

REPORT TO HAMMONDCARE

ON REMEDIATION ACTION PLAN

FOR PROPOSED HOSPITAL REDEVELOPMENT

AT GREENWICH HOSPITAL, 97-115 RIVER ROAD, GREENWICH, NSW

Date: 5 May 2022 Ref: E32507BRrpt6Rev1

JKEnvironments.com.au

T: +61 2 9888 5000 JK Environments Pty Ltd ABN 90 633 911 403

Report prepared by:

Craig Ridley Senior Environmental Scientist

Report reviewed by:

Vittal Boggaram Principal Associate | Environmental Scientist

For and on behalf of JKE PO BOX 976 NORTH RYDE BC NSW 1670

DOCUMENT REVISION RECORD

Report Reference	Report Status	Report Date
E32507BRrpt6	Final Report	11 April 2022
E32507BRrpt6Rev1	Revision 1	5 May 2022

© Document copyright of JK Environments (JKE)

This Report (which includes all attachments and annexures) has been prepared by JKE for the Client, and is intended for the use only by that Client.

This Report has been prepared pursuant to a contract between JKE and the Client and is therefore subject to:

- a) JKE's proposal in respect of the work covered by the Report;
- b) The limitations defined in the client's brief to JKE; and
- c) The terms of contract between JKE and the Client, including terms limiting the liability of JKE.

If the Client, or any person, provides a copy of this Report to any third party, such third party must not rely on this Report, except with the express written consent of JKE which, if given, will be deemed to be upon the same terms, conditions, restrictions and limitations as apply by virtue of (a), (b), and (c) above.

Any third party who seeks to rely on this Report without the express written consent of JKE does so entirely at their own risk and to the fullest extent permitted by law, JKE accepts no liability whatsoever, in respect of any loss or damage suffered by any such third party.

Executive Summary

HammondCare ('the client') commissioned JK Environments (JKE) to prepare a Remediation Action Plan (RAP) for the proposed hospital redevelopment at Greenwich Hospital, 97-115 River Road, Greenwich, NSW.

This RAP is to be submitted to the Department of Planning and Environment (DPE) in support of a State Significant Development Application (SSD-13619238) for the redevelopment of Greenwich Hospital into an integrated hospital and seniors living facility on land identified as 97-115 River Road, Greenwich, NSW (the site).

The subject proposal is for the detail design and construction of the facility following its concept approval under SSD-8699. Specifically, SSD-13619238 seeks approval for the following:

- Demolition of the existing hospital building and associated facilities at the site;
- Construction of a new hospital facility and integrated healthcare campus comprising of hospital, residential aged care, seniors housing, overnight respite, across:
 - A new main hospital building up to RL 80.0;
 - Two new seniors living buildings, Northern building up to RL 56.36, and Southern building up to RL 60.65;
 - A new 2-3 storey respite care building up to RL 56.9;
- Construction of associated site facilities and services, including pedestrian and vehicular access and basement parking;
- Site landscaping and infrastructure works; and
- Preservation of Pallister House which will continue to host dementia care and administrative functions.

JKE note that the development plans issued to JKE on 20 April 2022 indicate the new main hospital building is to be constructed above set-down and mezzanine levels. The buildings will be terraced to account for the slope of the site.

In accordance with section 4.39 of the Environmental Planning & Assessment Act 1979 (EP&A Act), the Secretary's Environmental Assessment Requirements (SEARs) for SSD-13619238 were issued on 24 February, 2021. This report has been prepared to respond to the following SEARs:

SEAR	Relevant section of report
19. Contamination. Address contaminant conditions imposed under SSD-8699.	This report relates to the remediation action plan (RAP) regarding contamination at the site. The site characterisation and conceptual site model are presented in Section 3, the data gaps are outlined in Section 4, the remediation options are discussed in Section 5 and the conclusions are presented in Section 10.

JKE has reviewed the development plans prepared by Bickerton Masters (DD-SW-0200 to 0210, dated 1 April 2022). Based on review of these plans, we understand the proposed development includes:

- The demolition of the existing hospital building and associated facilities (excluding Pallister House);
- Construction of the main hospital building and two serviced seniors living buildings constructed over 1-2 levels of carparking;
- The proposed lowest (basement) car park finished floor reduced level (RL) will be formed at between RL37.95m Australian Height Datum (AHD) and RL38.6mAHD;
- Construction of a new 2-3 storey respite care building to the east of the main building; and
- Reconfiguration of the surrounds including new access roads, external parking areas, walkways and landscaped areas.

The proposed development includes major earthworks (cut/fill) over the majority of the site to achieve the development levels. The maximum cut is anticipated to be approximately 14m below ground level (BGL). Selected development plans issued to JKE are attached in the appendices.

The goal of the remediation is to render the site suitable for the proposed hospital redevelopment from a contamination viewpoint. The primary aim of the remediation at the site is to reduce the human health and environmental risks posed by site contamination to an acceptable level.

The primary objectives of the RAP are to:

- Summarise previous investigations and historical contamination data;
- Provide a methodology to remediate and validate the site;
- Provide a contingency plan and unexpected finds protocol for the remediation works; and
- Outline site management procedures to be implemented during remediation.

For the purpose of the RAP, the extent of soil remediation includes total recoverable hydrocarbon (TRH) impacts to fill in the south-west of the site including the TRH impacts to residual soil/bedrock in the vicinity of BH103, and the remediation of the UST and associated infrastructure. The extent (horizontal and vertical) of the TRH impacts to fill is limited to the landscaped areas and to the base of fill, or to a depth of approximately 2mBGL (whichever is lesser). The extent of remediation (horizontal and vertical) of the TRH impacts to residual soil/bedrock in the vicinity of BH103, and the UST and associated infrastructure are considered to be localised and will be guided by the validation. It is anticipated that the impacts to residual soil/bedrock may be localised to the soil/rock interface which is anticipated to be approximately 1.5m to 2mBGL. It is anticipated that the tank pit could be approximately 2-3m deep. The approximate extent of soil remediation is shown on Figure 5 attached in the appendices.

The Additional Site Investigation (ASI) undertaken at the site by JKE in 2022 identified heavy metals at concentrations above the site assessment criteria (SAC) for ecological receptors. The pH readings of the groundwater were also generally outside (i.e. below the lower threshold) the ecological SAC. JKE was of the opinion that the heavy metal concentrations of and pH of the groundwater were likely regional issued and did not pose a risk to on-site receptors in the context of the proposed development. The ASI also identified concentrations of TRH F1, acenaphthene (a PAH compound) and trihalomethanes (volatile organic compounds - VOCs) in selected groundwater samples. All of the TRH F1, acenaphthene and trihalomethane concentrations were below the SAC and were assessed to not pose risk to the on-site receptors in the context of the proposed land use.

Though the groundwater was assessed to not pose risk to onsite receptors, some treatment may be required for offsite disposal of groundwater to stormwater during dewatering activities.

The extent for mitigation/management of hazardous ground gases (HGG), will be based on the findings of the data gap investigation (DGI) outlined in Section 4. The DGI will largely need to be undertaken post-demolition of the existing structures.

Based on the information available, HHG may present a risk to site users and may require long-term management. Additional investigation is required to assess the risks posed by HGG in order to determine the appropriate management measures. Following the additional investigation, a Human Health Risk Assessment (HHRA) should be undertaken by an experienced health risk assessor to assess the potential for health risks associated with HGG. In the event the HHRA indicates there is a risk to human health, long-term management/mitigation of HGG may be required.

The preferred option for remediation of the UST, UST backfill and associated infrastructure, TRH-impacted fill and TRHimpacted residual soil/bedrock is removal of the material to an appropriate facility (Option 4 of Table 5-1). The management/mitigation options for HGG will be considered following the additional investigation. This will be addressed in a stand-alone remedial works plan (RWP) based on the results of the HHRA.

The preferred options for soil remediation are considered to be appropriate on the basis that:

- Considerable earthworks (cut/fill) are required to achieve design levels;
- The TRH impacts to the fill in the south-west of the site, and the residual soils/bedrock in the vicinity of BH3 appear to be localised;
- The potential hydrocarbon impacts associated with the UST and associated infrastructure are anticipated to be localised;
- The UST and associated infrastructure will be removed from site, removing a potential source of hydrocarbon impacts; and

• The strategies are sustainable, economically viable, commensurate with the level of risk posed by the contaminants and technically achievable to implement concurrently with the proposed development works.

The RAP includes a methodology to remediate and validate the site. A contingency plan for remediation is included together with site management procedures and an unexpected find protocol (UFP) to be implemented during remediation.

A site validation report is to be prepared on completion of remediation activities and submitted to the consent authority (DPE) to demonstrate that the site is suitable for the proposed development.

The conclusions and recommendations should be read in conjunction with the limitations presented in the body of this report.

Table of Contents

1	INTR	ODUCTION	1
	1.1	PROPOSED DEVELOPMENT DETAILS	2
	1.2	REMEDIATION GOAL, AIMS AND OBJECTIVES	2
	1.3	Scope of Work	3
2	SITE	INFORMATION	4
	2.1	BACKGROUND / SUMMARY OF SITE HISTORY	4
	2.2	SITE IDENTIFICATION	9
	2.3	SITE CONDITION AND SURROUNDING ENVIRONMENT	9
	2.4	SUMMARY OF GEOLOGY, SOILS AND HYDROGEOLOGY	11
3	SITE	CHARACTERISATION AND CONCEPTUAL SITE MODEL	14
	3.1	SUMMARY OF CONTAMINATION (SITE CHARACTERISATION)	14
	3.2	CSM	14
	3.3	REMEDIATION EXTENT	16
4	DATA	A GAP INVESTIGATION	17
	4.1	FILL SOIL MOUND	17
	4.2	Soils Beneath Existing Building Footprints	17
	4.3	HGG	18
	4.4	DGI REPORTING REQUIREMENTS	18
5	REM	EDIATION OPTIONS	19
	5.1	Soil Remediation	19
	5.2	HGG MANAGEMENT	21
	5.3	RATIONALE FOR THE PREFERRED OPTION FOR SOIL REMEDIATION	21
6	SOIL	REMEDIATION DETAILS	22
	6.1	ROLES AND RESPONSIBILITIES	22
	6.2	Pre-commencement	23
	6.3	REMEDIATION AND ASSOCIATED TASKS	23
	6.4	REMEDIATION DOCUMENTATION	27
7	VALII	DATION PLAN	29
	7.1	VALIDATION SAMPLING AND DOCUMENTATION – SOIL MEDIA	29
	7.2	VALIDATION ASSESSMENT CRITERIA AND DATA ASSESSMENT	32
	7.3	VALIDATION SAMPLING, ANALYSIS AND QUALITY PLAN (SAQP)	34
	7.4	VALIDATION REPORT AND LTEMP	37
8	CON	TINGENCY PLAN	38
	8.1	UNEXPECTED FINDS	38
	8.2	IMPORTATION FAILURE FOR VENM OR OTHER IMPORTED MATERIALS	38
	8.3	CONTINGENCY FOR FAILURE OF REMEDIATION STRATEGY	38
9	SITE MANAGEMENT PLAN FOR REMEDIATION WORKS 35		

	9.1	Asbestos Management Plan (AMP)	39
	9.2	PROJECT CONTACTS	39
	9.3	SECURITY	39
	9.4	TIMING AND SEQUENCING OF REMEDIATION WORKS	40
	9.5	SITE SOIL AND WATER MANAGEMENT PLAN	40
	9.6	NOISE AND VIBRATION CONTROL PLAN	40
	9.7	DUST CONTROL PLAN	40
	9.8	Dewatering	41
	9.9	AIR MONITORING	41
	9.10	Odour Control Plan	42
	9.11	WORK HEALTH AND SAFETY (WHS) PLAN	42
	9.12	WASTE MANAGEMENT	43
	9.13	INCIDENT MANAGEMENT CONTINGENCY	43
	9.14	HOURS OF OPERATION	43
	9.15	COMMUNITY CONSULTATION AND COMPLAINTS	43
10	CONCL	LUSIONS	44
	10.1	REGULATORY REQUIREMENTS	44
11	1 LIMITATIONS		

JKEnvironments

List of Tables

Table 2-1: Site Identification	9
Table 2-2: ASI Summary - Subsurface Conditions	11
Table 2-3: ASI Summary - Groundwater Field Screening	12
Table 3-1: CSM	15
Table 5-1: Consideration of Soil Remediation Options	20
Table 6-1: Roles and Responsibilities	22
Table 6-2: Remediation – UST and Associated Infrastructure	25
Table 6-3: Remediation Details – Excavation and disposal of TRH-impacted fill and residual soil/Bedrock	26
Table 7-1: Validation Requirements for Soil Media	29
Table 7-2: VAC	32
Table 9-1: Project Contacts	39
Table 10-1: Regulatory Requirement	45

Attachments

Appen	dix	A: Re	eport Figu	res		
Appen	dix	B: Se	lected De	velopment	Plans	

Appendix C: Data Summary Tables and Borehole Logs

Appendix D: Example Waste Tracking Record

Appendix E: Unexpected Finds Protocol Summary

Appendix F: Guidelines and Reference Documents

Abbreviations

Ambient Background Concentrations	ABC
Asphaltic Concrete	AC
Australian Business Number	ABN
Added Contaminant Limits	ACL
Asbestos Containing Material	ACM
Additional Site Investigation	ASI
Australian Company Number	ACN AEC
Area of Environmental Concern	AHD
Australian Height Datum Acid Sulfate Soil	AND
Below Ground Level	BGL
Benzo(a)pyrene Toxicity Equivalent Factor	BGL BaP TEQ
Bureau of Meteorology	BOM
Benzene, Toluene, Ethylbenzene, Xylene	BOW
Cation Exchange Capacity	CEC
Construction Environment Management Plan	CEMP
Contaminated Land Management	CLM
Carbon Monoxide	CO
Carbon Dioxide	CO ₂
Chain of Custody	COC
Conceptual Site Model	CSM
Development Application	DA
Data Quality Indicator	DQI
Data Quality Objective	DQO
Department of Planning and Environment	DPE
Ecological Investigation Level	EIL
Environmental Investigation Services	EIS
Ecological Screening Level	ESL
Environmental Management Plan	EMP
Excavated Natural Material	ENM
Environment Protection Authority	EPA
Environment Protection Licence	EPL
Environmental Site Assessment	ESA
Ecological Screening Level	ESL
Excavated Natural Material	ENM
Ground Penetrating Radar	GPR
Human Health Risk Assessment	HHRA
Hazardous Ground Gases	HGG
Health Investigation Level	HILS
Health Screening Level	HSL
Hydrogen Sulphide	H₂S
JK Environments	JKE
Light non-Aqueous Phase Liquids	LNAPL
Long Term EMP	LTEMP
Map Grid of Australia	MGA
Monitored Natural Attenuation	MNA
National Association of Testing Authorities	NATA
National Environmental Protection Measure	NEPM
Organochlorine Pesticides	OCP
Organophosphate Pesticides	OPP
Oxygen Delvevelie Arometie Undreserbons	O2
Polycyclic Aromatic Hydrocarbons	PAH
Polychlorinated Biphenyls	PCBs
Photo-ionisation Detector	PID

JKEnvironments

Protection of the Environment Operations	POEO
Practical Quantitation Limit	PQL
Quality Assurance	QA
Quality Control	QC
Remediation Action Plan	RAP
Relative Percentage Difference	RPD
Remediation Works Plan	RWP
Site Assessment Criteria	SAC
Sampling, Analysis and Quality Plan	SAQP
Secretary Environmental Assessment Requirements	SEARs
Source, Pathway, Receptor	SPR
State Significant Development Application	SSDA
Standing Water Level	SWL
Total Recoverable Hydrocarbons	TRH
Upper Confidence Limit	UCL
Urban Residential and Public Open Spaces	URPOS
United States Environmental Protection Agency	USEPA
Underground Storage Tank	UST
Validation Assessment Criteria	VAC
Virgin Excavated Natural Material	VENM
Work Health and Safety	WHS

Units

Litres	L
Metres BGL	mBGL
Metres	m
Millilitres	ml or mL
Milligrams per Kilogram	mg/kg
Percentage	%
Percentage weight for weight	%w/w

1 INTRODUCTION

HammondCare ('the client') commissioned JK Environments (JKE) to prepare a Remediation Action Plan (RAP) for the proposed hospital redevelopment at Greenwich Hospital, 97-115 River Road, Greenwich, NSW.

This RAP is to be submitted to the Department of Planning and Environment (DPE) in support of a State Significant Development Application (SSD-13619238) for the redevelopment of Greenwich Hospital into an integrated hospital and seniors living facility on land identified as 97-115 River Road, Greenwich, NSW (the site). The extent of the site is shown below.

The Site

NOT TO SCALE

The subject proposal is for the detail design and construction of the facility following its concept approval under SSD-8699. Specifically, SSD-13619238 seeks approval for the following:

- Demolition of the existing hospital building and associated facilities at the site;
- Construction of a new hospital facility and integrated healthcare campus comprising of hospital, residential aged care, seniors housing, overnight respite, across:
 - A new main hospital building up to RL 80.0;
 - Two new seniors living buildings, Northern building up to RL 56.36, and Southern building up to RL 60.65;
 - A new 2-3 storey respite care building up to RL 56.9;
- Construction of associated site facilities and services, including pedestrian and vehicular access and basement parking;
- Site landscaping and infrastructure works; and
- Preservation of Pallister House which will continue to host dementia care and administrative functions.

JKE note that the development plans issued to JKE on 20 April 2022 indicate the new main hospital building is to be constructed above set-down and mezzanine levels. The buildings will be terraced to account for the slope of the site.

In accordance with section 4.39 of the Environmental Planning & Assessment Act 1979 (EP&A Act), the Secretary's Environmental Assessment Requirements (SEARs) for SSD-13619238 were issued on 24 February, 2021. This report has been prepared to respond to the following SEARs:

SEAR	Relevant section of report
19. Contamination.	This report relates to the remediation action plan (RAP)
Address contaminant conditions imposed	regarding contamination at the site. The site
under SSD-8699.	characterisation and conceptual site model are
	presented in Section 3, the data gaps are outlined in
	Section 4, the remediation options are discussed in
	Section 5 and the conclusions are presented in Section
	10.

1.1 Proposed Development Details

JKE has reviewed the development plans prepared by Bickerton Masters (DD-SW-0200 to 0210, dated 8 April 2022). Based on review of these plans, we understand the proposed development includes:

- The demolition of the existing hospital building and associated facilities (excluding Pallister House);
- Construction of the main hospital building and two serviced seniors living buildings constructed over 1-2 levels of carparking;
- The proposed lowest (basement) car park finished floor reduced level (RL) will be formed at between RL37.95m Australian Height Datum (AHD) and RL38.6mAHD;
- Construction of a new 2-3 storey respect care building to the east of the main building; and
- Reconfiguration of the surrounds including new access roads, external parking areas, walkways and landscaped areas.

The proposed development includes major earthworks (cut/fill) over the majority of the site to achieve the development levels. The maximum cut is anticipated to be approximately 14m below ground level (BGL).

Selected development plans issued to JKE are attached in the appendices.

1.2 Remediation Goal, Aims and Objectives

The goal of the remediation is to render the site suitable for the proposed hospital redevelopment from a contamination viewpoint. The primary aim of the remediation at the site is to reduce the human health and environmental risks posed by site contamination to an acceptable level.

The primary objectives of the RAP are to:

• Summarise previous investigations and historical contamination data;

- Identify any data gaps which may require addressing prior to the commencement of remediation or during remediation works;
- Provide a methodology to remediate and validate the site;
- Provide a contingency plan and unexpected finds protocol for the remediation works; and
- Outline site management procedures to be implemented during remediation.

1.3 Scope of Work

The RAP was prepared generally in accordance with a JKE proposal (Ref: EP53931BR of 14 April 2021 and written acceptance in the form of a purchase order (PO No: 28737) issued by the client on 29 September 2021. The scope of work included consultation with the client, a review of previous reports and Conceptual Site Model (CSM), and preparation of the RAP.

The scope of work was undertaken with reference to the National Environmental Protection (Assessment of Site Contamination) Measure 1999 as amended (2013)¹, State Environmental Planning Policy (Resilience and Hazards) 2021² (formerly SEPP55) and other guidelines made under or with regards to the CLM Act 1997, including the Consultants Reporting on Contaminated Land (2020)³ guidelines.

A list of reference documents/guidelines is included in the appendices.

¹ National Environment Protection Council (NEPC), (2013). National Environmental Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013). (referred to as NEPM 2013)

² State Environmental Planning Policy (Resilience and Hazards) 2021 (NSW) (referred to as Resilience and Hazards SEPP)

³ NSW EPA, (2020). Consultants reporting on contaminated land, Contaminated Land Guidelines. (referred to as Consultants Reporting Guidelines)

2 SITE INFORMATION

2.1 Background / Summary of Site History

2.1.1 Waste Classification Assessment

Environmental Investigation Services (EIS, now JKE) undertook soil sampling for waste classification purposes in 2014⁴. The investigation was limited to the south-west corner of the wider hospital site and was undertaken for the proposed development of a multi-level carpark. Soil samples were obtained from six boreholes. Three boreholes were drilled in the asphaltic concrete (AC) car park and three were drilled into the side of the steep batter slope.

The subsurface profile encountered in the carpark area generally consisted of fill to a depth of approximately 2.3m to 5.3mBGL underlain by sandstone bedrock. The fill material was varied and included silty sand and silty clay with various amounts of gravel. Silty clay fill material was also encountered in the batter slope to depths of approximately 0.5m to 0.6m (hand auger refusal). Foreign materials including bricks, metal fragments and plastic were observed within the batter slope fill profile.

The fill soil was provided a preliminary classification as General Solid Waste (non-putrescible). The natural soils and bedrock were considered to meet the definition of Virgin Excavated Natural Material (VENM).

2.1.2 Preliminary Site Investigation (PSI)

A Preliminary Site Investigation (PSI) was undertaken for the wider hospital property by Douglas Partners (DP) in 2018⁵. The scope of the PSI included a review of various historical documents comprising aerial photographs, historical titles deeds, the Section 10.7 planning certificates, SafeWork NSW licence information, NSW EPA contaminated land register, groundwater bore licence details, and a site walkover inspection.

The site history review and site inspection identified the following:

- Historical title deeds indicated that between the 1920s and 2008 the wider hospital site was owned by individuals, the Church of England Property Trust Diocese of Sydney, and Home of Peace Hospitals Limited. HammondCare took over ownership of the site in 2008. The PSI report indicated that the Church of England operated Pallister House as a home for girls in the mid-20th Century, prior to the property becoming a treating hospital in the mid-1960s;
- Aerial photographs indicated that the site was vacant in the 1930s with Pallister House present on the wider hospital property in the south-east. From 1942 onwards new buildings and structures (the existing hospital buildings and structures) were observed to be present on the site;

 ⁴ Environmental Investigation Services, (2014). Waste Classification Assessment, Proposed Development, Greenwich Hospital, 97-115 River Road, Greenwich. (Ref: E23789Kletr, dated 2 July 2014). (Referred to as EIS 2014 report)
 ⁵ Douglas Partners, (2018). Report on Preliminary Site Investigation (Contamination), Greenwich Hospital, 97-115 River Road, Greenwich. Prepared for HammondCare. (Ref: 86495.00, dated 22 August 2018). Referred to as DP PSI)

- The Section 10.7 Certificate for the site indicated that: the land is not significantly contaminated, is not the subject of a management order, is not the subject of an approved voluntary management proposal, is not the subject of an ongoing maintenance order, and is not the subject of a site audit statement;
- The SafeWork NSW licence information reviewed indicated that an underground storage tank (UST) of approximately 5000L capacity was located at the site. The information indicated that the UST was located to the west of the boilers and was used to store petrol. The documentation indicated that the UST was installed in 1968 and was still in use in the mid-1990s;
- A review of the EPA contaminated Land Register did not identify the wider hospital property as being significantly contaminated under the Contaminated Land Management Act 1997 as at 21 August 2018. The wider hospital site was not listed on the 2 August 2018 version of the 'List of NSW Contaminated Sites Notified to EPA';
- No licenced wells within or near the wider hospital site were identified during a search of licenced groundwater bores, indicating that the regional groundwater table is at significant depth and is not likely to be a beneficial resource for nearby sites;
- The site inspection undertaken as part of the PSI identified the UST gatic cover (which was not opened), in the south-west section of the site; and
- The Conceptual Site Model (CSM) identified the following potentially contaminating activities may have occurred on the wider hospital site:
 - Placement of filling on the site;
 - The use of hazardous materials in previous and existing structures;
 - Contaminants associated with building maintenance (e.g. pesticides);
 - The UST and related infrastructure;
 - Spillage of hospital wastes;
 - Placement of wastes and/or incinerator ash; and
 - Naturally occurring elements in the soils and rock underlying the site (e.g. heavy metals).

The report concluded that if characterisation of the site is required, a full detailed site investigation (DSI) should be undertaken. Further to this, recommendations were made for a hazardous building materials survey of the existing structures and waste classification for any material to be removed from the site as part of redevelopment.

2.1.3 Detailed Site Investigation (DSI)

A DSI was undertaken for the site by JKE in 2019⁶. The DSI included a review of historical information presented in the DP PSI, a walkover site inspection, soil sampling from 30 boreholes and groundwater sampling from three groundwater monitoring wells installed at the site.

The site inspection identified an abandoned UST to the south of the main hospital building (refer to Figure 2). A small self-bunded diesel cube (500L) was observed on the eastern side of the main hospital

⁶ JKE, (2019). Report to HammondCare on Detailed Site Investigation (DSI) for Proposed Hospital Redevelopment at Greenwich Hospital, 97-115 River Road, Greenwich, NSw. (Ref: E32507BTrptRev1, dated 9 September 2019). (referred to as JKE DSI).

building positioned next to an external (transportable) generator and a small capacity incinerator was observed on the eastern side of the main hospital building. Review of the DP PSI indicated several potentially contaminating activities may have occurred on the site and wider hospital property including: placement of fill; use of hazardous materials in previous and existing structures; contaminants associated with building maintenance (e.g. pesticides); the UST and related infrastructure; spillage of hospital wastes; placement of wastes and/or incinerator ash; and naturally occurring elements in the soils and rock underlying the site (e.g. heavy metals).

Soil sampling for the DSI was undertaken from 30 borehole locations and groundwater sampling from three monitoring wells installed in three of the soil boreholes. One soil sample reported an elevated total recoverable hydrocarbons (TRH) F2 Fraction hydrocarbons concentration above the human health and ecological site assessment criteria (SAC), seven soil samples reported elevated TRH F3 concentrations above the ecological SAC and one groundwater sample reported an elevated copper concentration above the ecological SAC for freshwater.

The DSI concluded that the site could be made suitable for the proposed development provided that the following recommendations were implemented to address the data gaps and to better characterise the risks:

- When the site becomes fully accessible (i.e. after demolition), undertake an inspection and additional soil sampling in the footprints of buildings/structures and in the vicinity of the UST;
- Prepare a RAP to address the contamination issues identified at the site; and
- Undertake a validation assessment documenting the remediation works.

2.1.4 Additional Site Investigation (ASI)

An Additional Site Investigation (ASI) was undertaken by JKE in 2022⁷. The ASI included a review of site information and site history information (presented in the reports discussed above), soil sampling from an additional 19 locations throughout the site, groundwater sampling from eight monitoring wells installed onsite and a preliminary hazardous ground gases (HGG) screening program. A ground-penetrating radar (GPR) survey was also undertaken.

The GPR survey was limited to the approximate location of the known UST in the south-west of the site. The survey identified a subsurface anomaly which was consistent with the approximate dimensions of a 5,000L tank. JKE noted that the SafeWork NSW recorded presented in the DP PSI indicated that a 5,00L UST was present at the site. JKE was of the opinion that the GPR survey confirmed the location of this UST.

The site history information and the site inspection confirmed the potential sources of site contamination/AEC identified in the JKE DSI.

The ASI identified TRH F1 concentrations above the human health SAC in one location. The location was in the south-west of the site and in the vicinity of the UST. The ASI also identified TRH F3 at concentrations above the ecological SAC in two locations. The TRH F3 exceedance in one location was attributed to organic

⁷ JK Environments, (2022). Report to HammondCare on Additional Site Investigation for Proposed Hospital Redevelopment at Greenwich Hospital, 97-115 River Road, Greenwich, NSW. (Ref: E332507BRrpt5) (Referred to as ASI)

interference in the analysis (i.e. non petroleum-based hydrocarbons). The TRH F3 exceedance in the other location was considered to have low potential to pose risk to ecological receptors due to an incomplete source-pathway-receptor (SPR) linkage.

The site inspection identified at least one UST within the south-west of the site. The UST, associated infrastructure and surrounding area were considered to potential sources of hydrocarbon contamination. However, JKE noted that the borehole observations and soil analysis results indicated the potential for extensive impacts from the UST/s was relatively low. Localised impacts are likely to be encountered in the vicinity of the UST and associated infrastructure, as odorous soils and elevated hydrocarbon concentrations were recorded in the borehole down-gradient of the UST.

The ASI identified heavy metals in groundwater at concentrations above the ecological SAC. The concentrations of heavy metals within the soils indicated the site was unlikely to be the source of the heavy metals within the groundwater. JKE was of the opinion that the concentrations were likely a regional issue and noted that the concentrations did not pose a risk to on-site receptors in the context of the proposed development. However, the concentrations may require some treatment for off-site disposal of groundwater to stormwater during dewatering activities.

The ASI identified that the pH readings of the groundwater samples were generally outside (i.e. below the lower threshold) the SAC for ecological receptors. JKE was of the opinion that the pH was likely a regional issue, however, would require some treatment prior to off-site disposal of groundwater to stormwater during dewatering activities.

