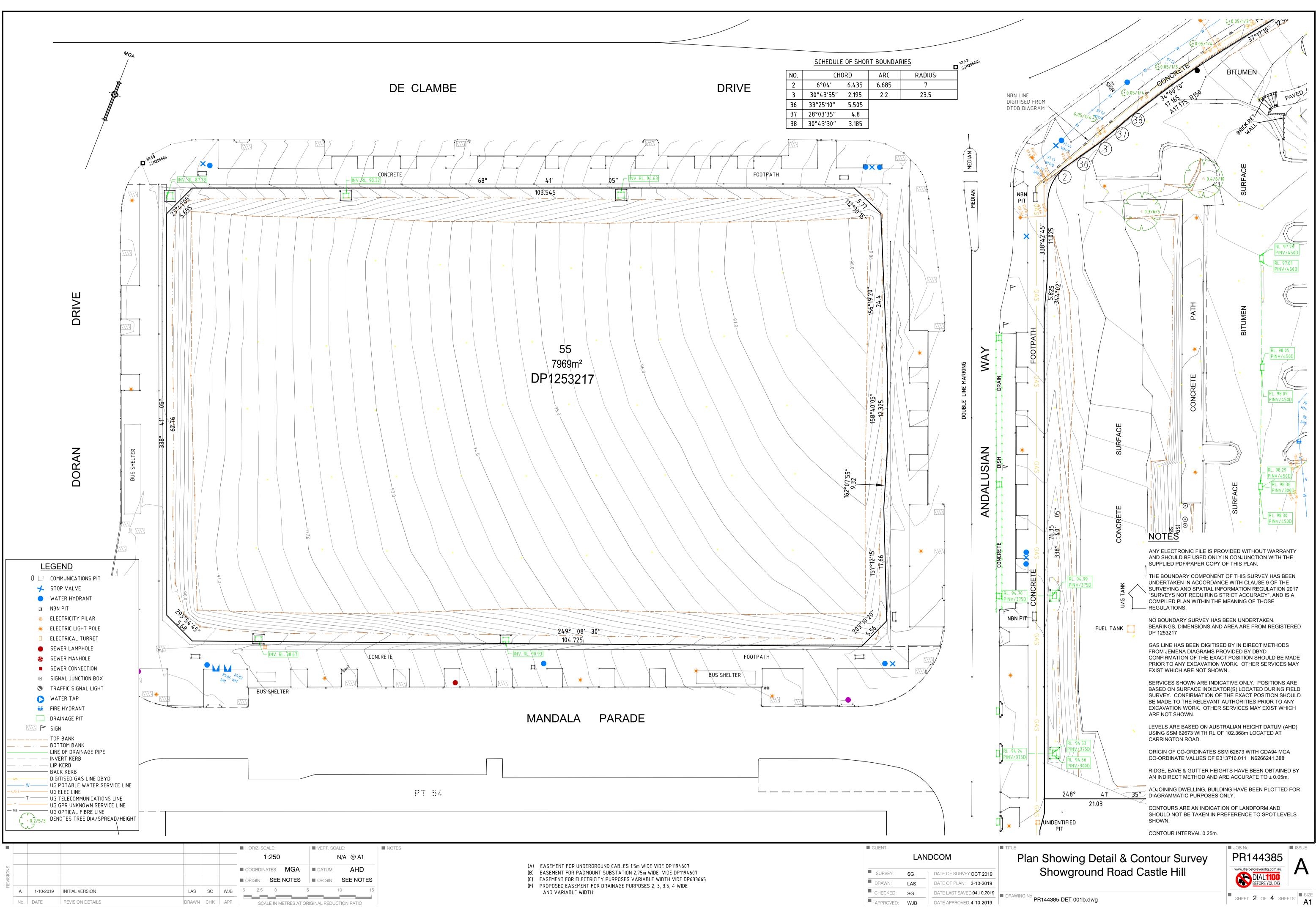
Table J-2 Summary of QA/QC results for Investigation samples

	ź				RH			BT	ΈX					Heavy	Metals			
Sample identification	Sampled Date	Description	F1*	F2**	F3 (>C ₁₆ - C ₃₄)	F4 (>C ₃₄ - C ₄₀)	Benzene	Toluene	Ethylbenzene	Xylene (total)	Arsenic	Cadmium	Chromium (Total)	Copper	Lead	Mercury	Nickel	Zinc
Intra-laboratory Du	plicate				-					-			-	-				
TP8_0.1-0.2	8/7/2020	Fill	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	5	<0.3	24	26	12	<0.05	18	27
QD1	8/1/2020	Replicate of TP8_0.1-0.2	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	4	<0.3	19	21	12	<0.05	15	27
	RPL	D	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	22.22	0.00	23.26	21.28	0.00	0.00	18.18	0.00
TP17_0.1-0.2	8/7/2020	Fill	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	4	<0.3	10	12	12	<0.05	9.8	32
QD2	0/1/2020	Replicate of TP17_0.1-0.2	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	4	<0.3	9.9	12	13	<0.05	12	33
	RPL	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.01	0.00	8.00	0.00	20.18	3.08
BH3M-a	29/7/2020	Groundwater	<50	<60	<500	<500	<0.5	<0.5	<0.5	<1.5	<1	<0.1	1	22	<1	<0.1	26	74
GWQD1	29/1/2020	Replicate of BH3M-a	<50	<60	<500	<500	<0.5	<0.5	<0.5	<1.5	1	<0.1	1	26	<1	<0.1	25	71
	RPL	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	16.67	0.00	0.00	3.92	4.14
Inter-laboratory Du	plicate																	
TP8_0.1-0.2	8/7/2020	Fill	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	5	<0.3	24	26	12	<0.05	18	27
QT1	8/1/2020	Replicate of TP8_0.1-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<3	4	<0.4	31	26	18	<0.1	18	33
	RPL	D	0.00	NA	NA	NA	NA	NA	NA	NA	22.22	NA	25.45	0.00	40.00	NA	0.00	20.00
TP17_0.1-0.2	8/7/2020	Fill	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	4	<0.3	10	12	12	<0.05	9.8	32
QT2	0/1/2020	Replicate of TP17_0.1-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<3	8	<0.4	29	35	28	<0.1	26	72
	RPD	D	0.00	NA	NA	NA	NA	NA	NA	NA	66.67	NA	97.44	97.87	80.00	NA	90.50	76.92
BH3M-a	29/7/2020	Groundwater	<50	<60	<500	<500	<0.5	<0.5	<0.5	<1.5	<1	<0.1	1	22	<1	<0.1	26	74
GWQT1	29/1/2020	Replicate of BH3M-a	15	<50	<100	<100	<1	<1	<1	<3	<1	0.2	1	7	<1	<0.05	24	100
	RPL		175.00	NA	NA	NA	NA	NA	NA	NA	0.00	80.00	0.00	103.45	0.00	NA	8.00	29.89
QTB1		Trip blank	-	-	-	-	<0.1	<0.1	<0.1	<0.3	-	-	-	-	-	-	-	-
QTS1	8/7/2020	Trip spike	-	-	-	-	[87%]	[89%]	[90%]	[91%]	-	-	-	-	-	-	-	-
QR1		Rinsate	<50	<60	<500	<500	<0.5	<0.5	<0.5	<1.5	<1	<0.1	<1	<1	<1	<0.1	<1	<5
GWTB1		Trip blank	-	-	-	-	<0.5	<0.5	<0.5	<1.5	-	-	-	-	-	-	-	-
GWTS1	29/7/2020	Trip spike	-	-	-	-	[99%]	[99%]	[99%]	[99%]	-	-	-	-	-	-	-	-
GWQR1		Rinsate	<50	<60	<500	<500	<0.5	<0.5	<0.5	<1.5	<1	<0.1	<1	<1	<1	<0.1	<1	<5

Indicates values where a single result is found to be less than detection, with the duplicate sample found to be over the detection limit. RPD exceeds 30-50% range referenced from AS4482.1 (2005)

NOTE:

All soil results are reported in mg/kg . All water results are reported in $\mu\text{g/L}.$


 * - to obtain F1 subtract the sum of BTEX concentrations from the $C_{6}\text{-}C_{10}$ fraction

** - to obtain F2 subtract naphthalene from the > $\rm C_{10}\text{-}C_{16}$ fraction

Appendix C - Development Plans

T: 02 8884 6900 F: 02 8884 6999 www.rpsgroup.com.au

THIS IS A COLOURED PLAN. **REPRODUCTION IN COLOUR ONLY.**

MAKING COMPLEX EASY N:\Projects\144K\PR144385 - Hills Showground Precinct - Landcom\05 Drafting\Survey\02 Detail\PR144385-DET-001b.dwg

NOTES

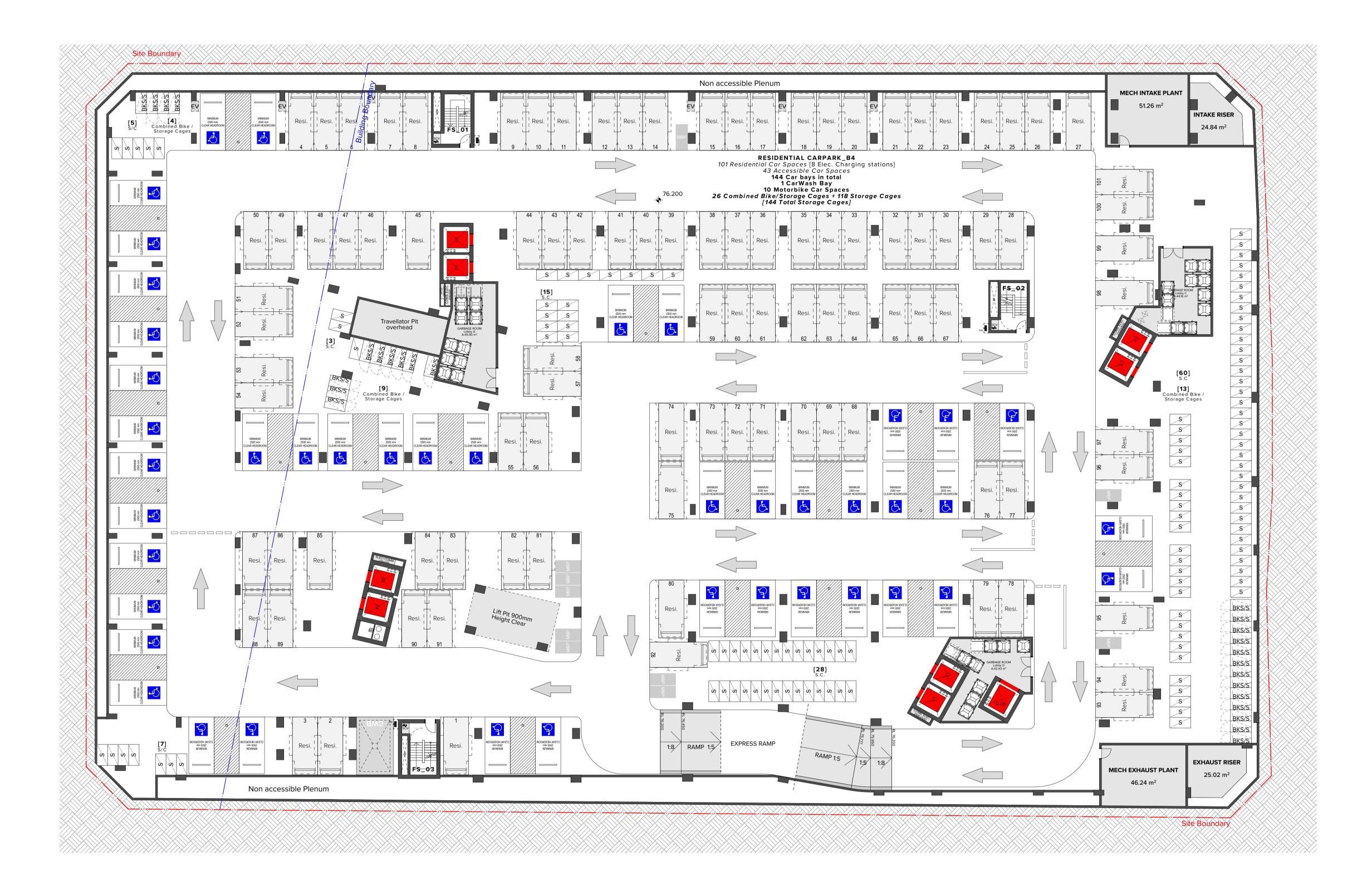
Project Title	Scale	Project No.	Drawn by	North
Doran Drive Doran Drive, Castle Hill Castle Hill NSW 2154 Australia	1:200 @A1, 50%@A3 Status DA Submission	Dwg No. DA-110-002	<u>AM, VT, JL, JE</u> Rev 02	ア
Drawing Title				
GA PLANS				

Basement 06

TURNER

Level 7 **ONE** Oxford Street Darlinghurst NSW 2010 AUSTRALIA

CLIENT NOTED THIS DRAWING IS COPYRIGHT © OF TURNER. NO REPRODUCTION WITHOUT PERMISSION. UNLESS NOTED OTHERWISE THIS DRAWING IS NOT FOR CONSTRUCTION. ALL DIMENSIONS AND LEVELS ARE TO BE CHECKED ON SITE PRIOR TO THE COMMENCEMENT OF WORK. INFORM TURNER OF ANY DISCREPANCIES FOR CLARIFICATION BEFORE PROCEEDING WITH WORK. DRAWINGS ARE NOT TO BE SCALED. USE ONLY FIGURED DIMENSIONS. REFER TO CONSULTANT DOCUMENTATION FOR FURTHER INFORMATION DWG, IFC AND BIMX FILES ARE UNCONTROLLED DOCUMENTS AND ARE ISSUED FOR INFORMATION ONLY. Deicorp


NOTES

Project Title	Scale	Project No.	Drawn by	North
Doran Drive	1:200 @A1, 50%@A3	19068	AM, VT, JL, JE	う
Doran Drive, Castle Hill Castle Hill NSW 2154 Australia	Status	Dwg No.	Rev	
	DA Submission	DA-110-003	02	
Drawing Title				
GA PLANS				

Basement 05

TURNER

Level 7 **ONE** Oxford Street Darlinghurst NSW 2010 AUSTRALIA

CLIENT NOTED THIS DRAWING IS COPYRIGHT © OF TURNER. NO REPRODUCTION WITHOUT PERMISSION. UNLESS NOTED OTHERWISE THIS DRAWING IS NOT FOR CONSTRUCTION. ALL DIMENSIONS AND LEVELS ARE TO BE CHECKED ON SITE PRIOR TO THE COMMENCEMENT OF WORK. INFORM TURNER OF ANY DISCREPANCIES FOR CLARIFICATION BEFORE PROCEEDING WITH WORK. DRAWINGS ARE NOT TO BE SCALED. USE ONLY FIGURED DIMENSIONS. REFER TO CONSULTANT DOCUMENTATION FOR FURTHER INFORMATION DWG, IFC AND BIMX FILES ARE UNCONTROLLED DOCUMENTS AND ARE ISSUED FOR INFORMATION ONLY. Deicorp

NOTES

Project Title	Scale	Project No.	Drawn by	North
Doran Drive	1:200 @A1, 50%@A3	19068	AM, VT, JL, JE	く
Doran Drive, Castle Hill Castle Hill NSW 2154 Australia	Status	Dwg No.	Rev	
	DA Submission	DA-110-004	02	
Drawing Title				
GA PLANS				

Basement 04

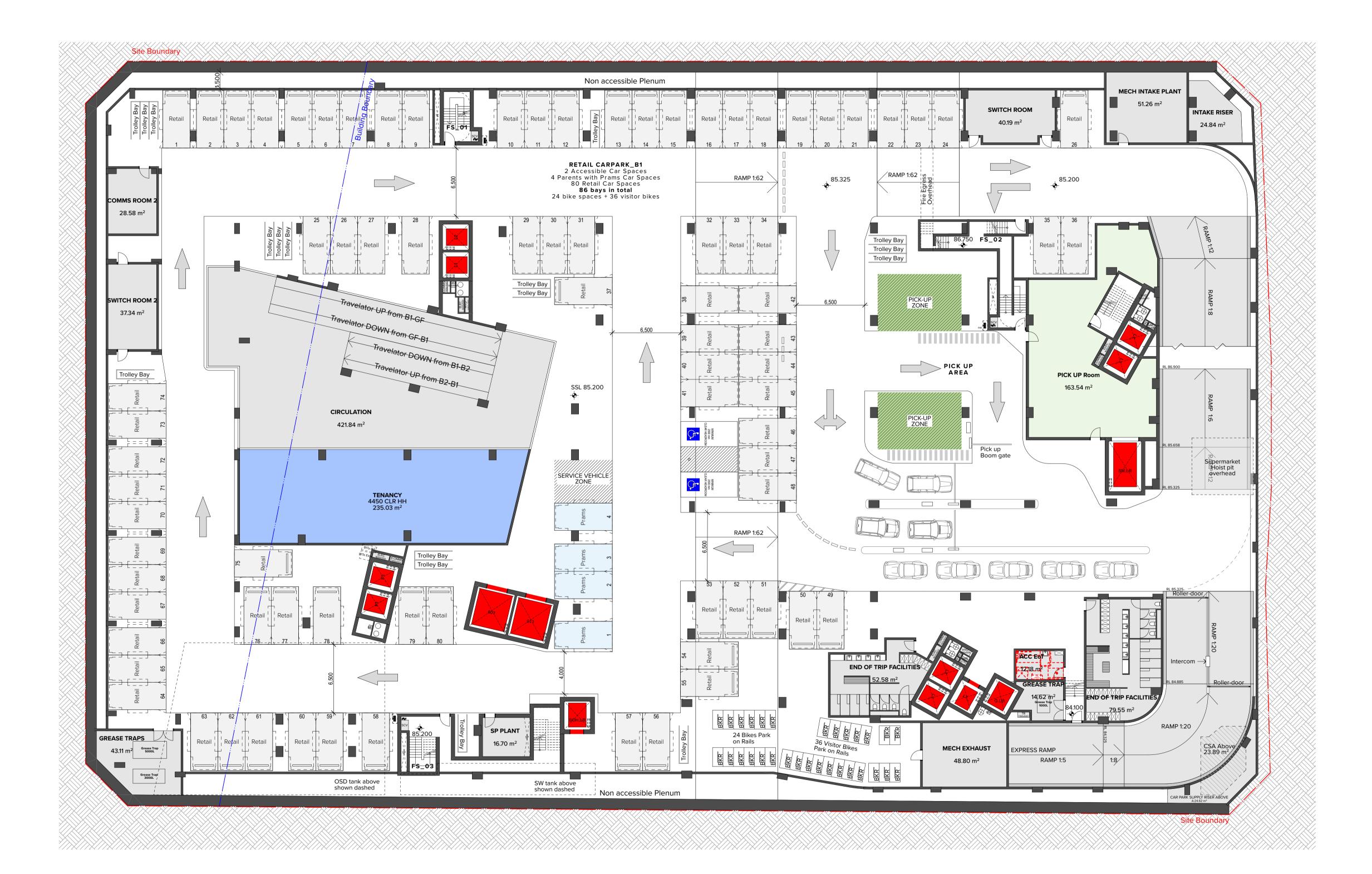
TURNER

Level 7 **ONE** Oxford Street Darlinghurst NSW 2010 AUSTRALIA

CLIENT NUTES THIS DRAWING IS COPYRIGHT © OF TURNER. NO REPRODUCTION WITHOUT PERMISSION, UNLESS NOTED OTHERWISE THIS DRAWING IS NOT FOR CONSTRUCTION, ALL DIMENSIONS AND LEVELS ARE TO BE CHECKED ON SITE PRIOR TO THE COMMENCEMENT OF WORK. INFORM TURNER OF ANY DISCREPANCIES FOR CLARIFICATION BEFORE PROCEEDING WITH WORK. DRAWINGS ARE NOT TO BE SCALED, USE ONLY FIGURED DIMENSIONS, REFER TO CONSULTANT DOCUMENTATION FOR FURTHER INFORMATION DWG, IFC AND BIMX FILES ARE UNCONTROLLED DOCUMENTS AND ARE ISSUED FOR INFORMATION ONLY. Deicorp

NOTES

Project Title Doran Drive Doran Drive, Castle Hill Castle Hill NSW 2154 Australia	Scale 1:200 @A1, 50%@A3 Status DA Submission	Project No. 19068 Dwg No. DA-110-005	Drawn by <u>AM, VT, JL, JE</u> Rev 02	North
Drawing Title				
GA PLANS			rd Street	T +61 2 9669 0000



Level 7 **ONE** Oxford Street Darlinghurst NSW 2010 AUSTRALIA

NOTES

Project Title Doran Drive Doran Drive, Castle Hill Castle Hill NSW 2154 Australia Drawing Title	Scale 1:200 @A1, 50%@A3 Status DA Submission	Project No.	19068 A-110-006	Drawn by <u>AM, VT, JL, JE</u> Rev 02	North
GA PLANS Basement 02	TURNE	ER	Level 7 ONE Oxfor Darlinghurst NSW AUSTRALIA		T +61 2 8668 0000 F +61 2 8668 0088 turnerstudio.com.au

CLIENT NOTED THIS DRAWING IS COPYRIGHT © OF TURNER. NO REPRODUCTION WITHOUT PERMISSION. UNLESS NOTED OTHERWISE THIS DRAWING IS NOT FOR CONSTRUCTION. ALL DIMENSIONS AND LEVELS ARE TO BE CHECKED ON SITE PRIOR TO THE COMMENCEMENT OF WORK. INFORM TURNER OF ANY DISCREPANCIES FOR CLARIFICATION BEFORE PROCEEDING WITH WORK. DRAWINGS ARE NOT TO BE SCALED. USE ONLY FIGURED DIMENSIONS. REFER TO CONSULTANT DOCUMENTATION FOR FURTHER INFORMATION DWG, IFC AND BIMX FILES ARE UNCONTROLLED DOCUMENTS AND ARE ISSUED FOR INFORMATION ONLY. Deicorp


NOTES

Project Title	Scale	Project No.	Drawn by	North
Doran Drive	1:200 @A1, 50%@A3 Status	190	68 <u>AM, VT, JL, JE</u> Rev	く
Doran Drive, Castle Hill Castle Hill NSW 2154 Australia	DA Submission	DA-110		/
Drawing Title				

GA PLANS Basement 01

TURNER

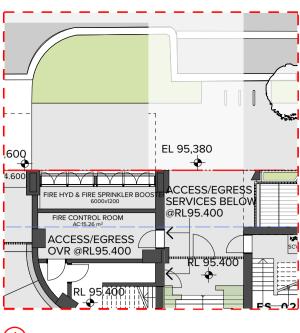
Level 7 **ONE** Oxford Street Darlinghurst NSW 2010 AUSTRALIA

NUTES THIS DRAWING IS COPYRIGHT © OF TURNER. NO REPRODUCTION WITHOUT PERMISSION, UNLESS NOTED OTHERWISE THIS DRAWING IS NOT FOR CONSTRUCTION, ALL DIMENSIONS AND LEVELS ARE TO BE CHECKED ON SITE PRIOR TO THE COMMENCEMENT OF WORK. INFORM TURNER OF ANY DISCREPANCIES FOR CLARIFICATION BEFORE PROCEEDING WITH WORK. DRAWINGS ARE NOT TO BE SCALED, USE ONLY FIGURED DIMENSIONS, REFER TO CONSULTANT DOCUMENTATION FOR FURTHER INFORMATION DWG, IFC AND BIMX FILES ARE UNCONTROLLED DOCUMENTS AND ARE ISSUED FOR INFORMATION ONLY.

CLIENT

Deicorp

NOTES


Approved by Revision Notes JMC Draft DA for Review JMC Retail Update JMC DA Submission Rev Date 01 07.06.21 02 25.06.21 03 06.07.21

Project Title Doran Drive Doran Drive, Castle Hill Castle Hill NSW 2154 Australia	Scale 1:200 @A1, 50%@A3 Status DA Submission	Project No.	<u>19068</u> DA-110-008	Drawn by <u>AM, VT, JL, JE</u> Rev 03	North
Drawing Title GA PLANS Ground Level	TURNE	ER	Level 7 ONE Oxfor Darlinghurst NSW 2 AUSTRALIA		T +61 2 8668 0000 F +61 2 8668 0088 turnerstudio.com.au

Deicorp

1 Access/Egress Fire Control Room

Scale 1:200 @A1, 50%@A3 Doran Drive Doran Drive, Castle Hill Castle Hill NSW 2154 Australia Status **DA Submission** Drawing Title

Dwg No.

Project No. Drawn by 19068 DA-110-009

North AM, VT, JL, JE Rev 03

GA PLANS Upper Level

TURNER

Level 7 **ONE** Oxford Street Darlinghurst NSW 2010 AUSTRALIA

CLIENT Deicorp

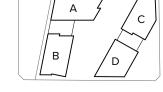
Project Title Scale Project No. Drawn by North 19068 1:200 @A1, 50%@A3 AM, VT, JL, JE Rev Doran Drive Dwg No. Doran Drive, Castle Hill Castle Hill NSW 2154 Australia Status DA-110-010 03 DA Submission Drawing Title GA PLANS Level 7 **ONE** Oxford Street Darlinghurst NSW 2010 AUSTRALIA T +61 2 8668 0000 F +61 2 8668 0088 turnerstudio.com.au TURNER Level 01

CLIENT

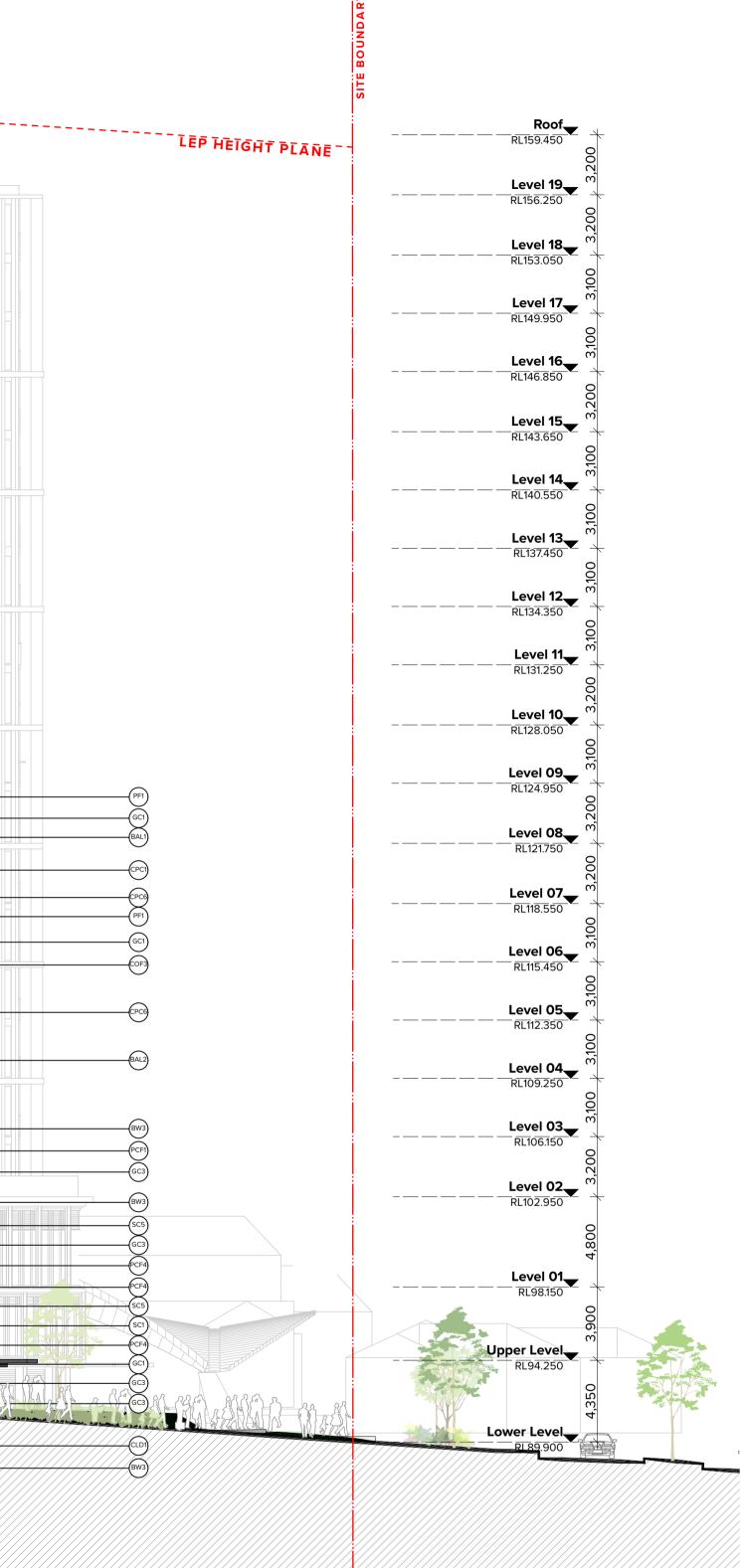
NOTES

Rev Date 01 07.06.21 02 18.06.21 03 25.06.21 04 06.07.21

Project Title	Scale	Project No.	Drawn by	North
Doran Drive	1:200 @A1, 50%@A3	19068	AM, VT, JL, JE	う
Doran Drive, Castle Hill Castle Hill NSW 2154 Australia	Status DA Submission	Dwg No. DA-110-020	Rev 04	/•
Drawing Title				
GA PLANS				


TURNER

Level 7 **ONE** Oxford Street Darlinghurst NSW 2010 AUSTRALIA

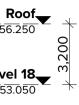

Deicorp

NOTES

BALI CPC3 (PFI) (GCI)	GC8 GC1 COFI SC2 CPC6 COF3 BAL1 CPC1	
	COVERRUN RL 16 .300	OP RL 159.950* Image: state sta
CAR PARK IN CAR PARK OUT 560 57 0 0 0 0 0		

Il steel screen, Detailing, al and finish to match BAL2	GC1 Glass clear, Framing System, aluminium, Powder coat finish, Framing colour to match PCF1	(GC7) System, alu Framing co	k glass panel Framing minium, Powder coat finish, lour to match PCF1, Colour to match PF1	(PF3)	Paint finish White Colour to match Dulux "Dulux Natural White" or Similar	Mall/Car park directional :
ntal Aluminium Louver , o match PCF1	GC2 Glass clear, Framing System, aluminium, Powder coat finish, Framing colour to match PCF2	(GC8) System, alu	Louvers, Framing minium, Powder coat ing colour to match	(SG1)	External Sign - The corner of Doran Drive and Mandala Parade	Car park Entry/Exit Signa
ntal Aluminium Louver , o match PCF2	GC3 GG3 GG3 GG3 GG3 GG3 GG3 GG3 GG3 GG3		Curtain Wall System	(SG2)	External Sign - The corner of Doran Drive and De Clambe Drive (SG7)	External Sign - Online Pic Signage
l Aluminium Batten screen, o match PCF2	GC4 System, aluminium, Powder coat finish, Framing colour to match PCF2, Colour back panel to match PF1 Colour-back glass panel Framing		Dark grey Colour to	(SG3)	External Sign - The corner of Andalusian Way and De Clambe	oightige
ntal Aluminium Louver o match PCF4	GC5 System, aluminium, Powder coat finish, Framing colour to match PCF1, Colour back panel to match PF2 Colour-back glass panel Framing		x "Domino" or Similar : Colour to match	\bigcirc	Drive	
	GC6 System, aluminium, Powder coat finish, Framing colour to match PCF1, Colour back panel to match PF3		nity Gold Pearl" or			

Project Title	Scale	Project No.	Drawn by
Doran Drive Doran Drive, Castle Hill Castle Hill NSW 2154 Australia	1:200 @A1, 50%@A3 Status DA Submission	Dwg No. Dwg No. DA-210-101	<u>AG, VT, JB</u> Rev 03
Drawing Title	DA Subinission	DR-210-101	
GA ELEVATIONS			


TURNER

Level 7 **ONE** Oxford Street Darlinghurst NSW 2010 AUSTRALIA

А / D _

screen, Detailing, inish to match BAL2	GC1	Glass clear, Framing System, aluminium, Powder coat finish, Framing colour to match PCF1	GC7	Colour-back glass panel Framing System, aluminium, Powder coat finish, Framing colour to match PCF1, Colour back panel to match PF1	(PF3)	Paint finish White Colour to match Dulux "Dulux Natural White" or Similar	SG5	Mall/Car park directional :
uminium Louver	GC2	Glass clear, Framing System, aluminium, Powder coat finish, Framing colour to match PCF2	GC8)	Glass clear Louvers, Framing System, aluminium, Powder coat finish, Framing colour to match	(SG1)	External Sign - The corner of Doran Drive and Mandala Parade	(SG6)	Car park Entry/Exit Signaç
h PCF1 uminium Louver	GC3	Glass clear, Framing System, aluminium, Powder coat finish, Framing colour to match PCF4	\bigcirc	PCF1	\bigcirc		\bigcirc	
h PCF2	GC4	Colour-back glass panel Framing System, aluminium, Powder coat finish,	(GC9)	Glass clear Curtain Wall System	(SG2)	External Sign - The corner of Doran Drive and De Clambe Drive	(SG7)	External Sign - Online Pic Signage
inium Batten screen, h PCF2	\bigcirc	Framing colour to match PCF2, Colour back panel to match PF1				External Sign - The corner of		
uminium Louver	GC5	Colour-back glass panel Framing System, aluminium, Powder coat finish, Framing colour to match PCF1, Colour	(PF1)	Paint finish Dark grey Colour to match Dulux "Domino" or Similar	(SG3)	Andalusian Way and De Clambe Drive		
h PCF4	GC6	back panel to match PF2 Colour-back glass panel Framing System, aluminium, Powder coat finish, Framing colour to match PCF1, Colour	(PF2)	Paint Finish: Colour to match Dulux "Eternity Gold Pearl" or Similar				

Project little	Scale
Doran Drive	<u>1:200 @</u> A1,
Doran Drive, Castle Hill Castle Hill NSW 2154 Australia	Status DA Submiss
Drawing Title	

TURNER

DA-210-201

Rev 03

GA ELEVATIONS West Elevation

Level 7 **ONE** Oxford Street Darlinghurst NSW 2010 AUSTRALIA

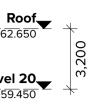
NOTES

een, Detailing, sh to match BAL2	GC1	Glass clear, Framing System, aluminium, Powder coat finish, Framing colour to match PCF1	GC7	Colour-back glass panel Framing System, aluminium, Powder coat finish, Framing colour to match PCF1, Colour back panel to match PF1	(PF3)	Paint finish White Colour to match Dulux "Dulux Natural White" or Similar	SG5	Mall/Car park directional :
nium Louver	GC2	Glass clear, Framing System, aluminium, Powder coat finish, Framing colour to match PCF2	GC8	Glass clear Louvers, Framing System, aluminium, Powder coat finish, Framing colour to match	(SG1)	External Sign - The corner of Doran Drive and Mandala Parade	SG6	Car park Entry/Exit Signaç
CF1 nium Louver	GC3	Glass clear, Framing System, aluminium, Powder coat finish, Framing colour to match PCF4	\bigcirc	PCF1 Glass clear Curtain Wall System	\bigcirc	External Sign - The corner of	\bigcirc	
CF2 m Batten screen, CF2	GC4	Colour-back glass panel Framing System, aluminium, Powder coat finish, Framing colour to match PCF2, Colour back panel to match PF1	(GC9)		(SG2)	Doran Drive and De Clambe Drive	SG7	External Sign - Online Pic Signage
nium Louver	GC5	Colour-back glass panel Framing System, aluminium, Powder coat finish, Framing colour to match PCF1, Colour back panel to match PF2	(PF1)	Paint finish Dark grey Colour to match Dulux "Domino" or Similar	(SG3)	External Sign - The corner of Andalusian Way and De Clambe Drive		
CF4	GC6	Colour-back glass panel Framing System, aluminium, Powder coat finish,	(PF2)	Paint Finish: Colour to match Dulux "Eternity Gold Pearl" or				

Project Itie	Scale	Proje
Doran Drive	1:200 @A1, 50%@A3	
Doran Drive, Castle Hill Castle Hill NSW 2154 Australia	Status	Dwg I
	DA Submission	
Drawing Title		

DA-210-301

03


TURNER

Level 7 **ONE** Oxford Street Darlinghurst NSW 2010 AUSTRALIA

/ D _

een, Detailing, h to match BAL2	GC1	Glass clear, Framing System, aluminium, Powder coat finish, Framing colour to match PCF1	GC7	Colour-back glass panel Framing System, aluminium, Powder coat finish, Framing colour to match PCF1, Colour back panel to match PF1	(PF3)	Paint finish White Colour to match Dulux "Dulux Natural White" or Similar	Mall/Car park directional :
nium Louver	GC2	Glass clear, Framing System, aluminium, Powder coat finish, Framing colour to match PCF2	GC8	Glass clear Louvers, Framing System, aluminium, Powder coat finish, Framing colour to match	(SG1)	External Sign - The corner of Doran Drive and Mandala Parade (SG6)	Car park Entry/Exit Signaç
CF1	GC3	Glass clear, Framing System, aluminium. Powder coat finish.	\bigcirc	PCF1	\bigcirc	\bigcirc	
nium Louver	\bigcirc	Framing colour to match PCF4		Glass clear Curtain Wall System	(SG2)	External Sign - The corner of	
CF2	GC4	Colour-back glass panel Framing System, aluminium, Powder coat finish,	(GC9)		(SG2)	Doran Drive and De Clambe Drive	External Sign - Online Pic Signage
n Batten screen, CF2	\bigcirc	Framing colour to match PCF2, Colour back panel to match PF1	\frown		\bigcirc		
	GC5	Colour-back glass panel Framing System, aluminium, Powder coat finish,	(PF1)	Paint finish Dark grey Colour to match Dulux "Domino" or Similar	(SG3)	External Sign - The corner of Andalusian Way and De Clambe Drive	
nium Louver	\bigcirc	Framing colour to match PCF1, Colour back panel to match PF2	\bigcirc				
CF4	GC6	Colour-back glass panel Framing System, aluminium, Powder coat finish, Framing colour to match PCF1, Colour	(PF2)	Paint Finish: Colour to match Dulux "Eternity Gold Pearl" or Similar			

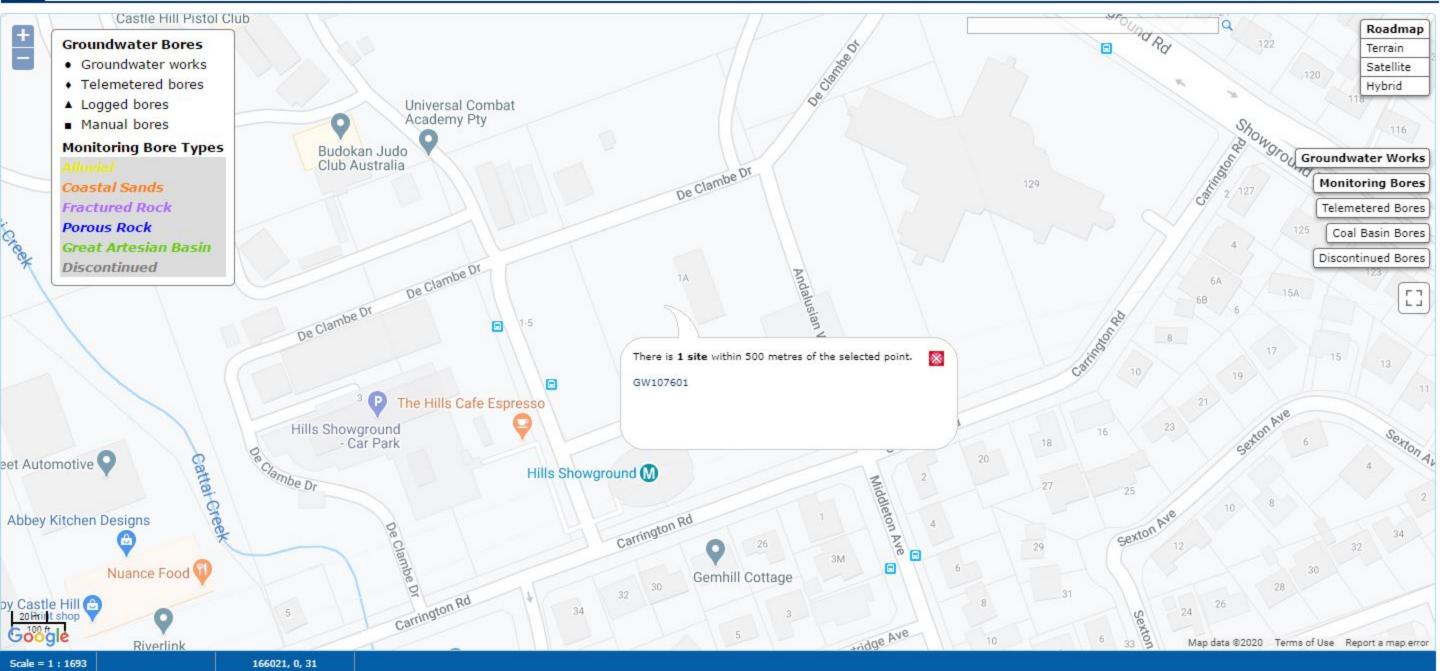
Project little	Scale
Doran Drive	1:200 @A1, 50%@A3
Doran Drive, Castle Hill Castle Hill NSW 2154 Australia	Status
	DA Submission
Drawing Title	

Dwg No. DA-210-401

Rev 03

GA ELEVATIONS East Elevation

TURNER


Level 7 **ONE** Oxford Street Darlinghurst NSW 2010 AUSTRALIA

Appendix D - Groundwater Bore Search

GREATER SYDNEY REGION

All data times are Eastern Standard Time

Мар

WaterNSW Work Summary

GW107601

Licence:	10BL160929	Licence Status:	ACTIVE
		Authorised Purpose(s): Intended Purpose(s):	MONITORING BORE MONITORING BORE
Work Type:	Bore		
Work Status:			
Construct.Method:			
Owner Type:			
Commenced Date: Completion Date:	24/10/2002	Final Depth: Drilled Depth:	
Contractor Name:	JEFFERY & KATAUSKAS PTY LTD		
Driller:	Yoon Fook Chin		
Assistant Driller:			
Property:	CASTLE HILL SHOWGROUND	Standing Water Level (m):	
GWMA:	-	Salinity Description:	
GWMA. GW Zone:		Yield (L/s):	

Site Chosen By:

			County CUMBERLAND CUMBERLAND	Parish CASTLE HI CASTLE HILL	Cadastre 199 752020 PART LOT 199//752020
Region:	10 - Sydney South Coast	CMA Map:			
River Basin: Area/District:	- Unknown	Grid Zone:		Scale	:
Elevation: Elevation Source:	0.00 m (A.H.D.) Unknown		6266332.000 313192.000		: 33°43'35.8"S : 150°59'01.4"E
GS Map:	-	MGA Zone:	56	Coordinate Source	Unknown

Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

Hole	Pipe	Component	Туре		To (m)	Diameter	 Interval	Details
1		Hole	Hole	0.00	35.34	70		Unknown
1	1	Casing	P.V.C.	0.00	35.34	50		Seated on Bottom, Glued
1	1	Opening	Slots - Horizontal	0.00	35.34	50	0	PVC, SL: 0.5mm

Drillers Log

From (m)		Thickness (m)	Drillers Description	Geological Material	Comments
0.00	1.20	1.20	TOPSOIL	Topsoil	
1.20	35.34	34.14	SANDSTONE	Sandstone	

*** End of GW107601 ***

Warning To Clients: This raw data has been supplied to the WaterNSW by drillers, licensees and other sources. WaterNSW does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

Appendix E - Site Photography

Photograph 1: View of the eastern portion of the site.

Photograph 2: South-western corner of the site.



Photograph 3: Western boundary of the site.

Photograph 4: Southern boundary of the site.

Photograph 5: Northern boundary of the site.

Photograph 6: Doran Drive (west) and Mandala Parade (south).

Appendix F - Test Pit and Borehole Logs

BOREHOLE: BH1

ProjectDetailed SLocation2 MandalPositionRefer to FJob No.E24724.EClientDeicorp F

Detailed Site Investigation 2 Mandala Parade, Castle Hill NSW Refer to Figure 2 E24724.E02 Deicorp Pty Ltd

Surface RL 96.50 m Contractor Hagstrom Drill Rig Hydrapower Scout V (DR011) Inclination -90°
 Sheet
 1
 OF
 1

 Date Started
 8/7/20
 1

 Date Complete
 9/7/20
 1

 Logged
 DS
 Date:8/7/20

 Checked SR
 Date: 24/8/20

F		Dr	illing		Sampling				Field Material Desc	riptio	n		
METHOD	PENETRATION	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
			-0	96.50 0.60	BH1_0.1-0.2 ES		\bigotimes	-	FILL: Silty CLAY; low plasticity, pale grey to red-brown, with fine to coarse sandstone, igneous gravel and fine to medium grained sand, no odour.	М	-	FILL	T
	-		1-	95.90	BH1_0.7-0.8 ES			CI	Silty CLAY; medium plasticity, pale grey, with fine to coarse ironstone gravel and fine to medium grained sand, grading to extremely weathered material, no odour.			RESIDUAL SOIL	-
AD/T		GWNE	-		BH1_1.4-1.5 ES		× · ·			M (<pl< td=""><td>н</td><td></td><td></td></pl<>	н		
			2-	<u>2.10</u> 94.40			× ×	-	SANDSTONE; fine to medium grained, pale grey and orange-brown, low to medium strength, slightly to distinctly weathered, no odour.			BEDROCK	
	M-H			3.00					Borehole Terminated at 3.00 mBGL;	-	-		. -
			-	-					Target Depth Reached.				
A 1.03 2014-07-05			4-										-
03 2014-07-05 Prj: El				-									-
I - DGD LIb: EIA 1.0			-	-									
00 Datgel Laband in Silu Tool - DGD Lib: E.A. 1.03 2014-07-05 Pr; E.A. 1.03 2014-07-05			6	-									-
ile>> 17/08/2020 14:33 10.0.0			-	-									
3S.GPJ < <drawingfile>></drawingfile>			8-										-
4.E02 TEST PIT LOI			-	•									
DREHOLE 3 E24724			9	-									-
EA UB 103.GLB Log IS AUBOREHOLE 3 E24724.E02 TEST PIT LOGS GPJ			- - 10-		This horeho				e read in conjunction with EI Australia's accompanying sta	ndar		22	
EIA LIB 1.0							3 51101						

BOREHOLE: BH2

Project Location Position Job No. E24724.E02 Client

Detailed Site Investigation 2 Mandala Parade, Castle Hill NSW Refer to Figure 2 Deicorp Pty Ltd

Surface RL	95.10 m
Contractor	Hagstrom
Drill Rig	Hydrapower Scout V (DR011)
Inclination	-90°

Sheet 1 OF 1 Date Started 9/7/20 Date Completed 10/7/20 Logged DS Date:9/7/20 Checked SR Date: 24/8/20

		Dri	lling	_	Sampling				Field Material Desc			
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
			0	95.10	BH2_0.1-0.2 ES		\bigotimes	-	FILL: Silty CLAY; low plasticity, dark brown, with fine to coarse, sub-rounded to angular sandstone and igneous gravel and fine to medium grained sand, no odour.			FILL
			- - 1—	1.00	BH2_0.7-0.8 ES		\bigotimes			м	-	
			-	94.10 1.40 93.70	BH2_1.2-1.3 ES			CI	From 1.0 m, with weak odour. Silty CLAY: medium plasticity, pale grey to red-brown, trace fine to medium ironstone gravels and rootlets, with weak			RESIDUAL SOIL
Ľ	-	GWNE	-	2.00	BH2_1.6-1.7 ES BH2_1.9-2.0 ES				fine to medium ironstone gravels and rootlets, with weak odour.			
AD/T		В	2	93.10	BH2_1.9-2.0 L3				From 2.0 m, no odour.	M (<pl< td=""><td>VSt</td><td></td></pl<>	VSt	
			-	3.00	BH2 2.9-3.0 ES							
			3—	92.10 3.30 91.80				CL	Sandy CLAY; low plasticity, pale grey, grading to extremely weathered sandstone, no odour. SANDSTONE; fine to medium grained, pale grey and	M (<pl< td=""><td>) н</td><td>BEDROCK</td></pl<>) н	BEDROCK
	M-H		-	3.95			· · · · · · · · · · · · · · · · · · ·		orange-brown, low to medium strength, slightly to distinctly weathered, no odour.	-	-	
			4	0.00			<u></u>		Borehole Terminated at 3.95 mBGL; Target Depth Reached.			
			=									
			5									
			-									
			6—									
			-									
			7—									
			-									
			8									
			-									
			9—									
			-									
			10 —		This boreho	le log	g shou	ıld be	e read in conjunction with El Australia's accompanying sta	 ndaro	d note	 es.

BOREHOLE: BH3M

ProjectDetailed Site InvestigationLocation2 Mandala Parade, Castle Hill NSWPositionRefer to Figure 2Job No.E24724.E02ClientDeicorp Pty Ltd

Surface RL 91.00 m Contractor Hagstrom Drill Rig Hydrapower Scout V (DR011) Inclination -90°
 Sheet
 1 OF 1

 Date Started
 14/7/20

 Date Completed
 14/7/20

 Logged
 DS

 Date: 14/7/20
 14/7/20

									Inclination -90°			Checked SR D	ate: 24/8/20
			lling		Sampling	_			Field Material Desc	riptio	on		
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	CONDITION	CONSISTENCY DENSITY	STRUCTURE AN ADDITIONAL OBSERVATION	
			0	91.00	BH3M_0.1-0.2 ES				FILL: Silty CLAY; low plasticity, brown-dark grey to dark brown, with fine to coarse grained sand, fine to coarse, sub-rounded to angular sandstone and igneous gravel, trace rubber fragments, no odour.			FILL	
			- - 1—		BH3M_0.7-0.8 ES			> > >					
AD/T	-		-		BH3M_1.2-1.3 ES BH3M_1.7-1.8 ES		\bigotimes	> > >		M	-		
		14/7/20	2	-	BH3M_2.2-2.3 ES		\bigotimes	>					
		$\nabla^{1_{4}}$		2.60 88.40 2.90	BH3M_2.8-2.9 ES			C	Sandy CLAY; fine to medium grained, pale grey and orange-brown, grading to extremely weathered sandstone, no odour.	м	VSt	RESIDUAL SOIL	
			-						Borehole Terminated at 2.90 mBGL; T/C Bit Refusal on Sandstone.				
			4										
			-										
			5 — -										
			- - 6—										
			-										
			7										
			- - 8—										
			-										
			- 9—										
			-										
	This borehole log should be read in conjunction with El Australia's accompanying standard notes.												

	ei	al	USI	ation	alia	al	2 Ma	Indala	Para	estigation le, Castle Hill NSW	В	O	REH	Sheet	1 OF 1	
						Position Job No. Client	E247	r to Fig 724.E0 orp Pty	2	Contractor Hagstrom Drill Rig Hydrapower S	cout '	V (DF	R011)	Date Started Date Completed Logged LW Checked SR	21/7/20 22/7/20 Date:21/7/20 Date: 24/8/2	
F										Inclination -90°				Checked SK	Dale. 24/0/2	.0
METHOD	PENETRATION	_	DEPTH		DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	Field Material Des			ID Si BH3M-a		ETAILS	
EA LIB 103 GLB Log IS AU BOREHOLE 3 E24724.E02 TEST PT LOGS.GPJ <-D0#WingFile> 2008/2020 16:42 10.0.000 DageLab and In Stu Tool - DGD Lik: EIA 1.03 2014-07-05 Pf; EIA 1.03 20					2.40					FILL: Silty CLAY; low plasticity, brown-dark grey to dark brown, with fine to coarse grained sand, fine to coarse, sub-rounded to angular sandstone and igneous gravel, trace rubber fragments, no odour.		VSI			Grout Bentonite uPVC 50 mm Casing Sand uPVC 50 mm Screen	
EIA LIB 1.03.						This bore	nole lo	ig shoi	uid be	read in conjunction with EI Australia's accompanying st	andar	d not	es.			

Г

Project

Location

Position

Job No.

Client

Detailed Site Investigation 2 Mandala Parade, Castle Hill NSW Refer to Figure 2 E24724.E02 Deicorp Pty Ltd

Surface RL98.00 mContractorGeosense DrillingDrill RigHanjin DB8Inclination-90°

BOREHOLE: BH4M

 Sheet
 1 OF 1

 Date Started
 14/7/20

 Date Completed
 14/7/20

 Logged SL
 Date:14/7/20

 Checked SR
 Date: 24/8/20

		D-1	lling		Compliant				Inclination -90°	rim4! -			20
	z	Dri	lling		Sampling	1		۲	Field Material Desc				—
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY		
				98.00	BH4M_0.3-0.5 ES			-	FILL: Silty SAND; fine to medium grained, brown, with low plasticity clay and concrete fragments, no odour.			FILL	
	L		1— - -	<u>1.10</u> 96.90 1.60	BH4M_0.9-1.0 ES BH4M_1.4-1.5 ES			>	Fom 1.1 m, orange-brown, with medium sandstone gravel, no odour.	-	-		
	Н		- 2—	96.40 2.00 96.00	BH4M_1.9-2.0 ES		\bigotimes	-	From 1.6 m, grey, no odour.				
AD/T		GWNE	-		BH4M_2.4-2.5 ES		\bigotimes	>	with fine to medium, sub-angular to sub-rounded gravel, no odour.				
	L		3		BH4M_2.9-3.0 ES			*		-	-		
			4	4.00 94.00	BH4M_3.9-4.0 ES			CI	Silty CLAY; medium plasticity, red mottled grey, no odour.	M	VSt -	RESIDUAL SOIL	+
	М		-	4.60 93.40 5.00	BH4M_4.4-4.5 ES BH4M_4.6-4.7 ES BH4M_4.9-5.0 ES			С	Sandy CLAY; fine to medium grained, pale grey and orange-brown, grading to extremely weathered sandstone, no odour.	CAL) H VSt- H		
			5 6 _		DI 14W_4.9-0.0 ES				Borehole Terminated at 5.00 mBGL; T/C Bit Refusal.				
			- 7 -										
			- 8 - -										
			- 9 - -										
			- 10		This boreho	ole lo	g shou	uld be	e read in conjunction with EI Australia's accompanying sta	ndaro	d note	25.	

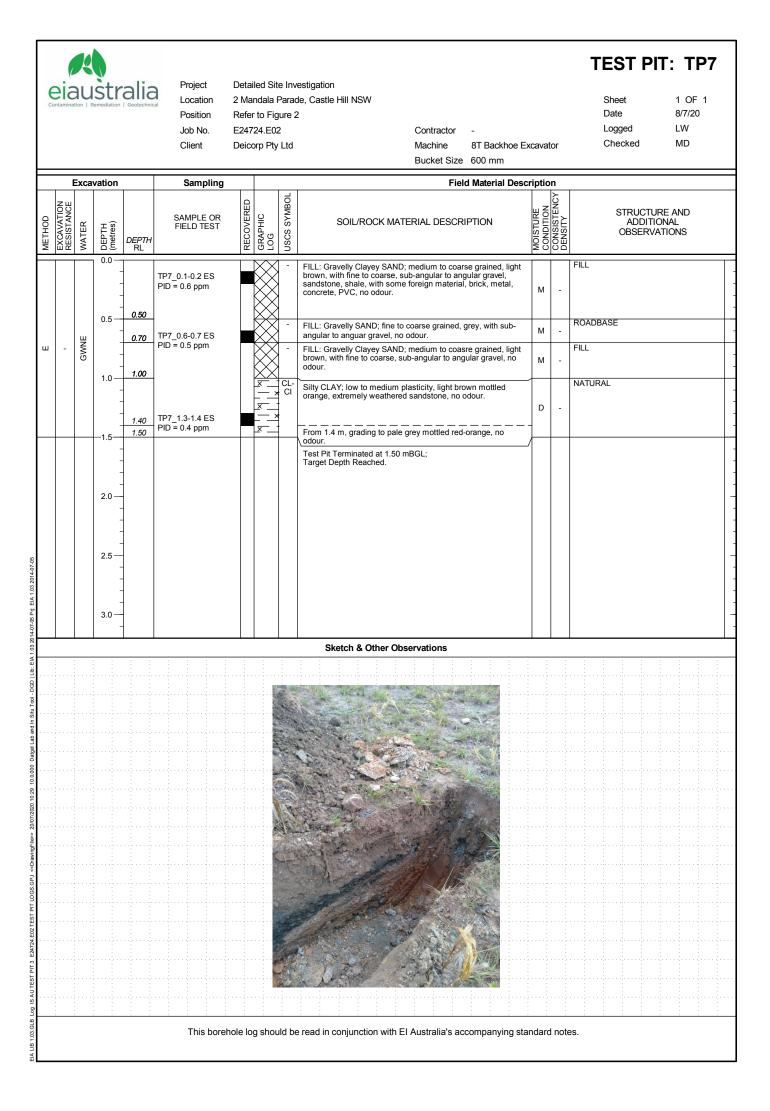
	(R								В	OF	REH	OLE: BI	H4M-a
Cont				alia	Project Location Position Job No. Client	2 Ma Refe E247		Parac jure 2 2	estigation de, Castle Hill NSW 2 Contractor Hagstrom Drill Rig Hydrapower So Inclination -90°	cout \	/ (DR	8011)	Sheet Date Started Date Completed Logged LW Checked SR	1 OF 1 21/7/20 22/7/20 Date:21/7/20 Date: 24/8/20
		Dril	ling		Sampling				Field Material Desc					
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY	<u>ID Sta</u> BH4M-a		TAILS
	L	GWNE		1.10 1.60 2.00 4.00 4.40	This boref			CI	FILL: Silty SAND; fine to medium grained, brown, with low plasticity clay and concrete fragments, no odour. Fom 1.1 m, orange-brown, with medium sandstone gravel, no odour. Frem 1.6 m, grey, no odour. FILL: Silty CLAY; medium plasticity, red mottled grey-brown, with fine to medium, sub-angular to sub-rounded gravel, no odour. Silty CLAY; medium plasticity, red mottled grey, no odour. Silty CLAY; fine to medium grained, pale grey and orange-brown, grading to extremely weathered sandstone, no odour. Borehole Terminated at 4.50 mBGL; T/C Bit Refusal.	- - -	- Vst) H			Grout
B 1.03.GLB			10-	.	This bore	hole lo	g shou	uld be	e read in conjunction with EI Australia's accompanying sta	ndar	d not	es.		

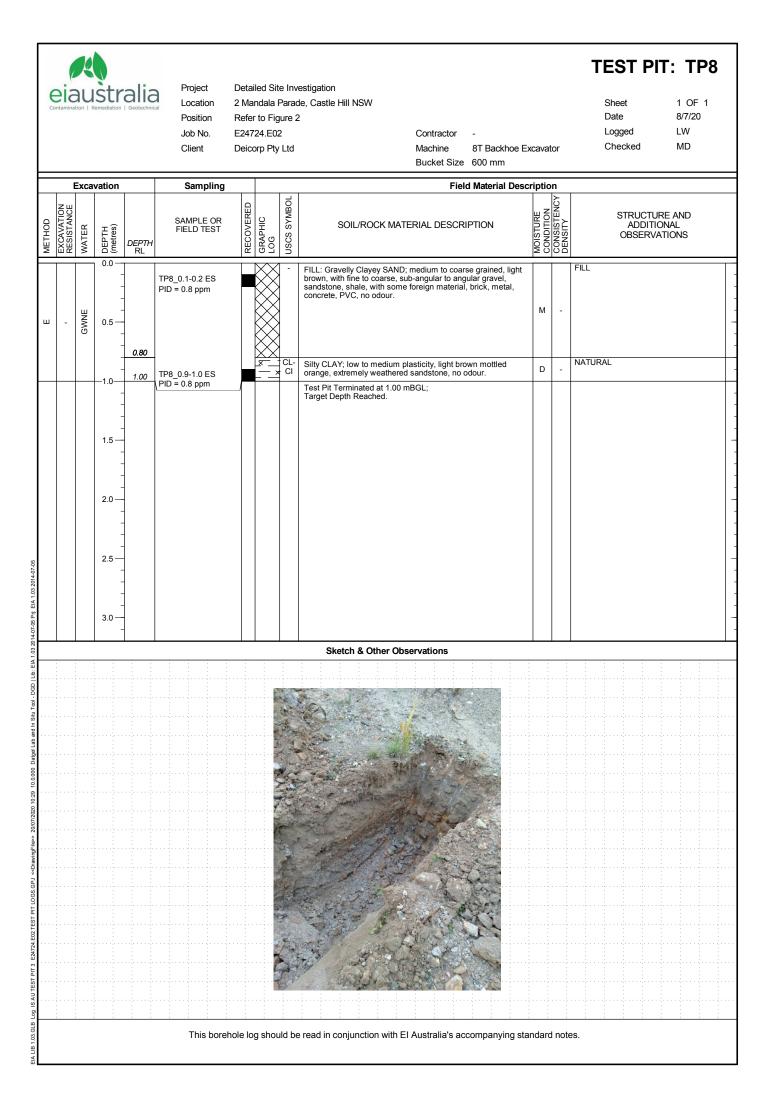
3	ei	al	Listr Remediation	Geotechnia	Project Location	2 Ma	ndala I	Parac	estigation le, Castle Hill NSW		B	Sheet 1 OF 1
					Position Job No. Client	E247	r to Fig 24.E0 orp Pty	2	2 Surface RL 94.10 m Contractor Geosense Drill Drill Rig Hanjin DB8 Inclination -90°	ing		Date Started 16/7/20 Date Completed 16/7/20 Logged SL Date:16/7/20 Checked SR Date: 24/8/20
		_	rilling		Sampling				Field Material Desc			PIEZOMETER DETAILS
METHOD	PENETRATION	WATER		DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	CONDITION	CONSISTENCY	PIEZOMETER DETAILS ID Static Water Level BH5M
			0-	94.10	BH5M_0.1-0.2 ES		\bigotimes	-	FILL: Gravelly SAND; fine to medium grained, brown, fine to medium, sub-angular to sub-rounded garvels, with clay,			
AD/T	L	GWNF	1-	-	BH5M_0.5-0.6 ES BH5M_1.0-1.1 ES				plastic fragmentš, no odour.	-	-	
			-	1.80	BH5M_1.5-1.6 ES BH5M_1.8-1.9 ES			CI	Silty CLAY; medium plasticity, red-brown, no odour.	M	1/64	 Bentonite - -
	+	+	2_	92.330 92.920	BH5M_1.9-2.0 ES		<u></u>		From 1.9 m, grey, grading to extremely weathered sandstone, no odour.	<u> <pl< u=""></pl<></u>	VSt	
				-					Borehole Terminated at 2.00 mBGL; T/C Bit Refusal.			uPVC 50 mm Casing
			3-	-								
j: EIA 1.03 2014-07-05			4 —	-								uPVC 50 mm Screen Screen
ib: EIA 1.03 2014-07-05 P			5—	-								
and In Situ Tool - DGD L			6-	-								
:42 10.0.000 Datgel Lab			7	-								-
wingFile>> 20/08/2020 16			7-	-								
ST PIT LOGS.GPJ < <drail< td=""><td></td><td></td><td>8-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></drail<>			8-	-								
HOLE 3 E24724.E02 TES			9 —	-								-
EA UB103.0.B Log IS AUBOREHOLE 3 E24724.E02 TEST PIT LOGS GPJ < <drawingfile> 2008.2020 16.4.2 10.0.000 Daigei Lab and In Stu Tool - DGD Lib: EIA 1.03 2014-07-05 Pf; EIA 1.03 2014-07-05</drawingfile>			10-	-	This bore	hole lo	g shou	ıld be	e read in conjunction with EI Australia's accompanying sta	ndar	d note	es.
EIA LIB 1												

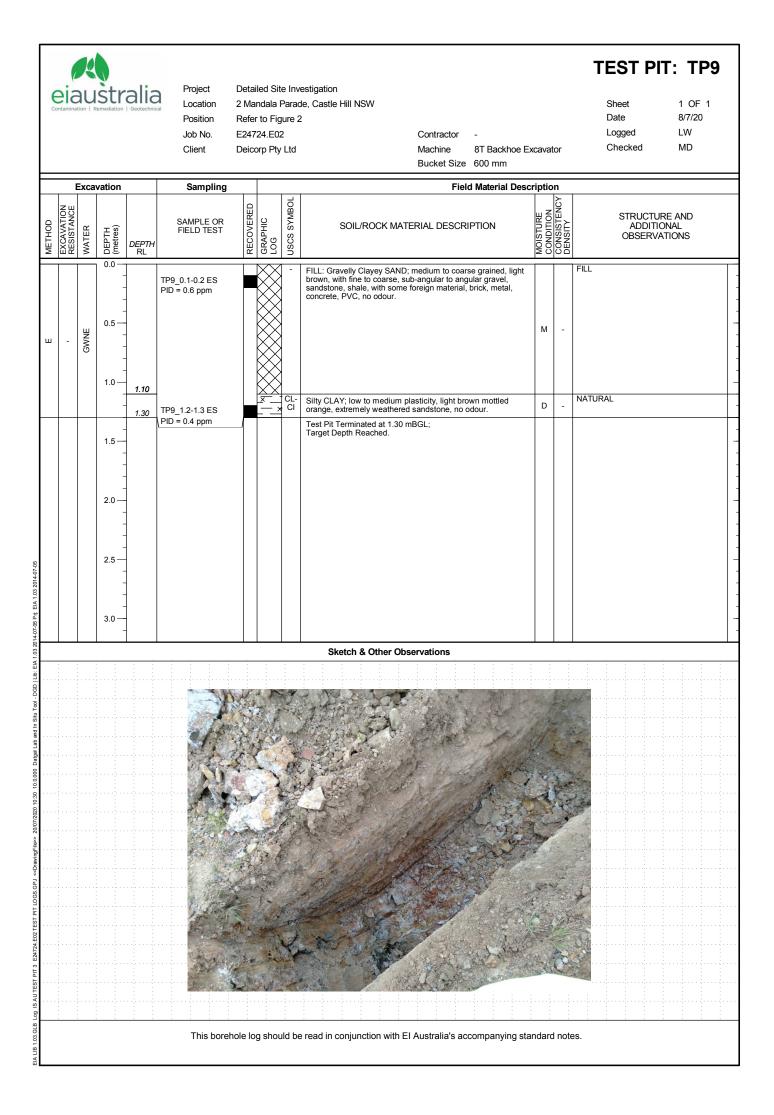
BOREHOLE: BH6

Project Detailed Site Investigation Location 2 Mandala Parade, Castle Hill NSW Position Refer to Figure 2 Job No. E24724.E02 Deicorp Pty Ltd

Client


Surface RL 90.80 m Contractor Geosense Drilling Drill Rig Hanjin DB8 Inclination -90°


Sheet 1 OF 1 Date Started 20/7/20 Date Completed 20/7/20 Logged SL Date:20/7/20 Checked SR Date: 24/8/20


ŀ			Dril	ling		Sampling				Field Material Descr	iptio	n	
	METHOD	PENETRATION RESISTANCE		DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
F				0 —	90.80	BH6_0.1-0.2 ES		\bigotimes	-	FILL: Silty CLAY; low plasticity, pale grey mottled red-brown, with fine to medium gravels and fine to medium grained sand,			FILL
				-		– BH6_0.4-0.5 ES		\bigotimes		no odour.			-
	AD/T	-	GWNE	-				\bigotimes			-	-	-
	∢		Ō	1 —		BH6_0.9-1.0 ES		\bigotimes					-
		м		-	1.20 89.60				CL	Sandy CLAY; low plasticity, pale grey, grading to extremely weathered sandstone, no odour.	D	VSt	RESIDUAL SOIL
ŀ				-	1.50	BH6_1.4-1.5 ES	_/			Borehole Terminated at 1.50 mBGL; T/C Bit Refusal.			
				- 2—									-
				-									-
				-									-
				-									-
				3									-
				-									-
				-									-
2014-07-05				4 —									-
.000 Datgel Lab and In Situ Tool - DGD Lib: EIA 1.03 2014-07-05 Prj: EIA 1.03 2014-07-05				-									-
				-									-
03 2014-0				5									-
ib: EIA 1.				-									-
- DGD L				-									-
Situ Tool				-									-
ab and In				6 —									-
Datgel L				-									-
10.0.000				-									-
20 14:34				7—									-
17/08/20				-									-
vingFile>>				-									-
J < <draw< td=""><td></td><td></td><td></td><td>8</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></draw<>				8									-
LOGS.GF				-									-
EST PIT				-									-
724.E02 T				-									-
E 3 E24				9									-
SOREHOL				-									-
g ISAUE				-									.
EIA LIB 1.03.GLB Log IS AUBOREHOLE 3 E24724.E02 TEST PIT LOGS.GPJ < <drawingfile>> 17/08/2020 14:34 10.0</drawingfile>				10 —	l	This borebo		a shou	ild be	e read in conjunction with EI Australia's accompanying star	ı ndaro	l note	25.
A LIB 1.0								3 0.100					
ш													

	Conta	aminat		str	alia	Project Location Position Job No. Client	2 Ma Refe E247		Parac gure 2 2	estigation de, Castle Hill NSW 2 Contractor Hagstrom Drill Rig Hydrapower So Inclination -90°	cout		Sheet Date Started Date Completed Logged LW Checked MD	1 OF 1 21/7/20	
			Dri	lling		Sampling				Field Material Desc	riptio	on			-
METUOD		RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	DENSITENCY DENSITY DENSITY		ETAILS	
EA UB 103 GLB Log IS AUBOREHOLE 3 E2#724.E02 TEST PTT LOGS.GPJ < <drawingfile> 2008/2020 16/42 10.0.00 DatgeLab and In Stu Tool - DGD Lib: EIA 1.03 2014-07-45 Pf; EIA 1.03 2014-07-45</drawingfile>		-	GWNE		1.40					FILL: Gravelly Clayey SAND; medium to coarse grained, light brown, with fine to coarse, sub-angular to angular gravel, sandstone, shale, with some foreign material, brick, metal, concrete, PVC, no odour. Silty CLAY; low to medium plasticity, light brown mottled orange, extremely weathered sandstone, no odour. Borehole Terminated at 1.50 mBGL; T/C Bit Refusal on Sandstone.				Grout Bentonite UPVC 50 mm Casing Sand uPVC 50 mm Screen	-
EIA LIB 1.03.GLB						This bore	nole lo	ig shoi	uld be	e read in conjunction with EI Australia's accompanying sta	ndar	d notes.			

Г

Project

Location

Position

Job No.

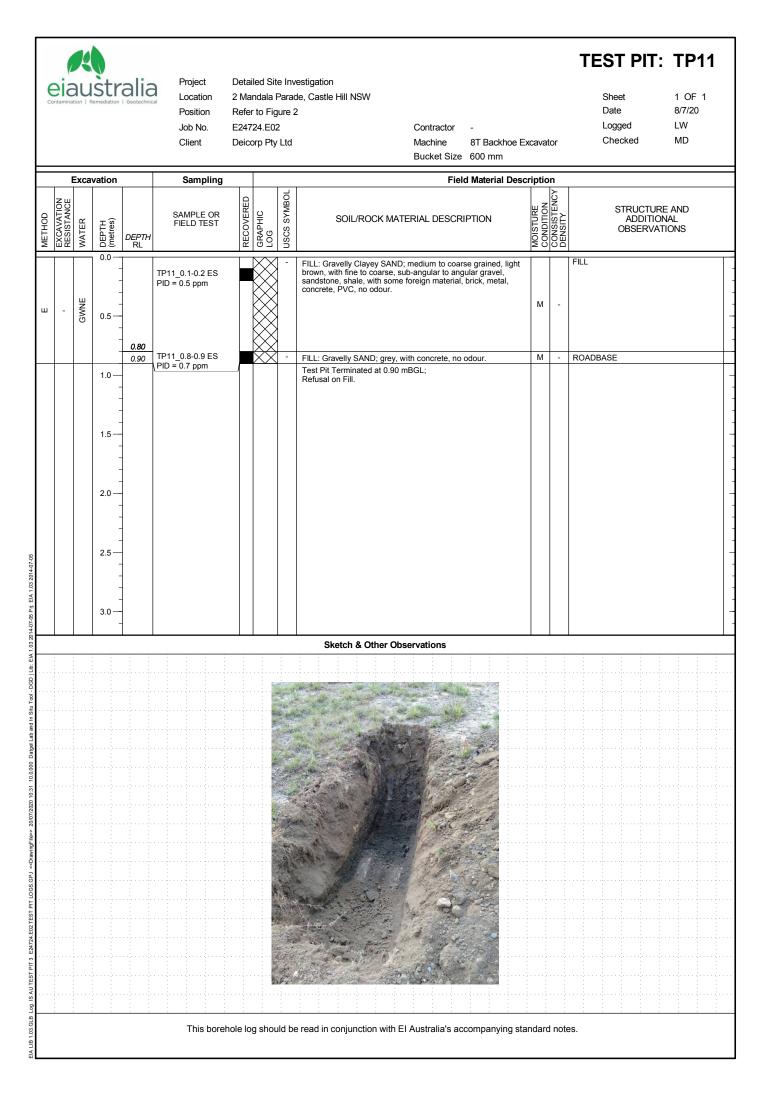
Client

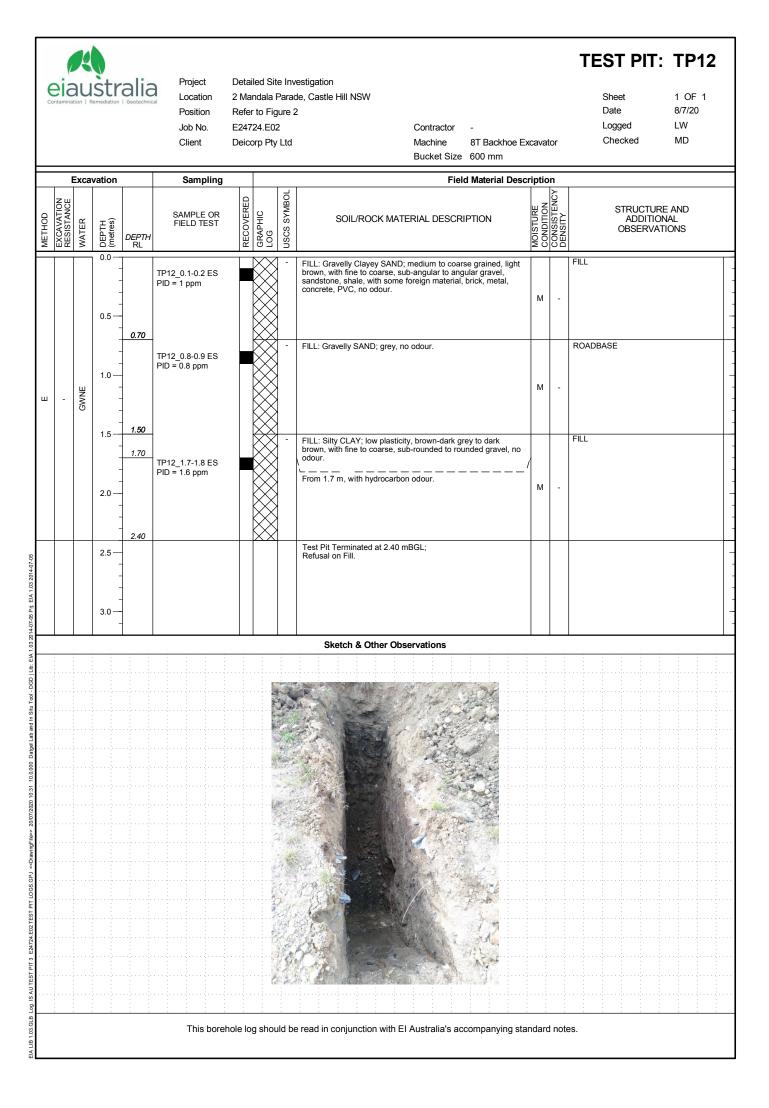
Detailed Site Investigation

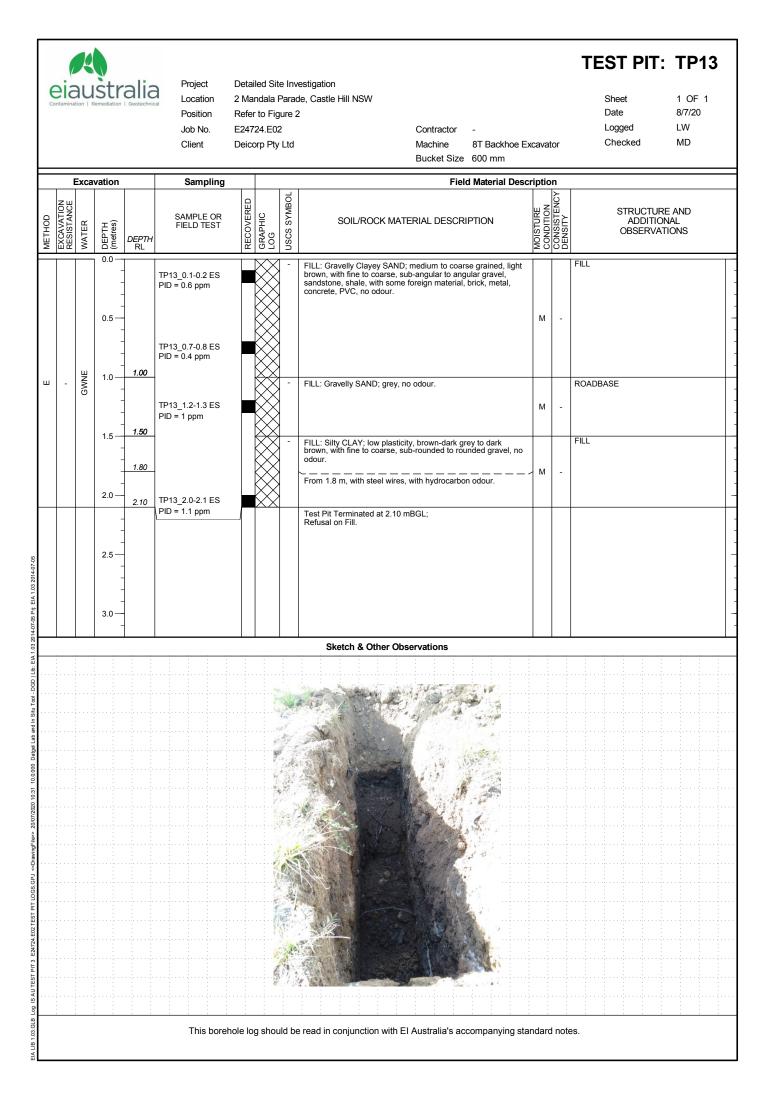
Refer to Figure 2

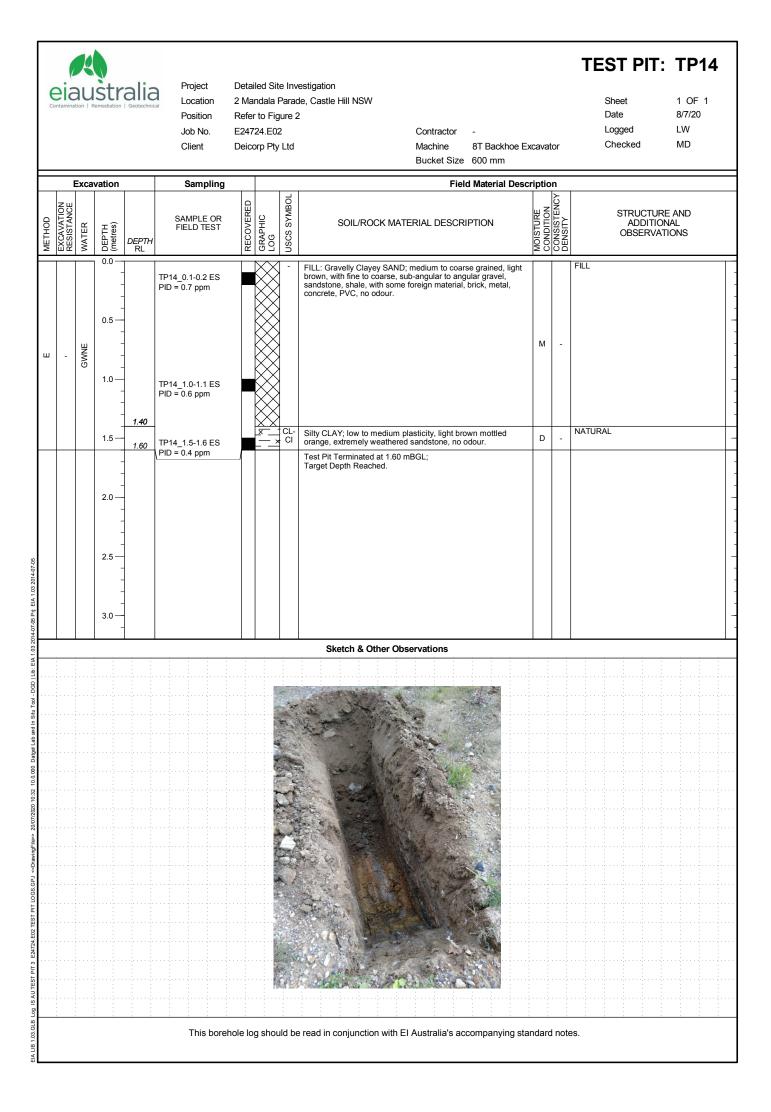
Deicorp Pty Ltd

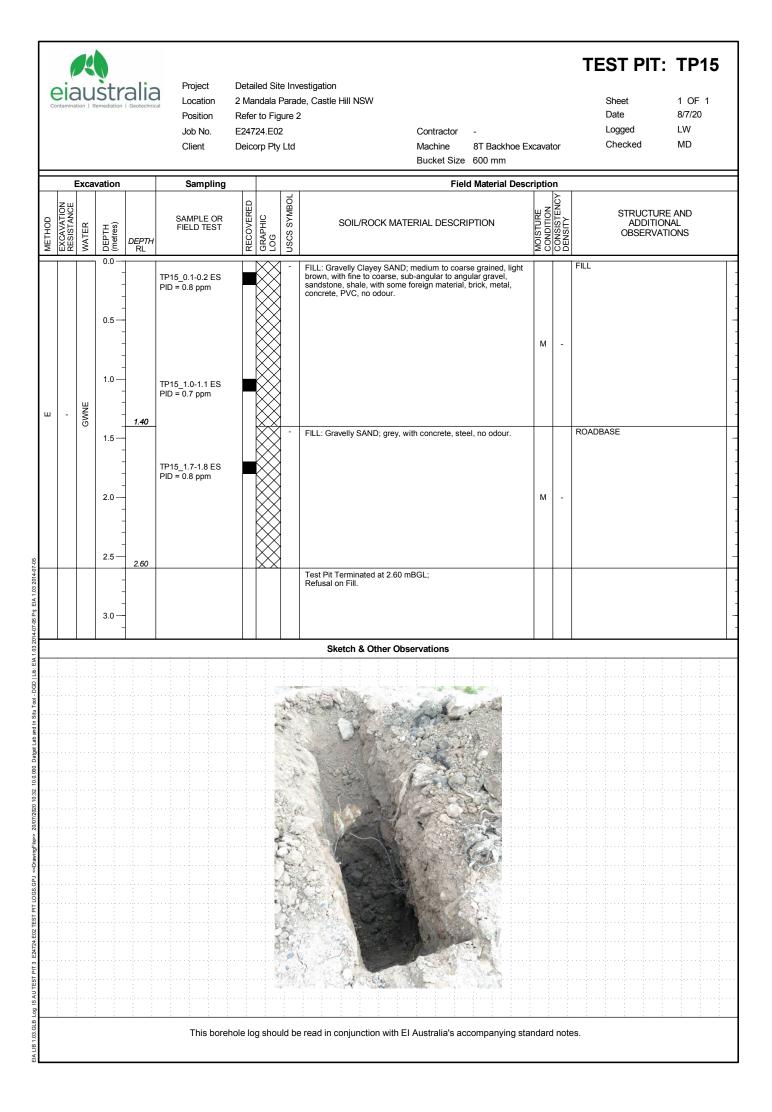
E24724.E02

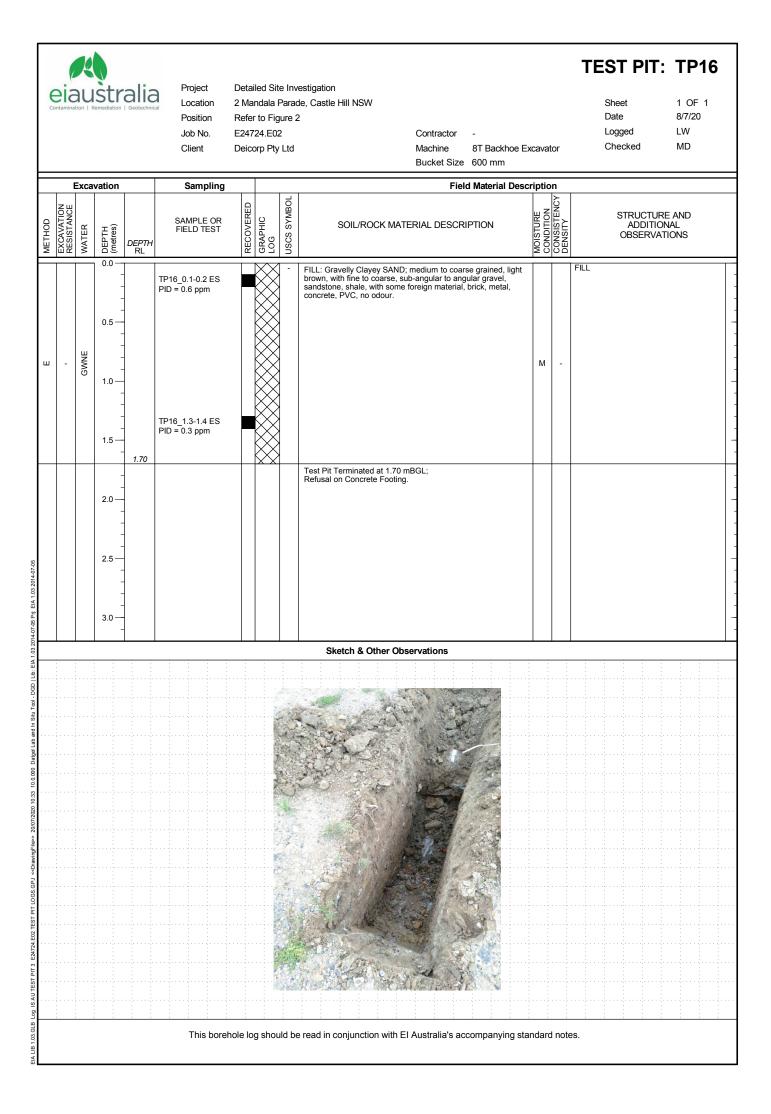

2 Mandala Parade, Castle Hill NSW

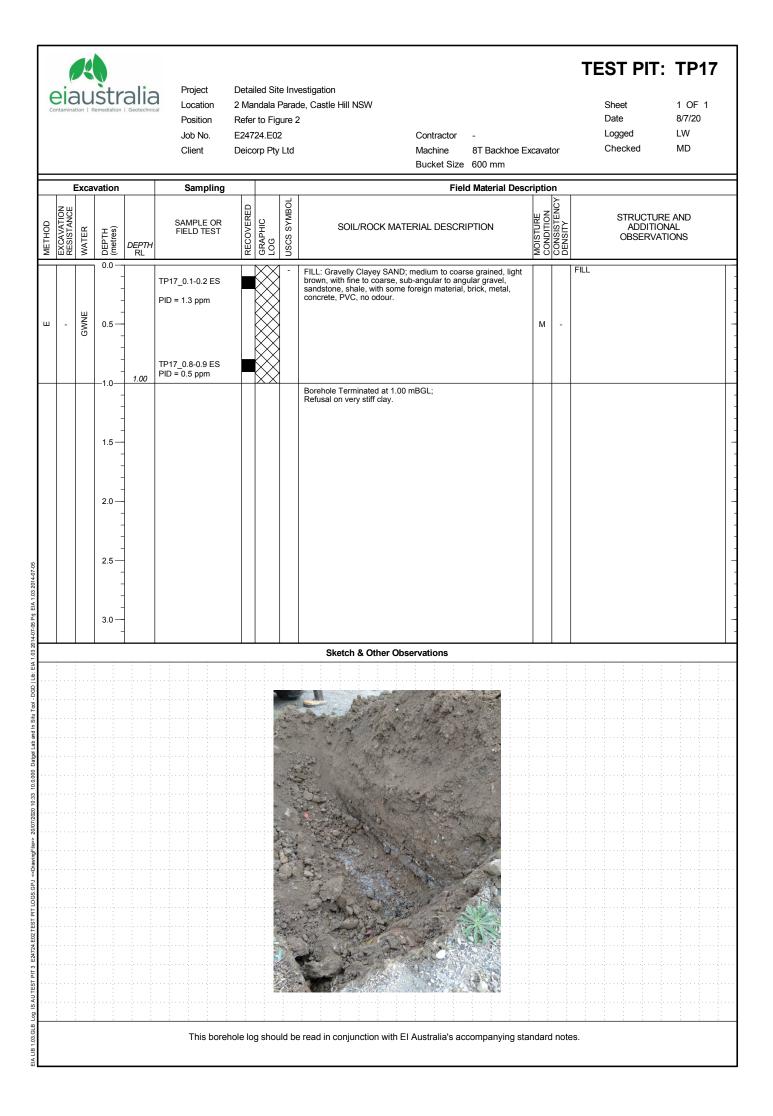

TEST PIT: TP10

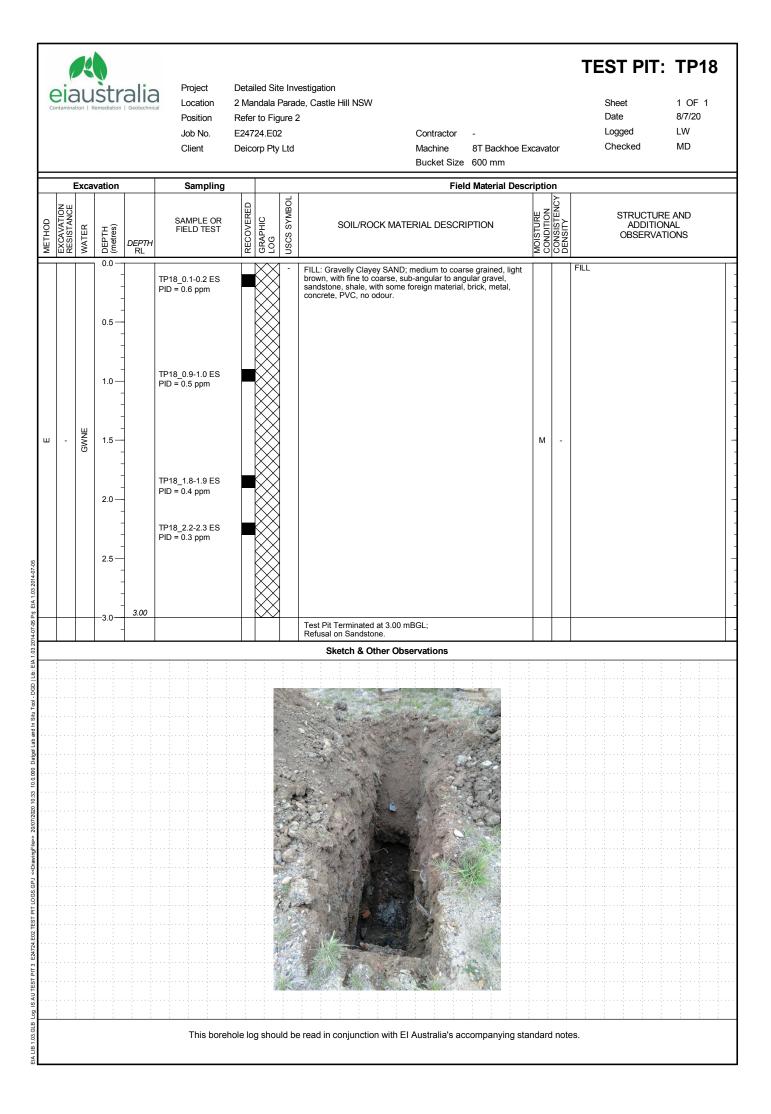

1

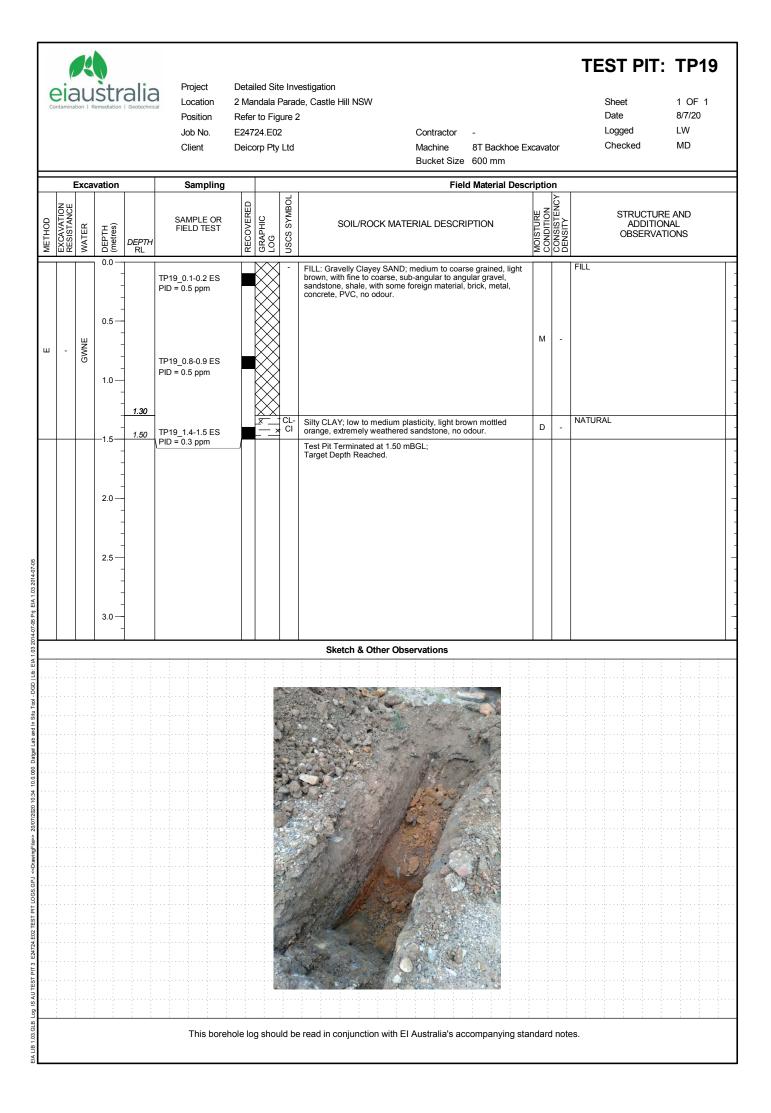

		Sheet	1 OF 1
		Date	8/7/20
Contractor	-	Logged	LW
Machine	8T Backhoe Excavator	Checked	MD


		xca	vation		Sampling				Field Material Desc				
MEIHOU	EXCAVATION	WATER	DEPTH (metres)	DEPTH RL	Sample or Field test	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
			0.0		TP10_0.1-0.2 ES PID = 0.7 ppm			-	FILL: Gravelly Clayey SAND; medium to coasre grained, light brown, with fine to coarse, sub-angular to angular gravel, sandstone, shale, with some foreign material, brick, metal, concrete, PVC, no odour.			FILL	
1	-	GWNE	0.5 — - - -	•						м	-		
			1.0— - -	<u>1.30</u> 1.40	TP10_1.0-1.1 ES PID = 0.6 ppm								
			1.5 — - -						Test Pit Terminated at 1.40 mBGL; Refusal on Fill.				
			2.0										
			- 2.5—										
			3.0 —	-									
									Sketch & Other Observations				
									P	• • • •			
••••													
								1.	And the second second			•••••••••••••••••••••••••••••••••••••••	
								14					
								J.	- Total Contraction				
							No. 10						
									ALL ALL				
			-								:		
								A REAL					
								16					
								X					
								TRE					
					This borebo	ole Ir	a shoi	ild he	e read in conjunction with EI Australia's accompanying sta	ndar	d note	es.	









