

REPORT TO

HAMMONDCARE

ON

SALINITY INVESTIGATION

FOR

PROPOSED HOSPITAL REDEVELOPMENT

AT

GREENWICH HOSPITAL, 97-115 RIVER ROAD, GREENWICH, NSW

Date: 8 April 2022 Ref: E32507BRpt4Rev1

JKEnvironments www.jkenvironments.com.au

T: +61 2 9888 5000 JK Environments Pty Ltd ABN 90 633 911 403

Report prepared by:

Craig Ridley

Senior Environmental Scientist

Report reviewed by:

Vittal Boggaram

Principal Associate | Environmental Scientist

For and on behalf of
JKE
PO BOX 976
NORTH RYDE BC NSW 1670

DOCUMENT REVISION RECORD

Report Reference	Report Status	Report Date	
32507BRrpt4 Final Report		18 February 2022	
E32507BRrpt4Rev1	Revision 1	8 April 2022	

© Document Copyright of JK Environments (JKE)

This Report (which includes all attachments and annexures) has been prepared by JKE for the Client, and is intended for the use only by that Client.

This Report has been prepared pursuant to a contract between JKE and the Client and is therefore subject to:

- a) JKE's proposal in respect of the work covered by the Report;
- b) The limitations defined in the client's brief to JKE; and
- c) The terms of contract between JKE and the Client, including terms limiting the liability of JKE.

If the Client, or any person, provides a copy of this Report to any third party, such third party must not rely on this Report, except with the express written consent of JKE which, if given, will be deemed to be upon the same terms, conditions, restrictions and limitations as apply by virtue of (a), (b), and (c) above.

Any third party who seeks to rely on this Report without the express written consent of JKE does so entirely at their own risk and to the fullest extent permitted by law, JKE accepts no liability whatsoever, in respect of any loss or damage suffered by any such third party.

Executive Summary

HammondCare ('the client') commissioned JK Environments (JKE) to undertake a salinity investigation for the proposed hospital redevelopment at Greenwich Hospital, 97-115 River Road, Greenwich, NSW. This salinity investigation report is to be submitted to the Department of Planning and Environment (DPE) in support of a State Significant Development Application (SSD-13619238) for the redevelopment of Greenwich Hospital into an integrated hospital and seniors living facility on land identified as 97-115 River Road, Greenwich, NSW (the site).

The subject proposal is for the detailed design and construction of the facility following its concept approval under SSD-8699. Specifically, SSD-13619238 seeks approval for the following:

- Demolition of the existing hospital building and associated facilities at the site;
- Construction of a new hospital facility and integrated healthcare uses and services, including:
 - A new 7 storey main hospital building;
 - Two new 5-6 storey assisted independent living buildings;
 - A new 2 storey respite care building;
- Construction of associated site facilities and services, including pedestrian and vehicular access and basement parking;
- Site landscaping and infrastructure works; and
- Preservation of Pallister House which will continue to host dementia care and administrative functions.

JKE note that the development plans issued to JKE on 1 April 2022 indicate the new 7 storey main hospital building is to be constructed above set-down and mezzanine levels. The buildings will be terraced to account for the slope of the site.

In accordance with section 4.39 of the Environmental Planning & Assessment Act 1979 (EP&A Act), the Secretary's Environmental Assessment Requirements (SEARs) for SSD-13619238 were issued on 24 February, 2021. This report has been prepared to respond to the following SEARs:

SEAR	Relevant section of report	
17. Soil and Water. An assessment of salinity and acid sulphate soil (ASS) impacts, including a Salinity Management Plan (SMP) and/or Acid Sulphate Soils	This report relates to the assessment of salinity. The results of the investigation are presented in Section 6. The conclusions of the investigation are presented in Section 8.	
Management Plan (ASSMP), where relevant.	The assessment of ASS impacts is presented in a separate report (E32507Brpt3Rev1, dated 8 April 2022).	

The primary aim of the investigation was to characterise the salinity conditions at the site in the context of the proposed development works. The investigation objectives were to:

- Assess the current site conditions via a site walkover inspection;
- Assess the soil and groundwater salinity conditions via implementation of a sampling and analysis program; and
- Assess the requirements for developing a salinity management plan (SMP) for the proposed development.

The scope of work included a review of site information, a walkover inspection, soil sampling from eight locations and groundwater sampling from eight monitoring wells installed on-site shown on Figure 2. The site information reviewed for the investigation indicated that the site was not located within a dryland salinity risk area. No visual indications of saline conditions (such as scalding or significant vegetation dieback/stress) were observed during the investigation.

The investigation identified the following salinity conditions at the site:

- The soils are classed as very strongly acidic to very strongly alkaline;
- The soils are classed as non-saline with localised occurrences of slightly to moderately saline conditions;
- The soils are generally non-sodic;
- The soils are mildly aggressive towards buried concrete;

- The soils are mildly aggressive towards buried steel;
- The groundwater is moderately aggressive towards buried concrete; and
- The groundwater is not aggressive towards buried steel.

Based on the results of this investigation, JKE recommend preparing a salinity management plan (SMP) for the proposed development. The salinity results outlined in this report should be reviewed and incorporated into the design of the proposed development by the project team (civil, structural and landscaping). The SMP should be reviewed in conjunction with the recommendations provided by the design team.

The conclusions and recommendations should be read in conjunction with the limitations presented in the body of this report.

Table of Contents

1	INTR	ODUCTION	1
	1.1	PROPOSED DEVELOPMENT DETAILS	2
	1.2	AIM AND OBJECTIVES	3
	1.3	SCOPE OF WORK	3
2	SITE	INFORMATION	4
	2.1	SITE IDENTIFICATION	4
	2.2	SITE LOCATION AND REGIONAL SETTING	4
	2.3	TOPOGRAPHY	4
	2.4	SITE INSPECTION	4
	2.5	Surrounding Land Use	5
3	GEOI	OGY AND HYDROGEOLOGY	6
	3.1	REGIONAL GEOLOGY AND SOILS	6
	3.2	DRYLAND SALINITY MAPPING	6
	3.3	ACID SULFATE SOIL RISK AND PLANNING	6
	3.4	Hydrogeology	6
	3.5	RECEIVING WATER BODIES AND SURFACE WATER RUN-OFF	6
4	SAM	PLING AND ANALYSIS PLAN	8
	4.1	SOIL SAMPLING RATIONALE	8
	4.2	SOIL SAMPLING METHODS	8
	4.3	GROUNDWATER SAMPLING RATIONALE	9
	4.4	MONITORING WELL INSTALLATION	9
	4.5	MONITORING WELL DEVELOPMENT AND GROUNDWATER SAMPLING	11
	4.6	LABORATORY ANALYSIS	11
	4.7	Analytical Schedule	11
5	SITE	ASSESSMENT CRITERIA (SAC)	12
	5.1	SOIL SALINITY AND PLANT GROWTH	12
	5.2	SOIL PH AND PLANT GROWTH	12
	5.3	CATION EXCHANGE CAPACITY (CEC) IN SOIL	13
	5.4	EXCHANGEABLE SODIUM PERCENTAGE OR SODICITY (ESP%)	14
	5.5	GROUNDWATER SALINITY	14
	5.6	RECOMMENDATIONS FOR CONCRETE SLABS AND FOOTINGS IN SALINE SOILS	14
	5.7	RECOMMENDATIONS FOR DURABILITY WITH REFERENCE TO AS2159-2009	15
6	INVE	STIGATION RESULTS	17
	6.1	SUBSURFACE CONDITIONS	17
	6.2	LABORATORY RESULTS	18
7	RESU	ILTS INTERPRETATION	19
8	CON	CLUSIONS AND RECOMMENDATIONS	21
9	LIMI	TATIONS	22

List of Tables

Table 1-1: Guidelines	3
Table 2-1: Site Identification	4
Table 4-1: Exclusion Areas	8
Table 4-2: Monitoring Well Construction Details	9
Table 4-3: Analytical Schedule	11
Table 5-1: Plant Response to Soil Salinity	12
Table 5-2: Plant Response to Soil pH	12
Table 5-3: CEC Rating	13
Table 5-4: EC Ranges in Water	14
Table 5-5: Minimum Concrete Grade for Slabs and Footings in Saline Soils	15
Table 5-6: Exposure Classification for Concrete Piles	15
Table 5-7: Exposure Classification for Steel Piles	16
Table 6-1: Summary of Subsurface Conditions	17
Table 6-2: Summary of Laboratory Results	18
Table 7-1: Interpretation of Laboratory Results	19

Attachments

Appendix	Δ:	Report	Figures
ADDELIUIA	л.	Nebul	I IEUI CS

Appendix B: Laboratory Results Summary Tables

Appendix C: Lotsearch Environmental Risk and Planning Report

Appendix D: Background on Salinity

Appendix E: Proposed Development Plans

Appendix F: Borehole Logs

Appendix G: Laboratory Reports & COC Documents

Appendix H: Groundwater Field Records

ABBREVIATIONS

Australian Height Datum	AHD
Acid Sulfate Soil	ASS
Below Ground Level	BGL
Borehole	ВН
Cation Exchange Capacity	CEC
Calcium	Ca
Cement, Concrete and Aggregates Australia	CCAA
Chain of Custody	COC
Damp Proof Course	DPC
Department of Land and Water Conservation	DLWC
Dissolved Oxygen	DO
International Organisation of Standardisation	ISO
JK Environments	JKE
Local Government Authority	LGA
Map Grid of Australia	MGA
Magnesium	Mg
National Association of Testing Authorities	NATA
Potassium	K
Polyvinyl Chloride	PVC
Practical Quantitation Limit	PQL
Redox Potential	Eh
Site Assessment Criteria	SAC
Sampling, Analysis and Quality Plan	SAQP
Standard Secretary Environmental Assessment Requirements	SEARs
Standard Penetration Test	SPT
State Significant Development Application	SSDA
Standing Water Level	SWL
Sodium	Na
Western Sydney Regional Organisation of Councils	WSROC
Units	
deci Siemens per Metre	dS/m
Electrical Conductivity	EC
Exchangeable Sodium Percentage (Sodicity)	ESP%
Litres	L
Metres	m
Metres Below Ground Level	mBGL
Millivolts	mV
Millilitres	ml
Milliequivalents	meq
Milligrams per Litre	mg/L
Milligrams per Kilogram	mg/kg
ohm Centimetres	ohm.cm
Parts Per Million	ppm
micro Siemens per Centimetre	μS/cm

1 INTRODUCTION

HammondCare ('the client') commissioned JK Environments (JKE) to undertake a salinity investigation for the proposed hospital redevelopment at Greenwich Hospital, 97-115 River Road, Greenwich, NSW.

This salinity investigation report is to be submitted to the Department of Planning, Industry and Environment (DPIE) in support of a State Significant Development Application (SSD-13619238) for the redevelopment of Greenwich Hospital into an integrated hospital and seniors living facility on land identified as 97-115 River Road, Greenwich, NSW (the site). The extent of the site is shown below.

The subject proposal is for the detailed design and construction of the facility following its concept approval under SSD-8699. Specifically, SSD-13619238 seeks approval for the following:

- Demolition of the existing hospital building and associated facilities at the site;
- Construction of a new hospital facility and integrated healthcare uses and services, including:
 - A new 7 storey main hospital building;
 - Two new 5-6 storey assisted independent living buildings;
 - A new 2 storey respite care building;
- Construction of associated site facilities and services, including pedestrian and vehicular access and basement parking;
- Site landscaping and infrastructure works; and
- Preservation of Pallister House which will continue to host dementia care and administrative functions.

JKE note that the development plans issued to JKE on 1 April 2022 indicate the new 7 storey main hospital building is to be constructed above set-down and mezzanine levels. The buildings will be terraced to account for the slope of the site.

In accordance with section 4.39 of the Environmental Planning & Assessment Act 1979 (EP&A Act), the Secretary's Environmental Assessment Requirements (SEARs) for SSD-13619238 were issued on 24 February, 2021. This report has been prepared to respond to the following SEARs:

SEAR	Relevant section of report		
17. Soil and Water.	This report relates to the assessment of salinity. The		
An assessment of salinity and acid sulphate	results of the investigation are presented in Section 6.		
soil (ASS) impacts, including a Salinity	The conclusions of the investigation are presented in		
Management Plan (SMP) and/or Acid	Section 8.		
Sulphate Soils Management Plan (ASSMP),			
where relevant.	The assessment of ASS impacts is presented in a		
	separate report (E32507Brpt3, dated 18 February		
	2022)¹.		

Background information on salinity is included in the appendices.

1.1 Proposed Development Details

JKE has reviewed the development plans prepared by Bickerton Masters (DD-SW-0200 to 0210, dated 1 April 2022). Based on review of these plans, we understand the proposed development includes:

- The demolition of the existing hospital building and associated facilities (excluding Pallister House);
- Construction of the main hospital building and two serviced seniors living buildings constructed over
 1-2 levels of carparking;
- The proposed lowest (basement) car park finished floor reduced level (RL) will be formed at between RL37.95m Australian Height Datum (AHD) and RL38.6mAHD;
- Construction of a new 2-3 storey respite care building to the east of the main building; and
- Reconfiguration of the surrounds including new access roads, external parking areas, walkways and landscaped areas.

The proposed development includes major earthworks (cut/fill) over the majority of the site to achieve the development levels. The maximum cut is anticipated to be approximately 14m below ground level (BGL).

Selected development plans issued to JKE are attached in the appendices.

¹ JKE, (2022a). Report to HammondCare on Acid Sulfate Soil Assessment for Proposed Hospital Redevelopment at Greenwich Hospital, 97-115 River Road, Greenwich, NSW. (Ref: E32507BRrpt3Rev1) (referred to as ASS Report)

1.2 Aim and Objectives

The primary aim of the investigation was to characterise the salinity conditions at the site in the context of the proposed development works. The assessment objectives were to:

- Assess the current site conditions via a site walkover inspection;
- Assess the soil and groundwater salinity conditions via implementation of a sampling and analysis program; and
- Assess the requirements for developing a salinity management plan (SMP) for the proposed development.

1.3 Scope of Work

The investigation was undertaken generally in accordance with a JKE proposal (Ref: EP53931BR) of 14 April 2021 and written acceptance in the form of a purchase order (PO No: 28737) issued by the client on 29 September 2021. The scope of work included the following:

- Review site information including topography, soils maps, regional geology and hydro-geology in the vicinity of the site;
- A walkover site inspection to identify obvious visual indicators of salinity or potential problem areas;
- Assess the soil and groundwater salinity conditions via implementation of a sampling and analysis program;
- Interpretation of the analytical results based on established assessment criteria;
- Preparation of a report presenting the results of the investigation; and
- Recommendation for the requirement of a SMP for the proposed development.

The investigation was designed and the report was prepared with reference to regulations/guidelines outlined in the table below. Individual guidelines/documents are also referenced within the text of the report.

Table 1-1: Guidelines

Guidelines/Regulations/Documents

Site Investigations for Urban Salinity (2002²)

Salinity Code of Practice (2004)³

Managing Urban Stormwater – Soil and Construction (4th ed.) (2004)⁴

Piling – Design and Installation AS2159-2009 (2009)⁵

Industry Guide T56: Residential Slabs and Footings in Saline Environments (20018⁶)

⁶ Cement, Concrete and Aggregates Australia (CCAA), (2018). Industry Guide *T56: Residential Slabs and Footings in Saline Environments* (referred to as CCAA 2018)

² Department of Land and Water Conservation (DLWC), (2002). Site Investigations for Urban Salinity, (referred to as DLWC 2002)

³ Western Sydney Regional Organisation of Councils (WSROC) and Department of Infrastructure, Planning and Natural Resources (DIPNR), (2003 amended 2004). Western Sydney Salinity Code of Practice (referred to as Salinity Code of Practice)

⁴ NSW Government/Landcom, (2004). Managing Urban Stormwater – Soil and Construction, (4th ed.) (referred to as Blue Book)

⁵ Standards Australia, (2009). *Piling – Design and Installation, AS2159-2009* (referred to as AS2159-2009)

2 SITE INFORMATION

2.1 Site Identification

Table 2-1: Site Identification

Site Address:	97-115 River Road, Greenwich, NSW
Lot & Deposited Plan:	Lot 3 and Lot 4 in DP584287
Current Land Use:	Hospital
Proposed Land Use:	Hospital and Seniors Living
Local Government Authority (LGA):	Lane Cove Municipal Council
Development Area (m²) (approx.):	23,700
RL (AHD in m) (approx.):	36-51
Geographical Location (decimal degrees) (approx.	Latitude: -33.827404
centre of site):	Longitude: 151.183875
Site Location Plan:	Figure 1
Sample Location Plan:	Figure 2

2.2 Site Location and Regional Setting

The site is located in a predominantly residential area of Greenwich. The site is bounded by River Road to the north and St Vincents Road to the east. The site is located approximately 75m to the north-east of the Gore Creek and 275m to the north-east of the Lane Cove River.

2.3 Topography

The site is located within undulating regional topography and sits on the southern edge of a topographic spur that falls steeply to the east, south and west. A significant fill batter slope exists along the western boundary. Parts of the site appear to have been levelled to account for the slope and accommodate the existing development.

2.4 Site Inspection

A walkover inspection of the site was undertaken by JKE on 20 September 2021. The inspection was limited to accessible areas of the site and was focussed on assessing the site conditions relevant to salinity-related factors only.

At the time of the inspection, the main hospital buildings were located in the central to west portion of the site and included wards, theatres, two gas-fired boiler units, two emergency generators, clinical and general waste facilities, oxygen storage and maintenance equipment. A building to the east of the main hospital building contained non-clinical facilities. The main hospital buildings were of brick, fibre cement, and concrete construction typically on concrete slab and between one and four storeys.

The majority of the eastern portion of the site was grass covered with interspersed medium to large mature trees and small to medium shrubs. Medium to large trees were observed along the north, west and south boundaries of the site and small to medium shrubs were located in garden beds and around buildings across the site. The steep batter slope in the south-west corner of the site was densely vegetated with native and exotic shrubs and a small grass covered area was observed along the southern boundary (adjacent to the empty pool). The vegetation across the site appeared to be in reasonable condition based on a cursory inspection, with no obvious or extensive dieback observed. Grass coverage was generally good, with the exception of some areas beneath large trees and isolated areas adjacent to carparks and footpaths. No visible indications of saline conditions (such as scalding) were observed.

2.5 Surrounding Land Use

During the site inspection, JKE observed the following land uses in the immediate surrounds:

- North Greenwich Public School and residential properties;
- South Residential properties and Gore Creek Reserve;
- East Garden and landscaped areas of the hospital, St Vincents Road and residential properties beyond; and
- West Residential properties.

3 GEOLOGY AND HYDROGEOLOGY

3.1 Regional Geology and Soils

Regional geological information presented in the Lotsearch Report (attached in the appendices) indicated that the site is underlain by Hawkesbury Sandstone, which typically consists of medium to coarse grained quartz sandstone with minor shale and laminite lenses.

Soil landscape information presented in the Lotsearch report indicated that the site is located within the Hawkesbury and Gymea soil landscapes. Hawkesbury and Gymea soils are characterised by well to rapidly drained soils with high sand content and very low salinity potential.

3.2 Dryland Salinity Mapping

Salinity hazard mapping information presented in the Lotsearch report indicated that the site is not located within a dryland salinity risk area.

3.3 Acid Sulfate Soil Risk and Planning

A review of the acid sulfate soil (ASS) risk map prepared by Department of Land and Water Conservation (1997) indicated that the site is not located within a risk area.

An ASS assessment was undertaken in conjunction with this salinity investigation. The ASS assessment concluded that ASS and/or potential ASS (PASS) conditions were not encountered. Reference should be made to the ASS report for further details.

3.4 Hydrogeology

Hydrogeological information presented in the Lotsearch report indicated that the regional aquifer on-site and in the areas immediately surrounding the site includes porous, extensive aquifers of low to moderate productivity. There were a total of 21 registered bores within the report buffer of 2,000m. The nearest registered bore was located approximately 820m to the north of the site.

3.5 Receiving Water Bodies and Surface Water Run-off

Surface water bodies were not identified in the immediate vicinity of the site. The closest surface water body is Gore Creek located approximately 75m to the south-west of the site, which in turn flows into the Lane Cove River which is approximately 275m south of the site. These water bodies are down-gradient of the site and are considered to be potential receptors.

Rainfall would be expected to infiltrate the site in the unsealed portions, and flow across sealed pavements into on-site drainage infrastructure, which is expected to discharge into Gore Creek.

⁷ Department of Land and Water Conservation, (1997). 1:25,000 Acid Sulfate Soil Risk Map (Series 9130N3, Ed 2)

During periods of heavy and/or prolonged rainfall, overland flow of stormwater would be expected to occur and generally flow towards the south-west in sympathy with the topography. Limited overland flow towards the south-east would be expected in the eastern portion of the site.

4 SAMPLING AND ANALYSIS PLAN

The sampling and analysis for this investigation was conducted generally in accordance with the Sampling, Analysis and Quality Plan (SAQP)⁸ prepared for the site. Reference should be made to the SAQP for detailed information. A summary of the SAQP is provided in the following sub-sections.

4.1 Soil Sampling Rationale

The investigation included soil sampling from eight locations (BH101, BH102, BH104 and BH105-BH109) placed on a regular grid pattern as shown on Figure 2. This density is equivalent to approximately three sampling points per hectare (the area of the site is approximately 2.4 hectares) and meets the requirements for an 'initial site investigation' recommended in the DLWC 2002 document for 'moderately intensive construction'. The density was considered adequate to identify large areas of salinity impacted soils at the site.

Soil sampling for this investigation was confined to the depth of approximately 15mBGL. This was considered adequate as the proposed development includes excavations to a maximum depth of approximately 14mBGL for the basement construction.

The following areas were excluded from the investigation:

Table 4-1: Exclusion Areas

Area	Description
Buildings	Sampling was not undertaken beneath the existing buildings at the site as access was not possible during the field investigation.
Batter slope in south-west	Sampling was not undertaken within the batter slope in the south-west of the site as the area could not be safely accessed with the drilling rig. JKE note that excavation associated with the redevelopment is not proposed within the vicinity of the batter slope.

4.2 Soil Sampling Methods

Fieldwork for this investigation was undertaken in September and October 2021. Sampling locations were set out using a tape measure from existing site features. Locations were marked using spray paint and were cleared for underground services prior to drilling.

The sample locations were drilled using a track mounted hydraulically operated drill rig equipped with spiral flight augers. Coring techniques were used to advance boreholes into the bedrock. Soil samples were obtained from a Standard Penetration Test (SPT) sampler or directly from the auger and recovered rock core when conditions did not allow use of the SPT sampler.

⁸ JKE, (2021). Report to TSA Management on Sampling, Analysis and Quality Plan (SAQP) for Additional Site Investigation at 97-115 River Road, Greenwich, NSW. (Ref: E32507BRrpt2-SAQP) (Referred to as SAQP).

Soil samples were collected from the fill and natural profiles encountered during the investigation based on distinct change in lithology or field observations. All samples were recorded on the borehole logs attached in the appendices.

Samples were placed in glass jars with plastic caps and Teflon seals with minimal headspace. Sampling personnel used disposable nitrile gloves during sampling activities. The samples were labelled with the job number, sampling location, sampling depth and date.

On completion of the fieldwork, the samples were delivered in the insulated sample container to a NATA registered laboratory for analysis under standard COC procedures. Field sampling protocols adopted for this assessment are summarised in the appendices.

4.3 Groundwater Sampling Rationale

The investigation included the installation of eight groundwater monitoring wells spread across the site as shown on Figure 2. The wells were positioned for site coverage.

4.4 Monitoring Well Installation

The monitoring well construction details are documented on appropriate borehole logs presented in the appendices. The well construction details are summarised in the following table:

Table 4-2: Monitoring Well Construction Details

Borehole Ref / Well Number	Installation Depth (BGL) (m)	Surface RL ¹ (m) (approx.)	Casing & Screen ² Depths (m)	Finishing Details (BGL) (m)
BH101/MW101	7.5	42.1	- Casing from 0 to 1.2 - Screen from 1.2 to 7.5	 Sand filter pack from 1.0 to 7.5 Bentonite seal/plug from 0.25 to 1.0 Finished with gatic cover flush with the surface surrounded by concrete grout.
BH102/MW102	6.1	37.7	- Casing from 0 to 1.2 - Screen from 1.2 to 6.1	 Sand filter pack from 1.0 to 6.1 Bentonite seal/plug from 0.25 to 1.0 Finished with gatic cover flush with the surface surrounded by concrete grout.
BH104/MW104	5.97	41.6	- Casing from 0 to 1.2 - Screen from 1.2 to 5.97	 Sand filter pack from 1.0 to 5.97 Bentonite seal/plug from 0.25 to 1.0 Finished with gatic cover flush with the surface surrounded by concrete grout.

Borehole Ref /	Installation	Surface RL ¹	Casing & Screen ² Depths	Finishing Details (BGL) (m)	
Well Number	Depth (BGL)	(m)	(m)		
	(m)	(approx.)			
BH105/MW105	7.86	44.8	- Casing from 0 to 0.86 - Screen from 0.86 to 7.86	 Sand filter pack from 1.6 to 7.86 Bentonite seal/plug from 0.8 to 1.6 Finished with gatic cover flush with the surface surrounded 	
BH106/MW106	12.52	49.1	- Casing from 0 to 1.52 - Screen from 1.52 to 12.52	by concrete grout. - Sand filter pack from 1.2 to 12.52 - Bentonite seal/plug from 0.4 to 1.2 - Finished with gatic cover flush with the surface surrounded by concrete grout.	
BH107/MW107	14.93	51.6	- Casing from 0 to 1.93 - Screen from 1.93 to 14.93	 Sand filter pack from 1.5 to 14.93 Bentonite seal/plug from 0.3 to 1.5 Finished with gatic cover flush with the surface surrounded by concrete grout. 	
BH109/MW109	12.54	49.1	- Casing from 0 to 1.54 - Screen from 1.54 to 12.54	 Sand filter pack from 1.4 to 12.54 Bentonite seal/plug from 0.3 to 1.4 Finished with gatic cover flush with the surface surrounded by concrete grout. 	
BH119/MW119	5.75	42.5	- Casing from 0 to 1.2 - Screen from 1.2 to 5.75	 Sand filter pack from 1.0 to 5.75 Bentonite seal/plug from 0.25 to 1.0 Finished with gatic cover flush with the surface surrounded by concrete grout. 	

Notes:

The estimated surface RLs for the monitoring wells were interpolated between spot level measurements from the survey plan provided by the client. A detailed survey of the well heads was outside the scope of the investigation.

¹ RL: Reduced Level (AHD)

 $^{^{\}rm 2}$ 50mm diameter Class 18 PVC has been used for the wells

⁻ information not available

4.5 Monitoring Well Development and Groundwater Sampling

The monitoring wells were developed using a submersible electric pump between 5 and 7 October 2021. Groundwater samples were obtained from the monitoring wells using a low-flow peristaltic pump between 13 and 14 October 2021. The pH, temperature, electrical conductivity (EC), dissolved oxygen (DO) and redox potential (Eh) were monitored during sampling using calibrated field instruments. The sampling data sheets are attached in the appendices. The samples were preserved in accordance with the requirements detailed in AS/NZS 5667.1-1998⁹ and placed in an insulated container with ice.

On completion of the fieldwork, the samples were delivered in an insulated sample container to a NATA registered laboratory for analysis under standard chain of custody procedures.

4.6 Laboratory Analysis

Samples were analysed by Envirolab Services Pty Ltd (NATA accreditation number 2901). Reference should be made to the laboratory reports (Ref: 279440-A, 279440-E, 280023, 280027-A and 280509) attached in the appendices for further details of the analytical methods.

4.7 Analytical Schedule

The analytical schedule is outlined in the following table:

Table 4-3: Analytical Schedule

Analyte	Fill Samples	Natural Soil Samples	Natural Bedrock Samples	Groundwater Samples
рН	13	2	15	6
Electrical Conductivity (EC)	13	2	14	6
Resistivity	13	2	15	-
Texture (used to determine EC extract – ECe)	8	1	3	-
Sulphate	13	2	15	6
Chloride	13	2	15	6

For this project, the soil texture results of selected samples were analysed and considered representative of similar soil/rock profiles.

⁹ Standards Australia, (1998). Water Quality – Part 1: Sampling, Guidance on the Design of Sampling Programs, Sampling Techniques and the Preservation and Handling of Samples, (AS/NZS 5667.1:1998)

5 SITE ASSESSMENT CRITERIA (SAC)

5.1 Soil Salinity and Plant Growth

The electrical conductivity (EC) of a 1:5 soil:water extract is commonly used as an indicator of soil salinity conditions as the reading is directly related to the electrolyte (salt) concentration of the extract. In order to compare the laboratory data with published salinity classes, the results are converted to equivalent saturated paste (ECe) using texture adjustment values presented in DLWC 2002.

The following table provides a summary of plant response with reference to salinity:

Table 5-1: Plant Response to Soil Salinity

ECe (dS/m)	Salinity Class	Plant Response ¹
<2	Non-saline	Salinity effects mostly negligible
2-4	Slightly saline	Yields of very sensitive crops may be affected
4-8	Moderately saline	Yield of many crops affected
8-16	Very saline	Only tolerant crops yield satisfactorily
>16	Highly saline	Only a few very tolerant crops yield satisfactorily

Note:

5.2 Soil pH and Plant Growth

Soil pH is a measure of the acidity or alkalinity of the soils and values have been assessed as an indicator of soil fertility with respect to plant growth. The optimal pH for plant growth is between 5.5 and 7. Beyond this range, effective revegetation of exposed soil following disturbance is increasingly difficult and the potential for erosion is considered to increase.

Highly alkaline soils are commonly associated with saline and sodic soil conditions and can limit the ability of plants to take up water and nutrients. Highly acidic soils exhibit aluminium toxicity toward plants and can limit the ability of plants to take up other essential nutrients including molybdenum.

Interpretation of soil pH with respect to plant growth is undertaken using the ratings published in Bruce and Rayment (1982¹⁰) presented below:

Table 5-2: Plant Response to Soil pH

рН	Rating
<4.5	Extremely acidic
4.5-5.0	Very strongly acidic
	, ,

¹⁰ Bruce, R.C. and Rayment, G.E., (1982). *Analytical Methods and Interpretations used by the Agricultural Chemistry Branch for Soil and Land Use Surveys,* (referred to as Bruce and Rayment 1982)

^{1 -} Plant Response to Salinity Class has been adopted from DLWC 2002

pH	Rating
5.1-5.5	Strongly acidic
5.6 – 7.3	Optimal plant growth
7.4-7.8	Mildly alkaline
7.9-8.4	Moderately alkaline
8.5-9.0	Strongly alkaline
>9.1	Very strongly alkaline

5.3 Cation Exchange Capacity (CEC) in Soil

The ability of soils to attract, retain and exchange cations (positively charged ions) is estimated by the calculated CEC value. CEC represents the major controlling factor in stability of clay soil structure, nutrient availability for plant growth, soil pH and the reaction of the soil to chemical applications (fertilisers, conditioners etc.).

High CEC soils have a greater capacity to retain nutrients, however, deficient soils require greater applications of nutrients to correct imbalances. Low CEC soils have a reduced capacity to retain nutrients and may result in leaching of nutrients from the soil in the event of excess nutrient applications.

Metson (1961¹¹) developed a set of ratings for effective CEC and the most abundant cations. These are summarised below (values are in meq/100g):

Table 5-3: CEC Rating

Rating	eCEC	Exch Na	Exch K	Exch Ca	Exch Mg
Very low	<6	0-0.1	0-0.2	0-2	0-0.3
Low	6-12	0.1-0.3	0.2-0.3	2-5	0.3-1
Moderate	12-25	0.3-0.7	0.3-0.7	5-10	1-3
High	25-40	0.7-2	0.7-2	10-20	3-8
Very high	>40	>2	>2	>20	>8

5.3.1 Ratio of Exchangeable Calcium to Magnesium

To maintain soil structure there should be a ratio of around 4:1 to 6:1 calcium to magnesium for a balanced soil (Eckert 1987¹²). At ratios of less than 4:1 calcium is considered to be deficient, whilst at ratios of greater than 6:1 are considered to be magnesium deficient.

¹² Eckert, D.J, (1987) .Soil Test Interpretation: Basic Cation Saturation Ratios and Sufficiency Levels (referred to as Eckert 1987)

¹¹ Metson, A.J, (1961). *Methods of Chemical Analysis for Soil Survey Samples* (referred to as Metson 1961)

5.4 Exchangeable Sodium Percentage or Sodicity (ESP%)

Exchangeable sodium is an important soil stability and salinity parameter. Excessive exchangeable sodium leads to unstable soils, increased runoff, potential salinity, dispersivity and water logging problems.

Normally the sodium content is expressed as a percentage of the CEC as other cations counteract the negative effects of sodium (known as ESP% and termed sodicity). The effect of the exchangeable sodium (exchangeable sodium percentage, ESP) varies with other soil factors such as the type of clay, the relative quantity of magnesium and the quantity of organic matter. However, Charman & Murphy (2000¹³) indicate that a soil is generally considered sodic if the ESP exceeds 6% and extremely sodic if the ESP exceeds 15%.

5.5 Groundwater Salinity

EC values in groundwater are dependent on numerous factors and can vary with changes in temperature and pH conditions. Suttar (1990¹⁴) has classed water into different types based on EC values as outlined in the table below.

Table 5-4: EC Ranges in Water

Water Type	EC (μS/cm)
Deionised Water	0.5 – 3
Pure Rainwater	<15
Freshwater Rivers	0 – 800
Marginal River Water	800 – 1600
Brackish Water	1600 – 4800
Saline Water	>4800
Seawater	51,500
Industrial Waters	100 – 10,000

5.6 Recommendations for Concrete Slabs and Footings in Saline Soils

In the absence of endorsed recommendations for buildings in saline environments, reference is made to the CCAA 2018. The guide provides recommendations on the minimum concrete grade/strength required for slabs and footings in saline soils. Reference should be made to the CCAA 2018 publication for further information:

¹⁴ Suttar, S., (1990). *Ribbons of Blue Handbook, Scitech*, Victoria (referred to as Suttar 1990)

¹³ Charman, P.E.V and Murphy, B.W (eds), (2000). Soils: Their Management and Properties, (referred to as Charman and Murphy 2000)

Table 5-5: Minimum Concrete Grade for Slabs and Footings in Saline Soils

ECe (dS/m)	Salinity Class	Concrete Grade ¹
<2	Non-saline	N20
2-4	Slightly saline	N20
4-8	Moderately saline	N25
8-16	Very saline	N32
>16	Highly saline	≥N40

Note:

5.7 Recommendations for Durability with Reference to AS2159-2009

In designing for durability, reference should be made to the requirements listed in the AS2159-2009. The exposure classification for concrete and steel piles and foundations is outlined in the following tables.

Table 5-6: Exposure Classification for Concrete Piles

Exposure Conditions				Exposure Classification	
Sulphate (expressed as SO ₄)		рН	pH Chlorides in		Soil
In Soil	In Groundwater		Groundwater	Conditions A ¹	Conditions
(ppm)	(ppm)		(ppm)		B ²
<5,000	<1,000	>5.5	<6,000	Mild	Non-aggressive
5,000-10,000	1,000-3,000	4.5-5.5	6,000-12,000	Moderate	Mild
10,000-20,000	3,000-10,000	4-4.5	12,000-30,000	Severe	Moderate
>20,000	>10,000	<4	>30,000	Very severe	Severe

Notes:

- $\ensuremath{\mathsf{1}}$ High permeability soils (eg sands and gravels) which are in groundwater
- 2 Low permeability soils (eg silts and clays) or all soils above groundwater

^{1 -} Concrete Grade for Salinity Class has been adopted from CCAA 2018

Table 5-7: Exposure Classification for Steel Piles

Exposure Conditions			Exposure Classifi	Exposure Classifications	
рН	Chlorides	Chlorides		Soil Conditions	Soil Conditions
	In Soil (ppm)	In Groundwater (ppm)	(ohm.cm)	A ¹	B ²
>5	<5,000	<1,000	>5,000	Non-aggressive	Non-aggressive
4-5	5,000-20,000	1,000-10,000	2,000-5,000	Mild	Non-aggressive
3-4	20,000-50,000	10,000-20,000	1,000-2,000	Moderate	Mild
<3	>50,000	>20,000	<1,000	Severe	Moderate

Notes:

- 1 High permeability soils (eg sands and gravels) which are in groundwater
- 2 Low permeability soils (eg silts and clays) or all soils above groundwater

6 INVESTIGATION RESULTS

6.1 Subsurface Conditions

A summary of the subsurface conditions encountered during the investigation is presented in the table below. For completeness, the summary below includes details from all boreholes drilled for the concurrent ASI. Reference should be made to the borehole logs attached in the appendices for further details.

Table 6-1: Summary of Subsurface Conditions

Profile	Description (metres below ground level - mBGL)
Pavement	Asphaltic concrete (AC) pavements were encountered at the surface in BH101 to BH106,
	BH109, BH114, BH116 and BH119 and ranged in thickness from 20mm to 100mm.
	Concrete pavement was encountered at the surface in BH112 and was 220mm thickness.
Fill	Fill was encountered at the surface or beneath the pavement in all boreholes and extended to depths of approximately 0.1mBGL (BH116) to 4.1mBGL (BH104). BH111 and BH117 were terminated in the fill at approximate depths of 0.8mBGL and 1.5mBGL.
	The fill typically comprised silty gravelly sand, sandy clay and silty clay, with occasional silty sand, clayey sand and sandy gravel, with inclusions of igneous, ironstone, sandstone and siltstone gravel, ash, slag, root fibres and building rubble (asphalt, brick, tile, ceramic, glass, metal and plastic fragments).
Natural Soil	Residual sandy clay, silty clay and silty sand was encountered beneath the fill in BH103, BH105, to BH107, BH109, BH110A, BH113 to BH116 and BH118 at depths of approximately 0.2mBGL (BH114) to 1.6mBGL (BH118).
Bedrock	Sandstone bedrock was encountered beneath the fill in BH101, BH102, BH104, BH108, BH112 and BH119, and beneath the residual soils in BH105 to BH107, BH109 and BH116 at depths of approximately 0.3mBGL (BH119) to 4.1mBGL (BH104).
	A layer of siltstone approximately 500mm thick was encountered within the sandstone bedrock at a depth of approximately 11mBGL in BH109. The siltstone was assessed to be of low strength.
Groundwater	All boreholes were dry during and on completion of auger drilling. Potable water is introduced during core drilling activities, which inhibits meaningful groundwater seepage measurements during drilling.
	Standing water level (SWL) measured during sampling of the monitoring wells installed at the site ranged from approximately 3.58mBGL to 9.9mBGL. Groundwater RLs calculated on these measurements ranged from approximately 34mAHD to 42mAHD. The groundwater RLs indicate that excavation for the proposed basement will intercept groundwater.

6.2 Laboratory Results

A summary of the results is presented below.

Table 6-2: Summary of Laboratory Results

Analyte	Results				
EC & ECe	The EC results ranged from 9μS/m to 790μS/m.				
	The ECe results ranged from <2dS/m to 7.1dS/m.				
Resistivity	Resistivity values were calculated based on the raw EC values. The resistivity values for the				
	soil samples ranged from 1266ohm.cm to 111,111ohm.cm.				
рН	The results of the analysis ranged from pH 4.9 to pH 9.8.				
CEC	The results of the analysis ranged from:				
	 CEC – below the laboratory detection limits (PQL) to 153meq/100g; 				
	 Exchangeable Na – below the PQL to 2.2meq/100g; 				
	 Exchangeable K – below the PQL to 1.9meq/100g; 				
	 Exchangeable Ca – 0.1meq/100g to 100meq/100g; and 				
	• Exchangeable Mg – 0.4meq/100g to 49meq/100g.				
Sulphate	The results ranged from below the PQL to 1,800mg/kg.				
Chloride	The results ranged from below the PQL to 25mg/kg.				
Groundwater	The results of the analysis ranged from:				
	● pH – pH 4.5 to pH 7;				
	• EC – 69μS/cm to 590μS/cm;				
	Chloride - 4mg/L to 42mg/L; and				
	Sulphate - 4mg/L to 150mg/L.				

Note:

Na – Sodium, K – Potassium, Ca – Calcium, Mg – Magnesium

7 RESULTS INTERPRETATION

The soil and groundwater laboratory results were compared to the relevant SAC in the report tables attached in the appendices. Interpretation of the results against the SAC is provided in the following table.

Table 7-1: Interpretation of Laboratory Results

Parameter	Notes
Soil Salinity and Plant Growth	The ECe results were generally <2dS/m. Soil samples collected from BH104 (0.04-0.3m and 3.2-3.45m) were classed as moderately saline and slightly saline respectively. All other soil samples were classed as non-saline.
Soil pH and Plant Growth	The soil pH results ranged from 4.9 to 9.8 and are classed as very strongly acidic to very strongly alkaline. The majority of the surficial soils were generally within the strongly alkaline range for plant growth.
	The acidic conditions generally increased with depth. The proposed excavations will generally expose acidic soils and may require treatment with lime or gypsum in order to make the soils suitable for plant growth.
CEC in Soil	The CEC values ranged from <1meq/100g to 153meq/100g in the very low to very high range. The majority of the samples were within the very low to moderate range and are generally indicative of the low levels of organic matter within the soils.
Ratio of Calcium to Magnesium	The results indicate that the soils have more calcium than magnesium. The CEC of the soil is generally very low to moderate. Lime and gypsum can be used to stabilise the soil which will improve soil structure for both engineering and fertility purposes.
ESP%	The ESP% values of the samples ranged from 0.5% to 6.8%. The majority of the ESP results were below the 5% threshold and were classed as non-sodic.
Groundwater Salinity	The laboratory results indicate that the groundwater is generally non-saline and within the 'freshwater rivers' water type.
Concrete Slabs and Footings in Saline Soils (CCAA 2018)	The proposed earthworks are anticipated to expose soils and bedrock generally classed as non-saline to moderately saline in the vicinity of BH104. The CCAA 2018 recommended concrete grade for slabs and footings in moderately-saline soils is N25.
	Reference should also be made to AS2159-2009 for minimum concrete strengths and reinforcement cover for concrete piles/foundations.
Soil Conditions for Exposure Classification (AS2159-2009)	The boreholes drilled for the investigation have indicated that the subsurface conditions at the site generally comprise of low permeability soils (i.e. silts and clays) underlain by sandstone bedrock. Based on this, the exposure classification outlined under 'Soil Conditions B' has been adopted for the investigation.
Exposure Classification for Concrete Piles/Foundations (AS2159-2009)	The soil pH and sulphate results indicate that the soils are mildly aggressive towards buried concrete.
,	The groundwater pH, sulphate and chloride results indicate that the groundwater is mild to moderately aggressive towards buried concrete.
Exposure Classification for Steel Piles/Foundations (AS2159-2009)	The soil resistivity, pH and chloride results indicate that the soils are mildly aggressive towards buried steel.

Parameter	Notes
	The groundwater pH and chloride results indicate that the groundwater is non aggressive towards buried steel.

8 CONCLUSIONS AND RECOMMENDATIONS

The investigation identified the following salinity conditions at the site:

- The soils are classed as very strongly acidic to very strongly alkaline;
- The soils are classed as non-saline with localised occurrences of slightly to moderately saline conditions;
- The soils are generally non-sodic;
- The soils are mildly aggressive towards buried concrete;
- The soils are mildly aggressive towards buried steel;
- The groundwater is moderately aggressive towards buried concrete; and
- The groundwater is not aggressive towards buried steel.

Based on the results of this investigation, JKE recommend preparing a salinity management plan (SMP) for the proposed development. The salinity results outlined in this report should be reviewed and incorporated into the design of the proposed development by the project team (civil, structural and landscaping). The SMP should be reviewed in conjunction with the recommendations provided by the design team.

JKE consider that the report objectives outlined in Section 1.2 have been addressed.

9 LIMITATIONS

The report limitations are outlined below:

- Salinity is a natural phenomenon and can change over time based on site conditions and climatic variations. Changes to existing drainage patters can also impact the salinity at the site. The results outlined in this report are a snap shot of conditions present at the time of the investigation and is bound to change over time;
- JKE accepts no responsibility for any unidentified salinity issues at the site. Any unexpected problems/subsurface features that may be encountered during development works should be inspected by an environmental consultant as soon as possible;
- JKE accepts no responsibility for non-compliance of salinity management recommends outlined in this report;
- This report has been prepared based on site conditions which existed at the time of the investigation; scope of work and limitation outlined in the JKE proposal; and terms of contract between JKE and the client (as applicable);
- The conclusions presented in this report are based on investigation of conditions at specific locations, chosen to be as representative as possible under the given circumstances, visual observations of the site and immediate surrounds and documents reviewed as described in the report;
- Subsurface soil and rock conditions encountered between investigation locations may be found to be different from those expected. Groundwater conditions may also vary, especially after climatic changes;
- The investigation and preparation of this report have been undertaken in accordance with accepted practice for environmental consultants, with reference to applicable environmental regulatory authority and industry standards, guidelines and the assessment criteria outlined in the report;
- Where information has been provided by third parties, JKE has not undertaken any verification process, except where specifically stated in the report;
- JKE has not undertaken any assessment of off-site areas that may be potential salinity sources or may have been impacted by adverse salinity conditions, except where specifically stated in the report;
- JKE accept no responsibility for potentially asbestos containing materials that may exist at the site.
 These materials may be associated with demolition of pre-1990 constructed buildings or fill material at the site;
- JKE have not and will not make any determination regarding finances associated with the site;
- Additional investigation work may be required in the event of changes to the proposed development or land use. JKE should be contacted immediately in such circumstances;
- Material considered to be suitable from a geotechnical point of view may be unsatisfactory from a salinity viewpoint, and vice versa;
- This report has been prepared for the particular project described and no responsibility is accepted for the use of any part of this report in any other context or for any other purpose;
- Copyright in this report is the property of JKE. JKE has used a degree of care, skill and diligence normally exercised by consulting professionals in similar circumstances and locality. No other warranty expressed or implied is made or intended. Subject to payment of all fees due for the investigation, the client alone shall have a licence to use this report;

- If the client, or any person, provides a copy of this report to any third party, such third party must not rely on this report except with the express written consent of JKE; and
- Any third party who seeks to rely on this report without the express written consent of JKE does so entirely at their own risk and to the fullest extent permitted by law, JKE accepts no liability whatsoever, in respect of any loss or damage suffered by any such third party.

Important Information About This Report

These notes have been prepared by JKE to assist with the assessment and interpretation of this report.

The Report is based on a Unique Set of Project Specific Factors

This report has been prepared in response to specific project requirements as stated in the JKE proposal document which may have been limited by instructions from the client. This report should be reviewed, and if necessary, revised if any of the following occur:

- The proposed land use is altered;
- The defined subject site is increased or sub-divided;
- The proposed development details including size, configuration, location, orientation of the structures or landscaped areas are modified;
- The proposed development levels are altered, eg addition of basement levels; or
- Ownership of the site changes.

JKE will not accept any responsibility whatsoever for situations where one or more of the above factors have changed since completion of the assessment. If the subject site is sold, ownership of the assessment report should be transferred by JKE to the new site owners who will be informed of the conditions and limitations under which the assessment was undertaken. No person should apply an assessment for any purpose other than that originally intended without first conferring with the consultant.

Changes in Subsurface Conditions

Subsurface conditions are influenced by natural geological and hydrogeological process and human activities. Groundwater conditions are likely to vary over time with changes in climatic conditions and human activities within the catchment (e.g. water extraction for irrigation or industrial uses, subsurface waste water disposal, construction related dewatering). Soil and groundwater salinity concentrations may also vary over time through migration and accumulation of salts, importation of materials, construction and landscaping. The conclusions of an assessment report may have been affected by the above factors if a significant period of time has elapsed prior to commencement of the proposed development.

This Report is based on Professional Interpretations of Factual Data

Site assessments identify actual subsurface conditions at the actual sampling locations at the time of the investigation. Data obtained from the sampling and subsequent laboratory analyses, available site history information and published regional information is interpreted by geologists, engineers or environmental scientists and opinions are drawn about the overall subsurface conditions, the nature and extent of salinity, the likely impact on the proposed development and appropriate management measures.

Actual conditions may differ from those inferred, because no professional, no matter how qualified, and no subsurface exploration program, no matter how comprehensive, can reveal what is hidden by earth, rock and time. The actual interface between materials may be far more gradual or abrupt than an assessment indicates. Actual conditions in areas not sampled may differ from predictions. Nothing can be done to prevent the unanticipated, but steps can be taken to help minimise the impact. For this reason, site owners should retain the services of their consultants throughout the development stage of the project, to identify variances, conduct additional tests which may be needed, and to recommend solutions to problems encountered on site.

Assessment Limitations

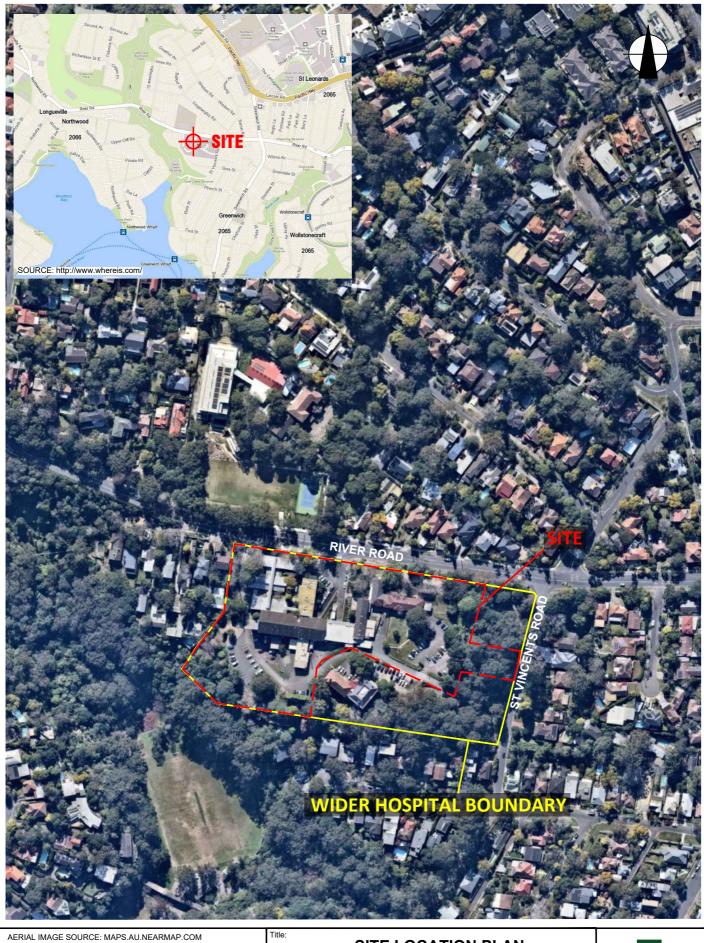
The assessment is designed to identify major salinity risks at the site. Implementing the management recommends can minimise the risks. No assessment can identify all risks as salinity is a natural phenomenon which can change over time. Even a rigorous professional assessment may not detect all potential salinity impacts on a site. Salinity may be present in areas that were not surveyed or sampled, or may accumulate in areas which showed no signs of salinity when sampled.

Misinterpretation of Site Assessments by Design Professionals

Costly problems can occur when other design professionals develop plans based on misinterpretation of an assessment report. To minimise problems associated with misinterpretations, the environmental consultant should be retained to work with appropriate professionals to explain relevant findings and to review the adequacy of plans and specifications relevant to contamination issues.

Logs Should not be Separated from the Assessment Report

Borehole and test pit logs are prepared by environmental scientists, engineers or geologists based upon interpretation of field conditions and laboratory evaluation of field samples. Logs are normally provided in our reports and these should not be re-drawn for inclusion in site management or other design drawings, as subtle but significant drafting errors or omissions may occur in the transfer process. Photographic reproduction can eliminate this problem, however contractors can still misinterpret the logs during bid preparation if separated from the text of the assessment. If this occurs, delays, disputes and unanticipated costs may result. In all cases it is necessary to refer to the rest of the report to obtain a proper understanding of the assessment. Please note that logs with the 'Environmental Log' header are not suitable for geotechnical purposes as they have not been peer reviewed by a Senior Geotechnical Engineer.

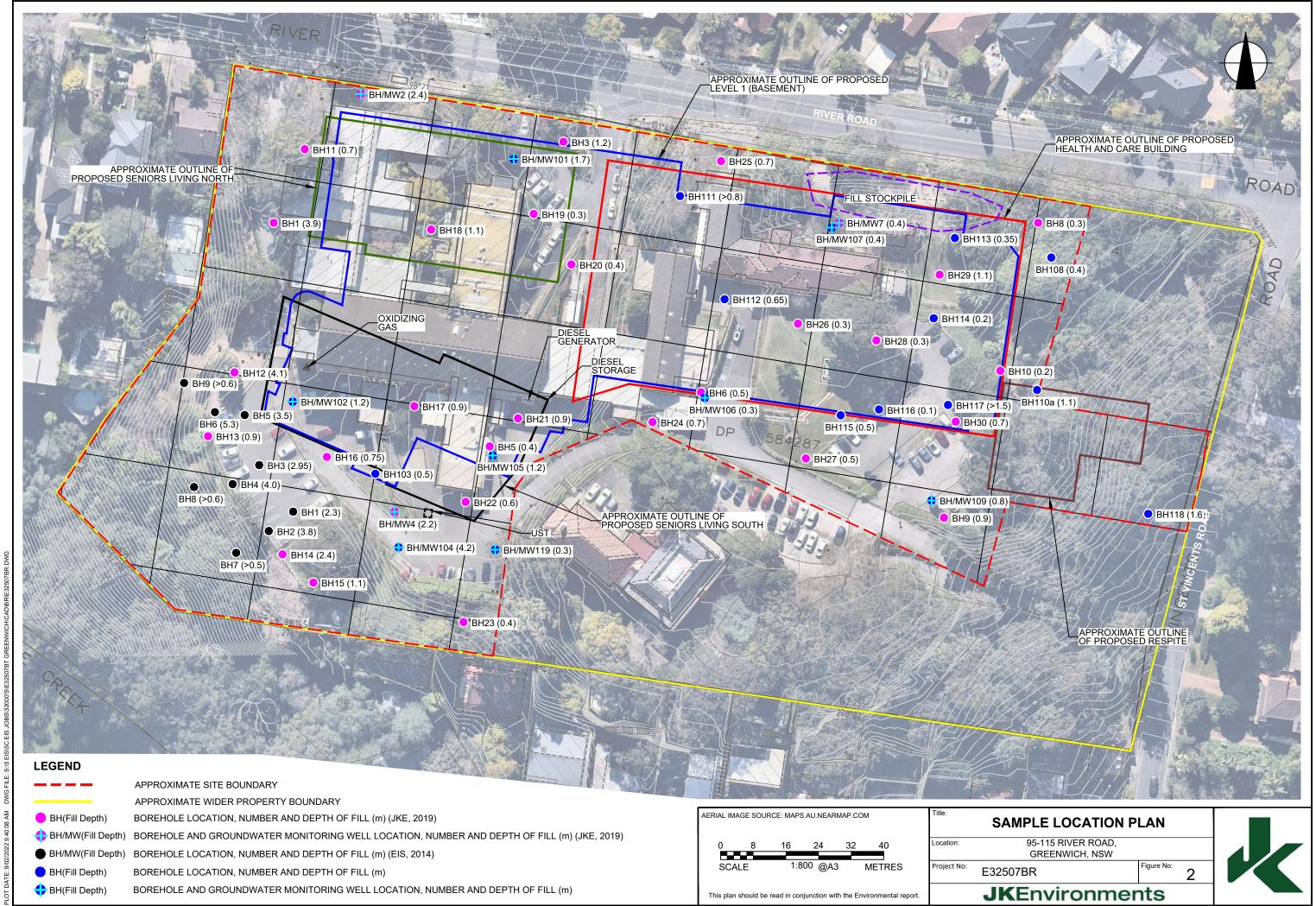

To reduce the likelihood of borehole and test pit log misinterpretation, the complete assessment should be available to persons or organisations involved in the project, such as contractors, for their use. Denial of such access and disclaiming responsibility for the accuracy of subsurface information does not insulate an owner from the attendant liability. It is critical that the site owner provides all available site information to persons and organisations such as contractors.

Read Responsibility Clauses Closely

Because an environmental site assessment is based extensively on judgement and opinion, it is necessarily less exact than other disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, model clauses have been developed for use in written transmittals. These are definitive clauses designed to indicate consultant responsibility. Their use helps all parties involved recognise individual responsibilities and formulate appropriate action. Some of these definitive clauses are likely to appear in the environmental site assessment, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to any questions.

Appendix A: Report Figures

Title:


SITE LOCATION PLAN

Location: 95-115 RIVER ROAD,
GREENWICH, NSW

Project No: E32507BR

Figure No: 1

This plan should be read in conjunction with the Environmental report.

Appendix B: Laboratory Results Summary Tables

ABBREVIATIONS AND EXPLANATIONS FOR SALINITY TABLES

Abbreviations used in the Tables:

Ca Calcium

CEC Cation Exchange Capacity

DO Dissolved Oxygen

EC Electrical Conductivity

ECe Extract Electrical Conductivity

Eh Redox Potential

ESP Exchangeable Sodium Percentage (Each Na/CEC)

K Potassium Mg Magnesium Na Sodium

SWL Standing Water Level

Units used in the Tables

°C Degrees Celsius

dS/m deciSiemens per metre

m meters

meq/100g milliequivalents per 100 grams mg/kg milligrams per kilogram mg/L milligrams per litre

mV millivolts ohm.cm ohm centimetre

μS/cm microSiemens per centimetre

Notes on Specific Tables

SUMMARY OF SOIL LABORATORY RESULTS - EC and ECe

- The salinity Class has been adopted from 'Site Investigations for Urban Salinity' DLWC 2002.
- The chart function assumes an ECe value of 1.9 for values that are less than the practical quatitation limit.

SUMMARY OF RESISTIVITY CALCULATION ON SOIL EC RESULTS

- $\bullet\,$ The resistivity values have been calculated on the laboratory EC values.
- The classification has been derived from the Australian Standard 2159-2009 Piling Design and Installation (Table 6.5.2 [A] & [C])
- Table 6.5.2 [A] of Australian Standard 2159-2009 recommends using a Moderate Exposure Classification for Steel Piles in Fresh Water Soft Running Water

SUMMARY OF SOIL LABORATORY RESULTS - pH

- The pH Classification has been derived from the Australian Standard 2159-2009 Piling Design and Installation (Tables 6.4.2 [C] & 6.5.2 [C])
- Table 6.5.2 [A] of Australian Standard 2159-2009 recommends using a Moderate Exposure Classification for Steel Piles in Fresh Water - Soft Running Water

SUMMARY OF SOIL LABORATORY RESULTS - SULFATE & CHLORIDES

- The classification has been derived from the Australian Standard 2159-2009 Piling Design and Installation (Table 6.5.2 [A] & [C])
- The chart function assumes an concentration of 0.5mg/kg for values that are less than the practical quatitation li

SUMMARY OF SOIL LABORATORY RESULTS - CEC & ESP

• The Sodicity rating has been adopted from the publication 'Site Investigations for Urban Salinity' DLWC 2002.

SUMMARY OF GROUNDWATER LABORATORY RESULTS

- The classification has been derived from the Australian Standard 2159-2009 Piling Design and Installation (Table 6.5.2 [A] & [C]).
- Table 6.4.2 [A] recommends using a Mild Exposure Classification for Concrete Piles in Fresh Water -Treat as in Soil Condition 'A'.
- Table 6.5.2 [A] recommends using a Moderate Exposure Classification for Steel Piles in Fresh Water -Soft Running Water.

TABLE A SUMMARY OF SOIL LABORATORY RESULTS - EC and ECe

Borehole	Sample Depth	Sample Description	EC	ECe	Salinity Class
Number	(m)		(μS/cm)	(dS/m)	
BH101	0.02-0.4	Fill: Silty Gravelly Sand	170	<2	NON SALINE
BH101	0.5-0.85	Fill: Silty Sand	110	<2	NON SALINE
BH101	1.7-1.95	XW Sandstone	60	<2	NON SALINE
BH102	0.05-0.1	Fill: Silty Gravelly Sand	71	<2	NON SALINE
BH102	0.5-0.95	Fill: Silty Clay	81	<2	NON SALINE
BH102	1.4-1.6	Sandstone	53	<2	NON SALINE
BH102	1.4-1.6	LAB DUPLICATE	49	<2	NON SALINE
BH104	0.04-0.3	Fill: Sandy Gravel	790	7.1	MODERATELY SALINE
BH104	1.5-1.95	Fill: Silty Gravelly Sand	110	<2	NON SALINE
BH104	3.2-3.45	Fill: Silty Sand	170	2.9	SLIGHTLY SALINE
BH105	0.25-0.4	Fill: Silty Gravelly Sand	110	<2	NON SALINE
BH105	0.5-0.95	Fill: Clayey Silty Sand	130	<2	NON SALINE
BH105	1.2-1.4	Sandy Clay	39	<2	NON SALINE
BH105	2.9-3.0	XW Sandstone	43	<2	NON SALINE
BH106	7.9-8.0	Sandstone	17	<2	NON SALINE
BH106	10.9-11.0	Sandstone	11	<2	NON SALINE
BH106	10.9-11.0	LAB DUPLICATE	9	<2	NON SALINE
BH107	0-0.2	Fill: Silty Clay	34	<2	NON SALINE
BH107	1.3-1.5	Silty Clay	21	<2	NON SALINE
BH107	3.9-4.0	Sandstone	10	<2	NON SALINE
BH107	5.9-6.0	Sandstone	13	<2	NON SALINE
BH107	5.9-6.0	LAB DUPLICATE	16	<2	NON SALINE
BH107	13.9-14.0	Sandstone	16	<2	NON SALINE
BH107	14.9-15.0	Sandstone	16	<2	NON SALINE
BH108	0.1-0.4	Fill: Sandy Silty Clay	49	<2	NON SALINE
BH108	1.9-2.0	Sandstone	19	<2	NON SALINE
BH108	2.9-3.0	Sandstone	11	<2	NON SALINE
BH108	6.9-7.0	Sandstone	13	<2	NON SALINE
BH108	6.9-7.0	LAB DUPLICATE	14	<2	NON SALINE
BH108	7.9-8.0	Sandstone	16	<2	NON SALINE
BH108	9.9-10.0	Sandstone	20	<2	NON SALINE
BH109	0.01-0.4	Fill: Clayey Gravelly Sand	77	<2	NON SALINE
BH109	0.5-0.8	Fill: Sandy Clay	60	<2	NON SALINE
Text1					
Total Number o	f Samples		33	33	-
Minimum Value	•		9	<pql< td=""><td>-</td></pql<>	-
Maximum Value	e		790	7.1	-

ECe Values (dS/m)	Salinity Class
<2	NON SALINE
2 to 4	SLIGHTLY SALINE
4 to 8	MODERATELY SALINE
8 to 16	VERY SALINE
>16	HIGHLY SALINE

TABLE B SUMMARY OF RESISTIVITY CALCULATION ON SOIL EC RESULTS

Borehole	Sample Depth	Sample Description	EC	Resistivity	Classification
Number	(m)		(μS/cm)	(ohm.cm)	Condition B
BH101	0.02-0.4	Fill: Silty Gravelly Sand	170	5,882	Non Aggressive
BH101	0.5-0.85	Fill: Silty Sand	110	9,091	Non Aggressive
BH101	1.7-1.95	XW Sandstone	60	16,667	Non Aggressive
BH102	0.05-0.1	Fill: Silty Gravelly Sand	71	14,085	Non Aggressive
BH102	0.5-0.95	Fill: Silty Clay	81	12,346	Non Aggressive
BH102	1.4-1.6	Sandstone	53	18,868	Non Aggressive
BH102	1.4-1.6	LAB DUPLICATE	49	20,408	Non Aggressive
BH104	0.04-0.3	Fill: Sandy Gravel	790	1,266	Mildly Aggressive
BH104	1.5-1.95	Fill: Silty Gravelly Sand	110	9,091	Non Aggressive
BH104	3.2-3.45	Fill: Silty Sand	170	5,882	Non Aggressive
BH105	0.25-0.4	Fill: Silty Gravelly Sand	110	9,091	Non Aggressive
BH105	0.5-0.95	Fill: Clayey Silty Sand	130	7,692	Non Aggressive
BH105	1.2-1.4	Sandy Clay	39	25,641	Non Aggressive
BH105	2.9-3.0	XW Sandstone	43	23,256	Non Aggressive
BH106	7.9-8.0	Sandstone	17	58,824	Non Aggressive
BH106	10.9-11.0	Sandstone	11	90,909	Non Aggressive
BH106	10.9-11.0	LAB DUPLICATE	9	111,111	Non Aggressive
BH107	0-0.2	Fill: Silty Clay	34	29,412	Non Aggressive
BH107	1.3-1.5	Silty Clay	21	47,619	Non Aggressive
BH107	3.9-4.0	Sandstone	10	100,000	Non Aggressive
BH107	5.9-6.0	Sandstone	13	76,923	Non Aggressive
BH107	5.9-6.0	LAB DUPLICATE	16	62,500	Non Aggressive
BH107	13.9-14.0	Sandstone	16	62,500	Non Aggressive
BH107	14.9-15.0	Sandstone	16	62,500	Non Aggressive
BH108	0.1-0.4	Fill: Sandy Silty Clay	49	20,408	Non Aggressive
BH108	1.9-2.0	Sandstone	19	52,632	Non Aggressive
BH108	2.9-3.0	Sandstone	11	90,909	Non Aggressive
BH108	6.9-7.0	Sandstone	13	76,923	Non Aggressive
BH108	6.9-7.0	LAB DUPLICATE	14	71,429	Non Aggressive
BH108	7.9-8.0	Sandstone	16	62,500	Non Aggressive
BH108	9.9-10.0	Sandstone	20	50,000	Non Aggressive
BH109	0.01-0.4	Fill: Clayey Gravelly Sand	77	12,987	Non Aggressive
BH109	0.5-0.8	Fill: Sandy Clay	60	16,667	Non Aggressive
al Number of Sa	mnles		33	33	_
imum Value	inipics		9	1,266	-
kimum Value			790	111,111	-

 $Classification \ is \ based \ on \ Soil \ condition \ 'B' - low \ permeability \ soils \ (e.g. \ silts \ \& \ clays) \ or \ all \ soils \ above \ groundwater.$

Resistivity Values (ohm.cm)	Classification for Steel Piles
>5,000	Non-Aggressive
2,000 - 5,000	Non-Aggressive
1,000 - 2,000	Mildly Aggressive
<1,000	Moderately Aggressive

TABLE C SUMMARY OF SOIL LABORATORY RESULTS - pH

Borehole	Sample Depth (m)	Sample Description	pH	Classification for Concrete	Classification for Steel
Number	Sample Depth (m)	Sample Description	рп	Piles	Piles
				Condition B	Condition B
BH101	0.02-0.4	Fill: Silty Gravelly Sand	9.8	Non-Aggressive	Non-Aggressive
BH101	0.5-0.85	Fill: Silty Sand	9.1	Non-Aggressive	Non-Aggressive
BH101	1.7-1.95	XW Sandstone	8.7	Non-Aggressive	Non-Aggressive
BH102	0.05-0.1	Fill: Silty Gravelly Sand	9	Non-Aggressive	Non-Aggressive
BH102	0.5-0.95	Fill: Silty Clay	7	Non-Aggressive	Non-Aggressive
BH102	1.4-1.6	Sandstone	7.8	Non-Aggressive	Non-Aggressive
BH102	1.4-1.6	LAB DUPLICATE	7.9	Non-Aggressive	Non-Aggressive
BH104	0.04-0.3	Fill: Sandy Gravel	8.5	Non-Aggressive	Non-Aggressive
BH104	1.5-1.95	Fill: Silty Gravelly Sand	9	Non-Aggressive	Non-Aggressive
BH104	3.2-3.45	Fill: Silty Sand	8.2	Non-Aggressive	Non-Aggressive
BH105	0.25-0.4	Fill: Silty Gravelly Sand	8.8	Non-Aggressive	Non-Aggressive
BH105	0.5-0.95	Fill: Clayey Silty Sand	8.7	Non-Aggressive	Non-Aggressive
BH105	1.2-1.4	Sandy Clay	8	Non-Aggressive	Non-Aggressive
BH105	2.9-3.0	XW Sandstone	5.4	Mildly Aggressive	Non-Aggressive
BH106	7.9-8.0	Sandstone	6	Non-Aggressive	Non-Aggressive
BH106	10.9-11.0	Sandstone	6.2	Non-Aggressive	Non-Aggressive
BH106	10.9-11.0	LAB DUPLICATE	6.3	Non-Aggressive	Non-Aggressive
BH106	12.45-12.55	Sandstone	6.2	Non-Aggressive	Non-Aggressive
BH107	0-0.2	Fill: Silty Clay	6.8	Non-Aggressive	Non-Aggressive
BH107	1.3-1.5	Silty Clay	5.9	Non-Aggressive	Non-Aggressive
BH107	3.9-4.0	Sandstone	5.3	Mildly Aggressive	Non-Aggressive
BH107	5.9-6.0	Sandstone	5.3	Mildly Aggressive	Non-Aggressive
BH107	5.9-6.0	LAB DUPLICATE	5.3	Mildly Aggressive	Non-Aggressive
BH107	13.9-14.0	Sandstone	5.8	Non-Aggressive	Non-Aggressive
BH107	14.9-15.0	Sandstone	5.7	Non-Aggressive	Non-Aggressive
BH108	0.1-0.4	Fill: Sandy Silty Clay	4.9	Mildly Aggressive	Non-Aggressive
BH108	1.9-2.0	Sandstone	5.3	Mildly Aggressive	Non-Aggressive
BH108	2.9-3.0	Sandstone	5.4	Mildly Aggressive	Non-Aggressive
BH108	6.9-7.0	Sandstone	5.9	Non-Aggressive	Non-Aggressive
BH108	6.9-7.0	LAB DUPLICATE	5.9	Non-Aggressive	Non-Aggressive
BH108	7.9-8.0	Sandstone	5.8	Non-Aggressive	Non-Aggressive
BH108	9.9-10.0	Sandstone	5.7	Non-Aggressive	Non-Aggressive
BH109	0.01-0.4	Fill: Clayey Gravelly Sand	9	Non-Aggressive	Non-Aggressive
BH109	0.5-0.8	Fill: Sandy Clay	7.7	Non-Aggressive	Non-Aggressive
	er of Samples		34	-	-
Minimum Va			4.9	-	-
Maximum V	aiue		9.8	-	-

Classification is based on Soil condition 'B' - low permeability soils (e.g. silts & clays) or all soils above groundwater.