The ASI identified concentrations of TRH F1, acenaphthene (a PAH compound) and trihalomethanes (VOCs) in selected groundwater samples. All of the TRH F1, acenaphthene and trihalomethane concentrations were below the SAC and were assessed to not pose risk to the on-site receptors in the context of the proposed land use. However, some treatment may be required for off-site disposal of groundwater to stormwater during dewatering activities.

Preliminary HGG screening was undertaken for the ASI and comprised three rounds of spot monitoring, and screening during borehole drilling. The screening identified carbon monoxide (CO) and carbon dioxide (CO₂) within the monitoring wells at concentrations which may pose risk to human health receptors. JKE note that the HGG screening was conducted at regular intervals and climatic variations may influence the HGG concentrations. A continuous HGG monitoring program was recommended to better assess the risks posed by HGG.

The ASI concluded that the site could be made suitable for the proposed development. The following was recommended:

- When the site becomes fully accessible (i.e. after demolition), undertake an inspection and additional soil sampling in the footprints of buildings/structures and in the vicinity of the UST;
- Prepare a RAP to address the contamination issues identified at the site; and
- Undertake a validation assessment documenting the remediation works.

7

2.1.5 Hazardous Building Material Survey (Hazmat) and Other JKE Reports

JKE were engaged by the client to complete the following reports for the SSD in conjunction with the ASI:

- An acid sulfate soil (ASS) assessment⁸;
- A salinity investigation⁹; and
- A HAZMAT survey¹⁰.

The ASS assessment included a desktop review of geological and ASS risk mapping, site walkover inspection and soil sampling from eight boreholes drilled for the ASI. The ASS information reviewed identified that the site was not located in an ASS risk area and was classed as having extremely low probability of ASS occurrence. The results of field tests and laboratory analysis were not indicative of ASS conditions. Based on the findings of the assessment, the JKE ASS report concluded that ASS or potential ASS was unlikely to be encountered and that an ASS management plan (ASSMP) was not considered necessary for the proposed development.

The salinity investigation included a desktop review of salinity information and mapping, site walkover inspection, soil sampling from eight boreholes drilled for the ASI and groundwater sampling from eight monitoring wells installed for the ASI. The salinity information indicated that the site was not located within a mapped dryland salinity risk area. No visual indications of saline conditions were observed during the inspection. The results of the soil and groundwater analysis identified the following:

- The soils were classed as very strongly acidic to very strongly alkaline;
- The soils were classed as non-saline with localised occurrences of slightly to moderately saline conditions;
- The soils were generally non-sodic;
- The soils were mildly aggressive toward buried concrete and steel;
- The groundwater was moderately aggressive towards buried concrete; and
- The groundwater was non-aggressive towards buried steel.

The salinity investigation recommended preparing a salinity management plan (SMP) for the proposed development.

The HAZMAT survey included an inspection and sampling of representative materials for: asbestos fibre containing materials; lead containing materials; polychlorinated biphenyls (PCBs) containing electrical equipment; and synthetic mineral fibre (SMF) containing materials. The inspection identified asbestos, in the form of bonded/non-friable asbestos containing material (ACM) and friable asbestos and lead in paint

⁸ JKE, (2022a). Report to HammondCare on Acid Sulfate Soil Assessment for Proposed Hospital Redevelopment at Greenwich Hospital, 97-115 River Road, Greenwich, NSW. (Ref: E32507BRrpt3Rev1, dated 8 April 2022). (referred to as JKE ASS Report).

⁹ JKE, (2022b). *Report to HammondCare on Salinity Investigation for Proposed Hospital Redevelopment at Greenwich Hospital, 97-115 River Road, Greenwich, NSW*. (Ref: E32507BRrpt4Rev1, dated April 2022. (referred to as JKE Salinity Report).

¹⁰ JKE, (2022c). *Report to HammondCare on Hazardous Building Materials Survey for Proposed Demolition Works at Greenwich Hospital, 97-115 River Road, Greenwich, NSW*. (Ref: E32507BLrptRev1-HAZ). (referred to as JKE HAZMAT).

systems within the interior and exterior of buildings and structures at the site, and SMF within the interior of building and structures at the site. Light fittings potentially housing PCBs were visually identified within the site. Reference should be made to the JKE HAZMAT report for further details.

2.2 Site Identification

Table	2-1:	Site	Identification

Current Site Owner:	HammondCare
Site Address:	99-115 River Road, Greenwich, NSW
Lot & Deposited Plan:	Lot 3 and Lot 4 in DP 584287
Current Land Use:	Hospital
Proposed Land Use:	Hospital and Seniors Living
Local Government Authority:	Lane Cove Municipal Council
Current Zoning:	SP2: Infrastructure (Health Services)
Site Area (m²) (approx.):	23,700 (Redevelopment Area)
RL (AHD in m) (approx.):	36 - 51
Geographical Location (decimal degrees):	Latitude: -33.827404
	Longitude: 151.183875
Site Location Plan:	Figure 1
Sample Location Plan:	Figure 2

2.3 Site Condition and Surrounding Environment

2.3.1 Location and Regional Setting

The site is located in a predominantly residential area of Greenwich. The site is bounded by River Road to the north and St Vincents Road to the east as shown on Figure 1 attached in the appendices. The site is located approximately 75m to the north-east of the Gore Creek and 275m to the north-east of the Lane Cove River.

2.3.2 Topography

The site is located within undulating regional topography and sits on the southern edge of a topographic spur that falls steeply to the east, south and west. A significant fill batter slope exists along the western boundary. Parts of the site appear to have been levelled to account for the slope and accommodate the existing development.

2.3.3 Site Inspection

A walkover inspection of the site was undertaken by JKE on 20 September 2021 as a component of the ASI. At the time of the inspection, the main hospital buildings were located in the central to west portion of the site and include wards, theatres, two gas-fired boiler units, two emergency generators, clinical and general waste facilities, oxygen storage and maintenance equipment. A building to the east of the main hospital building contained non-clinical facilities. The main hospital buildings were a mix of brick, fibre cement, and concrete construction typically on concrete slab and between one and four storeys.

During the site inspection, a gatic cover assumed to be associated with the abandoned UST was observed to the south of the main hospital building. A small self-bunded diesel cube (500L) was observed on the eastern side of the main hospital building positioned next to an external (transportable) generator. A small capacity incinerator was observed on the eastern side of the main hospital building. There were no other visible or olfactory indicators of contamination observed during the site inspection.

Fill materials were identified in numerous areas around the site where exposed soil was present at the site surface. This included garden and landscaped areas, and unpaved or boundaries of carpark areas generally in the east of the site. Gas cylinders and flammable materials were observed to be stored appropriately in locked cages in paved storage areas and generally in the vicinity of the maintenance office. A fill stockpile/mound (approximately 50m x 9m x 2m) was observed in the north of the site. No inspection or sampling of this stockpile was undertaken.

A majority of the eastern portion of the site was grass covered with interspersed medium to large mature trees and small to medium shrubs. Medium to large trees were observed along the north, west and south boundaries of the site and small to medium shrubs were located in garden beds and around buildings across the site. The steep batter slope in the south-west corner of the site was densely vegetated with native and exotic shrubs and a small grass covered area was observed along the southern boundary (adjacent to the empty pool). The vegetation across the site appeared to be in reasonable condition based on a cursory inspection, with no obvious or extensive dieback observed. Grass coverage was generally good, with the exception of some areas beneath large trees and isolated areas adjacent to carparks and footpaths.

Gore Creek Reserve, an area zoned as E2 - Environmental Conservation, and Gore Creek extends along the south-west boundary of the site. These features are situated down-gradient of the site and are considered to be sensitive environments.

2.3.4 Surrounding Land Use

During the site inspection, JKE observed the following land uses in the immediate surrounds:

- North Greenwich Public School and residential properties;
- South Residential properties and Gore Creek Reserve;
- East Garden and landscaped areas of the hospital, St Vincents Road and residential properties beyond; and
- West Residential properties.

2.3.5 Climatic Conditions

Key meteorological fata for Sydney Botanic Gardens weather station was reviewed for the ASI. A summary is provided below:

- The highest mean rainfall occurs in March, with a total of 138.1mm;
- The lowest mean rainfall occurs in September, with a total of 67.9mm;
- In the week lead up to the JKE soil sampling event, a total of 15mm of rainfall was recorded; and
- In the week lead up to the JKE groundwater sampling event, a total of 15.2mm of rainfall was recorded. JKE note a total of 24mm of rainfall was recorded across the days of groundwater sampling.

2.4 Summary of Geology, Soils and Hydrogeology

2.4.1 Regional Geology

Regional geological information included in the ASI report indicated that the site is underlain by Hawkesbury Sandstone, which typically consists of medium to coarse grained quartz sandstone with minor shale and laminite lenses.

A summary of the subsurface conditions encountered in the ASI boreholes is provided below. Copies of the DSI and ASI borehole logs are attached in the appendices.

Profile Description		
Pavement	Asphaltic concrete (AC) pavement was encountered at the surface in BH101 to BH106, BH109, BH114, BH116 and BH119 and ranged in thickness from approximately 20mm to 100mm.	
	Concrete pavement was encountered at the surface in BH112 and was approximately 220mm thick.	
Fill	Fill was encountered at the surface or beneath the pavement in all boreholes and extended to depths of approximately 0.1mBGL (BH116) to 4.1mBGL (BH104). BH111 and BH117 were terminated in the fill at approximate depths of 0.8mBGL and 1.5mBGL.	
	The fill typically comprised silty gravelly sand, sandy clay and silty clay, with occasional silty sand, clayey sand and sandy gravel, with inclusions of igneous, ironstone, sandstone and siltstone gravel, ash, slag, root fibres and building rubble (asphalt, brick, tile, ceramic, glass, metal and plastic fragments).	
	Organic odours were not encountered in the fill during the investigation.	
Natural Soil	Residual sandy clay, silty clay and silty sand was encountered beneath the fill in BH103, BH105, to BH107, BH109, BH110A, BH113 to BH116 and BH118 at depths of approximately 0.2mBGL (BH114) to 1.6mBGL (BH118).	
	A hydrocarbon odour was encountered in the natural soils in BH103 at a depth of approximately 1.4mBGL. BH103 is located in close proximity of the UST as shown on Figure 2.	
	No stained soils were encountered during the investigation.	
Bedrock	Sandstone bedrock was encountered beneath the fill in BH101, BH102, BH104, BH108, BH112 and BH119, and beneath the residual soils in BH105 to BH107, BH109 and BH116 at depths of approximately 0.3mBGL (BH119) to 4.1mBGL (BH104).	

Table 2-2: ASI Summary - Subsurface Conditions

Profile	Description
	A layer of siltstone approximately 500mm thick was encountered within the sandstone bedrock at a depth of approximately 11mBGL in BH109. The siltstone was assessed to be of low strength.
Groundwater	All boreholes were dry during and on completion of auger drilling. Potable water is introduced during core drilling activities, which inhibits meaningful groundwater seepage measurements during drilling.

2.4.2 Acid Sulfate Soil (ASS) Risk and Planning

Acid sulfate soil (ASS) information presented in the ASS report indicated the site is not located in an ASS risk area. The site is classed as having extremely low probability of ASS occurrence.

2.4.3 Hydrogeology

hydrogeological information included in the ASI report indicated that:

- The subsurface conditions at the site are expected to consist of relatively low permeability (residual) soils overlying shallow bedrock. The potential for viable groundwater abstraction and use of groundwater under these conditions is considered to be low. There is a reticulated water supply in the area and consumption of groundwater is not expected to occur. Use of groundwater is not proposed as part of the development; and
- The site location and regional topography indicates that surface water flows are expected to flow towards the west to south-west and enter Gore Creek, located approximately 75m to the south-west of the site. Gore Creek in turn flows into the Lane Cove River, approximately 275m to the south of the site. These water bodies are considered to be potential receptors.

A summary of the field screening results during groundwater sampling in the ASI is presented in the following table:

Aspect	Details
Groundwater Depth & Flow	SWL measured in the monitoring wells installed at the site ranged from approximately 3.58mBGL to 9.9mBGL. The surface RLs of the monitoring wells were interpolated from spot height measurements on the provided survey and are approximate. Groundwater RLs calculated on these measurements ranged from approximately 34mAHD to 42mAHD. The groundwater RLs indicate that excavation for the proposed basement may intercept groundwater.
Groundwater Field Parameters	 Field measurements recorded during sampling were as follows: pH ranged from pH 4.07 to pH 6.46; EC ranged from 71.7μS/cm to 660μS/cm; Eh ranged from -16.2mV to -53.2mV; and DO ranged from 1.1ppm to 6.5ppm.
Light non-aqueous phase liquids (LNAPL) e.g.	Phase separated product (i.e. LNAPL) were not detected using the interphase probe during groundwater sampling.

Table 2-3: ASI Summary - Groundwater Field Screening

Aspect	Details
petroleum hydrocarbons	

2.4.4 Receiving Water Bodies

Information included in the ASI report indicated that the receiving water bodies included Gore Creek located approximately 75m to the south-west of the site, which in turn flows into the Lane Cove River which is located approximately 275m south of the site.

3 SITE CHARACTERISATION AND CONCEPTUAL SITE MODEL

NEPM (2013) defines a CSM as a representation of site related information regarding contamination sources, receptors and exposure pathways between those sources and receptors. The CSM for the site is presented in the following sub-sections and is based on the previous investigation data, site history and site information presented in Section 2.

3.1 Summary of Contamination (Site Characterisation)

A copy of the soil and groundwater data summary tables and borehole logs from the ASI and DSI reports is included in Appendix B. The SAC exceedances are shown on Figure 3 in Appendix A. The following exceedances of the SAC were reported during the ASI:

- A TRH F1 concentration above the human health-based SAC in residual soil at BH103;
- TRH F3 concentrations above the ecological-based SAC in fill soils at BH104 and BH108. It is noted that following silica gel cleanup analysis of the sample to remove interference from non-petroleum-based hydrocarbons (i.e. organic compounds), the TRH F3 concentration in BH108 was below the ecological-based SAC;
- Concentrations of heavy metals (cadmium, copper, nickel and/or zinc) above the ecological SAC in the groundwater; and
- pH readings outside (i.e. below the lower threshold) of ecological SAC in the majority of the groundwater samples.

The preliminary HGG screening also recorded elevated CO and CO₂ concentrations during the drilling activities and/or screening events. The concentrations indicated gas protection measures may be necessary. These concentrations are not shown on the figures. The ASI HGG field screening records are attached in the appendices.

The following exceedances of the SAC were reported during the DSI:

- A TRH F2 concentration above the human health-based and ecological SAC in fill soil at BH23; and
- TRH F3 concentrations above the ecological SAC in fill soils at BH5, BH13, BH14, BH17, BH19 and BH23.

The UST and associated infrastructure were also considered potential source/s of localised hydrocarbon impacts.

3.2 CSM

The table below includes a review of the CSM which has been used to design the soil remediation strategy. The CSM will require further review if additional site data becomes available.

Table 3-1: CSM	
Contaminant source(s) and	Contamination sources: historically imported fill soil; UST and associated
contaminants of concern	infrastructure; use of pesticides; hazardous building materials; and on-site
	incinerator and hospital waste.
	Contaminants of concern for the RAP include: Heavy metals; TRHs; BTEX; PAHs; and
	HGG.
	The Contamination of Potential Concern (CoPC) for the ASI included: heavy metals,
	BTEX, TRH, PAHs, organochlorine pesticides (OCPs), organophosphorus pesticides
	(OPPs), polychlorinated biphenyls (PCBs), per-and polyfluoroalkyl substances (PFAS)
	and asbestos. The ASI included analysis of groundwater for volatile organic
	compounds (VOCs). The ASI also included a preliminary screening for HGG.
Affected media	Soil and HGG are the affected media.
	The groundwater has been impacted by heavy metals. The source of the
	contaminants is likely associated with leaks/spills from potable water supply and
	regional issues. Groundwater has not been identified as a medium requiring remediation under this RAP as the contaminants are not considered to pose a risk to
	on-site receptors. However, some level of treatment may be required for off-site
	disposal of groundwater during dewatering.
	JKE note that HGG requires further investigation. This has been identified as a data
	gap in this RAP.
Receptor identification	Human receptors include construction workers, intrusive maintenance workers and
	current and future site users. The risk of TRH/BTEX to future site users (including
	accumulating in confined spaces and buildings) should be addressed in relation to
	the proposed development.
	The DSI identified TRH F2 and F3 at concentrations that pose a risk to ecological
	receptors at the site. The impacts were generally limited to the surficial and near-
	surface soils in the landscaped (existing and proposed) areas. These risks should be
	addressed in relation to the proposed development.
Exposure pathways and	Potential exposure pathways relevant to the human receptors include primary
mechanisms	contact and inhalation of vapours (TRH/BTEX and HGG). The potential for exposure
	would typically be associated with the construction and excavation works, and
	future use of the site. Potential exposure pathways for ecological receptors include
	primary contact and ingestion.
	Exposure to human receptors during future site use could occur via inhalation of
	HGG and/or vapours within enclosed spaces such as buildings and basements, and
	during soil disturbance. Exposure to ecological receptors during future site use could
	occur via primary contact and ingestion of soils in unpaved areas, including
	landscaped areas and during soil disturbance.
	The following have been identified as potential exposure mechanisms for site
	contamination:
	 Vapour/HGG intrusion into confined spaces including service trenches;
	 Vapour/HGG intrusion into buildings; and
	 Contact (dermal or inhalation) exposure to TRH (ecological receptors).

The ASI recommended further investigation to assess soil conditions beneath existing structures and additional HGG monitoring as outlined in Section 4.

3.3 Remediation Extent

For the purpose of the RAP, the extent of remediation includes TRH impacts to fill in the south-west of the site, and relatively localised TRH impacts to residual soil/bedrock in one location (BH103). Remediation of the UST and associated infrastructure is also required. The remediation extent has been determined after consideration of the potential for complete SPR linkages to exist before and/or after development.

The depth of fill in the south-west of the site ranged from approximately 0.4mBGL to 5.3mBGL. However, as the TRH impacts to fill pose a potential risk to ecological receptors only, the vertical extent of remediation is will be the depth of fill, or 2mBGL, whichever is lesser. The lateral extent of the remediation for TRH impacts to fill is limited to the landscaped areas in the south-west of the site.

The TRH impacts to residual soil/bedrock in BH103 were encountered at a depth of approximately 1.4mBGL. The extent of remediation (horizontal and vertical) associated with the TRH impacts in the vicinity of BH103 will be guided by the validation. It is anticipated that impacts may be limited to the soil/rock interface, which is anticipated to be approximately 1.5mBGL to 2mBGL.

The extent of remediation (horizontal and vertical) associated with the UST and associated infrastructure will be guided by the validation. It is anticipated that the tank pit could be approximately 2-3m deep. The extent of remediation will be guided by the validation.

The approximate soil remediation extents are shown on Figure 5 in the appendices.

The site is also impacted by HGG. The preliminary HGG screening (a component of the ASI) identified CO and CO_2 at concentrations that may require gas protection measures. It is noted that the screening was conducted from spot monitoring at regular intervals, and that climatic variations may influence the HGG concentrations. Additional investigation of the HGG is required in order to confirm the extent of HGG impacts and assist to identify the necessary protection measures.

Following the data gap investigation (DGI), a Human Health Risk Assessment (HHRA) should be undertaken to assess the potential for health risks associated with the HGG. In the event the HHRA indicates there is a risk to human health, long-term management of HGG may be required. Potential options for the management of HGG based on the findings of the DGI and the HHRA will be included in a remediation works plan (RWP).

4 DATA GAP INVESTIGATION

The ASI recommended further investigation to close out the identified data gaps. The data gaps included that the fill soil mound located on the north-east site boundary was not assessed, the existing building footprints were not assessed, and that HGG screening was undertaken at nominated intervals and may not have captured the worst-case scenario. The data gap investigation (DGI) will largely need to be undertaken post-demolition of the existing structures.

The following sub-sections outline the plan to close out the data gaps.

4.1 Fill Soil Mound

The DGI will include soil sampling from the existing fill soil mound (stockpile) in the north of the site, as shown on Figure 2 attached in the appendices. At the time of reporting, the volume of the stockpile is unknown. A quantity survey is to be prepared to provide an approximation of the stockpile volume.

Soil sampling is to be undertaken from test pits using an excavator (where possible). Sampling and analysis of soils is to be undertaken at the frequencies outlined in the NEPM (2013) (i.e. minimum of one sample per 25m³). A reduced analytical frequency may be acceptable, in the event that the fill mound composition is relatively consistent, and the adoption of sound statistical analysis of results.

As a minimum, one soil sample per sampling location is to be analysed for the following CoPC: heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc), TRH/BTEX, PAHs, OCPs, OPPs and asbestos (500mL quantification sample). A bulk (10L) sample (to the extent achievable based on sample return) from each fill profile encountered (at each location) is to be screened in the field for the presence of asbestos. TCLP analysis for selected metals and PAHs may also be required for waste classification purposes.

4.2 Soils Beneath Existing Building Footprints

The DGI will include soil sampling from 15 additional sampling locations (as a minimum) as nominated on Figure 6 attached in the appendices (BH201 to BH215 inclusive). Additional samples are also to be collected if any visual or olfactory indicators of potential contamination are observed in other areas. The nominated locations target the footprints of the existing buildings.

Soil sampling is to be undertaken from test pits using an excavator (where possible). The use of a drill rig and/or hand tools may be necessary due to access in some areas (i.e. sloping ground).

As a minimum, one soil sample per fill profile encountered (at each location) is to be analysed for heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc), TRH/BTEX, PAHs, OCPs, OPPs and asbestos (500mL quantification sample). A bulk (10L) sample (to the extent achievable based on sample return) from each fill profile encountered (at each location) is to be screened in the field for the presence of asbestos. Additional testing may be required in areas of deep fill.

As a minimum, one sample of the natural profile is to be collected from each sampling location and is to be analysed for heavy metals, TRH/BTEX and PAHs for waste classification purposes. The samples are to be selected based on the results of the fill soil analysis and field observations.

A record of any additional USTs and/or potential point source/s of contamination identified after demolition is to be maintained. After removal of the infrastructure/point source, the USTs and/or point source/s of contamination are to be assessed in accordance with the validation plan outlined in Section 7.1. Any deviation to the remediation strategy should be documented in a RWP.

4.3 HGG

A continuous HGG monitoring program is to be implemented. As a minimum, continuous gas monitors are to be installed at locations BH/MW104 and BH/MW109 and operated continuously for a period of at least 6-8 weeks. The continuous gas monitors are required to log data on an hourly basis (at a minimum) and monitor the concentrations of methane (CH₄), carbon dioxide (CO₂), carbon monoxide (CO), oxygen (O₂) and hydrogen sulphide (H₂S). The meters are also to collect data relating to humidity, pressure (gauge, pump and barometric), and borehole flow rates. The monitoring program may need to be extended in the event that the atmospheric conditions remain relatively consistent during the monitoring period.

4.4 DGI Reporting Requirements

On completion of the DGI, a stand-alone report should be prepared in accordance with the Consultants Reporting Guidelines. Based on the findings of the DGI, a HHRA may be prepared to better assess the risks posed by contamination and HGG, and outline specific remediation/management measures to be implemented during the proposed development in order to mitigate the risk posed to site receptors. If the remediation approach varies from this RAP, a remedial works plan (RWP) is to be prepared and consider the HHRA.

5 REMEDIATION OPTIONS

5.1 Soil Remediation

The NSW EPA follows the hierarchy set out in NEPM 2013 for the remediation of contaminated sites. The preferred order for soil remediation and management is as follows:

- 1. On-site treatment of soil so that the contaminant is either destroyed or the associated hazard is reduced to an acceptable level;
- 2. Off-site treatment of excavated material so that the contaminant is either destroyed or the associated hazard is reduced to an acceptable level, after which the soil is returned to the site;

Or if the above are not practicable:

- 3. Consolidation and isolation of the soil by on-site containment within a properly designed barrier; and
- 4. Removal of contaminated material to an approved site or facility, followed where necessary by replacement with clean material; or
- 5. Where the assessment indicates that remediation would have no net environmental benefit or would have a net adverse environmental effect, implementation of an appropriate management strategy.

For simplicity herein, the above hierarchy are respectively referred to as Option 1, Option 2, Option 3 etc.

The NEPM 2013 and Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia (2009)¹¹ prefer the following asbestos remediation hierarchy:

- 1. Minimisation of public risk;
- 2. Minimisation of contaminated soil disturbance; and
- 3. Minimisation of contaminated material/soil moved to landfill.

The NSW EPA Contaminated Land Management Guidelines for the NSW Site Auditor Scheme (3rd Edition) (2017)¹² provides the following additional requirements to be taken into consideration:

- Remediation should not proceed in the event that it is likely to cause a greater adverse effect than leaving the site undisturbed; and
- Where there are large quantities of soil with low levels of contamination, alternative strategies should be considered or developed.

The table below discusses and assesses a range of soil remediation options:

¹¹ Western Australian (WA) Department of Health (DoH), (2009). Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia. (referred to as WA DoH 2009)

¹² NSW EPA, (2017). Contaminated land Management, Guidelines for the NSW Site Auditor Scheme (3rd ed.). (referred to as Site Auditor Guidelines 2017)

Table 5-1: Consideration of Soil Remediation Options

Option	Discussion	Assessment/Applicability
Option 1 On-site treatment of contaminated soil	On-site treatment can provide a mechanism to reuse the processed material, and in some instances, avoid the need for large scale earthworks. Treatment options are contaminant-specific and can include bio-remediation, soil washing, air sparging and soil vapour extraction, and thermal desorption. Depending on the treatment option, licences may be necessary for specific individual waste streams due to the potential for air pollution and the formation of harmful by-products during incineration processes. Licences for re- use of treated material/waste may also be required.	Potentially applicable for the contaminants of concern. However, treatment is unlikely to be viable on such a small scale and would not be the preferred option due to the extent of earthworks proposed.
Option 2 Off-site treatment of contaminated soil	Contaminated soils are excavated, transported to an approved/licensed treatment facility, treated to remove/stabilise the contaminants then returned to the subject site, transported to an alternative site or disposed to an approved landfill facility. This option is also contaminant-specific. The cost per tonne for transport to and from the site and for treatment is considered to be relatively high. The material would also have to be assessed in terms of suitability for reuse as part of the proposed development works under the waste and resource recovery regulatory framework.	Not feasible option for the project due to the relatively localised impacted and the extent of earthworks proposed.
Option 3 Consolidation and isolation of impacted soil by cap and containment	This would include the consolidation of hydrocarbon impacted soil within an appropriately designed cell, followed by the placement of an appropriate barrier over the material to reduce the potential for future disturbance. The capping and/or containment must be appropriate for the specific contaminants of concern. An ongoing environmental management plan (EMP) will be required and will need to be publicly notified and made to be legally enforceable (e.g. via listings in the Section 10.7 planning certificate and on the land title).	Technically feasible however given the likely small-scale of hydrocarbon impacted soil, this would not be the preferred option due to the ongoing liabilities associated with complying with the EMP.
Option 4 Removal of contaminated material to an appropriate facility and reinstatement with clean material	Contaminated soils would be classified in accordance with NSW EPA guidelines for waste disposal, excavated and disposed of off-site to a licensed landfill. The material would have to meet the requirements for landfill disposal. Landfill gate fees (which may be significant) would apply in addition to transport costs.	This option is the most applicable for the remediation of the USTs/infrastructure as it: aligns with the construction work (i.e. bulk excavation is required in the vicinity of the UST); is technically feasible; and economically viable. This option is applicable for the remediation of TRH impacted fill and natural soils given the likely small-scale of hydrocarbon impacted soil and extent of

Option	Discussion	Assessment/Applicability
		development proposed at the site.
Option 5 Implementation of management strategy	Contaminated soils would be managed in such a way to reduce risks to the receptors and monitor the conditions over time so that there is an on-going minimisation of risk. This may occur via the implementation of monitoring programs.	Not applicable given the extent of the proposed development.

5.2 HGG Management

Various strategies for the mitigation/management of HGG intrusion may be applicable for the proposed development. The HGG mitigation/management options will be considered following completion of the DGI, and the HHRA. The mitigation/management options and the implementation and validation methodologies are to be outlined in a RWP.

5.3 Rationale for the Preferred Option for Soil Remediation

The preferred soil remediation approach is Option 4 which includes excavation and off-site disposal of the UST and the associated infrastructure including any backfill, TRH impacted fill in the south-west of the site and TRH impacted residual soil/bedrock in the vicinity of BH103.

The preferred options for remediation are considered to be appropriate on the basis that:

- Considerable earthworks (cut/fill) will be required to achieve the design levels;
- The TRH impacts to fill are localised to the south-west of the site and appear typically limited to the surficial soils;
- The TRH impacts to residual soil/bedrock in the vicinity of BH103 appear to be localised;
- The potential hydrocarbon impacts associated with the UST and associated infrastructure are anticipated to be localised;
- The UST and associated infrastructure will be removed from site, removing a potential source of hydrocarbon impacts; and
- The strategies are sustainable, economically viable, commensurate with the level of risk posed by the contaminants and technically achievable to implement concurrently with the proposed development works.