EXPLANATION OF NOTES, ABBREVIATIONS & TERMS USED ON BOREHOLE AND TEST PIT LOGS

ontamination Remediation Geotechnical						
DRILLING/EXCAVATIO	N METHOD					
HA Hand Auger	r	RD	Rotary blade of	r drag bit	NQ	Diamond Core - 47 mm
DTC Diatube Cor	0	RT	Rotary Tricone			Diamond Core - 52 mm
	ctive digging	RAB	Rotary Air Blas		HQ HMLC	Diamond Core - 63 mm Diamond Core - 63mm
AS* Auger Screv		RC	Reverse Circul	ation	-	
AD* Auger Drillir	ng	PT	Push Tube		BH	Tractor Mounted Backhoe
*V V-Bit		CT	Cable Tool Rig		EX EE	Tracked Hydraulic Excavator
*T TC-Bit, e.g.		JET	Jetting			Existing Excavation
ADH Hollow Aug		WB	Washbore or B	aller	TAND	Excavated by Hand Methods
PENETRATION/EXCAV	ATION RESISTA	NCE				
L Low resistance	. Rapid penetration/	excavatio	on possible with li	ittle effort from	n equipment	used.
						rate effort from equipment used.
-						hificant effort from equipment used.
					-	acceptable wear to equipment used.
These assessments are sub excavation or drilling tools a				cluding equip	ment power a	and weight, condition of
WATER				4		
¥	Water level at date	e shown		\triangleleft	Partial wat	ter loss
\triangleright	Water inflow				Complete	water loss
GROUNDWATER NOT OBSERVED	Observation of gro or cave-in of the b			nt or not, was	s not possibl	e due to drilling water, surface seepage
GROUNDWATER NOT ENCOUNTERED	•	,				er could be present in less permeable n left open for a longer period.
SAMPLING AND TESTI					•	
4,7,11 N=18 seating 30/80mm RW HW HB	4,7,11 = Blows per Where practical r Penetration occur Penetration occur Hammer double b	efusal oco rred unde rred unde	curs, the blows an er the rod weight o r the hammer and	nd penetratior	n for that inte	following 150mm erval are reported
Sampling		-				
DS	Disturbed Sample	Э				
BDS	Bulk disturbed Sa	ample				
GS	Gas Sample					
NS	Water Sample					
J63	Thin walled tube	sample -	number indicates	nominal sam	iple diameter	r in millimetres
Testing						
=P =VS	Field Permeability	•		otod oboor of	ronath (ov -	noak volue, er = regidual value)
PID	Photoionisation D	•		cied shear si	rength (sv =	peak value, sr = residual value)
PM	Pressuremeter te		0 11			
p	Pocket Penetrom			trument readir	ng in kPa	
WPT	Water Pressure to		,		J L	
CCP	Dynamic Cone P		ter test			
CPT	Static Cone Pene					
CPTu	Static Cone Pene	etration tes	st with pore press	sure (u) measi	urement	
						soil contamination assessment
	ole evidence of conta			R = A		ural odours identified
- 5	evidence of visible co	maminati		R = B R = C	0	natural odours identified
	contamination	ation		-		non-natural odours identified
	ant visible contamina	allOII		R = D	Suong non-	-natural odours identified
		000		0/0m ((0/)		
TCR = Total Core Recov	• • •		= Solid Core Rec	,		RQD = Rock Quality Designation (%)
		Σí ongth	ofcylindrical core	recovered	100	ΣAxial Lenghts of core>100mm
$= \frac{\text{Length of core recevered}}{\text{Lengh of core run}}$	x 100 =	$=\frac{2 \text{ Length}}{2}$	Lengh of core ru		100 =	$\frac{\Sigma Axial \ Lenghts \ of \ core > 100 mm}{Lengh \ of \ core \ run} \ x \ 100$
						Lengh of core run x 100

					мстц										
eiaust	tralia	A		USED O			AND TEST PI								
Contamination Remedia	FILL	al	.000.	GANIC SO			CLAY (CL, C	CI or CH)							
		BLES or	* * *	T (ML or M			SAND (SP c	or SW)							
802 202		LDERS VEL (GP or	" × × ×	·			·	·							
20°20	GW)		Combinations o sandy clay	of these basic s	ymbols may l	be used to	indicate mixed mater	als such as							
Soil is broadl	y classifie	d and described in	STRATIGRAPHY Borehole and Test Pir aterial properties are a	it Logs using th assessed in the	e preferred m	ethod give	n in AS1726 – 1993, ethods.	(Amdt1 –							
		HARACTERISTI		USCS SY	-										
Major Divi		Sub Division	Particle Size		Divisions	Symbol	Descrip	tion							
	BOULD		>200 mm				Well graded grave								
	COBBL		63 to 200 mm	Sss	% o s are	GW	sand mixtures, litt	le or no fines.							
		Coarse	20 to 63 mm	SS le	n 50 ains îmm	GP	Poorly graded graves sand mixtures, litt	0							
	. –			an 0 SC	thai te gr 2.36	GM	Silty gravel, grav	vel-sand-silt							
GRAVE	:L	Medium Fine	6 to 20 mm 2 to 6 mm	er thick in the second se	More than 50% of coarse grains are >2.36mm	GC	mixture Clayey gravel, gra								
		Coarse	0.6 to 2 mm	GRA 50% by		SW		and gravelly							
SAND	N S														
	SAND Coarse 0.6 to 2 mm Medium 0.2 to 0.6 mm Fine 0.075 to 0.2mm SILT 0.002 to 0.075 mm Clay <0.002 to 0.075 mm														
	SILT	Γ	0.002 to 0.075 mm	Mo	Aore f co; are	SC	Clayey sand, sand, s								
	CLA	Y	<0.002 mm	±	20	30	mixture								
	PLAS	STICITY PROPE	RTIES	LS mass than	less	ML	Inorganic silts of very fine sands, r or clayey fine	ock flour, silty							
40 30	CL Lowplast	Ci H Medium plastici ty	igh plasticity day	FINE GRAINED SOILS More than 50% by dry mass less than 63mm is less than 0.075mm	Liquid Limit less < 50%	CL	Inorganic clays of plasticity, gravelly	low to medium / clays, sandy							
dex (%	clay	plasticity day		3 AINI 50% 33mm	Liqu	OL	clays, silty Organic silts and	l organic silty							
4 20 - 21			OH orMH High liquid limit silt	Han (,	MH	clays of low p Inorganic silts of h								
– 10 –		CL or ML	U.K.	ore t ss th	Liquid Limit > than 50%	CH	Inorganic clays of								
	CL/ML Clay/Silt L or ML - Low liquid lin	Low liquid limits lit		ĕ ĕ		OH	Organic clays of m	ity.							
0	10 20) 30 40 50 Liquid Limit (%)	60 70 80			PT	Peat muck and organic s								
MOISTUR	E COND	TION													
Symbol	Term	Description													
D M	Dry		Is are free flowing. Cl												
W	Moist Wet		han in the dry condition water. Sands and grave	,		nu graveis	tend to cohere.								
Moisture co	ontent of c		also be described in re			r liquid limi	t (WL) [» much great	er than,							
CONSISTEN			-	DENSITY											
Symbol	Term	Undrained S	Shear Strength	Symbol	Term		Density Index %	SPT "N" #							
VS	Very Sc	oft 0. to	12 kPa	VL	Very Loo		< 15	0 to 4							
S F	Soft Firm		25 kPa 50 kPa	L MD	Loose Medium De		15 to 35 35 to 65	4 to 10 10 to 30							
St	Stiff	50 to	100 kPa	D	Dense		65 to 85	30 to 50							
VSt H	Very Sti Hard		200 kPa 200 kPa	VD	Very Der	ise	Above 85	Above 50							
In the absend	ce of test i	results, consistenc	y and density may be a 26 – 1993, and may b												
MINOR CO			<u></u> ioco, and may b												
Term		nent Guide				Pro	oportion by Mass								
Trace	Presence	e just detectable b	y feel or eye but soil pr operties of primary co		1	Coars	se grained soils: $\leq 5\%$ se grained soil: $\leq 15\%$	5							
Some	Presenc	e easily detectable	by feel or eye but soil operties of primary co	I properties little	e	Coarse	grained soils: 5 - 12 grained soil: 15 - 30%								

ABBREVIATIONS AND DESCRIPTIONS FOR ROCK MATERIAL AND DEFECTS

CLASSIFICATION AND INFERRED STRATIGRAPHY

Rock is broadly classified and described in Borehole Logs using the preferred method given in AS1726 – 1993, (Amdt1 – 1994 and Amdt2 – 1994), Appendix A. Material properties are assessed in the field by visual/ tactile methods.

		<i>,</i> , ,			400000	cu ii	The held by						
ROCK MATE		DESCRIP	TION										
Layering					Struc	cture							
Term		Descr	iption		Term	1			Spacing (mm)				
Massive		No lav	ering apparent		Thinly	y lam	inated		<6				
IVIASSIVE		NO IAY	ening apparent		Lamii	nated	k		6 – 20				
Poorly Deve	loned		ng just visible; litt	tle effect on	Very	thinly	/ bedded		20 – 60				
	lopou	proper	ties		Think				60 – 200				
			ng (bedding, folia				edded		200 - 600				
Well Develop	ped		t; rock breaks mo I to layering	ore easily			dded		600 - 2,000				
		-			<i>,</i>	thick	ly bedded		> 2,000				
		1	CRIPTIONS FO	R DEFECT TYP	ES								
Defect Type)	Abbr.	Description										
Joint		J	or no tensile str acts as cement.	ength. May be c	losed or	r filleo	d by air, wate	er or soil	ross which the rock has little or rock substance, which				
Bedding Pa	rting	В	sub-parallel to la indicating orient	ayering/ bedding tation during dep	g. Beddi position,	ng re resu	efers to the la Ilting in plana	yering o Ir anisot	no tensile strength, parallel or or stratification of a rock, ropy in the rock material.				
Foliation		х							endicular to the direction of (S) and Gneissosity.				
Contact		С	The surface bet	ween two types	or ages	of ro	ock.						
Cleavage		L							urfaces resulting from ism, independent of bedding.				
Sheared Seam/ Zone (Fault) SS/SZ Seam or zone with roughly parallel almost planar boundaries of rock substance cut by closed (often <50 mm) parallel and usually smooth or slickensided joints or cleavage planar													
Zone (Fault) Spaced (often <50 mm) parallel and usually smooth or slickensided joints or cleavage plan Crushed Seam/ Zone (Fault) CS/CZ Seam or zone composed of disoriented usually angular fragments of the host rock substar with roughly parallel near-planar boundaries. The fragments may be of clay, silt, sand or gravel sizes or mixtures of these.													
Decompose Seam/ Zone		DS/DZ	Seam of soil su material in place		/ith grad	latior	al boundarie	s, forme	ed by weathering of the rock				
Infilled Sear	n	IS/IZ		bstance, usually nigrating into joir				distinct	roughly parallel boundaries,				
Schistocity		S	of platy or prism	natic mineral gra	ins, suc	h as	mica.		e to the parallel arrangement				
Vein		V	Distinct sheet-li or crack-seal gr		rals crys	stallis	ed within roc	k throug	gh typically open-space filling				
ABBREVIAT	IONS A	ND DES	CRIPTIONS FO	R DEFECT SHA	PE AN	D RC	UGHNESS						
Shape	Abbr.	Descri	ption	Roughness	Abbr.	Des	cription						
Planar	PI	Consis	stent orientation	Polished	Po	Shir	ny smooth su	rface					
Curved	Cu	Gradu orienta	al change in ation	Slickensided	SI				ace, usually polished				
Undulating	Un	Wavy	surface	Smooth	Sm	Smo	ooth to touch	. Few or	r no surface irregularities				
Stepped	St	define	r more well d steps	Rough	Ro	<1m	nm). Feels lik	e fine to	ularities (amplitude generally coarse sandpaper				
Irregular	Irr		sharp changes ntation	Very Rough	VRo				ularities, amplitude generally parse sandpaper				
Orientation:			cal Boreholes – ed Boreholes –						the core axis.				
ABBREVIAT	IONS A	ND DES	CRIPTIONS FOR	R DEFECT COA	TING		DEFECT A	PERTUR	RE				
Coating	Abbr.	Descrip	otion		-		Aperture	Abbr.	Description				
Clean	Cn	No visibl	e coating or infill	ing			Closed	CI					
Stain	Sn	No visib	e coating but sui often limonite (c	rfaces are discol	loured b	у	Open		Without Infill				
Veneer	١/r	A visible	coating of soil o to measure (< 1	r mineral substa		ually	Infilled	-	Soil or rock i.e. clay, talc, pyrite, quartz, etc.				
						_							

Appendix G - Field Data Sheets

		WATER	SAMPLI	NG FIELD) SHEET			eiaustralia						
Site Addre	ess:	2 Ma	ndala	Pale	Cast	le that	Job Numb	per: $F_{24}724$						
Client:		ercorp)		Corse		Date: 24	9/7/20						
Field Staf	f:	Zu					Sampling	Location ID BH3m-a						
Well Loca	ation:						Round No	D:						
MEDIUM			Groundwa	ter DS	urface Wa	ater	□Stormw	vater DOther:						
SAMPLIN	IG POINT	1					0							
Well Insta			17/20				Stick up/	down (m): + /. • (+ above ground - below ground)						
Initial We		V	21					terval (mBTOC): 4.1-7.1						
Previous			7-1				Provious	SWL (mBTOC):						
PID REAL		Dale.					Flevious	SWE (IIBTOC).						
								and (man)						
PID Head				-	•		РІД Васк	ground (ppm):						
PID Breat		ce (ppm):	-				1.00							
PRE PUR			-		1.									
Total Well Depth (mBTOC): 9 Well Head Condition: Good SWL (mBTOC): 3<58														
		and the second se					Water Co	lumn (m): 252						
			CARBON	IS (PSH)			~							
Depth to F	PSH (mB1	06):					PSH Visu	ally Confirmed (Bailer):						
PSH Thic	kness (mr	n):					-							
PURGE A	ND SAM	PLE												
Sampling	Method		Bladde	r [Peristalti	с 🗆	Submersib	ole DOther:						
		t (mBTOC)	: 5.9	5			Fill Timer:	1.						
		gulator (psi					Discharge	e Timer:						
Weather (0	ne			1		CPM P						
Pump on		2:30 Pr						time: 1215 Pm						
		PARAMET	the second se				i unp on							
Probe Ma			EKS				Bump Tor	st Date and Time:						
FIDE Ma		1	-	50	D 1	DO		st Date and Time.						
Time	Volume (L)	SWL (mbtoc)	Temp (°C)	EC (µS/cm)	Redox (mV)	DO (mg/L)	pH (units)	Comments (colour, turbidity, odour, sheen etc.)						
12:32	0.5	3.62	21.33	2396	91.2	2173	5.43	Cookt brown 1-m						
(2:34		3.68	21.15	2818	95.3	0.62	5:42	t no no .						
12:36	1-5	3.71	21.10	2792	97.2	0.52	Firk							
12:38	Z	3.79	20.90	2782	102.9	0.61	5.30							
12240	25	3.76	21.08	2809	106.2	0.59	5115							
,		-				1								
					5. 									
0.1	lleette													
	lisation ra		±0.2°C	±3%	±20mV	±10%	±0.2							
	ecutive re		Sector Contractor											
OTHER C		S/OBSER												
	G	in os	21/	awo	71	take	n							
SIGNATU	DE	(
SIGNATU	KE:	red												

			SAMPLIN					eiaustralia
Site Addr	ess: 🐊	Mand	ala pa	les Ca	stle thi	и	Job Numb	per: F20729
	Pera		· · · ·		and the second		Date:	2917120
Field Staf								Location ID BHAM-a
Well Loca							Round No	
MEDIUM		. 	Groundwa	tor DS	Surface Wa	ator	□Stormw	
	IG POINT	and the second se	Groundwa		bullace vva	ater	LISTOHIIW	
			7/20					
	allation Da		1	-	A.C.			down (m): +0.96 (+ above ground - below ground)
	ll Depth (n		8.00					terval (mBTOC): 5-66 - 8-6-6
and the second division of the second divisio	Sampling	Date:		1			Previous	SWL (mBTOC):
PID REA		<u></u>			della.			
	Ispace (pp				like by		PID Back	ground (ppm):
and the second se	thing Spac	e (ppm):			. Star	Deren a		
PRE PUF								
Total We	ll Depth (m	BTOC):	8.66	80			Well Head	d Condition: 6 000
SWL (mE	BTOC):	Sige	P				Water Co	lumn (m): 3,22
PHASE S	EPARATE	ED HYDRO	OCARBON	IS (PSH)			~	
Depth to	PSH (mBI	OC):					PSH Visu	ally Confirmed (Bailer):
PSH Thic	kness (mr	n):		1.0				
PURGE A	AND SAMI	PLE						
Sampling	Method	-	Bladde	r I	Peristalti	c 🗆	Submersik	ole 🛛 Other:
	Pump Inle	t (mBTOC	4				Fill Timer:	
	essure Reg		1.4					e Timer: S
	Conditions		me				Cycle: (
	time: 3 a	The second se	ina			44	Pump off	
NAMES OF TAXABLE PARTY.	QUALITY	NAME OF TAXABLE PARTY.	TEDS				n unp on	unie. Setto pre-
	ke and Mo	and the second sec	IER3		and a market water to be	and a second	Bump Top	st Date and Time:
T TODE Ma			Tours	EC	Dedau	DO		
Time	Volume	SWL (mbtoc)	Temp (°C)	EC (μS/cm)	Redox (mV)	DO (mg/L)	pH (units)	Comments (colour, turbidity, odour, sheen etc.)
3212	TEN	5.49	20.91	3228	92.05	263	5.56	brown, m-N
3219	ing	6.52	21.30	3019	96.33	00	3,43	
7014	F	GFF	21.00	ZNIT	91.00	0.99	2012	No, no.
5210	1.2	1905	20.95	5 65	0703	0.0	1,38	
900	U	1,00	20118	3080	TTIVS	oilt	10124	
Stab	ilisation ra	ange:	±0.2°C	±3%	±20mV	±10%	±0.2	
3 cons	ecutive re	adings	10.2 0	13 /0	1201110	10%	10.2	
OTHER O		rs/obser	RVATIONS	:				
	U	*						

			SAMPLII					eiaustralia
Site Addro	ess:	2 Ma	ndado	Pales	Castle	Hin	Job Numb	per: $\overline{L}_{2}q\overline{J}_{2}q$
Client:		Resza		V			Date:	29 17/20
Field Staf	f:	IIN					Sampling	Location ID BHSM
Well Loca		000	1.1				Round No	
MEDIUM		51	Groundwa	ton 00	Surface W		□Stormw	
			Groundwa	ter LS	surface w	ater	LIStormw	vater ¹ DOther:
SAMPLIN								
Well Insta		E /	7/7/20	146				down (m): 6 (+ above ground - below ground)
Initial We	ll Depth (n	nBTOC):	7./				Screen In	terval (mBTOC): 3,1 - 7 -1
Previous	Sampling	Date:	· ·		503		Previous	SWL (mBTOC):
PID REAL	DINGS				×.,		~	
PID Head	space (pp	m):			12		PID Back	ground (ppm):
	hing Space							
PRE PUR		(pp).						
	I Depth (m	BTOON	2.0					d Condition: Good
			7.09					
SWL (mB			4.60	0 /5 0			vvater Co	lumn (m): 2 4
	and the second s		DCARBON	IS (PSH)				
Depth to I							PSH Visu	ally Confirmed (Bailer):
PSH Thic	kness (mr	n):						
PURGE A	ND SAM	PLE						
Sampling	Method	2	Bladde	er [Peristalt	ic 🗆	Submersik	ble DOther:
		t (mBTOC					Fill Timer:	
		gulator (ps						e Timer: C
		0	- 14					A
	Conditions	1.					Cycle:	pmq the
Pump on	The party of the local division of the local	22007	the local division in which the local division in the local divisi				Pump off	time: 2230 PM
		PARAME	TERS					1 2 cm m
Probe Ma	ke and Mo	odel:		8			Bump Tes	st Date and Time:
Time	Volume	SWL	Temp	EC	Redox	DO	pН	Comments (colour, turbidity, odour, sheen etc.)
Time	(L)	(mbtoc)	(°C)	(µS/cm)	(mV)	(mg/L)	(units)	comments (colour, turbialty, odour, sneen etc.)
Nor	0.5	9.68	21.10	2973	922	1.65	5.52	Cignet brown, (-va,
2209	1	9.71	21.02	-2823	30.8	0.90	5.43	ne I AD
2206	1-5	079	2097	- 797	618	0.82	6.39	
0000	2	1.79	20,90	5302	92.0	OP	F	
2208		4.7	20,00	FLOT	Tat	0.00	Sig	
2208								
							1	
								С
Stab	ilisation ra	inge:	10.200	+20/	+201/	+409/	+0.0	
3 cons	ecutive re	adings	±0.2°C	±3%	±20mV	±10%	±0.2	
OTHER C			RVATIONS	:				
		~~	-					

		WATER	SAMPLII	NG FIELD	SHEET			eiaustralia
011	1	0	1.01	A	4		1	
		manda	IG pare	n Cast	1e 60	u	Job Num	
Client:		gros					Date: 🤈	
Field Staf		00		10000				Location ID BH 7M
Well Loca	ation:	ATT.	2 years also a	ten 00			Round No	
and the second s		and the second se	Groundwa	ter US	Surface Wa	ater	LIStormw	
	allation Dat	and a close of the	17/20	120 Ko			Stickup	down (m): +1.00 (+ above ground - below ground)
		DTOCH	6					terval (mBTOC): $2.9 - 0.9$
	ll Depth (n Sampling		1-7					SWL (mBTOC):
PID REA		Date.	1				Frevious	SWE (IIBTOC).
	Ispace (pp	(m).					DID Back	ground (ppm):
	thing Space						TID Dave	ground (ppm).
PRE PUF		e (ppm).						
	II Depth (m	BTOCI	5.80	P			Woll Hoa	d Condition: Good
SWL (mE		ытос).	0.70	1				$\sigma = 0$
and the second se	the second s	ED HYDRO	0 1	1			water oo	
	PSH (mBT		CARBON	15 (F31)		-2010 	DSH Vieu	ally Confirmed (Bailer):
	kness (mr						F STT VISU	
	AND SAME							
Sampling		- L C	Bladde		Peristalti	о Г	Submersil	ble DOther:
		t (mBTOC)		i L	Jrenstatt		Fill Timer	
							Discharge	
	Conditions	gulator (psi).					
							Cycle: Pump off	time
Pump on	NAME AND ADDRESS OF TAXABLE PARTY.	PARAMET	EDE					ume.
	ke and Mo		ERS				Bump Te	st Date and Time:
TTODE INC	Volume	SWL	Temp	EC	Redox	DO	pH	
Time	(L)	(mbtoc)	(°C)	(µS/cm)	(mV)	(mg/L)	(units)	Comments (colour, turbidity, odour, sheen etc.)
-								
					• 		1	
							2.2	
							100	
Cách	ilisation ra	ande:						
Contraction and Contraction	secutive re		±0.2°C	±3%	±20mV	±10%	±0.2	
		rs/obser	WATIONS	2.				
GINER		JUDJER	CALION S					
				NO	Suffi	tien	t wat	ter for sempling.
SIGNAT	JRE:		C					
	1	rve	1					
	t				-			

WATER SAMPLING FIELD SHEET

Site Address: 2 manda Client: Percor Field Staff: W	la Pale	. Cast	te Hi	N	Job Num	per: E24724							
Client: DOTCOS	P				Date: 12	8/8/20							
Field Staff: CN	1				Sampling	Location ID BH4M-a							
Well Location:					Round No								
MEDIUM 🕅	Groundwat	er ⊡S	urface Wa	ater	□Stormw	ater 🛛 Other:							
SAMPLING POINT INFO					\frown								
Well Installation Date: 2	2/7/20)		(Stick up/	down (m): +0.96 (+ above ground - below ground)							
Initial Well Depth (mBTOC):	8.66					terval (mBTOC): 5.66-8.66							
Previous Sampling Date:	-0				Previous	SWL (mBTOC):							
PID READINGS													
PID Headspace (ppm):					PID Back	ground (ppm):							
PID Breathing Space (ppm):													
PRE PURGE													
Total Well Depth (mBTOC):	8.66				Well Head	d Condition: Good							
SWL (mBTOC): 5,43	0.00				Water Co	lumn (m): 子、 ころ							
PHASE SEPARATED HYDR	OCARBON	S (PSH)			~								
Depth to PSH (mBTOG):					PSH Visu	ally Confirmed (Bailer):							
PSH Thickness (mm):													
PURGE AND SAMPLE													
Sampling Method	Bladde	r E	Peristalti	c 🗆	Submersit	ble AOther: barles							
):				Fill Timer								
Pump Pressure Regulator (ps	si):				Discharge	e Timer:							
Depth of Pump Inlet (mBTOC): Fill Timer: Pump Pressure Regulator (psi): Discharge Timer: Weather Conditions: Cycle:													
Pump on time:					Pump off	time:							
WATER QUALITY PARAME	TERS				· · · · ·								
Probe Make and Model:					Bump Tes	st Date and Time:							
Time Volume SWL (L) (mbtoc)	Temp (°C)	EC (µS/cm)	Redox (mV)	DO (mg/L)	pH (units)	Comments (colour, turbidity, odour, sheen etc.)							
	(0)	(Jorenn)	(11.4)	(ing/L)	(units)								
						Light brown, L-m,							
						NO, NO							
Stabilisation range:													
3 consecutive readings	±0.2°C	±3%	±20mV	±10%	±0.2								
OTHER COMMENTS/OBSE	RVATIONS	:											
			for 1	heavy	meta	1 testing							
						0							
SIGNATURE:	ed												

I

Appendix H - Chain of Custody and Sample Receipt Forms

Sheet 1 o	of	_			San	nple N	/latrix								Ana	lysis								Comments
Site:				Project No												5			•					HM A Arsenic
2 Mandala Pa	rade, Cas	tle Hill		E24724. E02			t, etc.)	AHs stos	AHs					ion	change)	unductivity								Cadmium Chromium Copper Lead
Laboratory:	ALEXA	stralia 33 Maddox NDRIA NSW 94 0400 F: (2015	499			OTHERS (i.e. Fibro, Paint, etc.)	HM ^A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	/TRH/BTEX/PAHs	HM ^A /TRH/BTEX			S	is Quantification	pH / CEC (cation exchange)	pH / EC (electrical conductivity)	Dewatering Suite						HM ^B / PAH	Mercury Nickel Zinc HM ^B Arsenic
Sample	Laboratory		S	ampling	ER	Ι.	ERS	P/OF	ΑT	A /T	X	VOCs	Asbestos	Asbestos	/ CE	/ EC	vater	sPOCAS	St				CLP H	Cadmium Chromium
ID	ID	Туре	Date	Time	WATER	SOIL	OTH	NH NO NO	MH	HN	BTEX	02	Ast	Ash	Hq	Hd	Dev	sP(PFAS				TC	Lead Mercury Nickel
TP7_0.1-0.2	1	J/ZLB	8/7/20	AM/PM		X		X							×									Dewatering Suite
TP7_0.6-0.7		1	1	1		X																		pH & EC TDS / Turbidity NTU Hardness
TP7_1.3-1.4	2					Х		X																Total Cyanide Metals (Al, As, Cd, Cr,
TP8_0.1-0.2	3					X		X																Cu, Pb, Hg, Ni, Zn) TRH (F1, F2, F3, F4)
TP8_0.9-1.0	4					X		X																BTEX PAH Total Phenol
TP9_0.1-0.2	5					X		X																LABORATORY TURNAROUND
TP9_1.2-1.3	6					x		X	-				· .		1		+			-	-			Standard
TP10_0.1-0.2	7					X		X							IS EF		•	-	oc					24 Hours
TP10_1.0-1.1	1				\square	x								5	E2	30	36:	5						48 Hours
TP11_0.1-0.2	8					X		X						† ! 										72 Hours
TP11_0.8-0.9	9				\square	x		X						t										Other
 TP12_0.1-0.2	10	V	1		\vdash	x		X													1	_		
Container Type: J= solvent washed, a S= solvent washed, a P= natural HDPE pla	cid rinsed,Te		luss jar		-	1	stigate	or: I att				nples v sampl				liccord	lance	F	Report	with E	El Wast	e Clas	sificatio	on Table
VC= glass vial, Teflo ZLB = Zip-Lock Bag						Sam Pri	1-4	lame (E				Rece	eived by	(SGS)):			Sam	npler's	Com	ments:			
LED Lip Look Dug						1	L	i Wei					2	Sa	bq									
		5		, 55 Miller S		Sig	nature (in	Zi	5		Sigi	nature	A	buch	4			•					
eiaus	trali	-		0NT NSW 20 9516 0722	109	Dai	te 13/	7/20				Date 3	6107	120	0	3.	30							5
	ediation Geotec	d		ustralia.com	n.au			TAN										1						
			COC March	2018 FORM v.4 - SGS		Plea	ase e-	mail la	borato	ory res	sults to	a: lab(@eia	ustra	alla.c	om.a	u							

roa: Sydney.odf page: 5 SGS Raf: SE206555_COC

Sheet 2 c	of	_			Sam	nple N	/latrix								Ana	lysis								Comments
Site:				Project No:				1								()								HM A Arsenic
2 Mandala Pa	rade, Cas	tle Hill		E24724. E02			t, etc.)	AHs stos	AHs					ion	change)	unductivity								Cadmium Chromium Copper Lead
Laboratory:	ALEXAN	stralia 33 Maddox NDRIA NSW 94 0400 F: 0	2015	199			OTHERS (i.e. Fibro, Paint, etc.)	HM ^A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	/TRH/BTEX/PAHs	/TRH/BTEX			Š	is Quantification	pH / CEC (cation exchange)	pH / EC (electrical conductivity)	ing Suite						HM ^B / PAH	Mercury Nickel Zinc HM ^B Arsenic
Sample	Laboratory		Sa	ampling	ER		ERS	P/OF	A	HM A /T	BTEX	VOCs	Asbestos	Asbestos	/ CE(/EC	Dewatering	sPOCAS	AS				٩	Cadmium Chromium
ID	ID	Туре	Date	Time	WATER	SOIL	OTH	NH O	MH	HN	BT	NOV	Asl	Asl	Hq	Hd	Dev	sP(PFAS				TCL	Lead Mercury Nickel
TP12_0.8-0.9	11	J/ZLB	8/7/20	AM/PM		X	- 2	X																Dewatering Suite
TP12_1.7-1.8	12	1	1	1		X		X																pH & EC TDS / Turbidity NTU Hardness
TP13_0.1-0.2	13					X		X																Total Cyanide Metals (Al, As, Cd, Cr,
TP13_0.7-0.8						X																		Cu, Pb, Hg, Ni, Zn) TRH (F1, F2, F3, F4) BTEX
TP13_1.2-1.3	14					X		X																PAH Total Phenol
TP13_2.0-2.1	15					X		X																LABORATORY TURNAROUND
TP14_0.1-0.2	16					X		X																Standard
TP14_1.0-1.1						X																		24 Hours
TP14_1.5-1.6	17					X		X																48 Hours
TP15_0.1-0.2	18				\square	x		×																72 Hours
TP15_1.0-1.1						x																		Other
 TP15_1.7-1.8	19		V	1	\vdash	x		X																
Container Type: J= solvent washed, a S= solvent washed, a P= natural HDPE pla	icid rinsed,Te acid rinsed gla		ass jar		-	Inve			stand				l were c ing pro			liccord	ance	F	Report	with E	I Wast	te Clas	sificati	on Table
VC= glass vial, Teflo ZLB = Zip-Lock Bag						Sam Pr	1	ame (El):			Rece Pri	ived by	(SGS)	:			Sam	pler's	Comr	ments:			
						1	L	i Wei	2 /				-	Su	ba									
		S		, 55 Miller S NT NSW 20				iv	re				nature	SK	Pu	he	1							
eiaus	trali	2		9516 0722	00	Da	13/	7/20				Dat	13	07	20	C.	3.3	D						
	ediation Geotec	hnical	-	ustralia.com	n.au			TAN				lab	Quin	t	lie -									
			COC March 2	018 FORM v.4 - SGS		Plea	ase e-	mail lal	oorato	ory res	sults to	a lab	weia	ustra	alla.c	om.a	u							

.

Sheet 3 of	4	_			S	ample	e Ma	atrix								Ana	lysis								Comments
Site:				Project	No:												(٨								HM A Arsenic
2 Mandala Par	ade, Cas	tle Hill		E2472 E02	4.			it, etc.)	AHs stos	AHs					tion	change)	onductivity								Cadmium Chromium Copper Lead
Laboratory:	ALEXAN	stralia 33 Maddox NDRIA NSW 94 0400 F: 0	2015	499				OTHERS (i.e. Fibro, Paint, etc.)	HM ^A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	/TRH/BTEX/PAHs	A /TRH/BTEX			S	s Quantification	pH / CEC (cation exchange)	pH / EC (electrical conductivity)	Dewatering Suite	S					HM ^B / PAH	Mercury Nickel Zinc HM <u>B</u> Arsenic
Sample	Laboratory	Container	S	ampling		WATER		IERS	P/OF	A	1 A /T	BTEX	VOCs	Asbestos	Asbestos	/ CE	/EC	wate	sPOCAS	PFAS				CLP H	Cadmium Chromium Lead
ID	ID	Туре	Date	Tir	ne	M	SOIL	OTH	10 10	MH	HM	BT	VO	As	As	Hd	Hd	De	SР	РЕ				TC	Mercury Nickel
TP16_0.1-0.2	20	J/ZLB	8/7/20	AM/	PM		x		X																Dewatering Suite pH & EC
TP16_1.3-1.4							x													•		TDS / Turbidity NTU Hardness			
TP17_0.1-0.2	21						X		X													Total Cyanide Metals (Al, As, Cd, Cr,			
TP17_0.8-0.9							х															Cu, Pb, Hg, Ni, Zn) TRH (F1, F2, F3, F4) BTEX			
TP18_0.1-0.2	22						Х		X						-							PAH Total Phenol			
TP18_0.9-1.0							х																		LABORATORY TURNAROUND
TP18_1.8-1.9	23						х		X																Standard
TP18_2.2-2.3							х																		24 Hours
TP19_0.1-0.2	24						х		X																48 Hours
TP19_0.8-0.9							х																		72 Hours
TP19_1.4-1.5	25	1	1	1			X		X																Other
							x																		
Container Type: J= solvent washed, a S= solvent washed, a P= natural HDPE plas	cid rinsed gla		ss jar			Ir	nvesti	igato	or: I atto with				nples v sampl				accord	ance	F	Report	with E	I Wast	te Clas	sificati	on Table
VC= glass vial, Teflor ZLB = Zip-Lock Bag						s	Sample Print		ame (El):			Rece Prin	ived by					Sam	pler's	Com	ments:	:		
LED - Lip Look bug								L	Wei					-	Su	ba									
		S		, 55 Mille		et,		ature	w	S			Sigi	nature	A	Sch	-1								
eiaus	trali	-		ONT NSV 9516 07			Date	13/	7/20				Dat	121	071	20	0:	3.3	5						
Contamination Rem	diation Geotec	d	lab@eia	australia.	com.a				TAN					<u> </u>						•					
			COC March	2018 FORM v.4 - \$	GS	F	Pleas	e e-r	mail la	borato	ry res	sults to	a: lab	aeia	ustra	alla.c	om.a	u							

Sheet 4 of	4	-				Sam	ple N	latrix								Ana	lysis								Comments
Site:				Proj	ject No:												y)			•					HM A Arsenic
2 Mandala Par	ade, Cas	tle Hill		E24 E02	4724. 2			it, etc.)	AHs stos	AHs					tion	change)	onductivit								Cadmium Chromium Copper Lead
Laboratory:	ALEXA	stralia 33 Maddox 3 NDRIA NSW 94 0400 F: 03	2015	499				OTHERS (i.e. Fibro, Paint, etc.)	HM ^A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	/TRH/BTEX/PAHs	/TRH/BTEX			S	os Quantification	pH / CEC (cation exchange)	pH / EC (electrical conductivity)	Dewatering Suite	S					HM ^B / PAH	Mercury Nickel Zinc HM B Arsenic
Sample	Laboratory	Container	S	amplin	Ig	WATER	_	HERS	A A /		HM A /T	втех	VOCs	Asbestos	Asbestos	I/CE	I/EC	wate	sPOCAS	PFAS				CLP H	Cadmium Chromium Lead
ID	ID	Туре	Date		Time	WA	SOIL	OTI	ΞŎ	WH		BT	>	As	As	Hq	Hd	De	ъ	.д				TO	Mercury Nickel
QD1	26	J	8/7/2	0 A1	//PM		Х				×														Dewatering Suite
QD2	27	J					Х				X											TDS / Turbidity NTU Hardness			
QR1	28	P,S,2Vc				х					X											Total Cyanide Metals (AI, As, Cd, Cr,			
QRB1		P,S,2Vc	V		V	х																	Cu, Pb, Hg, Ni, Zn) TRH (F1, F2, F3, F4) BTEX		
QTB1	29						Х					×											PAH Total Phenol		
QTS1	30	La	o Prepa	red			х					X													LABORATORY TURNAROUND
BH1-0.1-0.7	-31	JZLB	8/7/	20	Ampy		×		×																Standard
BH1-0.7-0.		_	((×		X																24 Hours
BH1-1.4-1.5	-				6		×																		48 Hours
			Ŭ																						72 Hours
																				•					Other
Container Type: J= solvent washed, aci S= solvent washed, ac	id rinsed gla		s jar				Inves	stigato	or: I atte with					were c ing pro			ccord	ance	F	Report	with E	I Wast	e Clas	sificati	on Table
P= natural HDPE plast VC= glass vial, Teflon ZLB = Zip-Lock Bag							Samp Prin	- 4	ame (El):			Rece Prin	eived by	(SGS)	:			Sam	pler's	Comr	ments:			
ZED - ZIP-LOOK Dag								L	Wei					n.	S	she	3								
					Miller Str		Sigr	nature		25				nature	32	Bu	L	1							
eiaus	trali	-			NSW 200)9	Date	13/	7/20				Dat	310	1/20	C	3	30							
	Lidli Nation Geotech	d			lia.com.	au			TANT																
			COC March 2	2018 FORM	M v.4 - SGS		Plea	se e-i	nail lat	oorato	ry res	ults to	: lab(aeia	ustra	alla.c	om.a	u							

Contact	Li Wei		Manager	Huong Crawford				
lient	EI AUSTRALIA		Laboratory	SGS Alexandria Envir	ronmental			
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009		Address	Unit 16, 33 Maddox S Alexandria NSW 2015				
elephone	61 2 95160722		Telephone	+61 2 8594 0400				
acsimile	(Not specified)		Facsimile					
Email	li.wei@eiaustralia.com.au		Email	au.environmental.sydney@sgs.com				
Project	E24724.E02 2 Mandala Parad	e, Castle Hill	Samples Received	Samples Received Mon 13/7/2020				
Order Number	E24724.E02		Report Due	Mon 20/7/2020				
Samples	32		SGS Reference	SE208655				
	ETAILS n that 32 samples were received rence SE208655 when making e		. Results are expected to be rea		7/2020. Please			
Samples clearly labelled Sample container provider		Yes SGS	•	entation received	Yes Ice Bricks			
				Sample cooling method Ice Sample counts by matrix 31				

Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Yes SGS Yes 13/7/2020 Yes 5.7°C Standard Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis Yes Ice Bricks 31 Soil, 1 Water COC Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

11 soil samples have been placed on hold as no tests have been assigned for them by the client. These samples will not be processed.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

CLIENT DETAILS

Client EI AUSTRALIA

Project E24724.E02 2 Mandala Parade, Castle Hill

No.	Sample ID	OC Pesticides in Soil	OP Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	PCBs in Soil	Total Recoverable Elements in Soil/Waste	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
001	TP7_0.1-0.2	29	14	26	11	7	10	11	7
002	TP7_1.3-1.4	29	14	26	11	7	10	11	7
003	TP8_0.1-0.2	29	14	26	11	7	10	11	7
004	TP8_0.9-1.0	29	14	26	11	7	10	11	7
005	TP9_0.1-0.2	29	14	26	11	7	10	11	7
006	TP9_1.2-1.3	29	14	26	11	7	10	11	7
007	TP10_0.1-0.2	29	14	26	11	7	10	11	7
008	TP11_0.1-0.2	29	14	26	11	7	10	11	7
009	TP11_0.8-0.9	29	14	26	11	7	10	11	7
010	TP12_0.1-0.2	29	14	26	11	7	10	11	7
011	TP12_0.8-0.9	29	14	26	11	7	10	11	7
012	TP12_1.7-1.8	29	14	26	11	7	10	11	7
013	TP13_0.1-0.2	29	14	26	11	7	10	11	7
014	TP13_1.2-1.3	29	14	26	11	7	10	11	7
015	TP13_2.0-2.1	29	14	26	11	7	10	11	7
016	TP14_0.1-0.2	29	14	26	11	7	10	11	7
017	TP14_1.5-1.6	29	14	26	11	7	10	11	7
018	TP15_0.1-0.2	29	14	26	11	7	10	11	7
019	TP15_1.7-1.8	29	14	26	11	7	10	11	7
020	TP16_0.1-0.2	29	14	26	11	7	10	11	7
021	TP17_0.1-0.2	29	14	26	11	7	10	11	7
022	TP18_0.1-0.2	29	14	26	11	7	10	11	7
023	TP18_1.8-1.9	29	14	26	11	7	10	11	7
024	TP19_0.1-0.2	29	14	26	11	7	10	11	7

CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details .

Testing as per this table shall commence immediately unless the client intervenes with a correction .

CLIENT DETAILS

Client EI AUSTRALIA

Project E24724.E02 2 Mandala Parade, Castle Hill

- SUMMARY	OF ANALYSIS							1	
No.	Sample ID	OC Pesticides in Soil	OP Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	PCBs in Soil	Total Recoverable Elements in Soil/Waste	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
025	TP19_1.4-1.5	29	14	26	11	7	10	11	7
026	QD1	-	-	-	-	7	10	11	7
027	QD2	-	-	-	-	7	10	11	7
029	QTB1	-	-	-	-	-	-	11	-
030	QTS1	-	-	-	-	-	-	11	-
031	BH1_0.1-0.2	29	14	26	11	7	10	11	7
032	BH1_0.7-0.8	29	14	26	11	7	10	11	7

CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

CLIENT DETAILS

Client EI AUSTRALIA

SUMMARY OF ANALYSIS

Project E24724.E02 2 Mandala Parade, Castle Hill

No.	Sample ID	Fibre Identification in soil	Mercury in Soil	Moisture Content
001	TP7_0.1-0.2	2	1	1
002	TP7_1.3-1.4	2	1	1
003	TP8_0.1-0.2	2	1	1
004	TP8_0.9-1.0	2	1	1
005	TP9_0.1-0.2	2	1	1
006	TP9_1.2-1.3	2	1	1
007	TP10_0.1-0.2	2	1	1
008	TP11_0.1-0.2	2	1	1
009	TP11_0.8-0.9	2	1	1
010	TP12_0.1-0.2	2	1	1
011	TP12_0.8-0.9	2	1	1
012	TP12_1.7-1.8	2	1	1
013	TP13_0.1-0.2	2	1	1
014	TP13_1.2-1.3	2	1	1
015	TP13_2.0-2.1	2	1	1
016	TP14_0.1-0.2	2	1	1
017	TP14_1.5-1.6	2	1	1
018	TP15_0.1-0.2	2	1	1
019	TP15_1.7-1.8	2	1	1
020	TP16_0.1-0.2	2	1	1
021	TP17_0.1-0.2	2	1	1
022	TP18_0.1-0.2	2	1	1
023	TP18_1.8-1.9	2	1	1
024	TP19_0.1-0.2	2	1	1

CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details .

Testing as per this table shall commence immediately unless the client intervenes with a correction .

CLIENT DETAILS

Client EI AUSTRALIA

Project E24724.E02 2 Mandala Parade, Castle Hill

_	SUMMARY	OF ANALYSIS					
	No.	Sample ID	Fibre Identification in soil	Mercury in Soil	Moisture Content	VOCs in Water	
	025	TP19_1.4-1.5	2	1	1	-	
	026	QD1	-	1	1	-	
	027	QD2	-	1	1	-	
	028	QR1	-	-	-	11	
	029	QTB1	-	-	1	-	
	031	BH1_0.1-0.2	2	1	1	-	
	032	BH1_0.7-0.8	2	1	1	-	

CONTINUED OVERLEAF

CLIENT DETAILS

Client EI AUSTRALIA

SUMMARY OF ANALYSIS

-

Project E24724.E02 2 Mandala Parade, Castle Hill

No.	Sample ID	Mercury (dissolved) in Water	Trace Metals (Dissolved) in Water by ICPMS	TRH (Total Recoverable Hydrocarbons) in Water	Volatile Petroleum Hydrocarbons in Water
028	QR1	1	7	9	7

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

Sheet o	f	_			Sam	nple N	<i>Aatrix</i>	: :							Ana	lysis							Comments
Site: 2 Manda Cas	la par tie t	ade, iU		Project No: Ezq7zq Eoz			etc.)	NHs OS	Hs					и	nange)	nductivity)							HMA Arsenic Cadmium Chromium Copper Lead
Laboratory:	Envirol 12 Ash CHATS	lab Service ley Street, WOOD NS 910 6200					OTHERS (i.e. Fibro, Paint, etc.)	HM ^A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	HM [≜] /TRH/BTEX/PAHs	HM ^A /TRH/BTEX			S	Asbestos Quantification	pH / CEC (cation exchange)	pH / EC (electrical conductivity)	Dewatering Suite	م			-	HM ^B / PAH	Mercury Nickel Zinc HM <u>B</u> Arsenic
Sample ID	Laboratory ID	Container Type	Sa Date	ampling 	WATER	SOIL	OTHERS	HM [≜] / OCP/OI	НМ [≜] /Т	HM ≜ /T	втех	vocs	Asbestos	Asbesto	pH / CE	pH / EC	Dewate	sPOCAS	PFAS			TCLP H	Cadmium Chromium Lead Mercury
O-TI	1	J	8/7/	20 ANP	m	X				X													Nickel Dewatering Suite
QT2	2					X				×													pH & EC TDS / Turbidity NTU Hardness Total Cyanide Metals (AI, As, Cd, Cr, Cu, Pb, Hg, Ni, Zn) TRH (F1, F2, F3, F4) BTEX PAH Total Phenol
						•.										e Joi	nia <u>I</u>	°∩hai VH	swood m: (02) 686	<u>Services</u> Ashler St NSW 2007 9910 6200			LABORATORY TURNAROUND
																Dar Dar Ror Ter Co Se	e ni i	ived: Sy:	16	p.2			48 Hours 72 Hours Other
Container Type: J= solvent washed, ac S= solvent washed, ac P= natural HDPE plast VC= glass vial, Teflon ZLB = Zip-Lock Bag	id rinsed gla lic bottle	lon sealed, glaa iss bottle	lss jar		l	Sam	oler's N	or: I atte with ame (EI)	stand			sampl	ing pro	ocedu	res.		ance			with El Wa		sificati	on Table
Contamonation / Remete	tralia	a	PYRMO Ph: 9 lab@eia	55 Miller St NT NSW 200 9516 0722 Jstralia.com.	09	Dat IMF	nature e (POR	いし (テレ (テレ (ア) (ア) (ア) (ア) (ア) (ア) (ア) (ア) (ア) (ア)	120 - 120) .		Sigi Dat	15/	Jt 7/2		J 1610							

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	El Australia
Attention	Lab Email

Sample Login Details	
Your reference	E24724. E02, Castle Hill
Envirolab Reference	246861
Date Sample Received	13/07/2020
Date Instructions Received	13/07/2020
Date Results Expected to be Reported	20/07/2020

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	2 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	10.2
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst								
Phone: 02 9910 6200	Phone: 02 9910 6200								
Fax: 02 9910 6201	Fax: 02 9910 6201								
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au								

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	VTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	Acid Extractable metalsin soil	
QT1	\checkmark	\checkmark	\checkmark	
QT2	\checkmark	\checkmark	\checkmark	

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Sheet 1 or	3	_			San	nple N	/latrix								Ana	alysis								Comments
Site:				Project No	:				1 x															нмА
2 Mandala Par	rade, Cas	tle Hill		E24724. E02			t, etc.)	AHs tos	AHs					ion	hange)	nductivity						×		Arsenic Cadmium Chromium Copper Lead
Laboratory:	ALEXAN	stralia 33 Maddox NDRIA NSW 94 0400 F: 0	2015	499			(i.e. Fibro, Paint,	HM ^A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	/TRH/BTEX/PAHs	/TRH/BTEX			WH/s	s Quantification	C (cation exchange)	pH / EC (electrical conductivity)	Dewatering Suite						MB/PAH	Mercury Nickel Zinc HM ^B Arsenic
Sample ID	Laboratory ID	Container Type	Date	ampling Time	WATER	SOIL	OTHERS (i.e.	HM A /	HM A /T	HM A /T	BTEX	VOCs	Asbestos	Asbestos	pH / CEC	H / EC	Dewater	sPOCAS	PFAS				CLP HM	Cadmium Chromium Lead
	1	J/ZLB	9/7/20		+	X	0	X	-	-		-	-			<u> </u>		05	<u> </u>					Nickel
BH2_0.1-0.2 BH2_0.7-0.8						X								,										Dewatering Suite pH & EC TDS / Turbidity NTU
BH2_1.2-1.3	2					X			Х															Hardness Total Cyanide Metals (Al, As, Cd, C
BH2_1.6-1.7	3					X		X	/			4							49.5- 19.5- 19.5-					Cu, Pb, Hg, Ni, Zn) TRH (F1, F2, F3, F4) BTEX
BH2_1.9-2.0		J				X							- A									63.5		PAH Total Phenol
BH2_2.4-2.5		J/ZLB				X							1											LABORATORY
BH2_2.9-3.0		J	2	J		X									à					COC				Standard
BH3M_0.1-0.2	4	ZLB	13/7/2	0 AM/PI		X		,					\mathbf{X}_{i}			sgs SE								24 Hours
BH3M_0.7-0.8	5	J/ZLB				X		X	۶.	· ·				1								IN HEIER		48 Hours
BH3M_1.2-1.3		1				X																		72 Hours
BH3M_1.7-1.8	6					X		Х												•			•	Other
BH3M_2.2-2.3		V	J	9		X																	É - J	
Container Type: J= solvent washed, ac S= solvent washed, ac P= natural HDPE plas	id rinsed gla		ss jar			Inves	stigato	r: I atte with					vere co			iccorda	ance	F	Report	with El	l Wast	e Clas	sificatio	on Table
VC= glass vial, Teflon ZLB = Zip-Lock Bag						Samp Pri	-1	ame (El)	:		-	Recei	ived by					Sam	pler's	Comn	nents:		1.	
12							L1 nature	-	~~	5		60	ature	hi	Zhi									
eiaus	trali	.au	IMF	_	7/20 FANT	;				1	71	7	3	- 35										
Contamination Reme	ontamination Remediation Geotechnical lab@eiaustralia.com COC March 2018 FORM v.4-SGS							nail lab	orato	ry resi	ults to	lab(@eia	ustra	lia.co	om.a	u							

source: Sydney.pdf page: 1 SGS Ref. SE208848_COC

Sheet 2 of	3	-						Oan	pie n	Atrix	L							Ana	lysis								Comments
Site: 2 Mandala Par	ade, Cas	tle H	ill		E	roject 2472 02				ıt, etc.)	AHs stos	AHs					tion	change)	onductivity)								HMA Arsenic Cadmium Chromium Copper Lead
Laboratory:	SGS Au Unit 16, ALEXAN P: 02 85	33 M	addox a	2015)				(i.e. Fibro, Paint,	HM A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	/TRH/BTEX/PAHs	/TRH/BTEX			S	Asbestos Quantification	pH / CEC (cation exchange)	pH / EC (electrical conductivity)	Dewatering Suite						M ^B / PAH	Mercury Nickel Zinc HM B Arsenic
Sample	Laboratory		tainer	-	Samp	ling		WATER		OTHERS (P/OF	HM ^A /T	HM A /T	ШX	VOCs	Asbestos	oesto	/ CE(/EC	water	sPOCAS	AS				LP HM	Cadmium Chromium
ID	ID		уре	D	ate	Tir	ne	WA-	SOIL	10	ΞÖ	HN	₹ N	BTEX	2	Asl	Asl	Hd	Hd	Der	sP(PFAS				TCLP	Lead Mercury Nickel
BH3M_2.8-2.9	7	J/ZL	В	13/7	/20	AM,	/PM		Х		X																Dewatering Suite
BH4M_0.3-0.5	8			14/7	/20	AM	/PM		Х		X																pH & EC TDS / Turbidity NTU Hardness
BH4M_0.9-1.0						1			х																		Total Cyanide Metals (Al, As, Cd, Cr,
BH4M_1.4-1.5	9	9	IJ						х			X															Cu, Pb, Hg, Ni, Zn) TRH (F1, F2, F3, F4) BTEX
BH4M_1.9-2.0		2J/Z	ĽB						х												•						PAH Total Phenol
BH4M_2.4-2.5		J							х																		LABORATORY
BH4M_2.9-3.0	0	J/ZL	В						х		X																X Standard
BH4M_3.9-4.0		1							х						*												24 Hours
BH4M_4.4-4.5		J	1						х				1														48 Hours
BH4M_4.6-4.7		J							х										-		•						72 Hours
BH4M_4.9-5.0	11	J/ZL	В	*	1		IJ		х		•	X															Other
BH5M_ Q -0.7	12	J	(16/7	/20	AM	PM		х		X																_
	ntainer Type: solvent washed, acid rinsed,Teflon sealed, glass jar solvent washed, acid rinsed glass bottle								Inves	tigato						vere c ing pro			ccorda	ance	R	leport v	vith El	Waste	Class	sificatio	on Table
VC= glass vial, Teflon S ZLB = Zip-Lock Bag	C= glass vial, Teflon Septum							Samp Prir		wei):			Recei Prir	ived by nt	(SGS):	7,			Sam	pler's (Comm	ents:				
120	eiaustralia Buite 6.01, 55 Miller S PYRMONT NSW 20 Ph: 9516 0722 Iab@eiaustralia.com					200		Sign Date	ature (N	-	-			ie nie 71	2h, 7	3	25								

Sheet 3 of 3 Sample Matrix Analysis										Comments														
Site:				Project No	:											-								HM A Arsenic
2 Mandala Par	ade, Cas	tle Hill		E24724. E02			ıt, etc.)	AHs stos	AHs					tion	change)	onductivity								Cadmium Chromium Copper Lead
Laboratory:	ALEXAN	stralia 33 Maddox NDRIA NSW 94 0400 F: 0	2015	199			(i.e. Fibro, Paint,	HM ^A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	/TRH/BTEX/PAHs	/TRH/BTEX			S	s Quantification	C (cation exchange)	pH / EC (electrical conductivity)	Dewatering Suite						HM ^B / PAH	Mercury Nickel Zinc HM ^B Arsenic
Sample	Laboratory	Container	Sa	mpling	WATER		OTHERS (i.e.	AN		A	BTEX	VOCs	Asbestos	Asbestos	pH / CEC	/ EC	water	sPOCAS	PFAS				CLP H	Cadmium Chromium Lead
ID	ID	Туре	Date	Time	WA.	SOIL	to	OCF	MH	HM	BT	>	As	As	Fd	Hd	De	sР	Ч				10	Mercury Nickel
BH5M_0.5-0.6		J/ZLB	16/7/20	AM/P	M	Х																		Dewatering Suite pH & EC
BH5M_1.0-1.1						X																		TDS / Turbidity NTU Hardness
BH5M_1.5-1.6	13	1				X			X															Total Cyanide Metals (Al, As, Cd, Cr,
BH5M_1.8-1.9		J				X																		Cu, Pb, Hg, Ni, Zn) TRH (F1, F2, F3, F4) BTEX
BH5M_1.9-2.0	14	J/ZLB	1			x		X																PAH Total Phenol
												×												LABORATORY
																							-	x Standard
					\top																			24 Hours
																								48 Hours
					+																	-		
					+	-	-														-			72 Hours
					+	-	-						-											Other
Container Type: J= solvent washed, aci S= solvent washed, aci P= natural HDPE plasti	d rinsed gla		is jar			Inve	stigato	or: I atte				nples v sampli				ccord	ance	۰F	Report	with E	l Wast	e Clas	sificati	on Table
VC= glass vial, Teflon S ZLB = Zip-Lock Bag								ame (EI)					ived by	(SGS)				Sam	pler's	Com	ments:			
ZEB - ZIP-LOCK Bag								Wei					9-191	ze	24	ì								
12				55 Miller S		Sigi Dat	nature	2	V			Sign Date		M	i									
AIRIO	rali	2	Ph: 9	516 0722			17/	7/20	-			Dale	(-	117		7.	35							
Contamination Remed	ation Geotech	nicăl	-	Istralia.con	n.au			TANT mail lat		rv res	ults to	· lab@	Deia	ustra	alia.co	om.a	u							

CLIENT DETAIL	S	LABORATORY DETA	NILS
Contact	Li Wei	Manager	Huong Crawford
Client	EIAUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	li.wei@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E24724.E02 2 Mandala Parade, Castle Hill	Samples Received	Fri 17/7/2020
Order Number	E24724.E02	Report Due	Fri 24/7/2020
Samples	14	SGS Reference	SE208846

- SUBMISSION DETAILS

This is to confirm that 14 samples were received on Friday 17/7/2020. Results are expected to be ready by COB Friday 24/7/2020. Please quote SGS reference SE208846 when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested
- Yes SGS Yes 17/7/2020 Yes 14°C Standard

Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis Yes Ice Bricks 14 Soil COC Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

16 soil samples have been placed on hold as no tests have been assigned for them by the client. These samples will not be processed.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

CLIENT DETAILS

Client EI AUSTRALIA

- SUMMARY OF ANALYSIS -

Project E24724.E02 2 Mandala Parade, Castle Hill

No.	Sample ID	OC Pesticides in Soil	OP Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	PCBs in Soil	Total Recoverable Elements in Soil/Waste	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
001	BH2_0.1-0.2	29	14	26	11	7	10	11	7
002	BH2_1.2-1.3	-	-	26	-	7	10	11	7
003	BH2_1.6-1.7	29	14	26	11	7	10	11	7
004	BH3M_0.1-0.2	-	-	-	-	7	-	-	-
005	BH3M_0.7-0.8	29	14	26	11	7	10	11	7
006	BH3M_1.7-1.8	29	14	26	11	7	10	11	7
007	BH3M_2.8-2.9	29	14	26	11	7	10	11	7
008	BH4M_0.3-0.5	29	14	26	11	7	10	11	7
009	BH4M_1.4-1.5	-	-	26	-	7	10	11	7
010	BH4M_2.9-3.0	29	14	26	11	7	10	11	7
011	BH4M_4.9-5.0	-	-	26	-	7	10	11	7
012	BH5M_0.1-0.2	29	14	26	11	7	10	11	7
013	BH5M_1.5-1.6	-	-	26	-	7	10	11	7
014	BH5M_1.9-2.0	29	14	26	11	7	10	11	7

_ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

17/07/2020

- CLIENT DETAILS -

Client EI AUSTRALIA

- SUMMARY OF ANALYSIS

No.	Sample ID	Fibre Identification in soil	Mercury in Soil	Moisture Content
001	BH2_0.1-0.2	2	1	1
002	BH2_1.2-1.3	-	1	1
003	BH2_1.6-1.7	2	1	1
004	BH3M_0.1-0.2	2	1	1
005	BH3M_0.7-0.8	2	1	1
006	BH3M_1.7-1.8	2	1	1
007	BH3M_2.8-2.9	2	1	1
008	BH4M_0.3-0.5	2	1	1
009	BH4M_1.4-1.5	-	1	1
010	BH4M_2.9-3.0	2	1	1
011	BH4M_4.9-5.0	-	1	1
012	BH5M_0.1-0.2	2	1	1
013	BH5M_1.5-1.6	-	1	1
014	BH5M_1.9-2.0	2	1	1

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

Project E24724.E02 2 Mandala Parade, Castle Hill

_ of ___ Sheet Sample Matrix Analysis Comments Project No: HMA Site: 2 Mandala Parade, Castle Hin pH / EC (electrical conductivity) Arsenic Cadmium Eza720 pH / CEC (cation exchange) Chromium OTHERS (i.e. Fibro, Paint, etc.) HM ^A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos /TRH/BTEX/PAHs Copper E02 Asbestos Quantification Lead Laboratory: SGS Australia Mercurv /TRH/BTEX PAH Nickel Dewatering Suite Unit 16, 33 Maddox Street, Zinc **ALEXANDRIA NSW 2015** нм₿ B P: 02 8594 0400 F: 02 8594 0499 MH Arsenic Asbestos sPOCAS Cadmium Sampling WATER VOCs BTEX TCLP A A PFAS Sample Laboratory Container Chromium MH HM 2 SOIL ID Type Lead ID Date Time Mercurv Nickel 20/7/20 Bulpa BH6-0.1-0.2 J/210 X **Dewatering Suite** K pH & EC TDS / Turbidity NTU +6-0,4-0. × Hardness **Total Cyanide** 346-0.9-1.0 X Metals (Al, As, Cd, Cr, Cu, Pb, Hg, Ni, Zn) X V V X TRH (F1, F2, F3, F4) BTEX PAH **Total Phenol** LABORATORY TURNAROUND X Standard SGS EHS Sydney COC 24 Hours SE209082 **48 Hours** 72 Hours Other Container Type: Investigator: I attest that these samples were collected in accordance J= solvent washed, acid rinsed, Teflon sealed, glass jar . Report with EI Waste Classification Table S= solvent washed, acid rinsed glass bottle with standard EI field sampling procedures. P= natural HDPE plastic bottle VC= glass vial, Teflon Septum Sampler's Name (EI): Received by (SGS): Sampler's Comments: ZLB = Zip-Lock Bag Print Print 1-War SCORA Signature Signature Suite 6.01, 55 Miller Street, **PYRMONT NSW 2009** Date Date a 20 Ph: 9516 0722 eiaustralia IMPORTANT: lab@eiaustralia.com.au

Please e-mail laboratory results to: lab@eiaustralia.com.au

COC March 2018 FORM v 4 - SGS

source: Sydney.pdf page: 4 SGS Ref: SE209082_CO0

CLIENT DETAIL	S	LABORATORY DETA	ILS	
Contact	Li Wei	Manager	Huong Crawford	
Client	EIAUSTRALIA	Laboratory	SGS Alexandria Environmental	
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	61 2 95160722	Telephone	+61 2 8594 0400	
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499	
Email	li.wei@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com	
Project	E24724.E02 2 Mandala Parade, Castle Hill	Samples Received	Thu 23/7/2020	
Order Number	E24724.E02	Report Due	Thu 30/7/2020	
Samples	4	SGS Reference	SE209082	

_ SUBMISSION DETAILS

This is to confirm that 4 samples were received on Thursday 23/7/2020. Results are expected to be ready by COB Thursday 30/7/2020. Please quote SGS reference SE209082 when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested
- Yes SGS Yes 23/7/2020 Yes 8.1°C Standard

Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis Yes Ice Bricks 2 Soil COC Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

2 soil samples have been placed on hold as no tests have been assigned for them by the client. These samples will not be processed.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

2015 Australia 2015 Australia

ıstralia t +61 2 8594 0400 ıstralia f +61 2 8594 0499

www.sgs.com.au

Sheet of					Sam	ple M	latrix						-		Ana	lysis				3	4	_		Comments
Site: 2 ma=dala		le Cas-	He-Hin	Project No: Ezq7ze Eo2				oAHs stos	AHs					tion		· ·		•		pH/Ec/Solublecattorymong	cl, capanate, sup v	atton /ctc	+-	HM A Arsenic Cadmium Chromium Copper Lead
Laboratory:	ALEXAN	stralia 33 Maddox IDRIA NSW 94 0400 F: 0	2015 2 8594 04				OTHERS (i.e. Fibro, Paint, etc.)	HM A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	/TRH/BTEX/PAHs	/ТКН/ВТЕХ			tos	Asbestos Quantification	pH / CEC (cation exchange)	pH / EC (electrical conductivity)	Dewatering Suite	SA		c/solublea	So lable anions (cl. c			Mercury Nickel Zinc HM ^B Arsenic Cadmium
Sample ID	Laboratory ID	Container Type	Date	Time	WATER	SOIL	OTHER:	HM A OCP/C	HMA/	HMA/	BTEX	VOCs	Asbestos	Asbes	pH/C	pH / E(Dewat	sPOCAS	PFAS	PH/E	So lable	Textural	TCLP	Chromium Lead Mercury Nickel
BH2-1.9-2.5	15	J	9/7/2	20 Ampan		X														X	×	X		Dewatering Suite
BHZ-1.9-2.3 BHZ-2.9-3.0 BHZM 2.8-2.9 BHGM-44-4.	16	<u> </u>	J			X														X	X	x		TDS / Turbidity NTU Hardness
BH 31 2.8-2.9	7		13/7/2	10		\times														×	X	X		Total Cyanide Metals (Al, As, Cd, Cr,
BHGM - 4.4-4.	517		14/7/2	0		×												•		×	X	×		Cu, Pb, Hg, Ni, Zn) TRH (F1, F2, F3, F4) BTEX
BHAM_ 4.9-5.	p t l	d		V		X														X	X	X		PAH Total Phenol
																								LABORATORY TURNAROUND
																								Standard
																								24 Hours
																		*						48 Hours
																								72 Hours
																								Other
									N.	7	~ ~													
S= solvent washed, aci	J≖ solvent washed, acid rinsed,Teflon sealed, glass jar S= solvent washed, acid rinsed glass bottle					Inves	tigato	r: I atte with	est that standa	t thes ard El	e sam field s	iples w sampli	vere co ng pro	ollecte	ed in a res,	ccorda	ance	. R	Report v	with El	Wast	e Clas	sificati	on Table
	= natural HDPE plastic bottle C= glass vial, Teflon Septum					Sampl Prin		me (EI)	:				ved by	(SGS):				Sam	pler's (Comm	nents:			
ZED - ZIP-LOCK BAY	LB = Zip-Lock Bag Suite 6.01, 55 Miller St						aturo	Lia				Prin Sign	ature	EL	in	h				SGS	EHS	Alex	andria	
	PYRMONT NSW 200					Date		su				Date		í		D	11							
eiaus	eiaustralia Ph: 9516 0722 lab@eiaustralia.com.a					IMP		AT						11	70	5 -	(6 a							COC
Contamination Remed	Contamination Remediation Geotechnical IaD@elaUStralia.com COC March 2018 FORM v.4-SGS							nail lab		y resi	ults to:	lab@	@eia	ustra	lia.co	om.ai	u	•		SE	EZU ceive	884 1: 21	HOH Jul-	COC -2020

- CLIENT DETAILS -

Client EI AUSTRALIA

Project E24724.E02 2 Mandala Parade, Castle Hill

- SUMMARY	OF ANALYSIS								
No.	Sample ID	OC Pesticides in Soil	OP Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	PCBs in Soil	Total Recoverable Elements in Soil/Waste	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
001	BH6_0.1-0.2	29	14	26	11	7	10	11	7
004	BH6_1.4-1.5	29	14	26	11	7	10	11	7

_ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

CLIENT DETAILS

Client EI AUSTRALIA

Project E24724.E02 2 Mandala Parade, Castle Hill

- SU	JMMARY	OF ANALYSIS					
	No.	Sample ID		Fibre Identification in soil	Mercury in Soil	Moisture Content	
0	001	BH6_0.1-0.2		2	1	1	
0	004	BH6_1.4-1.5		2	1	1	

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

CLIENT DETAIL	S	LABORATORY DETA	NLS
Contact	Li Wei	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	li.wei@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E24724.E02 2 Mandala Parade, Castle Hill	Samples Received	Tue 21/7/2020
Order Number	E24724.E02	Report Due	Tue 28/7/2020
Samples	17	SGS Reference	SE208846A

SUBMISSION DETAILS

This is to confirm that 17 samples were received on Tuesday 21/7/2020. Results are expected to be ready by COB Tuesday 28/7/2020. Please quote SGS reference SE208846A when making enquiries. Refer below for details relating to sample integrity upon receipt.

Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Yes SGS Yes 21/7/2020@8:16am Yes 14°C Standard Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis Yes Ice Bricks 5 Soil COC Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

Australia f Australia f

t +61 2 8594 0400 f +61 2 8594 0499

www.sgs.com.au

SAMPLE RECEIPT ADVICE

CLIENT DETAILS

Client EI AUSTRALIA

Project E24724.E02 2 Mandala Parade, Castle Hill

- SUMMARY	OF ANALYSIS					1			
No.	Sample ID	Alkalinity in Soil	Conductivity and TDS by Calculation - Soil	Exchangeable Cations and Cation Exchange Capacity	Moisture Content	pH in soil (1:5)	Soil Texture (AS4419)	Soluble Anions (1:5) in Soil by Ion Chromatography	Total Recoverable Elements in Soil/Waste
007	BH3M_2.8-2.9	4	1	13	-	1	1	2	5
011	BH4M_4.9-5.0	4	1	13	-	1	1	2	5
015	BH2_1.9-2.0	4	1	13	1	1	1	2	5
016	BH2_2.9-3.0	4	1	13	1	1	1	2	5
017	BH4M_4.4-4.5	4	1	13	1	1	1	2	5

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction . source: Sydney.pdf page: 9 SGS Ref. SE209379_COC

Sheet of		_				Sam	nple N	/latrix								Ana	lysis								Comments
Site:	1	0		Proj	ject No:																				нмА
z mandala	a Para	all,		Ez	247249	1										(e)	tivity								Arsenic Cadmium
	Castis	2 thin			For			t, etc.	AHS	AHS					ion	hang	uduc								Chromium Copper Lead
Laboratory:	ALEXA	Istralia 33 Maddox NDRIA NSW 594 0400 F: 0	2015	0499				OTHERS (i.e. Fibro, Paint, etc.)	HM ^A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	/TRH/BTEX/PAHs	/TRH/BTEX			S	s Quantification	pH / CEC (cation exchange)	EC (electrical conductivity)	ing Suite						И ^В / РАН	Mercury Nickel Zinc HM B Arsenic
Sample	Laboratory		5	Samplin	g	WATER		ERS		A/T	A/T	BTEX	VOCS	Asbestos	Asbestos	/ CE(/EC	Dewatering	sPOCAS	St				P HM	Cadmium Chromium
ID	ID	Туре	Date		Time	MA	SOIL	отн	NH OO HO	HM A	HM A	BTB	VO	Ast	Ast	Hd	Hd	Dev	sPC	PFAS				TCL	Lead Mercury
BH3m-a	1	28,5,200	29/	7/20	Bu/Pa	NX				X			X				X								Nickel Dewatering Suite
BH4m-a	2	Î	1		1	X				X			X				X		•						pH & EC TDS / Turbidity NTU
BHSM	3	V				X				X			X				X								Hardness Total Cyanide Metals (Al, As, Cd, Cr,
GWODI	4	P.5,20c				X					X						-							_	Cu, Pb, Hg, Ni, Zn) TRH (F1, F2, F3, F4)
GWBRL	5	(X					X														BTEX PAH Total Phenol
GWORBI			2		1	X																			LABORATORY
GWTBI	6		h t	rec	sasle	IX						X							•						TURNAROUND
GWTSI	5		20 f	TY	an co	\propto						X								ey C	ос		t		Standard
												V				-	SE	20	93	79			t	_	24 Hours
																							11 -	_	48 Hours
															-	_							ł	_	72 Hours
				<u>.</u> 69.												-								_	Other
Container Type: J= solvent washed, aci	d rings of Tak	flam angled alors					Invos	tigato	r: I atte	ot the	t thoo		nlagu												
S= solvent washed, aci P= natural HDPE plasti	id rinsed gla		s jar				inves	sugato					sampli				ccorda	ance	F	Report	with E	I Waste	e Class	ificatio	on Table
VC= glass vial, Teflon S ZLB = Zip-Lock Bag				2			Samp Prir		ime (EI):	:) r	1		Recei Prin	ved by	(SGS):	ha			Sam	pler's	Comn	nents:			
					Ailler Str		_	ature	in	i				ature	3.2	Ru	J								
eiaus	eiaustralia PYRMONT NSW 2009 Ph: 9516 0722 lab@eiaustralia.com.au						Date 30 7 20 Date 30 07 120 0 12.15																		
Contamination Remedi	ation Geotech	nical	COC March			au			AN I nail lab		ry resu	ults to:	lab@	Deia	ustra	lia.co	om.ai	J							

SAMPLE RECEIPT ADVICE

CLIENT DETAIL	s	LABORATORY DETA	NLS	
Contact	Li Wei	Manager	Huong Crawford	
Client	EIAUSTRALIA	Laboratory	SGS Alexandria Environmental	
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	61 2 95160722	Telephone	+61 2 8594 0400	
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499	
Email	li.wei@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com	
Project	E24724.E02 2 Mandala Parade, Castle Hill	Samples Received	Thu 30/7/2020	
Order Number	E24724.E02	Report Due	Thu 6/8/2020	
Samples	7	SGS Reference	SE209379	

- SUBMISSION DETAILS

This is to confirm that 7 samples were received on Thursday 30/7/2020. Results are expected to be ready by COB Thursday 6/8/2020. Please quote SGS reference SE209379 when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested
- Yes SGS Yes 30/7/2020 Yes 5.4°C Standard

Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis Yes Ice Bricks 7 Water COC Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

Australia **t** Australia **f**

ralia t +61 2 8594 0400 ralia f +61 2 8594 0499

www.sgs.com.au

SAMPLE RECEIPT ADVICE

CLIENT DETAILS

Client EI AUSTRALIA

Project E24724.E02 2 Mandala Parade, Castle Hill

SUMMARY	OF ANALYSIS			1				1	
No.	Sample ID	Conductivity and TDS by Calculation - Water	Mercury (dissolved) in Water	PAH (Polynuclear Aromatic Hydrocarbons) in Water	pH in water	Trace Metals (Dissolved) in Water by ICPMS	TRH (Total Recoverable Hydrocarbons) in Water	VOCs in Water	Volatile Petroleum Hydrocarbons in Water
001	BH3M-a	1	1	22	1	7	9	78	7
002	BH4M-a	1	1	22	1	7	9	78	7
003	BH5M	1	1	22	1	7	9	78	7
004	GWQD 1	-	1	-	-	7	9	11	7
005	GWQR 1	-	1	-	-	7	9	11	7
006	GWTB 1	-	-	-	-	-	-	11	-
007	GWTS 1	-	-	-	-	-	-	11	-

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

											_														
Sheet	of _	-	_				nple N	/latrix		_						Ana	lysis								Comments
Site: Laboratory:	ма, С	nda ast Enviro 12 Ash CHATS	la Para (L. HiU lab Service: lley Street, SWOOD NS	s	Project No: EZG729 EO2			OTHERS (i.e. Fibro, Paint, etc.)	HM ^A /TRH/BTEX/PAHs 0CP/0P/PCB/Asbestos	/TRH/BTEX/PAHs	/TRH/BTEX	· · · ·			Quantification	pH / CEC (cation exchange)	pH / EC (electrical conductivity)	g Suite						B / PAH	HM A Arsenic Cadmium Chromium Copper Lead Mercury Nickel Zinc HM B
Sample ID		P: 02 9 aboratory ID	910 6200 Container Type	Sa Date	Time	WATER	SOIL	OTHERS (i.e	HM ^A /TF OCP/OP/I	HM [≜] /TR	HM ^A /TR	BTEX	VOCs -2	Asbestos	Asbestos	pH / CEC	pH / EC (e	Dewatering Suite	sPOCAS	PFAS				TCLP HM	Arsenic Cadmium Chromium Lead Mercury
GWOTI		()	P\$5226	29/7	(2) Am/F	γuX					X		í					-				-			Nickel Dewatering Suite pH & EC TDS / Turbidity NTU
													•												Hardness . Total Cyanide Metals (Al, As, Cd, Cr, Cu, Pb, Hg, Ni, Zn) TRH (F1, F2, F3, F4)
															· ·					<u>,</u>		·			BTEX PAH Total Phenol
						-	•			-		1	,					envii	OLAB	Chats	vood N	Services shley S SW 2061 10 6200	t l		LABORATORY TURNAROUND
																		Job Date	No: Receiv	24 ed: 5	801	38	202	ó	24 Hours
					,											-		Time Rece Temp	Receiv	ed: : V Ambier cepac	157		2.c		48 Hours 72 Hours
																		Cooli Secu	ng: Ice rity: nt	cepac actiBro	ky ken/No	ne			Other
Container Type: J= solvent washe S= solvent washe P= natural HDPE	ed, acid ed, acid	rinsed gla	flon sealed, glas	ss jar	,	I	Inves	stigato	r: I atte with				nples v sampli				ccord	ànce	F	Report	uith E	l Wast	e Class	sificati	on Table
VC= glass vial, T ZLB = Zip-Lock B	eflon Se						Samp Prir	nt	ame (El)			1	Rece Prir	ived by it	1			9	Sam	plér's	Comr	nents:			
	()			PYRMO	55 Miller Sf NT NSW 20 9516 0722		Sign Date	ature	ve ve D/ 7	2	 7 .		Date	ature 30/		401 Kot 2024	Ą		Þ						
	IST	on Geotech	anical	lab@eiaı	Istralia.com	.au			TANT nail lab		ry resi	ults to													

• .

.

••

-

.

.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

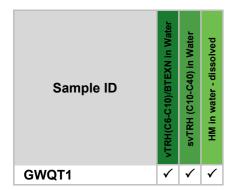
SAMPLE RECEIPT ADVICE

Client Details	
Client	El Australia
Attention	Lab Email

Sample Login Details	
Your reference	E24729.E02, Castle Hill
Envirolab Reference	248038
Date Sample Received	30/07/2020
Date Instructions Received	30/07/2020
Date Results Expected to be Reported	06/08/2020

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	1 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	13.2
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments	
Nil	


Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

The '\s' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Appendix I - Laboratory Analytical Reports

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DE	TAILS
Contact	Li Wei	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	li.wei@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E24724.E02 2 Mandala Parade, Castle Hill	SGS Reference	SE208655 R0
Order Number	E24724.E02	Date Received	13/7/2020
Samples	32	Date Reported	20/7/2020

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

SIGNATORIES

Akheeqar BENIAMEEN Chemist

Kamrul AHSAN Senior Chemist

Bennet LO Senior Organic Chemist/Metals Chemist

kmln

Ly Kim HA Organic Section Head

Dong LIANG Metals/Inorganics Team Leader

Yusuf KUTHPUDIN Asbestos Analyst

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

20/07/2020

VOC's in Soil [AN433] Tested: 15/7/2020

			TP7_0.1-0.2	TP7_1.3-1.4	TP8_0.1-0.2	TP8_0.9-1.0	TP9_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
				8/7/2020	8/7/2020	8/7/2020	8/7/2020
PARAMETER	UOM	LOR	SE208655.001	SE208655.002	SE208655.003	SE208655.004	SE208655.005
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			TP9_1.2-1.3	TP10_0.1-0.2	TP11_0.1-0.2	TP11_0.8-0.9	TP12_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			8/7/2020	8/7/2020	8/7/2020	8/7/2020	8/7/2020
PARAMETER	UOM	LOR	SE208655.006	SE208655.007	SE208655.008	SE208655.009	SE208655.010
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			TP12_0.8-0.9	TP12_1.7-1.8	TP13_0.1-0.2	TP13_1.2-1.3	TP13_2.0-2.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
							8/7/2020
PARAMETER	UOM	LOR	SE208655.011	SE208655.012	SE208655.013	SE208655.014	SE208655.015
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			TP14_0.1-0.2	TP14_1.5-1.6	TP15_0.1-0.2	TP15_1.7-1.8	TP16_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	UOM	LOR	8/7/2020 SE208655.016	8/7/2020 SE208655.017	8/7/2020 SE208655.018	8/7/2020 SE208655.019	8/7/2020 SE208655.020
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

SE208655 R0

VOC's in Soil [AN433] Tested: 15/7/2020 (continued)

			TP17_0.1-0.2	TP18_0.1-0.2	TP18_1.8-1.9	TP19_0.1-0.2	TP19_1.4-1.5
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			8/7/2020	8/7/2020	8/7/2020	8/7/2020	8/7/2020
PARAMETER	UOM	LOR	SE208655.021	SE208655.022	SE208655.023	SE208655.024	SE208655.025
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			QD1	QD2	QTB1	QTS1	BH1_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
				8/7/2020	8/7/2020	8/7/2020	8/7/2020
PARAMETER	UOM	LOR	SE208655.026	SE208655.027	SE208655.029	SE208655.030	SE208655.031
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	[87%]	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	[89%]	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	[90%]	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	[90%]	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	[91%]	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	-	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	-	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1

			BH1_0.7-0.8
			SOIL -
			8/7/2020
PARAMETER	UOM	LOR	SE208655.032
Benzene	mg/kg	0.1	<0.1
Toluene	mg/kg	0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2
o-xylene	mg/kg	0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1

Volatile Petroleum Hydrocarbons in Soil [AN433] Tested: 15/7/2020

			TP7_0.1-0.2	TP7_1.3-1.4	TP8_0.1-0.2	TP8_0.9-1.0	TP9_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SE208655.001	SE208655.002	SE208655.003	SE208655.004	SE208655.005
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			TP9_1.2-1.3	TP10_0.1-0.2	TP11_0.1-0.2	TP11_0.8-0.9	TP12_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			8/7/2020	8/7/2020	8/7/2020	8/7/2020	8/7/2020
PARAMETER	UOM	LOR	SE208655.006	SE208655.007	SE208655.008	SE208655.009	SE208655.010
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			TP12_0.8-0.9	TP12_1.7-1.8	TP13_0.1-0.2	TP13_1.2-1.3	TP13_2.0-2.1
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	- 8/7/2020 SE208655.011	- 8/7/2020 SE208655.012	- 8/7/2020 SE208655.013	- 8/7/2020 SE208655.014	- 8/7/2020 SE208655.015
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			TP14_0.1-0.2	TP14_1.5-1.6	TP15_0.1-0.2	TP15_1.7-1.8	TP16_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							8/7/2020
PARAMETER	UOM	LOR	SE208655.016	SE208655.017	SE208655.018	SE208655.019	SE208655.020
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			TP17_0.1-0.2	TP18_0.1-0.2	TP18_1.8-1.9	TP19_0.1-0.2	TP19_1.4-1.5
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							8/7/2020
PARAMETER	UOM	LOR	SE208655.021	SE208655.022	SE208655.023	SE208655.024	SE208655.025
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			QD1	QD2	BH1_0.1-0.2	BH1_0.7-0.8
			SOIL	SOIL	SOIL	SOIL
						-
						8/7/2020
PARAMETER	UOM	LOR	SE208655.026	SE208655.027	SE208655.031	SE208655.032
TRH C6-C9	mg/kg	20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 15/7/2020

			TP7_0.1-0.2	TP7_1.3-1.4	TP8_0.1-0.2	TP8_0.9-1.0	TP9_0.1-0.2
					001	0.011	001
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
			8/7/2020	8/7/2020	8/7/2020	8/7/2020	8/7/2020
PARAMETER	UOM	LOR	SE208655.001	SE208655.002	SE208655.003	SE208655.004	SE208655.005
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

			TP9_1.2-1.3	TP10_0.1-0.2	TP11_0.1-0.2	TP11_0.8-0.9	TP12_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SE208655.006	SE208655.007	SE208655.008	SE208655.009	SE208655.010
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	70
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

			TP12_0.8-0.9	TP12_1.7-1.8	TP13_0.1-0.2	TP13_1.2-1.3	TP13_2.0-2.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			8/7/2020	8/7/2020	8/7/2020	8/7/2020	8/7/2020
PARAMETER	UOM	LOR	SE208655.011	SE208655.012	SE208655.013	SE208655.014	SE208655.015
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	48	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 15/7/2020 (continued)

			TP14_0.1-0.2	TP14_1.5-1.6	TP15_0.1-0.2	TP15_1.7-1.8	TP16_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 8/7/2020	- 8/7/2020	- 8/7/2020	- 8/7/2020	- 8/7/2020
PARAMETER	UOM	LOR	SE208655.016	SE208655.017	SE208655.018	SE208655.019	SE208655.020
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	99	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	330	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	230	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	280	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	370	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	430	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	650	<210

			TP17_0.1-0.2	TP18_0.1-0.2	TP18_1.8-1.9	TP19_0.1-0.2	TP19_1.4-1.5
			SOIL	SOIL	SOIL	SOIL	SOIL
			8/7/2020	8/7/2020	8/7/2020	8/7/2020	8/7/2020
PARAMETER	UOM	LOR	SE208655.021	SE208655.022	SE208655.023	SE208655.024	SE208655.025
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

			QD1	QD2	BH1_0.1-0.2	BH1_0.7-0.8
			SOIL	SOIL	SOIL	SOIL
			- 8/7/2020	- 8/7/2020	- 8/7/2020	- 8/7/2020
PARAMETER	UOM	LOR	SE208655.026	SE208655.027	SE208655.031	SE208655.032
TRH C10-C14	mg/kg	20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210

SE208655 R0

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 15/7/2020

			TP7_0.1-0.2	TP7_1.3-1.4	TP8_0.1-0.2	TP8_0.9-1.0	TP9_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							8/7/2020
PARAMETER	UOM	LOR	SE208655.001	SE208655.002	SE208655.003	SE208655.004	SE208655.005
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	0.4	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	0.5	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	0.2	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	0.2	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	0.2	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	0.2	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td>0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td>0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td>0.3</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	0.3	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	1.7	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	1.7	<0.8	<0.8

			TP9_1.2-1.3	TP10_0.1-0.2	TP11_0.1-0.2	TP11_0.8-0.9	TP12_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	- 5012	- 5012	- 50IL	-
PARAMETER	UOM	LOR	SE208655.006	SE208655.007	SE208655.008	SE208655.009	SE208655.010
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	0.2	<0.1	0.2
Pyrene	mg/kg	0.1	<0.1	0.1	0.2	<0.1	0.2
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 15/7/2020 (continued)

			TP12_0.8-0.9	TP12_1.7-1.8	TP13_0.1-0.2	TP13_1.2-1.3	TP13_2.0-2.1
					001	001	001
			SOIL	SOIL	SOIL -	SOIL	SOIL
			8/7/2020	8/7/2020	8/7/2020	8/7/2020	8/7/2020
PARAMETER	UOM	LOR	SE208655.011	SE208655.012	SE208655.013	SE208655.014	SE208655.015
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	0.2	<0.1	<0.1	0.1	<0.1
Pyrene	mg/kg	0.1	0.3	0.1	<0.1	0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	1.2	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	1.2	<0.8	<0.8	<0.8	<0.8

			TP14_0.1-0.2	TP14_1.5-1.6	TP15_0.1-0.2	TP15_1.7-1.8	TP16_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-		
PARAMETER	UOM	LOR	SE208655.016	SE208655.017	SE208655.018	SE208655.019	SE208655.020
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	0.2	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	0.2	<0.1	0.1	0.3	<0.1
Pyrene	mg/kg	0.1	0.3	<0.1	0.1	0.3	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	0.2	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	0.1	<0.1	<0.1	0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	0.1	<0.1	<0.1	0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	0.3	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>0.2</td><td><0.2</td><td><0.2</td><td>0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	0.2	<0.2	<0.2	0.2	<0.2
Total PAH (18)	mg/kg	0.8	0.8	<0.8	<0.8	1.7	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	0.8	<0.8	<0.8	1.7	<0.8

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 15/7/2020 (continued)

			TP17_0.1-0.2	TP18_0.1-0.2	TP18_1.8-1.9	TP19_0.1-0.2	TP19_1.4-1.5
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	- 3012	- 5012	- 50IL	- SUIL
			8/7/2020	8/7/2020	8/7/2020	8/7/2020	8/7/2020
PARAMETER	UOM	LOR	SE208655.021	SE208655.022	SE208655.023	SE208655.024	SE208655.025
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	0.2	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8

			BH1_0.1-0.2	BH1_0.7-0.8
			SOIL	SOIL
PARAMETER	UOM	LOR	8/7/2020 SE208655.031	8/7/2020 SE208655.032
Naphthalene	mg/kg	0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8

SE208655 R0

OC Pesticides in Soil [AN420] Tested: 15/7/2020

			TP7_0.1-0.2	TP7_1.3-1.4	TP8_0.1-0.2	TP8_0.9-1.0	TP9_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
							8/7/2020
PARAMETER	UOM	LOR	SE208655.001	SE208655.002	SE208655.003	SE208655.004	SE208655.005
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1	<1

			TP9_1.2-1.3	TP10_0.1-0.2	TP11_0.1-0.2	TP11_0.8-0.9	TP12_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
							8/7/2020
PARAMETER	UOM	LOR	SE208655.006	SE208655.007	SE208655.008	SE208655.009	SE208655.010
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1	<1

			TP12_0.8-0.9	TP12_1.7-1.8	TP13_0.1-0.2	TP13_1.2-1.3	TP13_2.0-2.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							8/7/2020
PARAMETER	UOM	LOR	SE208655.011	SE208655.012	SE208655.013	SE208655.014	SE208655.015
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1	<1

			TP14_0.1-0.2	TP14_1.5-1.6	TP15_0.1-0.2	TP15_1.7-1.8	TP16_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 8/7/2020	- 8/7/2020	- 8/7/2020	- 8/7/2020	- 8/7/2020
PARAMETER	UOM	LOR	SE208655.016	SE208655.017	SE208655.018	SE208655.019	SE208655.020
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1	<1

			TP17_0.1-0.2	TP18_0.1-0.2	TP18_1.8-1.9	TP19_0.1-0.2	TP19_1.4-1.5
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							8/7/2020
PARAMETER	UOM	LOR	SE208655.021	SE208655.022	SE208655.023	SE208655.024	SE208655.025
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1	<1

			BH1_0.1-0.2	BH1_0.7-0.8
			SOIL	SOIL
PARAMETER	UOM	LOR	SE208655.031	SE208655.032
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1

OP Pesticides in Soil [AN420] Tested: 15/7/2020

			TP7_0.1-0.2	TP7_1.3-1.4	TP8_0.1-0.2	TP8_0.9-1.0	TP9_0.1-0.2
			SOIL - 8/7/2020	SOIL - 8/7/2020	SOIL - 8/7/2020	SOIL - 8/7/2020	SOIL - 8/7/2020
PARAMETER Dichlorvos	UOM	LOR 0.5	SE208655.001 <0.5	SE208655.002 <0.5	SE208655.003 <0.5	SE208655.004 <0.5	SE208655.005 <0.5
	mg/kg						
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7	<1.7

			TP9_1.2-1.3	TP10_0.1-0.2	TP11_0.1-0.2	TP11_0.8-0.9	TP12_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 8/7/2020	- 8/7/2020	- 8/7/2020	- 8/7/2020	- 8/7/2020
PARAMETER	UOM	LOR	SE208655.006	SE208655.007	SE208655.008	SE208655.009	SE208655.010
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7	<1.7

			TP12_0.8-0.9	TP12_1.7-1.8	TP13_0.1-0.2	TP13_1.2-1.3	TP13_2.0-2.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 8/7/2020	- 8/7/2020	- 8/7/2020	- 8/7/2020	- 8/7/2020
PARAMETER	UOM	LOR	SE208655.011	SE208655.012	SE208655.013	SE208655.014	SE208655.015
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7	<1.7

			TP14_0.1-0.2	TP14_1.5-1.6	TP15_0.1-0.2	TP15_1.7-1.8	TP16_0.1-0.2
			SOIL - 8/7/2020	SOIL - 8/7/2020	SOIL - 8/7/2020	SOIL - 8/7/2020	SOIL - 8/7/2020
PARAMETER	UOM	LOR	SE208655.016	SE208655.017	SE208655.018	SE208655.019	SE208655.020
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7	<1.7

			TP17_0.1-0.2	TP18_0.1-0.2	TP18_1.8-1.9	TP19_0.1-0.2	TP19_1.4-1.5
			SOIL -	SOIL -	SOIL -	SOIL -	SOIL -
PARAMETER	UOM	LOR	8/7/2020 SE208655.021	8/7/2020 SE208655.022	8/7/2020 SE208655.023	8/7/2020 SE208655.024	8/7/2020 SE208655.025
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7	<1.7

			BH1_0.1-0.2	BH1_0.7-0.8
			SOIL -	SOIL
PARAMETER	UOM	LOR	8/7/2020 SE208655.031	8/7/2020 SE208655.032
Dichlorvos	mg/kg	0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7

PCBs in Soil [AN420] Tested: 15/7/2020

			TP7_0.1-0.2	TP7_1.3-1.4	TP8_0.1-0.2	TP8_0.9-1.0	TP9_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			8/7/2020	8/7/2020	8/7/2020	8/7/2020	8/7/2020
PARAMETER	UOM	LOR	SE208655.001	SE208655.002	SE208655.003	SE208655.004	SE208655.005
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

			TP9_1.2-1.3	TP10_0.1-0.2	TP11_0.1-0.2	TP11_0.8-0.9	TP12_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			8/7/2020	8/7/2020	8/7/2020	8/7/2020	8/7/2020
PARAMETER	UOM	LOR	SE208655.006	SE208655.007	SE208655.008	SE208655.009	SE208655.010
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

			TP12_0.8-0.9	TP12_1.7-1.8	TP13_0.1-0.2	TP13_1.2-1.3	TP13_2.0-2.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 8/7/2020	- 8/7/2020	- 8/7/2020	- 8/7/2020	- 8/7/2020
PARAMETER	UOM	LOR	SE208655.011	SE208655.012	SE208655.013	SE208655.014	SE208655.015
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

SE208655 R0

PCBs in Soil [AN420] Tested: 15/7/2020 (continued)

			TP14_0.1-0.2	TP14_1.5-1.6	TP15_0.1-0.2	TP15_1.7-1.8	TP16_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			8/7/2020	8/7/2020	8/7/2020	8/7/2020	8/7/2020
PARAMETER	UOM	LOR	SE208655.016	SE208655.017	SE208655.018	SE208655.019	SE208655.020
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

			TP17_0.1-0.2	TP18_0.1-0.2	TP18_1.8-1.9	TP19_0.1-0.2	TP19_1.4-1.5
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			8/7/2020	8/7/2020	8/7/2020	8/7/2020	8/7/2020
PARAMETER	UOM	LOR	SE208655.021	SE208655.022	SE208655.023	SE208655.024	SE208655.025
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

			BH1_0.1-0.2	BH1_0.7-0.8
			SOIL	SOIL
PARAMETER	UOM	LOR	SE208655.031	SE208655.032
Arochlor 1016	mg/kg	0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1

SE208655 R0

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 15/7/2020

			TP7_0.1-0.2	TP7_1.3-1.4	TP8_0.1-0.2	TP8_0.9-1.0	TP9_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 8/7/2020	- 8/7/2020	- 8/7/2020	- 8/7/2020	- 8/7/2020
PARAMETER	UOM	LOR	SE208655.001	SE208655.002	SE208655.003	SE208655.004	SE208655.005
Arsenic, As	mg/kg	1	4	14	5	5	4
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	11	20	24	4.6	8.4
Copper, Cu	mg/kg	0.5	24	9.6	26	6.9	16
Lead, Pb	mg/kg	1	12	17	12	18	11
Nickel, Ni	mg/kg	0.5	13	<0.5	18	<0.5	5.7
Zinc, Zn	mg/kg	2	34	7.1	27	2.2	22

			TP9_1.2-1.3	TP10_0.1-0.2	TP11_0.1-0.2	TP11_0.8-0.9	TP12_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SE208655.006	SE208655.007	SE208655.008	SE208655.009	SE208655.010
Arsenic, As	mg/kg	1	<1	4	4	2	4
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	2.3	14	42	29	11
Copper, Cu	mg/kg	0.5	2.1	16	12	130	22
Lead, Pb	mg/kg	1	15	12	12	4	15
Nickel, Ni	mg/kg	0.5	<0.5	10	10	34	20
Zinc, Zn	mg/kg	2	<2.0	31	39	39	42

			TP12_0.8-0.9	TP12_1.7-1.8	TP13_0.1-0.2	TP13_1.2-1.3	TP13_2.0-2.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 8/7/2020	- 8/7/2020	- 8/7/2020	- 8/7/2020	- 8/7/2020
PARAMETER	UOM	LOR	SE208655.011	SE208655.012	SE208655.013	SE208655.014	SE208655.015
Arsenic, As	mg/kg	1	3	4	3	4	5
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	12	12	8.1	10	14
Copper, Cu	mg/kg	0.5	19	13	9.4	14	12
Lead, Pb	mg/kg	1	13	13	10	13	17
Nickel, Ni	mg/kg	0.5	18	10	8.6	8.3	8.2
Zinc, Zn	mg/kg	2	38	25	20	28	28

			TP14_0.1-0.2	TP14_1.5-1.6	TP15_0.1-0.2	TP15_1.7-1.8	TP16_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	UOM	LOR	SE208655.016	SE208655.017	SE208655.018	SE208655.019	SE208655.020
Arsenic, As	mg/kg	1	4	4	3	4	3
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	13	6.1	11	16	15
Copper, Cu	mg/kg	0.5	15	<0.5	15	22	24
Lead, Pb	mg/kg	1	14	5	16	15	9
Nickel, Ni	mg/kg	0.5	13	<0.5	9.3	6.8	18
Zinc, Zn	mg/kg	2	35	<2.0	87	36	50

SE208655 R0

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 15/7/2020

			TP17_0.1-0.2	TP18_0.1-0.2	TP18_1.8-1.9	TP19_0.1-0.2	TP19_1.4-1.5
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SE208655.021	SE208655.022	SE208655.023	SE208655.024	SE208655.025
Arsenic, As	mg/kg	1	4	3	6	4	5
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	10	9.1	11	32	16
Copper, Cu	mg/kg	0.5	12	12	16	23	1.9
Lead, Pb	mg/kg	1	12	11	14	11	13
Nickel, Ni	mg/kg	0.5	9.8	9.0	9.2	15	0.7
Zinc, Zn	mg/kg	2	32	30	44	43	2.9

			QD1	QD2	BH1_0.1-0.2	BH1_0.7-0.8
			SOIL	SOIL	SOIL	SOIL
			- 8/7/2020	- 8/7/2020	-	- 8/7/2020
PARAMETER	UOM	LOR	SE208655.026	SE208655.027	8/7/2020 SE208655.031	SE208655.032
Arsenic, As	mg/kg	1	4	4	5	6
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	19	9.9	8.8	7.9
Copper, Cu	mg/kg	0.5	21	12	9.8	8.9
Lead, Pb	mg/kg	1	12	13	12	14
Nickel, Ni	mg/kg	0.5	15	12	5.4	0.8
Zinc, Zn	mg/kg	2	27	33	16	7.8

Mercury in Soil [AN312] Tested: 15/7/2020

			TP7_0.1-0.2	TP7_1.3-1.4	TP8_0.1-0.2	TP8_0.9-1.0	TP9_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SE208655.001	SE208655.002	SE208655.003	SE208655.004	SE208655.005
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			TP9_1.2-1.3	TP10_0.1-0.2	TP11_0.1-0.2	TP11_0.8-0.9	TP12_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							8/7/2020
PARAMETER	UOM	LOR	SE208655.006	SE208655.007	SE208655.008	SE208655.009	SE208655.010
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			TP12_0.8-0.9	TP12_1.7-1.8	TP13_0.1-0.2	TP13_1.2-1.3	TP13_2.0-2.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							8/7/2020
PARAMETER	UOM	LOR	SE208655.011	SE208655.012	SE208655.013	SE208655.014	SE208655.015
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			TP14_0.1-0.2	TP14_1.5-1.6	TP15_0.1-0.2	TP15_1.7-1.8	TP16_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							8/7/2020
PARAMETER	UOM	LOR	SE208655.016	SE208655.017	SE208655.018	SE208655.019	SE208655.020
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			TP17_0.1-0.2	TP18_0.1-0.2	TP18_1.8-1.9	TP19_0.1-0.2	TP19_1.4-1.5
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							8/7/2020
PARAMETER	UOM	LOR	SE208655.021	SE208655.022	SE208655.023	SE208655.024	SE208655.025
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			QD1	QD2	BH1_0.1-0.2	BH1_0.7-0.8
			SOIL	SOIL	SOIL	SOIL
						-
						8/7/2020
PARAMETER	UOM	LOR	SE208655.026	SE208655.027	SE208655.031	SE208655.032
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05

Moisture Content [AN002] Tested: 15/7/2020

			TP7_0.1-0.2	TP7_1.3-1.4	TP8_0.1-0.2	TP8_0.9-1.0	TP9_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SE208655.001	SE208655.002	SE208655.003	SE208655.004	SE208655.005
% Moisture	%w/w	1	12.1	18.3	13.5	11.0	8.1

			TP9_1.2-1.3	TP10_0.1-0.2	TP11_0.1-0.2	TP11_0.8-0.9	TP12_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							8/7/2020
PARAMETER	UOM	LOR	SE208655.006	SE208655.007	SE208655.008	SE208655.009	SE208655.010
% Moisture	%w/w	1	13.4	9.8	11.0	7.3	10.2

			TP12_0.8-0.9	TP12_1.7-1.8	TP13_0.1-0.2	TP13_1.2-1.3	TP13_2.0-2.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							8/7/2020
PARAMETER	UOM	LOR	SE208655.011	SE208655.012	SE208655.013	SE208655.014	SE208655.015
% Moisture	%w/w	1	10.2	10.8	10.3	11.6	14.7

			TP14_0.1-0.2	TP14_1.5-1.6	TP15_0.1-0.2	TP15_1.7-1.8	TP16_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							8/7/2020
PARAMETER	UOM	LOR	SE208655.016	SE208655.017	SE208655.018	SE208655.019	SE208655.020
% Moisture	%w/w	1	10.7	11.1	9.0	11.8	9.2

			TP17_0.1-0.2	TP18_0.1-0.2	TP18_1.8-1.9	TP19_0.1-0.2	TP19_1.4-1.5
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SE208655.021	SE208655.022	SE208655.023	SE208655.024	SE208655.025
% Moisture	%w/w	1	9.7	10.5	15.0	9.9	18.4

			QD1	QD2	QTB1	BH1_0.1-0.2	BH1_0.7-0.8
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							8/7/2020
PARAMETER	UOM	LOR	SE208655.026	SE208655.027	SE208655.029	SE208655.031	SE208655.032
% Moisture	%w/w	1	13.3	11.3	<1.0	10.7	11.0

Fibre Identification in soil [AN602] Tested: 17/7/2020

			TP7_0.1-0.2	TP7_1.3-1.4	TP8_0.1-0.2	TP8_0.9-1.0	TP9_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							8/7/2020
PARAMETER	UOM	LOR	SE208655.001	SE208655.002	SE208655.003	SE208655.004	SE208655.005
Asbestos Detected	No unit	-	No	No	No	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01

			TP9_1.2-1.3	TP10_0.1-0.2	TP11_0.1-0.2	TP11_0.8-0.9	TP12_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							8/7/2020
PARAMETER	UOM	LOR	SE208655.006	SE208655.007	SE208655.008	SE208655.009	SE208655.010
Asbestos Detected	No unit	-	No	No	No	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01

			TP12_0.8-0.9	TP12_1.7-1.8	TP13_0.1-0.2	TP13_1.2-1.3	TP13_2.0-2.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			8/7/2020	8/7/2020	8/7/2020	8/7/2020	8/7/2020
PARAMETER	UOM	LOR	SE208655.011	SE208655.012	SE208655.013	SE208655.014	SE208655.015
Asbestos Detected	No unit	-	No	No	No	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01

			TP14_0.1-0.2	TP14_1.5-1.6	TP15_0.1-0.2	TP15_1.7-1.8	TP16_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							8/7/2020
PARAMETER	UOM	LOR	SE208655.016	SE208655.017	SE208655.018	SE208655.019	SE208655.020
Asbestos Detected	No unit	-	No	No	No	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01

			TP17_0.1-0.2	TP18_0.1-0.2	TP18_1.8-1.9	TP19_0.1-0.2	TP19_1.4-1.5
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							8/7/2020
PARAMETER	UOM	LOR	SE208655.021	SE208655.022	SE208655.023	SE208655.024	SE208655.025
Asbestos Detected	No unit	-	No	No	No	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01

			BH1_0.1-0.2	BH1_0.7-0.8
			SOIL	SOIL
				- 8/7/2020
PARAMETER	UOM	LOR	SE208655.031	SE208655.032
Asbestos Detected	No unit	-	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01

SE208655 R0

VOCs in Water [AN433] Tested: 16/7/2020

			QR1
			WATER
PARAMETER	UOM	LOR	SE208655.028
Benzene	µg/L	0.5	<0.5
Toluene	µg/L	0.5	<0.5
Ethylbenzene	µg/L	0.5	<0.5
m/p-xylene	µg/L	1	<1
o-xylene	µg/L	0.5	<0.5
Total Xylenes	µg/L	1.5	<1.5
Total BTEX	µg/L	3	<3
Naphthalene	µg/L	0.5	<0.5

Volatile Petroleum Hydrocarbons in Water [AN433] Tested: 16/7/2020

			QR1
			WATER
			8/7/2020
PARAMETER	UOM	LOR	SE208655.028
TRH C6-C9	µg/L	40	<40
Benzene (F0)	µg/L	0.5	<0.5
TRH C6-C10	µg/L	50	<50
TRH C6-C10 minus BTEX (F1)	µg/L	50	<50

SE208655 R0

TRH (Total Recoverable Hydrocarbons) in Water [AN403] Tested: 15/7/2020

			QR1
			WATER
			8/7/2020
PARAMETER	UOM	LOR	SE208655.028
TRH C10-C14	µg/L	50	<50
TRH C15-C28	µg/L	200	<200
TRH C29-C36	µg/L	200	<200
TRH C37-C40	µg/L	200	<200
TRH >C10-C16	µg/L	60	<60
TRH >C10-C16 - Naphthalene (F2)	µg/L	60	<60
TRH >C16-C34 (F3)	µg/L	500	<500
TRH >C34-C40 (F4)	µg/L	500	<500
TRH C10-C40	µg/L	320	<320

SE208655 R0

Trace Metals (Dissolved) in Water by ICPMS [AN318] Tested: 15/7/2020

			QR1
			WATER
			- 8/7/2020
PARAMETER	UOM	LOR	SE208655.028
Arsenic, As	µg/L	1	<1
Cadmium, Cd	µg/L	0.1	<0.1
Chromium, Cr	µg/L	1	<1
Copper, Cu	µg/L	1	<1
Lead, Pb	µg/L	1	<1
Nickel, Ni	μg/L	1	<1
Zinc, Zn	µg/L	5	<5

ANALYTICAL RESULTS

SE208655 R0

Mercury (dissolved) in Water [AN311(Perth)/AN312] Tested: 15/7/2020

			QR1
			WATER
			-
			8/7/2020
PARAMETER	UOM	LOR	SE208655.028
Mercury	mg/L	0.0001	<0.0001

— METHOD ————	METHODOLOGY SUMMARY
_ METHOD	
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.
AN311(Perth)/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN318	Determination of elements at trace level in waters by ICP-MS technique,, referenced to USEPA 6020B and USEPA 200.8 (5.4).
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Recoverable Hydrocarbons - Silica (TRH-Si) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."