	Classification for Concrete Piles	pH Value	Classification for Steel Piles
>5.5	Non-Aggressive	>5	Non-Aggressive
4.5 - 5.5	Mildly Aggressive	4.0 - 5.0	Non-Aggressive
4 - 4.5	Moderately Aggressive	3.0 - 4.0	Mildly Aggressive
<4	Severely Aggressive	<3	Moderately Aggressive

TABLE D
SUMMARY OF SOIL LABORATORY RESULTS - SULPHATE & CHLORIDES

Borehole Number	Sample Depth (m)	Sample Description	Chloride (mg/kg)	Sulphate (mg/kg)	Classification for Concrete Piles Sulfate - Condition B	Classification for Steel Piles Chloride - Condition B
BH101	0.02-0.4	Fill: Silty Gravelly Sand	<10	120	Non-Aggressive	Non-Aggressive
BH101	0.5-0.85	Fill: Silty Sand	<10	21	Non-Aggressive	Non-Aggressive
BH101	1.7-1.95	XW Sandstone	<10	24	Non-Aggressive	Non-Aggressive
BH102	0.05-0.1	Fill: Silty Gravelly Sand	<10	<10	Non-Aggressive	Non-Aggressive
BH102	0.5-0.95	Fill: Silty Clay	10	56	Non-Aggressive	Non-Aggressive
BH102	1.4-1.6	Sandstone	10	32	Non-Aggressive	Non-Aggressive
BH102	1.4-1.6	LAB DUPLICATE	10	30	Non-Aggressive	Non-Aggressive
BH104	0.04-0.3	Fill: Sandy Gravel	25	1800	Non-Aggressive	Non-Aggressive
BH104	1.5-1.95	Fill: Silty Gravelly Sand	<10	100	Non-Aggressive	Non-Aggressive
BH104	3.2-3.45	Fill: Silty Sand	10	130	Non-Aggressive	Non-Aggressive
BH105	0.25-0.4	Fill: Silty Gravelly Sand	<10	44	Non-Aggressive	Non-Aggressive
BH105	0.5-0.95	Fill: Clayey Silty Sand	<10	53	Non-Aggressive	Non-Aggressive
BH105	1.2-1.4	Sandy Clay	<10	10	Non-Aggressive	Non-Aggressive
BH105	2.9-3.0	XW Sandstone	<10	64	Non-Aggressive	Non-Aggressive
BH106	7.9-8.0	Sandstone	<10	20	Non-Aggressive	Non-Aggressive
BH106	10.9-11.0	Sandstone	<10	<10	Non-Aggressive	Non-Aggressive
BH106	10.9-11.0	LAB DUPLICATE	<10	<10	Non-Aggressive	Non-Aggressive
BH106	12.45-12.55	Sandstone	10	<10	Non-Aggressive	Non-Aggressive
BH107	0-0.2	Fill: Silty Clay	<10	<10	Non-Aggressive	Non-Aggressive
BH107	1.3-1.5	Silty Clay	<10	21	Non-Aggressive	Non-Aggressive
BH107	3.9-4.0	Sandstone	<10	10	Non-Aggressive	Non-Aggressive
BH107	5.9-6.0	Sandstone	<10	10	Non-Aggressive	Non-Aggressive
BH107	5.9-6.0	LAB DUPLICATE	<10	20	Non-Aggressive	Non-Aggressive
BH107	13.9-14.0	Sandstone	20	<10	Non-Aggressive	Non-Aggressive
BH107	14.9-15.0	Sandstone	20	<10	Non-Aggressive	Non-Aggressive
BH108	0.1-0.4	Fill: Sandy Silty Clay	10	45	Non-Aggressive	Non-Aggressive
BH108	1.9-2.0	Sandstone	20	49	Non-Aggressive	Non-Aggressive
BH108	2.9-3.0	Sandstone	<10	<10	Non-Aggressive	Non-Aggressive
BH108	6.9-7.0	Sandstone	10	<10	Non-Aggressive	Non-Aggressive
BH108	6.9-7.0	LAB DUPLICATE	10	<10	Non-Aggressive	Non-Aggressive
BH108	7.9-8.0	Sandstone	20	<10	Non-Aggressive	Non-Aggressive
BH108	9.9-10.0	Sandstone	20	<10	Non-Aggressive	Non-Aggressive
BH109	0.01-0.4	Fill: Clayey Gravelly Sand	<10	35	Non-Aggressive	Non-Aggressive
BH109	0.5-0.8	Fill: Sandy Clay	<10	88	Non-Aggressive	Non-Aggressive
Total Numbe	er of Samples		34	34	-	-
Minimum Va	lue		<pql< td=""><td><pql< td=""><td>-</td><td>-</td></pql<></td></pql<>	<pql< td=""><td>-</td><td>-</td></pql<>	-	-
Maximum Va	alue		25	1800	-	-

 $Classification \ is \ based \ on \ Soil \ condition \ 'B' - low \ permeability \ soils \ (e.g. \ silts \ \& \ clays) \ or \ all \ soils \ above \ groundwater.$

Sulfate Values	Classification for Concrete Piles	Chloride Values	Classification for Steel Piles
<5,000	Non-Aggressive	<5,000	Non-Aggressive
5,000 - 10,000	Mildly Aggressive	5,000 - 20,000	Non-Aggressive
10,000 - 20,000	Moderately Aggressive	20,000 - 50,000	Mildly Aggressive
>20,000	Severely Aggressive	>50,000	Moderately Aggressive
10,000 - 20,000	Moderately Aggressive	20,000 - 50,000	Mildly Aggressive

TABLE E SUMMARY OF SOIL LABORATORY RESULTS - CEC & ESP

Borehole	Sample Depth	Sample Description	Exchangeable Ca	Exchangeable K	Exchangeable Mg	Exchangeable Na	CEC	ESP	Ca:Mg
Number	(m)			(meq/100g)					
BH102	0.05-0.1	Fill: Silty Gravelly Sand	23	0.3	5.5	0.3	29	1.0%	4.18:1
BH104	0.04-0.3	Fill: Sandy Gravel	100	1.8	46	2	153	1.3%	2.17:1
BH104	0.04-0.3	LAB DUPLICATE	100	1.9	49	2.2	153	1.4%	2.04:1
BH104	0.5-0.95	Fill: Silty Gravelly Sand	12	0.3	5	0.2	17	1.2%	2.4:1
BH104	1.5-1.95	Fill: Silty Gravelly Sand	33	0.7	14	0.3	48	0.6%	2.36:1
BH105	0.25-0.4	Fill: Silty Gravelly Sand	9.8	<0.1	1.6	<0.1	12	0.8%	6.13:1
BH105	0.25-0.4	LAB DUPLICATE	12	<0.1	1.7	<0.1	14	0.7%	7.06:1
BH105	0.5-0.95	Fill: Clayey Silty Sand	13	0.1	2.2	<0.1	15	0.7%	5.91:1
BH105	1.2-1.4	Sandy Clay	2.3	<0.1	0.8	<0.1	3.2	3.1%	2.88:1
BH105	2.9-3.0	XW Sandstone	1.5	0.1	0.4	<0.1	2	5.0%	3.75:1
BH106	0.03-0.3	Fill: Clayey Gravelly Sand	18	0.4	5.2	1.7	25	6.8%	3.46:1
BH106	7.9-8.0	Sandstone	0.1	<0.1	0.6	<0.1	<1	NA	0.17:1
BH107	0-0.2	Fill: Silty Clay	8.2	0.2	2.2	<0.1	11	0.9%	3.73:1
BH108	0.1-0.4	Fill: Sandy Silty Clay	2.4	1.1	1.6	0.2	5.2	3.8%	1.5:1
BH109	0.01-0.4	Fill: Clayey Gravelly Sand	13	0.2	4.7	0.1	18	0.6%	2.77:1
BH109	0.5-0.8	Fill: Sandy Clay	2.5	<0.1	1.9	<0.1	4.5	2.2%	1.32:1
Total Numb	er of Samples		16	16	16	16	16	16	16
Minimum \	/alue		0.10	<pql< td=""><td>0.40</td><td><pql< td=""><td>1.0</td><td>0.6%</td><td>0.17 :1</td></pql<></td></pql<>	0.40	<pql< td=""><td>1.0</td><td>0.6%</td><td>0.17 :1</td></pql<>	1.0	0.6%	0.17 :1
Maximum \	Value		100.00	1.90	49.00	2.20	153.0	10.0%	7.06 :1

Sodicity Rating
Sodicity Rating
Non-Sodic
Sodic
Highly Sodic

TABLE F
SUMMARY OF GROUNDWATER LABORATORY RESULTS

			Field Meas	urements			Laboratory Results				Classification for	Classification for	
Sample Reference	SWL (m)	рН	EC (μS/cm)	Temp (°C)	Eh (mV)	DO (mg/L)	рН	EC (μS/cm)	Sulfate (mg/L)	Chloride (mg/L)	Concrete Piles Soil Condition B	Steel Piles Soil Condition B	
MW101	3.58	5.8	316	20.9	-37.1	1.4	6.2	300	36	25	Non-Aggressive	Non-Aggressive	
MW101 [LAB_DUP]	NA	NA	NA	NA	NA	NA	6.2	300	36	25	Non-Aggressive	Non-Aggressive	
MW102	3.67	6.5	72	22	-44	3.6	7.0	69	4	4	Non-Aggressive	Non-Aggressive	
MW105	6.03	5.1	660	24.9	-34.5	3.5	5.4	590	150	16	Mildly Aggressive	Non-Aggressive	
MW106	9.17	4.1	379	23.4	-51.6	6.5	4.5	350	65	42	Moderately Aggressive	Non-Aggressive	
MW107	9.9	4.3	231	16	-16.2	3.1	4.9	250	40	32	Mildly Aggressive	Non-Aggressive	
MW109	7.07	4.9	246	19.2	-53.2	1.1	5.3	240	48	19	Mildly Aggressive	Non-Aggressive	
Total Number of Samples	6	6	6	6	6	6	7	7	7	7	-	-	
Minimum Value	3.58	4.1	72	16	-53.2	1.1	4.5	69	4	4	-	-	
Maximum Value	9.9	6.5	660	24.9	-16.2	6.5	7.0	590	150	42	-	-	

Exposure Classification for Concrete Piles		Sulfate (mg/L)	Chloride (mg/L)	Classification B
Classification is based on Soil condition 'B' - low permeability	> 5.5	<1,000	<6,000	Non-Aggressive
soils (e.g. silts and clays) or all soils above groundwater.	4.5 - 5.5	1,000 - 3,000	6,000 - 12,000	Mildly Aggressive
	4.0 - 4.5	3,000 - 10,000	12,000 - 30,000	Moderately Aggressive
	< 4	>10,000	>30,000	Severely Aggressive
Exposure Classification for Steel Piles		рН	Chloride (mg/L)	Classification B
Classification is also based on Soil condition 'B' - low permeability		> 5	<1,000	Non-Aggressive
soils (e.g. silts and clays) or all soils above groundwater.		4.0 - 5.0	1,000 - 10,000	Non-Aggressive
		3.0 - 4.0	10,000 - 20,000	Mildly Aggressive

Appendix C: Lotsearch Environmental Risk and Planning Report

Date: 29 Sep 2021 14:52:25

Reference: LS024777 EP

Address: 97-115 River Road, Greenwich, NSW 2065

Disclaimer:

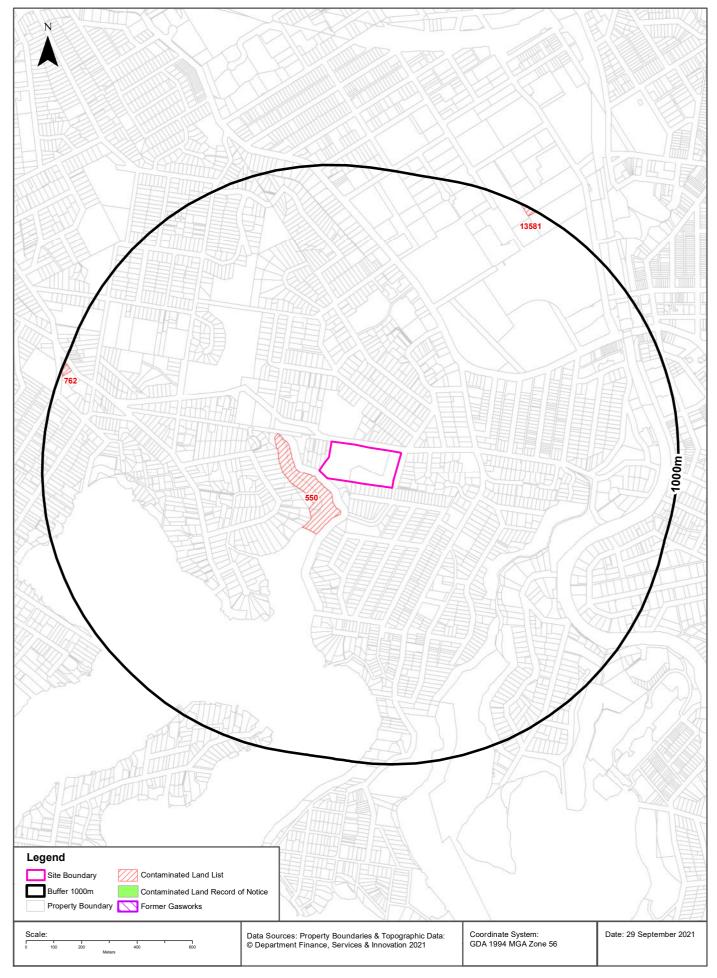
The purpose of this report is to provide an overview of some of the site history, environmental risk and planning information available, affecting an individual address or geographical area in which the property is located. It is not a substitute for an on-site inspection or review of other available reports and records. It is not intended to be, and should not be taken to be, a rating or assessment of the desirability or market value of the property or its features. You should obtain independent advice before you make any decision based on the information within the report. The detailed terms applicable to use of this report are set out at the end of this report.

Dataset Listing

Datasets contained within this report, detailing their source and data currency:

Dataset Name	Custodian	Supply Date	Currency Date	Update Frequency	Dataset Buffer (m)		No. Features within 100m	No. Features within Buffer
Cadastre Boundaries	NSW Department of Finance, Services & Innovation	20/08/2021	20/08/2021	Quarterly	-	-	-	-
Topographic Data	NSW Department of Finance, Services & Innovation	25/06/2019	25/06/2019	As required	-	-	-	-
List of NSW contaminated sites notified to EPA	Environment Protection Authority	08/09/2021	08/09/2021	Monthly	1000m	0	1	3
Contaminated Land Records of Notice	Environment Protection Authority	06/09/2021	06/09/2021	Monthly	1000m	0	0	0
Former Gasworks	Environment Protection Authority	11/08/2021	11/10/2017	Quarterly	1000m	0	0	0
National Waste Management Facilities Database	Geoscience Australia	12/05/2021	07/03/2017	Annually	1000m	0	0	1
National Liquid Fuel Facilities	Geoscience Australia	15/02/2021	13/07/2012	Annually	1000m	0	0	5
EPA PFAS Investigation Program	Environment Protection Authority	27/09/2021	28/04/2021	Monthly	2000m	0	0	0
Defence PFAS Investigation & Management Program - Investigation Sites	Department of Defence	28/09/2021	28/09/2021	Monthly	2000m	0	0	0
Defence PFAS Investigation & Management Program - Management Sites	Department of Defence	28/09/2021	28/09/2021	Monthly	2000m	0	0	0
Airservices Australia National PFAS Management Program	Airservices Australia	06/09/2021	06/09/2021	Monthly	2000m	0	0	0
Defence 3 Year Regional Contamination Investigation Program	Department of Defence	19/08/2021	19/08/2021	Quarterly	2000m	0	0	1
EPA Other Sites with Contamination Issues	Environment Protection Authority	02/02/2021	13/12/2018	Annually	1000m	0	0	0
Licensed Activities under the POEO Act 1997	Environment Protection Authority	27/09/2021	27/09/2021	Monthly	1000m	0	0	11
Delicensed POEO Activities still regulated by the EPA	Environment Protection Authority	27/09/2021	27/09/2021	Monthly	1000m	0	0	3
Former POEO Licensed Activities now revoked or surrendered	Environment Protection Authority	27/09/2021	27/09/2021	Monthly	1000m	1	4	7
UBD Business Directories (Premise & Intersection Matches)	Hardie Grant			Not required	150m	0	1	3
UBD Business Directories (Road & Area Matches)	Hardie Grant			Not required	150m	-	5	5
UBD Business Directory Dry Cleaners & Motor Garages/Service Stations (Premise & Intersection Matches)	Hardie Grant			Not required	500m	0	0	97
UBD Business Directory Dry Cleaners & Motor Garages/Service Stations (Road & Area Matches)	Hardie Grant			Not required	500m	-	0	16
Points of Interest	NSW Department of Finance, Services & Innovation	19/08/2021	19/08/2021	Quarterly	1000m	2	7	87
Tanks (Areas)	NSW Department of Customer Service - Spatial Services	19/08/2021	19/08/2021	Quarterly	1000m	0	0	5
Tanks (Points)	NSW Department of Customer Service - Spatial Services	19/08/2021	19/08/2021	Quarterly	1000m	0	0	3
Major Easements	NSW Department of Finance, Services & Innovation	19/08/2021	19/08/2021	Quarterly	1000m	0	2	18
State Forest	Forestry Corporation of NSW	25/02/2021	14/02/2021	Annually	1000m	0	0	0
NSW National Parks and Wildlife Service Reserves	NSW Office of Environment & Heritage	22/01/2021	11/12/2020	Annually	1000m	0	0	0
Hydrogeology Map of Australia	Commonwealth of Australia (Geoscience Australia)	08/10/2014	17/03/2000	As required	1000m	1	1	1
Temporary Water Restriction (Botany Sands Groundwater Source) Order 2018	NSW Department of Planning, Industry and Environment	26/10/2020	21/02/2018	Annually	1000m	0	0	0
Groundwater Boreholes	NSW Dept. of Primary Industries - Water NSW; Commonwealth of Australia (Bureau of Meteorology)	24/07/2018	23/07/2018	Annually	2000m	0	0	21

Dataset Name	Custodian	Supply Date	Currency Date	Update Frequency	Dataset Buffer (m)	No. Features On-site	No. Features within 100m	No. Features within Buffer
Geological Units 1:100,000	NSW Department of Planning, Industry and Environment	20/08/2014		Annually	1000m	1	1	4
Geological Structures 1:100,000	NSW Department of Planning, Industry and Environment	20/08/2014		Annually	1000m	0	0	0
Naturally Occurring Asbestos Potential	NSW Dept. of Industry, Resources & Energy	04/12/2015	24/09/2015	Unknown	1000m	0	0	0
Atlas of Australian Soils	Australian Bureau of Agriculture and Resource Economics and Sciences (ABARES)	19/05/2017	17/02/2011	As required	1000m	1	1	1
Soil Landscapes of Central and Eastern NSW	NSW Department of Planning, Industry and Environment	14/10/2020	27/07/2020	Annually	1000m	2	3	8
Environmental Planning Instrument Acid Sulfate Soils	NSW Department of Planning, Industry and Environment	19/08/2021	28/06/2021	Monthly	500m	0	-	-
Atlas of Australian Acid Sulfate Soils	CSIRO	19/01/2017	21/02/2013	As required	1000m	1	2	3
Dryland Salinity - National Assessment	National Land and Water Resources Audit	18/07/2014	12/05/2013	None planned	1000m	0	0	0
Mining Subsidence Districts	NSW Department of Customer Service - Subsidence Advisory NSW	19/08/2021	05/08/2021	Quarterly	1000m	0	0	0
Current Mining Titles	NSW Department of Industry	28/09/2021	28/09/2021	Monthly	1000m	0	0	0
Mining Title Applications	NSW Department of Industry	28/09/2021	28/09/2021	Monthly	1000m	0	0	0
Historic Mining Titles	NSW Department of Industry	28/09/2021	28/09/2021	Monthly	1000m	12	12	14
Environmental Planning Instrument SEPP State Significant Precincts	NSW Department of Planning, Industry and Environment	19/08/2021	07/12/2018	Monthly	1000m	0	0	0
Environmental Planning Instrument Land Zoning	NSW Department of Planning, Industry and Environment	19/08/2021	13/08/2021	Monthly	1000m	1	10	108
Commonwealth Heritage List	Australian Government Department of the Agriculture, Water and the Environment	18/05/2021	20/11/2019	Annually	1000m	0	0	0
National Heritage List	Australian Government Department of the Agriculture, Water and the Environment	18/05/2021	20/11/2019	Annually	1000m	0	0	0
State Heritage Register - Curtilages	NSW Department of Planning, Industry and Environment	19/08/2021	25/06/2021	Quarterly	1000m	1	1	4
Environmental Planning Instrument Local Heritage	NSW Department of Planning, Industry and Environment	19/08/2021	13/08/2021	Monthly	1000m	2	3	198
Bush Fire Prone Land	NSW Rural Fire Service	27/09/2021	23/08/2021	Weekly	1000m	2	2	2
Native Vegetation of the Sydney Metropolitan Area	NSW Office of Environment & Heritage	01/03/2017	16/12/2016	As required	1000m	4	11	41
Ramsar Wetlands of Australia	Australian Government Department of Agriculture, Water and the Environment	24/02/2021	19/03/2020	Annually	1000m	0	0	0
Groundwater Dependent Ecosystems	Bureau of Meteorology	14/08/2017	15/05/2017	Annually	1000m	0	0	0
Inflow Dependent Ecosystems Likelihood	Bureau of Meteorology	14/08/2017	15/05/2017	Unknown	1000m	0	0	0
NSW BioNet Species Sightings	NSW Office of Environment & Heritage	27/09/2021	27/09/2021	Weekly	10000m	-	-	-


Site Diagram

Contaminated Land

Contaminated Land

97-115 River Road, Greenwich, NSW 2065

List of NSW contaminated sites notified to EPA

Records from the NSW EPA Contaminated Land list within the dataset buffer:

Map Id	Site	Address	Suburb	Activity	Management Class	Status	Location Confidence	Dist	Direction
550	550 Gore Creek Reserve - Drainage Line St Vincents Road		Greenwich	Other Industry	Regulation under CLM Act not required	Current EPA List	Premise Match	27m	South West
762	762 Caltex 5 Northwood ROAD Station		Longueville	Service Station	Regulation under CLM Act not required	Current EPA List	Premise Match	965m	West
13581	Telstra Data Centre	4A Herbert STREET	ST LEONARDS	Other Petroleum	Regulation under CLM Act not required	Current EPA List	Premise Match	971m	North East

The values within the EPA site management class in the table above, are given more detailed explanations in the table below:

EPA site management class	Explanation
Contamination being managed via the planning process (EP&A Act)	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation. The contamination of this site is managed by the consent authority under the Environmental Planning and Assessment Act 1979 (EP&A Act) planning approval process, with EPA involvement as necessary to ensure significant contamination is adequately addressed. The consent authority is typically a local council or the Department of Planning and Environment.
Contamination currently regulated under CLM Act	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation under the Contaminated Land Management Act 1997 (CLM Act). Management of the contamination is regulated by the EPA under the CLM Act. Regulatory notices are available on the EPA's Contaminated Land Public Record of Notices.
Contamination currently regulated under POEO Act	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation. Management of the contamination is regulated under the Protection of the Environment Operations Act 1997 (POEO Act). The EPA's regulatory actions under the POEO Act are available on the POEO public register.
Contamination formerly regulated under the CLM Act	The EPA has determined that the contamination is no longer significant enough to warrant regulation under the Contaminated Land Management Act 1997 (CLM Act). The contamination was addressed under the CLM Act.
Contamination formerly regulated under the POEO Act	The EPA has determined that the contamination is no longer significant enough to warrant regulation. The contamination was addressed under the Protection of the Environment Operations Act 1997 (POEO Act).
Contamination was addressed via the planning process (EP&A Act)	The EPA has determined that the contamination is no longer significant enough to warrant regulation. The contamination was addressed by the appropriate consent authority via the planning process under the Environmental Planning and Assessment Act 1979 (EP&A Act).
Ongoing maintenance required to manage residual contamination (CLM Act)	The EPA has determined that ongoing maintenance, under the Contaminated Land Management Act 1997 (CLM Act), is required to manage the residual contamination. Regulatory notices under the CLM Act are available on the EPA's Contaminated Land Public Record of Notices.
Regulation being finalised	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation under the Contaminated Land Management Act 1997. A regulatory approach is being finalised.
Regulation under the CLM Act not required	The EPA has completed an assessment of the contamination and decided that regulation under the Contaminated Land Management Act 1997 is not required.
Under assessment	The contamination is being assessed by the EPA to determine whether regulation is required. The EPA may require further information to complete the assessment. For example, the completion of management actions regulated under the planning process or Protection of the Environment Operations Act 1997. Alternatively, the EPA may require information via a notice issued under s77 of the Contaminated Land Management Act 1997 or issue a Preliminary Investigation Order.

NSW EPA Contaminated Land List Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

Contaminated Land

97-115 River Road, Greenwich, NSW 2065

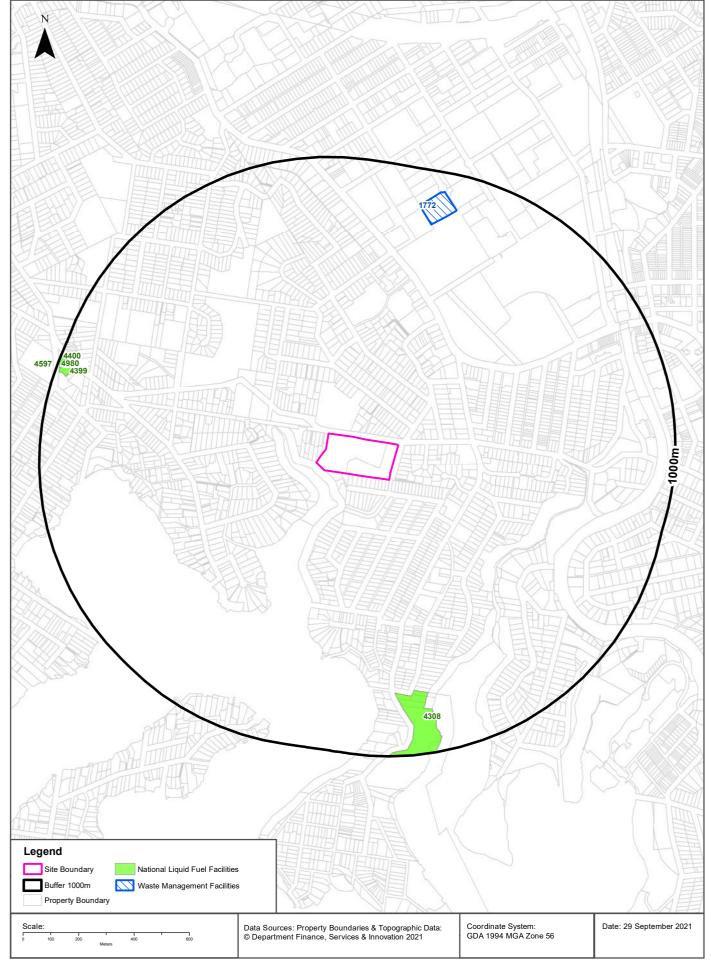
Contaminated Land: Records of Notice

Record of Notices within the dataset buffer:

Map Id	Name	Address	Suburb	Notices	Area No	Location Confidence	Distance	Direction
N/A	No records in buffer							

Contaminated Land Records of Notice Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority Terms of use and disclaimer for Contaminated Land: Record of Notices, please visit http://www.epa.nsw.gov.au/clm/clmdisclaimer.htm

Former Gasworks


Former Gasworks within the dataset buffer:

Map Id	Location	Council	Further Info	Location Confidence	Distance	Direction
N/A	No records in buffer					

Former Gasworks Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

Waste Management & Liquid Fuel Facilities

Waste Management & Liquid Fuel Facilities

97-115 River Road, Greenwich, NSW 2065

National Waste Management Site Database

Sites on the National Waste Management Site Database within the dataset buffer:

Sit	e Owner	Name	Address	Suburb	Class	Landfill	Reprocess	Transfer	Comments	Loc Conf	Dist	Direction
17 2	7 Sita Australia Pty Ltd	Artarmon Waste and Recycling Centre	Lanceley Place	Artarmon	Transfer Station			Operatio nal		Premise Match	806 m	North

Waste Management Facilities Data Source: Geoscience Australia Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

National Liquid Fuel Facilities

National Liquid Fuel Facilties within the dataset buffer:

Map Id	Owner	Name	Address	Suburb	Class	Operational Status	Operator	Revision Date	Loc Conf	Dist	Direction
4308	Shell	Gore Bay	Manns Avenue	Greenwich	Fuel Terminal	Operational	Shell	11/06/2012	Premise Match	765m	South
4399	BP	BP Longueville	9 Northwood Road	Longueville	Petrol Station	Operational		25/07/2011	Premise Match	939m	West
4980	BP	BP Express Northwood	9 Northwood Road	Longueville	Petrol Station	Operational		25/07/2011	Premise Match	939m	West
4400	Caltex	Caltex Longueville	7 Northwood Road	Longueville	Petrol Station	Operational		25/07/2011	Premise Match	965m	West
4597	Caltex	Caltex Longueville	5-7 Northwood Road	Longueville	Petrol Station	Operational		25/07/2011	Premise Match	965m	West

National Liquid Fuel Facilities Data Source: Geoscience Australia Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

PFAS Investigation & Management Programs

97-115 River Road, Greenwich, NSW 2065

EPA PFAS Investigation Program

Sites that are part of the EPA PFAS investigation program, within the dataset buffer:

Map ID	Site	Address	Loc Conf	Dist	Dir
N/A	No records in buffer				

EPA PFAS Investigation Program: Environment Protection Authority

© State of New South Wales through the Environment Protection Authority

Defence PFAS Investigation Program

Sites being investigated by the Department of Defence for PFAS contamination within the dataset buffer:

Map ID	Base Name	Address	Loc Conf	Dist	Dir
N/A	No records in buffer				

Defence PFAS Investigation Program Data Custodian: Department of Defence, Australian Government

Defence PFAS Management Program

Sites being managed by the Department of Defence for PFAS contamination within the dataset buffer:

Map ID	Base Name	Address	Loc Conf	Dist	Dir
N/A	No records in buffer				

Defence PFAS Management Program Data Custodian: Department of Defence, Australian Government

Airservices Australia National PFAS Management Program

Sites being investigated or managed by Airservices Australia for PFAS contamination within the dataset buffer:

Map ID	Site Name	Impacts	Loc Conf	Dist	Dir
N/A	No records in buffer				

Airservices Australia National PFAS Management Program Data Custodian: Airservices Australia

Defence 3 Year Regional Contamination Investigation Program 97-115 River Road, Greenwich, NSW 2065

Defence Sites

97-115 River Road, Greenwich, NSW 2065

Defence 3 Year Regional Contamination Investigation Program

Sites which have been assessed as part of the Defence 3 Year Regional Contamination Investigation Program within the dataset buffer:

Property ID	Base Name	Address	Known Contamination	Loc Conf	Dist	Dir
58	HMAS Waterhen	Waverton, New South Wales	YES	Premise Match	1447m	South East

Defence 3 Year Regional Contamination Investigation Program, Data Custodian: Department of Defence, Australian Government

EPA Other Sites with Contamination Issues

97-115 River Road, Greenwich, NSW 2065

EPA Other Sites with Contamination Issues

This dataset contains other sites identified on the EPA website as having contamination issues. This dataset currently includes:

- James Hardie asbestos manufacturing and waste disposal sites
- Radiological investigation sites in Hunter's Hill
- · Pasminco Lead Abatement Strategy Area


Sites within the dataset buffer:

Site Id	Site Name	Site Address	Dataset	Comments	Location Confidence	Distance	Direction
N/A	No records in buffer						

EPA Other Sites with Contamination Issues: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

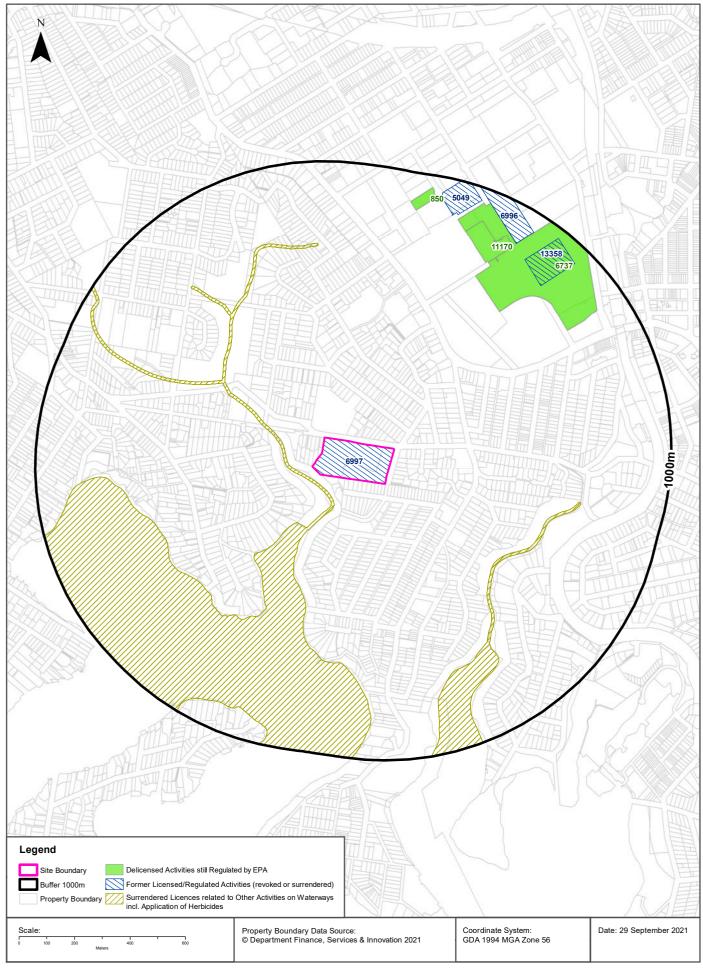
Current EPA Licensed Activities

EPA Activities

97-115 River Road, Greenwich, NSW 2065

Licensed Activities under the POEO Act 1997

Licensed activities under the Protection of the Environment Operations Act 1997, within the dataset buffer:


EPL	Organisation	Name	Address	Suburb	Activity	Loc Conf	Distance	Direction
12208	SYDNEY TRAINS		SYDNEY TRAINS, HAYMARKET, NSW 1238		Railway systems activities	Network of Features	684m	East
661	VIVA ENERGY AUSTRALIA PTY LTD	GORE BAY TERMINAL	MANNS AVENUE	GREENWICH	Waste storage - hazardous, restricted solid, liquid, clinical and related waste and asbestos waste	Premise Match	765m	South
661	VIVA ENERGY AUSTRALIA PTY LTD	GORE BAY TERMINAL	MANNS AVENUE	GREENWICH	Chemical storage waste generation	Premise Match	765m	South
661	VIVA ENERGY AUSTRALIA PTY LTD	GORE BAY TERMINAL	MANNS AVENUE	GREENWICH	Petroleum products storage	Premise Match	765m	South
661	VIVA ENERGY AUSTRALIA PTY LTD	GORE BAY TERMINAL	MANNS AVENUE	GREENWICH	Shipping in bulk	Premise Match	765m	South
4922	SUEZ RECYCLING & RECOVERY PTY LTD	ARTARMON RESOURCE RECOVERY CENTRE	LANCELEY PLACE	ARTARMON	Composting	Premise Match	806m	North
4922	SUEZ RECYCLING & RECOVERY PTY LTD	ARTARMON RESOURCE RECOVERY CENTRE	LANCELEY PLACE	ARTARMON	Waste storage - hazardous, restricted solid, liquid, clinical and related waste and asbestos waste	Premise Match	806m	North
4922	SUEZ RECYCLING & RECOVERY PTY LTD	ARTARMON RESOURCE RECOVERY CENTRE	LANCELEY PLACE	ARTARMON	Waste storage - waste tyres	Premise Match	806m	North
4922	SUEZ RECYCLING & RECOVERY PTY LTD	ARTARMON RESOURCE RECOVERY CENTRE	LANCELEY PLACE	ARTARMON	Recovery of general waste	Premise Match	806m	North
4922	SUEZ RECYCLING & RECOVERY PTY LTD	ARTARMON RESOURCE RECOVERY CENTRE	LANCELEY PLACE	ARTARMON	Waste storage - other types of waste	Premise Match	806m	North
4922	SUEZ RECYCLING & RECOVERY PTY LTD	ARTARMON RESOURCE RECOVERY CENTRE	LANCELEY PLACE	ARTARMON	Non-thermal treatment of general waste	Premise Match	806m	North

POEO Licence Data Source: Environment Protection Authority

 $\ensuremath{\mathbb{C}}$ State of New South Wales through the Environment Protection Authority

Delicensed & Former Licensed EPA Activities

EPA Activities

97-115 River Road, Greenwich, NSW 2065

Delicensed Activities still regulated by the EPA

Delicensed activities still regulated by the EPA, within the dataset buffer:

Licence No	Organisation	Name	Address	Suburb	Activity	Loc Conf	Distance	Direction
6737	NORTHERN SYDNEY AND CENTRAL COAST AREA HEALTH SERVICE	ROYAL NORTH SHORE HOSPITAL	PACIFIC HIGHWAY	ST LEONARDS	Hazardous, Industrial or Group A Waste Generation or Storage	Premise Match	626m	North East
11170	RAMSAY HEALTH CARE AUSTRALIA PTY LIMITED	NORTH SHORE PRIVATE HOSPITAL	3 Westbourne Street	ST LEONARDS	Hazardous, Industrial or Group A Waste Generation or Storage	Premise Match	749m	North East
850	HANSON CONSTRUCTION MATERIALS PTY LTD	HANSON CONSTRUCTIO N MATERIALS PTY LTD	6 LANCELEY PLACE	ARTARMON	Concrete works	Premise Match	866m	North

Delicensed Activities Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

Former Licensed Activities under the POEO Act 1997, now revoked or surrendered

Former Licensed activities under the Protection of the Environment Operations Act 1997, now revoked or surrendered, within the dataset buffer:


Licence No	Organisation	Location	Status	Issued Date	Activity	Loc Conf	Distance	Direction
6997	HOPE HEALTHCARE LIMITED	97 - 115 RIVER ROAD, GREENWICH, NSW 2065	Surrendered	07/09/2000	Hazardous, Industrial or Group A Waste Generation or Storage	Premise Match	0m	On-site
4653	LUHRMANN ENVIRONMENT MANAGEMENT PTY LTD	WATERWAYS THROUGHOUT NSW	Surrendered	06/09/2000	Other Activities / Non Scheduled Activity - Application of Herbicides	Network of Features	30m	South West
4838	Robert Orchard	Various Waterways throughout New South Wales - SYDNEY NSW 2000	Surrendered	07/09/2000	Other Activities / Non Scheduled Activity - Application of Herbicides	Network of Features	30m	South West
6630	SYDNEY WEED & PEST MANAGEMENT PTY LTD	WATERWAYS THROUGHOUT NSW - PROSPECT, NSW, 2148	Surrendered	09/11/2000	Other Activities / Non Scheduled Activity - Application of Herbicides	Network of Features	30m	South West
13358	VENTIA UTILITY SERVICES PTY LIMITED	Royal North Shore Hospital - Acute Services Building, Royal North Shore Hospital, Reserve Road, ST LEONARDS, NSW 2065, ST LEONARDS	Surrendered	20/04/2011	Generation of electrical power from gas	Premise Match	794m	North East
6996	MOCKRIDGE BULMER PTY LTD	2/12 FREDERICK STREET, ST LEONARDS, NSW 2065	Surrendered	26/06/2000	Hazardous, Industrial or Group A Waste Generation or Storage	Premise Match	864m	North East

Licence No	Organisation	Location	Status	Issued Date	Activity	Loc Conf	Distance	Direction
5049	ROCK & DIRT PTY LTD	11 LANCELEY PLACE, ARTARMON, NSW 2064	Surrendered	10/08/2000	Waste Storage, Transfer, Separating or Processing; Crushing, grinding or separating	Premise Match	870m	North

Former Licensed Activities Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

Historical Business Directories

Historical Business Directories

97-115 River Road, Greenwich, NSW 2065

Business Directory Records 1950-1991 Premise or Road Intersection Matches

Universal Business Directory records from years 1991, 1986, 1982, 1978, 1975, 1970, 1965, 1961 & 1950, mapped to a premise or road intersection within the dataset buffer:

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Property Boundary or Road Intersection	Direction
1	ENGINEERS-GENERAL &/OR MANUFACTURING &/OR MECHANICAL	Smith, L. N., 31 Gore St., Greenwich	41258	1950	Premise Match	11m	South East
2	ACCOUNTANTS & AUDITORS	Shetliffe, D. F. R., 40 Upper Cliff Rd., Northwood	265701	1961	Premise Match	111m	West
3	BUILDERS & CONTRACTORS-(M.M.B.A.)	Lucas, T. J. Pty. Ltd 48a Kingslangley Rd. GREENWICH	277339	1961	Premise Match	149m	North West

Reproduced with permission of UBD and Hardie Grant Media Pty Ltd DD 01/08/2018

Business Directory Records 1950-1991 Road or Area Matches

Universal Business Directory records from years 1991, 1986, 1982, 1978, 1975, 1970, 1965, 1961 & 1950, mapped to a road or an area, within the dataset buffer. Records are mapped to the road when a building number is not supplied, cannot be found, or the road has been renumbered since the directory was published:

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Road Corridor or Area
4	CLUBS & /OR SPORTING BODIES	Lane Cove Country Club Ltd., River Rd., Northwood. 2066	18079	1975	Road Match	0m
	HOSTELS (H630)	Stella Maris Hostel., River Rd., Greenwich	316853	1970	Road Match	0m
5	Builders & Contractors - (M.M.B.A.)	Crowther, P. J., Allawah Pl. Greenwich	54740	1965	Road Match	95m
	BUILDERS & CONTRACTORS-(M.M.B.A.)	Crowther, P. J Allawah PI GREENWICH	277004	1961	Road Match	95m
	ACCOUNTANTS & AUDITORS	Moore, R. K., Allawah Pl., Greenwich	265446	1961	Road Match	95m

Reproduced with permission of UBD and Hardie Grant Media Pty Ltd DD 01/08/2018

Dry Cleaners, Motor Garages & Service Stations

Historical Business Directories

97-115 River Road, Greenwich, NSW 2065

Dry Cleaners, Motor Garages & Service Stations 1948-1993 Premise or Road Intersection Matches

Dry Cleaners, Motor Garages & Service Stations from UBD Business Directories, mapped to a premise or road intersection, within the dataset buffer.

Note: The Universal Business Directories were published between 1948 and 1993. Dry Cleaners, Motor Garages & Service Stations have been extracted from all of these directories except the following years 1951, 1955, 1957, 1960, 1963, 1973, 1974, 1977, 1987.

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Property Boundary or Road Intersection	Direction
1	MOTOR GARAGES &/OR ENGINEERS.	Knodis S. D., 156 Pacific Hghwy., Greenwich	49540	1954	Premise Match	326m	North East
	MOTOR GARAGES &/OR ENGINEERS.	Knodis S. D., 156 Pacific Hghwy., Greenwich	40241	1953	Premise Match	326m	North East
	MOTOR GARAGES &/OR ENGINEERS.	Knodis S. D., 156 Pacific Hghwy., Greenwich	31847	1952	Premise Match	326m	North East
	MOTOR GARAGES &/OR ENGINEERS	Knodis, S. D., 156 Pacific Highway., Greenwich	83968	1950	Premise Match	326m	North East
	MOTOR GARAGES &/OR ENGINEERS.	Knodis, S. D., 156 Pacific Hghwy., Greenwich	22532	1948-49	Premise Match	326m	North East
2	MOTOR GARAGES & ENGINEERS.	Hill Garage & Service Station., 180 Pacific Hghwy., Greenwich	29547	1962	Premise Match	402m	North East
	MOTOR GARAGES & ENGINEERS.	North Sydney Welding Service., 188 Pacific Hghwy., Greenwich	29548	1962	Premise Match	402m	North East
	MOTOR GARAGES & ENGINEERS	Hill Garage & Service Station, 180 Pacific Highway. GREENWICH	347368	1961	Premise Match	402m	North East
	MOTOR GARAGES & ENGINEERS	North Sydney Welding Service, 188 Pacific Highway. GREENWICH	347799	1961	Premise Match	402m	North East
	MOTOR GARAGES & ENGINEERS.	Hill Garage & Service Station., 180 Pacific Hghwy., Greenwich	14199	1959	Premise Match	402m	North East
	MOTOR GARAGES & ENGINEERS.	North Sydney Welding Service., 188 Pacific Hghwy., Greenwich	14200	1959	Premise Match	402m	North East
	MOTOR GARAGE/ENGINEERS.	Hill Garage & Service Station., 180 Pacific Hghwy., Grnwch.	4274	1958	Premise Match	402m	North East
	MOTOR GARAGE/ENGINEERS.	North Sydney Welding Service., 188 Pacific Hghwy., Grnwch	4664	1958	Premise Match	402m	North East
	MOTOR GARAGES &/OR ENGINEERS.	Hill Garage & Service Station., 180 Pacific Hghwy., Rgnwch	57798	1956	Premise Match	402m	North East
	MOTOR GARAGES &/OR ENGINEERS.	North Sydney Welding Service., 188 Pacific Hghwy., N Grnwch	61205	1956	Premise Match	402m	North East
	MOTOR GARAGES &/OR ENGINEERS.	Hill Garage & Service Station., 180 Pacific Hghwy., grnwch	49401	1954	Premise Match	402m	North East
	MOTOR SERVICE STATIONS-PETROL, ETC.	Hill Garage & Service Station., 188 Pacific Hghwy., Grnwch	54507	1954	Premise Match	402m	North East
	MOTOR GARAGES &/OR ENGINEERS.	North Sydney Welding Service., 188 Pacific Hghwy, Greenwich	49767	1954	Premise Match	402m	North East
	MOTOR GARAGES &/OR ENGINEERS.	Hill Garage & Service Station., 188 Pacific Hghwy., Grnwch	40121	1953	Premise Match	402m	North East
	MOTOR GARAGES &/OR ENGINEERS.	North Sydney Welding Service., 188 Pacific Hghwy., Grnwch	40432	1953	Premise Match	402m	North East
	MOTOR GARAGES &/OR ENGINEERS.	Hill Garage & Service Station., 188 Pacific Hghwy., Grnwch	31745	1952	Premise Match	402m	North East
	MOTOR GARAGES &/OR ENGINEERS.	North Sydney Welding Service., 188 Pacific Hghwy., Grnwch	32011	1952	Premise Match	402m	North East
	MOTOR SERVICE STATIONS-PETROL, Etc.	Hill Garage (R. Harris, Propr.), 188 Pacific Highway., Greenwich	86056	1950	Premise Match	402m	North East

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Property Boundary or Road Intersection	Direction
2	MOTOR GARAGES &/OR ENGINEERS	Hill Garage and Service Station, 188 Pacific Highway., Greenwich	83867	1950	Premise Match	402m	North East
	MOTOR GARAGES &/OR ENGINEERS	North Sydney Welding Service., 188 Pacific Highway., Greenwich	84144	1950	Premise Match	402m	North East
	MOTOR GARAGES &/OR ENGINEERS.	Hill Garage and Service Station., 188 Pacific Hghwy., Greenwich	22447	1948-49	Premise Match	402m	North East
3	MOTOR GARAGES &/OR ENGINEERS.	Greenwich Motors., 122 Pacific H'way., Greenwich. 2065	59003	1975	Premise Match	409m	North East
	MOTOR GARAGES &/OR ENGINEERS.	Greenwich Motors., 124 Pacific Hghwy., Greenwich	12262	1972	Premise Match	409m	North East
	MOTOR SERVICE STATIONS-PETROL, OIL, ETC.	Horsburghs Auto Centre., 126 Pacific Hghwy., Greenwich	16733	1972	Premise Match	409m	North East
	MOTOR GARAGES &/OR ENGINEERS.	Greenwich Motors., 124 Pacific Hghwy., Greenwich	56874	1971	Premise Match	409m	North East
	MOTOR SERVICE STATIONS-PETROL, OIL, ETC.	Horsburghs Auto Centre., 126 Pacific Hghwy., Greenwich	2199	1971	Premise Match	409m	North East
	MOTOR GARAGES & ENGINEERS(M6S6)	Greenwich Motors., 124 Pacific Highway., GREENWICH	337945	1970	Premise Match	409m	North East
	MOTOR SERVICE STATIONS- PETROL,OIL,Etc.	Horsburghs Auto Centre., 126 Pacific Hghwy., GREENWICH	341216	1970	Premise Match	409m	North East
	MOTOR GARAGES & ENGINEERS.	Greenwich Motors., 124 Pacific Hghwy, Greenwich	42297	1969	Premise Match	409m	North East
	MOTOR SERVICE STATIONS-PETROL, OIL, ETC.	Horsburghs Auto Centre., 126 Pacific Hghwy Greenwich	47861	1969	Premise Match	409m	North East
	MOTOR GARAGES & ENGINEERS	Greenwich Motors., 124 Pacific Hghwy., Greenwich	25817	1968	Premise Match	409m	North East
	MOTOR SERVICE STATIONS-PETROL, OIL, ETC.	Horsbyghs Auto Centre., 126 Pacific Hghwy., Greenwich	31289	1968	Premise Match	409m	North East
	MOTOR GARAGES & ENGINEERS.	Greenwich Motors., 124 Pacific Hghwy., Greenwich	10318	1967	Premise Match	409m	North East
	MOTOR SERVICE STATIONS-PETROL, OIL, ETC.	Horsburghs Auto Centre., 126 Pacific Hghwy., Greenwich	15764	1967	Premise Match	409m	North East
	MOTOR GARAGES & ENGINEERS.	Greenwich Motors., 124 Pacific Highway., Greenwich	56211	1966	Premise Match	409m	North East
	MOTOR SERVICE STATIONS-PETROL, OIL, ETC.	Horsburghs Auto Centre., 126 Pacific Hghwy., Greenwich	1337	1966	Premise Match	409m	North East
	Motor Garages & Engineers	Greenwich Motors, 124 Pacific Highway. Greenwich	122741	1965	Premise Match	409m	North East
	Motor Service Stations - Petrol, Oil, Etc.	Horsburghs Auto Centre, 126 Pacific Highway. Greenwich	125746	1965	Premise Match	409m	North East
	MOTOR GARAGES & ENGINEERS	Greenwich Motors., 124 Pacific Highway Greenwich	48009	1964	Premise Match	409m	North East
	MOTOR SERVICE STATIONS-PETROL, OIL, ETC.	Horsburghs Auto Centre., 126 Pacific Hghwy., Greenwich	52031	1964	Premise Match	409m	North East
	MOTOR GARAGES & ENGINEERS.	Greenwich Motors & Bodyworks., Rear 124 Pacific Hghwy., Greenwich	29546	1962	Premise Match	409m	North East
	MOTOR SERVICE STATIONS-PETROL, OIL, ETC.	Horsburghs Auto Centre., 126 Pacific Hghwy., Greenwich	38248	1962	Premise Match	409m	North East
	MOTOR GARAGES & ENGINEERS	Greenwich Motors & Bodyworks, Rear 124 Pacific Highway., GREENWICH	347280	1961	Premise Match	409m	North East
	MOTOR SERVICE STATIONS—PETROL, OIL, Etc.	Horsburghs Auto Centre, 126 Pacific Hghwy., GREENWICH	350708	1961	Premise Match	409m	North East
	MOTOR GARAGES & ENGINEERS.	Greenwich Motors & Barker Body Works., 124 Pacific Hghwy., Greenwich	14198	1959	Premise Match	409m	North East
	MOTOR SERVICE STATIONS-PETROL,. OIL, ETC.	Horsburghs Auto Centre., 126 Pacific Hghwy., Greenwich	24222	1959	Premise Match	409m	North East

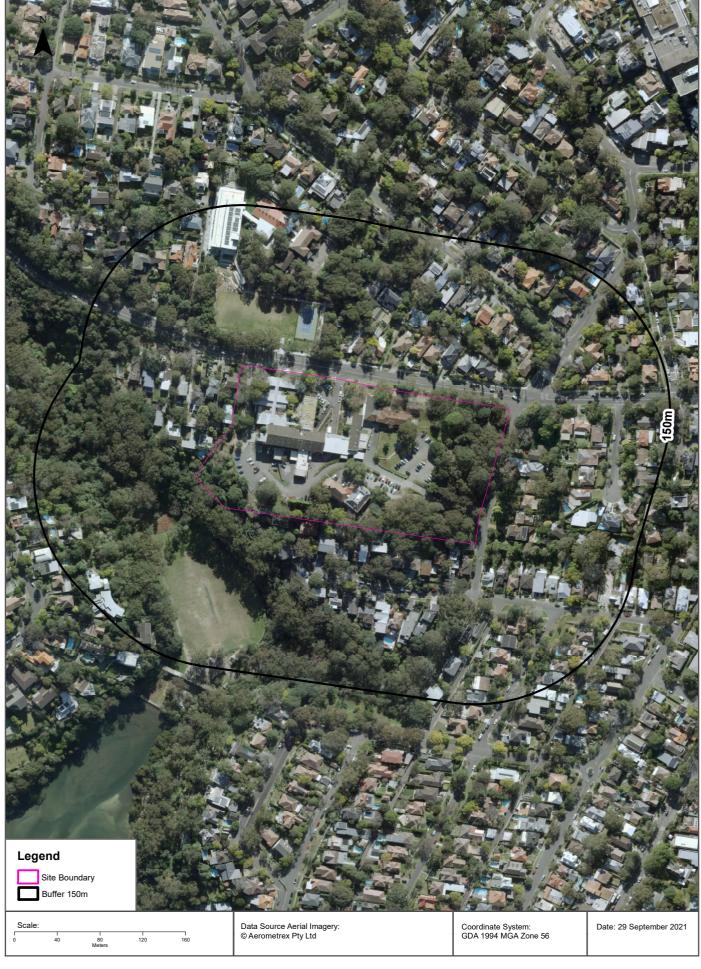
Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Property Boundary or Road Intersection	Direction
3	MOTOR GARAGE/ENGINEERS.	Greenwich Motors & Barker Body Works., 124 Pacific Hghwy., Greenwich	4208	1958	Premise Match	409m	North East
4	MOTOR GARAGE & SERVICE STATIONS.	Portview Motors (Caltex), 114 Pacific Hghwy, Greenwich. 2065	5416	1989	Premise Match	485m	North East
	MOTOR GARAGES & SERVICE STATIONS.	Portview Motors (Caltex), 114 Pacific Hghwy, Greenwich. 2065	59797	1988	Premise Match	485m	North East
	MOTOR GARAGES & SERVICE STATIONS.	Portview Motors (Caltex), 114 Pacific H'way., Greenwich. 2065	65279	1986	Premise Match	485m	North East
	MOTOR GARAGES & SERVICE STATIONS.	Portview Motors (Caltex)., 114 Pacific Hghwy, Greenwich. 2065	45389	1985	Premise Match	485m	North East
	MOTOR GARAGES &/OR ENGINEERS &/OR SERVICE STATIONS.	Portview Motors (Caltex), 114 Pacific Hghwy, Greenwich. 2065	33961	1984	Premise Match	485m	North East
	MOTOR GARAGES &/OR ENGINEERS &/OR SERVICE STATIONS.	Portview Motors (Caltex)., 114 Pacific H'way., Greenwich 2065	21410	1983	Premise Match	485m	North East
	MOTOR GARAGES &/OR ENGINEERS &/OR SERVICE STATIONS. (M6860)	Portview Motors (Caltex), 114 Pacific H'way., Greenwich. 2065.	57399	1982	Premise Match	485m	North East
	MOTOR GARAGES &/OR ENGINEERS &/OR SERVICE STATIONS.	Portview Service Station., 114 Pacific Highway., St Leonards. 2065.	46175	1979	Premise Match	485m	North East
	MOTOR GARAGES &/OR ENGINEERS &/OR SERVICE STATIONS.	Portview Service Station, 114 Pacific H'way, St. Leonards. 2065	50679	1978	Premise Match	485m	North East
	MOTOR GARAGES &/OR ENGINEERS &/OR SERVICE STATIONS.	Portview Service Station., 114 Pacific H'way., St. Leonards 2065	34747	1976	Premise Match	485m	North East
	MOTOR GARAGES &/OR ENGINEERS.	Portview Service Station, 114 Pacific H'way. St. Leonards.	59408	1975	Premise Match	485m	North East
	MOTOR GARAGES &/OR ENGINEERS.	Port View Service Station., 114 Pacific Hghwy., Greenwich	12263	1972	Premise Match	485m	North East
	MOTOR GARAGES &/OR ENGINEERS.	Port View Service Station., 114 Pacific Hghwy., Greenwich	56875	1971	Premise Match	485m	North East
	MOTOR GARAGES & ENGINEERS(M6S6)	Port View Service Station, 114 Pacific Highway. GREENWICH	338438	1970	Premise Match	485m	North East
	MOTOR GARAGES & ENGINEERS.	Port View Service Station., 114 Pacific Hghwy, Greenwich	42298	1969	Premise Match	485m	North East
	MOTOR GARAGES & ENGINEERS	Port View Service Station., 114 Pacific Hghwy., Greenwich	25818	1968	Premise Match	485m	North East
	MOTOR GARAGES & ENGINEERS.	Port View Service Station., 114 Pacific Hghwy., Greenwich	10319	1967	Premise Match	485m	North East
	MOTOR SERVICE STATIONS-PETROL, OIL, ETC.	Port View Service Station., 114 Pacific Hghwy., Greenwich	15765	1967	Premise Match	485m	North East
	MOTOR GARAGES & ENGINEERS.	Port View Service Station., 114 Pacific Hghway., Greenwich	56212	1966	Premise Match	485m	North East
	MOTOR SERVICE STATIONS-PETROL, OIL, ETC.	Port View Service Station., 114 Pacific Hghwy., Greenwich	1338	1966	Premise Match	485m	North East
	Motor Garages & Engineers	Port View Service Station, 114 Pacific Highway. Greenwich	122742	1965	Premise Match	485m	North East
	Motor Service Stations - Petrol, Oil, Etc.	Port View Service Station, 114 Pacific Highway. Greenwich	125747	1965	Premise Match	485m	North East
	MOTOR SERVICE STATIONS-PETROL, OIL, ETC.	Port View Service Station., 114 Pacific Hghwy., Greenwich	52032	1964	Premise Match	485m	North East
	MOTOR GARAGES & ENGINEERS	Port View Service Station., 114 Pacific Highway Greenwich	48010	1964	Premise Match	485m	North East
	MOTOR GARAGES & ENGINEERS.	Cogan's Service Station., 114 Pacific Hghwy., Greenwich	29545	1962	Premise Match	485m	North East
	MOTOR GARAGES & ENGINEERS.	Port View Service Station., 114 Pacific Hghwy., Greenwich	29549	1962	Premise Match	485m	North East

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Property Boundary or Road Intersection	Direction
4	MOTOR SERVICE STATIONS-PETROL, OIL, ETC.	Port View Service Station., 114 Pacific Hghwy., Greenwich	38247	1962	Premise Match	485m	North East
	MOTOR GARAGES & ENGINEERS	Cogan's Service Station, 114 Pacific Highway. Greenwich	346909	1961	Premise Match	485m	North East
	MOTOR GARAGES & ENGINEERS	Park View Service Station, 114 Pacific Highway., GREENWICH	347852	1961	Premise Match	485m	North East
	MOTOR SERVICE STATIONS—PETROL, OIL, Etc.	Port View Service Station, 114 Pacific Hghwy., GREENWICH	350974	1961	Premise Match	485m	North East
	MOTOR GARAGES & ENGINEERS.	Cogan's Service Station., 114 Pacific Hghwy., Greenwich	14197	1959	Premise Match	485m	North East
	MOTOR GARAGES & ENGINEERS.	Park View Service Station., 114 Pacific Hghwy., Greenwich	14201	1959	Premise Match	485m	North East
	MOTOR GARAGE/ENGINEERS.	Cogan's Service Station., 114 Pacific Hghwy., Greenwich	853	1958	Premise Match	485m	North East
	MOTOR GARAGE/ENGINEERS.	Reilly L. V., 114 Pacific Hghwy., Greenwich	4841	1958	Premise Match	485m	North East
	MOTOR GARAGE/ENGINEERS.	Wadds Heck Service Station., 114 Pacific Hghwy., Grnwch	9224	1958	Premise Match	485m	North East
	MOTOR GARAGES &/OR ENGINEERS.	Cogan's Service Station., 114 Pacific Hghwy., Greenwich	57453	1956	Premise Match	485m	North East
	MOTOR GARAGES &/OR ENGINEERS.	Reilly L. V., 114 Pacific Hghwy., Greenwich	61369	1956	Premise Match	485m	North East
	MOTOR GARAGES &/OR ENGINEERS.	Cogan's Service Station., 114 Pacific Hghwy., Greenwich	49080	1954	Premise Match	485m	North East
	MOTOR GARAGES &/OR ENGINEERS.	Reilly L. V., 114 Pacific Hghwy., Greenwich	49925	1954	Premise Match	485m	North East
	MOTOR GARAGES &/OR ENGINEERS.	Cogan's Service Station., 114 Pacific Hghwy., Greenwich	39831	1953	Premise Match	485m	North East
	MOTOR GARAGES &/OR ENGINEERS.	Cogan's Service Station., 114 Pacific Hghwy., Greenwich	31492	1952	Premise Match	485m	North East
	MOTOR GARAGES &/OR ENGINEERS	Cogan's Service Station, 114 Pacific Highway., Greenwich	83602	1950	Premise Match	485m	North East
	MOTOR SERVICE STATIONS-PETROL, Etc.	Cogan's Service Station, 114 Pacific Highway., Greenwich	85879	1950	Premise Match	485m	North East
	MOTOR GARAGES &/OR ENGINEERS.	Cogan's Service Station., 114 Pacific Hghwy., Greenwich	65235	1948-49	Premise Match	485m	North East
	MOTOR SERVICE STATIONS-PETROL, ETC.	Cogan's Service Station., 114 Pacific Hghwy., Greenwich	23189	1948-49	Premise Match	485m	North East

Reproduced with permission of UBD and Hardie Grant Media Pty Ltd DD 01/08/2018

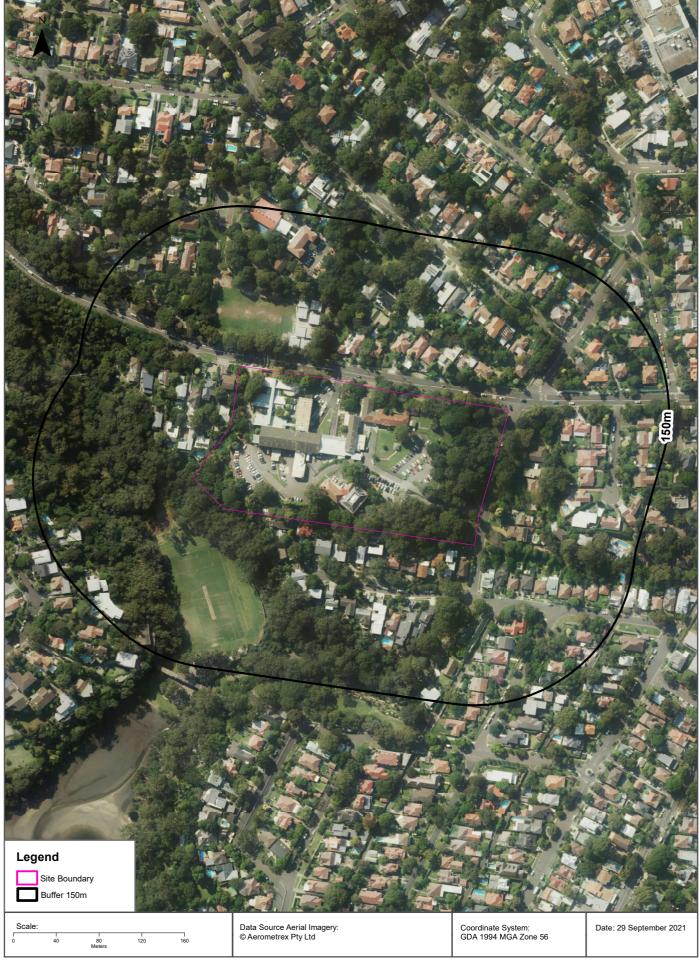
Dry Cleaners, Motor Garages & Service Stations 1948-1993 Road or Area Matches

Dry Cleaners, Motor Garages & Service Stations from UBD Business Directories, mapped to a road or an area, within the dataset buffer. Records are mapped to the road when a building number is not supplied, cannot be found, or the road has been renumbered since the directory was published.

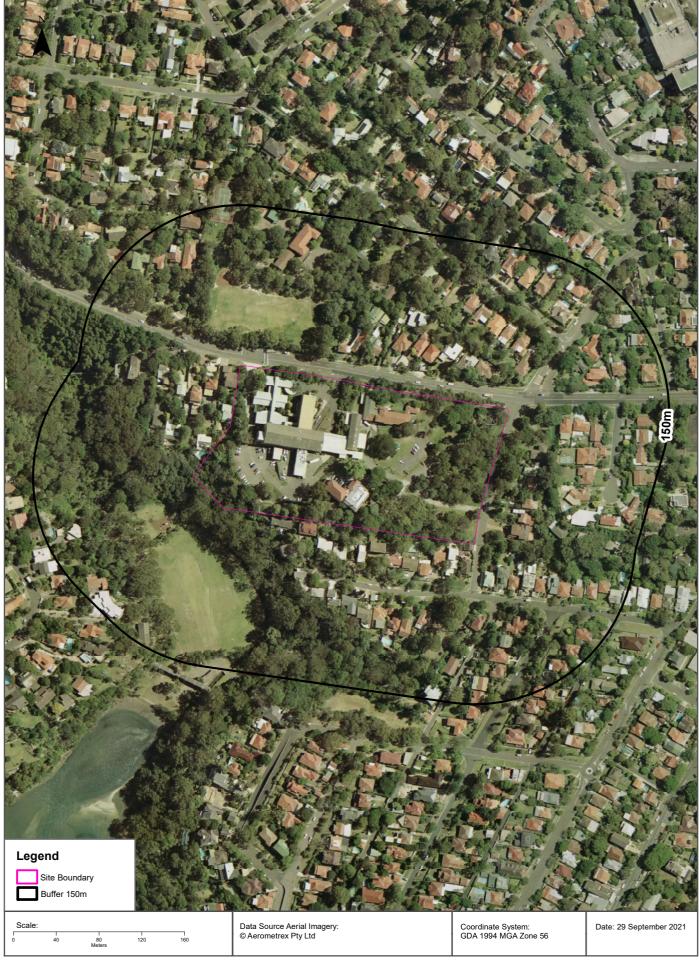

Note: The Universal Business Directories were published between 1948 and 1993. Dry Cleaners, Motor Garages & Service Stations have been extracted from all of these directories except the following years 1951, 1955, 1957, 1960, 1963, 1973, 1974, 1977, 1987.

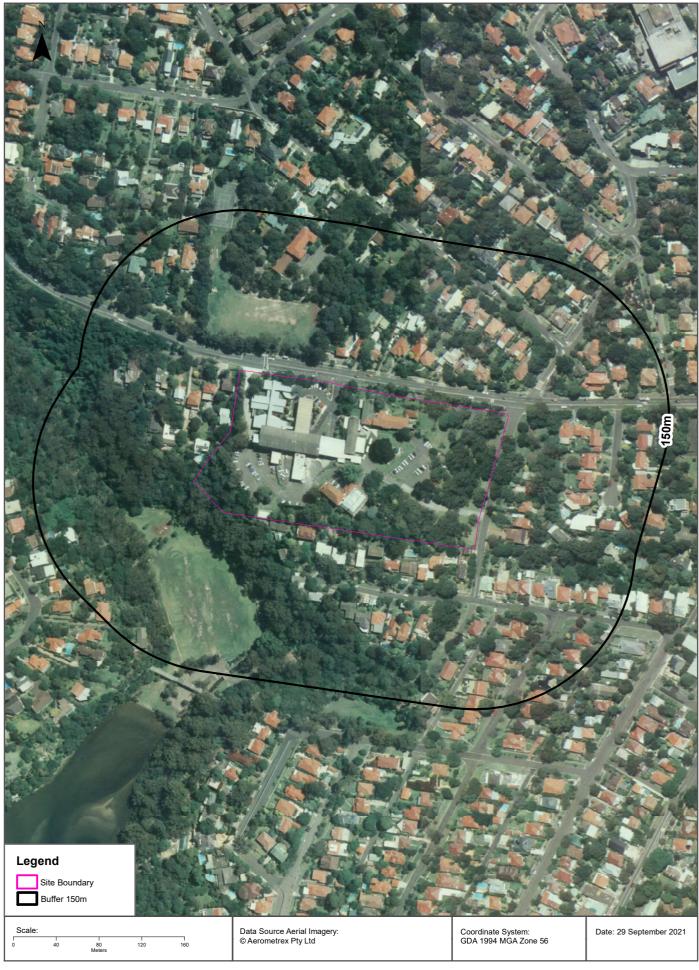
Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Road Corridor or Area
5	DRY CLEANERS, PRESSERS &/OR DYERS.	Lindfield Laundry & Dry Cleaners., Pacific H'way., St. Leonards 2065	23654	1976	Road Match	378m
	DRY CLEANERS, PRESSERS &/OR DYERS.	Lindfield Laundry & Dry Cleaners, Pacific H'way. St. Leonards. 2065	24178	1975	Road Match	378m
	Motor Service Stations - Petrol, Oil, Etc.	Scholtz, P. B., Pacific Highway. Artarmon	125387	1965	Road Match	378m
	MOTOR SERVICE STATIONS-PETROL, OIL, ETC.	Koala Service Station., Cnr Pacific Hghwy & Jersey St., St. Leonards	38686	1962	Road Match	378m
	MOTOR GARAGES & ENGINEERS	Atlantic Service Station, Pacific Highway. ARTARMON	346549	1961	Road Match	378m
	MOTOR SERVICE STATIONS—PETROL, OIL, Etc.	Scholtz, P. B., Pacific Hghwy., ARTARMON	351064	1961	Road Match	378m
	MOTOR SERVICE STATIONS-PETROL,. OIL, ETC.	Koala Service Station., Cnr Pacific Hghwy. & Jersey St., St. Leonards	24558	1959	Road Match	378m
	MOTOR SERVICE STATIONS-PETROL, ETC.	Horsburghs Auto Service., Pacific Hghwy., Greenwich	9594	1958	Road Match	378m
	MOTOR SERVICE STATIONS-PETROL, ETC.	Horsburghs Auto Service., Pacific Hghwy., Greenwich	61952	1956	Road Match	378m
	MOTOR SERVICE STATIONS-PETROL, ETC.	Scholtz P. B., Pacific Hghwy Artarmon	25	1956	Road Match	378m
	MOTOR SERVICE STATIONS-PETROL, ETC.	Horsburghs Auto Service., Pacific Hghwy., Greenwich	54509	1954	Road Match	378m
	MOTOR GARAGES &/OR ENGINEERS.	St. Leonards Garage., 54-56 Pacific Hghwy., St. Leonards	40643	1953	Road Match	378m
	MOTOR GARAGES &/OR ENGINEERS.	St. Leonards Garage., 54-56 Pacific Hghwy., St. Leonards	32209	1952	Road Match	378m
6	MOTOR GARAGES &/OR ENGINEERS.	BP North Service Station., Northwood Rd Northwood	12770	1972	Road Match	439m
	MOTOR SERVICE STATIONS-PETROL,OIL,Etc.	Embassy Services of Auburn Pty. Ltd., Northwood Rd., NORTHWOOD	341027	1970	Road Match	439m
	MOTOR SERVICE STATIONS-PETROL, OIL, ETC.	Embassy Services Of Auburn Pty. Ltd., Northwood Rd Northwood	50567	1969	Road Match	439m

Reproduced with permission of UBD and Hardie Grant Media Pty Ltd DD 01/08/2018


Aerial Imagery 2021 97-115 River Road, Greenwich, NSW 2065

Aerial Imagery 2016 97-115 River Road, Greenwich, NSW 2065


Aerial Imagery 2011 97-115 River Road, Greenwich, NSW 2065


Aerial Imagery 2005 97-115 River Road, Greenwich, NSW 2065

Aerial Imagery 2000 97-115 River Road, Greenwich, NSW 2065

Aerial Imagery 1994

Aerial Imagery 1991 97-115 River Road, Greenwich, NSW 2065

Aerial Imagery 1986

Aerial Imagery 1982 97-115 River Road, Greenwich, NSW 2065

Aerial Imagery 1978

Aerial Imagery 1970 97-115 River Road, Greenwich, NSW 2065

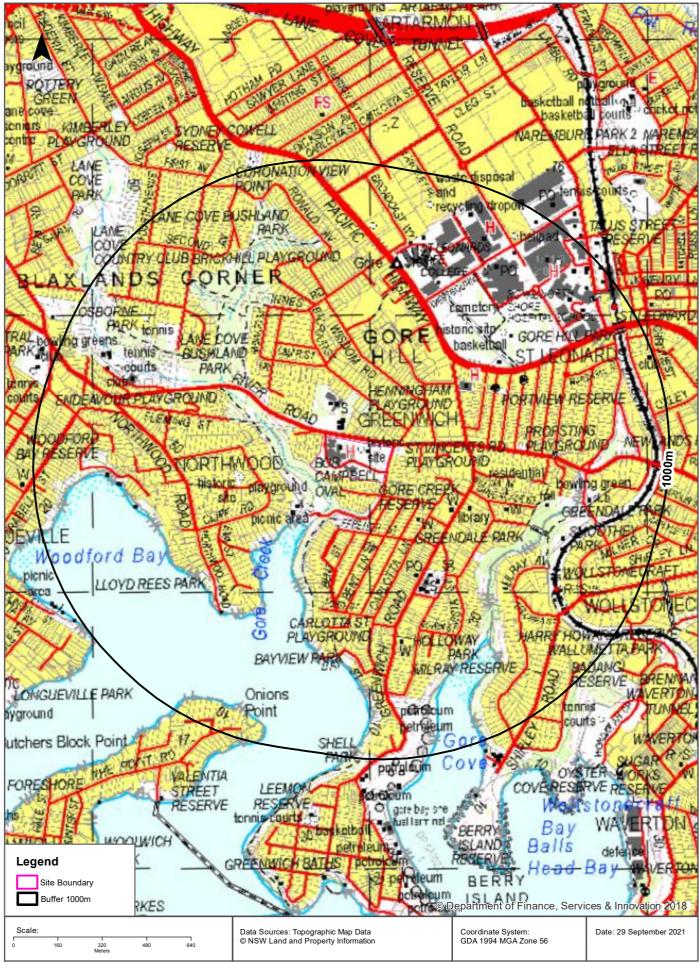
Aerial Imagery 1965

Aerial Imagery 1961 97-115 River Road, Greenwich, NSW 2065

Aerial Imagery 1955, 1956 97-115 River Road, Greenwich, NSW 2065

Aerial Imagery 1951

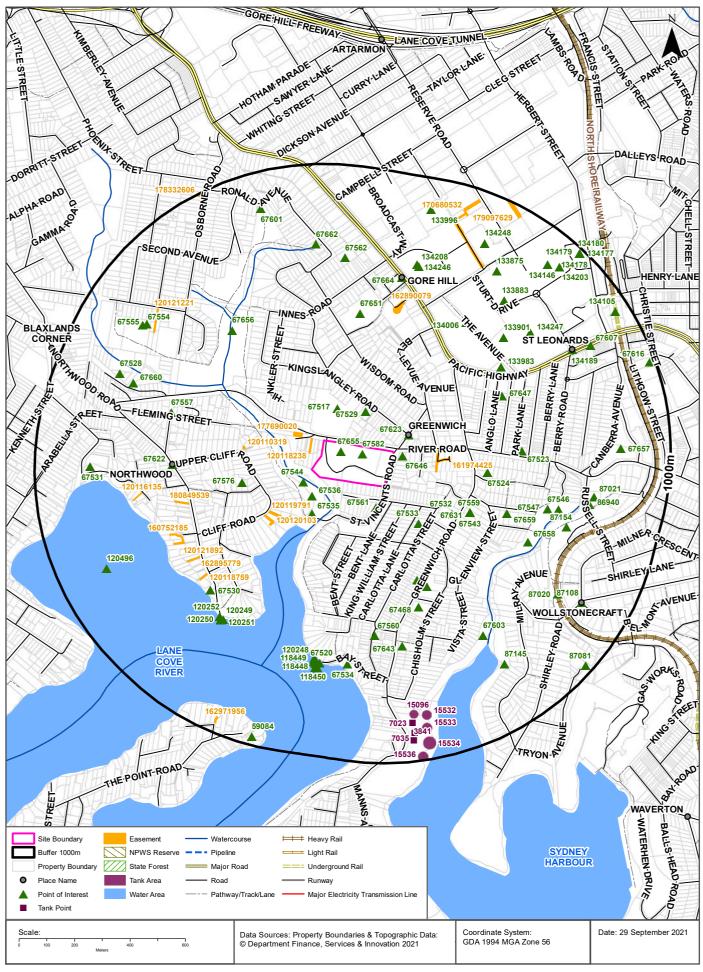
Aerial Imagery 1943


Aerial Imagery 1930 97-115 River Road, Greenwich, NSW 2065

Topographic Map 2015


Historical Map 1975

Historical Map c.1936


Historical Map c.1917

Topographic Features

Topographic Features

97-115 River Road, Greenwich, NSW 2065

Points of Interest

What Points of Interest exist within the dataset buffer?