6 SOIL REMEDIATION DETAILS

6.1 Roles and Responsibilities

Table 6-1: Roles and Responsibilities

Role	Responsibility
Client / Developer	HammondCare Contact: TBC
	The client/developer is required to appoint the project team for the remediation and must provide all investigation reports including this RAP to the project manager, remediation contractor, consent authority and any other relevant parties involved in the project.
Project Manager	To be appointed.
	The project manager is required to review all documents prepared for the project and manage the implementation of the procedures outlined in this RAP. The project manager is to take reasonable steps so that the remediation contractor and others have understood the RAP and will implement it in its totality. The project manager will review the RAP and other documents and will update the parties involved of any changes to the development or remediation sequence (in consultation with the validation consultant).
Remediation Contractor	To be appointed.
	The remediation contractor is required to review all documents prepared for the project, apply for any relevant removal licences or permits and implement the remediation requirements outlined in this RAP. The remediation contractor may also be the construction contractor.
	The remediation contractor is required to collect all necessary documentation associated with the remediation activities and forward this documentation onto the client, project manager and validation consultant as they become available. The remediation contractor is required to advise the validation consultant at key points in the remediation and validation program, and implement various aspects of the validation plan assigned to them.
Validation Consultant	JKE – Subject to formal engagement Contact: Vittal Boggaram
	The validation consultant ¹³ provides consulting advice and validation services in relation to the remediation, and prepares the site validation report, and any other associated documentation such as the Asbestos Management Plan (AMP), Data Gap Investigation (DGI) report, RWP etc.
	The validation is required to review any deviation to this RAP or in the event of unexpected finds if and when encountered during the site work. It is recommended that the validation consultant has a Licensed Asbestos Assessor (LAA) on staff.
	The validation consultant is required to liaise with the client, project manager and remediation contractor on all matters pertaining to the site contamination, remediation and validation, carry out the required site inspections during capping, and collect validation samples for imported materials.

¹³ It is recommended that the consultant be a certified practitioner (specialising in site contamination), under one of the NSW EPA endorsed certification schemes

Role	Responsibility	
Site Auditor	To be appointed.	
	The site auditor would review the information provided by the validation consultant, including (but not limited to) the site validation report. The auditor is to be engaged to review the RAP prior to commencement of the remediation. The developer, project manager and validation consultant are to consult with the auditor in the event of unexpected finds and/or deviations to the RAP.	

6.2 Pre-commencement

The project team is to have a pre-commencement meeting to discuss the sequence of remediation, and the remediation and validation tasks. The site management plan for remediation works (see Section 9) should be reviewed by the project manager and remediation contractor, and appropriate steps are to be taken to ensure the adequate implementation of the plan.

6.3 Remediation and Associated Tasks

The following general sequence of works is anticipated:

- Preparation of Asbestos Management Plan (AMP) for the proposed development. JKE note that this is a requirement of the JKE HAZMAT report;
- Site establishment and demolition;
- Hold Point A site inspection should be completed by the validation consultant on completion of demolition to identify any additional sources of contamination such as ACM, USTs etc. An LAA should be appointed to provide a site clearance certificate. Any such areas identified should be targeted as part of the DGI;
- Completion of the DGI as outlined in Section 4;
- Completion of the HHRA for HGG, based on the results of the DGI;
- Preparation of a RWP based on the data gap investigation and HHRA;
- Decommissioning and removal of the USTs, backfill and associated infrastructure, followed by excavation and off-site disposal of soils associated with the tank pit and other impacted areas; and
- Remediation of TRH impacted fill and residual soil in the south-west of the site.

Validation of the works would occur progressively throughout the remediation program.

Details in relation to the above are outlined in the following subsections.

6.3.1 Asbestos Management Plan (AMP)

An AMP should be prepared for the site by a LAA and implemented for the site demolition, remediation and development works. The AMP should include the minimum PPE, WHS and other requirements outlined in the documents published by Safe Work Australia, WorkCover Authority of NSW, National Occupational Health and Safety Commission, and other relevant authorities as applicable.

6.3.2 Site Establishment and Demolition

The remediation contractor is to establish on site as required to facilitate the remediation. Consideration must be given to the work sequence and extent of remediation so that the site establishment (e.g. site sheds, fencing, access points etc) does not inhibit the remediation works.

The hazardous building materials in the existing structures should be demolished in accordance with the relevant codes and standards outlined in the JKE Hazmat report. An AMP is to be prepared prior to the commencement of demolition (as discussed in Section 6.3.1). A clearance certificate is to be obtained from a LAA by the demolition contractor following the removal of any hazardous materials. The concrete slabs should be inspected for potential ACM post-demolition by the LAA.

All waste from the demolition is to be disposed to facilities that are licenced by the NSW EPA to accept the waste. The demolition contractor is to maintain adequate records and retain all documentation for such activities including:

- A summary register including details such as waste disposal dates, waste materials descriptions, disposal locations (i.e. facility details) and reconciliation of this information with waste disposal docket numbers;
- Waste tracking records and transport certificates (where waste is required to be tracked/transported in accordance with the regulations); and
- Disposal dockets for the waste. Legible dockets are to be provided for all waste materials so they can be reconciled with the register.

The above information is to be supplied to the validation consultant for assessment and inclusion in the site validation report.

6.3.3 Tank Remediation

The UST and associated infrastructure (i.e. underground pipe work, vent pipes etc) are to be removed from the site in accordance with the Protection of the Environment Operations (Underground Petroleum Storage Systems) Regulation (2019)¹⁴, Guidelines for the Implementation of the Protection of the Environment Operations (Underground Petroleum Storage Systems) Regulation 2019 (2020)¹⁵ and the Australian Standard for The Removal and Disposal of Underground Petroleum Storage Tanks (AS4976-2008)¹⁶. Reference is also to be made to the UPSS Technical Note: Decommissioning, Abandonment and Removal of UPSS (2010)¹⁷ and the UPSS Technical Note: Site Validation Reporting (2010)¹⁸.

¹⁴ Protection of the Environment Operations (Underground Petroleum Storage Systems) Regulation 2019 (NSW). (referred to as UPSS Regulation 2019) ¹⁵ NSW EPA, (2020). Guidelines for the Implementation of the Protection of the Environment Operations (Underground Petroleum Storage Systems) Regulation 2019. (referred to as UPSS Guidelines 2020)

¹⁶ Standards Australia, (2008). *The Removal and Disposal of Underground Petroleum Storage Tanks*. (referred to as AS4976-2008)

¹⁷ NSW DECCW, (2010). UPSS Technical Note: Decommissioning, Abandonment and Removal of UPSS

¹⁸ NSW DECCW, (2010). UPSS Technical Note: Site Validation Reporting

It is noted that various guidelines are outdated and/or are currently being updated to reflect the UPSS Regulation 2019. The remediation is to occur in accordance with the current regulation and best practice guidelines available when the remediation commences.

Table 6-2: Remediation – UST and Associated Infrastructure

Step	Primary Role/	Procedure
	Responsibility	
1.	Remediation contractor	Address Stability Issues and Underground Services: Geotechnical advice should be sought regarding the stability of the adjacent structures and/or adjacent areas prior to commencing remediation (as required). Stability issues should be addressed to the satisfaction of a suitably qualified geotechnical engineer. This may require the installation of temporary shoring.
		All underground services are to be appropriately disconnected or rerouted to facilitate the works.
2.	Remediation contractor (or their nominated sub-contractor)	Initial Preparation: The pavement in the remediation area should be cut and removed with care using an excavator, or similar. An experienced contractor should be engaged for the removal of the UST. Liquid and/or sludge within the UST and associated pipe work should be pumped out and disposed of lawfully by a licensed liquid waste operator.
3.	Remediation contractor (or their nominated sub-contractor) and validation consultant	 <u>Removal of the USTs/infrastructure, impacted soils, followed by validation:</u> The UST and associated infrastructure are to be removed by an appropriately licensed contractor in accordance with AS4976-2008 and with regards to the Work Health and Safety Regulation (2017)¹⁹. Following removal, remediation of the area will be undertaken as follows: The backfill soils (most likely to be sandy fill) surrounding the UST should be excavated and stockpiled separately (all stockpiles should be placed on the adjacent hardstand with appropriate silt control). This material is to be validated by the validation consultant (for waste classification purposes) as outlined in Section 7.1; Submit an application to dispose of the backfill soil (in accordance with the assigned waste classification) to a facility that is appropriately licensed to receive the waste, and obtain authorisation to dispose; Load the backfill soil onto trucks and dispose in accordance with the assigned waste classification; Depending on the contamination status of the backfill, excavation of additional material at the base and walls of the tank pits may be required. This should initially involve excavation of material to extend the pits (say 0.5m initially) in the direction of the suspected impact. The validation consultant should be present during the excavated material separately (to the backfill that was initially excavated) and undertake a waste classification outlined above, then load the soil onto trucks and dispose in accordance with the assigned waste classification; The validation consultant is to obtain validation samples from the walls and base of the excavated material separately (to the backfill that was initially excavated) and undert

¹⁹ Work Health and Safety Regulation 2017 (NSW). (Referred to as WHS regulation 2017)

Step	Primary Role/ Responsibility	Procedure
		forwarded to the client and validation consultant. This documentation forms a key part of the validation process and is to be included in the validation report.
4.	Validation consultant	Validation sampling of the tank pit, waste classification sampling of stockpiled backfill and any groundwater seepage as outlined in Section 7. Review of documentation issued by the remediation contractor and inclusion into validation report.

The detailed validation plan relevant to the above items is provided in Section 7.

6.3.4 Excavation and Disposal of TRH-Impacted Fill and Residual Soil/Bedrock

The procedure for excavation of fill soil is outlined below:

Step	Primary Role/ Responsibility	Procedure
1.	Remediation contractor (or their nominated sub- contractor)	 <u>Removal of contaminated fill/residual soil/bedrock:</u> Excavation of the remediation area will be undertaken as follows: Submit an application to dispose the fill (in accordance with the assigned waste classification) to a landfill licensed by the NSW EPA to receive the waste and obtain authorisation to dispose; A water system will need to be in place to spray the excavated soil during excavation/ remediation works and to decontaminate trucks entering the work area. The general site area should be kept damp during remediation works to minimise the generation of dust; The remediation area should be excavated to the base of the fill and down to the surface of the underlying natural soil (or 2mBGL, whichever is encountered first). The lateral extent of remediation required is limited to the landscaping areas in the south-west of the site. The approximate remediation extents are shown on Figure 5 in the appendices; The remediation area in the vicinity of BH103 should be excavated to the surface of the underlying bedrock. The lateral extent of remediation required for the TRH-impacted residual soils/bedrock will be determined based on the results of validation sampling. The approximate remediation extents are shown on Figure 5 in the appendices; The details of the excavation works will need to be agreed with the remediation contractor. The works should be done in the most efficient manner that minimises cross contamination. We note that the natural soil/rock levels may vary across the site and provisions will need to be made for careful, detailed excavation and removal of all fill. Even minor amount of fill, if left present at the surface, will result in validation failure and the need for further excavation; Load the fill and TRH-impacted residual soil onto trucks and dispose in accordance with the assigned waste classification. The receiving licenced landfill facility; and All documents including landfill dockets should be retained an

Step	Primary Role/ Responsibility	Procedure
2.	Validation consultant	 <u>Validation of Excavation Base and Walls:</u> The base and walls of the excavation should be validated (by the validation consultant) in accordance with Section 7.1; If the validation fails, the contaminated area should be chased out until the validation is successful; and If the validation is successful, the excavation can be continued to achieve the finished levels of the basement (additional waste classification documentation will be required to dispose or reuse the underlying natural soil/bedrock).

6.4 Remediation Documentation

The remediation contractor must retain all documentation associated with the remediation, including but not limited to:

- Waste register (see below);
- Asbestos management documentation, including all relevant notifications and monitoring reports;
- Photographs of remediation works;
- Waste tracking documentation (where applicable);
- Survey information; and
- Imported materials documentation from suppliers, including any routine analysis reports, product specifications and dockets for imported materials.

Copies of these documents must be forwarded to the project manager and the validation consultant on completion of the remediation for inclusion in the validation report.

6.4.1 Waste Register

All waste removed from the site is to be appropriately tracked and managed in accordance with the relevant regulations. The remediation contractor (and/or their nominated construction contractor) is to maintain adequate records and retain all documentation for waste disposal activities including:

- A summary register including details such as waste disposal dates, waste materials descriptions, disposal locations (i.e. facility details) and reconciliation of this information with waste disposal docket numbers; and
- Waste tracking records and transport certificates (where waste is required to be tracked/transported in accordance with the regulations); and
- Disposal dockets for the waste. Legible dockets are to be provided for all waste materials so they can be reconciled with the register.

Any soil waste classification documentation is to be prepared in accordance with the reporting requirements specified by the NSW EPA. Reports are to include:

- The full name, address, Australian Company Number (ACN) or Australian Business Number (ABN) of the organisation and person(s) providing the waste classification;
- Location of the site where the waste was generated, including the source site address;

- History of the material and the processes and activities that have taken place to produce the waste;
- Potential contaminating activities that may have occurred at the site where the waste was generated;
- Description of the waste, including photographs, visible signs of contamination, such as discolouration, staining, odours, etc;
- Quantity of the waste;
- Number of samples collected and analysed;
- Sampling method including pattern, depth, locations, sampling devices, procedures, and photos of the sample locations and samples;
- Contaminants tested;
- Laboratory documentation chain-of-custody (COC), sample receipt, laboratory report;
- All results regardless of whether they are not used in the classification process;
- Results of sample mean, sample standard deviation and the 95% upper confidence limit (UCL) where relevant;
- Brief summary of findings including discussion of results; and
- A clear statement of the classification of the waste as at the time of the report.

A soil volume analysis should be undertaken on completion of remediation and reconciled with the quantities shown on the soil disposal dockets. This information is to be reviewed by the validation consultant on completion of the works and an assessment of the quantities of soil disposed off-site (e.g. comparison with the estimated and actual volumes) is to be included in the validation report. A review of the disposal facility's licence issued under the Protection of the Environment Operations (POEO) Act (1997)²⁰ should also be undertaken to assess whether the facility is appropriately licensed to receive the waste.

6.4.2 Imported Materials Register

The remediation contractor (and/or their nominated construction contractor) is to maintain for the duration of the project an imported material register. This must include a register (preferably in Microsoft Excel format) with details of each imported material type, supplier details, summary record of where the imported materials were placed on site, and importation docket numbers and a tally of quantities (separated for each import stream). Legible dockets for imported materials are to be provided electronically so these can be reconciled with the register.

The above information is to be provided to the validation consultant for inclusion in the validation report. It is recommended that the register be set up at the beginning of the project and provided to the validation consultant regularly (say on a monthly or two-monthly basis) so the details can be checked and any rectification of the record keeping process can occur in a timely manner.

²⁰NSW Government, (1997)). Protection of Environment Operations Act. (referred to as POEO Act 1997)

7 VALIDATION PLAN

Validation is necessary to demonstrate that remedial measures described in the RAP have been successful and that the site is suitable for the intended land use. The sampling program for the validation is outlined in Section 7.1. This is the minimum requirement based on the remedial strategies provided. Additional validation sampling may be required based on observations made during remediation or in the event of an unexpected find.

7.1 Validation Sampling and Documentation – Soil Media

The table below outlines the validation requirements for the site:

Aspect	Sampling	Analysis	Observations and Documentation		
TRH-Impacted Fill a	TRH-Impacted Fill and Residual Soil/Bedrock				
Fill in landscared	Compliant from the boos				
Fill in landscaped areas in south-	Sampling from the base of the excavation on a	TRH/BTEXN	Samples to be screened using PID.		
west of the site	grid-based pattern to meet the minimum		Observations of staining and odour to be recorded.		
	sampling density for hotspot identification as outlined in the NSW	For waste classification purposes heavy	Photographs to be taken.		
	EPA Contaminated Sites Sampling Design Guidelines (1995) ²¹ .	metals, PAHs and TCLPs should be undertaken if required.	Disposal dockets to be retained.		
	One sample per vertical metre of excavation wall, per base sampling				
	grid. Additional				
	sampling is also to				
	target obvious				
	indicators of				
	contamination and changes in soil profile.				
Fill/Residual soil/bedrock in vicinity of BH103	One sample per 25m ² from base of excavation.	TRH/BTEXN	As above		
	One sample per	For waste			
	excavation wall and per	classification			
	vertical metre.	purposes heavy			
	Additional sampling is	metals, PAHs and			
	also to target obvious indicators of	TCLPs should be undertaken if required.			

Table 7-1: Validation Requirements for Soil Media

²¹ NSW EPA, (1995). *Contaminated Sites Sampling Design Guidelines*. (referred to as EPA Sampling Design Guidelines 1995)

Aspect	Sampling	Analysis	Observations and Documentation
	contamination and changes in soil profile.		
UST, Associated Infr	astructure and Impacted S	oils	
UST backfill	One sample per 25m ³ , collected using hand equipment.	Heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc), TRHs, BTEX, PAHs and asbestos. TCLP testing may be required for waste classification.	Samples to be screened using photo- ionisation detection (PID) meter. Observations of staining and odour to be recorded. Photographs to be taken. Disposal dockets to be retained.
UST pit chase out spoil (if required)	One sample per 25m ³ , collected using hand equipment.	As above. Other analytes to be considered based on remediation failures.	As above.
UST pit – excavation base UST pit – excavation walls	Minimum of two samples per UST to be collected using the excavator after removal of the tank. One sample per excavation wall and per vertical metre. Additional sampling is also to target obvious indicators of contamination and changes in soil profile.	Lead, TRH/BTEXN	Samples to be screened using PID. Observations of staining and odour to be recorded. Photographs to be taken.
			As above. any materials imported onto the site during t is prepared (e.g. general fill to raise the site
	emedial excavations, impor		piling platform, gravels for site preparation,
Imported VENM backfill (if required)	Minimum of three samples per source	Heavy metals (as above), TRHs, BTEX, PAHs, OCPs, PCBs and asbestos	Remediation contractor to supply existing VENM documentation/report (report to be prepared in accordance with the NSW EPA

JKEnvironments

Aspect	Sampling	Analysis	Observations and Documentation
		(500ml). Additional analysis may be required depending on the site history of the source property.	waste classification reporting requirements). A hold point remains until the validation consultant approves the material for importation or advises on the next steps.
Imported garden mix/topsoil and mulches	Minimum of three samples per source	Analysis for CoPC outlined above.	 Material is to be inspected upon importation by the validation consultant and samples obtained for analysis. Material to be inspected during sampling to confirm it is free of visible/olfactory indicators of contamination and is consistent with documentation. Photographic documentation and an inspection log are to be maintained. Where check sampling occurs by the validation consultant due to deficiencies or irregularities in existing VENM documentation, the following is required: Date of sampling and description of material sampled; An estimate of the volume of material imported at the time of sampling; Sample location plan; and Analytical reports and tabulated results with comparison to the Validation Assessment Criteria (VAC).
Imported engineering materials such as recycled aggregate, road base etc or Excavated Natural Material (ENM)	Minimum of three samples per source/material type. Additional testing may be required for ENM to meet the specification within the ENM Order.	Heavy metals (as above), TRHs, BTEX, PAHs, OCPs, PCBs and asbestos (500ml quantification). Additional testing may be required for ENM (e.g. foreign materials, pH and electrical conductivity) depending on available documentation.	Remediation contractor to provide product specification and documentation to confirm the material has been classified with reference to a relevant Resource Recovery Order/Exemption. A hold point remains until the validation consultant approves the material for importation or advises on the next steps. Review of the facility's Environment Protection Licence (EPL). Material is to be inspected by the validation consultant upon importation to confirm it is free of visible/olfactory indicators of contamination and is consistent with documentation. Where check sampling occurs by the validation consultant due to deficiencies or irregularities in existing documentation, the following is required: - Date of sampling and description of material sampled;

Aspect	Sampling	Analysis	Observations and Documentation
			 An estimate of the volume of material imported at the time of sampling; Sample location plan; and Analytical reports and tabulated results with comparison to the VAC.
Imported engineering materials comprising only natural quarried products.	At the validation consultant's discretion based on robustness of supplier documentation.	At the validation consultant's discretion based on robustness of supplier documentation.	Remediation contractor to provide documentation from the supplier confirming the material is a product comprising only VENM (i.e. natural quarried product). A hold point remains until the validation consultant approves the material for importation or advises on the next steps.Review of the quarry's EPL.Material is to be inspected by the validation consultant upon importation to confirm it is free of anthropogenic materials, visible and olfactory indicators of contamination, and is consistent with documentation.Where check sampling occurs by the validation consultant due to deficiencies or irregularities in existing documentation, the following is required:

7.2 Validation Assessment Criteria and Data Assessment

The VAC to be adopted for the validation assessment are outlined in the table below:

Table	7-2:	VAC
-------	------	-----

Validation Aspect	VAC
Soil validation	 Landscaped areas Impacted by TRH: TRH/BTEX = HSLs for low/high density residential land use; TRH/BTEX = ESLs for urban residential and public open space (URPOS); and Free of staining and odours. <u>Vicinity of BH103 impacted by TRH:</u> TRH/BTEX = HSLs for low/high density residential land use; and Free of staining and odours.

JKEnvironments

Validation Aspect	VAC
	 UST/infrastructure: TRH/BTEX = HSLs for low/high density residential land use; Lead = 1,200mg/kg (based on HIL for 'residential with minimal opportunities for soil access' exposure scenario); and Free of staining and odours The presence of odours or exceedances of the VAC may compromise the VENM classification. However, from a risk perspective in the context of the proposed land use, such traces are unlikely to result in an unacceptable risk to future site users. In the event that persistent traces of TRH/BTEXN are reported above the VAC, these concentrations can be assessed in the context of human health risks, in accordance with Schedule B1 of NEPM (2013) and an alternative classification (other than VENM) would need to be pursued for this material if it is to be disposed off-site.
Waste classification (backfill/chase out soils associated with remediation of USTs, and supplementary waste classification of fill	In accordance with the procedures and criteria outlined in Part 1 of the Waste Classification Guidelines 2014 and any other exemptions/approvals as required.
Imported materials	 Material imported as general fill must only be VENM or ENM. VENM is defined in the POEO Act 1997 as material: That has been excavated or quarried from areas that are not contaminated with manufactured chemicals, or with process residues, as a result of industrial, commercial mining or agricultural activities; That does not contain sulfidic ores or other waste; and Includes excavated natural material that meets such criteria for virgin excavated natural material as may be approved from time to time by a notice published in the NSW Government Gazette. ENM and recycled materials are to meet the criteria of the relevant exemption/order
	 under which they are produced. Analytical results for VENM and other imported materials will need to be consistent with expectations for those materials. For VENM, it is expected that: Heavy metal concentrations are to be less than the most conservative Added Contaminant Limit (ACL) concentrations for an urban residential and public open space (URPOS) exposure setting presented in Schedule B1 of the NEPM 2013; and Organic compounds are to be less than the laboratory PQLs and asbestos to be absent.
	All materials imported onto the site must also be adequately assessed as being appropriate for the final use of the site, including ecological considerations. A risk- based assessment approach is to be adopted with regards to the tier 1 screening criteria presented in Schedule B1 of NEPM 2013. Aesthetics: all imported materials are to be free of staining and odours.

Data should initially be assessed as above or below the VAC. Statistical analysis may be applied if deemed appropriate by the validation consultant and undertaken in accordance with the NEPM 2013.

7.3 Validation Sampling, Analysis and Quality Plan (SAQP)

Appropriate QA/QC samples should be obtained during the validation (where applicable) and analysed for the same suite of contaminants as the primary samples. As a minimum, QA/QC sampling should include duplicates (5% inter-laboratory and 5% intra-laboratory), trip spikes and trip blanks. Rinsate samples should be obtained if re-usable sampling equipment is utilised.

Data Quality Objectives (DQOs) and Data Quality Indicators (DQIs) should be clearly outlined and assessed as part of the validation process. A framework for the DQO and DQI process is outlined below and should be reflected in the validation report.

DQOs have been broadly established for the validation with regards to the seven-step process outlined NEPM (2013). The seven steps include the following which are detailed further in the following subsections:

- State the problem;
- Identify the decisions/goal of the study;
- Identify information inputs;
- Define the study boundary;
- Develop the analytical approach/decision rule;
- Specify the performance/acceptance criteria; and
- Optimise the design for obtaining the data.

DQIs are to be assessed based on field and laboratory considerations for precision, accuracy, representativeness, completeness and comparability.

7.3.1 Step 1 - State the Problem

Validation data is required to demonstrate that the remediation is successful and that the site is suitable for the proposed land use described in Section 1.1.

7.3.2 Step 2 - Identify the Decisions of the Study

The remediation goal, aims and objectives are defined in Section 1.2. The decisions to be made reflect these objectives and are as follows:

- Was the remediation undertaken in accordance with the RAP?
- If there were any deviations, what were these and how do they impact the outcome of the validation?
- Are any of the validation results above the VAC?
- Is the site suitable for the proposed development from a contamination viewpoint?

7.3.3 Step 3 - Identify Information Inputs

The primary information inputs required to address the decisions outlined in Step 2 include the following:

- Existing relevant data from previous reports;
- Site information, including site observations, inspections, survey information, as-built drawings, waste and imported materials registers;

- Validation sampling of imported materials; and
- Field and laboratory QA/QC data.

7.3.4 Step 4 - Define the Study Boundary

The remediation and validation will be confined to the impacted areas within the site boundaries as shown in Figures 2 and 5 in Appendix A and will be limited vertically to approximately 2mBGL for the remediation and validation of TRH impacts to ecological receptors in the south-west of the site. The validation will guide the horizontal and vertical extent of the remediation associated with the UST and TRH-impacted residual soil/bedrock in the vicinity of BH103, though it is anticipated to be approximately 2m to 3m deep.

The DGI will be confined to the site boundaries as shown in Figure 2 in the appendices and will be limited vertically to the initial 0.5m of natural soil, anticipated to range from 1mBGL to 2mBGL. Localised deeper fill may be encountered.

The DGI and HHRA, as discussed in Section 4, will guide the mitigation/management of HGG.

7.3.5 Step 5 - Develop an Analytical Approach (or Decision Rule)

7.3.5.1 VAC

The validation data will be assessed in accordance with the requirements outlined in Section 7.2.

7.3.5.2 Field and Laboratory QA/QC

Field QA/QC is to include analysis of inter-laboratory duplicates (5% frequency), intra-laboratory duplicates (5% frequency), trip spike, trip blank and rinsate samples (one each for the assessment to demonstrate adequacy of standard sampling/handling procedures). Field QA/QC samples are to be analysed for the contaminants of concern, except asbestos. The trip spike will only be analysed for BTEX as BTEX will be considered a surrogate to assess potential loss of volatiles from TRH (F2).

DQIs for field and laboratory QA/QC samples are defined below:

Field Duplicates

Acceptable targets for precision of field duplicates will be 30% or less, consistent with NEPM (2013). RPD failures will be considered qualitatively on a case-by-case basis taking into account factors such as the concentrations used to calculate the RPD (i.e. RPD exceedance where concentrations are close to the PQL are typically not as significant as those where concentrations are reported at least five or 10 times the PQL), sample type, collection methods and the specific analyte where the RPD exceedance was reported.

Trip Blanks

Acceptable targets for trip blank samples will be less than the PQL for organic analytes. Metals will be considered on a case-by-case basis with regards to the reference material used as the blank medium.

Trip Spikes

Acceptable targets for trip spike samples will be 70% to 130%.

Laboratory QA/QC

The suitability of the laboratory data will be assessed against the laboratory QA/QC criteria. These criteria are developed and implemented in accordance with the laboratory's NATA accreditation and align with the acceptable limits for QA/QC samples as outlined in NEPM (2013) and other relevant guidelines.

A summary of the typical limits is provided below:

RPDs

- Results that are <5 times the PQL, any RPD is acceptable; and
- Results >5 times the PQL, RPDs between 0-50% are acceptable.

Laboratory Control Samples (LCS) and Matrix Spikes

- 70-130% recovery acceptable for metals and inorganics; and
- 60-140% recovery acceptable for organics.

Surrogate Spikes

• 60-140% recovery acceptable for general organics.

Method Blanks

• All results less than PQL.

In the event that acceptable limits are not met by the laboratory analysis, other lines of evidence will be reviewed (e.g. field observations of samples, preservation, handling etc) and, where required, consultation with the laboratory is to be undertaken in an effort to establish the cause of the non-conformance. Where uncertainty exists, the validation consultant is to adopt the most conservative concentration reported.

7.3.5.3 Appropriateness of PQLs

The PQLs of the analytical methods are to be considered in relation to the VAC to confirm that the PQLs are less than the VAC. In cases where the PQLs are greater than the VAC, a discussion of this is to be provided.

7.3.6 Step 6 – Specify Limits on Decision Errors

To limit the potential for decision errors, a range of quality assurance processes are adopted. A quantitative assessment of the potential for false positives and false negatives in the analytical results is to be undertaken with reference to Schedule B(3) of NEPM (2013) using the data quality assurance information collected.

7.3.7 Step 7 - Optimise the Design for Obtaining Data

The design is to be optimised via the collection of validation data to demonstrate the success of the key aspects of the remediation. Data collection will be via various methods including inspections and sampling.

7.3.8 Sampling Plan

The proposed sampling plan for the validation of imported materials is described in Section 7.1.

7.4 Validation Report and LTEMP

As part of the site validation process, a validation report will be prepared by the validation consultant. The report will present the results of the validation assessment and will be prepared in accordance with the Consultants Reporting Guidelines.

A long-term environmental management plan (LTEMP) may be required for the mitigation/management of HGG at the site. This will be assessed based on the results of the DGI and HHRA. The LTEMP will require public notification by notation on title or Section 10.7 certificates.

8 CONTINGENCY PLAN

A review of the proposed remediation works has indicated that the greatest risks that may affect the success of the remediation include unexpected finds. A contingency plan for the remediation is provided below:

8.1 Unexpected Finds

Residual hazards that may exist at the site would generally be expected to be detectable through visual or olfactory means. The procedure to be followed in the event of an unexpected find is presented below:

- In the event of an unexpected find, all work in the immediate vicinity should cease and the remediation contractor should contact the validation consultant and the project manager;
- Temporary barricades should be erected to isolate the area from access to workers;
- The validation consultant is to attend the site, adequately characterise the contamination and provide advice in relation to site management and remediation. In the event that remediation differs from the procedures outlined in this RAP, an addendum RAP or RWP must be prepared in consultation with the project stakeholders and submitted to the site auditor and consent authority; and
- Contamination should be remediated and validated in accordance with the advice provided, and the results should be included in the validation report.