AN602	The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable ' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and
	(c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

FOOTNOTES -

*	NATA accreditation does not cover
	the performance of this service.
**	Indicative data, theoretical holding
	time exceeded.

Not analysed.
 NVL Not validated.
 IS Insufficient sample for analysis.
 LNR Sample listed, but not received.

UOM Unit of Measure. LOR Limit of Reporting. ↑↓ Raised/lowered Limit of Reporting.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

CLIENT DETAILS		LABORATORY DETAIL	S
Contact	Li Wei	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone Facsimile Email	61 2 95160722 (Not specified) li.wei@eiaustralia.com.au	Telephone Facsimile Email	+61 2 8594 0400 +61 2 8594 0499 au.environmental.sydney@sgs.com
Project Order Number Samples	E24724.E02 2 Mandala Parade, Castle Hill E24724.E02 27	SGS Reference Date Received Date Reported	SE208655 R0 13 Jul 2020 20 Jul 2020

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

SIGNATORIES

Akheeqar BENIAMEEN Chemist

kinty

Ly Kim HA Organic Section Head

Bennet LO Senior Organic Chemist/Metals Chemis

1 tita C ,

Yusuf KUTHPUDIN Asbestos Analyst

Agam.

Kamrul AHSAN Senior Chemist

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

015 Australia 015 Australia t +61 2 8594 0400 f +61 2 8594 0499

Member of the SGS Group

www.sgs.com.au

Fibre Identification in soil Method AN602						
Laboratory Reference	Client Reference	Matrix	Sample Description	Date Sampled	Fibre Identification	Est.%w/w
SE208655.001	TP7_0.1-0.2	Soil	155g Clay, Sand, Rocks	08 Jul 2020	No Asbestos Found Organic Fibres Detected	<0.01
SE208655.002	TP7_1.3-1.4	Soil	207g Clay, Rocks	08 Jul 2020	No Asbestos Found	<0.01
SE208655.003	TP8_0.1-0.2	Soil	112g Clay, Sand, Rocks	08 Jul 2020	No Asbestos Found Organic Fibres Detected	<0.01
SE208655.004	TP8_0.9-1.0	Soil	175g Clay, Rocks	08 Jul 2020	No Asbestos Found	<0.01
SE208655.005	TP9_0.1-0.2	Soil	154g Clay, Sand, Rocks	08 Jul 2020	No Asbestos Found	<0.01
SE208655.006	TP9_1.2-1.3	Soil	185g Clay, Sand, Rocks	08 Jul 2020	No Asbestos Found	<0.01
SE208655.007	TP10_0.1-0.2	Soil	127g Clay, Sand, Rocks	08 Jul 2020	No Asbestos Found Organic Fibres Detected	<0.01
SE208655.008	TP11_0.1-0.2	Soil	112g Clay, Sand, Rocks	08 Jul 2020	No Asbestos Found Organic Fibres Detected	<0.01
SE208655.009	TP11_0.8-0.9	Soil	164g Sand, Rocks	08 Jul 2020	No Asbestos Found	<0.01
SE208655.010	TP12_0.1-0.2	Soil	124g Clay, Sand, Rocks	08 Jul 2020	No Asbestos Found Organic Fibres Detected	<0.01
SE208655.011	TP12_0.8-0.9	Soil	160g Clay, Sand, Rocks	08 Jul 2020	No Asbestos Found Organic Fibres Detected	<0.01
SE208655.012	TP12_1.7-1.8	Soil	131g Clay, Sand, Soil, Rocks	08 Jul 2020	No Asbestos Found Organic Fibres Detected	<0.01
SE208655.013	TP13_0.1-0.2	Soil	111g Clay, Sand, Rocks	08 Jul 2020	No Asbestos Found	<0.01
SE208655.014	TP13_1.2-1.3	Soil	95g Clay, Sand, Rocks	08 Jul 2020	No Asbestos Found Organic Fibres Detected	<0.01
SE208655.015	TP13_2.0-2.1	Soil	105g Clay, Sand, Rocks	08 Jul 2020	No Asbestos Found Organic Fibres Detected	<0.01
SE208655.016	TP14_0.1-0.2	Soil	95g Clay, Sand, Rocks	08 Jul 2020	No Asbestos Found Organic Fibres Detected	<0.01
SE208655.017	TP14_1.5-1.6	Soil	103g Clay, Sand, Rocks	08 Jul 2020	No Asbestos Found	<0.01
SE208655.018	TP15_0.1-0.2	Soil	106g Clay, Sand, Rocks	08 Jul 2020	No Asbestos Found Organic Fibres Detected	<0.01
SE208655.019	TP15_1.7-1.8	Soil	132g Sand, Rocks, Bitumen	08 Jul 2020	No Asbestos Found Organic Fibres Detected	<0.01
SE208655.020	TP16_0.1-0.2	Soil	99g Clay, Sand, Rocks	08 Jul 2020	No Asbestos Found Organic Fibres Detected	<0.01
SE208655.021	TP17_0.1-0.2	Soil	103g Clay, Sand, Rocks	08 Jul 2020	No Asbestos Found	<0.01
SE208655.022	TP18_0.1-0.2	Soil	126g Clay, Sand, Rocks	08 Jul 2020	No Asbestos Found Organic Fibres Detected	<0.01
SE208655.023	TP18_1.8-1.9	Soil	125g Clay, Sand, Rocks	08 Jul 2020	No Asbestos Found Organic Fibres Detected	<0.01
SE208655.024	TP19_0.1-0.2	Soil	175g Clay, Sand, Rocks	08 Jul 2020	No Asbestos Found Organic Fibres Detected	<0.01
SE208655.025	TP19_1.4-1.5	Soil	187g Clay, Rocks	08 Jul 2020	No Asbestos Found	<0.01
SE208655.031	BH1_0.1-0.2	Soil	161g Clay, Sand, Rocks	08 Jul 2020	No Asbestos Found	<0.01
SE208655.032	BH1_0.7-0.8	Soil	331g Clay, Rocks	08 Jul 2020	No Asbestos Found	<0.01

RESULTS -

Fibre Identification in soil

Method AN602

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples , Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
AN602	The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable ' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

FOOTNOTES -Amosite Brown Asbestos NA Not Analysed Chrysotile White Asbestos INR --Listed. Not Required Crocidolite Blue Asbestos * -NATA accreditation does not cover the performance of this service . ** Amosite and/or Crocidolite Indicative data, theoretical holding time exceeded. Amphiboles

(In reference to soil samples only) This report does not comply with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment and Remediation and Management of Asbestos Contaminated sites in Western Australia - May 2009.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received.

Where reported: 'Asbestos Detected': Asbestos detected by polarised light microscopy, including dispersion staining. Where reported: 'No Asbestos Found': No Asbestos Found by polarised light microscopy, including dispersion staining. Where reported: 'UMF Detected': Mineral fibres of unknown type detected by polarised light microscopy, including dispersion staining. Confirmation by another independent analytical technique may be necessary.

Even after disintegration it can be very difficult, or impossible, to detect the presence of asbestos in some asbestos -containing bulk materials using polarised light microscopy. This is due to the low grade or small length or diameter of asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: www.sgs.com.au/en-gb/environment-health-and-safety.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

CERTIFICATE OF ANALYSIS 246861

Client Details	
Client	El Australia
Attention	Lab Email
Address	Suite 6.01, 55 Miller Street, Pyrmont, NSW, 2009

Sample Details	
Your Reference	E24724. E02, Castle Hill
Number of Samples	2 Soil
Date samples received	13/07/2020
Date completed instructions received	13/07/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details	
Date results requested by	20/07/2020
Date of Issue	17/07/2020
NATA Accreditation Number 290	1. This document shall not be reproduced except in full.
Accredited for compliance with I	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Results Approved By Hannah Nguyen, Senior Chemist Josh Williams, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil			
Our Reference		246861-1	246861-2
Your Reference	UNITS	QT1	QT2
Date Sampled		8/07/2020	8/07/2020
Type of sample		Soil	Soil
Date extracted	-	15/07/2020	15/07/2020
Date analysed	-	17/07/2020	17/07/2020
TRH C ₆ - C ₉	mg/kg	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25
Benzene	mg/kg	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1
m+p-xylene	mg/kg	<2	<2
o-Xylene	mg/kg	<1	<1
naphthalene	mg/kg	<1	<1
Total +ve Xylenes	mg/kg	<3	<3
Surrogate aaa-Trifluorotoluene	%	125	121

svTRH (C10-C40) in Soil			
Our Reference		246861-1	246861-2
Your Reference	UNITS	QT1	QT2
Date Sampled		8/07/2020	8/07/2020
Type of sample		Soil	Soil
Date extracted	-	15/07/2020	15/07/2020
Date analysed	-	16/07/2020	16/07/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100
TRH >C10-C16	mg/kg	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50
Surrogate o-Terphenyl	%	97	101

Acid Extractable metals in soil			
Our Reference		246861-1	246861-2
Your Reference	UNITS	QT1	QT2
Date Sampled		8/07/2020	8/07/2020
Type of sample		Soil	Soil
Date prepared	-	15/07/2020	15/07/2020
Date analysed	-	15/07/2020	15/07/2020
Arsenic	mg/kg	4	8
Cadmium	mg/kg	<0.4	<0.4
Chromium	mg/kg	31	29
Copper	mg/kg	26	35
Lead	mg/kg	18	28
Mercury	mg/kg	<0.1	<0.1
Nickel	mg/kg	18	26
Zinc	mg/kg	33	72

Moisture			
Our Reference		246861-1	246861-2
Your Reference	UNITS	QT1	QT2
Date Sampled		8/07/2020	8/07/2020
Type of sample		Soil	Soil
Date prepared	-	15/07/2020	15/07/2020
Date analysed	-	16/07/2020	16/07/2020
Moisture	%	11	50

Method ID	Methodology Summary
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT			Du	Duplicate			Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]
Date extracted	-			15/07/2020	[NT]		[NT]	[NT]	15/07/2020	
Date analysed	-			17/07/2020	[NT]		[NT]	[NT]	17/07/2020	
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	90	
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	90	
Benzene	mg/kg	0.2	Org-023	<0.2	[NT]		[NT]	[NT]	76	
Toluene	mg/kg	0.5	Org-023	<0.5	[NT]		[NT]	[NT]	103	
Ethylbenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	95	
m+p-xylene	mg/kg	2	Org-023	<2	[NT]		[NT]	[NT]	87	
o-Xylene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	83	
naphthalene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-023	123	[NT]		[NT]	[NT]	119	

QUALITY CO		Duplicate			Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]
Date extracted	-			15/07/2020	[NT]		[NT]	[NT]	15/07/2020	
Date analysed	-			16/07/2020	[NT]		[NT]	[NT]	16/07/2020	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	130	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	108	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	128	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	130	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	108	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	128	
Surrogate o-Terphenyl	%		Org-020	104	[NT]		[NT]	[NT]	119	

QUALITY CONT	Duplicate				Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]
Date prepared	-			15/07/2020	[NT]	[NT]	[NT]	[NT]	15/07/2020	
Date analysed	-			15/07/2020	[NT]	[NT]	[NT]	[NT]	15/07/2020	
Arsenic	mg/kg	4	Metals-020	<4	[NT]	[NT]	[NT]	[NT]	107	
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]	[NT]	[NT]	[NT]	104	
Chromium	mg/kg	1	Metals-020	<1	[NT]	[NT]	[NT]	[NT]	110	
Copper	mg/kg	1	Metals-020	<1	[NT]	[NT]	[NT]	[NT]	108	
Lead	mg/kg	1	Metals-020	<1	[NT]	[NT]	[NT]	[NT]	103	
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]	[NT]	[NT]	[NT]	109	
Nickel	mg/kg	1	Metals-020	<1	[NT]	[NT]	[NT]	[NT]	109	
Zinc	mg/kg	1	Metals-020	<1	[NT]	[NT]	[NT]	[NT]	109	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

- CLIENT DETAILS		LABORATORY DE	TAILS
Contact	Li Wei	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	li.wei@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E24724.E02 2 Mandala Parade, Castle Hill	SGS Reference	SE208846 R0
Order Number	E24724.E02	Date Received	17/7/2020
Samples	14	Date Reported	24/7/2020

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique.

Asbestos analysed by Approved Counter Ravee Sivasubramaniam.

SIGNATORIES

Bennet LO Senior Organic Chemist/Metals Chemist

S. Ravender.

Ravee SIVASUBRAMANIAM Hygiene Team Leader

> SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC

Kamrul AHSAN

Senior Chemist

Alexandria NSW 2015 Alexandria NSW 2015

2015 Australia 2015 Australia

Ly Kim HA

Organic Section Head

stralia t +61 2 8594 0400 stralia f +61 2 8594 0499

kinty

www.sgs.com.au

VOC's in Soil [AN433] Tested: 21/7/2020

			BH2_0.1-0.2	BH2_1.2-1.3	BH2_1.6-1.7	BH3M_0.7-0.8	BH3M_1.7-1.8
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
				9/7/2020	9/7/2020	13/7/2020	13/7/2020
PARAMETER	UOM	LOR	SE208846.001	SE208846.002	SE208846.003	SE208846.005	SE208846.006
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			BH3M_2.8-2.9	BH4M_0.3-0.5	BH4M_1.4-1.5	BH4M_2.9-3.0	BH4M_4.9-5.0
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			13/7/2020	14/7/2020	14/7/2020	14/7/2020	14/7/2020
PARAMETER	UOM	LOR	SE208846.007	SE208846.008	SE208846.009	SE208846.010	SE208846.011
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			BH5M_0.1-0.2	BH5M_1.5-1.6	BH5M_1.9-2.0
			SOIL	SOIL	SOIL -
PARAMETER	UOM	LOR	SE208846.012	SE208846.013	SE208846.014
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1

Volatile Petroleum Hydrocarbons in Soil [AN433] Tested: 21/7/2020

			BH2_0.1-0.2	BH2_1.2-1.3	BH2_1.6-1.7	BH3M_0.7-0.8	BH3M_1.7-1.8
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
						13/7/2020	13/7/2020
PARAMETER	UOM	LOR	SE208846.001	SE208846.002	SE208846.003	SE208846.005	SE208846.006
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH3M_2.8-2.9	BH4M_0.3-0.5	BH4M_1.4-1.5	BH4M_2.9-3.0	BH4M_4.9-5.0
			SOIL	SOIL	SOIL	SOIL	SOIL
				14/7/2020	14/7/2020	14/7/2020	14/7/2020
PARAMETER	UOM	LOR	SE208846.007	SE208846.008	SE208846.009	SE208846.010	SE208846.011
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH5M_0.1-0.2	BH5M_1.5-1.6	BH5M_1.9-2.0
			SOIL	SOIL	SOIL
					-
			16/7/2020	16/7/2020	16/7/2020
PARAMETER	UOM	LOR	SE208846.012	SE208846.013	SE208846.014
TRH C6-C9	mg/kg	20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 21/7/2020

			BH2_0.1-0.2	BH2_1.2-1.3	BH2_1.6-1.7	BH3M_0.7-0.8	BH3M_1.7-1.8
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 9/7/2020	- 9/7/2020	- 9/7/2020	- 13/7/2020	- 13/7/2020
PARAMETER	UOM	LOR	SE208846.001	SE208846.002	SE208846.003	SE208846.005	SE208846.006
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

			BH3M_2.8-2.9	BH4M_0.3-0.5	BH4M_1.4-1.5	BH4M_2.9-3.0	BH4M_4.9-5.0
			SOIL - 13/7/2020	SOIL - 14/7/2020	SOIL - 14/7/2020	SOIL - 14/7/2020	SOIL - 14/7/2020
PARAMETER	UOM	LOR	SE208846.007	SE208846.008	SE208846.009	SE208846.010	SE208846.011
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

			BH5M_0.1-0.2	BH5M_1.5-1.6	BH5M_1.9-2.0
			SOIL	SOIL	SOIL
			16/7/2020	16/7/2020	16/7/2020
PARAMETER	UOM	LOR	SE208846.012	SE208846.013	SE208846.014
TRH C10-C14	mg/kg	20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 21/7/2020

			BH2_0.1-0.2	BH2_1.2-1.3	BH2_1.6-1.7	BH3M_0.7-0.8	BH3M_1.7-1.8
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
						13/7/2020	13/7/2020
PARAMETER	UOM	LOR	SE208846.001	SE208846.002	SE208846.003	SE208846.005	SE208846.006
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8

			BH3M_2.8-2.9	BH4M_0.3-0.5	BH4M_1.4-1.5	BH4M_2.9-3.0	BH4M_4.9-5.0
			SOIL	SOIL	SOIL	SOIL	SOIL
			- SUIL	SOIL	- SOIL	- SUIL	- SOIL
				14/7/2020	14/7/2020	14/7/2020	14/7/2020
PARAMETER	UOM	LOR	SE208846.007	SE208846.008	SE208846.009	SE208846.010	SE208846.011
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8

ANALYTICAL RESULTS

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 21/7/2020 (continued)

			BH5M_0.1-0.2	BH5M_1.5-1.6	BH5M_1.9-2.0
			SOIL	SOIL	SOIL
			-	-	-
PARAMETER	UOM	LOR	16/7/2020 SE208846.012	16/7/2020 SE208846.013	16/7/2020 SE208846.014
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	0.2	<0.1	<0.1
Phenanthrene	mg/kg	0.1	1.6	<0.1	<0.1
Anthracene	mg/kg	0.1	0.4	<0.1	<0.1
Fluoranthene	mg/kg	0.1	1.6	<0.1	<0.1
Pyrene	mg/kg	0.1	1.4	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	0.6	<0.1	<0.1
Chrysene	mg/kg	0.1	0.6	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	0.4	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	0.4	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	0.5	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	0.3	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	0.2	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>0.7</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	0.7	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>0.8</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	0.8	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>0.8</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	0.8	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	8.0	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	8.0	<0.8	<0.8

ANALYTICAL RESULTS

SE208846 R0

OC Pesticides in Soil [AN420] Tested: 21/7/2020

			BH2_0.1-0.2	BH2_1.2-1.3	BH2_1.6-1.7	BH3M_0.7-0.8	BH3M_1.7-1.8
					0.01	0.01	00"
			SOIL	SOIL	SOIL	SOIL	SOIL
						13/7/2020	13/7/2020
PARAMETER	UOM	LOR	SE208846.001	SE208846.002	SE208846.003	SE208846.005	SE208846.006
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	-	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	-	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	-	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	-	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	-	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	-	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	-	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	-	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	-	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	-	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	-	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	-	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	-	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	-	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	-	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	-	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	-	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	-	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	-	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	-	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	-	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	-	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	-	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	-	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	-	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	-	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	-	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	-	<1	<1	<1

OC Pesticides in Soil [AN420] Tested: 21/7/2020 (continued)

	BH3M_2.8-2.9 BH4M_0.3-0.5 BH4M		BH4M_1.4-1.5	BH4M_2.9-3.0	BH4M_4.9-5.0		
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
PARAMETER	UOM	LOR	13/7/2020 SE208846.007	14/7/2020 SE208846.008	14/7/2020 SE208846.009	14/7/2020 SE208846.010	14/7/2020 SE208846.011
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	3E208846.009	<0.1	SE208846.011
Alpha BHC	mg/kg	0.1	<0.1	<0.1	_	<0.1	-
Lindane	mg/kg	0.1	<0.1	<0.1	_	<0.1	-
Heptachlor	mg/kg	0.1	<0.1	<0.1	-	<0.1	-
Aldrin	mg/kg	0.1	<0.1	<0.1	-	<0.1	-
Beta BHC	mg/kg	0.1	<0.1	<0.1	-	<0.1	-
Delta BHC	mg/kg	0.1	<0.1	<0.1	-	<0.1	-
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	_	<0.1	-
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	-	<0.1	-
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	_	<0.2	-
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	-	<0.1	-
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	-	<0.1	-
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	-	<0.1	-
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	-	<0.1	-
Dieldrin	mg/kg	0.2	<0.2	<0.2	-	<0.2	-
Endrin	mg/kg	0.2	<0.2	<0.2	-	<0.2	-
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	-	<0.1	-
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	-	<0.1	-
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	-	<0.2	-
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	-	<0.1	-
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	-	<0.1	-
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	-	<0.1	-
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	-	<0.1	-
Methoxychlor	mg/kg	0.1	<0.1	<0.1	-	<0.1	-
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	-	<0.1	-
Isodrin	mg/kg	0.1	<0.1	<0.1	-	<0.1	-
Mirex	mg/kg	0.1	<0.1	<0.1	-	<0.1	-
Total CLP OC Pesticides	mg/kg	1	<1	<1	-	<1	-

OC Pesticides in Soil [AN420] Tested: 21/7/2020 (continued)

			BH5M_0.1-0.2	BH5M_1.5-1.6	BH5M_1.9-2.0
			SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	16/7/2020 SE208846.012	16/7/2020 SE208846.013	16/7/2020 SE208846.014
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	-	<0.1
Alpha BHC	mg/kg	0.1	<0.1	-	<0.1
Lindane	mg/kg	0.1	<0.1	-	<0.1
Heptachlor	mg/kg	0.1	<0.1	_	<0.1
Aldrin	mg/kg	0.1	<0.1	-	<0.1
Beta BHC	mg/kg	0.1	<0.1	_	<0.1
Delta BHC	mg/kg	0.1	<0.1	-	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	-	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	-	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	-	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	-	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	-	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	-	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	-	<0.1
Dieldrin	mg/kg	0.2	<0.2	-	<0.2
Endrin	mg/kg	0.2	<0.2	-	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	-	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	-	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	-	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	-	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	-	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	-	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	-	<0.1
Methoxychlor	mg/kg	0.1	<0.1	-	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	-	<0.1
Isodrin	mg/kg	0.1	<0.1	-	<0.1
Mirex	mg/kg	0.1	<0.1	-	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	-	<1

OP Pesticides in Soil [AN420] Tested: 21/7/2020

			BH2_0.1-0.2	BH2_1.6-1.7	BH3M_0.7-0.8	BH3M_1.7-1.8	BH3M_2.8-2.9
			SOIL - 9/7/2020	SOIL - 9/7/2020	SOIL - 13/7/2020	SOIL - 13/7/2020	SOIL - 13/7/2020
PARAMETER	UOM	LOR	SE208846.001	SE208846.003	SE208846.005	SE208846.006	SE208846.007
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7	<1.7

			BH4M_0.3-0.5	BH4M_2.9-3.0	BH5M_0.1-0.2	BH5M_1.9-2.0
			SOIL	SOIL	SOIL	SOIL
						-
PARAMETER	UOM	LOR	14/7/2020 SE208846.008	14/7/2020 SE208846.010	16/7/2020 SE208846.012	16/7/2020 SE208846.014
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7

PCBs in Soil [AN420] Tested: 21/7/2020

			BH2_0.1-0.2	BH2_1.2-1.3	BH2_1.6-1.7	BH3M_0.7-0.8	BH3M_1.7-1.8
			SOIL - 9/7/2020	SOIL - 9/7/2020	SOIL - 9/7/2020	SOIL - 13/7/2020	SOIL - 13/7/2020
PARAMETER	UOM	LOR	SE208846.001	SE208846.002	SE208846.003	SE208846.005	SE208846.006
Arochlor 1016	mg/kg	0.2	<0.2	-	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	-	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	-	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	-	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	-	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	-	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	-	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	-	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	-	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	-	<1	<1	<1

			BH3M_2.8-2.9	BH4M_0.3-0.5	BH4M_1.4-1.5	BH4M_2.9-3.0	BH4M_4.9-5.0
PARAMETER	UOM	LOR	SOIL - 13/7/2020 SE208846.007	SOIL - 14/7/2020 SE208846.008	SOIL - 14/7/2020 SE208846.009	SOIL - 14/7/2020 SE208846.010	SOIL - 14/7/2020 SE208846.011
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	-	<0.2	-
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	-	<0.2	-
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	-	<0.2	-
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	-	<0.2	-
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	-	<0.2	-
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	-	<0.2	-
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	-	<0.2	-
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	-	<0.2	-
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	-	<0.2	-
Total PCBs (Arochlors)	mg/kg	1	<1	<1	-	<1	-

			BH5M_0.1-0.2	BH5M_1.5-1.6	BH5M_1.9-2.0
			SOIL	SOIL	SOIL
					-
			16/7/2020	16/7/2020	16/7/2020
PARAMETER	UOM	LOR	SE208846.012	SE208846.013	SE208846.014
Arochlor 1016	mg/kg	0.2	<0.2	-	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	-	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	-	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	-	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	-	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	-	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	-	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	-	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	-	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	-	<1

ANALYTICAL RESULTS

SE208846 R0

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 21/7/2020

			BH2_0.1-0.2	BH2_1.2-1.3	BH2_1.6-1.7	BH3M_0.1-0.2	BH3M_0.7-0.8
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 9/7/2020	- 9/7/2020	- 9/7/2020	- 13/7/2020	- 13/7/2020
PARAMETER	UOM	LOR	SE208846.001	SE208846.002	SE208846.003	SE208846.004	SE208846.005
Arsenic, As	mg/kg	1	4	7	14	5	3
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	14	25	9.8	24	16
Copper, Cu	mg/kg	0.5	21	2.3	2.9	9.2	16
Lead, Pb	mg/kg	1	11	12	21	14	16
Nickel, Ni	mg/kg	0.5	17	2.9	<0.5	6.9	10
Zinc, Zn	mg/kg	2	27	6.9	2.4	21	26

			BH3M_1.7-1.8	BH3M_2.8-2.9	BH4M_0.3-0.5	BH4M_1.4-1.5	BH4M_2.9-3.0
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 13/7/2020	- 13/7/2020	- 14/7/2020	- 14/7/2020	- 14/7/2020
PARAMETER	UOM	LOR	SE208846.006	SE208846.007	SE208846.008	SE208846.009	SE208846.010
Arsenic, As	mg/kg	1	4	2	6	2	5
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	13	13	15	6.3	18
Copper, Cu	mg/kg	0.5	12	14	19	2.8	5.3
Lead, Pb	mg/kg	1	17	5	16	6	10
Nickel, Ni	mg/kg	0.5	7.8	3.5	8.5	0.9	3.6
Zinc, Zn	mg/kg	2	32	17	35	5.3	9.5

			BH4M_4.9-5.0	BH5M_0.1-0.2	BH5M_1.5-1.6	BH5M_1.9-2.0
			SOIL	SOIL	SOIL	SOIL
			- 14/7/2020	- 16/7/2020	- 16/7/2020	- 16/7/2020
PARAMETER	UOM	LOR	SE208846.011	SE208846.012	SE208846.013	SE208846.014
Arsenic, As	mg/kg	1	2	4	6	4
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	4.5	9.5	11	15
Copper, Cu	mg/kg	0.5	2.7	14	14	3.8
Lead, Pb	mg/kg	1	7	11	11	8
Nickel, Ni	mg/kg	0.5	4.0	7.2	16	2.3
Zinc, Zn	mg/kg	2	25	22	24	6.8

Mercury in Soil [AN312] Tested: 21/7/2020

			BH2_0.1-0.2	BH2_1.2-1.3	BH2_1.6-1.7	BH3M_0.1-0.2	BH3M_0.7-0.8
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
						13/7/2020	13/7/2020
PARAMETER	UOM	LOR	SE208846.001	SE208846.002	SE208846.003	SE208846.004	SE208846.005
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			BH3M_1.7-1.8	BH3M_2.8-2.9	BH4M_0.3-0.5	BH4M_1.4-1.5	BH4M_2.9-3.0
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
					14/7/2020	14/7/2020	14/7/2020
PARAMETER	UOM	LOR	SE208846.006	SE208846.007	SE208846.008	SE208846.009	SE208846.010
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			BH4M_4.9-5.0	BH5M_0.1-0.2	BH5M_1.5-1.6	BH5M_1.9-2.0
			SOIL	SOIL	SOIL	SOIL
						-
			14/7/2020			16/7/2020
PARAMETER	UOM	LOR	SE208846.011	SE208846.012	SE208846.013	SE208846.014
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05

Moisture Content [AN002] Tested: 21/7/2020

			BH2_0.1-0.2	BH2_1.2-1.3	BH2_1.6-1.7	BH3M_0.1-0.2	BH3M_0.7-0.8
			SOIL	SOIL	SOIL	SOIL	SOIL
						13/7/2020	13/7/2020
PARAMETER	UOM	LOR	SE208846.001	SE208846.002	SE208846.003	SE208846.004	SE208846.005
% Moisture	%w/w	1	13.4	31.4	24.9	12.9	12.8

			BH3M_1.7-1.8	BH3M_2.8-2.9	BH4M_0.3-0.5	BH4M_1.4-1.5	BH4M_2.9-3.0
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
					14/7/2020	14/7/2020	14/7/2020
PARAMETER	UOM	LOR	SE208846.006	SE208846.007	SE208846.008	SE208846.009	SE208846.010
% Moisture	%w/w	1	14.2	13.3	11.1	8.4	10.5

			BH4M_4.9-5.0	BH5M_0.1-0.2	BH5M_1.5-1.6	BH5M_1.9-2.0
			SOIL	SOIL	SOIL	SOIL
						-
			14/7/2020			16/7/2020
PARAMETER	UOM	LOR	SE208846.011	SE208846.012	SE208846.013	SE208846.014
% Moisture	%w/w	1	6.6	11.4	14.3	9.1

Fibre Identification in soil [AN602] Tested: 23/7/2020

			BH2_0.1-0.2	BH2_1.6-1.7	BH3M_0.1-0.2	BH3M_0.7-0.8	BH3M_1.7-1.8
			SOIL	SOIL	SOIL	SOIL	SOIL
						13/7/2020	13/7/2020
PARAMETER	UOM	LOR	SE208846.001	SE208846.003	SE208846.004	SE208846.005	SE208846.006
Asbestos Detected	No unit	-	No	No	No	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01

			BH3M_2.8-2.9	BH4M_0.3-0.5	BH4M_2.9-3.0	BH5M_0.1-0.2	BH5M_1.9-2.0
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
				14/7/2020	14/7/2020		16/7/2020
PARAMETER	UOM	LOR	SE208846.007	SE208846.008	SE208846.010	SE208846.012	SE208846.014
Asbestos Detected	No unit	-	No	No	No	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Recoverable Hydrocarbons - Silica (TRH-Si) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC`s are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
AN602	The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

FOOTNOTES

NATA accreditation does not cover the performance of this service. **

Indicative data, theoretical holding time exceeded

Not analysed. NVL Not validated. IS I NR

Insufficient sample for analysis. Sample listed, but not received. UOM LOR î↓

Unit of Measure. Limit of Reporting. Raised/lowered Limit of Reporting.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: www.sqs.com.au/en-gb/environment-health-and-safety

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

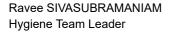
This report must not be reproduced, except in full.

CLIENT DETAILS		LABORATORY DETAI	LS
Contact	Li Wei	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone Facsimile Email	61 2 95160722 (Not specified) li.wei@eiaustralia.com.au	Telephone Facsimile Email	+61 2 8594 0400 +61 2 8594 0499 au.environmental.sydney@sgs.com
Project Order Number Samples	E24724.E02 2 Mandala Parade, Castle Hill E24724.E02 10	SGS Reference Date Received Date Reported	SE208846 R0 17 Jul 2020 24 Jul 2020

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique.


Asbestos analysed by Approved Counter Ravee Sivasubramaniam.

SIGNATORIES -

Roi

Bennet LO Senior Organic Chemist/Metals Chemis

S. Ravender.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC

Kamrul AHSAN

Senior Chemist

Alexandria NSW 2015 Alexandria NSW 2015

2015 Australia 2015 Australia

Ly Kim HA

Organic Section Head

t +61 2 8594 0400 f +61 2 8594 0499

km/n/

99

Member of the SGS Group

www.sgs.com.au

ANALYTICAL REPORT

Fibre Identifica	tion in soil				Method AN602	
Laboratory Reference	Client Reference	Matrix	Sample Description	Date Sampled	Fibre Identification	Est.%w/w*
SE208846.001	BH2_0.1-0.2	Soil	170g Clay, Sand, Rocks	09 Jul 2020	No Asbestos Found	<0.01
SE208846.003	BH2_1.6-1.7	Soil	116g Clay	09 Jul 2020	No Asbestos Found	<0.01
SE208846.004	BH3M_0.1-0.2	Soil	245g Clay, Sand, Rocks	13 Jul 2020	No Asbestos Found	<0.01
SE208846.005	BH3M_0.7-0.8	Soil	272g Clay, Sand, Rocks	13 Jul 2020	No Asbestos Found	<0.01
SE208846.006	BH3M_1.7-1.8	Soil	271g Clay, Sand, Rocks	13 Jul 2020	No Asbestos Found	<0.01
SE208846.007	BH3M_2.8-2.9	Soil	294g Clay, Sand, Rocks	13 Jul 2020	No Asbestos Found	<0.01
SE208846.008	BH4M_0.3-0.5	Soil	385g Clay, Sand, Rocks	14 Jul 2020	No Asbestos Found Organic Fibres Detected	<0.01
SE208846.010	BH4M_2.9-3.0	Soil	238g Clay, Sand, Rocks	14 Jul 2020	No Asbestos Found	<0.01
SE208846.012	BH5M_0.1-0.2	Soil	222g Clay, Sand, Rocks	16 Jul 2020	No Asbestos Found	<0.01
SE208846.014	BH5M_1.9-2.0	Soil	141g Clay, Sand	16 Jul 2020	No Asbestos Found	<0.01

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples , Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
AN602	The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg"(<0.01%w/w)where AN602 section 4.5 of this method has been followed, and if-
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable ' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

FOOTNOTES -Amosite Brown Asbestos NA Not Analysed Chrysotile White Asbestos INR --Listed. Not Required Crocidolite Blue Asbestos -NATA accreditation does not cover the performance of this service . ** Amosite and/or Crocidolite Indicative data, theoretical holding time exceeded. Amphiboles

(In reference to soil samples only) This report does not comply with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment and Remediation and Management of Asbestos Contaminated sites in Western Australia - May 2009.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received.

Where reported: 'Asbestos Detected': Asbestos detected by polarised light microscopy, including dispersion staining. Where reported: 'No Asbestos Found': No Asbestos Found by polarised light microscopy, including dispersion staining. Where reported: 'UMF Detected': Mineral fibres of unknown type detected by polarised light microscopy, including dispersion staining. Confirmation by another independent analytical technique may be necessary.

Even after disintegration it can be very difficult, or impossible, to detect the presence of asbestos in some asbestos -containing bulk materials using polarised light microscopy. This is due to the low grade or small length or diameter of asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DE	TAILS
Contact	Li Wei	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	li.wei@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E24724.E02 2 Mandala Parade, Castle Hill	SGS Reference	SE209082 R0
Order Number	E24724.E02	Date Received	23/7/2020
Samples	4	Date Reported	30/7/2020

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

SIGNATORIES

Bennet LO Senior Organic Chemist/Metals Chemist

9

Yusuf KUTHPUDIN Asbestos Analyst

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

2015 Australia 2015 Australia

Australia t +61 2 8594 0400 Australia f +61 2 8594 0499

www.sgs.com.au

Member of the SGS Group

Page 1 of 14

Kamrul AHSAN Senior Chemist

kinty

Ly Kim HA Organic Section Head

VOC's in Soil [AN433] Tested: 24/7/2020

			BH6_0.1-0.2	BH6_1.4-1.5
			SOIL	SOIL
			- 20/7/2020	- 20/7/2020
PARAMETER	UOM	LOR	SE209082.001	SE209082.004
Benzene	mg/kg	0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1

Volatile Petroleum Hydrocarbons in Soil [AN433] Tested: 24/7/2020

			BH6_0.1-0.2	BH6_1.4-1.5
			SOIL	SOIL
			20/7/2020	20/7/2020
PARAMETER	UOM	LOR	SE209082.001	SE209082.004
TRH C6-C9	mg/kg	20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 24/7/2020

			BH6_0.1-0.2	BH6_1.4-1.5
			SOIL	SOIL
PARAMETER	UOM	LOR	SE209082.001	SE209082.004
TRH C10-C14	mg/kg	20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210

SE209082 R0

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 24/7/2020

			BH6_0.1-0.2	BH6_1.4-1.5
			SOIL	SOIL
			20/7/2020	20/7/2020
PARAMETER	UOM	LOR	SE209082.001	SE209082.004
Naphthalene	mg/kg	0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	0.2	<0.1
Pyrene	mg/kg	0.1	0.2	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8

SE209082 R0

OC Pesticides in Soil [AN420] Tested: 24/7/2020

			BH6_0.1-0.2	BH6_1.4-1.5
			SOIL	SOIL
PARAMETER	UOM	LOR	20/7/2020 SE209082.001	20/7/2020 SE209082.004
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1

OP Pesticides in Soil [AN420] Tested: 24/7/2020

			BH6_0.1-0.2	BH6_1.4-1.5
			SOIL	SOIL
			20/7/2020	20/7/2020
PARAMETER	UOM	LOR	SE209082.001	SE209082.004
Dichlorvos	mg/kg	0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7

PCBs in Soil [AN420] Tested: 24/7/2020

			BH6_0.1-0.2	BH6_1.4-1.5
			SOIL	SOIL
			-	-
			20/7/2020	20/7/2020
PARAMETER	UOM	LOR	SE209082.001	SE209082.004
Arochlor 1016	mg/kg	0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 27/7/2020

			BH6_0.1-0.2	BH6_1.4-1.5
			SOIL	SOIL
			- 20/7/2020	- 20/7/2020
PARAMETER	UOM	LOR	SE209082.001	SE209082.004
Arsenic, As	mg/kg	1	4	1
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	12	2.5
Copper, Cu	mg/kg	0.5	15	0.6
Lead, Pb	mg/kg	1	23	2
Nickel, Ni	mg/kg	0.5	9.9	<0.5
Zinc, Zn	mg/kg	2	45	<2.0

Mercury in Soil [AN312] Tested: 27/7/2020

			BH6_0.1-0.2	BH6_1.4-1.5
			SOIL	SOIL
			- 20/7/2020	- 20/7/2020
PARAMETER	UOM	LOR	SE209082.001	SE209082.004
Mercury	mg/kg	0.05	<0.05	<0.05

Moisture Content [AN002] Tested: 24/7/2020

			BH6_0.1-0.2	BH6_1.4-1.5
			SOIL	SOIL
			- 20/7/2020	- 20/7/2020
PARAMETER	UOM	LOR	SE209082.001	SE209082.004
% Moisture	%w/w	1	14.5	5.5

Fibre Identification in soil [AN602] Tested: 29/7/2020

			BH6_0.1-0.2	BH6_1.4-1.5
			SOIL	SOIL
PARAMETER	UOM	LOR	SE209082.001	SE209082.004
Asbestos Detected	No unit	-	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01

- METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Recoverable Hydrocarbons - Silica (TRH-Si) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
AN602	The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

FOOTNOTES

* NATA accreditation does not cover the performance of this service. **

Indicative data, theoretical holding time exceeded.

Not analysed. NVL Not validated. IS LNR

Insufficient sample for analysis. Sample listed, but not received. UOM LOR î↓

Unit of Measure. Limit of Reporting. Raised/lowered Limit of Reporting.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: www.sgs.com.au/en-gb/environment-health-and-safety.

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

This report must not be reproduced, except in full.

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DETAIL	LS
Contact	Li Wei	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone Facsimile Email	61 2 95160722 (Not specified) li.wei@eiaustralia.com.au	Telephone Facsimile Email	+61 2 8594 0400 +61 2 8594 0499 au.environmental.sydney@sgs.com
Project Order Number Samples	E24724.E02 2 Mandala Parade, Castle Hill E24724.E02 2	SGS Reference Date Received Date Reported	SE209082 R0 23 Jul 2020 30 Jul 2020

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

SIGNATORIES

Roi

Bennet LO Senior Organic Chemist/Metals Chemis

L. Ait Aun Su

Yusuf KUTHPUDIN Asbestos Analyst

Kamrul AHSAN Senior Chemist

kmln

Ly Kim HA Organic Section Head

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

5 Australia 5 Australia t +61 2 8594 0400 f +61 2 8594 0499

Member of the SGS Group

www.sgs.com.au

ANALYTICAL REPORT

Fibre Identifica	tion in soil					Method	AN602	
Laboratory Reference	Client Reference	Matrix	Sample Description	Date Sampled	Fibre Identification			Est.%w/w*
SE209082.001	BH6_0.1-0.2	Soil	181g Clay,Sand,Rock s	20 Jul 2020	No Asbestos Found Organic Fibres Detected			<0.01
SE209082.004	BH6_1.4-1.5	Soil	130g Sand	20 Jul 2020	No Asbestos Found			<0.01

30/07/2020

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples , Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
AN602	The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable ' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

FOOTNOTES -Amosite Brown Asbestos NA Not Analysed Chrysotile White Asbestos INR --Listed. Not Required Crocidolite Blue Asbestos * -NATA accreditation does not cover the performance of this service . ** Amosite and/or Crocidolite Indicative data, theoretical holding time exceeded. Amphiboles

(In reference to soil samples only) This report does not comply with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment and Remediation and Management of Asbestos Contaminated sites in Western Australia - May 2009.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received.

Where reported: 'Asbestos Detected': Asbestos detected by polarised light microscopy, including dispersion staining. Where reported: 'No Asbestos Found': No Asbestos Found by polarised light microscopy, including dispersion staining. Where reported: 'UMF Detected': Mineral fibres of unknown type detected by polarised light microscopy, including dispersion staining. Confirmation by another independent analytical technique may be necessary.

Even after disintegration it can be very difficult, or impossible, to detect the presence of asbestos in some asbestos -containing bulk materials using polarised light microscopy. This is due to the low grade or small length or diameter of asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DE	TAILS
Contact	Li Wei	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	li.wei@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E24724.E02 2 Mandala Parade, Castle Hill	SGS Reference	SE208846A R0
Order Number	E24724.E02	Date Received	21/7/2020
Samples	17	Date Reported	28/7/2020

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES

Bennet LO Senior Organic Chemist/Metals Chemist

ion

Shane MCDERMOTT Inorganic/Metals Chemist

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia f +61 2 8594 0499

www.sgs.com.au

Soluble Anions (1:5) in Soil by Ion Chromatography [AN245] Tested: 24/7/2020

			BH3M_2.8-2.9	BH4M_4.9-5.0	BH2_1.9-2.0	BH2_2.9-3.0	BH4M_4.4-4.5
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
				14/7/2020			16/7/2020
PARAMETER	UOM	LOR	SE208846A.007	SE208846A.011	SE208846A.015	SE208846A.016	SE208846A.017
Chloride	mg/kg	0.25	22	10	18	16	6.5
Sulfate	mg/kg	5	92	64	110	130	83

SE208846A R0

Alkalinity in Soil [AN002/AN135] Tested: 23/7/2020

			BH3M_2.8-2.9	BH4M_4.9-5.0	BH2_1.9-2.0	BH2_2.9-3.0	BH4M_4.4-4.5
			SOIL	SOIL	SOIL	SOIL	SOIL
				14/7/2020			
PARAMETER	UOM	LOR	SE208846A.007	SE208846A.011	SE208846A.015	SE208846A.016	SE208846A.017
Bicarbonate Alkalinity as HCO3 in Soil*	mg/kg	25	63	35	26	31	53
Carbonate Alkalinity as CO3 in Soil*	mg/kg	25	140	<25	<25	<25	<25
Hydroxide Alkalinity as OH in Soil*	mg/kg	25	<25	<25	<25	<25	<25
Total Alkalinity as CaCO3 in Soil*	mg/kg	25	280	28	<25	25	44

SE208846A R0

pH in soil (1:5) [AN101] Tested: 24/7/2020

			BH3M_2.8-2.9	BH4M_4.9-5.0	BH2_1.9-2.0	BH2_2.9-3.0	BH4M_4.4-4.5
			SOIL	SOIL	SOIL	SOIL	SOIL
				14/7/2020			
PARAMETER	UOM	LOR	SE208846A.007	SE208846A.011	SE208846A.015	SE208846A.016	SE208846A.017
pH	pH Units	0.1	9.4	6.1	4.6	4.7	5.5

SE208846A R0

Conductivity and TDS by Calculation - Soil [AN106] Tested: 24/7/2020

			BH3M_2.8-2.9	BH4M_4.9-5.0	BH2_1.9-2.0	BH2_2.9-3.0	BH4M_4.4-4.5
			SOIL	SOIL	SOIL	SOIL	SOIL
				14/7/2020			
PARAMETER	UOM	LOR	SE208846A.007	SE208846A.011	SE208846A.015	SE208846A.016	SE208846A.017
Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	130	47	73	85	60

SE208846A R0

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR) [AN122] Tested: 24/7/2020

			BH3M_2.8-2.9	BH4M_4.9-5.0	BH2_1.9-2.0	BH2_2.9-3.0	BH4M_4.4-4.5
			SOIL - 13/7/2020	SOIL - 14/7/2020	SOIL - 16/7/2020	SOIL - 16/7/2020	SOIL - 16/7/2020
PARAMETER	UOM	LOR	SE208846A.007	SE208846A.011	SE208846A.015	SE208846A.016	SE208846A.017
Exchangeable Sodium, Na	mg/kg	2	84	140	96	98	190
Exchangeable Sodium, Na	meq/100g	0.01	0.37	0.63	0.42	0.42	0.81
Exchangeable Sodium Percentage*	%	0.1	2.2	27.3	11.7	3.4	27.5
Exchangeable Potassium, K	mg/kg	2	110	95	79	70	99
Exchangeable Potassium, K	meq/100g	0.01	0.27	0.24	0.20	0.18	0.25
Exchangeable Potassium Percentage*	%	0.1	1.6	10.6	5.6	1.4	8.6
Exchangeable Calcium, Ca	mg/kg	2	3200	120	380	2200	120
Exchangeable Calcium, Ca	meq/100g	0.01	16	0.59	1.9	11	0.59
Exchangeable Calcium Percentage*	%	0.1	95.0	25.9	53.5	87.8	20.2
Exchangeable Magnesium, Mg	mg/kg	2	24	100	130	110	160
Exchangeable Magnesium, Mg	meq/100g	0.02	0.20	0.83	1.0	0.93	1.3
Exchangeable Magnesium Percentage*	%	0.1	1.2	36.1	29.2	7.4	43.6
Cation Exchange Capacity	meq/100g	0.02	17	2.3	3.6	13	2.9

SE208846A R0

Soil Texture (AS4419) [AN051] Tested: 23/7/2020

			BH3M_2.8-2.9	BH4M_4.9-5.0	BH2_1.9-2.0	BH2_2.9-3.0	BH4M_4.4-4.5
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
				14/7/2020			16/7/2020
PARAMETER	UOM	LOR	SE208846A.007	SE208846A.011	SE208846A.015	SE208846A.016	SE208846A.017
Texture Classification*	No unit	1	Sandy Clay Loam	Loamy Sand	Sandy Clay	Sandy Clay	Loamy Sand

SE208846A R0

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 23/7/2020

			BH3M_2.8-2.9	BH4M_4.9-5.0	BH2_1.9-2.0	BH2_2.9-3.0	BH4M_4.4-4.5
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
				14/7/2020			
PARAMETER	UOM	LOR	SE208846A.007	SE208846A.011	SE208846A.015	SE208846A.016	SE208846A.017
Calcium, Ca	mg/kg	5	3400	66	1900	4400	1100
Magnesium, Mg	mg/kg	5	650	120	590	1300	350
Sodium, Na	mg/kg	5	130	170	170	320	290
Potassium, K	mg/kg	10	240	280	280	340	320
Manganese, Mn	mg/kg	1	47	5	51	110	13

Moisture Content [AN002] Tested: 24/7/2020

			BH2_1.9-2.0	BH2_2.9-3.0	BH4M_4.4-4.5
			SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SE208846A.015	SE208846A.016	SE208846A.017
% Moisture	%w/w	1	14.6	14.7	10.1

METHOD	METHODOLOGY SUMMARY
AN002/AN135	Alkalinity (and forms of) by Titration: The sample is extracted 1to 5 in deionised water and the extract titrated with standard acid to pH 8.3 (P titre) and pH 4.5 (T titre) and permanent and/or total alkalinity calculated. The results are expressed as equivalents of calcium carbonate or recalculated as bicarbonate, carbonate and hydroxide. Reference APHA 2320. Internal Reference AN135
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.
AN051	A small sample of soil is kneaded with water and then pressed out into a ribbon. The behaviour of this ribbon is used to classify the soil into one of the texture classes in AS 4419.
AN101	pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode and is calibrated against 3 buffers purchased commercially. For soils, sediments and sludges, an extract with water (or 0.01M CaCl2) is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.
AN106	Conductivity and TDS by Calculation: Conductivity is measured by meter with temperature compensation and is calibrated against a standard solution of potassium chloride. Conductivity is generally reported as μ mhos/cm or μ S/cm @ 25°C. For soils, an extract of as received sample with water is made at a ratio of 1:5 and the EC determined and reported on the extract, or calculated back to the as-received sample. Salinity can be estimated from conductivity using a conversion factor, which for natural waters, is in the range 0.55 to 0.75. Reference APHA 2510 B.
AN122	Exchangeable Cations, CEC and ESP: Soil sample is extracted in 1M Ammonium Acetate at pH=7 (or 1M Ammonium Chloride at pH=7) with cations (Na, K, Ca & Mg) then determined by ICP OES/ICP MS and reported as Exchangeable Cations. For saline soils, these results can be corrected for water soluble cations and reported as Exchangeable cations in meq/100g or soil can be pre-treated (aqueous ethanol/aqueous glycerol) prior to extraction. Cation Exchange Capacity (CEC) is the sum of the exchangeable cations in meq/100g.
AN122	The Exchangeable Sodium Percentage (ESP) is calculated as the exchangeable sodium divided by the CEC (all in meq/100g) times 100. ESP can be used to categorise the sodicity of the soil as below :
	ESP < 6%non-sodicESP 6-15%sodicESP >15%strongly sodic
	Method is referenced to Rayment and Lyons, 2011, sections 15D3 and 15N1
AN245	Anions by Ion Chromatography: A water sample is injected into an eluent stream that passes through the ion chromatographic system where the anions of interest ie Br, CI, NO2, NO3 and SO4 are separated on their relative affinities for the active sites on the column packing material. Changes to the conductivity and the UV-visible absorbance of the eluent enable identification and quantitation of the anions based on their retention time and peak height or area. APHA 4110 B

FOOTNOTES

* NATA accreditation does not cover the performance of this service. **

Indicative data, theoretical holding time exceeded.

Not analysed. NVL Not validated. IS LNR

Insufficient sample for analysis. Sample listed, but not received. UOM Unit of Measure. LOR î↓

Limit of Reporting. Raised/lowered Limit of Reporting.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: www.sgs.com.au/en-gb/environment-health-and-safety.

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

This report must not be reproduced, except in full.

ANALYTICAL REPORT

– CLIENT DETAILS		LABORATORY DE	LABORATORY DETAILS					
Contact	Li Wei	Manager	Huong Crawford					
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental					
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015					
Telephone	61 2 95160722	Telephone	+61 2 8594 0400					
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499					
Email	li.wei@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com					
Project	E24724.E02 2 Mandala Parade, Castle Hill	SGS Reference	SE209379 R0					
Order Number	E24724.E02	Date Received	30/7/2020					
Samples	7	Date Reported	6/8/2020					

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES

Dong LIANG Metals/Inorganics Team Leader

kmln

Ly Kim HA Organic Section Head

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia f +61 2 8594 0499

www.sgs.com.au

Member of the SGS Group

Page 1 of 14

SE209379 R0

VOCs in Water [AN433] Tested: 3/8/2020

NACENA				BH3M-a	BH4M-a	BH5M	GWQD 1	GWQR 1
Particip				WATER	WATER	WATER	WATER	WATER
vickvickV							-	-
newn	DADAMETED	LIOM						
TakeJob								
improveop/ <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
mpypnempymp								
oydeopt								
indindindindindindindindTable Proceedingsindin								
Tay iff TSAup1up1up3 </td <td></td> <td></td> <td>1.5</td> <td><1.5</td> <td><1.5</td> <td><1.5</td> <td><1.5</td> <td><1.5</td>			1.5	<1.5	<1.5	<1.5	<1.5	<1.5
DebsDebsDefsDefsDefsDefsDefsDefsDefsWay make (Chousehen)Lak34.03 </td <td>Total BTEX</td> <td></td> <td>3</td> <td><3</td> <td><3</td> <td><3</td> <td><3</td> <td><3</td>	Total BTEX		3	<3	<3	<3	<3	<3
DecompositionLat.94 </td <td>Naphthalene</td> <td>µg/L</td> <td>0.5</td> <td><0.5</td> <td><0.5</td> <td><0.5</td> <td><0.5</td> <td><0.5</td>	Naphthalene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Way denombanUpd0.00.0.30.0.30.0.30.0.30.0.3Banombanc1.940.80.00.0.30.0.30.0.30.0.30.0.3Choobance1.940.10.0.3<	Dichlorodifluoromethane (CFC-12)		5	<5	<5	<5	-	-
Benersentantind<	Chloromethane	µg/L	5	<5	<5	<5	-	-
Benersheminit	Vinyl chloride (Chloroethene)	µg/L	0.3	<0.3	<0.3	<0.3	-	-
Chroning DisplayJGGGGGGDisplayJJGGG <td>Bromomethane</td> <td></td> <td>10</td> <td><10</td> <td><10</td> <td><10</td> <td>-</td> <td>-</td>	Bromomethane		10	<10	<10	<10	-	-
Tandomipic	Chloroethane		5	<5	<5	<5	-	-
indententppl544.6	Trichlorofluoromethane	µg/L	1	<1	<1	<1	-	-
indententppl544.6	Acetone (2-propanone)		10	<10	<10	<10	-	-
11 discoversionindi			5	<5	<5	<5	-	-
Dichlorophen (helphyne chlaride)pdlqd<	1,1-dichloroethene		0.5	<0.5	<0.5	<0.5	-	-
Aly charine ppl 2 d2 d2 <thd2< th=""> d2 d2</thd2<>	Acrylonitrile	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Carbon shundle ppl 2 42 42 42 42 42 trans 1.2 debrom hand ipl 0.5 40.5	Dichloromethane (Methylene chloride)	µg/L	5	<5	<5	<5	-	-
tame12.doltonombane upl 0.5 405 40.5	Allyl chloride	µg/L	2	<2	<2	<2	-	-
MBE (Methyletheluylether) ipd 2 4 4 4.4 1.4 1.1.4.dbriotesthare ipd 0.5 0.5 0.45 0.45 0.45 MBK (2 bulknown) ipd 0.40	Carbon disulfide	µg/L	2	<2	<2	<2	-	-
1.1.4ichtoreshane µgl 0.5 40.5	trans-1,2-dichloroethene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Nyn upl. 10 400 <td>MtBE (Methyl-tert-butyl ether)</td> <td>µg/L</td> <td>2</td> <td><2</td> <td><2</td> <td><2</td> <td>-</td> <td>-</td>	MtBE (Methyl-tert-butyl ether)	µg/L	2	<2	<2	<2	-	-
MER (2 butanon) jul 10	1,1-dichloroethane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
bit bit< bit< bit< bit<	Vinyl acetate	µg/L	10	<10	<10	<10	-	-
Bronchloromethane ppl 0.5 0.0.5	MEK (2-butanone)	µg/L	10	<10	<10	<10	-	-
Chrodom (THM) ipil 0.5 9.2 9.0 1.7 1 2.2-dechoropopane ipil 0.5 0.05 0.05 0.05 0.05 0.05 1.2-dechorophane ipil 0.5 0.05 0.05 0.05 0.05 0.05 0.05 1.1-dichorophane ipil 0.5 0.05	cis-1,2-dichloroethene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
2.2 4.0 6.0 6.0 6.0 6.0 6.0 1.2.4 4.05 <td>Bromochloromethane</td> <td>µg/L</td> <td>0.5</td> <td><0.5</td> <td><0.5</td> <td><0.5</td> <td>-</td> <td>-</td>	Bromochloromethane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1.2.ddnkorethane µµl, 0.5 < < <	Chloroform (THM)	µg/L	0.5	9.2	39	1.7	-	-
1.1.1-thickborechane µpL 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 1.1-dichboropopene µpL 0.5 <0.5	2,2-dichloropropane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1.1-dichloropropene µµL 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <td>1,2-dichloroethane</td> <td>µg/L</td> <td>0.5</td> <td><0.5</td> <td><0.5</td> <td><0.5</td> <td>-</td> <td>-</td>	1,2-dichloroethane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Carbon tetrachoniscie jupl 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5<	1,1,1-trichloroethane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Dironomethane µgl 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	1,1-dichloropropene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1.2-dchloropropane µg/L 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <td>Carbon tetrachloride</td> <td>µg/L</td> <td>0.5</td> <td><0.5</td> <td><0.5</td> <td><0.5</td> <td>-</td> <td>-</td>	Carbon tetrachloride	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Trichloroethylene,TCE)µgL0.5<0.0<0.0<0.0<0.0<0.0<0.02.nitopropaneµgL100<100	Dibromomethane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
2-htropropaneµg/L100<	1,2-dichloropropane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Bronodichoromethane (THM) µg/L 0.5 2.3 6.6 <0.5 MIBK (4-methyl-2-pentanone) µg/L 0.5 <5	Trichloroethene (Trichloroethylene, TCE)	µg/L	0.5	<0.5	<0.5	<0.5	-	-
MBK (4-methyl-2-pentanone) μp/L 5 5 6	2-nitropropane	µg/L	100	<100	<100	<100	-	-
is1.3.dichloropropene µg/L 0.5 <0.5	Bromodichloromethane (THM)	µg/L	0.5	2.3	6.6	<0.5	-	-
trans-1.3-dichloropropene µg/L 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <	MIBK (4-methyl-2-pentanone)	µg/L	5	<5	<5	<5	-	-
1,1.2-trichloroethaneµg/L0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5 <th< td=""><td>cis-1,3-dichloropropene</td><td>µg/L</td><td>0.5</td><td><0.5</td><td><0.5</td><td><0.5</td><td>-</td><td>-</td></th<>	cis-1,3-dichloropropene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
13-dichloropropane µgL 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	trans-1,3-dichloropropene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Dibromochloromethane (THM) µg/L 0.5 0.6 1.6 <0.5 <0.6 1.6 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.	1,1,2-trichloroethane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
2-hexanone (MBK) µg/L 5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5<	1,3-dichloropropane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2-dibromoethane (EDB) µg/L 0.5 <0.5	Dibromochloromethane (THM)	µg/L	0.5	0.6	1.6	<0.5	-	-
Tetrachloroethene (Perchloroethylene, PCE) µg/L 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 </td <td>2-hexanone (MBK)</td> <td>µg/L</td> <td>5</td> <td><5</td> <td><5</td> <td><5</td> <td>-</td> <td>-</td>	2-hexanone (MBK)	µg/L	5	<5	<5	<5	-	-
1,1,2-tetrachloroethane µg/L 0.5 <0.5	1,2-dibromoethane (EDB)	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Chorobenzene µg/L 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	Tetrachloroethene (Perchloroethylene,PCE)	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Bromoform (THM) µg/L 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	1,1,1,2-tetrachloroethane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
cis1.4-dichloro-2-butene µg/L 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <th<< td=""><td>Chlorobenzene</td><td>µg/L</td><td>0.5</td><td><0.5</td><td><0.5</td><td><0.5</td><td>-</td><td>-</td></th<<>	Chlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Styrene (Vinyl benzene) µg/L 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.	Bromoform (THM)	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,1,2,2-tetrachloroethane µg/L 0.5 <0.5	cis-1,4-dichloro-2-butene	µg/L	1	<1	<1	<1	-	-
1,2,3-trichloropropane µg/L 0.5 <0.5 <0.5 <0.5	Styrene (Vinyl benzene)	µg/L	0.5	<0.5	<0.5	<0.5	-	-
	1,1,2,2-tetrachloroethane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
trans-1,4-dichloro-2-butene µg/L 1 <1 <1 <1	1,2,3-trichloropropane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
	trans-1,4-dichloro-2-butene	µg/L	1	<1	<1	<1	-	-

VOCs in Water [AN433] Tested: 3/8/2020 (continued)

				1	1	1	
			BH3M-a	BH4M-a	BH5M	GWQD 1	GWQR 1
			WATER	WATER	WATER	WATER	WATER
PARAMETER	UOM	LOR	SE209379.001	SE209379.002	SE209379.003	SE209379.004	SE209379.005
Isopropylbenzene (Cumene)	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Bromobenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
n-propylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
2-chlorotoluene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
4-chlorotoluene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,3,5-trimethylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
tert-butylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2,4-trimethylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
sec-butylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,3-dichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,4-dichlorobenzene	µg/L	0.3	<0.3	<0.3	<0.3	-	-
p-isopropyltoluene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2-dichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
n-butylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2-dibromo-3-chloropropane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2,4-trichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Hexachlorobutadiene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2,3-trichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Total VOC	µg/L	10	13	48	<10	-	-

SE209379 R0

VOCs in Water [AN433] Tested: 3/8/2020 (continued)

			GWTB 1	GWTS 1
			WATER	WATER
			- 29/7/2020	- 29/7/2020
PARAMETER	UOM	LOR	SE209379.006	SE209379.007
Benzene	μg/L	0.5	<0.5	[99%]
Toluene	μg/L	0.5	<0.5	[99%]
Ethylbenzene	μg/L	0.5	<0.5	[99%]
m/p-xylene	μg/L	1	<1	[98%]
o-xylene	μg/L	0.5	<0.5	[99%]
Total Xylenes	μg/L	1.5	<1.5	-
Total BTEX	µg/L	3	<3	-
Naphthalene	µg/L	0.5	<0.5	-
Dichlorodifluoromethane (CFC-12)	µg/L	5	-	-
Chloromethane	μg/L	5	-	-
Vinyl chloride (Chloroethene)	µg/L	0.3	-	-
Bromomethane	μg/L	10	-	-
Chloroethane	μg/L	5	-	-
Trichlorofluoromethane	μg/L	1	-	-
Acetone (2-propanone)	µg/L	10	-	-
Iodomethane	µg/L	5	-	-
1,1-dichloroethene	µg/L	0.5	-	-
Acrylonitrile	µg/L	0.5	-	-
Dichloromethane (Methylene chloride)	µg/L	5	-	-
Allyl chloride	µg/L	2	-	-
Carbon disulfide	µg/L	2	-	-
trans-1,2-dichloroethene	µg/L	0.5	-	-
MtBE (Methyl-tert-butyl ether)	µg/L	2	-	-
1,1-dichloroethane	µg/L	0.5	-	-
Vinyl acetate	µg/L	10	-	-
MEK (2-butanone)	µg/L	10	-	-
cis-1,2-dichloroethene Bromochloromethane	µg/L	0.5	-	-
	μg/L			
Chloroform (THM) 2,2-dichloropropane	μg/L μg/L	0.5	-	-
1,2-dichloroethane	μg/L	0.5	-	_
1,1,1-trichloroethane	µg/L	0.5	-	
1,1-dichloropropene	μg/L	0.5		_
Carbon tetrachloride	μg/L	0.5		_
Dibromomethane	μg/L	0.5	-	_
1,2-dichloropropane	μg/L	0.5		-
Trichloroethene (Trichloroethylene,TCE)	μg/L	0.5	_	_
2-nitropropane	μg/L	100	-	-
Bromodichloromethane (THM)	μg/L	0.5	-	-
MIBK (4-methyl-2-pentanone)	μg/L	5	-	-
cis-1,3-dichloropropene	μg/L	0.5	-	-
trans-1,3-dichloropropene	μg/L	0.5	-	-
1,1,2-trichloroethane	µg/L	0.5	-	-
1,3-dichloropropane	μg/L	0.5	-	-
Dibromochloromethane (THM)	µg/L	0.5	-	-
2-hexanone (MBK)	µg/L	5	-	-
1,2-dibromoethane (EDB)	µg/L	0.5	-	-
Tetrachloroethene (Perchloroethylene,PCE)	µg/L	0.5	-	-
1,1,1,2-tetrachloroethane	µg/L	0.5	-	-
Chlorobenzene	µg/L	0.5	-	-
Bromoform (THM)	µg/L	0.5	-	-
cis-1,4-dichloro-2-butene	µg/L	1	-	-
Styrene (Vinyl benzene)	µg/L	0.5	-	-
1,1,2,2-tetrachloroethane	µg/L	0.5	-	-
1,2,3-trichloropropane	µg/L	0.5	-	-
trans-1,4-dichloro-2-butene	µg/L	1	-	-

VOCs in Water [AN433] Tested: 3/8/2020 (continued)

			GWTB 1	GWTS 1
			WATER	WATER
			- 29/7/2020	- 29/7/2020
PARAMETER	UOM	LOR	SE209379.006	SE209379.007
Isopropylbenzene (Cumene)	µg/L	0.5	-	-
Bromobenzene	µg/L	0.5	-	-
n-propylbenzene	µg/L	0.5	-	-
2-chlorotoluene	μg/L	0.5	-	-
4-chlorotoluene	µg/L	0.5	-	-
1,3,5-trimethylbenzene	µg/L	0.5	-	-
tert-butylbenzene	µg/L	0.5	-	-
1,2,4-trimethylbenzene	µg/L	0.5	-	-
sec-butylbenzene	µg/L	0.5	-	-
1,3-dichlorobenzene	µg/L	0.5	-	-
1,4-dichlorobenzene	µg/L	0.3	-	-
p-isopropyltoluene	µg/L	0.5	-	-
1,2-dichlorobenzene	μg/L	0.5	-	-
n-butylbenzene	μg/L	0.5	-	-
1,2-dibromo-3-chloropropane	µg/L	0.5	-	-
1,2,4-trichlorobenzene	μg/L	0.5	-	-
Hexachlorobutadiene	µg/L	0.5	-	-
1,2,3-trichlorobenzene	μg/L	0.5	-	-
Total VOC	µg/L	10	-	-

SE209379 R0

Volatile Petroleum Hydrocarbons in Water [AN433] Tested: 3/8/2020

			BH3M-a	BH4M-a	BH5M	GWQD 1	GWQR 1
			WATER	WATER	WATER	WATER	WATER
PARAMETER	UOM	LOR	SE209379.001	SE209379.002	SE209379.003	SE209379.004	SE209379.005
TRH C6-C9	µg/L	40	<40	46	<40	<40	<40
Benzene (F0)	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
TRH C6-C10	µg/L	50	<50	52	<50	<50	<50
TRH C6-C10 minus BTEX (F1)	µg/L	50	<50	52	<50	<50	<50

ANALYTICAL RESULTS

SE209379 R0

TRH (Total Recoverable Hydrocarbons) in Water [AN403] Tested:

sted: 31/7/2020

			BH3M-a	BH4M-a	BH5M	GWQD 1	GWQR 1
			WATER	WATER	WATER	WATER	WATER
							-
			29/7/2020	29/7/2020	29/7/2020	29/7/2020	29/7/2020
PARAMETER	UOM	LOR	SE209379.001	SE209379.002	SE209379.003	SE209379.004	SE209379.005
TRH C10-C14	µg/L	50	<50	<50	76	<50	<50
TRH C15-C28	µg/L	200	<200	<200	<200	<200	<200
TRH C29-C36	µg/L	200	<200	<200	<200	<200	<200
TRH C37-C40	µg/L	200	<200	<200	<200	<200	<200
TRH >C10-C16	µg/L	60	<60	<60	76	<60	<60
TRH >C10-C16 - Naphthalene (F2)	µg/L	60	<60	<60	76	<60	<60
TRH >C16-C34 (F3)	µg/L	500	<500	<500	<500	<500	<500
TRH >C34-C40 (F4)	µg/L	500	<500	<500	<500	<500	<500
TRH C10-C40	µg/L	320	<320	<320	<320	<320	<320

PAH (Polynuclear Aromatic Hydrocarbons) in Water [AN420] Tested: 31/7/2020

			BH3M-a	BH4M-a	BH5M
			WATER	WATER	WATER
PARAMETER	UOM	LOR	SE209379.001	SE209379.002	SE209379.003
Naphthalene	µg/L	0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	µg/L	0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	µg/L	0.1	<0.1	<0.1	<0.1
Acenaphthylene	µg/L	0.1	<0.1	<0.1	<0.1
Acenaphthene	µg/L	0.1	<0.1	<0.1	<0.1
Fluorene	µg/L	0.1	<0.1	<0.1	<0.1
Phenanthrene	µg/L	0.1	<0.1	<0.1	<0.1
Anthracene	µg/L	0.1	<0.1	<0.1	<0.1
Fluoranthene	µg/L	0.1	<0.1	<0.1	<0.1
Pyrene	µg/L	0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	µg/L	0.1	<0.1	<0.1	<0.1
Chrysene	µg/L	0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	µg/L	0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	µg/L	0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	µg/L	0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	µg/L	0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	µg/L	0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	μg/L	0.1	<0.1	<0.1	<0.1
Total PAH (18)	µg/L	1	<1	<1	<1

pH in water [AN101] Tested: 30/7/2020

			BH3M-a	BH4M-a	BH5M
			WATER	WATER	WATER
			29/7/2020	29/7/2020	29/7/2020
PARAMETER	UOM	LOR	SE209379.001	SE209379.002	SE209379.003
pH**	No unit	-	5.1	6.3	4.6

Conductivity and TDS by Calculation - Water [AN106] Tested: 30/7/2020

			BH3M-a	BH4M-a	BH5M
			WATER	WATER	WATER
PARAMETER	UOM	LOR	SE209379.001	SE209379.002	SE209379.003
Conductivity @ 25 C	µS/cm	2	1200	980	4100

SE209379 R0

Trace Metals (Dissolved) in Water by ICPMS [AN318] Tested: 3/8/2020

			BH3M-a	BH4M-a	BH5M	GWQD 1	GWQR 1
			WATER	WATER	WATER	WATER	WATER
			-	-	-	-	-
PARAMETER	UOM	LOR	29/7/2020 SE209379.001	29/7/2020 SE209379.002	29/7/2020 SE209379.003	29/7/2020 SE209379.004	29/7/2020 SE209379.005
Arsenic, As	µg/L	1	<1	<1	1	1	<1
Cadmium, Cd	µg/L	0.1	<0.1	<0.1	0.2	<0.1	<0.1
Chromium, Cr	µg/L	1	1	170	3	1	<1
Copper, Cu	µg/L	1	22	24	23	26	<1
Lead, Pb	µg/L	1	<1	<1	11	<1	<1
Nickel, Ni	µg/L	1	26	3	27	25	<1
Zinc, Zn	µg/L	5	74	21	180	71	<5

SE209379 R0

Mercury (dissolved) in Water [AN311(Perth)/AN312] Tested: 31/7/2020

			BH3M-a	BH4M-a	BH5M	GWQD 1	GWQR 1
			WATER	WATER	WATER	WATER	WATER
							-
							29/7/2020
PARAMETER	UOM	LOR	SE209379.001	SE209379.002	SE209379.003	SE209379.004	SE209379.005
Mercury	mg/L	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001

METHOD	METHODOLOGY SUMMARY
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN101	pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode (glass plus reference electrode) and is calibrated against 3 buffers purchased commercially. For soils, an extract with water is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.
AN106	Conductivity and TDS by Calculation: Conductivity is measured by meter with temperature compensation and is calibrated against a standard solution of potassium chloride. Conductivity is generally reported as μ mhos/cm or μ S/cm @ 25°C. For soils, an extract with water is made at a ratio of 1:5 and the EC determined and reported on the extract, or calculated back to the as-received sample. Total Dissolved Salts can be estimated from conductivity using a conversion factor, which for natural waters, is in the range 0.55 to 0.75. SGS use 0.6. Reference APHA 2510 B.
AN106	Salinity may be calculated in terms of NaCl from the sample conductivity. This assumes all soluble salts present, measured by the conductivity, are present as NaCl.
AN311(Perth)/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN318	Determination of elements at trace level in waters by ICP-MS technique,, referenced to USEPA 6020B and USEPA 200.8 (5.4).
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). Where F2 is corrected for Naphthalene, the VOC data for Naphthalene is used.
AN403	Additionally, the volatile C6-C9/C6-C10 fractions may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Recoveerable Hydrocarbons - Silica (TRH-Silica) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

FOOTNOTES

NATA accreditation does not cover the performance of this service. **

Indicative data, theoretical holding time exceeded

Not analysed. NVL Not validated. IS I NR

Insufficient sample for analysis. Sample listed, but not received. UOM LOR î↓

Unit of Measure. Limit of Reporting. Raised/lowered Limit of Reporting.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: www.sqs.com.au/en-gb/environment-health-and-safety

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

This report must not be reproduced, except in full.

ANALYTICAL REPORT

CLIENT DETAILS	3	LABORATORY DE	TAILS
Contact	Li Wei	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
acsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	li.wei@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E24724.E02 2 mandala pole, castle hill	SGS Reference	SE210081 R1
Order Number	E24724.E02	Date Received	18/8/2020
Samples	1	Date Reported	20/8/2020

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

This report cancels and supersedes the report No.SE210081 R0 dated 19th August 2020 issued by SGS Environment, Health and Safety due to amended sample id.

SIGNATORIES

Dong LIANG Metals/Inorganics Team Leader

SGS Australia Pty Ltd ABN 44 000 964 278

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

Trace Metals (Dissolved) in Water by ICPMS [AN318] Tested: 19/8/2020

			BH4M-a
			WATER
PARAMETER	UOM	LOR	- 18/8/2020 SE210081.001
Arsenic, As	μg/L	1	2
Cadmium, Cd	µg/L	0.1	0.2
Chromium, Cr	µg/L	1	1
Copper, Cu	µg/L	1	22
Lead, Pb	µg/L	1	30
Nickel, Ni	μg/L	1	38
Zinc, Zn	μg/L	5	240

Mercury (dissolved) in Water [AN311(Perth)/AN312] Tested: 19/8/2020

			BH4M-a
			WATER
			-
			18/8/2020
PARAMETER	UOM	LOR	SE210081.001
Mercury	mg/L	0.0001	<0.0001

 METHOD	METHODOLOGY SUMMARY
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN311(Perth)/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN318	Determination of elements at trace level in waters by ICP-MS technique,, referenced to USEPA 6020B and USEPA 200.8 (5.4).

FOOTNOTES

*	NATA accreditation does not cover	-	Not analysed.	UOM	Unit of Measure.
	the performance of this service.	NVL	Not validated.	LOR	Limit of Reporting.
**	Indicative data, theoretical holding	IS	Insufficient sample for analysis.	↑↓	Raised/lowered Limit of
	time exceeded.	LNR	Sample listed, but not received.		Reporting.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi b.
- 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: www.sqs.com.au/en-gb/environment-health-and-safety

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

This report must not be reproduced, except in full.

CERTIFICATE OF ANALYSIS 248038

Client Details	
Client	El Australia
Attention	Lab Email
Address	Suite 6.01, 55 Miller Street, Pyrmont, NSW, 2009

Sample Details	
Your Reference	E24729.E02, Castle Hill
Number of Samples	1 Water
Date samples received	30/07/2020
Date completed instructions received	30/07/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details	
Date results requested by	06/08/2020
Date of Issue	04/08/2020
NATA Accreditation Number 290	1. This document shall not be reproduced except in full.
Accredited for compliance with IS	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Results Approved By Dragana Tomas, Senior Chemist Loren Bardwell, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Water		
Our Reference		248038-1
Your Reference	UNITS	GWQT1
Date Sampled		29/07/2020
Type of sample		Water
Date extracted	-	31/07/2020
Date analysed	-	31/07/2020
TRH C ₆ - C ₉	µg/L	15
TRH C ₆ - C ₁₀	µg/L	15
TRH C ₆ - C ₁₀ less BTEX (F1)	µg/L	15
Benzene	µg/L	<1
Toluene	µg/L	<1
Ethylbenzene	µg/L	<1
m+p-xylene	µg/L	<2
o-xylene	µg/L	<1
Naphthalene	µg/L	<1
Surrogate Dibromofluoromethane	%	112
Surrogate toluene-d8	%	93
Surrogate 4-BFB	%	87

svTRH (C10-C40) in Water		
Our Reference		248038-1
Your Reference	UNITS	GWQT1
Date Sampled		29/07/2020
Type of sample		Water
Date extracted	-	31/07/2020
Date analysed	-	01/08/2020
TRH C ₁₀ - C ₁₄	µg/L	<50
TRH C ₁₅ - C ₂₈	µg/L	<100
TRH C ₂₉ - C ₃₆	µg/L	<100
TRH >C ₁₀ - C ₁₆	µg/L	<50
TRH >C10 - C16 less Naphthalene (F2)	μg/L	<50
TRH >C ₁₆ - C ₃₄	µg/L	<100
TRH >C ₃₄ - C ₄₀	µg/L	<100
Surrogate o-Terphenyl	%	98

HM in water - dissolved		
Our Reference		248038-1
Your Reference	UNITS	GWQT1
Date Sampled		29/07/2020
Type of sample		Water
Date prepared	-	31/07/2020
Date analysed	-	31/07/2020
Arsenic-Dissolved	μg/L	<1
Cadmium-Dissolved	μg/L	0.2
Chromium-Dissolved	µg/L	1
Copper-Dissolved	μg/L	7
Lead-Dissolved	μg/L	<1
Mercury-Dissolved	µg/L	<0.05
Nickel-Dissolved	μg/L	24
Zinc-Dissolved	µg/L	100

Method ID	Methodology Summary
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

QUALITY CONT	ROL: vTRH((C6-C10)/E	BTEXN in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
Date extracted	-			31/07/2020	1	31/07/2020	31/07/2020		31/07/2020	
Date analysed	-			31/07/2020	1	31/07/2020	31/07/2020		31/07/2020	
TRH C ₆ - C ₉	μg/L	10	Org-023	<10	1	15	12	22	108	
TRH C ₆ - C ₁₀	μg/L	10	Org-023	<10	1	15	12	22	108	
Benzene	μg/L	1	Org-023	<1	1	<1	<1	0	106	
Toluene	μg/L	1	Org-023	<1	1	<1	<1	0	97	
Ethylbenzene	μg/L	1	Org-023	<1	1	<1	<1	0	106	
m+p-xylene	μg/L	2	Org-023	<2	1	<2	<2	0	115	
o-xylene	μg/L	1	Org-023	<1	1	<1	<1	0	116	
Naphthalene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	113	1	112	114	2	97	
Surrogate toluene-d8	%		Org-023	93	1	93	93	0	92	
Surrogate 4-BFB	%		Org-023	86	1	87	87	0	111	

QUALITY CONTROL: svTRH (C10-C40) in Water						Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			31/07/2020	1	31/07/2020	31/07/2020		31/07/2020	
Date analysed	-			31/07/2020	1	01/08/2020	01/08/2020		31/07/2020	
TRH C ₁₀ - C ₁₄	µg/L	50	Org-020	<50	1	<50	<50	0	80	
TRH C ₁₅ - C ₂₈	µg/L	100	Org-020	<100	1	<100	<100	0	70	
TRH C ₂₉ - C ₃₆	µg/L	100	Org-020	<100	1	<100	<100	0	77	
TRH >C ₁₀ - C ₁₆	µg/L	50	Org-020	<50	1	<50	50	0	80	
TRH >C ₁₆ - C ₃₄	µg/L	100	Org-020	<100	1	<100	<100	0	70	
TRH >C ₃₄ - C ₄₀	µg/L	100	Org-020	<100	1	<100	<100	0	77	
Surrogate o-Terphenyl	%		Org-020	90	1	98	103	5	85	

QUALITY CONTROL: HM in water - dissolved					Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
Date prepared	-			31/07/2020	[NT]		[NT]	[NT]	31/07/2020	
Date analysed	-			31/07/2020	[NT]		[NT]	[NT]	31/07/2020	
Arsenic-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	92	
Cadmium-Dissolved	µg/L	0.1	Metals-022	<0.1	[NT]		[NT]	[NT]	98	
Chromium-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	101	
Copper-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	102	
Lead-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	103	
Mercury-Dissolved	µg/L	0.05	Metals-021	<0.05	[NT]		[NT]	[NT]	105	
Nickel-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	93	
Zinc-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	97	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control Definitions								
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.							
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.							
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.							
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.							
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.							

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Appendix J - QA/QC Assessment

J.1 Introduction

For the purpose of assessing the quality of data presented in this report, El collected field QC samples for analysis. The primary laboratory, SGS Australia Pty Ltd (SGS), and secondary laboratory, Envirolab Services Pty Ltd (Envirolab), also prepared and analysed internal QC samples. Details of the field and laboratory QC samples, with the allowable data acceptance ranges are presented in **Table J-1**.

 Table J.1
 Sampling Data Quality Indicators

QA/QC Measures	Data Quality Indicators					
Precision – A quantitative measure of the variability (or reproducibility) of data	Data precision would be assessed by reviewing the performance of blind field duplicate sample sets, through calculation of relative percentage differences (RPD). Data precision would be deemed acceptable if RPDs are found to be less than 30%. RPDs that exceed this range may be considered acceptable where:					
	 Results are less than 10 times the limits of reporting (LOR); 					
	 Results are less than 20 times the LOR and the RPD is less than 50%; or 					
	 Heterogeneous materials or volatile compounds are encountered. 					
Accuracy – A quantitative	Data accuracy would be assessed through the analysis of:					
measure of the closeness of reported data to the "true"	 Method blanks, which are analysed for the analytes targeted in the primary samples; 					
value	 Matrix spike and matrix spike duplicate sample sets; 					
	 Laboratory control samples; and 					
	 Calibration of instruments against known standards. 					
Representativeness – The confidence (expressed qualitatively) that data are	To ensure the data produced by the laboratory is representative of conditions encountered in the field, the laboratory would carry out the following:					
representative of each medium present onsite	 Blank samples will be run in parallel with field samples to confirm there are no unacceptable instances of laboratory artefacts; 					
	 Review of relative percentage differences (RPD) values for field and laboratory duplicates to provide an indication that the samples are generally homogeneous, with no unacceptable instances of significant sample matrix heterogeneities; and 					
	 The appropriateness of collection methodologies, handling, storage and preservation techniques will be assessed to ensure/confirm there was minimal opportunity for sample interference or degradation (i.e. volatile loss during transport due to incorrect preservation / transport methods). 					
Completeness – A measure of the amount of useable data	Analytical data sets acquired during the assessment will be evaluated as complete, upon confirmation that:					
from a data collection activity	 Standard operating procedures (SOPs) for sampling protocols were adhered to; and 					
	 Copies of all COC documentation are presented, reviewed and found to be properly completed. 					
	It can therefore be considered whether the proportion of "useable data" generated in the data collection activities is sufficient for the purposes of the land use assessment.					

QA/QC Measures	Data Quality Indicators
Comparability – The confidence (expressed qualitatively) that data may be considered to be equivalent for each sampling and analytical	Given that a reported data set can comprise several data sets from separate sampling episodes, issues of comparability between data sets are reduced through adherence to SOPs and regulator-endorsed or published guidelines and standards on each data gathering activity. In addition the data will be collected by experienced samplers and NATA-
event	accredited laboratory methodologies will be employed in all laboratory testing programs.

J.1.1 Calculation of Relative Percentage Difference (RPD)

The RPD values were calculated using the following equation:

$$RPD = \frac{|C_0 - C_R|}{[(C_0 + C_R)/2]} \times 100$$

Where:

Co = Concentration obtained for the primary sample; and

 C_R = Concentration obtained for the blind replicate or split duplicate sample.

J.2 Field QA/QC Data Evaluation

The field quality assurance/quality control (QA/QC) soil samples collected during the investigations were as follows:

- Blind field duplicates (i.e. Intra-laboratory duplicates)
- Inter-laboratory duplicates
- Trip blanks
- Trip spikes
- Rinsate blank

Analytical results for tested soil and groundwater QA/QC samples, including calculated RPD values between primary and duplicate samples, are presented in **Table J-2** in **Appendix B**.

J.2.1 Soil Investigation

J.2.1.1 Blind Field Duplicates

Two blind field duplicate (BFD) soil samples were collected as follows:

- Sample QD1 was collected from the primary sample TP8_0.1-0.2 on 8 July 2020; and
- Sample QD2 was collected from the primary sample TP17_0.1-0.2 on 8 July 2020;

The preparation of the BFD sample involved the collection of a bulk quantity of soil from the same sampling point without mixing, before dividing the material into identical sampling vessels. The duplicate sample was then presented blind to the primary laboratory (SGS) to avoid any potential analytical bias. BFD soil samples were analysed for TRHs, BTEX, and selected metals. Calculated RPD values were found to be within the Data Acceptance Criteria.

J.2.1.2 Inter-Laboratory Duplicate

Two inter-laboratory duplicate (ILD) soil samples were collected as follows:

- Sample QT1 was collected from the primary sample TP8_0.1-0.2 on 8 July 2020; and
- Sample QT2 was collected from the primary sample TP17_0.1-0.2 on 8 July 2020.

The preparation of the ILD sample was identical to the BFD sample, as described above, and was analysed for TRHs, BTEX and selected metals by the secondary laboratory (Envirolab).

Calculated RPD values were found to be within the Data Acceptance Criteria, with the exception of chromium, copper, lead, nickel and zinc; however, this exceedance of the DQIs has no impact on the conclusions and recommendations provided.