Map Id	Feature Type	Label	Distance	Direction
67582	Historic Site	PALLISTER	0m	On-site
67655	General Hospital	GREENWICH HOSPITAL	0m	On-site
67646	Park	ST VINCENTS RD PLAYGROUND	34m	East
67544	Park	PLAYGROUND	54m	West
67536	Sports Field	BOB CAMPBELL OVAL	73m	South West
67561	Park	GORE CREEK RESERVE	79m	South East
67623	Suburb	GREENWICH	83m	North East
67517	Primary School	GREENWICH PUBLIC SCHOOL	120m	North
67529	Park	HENNINGHAM PLAYGROUND	127m	North
67535	Picnic Area	GORE CREEK RESERVE	135m	South West
67533	Place Of Worship	UNITING CHURCH	181m	South East
67576	Historic Site	NORTHWOOD HOUSE AND COTTAGE	255m	West
67532	Place Of Worship	THE CHURCH OF JESUS CHRIST OF LATTER DAY SAINTS	262m	South East
67543	Community Facility	GREENWICH MEMORIAL COMMUNITY CENTRE	322m	South East
67559	Child Care Centre	KU GREENWICH COMMUNITY PRESCHOOL	322m	South East
67631	Library	GREENWICH LIBRARY	322m	South East
67524	Community Home	GLENWOOD NURSING HOME	347m	East
67644	Post Office	GREENWICH POST OFFICE	357m	South East
67518	Primary School	GREENWICH PUBLIC SCHOOL	391m	South East
67647	Park	PORTVIEW RESERVE	441m	North East
67659	Place Of Worship	ANGLICAN CHURCH	452m	East
67468	Retirement Village	CLANCY TERRACE	453m	South East
67523	Park	PROPSTING PLAYGROUND	464m	East
67651	Retirement Village	WATERBROOK AT GREENWICH	473m	North
133983	Primary School	INTERNATIONAL CHINESE SCHOOL ST LEONARDS	495m	North East
67622	Suburb	NORTHWOOD	503m	West
67656	Park	LANE COVE BUSHLAND PARK	517m	North West
134145	Cemetery	GORE HILL CEMETERY	536m	North East
134006	Historic Site	GORE HILL MEMORIAL CEMETERY	536m	North East
67560	Park	CARLOTTA ST PLAYGROUND	539m	South
67557	Park	ENDEAVOUR PLAYGROUND	548m	West

Map Id	Feature Type	Label	Distance	Direction
67658	Park	GREENDALE PARK	554m	South East
67530	Park	LLOYD REES PARK	568m	South West
133901	Sports Court	BASKETBALL	574m	North East
67643	Place Of Worship	PRESBYTERIAN CHURCH	580m	South
67547	Community Facility	GREENWICH WOLLSTONECRAFT SCOUT HALL	591m	East
120252	Wharf	NORTHWOOD WHARF	620m	South West
120249	Wharf	NORTHWOOD WHARF	622m	South West
120250	Wharf	NORTHWOOD WHARF	624m	South West
67664	Urban Place	GORE HILL	626m	North
120251	Wharf	NORTHWOOD WHARF	627m	South West
67546	Park	GREENDALE PARK	629m	East
67603	Park	HOLLOWAY PARK	645m	South East
120248	Wharf	Wharf	650m	South
67534	Park	BAYVIEW PARK	653m	South
134247	Sports Field	GORE HILL PARK	656m	North East
118449	Wharf	BAY STREET WHARF	659m	South
67562	Park	BRICKHILL PLAYGROUND	665m	North
67520	Wharf	BAY STREET WHARF	665m	South
118457	Wharf	BAY STREET WHARF	666m	South
118448	Wharf	BAY STREET WHARF	668m	South
87154	Park	SMOOTHEY PARK	672m	East
134208	High School	BRADFIELD COLLEGE	676m	North
118450	Wharf	BAY STREET WHARF	677m	South
133883	Special School	ROYAL NORTH SHORE HOSPITAL SCHOOL	678m	North East
134246	TAFE College	ST LEONARDS TAFE COLLEGE	681m	North
118451	Wharf	BAY STREET WHARF	682m	South
118456	Wharf	BAY STREET WHARF	683m	South
67662	Park	RONALD PARK	709m	North
67660	Club	LANE COVE COUNTRY CLUB	716m	West
86940	Club	WOLLSTONECRAFT BOWLING AND RECREATION CLUB	733m	East
87020	Railway Station	WOLLSTONECRAFT RAILWAY STATION	736m	South East
87021	Sports Field	BOWLING GREEN	741m	East
134189	Suburb	ST LEONARDS	744m	North East
133875	Post Office	ROYAL NORTH SHORE HOSPITAL POST OFFICE	753m	North East
67555	Sports Court	TENNIS	765m	North West
87145	Park	MILRAY RESERVE	773m	South East
67528	Sports Court	TENNIS COURTS	774m	West

Map Id	Feature Type	Label	Distance	Direction
67554	Park	OSBORNE PARK	776m	North West
67531	Park	WOODFORD BAY RESERVE	800m	West
67607	Transport Interchange	ST LEONARDS BUS INTERCHANGE	808m	North East
67657	Park	NEWLANDS PARK	819m	East
120496	Bay Like	WOODFORD BAY	822m	South West
134248	General Hospital	NORTH SHORE PRIVATE HOSPITAL	823m	North East
87108	Suburb	WOLLSTONECRAFT	824m	South East
67601	Park	LANE COVE BUSHLAND PARK	869m	North
134146	General Hospital	ROYAL NORTH SHORE HOSPITAL	877m	North East
133996	Rubbish Depot	ARTARMON RESOURCE RECOVERY CENTRE	887m	North
134203	Helipad	Helipad	897m	North East
134105	Railway Station	ST LEONARDS RAILWAY STATION	949m	North East
59084	Headland	ONIONS POINT	970m	South
87081	Embassy	CONSULATE-GENERAL OF MONGOLIA	972m	South East
67616	Club	NORTHS RUGBY CLUB	980m	East
134179	Community Medical Centre	SYDNEY DIALYSIS CENTRE	983m	North East
134178	Community Medical Centre	NORTHERN SYDNEY CENTRAL COAST ACUTE CARE FACILITY	983m	North East
134180	Community Medical Centre	ROYAL NORTH SHORE COMMUNITY HEALTH CENTRE	983m	North East
134177	Community Medical Centre	NORTHERN SYDNEY AREA COMMUNITY HEALTH	983m	North East

Topographic Data Source: © Land and Property Information (2015)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Topographic Features

97-115 River Road, Greenwich, NSW 2065

Tanks (Areas)

What are the Tank Areas located within the dataset buffer?

Note. The large majority of tank features provided by LPI are derived from aerial imagery & are therefore primarily above ground tanks.

Map Id	Tank Type	Status	Name	Feature Currency	Distance	Direction
15096	Petroleum	Operational		01/11/2012	813m	South
15532	Petroleum	Operational		13/06/2001	821m	South
15533	Petroleum	Operational		13/06/2001	867m	South
15534	Petroleum	Operational		13/06/2001	917m	South
15536	Petroleum	Operational		13/06/2001	967m	South

Tanks (Points)

What are the Tank Points located within the dataset buffer?

Note. The large majority of tank features provided by LPI are derived from aerial imagery & are therefore primarily above ground tanks.

Map Id	Tank Type	Status	Name	Feature Currency	Distance	Direction
7023	Undefined	Feature on Previous LPI Tank Point Supply		13/06/2001	860m	South
7035	Undefined	Feature on Previous LPI Tank Point Supply		13/06/2001	896m	South
3841	Undefined	Feature on Previous LPI Tank Point Supply		13/06/2001	922m	South

Tanks Data Source: © Land and Property Information (2015)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Major Easements

What Major Easements exist within the dataset buffer?

Note. Easements provided by LPI are not at the detail of local governments. They are limited to major easements such as Right of Carriageway, Electrical Lines (66kVa etc.), Easement to drain water & Significant subterranean pipelines (gas, water etc.).

Map Id	Easement Class	Easement Type	Easement Width	Distance	Direction
120118238	Primary	Undefined		39m	North West
177690020	Primary	Right of way		80m	North West
161974425	Primary	Right of way	Variable	157m	East
120119791	Primary	Undefined		175m	South West
120120103	Primary	Undefined		230m	South West
120110319	Primary	Undefined		252m	West
180849539	Primary	Right of way	3.05 m	460m	West

Map Id	Easement Class	Easement Type	Easement Width	Distance	Direction
162890079	Primary	Right of way	VAR	496m	North
162895779	Primary	Right of way	276m and VAR	514m	South West
120121892	Primary	Undefined		526m	South West
160752185	Primary	Right of way	3.5 and Var.	528m	West
120118759	Primary	Undefined		535m	South West
120116135	Primary	Undefined		618m	West
120121221	Primary	Undefined		725m	North West
170680532	Primary	Right of way	Var	738m	North East
162971956	Primary	Right of way		942m	South West
179097629	Primary	Right of way	12m & var	959m	North East
178332606	Primary	Right of way	3m	984m	North West

Easements Data Source: © Land and Property Information (2015)

 $\label{lem:commons} \textbf{Creative Commons 3.0 @ Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en} \\$

Topographic Features

97-115 River Road, Greenwich, NSW 2065

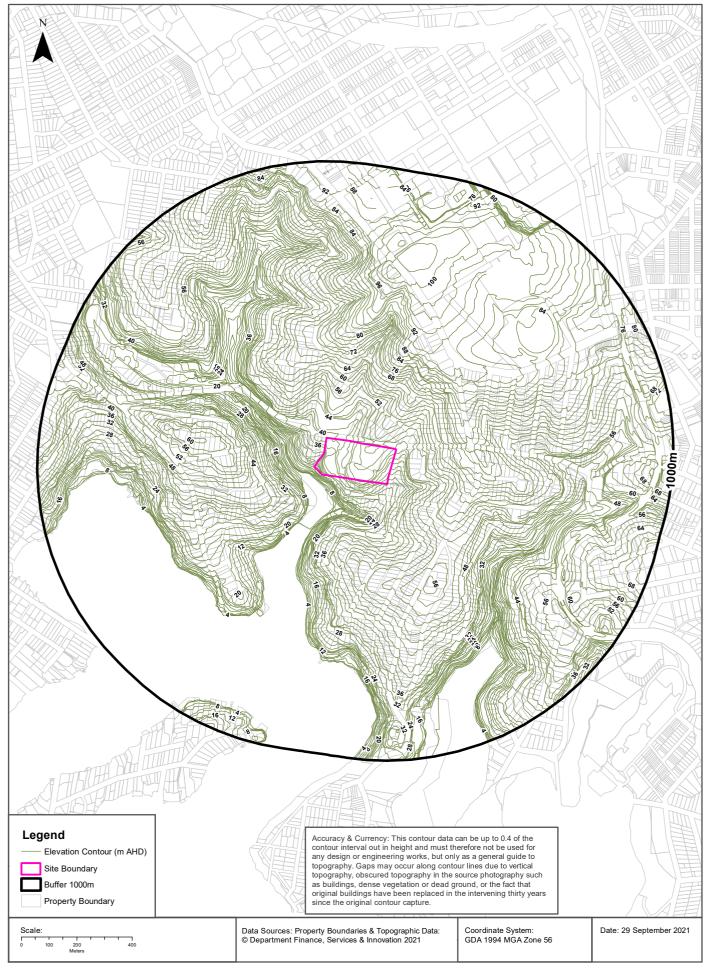
State Forest

What State Forest exist within the dataset buffer?

State Forest Numbe	State Forest Name	Distance	Direction
N/A	No records in buffer		

State Forest Data Source: © NSW Department of Finance, Services & Innovation (2018) Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

National Parks and Wildlife Service Reserves


What NPWS Reserves exist within the dataset buffer?

Reserve Number	Reserve Type	Reserve Name	Gazetted Date	Distance	Direction
N/A	No records in buffer				

NPWS Data Source: © NSW Department of Finance, Services & Innovation (2018) Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Elevation Contours (m AHD)

Hydrogeology & Groundwater

97-115 River Road, Greenwich, NSW 2065

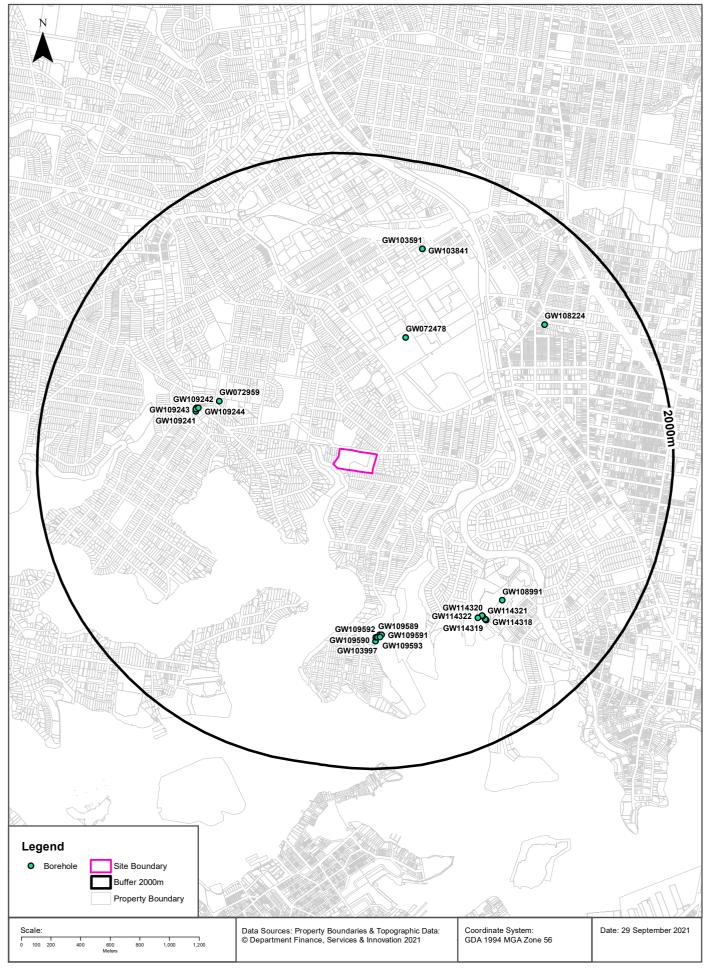
Hydrogeology

Description of aquifers within the dataset buffer:

Description	Distance	Direction
Porous, extensive aquifers of low to moderate productivity	0m	On-site

Hydrogeology Map of Australia : Commonwealth of Australia (Geoscience Australia)
Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Temporary Water Restriction (Botany Sands Groundwater Source) Order 2018


Temporary water restrictions relating to the Botany Sands aquifer within the dataset buffer:

Prohibition Area No.	Prohibition	Distance	Direction
N/A	No records in buffer		

Temporary Water Restriction (Botany Sands Groundwater Source) Order 2018 Data Source : NSW Department of Primary Industries

Groundwater Boreholes

Hydrogeology & Groundwater

97-115 River Road, Greenwich, NSW 2065

Groundwater Boreholes

Boreholes within the dataset buffer:

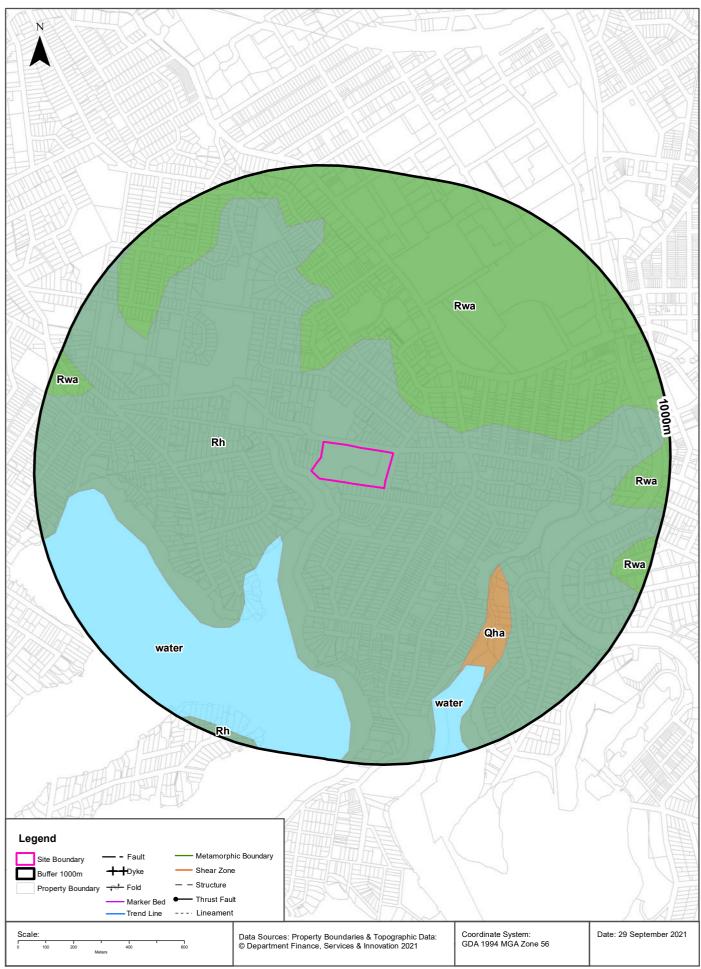
GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)	SWL (m bgl)		Elev (AHD)	Dist	Dir
GW072 478		Bore			Domestic		10/01/1995	180.50	180.50	270	48.0 0	0.700		816m	North
GW072 959	10BL156 425, 10BL602 137, 10CA10 9539	open	Private	Irrigation, Monitoring Bore, Recreation (groundwater)	Irrigation, Monitoring Bore		03/02/1995	24.50	24.50	0-500 ppm				873m	North West
GW109 244	10BL602 428	Bore	Private	Monitoring Bore	Monitoring Bore		20/08/2008	4.50	4.50					985m	West
GW109 241	10BL602 428	Well	Private	Monitoring Bore	Monitoring Bore		20/08/2008	4.50	4.50					993m	West
GW109 242	10BL602 428	Bore	Private	Monitoring Bore	Monitoring Bore		20/08/2008	4.50	4.50					998m	West
GW109 243	10BL602 428	Bore	Private	Monitoring Bore	Monitoring Bore		20/08/2008	4.50	4.50					998m	West
GW109 589	10BL163 745	Bore	Private	Monitoring Bore	Monitoring Bore		30/04/2003	2.90	2.90					1095m	South
GW109 591	10BL163 745	Bore	Private	Monitoring Bore	Monitoring Bore		05/09/2003	2.00	2.00					1096m	South
GW109 593	10BL163 745	Bore	Private	Monitoring Bore	Monitoring Bore		02/05/2003	4.00	4.00					1109m	South
GW109 590	10BL163 745	Bore	Private	Monitoring Bore	Monitoring Bore		30/04/2003	4.40	4.40					1111m	South
GW109 592	10BL163 745	Bore	Private	Monitoring Bore	Monitoring Bore		05/09/2003	4.50	4.50					1111m	South
GW103 997	10BL158 770	Bore		Monitoring Bore	Monitoring Bore		26/08/1998	4.50	4.50					1137m	South
GW114 322	10BL604 924	Bore	Private	Monitoring Bore	Monitoring Bore	North Shore Gas	03/09/1996	10.00	10.00					1211m	South East
GW114 321	10BL604 924	Bore	Private	Monitoring Bore	Monitoring Bore	North Shore Gas	11/09/1996	11.90	11.90					1215m	South East
GW114 320	10BL604 924	Bore	Private	Monitoring Bore	Monitoring Bore	North Shore Gas	12/09/1996	5.00	5.00					1222m	South East
GW108 991	10BL165 659, 10WA10 9008	Bore	Private	Domestic	Domestic		08/07/2008	168.00		300	13.0 0	0.120		1229m	South East
GW114 319	10BL604 924	Bore	Private	Monitoring Bore	Monitoring Bore	North Shore Gas	12/09/1996	5.00	5.00					1249m	South East
GW114 318	10BL604 924	Bore	Private	Monitoring Bore	Monitoring Bore	North Shore Gas	12/09/1996	10.00	10.00					1258m	South East
GW103 591	10BL159 969	Bore	Private	Monitoring Bore	Monitoring Bore		11/01/2001	5.80	5.80					1425m	North
GW103 841	10BL159 969	Bore		Monitoring Bore	Monitoring Bore		11/01/2001	5.80	5.80					1425m	North
GW108 224	10BL600 442, 10WA10 9080	Bore	Private	Domestic	Domestic		05/09/2006	132.40	132.40		35.0 0	0.300		1434m	North East

Borehole Data Source: NSW Department of Primary Industries - Office of Water / Water Administration Ministerial Corporation for all bores prefixed with GW. All other bores © Commonwealth of Australia (Bureau of Meteorology) 2015. Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Hydrogeology & Groundwater

97-115 River Road, Greenwich, NSW 2065

Driller's Logs


Drill log data relevant to the boreholes within the dataset buffer:

Groundwater No	Drillers Log	Distance	Direction
GW072478	0.00m-2.50m CONCRETE OVERBURDEN 2.50m-5.10m MOIST CLAY 5.10m-28.70m L/G MED. GRAIN SANDSTONE 28.70m-30.10m LIGHT GREY MED. GRAIN S/STONE QUARTZ MATRIX 30.10m-35.90m L/GREY GRAIN SANDSTONE 35.90m-37.20m L/GREY MED GRAIN S/STONE QUARTZ MATRIX 37.20m-45.30m L/GREY MED GRAIN S/STONE QUARTZ MATRIX 37.20m-45.30m DARK GREY SHALE 45.30m-54.30m DARK GREY SHALE 45.30m-75.40m DARK GREY SHALE 75.40m-109.70m L/GREY MED GRAIN S/STONE 109.70m-110.60m QUARTZ LAYER 110.60m-121.80m L/GREY MED GRAIN S/STONE 121.80m-123.30m DARK GREY SHALE 123.30m-135.40m L/GREY MED GRAIN S/STONE 135.40m-138.00m L/GREY MED GRAIN S/STONE 135.40m-139.80m WATER BEARING QUARTZ 139.80m-143.80m L/GREY MED GRAIN S/STONE QUARTZ MATRIX 138.00m-139.80m WATER BEARING QUARTZ 144.40m-154.10m L/GREY MED GRAIN S/STONE QUARTZ MATRIX 143.80m-144.40m WATER BEARING QUARTZ 144.40m-154.10m L/GREY CEMENTED SANDSTONE 154.10m-163.70m L/GREY MED GRAIN S/STONE QUARTZ MATRIX 166.90m-168.70m GREY MED GRAIN S/STONE 168.70m-180.50m L/GREY MED GRAIN S/STONE	816m	North
GW072959	0.00m-0.80m Sandy Loam 0.80m-6.90m 6.90m-9.20m 9.20m-16.60m L/grey Med Grain Sandstone 16.60m-18.10m Light Grey Med Grain Sandstone Fractured Watr Bearing Zones 18.10m-21.10m L/grey Med Grain Sandstone 21.10m-22.30m L/grey Med Grain Sandstone Fractured Water Bearing Zones 22.30m-24.50m Light Grey Marine Clay	873m	North West
GW109244	0.00m-1.00m CONCRETE,FILL,CLAY,SANDY,BROWN YELLOW 1.00m-2.00m WEATHERED SANDSTONE RED ORANGE 2.00m-4.50m WEATHERED SANDSTONE ,RED WHITE,DAMP,ODOUR	985m	West
GW109241	0.00m-1.00m CONCRETE,CLAY,WEATHERED SANDSTONE 1.00m-2.00m AS ABOVE,RED BROWN,(INCREASED DENSITY TO 1.5m) 2.00m-3.00m AS ABOVE,WHITE ORANGE,DAMP 3.00m-4.50m AS ABOVE,GREY WHITE,DAMP,BLACK LAYER 3.5, 3.8m	993m	West
GW109242	0.00m-1.00m CONCRETE,CLAY,BROWN YELLOW 1.00m-2.00m WEATHERED SANDSTONE,WHITE,BROWN 2.00m-3.00m AS ABOVE,RED BROWN, DAMP 3.00m-4.50m AS ABOVE,WHITE GREY	998m	West
GW109243	0.00m-0.50m CONCRETE,CLAY,BROWN GREY 0.50m-2.00m WEATHERED SANDSTONE,RED BROWN,DRY 2.00m-3.00m AS ABOVE,WHITE,YELLOW, DAMP 3.00m-4.50m WEATHERED SANDSTONE,BROWN,WET,DENSE	998m	West
GW109589	0.00m-0.30m CONCRETE 0.30m-0.50m DARK GREY AND BLACK SANDY LOAM/GRAVEL 0.50m-1.20m DARK GREY AND BLACK SANDY LOAM 1.20m-2.90m DARK GREY SANDY CLAY	1095m	South
GW109591	0.00m-0.30m CONCRETE 0.30m-0.60m BLACK AND DARK GREY LOAMY SAND WITH GRAVEL 0.60m-2.00m MIXTURE OF GREY AND LIGHT BROWN SANDY LOAM	1096m	South
GW109593	0.00m-0.20m CONCRETE 0.20m-0.60m DARK GREY AND BLACK SANDY LOAM WITH GRAVEL 0.60m-1.80m DARK GREY AND BLACK SANDY LOAM 1.80m-4.00m DARK GREY AND BLACK SANDY CLAY/GRAVEL	1109m	South
GW109592	0.00m-0.20m CONCRETE 0.20m-0.50m BLACK AND DARK GREY LOAMY SAND/GRAVEL 0.50m-1.10m BLACK AND DARK GREY SANDY LOAM 1.10m-4.50m BLACK SANDY AND SILTY LOAM	1111m	South
GW109590	0.00m-0.20m CONCRETE 0.20m-0.70m DARK GREY AND BLACK SANDY LOAM WITH SOME GRAVEL 0.70m-1.20m DARK GREY AND BLACK SANDY LOAM 1.20m-4.40m DARK GREY TO BLACK SANDY CLAY	1111m	South

Groundwater No	Drillers Log	Distance	Direction
GW103997	0.00m-0.20m CONCRETE 0.20m-1.00m FILL: SANDY,DARK 1.00m-2.00m SANDY CLAY 2.00m-2.90m SANDY SILT/DARK GREY 2.90m-4.50m SANDY SILT:DARK GREY	1137m	South
GW103591	0.00m-2.00m ROAD BASE 2.00m-4.00m CLAY 4.00m-5.80m SANDY CLAY	1425m	North
GW103841	0.00m-0.20m ROAD BASE 0.20m-4.00m STIFF CLAY 4.00m-5.80m SANDY CLAY	1425m	North
GW108224	0.00m-0.60m clay, sandy 0.60m-2.80m sandstone, weathered 2.80m-3.10m clay 3.10m-25.50m sandstone, weathered 25.50m-27.00m sandstone, grey quartz 27.00m-29.00m shale 29.00m-35.00m sandstone, quartz grey 35.00m-41.00m shale 41.00m-52.00m sandstone, grey 52.00m-54.00m sandstone, quartz grey 54.00m-61.00m sandstone, quartz grey 61.00m-65.00m shale 65.00m-81.00m sandstone, grey 81.00m-84.00m sandstone, grey 81.00m-84.00m sandstone, grey quartz siltstone 84.00m-98.00m sandstone, grey 98.00m-100.00m sandstone, grey quartz 100.00m-106.50m sandstone, grey 106.50m-109.00m sandstone, grey quartz 110.50m-112.00m siltstone 112.00m-132.40m sandstone, grey	1434m	North East

Drill Log Data Source: NSW Department of Primary Industries - Office of Water / Water Administration Ministerial Corp Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Geology

97-115 River Road, Greenwich, NSW 2065

Geological Units 1:100,000

What are the Geological Units within the dataset buffer?

Symbol	Description	Unit Name	Group	Sub Group	Age	Dom Lith	Map Sheet	Dist	Dir
Rh	Medium to coarse grained quartz sandstone, very minor shale and laminate lenses				Triassic		Sydney	0m	On-site
Rwa	Black to dark grey shale and laminate	Ashfield Shale	Wianamatta Group		Triassic		Sydney	166m	North East
water							Sydney	248m	South West
Qha	Silty to peaty quartz sand, silt, and clay. Ferruginous and humic cementation in places. Common shell layers				Quaternary		Sydney	493m	South East

Geological Structures 1:100,000

What are the Geological Structures within the dataset buffer?

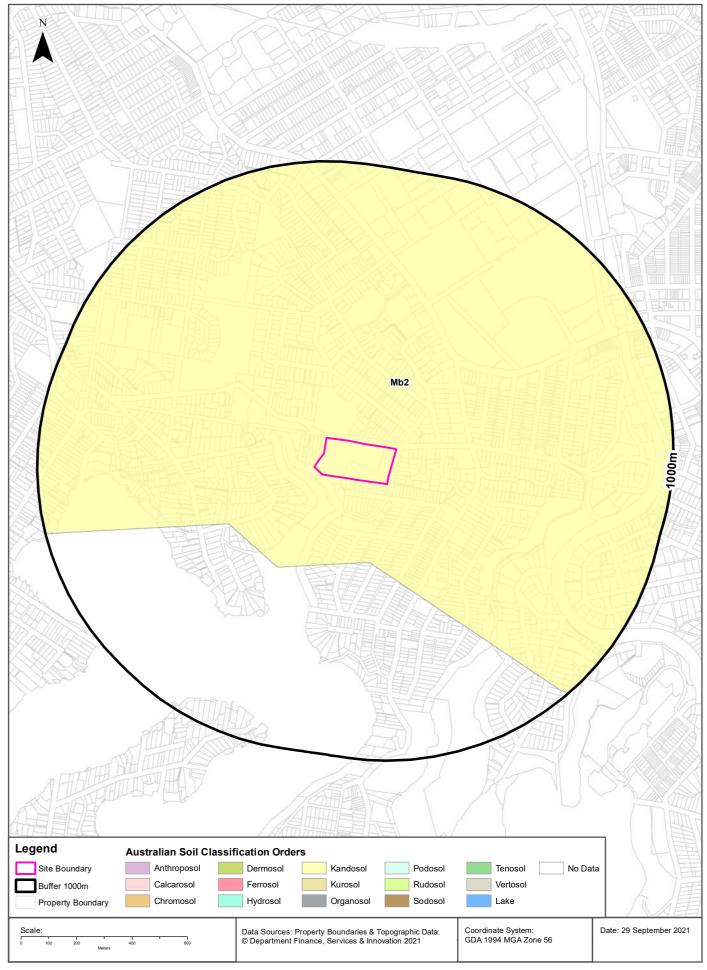
Feature	Name	Description	Map Sheet	Distance	Direction
N/A	No records in buffer				

Geological Data Source : NSW Department of Industry, Resources & Energy © State of New South Wales through the NSW Department of Industry, Resources & Energy

Naturally Occurring Asbestos Potential

97-115 River Road, Greenwich, NSW 2065

Naturally Occurring Asbestos Potential


Naturally Occurring Asbestos Potential within the dataset buffer:

Potential	Sym	Strat Name	Group	Formation	Scale	Min Age	Max Age	Rock Type	Dom Lith	Description	Dist	Dir
No records in buffer												

Naturally Occurring Asbestos Potential Data Source: © State of New South Wales through NSW Department of Industry, Resources & Energy

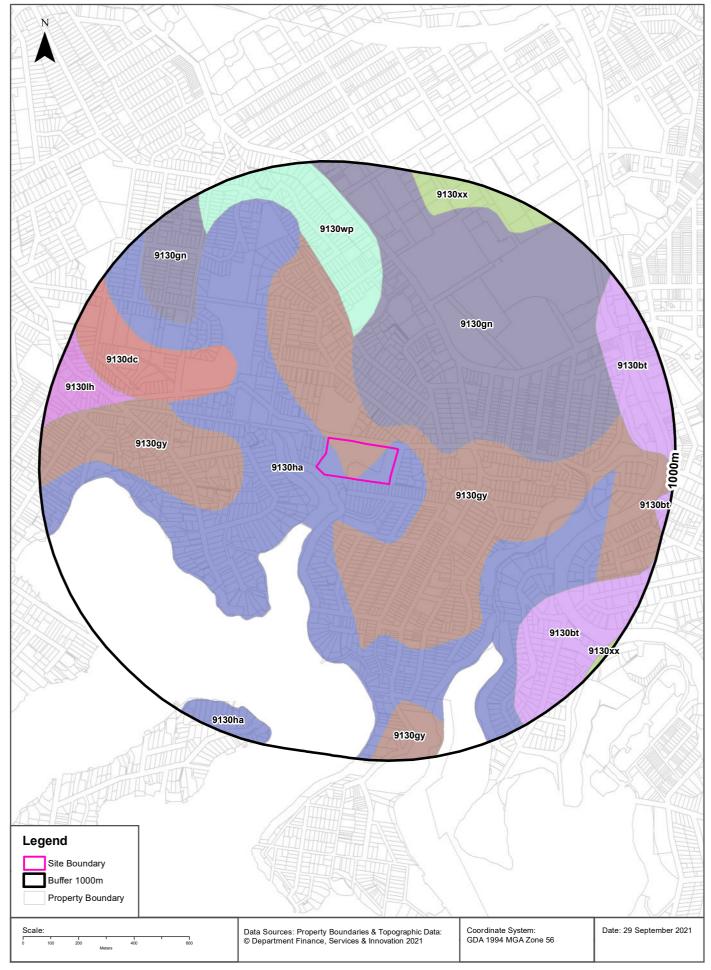
Atlas of Australian Soils

Soils

97-115 River Road, Greenwich, NSW 2065

Atlas of Australian Soils

Soil mapping units and Australian Soil Classification orders within the dataset buffer:


Map Unit Code	Soil Order	Map Unit Description	Distance	Direction
Mb2	Kandosol	Dissected sandstone plateau of moderate to strong relief with sandstone pillars, ledges, and slabs level to undulating ridges, irregularly benched slopes, steep ridges, cliffs, canyons, narrow sandy valleys: chief soils are (i) on areas of gentle to moderate relief, acid yellow leached earths (Gn2.74) and (Gn2.34) and acid leached yellow earths (Gn2.24)-sometimes these soils contain ironstone gravel; and (ii) on, or adjacent to, areas of strong relief, siliceous sands (Uc1.2), leached sands (Uc2.12) and (Uc2.2), and shallow forms of the above (Gn2) soils. Associated are: (i) on flat to gently undulating remnants of the original plateau surface, leached sands (Uc2.3), siliceous sands (Uc1.2), sandy earths (Uc5.22), and (Gn2) soils as for (i) above (these areas are in part comparable with unit Cb29); (ii) on flat ironstone gravelly remnants of the original plateau surface, (Gn2) soils as for unit Mb5(i); (iii) on gently undulating ridges where interbedded shales are exposed, shallow, often stony (Dy3.41), (Dr2.21), and related soils similar to unit Tb35; (iv) narrow valleys of (Uc2.3) soils flanked by moderate slopes of (Dy3.41) soils; (v) escarpments of steep hills with shallow (Dy) and (Dr) soils between sandstone pillars; and (vi) shallow (Um) soils, such as (Um6.21) on steep hills of basic rocks. As mapped, minor areas of units Mg20, Mm1, and Mw8 are included. Data are limited.	Om	On-site

Atlas of Australian Soils Data Source: CSIRO

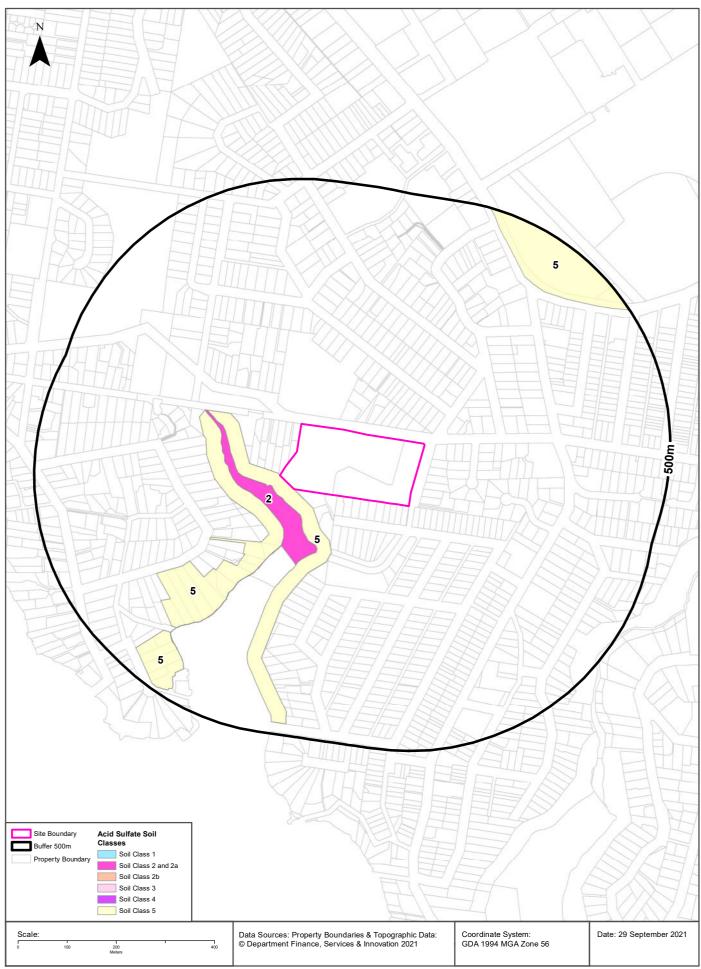
Creative Commons 4.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/4.0/au/deed.en

Soil Landscapes of Central and Eastern NSW

Soils

97-115 River Road, Greenwich, NSW 2065

Soil Landscapes of Central and Eastern NSW


Soil Landscapes of Central and Eastern NSW within the dataset buffer:

Soil Code	Name	Distance	Direction
<u>9130ha</u>	Hawkesbury	0m	On-site
<u>9130gy</u>	Gymea	0m	On-site
<u>9130gn</u>	Glenorie	70m	North East
<u>9130wp</u>	West Pennant Hills	373m	North
<u>9130dc</u>	Deep Creek	404m	North West
<u>9130bt</u>	Blacktown	681m	South East
<u>9130lh</u>	Lucas Heights	691m	West
<u>9130xx</u>	Disturbed Terrain	853m	North East

Soil Landscapes of Central and Eastern NSW: NSW Department of Planning, Industry and Environment Creative Commons 4.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/4.0/au/deed.en

Acid Sulfate Soils

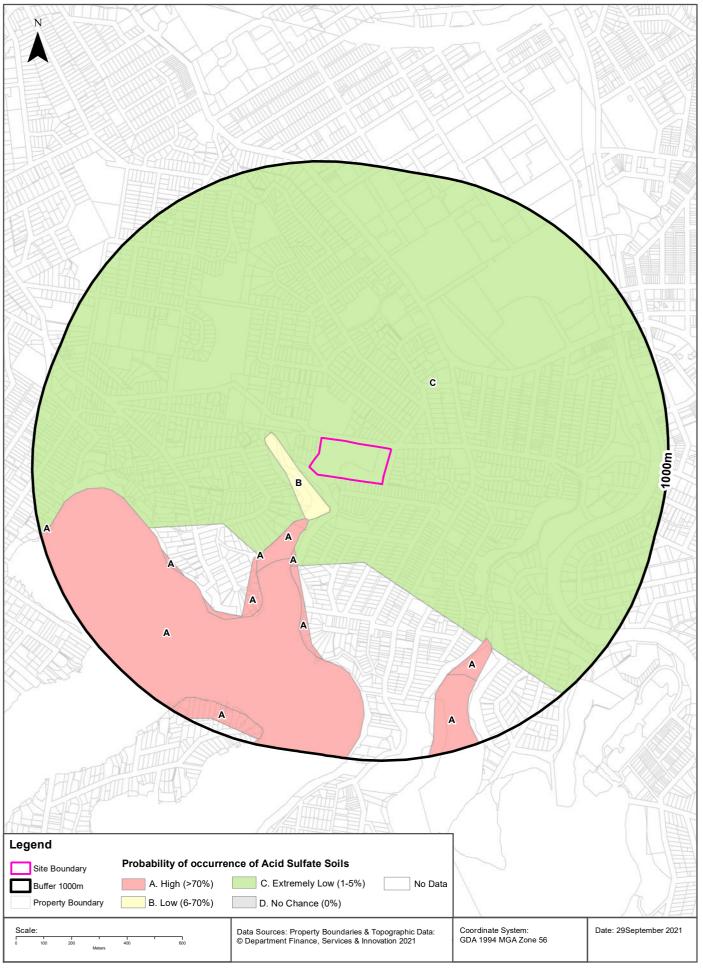
Acid Sulfate Soils

97-115 River Road, Greenwich, NSW 2065

Environmental Planning Instrument - Acid Sulfate Soils

What is the on-site Acid Sulfate Soil Plan Class that presents the largest environmental risk?

Soil Class	Description	EPI Name
N/A		


If the on-site Soil Class is 5, what other soil classes exist within 500m?

Soil Class	Description	EPI Name	Distance	Direction
N/A				

NSW Crown Copyright - Planning and Environment Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Atlas of Australian Acid Sulfate Soils

Acid Sulfate Soils

97-115 River Road, Greenwich, NSW 2065

Atlas of Australian Acid Sulfate Soils

Atlas of Australian Acid Sulfate Soil categories within the dataset buffer:

Class	Description	Distance	Direction
С	Extremely low probability of occurrence. 1-5% chance of occurrence with occurrences in small localised areas.	0m	On-site
В	Low Probability of occurrence. 6-70% chance of occurrence.	38m	West
Α	High Probability of occurrence. >70% chance of occurrence.	953m	West

Atlas of Australian Acid Sulfate Soils Data Source: CSIRO

 $Creative\ Commons\ 3.0\ \\ @\ Commonwealth\ of\ Australia\ http://creativecommons.org/licenses/by/3.0/au/deed.en$

Dryland Salinity

97-115 River Road, Greenwich, NSW 2065

Dryland Salinity - National Assessment

Is there Dryland Salinity - National Assessment data onsite?

No

Is there Dryland Salinity - National Assessment data within the dataset buffer?

No

What Dryland Salinity assessments are given?

Assessment 2000	Assessment 2020	Assessment 2050	Distance	Direction
N/A	N/A	N/A		

Dryland Salinity Data Source: National Land and Water Resources Audit

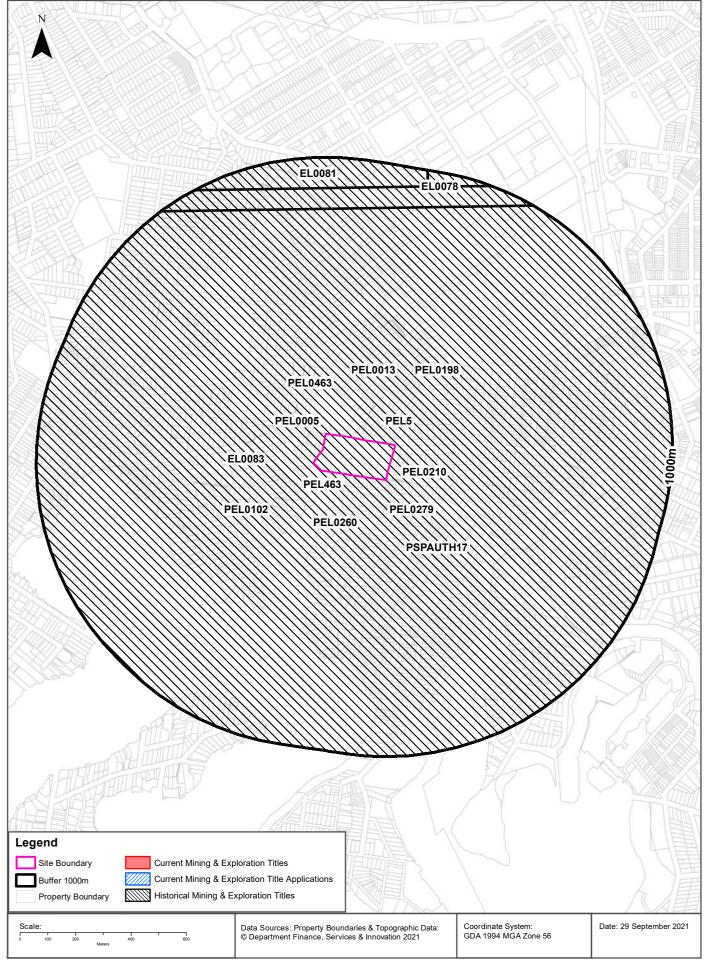
The Commonwealth and all suppliers of source data used to derive the maps of "Australia, Forecast Areas Containing Land of High Hazard or Risk of Dryland Salinity from 2000 to 2050" do not warrant the accuracy or completeness of information in this product. Any person using or relying upon such information does so on the basis that the Commonwealth and data suppliers shall bear no responsibility or liability whatsoever for any errors, faults, defects or omissions in the information. Any persons using this information do so at their own risk.

In many cases where a high risk is indicated, less than 100% of the area will have a high hazard or risk.

Mining

97-115 River Road, Greenwich, NSW 2065

Mining Subsidence Districts


Mining Subsidence Districts within the dataset buffer:

District	Distance	Direction
There are no Mining Subsidence Districts within the report buffer		

Mining Subsidence District Data Source: © Land and Property Information (2016)
Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Mining & Exploration Titles

Mining

97-115 River Road, Greenwich, NSW 2065

Current Mining & Exploration Titles

Current Mining & Exploration Titles within the dataset buffer:

Title Ref	Holder	Grant Date	Expiry Date	Last Renewed	Operation	Resource	Minerals	Dist	Dir
N/A	No records in buffer								

Current Mining & Exploration Titles Data Source: © State of New South Wales through NSW Department of Industry

Current Mining & Exploration Title Applications

Current Mining & Exploration Title Applications within the dataset buffer:

Application Ref	Applicant	Application Date	Operation	Resource	Minerals	Dist	Dir
N/A	No records in buffer						

Current Mining & Exploration Title Applications Data Source: © State of New South Wales through NSW Department of Industry

Mining

97-115 River Road, Greenwich, NSW 2065

Historical Mining & Exploration Titles

Historical Mining & Exploration Titles within the dataset buffer:

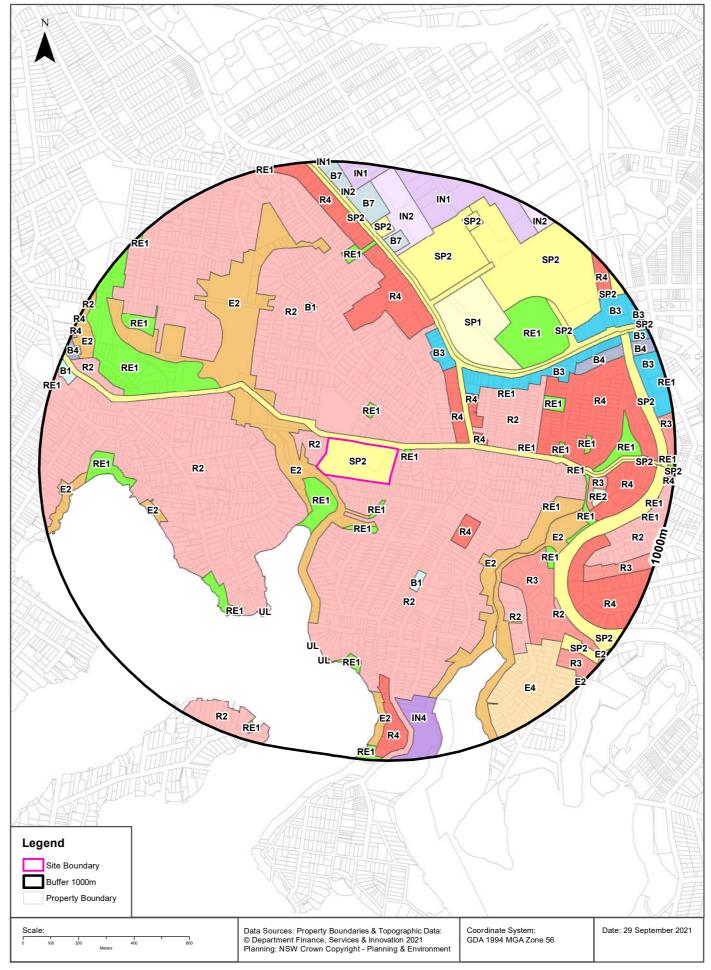
Title Ref	Holder	Start Date	End Date	Resource	Minerals	Dist	Dir
PEL0279	THE ELECTRICITY COMMISSION OF NSW (TRADING AS PACIFIC POWER)	17/04/1990	11/11/1993	PETROLEUM	Petroleum	0m	On-site
PEL0013	AUSTRALIAN OIL AND GAS CORPORATION LTD			PETROLEUM	Petroleum	0m	On-site
PEL0260	NORTH BULLI COLLIERIES PTY LTD, AGL PETROLEUM OPERATIONS PTY LTD, THE AUSTRALIAN GAS LIGHT CO.	9/09/1981	8/03/1993	PETROLEUM	Petroleum	0m	On-site
PEL463	DART ENERGY (APOLLO) PTY LTD			MINERALS		0m	On-site
PEL5	AGL UPSTREAM INVESTMENTS PTY LIMITED			MINERALS		0m	On-site
PSPAUTH17	MACQUARIE ENERGY PTY LTD	8/03/2007	7/03/2008	PETROLEUM	Petroleum	0m	On-site
PEL0005	AGL UPSTREAM INVESTMENTS PTY LIMITED	11/11/1993	4/03/2015	PETROLEUM	Petroleum	0m	On-site
PEL0102	AUSTRALIAN OIL AND GAS CORPORATION LTD			PETROLEUM	Petroleum	0m	On-site
PEL0198	JOHN STREVENS (TERRIGAL) NL			PETROLEUM	Petroleum	0m	On-site
PEL0210	THE AUSTRALIAN GAS LIGHT COMPANY (AGL), NORTH BULLI COLLIERIES PTY LTD			PETROLEUM	Petroleum	0m	On-site
PEL0463	DART ENERGY (APOLLO) PTY LTD	22/10/2008	6/03/2015	PETROLEUM	Petroleum	0m	On-site
EL0083	CONTINENTAL OIL CO OF AUSTRALIA LIMITED	01 Feb 1967	01 Feb 1968	MINERALS		0m	On-site
EL0081	CONTINENTAL OIL CO OF AUSTRALIA LIMITED	01 Feb 1967	01 Feb 1968	MINERALS		888m	North
EL0078	CONTINENTAL OIL CO OF AUSTRALIA LIMITED	01 Feb 1967	01 Feb 1968	MINERALS		942m	North

Historical Mining & Exploration Titles Data Source: © State of New South Wales through NSW Department of Industry

State Environmental Planning Policy

97-115 River Road, Greenwich, NSW 2065

State Significant Precincts


What SEPP State Significant Precincts exist within the dataset buffer?

Map Id	Precinct	EPI Name	Published Date	Commenced Date	Currency Date	Amendment	Distance	Direction
N/A	No records in buffer							

State Environment Planning Policy Data Source: NSW Crown Copyright - Planning & Environment Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

EPI Planning Zones

Environmental Planning Instrument

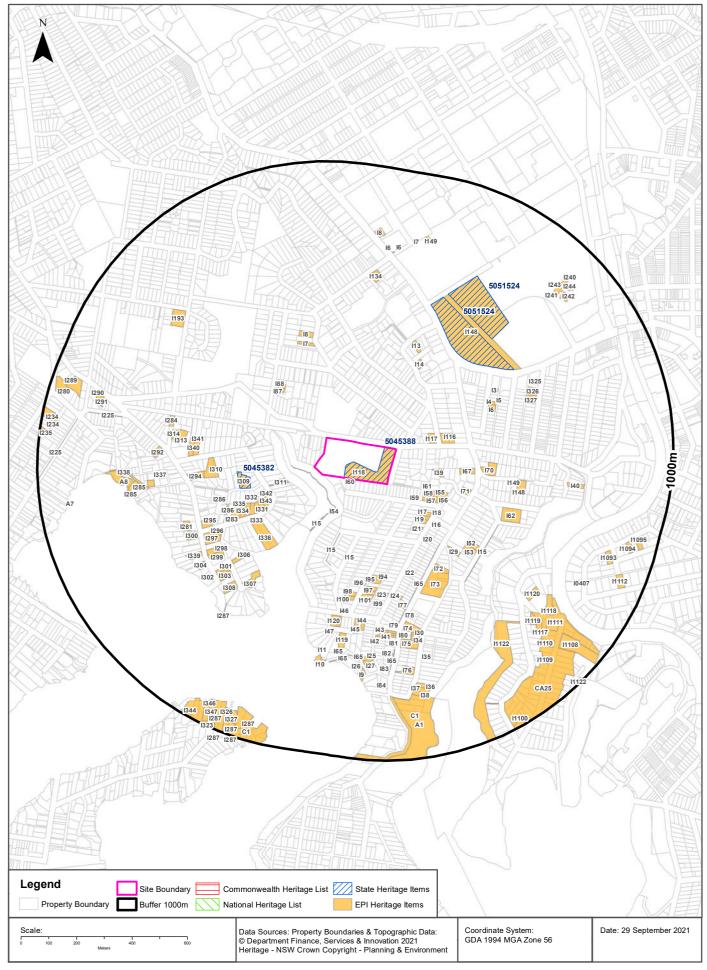
97-115 River Road, Greenwich, NSW 2065

Land Zoning

What EPI Land Zones exist within the dataset buffer?

Zone	Description	Purpose	EPI Name	Published Date	Commenced Date	Currency Date	Amendment	Distance	Direction
SP2	Infrastructure	Health Services Facilities	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	30/10/2020		0m	On-site
SP2	Infrastructure	Road	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	30/10/2020		0m	North East
R2	Low Density Residential		Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	30/10/2020		0m	West
E2	Environmental Conservation		Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	30/10/2020		0m	West
R2	Low Density Residential		Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	30/10/2020		0m	South East
R2	Low Density Residential		Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	30/10/2020		20m	North West
RE1	Public Recreation		Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	30/10/2020		21m	East
RE1	Public Recreation		Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	30/10/2020		28m	South West
RE1	Public Recreation		Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	30/10/2020		60m	South
RE1	Public Recreation		Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	30/10/2020		93m	North
R2	Low Density Residential		Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	30/10/2020		110m	West
RE1	Public Recreation		Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	30/10/2020		157m	South
R4	High Density Residential		Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	30/10/2020		210m	North East
E2	Environmental Conservation		Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	30/10/2020		226m	North West
R4	High Density Residential		Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	30/10/2020		276m	East
R2	Low Density Residential		Lane Cove Local Environmental Plan 2009	30/10/2020	30/10/2020	30/10/2020	Amendment No 25	276m	East
R4	High Density Residential		Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	30/10/2020		278m	North East
R4	High Density Residential		Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	30/10/2020		292m	South East
ВЗ	Commercial Core		Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	30/10/2020		318m	North East
В3	Commercial Core		Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	30/10/2020		326m	North East
B1	Neighbourhood Centre		Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	30/10/2020		327m	South East
SP2	Infrastructure	Classified Road	Willoughby Local Environmental Plan 2012	21/12/2012	31/01/2013	05/03/2021		394m	North East
R4	High Density Residential		Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	30/10/2020		396m	North
SP1	Special Activities	Cemetery	Willoughby Local Environmental Plan 2012	21/12/2012	31/01/2013	05/03/2021		409m	North East
RE1	Public Recreation		Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	30/10/2020		419m	North East
E2	Environmental Conservation		Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	30/10/2020		422m	South East
RE1	Public Recreation		Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	30/10/2020		431m	North West
RE1	Public Recreation		Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	30/10/2020		441m	East

Zone	Description	Purpose	EPI Name	Published Date	Commenced Date	Currency Date	Amendment	Distance	Direction
B1	Neighbourhood Centre		Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	30/10/2020		461m	North
E2	Environmental Conservation		North Sydney Local Environmental Plan 2013	30/06/2021	30/06/2021	30/06/2021	Amendment No 30	492m	South East
R4	High Density Residential		Lane Cove Local Environmental Plan 2009	30/10/2020	30/10/2020	30/10/2020	Amendment No 25	497m	East
R3	Medium Density Residential		North Sydney Local Environmental Plan 2013	02/08/2013	13/09/2013	30/06/2021		508m	South East
UL	Unzoned Land		Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	30/10/2020		509m	South West
RE1	Public Recreation		Willoughby Local Environmental Plan 2012	21/12/2012	31/01/2013	05/03/2021		526m	North East
R2	Low Density Residential		North Sydney Local Environmental Plan 2013	02/08/2013	13/09/2013	30/06/2021		532m	South East
RE1	Public Recreation		Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	30/10/2020		535m	South West
RE1	Public Recreation		Lane Cove Local Environmental Plan 2009	30/10/2020	30/10/2020	30/10/2020	Amendment No 25	540m	East
SP2	Infrastructure	Educational Establishment	Willoughby Local Environmental Plan 2012	21/12/2012	31/01/2013	05/03/2021		550m	North East
E2	Environmental Conservation		Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	30/10/2020		572m	West
RE1	Public Recreation		Lane Cove Local Environmental Plan 2009	23/08/2013	23/08/2013	30/10/2020	Amendment No 12	574m	East
RE1	Public Recreation		Lane Cove Local Environmental Plan 2009	30/10/2020	30/10/2020	30/10/2020	Amendment No 25	574m	East
RE1	Public Recreation		Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	30/10/2020		593m	East
RE1	Public Recreation		North Sydney Local Environmental Plan 2013	02/08/2013	13/09/2013	30/06/2021		606m	South East
UL	Unzoned Land		Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	30/10/2020		609m	South
SP2	Infrastructure	Hospital	Willoughby Local Environmental Plan 2012	21/12/2012	31/01/2013	05/03/2021		626m	North East
RE1	Public Recreation		Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	30/10/2020		626m	South
RE1	Public Recreation		Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	30/10/2020		633m	North
RE1	Public Recreation		Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	30/10/2020		651m	South
RE1	Public Recreation		Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	30/10/2020		651m	West
SP2	Infrastructure	Railway	North Sydney Local Environmental Plan 2013	30/06/2021	30/06/2021	30/06/2021	Amendment No 30	651m	East
UL	Unzoned Land		Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	30/10/2020		654m	South
RE1	Public Recreation		North Sydney Local Environmental Plan 2013	02/08/2013	13/09/2013	30/06/2021		667m	East
RE1	Public Recreation		Lane Cove Local Environmental Plan 2009	30/10/2020	30/10/2020	30/10/2020	Amendment No 25	669m	East
SP2	Infrastructure	Classified Road	North Sydney Local Environmental Plan 2013	30/06/2021	30/06/2021	30/06/2021	Amendment No 30	675m	East
R4	High Density Residential		Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	30/10/2020		687m	North
R4	High Density Residential		Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	30/10/2020		687m	South
IN2	Light Industrial		Willoughby Local Environmental Plan 2012	20/10/2017	20/10/2017	05/03/2021	Amendment No 10	688m	North
B4	Mixed Use		Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	30/10/2020		693m	North East
R3	Medium Density Residential		North Sydney Local Environmental Plan 2013	02/08/2013	13/09/2013	30/06/2021		695m	East
B7	Business Park		Willoughby Local Environmental Plan 2012	05/05/2017	05/05/2017	05/03/2021	Amendment No 9	699m	North
RE1	Public Recreation		Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	30/10/2020		704m	East
R4	High Density Residential		North Sydney Local Environmental Plan 2013	02/08/2013	13/09/2013	30/06/2021		713m	South East


Zone	Description	Purpose	EPI Name	Published Date	Commenced Date	Currency Date	Amendment	Distance	Direction
RE2	Private Recreation		North Sydney Local Environmental Plan 2013	02/08/2013	13/09/2013	30/06/2021		717m	East
R4	High Density Residential		North Sydney Local Environmental Plan 2013	30/06/2021	30/06/2021	30/06/2021	Amendment No 30	722m	East
R2	Low Density Residential		North Sydney Local Environmental Plan 2013	02/08/2013	13/09/2013	30/06/2021		723m	South East
RE1	Public Recreation		Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	30/10/2020		732m	North West
R2	Low Density Residential		Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	30/10/2020		743m	West
SP2	Infrastructure	Telecommunic ations	Willoughby Local Environmental Plan 2012	21/12/2012	31/01/2013	05/03/2021		743m	North
E2	Environmental Conservation		Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	30/10/2020		750m	South
В3	Commercial Core		Willoughby Local Environmental Plan 2012	21/12/2012	31/01/2013	05/03/2021		754m	North East
E4	Environmental Living		North Sydney Local Environmental Plan 2013	23/05/2014	23/05/2014	30/06/2021	Amendment No 3	755m	South East
R3	Medium Density Residential		North Sydney Local Environmental Plan 2013	02/08/2013	13/09/2013	30/06/2021		758m	East
R2	Low Density Residential		North Sydney Local Environmental Plan 2013	02/08/2013	13/09/2013	30/06/2021		758m	East
IN4	Working Waterfront		Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	30/10/2020		765m	South
B7	Business Park		Willoughby Local Environmental Plan 2012	20/10/2017	20/10/2017	05/03/2021	Amendment No 10	786m	North
IN1	General Industrial		Willoughby Local Environmental Plan 2012	21/12/2012	31/01/2013	05/03/2021		806m	North
E2	Environmental Conservation		Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	30/10/2020		826m	West
SP2	Infrastructure	Health Services Facilities	North Sydney Local Environmental Plan 2013	02/08/2013	13/09/2013	30/06/2021		829m	South East
SP2	Infrastructure	Electricity Transmission & Distribution	Willoughby Local Environmental Plan 2012	21/12/2012	31/01/2013	05/03/2021		829m	North East
R3	Medium Density Residential		North Sydney Local Environmental Plan 2013	02/08/2013	13/09/2013	30/06/2021		855m	South East
SP2	Infrastructure	Railway	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	30/10/2020		875m	East
IN2	Light Industrial		Willoughby Local Environmental Plan 2012	20/10/2017	20/10/2017	05/03/2021	Amendment No 10	877m	North
B7	Business Park		Willoughby Local Environmental Plan 2012	21/12/2012	31/01/2013	05/03/2021		890m	North
R2	Low Density Residential		Hunters Hill Local Environmental Plan 2012	01/02/2013	12/08/2013	12/08/2013		891m	South West
E2	Environmental Conservation		Lane Cove Local Environmental Plan 2009	24/07/2015	24/07/2015	30/10/2020	Amendment No 14	900m	North West
R4	High Density Residential		Willoughby Local Environmental Plan 2012	21/12/2012	31/01/2013	05/03/2021		905m	North East
В3	Commercial Core		Lane Cove Local Environmental Plan 2009	01/12/2017	01/12/2017	30/10/2020	Amendment No 22	909m	East
B4	Mixed Use		Lane Cove Local Environmental Plan 2009	01/12/2017	01/12/2017	30/10/2020	Amendment No 22	912m	East
B1	Neighbourhood Centre		Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	30/10/2020		924m	West
RE1	Public Recreation		Hunters Hill Local Environmental Plan 2012	01/02/2013	12/08/2013	12/08/2013		924m	South
SP2	Infrastructure	Railway	Willoughby Local Environmental Plan 2012	21/12/2012	31/01/2013	05/03/2021		929m	North East
IN2	Light Industrial		Willoughby Local Environmental Plan 2012	21/12/2012	31/01/2013	05/03/2021		932m	North East
RE1	Public Recreation		North Sydney Local Environmental Plan 2013	02/08/2013	13/09/2013	30/06/2021		933m	East
R3	Medium Density Residential		North Sydney Local Environmental Plan 2013	02/08/2013	13/09/2013	30/06/2021		939m	East
B4	Mixed Use		Lane Cove Local Environmental Plan 2009	20/05/2020	20/05/2020	30/10/2020	Amendment No 29	940m	West

Zone	Description	Purpose	EPI Name	Published Date	Commenced Date	Currency Date	Amendment	Distance	Direction
RE1	Public Recreation		Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	30/10/2020		945m	South
RE1	Public Recreation		North Sydney Local Environmental Plan 2013	02/08/2013	13/09/2013	30/06/2021		969m	East
RE1	Public Recreation		North Sydney Local Environmental Plan 2013	02/08/2013	13/09/2013	30/06/2021		972m	East
SP2	Infrastructure	Classified Road	North Sydney Local Environmental Plan 2013	30/06/2021	30/06/2021	30/06/2021	Amendment No 30	973m	East
R4	High Density Residential		North Sydney Local Environmental Plan 2013	02/08/2013	13/09/2013	30/06/2021		973m	East
E2	Environmental Conservation		North Sydney Local Environmental Plan 2013	02/08/2013	13/09/2013	30/06/2021		974m	South East
R4	High Density Residential		Lane Cove Local Environmental Plan 2009	20/05/2020	20/05/2020	30/10/2020	Amendment No 29	983m	North West
В3	Commercial Core		North Sydney Local Environmental Plan 2013	15/05/2020	15/05/2020	30/06/2021	Amendment No 28	984m	North East
RE1	Public Recreation		Lane Cove Local Environmental Plan 2009	23/08/2013	23/08/2013	30/10/2020	Amendment No 12	992m	North
R4	High Density Residential		Lane Cove Local Environmental Plan 2009	31/07/2015	31/07/2015	30/10/2020	Amendment No 17	995m	North West
RE1	Public Recreation		Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	30/10/2020		995m	West
RE1	Public Recreation		Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	30/10/2020		999m	North
RE1	Public Recreation		Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	30/10/2020		1000m	East

Environmental Planning Instrument Data Source: NSW Crown Copyright - Planning & Environment Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Heritage Items

Heritage

97-115 River Road, Greenwich, NSW 2065

Commonwealth Heritage List

What are the Commonwealth Heritage List Items located within the dataset buffer?

Place Id	Name	Address	Place File No	Class	Status	Register Date	Distance	Direction
N/A	No records in buffer							

Heritage Data Source: Australian Government Department of the Environment and Energy - Heritage Branch Creative Commons 3.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/3.0/au/deed.en

National Heritage List

What are the National Heritage List Items located within the dataset buffer? Note. Please click on Place Id to activate a hyperlink to online website.

Place Id	Name	Address	Place File No	Class	Status	Register Date	Distance	Direction
N/A	No records in buffer							

Heritage Data Source: Australian Government Department of the Environment and Energy - Heritage Branch Creative Commons 3.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/3.0/au/deed.en

State Heritage Register - Curtilages

What are the State Heritage Register Items located within the dataset buffer?

Map Id	Name	Address	LGA	Listing Date	Listing No	Plan No	Distance	Direction
5045388	Pallister	95 River Road Greenwich	LANE COVE	02/04/1999	00574	1571	0m	On-site
5045382	Northwood House & Cottage	1 Private Road Northwood	LANE COVE	02/04/1999	00440	1132	236m	West
5051524	Gore Hill Memorial Cemetery	Pacific Highway, Gore Hill	WILLOUGHBY	25/05/2001	01491	2121	409m	North East
5051524	Gore Hill Memorial Cemetery	Pacific Highway, Gore Hill	WILLOUGHBY	25/05/2001	01491	2121	528m	North East

Heritage Data Source: NSW Crown Copyright - Office of Environment & Heritage Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Environmental Planning Instrument - Heritage

What are the EPI Heritage Items located within the dataset buffer?