A summary of the unexpected finds protocol (UFP) is provided in the appendices.

8.2 Importation Failure for VENM or other Imported Materials

Where material to be imported onto the site does not meet the importation VAC detailed in Section 7.2, the material should not be imported. Alternative material must be sourced that meets the importation requirements.

8.3 Contingency for Failure of Remediation Strategy

8.3.1 Hydrocarbon Impacted Soil Remaining On-site

In the unexpected event that 'pockets' of hydrocarbon impacted soil/bedrock cannot be excavated and disposed off-site, this material must be validated to assess its suitability to remain on-site and the potential risks posed by this soil in the context of the future land use.

In the event that the soils present a potentially unacceptable risk, there may be a need to implement a 'cap and contain' strategy or other mitigation measures. The strategy would need to be documented in an addendum RAP and submitted to the auditor and consent authority. It is noted that this would result in a long-term EMP for the site to manage the contamination.

Alternatively, a site-specific HHRA could be considered to establish whether the risks warrant long-term management via an EMP.

9 SITE MANAGEMENT PLAN FOR REMEDIATION WORKS

The information outlined in this section of the RAP is for the remediation work only. The client should make reference to the development consent for specific site management requirements for the overall development of the site.

9.1 Asbestos Management Plan (AMP)

An AMP is to be prepared for the site demolition works. It is anticipated that demolition and remediation will occur concurrently in some areas of the site. On this basis, the AMP is also applicable to the remediation works. The AMP is to document the asbestos-related management requirements for the stages of development. The AMP is to be implemented by the remediation contractor (and their nominated subcontractors where relevant) throughout the remediation.

9.2 Project Contacts

Emergency procedures and contact telephone numbers should be displayed in a prominent position at the site entrance gate and within the main site working areas. The available contact details are summarised in the following table:

Role	Company	Contact Details
Client/developer	HammondCare	-
Project Manager	To be appointed	-
Remediation Contractor	To be appointed	-
Validation Consultant	JKE – subject to formal engagement	Vittal Boggaram vboggaram@jkenvironments.com.au 02 9888 5000
Certifier	To be appointed	-
NSW EPA	Pollution Line	131 555
NSW EPA Site Auditor	To be appointed	-
Emergency Services	Ambulance, Police, Fire	000

Table 9-1: Project Contacts

9.3 Security

Appropriate fencing should be installed as required to secure the site. Warning signs should be erected, which outline the personal protective equipment (PPE) required for remediation work.

9.4 Timing and Sequencing of Remediation Works

The anticipated sequence of remediation works is outlined in Section 6.3. Remediation will occur concurrently with the development works as the excavation for the development, and the built form of the development, form part of the remediation approach.

9.5 Site Soil and Water Management Plan

The remediation contractor should prepare a detailed soil and water management plan prior to the commencement of site works and this should consider the requirements of the AMP. Silt fences should be used to control the surface water runoff at all appropriate locations of the site and appropriate measures are to be implemented to manage soil/water disturbance to the satisfaction of the regulator/determining authority. Reference should be made to the consent conditions for further details.

All stockpiled materials should be placed within an erosion containment boundary with silt fences and sandbags employed to limit sediment movement. The containment area should be located away from drainage lines/low-points, gutters, stormwater pits and inlets and the site boundary. No liquid waste or runoff should be discharged to the stormwater or sewerage system without the approval of the appropriate authorities.

9.6 Noise and Vibration Control Plan

The guidelines for minimisation of noise on construction sites outlined in AS-2460 (2002)²² should be adopted. Other measures specified in the consent conditions should also be complied with. Noise producing machinery and equipment should only be operated between the hours approved by the determining authority (refer to consent documents).

All practicable measures should be taken to reduce the generation of noise and vibration to within acceptable limits. In the event that short-term noisy operations are necessary, and where these are likely to affect residences, notifications should be provided to the relevant authorities and the residents by the project manager, specifying the expected duration of the noisy works.

9.7 Dust Control Plan

All practicable measures should be taken to reduce dust emanating from the site. Factors that contribute to dust production are:

- Wind over a cleared surface;
- Wind over stockpiled material; and
- Movement of machinery in unpaved areas.

Visible dust should not be present at the site boundary. Measures to minimise the potential for dust generation include:

²² Australian Standard, (2002). AS2460: Acoustics - Measurement of the Reverberation Time in Rooms.

- Use of water sprays on unsealed or exposed soil surfaces;
- Covering of stockpiled materials and excavation faces (particularly during periods of site inactivity and/or during windy conditions) or alternatively the erection of hessian fences around stockpiled soil or large exposed areas of soil;
- Establishment of dust screens consisting of a 2m high shade cloth or similar material secured to a chain wire fence;
- Maintenance of dust control measures to keep the facilities in good operating condition;
- Stopping work during strong winds;
- Loading or unloading of dry soil as close as possible to stockpiles to prevent spreading of loose material around the development area; and
- Geofabric/geotextile could be placed over exposed soils in the event that excavation is staged.

If stockpiles are to remain on-site or soil remains exposed for a period of longer than several days, dust monitoring should be undertaken at the site. If excessive dust is generated all site activities should cease until either wind conditions are more acceptable or a revised method of excavation/remediation is developed. Reference is also to be made to the AMP in this regard.

Dust is also produced during the transfer of material to and from the site. All material should be covered during transport and should be properly disposed of on delivery. No material is to be left in an exposed, unmonitored condition.

All equipment and machinery should be brushed or washed down before leaving the site to limit dust and sediment movement off-site. In the event of prolonged rain and lack of paved areas all vehicles should be washed down prior to exit from the site, and any soil or dirt on the wheels of the vehicles removed. Water used to clean the vehicles should be collected and tested prior to appropriate disposal under the relevant waste classification guidelines.

9.8 Dewatering

Temporary dewatering may be required as part of the remediation works. Based on the information presented in the ASI, minor treatment of seepage water may be required during the development. The seepage water should be managed appropriately on site in accordance with the remediation contractor's soil and water management plan. This water should not be pumped to stormwater or sewer unless a prior application is made and this is approved by the relevant authorities.

9.9 Air Monitoring

Reference is to be made to the AMP for details regarding asbestos air fibre monitoring. Air monitoring must only be carried out by personnel registered and accredited by NATA (National Association of Testing Authorities). Filter analysis must only be carried out within a NATA certified laboratory. The monitoring results must conform to the requirements of the NOHSC Guidance note on the Membrane Filter Method for Estimating Airborne Asbestos Fibres 2nd Edition [NOHSC:3003 (2005)].

A monitoring program will be used to assess whether the control procedures being applied are satisfactory and that criteria for airborne asbestos fibre levels are not being exceeded. The following levels will be used as action criteria during the air monitoring:

- <0.01 Fibres/ml: Work procedures deemed to be successful;
- 0.01 to 0.02 Fibres/ml: Inspection of the site and review of procedures; and
- >0.02 Fibres/ml: Stop work, inspection of the site, review of procedures, clean-up, rectification works where required and notify the relevant regulator.

9.10 Odour Control Plan

All activities undertaken at the site should be completed in a manner that minimises emissions of smoke, fumes and vapour into the atmosphere and any odours arising from the works or stockpiled material should be controlled. Control measures may include:

- Maintenance of construction equipment so that exhaust emissions comply with the Clean Air Regulations issued under the POEO Act 1997;
- Demolition materials and other combustible waste should not be burnt on site;
- The spraying of a suitable proprietary product to suppress any odours that may be generated by excavated materials; and
- Use of protective covers (e.g. builder's plastic).

All practicable measures should be taken to reduce fugitive emissions emanating from the site so that associated odours do not constitute a nuisance and that the ambient air quality is not adversely impacted.

The following odour management plan should be implemented to limit the exposure of site personnel and surrounding residents to unpleasant odours:

- Excavation and stockpiling of material should be scheduled during periods with low winds if possible;
- A suitable proprietary product could be sprayed on material during excavation and following stockpiling to reduce odours (subject to an appropriate assessment of the product by the validation consultant);
- All complaints from workers and neighbours should be logged and a response provided. Work should be rescheduled as necessary to minimise odour problems;
- The site foreman should consider the following odour control measures:
 - o reduce the exposed surface of the odorous materials;
 - o time excavation activities to reduce off-site nuisance (particularly during strong winds); and
 - o cover exposed excavation faces overnight or during periods of low excavation activity.
- If continued complaints are received, alternative odour management strategies should be considered and implemented.

9.11 Work Health and Safety (WHS) Plan

A site specific WHS plan should be prepared by the remediation contractor for all work to be undertaken at the site. The WHS plan should meet all the requirements outlined in SafeWork NSW WHS regulations.

As a minimum requirement, personnel must wear appropriate protective clothing, including long sleeve shirts, long trousers, steel cap boots and hard hats. Additional asbestos-related PPE will be required and this will be specified in the AMP. Washroom and lunchroom facilities should also be provided to allow workers to remove potential contamination from their hands and clothing prior to eating or drinking.

9.12 Waste Management

Prior to commencement of remedial works and excavation for the proposed development, the remediation contractor should develop a waste management or recycling plan to minimise the amount of waste produced by the site. Consideration should be given to re-use material wherever possible.

9.13 Incident Management Contingency

The validation consultant should be contacted if any unexpected conditions are encountered at the site. This should enable the scope of remedial/validation works to be adjusted as required. Similarly, if any incident occurs at the site, the validation consultant should be advised to assess potential impacts on contamination conditions and the remediation/validation timetable.

9.14 Hours of Operation

Hours of operation should be between those approved by the determining authority under the development approval process.

9.15 Community Consultation and Complaints

The remediation contractor should provide details for managing community consultation and complaints within their construction environment management plan (CEMP).

10 CONCLUSIONS

Previous investigations by JKE have identified TRH impacts to fill in the south-west of the site, and TRH impacts to residual soil/bedrock in the vicinity of BH103. The source of the TRH impacts to fill is considered likely associated with impacted fill historically imported to the site, though may also be attributable to localised surficial leaks/spills. The source of TRH impacts to the residual soil/bedrock in the vicinity of BH103 is considered likely associated with the UST and associated infrastructure. The previous investigations also identified at least one UST and associated infrastructure on-site. The investigations concluded the potential for extensive impacts from hydrocarbons associated with the UST/s and infrastructure was low. However, localised impacts may be encountered in the vicinity of the UST/s and associated infrastructure. The UST/s and infrastructure will be removed during the remediation process, and the residual risks assessed by the validation process.

The groundwater has been impacted by heavy metals. The heavy metal impacts were considered likely a regional/background issue. Concentrations of TRH, VOCs and PAH were recorded, though were assessed to not pose a risk to receptors in the context of the development. The source of the TRH and VOC impacts is considered likely associated with leaks/spills from potable water supply entering the groundwater.

A preliminary HGG screening was also undertaken by JKE, which identified CO and CO₂ at concentrations which may pose risk to receptors. Further investigation is required to assess the potential risks associated with HGG.

The remediation strategy for soil includes excavation and off-site disposal of the UST, UST backfill and associated infrastructure, TRH-impacted fill in the south-west of the site and TRH-impacted residual soil/bedrock. The mitigation/management strategies for HGG will be determined based on the findings of the DGI and HHRA.

The remediation methods outlined in the RAP are assessed to be sustainable, economically viable, commensurate with the level of risk posed by the contaminants and technically achievable to implement concurrently with the proposed development works. On this basis, JKE are of the opinion that the site can be made suitable for the proposed development provided this RAP (and any addendums or revisions) and any requirements under a RWP is implemented should a RWP be prepared.

A site validation report is to be prepared on completion of remediation activities and submitted to the determining authority to demonstrate that the site is suitable for the proposed development. Any LTEMP prepared for the site will require appropriate public notification.

The RAP has met the objectives outlined in Section 1.2.

10.1 Regulatory Requirements

The regulatory requirements applicable for the remediation are discussed in the following table:

Table 10-1: Regulatory Requirement

Guideline / Legislation / Policy	Applicability
Resilience and Hazards SEPP	Due to the identified heritage items on-site, JKE is of the opinion that the remediation is classed as Category 1 remediation work. Approval is required from the consent authority for Category 1 remediation work. JKE recommend the client to clarify the remediation category with the project planner or consent authority prior to the commencement of remediation works.
	Prior notification to the consent authority may be required prior to the commencement of remediation work.
	Under Section 4.14 of Resilience and Hazards SEPP, a notice of completion of remediation work is to be given to council within 30 days of completion of the work regardless of whether the remediation is classed as Category 1 or Category 2 remediation work. The notice of completion of remediation works must be in accordance with Section 4.15 of Resilience and Hazards SEPP.
POEO Act 1997	Section 143 of the POEO Act 1997 states that if waste is transported to a place that cannot lawfully be used as a waste facility for that waste, then the transporter and owner of the waste are each guilty of an offence. The transporter and owner of the waste have a duty to ensure that the waste is disposed of in an appropriate manner.
	Appropriate waste tracking is required for all waste that is disposed off-site.
	Activities should be carried out in a manner which does not result in the pollution of waters.
POEO (Waste) Regulation 2014	Part 7 of the POEO Waste Regulation 2014 set outs the requirements for the transportation and management of asbestos waste and Clause 79 of the POEO Waste Regulation requires waste transporters to provide information to the NSW EPA regarding the movement of any load in NSW of more than 10 square meters of asbestos sheeting, or 100 kilograms of asbestos waste. To fulfil these legal obligations, asbestos waste transporters must use WasteLocate.
SafeWork NSW Code of Practice: How to manage and control asbestos in the workplace (2019)	Sites with asbestos become a 'workplace' when work is carried out there and require a register and AMP. Appropriate SafeWork NSW notification will be required for licensed (e.g. Class A) asbestos removal works or handling.

11 LIMITATIONS

The report limitations are outlined below:

- JKE accepts no responsibility for any unidentified contamination issues at the site. Any unexpected problems/subsurface features that may be encountered during development works should be inspected by an environmental consultant as soon as possible;
- Previous use of this site may have involved excavation for the foundations of buildings, services, and similar facilities. In addition, unrecorded excavation and burial of material may have occurred on the site. Backfilling of excavations could have been undertaken with potentially contaminated material that may be discovered in discrete, isolated locations across the site during construction work;
- This report has been prepared based on site conditions which existed at the time of the investigation; scope of work and limitation outlined in the JKE proposal; and terms of contract between JKE and the client (as applicable);
- The conclusions presented in this report are based on investigation of conditions at specific locations, chosen to be as representative as possible under the given circumstances, visual observations of the site and immediate surrounds and documents reviewed as described in the report;
- Subsurface soil and rock conditions encountered between investigation locations may be found to be different from those expected. Groundwater conditions may also vary, especially after climatic changes;
- The investigation and preparation of this report have been undertaken in accordance with accepted practice for environmental consultants, with reference to applicable environmental regulatory authority and industry standards, guidelines and the assessment criteria outlined in the report;
- Where information has been provided by third parties, JKE has not undertaken any verification process, except where specifically stated in the report;
- JKE has not undertaken any assessment of off-site areas that may be potential contamination sources or may have been impacted by site contamination, except where specifically stated in the report;
- JKE accept no responsibility for potentially asbestos containing materials that may exist at the site. These materials may be associated with demolition of pre-1990 constructed buildings or fill material at the site;
- JKE have not and will not make any determination regarding finances associated with the site;
- Additional investigation work may be required in the event of changes to the proposed development or land use. JKE should be contacted immediately in such circumstances;
- Material considered to be suitable from a geotechnical point of view may be unsatisfactory from a soil contamination viewpoint, and vice versa; and
- This report has been prepared for the particular project described and no responsibility is accepted for the use of any part of this report in any other context or for any other purpose.

Important Information About This Report

These notes have been prepared by JKE to assist with the assessment and interpretation of this report.

The Report is based on a Unique Set of Project Specific Factors

This report has been prepared in response to specific project requirements as stated in the JKE proposal document which may have been limited by instructions from the client. This report should be reviewed, and if necessary, revised if any of the following occur:

- The proposed land use is altered;
- The defined subject site is increased or sub-divided;
- The proposed development details including size, configuration, location, orientation of the structures or landscaped areas are modified;
- The proposed development levels are altered, eg addition of basement levels; or
- Ownership of the site changes.

JKE will not accept any responsibility whatsoever for situations where one or more of the above factors have changed since completion of the assessment. If the subject site is sold, ownership of the assessment report should be transferred by JKE to the new site owners who will be informed of the conditions and limitations under which the assessment was undertaken. No person should apply an assessment for any purpose other than that originally intended without first conferring with the consultant.

Changes in Subsurface Conditions

Subsurface conditions are influenced by natural geological and hydrogeological process and human activities. Groundwater conditions are likely to vary over time with changes in climatic conditions and human activities within the catchment (e.g. water extraction for irrigation or industrial uses, subsurface waste water disposal, construction related dewatering). Soil and groundwater contaminant concentrations may also vary over time through contaminant migration, natural attenuation of organic contaminants, ongoing contaminating activities and placement or removal of fill material. The conclusions of an assessment report may have been affected by the above factors if a significant period of time has elapsed prior to commencement of the proposed development.

This Report is based on Professional Interpretations of Factual Data

Site assessments identify actual subsurface conditions at the actual sampling locations at the time of the investigation. Data obtained from the sampling and subsequent laboratory analyses, available site history information and published regional information is interpreted by geologists, engineers or environmental scientists and opinions are drawn about the overall subsurface conditions, the nature and extent of contamination, the likely impact on the proposed development and appropriate remediation measures.

Actual conditions may differ from those inferred, because no professional, no matter how qualified, and no subsurface exploration program, no matter how comprehensive, can reveal what is hidden by earth, rock and time. The actual interface between materials may be far more gradual or abrupt than an assessment indicates. Actual conditions in areas not sampled may differ from predictions. Nothing can be done to prevent the unanticipated, but steps can be taken to help minimise the impact. For this reason, site owners should retain the services of their consultants throughout the development stage of the project, to identify variances, conduct additional tests which may be needed, and to recommend solutions to problems encountered on site.

Assessment Limitations

Although information provided by a site assessment can reduce exposure to the risk of the presence of contamination, no environmental site assessment can eliminate the risk. Even a rigorous professional assessment may not detect all contamination on a site. Contaminants may be present in areas that were not surveyed or sampled, or may migrate to areas which showed no signs of contamination when sampled. Contaminant analysis cannot possibly cover every type of contaminant which may occur; only the most likely contaminants are screened.

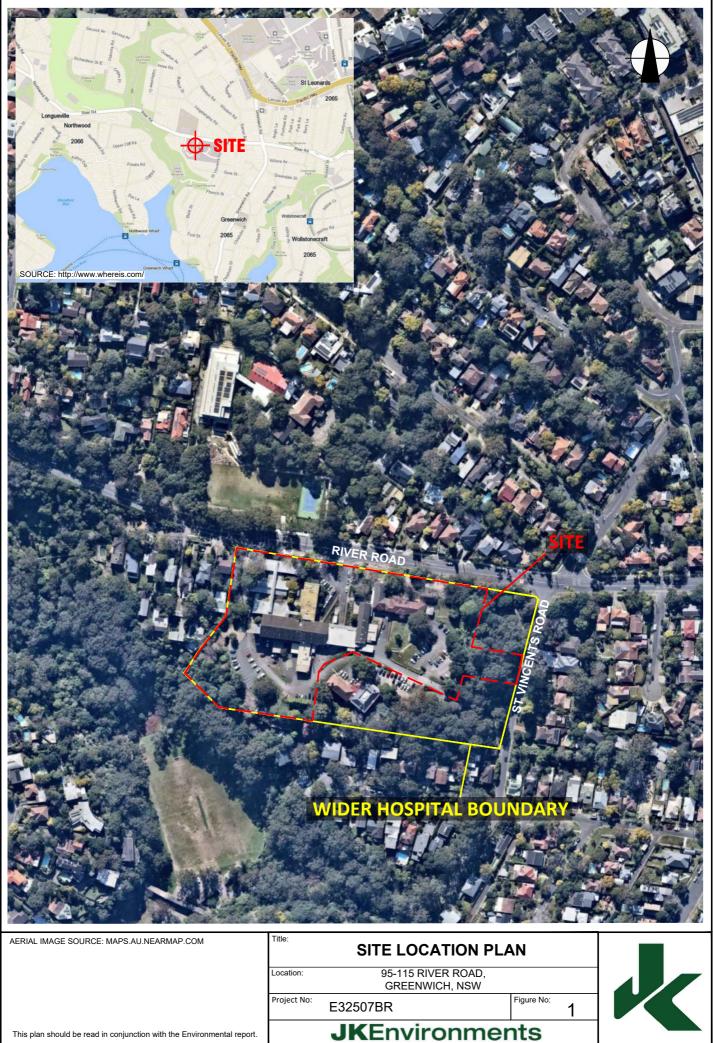
Misinterpretation of Site Assessments by Design Professionals

Costly problems can occur when other design professionals develop plans based on misinterpretation of an assessment report. To minimise problems associated with misinterpretations, the environmental consultant should be retained to work with appropriate professionals to explain relevant findings and to review the adequacy of plans and specifications relevant to contamination issues.

Logs Should not be Separated from the Assessment Report

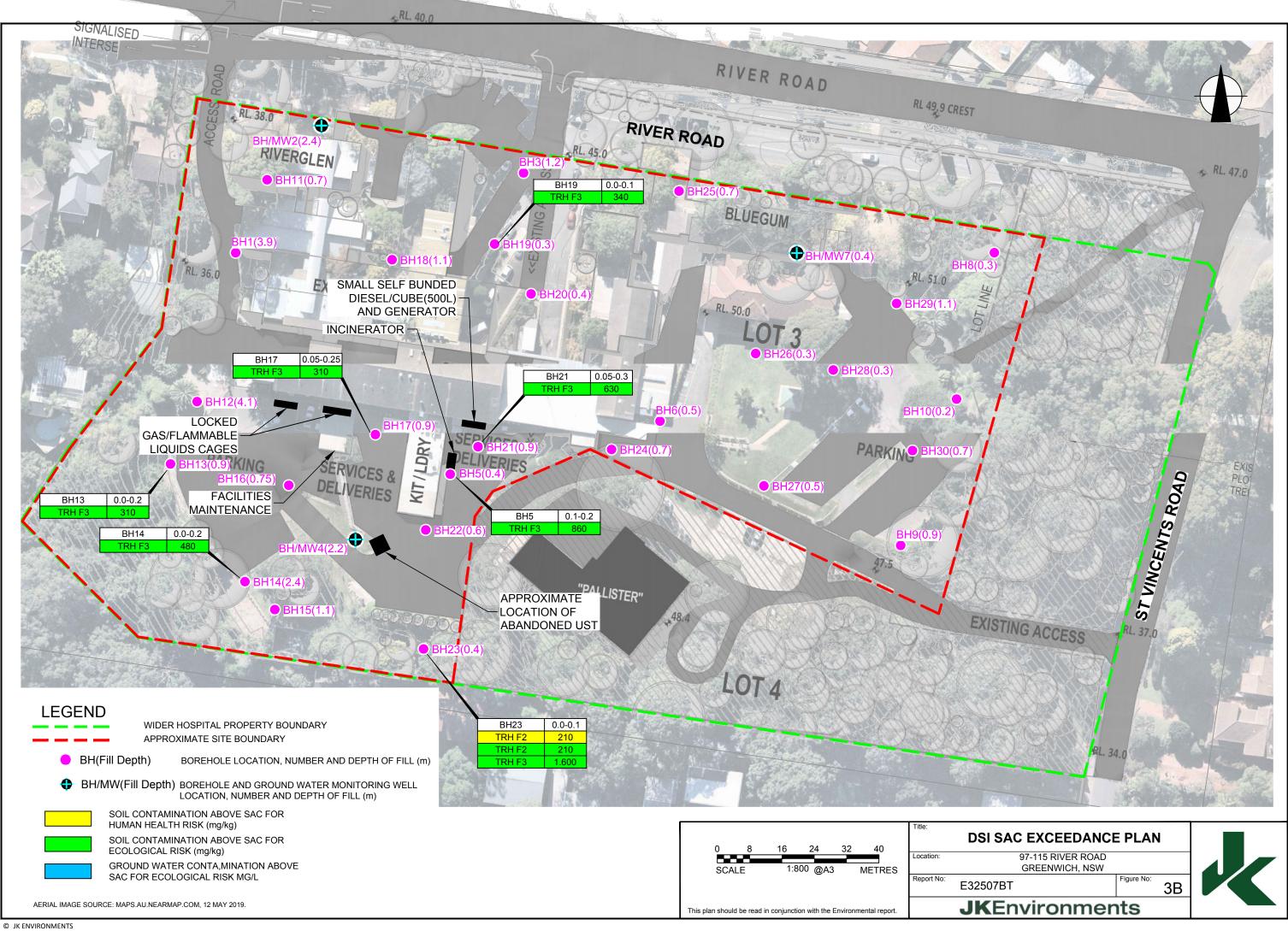
Borehole and test pit logs are prepared by environmental scientists, engineers or geologists based upon interpretation of field conditions and laboratory evaluation of field samples. Logs are normally provided in our reports and these should not be re-drawn for inclusion in site remediation or other design drawings, as subtle but significant drafting errors or omissions may occur in the transfer process. Photographic reproduction can eliminate this problem, however contractors can still misinterpret the logs during bid preparation if separated from the text of the assessment. If this occurs, delays, disputes and unanticipated costs may result. In all cases it is necessary to refer to the rest of the report to obtain a proper understanding of the assessment. Please note that logs with the 'Environmental Log' header are not suitable for geotechnical purposes as they have not been peer reviewed by a Senior Geotechnical Engineer.

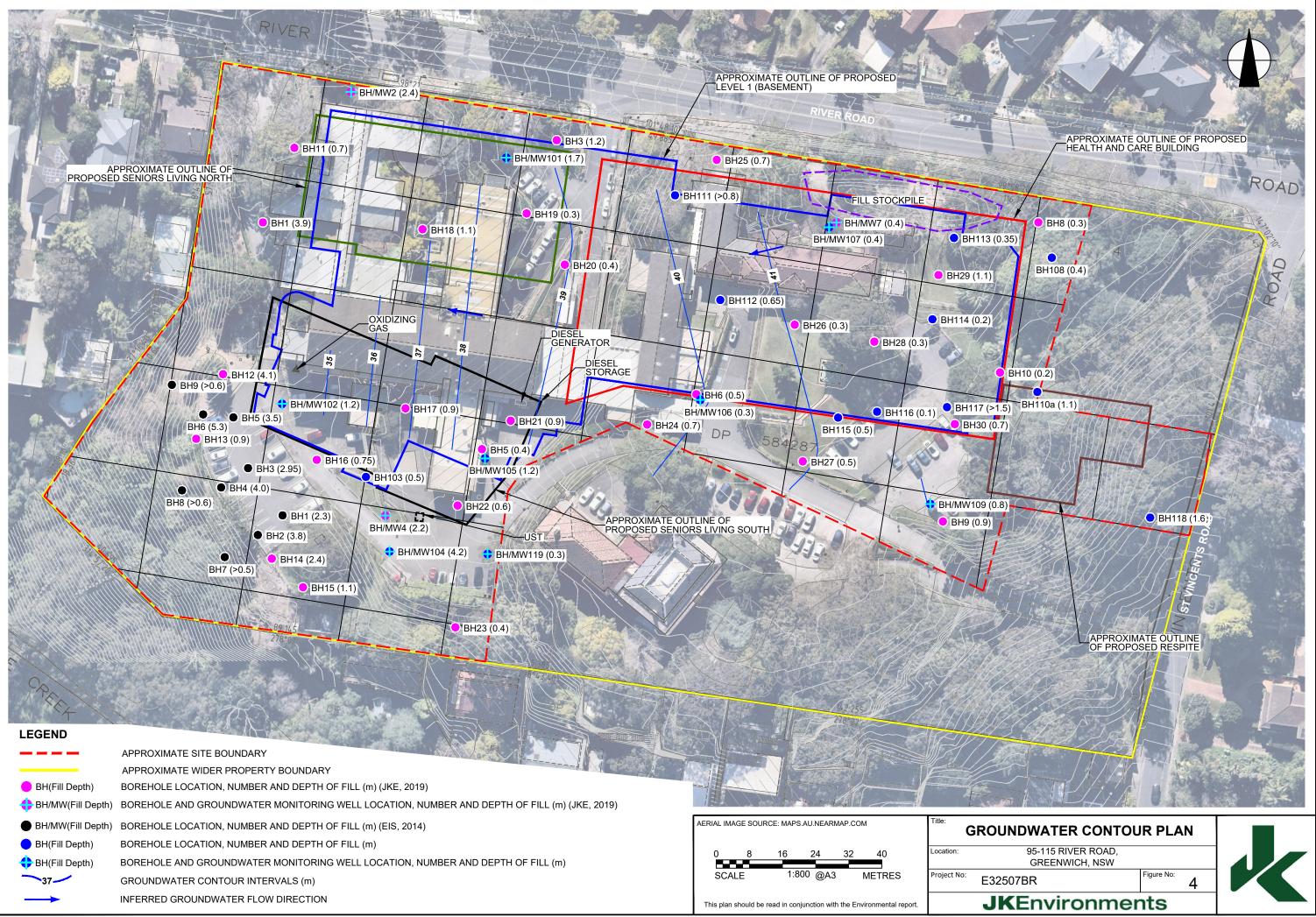
To reduce the likelihood of borehole and test pit log misinterpretation, the complete assessment should be available to persons or organisations involved in the project, such as contractors, for their use. Denial of such access and disclaiming responsibility for the accuracy of subsurface information does not insulate an owner from the attendant liability. It is critical that the site owner provides all available site information to persons and organisations such as contractors.