J.2.2 Groundwater Investigation

J.2.2.1 Blind Field Duplicates

One blind field duplicate (BFD) groundwater sample was collected as follows:

Sample GWQD1 was collected from the primary sample BH3M-a on 29 July 2020;

The duplicate sample was presented blind to the primary laboratory (SGS) to avoid any potential analytical bias. BFD groundwater samples were analysed for TRHs, BTEX, and selected metals. Calculated RPD values were found to be within the Data Acceptance Criteria.

J.2.2.2 Inter-Laboratory Duplicate

Sample GWQT1 was collected as an inter-laboratory duplicate (ILD) of the primary sample BH3M-a on 29 July 2020. It was analysed for TRHs, BTEX and selected metals by the secondary laboratory (Envirolab). Calculated RPD values were found to be within the Data Acceptance Criteria, with the exception of copper; however, this exceedance of the DQIs has no impact on the conclusions and recommendations provided.

J.2.2.3 Trip Blank

Two trip blank samples were prepared and analysed by the primary laboratory for BTEX. Analytical results for the samples were all below the corresponding laboratory LOR, indicating that ideal sample transport and handling conditions were achieved (i.e. there was no cross-contamination during sample transport and handling).

J.2.2.4 Trip Spike

Two trip spike samples were prepared and analysed by the primary laboratory for BTEX. Analyte recoveries for these samples were 87-99%, which complied with the DQI. It was therefore concluded that satisfactory sample transport and handling conditions were achieved (i.e. there was negligible loss of volatiles, and by default semi-volatiles, during sample transport and handling).

J.2.2.5 Rinsate Blank

Two rinsate blank samples were submitted to the primary laboratory for TRHs, BTEX, and selected metals analyses. Analytical results were reported below the laboratory LOR.

J.2.3 Assessment of Field QA/QC Data

All samples were classified in the field with respect to soil/fill characteristics and any observable signs of contamination based on visual and odour assessment, in regards to soil and groundwater.

All samples, including field QC samples, were transported to the primary and secondary laboratories under strict Chain-of-Custody conditions and appropriate copies of relevant documentation were included in the respective reports.

The overall completeness of documentation produced under the field program of the subject assessment was considered to be adequate for the purposes of drawing valid conclusions regarding the environmental condition of the site.

Based on the results of the field QA/QC data EI considered the field QA/QC programme carried out during the investigation to be appropriate and the results to be acceptable.

J.3 Laboratory QA/QC

J.3.1 Laboratory Accreditation

To undertake all analytical testing, EI commissioned SGS as the primary laboratory and Envirolab as the secondary laboratory. SGS and Envirolab, both established analytical laboratories which operate in accordance with the guidelines set out in ISO/IEC Guide 25 "General requirements for the competence of calibration and testing laboratories", conducted all respective analyses using National Association Testing Authorities (NATA)-registered procedures.

In relation to contingencies, should the pre-determined DQOs not be achieved, in accordance with each laboratory's QC policy (**Appendix K**), respective tests would be accordingly repeated. Should the results again fall outside the DQOs, then sample heterogeneity may be assumed and written comment will be provided to this effect on the final laboratory certificate. The laboratory QA/QC reports are included in **Appendix K**.

J.3.2 Sample Holding Times

Sample holding times were generally within the laboratory DQOs, which were consistent with standard environmental protocols as tabulated in **Appendix K**, **Tables QC1** and **QC2**.

J.3.3 Test Methods and Practical Quantitation Limits (PQLs)

Practical Quantitation Limits for all tested parameters during the assessment of soils and groundwater are presented in **Appendix K**, **Tables QC3** and **QC4**.

J.3.4 Method Blanks

Concentrations of all parameters in method blanks during the assessment were below the laboratory PQLs and were therefore within the DAC.

J.3.5 Laboratory Duplicate Samples

The Laboratory Control Samples (LCS) for the analysis batches showed calculated RPDs that were within acceptable ranges and conformed to the DAC, with the exception of copper, nickel and zinc in one soil sample and chromium in two soil samples due to sample heterogeneity.

J.3.6 Laboratory Control Samples

The Laboratory Control Samples for the analysis batches were within acceptable ranges and conformed to the DAC.

J.3.7 Matrix Spikes

Matrix spikes for the respective sample batches were within acceptable ranges and conformed to the DAC, with the exception of zinc and lead in two soil samples, chromium and copper in one soil sample, and calcium, magnesium and sodium in one soil sample due to matrix interference.

J.3.8 Surrogate

Recovery results for surrogate samples conformed to the DAC, with the exception of VOCs in two soil samples. However, at least 2 of 3 surrogates are within acceptance criteria.

J.3.9 Concluding Remark

Based on the laboratory QA/QC results EI considers that the data confirms that although a small number of discrepancies were identified, the analytical results for the various phases of laboratory testing were valid and useable for interpretation purposes.

Appendix K - Laboratory QA/AC Policies and DQOs

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	ILS
Contact	Li Wei	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	li.wei@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E24724.E02 2 Mandala Parade, Castle Hill	SGS Reference	SE208655 R0
Order Number	E24724.E02	Date Received	13 Jul 2020
Samples	32	Date Reported	20 Jul 2020

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Extraction Date	VOCs in Water	1 item
	Volatile Petroleum Hydrocarbons in Water	1 item
Duplicate	Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES	3 items
Matrix Spike	Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES	1 item
	Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES	1 item
	VOC's in Soil	1 item
	VOC's in Soil	1 item

Samples clearly labelled	Yes	Complete documentation received	Yes
Sample container provider	SGS	Sample cooling method	Ice Bricks
Samples received in correct containers	Yes	Sample counts by matrix	31 Soil, 1 Water
Date documentation received	13/7/2020	Type of documentation received	COC
Samples received in good order	Yes	Samples received without headspace	Yes
Sample temperature upon receipt	5.7°C	Sufficient sample for analysis	Yes
Turnaround time requested	Standard		

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St Alexandria PO Box 6432 Bourke Rd BC Alexandria

Alexandria NSW 2015 Australia Alexandria NSW 2015 Australia

t +61 2 8594 0400 f +61 2 8594 0499

Member of the SGS Group

www.sgs.com.au

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Fibre Identification in soil

Fibre Identification in soil							Method: I	ME-(AU)-[ENV]AN6
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP7_0.1-0.2	SE208655.001	LB204569	08 Jul 2020	13 Jul 2020	08 Jul 2021	17 Jul 2020	08 Jul 2021	20 Jul 2020
TP7_1.3-1.4	SE208655.002	LB204569	08 Jul 2020	13 Jul 2020	08 Jul 2021	17 Jul 2020	08 Jul 2021	20 Jul 2020
TP8_0.1-0.2	SE208655.003	LB204569	08 Jul 2020	13 Jul 2020	08 Jul 2021	17 Jul 2020	08 Jul 2021	20 Jul 2020
TP8_0.9-1.0	SE208655.004	LB204569	08 Jul 2020	13 Jul 2020	08 Jul 2021	17 Jul 2020	08 Jul 2021	20 Jul 2020
TP9_0.1-0.2	SE208655.005	LB204569	08 Jul 2020	13 Jul 2020	08 Jul 2021	17 Jul 2020	08 Jul 2021	20 Jul 2020
TP9_1.2-1.3	SE208655.006	LB204569	08 Jul 2020	13 Jul 2020	08 Jul 2021	17 Jul 2020	08 Jul 2021	20 Jul 2020
TP10_0.1-0.2	SE208655.007	LB204569	08 Jul 2020	13 Jul 2020	08 Jul 2021	17 Jul 2020	08 Jul 2021	20 Jul 2020
TP11_0.1-0.2	SE208655.008	LB204569	08 Jul 2020	13 Jul 2020	08 Jul 2021	17 Jul 2020	08 Jul 2021	20 Jul 2020
TP11_0.8-0.9	SE208655.009	LB204569	08 Jul 2020	13 Jul 2020	08 Jul 2021	17 Jul 2020	08 Jul 2021	20 Jul 2020
TP12_0.1-0.2	SE208655.010	LB204569	08 Jul 2020	13 Jul 2020	08 Jul 2021	17 Jul 2020	08 Jul 2021	20 Jul 2020
TP12_0.8-0.9	SE208655.011	LB204569	08 Jul 2020	13 Jul 2020	08 Jul 2021	17 Jul 2020	08 Jul 2021	20 Jul 2020
TP12_1.7-1.8	SE208655.012	LB204569	08 Jul 2020	13 Jul 2020	08 Jul 2021	17 Jul 2020	08 Jul 2021	20 Jul 2020
TP13_0.1-0.2	SE208655.013	LB204569	08 Jul 2020	13 Jul 2020	08 Jul 2021	17 Jul 2020	08 Jul 2021	20 Jul 2020
TP13_1.2-1.3	SE208655.014	LB204569	08 Jul 2020	13 Jul 2020	08 Jul 2021	17 Jul 2020	08 Jul 2021	20 Jul 2020
TP13_2.0-2.1	SE208655.015	LB204569	08 Jul 2020	13 Jul 2020	08 Jul 2021	17 Jul 2020	08 Jul 2021	20 Jul 2020
TP14_0.1-0.2	SE208655.016	LB204569	08 Jul 2020	13 Jul 2020	08 Jul 2021	17 Jul 2020	08 Jul 2021	20 Jul 2020
TP14_1.5-1.6	SE208655.017	LB204569	08 Jul 2020	13 Jul 2020	08 Jul 2021	17 Jul 2020	08 Jul 2021	20 Jul 2020
TP15_0.1-0.2	SE208655.018	LB204569	08 Jul 2020	13 Jul 2020	08 Jul 2021	17 Jul 2020	08 Jul 2021	20 Jul 2020
TP15_1.7-1.8	SE208655.019	LB204569	08 Jul 2020	13 Jul 2020	08 Jul 2021	17 Jul 2020	08 Jul 2021	20 Jul 2020
TP16_0.1-0.2	SE208655.020	LB204569	08 Jul 2020	13 Jul 2020	08 Jul 2021	17 Jul 2020	08 Jul 2021	20 Jul 2020
TP17_0.1-0.2	SE208655.021	LB204569	08 Jul 2020	13 Jul 2020	08 Jul 2021	17 Jul 2020	08 Jul 2021	20 Jul 2020
TP18_0.1-0.2	SE208655.022	LB204569	08 Jul 2020	13 Jul 2020	08 Jul 2021	17 Jul 2020	08 Jul 2021	20 Jul 2020
TP18_1.8-1.9	SE208655.023	LB204569	08 Jul 2020	13 Jul 2020	08 Jul 2021	17 Jul 2020	08 Jul 2021	20 Jul 2020
TP19_0.1-0.2	SE208655.024	LB204569	08 Jul 2020	13 Jul 2020	08 Jul 2021	17 Jul 2020	08 Jul 2021	20 Jul 2020
TP19_1.4-1.5	SE208655.025	LB204569	08 Jul 2020	13 Jul 2020	08 Jul 2021	17 Jul 2020	08 Jul 2021	20 Jul 2020
BH1_0.1-0.2	SE208655.031	LB204569	08 Jul 2020	13 Jul 2020	08 Jul 2021	17 Jul 2020	08 Jul 2021	20 Jul 2020
3H1_0.7-0.8	SE208655.032	LB204569	08 Jul 2020	13 Jul 2020	08 Jul 2021	17 Jul 2020	08 Jul 2021	20 Jul 2020
lercury (dissolved) in Wat	er						Method: ME-(AU)-[ENV	JAN311(Perth)/AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR1	SE208655.028	LB204300	08 Jul 2020	13 Jul 2020	05 Aug 2020	15 Jul 2020	05 Aug 2020	15 Jul 2020

Mercury in Soil							Method: I	ME-(AU)-[ENV]AN3 ⁻
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP7_0.1-0.2	SE208655.001	LB204384	08 Jul 2020	13 Jul 2020	05 Aug 2020	15 Jul 2020	05 Aug 2020	20 Jul 2020
TP7_1.3-1.4	SE208655.002	LB204384	08 Jul 2020	13 Jul 2020	05 Aug 2020	15 Jul 2020	05 Aug 2020	20 Jul 2020
TP8_0.1-0.2	SE208655.003	LB204384	08 Jul 2020	13 Jul 2020	05 Aug 2020	15 Jul 2020	05 Aug 2020	20 Jul 2020
TP8_0.9-1.0	SE208655.004	LB204384	08 Jul 2020	13 Jul 2020	05 Aug 2020	15 Jul 2020	05 Aug 2020	20 Jul 2020
TP9_0.1-0.2	SE208655.005	LB204384	08 Jul 2020	13 Jul 2020	05 Aug 2020	15 Jul 2020	05 Aug 2020	20 Jul 2020
TP9_1.2-1.3	SE208655.006	LB204384	08 Jul 2020	13 Jul 2020	05 Aug 2020	15 Jul 2020	05 Aug 2020	20 Jul 2020
TP10_0.1-0.2	SE208655.007	LB204384	08 Jul 2020	13 Jul 2020	05 Aug 2020	15 Jul 2020	05 Aug 2020	20 Jul 2020
TP11_0.1-0.2	SE208655.008	LB204384	08 Jul 2020	13 Jul 2020	05 Aug 2020	15 Jul 2020	05 Aug 2020	20 Jul 2020
TP11_0.8-0.9	SE208655.009	LB204384	08 Jul 2020	13 Jul 2020	05 Aug 2020	15 Jul 2020	05 Aug 2020	20 Jul 2020
TP12_0.1-0.2	SE208655.010	LB204384	08 Jul 2020	13 Jul 2020	05 Aug 2020	15 Jul 2020	05 Aug 2020	20 Jul 2020
TP12_0.8-0.9	SE208655.011	LB204384	08 Jul 2020	13 Jul 2020	05 Aug 2020	15 Jul 2020	05 Aug 2020	20 Jul 2020
TP12_1.7-1.8	SE208655.012	LB204384	08 Jul 2020	13 Jul 2020	05 Aug 2020	15 Jul 2020	05 Aug 2020	20 Jul 2020
TP13_0.1-0.2	SE208655.013	LB204384	08 Jul 2020	13 Jul 2020	05 Aug 2020	15 Jul 2020	05 Aug 2020	20 Jul 2020
TP13_1.2-1.3	SE208655.014	LB204384	08 Jul 2020	13 Jul 2020	05 Aug 2020	15 Jul 2020	05 Aug 2020	20 Jul 2020
TP13_2.0-2.1	SE208655.015	LB204384	08 Jul 2020	13 Jul 2020	05 Aug 2020	15 Jul 2020	05 Aug 2020	20 Jul 2020
TP14_0.1-0.2	SE208655.016	LB204384	08 Jul 2020	13 Jul 2020	05 Aug 2020	15 Jul 2020	05 Aug 2020	20 Jul 2020
TP14_1.5-1.6	SE208655.017	LB204384	08 Jul 2020	13 Jul 2020	05 Aug 2020	15 Jul 2020	05 Aug 2020	20 Jul 2020
TP15_0.1-0.2	SE208655.018	LB204384	08 Jul 2020	13 Jul 2020	05 Aug 2020	15 Jul 2020	05 Aug 2020	20 Jul 2020
TP15_1.7-1.8	SE208655.019	LB204384	08 Jul 2020	13 Jul 2020	05 Aug 2020	15 Jul 2020	05 Aug 2020	20 Jul 2020
TP16_0.1-0.2	SE208655.020	LB204386	08 Jul 2020	13 Jul 2020	05 Aug 2020	15 Jul 2020	05 Aug 2020	20 Jul 2020
TP17_0.1-0.2	SE208655.021	LB204386	08 Jul 2020	13 Jul 2020	05 Aug 2020	15 Jul 2020	05 Aug 2020	20 Jul 2020
TP18_0.1-0.2	SE208655.022	LB204386	08 Jul 2020	13 Jul 2020	05 Aug 2020	15 Jul 2020	05 Aug 2020	20 Jul 2020
TP18_1.8-1.9	SE208655.023	LB204386	08 Jul 2020	13 Jul 2020	05 Aug 2020	15 Jul 2020	05 Aug 2020	20 Jul 2020
TP19_0.1-0.2	SE208655.024	LB204386	08 Jul 2020	13 Jul 2020	05 Aug 2020	15 Jul 2020	05 Aug 2020	20 Jul 2020
TP19_1.4-1.5	SE208655.025	LB204386	08 Jul 2020	13 Jul 2020	05 Aug 2020	15 Jul 2020	05 Aug 2020	20 Jul 2020
QD1	SE208655.026	LB204386	08 Jul 2020	13 Jul 2020	05 Aug 2020	15 Jul 2020	05 Aug 2020	20 Jul 2020

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Mercury in Soil (continued)							Method:	ME-(AU)-[ENV]AN31
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QD2	SE208655.027	LB204386	08 Jul 2020	13 Jul 2020	05 Aug 2020	15 Jul 2020	05 Aug 2020	20 Jul 2020
BH1_0.1-0.2	SE208655.031	LB204386	08 Jul 2020	13 Jul 2020	05 Aug 2020	15 Jul 2020	05 Aug 2020	20 Jul 2020
BH1_0.7-0.8	SE208655.032	LB204386	08 Jul 2020	13 Jul 2020	05 Aug 2020	15 Jul 2020	05 Aug 2020	20 Jul 2020
Voisture Content							Method:	ME-(AU)-[ENV]AN00
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP7_0.1-0.2	SE208655.001	LB204345	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	20 Jul 2020	17 Jul 2020
TP7_1.3-1.4	SE208655.002	LB204345	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	20 Jul 2020	17 Jul 2020
TP8_0.1-0.2	SE208655.003	LB204345	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	20 Jul 2020	17 Jul 2020
TP8_0.9-1.0	SE208655.004	LB204345	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	20 Jul 2020	17 Jul 2020
TP9_0.1-0.2	SE208655.005	LB204345	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	20 Jul 2020	17 Jul 2020
TP9_1.2-1.3	SE208655.006	LB204345	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	20 Jul 2020	17 Jul 2020
TP10_0.1-0.2	SE208655.007	LB204345	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	20 Jul 2020	17 Jul 2020
TP11_0.1-0.2	SE208655.008	LB204345	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	20 Jul 2020	17 Jul 2020
TP11_0.8-0.9	SE208655.009	LB204345	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	20 Jul 2020	17 Jul 2020
TP12_0.1-0.2	SE208655.010	LB204345	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	20 Jul 2020	17 Jul 2020
TP12_0.8-0.9	SE208655.011	LB204345	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	20 Jul 2020	17 Jul 2020
TP12_1.7-1.8	SE208655.012	LB204345	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	20 Jul 2020	17 Jul 2020
TP13_0.1-0.2	SE208655.013	LB204345	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	20 Jul 2020	17 Jul 2020
TP13_0.1-0.2 TP13_1.2-1.3	SE208655.013	LB204345	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	20 Jul 2020	17 Jul 2020
	SE208655.014	LB204345	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	20 Jul 2020	17 Jul 2020
TP13_2.0-2.1	SE208655.015 SE208655.016	LB204345 LB204345						17 Jul 2020
TP14_0.1-0.2			08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	20 Jul 2020	
TP14_1.5-1.6	SE208655.017	LB204346	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	20 Jul 2020	20 Jul 2020
TP15_0.1-0.2	SE208655.018	LB204346	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	20 Jul 2020	20 Jul 2020
TP15_1.7-1.8	SE208655.019	LB204346	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	20 Jul 2020	20 Jul 2020
TP16_0.1-0.2	SE208655.020	LB204346	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	20 Jul 2020	20 Jul 2020
TP17_0.1-0.2	SE208655.021	LB204346	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	20 Jul 2020	20 Jul 2020
TP18_0.1-0.2	SE208655.022	LB204346	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	20 Jul 2020	20 Jul 2020
TP18_1.8-1.9	SE208655.023	LB204346	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	20 Jul 2020	20 Jul 2020
TP19_0.1-0.2	SE208655.024	LB204346	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	20 Jul 2020	20 Jul 2020
TP19_1.4-1.5	SE208655.025	LB204346	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	20 Jul 2020	20 Jul 2020
QD1	SE208655.026	LB204346	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	20 Jul 2020	20 Jul 2020
QD2	SE208655.027	LB204346	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	20 Jul 2020	20 Jul 2020
QTB1	SE208655.029	LB204346	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	20 Jul 2020	20 Jul 2020
BH1_0.1-0.2	SE208655.031	LB204346	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	20 Jul 2020	20 Jul 2020
BH1_0.7-0.8	SE208655.032	LB204346	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	20 Jul 2020	20 Jul 2020
OC Pesticides in Soil							Method:	ME-(AU)-[ENV]AN42
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP7_0.1-0.2	SE208655.001	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP7_1.3-1.4	SE208655.002	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP8_0.1-0.2	SE208655.003	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP8_0.9-1.0	SE208655.004	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP9_0.1-0.2	SE208655.005	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP9_1.2-1.3	SE208655.006	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP10_0.1-0.2	SE208655.007	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP11_0.1-0.2	SE208655.008	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP11_0.8-0.9	SE208655.009	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP12_0.1-0.2	SE208655.010	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020 24 Aug 2020	20 Jul 2020
TP12_0.8-0.9	SE208655.011	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020 24 Aug 2020	20 Jul 2020
TP12_0.6-0.9 TP12_1.7-1.8	SE208655.012	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020 24 Aug 2020	20 Jul 2020
TP12_1.7-1.6 TP13_0.1-0.2	SE208655.012	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020 24 Aug 2020	20 Jul 2020
TP13_1.2-1.3	SE208655.014	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP13_2.0-2.1	SE208655.015	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP14_0.1-0.2	SE208655.016	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP14_1.5-1.6	SE208655.017	LB204343	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP15 0.1-0.2	SE208655.018	LB204343	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
_			08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP15_1.7-1.8	SE208655.019	LB204343						
TP15_1.7-1.8 TP16_0.1-0.2	SE208655.020	LB204343	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP15_1.7-1.8						15 Jul 2020 15 Jul 2020 15 Jul 2020	24 Aug 2020 24 Aug 2020 24 Aug 2020 24 Aug 2020	20 Jul 2020 20 Jul 2020 20 Jul 2020

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

OC Pesticides in Soil (continued)

Extracted Analysis Due Analysis Jul 2020 15 Jul 2020 24 Aug 2020 20 Jul 20 Jul 2020 15 Jul 2020 24 Aug 2020 20 Jul 20 Jul 2020 15 Jul 2020 24 Aug 2020 20 Jul 20
ul 2020 15 Jul 2020 24 Aug 2020 20 Jul 20
lul 2020 15 Jul 2020 24 Aug 2020 20 Jul 20
lul 2020 15 Jul 2020 24 Aug 2020 20 Jul 20.
lul 2020 15 Jul 2020 24 Aug 2020 20 Jul 20.
lul 2020 15 Jul 2020 24 Aug 2020 20 Jul 20.
lul 2020 15 Jul 2020 24 Aug 2020 20 Jul 20.
1

OF Festicides III 301							Wouldd.	
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP7_0.1-0.2	SE208655.001	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP7_1.3-1.4	SE208655.002	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP8_0.1-0.2	SE208655.003	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP8_0.9-1.0	SE208655.004	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP9_0.1-0.2	SE208655.005	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP9_1.2-1.3	SE208655.006	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP10_0.1-0.2	SE208655.007	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP11_0.1-0.2	SE208655.008	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP11_0.8-0.9	SE208655.009	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP12_0.1-0.2	SE208655.010	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP12_0.8-0.9	SE208655.011	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP12_1.7-1.8	SE208655.012	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP13_0.1-0.2	SE208655.013	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP13_1.2-1.3	SE208655.014	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP13_2.0-2.1	SE208655.015	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP14_0.1-0.2	SE208655.016	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP14_1.5-1.6	SE208655.017	LB204343	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP15_0.1-0.2	SE208655.018	LB204343	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP15_1.7-1.8	SE208655.019	LB204343	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP16_0.1-0.2	SE208655.020	LB204343	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP17_0.1-0.2	SE208655.021	LB204343	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP18_0.1-0.2	SE208655.022	LB204343	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP18_1.8-1.9	SE208655.023	LB204343	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP19_0.1-0.2	SE208655.024	LB204343	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP19_1.4-1.5	SE208655.025	LB204343	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
QD1	SE208655.026	LB204343	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
QD2	SE208655.027	LB204343	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
BH1_0.1-0.2	SE208655.031	LB204343	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
BH1_0.7-0.8	SE208655.032	LB204343	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

Sample Name Sample No. QC Ref Sampled Extraction Due Extracted Analysis Due Analysed Received TP7 0.1-0.2 SE208655.001 LB204342 08 Jul 2020 13 Jul 2020 22 Jul 2020 15 Jul 2020 24 Aug 2020 20 Jul 2020 TP7_1.3-1.4 SE208655.002 LB204342 08 Jul 2020 13 Jul 2020 22 Jul 2020 15 Jul 2020 24 Aug 2020 20 Jul 2020 TP8 0.1-0.2 SE208655.003 08 Jul 2020 13 Jul 2020 22 Jul 2020 15 Jul 2020 LB204342 24 Aug 2020 20 Jul 2020 TP8_0.9-1.0 SE208655.004 LB204342 08 Jul 2020 13 Jul 2020 22 Jul 2020 15 Jul 2020 24 Aug 2020 20 Jul 2020 TP9_0.1-0.2 SE208655.005 LB204342 08 Jul 2020 13 Jul 2020 22 Jul 2020 15 Jul 2020 24 Aug 2020 20 Jul 2020 TP9 1.2-1.3 SE208655.006 LB204342 08 Jul 2020 13 Jul 2020 22 Jul 2020 15 Jul 2020 24 Aug 2020 20 Jul 2020 TP10_0.1-0.2 SE208655.007 LB204342 08 Jul 2020 13 Jul 2020 22 Jul 2020 15 Jul 2020 24 Aug 2020 20 Jul 2020 TP11 0.1-0.2 SE208655.008 LB204342 08 Jul 2020 13 Jul 2020 22 Jul 2020 15 Jul 2020 24 Aug 2020 20 Jul 2020 TP11_0.8-0.9 SE208655.009 LB204342 08 Jul 2020 13 Jul 2020 22 Jul 2020 15 Jul 2020 24 Aug 2020 20 Jul 2020 TP12_0.1-0.2 SE208655.010 LB204342 08 Jul 2020 13 Jul 2020 22 Jul 2020 15 Jul 2020 24 Aug 2020 20 Jul 2020 TP12 0.8-0.9 SE208655.011 LB204342 08 Jul 2020 13 Jul 2020 22 Jul 2020 15 Jul 2020 24 Aug 2020 20 Jul 2020 TP12_1.7-1.8 SE208655.012 LB204342 08 Jul 2020 13 Jul 2020 22 Jul 2020 15 Jul 2020 24 Aug 2020 20 Jul 2020 TP13_0.1-0.2 LB204342 08 Jul 2020 13 Jul 2020 22 Jul 2020 15 Jul 2020 20 Jul 2020 SE208655.013 24 Aug 2020 TP13_1.2-1.3 SE208655.014 LB204342 08 Jul 2020 13 Jul 2020 22 Jul 2020 15 Jul 2020 24 Aug 2020 20 Jul 2020 TP13_2.0-2.1 SE208655.015 LB204342 08 Jul 2020 13 Jul 2020 22 Jul 2020 15 Jul 2020 24 Aug 2020 20 Jul 2020 TP14 0.1-0.2 08 Jul 2020 13 Jul 2020 SE208655.016 LB204342 22 Jul 2020 15 Jul 2020 24 Aug 2020 20 Jul 2020 TP14_1.5-1.6 SE208655.017 LB204343 08 Jul 2020 13 Jul 2020 22 Jul 2020 15 Jul 2020 24 Aug 2020 20 Jul 2020 TP15_0.1-0.2 SE208655.018 LB204343 08 Jul 2020 13 Jul 2020 22 Jul 2020 15 Jul 2020 24 Aug 2020 20 Jul 2020 SE208655.019 LB204343 TP15 1.7-1.8 08 Jul 2020 13 Jul 2020 22 Jul 2020 15 Jul 2020 24 Aug 2020 20 Jul 2020

Method: ME-(AU)-IENVIAN420

Method: ME-(AU)-[ENV]AN420

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

PAH (Polynuclear Aromat	ic Hydrocarbons) in Soil (co	ontinued)					Method:	ME-(AU)-[ENV]AN42
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP16_0.1-0.2	SE208655.020	LB204343	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP17_0.1-0.2	SE208655.021	LB204343	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP18_0.1-0.2	SE208655.022	LB204343	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP18_1.8-1.9	SE208655.023	LB204343	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP19_0.1-0.2	SE208655.024	LB204343	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP19_1.4-1.5	SE208655.025	LB204343	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
QD1	SE208655.026	LB204343	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
QD2	SE208655.027	LB204343	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
BH1_0.1-0.2	SE208655.031	LB204343	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
BH1_0.7-0.8	SE208655.032	LB204343	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
CBs in Soil							Method:	ME-(AU)-[ENV]AN42
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP7_0.1-0.2	SE208655.001	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP7_1.3-1.4	SE208655.002	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP8_0.1-0.2	SE208655.003	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP8_0.9-1.0	SE208655.004	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP9_0.1-0.2	SE208655.005	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP9_1.2-1.3	SE208655.006	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
 TP10_0.1-0.2	SE208655.007	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP11_0.1-0.2	SE208655.008	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP11_0.8-0.9	SE208655.009	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP12_0.1-0.2	SE208655.010	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP12_0.8-0.9	SE208655.011	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
ГР12_1.7-1.8	SE208655.012	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
P13_0.1-0.2	SE208655.013	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
P13_1.2-1.3	SE208655.014	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
FP13_2.0-2.1	SE208655.015	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
ГР14_0.1-0.2	SE208655.016	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
P14_1.5-1.6	SE208655.017	LB204343	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
ГР15_0.1-0.2	SE208655.018	LB204343	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP15_1.7-1.8	SE208655.019	LB204343	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP16_0.1-0.2	SE208655.020	LB204343	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP17_0.1-0.2	SE208655.021	LB204343	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP18_0.1-0.2	SE208655.022	LB204343	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP18_1.8-1.9	SE208655.023	LB204343	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP19_0.1-0.2	SE208655.024	LB204343	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP19_1.4-1.5	SE208655.025	LB204343	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
QD1	SE208655.026	LB204343	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
QD2	SE208655.027	LB204343	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
3H1_0.1-0.2	SE208655.031	LB204343	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
3H1_0.7-0.8	SE208655.032	LB204343	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
otal Recoverable Elemen	nts in Soil/Waste Solids/Ma	terials by ICPOES					Method: ME-(AL)-[ENV]AN040/AN32
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
FP7_0.1-0.2	SE208655.001	LB204380	08 Jul 2020	13 Jul 2020	04 Jan 2021	15 Jul 2020	04 Jan 2021	17 Jul 2020
FP7_1.3-1.4	SE208655.002	LB204380	08 Jul 2020	13 Jul 2020	04 Jan 2021	15 Jul 2020	04 Jan 2021	17 Jul 2020
FP8_0.1-0.2	SE208655.003	LB204380	08 Jul 2020	13 Jul 2020	04 Jan 2021	15 Jul 2020	04 Jan 2021	17 Jul 2020
TP8_0.9-1.0	SE208655.004	LB204380	08 Jul 2020	13 Jul 2020	04 Jan 2021	15 Jul 2020	04 Jan 2021	17 Jul 2020
ГР9_0.1-0.2	SE208655.005	LB204380	08 Jul 2020	13 Jul 2020	04 Jan 2021	15 Jul 2020	04 Jan 2021	17 Jul 2020
FP9_1.2-1.3	SE208655.006	LB204380	08 Jul 2020	13 Jul 2020	04 Jan 2021	15 Jul 2020	04 Jan 2021	17 Jul 2020
FP10_0.1-0.2	SE208655.007	LB204380	08 Jul 2020	13 Jul 2020	04 Jan 2021	15 Jul 2020	04 Jan 2021	17 Jul 2020
TP11_0.1-0.2	SE208655.008	LB204380	08 Jul 2020	13 Jul 2020	04 Jan 2021	15 Jul 2020	04 Jan 2021	17 Jul 2020
TP11_0.8-0.9	SE208655.009	LB204380	08 Jul 2020	13 Jul 2020	04 Jan 2021	15 Jul 2020	04 Jan 2021	17 Jul 2020
TP12_0.1-0.2	SE208655.010	LB204380	08 Jul 2020	13 Jul 2020	04 Jan 2021	15 Jul 2020	04 Jan 2021	17 Jul 2020
TP12_0.8-0.9	SE208655.011	LB204380	08 Jul 2020	13 Jul 2020	04 Jan 2021	15 Jul 2020	04 Jan 2021	17 Jul 2020
TP12_1.7-1.8	SE208655.012	LB204380	08 Jul 2020	13 Jul 2020	04 Jan 2021	15 Jul 2020	04 Jan 2021	17 Jul 2020
TP13_0.1-0.2	SE208655.013	LB204380	08 Jul 2020	13 Jul 2020	04 Jan 2021	15 Jul 2020	04 Jan 2021	17 Jul 2020
TP13_1.2-1.3	SE208655.014	LB204380	08 Jul 2020	13 Jul 2020	04 Jan 2021	15 Jul 2020	04 Jan 2021	17 Jul 2020
TP13_2.0-2.1	SE208655.015	LB204380	08 Jul 2020	13 Jul 2020	04 Jan 2021	15 Jul 2020	04 Jan 2021	17 Jul 2020
	05000055.040	1 000 4000	00 101 0000	40.1.1.0000	04 1 0004	15 1 1 0000	04 1 0004	47 101 0000

SE208655.016

LB204380

08 Jul 2020

13 Jul 2020

04 Jan 2021

15 Jul 2020

04 Jan 2021

17 Jul 2020

Method: ME (ALD JENI/JAN/02

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES (continued) Method: ME-(AU)-[ENV]AN040/AN320 Sample Name Sampled Sample No. QC Ref Extraction Due Analysis Due Analysed Received Extracted TP14 1.5-1.6 SE208655.017 I B204380 08 Jul 2020 13 Jul 2020 04 Jan 2021 15 Jul 2020 04 Jan 2021 20 Jul 2020 20 Jul 2020 TP15_0.1-0.2 SE208655.018 08 Jul 2020 13 Jul 2020 04 Jan 2021 15 Jul 2020 04 Jan 2021 LB204380 TP15 1.7-1.8 SE208655.019 LB204380 08 Jul 2020 13 Jul 2020 04 Jan 2021 15 Jul 2020 04 Jan 2021 20 Jul 2020 TP16_0.1-0.2 SE208655.020 LB204381 08 Jul 2020 13 Jul 2020 04 Jan 2021 15 Jul 2020 04 Jan 2021 20 Jul 2020 TP17 0.1-0.2 SE208655.021 LB204381 08 Jul 2020 13 Jul 2020 15 Jul 2020 04 Jan 2021 04 Jan 2021 20 Jul 2020 TP18_0.1-0.2 SE208655.022 LB204381 08 Jul 2020 13 Jul 2020 04 Jan 2021 15 Jul 2020 04 Jan 2021 20 Jul 2020 SE208655.023 08 Jul 2020 13 Jul 2020 04 Jan 2021 15 Jul 2020 04 Jan 2021 TP18 1.8-1.9 LB204381 20 Jul 2020 TP19 0.1-0.2 SE208655.024 LB204381 08 Jul 2020 13 Jul 2020 04 Jan 2021 15 Jul 2020 04 Jan 2021 20 Jul 2020 TP19_1.4-1.5 SE208655.025 LB204381 08 Jul 2020 13 Jul 2020 15 Jul 2020 04 Jan 2021 04 Jan 2021 20 Jul 2020 QD1 04 Jan 2021 SE208655.026 LB204381 08 Jul 2020 13 Jul 2020 04 Jan 2021 15 Jul 2020 20 Jul 2020 QD2 SE208655.027 LB204381 08 Jul 2020 13 Jul 2020 04 Jan 2021 15 Jul 2020 04 Jan 2021 20 Jul 2020 13 Jul 2020 BH1_0.1-0.2 SE208655.031 LB204381 08 Jul 2020 04 Jan 2021 15 Jul 2020 04 Jan 2021 20 Jul 2020 BH1 0.7-0.8 SE208655.032 LB204381 08 Jul 2020 13 Jul 2020 04 Jan 2021 15 Jul 2020 04 Jan 2021 20 Jul 2020 Trace Metals (Dissolved) in Water by ICPMS Method: ME-(AU)-[ENV]AN318 Analysis Due Analysed Sample Name Sample No. QC Ref Sampled Extraction Due Extracted Received QR1 SE208655.028 LB204402 08 Jul 2020 13 Jul 2020 04 Jan 2021 15 Jul 2020 04 Jan 2021 16 Jul 2020

TRH (Total Recoverable Hydrocarbons) in Soil

TRH (Total Recoverable Hydrocarbons) in Soil Method: ME-(A								ME-(AU)-[ENV]AN403
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP7_0.1-0.2	SE208655.001	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	17 Jul 2020
TP7_1.3-1.4	SE208655.002	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	17 Jul 2020
TP8_0.1-0.2	SE208655.003	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	17 Jul 2020
TP8_0.9-1.0	SE208655.004	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	17 Jul 2020
TP9_0.1-0.2	SE208655.005	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	17 Jul 2020
TP9_1.2-1.3	SE208655.006	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	17 Jul 2020
TP10_0.1-0.2	SE208655.007	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	17 Jul 2020
TP11_0.1-0.2	SE208655.008	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP11_0.8-0.9	SE208655.009	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP12_0.1-0.2	SE208655.010	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP12_0.8-0.9	SE208655.011	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP12_1.7-1.8	SE208655.012	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP13_0.1-0.2	SE208655.013	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP13_1.2-1.3	SE208655.014	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP13_2.0-2.1	SE208655.015	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP14_0.1-0.2	SE208655.016	LB204342	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP14_1.5-1.6	SE208655.017	LB204343	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP15_0.1-0.2	SE208655.018	LB204343	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP15_1.7-1.8	SE208655.019	LB204343	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP16_0.1-0.2	SE208655.020	LB204343	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP17_0.1-0.2	SE208655.021	LB204343	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP18_0.1-0.2	SE208655.022	LB204343	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP18_1.8-1.9	SE208655.023	LB204343	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP19_0.1-0.2	SE208655.024	LB204343	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP19_1.4-1.5	SE208655.025	LB204343	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
QD1	SE208655.026	LB204343	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
QD2	SE208655.027	LB204343	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
BH1_0.1-0.2	SE208655.031	LB204343	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
BH1_0.7-0.8	SE208655.032	LB204343	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TRH (Total Recoverable Hy	ydrocarbons) in Water						Method: I	ME-(AU)-[ENV]AN403
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR1	SE208655.028	LB204298	08 Jul 2020	13 Jul 2020	15 Jul 2020	15 Jul 2020	24 Aug 2020	17 Jul 2020

VOC's in Soil Method: ME-(AU)-[ENV]AN433 Analysis Due Analysed Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted TP7 0.1-0.2 SE208655.001 LB204339 08 Jul 2020 13 Jul 2020 22 Jul 2020 15 Jul 2020 24 Aug 2020 17 Jul 2020 TP7_1.3-1.4 SE208655.002 LB204339 08 Jul 2020 13 Jul 2020 22 Jul 2020 15 Jul 2020 24 Aug 2020 17 Jul 2020 TP8_0.1-0.2 SE208655.003 LB204339 08 Jul 2020 13 Jul 2020 22 Jul 2020 15 Jul 2020 24 Aug 2020 17 Jul 2020 TP8 0.9-1.0 SE208655.004 LB204339 08 Jul 2020 13 Jul 2020 22 Jul 2020 15 Jul 2020 24 Aug 2020 17 Jul 2020

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

VOC's in Soil (continued)

VOC's in Soil (continued)							Method: I	/IE-(AU)-[ENV]AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP9_0.1-0.2	SE208655.005	LB204339	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	17 Jul 2020
TP9_1.2-1.3	SE208655.006	LB204339	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	17 Jul 2020
TP10_0.1-0.2	SE208655.007	LB204339	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	17 Jul 2020
TP11_0.1-0.2	SE208655.008	LB204339	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	17 Jul 2020
TP11_0.8-0.9	SE208655.009	LB204339	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	17 Jul 2020
TP12_0.1-0.2	SE208655.010	LB204339	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	17 Jul 2020
TP12_0.8-0.9	SE208655.011	LB204339	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	17 Jul 2020
TP12_1.7-1.8	SE208655.012	LB204339	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	17 Jul 2020
TP13_0.1-0.2	SE208655.013	LB204339	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	17 Jul 2020
TP13_1.2-1.3	SE208655.014	LB204339	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	17 Jul 2020
TP13_2.0-2.1	SE208655.015	LB204339	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	17 Jul 2020
TP14_0.1-0.2	SE208655.016	LB204339	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	17 Jul 2020
TP14_1.5-1.6	SE208655.017	LB204340	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP15_0.1-0.2	SE208655.018	LB204340	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP15_1.7-1.8	SE208655.019	LB204340	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP16_0.1-0.2	SE208655.020	LB204340	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP17_0.1-0.2	SE208655.021	LB204340	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP18_0.1-0.2	SE208655.022	LB204340	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP18_1.8-1.9	SE208655.023	LB204340	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP19_0.1-0.2	SE208655.024	LB204340	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP19_1.4-1.5	SE208655.025	LB204340	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
QD1	SE208655.026	LB204340	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
QD2	SE208655.027	LB204340	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
QTB1	SE208655.029	LB204340	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
QTS1	SE208655.030	LB204340	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
BH1_0.1-0.2	SE208655.031	LB204340	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
BH1_0.7-0.8	SE208655.032	LB204340	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
OCs in Water							Method: I	/IE-(AU)-[ENV]AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed

QR1	SE208655.028	LB204439	08 Jul 2020	13 Jul 2020	15 Jul 2020	16 Jul 2020†	25 Aug 2020	17 Jul 2020

Volatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENV]AN4								
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP7_0.1-0.2	SE208655.001	LB204339	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	17 Jul 2020
TP7_1.3-1.4	SE208655.002	LB204339	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	17 Jul 2020
TP8_0.1-0.2	SE208655.003	LB204339	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	17 Jul 2020
TP8_0.9-1.0	SE208655.004	LB204339	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	17 Jul 2020
TP9_0.1-0.2	SE208655.005	LB204339	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	17 Jul 2020
TP9_1.2-1.3	SE208655.006	LB204339	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	17 Jul 2020
TP10_0.1-0.2	SE208655.007	LB204339	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	17 Jul 2020
TP11_0.1-0.2	SE208655.008	LB204339	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	17 Jul 2020
TP11_0.8-0.9	SE208655.009	LB204339	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	17 Jul 2020
TP12_0.1-0.2	SE208655.010	LB204339	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	17 Jul 2020
TP12_0.8-0.9	SE208655.011	LB204339	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	17 Jul 2020
TP12_1.7-1.8	SE208655.012	LB204339	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	17 Jul 2020
TP13_0.1-0.2	SE208655.013	LB204339	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	17 Jul 2020
TP13_1.2-1.3	SE208655.014	LB204339	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	17 Jul 2020
TP13_2.0-2.1	SE208655.015	LB204339	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	17 Jul 2020
TP14_0.1-0.2	SE208655.016	LB204339	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	17 Jul 2020
TP14_1.5-1.6	SE208655.017	LB204340	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP15_0.1-0.2	SE208655.018	LB204340	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP15_1.7-1.8	SE208655.019	LB204340	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP16_0.1-0.2	SE208655.020	LB204340	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP17_0.1-0.2	SE208655.021	LB204340	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP18_0.1-0.2	SE208655.022	LB204340	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP18_1.8-1.9	SE208655.023	LB204340	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP19_0.1-0.2	SE208655.024	LB204340	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
TP19_1.4-1.5	SE208655.025	LB204340	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
QD1	SE208655.026	LB204340	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Volatile Petroleum Hydrocarbons in Soil (continued) Method: ME-(AU)-[i								ME-(AU)-[ENV]AN43
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QD2	SE208655.027	LB204340	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
QTB1	SE208655.029	LB204340	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
QTS1	SE208655.030	LB204340	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
BH1_0.1-0.2	SE208655.031	LB204340	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
BH1_0.7-0.8	SE208655.032	LB204340	08 Jul 2020	13 Jul 2020	22 Jul 2020	15 Jul 2020	24 Aug 2020	20 Jul 2020
Volatile Petroleum Hydro	carbons in Water						Method: I	ME-(AU)-[ENV]AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR1	SE208655.028	LB204439	08 Jul 2020	13 Jul 2020	15 Jul 2020	16 Jul 2020†	25 Aug 2020	17 Jul 2020

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

				Method: ME	
arameter	Sample Name	Sample Number	Units	Criteria	Recovery
etrachloro-m-xylene (TCMX) (Surrogate)	TP7_0.1-0.2	SE208655.001	%	60 - 130%	103
	TP7_1.3-1.4	SE208655.002	%	60 - 130%	105
	TP8_0.1-0.2	SE208655.003	%	60 - 130%	104
	TP8_0.9-1.0	SE208655.004	%	60 - 130%	98
	TP9_0.1-0.2	SE208655.005	%	60 - 130%	105
	TP9_1.2-1.3	SE208655.006	%	60 - 130%	107
	TP10_0.1-0.2	SE208655.007	%	60 - 130%	111
	TP11_0.1-0.2	SE208655.008	%	60 - 130%	106
	TP11_0.8-0.9	SE208655.009	%	60 - 130%	104
	TP12_0.1-0.2	SE208655.010	%	60 - 130%	107
	TP12_0.8-0.9	SE208655.011	%	60 - 130%	104
	TP12_1.7-1.8	SE208655.012	%	60 - 130%	109
	TP13_0.1-0.2	SE208655.013	%	60 - 130%	109
	TP13_1.2-1.3	SE208655.014	%	60 - 130%	103
	TP13_2.0-2.1	SE208655.015	%	60 - 130%	102
	TP14_0.1-0.2	SE208655.016	%	60 - 130%	100
	TP14_1.5-1.6	SE208655.017	%	60 - 130%	93
	TP15_0.1-0.2	SE208655.018	%	60 - 130%	104
		SE208655.019	%	60 - 130%	
	TP15_1.7-1.8	SE208655.019 SE208655.020			103
	TP16_0.1-0.2		%	60 - 130%	106
	<u>TP17_0.1-0.2</u>	SE208655.021	%	60 - 130%	104
	TP18_0.1-0.2	SE208655.022	%	60 - 130%	113
		SE208655.023	%	60 - 130%	110
	TP19_0.1-0.2	SE208655.024	%	60 - 130%	106
	TP19_1.4-1.5	SE208655.025	%	60 - 130%	107
	BH1_0.1-0.2	SE208655.031	%	60 - 130%	109
	BH1_0.7-0.8	SE208655.032	%	60 - 130%	122
P <mark>esticides in Soil</mark> arameter	Sample Name	Sample Number	Units	Criteria	(AU)-[ENV]- Recover
-fluorobiphenyl (Surrogate)	TP7_0.1-0.2	SE208655.001	%	60 - 130%	93
	TP7_1.3-1.4	SE208655.002	%	60 - 130%	71
	TP7_1.3-1.4 TP8_0.1-0.2	SE208655.002 SE208655.003			
	TP8_0.1-0.2	SE208655.003	%	60 - 130% 60 - 130%	71 96
	TP8_0.1-0.2 TP8_0.9-1.0	SE208655.003 SE208655.004	% % %	60 - 130% 60 - 130% 60 - 130%	71 96 89
	TP8_0.1-0.2 TP8_0.9-1.0 TP9_0.1-0.2	SE208655.003 SE208655.004 SE208655.005	% % %	60 - 130% 60 - 130% 60 - 130% 60 - 130%	71 96 89 72
	TP8_0.1-0.2 TP8_0.9-1.0 TP9_0.1-0.2 TP9_1.2-1.3	SE208655.003 SE208655.004 SE208655.005 SE208655.006	% % % %	60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	71 96 89 72 72
	TP8_0.1-0.2 TP8_0.9-1.0 TP9_0.1-0.2 TP9_1.2-1.3 TP10_0.1-0.2	SE208655.003 SE208655.004 SE208655.005 SE208655.006 SE208655.007	% % % %	60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	71 96 89 72 72 72
	TP8_0.1-0.2 TP8_0.9-1.0 TP9_0.1-0.2 TP9_1.2-1.3 TP10_0.1-0.2 TP11_0.1-0.2	SE208655.003 SE208655.004 SE208655.005 SE208655.006 SE208655.007 SE208655.008	% % % % %	60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	71 96 89 72 72 72 72 92
	TP8_0.1-0.2 TP8_0.9-1.0 TP9_0.1-0.2 TP9_1.2-1.3 TP10_0.1-0.2 TP11_0.1-0.2 TP11_0.8-0.9	SE208655.003 SE208655.004 SE208655.005 SE208655.006 SE208655.007 SE208655.008 SE208655.009	% % % % % %	60 - 130% 60 - 130%	71 96 89 72 72 72 72 92 92 77
	TP8_0.1-0.2 TP8_0.9-1.0 TP9_0.1-0.2 TP9_1.2-1.3 TP10_0.1-0.2 TP11_0.1-0.2 TP11_0.8-0.9 TP12_0.1-0.2	SE208655.003 SE208655.004 SE208655.005 SE208655.006 SE208655.007 SE208655.008 SE208655.009 SE208655.010	% % % % % %	60 - 130% 60 - 130%	71 96 89 72 72 72 92 77 77 78
	TP8_0.1-0.2 TP8_0.9-1.0 TP9_0.1-0.2 TP9_1.2-1.3 TP10_0.1-0.2 TP11_0.1-0.2 TP11_0.8-0.9 TP12_0.1-0.2 TP12_0.8-0.9	SE208655.003 SE208655.004 SE208655.005 SE208655.006 SE208655.007 SE208655.008 SE208655.009 SE208655.010 SE208655.011	% % % % % % %	60 - 130% 60 - 130%	71 96 89 72 72 72 92 77 77 78 101
	TP8_0.1-0.2 TP8_0.9-1.0 TP9_0.1-0.2 TP9_1.2-1.3 TP10_0.1-0.2 TP11_0.1-0.2 TP11_0.2.0.9 TP12_0.1-0.2 TP12_0.1-0.2 TP12_0.1-0.2	SE208655.003 SE208655.004 SE208655.005 SE208655.006 SE208655.007 SE208655.008 SE208655.009 SE208655.010 SE208655.011 SE208655.012	% % % % % % %	60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	71 96 89 72 72 72 92 77 77 78 101 88
	TP8_0.1-0.2 TP8_0.9-1.0 TP9_0.1-0.2 TP9_1.2-1.3 TP10_0.1-0.2 TP11_0.1-0.2 TP11_0.2 TP12_0.1-0.2 TP12_0.1-0.2 TP12_0.1-0.2 TP12_0.8-0.9 TP12_0.8-0.9 TP13_0.1-0.2	SE208655.003 SE208655.004 SE208655.005 SE208655.006 SE208655.007 SE208655.008 SE208655.009 SE208655.010 SE208655.011 SE208655.012 SE208655.013	% % % % % % % %	60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	71 96 89 72 72 72 92 77 78 101 88 94
	TP8_0.1-0.2 TP8_0.9-1.0 TP9_0.1-0.2 TP9_1.2-1.3 TP10_0.1-0.2 TP11_0.1-0.2 TP11_0.8-0.9 TP12_0.1-0.2 TP12_0.1-0.2 TP13_0.1-0.2 TP13_1.2-1.3	SE208655.003 SE208655.004 SE208655.005 SE208655.006 SE208655.007 SE208655.008 SE208655.009 SE208655.010 SE208655.011 SE208655.012 SE208655.013 SE208655.014	% % % % % % % % %	60 - 130% 60 - 130%	71 96 89 72 72 72 92 97 77 78 101 88 94 82
	TP8_0.1-0.2 TP8_0.9-1.0 TP9_0.1-0.2 TP9_1.2-1.3 TP10_0.1-0.2 TP11_0.8-0.9 TP12_0.1-0.2 TP12_0.1-0.2 TP12_0.1-0.2 TP13_0.1-0.2 TP13_1.2-1.3 TP13_0.2-2.1	SE208655.003 SE208655.004 SE208655.005 SE208655.006 SE208655.007 SE208655.008 SE208655.009 SE208655.010 SE208655.011 SE208655.012 SE208655.013 SE208655.014 SE208655.015	% % % % % % % % %	60 - 130% 60 - 130%	71 96 89 72 72 92 97 77 78 101 88 94 82 76
	TP8_0.1-0.2 TP8_0.9-1.0 TP9_0.1-0.2 TP9_1.2-1.3 TP10_0.1-0.2 TP11_0.1-0.2 TP11_0.8-0.9 TP12_0.1-0.2 TP12_0.8-0.9 TP12_0.1-0.2 TP13_1.2-1.8 TP13_0.1-0.2 TP13_1.2-1.3 TP13_2.0-2.1 TP14_0.1-0.2	SE208655.003 SE208655.004 SE208655.005 SE208655.006 SE208655.007 SE208655.008 SE208655.009 SE208655.010 SE208655.011 SE208655.012 SE208655.013 SE208655.014 SE208655.015 SE208655.016	% %	60 - 130% 60 - 130%	71 96 89 72 72 92 77 78 101 88 94 82 76 91
	TP8_0.1-0.2 TP8_0.9-1.0 TP9_0.1-0.2 TP9_0.1-0.2 TP10_0.1-0.2 TP11_0.1-0.2 TP12_0.1-0.2 TP12_0.1-0.2 TP12_0.1-0.2 TP12_0.1-0.2 TP13_0.1-0.2 TP13_0.1-0.2 TP13_0.1-0.2 TP13_0.1-0.2 TP13_0.1-0.2 TP13_0.1-0.2 TP14_0.1-0.2 TP14_1.5-1.6	SE208655.003 SE208655.004 SE208655.005 SE208655.006 SE208655.007 SE208655.008 SE208655.009 SE208655.010 SE208655.011 SE208655.012 SE208655.013 SE208655.014 SE208655.015 SE208655.016 SE208655.017	% %	60 - 130% 60 - 130%	71 96 89 72 72 92 92 77 78 101 88 94 82 76 91 81
	TP8_0.1-0.2 TP8_0.9-1.0 TP9_0.1-0.2 TP9_1.2-1.3 TP10_0.1-0.2 TP11_0.1-0.2 TP12_0.1-0.2 TP12_0.1-0.2 TP12_0.1-0.2 TP12_0.8-0.9 TP12_1.7-1.8 TP13_0.1-0.2 TP13_0.2-0.2 TP13_0.1-0.2 TP14_0.1-0.2 TP14_1.5-1.6 TP15_0.1-0.2	SE208655.003 SE208655.004 SE208655.005 SE208655.006 SE208655.007 SE208655.008 SE208655.009 SE208655.010 SE208655.011 SE208655.012 SE208655.013 SE208655.014 SE208655.015 SE208655.017 SE208655.017 SE208655.018	% %	60 - 130% 60 - 130%	71 96 89 72 72 92 77 78 101 88 94 82 76 91 81 89
	TP8_0.1-0.2 TP8_0.9-1.0 TP9_0.1-0.2 TP9_1.2-1.3 TP10_0.1-0.2 TP11_0.1-0.2 TP11_0.2 TP12_0.1-0.2 TP12_0.1-0.2 TP12_0.1-0.2 TP13_0.1-0.2 TP13_0.1-0.2 TP13_0.2-0.2 TP13_0.2-0.2 TP14_0.1-0.2 TP14_0.1-0.2 TP14_0.1-0.2 TP15_0.1-0.2 TP15_1.7-1.8	SE208655.003 SE208655.004 SE208655.005 SE208655.006 SE208655.007 SE208655.008 SE208655.009 SE208655.010 SE208655.011 SE208655.012 SE208655.013 SE208655.014 SE208655.015 SE208655.016 SE208655.017 SE208655.018 SE208655.019	% %	60 - 130% 60 - 130%	71 96 89 72 72 92 77 78 101 88 94 82 76 91 81
	TP8_0.1-0.2 TP8_0.9-1.0 TP9_0.1-0.2 TP9_1.2-1.3 TP10_0.1-0.2 TP11_0.1-0.2 TP11_0.2 TP12_0.1-0.2 TP12_0.1-0.2 TP12_0.1-0.2 TP13_0.1-0.2 TP13_0.1-0.2 TP13_0.1-0.2 TP13_0.1-0.2 TP13_0.1-0.2 TP14_1.5-1.6 TP15_0.1-0.2 TP15_0.1-0.2 TP15_0.1-0.2	SE208655.003 SE208655.004 SE208655.005 SE208655.006 SE208655.007 SE208655.008 SE208655.009 SE208655.010 SE208655.010 SE208655.011 SE208655.012 SE208655.013 SE208655.014 SE208655.016 SE208655.017 SE208655.018 SE208655.019 SE208655.019 SE208655.019	% %	60 - 130% 60 - 130%	71 96 89 72 72 92 77 78 101 88 94 82 76 91 81 81 89 93 86
	TP8_0.1-0.2 TP8_0.9-1.0 TP9_0.1-0.2 TP9_1.2-1.3 TP10_0.1-0.2 TP11_0.1-0.2 TP11_0.2 TP12_0.1-0.2 TP12_0.1-0.2 TP12_0.1-0.2 TP13_0.1-0.2 TP13_0.1-0.2 TP13_0.2-0.2 TP13_0.2-0.2 TP14_0.1-0.2 TP14_0.1-0.2 TP14_0.1-0.2 TP15_0.1-0.2 TP15_1.7-1.8	SE208655.003 SE208655.004 SE208655.005 SE208655.006 SE208655.007 SE208655.008 SE208655.009 SE208655.010 SE208655.011 SE208655.012 SE208655.013 SE208655.014 SE208655.015 SE208655.017 SE208655.018 SE208655.019 SE208655.019 SE208655.019 SE208655.019 SE208655.019 SE208655.020 SE208655.021	% %	60 - 130% 60 - 130%	71 96 89 72 72 92 77 78 101 88 94 82 76 91 81 89 93
	TP8_0.1-0.2 TP8_0.9-1.0 TP9_0.1-0.2 TP9_1.2-1.3 TP10_0.1-0.2 TP11_0.1-0.2 TP11_0.2 TP12_0.1-0.2 TP12_0.1-0.2 TP12_0.1-0.2 TP13_0.1-0.2 TP13_0.1-0.2 TP13_0.1-0.2 TP13_0.1-0.2 TP13_0.1-0.2 TP14_1.5-1.6 TP15_0.1-0.2 TP15_0.1-0.2 TP15_0.1-0.2	SE208655.003 SE208655.004 SE208655.005 SE208655.006 SE208655.007 SE208655.008 SE208655.009 SE208655.010 SE208655.010 SE208655.011 SE208655.012 SE208655.013 SE208655.014 SE208655.016 SE208655.017 SE208655.018 SE208655.019 SE208655.019 SE208655.019	% %	60 - 130% 60 - 130%	71 96 89 72 72 92 77 78 101 88 94 82 76 91 81 81 89 93 86
	TP8_0.1-0.2 TP9_0.1-0.2 TP9_0.1-0.2 TP10_0.1-0.2 TP11_0.1-0.2 TP11_0.2 TP12_0.1-0.2 TP12_0.1-0.2 TP12_0.1-0.2 TP13_0.1-0.2 TP13_0.1-0.2 TP13_0.1-0.2 TP14_1.5-1.6 TP15_0.1-0.2 TP15_0.1-0.2 TP15_0.1-0.2 TP15_0.1-0.2 TP15_0.1-0.2	SE208655.003 SE208655.004 SE208655.005 SE208655.006 SE208655.007 SE208655.008 SE208655.009 SE208655.010 SE208655.011 SE208655.012 SE208655.013 SE208655.014 SE208655.015 SE208655.017 SE208655.018 SE208655.019 SE208655.019 SE208655.019 SE208655.019 SE208655.019 SE208655.020 SE208655.021	% %	60 - 130% 60 - 130%	71 96 89 72 72 92 77 78 101 88 94 82 76 91 81 81 89 93 86 90
	TP8_0.1-0.2 TP8_0.9-1.0 TP9_0.1-0.2 TP9_1.2-1.3 TP10_0.1-0.2 TP11_0.1-0.2 TP11_0.8-0.9 TP12_0.1-0.2 TP12_0.1-0.2 TP13_0.1-0.2 TP13_1.2-1.3 TP14_0.1-0.2 TP14_1.5-1.6 TP15_0.1-0.2 TP15_1.7-1.8 TP16_0.1-0.2 TP15_0.1-0.2 TP15_0.1-0.2 TP15_0.1-0.2	SE208655.003 SE208655.004 SE208655.005 SE208655.006 SE208655.007 SE208655.008 SE208655.009 SE208655.010 SE208655.011 SE208655.012 SE208655.013 SE208655.014 SE208655.015 SE208655.016 SE208655.017 SE208655.019 SE208655.019 SE208655.019 SE208655.019 SE208655.019 SE208655.020 SE208655.021 SE208655.021 SE208655.021 SE208655.021	% %	60 - 130% 60 - 130%	71 96 89 72 72 92 77 78 101 88 94 82 76 91 81 89 93 86 90 89
	TP8_0.1-0.2 TP8_0.9-1.0 TP9_0.1-0.2 TP9_1.2-1.3 TP10_0.1-0.2 TP11_0.1-0.2 TP11_0.8-0.9 TP12_0.1-0.2 TP12_0.1-0.2 TP13_0.1-0.2 TP13_0.1-0.2 TP13_0.1-0.2 TP14_1.5-1.6 TP15_0.1-0.2 TP15_0.1-0.2 TP15_0.1-0.2 TP16_0.1-0.2 TP18_1.8-1.9	SE208655.003 SE208655.004 SE208655.005 SE208655.006 SE208655.007 SE208655.008 SE208655.009 SE208655.010 SE208655.011 SE208655.012 SE208655.013 SE208655.014 SE208655.015 SE208655.016 SE208655.017 SE208655.018 SE208655.019 SE208655.020 SE208655.021 SE208655.021 SE208655.022 SE208655.023	% %	60 - 130% 60 - 130%	71 96 89 72 72 72 92 97 77 78 101 88 94 82 76 91 81 89 93 86 90 89 100
	TP8_0.1-0.2 TP8_0.9-1.0 TP9_0.1-0.2 TP9_1.2-1.3 TP10_0.1-0.2 TP11_0.8-0.9 TP12_0.1-0.2 TP12_0.1-0.2 TP13_0.1-0.2 TP13_1.2-1.3 TP14_0.1-0.2 TP14_0.1-0.2 TP15_1.7-1.8 TP15_0.1-0.2 TP15_0.1-0.2 TP15_0.1-0.2 TP16_0.1-0.2 TP18_1.8-1.9 TP18_0.1-0.2	SE208655.003 SE208655.004 SE208655.005 SE208655.006 SE208655.007 SE208655.009 SE208655.009 SE208655.010 SE208655.011 SE208655.012 SE208655.013 SE208655.014 SE208655.015 SE208655.016 SE208655.017 SE208655.018 SE208655.019 SE208655.021 SE208655.021 SE208655.021 SE208655.021 SE208655.021 SE208655.021 SE208655.021 SE208655.021 SE208655.023 SE208655.024	% %	60 - 130% 60 - 130%	71 96 89 72 72 72 92 77 78 101 88 94 82 76 91 81 89 93 86 90 93 86 90 90
	TP8_0.1-0.2 TP8_0.9-1.0 TP9_0.1-0.2 TP9_1.2-1.3 TP10_0.1-0.2 TP11_0.8-0.9 TP12_0.1-0.2 TP12_0.1-0.2 TP13_0.1-0.2 TP13_1.2-1.3 TP14_0.1-0.2 TP15_0.1-0.2 TP15_0.1-0.2 TP15_0.1-0.2 TP15_0.1-0.2 TP16_0.1-0.2 TP18_1.8-1.9 TP19_0.1-0.2 TP18_1.4-1.5	SE208655.003 SE208655.004 SE208655.005 SE208655.006 SE208655.007 SE208655.007 SE208655.009 SE208655.009 SE208655.010 SE208655.011 SE208655.012 SE208655.013 SE208655.014 SE208655.015 SE208655.016 SE208655.017 SE208655.019 SE208655.021 SE208655.021 SE208655.021 SE208655.021 SE208655.021 SE208655.021 SE208655.021 SE208655.021 SE208655.023 SE208655.024 SE208655.025	% %	60 - 130% 60 - 130%	71 96 89 72 72 92 77 78 101 88 94 82 76 91 81 89 93 86 90 90 89 100 94 85
14-p-terphenyl (Surrogate)	TP8_0.1-0.2 TP8_0.9-1.0 TP9_0.1-0.2 TP9_1.2-1.3 TP10_0.1-0.2 TP11_0.1-0.2 TP12_0.1-0.2 TP12_0.1-0.2 TP12_0.1-0.2 TP13_0.1-0.2 TP13_0.1-0.2 TP13_0.1-0.2 TP14_0.1-0.2 TP15_0.1-0.2 TP15_0.1-0.2 TP15_0.1-0.2 TP15_0.1-0.2 TP15_0.1-0.2 TP16_0.1-0.2 TP18_0.1-0.2 TP18_0.1-0.2 TP19_0.1-0.2 TP19_0.1-0.2 TP19_1.4-1.5 BH1_0.1-0.2	SE208655.003 SE208655.004 SE208655.005 SE208655.006 SE208655.007 SE208655.008 SE208655.009 SE208655.010 SE208655.010 SE208655.011 SE208655.012 SE208655.013 SE208655.013 SE208655.014 SE208655.015 SE208655.016 SE208655.017 SE208655.018 SE208655.019 SE208655.020 SE208655.021 SE208655.021 SE208655.023 SE208655.024 SE208655.025 SE208655.024 SE208655.021 SE208655.023 SE208655.024 SE208655.025 SE208655.031 SE208655.032	% %	60 - 130% 60 - 130% <td< td=""><td>71 96 89 72 72 72 92 77 78 101 88 94 82 76 91 81 89 93 86 90 93 89 93 85 90</td></td<>	71 96 89 72 72 72 92 77 78 101 88 94 82 76 91 81 89 93 86 90 93 89 93 85 90
14-p-terphenyl (Surrogate)	TP8_0.1-0.2 TP8_0.9-1.0 TP9_0.1-0.2 TP9_0.1-0.2 TP10_0.1-0.2 TP11_0.1-0.2 TP11_0.1-0.2 TP12_0.1-0.2 TP12_0.1-0.2 TP12_0.1-0.2 TP13_1.2-1.3 TP13_0.1-0.2 TP14_0.1-0.2 TP15_0.1-0.2 TP15_0.1-0.2 TP16_0.1-0.2 TP18_0.1-0.2 TP18_0.1-0.2 TP19_0.1-0.2 TP19_1_0.1-0.2 BH1_0.1-0.2 BH1_0.1-0.2 BH1_0.1-0.2	SE208655.003 SE208655.004 SE208655.005 SE208655.006 SE208655.007 SE208655.008 SE208655.009 SE208655.010 SE208655.010 SE208655.011 SE208655.012 SE208655.013 SE208655.014 SE208655.016 SE208655.017 SE208655.018 SE208655.019 SE208655.020 SE208655.021 SE208655.021 SE208655.023 SE208655.024 SE208655.031 SE208655.031 SE208655.032 SE208655.032 SE208655.032	% %	60 - 130% 60 - 130% <td< td=""><td>71 96 89 72 72 72 92 77 78 101 88 94 82 76 91 81 89 93 86 90 93 86 90 93 86 90 93 89 93 86 90 93 89 93 80 93 93 80 93 80 93 80 93 80 93 80 93 80 93 80 93 80 80 93 80 80 93 80 80 80 80 80 80 80 80 80 80 80 80 80</td></td<>	71 96 89 72 72 72 92 77 78 101 88 94 82 76 91 81 89 93 86 90 93 86 90 93 86 90 93 89 93 86 90 93 89 93 80 93 93 80 93 80 93 80 93 80 93 80 93 80 93 80 93 80 80 93 80 80 93 80 80 80 80 80 80 80 80 80 80 80 80 80
14-p-terphenyl (Surrogate)	TP8_0.1-0.2 TP8_0.9-1.0 TP9_0.1-0.2 TP9_1.2-1.3 TP10_0.1-0.2 TP11_0.1-0.2 TP12_0.1-0.2 TP12_0.1-0.2 TP12_0.1-0.2 TP13_0.1-0.2 TP13_0.1-0.2 TP13_0.1-0.2 TP14_0.1-0.2 TP15_0.1-0.2 TP15_0.1-0.2 TP15_0.1-0.2 TP15_0.1-0.2 TP15_0.1-0.2 TP16_0.1-0.2 TP18_0.1-0.2 TP18_0.1-0.2 TP19_0.1-0.2 TP19_0.1-0.2 TP19_1.4-1.5 BH1_0.1-0.2	SE208655.003 SE208655.004 SE208655.005 SE208655.006 SE208655.007 SE208655.008 SE208655.009 SE208655.010 SE208655.010 SE208655.011 SE208655.012 SE208655.013 SE208655.013 SE208655.014 SE208655.015 SE208655.016 SE208655.017 SE208655.018 SE208655.019 SE208655.020 SE208655.021 SE208655.021 SE208655.023 SE208655.024 SE208655.025 SE208655.024 SE208655.021 SE208655.023 SE208655.024 SE208655.025 SE208655.031 SE208655.032	% %	60 - 130% 60 - 130% <td< td=""><td>71 96 89 72 72 72 92 77 78 101 88 94 82 76 91 81 89 93 86 90 89 93 86 90 93 89 100 94 85 92 96</td></td<>	71 96 89 72 72 72 92 77 78 101 88 94 82 76 91 81 89 93 86 90 89 93 86 90 93 89 100 94 85 92 96

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

OP Pesticides in Soil (continued) Method: ME-(AU)-[ENV]AN420 Recovery % Parameter Units Criteria Sample Name Sample Number d14-p-terphenyl (Surrogate) TP9_0.1-0.2 SE208655.005 % 60 - 130% 80 TP9_1.2-1.3 SE208655.006 60 - 130% % 100 TP10 0.1-0.2 SE208655.007 % 60 - 130% 90 TP11_0.1-0.2 SE208655.008 60 - 130% 83 % SE208655.009 TP11_0.8-0.9 60 - 130% 79 % TP12 0.1-0.2 SE208655.010 % 60 - 130% 97 TP12_0.8-0.9 SE208655.011 % 60 - 130% 90 TP12_1.7-1.8 SE208655.012 % 60 - 130% 89 TP13 0.1-0.2 SE208655.013 % 60 - 130% 93 TP13_1.2-1.3 SE208655.014 % 60 - 130% 85 TP13_2.0-2.1 SE208655.015 % 60 - 130% 81 SE208655.016 TP14 0.1-0.2 % 60 - 130% 87 TP14 1.5-1.6 SE208655.017 % 60 - 130% 75 TP15_0.1-0.2 SE208655.018 % 60 - 130% 85 TP15 1.7-1.8 SE208655.019 % 60 - 130% 91 TP16_0.1-0.2 SE208655.020 % 60 - 130% 84 TP17_0.1-0.2 SE208655.021 % 60 - 130% 89 TP18 0.1-0.2 SE208655.022 % 60 - 130% 87 TP18_1.8-1.9 SE208655.023 % 60 - 130% 97 TP19_0.1-0.2 SE208655.024 60 - 130% 93 % TP19 1.4-1.5 SE208655.025 % 60 - 130% 84 BH1_0.1-0.2 SE208655.031 60 - 130% 90 % BH1_0.7-0.8 SE208655.032 % 60 - 130% 98 PAH (Polynuclear Aromatic Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN420 Recovery % Parameter Sample Name Sample Numb Units Criteria 2-fluorobiphenyl (Surrogate) SE208655.001 TP7_0.1-0.2 % 70 - 130% 93 SE208655.002 70 - 130% TP7_1.3-1.4 % 90 TP8 0.1-0.2 SE208655.003 % 70 - 130% 96 TP8_0.9-1.0 SE208655.004 % 70 - 130% 80 TP9_0.1-0.2 SE208655.005 % 70 - 130% 72 TP9 1.2-1.3 SE208655.006 % 70 - 130% 72 TP10_0.1-0.2 SE208655.007 % 70 - 130% 72 TP11_0.1-0.2 SE208655.008 % 70 - 130% 92 TP11 0.8-0.9 SE208655.009 % 70 - 130% 77 TP12_0.1-0.2 SE208655.010 % 70 - 130% 78 TP12_0.8-0.9 SE208655.011 70 - 130% 101 % SE208655.012 TP12 1.7-1.8 % 70 - 130% 88 TP13_0.1-0.2 SE208655.013 % 70 - 130% 94 TP13_1.2-1.3 SE208655.014 % 70 - 130% 82 TP13 2.0-2.1 SE208655.015 % 70 - 130% 76 TP14_0.1-0.2 SE208655.016 70 - 130% 91 % TP14_1.5-1.6 SE208655.017 % 70 - 130% 81 TP15 0.1-0.2 SE208655.018 % 70 - 130% 89 TP15_1.7-1.8 SE208655.019 70 - 130% 93 % TP16_0.1-0.2 SE208655.020 70 - 130% 86 % TP17 0.1-0.2 SE208655.021 % 70 - 130% 90 TP18_0.1-0.2 SE208655.022 % 70 - 130% 89 TP18_1.8-1.9 SE208655.023 % 70 - 130% 100 TP19 0.1-0.2 SE208655.024 % 70 - 130% 94 TP19_1.4-1.5 SE208655.025 % 70 - 130% 85 BH1_0.1-0.2 SE208655.031 % 70 - 130% 92 SE208655.032 BH1 0.7-0.8 % 70 - 130% 96 d14-p-terphenyl (Surrogate) TP7_0.1-0.2 SE208655.001 % 70 - 130% 92 TP7_1.3-1.4 SE208655.002 % 70 - 130% 97 TP8 0.1-0.2 SE208655.003 % 70 - 130% 82 TP8_0.9-1.0 SE208655.004 % 70 - 130% 97 TP9_0.1-0.2 SE208655.005 70 - 130% 80 % TP9 1.2-1.3 SE208655.006 % 70 - 130% 100 TP10_0.1-0.2 SE208655.007 % 70 - 130% 90 TP11_0.1-0.2 SE208655.008 70 - 130% % 83

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)					-(AU)-[ENV]AN4
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
d14-p-terphenyl (Surrogate)	TP11_0.8-0.9	SE208655.009	%	70 - 130%	79
	TP12_0.1-0.2	SE208655.010	%	70 - 130%	97
	TP12_0.8-0.9	SE208655.011	%	70 - 130%	90
	TP12_1.7-1.8	SE208655.012	%	70 - 130%	89
	TP13_0.1-0.2	SE208655.013	%	70 - 130%	93
	TP13_1.2-1.3	SE208655.014	%	70 - 130%	85
	TP13_2.0-2.1	SE208655.015	%	70 - 130%	81
	TP14_0.1-0.2	SE208655.016	%	70 - 130%	87
	TP14_1.5-1.6	SE208655.017	%	70 - 130%	75
	TP15_0.1-0.2	SE208655.018	%	70 - 130%	85
	TP15_1.7-1.8	SE208655.019	%	70 - 130%	91
	TP16_0.1-0.2	SE208655.020	%	70 - 130%	84
	TP17_0.1-0.2	SE208655.021	%	70 - 130%	89
	TP18_0.1-0.2	SE208655.022	%	70 - 130%	87
	TP18_1.8-1.9	SE208655.023	%	70 - 130%	97
	TP19_0.1-0.2	SE208655.024	%	70 - 130%	93
	TP19_1.4-1.5	SE208655.025	%	70 - 130%	84
	BH1_0.1-0.2	SE208655.031	%	70 - 130%	90
	BH1_0.7-0.8	SE208655.032	%	70 - 130%	98
d5-nitrobenzene (Surrogate)	TP7_0.1-0.2	SE208655.001	%	70 - 130%	87
	TP7_1.3-1.4	SE208655.002	%	70 - 130%	84
	TP8_0.1-0.2	SE208655.003	%	70 - 130%	84
	TP8_0.9-1.0	SE208655.004	%	70 - 130%	86
	TP9_0.1-0.2	SE208655.005	%	70 - 130%	82
	TP9_1.2-1.3	SE208655.006	%	70 - 130%	87
	TP10_0.1-0.2	SE208655.007	%	70 - 130%	82
	TP11_0.1-0.2	SE208655.008	%	70 - 130%	86
	TP11_0.8-0.9	SE208655.009	%	70 - 130%	88
	TP12_0.1-0.2	SE208655.010	%	70 - 130%	84
	TP12_0.8-0.9	SE208655.011	%	70 - 130%	85
	TP12_1.7-1.8	SE208655.012	%	70 - 130%	86
	TP13_0.1-0.2	SE208655.013	%	70 - 130%	88
	TP13_1.2-1.3	SE208655.014	%	70 - 130%	90
	TP13_2.0-2.1	SE208655.015	%	70 - 130%	84
	TP14_0.1-0.2	SE208655.016	%	70 - 130%	84
	TP14_1.5-1.6	SE208655.017	%	70 - 130%	73
	TP15_0.1-0.2	SE208655.018	%	70 - 130%	82
	TP15_1.7-1.8	SE208655.019	%	70 - 130%	87
	TP16_0.1-0.2	SE208655.020	%	70 - 130%	82
	TP17_0.1-0.2	SE208655.021	%	70 - 130%	88
	TP18_0.1-0.2	SE208655.022	%	70 - 130%	89
	TP18_1.8-1.9	SE208655.023	%	70 - 130%	100
	TP19_0.1-0.2	SE208655.024	%	70 - 130%	98
	TP19_0.1-0.2	SE208655.025	%	70 - 130%	86
	BH1_0.1-0.2	SE208655.031	%	70 - 130%	96
	BH1_0.7-0.8	SE208655.032	%	70 - 130%	101
CBs in Soil				Method: ME	-(AU)-[ENV]AN
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Tetrachloro-m-xylene (TCMX) (Surrogate)	_TP7_0.1-0.2	SE208655.001	%	60 - 130%	103
	TP7_1.3-1.4	SE208655.002	%	60 - 130%	105
	TP8_0.1-0.2	SE208655.003	%	60 - 130%	104
	TP8_0.9-1.0	SE208655.004	%	60 - 130%	98
	TP9_0.1-0.2	SE208655.005	%	60 - 130%	105
	TP9_1.2-1.3	SE208655.006	%	60 - 130%	107
	TP10 0.1-0.2	SE208655.007	%	60 - 130%	111
	TP11_0.1-0.2	SE208655.008	%	60 - 130%	106
	TP11_0.8-0.9	SE208655.009	%	60 - 130%	100
	TP12_0.1-0.2	SE208655.010	%	60 - 130%	104
	TP12_0.8-0.9	SE208655.011	%	60 - 130%	104

TP12_1.7-1.8

SE208655.012

109

60 - 130%

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PCBs in Soil (continued) Method: ME-(AU)-[ENV]AN420 Recovery % Units Criteria Parameter Sample Name Sample Number Tetrachloro-m-xylene (TCMX) (Surrogate) TP13_0.1-0.2 SE208655.013 % 60 - 130% 109 TP13_1.2-1.3 SE208655.014 60 - 130% % 103 TP13 2.0-2.1 SE208655.015 % 60 - 130% 102 TP14_0.1-0.2 SE208655.016 60 - 130% 100 % TP14_1.5-1.6 SE208655.017 60 - 130% 93 % TP15 0.1-0.2 SE208655.018 % 60 - 130% 104 TP15 1.7-1.8 SE208655.019 % 60 - 130% 103 TP16_0.1-0.2 SE208655.020 % 60 - 130% 106 TP17 0.1-0.2 SE208655.021 % 60 - 130% 104 TP18_0.1-0.2 SE208655.022 60 - 130% 113 % TP18_1.8-1.9 SE208655.023 % 60 - 130% 110 SE208655.024 TP19 0.1-0.2 % 60 - 130% 106 TP19 1.4-1.5 SE208655.025 % 60 - 130% 107 BH1_0.1-0.2 SE208655.031 60 - 130% 109 % SE208655.032 BH1 0.7-0.8 % 60 - 130% 122 VOC's in Soil Method: ME-(AU)-[ENVIAN433 Parameter Sample Name Sample Numb Criteria Recovery % TP7_0.1-0.2 SE208655.001 60 - 130% 71 Bromofluorobenzene (Surrogate) % TP7 1.3-1.4 SE208655.002 % 60 - 130% 68 TP8_0.1-0.2 SE208655.003 % 60 - 130% 72 TP8_0.9-1.0 SE208655.004 60 - 130% 73 % TP9 0.1-0.2 SE208655.005 % 60 - 130% 70 TP9_1.2-1.3 SE208655.006 60 - 130% 67 % TP10_0.1-0.2 SE208655.007 69 60 - 130% % TP11 0.1-0.2 SE208655.008 % 60 - 130% 71 TP11_0.8-0.9 SE208655.009 60 - 130% 68 % TP12_0.1-0.2 SE208655.010 69 % 60 - 130% TP12 0.8-0.9 SE208655.011 % 60 - 130% 66 TP12_1.7-1.8 SE208655.012 % 60 - 130% 70 TP13_0.1-0.2 SE208655.013 % 60 - 130% 68 TP13 1.2-1.3 SE208655.014 % 60 - 130% 66 TP13_2.0-2.1 SE208655.015 % 60 - 130% 67 TP14_0.1-0.2 SE208655.016 % 60 - 130% 68 TP14 1.5-1.6 SE208655.017 % 60 - 130% 71 TP15_0.1-0.2 SE208655.018 % 60 - 130% 69 TP15_1.7-1.8 SE208655.019 60 - 130% 68 % TP16 0.1-0.2 SE208655.020 % 60 - 130% 77 TP17_0.1-0.2 SE208655.021 % 60 - 130% 64 TP18_0.1-0.2 SE208655.022 % 60 - 130% 68 TP18 1.8-1.9 SE208655.023 % 60 - 130% 67 TP19_0.1-0.2 SE208655.024 60 - 130% 70 % TP19_1.4-1.5 SE208655.025 60 - 130% 71

QD1

QD2

QTB1

QTS1

BH1_0.1-0.2

BH1_0.7-0.8

TP7 0.1-0.2

TP7_1.3-1.4

TP8_0.1-0.2

TP8 0.9-1.0

TP9_0.1-0.2

TP9_1.2-1.3

TP10 0.1-0.2

TP11_0.1-0.2

TP11_0.8-0.9

TP12 0.1-0.2

TP12_0.8-0.9

TP12_1.7-1.8

20/7/2020

d4-1.2-dichloroethane (Surrogate)

66

68

78

70

69

69

83

80

84

86

84

78

80

85

79

82

78

82

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

60 - 130%

60 - 130%

60 - 130%

60 - 130%

60 - 130%

60 - 130%

60 - 130%

60 - 130%

60 - 130%

60 - 130%

60 - 130%

60 - 130%

60 - 130%

60 - 130%

60 - 130%

60 - 130%

60 - 130%

60 - 130%

SE208655.026

SE208655.027

SE208655.029

SE208655.030

SE208655.031

SE208655.032

SE208655.001

SE208655.002

SE208655.003

SE208655.004

SE208655.005

SE208655.006

SE208655.007

SE208655.008

SE208655.009

SE208655.010

SE208655.011

SE208655.012

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

DC's in Soil (continued)					(AU)-[ENV]AN
arameter	Sample Name	Sample Number	Units	Criteria	Recovery %
14-1,2-dichloroethane (Surrogate)	TP13_0.1-0.2	SE208655.013	%	60 - 130%	80
	TP13_1.2-1.3	SE208655.014	%	60 - 130%	78
	TP13_2.0-2.1	SE208655.015	%	60 - 130%	79
	TP14_0.1-0.2	SE208655.016	%	60 - 130%	81
	TP14_1.5-1.6	SE208655.017	%	60 - 130%	87
	TP15_0.1-0.2	SE208655.018	%	60 - 130%	86
	TP15_1.7-1.8	SE208655.019	%	60 - 130%	85
	TP16_0.1-0.2	SE208655.020	%	60 - 130%	95
	TP17_0.1-0.2	SE208655.021	%	60 - 130%	80
	TP18_0.1-0.2	SE208655.022	%	60 - 130%	85
	TP18_1.8-1.9	SE208655.023	%	60 - 130%	84
	TP19_0.1-0.2	SE208655.024	%	60 - 130%	89
	TP19_1.4-1.5	SE208655.025	%	60 - 130%	89
	QD1	SE208655.026	%	60 - 130%	84
	QD2	SE208655.027	%	60 - 130%	85
	QTB1	SE208655.029	%	60 - 130%	83
	QTS1	SE208655.030	%	60 - 130%	84
	BH1_0.1-0.2	SE208655.031	%	60 - 130%	86
	BH1_0.7-0.8	SE208655.032	%	60 - 130%	87
d8-toluene (Surrogate)	TP7_0.1-0.2	SE208655.001	%	60 - 130%	80
	TP7_1.3-1.4	SE208655.002	%	60 - 130%	75
	TP8_0.1-0.2	SE208655.003	%	60 - 130%	79
	TP8_0.9-1.0	SE208655.004	%	60 - 130%	83
	TP9_0.1-0.2	SE208655.005	%	60 - 130%	79
	TP9_1.2-1.3	SE208655.006	%	60 - 130%	75
	TP10_0.1-0.2	SE208655.007	%	60 - 130%	75
	TP11_0.1-0.2	SE208655.008	%	60 - 130%	78
	TP11_0.8-0.9	SE208655.009	%	60 - 130%	76
	TP12_0.1-0.2	SE208655.010	%	60 - 130%	78
	TP12_0.8-0.9	SE208655.011	%	60 - 130%	74
	TP12_1.7-1.8	SE208655.012	%	60 - 130%	79
	TP13_0.1-0.2	SE208655.013	%	60 - 130%	75
	TP13_1.2-1.3	SE208655.014	%	60 - 130%	73
	TP13_2.0-2.1	SE208655.015	%	60 - 130%	73
	TP14_0.1-0.2	SE208655.016	%	60 - 130%	77
	TP14_1.5-1.6	SE208655.017	%	60 - 130%	84
	TP15_0.1-0.2	SE208655.018	%	60 - 130%	83
	TP15_1.7-1.8	SE208655.019	%	60 - 130%	81
	TP16_0.1-0.2	SE208655.020	%	60 - 130%	91
	TP17 0.1-0.2	SE208655.021	%	60 - 130%	78
	TP18_0.1-0.2	SE208655.022	%	60 - 130%	82
	TP18 1.8-1.9	SE208655.023	%	60 - 130%	82
	TP19_0.1-0.2	SE208655.024	%	60 - 130%	86
	TP19_1.4-1.5	SE208655.025	%	60 - 130%	86
	QD1	SE208655.026	%	60 - 130%	81
	QD2	SE208655.027	%	60 - 130%	83
	QTB1	SE208655.029	%	60 - 130%	81
	QTS1	SE208655.030	%	60 - 130%	82
	BH1_0.1-0.2	SE208655.030	%	60 - 130%	85
	BH1 0.7-0.8	SE208655.032	%	60 - 130%	86
		2220000.002	70		
No. In Michael				Method: ME-	
		Sample Number	Units	Criteria	Recovery
arameter	Sample Name				-
arameter	Sample Name QR1	SE208655.028	%	40 - 130%	98
DCs in Water arameter Bromofluorobenzene (Surrogate) 14-1,2-dichloroethane (Surrogate)		SE208655.028 SE208655.028	%	40 - 130% 40 - 130%	98 110
arameter Bromofluorobenzene (Surrogate)	QR1				
arameter Bromofluorobenzene (Surrogate) 14-1,2-dichloroethane (Surrogate)	QR1 QR1	SE208655.028	%	40 - 130% 40 - 130%	110 96
arameter Bromofluorobenzene (Surrogate) 14-1,2-dichloroethane (Surrogate) 18-toluene (Surrogate) o <mark>latile Petroleum Hydrocarbons in Soil</mark>	OR1 OR1 QR1 QR1	SE208655.028 SE208655.028	%	40 - 130% 40 - 130% Method: ME-	110 96 •(AU)-[ENV]A
arameter Bromofluorobenzene (Surrogate) 14-1,2-dichloroethane (Surrogate) 18-toluene (Surrogate) Isatile Petroleum Hydrocarbons in Soil arameter	OR1 OR1 OR1 Sample Name	SE208655.028 SE208655.028 Sample Number	% % Units	40 - 130% 40 - 130% <mark>Method: ME</mark> - Criteria	110 96 -(AU)-[ENV]A Recovery
arameter Bromofluorobenzene (Surrogate) 14-1,2-dichloroethane (Surrogate) 18-toluene (Surrogate) o <mark>latile Petroleum Hydrocarbons in Soil</mark>	OR1 OR1 QR1 QR1	SE208655.028 SE208655.028	%	40 - 130% 40 - 130% Method: ME-	110 96 •(AU)-[ENV]A

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Volatile Petroleum Hydrocarbons in Soil (continued) Method: ME-(AU)-[ENV]AN433 Recovery % Units Criteria Parameter Sample Name Sample Number Bromofluorobenzene (Surrogate) TP8_0.9-1.0 SE208655.004 % 60 - 130% 73 TP9_0.1-0.2 SE208655.005 60 - 130% 70 % TP9 1.2-1.3 SE208655.006 % 60 - 130% 67 TP10_0.1-0.2 SE208655.007 60 - 130% 69 % TP11_0.1-0.2 SE208655.008 60 - 130% 71 % TP11 0.8-0.9 SE208655.009 % 60 - 130% 68 TP12 0.1-0.2 SE208655.010 % 60 - 130% 69 TP12_0.8-0.9 SE208655.011 % 60 - 130% 66 TP12 1.7-1.8 SE208655.012 % 60 - 130% 70 TP13 0.1-0.2 SE208655.013 % 60 - 130% 68 TP13_1.2-1.3 SE208655.014 % 60 - 130% 66 SE208655.015 TP13 2.0-2.1 % 60 - 130% 67 TP14 0.1-0.2 SE208655.016 % 60 - 130% 68 TP14_1.5-1.6 SE208655.017 % 60 - 130% 71 TP15 0.1-0.2 SE208655.018 % 60 - 130% 69 TP15_1.7-1.8 SE208655.019 % 60 - 130% 68 TP16_0.1-0.2 SE208655.020 % 60 - 130% 77 TP17 0.1-0.2 SE208655.021 % 60 - 130% 64 TP18_0.1-0.2 SE208655.022 % 60 - 130% 68 TP18_1.8-1.9 SE208655.023 60 - 130% 67 % TP19 0.1-0.2 SE208655.024 % 60 - 130% 70 TP19_1.4-1.5 SE208655.025 60 - 130% 71 % QD1 SE208655.026 % 60 - 130% 66 QD2 SE208655.027 % 68 60 - 130% BH1 0.1-0.2 SE208655-031 % 60 - 130% 69 BH1_0.7-0.8 SE208655.032 % 60 - 130% 69 d4-1,2-dichloroethane (Surrogate) SE208655.001 TP7_0.1-0.2 % 60 - 130% 83 TP7 1.3-1.4 SE208655.002 % 60 - 130% 80 SE208655.003 TP8_0.1-0.2 % 60 - 130% 84 TP8 0.9-1.0 SE208655.004 % 60 - 130% 86 TP9 0.1-0.2 SE208655.005 % 60 - 130% 84 TP9_1.2-1.3 SE208655.006 % 60 - 130% 78 TP10 0.1-0.2 SE208655.007 % 60 - 130% 80 TP11 0.1-0.2 SE208655.008 % 60 - 130% 85 TP11_0.8-0.9 SE208655.009 % 60 - 130% 79 SE208655.010 TP12 0.1-0.2 % 60 - 130% 82 TP12_0.8-0.9 SE208655.011 60 - 130% 78 % TP12_1.7-1.8 SE208655.012 % 60 - 130% 82 TP13 0.1-0.2 SE208655.013 % 60 - 130% 80 TP13 1 2-1 3 SE208655.014 % 60 - 130% 78 TP13_2.0-2.1 SE208655.015 60 - 130% 79 % SE208655.016 TP14_0.1-0.2 60 - 130% 81 % TP14 1.5-1.6 SE208655.017 % 60 - 130% 87 TP15_0.1-0.2 SE208655.018 % 60 - 130% 86 SE208655.019 TP15 1.7-1.8 % 60 - 130% 85 TP16 0.1-0.2 SE208655.020 60 - 130% 95 % TP17_0.1-0.2 SE208655.021 80 % 60 - 130% SE208655.022 TP18_0.1-0.2 % 60 - 130% 85 TP18 1.8-1.9 SE208655.023 60 - 130% 84 % TP19_0.1-0.2 SE208655.024 % 60 - 130% 89 TP19 1.4-1.5 SE208655.025 % 60 - 130% 89 OD1 SE208655.026 % 60 - 130% 84 QD2 SE208655.027 % 60 - 130% 85 BH1 0.1-0.2 SE208655.031 % 60 - 130% 86 BH1 0.7-0.8 SE208655.032 60 - 130% 87 % d8-toluene (Surrogate) TP7_0.1-0.2 SE208655.001 60 - 130% 80 % SE208655.002 TP7_1.3-1.4 60 - 130% 75 % TP8 0.1-0.2 SE208655.003 % 60 - 130% 79 TP8_0.9-1.0 SE208655.004 60 - 130% 83 % SE208655.005 79 TP9 0.1-0.2 % 60 - 130% TP9_1.2-1.3 SE208655.006 60 - 130% 75 %

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Volatile Petroleum Hydrocarbons in Soil (continued) Method: ME-(AU)-[ENV]AN433 Units Recovery % Sample Name Sample Number Criteria Parameter d8-toluene (Surrogate) TP10_0.1-0.2 SE208655.007 % 60 - 130% 75 TP11_0.1-0.2 SE208655.008 % 60 - 130% 78 TP11 0.8-0.9 SE208655.009 % 60 - 130% 76 TP12_0.1-0.2 SE208655.010 % 60 - 130% 78 TP12_0.8-0.9 SE208655.011 % 60 - 130% 74 TP12 1.7-1.8 SE208655.012 % 60 - 130% 79 TP13_0.1-0.2 SE208655.013 % 60 - 130% 75 TP13_1.2-1.3 SE208655.014 60 - 130% 73 % SE208655.015 73 TP13 2.0-2.1 % 60 - 130% TP14_0.1-0.2 SE208655.016 % 60 - 130% 77 TP14_1.5-1.6 SE208655.017 60 - 130% 84 % SE208655.018 TP15 0.1-0.2 60 - 130% 83 % TP15 1.7-1.8 SE208655.019 % 60 - 130% 81 SE208655.020 60 - 130% 91 TP16_0.1-0.2 % TP17 0.1-0.2 SE208655.021 % 60 - 130% 78 TP18_0.1-0.2 SE208655.022 % 60 - 130% 82 TP18_1.8-1.9 60 - 130% SE208655.023 % 82 TP19 0.1-0.2 SE208655.024 % 60 - 130% 86 TP19_1.4-1.5 SE208655.025 % 60 - 130% 86 SE208655.026 QD1 % 60 - 130% 81 QD2 SE208655.027 % 60 - 130% 83 BH1_0.1-0.2 SE208655.031 % 60 - 130% 85 BH1_0.7-0.8 SE208655.032 % 60 - 130% 86 Volatile Petroleum Hydrocarbons in Water Method: ME-(AU)-[ENV]AN433 Deverseter 1 11 Linite Critorio Decessory 0/

1 arameter	oumple Mame	oumple Number	Unita	Onterna	itecovery /0
Bromofluorobenzene (Surrogate)	QR1	SE208655.028	%	40 - 130%	98
d4-1,2-dichloroethane (Surrogate)	QR1	SE208655.028	%	60 - 130%	110
d8-toluene (Surrogate)	QR1	SE208655.028	%	40 - 130%	96

SE208655 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury (dissolved) in Water			Method: ME-(AU)-[E	NV]AN311(Perth)/AN312
Sample Number	Parameter	Units	LOR	Result
LB204300.001	Mercury	mg/L	0.0001	<0.0001

Mercury in Soil

Mercury in Soil			М	ethod: ME-(AU)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result
LB204384.001	Mercury	mg/kg	0.05	<0.05
LB204386.001	Mercury	mg/kg	0.05	<0.05