Map Id	Name	Classification	Significance	EPI Name	Published Date	Commenced Date	Currency Date	Distance	Direction
160	Sandstone swimming pool (associated with Pallister, 95 River Road), 51 Gore Street	Item - General	State	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	Om	On-site
I118	Pallister, 95 River Road	Item - General	State	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	0m	On-site
154	Gore Creek Reserve, Gore Street	Item - Landscape	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	27m	South West
I311	House, 40A Upper Cliff Road	Item - General	Local	Lane Cove Local Environmental Plan 2009	30/08/2013	30/08/2013	15/12/2017	111m	West
I117	House, 92 River Road	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	120m	East
159	Rockleigh, 11 Gore Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	132m	South East
139	House, 5 Coolabah Avenue	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	142m	East
158	Ione, 9 Gore Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	144m	South East
l15	Streetscape elements (drain, embankment walls, sandstone retaining walls, rocky outcrop, steps), Be*	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	150m	South West
l17	Tewhare, 5 Carlotta Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	155m	South East
157	Banksia, 7 Gore Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	156m	South East
I18	Marathon, 7 Carlotta Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	158m	South East
l19	Greenwich Uniting Church, 9 Carlotta Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	162m	South East
I116	Hazelhurst, 90 River Road	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	165m	East
l61	House, 5 Gore Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	30/08/2013	30/08/2013	15/12/2017	169m	South East
I21	House, 13 Carlotta Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	175m	South East
155	House, 3 Gore Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	30/08/2013	30/08/2013	15/12/2017	181m	South East
156	House, 1 Gore Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	193m	South East
1342	Stone fences, 33 Upper Cliff Road	Item - General	Local	Lane Cove Local Environmental Plan 2009	30/08/2013	30/08/2013	15/12/2017	195m	West
1343	Stone fences, 33 Upper Cliff Road	Item - General	Local	Lane Cove Local Environmental Plan 2009	30/08/2013	30/08/2013	15/12/2017	195m	South West
I15	Streetscape elements (drain, embankment walls, sandstone retaining walls, rocky outcrop, steps), Be*	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	198m	South

Map Id	Name	Classification	Significance	EPI Name	Published Date	Commenced Date	Currency Date	Distance	Direction
I16	House, 2 Carlotta Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	213m	South East
187	House, 1 Hinkler Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	224m	North West
I331	Stone fences, 35 Cliff Road	Item - General	Local	Lane Cove Local Environmental Plan 2009	30/08/2013	30/08/2013	15/12/2017	227m	South West
120	House, 12 Carlotta Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	229m	South East
188	House, 3 Hinkler Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	234m	North West
1309	Northwood House and Cottage, 1 Private Road	Item - General	State	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	237m	West
167	House, 35 Greenwich Road	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	238m	East
1282	House, 37 Cliff Road	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	242m	South West
1332	Stone Fence	Item - General	Local	Lane Cove Local Environmental Plan 2009	30/08/2013	30/08/2013	15/12/2017	252m	South West
I71	House, 45 Greenwich Road	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	262m	East
1333	Stone fences, 41 Cliff Road	Item - General	Local	Lane Cove Local Environmental Plan 2009	30/08/2013	30/08/2013	15/12/2017	265m	South West
1336	House, 62 Cliff Road	Item - General	Local	Lane Cove Local Environmental Plan 2009	30/08/2013	30/08/2013	15/12/2017	272m	South West
l15	Streetscape elements (drain, embankment walls, sandstone retaining walls, rocky outcrop, steps), Be*	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	274m	South
1334	Stone fences, 43 Cliff Road	Item - General	Local	Lane Cove Local Environmental Plan 2009	30/08/2013	30/08/2013	15/12/2017	279m	South West
165	Streetscape elements (sandstone gutters, steps, outcrops and kerbing), Greenwich Road, Bay Street a*	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	286m	South East
1335	Stone fence	Item - General	Local	Lane Cove Local Environmental Plan 2009	30/08/2013	30/08/2013	15/12/2017	294m	South West
l14	House, 14 Bellevue Avenue	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	301m	North East
1283	House, 47 Cliff Road	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	308m	West
129	House, 2 Chisholm Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	309m	South East
170	Glenwood Nursing Home, 34-40 Greenwich Road	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	309m	East
122	House, 32 Carlotta Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	314m	South East
194	House, 36 King William Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	332m	South

Map Id	Name	Classification	Significance	EPI Name	Published Date	Commenced Date	Currency Date	Distance	Direction
172	House, 70 Greenwich Road	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	334m	South East
17	House, 4 Balfour Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	334m	North West
1286	Streetscape elements (rocky outcrops, stone steps, sandstone kerbing), Lower Cliff Road, Private Ro*	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	335m	West
1286	Streetscape elements (rocky outcrops, stone steps, sandstone kerbing), Lower Cliff Road, Private Ro*	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	343m	West
195	House, 38 King William Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	346m	South
I310	Burdoe, 5 Upper Cliff Road	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	348m	West
173	Greenwich Infants School, 72A Greenwich Road	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	351m	South East
115	Streetscape elements (drain, embankment walls, sandstone retaining walls, rocky outcrop, steps), Be*	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	354m	South
152	House, 19 Glenview Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	354m	South East
153	House, 21 Glenview Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	355m	South East
I13	House, 8 Bellevue Avenue	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	356m	North East
16	House, 14 Anglo Road	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	358m	East
15	House, 12 Anglo Road	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	364m	East
18	House, 8 Balfour Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	365m	North
14	House, 10 Anglo Road	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	371m	North East
196	House, 42 King William Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	375m	South
197	House, 44 King William Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	389m	South
123	House, 45 Carlotta Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	390m	South
1306	House, 3 Point Road	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	391m	South West
124	House, 50 Carlotta Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	394m	South
1294	House, 70 Northwood Road	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	399m	West

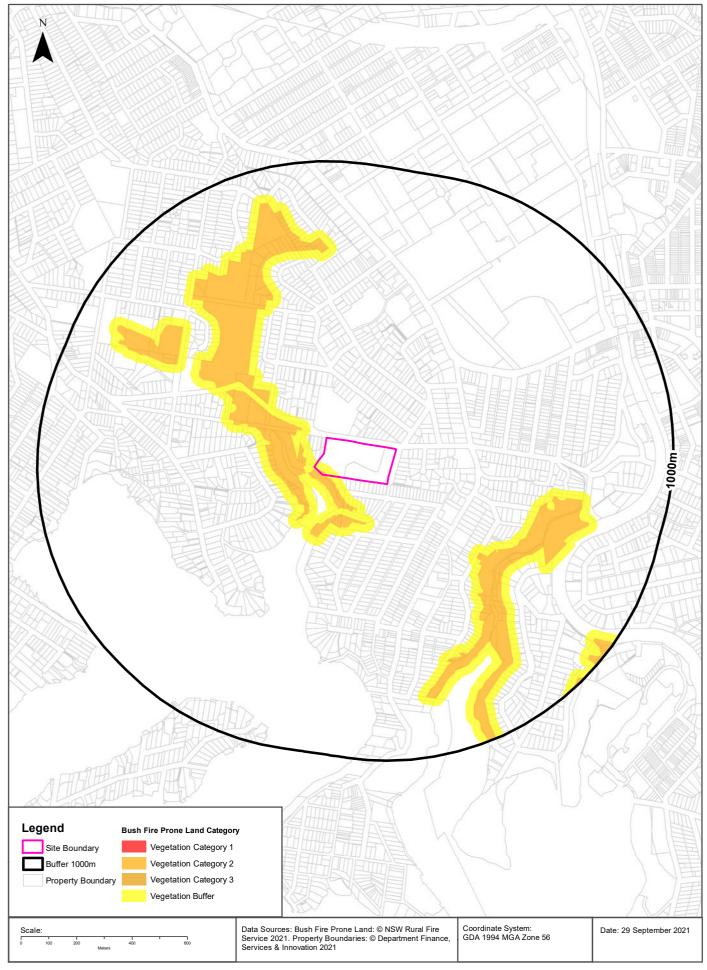
Map Id	Name	Classification	Significance	EPI Name	Published Date	Commenced Date	Currency Date	Distance	Direction
198	House, 45 King William Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	400m	South
13	House, 2 Anglo Road	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	400m	North East
1296	House and garden, 88 Northwood Road	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	400m	South West
199	House, 46 King William Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	404m	South
1295	House, 86 Northwood Road	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	407m	South West
I148	Gore Hill Memorial Cemetery	Item - General	State	Willoughby Local Environmental Plan 2012	21/12/2012	31/01/2013	06/11/2020	409m	North East
1307	House and garden, 8 Point Road	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	414m	South West
1297	House and garden, 90 Northwood Road	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	416m	South West
I101	House, 48 King William Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	418m	South
l15	Streetscape elements (drain, embankment walls, sandstone retaining walls, rocky outcrop, steps), Be*	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	418m	South East
I100	House, 47 King William Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	419m	South
1341	Streetscape element (sandstone wall), 4 Upper Cliff Road	Item - General	Local	Lane Cove Local Environmental Plan 2009	30/08/2013	30/08/2013	15/12/2017	423m	West
162	St. Giles Anglican Church, 6-12 Greendale Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	423m	East
177	House, 111 Greenwich Road	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	431m	South
I149	House and garage, 20 Wilona Avenue	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	433m	East
178	House, 113 Greenwich Road	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	436m	South
1340	Streetscape element (sandstone wall), 2 Upper Cliff Road	Item - General	Local	Lane Cove Local Environmental Plan 2009	30/08/2013	30/08/2013	15/12/2017	441m	West
1298	House and garden, 94 Northwood Road	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	441m	South West
I148	House, 18 Wilona Avenue	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	447m	East
1299	House and garden, 96 Northwood Road	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	449m	South West
I301	House and sandstone fence, 100 Northwood Road	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	473m	South West
I313	Wyndarra, 4b Wyndarra Place	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	475m	West

Map Id	Name	Classification	Significance	EPI Name	Published Date	Commenced Date	Currency Date	Distance	Direction
1302	House and sandstone fence, 102 Northwood Road	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	477m	South West
1303	House and stone retaining wall, 104 Northwood Road	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	480m	South West
1300	House, 97 Northwood Road	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	483m	South West
1281	House, 1A Birriwa Place	Item - General	Local	Lane Cove Local Environmental Plan 2009	30/08/2013	30/08/2013	15/12/2017	492m	West
145	House, 6 Ford Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	496m	South
144	House, 2 Ford Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	496m	South
146	Wyncourt, 14 Ford Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	496m	South
147	House, 16 Ford Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	496m	South
I120	House, 11 Robertson Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	496m	South
1327	House, 7 Park Road	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	496m	East
1308	House and garden, 16 Point Road	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	497m	South West
174	House, 82 Greenwich Road	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	499m	South
I314	House, 6 Wyndarra Place	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	502m	West
1339	House, 109 Northwood Road	Item - General	Local	Lane Cove Local Environmental Plan 2009	30/08/2013	30/08/2013	15/12/2017	510m	South West
1326	House, 5 Park Road	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	510m	East
1325	Sandringham, 3 Park Road	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	519m	East
143	House, 6/8 Evelyn Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	524m	South
1304	House, 113 Northwood Road	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	524m	South West
142	House, 4 Evelyn Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	526m	South
141	House, 2 Evelyn Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	527m	South
179	House, 125 Greenwich Road	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	528m	South
1284	Endeavour Playground, Fleming Street (south side)	Item - Landscape	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	530m	West
130	House, 13 Chisholm Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	534m	South
180	House, 127 Greenwich Road	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	536m	South

Map Id	Name	Classification	Significance	EPI Name	Published Date	Commenced Date	Currency Date	Distance	Direction
I31	House, 15 Chisholm Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	542m	South
I81	House, 129 Greenwich Road	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	543m	South
1292	House, 45 Northwood Road	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	546m	West
132	House, 17 Chisholm Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	549m	South
133	House, 19 Chisholm Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	555m	South
I119	House, 10 Robertson Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	555m	South
175	John Taylor Memorial Church, 86A Greenwich Road	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	560m	South
134	House, 21 Chisholm Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	562m	South
1337	House, 4 James Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	30/08/2013	30/08/2013	15/12/2017	581m	West
I134	Mandalay, 2/4 Ulonga Avenue	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	581m	North
1287	Northwood Wharf	Item - General	Local	Lane Cove Local Environmental Plan 2009	15/12/2017	15/12/2017	15/12/2017	582m	South West
165	Streetscape elements (sandstone gutters, steps, outcrops and kerbing), Greenwich Road, Bay Street a*	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	596m	South
1338	Kellys Esplanade (Streetscape element)	Item - General	Local	Lane Cove Local Environmental Plan 2009	30/08/2013	30/08/2013	15/12/2017	603m	West
182	House, 143 Greenwich Road	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	608m	South
165	Streetscape elements (sandstone gutters, steps, outcrops and kerbing), Greenwich Road, Bay Street a*	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	616m	South
125	Bedford, 73 Carlotta Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	618m	South
165	Streetscape elements (sandstone gutters, steps, outcrops and kerbing), Greenwich Road, Bay Street a*	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	625m	South
135	House, 34 Chisholm Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	626m	South
l1122	Wollstonecraft foreshore reserves	Item - Landscape	Local	North Sydney Local Environmental Plan 2013	30/06/2021	30/06/2021	30/06/2021	627m	South East
I40	House, 8 Eastview Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	627m	East
126	Florence, 75 Carlotta Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	628m	South

Map Id	Name	Classification	Significance	EPI Name	Published Date	Commenced Date	Currency Date	Distance	Direction
1285	Convict Stockade, Kelly's Esplanade, Woodford Bay	Item - Landscape	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	630m	West
165	Streetscape elements (sandstone gutters, steps, outcrops and kerbing), Greenwich Road, Bay Street a*	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	632m	South
I1120	'Tullamore'	Item - Landscape	Local	North Sydney Local Environmental Plan 2013	02/08/2013	13/09/2013	30/06/2021	639m	South East
l11	Greenwich 12' Flying Squadron, Bay Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	645m	South
127	House, 79 Carlotta Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	646m	South
I193	House and garden, 6 Richardson Street East	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	654m	North West
183	House, 153 Greenwich Road	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	656m	South
A8	Convict Stockade, 2 and 4 Kelly's Esplanade, Woodford Bay	Item - Archaeological	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	656m	West
176	House, 100 Greenwich Road	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	657m	South
I10	Bay Street Wharf, Bay Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	661m	South
I285	Convict Stockade, Kelly's Esplanade, Woodford Bay	Item - Landscape	Local	Lane Cove Local Environmental Plan 2009	30/08/2013	30/08/2013	15/12/2017	662m	West
19	House, 8 Bay Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	669m	South
I1119	House	Item - Landscape	Local	North Sydney Local Environmental Plan 2013	02/08/2013	13/09/2013	30/06/2021	691m	South East
CA25	Wollstonecraft	Conservation Area - General	Local	North Sydney Local Environmental Plan 2013	02/08/2013	13/09/2013	30/06/2021	691m	South East
16	Gateway entry pylons	Item - General	Local	Willoughby Local Environmental Plan 2012	21/12/2012	31/01/2013	06/11/2020	697m	North
I1118	'The Briars'	Item - Landscape	Local	North Sydney Local Environmental Plan 2013	02/08/2013	13/09/2013	30/06/2021	700m	South East
16	Gateway entry pylons	Item - General	Local	Willoughby Local Environmental Plan 2012	21/12/2012	31/01/2013	06/11/2020	711m	North
1225	Streetscape elements (sandstone walls, kerbing and steps, including in Longueville Sailing Club and*	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	716m	West
184	House, 163 Greenwich Road	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	718m	South
136	House, 48 Chisholm Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	724m	South
l1117	House	Item - Landscape	Local	North Sydney Local Environmental Plan 2013	02/08/2013	13/09/2013	30/06/2021	724m	South East
137	House, 50 Chisholm Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	738m	South

Map Id	Name	Classification	Significance	EPI Name	Published Date	Commenced Date	Currency Date	Distance	Direction
18	Communications tower (excluding all ancillary buildings and structures and tower attachments)	Item - General	Local	Willoughby Local Environmental Plan 2012	21/12/2012	31/01/2013	06/11/2020	743m	North
17	Footings of the former transmission tower	Item - General	Local	Willoughby Local Environmental Plan 2012	21/12/2012	31/01/2013	06/11/2020	750m	North
138	House, 52 Chisholm Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	751m	South
I149	Former stables	Item - General	Local	Willoughby Local Environmental Plan 2012	21/12/2012	31/01/2013	06/11/2020	753m	North
I1111	House	Item - General	Local	North Sydney Local Environmental Plan 2013	02/08/2013	13/09/2013	30/06/2021	756m	South East
C1	Greenwich Conservation Area, Greenwich	Conservation Area - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	765m	South
A1	Fells Shale Oil Refinery, 124 Gother Avenue	Item - Archaeological	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	765m	South
I1110	House	Item - General	Local	North Sydney Local Environmental Plan 2013	02/08/2013	13/09/2013	30/06/2021	784m	South East
10407	North Sydney bus shelters	Item - General	Local	North Sydney Local Environmental Plan 2013	02/08/2013	13/09/2013	30/06/2021	785m	South East
I241	Pavilion Wing Building, Block 1A (including original interiors)	Item - General	Local	Willoughby Local Environmental Plan 2012	21/12/2012	31/01/2013	06/11/2020	790m	North East
I291	House, 23 Northwood Road	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	796m	West
1242	Resident Medical Officers (RMO) Building-known as Vanderfield Building (including original interior*	Item - General	Local	Willoughby Local Environmental Plan 2012	21/12/2012	31/01/2013	06/11/2020	804m	North East
1290	House, 21 Northwood Road	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	807m	West
I1093	House	Item - General	Local	North Sydney Local Environmental Plan 2013	02/08/2013	13/09/2013	30/06/2021	822m	East
I1108	Carpenter House	Item - General	Local	North Sydney Local Environmental Plan 2013	02/08/2013	13/09/2013	30/06/2021	829m	South East
I1109	House	Item - General	Local	North Sydney Local Environmental Plan 2013	02/08/2013	13/09/2013	30/06/2021	834m	South East
1240	Pavilion Wing Building, Block 1B (including original interiors)	Item - General	Local	Willoughby Local Environmental Plan 2012	21/12/2012	31/01/2013	06/11/2020	840m	North East
1243	Anstro,Body Protein Building (including original interiors)	Item - General	Local	Willoughby Local Environmental Plan 2012	21/12/2012	31/01/2013	06/11/2020	843m	North East
1244	Orthotics Building (including original interiors)	Item - General	Local	Willoughby Local Environmental Plan 2012	21/12/2012	31/01/2013	06/11/2020	846m	North East
1225	Streetscape elements (sandstone walls, kerbing and steps, including in Longueville Sailing Club and*	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	872m	West
A7	Kirk's Factory, Woodford/ Arabella Streets	Item - Archaeological	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	879m	West


Map Id	Name	Classification	Significance	EPI Name	Published Date	Commenced Date	Currency Date	Distance	Direction
1289	Kailora, 15 Northwood Road	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	884m	West
I1094	House	Item - General	Local	North Sydney Local Environmental Plan 2013	02/08/2013	13/09/2013	30/06/2021	884m	East
l1112	House	Item - General	Local	North Sydney Local Environmental Plan 2013	02/08/2013	13/09/2013	30/06/2021	886m	South East
C1	Hunters Hill Conservation Area No 2 - The Peninsula	Conservation Area - General	Local	Hunters Hill Local Environmental Plan 2012	01/02/2013	12/08/2013	20/11/2015	891m	South West
1327	House, 'Yarrawa'	Item - General	Local	Hunters Hill Local Environmental Plan 2012	01/02/2013	12/08/2013	20/11/2015	910m	South West
1326	House, formerly 'Athaliah'	Item - General	Local	Hunters Hill Local Environmental Plan 2012	01/02/2013	12/08/2013	20/11/2015	911m	South West
1347	House, formerly 'Wonga' and 'Fairhaven'	Item - General	Local	Hunters Hill Local Environmental Plan 2012	01/02/2013	12/08/2013	20/11/2015	912m	South West
I1095	House	Item - General	Local	North Sydney Local Environmental Plan 2013	02/08/2013	13/09/2013	30/06/2021	912m	East
1346	House	Item - General	Local	Hunters Hill Local Environmental Plan 2012	01/02/2013	12/08/2013	20/11/2015	914m	South West
1280	Minembah, 1 Woodford Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	924m	West
1234	House, 18 Kenneth Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	30/08/2013	30/08/2013	15/12/2017	939m	West
1234	House, 18 Kenneth Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	946m	West
1287	Stone walls	Item - General	Local	Hunters Hill Local Environmental Plan 2012	01/02/2013	12/08/2013	20/11/2015	964m	South West
I1100	House	Item - General	Local	North Sydney Local Environmental Plan 2013	02/08/2013	13/09/2013	30/06/2021	966m	South East
1235	Hazelwood, 22 Kenneth Street	Item - General	Local	Lane Cove Local Environmental Plan 2009	19/02/2010	19/02/2010	15/12/2017	970m	West
1287	Stone walls	Item - General	Local	Hunters Hill Local Environmental Plan 2012	01/02/2013	12/08/2013	20/11/2015	973m	South West
1344	House, 'Arden Lea'	Item - General	Local	Hunters Hill Local Environmental Plan 2012	01/02/2013	12/08/2013	20/11/2015	975m	South West
1287	Stone walls	Item - General	Local	Hunters Hill Local Environmental Plan 2012	01/02/2013	12/08/2013	20/11/2015	979m	South West
1323	House, 'Otranto'	Item - General	Local	Hunters Hill Local Environmental Plan 2012	01/02/2013	12/08/2013	20/11/2015	981m	South West
1287	Stone walls	Item - General	Local	Hunters Hill Local Environmental Plan 2012	01/02/2013	12/08/2013	20/11/2015	981m	South West
l1122	Wollstonecraft foreshore reserves	Item - Landscape	Local	North Sydney Local Environmental Plan 2013	30/06/2021	30/06/2021	30/06/2021	982m	South East
1287	Stone walls	Item - General	Local	Hunters Hill Local Environmental Plan 2012	01/02/2013	12/08/2013	20/11/2015	995m	South West
1325	House	Item - General	Local	Hunters Hill Local Environmental Plan 2012	01/02/2013	12/08/2013	20/11/2015	996m	South West
1324	House	Item - General	Local	Hunters Hill Local Environmental Plan 2012	01/02/2013	12/08/2013	20/11/2015	999m	South West

Heritage Data Source: NSW Crown Copyright - Planning & Environment

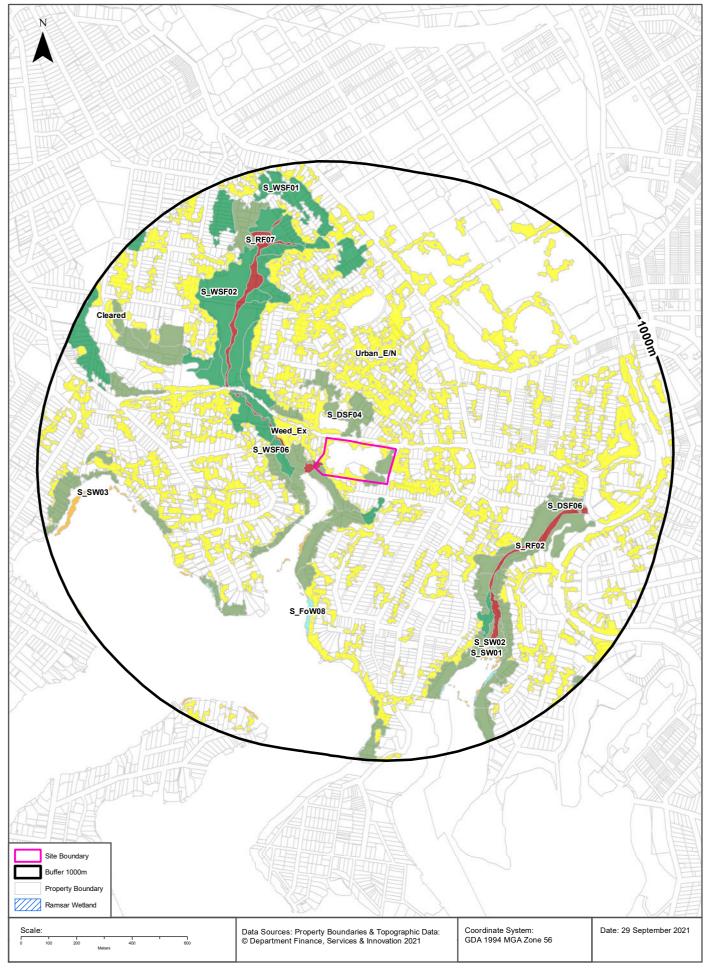
Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Natural Hazards - Bush Fire Prone Land

Natural Hazards

97-115 River Road, Greenwich, NSW 2065

Bush Fire Prone Land


What are the nearest Bush Fire Prone Land Categories that exist within the dataset buffer?

Bush Fire Prone Land Category	Distance	Direction
Vegetation Category 2	0m	On-site
Vegetation Buffer	0m	On-site

NSW Bush Fire Prone Land - © NSW Rural Fire Service under Creative Commons 4.0 International Licence

Ecological Constraints - Vegetation & Ramsar Wetlands

Ecological Constraints

97-115 River Road, Greenwich, NSW 2065

Native Vegetation

What native vegetation exists within the dataset buffer?

Map ID	Map Unit Name	Threatened Ecological Community NSW	Threatened Ecological Community EPBC Act	Understorey	Disturbance	Disturbance Index	Dominant Species	Dist	Dir
S_DSF04	S_DSF04: Coastal Enriched Sandstone Dry Forest			21: Ferns dominant	20: Previously cleared 1943	3: High	E.pilularis/A.cost ata/C.gummifera E.resinifera	0m	On-site
Urban_E/N	Urban_E/N: Urban Exotic/Native			00: Not assessed	00: Not assessed	0: Not assessed	Urban Exotic/Native	0m	On-site
S_DSF06	S_DSF06: Coastal Sandstone Foreshores Forest			17: Pittosporum dominant	13: Weeds	1: Low	E.pilularis/A.cost ata/C.gummifera E.resinifera	0m	On-site
S_RF02	S_RF02: Coastal Sandstone Gallery Rainforest			17: Pittosporum dominant	13: Weeds	3: High	B.integrifolia/F.ru biginosa/Kunzea sppeucalypts	0m	On-site
S_DSF06	S_DSF06: Coastal Sandstone Foreshores Forest			17: Pittosporum dominant	13: Weeds	2: Moderate	E.piperita/A.costa taE.pilularis	11m	West
S_DSF04	S_DSF04: Coastal Enriched Sandstone Dry Forest			24: Urban and hard surface	24: Urban mixed use	4: Very high	E.pilularis/A.cost ata/C.gummifera E.resinifera	12m	North
S_WSF01	S_WSF01: Blue Gum High Forest	Blue Gum High Forest		10: Mesic/rainfore st	20: Previously cleared 1943	3: High	E.saligna/S.glom uliferaE.pilularis	50m	South
Weed_Ex	Weed_Ex: Weeds and Exotics			00: Not assessed	00: Not assessed	0: Not assessed	Exotic Species >90%cover	54m	North West
S_WSF06	S_WSF06: Coastal Shale- Sandstone Forest			17: Pittosporum dominant	13: Weeds	2: Moderate	E.pilularis/A.cost ata/C.gummifera E.resinifera	71m	West
S_DSF06	S_DSF06: Coastal Sandstone Foreshores Forest			17: Pittosporum dominant	13: Weeds	3: High	E.pilularis/A.cost ata/C.gummifera E.resinifera	95m	South
S_DSF04	S_DSF04: Coastal Enriched Sandstone Dry Forest			11: Semi sheltered dry/mesic	13: Weeds	2: Moderate	E.piperita/A.costa taE.pilularis	97m	West
S_DSF04	S_DSF04: Coastal Enriched Sandstone Dry Forest			11: Semi sheltered dry/mesic	13: Weeds	2: Moderate	E.pilularis/A.cost ata/C.gummifera E.resinifera	104m	North West
S_RF02	S_RF02: Coastal Sandstone Gallery Rainforest			10: Mesic/rainfore st	13: Weeds	3: High	C.apetalum/T.lau rina/C.serratifolia	114m	West
S_DSF06	S_DSF06: Coastal Sandstone Foreshores Forest			17: Pittosporum dominant	13: Weeds	3: High	B.integrifolia/F.ru biginosa/Kunzea sppeucalypts	162m	South West
S_DSF06	S_DSF06: Coastal Sandstone Foreshores Forest			17: Pittosporum dominant	13: Weeds	2: Moderate	E.pilularis/A.cost ata/C.gummifera E.resinifera	165m	South West
S_WSF02	S_WSF02: Coastal Enriched Sandstone Moist Forest			11: Semi sheltered dry/mesic	13: Weeds	2: Moderate	E.pilularis/A.cost ata/C.gummifera E.resinifera	179m	West
S_WSF02	S_WSF02: Coastal Enriched Sandstone Moist Forest			10: Mesic/rainfore st	13: Weeds	3: High	E.pilularis/A.cost ata/C.gummifera E.resinifera	182m	North West
S_SW01	S_SW01: Estuarine Mangrove Forest			00: Not assessed	00: Not assessed	0: Not assessed	Mangroves	211m	South West
S_WSF02	S_WSF02: Coastal Enriched Sandstone Moist Forest			10: Mesic/rainfore st	13: Weeds	1: Low	E.piperita/A.costa taE.pilularis	219m	North West
S_SW03	S_SW03: Seagrass Meadows			00: Not assessed	00: Not assessed	0: Not assessed	Seagrass (DPI)	329m	South West
S_WSF02	S_WSF02: Coastal Enriched Sandstone Moist Forest			10: Mesic/rainfore st	13: Weeds	1: Low	E.pilularis/A.cost ata/C.gummifera E.resinifera	346m	North West

Map ID	Map Unit Name	Threatened Ecological Community NSW	Threatened Ecological Community EPBC Act	Understorey	Disturbance	Disturbance Index	Dominant Species	Dist	Dir
S_RF07	S_RF07: Coastal Escarpment Littoral Rainforest	Littoral Rainforest	Littoral Rainforest and Coastal Vine Thickets (possible)	10: Mesic/rainfore st	13: Weeds	2: Moderate	A.smithii/G.ferdin andii/P.undulatu m	399m	North West
S_FoW08	S_FoW08: Estuarine Swamp Oak Forest	Swamp Oak Floodplain Forest		31: Saltmarsh	13: Weeds	3: High	C.glauca	437m	South
S_DSF06	S_DSF06: Coastal Sandstone Foreshores Forest			17: Pittosporum dominant	13: Weeds	3: High	E.piperita/A.costa taE.pilularis	452m	South East
S_WSF02	S_WSF02: Coastal Enriched Sandstone Moist Forest			10: Mesic/rainfore st	14: Canopy gaps	2: Moderate	E.piperita/A.costa taE.pilularis	495m	North West
S_DSF06	S_DSF06: Coastal Sandstone Foreshores Forest			17: Pittosporum dominant	19: Clearing/Part clearing	4: Very high	E.piperita/A.costa taE.pilularis	503m	South East
S_WSF02	S_WSF02: Coastal Enriched Sandstone Moist Forest			11: Semi sheltered dry/mesic	13: Weeds	1: Low	E.pilularis/A.cost ata/C.gummifera E.resinifera	506m	North West
S_WSF02	S_WSF02: Coastal Enriched Sandstone Moist Forest			17: Pittosporum dominant	13: Weeds	3: High	E.piperita/A.costa taE.pilularis	531m	South East
S_FoW08	S_FoW08: Estuarine Swamp Oak Forest	Swamp Oak Floodplain Forest		00: Not assessed	00: Not assessed	0: Not assessed	C.glauca	570m	South West
S_WSF01	S_WSF01: Blue Gum High Forest	Blue Gum High Forest		24: Urban and hard surface	24: Urban mixed use	4: Very high	E.saligna/S.glom uliferaE.pilularis	579m	North
S_DSF04	S_DSF04: Coastal Enriched Sandstone Dry Forest			11: Semi sheltered dry/mesic	24: Urban mixed use	3: High	E.pilularis/A.cost ata/C.gummifera E.resinifera	600m	West
S_FoW08	S_FoW08: Estuarine Swamp Oak Forest	Swamp Oak Floodplain Forest		12: Dry xeric shrubs	99: No visible disturbance	5: No visible disturbance	C.glauca	679m	South East
S_SW02	S_SW02: Estuarine Saltmarsh	Coastal Saltmarsh	Subtropical and Temperate Coastal Saltmarsh (possible)	00: Not assessed	00: Not assessed	0: Not assessed	S.repens/S.quinq ueflora/S.virginic usJ.krausii	679m	South East
S_WSF01	S_WSF01: Blue Gum High Forest	Blue Gum High Forest		10: Mesic/rainfore st	13: Weeds	2: Moderate	E.saligna/S.glom uliferaE.pilularis	682m	North
S_WSF02	S_WSF02: Coastal Enriched Sandstone Moist Forest			10: Mesic/rainfore st	13: Weeds	1: Low	E.pilularis/S.glom uliferaA.costata/E .resinifera	689m	North
S_DSF04	S_DSF04: Coastal Enriched Sandstone Dry Forest			35: Casuarina glauca near waters edge	23: Plantings	2: Moderate	E.piperita/A.costa taE.pilularis	708m	West
S_DSF04	S_DSF04: Coastal Enriched Sandstone Dry Forest			11: Semi sheltered dry/mesic	13: Weeds	3: High	E.pilularis/A.cost ata/C.gummifera E.resinifera	724m	North West
S_DSF06	S_DSF06: Coastal Sandstone Foreshores Forest			17: Pittosporum dominant	13: Weeds	3: High	A.costataE.resinif era/E.piperita/E.p ilularis	768m	South
S_DSF04	S_DSF04: Coastal Enriched Sandstone Dry Forest			12: Dry xeric shrubs	15: Regrowth	2: Moderate	E.piperita/A.costa taE.pilularis	825m	North West
Cleared	Cleared			00: Not assessed	00: Not assessed	0: Not assessed	Cleared	856m	North West
S_DSF06	S_DSF06: Coastal Sandstone Foreshores Forest			17: Pittosporum dominant	15: Regrowth	3: High	E.piperita/A.costa taE.pilularis	986m	South East

Native Vegetation of the Sydney Metropolitan Area : NSW Office of Environment and Heritage Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Ramsar Wetlands

What Ramsar Wetland areas exist within the dataset buffer?

Map Id	Ramsar Name	Wetland Name	Designation Date	Source	Distance	Direction
N/A	No records in buffer					

Ramsar Wetlands Data Source: © Commonwealth of Australia - Department of Agriculture, Water and the Environment

Ecological Constraints

97-115 River Road, Greenwich, NSW 2065

Groundwater Dependent Ecosystems Atlas

Туре	GDE Potential	Geomorphology	Ecosystem Type	Aquifer Geology	Distance	Direction
N/A	No records in buffer					

Groundwater Dependent Ecosystems Atlas Data Source: The Bureau of Meteorology Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Ecological Constraints

97-115 River Road, Greenwich, NSW 2065

Inflow Dependent Ecosystems Likelihood

Туре	IDE Likelihood	Geomorphology	Ecosystem Type	Aquifer Geology	Distance	Direction
N/A	No records in buffer					

Inflow Dependent Ecosystems Likelihood Data Source: The Bureau of Meteorology Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Ecological Constraints

97-115 River Road, Greenwich, NSW 2065

NSW BioNet Atlas

Species on the NSW BioNet Atlas that have a NSW or federal conservation status, a NSW sensitivity status, or are listed under a migratory species agreement, and are within 10km of the site?

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Animalia	Amphibia	Litoria aurea	Green and Golden Bell Frog	Endangered	Not Sensitive	Vulnerable	
Animalia	Amphibia	Pseudophryne australis	Red-crowned Toadlet	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Actitis hypoleucos	Common Sandpiper	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Anous stolidus	Common Noddy	Not Listed	Not Sensitive	Not Listed	CAMBA;JAMBA
Animalia	Aves	Anseranas semipalmata	Magpie Goose	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Anthochaera phrygia	Regent Honeyeater	Critically Endangered	Not Sensitive	Critically Endangered	
Animalia	Aves	Apus pacificus	Fork-tailed Swift	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Ardenna carneipes	Flesh-footed Shearwater	Vulnerable	Not Sensitive	Not Listed	ROKAMBA;JAMBA
Animalia	Aves	Ardenna grisea	Sooty Shearwater	Not Listed	Not Sensitive	Not Listed	JAMBA
Animalia	Aves	Ardenna pacifica	Wedge-tailed Shearwater	Not Listed	Not Sensitive	Not Listed	JAMBA
Animalia	Aves	Ardenna tenuirostris	Short-tailed Shearwater	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Arenaria interpres	Ruddy Turnstone	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Artamus cyanopterus cyanopterus	Dusky Woodswallow	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Botaurus poiciloptilus	Australasian Bittern	Endangered	Not Sensitive	Endangered	
Animalia	Aves	Burhinus grallarius	Bush Stone- curlew	Endangered	Not Sensitive	Not Listed	
Animalia	Aves	Calidris acuminata	Sharp-tailed Sandpiper	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Calidris canutus	Red Knot	Not Listed	Not Sensitive	Endangered	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Calidris ferruginea	Curlew Sandpiper	Endangered	Not Sensitive	Critically Endangered	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Calidris melanotos	Pectoral Sandpiper	Not Listed	Not Sensitive	Not Listed	ROKAMBA;JAMBA
Animalia	Aves	Calidris ruficollis	Red-necked Stint	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Calidris tenuirostris	Great Knot	Vulnerable	Not Sensitive	Critically Endangered	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Callocephalon fimbriatum	Gang-gang Cockatoo	Endangered Population, Vulnerable	Category 3	Not Listed	
Animalia	Aves	Callocephalon fimbriatum	Gang-gang Cockatoo	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Calyptorhynchus banksii banksii	Red-tailed Black- Cockatoo (coastal subspecies)	Critically Endangered	Category 2	Not Listed	
Animalia	Aves	Calyptorhynchus banksii samueli	Red-tailed Black- Cockatoo (inland subspecies)	Vulnerable	Category 2	Not Listed	
Animalia	Aves	Calyptorhynchus lathami	Glossy Black- Cockatoo	Vulnerable	Category 2	Not Listed	

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Animalia	Aves	Certhionyx variegatus	Pied Honeyeater	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Charadrius leschenaultii	Greater Sand- plover	Vulnerable	Not Sensitive	Vulnerable	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Chlidonias leucopterus	White-winged Black Tern	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Circus assimilis	Spotted Harrier	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Daphoenositta chrysoptera	Varied Sittella	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Diomedea exulans	Wandering Albatross	Endangered	Not Sensitive	Endangered	
Animalia	Aves	Ephippiorhynchus asiaticus	Black-necked Stork	Endangered	Not Sensitive	Not Listed	
Animalia	Aves	Epthianura albifrons	White-fronted Chat	Endangered Population, Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Erythrotriorchis radiatus	Red Goshawk	Critically Endangered	Category 2	Vulnerable	
Animalia	Aves	Esacus magnirostris	Beach Stone- curlew	Critically Endangered	Not Sensitive	Not Listed	
Animalia	Aves	Eudyptula minor	Little Penguin	Endangered Population	Not Sensitive	Not Listed	
Animalia	Aves	Falco subniger	Black Falcon	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Gallinago hardwickii	Latham's Snipe	Not Listed	Not Sensitive	Not Listed	ROKAMBA;JAMBA
Animalia	Aves	Gelochelidon nilotica	Gull-billed Tern	Not Listed	Not Sensitive	Not Listed	CAMBA
Animalia	Aves	Glossopsitta pusilla	Little Lorikeet	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Haematopus fuliginosus	Sooty Oystercatcher	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Haematopus longirostris	Pied Oystercatcher	Endangered	Not Sensitive	Not Listed	
Animalia	Aves	Haliaeetus leucogaster	White-bellied Sea-Eagle	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Hieraaetus morphnoides	Little Eagle	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Hirundapus caudacutus	White-throated Needletail	Not Listed	Not Sensitive	Vulnerable	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Hydroprogne caspia	Caspian Tern	Not Listed	Not Sensitive	Not Listed	JAMBA
Animalia	Aves	Ixobrychus flavicollis	Black Bittern	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Lathamus discolor	Swift Parrot	Endangered	Category 3	Critically Endangered	
Animalia	Aves	Limicola falcinellus	Broad-billed Sandpiper	Vulnerable	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Limosa lapponica	Bar-tailed Godwit	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Limosa limosa	Black-tailed Godwit	Vulnerable	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Lophochroa leadbeateri	Major Mitchell's Cockatoo	Vulnerable	Category 2	Not Listed	
Animalia	Aves	Lophoictinia isura	Square-tailed Kite	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Macronectes giganteus	Southern Giant Petrel	Endangered	Not Sensitive	Endangered	
Animalia	Aves	Manorina melanotis	Black-eared Miner	Critically Endangered	Not Sensitive	Endangered	
Animalia	Aves	Menura alberti	Albert's Lyrebird	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Neophema pulchella	Turquoise Parrot	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Nettapus coromandelianus	Cotton Pygmy- Goose	Endangered	Not Sensitive	Not Listed	
Animalia	Aves	Ninox connivens	Barking Owl	Vulnerable	Category 3	Not Listed	

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Animalia	Aves	Ninox strenua	Powerful Owl	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Numenius madagascariensi s	Eastern Curlew	Not Listed	Not Sensitive	Critically Endangered	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Numenius minutus	Little Curlew	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Numenius phaeopus	Whimbrel	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Onychoprion fuscata	Sooty Tern	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Pachycephala olivacea	Olive Whistler	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Pandion cristatus	Eastern Osprey	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Petroica boodang	Scarlet Robin	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Phaethon lepturus	White-tailed Tropicbird	Not Listed	Not Sensitive	Not Listed	CAMBA;JAMBA
Animalia	Aves	Philomachus pugnax	Ruff	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Pluvialis fulva	Pacific Golden Plover	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Pluvialis squatarola	Grey Plover	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Polytelis anthopeplus monarchoides	Regent Parrot (eastern subspecies)	Endangered	Category 3	Vulnerable	
Animalia	Aves	Polytelis swainsonii	Superb Parrot	Vulnerable	Category 3	Vulnerable	
Animalia	Aves	Pterodroma leucoptera leucoptera	Gould's Petrel	Vulnerable	Not Sensitive	Endangered	
Animalia	Aves	Pterodroma solandri	Providence Petrel	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Ptilinopus regina	Rose-crowned Fruit-Dove	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Ptilinopus superbus	Superb Fruit- Dove	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Rostratula australis	Australian Painted Snipe	Endangered	Not Sensitive	Endangered	
Animalia	Aves	Stagonopleura guttata	Diamond Firetail	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Stercorarius longicaudus	Long-tailed Jaeger	Not Listed	Not Sensitive	Not Listed	CAMBA;JAMBA
Animalia	Aves	Stercorarius parasiticus	Arctic Jaeger	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Stercorarius pomarinus	Pomarine Jaeger	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Sterna hirundo	Common Tern	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Sternula albifrons	Little Tern	Endangered	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Stictonetta naevosa	Freckled Duck	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Sula dactylatra	Masked Booby	Vulnerable	Not Sensitive	Not Listed	ROKAMBA;JAMBA
Animalia	Aves	Thalassarche chrysostoma	Grey-headed Albatross	Not Listed	Not Sensitive	Endangered	
Animalia	Aves	Thalassarche melanophris	Black-browed Albatross	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Aves	Thalasseus bergii	Crested Tern	Not Listed	Not Sensitive	Not Listed	JAMBA
Animalia	Aves	Thinornis cucullatus cucullatus	Eastern Hooded Dotterel	Critically Endangered	Not Sensitive	Vulnerable	
Animalia	Aves	Tringa brevipes	Grey-tailed Tattler	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Tringa glareola	Wood Sandpiper	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Animalia	Aves	Tringa incana	Wandering Tattler	Not Listed	Not Sensitive	Not Listed	JAMBA
Animalia	Aves	Tringa nebularia	Common Greenshank	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Tringa stagnatilis	Marsh Sandpiper	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Tyto longimembris	Eastern Grass Owl	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Tyto novaehollandiae	Masked Owl	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Tyto tenebricosa	Sooty Owl	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Xenus cinereus	Terek Sandpiper	Vulnerable	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Insecta	Petalura gigantea	Giant Dragonfly	Endangered	Not Sensitive	Not Listed	
Animalia	Mammalia	Aepyprymnus rufescens	Rufous Bettong	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Arctocephalus forsteri	New Zealand Fur- seal	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Arctocephalus pusillus doriferus	Australian Fur- seal	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Cercartetus nanus	Eastern Pygmy- possum	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Chalinolobus dwyeri	Large-eared Pied Bat	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Mammalia	Dasyurus maculatus	Spotted-tailed Quoll	Vulnerable	Not Sensitive	Endangered	
Animalia	Mammalia	Dasyurus viverrinus	Eastern Quoll	Endangered	Not Sensitive	Endangered	
Animalia	Mammalia	Eubalaena australis	Southern Right Whale	Endangered	Not Sensitive	Endangered	
Animalia	Mammalia	Falsistrellus tasmaniensis	Eastern False Pipistrelle	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Isoodon obesulus obesulus	Southern Brown Bandicoot (eastern)	Endangered	Not Sensitive	Endangered	
Animalia	Mammalia	Megaptera novaeangliae	Humpback Whale	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Mammalia	Micronomus norfolkensis	Eastern Coastal Free-tailed Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Miniopterus australis	Little Bent-winged Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Miniopterus orianae oceanensis	Large Bent- winged Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Myotis macropus	Southern Myotis	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Perameles nasuta	Long-nosed Bandicoot	Endangered Population	Not Sensitive	Not Listed	
Animalia	Mammalia	Petauroides volans	Greater Glider	Not Listed	Not Sensitive	Vulnerable	
Animalia	Mammalia	Petaurus australis	Yellow-bellied Glider	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Petaurus norfolcensis	Squirrel Glider	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Phascolarctos cinereus	Koala	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Mammalia	Pseudomys gracilicaudatus	Eastern Chestnut Mouse	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Pseudomys novaehollandiae	New Holland Mouse	Not Listed	Not Sensitive	Vulnerable	
Animalia	Mammalia	Pteropus poliocephalus	Grey-headed Flying-fox	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Mammalia	Saccolaimus flaviventris	Yellow-bellied Sheathtail-bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Scoteanax rueppellii	Greater Broad- nosed Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Vespadelus troughtoni	Eastern Cave Bat	Vulnerable	Not Sensitive	Not Listed	

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Animalia	Reptilia	Aspidites ramsayi	Woma	Vulnerable	Not Sensitive	Not Listed	
Animalia	Reptilia	Caretta caretta	Loggerhead Turtle	Endangered	Not Sensitive	Endangered	
Animalia	Reptilia	Chelonia mydas	Green Turtle	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Reptilia	Dermochelys coriacea	Leatherback Turtle	Endangered	Not Sensitive	Endangered	
Animalia	Reptilia	Myuchelys bellii	Western Sawshelled Turtle, Bell's Turtle	Endangered	Not Sensitive	Vulnerable	
Animalia	Reptilia	Tiliqua occipitalis	Western Blue- tongued Lizard	Vulnerable	Not Sensitive	Not Listed	
Animalia	Reptilia	Uvidicolus sphyrurus	Border Thick- tailed Gecko	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Reptilia	Varanus rosenbergi	Rosenberg's Goanna	Vulnerable	Not Sensitive	Not Listed	
Fungi	Flora	Camarophyllopsis kearneyi		Endangered	Not Sensitive	Not Listed	
Fungi	Flora	Hygrocybe anomala var. ianthinomarginata		Vulnerable	Not Sensitive	Not Listed	
Fungi	Flora	Hygrocybe aurantipes		Vulnerable	Not Sensitive	Not Listed	
Fungi	Flora	Hygrocybe austropratensis		Endangered	Not Sensitive	Not Listed	
Fungi	Flora	Hygrocybe collucera		Endangered	Not Sensitive	Not Listed	
Fungi	Flora	Hygrocybe griseoramosa		Endangered	Not Sensitive	Not Listed	
Fungi	Flora	Hygrocybe lanecovensis		Endangered	Not Sensitive	Not Listed	
Fungi	Flora	Hygrocybe reesiae		Vulnerable	Not Sensitive	Not Listed	
Fungi	Flora	Hygrocybe rubronivea		Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Acacia bynoeana	Bynoe's Wattle	Endangered	Not Sensitive	Vulnerable	
Plantae	Flora	Acacia gordonii		Endangered	Not Sensitive	Endangered	
Plantae	Flora	Acacia pubescens	Downy Wattle	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Acacia terminalis subsp. Eastern Sydney	Sunshine wattle	Endangered	Not Sensitive	Endangered	
Plantae	Flora	Allocasuarina portuensis	Nielsen Park She- oak	Endangered	Category 3	Endangered	
Plantae	Flora	Amperea xiphoclada var. pedicellata		Presumed Extinct	Not Sensitive	Extinct	
Plantae	Flora	Asterolasia buxifolia		Endangered	Not Sensitive	Not Listed	
Plantae	Flora	Caladenia tessellata	Thick Lip Spider Orchid	Endangered	Category 2	Vulnerable	
Plantae	Flora	Callistemon linearifolius	Netted Bottle Brush	Vulnerable	Category 3	Not Listed	
Plantae	Flora	Chamaesyce psammogeton	Sand Spurge	Endangered	Not Sensitive	Not Listed	
Plantae	Flora	Darwinia biflora		Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Deyeuxia appressa		Endangered	Not Sensitive	Endangered	
Plantae	Flora	Dichanthium setosum	Bluegrass	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Dillwynia tenuifolia		Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Doryanthes palmeri	Giant Spear Lily	Vulnerable	Not Sensitive	Not Listed	

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Plantae	Flora	Epacris purpurascens var. purpurascens		Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Epacris sparsa	Sparse Heath	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Eucalyptus camfieldii	Camfield's Stringybark	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Eucalyptus fracta	Broken Back Ironbark	Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Eucalyptus leucoxylon subsp. pruinosa	Yellow Gum	Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Eucalyptus nicholii	Narrow-leaved Black Peppermint	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Eucalyptus pulverulenta	Silver-leafed Gum	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Eucalyptus scoparia	Wallangarra White Gum	Endangered	Not Sensitive	Vulnerable	
Plantae	Flora	Genoplesium baueri	Bauer's Midge Orchid	Endangered	Category 2	Endangered	
Plantae	Flora	Grammitis stenophylla	Narrow-leaf Finger Fern	Endangered	Category 3	Not Listed	
Plantae	Flora	Grevillea beadleana	Beadle's Grevillea	Endangered	Category 3	Endangered	
Plantae	Flora	Grevillea caleyi	Caley's Grevillea	Critically Endangered	Category 3	Critically Endangered	
Plantae	Flora	Grevillea hilliana	White Yiel Yiel	Endangered	Not Sensitive	Not Listed	
Plantae	Flora	Haloragodendron lucasii		Endangered	Not Sensitive	Endangered	
Plantae	Flora	Hibbertia puberula		Endangered	Not Sensitive	Not Listed	
Plantae	Flora	Hibbertia spanantha	Julian's Hibbertia	Critically Endangered	Category 2	Critically Endangered	
Plantae	Flora	Hibbertia superans		Endangered	Not Sensitive	Not Listed	
Plantae	Flora	Isotoma fluviatilis subsp. fluviatilis		Not Listed	Not Sensitive	Extinct	
Plantae	Flora	Lasiopetalum joyceae		Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Leptospermum deanei		Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Macadamia integrifolia	Macadamia Nut	Not Listed	Not Sensitive	Vulnerable	
Plantae	Flora	Macadamia tetraphylla	Rough-shelled Bush Nut	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Melaleuca biconvexa	Biconvex Paperbark	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Melaleuca deanei	Deane's Paperbark	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Microtis angusii	Angus's Onion Orchid	Endangered	Category 2	Endangered	
Plantae	Flora	Persoonia hirsuta	Hairy Geebung	Endangered	Category 3	Endangered	
Plantae	Flora	Persoonia laxa		Presumed Extinct	Not Sensitive	Extinct	
Plantae	Flora	Pimelea curviflora var. curviflora		Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Pomaderris prunifolia	Plum-leaf Pomaderris	Endangered Population	Not Sensitive	Not Listed	
Plantae	Flora	Prasophyllum fuscum	Slaty Leek Orchid	Critically Endangered	Category 2	Vulnerable	
Plantae	Flora	Prostanthera marifolia	Seaforth Mintbush	Critically Endangered	Category 3	Critically Endangered	
Plantae	Flora	Rhodamnia rubescens	Scrub Turpentine	Critically Endangered	Not Sensitive	Not Listed	
Plantae	Flora	Sarcochilus hartmannii	Hartman's Sarcochilus	Vulnerable	Category 2	Vulnerable	
Plantae	Flora	Syzygium paniculatum	Magenta Lilly Pilly	Endangered	Not Sensitive	Vulnerable	

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Plantae	Flora	Tetratheca glandulosa		Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Tetratheca juncea	Black-eyed Susan	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Thesium australe	Austral Toadflax	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Triplarina imbricata	Creek Triplarina	Endangered	Not Sensitive	Endangered	
Plantae	Flora	Wahlenbergia multicaulis	Tadgell's Bluebell	Endangered Population	Not Sensitive	Not Listed	
Plantae	Flora	Wilsonia backhousei	Narrow-leafed Wilsonia	Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Zannichellia palustris		Endangered	Not Sensitive	Not Listed	

Data does not include NSW category 1 sensitive species. NSW BioNet: © State of NSW and Office of Environment and Heritage

Location Confidences

Where Lotsearch has had to georeference features from supplied addresses, a location confidence has been assigned to the data record. This indicates a confidence to the positional accuracy of the feature. Where applicable, a code is given under the field heading "LC" or "LocConf". These codes lookup to the following location confidences:

LC Code	Location Confidence
Premise Match	Georeferenced to the site location / premise or part of site
Area Match	Georeferenced to an approximate or general area
Road Match	Georeferenced to a road or rail corridor
Road Intersection	Georeferenced to a road intersection
Buffered Point	A point feature buffered to x metres
Adjacent Match	Land adjacent to a georeferenced feature
Network of Features	Georeferenced to a network of features
Suburb Match	Georeferenced to a suburb boundary
As Supplied	Spatial data supplied by provider

USE OF REPORT - APPLICABLE TERMS

The following terms apply to any person (End User) who is given the Report by the person who purchased the Report from Lotsearch Pty Ltd (ABN: 89 600 168 018) (Lotsearch) or who otherwise has access to the Report (Terms). The contract terms that apply between Lotsearch and the purchaser of the Report are specified in the order form pursuant to which the Report was ordered and the terms set out below are of no effect as between Lotsearch and the purchaser of the Report.

- 1. End User acknowledges and agrees that:
 - (a) the Report is compiled from or using content (Third Party Content) which is comprised of:
 - content provided to Lotsearch by third party content suppliers with whom Lotsearch
 has contractual arrangements or content which is freely available or methodologies
 licensed to Lotsearch by third parties with whom Lotsearch has contractual
 arrangements (Third Party Content Suppliers); and
 - (ii) content which is derived from content described in paragraph (i);
 - (b) Neither Lotsearch nor Third Party Content Suppliers takes any responsibility for or give any warranty in relation to the accuracy or completeness of any Third Party Content included in the Report including any contaminated land assessment or other assessment included as part of a Report;
 - (c) the Third Party Content Suppliers do not constitute an exhaustive set of all repositories or sources of information available in relation to the property which is the subject of the Report (Property) and accordingly neither Lotsearch nor Third Party Content Suppliers gives any warranty in relation to the accuracy or completeness of the Third Party Content incorporated into the report including any contaminated land assessment or other assessment included as part of a Report;
 - (d) Reports are generated at a point in time (as specified by the date/time stamp appearing on the Report) and accordingly the Report is based on the information available at that point in time and Lotsearch is not obliged to undertake any additional reporting to take into consideration any information that may become available between the point in time specified by the date/time stamp and the date on which the Report was provided by Lotsearch to the purchaser of the Report;
 - (e) Reports must be used or reproduced in their entirety and End User must not reproduce or make available to other persons only parts of the Report;
 - (f) Lotsearch has not undertaken any physical inspection of the property;
 - (g) neither Lotsearch nor Third Party Content Suppliers warrants that all land uses or features whether past or current are identified in the Report;
 - (h) the Report does not include any information relating to the actual state or condition of the Property;
 - (i) the Report should not be used or taken to indicate or exclude actual fitness or unfitness of Land or Property for any particular purpose
 - (j) the Report should not be relied upon for determining saleability or value or making any other decisions in relation to the Property and in particular should not be taken to be a rating or assessment of the desirability or market value of the property or its features; and
 - (k) the End User should undertake its own inspections of the Land or Property to satisfy itself that there are no defects or failures
- 2. The End User may not make the Report or any copies or extracts of the report or any part of it available to any other person. If End User wishes to provide the Report to any other person or make extracts or copies of the Report, it must contact the purchaser of the Report before doing so to ensure the proposed use is consistent with the contract terms between Lotsearch and the purchaser.
- 3. Neither Lotsearch (nor any of its officers, employees or agents) nor any of its Third Party Content Suppliers will have any liability to End User or any person to whom End User provides the Report and End User must not represent that Lotsearch or any of its Third Party Content Suppliers accepts liability to any such person or make any other representation to any such person on behalf of Lotsearch or any Third Party Content Supplier.
- 4. The End User hereby to the maximum extent permitted by law:
 - (a) acknowledges that the Lotsearch (nor any of its officers, employees or agents), nor any of its Third Party Content Supplier have any liability to it under or in connection with the

- Report or these Terms;
- (b) waives any right it may have to claim against Third Party Content Supplier in connection with the Report, or the negotiation of, entry into, performance of, or termination of these Terms; and
- releases each Third Party Content Supplier from any claim it may have otherwise had in connection with the Report, or the negotiation of, entry into, performance of, or termination of these Terms.
- 5. The End User acknowledges that any Third Party Supplier shall be entitled to plead the benefits conferred on it under clause 4, despite not being a party to these terms.
- End User must not remove any copyright notices, trade marks, digital rights management information, other embedded information, disclaimers or limitations from the Report or authorise any person to do so.
- 7. End User acknowledges and agrees that Lotsearch and Third Party Content Suppliers retain ownership of all copyright, patent, design right (registered or unregistered), trade marks (registered or unregistered), database right or other data right, moral right or know how or any other intellectual property right in any Report or any other item, information or data included in or provided as part of a Report.
- 8. To the extent permitted by law and subject to paragraph 9, all implied terms, representations and warranties whether statutory or otherwise relating to the subject matter of these Terms other than as expressly set out in these Terms are excluded.
- 9. Subject to paragraph 6, Lotsearch excludes liability to End User for loss or damage of any kind, however caused, due to Lotsearch's negligence, breach of contract, breach of any law, in equity, under indemnities or otherwise, arising out of all acts, omissions and events whenever occurring.
- 10. Lotsearch acknowledges that if, under applicable State, Territory or Commonwealth law, End User is a consumer certain rights may be conferred on End User which cannot be excluded, restricted or modified. If so, and if that law applies to Lotsearch, then, Lotsearch's liability is limited to the greater of an amount equal to the cost of resupplying the Report and the maximum extent permitted under applicable laws.
- 11. Subject to paragraph 9, neither Lotsearch nor the End User is liable to the other for:
 - (a) any indirect, incidental, consequential, special or exemplary damages arising out of or in relation to the Report or these Terms; or
 - (b) any loss of profit, loss of revenue, loss of interest, loss of data, loss of goodwill or loss of business opportunities, business interruption arising directly or indirectly out of or in relation to the Report or these Terms,

irrespective of how that liability arises including in contract or tort, liability under indemnity or for any other common law, equitable or statutory cause of action or otherwise.

12. These Terms are subject to New South Wales law.

Appendix D: Background on Salinity

Background on Salinity

A. General Information on Salinity

Salinity is the accumulation and concentration of salt at or near the ground surface or within surface water bodies. Salt is naturally present in the landscape through deposition of salt from the ocean in coastal areas and through weathering of bedrock that contains salt, accumulated during deposition of original sediments in a prehistoric marine environment. The salts are commonly soluble chlorides, sulphates or carbonates of sodium and magnesium.

In Sydney, salinity issues are typically associated with the Wianamatta Group shales and their derived soil landscapes. The natural vegetation of western Sydney is dominated by large isolated trees with deep root systems that remove subsurface moisture. Slow rates of percolation through the relatively impermeable clay soil and uptake of a large proportion of rainfall by the trees results in limited recharge of the groundwater system by rainfall. The depth to groundwater has developed a natural equilibrium and there is little tendency for salt contained in the groundwater or subsoils to rise to the surface.

B. Salinity and Urban Development

Salinity becomes a problem in urban areas when changes in the land use result in changes to the way water moves through the environment. This can result in vegetation die-back, decrease in water quality and damage to urban infrastructure.

Removal of deep rooted tree species during development and replacement with urban infrastructure, houses and industrial developments reduces the mechanism for the removal of subsurface moisture.

The development of urban salinity is commonly associated with changes in the hydrological cycle through the environment (rainfall, surface run-off, water infiltration and groundwater system). An increase in the quantity of water reaching the groundwater table as a result of vegetation clearance, irrigation of parklands, leaking water infrastructure and changes in drainage patterns, can cause a relatively rapid rise in the groundwater table. Earthworks that include excavation of natural soil profiles and exposure of more saline subsurface soils or shale bedrock may also result in an increase in salt concentrations at the ground surface.

Construction of roads, pipelines and buildings commonly results in removal of topsoil leading to exposure of the subsoils and interception of surficial and shallow subsurface drainage. In addition, over-irrigation of urban gardens, leaking water infrastructure and concentrated drainage patterns can result in increased water movement through the subsoil to the groundwater system leading to a relatively rapid rise in the groundwater table.

A rise in groundwater levels and impediments to subsurface drainage patterns can transport salt formerly stored in the bedrock to the surficial soil profile. This may result in salt encrustation of exposed soils, building foundations, roads, drainage infrastructure and corrosion of metal, concrete and other building materials. Increasing salt concentrations in surficial soils (and consequently in surface waters) may also result in die-off

of the existing vegetation, further reducing the hydrological load on the groundwater system and resulting in further groundwater table rises.

C. Potential Salinity Impacts on Urban Development

Some of the adverse impacts that can arise from saline conditions include:

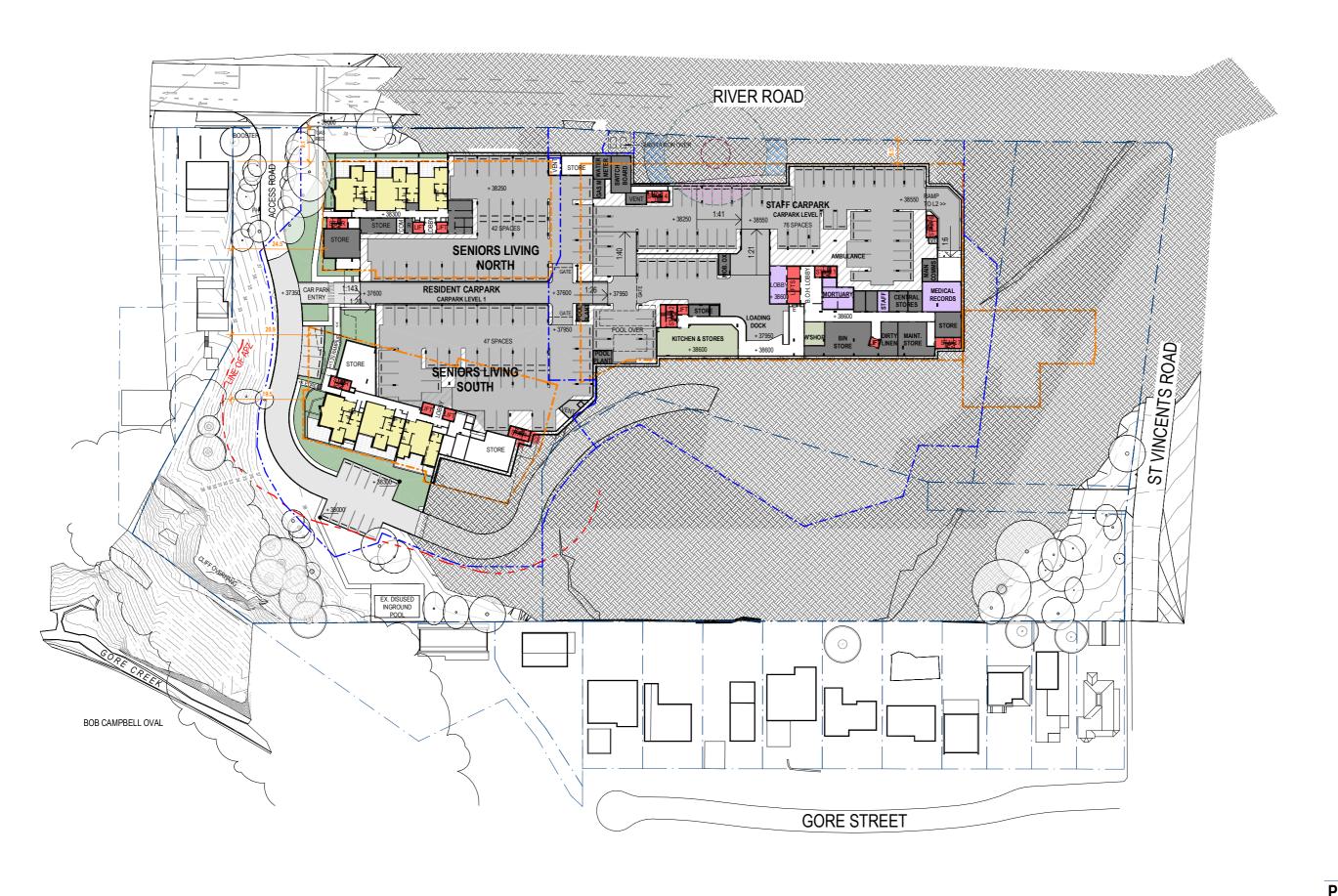
- Salt scalds caused by a rise in the subsoil moisture content that mobilises salt to the ground surface;
- Salt scalds caused by modification of former drainage patterns which leads to the day lighting of subsurface seepage (either perched water or groundwater) in areas lower in the catchment, either at breaks in the slope or within drainage lines;
- A rise in groundwater table or accumulation of salt rich seepage leading to corrosion of subsurface facilities including concrete structures, metal pipework, cables, foundations, underground services, etc;
- Rising damp, where salt rich moisture is drawn into building and pavement materials by capillary action leading to deterioration of brick, mortar and concrete;
- Structural cracking, damage or building collapse which may occur as a result of shifting and or sinking foundations;
- Plant die-back associated with a rise in groundwater table level that mobilises excess salt to the plant root zone; and
- Subsurface water discharge and subsequent pollution of streams and drainage channels.

D. Soils and Groundwater Planning Strategy in Western Sydney

The aim of the DLWC 2002 document is to provide a framework for the sustainable development and management of new developments in the western region of Sydney. In relation to salinity management, the development should be designed and constructed such that there is no significant increase in the water table level and no adverse salinity impacts.

The proposed development controls that relate to soils and groundwater issues are summarised below:

- 1. A water management strategy should be prepared to address the following:
 - Reduction of potable water usage onsite;
 - Development of best practice measures for stormwater reuse for open space irrigation;
 - Reduction of potable water demand;
 - Reduction of adverse impacts on local groundwater regimes;
 - Reduction of change in local flow regimes; and
 - Preparation of water maintenance and a monitoring management system.
- 2. A salinity management plan should be prepared that includes a groundwater management strategy related to:
 - Adoption of small landscaped areas to reduce irrigation requirements;
 - Use of native and other low water requirement plants;
 - Use of mulch cover (not in drainage lines);
 - Use of low flow watering facilities for landscaped areas;
 - Implementation of a tree planting program, especially in high recharge areas, of native, deep rooted, large growing species to assist retention of the groundwater at existing levels;



- Retention of existing native tree cover where possible; and
- Not permitting infiltration pits or tanks to disperse surface water.
- 3. An assessment of soil and rock conditions at the site, including erosion, expansive and dispersive soil conditions, and plant growth potential should be undertaken.
- 4. Use of the Blue Book (2004) as a guide to prepare soil and water management plans. The approved plan and subsequent works are to be supervised by appropriately qualified experienced personnel.

Appendix E: Proposed Development Plans

PRELIMINARY ISSUE NOT FOR CONSTRUCTION

1:500 @ A1 © COPYRIGHT

THESE DRAWNISS AND DESIGNS AND THE COPYRIGHT THEREOF ARE THE PROPERTY OF BICKERTON MASTERS ARCHITECTURE PTYLTD (ACM 192 22 149) THE BICKERTON MASTERS AND BM HEDE PTYLTD (ACM 193 1499) THE HEDE ARCHITECTS AND MIST FOR ELSED, PETAINED OR COPIED WITHOUT THE WRITTEN PERMISSION OF THE AFOREMENTONED LEGAL ENTITIES.

C:_Revit Projects\SW-AR-GREENWICH_andrewmacNRYHN.rvt

 P19
 2022 04 01
 FINAL DRAFT LODGEMENT ISSUE
 AMac

 P18
 2022 03 28
 SSD UPDATE
 NAH

 P17
 2022 03 25
 ISSUE TO CONSULTANTS
 AMac
 P16 2022.03.18 ISSUE TO CONSULTANTS
P15 2022.03.16 SSD LIDDATE AMac NAH AMac AMac P15 2022.03.16 SSD UPDATE
P14 2022.03.11 ISSUE TO CONSULTANTS
P13 2022.03.04 ISSUE TO CONSULTANTS


SITE PLAN LEGEND - SITE BOUNDARY - - - STAGING LINE

SYDNEY (02) 9261 8333 STUDIO 3, LEVEL 3 35 BUCKINGHAM STREET SURRY HILLS 2010, NSW

Hammond Care Champion Life GREENWICH HOSPITAL REDEVELOPMENT RIVER RD, GREENWICH

DD-SW-0200 P19 DATE: 01/11/21

SITE LEVEL PLAN - LEVEL 1 (BASEMENT) CHECKED: SCALE: 1:500 @A1

PRELIMINARY ISSUE

NOT FOR CONSTRUCTION

DD-SW-0201 P19 DATE: 01/11/21

SITE LEVEL PLAN - LEVEL 2 (SETDOWN)

CHECKED: SCALE: 1:500 @A1

1:500 @ A1

© COPYRIGHT

THESE DRAWNISS AND DESIGNS AND THE COPYRIGHT THEREOF ARE THE PROPERTY OF BICKERTON MASTERS ARCHITECTURE PTYLTO (ACN 192 25 149) TA BICKERTON MASTERS AND BIM HEDE PTYLTO (ACN 193 26 149) TA BICKERTON MASTERS AND BIM HEDE PTYLTO (ACN 630 149 98) TA HEDE ARCHITECTS AND MIST NOT BE LEGE. RETAINED OR COPIED WITHOUT THE WRITTEN PERMISSION OF THE AFOREMENTIONED LEGAL ENTITIES.

BICKERTON MASTERS AND HERE AFOREMENTIONED LEGAL ENTITIES.

BICKERTON MASTERS AND HERE AFOREMENT ONE DEGALE STATISTS.

BICKERTON MASTERS AND HERE AFOREMENT ONE SEPONSIBILITY FOR THE USABILITY.

COMPLETENESS OR ACCURACY OF DATA TRANSFERRED SECTION/COLLY. RECIPIENTS SHOULD WHEN

NEEDESSAY REQUEST A HARD COPY VERSION FOR HERIFORTON. USE FROMED DIMENSIONS IN

NEEDESSAY REQUEST A HARD COPY VERSION FOR HERIFORTON. USE FROMED DIMENSIONS IN

AND IS PRINTED IN ALCA & WHITE NOT ALL MFORMATION MAY BE LEGIBLE.

C. Revit Projects SW-AR GREFENMAN'S HARD SECTION OF THE METALE STATISTS.

C. Revit Projects SW-AR GREFENMAN'S HARD SECTION OF THE METALE STATISTS. THE METALE STATISTS AND HER METALES.

THE METALE STATISTS AND HER METALES. THE METALES AND HER METALES. THE METALES AND HER METALES. THE METALES AND HER METALES. THE METALES

C:_Revit Projects\SW-AR-GREENWICH_andrewmacNRYHN.rvt

P19 2022.04.01 FINAL DRAFT LODGEMENT ISSUE AMac P18 2022.03.28 SSD UPDATE
P17 2022.03.25 ISSUE TO CONSULTANTS AMac NAH AMac AMac P16 2022.03.18 ISSUE TO CONSULTANTS
P15 2022.03.16 SSD UPDATE

SITE PLAN LEGEND - SITE BOUNDARY - - - STAGING LINE

REDEVELOPMENT RIVER RD, GREENWICH

Hammond Care ...

GREENWICH HOSPITAL

PRELIMINARY ISSUE

NOT FOR CONSTRUCTION

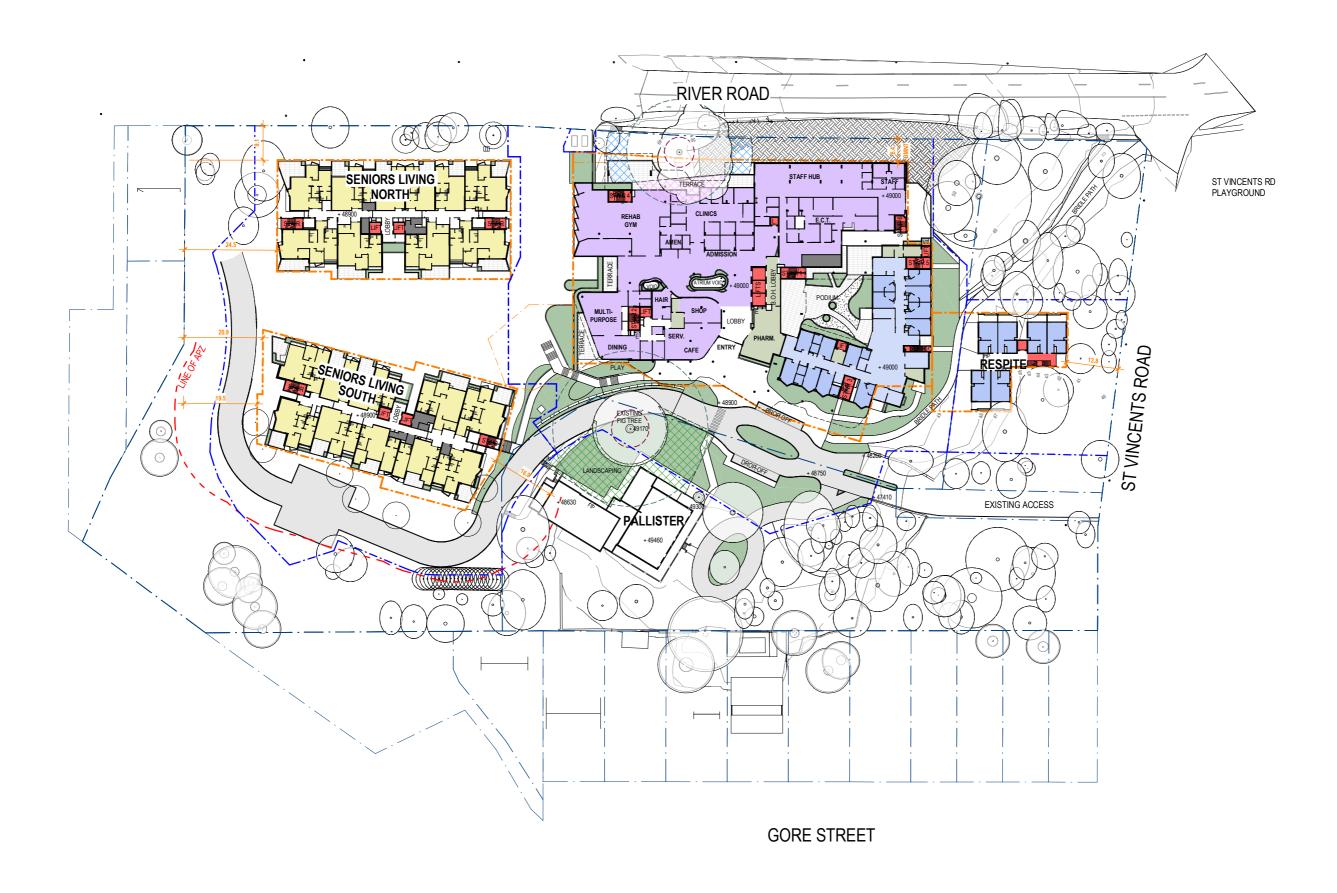
P19 DATE: 11/04/21

DD-SW-0202

SITE LEVEL PLAN - LEVEL 3 (MEZZANINE)

C:_Revit Projects\SW-AR-GREENWICH_andrewmacNRYHN.rvt

1:100 @ A1 © COPYRIGHT


THESE DRAWNISS AND DESIGNS AND THE COPYRIGHT THEREOF ARE THE PROPERTY OF BICKERTON MASTERS ARCHITECTURE PTYLTD (ACM 192 22 149) THE BICKERTON MASTERS AND BM HEDE PTYLTD (ACM 193 1499) THE HEDE ARCHITECTS AND MIST FOR ELSED, PETAINED OR COPIED WITHOUT THE WRITTEN PERMISSION OF THE AFOREMENTONED LEGAL ENTITIES.

P19 2022.04.01 FINAL DRAFT LODGEMENT ISSUE AMac P18 2022.03.28 SSD UPDATE P17 2022.03.25 ISSUE TO CONSULTANTS P16 2022.03.18 ISSUE TO CONSULTANTS
P15 2022.03.16 SSD LIDDATE P15 2022.03.16 SSD UPDATE
P14 2022.03.11 ISSUE TO CONSULTANTS
P13 2022.03.04 ISSUE TO CONSULTANTS

Hammond Care ... GREENWICH HOSPITAL REDEVELOPMENT RIVER RD, GREENWICH

CHECKED: SCALE: 1:500 @A1

PRELIMINARY ISSUE NOT FOR CONSTRUCTION

1:500 @ A1 © COPYRIGHT

P18 2022.04.01 FINAL DRAFT LODGEMENT ISSUE AMac P17 2022.03.28 SSD UPDATE P16 2022.03.25 ISSUE TO CONSULTANTS P16 2022.03.25 ISSUE TO CONSULTANTS
P17 2022.03.18 ISSUE TO CONSULTANTS
P18 2022.03.18 ISSUE TO CONSULTANTS
P18 2022.03.18 ISSUE TO CONSULTANTS
P19 2022.03.18 ISSUE TO CONSULTANTS
P19 2022.03.18 ISSUE TO CONSULTANTS
P19 2022.03.18 ISSUE TO CONSULTANTS
P10 2022.03.18 ISSUE TO CONSUL

SITE PLAN LEGEND - SITE BOUNDARY - - - STAGING LINE

Hammond Care ... GREENWICH HOSPITAL REDEVELOPMENT RIVER RD, GREENWICH

DD-SW-0203 P18 DATE: 01/11/21

SITE LEVEL PLAN - LEVEL 4 (PLAZA)

CHECKED: SCALE: 1:500 @A1

NSW NOMINATED ARCHITECT: ANDREW MASTERS (9037)

RIVER ROAD PLANTER OUTSIDE ENVELOPE SENIORS LIVING **1 ∐** NORTH HEALTH & CARE +53200 ST VINCENTS ROAD RESPITE 0 (1) PALLISTER, \odot 0 **GORE STREET**

PRELIMINARY ISSUE NOT FOR CONSTRUCTION

© COPYRIGHT
THESE DRAWNINGS AND DESIGNS AND THE COPYRIGHT THEREOF ARE THE PROPERTY OF BIOXERTON
MASTERS ARCHITECTURE PTYLTD (ACN 199 225 149) TA BIOXERTON MASTERS AND BM HEDE PTYLTD
(ACN 830 149 990) TA HEDE ARCHITECTS AND MIST NOT BE USED, RETAINED OR COPIED WITHOUT THE
WIRTTEN PERMESSION OF THE ARCHITECTS ACCEPT NO RESPONSIBILITY FOR THE USABILITY
COMPLETENESS OR ACCURACY OF DATA TRANSFERRED ELECTRONICALLY RECOPERTS SHOULD WHEN
RECESSION PROPERTS HOR OF PRESIDENCY PROFICED INSTRUCTION OF THE WASTER OF THE PROPERTY OF THE USABILITY
AND IS PRINTED IN BLACK & WHITE NOT ALL INFORMATION MAY SELECIBLE
CL. Rewit Projects NAME CREENWICH_and rewards/NYHN.rd

P18 2022.03.26 SSD UPDATE NAH
P19 2022.03.28 ISSUE TO CONSULTANTS AMBC
P19 2022.03.21 ISSUE TO CONSULTANTS AMBC
P19 2022.03.21 ISSUE TO CONSULTANTS AMBC
P19 2022.03.20 ISSUE TO CONSULTANTS
P19 2022

SITE PLAN LEGEND - SITE BOUNDARY - - - STAGING LINE

Hammond Care GREENWICH HOSPITAL REDEVELOPMENT

RIVER RD, GREENWICH

P18

DD-SW-0204 DATE: 01/11/21 DRAWING TITLE:

SITE LEVEL PLAN - LEVEL 5

CHECKED: SCALE: 1:500 @A1

NSW NOMINATED ARCHITECT: ANDREW MASTERS (9037)

1/04/2022 5:27:19 PM

RIVER ROAD \odot **SENIORS LIVING** NORTH TERRACE GREEN ROOF HEALTH CARE ST VINCENTS ROAD RESPITE 0 PALLISTER **GORE STREET**

PRELIMINARY ISSUE

NOT FOR CONSTRUCTION

P18 DATE: 01/11/21 DRAWING TITLE:

DD-SW-0205 SITE LEVEL PLAN - LEVEL 6

C:_Revit Projects\SW-AR-GREENWICH_andrewmacNRYHN.rvt

1:500 @ A1

© COPYRIGHT

THESE DRAWNISS AND DESIGNS AND THE COPYRIGHT THEREOF ARE THE PROPERTY OF BICKERTON MASTERS ARCHITECTURE PTYLTO (ACN 192 25 149) TA BICKERTON MASTERS AND BIM HEDE PTYLTO (ACN 193 26 149) TA BICKERTON MASTERS AND BIM HEDE PTYLTO (ACN 630 149 98) TA HEDE ARCHITECTS AND MIST NOT BE LEGE. RETAINED OR COPIED WITHOUT THE WRITTEN PERMISSION OF THE AFOREMENTIONED LEGAL ENTITIES.