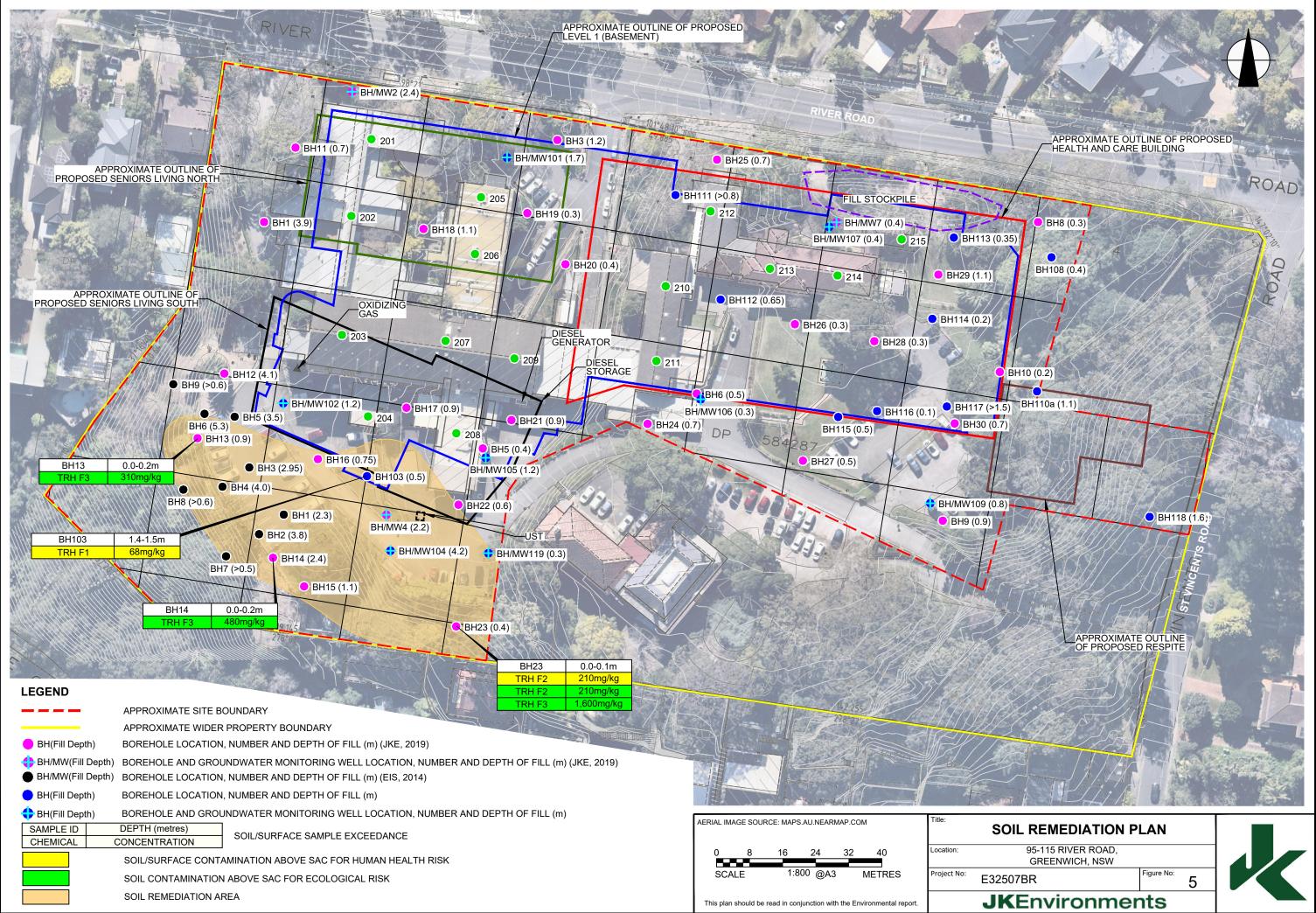

Read Responsibility Clauses Closely

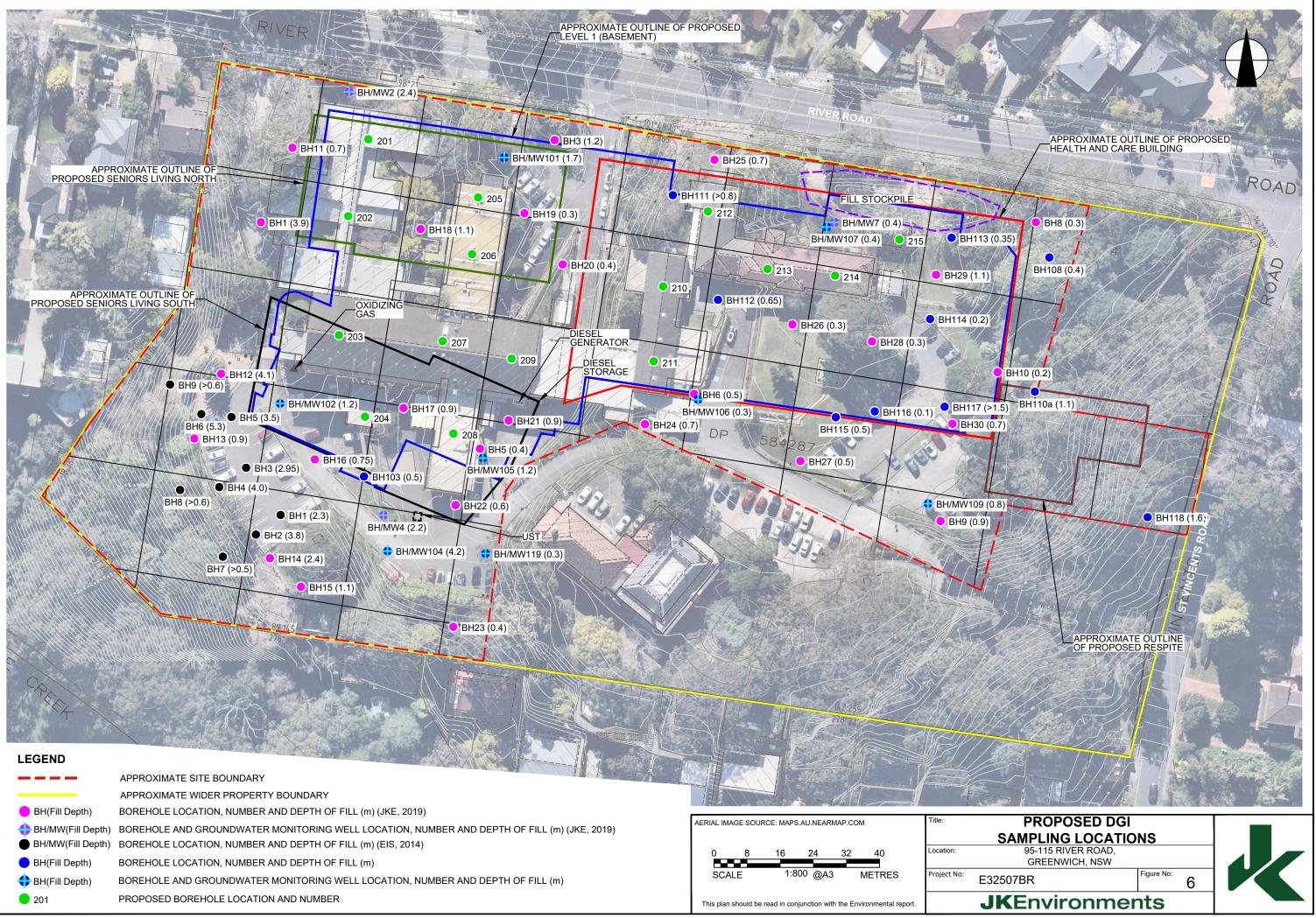
Because an environmental site assessment is based extensively on judgement and opinion, it is necessarily less exact than other disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, model clauses have been developed for use in written transmittals. These are definitive clauses designed to indicate consultant responsibility. Their use helps all parties involved recognise individual responsibilities and formulate appropriate action. Some of these definitive clauses are likely to appear in the environmental site assessment, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to any questions.

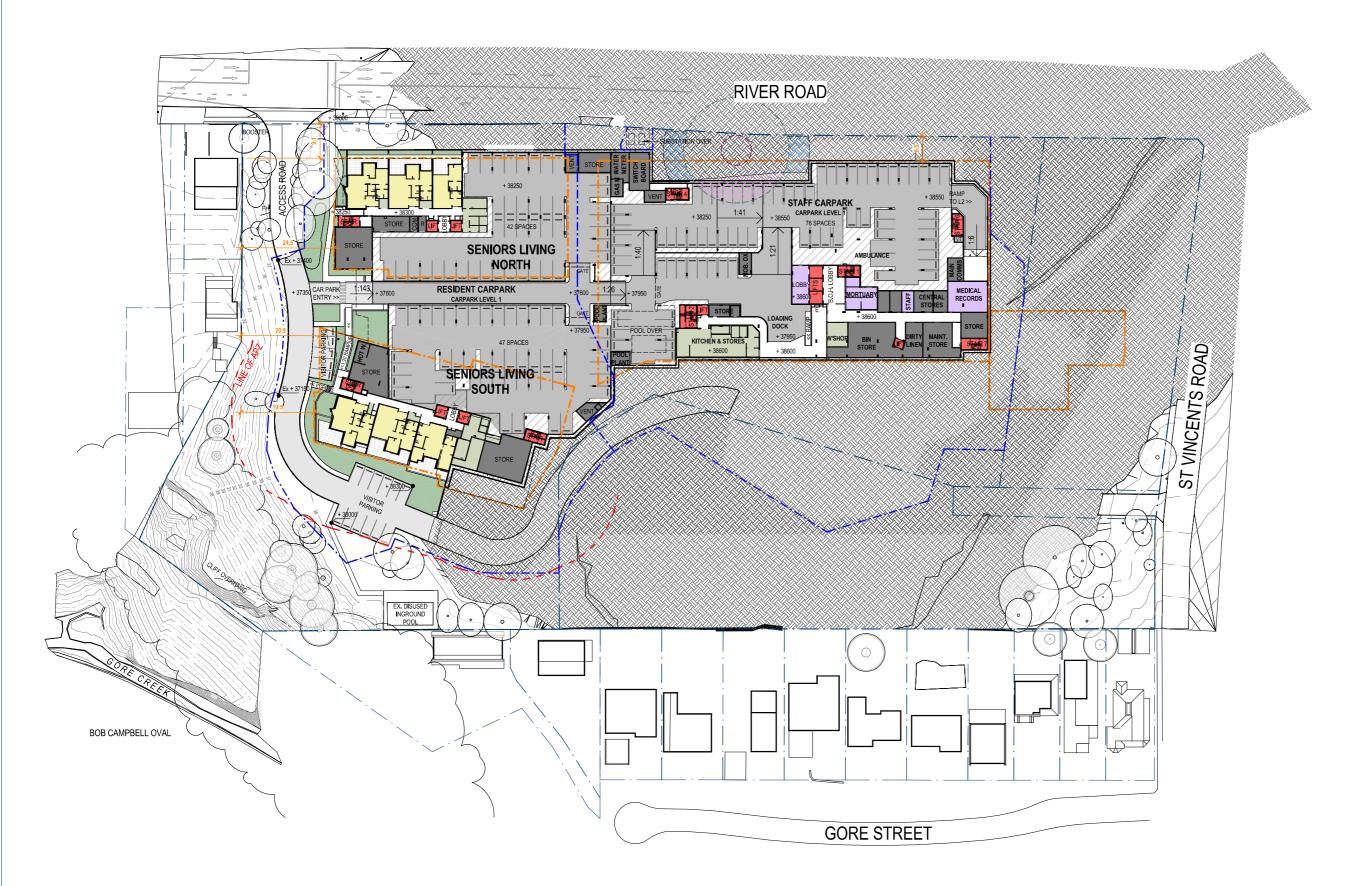
Appendix A: Report Figures






PLOT DATE: 16/09/2021 10:48:31 AM DWG FILE: Z\\5 EIS\5C EIS JOBS\32000'S\E32507BT GREENWICH





Appendix B: Selected Development Plans

1 : 500 @ A1

COPYRIGHT IN SOLUTION THAT THESE DRAWINGS AND DESIGNS AND THE COPYRIGHT THEREOF ARE THE PROPERTY OF BICKERTON MASTERS ARCHITECTURE PTY LTD (ACN 198 25:149) TA BICKERTON MASTERS AND BM HEDE PTY LTD (ACN 83) 449 89) THATEPS ARCHITESTS AND MISSING THE USED, RETAINED OR COPIED WITHOUT THE WRITTEN PERMISSION OF THE AFOREMENTIONED LEGAL ENTITIES.

BICKERTON MASTERS AND HEDE ARCHITECTS ACCEPT NO RESPONSIBILITY FOR THE USABILITY, COMPLETENESS OR ACCURACY OF DATA TRANSFERRED ELECTRONICALLY, RECPIENTS SHOULD WHEN RECESSARY REQUEST ANARO OCY VIEWON FOR VERIFICATIONAL USE FRUEDED DIMENSIONS IN PREFERENCE TO SCALE A.L. DIMENSIONS TO BE VERIFIED ON SITIE. IF THIS IS A COLORED DRAWING AND IS PRINCED BLOCK WHITE ON TAL IM REVINATION WAY BE LEGIBLE. C:_Revit Projects\SW-AR-GREENWICH_andrewmacNRYHN.rvt

P20 2022.04.08 LODGEMENT ISSUE FOR CLIENT SIGNOFF P19 2022.04.01 FINAL DRAFT LODGEMENT ISSUE P16 2022.03.28 SSD UPDATE P17 2022.03.18 ISSUE TO CONSULTANTS P16 2022.03.18 ISSUE TO CONSULTANTS P15 2022.03.18 ISSUE TO CONSULTANTS P15 2022.03.16 SSD UPDATE AMac AMac NAH AMac AMac NAH

REV DATE

DETAILS

INITIALS

NORTH ---- STAGING LINE

SITE PLAN LEGEND - - SITE BOUNDARY PLANNING ENVELOPE

DRAWING No:

GREENWICH HOSPITAL REDEVELOPMENT RIVER RD, GREENWICH DRAWING TITLE: SITE LEVEL PLAN - LEVEL 1 (BASEMENT)

DRAWN: NAH

REVISION:

DATE: 01/11/21

P20

CHECKED:

SCALE: 1:500 @A1 NSW NOMINATED ARCHITECT: ANDREW MASTERS (9037)

DD-SW-0200

8/04/2022 5:25:43 PM

1 : 500 @ A1

COPYRIGHT THESE DRAWINGS AND DESIGNS AND THE COPYRIGHT THEREOF ARE THE PROPERTY OF BICKERTON MASTERS ARCHITECTURE PTY LTD (ACM 195 225 149) TAB BICKERTON MASTERS AND BM HEDE PTY LTD (ACM 831 498 93) TA INEE ARCHITEST AND MISS TOR SE USED, RETAINED OR COPIED WITHOUT THE WRITTEN PERMISSION OF THE AFOREMENTIONED LEGAL ENTITIES,

BICKERTON MASTERS AND HEDE ARCHITECTS ACCEPT NO RESPONSIBILITY FOR THE USABILITY, COMPLETENESS OR ACCURACY OF DATA TRANSFERRED ELECTRONICALLY, RECPIENTS SHOULD WHEN RECESSARY REQUEST ANARO OCY VIEWON FOR VERIFICATIONAL USE FRUEDED DIMENSIONS IN PREFERENCE TO SCALE A.L. DIMENSIONS TO BE VERIFIED ON SITIE. IF THIS IS A COLORED DRAWING AND IS PRINCED BLOCK WHITE ON TAL IM REVINATION WAY BE LEGIBLE. C:_Revit Projects\SW-AR-GREENWICH_andrewmacNRYHN.rvt

P20 2022.04.08 LODGEMENT ISSUE FOR CLIENT SIGNOFF AMac P19 2022.04.01 FINAL DRAFT LODGEMENT ISSUE AMac P18 2022.03.26 SSUE POATE NAH P17 2022.03.26 ISSUE TO CONSULTANTS AMac P16 2022.03.16 ISSUE TO CONSULTANTS AMac P15 2022.03.16 SSD UPDATE NAH

REV DATE

DETAILS

 \bigwedge

NORTH

INITIALS

SITE PLAN LEGEND - - SITE BOUNDARY

В SYDNEY (02) 9261 8333 STUDIO 3, LEVEL 3 35 BUCKINGHAM STREET SURRY HILLS 2010, NSW Μ www.bick

PLANNING ENVELOPE - - - STAGING LINE

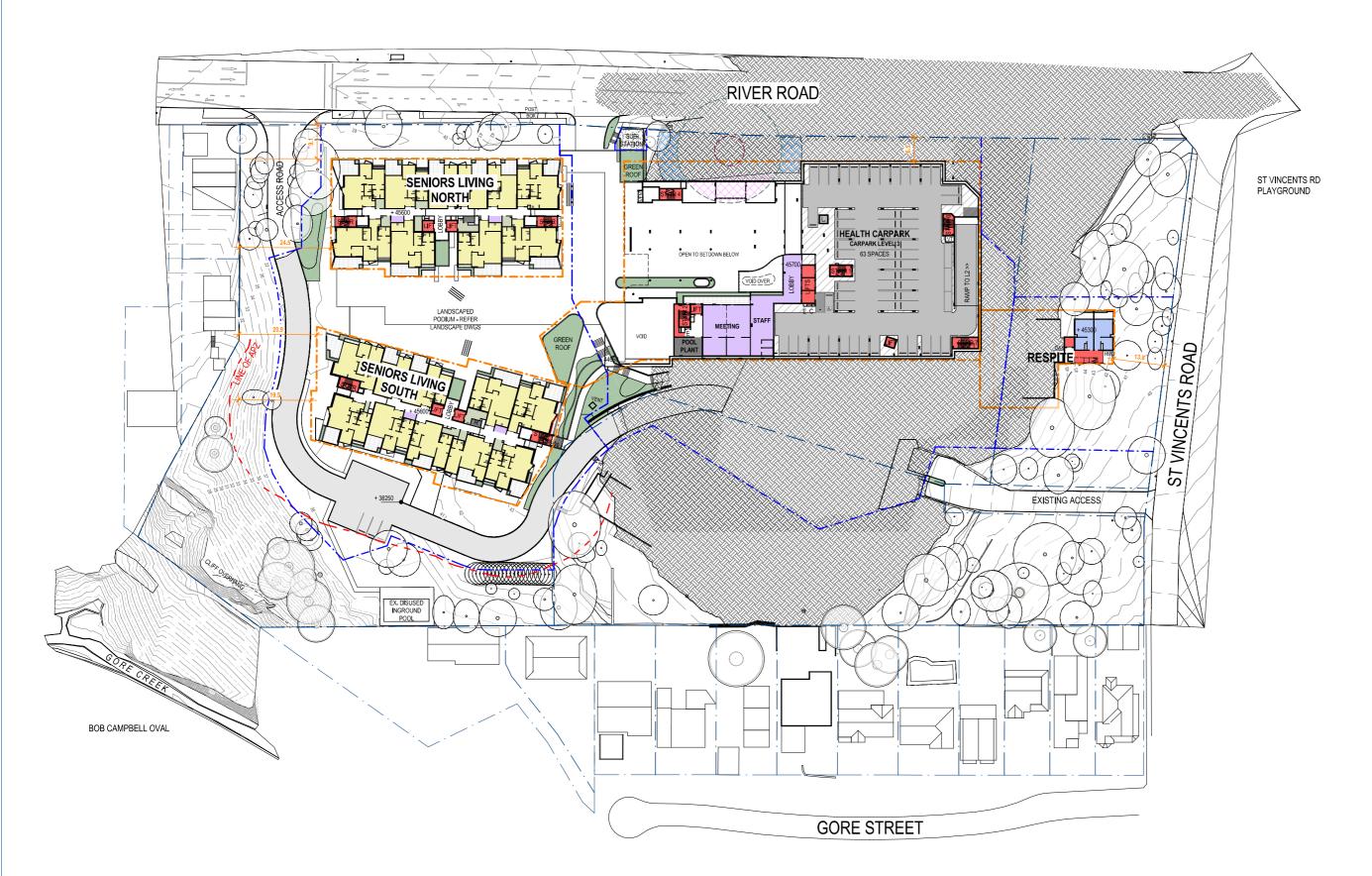
DRAWING No:

GREENWICH HOSPITAL REDEVELOPMENT RIVER RD, GREENWICH DRAWING TITLE: SITE LEVEL PLAN - LEVEL 2 (SETDOWN)

DRAWN: NAH

REVISION:

DATE: 01/11/21


P20

CHECKED: SCALE: 1:500 @A1

NSW NOMINATED ARCHITECT: ANDREW MASTERS (9037)

DD-SW-0201

8/04/2022 5:26:40 PM

DRAWING No:

GREENWICH HOSPITAL REDEVELOPMENT RIVER RD, GREENWICH DRAWING TITLE: SITE LEVEL PLAN - LEVEL 3 (MEZZANINE)

DRAWN: NAH

REVISION:

DATE: 11/04/21

P20

CHECKED: SCALE: 1:500 @A1

NSW NOMINATED ARCHITECT: ANDREW MASTERS (9037)

DD-SW-0202

8/04/2022 5:27:44 PM

1 : 500 @ A1 COPYRIGHT

IN SOLUTION THAT THESE DRAWINGS AND DESIGNS AND THE COPYRIGHT THEREOF ARE THE PROPERTY OF BICKERTON MASTERS ARCHITECTURE PTY LTD (ACN 198 25:149) TA BICKERTON MASTERS AND BM HEDE PTY LTD (ACN 83) 449 89) THATEPS ARCHITESTS AND MISSING THE USED, RETAINED OR COPIED WITHOUT THE WRITTEN PERMISSION OF THE AFOREMENTIONED LEGAL ENTITIES.

BICKERTON MASTERS AND HEDE ARCHITECTS ACCEPT NO RESPONSIBILITY FOR THE USABILITY, COMPLETENESS OR ACCURACY OF DATA TRANSFERRED ELECTRONICALLY, RECPIENTS SHOULD WHEN RECESSARY REQUEST ANARO OCY VIEWON FOR VERIFICATIONAL USE FRUEDED DIMENSIONS IN PREFERENCE TO SCALE A.L. DIMENSIONS TO BE VERIFIED ON SITIE. IF THIS IS A COLORED DRAWING AND IS PRINCED BLOCK WHITE ON TAL IM REVINATION WAY BE LEGIBLE. C:_Revit Projects\SW-AR-GREENWICH_andrewmacNRYHN.rvt

P19 2022.04.08 LODGEMENT ISSUE FOR CLIENT SIGNOFF AMac P18 2022.04.01 FINAL DRAFT LODGEMENT ISSUE AMac P17 2022.03.26 SSUE PDATE NAH P16 2022.03.26 ISSUE TO CONSULTANTS AMac P15 2022.03.26 ISSUE TO CONSULTANTS AMac P14 2022.03.16 ISSUE TO CONSULTANTS AMac P14 2022.03.16 SSD UPDATE NAH

REV DATE

DETAILS

SITE PLAN LEGEND

 \bigwedge

NORTH

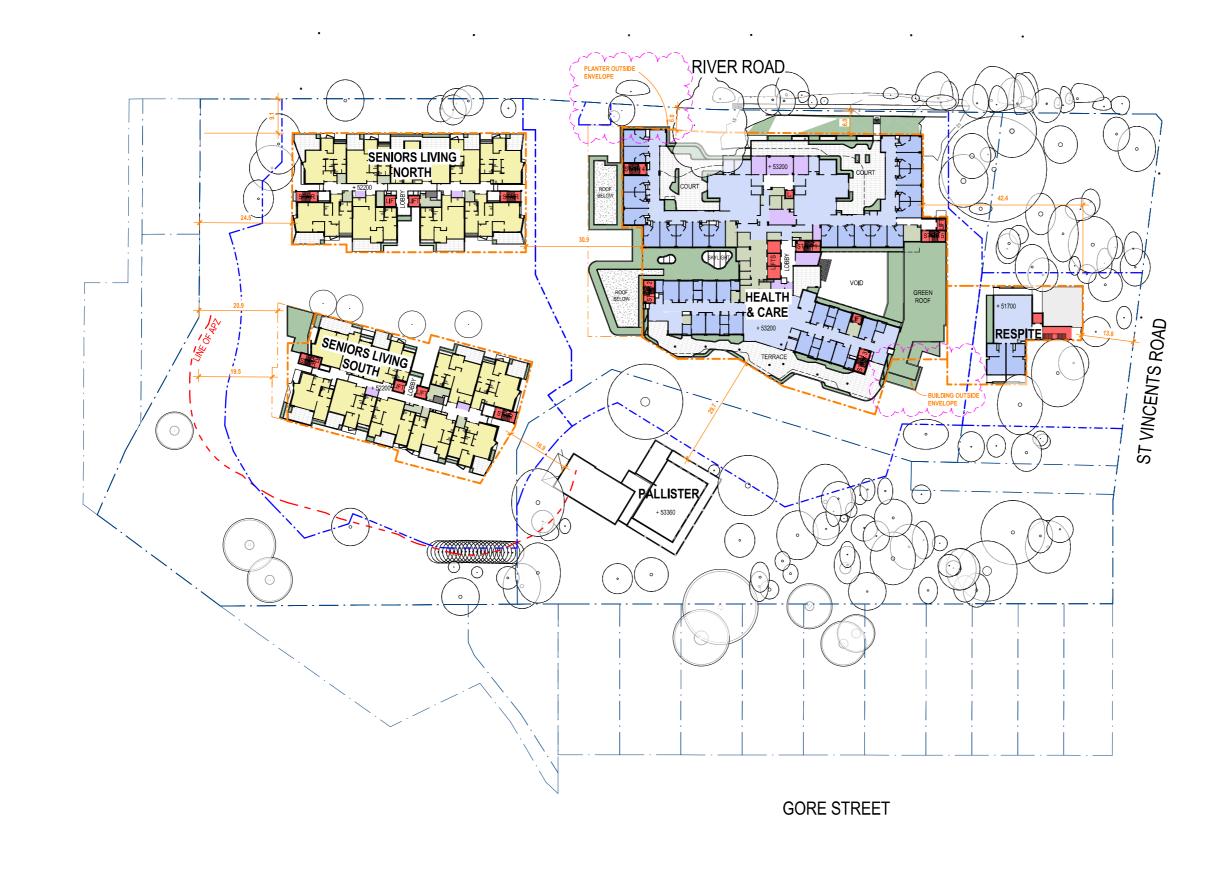
INITIALS

- - SITE BOUNDARY PLANNING ENVELOPE - - - STAGING LINE

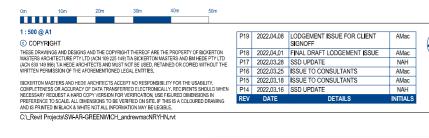
GREENWICH HOSPITAL REDEVELOPMENT RIVER RD, GREENWICH

P19 DATE: 01/11/21 DRAWING TITLE:

REVISION:


SITE LEVEL PLAN - LEVEL 4 (PLAZA)

DRAWN: NAH


CHECKED: SCALE: 1:500 @A1

NSW NOMINATED ARCHITECT: ANDREW MASTERS (9037)

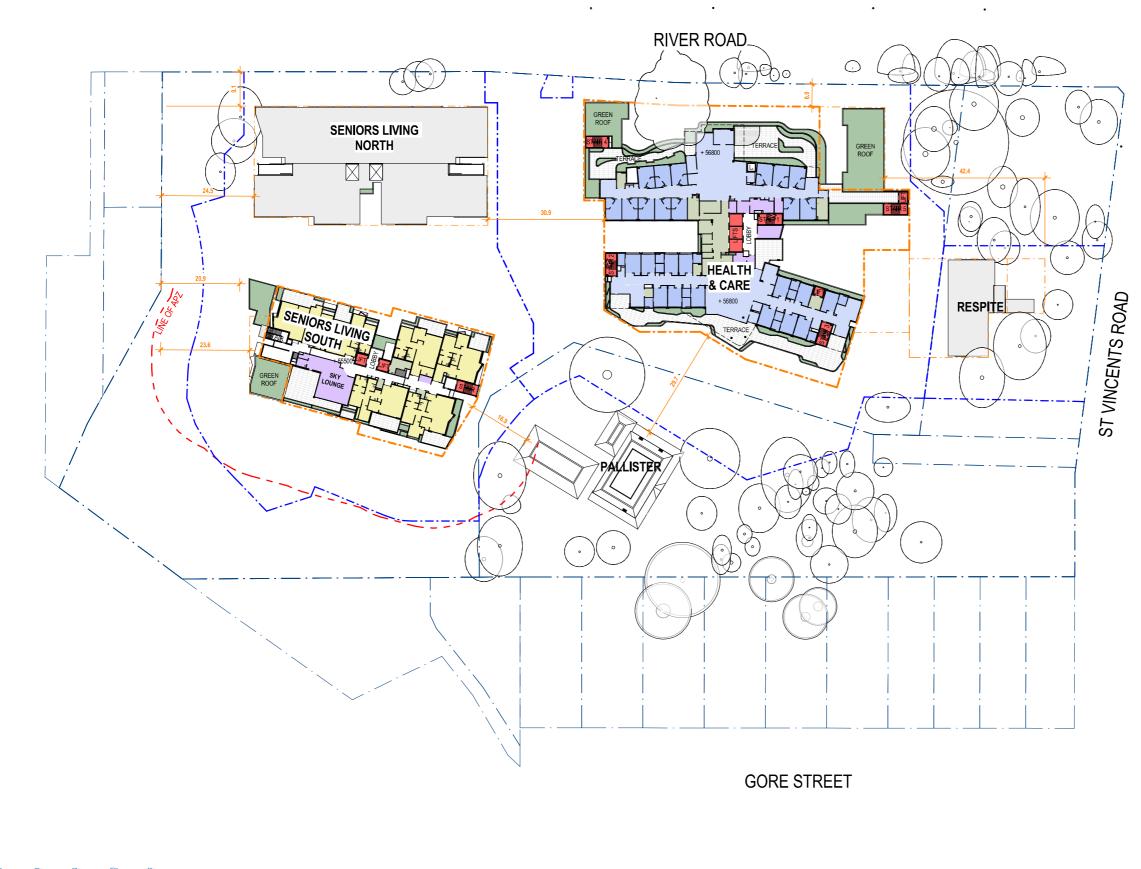
8/04/2022 5:28:48 PM

SITE PLAN LEGEND

NORTH

- - SITE BOUNDARY PLANNING ENVELOPE ---- STAGING LINE

DRAWN: NAH


CHECKED: SCALE: 1:500 @A1

NSW NOMINATED ARCHITECT: ANDREW MASTERS (9037)