OC Pesticides in Soil

C Pesticides in Soil	Doromotor	Units	LOR	od: ME-(AU)-[EN\ Result
ample Number	Parameter			
204342.001	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
	Alpha BHC	mg/kg	0.1	<0.1
		mg/kg	0.1	<0.1
	Heptachlor	mg/kg	0.1	<0.1
	Aldrin	mg/kg	0.1	<0.1
	Beta BHC	mg/kg	0.1	<0.1
	Delta BHC	mg/kg	0.1	<0.1
	Heptachlor epoxide	mg/kg	0.1	<0.1
	Alpha Endosulfan	mg/kg	0.2	<0.2
	Gamma Chlordane	mg/kg	0.1	<0.1
	Alpha Chlordane	mg/kg	0.1	<0.1
	p,p'-DDE	mg/kg	0.1	<0.1
	Dieldrin	mg/kg	0.2	<0.2
	Endrin	mg/kg	0.2	<0.2
	Beta Endosulfan	mg/kg	0.2	<0.2
	p,p'-DDD	mg/kg	0.1	<0.1
	p,p'-DDT	mg/kg	0.1	<0.1
	Endosulfan sulphate	mg/kg	0.1	<0.1
	Endrin Aldehyde	mg/kg	0.1	<0.1
	Methoxychlor	mg/kg	0.1	<0.1
	Endrin Ketone	mg/kg	0.1	<0.1
	Isodrin	mg/kg	0.1	<0.1
	Mirex	mg/kg	0.1	<0.1
Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	93
204343.001	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
	Alpha BHC	mg/kg	0.1	<0.1
	Lindane	mg/kg	0.1	<0.1
	Heptachlor	mg/kg	0.1	<0.1
	Aldrin	mg/kg	0.1	<0.1
	Beta BHC	mg/kg	0.1	<0.1
	Delta BHC	mg/kg	0.1	<0.1
	Heptachlor epoxide	mg/kg	0.1	<0.1
	Alpha Endosulfan	mg/kg	0.2	<0.2
	Gamma Chlordane	mg/kg	0.1	<0.1
	Alpha Chlordane	mg/kg	0.1	<0.1
	p,p'-DDE	mg/kg	0.1	<0.1
	Dieldrin	mg/kg	0.2	<0.2
	Endrin	mg/kg	0.2	<0.2
	Beta Endosulfan	mg/kg	0.2	<0.2
	p,p'-DDD	mg/kg	0.2	<0.2
	p,p'-DDT	mg/kg	0.1	<0.1
	Endosulfan sulphate		0.1	<0.1
	Endrin Aldehyde	mg/kg mg/kg	0.1	<0.1
				<0.1
	Methoxychlor	mg/kg	0.1	
	Endrin Ketone	mg/kg	0.1	<0.1
	Isodrin	mg/kg	0.1	<0.1
	Mirex	mg/kg	0.1	<0.1

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Benzo(a)pyrene

Indeno(1,2,3-cd)pyrene

Dibenzo(ah)anthracene

d5-nitrobenzene (Surrogate)

2-fluorobiphenyl (Surrogate)

d14-p-terphenyl (Surrogate)

Benzo(ghi)perylene

Total PAH (18)

Naphthalene

2-methylnaphthalene

Acenaphthylene

Phenanthrene

Anthracene

Pyrene

Chrysene

Fluoranthene

Benzo(a)anthracene

Acenaphthene

Fluorene

1-methylnaphthalene

Surrogates

OP Pesticides in Soil

P Pesticides in Soil					od: ME-(AU)-[ENV]AN
ample Number		Parameter	Units	LOR	Result
B204342.001		Dichlorvos	mg/kg	0.5	<0.5
		Dimethoate	mg/kg	0.5	<0.5
		Diazinon (Dimpylate)	mg/kg	0.5	<0.5
		Fenitrothion	mg/kg	0.2	<0.2
		Malathion	mg/kg	0.2	<0.2
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
		Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
		Bromophos Ethyl	mg/kg	0.2	<0.2
		Methidathion	mg/kg	0.5	<0.5
		Ethion	mg/kg	0.2	<0.2
		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
	Surrogates	2-fluorobiphenyl (Surrogate)	%	-	84
		d14-p-terphenyl (Surrogate)	%	-	82
LB204343.001		Dichlorvos	mg/kg	0.5	<0.5
		Dimethoate	mg/kg	0.5	<0.5
		Diazinon (Dimpylate)	mg/kg	0.5	<0.5
		Fenitrothion	mg/kg	0.2	<0.2
		Malathion	mg/kg	0.2	<0.2
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
		Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
		Bromophos Ethyl	mg/kg	0.2	<0.2
		Methidathion	mg/kg	0.5	<0.5
		Ethion	mg/kg	0.2	<0.2
		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
	Surrogates	2-fluorobiphenyl (Surrogate)	%		87
		d14-p-terphenyl (Surrogate)	%	-	82
ALL (D. 1					
	matic Hydrocarbons) in Soil				od: ME-(AU)-[ENV]AN
ample Number		Parameter	Units	LOR	Result
B204342.001		Naphthalene	mg/kg	0.1	<0.1
		2-methylnaphthalene	mg/kg	0.1	<0.1
		1-methylnaphthalene	mg/kg	0.1	<0.1
		Acenaphthylene	mg/kg	0.1	<0.1
		Acenaphthene	mg/kg	0.1	<0.1
		Fluorene	mg/kg	0.1	<0.1
		Phenanthrene	mg/kg	0.1	<0.1
		Anthracene	mg/kg	0.1	<0.1
		Fluoranthene	mg/kg	0.1	<0.1
		Pyrene	mg/kg	0.1	<0.1
		Benzo(a)anthracene	mg/kg	0.1	<0.1

LB204343.001

<0.1

<0.1

<0.1

< 0.1

<0.8

82

84

82

<0.1

< 0.1

<0.1

<0.1

<0.1

<0.1

<0.1

< 0.1

<0.1

<0.1

<0.1

<0.1

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

%

%

%

mg/kg

0.1

0.1

0.1

0.1

0.8

-

-

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

SE208655 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued) Method: ME-(
Sample Number		Parameter	Units	LOR	Result
LB204343.001		Benzo(a)pyrene	mg/kg	0.1	<0.1
		Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
		Dibenzo(ah)anthracene	mg/kg	0.1	<0.1
		Benzo(ghi)perylene	mg/kg	0.1	<0.1
		Total PAH (18)	mg/kg	0.8	<0.8
	Surrogates	d5-nitrobenzene (Surrogate)	%	-	81
		2-fluorobiphenyl (Surrogate)	%	-	87
		d14-p-terphenyl (Surrogate)	%	-	82
PCBs in Soil				Meth	od: ME-(AU)-[ENV]AN420

PCBs in Soil

ODS III OOII				Moun	
Sample Number		Parameter	Units	LOR	Result
LB204342.001		Arochlor 1016	mg/kg	0.2	<0.2
		Arochlor 1221	mg/kg	0.2	<0.2
		Arochlor 1232	mg/kg	0.2	<0.2
		Arochlor 1242	mg/kg	0.2	<0.2
		Arochlor 1248	mg/kg	0.2	<0.2
		Arochlor 1254	mg/kg	0.2	<0.2
		Arochlor 1260	mg/kg	0.2	<0.2
		Arochlor 1262	mg/kg	0.2	<0.2
		Arochlor 1268	mg/kg	0.2	<0.2
		Total PCBs (Arochlors)	mg/kg	1	<1
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	93
B204343.001		Arochlor 1016	mg/kg	0.2	<0.2
		Arochlor 1221	mg/kg	0.2	<0.2
		Arochlor 1232	mg/kg	0.2	<0.2
		Arochlor 1242	mg/kg	0.2	<0.2
		Arochlor 1248	mg/kg	0.2	<0.2
		Arochlor 1254	mg/kg	0.2	<0.2
		Arochlor 1260	mg/kg	0.2	<0.2
		Arochlor 1262	mg/kg	0.2	<0.2
		Arochlor 1268	mg/kg	0.2	<0.2
		Total PCBs (Arochlors)	mg/kg	1	<1
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	90

Method: ME-(AU)-[ENV]AN040/AN320 Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Sample Number LOR Parameter Units Result LB204380.001 Arsenic, As mg/kg 1 <1 Cadmium, Cd mg/kg 0.3 < 0.3 Chromium, Cr 0.5 <0.5 mg/kg Copper, Cu 0.5 <0.5 mg/kg Nickel, Ni mg/kg 0.5 < 0.5 Lead, Pb <1 mg/kg 1 Zinc, Zn mg/kg 2 <2.0 LB204381.001 Arsenic, As mg/kg 1 <1 Cadmium, Cd 0.3 <0.3 mg/kg 0.5 <0.5 Chromium, Cr mg/kg Copper, Cu mg/kg 0.5 < 0.5 Nickel, Ni 0.5 <0.5 mg/kg Lead, Pb <1 mg/kg 1 Zinc, Zn mg/kg 2 <2.0 Trace Metals (Dissolved) in Water by ICPMS Method: ME-(AU)-[ENV]AN318 Sample Number Paramet Units LOR Result

LB204402.001	Arsenic, As	μg/L	1	<1
	Cadmium, Cd	μg/L	0.1	<0.1
	Chromium, Cr	μg/L	1	<1
	Copper, Cu	μg/L	1	<1
	Lead, Pb	μg/L	1	<1
	Nickel, Ni	μg/L	1	<1
	Zinc, Zn	μg/L	5	<5
TRH (Total Recoverable Hydrocarbons) in Soll			Metho	od: ME-(AU)-[ENV]AN403

LOR

Units

SE208655 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

TRH (Total Recoverable Hydrocarbons) in Soil (continued) Method: ME-(AU)-[ENV]AN403 Sample Number Units LOR Result Parar LB204342.001 TRH C10-C14 mg/kg 20 <20 TRH C15-C28 mg/kg 45 <45 TRH C29-C36 45 <45 mg/kg TRH C37-C40 mg/kg 100 <100 TRH C10-C36 Total 110 <110 mg/kg LB204343.001 TRH C10-C14 20 <20 mg/kg TRH C15-C28 45 <45 mg/kg TRH C29-C36 mg/kg 45 <45 <100 TRH C37-C40 mg/kg 100 TRH C10-C36 Total mg/kg 110 <110 TRH (Total Recoverable Hydrocarbons) in Water Method: ME-(AU)-[ENV]AN403 Result Sample Number Parameter Units LOR LB204298.001 TRH C10-C14 50 <50 µg/L TRH C15-C28 µg/L 200 <200 TRH C29-C36 µg/L 200 <200 TRH C37-C40 200 <200 µg/L VOC's in Soil Method: ME-(AU)-JENVIAN433 Result Sample Numb Units Parameter I OR LB204339.001 Monocyclic Aromatic Benzene mg/kg 0.1 <0.1 Toluene 0.1 <0.1 Hydrocarbons mg/kg Ethylbenzene mg/kg 0.1 <0.1 m/p-xylene mg/kg 0.2 <0.2 0.1 <0.1 o-xylene mg/kg Polycyclic VOCs Naphthalene mg/kg 0.1 <0.1 d4-1,2-dichloroethane (Surrogate) 84 Surrogates % 89 d8-toluene (Surrogate) % Bromofluorobenzene (Surrogate) % 98 Totals Total BTEX 0.6 <0.6 mg/kg LB204340.001 Monocyclic Aromatic 0.1 <0.1 Benzene mg/kg Hydrocarbons Toluene mg/kg 0.1 <0.1 <0.1 Ethylbenzene 0.1 mg/kg m/p-xvlene ma/ka 0.2 <0.2 o-xylene mg/kg 0.1 <0.1 Polycyclic VOCs Naphthalene 0.1 <0.1 mg/kg Surrogates d4-1,2-dichloroethane (Surrogate) 79 % d8-toluene (Surrogate) % 74 -Bromofluorobenzene (Surrogate) % 79 Totals Total BTEX 0.6 <0.6 mg/kg VOCs in Water Method: ME-(AU)-IENVIAN433 Sample Number Parameter LOR Result LB204439.001 Monocyclic Aromatic Benzene 0.5 <0.5 µg/L Hydrocarbons Toluene 0.5 <0.5 µg/L Ethylbenzene µg/L 0.5 <0.5 m/p-xylene µg/L 1 <1 0.5 <0.5 o-xylene µg/L Polycyclic VOCs Naphthalene µg/L 0.5 <0.5 109 Surrogates d4-1,2-dichloroethane (Surrogate) % d8-toluene (Surrogate) % -95 Bromofluorobenzene (Surrogate) % 95 Volatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENV]AN433 Sample Number LOR Units Result Parameter LB204339.001 TRH C6-C9 mg/kg 20 <20 Surrogates d4-1,2-dichloroethane (Surrogate) % 84 LB204340.001 TRH C6-C9 20 <20 mg/kg Surrogates d4-1,2-dichloroethane (Surrogate) % 79 Volatile Petroleum Hydrocarbons in Water Method: ME-(AU)-[ENV]AN433 Sample Number Parameter LOR

SE208655 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Volatile Petroleum Hydrocarbons in Water (continued)

Method: ME-(AU)-[ENV]AN433

Sample Number		Parameter	Units	LOR	Result
LB204439.001		TRH C6-C9	μg/L	40	<40
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	109
		d8-toluene (Surrogate)	%	-	95
		Bromofluorobenzene (Surrogate)	%	-	95

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

Mercury (dissolved)) in Water				Metho	d: ME-(AU)-[I	ENVJAN311(P	erth)/AN312
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE208675.021	LB204300.007	Mercury	μg/L	0.0001	<0.0001	0.0000	200	11

Mercury in Soil							Meth	od: ME-(AU)	-[ENV]AN31:
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE208655.010	LB204384.014		Mercury	mg/kg	0.05	<0.05	<0.05	200	0
SE208655.019	LB204384.024		Mercury	mg/kg	0.05	<0.05	<0.05	200	0
SE208655.021	LB204386.014		Mercury	mg/kg	0.05	<0.05	<0.05	200	0
SE208655.032	LB204386.023		Mercury	mg/kg	0.05	<0.05	<0.05	200	0
Moisture Content							Meth	od: ME-(AU)	
Original	Duplicate		Parameter	Units	LOR	Original		Criteria %	
SE208655.010	LB204345.011		% Moisture	%w/w	1	10.2	10.3	40	1
SE208655.016	LB204345.011		% Moisture	%w/w	1	10.2	10.3	39	9
SE208655.016	LB204346.011		% Moisture	%w/w	1	13.3	11.6	39	10
SE208655.020	LB204346.016		% Moisture	%w/w	1	13.3	12.0	39	7
			/a moisture	/0W/W	1	11.0			
OC Pesticides in S	ioil						Meth	nod: ME-(AU)	-[ENV]AN42
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE208655.010	LB204342.014		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Lindane	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor	mg/kg	0.1	<0.1	<0.1	200	0
			Aldrin	mg/kg	0.1	<0.1	<0.1	200	0
			Beta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Delta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
			Dieldrin	mg/kg	0.2	<0.2	<0.2	200	0
			Endrin	mg/kg	0.2	<0.2	<0.2	200	0
			o,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
			Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	200	0
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin Ketone	mg/kg	0.1	<0.1	<0.1	200	0
			Isodrin	mg/kg	0.1	<0.1	<0.1	200	0
			Mirex	mg/kg	0.1	<0.1	<0.1	200	0
			Total CLP OC Pesticides	mg/kg	1	<1	<1	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg		0.16	0.16	30	1
SE208655.016	LB204342.021		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Lindane	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor	mg/kg	0.1	<0.1	<0.1	200	0
			Aldrin	mg/kg	0.1	<0.1	<0.1	200	0
			Beta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Delta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Endosulfan	mg/kg	0.1	<0.1	<0.1	200	0
			Gamma Chlordane		0.2	<0.2	<0.2	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
				mg/kg					
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	200	0

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

OC Pesticides in S	oil (continued)						Meth	od: ME-(AU)-	-[ENV]AN4
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE208655.016	LB204342.021		p,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
			Dieldrin	mg/kg	0.2	<0.2	<0.2	200	0
			Endrin	mg/kg	0.2	<0.2	<0.2	200	0
			o,p'-DDD	mg/kg	0.1	<0.2	<0.1	200	0
					0.1	<0.1	<0.1	200	0
			o,p'-DDT	mg/kg					
			Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	200	0
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin Ketone	mg/kg	0.1	<0.1	<0.1	200	0
			Isodrin	mg/kg	0.1	<0.1	<0.1	200	0
			Mirex	mg/kg	0.1	<0.1	<0.1	200	0
			Total CLP OC Pesticides	mg/kg	1	<1	<1	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.15	0.16	30	5
SE208655.025	LB204343.019		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	0	200	0
			Alpha BHC	mg/kg	0.1	<0.1	0	200	0
			Lindane	mg/kg	0.1	<0.1	0	200	0
						<0.1	0	200	0
			Heptachlor	mg/kg	0.1				
			Aldrin	mg/kg	0.1	<0.1	0	200	0
			Beta BHC	mg/kg	0.1	<0.1	0	200	0
			Delta BHC	mg/kg	0.1	<0.1	0	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	0	200	0
			o,p'-DDE	mg/kg	0.1	<0.1	0	200	0
			Alpha Endosulfan	mg/kg	0.2	<0.2	0	200	0
			Gamma Chlordane	mg/kg	0.1	<0.1	0	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	0	200	0
			trans-Nonachlor	mg/kg	0.1	<0.1	0	200	0
			p,p'-DDE	mg/kg	0.1	<0.1	0	200	0
			Dieldrin	mg/kg	0.2	<0.2	0	200	0
			Endrin	mg/kg	0.2	<0.2	0	200	0
			o,p'-DDD	mg/kg	0.1	<0.1	0	200	0
			o,p'-DDT	mg/kg	0.1	<0.1	0	200	0
					0.1	<0.1	0	200	0
			Beta Endosulfan	mg/kg					
			p,p'-DDD	mg/kg	0.1	<0.1	0	200	0
			p,p'-DDT	mg/kg	0.1	<0.1	0	200	0
			Endosulfan sulphate	mg/kg	0.1	<0.1	0	200	0
			Endrin Aldehyde	mg/kg	0.1	<0.1	0	200	0
			Methoxychlor	mg/kg	0.1	<0.1	0	200	0
			Endrin Ketone	mg/kg	0.1	<0.1	0	200	0
			Isodrin	mg/kg	0.1	<0.1	0	200	0
			Mirex	mg/kg	0.1	<0.1	0	200	0
			Total CLP OC Pesticides	mg/kg	1	<1	0	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.16	0.168	30	4
	- 9								-
P Pesticides in S								od: ME-(AU)-	
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE208655.010	LB204342.014		Dichlorvos	mg/kg	0.5	<0.5	<0.5	200	0
			Dimethoate	mg/kg	0.5	<0.5	<0.5	200	0
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	200	0
			Fenitrothion	mg/kg	0.2	<0.2	<0.2	200	0
			Malathion	mg/kg	0.2	<0.2	<0.2	200	0
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	200	0
			Parathion-ethyl (Parathion)		0.2	<0.2	<0.2	200	0
				mg/kg					
			Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	200	0
			Methidathion	mg/kg	0.5	<0.5	<0.5	200	0
			Ethion	mg/kg	0.2	<0.2	<0.2	200	0
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	200	0
			Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	200	0

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

OP Pesticides in S	oil (continued)						Methr	od: ME-(AU)-	FNV/AN42
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate		RPD %
SE208655.010	LB204342.014	Surragatas	d14-p-terphenyl (Surrogate)		<u>-</u>	0.5	0.5	30	1
SE208655.016	LB204342.014	Surrogates	Dichlorvos	mg/kg	0.5	<0.5	<0.5	200	0
3E208055.010	LB204342.021		Dimethoate	mg/kg mg/kg	0.5	<0.5	<0.5	200	0
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	200	0
			Fenitrothion	mg/kg	0.2	<0.3	<0.3	200	0
			Malathion	mg/kg	0.2	<0.2	<0.2	200	0
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	200	0
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	200	0
			Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	200	0
			Methidathion		0.2	<0.2	<0.2	200	0
			Ethion	mg/kg	0.3	<0.2	<0.5	200	0
				mg/kg				200	0
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2		
		0	Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	200	0
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	9
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	1
SE208655.025	LB204343.019		Dichlorvos	mg/kg	0.5	<0.5	0	200	0
			Dimethoate	mg/kg	0.5	<0.5	0	200	0
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	0.0138407593	200	0
			Fenitrothion	mg/kg	0.2	<0.2	0.0524397049	200	0
			Malathion	mg/kg	0.2	<0.2	0.0245986969	200	0
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	0	200	0
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	0	200	0
			Bromophos Ethyl	mg/kg	0.2	<0.2	0	200	0
			Methidathion	mg/kg	0.5	<0.5	0	200	0
			Ethion	mg/kg	0.2	<0.2	0	200	0
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	0	200	0
			Total OP Pesticides*	mg/kg	1.7	<1.7	0	200	0
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4239250481	30	0
		Surrogates						30 30	0
PAH (Polynuclear A	Aromatic Hydrocarbo		2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4239250481 0.4183620820		0
	-		2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate)	mg/kg mg/kg	-	0.4	0.4239250481 0.4183620820 Metho	30 od: ME-(AU)-	0 [ENV]AN4
Original	Duplicate		2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter	mg/kg mg/kg Units	LOR	0.4 0.4 Original	0.4239250481 0.4183620820 Metho Duplicate	30 od: ME-(AU)- Criteria %	0 [ENV]AN4 RPD %
• <mark>AH (Polynuclear</mark> / Original SE208655.010	-		2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Naphthalene	mg/kg mg/kg Units mg/kg	- - 0.1	0.4 0.4 Original <0.1	0.4239250481 0.4183620820 Metho Duplicate <0.1	30 od: ME-(AU)- Criteria % 200	0 [ENV]AN4 RPD % 0
Original	Duplicate		2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Naphthalene 2-methylnaphthalene	mg/kg mg/kg Units mg/kg mg/kg	- - 0.1 0.1	0.4 0.4 Original <0.1 <0.1	0.4239250481 0.4183620820 Metho Duplicate <0.1 <0.1	30 od: ME-(AU)- Criteria % 200 200	0 [ENV]AN4 RPD % 0 0
Original	Duplicate		2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene	mg/kg mg/kg Units mg/kg mg/kg mg/kg	- - 0.1 0.1 0.1	0.4 0.4 Original <0.1 <0.1 <0.1	0.4239250481 0.4183620820 Metho Cuplicate <0.1 <0.1 <0.1	30 od: ME-(AU)- Criteria % 200 200 200	0 [ENV]AN4 RPD % 0 0 0
Original	Duplicate		2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- - 0.1 0.1 0.1 0.1	0.4 0.4 Original <0.1 <0.1 <0.1 <0.1	0.4239250481 0.4183620820 Metho Duplicate <0.1 <0.1 <0.1 <0.1	30 criteria % 200 200 200 200 200	0 [ENV]AN4 RPD % 0 0 0 0
Original	Duplicate		2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- - 0.1 0.1 0.1 0.1 0.1 0.1	0.4 0.4 Original <0.1 <0.1 <0.1 <0.1 <0.1	0.4239250481 0.4183620820 Methy Duplicate <0.1 <0.1 <0.1 <0.1 <0.1	30 criteria % 200 200 200 200 200 200	0 [ENV]AN4 RPD % 0 0 0 0 0
Original	Duplicate		2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthene Fluorene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- - 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.4 0.4 Original <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	0.4239250481 0.4183620820 Metho Duplicate <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	30 criteria % 200 200 200 200 200 200 200 20	0 [ENV]AN4 RPD % 0 0 0 0 0 0
Original	Duplicate		2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- - 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.4 0.4 Original <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	0.4239250481 0.4183620820 Metho Duplicate <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	30 criteria % 200 200 200 200 200 200 200 20	0 [ENV]AN4 RPD % 0 0 0 0 0 0 0
Original	Duplicate		2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthylene Fluorene Phenanthrene Anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- - - - - - - - - - - - - - - - - - -	0.4 0.4 Original <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	0.4239250481 0.4183620820 Duplicate <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	30 criteria % 200 200 200 200 200 200 200 20	0 [ENV]AN4 RPD % 0 0 0 0 0 0 0 0 0 0 0 0 0
Original	Duplicate		2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthylene Fluorene Phenanthrene Fluoranthene Fluoranthene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- - - - - - - - - - - - - - - - - - -	0.4 0.4 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	0.4239250481 0.4183620820 Duplicate <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	30 criteria % 200 200 200 200 200 200 200 20	0 ENVJAM4 RPD % 0 0 0 0 0 0 0 0 0 2
Original	Duplicate		2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Fluoranthene Fluoranthene Pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- - - - - - - - - - - - - - - - - - -	0.4 0.4 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	0.4239250481 0.4183620820 Duplicate <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	30 criteria % 200 200 200 200 200 200 200 20	0 ENVJAM4 RPD % 0 0 0 0 0 0 0 0 2 4
Original	Duplicate		2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthylene Acenaphthylene Fluorene Phenanthrene Phenanthrene Fluoranthene Pyrene Benzo(a)anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- - - - - - - - - - - - - - - - - - -	0.4 0.4 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	0.4239250481 0.4183620820 Duplicate <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	30 criteria % 200 200 200 200 200 200 200 20	0 [ENV]AM4 RPD % 0 0 0 0 0 0 0 0 0 0 2 4 0
Original	Duplicate		2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthylene Fluorene Phenanthrene Fluorene Pyrene Benzo(a)anthracene Chrysene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- - - - - - - - - - - - - - - - - - -	0.4 0.4 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	0.4239250481 0.4183620820 Duplicate <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	30 criteria % 200 200 200 200 200 200 200 20	0 [ENV]AM4 RPD % 0 0 0 0 0 0 0 0 0 0 0 0 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0
Original	Duplicate		2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b&j)fluoranthene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.4 0.4 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	0.4239250481 0.4183620820 Duplicate <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	30 criteria % 200 200 200 200 200 200 200 20	0 [ENV]AM4 RPD % 0 0 0 0 0 0 0 0 0 0 0 0 0
Original	Duplicate		2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b&)jfluoranthene Benzo(k)fluoranthene	mg/kg	- - - - - - - - - - - - - - - - - - -	0.4 0.4 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	0.4239250481 0.4183620820 Methe <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	30 criteria % 200 200 200 200 200 200 200 20	0 [ENV]ANA RPD % 0 0 0 0 0 0 0 0 0 0 0 0 0
Original	Duplicate		2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b&j)fluoranthene Benzo(a)pyrene	mg/kg	- - - - - - - - - - - - - - - - - - -	0.4 0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1	0.4239250481 0.4183620820 Duplicate <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 0.2 <0.1 <0.1 <0.1 <0.1 <0.1	30 criteria % 200 200 200 200 200 200 200 20	0 [ENV]ANA RPD % 0 0 0 0 0 0 0 0 0 0 0 0 0
Original	Duplicate		2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(k)jfluoranthene Benzo(k)jfluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	mg/kg	- - - - - - - - - - - - - - - - - - -	0.4 0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.1 0.2 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.4239250481 0.4183620820 Duplicate <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	30 criteria % 200 200 200 200 200 200 200 20	0 [ENV]ANA RPD % 0 0 0 0 0 0 0 0 0 0 0 0 0
Original	Duplicate		2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b&j)fluoranthene Benzo(a)pyrene	mg/kg	- - - - - - - - - - - - - - - - - - -	0.4 0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1	0.4239250481 0.4183620820 Duplicate <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 0.2 <0.1 <0.1 <0.1 <0.1 <0.1	30 criteria % 200 200 200 200 200 200 200 20	0 [ENV]AMA RPD % 0 0 0 0 0 0 0 0 0 0 0 0 0
Original	Duplicate		2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(k)jfluoranthene Benzo(k)jfluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	mg/kg	- - - - - - - - - - - - - - - - - - -	0.4 0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.1 0.2 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.4239250481 0.4183620820 Duplicate <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	30 criteria % 200 200 200 200 200 200 200 20	0 ENVJANA RPD % 0 0 0 0 0 0 0 0 0 0 0 0 0
Original	Duplicate		2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(båj)fluoranthene Benzo(bjluoranthene Benzo(cla)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(ah)anthracene	mg/kg	- - - - - - - - - - - - - - - - - - -	0.4 0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.4239250481 0.4183620820 Duplicate <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	30 criteria % 200 200 200 200 200 200 200 20	0 [ENV]ANA RPD % 0 0 0 0 0 0 0 0 0 0 0 0 0
Original	Duplicate		2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(k)jfluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(ah)anthracene Benzo(ah)anthracene	mg/kg	- - - - - - - - - - - - - - - - - - -	0.4 0.4 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	0.4239250481 0.4183620820 Duplicate <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	30 criteria % 200 200 200 200 200 200 200 20	0 [ENV]AN4 RPD % 0 0 0 0 0 0 0 0 0 0 0 0 0
Original	Duplicate		2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Fluoranthene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1.2,3-cd)pyrene Dibenzo(ah)anthracene Benzo(ah)anthracene Carcinogenic PAHs, BaP TEQ <lor=0< td=""></lor=0<>	mg/kg	- - - - - - - - - - - - - - - - - - -	0.4 0.4 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	0.4239250481 0.4183620820 Duplicate <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	30 Criteria % 200 200 200 200 200 200 200 20	0 [ENVJANA RPD % 0 0 0 0 0 0 0 0 0 0 0 0 0
Original	Duplicate		2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(k)fluoranthene Benzo(a)pyrene Inden(1,2,3-cd)pyrene Dibenzo(ah)anthracene Benzo(ah)anthracene Carcinogenic PAHs, BaP TEQ <lor=0< td=""> Carcinogenic PAHs, BaP TEQ <lor=lor< td=""></lor=lor<></lor=0<>	mg/kg	- - - - - - - - - - - - - - - - - - -	0.4 0.4 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	0.4239250481 0.4183620820 Duplicate <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	30 Criteria % 200 200 200 200 200 200 200 20	0 [ENVJAN4 RPD % 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Original	Duplicate		2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(k)fluoranthene Benzo(a)quyrene Indeno(1,2,3-cd)pyrene Dibenzo(ah)anthracene Carcinogenic PAHs, BaP TEQ <lor=0< td=""> Carcinogenic PAHs, BaP TEQ <lor=10r< td=""> Carcinogenic PAHs, BaP TEQ <lor=10r< td=""></lor=10r<></lor=10r<></lor=0<>	mg/kg	- - - - - - - - - - - - - - - - - - -	0.4 0.4 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	0.4239250481 0.4183620820 Duplicate <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	30 Criteria % 200 200 200 200 200 200 200 20	0 [ENVJAN4 RPD % 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Original	Duplicate	ons) in Soil	2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Fluoranthene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(a)aptrene Indeno(1,2,3-cd)pyrene Dibenzo(ah)anthracene Benzo(gh)perylene Carcinogenic PAHs, BaP TEQ <lor=0< td=""> Carcinogenic PAHs, BaP TEQ <lor=lor< td=""> Carcinogenic PAHs, BaP TEQ <lor=lor< td=""> Carcinogenic PAHs, BaP TEQ <lor=lor< td=""></lor=lor<></lor=lor<></lor=lor<></lor=0<>	mg/kg	- - - - - - - - - - - - - - - - - - -	0.4 0.4 0.4 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	0.4239250481 0.4183620820 Duplicate <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	30 Criteria % 200 200 200 200 200 200 200 20	0 [ENVJAN/ RPD % 0 0 0 0 0 0 0 0 0 0 0 0 0
Driginal	Duplicate	ons) in Soil	2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Fluoranthene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(a)anthracene Chrysene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(ah)anthracene Benzo(ah)pyrene Carcinogenic PAHs, BaP TEQ <lor=0< td=""> Carcinogenic PAHs, BaP TEQ <lor=10r< td=""></lor=10r<></lor=10r<></lor=10r<></lor=10r<></lor=10r<></lor=10r<></lor=10r<></lor=10r<></lor=10r<></lor=10r<></lor=0<>	mg/kg mg/kg </td <td>- - - - - - - - - - - - - - - - - - -</td> <td>0.4 0.4 0.4 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</td> <td>0.4239250481 0.4183620820 Methy <duplicate <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</duplicate </td> <td>30 Criteria % 200 200 200 200 200 200 200 20</td> <td>0 [ENVJAN4 RPD % 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>	- - - - - - - - - - - - - - - - - - -	0.4 0.4 0.4 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	0.4239250481 0.4183620820 Methy <duplicate <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</duplicate 	30 Criteria % 200 200 200 200 200 200 200 20	0 [ENVJAN4 RPD % 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Original SE208655.010	Duplicate	ons) in Soil	2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(ah)anthracene Berzo(ghi)perylene Carcinogenic PAHs, BaP TEQ <lor=0< td=""> Carcinogenic PAHs, BaP TEQ <lor=10r< td=""><td>mg/kg mg/kg mg/kg<!--</td--><td>- - - - - - - - - - - - - - - - - - -</td><td>0.4 0.4 0.4 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</td><td>0.4239250481 0.4183620820 Metho <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</td><td>30 criteria % 200 200 200 200 200 200 200 20</td><td>0 [ENV]AMA RPD % 0 0 0 0 0 0 0 0 0 0 0 0 0</td></td></lor=10r<></lor=10r<></lor=10r<></lor=10r<></lor=10r<></lor=10r<></lor=10r<></lor=10r<></lor=10r<></lor=10r<></lor=10r<></lor=10r<></lor=10r<></lor=10r<></lor=0<>	mg/kg mg/kg </td <td>- - - - - - - - - - - - - - - - - - -</td> <td>0.4 0.4 0.4 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</td> <td>0.4239250481 0.4183620820 Metho <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</td> <td>30 criteria % 200 200 200 200 200 200 200 20</td> <td>0 [ENV]AMA RPD % 0 0 0 0 0 0 0 0 0 0 0 0 0</td>	- - - - - - - - - - - - - - - - - - -	0.4 0.4 0.4 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	0.4239250481 0.4183620820 Metho <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	30 criteria % 200 200 200 200 200 200 200 20	0 [ENV]AMA RPD % 0 0 0 0 0 0 0 0 0 0 0 0 0
Original SE208655.010	Duplicate LB204342.014	ons) in Soil	2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(a)aptrene Indeno(1,2,3-cd)pyrene Dibenzo(ah)anthracene Benzo(ah)anthracene Carcinogenic PAHs, BaP TEQ <lor=0< td=""> Carcinogenic PAHs, BaP TEQ <lor=lor< td=""> Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""> Total PAH (18) d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) <td>mg/kg mg/kg mg/kg<!--</td--><td>- - - - - - - - - - - - - - - - - - -</td><td>0.4 0.4 0.4 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</td><td>0.4239250481 0.4183620820 Duplicate <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</td><td>30 Criteria % 200 200 200 200 200 200 200 20</td><td>0 [ENV]AMA RPD % 0 0 0 0 0 0 0 0 0 0 0 0 0</td></td></lor=lor></lor=lor<></lor=0<>	mg/kg mg/kg </td <td>- - - - - - - - - - - - - - - - - - -</td> <td>0.4 0.4 0.4 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</td> <td>0.4239250481 0.4183620820 Duplicate <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</td> <td>30 Criteria % 200 200 200 200 200 200 200 20</td> <td>0 [ENV]AMA RPD % 0 0 0 0 0 0 0 0 0 0 0 0 0</td>	- - - - - - - - - - - - - - - - - - -	0.4 0.4 0.4 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	0.4239250481 0.4183620820 Duplicate <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	30 Criteria % 200 200 200 200 200 200 200 20	0 [ENV]AMA RPD % 0 0 0 0 0 0 0 0 0 0 0 0 0
Original	Duplicate LB204342.014	ons) in Soil	2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(ah)anthracene Berzo(ghi)perylene Carcinogenic PAHs, BaP TEQ <lor=0< td=""> Carcinogenic PAHs, BaP TEQ <lor=10r< td=""><td>mg/kg mg/kg mg/kg<!--</td--><td>- - - - - - - - - - - - - - - - - - -</td><td>0.4 0.4 0.4 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</td><td>0.4239250481 0.4183620820 Metho <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</td><td>30 criteria % 200 200 200 200 200 200 200 20</td><td>0 ENVJAN4 RPD % 0 0 0 0 0 0 0 0 0 0 0 0 0</td></td></lor=10r<></lor=10r<></lor=10r<></lor=10r<></lor=10r<></lor=10r<></lor=10r<></lor=10r<></lor=10r<></lor=10r<></lor=10r<></lor=10r<></lor=10r<></lor=10r<></lor=0<>	mg/kg mg/kg </td <td>- - - - - - - - - - - - - - - - - - -</td> <td>0.4 0.4 0.4 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</td> <td>0.4239250481 0.4183620820 Metho <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</td> <td>30 criteria % 200 200 200 200 200 200 200 20</td> <td>0 ENVJAN4 RPD % 0 0 0 0 0 0 0 0 0 0 0 0 0</td>	- - - - - - - - - - - - - - - - - - -	0.4 0.4 0.4 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	0.4239250481 0.4183620820 Metho <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	30 criteria % 200 200 200 200 200 200 200 20	0 ENVJAN4 RPD % 0 0 0 0 0 0 0 0 0 0 0 0 0

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

PAH (Polynuclear /	Aromatic Hydrocarbo	ons) in Soll (contin	ied)				Metho	d: ME-(AU)-	(ENVJAN42
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE208655.016	LB204342.021		Acenaphthene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluorene	mg/kg	0.1	<0.1	<0.1	200	0
			Phenanthrene	mg/kg	0.1	<0.1	<0.1	200	0
			Anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluoranthene	mg/kg	0.1	0.2	0.2	76	14
			Pyrene	mg/kg	0.1	0.2	0.2	69	14
									0
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	144	
			Chrysene	mg/kg	0.1	<0.1	0.1	138	1
			Benzo(b&j)fluoranthene	mg/kg	0.1	0.1	0.1	111	1
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	148	0
			Benzo(a)pyrene	mg/kg	0.1	0.1	0.1	114	11
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	182	0
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	163	0
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>163</td><td>0</td></lor=0<>	mg/kg	0.2	<0.2	<0.2	163	0
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>mg/kg</td><td>0.3</td><td><0.3</td><td><0.3</td><td>124</td><td>0</td></lor=lor<>	mg/kg	0.3	<0.3	<0.3	124	0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>mg/kg</td><td>0.2</td><td>0.2</td><td><0.2</td><td>112</td><td>4</td></lor=lor>	mg/kg	0.2	0.2	<0.2	112	4
			Total PAH (18)	mg/kg	0.8	0.8	<0.8	137	6
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.4	30	2
		ounogates			_	0.5	0.5	30	9
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	9
C200655 205	1 0204242 040		d14-p-terphenyl (Surrogate)	mg/kg					
E208655.025	LB204343.019		Naphthalene	mg/kg	0.1	<0.1	0.0003993674	200	0
			2-methylnaphthalene	mg/kg	0.1	<0.1	0	200	0
			1-methylnaphthalene	mg/kg	0.1	<0.1	0	200	0
			Acenaphthylene	mg/kg	0.1	<0.1	0	200	0
			Acenaphthene	mg/kg	0.1	<0.1	0.0002972413	200	0
			Fluorene	mg/kg	0.1	<0.1	0	200	0
			Phenanthrene	mg/kg	0.1	<0.1	0.0009925037	200	0
			Anthracene	mg/kg	0.1	<0.1	0.0010180153	200	0
			Fluoranthene	mg/kg	0.1	<0.1	0	200	0
			Pyrene	mg/kg	0.1	<0.1	0	200	0
			Benzo(a)anthracene	mg/kg	0.1	<0.1	0.0050762202	200	0
			Chrysene	mg/kg	0.1	<0.1	0.0055733592	200	0
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	0	200	0
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	0	200	0
			Benzo(a)pyrene	mg/kg	0.1	<0.1	0.0061769411	200	0
							0.0001703411	200	0
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1			
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	0	200	0
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	0	200	0
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td>0</td><td>200</td><td>0</td></lor=0<>	mg/kg	0.2	<0.2	0	200	0
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>mg/kg</td><td>0.3</td><td><0.3</td><td>0.242</td><td>134</td><td>0</td></lor=lor<>	mg/kg	0.3	<0.3	0.242	134	0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td>0.121</td><td>175</td><td>0</td></lor=lor>	mg/kg	0.2	<0.2	0.121	175	0
			Total PAH (18)	mg/kg	0.8	<0.8	0	200	0
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.4385358031	30	2
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4239250481	30	0
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.4183620820	30	0
CBs in Soil							Metho	d: ME-(AU)-	
	Duplicate		Darameter			Original		<u> </u>	
Driginal			Parameter	Units	LOR	Original	Duplicate		RPD %
E208655.010	LB204342.014		Arochlor 1016	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1221	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1232	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1242	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1248	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1254	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1260	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1262	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1268	mg/kg	0.2	<0.2	<0.2	200	0
			Total PCBs (Arochlors)	mg/kg	1	<1	<1	200	0
		Surrogataa			-	0	0	30	1
	1 000 40 40 00 1	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg					
E208655.016	LB204342.021		Arochlor 1016	mg/kg	0.2	<0.2	<0.2	200	0

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

CBs in Soll (conti							od: ME-(AU)-	
Original	Duplicate	Parameter	Units	LOR	Original		Criteria %	RPD 9
SE208655.016	LB204342.021	Arochlor 1221	mg/kg	0.2	<0.2	<0.2	200	0
		Arochlor 1232	mg/kg	0.2	<0.2	<0.2	200	0
		Arochlor 1242	mg/kg	0.2	<0.2	<0.2	200	0
		Arochlor 1248	mg/kg	0.2	<0.2	<0.2	200	0
		Arochlor 1254	mg/kg	0.2	<0.2	<0.2	200	0
		Arochlor 1260	mg/kg	0.2	<0.2	<0.2	200	0
		Arochlor 1262	mg/kg	0.2	<0.2	<0.2	200	0
		Arochlor 1268	mg/kg	0.2	<0.2	<0.2	200	0
		Total PCBs (Arochlors)	mg/kg	1	<1	<1	200	0
		Surrogates Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0	0	30	5
SE208655.025	LB204343.019	Arochlor 1016	mg/kg	0.2	<0.2	0	200	0
		Arochlor 1221	mg/kg	0.2	<0.2	0	200	0
		Arochlor 1232	mg/kg	0.2	<0.2	0	200	0
		Arochlor 1242	mg/kg	0.2	<0.2	0	200	0
		Arochlor 1248		0.2	<0.2	0	200	0
			mg/kg					
		Arochlor 1254	mg/kg	0.2	<0.2	0	200	0
		Arochlor 1260	mg/kg	0.2	<0.2	0	200	0
		Arochlor 1262	mg/kg	0.2	<0.2	0	200	0
		Arochlor 1268	mg/kg	0.2	<0.2	0	200	0
		Total PCBs (Arochlors)	mg/kg	1	<1	0	200	0
		Surrogates Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0	0.168	30	4
otal Recoverable	Elements in Soil/Wa	e Solids/Materials by ICPOES				Method: ME	-(AU)-[ENV]A	N040/A
Driginal	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
E208655.010	LB204380.014	Arsenic, As	mg/kg	1	4	4	58	0
		Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
		Chromium, Cr	mg/kg	0.5	11	12	34	6
		Copper, Cu	mg/kg	0.5	22	20	32	10
		Nickel, Ni	mg/kg	0.5	20	21	32	8
		Lead, Pb	mg/kg	1	15	13	37	11
				2	42	38		10
	1 000 4000 004	Zinc, Zn	mg/kg				35	
SE208655.019	LB204380.024	Arsenic, As	mg/kg	1	4	4	55	22
		Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
		Chromium, Cr	mg/kg	0.5	16	14	33	10
		Copper, Cu	mg/kg	0.5	22	37	32	52 (
		Nickel, Ni	mg/kg	0.5	6.8	12	35	59 🤅
		Lead, Pb	mg/kg	1	15	11	38	27
		Zinc, Zn	mg/kg	2	36	54	34	40 @
SE208655.020	LB204381.014	Arsenic, As	mg/kg	1	3	3	66	4
		Cadmium, Cd	mg/kg	0.3	< 0.3	<0.3	200	0
		Chromium, Cr	mg/kg	0.5	15	15	33	2
		Copper, Cu	mg/kg	0.5	24	22	32	9
		Nickel, Ni	mg/kg	0.5	18	18	33	3
		Lead, Pb	mg/kg	1	9	9	41	0
		Zinc, Zn	mg/kg	2	50	37	35	30
C 200655 022	LB204381.024				6	6		2
E208655.032	LD204301.024	Arsenic, As	mg/kg	1			46	2
		Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	
		Chromium, Cr	mg/kg	0.5	7.9	10	36	24
		Copper, Cu	mg/kg	0.5	8.9	11	35	19
			mg/kg	0.5	0.8	1.1	80	32
		Nickel, Ni				16		10
		Lead, Pb	mg/kg	1	14	15	37	
			mg/kg mg/kg	2	7.8	9.6	53	20
ace Metals (Diss	solved) in Water by IC	Lead, Pb Zinc, Zn				9.6		
		Lead, Pb Zinc, Zn	mg/kg	2	7.8	9.6 Meth	53 od: ME-(AU)-	[ENV]A
Driginal	Duplicate	Lead, Pb Zinc, Zn MS Parameter	mg/kg Units	2 LOR	7.8 Original	9.6 Meth Duplicate	53 od: ME-(AU)- Criteria %	<mark>(ENV]A</mark> RPD
Driginal SE208623.001	Duplicate LB204402.014	Lead, Pb Zinc, Zn MS Parameter Lead, Pb	mg/kg Units µg/L	2 LOR 1	7.8 Original <1	9.6 Meth Duplicate <1	53 I <mark>od: ME-(AU)-</mark> Criteria % 162	<mark>(ENVJA</mark> RPD 0
Driginal SE208623.001	Duplicate	Lead, Pb Zinc, Zn MS Parameter Lead, Pb Arsenic, As	mg/kg Units μg/L μg/L	2 LOR 1 1	7.8 Original <1 <1	9.6 Meth Duplicate <1 <1	53 od: ME-(AU)- Criteria % 162 200	(ENV)A RPD 0 0
Driginal	Duplicate LB204402.014	Lead, Pb Zinc, Zn MS Parameter Lead, Pb Arsenic, As Cadmium, Cd	mg/kg Units μg/L μg/L μg/L	2 LOR 1 1 0.1	7.8 Original <1 <1 <0.1	9.6 Meth Duplicate <1 <1 <0.1	53 od: ME-(AU)- Criteria % 162 200 200	RPD 0 0 0
Driginal SE208623.001	Duplicate LB204402.014	Lead, Pb Zinc, Zn MS Parameter Lead, Pb Arsenic, As	mg/kg Units μg/L μg/L	2 LOR 1 1	7.8 Original <1 <1	9.6 Meth Duplicate <1 <1	53 od: ME-(AU)- Criteria % 162 200	[ENV]AI RPD 0 0

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

	erable Hydrocarbons							od: ME-(AU)-	
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE208655.010	LB204342.014		TRH C10-C14	mg/kg	20	<20	<20	200	0
			TRH C15-C28	mg/kg	45	<45	58	126	25
			TRH C29-C36	mg/kg	45	70	100	82	38
			TRH C37-C40	mg/kg	100	<100	<100	200	0
			TRH C10-C36 Total	mg/kg	110	<110	160	125	38
			TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	200	0
		TRH F Bands	TRH >C10-C16	mg/kg	25	<25	<25	200	0
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	120	117	31
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	0
SE208655.016	LB204342.021		TRH C10-C14	mg/kg	20	<20	<20	200	0
SE200035.010	LD204042.021		TRH C15-C28	mg/kg	45	<45	<45	200	0
							<45	200	0
			TRH C29-C36	mg/kg	45	<45			
			TRH C37-C40	mg/kg	100	<100	<100	200	0
			TRH C10-C36 Total	mg/kg	110	<110	<110	200	0
			TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	200	0
		TRH F Bands	TRH >C10-C16	mg/kg	25	<25	<25	200	0
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	0
SE208655.025	LB204343.019		TRH C10-C14	mg/kg	20	<20	0	200	0
			TRH C15-C28	mg/kg	45	<45	0	200	0
			TRH C29-C36	mg/kg	45	<45	0	200	0
			TRH C37-C40	mg/kg	100	<100	0	200	0
			TRH C10-C36 Total	mg/kg	110	<110	0	200	0
			TRH >C10-C40 Total (F bands)	mg/kg	210	<210	0	200	0
		TRH F Bands	TRH >C10-C16	mg/kg	25	<25	0	200	0
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	0	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	0	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	0	200	0
				iiig/kg	120	\$120	0	200	0
/OC's in Soil							B. 4 - 41-	- J. BATT CALLS	TELL IN CLAIM 1
								od: ME-(AU)-	
Original	Duplicate	Managaria	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
Original SE208655.010	Duplicate LB204339.014	Monocyclic	Benzene	mg/kg	0.1	<0.1	Duplicate <0.1	Criteria % 200	RPD % 0
Original	•	Monocyclic Aromatic	Benzene Toluene	mg/kg mg/kg	0.1 0.1	<0.1 <0.1	Duplicate <0.1 <0.1	Criteria % 200 200	RPD %
Original	•		Benzene Toluene Ethylbenzene	mg/kg mg/kg mg/kg	0.1 0.1 0.1	<0.1 <0.1 <0.1	Duplicate <0.1	Criteria % 200 200 200	RPD % 0 0 0
Original	•		Benzene Toluene Ethylbenzene m/p-xylene	mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.2	<0.1 <0.1 <0.1 <0.2	Duplicate <0.1	Criteria % 200 200 200 200	RPD % 0 0 0 0
Original	•	Aromatic	Benzene Toluene Ethylbenzene m/p-xylene o-xylene	mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.2 0.1	<0.1 <0.1 <0.1 <0.2 <0.1	Duplicate <0.1	Criteria % 200 200 200 200 200	RPD % 0 0 0 0
Original	•		Benzene Toluene Ethylbenzene m/p-xylene	mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.2	<0.1 <0.1 <0.1 <0.2	Duplicate <0.1	Criteria % 200 200 200 200	RPD % 0 0 0 0
Original	•	Aromatic	Benzene Toluene Ethylbenzene m/p-xylene o-xylene	mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.2 0.1	<0.1 <0.1 <0.1 <0.2 <0.1	Duplicate <0.1	Criteria % 200 200 200 200 200	RPD % 0 0 0 0
Original	•	Aromatic Polycyclic	Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.2 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.2 <0.1 <0.1 <0.1	Duplicate <0.1	Criteria % 200 200 200 200 200 200 200	RPD % 0 0 0 0 0 0 0
Original	•	Aromatic Polycyclic	Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene d4-1,2-dichloroethane (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.2 0.1 0.1 -	<0.1 <0.1 <0.1 <0.2 <0.1 <0.1 <0.1 8.2	Duplicate <0.1	Criteria % 200 200 200 200 200 200 50	RPD % 0 0 0 0 0 0 0 0 0
Original	•	Aromatic Polycyclic	Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.2 0.1 0.1 -	<0.1 <0.1 <0.1 <0.2 <0.1 <0.1 8.2 7.8	Duplicate <0.1	Criteria % 200 200 200 200 200 200 200 50 50	RPD % 0 0 0 0 0 0 0 0 0 2
Original	•	Aromatic Polycyclic Surrogates	Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.2 0.1 0.1 - -	<0.1 <0.1 <0.1 <0.2 <0.1 <0.1 8.2 7.8 6.9	Duplicate <0.1	Criteria % 200 200 200 200 200 200 200 50 50 50	RPD % 0 0 0 0 0 0 0 0 2 2 2
Original SE208655.010	•	Aromatic Polycyclic Surrogates Totals	Benzene Toluene Ethylbenzene m/p-xylene o-xylene data d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total Xylenes Total BTEX	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.2 0.1 0.1 - - - - 0.3 0.6	<0.1 <0.1 <0.1 <0.2 <0.1 <0.1 <0.1 8.2 7.8 6.9 <0.3 <0.6	Duplicate <0.1	Criteria % 200 200 200 200 200 200 50 50 50 50 200 20	RPD % 0
Original SE208655.010	LB204339.014	Aromatic Polycyclic Surrogates Totals Monocyclic	Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total Xylenes Total BTEX Benzene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.2 0.1 0.1 - - 0.3 0.6 0.1	<0.1 <0.1 <0.2 <0.1 <0.2 <0.1 <0.1 8.2 7.8 6.9 <0.3 <0.6 <0.1	Duplicate <0.1	Criteria % 200 200 200 200 200 50 50 50 50 200 200	RPD % 0
Original SE208655.010	LB204339.014	Aromatic Polycyclic Surrogates Totals	Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total Xylenes Total BTEX Benzene Toluene	mg/kg	0.1 0.1 0.2 0.1 0.1 - - - 0.3 0.6 0.1 0.1	<0.1 <0.1 <0.2 <0.1 <0.1 8.2 7.8 6.9 <0.3 <0.6 <0.1 <0.1	Duplicate <0.1	Criteria % 200 200 200 200 200 50 50 50 50 200 200	RPD % 0
Original SE208655.010	LB204339.014	Aromatic Polycyclic Surrogates Totals Monocyclic	Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total Xylenes Total BTEX Benzene Toluene Ethylbenzene	mg/kg	0.1 0.1 0.2 0.1 0.1 - - 0.3 0.6 0.1 0.1	<0.1 <0.1 <0.1 <0.2 <0.1 <0.1 8.2 7.8 6.9 <0.3 <0.6 <0.1 <0.1 <0.1	Duplicate <0.1	Criteria % 200 200 200 200 200 200 50 50 50 200 20	RPD % 0
Original SE208655.010	LB204339.014	Aromatic Polycyclic Surrogates Totals Monocyclic	Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total Xylenes Total BTEX Benzene Toluene Ethylbenzene m/p-xylene	mg/kg	0.1 0.1 0.2 0.1 0.1 - - 0.3 0.6 0.1 0.1 0.1 0.2	<0.1 <0.1 <0.1 <0.2 <0.1 <0.1 8.2 7.8 6.9 <0.3 <0.6 <0.1 <0.1 <0.1 <0.1 <0.2	Duplicate <0.1	Criteria % 200 200 200 200 200 50 50 50 50 200 200	RPD % 0
Original SE208655.010	LB204339.014	Aromatic Polycyclic Surrogates Totals Monocyclic Aromatic	Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total Xylenes Total BTEX Benzene Toluene Ethylbenzene m/p-xylene o-xylene	mg/kg	0.1 0.1 0.2 0.1 0.1 - - - 0.3 0.6 0.1 0.1 0.1 0.1 0.2 0.1	<0.1 <0.1 <0.1 <0.2 <0.1 <0.1 8.2 7.8 6.9 <0.3 <0.6 <0.1 <0.1 <0.1 <0.1 <0.2 <0.1 <0.2 <0.1	Duplicate <0.1	Criteria % 200 200 200 200 200 50 50 50 50 200 200	RPD 9 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Original SE208655.010	LB204339.014	Aromatic Polycyclic Surrogates Totals Monocyclic Aromatic Polycyclic	Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total Xylenes Total BTEX Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene	mg/kg	0.1 0.1 0.2 0.1 0.1 - - - - 0.3 0.6 0.1 0.1 0.1 0.1 0.1 0.1	<0.1	Duplicate <0.1	Criteria % 200 200 200 200 50 50 50 50 200 200 200	RPD % 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Original SE208655.010	LB204339.014	Aromatic Polycyclic Surrogates Totals Monocyclic Aromatic	Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total Xylenes Total BTEX Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene d4-1,2-dichloroethane (Surrogate)	mg/kg	0.1 0.1 0.2 0.1 0.1 - - - - 0.3 0.6 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1	Duplicate <0.1	Criteria % 200 200 200 200 50 50 50 50 200 200 200	RPD % 0
Original SE208655.010	LB204339.014	Aromatic Polycyclic Surrogates Totals Monocyclic Aromatic Polycyclic	Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total Xylenes Total BTEX Benzene Toluene Ethylbenzene m/p-xylene o-xylene o-xylene d4-1,2-dichloroethane (Surrogate)	mg/kg	0.1 0.1 0.2 0.1 0.1 - - - 0.3 0.6 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 - -	<0.1	Duplicate <0.1	Criteria % 200 200 200 200 50 50 50 50 200 200 200	RPD % 0
Original SE208655.010	LB204339.014	Aromatic Polycyclic Surrogates Monocyclic Aromatic Polycyclic Surrogates	Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total Xylenes Total BTEX Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene d4-1,2-dichloroethane (Surrogate) Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bertone (Surrogate)	mg/kg	0.1 0.1 0.2 0.1 0.1 - - - 0.3 0.6 0.1 0.1 0.1 0.2 0.1 0.1 0.1 - - - - - - - - - - - - - - - - - - -	<0.1	Duplicate <0.1	Criteria % 200 200 200 200 50 50 50 200 200 200 20	RPD % 0
Original SE208655.010	LB204339.014	Aromatic Polycyclic Surrogates Totals Monocyclic Aromatic Polycyclic	Benzene Toluene Ethylbenzene m/p-xylene o-xylene data d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total Xylenes Total BTEX Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Benzene Toluene Ethylbenzene m/p-xylene o-xylene Boxylene Sylene Toluene (Surrogate) d8-toluene (Surrogate) d8-toluene (Surrogate) d8-toluene (Surrogate)	mg/kg	0.1 0.1 0.2 0.1 0.1 - - - - - - - - - - - - - - - - - - -	<0.1	Duplicate <0.1	Criteria % 200 200 200 200 200 50 50 50 200 200 20	RPD % 0
Original SE208655.010 SE208655.016	LB204339.014	Aromatic Polycyclic Surrogates Monocyclic Aromatic Polycyclic Surrogates	Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total Xylenes Total BTEX Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene d4-1,2-dichloroethane (Surrogate) Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bertone (Surrogate)	mg/kg	0.1 0.1 0.2 0.1 0.1 - - - 0.3 0.6 0.1 0.1 0.1 0.2 0.1 0.1 0.1 - - - - - - - - - - - - - - - - - - -	<0.1	Duplicate <0.1	Criteria % 200 200 200 200 50 50 50 200 200 200 20	RPD % 0
Original SE208655.010 SE208655.016	LB204339.014	Aromatic Polycyclic Surrogates Monocyclic Aromatic Polycyclic Surrogates	Benzene Toluene Ethylbenzene m/p-xylene o-xylene data d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total Xylenes Total BTEX Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Benzene Toluene Ethylbenzene m/p-xylene o-xylene Boxylene Sylene Toluene (Surrogate) d8-toluene (Surrogate) d8-toluene (Surrogate) d8-toluene (Surrogate)	mg/kg	0.1 0.1 0.2 0.1 0.1 - - - - - - - - - - - - - - - - - - -	<0.1	Duplicate <0.1	Criteria % 200 200 200 200 50 50 50 200 200 200 20	RPD % 0
Original SE208655.010 SE208655.016	LB204339.014	Aromatic Polycyclic Surrogates Totals Polycyclic Aromatic Polycyclic Surrogates Totals	Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total Xylenes Total BTEX Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) Bhathtalene d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) Total Xylenes Total STEX	mg/kg	0.1 0.1 0.2 0.1 0.1 - - - - 0.3 0.6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1	Duplicate <0.1	Criteria % 200 200 200 200 50 50 50 200 200 200 20	RPD % 0
Original	LB204339.014	Aromatic Polycyclic Surrogates Totals Polycyclic Aromatic Polycyclic Surrogates Totals Monocyclic Monocyclic	Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) Total Xylenes Total BTEX Benzene m/p-xylene o-xylene Naphthalene d4-1,2-dichloroethane (Surrogate) Total BTEX Benzene m/p-xylene o-xylene Naphthalene d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate) Total Xylenes Total Sylenes Total BTEX Benzene	mg/kg	0.1 0.1 0.2 0.1 0.1 - - - 0.3 0.6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1	Duplicate <0.1	Criteria % 200 200 200 200 200 200 200 200 200 20	RPD % 0
Original SE208655.010 SE208655.016	LB204339.014	Aromatic Polycyclic Surrogates Totals Polycyclic Aromatic Polycyclic Surrogates Totals Monocyclic Monocyclic	Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX Benzene Toluene Ethylbenzene m/p-xylene o-xylene Maphthalene data Benzene Total BTEX Benzene Mp-xylene o-xylene o-xylene o-xylene Stationoethane (Surrogate) Berzene Total BTEX Benzene Total Xylenes Total Xylenes Total Xylenes Total Steps Benzene Total BTEX Benzene Total BTEX Benzene Total BTEX Benzene Total PTEX Benzene Toluene	mg/kg	0.1 0.1 0.2 0.1 0.1 - - - 0.3 0.6 0.1 0.1 0.1 0.1 0.1 - - - 0.3 0.6 0.1 0.1 0.1	<0.1	Duplicate <0.1	Criteria % 200 200 200 200 200 50 50 200 200 200 2	RPD % 0
Original SE208655.010 SE208655.016	LB204339.014	Aromatic Polycyclic Surrogates Totals Polycyclic Aromatic Polycyclic Surrogates Totals Monocyclic Monocyclic	Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total STEX Benzene Toluene Ethylbenzene m/p-xylene o-xylene O-xylene Benzene Toluene Ethylbenzene m/p-xylene o-xylene Sylene Bonthhalene d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX Benzene Total BTEX Benzene Total BTEX Benzene Total BTEX Benzene Toluene Ethylbenzene Ethylbenzene	mg/kg mg/kg	0.1 0.1 0.2 0.1 0.1 - - - 0.3 0.6 0.1 0.1 0.1 0.1 0.1 0.3 0.6 0.1 0.1 0.1 0.1	<0.1	Duplicate <0.1	Criteria % 200 200 200 200 200 50 50 200 200 200 2	RPD % 0

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

/OC's in Soil (con Original	Duplicate		Parameter	Units	LOR	Original		od: ME-(AU)· Criteria %	RPD %
SE208655.026	LB204340.014	Sumaratas	d4-1,2-dichloroethane (Surrogate)					50	2
E200055.020	LB204340.014	Surrogates		mg/kg		8.4	8.6	50	2
			d8-toluene (Surrogate)	mg/kg		6.6	6.9	50	4
		Totals	Bromofluorobenzene (Surrogate) Total Xylenes	mg/kg	0.3	<0.3	<0.3	200	4
		Totals	Total BTEX	mg/kg mg/kg	0.6	<0.3	<0.6	200	0
			TOTALDIEA	iiig/kg	0.0	<0.0			
OCs in Water								d: ME-(AU)	
Driginal	Duplicate		Parameter	Units	LOR	Original		Criteria %	
SE208655.028	LB204439.021	Monocyclic	Benzene	μg/L	0.5	<0.5	0.0382640612	200	0
		Aromatic	Toluene	μg/L	0.5	<0.5	0.0979003260	200	0
			Ethylbenzene	μg/L	0.5	<0.5	0.0263561294	200	0
			m/p-xylene	μg/L	1	<1	0.0831745044	200	0
			o-xylene	µg/L	0.5	<0.5	0.0229546623	200	0
		Polycyclic	Naphthalene	µg/L	0.5	<0.5	0.0149147828	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	11.0	9.2838098028	30	17
			d8-toluene (Surrogate)	μg/L	-	9.6	9.8057867667	30	2
			Bromofluorobenzene (Surrogate)	μg/L	-	9.8	9.6692785559	30	1
olatile Petroleum	Hydrocarbons in So	il					Metho	d: ME-(AU)	(ENVJAI
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
SE208655.010	LB204339.014		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg		8.2	8.2	30	0
		Gunogates	d8-toluene (Surrogate)	mg/kg		7.8	7.9	30	2
			Bromofluorobenzene (Surrogate)			6.9	7.0	30	2
		VDU E Bende		mg/kg					
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0
SE208655.016	LB204339.021		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	8.1	8.1	30	0
			d8-toluene (Surrogate)	mg/kg	-	7.7	7.8	30	2
			Bromofluorobenzene (Surrogate)	mg/kg	-	6.8	7.0	30	2
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0
SE208655.026	LB204340.014		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	8.4	8.6	30	2
			d8-toluene (Surrogate)	mg/kg	-	8.1	8.3	30	2
			Bromofluorobenzene (Surrogate)	mg/kg	-	6.6	6.9	30	4
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0
olatile Petroleum	Hydrocarbons in Wa	ater					Metho	d: ME-(AU)	(ENV)A
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate		
SE208655.028	LB204439.021		TRH C6-C10	μg/L	50	<50	0.7730206168	200	0
			TRH C6-C9	μg/L	40	<40	0.3352740386	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	11.0	9.2838098028	30	17
		3	d8-toluene (Surrogate)	μg/L	-	9.6	9.8057867667	30	2
			Bromofluorobenzene (Surrogate)	μg/L		9.8	9.6692785559	30	1
		VPH F Bands	Benzene (F0)	μg/L	0.5	<0.5	0.0382640612	200	0
			TRH C6-C10 minus BTEX (F1)	μg/L	50	<50	0.7730206168	200	0
SE208690.001	LB204439.022	Surrogates	d4-1,2-dichloroethane (Surrogate)		50	0.0	0.7730206166	30	12
JE200030.001	LD207733.022	ounogates		μg/L					0
			d8-toluene (Surrogate)	μg/L		0.0	0.0	30	
			Bromofluorobenzene (Surrogate)	μg/L	-	0.0	0.0	30	1
		VPH F Bands	Benzene (F0)	µg/L	0.5	<0.5	<0.5	200	0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soll Method: ME-(AU)-[ENV]Al							U)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB204384.002	Mercury	mg/kg	0.05	0.23	0.2	70 - 130	116
LB204386.002	Mercury	mg/kg	0.05	0.23	0.2	70 - 130	114

C Pesticides in S							Nethod: ME-(Al	<u> </u>
Sample Number	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
B204342.002		Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	88
		Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	86
		Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	83
		Dieldrin	mg/kg	0.2	<0.2	0.2	60 - 140	85
		Endrin	mg/kg	0.2	<0.2	0.2	60 - 140	86
		p,p'-DDT	mg/kg	0.1	0.1	0.2	60 - 140	72
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.14	0.15	40 - 130	91
B204343.002		Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	89
		Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	90
		Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	87
		Dieldrin	mg/kg	0.2	<0.2	0.2	60 - 140	90
		Endrin	mg/kg	0.2	<0.2	0.2	60 - 140	85
		p,p'-DDT	mg/kg	0.1	0.1	0.2	60 - 140	74
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.14	0.15	40 - 130	93
P Pesticides in S	Soil					N	lethod: ME-(A	U)-[ENV]AN
Sample Number	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
B204342.002		Dichlorvos	mg/kg	0.5	1.8	2	60 - 140	91
		Diazinon (Dimpylate)	mg/kg	0.5	1.7	2	60 - 140	84
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	1.7	2	60 - 140	87
		Ethion	mg/kg	0.2	1.3	2	60 - 140	66
	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	86
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	79
B204343.002		Dichlorvos	mg/kg	0.5	1.8	2	60 - 140	89
		Diazinon (Dimpylate)	mg/kg	0.5	1.3	2	60 - 140	64
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	1.4	2	60 - 140	69
		Ethion	mg/kg	0.2	1.3	2	60 - 140	63
			mg/kg	_	0.4	0.5	40 - 130	82
	Surrogates	2-fluorobiphenyl (Surrogate)	iiig/kg			0.0	40 100	02

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB204342.002		Naphthalene	mg/kg	0.1	4.2	4	60 - 140	104
		Acenaphthylene	mg/kg	0.1	4.3	4	60 - 140	107
		Acenaphthene	mg/kg	0.1	4.1	4	60 - 140	103
		Phenanthrene	mg/kg	0.1	4.0	4	60 - 140	100
		Anthracene	mg/kg	0.1	4.3	4	60 - 140	107
		Fluoranthene	mg/kg	0.1	4.0	4	60 - 140	100
		Pyrene	mg/kg	0.1	4.3	4	60 - 140	108
_		Benzo(a)pyrene	mg/kg	0.1	4.0	4	60 - 140	100
S	Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	90
		2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	86
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	79
LB204343.002		Naphthalene	mg/kg	0.1	4.1	4	60 - 140	102
		Acenaphthylene	mg/kg	0.1	4.0	4	60 - 140	99
		Acenaphthene	mg/kg	0.1	4.2	4	60 - 140	105
		Phenanthrene	mg/kg	0.1	4.1	4	60 - 140	102
		Anthracene	mg/kg	0.1	3.9	4	60 - 140	98
		Fluoranthene	mg/kg	0.1	3.9	4	60 - 140	97
		Pyrene	mg/kg	0.1	4.0	4	60 - 140	101
_		Benzo(a)pyrene	mg/kg	0.1	4.2	4	60 - 140	106
S	Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	75
		2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	82
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	74

PCBs in Soil

Sample Number

Parameter

Method: ME-(AU)-[ENV]AN420

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Method: ME-(AU)-[ENV]AN420

PCBs in Soil (continued)					N	lethod: ME-(A	U)-[ENV]AN420
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB204342.002	Arochlor 1260	mg/kg	0.2	0.3	0.4	60 - 140	77
LB204343.002	Arochlor 1260	ma/ka	0.2	0.3	0.4	60 - 140	73

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

Sample Number		Paramotor	Units	s LOR	Result		ME-(AU)-[EN\	-
		Parameter				Expected		Recovery
LB204380.002		Arsenic, As	mg/kg	1	330	318.22	80 - 120	105
		Cadmium, Cd	mg/kg	0.3	5.5	5.41	80 - 120	102
		Chromium, Cr	mg/kg	0.5	43	38.31	80 - 120	111
		Copper, Cu	mg/kg	0.5	300	290	80 - 120	103
		Nickel, Ni	mg/kg	0.5	190	187	80 - 120	103
		Lead, Pb	mg/kg	1	93	89.9	80 - 120	103
5004004 000		Zinc, Zn	mg/kg	2	270	273	80 - 120	100
_B204381.002		Arsenic, As	mg/kg	1	330	318.22	80 - 120	105
		Cadmium, Cd	mg/kg	0.3	5.6	5.41	80 - 120	104
		Chromium, Cr	mg/kg	0.5	40	38.31	80 - 120	104
		Copper, Cu	mg/kg	0.5	300	290	80 - 120	105
		Nickel, Ni	mg/kg	0.5	190	187	80 - 120	103
		Lead, Pb	mg/kg	1	93	89.9	80 - 120	104
		Zinc, Zn	mg/kg	2	280	273	80 - 120	102
race Metals (Diss	olved) in Water by	ICPMS				N	lethod: ME-(A	U)-[ENV]AN
Sample Number		Parameter	Units	s LOR	Result	Expected	Criteria %	Recovery
B204402.002		Arsenic, As	μg/L	1	19	20	80 - 120	94
		Cadmium, Cd	μg/L	0.1	21	20	80 - 120	103
		Chromium, Cr	μg/L	1	22	20	80 - 120	108
		Copper, Cu	μg/L	1	22	20	80 - 120	110
		Lead, Pb	μg/L	1	20	20	80 - 120	101
		Nickel, Ni	μg/L	1	21	20	80 - 120	104
		Zinc, Zn	μg/L	5	22	20	80 - 120	109
DH (Total Bassur	erable Hydrocarbo						/lethod: ME-(A	
-				1.00	D 11			
Sample Number		Parameter	Units		Result	Expected		Recovery
B204342.002		TRH C10-C14	mg/kg	20	37	40	60 - 140	93
		TRH C15-C28	mg/kg	45	<45	40	60 - 140	78
		TRH C29-C36	mg/kg	45	<45	40	60 - 140	85
	TRH F Bands	TRH >C10-C16	mg/kg	25	36	40	60 - 140	90
		TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	78
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	85
B204343.002		TRH C10-C14	mg/kg	20	47	40	60 - 140	118
		TRH C15-C28	mg/kg	45	<45	40	60 - 140	110
						40	60 - 140	98
		TRH C29-C36	mg/kg	45	<45		00-140	
	TRH F Bands	TRH >C10-C16	mg/kg mg/kg	25	49	40	60 - 140	123
	TRH F Bands							123 100
	TRH F Bands	TRH >C10-C16	mg/kg	25	49	40	60 - 140	
RH (Total Recove	TRH F Bands	TRH >C10-C16 TRH >C16-C34 (F3) TRH >C34-C40 (F4)	mg/kg mg/kg	25 90	49 <90	40 40 20	60 - 140 60 - 140	100 95
•	arable Hydrocarbo	TRH >C10-C16 TRH >C16-C34 (F3) TRH >C34-C40 (F4) s) in Water	mg/kg mg/kg mg/kg	25 90 120	49 <90 <120	40 40 20	60 - 140 60 - 140 60 - 140 /ethod: ME-(A	100 95 U)-[ENV]AN
Sample Number	arable Hydrocarbo	TRH >C10-C16 TRH >C16-C34 (F3) TRH >C34-C40 (F4) is) in Water Parameter	mg/kg mg/kg Unite	25 90 120 s LOR	49 <90 <120 Result	40 40 20 M Expected	60 - 140 60 - 140 60 - 140 Aethod: ME-(A Criteria %	100 95 U)-[ENV]AN Recovery
Sample Number	arable Hydrocarbo	TRH >C10-C16 TRH >C16-C34 (F3) TRH >C34-C40 (F4) s) In Water Parameter TRH C10-C14	mg/kg mg/kg Unite µg/L	25 90 120	49 <90 <120 Result 890	40 40 20 Expected 1200	60 - 140 60 - 140 60 - 140 Aethod: ME-(A Criteria % 60 - 140	100 95 U)-[ENV]AN
Sample Number	arable Hydrocarbo	TRH >C10-C16 TRH >C16-C34 (F3) TRH >C34-C40 (F4) is) in Water Parameter TRH C10-C14 TRH C15-C28	mg/kg mg/kg mg/kg Unite µg/L µg/L	25 90 120 s LOR 50 200	49 <90 <120 Result 890 1100	40 40 20 Expected 1200 1200	60 - 140 60 - 140 60 - 140 Aethod: ME-(A Criteria % 60 - 140 60 - 140	100 95 U)-[ENV]AN Recovery 74 95
Sample Number	erable Hydrocarboi	TRH >C10-C16 TRH >C16-C34 (F3) TRH >C34-C40 (F4) s) In Water Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36	mg/kg mg/kg mg/kg Units µg/L µg/L µg/L	25 90 120 s LOR 50 200 200	49 <90 <120 Result 890 1100 1300	40 40 20 Expected 1200 1200 1200	60 - 140 60 - 140 60 - 140 Aethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140	100 95 U)-[ENV]AN Recovery 74 95 107
Sample Number	arable Hydrocarbo	TRH >C10-C16 TRH >C16-C34 (F3) TRH >C34-C40 (F4) s) in Water Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH >C10-C16	mg/kg mg/kg mg/kg Unit µg/L µg/L µg/L µg/L	25 90 120 s LOR 50 200 200 60	49 <90 <120 Result 890 1100 1300 1000	40 40 20 Expected 1200 1200 1200 1200	60 - 140 60 - 140 60 - 140 Aethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140	100 95 U)-[ENV]AN Recovery 74 95 107 83
Sample Number	erable Hydrocarboi	TRH >C10-C16 TRH >C16-C34 (F3) TRH >C34-C40 (F4) s) in Water Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH >C10-C16 TRH >C10-C34 (F3)	mg/kg mg/kg mg/kg Unit µg/L µg/L µg/L µg/L µg/L	25 90 120 s LOR 50 200 200 60 500	49 <90 <120 Result 890 1100 1300 1000 1400	40 40 20 Expected 1200 1200 1200 1200 1200	60 - 140 60 - 140 60 - 140 Acthod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140	100 95 U)-[ENV]AN Recovery 74 95 107 83 113
Sample Number .B204298.002	erable Hydrocarboi	TRH >C10-C16 TRH >C16-C34 (F3) TRH >C34-C40 (F4) s) in Water Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH >C10-C16	mg/kg mg/kg mg/kg Unit µg/L µg/L µg/L µg/L	25 90 120 s LOR 50 200 200 60	49 <90 <120 Result 890 1100 1300 1000	40 40 20 Expected 1200 1200 1200 1200 1200 600	60 - 140 60 - 140 60 - 140 Acthod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	100 95 U)-[ENV]AN Recovery 74 95 107 83 113 101
Sample Number B204298.002	erable Hydrocarboi	TRH >C10-C16 TRH >C16-C34 (F3) TRH >C34-C40 (F4) s) in Water Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH >C10-C16 TRH >C10-C34 (F3)	mg/kg mg/kg mg/kg Unit µg/L µg/L µg/L µg/L µg/L	25 90 120 s LOR 50 200 200 60 500	49 <90 <120 Result 890 1100 1300 1000 1400	40 40 20 Expected 1200 1200 1200 1200 1200 600	60 - 140 60 - 140 60 - 140 Acthod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140	100 95 U)-[ENV]AN Recovery 74 95 107 83 113 101
Sample Number B204298.002 DC's in Soil	TRH F Bands	TRH >C10-C16 TRH >C16-C34 (F3) TRH >C34-C40 (F4) s) in Water Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH >C10-C16 TRH >C10-C34 (F3)	mg/kg mg/kg mg/kg Unit µg/L µg/L µg/L µg/L µg/L	25 90 120 s LOR 50 200 200 60 500 500	49 <90 <120 Result 890 1100 1300 1000 1400	40 40 20 Expected 1200 1200 1200 1200 1200 600	60 - 140 60 - 140 60 - 140 Acthod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	100 95 U)-[ENV]AN Recovery 74 95 107 83 113 101 101 U)-[ENV]AN
RH (Total Recove Sample Number LB204298.002 'OC's in Soil Sample Number LB204339.002	TRH F Bands	TRH >C10-C16 TRH >C16-C34 (F3) TRH >C34-C40 (F4) s) In Water Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH >C10-C16 TRH >C16-C34 (F3) TRH >C34-C40 (F4)	mg/kg mg/kg mg/kg μg/L μg/L μg/L μg/L μg/L μg/L	25 90 120 s LOR 50 200 200 60 500 500	49 <90 <120 Result 890 1100 1300 1000 1400 610	40 40 20 Expected 1200 1200 1200 1200 600	60 - 140 60 - 140 60 - 140 Aethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 Kethod: ME-(A	100 95 U)-[ENV]AN Recovery 74 95 107 83 113 101 U)-[ENV]AN

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

0.1

0.1

0.2

0.1

3.4

4.1

8.2

4.1

9.1

5

5

10

5

10

60 - 140

60 - 140

60 - 140

60 - 140

70 - 130

Aromatic

Toluene

Ethylbenzene

d4-1,2-dichloroethane (Surrogate)

m/p-xylene

o-xylene

67

82

82

82

91

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOC's in Soil (conti	nued)						Method: ME-(A	U)-[ENV]AN4:
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB204339.002	Surrogates	d8-toluene (Surrogate)	mg/kg	-	8.8	10	70 - 130	88
		Bromofluorobenzene (Surrogate)	mg/kg	-	7.1	10	70 - 130	71
LB204340.002	Monocyclic	Benzene	mg/kg	0.1	5.2	5	60 - 140	104
	Aromatic	Toluene	mg/kg	0.1	5.1	5	60 - 140	102
		Ethylbenzene	mg/kg	0.1	5.2	5	60 - 140	104
		m/p-xylene	mg/kg	0.2	10	10	60 - 140	104
		o-xylene	mg/kg	0.1	5.2	5	60 - 140	103
	Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	9.2	10	70 - 130	92
		d8-toluene (Surrogate)	mg/kg	-	9.2	10	70 - 130	92
		Bromofluorobenzene (Surrogate)	mg/kg	-	7.8	10	70 - 130	78
OCs in Water						I	Method: ME-(A	U)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB204439.002	Monocyclic	Benzene	µg/L	0.5	45	45.45	60 - 140	100
	Aromatic	Toluene	µg/L	0.5	47	45.45	60 - 140	104
		Ethylbenzene	µg/L	0.5	47	45.45	60 - 140	103
		m/p-xylene	µg/L	1	94	90.9	60 - 140	103
		o-xylene	µg/L	0.5	48	45.45	60 - 140	107
	Surrogates	d4-1,2-dichloroethane (Surrogate)	µg/L	-	9.5	10	60 - 140	95
		d8-toluene (Surrogate)	µg/L	-	9.9	10	70 - 130	99
		Bromofluorobenzene (Surrogate)	µg/L	-	10.0	10	70 - 130	100
/olatile Petroleum I	-lydrocarbons in S	Soil				I	Method: ME-(A	U)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery ^o
LB204339.002		TRH C6-C10	mg/kg	25	67	92.5	60 - 140	72
		TRH C6-C9	mg/kg	20	58	80	60 - 140	72
	Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	9.1	10	70 - 130	91
		Bromofluorobenzene (Surrogate)	mg/kg	-	7.1	10	70 - 130	71
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	44	62.5	60 - 140	70
LB204340.002		TRH C6-C10	mg/kg	25	72	92.5	60 - 140	78
		TRH C6-C9	mg/kg	20	62	80	60 - 140	78
	Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	9.2	10	70 - 130	92
		Bromofluorobenzene (Surrogate)	mg/kg	-	7.8	10	70 - 130	78
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	41	62.5	60 - 140	65
olatile Petroleum I	-lydrocarbons in V	Vater				1	Method: ME-(A	U)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB204439.002		TRH C6-C10	µg/L	50	920	946.63	60 - 140	98
		TRH C6-C9	µg/L	40	830	818.71	60 - 140	102
	Surrogates	d4-1,2-dichloroethane (Surrogate)	µg/L	-	9.5	10	60 - 140	95
		d8-toluene (Surrogate)	µg/L	-	9.9	10	70 - 130	99
		Bromofluorobenzene (Surrogate)	µg/L	-	10.0	10	70 - 130	100
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	µg/L	50	640	639.67	60 - 140	100

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolve	d) in Water				Met	hod: ME-(AU)-	ENVJAN311	(Perth)/AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE208589.037	LB204300.004	Mercury	mg/L	0.0001	0.0082	<0.0001	0.008	102

Mercury in Soil

Mercury in Soil						Met	hod: ME-(Al	J)-[ENV]AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE208655.001	LB204384.004	Mercury	mg/kg	0.05	0.22	<0.05	0.2	104
SE208714.001	LB204386.004	Mercury	mg/kg	0.05	0.22	<0.05	0.2	105

OC Pesticides in Soil

OC Pesticides in	Soil						Mett	nod: ME-(AL)-[ENV]AN420
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery
SE208655.001	LB204342.004		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	-	-
			Alpha BHC	mg/kg	0.1	<0.1	<0.1	-	-
			Lindane	mg/kg	0.1	<0.1	<0.1	-	-
			Heptachlor	mg/kg	0.1	0.2	<0.1	0.2	102
			Aldrin	mg/kg	0.1	0.2	<0.1	0.2	97
			Beta BHC	mg/kg	0.1	<0.1	<0.1	-	-
			Delta BHC	mg/kg	0.1	0.2	<0.1	0.2	95
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	-	-
			o,p'-DDE	mg/kg	0.1	<0.1	<0.1	-	-
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	-	-
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	-	-
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	-	-
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	-	-
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	-	-
			Dieldrin	mg/kg	0.2	<0.2	<0.2	0.2	96
			Endrin	mg/kg	0.2	<0.2	<0.2	0.2	99
			o,p'-DDD	mg/kg	0.1	<0.1	<0.1	-	-
			o,p'-DDT	mg/kg	0.1	<0.1	<0.1	-	-
			Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	-	-
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	-	-
			p,p'-DDT	mg/kg	0.1	0.2	<0.1	0.2	86
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	-	-
			Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	-	-
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	-	-
			Endrin Ketone	mg/kg	0.1	<0.1	<0.1	-	-
			Isodrin	mg/kg	0.1	<0.1	<0.1	-	-
			Mirex	mg/kg	0.1	<0.1	<0.1	-	-
			Total CLP OC Pesticides	mg/kg	1	1	<1	-	_
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.15	0.15	-	101
P Pesticides in	Soil						Mett	nod: ME-(AL)-[ENV]AN42
QC Sample	Sample Number	_	Parameter	Units	LOR	Result	Original	Spike	Recovery
SE208655.001	LB204342.004		Dichlorvos	mg/kg	0.5	1.5	<0.5	2	73
			Dimethoate	mg/kg	0.5	<0.5	<0.5	-	-
			Diazinon (Dimpylate)	mg/kg	0.5	1.8	<0.5	2	89
			Fenitrothion	mg/kg	0.2	<0.2	<0.2	-	-
			Malathion	mg/kg	0.2	<0.2	<0.2	-	
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	1.8	<0.2	2	88
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	-	-
			Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	-	-
			Methidathion	mg/kg	0.2	<0.2	<0.2		
			Weatured	iiig/Kg	0.0	~0.5	~0.0	-	-

0.5 -80 Method: ME-(AU)-[ENV]AN420

2

-

< 0.2

<0.2

<1.7

0.5

0.2

0.2

1.7

-

1.3

<0.2

6.3

0.4

0.4

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

QC Sample	Sample Number	Parameter	Units	LOR

Azinphos-methyl (Guthion)

2-fluorobiphenyl (Surrogate)

d14-p-terphenyl (Surrogate)

Total OP Pesticides*

Ethion

Surrogates

63

83

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

C Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recover
E208655.001	LB204342.004		Naphthalene		0.1	4.1	<0.1	4	101
200033.001	LB204342.004		2-methylnaphthalene	mg/kg mg/kg	0.1	<0.1	<0.1	-	-
			1-methylnaphthalene		0.1	<0.1	<0.1	-	-
				mg/kg		4.0	<0.1	4	
			Acenaphthylene	mg/kg	0.1			4	100
			Acenaphthene	mg/kg	0.1	4.0	<0.1	-	101
			Fluorene	mg/kg	0.1	<0.1	<0.1		
			Phenanthrene	mg/kg	0.1	3.9	<0.1	4	97
			Anthracene	mg/kg	0.1	4.1	<0.1	4	101
			Fluoranthene	mg/kg	0.1	4.1	<0.1	4	100
			Pyrene	mg/kg	0.1	4.2	<0.1	4	104
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	-	-
			Chrysene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(a)pyrene	mg/kg	0.1	3.9	<0.1	4	97
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	-	-
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	_	-
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	-	-
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.1</td><td>3.9</td><td><0.1</td><td></td><td></td></lor=0<>	TEQ (mg/kg)	0.1	3.9	<0.1		
								-	
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>4.0</td><td><0.3</td><td>-</td><td>-</td></lor=lor<>	TEQ (mg/kg)	0.3	4.0	<0.3	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>4.0</td><td><0.2</td><td>-</td><td>-</td></lor=lor>	TEQ (mg/kg)	0.2	4.0	<0.2	-	-
	-		Total PAH (18)	mg/kg	0.8	32	<0.8	-	-
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.4	-	86
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	-	83
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.5	-	80
Bs in Soil							Met	hod: ME-(AL	J)-[ENV]AN
C Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recove
E208655.001	LB204342.004		Arochlor 1016	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1221	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1232	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1222		0.2	<0.2	<0.2		
				mg/kg				-	
			Arochlor 1248	mg/kg	0.2	<0.2	<0.2		
			Arochlor 1254	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1260	mg/kg	0.2	0.3	<0.2	0.4	84
			Arochlor 1262	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1268	mg/kg	0.2	<0.2	<0.2	-	-
	-		Total PCBs (Arochlors)	mg/kg	1	<1	<1	-	-
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0	0	-	101
al Recoverab	ble Elements in Soil/Was	te Solids/Mate	rials by ICPOES				Method: ME	-(AU)-IENV	IAN040/AI
C Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recove
E208655.001	LB204380.004					51			
208655.001	LB204380.004		Arsenic, As	mg/kg	1		4	50	95
			Cadmium, Cd	mg/kg	0.3	43	<0.3	50	86
						64	11	50	106
			Chromium, Cr	mg/kg	0.5				
			Copper, Cu	mg/kg mg/kg	0.5	69	24	50	90
								50 50	90 92
			Copper, Cu	mg/kg	0.5	69	24		
			Copper, Cu Nickel, Ni	mg/kg mg/kg	0.5 0.5	69 59	24 13	50	92 89
208714.001	LB204381.005		Copper, Cu Nickel, Ni Lead, Pb	mg/kg mg/kg mg/kg	0.5 0.5 1	69 59 56	24 13 12	50 50	92 89
208714.001	LB204381.005		Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn	mg/kg mg/kg mg/kg mg/kg	0.5 0.5 1 2	69 59 56	24 13 12 34	50 50 50	92 89 287 (83
208714.001	LB204381.005		Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As	mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.5 1 2 1	69 59 56	24 13 12 34 3	50 50 50 50	92 89 287 (
208714.001	LB204381.005		Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.5 1 2 1 0.3 0.5	69 59 56	24 13 12 34 3 <0.3 4.1	50 50 50 50 50 50 50	92 89 287 (83 78 86
208714.001	LB204381.005		Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.5 1 2 1 0.3 0.5 0.5	69 59 56	24 13 12 34 3 <0.3 4.1 11	50 50 50 50 50 50 50 50	92 89 287 (83 78 86 86 83
208714.001	LB204381.005		Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.5 1 2 1 0.3 0.5 0.5 0.5	69 59 56 180	24 13 12 34 3 <0.3 4.1 11 4.0	50 50 50 50 50 50 50 50 50	92 89 287 (83 78 86 83 83 87
208714.001	LB204381.005		Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.5 1 2 1 0.3 0.5 0.5 0.5 1	69 59 56	24 13 12 34 3 <0.3 4.1 11 4.0 19	50 50 50 50 50 50 50 50 50 50 50	92 89 287 (83 78 86 83 86 83 87 67 †
			Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.5 1 2 1 0.3 0.5 0.5 0.5	69 59 56 180	24 13 34 3 <0.3 4.1 11 4.0 19 26	50 50 50 50 50 50 50 50 50 50 50	92 89 287 (83 78 86 83 87 67 † 80
	LB204381.005	PMS	Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.5 1 2 1 0.3 0.5 0.5 0.5 1	69 59 56 180	24 13 34 3 <0.3 4.1 11 4.0 19 26	50 50 50 50 50 50 50 50 50 50 50	92 89 287 (83 78 86 83 87 67 † 80
ce Metals (Di		PMS	Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.5 1 2 1 0.3 0.5 0.5 0.5 1	69 59 56 180	24 13 34 3 <0.3 4.1 11 4.0 19 26	50 50 50 50 50 50 50 50 50 50 50	92 89 287 (83 78 86 83 87 67 † 80))-[ENV]A I
208714.001 Ice Metals (Di C Sample 208484A.00	issolved) in Water by IC	PMS	Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.5 1 2 1 0.3 0.5 0.5 0.5 1 2	69 59 56 180 53	24 13 12 34 3 <0.3 4.1 11 4.0 19 26 Ket	50 50 50 50 50 50 50 50 50 50 50 50 50 60	92 89 287 (83 78 86 83 87 67 † 80
<mark>ce Metals (Di</mark> C Sample	<mark>issolved) in Water by IC</mark> Sample Number	PMS	Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.5 1 2 1 0.3 0.5 0.5 0.5 1 2 LOR	69 59 56 180 53 53 Result	24 13 12 34 3 <0.3 4.1 11 4.0 19 26 Met Original	50 50 50 50 50 50 50 50 50 50 50 hod: ME-(AL Spike	92 89 287 (83 78 86 83 87 67 † 80)-[ENV]A I Recove

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

QC Sample	ssolved) in Water by Sample Number			Units	LOR	Result	Original		J)-[ENV]AN3
			Parameter					Spike	Recover
SE208484A.00	LB204402.004		Copper, Cu	µg/L	1	26	4	20	110
1			Lead, Pb	μg/L	1	21	<1	20	105
			Zinc, Zn	µg/L	5	81	61	20	102
RH (Total Reco	verable Hydrocarbon	s) in Soil					Meth	nod: ME-(Al	J)-[ENV]AN
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recover
SE208655.001	LB204342.004		TRH C10-C14	mg/kg	20	43	<20	40	108
			TRH C15-C28	mg/kg	45	<45	<45	40	85
			TRH C29-C36	mg/kg	45	<45	<45	40	93
			TRH C37-C40	mg/kg	100	<100	<100	-	-
			TRH C10-C36 Total	mg/kg	110	<110	<110	-	-
			TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	-	-
		TRH F Bands	TRH >C10-C16	mg/kg	25	40	<25	40	100
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	40	<25	-	-
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	40	88
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	-	-
OC's in Soil							Mett	nod: ME-(Al	J)-IENVIAN
	Comple Number		Devenuedar	Unite		Decult			
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recove
SE208655.001	LB204339.004	Monocyclic	Benzene	mg/kg	0.1	3.4	<0.1	5	68
		Aromatic	Toluene	mg/kg	0.1	3.4	<0.1	5	68
			Ethylbenzene	mg/kg	0.1	4.2	<0.1	5	84
			m/p-xylene	mg/kg	0.2	8.5	<0.2	10	85
			o-xylene	mg/kg	0.1	4.2	<0.1	5	85
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	-	-
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	8.5	8.3	10	85
			d8-toluene (Surrogate)	mg/kg	-	7.9	8.0	10	79
			Bromofluorobenzene (Surrogate)	mg/kg	-	6.5	7.1	10	65 ①
		Totals	Total Xylenes	mg/kg	0.3	13	<0.3	-	-
			Total BTEX	mg/kg	0.6	24	<0.6	-	-
SE208655.017	LB204340.004	Monocyclic	Benzene	mg/kg	0.1	4.4	<0.1	5	89
		Aromatic	Toluene	mg/kg	0.1	4.4	<0.1	5	88
			Ethylbenzene	mg/kg	0.1	4.5	<0.1	5	91
			m/p-xylene	mg/kg	0.2	9.1	<0.2	10	91
			o-xylene	mg/kg	0.1	4.5	<0.1	5	90
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	-	-
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	7.9	8.7	10	79
			d8-toluene (Surrogate)	mg/kg	-	7.9	8.4	10	79
			Bromofluorobenzene (Surrogate)	mg/kg	-	6.7	7.1	10	67 ①
		Totals	Total Xylenes	mg/kg	0.3	14	<0.3	-	-
			Total BTEX	mg/kg	0.6	27	<0.6	-	-
OCs in Water							Meth	nod: ME-(Al	J)-[ENV]AN
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recove
SE208484A.00	LB204439.023	Monocyclic	Benzene	μg/L	0.5	48	<0.5	45.45	106
9		Aromatic	Toluene	µg/L	0.5	47	<0.5	45.45	100
			Ethylbenzene	μg/L	0.5	47	<0.5	45.45	100
			m/p-xylene	µg/L	1	95	<1	90.9	104
			o-xylene	μg/L	0.5	47	<0.5	45.45	103
		Polycyclic	Naphthalene	μg/L	0.5	43	<0.5	-	-
		Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	10.5	11.1		105
		00090(00	d8-toluene (Surrogate)	μg/L		10.3	9.7		103
			Bromofluorobenzene (Surrogate)	μg/L	-	9.9	9.9		99
alatila Detect	n Hudersont and K. O	- 11		29°C		0.0			
	m Hydrocarbons in So							nod: ME-(Al	
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recove
SE208655.001	LB204339.004		TRH C6-C10	mg/kg	25	68	<25	92.5	73
			TRH C6-C9	mg/kg	20	62	<20	80	77
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	8.5	8.3	10	85
			d8-toluene (Surrogate)	mg/kg	-	7.9	8.0	10	79
			Bromofluorobenzene (Surrogate)	mg/kg	-	6.5	7.1	-	65
			Banzona (EQ)	mg/kg	0.1	3.4	<0.1	-	-
		VPH F	Benzene (F0)	nig/kg	0.1	0.4	-0.1	-	

20/7/2020

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Volatile Petroleum Hydrocarbons in Soil (continued) Method: ME-(AU)-[ENV]AN433 QC Sample Sample Number Parameter Units LOR Result Original Spike Recovery% SE208655.017 LB204340.004 TRH C6-C10 mg/kg 25 66 <25 92.5 71 TRH C6-C9 mg/kg 20 57 <20 80 72 Surrogates d4-1,2-dichloroethane (Surrogate) 7.9 8.7 10 79 mg/kg d8-toluene (Surrogate) mg/kg -7.9 8.4 10 79 Bromofluorobenzene (Surrogate) 6.7 7.1 67 mg/kg -VPH F Benzene (F0) 0.1 4.4 <0.1 mg/kg TRH C6-C10 minus BTEX (F1) 62.5 25 38 <25 62 Bands mg/kg Volatile Petroleum Hydrocarbons in Water Method: ME-(AU)-[ENV]AN433 Result Original Spike Recovery% QC Sample Sample Number Units LOR Parameter SE208484A.00 LB204439.023 TRH C6-C10 946.63 50 930 <50 98 µg/L 9 TRH C6-C9 µg/L 40 800 <40 818.71 98 Surrogates d4-1,2-dichloroethane (Surrogate) µg/L 0.0 11.1 105 d8-toluene (Surrogate) 0.0 9.7 103 µg/L 0.0 99 Bromofluorobenzene (Surrogate) µg/L 9.9 VPH F Benzene (F0) µg/L 0.5 48 <0.5 Bands TRH C6-C10 minus BTEX (F1) 50 640 <50 639.67 101 µg/L

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	ILS
Contact	Li Wei	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	li.wei@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E24724.E02 2 Mandala Parade, Castle Hill	SGS Reference	SE208846 R0
Order Number	E24724.E02	Date Received	17 Jul 2020
Samples	14	Date Reported	24 Jul 2020

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met (within the SGS Alexandria Environmental laboratory).