 P18
 2022 04 01
 FINAL DRAFT LODGEMENT ISSUE
 AMac

 P17
 2022 03 28
 SSD UPDATE
 NAH

 P16
 2022 03 25
 ISSUE TO CONSULTANTS
 AMac
 P15 2022.03.18 ISSUE TO CONSULTANTS
P14 2022.03.16 ISSUE TO CONSULTANTS
P13 2022.03.11 ISSUE TO CONSULTANTS
P12 2022.03.04 ISSUE TO CONSULTANTS AMac NAH AMac AMac

SITE PLAN LEGEND - SITE BOUNDARY - - - STAGING LINE

Hammond Care Champion Life GREENWICH HOSPITAL REDEVELOPMENT RIVER RD, GREENWICH

RIVER ROAD. HEALTH & CARE +60400 ST VINCENTS ROAD SENIORS LIVING 0 PALLISTER **GORE STREET**

PRELIMINARY ISSUE NOT FOR CONSTRUCTION

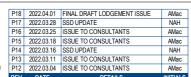
P18 DATE: 01/11/21 DRAWING TITLE:

Hammond Care Champion Life

GREENWICH HOSPITAL REDEVELOPMENT RIVER RD, GREENWICH

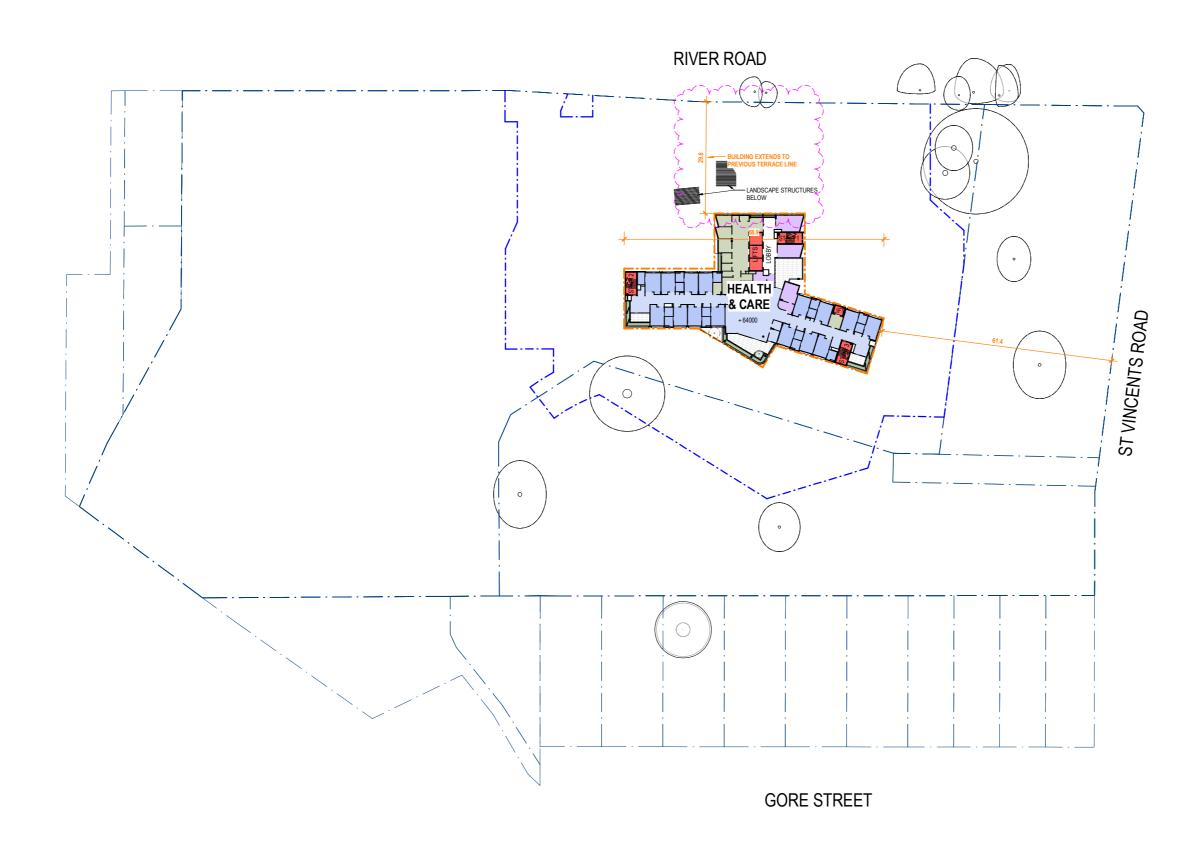
SYDNEY (02) 9261 8333

STUDIO 3, LEVEL 3 35 BUCKINGHAM STREET SURRY HILLS 2010, NSW


DD-SW-0206 SITE LEVEL PLAN - LEVEL 7

CHECKED: SCALE: 1:500 @A1

1:500 @ A1


© COPYRIGHT

THESE DRAWNISS AND DESIGNS AND THE COPYRIGHT THEREOF ARE THE PROPERTY OF BICKERTON MASTERS ARCHITECTURE PTYLTO (ACN 192 25: 149) TA BICKERTON MASTERS AND BIM HEDE PTYLTO (ACN 593 1499) TA HEDE ARCHITECTS AND MIST TOR BE LEGE. RETAINED OR COPIED WITHOUT THE WRITTEN PERMISSION OF THE AFOREMENTIONED LEGAL ENTITIES. C:_Revit Projects\SW-AR-GREENWICH_andrewmacNRYHN.rvt

SITE PLAN LEGEND - - SITE BOUNDARY - - - STAGING LINE

PRELIMINARY ISSUE NOT FOR CONSTRUCTION

P18

Hammond Care Champion Life

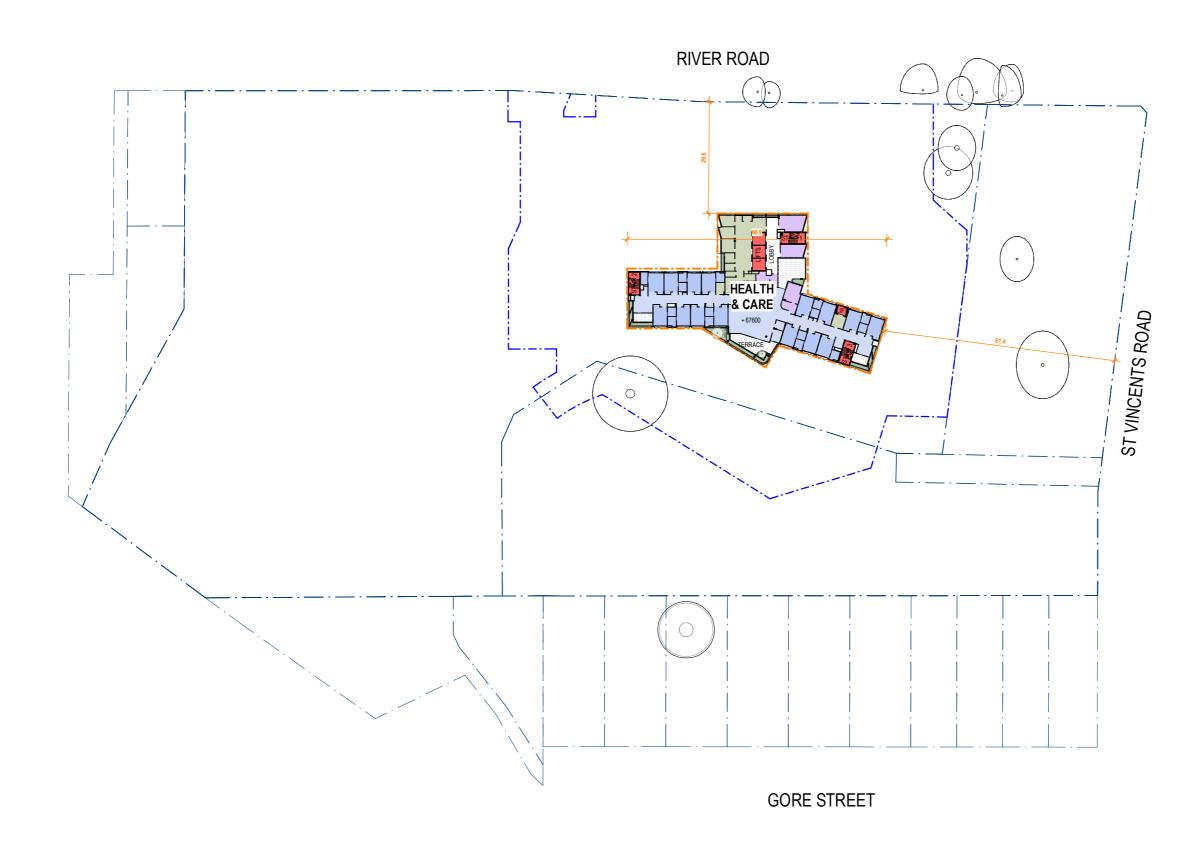
GREENWICH HOSPITAL REDEVELOPMENT RIVER RD, GREENWICH

SYDNEY (02) 9261 8333

STUDIO 3, LEVEL 3 35 BUCKINGHAM STREET SURRY HILLS 2010, NSW

DD-SW-0207 DATE: 01/11/21 DRAWING TITLE: SITE LEVEL PLAN - LEVEL 8

CHECKED: SCALE: 1:500 @A1


THESE DRAWNISS AND DESIGNS AND THE COPYRIGHT THEREOF ARE THE PROPERTY OF BICKERTON MASTERS ARCHITECTURE PTYLTO (ACN 192 25: 149) TA BICKERTON MASTERS AND BIM HEDE PTYLTO (ACN 593 1499) TA HEDE ARCHITECTS AND MIST TOR BE LEGE. RETAINED OR COPIED WITHOUT THE WRITTEN PERMISSION OF THE AFOREMENTIONED LEGAL ENTITIES.

SITE PLAN LEGEND - SITE BOUNDARY - - STAGING LINE

10.11

1:500 @ A1

© COPYRIGHT

PRELIMINARY ISSUE NOT FOR CONSTRUCTION

P18 DATE: 01/11/21 DRAWING TITLE:

DD-SW-0208 SITE LEVEL PLAN - LEVEL 9

CHECKED: SCALE: 1:500 @A1

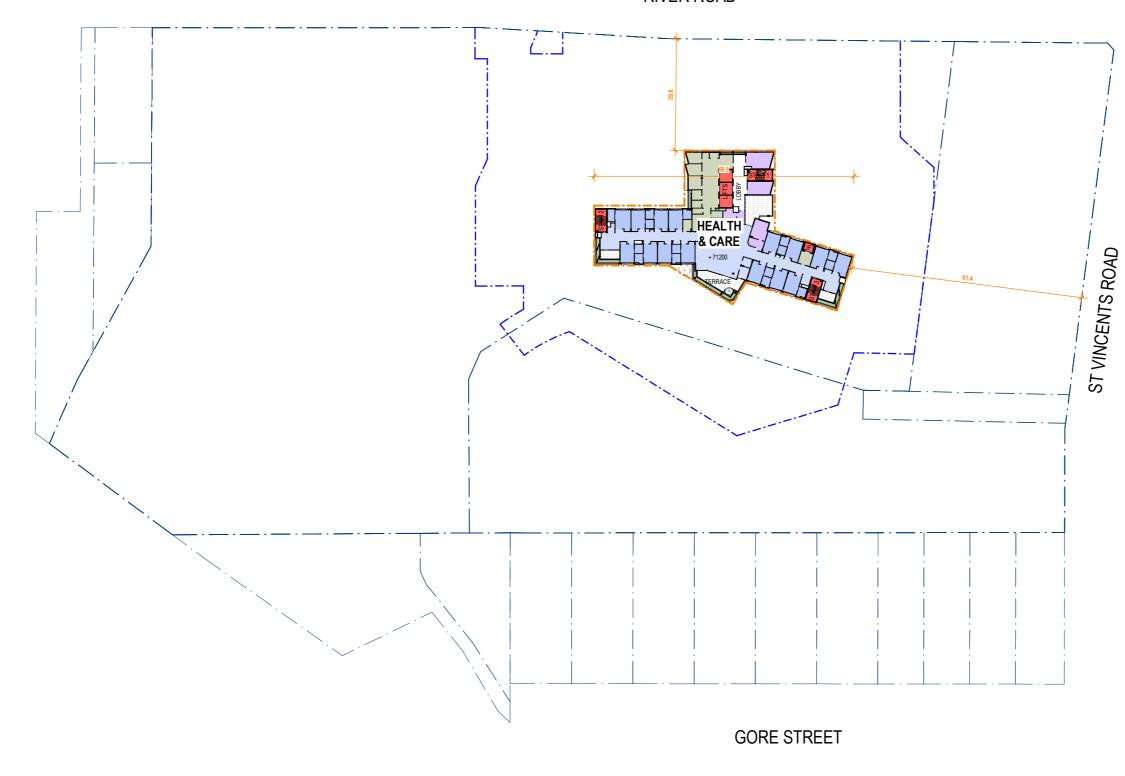
C:_Revit Projects\SW-AR-GREENWICH_andrewmacNRYHN.rvt

1:500 @ A1

© COPYRIGHT

10.11 THESE DRAWNISS AND DESIGNS AND THE COPYRIGHT THEREOF ARE THE PROPERTY OF BICKERTON MASTERS ARCHITECTURE PTYLTO (ACN 192 25: 149) TA BICKERTON MASTERS AND BIM HEDE PTYLTO (ACN 593 1499) TA HEDE ARCHITECTS AND MIST TOR BE LEGE. RETAINED OR COPIED WITHOUT THE WRITTEN PERMISSION OF THE AFOREMENTIONED LEGAL ENTITIES.

- SITE BOUNDARY
- PLANNING ENVELOPE - - - STAGING LINE


SITE PLAN LEGEND

SYDNEY (02) 9261 8333 STUDIO 3, LEVEL 3 35 BUCKINGHAM STREET SURRY HILLS 2010, NSW

PROJECT: 01605 GREENWICH HOSPITAL REDEVELOPMENT RIVER RD, GREENWICH

Hammond Care Champion Life

RIVER ROAD

1:500 @ A1

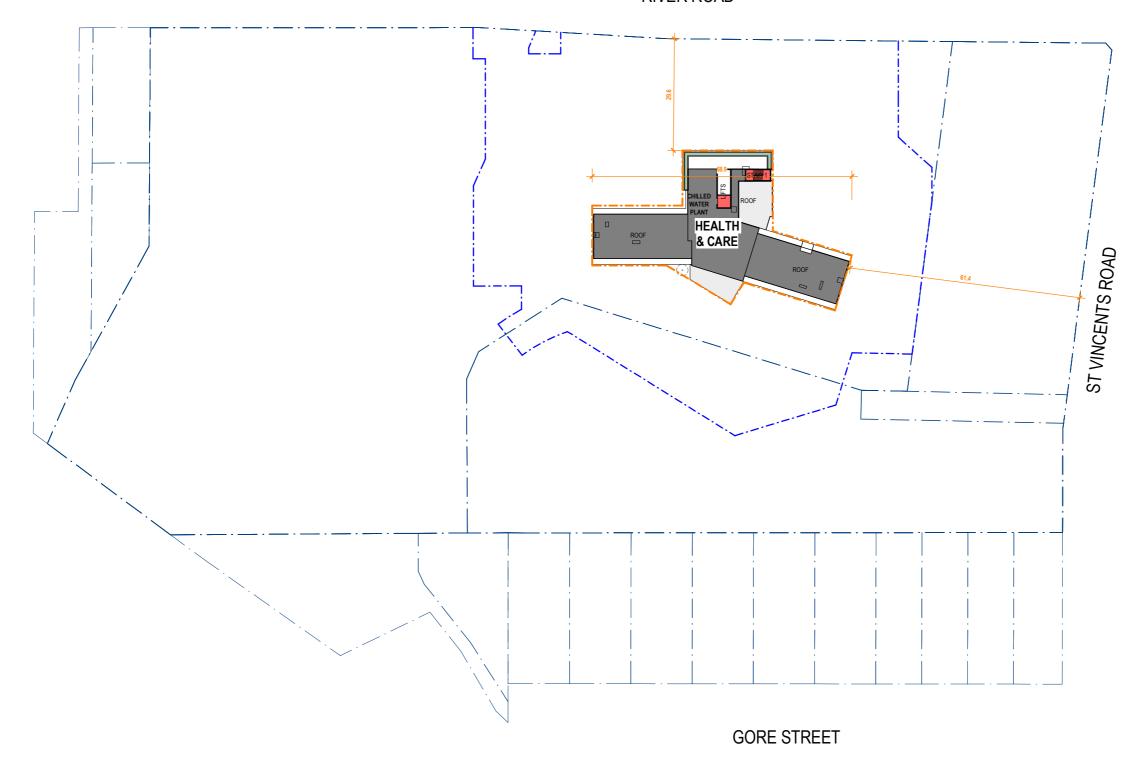
© COPYRIGHT

THESE DRAWNISS AND DESIGNS AND THE COPYRIGHT THEREOF ARE THE PROPERTY OF BICKERTON MASTERS ARCHITECTURE PTYLTO (ACN 192 25: 149) TA BICKERTON MASTERS AND BIM HEDE PTYLTO (ACN 593 1499) TA HEDE ARCHITECTS AND MIST TOR BE LEGE. RETAINED OR COPIED WITHOUT THE WRITTEN PERMISSION OF THE AFOREMENTIONED LEGAL ENTITIES.

C:_Revit Projects\SW-AR-GREENWICH_andrewmacNRYHN.rvt

SITE PLAN LEGEND - SITE BOUNDARY - PLANNING ENVELOPE - - STAGING LINE

SYDNEY (02) 9261 8333 STUDIO 3, LEVEL 3 35 BUCKINGHAM STREET SURRY HILLS 2010, NSW


Hammond Care Champion Life PROJECT: 01605 GREENWICH HOSPITAL REDEVELOPMENT RIVER RD, GREENWICH

PRELIMINARY ISSUE
NOT FOR CONSTRUCTION

DD-SW-0209 P16 DATE: 01/11/21 DRAWING TITLE: SITE LEVEL PLAN - LEVEL 10

CHECKED: SCALE: 1:500 @A1

RIVER ROAD

1011 1:500 @ A1

© COPYRIGHT

THESE DRAWNISS AND DESIGNS AND THE COPYRIGHT THEREOF ARE THE PROPERTY OF BICKERTON MASTERS ARCHITECTURE PTYLTO (ACN 192 25 149) TA BICKERTON MASTERS AND BIM HEDE PTYLTO (ACN 193 26 149) TA BICKERTON MASTERS AND BIM HEDE PTYLTO (ACN 630 149 98) TA HEDE ARCHITECTS AND MIST NOT BE LEGE. RETAINED OR COPIED WITHOUT THE WRITTEN PERMISSION OF THE AFOREMENTIONED LEGAL ENTITIES.

C:_Revit Projects\SW-AR-GREENWICH_andrewmacNRYHN.rvt

SITE PLAN LEGEND - SITE BOUNDARY - PLANNING ENVELOPE - - STAGING LINE

SYDNEY (02) 9261 8333 STUDIO 3, LEVEL 3 35 BUCKINGHAM STREET SURRY HILLS 2010, NSW

REDEVELOPMENT RIVER RD, GREENWICH

PRELIMINARY ISSUE NOT FOR CONSTRUCTION

P16 DATE: 04/09/21

DD-SW-0210 DRAWING TITLE: SITE LEVEL PLAN - LEVEL 11

CHECKED: SCALE: 1:500 @A1

Appendix F: Borehole Logs

BOREHOLE LOG

Borehole No. 101

1 / 2

Client: **HAMMOND CARE**

PROPOSED HOSPITAL REDEVELOPMENT Project: 97-115 RIVER ROAD, GREENWICH, NSW Location:

Job No.: 32507R2 Method: SPIRAL AUGER R.L. Surface: ~42.1 m

Da	te : 6	/10/	21						D	atum:	AHD	
Pla	ant T	ype	: JK205				Lo	gged/Checked By: J.L./P.R.				
Groundwater Record	SAMPL DB C20	ES SQ	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
DRY ON COMPLETION OF AUGERING		N > 9 9,9/100mm REFUSAL / 41 - 1 - 1 - 3,5,6		ASPHALTIC CONCRETE: 20mm.t FILL: Silty gravelly sand, fine to medium grained, grey, fine to medium grained, igneous gravel, trace of brick fragments. FILL: Silty sand, fine to medium grained, brown, trace of sandstone gravel, clay nodules, glass, plastic and earthenware fragments.	М			APPEARS MODERATELY COMPACTED SCREEN: 5.2kg 0.02-0.4m NO FCF SCREEN: 6.7kg 0.4-1.4m NO FCF SCREEN: 1.4-1.7m				
5.9.01.0 Z018-03-03-03-03-03-03-03-03-03-03-03-03-03-				-			-	Extremely Weathered sandstone: silty clayey SAND, fine to medium grained, yellow brown.	XW	(D - VD)		NO FCF HAWKESBURY SANDSTONE
AN 9024 LB GLB LOG JAK ANGERFRICE - MAN TEK 3230/PZ GREENWICHGFJ - CORNINGE 1805 ZU 1022 T245 TUTTUUTT DRIGGE LDB ANG IN SILL IOG - DGU LB. AK 902.4 ZU 9455-1 FF. JK 901 UZT1845520 PF. JK 901 UZT184520 PF. JK 901 UZT18452				40 - - 39 - - 38	2			SANDSTONE: fine to medium grained, yellow brown and orange brown.	DW	L-M		LOW TO MODERATE 'TC' BIT RESISTANCE
	(0)			37	5-			REFER TO CORED BOREHOLE LOG				GROUNDWATER MONITORING WELL INSTALLED TO 7.5m. CLASS 18 MACHINE SLOTTED 50mm DIA. PVC STANDPIPE 1.2m TO 7.5m. CASING 0m TO 1.2m. 2mm SAND FILTER PACK 1.0m TO 7.5m. BENTONITE SEAL 0.25m TO 1.0m. BACKFILLED WITH SAND TO THE SURFACE. COMPLETED WITH A CONCRETED GATIC COVER.
COPY	/RIGH	ΙT										

CORED BOREHOLE LOG

Borehole No. 101

2/2

Client: HAMMOND CARE

Project: PROPOSED HOSPITAL REDEVELOPMENT **Location:** 97-115 RIVER ROAD, GREENWICH, NSW

Job No.: 32507R2 Core Size: NMLC R.L. Surface: ~42.1 m

Date: 6/10/21 Inclination: VERTICAL Datum: AHD

Plant Type: JK205 Bearing: N/A Logged/Checked By: J.L./P.R.

										DEFECT DETAIL O				
					CORE DESCRIPTION			POINT LOAD	. 1	DEFECT DETAILS				
Water Loss\Level	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	STRENGTH INDEX I _s (50)	(mm)	DESCRIPTION Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness Specific General	Formation			
		38 -	-		START CORING AT 4.37m					ROCK STRENGTH BASED ON TACTILE ASSESSMENT				
		37 -	- - - - 5 - - -		SANDSTONE: medium grained, yellow brown and orange brown, bedded at 0-25°.	HW - MW	(L - M)			 	9			
100% RETURN		36 -	6— 6— 		SANDSTONE: fine to medium grained, light grey.	FR	(M - H)			(5.77m) CS, 0°, 5 mm.t	Hawkesbury Sandstone			
		35 —	- - - 7 — - - -						5000 5000 5000 5000 5000 5000 5000 500	- - - - - - -				
,		- 34 - -	8— 8— - - -		END OF BOREHOLE AT 7.50 m									
		- 33 — -	9							- - - - - - - -				
		32	- - 10 - - - - - -											
		-	-						5,000		L			

BOREHOLE LOG

Borehole No.

1 / 2

Client: HAMMOND CARE

COPYRIGHT

Project: PROPOSED HOSPITAL REDEVELOPMENT **Location:** 97-115 RIVER ROAD, GREENWICH, NSW

Job No.: 32507R2 Method: SPIRAL AUGER R.L. Surface: ~37.7 m

Date: 6/10/21 **Datum**: AHD

	Date: 6/10/21								Datum: AHD						
P	Plan	t Ty	/pe:	JK205				Lo	gged/Checked By: J.L./P.R.						
Groundwater	SAN	MPLE BB BB	ES SQ	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks		
DRY ON COMPLETION	OF AUGEKING			N = 7 2,4,3	37-336-333-332-331-331-331-331-331-331-331-331	1—		-	ASPHALTIC CONCRETE: 50mm.t FILL: Silty gravely sand, fine to medium grained, brown, fine to medium grained igneous gravel, trace of concrete fragments and slag. FILL: Silty clay, low to medium plasticity, grey and brown, trace of igneous, ironstone and siltstone gravel, and slag. SANDSTONE: fine to medium grained, orange brown.	M w <pl< td=""><td>(L - M)</td><td></td><td>APPEARS POORLY TO MODERATELY COMPACTED SCREEN: 7.60kg 0.05-0.5m NO FCF SCREEN: 9.5kg 0.5-1.2m NO FCF HAWKESBURY SANDSTONE LOW TO MODERATE 'TC' BIT RESISTANCE GROUNDWATER MONITORING WELL INSTALLED TO 6.1m. CLASS 18 MACHINE SLOTTED 50mm DIA. PVC STANDPIPE 1.2m TO 6.1m. CASING 0m TO 1.2m. 2mm SAND FILTER PACK 1.0m TO 6.1m. BENTONITE SEAL 0.25m TO 1.0m. BACKFILLED WITH SAND TO THE SURFACE. COMPLETED WITH A CONCRETED GATIC COVER.</td></pl<>	(L - M)		APPEARS POORLY TO MODERATELY COMPACTED SCREEN: 7.60kg 0.05-0.5m NO FCF SCREEN: 9.5kg 0.5-1.2m NO FCF HAWKESBURY SANDSTONE LOW TO MODERATE 'TC' BIT RESISTANCE GROUNDWATER MONITORING WELL INSTALLED TO 6.1m. CLASS 18 MACHINE SLOTTED 50mm DIA. PVC STANDPIPE 1.2m TO 6.1m. CASING 0m TO 1.2m. 2mm SAND FILTER PACK 1.0m TO 6.1m. BENTONITE SEAL 0.25m TO 1.0m. BACKFILLED WITH SAND TO THE SURFACE. COMPLETED WITH A CONCRETED GATIC COVER.		

CORED BOREHOLE LOG

Borehole No. 102

2 / 2

Client: HAMMOND CARE

PROPOSED HOSPITAL REDEVELOPMENT Project: 97-115 RIVER ROAD, GREENWICH, NSW Location:

Job No.: 32507R2 Core Size: NMLC R.L. Surface: ~37.7 m

Inclination: VERTICAL **Date:** 6/10/21 Datum: AHD

Plant Type: JK205 Bearing: N/A Logged/Checked By: J.L./P.R.

						1					, 	
				_	CORE DESCRIPTION			POINT LOA STRENGTH		DEFECT DETAILS	↓ 	
Water Loss\Level	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	NDEX (50)	(mm)	Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness	Formation	
ĽŠĶ	Ba	집	De	้อ		Š	Stl	≥,¬,≥,±,	H 6000	Specific General	P	
		- - 36	2—		START CORING AT 2.05m					ROCK STRENGTH BASED ON TACTILE - ASSESSMENT		
2357/PZ GREENWICH GPJ <cd-awngfle>> 21/01/2021 72.46 10.01/0001 Dagel Lab and In Stur Tool - DGJ Llb.: JK 9.02.4 2019-05-51 Prj. JK 9.01/0 2018-05-20 ON </cd-awngfle>		35 — - - - 34 —	3		SANDSTONE: medium grained, light grey and yellow brown, bedded at 0-20°.	MW				Hawkesbury Sandstone		
NWICH.GPJ < <drawingfile>> 21/01/2022 12.46 10.01.00 01 Datget Lab ON <</drawingfile>	2010121	33 -	5—			SANDSTONE: fine to medium grained, light grey, trace of dark grey laminae, bedded at 0-30°.	FR	(M)				Hawkesh
JK 9.02.4 LIB.GLB Log JK CORED BOREHOLE - MASTER		31 - - - - 30	7		END OF BOREHOLE AT 6.12 m					- - - - - - - - - - - - - - - - - - -		

JKEnvironments **ENVIRONMENTAL LOG**

Log No. 103 PFASDUP5: 0.03-0.4m

Environmental logs are not to be used for geotechnical purposes

Client: HAMMOND CARE

Project: PROPOSED HOSPITAL REDEVELOPMENT Location: 97-115 RIVER ROAD, GREENWICH, NSW

		R.L. Surface: ≈ 38.8m				
Date: 6/10/2021	Datum: AHD					
Plant Type: JK205 Logged/Checked by: M.M.E./V.	Logged/Checked by: M.M.E./V.B.					
Groundwater Record Record ASS ASB SAMPLES SAL Depth (m) Craphic Log Classification Classification AND Classi	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks		
DRY ON COMPLE -TION N = 16 3,3,13 N = 16 3,3,13 CL-CI CI-CH 1 -	M w <pl< td=""><td></td><td></td><td>SCREEN: 7.4kg 0.03-0.05m NO FCF HYDROCARBON ODOUR REFUSAL ON INFERRED BEDROCK</td></pl<>			SCREEN: 7.4kg 0.03-0.05m NO FCF HYDROCARBON ODOUR REFUSAL ON INFERRED BEDROCK		

BOREHOLE LOG

Borehole No. 104

1 / 2

Client: HAMMOND CARE

Project: PROPOSED HOSPITAL REDEVELOPMENT **Location:** 97-115 RIVER ROAD, GREENWICH, NSW

Job No.: 32507R2 Method: SPIRAL AUGER R.L. Surface: ~41.6 m

JC	א מכ	10.:	32507R2				Method: SPIRAL AUGER R.L. Surface: ~41.6 m							
Date: 1/10/21 Plant Type: JK305									Da	atum:	AHD			
PI	ant	Тур	e: JK305			Logged/Checked By: J.L./P.R.								
Groundwater Record	SAMPLES		SAMPLES		Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
DRY ON COMPLETION OF AUGEBRICA			N = 9 2,5,4 N = 10 3,3,7	38	1—		-	ASPHALTIC CONCRETE: 40mm.t FILL: Sandy gravel, fine to medium grained, dark grey, fine to medium grained, sub-angular, igneous gravel, trace of ironstone and sandstone gravel, and slag. FILL: Sitty gravelly sand, fine to medium grained, yellow brown, fine to medium grained sandstone gravel, trace of metal and glass fragments, slag and ash. FILL: Sitty sand, fine to medium grained, brown, trace of igneous, sandstone and sittstone gravel, glass fragments and ash. REFER TO CORED BOREHOLE LOG	M			APPEARS POORLY TO MODERATELY COMPACTED SCREEN: 4.45kg 0.04-0.3m NO FCF SCREEN: 4.7kg 0.3-1.3m NO FCF SCREEN: 4.8kg 1.3-2.3m NO FCF SCREEN: 5.45kg 2.3-3.2m NO FCF GROUNDWATER MONITORING WELL INSTALLED TO 5.97m. CLASS 18 MACHINE SLOTTED 50mm DIA. PVC STANDPIPE 1.2m TO 5.97m. CASING 0m TO 1.2m. 2mm SAND FILTER PACK 1.0m TO 5.97m. BENTONITE SEAL 0.25m TO 1.0m. BACKFILLED WITH SAND TO THE SURFACE. COMPLETED WITH A CONCRETED GATIC COVER.		

COPYRIGHT

CORED BOREHOLE LOG

Borehole No. 104

2 / 2

Client: HAMMOND CARE

Project: PROPOSED HOSPITAL REDEVELOPMENT **Location:** 97-115 RIVER ROAD, GREENWICH, NSW

Job No.: 32507R2 Core Size: NMLC R.L. Surface: ~41.6 m

Date: 1/10/21 Inclination: VERTICAL Datum: AHD

Plant Type: JK305 Bearing: N/A Logged/Checked By: J.L./P.R.

	Plant Type: JK305					Bearing: N/	Α		Logged/Checked By: J.L./P.R.						
					CORE DESCRIPTION			POINT LOAD STRENGTH		DEFECT DETAILS	\Box				
Vater	Loss\Level	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	NDEX I°(20)	(mm)	DESCRIPTION Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness Specific General				
-								0,			-	Formation			
				-		START CORING AT 3.40m				1 1 1 1	ROCK STRENGTH BASED ON TACTILE ASSESSMENT				
			38 -	- - - 4 —		NO CORE 0.74m					- - - -				
			-	-		Extremely weathered sandstone: sandy silty CLAY low to medium plasticity, light	XW	(Hd)							
2-01-01-01-01-01-01-01-01-01-01-01-01-01-	100% RETURN		37 –	- - -	-	silty CLAY, low to medium plasticity, light grey mottled orange brown. SANDSTONE: medium grained, light grey and orange brown, bedded at 0-20°.	MW	(L - M)	. 		—— (4.45m) J, 40 - 90°, C, R, Fe Sn ——— (4.58m) Be, 20°, P, R, Fe Sn	stone			
-UD-c) rij. civ o	R		-	5-							—— (4.95m) CS, 5°, 50 mm.t	ıry Sands			
AGD LID. 3N 9.02.4 2019			36 -	-							-	Hawkesbury Sandstone			
-1001			-	-							(5.77m) Cr, 0 - 5°, 10 mm.t (5.82m) Be, 5°, C, R, Fe Ct				
D. Log JA CORED BORETIOLE - MASTER 3230/RZ GREENWICH.Gr. < < CATAMING-1865 - 21/01/2022 12:40 10.01.00.01 Ladga Lab and III Sh			35	6		END OF BOREHOLE AT 5.97 m									
807 G107 E1070 NO			32 -	-						- 200 - 200	-				

K

BOREHOLE LOG

Borehole No. 105

1 / 2

Client: HAMMOND CARE

Project: PROPOSED HOSPITAL REDEVELOPMENT **Location:** 97-115 RIVER ROAD, GREENWICH, NSW

Job No.: 32507R2 Method: SPIRAL AUGER R.L. Surface: ~44.8 m

	ate: 2								Da	atum:	AHD	
PI	ant T	yp	e: JK205				Lo	gged/Checked By: J.L./P.R.				
Groundwater Record	SAMPL 090 080	ES	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
DRY ON Groundlest invoiced to soon to observe the soon to observe			N = 8 4,4,4 N > 14 18,14/ 100mm REFUSAL	44 - 43 - 44 - 40 - 39 - 39 - 39 - 39 - 39 - 39 - 39 - 3	1	Orange of the control	CL CL	ASPHALTIC CONCRETE: 25mm.t. FILL: Sitty gravelly sand, fine to medium grained, grey, fine to coarse grained igneous gravel. FILL: Clayey sitty sand, fine to medium grained, dark grey, with fine to coarse grained ironstone and igneous gravel, trace of slag. Sandy CLAY: low plasticity, grey and brown, trace of fine to coarse grained ironstone gravel. Extremely Weathered sandstone: Sandy CLAY, low plasticity, orange brown and red brown, with occasional low strength sandstone bands and clay bands. SANDSTONE: fine to medium grained, red brown. REFER TO CORED BOREHOLE LOG	W>PL XW	(St) (Hd)	Han Per	SCREEN: 5.25kg 0.25-0.4m NO FCF APPEARS POORLY COMPACTED RESIDUAL HAWKESBURY SANDSTONE VERY LOW 'TC' BIT RESISTANCE WITH LOW RESISTANCE BANDS Groundwater monitoring well installed to 7.86m. Class 18 machine slotted 50mm dia. PVC standpipe 0.86m to 7.86m. Casing 0.1m to 0.86m. 2mm sand filter pack 1.6m to 7.86m. Bentonite seal 0.8m to 1.6m. Backfilled with sand to the surface. Completed with a concreted gatic cover. JKE SAMPLES WERE COLLECTED FROM THE CORED SAMPLES AT THE FOLLOWING DEPTHS: 3.9-4.0m 4.9-5.0m 5.9-6.0m 6.9-7.0m 7.7-7.83m
	VDICI			38-	-							- - - -

CORED BOREHOLE LOG

Borehole No. 105

2 / 2

Client: HAMMOND CARE

Project: PROPOSED HOSPITAL REDEVELOPMENT **Location:** 97-115 RIVER ROAD, GREENWICH, NSW

Job No.: 32507R2 Core Size: NMLC R.L. Surface: ~44.8 m

Date: 27/9/21 Inclination: VERTICAL Datum: AHD

Plant Type: JK205 Bearing: N/A Logged/Checked By: J.L./P.R.

Pla	nt Typ	e:	JK205	Bearing: N	/A		Logged/Checked By: J.L./P.R.	
Water Loss\Level Barrel I iff	RL (m AHD)	Depth (m)	Graphic Log	CORE DESCRIPTION Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components START CORING AT 3.13m	Weathering	Strength	POINT LOAD STRENGTH INDEX Is(50) \$\frac{\text{PQ}}{\text{PQ}} \frac{\text{PQ}}{\text{PQ}} \frac{\text{PQ}}{\text{PQ}} \frac{\text{PQ}}{\text{PQ}} \frac{\text{DESCRIPTION}}{\text{SUBPRISON}} Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness \$\frac{\text{PQ}}{\text{PQ}} \frac{\text{PQ}}{\text{PQ}} \frac{\text{PQ}}{\	Formation
60% ON RETURN 22/102/1 RETURN RETURN	41	4		SANDSTONE: medium grained, red brown, orange brown and light grey, bedded at 0-30°.	MW	M - H	(3.21m) Be, 25°, P, R, Fe Sn (3.21m) Be, 25°, P, R, Fe Sn (4.38m) Be, 30°, P, R, Fe Sn (4.52m) Be, 0°, P, R, Fe Sn (4.62m) Be, 0°, P, R, Fe Sn (4.65m) Be, 0°, P, R, Fe Sn (5.53m) Be, 0°, P, R, Fe Sn (5.53m) Be, 20°, P, R, Fe Sn (6.53m) Be, 0°, P, R, Fe Sn (6.53m) B	Hawkesbury Sandstone
	36	9-		END OF BOREHOLE AT 7.83 m				

BOREHOLE LOG

Borehole No. 106

1 / 3

Client: HAMMOND CARE

Project: PROPOSED HOSPITAL REDEVELOPMENT **Location:** 97-115 RIVER ROAD, GREENWICH, NSW

Job No.: 32507R2 Method: SPIRAL AUGER R.L. Surface: ~49.1 m

Date: 28/9/21 **Datum:** AHD

	ate:	28	/9/2	:1						D	atum:	AHD	
F	Plant	Ту	pe:	JK205				Lo	gged/Checked By: J.L./P.R.				
Groundwater	SAM	1PLE:	S	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
DRY ON COMPLETION	DGERING				49 -	-		-	\ASPHALTIC CONCRETE: 30mm.t FILL: Clayey gravelly sand, fine to \text{medium grained, grey, medium to}	M			- SCREEN: 3.8kg - 0.03-0.3m - NO FCF
COM	P. M.			N > 10 10/ 50mm		-		CL	coarse grained igneous gravel. Silty CLAY: low plasticity, light grey with fine to medium grained sand and	w~PL	VSt - Hd	440 470	RESIDUAL
			RI	EFUSAL /	-	1 -			medium to coarse grained ironstone gravel. Extremely Weathered sandstone: sandy	XW MW	(Hd)	300 /	- HAWKESBURY - SANDSTONE
				CLAY, low to medium plasticity, fine to medium grained sand, light grey and red brown.					- LOW 'TC' BIT - RESISTANCE WITH VERY -\ LOW BANDS				
22000				-	-			SANDSTONE: fine to medium grained, light grey and orange brown with occasional clay nodules.				Groundwater monitoring well installed to 12.52m. Class 18 machine slotted 50mm dia. PVC standpipe 1.52m to 12.52m. Casing	
					47 -	2			REFER TO CORED BOREHOLE LOG				0.11m to 1.52m. Casing 0.11m to 1.52m. 2mm sand filter pack 1.2m to 12.52m. Bentonite seal 0.4m to 1.2m. Backfilled with sand to the surface. Completed with a concreted gatic cover.
					46	3							JKE SAMPLES WERE COLLECTED FROM THE CORED SAMPLES AT THE FOLLOWING DEPTHS: 1,4-1.5m 1,9-2.0m 2,4-2.5m 2,9-3.0m 3,9-4.0m
					45 — - -	4							
יייייייייייייייייייייייייייייייייייייי					- 44 - - -	5 — - - -							-
בייי בייי בייי אליי בייי אייי אייי אייי					43	6							

CORED BOREHOLE LOG

106

Borehole No.

2 / 3

Client: HAMMOND CARE

Project: PROPOSED HOSPITAL REDEVELOPMENT **Location:** 97-115 RIVER ROAD, GREENWICH, NSW

Job No.: 32507R2 Core Size: NMLC R.L. Surface: ~49.1 m

Date: 28/9/21 Inclination: VERTICAL Datum: AHD

Plant Type: JK205 Bearing: N/A Logged/Checked By: J.L./P.R.

	Plant Type: JK20					Bearing: N/	Α			Logged/Checked By: J.L./P.R.	
						CORE DESCRIPTION			POINT LOAD		╗
Water	Loss\Level	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	STRENGTH INDEX Is(50)	(mm) Type, orientation, defect shape and roughness, defect coatings and	Formation
Ė	Ī		48 –			07107.000,00.47.4.4	-				
\vdash	-					START CORING AT 1.24m	NANA/	ш			
19-05-31 Prj. JK 9,01,0 2018-03-20			47	2-		SANDSTONE: medium grained, light grey with grey laminations, and orange brown bands, bedded at 0-25°.	MW	Н		(3.03m) Bex 2, P, R, Fe Sn	
and In Situ Tool - DGD Lib: JK 9.02.4 201	-		- - - 45 —	- - - - - - 4 —						(3.38m) Be, 15°, C, R, Fe Sn	<u>a</u>
:46 10.01.00.01 Datgel Lab	100% RETURN		-	-					•1.5		kespury sandsto
2022 12			44 –	5-		SANDSTONE: medium grained, light grey with orange brown bands, bedded at	SW	М-Н			ב מ
21/01/]	-		0-25°.					
507R2 GREENWICH.GPJ < <drawingfile>></drawingfile>		43 -	- - - - 6 — -					1.0			
JK 9.024 LB GLB Log JK CORED BOREHOLE - MASTER 32877R2 GREENWICH GPJ <-ChawngFile>> 21/01/2022 1246 10:01 00:01 Daggl Lab and in Shu Tool - DGD Lb; JK 9.02.4 2019-05-31 Pg; JK 9.01 0.2018-03-20			- - 42 - - -	7- - - - - - - -		SANDSTONE: medium grained, light grey with grey and dark grey laminations, and red brown bands, bedded at 0-25°. SANDSTONE: medium grained, light grey with grey and dark grey laminations, and occasional red brown bands, bedded at 0-25°.	FR	M	0.90		
JK 9.02.4 L			-	-	-						

CORED BOREHOLE LOG

Borehole No. 106

3 / 3

Client: HAMMOND CARE

Project: PROPOSED HOSPITAL REDEVELOPMENT **Location:** 97-115 RIVER ROAD, GREENWICH, NSW

Job No.: 32507R2 Core Size: NMLC R.L. Surface: ~49.1 m

Date: 28/9/21 Inclination: VERTICAL Datum: AHD

Plant Type: JK205 Bearing: N/A Logged/Checked By: J.L./P.R.

L					JK205	bearing: N/					ogged/Criecked by: J.L./P.R.	
						CORE DESCRIPTION			POINT LOAD		DEFECT DETAILS	
Water	-oss/Level	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	STRENGTH INDEX I _s (50)	(mm)	DESCRIPTION Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness Specific General	Formation
NO.	22/10/21 20/10/21		41	9-		SANDSTONE: medium grained, light grey with grey and dark grey laminations, and occasional red brown bands, bedded at 0-25°. (continued)	FR	M	*0.60		(8.05m) Be, 0°, P, R, Cn (8.52m) Be, 0°, P, R, Fe Sn (8.63m) CS, 0°, 35 mm.t (8.82m) CS, 10°, 5 mm.t (9.47m) Be, 20°, P, R, Fe Sn	1
DGD LIb: JK 9.02.4 2019-05-31 Prj: JK 9.0 1 00%	RETURN		39 -	10-	-	as above, but brown and red brown banded.	MW	Н	1.4		- — (9.90m) Be, 10°, P, R, Cb Ct — — (10.12m) Cr, 0°, 50 mm.t — (10.19m) Be, 20°, P, R, Fe Ct	Hawkesbury Sandstone
<cdpakingfiles> 21(01/2022 12.47 10.01 00.01 Datget Lab and In Situ Tool - DGD Lib. JK 9.02.4 2019-05-31 Pg. JK 9.01 02:018-03:03 1000</cdpakingfiles>			38 -	11-		as above, but light grey, with grey and dark grey laminations.	. FR			660 660		
JK 9.02.4 LIB GLB Log JK CORED BOREHOLE - MASTER 32507R2 GREENWICH GPJ <-Chawng			36	13 -		END OF BOREHOLE AT 12.55 m						
			GHT		-					- 29	_ DERED TO BE DRILLING AND HANDLING BR	

K

BOREHOLE LOG

Borehole No. 107

1 / 3

Client: HAMMOND CARE

Project: PROPOSED HOSPITAL REDEVELOPMENT **Location:** 97-115 RIVER ROAD, GREENWICH, NSW

Job No.: 32507R2 Method: SPIRAL AUGER R.L. Surface: ~51.6 m

Date: 27/9/21 **Datum**: AHD

D	Date : 27/9/21								Da	tum:	AHD	
Р	lant	Туре	: JK205				Log	gged/Checked By: J.L./P.R.				
Groundwater Record	SAMF 020	PLES	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
AN SOCIAL DESIGNED TO SECONDAL STREET OF SOCIAL STREET SECONDAL STREET SECONDA	ES ES UP OF		N 2,1,2	HYW) 31 - 51 - 50 - 50 - 49 - 44 - 47 - 46 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	(m) thde O	Graphic L	Unified Classificat	FILL: Silty clay, low plasticity, dark brown, trace of fine to coarse grained igneous, ironstone and sandstone gravel, fine grained sand, roots and root fibres. FILL: Sandy clay, low plasticity, grey and brown, fine grained sand, medium to coarse grained ironstone gravel. Silty SAND: fine to medium grained, light grey brown mottled orange brown, with clay fines and clay nodules. Silty CLAY: medium plasticity, orange brown, red brown and grey, with fine to medium grained sand. SANDSTONE: fine to medium grained, light grey and orange brown, with occasional clay seams. REFER TO CORED BOREHOLE LOG	M Moisture M A A A Condition The Weathering Moisture Weathering Moisture	Strength/ Rel Densi	Hand Penetrom Penetrom Readings	Remarks TOP 100mm ROOT AFFECTED SCREEN: 11.05kg 0-0.2m NO FCF SCREEN: 4.55kg 0.2-0.4m NO FCF RESIDUAL HAWKESBURY SANDSTONE LOW 'TC' BIT RESISTANCE Groundwater monitoring well installed to 14.93m. Casing 0.05m to 1.93m. Casing 0.05m to 1.93m. Casing 0.05m to 1.93m. Casing 0.05m to 1.93m. Dento to 14.93m. Bentonite seal 0.3m to 1.5m. Backfilled with sand to the surface. Completed with a concreted gatic cover. JKE SAMPLES WERE COLLECTED FROM THE CORED SAMPLES AT THE FOLLOWING DEPTHS: 1.9-2.0m 2.4-2.5m 2.75-2.85m 3.9-4.0m 4.9-5.0m 5.9-6.0m 6.9-7.0m 7.9-8.0m 8.9-9.0m 9.9-10.0m 11.9-12.0m 12.9-13.0m 13.9-14.0m 11.9-15.0m
				45 – -	-							- - - - -

CORED BOREHOLE LOG

Borehole No. 107

2 / 3

Client: HAMMOND CARE

Project: PROPOSED HOSPITAL REDEVELOPMENT **Location:** 97-115 RIVER ROAD, GREENWICH, NSW

Job No.: 32507R2 Core Size: NMLC R.L. Surface: ~51.6 m

Date: 27/9/21 Inclination: VERTICAL Datum: AHD

Plant Type: JK205 Bearing: N/A Logged/Checked By: J.L./P.R.

P	lan	t Typ	e: .	JK205	Bearing: N	/A			L	ogged/Checked By: J.L./P.R.	
Water	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	CORE DESCRIPTION Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	POINT LOAD STRENGTH INDEX I _s (50)	SPACING (mm)	DEFECT DETAILS DESCRIPTION Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness Specific General	Formation
		50 —	- - - - - -		START CORING AT 1.80m SANDSTONE: fine to medium grained,	MW	М	90.40		- - - - - -	
30% BETIIDN		- - 49 –	2		light grey, red brown and orange brown, bedded at 0-20°.	IVIVV	H	*0.60			Hawkesbury Sandstone
OGD Lib: JK 9.02.4 2019-05-31 Pg;		- - 48 —	3		NO CORE 0.13m SANDSTONE: medium to coarse grained, light grey and orange brown, bedded at 0-25°.	MW	Н	2.0		(3.16m) Be, 5°, P, R, Fe Sn 	
9.024 LB.G.LB. Log JK CORED BOREHOLE - MASTER 22807PZ GREENWINH GRJ - «CD-awing*file» 2101/2022 12.47 10.01 00.01 Darge Lub and In Stu Tool - DGD Lib. JK 9.02.4.2019-05:31 Prj. JK 9.01 0.2018-05:30	J. Kira	47 — - - - - - 46 —	4 —					1.5 		— (4.05m) Be, 25°, P, R, Fe Sn — (4.30m) Be, 15°, P, R, Fe Sn — (4.94m) Bex2, 20°, P, R, Cn — (5.06m) Be, 20°, P, R, Fe Sn — (5.27m) Be, 0°, P, R, Fe Sn — (5.78m) Be, 15°, P, R, Clay Vn	Hawkesbury Sandstone
IGIB Log JK CORED BOREHOLE - MASTER 32807P2 GREENWIGH GPJ <- 890%	0	45 — - - - - - - -	6—		SANDSTONE: medium grained, light grey with grey laminations, bedded at 0-25°. SANDSTONE: medium grained, light grey with grey laminations, bedded at 0-25°.	SW FR		1.9 1.1 1.3 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7		— (6.78m) Be, 15°, P, R, Ciay Vn — (6.18m) Be, 20°, P, R, Cn — (6.28m) Be, 20°, P, R, Cn — (6.72m) Be, 20°, P, R, Fe Sn — (7.22m) Be, 20°, P, R, Fe Sn	Hawk
녹		-	- -						- 660 - 660	(7.75m) CS, 0 - 20°, 60 mm.t	

CORED BOREHOLE LOG

Borehole No. 107

3 / 3

Client: **HAMMOND CARE**

PROPOSED HOSPITAL REDEVELOPMENT Project: 97-115 RIVER ROAD, GREENWICH, NSW Location:

Core Size: NMLC R.L. Surface: ~51.6 m Job No.: 32507R2

Inclination: VERTICAL Date: 27/9/21 Datum: AHD

	Plant Type: JK205					Bearing: N	/A			L	ogged/Checked By: J.L./P.R.	
						CORE DESCRIPTION			POINT LOAD		DEFECT DETAILS	\prod
Water	Loss/Level	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	INDEX I _s (50)	PACING (mm) 500 000 000 000 000 000 000 000 000 00	DESCRIPTION Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness Specific General	Formation
Ptj: JK 9.01,0 2018-03-20	22/10/21		43	9		SANDSTONE: medium grained, light grey with grey laminations, bedded at 0-25°. (continued) SANDSTONE: medium grained, light grey, with grey laminations and trace of carbonaceous lenses, bedded at 0-25°.	FR	Н			. (8.71m) CS, 10°, 25 mm.t (9.00m) Be, 0°, P, R, Cb Vn (9.01m) Be, 25°, C, R, Cb Sn (10.40m) Be, 0°, P, R, Cb Sn	Hawkesbury Sandstone
- DG			-	-		Extremely Weathered siltstone band:	XW				—— (10.72m) Be, 10°, P, R, Cn	
In Situ T			-	11 –] 	NO CORE 0.22m					_	
2:47 10.01.00.01 Datgel Lab and I	RETURN		40 -	- - - - -		Extremely Weathered siltstone band. SANDSTONE: medium grained, light grey and orange brown, bedded at 0-25°.	FR MW	Н			(11.27m) Be, 10°, P, R, Cb Vn (11.31m) Be, 0°, P, R, Fe FILLED (11.33m) Be, 0°, P, R, Fe Ct (11.65m) Be, 0°, C, R, Fe Sn	
JK 9 024 LB G.IB. Log. JK CORED BOREHOLE - MASTER 32/59772 GREENWICH GPJ <-Chrawing-file>> 21/01/22/2 12.47 10 01 001 Dates Lab and in Situ Tool - DOD Lb. JK 9.02 4 2019-05-51. Q109,	90 RETU		39	12 —		SANDSTONE: medium grained, light grey, with grey lamination, bedded at	FR		*1.5!		(12.15m) CS, 10°, 10 mm.t	Hawkesbury Sandstone
02.4 LIB.G.LB Log JK CORED BOREHOLE - MASTE			38	 14 		Ŏ-2ڰ.					(13.71m) Be, 15°, P, R, Clay FILLED	
)P\	/RI	GHT	-		END OF BOREHOLE AT 15.00 m	 FRACTI	JRES N		B B B CONSII	L DERED TO BE DRILLING AND HANDLING BRI	L EAKS

K

BOREHOLE LOG

Borehole No. 108

1 / 3

SDUP7: 0-0.1m

Client: HAMMOND CARE

Project: PROPOSED HOSPITAL REDEVELOPMENT **Location:** 97-115 RIVER ROAD, GREENWICH, NSW

Job No.: 32507R2 Method: SPIRAL AUGER R.L. Surface: ~50.5 m

Date: 30/9/21 **Datum**: AHD

[Date : 30/9/21									Da	atum:	AHD	
F	Plar	nt T	ype	: JK305				Lo	gged/Checked By: J.L./P.R.				
Groundwater	SA SECOND SECOND	MPL DB DB	ES	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
DRY ON COMPLETION	UGERING				-	-			FILL: Sandy silty clay, low plasticity, orange brown, fine grained sand, trace of fine to medium grained ironstone	w <pl< td=""><td></td><td></td><td>GRASS COVER TOP 100mm ROOT AFFECTED</td></pl<>			GRASS COVER TOP 100mm ROOT AFFECTED
SO	OF A			N=SPT 10/50mm	50 – -	_		-	gravel. SANDSTONE: fine to medium grained, light grey and red brown, with high strength iron indurated bands.	DW	L		- HAWKESBURY - SANDSTONE
				REFUSAL	- - -	1-			suengur non mudiated bands.		L - M		- LOW 'TC' BIT - RESISTANCE
AN SUCK LEIDER DIEG STANDELE FRANCE NEGENTION OF CREEKTION OF STANDER					44 - 45 - 44	2—			REFER TO CORED BOREHOLE LOG				JKE SAMPLES WERE COLLECTED FROM THE CORED SAMPLES AT THE FOLLOWING DEPTHS: 1.9-2.0m 2.9-3.0m 3.9-4.0m 5.9-6.0m 6.9-7.0m 7.9-8.0m 9.9-10.0m 11.9-12.0m 12.9-13.0m 13.85-13.95m

CORED BOREHOLE LOG

Borehole No. 108

2 / 3

SDUP7: 0-0.1m

Client: HAMMOND CARE

PROPOSED HOSPITAL REDEVELOPMENT Project: 97-115 RIVER ROAD, GREENWICH, NSW Location:

Job No.: 32507R2 Core Size: NMLC R.L. Surface: ~50.5 m

Date: 30/9/21 Inclination: VERTICAL Datum: AHD

P	lan	t Typ	e: .	JK305	Bearing: N	/A			Logged/Checked By: J.L./P.R.	
Water Loss\Level	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	CORE DESCRIPTION Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	POINT LOAD STRENGTH INDEX I _s (50)	SPACING DESCRIPTION (mm) Type, orientation, defect shape and roughness defect coatings and	Formation
VOTO 2018-08-20		-49 - -49 - -48 −	2	9	START CORING AT 1.49m SANDSTONE: fine to medium grained, red brown orange brown and light grey, bedded at 0-25°.	MW	Н		### Specific General	<u>u</u>
47 TUCH JOURN Dagge Lab and In Situ Tool - DGU LID. J.K. 902.4 ZO19405-31 Pff. J.K. 100% 100% RETURN		47	3							Hawkesbury Sandstone
325U/PZ GREENWICH.GFU < <ur></ur>		45	5—		SANDSTONE: medium to coarse grained, light grey, with grey laminations, bedded at 0-25°.	SW FR	M - H		(4.77m) Be, 20°, P, R, Fe Sn	Hawkesbur
JN 9.024 LIB.GIB LOG JN CONED BONEHOLE - MASTER		43	7				Н	1.0		

CORED BOREHOLE LOG

Borehole No. 108

3 / 3

SDUP7: 0-0.1m

Client: HAMMOND CARE

Project: PROPOSED HOSPITAL REDEVELOPMENT **Location:** 97-115 RIVER ROAD, GREENWICH, NSW

Job No.: 32507R2 Core Size: NMLC R.L. Surface: ~50.5 m

Date: 30/9/21 Inclination: VERTICAL Datum: AHD

Plant Type: JK305 Bearing: N/A Logged/Checked By: J.L./P.R.

	ГІ	all	LIY	Je. J	K305	bearing: N	/A			L	ogged/Checked by:	J.L./F.K.	
						CORE DESCRIPTION			POINT LOAD		DEFECT DETAILS		
Water	Loss\Level	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	STRENGTH INDEX I _s (50)	SPACING (mm)	DESCRIPTION Type, orientation, defect roughness, defect coat seams, openness and the Specific	shape and ings and	Formation
			42	9		SANDSTONE: medium to coarse grained, light grey, with grey laminations, bedded at 0-25°. (continued)	FR	Н					
JK 9.024 LIB GLIB Log JK CORED BOREHOLE - MASTER 3287782 GREENWICH GPJ <-DawingFile>> 2/101/2022 1247 10.01.0001 Dagol Lab and in Situ Tool - DGD Lib; JK 9.024 2019-05-31 Pg; JK 9.01.0 2018-05-30			41	10-							- - - - - - (10.21m) CS, 10°, 10 mm.t		ne
.00.01 Datgel Lab and In Situ Tool - DGD Li	TOU% RETURN		39 —	11 —					1.5		(11.50m) Be, 20°, P, Cb Vn		Hawkesbury Sandstone
I.GPJ < <drawingfile>> 21/01/2022 12:47 10.0</drawingfile>			- - 38 -	12-							-		
REHOLE - MASTER 32507R2 GREENWICH			37 -	13					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		- - - - - - - - - -		
JK 9.02.4 LIB.GLB Log JK CORED BO			- 36 — -			END OF BOREHOLE AT 13.95 m				- 690	-		
	JP.	VPI	GHT				FRACTI	IRES N	OT MARKED	ARE CONSI	DERED TO BE DRILLING AND	HANDI ING BRE	ΔΚς

1 / 3

BOREHOLE LOG

Borehole No. 109

Client: HAMMOND CARE

Project: PROPOSED HOSPITAL REDEVELOPMENT **Location:** 97-115 RIVER ROAD, GREENWICH, NSW

Job No.: 32507R2 Method: SPIRAL AUGER R.L. Surface: ~49.1 m

JOD NO.: 32507R2				IVIE	IIIOU: SPIRAL AUGER	I,	.L. Jui	iace.	~49.1 III
Date: 30/9/21						D	atum:	AHD	
Plant Type: JK205				Log	gged/Checked By: J.L./P.R.				
Groundwater Record ES O O O O O O O O O O O O O O O O O O O	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
ZZŰ OOZ	49 -		~~~~		ASPHALTIC CONCRETE: 100mm.t				
DEY ON COMPLETION OF STATE OF THE CONTROL OF STATE OF STA	49 - 48 - 44 - 43 - 43 -	1		- CL	ASPHALTIC CONCRETE: 100mm.t FILL: Clayey gravelly sand, fine to medium grained, dark grey and brown, fine to coarse grained igneous gravel, with clay nodules. FILL: Sandy clay, low plasticity, grey brown and orange brown, with medium to coarse grained ironstone sandstone and igneous gravel, trace of slag. Sandy CLAY: low plasticity, orange brown, fine to medium grained sand, trace of fine to medium grained sandstone. SANDSTONE: fine to medium grained, light grey and orange brown. REFER TO CORED BOREHOLE LOG	M W <pl mw<="" td=""><td>VSt - Hd M - H</td><td>280 140 180 560 500 340</td><td>SCREEN: 4.7kg 0.1-0.4m NO FCF APPEARS MODERATELY COMPACTED SCREEN: 7.4kg 0.4-0.8m NO FCF RESIDUAL HAWKESBURY SANDSTONE LOW TO MODERATE 'TC' BIT RESISTANCE Groundwater monitoring well installed to 12.54m. Class 18 machine slotted 50mm dia. PVC standpipe 1.54m to 12.54m. Casing 0.1m to 1.54m. 2mm sand filter pack 1.4m to 12.54m. Bentonite seal 0.3m to 1.4m. Backfilled with sand to the surface. Completed with a concreted gatic cover. JKE SAMPLES WERE COLLECTED FROM THE CORED SAMPLES AT THE FOLLOWING DEPTHS: 1.42-1.5m 1.9-2.0m 2.4-2.5m 2.9-3.0m 3.9-4.0m 4.9-5.0m 5.9-6.0m 6.9-7.0m 7.9-8.0m 8.9-9.0m 9.9-10.0m 10.96-11.0m 11.35-11.45m 11.9-12.0m 12.45-12.56m</td></pl>	VSt - Hd M - H	280 140 180 560 500 340	SCREEN: 4.7kg 0.1-0.4m NO FCF APPEARS MODERATELY COMPACTED SCREEN: 7.4kg 0.4-0.8m NO FCF RESIDUAL HAWKESBURY SANDSTONE LOW TO MODERATE 'TC' BIT RESISTANCE Groundwater monitoring well installed to 12.54m. Class 18 machine slotted 50mm dia. PVC standpipe 1.54m to 12.54m. Casing 0.1m to 1.54m. 2mm sand filter pack 1.4m to 12.54m. Bentonite seal 0.3m to 1.4m. Backfilled with sand to the surface. Completed with a concreted gatic cover. JKE SAMPLES WERE COLLECTED FROM THE CORED SAMPLES AT THE FOLLOWING DEPTHS: 1.42-1.5m 1.9-2.0m 2.4-2.5m 2.9-3.0m 3.9-4.0m 4.9-5.0m 5.9-6.0m 6.9-7.0m 7.9-8.0m 8.9-9.0m 9.9-10.0m 10.96-11.0m 11.35-11.45m 11.9-12.0m 12.45-12.56m
SUZA LIB GLD LOG UN AUGERAUGE : MAS LEN	43 -	6-							- - - - - - -
0.5	-							-	=

K

CORED BOREHOLE LOG

Borehole No. 109

2 / 3

Client: HAMMOND CARE

Project: PROPOSED HOSPITAL REDEVELOPMENT **Location:** 97-115 RIVER ROAD, GREENWICH, NSW

Job No.: 32507R2 Core Size: NMLC R.L. Surface: ~49.1 m

Date: 30/9/21 Inclination: VERTICAL Datum: AHD

Plant Type: JK205 Bearing: N/A Logged/Checked By: J.L./P.R.

Plan	nt Typ	e: .	JK205	Bearing: N	Ά			Logged/Checked By: J.L./P.R.					
Water Loss\Level Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	CORE DESCRIPTION Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	POINT LOAD STRENGTH INDEX I _s (50)	SPACING (mm)	Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness	Formation			
N J B	48 -		Ö	START CORING AT 1.42m					Specific General	Ĕ			
201021 RETURN	47 44 43 42 42	3—————————————————————————————————————		SANDSTONE: fine to medium grained, light grey with red brown bands, bedded at 0-25°. JKE sample 1.42-1.5m SANDSTONE: medium grained, light grey with grey lamination, and orange brown bands, bedded at 0-25°.	SW	M-H			— (2.15m) Cr, 20 mm.t — (2.25m) Be, P, R, Fe Sn — (3.04m) Be, P, R, Fe Sn — (3.24m) XWS, 15 mm.t — (3.53m) J, P, R, Clay FILLED — (4.86m) CS, 35 mm.t — (4.80m) CS, 150 mm.t — (5.31m) Be, P, R, Cb Ct — (5.40m) Be, P, R, Clay Ct	Hawkesbury Sandstone			
<u>▼</u>	_	-					•0.80 		(7.83m) Be, P, R, Cb Ct (7.91m) CS, 3 mm.t				

CORED BOREHOLE LOG

Borehole No. 109

3 / 3

Client: HAMMOND CARE

Project: PROPOSED HOSPITAL REDEVELOPMENT **Location:** 97-115 RIVER ROAD, GREENWICH, NSW

Job No.: 32507R2 Core Size: NMLC R.L. Surface: ~49.1 m

Date: 30/9/21 Inclination: VERTICAL Datum: AHD

Plant Type: JK205 Bearing: N/A Logged/Checked By: J.L./P.R.

	_ F I	Plant Type: JR205 Bearing: N/A Logged/Checked By: J.L./P.R.											
						CORE DESCRIPTION			POINT LOAD		DEFECT DETAILS		
Water	Loss\Level	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	STRENGTH INDEX I _s (50)	SPACING (mm)	DESCRIPTION Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness Specific General	Formation	
			41	- - - -		SANDSTONE: medium grained, light grey with grey lamination, and orange brown bands, bedded at 0-25°.	SW	M - H	1.0		(8.27m) Be, 15°, P, R, Cb Ct		
	ONI \ 20/10/21		40 -	9-					*1.3 *1.2		- (8.88m) Be, 25°, P, R, Fe Sn 		
0.01.0 2018-03-20			-	- - -							(9.37m) Be, 25°, P, R, Cb Ct _ (9.57m) XWS, 15°, 15 mm.t		
Lib. JK 9.02.4 2019-05-31 Prj. JK 9	100% RETURN		39 -	10					•1.5 ₁		—— (9.85m) CS, 10°, 20 mm.t	Hawkesbury Sandstone	
u Tool - DGD L			-	- -					1.1			Hawl	
tgel Lab and In Sit			38	11		SILTSTONE: dark grey, bedded sub horizontally.	MW	L	0.30		_ - -		
JK 9.024 LB GLB Log JK CORED BOREHOLEMASTER 32507P2 GREENWICH.GPJ <-CDawingFile>> 21/01/2022 12.47 10.01/00.01 Datget Lab and in Situ Tool - DGD Lib. JK 9.02.4 2019-05-51 Pg; JK 9.01/0.2018-05-20			37 -	12-		SANDSTONE: medium grained, light gey with grey lamination, trace of siltstone, bedded at 0-20°.	FR	Н	1.0		(11.45m) Cs, 0°, 30 mm.t (11.48m) Cr, 0°, 25 mm.t		
< <draw< td=""><td></td><td></td><td>_</td><td>-</td><td></td><td>END OF BOREHOLE AT 12.56 m</td><td></td><td></td><td></td><td></td><td>-</td><td></td></draw<>			_	-		END OF BOREHOLE AT 12.56 m					-		
STER 32507R2 GREENWICH.GPJ			36 -	13 —							- - - - - - -		
g JK CORED BOREHOLE - MA:			35 -	- - - 14 - - - -							- - - - - - -		
< 9.02.4 LIB.GLB Lo			-	- - - - -						690 	- - - -		
	\cap	\bigvee_{VDI}	GHT			<u> </u>	EDACT	IDES N	OT MARKED		DERED TO BE DRILLING AND HANDLING BR		

BOREHOLE LOG

Borehole No. 110

1 / 3

Client: HAMMOND CARE

Project: PROPOSED HOSPITAL REDEVELOPMENT **Location:** 97-115 RIVER ROAD, GREENWICH, NSW

Job No.: 32507R2 Method: SPIRAL AUGER R.L. Surface: ~48.5 m

Date: 30/9/21 **Datum**: AHD

1	ate: lant '		9/21 e: JK305				Lo	gged/Checked By: J.L./P.R.	Di	atum:	AHD	
	SAMF 020			RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
COMPLETION Gro	ES US(DS DB	H <u>e</u>	-	Der	Gre	Cla	FILL: Clayey silt, low plasticity, dark brown, trace of fine grained igneous and ironstone gravel. FILL: Clayey sand, fine to medium	w <pl D</pl 	Stre Rel	Har Per Re	_ MULCH COVER - - APPEARS - MODERATELY
20.0			N = 9 4,5,4	48 — - -	- - 1-		CI	grained, orange brown, trace of fine to medium grained sandstone and ironstone gravel, and clay nodules. FILL: Silty clay, low plasticity, brown, grev and orange brown, with fine to	w <pl w~PL</pl 	— <u>—</u> — -		- COMPACTED - - - - - - - RESIDUAL
				47 —	-		CI	medium grained sand, trace of medium to coarse grained ironstone and sandstone gravel. Silty CLAY: medium plasticity, orange brown, trace of fine to medium grained sand.	W~PL	(St - VSt)		- RESIDUAL - - - -
				-	2- -			REFER TO CORED BOREHOLE LOG				- - - -
				46 -	- -							- - - - -
				- - 45 –	3-							
				-	4-							- - - -
				- 44 – -	- - -							- - - - -
				-	5 — -							- - - - -
				43	-							- - - - -
,				42-	-							- - - - -
				-	_	-						- - -

CORED BOREHOLE LOG

Borehole No. 110

2 / 3

Client: HAMMOND CARE

PROPOSED HOSPITAL REDEVELOPMENT Project: 97-115 RIVER ROAD, GREENWICH, NSW Location:

Job No.: 32507R2 Core Size: NMLC R.L. Surface: ~48.5 m

Date: 30/9/21 Inclination: VERTICAL Datum: AHD

P	lan	ıt Ty	e:	JK305	Bearing: N	/A		Logged/Checked By: J.L./P.R.					
Water Loss\Level	Water Loss\Level Barrel Lift RL (m AHD) Depth (m)		Depth (m)	Graphic Log	CORE DESCRIPTION Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	POINT LOAD STRENGTH INDEX I _s (50)	SPACING DESCRIPTION (mm) Type, orientation, defect shape and roughness, defect coatings and	Formation			
		47 -		- - - - - - - - - - - - - - - - - - -	START CORING AT 1.36m SANDSTONE: medium to coarse grained, brown orange, bedded at 0-25°.	MW	M - H	0.80		_			
5-31 Pg: JK 9.01.0 2018-03-20 100% DETIIDN	200	 46 -	3-		SANDSTONE: medium to coarse grained, light grey with red brown bands.	SW		0.40					
n Situ Tool - DGD Lib: JK 9.02.4 2019-0		45 – -	4-			MW	L - M	#0.40					
K 9 024 LB GLB Log JK CORED BOREHOLE - MASTER 32507PC GREEWWICH GPJ < Chrawngriles> 21/01/2022 1247 10.01/0001 Darget Lab and in Situ'rosi - DGD Lb. JK 902.4 2019-05-31 Pg JK 9 01 0.2018-05-31 Pg JK 9 01 0.2018-05-30 Pg	KETOKN	44	5-		as above, but bedded at 30°.					Hawkesbury Sandstone			
		41-	7-	- - - - - - - - - - - - - - - - - - -				#1.6 					

CORED BOREHOLE LOG

Borehole No. 110

3 / 3

Client: HAMMOND CARE

Project: PROPOSED HOSPITAL REDEVELOPMENT **Location:** 97-115 RIVER ROAD, GREENWICH, NSW

Job No.: 32507R2 Core Size: NMLC R.L. Surface: ~48.5 m

Date: 30/9/21 Inclination: VERTICAL Datum: AHD

Plant Type: JK305 Bearing: N/A Logged/Checked By: J.L./P.R.