8/04/2022 5:29:34 PM

CLIENT:

PROJECT: 01605 **GREENWICH HOSPITAL** REDEVELOPMENT RIVER RD, GREENWICH

1 : 500 @ A1

COPYRIGHT USE OF INTERIA MACHINE AND THE COPYRIGHT THEREOF ARE THE PROPERTY OF BICKEPTON MASTERS ARCHITECTURE PTV LTD (ACN 169 225 1917) AB BICKERTON MASTERS AND BH HEDE PTV LTD (ACN 58) 496 997, HADE ARCHTECTURA MOM SIY TO THE USED, RETAINED OR COPIED WITHOUT THE WRITTEN PERMISSION OF THE AFOREMENTIONED LEGAL ENTITIES,

BICKERTON MASTERS AND HEDE ARCHITECTS ACCEPT NO RESPONSIBILITY FOR THE USABILITY, COMPLETENESS OR ACCURACY OF DATA TRANSFERRED ELECTRONICALLY, RECPIENTS SHOULD WHEN RECESSARY REQUEST ANARO OCY VIEWON FOR VERIFICATIONAL USE FRUEDED DIMENSIONS IN PREFERENCE TO SCALE A.L. DIMENSIONS TO BE VERIFIED ON SITIE. IF THIS IS A COLORED DRAWING AND IS PRINCED BLOCK WHITE ON TAL IM REVINATION WAY BE LEGIBLE. C:_Revit Projects\SW-AR-GREENWICH_andrewmacNRYHN.rvt

P19 2022.04.08 LODGEMENT ISSUE FOR CLIENT SIGNOFF AMac P18 2022.04.01 FINAL DRAFT LODGEMENT ISSUE AMac P17 2022.03.26 SSUE PDATE NAH P16 2022.03.26 ISSUE TO CONSULTANTS AMac P15 2022.03.26 ISSUE TO CONSULTANTS AMac P14 2022.03.16 ISSUE TO CONSULTANTS AMac P14 2022.03.16 SSD UPDATE NAH

DETAILS

REV DATE

 \bigwedge SITE PLAN LEGEND

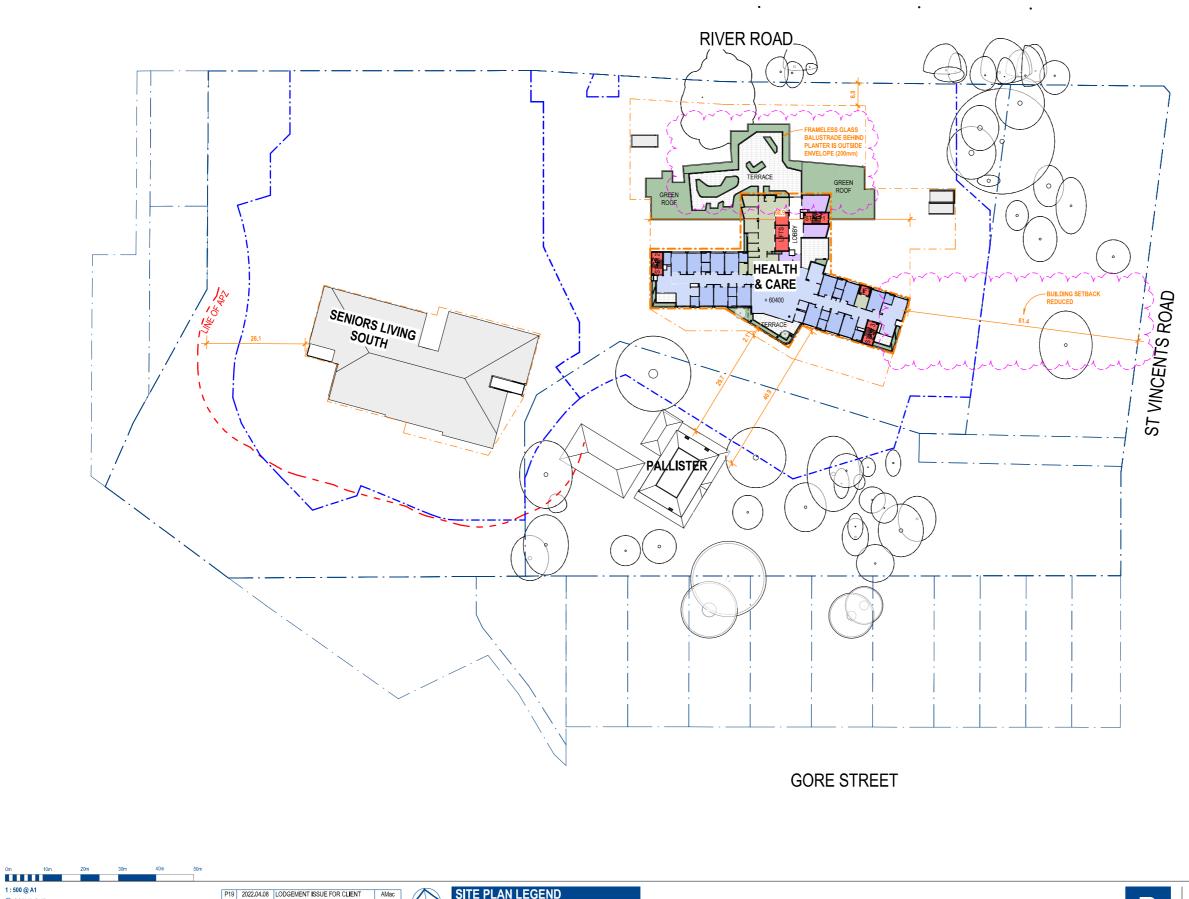
- - SITE BOUNDARY PLANNING ENVELOPE ---- STAGING LINE

NORTH

INITIALS

REVISION: P19 DATE: 01/11/21 DRAWING TITLE: SITE LEVEL PLAN - LEVEL 6

DRAWN: NAH


CHECKED: SCALE: 1:500 @A1

NSW NOMINATED ARCHITECT: ANDREW MASTERS (9037)

8/04/2022 5:30:12 PM

CLIENT:

HammondCare . PROJECT: 01605 **GREENWICH HOSPITAL** REDEVELOPMENT RIVER RD, GREENWICH

1 : 500 @ A1

COPYRIGHT USE OF INTERIA MACHINE AND THE COPYRIGHT THEREOF ARE THE PROPERTY OF BICKEPTON MASTERS ARCHITECTURE PTV LTD (ACN 169 225 1917) AB BICKERTON MASTERS AND BH HEDE PTV LTD (ACN 58) 496 997, HADE ARCHTECTURA MOM SIY TO THE USED, RETAINED OR COPIED WITHOUT THE WRITTEN PERMISSION OF THE AFOREMENTIONED LEGAL ENTITIES,

BICKERTON MASTERS AND HEDE ARCHITECTS ACCEPT NO RESPONSIBILITY FOR THE USABILITY, COMPLETENESS OR ACCURACY OF DATA TRANSFERRED ELECTRONICALLY, RECPIENTS SHOULD WHEN RECESSARY REQUEST ANARO OCY VIEWON FOR VERIFICATIONAL USE FRUEDED DIMENSIONS IN PREFERENCE TO SCALE A.L. DIMENSIONS TO BE VERIFIED ON SITIE. IF THIS IS A COLORED DRAWING AND IS PRINCED BLOCK WHITE ON TAL IM REVINATION WAY BE LEGIBLE. C:_Revit Projects\SW-AR-GREENWICH_andrewmacNRYHN.rvt

SITE PLAN LEGEND

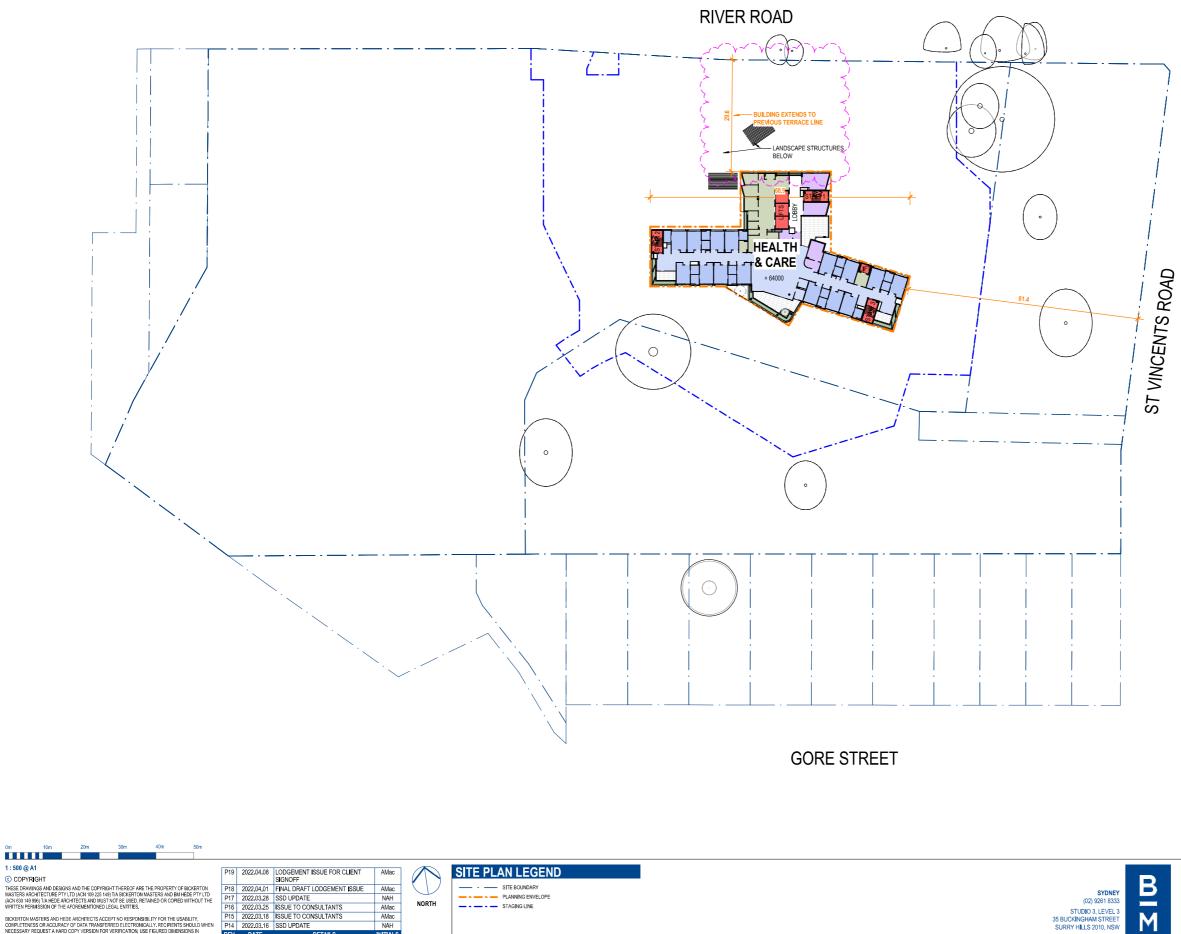
U

NORTH

- - SITE BOUNDARY PLANNING ENVELOPE ---- STAGING LINE

GREENWICH HOSPITAL REDEVELOPMENT RIVER RD, GREENWICH P19 DATE: 01/11/21 DRAWING TITLE: SITE LEVEL PLAN - LEVEL 7

NSW NOMINATED ARCHITECT: ANDREW MASTERS (9037)


DRAWING No: **DD-SW-0206**

DRAWN: NAH

REVISION:

CHECKED: SCALE: 1:500 @A1

8/04/2022 5:30:37 PM

____ STAGING LINE

BICKERTON MASTERS AND HEDE ARCHITECTS ACCEPT NO RESPONSIBILITY FOR THE USABILITY, COMPLETENESS OR ACCURACY OF DATA TRANSFERRED ELECTRONICALLY, RECPIENTS SHOULD WHEN RECESSARY REQUEST ANARO OCY VIEWON FOR VERIFICATIONAL USE FRUEDED DIMENSIONS IN PREFERENCE TO SCALE A.L. DIMENSIONS TO BE VERIFIED ON SITIE. IF THIS IS A COLORED DRAWING AND IS PRINCED BLOCK WHITE ON TAL IM REVINATION WAY BE LEGIBLE.

C:_Revit Projects\SW-AR-GREENWICH_andrewmacNRYHN.rvt

REV DATE

DETAILS

INITIALS

REVISION: HammondCare . P19 DATE: 01/11/21 DRAWING TITLE:

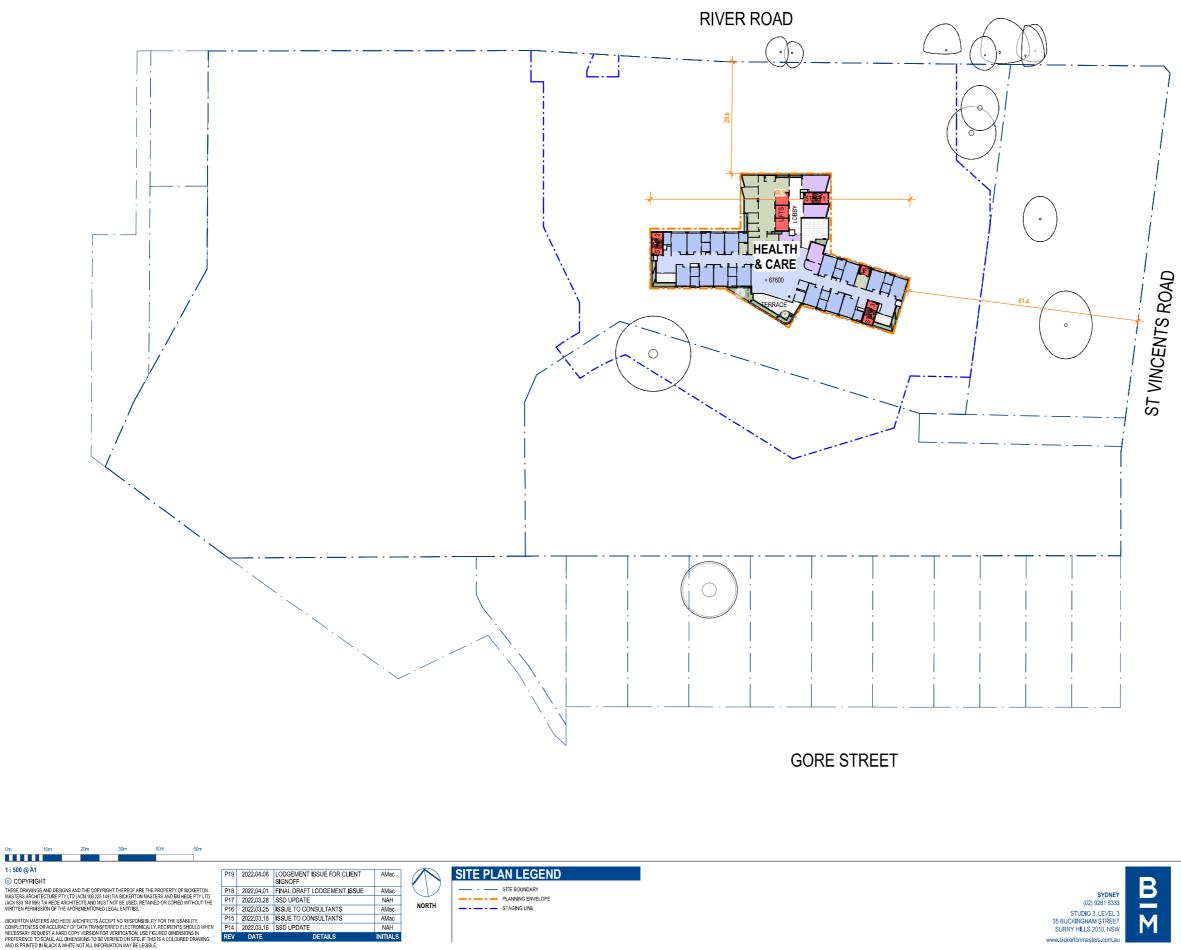
DRAWN: NAH

CHECKED:

NSW NOMINATED ARCHITECT: ANDREW MASTERS (9037)

SCALE: 1:500 @A1

8/04/2022 5:30:50 PM


CLIENT:

STUDIO 3, LEVEL 3 35 BUCKINGHAM STREET SURRY HILLS 2010, NSW

www.bicker

Μ

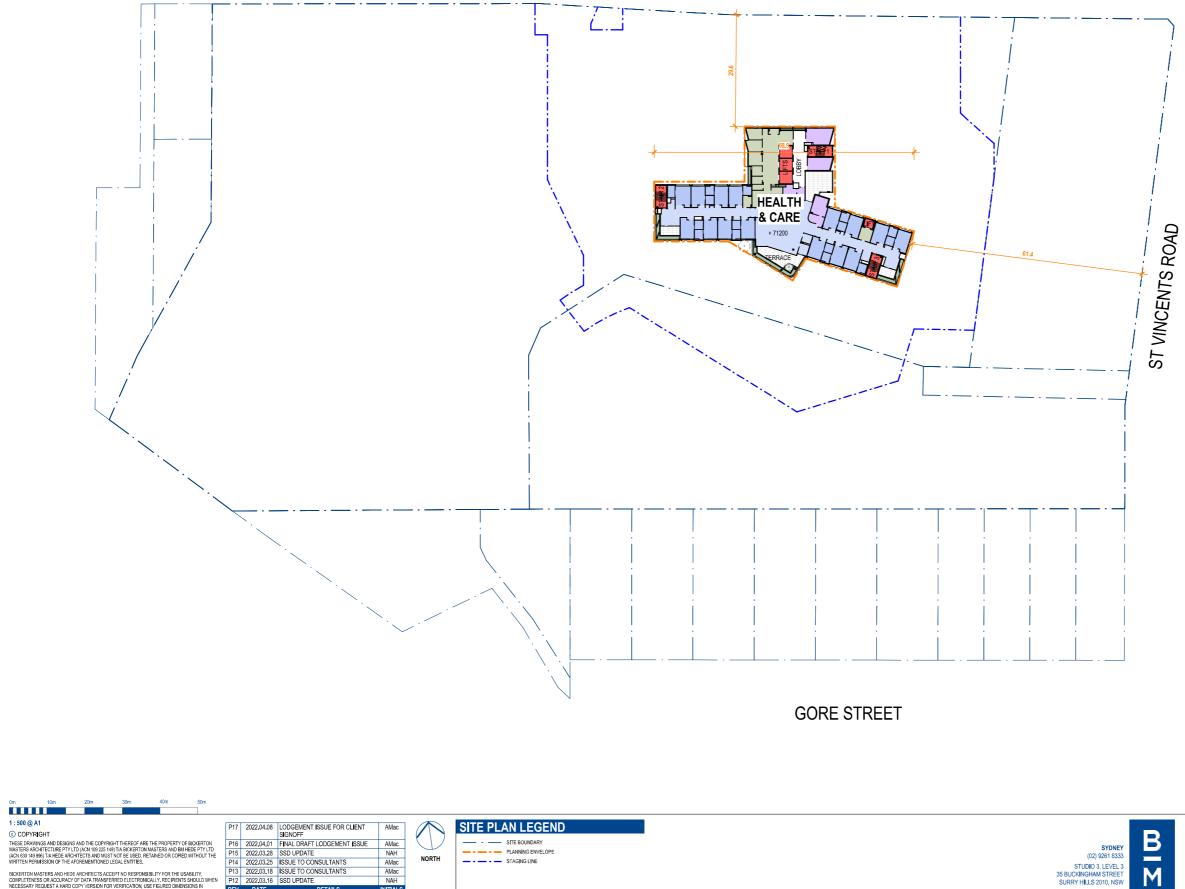
PROJECT: 01605 GREENWICH HOSPITAL REDEVELOPMENT RIVER RD, GREENWICH

C:_Revit Projects\SW-AR-GREENWICH_andrewmacNRYHN.rvt

GREENWICH HOSPITAL REDEVELOPMENT RIVER RD, GREENWICH P19 DATE: 01/11/21 DRAWING TITLE: SITE LEVEL PLAN - LEVEL 9

DRAWING No: **DD-SW-0208**

DRAWN: NAH


REVISION:

CHECKED: SCALE: 1:500 @A1

NSW NOMINATED ARCHITECT: ANDREW MASTERS (9037)

8/04/2022 5:31:02 PM

RIVER ROAD

BICKERTON MASTERS AND HEDE ARCHITECTS ACCEPT NO RESPONSIBILITY FOR THE USABILITY, COMPLETENESS OR ACCURACY OF DATA TRANSFERRED ELECTRONICALLY, RECPIENTS SHOULD WHEN RECESSARY REQUEST ANARO OCY VIEWON FOR VERIFICATIONAL USE FRUEDED DIMENSIONS IN PREFERENCE TO SCALE A.L. DIMENSIONS TO BE VERIFIED ON SITIE. IF THIS IS A COLORED DRAWING AND IS PRINCED BLOCK WHITE ON TAL IM REVINATION WAY BE LEGIBLE. C:_Revit Projects\SW-AR-GREENWICH_andrewmacNRYHN.rvt

1 : 500 @ A1

REV DATE DETAILS SITE BOUNDARY
 PLANNING ENVELOPE
 STAGING LINE

INITIALS

SYDNEY (02) 9261 8333 STUDIO 3, LEVEL 3 35 BUCKINGHAM STREET SURRY HILLS 2010, NSW Μ www.bicker

CLIENT:

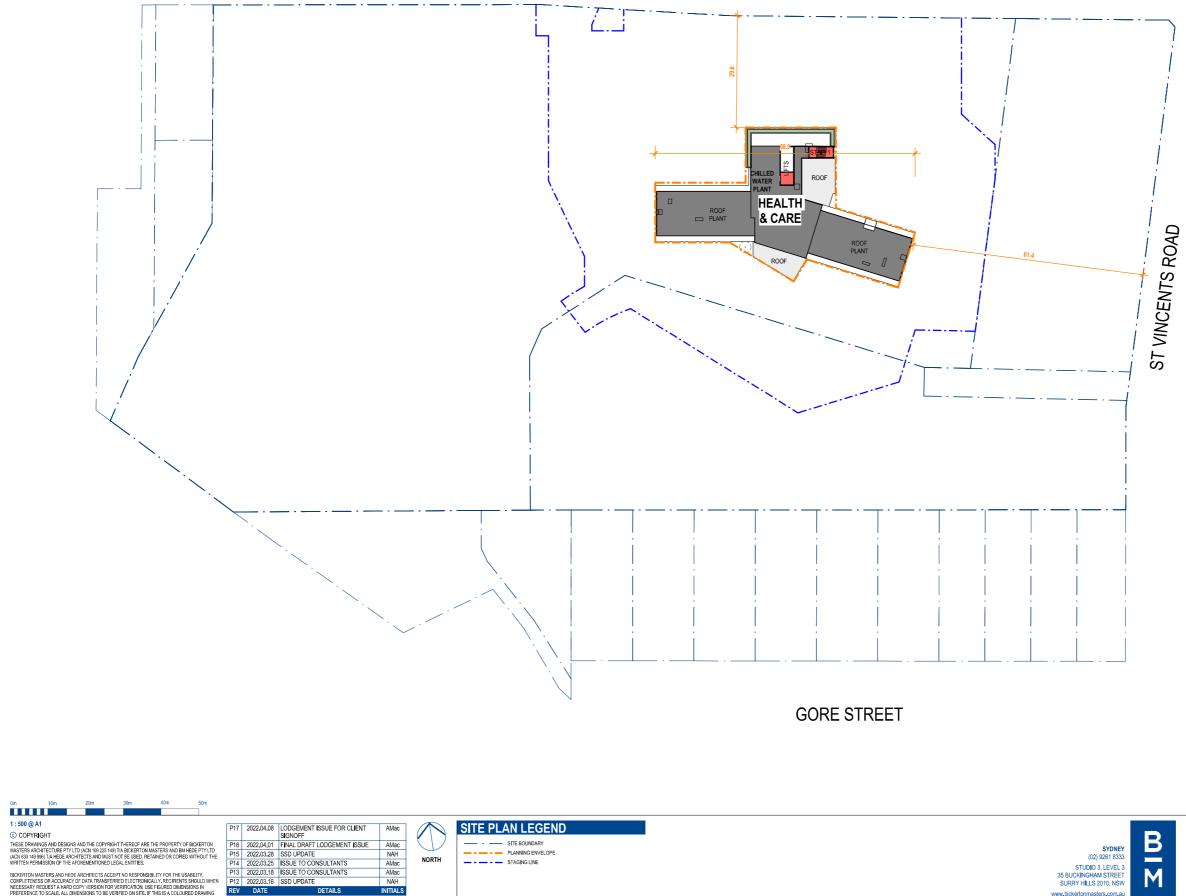
Hammond Care .

PROJECT: 01605 GREENWICH HOSPITAL

RIVER RD, GREENWICH

REDEVELOPMENT

REVISION: P17 DATE: 01/11/21 DRAWING TITLE: SITE LEVEL PLAN - LEVEL 10


DRAWN: NAH

CHECKED: SCALE: 1:500 @A1

NSW NOMINATED ARCHITECT: ANDREW MASTERS (9037)

8/04/2022 5:31:17 PM

RIVER ROAD

BICKERTON MASTERS AND HEDE ARCHITECTS ACCEPT NO RESPONSIBILITY FOR THE USABILITY, COMPLETENESS OR ACCURACY OF DATA TRANSFERRED ELECTRONICALLY, RECPIENTS SHOULD WHEN RECESSARY REQUEST ANARO OCY VIEWON FOR VERIFICATIONAL USE FRUEDED DIMENSIONS IN PREFERENCE TO SCALE A.L. DIMENSIONS TO BE VERIFIED ON SITIE. IF THIS IS A COLORED DRAWING AND IS PRINCED BLOCK WHITE ON TAL IM REVINATION WAY BE LEGIBLE.

C:_Revit Projects\SW-AR-GREENWICH_andrewmacNRYHN.rvt

1 : 500 @ A1

REVISION: P17 DATE: 04/09/21 DRAWING TITLE: SITE LEVEL PLAN - LEVEL 11

CLIENT:

www.bicker

Hammond Care .

PROJECT: 01605 GREENWICH HOSPITAL

RIVER RD, GREENWICH

REDEVELOPMENT

DRAWN: NAH

CHECKED: SCALE: 1:500 @A1

8/04/2022 5:31:27 PM

NSW NOMINATED ARCHITECT: ANDREW MASTERS (9037)

Appendix C: Data Summary Tables and Borehole Logs

ASI Data Summary Tables

ABBREVIATIONS AND EXPLANATIONS

Abbreviations used in the Tables:

4.0.0	And it at Dealers and Conservation	DCD	Debughle size at all Disk south
ABC:	Ambient Background Concentration		Polychlorinated Biphenyls
ACM:	Asbestos Containing Material	PCE:	Perchloroethylene (Tetrachloroethylene or Teterachloroethene)
ADWG:	Australian Drinking Water Guidelines	PFAS	Per- and polyfluoroalkyl substances
AF:	Asbestos Fines		Perfluorohexanesulfonic acid
ANZG	Australian and New Zealand Guidelines	PFOA	Perfluorooctanoic acid
B(a)P:	Benzo(a)pyrene	PFOS	Perfluorooctanesulfonic acid
CEC:	Cation Exchange Capacity		pH of filtered 1:20, 1M KCL extract, shaken overnight
CRC:	Cooperative Research Centre	pH _{ox} :	pH of filtered 1:20 1M KCl after peroxide digestion
CT:	Contaminant Threshold	PQL:	Practical Quantitation Limit
EILs:	Ecological Investigation Levels	RS:	Rinsate Sample
ESLs:	Ecological Screening Levels	RSL:	Regional Screening Levels
FA:	Fibrous Asbestos	RSW:	Restricted Solid Waste
FTS:	Fluorotelomer sulfonic acid	SAC:	Site Assessment Criteria
GIL:	Groundwater Investigation Levels	SCC:	Specific Contaminant Concentration
GSW:	General Solid Waste	S _{Cr} :	Chromium reducible sulfur
HILs:	Health Investigation Levels	S _{POS} :	Peroxide oxidisable Sulfur
HSLs:	Health Screening Levels	SSA:	Site Specific Assessment
HSL-SSA:	Health Screening Level-SiteSpecific Assessment	SSHSLs	Site Specific Health Screening Levels
kg/L	kilograms per litre	TAA:	Total Actual Acidity in 1M KCL extract titrated to pH6.5
NA:	Not Analysed	TB:	Trip Blank
NC:	Not Calculated	TCA:	1,1,1 Trichloroethane (methyl chloroform)
NEPM:	National Environmental Protection Measure	TCE:	Trichloroethylene (Trichloroethene)
NHMRC:	National Health and Medical Research Council	TCLP:	Toxicity Characteristics Leaching Procedure
NL:	Not Limiting	TPA:	Total Potential Acidity, 1M KCL peroxide digest
NSL:	No Set Limit	TS:	Trip Spike
OCP:	Organochlorine Pesticides	TRH:	Total Recoverable Hydrocarbons
OPP:	Organophosphorus Pesticides	TSA:	Total Sulfide Acidity (TPA-TAA)
PAHs:	Polycyclic Aromatic Hydrocarbons	UCL:	Upper Level Confidence Limit on Mean Value
%w/w:	weight per weight	USEPA	United States Environmental Protection Agency
ppm:	Parts per million		Volatile Organic Chlorinated Compounds
F			World Health Organisation
		wii0.	