SAMPLE SUMMARY

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia f +61 2 8594 0499

www.sgs.com.au

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Bits 1.6.2 SP28846.01 LIP2000 Dit J AV 200 Dit J AV 200 <thdit 200<="" av="" th=""> <thdit 200<="" av="" th=""> <t< th=""><th>Fibre Identification in soil</th><th></th><th></th><th></th><th></th><th></th><th></th><th>Method: I</th><th>ME-(AU)-[ENV]AN60</th></t<></thdit></thdit>	Fibre Identification in soil							Method: I	ME-(AU)-[ENV]AN60
98. 9. <t< th=""><th>Sample Name</th><th>Sample No.</th><th>QC Ref</th><th>Sampled</th><th>Received</th><th>Extraction Due</th><th>Extracted</th><th>Analysis Due</th><th>Analysed</th></t<>	Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
Birth 1.2.2 Birtholdson I. Linston I. Distance I. <thdistance i.<="" th=""> <thdistance i.<="" th=""></thdistance></thdistance>	BH2_0.1-0.2	SE208846.001	LB205004	09 Jul 2020	17 Jul 2020	09 Jul 2021	23 Jul 2020	09 Jul 2021	24 Jul 2020
Internal Bertometero Internal	BH2_1.6-1.7	SE208846.003	LB205004	09 Jul 2020	17 Jul 2020	09 Jul 2021	23 Jul 2020	09 Jul 2021	24 Jul 2020
Bink Schweisson Disk	BH3M_0.1-0.2	SE208846.004	LB205004	13 Jul 2020	17 Jul 2020	13 Jul 2021	23 Jul 2020	13 Jul 2021	24 Jul 2020
Bin May 2-8-9. BE30084 000 LB30004 1 J. J. 2020 1 J. J. 2021 2 J. J. 2020 1 J. J. 2020 2 J. J. 2020 2 J. J. 2020 2 J. J. 2020 2 J. J. 2020 1 J. J. 2020 2 J. J. 2020 2 J. J. 2020 1 J. J. 2020 2 J. J. 2020 J. J. 2020 J. J. 2020	BH3M_0.7-0.8	SE208846.005	LB205004	13 Jul 2020		13 Jul 2021	23 Jul 2020	13 Jul 2021	24 Jul 2020
BMM.9.59.01SE2084.001LB2000I + Ju 200I + Ju 201I + Ju 201 <th< td=""><td>BH3M_1.7-1.8</td><td>SE208846.006</td><td>LB205004</td><td>13 Jul 2020</td><td>17 Jul 2020</td><td>13 Jul 2021</td><td>23 Jul 2020</td><td>13 Jul 2021</td><td>24 Jul 2020</td></th<>	BH3M_1.7-1.8	SE208846.006	LB205004	13 Jul 2020	17 Jul 2020	13 Jul 2021	23 Jul 2020	13 Jul 2021	24 Jul 2020
Bin M. 2-0-30 SE2008-0010 LB20004 H - M 2020 T/- M 2020 H - M 2021 2.3. A 1200 H - M 2021 2.3< A 1200 H - M 2020 H -									24 Jul 2020
Binshol 10-20 Bick 10-20									24 Jul 2020
Bindle 1.9.2.0.SE29884.014LB0200419.J.4.200 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>24 Jul 2020</td>									24 Jul 2020
Instrume Stands Construme Entrantion Construme Analysis Dui A									24 Jul 2020
Sample Manna Stampled No. QC Ref Sampled Reactived Extracted Analysis Due A Bit2, 51:6.2 BE20646.001 LB04774 06 Jul 2020 17 Jul 2020 06 Aug 2020 21 Jul 2020 16 Aug 2020 21 Jul 2020 11 Aug 2020 22 Jul 2020 11 Aug 2020 <		SE208846.014	LB205004	16 Jul 2020	17 Jul 2020	16 Jul 2021	23 Jul 2020		24 Jul 2020
Bit 0.10.2 SE20846.001 LEX0H74 09.Ju 0200 17.Ju 0200 06.9.kug 0200 21.Ju 1000 06.9.kug 0200 21.Ju 0200 07.Ju 0200 07	•								ME-(AU)-[ENV]AN31
Bir 2, 1-3.1 SE28846.02 LB204774 09. Jul 200 17. Jul 200 06. Aug 200 21. Jul 200 06. Aug 200 22 Bir 2, 16.1 SE28844.004 LB204774 13. Jul 200 17. Jul 220 160. Aug 200 21. Jul 200 10. Aug 200 21. Jul 200 10. Aug 200 22 Jul 200 17. Jul 200 160. Aug 200 21. Jul 200 10. Aug 200 22 Jul 200 17. Jul 200 160. Aug 200 21. Jul 200 10. Aug 200 22 Jul 200 17. Jul 200 17. Jul 200 11. Aug 200 22 Jul 200 11. Aug 200 22 Jul 200 11. Aug 200 21. Jul 200 11. Aug 200 22 Jul 200 11. Aug 200 21. Jul 200 11. Aug 200 22 Jul 200 11. Aug 200 21. Jul 200 Jul 200 11. Aug 200 21. Ju									Analysed
BP 1. 8 - 7. SE20884.000 L 200774 0 9 Ju 2000 0 7 Ju 2000 0 9 Ju 2000 0 2 Ju 2000 0 9 Ju 2000 0 2 Ju 2000 0 10 Aug 2000 2 Ju 2000 1 0 Aug 2000 2 Ju 2000 1 1 Aug 2000 2 Ju 2000 1 Ju Aug 200 2 Ju 2000 2 Ju 2000 2 Ju 2000 2 Ju 2000 <		SE208846.001	LB204774	09 Jul 2020	17 Jul 2020	06 Aug 2020	21 Jul 2020	06 Aug 2020	23 Jul 2020
BYSN 0-102 SE28884.001 LE20174 13 Ju 200 17 Ju 200 10 Aug 200 21 Ju 200 10 Aug 200 2 BYSN 0-708 SE28884.005 LB204774 13 Ju 200 17 Ju 200 10 Aug 200 21 Ju 200 10 Aug 200 2 BYSN 2-788 SE28884.005 LB204774 13 Ju 200 17 Ju 200 10 Aug 200 21 Ju 200 11 Aug 200 22 Ju 200 13 Aug 200 21 Ju 200 13 Aug 200 22 Ju 200 23 Ju 200 22 Ju 200 <td>BH2_1.2-1.3</td> <td>SE208846.002</td> <td>LB204774</td> <td>09 Jul 2020</td> <td>17 Jul 2020</td> <td>06 Aug 2020</td> <td>21 Jul 2020</td> <td>06 Aug 2020</td> <td>23 Jul 2020</td>	BH2_1.2-1.3	SE208846.002	LB204774	09 Jul 2020	17 Jul 2020	06 Aug 2020	21 Jul 2020	06 Aug 2020	23 Jul 2020
BYBM 0.70.8 SE20886.000 LE204774 13.1.200 17.J.2020 10.1.0.1.200 10.1.0.1.200 10.0.200 10.0.200 </td <td>BH2_1.6-1.7</td> <td>SE208846.003</td> <td></td> <td>09 Jul 2020</td> <td>17 Jul 2020</td> <td>06 Aug 2020</td> <td>21 Jul 2020</td> <td>06 Aug 2020</td> <td>23 Jul 2020</td>	BH2_1.6-1.7	SE208846.003		09 Jul 2020	17 Jul 2020	06 Aug 2020	21 Jul 2020	06 Aug 2020	23 Jul 2020
BYM3. 17.16 SE00864.000 LE024774 13.Jul 200 17.Jul 200 10.Jul 200 12.Jul 200 10.Jul 200 2 BYM3. 26.2 SE00864.000 LE024774 14.Jul 200 17.Jul 200 11.Aug 200 21.Jul 200 11.Aug 200 22 BYM4. 0.3.0. SE00864.000 LE024774 14.Jul 200 17.Jul 200 11.Aug 200 21.Jul 200 11.Aug 200 22 BYM4. 1.4.1.5 SE00864.010 LE024774 14.Jul 200 17.Jul 200 11.Aug 200 21.Jul 200 11.Aug 200 22 Jul A00 31.Aug 200 22 Jul A00 31.Aug 200 21.Jul 200 11.Aug 200 21.Jul 200 11.Aug 200 22.Jul 200 21.Jul 200 13.Aug 200 22.Jul 200 23.Jul 200 2	BH3M_0.1-0.2	SE208846.004		13 Jul 2020	17 Jul 2020	10 Aug 2020	21 Jul 2020	10 Aug 2020	23 Jul 2020
Bi3M2 A2-29 SE208964 007 LE204774 13, Jul 200 17, Jul 200 10, Aug 2020 21, Jul 200 11, Aug 2020 22 Bi3M, 0.3.6.5 SE20884 008 LE304774 14, Jul 200 17, Jul 200 11, Aug 2020 21, Jul 200 11, Aug 2020 22 Bi3M, 0.3.6.5 SE20884 001 LE304774 14, Jul 200 17, Jul 200 11, Aug 200 21, Jul 200 11, Aug 200 22 Bi3M, 0.3.6.5 SE20884 010 LE304774 14, Jul 200 17, Jul 200 11, Aug 200 22 Jul 300 13, Aug 200 22 Bi3M, 1.6.6 SE208846 014 LE304774 16, Jul 200 17, Jul 200 13, Aug 200 22 Jul 300 13, Aug 200 22 Bi3M, 1.6.6 SE208846 014 LE304774 16, Jul 200 17, Jul 200 13, Aug 200 22 Jul 300 24, Jul 300		÷							23 Jul 2020
BH4L 03.0 5 SE20846.009 LE204774 14 Jul 2020 17 Jul 2020 11 Aug 2020 21 Jul 2020 11 Aug 2020 22 Jul 2020 13 Aug 2020 22 Jul 2020 23 Jul 2020 24 Jul 2020						-			23 Jul 2020
BH44 1-1-5 SE20884.000 LB20H74 14.Jul 2020 17.Jul 2020 11 Aug 2020 21.Jul 2020 11 Aug 2020 22.Jul 2020 13 Aug 2020 22.Jul 2020 23.Jul 2020 23.Jul 2020 23.Jul 2020 23.Jul 2020 23.Jul 2020 24.Jul 202									23 Jul 2020
BH4M, 29.3.0 SE20886.010 L B204774 14 Jul 2020 17 Jul 2020 11 Aug 2020 21 Jul 2020 11 Aug 2020 22 Jul 2020 13 Aug 2020 22 Jul 2020 23 Jul 2020 23 Jul 2020 24 Jul 202		· · · · · · · · · · · · · · · · · · ·	LB204774	14 Jul 2020	17 Jul 2020	11 Aug 2020	21 Jul 2020	11 Aug 2020	23 Jul 2020
BH44, 49-9.0 SE20846 011 LB204774 14 Jul 2200 17 Jul 2200 11 Jug 2200 21 Jul 2200 11 Jug 2200 21 Jul 2200 11 Jug 2200 22 Jul 2200 21 Jul 2200 11 Jug 2200 22 Jul 2200 12 Jul 2200 12 Jul 2200 13 Jug 2200 22 Jul 2200 21 Jul 2200 13 Jug 2200 22 Jul 2200 21 Jul 2200 23 Jul 2200 21 Jul 2200	BH4M_1.4-1.5	SE208846.009	LB204774	14 Jul 2020	17 Jul 2020		21 Jul 2020	11 Aug 2020	23 Jul 2020
BH5M, 0.1-0.2 SE208846.012 LB204774 16 Jul 2020 17 Jul 2020 13 Aug 2020 21 Jul 2020 13 Aug 2020 21 Jul 2020 13 Aug 2020 22 Jul 2020 23 Jul 2020 22 Jul 2020 23 Jul 2020 22 Jul 2020	BH4M_2.9-3.0			14 Jul 2020			21 Jul 2020		23 Jul 2020
BH5M, 1.5-1.6 SE20846.013 LB204774 16 Jul 2020 17 Jul 2020 13 Jug 2020 21 Jul 2020 13 Jug 2020 22 BH5M, 1.5-1.6 SE20844.0014 LB204774 16 Jul 2020 17 Jul 2020 13 Jug 2020 21 Jul 2020 13 Jug 2020 22 Sample Name Sample No. QC Ref Sample No Reserved Extraction Due Extracted Analysis Due A BH2, 1-13 SE20846.001 LB204739 09 Jul 2020 17 Jul 2020 23 Jul 2020 21 Jul 2020 26 Jul 2020 22 BH2, 1-17 SE20846.003 LB204739 09 Jul 2020 17 Jul 2020 27 Jul 2020 21 Jul 2020 26 Jul 2020 22 BH3M, 0-7.0.8 SE20846.006 LB204739 13 Jul 2020 17 Jul 2020 27 Jul 2020 21 Jul 2020 26 Jul 2020 22 BH4M, 0-3.5 SE20846.0067 LB204739 13 Jul 2020 17 Jul 2020 27 Jul 2020 21 Jul 2020 26 Jul 2020 22 BH4M, 0-3.5 SE20846.0067 LB204739 14 Jul 2020 17 Jul 2020 28 Jul 2020 21 Jul 2020 28 Jul 2020 22 Jul 2020 22 Jul 2020<	BH4M_4.9-5.0	SE208846.011	LB204774	14 Jul 2020	17 Jul 2020	11 Aug 2020	21 Jul 2020	11 Aug 2020	23 Jul 2020
BH5M, 1.9-2.0 SE208846.014 LB204774 16 Jul 2020 17 Jul 2020 13 Jug 2020 21 Jul 2020 13 Jug 2020 22 Moltor Sample Name Sample No. O C Ref Sample Name Extraction Due Extraction Due <td></td> <td>SE208846.012</td> <td>LB204774</td> <td>16 Jul 2020</td> <td>17 Jul 2020</td> <td>13 Aug 2020</td> <td>21 Jul 2020</td> <td></td> <td>23 Jul 2020</td>		SE208846.012	LB204774	16 Jul 2020	17 Jul 2020	13 Aug 2020	21 Jul 2020		23 Jul 2020
Ubistric Content Method: ME-(ALL) Sample Name Sample No. QC Ref Sample May 2020 TJ Jul 2020 ZJ Jul 2020 <thzj 2020<="" jul="" th=""> ZJ Jul 2020</thzj>	BH5M_1.5-1.6		LB204774	16 Jul 2020	17 Jul 2020	13 Aug 2020	21 Jul 2020	13 Aug 2020	23 Jul 2020
Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due A BH2_01-0_2 SE20846.001 LE204739 09 Jul 2020 17 Jul 2020 23 Jul 2020 21 Jul 2020 26 Jul 2020 26 Jul 2020 26 Jul 2020 26 Jul 2020 28 Jul 2020 21 Jul 2020 26 Jul 2020 28 Jul 2020 21 Jul 2020 26 Jul 2020 28 Jul 2020 21 Jul 2020 26 Jul 2020 28 Jul 2020 21 Jul 2020 26 Jul 2020 28 Jul 2020 21 Jul 2020 26 Jul 2020 28 Jul 2020 22 Jul 2020 28 Jul 2020 <td< td=""><td>BH5M_1.9-2.0</td><td>SE208846.014</td><td>LB204774</td><td>16 Jul 2020</td><td>17 Jul 2020</td><td>13 Aug 2020</td><td>21 Jul 2020</td><td>13 Aug 2020</td><td>23 Jul 2020</td></td<>	BH5M_1.9-2.0	SE208846.014	LB204774	16 Jul 2020	17 Jul 2020	13 Aug 2020	21 Jul 2020	13 Aug 2020	23 Jul 2020
BH2,01-0.2 SE20846.001 LB204739 09 Jul 2020 17 Jul 2020 23 Jul 2020 21 Jul 2020 26 Jul 2020 22 BH2,151.3 SE20846.002 LB204739 09 Jul 2020 17 Jul 2020 23 Jul 2020 21 Jul 2020 26 Jul 2020 22 BH30,01-02 SE20846.004 LB204739 09 Jul 2020 17 Jul 2020 27 Jul 2020 21 Jul 2020 26 Jul 2020 22 BH30,01-02 SE20846.004 LB204739 13 Jul 2020 17 Jul 2020 27 Jul 2020 21 Jul 2020 26 Jul 2020 22 BH30,01-02 SE20846.005 LB204739 13 Jul 2020 17 Jul 2020 27 Jul 2020 21 Jul 2020 26 Jul 2020 22 BH30,03-05 SE20846.007 LB204739 13 Jul 2020 17 Jul 2020 28 Jul 2020 21 Jul 2020 26 Jul 2020 22 BH40,14-15 SE20846.001 LB204739 14 Jul 2020 17 Jul 2020 28 Jul 2020 21 Jul 2020 26 Jul 2020 22 BH40,15-0 SE20846.011 LB204739 14 Jul 2020 17 Jul 2020 28 Jul 2020 21 Jul 2020 26 Jul 2020 22 BH40,15-16 <th< td=""><td>Moisture Content</td><td></td><td></td><td></td><td></td><td></td><td></td><td>Method: I</td><td>ME-(AU)-[ENV]AN00</td></th<>	Moisture Content							Method: I	ME-(AU)-[ENV]AN00
BH2,12-1.3 SE20846.002 LB204739 09 Jul 2020 17 Jul 2020 23 Jul 2020 21 Jul 2020 26 Jul 2020 22 BH2,1-6.7. SE20846.003 LB204739 09 Jul 2020 17 Jul 2020 27 Jul 2020 21 Jul 2020 26 Jul 2020 22 BH3M, 0.1-02 SE20846.005 LB204739 13 Jul 2020 17 Jul 2020 27 Jul 2020 21 Jul 2020 26 Jul 2020 22 BH3M, 0.7-0.8 SE20846.006 LB204739 13 Jul 2020 17 Jul 2020 27 Jul 2020 21 Jul 2020 26 Jul 2020 22 BH3M, 2.8-2 SE20846.006 LB204739 13 Jul 2020 17 Jul 2020 27 Jul 2020 21 Jul 2020 26 Jul 2020 22 BH4M, 2.8-2 SE20846.007 LB204739 14 Jul 2020 17 Jul 2020 28 Jul 2020 21 Jul 2020 26 Jul 2020 22 BH4M, 2.9-3.0 SE20846.010 LB204739 14 Jul 2020 17 Jul 2020 28 Jul 2020 21 Jul 2020 26 Jul 2020 22 BH4M, 2.9-3.0 SE20846.011 LB204739 16 Jul 2020 17 Jul 2020 20 Jul 2020 21 Jul 2020 26 Jul 2020 22 BH4M, 2.9-	Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH2,16-17 SE208846.003 LB204739 0.9 Jul 2020 17 Jul 2020 23 Jul 2020 21 Jul 2020 26 Jul 2020 22 BH3M, 0-10.2 SE208846.004 LB204739 13 Jul 2020 17 Jul 2020 27 Jul 2020 21 Jul 2020 26 Jul 2020 22 Jul 2020 26 Jul 2020 26 Jul 2020 22 Jul 2020 27 Jul 2020 21 Jul 2020 26 Jul 2020 22	BH2_0.1-0.2	SE208846.001	LB204739	09 Jul 2020	17 Jul 2020	23 Jul 2020	21 Jul 2020	26 Jul 2020	22 Jul 2020
BH3M_0.1-0.2 SE208846.004 LB204739 13 Jul 2020 17 Jul 2020 27 Jul 2020 21 Jul 2020 26 Jul 2020 22 BH3M_0.7-0.8 SE208846.005 LB204739 13 Jul 2020 17 Jul 2020 27 Jul 2020 21 Jul 2020 26 Jul 2020 22 BH3M_0.7-0.8 SE208846.005 LB204739 13 Jul 2020 17 Jul 2020 27 Jul 2020 21 Jul 2020 26 Jul 2020 22 BH4M_0.3-0.5 SE208846.008 LB204739 14 Jul 2020 17 Jul 2020 28 Jul 2020 21 Jul 2020 26 Jul 2020 22 BH4M_0.3-0.5 SE208846.010 LB204739 14 Jul 2020 17 Jul 2020 28 Jul 2020 21 Jul 2020 26 Jul 2020 22 BH4M_0.4-0.5 SE208846.011 LB204739 14 Jul 2020 17 Jul 2020 28 Jul 2020 21 Jul 2020 26 Jul 2020 22 BH4M_0.4-0.5 SE208846.013 LB204739 16 Jul 2020 17 Jul 2020 30 Jul 2020 21 Jul 2020 26 Jul 2020 22 BH5M_1.5-1.6 SE208846.013 LB204739 16 Jul 2020 17 Jul 2020	BH2_1.2-1.3	SE208846.002	LB204739	09 Jul 2020	17 Jul 2020	23 Jul 2020	21 Jul 2020	26 Jul 2020	22 Jul 2020
BH3M_0.7-0.8 SE20886.005 LB204739 13 Jul 2020 17 Jul 2020 27 Jul 2020 21 Jul 2020 26 Jul 2020 22 BH3M_1.7-1.8 SE20886.006 LB204739 13 Jul 2020 17 Jul 2020 27 Jul 2020 21 Jul 2020 26 Jul 2020 22 BH3M_2.8-2.9 SE20886.006 LB204739 13 Jul 2020 17 Jul 2020 28 Jul 2020 21 Jul 2020 26 Jul 2020 22 BH4M_1.4-1.5 SE20886.009 LB204739 14 Jul 2020 17 Jul 2020 28 Jul 2020 21 Jul 2020 26 Jul 2020 22 BH4M_1.4-1.5 SE20886.011 LB204739 14 Jul 2020 17 Jul 2020 28 Jul 2020 21 Jul 2020 26 Jul 2020 22 BH4M_1.4-1.5 SE20886.011 LB204739 16 Jul 2020 17 Jul 2020 28 Jul 2020 21 Jul 2020 26 Jul 2020 22 BH5M_1.5-1.6 SE20886.012 LB204739 16 Jul 2020 17 Jul 2020 30 Jul 2020 21 Jul 2020 26 Jul 2020 22 BH5M_1.5-2.0 SE20886.014 LB204739 16 Jul 2020 17 Jul 2020 <	BH2_1.6-1.7	SE208846.003	LB204739	09 Jul 2020	17 Jul 2020	23 Jul 2020	21 Jul 2020	26 Jul 2020	22 Jul 2020
BH3M_1.7.1.8 SE208846.006 LB204739 13 Jul 2020 17 Jul 2020 27 Jul 2020 21 Jul 2020 26 Jul 2020 22 BH3M_2.8-2.9 SE208846.007 LB204739 13 Jul 2020 17 Jul 2020 27 Jul 2020 21 Jul 2020 26 Jul 2020 22 BH4M_0.3-0.5 SE208846.009 LB204739 14 Jul 2020 17 Jul 2020 28 Jul 2020 21 Jul 2020 26 Jul 2020 22 BH4M_2.9-3.0 SE208846.010 LB204739 14 Jul 2020 17 Jul 2020 28 Jul 2020 21 Jul 2020 26 Jul 2020 22 BH4M_4.9-5.0 SE208846.011 LB204739 14 Jul 2020 17 Jul 2020 28 Jul 2020 21 Jul 2020 26 Jul 2020 22 BH5M_1.5-1.6 SE208846.012 LB204739 16 Jul 2020 17 Jul 2020 30 Jul 2020 21 Jul 2020 26 Jul 2020 22 BH5M_1.9-2.0 SE208846.013 LB204739 16 Jul 2020 17 Jul 2020 30 Jul 2020 21 Jul 2020 26 Jul 2020 22 BH5M_1.9-2.0 SE208846.014 LB204738 09 Jul 2020 17 Jul 2020	BH3M_0.1-0.2	SE208846.004	LB204739	13 Jul 2020	17 Jul 2020	27 Jul 2020	21 Jul 2020	26 Jul 2020	22 Jul 2020
BH3M_2.8-2.9 SE20846.007 LB204739 13 Jul 2020 17 Jul 2020 21 Jul 2020 24 Jul 2020 22 Jul 2020 24 Jul 2020 22 Jul 2020 24 Jul 2020 25 Jul 2020 26 Jul 2020 22 Jul 2020 26 Jul 2020 26 Jul 2020	BH3M_0.7-0.8	SE208846.005	LB204739	13 Jul 2020	17 Jul 2020	27 Jul 2020	21 Jul 2020	26 Jul 2020	22 Jul 2020
BH4M_0.3-0.5 SE20846.008 LB204739 14 Jul 2020 17 Jul 2020 28 Jul 2020 21 Jul 2020 26 Jul 2020 22 BH4M_1.4.1-5 SE20846.009 LB204739 14 Jul 2020 17 Jul 2020 28 Jul 2020 21 Jul 2020 26 Jul 2020 22 Jul 2020 26 Jul 2020 21 Jul 2020 26 Jul 2020 22 Jul 2020	BH3M_1.7-1.8	SE208846.006	LB204739	13 Jul 2020	17 Jul 2020	27 Jul 2020	21 Jul 2020	26 Jul 2020	22 Jul 2020
BH4M_14-1.5 SE208846.009 LB204739 14 Jul 2020 17 Jul 2020 28 Jul 2020 21 Jul 2020 26 Jul 2020 22 BH4M_2.9-3.0 SE208846.010 LB204739 14 Jul 2020 17 Jul 2020 28 Jul 2020 21 Jul 2020 26 Jul 2020 22 30 Jul 2020 21 Jul 2020 26 Jul 2020 22 30 Jul 2020 21 Jul 2020 26 Jul 2020 22 30 Jul 2020 21 Jul 2020 26 Jul 2020 22 30 Jul 2020 21 Jul 2020 26 Jul 2020 22 30 Jul 2020 21 Jul 2020 26 Jul 2020 22 30 Jul 2020 21 Jul 2020 26 Jul 2020 22 30 Jul 2020 21 Jul 2020 26 Jul 2020 22 30 Jul 2020 21 Jul 2020 26 Jul 2020 22 30 Jul 2020 21 Jul 2020 26 Jul 2020 22 30 Jul 2020 21 Jul 2020 26 Jul 2020 22 30 Jul 2020 21 Jul 2020 26 Jul 2020 22 30 Jul 2020 21 Jul 2020 26 Jul 2020 22 30 Jul 2020 21 Jul 2020 26 Jul 2020 22 30 Jul 2020 21 Jul 2020 21 Jul 2020 20 Jul 2020	BH3M_2.8-2.9	SE208846.007	LB204739	13 Jul 2020	17 Jul 2020	27 Jul 2020	21 Jul 2020	26 Jul 2020	22 Jul 2020
BH4M_2.9-3.0 SE208846.010 LB204739 14 Jul 2020 17 Jul 2020 28 Jul 2020 21 Jul 2020 26 Jul 2020 22 BH4M_4.9-5.0 SE208846.011 LB204739 16 Jul 2020 17 Jul 2020 28 Jul 2020 21 Jul 2020 26 Jul 2020 22 BH5M_0.1-0.2 SE208846.012 LB204739 16 Jul 2020 17 Jul 2020 30 Jul 2020 21 Jul 2020 26 Jul 2020 22 BH5M_1.5-1.6 SE208846.014 LB204739 16 Jul 2020 17 Jul 2020 30 Jul 2020 21 Jul 2020 26 Jul 2020 22 BH5M_1.9-2.0 SE208846.014 LB204739 16 Jul 2020 17 Jul 2020 30 Jul 2020 21 Jul 2020 26 Jul 2020 22 CCPeeticides In Soll Se208846.014 LB204739 16 Jul 2020 17 Jul 2020 30 Jul 2020 21 Jul 2020 30 Aug 2020 22 Sample Name Sample No. QC Ref Sample No QC Ref Sample No QL Ref Manaysis Due A BH2_1.1-1.3 SE208846.001 LB204738 09 Jul 2020 17 Jul 2020 2	BH4M_0.3-0.5	SE208846.008	LB204739	14 Jul 2020	17 Jul 2020	28 Jul 2020	21 Jul 2020	26 Jul 2020	22 Jul 2020
BH4M_4.9-5.0 SE208846.011 LB204739 14 Jul 2020 17 Jul 2020 28 Jul 2020 21 Jul 2020 26 Jul 2020 22 BH5M_0.1-0.2 SE208846.012 LB204739 16 Jul 2020 17 Jul 2020 30 Jul 2020 21 Jul 2020 26 Jul 2020 22 BH5M_1.5-1.6 SE208846.013 LB204739 16 Jul 2020 17 Jul 2020 30 Jul 2020 21 Jul 2020 26 Jul 2020 22 BH5M_1.9-2.0 SE208846.014 LB204739 16 Jul 2020 17 Jul 2020 30 Jul 2020 21 Jul 2020 26 Jul 2020 22 CC Pesticides in Soll SE208846.014 LB204738 16 Jul 2020 17 Jul 2020 23 Jul 2020 21 Jul 2020 30 Aug 2020 22 Sez08846.001 LB204738 09 Jul 2020 17 Jul 2020 23 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH2_1.6.1.7 SE208846.003 LB204738 09 Jul 2020 17 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH3M_0.7-0.8 SE208846.005 LB204738 13 Jul 2020 17 Jul 2020 27 Jul 2020 21 Jul 2020	BH4M_1.4-1.5	SE208846.009	LB204739	14 Jul 2020	17 Jul 2020	28 Jul 2020	21 Jul 2020	26 Jul 2020	22 Jul 2020
BH5M_0.1-0.2 SE208846.012 LB204739 16 Jul 2020 17 Jul 2020 30 Jul 2020 21 Jul 2020 26 Jul 2020 22 BH5M_0.1-0.2 SE208846.013 LB204739 16 Jul 2020 17 Jul 2020 30 Jul 2020 21 Jul 2020 26 Jul 2020 22 BH5M_1.9-2.0 SE208846.014 LB204739 16 Jul 2020 17 Jul 2020 30 Jul 2020 21 Jul 2020 26 Jul 2020 22 OCP esticides in Soil Sample Name Sample No. QC Ref Sample Q Received Extraction Due Extracted Analysis Due A BH2_0.1-0.2 SE208846.001 LB204738 09 Jul 2020 17 Jul 2020 23 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH2_1.5-1.7 SE208846.003 LB204738 09 Jul 2020 17 Jul 2020 23 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH3M_0.7-0.8 SE208846.005 LB204738 09 Jul 2020 17 Jul 2020 27 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH3M_2.8-2.9 SE208846.005 LB204738 13 Jul 2020	BH4M_2.9-3.0	SE208846.010	LB204739	14 Jul 2020	17 Jul 2020	28 Jul 2020	21 Jul 2020	26 Jul 2020	22 Jul 2020
BHSM_1.5-1.6 SE208846.013 LB204739 16 Jul 2020 17 Jul 2020 30 Jul 2020 21 Jul 2020 26 Jul 2020 22 BHSM_1.9-2.0 SE208846.014 LB204739 16 Jul 2020 17 Jul 2020 30 Jul 2020 21 Jul 2020 26 Jul 2020 22 OC Pesticides in Soil Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due A BH2_0.1-0.2 SE208846.001 LB204738 09 Jul 2020 17 Jul 2020 23 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH2_1.2-1.3 SE208846.002 LB204738 09 Jul 2020 17 Jul 2020 23 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH2_1.6-1.7 SE208846.003 LB204738 09 Jul 2020 17 Jul 2020 27 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH3M_0.7-0.8 SE208846.005 LB204738 13 Jul 2020 17 Jul 2020 27 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH3M_0.7-0.8 SE208846.006 LB204738 13 Jul 2	BH4M_4.9-5.0	SE208846.011	LB204739	14 Jul 2020	17 Jul 2020	28 Jul 2020	21 Jul 2020	26 Jul 2020	22 Jul 2020
BH5M_1.9-2.0 SE208846.014 LB204739 16 Jul 2020 17 Jul 2020 30 Jul 2020 21 Jul 2020 26 Jul 2020 22 OC Pesticides in Soil Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due A BH2_0.1-0.2 SE208846.001 LB204738 09 Jul 2020 17 Jul 2020 23 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH2_1.2-1.3 SE208846.002 LB204738 09 Jul 2020 17 Jul 2020 23 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH3_0.7-0.8 SE208846.003 LB204738 09 Jul 2020 17 Jul 2020 23 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH3M_0.7-0.8 SE208846.005 LB204738 13 Jul 2020 17 Jul 2020 27 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH3M_0.7-0.8 SE208846.006 LB204738 13 Jul 2020 17 Jul 2020 27 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH3M_0.7-0.8 SE208846.007 LB204738 13 Jul 2	BH5M_0.1-0.2	SE208846.012	LB204739	16 Jul 2020	17 Jul 2020	30 Jul 2020	21 Jul 2020	26 Jul 2020	22 Jul 2020
OC Pesicides in Soll Method: ME-(AU Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due A BH2_0.1-0.2 SE208846.001 LB204738 09 Jul 2020 17 Jul 2020 23 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH2_1.2-1.3 SE208846.002 LB204738 09 Jul 2020 17 Jul 2020 23 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH3_0.1-0.8 SE208846.005 LB204738 09 Jul 2020 17 Jul 2020 23 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH3M_0.7-0.8 SE208846.005 LB204738 13 Jul 2020 17 Jul 2020 27 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH3M_1.7-1.8 SE208846.006 LB204738 13 Jul 2020 17 Jul 2020 27 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH3M_2.8-2.9 SE208846.006 LB204738 13 Jul 2020 17 Jul 2020 27 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH4M_0.3-0.5 SE208846.009 <t< td=""><td>BH5M_1.5-1.6</td><td>SE208846.013</td><td>LB204739</td><td>16 Jul 2020</td><td>17 Jul 2020</td><td>30 Jul 2020</td><td>21 Jul 2020</td><td>26 Jul 2020</td><td>22 Jul 2020</td></t<>	BH5M_1.5-1.6	SE208846.013	LB204739	16 Jul 2020	17 Jul 2020	30 Jul 2020	21 Jul 2020	26 Jul 2020	22 Jul 2020
Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due A BH2_0.1-0.2 SE208846.001 LB204738 09 Jul 2020 17 Jul 2020 23 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH2_1.2-1.3 SE208846.002 LB204738 09 Jul 2020 17 Jul 2020 23 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH2_1.6-1.7 SE208846.003 LB204738 09 Jul 2020 17 Jul 2020 23 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH3M_0.7-0.8 SE208846.005 LB204738 13 Jul 2020 17 Jul 2020 27 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH3M_1.7-1.8 SE208846.006 LB204738 13 Jul 2020 17 Jul 2020 27 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH3M_2.8-2.9 SE208846.007 LB204738 13 Jul 2020 17 Jul 2020 27 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH4M_0.3-0.5 SE208846.008 LB204738 14 Jul 2020 17 Jul 2020 28	BH5M_1.9-2.0	SE208846.014	LB204739	16 Jul 2020	17 Jul 2020	30 Jul 2020	21 Jul 2020	26 Jul 2020	22 Jul 2020
BH2_0.1-0.2 SE208846.001 LB204738 09 Jul 2020 17 Jul 2020 23 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH2_1.2-1.3 SE208846.002 LB204738 09 Jul 2020 17 Jul 2020 23 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH2_1.2-1.3 SE208846.003 LB204738 09 Jul 2020 17 Jul 2020 23 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH3_0.7-0.8 SE208846.005 LB204738 09 Jul 2020 17 Jul 2020 27 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH3M_0.7-0.8 SE208846.006 LB204738 13 Jul 2020 17 Jul 2020 27 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH3M_2.8-2.9 SE208846.007 LB204738 13 Jul 2020 17 Jul 2020 27 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH4M_0.3-0.5 SE208846.008 LB204738 14 Jul 2020 17 Jul 2020 28 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH4M_1.4-1.5 SE208846.010 LB204738 14 Jul 2020 17 Jul 2020	OC Pesticides in Soil							Method: I	ME-(AU)-[ENV]AN42
BH2_1.2-1.3 SE208846.002 LB204738 09 Jul 2020 17 Jul 2020 23 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH2_1.6-1.7 SE208846.003 LB204738 09 Jul 2020 17 Jul 2020 23 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH3M_0.7-0.8 SE208846.005 LB204738 09 Jul 2020 17 Jul 2020 27 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH3M_0.7-0.8 SE208846.006 LB204738 13 Jul 2020 17 Jul 2020 27 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH3M_1.7-1.8 SE208846.006 LB204738 13 Jul 2020 17 Jul 2020 27 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH3M_2.8-2.9 SE208846.007 LB204738 13 Jul 2020 17 Jul 2020 27 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH4M_0.3-0.5 SE208846.008 LB204738 14 Jul 2020 17 Jul 2020 28 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH4M_1.4-1.5 SE208846.010 LB204738 14 Jul 2020 17 Jul 2020	Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH2_1.6-1.7 SE208846.003 LB204738 09 Jul 2020 17 Jul 2020 23 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH3M_0.7-0.8 SE208846.005 LB204738 13 Jul 2020 17 Jul 2020 27 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH3M_1.7-1.8 SE208846.006 LB204738 13 Jul 2020 17 Jul 2020 27 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH3M_2.8-2.9 SE208846.007 LB204738 13 Jul 2020 17 Jul 2020 27 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH4M_0.3-0.5 SE208846.008 LB204738 13 Jul 2020 17 Jul 2020 28 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH4M_0.3-0.5 SE208846.008 LB204738 14 Jul 2020 17 Jul 2020 28 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH4M_1.4-1.5 SE208846.010 LB204738 14 Jul 2020 17 Jul 2020 28 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH4M_2.9-3.0 SE208846.010 LB204738 14 Jul 2020 17 Jul 2020	BH2_0.1-0.2	SE208846.001	LB204738	09 Jul 2020	17 Jul 2020	23 Jul 2020	21 Jul 2020	30 Aug 2020	23 Jul 2020
BH3M_0.7-0.8 SE208846.005 LB204738 13 Jul 2020 17 Jul 2020 27 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH3M_1.7-1.8 SE208846.006 LB204738 13 Jul 2020 17 Jul 2020 27 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH3M_2.8-2.9 SE208846.007 LB204738 13 Jul 2020 17 Jul 2020 27 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH4M_0.3-0.5 SE208846.008 LB204738 14 Jul 2020 17 Jul 2020 28 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH4M_1.4-1.5 SE208846.009 LB204738 14 Jul 2020 17 Jul 2020 28 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH4M_2.9-3.0 SE208846.010 LB204738 14 Jul 2020 17 Jul 2020 28 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH4M_2.9-3.0 SE208846.010 LB204738 14 Jul 2020 17 Jul 2020 28 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH4M_4.9-5.0 SE208846.011 LB204738 14 Jul 2020 17 Jul 2020	BH2_1.2-1.3	SE208846.002	LB204738	09 Jul 2020	17 Jul 2020	23 Jul 2020	21 Jul 2020	30 Aug 2020	23 Jul 2020
BH3M_1.7.1.8 SE208846.006 LB204738 13 Jul 2020 17 Jul 2020 27 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH3M_2.8-2.9 SE208846.007 LB204738 13 Jul 2020 17 Jul 2020 27 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH4M_0.3-0.5 SE208846.008 LB204738 14 Jul 2020 17 Jul 2020 28 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH4M_1.4-1.5 SE208846.009 LB204738 14 Jul 2020 17 Jul 2020 28 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH4M_2.9-3.0 SE208846.010 LB204738 14 Jul 2020 17 Jul 2020 28 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH4M_2.9-3.0 SE208846.010 LB204738 14 Jul 2020 17 Jul 2020 28 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH4M_4.9-5.0 SE208846.011 LB204738 14 Jul 2020 17 Jul 2020 28 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH5M_0.1-0.2 SE208846.012 LB204738 14 Jul 2020 17 Jul 2020	BH2_1.6-1.7	SE208846.003	LB204738	09 Jul 2020	17 Jul 2020	23 Jul 2020	21 Jul 2020	30 Aug 2020	23 Jul 2020
BH3M_2.8-2.9 SE208846.007 LB204738 13 Jul 2020 17 Jul 2020 27 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH4M_0.3-0.5 SE208846.008 LB204738 14 Jul 2020 17 Jul 2020 28 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH4M_1.4-1.5 SE208846.009 LB204738 14 Jul 2020 17 Jul 2020 28 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH4M_2.9-3.0 SE208846.010 LB204738 14 Jul 2020 17 Jul 2020 28 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH4M_4.9-5.0 SE208846.011 LB204738 14 Jul 2020 17 Jul 2020 28 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH4M_4.9-5.0 SE208846.011 LB204738 14 Jul 2020 17 Jul 2020 28 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH5M_0.1-0.2 SE208846.012 LB204738 14 Jul 2020 17 Jul 2020 28 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH5M_0.1-0.2 SE208846.012 LB204738 16 Jul 2020 17 Jul 2020	BH3M_0.7-0.8	SE208846.005	LB204738	13 Jul 2020	17 Jul 2020	27 Jul 2020	21 Jul 2020	30 Aug 2020	23 Jul 2020
BH4M_0.3-0.5 SE208846.008 LB204738 14 Jul 2020 17 Jul 2020 28 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH4M_1.4-1.5 SE208846.009 LB204738 14 Jul 2020 17 Jul 2020 28 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH4M_2.9-3.0 SE208846.010 LB204738 14 Jul 2020 17 Jul 2020 28 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH4M_4.9-5.0 SE208846.011 LB204738 14 Jul 2020 17 Jul 2020 28 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH4M_6.9-5.0 SE208846.011 LB204738 14 Jul 2020 17 Jul 2020 28 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH5M_0.1-0.2 SE208846.012 LB204738 14 Jul 2020 17 Jul 2020 28 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH5M_0.1-0.2 SE208846.012 LB204738 16 Jul 2020 17 Jul 2020 30 Jul 2020 21 Jul 2020 30 Aug 2020 22	BH3M_1.7-1.8	SE208846.006	LB204738	13 Jul 2020	17 Jul 2020	27 Jul 2020	21 Jul 2020	30 Aug 2020	23 Jul 2020
BH4M_1.4-1.5 SE208846.009 LB204738 14 Jul 2020 17 Jul 2020 28 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH4M_2.9-3.0 SE208846.010 LB204738 14 Jul 2020 17 Jul 2020 28 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH4M_4.9-5.0 SE208846.011 LB204738 14 Jul 2020 17 Jul 2020 28 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH4M_6.9-5.0 SE208846.011 LB204738 14 Jul 2020 17 Jul 2020 28 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH5M_0.1-0.2 SE208846.012 LB204738 16 Jul 2020 17 Jul 2020 30 Jul 2020 21 Jul 2020 30 Aug 2020 22	BH3M_2.8-2.9	SE208846.007	LB204738	13 Jul 2020	17 Jul 2020	27 Jul 2020	21 Jul 2020	30 Aug 2020	23 Jul 2020
BH4M_2.9-3.0 SE208846.010 LB204738 14 Jul 2020 17 Jul 2020 28 Jul 2020 21 Jul 2020 30 Aug 2020 22 Jul 2020 30 Aug 2020	BH4M_0.3-0.5	SE208846.008	LB204738	14 Jul 2020	17 Jul 2020	28 Jul 2020	21 Jul 2020	30 Aug 2020	23 Jul 2020
BH4M_4.9-5.0 SE208846.011 LB204738 14 Jul 2020 17 Jul 2020 28 Jul 2020 21 Jul 2020 30 Aug 2020 22 BH5M_0.1-0.2 SE208846.012 LB204738 16 Jul 2020 17 Jul 2020 30 Jul 2020 21 Jul 2020 30 Aug 2020 22	BH4M_1.4-1.5	SE208846.009	LB204738	14 Jul 2020	17 Jul 2020	28 Jul 2020	21 Jul 2020	30 Aug 2020	23 Jul 2020
BH5M_0.1-0.2 SE208846.012 LB204738 16 Jul 2020 17 Jul 2020 30 Jul 2020 21 Jul 2020 30 Aug 2020 23	BH4M_2.9-3.0	SE208846.010	LB204738	14 Jul 2020	17 Jul 2020	28 Jul 2020	21 Jul 2020	30 Aug 2020	23 Jul 2020
	BH4M_4.9-5.0	SE208846.011	LB204738	14 Jul 2020	17 Jul 2020	28 Jul 2020	21 Jul 2020	30 Aug 2020	23 Jul 2020
	BH5M_0.1-0.2	SE208846.012	LB204738	16 Jul 2020	17 Jul 2020	30 Jul 2020	21 Jul 2020	30 Aug 2020	23 Jul 2020
DI JUI 2020 30 JUI 2020 21 JUI 2020 30 AUG 2020 2	BH5M_1.5-1.6	SE208846.013	LB204738	16 Jul 2020	17 Jul 2020	30 Jul 2020	21 Jul 2020	30 Aug 2020	23 Jul 2020
		SE208846.014							23 Jul 2020

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

OP Pesticides in Soil							Method: N	IE-(AU)-[ENV]AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH2_0.1-0.2	SE208846.001	LB204738	09 Jul 2020	17 Jul 2020	23 Jul 2020	21 Jul 2020	30 Aug 2020	24 Jul 2020
BH2_1.2-1.3	SE208846.002	LB204738	09 Jul 2020	17 Jul 2020	23 Jul 2020	21 Jul 2020	30 Aug 2020	24 Jul 2020
3H2_1.6-1.7	SE208846.003	LB204738	09 Jul 2020	17 Jul 2020	23 Jul 2020	21 Jul 2020	30 Aug 2020	24 Jul 2020
3H3M_0.7-0.8	SE208846.005	LB204738	13 Jul 2020	17 Jul 2020	27 Jul 2020	21 Jul 2020	30 Aug 2020	24 Jul 2020
3H3M_1.7-1.8	SE208846.006	LB204738	13 Jul 2020	17 Jul 2020	27 Jul 2020	21 Jul 2020	30 Aug 2020	24 Jul 2020
3H3M_2.8-2.9	SE208846.007	LB204738	13 Jul 2020	17 Jul 2020	27 Jul 2020	21 Jul 2020	30 Aug 2020	24 Jul 2020
3H4M_0.3-0.5	SE208846.008	LB204738	14 Jul 2020	17 Jul 2020	28 Jul 2020	21 Jul 2020	30 Aug 2020	24 Jul 2020
3H4M_1.4-1.5	SE208846.009	LB204738	14 Jul 2020	17 Jul 2020	28 Jul 2020	21 Jul 2020	30 Aug 2020	24 Jul 2020
3H4M_2.9-3.0	SE208846.010	LB204738	14 Jul 2020	17 Jul 2020	28 Jul 2020	21 Jul 2020	30 Aug 2020	24 Jul 2020
3H4M_4.9-5.0	SE208846.011	LB204738	14 Jul 2020	17 Jul 2020	28 Jul 2020	21 Jul 2020	30 Aug 2020	24 Jul 2020
3H5M_0.1-0.2	SE208846.012	LB204738	16 Jul 2020	17 Jul 2020	30 Jul 2020	21 Jul 2020	30 Aug 2020	24 Jul 2020
3H5M_1.5-1.6	SE208846.013	LB204738	16 Jul 2020	17 Jul 2020	30 Jul 2020	21 Jul 2020	30 Aug 2020	24 Jul 2020
BH5M_1.9-2.0	SE208846.014	LB204738	16 Jul 2020	17 Jul 2020	30 Jul 2020	21 Jul 2020	30 Aug 2020	24 Jul 2020
AH (Polynuclear Aromatic	Hydrocarbons) in Soil						Method: M	IE-(AU)-[ENV]AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
3H2 0.1-0.2	SE208846.001	LB204738	09 Jul 2020	17 Jul 2020	23 Jul 2020	21 Jul 2020	30 Aug 2020	24 Jul 2020
BH2_1.2-1.3	SE208846.002	LB204738	09 Jul 2020	17 Jul 2020	23 Jul 2020	21 Jul 2020	30 Aug 2020	24 Jul 2020
3H2_1.6-1.7	SE208846.003	LB204738	09 Jul 2020	17 Jul 2020	23 Jul 2020	21 Jul 2020	30 Aug 2020	24 Jul 2020
3H3M_0.7-0.8	SE208846.005	LB204738	13 Jul 2020	17 Jul 2020	27 Jul 2020	21 Jul 2020	30 Aug 2020	24 Jul 2020
3H3M_1.7-1.8	SE208846.006	LB204738	13 Jul 2020	17 Jul 2020	27 Jul 2020	21 Jul 2020	30 Aug 2020	24 Jul 2020
3H3M_2.8-2.9	SE208846.007	LB204738	13 Jul 2020	17 Jul 2020	27 Jul 2020	21 Jul 2020	30 Aug 2020	24 Jul 2020
3H4M 0.3-0.5	SE208846.008	LB204738	14 Jul 2020	17 Jul 2020	28 Jul 2020	21 Jul 2020	30 Aug 2020	24 Jul 2020
3H4M_1.4-1.5	SE208846.009	LB204738	14 Jul 2020	17 Jul 2020	28 Jul 2020	21 Jul 2020	30 Aug 2020	24 Jul 2020
3H4M_2.9-3.0	SE208846.010	LB204738	14 Jul 2020	17 Jul 2020	28 Jul 2020	21 Jul 2020	30 Aug 2020	24 Jul 2020
8H4M_4.9-5.0	SE208846.011	LB204738	14 Jul 2020	17 Jul 2020	28 Jul 2020	21 Jul 2020	30 Aug 2020	24 Jul 2020
8H5M_0.1-0.2	SE208846.012	LB204738	16 Jul 2020	17 Jul 2020	30 Jul 2020	21 Jul 2020	30 Aug 2020	24 Jul 2020
BH5M_1.5-1.6	SE208846.012	LB204738	16 Jul 2020	17 Jul 2020	30 Jul 2020	21 Jul 2020	30 Aug 2020	24 Jul 2020
3H5M_1.9-2.0	SE208846.014	LB204738	16 Jul 2020	17 Jul 2020	30 Jul 2020	21 Jul 2020	30 Aug 2020	24 Jul 2020
CBs in Soil	02200040.014	20204700	10 001 2020	17 0012020	00 001 2020	210012020		IE-(AU)-[ENV]AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
3H2 0.1-0.2	SE208846.001	LB204738	09 Jul 2020	17 Jul 2020	23 Jul 2020	21 Jul 2020	30 Aug 2020	23 Jul 2020
_								
3H2_1.2-1.3	SE208846.002	LB204738	09 Jul 2020	17 Jul 2020	23 Jul 2020	21 Jul 2020	30 Aug 2020	23 Jul 2020
3H2_1.6-1.7	SE208846.003	LB204738	09 Jul 2020	17 Jul 2020	23 Jul 2020	21 Jul 2020	30 Aug 2020	23 Jul 2020
3H3M_0.7-0.8	SE208846.005	LB204738	13 Jul 2020	17 Jul 2020	27 Jul 2020	21 Jul 2020	30 Aug 2020	23 Jul 2020
3H3M_1.7-1.8	SE208846.006	LB204738	13 Jul 2020	17 Jul 2020	27 Jul 2020	21 Jul 2020	30 Aug 2020	23 Jul 2020
3H3M_2.8-2.9	SE208846.007	LB204738	13 Jul 2020	17 Jul 2020	27 Jul 2020	21 Jul 2020	30 Aug 2020	23 Jul 2020
3H4M_0.3-0.5	SE208846.008	LB204738	14 Jul 2020	17 Jul 2020	28 Jul 2020	21 Jul 2020	30 Aug 2020	23 Jul 2020
3H4M_1.4-1.5	SE208846.009	LB204738	14 Jul 2020	17 Jul 2020	28 Jul 2020	21 Jul 2020	30 Aug 2020	23 Jul 2020
3H4M_2.9-3.0	SE208846.010	LB204738	14 Jul 2020	17 Jul 2020	28 Jul 2020	21 Jul 2020	30 Aug 2020	23 Jul 2020
3H4M_4.9-5.0	SE208846.011	LB204738	14 Jul 2020	17 Jul 2020	28 Jul 2020	21 Jul 2020	30 Aug 2020	23 Jul 2020
3H5M_0.1-0.2	SE208846.012	LB204738			30 Jul 2020	21 Jul 2020	30 Aug 2020	23 Jul 2020
			16 Jul 2020	17 Jul 2020				
_	SE208846.013	LB204738	16 Jul 2020	17 Jul 2020	30 Jul 2020	21 Jul 2020	30 Aug 2020	23 Jul 2020
_						21 Jul 2020 21 Jul 2020	30 Aug 2020 30 Aug 2020	23 Jul 2020 23 Jul 2020
BH5M_1.9-2.0	SE208846.013 SE208846.014	LB204738 LB204738 terials by ICPOES	16 Jul 2020 16 Jul 2020	17 Jul 2020 17 Jul 2020	30 Jul 2020 30 Jul 2020	21 Jul 2020	30 Aug 2020 Method: ME-(AU)	23 Jul 2020 - [ENV]AN040/AN
BH5M_1.9-2.0 Dtal Recoverable Element Sample Name	SE208846.013 SE208846.014 s in Soil/Waste Solids/Ma Sample No.	LB204738 LB204738 terials by ICPOES QC Ref	16 Jul 2020 16 Jul 2020 Sampled	17 Jul 2020 17 Jul 2020 Received	30 Jul 2020 30 Jul 2020 Extraction Due	21 Jul 2020 Extracted	30 Aug 2020 Method: ME-(AU) Analysis Due	23 Jul 2020 -[ENV]AN040/AN Analysed
3H5M_1.9-2.0 otal Recoverable Element Sample Name 3H2_0.1-0.2	SE208846.013 SE208846.014 s in Soil/Waste Solids/Mat Sample No. SE208846.001	LB204738 LB204738 terials by ICPOES QC Ref LB204772	16 Jul 2020 16 Jul 2020 Sampled 09 Jul 2020	17 Jul 2020 17 Jul 2020 Received 17 Jul 2020	30 Jul 2020 30 Jul 2020 Extraction Due 05 Jan 2021	21 Jul 2020 Extracted 21 Jul 2020	30 Aug 2020 Method: ME-(AU) Analysis Due 05 Jan 2021	23 Jul 2020 - [ENV]AN040/AN Analysed 22 Jul 2020
ant5M_1.9-2.0 tal Recoverable Element Sample Name 3H2_0.1-0.2 3H2_1.2-1.3	SE208846.013 SE208846.014 s In Soll/Waste Solids/Mat Sample No. SE208846.001 SE208846.002	LB204738 LB204738 terials by ICPOES QC Ref LB204772 LB204772	16 Jul 2020 16 Jul 2020 Sampled 09 Jul 2020 09 Jul 2020	17 Jul 2020 17 Jul 2020 Received 17 Jul 2020 17 Jul 2020	30 Jul 2020 30 Jul 2020 Extraction Due 05 Jan 2021 05 Jan 2021	21 Jul 2020 Extracted 21 Jul 2020 21 Jul 2020	30 Aug 2020 Method: ME-(AU) Analysis Due 05 Jan 2021 05 Jan 2021	23 Jul 2020 -[ENV]AN040/AN Analysed 22 Jul 2020 22 Jul 2020
3H5M_1.9-2.0 tal Recoverable Element Sample Name 3H2_0.1-0.2 3H2_1.2-1.3 3H2_1.6-1.7	SE208846.013 SE208846.014 s In Soil/Waste Solids/Mat Sample No. SE208846.001 SE208846.002 SE208846.003	LB204738 LB204738 terials by ICPOES QC Ref LB204772 LB204772 LB204772	16 Jul 2020 16 Jul 2020 Sampled 09 Jul 2020 09 Jul 2020 09 Jul 2020 09 Jul 2020	17 Jul 2020 17 Jul 2020 Received 17 Jul 2020 17 Jul 2020 17 Jul 2020 17 Jul 2020	30 Jul 2020 30 Jul 2020 Extraction Due 05 Jan 2021 05 Jan 2021 05 Jan 2021	21 Jul 2020 Extracted 21 Jul 2020 21 Jul 2020 21 Jul 2020 21 Jul 2020	30 Aug 2020 Method: ME-(AU) Analysis Due 05 Jan 2021 05 Jan 2021 05 Jan 2021	23 Jul 2020 -[ENV]AN040/AN Analysed 22 Jul 2020 22 Jul 2020 22 Jul 2020
H5M_1.9-2.0 tal Recoverable Element sample Name H2_0.1-0.2 H2_1.2-1.3 H2_1.6-1.7 H3M_0.1-0.2	SE208846.013 SE208846.014 s In Soil/Waste Solids/Mat Sample No. SE208846.001 SE208846.002 SE208846.003 SE208846.004	LB204738 LB204738 terials by ICPOES QC Ref LB204772 LB204772 LB204772 LB204772	16 Jul 2020 16 Jul 2020 Sampled 09 Jul 2020 09 Jul 2020 09 Jul 2020 09 Jul 2020 13 Jul 2020	17 Jul 2020 17 Jul 2020 Received 17 Jul 2020 17 Jul 2020 17 Jul 2020 17 Jul 2020 17 Jul 2020	30 Jul 2020 30 Jul 2020 Extraction Due 05 Jan 2021 05 Jan 2021 05 Jan 2021 09 Jan 2021	21 Jul 2020 Extracted 21 Jul 2020 21 Jul 2020 21 Jul 2020 21 Jul 2020 21 Jul 2020	30 Aug 2020 Method: ME-(AU) Analysis Due 05 Jan 2021 05 Jan 2021 05 Jan 2021 09 Jan 2021	23 Jul 2020 -[ENV]AN040/AN Analysed 22 Jul 2020 22 Jul 2020 22 Jul 2020 22 Jul 2020 22 Jul 2020
H5M_1.9-2.0 tal Recoverable Element Sample Name SH2_0.1-0.2 SH2_1.2-1.3 SH2_1.6-1.7 SH3M_0.1-0.2 SH3M_0.7-0.8	SE208846.013 SE208846.014 s In Soil/Waste Solids/Mat Sample No. SE208846.001 SE208846.002 SE208846.003 SE208846.004 SE208846.005	LB204738 LB204738 terials by ICPOES QC Ref LB204772 LB204772 LB204772 LB204772 LB204772	16 Jul 2020 16 Jul 2020 Sampled 09 Jul 2020 09 Jul 2020 09 Jul 2020 13 Jul 2020 13 Jul 2020 13 Jul 2020	17 Jul 2020 17 Jul 2020 Received 17 Jul 2020 17 Jul 2020 17 Jul 2020 17 Jul 2020 17 Jul 2020 17 Jul 2020	30 Jul 2020 30 Jul 2020 Extraction Due 05 Jan 2021 05 Jan 2021 05 Jan 2021 09 Jan 2021 09 Jan 2021	21 Jul 2020 Extracted 21 Jul 2020 21 Jul 2020 21 Jul 2020 21 Jul 2020 21 Jul 2020 21 Jul 2020	30 Aug 2020 Method: ME-(AU) Analysis Due 05 Jan 2021 05 Jan 2021 05 Jan 2021 09 Jan 2021 09 Jan 2021	23 Jul 2020 -[ENV]AN040/AN Analysed 22 Jul 2020 22 Jul 2020 22 Jul 2020 22 Jul 2020 22 Jul 2020 22 Jul 2020
3H5M_1.5-1.6 3H5M_1.9-2.0 otal Recoverable Element Sample Name 3H2_0.1-0.2 3H2_1.2-1.3 3H2_1.6-1.7 3H3M_0.1-0.2 3H3M_0.7-0.8 3H3M_1.7-1.8	SE208846.013 SE208846.014 s In Soil/Waste Solids/Mat Sample No. SE208846.001 SE208846.002 SE208846.003 SE208846.004	LB204738 LB204738 terials by ICPOES QC Ref LB204772 LB204772 LB204772 LB204772	16 Jul 2020 16 Jul 2020 Sampled 09 Jul 2020 09 Jul 2020 09 Jul 2020 09 Jul 2020 13 Jul 2020	17 Jul 2020 17 Jul 2020 Received 17 Jul 2020 17 Jul 2020 17 Jul 2020 17 Jul 2020 17 Jul 2020	30 Jul 2020 30 Jul 2020 Extraction Due 05 Jan 2021 05 Jan 2021 05 Jan 2021 09 Jan 2021	21 Jul 2020 Extracted 21 Jul 2020 21 Jul 2020 21 Jul 2020 21 Jul 2020 21 Jul 2020	30 Aug 2020 Method: ME-(AU) Analysis Due 05 Jan 2021 05 Jan 2021 05 Jan 2021 09 Jan 2021	23 Jul 2020 -[ENV]AN040/AN Analysed 22 Jul 2020 22 Jul 2020 22 Jul 2020 22 Jul 2020 22 Jul 2020
H5M_1.9-2.0 tal Recoverable Element Sample Name H42_0.1-0.2 H42_1.2-1.3 H2_1.6-1.7 H3M_0.1-0.2 H3M_0.1-0.2 H3M_0.7-0.8 H3M_1.7-1.8	SE208846.013 SE208846.014 s In Soil/Waste Solids/Mat Sample No. SE208846.001 SE208846.002 SE208846.003 SE208846.004 SE208846.005	LB204738 LB204738 terials by ICPOES QC Ref LB204772 LB204772 LB204772 LB204772 LB204772	16 Jul 2020 16 Jul 2020 Sampled 09 Jul 2020 09 Jul 2020 09 Jul 2020 13 Jul 2020 13 Jul 2020 13 Jul 2020	17 Jul 2020 17 Jul 2020 Received 17 Jul 2020 17 Jul 2020 17 Jul 2020 17 Jul 2020 17 Jul 2020 17 Jul 2020	30 Jul 2020 30 Jul 2020 Extraction Due 05 Jan 2021 05 Jan 2021 05 Jan 2021 09 Jan 2021 09 Jan 2021	21 Jul 2020 Extracted 21 Jul 2020 21 Jul 2020 21 Jul 2020 21 Jul 2020 21 Jul 2020 21 Jul 2020	30 Aug 2020 Method: ME-(AU) Analysis Due 05 Jan 2021 05 Jan 2021 05 Jan 2021 09 Jan 2021 09 Jan 2021	23 Jul 2020 -[ENV]AN040/AN Analysed 22 Jul 2020 22 Jul 2020 22 Jul 2020 22 Jul 2020 22 Jul 2020 22 Jul 2020
SH5M_1.9-2.0 Otal Recoverable Element Sample Name BH2_0.1-0.2 BH2_1.2-1.3 BH2_1.6-1.7 BH3M_0.1-0.2 BH3M_0.1-0.2 BH3M_0.1-0.2 BH3M_0.7-0.8 BH3M_0.7-0.8 BH3M_0.7-0.8	SE208846.013 SE208846.014 s in Soli/Waste Solids/Mat Sample No. SE208846.001 SE208846.002 SE208846.003 SE208846.004 SE208846.005 SE208846.006	LB204738 LB204738 terials by ICPOES QC Ref LB204772 LB204772 LB204772 LB204772 LB204772 LB204772	16 Jul 2020 16 Jul 2020 Sampled 09 Jul 2020 09 Jul 2020 09 Jul 2020 13 Jul 2020 13 Jul 2020 13 Jul 2020 13 Jul 2020	17 Jul 2020 17 Jul 2020 Received 17 Jul 2020 17 Jul 2020 17 Jul 2020 17 Jul 2020 17 Jul 2020 17 Jul 2020 17 Jul 2020	30 Jul 2020 30 Jul 2020 Extraction Due 05 Jan 2021 05 Jan 2021 05 Jan 2021 09 Jan 2021 09 Jan 2021	21 Jui 2020 Extracted 21 Jui 2020 21 Jui 2020	30 Aug 2020 Method: ME-(AU) Analysis Due 05 Jan 2021 05 Jan 2021 05 Jan 2021 09 Jan 2021 09 Jan 2021 09 Jan 2021	23 Jul 2020 -[ENV]AN040/AN Analysed 22 Jul 2020 22 Jul 2020 22 Jul 2020 22 Jul 2020 22 Jul 2020 22 Jul 2020 22 Jul 2020
SH5M_1.9-2.0 Datal Recoverable Element Sample Name SH2_0.1-0.2 SH2_1.2-1.3 SH2_1.6-1.7 SH3M_0.1-0.2 SH3M_0.7-0.8 SH3M_1.7-1.8 SH3M_0.3-0.5	SE208846.013 SE208846.014 s in Soll/Waste Solids/Mar Sample No. SE208846.001 SE208846.002 SE208846.003 SE208846.004 SE208846.005 SE208846.006 SE208846.007	LB204738 LB204738 terials by ICPOES QC Ref LB204772 LB204772 LB204772 LB204772 LB204772 LB204772 LB204772 LB204772	16 Jul 2020 16 Jul 2020 Sampled 09 Jul 2020 09 Jul 2020 09 Jul 2020 13 Jul 2020 13 Jul 2020 13 Jul 2020 13 Jul 2020 13 Jul 2020	17 Jul 2020 17 Jul 2020 Received 17 Jul 2020 17 Jul 2020	30 Jul 2020 30 Jul 2020 Extraction Due 05 Jan 2021 05 Jan 2021 09 Jan 2021 09 Jan 2021 09 Jan 2021 09 Jan 2021	21 Jul 2020 Extracted 21 Jul 2020 21 Jul 2020	30 Aug 2020 Method: ME-(AU) Analysis Due 05 Jan 2021 05 Jan 2021 05 Jan 2021 09 Jan 2021 09 Jan 2021 09 Jan 2021 09 Jan 2021	23 Jul 2020 -[ENV]AN040/AN Analysed 22 Jul 2020 22 Jul 2020
BH5M_1.9-2.0 Datal Recoverable Element Sample Name BH2_0.1-0.2 BH2_1.2-1.3 BH2_1.6-1.7 BH3M_0.1-0.2 BH3M_0.7-0.8 BH3M_1.7-1.8 BH3M_2.8-2.9 BH4M_0.3-0.5 BH4M_1.4-1.5	SE208846.013 SE208846.014 s in Soll/Waste Solids/Mat Sample No. SE208846.001 SE208846.002 SE208846.003 SE208846.004 SE208846.005 SE208846.006 SE208846.007 SE208846.008	LB204738 LB204738 terials by ICPOES QC Ref LB204772 LB204772 LB204772 LB204772 LB204772 LB204772 LB204772 LB204772 LB204772 LB204772	16 Jul 2020 16 Jul 2020 09 Jul 2020 09 Jul 2020 09 Jul 2020 09 Jul 2020 13 Jul 2020 13 Jul 2020 13 Jul 2020 13 Jul 2020 13 Jul 2020 14 Jul 2020	17 Jul 2020 17 Jul 2020 Received 17 Jul 2020 17 Jul 2020	30 Jul 2020 30 Jul 2020 Extraction Due 05 Jan 2021 05 Jan 2021 09 Jan 2021 09 Jan 2021 09 Jan 2021 09 Jan 2021 10 Jan 2021	21 Jul 2020 Extracted 21 Jul 2020 21 Jul 2020	30 Aug 2020 Method: ME-(AU) 05 Jan 2021 05 Jan 2021 05 Jan 2021 09 Jan 2021 09 Jan 2021 09 Jan 2021 09 Jan 2021 10 Jan 2021	23 Jui 2020 -[ENV]AN040/AN Analysed 22 Jui 2020 22 Jui 2020
3H5M_1.9-2.0 otal Recoverable Element Sample Name 3H2_0.1-0.2 3H2_1.2-1.3 3H2_1.6-1.7 3H3M_0.1-0.2 3H3M_0.7-0.8	SE208846.013 SE208846.014 s in Soll/Waste Solids/Mar Sample No. SE208846.001 SE208846.002 SE208846.003 SE208846.004 SE208846.005 SE208846.006 SE208846.007 SE208846.008 SE208846.009	LB204738 LB204738 terials by ICPOES QC Ref LB204772 LB204772 LB204772 LB204772 LB204772 LB204772 LB204772 LB204772 LB204772 LB204772 LB204772	16 Jul 2020 16 Jul 2020 09 Jul 2020 09 Jul 2020 09 Jul 2020 13 Jul 2020 13 Jul 2020 13 Jul 2020 13 Jul 2020 13 Jul 2020 14 Jul 2020 14 Jul 2020	17 Jul 2020 17 Jul 2020	30 Jul 2020 30 Jul 2020 Extraction Due 05 Jan 2021 05 Jan 2021 09 Jan 2021 09 Jan 2021 09 Jan 2021 09 Jan 2021 10 Jan 2021 10 Jan 2021	21 Jul 2020 Extracted 21 Jul 2020 21 Jul 2020	30 Aug 2020 Method: ME-(AU) Analysis Due 05 Jan 2021 05 Jan 2021 09 Jan 2021 09 Jan 2021 09 Jan 2021 09 Jan 2021 10 Jan 2021 10 Jan 2021	23 Jul 2020 -[ENV]AN040/AN 22 Jul 2020 22 Jul 2020
BH5M_1.9-2.0 Datal Recoverable Element Sample Name BH2_0.1-0.2 BH2_1.2-1.3 BH2_1.6-1.7 BH3M_0.1-0.2 BH3M_0.7-0.8 BH3M_1.7-1.8 BH3M_2.8-2.9 BH4M_0.3-0.5 BH4M_1.4-1.5	SE208846.013 SE208846.014 s in Soll/Waste Solids/Mar Sample No. SE208846.001 SE208846.002 SE208846.003 SE208846.004 SE208846.006 SE208846.006 SE208846.007 SE208846.008 SE208846.009 SE208846.010	LB204738 LB204738 terials by ICPOES QC Ref LB204772 LB204772 LB204772 LB204772 LB204772 LB204772 LB204772 LB204772 LB204772 LB204772 LB204772 LB204772	16 Jul 2020 16 Jul 2020 Sampled 09 Jul 2020 09 Jul 2020 09 Jul 2020 13 Jul 2020 13 Jul 2020 13 Jul 2020 13 Jul 2020 14 Jul 2020 14 Jul 2020 14 Jul 2020	17 Jul 2020 17 Jul 2020	30 Jul 2020 30 Jul 2020 Extraction Due 05 Jan 2021 05 Jan 2021 09 Jan 2021 09 Jan 2021 09 Jan 2021 09 Jan 2021 10 Jan 2021 10 Jan 2021	21 Jul 2020 Extracted 21 Jul 2020 21 Jul 2020	30 Aug 2020 Method: ME-(AU) 05 Jan 2021 05 Jan 2021 05 Jan 2021 09 Jan 2021 09 Jan 2021 09 Jan 2021 09 Jan 2021 10 Jan 2021 10 Jan 2021 10 Jan 2021	23 Jul 2020 -[ENV]AN040/AN 22 Jul 2020 22 Jul 2020

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Total Recoverable Eleme	nts in Soil/Waste Solids/Ma	terials by ICPOES (o	continued)				Method: ME-(AU)-[ENV]AN040/AN32
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH5M_1.9-2.0	SE208846.014	LB204772	16 Jul 2020	17 Jul 2020	12 Jan 2021	21 Jul 2020	12 Jan 2021	22 Jul 2020
RH (Total Recoverable H	lydrocarbons) in Soil						Method: I	ME-(AU)-[ENV]AN40
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH2_0.1-0.2	SE208846.001	LB204738	09 Jul 2020	17 Jul 2020	23 Jul 2020	21 Jul 2020	30 Aug 2020	22 Jul 2020
BH2_1.2-1.3	SE208846.002	LB204738	09 Jul 2020	17 Jul 2020	23 Jul 2020	21 Jul 2020	30 Aug 2020	22 Jul 2020
BH2_1.6-1.7	SE208846.003	LB204738	09 Jul 2020	17 Jul 2020	23 Jul 2020	21 Jul 2020	30 Aug 2020	22 Jul 2020
BH3M_0.7-0.8	SE208846.005	LB204738	13 Jul 2020	17 Jul 2020	27 Jul 2020	21 Jul 2020	30 Aug 2020	23 Jul 2020
BH3M_1.7-1.8	SE208846.006	LB204738	13 Jul 2020	17 Jul 2020	27 Jul 2020	21 Jul 2020	30 Aug 2020	23 Jul 2020
BH3M_2.8-2.9	SE208846.007	LB204738	13 Jul 2020	17 Jul 2020	27 Jul 2020	21 Jul 2020	30 Aug 2020	22 Jul 2020
BH4M_0.3-0.5	SE208846.008	LB204738	14 Jul 2020	17 Jul 2020	28 Jul 2020	21 Jul 2020	30 Aug 2020	22 Jul 2020
BH4M_1.4-1.5	SE208846.009	LB204738	14 Jul 2020	17 Jul 2020	28 Jul 2020	21 Jul 2020	30 Aug 2020	22 Jul 2020
BH4M_2.9-3.0	SE208846.010	LB204738	14 Jul 2020	17 Jul 2020	28 Jul 2020	21 Jul 2020	30 Aug 2020	22 Jul 2020
BH4M_4.9-5.0	SE208846.011	LB204738	14 Jul 2020	17 Jul 2020	28 Jul 2020	21 Jul 2020	30 Aug 2020	22 Jul 2020
BH5M_0.1-0.2	SE208846.012	LB204738	16 Jul 2020	17 Jul 2020	30 Jul 2020	21 Jul 2020	30 Aug 2020	22 Jul 2020
BH5M_1.5-1.6	SE208846.013	LB204738	16 Jul 2020	17 Jul 2020	30 Jul 2020	21 Jul 2020	30 Aug 2020	23 Jul 2020
BH5M_1.9-2.0	SE208846.014	LB204738	16 Jul 2020	17 Jul 2020	30 Jul 2020	21 Jul 2020	30 Aug 2020	23 Jul 2020
/OC's in Soil							Method: I	ME-(AU)-[ENV]AN43
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH2_0.1-0.2	SE208846.001	LB204737	09 Jul 2020	17 Jul 2020	23 Jul 2020	21 Jul 2020	30 Aug 2020	23 Jul 2020
BH2_1.2-1.3	SE208846.002	LB204737	09 Jul 2020	17 Jul 2020	23 Jul 2020	21 Jul 2020	30 Aug 2020	23 Jul 2020
BH2_1.6-1.7	SE208846.003	LB204737	09 Jul 2020	17 Jul 2020	23 Jul 2020	21 Jul 2020	30 Aug 2020	23 Jul 2020
BH3M_0.7-0.8	SE208846.005	LB204737	13 Jul 2020	17 Jul 2020	27 Jul 2020	21 Jul 2020	30 Aug 2020	23 Jul 2020
BH3M_1.7-1.8	SE208846.006	LB204737	13 Jul 2020	17 Jul 2020	27 Jul 2020	21 Jul 2020	30 Aug 2020	23 Jul 2020
BH3M_2.8-2.9	SE208846.007	LB204737	13 Jul 2020	17 Jul 2020	27 Jul 2020	21 Jul 2020	30 Aug 2020	23 Jul 2020
BH4M_0.3-0.5	SE208846.008	LB204737	14 Jul 2020	17 Jul 2020	28 Jul 2020	21 Jul 2020	30 Aug 2020	23 Jul 2020
BH4M_1.4-1.5	SE208846.009	LB204737	14 Jul 2020	17 Jul 2020	28 Jul 2020	21 Jul 2020	30 Aug 2020	23 Jul 2020
BH4M_2.9-3.0	SE208846.010	LB204737	14 Jul 2020	17 Jul 2020	28 Jul 2020	21 Jul 2020	30 Aug 2020	23 Jul 2020
BH4M_4.9-5.0	SE208846.011	LB204737	14 Jul 2020	17 Jul 2020	28 Jul 2020	21 Jul 2020	30 Aug 2020	23 Jul 2020
BH5M_0.1-0.2	SE208846.012	LB204737	16 Jul 2020	17 Jul 2020	30 Jul 2020	21 Jul 2020	30 Aug 2020	23 Jul 2020
BH5M_1.5-1.6	SE208846.013	LB204737	16 Jul 2020	17 Jul 2020	30 Jul 2020	21 Jul 2020	30 Aug 2020	23 Jul 2020
BH5M_1.9-2.0	SE208846.014	LB204737	16 Jul 2020	17 Jul 2020	30 Jul 2020	21 Jul 2020	30 Aug 2020	23 Jul 2020
/olatile Petroleum Hydrod	arbons in Soil						Method: I	ME-(AU)-[ENV]AN43
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH2_0.1-0.2	SE208846.001	LB204737	09 Jul 2020	17 Jul 2020	23 Jul 2020	21 Jul 2020	30 Aug 2020	23 Jul 2020
BH2_1.2-1.3	SE208846.002	LB204737	09 Jul 2020	17 Jul 2020	23 Jul 2020	21 Jul 2020	30 Aug 2020	23 Jul 2020
BH2_1.6-1.7	SE208846.003	LB204737	09 Jul 2020	17 Jul 2020	23 Jul 2020	21 Jul 2020	30 Aug 2020	23 Jul 2020
BH3M_0.7-0.8	SE208846.005	LB204737	13 Jul 2020	17 Jul 2020	27 Jul 2020	21 Jul 2020	30 Aug 2020	23 Jul 2020
BH3M_1.7-1.8	SE208846.006	LB204737	13 Jul 2020	17 Jul 2020	27 Jul 2020	21 Jul 2020	30 Aug 2020	23 Jul 2020
BH3M_2.8-2.9	SE208846.007	LB204737	13 Jul 2020	17 Jul 2020	27 Jul 2020	21 Jul 2020	30 Aug 2020	23 Jul 2020
BH4M_0.3-0.5	SE208846.008	LB204737	14 Jul 2020	17 Jul 2020	28 Jul 2020	21 Jul 2020	30 Aug 2020	23 Jul 2020
BH4M_1.4-1.5	SE208846.009	LB204737	14 Jul 2020	17 Jul 2020	28 Jul 2020	21 Jul 2020	30 Aug 2020	23 Jul 2020
BH4M_2.9-3.0	SE208846.010	LB204737	14 Jul 2020	17 Jul 2020	28 Jul 2020	21 Jul 2020	30 Aug 2020	23 Jul 2020
BH4M_4.9-5.0	SE208846.011	LB204737	14 Jul 2020	17 Jul 2020	28 Jul 2020	21 Jul 2020	30 Aug 2020	23 Jul 2020
BH5M_0.1-0.2	SE208846.012	LB204737	16 Jul 2020	17 Jul 2020	30 Jul 2020	21 Jul 2020	30 Aug 2020	23 Jul 2020
BH5M_1.5-1.6	SE208846.013	LB204737	16 Jul 2020	17 Jul 2020	30 Jul 2020	21 Jul 2020	30 Aug 2020	23 Jul 2020
BH5M_1.9-2.0	SE208846.014	LB204737	16 Jul 2020	17 Jul 2020	30 Jul 2020	21 Jul 2020	30 Aug 2020	23 Jul 2020

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

OC Pesticides in Soil Method: ME-(AU)-[ENV]AN420 Parameter Sample Nan Sample Num Criteria Recovery % Units Tetrachloro-m-xylene (TCMX) (Surrogate) BH2 0.1-0.2 SE208846.001 % 60 - 130% 89 BH2_1.6-1.7 SE208846.003 60 - 130% 95 % BH3M_0.7-0.8 SE208846.005 89 % 60 - 130% BH3M 1.7-1.8 SE208846.006 % 60 - 130% 91 BH3M_2.8-2.9 SE208846.007 60 - 130% 93 % BH4M_0.3-0.5 SE208846.008 60 - 130% 89 % BH4M 2 9-3 0 SE208846 010 % 60 - 130% 92 BH5M_0.1-0.2 SE208846.012 60 - 130% % 88 BH5M_1.9-2.0 SE208846.014 60 - 130% 95 % OP Pesticides in Soil Method: ME-(AU)-IENVIAN420 Recovery % Parameter Sample Name Sample Number Units Criteria 2-fluorobiphenyl (Surrogate) BH2 0.1-0.2 SE208846.001 60 - 130% 85 % BH2 1.6-1.7 SE208846.003 60 - 130% % 83 BH3M_0.7-0.8 SE208846.005 % 60 - 130% 80 BH3M 1.7-1.8 SE208846.006 % 60 - 130% 85 BH3M 2.8-2.9 SE208846.007 % 60 - 130% 80 BH4M 0.3-0.5 SE208846.008 % 60 - 130% 84 BH4M 2.9-3.0 SE208846.010 % 60 - 130% 81 BH5M 0.1-0.2 SE208846.012 % 60 - 130% 84 BH5M_1.9-2.0 SE208846.014 60 - 130% 80 % d14-p-terphenyl (Surrogate) BH2_0.1-0.2 SE208846.001 % 60 - 130% 89 SE208846.003 BH2 1.6-1.7 60 - 130% % 83 BH3M 0.7-0.8 SE208846 005 % 60 - 130% 84 BH3M 1.7-1.8 SE208846.006 % 60 - 130% 91 BH3M 2.8-2.9 SE208846.007 60 - 130% % 88 BH4M 0.3-0.5 SE208846.008 % 60 - 130% 80 BH4M 2.9-3.0 SE208846.010 % 60 - 130% 87 SE208846.012 BH5M 0.1-0.2 60 - 130% % 87 BH5M_1.9-2.0 SE208846.014 % 60 - 130% 86 PAH (Polynuclear Aromatic Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN420 Parameter Sample Name Sample Numb Units Criteria Recovery % 2-fluorobiphenyl (Surrogate) BH2 0.1-0.2 SE208846.001 % 70 - 130% 85 BH2 1.2-1.3 SE208846.002 70 - 130% 86 % BH2_1.6-1.7 SE208846.003 70 - 130% % 83 BH3M 0.7-0.8 SE208846.005 % 70 - 130% 80 BH3M_1.7-1.8 SE208846.006 70 - 130% 85 % BH3M_2.8-2.9 SE208846.007 70 - 130% 80 % BH4M 0.3-0.5 SE208846.008 % 70 - 130% 84 BH4M_1.4-1.5 SE208846.009 70 - 130% 85 % BH4M_2.9-3.0 SE208846.010 70 - 130% % 81 BH4M 4.9-5.0 SE208846.011 % 70 - 130% 78 SE208846.012 84 BH5M_0.1-0.2 % 70 - 130% BH5M_1.5-1.6 SE208846.013 70 - 130% 80 % BH5M 1.9-2.0 SE208846.014 % 70 - 130% 80 d14-p-terphenyl (Surrogate) BH2 0.1-0.2 SE208846.001 70 - 130% 89 % BH2_1.2-1.3 SE208846.002 70 - 130% 89 % BH2 1.6-1.7 SE208846.003 % 70 - 130% 83 BH3M_0.7-0.8 SE208846.005 70 - 130% 84 % BH3M_1.7-1.8 SE208846.006 % 70 - 130% 91 BH3M 2.8-2.9 SE208846.007 % 70 - 130% 88 BH4M_0.3-0.5 SE208846.008 89 % 70 - 130% BH4M_1.4-1.5 SE208846.009 70 - 130% 82 % BH4M 2.9-3.0 SE208846.010 % 70 - 130% 87 BH4M_4.9-5.0 SE208846.011 % 70 - 130% 86 BH5M_0.1-0.2 SE208846.012 70 - 130% 87 % BH5M 1.5-1.6 SE208846.013 % 70 - 130% 85 BH5M_1.9-2.0 SE208846.014 % 70 - 130% 86 BH2 0.1-0.2 SE208846.001 d5-nitrobenzene (Surrogate) % 70 - 130% 84 BH2 1.2-1.3 SE208846.002 % 70 - 130% 86 BH2_1.6-1.7 SE208846.003 70 - 130% % 86

SE208846 R0

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

Method: ME-(AU)-[ENV]AN42

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)				Method: M	E-(AU)-[ENV]AN4
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
d5-nitrobenzene (Surrogate)	BH3M_0.7-0.8	SE208846.005	%	70 - 130%	80
	BH3M_1.7-1.8	SE208846.006	%	70 - 130%	82
	BH3M_2.8-2.9	SE208846.007	%	70 - 130%	83
	BH4M_0.3-0.5	SE208846.008	%	70 - 130%	82
	BH4M_1.4-1.5	SE208846.009	%	70 - 130%	78
	BH4M_2.9-3.0	SE208846.010	%	70 - 130%	79
	BH4M_4.9-5.0	SE208846.011	%	70 - 130%	79
	BH5M_0.1-0.2	SE208846.012	%	70 - 130%	77
	BH5M_1.5-1.6	SE208846.013	%	70 - 130%	80
	BH5M_1.9-2.0	SE208846.014	%	70 - 130%	78
CBs in Soll				Method: M	E-(AU)-[ENV]AN4
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Tetrachloro-m-xylene (TCMX) (Surrogate)	BH2_0.1-0.2	SE208846.001	%	60 - 130%	89
	BH2_1.6-1.7	SE208846.003	%	60 - 130%	95
	BH3M_0.7-0.8	SE208846.005	%	60 - 130%	89
	BH3M_1.7-1.8	SE208846.006	%	60 - 130%	91
	BH3M_2.8-2.9	SE208846.007	%	60 - 130%	93
	BH4M_0.3-0.5	SE208846.008	%	60 - 130%	89
	BH4M_2.9-3.0	SE208846.010	%	60 - 130%	92
	BH5M_0.1-0.2	SE208846.012	%	60 - 130%	88
	BH5M_1.9-2.0	SE208846.014	%	60 - 130%	95
DC's in Soil				Method: M	E-(AU)-[ENV]AN
arameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH2_0.1-0.2	SE208846.001	%	60 - 130%	78
	BH2_1.2-1.3	SE208846.002	%	60 - 130%	71
	BH2_1.6-1.7	SE208846.003	%	60 - 130%	85
	BH3M_0.7-0.8	SE208846.005	%	60 - 130%	75
	BH3M_1.7-1.8	SE208846.006	%	60 - 130%	87
	BH3M_2.8-2.9	SE208846.007	%	60 - 130%	79
	BH4M_0.3-0.5	SE208846.008	%	60 - 130%	78
	BH4M_1.4-1.5	SE208846.009	%	60 - 130%	77
	BH4M_2.9-3.0	SE208846.010	%	60 - 130%	77
	BH4M_4.9-5.0	SE208846.011	%	60 - 130%	75
	BH5M_0.1-0.2	SE208846.012	%	60 - 130%	76
	BH5M_1.5-1.6	SE208846.013	%	60 - 130%	82
	BH5M_1.9-2.0	SE208846.014	%	60 - 130%	74
d4-1,2-dichloroethane (Surrogate)	BH2_0.1-0.2	SE208846.001	%	60 - 130%	78
	BH2_1.2-1.3	SE208846.002	%	60 - 130%	71

BH2_1.6-1.7

BH3M_0.7-0.8

BH3M 1.7-1.8

BH3M_2.8-2.9

BH4M_0.3-0.5

BH4M 1.4-1.5

BH4M_2.9-3.0

BH4M_4.9-5.0

BH5M 0.1-0.2

BH5M_1.5-1.6

BH5M_1.9-2.0

BH2 0.1-0.2

BH2_1.2-1.3

BH2_1.6-1.7

BH3M 0.7-0.8

BH3M_1.7-1.8

BH3M_2.8-2.9

SE208846.003

SE208846.005

SE208846.006

SE208846.007

SE208846.008

SE208846.009

SE208846.010

SE208846.011

SE208846.012

SE208846.013

SE208846.014

SE208846.001

SE208846.002

SE208846.003

SE208846.005

SE208846.006

SE208846.007

SE208846.008

SE208846.009

SE208846.010

SE208846.011

SE208846.012

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

60 - 130%

60 - 130%

60 - 130%

60 - 130%

60 - 130%

60 - 130%

60 - 130%

60 - 130%

60 - 130%

60 - 130%

60 - 130%

60 - 130%

60 - 130%

60 - 130%

60 - 130%

60 - 130%

60 - 130%

60 - 130%

60 - 130%

60 - 130%

60 - 130%

60 - 130%

79

79

82

78

87

84

76

81

77

79

77

72

61

75

71

74

71

76

77

74

75

74

d8-toluene (Surrogate)

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOC's in Soil (continued)

Method: ME-(AU)-[ENV]AN433

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
d8-toluene (Surrogate)	BH5M_1.5-1.6	SE208846.013	%	60 - 130%	76
	BH5M_1.9-2.0	SE208846.014	%	60 - 130%	75
olatile Petroleum Hydrocarbons in Soil				Method: M	e-(au)-[env]an4
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH2_0.1-0.2	SE208846.001	%	60 - 130%	78
	BH2_1.2-1.3	SE208846.002	%	60 - 130%	71
	BH2_1.6-1.7	SE208846.003	%	60 - 130%	85
	BH3M_0.7-0.8	SE208846.005	%	60 - 130%	75
	BH3M_1.7-1.8	SE208846.006	%	60 - 130%	87
	BH3M_2.8-2.9	SE208846.007	%	60 - 130%	79
	BH4M_0.3-0.5	SE208846.008	%	60 - 130%	78
	BH4M_1.4-1.5	SE208846.009	%	60 - 130%	77
	BH4M_2.9-3.0	SE208846.010	%	60 - 130%	77
	BH4M_4.9-5.0	SE208846.011	%	60 - 130%	75
	BH5M_0.1-0.2	SE208846.012	%	60 - 130%	76
	BH5M_1.5-1.6	SE208846.013	%	60 - 130%	82
	BH5M_1.9-2.0	SE208846.014	%	60 - 130%	74
d4-1,2-dichloroethane (Surrogate)	BH2_0.1-0.2	SE208846.001	%	60 - 130%	78
	BH2_1.2-1.3	SE208846.002	%	60 - 130%	71
	BH2_1.6-1.7	SE208846.003	%	60 - 130%	79
	BH3M_0.7-0.8	SE208846.005	%	60 - 130%	79
	BH3M_1.7-1.8	SE208846.006	%	60 - 130%	82
	BH3M_2.8-2.9	SE208846.007	%	60 - 130%	78
	BH4M_0.3-0.5	SE208846.008	%	60 - 130%	87
	BH4M_1.4-1.5	SE208846.009	%	60 - 130%	84
	BH4M_2.9-3.0	SE208846.010	%	60 - 130%	76
	BH4M_4.9-5.0	SE208846.011	%	60 - 130%	81
	BH5M_0.1-0.2	SE208846.012	%	60 - 130%	77
	BH5M_1.5-1.6	SE208846.013	%	60 - 130%	79
	BH5M_1.9-2.0	SE208846.014	%	60 - 130%	77
d8-toluene (Surrogate)	BH2_0.1-0.2	SE208846.001	%	60 - 130%	72
	BH2_1.2-1.3	SE208846.002	%	60 - 130%	61
	BH2_1.6-1.7	SE208846.003	%	60 - 130%	75
	BH3M_0.7-0.8	SE208846.005	%	60 - 130%	71
	BH3M_1.7-1.8	SE208846.006	%	60 - 130%	74
	BH3M_2.8-2.9	SE208846.007	%	60 - 130%	71
	BH4M_0.3-0.5	SE208846.008	%	60 - 130%	76
	BH4M_1.4-1.5	SE208846.009	%	60 - 130%	77
	BH4M_2.9-3.0	SE208846.010	%	60 - 130%	74
	BH4M_4.9-5.0	SE208846.011	%	60 - 130%	75
	BH5M_0.1-0.2	SE208846.012	%	60 - 130%	74
	BH5M_1.5-1.6	SE208846.013	%	60 - 130%	76
	BH5M_1.9-2.0	SE208846.014	%	60 - 130%	75

METHOD BLANKS

SE208846 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soil			Metho	od: ME-(AU)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result
LB204774.001	Mercury	mg/kg	0.05	<0.05

OC Pesticides in Soil

C Pesticides in Soll				Meth	od: ME-(AU)-[ENV]AN
ample Number		Parameter	Units	LOR	Result
B204738.001		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
		Alpha BHC	mg/kg	0.1	<0.1
		Lindane	mg/kg	0.1	<0.1
		Heptachlor	mg/kg	0.1	<0.1
		Aldrin	mg/kg	0.1	<0.1
		Beta BHC	mg/kg	0.1	<0.1
		Delta BHC	mg/kg	0.1	<0.1
		Heptachlor epoxide	mg/kg	0.1	<0.1
		Alpha Endosulfan	mg/kg	0.2	<0.2
		Gamma Chlordane	mg/kg	0.1	<0.1
		Alpha Chlordane	mg/kg	0.1	<0.1
		p,p'-DDE	mg/kg	0.1	<0.1
		Dieldrin	mg/kg	0.2	<0.2
		Endrin	mg/kg	0.2	<0.2
		Beta Endosulfan	mg/kg	0.2	<0.2
		p,p'-DDD	mg/kg	0.1	<0.1
		p,p'-DDT	mg/kg	0.1	<0.1
		Endosulfan sulphate	mg/kg	0.1	<0.1
		Endrin Aldehyde	mg/kg	0.1	<0.1
		Methoxychlor	mg/kg	0.1	<0.1
		Endrin Ketone	mg/kg	0.1	<0.1
		Isodrin	mg/kg	0.1	<0.1
		Mirex	mg/kg	0.1	<0.1
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	97
P Pesticides in Soil				Meth	od: ME-(AU)-[ENV]AN
ample Number		Parameter	Units	LOR	Result
3204738.001		Dichlorvos	mg/kg	0.5	<0.5
		Dimethoate	mg/kg	0.5	<0.5
		Diazinon (Dimpylate)	mg/kg	0.5	<0.5
		Fenitrothion	mg/kg	0.2	<0.2
		Malathion	mg/kg	0.2	<0.2
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
		Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
		Bromophos Ethyl	mg/kg	0.2	<0.2
		Methidathion	mg/kg	0.5	<0.5
		Ethion	mg/kg	0.2	<0.2
		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
	Surrogates	2-fluorobiphenyl (Surrogate)	%	_	99

PAH (Polynuclear Aromatic Hydrocarbo	ons) in Soil		Meth	od: ME-(AU)-[ENV]AN420
Sample Number	Parameter	Units	LOR	Result
LB204738.001	Naphthalene	mg/kg	0.1	<0.1
	2-methylnaphthalene	mg/kg	0.1	<0.1
	1-methylnaphthalene	mg/kg	0.1	<0.1
	Acenaphthylene	mg/kg	0.1	<0.1
	Acenaphthene	mg/kg	0.1	<0.1
	Fluorene	mg/kg	0.1	<0.1
	Phenanthrene	mg/kg	0.1	<0.1
	Anthracene	mg/kg	0.1	<0.1
	Fluoranthene	mg/kg	0.1	<0.1
	Pyrene	mg/kg	0.1	<0.1
	Benzo(a)anthracene	mg/kg	0.1	<0.1
	Chrysene	mg/kg	0.1	<0.1
	Benzo(a)pyrene	mg/kg	0.1	<0.1

DALL (Debuwyelsen Aremetis Libutresenberre) in Cell

Methods ME (ALD IEND (ANI/00)