				011303	Dearing. N				Logged/offecked by: 5.E./1 .11.
					CORE DESCRIPTION			POINT LOAD	
Water Loss\Level	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	STRENGTH INDEX I _s (50)	(mm) Type, orientation, defect shape and
80% RETURN		40 —			SANDSTONE: medium to coarse grained, light grey with red brown bands, bedded at 30°.	FR	M - H	\$1.0	
		39 –	9-		SILTSTONE: dark grey, bedded at 20-30°.	MW	L	10.30 10.30	
100% RETURN		38	11-		SANDSTONE: medium grained, light grey with grey lamination, trace of siltstone clasts, bedded at 0-20°.	FR	M - H	1	
_		36	12-	-	END OF BOREHOLE AT 12.85 m				
		35	13 - 14 -						
		34 – -		- - - -					

Environmental logs are not to be used for geotechnical purposes

Client: HAMMOND CARE

Project: PROPOSED HOSPITAL REDEVELOPMENT **Location:** 97-115 RIVER ROAD, GREENWICH, NSW

Job No. : E32507BR	Met	hod: PUSH TUBE		R.L. Surface: ≈ 48.5m			
Date: 29/9/2021				D	atum:	AHD	
Plant Type: EZIPROBE	Log	ged/Checked by: M.M.E./V.B.					
Groundwater Record ES ASS ASS SAMPLES SAMPLES Field Tests	Graphic Log Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks	
DRY ON COMPLETION	G 50	FILL: Silty gravelly sand, fine to medium grained, dark brown, fine to medium grained igneous gravel, trace of ash, slag and root fibres. FILL: Sandy gravel, fine to medium grained igneous gravel, grey, fine to medium grained, trace of ash, asphaltic concrete fragments and root fibres. FILL: Sandy clay, low to medium plasticity, yellow brown mottled red brown, trace of sandstone cobble and ironstone gravel, terracotta and root fibres. Sandy CLAY: low to medium plasticity, yellow brown, trace of ironstone gravel, ash and root fibres. END OF BOREHOLE AT 1.3m	W <pl td="" w<pl<=""><td></td><td>T d w</td><td>GRASS COVER SCREEN: 10.0kg 0.0-0.1m NO FCF SCREEN: 4.2kg 0.1-0.2m NO FCF SCREEN: 5.8kg 0.2-1.1m NO FCF RESIDUAL REFUSAL ON INFERRED BEDROCK</td></pl>		T d w	GRASS COVER SCREEN: 10.0kg 0.0-0.1m NO FCF SCREEN: 4.2kg 0.1-0.2m NO FCF SCREEN: 5.8kg 0.2-1.1m NO FCF RESIDUAL REFUSAL ON INFERRED BEDROCK	

PYRIGHT

Log No. 111 1/1 SDUP3: 0.0-0.1m

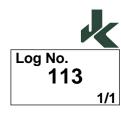
Environmental logs are not to be used for geotechnical purposes

Client: HAMMOND CARE

Project: PROPOSED HOSPITAL REDEVELOPMENT **Location:** 97-115 RIVER ROAD, GREENWICH, NSW

Job No. : E32507BF	₹	Method: HAND AUGER				R.L. Surface: ≈ 48.6m		
Date: 28/9/2021					D	atum:	AHD	
Plant Type: -		Log	ged/Checked by: M.M.E./V.B					
Groundwater Record ES ASS ASS SAL DB Field Tests	Depth (m) Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks	
DRY ON COMPLE TION	1 - 2 - 3 - 4		FILL: Silty sand, fine to medium grained, dark brown, trace of irronstone, siltstone and sandstone gravel, tile fragments and root fibres. FILL: Silty clay, medium to high plasticity, brown, trace of sand, irronstone and igneous gravel and ash. FILL: Silty clayey sand, fine to medium grained, brown, trace of irronstone and igneous gravel and ash. END OF BOREHOLE AT 0.8m	D w <pl< td=""><td></td><td></td><td>GRASS COVER SCREEN: 10.8kg 0.0-0.1m NO FCF SCREEN: 4.8kg 0.1- 0.3m NO FCF SCREEN: 5.2kg 0.3-0.6m NO FCF SCREEN: 4.9kg 0.6-0.8m NO FCF HAND AUGER REFUSAL ON INFERRED BEDROCK</td></pl<>			GRASS COVER SCREEN: 10.8kg 0.0-0.1m NO FCF SCREEN: 4.8kg 0.1- 0.3m NO FCF SCREEN: 5.2kg 0.3-0.6m NO FCF SCREEN: 4.9kg 0.6-0.8m NO FCF HAND AUGER REFUSAL ON INFERRED BEDROCK	

Log No. 112


Environmental logs are not to be used for geotechnical purposes

Client: HAMMOND CARE

Project: PROPOSED HOSPITAL REDEVELOPMENT **Location:** 97-115 RIVER ROAD, GREENWICH, NSW

Job No.: E32507BR Method: PUSH TUBE R.L. Surface: ≈ 48.6m

300 140	JOB NO.: E32307BR				Metriod. POSH TOBE				R.L. Surface: ≈ 40.0111		
Date: 2	Date: 29/9/2021 Plant Type: EZIPROBE							D	atum:	AHD	
Plant T	уре:	EZIPRO	OBE		Logg	ged/Checked by: H.W./V.B.					
Groundwater Record	ASS ASB SAL DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks	
DRY ON	7000	ш.		7 A . A		CONCRETE: 220mm.t	207	- 0, E		STEEL	
COMPLETION			1 —			FILL: Silty gravelly sand, fine to medium grained, brown, fine to medium grained sandstone gravel, trace of clay nodules, igneous and ironstone gravel and asphaltic concrete fragments. Extremely Weathered sandstone: silty SAND, fine to medium grained, yellow brown. END OF BOREHOLE AT 0.8m	M XW			REINFORCEMENT AT 150mm SCREEN: 6.90kg 0.22-0.65m NO FCF HAWKESBURY SANDSTONE REFUSAL	

Environmental logs are not to be used for geotechnical purposes

Client: HAMMOND CARE

Project: PROPOSED HOSPITAL REDEVELOPMENT **Location:** 97-115 RIVER ROAD, GREENWICH, NSW

Job No.: E32507BR Method: PUSH TUBE R.L. Surface: ≈ 52.0m

Job No.: E32507BR	Met	hod: PUSH TUBE	R.L. Surface: ≈ 52.0m		
Date: 29/9/2021				Datum:	AHD
Plant Type: EZIPRO	DBE Log	ged/Checked by: M.M.E./V.B			
Groundwater Record ES ASS ASS ASB SAL DB Field Tests	Depth (m) Graphic Log Unified Classification	DESCRIPTION	Moisture Condition/ Weathering Strength/	Kel. Density Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLETION	0	FILL: Silty sand, fine to medium grained, brown, trace of igneous gravel, glass and root fibres. FILL: Silty clayey sand, fine to medium grained, light brown, trace of ironstone and igneous gravel, ash and root fibres. Sandy CLAY: low to medium plasticity, dark brown mottled yellow, trace of ironstone gravel, ash and root fibres. Sandy CLAY: low to medium plasticity, yellow brown, trace of ironstone gravel and root fibres. END OF BOREHOLE AT 0.65m	M w <pl< td=""><td></td><td>GRASS COVER SCREEN: 10.1kg 0.0-0.1m NO FCF SCREEN: 9.6kg 0.1-0.35m NO FCF RESIDUAL REFUSAL ON INFERRED BEDROCK</td></pl<>		GRASS COVER SCREEN: 10.1kg 0.0-0.1m NO FCF SCREEN: 9.6kg 0.1-0.35m NO FCF RESIDUAL REFUSAL ON INFERRED BEDROCK

Environmental logs are not to be used for geotechnical purposes

Client: HAMMOND CARE

Project: PROPOSED HOSPITAL REDEVELOPMENT

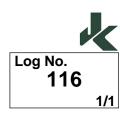
Location: 97-115 RIVER ROAD, GREENWICH, NSW

Job No.: E32507BR **Method:** PUSH TUBE **R.L. Surface:** ≈ 50.7 m

Datum: AHD

Date: 29/9/2021								ט	atum:	AHD
Plan	t Type:	EZIPR	OBE		Logg	ged/Checked by: M.M.E./V.B	•			
Groundwater Record	ES ASS ASB SAL DB	Field Tests	Oepth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE TION			1-		SC CL-CI	ASPHALTIC CONCRETE: 50mm.t FILL: Silty sandy gravel, fine to medium grained, igneous gravel, sub angular, light grey, fine to medium grained sand, trace of ironstone grave and asphaltic concrete fragments. Silty clayey SAND: fine to medium grained, light brown, trace of ironstone and sandstone gravel and root fibres. Sandy CLAY: low to medium plasticity, yellow brown with ironstone gravel. END OF BOREHOLE AT 0.5m	w <pl ,<="" td=""><td></td><td></td><td>SCREEN: 9.61kg 0.05-0.2m NO FCF RESIDUAL REFUSAL ON INFERRED BEDROCK</td></pl>			SCREEN: 9.61kg 0.05-0.2m NO FCF RESIDUAL REFUSAL ON INFERRED BEDROCK
			2							
			4 5							-
			6 - - - - -							-

Log No. 115 1/1 SDUP4: 0.0-0.1m


Environmental logs are not to be used for geotechnical purposes

Client: HAMMOND CARE

Project: PROPOSED HOSPITAL REDEVELOPMENT **Location:** 97-115 RIVER ROAD, GREENWICH, NSW

Job No.: E32507BR Method: PUSH TUBE R.L. Surface: ≈ 50.1m

Job No.: E32507BR	2	Meth	od: PUSH TUBE	R.L. Surface: ≈ 50.1m			
Date: 29/9/2021					D	atum:	AHD
Plant Type: EZIPRO	OBE	Logg	ged/Checked by: M.M.E./V.B.				
Groundwater Record ES ASS ASS SAL DB Field Tests	Depth (m) Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE-TION	0 -		FILL: Silty clayey sand, fine to medium grained, brown, trace of ironstone and sandstone gravel, and root fibres.	D			GRASS COVER SCREEN: 11.8kg 0.0-0.1m
	1-	CL-CI	Silty CLAY: low to medium plasticity, light grey, with ironstone banding, trace of root fibres.	w <pl< td=""><td></td><td></td><td>- \NO FCF RESIDUAL</td></pl<>			- \NO FCF RESIDUAL
	2- 3- 4- 5-		END OF BORHEOLE AT 1.1m				REFUSAL ON INFERRED BEDROCK

Environmental logs are not to be used for geotechnical purposes

Client: HAMMOND CARE

Project: PROPOSED HOSPITAL REDEVELOPMENT

Location: 97-115 RIVER ROAD, GREENWICH, NSW

Job No.:E32507BRMethod:PUSH TUBER.L. Surface: $\approx 50.1 \text{m}$

Datum: AHD

Date: 29/	9/2021						D	atum:	AHD
Plant Typ	e: EZIPR	OBE		Logg	ed/Checked by: M.M.E./V.B	•			
Groundwater Record ES ASS ASS SAMPLES		Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE-TION		1 — 1 — 2 — 3 — 5 — 5 — 7		SC CL-CI	ASPHALTIC CONCRETE: 20mm.t / FILL: Silty sandy gravel, fine to medium grained, igneous gravel, sub angular, light grey, fine to medium grained sand, trace of ironstone gravel and asphaltic concrete fragments. Silty clayey SAND: light brown mottle yellow brown, trace of ironstone gravel, ash and root fibres. Sandy CLAY: low to medium plasticity, yellow brown, with ironstone banding. Extremely Weathered sandstone: silty SAND, fine to medium grained, yellow brown. END OF BOREHOLE AT 0.6m	M w <pl< td=""><td></td><td></td><td>SCREEN: 11.9kg 0.02-0.1m NO FCF RESIDUAL HAWKESBURY SANDSTONE REFUSAL</td></pl<>			SCREEN: 11.9kg 0.02-0.1m NO FCF RESIDUAL HAWKESBURY SANDSTONE REFUSAL

PYRIGHT

Log No. 117 1/1 SDUP10: 0.0-0.1m

Environmental logs are not to be used for geotechnical purposes

Client: HAMMOND CARE

Project: PROPOSED HOSPITAL REDEVELOPMENT **Location:** 97-115 RIVER ROAD, GREENWICH, NSW

Job No.: E325	507BR	Meth	Method:SPIRAL AUGERR.L. Surface:≈ 49.			f ace: ≈ 49.3m	
Date: 6/10/202	21		Datum: AHD			AHD	
Plant Type: J	< 205	Logg	Logged/Checked by: A.D./V.B.				
Groundwater Record ES ASS ASS SAL OB	Field Tests Depth (m)	Graphic Log Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE-TION	0 		FILL: Silty sand, fine to medium grained, brown, trace of tile fragments and root fibres. FILL: Silty sand, fine to medium grained, grey and brown, trace of igneous gravel and sandstone gravel.	М			GRASS COVER SCREEN: 10.0kg 0-0.1m NO FCF
			END OF BOREHOLE AT 1.5m				-
	3-						- - -
	4-						- - -
	5 —						- - - -
	6-						-
	7_						-

PYRIGHT

Log No. 118 1/1 SDUP5: 0.0-0.1m

Environmental logs are not to be used for geotechnical purposes

Client: HAMMOND CARE

PROPOSED HOSPITAL REDEVELOPMENT Project: 97-115 RIVER ROAD, GREENWICH, NSW Location:

Job No.: E32507BR Method: PUSH TUBE R.L. Surface: ≈ 40.0 m

Date: 29/9/2021	Datum: AHD
Plant Type: EZIPROBE	Logged/Checked by: M.M.E./V.B.
Groundwater Record ES ASS ASS ASS ASS ASS ASS ASS ASS ASS	Graphic Log Unified Classification Moisture Condition/ Weathering Strength/ Rel. Density Hand Penetrometer Readings (KPa.)
DRY ON COMPLE-TION	FILL: Silty sandy clay, low to medium plasticity, light brown mottled red and yellow, trace of siltstone, ironstone and sandstone gravel, ash, tile fragments and root fibres. GRASS COVER SCREEN: 10.6kg 0.0-0.1m NO FCF SCREEN: 9.85kg 0.1-1.1m NO FCF SCREEN: 8.1kg 1.1-1.6m NO FCF
	CL-CI Sandy CLAY: low to medium plasticity, yellow brown mottled red, trace of ironstone gravel. CI-CH Sandy CLAY: medium to high plasticity, light brown mottled yellow
3- 3- 4- 5- 5-	And red, with ironstone banding. END OF BOREHOLE AT 2.5m REFUSAL

BOREHOLE LOG

Borehole No.

1 / 2

Client: HAMMOND CARE

Project: PROPOSED HOSPITAL REDEVELOPMENT **Location:** 97-115 RIVER ROAD, GREENWICH, NSW

Job No.: 32507R2 Method: SPIRAL AUGER R.L. Surface: 42.5 m

Date: 1/10/21					Da	atum:	AHD	
Plant Type: JK305			Log	gged/Checked By: J.L./P.R.				
Groundwater Record ES	RL (m AHD) Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
A STACK LEI LOG JAN AUGENTULE - MASS IEK 3250/762 UNE ENWICHOLD SEGRETAR AND TOUTOUT DEGRETAR AND THE THE STACK AND TOUTOUT DEGRETAR AND THE STACK AND THE S	42 - 1 - 41 - 2 - 40 - 33 - 39 - 4 - 33 - 37 - 6 - 36 - 36 - 36 - 36 - 36		-	ASPHALTIC CONCRETE: 50mm.t FILL: Silty sand, fine to medium grained, yellow brown, trace of igneous and sandstone gravel, and ceramic tile fragments. SANDSTONE: fine to medium grained, yellow brown.	D	MD / M		GROUNDWATER MONITORING WELL INSTALLED TO 5.75m. CLASS 18 MACHINE SLOTTED 50mm DIA. PVC STANDPIPE 1.2m TO 5.75m. CASING 0m TO 1.2m. 2mm SAND FILTER PACK 1.0m TO 5.75m. TO 1.0m. BACKFILLED WITH A SAND TO THE SURFACE. COMPLETED WITH A CONCRETED GATIC COVER.

CORED BOREHOLE LOG

Borehole No. 119

2 / 2

Client: HAMMOND CARE

Project: PROPOSED HOSPITAL REDEVELOPMENT **Location:** 97-115 RIVER ROAD, GREENWICH, NSW

Job No.: 32507R2 Core Size: NMLC R.L. Surface: 42.5 m

Date: 1/10/21 Inclination: VERTICAL Datum: AHD

Plant Type: JK305 Bearing: N/A Logged/Checked By: J.L./P.R.

	, ,										
					CORE DESCRIPTION			POINT LOAD		DEFECT DETAILS	
Water Loss\Level	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	STRENGTH INDEX I _s (50)	(mm)	DESCRIPTION Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness Specific General	Formation
		40 -	-		START CORING AT 2.94m					- - - - - - ROCK STRENGTH BASED ON TACTILE - ASSESSMENT	
2.4 &019-05-51 Pf; JA 9.01.0 Z016-05-20 0% JRN		- 39 - - -	3		SANDSTONE: medium grained, light grey, orange brown and red brown, bedded at 0-25°.	MW	(L - M)				Sandstone
ASSUME GREENWICH GET RECHANGE IS STOLLAND. IZON TOOL Tadge LIB BIT INSTITUTOR CALEWATER STOLE AD 1908-ST 179, AN 90.10 AUTOMO. RETURN RETURN		38 - - - - 37	5—		SANDSTONE: fine to medium grained, light grey, bedded at 0-20°.	FR	(M)			(4.61m) J, 45°, P, R, Fe Ct (5.15m) Be, 20°, C, R, Fe Sn (5.16m) CS, 5°, 10 mm.t (5.32m) Be x 2, 0°, C, R, Fe Ct (5.49m) Cr, 0°, 15 mm.t	Hawkesbury Sandstone
10. 10. 10. 10. 10. 10. 10. 10. 10. 10.		- - 36 – -	6		END OF BOREHOLE AT 5.75 m					- - - - - - - - - -	
מו מידיד במיסוד באל מו מסודים מסודיומרד - יישמו ביו מיניסוד מי		35	8-								
		34	- - - -				IDEO M		- 200	- - - - -	

ENVIRONMENTAL LOGS EXPLANATION NOTES

INTRODUCTION

These notes have been provided to amplify the environmental report in regard to classification methods, field procedures and certain matters relating to the logging of soil and rock. Not all notes are necessarily relevant to all reports.

Where geotechnical borehole logs are utilised for environmental purpose, reference should also be made to the explanatory notes included in the geotechnical report. Environmental logs are not suitable for geotechnical purposes.

The ground is a product of continuing natural and man-made processes and therefore exhibits a variety of characteristics and properties which vary from place to place and can change with time. Environmental studies include gathering and assimilating limited facts about these characteristics and properties in order to understand or predict the behaviour of the ground on a particular site under certain conditions. This report may contain such facts obtained by inspection, excavation, probing, sampling, testing or other means of investigation. If so, they are directly relevant only to the ground at the place where and time when the investigation was carried out.

DESCRIPTION AND CLASSIFICATION METHODS

The methods of description and classification of soils and rocks used in this report are based on Australian Standard 1726:2017 *'Geotechnical Site Investigations'*. In general, descriptions cover the following properties—soil or rock type, colour, structure, strength or density, and inclusions. Identification and classification of soil and rock involves judgement and the Company infers accuracy only to the extent that is common in current geoenvironmental practice.

Soil types are described according to the predominating particle size and behaviour as set out in the attached soil classification table qualified by the grading of other particles present (eg. sandy clay) as set out below:

Soil Classification	Particle Size
Clay	< 0.002mm
Silt	0.002 to 0.075mm
Sand	0.075 to 2.36mm
Gravel	2.36 to 63mm
Cobbles	63 to 200mm
Boulders	>200mm

Non-cohesive soils are classified on the basis of relative density, generally from the results of Standard Penetration Test (SPT) as below:

Relative Density	SPT 'N' Value (blows/300mm)
Very loose (VL)	< 4
Loose (L)	4 to 10
Medium dense (MD)	10 to 30
Dense (D)	30 to 50
Very Dense (VD)	>50

Cohesive soils are classified on the basis of strength (consistency) either by use of a hand penetrometer, vane shear, laboratory testing and/or tactile engineering examination. The strength terms are defined as follows.

Classification	Unconfined Compressive Strength (kPa)	Indicative Undrained Shear Strength (kPa)
Very Soft (VS)	≤25	≤ 12
Soft (S)	> 25 and ≤ 50	> 12 and ≤ 25
Firm (F)	> 50 and ≤ 100	> 25 and ≤ 50
Stiff (St)	> 100 and ≤ 200	> 50 and ≤ 100
Very Stiff (VSt)	> 200 and ≤ 400	> 100 and ≤ 200
Hard (Hd)	> 400	> 200
Friable (Fr)	– soil crumbles	

Rock types are classified by their geological names, together with descriptive terms regarding weathering, strength, defects, etc. Where relevant, further information regarding rock classification is given in the text of the report. In the Sydney Basin, 'shale' is used to describe fissile mudstone, with a weakness parallel to bedding. Rocks with alternating inter-laminations of different grain size (eg. siltstone/claystone and siltstone/fine grained sandstone) are referred to as 'laminite'.

INVESTIGATION METHODS

1

The following is a brief summary of investigation methods currently adopted by the Company and some comments on their use and application. All methods except test pits, hand auger drilling and portable Dynamic Cone Penetrometers require the use of a mechanical rig which is commonly mounted on a truck chassis or track base.

Test Pits: These are normally excavated with a backhoe or a tracked excavator, allowing close examination of the insitu soils and 'weaker' bedrock if it is safe to descend into the pit. The depth of penetration is limited to about 3m for a backhoe and up to 6m for a large excavator. Limitations of test pits are the problems associated with disturbance and difficulty of reinstatement and the consequent effects on close-by structures. Care must be taken if construction is to be carried out near test pit locations to either properly recompact the backfill during construction or to design and construct the

structure so as not to be adversely affected by poorly compacted backfill at the test pit location.

Hand Auger Drilling: A borehole of 50mm to 100mm diameter is advanced by manually operated equipment. Refusal of the hand auger can occur on a variety of materials such as obstructions within any fill, tree roots, hard clay, gravel or ironstone, cobbles and boulders, and does not necessarily indicate rock level.

Continuous Spiral Flight Augers: The borehole is advanced using 75mm to 115mm diameter continuous spiral flight augers, which are withdrawn at intervals to allow sampling and insitu testing. This is a relatively economical means of drilling in clays and in sands above the water table. Samples are returned to the surface by the flights or may be collected after withdrawal of the auger flights, but they can be very disturbed and layers may become mixed. Information from the auger sampling (as distinct from specific sampling by SPTs or undisturbed samples) is of limited reliability due to mixing or softening of samples by groundwater, or uncertainties as to the original depth of the samples. Augering below the groundwater table is of even lesser reliability than augering above the water table.

Rock Augering: Use can be made of a Tungsten Carbide (TC) bit for auger drilling into rock to indicate rock quality and continuity by variation in drilling resistance and from examination of recovered rock cuttings. This method of investigation is quick and relatively inexpensive but provides only an indication of the likely rock strength and predicted values may be in error by a strength order. Where rock strengths may have a significant impact on construction feasibility or costs, then further investigation by means of cored boreholes may be warranted.

Wash Boring: The borehole is usually advanced by a rotary bit, with water being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be assessed from the cuttings, together with some information from "feel" and rate of penetration.

Mud Stabilised Drilling: Either Wash Boring or Continuous Core Drilling can use drilling mud as a circulating fluid to stabilise the borehole. The term 'mud' encompasses a range of products ranging from bentonite to polymers. The mud tends to mask the cuttings and reliable identification is only possible from intermittent intact sampling (eg. from SPT and U50 samples) or from rock coring, etc.

Continuous Core Drilling: A continuous core sample is obtained using a diamond tipped core barrel. Provided full core recovery is achieved (which is not always possible in very low strength rocks and granular soils), this technique provides a very reliable (but relatively expensive) method of investigation. In rocks, NMLC or HQ triple tube core barrels, which give a core of about 50mm and 61mm diameter, respectively, is usually used with water flush. The length of core recovered is compared to the length drilled and any length not recovered is shown as NO CORE. The location of NO CORE recovery is determined on site by the supervising engineer; where the location is uncertain, the loss is placed at the bottom of the drill run.

Standard Penetration Tests: Standard Penetration Tests (SPT) are used mainly in non-cohesive soils, but can also be used in cohesive soils, as a means of indicating density or strength and also of obtaining a relatively undisturbed sample. The test procedure is

described in Australian Standard 1289.6.3.1–2004 (R2016) 'Methods of Testing Soils for Engineering Purposes, Soil Strength and Consolidation Tests – Determination of the Penetration Resistance of a Soil – Standard Penetration Test (SPT)'.

The test is carried out in a borehole by driving a 50mm diameter split sample tube with a tapered shoe, under the impact of a 63.5kg hammer with a free fall of 760mm. It is normal for the tube to be driven in three successive 150mm increments and the 'N' value is taken as the number of blows for the last 300mm. In dense sands, very hard clays or weak rock, the full 450mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form:

 In the case where full penetration is obtained with successive blow counts for each 150mm of, say, 4, 6 and 7 blows, as

> N = 13 4, 6, 7

 In a case where the test is discontinued short of full penetration, say after 15 blows for the first 150mm and 30 blows for the next 40mm, as

> N > 30 15, 30/40mm

The results of the test can be related empirically to the engineering properties of the soil.

A modification to the SPT is where the same driving system is used with a solid 60° tipped steel cone of the same diameter as the SPT hollow sampler. The solid cone can be continuously driven for some distance in soft clays or loose sands, or may be used where damage would otherwise occur to the SPT. The results of this Solid Cone Penetration Test (SCPT) are shown as 'Nc' on the borehole logs, together with the number of blows per 150mm penetration.

LOGS

The borehole or test pit logs presented herein are an interpretation of the subsurface conditions, and their reliability will depend to some extent on the frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will enable the most reliable assessment, but is not always practicable or possible to justify on economic grounds. In any case, the boreholes or test pits represent only a very small sample of the total subsurface conditions.

The terms and symbols used in preparation of the logs are defined in the following pages.

Interpretation of the information shown on the logs, and its application to design and construction, should therefore take into account the spacing of boreholes or test pits, the method of drilling or excavation, the frequency of sampling and testing and the possibility of other than 'straight line' variations between the boreholes or test pits. Subsurface conditions between boreholes or test pits may vary significantly from conditions encountered at the borehole or test pit locations.

GROUNDWATER

Where groundwater levels are measured in boreholes, there are several potential problems:

- Although groundwater may be present, in low permeability soils it may enter the hole slowly or perhaps not at all during the time it is left open.
- A localised perched water table may lead to an erroneous indication of the true water table.
- Water table levels will vary from time to time with seasons or recent weather changes and may not be the same at the time of construction.
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must be washed out of the hole or 'reverted' chemically if reliable water observations are to be made.

More reliable measurements can be made by installing standpipes which are read after the groundwater level has stabilised at intervals ranging from several days to perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from perched water tables or surface water.

FILL

The presence of fill materials can often be determined only by the inclusion of foreign objects (eg. bricks, steel, etc) or by distinctly unusual colour, texture or fabric. Identification of the extent of fill materials will also depend on investigation methods and frequency. Where natural soils similar to those at the site are used for fill, it may be difficult with limited testing and sampling to reliably assess the extent of the fill.

The presence of fill materials is usually regarded with caution as the possible variation in density and material type is much greater than with natural soil deposits. Consequently, there is an increased risk of adverse environmental characteristics or behaviour. If the volume and nature of fill is of importance to a project, then frequent test pit excavations are preferable to boreholes.

LABORATORY TESTING

Laboratory testing has not been undertaken to confirm the soil classification and rock strengths indicated on the environmental logs unless noted in the report.

SYMBOL LEGENDS

SOIL ROCK FILL CONGLOMERATE TOPSOIL SANDSTONE CLAY (CL, CI, CH) SHALE/MUDSTONE SILT (ML, MH) SILTSTONE SAND (SP, SW) CLAYSTONE GRAVEL (GP, GW) COAL SANDY CLAY (CL, CI, CH) LAMINITE SILTY CLAY (CL, CI, CH) LIMESTONE CLAYEY SAND (SC) PHYLLITE, SCHIST SILTY SAND (SM) TUFF GRAVELLY CLAY (CL, CI, CH) GRANITE, GABBRO CLAYEY GRAVEL (GC) DOLERITE, DIORITE SANDY SILT (ML, MH) BASALT, ANDESITE 77 77 77 7 77 77 77 77 77 QUARTZITE PEAT AND HIGHLY ORGANIC SOILS (Pt)

OTHER MATERIALS

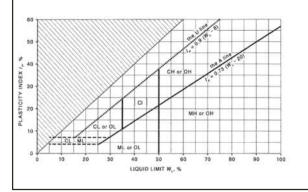
CLASSIFICATION OF COARSE AND FINE GRAINED SOILS

Ma	Major Divisions		Typical Names	Field Classification of Sand and Gravel	Laboratory Cl	assification
ianis	GRAVEL (more than half	GW	Gravel and gravel-sand mixtures, little or no fines	Wide range in grain size and substantial amounts of all intermediate sizes, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	C _u >4 1 <c<sub>c<3</c<sub>
rsize fract	of coarse fraction is larger than 2.36mm	GP	Gravel and gravel-sand mixtures, little or no fines, uniform gravels	Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	Fails to comply with above
luding ove		GM	Gravel-silt mixtures and gravel- sand-silt mixtures	'Dirty' materials with excess of non-plastic fines, zero to medium dry strength	≥ 12% fines, fines are silty	Fines behave as silt
of sail exclu		GC	GC Gravel-clay mixtures and gravel-sand-clay mixtures and gravel 'Dirty' materials with excess of plastic fines, medium to high dry strength		≥ 12% fines, fines are clayey	Fines behave as clay
than 65% eater thar	SAND (more than half	SW	Sand and gravel-sand mixtures, little or no fines	Wide range in grain size and substantial amounts of all intermediate sizes, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	Cu > 6 1 < Cc < 3
oil (mare	of coarse fraction is smaller than	SP	Sand and gravel-sand mixtures, little or no fines	Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	Fails to comply with above
Carse grained soil (more than 65% of soil excluding oversize fraction is greater than 0.075mm)	2.36mm)	SM	Sand-silt mixtures	'Dirty' materials with excess of non-plastic fines, zero to medium dry strength	≥ 12% fines, fines are silty	
Coars	Coarse		Sand-clay mixtures	'Dirty' materials with excess of plastic fines, medium to high dry strength	≥ 12% fines, fines are clayey	N/A

	Major Divisions		Group		Field Classification of Silt and Clay			
Majo			Typical Names	Dry Strength	Dilatancy	Toughness	% < 0.075mm	
Bulpr	SILT and CLAY (low to medium plasticity) CL, CI OL SILT and CLAY (low to medium plasticity) OL OL OL OH		Inorganic silt and very fine sand, rock flour, silty or clayey fine sand or silt with low plasticity	None to low	Slow to rapid	Low	Below A line	
of sail exal 0.075mm)			CL, Cl Inorganic clay of low to medium plasticity, gravelly clay, sandy clay		None to slow	Medium	Above A line	
in 35% ss than			Organic silt	Low to medium	Slow	Low	Below A line	
onisle	SILT and CLAY	МН	Inorganic silt	Low to medium	None to slow	Low to medium	Below A line	
soils (m e fracti	(high plasticity)		(high plasticity) CH Inorganic clay of high plasticity		None	High	Above A line	
ne grained! oversiz		ОН	Organic clay of medium to high plasticity, organic silt	Medium to high	None to very slow	Low to medium	Below A line	
.=	Highly organic soil	Pt	Peat, highly organic soil	-	-	-	-	

Laboratory Classification Criteria

A well graded coarse grained soil is one for which the coefficient of uniformity Cu > 4 and the coefficient of curvature $1 < C_c < 3$. Otherwise, the soil is poorly graded. These coefficients are given by:


$$C_U = \frac{D_{60}}{D_{10}}$$
 and $C_C = \frac{(D_{30})^2}{D_{10} D_{60}}$

Where D_{10} , D_{30} and D_{60} are those grain sizes for which 10%, 30% and 60% of the soil grains, respectively, are smaller.

NOTES

- 1 For a coarse grained soil with a fines content between 5% and 12%, the soil is given a dual classification comprising the two group symbols separated by a dash; for example, for a poorly graded gravel with between 5% and 12% silt fines, the classification is GP-GM.
- Where the grading is determined from laboratory tests, it is defined by coefficients of curvature (C_c) and uniformity (C_u) derived from the particle size distribution curve.
- 3 Clay soils with liquid limits > 35% and ≤ 50% may be classified as being of medium plasticity.
- The U line on the Modified Casagrande Chart is an approximate upper bound for most natural soils.

Modified Casagrande Chart for Classifying Silts and Clays according to their Behaviour

LOG SYMBOLS

Log Column	Symbol	Definition					
Groundwater Record		Standing water level	. Time delay following compl	etion of drilling/excavation may be show	n.		
	—с—	Extent of borehole/t	Extent of borehole/test pit collapse shortly after drilling/excavation.				
	•	Groundwater seepa	ge into borehole or test pit n	oted during drilling or excavation.			
Samples	ES	•	epth indicated, for environm				
	U50		diameter tube sample taken				
	DB		le taken over depth indicate				
	DS	_	sample taken over depth ind				
	ASB	•	er depth indicated, for asbes				
	ASS	· ·	er depth indicated, for acid s				
	SAL	•	er depth indicated, for salinit				
	PFAS	Soil sample taken ov	er depth indicated, for analy	sis of Per- and Polyfluoroalkyl Substances	S.		
Field Tests	N = 17 4, 7, 10	figures show blows p		tween depths indicated by lines. Indivi isal' refers to apparent hammer refusal w			
	N _c = 5 7 3R	figures show blows p	Solid Cone Penetration Test (SCPT) performed between depths indicated by lines. Individual figures show blows per 150mm penetration for 60° solid cone driven by SPT hammer. 'R' refers to apparent hammer refusal within the corresponding 150mm depth increment.				
	VNS = 25	Vane shear reading i	Vane shear reading in kPa of undrained shear strength.				
	PID = 100	_	Photoionisation detector reading in ppm (soil sample headspace test).				
Moisture Condition	w > PL	Moisture content es	Moisture content estimated to be greater than plastic limit.				
(Fine Grained Soils)	w≈ PL	Moisture content es	Moisture content estimated to be approximately equal to plastic limit.				
	w < PL	Moisture content estimated to be less than plastic limit.					
	w≈LL	Moisture content estimated to be near liquid limit.					
	w > LL	Moisture content es	Moisture content estimated to be wet of liquid limit.				
(Coarse Grained Soils)	D	DRY – runs freely through fingers.					
	M	MOIST – does not run freely but no free water visible on soil surface.					
	W	WET – free wate	er visible on soil surface.				
Strength (Consistency)	VS	VERY SOFT – un	confined compressive streng	gth ≤ 25kPa.			
Cohesive Soils	S	SOFT – un	confined compressive streng	gth > 25kPa and ≤ 50kPa.			
	F	FIRM – un	confined compressive streng	gth > 50kPa and ≤ 100kPa.			
	St	STIFF – un	confined compressive streng	gth > 100kPa and ≤ 200kPa.			
	VSt	VERY STIFF – un	confined compressive streng	gth > 200kPa and ≤ 400kPa.			
	Hd	HARD – un	confined compressive streng	gth > 400kPa.			
	Fr	FRIABLE – str	ength not attainable, soil cru	imbles.			
	()	Bracketed symbol is assessment.	ndicates estimated consiste	ncy based on tactile examination or o	other		
Density Index/ Relative Density			Density Index (I _D) Range (%)	SPT 'N' Value Range (Blows/300mm)			
(Cohesionless Soils)	VL	VERY LOOSE	≤ 15	0-4			
	L	LOOSE	> 15 and ≤ 35	4-10			
	MD	MEDIUM DENSE	> 35 and ≤ 65	10 – 30			
	D	DENSE	> 65 and ≤ 85	30 – 50			
	VD	VERY DENSE	> 85	>50			
	()	Bracketed symbol in	dicates estimated density ba	sed on ease of drilling or other assessme	ent.		

Log Column	Symbol	Definition				
Hand Penetrometer Readings	300 250		Measures reading in kPa of unconfined compressive strength. Numbers indicate individual test results on representative undisturbed material unless noted otherwise.			
Remarks	'V' bit	Hardened steel	'V' shaped bit.			
	'TC' bit	Twin pronged to	ungsten carbide bit.			
	T ₆₀		Penetration of auger string in mm under static load of rig applied by drill head hydraulics without rotation of augers.			
	Soil Origin	The geological o	rigin of the soil can generally be described as:			
		RESIDUAL	 soil formed directly from insitu weathering of the underlying rock. No visible structure or fabric of the parent rock. 			
		EXTREMELY WEATHERED	 soil formed directly from insitu weathering of the underlying rock. Material is of soil strength but retains the structure and/or fabric of the parent rock. 			
		ALLUVIAL	– soil deposited by creeks and rivers.			
		ESTUARINE	 soil deposited in coastal estuaries, including sediments caused by inflowing creeks and rivers, and tidal currents. 			
		MARINE	 soil deposited in a marine environment. 			
		AEOLIAN	 soil carried and deposited by wind. 			
		COLLUVIAL	 soil and rock debris transported downslope by gravity, with or without the assistance of flowing water. Colluvium is usually a thick deposit formed from a landslide. The description 'slopewash' is used for thinner surficial deposits. 			
		LITTORAL	– beach deposited soil.			

Classification of Material Weathering

Term	Abbreviation		Definition			
Residual Soil			ss.	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.		
Extremely Weathered		xw		Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible.		
Highly Weathered	Distinctly Weathered	, I		The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.		
Moderately Weathered	(Note 1)	MW		The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.		
Slightly Weathered		SW		Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.		
Fresh		F	R	Rock shows no sign of decomposition of individual minerals or colour changes.		

NOTE 1: The term 'Distinctly Weathered' is used where it is not practicable to distinguish between 'Highly Weathered' and 'Moderately Weathered' rock. 'Distinctly Weathered' is defined as follows: 'Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores'. There is some change in rock strength.

Rock Material Strength Classification

			Guide to Strength	
Term	Abbreviation	Uniaxial Compressive Strength (MPa)	Point Load Strength Index IS ₍₅₀₎ (MPa)	Field Assessment
Very Low Strength	VL	0.6 to 2	0.03 to 0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 30mm thick can be broken by finger pressure.
Low Strength	L	2 to 6	0.1 to 0.3	Easily scored with a knife; indentations 1mm to 3mm show in the specimen with firm blows of the pick point; has dull sound under hammer. A piece of core 150mm long by 50mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.
Medium Strength	M	6 to 20	0.3 to 1	Scored with a knife; a piece of core 150mm long by 50mm diameter can be broken by hand with difficulty.
High Strength	н	20 to 60	1 to 3	A piece of core 150mm long by 50mm diameter cannot be broken by hand but can be broken by a pick with a single firm blow; rock rings under hammer.
Very High Strength	VH	60 to 200	3 to 10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.
Extremely High Strength	EH	> 200	>10	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.

Appendix G: Laboratory Reports & COC Documents

E32507BRpt4Rev1

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 279440-A

Client Details	
Client	JK Environments
Attention	C Ridley
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	E32507BR, Greenwich
Number of Samples	131 Soil
Date samples received	30/09/2021
Date completed instructions received	01/10/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details							
Date results requested by	11/10/2021						
Date of Issue	27/10/2021						
Reissue Details	This report replaces R00 created on 11/10/2021 due to: revised report with additional results.						
NATA Accreditation Number 2901. This document shall not be reproduced except in full.							
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *							

Results Approved By

Hannah Nguyen, Metals Supervisor Nick Sarlamis, Assistant Operation Manager **Authorised By**

Nancy Zhang, Laboratory Manager

Envirolab Reference: 279440-A Revision No: R01

Soil Aggressivity									
Our Reference		279440-A-53	279440-A-54	279440-A-55	279440-A-57	279440-A-74			
Your Reference	UNITS	BH105	BH105	BH105	BH105	BH106			
Depth		0.25-0.4	0.5-0.95	1.2-1.4	2.9-3.0	7.9-8.0			
Type of sample		Soil	Soil	Soil	Soil	Soil			
Date Sampled		27/09/2021	27/09/2021	27/09/2021	27/09/2021	28/09/2021			
pH 1:5 soil:water	pH Units	8.8	8.7	8.0	5.4	6.0			
Chloride, Cl 1:5 soil:water	mg/kg	<10	<10	<10	<10	<10			
Sulphate, SO4 1:5 soil:water	mg/kg	44	53	10	64	20			
Resistivity in soil*	ohm m	91	79	260	230	570			

Soil Aggressivity						
Our Reference		279440-A-77	279440-A-79	279440-A-80	279440-A-83	279440-A-87
Your Reference	UNITS	BH106	BH106	BH107	BH107	BH107
Depth		10.9-11.0	12.45-12.55	0-0.2	1.3-1.5	3.9-4.0
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		28/09/2021	28/09/2021	27/09/2021	27/09/2021	27/09/2021
pH 1:5 soil:water	pH Units	6.2	6.2	6.8	5.9	5.3
Chloride, Cl 1:5 soil:water	mg/kg	<10	10	<10	<10	<10
Electrical Conductivity 1:5 soil:water	μS/cm	[NA]	[NA]	[NA]	21	12
Sulphate, SO4 1:5 soil:water	mg/kg	<10	<10	<10	21	10
Resistivity in soil*	ohm m	900	660	300	480	830

Soil Aggressivity						
Our Reference		279440-A-89	279440-A-97	279440-A-98	279440-A-99	279440-A-100
Your Reference	UNITS	BH107	BH107	BH107	BH109	BH109
Depth		5.9-6.0	13.9-14.0	14.9-15.0	0.01-0.4	0.5-0.8
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		27/09/2021	27/09/2021	27/09/2021	28/09/2021	28/09/2021
pH 1:5 soil:water	pH Units	5.3	5.8	5.7	9.0	7.7
Chloride, Cl 1:5 soil:water	mg/kg	<10	20	20	<10	<10
Electrical Conductivity 1:5 soil:water	μS/cm	13	16	16	[NA]	[NA]
Sulphate, SO4 1:5 soil:water	mg/kg	10	<10	<10	35	88
Resistivity in soil*	ohm m	750	610	610	130	170

Envirolab Reference: 279440-A

Texture and Salinity*								
Our Reference		279440-A-53	279440-A-54	279440-A-55	279440-A-57	279440-A-74		
Your Reference	UNITS	BH105	BH105	BH105	BH105	BH106		
Depth		0.25-0.4	0.5-0.95	1.2-1.4	2.9-3.0	7.9-8.0		
Type of sample		Soil	Soil	Soil	Soil	Soil		
Date Sampled		27/09/2021	27/09/2021	27/09/2021	27/09/2021	28/09/2021		
Date prepared	-	08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021		
Date analysed	-	08/10/2021	08/10/2021 08/10/2021		08/10/2021	08/10/2021		
Electrical Conductivity 1:5 soil:water	μS/cm	110	130	39	43	17		
Texture Value	-	9.0	9.0	7.0	14	17		
Texture	-	CLAY LOAM	CLAY LOAM	MEDIUM CLAY	SANDY LOAM	SAND		
ECe	dS/m	<2	<2	<2	<2	<2		
Class	-	NON SALINE	NON SALINE	NON SALINE	NON SALINE	NON SALINE		

Texture and Salinity*					
Our Reference		279440-A-77	279440-A-80	279440-A-99	279440-A-100
Your Reference	UNITS	BH106	BH107	BH109	BH109
Depth		10.9-11.0	0-0.2	0.01-0.4	0.5-0.8
Type of sample		Soil	Soil	Soil	Soil
Date Sampled		28/09/2021	27/09/2021	28/09/2021	28/09/2021
Date prepared	-	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date analysed	-	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Electrical Conductivity 1:5 soil:water	μS/cm	11	34	77	60
Texture Value	-	17	9.0	14	7.0
Texture	-	SAND	CLAY LOAM	SANDY LOAM	MEDIUM CLAY
ECe	dS/m	<2	<2	<2	<2
Class	-	NON SALINE	NON SALINE	NON SALINE	NON SALINE

Envirolab Reference: 279440-A

CEC						
Our Reference		279440-A-53	279440-A-54	279440-A-55	279440-A-57	279440-A-74
Your Reference	UNITS	BH105	BH105	BH105	BH105	BH106
Depth		0.25-0.4	0.5-0.95	1.2-1.4	2.9-3.0	7.9-8.0
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		27/09/2021	27/09/2021	27/09/2021	27/09/2021	28/09/2021
Date prepared	-	11/10/2021	11/10/2021	11/10/2021	11/10/2021	11/10/2021
Date analysed	-	11/10/2021	11/10/2021	11/10/2021	11/10/2021	11/10/2021
Exchangeable Ca	meq/100g	9.8	13 2.3		1.5	0.1
Exchangeable K	meq/100g	<0.1	0.1	<0.1	0.1	<0.1
Exchangeable Mg	meq/100g	1.6	2.2	0.8	0.4	0.6
Exchangeable Na	meq/100g	<0.1	<0.1	<0.1	<0.1	<0.1
Cation Exchange Capacity	meq/100g	12	15	3.2	2.0	<1

CEC				
Our Reference		279440-A-80	279440-A-99	279440-A-100
Your Reference	UNITS	BH107	BH109	BH109
Depth		0-0.2	0.01-0.4	0.5-0.8
Type of sample		Soil	Soil	Soil
Date Sampled		27/09/2021	28/09/2021	28/09/2021
Date prepared	-	11/10/2021	11/10/2021	11/10/2021
Date analysed	-	11/10/2021	11/10/2021	11/10/2021
Exchangeable Ca	meq/100g	8.2	13	2.5
Exchangeable K	meq/100g	0.2	0.2	<0.1
Exchangeable Mg	meq/100g	2.2	4.7	1.9
Exchangeable Na	meq/100g	<0.1	0.1	<0.1
Cation Exchange Capacity	meq/100g	11	18	4.5

Envirolab Reference: 279440-A

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25oC in accordance with APHA 22nd ED 2510 and Rayment & Lyons. Resistivity is calculated from Conductivity (non NATA). Resistivity (calculated) may not correlate with results otherwise obtained using Resistivity-Current method, depending on the nature of the soil being analysed.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.
INORG-123	Determined using a "Texture by Feel" method.
Metals-020	Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-AES analytical finish.

Envirolab Reference: 279440-A

QUALITY CONTROL: Soil Aggressivity						Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	279440-A- 79	
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	77	6.2	6.3	2	101	[NT]	
Chloride, Cl 1:5 soil:water	mg/kg	10	Inorg-081	<10	77	<10	<10	0	106	99	
Electrical Conductivity 1:5 soil:water	μS/cm	1	Inorg-002	<1	89	13	14	7	103	[NT]	
Sulphate, SO4 1:5 soil:water	mg/kg	10	Inorg-081	<10	77	<10	<10	0	106	103	
Resistivity in soil*	ohm m	1	Inorg-002	<1	77	900	1100	20	[NT]	[NT]	

QUALITY	QUALITY CONTROL: Soil Aggressivity				Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	89	5.3	5.3	0			
Chloride, Cl 1:5 soil:water	mg/kg	10	Inorg-081	[NT]	89	<10	<10	0			
Sulphate, SO4 1:5 soil:water	mg/kg	10	Inorg-081	[NT]	89	10	20	67			
Resistivity in soil*	ohm m	1	Inorg-002	[NT]	89	750	690	8			

Envirolab Reference: 279440-A

QUALITY C	QUALITY CONTROL: Texture and Salinity*				Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			08/10/2021	77	08/10/2021	08/10/2021		08/10/2021	
Date analysed	-			08/10/2021	77	08/10/2021	08/10/2021		08/10/2021	
Electrical Conductivity 1:5 soil:water	μS/cm	1	Inorg-002	<1	77	11	9	20	105	
Texture Value	-		INORG-123	[NT]	77	17	17	0	[NT]	

Envirolab Reference: 279440-A

QU	ALITY CONT	ROL: CE	EC .		Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	279440-A- 54	
Date prepared	-			11/10/2021	53	11/10/2021	11/10/2021		11/10/2021	11/10/2021	
Date analysed	-			11/10/2021	53	11/10/2021	11/10/2021		11/10/2021	11/10/2021	
Exchangeable Ca	meq/100g	0.1	Metals-020	<0.1	53	9.8	12	20	113	#	
Exchangeable K	meq/100g	0.1	Metals-020	<0.1	53	<0.1	<0.1	0	107	96	
Exchangeable Mg	meq/100g	0.1	Metals-020	<0.1	53	1.6	1.7	6	110	119	
Exchangeable Na	meq/100g	0.1	Metals-020	<0.1	53	<0.1	<0.1	0	117	112	

Envirolab Reference: 279440-A

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Envirolab Reference: 279440-A

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 279440-A Page | 10 of 11

Report Comments

pH/EC

Samples were out of the recommended holding time for this analysis.

CEC - # Percent recovery is not applicable due to the high concentration of the element in the sample. However an acceptable recovery was obtained for the LCS.

Envirolab Reference: 279440-A Page | 11 of 11

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	JK Environments
Attention	C Ridley

Sample Login Details	
Your reference	E32507BR, Greenwich
Envirolab Reference	279440-A
Date Sample Received	30/09/2021
Date Instructions Received	01/10/2021
Date Results Expected to be Reported	11/10/2021

Sample Condition	
Samples received in appropriate condition for analysis	Holding time exceedance
No. of Samples Provided	131 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	14
Cooling Method	Ice
Sampling Date Provided	YES

Comments

Please contact the laboratory within 24 hours if you wish to cancel the aformentioned testing. Otherwise testing will proceed as per the COC and hence invoice accordingly.

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd

Sample ID	Soil Aggressivity	Texture and Salinity*	CEC	On Hold
BH105-0.25-0.4			_	✓
BH105-0.5-0.95			_	✓
BH105-1.2-1.4			_	✓ ✓ ✓ ✓
BH105-1.5-1.7			_	✓
BH106-0.03-0.3				✓
BH106-0.6-0.8				✓
BH107-0-0.2				✓
BH107-0.2-0.4				✓
BH107-0.5-0.95				✓
BH109-0.01-0.4			_	✓
BH109-0.5-0.8				✓
BH109-0.8-0.95				✓
BH109-1.0-1.2				
BH110A-0-0.1				✓
BH110A-0.1-0.2			_	✓
BH110A-0.5-0.8			_	√
BH110A-1.1-1.3			_	
BH111-0-0.1				✓
BH111-0.2-0.3				✓
BH111-0.3-0.6				✓
BH111-0.6-0.8				√
BH112-0.22-0.65			_	✓
BH112-0.65-0.8				✓
BH113-0-0.1				√
BH113-0.1-0.2				✓
BH113-0.35-0.45				✓
BH113-0.45-0.6				✓
BH113-0.6-0.65				√
BH114-0.05-0.2				✓
BH114-0.2-0.4				√
BH114-0.4-0.5				✓
BH115-0-0.1				✓

Envirolab Services Pty Ltd

Sample ID	Soil Aggressivity	Texture and Salinity*	CEC	On Hold
BH115-0.3-0.5				✓
BH115-0.6-0.8				✓
BH115-0.9-1.1				✓
BH116-0-0.1				✓
BH116-0.1-0.3				✓
BH116-0.3-0.55				✓ ✓ ✓ ✓ ✓
BH118-0-0.1				✓
BH118-0.5-0.6				√
BH118-1.4-1.5				✓
BH118-1.6-1.8				✓
BH118-2.3-2.5				\[\lambda \] \[\lambda \] \[\lambda \] \[\lambda \] \[\lambda \]
SDUP1				✓
SDUP2				✓
SDUP3				✓
SDUP4				✓
SDUP5				✓
SDUP6				✓
PFAS DUP1				✓
TS-S1				✓
TB-S1				✓
BH105-0.25-0.4	✓	✓	✓	
BH105-0.5-0.95	✓	✓	✓	
BH105-1.2-1.4	✓	✓	✓	
BH105-2.4-2.5				✓
BH105-2.9-3.0	✓	✓	✓	
BH105-3.9-4.0				✓
BH105-4.9-5.0				✓
BH105-5.9-6.0				✓
BH105-6.9-7.0				✓ ✓ ✓
BH105-7.7-7.83				✓
BH106-0.03-0.3				✓
BH106-0.6-0.8				✓

Envirolab Services Pty Ltd

Sample ID	Soil Aggressivity	Texture and Salinity*	CEC	On Hold
BH106-0.9-1.1				✓
BH106-1.4-1.5				✓
BH106-1.9-2.0				✓
BH106-2.4-2.5				✓
BH106-2.9-3.0				✓
BH106-3.9-4.0				✓ ✓ ✓ ✓ ✓
BH106-4.9-5.0				
BH106-5.9-6.0				✓
BH106-6.9-7.0				✓
BH106-7.9-8.0	✓	✓	✓	
BH106-8.9-9.0				✓
BH106-9.9-10.0				✓
BH106-10.9-11.0	✓	✓		
BH106-11.9-12.0				✓
BH106-12.45-12.55	✓			
BH107-0-0.2	✓	✓	✓	
BH107-0.2-0.4				✓
BH107-0.5-0.95				✓
BH107-1.3-1.5	✓			
BH107-1.9-2.0				✓
BH107-2.4-2.5				✓
BH107-2.75-2.85				✓
BH107-3.9-4.0	✓			
BH107-4.9-5.0				✓
BH107-5.9-6.0	✓			
BH107-6.9-7.0				✓
BH107-7.9-8.0				✓
BH107-8.9-9.0				✓
BH107-9.9-10.0				✓ ✓ ✓
BH107-10.9-11.0				
BH107-11.9-12.0				✓
BH107-12.9-13.0				✓

Envirolab Services Pty Ltd

Sample ID BH107-13.9-14.0 BH107-14.9-15.0 BH109-0.01-0.4 BH109-0.5-0.8 BH109-1.0-1.2 BH109-1.0-1.2 BH109-1.9-2.0 BH109-2.4-2.5 BH109-2.9-3.0 BH109-3.9-4.0 BH109-5.9-6.0 BH109-5.9-6.0 BH109-7.9-8.0 BH109-7.9-8.0 BH109-1.9-1.0.0 BH109-1.9-1.0.0 BH109-1.3-11.45 PFAS Trip Blank BH109-1.3-11.45 PFAS Trip Blank BH107-1.0-1.3 BH105-0.25-0.4 BH105-0.25-0.4 BH106-0.6-0.8 BH107-0.1-0.1 BH107-0.1-0.1 BH107-0.1-0.4 BH107-0.5-0.95					
BH107-14.9-15.0 BH109-0.01-0.4 BH109-0.5-0.8 BH109-0.8-0.95 BH109-1.0-1.2 BH109-1.42-1.50 BH109-1.9-2.0 BH109-2.4-2.5 BH109-2.9-3.0 BH109-3.9-4.0 BH109-5.9-6.0 BH109-7.9-8.0 BH109-7.9-8.0 BH109-9.9-10.0 BH109-11.9-12.0 BH109-11.35-11.45 PFAS Trip Blank BH107-1.0-1.3 BH105-0.25-0.4 BH105-0.5-0.95 BH106-0.03-0.3 BH106-0.6-0.8 BH107-0-0.1 BH107-0.1-0.4	Sample ID	Soil Aggressivity	Texture and Salinity*	CEC	On Hold
BH107-14.9-15.0 BH109-0.01-0.4 BH109-0.5-0.8 BH109-0.8-0.95 BH109-1.0-1.2 BH109-1.42-1.50 BH109-1.9-2.0 BH109-2.4-2.5 BH109-2.9-3.0 BH109-3.9-4.0 BH109-5.9-6.0 BH109-7.9-8.0 BH109-7.9-8.0 BH109-9.9-10.0 BH109-11.9-12.0 BH109-11.35-11.45 PFAS Trip Blank BH107-1.0-1.3 BH105-0.25-0.4 BH105-0.5-0.95 BH106-0.03-0.3 BH106-0.6-0.8 BH107-0-0.1 BH107-0.1-0.4	BH107-13.9-14.0	√			
BH109-0.5-0.8 BH109-0.8-0.95 BH109-1.0-1.2 BH109-1.42-1.50 BH109-2.4-2.5 BH109-2.9-3.0 BH109-3.9-4.0 BH109-5.9-6.0 BH109-7.9-8.0 BH109-7.9-8.0 BH109-9.9-10.0 BH109-11.9-12.0 BH109-11.35-11.45 PFAS Trip Blank BH105-0.25-0.4 BH105-0.5-0.95 BH106-0.03-0.3 BH106-0.03-0.3 BH107-0-0.1 BH107-0-0.1					
BH109-0.8-0.95 BH109-1.0-1.2 BH109-1.42-1.50 BH109-1.9-2.0 BH109-2.4-2.5 BH109-2.9-3.0 BH109-3.9-4.0 BH109-4.9-5.0 BH109-5.9-6.0 BH109-6.9-7.0 BH109-7.9-8.0 BH109-9.9-10.0 BH109-11.9-12.0 BH109-11.9-12.0 BH109-11.35-11.45 PFAS Trip Blank BH107-1.0-1.3 BH105-0.25-0.4 BH105-0.5-0.95 BH106-0.03-0.3 BH106-0.6-0.8 BH107-0.1-0.4	BH109-0.01-0.4		✓	✓	
BH109-0.8-0.95 BH109-1.0-1.2 BH109-1.42-1.50 BH109-2.4-2.5 BH109-2.9-3.0 BH109-3.9-4.0 BH109-4.9-5.0 BH109-5.9-6.0 BH109-7.9-8.0 BH109-8.9-9.0 BH109-11.9-12.0 BH109-11.9-12.0 BH109-11.35-11.45 PFAS Trip Blank BH107-1.0-1.3 BH105-0.25-0.4 BH105-0.25-0.4 BH106-0.03-0.3 BH106-0.6-0.8 BH107-0-0.1	BH109-0.5-0.8	✓	✓	1	
BH109-1.0-1.2 BH109-1.42-1.50 BH109-1.9-2.0 BH109-2.4-2.5 BH109-2.9-3.0 BH109-3.9-4.0 BH109-4.9-5.0 BH109-5.9-6.0 BH109-6.9-7.0 BH109-7.9-8.0 BH109-10.96-11.0 BH109-11.9-12.0 BH109-11.35-11.45 PFAS Trip Blank BH107-0.1-0.4 BH106-0.03-0.3 BH106-0.6-0.8 BH107-0.1-0.4					√
BH109-1.42-1.50 BH109-1.9-2.0 BH109-2.4-2.5 BH109-2.9-3.0 BH109-3.9-4.0 BH109-4.9-5.0 BH109-5.9-6.0 BH109-6.9-7.0 BH109-7.9-8.0 BH109-9.9-10.0 BH109-11.9-12.0 BH109-11.35-11.45 PFAS Trip Blank BH107-0.05-0.95 BH106-0.03-0.3 BH106-0.6-0.8 BH107-0.1-0.4					✓
BH109-1.9-2.0 BH109-2.4-2.5 BH109-2.9-3.0 BH109-3.9-4.0 BH109-4.9-5.0 BH109-5.9-6.0 BH109-7.9-8.0 BH109-8.9-9.0 BH109-10.96-11.0 BH109-11.9-12.0 BH109-11.35-11.45 PFAS Trip Blank BH107-1.0-1.3 BH105-0.25-0.4 BH105-0.5-0.95 BH106-0.6-0.8 BH107-0-0.1 BH107-0.1-0.4	BH109-1.42-1.50				✓
BH109-2.4-2.5 BH109-2.9-3.0 BH109-3.9-4.0 BH109-4.9-5.0 BH109-5.9-6.0 BH109-6.9-7.0 BH109-8.9-9.0 BH109-9.9-10.0 BH109-11.9-12.0 BH109-11.35-11.45 PFAS Trip Blank BH107-1.0-1.3 BH105-0.25-0.4 BH105-0.5-0.95 BH106-0.6-0.8 BH107-0.1-0.4	BH109-1.9-2.0				✓
BH109-2.9-3.0 BH109-3.9-4.0 BH109-4.9-5.0 BH109-5.9-6.0 BH109-6.9-7.0 BH109-7.9-8.0 BH109-9.9-10.0 BH109-10.96-11.0 BH109-11.9-12.0 BH109-11.35-11.45 PFAS Trip Blank BH107-1.0-1.3 BH105-0.25-0.4 BH105-0.5-0.95 BH106-0.03-0.3 BH106-0.6-0.8 BH107-0.1-0.4	BH109-2.4-2.5				
BH109-3.9-4.0 BH109-4.9-5.0 BH109-5.9-6.0 BH109-6.9-7.0 BH109-8.9-9.0 BH109-9.9-10.0 BH109-11.9-12.0 BH109-11.35-11.45 PFAS Trip Blank BH107-1.0-1.3 BH105-0.25-0.4 BH105-0.5-0.95 BH106-0.6-0.8 BH107-0.1-0.4	BH109-2.9-3.0				
BH109-5.9-6.0 BH109-6.9-7.0 BH109-7.9-8.0 BH109-8.9-9.0 BH109-10.96-11.0 BH109-11.9-12.0 BH109-12.45-12.56 BH109-11.35-11.45 PFAS Trip Blank BH107-1.0-1.3 BH105-0.25-0.4 BH105-0.5-0.95 BH106-0.6-0.8 BH107-0-0.1	BH109-3.9-4.0				
BH109-5.9-6.0 BH109-6.9-7.0 BH109-7.9-8.0 BH109-8.9-9.0 BH109-10.96-11.0 BH109-11.9-12.0 BH109-12.45-12.56 BH109-11.35-11.45 PFAS Trip Blank BH107-1.0-1.3 BH105-0.25-0.4 BH105-0.5-0.95 BH106-0.6-0.8 BH107-0-0.1	BH109-4.9-5.0				✓
BH109-6.9-7.0 BH109-7.9-8.0 BH109-8.9-9.0 BH109-9.9-10.0 BH109-11.9-12.0 BH109-12.45-12.56 BH109-11.35-11.45 PFAS Trip Blank BH107-1.0-1.3 BH105-0.25-0.4 BH105-0.5-0.95 BH106-1.5-1.7 BH106-0.03-0.3 BH106-0.6-0.8 BH107-0-0.1	BH109-5.9-6.0				
BH109-7.9-8.0 BH109-8.9-9.0 BH109-9.9-10.0 BH109-10.96-11.0 BH109-11.9-12.0 BH109-12.45-12.56 BH109-11.35-11.45 PFAS Trip Blank BH107-1.0-1.3 BH105-0.25-0.4 BH105-0.5-0.95 BH105-1.2-1.4 BH106-1.5-1.7 BH106-0.03-0.3 BH106-0.6-0.8 BH107-0-0.1	BH109-6.9-7.0				✓
BH109-8.9-9.0 BH109-9.9-10.0 BH109-10.96-11.0 BH109-11.9-12.0 BH109-12.45-12.56 BH109-11.35-11.45 PFAS Trip Blank BH107-1.0-1.3 BH105-0.25-0.4 BH105-0.5-0.95 BH106-1.5-1.7 BH106-0.03-0.3 BH106-0.6-0.8 BH107-0-0.1	BH109-7.9-8.0				✓
BH109-10.96-11.0 BH109-11.9-12.0 BH109-12.45-12.56 BH109-11.35-11.45 PFAS Trip Blank BH107-1.0-1.3 BH105-0.25-0.4 BH105-0.5-0.95 BH105-1.2-1.4 BH106-1.5-1.7 BH106-0.03-0.3 BH106-0.6-0.8 BH107-0-0.1	BH109-8.9-9.0				✓
BH109-11.9-12.0 BH109-12.45-12.56 BH109-11.35-11.45 PFAS Trip Blank BH107-1.0-1.3 BH105-0.25-0.4 BH105-0.5-0.95 BH105-1.2-1.4 BH106-1.5-1.7 BH106-0.03-0.3 BH106-0.6-0.8 BH107-0-0.1	BH109-9.9-10.0				✓
BH109-12.45-12.56 BH109-11.35-11.45 PFAS Trip Blank BH107-1.0-1.3 BH105-0.25-0.4 BH105-0.5-0.95 BH105-1.2-1.4 BH106-1.5-1.7 BH106-0.03-0.3 BH106-0.6-0.8 BH107-0-0.1	BH109-10.96-11.0				✓
BH109-11.35-11.45 PFAS Trip Blank BH107-1.0-1.3 BH105-0.25-0.4 BH105-0.5-0.95 BH105-1.2-1.4 BH106-1.5-1.7 BH106-0.03-0.3 BH106-0.6-0.8 BH107-0-0.1	BH109-11.9-12.0				✓
PFAS Trip Blank BH107-1.0-1.3 BH105-0.25-0.4 BH105-0.5-0.95 BH105-1.2-1.4 BH106-1.5-1.7 BH106-0.03-0.3 BH106-0.6-0.8 BH107-0-0.1	BH109-12.45-12.56				✓
BH107-1.0-1.3 BH105-0.25-0.4 BH105-0.5-0.95 BH105-1.2-1.4 BH106-1.5-1.7 BH106-0.03-0.3 BH106-0.6-0.8 BH107-0-0.1	BH109-11.35-11.45				✓
BH105-0.25-0.4 BH105-0.5-0.95 SH105-1.2-1.4 SH106-1.5-1.7 SH106-0.03-0.3 SH106-0.6-0.8 SH107-0-0.1 SH107-0.1-0.4	PFAS Trip Blank				✓
BH105-1.2-1.4	BH107-1.0-1.3				
BH105-1.2-1.4	BH105-0.25-0.4				✓
BH105-1.2-1.4	BH105-0.5-0.95				✓
BH106-1.5-1.7	BH105-1.2-1.4				✓
BH106-0.6-0.8	BH106-1.5-1.7				✓
BH107-0-0.1	BH106-0.03-0.3				
BH107-0.1-0.4	BH106-0.6-0.8				
	BH107-0-0.1				✓
BH107-0.5-0.95 ✓	BH107-0.1-0.4				✓
	BH107-0.5-0.95				✓

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au

www.envirolab.com.au

Sample ID	Soil Aggressivity	Texture and Salinity*	CEC	On Hold
BH109-0.01-0.4				✓
BH109-0.5-0.8				✓
BH109-0.8-0.95				✓

The '\sqrt{'} indicates the testing you have requested. **THIS IS NOT A REPORT OF THE RESULTS.**

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

				<u>SAMPL</u>	<u>E ANI</u>	CHAIN C	F CU	ISTO	DDY	FOR	M									
TO: ENVIROLAB 12 ASHLEY S		ES PTY LTD		JKE Job Number		E32507BR	Name and A	ì			FRO		K		•!	•				,
CHATSWOO P: (02) 9910	6200	2067		Date Res	sults	STANDARD]			REA	ل R OF 1:		Ē nv cks ro			าท	ne	nt	ş
F: (02) 9910	6201			Require	d:						MAG	QUAR	IE PAI	RK, NS	W 2	113				•
Attention: A	ileen			Page:		1 of 2]				2-9888 ntion:)2-98 ig Ri		5001 /		· j-
Location:	Gree	nwich		<u> </u>		· · · · · · · · · · · · · · · · · · ·	-	_		Can	cridl	ey@jke reserv	enviro	<u>nment</u>	sico	m.aı	u ·			17
Sampler:	HW						+				- 11	Tests R			nice			1	- '1; - [§]	4
Date Sampled	Lab Ref:	Sample Number	Depth (m)	Sample Container	PID	Sample Description	Combo 2	Combo 3	Combo 6	Combo 6a	8:Metals	PAHs	ткн/втех	втех	Asbestos		PFAS	Asbestos (ID)	China and Chanada day in the name of the second	
27/09/2021	1	BH105	0.25-0.4	G, A, PFAS	0	Fill: Silty Gravelly Sand			х						X	i i			And the second	
27/09/2021	2	BH105	0.5-0.95	G, A, PFAS	0	Fill: Clayey silty sand		x								Į,				
27/09/2021	3	BH105	1.2-1.4	G, A, PFAS	0	Sandy Clay		х				i								
27/09/2021	4	BH105	1.5-1.7	G, A, PFAS	0	XW Sandstone														
28/09/2021	5	вн106	0.03-0.3	G, A	0	Fill: Clayey gravelly sand			х						X				100	1
28/09/2021	6	BH106	0.6-0.8	G, A	0	Silty Clay		x												
27/09/2021	7	BH107	0-0.2	G, A	0	Fill: Silty clay			х										200	
27/09/2021	8	BH107	0.2-0.4	G, A	0	Fill: Sandy clay	,	х											300.00	
27/09/2021	9	BH107	0.5-0.95	G, A	0	Silty Sand														
28/09/2021	10	BH109	0.01-0.4	G, A	0	. Fill: Clayey gravelly sand			х		ĺ									100
28/09/2021	II.	BH109	0.5-0.8	G, A	5	Fill: Sandy clay		x											1	
28/09/2021	12	BH109	0.8-0.95	G, A	1.5	Sandy Clay		x										T		
28/09/2021	13	BH109	1.0-1.2	G, A	0	Sandstone														
29/09/2021	14	BH110A	0-0.1	G, A	0.3	Fill: Silty gravelly sand			х					,				3		
29/09/2021	15	BH110A	0.1-0.2	G, A	0.	Fill: Sandy gravel		x										resident of		
29/09/2021	16	BH110A	0.5-0.8	G, A	0	Fill: Sandy clay		x						,						
29/09/2021	17	BH110A	1.1-1.3	G, A	0	Sandy clay														No. of
28/09/2021	呂	BH111	0-0.1	G, A	0	Fill: Silty sand			х					,					4 30	排入
28/09/2021	19	BH111	0.2-0.3	G, A	0	Fill: Silty sand										13			200	
28/09/2021	0	BH111	0.3-0.6	G, A	0	Fill: Silty clay		x		7		$\neg \uparrow$								100
28/09/2021	21	BH111	0.6-0.8	G, A	0	Fill: Silty clayey Sand		Х												
29/09/2021	22	BH112	0.22-0.65	G, A	0	F: Silty gravelly sand			х					 				4		
29/09/2021	23	BH112	0.65-0.8	G, A	0	XW Sandstone	,	x						.	1			-		100
29/09/2021	24	BH113	0-0.1	G, A	0	Fill: Silty sand			х						To the same			1		
29/09/2021	25	BH113	0.1-0.2	G, A	0	Fill: Silty clayey sand	,	x										j j		
29/09/2021	21	BH113	0.35-0.45	G, A	0	Sandy Clay		×						7	-					
		detection lim	nits required):	·			Sampl G - 250 A - Zip P - Pla	e Con Omg G lock A	Glass Ja Asbesto	ır os Bag		AS - P				AND PROPERTY.	-			
Relinquished I	 -			Date:	_	-	Time:					red By:	~)	3	Dat C	e O	120	221 ZCZ	

279440 updated coc

				SAMPL	<u>E AN</u>	CHAIN O	F CU	STC	DY I	<u>OR</u> I	<u>V1</u>							
TO: ENVIROLAB 12 ASHLEY S		ES PTY LTD		JKE Job Number		E32507BR	ere e e	,			FRO		~					-
CHATSWOO P: (02) 9910 F: (02) 9910	6200	2067		Date Re Require		STANDARD	or comment of					OF 1 QUAR	15 WI	CKS R	OAD		me	ents
Attention: A	ileen			Page:		2 of 2	an the continues]			Atte	-9888 ntion:			Cra	2-988 g Ridl		1
Location:	Gree	nwich	-		-[48		Ţ			Sar	<u> cridle</u> nple P	ey@jke reserv	_		_	_		
Sampler:	HW				-							ests R						-:-
Date Sampled	Lab Ref:	Sample Number	Depth (m)	Sample Container	PID	Sample Description	Combo 2	Combo 3	Combo 6	Combo 6a	TÌ	PAHS TRH/BTEX BTEX BTEX					Achectos (ID)	
29/09/2021	27	BH113	0.45-0.6	G	0	Sandy clay									Par Count			
29/09/2021	28	BH113	0.6-0.65	G	0	Sandstone									3 4 1 1			
29/09/2021	29	BH114	0.05-0.2	G, A	0	Fill: Silty sandy	y		x					-	Į.			
29/09/2021	30	BH114	0.2-0.4	G, A	0	Silty clayey sand												and the same
29/09/2021	31	BH114	0.4-0.5	G, A	0	Sandy clay									1	awa.		
29/09/2021	32	BH115	0-0.1	G, A	0	Fill: Silty clayey sand			x						¥ 13			
29/09/2021	33	BH115	0.3-0.5	G, A	0	Fill: silty clayey sand									0			
29/09/2021	34	BH115	0.6-0.8	G, A	0	Sandy clay		x	<u> </u>						Section 1			
29/09/2021	3≤	BH115	0.9-1.1	G, A	0	Sandy clay		<u>~</u> _							1000			
29/09/2021	36	BH116	0-0.1	G, A	0	Fill: Silty sandy	·		×						X			116.3
29/09/2021	37	BH116	0.1-0.3	G, A	0	Silty clayey sand		x							VA.			
29/09/2021	38	BH116	0.3-0.55	G	0	Sandy clay			<u> </u>		131			_	titusi,	- Guati	112	用飲漁
29/09/2021	39	BH118	0-0.1	G, A	0	Fill: Silty sandy		_	x						x	<u> </u>	+	+-
29/09/2021	40	BH118	0.5-0.6	G, A	0	Fill: Silty sandy									^_			+-
29/09/2021	41	BH118	1.4-1.5	G, A	0	Fill: Silty sandy clay		X			_		\neg				†	
29/09/2021	42	BH118	1.6-1.8	G, A	0	Sandy clay		<u>X</u>				+				_		
29/09/2021	43	BH118	2.3-2.5	G, A	0	Sandy clay						1						
28/09/2021	44	SDUP1	-	G, A	-	Duplicate												
28/09/2021	45	SDUP2		G	-	Duplicate		-					\neg					
8/09/2021	46	SDUP3	•	G, A	-	Duplicate		X					1		X			
9/09/2021	47	SDUP4	-	G, A	_	Duplicate			х						X			
9/09/2021	48	SDUP5	-	G, A	-	Duplicate												
9/09/2021	49	SDUP6	<u>-</u>	G, A	-	Duplicate			х		*				X.	ł		,
7/09/2021	১ ০	PFAS DUP1	-	PFAS		Düplicate	4						>					
7/09/2021	SI	TS-S1	-	٧		Spike						, ×	,					
7/09/2021	52	TB-S1	-	G, PFAS	_	Blank								,				
	ments/		nits required): SEND SDUP6 1	O VIC	v		G - 25	Omg G Jock A	tainer ilass Ja Asbest	ir	PFA	S - PF/			,	•	•	
telinquished I	Зу:		•	Date:			Time:		<u> </u>	1	Receiv	ed By:				Date	:	