Table Specific Explanations:

HIL Tables:

- The chromium results are for Total Chromium which includes Chromium III and VI. For initial screening purposes, we have assumed that the samples contain only Chromium VI unless demonstrated otherwise by additional analysis.
 Carcinogenic PAHs is a toxicity weighted sum of analyte concentrations for a specific list of PAH compounds relative to
- B(a)P. It is also referred to as the B(a)P Toxic Equivalence Quotient (TEQ).
 Statistical calculations are undertaken using ProUCL (USEPA). Statistical calculation is usually undertaken using data from
- Statistical calculations are undertaken using ProUCL (USEPA). Statistical calculation is usually undertaken using data from fill samples.

EIL/ESL Table:

- ABC Values for selected metals have been adopted from the published background concentrations presented in Olszowy et. al., (1995), Trace Element Concentrations in Soils from Rural and Urban New South Wales (the 25th percentile values for old suburbs with high traffic have been quoted).
- Physiochemical parameters adopted from representative samples are displayed in blue font.

Waste Classification and TCLP Table:

- Data assessed using the NSW EPA Waste Classification Guidelines, Part 1: Classifying Waste (2014).
- The assessment of Total Moderately Harmful pesticides includes: Dichlorovos, Dimethoate, Fenitrothion, Ethion, Malathion and Parathion.
- Assessment of Total Scheduled pesticides include: HBC, alpha-BHC, gamma-BHC, beta-BHC, Heptachlor, Aldrin, Heptachlor Epoxide, gamma-Chlordane, alpha-chlordane, pp-DDE, Dieldrin, Endrin, pp-DDD, pp-DDT, Endrin Aldehyde.

Groundwater Ecology Tables:

- 95% refers to a concentration that has been derived to protect 95% of aquatic species

QA/QC Table:

- Field blank, Inter and Intra laboratory duplicate results are reported in mg/kg.
- Trip spike results are reported as percentage recovery.
- Field rinsate results are reported in μg/L.

TABLE S1 SOIL LABORATORY RESULTS COMPARED TO NEPM 2013.

HIL-B: 'Residential with minimal opportunities for soil access; including dwellings with fully/permanently paved yards like high-rise buildings'

'l data in mg/kg unless	stated otherwise	e .									Total	PAHs	нсв	Endoculfac	ORGANOCHLO	Aldrin &	Chlordane	DDT, DDD	Heptachlor	OP PESTICIDES (OPPs)	TOTAL PCBs	ASBESTOS FIBRE
	Stated other WIS	~	Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc	PAHs	Carcinogenic PAHs	нсв	Endosultan	wieuroxycnior	Aldrin & Dieldrin	cinordane	& DDE	neptachior	Chlorpyrifos	I GIAL PLDS	ASSESTOS FIBRE
L - Envirolab Services			4	0.4	1	1	1	0.1	1	1	-	0.5	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	100
e Assessment Criteria	(SAC)		500	150	500	30000	1200	120	1200	60000	400	4	15	400	500	10	90	600	10	340	1	Detected/Not Dete
Sample Reference	Sample Depth	Sample Description																				
101	0.02-0.4	Fill: Silty Gravelly Sand	<4	<0.4	62	59	14	<0.1	47	41	3.8	0.6	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
101 - [LAB_DUP]	0.02-0.4	Laboratory Duplicate	<4	<0.4	73	57	14	<0.1	55	46	4	0.6	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
101	0.5-0.85	Fill: Silty Sand	<4	<0.4	17	12	51	<0.1	15	44	0.3	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	Not Detected
101	1.7-1.95	XW Sandstone	<4	<0.4	9	1	13	<0.1	<1	9	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
102	0.05-0.1	Fill: Silty Gravelly Sand	<4	<0.4	44	74	7	<0.1	73	37	0.68	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
102	0.5-0.95	Fill: Silty Clay	6	<0.4	43	29	110	<0.1	10	110	10	2.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
102	1.4-1.6	Sandstone	<4	<0.4	11	6	8	<0.1	4	18	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
103	0.03-0.4	Fill: Silty Gravelly Sand	<4	<0.4	34	26	42	<0.1	39	73	11	2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detecte
103	0.5-0.7	Sandy Clay	<4	<0.4	15	<1	4	<0.1	<1	2	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
103	0.7-0.95	Silty Clay	<4	<0.4	11	<1	7	<0.1	<1	<1	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
103	1.4-1.5	Sandy Clay	<4	<0.4	36	2	4	<0.1	<1	1	1.2	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
104	0.04-0.3	Fill: Sandy Gravel	<4	<0.4	73	24	5	<0.1	75	37	0.2	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
104 - [LAB_DUP]	0.04-0.3	Laboratory Duplicate	<4	<0.4	83	27	6	<0.1	83	43	0.2	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
104	0.5-0.95	Fill: Silty Gravelly Sand	<4	<0.4	76	34	6	<0.1	81	48	0.4	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	Not Detecter
104	1.5-1.95	Fill: Silty Gravelly Sand	<4	<0.4	19	8	83	0.1	5	52	0.4	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
104	3.0-3.2	Fill: Silty Gravelly Sand	<4	<0.4	34	12	57	<0.1	3	38	0.08	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
104	3.8-4.1	Fill: Silty Sand	<4	<0.4	30	17	43	<0.1	17	70	0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	0.25-0.4	Fill: Silty Gravelly Sand	<4	<0.4	74	27	13	<0.1	76	45	0.4	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detecte
105 - [LAB_DUP]	0.25-0.4	Laboratory Duplicate	<4	<0.4	72	26	10	<0.1	72	42	0.3	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
105	0.5-0.95	Fill: Clayey Silty Sand	<4	<0.4	13	6	32	<0.1	9	30	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
105 106	1.2-1.4 0.03-0.3	Sandy Clay	<4	<0.4	9 30	2 49	12 2	<0.1	1 110	14 38	<0.05	<0.5	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA Not Detecte
106	0.03-0.3	Fill: Clayey Gravelly Sand Silty Clay	<4	<0.4	30	49 <1	2	<0.1	<1	38	<0.05	<0.5	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	Not Detecte NA
106	0.6-0.8	Fill: Silty Clay	<4	<0.4	12	<1 18	14	<0.1	<1 6	2	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA Not Detecte
107	0.2-0.4	Fill: Sandy Clay	<4	<0.4	8	4	14	<0.1	2	21	0.3	<0.5	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA NA	NOT Detected
107	0.2-0.4	Fill: Sandy Silty Clay	<4	<0.4	6	9	63	<0.1	2	31	2.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
109	0.01-0.4	Fill: Clayey Gravelly Sand	<4	<0.4	63	27	8	<0.1	63	37	0.3	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
109	0.5-0.8	Fill: Sandy Clay	<4	<0.4	22	7	10	<0.1	16	16	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NOT DETECTED
109	0.8-0.95	Sandy Clay	<4	<0.4	15	2	5	<0.1	4	6	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
L10A	0-0.1	Fill: Silty Gravelly Sand	<4	<0.4	63	26	6	<0.1	69	52	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detecte
110A	0.1-0.2	Fill: Sandy Gravel	<4	<0.4	71	24	6	<0.1	73	39	0.2	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
110A	0.5-0.8	Fill: Sandy Clay	7	<0.4	18	2	16	<0.1	1	10	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	Not Detecte
111	0-0.1	Fill: Silty Sand	<4	<0.4	9	12	54	<0.1	4	50	3.5	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
111 - [LAB_DUP]	0-0.1	Laboratory Duplicate	<4	<0.4	9	12	51	<0.1	4	49	2.5	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
111	0.3-0.6	Fill: Silty Clay	4	<0.4	9	52	49	0.1	6	79	2.5	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
111	0.6-0.8	Fill: Silty Clayey Sand	<4	<0.4	16	13	58	0.2	5	120	1.8	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
112	0.22-0.65	Fill: Silty Gravelly Sand	<4	<0.4	12	11	44	<0.1	4	57	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
1112	0.65-0.8	Sandstone	<4	<0.4	8	9	6	<0.1	1	12	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1113	0-0.1	Fill: Silty Sand	<4	<0.4	10	9	25	<0.1	3	27	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
1113	0.1-0.2	Fill: Silty Clayey Sand	<4	<0.4	11	4	22	<0.1	2	21	0.3	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
113	0.35-0.45	Sandy Clay	<4	<0.4	6	7	28	<0.1	1	29	3	0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
114	0.05-0.2	Fill: Silty Sandy Gravel	<4	<0.4	77	31	4	<0.1	85	36	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
114 - [LAB_DUP]	0.05-0.2	Laboratory Duplicate	<4	<0.4	93	34	5	<0.1	91	41	0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
115	0-0.1	Fill: Silty Clayey Sand	4	<0.4	11	11	40	<0.1	3	42	0.64	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
115	0.6-0.8	Sandy Clay	4	<0.4	15	<1	6	<0.1	<1	1	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
116	0-0.1	Fill: Silty Sandy Gravel	<4	<0.4	59	22	15	<0.1	54	42	0.3	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detecte
116	0.1-0.3	Silty Clayey Sand	<4	<0.4	10	7	29	<0.1	4	29	0.4	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
117	0-0.1	Fill: Silty Sand	<4	<0.4	19	17	28	<0.1	16	54	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detecte
117	0.5-0.95	Fill: Silty Sand	<4	<0.4	8	3	15	<0.1	2	16	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	Not Detecte
17	0.5-1.5	Fill: Silty Sand (Spoil)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Not Detecte
117	0.5-1.5	Fragment	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Not Detected
118	0-0.1	Fill: Silty Sandy Clay	17	<0.4	8	26	220	<0.1	5	45	1.3	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detecte
118 - [LAB_DUP]	0-0.1	Laboratory Duplicate	<4	<0.4	6	23	390	<0.1	3	65	3.8	0.7	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
118	1.4-1.5	Fill: Silty Sandy Clay	11	<0.4	7	35	99	<0.1	3	62	8.5	1.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
118	1.6-1.8	Sandy Clay	<4	<0.4	11	1	6	<0.1	2	14	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
119	0.05-0.3	Fill: Silty Sand	<4	<0.4	14	29	28	<0.1	8	37	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detecte
19	0.05-0.3	Laboratory Duplicate	<4	<0.4	14	23	28	<0.1	9	41	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
119	0.5-0.8	Sandstone	<4	<0.4	15	<1	4	<0.1	<1	2	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
JP3	0-0.1	Duplicate of BH111	<4	<0.4	11	13	54	<0.1	4	51	2.6	<0.5	NA 10.1	NA 10.1	NA 10.1	NA 10.1	NA 10.1	NA	NA 10.1	NA 10.1	NA 10.1	Not Detecte
JP4	0-0.1	Duplicate of BH115	<4	<0.4	9	5	20 66	<0.1	2	25	0.3	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	NA	<0.1	<0.1	<0.1	Not Detecte
UP7	0-0.1	Duplicate of BH108	<4	<0.4	6	9		<0.1	2	32	1.7	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
JP8	0.04-0.3	Duplicate of BH104	<4	<0.4	82	31	5	<0.1	79	45	0.4	<0.5	NA <0.1	NA <0.1	NA <0.1	NA	NA	NA	NA	NA <0.1	NA <0.1	NA
JP9	0.02-0.4	Duplicate of BH101	<4	<0.4	62	52	13	<0.1	48	40	2.3	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
JP10	0-0.1	Duplicate of BH117	<4	<0.4	11	17	27	<0.1	12	60	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
otal Number of Sam	nles		67	62	67	67	62	62	62	62	67	62	70	20	20	20	20	27	20	20	20	
A DI DAMININE I DI DAMI	2103		62 17	62 <pql< td=""><td>62 93</td><td>62 74</td><td>62 390</td><td>62 0.2</td><td>62 110</td><td>62 120</td><td>62 11</td><td>62</td><td>28 <pql< td=""><td>28 <pql< td=""><td>28 <pql< td=""><td>28 <pql< td=""><td>28 <pql< td=""><td>27 <pql< td=""><td>28 <pql< td=""><td>28 <pql< td=""><td>28 <pql< td=""><td>26 Not Detecte</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	62 93	62 74	62 390	62 0.2	62 110	62 120	62 11	62	28 <pql< td=""><td>28 <pql< td=""><td>28 <pql< td=""><td>28 <pql< td=""><td>28 <pql< td=""><td>27 <pql< td=""><td>28 <pql< td=""><td>28 <pql< td=""><td>28 <pql< td=""><td>26 Not Detecte</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	28 <pql< td=""><td>28 <pql< td=""><td>28 <pql< td=""><td>28 <pql< td=""><td>27 <pql< td=""><td>28 <pql< td=""><td>28 <pql< td=""><td>28 <pql< td=""><td>26 Not Detecte</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	28 <pql< td=""><td>28 <pql< td=""><td>28 <pql< td=""><td>27 <pql< td=""><td>28 <pql< td=""><td>28 <pql< td=""><td>28 <pql< td=""><td>26 Not Detecte</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	28 <pql< td=""><td>28 <pql< td=""><td>27 <pql< td=""><td>28 <pql< td=""><td>28 <pql< td=""><td>28 <pql< td=""><td>26 Not Detecte</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	28 <pql< td=""><td>27 <pql< td=""><td>28 <pql< td=""><td>28 <pql< td=""><td>28 <pql< td=""><td>26 Not Detecte</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	27 <pql< td=""><td>28 <pql< td=""><td>28 <pql< td=""><td>28 <pql< td=""><td>26 Not Detecte</td></pql<></td></pql<></td></pql<></td></pql<>	28 <pql< td=""><td>28 <pql< td=""><td>28 <pql< td=""><td>26 Not Detecte</td></pql<></td></pql<></td></pql<>	28 <pql< td=""><td>28 <pql< td=""><td>26 Not Detecte</td></pql<></td></pql<>	28 <pql< td=""><td>26 Not Detecte</td></pql<>	26 Not Detecte
aximum Value				SPUL	93	/4	390	0.2	110	120		2.1	< YUL	<rul< td=""><td>< PUL</td><td>< rul</td><td>< rul</td><td>< PUL</td><td>SPUL</td><td>SPUL</td><td></td><td>INUL DETECTE</td></rul<>	< PUL	< rul	< rul	< PUL	SPUL	SPUL		INUL DETECTE

All data in mg/kg unle QL - Envirolab Service EPM 2013 HSL Land U Sample Reference BH101	ss stated ot	herwise										
EPM 2013 HSL Land U Sample Reference											1	Field PID
EPM 2013 HSL Land U Sample Reference					C6-C10 (F1)	>C10-C16 (F2)	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene	Measureme
Sample Reference					25	50	0.2	0.5	1	1	1	ppm
							HSL-A/B: LO	W/HIGH DENSITY	RESIDENTIAL			
BU101	Sample Depth	Sample Description	Depth Category	Soil Category								
	0.02-0.4	Fill: Silty Gravelly Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	3.8
BH101 - [LAB_DUP]	0.02-0.4	Laboratory Duplicate	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	NA
BH101 BH101	0.5-0.85	Fill: Silty Sand XW Sandstone	Om to <1m Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	1.8
BH101 BH102	0.05-0.1	Fill: Silty Gravelly Sand	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	3	<1	1.4
BH102	0.5-0.95	Fill: Silty Clay	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	3.3
BH102	1.4-1.6	Sandstone	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	1.6
BH103	0.03-0.4	Fill: Silty Gravelly Sand	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	1.2
BH103	0.5-0.7	Sandy Clay	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	7.5
BH103 BH103	0.7-0.95	Silty Clay	0m to <1m 0m to <1m	Sand	<25	<50 <50	<0.2 <0.2	<0.5	<1 <1	<3	<1 <1	505 579
BH103 BH103 - [Replicate]	1.4-1.5	Sandy Clay Replicate Sample (re-test)	Om to <1m Om to <1m	Sand	68 NA	<50	<0.2 NA	<0.5 NA	<1 NA	<3 NA	<1 NA	5/9 NA
BH103 - [Keplicate] BH103 - [LAB-DUP]	1.4-1.5	Laboratory Duplicate	Om to <1m	Sand	NA	<50	NA	NA	NA	NA	NA	NA
BH104	0.04-0.3	Fill: Sandy Gravel	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0.1
H104 - [LAB_DUP]	0.04-0.3	Laboratory Duplicate	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	NA
BH104	0.5-0.95	Fill: Silty Gravelly Sand	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	-3	<1	0
BH104 - [Silica Gel]	0.5-0.95	Fill: Silty Gravelly Sand	Om to <1m	Sand	NA	<50	NA	NA	NA	NA	NA	NA
BH104 BH104	1.5-1.95	Fill: Silty Gravelly Sand Fill: Silty Gravelly Sand	Om to <1m Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	3	<1	0.2
BH104 BH104	3.8-4.1	Fill: Silty Sand	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	3	<1	1.1
BH105	0.25-0.4	Fill: Silty Gravelly Sand	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH105 - [LAB_DUP]	0.25-0.4	Laboratory Duplicate	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	NA
BH105	0.5-0.95	Fill: Clayey Silty Sand	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH105	1.2-1.4	Sandy Clay	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH106 BH106	0.03-0.3 0.6-0.8	Fill: Clayey Gravelly Sand Silty Clay	Om to <1m Om to <1m	Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<3	<1 <1	0
BH105 BH107	0-0.2	Fill: Silty Clay	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	3	<1	0
BH107	0.2-0.4	Fill: Sandy Clay	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	3	<1	0
BH108	0-0.1	Fill: Sandy Silty Clay	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH109	0.01-0.4	Fill: Clayey Gravelly Sand	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH109	0.5-0.8	Fill: Sandy Clay	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	5
BH109	0.8-0.95	Sandy Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	1.5
BH110A BH110A	0-0.1	Fill: Silty Gravelly Sand Fill: Sandy Gravel	Om to <1m Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	3	<1	0.3
BH110A BH110A	0.1-0.2	Fill: Sandy Gravel	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	3	<1	0
BH1104 BH111	0-0.1	Fill: Silty Sand	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	3	<1	0
BH111 - [LAB_DUP]	0-0.1	Laboratory Duplicate	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	NA
BH111	0.3-0.6	Fill: Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH111	0.6-0.8	Fill: Silty Clayey Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH112	0.22-0.65	Fill: Silty Gravelly Sand	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH112	0.65-0.8	Sandstone Fill: Silty Sand	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH113 BH113	0-0.1	Fill: Silty Sand Fill: Silty Clayey Sand	0m to <1m 0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH113 BH113	0.1-0.2	Fill: Silty Clayey Sand Sandy Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH113 BH114	0.05-0.2	Fill: Silty Sandy Gravel	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	3	<1	0
BH114 - [LAB_DUP]	0.05-0.2	Laboratory Duplicate	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	NA
BH115	0-0.1	Fill: Silty Clayey Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH115	0.6-0.8	Sandy Clay	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH116	0-0.1	Fill: Silty Sandy Gravel	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH116 BH117	0.1-0.3 0-0.1	Silty Clayey Sand Fill: Silty Sand	0m to <1m 0m to <1m	Sand	<25 <25	<50 93	<0.2 <0.2	<0.5	<1 <1	<3	<1 <1	0 9.4
BH117 BH117	0.5-0.95	Fill: Silty Sand	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	3	<1	2.4
BH118	0-0.1	Fill: Silty Sandy Clay	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	3	<1	0
BH118 - [LAB_DUP]	0-0.1	Laboratory Duplicate	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	NA
BH118	1.4-1.5	Fill: Silty Sandy Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH118	1.6-1.8	Sandy Clay	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH119 BH119	0.05-0.3	Fill: Silty Sand Laboratory Duplicate	Om to <1m Om to <1m	Sand	<25	<50	<0.2 <0.2	<0.5	<1	<3	<1	0.6
BH119 BH119	0.05-0.3	Sandstone	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	3	<1	0.6
SDUP3	0-0.1	Duplicate of BH111	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	3	<1	NA
SDUP4	0-0.1	Duplicate of BH115	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	NA
SDUP7	0-0.1	Duplicate of BH108	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	NA
SDUP7 - [Silica Gel]	0-0.1	Duplicate of BH108	Om to <1m	Sand	NA	<50	NA	NA	NA	NA	NA	NA
SDUP8	0.04-0.3	Duplicate of BH104	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	NA
SDUP9 SDUP10	0.02-0.4	Duplicate of BH101 Duplicate of BH117	0m to <1m 0m to <1m	Sand	<25 <25	<50 63	<0.2 <0.2	<0.5 <0.5	<1 <1	<3	<1 <1	NA
		- spirote or origin	2.01 00 5400	30110								
Total Number of Sam Maximum Value	ples				62 68	62	62 <pol< td=""><td>62 <pql< td=""><td>62 <poi< td=""><td>62 <pql< td=""><td>62 <poi< td=""><td>49</td></poi<></td></pql<></td></poi<></td></pql<></td></pol<>	62 <pql< td=""><td>62 <poi< td=""><td>62 <pql< td=""><td>62 <poi< td=""><td>49</td></poi<></td></pql<></td></poi<></td></pql<>	62 <poi< td=""><td>62 <pql< td=""><td>62 <poi< td=""><td>49</td></poi<></td></pql<></td></poi<>	62 <pql< td=""><td>62 <poi< td=""><td>49</td></poi<></td></pql<>	62 <poi< td=""><td>49</td></poi<>	49
waximum value					68	93	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>579</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>579</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>579</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>579</td></pql<></td></pql<>	<pql< td=""><td>579</td></pql<>	579

Concentration above t			Bold								
Concentration above t											
The guideline correspo	onding to the	concentration above the SAG	is highlighted	in grey in the Site	Assessment Crite	ria Table below					
				HSL SOIL ASSESS	MENT CRITERIA						
Sample Reference	Sample Depth	Sample Description	Depth Category	Soil Category	C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene
BH101	0.02-0.4	Fill: Silty Gravelly Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH101 - [LAB_DUP]	0.02-0.4	Laboratory Duplicate	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH101	0.5-0.85	Fill: Silty Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH101	1.7-1.95	XW Sandstone	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH102	0.05-0.1	Fill: Silty Gravelly Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH102	0.5-0.95	Fill: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH102	1.4-1.6	Sandstone	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH103	0.03-0.4	Fill: Silty Gravelly Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH103	0.5-0.7	Sandy Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH103	0.7-0.95	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH103	1.4-1.5	Sandy Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH103 - [Replicate]	1.4-1.5	Replicate Sample (re-test)	0m to <1m	Sand		110			-		
BH103 - [LAB-DUP]	1.4-1.5	Laboratory Duplicate	0m to <1m	Sand		110			-		
BH104	0.04-0.3	Fill: Sandy Gravel	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH104 - [LAB_DUP]	0.04-0.3	Laboratory Duplicate	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH104	0.5-0.95	Fill: Silty Gravelly Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH104 - [Silica Gel]	0.5-0.95	Fill: Silty Gravelly Sand	0m to <1m	Sand		110			-		
BH104	1.5-1.95	Fill: Silty Gravelly Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH104	3.0-3.2	Fill: Silty Gravelly Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH104	3.8-4.1	Fill: Silty Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3

BH103	0.03-0.4	Fill: Silty Gravelly Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH103	0.5-0.7	Sandy Clay	Om to <1m	Sand	45	110	0.5	160	55	40	3
BH103	0.7-0.95	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH103	1.4-1.5	Sandy Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH103 - [Replicate]	1.4-1.5	Replicate Sample (re-test)	0m to <1m	Sand		110		-			
BH103 - [LAB-DUP]	1.4-1.5	Laboratory Duplicate	0m to <1m	Sand		110					
BH104	0.04-0.3	Fill: Sandy Gravel	0m to <1m	Sand	45	110	0.5	160	55	40	3
H104 - [LAB DUP]	0.04-0.3	Laboratory Duplicate	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH104	0.5-0.95	Fill: Silty Gravelly Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH104 - [Silica Gel]	0.5-0.95	Fill: Silty Gravelly Sand	Om to <1m	Sand	45	110	0.5	100			-
BH104 - (Slika Gelj BH104	1.5-1.95	Fill: Silty Gravelly Sand		Sand	45	110	0.5	160	55	40	3
BH104 BH104	3.0-3.2		Om to <1m	Sand	45	110	0.5	160	55	40	3
	3.0-3.2	Fill: Silty Gravelly Sand	Om to <1m								
BH104 BH105	3.8-4.1	Fill: Silty Sand	Om to <1m	Sand	45 45	110	0.5	160	55	40	3
		Fill: Silty Gravelly Sand	Om to <1m								
BH105 - [LAB_DUP]	0.25-0.4	Laboratory Duplicate	Om to <1m	Sand	45	110	0.5	160	55	40	3
BH105	0.5-0.95	Fill: Clayey Silty Sand	Om to <1m	Sand	45	110	0.5	160	55	40	3
BH105	1.2-1.4	Sandy Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH106	0.03-0.3	Fill: Clayey Gravelly Sand	Om to <1m	Sand	45	110	0.5	160	55	40	3
BH106	0.6-0.8	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH107	0-0.2	Fill: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH107	0.2-0.4	Fill: Sandy Clay	Om to <1m	Sand	45	110	0.5	160	55	40	3
BH108	0-0.1	Fill: Sandy Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH109	0.01-0.4	Fill: Clayey Gravelly Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH109	0.5-0.8	Fill: Sandy Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH109	0.8-0.95	Sandy Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH110A	0-0.1	Fill: Silty Gravelly Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH110A	0.1-0.2	Fill: Sandy Gravel	Om to <1m	Sand	45	110	0.5	160	55	40	3
BH110A	0.5-0.8	Fill: Sandy Clay	Om to <1m	Sand	45	110	0.5	160	55	40	3
BH111	0-0.1	Fill: Silty Sand	Om to <1m	Sand	45	110	0.5	160	55	40	3
BH111 - [LAB DUP]	0-0.1	Laboratory Duplicate	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH111 BH111	0.3-0.6		0m to <1m	Sand	45	110	0.5	160	55	40	3
		Fill: Silty Clay									3
BH111 BH112	0.6-0.8	Fill: Silty Clayey Sand	Om to <1m	Sand	45	110	0.5	160	55	40	
	0.22-0.65	Fill: Silty Gravelly Sand	Om to <1m	Sand				160	55	40	3
BH112	0.65-0.8	Sandstone	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH113	0-0.1	Fill: Silty Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH113	0.1-0.2	Fill: Silty Clayey Sand	Om to <1m	Sand	45	110	0.5	160	55	40	3
BH113	0.35-0.45	Sandy Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH114	0.05-0.2	Fill: Silty Sandy Gravel	Om to <1m	Sand	45	110	0.5	160	55	40	3
BH114 - [LAB_DUP]	0.05-0.2	Laboratory Duplicate	Om to <1m	Sand	45	110	0.5	160	55	40	3
BH115	0-0.1	Fill: Silty Clayey Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH115	0.6-0.8	Sandy Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH116	0-0.1	Fill: Silty Sandy Gravel	Om to <1m	Sand	45	110	0.5	160	55	40	3
BH116	0.1-0.3	Silty Clayey Sand	Om to <1m	Sand	45	110	0.5	160	55	40	3
BH117	0-0.1	Fill: Silty Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH117	0.5-0.95	Fill: Silty Sand	Om to <1m	Sand	45	110	0.5	160	55	40	3
BH118	0-0.1	Fill: Silty Sandy Clay	Om to <1m	Sand	45	110	0.5	160	55	40	3
BH118 - [LAB DUP]	0-0.1	Laboratory Duplicate	Om to <1m	Sand	45	110	0.5	160	55	40	3
BH118 BH118	1.4-1.5	Fill: Silty Sandy Clay	Om to <1m	Sand	45	110	0.5	160	55	40	3
BH118 BH118	1.6-1.8	Sandy Clay	Om to <1m	Sand	45	110	0.5	160	55	40	3
BH118 BH119	0.05-0.3	Fill: Silty Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH119	0.05-0.3	Laboratory Duplicate	Om to <1m	Sand	45	110	0.5	160	55	40	3
BH119	0.5-0.8	Sandstone	Om to <1m	Sand	45	110	0.5	160	55	40	3
SDUP3	0-0.1	Duplicate of BH111	Om to <1m	Sand	45	110	0.5	160	55	40	3
SDUP4	0-0.1	Duplicate of BH115	Om to <1m	Sand	45	110	0.5	160	55	40	3
SDUP7	0-0.1	Duplicate of BH108	0m to <1m	Sand	45	110	0.5	160	55	40	3
SDUP7 - [Silica Gel]	0-0.1	Duplicate of BH108	0m to <1m	Sand		110					
SDUP8	0.04-0.3	Duplicate of BH104	0m to <1m	Sand	45	110	0.5	160	55	40	3
SDUP9	0.02-0.4	Duplicate of BH101	0m to <1m	Sand	45	110	0.5	160	55	40	3
SDUP10	0-0.1	Duplicate of BH117	0m to <1m	Sand	45	110	0.5	160	55	40	3

Additional Site Investigation Greenwich Hospital, 97-115 River Road, Greenwich, NSW E325078R