METHOD BLANKS

SE208846 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

	natic Hydrocarbons) in Soil (co		Units	LOR	od: ME-(AU)-[ENV]AI Result
Sample Number		Parameter			
_B204738.001		Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
		Dibenzo(ah)anthracene	mg/kg	0.1	<0.1
		Benzo(ghi)perylene	mg/kg	0.1	<0.1
		Total PAH (18)	mg/kg	0.8	<0.8
	Surrogates	d5-nitrobenzene (Surrogate)	%	-	84
		2-fluorobiphenyl (Surrogate)	%	-	87
		d14-p-terphenyl (Surrogate)	%	-	90
CBs in Soil				Metho	od: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
_B204738.001		Arochlor 1016	mg/kg	0.2	<0.2
		Arochlor 1221	mg/kg	0.2	<0.2
		Arochlor 1232	mg/kg	0.2	<0.2
		Arochior 1242		0.2	<0.2
			mg/kg		
		Arochlor 1248	mg/kg	0.2	<0.2
		Arochlor 1254	mg/kg	0.2	<0.2
		Arochlor 1260	mg/kg	0.2	<0.2
		Arochlor 1262	mg/kg	0.2	<0.2
		Arochlor 1268	mg/kg	0.2	<0.2
		Total PCBs (Arochlors)	mg/kg	1	<1
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	97
otal Recoverable Elei	ments in Soil/Waste Solids/Mat	erials by ICPOES		Method: ME-	(AU)-[ENV]AN040/A
Sample Number		Parameter	Units	LOR	Result
_B204772.001		Arsenic, As	mg/kg	1	<1
		Cadmium, Cd	mg/kg	0.3	<0.3
		Chromium, Cr	mg/kg	0.5	<0.5
		Copper, Cu	mg/kg	0.5	<0.5
		Nickel, Ni	mg/kg	0.5	<0.5
		Lead, Pb		1	<1
			mg/kg		<2.0
		Zinc, Zn	mg/kg	2	
RH (Total Recoverab	le Hydrocarbons) in Soil			Metho	od: ME-(AU)-[ENV]A
Sample Number		Parameter	Units	LOR	Result
_B204738.001		TRH C10-C14	mg/kg	20	<20
		TRH C15-C28	mg/kg	45	<45
		TRH C29-C36	mg/kg	45	<45
		TRH C37-C40	mg/kg	100	<100
		TRH C10-C36 Total	mg/kg	110	<110
/OC's in Soil					
					od: ME-(AU)-[ENV]AI
Sample Number		Parameter	Units	LOR	Result
_B204737.001	Monocyclic Aromatic	Benzene	mg/kg	0.1	<0.1
	Hydrocarbons	Toluene	mg/kg	0.1	<0.1
		Ethylbenzene	mg/kg	0.1	<0.1
		m/p-xylene	mg/kg	0.2	<0.2
		o-xylene	mg/kg	0.1	<0.1
	Polycyclic VOCs	Naphthalene	mg/kg	0.1	<0.1
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	76
		d8-toluene (Surrogate)	%	-	84
		Bromofluorobenzene (Surrogate)	%	-	88
	Totals	Total BTEX	mg/kg	0.6	<0.6
olatila Patrolaum Use			<u>, , , , , , , , , , , , , , , , , </u>		od: ME-(AU)-[ENV]A
olatile Petroleum Hyd					
Sample Number		Parameter	Units	LOR	Result
D004707.004		TRH C6-C9	mg/kg	20	<20
_B204737.001			gg	20	-20

Method: ME-(AU)-IENVIAN002

Method: ME-(AU)-[ENV]AN420

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil						Meth	od: ME-(AU)-	[ENV]AN312
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE208846.007	LB204774.014	Mercury	mg/kg	0.05	<0.05	<0.05	200	0
SE208846.014	LB204774.022	Mercury	mg/kg	0.05	<0.05	<0.05	200	0

Moisture Content

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE208846.014	LB204739.020	% Moisture	%w/w	1	9.1	8.1	42	12

OC Pesticides in Soil

20						Moun		Terror have
Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
LB204738.022		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	200	0
		Alpha BHC	mg/kg	0.1	<0.1	<0.1	200	0
		Lindane	mg/kg	0.1	<0.1	<0.1	200	0
		Heptachlor	mg/kg	0.1	<0.1	<0.1	200	0
		Aldrin	mg/kg	0.1	<0.1	<0.1	200	0
		Beta BHC	mg/kg	0.1	<0.1	<0.1	200	0
		Delta BHC	mg/kg	0.1	<0.1	<0.1	200	0
		Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	200	0
		o,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
		Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
		Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
		Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
		trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	200	0
		p,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
		Dieldrin	mg/kg	0.2	<0.2	<0.2	200	0
		Endrin	mg/kg	0.2	<0.2	<0.2	200	0
		o,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
		o,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
		Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
		p,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
		p,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
		Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	200	0
		Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	200	0
		Methoxychlor	mg/kg	0.1	<0.1	<0.1	200	0
		Endrin Ketone	mg/kg	0.1	<0.1	<0.1	200	0
		Isodrin	mg/kg	0.1	<0.1	<0.1	200	0
		Mirex	mg/kg	0.1	<0.1	<0.1	200	0
		Total CLP OC Pesticides	mg/kg	1	<1	<1	200	0
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.14	0.13	30	6
bil						Meth	od: ME-(AU)-	
Duplicato		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
Duplicate								
LB204738.014		Dichlorvos	mg/kg	0.5	<0.5	<0.5	200	0
		Dichlorvos Dimethoate	mg/kg mg/kg	0.5	<0.5 <0.5	<0.5 <0.5	200 200	0
		Dimethoate	mg/kg	0.5	<0.5	<0.5	200	0
	Duplicate LB204738.022	Duplicate LB204738.022	Duplicate Parameter LB204738.022 Hexachlorobenzene (HCB) Alpha BHC Lindane Heptachlor Aldrin Beta BHC Delta BHC Delta BHC Heptachlor epoxide o.p.*DDE Alpha Endosulfan Gamma Chlordane Alpha Chlordane trans-Nonachlor p.p.*DDE Dieldrin Endrin o.p.*DDD o.p.*DDD Dieldrin Endrin eta Btochlordane Alpha Chlordane trans-Nonachlor p.p.*DDE Dieldrin Endrin o.p.*DDD o.p.*DDT Beta Endosulfan p.p.*DDT Endosulfan sulphate Endrin Aldehyde Methoxychlor Endrin Mitexon Isodrin Mirex Total CLP OC Pesticides Surrogates Surrogates Tetrachloro-m-xylene (TCMX) (Surrogate)	Duplicate Parameter Units LB204738.022 Hexachlorobenzene (HCB) mg/kg Alpha BHC mg/kg Lindane mg/kg Heptachlor mg/kg Heptachlor mg/kg Heptachlor mg/kg Beta BHC mg/kg Op'DDE mg/kg Alpha Endosulfan mg/kg Alpha Endosulfan mg/kg Alpha Chlordane mg/kg Dieldrin mg/kg Dieldrin mg/kg Op'DDE mg/kg Dieldrin mg/kg Endrin mg/kg Op'DDT mg/kg P,p'DDD mg/kg Endrin mg/kg Endrin mg/kg P,p'DDD mg/kg Endrin ketone mg/kg <td< td=""><td>Duplicate Parameter Units LOR LB204738.022 Hexachlorobenzene (HCB) mg/kg 0.1 Alpha BHC mg/kg 0.1 Lindane mg/kg 0.1 Hetachlorobenzene (HCB) mg/kg 0.1 Lindane mg/kg 0.1 Hetpatchlor mg/kg 0.1 Aldrin mg/kg 0.1 Detta BHC mg/kg 0.1 Deta BHC mg/kg 0.1 o.p'DDE mg/kg 0.1 Alpha Endosulfan mg/kg 0.1 Alpha Chlordane mg/kg 0.1 p.p'DDE mg/kg 0.1 Deldtin mg/kg 0.1 Deldtin mg/kg 0.1 Dp'DDE mg/kg 0.1 Deldtin mg/kg 0.1 Deldtin mg/kg 0.1 Dp'DDD mg/kg 0.1 p.p'DDD mg/kg 0.1 Endrin sulphate mg/kg 0.1<</td><td>Duplicate Parameter Units LOR Original LB204738.022 Hexachlorobenzene (HCB) mg/kg 0.1 <0.1</td> Alpha BHC mg/kg 0.1 <0.1</td<>	Duplicate Parameter Units LOR LB204738.022 Hexachlorobenzene (HCB) mg/kg 0.1 Alpha BHC mg/kg 0.1 Lindane mg/kg 0.1 Hetachlorobenzene (HCB) mg/kg 0.1 Lindane mg/kg 0.1 Hetpatchlor mg/kg 0.1 Aldrin mg/kg 0.1 Detta BHC mg/kg 0.1 Deta BHC mg/kg 0.1 o.p'DDE mg/kg 0.1 Alpha Endosulfan mg/kg 0.1 Alpha Chlordane mg/kg 0.1 p.p'DDE mg/kg 0.1 Deldtin mg/kg 0.1 Deldtin mg/kg 0.1 Dp'DDE mg/kg 0.1 Deldtin mg/kg 0.1 Deldtin mg/kg 0.1 Dp'DDD mg/kg 0.1 p.p'DDD mg/kg 0.1 Endrin sulphate mg/kg 0.1<	Duplicate Parameter Units LOR Original LB204738.022 Hexachlorobenzene (HCB) mg/kg 0.1 <0.1	Duplicate Parameter Units LOR Original Duplicate LB204738.022 Hexachiorobenzene (HCB) mg/kg 0.1 <0.1	Duplicate Parameter Units LOR Original Duplicate Criteria % LE204738.022 Hexachiorobenzene (HCB) mg/kg 0.1 <0.1

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

0.2

0.2

0.2

0.5

0.2

0.2

1.7

Units LOR

< 0.2

<0.2

<0.2

< 0.5

<0.2

<0.2

<17

0.4

0.4

< 0.2

<0.2

<0.2

< 0.5

<0.2

<0.2

<17

0.4

0.4

Chlorpyrifos (Chlorpyrifos Ethyl)

Parathion-ethyl (Parathion)

Azinphos-methyl (Guthion)

2-fluorobiphenyl (Surrogate)

d14-p-terphenyl (Surrogate)

Total OP Pesticides*

Bromophos Ethyl

Methidathion

Parameter

Ethion

Surrogates

Duplicate

PCBs in Soil

Original

24/7/2020

Method: ME-(AU)-[ENV]AN420

200

200

200

200

200

200

200

30

30

0

0

0

0

0

0

0

3

3

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PCBs in Soil (conti								nod: ME-(AU)-	
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE208846.014	LB204738.022		Arochlor 1016	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1221	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1232	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1242	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1248	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1254	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1260	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1262	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1262	mg/kg	0.2	<0.2	<0.2	200	0
			Total PCBs (Arochlors)		1	<1	<1	200	0
		Summanataa	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg		0	0	30	6
		Surrogates		mg/kg	-	0	-		
	Elements in Soil/Wa	ste Solids/Materials	by ICPOES					-(AU)-[ENV]AI	
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
SE208846.007	LB204772.014		Arsenic, As	mg/kg	1	2	3	66	46
			Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
			Chromium, Cr	mg/kg	0.5	13	16	34	23
			Copper, Cu	mg/kg	0.5	14	12	34	12
			Nickel, Ni	mg/kg	0.5	3.5	4.1	43	16
			Lead, Pb	mg/kg	1	5	6	47	25
			Zinc, Zn	mg/kg	2	17	22	40	24
SE208846.014	LB204772.022		Arsenic, As	mg/kg	1	4	4	53	3
			Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
			Chromium, Cr	mg/kg	0.5	15	11	34	28
			Copper, Cu	mg/kg	0.5	3.8	3.6	43	5
			Nickel, Ni	mg/kg	0.5	2.3	2.3	52	1
			Lead, Pb		1	8	8	42	4
							0	42	4
PH (Total Base)			Zinc, Zn	mg/kg mg/kg	2	6.8	6.4	60	
-	erable Hydrocarbons Duplicate) in Soil	Zinc, Zn	mg/kg		6.8	Meth	nod: ME-(AU)-	[ENV]A
Original	erable Hydrocarbons Duplicate LB204738.014) in Soil		mg/kg Units	2 LOR	6.8 Original	Meth		
Original	Duplicate) in Soil	Zinc, Zn Parameter TRH C10-C14	mg/kg Units mg/kg	2 LOR 20	6.8 Original <20	Meth Duplicate <20	nod: ME-(AU)- Criteria % 200	<mark>(ENV]A</mark> RPD 0
Original	Duplicate) in Soil	Zinc, Zn Parameter TRH C10-C14 TRH C15-C28	mg/kg Units mg/kg mg/kg	2 LOR 20 45	6.8 Original <20 <45	Meth Duplicate <20 <45	nod: ME-(AU)- Criteria % 200 200	[ENV]A RPD 0
RH (Total Recove Original SE208846.007	Duplicate) in Soil	Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36	mg/kg Units mg/kg mg/kg mg/kg	2 LOR 20 45 45	6.8 Original <20 <45 <45	Meth Duplicate <20 <45 <45	nod: ME-(AU)- Criteria % 200 200 200	[ENV]A RPD 0 0 0
Original	Duplicate) in Soil	Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40	mg/kg Units mg/kg mg/kg mg/kg mg/kg	2 LOR 20 45 45 100	6.8 Original <20 <45 <45 <100	Meth Duplicate <20	nod: ME-(AU)- Criteria % 200 200 200 200	[ENV]A RPD 0 0 0 0 0
Original	Duplicate) in Soil	Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total	mg/kg Units mg/kg mg/kg mg/kg mg/kg	2 LOR 20 45 45 100 110	6.8 Original <20 <45 <45 <100 <110	Meth Duplicate <20	Criteria % 200 200 200 200 200 200 200 200 200	[ENV]A RPD 0 0 0 0 0 0
Original	Duplicate		Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C36 Total (F bands)	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg	2 LOR 20 45 45 100 110 210	6.8 Original <20 <45 <45 <100 <110 <210	Meth Duplicate <20	nod: ME-(AU)- Criteria % 200 200 200 200 200 200 200	[ENV]A RPD 0 0 0 0 0 0 0 0 0
Original	Duplicate) in Soil	Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	2 LOR 20 45 45 100 110 210 25	6.8 Original <20 <45 <45 <100 <110 <210 <25	Meth 20 <45 <45 <100 <110 <210 <25	nod: ME-(AU)- Criteria % 200 200 200 200 200 200 200 200	[ENV]A RPD 0 0 0 0 0 0 0 0 0 0 0 0 0
Original	Duplicate		Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2)	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	2 LOR 20 45 45 100 110 210 25 25 25	6.8 Original <20 <45 <100 <110 <210 <25 <25	Meth 20 <45 <100 <110 <210 <25 <25	Criteria % 200	[ENV]A RPD 0 0 0 0 0 0 0 0 0 0 0 0 0
Original	Duplicate		Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3)	mg/kg Units mg/kg	2 LOR 20 45 45 100 110 210 25 25 90	6.8 Original <20 <45 <100 <110 <210 <25 <25 <90	Meth Duplicate <20	Criteria % 200	[ENV]A RPD 0 0 0 0 0 0 0 0 0 0 0 0 0
Original SE208846.007	Duplicate LB204738.014		Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH >C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C10-C34 (F3) TRH >C10-C40 (F4)	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	2 LOR 20 45 45 100 110 210 25 25 90 120	6.8 Original <20 <45 <100 <110 <210 <25 <25 <90 <120	Meth Duplicate <20	Criteria % 200	[ENV]A RPD 0 0 0 0 0 0 0 0 0 0 0 0 0
Original	Duplicate		Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH >C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C16-C34 (F4) TRH >C10-C14	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	2 LOR 20 45 45 100 110 210 25 25 90 120 20	6.8 Original <20 <45 <100 <110 <210 <25 <25 <90 <120 <20	Meth Duplicate <20	Criteria % 200	[ENV]A RPD 0 0 0 0 0 0 0 0 0 0 0 0 0
Original SE208846.007	Duplicate LB204738.014		Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C15-C28	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	2 LOR 20 45 45 100 110 210 25 25 90 120 20 45	6.8 Original <20 <45 <45 <100 <210 <225 <25 <90 <120 <20 <45	Meth Duplicate <20 <45 <100 <110 <210 <25 <25 <90 <120 <20 <45	Criteria % 200	[ENV]A RPD 0 0 0 0 0 0 0 0 0 0 0 0 0
Original SE208846.007	Duplicate LB204738.014		Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH >C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C16-C34 (F4) TRH >C10-C14	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	2 LOR 20 45 45 100 110 210 25 25 90 120 20 45 45	6.8 Original <20 <45 <100 <110 <210 <25 <25 <90 <120 <20	Meth Duplicate <20 <45 <100 <110 <210 <25 <25 <90 <120 <20 <45 <45	Criteria % 200	[ENV]A RPD 0 0 0 0 0 0 0 0 0 0 0 0 0
Original SE208846.007	Duplicate LB204738.014		Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C15-C28	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	2 LOR 20 45 45 100 110 210 25 25 90 120 20 45	6.8 Original <20 <45 <45 <100 <210 <225 <25 <90 <120 <20 <45	Meth Duplicate <20 <45 <100 <110 <210 <25 <25 <90 <120 <20 <45	Criteria % 200	[ENV]A RPD 0 0 0 0 0 0 0 0 0 0 0 0 0
Original SE208846.007	Duplicate LB204738.014		Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH >C10-C36 Total TRH >C10-C16 Otal (F bands) TRH >C10-C16 Naphthalene (F2) TRH >C16-C34 (F3) TRH >C16-C34 (F4) TRH >C10-C14 TRH C15-C28 TRH C29-C36	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	2 LOR 20 45 45 100 110 210 25 25 90 120 20 45 45	6.8 Original <20 <45 <45 <100 <210 <225 <25 <90 <120 <20 <45 <45 <45 <45 <45 <45 <45 <45	Meth Duplicate <20 <45 <100 <110 <210 <25 <25 <90 <120 <20 <45 <45	Criteria % 200	[ENV]A RPD 0 0 0 0 0 0 0 0 0 0 0 0 0
Original SE208846.007	Duplicate LB204738.014		Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C36 Total TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C14 TRH >C10-C14 TRH >C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40	mg/kg Units mg/kg	2 LOR 20 45 100 110 210 25 25 90 120 20 45 45 100	6.8 Original <20 <45 <45 <100 <110 <210 <225 <25 <90 <120 <20 <45 <45 <120 <20 <120 <210 <25 <25 <25 <90 <120 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210	Meth Duplicate <20 <45 <100 <110 <210 <25 <25 <90 <120 <20 <45 <45 <100 <120 <25 <25 <90 <120 <20 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <	Criteria % 200	[ENV]A RPD 0 0 0 0 0 0 0 0 0 0 0 0 0
Original SE208846.007	Duplicate LB204738.014		Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C36 Total TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C34-C40 (F4) TRH >C14-C14 TRH >C14-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total	mg/kg Units mg/kg	2 LOR 20 45 45 100 110 210 25 25 90 120 20 45 45 100 110	6.8 Original <20 <45 <45 <100 <110 <210 <225 <25 <90 <120 <20 <45 <45 <100 <120 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210	Meth 20 <45 <45 <100 <110 <210 <25 <25 <90 <120 <20 <45 <45 <100 <120 <120 <210 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110 <110	Criteria % 200	[ENV]A RPD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Original SE208846.007	Duplicate LB204738.014	TRH F Bands	Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16-C34 (F3) TRH >C16-C34 (F3) TRH >C16-C34 (F3) TRH >C16-C34 (F4) TRH >C16-C34 (F4) TRH >C10-C14 TRH C15-C28 TRH C37-C40 TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total (F bands)	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	2 20 45 45 100 110 210 25 25 90 120 20 45 45 100 110 210	6.8 Original <20 <45 <100 <110 <210 <25 <25 <90 <120 <20 <45 <45 <100 <110 <210 <25 <25 <90 <120 <2120 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <210 <	Meth Duplicate <20	Criteria % 200 200	[ENV]A RPD 0 0 0 0 0 0 0 0 0 0 0 0 0
Original SE208846.007	Duplicate LB204738.014	TRH F Bands	Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16-C34 (F3) TRH >C10-C16-C34 (F3) TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C29-C36 TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16	mg/kg Units mg/kg	2 LOR 20 45 45 100 110 210 25 25 90 120 20 45 45 100 110 210 25 25 90 120 20 25 25 90 120 25 25 90 120 25 25 90 120 25 25 90 120 25 25 90 120 25 25 90 120 25 25 90 120 25 25 90 120 25 25 25 90 120 25 25 20 25 25 20 25 25 20 25 20 25 20 25 25 20 20 20 20 20 20 20 20 20 20	6.8 Original <20 <45 <100 <110 <210 <25 <25 <90 <120 <45 <45 <100 <110 <225 <25 <90 <120 <25 <25 <90 <120 <25 <25 <25 <90 <120 <25 <25 <25 <25 <25 <25 <25 <25	Meth Duplicate <20	Criteria % 200 200	[ENV]A RPD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Original SE208846.007	Duplicate LB204738.014	TRH F Bands	Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 Naphthalene (F2) TRH >C16-C34 (F3) TRH >C16-C34 (F3) TRH >C10-C14 TRH C15-C28 TRH C15-C28 TRH C15-C28 TRH C15-C28 TRH C37-C40 TRH C37-C40 TRH >C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 TRH >C10-C16	mg/kg Units mg/kg	2 LOR 20 45 45 100 110 210 25 25 90 120 20 45 45 100 110 210 25 25 25 25 20 20 20 20 20 20 20 20 20 20	6.8 Original <20 <45 <100 <110 <210 <25 <25 <90 <120 <20 <45 <45 <100 <110 <225 <25 <90 <120 <20 <45 <45 <45 <45 <45 <45 <45 <45	Meth Duplicate <20	Criteria % 200 200	[ENV]A RPD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Original SE208846.007	Duplicate LB204738.014	TRH F Bands	Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C10-C36 Total TRH >C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C14 TRH C15-C28 TRH C15-C28 TRH C10-C36 TRH C10-C36 Total TRH >C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C10-C16 - Naphthalene (F2) TRH >C10-C16 - Naphthalene (F2)	mg/kg Units mg/kg	2 LOR 20 45 45 100 110 210 25 25 90 120 20 45 45 100 110 210 25 25 90 120 20 20 45 25 90 120 20 45 25 90 120 20 45 25 90 120 20 45 25 90 120 20 45 25 90 120 20 45 25 90 120 20 45 25 90 120 20 45 25 90 120 20 45 25 90 120 20 45 25 90 120 20 45 20 45 20 20 45 20 20 45 20 20 45 45 20 20 45 20 20 45 45 20 20 45 45 20 45 45 20 20 20 20 45 45 100 20 20 20 25 90 100 20 20 25 90 100 20 20 25 90 90 100 20 20 25 90 90 100 20 25 25 90 100 20 20 25 90 100 20 20 20 20 20 20 20 20 20	6.8 Original <20 <45 <100 <110 <210 <25 <25 <90 <120 <20 <45 <45 <100 <120 <25 <25 <90 <120 <20 <45 <45 <90 <120 <25 <25 <90 <120 <20 <45 <45 <90 <120 <25 <90 <120 <20 <45 <90 <120 <20 <90 <120 <20 <90 <120 <20 <20 <90 <120 <20 <20 <20 <20 <20 <20 <20 <	Meth Duplicate <20	Criteria % 200 200	[ENV]A RPD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Original SE208846.007 SE208846.014	Duplicate LB204738.014	TRH F Bands	Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C10-C36 Total TRH >C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C14 TRH C15-C28 TRH C15-C28 TRH C10-C36 TRH C10-C36 Total TRH >C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C10-C16 - Naphthalene (F2) TRH >C10-C16 - Naphthalene (F2)	mg/kg Units mg/kg	2 LOR 20 45 45 100 110 210 25 25 90 120 20 45 45 100 110 210 25 25 90 120 20 20 45 25 90 120 20 45 25 90 120 20 45 25 90 120 20 45 25 90 120 20 45 25 90 120 20 45 25 90 120 20 45 25 90 120 20 45 25 90 120 20 45 25 90 120 20 45 25 90 120 20 45 20 45 20 20 45 20 20 45 20 20 45 45 20 20 45 20 20 45 45 20 20 45 45 20 45 45 20 20 20 20 45 45 100 20 20 20 25 90 100 20 20 25 90 100 20 20 25 90 90 100 20 20 25 90 90 100 20 25 25 90 100 20 20 25 90 100 20 20 20 20 20 20 20 20 20	6.8 Original <20 <45 <100 <110 <210 <25 <25 <90 <120 <20 <45 <45 <100 <120 <25 <25 <90 <120 <20 <45 <45 <90 <120 <25 <25 <90 <120 <20 <45 <45 <90 <120 <25 <90 <120 <20 <45 <90 <120 <20 <90 <120 <20 <90 <120 <20 <20 <90 <120 <20 <20 <20 <20 <20 <20 <20 <	Meth Duplicate <20	Criteria % 200 200	Image: constraint of the second sec
Original SE208846.007 SE208846.014 SE208846.014 Original	Duplicate LB204738.014	TRH F Bands	Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16-C34 (F3) TRH >C10-C14 TRH >C10-C14 TRH >C14-C14 TRH C15-C28 TRH C10-C14 TRH C10-C14 TRH C15-C28 TRH C15-C28 TRH C10-C14 TRH C15-C28 TRH C15-C28 TRH C10-C14 TRH C15-C28 TRH C15-C28 TRH C15-C28 TRH C15-C28 TRH >C10-C16 TRH >C10-C34 (F3) TRH >C34-C40 (F4)	mg/kg Units mg/kg	2 LOR 20 45 45 100 110 25 25 90 120 20 45 45 100 110 210 25 25 90 120 20 45 45 100 1120 20 45 45 100 120 120 120 120 120 120 120	6.8 Original <20 <45 <100 <110 <210 <25 <25 <90 <120 <45 <45 <100 <110 <225 <25 <90 <120 <20 <45 <45 <120 <45 <45 <120 <45 <45 <45 <45 <45 <45 <45 <45	Meth Duplicate <20	Image: New York New York Criteria % 200 200	[ENV]A RPD 0 0 0 0 0 0 0 0 0 0 0 0 0
Original SE208846.007	Duplicate LB204738.014	TRH F Bands	Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16-C34 (F3) TRH >C46-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C10-C14 TRH C15-C28 TRH C15-C28 TRH C37-C40 TRH C37-C40 TRH C37-C40 TRH >C10-C16 TRH >C10-C34 (F3) <td>mg/kg Units mg/kg mg/kg</td> <td>2 LOR 20 45 45 100 110 210 25 25 90 120 20 45 45 100 110 210 25 25 90 120 110 20 45 45 90 120 110 20 45 45 90 120 110 20 45 45 90 120 120 120 120 120 120 120 12</td> <td>6.8 Original <20 <45 <100 <110 <210 <25 <25 <90 <120 <45 <45 <100 <110 <225 <25 <90 <120 <20 <45 <45 <100 <120 <25 <25 <90 <120 <45 <45 <120 <45 <45 <120 <45 <45 <120 <45 <45 <45 <45 <45 <45 <45 <45</td> <td>Meth Duplicate <20</td> <45	mg/kg Units mg/kg	2 LOR 20 45 45 100 110 210 25 25 90 120 20 45 45 100 110 210 25 25 90 120 110 20 45 45 90 120 110 20 45 45 90 120 110 20 45 45 90 120 120 120 120 120 120 120 12	6.8 Original <20 <45 <100 <110 <210 <25 <25 <90 <120 <45 <45 <100 <110 <225 <25 <90 <120 <20 <45 <45 <100 <120 <25 <25 <90 <120 <45 <45 <120 <45 <45 <120 <45 <45 <120 <45 <45 <45 <45 <45 <45 <45 <45	Meth Duplicate <20	Criteria % 200 200 200 <td>[ENV]A RPD 0 0 0 0 0 0 0 0 0 0 0 0 0</td>	[ENV]A RPD 0 0 0 0 0 0 0 0 0 0 0 0 0
Original SE208846.007 SE208846.014 SE208846.014 Original	Duplicate LB204738.014	TRH F Bands	Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C36 Total TRH >C10-C16 TRH C15-C28 TRH C10-C14 TRH C10-C14 TRH C10-C36 TRH C37-C40 TRH >C10-C40 Total (F bands) TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 (F3) TRH >C10-C16 (F4)	mg/kg Units mg/kg	2 LOR 20 45 45 100 110 210 25 25 90 120 20 45 45 100 110 210 25 25 90 120 110 20 45 45 90 120 110 20 45 45 90 120 100 20 45 90 120 100 20 45 90 120 100 20 45 90 120 20 45 90 120 20 45 90 120 20 45 90 120 20 45 45 90 120 20 45 45 90 120 20 45 45 90 120 20 45 45 100 100 20 45 45 100 100 20 45 45 100 100 20 20 45 45 100 110 210 25 25 90 120 20 20 25 25 90 120 100 110 210 20 25 25 90 120 120 20 20 25 25 90 120 20 20 25 25 90 120 20 20 25 25 90 120 20 20 20 20 20 20 20 20 20	6.8 Original <20	Meth Duplicate <20	Image: system System Criteria % 200 200	[ENV]A RPD 0 0 0 0 0 0 0 0 0 0 0 0 0
Original SE208846.007 SE208846.014 SE208846.014 Original	Duplicate LB204738.014	TRH F Bands	Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C36 Total TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C34-C40 (F4) TRH C15-C28 TRH C10-C14 TRH C10-C36 TRH C37-C40 TRH >C10-C36 Total TRH >C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C10-C16 - Naphthalene (F2) TRH >C10-C16 (F3) TRH >C10-C16 (F4)	mg/kg Units mg/kg	2 LOR 20 45 45 100 110 210 25 25 90 120 20 45 45 100 110 210 25 25 90 120 20 45 45 90 120 20 45 45 90 120 20 45 45 90 120 20 45 45 90 120 20 45 45 90 120 20 45 90 120 20 45 45 90 120 20 45 45 90 120 20 45 45 90 120 20 45 45 90 120 20 45 45 90 120 20 45 45 100 110 210 20 45 45 100 110 210 20 45 45 100 110 210 20 45 45 100 110 210 25 25 90 120 20 45 45 100 110 210 25 25 90 120 20 120 20 45 45 45 100 110 210 25 25 90 120 20 120 20 120 20 120 20 120 20 120 20 120 20 120 20 120 20 120 20 120 20 120 20 120 20 120 1	6.8 Original <20	Meth Duplicate <20	Image: New York New York Criteria % 200 200	[ENV]A RPD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Original SE208846.007 SE208846.014 SE208846.014 OC's in Soil Original	Duplicate LB204738.014	TRH F Bands	Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C10-C36 Total TRH >C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH C10-C14 TRH C15-C28 TRH C10-C36 Total TRH C10-C36 Total TRH C10-C36 Total TRH >C10-C16 TRH >C10-C36 Total TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C10-C36 Total TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C10-C16 (F3) TRH >C10-C16 (F4)	mg/kg Units mg/kg mg/kg </td <td>2 LOR 20 45 45 100 110 210 25 25 90 120 20 45 45 100 110 210 25 25 90 120 20 45 45 90 120 20 45 45 90 120 20 45 90 120 20 45 90 120 20 45 90 120 20 45 45 90 120 20 45 90 120 20 45 45 90 120 20 45 45 90 120 20 45 45 90 120 20 45 45 100 100 20 45 45 100 100 20 45 45 100 100 20 20 45 45 100 110 210 20 20 45 45 100 110 210 25 25 90 120 20 45 45 100 110 210 25 25 90 120 20 45 45 100 110 210 25 25 90 120 20 120 20 120 20 120 20 120 20 120 20 120 20 120 20 120 20 120 20 120 20 120 20 120 20 120 1</td> <td>6.8 Original <20</td> <45	2 LOR 20 45 45 100 110 210 25 25 90 120 20 45 45 100 110 210 25 25 90 120 20 45 45 90 120 20 45 45 90 120 20 45 90 120 20 45 90 120 20 45 90 120 20 45 45 90 120 20 45 90 120 20 45 45 90 120 20 45 45 90 120 20 45 45 90 120 20 45 45 100 100 20 45 45 100 100 20 45 45 100 100 20 20 45 45 100 110 210 20 20 45 45 100 110 210 25 25 90 120 20 45 45 100 110 210 25 25 90 120 20 45 45 100 110 210 25 25 90 120 20 120 20 120 20 120 20 120 20 120 20 120 20 120 20 120 20 120 20 120 20 120 20 120 20 120 1	6.8 Original <20	Meth Duplicate <20	Image: New York New York Criteria % 200 200	[ENV]A RPD 0 0 0 0 0 0 0 0 0 0 0 0 0
Original SE208846.007 SE208846.014 SE208846.014 Original	Duplicate LB204738.014	TRH F Bands TRH F Bands Monocyclic Aromatic	Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH C10-C14 TRH C10-C14 TRH C10-C36 Total TRH C29-C36 TRH C10-C36 Total TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C10-C16 - Naph	mg/kg Units mg/kg mg/kg </td <td>2 LOR 20 45 45 100 110 210 25 25 90 120 20 45 45 100 110 210 20 45 45 100 110 210 20 45 45 100 120 20 45 45 100 120 20 45 120 20 120 20 120 20 45 120 20 120 20 120 20 120 20 120 20 120 20 120 20 120 20 120 20 120 20 120 20 120 20 120 20 120 20 120 20 120 20 120 25 25 90 120 20 120 25 25 90 120 20 120 20 120 20 120 20 120 25 25 90 120 20 120 25 25 90 120 20 120 1</td> <td>6.8 Original <20</td> <45	2 LOR 20 45 45 100 110 210 25 25 90 120 20 45 45 100 110 210 20 45 45 100 110 210 20 45 45 100 120 20 45 45 100 120 20 45 120 20 120 20 120 20 45 120 20 120 20 120 20 120 20 120 20 120 20 120 20 120 20 120 20 120 20 120 20 120 20 120 20 120 20 120 20 120 20 120 25 25 90 120 20 120 25 25 90 120 20 120 20 120 20 120 20 120 25 25 90 120 20 120 25 25 90 120 20 120 1	6.8 Original <20	Meth Duplicate <20	Ind: ME-(AU)-I Criteria % 200 200	[ENV]A RPD 0 0 0 0 0 0 0 0 0 0 0 0 0
Original SE208846.007 SE208846.014 SE208846.014 Original	Duplicate LB204738.014	TRH F Bands	Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C10-C36 Total TRH >C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH C10-C14 TRH C15-C28 TRH C10-C36 Total TRH C10-C36 Total TRH C10-C36 Total TRH >C10-C16 TRH >C10-C36 Total TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C10-C36 Total TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C10-C16 (F3) TRH >C10-C16 (F4)	mg/kg Units mg/kg mg/kg </td <td>2 LOR 20 45 45 100 110 210 25 25 90 120 20 45 45 100 110 210 25 25 90 120 20 45 45 90 120 20 45 45 90 120 20 45 90 120 20 45 90 120 20 45 90 120 20 45 45 90 120 20 45 90 120 20 45 45 90 120 20 45 45 90 120 20 45 45 90 120 20 45 45 100 100 20 45 45 100 100 20 45 45 100 100 20 20 45 45 100 110 210 20 20 45 45 100 110 210 25 25 90 120 20 45 45 100 110 210 25 25 90 120 20 45 45 100 110 210 25 25 90 120 20 120 20 120 20 120 20 120 20 120 20 120 20 120 20 120 20 120 20 120 20 120 20 120 20 120 1</td> <td>6.8 Original <20</td> <45	2 LOR 20 45 45 100 110 210 25 25 90 120 20 45 45 100 110 210 25 25 90 120 20 45 45 90 120 20 45 45 90 120 20 45 90 120 20 45 90 120 20 45 90 120 20 45 45 90 120 20 45 90 120 20 45 45 90 120 20 45 45 90 120 20 45 45 90 120 20 45 45 100 100 20 45 45 100 100 20 45 45 100 100 20 20 45 45 100 110 210 20 20 45 45 100 110 210 25 25 90 120 20 45 45 100 110 210 25 25 90 120 20 45 45 100 110 210 25 25 90 120 20 120 20 120 20 120 20 120 20 120 20 120 20 120 20 120 20 120 20 120 20 120 20 120 20 120 1	6.8 Original <20	Meth Duplicate <20	Image: New York New York Criteria % 200 200	[ENV]A RPD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Method: ME-(AU)-[ENV]AN433 VOC's in Soil (continued) Original Duplicate Criteria % RPD % Original Duplicate Parameter Units LOR SE208846.007 LB204737.014 Bromofluorobenzene (Surrogate) 7.9 50 7.0 12 Surrogates mg/kg Totals Total Xylenes mg/kg 0.3 < 0.3 < 0.3 200 0 Total BTEX 0.6 <0.6 <0.6 200 0 mg/kg SE208846.014 LB204737.022 Monocyclic Benzene 0.1 <0.1 <0.1 200 0 mg/kg Aromatic Toluene mg/kg 01 <0.1 <0.1 200 0 Ethylbenzene 0.1 <0.1 <0.1 200 0 mg/kg 0.2 <0.2 <0.2 200 0 m/p-xvlene ma/ka o-xylene mg/kg 0.1 < 0.1 <0.1 200 0 Polycyclic 0.1 <0.1 <0.1 200 0 Naphthalene mg/kg Surrogates d4-1,2-dichloroethane (Surrogate) 7.7 50 6 mg/kg 8.1 d8-toluene (Surrogate) mg/kg 7.5 7.6 50 1 Bromofluorobenzene (Surrogate) 7.4 8.5 50 14 mg/kg Totals 0.3 < 0.3 Total Xvlenes < 0.3 200 0 mg/kg Total BTEX 0.6 <0.6 <0.6 200 0 mg/kg Volatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENV]AN433 Original Duplicate Units LOR Duplicate Criteria % RPD % Parameter Original SE208846.007 LB204737.014 **TRH C6-C10** mg/kg 25 <25 <25 200 0 TRH C6-C9 20 <20 <20 200 0 mg/kg Surrogates d4-1,2-dichloroethane (Surrogate) 7.8 30 mg/kg 7.5 3 d8-toluene (Surrogate) mg/kg 7.1 7.4 30 4 Bromofluorobenzene (Surrogate) 7.9 7.0 30 12 mg/kg VPH F Bands Benzene (F0) 0.1 <0.1 <0.1 200 0 mg/kg TRH C6-C10 minus BTEX (F1) 200 mg/kg 25 <25 <25 0 SE208846.014 LB204737.022 TRH C6-C10 25 <25 <25 200 0 mg/kg TRH C6-C9 20 <20 <20 200 0 mg/kg Surrogates d4-1,2-dichloroethane (Surrogate) 7.7 30 mg/kg 8.1 6 d8-toluene (Surrogate) 7.5 7.6 30 mg/kg 1 Bromofluorobenzene (Surrogate) 7.4 8.5 30 14 mg/kg VPH F Bands <0.1 <0.1 200 0 Benzene (F0) mg/kg 0.1 TRH C6-C10 minus BTEX (F1) mg/kg 25 <25 <25 200 0

Method: ME-(AU)-[ENV]AN420

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soil Method: ME-(AU)-[EN					U)-[ENV]AN312		
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB204774.002	Mercury	mg/kg	0.05	0.20	0.2	70 - 130	98

OC F	Pestic	ides i	n Soi	I

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB204738.002		Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	83
		Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	88
		Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	82
		Dieldrin	mg/kg	0.2	<0.2	0.2	60 - 140	88
		Endrin	mg/kg	0.2	<0.2	0.2	60 - 140	83
		p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	76
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.13	0.15	40 - 130	89
OP Pesticides in So	bil					N	lethod: ME-(A	U)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB204738.002		Dichlorvos	mg/kg	0.5	1.7	2	60 - 140	86
		Diazinon (Dimpylate)	mg/kg	0.5	1.8	2	60 - 140	91
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	1.9	2	60 - 140	95
		Ethion	mg/kg	0.2	1.3	2	60 - 140	63
	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	88
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	84
PAH (Polynuclear A	Aromatic Hydroca	rbons) in Soil				N	Nethod: ME-(A	U)-[ENV]AN420
PAH (Polynuclear A Sample Number	Aromatic Hydroca	<mark>rbons) in Soil</mark> Parameter	Units	LOR	Result	N Expected	/ethod: ME-(A Criteria %	<mark>U)-[ENV]AN420</mark> Recovery %
• •	Aromatic Hydroca	· · · · · · · · · · · · · · · · · · ·	Units mg/kg	LOR 0.1	Result 4.2			<u>·· ·</u>
Sample Number	Aromatic Hydroca	Parameter				Expected	Criteria %	Recovery %
Sample Number	Aromatic Hydroca	Parameter Naphthalene	mg/kg	0.1	4.2	Expected 4	Criteria % 60 - 140	Recovery % 105
Sample Number	Aromatic Hydroca	Parameter Naphthalene Acenaphthylene	mg/kg mg/kg	0.1 0.1	4.2 4.2	Expected 4 4	Criteria % 60 - 140 60 - 140	Recovery % 105 106
Sample Number	Aromatic Hydroca	Parameter Naphthalene Acenaphthylene Acenaphthene	mg/kg mg/kg mg/kg	0.1 0.1 0.1	4.2 4.2 4.4	Expected 4 4 4	Criteria % 60 - 140 60 - 140 60 - 140	Recovery % 105 106 110
Sample Number	Aromatic Hydroca	Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene	mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1	4.2 4.2 4.4 4.4	Expected 4 4 4 4 4	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140	Recovery % 105 106 110 109
Sample Number	Aromatic Hydroca	Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1	4.2 4.2 4.4 4.4 4.2	Expected 4 4 4 4 4 4 4	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	Recovery % 105 106 110 109 106
Sample Number	Aromatic Hydroca	Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1	4.2 4.2 4.4 4.4 4.2 4.3	Expected 4 4 4 4 4 4 4 4	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	Recovery % 105 106 110 109 106 106
Sample Number	Aromatic Hydroca	Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	4.2 4.2 4.4 4.4 4.2 4.3 4.3 4.4	Expected 4 4 4 4 4 4 4 4 4 4	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	Recovery % 105 106 110 109 106 106 110
Sample Number		Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	4.2 4.2 4.4 4.4 4.2 4.3 4.4 4.4 4.6	Expected 4 4 4 4 4 4 4 4 4 4	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	Recovery % 105 106 110 109 106 106 110 110 116
Sample Number		Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	4.2 4.2 4.4 4.4 4.2 4.3 4.4 4.6 0.4	Expected 4 4 4 4 4 4 4 4 4 4 0.5	Criteria % 60 - 140 60 - 140 40 - 130	Recovery % 105 106 110 109 106 106 106 110 116 84
Sample Number		Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 - -	4.2 4.2 4.4 4.4 4.2 4.3 4.4 4.6 0.4 0.4 0.4	Expected 4 4 4 4 4 4 4 4 4 0.5 0.5 0.5 0.5	Criteria % 60 - 140 60 - 140 40 - 130 40 - 130 40 - 130	Recovery % 105 106 110 109 106 106 106 110 116 84 88
Sample Number LB204738.002		Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 - -	4.2 4.2 4.4 4.4 4.2 4.3 4.4 4.6 0.4 0.4 0.4	Expected 4 4 4 4 4 4 4 4 4 0.5 0.5 0.5 0.5	Criteria % 60 - 140 60 - 140 40 - 130 40 - 130 40 - 130	Recovery % 105 106 110 109 106 106 106 110 116 84 88 88 88
Sample Number LB204738.002		Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 - -	4.2 4.4 4.4 4.2 4.3 4.4 4.6 0.4 0.4 0.4 0.4	Expected 4 4 4 4 4 4 4 4 0.5 0.5 0.5 0.5	Criteria % 60 - 140 60 - 140 40 - 130 40 - 130 40 - 130 Alethod: ME-(A	Recovery % 105 106 110 109 106 106 110 116 84 88 86 U)-[ENV]AN420

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

Total Recoverable I	Elements in Soil/V	Vaste Solids/Materials by ICPOES				Method:	ME-(AU)-[EN	/]AN040/AN320
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB204772.002		Arsenic, As	mg/kg	1	330	318.22	80 - 120	103
		Cadmium, Cd	mg/kg	0.3	5.6	5.41	80 - 120	103
		Chromium, Cr	 mg/kg	0.5	39	38.31	80 - 120	103
		Copper, Cu	 mg/kg	0.5	300	290	80 - 120	105
		Nickel, Ni	mg/kg	0.5	190	187	80 - 120	102
		Lead, Pb	mg/kg	1	93	89.9	80 - 120	104
		Zinc, Zn	mg/kg	2	280	273	80 - 120	102
TRH (Total Recove	rable Hydrocarbo	ns) in Soil				N	Nethod: ME-(A	U)-[ENV]AN403
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB204738.002		TRH C10-C14	mg/kg	20	37	40	60 - 140	93
		TRH C15-C28	mg/kg	45	<45	40	60 - 140	83
		TRH C29-C36	 mg/kg	45	<45	40	60 - 140	93
	TRH F Bands	TRH >C10-C16	 mg/kg	25	36	40	60 - 140	90
		TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	83
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	100
VOC's in Soil						N	vethod: ME-(A	U)-[ENV]AN433

VPH F Bands

TRH C6-C10 minus BTEX (F1)

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOC's in Soil (continued) Method: ME-(AU)-[ENV]AN433 Sample Number Expected Criteria % Recovery % LOR Result Parameter Units LB204737.002 60 - 140 Monocyclic 0.1 3.3 Benzene mg/kg 5 66 Aromatic Toluene mg/kg 0.1 3.8 5 60 - 140 77 Ethylbenzene 0.1 3.7 5 60 - 140 75 mg/kg m/p-xylene mg/kg 0.2 7.5 10 60 - 140 75 o-xylene mg/kg 0.1 37 5 60 - 140 74 Surrogates d4-1,2-dichloroethane (Surrogate) mg/kg 7.6 10 70 - 130 76 70 - 130 87 d8-toluene (Surrogate) 8.7 10 mg/kg Bromofluorobenzene (Surrogate) mg/kg 8.6 10 70 - 130 86 Volatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENV]AN433 Sample Number Units LOR Result Expected Criteria % Recovery % Parameter LB204737.002 TRH C6-C10 mg/kg 25 74 92.5 60 - 140 80 TRH C6-C9 mg/kg 20 67 80 60 - 140 84 d4-1,2-dichloroethane (Surrogate) 7.6 70 - 130 76 Surrogates mg/kg 10 -8.6 10 70 - 130 86 Bromofluorobenzene (Surrogate) mg/kg -

mg/kg

25

52

62.5

60 - 140

83

Method: ME-(AU)-[ENV]AN420

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil						Metho	od: ME-(AU	J)-[ENV]AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE208918.001	LB204774.004	Mercury	mg/kg	0.05	0.18	0.00314649167	0.2	89

OP Pesticides in Soil

QC Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%
SE208846.001	LB204738.024		Dichlorvos	mg/kg	0.5	<0.5	2	82
			Dimethoate	mg/kg	0.5	<0.5	-	-
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	2	90
			Fenitrothion	mg/kg	0.2	<0.2	-	-
			Malathion	mg/kg	0.2	<0.2	-	-
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	2	94
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	-	-
			Bromophos Ethyl	mg/kg	0.2	<0.2	-	-
			Methidathion	mg/kg	0.5	<0.5	-	-
			Ethion	mg/kg	0.2	<0.2	2	86
		Azinphos-mo	Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	-	-
			Total OP Pesticides*	mg/kg	1.7	<1.7	-	-
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	-	88
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	-	89

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

			a 14 p telphenyi (ourlogate)	nig/kg		0.4		00
i (Polynuclea	ar Aromatic Hydrocarb	ons) in Soil					м	lethod: ME-(AU
Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%
08846.001	LB204738.024		Naphthalene	mg/kg	0.1	<0.1	4	97
			2-methylnaphthalene	mg/kg	0.1	<0.1	-	-
			1-methylnaphthalene	mg/kg	0.1	<0.1	-	-
			Acenaphthylene	mg/kg	0.1	<0.1	4	100
			Acenaphthene	mg/kg	0.1	<0.1	4	106
			Fluorene	mg/kg	0.1	<0.1	-	-
			Phenanthrene	mg/kg	0.1	<0.1	4	101
			Anthracene	mg/kg	0.1	<0.1	4	101
			Fluoranthene	mg/kg	0.1	0.1	4	106
			Pyrene	mg/kg	0.1	0.1	4	97
			Benzo(a)anthracene	mg/kg	0.1	<0.1	-	-
			Chrysene	mg/kg	0.1	<0.1	-	-
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	-	-
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	-	-
			Benzo(a)pyrene	mg/kg	0.1	<0.1	4	108
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	-	-
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	-	-
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	-	-
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>-</td><td>-</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td>-</td><td>-</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>-</td><td>-</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	-	-
			Total PAH (18)	mg/kg	0.8	<0.8	-	-
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	-	87
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	-	88
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	-	89
8895.001	LB204738.023		Naphthalene	mg/kg	0.1	<0.1	4	98
			2-methylnaphthalene	mg/kg	0.1	<0.1	-	-
			1-methylnaphthalene	mg/kg	0.1	<0.1	-	-
			Acenaphthylene	mg/kg	0.1	<0.1	4	111
			Acenaphthene	mg/kg	0.1	<0.1	4	104
			Fluorene	mg/kg	0.1	<0.1	-	-
			Phenanthrene	mg/kg	0.1	<0.1	4	96
			Anthracene	mg/kg	0.1	<0.1	4	97
			Fluoranthene	mg/kg	0.1	<0.1	4	108
			Pyrene	mg/kg	0.1	<0.1	4	107
			Benzo(a)anthracene	mg/kg	0.1	<0.1	-	-
			Chrysene	mg/kg	0.1	<0.1	-	-
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1		-

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued) Method: ME-(AU)-[ENV]AN420 QC Sample Sample Number Parameter Original Spike Recovery% Units LOR SE208895.001 LB204738.023 Benzo(k)fluoranthene 0.1 <0.1 mg/kg Benzo(a)pyrene mg/kg 0.1 < 0.1 4 106 0.1 <0.1 Indeno(1,2,3-cd)pyrene mg/kg Dibenzo(ah)anthracene 0.1 <0.1 mg/kg Benzo(ghi)perylene 01 <0.1 mg/kg Carcinogenic PAHs, BaP TEQ <LOR=0 TEQ (mg/kg) 0.2 < 0.2 Carcinogenic PAHs, BaP TEQ <LOR=LOR 0.3 < 0.3 TEQ (ma/ka) --Carcinogenic PAHs, BaP TEQ <LOR=LOR/2 TEQ (mg/kg) 0.2 < 0.2 <0.8 Total PAH (18) 0.8 mg/kg Surrogates d5-nitrobenzene (Surrogate) 0.38 80 mg/kg -2-fluorobiphenyl (Surrogate) 0.60 78 mg/kg d14-p-terphenyl (Surrogate) mg/kg 0.52 78 Method: ME-(AU)-[ENV]AN040/AN320 Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES QC Sample Sample Number Parameter Units LOR Result Original Spike Recovery% SE208918.001 LB204772.004 Arsenic, As mg/kg 1 47 0 89521870892 50 92 Cadmium, Cd 0.3 42 -0.00744851759 84 50 mg/kg Chromium, Cr mg/kg 0.5 50 2,24852125018 50 96 Copper, Cu 0.5 17 -0 11452095808 50 94 mg/kg Nickel, Ni 0.5 47 0.07960603183 95 mg/kg 50 4.05059697677 Lead, Pb mg/kg 1 54 50 100 Zinc, Zn 48 0.24859427486 50 mg/kg 2 95 TRH (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN403 <u>e Reco</u>very% Units LOR Original QC Sample Sample Number Parameter Spi SE208895.001 LB204738.023 TRH C10-C14 20 <20 40 100 mg/kg TRH C15-C28 mg/kg 45 <45 40 85 TRH C29-C36 <45 45 40 68 mg/kg TRH C37-C40 mg/kg 100 <100 TRH C10-C36 Total 110 <110 mg/kg TRH >C10-C40 Total (F bands) 210 <210 mg/kg TRH F Bands TRH >C10-C16 mg/kg 25 <25 40 98 TRH >C10-C16 - Naphthalene (F2) mg/kg 25 <25 TRH >C16-C34 (F3) 90 <90 40 60 mg/kg TRH >C34-C40 (F4) mg/kg 120 <120 VOC's in Soil Method: ME-(AU)-[ENV]AN433 QC Sample Sample Number Units LOR Original Spik Recovery% Parameter SE208846.001 LB204737.023 Monocyclic Benzene mg/kg 0.1 <0.1 5 70 Aromatic Toluene mg/kg 0.1 < 0.1 5 68 71 Ethylbenzene 0.1 <0.1 5 mg/kg <0.2 72 m/p-xvlene ma/ka 0.2 10 o-xylene mg/kg 0.1 < 0.1 5 71 Polycyclic Naphthalene 0.1 <0.1 mg/kg d4-1,2-dichloroethane (Surrogate) Surrogates mg/kg 7.8 10 83 d8-toluene (Surrogate) 7.2 10 73 mg/kg Bromofluorobenzene (Surrogate) 7.8 10 81 mg/kg Totals Total Xvlenes mg/kg 0.3 < 0.3 -Total BTEX mg/kg 0.6 <0.6 Volatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENV]AN433 QC Sample Sample Number Parameter Units LOR Origina Spike Recovery% SE208846.001 LB204737.023 **TRH C6-C10** mg/kg 25 <25 92.5 69 TRH C6-C9 20 <20 80 71 mg/kg d4-1,2-dichloroethane (Surrogate) 7.8 Surrogates mg/kg 10 83 d8-toluene (Surrogate) mg/kg 7.2 10 73 Bromofluorobenzene (Surrogate) 7.8 81 mg/kg

VPH F

Bands

Benzene (F0)

TRH C6-C10 minus BTEX (F1)

0.1

25

mg/kg

mg/kg

<0.1

<25

62.5

68

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- 2 RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	ILS
Contact	Li Wei	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	li.wei@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E24724.E02 2 Mandala Parade, Castle Hill	SGS Reference	SE209082 R0
Order Number	E24724.E02	Date Received	23 Jul 2020
Samples	4	Date Reported	30 Jul 2020

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Duplicate	Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES	2 items
Matrix Spike	Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES	2 items

SAMPLE SUMMARY

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia f +61 2 8594 0499

www.sgs.com.au

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Fibre Identification in soil							Method: I	ME-(AU)-[ENV]AN602
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH6_0.1-0.2	SE209082.001	LB205491	20 Jul 2020	23 Jul 2020	20 Jul 2021	29 Jul 2020	20 Jul 2021	30 Jul 2020
BH6_1.4-1.5	SE209082.004	LB205491	20 Jul 2020	23 Jul 2020	20 Jul 2021	29 Jul 2020	20 Jul 2021	30 Jul 2020
Mercury in Soil							Method: I	ME-(AU)-[ENV]AN312
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH6_0.1-0.2	SE209082.001	LB205314	20 Jul 2020	23 Jul 2020	17 Aug 2020	27 Jul 2020	17 Aug 2020	30 Jul 2020
BH6_1.4-1.5	SE209082.004	LB205314	20 Jul 2020	23 Jul 2020	17 Aug 2020	27 Jul 2020	17 Aug 2020	30 Jul 2020
Moisture Content							Method: I	ME-(AU)-[ENV]AN002
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH6_0.1-0.2	SE209082.001	LB205135	20 Jul 2020	23 Jul 2020	03 Aug 2020	24 Jul 2020	29 Jul 2020	29 Jul 2020
BH6_1.4-1.5	SE209082.004	LB205135	20 Jul 2020	23 Jul 2020	03 Aug 2020	24 Jul 2020	29 Jul 2020	29 Jul 2020
OC Pesticides in Soil							Method: I	ME-(AU)-[ENV]AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH6_0.1-0.2	SE209082.001	LB205134	20 Jul 2020	23 Jul 2020	03 Aug 2020	24 Jul 2020	02 Sep 2020	29 Jul 2020
BH6_1.4-1.5	SE209082.004	LB205134	20 Jul 2020	23 Jul 2020	03 Aug 2020	24 Jul 2020	02 Sep 2020	29 Jul 2020
OP Pesticides in Soil							Method: I	ME-(AU)-[ENV]AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH6_0.1-0.2	SE209082.001	LB205134	20 Jul 2020	23 Jul 2020	03 Aug 2020	24 Jul 2020	02 Sep 2020	29 Jul 2020
BH6_1.4-1.5	SE209082.004	LB205134	20 Jul 2020	23 Jul 2020	03 Aug 2020	24 Jul 2020	02 Sep 2020	30 Jul 2020
PAH (Polynuclear Aromatic H	-lydrocarbons) in Soil						Method: I	ME-(AU)-[ENV]AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH6_0.1-0.2	SE209082.001	LB205134	20 Jul 2020	23 Jul 2020	03 Aug 2020	24 Jul 2020	02 Sep 2020	29 Jul 2020
BH6_1.4-1.5	SE209082.004	LB205134	20 Jul 2020	23 Jul 2020	03 Aug 2020	24 Jul 2020	02 Sep 2020	30 Jul 2020
PCBs in Soil							Method: I	ME-(AU)-[ENV]AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH6_0.1-0.2	SE209082.001	LB205134	20 Jul 2020	23 Jul 2020	03 Aug 2020	24 Jul 2020	02 Sep 2020	29 Jul 2020
BH6_1.4-1.5	SE209082.004	LB205134	20 Jul 2020	23 Jul 2020	03 Aug 2020	24 Jul 2020	02 Sep 2020	29 Jul 2020
Total Recoverable Elements	in Soil/Waste Solids/Ma	terials by ICPOES					Method: ME-(AU)-[ENV]AN040/AN320
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH6_0.1-0.2	SE209082.001	LB205303	20 Jul 2020	23 Jul 2020	16 Jan 2021	27 Jul 2020	16 Jan 2021	29 Jul 2020
BH6_1.4-1.5	SE209082.004	LB205303	20 Jul 2020	23 Jul 2020	16 Jan 2021	27 Jul 2020	16 Jan 2021	29 Jul 2020
TRH (Total Recoverable Hyd	Irocarbons) in Soil						Method: I	ME-(AU)-[ENV]AN403
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH6_0.1-0.2	SE209082.001	LB205134	20 Jul 2020	23 Jul 2020	03 Aug 2020	24 Jul 2020	02 Sep 2020	29 Jul 2020
BH6_1.4-1.5	SE209082.004	LB205134	20 Jul 2020	23 Jul 2020	03 Aug 2020	24 Jul 2020	02 Sep 2020	29 Jul 2020
VOC's in Soil							Method: I	ME-(AU)-[ENV]AN433
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH6_0.1-0.2	SE209082.001	LB205133	20 Jul 2020	23 Jul 2020	03 Aug 2020	24 Jul 2020	02 Sep 2020	29 Jul 2020
BH6_1.4-1.5	SE209082.004	LB205133	20 Jul 2020	23 Jul 2020	03 Aug 2020	24 Jul 2020	02 Sep 2020	29 Jul 2020
Volatile Petroleum Hydrocart	oons in Soil						Method: I	ME-(AU)-[ENV]AN433
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH6_0.1-0.2	SE209082.001	LB205133	20 Jul 2020	23 Jul 2020	03 Aug 2020	24 Jul 2020	02 Sep 2020	29 Jul 2020

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

C Pesticides in Soil					E-(AU)-[ENV]AN4
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Tetrachloro-m-xylene (TCMX) (Surrogate)	BH6_0.1-0.2	SE209082.001	%	60 - 130%	106
	BH6_1.4-1.5	SE209082.004	%	60 - 130%	97
P Pesticides in Soil				Method: M	E-(AU)-[ENV]AN4
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	BH6_0.1-0.2	SE209082.001	%	60 - 130%	87
	BH6_1.4-1.5	SE209082.004	%	60 - 130%	87
d14-p-terphenyl (Surrogate)	BH6_0.1-0.2	SE209082.001	%	60 - 130%	85
	BH6_1.4-1.5	SE209082.004	%	60 - 130%	84
AH (Polynuclear Aromatic Hydrocarbons) in Soll				Method: M	E-(AU)-[ENV]AN4
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	BH6_0.1-0.2	SE209082.001	%	70 - 130%	87
	BH6_1.4-1.5	SE209082.004	%	70 - 130%	87
d14-p-terphenyl (Surrogate)	BH6_0.1-0.2	SE209082.001	%	70 - 130%	85
	BH6_1.4-1.5	SE209082.004	%	70 - 130%	84
d5-nitrobenzene (Surrogate)	BH6_0.1-0.2	SE209082.001	%	70 - 130%	79
	BH6_1.4-1.5	SE209082.004	%	70 - 130%	81
'CBs in Soil				Method: M	E-(AU)-[ENV]AN4
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Tetrachloro-m-xylene (TCMX) (Surrogate)	BH6_0.1-0.2	SE209082.001	%	60 - 130%	106
	BH6_1.4-1.5	SE209082.004	%	60 - 130%	97
'OC's in Soil				Method: M	E-(AU)-[ENV]AN4
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH6 0.1-0.2	SE209082.001	%	60 - 130%	88
	BH6 1.4-1.5	SE209082.004	%	60 - 130%	97
d4-1,2-dichloroethane (Surrogate)	BH6 0.1-0.2	SE209082.001	%	60 - 130%	79
· , · · · · · · · (· · · · · · · · · · ·	BH6 1.4-1.5	SE209082.004	%	60 - 130%	91
d8-toluene (Surrogate)	BH6 0.1-0.2	SE209082.001	%	60 - 130%	77
	BH6 1.4-1.5	SE209082.004	%	60 - 130%	87
olatile Petroleum Hydrocarbons in Soil				Method: M	E-(AU)-[ENV]AN
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH6_0.1-0.2	SE209082.001	%	60 - 130%	88
	BH6_1.4-1.5	SE209082.004	%	60 - 130%	97
d4-1,2-dichloroethane (Surrogate)	BH6 0.1-0.2	SE209082.001	%	60 - 130%	79
	BH6 1.4-1.5	SE209082.004	%	60 - 130%	91
					-
d8-toluene (Surrogate)	BH6 0.1-0.2	SE209082.001	%	60 - 130%	77

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soil					
Sample Number	Parameter	Units	LOR	Result	
LB205314.001	Mercury	mg/kg	0.05	<0.05	

OC Pesticides in Soil

Sample Number Parameter LB205134.001 Hexachlorobenzene (HCB) Alpha BHC Lindane Heptachlor Aldrin	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1	Result <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Alpha BHC Lindane Heptachlor	mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1
Lindane Heptachlor	mg/kg mg/kg mg/kg	0.1 0.1 0.1	<0.1 <0.1
Heptachlor	mg/kg mg/kg	0.1	<0.1
	mg/kg	0.1	
Aldrin			<0.1
Aldiii	mg/kg		SU. 1
Beta BHC		0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2
Endrin	mg/kg	0.2	<0.2
Beta Endosulfan	mg/kg	0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1
Isodrin	mg/kg	0.1	<0.1
Mirex	mg/kg	0.1	<0.1
Surrogates Tetrachloro-m-xylene (TCMX)		-	102
OP Pesticides in Soil		Method: ME-(A	U)-[ENV]AN4
Sample Number Parameter	Units	LOR R	lesult
LB205134.001 Dichlorvos	mg/kg	0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2
Malathion	mg/kg	0.2	<0.2
Chlorpyrifos (Chlorpyrifos Eth		0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2
Methidathion	mg/kg	0.5	<0.5

	d14-p-terphenyl (Surrogate)
PAH (Polynuclear Aromatic Hydrocarbons) in Soil	

Surrogates

Ethion

Azinphos-methyl (Guthion)

2-fluorobiphenyl (Surrogate)

PAH (Polynuclear Aromatic Hydrocarbons) in Sol	AH (Polynuclear Aromatic Hydrocarbons) in Soil			Metho	od: ME-(AU)-[ENV]AN420
Sample Number	Parameter		Units	LOR	Result
LB205134.001	Naphthalene		mg/kg	0.1	<0.1
	2-methylnaphthalene		mg/kg	0.1	<0.1
	1-methylnaphthalene		mg/kg	0.1	<0.1
	Acenaphthylene		mg/kg	0.1	<0.1
	Acenaphthene		mg/kg	0.1	<0.1
	Fluorene		mg/kg	0.1	<0.1
	Phenanthrene		mg/kg	0.1	<0.1
	Anthracene		mg/kg	0.1	<0.1
	Fluoranthene		mg/kg	0.1	<0.1
	Pyrene		mg/kg	0.1	<0.1
	Benzo(a)anthracene		mg/kg	0.1	<0.1
	Chrysene		mg/kg	0.1	<0.1
	Benzo(a)pyrene		mg/kg	0.1	<0.1

<0.2

<0.2

85

90

mg/kg

mg/kg

%

%

0.2

0.2

-

METHOD BLANKS

SE209082 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued) Method: ME-(AU)-[ENV]AN420 Sample Number Paran Units LOR Result LB205134.001 Indeno(1,2,3-cd)pyrene mg/kg 0.1 < 0.1 Dibenzo(ah)anthracene mg/kg 0.1 <0.1 0.1 <0.1 Benzo(ghi)perylene mg/kg Total PAH (18) mg/kg 0.8 < 0.8 Surrogates d5-nitrobenzene (Surrogate) % 85 2-fluorobiphenyl (Surrogate) % 85 90 d14-p-terphenyl (Surrogate) % -Method: ME-(AU)-[ENV]AN420 PCBs in Soil Sample Numb Result Parameter LOR LB205134.001 Arochlor 1016 0.2 <0.2 mg/kg Arochlor 1221 mg/kg 0.2 <0.2 Arochlor 1232 mg/kg 0.2 <0.2 Arochlor 1242 0.2 <0.2 mg/kg Arochlor 1248 mg/kg 0.2 < 0.2 Arochlor 1254 mg/kg 0.2 <0.2 Arochlor 1260 0.2 <0.2 mg/kg Arochlor 1262 mg/kg 0.2 < 0.2 Arochlor 1268 0.2 <0.2 mg/kg Total PCBs (Arochlors) mg/kg <1 1 Surrogates Tetrachloro-m-xylene (TCMX) (Surrogate) % 102 Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Method: ME-(AU)-[ENV]AN040/AN320 LOR Sample Number Result LB205303.001 Arsenic, As mg/kg 1 <1 Cadmium, Cd mg/kg 0.3 <0.3 Chromium, Cr 0.5 <0.5 mg/kg 0.5 <0.5 Copper, Cu mg/kg Nickel, Ni mg/kg 0.5 <0.5 Lead, Pb <1 mg/kg 1 2 <2.0 Zinc, Zn mg/kg TRH (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN403 Result Sample Number Units Parameter LOR LB205134.001 TRH C10-C14 20 <20 mg/kg TRH C15-C28 mg/kg 45 <45 TRH C29-C36 mg/kg 45 <45 TRH C37-C40 100 <100 mg/kg TRH C10-C36 Total mg/kg 110 <110 Method: ME-(AU)-[ENV]AN433 VOC's in Soil Sample Numb Units Result Parameter LOR LB205133.001 Monocyclic Aromatic Benzene mg/kg 0.1 <0.1 Hvdrocarbons Toluene mg/kg 0.1 < 0.1 Ethylbenzene 0.1 <0.1 mg/kg 0.2 <0.2 m/p-xylene mg/kg o-xylene mg/kg 0.1 < 0.1 Polycyclic VOCs Naphthalene 0.1 <0.1 mg/kg Surrogates d4-1,2-dichloroethane (Surrogate) 73 % d8-toluene (Surrogate) % 76 Bromofluorobenzene (Surrogate) % 78 Totals Total BTEX 0.6 <0.6 mg/kg Volatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENV]AN433 Sample Number Result Units Parameter LOR LB205133.001 TRH C6-C9 mg/kg 20 <20 Surrogates d4-1,2-dichloroethane (Surrogate) 73 %

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil

Mercury in Soil Method: ME-(AU)-(
Original	Duplicate	Parameter	Units LOR	Original	Duplicate	Criteria %	RPD %
SE209074.025	LB205314.014	Mercury	mg/kg 0.05	0.012532888	60.0095890066	200	0
SE209082.004	LB205314.024	Mercury	mg/kg 0.05	<0.05	<0.05	200	0

Moisture Content

Moisture Content						Metho	od: ME-(AU)-[ENVJAN002
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE209085.003	LB205135.011	% Moisture	%w/w	1	25	25.8780036968	34	3
SE209109.003	LB205135.018	% Moisture	%w/w	1	7.318789584	76.8669527896	44	6

OC Pesticides in Soil

					1.05			od: ME-(AU)-	
Driginal	Duplicate		Parameter	Units	LOR	Original		Criteria %	
E209085.004	LB205134.023		Hexachlorobenzene (HCB)	mg/kg	0.1	0	0	200	0
			Alpha BHC	mg/kg	0.1	0	0	200	0
			Lindane	mg/kg	0.1	0	0	200	0
			Heptachlor	mg/kg	0.1	0	0	200	0
			Aldrin	mg/kg	0.1	0	0	200	0
			Beta BHC	mg/kg	0.1	0	0	200	0
			Delta BHC	mg/kg	0.1	0	0	200	0
			Heptachlor epoxide	mg/kg	0.1	0	0	200	0
			o,p'-DDE	mg/kg	0.1	0	0	200	0
			Alpha Endosulfan	mg/kg	0.2	0	0	200	0
			Gamma Chlordane	mg/kg	0.1	0	0	200	0
			Alpha Chlordane	mg/kg	0.1	0	0	200	0
			trans-Nonachlor	mg/kg	0.1	0	0	200	0
			p,p'-DDE	mg/kg	0.1	0	0	200	0
			Dieldrin	mg/kg	0.2	0	0	200	0
			Endrin	mg/kg	0.2	0	0	200	0
			o,p'-DDD	mg/kg	0.1	0	0	200	0
			o,p'-DDT	mg/kg	0.1	0	0	200	0
			Beta Endosulfan	mg/kg	0.2	0	0	200	0
			p,p'-DDD	mg/kg	0.1	0	0	200	0
			p,p'-DDT	mg/kg	0.1	0	0	200	0
			Endosulfan sulphate	mg/kg	0.1	0	0	200	0
			Endrin Aldehyde	mg/kg	0.1	0	0	200	0
			Methoxychlor	mg/kg	0.1	0	0	200	0
			Endrin Ketone	mg/kg	0.1	0	0	200	0
			Isodrin	mg/kg	0.1	0	0	200	0
			Mirex	mg/kg	0.1	0	0	200	0
			Total CLP OC Pesticides	mg/kg	1	0	0	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.149	0.158	30	6
E209109.003	LB205134.021		Hexachlorobenzene (HCB)	mg/kg	0.1	0	0	200	0
			Alpha BHC	mg/kg	0.1	0	0	200	0
			Lindane	mg/kg	0.1	0	0	200	0
			Heptachlor	mg/kg	0.1	0	0	200	0
			Aldrin	mg/kg	0.1	0	0	200	0
			Beta BHC	mg/kg	0.1	0	0	200	0
			Delta BHC	mg/kg	0.1	0	0	200	0
			Heptachlor epoxide	mg/kg	0.1	0	0	200	0
			o,p'-DDE	mg/kg	0.1	0	0	200	0
			Alpha Endosulfan	mg/kg	0.2	0	0	200	0
			Gamma Chlordane	mg/kg	0.1	0	0	200	0
			Alpha Chlordane	mg/kg	0.1	0	0	200	0
			trans-Nonachlor	mg/kg	0.1	0	0	200	0
					0.1	0	0	200	0
			p,p'-DDE Dialdrin	mg/kg					
			Dieldrin	mg/kg	0.2	0	0	200	0
			Endrin	mg/kg	0.2	0	0	200	0
			o,p'-DDD	mg/kg	0.1	0	0	200	0
			o,p'-DDT	mg/kg	0.1	0	0	200	0
			Beta Endosulfan	mg/kg	0.2	0	0	200	0
			p,p'-DDD	mg/kg	0.1	0	0	200	0

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

OC Pesticides in Soil (continued)

Method: ME-(AU)-[ENV]AN420

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE209109.003	LB205134.021		p,p'-DDT	mg/kg	0.1	0	0	200	0
			Endosulfan sulphate	mg/kg	0.1	0	0	200	0
			Endrin Aldehyde	mg/kg	0.1	0	0	200	0
			Methoxychlor	mg/kg	0.1	0	0	200	0
			Endrin Ketone	mg/kg	0.1	0	0	200	0
			Isodrin	mg/kg	0.1	0	0	200	0
			Mirex	mg/kg	0.1	0	0	200	0
			Total CLP OC Pesticides	mg/kg	1	0	0	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.143	0.164	30	14

OP Peeticides in Soil

OP Pesticides in S	OP Pesticides in Soil Method: ME-(AU)-[EN							od: ME-(AU)-	(ENVJAN42
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE209085.004	LB205134.024		Dichlorvos	mg/kg	0.5	0	0	200	0
			Dimethoate	mg/kg	0.5	0.0042408669	90.0007399367	200	0
			Diazinon (Dimpylate)	mg/kg	0.5	0.0026056713	30.0031591239	200	0
			Fenitrothion	mg/kg	0.2	0.014219979	60.0054469187	200	0
			Malathion	mg/kg	0.2	0.001217404	30.0026907261	200	0
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	0	0.0038273496	200	0
			Parathion-ethyl (Parathion)	mg/kg	0.2	0.0329407223	30.0310769340	200	0
			Bromophos Ethyl	mg/kg	0.2	0	0	200	0
			Methidathion	mg/kg	0.5	0.004489881	30.0042651391	200	0
			Ethion	mg/kg	0.2	0	0	200	0
			Azinphos-methyl (Guthion)	mg/kg	0.2	0	0	200	0
			Total OP Pesticides*	mg/kg	1.7	0	0	200	0
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.393079911	50.4290622642	30	9
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.431343589	10.4324566911	30	0
SE209109.003	LB205134.021		Dichlorvos	mg/kg	0.5	0	0	200	0
			Dimethoate	mg/kg	0.5	0	0.0010708014	200	0
			Diazinon (Dimpylate)	mg/kg	0.5	0.082053098	50.0547835416	200	0
			Fenitrothion	mg/kg	0.2	0.0146332118	80.0159853971	200	0
			Malathion	mg/kg	0.2	0	0	200	0
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	0	0	200	0
			Parathion-ethyl (Parathion)	mg/kg	0.2	0.0058674973	30	200	0
			Bromophos Ethyl	mg/kg	0.2	0	0	200	0
			Methidathion	mg/kg	0.5	0	0	200	0
			Ethion	mg/kg	0.2	0	0	200	0
			Azinphos-methyl (Guthion)	mg/kg	0.2	0	0	200	0
			Total OP Pesticides*	mg/kg	1.7	0	0	200	0
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.437282264	80.4591740867	30	5
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.418619466	60.4468671377	30	7

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

PAH (Polynuclear	Aromatic Hydrocarbons) in So	Sil Contraction of the second s				Metho	od: ME-(AU)-	(ENVJAN420
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE209085.004	LB205134.025	Naphthalene	mg/kg	0.1	0.0047111425	0.0045554485	200	0
		2-methylnaphthalene	mg/kg	0.1	0.0037703019	0.0034989812	200	0
		1-methylnaphthalene	mg/kg	0.1	0.0046497476	0.0041428135	200	0
		Acenaphthylene	mg/kg	0.1	0.0122574609	0.0105192714	200	0
		Acenaphthene	mg/kg	0.1	0.0008980904	0.0020889373	200	0
		Fluorene	mg/kg	0.1	0.0045711873	0.0048799317	200	0
		Phenanthrene	mg/kg	0.1	0.0305910257	0.0316800365	200	0
		Anthracene	mg/kg	0.1	0.0295052715	0.0307607271	200	0
		Fluoranthene	mg/kg	0.1	0.0600198400	0.0615229958	195	0
		Pyrene	mg/kg	0.1	0.0634899540	0.0688400504	181	0
		Benzo(a)anthracene	mg/kg	0.1	0.0456081072	0.0443854118	200	0
		Chrysene	mg/kg	0.1	0.0469086590	0.0441725778	200	0
		Benzo(b&j)fluoranthene	mg/kg	0.1	0.0469335497	0.0465952389	200	0
		Benzo(k)fluoranthene	mg/kg	0.1	0.0440699015	0.0415789494	200	0
		Benzo(a)pyrene	mg/kg	0.1	0.0445801789	0.0406396296	200	0
		Indeno(1,2,3-cd)pyrene	mg/kg	0.1	0.0096471472	0.0076009934	200	0
		Dibenzo(ah)anthracene	mg/kg	0.1	0.0010090094	0.0011030046	200	0
		Benzo(ghi)perylene	mg/kg	0.1	0.0133295584	0.0104231458	200	0
		Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>mg/kg</td><td>0.2</td><td>0</td><td>0</td><td>200</td><td>0</td></lor=0<>	mg/kg	0.2	0	0	200	0

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued) Method: ME-(AU)-[ENV]AN420 Original Duplicate Parameter Units LOR Original Duplicate Criteria % RPD % SE209085.004 LB205134.025 Carcinogenic PAHs. BaP TEQ <LOR=0 TEQ (mg/kg) 0.2 0 0 200 0 Carcinogenic PAHs, BaP TEQ <LOR=LOR mg/kg 0.3 0.242 0.242 134 0 0.242 0.242 134 TEQ (mg/kg) 0.3 0 Carcinogenic PAHs, BaP TEQ <LOR=LOR/2 mg/kg 0.2 0.121 0.121 175 0 TEQ (mg/kg) 0.2 0.121 0.121 175 0 Total PAH (18) 0.8 0 0 200 0 mg/kg 0.41002162050.4119841301 Surrogates d5-nitrobenzene (Surrogate) mg/kg 30 0 2-fluorobiphenyl (Surrogate) 0.39307991150.4290622642 30 9 mg/kg d14-p-terphenyl (Surrogate) 0.43134358910.4324566911 30 0 mg/kg SE209109.003 LB205134.021 Naphthalene mg/kg 0.1 0.00246427850.0025605444 200 0 0.1 2-methylnaphthalene 0.00225580700.0019982427 200 0 mg/kg 1-methylnaphthalene 0.1 0.00221377710.0021734018 200 0 mg/kg 0.00696435480.0079629951 Acenaphthylene mg/kg 0.1 200 0 Acenaphthene 0.1 0.00153099440.0009583908 200 0 mg/kg Fluorene 0.1 0.00243671300.0025694366 200 0 mg/kg Phenanthrene mg/kg 0.1 0.06642957940.0611684949 187 0 0.1 Anthracene 0.06392421620.0592682563 192 0 mg/kg 0.08100571710.0932778389 145 Fluoranthene 0.1 0 mg/kg Pyrene mg/kg 0.1 0.07891191340.0919432731 147 0 Benzo(a)anthracene 0.1____ 0.04190234350.0710096433 200 0 mg/kg Chrysene 0.04131228090.0724695351 200 0 0.1 mg/kg Benzo(b&i)fluoranthene mg/kg 0.1 0.03836254430.0360520412 200 0 0.1 Benzo(k)fluoranthene mg/kg 0.03423255950.0337905870 200 0 Benzo(a)pyrene 0.1 0.03666936220.0174637909 200 0 mg/kg 0.00543822260.0059330114 Indeno(1.2.3-cd)pyrene ma/ka 0.1 200 0 Dibenzo(ah)anthracene 0.1 0.0009342371 0 200 0 mg/kg 0.00667319020.0065755355 Benzo(ghi)perylene 0.1 200 0 mg/kg Carcinogenic PAHs, BaP TEQ <LOR=0 200 mg/kg 0.2 0 0 0 TEQ (mg/kg) 0.2 0 0 200 0 Carcinogenic PAHs, BaP TEQ <LOR=LOR 0.3 0.242 0.242 134 0 mg/kg 0.242 0.242 TEQ (mg/kg) 0.3 134 0 Carcinogenic PAHs, BaP TEQ <LOR=LOR/2 0.2 0.121 0.121 175 0 mg/kg TEQ (mg/kg) 0.2 0.121 0.121 175 0 Total PAH (18) mg/kg 0.8 0 0 200 0 Surrogates d5-nitrobenzene (Surrogate) 0.38730469580.4205878005 30 8 mg/kg 2-fluorobiphenyl (Surrogate) 0.43728226480.4591740867 30 5 mg/kg d14-p-terphenyl (Surrogate) mg/kg 0.41861946660.4468671377 30 7 od: ME-(AU)-IENVIAN420

PCBs in Soil

PCBS IN SOIL				Meth	юа: ме-(AU)-[ENVJAN420			
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE209085.003	LB205134.014		Arochlor 1016	mg/kg	0.2	0	0	200	0
			Arochlor 1221	mg/kg	0.2	0	0	200	0
			Arochlor 1232	mg/kg	0.2	0	0	200	0
			Arochlor 1242	mg/kg	0.2	0	0	200	0
			Arochlor 1248	mg/kg	0.2	0	0	200	0
			Arochlor 1254	mg/kg	0.2	0	0	200	0
			Arochlor 1260	mg/kg	0.2	0	0	200	0
			Arochlor 1262	mg/kg	0.2	0	0	200	0
			Arochlor 1268	mg/kg	0.2	0	0	200	0
			Total PCBs (Arochlors)	mg/kg	1	0	0	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.154	0.149	30	3
SE209085.004	LB205134.022		Arochlor 1016	mg/kg	0.2	0	0	200	0
			Arochlor 1221	mg/kg	0.2	0	0	200	0
			Arochlor 1232	mg/kg	0.2	0	0	200	0
			Arochlor 1242	mg/kg	0.2	0	0	200	0
			Arochlor 1248	mg/kg	0.2	0	0	200	0
			Arochlor 1254	mg/kg	0.2	0	0	200	0
			Arochlor 1260	mg/kg	0.2	0	0	200	0
			Arochlor 1262	mg/kg	0.2	0	0	200	0
			Arochlor 1268	mg/kg	0.2	0	0	200	0
			Total PCBs (Arochlors)	mg/kg	1	0	0	200	0

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PCBs in Soil (cont	inued)						Meth	od: ME-(AU)-	[ENV]AN4
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE209085.004	LB205134.022	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.149	0.158	30	6
SE209109.003	LB205134.021		Arochlor 1016	mg/kg	0.2	0	0	200	0
			Arochlor 1221	mg/kg	0.2	0	0	200	0
			Arochlor 1232	mg/kg	0.2	0	0	200	0
			Arochlor 1242	mg/kg	0.2	0	0	200	0
			Arochlor 1242	mg/kg	0.2	0	0	200	0
			Arochlor 1254	mg/kg	0.2	0	0	200	0
			Arochlor 1260	mg/kg	0.2	0	0	200	0
			Arochlor 1262	mg/kg	0.2	0	0	200	0
			Arochlor 1262	mg/kg	0.2	0	0	200	0
			Total PCBs (Arochlors)	mg/kg	1	0	0	200	0
		Surrogotoo			-	0.143	0.164	30	14
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.143			
	Elements in Soil/Wa	ste Solids/Materials	by ICPOES			_		-(AU)-[ENV]A	
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
SE209074.025	LB205303.014		Arsenic, As	mg/kg	1	2.409733918	3 3.3128235	65	32
			Cadmium, Cd	mg/kg	0.3	0.028052245	9 0.0320535	200	0
			Chromium, Cr	mg/kg	0.5	16.303873398	3023.565450375	i 33	36 @
			Copper, Cu	mg/kg	0.5	4.579414190	5 6.418242	39	33
			Nickel, Ni	mg/kg	0.5	5.695065809	9 7.605635625	38	29
			Lead, Pb	mg/kg	1	13.185015490	0817.734541625	36	29
			Zinc, Zn	mg/kg	2	38.189683876	347.013528375	5 35	21
SE209082.004	LB205303.024		Arsenic, As	mg/kg	1	1	2	103	40
			Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
			Chromium, Cr	mg/kg	0.5	2.5	5.1	43	68 @
			Copper, Cu	mg/kg	0.5	0.6	1.0	91	46
			Nickel, Ni	mg/kg	0.5	<0.5	<0.5	177	0
			Lead, Pb	mg/kg	1	2	3	71	14
			Zinc, Zn	mg/kg	2	<2.0	<2.0	200	0
RH (Total Recov	erable Hydrocarbons) in Soil					Meth	od: ME-(ALI)-	
-	erable Hydrocarbons) in Soil	Parameter	Units	LOR	Original		od: ME-(AU)-	
Original	Duplicate) in Soil	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
Original) in Soil	TRH C10-C14	mg/kg	20	0	Duplicate 0	Criteria % 200	RPD 0
RH (Total Recov Original SE209085.005	Duplicate) in Soll	TRH C10-C14 TRH C15-C28	mg/kg mg/kg	20 45	0 0	Duplicate 0 0	Criteria % 200 200	RPD 0 0
Original	Duplicate) in Soil	TRH C10-C14 TRH C15-C28 TRH C29-C36	mg/kg mg/kg mg/kg	20 45 45	0 0 0 0	Duplicate 0 0 0	Criteria % 200 200 200	RPD 0 0 0
Original	Duplicate) in Soll	TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40	mg/kg mg/kg mg/kg mg/kg	20 45 45 100	0 0 0 0	Duplicate 0 0 0 0	Criteria % 200 200 200 200	RPD 0 0 0 0
Original	Duplicate) in Soll	TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total	mg/kg mg/kg mg/kg mg/kg mg/kg	20 45 45 100 110	0 0 0 0 0	Duplicate 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Criteria % 200 200 200 200 200 200	RPD 0 0 0 0 0
Original	Duplicate		TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total (F bands)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	20 45 45 100 110 210	0 0 0 0 0 0	Duplicate 0 0 0 0 0 0 0	Criteria % 200 200 200 200 200 200 200	RPD 0 0 0 0 0 0 0
Original	Duplicate) In Soll	TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	20 45 45 100 110 210 25	0 0 0 0 0 0 0 0	Duplicate 0 0 0 0 0 0 0 0 0 0	Criteria % 200 200 200 200 200 200 200 200	RPD 0 0 0 0 0 0 0 0 0
Original	Duplicate		TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	20 45 45 100 110 210 25 25	0 0 0 0 0 0 0 0 0 0	Duplicate 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Criteria % 200 200 200 200 200 200 200 200 200	RPD 0
Original	Duplicate		TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	20 45 45 100 110 210 25 25 90	0 0 0 0 0 0 0 0 0 0	Duplicate 0 0 0 0 0 0 0 0 0 0 0 0 0	Criteria % 200 200 200 200 200 200 200 200 200 20	RPD 0
Original SE209085.005	Duplicate LB205134.023		TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	20 45 100 110 210 25 25 90 120	0 0 0 0 0 0 0 0 0 0 0 0	Duplicate 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Criteria % 200 200 200 200 200 200 200 200 200 20	RPD 0
Original SE209085.005	Duplicate		TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	20 45 45 100 110 210 25 25 90 120 20	0 0 0 0 0 0 0 0 0 0 0 0 0 0	Duplicate 0 0 0 0 0 0 0 0 0 0 0 0 0	Criteria % 200 200 200 200 200 200 200 200 200 20	RPD 0
Original	Duplicate LB205134.023		TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	20 45 45 100 110 210 25 25 90 120 20 45	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Duplicate 0 0 0 0 0 0 0 0 0 0 0 0 0	Criteria % 200 200 200 200 200 200 200 200 200 20	RPD 0
Original SE209085.005	Duplicate LB205134.023		TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C10-C34 (F3) TRH >C10-C44 TRH C10-C14 TRH C10-C36 TRH C10-C34 TRH C29-C36	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	20 45 45 100 110 210 25 25 90 120 20	0 0 0 0 0 0 0 0 0 0 0 0 0 0	Duplicate 0 0 0 0 0 0 0 0 0 0 0 0 0	Criteria % 200 200 200 200 200 200 200 200 200 20	RPD 0
Original SE209085.005	Duplicate LB205134.023		TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	20 45 45 100 110 210 25 25 90 120 20 45	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Duplicate 0 0 0 0 0 0 0 0 0 0 0 0 0	Criteria % 200 200 200 200 200 200 200 200 200 20	RPD 0
Original SE209085.005	Duplicate LB205134.023		TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C10-C34 (F3) TRH >C10-C44 TRH C10-C14 TRH C10-C36 TRH C10-C34 TRH C29-C36	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	20 45 45 100 210 25 25 90 120 20 45 45	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Duplicate 0 0 0 0 0 0 0 0 0 0 0 0 0	Criteria % 200 200 200 200 200 200 200 200 200 20	RPD 0
Original SE209085.005	Duplicate LB205134.023		TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C36 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C10-C14 TRH C15-C28 TRH C15-C26 TRH C15-C26 TRH C23-C36 TRH C37-C40	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	20 45 45 100 210 25 25 90 120 20 45 45 45	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Duplicate 0 0 0 0 0 0 0 0 0 0 0 0 0	Criteria % 200 200 200 200 200 200 200 200 200 20	RPD 0
Original SE209085.005	Duplicate LB205134.023		TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	20 45 100 110 210 25 25 90 120 20 45 45 100 110	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Duplicate 0 0 0 0 0 0 0 0 0 0 0 0 0	Criteria % 200 200 200 200 200 200 200 200 200 20	RPD 0
Original SE209085.005	Duplicate LB205134.023	TRH F Bands	TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH >C14-C14 TRH C15-C28 TRH C37-C40 TRH C37-C40 TRH C37-C40 TRH C10-C36 Total TRH C10-C36 Total TRH >C10-C40 Total (F bands)	mg/kg	20 45 45 100 210 25 25 90 120 20 45 45 100 110 210	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Duplicate 0 0 0 0 0 0 0 0 0 0 0 0 0	Criteria % 200 200 200 200 200 200 200 200 200 20	RPD 0
Original SE209085.005	Duplicate LB205134.023	TRH F Bands	TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH >C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C16-C34 (G4) TRH >C14 TRH C15-C28 TRH C37-C40 TRH C37-C40 TRH C37-C40 TRH >C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C40 Total (F bands) TRH >C10-C16	mg/kg	20 45 100 110 210 25 25 90 120 20 20 45 45 45 100 110 210 25	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Duplicate 0 0 0 0 0 0 0 0 0 0 0 0 0	Criteria % 200 200 200 200 200 200 200 200 200 20	RPD 0
Original SE209085.005	Duplicate LB205134.023	TRH F Bands	TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH >C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH >C14 TRH C15-C28 TRH C29-C36 TRH C29-C36 TRH C37-C40 TRH >C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C36 Total TRH >C10-C16 TRH >C10-C16	mg/kg	20 45 100 110 25 25 90 120 20 45 45 45 100 110 210 25 25	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Duplicate 0 0 0 0 0 0 0 0 0 0 0 0 0	Criteria % 200 200 200 200 200 200 200 200 200 20	RPD 0
Original SE209085.005 SE209109.003	Duplicate LB205134.023	TRH F Bands	TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH >C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C37-C40 TRH >C10-C16 (F bands) TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16	mg/kg	20 45 100 110 25 25 90 120 20 45 45 45 100 110 210 25 25 90	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Duplicate 0 0 0 0 0 0 0 0 0 0 0 0 0	Criteria % 200 200 200 200 200 200 200 200 200 20	RPD 0
Original SE209085.005 SE209109.003	Duplicate LB205134.023	TRH F Bands	TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH >C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C37-C40 TRH >C10-C16 (F bands) TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16	mg/kg	20 45 100 110 25 25 90 120 20 45 45 45 100 110 210 25 25 90	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Duplicate 0 0 0 0 0 0 0 0 0 0 0 0 0	Criteria % 200 200 200 200 200 200 200 200 200 20	RPD 0
Original SE209085.005 SE209109.003 SE209109.003	Duplicate LB205134.023	TRH F Bands	TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH >C10-C36 Total TRH >C10-C36 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C14-C40 (F4) TRH C15-C28 TRH C29-C36 TRH C29-C36 TRH C10-C36 Total TRH C10-C36 Total TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C34 (F3) TRH >C34-C40 (F4)	mg/kg	20 45 100 110 25 25 90 120 20 20 45 45 45 100 110 210 25 25 90 120	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Duplicate 0 0 0 0 0 0 0 0 0 0 0 0 0	Criteria % 200 200 200 200 200 200 200 200 200 20	RPD 0
Original SE209085.005	Duplicate LB205134.023 LB205134.021	TRH F Bands	TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH >C10-C36 Total TRH >C10-C36 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C16-C34 (G4) TRH >C16-C34 (C40) TRH >C10-C14 TRH C15-C28 TRH C10-C36 Total TRH C37-C40 TRH C10-C36 Total TRH >C10-C36 Total	mg/kg mg/kg	20 45 45 100 210 25 25 90 120 20 20 20 45 45 45 100 110 210 25 25 90 120	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Duplicate 0 0 0 0 0 0 0 0 0 0 0 0 0	Criteria % 200 200 200 200 200 200 200 200 200 20	RPD 0
Original SE209085.005 SE209109.003 SE209109.003 OC's In Soll Original	Duplicate LB205134.023 LB205134.021	TRH F Bands	TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH >C10-C36 Total TRH >C10-C36 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C16-C34 (F3) TRH >C16-C34 (F3) TRH >C16-C34 (F4) TRH >C16-C36 Total TRH C37-C40 TRH C10-C36 Total TRH >C10-C36 Total TRH >C10-C36 Total TRH >C10-C16 TRH >C10-C16 TRH >C10-C36 Total TRH >C10-C36 Total TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C10-C34 (F3) TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C34 (F3) TRH >C34-C40 (F4)	mg/kg	20 45 45 100 210 25 25 90 120 45 45 45 100 110 210 25 25 90 120 20 120	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Duplicate 0 0 0 0 0 0 0 0 0 0 0 0 0	Criteria % 200 200 200 200 200 200 200 200 200 20	RPD 0
Original SE209085.005 SE209109.003 SE209109.003	Duplicate LB205134.023 LB205134.021	TRH F Bands	TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH >C10-C36 Total TRH >C10-C36 Total (F bands) TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C16-C34 (F3) TRH >C10-C14 TRH C10-C14 TRH C10-C36 Total TRH C10-C36 Total TRH >C10-C36 Total TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C10-C34 (F3) TRH >C10-C40 Total (F bands)	mg/kg	20 45 45 100 210 25 25 90 120 20 45 45 45 100 110 210 25 25 90 120 20 120	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Duplicate 0 0 0 0 0 0 0 0 0 0 0 0 0	Criteria % 200 200 200 200 200 200 200 200 200 20	RPD 0
Original SE209085.005 SE209109.003 SE209109.003 OC's In Soll Original	Duplicate LB205134.023 LB205134.021	TRH F Bands	TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH >C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16-Naphthalene (F2) TRH >C16-C34 (F3) TRH >C10-C14 TRH >C10-C14 TRH C15-C28 TRH C10-C14 TRH C10-C36 Total TRH C29-C36 TRH >C10-C40 Total (F bands) TRH >C10-C40 Total (F bands) TRH >C10-C16 - Naphthalene (F2) TRH >C10-C40 (F4)	mg/kg	20 45 45 100 210 25 25 90 120 20 45 45 100 110 210 25 25 90 120 20 120 20 0.1 0.1 0.1 0.1 0.2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Duplicate 0 0 0 0 0 0 0 0 0 0 0 0 0	Criteria % 200 200 200 200 200 200 200 200 200 20	RPD 0
Original SE209085.005 SE209109.003 SE209109.003	Duplicate LB205134.023 LB205134.021	TRH F Bands	TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH >C10-C36 Total TRH >C10-C36 Total (F bands) TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C16-C34 (F3) TRH >C10-C14 TRH C10-C14 TRH C10-C36 Total TRH C10-C36 Total TRH >C10-C36 Total TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C10-C34 (F3) TRH >C10-C40 Total (F bands)	mg/kg	20 45 45 100 210 25 25 90 120 20 45 45 45 45 100 110 210 25 25 90 120 20 120	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Duplicate 0 0 0 0 0 0 0 0 0 0 0 0 0	Criteria % 200 200 200 200 200 200 200 200 200 20	RPD 0

TRH C6-C10 minus BTEX (F1)

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOC's in Soil (continued) Method: ME-(AU)-[ENV]AN433 Original Duplicate Parameter Units LOR Original Duplicate Criteria % RPD % SE209085.003 LB205133.014 Surrogates d8-toluene (Surrogate) mg/kg 8.33769685848.2968818156 50 0 Bromofluorobenzene (Surrogate) mg/kg 9.13013237499.5474623847 50 4 Totals 200 0 Total Xylenes 0.3 0 0 mg/kg Total BTEX mg/kg 0.6 0 0 200 0 SE209109.003 LB205133 021 Monocyclic Benzene 0.1 0 0 200 0 mg/kg Aromatic Toluene 0.1 0 0 200 0 mg/kg 200 Ethylbenzene mg/kg 0.1 0 0 0 m/p-xylene 0.2 0 0 200 0 mg/kg 0.1 0 0 200 0 o-xylene mg/kg Polycyclic Naphthalene mg/kg 0.1 0 0.0078369713 200 0 Surrogates d4-1,2-dichloroethane (Surrogate) 8.98770921417.9836679811 50 12 mg/kg d8-toluene (Surrogate) 8.96528920478.4201984616 50 6 mg/kg Bromofluorobenzene (Surrogate) 9.13932614478.4892651971 mg/kg 50 7 Totals Total Xylenes 0.3 0 0 200 0 mg/kg Total BTEX 0.6 0 0 200 0 mg/kg Volatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENV]AN433 LOR Original Duplicate Criteria % RPD % Original Duplicate Parameter Units SE209085.003 LB205133.014 TRH C6-C10 25 2.39364953983.2936722459 200 0 mg/kg TRH C6-C9 20 2.01503629492.8682323629 200 0 mg/kg Surrogates d4-1,2-dichloroethane (Surrogate) mg/kg 8.03383713258.0450481542 30 0 d8-toluene (Surrogate) 8.33769685848.2968818156 30 0 mg/kg 9.13013237499.5474623847 Bromofluorobenzene (Surrogate) 30 4 mg/kg VPH F Bands Benzene (F0) mg/kg 0.1 0 0 200 0 TRH C6-C10 minus BTEX (F1) 25 2.39364953983.2936722459 200 0 mg/kg SE209109.003 LB205133.021 TRH C6-C10 25 2.33523367862.2624015683 200 0 mg/kg 20 TRH C6-C9 mg/kg 1.96905575711.8914265323 200 0 d4-1,2-dichloroethane (Surrogate) Surrogates 8.98770921417.9836679811 30 12 mg/kg 8.96528920478.4201984616 d8-toluene (Surrogate) 30 6 mg/kg Bromofluorobenzene (Surrogate) mg/kg 9.13932614478.4892651971 30 7 VPH F Bands Benzene (F0) 0.1 0 0 200 0 mg/kg