SAMPLE AND CHAIN OF CUSTODY FORM TO: FROM: ENVIROLAB SERVICES PTY LTD JKE Job Number: E32507BR 12 ASHLEY STREET **CHATSWOOD NSW 2067 JK**Environments P: (02) 99106200 **Date Results STANDARD** REAR OF 115 WICKS ROAD F: (02) 99106201 Required: MACQUARIE PARK, NSW 2113 P: 02-9888 5000 F: 02-9888 5001 Attention: Aileen Page: 1 of 3 Attention: **Craig Ridley** cridley@jkenvironments.com.au Location: Greenwich Sample Preserved in Esky on Ice Tests Required Sampler: HW ECe (texture) Sample Description Sample Container Sulphate Chloride Resistivity Date Lab Sample Depth (m) 표 Я 5 Sampled Ref: Number Fill: Silty 53 G 27/09/2021 BH105 0.25-0.4 Fill: Clayey 54 G BH105 27/09/2021 0.5-0.95 silty sand SS ·G Sandy Clay 27/09/2021 BH105 1.2-1.4 ડલ G XW.Sandstone 27/09/2021 BH105 2.4-2.5 57 G XW Sandstone 27/09/2021 BH105 2.9-3.0 SS G Sandstone 27/09/2021 BH105 3.9-4.0 G Sandstone 59 27/09/2021 BH105 4.9-5.0 60 G Sandstone 27/09/2021 BH105 5.9-6.0 G Sandstone 61 27/09/2021 BH105 6.9-7.0 62 G Sandstone 27/09/2021 BH105 7.7-7.83 Fill: Clayey G 28/09/2021 63 вн106 0.03-0.3 gravelly sand 164 G Silty Clay 28/09/2021 BH106 0.6-0.8 65 G Sandstone 28/09/2021 BH106 0.9-1.1 Sandstone 66 G 28/09/2021 BH106 1.4-1.5 67 Sandstone Ġ вн106 28/09/2021 1.9-2.0 68 Sandstone G 28/09/2021 BH106 2.4-2.5 Ġ Sandstone B BH106 2.9-3.0 28/09/2021 70 G Sandstone 28/09/2021 BH106 3.9-4.0 71 G Sandstone 28/09/2021 BH106 4.9-5.0 G Sandstone 72 28/09/2021 BH106 5.9-6.0 73 G Sandstone 28/09/2021 вн106 6.9-7.0 74 28/09/2021 BH106 G Sandstone 7.9-8.0 75 Sandstone G 28/09/2021 BH106 8.9-9.0 ·G Sandstone 76 28/09/2021 BH106 9.9-10.0 |オオ |BH106 G Sandstone 28/09/2021 10.9-11.0 Remarks (comments/detection limits required): Sample Containers: G - 250mg Glass Jar A - Ziplock Asbestos Bag

P - Plastic Bag

Time:

Date:

Relinguished By:

279440

Received By:

Date:

		SAN	IPLE AND	CHAIN C	OF C	UST	ODY	FOF	RM							
TREET D NSW									_	1	K	- En	vire	onr	ne	nts
6200 6201			Date Resu Required:	its STAI	NDARI	D			MA	R OF 1	15 WI	ICKS F RK, N	ROAD SW 2:	.13		
ileen			Page:	2 of :	3				Atte	ntion:			Crai	g Ridle		L
Greer	wich							Sa								
HW	 _		-,		<u> </u>					Tests F	Requir	ed				
Lab Ref:	Sample Number	Depth (m)	Sample Container	Sample Description	Hd	EC	ECe (texture)	Sulphate	Chloride	Resistivity	CEC					
78	BH106	11.9-12.0	G	Sandstone											十	
79	BH106	12.45-12.55	G	Sandstone	х	х		х	х	x						
80	BH107	0-0.2	G		x	x	x	х	х	x	x					
81	BH107	0.2-0.4	G	'									1		\vdash	1
82	BH107	0.5-0.95	G	Silty Sand							_		1			$\dagger \lnot \dagger$
119	BH107	1.0-1.3	G	Silty Clay										<u> </u>	\vdash	\vdash
83	BH107	1.3-1.5	G	Sandstone	x	x		x	x	х						
84	BH107	1.9-2.0	G	Sandstone												
28	BH107	2.4-2.5	G	Sandstone												
86	BH107	2.75-2.85	G	Sandstone									_			
F8	BH107	3.9-4.0	G	Sandstone	х	x		x	x	x	•			<u> </u>		
88	BH107	4.9-5.0	G	Sandstone											_	
ধ্ব	BH107	5.9-6.0	G	Sandstone	х	IX		x	x	x				-		Ħ
90	BH107	6.9-7.0	G	Sandstone												
91	BH107	7.9-8.0	G	Sandstone	_											
92	BH107	8.9-9.0	G	Sandstone												
00		9.9-10.0	G	Sandstone												
94	BH107	10.9-11.0	G	Sandstone			·									
95	BH107	11.9-12.0	G	Sandstone												
91			G	Sandstone						_					_	
67			G	Sandstone	x	х		x	x	x						
98	BH107		G	Sandstone												
aa			G	Fill: Clayey							,					
100			G	Fill: Sandy								-				
1 1			G	Sandy Clay	-	••	*		^		`					
			L		G - 25 A - Zip	Omg G olock A	ilass J Asbest	ar	g	•						
Зу:			Date:				ag		Receiv	ed By	;		-	Date:		\dashv
	Green HW Lab Ref:	Greenwich HW	SERVICES PTY LTD TREET D NSW 2067 6200 6201 6400 64	SERVICES PTY LTD TREET Date Result Required: Page: Page:	SERVICES PTY LTD TREET Date Results STAI Required: Page: 2 of Sandstone Page Pag	SERVICES PTY LTD TREET Date Results STANDARI Required: Date Results STANDARI Date Results Date Results Date Results STANDARI Date Results Date Results	SERVICES PTY LTD TREET Dissw 2067 Date Results STANDARD Required:	SERVICES PTY LTD REET DISW 2067 2000 2001	SERVICES PTY LTD TREET TREET DISW 2067 2001 Date Results STANDARD Required:		SERVICES PTY LTD TREET T	Services PTV LTD	SERVICES PTY LTD CREATION CREATING C	SERVICES PTY LITD REFERENCE STANDARD Required: Page: 2 of 3	SERVICES PTY LITD REFERENCE STANDARD Required: STANDARD	SERVICES PTY LTD REF STANDARD Required: STANDARD Require

			SAN	/IPLE AND	CHAIN C	OF CL	JSTC	DDY	FOR	M							
TO: ENVIROLAB		ES PTY LTD		JKE Job Nu		507BR				FROI	VI:			_			
12 ASHLEY S CHATSWOO P: (02) 9910	D NSW 6200	2067		Date Resu	lts STAI	NDARD)			REAF	J				onr	ne	nts
F: (02) 9910 Attention: A				Required:						MAC	QUAR -9888	iE PA	RK, N	SW 21 F: 0	2-9888	B 5001	
	т —		· · · · · · · · · · · · · · · · · · ·	Page:	3 of :	3				cridle	ntion: gy@jke	enviro		ts.cor		≱y ———	
Location:	Greer	nwich					_		Sar	nple Pi	reserv	ed in	Esky (on Ice			
Sampler:	HW	,								Т	ests R	equir	ed				
Date Sampled	Lab Ref:	Sample Number	Depth (m)	Sample Container	Sample Description	ЬH	EC	ECe (texture)	Sulphate	Chloride	Resistivity	CEC					
28/09/2021	102		1.0-1.2	G	Sandstone											 	
28/09/2021	103	BH109	1.42-1.50	G	Sandstone]	ĺ										
28/09/2021	104	BH109	1.9-2.0	G	Sandstone									 	 -	†	$\dagger \exists$
28/09/2021	65	BH109	2.4-2.5	G	Sandstone												
28/09/2021	106	BH109	2.9-3.0	G	Sandstone								-			\vdash	$\dagger \exists$
28/09/2021	107	D11100	3.9-4.0	G	Sandstone	<u> </u>											
28/09/2021	108	BH109	4.9-5.0	G	Sandstone					İΙ							
28/09/2021	109	вн109	5.9-6.0	G	Sandstone												
28/09/2021		BH109	6.9-7.0	G	Sandstone					} }							
28/09/2021	11 1	BH109	7.9-8.0	G	Sandstone									ļ- 			
28/09/2021	112	вн109	8.9-9.0	G	Sandstone												
28/09/2021	113	вн109	9.9-10.0	G	Sandstone	<u> </u>				_							
28/09/2021		вн109	10.96-11.0	G	Sandstone							[
8/09/2021		BH109	11.9-12.0	G	Sandstone												
8/09/2021	-	вн109	12.45-12.56	G	Sandstone						[_					
.0,00,00		BH109	11.35-11.45	G	Sandstone											,	
27/09/21	118	RFAS Trip Black	-								_						
 .				-						-							
							+		\dashv		-			-			
								\dashv									_
											\dashv						
			<u>.</u>					\dashv					\dashv				_
					-		\dashv	\dashv		+		-	\dashv				\dashv
							\dashv	+		-+	-	\dashv	\dashv			-	\dashv
emarks (com	ments/	detection limit	s required):			Sampl G - 250 A - Zip	Omg G lock A	lass Ja sbesto	ır	<u> </u>							
elinquished	Ву:		_	Date:		<u>P - Pla</u> Time:		g	T	Receive	ed By:	:			Date:		\dashv
									- 1								- 1

			SA	MPLE AN	D CHAIN	OF C	<u>USTO</u>	DY FOR	RM								
TO: ENVIROLAB 12 ASHLEY S		ES PTY LTD		JKE Job Nu		507BR				OM:						_	
CHATSWOO		2067		1						_	IKI	Env	ziro	٦nr	na	nts	
P: (02) 9910				Date Resu	lts STA	NDARD	 1	7	DEA					J		1103	
F: (02) 9910				Required:	1932			_ i	REAR OF 115 WICKS ROAD MACQUARIE PARK, NSW 2113								
									- 1	1					5001		
Attention: A	ileen			Page:	1 of	1		_]	Atte	Attention: Craig Ridley							
	Т				, 					ley@jk				n.au			
Location:	Green	nwich						Sa	mple P	reserve	ed in E	sky o	n Ice				
Sampler:	HW		- ₁						1	ests R	equire	:d	-,-				
Date Sampled	Lab Ref:	Sample Number	Depth (m)	Sample Container	Sample Description	SCr extended	SCr extended pH field test (pHF apHFOX)										
27/09/2021	120	BH105	0.25-0.4	Р	Fill: Sandy Gravelly Sand		х				\top						
27/09/2021	121	BH105	0.5-0.95	P	Fill: Clayey silty sand		X			1						+-1	
27/09/2021	122	BH105	1.2-1.4	P	Sandy Clay	+	X		+	†—	 	†	-	\vdash	_	\vdash	
28/09/2021	123	BH106	1.5-1.7	P	Fill: Clayey gravelly sand	 	х			-		 		<u> </u>	\vdash	\vdash	
28/09/2021	124		0.03-0.3	Р	Silty Clay	1	х		+				<u> </u>				
27/09/2021	125	BH106	0.6-0.8	Р	Silty Clay		х			†							
27/09/2021	126	BH107	0-0.1	Р	Fill: Silty clay		х									\Box	
27/09/2021	127	BH107	0.1-0.4	Р	Fill: Sandy clay		х										
27/09/2021	128	BH107	0.5-0.95	Р	Silty Sand		х										
28/09/2021		BH109	0.01-0.4	р.	Fill: Clayey gravelly sand Fill: Clayey	<u> </u>	X.					·					
28/09/2021	130	вн109	0.5-0.8	P	gravelly sand		X			_	ļ						
28/09/2021	1	BH109	0.8-0.95	Р	Sandy Clay		Х		_	<u> </u>							
27/09/2021	119	вн107	1-1.3	P	Silty Clay		Х		-	ļ			<u> </u>				
									_								
			ļ					-									
						\vdash			-								
			· · · · · · ·	-					 								
								-									
										\vdash					-		
				-	-												
																	
																\dashv	
					-				+					\dashv		\dashv	
																\dashv	
Remarks (com	ments/	detection limi	ts required):			G - 250 A - Zip	le Contai Omg Gla Jock Ast stic Bag	ss Jar Þestos Bag	<u> </u>		I			[
Relinquished I	Ву:			Date:		Time:		-	Received By: Date:								

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 279440-E

Client Details	
Client	JK Environments
Attention	C Ridley
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	E32507BR, Greenwich
Number of Samples	additional analysis
Date samples received	30/09/2021
Date completed instructions received	20/10/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details	
Date results requested by	27/10/2021
Date of Issue	27/10/2021
NATA Accreditation Number 2901	. This document shall not be reproduced except in full.
Accredited for compliance with IS	O/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Results Approved By

Hannah Nguyen, Metals Supervisor Josh Williams, LC Supervisor **Authorised By**

Nancy Zhang, Laboratory Manager

Envirolab Reference: 279440-E Revision No: R00

TCLP Preparation - Acid						
Our Reference		279440-E-1	279440-E-5	279440-E-10	279440-E-14	279440-E-15
Your Reference	UNITS	BH105	BH106	BH109	BH110A	BH110A
Depth		0.25-0.4	0.03-0.3	0.01-0.4	0-0.1	0.1-0.2
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		27/09/2021	28/09/2021	28/09/2021	29/09/2021	29/09/2021
pH of soil for fluid# determ.	pH units	9.4	9.6	9.1	8.6	8.7
pH of soil TCLP (after HCI)	pH units	1.8	1.8	1.7	1.7	1.7
Extraction fluid used	-	1	1	1	1	1
pH of final Leachate	pH units	5.3	5.0	5.1	5.1	5.1

TCLP Preparation - Acid					
Our Reference		279440-E-29	279440-E-36	279440-E-39	279440-E-41
Your Reference	UNITS	BH114	BH116	BH118	BH118
Depth		0.05-0.2	0-0.1	0-0.1	1.4-1.5
Type of sample		Soil	Soil	Soil	Soil
Date Sampled		29/09/2021	29/09/2021	29/09/2021	29/09/2021
pH of soil for fluid# determ.	pH units	10.1	8.5	8.5	8.4
pH of soil TCLP (after HCl)	pH units	1.7	1.7	1.8	1.7
Extraction fluid used	-	1	1	1	1
pH of final Leachate	pH units	5.2	4.9	5.0	4.9

Envirolab Reference: 279440-E Revision No: R00

Metals from Leaching Fluid pH 2.9 or 5						
Our Reference		279440-E-1	279440-E-5	279440-E-10	279440-E-14	279440-E-15
Your Reference	UNITS	BH105	BH106	BH109	BH110A	BH110A
Depth		0.25-0.4	0.03-0.3	0.01-0.4	0-0.1	0.1-0.2
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		27/09/2021	28/09/2021	28/09/2021	29/09/2021	29/09/2021
Date extracted	-	25/10/2021	25/10/2021	25/10/2021	25/10/2021	25/10/2021
Date analysed	-	25/10/2021	25/10/2021	25/10/2021	25/10/2021	25/10/2021
Nickel	mg/L	0.08	0.1	0.09	<0.02	0.03

Metals from Leaching Fluid pH 2.9 or 5				
Our Reference		279440-E-29	279440-E-36	279440-E-39
Your Reference	UNITS	BH114	BH116	BH118
Depth		0.05-0.2	0-0.1	0-0.1
Type of sample		Soil	Soil	Soil
Date Sampled		29/09/2021	29/09/2021	29/09/2021
Date extracted	-	25/10/2021	25/10/2021	25/10/2021
Date analysed	-	25/10/2021	25/10/2021	25/10/2021
Lead	mg/L	[NA]		0.72
Nickel	mg/L	0.05	<0.02	[NA]

Envirolab Reference: 279440-E Revision No: R00

PAHs in TCLP (USEPA 1311)		
Our Reference		279440-E-41
Your Reference	UNITS	BH118
Depth		1.4-1.5
Type of sample		Soil
Date Sampled		29/09/2021
Date extracted	-	26/10/2021
Date analysed	-	27/10/2021
Naphthalene in TCLP	mg/L	<0.001
Acenaphthylene in TCLP	mg/L	<0.001
Acenaphthene in TCLP	mg/L	<0.001
Fluorene in TCLP	mg/L	<0.001
Phenanthrene in TCLP	mg/L	<0.001
Anthracene in TCLP	mg/L	<0.001
Fluoranthene in TCLP	mg/L	<0.001
Pyrene in TCLP	mg/L	<0.001
Benzo(a)anthracene in TCLP	mg/L	<0.001
Chrysene in TCLP	mg/L	<0.001
Benzo(bjk)fluoranthene in TCLP	mg/L	<0.002
Benzo(a)pyrene in TCLP	mg/L	<0.001
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	<0.001
Dibenzo(a,h)anthracene in TCLP	mg/L	<0.001
Benzo(g,h,i)perylene in TCLP	mg/L	<0.001
Total +ve PAH's	mg/L	NIL (+)VE
Surrogate p-Terphenyl-d14	%	90

Envirolab Reference: 279440-E

CEC				
Our Reference		279440-E-5	279440-E-15	279440-E-29
Your Reference	UNITS	BH106	BH110A	BH114
Depth		0.03-0.3	0.1-0.2	0.05-0.2
Type of sample		Soil	Soil	Soil
Date Sampled		28/09/2021	29/09/2021	29/09/2021
Date prepared	-	27/10/2021	27/10/2021	27/10/2021
Date analysed	-	27/10/2021	27/10/2021	27/10/2021
Exchangeable Ca	meq/100g	18	14	23
Exchangeable K	meq/100g	0.4	1	0.3
Exchangeable Mg	meq/100g	5.2	3.3	2.5
Exchangeable Na	meq/100g	1.7	<0.1	9.7
Cation Exchange Capacity	meq/100g	25	18	36

Envirolab Reference: 279440-E

Method ID	Methodology Summary
INORG-004	Toxicity Characteristic Leaching Procedure (TCLP) using Zero Headspace Extraction (zHE) using AS4439 and USEPA 1311.
Inorg-004	Toxicity Characteristic Leaching Procedure (TCLP) using AS 4439 and USEPA 1311.
	Please note that the mass used may be scaled down from default based on sample mass available.
	Samples are stored at 2-6oC before and after leachate preparation.
Metals-020	Determination of various metals by ICP-AES following buffer determination as per USEPA 1311 and hence AS 4439.3. Extraction Fluid 1 refers to the pH 5.0 buffer and Extraction Fluid 2 is the pH 2.9 buffer.
Metals-020	Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-AES analytical finish.
Org-022/025	Leachates are extracted with Dichloromethane and analysed by GC-MS/GC-MSMS.

Envirolab Reference: 279440-E

QUALITY CONTROL	QUALITY CONTROL: Metals from Leaching Fluid pH 2.9 or 5					Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			25/10/2021	1	25/10/2021	25/10/2021		25/10/2021	
Date analysed	-			25/10/2021	1	25/10/2021	25/10/2021		25/10/2021	
Lead	mg/L	0.03	Metals-020	<0.03	[NT]		[NT]	[NT]	101	
Nickel	mg/L	0.02	Metals-020	<0.02	1	0.08	0.08	0	100	

Envirolab Reference: 279440-E

QUALITY CON	TROL: PAHs	in TCLP	(USEPA 1311)			Du	plicate		Spike Red	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			26/10/2021	[NT]		[NT]	[NT]	26/10/2021	
Date analysed	-			27/10/2021	[NT]		[NT]	[NT]	27/10/2021	
Naphthalene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	85	
Acenaphthylene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Acenaphthene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	70	
Fluorene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	89	
Phenanthrene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	98	
Anthracene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Fluoranthene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	83	
Pyrene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	82	
Benzo(a)anthracene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Chrysene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	78	
Benzo(bjk)fluoranthene in TCLP	mg/L	0.002	Org-022/025	<0.002	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	77	
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	86	[NT]		[NT]	[NT]	88	

Envirolab Reference: 279440-E

QU	QUALITY CONTROL: CEC					Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			27/10/2021	[NT]		[NT]	[NT]	27/10/2021	[NT]
Date analysed	-			27/10/2021	[NT]		[NT]	[NT]	27/10/2021	[NT]
Exchangeable Ca	meq/100g	0.1	Metals-020	<0.1	[NT]		[NT]	[NT]	109	[NT]
Exchangeable K	meq/100g	0.1	Metals-020	<0.1	[NT]		[NT]	[NT]	110	[NT]
Exchangeable Mg	meq/100g	0.1	Metals-020	<0.1	[NT]		[NT]	[NT]	104	[NT]
Exchangeable Na	meq/100g	0.1	Metals-020	<0.1	[NT]	[NT]	[NT]	[NT]	115	[NT]

Envirolab Reference: 279440-E

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Envirolab Reference: 279440-E

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 279440-E

Revision No: R00

Page | 11 of 11

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	JK Environments
Attention	C Ridley

Sample Login Details	
Your reference	E32507BR, Greenwich
Envirolab Reference	279440-E
Date Sample Received	30/09/2021
Date Instructions Received	20/10/2021
Date Results Expected to be Reported	27/10/2021

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	additional analysis
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	14
Cooling Method	Ice
Sampling Date Provided	YES

Comments	
Nil	

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Sample ID	TCLP Preparation - Acid	Lead	Nickel	Naphthalene in TCLP	Acenaphthylene in TCLP	Acenaphthene in TCLP	Fluorene in TCLP	Phenanthrene in TCLP	Anthracene in TCLP	Fluoranthene in TCLP	Pyrene in TCLP	Benzo(a)anthracene in TCLP	Chrysene in TCLP	Benzo(bjk)fluoranthene in TCLP	Benzo(a)pyrene in TCLP	Indeno(1,2,3-c,d)pyrene - TCLP	Dibenzo(a,h)anthracene in TCLP	Benzo(g,h,i)perylene in TCLP	Total +vePAH's	Surrogate p-Terphenyl-d14	CEC	On Hold
BH105-0.25-0.4	✓		✓																			
BH105-0.5-0.95																						✓
BH105-1.2-1.4																						✓
BH105-1.5-1.7																						✓
BH106-0.03-0.3	✓		✓																		✓	
BH106-0.6-0.8																						✓
BH107-0-0.2																						✓
BH107-0.2-0.4																						✓
BH107-0.5-0.95																						✓
BH109-0.01-0.4	✓		✓																			
BH109-0.5-0.8																						✓
BH109-0.8-0.95																						✓
BH109-1.0-1.2																						✓
BH110A-0-0.1	✓		✓																			
BH110A-0.1-0.2	✓		✓																		✓	
BH110A-0.5-0.8																						✓
BH110A-1.1-1.3																						✓
BH111-0-0.1																						✓
BH111-0.2-0.3																						✓
BH111-0.3-0.6																						✓

Sample ID	TCLP Preparation - Acid	Lead	Nickel	Naphthalene in TCLP	Acenaphthylene in TCLP	Acenaphthene in TCLP	Fluorene in TCLP	Phenanthrene in TCLP	Anthracene in TCLP	Fluoranthene in TCLP	Pyrene in TCLP	Benzo(a)anthracene in TCLP	Chrysene in TCLP	Benzo(bjk)fluoranthene in TCLP	Benzo(a)pyrene in TCLP	Indeno(1,2,3-c,d)pyrene - TCLP	Dibenzo(a,h)anthracene in TCLP	Benzo(g,h,i)perylene in TCLP	Total +vePAH's	Surrogate p-Terphenyl-d14	CEC	On Hold
BH111-0.6-0.8																						✓
BH112-0.22-0.65																						✓
BH112-0.65-0.8																						✓
BH113-0-0.1																						✓
BH113-0.1-0.2																						✓
BH113-0.35-0.45																						✓
BH113-0.45-0.6																						✓
BH113-0.6-0.65																						✓
BH114-0.05-0.2	✓		✓																		✓	
BH114-0.2-0.4																						✓
BH114-0.4-0.5																						✓
BH115-0-0.1																						✓
BH115-0.3-0.5																						✓
BH115-0.6-0.8																						✓
BH115-0.9-1.1																						✓
BH116-0-0.1	✓		✓																			
BH116-0.1-0.3																						✓
BH116-0.3-0.55																						✓
BH118-0-0.1	✓	✓																				
BH118-0.5-0.6																						1

Sample ID	TCLP Preparation - Acid	Lead	Nickel	Naphthalene in TCLP	Acenaphthylene in TCLP	Acenaphthene in TCLP	Fluorene in TCLP	Phenanthrene in TCLP	Anthracene in TCLP	Fluoranthene in TCLP	Pyrene in TCLP	Benzo(a)anthracene in TCLP	Chrysene in TCLP	Benzo(bjk)fluoranthene in TCLP	Benzo(a)pyrene in TCLP	Indeno(1,2,3-c,d)pyrene - TCLP	Dibenzo(a,h)anthracene in TCLP	Benzo(g,h,i)perylene in TCLP	Total +vePAH's	Surrogate p-Terphenyl-d14	CEC	On Hold
BH118-1.4-1.5	✓			✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓		
BH118-1.6-1.8																						✓
BH118-2.3-2.5																						✓
SDUP1																						✓
SDUP2																						✓
SDUP3																						✓
SDUP4																						✓
SDUP5																						✓
SDUP6																						✓
PFAS DUP1																						✓
TS-S1																						✓
TB-S1																						✓
BH105-0.25-0.4																						✓
BH105-0.5-0.95																						✓
BH105-1.2-1.4																						✓
BH105-2.4-2.5																						✓
BH105-2.9-3.0																						✓
BH105-3.9-4.0																						✓
BH105-4.9-5.0																						✓
BH105-5.9-6.0																						✓

Sample ID	TCLP Preparation - Acid	Lead	Nickel	Naphthalene in TCLP	Acenaphthylene in TCLP	Acenaphthene in TCLP	Fluorene in TCLP	Phenanthrene in TCLP	Anthracene in TCLP	Fluoranthene in TCLP	Pyrene in TCLP	Benzo(a)anthracene in TCLP	Chrysene in TCLP	Benzo(bjk)fluoranthene in TCLP	Benzo(a)pyrene in TCLP	Indeno(1,2,3-c,d)pyrene - TCLP	Dibenzo(a,h)anthracene in TCLP	Benzo(g,h,i)perylene in TCLP	Total +vePAH's	Surrogate p-Terphenyl-d14	CEC	On Hold
BH105-6.9-7.0																						✓
BH105-7.7-7.83																						✓
BH106-0.03-0.3																						✓
BH106-0.6-0.8																						✓
BH106-0.9-1.1																						✓
BH106-1.4-1.5																						✓
BH106-1.9-2.0																						✓
BH106-2.4-2.5																						✓
BH106-2.9-3.0																						✓
BH106-3.9-4.0																						✓
BH106-4.9-5.0																						✓
BH106-5.9-6.0																						✓
BH106-6.9-7.0																						✓
BH106-7.9-8.0																						✓
BH106-8.9-9.0																						✓
BH106-9.9-10.0																						✓
BH106-10.9-11.0																						✓
BH106-11.9-12.0																						✓
BH106-12.45-12.55																						1
B11100-12.40-12.00														- 1								

Sample ID	TCLP Preparation - Acid	Lead	Nickel	Naphthalene in TCLP	Acenaphthylene in TCLP	Acenaphthene in TCLP	Fluorene in TCLP	Phenanthrene in TCLP	Anthracene in TCLP	Fluoranthene in TCLP	Pyrene in TCLP	Benzo(a)anthracene in TCLP	Chrysene in TCLP	Benzo(bjk)fluoranthene in TCLP	Benzo(a)pyrene in TCLP	Indeno(1,2,3-c,d)pyrene - TCLP	Dibenzo(a,h)anthracene in TCLP	Benzo(g,h,i)perylene in TCLP	Total +vePAH's	Surrogate p-Terphenyl-d14	CEC	On Hold
BH107-0.2-0.4																						✓
BH107-0.5-0.95																						✓
BH107-1.3-1.5																						✓
BH107-1.9-2.0																						✓
BH107-2.4-2.5																						✓
BH107-2.75-2.85																						✓
BH107-3.9-4.0																						✓
BH107-4.9-5.0																						✓
BH107-5.9-6.0																						✓
BH107-6.9-7.0																						✓
BH107-7.9-8.0																						✓
BH107-8.9-9.0																						✓
BH107-9.9-10.0																						✓
BH107-10.9-11.0																						✓
BH107-11.9-12.0																						✓
BH107-12.9-13.0																						✓
BH107-13.9-14.0																						✓
BH107-14.9-15.0																						✓
BH109-0.01-0.4																						✓
BH109-0.5-0.8																						✓

Sample ID	TCLP Preparation - Acid	Lead	Nickel	Naphthalene in TCLP	Acenaphthylene in TCLP	Acenaphthene in TCLP	Fluorene in TCLP	Phenanthrene in TCLP	Anthracene in TCLP	Fluoranthene in TCLP	Pyrene in TCLP	Benzo(a)anthracene in TCLP	Chrysene in TCLP	Benzo(bjk)fluoranthene in TCLP	Benzo(a)pyrene in TCLP	Indeno(1,2,3-c,d)pyrene - TCLP	Dibenzo(a,h)anthracene in TCLP	Benzo(g,h,i)perylene in TCLP	Total +vePAH's	Surrogate p-Terphenyl-d14	CEC	On Hold
BH109-0.8-0.95																						✓
BH109-1.0-1.2																						✓
BH109-1.42-1.50																						✓
BH109-1.9-2.0																						✓
BH109-2.4-2.5																						✓
BH109-2.9-3.0																						✓
BH109-3.9-4.0																						✓
BH109-4.9-5.0																						✓
BH109-5.9-6.0																						✓
BH109-6.9-7.0																						✓
BH109-7.9-8.0																						✓
BH109-8.9-9.0																						✓
BH109-9.9-10.0																						✓
BH109-10.96-11.0																						✓
BH109-11.9-12.0																						✓
BH109-12.45-12.56																						✓
BH109-11.35-11.45																						✓
PFAS Trip Blank																						✓
BH107-1.0-1.3																						✓
																						1

ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

Sample ID	TCLP Preparation - Acid	Lead	Nickel	Naphthalene in TCLP	Acenaphthylene in TCLP	Acenaphthene in TCLP	Fluorene in TCLP	Phenanthrene in TCLP	Anthracene in TCLP	Fluoranthene in TCLP	Pyrene in TCLP	Benzo(a)anthracene in TCLP	Chrysene in TCLP	Benzo(bjk)fluoranthene in TCLP	Benzo(a)pyrene in TCLP	Indeno(1,2,3-c,d)pyrene - TCLP	Dibenzo(a,h)anthracene in TCLP	Benzo(g,h,i)perylene in TCLP	Total +vePAH's	Surrogate p-Terphenyl-d14	CEC	On Hold
BH105-0.5-0.95																						✓
BH105-1.2-1.4																						✓
BH106-1.5-1.7																						✓
BH106-0.03-0.3																						✓
BH106-0.6-0.8																						✓
BH107-0-0.1																						✓
BH107-0.1-0.4																						✓
BH107-0.5-0.95																						✓
BH109-0.01-0.4																						✓
BH109-0.5-0.8																						✓
BH109-0.8-0.95																						✓
BH118 - [TRIPLICATE]-0-0.1																						✓

The '\sqrt{'} indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au

www.envirolab.com.au

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Subject:

FW: Results for Registration 279440 E32507BR, Greenwich

Def. 279440-E 7A7: Standard Due: 27(10/2021 M

279440-E

From: Craig Ridley < CRidley@jkenvironments.com.au>

Sent: Wednesday, 20 October 2021 5:25 PM
To: Greta Petzold <GPetzold@envirolab.com.au>

Cc: Samplereceipt <Samplereceipt@envirolabservices.com.au> **Subject:** Re: Results for Registration 279440 E32507BR, Greenwich

CAUTION: This email originated from outside of the organisation. Do not act on instructions, click links or open attachments unless you recognise the sender and know the content is authentic and safe.

Hi Greta,

Can we please arrange for the following additional analysis for this sample batch (standard turnaround is fine):

Sample ID and Depth		Lab Reference	Test Required
BH105 (0.25-0.4m)	1	1	TCLP Nickel
BH106 (0.03-0.3m)	7	5	TCLP Nickel, CEC
BH109 (0.01-0.4m)	0	10	TCLP Nickel
BH110A (0-0.1m)	Ţ	14	TCLP Nickel
BH110A (0.1-0.2m)	15	15	TCLP Nickel, CEC
BH114 (0.05-0.2m)	291	29	TCLP Nickel, CEC
BH116 (0-0.1m)	36	36	TCLP Nickel
BH118 (0-0.1m)	29	39	TCLP Lead
BH118 (1.4-1.5m)	41	41	TCLP PAH

Anv	issues,	nlea	ISE	call	
\neg 117	issucs.	p_{1}	130	Can	

Thanks,

Craig

Envirolab Services Pty Ltd ABN 37 112 535 645 alev St Chatswood NSW 2067

12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 280023

Client Details	
Client	JK Environments
Attention	C Ridley
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	E32507BR, Greenwich
Number of Samples	47 Soil
Date samples received	11/10/2021
Date completed instructions received	11/10/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details		
Date results requested by	15/10/2021	
Date of Issue	15/10/2021	
NATA Accreditation Number 2901. T	his document shall not be reproduced except in full.	
Accredited for compliance with ISO/I	EC 17025 - Testing. Tests not covered by NATA are denoted with *	

Results Approved By

Diego Bigolin, Inorganics Supervisor Giovanni Agosti, Group Technical Manager **Authorised By**

Nancy Zhang, Laboratory Manager

Envirolab Reference: 280023 Revision No: R00

Soil Aggressivity						
Our Reference		280023-1	280023-2	280023-4	280023-12	280023-13
Your Reference	UNITS	BH101	BH101	BH101	BH102	BH102
Depth		0.02-0.4	0.5-0.85	1.7-1.95	0.05-0.1	0.5-0.95
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		6/10/2021	6/10/2021	6/10/2021	6/10/2021	6/10/2021
Electrical Conductivity 1:5 soil:water	μS/cm	170	110	60	71	81
pH 1:5 soil:water	pH Units	9.8	9.1	8.7	9.0	7.0
Chloride, Cl 1:5 soil:water	mg/kg	<10	<10	<10	<10	10
Sulphate, SO4 1:5 soil:water	mg/kg	120	21	24	<10	56
Resistivity in soil*	ohm m	60	95	170	140	120

Soil Aggressivity						
Our Reference		280023-14	280023-22	280023-24	280023-26	280023-31
Your Reference	UNITS	BH102	BH104	BH104	BH104	BH108
Depth		1.4-1.6	0.04-0.3	1.5-1.95	3.2-3.45	0.1-0.4
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		6/10/2021	1/10/2021	1/10/2021	1/10/2021	30/09/2021
Electrical Conductivity 1:5 soil:water	μS/cm	53	[NA]	[NA]	170	[NA]
pH 1:5 soil:water	pH Units	7.8	8.5	9.0	8.2	4.9
Chloride, Cl 1:5 soil:water	mg/kg	10	25	<10	10	10
Sulphate, SO4 1:5 soil:water	mg/kg	32	1,800	100	130	45
Resistivity in soil*	ohm m	190	13	90	58	210

Soil Aggressivity						
Our Reference		280023-34	280023-36	280023-40	280023-41	280023-43
Your Reference	UNITS	BH108	BH108	BH108	BH108	BH108
Depth		1.9-2.0	2.9-3.0	6.9-7.0	7.9-8.0	9.9-10.0
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		30/09/2021	30/09/2021	30/09/2021	30/09/2021	30/09/2021
Electrical Conductivity 1:5 soil:water	μS/cm	19	11	13	16	20
pH 1:5 soil:water	pH Units	5.3	5.4	5.9	5.8	5.7
Chloride, Cl 1:5 soil:water	mg/kg	20	<10	10	20	20
Sulphate, SO4 1:5 soil:water	mg/kg	49	<10	<10	<10	<10
Resistivity in soil*	ohm m	530	900	760	640	500

Envirolab Reference: 280023 Revision No: R00

Texture and Salinity*				
Our Reference		280023-22	280023-24	280023-31
Your Reference	UNITS	BH104	BH104	BH108
Depth		0.04-0.3	1.5-1.95	0.1-0.4
Type of sample		Soil	Soil	Soil
Date Sampled		1/10/2021	1/10/2021	30/09/2021
Date prepared	-	12/10/2021	12/10/2021	12/10/2021
Date analysed	-	12/10/2021	12/10/2021	12/10/2021
Electrical Conductivity 1:5 soil:water	μS/cm	790	110	49
Texture Value	-	9.0	9.0	14
Texture	-	CLAY LOAM	CLAY LOAM	SANDY LOAM
ECe	dS/m	7.1	<2	<2
Class	-	MODERATELY SALINE	NON SALINE	NON SALINE

Envirolab Reference: 280023

CEC				
Our Reference		280023-22	280023-24	280023-31
Your Reference	UNITS	BH104	BH104	BH108
Depth		0.04-0.3	1.5-1.95	0.1-0.4
Type of sample		Soil	Soil	Soil
Date Sampled		1/10/2021	1/10/2021	30/09/2021
Date prepared	-	14/10/2021	14/10/2021	14/10/2021
Date analysed	-	14/10/2021	14/10/2021	14/10/2021
Exchangeable Ca	meq/100g	100	33	2.4
Exchangeable K	meq/100g	1.8	0.7	1.1
Exchangeable Mg	meq/100g	46	14	1.6
Exchangeable Na	meq/100g	2.0	0.3	0.2
Cation Exchange Capacity	meq/100g	153	48	5.2

Envirolab Reference: 280023 Revision No: R00

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25oC in accordance with APHA 22nd ED 2510 and Rayment & Lyons. Resistivity is calculated from Conductivity (non NATA). Resistivity (calculated) may not correlate with results otherwise obtained using Resistivity-Current method, depending on the nature of the soil being analysed.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.
INORG-123	Determined using a "Texture by Feel" method.
Metals-020	Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-AES analytical finish.

Envirolab Reference: 280023 Revision No: R00

QUALIT	QUALITY CONTROL: Soil Aggressivity						Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	280023-34	
Electrical Conductivity 1:5 soil:water	μS/cm	1	Inorg-002	<1	14	53	49	8	101	[NT]	
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	14	7.8	7.9	1	102	[NT]	
Chloride, Cl 1:5 soil:water	mg/kg	10	Inorg-081	<10	14	10	10	0	95	75	
Sulphate, SO4 1:5 soil:water	mg/kg	10	Inorg-081	<10	14	32	30	6	93	#	
Resistivity in soil*	ohm m	1	Inorg-002	<1	14	190	200	5	[NT]	[NT]	

QUALITY	QUALITY CONTROL: Soil Aggressivity							Duplicate			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
Electrical Conductivity 1:5 soil:water	μS/cm	1	Inorg-002	[NT]	40	13	14	7			
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	40	5.9	5.9	0			
Chloride, Cl 1:5 soil:water	mg/kg	10	Inorg-081	[NT]	40	10	10	0			
Sulphate, SO4 1:5 soil:water	mg/kg	10	Inorg-081	[NT]	40	<10	<10	0			
Resistivity in soil*	ohm m	1	Inorg-002	[NT]	40	760	720	5	[NT]	[NT]	

Envirolab Reference: 280023

QUALITY CONTROL: Texture and Salinity*						Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			13/10/2021	[NT]		[NT]	[NT]	13/10/2021	
Date analysed	-			13/10/2021	[NT]		[NT]	[NT]	13/10/2021	
Electrical Conductivity 1:5 soil:water	μS/cm	1	Inorg-002	<1	[NT]		[NT]	[NT]	101	

Envirolab Reference: 280023 Revision No: R00

QUALITY CONTROL: CEC						Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	280023-24	
Date prepared	-			14/10/2021	22	14/10/2021	14/10/2021		14/10/2021	14/10/2021	
Date analysed	-			14/10/2021	22	14/10/2021	14/10/2021		14/10/2021	14/10/2021	
Exchangeable Ca	meq/100g	0.1	Metals-020	<0.1	22	100	100	0	118	#	
Exchangeable K	meq/100g	0.1	Metals-020	<0.1	22	1.8	1.9	5	122	108	
Exchangeable Mg	meq/100g	0.1	Metals-020	<0.1	22	46	49	6	118	126	
Exchangeable Na	meq/100g	0.1	Metals-020	<0.1	22	2.0	2.2	10	126	117	

Envirolab Reference: 280023 Revision No: R00

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Envirolab Reference: 280023

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 280023 Revision No: R00

Report Comments

CEC - # High spike recovery was obtained for this sample. The sample was re-digested and re-spiked and the high recovery was confirmed. This is suspected to be from matrix interferences. However, an acceptable recovery was obtained for the LCS.

AGGRESSIVITY - # Percent recovery is not possible to report due to the high concentration of the analyte/s in the sample/s. However an acceptable recovery was obtained for the LCS.

Envirolab Reference: 280023 Page | 11 of 11 Revision No: R00

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	JK Environments
Attention	C Ridley

Sample Login Details	
Your reference	E32507BR, Greenwich
Envirolab Reference	280023
Date Sample Received	11/10/2021
Date Instructions Received	11/10/2021
Date Results Expected to be Reported	15/10/2021

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	47 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	10
Cooling Method	Ice
Sampling Date Provided	YES

Comments	
Nil	

Please direct any queries to:

Aileen Hie	Jacinta Hurst								
Phone: 02 9910 6200	Phone: 02 9910 6200								
Fax: 02 9910 6201	Fax: 02 9910 6201								
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au								

Analysis Underway, details on the following page:

ENVIROLAB EMPL ALABTEC

Envirolab Services Pty Ltd

Sample ID	Soil Aggressivity	Texture and Salinity*	CEC	On Hold
BH101-0.02-0.4	√			
BH101-0.5-0.85	√			
BH101-1.5-1.7				✓
BH101-1.7-1.95	✓			
BH101-2.4-2.5				✓
BH101-2.9-3.0				✓
BH101-3.9-4.0				✓
BH101-4.9-5.0				✓
BH101-5.9-6.0				✓ ✓ ✓ ✓
BH101-6.9-7.0				✓
BH101-7.4-7.5				✓
BH102-0.05-0.1	√			
BH102-0.5-0.95	✓			
BH102-1.4-1.6	✓			
BH102-1.9-2.0				✓
BH102-2.4-2.5				✓
BH102-2.9-3.0				✓
BH102-3.9-4.0				✓ ✓ ✓ ✓
BH102-4.9-5.0				✓
BH102-5.9-6.0				✓
BH102-6.0-6.12				✓
BH104-0.04-0.3	✓	✓	✓	
BH104-0.5-0.95				✓
BH104-1.5-1.95	✓	✓	✓	
BH104-2.4-2.5				✓
BH104-3.2-3.45	✓			
BH104-4.2-4.3				✓
BH104-4.89-4.99				✓✓
BH104-5.87-5.97				✓
BH108-0-0.1				✓
BH108-0.1-0.4	✓	✓	✓	
BH108-0.8-1.0				✓

Envirolab Services Pty Ltd ABN 37 112 535 645

12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	Soil Aggressivity	Texture and Salinity*	CEC	On Hold
BH108-1.4-1.5				✓
BH108-1.9-2.0	✓			
BH108-2.4-2.5				✓
BH108-2.9-3.0	✓			
BH108-3.9-4.0				✓
BH108-4.9-5.0				✓
BH108-5.9-6.0				✓
BH108-6.9-7.0	✓			
BH108-7.9-8.0	✓			
BH108-8.9-9.0				✓
BH108-9.9-10.0	✓			
BH108-10.9-11.0				✓
BH108-11.9-12.0				✓
BH108-12.9-13.0				✓
BH108-13.85-13.95				✓

The '\sqrt{'} indicates the testing you have requested. **THIS IS NOT A REPORT OF THE RESULTS.**

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

SAMPLE AND CHAIN OF CUSTODY FORM

TO: ENVIROLAB SERVICES PTY LTD 12 ASHLEY STREET CHATSWOOD NSW 2067 P: (02) 99106200 F: (02) 99106201 Attention: Aileen											FROM: JKEnvironments REAR OF 115 WICKS ROAD MACQUARIE PARK, NSW 2113 P: 02-9888 5000 F: 02-9888 5001 Attention: Craig Ridley cridley@jkenvironments.com.au							
Location:	Green	wich							San						····			
Sampler:	нw	· · · · · · · · · · · · · · · · · · ·	- " ₂			Sample Preserved in Esky on Ice Tests Required												
Date Sampled	Lab Ref:	Sample Number	Depth (m)	Sample Container	Sample Description	Hd	EC	ECe (texture)	Sulphate	Chloride	Resistivity	CEC						
6/10/2021	1	BH101	0.02-0.4	G	F: Silty gravelly sand	x	х		х	х	x				,			
6/10/2021	2	BH101	0.5-0.85	G	F: silty sand	x	x		x	х .	x							
6/10/2021	3	BH101	1.5-1.7	G	F: silty sand													ŀ
6/10/2021	4	BH101	1.7-1.95	G	XW Sandstone	x	x		×	×	x		,	i.	<i>;</i> -			٠
6/10/2021	5	BH101	2.4-2.5	G	Sandstone					ı,			/A	7		iviro	ab Sa 2 Asi	lcv .
6/10/2021	6	BH101	2.9-3.0	G	Sandstone	-				-			ENVÎR	プ	اد ا <i>نت</i> اب ا	s woo	d NSI	78) 902.0
6/10/2021	7	BH101	3.9-4.0	G	Sandstone								Job		<u>'</u>		007	2
6/10/2021	8	BH101	4.9-5.0	G	Sandstone					:	ļ. —		Date	Ruck	ved:	8,	4	207
5/10/2021	9	BH101	5.9-6.0	G	Sandstone								Time Rece	قرزور د.	√÷d:	i	60	
6/10/2021	10	BH101	6.9-7.0	G	Sandstone					-			FOT(12). Amb	ens,		18
6/10/2021	11	BH101	7.4-7.5	G	Sandstone								Sevinir Sevinir			0) 1	i.	1
	12	BH102	0.05-0.1	G	F: Silty		×		x	x	x					<u> </u>		
6/10/2021	13		1	G	gravelly sand F: silty clay										-			`
6/10/2021	iu	BH102	0.5-0.95	G	Sandstone	X	x		x	×	×				-			
5/10/2021	1	BH102	1.4-1.6	G	Sandstone	x	x		×	x	x							1
6/10/2021	1,	BH102	1.9-2.0	G	Sandstone			ž.										
6/10/2021		BH102	2.4-2.5	G	Sandstone				1		<u> </u>				,			
6/10/2021	163	BH102	2.9-3.0	G	Sandstone	5	-	-	 	\vdash	-							1
6/10/2021	19	BH102	3.9-4.0	G	Sandstone					-	ļ						-	1
5/10/2021	+ + -	BH102	4.9-5.0		Sandstone			-	ļ	\vdash			-				-	1
6/10/2021	20	вн102	5.9-6.0	G				-	-	 	 							
6/10/2021	21	BH102	6.0-6.12	G	Sandstone F: sandy			-	-	-	├	-					-	ł
1/10/2021	22	BH104	0.04-0.3	G		х	х	×	x	x	x	×					<u> </u>	1
1/10/2021	23	BH104	0.5-0.95	G	gravelly sand			-	 		<u> </u>	_					<u> </u>	.
1/10/2021	24	BH104	1.5-1.95	G	gravelly sand F: silty	х	x	x	×	x	x	×		<u> </u>				
1/10/2021		BH104	2.4-2.5	G	gravelly sand			مخي .										1
Remarks (cor	mments 	detection lim	its required):			G - 2 A - Z	ple Co 50mg iplock lastic I	Glass Asbes	Jar 🤺									
Relinquished C Ridley	Ву:			Date: 8/10	/2021	Time	:: 160	0		Rece	ived B		U		Date:	600	<u></u>	

SAMPLE AND CHAIN OF CUSTODY FORM

.

			SAIVI	PLE AND	CHAIN O	r CC	310	זטי	<u>FUR</u>	7							
TO: ENVIROLAB SERVICES PTY LTD			JKE Job Number: E32507BR														
12 ASHLEY STREET			Date Results STANDARD							JKEnvironments							
CHATSWOOD NSW 2067 P: (02) 99106200																	
				Date Resul	ts STAN	DARD	-	j		1					1		
F: (02) 99106	201			Required:						MAC	QUAR	IE PAF	K, NS	W 21:	13		
					1					P: 02	-9888	5000		F: 02	-9888	5001	
Attention: Ai	leen			Page:	2 of 2			ì		Atte	ition:			Craig	Ridle	y	
												enviro					
Location:	Green	wich	-						Sar	nple P	reserv	ed in E	sky c	n ice			
-		WICH									octe D	oquire	<u></u>	-			
Sampler:	HW			- ₁		ļ		1	1	Tests Required							т —
Date Sampled	Lab Ref:	Sample Number	Depth (m)	Sample Container	Sample Description	Hd	EC	ECe (texture)	Sulphate	Chloride	Resistivity	CEC			:		
1/10/2021	26	BH104	3.2-3.45	G	F: silty sand	x	x		х	х	х						
1/10/2021	27	BH104	4.2-4.3	G	Sandstone			ļ		_					<u> </u>		<u> </u>
1/10/2021	28	BH104	4.89-4.99	G	Sandstone			<u> </u>	ļ	1_		<u></u>		<u> </u>	ļ	↓	<u> </u>
1/10/2021	201	вн104	5.87-5.97	G	Sandstone Fill: Sandy			<u> </u>			ļ			ļ	ļ	<u> </u>	
30/09/2021	30	вн108	0-0.1	G	Silty Clay Fill: Sandy	ļ		ļ		<u> </u>				<u> </u>			
30/09/2021	31	BH108	0.1-0.4	G	Silty Clay	x	х	×	x	×	х	x		ļ .	ļ	ļ	ļ
30/09/2021	32	вн108	0.8-1.0	G	Sandstone		<u> </u>	<u> </u>							ļ	ļ	<u> </u>
30/09/2021	33	вн108	1.4-1.5	G	Sandstone		ļ		ļ					-	ļ	ļ	<u> </u>
30/09/2021	34	вн108	1.9-2.0	G	Sandstone	х	х	-	x	х	х	<u> </u>		ļ	ļ	<u> </u>	<u> </u>
30/09/2021	35	вн108	2.4-2.5	G	Sandstone		Þ.	ļ .	<u> </u>	ļ	_				<u> </u>	\vdash	<u> </u>
30/09/2021	36	вн108	2.9-3.0	G	Sandstone	х	x		x	×	x					 `	├
30/09/2021	37	вн108	3.9-4.0	G	Sandstone			<u> </u>	-	-				-		├	
30/09/2021	38	вн108	4.9-5.0	G	Sandstone		-	-	1.	_					-	-	<u> </u>
30/09/2021	39	BH108	5.9-6.0	G	Sandstone			-	-	-	<u> </u>			-	-	<u> </u>	<u> </u>
30/09/2021		вн108	6.9-7.0	G	Sandstone	×	×	-	x	x	x	 		-		_	-
30/09/2021	41	вн108	7.9-8.0	G	Silty Clay	×	×	-	×	х	x			-			-
30/09/2021		вн108	8.9-9.0	G	Sandstone	ļ	-	1		-	ļ			-	-	-	-
30/09/2021	43	вн108	9.9-10.0	G	Sandstone	х	х	+	x	×	х			-		-	
30/09/2021		ВН108	10.9-11.0	G	Sandstone Sandstone	ļ	-	+	-					1		-	
30/09/2021	45	BH108	11.9-12.0	G	+	ļ	-	-	-	-	<u> </u>	ļ		-	 - -	+	\vdash
30/09/2021	46	вн108	12.9-13.0	G	Sandstone		1	 	 	-	-			 -		+-	-
30/09/2021	47	BH108	13.85-13.95	G	Sandstone		\vdash	 		-	┼—	 		╂	-	+	\vdash
<u> </u>	-		 		 				+	+	-				-	+-	+
	1			-		_	-	+	+	-	\vdash	-		1	\vdash	<u>.i.</u>	-
Remarks (co	mment	s/detection lin	nits required):		1	Sam	ple Co	ntain	ers:		1	l			1	1 +	
		-, 35105WGI IIII		•	·	G - 2	50mg	Glass Asbe					00	2	3	•	
Relinquished By: Date:			Date:	ý	Time				Rece	ived E	 Ву:			Date	e: \		
[•					1					_				_	1	6
						'	160			1	no				رک	10	102
			_		_												

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 280027-A

Client Details	
Client	JK Environments
Attention	C Ridley
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	E32507BR, Greenwich
Number of Samples	additional analysis
Date samples received	08/10/2021
Date completed instructions received	20/10/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details				
Date results requested by	27/10/2021			
Date of Issue	27/10/2021			
NATA Accreditation Number 2901. This document shall not be reproduced except in full.				
Accredited for compliance with IS	O/IEC 17025 - Testing. Tests not covered by NATA are denoted with *			

Results Approved By

Dragana Tomas, Senior Chemist Hannah Nguyen, Metals Supervisor Josh Williams, LC Supervisor **Authorised By**

Nancy Zhang, Laboratory Manager

Envirolab Reference: 280027-A Revision No: R00

svTRH (C10-C40) in Soil		
Our Reference		280027-A-11
Your Reference	UNITS	BH103
Depth		1.4-1.5
Type of sample		Soil
Date Sampled		6/10/2021
Date extracted	-	27/10/2021
Date analysed	-	27/10/2021
TRH C ₁₀ - C ₁₄	mg/kg	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100
Total +ve TRH (C10-C36)	mg/kg	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100
Total +ve TRH (>C10-C40)	mg/kg	<50
Surrogate o-Terphenyl	%	69

Envirolab Reference: 280027-A

TCLP Preparation - Acid						
Our Reference		280027-A-1	280027-A-5	280027-A-6	280027-A-8	280027-A-12
Your Reference	UNITS	BH101	BH102	BH102	BH103	BH104
Depth		0.02-0.4	0.05-0.1	0.5-0.95	0.03-0.4	0.04-0.3
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		6/10/2021	6/10/2021	6/10/2021	6/10/2021	1/10/2021
pH of soil for fluid# determ.	pH units	9.3	8.3	8.1	8.7	8.5
pH of soil TCLP (after HCl)	pH units	1.8	1.8	1.8	1.7	1.8
Extraction fluid used	-	1	1	1	1	1
pH of final Leachate	pH units	5.8	5.0	5.0	5.1	5.4

TCLP Preparation - Acid		
Our Reference		280027-A-13
Your Reference	UNITS	BH104
Depth		0.5-0.95
Type of sample		Soil
Date Sampled		1/10/2021
pH of soil for fluid# determ.	pH units	8.6
pH of soil TCLP (after HCl)	pH units	1.8
Extraction fluid used	-	1
pH of final Leachate	pH units	5.4

Envirolab Reference: 280027-A

Metals from Leaching Fluid pH 2.9 or 5						
Our Reference		280027-A-1	280027-A-5	280027-A-6	280027-A-12	280027-A-13
Your Reference	UNITS	BH101	BH102	BH102	BH104	BH104
Depth		0.02-0.4	0.05-0.1	0.5-0.95	0.04-0.3	0.5-0.95
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		6/10/2021	6/10/2021	6/10/2021	1/10/2021	1/10/2021
Date extracted	-	25/10/2021	25/10/2021	25/10/2021	25/10/2021	25/10/2021
Date analysed	-	25/10/2021	25/10/2021	25/10/2021	25/10/2021	25/10/2021
Lead	mg/L		[NA]	0.2	[NA]	[NA]
Nickel	mg/L	0.02	0.09	[NA]	0.07	0.06

Envirolab Reference: 280027-A

PAHs in TCLP (USEPA 1311)			
Our Reference		280027-A-6	280027-A-8
Your Reference	UNITS	BH102	BH103
Depth		0.5-0.95	0.03-0.4
Type of sample		Soil	Soil
Date Sampled		6/10/2021	6/10/2021
Date extracted	-	26/10/2021	26/10/2021
Date analysed	-	27/10/2021	27/10/2021
Naphthalene in TCLP	mg/L	<0.001	<0.001
Acenaphthylene in TCLP	mg/L	<0.001	<0.001
Acenaphthene in TCLP	mg/L	<0.001	<0.001
Fluorene in TCLP	mg/L	<0.001	<0.001
Phenanthrene in TCLP	mg/L	<0.001	<0.001
Anthracene in TCLP	mg/L	<0.001	<0.001
Fluoranthene in TCLP	mg/L	<0.001	<0.001
Pyrene in TCLP	mg/L	<0.001	<0.001
Benzo(a)anthracene in TCLP	mg/L	<0.001	<0.001
Chrysene in TCLP	mg/L	<0.001	<0.001
Benzo(bjk)fluoranthene in TCLP	mg/L	<0.002	<0.002
Benzo(a)pyrene in TCLP	mg/L	<0.001	<0.001
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	<0.001	<0.001
Dibenzo(a,h)anthracene in TCLP	mg/L	<0.001	<0.001
Benzo(g,h,i)perylene in TCLP	mg/L	<0.001	<0.001
Total +ve PAH's	mg/L	NIL (+)VE	NIL (+)VE
Surrogate p-Terphenyl-d14	%	71	88

Envirolab Reference: 280027-A

CEC			
Our Reference		280027-A-5	280027-A-13
Your Reference	UNITS	BH102	BH104
Depth		0.05-0.1	0.5-0.95
Type of sample		Soil	Soil
Date Sampled		6/10/2021	1/10/2021
Date prepared	-	27/10/2021	27/10/2021
Date analysed	-	27/10/2021	27/10/2021
Exchangeable Ca	meq/100g	23	12
Exchangeable K	meq/100g	0.3	0.3
Exchangeable Mg	meq/100g	5.5	5.0
Exchangeable Na	meq/100g	0.3	0.2
Cation Exchange Capacity	meq/100g	29	17

Envirolab Reference: 280027-A

sTPH in Soil (C10-C40)-Silica			
Our Reference		280027-A-13	280027-A-30
Your Reference	UNITS	BH104	SDup7
Depth		0.5-0.95	-
Type of sample		Soil	Soil
Date Sampled		1/10/2021	30/09/2021
Date extracted	-	27/10/2021	27/10/2021
Date analysed	-	27/10/2021	27/10/2021
TPH C ₁₀ - C ₁₄	mg/kg	<50	<50
TPH C ₁₅ - C ₂₈	mg/kg	150	<100
TPH C ₂₉ - C ₃₆	mg/kg	230	<100
TPH >C10 -C16	mg/kg	<50	<50
TPH >C ₁₆ -C ₃₄	mg/kg	340	<100
TPH >C ₃₄ -C ₄₀	mg/kg	100	<100
Surrogate o-Terphenyl	%	79	74

Envirolab Reference: 280027-A

Method ID	Methodology Summary
INORG-004	Toxicity Characteristic Leaching Procedure (TCLP) using Zero Headspace Extraction (zHE) using AS4439 and USEPA 1311.
Inorg-004	Toxicity Characteristic Leaching Procedure (TCLP) using AS 4439 and USEPA 1311.
	Please note that the mass used may be scaled down from default based on sample mass available.
	Samples are stored at 2-6oC before and after leachate preparation.
Metals-020	Determination of various metals by ICP-AES following buffer determination as per USEPA 1311 and hence AS 4439.3. Extraction Fluid 1 refers to the pH 5.0 buffer and Extraction Fluid 2 is the pH 2.9 buffer.
Metals-020	Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-AES analytical finish.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-022/025	Leachates are extracted with Dichloromethane and analysed by GC-MS/GC-MSMS.

Envirolab Reference: 280027-A

QUALITY CONTROL: svTRH (C10-C40) in Soil						Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-22	
Date extracted	-			27/10/2021	11	27/10/2021	27/10/2021		27/10/2021	
Date analysed	-			27/10/2021	11	27/10/2021	27/10/2021		27/10/2021	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	11	<50	<50	0	127	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	11	<100	<100	0	137	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	11	<100	<100	0	76	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	11	<50	<50	0	127	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	11	<100	<100	0	137	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	11	<100	<100	0	76	
Surrogate o-Terphenyl	%		Org-020	83	11	69	69	0	88	[NT]

Envirolab Reference: 280027-A

QUALITY CONTROL: Metals from Leaching Fluid pH 2.9 or 5				Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			25/10/2021	1	25/10/2021	25/10/2021		25/10/2021	
Date analysed	-			25/10/2021	1	25/10/2021	25/10/2021		25/10/2021	
Lead	mg/L	0.03	Metals-020	<0.03	[NT]		[NT]	[NT]	101	
Nickel	mg/L	0.02	Metals-020	<0.02	1	0.02	0.02	0	100	

Envirolab Reference: 280027-A

QUALITY CONTROL: PAHs in TCLP (USEPA 1311)					Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]	
Date extracted	-			26/10/2021	[NT]		[NT]	[NT]	26/10/2021		
Date analysed	-			27/10/2021	[NT]		[NT]	[NT]	27/10/2021		
Naphthalene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	85		
Acenaphthylene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]		
Acenaphthene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	70		
Fluorene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	89		
Phenanthrene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	98		
Anthracene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]		
Fluoranthene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	83		
Pyrene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	82		
Benzo(a)anthracene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]		
Chrysene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	78		
Benzo(bjk)fluoranthene in TCLP	mg/L	0.002	Org-022/025	<0.002	[NT]		[NT]	[NT]	[NT]		
Benzo(a)pyrene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	77		
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]		
Dibenzo(a,h)anthracene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]		
Benzo(g,h,i)perylene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]		
Surrogate p-Terphenyl-d14	%		Org-022/025	86	[NT]		[NT]	[NT]	88		

Envirolab Reference: 280027-A

QU	ALITY CONT	TROL: CE	EC			Du	plicate		Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]		
Date prepared	-			27/10/2021	5	27/10/2021	27/10/2021		27/10/2021			
Date analysed	-			27/10/2021	5	27/10/2021	27/10/2021		27/10/2021			
Exchangeable Ca	meq/100g	0.1	Metals-020	<0.1	5	23	21	9	109			
Exchangeable K	meq/100g	0.1	Metals-020	<0.1	5	0.3	0.3	0	110			
Exchangeable Mg	meq/100g	0.1	Metals-020	<0.1	5	5.5	4.9	12	104			
Exchangeable Na	meq/100g	0.1	Metals-020	<0.1	5	0.3	0.2	40	115			

Envirolab Reference: 280027-A

QUALITY CONT	ROL: sTPH	in Soil (C	10-C40)-Silica			Du	plicate		Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]		
Date extracted	-			27/10/2021	[NT]		[NT]	[NT]	27/10/2021			
Date analysed	-			27/10/2021	[NT]		[NT]	[NT]	27/10/2021			
TPH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	102			
TPH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	103			
TPH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	88			
TPH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	102			
TPH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	103			
TPH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	88			
Surrogate o-Terphenyl	%		Org-020	102	[NT]		[NT]	[NT]	96			

Envirolab Reference: 280027-A

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Envirolab Reference: 280027-A

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 280027-A Page | 15 of 15

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	JK Environments
Attention	C Ridley

Sample Login Details		
Your reference	E32507BR, Greenwich	
Envirolab Reference	280027-A	
Date Sample Received	08/10/2021	
Date Instructions Received	20/10/2021	
Date Results Expected to be Reported	27/10/2021	

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	additional analysis
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	10
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments	
Nil	

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd

ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

Sample ID	TCLP Preparation - Acid	Lead	Nickel	Naphthalene in TCLP	Acenaphthylene in TCLP	Acenaphthene in TCLP	Fluorene in TCLP	Phenanthrene in TCLP	Anthracene in TCLP	Fluoranthene in TCLP	Pyrene in TCLP	Benzo(a)anthracene in TCLP	Chrysene in TCLP	Benzo(bjk)fluoranthene in TCLP	Benzo(a)pyrene in TCLP	Indeno(1,2,3-c,d)pyrene - TCLP	Dibenzo(a,h)anthracene in TCLP	Benzo(g,h,i)perylene in TCLP	Total +vePAH's	Surrogate p-Terphenyl-d14	CEC	sTPH in Soil (C10-C40)-Silica	On Hold
BH101-0.02-0.4	✓		✓																				
BH101-0.5-0.85																							✓
BH101-1.5-1.7																							✓
BH101-1.7-1.95																							✓
BH102-0.05-0.1	✓		✓																		✓		
BH102-0.5-0.95	✓	✓		✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓			
BH102-1.4-1.6																							✓
BH103-0.03-0.4	✓			✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓			
BH103-0.5-0.7																							✓
BH103-0.7-0.95																							✓
BH103-1.4-1.5																						✓	
BH104-0.04-0.3	✓		✓																				
BH104-0.5-0.95	✓		✓																		✓	✓	
BH104-1.5-1.95																							✓
BH104-3.0-3.2																							✓
BH104-3.2-3.45																							✓
BH104-3.8-4.1																							✓
BH108-0-0.1																							✓
BH108-0.1-0.4																							✓
BH108-0.8-1.0																							✓

Envirolab Services Pty Ltd ABN 37 112 535 645 shley St Chatswood NSW 2067

12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	TCLP Preparation - Acid	Lead	Nickel	Naphthalene in TCLP	Acenaphthylene in TCLP	Acenaphthene in TCLP	Fluorene in TCLP	Phenanthrene in TCLP	Anthracene in TCLP	Fluoranthene in TCLP	Pyrene in TCLP	Benzo(a)anthracene in TCLP	Chrysene in TCLP	Benzo(bjk)fluoranthene in TCLP	Benzo(a)pyrene in TCLP	Indeno(1,2,3-c,d)pyrene - TCLP	Dibenzo(a,h)anthracene in TCLP	Benzo(g,h,i)perylene in TCLP	Total +vePAH's	Surrogate p-Terphenyl-d14	CEC	sTPH in Soil (C10-C40)-Silica	On Hold
BH117-0-0.1																							✓
BH117-0.5-0.95																							✓
BH117-0.5-1.5																							✓
BH117-1.3-1.5																							✓
BH119-0.05-0.3																							✓
BH119-0.5-0.8																							✓
BH119-1.0-1.3																							✓
BH119-1.8-2.0																							✓
BH119-2.4-2.5																							✓
SDup7																						✓	
SDup9																							✓
PFAS Dup 2																							✓
PFASDup4																							✓
PFASDup5																							✓
FRI-SPT																							✓
PFAS Soil																							✓

The '√' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Subject:

FW: Results for Registration 280027 E32507BR, Greenwich

Pef: 280027-A. 7A7: Standard Due: 27/10/2021

280027-A

From: Craig Ridley < CRidley@jkenvironments.com.au>

Sent: Wednesday, 20 October 2021 5:26 PM To: Greta Petzold < GPetzold@envirolab.com.au>

Cc: Samplereceipt <Samplereceipt@envirolabservices.com.au> Subject: Re: Results for Registration 280027 E32507BR, Greenwich

CAUTION: This email originated from outside of the organisation. Do not act on instructions, click links or open attachments unless you recognise the sender and know the content is authentic and safe.

Hi Greta,

Can we please arrange for the following additional analysis for this sample batch (standard turnaround):

Sample ID and Depth		Lab Reference	Test Required
BH101 (0.02-0.4m)		1	TCLP Nickel
BH102 (0.05-0.1m)	5	5	TCLP Nickel, CEC
BH102 (0.5-0.95m)	6.	6	TCLP Lead, TCLP PAH
BH103 (0.03-0.4m)	8	8	TCLP PAH
BH103 (1.4-1.5m)	Ħ	11	TRH (Silica Gel)
BH104 (0.04-0.3m)	12	12	TCLP Nickel
BH104 (0.5-0.95m)	13	13	TCLP Nickel, TRH (Silica Gel), CEC
SDUP7	40	30	TRH (Silica Gel)

BH103 (0.03-0.4m)	8	8	TCLP PAH
BH103 (1.4-1.5m)	ŧl	11	TRH (Silica Gel)
BH104 (0.04-0.3m)	12	12	TCLP Nickel
BH104 (0.5-0.95m)	13	13	TCLP Nickel, TRH (Silica Gel), CEC
SDUP7	30	30	TRH (Silica Gel)

Any iss	sues, p	lease	call.
---------	---------	-------	-------

Thanks,

Craig

Regards

Envirolab Services Pty Ltd ABN 37 112 535 645

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 280509

Client Details	
Client	JK Environments
Attention	C Ridley
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	E32507BR, Greenwich
Number of Samples	11 Water
Date samples received	15/10/2021
Date completed instructions received	15/10/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details	
Date results requested by	22/10/2021
Date of Issue	22/10/2021
NATA Accreditation Number 2901. Th	nis document shall not be reproduced except in full.
Accredited for compliance with ISO/IE	EC 17025 - Testing. Tests not covered by NATA are denoted with *

Results Approved By

Dragana Tomas, Senior Chemist Jaimie Loa-Kum-Cheung, Senior Chemist Jenny He, Chemist Josh Williams, LC Supervisor Steven Luong, Organics Supervisor **Authorised By**

Nancy Zhang, Laboratory Manager

VOCs in water						
Our Reference		280509-1	280509-2	280509-3	280509-4	280509-5
Your Reference	UNITS	MW101	MW102	MW105	MW106	MW107
Date Sampled		14/10/2021	14/10/2021	14/10/2021	14/10/2021	13/10/2021
Pump ID		29.7	40.3	2.8	11.2	2.4
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	18/10/2021	18/10/2021	18/10/2021	18/10/2021	18/10/2021
Date analysed	-	18/10/2021	18/10/2021	18/10/2021	18/10/2021	18/10/2021
Dichlorodifluoromethane	μg/L	<10	<10	<10	<10	<10
Chloromethane	μg/L	<10	<10	<10	<10	<10
Vinyl Chloride	μg/L	<10	<10	<10	<10	<10
Bromomethane	μg/L	<10	<10	<10	<10	<10
Chloroethane	μg/L	<10	<10	<10	<10	<10
Trichlorofluoromethane	μg/L	<10	<10	<10	<10	<10
1,1-Dichloroethene	μg/L	<1	<1	<1	<1	<1
Trans-1,2-dichloroethene	μg/L	<1	<1	<1	<1	<1
1,1-dichloroethane	μg/L	<1	<1	<1	<1	<1
Cis-1,2-dichloroethene	μg/L	<1	<1	<1	<1	<1
Bromochloromethane	μg/L	<1	<1	<1	<1	<1
Chloroform	μg/L	42	<1	16	<1	<1
2,2-dichloropropane	μg/L	<1	<1	<1	<1	<1
1,2-dichloroethane	μg/L	<1	<1	<1	<1	<1
1,1,1-trichloroethane	μg/L	<1	<1	<1	<1	<1
1,1-dichloropropene	μg/L	<1	<1	<1	<1	<1
Cyclohexane	μg/L	<1	<1	<1	<1	<1
Carbon tetrachloride	μg/L	<1	<1	<1	<1	<1
Benzene	μg/L	<1	<1	<1	<1	<1
Dibromomethane	μg/L	<1	<1	<1	<1	<1
1,2-dichloropropane	μg/L	<1	<1	<1	<1	<1
Trichloroethene	μg/L	<1	<1	<1	<1	<1
Bromodichloromethane	μg/L	7	<1	2	<1	<1
trans-1,3-dichloropropene	μg/L	<1	<1	<1	<1	<1
cis-1,3-dichloropropene	μg/L	<1	<1	<1	<1	<1
1,1,2-trichloroethane	μg/L	<1	<1	<1	<1	<1
Toluene	μg/L	<1	<1	<1	<1	<1
1,3-dichloropropane	μg/L	<1	<1	<1	<1	<1
Dibromochloromethane	μg/L	1	<1	<1	<1	<1
1,2-dibromoethane	μg/L	<1	<1	<1	<1	<1
Tetrachloroethene	μg/L	<1	<1	<1	<1	<1
1,1,1,2-tetrachloroethane	μg/L	<1	<1	<1	<1	<1
Chlorobenzene	μg/L	<1	<1	<1	<1	<1

VOCs in water						
Our Reference		280509-1	280509-2	280509-3	280509-4	280509-5
Your Reference	UNITS	MW101	MW102	MW105	MW106	MW107
Date Sampled		14/10/2021	14/10/2021	14/10/2021	14/10/2021	13/10/2021
Pump ID		29.7	40.3	2.8	11.2	2.4
Type of sample		Water	Water	Water	Water	Water
Ethylbenzene	μg/L	<1	<1	<1	<1	<1
Bromoform	μg/L	<1	<1	<1	<1	<1
m+p-xylene	μg/L	<2	<2	<2	<2	<2
Styrene	μg/L	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	μg/L	<1	<1	<1	<1	<1
o-xylene	μg/L	<1	<1	<1	<1	<1
1,2,3-trichloropropane	μg/L	<1	<1	<1	<1	<1
Isopropylbenzene	μg/L	<1	<1	<1	<1	<1
Bromobenzene	μg/L	<1	<1	<1	<1	<1
n-propyl benzene	μg/L	<1	<1	<1	<1	<1
2-chlorotoluene	μg/L	<1	<1	<1	<1	<1
4-chlorotoluene	μg/L	<1	<1	<1	<1	<1
1,3,5-trimethyl benzene	μg/L	<1	<1	<1	<1	<1
Tert-butyl benzene	μg/L	<1	<1	<1	<1	<1
1,2,4-trimethyl benzene	μg/L	<1	<1	<1	<1	<1
1,3-dichlorobenzene	μg/L	<1	<1	<1	<1	<1
Sec-butyl benzene	μg/L	<1	<1	<1	<1	<1
1,4-dichlorobenzene	μg/L	<1	<1	<1	<1	<1
4-isopropyl toluene	μg/L	<1	<1	<1	<1	<1
1,2-dichlorobenzene	μg/L	<1	<1	<1	<1	<1
n-butyl benzene	μg/L	<1	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	μg/L	<1	<1	<1	<1	<1
1,2,4-trichlorobenzene	μg/L	<1	<1	<1	<1	<1
Hexachlorobutadiene	μg/L	<1	<1	<1	<1	<1
1,2,3-trichlorobenzene	μg/L	<1	<1	<1	<1	<1
Surrogate Dibromofluoromethane	%	103	110	105	109	108
Surrogate toluene-d8	%	101	100	101	100	99
Surrogate 4-BFB	%	111	110	110	110	109

VOCs in water			
Our Reference		280509-6	280509-7
Your Reference	UNITS	MW109	WDUP1
Date Sampled		14/10/2021	13/10/2021
Pump ID		27.2	-
Type of sample		Water	Water
Date extracted	-	18/10/2021	18/10/2021
Date analysed	-	18/10/2021	18/10/2021
Dichlorodifluoromethane	μg/L	<10	<10
Chloromethane	μg/L	<10	<10
Vinyl Chloride	μg/L	<10	<10
Bromomethane	μg/L	<10	<10
Chloroethane	μg/L	<10	<10
Trichlorofluoromethane	μg/L	<10	<10
1,1-Dichloroethene	μg/L	<1	<1
Trans-1,2-dichloroethene	μg/L	<1	<1
1,1-dichloroethane	μg/L	<1	<1
Cis-1,2-dichloroethene	μg/L	<1	<1
Bromochloromethane	μg/L	<1	<1
Chloroform	μg/L	<1	<1
2,2-dichloropropane	μg/L	<1	<1
1,2-dichloroethane	μg/L	<1	<1
1,1,1-trichloroethane	μg/L	<1	<1
1,1-dichloropropene	μg/L	<1	<1
Cyclohexane	μg/L	<1	<1
Carbon tetrachloride	μg/L	<1	<1
Benzene	μg/L	<1	<1
Dibromomethane	μg/L	<1	<1
1,2-dichloropropane	μg/L	<1	<1
Trichloroethene	μg/L	<1	<1
Bromodichloromethane	μg/L	<1	<1
trans-1,3-dichloropropene	μg/L	<1	<1
cis-1,3-dichloropropene	μg/L	<1	<1
1,1,2-trichloroethane	μg/L	<1	<1
Toluene	μg/L	<1	<1
1,3-dichloropropane	μg/L	<1	<1
Dibromochloromethane	μg/L	<1	<1
1,2-dibromoethane	μg/L	<1	<1
Tetrachloroethene	μg/L	<1	<1
1,1,1,2-tetrachloroethane	μg/L	<1	<1
Chlorobenzene	μg/L	<1	<1

VOCs in water			
Our Reference		280509-6	280509-7
Your Reference	UNITS	MW109	WDUP1
Date Sampled		14/10/2021	13/10/2021
Pump ID		27.2	-
Type of sample		Water	Water
Ethylbenzene	μg/L	<1	<1
Bromoform	μg/L	<1	<1
m+p-xylene	μg/L	<2	<2
Styrene	μg/L	<1	<1
1,1,2,2-tetrachloroethane	μg/L	<1	<1
o-xylene	μg/L	<1	<1
1,2,3-trichloropropane	μg/L	<1	<1
Isopropylbenzene	μg/L	<1	<1
Bromobenzene	μg/L	<1	<1
n-propyl benzene	μg/L	<1	<1
2-chlorotoluene	μg/L	<1	<1
4-chlorotoluene	μg/L	<1	<1
1,3,5-trimethyl benzene	μg/L	<1	<1
Tert-butyl benzene	μg/L	<1	<1
1,2,4-trimethyl benzene	μg/L	<1	<1
1,3-dichlorobenzene	μg/L	<1	<1
Sec-butyl benzene	μg/L	<1	<1
1,4-dichlorobenzene	μg/L	<1	<1
4-isopropyl toluene	μg/L	<1	<1
1,2-dichlorobenzene	μg/L	<1	<1
n-butyl benzene	μg/L	<1	<1
1,2-dibromo-3-chloropropane	μg/L	<1	<1
1,2,4-trichlorobenzene	μg/L	<1	<1
Hexachlorobutadiene	μg/L	<1	<1
1,2,3-trichlorobenzene	μg/L	<1	<1
Surrogate Dibromofluoromethane	%	108	108
Surrogate toluene-d8	%	99	100
Surrogate 4-BFB	%	111	110

Envirolab Reference: 280509

Page | 5 of 27 Revision No: R00

vTRH(C6-C10)/BTEXN in Water						
Our Reference		280509-1	280509-2	280509-3	280509-4	280509-5
Your Reference	UNITS	MW101	MW102	MW105	MW106	MW107
Date Sampled		14/10/2021	14/10/2021	14/10/2021	14/10/2021	13/10/2021
Pump ID		29.7	40.3	2.8	11.2	2.4
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	18/10/2021	18/10/2021	18/10/2021	18/10/2021	18/10/2021
Date analysed	-	18/10/2021	18/10/2021	18/10/2021	18/10/2021	18/10/2021
TRH C ₆ - C ₉	μg/L	43	<10	22	<10	<10
TRH C ₆ - C ₁₀	μg/L	44	<10	23	<10	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	44	<10	23	<10	<10
Benzene	μg/L	<1	<1	<1	<1	<1
Toluene	μg/L	<1	<1	<1	<1	<1
Ethylbenzene	μg/L	<1	<1	<1	<1	<1
m+p-xylene	μg/L	<2	<2	<2	<2	<2
o-xylene	μg/L	<1	<1	<1	<1	<1
Naphthalene	μg/L	<1	<1	<1	<1	<1
Surrogate Dibromofluoromethane	%	103	110	105	109	108
Surrogate toluene-d8	%	101	100	101	100	99
Surrogate 4-BFB	%	111	110	110	110	109

vTRH(C6-C10)/BTEXN in Water					
Our Reference		280509-6	280509-7	280509-9	280509-10
Your Reference	UNITS	MW109	WDUP1	TS-W1	TB-W1
Date Sampled		14/10/2021	13/10/2021	13/10/2021	13/10/2021
Pump ID		27.2	-	-	-
Type of sample		Water	Water	Water	Water
Date extracted	-	18/10/2021	18/10/2021	18/10/2021	18/10/2021
Date analysed	-	18/10/2021	18/10/2021	21/10/2021	21/10/2021
TRH C ₆ - C ₉	μg/L	<10	<10	[NA]	[NA]
TRH C ₆ - C ₁₀	μg/L	<10	<10	[NA]	[NA]
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10	<10	[NA]	[NA]
Benzene	μg/L	<1	<1	96%	<1
Toluene	μg/L	<1	<1	103%	<1
Ethylbenzene	μg/L	<1	<1	115%	<1
m+p-xylene	μg/L	<2	<2	110%	<2
o-xylene	μg/L	<1	<1	110%	<1
Naphthalene	μg/L	<1	<1	[NA]	[NA]
Surrogate Dibromofluoromethane	%	108	108	105	104
Surrogate toluene-d8	%	99	100	101	100
Surrogate 4-BFB	%	111	110	100	103

Envirolab Reference: 280509

svTRH (C10-C40) in Water						
Our Reference		280509-1	280509-2	280509-3	280509-4	280509-5
Your Reference	UNITS	MW101	MW102	MW105	MW106	MW107
Date Sampled		14/10/2021	14/10/2021	14/10/2021	14/10/2021	13/10/2021
Pump ID		29.7	40.3	2.8	11.2	2.4
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	19/10/2021	19/10/2021	19/10/2021	19/10/2021	19/10/2021
Date analysed	-	20/10/2021	20/10/2021	20/10/2021	20/10/2021	20/10/2021
TRH C ₁₀ - C ₁₄	μg/L	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	μg/L	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	μg/L	<100	<100	<100	<100	<100
Total +ve TRH (C10-C36)	μg/L	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆	μg/L	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	μg/L	<50	<50	<50	<50	<50
TRH >C ₁₆ - C ₃₄	μg/L	<100	<100	<100	<100	<100
TRH >C ₃₄ - C ₄₀	μg/L	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	μg/L	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	90	92	84	89	100

svTRH (C10-C40) in Water			
Our Reference		280509-6	280509-7
Your Reference	UNITS	MW109	WDUP1
Date Sampled		14/10/2021	13/10/2021
Pump ID		27.2	-
Type of sample		Water	Water
Date extracted	-	19/10/2021	19/10/2021
Date analysed	-	20/10/2021	20/10/2021
TRH C ₁₀ - C ₁₄	μg/L	<50	<50
TRH C ₁₅ - C ₂₈	μg/L	<100	<100
TRH C ₂₉ - C ₃₆	μg/L	<100	<100
Total +ve TRH (C10-C36)	μg/L	<50	<50
TRH >C ₁₀ - C ₁₆	μg/L	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	μg/L	<50	<50
TRH >C ₁₆ - C ₃₄	μg/L	<100	<100
TRH >C ₃₄ - C ₄₀	μg/L	<100	<100
Total +ve TRH (>C10-C40)	μg/L	<50	<50
Surrogate o-Terphenyl	%	76	84

PAHs in Water - Low Level						
Our Reference		280509-1	280509-2	280509-3	280509-4	280509-5
Your Reference	UNITS	MW101	MW102	MW105	MW106	MW107
Date Sampled		14/10/2021	14/10/2021	14/10/2021	14/10/2021	13/10/2021
Pump ID		29.7	40.3	2.8	11.2	2.4
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	19/10/2021	19/10/2021	19/10/2021	19/10/2021	19/10/2021
Date analysed	-	19/10/2021	19/10/2021	19/10/2021	19/10/2021	19/10/2021
Naphthalene	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Acenaphthylene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	μg/L	<0.1	<0.1	<0.1	<0.1	0.3
Fluorene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	μg/L	<0.1	<0.1	<0.1	<0.1	0.29
Surrogate p-Terphenyl-d14	%	77	96	90	94	91

Envirolab Reference: 280509

PAHs in Water - Low Level			
Our Reference		280509-6	280509-7
Your Reference	UNITS	MW109	WDUP1
Date Sampled		14/10/2021	13/10/2021
Pump ID		27.2	-
Type of sample		Water	Water
Date extracted	-	19/10/2021	19/10/2021
Date analysed	-	19/10/2021	19/10/2021
Naphthalene	μg/L	<0.2	<0.2
Acenaphthylene	μg/L	<0.1	<0.1
Acenaphthene	μg/L	5.1	<0.1
Fluorene	μg/L	<0.1	<0.1
Phenanthrene	μg/L	<0.1	<0.1
Anthracene	μg/L	<0.1	<0.1
Fluoranthene	μg/L	<0.1	<0.1
Pyrene	μg/L	<0.1	<0.1
Benzo(a)anthracene	μg/L	<0.1	<0.1
Chrysene	μg/L	<0.1	<0.1
Benzo(b,j+k)fluoranthene	μg/L	<0.2	<0.2
Benzo(a)pyrene	μg/L	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	μg/L	<0.1	<0.1
Dibenzo(a,h)anthracene	μg/L	<0.1	<0.1
Benzo(g,h,i)perylene	μg/L	<0.1	<0.1
Benzo(a)pyrene TEQ	μg/L	<0.5	<0.5
Total +ve PAH's	μg/L	5.1	<0.1
Surrogate p-Terphenyl-d14	%	75	77

Envirolab Reference: 280509

PFAS in Waters Extended				
Our Reference		280509-3	280509-8	280509-11
Your Reference	UNITS	MW105	WPFASDUP1	PFASTB-W
Date Sampled		14/10/2021	14/10/2021	13/10/2021
Pump ID		2.8	-	-
Type of sample		Water	Water	Water
Date prepared	-	18/10/2021	18/10/2021	20/10/2021
Date analysed	-	18/10/2021	18/10/2021	20/10/2021
Perfluorobutanesulfonic acid	μg/L	<0.01	<0.01	<0.01
Perfluoropentanesulfonic acid	μg/L	<0.01	<0.01	<0.01
Perfluorohexanesulfonic acid - PFHxS	μg/L	<0.01	<0.01	<0.01
Perfluoroheptanesulfonic acid	μg/L	<0.01	<0.01	<0.01
Perfluorooctanesulfonic acid PFOS	μg/L	<0.01	<0.01	<0.01
Perfluorodecanesulfonic acid	μg/L	<0.02	<0.02	<0.02
Perfluorobutanoic acid	μg/L	<0.02	<0.02	<0.02
Perfluoropentanoic acid	μg/L	<0.02	<0.02	<0.02
Perfluorohexanoic acid	μg/L	<0.01	<0.01	<0.01
Perfluoroheptanoic acid	μg/L	<0.01	<0.01	<0.01
Perfluorooctanoic acid PFOA	μg/L	<0.01	<0.01	<0.01
Perfluorononanoic acid	μg/L	<0.01	<0.01	<0.01
Perfluorodecanoic acid	μg/L	<0.02	<0.02	<0.02
Perfluoroundecanoic acid	μg/L	<0.02	<0.02	<0.02
Perfluorododecanoic acid	μg/L	<0.05	<0.05	<0.05
Perfluorotridecanoic acid	μg/L	<0.1	<0.1	<0.1
Perfluorotetradecanoic acid	μg/L	<0.5	<0.5	<0.5
4:2 FTS	μg/L	<0.01	<0.01	<0.01
6:2 FTS	μg/L	<0.01	<0.01	<0.01
8:2 FTS	μg/L	<0.02	<0.02	<0.02
10:2 FTS	μg/L	<0.02	<0.02	<0.02
Perfluorooctane sulfonamide	μg/L	<0.1	<0.1	<0.1
N-Methyl perfluorooctane sulfonamide	μg/L	<0.05	<0.05	<0.05
N-Ethyl perfluorooctanesulfon amide	μg/L	<0.1	<0.1	<0.1
N-Me perfluorooctanesulfonamid oethanol	μg/L	<0.05	<0.05	<0.05
N-Et perfluorooctanesulfonamid oethanol	μg/L	<0.5	<0.5	<0.5
MePerfluorooctanesulf- amid oacetic acid	μg/L	<0.02	<0.02	<0.02
EtPerfluorooctanesulf- amid oacetic acid	μg/L	<0.02	<0.02	<0.02
Surrogate ¹³ C ₈ PFOS	%	97	96	91
Surrogate ¹³ C ₂ PFOA	%	100	111	112
Extracted ISTD 13 C ₃ PFBS	%	94	95	97
Extracted ISTD 18 O2 PFHxS	%	111	111	108
Extracted ISTD 13 C4 PFOS	%	100	99	104

PFAS in Waters Extended				
Our Reference		280509-3	280509-8	280509-11
Your Reference	UNITS	MW105	WPFASDUP1	PFASTB-W
Date Sampled		14/10/2021	14/10/2021	13/10/2021
Pump ID		2.8	-	-
Type of sample		Water	Water	Water
Extracted ISTD 13 C ₄ PFBA	%	101	101	109
Extracted ISTD 13 C ₃ PFPeA	%	95	96	97
Extracted ISTD 13 C ₂ PFHxA	%	113	112	98
Extracted ISTD 13 C ₄ PFHpA	%	113	113	101
Extracted ISTD 13 C ₄ PFOA	%	110	108	113
Extracted ISTD 13 C ₅ PFNA	%	124	122	128
Extracted ISTD 13 C2 PFDA	%	121	123	114
Extracted ISTD 13 C ₂ PFUnDA	%	123	108	123
Extracted ISTD 13 C2 PFDoDA	%	107	100	104
Extracted ISTD 13 C ₂ PFTeDA	%	81	87	83
Extracted ISTD 13 C2 4:2FTS	%	111	107	122
Extracted ISTD 13 C2 6:2FTS	%	111	108	166
Extracted ISTD 13 C ₂ 8:2FTS	%	100	100	152
Extracted ISTD 13 C8 FOSA	%	110	112	107
Extracted ISTD d ₃ N MeFOSA	%	110	110	103
Extracted ISTD d ₅ N EtFOSA	%	109	107	97
Extracted ISTD d7 N MeFOSE	%	123	123	109
Extracted ISTD de N EtFOSE	%	111	115	105
Extracted ISTD d ₃ N MeFOSAA	%	119	120	143
Extracted ISTD d ₅ N EtFOSAA	%	107	97	179
Total Positive PFHxS & PFOS	μg/L	<0.01	<0.01	<0.01
Total Positive PFOA & PFOS	μg/L	<0.01	<0.01	<0.01
Total Positive PFAS	μg/L	<0.01	<0.01	<0.01

HM in water - dissolved						
Our Reference		280509-1	280509-2	280509-3	280509-4	280509-5
Your Reference	UNITS	MW101	MW102	MW105	MW106	MW107
Date Sampled		14/10/2021	14/10/2021	14/10/2021	14/10/2021	13/10/2021
Pump ID		29.7	40.3	2.8	11.2	2.4
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	19/10/2021	19/10/2021	19/10/2021	19/10/2021	19/10/2021
Date analysed	-	19/10/2021	19/10/2021	19/10/2021	19/10/2021	19/10/2021
Arsenic-Dissolved	μg/L	2	1	<1	3	2
Cadmium-Dissolved	μg/L	<0.1	<0.1	0.2	0.2	<0.1
Chromium-Dissolved	μg/L	<1	<1	<1	<1	<1
Copper-Dissolved	μg/L	<1	6	5	7	5
Lead-Dissolved	μg/L	<1	<1	<1	17	3
Mercury-Dissolved	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel-Dissolved	μg/L	3	<1	18	10	5
Zinc-Dissolved	μg/L	40	6	81	73	47

HM in water - dissolved			
Our Reference		280509-6	280509-7
Your Reference	UNITS	MW109	WDUP1
Date Sampled		14/10/2021	13/10/2021
Pump ID		27.2	-
Type of sample		Water	Water
Date prepared	-	19/10/2021	19/10/2021
Date analysed	-	19/10/2021	19/10/2021
Arsenic-Dissolved	μg/L	1	2
Cadmium-Dissolved	μg/L	<0.1	0.1
Chromium-Dissolved	μg/L	<1	<1
Copper-Dissolved	μg/L	4	4
Lead-Dissolved	μg/L	<1	3
Mercury-Dissolved	μg/L	<0.05	<0.05
Nickel-Dissolved	μg/L	3	5
Zinc-Dissolved	μg/L	18	38

Miscellaneous Inorganics						
Our Reference		280509-1	280509-2	280509-3	280509-4	280509-5
Your Reference	UNITS	MW101	MW102	MW105	MW106	MW107
Date Sampled		14/10/2021	14/10/2021	14/10/2021	14/10/2021	13/10/2021
Pump ID		29.7	40.3	2.8	11.2	2.4
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	15/10/2021	15/10/2021	15/10/2021	15/10/2021	15/10/2021
Date analysed	-	15/10/2021	15/10/2021	15/10/2021	15/10/2021	15/10/2021
рН	pH Units	6.2	7.0	5.4	4.5	4.9
Electrical Conductivity	μS/cm	300	69	590	350	250
Sulphate, SO4	mg/L	36	4	150	65	40
Chloride, Cl	mg/L	25	4	16	42	32

Miscellaneous Inorganics		
Our Reference		280509-6
Your Reference	UNITS	MW109
Date Sampled		14/10/2021
Pump ID		27.2
Type of sample		Water
Date prepared	-	15/10/2021
Date analysed	-	15/10/2021
рН	pH Units	5.3
Electrical Conductivity	μS/cm	240
Sulphate, SO4	mg/L	48
Chloride, Cl	mg/L	19

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-029	Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. TCLPs/ASLP leachates are centrifuged, the supernatant is then analysed (including amendment with solvent) - as per the option in AS4439.3.
	Analysis is undertaken with LC-MS/MS.
	PFAS results include the sum of branched and linear isomers where applicable.
	Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.3 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components.
	Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.

Envirolab Reference: 280509

QUALIT	Y CONTROL	: VOCs i	n water			Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W4	[NT]
Date extracted	-			18/10/2021	1	18/10/2021	20/10/2021		18/10/2021	
Date analysed	-			18/10/2021	1	18/10/2021	21/10/2021		18/10/2021	
Dichlorodifluoromethane	μg/L	10	Org-023	<10	1	<10	<10	0	[NT]	
Chloromethane	μg/L	10	Org-023	<10	1	<10	<10	0	[NT]	
Vinyl Chloride	μg/L	10	Org-023	<10	1	<10	<10	0	[NT]	
Bromomethane	μg/L	10	Org-023	<10	1	<10	<10	0	[NT]	
Chloroethane	μg/L	10	Org-023	<10	1	<10	<10	0	[NT]	
Trichlorofluoromethane	μg/L	10	Org-023	<10	1	<10	<10	0	[NT]	
1,1-Dichloroethene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Trans-1,2-dichloroethene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,1-dichloroethane	μg/L	1	Org-023	<1	1	<1	<1	0	110	
Cis-1,2-dichloroethene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Bromochloromethane	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Chloroform	μg/L	1	Org-023	<1	1	42	36	15	104	
2,2-dichloropropane	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,2-dichloroethane	μg/L	1	Org-023	<1	1	<1	<1	0	98	
1,1,1-trichloroethane	μg/L	1	Org-023	<1	1	<1	<1	0	106	
1,1-dichloropropene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Cyclohexane	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Carbon tetrachloride	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Benzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Dibromomethane	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,2-dichloropropane	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Trichloroethene	μg/L	1	Org-023	<1	1	<1	<1	0	104	
Bromodichloromethane	μg/L	1	Org-023	<1	1	7	5	33	102	
trans-1,3-dichloropropene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
cis-1,3-dichloropropene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,1,2-trichloroethane	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Toluene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,3-dichloropropane	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Dibromochloromethane	μg/L	1	Org-023	<1	1	1	<1	0	94	
1,2-dibromoethane	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Tetrachloroethene	μg/L	1	Org-023	<1	1	<1	<1	0	103	
1,1,1,2-tetrachloroethane	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Chlorobenzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Ethylbenzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Bromoform	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
m+p-xylene	μg/L	2	Org-023	<2	1	<2	<2	0	[NT]	
Styrene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,1,2,2-tetrachloroethane	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	

QUALIT	TY CONTROL: VOCs in water					Dι	ıplicate	Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W4	[NT]
o-xylene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,2,3-trichloropropane	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Isopropylbenzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Bromobenzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
n-propyl benzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
2-chlorotoluene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
4-chlorotoluene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,3,5-trimethyl benzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Tert-butyl benzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,2,4-trimethyl benzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,3-dichlorobenzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Sec-butyl benzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,4-dichlorobenzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
4-isopropyl toluene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,2-dichlorobenzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
n-butyl benzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,2-dibromo-3-chloropropane	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,2,4-trichlorobenzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Hexachlorobutadiene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,2,3-trichlorobenzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	106	1	103	102	1	102	
Surrogate toluene-d8	%		Org-023	100	1	101	100	1	102	
Surrogate 4-BFB	%		Org-023	109	1	111	103	7	104	

QUALITY CONTI	QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Water								Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W4	[NT]
Date extracted	-			18/10/2021	1	18/10/2021	20/10/2021		18/10/2021	
Date analysed	-			18/10/2021	1	18/10/2021	21/10/2021		18/10/2021	
TRH C ₆ - C ₉	μg/L	10	Org-023	<10	1	43	45	5	103	
TRH C ₆ - C ₁₀	μg/L	10	Org-023	<10	1	44	45	2	103	
Benzene	μg/L	1	Org-023	<1	1	<1	<1	0	107	
Toluene	μg/L	1	Org-023	<1	1	<1	<1	0	106	
Ethylbenzene	μg/L	1	Org-023	<1	1	<1	<1	0	96	
m+p-xylene	μg/L	2	Org-023	<2	1	<2	<2	0	102	
o-xylene	μg/L	1	Org-023	<1	1	<1	<1	0	98	
Naphthalene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	106	1	103	102	1	102	
Surrogate toluene-d8	%		Org-023	100	1	101	100	1	102	
Surrogate 4-BFB	%		Org-023	102	1	111	103	7	104	

QUALITY CON	ITROL: svTF	RH (C10-0	C40) in Water			Du		Spike Re	covery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	280509-7
Date extracted	-			19/10/2021	1	19/10/2021	19/10/2021		19/10/2021	19/10/2021
Date analysed	-			20/10/2021	1	20/10/2021	20/10/2021		20/10/2021	20/10/2021
TRH C ₁₀ - C ₁₄	μg/L	50	Org-020	<50	1	<50	<50	0	112	94
TRH C ₁₅ - C ₂₈	μg/L	100	Org-020	<100	1	<100	<100	0	114	99
TRH C ₂₉ - C ₃₆	μg/L	100	Org-020	<100	1	<100	<100	0	94	85
TRH >C ₁₀ - C ₁₆	μg/L	50	Org-020	<50	1	<50	<50	0	112	94
TRH >C ₁₆ - C ₃₄	μg/L	100	Org-020	<100	1	<100	<100	0	114	99
TRH >C ₃₄ - C ₄₀	μg/L	100	Org-020	<100	1	<100	<100	0	94	85
Surrogate o-Terphenyl	%		Org-020	91	1	90	78	14	95	78

QUALITY C	ONTROL: PAH	ls in Wate	r - Low Level			Du	plicate	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	280509-2	
Date extracted	-			19/10/2021	[NT]		[NT]	[NT]	19/10/2021	19/10/202 ²	
Date analysed	-			19/10/2021	[NT]		[NT]	[NT]	19/10/2021	19/10/202	
Naphthalene	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	87	104	
Acenaphthylene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]	
Acenaphthene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	67	83	
Fluorene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	77	98	
Phenanthrene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	100	118	
Anthracene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]	
Fluoranthene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	81	93	
Pyrene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	80	91	
Benzo(a)anthracene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]	
Chrysene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	66	76	
Benzo(b,j+k)fluoranthene	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	[NT]	
Benzo(a)pyrene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	70	83	
Indeno(1,2,3-c,d)pyrene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	88	[NT]		[NT]	[NT]	83	93	

QUALITY CON	ITROL: PFA	S in Wate	ers Extended			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			20/10/2021	11	20/10/2021	20/10/2021		20/10/2021	
Date analysed	-			20/10/2021	11	20/10/2021	20/10/2021		20/10/2021	
Perfluorobutanesulfonic acid	μg/L	0.01	Org-029	<0.01	11	<0.01	<0.01	0	115	
Perfluoropentanesulfonic acid	μg/L	0.01	Org-029	<0.01	11	<0.01	<0.01	0	105	
Perfluorohexanesulfonic acid - PFHxS	μg/L	0.01	Org-029	<0.01	11	<0.01	<0.01	0	96	
Perfluoroheptanesulfonic acid	μg/L	0.01	Org-029	<0.01	11	<0.01	<0.01	0	103	
Perfluorooctanesulfonic acid PFOS	μg/L	0.01	Org-029	<0.01	11	<0.01	<0.01	0	102	
Perfluorodecanesulfonic acid	μg/L	0.02	Org-029	<0.02	11	<0.02	<0.02	0	78	
Perfluorobutanoic acid	μg/L	0.02	Org-029	<0.02	11	<0.02	<0.02	0	107	
Perfluoropentanoic acid	μg/L	0.02	Org-029	<0.02	11	<0.02	<0.02	0	116	
Perfluorohexanoic acid	μg/L	0.01	Org-029	<0.01	11	<0.01	<0.01	0	101	
Perfluoroheptanoic acid	μg/L	0.01	Org-029	<0.01	11	<0.01	<0.01	0	117	
Perfluorooctanoic acid PFOA	μg/L	0.01	Org-029	<0.01	11	<0.01	<0.01	0	99	
Perfluorononanoic acid	μg/L	0.01	Org-029	<0.01	11	<0.01	<0.01	0	100	
Perfluorodecanoic acid	μg/L	0.02	Org-029	<0.02	11	<0.02	<0.02	0	91	
Perfluoroundecanoic acid	μg/L	0.02	Org-029	<0.02	11	<0.02	<0.02	0	95	
Perfluorododecanoic acid	μg/L	0.05	Org-029	<0.05	11	<0.05	<0.05	0	105	
Perfluorotridecanoic acid	μg/L	0.1	Org-029	<0.1	11	<0.1	<0.1	0	93	
Perfluorotetradecanoic acid	μg/L	0.5	Org-029	<0.5	11	<0.5	<0.5	0	110	
4:2 FTS	μg/L	0.01	Org-029	<0.01	11	<0.01	<0.01	0	104	
6:2 FTS	μg/L	0.01	Org-029	<0.01	11	<0.01	<0.01	0	108	
8:2 FTS	μg/L	0.02	Org-029	<0.02	11	<0.02	<0.02	0	105	
10:2 FTS	μg/L	0.02	Org-029	<0.02	11	<0.02	<0.02	0	117	
Perfluorooctane sulfonamide	μg/L	0.1	Org-029	<0.1	11	<0.1	<0.1	0	102	
N-Methyl perfluorooctane sulfonamide	μg/L	0.05	Org-029	<0.05	11	<0.05	<0.05	0	106	
N-Ethyl perfluorooctanesulfon amide	μg/L	0.1	Org-029	<0.1	11	<0.1	<0.1	0	112	
N-Me perfluorooctanesulfonamid oethanol	μg/L	0.05	Org-029	<0.05	11	<0.05	<0.05	0	113	
N-Et perfluorooctanesulfonamid oethanol	μg/L	0.5	Org-029	<0.5	11	<0.5	<0.5	0	95	
MePerfluorooctanesulf- amid oacetic acid	μg/L	0.02	Org-029	<0.02	11	<0.02	<0.02	0	123	
EtPerfluorooctanesulf- amid oacetic acid	μg/L	0.02	Org-029	<0.02	11	<0.02	<0.02	0	117	
Surrogate ¹³ C ₈ PFOS	%		Org-029	101	11	91	101	10	97	
Surrogate ¹³ C ₂ PFOA	%		Org-029	113	11	112	115	3	113	

QUALITY CO	NTROL: PFA	S in Wate	ers Extended			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Extracted ISTD ¹³ C ₃ PFBS	%		Org-029	92	11	97	93	4	94	[NT]
Extracted ISTD ¹⁸ O ₂ PFHxS	%		Org-029	113	11	108	108	0	107	[NT]
Extracted ISTD ¹³ C ₄ PFOS	%		Org-029	100	11	104	96	8	97	[NT]
Extracted ISTD ¹³ C ₄ PFBA	%		Org-029	112	11	109	107	2	108	[NT]
Extracted ISTD ¹³ C ₃ PFPeA	%		Org-029	99	11	97	96	1	95	[NT]
Extracted ISTD ¹³ C ₂ PFHxA	%		Org-029	102	11	98	93	5	103	[NT]
Extracted ISTD ¹³ C ₄ PFHpA	%		Org-029	108	11	101	108	7	100	[NT]
Extracted ISTD ¹³ C ₄ PFOA	%		Org-029	110	11	113	100	12	103	[NT]
Extracted ISTD ¹³ C ₅ PFNA	%		Org-029	130	11	128	116	10	118	[NT]
Extracted ISTD ¹³ C ₂ PFDA	%		Org-029	125	11	114	110	4	117	[NT]
Extracted ISTD ¹³ C ₂ PFUnDA	%		Org-029	121	11	123	107	14	121	[NT]
Extracted ISTD ¹³ C ₂ PFDoDA	%		Org-029	103	11	104	99	5	96	[NT]
Extracted ISTD ¹³ C ₂ PFTeDA	%		Org-029	84	11	83	71	16	83	[NT]
Extracted ISTD ¹³ C ₂ 4:2FTS	%		Org-029	119	11	122	110	10	106	[NT]
Extracted ISTD ¹³ C ₂ 6:2FTS	%		Org-029	114	11	166	116	35	86	[NT]
Extracted ISTD ¹³ C ₂ 8:2FTS	%		Org-029	142	11	152	112	30	120	[NT]
Extracted ISTD ¹³ C ₈ FOSA	%		Org-029	107	11	107	105	2	102	[NT]
Extracted ISTD d ₃ N MeFOSA	%		Org-029	104	11	103	103	0	101	[NT]
Extracted ISTD d ₅ N EtFOSA	%		Org-029	98	11	97	99	2	98	[NT]
Extracted ISTD d ₇ N MeFOSE	%		Org-029	117	11	109	113	4	112	[NT]

QUALITY CON	Duplicate			Spike Recovery %						
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Extracted ISTD d ₉ N EtFOSE	%		Org-029	112	11	105	96	9	105	[NT]
Extracted ISTD d ₃ N MeFOSAA	%		Org-029	135	11	143	123	15	109	[NT]
Extracted ISTD d₅ N EtFOSAA	%		Org-029	111	11	179	107	50	89	[NT]

QUALITY CC	NTROL: HN	1 in water	- dissolved			Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	280509-2
Date prepared	-			19/10/2021	1	19/10/2021	19/10/2021		19/10/2021	19/10/2021
Date analysed	-			19/10/2021	1	19/10/2021	19/10/2021		19/10/2021	19/10/2021
Arsenic-Dissolved	μg/L	1	Metals-022	<1	1	2	1	67	94	93
Cadmium-Dissolved	μg/L	0.1	Metals-022	<0.1	1	<0.1	<0.1	0	97	94
Chromium-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	94	94
Copper-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	95	97
Lead-Dissolved	μg/L	1	Metals-022	<1	1	<1	1	0	94	93
Mercury-Dissolved	μg/L	0.05	Metals-021	<0.05	1	<0.05	<0.05	0	105	102
Nickel-Dissolved	μg/L	1	Metals-022	<1	1	3	3	0	94	95
Zinc-Dissolved	μg/L	1	Metals-022	<1	1	40	40	0	98	101

QUALITY COI	NTROL: Mis	cellaneou	s Inorganics			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			15/10/2021	1	15/10/2021	15/10/2021		15/10/2021	
Date analysed	-			15/10/2021	1	15/10/2021	15/10/2021		15/10/2021	
рН	pH Units		Inorg-001	[NT]	1	6.2	6.2	0	101	
Electrical Conductivity	μS/cm	1	Inorg-002	<1	1	300	300	0	100	
Sulphate, SO4	mg/L	1	Inorg-081	<1	1	36	36	0	86	
Chloride, Cl	mg/L	1	Inorg-081	<1	1	25	25	0	88	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Envirolab Reference: 280509

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

For PFAS Extracted Internal Standards denoted with # or outside the 50-150% acceptance range, the respective target analyte results may be unaffected, in other circumstances the PQL has been raised to accommodate the outlier(s).

Envirolab Reference: 280509 Page | 27 of 27

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	JK Environments
Attention	C Ridley

Sample Login Details		
Your reference	E32507BR, Greenwich	
Envirolab Reference	280509	
Date Sample Received	15/10/2021	
Date Instructions Received	15/10/2021	
Date Results Expected to be Reported	22/10/2021	

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	8 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	8
Cooling Method	Ice
Sampling Date Provided	YES

Comments
Sample NOT RECEIVED - TS-W1, TB-W1 and PFASTB-W1

Please direct any queries to:

Aileen Hie	Jacinta Hurst							
Phone: 02 9910 6200	Phone: 02 9910 6200							
Fax: 02 9910 6201	Fax: 02 9910 6201							
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au							

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

Sample ID	VOCs in water	vTRH(C6-C10)/BTEXN in Water	svTRH (C10-C40) in Water	PAHs in Water - Low Level	PFAS in Waters Extended	HM in water - dissolved	Hd	Electrical Conductivity	Sulphate, SO4	Chloride, CI
MW101	✓	✓	✓	✓		✓	✓	✓	✓	✓
MW102	✓	✓	✓	✓		✓	✓	✓	✓	✓
MW105	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
MW106	✓	✓	✓	✓		✓	✓	✓	✓	✓
MW106 MW107	✓	√	√	√		√	√		√	√
		✓ ✓ ✓	-			-	✓	✓	√	
MW107	✓	-	✓	✓		✓	✓	✓	√	✓

The '\sqrt{'} indicates the testing you have requested. **THIS IS NOT A REPORT OF THE RESULTS.**

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

SAMPLE AND CHAIN OF CUSTODY FORM

TO: ENVIROLAB SI 12 ASHLEY ST CHATSWOOD P: (02) 991062 F: (02) 991062	REET NSW 20 200 201		JKE Job Number: Date Results Required: Page:		E32507BR STANDARD	***				MAC P: 02		.5 WIC E PAR 5000	KS RC K, NS	OAD W 211 F: 02-	nn .3 .9888 !	5001	nts.
,					10.11.					L						-	
Location:	Greenw	rich	·						San	ple Pr	eserve			n Ice			
Sampler:	MME	<i>.</i>								<u>'</u>	6212 V	equire	iu			- 1	
Date Sampled	Lab Ref:	Sample Number	Sample Containers	PID	Sample Description	Combo 2	Combo 3L	VOCs	pH / EC	8 Metals	PAHS	ткн/втех	втех	Hardness	Sulfate and Chloride	PFAS	
14/10/2021	İ	MW101	G1 x2, V x3, H, PVC x2	29.7	·Water		х	х	х					i	х		
14/10/2021	2	MW102	G1 x2, V x3, H, PVC	40.3	Water		х	х	х						х		
14/10/2021	3	MW105	G1 x2, V x3, H, PVC, PFAS	2.8	Water		x	х	х						х	x	
14/10/2021	4	MW106	G1 x2, V x3, H, PVC	11.2	Water		х	х	x						х		
13/10/2021	5	MW107	G1 x 2, V x 3, H, PVC	2.4	Water		х	х	x						x		_
14/10/2021	6	MW109	G1 x 2, V x 3, H, PVC	27.2	Water		х	х	х					-	х		
13/10/2021	7	WDUP1	G1 x 2, V x 3, H, PVC	-	Duplicate		x	x									
14/10/2021		WDUP2	G1 x 2, V x 3, H, PVC	-	Duplicate		х	x		SEND	TO VI	С			,		
14/10/2021	8	WPFASDUP1	PFAS	-	Duplicate											х	
13/10/2021	NR	TS-W1	V		Trip Spike								х				
13/10/2021	NR	TB-W1	V		Trip Blank								х				
13/10/2021	NR	PFASTB-W1	PFAS		PFAS Blank											х	
		detection limits S PQLs to ANZEC	required): CC (2000) Detection Li	mits Ple	ease	G1 - : V - B	100m TEX V	ial	er Gia H - H	NO3 \	Vash F	νc			ss Bot	tle	
Relinquished	Ву:	Joh No	Denovirolab Service 12 Auhley S Chatswood NSW 206 Ph. (02) 9910 6200	St 7 0		Time		E Plas	tic Bot		PF iyed B	AS - P	FAS B	ottle	Date:	/10	lζi

Job No: 280509

Date Received: 1510/21

Time Received: 16:05

Received By: 16:05

Temp Cookambient

Cooling Ice/Icepack

Security: Intact/Broken/Nove

Appendix H: Groundwater Field Records

WATER QUALITY METER CALIBRATION FORM

Client: TSA					
Project: Proposed Hosp	Proposed Hospital Redevelopment				
Location: 97-115 River Ro	97-115 River Road, GREENWICH, NSW				
Job Number: E32507BR	r: E32507BR				
D	ISSOLVED OXYGEN				
Make: YST 4	Model: Professional PLOS				
Date of calibration: $06 \cdot 0 \cdot 2 $	Name of Calibrator: MM				
Span value: 70% to 130%					
Measured value: 106 %					
Measured reading Acceptable (Yes/No):					
	рН				
Make: YSI4	Model: Professional Plus				
Date of calibration: 6/10/2	Name of Calibrator: MM E				
Buffer 1: Theoretical pH = 7.01± 0.01	Expiry date: 08/22 Lot No: 367754				
Buffer 2: Theoretical pH = 4.01± 0.01	Expiry date: 06/22 Lot No: 366070				
Measured reading of Buffer 1: 7.05					
Measured reading of Buffer 2: りつ					
Slope:	Measured reading Acceptable (Yes/No):				
	EC				
Make: \SI4	Model: Professional Plus				
Date: 06 · 10 · 21 Name of Calibra	ator: MME. Temperature: 23 °C				
Calibration solution: Conductivity standard	Expiry date:\\ /2 2 . Lot No: 373623				
Theoretical conductivity at temperature (see solutio	n container): 359 μS/cm				
Measured conductivity: 360 μS/cm	Measured reading Acceptable (Yes) No):				
	REDOX				
Make: YST 4	Model: Professional Plus				
Date of calibration: 06 10 21	Name of Calibrator: MME				
Calibration solution: ORP TEST SOLUTION	Expiry date: 04/26 Lot No: 6393				
Theoretical redox value: 240mV					
Measured redox reading: 240.9 mV	Measured reading Acceptable (Yes/No):				

WATER QUALITY METER CALIBRATION FORM

Client: TSA					
Project: Proposed Hosp	Proposed Hospital Redevelopment				
ocation: 97-115 River Road, GREENWICH, NSW					
Job Number: E32507BR	b Number: E32507BR				
D	DISSOLVED OXYGEN				
Make: \SI 4	Model: Professional Plus				
Date of calibration: 7//0/2	Name of Calibrator: MME				
Span value: 70% to 130%					
Measured value: 94%					
Measured reading Acceptable ((e)/No):					
	рН				
Make: VST 4	Model: Professional Plus				
Date of calibration: テノノの / 2 し	Name of Calibrator: MME				
Buffer 1: Theoretical pH = 7.01± 0.01	Expiry date: 8/22 Lot No: 367754				
Buffer 2: Theoretical pH = 4.01± 0.01	Expiry date: 6/22 Lot No:366 070				
Measured reading of Buffer 1: 7,02	7.47				
Measured reading of Buffer 2: 4.00					
Slope:	Measured reading Acceptable (Yes/No):				
	EC				
Make: YSI4	Model: Professional Plus				
Date: 7/10/21 Name of Calibr	rator: MME Temperature: 19.8 °C				
Calibration solution: Conductivity Studied					
Theoretical conductivity at temperature (see solution	on container): 1278 μS/cm				
Measured conductivity: 1251 μS/cm	Measured reading Acceptable (Yes/No):				
	REDOX				
Make: YST 4	Model: Professional Plus				
Date of calibration: 7/10/2	Name of Calibrator: MME				
Calibration solution: ORP Test Solution	Expiry date: 4/26 Lot No: 6393				
Theoretical redox value: 240m\					
Measured redox reading: 240.2 mV	Measured reading Acceptable (Yes/No):				

WATER QUALITY METER CALIBRATION FORM

Client:	TSA				
Project:	Proposed Hospital Redevelopment				
Location:	97-115 River Road, GREENWICH, NSW				
Job Number:	E32507BR2				
	D	ISSOLVED OXYGEN			
Make: YS I		Model: Professiona	alplus		
Date of calibration: 5/10/21		Name of Calibrator: μ	W		
Span value: 70% to 130%		***			
Measured value: 99%					
Measured reading Acceptable (Ye)/N	lo):				
		рН			
Make: YST		Model: Professiona	1 plus		
Date of calibration: 5/10/21		Name of Calibrator: H	₩ [°]		
Buffer 1: Theoretical $pH = 7.01 \pm 0.01$		Expiry date: 8/22	Lot No: 367754		
Buffer 2: Theoretical $pH = 4.01 \pm 0.01$			Lot No: 366070		
Measured reading of Buffer 1: 7.6.	2	• 1	7.		
Measured reading of Buffer 2: 4,	75				
Slope: —		Measured reading Acce	eptable (Yes)No):		
		EC			
Make: YSI		Model: Professional	plus		
Date: 5/10/21	Name of Calibr		Temperature: 20-3 °C		
Calibration solution: Conductivity.	Standard	Expiry date: ///22	Lot No: 373623		
Theoretical conductivity at temperat	ure (see solutio	n container):	/278 μS/cm		
Measured conductivity: /372 µS/	'cm	Measured reading Acce	eptable (Yes/No):		
		REDOX			
Make: YSI		Model: Professions	al plus		
Date of calibration: 5/10/21		Name of Calibrator: #	u '		
Calibration solution: ORP TEST Solu	tion	Expiry date: 4/26	Lot No: 6393		
Theoretical redox value:	240mV				
Measured redox reading: 229.7	mV	Measured reading Acce	eptable (Yes/No):		

PID FIELD CALIBRATION FORM

Client:	TSA						
Project:	Proposed Hospital Redevelo	opment					
Location:	97-115 River Road, GREENV	VICH, NSW					
Job Number:	E32507BR						
	Р	PID					
			Date of last factory				
Make: MiniRat	Model: 2000	Unit: Yellow	calibration: 10/09/2021				
Date of calibration: 6/10		Name of Calibrator: MM	50°				
Calibration gas: Iso-butylen	e	Calibration Gas Concentration	on: 100.0 ppm				
Measured reading: 100		Error in measured reading:	± 0.02 ppm				
Measured reading Acceptab	ole (Yes/No):						
	Р	PID					
Make: Mini Roe	Model: 2.000	Unit: Yellow	Date of last factory calibration: \0/09/2021				
Date of calibration: 구/10/		Name of Calibrator: MME	Per Str.				
Calibration gas: Iso-butylen		Calibration Gas Concentration					
Measured reading: 99	.7 ppm	Error in measured reading:	±0.03 ppm				
Measured reading Acceptab			0.03				
	Р	PID					
Make:	Model:	Unit:	Date of last factory calibration:				
Date of calibration:		Name of Calibrator:					
Calibration gas: Iso-butylen	e	Calibration Gas Concentration: 100.0 ppm					
Measured reading:	ppm	Error in measured reading: ± ppm					
Measured reading Acceptab	le (Yes/No):						
	Р	PID					
			Date of last factory				
Make:	Model:	Unit:	calibration:				
Date of calibration:		Name of Calibrator;					
Calibration gas: Iso-butylene	e	Calibration Gas Concentration	on: 100.0 ppm				
Measured reading:	ppm	Error in measured reading:	± ppm				
Measured reading Acceptab	le (Yes/No):						
	P	ID					
Make:	Model:	Unit:	Date of last factory calibration:				
Date of calibration:		Name of Calibrator:					
Calibration gas: Iso-butylene	e	Calibration Gas Concentration	on: 100.0 ppm				
Measured reading:	ppm	Error in measured reading:	± ppm				
Measured reading Acceptab	le (Yes/No):	T.					

JI	K Environme	nts	
Client:	TSA	Job No.:	E32507BR
Project:	Proposed Hospital Redevelopment	Well No.:	MALIO

Client:	TSA							Job No.:			E32507BR	
Project:	Proposed	Hospital Re	developm	ent	************			Well No.		MMIOL		
Location:	97-115 Ri	ver Road, G	REENWIC	CH, NSW	1			Depth (r	п):		7.5	
WELL FIN	ISH DETAI	LS			_							
		Gatic Cov			Standpip	ре 🔲			Other (de	escribe) [
	/ELOPMEN	IT DETAILS										
Method:			Pun	10.			Sefore (m)			2.2		
Date:			6/10	121.		Time – E	*********			2:13	pm	
Undertake			MM	<u> </u>		***********	After (m):	**********		Da	1	
Total Vol.			14-1			Time - A	After:	200000000000000000000000000000000000000		2:15	t pm	
PID Readii			2.7	mag	*							
Comments		SUREMEN"										
	me Remo				T 1	00	Т	EC	1			
	(L)		Temp	(°C)		ıg/L)		S/cm)	Р	Н	Eh (mV)	
	1		19.6	,	7.	2		4.5	6.	3	148-	
	2		19.1		2.	3	38	5	6.6	2	192.6.	
	3		19.2		2.	3.	41.		6. F	7.	185.9.	
	4		19.5	5	2.	. 4	422	2.5	65	2_	182	
	6		19,0	7	2.	4.		9.9	6.3	0	178.7.	
	8		19.9		2.	/	.36	8	6.9	4	178.1	
	10		19.8		1.	8	42	8.1	6.	42	1774	
	12		19.8	?	1.	5	42	0.7	6.	42	175.8	
Apr. 10. 7 to 200 or 1 to 200	14.		19.6		I I.	3	3,8	6.4	6.	45	171.7	
								***************************************	1		g-ata	

	••••••							************		***************************************		
***************************************				***********	1	**********						
	••••••		•••••			**********			·		***************************************	
***************************************	*************											
***************************************				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				***********				
				••••••	1			***************************************			**********************	
							1	***************************************	1			
			********	***********		*********	**					

								••••••	ļ			

***************************************					1				1		*******************************	
Comments YSI Used:		YES / (NO) NAPL/	PSH (YE	S / (NO))	Sheen (Y ·	ES / (NO)) Steady	State Achi	eved (YE	s (NO)	
T		h //c // F		la :								
Tested By: Date Teste		MME	31	- Differe	y state con	pH less th		its, differe	nce in the	conductiv	eity less than 10%	
				- Minim	um 3 moni	toring well	Volumes	purged iii	nless well i	ourged un	til it is effectively dry	
Checked B	y:	VB			G [/IGI]]			p.a. g.o.a, t.		Jangou un	lo offoodvoly dry	
Date:		17-01-2										

JKEnvironments E32507BR2 Client: Job No.: Project: Proposed Hospital Redevelopment Well No.: MW102 97-115 River Road, GREENWICH, NSW Depth (m): 6.1 WELL FINISH DETAILS Gatic Cover Standpipe ___ Other (describe) WELL DEVELOPMENT DETAILS Method: SWL - Before (m): 3.70 Pump Date: Time - Before: 7-1101 SWL - After (m): Undertaken By: MM Total Vol. Removed: Time – After: PID Reading (ppm): Comments: DEVELOPMENT MEASUREMENTS Volume Removed DO EC Temp (°C) рΗ Eh (mV) (mg/L) (µS/cm) (L) 17 4 Comments:Odours (YES / (NO)), NAPL/PSH (YES / (NO),)Sheen (YES / (NO),)Steady State Achieved (YES / (NO) YSI Used: 4 Tested By: Remarks: MWE - Steady state conditions 7/10/21 Difference in the pH less than 0.2 units, difference in the conductiveity less than 10% Date Tested: and SWL stable/not in drawdown - Minimum 3 monitoring well volumes purged, unless well purged until it is effectively dry Checked By: VB

Date:

17-01-22

Client: T	SA				Job No.	. *	E32507BR2
Project: P	roposed Hospital R	edevelopment			Well No	.:	MW104
ocation: 9	7-115 River Road, (GREENWICH, NSW	V	***************************************	Depth (r	n):	6.0
VELL FINISH							10.01
VELE FINISH						T	
		over 🔯	Standpipe			Other (describe	n) 🔲
	OPMENT DETAILS						
Method:	*************	Pump		WL – Before (m):	Di	<u> </u>
Date:		5/10/21		ime – Before:			
Undertaken B		MME		WL - After (m)): 		_
Total Vol. Ren				ime – After:			
PID Reading (Comments:	ppm):	124, ppm	-				
	NT MEASUREMEN	TS					
	e Removed	Temp (°C)	DC		EC	рН	Eh (mV)
	(L)	Temp (°C)	(mg/	L)	(µS/cm)	pn	En (mv)
						v o o o o o o o o o o o o o o o o o o o	
***************************************	***************************************		,	***********			
	***************************************					·	
				***********	***************************************		
	/				**************	1	
	/						
					***************************************	1	
Comments:Oc	lours (YES / NO), NAPL/PSH (YE	S / NO), Shee	1 (YES / NO),	Steady-Stat	e Achieved (YES	/_NO)
'SI Used: 4		, .		9			30
rested By:	MW	E Rema					
Date Tested:	5/10/	- Diffe and S	WL stable/not in	less than 0,2 u drawdown			eity less than 10%
Checked By:	VB		mum 3 monitorir	ig well volumes	purged, unle	ess well purged unt	til it is effectively dry

JF	(E	nv	irc	n	me	en	ts	6			
Client:	TSA							Job No.:			E32507BR2
Project:	Proposed	Hospital Re	developme	nt				Well No.:			MW105
Location:	97-115 Ri	ver Road, G	REENWIC	H, NSW				Depth (m);		7.85 m
WELL FINI	SH DETAIL	S									
		Gatic Co	ver 🔯		Standpipe				Other (de	scribe)	
WELL DEV	ELOPMEN	T DETAILS									
Method:			Pam	P.		SWL – Be				5.81	2 m
Date:			5/10	121.		Time – Be		***************************************		12:4	10 pm.
Undertakei	n By:		MM	IE.		SWL - Aft	er (m):			DM	
Total Vol. I	***********		31	larian maria		Time – Aft	er:	*****		Dry 12:4	8 pm -
PID Readir			1.0								
Comments		CUBEMENT	•								
	ume Remo	SUREMENT			l D	0		EC	Г —		
	(L)		Temp	(°C)	(mg	1/L)		S/cm)	р	H	Eh (mV)
		NATIONAL PROPERTY.	21.		6.	7			5.	85	64.5
	2		20.0	2	5,1	2	5	51 1 24		75	66.3
	3.		20.		5.		5	14	5.	68	64.0
	. 2003 0000 07000				6 500 21 100 500 500						
*********	**********		**********								
***********	******	****		****							
				.,							
			•			********					
							_				7
Comments YSI Used:		ES / (NO)	, NAPL/P	SH (YES	/ NO), She	en (YES /	NO), St	eady State	Achieved	(YES / (N	9)
Tested By:		MME		Remark	s:						
Date Teste	d:	5/10/	21.	- Differer and SWI	L stable/not	less than in drawdov	vn				ess than 10%
Checked B	y:	VB	•••••	- Minimu	m 3 monitor	ing well vo	lumes pu	rged, unles	ss well purg	ed until it is	s effectively dry
Date:		17-01-2	2	1							

JKE	=nv	iron	ıme	ents	•			
Client: TSA					Job No.:		E	32507BR2
Project: Propo	sed Hospital Re	development			Well No.:			MW106
Location: 97-11	5 River Road, G	REENWICH, NSW			Depth (m):		12.52m
WELL FINISH DET	ΓAILS							
	Gatic Co	ver 🗹	Standpipe			Other (des	scribe)]
WELL DEVELOPA			1					
Method:		Pump	S	VL – Before (m):			8.2	6
Date:		5/10/21	Ti	me – Before:				20 pm.
Undertaken By:		MME	S	VL – After (m):			Dr	4.
Total Vol. Remove	ed:	10 L.	Ti	me – After:			12 - 3	30 pm -
PID Reading (ppm	1):	0		***************************************				
Comments:								
DEVELOPMENT N		S	T 50	r	50			
Volume Re	moved	Temp (°C)	DO (mg/l		EC S/cm)	pi	н	Eh (mV)
(=)		20.8	8.0		9.4	6.3	3	824
7		21.7	,		3.2	6.1	Ŧ	77 (-
3		21 6	5.4	- 34		6.0		78.6
4-		21.5	4.0		172		2	82.8
5		215	46		17.0	**********	63	85.0
L		21.4	11.6	34		5	51	86.3.
Ĭ		21.4	1	3 34		45	42	86.I
\$		214	4.7		50.4	5	35	058
d		21.4	4.2			5	27	85.4
10	-	714	4.2	2,1	53.2 54.8	5.	22	85.1
	***************************************		1		galande daglaran		##	
				***************************************	*******		************	

				·····	*******		**********	
	***************	*******************************		·····				
							***************************************	/

Comments:Odou	rs (YES / NO)	, NAPL/PSH (YE	S / NO), Sheer	(YES (NO), St	eady State	Achieved	(YES (N))
Tested By:	MMIE	Rema	ırks:					
Date Tested:	5/10/	- Stea - Diffe and S	idy state condition erence in the pH WL stable/not in	ess than 0.2 units drawdown				
Checked By:	VB		mum 3 monitorin	g well volumes pu	urged, unles	ss well purg	ed until it is	effectively dry
Date:	17-01-2	22						

JKEnvironments E32507BR2 Client: Job No.: Project: Proposed Hospital Redevelopment Well No.: FOLWM Location: 97-115 River Road, GREENWICH, NSW Depth (m): 14.93 m WELL FINISH DETAILS Gatic Cover Standpipe ___ Other (describe) WELL DEVELOPMENT DETAILS Method: Pump SWL - Before (m): Date: 9:18 am Time - Before: 5/10/21 Undertaken By: SWL - After (m): Total Vol. Removed: Time - After: PID Reading (ppm): Comments: DEVELOPMENT MEASUREMENTS Volume Removed DO EC Temp (°C) Eh (mV) рΗ (mg/L) (µS/cm) (L) 308,5 264,9 253.4 30.6 4.0 250.8 110.8 24.9. Comments:Odours (YES / (NQ), NAPL/PSH (YES / (NO), Sheen (YES / NO)) Steady State Achieved (YES / NO) YSI Used:4 Tested By: Remarks: MMF Steady state conditions 5/10/21 Difference in the pH less than 0.2 units, difference in the conductiveity less than 10% Date Tested: and SWL stable/not in drawdown Minimum 3 monitoring well volumes purged, unless well purged until it is effectively dry VB Checked By: Date: 17-01-22

JKEnvironments Client: Job No.: E32507BR2 Project: Proposed Hospital Redevelopment Well No.: MW109 Location: 97-115 River Road, GREENWICH, NSW Depth (m): 12.54 m WELL FINISH DETAILS Gatic Cover 🔽 Standpipe ___ Other (describe) WELL DEVELOPMENT DETAILS Method: SWL - Before (m): 7.27 Pump 5/10/21 10:00 am Date: Time - Before: SWL - After (m): Undertaken By: MME Dny Total Vol. Removed: 30-4.0 Time - After: PID Reading (ppm): 12.3 Comments: DEVELOPMENT MEASUREMENTS Volume Removed DO EC Temp (°C) Eh (mV) pН (mg/L) (µS/cm) (L) 9.4 19.8 19.9 79.4 5.5 592 0.5 242.1 ¥.9 1.0 262.2 261.5 5,80 78.0 5,68 1.5 75.2 72.8 19.9 50 2.0 250.7 246.8 71.9 71.7 19.9 5.4 5.33 2.5 245.4 243.0 244.8 3.0 3.5 5.10 4.85 4.73 20.0 73. 20.0 Comments:Odours (YES / (NO),) NAPL/PSH (YES / (NO)) Sheen (YES / (NO), Steady State Achieved (YES / (NO)) YSI Used: 4 Remarks: Tested By: WWE Steady state conditions Difference in the pH less than 0.2 units, difference in the conductiveity less than 10% 5/10/21. Date Tested: and SWL stable/not in drawdown Minimum 3 monitoring well volumes purged, unless well purged until it is effectively dry VB Checked By:

Date:

17-01-22

JKEnvironments E32507BR2 Job No.: Client: PIWM Project: Proposed Hospital Redevelopment Well No.: Location: 97-115 River Road, GREENWICH, NSW Depth (m): 5.75m WELL FINISH DETAILS Gatic Cover Standpipe ___ Other (describe) WELL DEVELOPMENT DETAILS Method: SWL - Before (m): Pump. Time - Before: Date: 5/10/21 SWL - After (m): Undertaken By: MME Total Vol. Removed: Time - After: PID Reading (ppm): Comments: DEVELOPMENT MEASUREMENTS Volume Removed DO EC рΗ Eh (mV) Temp (°C) (µS/cm) (mg/L) (L) Comments:Odours (YES / NO), NAPL/PSH (YES / NO), Sheen (YES / NO), Steady State Achieved (YES / NO) YSI Used: Tested By: MME Remarks: Steady state conditions Difference in the pH less than 0.2 units, difference in the conductiveity less than 10% 5/10/21. Date Tested: and SWL stable/not in drawdown Minimum 3 monitoring well volumes purged, unless well purged until it is effectively dry **VB** Checked By:

Date:

17-01-22

JKE	İn۱	/ir	onme	n.	ts			K
Client:	TSA					Job No.:	E3250	7BR
Project:	Proposed	Hospital I	Redevelopment			Well No.:	10lWl	
Location:	97-115 R	iver Road,	GREENWICH, NSW			Depth (m):	- Description of the Control of the	1.5
WELL FINISH	-							
✓ Gatic Co			Standpip	9		Other (descr	ibe)	
Method:	iLo:	1	C1 - /		SWL - Be	ofore:	اه ده	
Date:			flow.	************	Time – Be	***************************************		<u>m.</u>
Undertaken By:		14119				Removed:	10:18	
Pump Program No:		MME					0.9 L.	
PURGING / SAMPLIN	IG MEASU	PID (ppm).				,.	29.7	
Time (min)	SWL (m)	Vol (L)	Notes	Temp (°C)	DO (mg/L)	EC (µS/cm)	рН	Eh (mV)
10.23	365	0.4		20.0	3.2	301.2	5.75	-8.6
10:28	369	0.5		21.0	1.6	1.805	5.78	-36.7
10:33	3.70	عه ٥		21.3	1.6	317.2	5.80	-38.3
10:38		£.a		21.0	1.7	217.0	5.80	-368
10:43.	3.74	8.0		20.9	1.4	316.2	5.79	-37.0
10:48	3.75	P.0		20.9	1.4	316.1	5.79	-37.\
			start sampling			***************************************		

Sampling Containers YSI used: 5 Tested By: Craig Ridde Date Tested: 14/1 Checked By: CA	s Used:2)	glass am	ber, 3 x BTEX vials, 1 x l Remarks: - Steady state conditior - difference in the pH le 10% and SWL stable/n	HNO3 plas	atic, ×H2	604 plasti c,Z	x unpreserve	d plastic

JKE	İn۱	/ir	onme	n:	ts			K
Client:	TSA					Job No.:	E3250	7BR
Project:	Proposed	l Hospital I	Redevelopment			Well No.:	IN.	NW 102
Location:	97-115 R	iver Road,	GREENWICH, NSW		Depth (m): 6.1			
WELL FINISH								
X Gatic Co			Standpip	e			Other (descr	ibe)
Wethod:	iLS.	1 - \	<u> </u>		SWL – Be	fore	2 17	100
			flow.		Time – Be		3.67	
Jndertaken By:		14/10				Removed:	11:21 a	w
Pump Program No:	**********	MM	C		PID (ppm)		1.0 L	
PURGING / SAMPLIN	IG MEASU	REMENTS			Ein (bhui)		40.3	
Time (min)	SWL (m)	Vol (L)	Notes	Temp (°C)	DO (mg/L)	EC (µS/cm)	рН	Eh (mV)
11:23	3.77	0.3		20.5	5.4	45.6	6.57	402
11:25	3.81	0.4		20.5	4.7	44.8	6.51	-50.4
11:29	3.88	0.5	5.5-4 F.5-4 4 H H, 20,4174 H32-4 H 20,210-2-2/10-4	20.4	3.8	73.5	6.41	-515
11:36.	394	0.6		20.8		71.3	6,32	-46.8
11:43	3,97	0.7	***************************************	21.4	3.9	71.2	6.3A	-45.2
11:49	4.02	8.0		22.0	3.7	71.6	6.46	46.5
11:55	4.04	0,9		22.0	3.5	71.7	6.46	-43.6
12:01	4.07	1.0		22.0	3.6	71.7	6.46	-44.0
		1.1.92	start Samplino					T.LEN
			Crown-remitme		AFARATA-SANA	************	***********	**********
			•		************		100000000000000000000000000000000000000	TARRAMENTAR
			*******************	************				
			************************	*********	******			
						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
			***********************		**********	**********	************	
			*************************	********	******		*************	***************************************
*************			*************				**************	*******
•••••			•••••					
**********							************	**********

Comments: Odours (VEC / A	CA NADI	/PSH (YES / NO), Sheen	VER 1 fix	N 64 1	State Astro	J (VCC / ACC)	
			ber, 3x BTEX vials, 1 x					
ested By: Craig Ridle	ν ΛΛ ι ΛΛ	F	Remarks:					
		· L	- Steady state condition					
17/1	10/ZI	*********	- difference in the pH le			ference in co	nductivity less	s than
	10/21		10% and SWL stable/n	iol in draw	uown			

JKEnvironments Client: E32507BR Job No.: Project: Proposed Hospital Redevelopment Well No.: MW104 Location: 97-115 River Road, GREENWICH, NSW Depth (m): 6.0 WELL FINISH Gatic Cover WELL PURGE DETAILS: Standpipe Other (describe) Low flow sampling. Method: SWL - Before: Dry. Date: Time - Before: Undertaken By: Total Vol Removed: MME 15.2 Pump Program No: PID (ppm): **PURGING / SAMPLING MEASUREMENTS** Temp DO Time (min) SWL (m) Notes EC (µS/cm) рΗ Eh (mV) Vol (L) (°C) (mg/L) Comments: Odours (YES / NO), NAPL/PSH (YES / NO), Sheen (YES / NO), Steady State Achieved (YES / NO) Sampling Containers Used: x glass amber, x BTEX vials, x HNO3 plastic, x H2SO4 plastic, x unpreserved plastic YSI used: Tested By: Graig Ridley MME Steady state conditions Date Tested: 13/10/21 difference in the pH less than 0.2 units, difference in conductivity less than Checked By: Cn 10% and SWL stable/not in drawdown Date:

JKEnvironments E32507BR Client: Job No.: Proposed Hospital Redevelopment Project: Well No.: MW105 7.85 Location: 97-115 River Road, GREENWICH, NSW Depth (m): WELL FINISH X Gatic Cover Standpipe Other (describe) WELL PURGE DETAILS: Lowflow SWL - Before: Date: 14/10/21 Time - Before: Undertaken By: Total Vol Removed: MME Pump Program No: PID (ppm): PURGING / SAMPLING MEASUREMENTS DO Temp Time (min) SWL (m) Vol (L) Notes EC (µS/cm) Eh (mV) (mg/L) 12:41 0.3 5.53 7.7 10.2 12:45 5.05 38.1 6.20 0.4 333.4 12:52 653 5.07 0.5 -33.7 1:01 0.6 658 5.06 6.26 0.7 24.8 3.6 5.06 5.06 659 10 0.0 Start Sampling Comments: Odours (YES / NO), NAPL/PSH (YES / NO), Sheen (YES / NO) Steady State Achieved (YES / NO) Sampling Containers Used: 2x glass amber, 3x BTEX vials, 1x HNO3 plastic, 1x HNO4 plastic, 1x unpreserved plastic YSI used: F PEAS DO I taken here Tested By: Craig Ridley MME Remarks: Steady state conditions

difference in the pH less than 0.2 units, difference in conductivity less than

10% and SWL stable/not in drawdown

Date Tested: 14/10/21

Checked By: こん

JKE	İn۱	/ir	onme	n.	ts				
Client:	TSA					Job No.:	E3250	7BR	
Project:	Proposed	l Hospital f	Redevelopment	*********		Well No.:	I.	MICE	
Location:	97-115 R	iver Road,	GREENWICH, NSW			Depth (m):		2,52	
WELL FINISH	-ts								
Gatic Co WELL PURGE DETA			Standpipe	e			Other (descr	ibe)	
Method:	iLG.	1 - 5	flow		SWL - Be	efore:	A-10	PA 9.	17
Date:		14/10	1100	************	Time – Be	********	17.18	******	
Undertaken By:		MMI		•••••		Removed:	1	416	2:30 pm
Pump Program No:		TATE 277):	19-611	7	
PURGING / SAMPLIN	IG MEASU						1170	-	
Time (min)	SWL (m)	Vol (L)	Notes	Temp (°C)	DO (mg/L)	EC (μS/cm)	рН	Eh (mV)	
2:33	9.24	0.2		22.3	7.9	13.9	4.82	1589	
2:36	9.27	0.3		27.8	7.0	197.8	4,20	-8.9	
2:39	9.27	0.4		22.9	6.4	377.4	4.06	43.9	
2:42	9.28	0.5		23.1	68	277.1	4.01	-50.8	
2:47	9.28	0.6		23.3	6.5	378.1	4.01	52.3	
2:52	9.29	F.0		23.4	6.7	378.8	4.03	-52.9	
2:58	9.30	8.0	212 - A102	23.4	6.5	378.8	4.05	-52.6	
3:06	9.30	P.O		23.4	6.5	378.9	4.06	-52.4	
3:12	9.30	1.0		23.4	6.7	378.5	4.06	-52.6	
3:19	9.30	1.1		23.4	6.5	378.5	4.07	-51.6	
			Start Samplim						
					*********	***************************************	*************	***************************************	

			***************************************					***********	

							**************	***************************************	

		************	***************************************	**********					
	110000000000000000000000000000000000000					**************	*************		
***************************************							*************	************	*1
****************	*************		***************************************				***************************************		
				**********			**************		
			***************************************		**********			*********	
	**********	***************************************							
		TOTAL CONTRACTOR	******************************		**********	***************************************		**********	

Comments: Odours	YES / (NO	NAPL/	PSH (YES NO), Sheen	YES (NO	, Steady	State Achieve	d (VES) / NO		
Sampling Container	s Used: 2	glass ami	ber, $3x$ BTEX vials, x	HNO3 plas	tic. × H2	SO4-plestic:	x unpreserva	ed plastic	
/SI used: 5			taken here	pida			unproserve	-a piastit	
Tested By: Greig Ridk	MW A	E. '	Remarks:						
Date Tested: 14/11	1210		 Steady state condition difference in the pH le 		2 unite dil	fference in co	nductivity loss	s than	
Checked By: A			10% and SWL stable/n			noronoe III col	ilductivity les	a uidli	
Date: 15//0	121	1	1					Ji	

JKE	Ē'n۱	/ir	onme	en†	ts			K	
Client:	TSA					Job No.:	E3250	7BR	
Project:	Proposed	Hospital '	Redevelopment	***************************************		Well No.:		FOIWI	
Location:			, GREENWICH, NSW			Depth (m):		4.93	
WELL FINISH	1						1.	1 - 1-	
√ Gatic Co	over		Standpip	e			Other (descri	ibe)	
WELL PURGE DETA	AILS:								
Method:			flow		SWL - Be	fore:	9.90	******	
Date:		13/10)/21		Time – Be	efore:	905	am	
Undertaken By:		MM			Total Vol	Removed:	0.8L		
Pump Program No:	SUMMERT CONTRACTOR		Martin per un extensión de la companion de la	ABhadan nano.	PID (ppm)):	2.4		
PURGING / SAMPLI	NG MEASU	REMENTS							
Time (min)	SWL (m)	Vol (L)	Notes	Temp (°C)	(mg/L)	EC (µS/cm)	pН	Eh (mV)	
	9.96	0.2		16.4	8,9	10.2	6.7	46.4	
9:12	9.97	0.4		16.3	3.0	131.5	4.24	-2.0	
9:22	9.98	0.5		16.3	3.2	236.9	4.29	-3.7	
9:32	10.01	0.6		16.2	3.0	233.0	4.32	-14.0	
9:4-2	10.02	0.7		16.1	3.2	232.5	4.32	-16.0	
9:52	10.02	0.8		16.1	3.1	231.2	4.32	-16.2	
(0:02	10.02	P.0		16.0	3.1	230.6	4.32	-16.2	
**************************************	100000		START SAMPLING.	2		***************************************		****	
			**********************	************		***************	*************	***********	
ne-overnationate at ex-overs		MATERIAL CONTROL				100-000-000	100000000000000000000000000000000000000	10,551,000,000	

***************************************			***************************************						
	-								
	•								
					***********	10-10-11-11-11-11-11-11-11-11-11-11-11-1			
								.,	
		.11244411444							
							100101101010101101		
MEANDONINESERCORENESERCE	0.0010000000000000000000000000000000000				e construction of	Indeed By the Edition	***************************************	***********	
						10-120030	100.40.00.00.00.00.00.00	1022-0300	
	1		***********************			***************************************		***************************************	
	1				************				
Comments: Odours	(YES / N	O), NAPL	/PSH (YES / NO), Sheen	(YES / (NC	Steady	State Achieve	d(YE\$ / NO		
			nber, 3 x BTEX vials, x						
YSI used: 5		x giass am Duo 1	taken here		iic, x <i>⇔</i> ∞	Stra plastie,	X unpreserve	30 piasuc	
Tested By: Craig Rid		1E	Remarks:						
Date Tested:			- Steady state condition						
Checked By: CR	110121		- difference in the pH le 10% and SWL stable/r			ifference in co	nductivity les	s than	
Checked by.	71-275	accesses and	10 % and SWL stable/	iot in diaw	down				

Date Tested: 13/10/2 Checked By: CR/ Date: 15/10/2

Kin

JKEnvironments

								. 4		
Client:	TSA					Job No.;	E3250	7BR		
Project:	Proposed	Hospital I	Redevelopment			Well No.:		POIMA		
Location:	97-115 R	iver Road,	GREENWICH, NSW			Depth (m):	1	2.54		
WELL FINISH										
X Gatic Co			Standpipe		Other (describe)					
WELL PURGE DETA	ILS:									
Method:		Lawf	-low		SWL – Be	fore:	7.07			
Date:		14/10			Time – Be	efore:	8 20 a	m. 8:41		
Undertaken By:		MME		Total Vol	Removed:	1.26				
Pump Program No:		_			PID (ppm)):	27.2			
PURGING / SAMPLIN	IG MEASU	REMENTS								
Time (min)	SWL (m)	Vol (L)	Notes	Temp (°C)	DO (mg/L)	EC (µS/cm)	pН	Eh (mV)		
8:43.	7.14	0.2		18.8	3.1	15. i	4.58	-55.4		
8:46	7.19	0.4		18.8	1.9	53.3	4.61	-57.3		
8:53	730	0.6		19.0	1.4	10.0	4.75	109.4		
8:58	7.33	0.7		19.0	2.0	242.8	4.81	-57.9		
9:03.	7,37	0.8		19.0	1.2	243.6	4.83	-69.3		
9:08	738	0.9	*********************	19.0	1.1	243.5	4.83	-579		
4:13	7.39	1.0		19.1		244.1	4.84	-56.5		
	7.41	110		-4	***************************************		4.86			
9:18 9:23.		1.1	***************************************	19.0	1.0	244.6		-54.0		
25	7.42	12.		19.2	1.	245.6	4.86	-53.2		
			stan sampling		************	***************************************				
	***********	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			(<u></u>					
5						*************				

- S. F. A. A. PORTO DE CONTROL DE CONTROL DE LA RECONTROL DE CONTROL										
						**************************************	****			
40-200-1000-1000-10										

******************	**********		***********************			*************	H10160500119191			
	**********					****************		*********		

51247416414445415415441541545			•======================================							
			*******************************					ļ		
*********************			************************		***********					
	6									
Comments: Odours	YES / (N	g), NAPL	/PSH (YES / NO), Sheen	YES / NO	Steady	State Achieve	d (YES / NO)		
Sampling Container	s Used: Z	x glass am	ber,3 x BTEX vials,\ x	HNO3 plas	itic, x 112	304 plasti c,	x unpreserv	ed plastic		
YSI used: 5			,							
Tested By: Graig Rid	ey MM	E	Remarks:							
	10/21		- Steady state condition							
Checked By: CR	10121		- difference in the pH le			ference in co	nductivity les	s than		

JKE	Ξn	/ir	onme	en.	ts			K
Client:	TSA					Job No.:	E3250	7BR
Project:	Proposed	Hospital I	Redevelopment	Well No.:	IN.	PIINI		
Location:	97-115 R	iver Road,	GREENWICH, NSW	Depth (m):	.75			
WELL FINISH								-
X Gatic C			Standpip	e			Other (descr	ibe)
WELL PURGE DET	AILS:	De:						
Method:		rom	flow sampling		SWL - Be	fore:	Dry	*****
Date:		13/10	121.		Time – Be	efore:	2:45 p	m
Undertaken By:		MM	E.			Removed:	- '	
Pump Program No:		2 50 1			PID (ppm)		1.3	Incocamonation
PURGING / SAMPL	ING MEASU	REMENTS						
Time (min)	SWL (m)	Vol (L)	Notes	Temp (°C)	DO (mg/L)	EC (µS/cm)	pН	Eh (mV)

						**********	<i>f</i> .	
				ļ		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

						/		exelucos a object
							***************	***********

	**	***********	*********************		/	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	M (21/2001		*************			************	************	
			***************************************		/		*********	
*****************			***************************************					**********
***************		***************************************	***************************************		***********		************	
				<u> </u>	**********	***********	***********	********
			<i>[</i>	*******				
		aranasana.	/				**********	
**************							*****	
								380
							100 0 110 0 10 0 10 0 10 0	
		JULIANO VIII	HIRDHIOCHILENIIL	IGODER SER - NO	AUD. SADAR STRUM			
						***************************************	***************************************	
	1	LIDAGAS-KANHILE			***********	***************	*************	***********
							*************	***********

			PSH (YES / NO), Sheen					
rested By: Graig Ric	ttev INA KAT	2	Remarks:					
		•	- Steady state condition	าร				
	10/21		- difference in the pH le	ss than 0.	2 units, dif	ference in co	nductivity les	s than
Checked By: CA	jy		10% and SWL stable/n	ot in draw	down			