25

mg/kg

2.33523367862.2624015683

200

0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soil					N	/lethod: ME-(A	U)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB205314.002	Mercury	mg/kg	0.05	0.20	0.2	70 - 130	98

OC Pesticides in §	Soil					N	lethod: ME-(A	J)-[ENV]AN42
Sample Number	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB205134.002		Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	121
		Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	125
		Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	119
		Dieldrin	mg/kg	0.2	0.3	0.2	60 - 140	126
		Endrin	mg/kg	0.2	0.2	0.2	60 - 140	121
		p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	78
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.15	0.15	40 - 130	98
OP Pesticides in S	Soil					N	/lethod: ME-(A	J)-[ENV]AN42
Sample Number	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB205134.002		Dichlorvos	mg/kg	0.5	1.6	2	60 - 140	78
		Diazinon (Dimpylate)	mg/kg	0.5	1.6	2	60 - 140	78
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	1.6	2	60 - 140	81
		Ethion	mg/kg	0.2	1.4	2	60 - 140	68
	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	84
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	82
PAH (Polynuclear	Aromatic Hydroca	arbons) in Soil				N	/lethod: ME-(A	J)-[ENV]AN42
Sample Number	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB205134.002		Naphthalene	mg/kg	0.1	4.4	4	60 - 140	109
		Acenaphthylene	mg/kg	0.1	4.4	4	60 - 140	111
		Acenaphthene	mg/kg	0.1	4.3	4	60 - 140	107
		Phenanthrene	mg/kg	0.1	4.5	4	60 - 140	112
		Anthracene	mg/kg	0.1	4.2	4	60 - 140	104
		Fluoranthene	ma lin	0.1	4.6	4	60 - 140	114
		Thubianthene	mg/kg	0.1				110
		Pyrene	mg/kg	0.1	4.4	4	60 - 140	110
						4 4	60 - 140 60 - 140	110
	Surrogates	Pyrene	mg/kg	0.1	4.4			
	Surrogates	Pyrene Benzo(a)pyrene	mg/kg mg/kg	0.1 0.1	4.4 4.1	4	60 - 140	102
	Surrogates	Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate)	mg/kg mg/kg mg/kg	0.1 0.1 -	4.4 4.1 0.4	4 0.5	60 - 140 40 - 130	102 77
PCBs in Soil	Surrogates	Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate)	mg/kg mg/kg mg/kg mg/kg	0.1 0.1 - -	4.4 4.1 0.4 0.4	4 0.5 0.5 0.5	60 - 140 40 - 130 40 - 130	102 77 85 80
PCBs in Soil Sample Number		Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate)	mg/kg mg/kg mg/kg mg/kg	0.1 0.1 - -	4.4 4.1 0.4 0.4	4 0.5 0.5 0.5	60 - 140 40 - 130 40 - 130 40 - 130	102 77 85 80

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

Total Recoverable	Elements in Soil/V	Vaste Solids/Materials by ICPOES				Method:	ME-(AU)-[EN\	/JAN040/AN320
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB205303.002		Arsenic, As	mg/kg	1	320	318.22	80 - 120	100
		Cadmium, Cd	mg/kg	0.3	4.9	5.41	80 - 120	90
		Chromium, Cr	mg/kg	0.5	37	38.31	80 - 120	96
		Copper, Cu	mg/kg	0.5	290	290	80 - 120	102
		Nickel, Ni	mg/kg	0.5	180	187	80 - 120	99
		Lead, Pb	mg/kg	1	92	89.9	80 - 120	102
		Zinc, Zn	mg/kg	2	270	273	80 - 120	99
TRH (Total Recove	rable Hydrocarbo	ns) in Soil				N	Method: ME-(A	U)-[ENV]AN403
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB205134.002		TRH C10-C14	mg/kg	20	33	40	60 - 140	83
		TRH C15-C28	mg/kg	45	<45	40	60 - 140	95
		TRH C29-C36	mg/kg	45	<45	40	60 - 140	75
	TRH F Bands	TRH >C10-C16	mg/kg	25	31	40	60 - 140	78
		TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	83
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	120
VOC's in Soil						N	vethod: ME-(A	U)-[ENV]AN43

30/7/2020

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOC's in Soil (continued) Method: ME-(AU)-[ENV]AN433 Sample Number Parameter Units LOR Result Expected Criteria % Recovery % LB205133.002 60 - 140 Monocyclic Benzene mg/kg 0.1 4.3 5 86 Aromatic Toluene mg/kg 0.1 4.3 5 60 - 140 87 0.1 4.4 60 - 140 89 Ethylbenzene mg/kg 5 m/p-xylene mg/kg 0.2 8.6 10 60 - 140 86 o-xylene mg/kg 0.1 4.4 5 60 - 140 88 Surrogates d4-1,2-dichloroethane (Surrogate) 9.0 10 70 - 130 90 mg/kg 70 - 130 d8-toluene (Surrogate) 8.8 10 88 mg/kg Bromofluorobenzene (Surrogate) mg/kg 9.4 10 70 - 130 94 Volatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENV]AN433 Sample Number Units LOR Result Expected Criteria % Recovery % Parameter LB205133.002 TRH C6-C10 mg/kg 25 66 92.5 60 - 140 72 TRH C6-C9 mg/kg 20 60 80 60 - 140 75 Surrogates d4-1,2-dichloroethane (Surrogate) 9.0 10 70 - 130 90 mg/kg 70 - 130 94 Bromofluorobenzene (Surrogate) mg/kg 9.4 10 VPH F Bands TRH C6-C10 minus BTEX (F1) mg/kg 25 40 62.5 60 - 140 64

Method: ME-(AU)-[ENV]AN420

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil						Mett	nod: ME-(Al	J)-[ENV]AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE209064.001	LB205314.004	Mercury	mg/kg	0.05	0.25	0.07	0.2	91

OC Pesticides in Soil

	· · · · ·				1.05			
C Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%
209082.001	LB205134.022		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	-	-
			Alpha BHC	mg/kg	0.1	<0.1	-	-
			Lindane	mg/kg	0.1	<0.1	-	-
			Heptachlor	mg/kg	0.1	<0.1	0.2	130
			Aldrin	mg/kg	0.1	<0.1	0.2	131
			Beta BHC	mg/kg	0.1	<0.1	-	-
			Delta BHC	mg/kg	0.1	<0.1	0.2	126
			Heptachlor epoxide	mg/kg	0.1	<0.1	-	-
			o,p'-DDE	mg/kg	0.1	<0.1	-	-
			Alpha Endosulfan	mg/kg	0.2	<0.2	-	-
			Gamma Chlordane	mg/kg	0.1	<0.1	-	-
			Alpha Chlordane	mg/kg	0.1	<0.1	-	-
			trans-Nonachlor	mg/kg	0.1	<0.1	-	-
			p,p'-DDE	mg/kg	0.1	<0.1	-	-
			Dieldrin	mg/kg	0.2	<0.2	0.2	135
			Endrin	mg/kg	0.2	<0.2	0.2	131
			o,p'-DDD	mg/kg	0.1	<0.1	-	-
			o,p'-DDT	mg/kg	0.1	<0.1	-	-
			Beta Endosulfan	mg/kg	0.2	<0.2	-	-
			p,p'-DDD	mg/kg	0.1	<0.1	-	-
			p,p'-DDT	mg/kg	0.1	<0.1	0.2	87
			Endosulfan sulphate	mg/kg	0.1	<0.1	-	-
			Endrin Aldehyde	mg/kg	0.1	<0.1	-	-
			Methoxychlor	mg/kg	0.1	<0.1	-	-
			Endrin Ketone	mg/kg	0.1	<0.1	-	-
			Isodrin	mg/kg	0.1	<0.1	-	-
			Mirex	mg/kg	0.1	<0.1	-	-
			Total CLP OC Pesticides	mg/kg	1	<1	-	-
	-	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.16	-	104
Pesticides in §	Soil						М	ethod: ME-(AU)-[

OP Pesticides in Soil

								-
QC Sample	Sample Number	Parameter	Units	LOR	Original	Spike	Recovery%	
SE209082.001	LB205134.023	Dichlorvos	mg/kg	0.5	<0.5	2	113	
		Dimethoate	mg/kg	0.5	<0.5	-	-	
		Diazinon (Dimpylate)	mg/kg	0.5	<0.5	2	100	
		Fenitrothion	mg/kg	0.2	<0.2	-	-	
		Malathion	mg/kg	0.2	<0.2	-	-	
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	2	108	
		Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	-	-	
		Bromophos Ethyl	mg/kg	0.2	<0.2	-	-	
		Methidathion	mg/kg	0.5	<0.5	-	-	
		Ethion	mg/kg	0.2	<0.2	2	75	
		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	-	-	
		Total OP Pesticides*	mg/kg	1.7	<1.7	-	-	
	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	-	82	
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	-	88	
AH (Polynuclea	r Aromatic Hydrocarbons) in Soil					M	ethod: ME-(AU)-[(ENV
QC Sample	Sample Number	Parameter	Units	LOR	Original	Spike	Recovery%	
SE209082.001	LB205134.023	Naphthalene	mg/kg	0.1	<0.1	4	129	
		2-methylnaphthalene	mg/kg	0.1	<0.1	-	-	

2-methylna mg/kg 1-methylnaphthalene mg/kg 0.1 <0.1 Acenaphthylene 0.1 <0.1 4 132 mg/kg <0.1 124 Acenaphthene mg/kg 0.1 4 Fluorene mg/kg 0.1 <0.1 4 128 Phenanthrene 0.1 <0.1 mg/kg

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

Method: ME-(AU)-[ENV]AN420

QC Sample	Sample Number	Parameter	Units	LOR	Original	Spike	Recovery%
SE209082.001	LB205134.023	Anthracene	mg/kg	0.1	<0.1	4	126
		Fluoranthene	mg/kg	0.1	0.2	4	129
		Pyrene	mg/kg	0.1	0.2	4	134
		Benzo(a)anthracene	mg/kg	0.1	<0.1	-	-
		Chrysene	mg/kg	0.1	<0.1	-	-
		Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	-	-
		Benzo(k)fluoranthene	mg/kg	0.1	<0.1	-	-
		Benzo(a)pyrene	mg/kg	0.1	<0.1	4	123
		Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	-	-
		Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	-	-
		Benzo(ghi)perylene	mg/kg	0.1	<0.1	-	-
		Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>-</td><td>-</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	-	-
		Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td>-</td><td>-</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	-	-
		Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>-</td><td>-</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	-	-
		Total PAH (18)	mg/kg	0.8	<0.8	-	-
	Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	-	78
		2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	-	82
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	-	88

QC Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%
SE209082.001	LB205134.023		Arochlor 1016	mg/kg	0.2	<0.2	-	-
			Arochlor 1221	mg/kg	0.2	<0.2	-	-
			Arochlor 1232	mg/kg	0.2	<0.2	-	-
			Arochlor 1242	mg/kg	0.2	<0.2	-	-
			Arochlor 1248	mg/kg	0.2	<0.2	-	-
			Arochlor 1254	mg/kg	0.2	<0.2	-	-
			Arochlor 1260	mg/kg	0.2	<0.2	0.4	136
			Arochlor 1262	mg/kg	0.2	<0.2	-	-
			Arochlor 1268	mg/kg	0.2	<0.2	-	-
			Total PCBs (Arochlors)	mg/kg	1	<1	-	-
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0	-	105

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

Fotal Recoverab	le Elements in Soil/Waste Solid	Is/Materials by ICPOES				Method: ME	-(AU)-[ENV]	JAN040/AN320
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE209064.001 LE	LB205303.004	Arsenic, As	mg/kg	1	44	7	50	74
		Cadmium, Cd	mg/kg	0.3	36	<0.3	50	72
		Chromium, Cr	mg/kg	0.5	56	24	50	64 ④
		Copper, Cu	mg/kg	0.5	78	44	50	67 ④
		Nickel, Ni	mg/kg	0.5	46	6.2	50	79
		Lead, Pb	mg/kg	1	55	19	50	72
		Zinc. Zn	ma/ka	2	68	32	50	71

TRH (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN403 QC Sample Sample Number LOR Result Spike Recovery% Units Original Parameter SE209082.001 LB205134.022 TRH C10-C14 mg/kg 20 64 <20 40 128 TRH C15-C28 45 <45 <45 40 85 mg/kg TRH C29-C36 45 <45 <45 40 88 mg/kg TRH C37-C40 mg/kg 100 <100 <100 TRH C10-C36 Total 110 <110 <110 mg/kg TRH >C10-C40 Total (F bands) 210 <210 <210 mg/kg TRH F Bands TRH >C10-C16 mg/kg 25 68 <25 40 135 TRH >C10-C16 - Naphthalene (F2) 25 68 <25 mg/kg TRH >C16-C34 (F3) 90 <90 <90 40 mg/kg 85 TRH >C34-C40 (F4) mg/kg 120 <120 <120 Method: ME-(AU)-[ENV]AN433

VOC's in Soil

QC Sample	Sample Number	1	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE209055.001	LB205133.004	Monocyclic	Benzene	mg/kg	0.1	3.6	<0.1	5	73
		Aromatic	Toluene	mg/kg	0.1	3.9	<0.1	5	79
			Ethylbenzene	mg/kg	0.1	4.1	<0.1	5	81
			m/p-xylene	mg/kg	0.2	7.9	<0.2	10	79
			o-xylene	mg/kg	0.1	4.0	<0.1	5	79

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Method: ME-(AU)-[ENV]AN433 VOC's in Soil (continued) QC Sample Sample Number Original Spike Recovery% Parameter Units LOR Result SE209055.001 LB205133.004 Polycyclic Naphthalene mg/kg 0.1 <0.1 <0.1 Surrogates d4-1,2-dichloroethane (Surrogate) mg/kg 8.1 7.8 10 81 d8-toluene (Surrogate) 8.2 8.4 10 82 mg/kg Bromofluorobenzene (Surrogate) mg/kg 8.4 9.3 10 84 Totals Total Xylenes 0.3 12 <0.3 mg/kg --Total BTEX 0.6 24 <0.6 mg/kg Volatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENVIAN433 Result Original Spike Recovery% QC Sample Sample Number LOR Units Parameter SE209055.001 LB205133.004 TRH C6-C10 25 62 <25 92.5 67 mg/kg TRH C6-C9 20 56 <20 70 80 mg/kg Surrogates d4-1,2-dichloroethane (Surrogate) mg/kg 8.1 7.8 10 81 d8-toluene (Surrogate) mg/kg 8.2 8.4 10 82 Bromofluorobenzene (Surrogate) 8.4 9.3 84 mg/kg -VPH F 3.6 Benzene (F0) mg/kg 0.1 < 0.1 Bands TRH C6-C10 minus BTEX (F1) mg/kg 25 39 <25 62.5 62

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS	·	LABORATORY DETAI	ILS
Contact	Li Wei	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	li.wei@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E24724.E02 2 Mandala Parade, Castle Hill	SGS Reference	SE208846A R0
Order Number	E24724.E02	Date Received	21 Jul 2020
Samples	17	Date Reported	28 Jul 2020

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Alkalinity in Soil	2 items
Conductivity and TDS by Calculation - Soil	5 items
pH in soil (1:5)	5 items
Soluble Anions (1:5) in Soil by Ion Chromatography	5 items
Conductivity and TDS by Calculation - Soil	5 items
Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES	3 items
	Conductivity and TDS by Calculation - Soil pH in soil (1:5) Soluble Anions (1:5) in Soil by Ion Chromatography Conductivity and TDS by Calculation - Soil

SAMPLE SUMMARY

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia

t +61 2 8594 0400 f +61 2 8594 0499

www.sgs.com.au

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Alkalinity in Soil							Method: ME-(AU)-[ENV]AN002/AN135
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH3M_2.8-2.9	SE208846A.007	LB204996	13 Jul 2020	21 Jul 2020	20 Jul 2020	23 Jul 2020†	06 Aug 2020	27 Jul 2020
BH4M_4.9-5.0	SE208846A.011	LB204996	14 Jul 2020	21 Jul 2020	21 Jul 2020	23 Jul 2020†	06 Aug 2020	27 Jul 2020
BH2_1.9-2.0	SE208846A.015	LB204996	16 Jul 2020	21 Jul 2020	23 Jul 2020	23 Jul 2020	06 Aug 2020	27 Jul 2020
BH2_2.9-3.0	SE208846A.016	LB204996	16 Jul 2020	21 Jul 2020	23 Jul 2020	23 Jul 2020	06 Aug 2020	27 Jul 2020
BH4M_4.4-4.5	SE208846A.017	LB204996	16 Jul 2020	21 Jul 2020	23 Jul 2020	23 Jul 2020	06 Aug 2020	27 Jul 2020
Conductivity and TDS by Ca	Iculation - Soil						Method:	ME-(AU)-[ENV]AN106
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH3M_2.8-2.9	SE208846A.007	LB205068	13 Jul 2020	21 Jul 2020	20 Jul 2020	24 Jul 2020†	20 Jul 2020	27 Jul 2020†
BH4M_4.9-5.0	SE208846A.011	LB205068	14 Jul 2020	21 Jul 2020	21 Jul 2020	24 Jul 2020†	21 Jul 2020	27 Jul 2020†
BH2_1.9-2.0	SE208846A.015	LB205068	16 Jul 2020	21 Jul 2020	23 Jul 2020	24 Jul 2020†	23 Jul 2020	27 Jul 2020†
BH2_2.9-3.0	SE208846A.016	LB205068	16 Jul 2020	21 Jul 2020	23 Jul 2020	24 Jul 2020†	23 Jul 2020	27 Jul 2020†
BH4M_4.4-4.5	SE208846A.017	LB205068	16 Jul 2020	21 Jul 2020	23 Jul 2020	24 Jul 2020†	23 Jul 2020	27 Jul 2020†
Exchangeable Cations and (Cation Exchange Capacity	(CEC/ESP/SAR)					Method:	ME-(AU)-[ENV]AN122
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH3M_2.8-2.9	SE208846A.007	LB205095	13 Jul 2020	21 Jul 2020	10 Aug 2020	24 Jul 2020	10 Aug 2020	27 Jul 2020
BH4M_4.9-5.0	SE208846A.011	LB205095	14 Jul 2020	21 Jul 2020	11 Aug 2020	24 Jul 2020	11 Aug 2020	27 Jul 2020
BH2_1.9-2.0	SE208846A.015	LB205095	16 Jul 2020	21 Jul 2020	13 Aug 2020	24 Jul 2020	13 Aug 2020	27 Jul 2020
BH2_2.9-3.0	SE208846A.016	LB205095	16 Jul 2020	21 Jul 2020	13 Aug 2020	24 Jul 2020	13 Aug 2020	27 Jul 2020
BH4M_4.4-4.5	SE208846A.017	LB205095	16 Jul 2020	21 Jul 2020	13 Aug 2020	24 Jul 2020	13 Aug 2020	27 Jul 2020
Moisture Content							Method:	ME-(AU)-[ENV]AN002
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH2_1.9-2.0	SE208846A.015	LB205093	16 Jul 2020	21 Jul 2020	30 Jul 2020	24 Jul 2020	29 Jul 2020	27 Jul 2020
BH2_2.9-3.0	SE208846A.016	LB205093	16 Jul 2020	21 Jul 2020	30 Jul 2020	24 Jul 2020	29 Jul 2020	27 Jul 2020
BH4M_4.4-4.5	SE208846A.017	LB205093	16 Jul 2020	21 Jul 2020	30 Jul 2020	24 Jul 2020	29 Jul 2020	27 Jul 2020
pH in soil (1:5)								ME-(AU)-[ENV]AN101
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH3M_2.8-2.9	SE208846A.007	LB205068	13 Jul 2020	21 Jul 2020	20 Jul 2020	24 Jul 2020†	25 Jul 2020	24 Jul 2020
BH4M 4.9-5.0	SE208846A.011	LB205068	14 Jul 2020	21 Jul 2020	21 Jul 2020	24 Jul 2020†	25 Jul 2020	24 Jul 2020
BH2_1.9-2.0	SE208846A.015	LB205068	16 Jul 2020	21 Jul 2020	23 Jul 2020	24 Jul 2020†	25 Jul 2020	24 Jul 2020
BH2_2.9-3.0	SE208846A.016	LB205068	16 Jul 2020	21 Jul 2020	23 Jul 2020	24 Jul 2020†	25 Jul 2020	24 Jul 2020
BH4M_4.4-4.5	SE208846A.017	LB205068	16 Jul 2020	21 Jul 2020	23 Jul 2020	24 Jul 2020†	25 Jul 2020	24 Jul 2020
Soil Texture (AS4419)							Method:	ME-(AU)-[ENV]AN051
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH3M_2.8-2.9	SE208846A.007	LB205036	13 Jul 2020	21 Jul 2020	09 Jan 2021	23 Jul 2020	09 Jan 2021	28 Jul 2020
BH4M_4.9-5.0	SE208846A.011	LB205036	14 Jul 2020	21 Jul 2020	10 Jan 2021	23 Jul 2020	10 Jan 2021	28 Jul 2020
BH2_1.9-2.0	SE208846A.015	LB205036	16 Jul 2020	21 Jul 2020	12 Jan 2021	23 Jul 2020	12 Jan 2021	28 Jul 2020
BH2_2.9-3.0	SE208846A.016	LB205036	16 Jul 2020	21 Jul 2020	12 Jan 2021	23 Jul 2020	12 Jan 2021	28 Jul 2020
BH4M_4.4-4.5	SE208846A.017	LB205036	16 Jul 2020	21 Jul 2020	12 Jan 2021	23 Jul 2020	12 Jan 2021	28 Jul 2020
Soluble Anions (1:5) in Soil	by Ion Chromatography						Method:	ME-(AU)-[ENV]AN245
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH3M_2.8-2.9	SE208846A.007	LB205060	13 Jul 2020	21 Jul 2020	20 Jul 2020	24 Jul 2020†	21 Aug 2020	27 Jul 2020
BH4M_4.9-5.0	SE208846A.011	LB205060	14 Jul 2020	21 Jul 2020	21 Jul 2020	24 Jul 2020†	21 Aug 2020	27 Jul 2020
BH2_1.9-2.0	SE208846A.015	LB205060	16 Jul 2020	21 Jul 2020	23 Jul 2020	24 Jul 2020†	21 Aug 2020	27 Jul 2020
BH2_2.9-3.0	SE208846A.016	LB205060	16 Jul 2020	21 Jul 2020	23 Jul 2020	24 Jul 2020†	21 Aug 2020	27 Jul 2020
BH4M_4.4-4.5	SE208846A.017	LB205060	16 Jul 2020	21 Jul 2020	23 Jul 2020	24 Jul 2020†	21 Aug 2020	27 Jul 2020
Total Recoverable Elements	in Soil/Waste Solids/Mate	erials by ICPOES					Method: ME-(AU)-[ENV]AN040/AN320
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
	SE208846A.007	LB205033	13 Jul 2020	21 Jul 2020	09 Jan 2021	23 Jul 2020	09 Jan 2021	28 Jul 2020
BH3M_2.8-2.9					10 Jan 2021	22 101 2020	40.1 0004	
BH3M_2.8-2.9 BH4M_4.9-5.0	SE208846A.011	LB205033	14 Jul 2020	21 Jul 2020	10 Jan 2021	23 Jul 2020	10 Jan 2021	28 Jul 2020
	SE208846A.011 SE208846A.015	LB205033 LB205033	14 Jul 2020 16 Jul 2020	21 Jul 2020 21 Jul 2020	12 Jan 2021	23 Jul 2020	10 Jan 2021 12 Jan 2021	28 Jul 2020 28 Jul 2020
BH4M_4.9-5.0								

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No surrogates were required for this job.

METHOD BLANKS

SE208846A R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Alkalinity in Soil			Method: ME-	(AU)-[ENV]AN002/AN135
Sample Number	Parameter	Units	LOR	Result
LB204996.001	Total Alkalinity as CaCO3 in Soil*	mg/kg	25	<25

Conductivity and TDS by Calculation - Soil

Conductivity and TDS by Calculation - Soil			Met	hod: ME-(AU)-[ENV]AN106
Sample Number	Parameter	Units	LOR	Result
LB205068.001	Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	0

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR)

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR)		Meth	Method: ME-(AU)-[ENV]AN122		
Sample Number	Parameter	Units	LOR	Result		
LB205095.001	Exchangeable Sodium, Na	mg/kg	2	0		
	Exchangeable Potassium, K	mg/kg	2	0		
	Exchangeable Calcium, Ca	mg/kg	2	0		
	Exchangeable Magnesium, Mg	mg/kg	2	0		
Soluble Anions (1:5) in Soil by Ion Chromatography			Meth	od: ME-(AU)-[ENV]AN245		
Sample Number	Parameter	Units	LOR	Result		
LB205060.001	Chloride	mg/kg	0.25	<0.25		
	Sulfate	mg/kg	5	<5.0		

Total Recoverable Elements in Soil/Was	in Soil/Waste Solids/Materials by ICPOES Method: ME-(AU)-[ENV]AN040/AN			
Sample Number	Parameter	Units	LOR	Result
LB205033.001	Calcium, Ca	mg/kg	5	<5
	Potassium, K	mg/kg	10	<10
	Magnesium, Mg	mg/kg	5	<5
	Manganese, Mn	mg/kg	1	<1
	Sodium, Na	mg/kg	5	<5

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Alkalinity in Soil						Method: ME-	(AU)-[ENV]AN	1002/AN135
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE208846A.017	LB204996.008	Total Alkalinity as CaCO3 in Soil*	mg/kg	25	44	40	75	10

ductivity and TDS by Calculation - Soil

Conductivity and TDS by Calculation - Soil Method: ME-(AU)-[ENV]/								
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate Cr	riteria %	RPD %
SE208978.002	LB205068.011	Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	24	23.6936959208	38	2

Moisture Content

Moisture Content Method: ME-(AU)-							ENVJAN002
Original	Duplicate	Parameter	Units LO	R Original	Duplicate	Criteria %	RPD %
SE208978.002	LB205093.011	% Moisture	%w/w 1	12.6	12.9	38	2

pH in soil (1:5)

pH in soil (1:5) Method: ME-(AU)							od: ME-(AU)-[ENVJAN101
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE208978.002	LB205068.011	рН	pH Units	0.1	6.6	6.6	32	0

Soluble Anions (1:5) in Soil by Ion Chromatography Method: ME-(AU)-[E						ENVJAN245		
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE208978.002	LB205060.015	Chloride	mg/kg	0.25	5.0	5.0	35	1
		Sulfate	mg/kg	5	14	14	66	0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Alkalinity in Soil					Method:	ME-(AU)-[EN	/JAN002/AN135
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB204996.002	Total Alkalinity as CaCO3 in Soil*	mg/kg	25	300	297.5	80 - 120	99

Conductivity and TDS by Calculation - Soil

Conductivity and TDS by Calculation - Soil					N	lethod: ME-(A	U)-[ENV]AN106
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB205068.002	Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	NA	303	85 - 115	103

Exchangeable Cations and Ca	Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR) Method: MI						U)-[ENV]AN122
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB205095.002	Exchangeable Sodium, Na	meq/100g	0.01	0.20	0.194	80 - 120	102
	Exchangeable Potassium, K	meq/100g	0.01	0.62	0.63	80 - 120	98
	Exchangeable Calcium, Ca	meq/100g	0.01	6.6	6.3	80 - 120	105
	Exchangeable Magnesium, Mg	meq/100g	0.02	1.1	1.11	80 - 120	101
pH in soil (1:5)					N	lethod: ME-(A	U)-[ENV]AN101
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB205068.003	pH	pH Units	0.1	7.4	7.415	98 - 102	99

Soluble Anions (1:5) in Soil by Ion Chromatography

Soluble Anions (1:5) in Soli by Ion Chromatography			Method: ME-(AU)-						
Sample Number	Parameter		Units	LOR	Result	Expected	Criteria %	Recovery %	
LB205060.002	Chloride		mg/kg	0.25	95	100	70 - 130	95	
	Sulfate		mg/kg	5	94	100	70 - 130	94	

Total Recoverable Elements i	Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES			Method: ME-(AU)-[ENV]AN040/AN3					
Sample Number	Sample Number Parameter Units LOR						Recovery %		
LB205033.002	Calcium, Ca	mg/kg	5	11000	10367	80 - 120	109		
	Potassium, K	mg/kg	10	1500	1348	80 - 120	111		
	Magnesium, Mg	mg/kg	5	11000	10422	80 - 120	104		
	Manganese, Mn	mg/kg	1	730	660	80 - 120	111		
	Sodium, Na	mg/kg	5	880	756	80 - 120	116		

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Total Recoverabl	otal Recoverable Elements in Soll/Waste Solids/Materials by ICPOES						Method: ME-(AU)-[ENV]AN040/					
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%				
SE208846A.00	LB205033.004	Calcium, Ca	mg/kg	5	3000	3400	50	-881 ④				
7		Potassium, K	mg/kg	10	820	240	500	115				
		Magnesium, Mg	mg/kg	5	620	650	50	-68 ④				
		Manganese, Mn	mg/kg	1	98	47	50	101				
		Sodium, Na	mg/kg	5	250	130	50	225 ④				

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	ILS
Contact	Li Wei	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	li.wei@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E24724.E02 2 Mandala Parade, Castle Hill	SGS Reference	SE209379 R0
Order Number	E24724.E02	Date Received	30 Jul 2020
Samples	7	Date Reported	06 Aug 2020

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met (within the SGS Alexandria Environmental laboratory).

Samples clearly labelled Yes Complete documentation received Yes SGS Ice Bricks Sample container provider Sample cooling method Samples received in correct containers Sample counts by matrix 7 Water Yes 30/7/2020 Type of documentation received COC Date documentation received Samples received in good order Yes Samples received without headspace Yes Sample temperature upon receipt 5.4°C Sufficient sample for analysis Yes Turnaround time requested Standard

SGS Australia Pty Ltd ABN 44 000 964 278

SAMPLE SUMMARY

Environment, Health and Safety

Unit 16 33 Maddox St Alexandria NSW 2015 PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Australia t +61 2 Australia f +61 2

t +61 2 8594 0400 www.sgs.com.au f +61 2 8594 0499

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Conductivity and TDS by (Calculation - Water						Method:	ME-(AU)-[ENV]AN10
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH3M-a	SE209379.001	LB205652	29 Jul 2020	30 Jul 2020	26 Aug 2020	30 Jul 2020	26 Aug 2020	30 Jul 2020
BH4M-a	SE209379.002	LB205652	29 Jul 2020	30 Jul 2020	26 Aug 2020	30 Jul 2020	26 Aug 2020	30 Jul 2020
BH5M	SE209379.003	LB205652	29 Jul 2020	30 Jul 2020	26 Aug 2020	30 Jul 2020	26 Aug 2020	30 Jul 2020
fercury (dissolved) in Wa							Method: ME-(AU)-[ENV	
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH3M-a	SE209379.001	LB205681	29 Jul 2020	30 Jul 2020	26 Aug 2020	31 Jul 2020	26 Aug 2020	04 Aug 2020
BH4M-a	SE209379.002	LB205681	29 Jul 2020	30 Jul 2020	26 Aug 2020	31 Jul 2020	26 Aug 2020	04 Aug 2020
BH5M	SE209379.003	LB205681	29 Jul 2020	30 Jul 2020	26 Aug 2020	31 Jul 2020	26 Aug 2020	04 Aug 2020
GWQD 1	SE209379.004	LB205681	29 Jul 2020	30 Jul 2020	26 Aug 2020	31 Jul 2020	26 Aug 2020	04 Aug 2020
GWQR 1	SE209379.005	LB205681	29 Jul 2020	30 Jul 2020	26 Aug 2020	31 Jul 2020	26 Aug 2020	04 Aug 2020
AH (Polynuclear Aromati	ic Hydrocarbons) in Water						Method: I	ME-(AU)-[ENV]AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH3M-a	SE209379.001	LB205665	29 Jul 2020	30 Jul 2020	05 Aug 2020	31 Jul 2020	09 Sep 2020	06 Aug 2020
BH4M-a	SE209379.002	LB205665	29 Jul 2020	30 Jul 2020	05 Aug 2020	31 Jul 2020	09 Sep 2020	06 Aug 2020
BH5M	SE209379.003	LB205665	29 Jul 2020	30 Jul 2020	05 Aug 2020	31 Jul 2020	09 Sep 2020	06 Aug 2020
GWQD 1	SE209379.004	LB205665	29 Jul 2020	30 Jul 2020	05 Aug 2020	31 Jul 2020	09 Sep 2020	06 Aug 2020
GWQR 1	SE209379.005	LB205665	29 Jul 2020	30 Jul 2020	05 Aug 2020	31 Jul 2020	09 Sep 2020	06 Aug 2020
H in water	02200010.000	LDL0000	20 001 2020	00 001 2020	007.03 2020	010012020	•	ME-(AU)-[ENV]AN1
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH3M-a	SE209379.001	LB205652	29 Jul 2020	30 Jul 2020	30 Jul 2020	30 Jul 2020	30 Jul 2020	30 Jul 2020
BH3M-a BH4M-a	SE209379.001	LB205652	29 Jul 2020	30 Jul 2020	30 Jul 2020	30 Jul 2020	30 Jul 2020	30 Jul 2020
BH5M	SE209379.002	LB205652	29 Jul 2020	30 Jul 2020	30 Jul 2020	30 Jul 2020	30 Jul 2020	30 Jul 2020
race Metals (Dissolved) i		LB203032	29 301 2020	30 301 2020	30 301 2020	30 301 2020		ME-(AU)-[ENV]AN3
	-	00 B (
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH3M-a	SE209379.001	LB205820	29 Jul 2020	30 Jul 2020	25 Jan 2021	03 Aug 2020	25 Jan 2021	04 Aug 2020
BH4M-a	SE209379.002	LB205820	29 Jul 2020	30 Jul 2020	25 Jan 2021	03 Aug 2020	25 Jan 2021	04 Aug 2020
BH5M	SE209379.003	LB205820	29 Jul 2020	30 Jul 2020	25 Jan 2021	03 Aug 2020	25 Jan 2021	04 Aug 2020
GWQD 1	SE209379.004	LB205820	29 Jul 2020	30 Jul 2020	25 Jan 2021	03 Aug 2020	25 Jan 2021	04 Aug 2020
GWQR 1 RH (Total Recoverable F	SE209379.005	LB205820	29 Jul 2020	30 Jul 2020	25 Jan 2021	03 Aug 2020	25 Jan 2021	04 Aug 2020
•	<u> </u>							
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH3M-a	SE209379.001	LB205665	29 Jul 2020	30 Jul 2020	05 Aug 2020	31 Jul 2020	09 Sep 2020	05 Aug 2020
BH4M-a	SE209379.002	LB205665	29 Jul 2020	30 Jul 2020	05 Aug 2020	31 Jul 2020	09 Sep 2020	05 Aug 2020
BH5M	SE209379.003	LB205665	29 Jul 2020	30 Jul 2020	05 Aug 2020	31 Jul 2020	09 Sep 2020	05 Aug 2020
GWQD 1	SE209379.004	LB205665	29 Jul 2020	30 Jul 2020	05 Aug 2020	31 Jul 2020	09 Sep 2020	05 Aug 2020
GWQR 1	SE209379.005	LB205665	29 Jul 2020	30 Jul 2020	05 Aug 2020	31 Jul 2020	09 Sep 2020	05 Aug 2020
OCs in Water								ME-(AU)-[ENV]AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH3M-a	SE209379.001	LB205796	29 Jul 2020	30 Jul 2020	05 Aug 2020	03 Aug 2020	12 Sep 2020	05 Aug 2020
BH4M-a	SE209379.002	LB205796	29 Jul 2020	30 Jul 2020	05 Aug 2020	03 Aug 2020	12 Sep 2020	05 Aug 2020
BH5M	SE209379.003	LB205796	29 Jul 2020	30 Jul 2020	05 Aug 2020	03 Aug 2020	12 Sep 2020	05 Aug 2020
GWQD 1	SE209379.004	LB205796	29 Jul 2020	30 Jul 2020	05 Aug 2020	03 Aug 2020	12 Sep 2020	05 Aug 2020
GWQR 1	SE209379.005	LB205796	29 Jul 2020	30 Jul 2020	05 Aug 2020	03 Aug 2020	12 Sep 2020	05 Aug 2020
GWTB 1	SE209379.006	LB205796	29 Jul 2020	30 Jul 2020	05 Aug 2020	03 Aug 2020	12 Sep 2020	05 Aug 2020
GWTS 1	SE209379.007	LB205796	29 Jul 2020	30 Jul 2020	05 Aug 2020	03 Aug 2020	12 Sep 2020	05 Aug 2020
olatile Petroleum Hydroc		00 8-6	Consulad	De estimat		Enducadad		ME-(AU)-[ENV]AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH3M-a	SE209379.001	LB205796	29 Jul 2020	30 Jul 2020	05 Aug 2020	03 Aug 2020	12 Sep 2020	05 Aug 2020
BH4M-a	SE209379.002	LB205796	29 Jul 2020	30 Jul 2020	05 Aug 2020	03 Aug 2020	12 Sep 2020	05 Aug 2020
BH5M	SE209379.003	LB205796	29 Jul 2020	30 Jul 2020	05 Aug 2020	03 Aug 2020	12 Sep 2020	05 Aug 2020
GWQD 1	SE209379.004	LB205796	29 Jul 2020	30 Jul 2020	05 Aug 2020	03 Aug 2020	12 Sep 2020	05 Aug 2020
GWQR 1	SE209379.005	LB205796	29 Jul 2020	30 Jul 2020	05 Aug 2020	03 Aug 2020	12 Sep 2020	05 Aug 2020
GWTB 1	SE209379.006	LB205796	29 Jul 2020	30 Jul 2020	05 Aug 2020	03 Aug 2020	12 Sep 2020	06 Aug 2020
GWTS 1	SE209379.007	LB205796	29 Jul 2020	30 Jul 2020	05 Aug 2020	03 Aug 2020	12 Sep 2020	06 Aug 2020

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in Water

Method: ME-(AU)-[ENV]AN420

Method: ME-(AU)-[ENV]AN433

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	BH3M-a	SE209379.001	%	40 - 130%	76
	BH4M-a	SE209379.002	%	40 - 130%	76
	BH5M	SE209379.003	%	40 - 130%	64
d14-p-terphenyl (Surrogate)	BH3M-a	SE209379.001	%	40 - 130%	106
	BH4M-a	SE209379.002	%	40 - 130%	108
	BH5M	SE209379.003	%	40 - 130%	98
d5-nitrobenzene (Surrogate)	BH3M-a	SE209379.001	%	40 - 130%	58
	BH4M-a	SE209379.002	%	40 - 130%	64
	BH5M	SE209379.003	%	40 - 130%	54

VOCs in Water				Method: M	E-(AU)-[ENV]AN4
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH3M-a	SE209379.001	%	40 - 130%	101
	BH4M-a	SE209379.002	%	40 - 130%	102
	BH5M	SE209379.003	%	40 - 130%	102
	GWQD 1	SE209379.004	%	40 - 130%	101
	GWQR 1	SE209379.005	%	40 - 130%	100
	GWTB 1	SE209379.006	%	40 - 130%	99
	GWTS 1	SE209379.007	%	40 - 130%	97
d4-1,2-dichloroethane (Surrogate)	BH3M-a	SE209379.001	%	40 - 130%	101
	BH4M-a	SE209379.002	%	40 - 130%	101
	BH5M	SE209379.003	%	40 - 130%	102
	GWQD 1	SE209379.004	%	40 - 130%	102
	GWQR 1	SE209379.005	%	40 - 130%	104
	GWTB 1	SE209379.006	%	40 - 130%	101
	GWTS 1	SE209379.007	%	40 - 130%	101
d8-toluene (Surrogate)	BH3M-a	SE209379.001	%	40 - 130%	98
	BH4M-a	SE209379.002	%	40 - 130%	100
	BH5M	SE209379.003	%	40 - 130%	99
	GWQD 1	SE209379.004	%	40 - 130%	99
	GWQR 1	SE209379.005	%	40 - 130%	103
	GWTB 1	SE209379.006	%	40 - 130%	98
	GWTS 1	SE209379.007	%	40 - 130%	98

Volatile Petroleum Hydrocarbons in Water

Sample Name	Sample Number	Units	Criteria	Recovery %
BH3M-a	SE209379.001	%	40 - 130%	101
BH4M-a	SE209379.002	%	40 - 130%	102
BH5M	SE209379.003	%	40 - 130%	102
GWQD 1	SE209379.004	%	40 - 130%	101
GWQR 1	SE209379.005	%	40 - 130%	100
BH3M-a	SE209379.001	%	60 - 130%	101
BH4M-a	SE209379.002	%	60 - 130%	101
BH5M	SE209379.003	%	60 - 130%	102
GWQD 1	SE209379.004	%	60 - 130%	102
GWQR 1	SE209379.005	%	60 - 130%	104
BH3M-a	SE209379.001	%	40 - 130%	98
BH4M-a	SE209379.002	%	40 - 130%	100
BH5M	SE209379.003	%	40 - 130%	99
GWQD 1	SE209379.004	%	40 - 130%	99
GWQR 1	SE209379.005	%	40 - 130%	103
	BH3M-a BH4M-a BH5M GWQD 1 GWQR 1 BH3M-a BH4M-a BH5M GWQD 1 GWQD 1 GWQR 1 BH3M-a BH5M GWQR 1 BH3M-a BH5M GWQR 1 BH3M-a BH4M-a BH5M GWQD 1	BH3M-a SE209379.001 BH4M-a SE209379.002 BH5M SE209379.003 GWQD 1 SE209379.003 GWQR 1 SE209379.005 BH3M-a SE209379.005 BH3M-a SE209379.001 BH4M-a SE209379.002 BH5M SE209379.003 GWQD 1 SE209379.003 GWQD 1 SE209379.005 BH5M SE209379.005 BH3M-a SE209379.001 BH4M-a SE209379.002 BH5M SE209379.003 GWQD 1 SE209379.003 GWQD 1 SE209379.003	BH3M-a SE209379.001 % BH4M-a SE209379.002 % BH5M SE209379.003 % GWQD 1 SE209379.003 % GWQR 1 SE209379.005 % BH3M-a SE209379.005 % BH3M-a SE209379.005 % BH4M-a SE209379.001 % BH4M-a SE209379.002 % BH5M SE209379.003 % GWQD 1 SE209379.003 % GWQR 1 SE209379.005 % BH3M-a SE209379.005 % BH3M-a SE209379.005 % BH3M-a SE209379.005 % BH3M-a SE209379.002 % BH3M-a SE209379.002 % BH4M-a SE209379.002 % BH4M-a SE209379.003 % GWQD 1 SE209379.003 % GWQD 1 SE209379.004 %	BH3M-a SE209379.001 % 40 - 130% BH4M-a SE209379.002 % 40 - 130% BH5M SE209379.003 % 40 - 130% GWQD 1 SE209379.003 % 40 - 130% GWQR 1 SE209379.004 % 40 - 130% BH3M-a SE209379.005 % 40 - 130% BH3M-a SE209379.005 % 60 - 130% BH4M-a SE209379.002 % 60 - 130% BH5M SE209379.003 % 60 - 130% GWQD 1 SE209379.003 % 60 - 130% GWQD 1 SE209379.005 % 60 - 130% BH5M SE209379.005 % 60 - 130% GWQR 1 SE209379.001 % 40 - 130% BH3M-a SE209379.002 % 40 - 130% BH4M-a SE209379.002 % 40 - 130% BH3M-a SE209379.003 % 40 - 130% BH4M-a SE209379.003 % 40 - 130% BH5M </td

SE209379 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Conductivity and TDS by Calculation - Water Method: ME-			od: ME-(AU)-[ENV]AN106	
Sample Number	Parameter	Units	LOR	Result
LB205652.001	Conductivity @ 25 C	μS/cm	2	<2

Mercury (dissolved) in Water

Mercury (dissolved) in Water			Method: ME-(/	AU)-[ENV]AN311(Perth)/AN312
Sample Number	Parameter	Units	LOR	Result
LB205681.001	Mercury	mg/L	0.0001	<0.0001

PAH (Polynuclear Aromatic Hydrocarbons) in Water

Polynuclear Aromatic Hydrocarbo	s) in water		Meuri	od: ME-(AU)-[ENV
nple Number	Parameter	Units	LOR	Result
205665.001	Naphthalene	μg/L	0.1	<0.1
	2-methylnaphthalene	μg/L	0.1	<0.1
	1-methylnaphthalene	μg/L	0.1	<0.1
	Acenaphthylene	μg/L	0.1	<0.1
	Acenaphthene	µg/L	0.1	<0.1
	Fluorene	µg/L	0.1	<0.1
	Phenanthrene	μg/L	0.1	<0.1
	Anthracene	μg/L	0.1	<0.1
	Fluoranthene	μg/L	0.1	<0.1
	Pyrene	μg/L	0.1	<0.1
	Benzo(a)anthracene	μg/L	0.1	<0.1
	Chrysene	μg/L	0.1	<0.1
	Benzo(a)pyrene	μg/L	0.1	<0.1
	Indeno(1,2,3-cd)pyrene	µg/L	0.1	<0.1
	Dibenzo(ah)anthracene	µg/L	0.1	<0.1
	Benzo(ghi)perylene	μg/L	0.1	<0.1
Surrogates	d5-nitrobenzene (Surrogate)	%	-	66
	2-fluorobiphenyl (Surrogate)	%	-	74
	d14-p-terphenyl (Surrogate)	%	-	98

I race Metals (Dissolved) in Water by IC	;PMS		Metho	Dd: ME-(AU)-[ENV]AN318
Sample Number	Parameter	Units	LOR	Result
LB205820.001	Arsenic, As	μg/L	1	<1
	Cadmium, Cd	μg/L	0.1	<0.1
	Chromium, Cr	μg/L	1	<1
	Copper, Cu	μg/L	1	<1
	Lead, Pb	μg/L	1	<1
	Nickel, Ni	μg/L	1	<1
	Zinc, Zn	µg/L	5	<5

TRH (Total Recoverable Hydrocarbons) in Water

Sample Number	Parameter	Units	LOR	Result
LB205665.001	TRH C10-C14	μg/L	50	<50
	TRH C15-C28	μg/L	200	<200
	TRH C29-C36	μg/L	200	<200
	TBH C37-C40	μα/Ι	200	<200

VOCs in Water				Metho	od: ME-(AU)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result
LB205796.001	Fumigants	2,2-dichloropropane	μg/L	0.5	<0.5
		1,2-dichloropropane	µg/L	0.5	<0.5
		cis-1,3-dichloropropene	μg/L	0.5	<0.5
		trans-1,3-dichloropropene	μg/L	0.5	<0.5
		1,2-dibromoethane (EDB)	μg/L	0.5	<0.5
	Halogenated Aliphatics	Dichlorodifluoromethane (CFC-12)	μg/L	5	<5
		Chloromethane	μg/L	5	<5
		Vinyl chloride (Chloroethene)	μg/L	0.3	<0.3
		Bromomethane	μg/L	10	<10
		Chloroethane	μg/L	5	<5
		Trichlorofluoromethane	μg/L	1	<1
		lodomethane	µg/L	5	<5

Method: ME-(AU)-[ENV]AN403

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

mple Number	nued)	Parameter	Units	LOR	d: ME-(AU)-[ENV]. Result
	Listenes etc. d Alleh etc.				
205796.001	Halogenated Aliphatics	1,1-dichloroethene	μg/L	0.5	<0.5
		Dichloromethane (Methylene chloride)	μg/L	5	<5
		Allyl chloride	μg/L	2	<2
		trans-1,2-dichloroethene	μg/L	0.5	<0.5
		1,1-dichloroethane	μg/L	0.5	<0.5
		cis-1,2-dichloroethene	μg/L	0.5	<0.5
		Bromochloromethane	µg/L	0.5	<0.5
		1,2-dichloroethane	µg/L	0.5	<0.5
		1,1,1-trichloroethane	μg/L	0.5	<0.5
		1,1-dichloropropene	µg/L	0.5	<0.5
		Carbon tetrachloride	μg/L	0.5	<0.5
		Dibromomethane	μg/L	0.5	<0.5
		Trichloroethene (Trichloroethylene,TCE)	μg/L	0.5	<0.5
		1,1,2-trichloroethane	μg/L	0.5	<0.5
		1,3-dichloropropane	μg/L	0.5	<0.5
		Tetrachloroethene (Perchloroethylene,PCE)	µg/L	0.5	<0.5
		1,1,1,2-tetrachloroethane	μg/L	0.5	<0.5
		cis-1,4-dichloro-2-butene	µg/L	1	<1
				0.5	<0.5
		1,1,2,2-tetrachloroethane	μg/L		
		1,2,3-trichloropropane	μg/L	0.5	<0.5
		trans-1,4-dichloro-2-butene	μg/L	1	<1
		1,2-dibromo-3-chloropropane	μg/L	0.5	<0.5
		Hexachlorobutadiene	µg/L	0.5	<0.5
	Halogenated Aromatics	Chlorobenzene	µg/L	0.5	<0.5
		Bromobenzene	μg/L	0.5	<0.5
		2-chlorotoluene		0.5	<0.5
			μg/L		
		4-chlorotoluene	μg/L	0.5	<0.5
		1,3-dichlorobenzene	μg/L	0.5	<0.5
		1,4-dichlorobenzene	μg/L	0.3	<0.3
		1,2-dichlorobenzene	μg/L	0.5	<0.5
		1,2,4-trichlorobenzene	µg/L	0.5	<0.5
		1,2,3-trichlorobenzene	μg/L	0.5	<0.5
	Monocyclic Aromatic	Benzene	μg/L	0.5	<0.5
	Hydrocarbons	Toluene	μg/L	0.5	<0.5
	Hydrocarbons				
		Ethylbenzene	μg/L	0.5	<0.5
		m/p-xylene	μg/L	1	<1
		o-xylene	μg/L	0.5	<0.5
		Styrene (Vinyl benzene)	μg/L	0.5	<0.5
		Isopropylbenzene (Cumene)	µg/L	0.5	<0.5
		n-propylbenzene	μg/L	0.5	<0.5
		1,3,5-trimethylbenzene	μg/L	0.5	<0.5
		· · · · · · · · · · · · · · · · · · ·			
		tert-butylbenzene	μg/L	0.5	<0.5
		1,2,4-trimethylbenzene	μg/L	0.5	<0.5
		sec-butylbenzene	μg/L	0.5	<0.5
		p-isopropyltoluene	μg/L	0.5	<0.5
		n-butylbenzene	μg/L	0.5	<0.5
	Nitrogenous Compounds	Acrylonitrile	μg/L	0.5	<0.5
	Oxygenated Compounds	Acetone (2-propanone)	μg/L	10	<10
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	MtBE (Methyl-tert-butyl ether)	μg/L	2	<2
				10	<10
		Vinyl acetate	μg/L		
		MEK (2-butanone)	μg/L	10	<10
		MIBK (4-methyl-2-pentanone)	μg/L	5	<5
		2-hexanone (MBK)	μg/L	5	<5
	Polycyclic VOCs	Naphthalene	μg/L	0.5	<0.5
		Carbon disulfide	µg/L	2	<2
	Sulphonated			_	96
		d4-1.2-dichloroethane (Surrogate)	%	-	90
	Surphonated	d4-1,2-dichloroethane (Surrogate)	%		
		d8-toluene (Surrogate)	%	-	95
	Surrogates	d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	%	-	95 97
		d8-toluene (Surrogate)	%	-	95

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOCs in Water (contin	nued)			Meth	od: ME-(AU)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result
LB205796.001	Trihalomethanes	Bromoform (THM)	μg/L	0.5	<0.5
Volatile Petroleum Hy	drocarbons in Water			Meth	od: ME-(AU)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result
LB205796.001		TRH C6-C9	μg/L	40	<40
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	96
		d8-toluene (Surrogate)	%	-	95
		Bromofluorobenzene (Surrogate)	%	-	97

Method: ME-(AU)-[ENV]AN420

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Conductivity and TDS by Calculation - Water Method: ME-(AU)-[EN					ENVJAN106			
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE209379.003	LB205652.007	Conductivity @ 25 C	µS/cm	2	4100	4200	15	3

Mercury (dissolved) in Water

Mercury (dissolved)	in Water				Metho	d: ME-(AU)-[envjan311(p	erth)/AN312
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE209400.008	LB205681.011	Mercury	µg/L	0.0001	<0.0001	<0.0001	200	0

PAH (Polynuclear Aromatic Hydrocarbons) in Water

Driginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
E209384.010	LB205665.025		Naphthalene	µg/L	0.1	<0.1	<0.1	200	0
			2-methylnaphthalene	µg/L	0.1	<0.1	<0.1	200	0
			1-methylnaphthalene	µg/L	0.1	<0.1	<0.1	200	0
			Acenaphthylene	µg/L	0.1	<0.1	<0.1	200	0
			Acenaphthene	µg/L	0.1	<0.1	<0.1	200	0
			Fluorene	µg/L	0.1	<0.1	<0.1	200	0
			Phenanthrene	µg/L	0.1	<0.1	<0.1	200	0
			Anthracene	µg/L	0.1	<0.1	<0.1	200	0
			Fluoranthene	µg/L	0.1	<0.1	<0.1	200	0
			Pyrene	µg/L	0.1	<0.1	<0.1	200	0
			Benzo(a)anthracene	µg/L	0.1	<0.1	<0.1	200	0
			Chrysene	µg/L	0.1	<0.1	<0.1	200	0
			Benzo(b&j)fluoranthene	µg/L	0.1	<0.1	<0.1	200	0
			Benzo(k)fluoranthene	µg/L	0.1	<0.1	<0.1	200	0
			Benzo(a)pyrene	µg/L	0.1	<0.1	<0.1	200	0
			Indeno(1,2,3-cd)pyrene	µg/L	0.1	<0.1	<0.1	200	0
			Dibenzo(ah)anthracene	µg/L	0.1	<0.1	<0.1	200	0
			Benzo(ghi)perylene	µg/L	0.1	<0.1	<0.1	200	0
		Surrogates	d5-nitrobenzene (Surrogate)	µg/L	-	0.3	0.3	30	3
			2-fluorobiphenyl (Surrogate)	µg/L	-	0.4	0.4	30	5
			d14-p-terphenyl (Surrogate)	µg/L	-	0.5	0.5	30	4
n water							Meth	od: ME-(AU)-[
iginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE209379.003	LB205652.007	pH**	pH Units	-	4.6	4.5	17	1

Trace Metals (Dissolved) in Water by ICPMS

Trace Metals (Dise	solved) in Water by ICPMS					Meth	od: ME-(AU)-	ENVJAN318
Original	Duplicate	Parameter	Unit	s LOR	Original	Duplicate	Criteria %	RPD %
SE209379.001	LB205820.014	Arsenic, As	μg/l	1	<1	1	117	7
		Cadmium, Cd	μg/l	0.1	<0.1	<0.1	118	0
		Chromium, Cr	μg/l	1	1	1	104	2
		Copper, Cu	µg/l	1	22	21	20	0
		Lead, Pb	µg/l	1	<1	<1	136	0
		Nickel, Ni	μg/l	1	26	26	19	0
		Zinc, Zn	µg/l	5	74	72	22	2
SE209418.001	LB205820.028	Arsenic, As	µg/l	1	2	2	57	8
		Cadmium, Cd	µg/l	0.1	<0.1	<0.1	200	0
		Chromium, Cr	µg/l	1	<1	<1	200	0
		Copper, Cu	μg/l	1	5	5	36	5
		Lead, Pb	μg/l	1	<1	<1	200	0
		Nickel, Ni	μg/l	1	11	12	24	7
		Zinc, Zn	μg/I	_ 5	23	25	36	10
TRH (Total Recov	erable Hydrocarbons) in Water					Meth	od: ME-(AU)-	ENVJAN40
Original	Duplicate	Parameter	Unit	s LOR	Original	Duplicate	Criteria %	RPD %
SE209384.010	LB205665.025	TRH C10-C14	μg/l	50	<50	<50	200	0
		TRH C15-C28	μg/l	200	<200	<200	200	0
		TRH C29-C36	µg/I	200	<200	<200	200	0

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE209384.010	LB205665.025		TRH C37-C40	μg/L	200	<200	<200	200	0 KPD /
52209304.010	LB203003.025		TRH C10-C40	μg/L	320	<650	<650	200	0
		TRH F Bands	TRH >C10-C16	μg/L	60	<60	<60	200	0
		TRH F Ballus	TRH >C16-C34 (F3)		500	<500	<500	200	0
			TRH >C34-C40 (F4)	μg/L μg/L	500	<500	<500	200	0
			TRD 2034-040 (F4)	pg/L	500	<500			
OCs in Water							Metho	d: ME-(AU)-	[ENV]AN4
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE209379.003	LB205796.021	Fumigants	2,2-dichloropropane	µg/L	0.5	<0.5	0	200	0
			1,2-dichloropropane	µg/L	0.5	<0.5	0	200	0
			cis-1,3-dichloropropene	µg/L	0.5	<0.5	0	200	0
			trans-1,3-dichloropropene	µg/L	0.5	<0.5	0	200	0
			1,2-dibromoethane (EDB)	µg/L	0.5	<0.5	0	200	0
		Halogenated	Dichlorodifluoromethane (CFC-12)	µg/L	5	<5	0.0218575576	200	0
		Aliphatics	Chloromethane	µg/L	5	<5	0.0969633034	200	0
			Vinyl chloride (Chloroethene)	µg/L	0.3	<0.3	0.0341861876	200	0
			Bromomethane	µg/L	10	<10	0.0712268014	200	0
			Chloroethane	µg/L	5	<5	0.0581350986	200	0
			Trichlorofluoromethane	µg/L	1	<1	0.0224520922	200	0
			lodomethane	μg/L	5	<5	0.0912541609	200	0
			1,1-dichloroethene	µg/L	0.5	<0.5	0.0646659091	200	0
			Dichloromethane (Methylene chloride)	µg/L	5	<5	0.3123674567	200	0
			Allyl chloride	µg/L	2	<2	0.0050668673	200	0
			trans-1,2-dichloroethene	µg/L	0.5	<0.5	0.0082382690	200	0
			1,1-dichloroethane	μg/L	0.5	<0.5	0.0110715919	200	0
			cis-1,2-dichloroethene	μg/L	0.5	<0.5	0.0043680382	200	0
			Bromochloromethane	μg/L	0.5	<0.5	0.0114186058	200	0
			1,2-dichloroethane	µg/L	0.5	<0.5	0.0381769395	200	0
			1,1,1-trichloroethane	μg/L	0.5	<0.5	0	200	0
			1,1-dichloropropene	μg/L	0.5	<0.5	0	200	0
			Carbon tetrachloride	µg/L	0.5	<0.5	0	200	0
			Dibromomethane	µg/L	0.5	<0.5	0	200	0
			Trichloroethene (Trichloroethylene,TCE)	µg/L	0.5	<0.5	0.0410149357	200	0
			1,1,2-trichloroethane	μg/L	0.5	<0.5	0	200	0
			1,3-dichloropropane	µg/L	0.5	<0.5	0	200	0
			Tetrachloroethene (Perchloroethylene,PCE)	µg/L	0.5	<0.5	0.0046824291	200	0
			1,1,1,2-tetrachloroethane	µg/L	0.5	<0.5	0	200	0
			cis-1,4-dichloro-2-butene	µg/L	1	<1	0.0198120819	200	0
			1,1,2,2-tetrachloroethane	µg/L	0.5	<0.5	0	200	0
			1,2,3-trichloropropane	µg/L	0.5	<0.5	0.0044901235	200	0
			trans-1,4-dichloro-2-butene	μg/L	1	<1	0	200	0
			1,2-dibromo-3-chloropropane	μg/L	0.5	<0.5	0	200	0
			Hexachlorobutadiene	µg/L	0.5	<0.5	0	200	0
		Halogenated	Chlorobenzene	µg/L	0.5	<0.5	0.0778610047	200	0
		Aromatics	Bromobenzene	µg/L	0.5	<0.5	0.0041340121	200	0
			2-chlorotoluene	µg/L	0.5	<0.5	0	200	0
			4-chlorotoluene	µg/L	0.5	<0.5	0.0035778758	200	0
			1,3-dichlorobenzene	µg/L	0.5	<0.5	0.0082028814	200	0
			1,4-dichlorobenzene	µg/L	0.3	<0.3	0.0075575162	200	0
			1,2-dichlorobenzene	µg/L	0.5	<0.5	0.0481516141	200	0
			1,2,4-trichlorobenzene	µg/L	0.5	<0.5	0.0022831751	200	0
			1,2,3-trichlorobenzene	μg/L	0.5	<0.5	0	200	0
		Monocyclic	Benzene	μg/L	0.5	<0.5	0.0709953161	200	0
		Aromatic	Toluene	µg/L	0.5	<0.5	0.1342329676	200	0
			Ethylbenzene	µg/L	0.5	<0.5	0.0867650901	200	0
			m/p-xylene	μg/L	1	<1	0.2428947107	200	0
			o-xylene	μg/L	0.5	<0.5	0.1008486267	200	0
			Styrene (Vinyl benzene)	µg/L	0.5	<0.5	0	200	0
			Isopropylbenzene (Cumene)	µg/L	0.5	<0.5	0.0094876380	200	0
			n-propylbenzene	µg/L	0.5	<0.5	0.0056860456	200	0
			1,3,5-trimethylbenzene	μg/L	0.5	<0.5	0.0191567003	200	0

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

TRH C6-C10 minus BTEX (F1)

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOCs in Water (continued) Method: ME-(AU)-[ENV]AN433 Original Duplicate Original Duplicate Criteria % RPD % Parameter Units LOR SE209379.003 LB205796.021 0.5 200 tert-butylbenzene <0.5 0 0 Monocyclic μg/L Aromatic 1,2,4-trimethylbenzene µg/L 0.5 < 0.5 0.0270376485 200 0 sec-butylbenzene 0.5 <0.5 0 200 0 µg/L p-isopropyltoluene 0.5 <0.5 0.0051470435 200 0 µg/L n-butylbenzene µg/L 0.5 <0.5 0.0063218082 200 0 Nitrogenous Acrylonitrile µg/L 0.5 <0.5 0.0263664343 200 0 Oxvgenated <10 1.0732291652 200 0 Acetone (2-propanone) 10 ua/L Compounds MtBE (Methyl-tert-butyl ether) µg/L 2 <2 0.0173552770 200 0 10 <10 200 0 Vinyl acetate µg/L 0 MEK (2-butanone) 10 <10 0 200 0 µg/L MIBK (4-methyl-2-pentanone) µg/L 5 <5 0.0373521892 200 0 2-hexanone (MBK) 5 <5 0 200 0 µg/L Polycyclic Naphthalene 0.5 < 0.5 0.0531855954 200 0 µg/L Sulphonated Carbon disulfide µg/L 2 <2 0 200 0 9.7366507160 30 Surrogates d4-1,2-dichloroethane (Surrogate) 10.2 4 µg/L 10.0420551341 d8-toluene (Surrogate) 9.9 30 µg/L 1 Bromofluorobenzene (Surrogate) µg/L 10.2 9.7133245346 30 5 Trihalomethan Chloroform (THM) 0.5 1.7 1.7385182683 59 µg/L 4 Bromodichloromethane (THM) 0.2446066136 0.5 <0.5 200 0 es µg/L Dibromochloromethane (THM) µg/L 0.5 <0.5 0 0452746342 200 0 Bromoform (THM) 0.5 <0.5 200 0 µg/L 0 Method: ME-(AU)-[ENV]AN433 Volatile Petroleum Hydrocarbons in Water Original Duplicate Criteria % <u>RPD %</u> Original Duplicate Units LOR Parameter SE209379.003 LB205796.021 TRH C6-C10 50 <50 4,7611052356 200 0 µg/L 4.3329901351 TRH C6-C9 40 <40 200 0 µg/L d4-1,2-dichloroethane (Surrogate) 9.7366507160 Surrogates 10.2 30 µg/L 4 d8-toluene (Surrogate) µg/L 9.9 10.0420551341 30 1 Bromofluorobenzene (Surrogate) 10.2 9.7133245346 30 5 µg/L VPH F Bands 0.0709953161 Benzene (F0) µg/L 0.5 <0.5 200 0

µg/L

50

<50

4.7611052356

200

0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Conductivity and TDS by Calc	culation - Water				N	/lethod: ME-(A	U)-[ENV]AN106
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB205652.002	Conductivity @ 25 C	µS/cm	2	310	303	90 - 110	101

PAH (Polynuclear Aromatic Hydrocarbons) in Water

PAH (Polynuclear A	romatic Hydroca	rbons) in Water				N	lethod: ME-(A	J)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB205665.002		Naphthalene	µg/L	0.1	31	40	60 - 140	77
		Acenaphthylene	µg/L	0.1	35	40	60 - 140	87
		Acenaphthene	µg/L	0.1	36	40	60 - 140	91
		Phenanthrene	 µg/L	0.1	39	40	60 - 140	96
		Anthracene	 µg/L	0.1	36	40	60 - 140	91
		Fluoranthene	 µg/L	0.1	38	40	60 - 140	96
		Pyrene	 µg/L	0.1	36	40	60 - 140	91
		Benzo(a)pyrene	 µg/L	0.1	36	40	60 - 140	89
	Surrogates	d5-nitrobenzene (Surrogate)	µg/L	-	0.3	0.5	40 - 130	62
		2-fluorobiphenyl (Surrogate)	 µg/L	-	0.4	0.5	40 - 130	78
		d14-p-terphenyl (Surrogate)	µg/L	-	0.5	0.5	40 - 130	92
pH in water						N	lethod: ME-(A	J)-[ENV]AN101
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB205652.003		pH**	No unit	-	7.4	7.415	98 - 102	99

µg/L

µg/L

40

820

10.2

818.71

10

60 - 140

60 - 140

Method: ME-(ALI)-JENV/JAN433

Trace Metals (Dissolved) in Water by ICPMS

VOCe in Water

Trace Metals (Dissol	lved) in Water by	ICPMS				N	lethod: ME-(A	U)-[ENV]AN318
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB205820.002		Arsenic, As	µg/L	1	19	20	80 - 120	93
		Cadmium, Cd	µg/L	0.1	21	20	80 - 120	107
		Chromium, Cr	µg/L	1	22	20	80 - 120	109
		Copper, Cu	µg/L	1	22	20	80 - 120	112
		Lead, Pb	µg/L	1	22	20	80 - 120	112
		Nickel, Ni	µg/L	1	21	20	80 - 120	103
		Zinc, Zn	µg/L	5	22	20	80 - 120	109
TRH (Total Recovera	able Hydrocarbor	is) in Water				N	lethod: ME-(A	U)-[ENV]AN403
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB205665.002		TRH C10-C14	µg/L	50	960	1200	60 - 140	80
		TRH C15-C28	µg/L	200	1200	1200	60 - 140	104
		TRH C29-C36	µg/L	200	1200	1200	60 - 140	103
	TRH F Bands	TRH >C10-C16	µg/L	60	1100	1200	60 - 140	88
		TRH >C16-C34 (F3)	µg/L	500	1400	1200	60 - 140	114
		TRH >C34-C40 (F4)	μg/L	500	590	600	60 - 140	99

VOCs in water						, i	Nethod: ME-(A	(U)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB205796.002	Halogenated	1,1-dichloroethene	µg/L	0.5	45	45.45	60 - 140	99
	Aliphatics	1,2-dichloroethane	µg/L	0.5	51	45.45	60 - 140	111
		Trichloroethene (Trichloroethylene, TCE)	µg/L	0.5	48	45.45	60 - 140	106
	Halogenated	Chlorobenzene	µg/L	0.5	56	45.45	60 - 140	123
	Monocyclic	Benzene	µg/L	0.5	53	45.45	60 - 140	118
	Aromatic	Toluene	µg/L	0.5	52	45.45	60 - 140	114
		Ethylbenzene	µg/L	0.5	51	45.45	60 - 140	112
		m/p-xylene	µg/L	1	100	90.9	60 - 140	112
		o-xylene	µg/L	0.5	52	45.45	60 - 140	114
	Surrogates	d4-1,2-dichloroethane (Surrogate)	µg/L	-	10.2	10	60 - 140	102
		d8-toluene (Surrogate)	µg/L	-	10.1	10	70 - 130	101
		Bromofluorobenzene (Surrogate)	µg/L	-	9.8	10	70 - 130	98
	Trihalomethan	Chloroform (THM)	µg/L	0.5	54	45.45	60 - 140	118
Volatile Petroleum	Hydrocarbons in V	Vater					Method: ME-(A	U)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB205796.002		TRH C6-C10	μg/L	50	950	946.63	60 - 140	100
1								

Surrogates

TRH C6-C9

d4-1,2-dichloroethane (Surrogate)

100

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Volatile Petroleum Hydrocarbons in Water (continued) Method: ME-(AU)-[ENV]AN433								
Sample Number Parameter Units LOR				Result	Expected	Criteria %	Recovery %	
LB205796.002	Surrogates	d8-toluene (Surrogate)	μg/L	-	10.1	10	70 - 130	101
		Bromofluorobenzene (Surrogate)	μg/L	-	9.8	10	70 - 130	98
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	μg/L	50	640	639.67	60 - 140	100

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved) in Water Method: ME-(AU)-[ENV]AN311(Perth)/AN312								
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE209359.018	LB205681.004	Mercury	mg/L	0.0001	0.0072	<0.0001	0.008	89

Trace	Motole i	Diegolyad) in Water b	

race Metals (Di	ssolved) in Water by	ICPMS					Ме	thod: ME-(AU))-[ENV]AN31
QC Sample	Sample Numbe	r _	Parameter	Units	LOR	Result	Original	Spike	Recovery
SE209279.018	LB205820.004		Arsenic, As	µg/L	1	21	<1	20	103
			Cadmium, Cd	µg/L	0.1	22	<0.1	20	112
			Chromium, Cr	µg/L	1	22	<1	20	111
			Copper, Cu	µg/L	1	23	<1	20	115
			Lead, Pb	µg/L	1	23	<1	20	113
			Nickel, Ni	µg/L	1	21	<1	20	104
			Zinc, Zn	µg/L	5	23	<5	20	115
RH (Total Reco	verable Hydrocarbo	ns) in Water					Ме	thod: ME-(AU))-[ENV]AN4
QC Sample	Sample Numbe	r	Parameter	Units	LOR	Result	Original	Spike	Recovery
SE209379.003	LB205665.026		TRH C10-C14	µg/L	50	1200	76	1200	97
			TRH C15-C28	µg/L	200	1400	<200	1200	119
			TRH C29-C36	µg/L	200	1300	<200	1200	109
			TRH C37-C40	µg/L	200	<200	<200	-	-
			TRH C10-C40	µg/L	320	4000	<320	-	-
		TRH F Bands	TRH >C10-C16	µg/L	60	1300	76	1200	104
			TRH >C10-C16 - Naphthalene (F2)	µg/L	60	1300	76	-	-
			TRH >C16-C34 (F3)	µg/L	500	1600	<500	1200	131
			TRH >C34-C40 (F4)	µg/L	500	550	<500	600	91
OCs in Water							Me	thod: ME-(AU)	-[ENV]AN4
C Sample	Sample Numbe	r	Parameter	Units	LOR	Original	Spike	Recovery%	
E209471.001	LB205796.022	Monocyclic	Benzene	µg/L	0.5	0	45.45	101	
		Aromatic	Toluene	µg/L	0.5	0.01469679013	45.45	102	
			Ethylbenzene	µg/L	0.5	0.00785238680	45.45	101	
			m/p-xylene	µg/L	1	0.03775908721	90.9	101	
			o-xylene	µg/L	0.5	0.00695269748	45.45	99]
		Polycyclic	Naphthalene	µg/L	0.5	0.02685191580	-	-]
		Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	10.1990400926§	-	104	1
		-	d8-toluene (Surrogate)	μg/L	-	9.83622750120	-	103	1
									1

Volatile Petroleum Hydrocarbons in Water

QC Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%
SE209471.001	LB205796.022		TRH C6-C10	μg/L	50	0	946.63	103
			TRH C6-C9	μg/L	40	0	818.71	103
		Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	10.1990400926§	-	104
			d8-toluene (Surrogate)	µg/L	-	9.83622750120	-	103
			Bromofluorobenzene (Surrogate)	µg/L	-	10.00403796141	-	98
		VPH F	Benzene (F0)	µg/L	0.5	0	-	-
		Bands	TRH C6-C10 minus BTEX (F1)	µg/L	50	0	639.67	110

Bromofluorobenzene (Surrogate)

10.00403796141

98

Method: ME-(AU)-[ENV]AN433

µg/L

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- 2 RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	ILS
Contact	Li Wei	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	li.wei@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E24724.E02 2 mandala pole, castle hill	SGS Reference	SE210081 R1
Order Number	E24724.E02	Date Received	18 Aug 2020
Samples	1	Date Reported	20 Aug 2020

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met (within the SGS Alexandria Environmental laboratory).

Samples clearly labelled Yes Complete documentation received Yes SGS Ice Bricks Sample container provider Sample cooling method Samples received in correct containers Sample counts by matrix 1 Water Yes 18/8/2020 Type of documentation received COC Date documentation received Samples received in good order Yes Samples received without headspace Yes Sample temperature upon receipt 12°C Sufficient sample for analysis Yes Turnaround time requested Two Days

SGS Australia Pty Ltd ABN 44 000 964 278

SAMPLE SUMMARY

Environment, Health and Safety

Unit 16 33 Maddox St Alexandria NSW 2015 PO Box 6432 Bourke Rd BC Alexandria NSW 2015

W 2015 Australia W 2015 Australia t +61 2 8594 0400 f +61 2 8594 0499

Member of the SGS Group

www.sgs.com.au

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Mercury (dissolved) in Water Method: ME-(AU)-[ENV]AN311(Perth)/AN3												
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed				
BH4M-a	SE210081.001	LB206983	18 Aug 2020	18 Aug 2020	15 Sep 2020	19 Aug 2020	15 Sep 2020	19 Aug 2020				
Trace Metals (Dissolved)	in Water by ICPMS		Method: ME-(AU)-[ENV]AN318									
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed				
BH4M-a	SE210081.001	LB206994	18 Aug 2020	18 Aug 2020	14 Feb 2021	19 Aug 2020	14 Feb 2021	19 Aug 2020				

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No surrogates were required for this job.

SE210081 R1

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury (dissolved) in Water		Method: ME-(A	AU)-[ENV]AN311(Perth)/AN312	
Sample Number	Parameter	Units	LOR	Result
LB206983.001	Mercury	mg/L	0.0001	<0.0001

Trace Metals (Dissolved) in Water by ICPMS

Trace Metals (Dissolved) in Water by ICPM				od: ME-(AU)-[ENV]AN318
Sample Number	Parameter	Units	LOR	Result
LB206994.001	Arsenic, As	μg/L	1	<1
	Cadmium, Cd	µg/L	0.1	<0.1
	Chromium, Cr	µg/L	1	<1
	Copper, Cu	μg/L	1	<1
	Lead, Pb	μg/L	1	<1
	Nickel, Ni	μg/L	1	<1
	Zinc, Zn	μg/L	5	<5

Method: ME-(AU)-[ENV]AN318

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved)	Mercury (dissolved) in Water Method: ME-(AU)-[ENV]AN311(Perth)/AN3										
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %			
SE210081.001	LB206983.014	Mercury	µg/L	0.0001	< 0.0001	0.0000	200	65			
SE210105.002	LB206983.018	Mercury	µg/L	0.0001	-0.00472	-0.01744	200	0			

Trace Metals (Dissolved) in Water by ICPMS

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE210081.001	LB206994.011	Arsenic, As	μg/L	1	2	2	69	1
		Cadmium, Cd	μg/L	0.1	0.2	0.2	59	0
		Chromium, Cr	μg/L	1	1	1	84	1
		Copper, Cu	μg/L	1	22	22	20	2
		Lead, Pb	μg/L	1	30	30	18	0
		Nickel, Ni	μg/L	1	38	37	18	3
		Zinc, Zn	µg/L	5	240	230	17	4

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

race Metals (Dissolved) in W			_			Nethod: ME-(A	o)-[Entripato
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB206994.002	Arsenic, As	μg/L	1	19	20	80 - 120	95
	Cadmium, Cd	μg/L	0.1	21	20	80 - 120	104
	Chromium, Cr	μg/L	1	21	20	80 - 120	105
	Copper, Cu	μg/L	1	21	20	80 - 120	106
	Lead, Pb	μg/L	1	21	20	80 - 120	107
	Nickel, Ni	μg/L	1	21	20	80 - 120	103
	Zinc, Zn	µg/L	5	21	20	80 - 120	103

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved) in Water Method: ME-(AU)-[ENV]AN311(Perth)/								
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE210001.008	LB206983.004	Mercury	mg/L	0.0001	0.0077	-0.01506	0.008	96

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- 2 RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

SGS Environmental Services is accredited by NATA for Chemical Testing (Reg.No.2562) and Quality System compliance to ISO/IEC 17025. The QC parameters contained within are designed to meet NEPM 1999 requirements.

Quality Control samples included in any analytical run are listed below.

Reagent/Analysis Blank (BLK) Method Blank (MB)	Sample free reagents carried through the preparation/extraction/digestion procedure and analysed at the beginning of every sample batch analysis. A reagent blank is prepared and analysed with every batch of samples plus with each new batch of solvent prior to use.			
Sample Matrix Spike (MS) & Matrix Spike Duplicate (MSD)	Sample replicates spiked with identical concentrations of target analyte(s). The spiking occurs during the sample preparation and <u>prior to the extraction/digestion procedure</u> . They are used to document the precision and bias of a method in a given sample matrix. Where there is not enough sample available to prepare a spiked sample, another known soil/sand or water may be used. A duplicate spiked sample is analysed at least every 20 samples.			
Surrogate Spike (SS)	At least one but up to three surrogate compounds are added to all samples requiring analysis for organics prior to extraction. Used to determine the extraction efficiency. They are organic compounds which are similar to the arget analyte(s) in chemical composition and behaviour in the analytical process, but which are not normally found in environmental samples. Where possible they are surrogate compounds recommended by the USEPA.			
Control Matrix Spike (CMS)	To ensure spike recoveries can be determined for every batch of samples a control matrix is spiked with identical concentrations of target analyte(s) and then analysed. These results allow recoveries to be determined in the event that the matrix spikes are unusable (eg. matrix spikes performed on heavily contaminated samples). These are analysed at least every 20 samples.			
Internal Standard (IS)	Added to all samples requiring analysis for organics (where relevant) after the extraction process; the compounds serve to give a standard of retention time and response, which is invariant from run-to-run with the instruments. Where possible they are standard compounds recommended by the USEPA.			
Lab Duplicates (D)	A separate portion of a sample being analysed that is treated the same as the other samples in the batch. One duplicate is processed at least every 10 samples.			
Lab Control Standards/Samples (LCS)	Prepared from a source independent of the calibration standards. At least one control standard is included in each run to confirm calibration validity. Thereafter they are analysed at least every one in 20 samples plus at the end of each analytical run. This data is not reported.			
Continuous Calibration Verification (CCV) or Calibration Check	A calibration check standard or CCV and blank are run after every 20 samples of an instrumental analysis run to assess analytical drift. Calibration Standards are checked old versus new with a criteria of ±10%			
Standard & Blank				

Quality Assurance Programs are listed below:

Statistical analysis of Quality Control data (SQC)	Quality control data is plotted on control charts using the APHA procedure with warning and control limits at 2 and 3 standard deviations respectively. See also QMS Procedure "Statistical Quality Control".			
Certified Reference Materials (CRM/SRM)	Certified Reference Materials and Standards are regularly analysed. These materials/standards have certified reference values for various parameters.			
Proficiency Testing	Regular proficiency test samples are analysed by our laboratories. SGS Environmental participates in a number of programs. Results and proficiency status are compiled and sent to participating laboratory post data interpretation. Failure to comply with acceptable values result in further investigations.			
Inter-laboratory & Intra- laboratory Testing	SGS Environmental Services has schedules in the Quality Systems to participate in Inter/Intra laboratory testing conducted internally and by other parties.			
Data Acceptance Criteria Unless otherwise specified in the method or method manual the following general criteria apply to all inorganic tests.	 Failure to meet the internal acceptance criteria will result in sample batch repeats dependent upon investigation outcomes. For data to be accepted: <u>Inorganics (water samples)</u> For all inorganic analytes the Reagent & Method Blanks must be less than the LOR. The Calibration Check Standards or Continuous Calibration Verification (CCV) must be within ±15%. Control Standards must be 80-120% of the accepted value. The Calibration Check Blanks must be less than the LOR. Lab Duplicates RPD to be <15%*. Note: If client <u>field</u> duplicates do not meet this criteria it may indicate heterogeneity and shall be noted on the data reports for QC samples. Sample (and if applicable Control) Matrix Spike^{J*} Duplicate recovery RPD to be <30%. Where CRMs are used, results to be within ±2 standard deviations of the expected value. <u>Inorganics (soil samples)</u> For all inorganic analytes the Reagent & Method Blanks must be less 			
All recoveries are to be reported to 3 significant figures.	 than the LOR. The Calibration Check Standards or Continuous Calibration Verification (CCV) must be within [±]15%. Control Standards must be 80-120% of the accepted value. The Calibration Check Blanks must be less than the LOR. Lab duplicate RPD to be <30%* for sample results greater than 10 times LOR. Sample Matrix Spike Duplicate (MS^{-#}/MSD) recovery RPD to be <30%. In the event that the matrix spike has been applied to samples whose matrix or contamination is problematic to the method then these acceptance criteria apply to the Control Matrix Spike (CMS/D). Where CRMs are used, results to be within ± 2 standard deviations of the expected value. 			

	<u>Organics</u>
	 Volatile & extractable Reagent & Method Blanks must contain levels less than or equal to LOR.
	 The Calibration Check Standards or Continuous Calibration Verification (CCV) must be within [±]25%. Some analytes may have specific criteria.
	 Control Standards (LCS/CMS) and Certified Reference Materials (CRM) recoveries are to be within established control limits or as a default 60-140% unless compound specific limits apply.
	 Retention times are to vary by no more than 0.2 min.
Data Acceptance Criteria Unless otherwise specified in the method or method manual the following general criteria apply to all organic tests. All recoveries are to be reported to 3 significant figures.	• At least two of three routine level soil sample Surrogate Spike (SS) recoveries are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as acceptance criterion. Any recoveries outside these limits will have comment.
	 Water sample Surrogates Spike (SS) recoveries are to be within 40- 130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion. Any recoveries outside these limits will have comment.
0	 Lab Duplicates (D) must have a RPD <30%*.
	 Sample Matrix Spike Duplicate (MS^{,*}/MSD) recovery RPD to be <30%. In the event that the matrix spike has been applied to samples whose matrix or contamination is problematic to the method then these acceptance criteria apply to the Control Matrix Spike (CMS/D).

*Only if results are at least 10 times the LOR otherwise no acceptance criteria for RPD's apply. Application of more stringent criteria shall be applied for clean water sample from water boards and any other nominated client contracts. Nominal 10xLOR criteria are dropped to 5xLOR where specified. ^AMatrix do not readily equate to definitive recovery due to inherent matrix interferences and thus do not have recovery compliance values set. As a guide inorganic recoveries should be between 70-130% and for organics 60-130%

Batch Structure Summary

An analytical batch is nominally considered as 20 samples or smaller. As a standard template the following should be **used as a guide** according to the above Quality Control Types:

1	MB	16	UNK DUP
2	STD1	17	MS
3	STD2	18	MS_DUP
4	STD3	19	UNK 11
5	LCS	20	UNK 12
6	BLK	21	UNK 13
7	UNK 1	22	UNK 14
8	UNK 2	23	UNK 15
9	UNK 3	24	UNK 16
10	UNK 4	25	UNK 17
11	UNK 5	26	UNK 18
12	UNK 6	27	UNK 19
13	UNK 7	28	UNK 20 (SS if applicable)
14	UNK 8	29	UNK_DUP
15	UNK 9	30	CCV
16	UNK 10 (SS if applicable)	31	CRM / SRM / CMS / LCS

Table QC1 - Containers, Preservation Requirements and Holding Times - Soil				
Parameter	Container	Preservation	Maximum Holding Time	
Acid digestible metals and metalloids - Total and TCLP (As,Cd.,Cu,Cr,Ni,Pb,Zn)	Glass with Teflon Lid	Nil	6 months	
Mercury	Glass with Teflon Lid	Nil	28 days	
TPH / BTEX / VOC / SVOC / CHC	Glass with Teflon Lid	4°C, zero headspace	14 days	
PAHs (total and TCLP)	Glass with Teflon Lid	4°C ¹	14 days	
Phenols	Glass with Teflon Lid	4°C ¹	14 days	
OCPs, OPPs and total PCBs	Glass with Teflon Lid	4°C ¹	14 days	
Asbestos	Sealed Plastic Bag	Nil	N/A	

Table QC2 - Containers, Preservation Requirements and Holding Times - Water				
Parameter	Container Volume (mL)	Preservation	Maximum Holding Time	
Heavy Metals	125mL Plastic	Field filtration 0.45µm HNO ₃ / 4°C	6 months	
Cyanide	125mL Amber Glass	pH > 12 NaOH / 4°C	6 months	
TPH (C6-C9) / BTEX / VOCs SVOCs / CHCs	4 x 43mL Glass	HCI / 4°C ¹	14 days	
TPH (C10-C36) / PAH / Phenolics OCP / OPP / TDS / pH	3 x 1L Amber Glass	None / 4ºC ¹	28 days	

Notes: ¹ = Extraction within 14 days, Analysis within 40 days.

Table QC3 - Analytical Parameters, PQLs and Methods - Soil				
Parameter	Unit	PQL	Method Reference	
	Meta	ls in Soil		
Arsenic - As ¹	mg / kg	1	USEPA 200.7	
Cadmium - Cd ¹	mg / kg	0.5	USEPA 200.7	
Chromium - Cr ¹	mg / kg	1	USEPA 200.7	
Copper - Cu ¹	mg / kg	1	USEPA 200.7	
Lead - Pb ¹	mg / kg	1	USEPA 200.7	
Mercury - Hg ²	mg / kg	0.1	USEPA 7471A	
Nickel - Ni ¹	mg / kg	1	USEPA 200.7	
Zinc - Zn ¹	mg / kg	1	USEPA 200.7	
Tota	al Petroleum Hyd	rocarbons (TP	Hs) in Soil	
C_6 - C_9 fraction	mg / kg	25	USEPA 8260	
C ₁₀ -C ₁₄ fraction	mg / kg	50	USEPA 8000	
C ₁₅ -C ₂₈ fraction	mg / kg	100	USEPA 8000	
C ₂₉ -C ₃₆ fraction	mg / kg	100	USEPA 8000	
	BTE	X in Soil		
Benzene	mg / kg	1	USEPA 8260	
Toluene	mg / kg	1	USEPA 8260	
Ethylbenzene	mg / kg	1	USEPA 8260	
m & p Xylene	mg / kg	2	USEPA 8260	
o- Xylene	mg / kg	1	USEPA 8260	
	Other Organic C	ontaminants i	n Soil	
PAHs	mg / kg	0.05-0.2	USEPA 8270	
CHCs	mg / kg	1	USEPA 8260	
VOCs	mg / kg	1	USEPA 8260	
SVOCs	mg / kg	1	USEPA 8260	
OCPs	mg / kg	0.1	USEPA 8140, 8080	
OPPs	mg / kg	0.1	USEPA 8140, 8080	
PCBs	mg / kg	0.1	USEPA 8080	
Phenolics	mg / kg	5	APHA 5530	
	As	bestos		
Asbestos	mg / kg	Presence / Absence	AS4964-2004	

Notes:

1. Acid Soluble Metals by ICP-AES

2. Total Recoverable Mercury

Parameter	Unit	PQL	Method	Parameter	Unit	PQL	Method
Heavy Metals			Chlorinated	l Hydroc	arbons	(CHCs)	
Antimony - Sb	μg/L	1	USEPA 200.8	1,2-dichlorobenzene	μg/L	1	USEPA 8260B
Arsenic - As	μg/L	1	USEPA 200.8	1,3-dichlorobenzene	μg/L	1	USEPA 8260B
Beryllium - Be	μg/L	0.5	USEPA 200.8	1,4-dichlorobenzene	μg/L	1	USEPA 8260B
Cadmium - Cd	μg/L	0.1	USEPA 200.8	1,2,3-trichlorobenzene	μg/L	1	USEPA 8260B
Chromium - Cr	μg/L	1	USEPA 200.8	1,2,4-trichlorobenzene	μg/L	1	USEPA 8260B
Cobalt - Co	μg/L	1	USEPA 200.8	Hexachlorobutadeine	μg/L	1	USEPA 8260B
Copper - Cu	μg/L	1	USEPA 200.8	1,1,2-trichloroethane	μg/L	1	USEPA 8260B
Lead - Pb	μg/L	1	USEPA 200.8	Hexachloroethane	μg/L	10	USEPA 8270D
Mercury - Hg	μg/L	0.5	USEPA 7471A	Other CHCs	μg/L	1	USEPA 8260B
Molybdenum - Mo	μg/L	1	USEPA 200.8	Volatile Orga		npound	s (VOCs)
Nickel - Ni	μg/L	1	USEPA 200.8	Aniline	μg/L	10	USEPA 8260B
Selenium - Se	μg/L	1	USEPA 200.8	2,4-dichloroaniline	μg/L	10	USEPA 8260B
Silver - Ag	μg/L	1	USEPA 200.8	3,4-dichloroaniline	μg/L	10	USEPA 8260B
Tin (inorg.) - Sn	μg/L	1	USEPA 200.8	Nitrobenzene	μg/L	50	USEPA 8260B
Nickel - Ni	μg/L	1	USEPA 200.8	2,4-dinitrotoluene	μg/L	50	USEPA 8260B
Zinc - Zn	μg/L	1	USEPA 200.8	2,4,6-trinitrotoluene	μg/L	50	USEPA 8260B
			ons (TPHs)	Phenolic Compounds			
C ₆ -C ₉ fraction	μg/L	10	USEPA 8220A / 8000	Phenol	μg/L	10	USEPA 8041
C ₁₀ -C ₁₄ fraction	μg/L	50	USEPA 8000	2-chlorophenol	μg/L	10	USEPA 8041
C ₁₅ -C ₂₈ fraction	μg/L	100	USEPA 8000	4-chlorophenol	μg/L	10	USEPA 8041
C ₂₉ -C ₃₆ fraction	μg/L	100	USEPA 8000	2, 4-dichlorophenol	μg/L	10	USEPA 8041
	BT	ΈX		2,4,6-trichlorophenol	μg/L	10	USEPA 8041
Benzene	μg/L	1	USEPA 8220A	2,3,4,6-tetrachlorophenol	μg/L	10	USEPA 8041
Toluene	μg/L	1	USEPA 8220A	Pentachlorophenol	μg/L	10	USEPA 8041
Ethylbenzene	μg/L	1	USEPA 8220A	2,4-dinitrophenol	μg/L	10	USEPA 8041
m- & p-Xylene	μg/L	2	USEPA 8220A	Miscella	aneous	Paramet	ters
o-Xylene	μg/L	1	USEPA 8220A	Total Cyanide	μg/L	5	APHA 4500C&E-CN
Polyciclic Are	omatic F	lydrocai	rbons (PAHs)	Fluoride	μg/L	10	APHA 4500 F-C
PAHs	μg/L	0.1	USEPA 8270	Salinity (TDS)	mg/L	1	APHA 2510
Benzo(a)pyrene	μg/L	0.01	USEPA 8270	рН	units	0.1	APHA 4500H+
OrganoChlorine Pesticides (OCPs)		OrganoPhos	phate P	esticide	s (OPPs)		
Aldrin	μg/L	0.001	USEPA 8081	Azinphos Methyl	μg/L	0.01	USEPA 8141
Chlordane	μg/L	0.001	USEPA 8081	Chloropyrifos	μg/L	0.01	USEPA 8141
DDT Dialahin	μg/L	0.001	USEPA 8081	Diazinon	μg/L	0.01	USEPA 8141
Dieldrin Endosulfan	μg/L	0.001	USEPA 8081	Dimethoate Expitrathion	μg/L	0.01	USEPA 8141
	μg/L	0.001	USEPA 8081	Fenitrothion	μg/L	0.01	USEPA 8141
Endrin Heptachlor	μg/L	0.001 0.001	USEPA 8081 USEPA 8081	Malathion Parathion	μg/L	0.01 0.01	USEPA 8141 USEPA 8141
Lindane	μg/L μg/L	0.001	USEPA 8081	Temephos	μg/L μg/L	0.01	USEPA 8141 USEPA 8141
Toxaphene	μg/L μg/L	0.001	USEPA 8081	Polychlorin			
	μg/∟	0.001		Individual PCBs	μg/L	0.01	USEPA 8081

Table QC4 - Analytical Parameters, PQLs and Methods - Groundwater

QC Sample Type	Method of Assessment	Acceptable Range		
	Field QC			
Blind Duplicates and Split Samples	The assessment of split duplicate is undertaken by calculating the Relative Percent Difference (RPD) of the duplicate concentration compared with the primary sample concentration. The RPD is defined as: $RPD = 100 \times \frac{ X_1 - X_2 }{mean (X1, X2)}$ Where: X ₁ and X ₂ are the concentrations of the primary and duplicate samples.	 The acceptable range depends upon the levels detected: 0-150% RPD (when the average concentration is <5 times the LOR/PQL) 0-75% RPD (when the average concentration is 5 to 10 times the LOR/PQL) 0-50% RPD (when the average concentration is >10 times the LOR/PQL) 		
Rinsate & Trip Blanks	Each blank is analysed as per the original samples.	Analytical Result <lor pql<="" td=""></lor>		
_aboratory prepared Frip Spike	The Trip Spike is analysed after returning from the field and the % recovery of the known spike is calculated.	70 - 130%		
	Laboratory QC			
Laboratory Duplicates	Assessment of Lab Duplicate RPD as per Blind Duplicates and Split Samples.	Lab Duplicate RPD < 15% (Inorganics) Lab Duplicate RPD < 30% (Organics) for sample results > 10 LOR		
Surrogates	Assessment is undertaken by determining the percent recovery of the known surrogate spike (SS) or addition to the sample.	at least 2 SS recoveries to be within 70-130% subject to matrix effects (Organics)		
Matrix Spikes _aboratory Control Samples	% Recovery = $100 \times \frac{C - A}{B}$ Where: A = Concentration of analyte determined in the original sample; B = Added Concentration; and C = Calculated Concentration.	80-120% (Inorganics / Metals) 60-140% (Organics) 10-140% (SVOC and Speciated Phenols) If the result is outside the above ranges, the result must be <3x Standard Deviation of the Historical Mean (calculated over the past 12 months).		
Sample Matrix Spike Duplicates	Recovery RPD	<30% (Inorganics & Organics)		
Calibration Check Standars	Continuous Calibration Verification (CCV)	CCV must be within ±15% (inorganics) CCV must be within ±25% (inorganics)		
Reagent, Method & Calibration Check Blanks	Each blank is analysed as per the original samples.	Analytical Result <lor pql<="" td=""></lor>		