-

Diam Diam Diam Diam Diam Sender Category Relibertity, PARLANDA SPLUEL OPEN SPLUE PENDER Diam PENDER Diam Sender Category Carare -25 -50 100 140 BH101 0.02.0.4 Carare -425 -50 -100 -100 BH101 1.0.5.0.85 Carare -425 -50 -100 -100 BH102 0.5-0.85 Carare -425 -50 -100 -100 BH102 0.5-0.85 Carare -425 -50 -100 -100 BH102 0.5-0.85 Carare -425 -50 -100 -100 BH103 0.41.15 Carare -425 -50 100 -100 BH104 1.41.15 Carare -425 -50 100 -100 BH104 1.5.15 Carare -425 -50 100 -100 BH104 1.5.15 Carare -425 -50 100 -100				C6-C10 (F1) plus BTEX	>C ₁₀ -C ₁₆ (F2) plus napthalene	>C ₁₆ -C ₃₄ (F3)	>C34-C40 (F4)
Sample Reference Sample Reference<					50		
BH101 0.02.0.4 Coarse -45 <50				RES	IDENTIAL, PARKLAND	& PUBLIC OPEN SP/	ACE
BH101 0.02.0.4 Coarse -45 -50 -100 -100 BH101 1.7.159 Coarse -45 -50 -100 -100 -100 BH102 0.5-0.8 Coarse -25 -50 -100 -100 -100 BH102 0.5-0.1 Coarse -25 -50 -100 -100 -100 BH103 0.03-0.4 Coarse -25 -50 -100 -100 -100 BH103 0.03-0.4 Coarse -25 -50 -100 -100 -100 BH103 0.04-0.5 Coarse -425 -50 -100 -100 -100 BH104 0.04-0.3 Coarse -425 -50 100 -100				<25	<50	140	140
BH101 0.5.085 Coarse -45 <50 <100 <100 BH102 0.56.11 Coarse -45 <50							
BH102 0.05.01 Coarte -25 -50 100 150 BH102 1.4.1.6 Coarte -25 -50 -100 -100 BH103 0.50.95 Coarte -25 -50 -100 -100 BH103 0.50.47 Coarte -25 -50 -100 -100 BH103 0.50.47 Coarte -25 -50 -100 -100 BH104 0.40.3 Coarte -25 -50 -100 -100 BH104 0.50.95 Coarte -25 -50 -100 -100 BH104 1.51.95 Coarte -25 -50 -100 -100 BH104 1.51.95 Coarte -25 -50 -100 -100 BH104 1.51.95 Coarte -25 -50 -100 -100 BH105 0.25.41 Coarte -25 -50 -100 -100 BH105 1.2.1.4 Coarte -25 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
BH102 0.5.095 Coarre -d5 -50 -100 -100 BH103 0.03.04 Coarre -d5 -50 -100 -100 -100 BH103 0.03.04 Coarre -d5 -50 -100 -100 -100 BH103 0.70.95 Coarre -d5 -50 -100 -100 -100 BH104 0.04.0.3 Coarre -d5 -50 100 -100 BH104 0.04.0.3 Coarre -d5 -50 400 -100 BH104 1.51.95 Coarre -d5 -50 400 -100 -100 BH104 3.0.32 Coarre -d5 -50 -100	BH101	1.7-1.95	Coarse	<25	<50	<100	<100
BH102 1.4.1.6 Coarre -d5 -50 -100 -100 BH103 0.50.4 Coarre -d5 -50 -100 -100 BH103 0.50.7 Coarre -d5 -50 -100 -100 BH103 1.4.1.5 Coarre -d5 -50 -100 -100 BH104 0.40.3 Coarre -d5 -50 150 -100 -100 BH104 1.5.1.95 Coarre -d5 -50 -100 -100 -100 BH104 1.5.1.95 Coarre -d5 -50 -100 -100 BH104 1.5.1.95 Coarre -d5 -50 -100 -100 BH105 0.5.0.95 Coarre -d5 -50 -100 -100 BH105 1.2.1.4 Coarre -d5 -50 -100 -100 BH105 0.3.4.3 Coarre -d5 -50 -100 -100 BH105 0.4.0 <td>BH102</td> <td>0.05-0.1</td> <td>Coarse</td> <td><25</td> <td><50</td> <td>190</td> <td>150</td>	BH102	0.05-0.1	Coarse	<25	<50	190	150
BH103 0.03-0.4 Coarse <15 <100 <100 BH103 0.70.95 Coarse <25	BH102	0.5-0.95	Coarse	<25	<50	<100	<100
BH03 0.5.0.7 Courte -25 -50 -100 -100 BH103 1.4.1.5 Coarte -42 -50 -100 -100 -100 BH104 0.4-0.3 Coarte -42 -50 100 -100 -100 BH104 0.4-0.3 Coarte -425 -50 170 -100 -100 BH104 1.5.1.95 Coarte -425 -50 -100 -100 -100 BH104 1.5.1.95 Coarte -425 -50 -100 -100 -100 BH104 3.4.1 Coarte -425 -50 -100 -100 -100 BH105 0.2.5.4 Coarte -425 -50 -100 -100 -100 BH105 1.2.4.4 Coarte -425 -50 -100 -100 -100 BH105 0.2.4.4 Coarte -425 -50 -100 -100 -100 BH106 0.6.0.8 Coa	BH102	1.4-1.6	Coarse	<25	<50	<100	<100
BH103 0.7.095 Coarte <15 <50 <100 <100 BH104 0.44.03 Coarte <25		0.03-0.4	Coarse				
BH103 1.4.1.5 Coarte 45 450 4100 (-100) BH104 0.04-0.3 Coarte -45 450 150 (-100) BH104 0.5-0.95 Coarte -45 450 100 (-100) BH104 1.5-1.95 Coarte -425 450 (-100) (-100) BH104 3.8-1.1 Coarte -425 450 (-100) (-100) BH104 3.8-4.1 Coarte -425 450 (-100) (-100) BH105 0.25-0.4 Coarte -425 -50 (-100) (-100) BH105 0.25-0.4 Coarte -425 -50 (-100) (-100) BH105 0.5-0.95 Coarte -425 -50 (-100) (-100) BH106 0.6.0.8 Coarte -425 -50 (-100) (-100) BH107 0.4.0 Coarte -425 -50 (-100) (-100) BH110 0.6.0.							
BitLiol 0.04.0.3 Coarte -25 -50 120 -400 BitLiol 0.04.0.3 Coarte -45 -50 170 -400 BitLiol 0.50.95 Coarte -45 -50 420 120 BitLiol 1.51.95 Coarte -45 -50 -400 -400 BitLiol 3.8.41 Coarte -45 -50 -100 -400 BitLiol 3.8.41 Coarte -45 -50 -100 -400 BitLioS 0.25.0.4 Coarte -45 -50 -100 -400 BitLioS 0.25.0.4 Coarte -45 -50 -100 -400 BitLioS 0.3.95 Coarte -45 -50 -100 -400 BitLioS 0.4.0.8 Coarte -45 -50 -100 -400 BitLioS 0.4.0.8 Coarte -45 -50 100 -400 BitLioS 0.4.0.2 Coarte<							
BH104 L08_DUP 0.04-0.3 Courte -25 -50 170 -400 BH104 1.5-1.95 Courte -25 -50 120 -410 BH104 1.5-1.95 Courte -25 -50 4100 -4100 BH104 3.0-3.2 Courte -25 -50 -100 -100 BH105 0.25-0.4 Courte -425 -50 -100 -100 BH105 0.25-0.4 Courte -425 -50 -100 -100 -100 BH105 1.2.1.4 Courte -425 -50 -100 -							
BH104 0.5-093 Correc <15 <50 420 120 BH104 3.0-3.2 Correc <15							
BH10A 1.5.195 Coarte -45 -50 -100 -100 BH10A 3.0-12 Coarte -45 -50 -100 -100 -100 BH10A 3.0-12 Coarte -45 -50 -100 -100 -100 BH105 0.25-0.4 Coarte -45 -50 -100 -100 -100 BH105 1.2.1.4 Coarte -425 -50 -100 -100 -100 BH105 0.3-0.3 Coarte -425 -50 -100 -100 -100 BH106 0.6.4.8 Coarte -425 -50 -100 -100 -100 BH107 0.2.4 Coarte -425 -50 -100 -100 -100 BH109 0.0-1.4 Coarte -425 -50 110 -200 200 BH109 0.0-1.4 Coarte -425 -50 100 -100 -100 BH110 0.4.0 Coarte <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
BH104 3.0.2.2 Coarte <15 <100 <100 BH105 0.3.2.4.1 Coarte <15							
BH10A 3.8.4.1 Coarte -45 -50 -100 -100 BH105 0.250.4 Coarte -45 -50 -100 -100 -100 BH105 0.250.4 Coarte -45 -50 -100 -100 BH105 1.2.1.4 Coarte -45 -50 -100 -100 BH106 0.64.8 Coarte -45 -50 -100 -100 BH107 0.24.4 Coarte -45 -50 -100 -100 BH107 0.24.4 Coarte -45 -50 -100 -100 BH109 0.01.4 Coarte -45 -50 -100 -100 BH109 0.5.0.8 Coarte -45 -50 -100 -100 BH110 0.5.0.8 Coarte -45 -50 -100 -100 BH110 0.5.0.8 Coarte -45 -50 -100 -100 BH1110 0.5.0.8 Coarte <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
BH105 0.25.0.4 Coarse <15 <16.00 <10.00 BH105 0.35.0.4 Coarse <15							
BH105 0.25.04 Coarte <15 <100 <100 <100 BH105 1.2.1.4 Coarte <15							
BH105 0.5.093 Conre <15 <50 <100 <100 BH105 1.2.1.4 Corre <25							
BH105 0.03.0.3 Conre <25 <50 160 290 BH105 0.04.0.3 Coarte <25		0.5-0.95	Coarse	<25	<50	<100	<100
BH105 0.6.8.8. Coarte <15 <100 <100 BH107 0.2.4 Coarte <15	BH105	1.2-1.4	Coarse	<25	<50	<100	<100
BH107 0.0.2 Coarte <15 <50 <100 <100 BH107 0.2.0.4 Coarte <15	BH106	0.03-0.3	Coarse		<50	160	290
BH107 0.2.0.4 Coarte <35 <50 <100 <100 BH108 0.0.1 Coarte <35	BH106	0.6-0.8	Coarse	<25	<50	<100	<100
BH108 0.0.1 Conre <15 <50 160 <100 BH109 0.01-0.4 Conre <15			Coarse				
BH109 0.01-0.4 Coarte <15 <50 110 370 BH109 0.50.8 Coarte <15							
BH109 0.5.0.8 Coarte <25 <50 <100 <100 BH109 0.5.0.95 Coarte <25							
BH109 0.8.095 Coarce <25 <50 <100 <100 BH110A 0.10.2 Coarce <25				-2.5			
BH110A 0.01 Coarte <25 <50 290 280 BH110A 0.10.2 Coarte <25							
BH110A 0.1.0.2 Coarre <25 <50 <100 <100 BH111A 0.0.1 Coarre <25							
BH110A 0.5.0.8 Coarte <15							
BH111 0-0.1 Coarce <25 <50 <100 <100 BH111 0.3.0.6 Coarce <25							
BH111 Correc -45 -50 -100 -100 BH111 0.3.6.6 Correc -45 -50 -100 -100 BH111 0.4.6.8 Correc -45 -50 -100 -100 -100 BH112 0.5.6.8 Correc -425 -50 -100 -100 -100 BH112 0.5.6.8 Correc -425 -50 220 -100 -100 BH113 0.40 Correc -425 -50 -100 -100 -100 BH113 0.40 Correc -425 -50 -100 -100 -100 BH114 0.50.2 Correc -425 -50 -100 -100 -100 BH115 0.41 Correc -425 -50 -100 -100 -100 BH115 0.41 Correc -425 -50 -100 -100 -100 -100 BH115 0.41 Correc -425							
BH111 0.3.6.6 Conre <25							
BH111 0.6.0.8 Coarte <25							
BH112 0.65.0.8 Coarte <25 <50 220 <100 BH13 0.0.1 Coarte <25				<25			
BH13 0.0.1 Coarre <25	BH112	0.22-0.65	Coarse	<25	<50	<100	<100
BH113 0.0.1 Correc <15	BH112		Coarse	<25	<50		
BH113 0.35.0.45 Coarce <25 <50 120 <100 BH14 0.05-0.2 Coarce <25	BH113		Coarse	<25	<50		
BH14 0.05-0.2 Coarse <15 <50 <100 <100 BH15 0.05-0.2 Coarse <15			Coarse				
BH114 0.06.0.2 Coarre <25							
BH115 0-0.1 Coarse <25 <50 <100 <100 BH115 0-6.4.8 Coarse <25							
BH115 0.6.0.8 Coarce <25				-2.5			
BH115 0.01 Coarse <25 <50 <100 <100 BH115 0.10.3 Coarse <25							
BH116 0.1.0.3 Coarce <25							
BH117 0.01 Coarce <25 93 240 100 BH117 0.50 95 Coarce <25							
BH117 0.5 0.95 Coarce <25 <50 <100 <100 BH18 0.0.1 Coarce <25							
BH118 0-0.1 Coarre <25 <50 <100 <100 BH118 1.4.1.5 Coarre <25							
BH118 0.0.1 Coarte <15 <50 <100 <100 BH118 1.4.1.5 Coarte <15							
BH118 1.4.1.5 Coarte <15 <50 <100 <100 BH118 1.6.1.8 Coarte <25							
BH118 1.6.1.8 Coarte <25 <50 <100 <100 BH119 0.05-0.3 Coarte <25				-2.5	-50		
BH119 0.05-0.3 Castre <25 <50 <100 <100 BH119 0.05-0.3 Castre <25							
BH119 0.05-0.3 Coarte <25 <50 <100 <100 BH19 0.50.8 Coarte <25							
BH19 0.5.8.8 Coarce <25 <50 <100 <100 SDUP3 0-0.1 Coarce <25							
SDUP4 0.01 Coarce <25 <50 120 <100 SDUP7 0.01 Coarce <25		0.5-0.8				<100	
SDUPP 0-0.1 Coarte <15 <50 310 190 SDUP8 0.04-0.3 Coarte <15							
SDUP8 0.04-0.3 Coarse <25 <50 450 210 SDUP9 0.02-0.4 Coarse <25							
SDUP9 0.02-0.4 Coarse <25 <50 110 120 SDUP10 0-0.1 Coarse <25				-2.5			
SDUP10 0-0.1 Coarse <25 63 200 120 stal Number of Samples 62 62 62 62 62							
bital Number of Samples 62 62 62 62							
	SDUP10	0-0.1	Coarse	<25	63	200	120
				63	62	<i>c</i> 2	63
				62	62	62	62

Sample Reference	Sample Depth	Soil Texture	C ₆ -C ₁₀ (F1) plus BTEX	>C ₁₀ -C ₁₆ (F2) plus napthalene	>C ₁₆ -C ₃₄ (F3)	>C34-C40 (F4
BH101	0.02-0.4	Coarse	700	1000	2500	10000
BH101 - [LAB DUP]	0.02-0.4	Coarse	700	1000	2500	10000
BH101	0.5-0.85	Coarse	700	1000	2500	10000
BH101	1.7-1.95	Coarse	700	1000	2500	10000
BH102	0.05-0.1	Coarse	700	1000	2500	10000
BH102	0.5-0.95	Coarse	700	1000	2500	10000
BH102	1.4-1.6	Coarse	700	1000	2500	10000
BH103	0.03-0.4	Coarse	700	1000	2500	10000
BH103	0.5-0.7	Coarse	700	1000	2500	10000
BH103	0.7-0.95	Coarse	700	1000	2500	10000
BH103	1.4-1.5	Coarse	700	1000	2500	10000
BH104	0.04-0.3	Coarse	700	1000	2500	10000
BH104 - [LAB DUP]	0.04-0.3	Coarse	700	1000	2500	10000
BH104	0.5-0.95	Coarse	700	1000	2500	10000
BH104	1.5-1.95	Coarse	700	1000	2500	10000
BH104	3.0-3.2	Coarse	700	1000	2500	10000
BH104 BH104	3.8-4.1	Coarse	700	1000	2500	10000
BH104 BH105	0.25-0.4	Coarse	700	1000	2500	10000
BH105 - [LAB DUP]	0.25-0.4	Coarse	700	1000	2500	10000
BH105 BH105	0.5-0.95	Coarse	700	1000	2500	10000
BH105	1.2-1.4	Coarse	700	1000	2500	10000
BH105 BH106	0.03-0.3	Coarse	700	1000	2500	10000
BH106	0.6-0.8	Coarse	700	1000	2500	10000
BH105 BH107	0.6-0.8	Coarse	700	1000	2500	10000
BH107	0.2-0.4	Coarse	700	1000	2500	10000
BH108	0-0.1	Coarse	700	1000	2500	10000
BH109	0.01-0.4	Coarse	700	1000	2500	10000
BH109	0.5-0.8	Coarse	700	1000	2500	10000
BH109	0.8-0.95	Coarse	700	1000	2500	10000
BH110A	0-0.1	Coarse	700	1000	2500	10000
BH110A	0.1-0.2	Coarse	700	1000	2500	10000
BH110A	0.5-0.8	Coarse	700	1000	2500	10000
BH111	0-0.1	Coarse	700	1000	2500	10000
BH111 - [LAB_DUP]	0-0.1	Coarse	700	1000	2500	10000
BH111	0.3-0.6	Coarse	700	1000	2500	10000
BH111	0.6-0.8	Coarse	700	1000	2500	10000
BH112	0.22-0.65	Coarse	700	1000	2500	10000
BH112	0.65-0.8	Coarse	700	1000	2500	10000
BH113	0-0.1	Coarse	700	1000	2500	10000
BH113	0.1-0.2	Coarse	700	1000	2500	10000
BH113	0.35-0.45	Coarse	700	1000	2500	10000
BH114	0.05-0.2	Coarse	700	1000	2500	10000
BH114 - [LAB DUP]	0.05-0.2	Coarse	700	1000	2500	10000
BH115	0-0.1	Coarse	700	1000	2500	10000
BH115	0.6-0.8	Coarse	700	1000	2500	10000
BH116	0-0.1	Coarse	700	1000	2500	10000
BH116	0.1-0.3	Coarse	700	1000	2500	10000
BH117	0-0.1	Coarse	700	1000	2500	10000
BH117	0.5-0.95	Coarse	700	1000	2500	10000
BH118	0-0.1	Coarse	700	1000	2500	10000
BH118 - [LAB DUP]	0-0.1	Coarse	700	1000	2500	10000
BH118 - [DAB_DUP] BH118	1.4-1.5	Coarse	700	1000	2500	10000
BH118 BH118	1.4-1.5	Coarse	700	1000	2500	10000
BH118 BH119	0.05-0.3	Coarse	700	1000	2500	10000
BH119 BH119	0.05-0.3	Coarse	700	1000	2500	10000
BH119 BH119	0.05-0.3	Coarse	700	1000	2500	10000
SDUP3			700		2500	
	0-0.1	Coarse		1000		10000
SDUP4	0-0.1	Coarse	700	1000	2500	10000
SDUP7	0-0.1	Coarse	700	1000	2500	10000
SDUP8	0.04-0.3	Coarse	700	1000	2500	10000
SDUP9	0.02-0.4	Coarse	700	1000	2500	10000
SDUP10	0-0.1	Coarse	700	1000	2500	10000

TABLE S4

SOIL LABORATORY RESULTS COMPARED TO DIRECT CONTACT CRITERIA All data in mg/kg unless stated otherwise

Analyte POL - Envirolab Services		C ₆ -C ₁₀	>C ₁₀ -C ₁₆ 50	>C ₁₆ -C ₃₄ 100	>C ₃₄ -C ₄₀ 100	Benzene	Toluene 0.5	Ethylbenzene 1	Xylenes 1	Naphthalene	PID
CRC 2011 -Direct contact	Critoria	25 5,600	4,200	5,800	8,100	0.2	21,000	5,900	1 17,000	1 2,200	
ite Use	Citteria	5,000	4,200			IIDENTIAL - DIRE	,		17,000	2,200	
Sample Reference	Sample Depth										
BH101	0.02-0.4	<25	<50	140	140	<0.2	<0.5	<1	<3	<1	3.8
BH101 - [LAB_DUP]	0.02-0.4	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	NA
BH101	0.5-0.85	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	1.8
BH101	1.7-1.95	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0.5
BH102	0.05-0.1	<25	<50	190	150	<0.2	<0.5	<1	<3	<1	1.4
BH102	0.5-0.95	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	3.3
BH102	1.4-1.6	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	1.6
BH103	0.03-0.4	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	1.2
BH103	0.5-0.7	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	7.
BH103	0.7-0.95	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	50
BH103	1.4-1.5	68	<50	<100	<100	<0.2	<0.5	<1	<3	<1	57
BH104	0.04-0.3	<25	<50	160	<100	<0.2	<0.5	<1	<3	<1	0.1
BH104 - [LAB_DUP]	0.04-0.3	<25	<50	170	<100	<0.2	<0.5	<1	<3	<1	N/
BH104	0.5-0.95	<25	<50	420	120	<0.2	<0.5	<1	<3	<1	0
BH104	1.5-1.95	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0.2
BH104 BH104	3.0-3.2 3.8-4.1	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<3 <3	<1 <1	5.e
BH104 BH105	3.8-4.1 0.25-0.4	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1 <1	1.1
BH105 - [LAB DUP]	0.25-0.4	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	N/
BH105 - [LAB_DOP] BH105	0.5-0.95	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH105 BH105	1.2-1.4	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH105 BH106	0.03-0.3	<25	<50	160	290	<0.2	<0.5	<1	<3	<1	0
BH100 BH106	0.6-0.8	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH107	0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH107	0.2-0.4	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH108	0-0.1	<25	<50	160	<100	<0.2	<0.5	<1	<3	<1	0
BH109	0.01-0.4	<25	<50	110	370	<0.2	<0.5	<1	<3	<1	0
BH109	0.5-0.8	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	5
BH109	0.8-0.95	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	1.5
BH110A	0-0.1	<25	<50	290	280	<0.2	<0.5	<1	<3	<1	0.3
BH110A	0.1-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH110A	0.5-0.8	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH111	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH111 - [LAB_DUP]	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	N/
BH111	0.3-0.6	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH111	0.6-0.8	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH112	0.22-0.65	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH112	0.65-0.8	<25	<50	220	<100	<0.2	<0.5	<1	<3	<1	0
BH113	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH113	0.1-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH113	0.35-0.45	<25	<50	120	<100	<0.2	<0.5	<1	<3	<1	0
BH114	0.05-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH114 - [LAB_DUP]	0.05-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	N/
BH115 BH115	0-0.1 0.6-0.8	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<3 <3	<1 <1	0
BH115 BH116	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH116 BH116	0.1-0.3	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH110 BH117	0-0.1	<25	93	240	100	<0.2	<0.5	<1	<3	<1	9.4
BH117 BH117	0.5-0.95	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	2.4
BH118	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH118 - [LAB_DUP]	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	N/
BH118	1.4-1.5	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH118	1.6-1.8	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH119	0.05-0.3	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0.0
BH119	0.05-0.3	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	N/
BH119	0.5-0.8	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0.
SDUP3	0-0.1	<25	<50	160	<100	<0.2	<0.5	<1	<3	<1	N/
SDUP4	0-0.1	<25	<50	120	<100	<0.2	<0.5	<1	<3	<1	N/
SDUP7	0-0.1	<25	<50	310	190	<0.2	<0.5	<1	<3	<1	N/
SDUP8	0.04-0.3	<25	<50	450	210	<0.2	<0.5	<1	<1	<1	NA
SDUP9	0.02-0.4	<25	<50	110	120	<0.2	<0.5	<1	<3	<1	N/
SDUP10	0-0.1	<25	63	200	120	<0.2	<0.5	<1	<1	<1	N
				ļ				Ļ			
otal Number of Samples	5	62	62	62	62	62	62	62	62	62	49
/laximum Value		68	93	450	370	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>57</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>57</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>57</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>57</td></pql<></td></pql<>	<pql< td=""><td>57</td></pql<>	57

TABLE S5 ASBESTOS QUANTIFICATION - FIELD OBSERVATIONS AND LABORATORY RESULTS HSL-B: Residential with minimal opportunities for soil access

					1	F	IELD DATA	1										LABORATORY	ATA		1				
ate Sampled	Sample reference	Sample Depth	Visible ACM in top 100mm	Soil Mass (g)	Mass ACM (g)	Mass Asbestos in ACM (g)	[Asbestos from ACM in soil] (%w/w)	Mass ACM <7mm (g)	Mass Asbestos in ACM <7mm (g)	[Asbestos from ACM <7mm in soil] (%w/w)	Mass FA (g)	Mass Asbestos in FA (g)	[Asbestos from FA in soil] (%w/w)	Lab Report Number	Sample refeference	Sample Depth	Sample Mass (g)	Asbestos ID in soil (AS4964) >0.1g/kg	Trace Analysis	Total Asbestos (g/kg)	Asbestos ID in soil <0.1g/kg	ACM >7mm Estimation (g)	FA and AF Estimation (g)	>/mm	FA and Estimati %(w/w
SAC			No				0.04			0.001			0.001											0.04	0.001
6/10/2021	BH101	0.02-0.4	No	 5,200	No ACM observed			No ACM <7mm observed			No FA observed			280027	BH101	0.02-0.4	848.45	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
6/10/2021	BH101	0.4-1.4	NA	 6,700	No ACM observed			No ACM <7mm observed			No FA observed			280027	BH101	0.5-0.85	779.09	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
6/10/2021	BH101	1.4-1.7	NA	 7,900	No ACM observed			No ACM <7mm observed			No FA observed			280027	BH102	0.05-0.1	1050.98	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
6/10/2021	BH102	0.05-0.5	No	 7,600	No ACM observed			No ACM <7mm observed			No FA observed			280027	BH103	0.03-0.4	819.47	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
6/10/2021	BH102	0.5-1.2	NA	 9,500	No ACM observed			No ACM <7mm observed			No FA observed			280027	BH104	0.04-0.3	1011.06	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
6/10/2021	BH103	0.03-0.5	No	 7,400	No ACM observed			No ACM <7mm observed			No FA observed			280027	BH104	0.5-0.95	911.82	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
1/10/2021	BH104	0.04-0.2	No	 4,450	No ACM observed			No ACM <7mm observed			No FA observed			279440	BH105	0.25-0.4	155.24	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
1/10/2021	BH104	0.3-1.3	NA	 4,700	No ACM observed			No ACM <7mm observed			No FA observed			279440	BH106	0.03-0.3	876.86	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
1/10/2021	BH104	1.3-2.3	NA	 4,800	No ACM observed			No ACM <7mm observed			No FA observed			279440	BH107	0-0.2	834.55	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
1/10/2021	BH104	2.3-3.2	NA	 5,450	No ACM observed			No ACM <7mm observed			No FA observed			280027	BH108	0-0.1	918.63	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
1/10/2021	BH104	3.2-4.1	NA	 4,700	No ACM observed			No ACM <7mm observed			No FA observed			279440	BH109	0.01-0.4	907.91	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
27/09/2021	BH105	0.25-0.4	NA	 5,250	No ACM observed			No ACM <7mm observed			No FA observed			279440	BH110A	0-0.1	309.8	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
28/09/2021	BH106	0.03-0.3	No	 3,800	No ACM observed			No ACM <7mm observed			No FA observed			279440	BH110A	0.5-0.8	546.92	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
27/09/2021	BH107	0-0.2	No	 11,050	No ACM observed			No ACM <7mm observed			No FA observed			279440	BH111	0-0.1	714.5	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
27/09/2021	BH107	0.2-0.4	NA	 4,550	No ACM observed			No ACM <7mm observed			No FA observed			279440	BH112	0.22-0.65	808.15	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
28/09/2021	BH109	0.01-0.4	No	 4,700	No ACM observed			No ACM <7mm observed			No FA observed			279440	BH113	0-0.1	644.18	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
28/09/2021	BH109	0.4-0.8	NA	 7,400	No ACM observed			No ACM <7mm observed			No FA observed			279440	BH114	0.05-0.2	869.03	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
29/09/2021	BH110A	0-0.1	No	 10,000	No ACM observed			No ACM <7mm observed			No FA observed			279440	BH115	0-0.1	691.37	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
29/09/2021	BH110A	0.1-0.2	NA	 4,200	No ACM observed			No ACM <7mm observed			No FA observed			279440	BH116	0-0.1	844.36	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
29/09/2021	BH110A	0.2-1.1	NA	 5,800	No ACM observed			No ACM <7mm observed			No FA observed			280027	BH117	0-0.1	417.36	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
28/09/2021	BH111	0-0.1	No	 10,800	No ACM observed			No ACM <7mm observed			No FA observed			280027	BH117	0.5-0.95	525.21	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
28/09/2021	BH111	0.1-0.3	NA	 4,800	No ACM observed			No ACM <7mm observed			No FA observed			279440	BH118	0-0.1	691.91	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
28/09/2021	BH111	0.3-0.6	NA	 5,200	No ACM observed			No ACM <7mm observed			No FA observed			280027	BH119	0.05-0.3	817.66	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
28/09/2021	BH111	0.6-0.8	NA	 4,900	No ACM observed			No ACM <7mm observed			No FA observed			279440	SDUP3	0-0.1	737.45	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
29/09/2021	BH112	0.22-0.65	NA	 6,900	No ACM observed			No ACM <7mm observed			No FA observed			279440	SDUP4	0-0.1	793	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
29/09/2021	BH113	0-0.1	No	 10,100	No ACM observed			No ACM <7mm observed			No FA observed														
29/09/2021	BH113	0.1-0.35	NA	 9,600	No ACM observed			No ACM <7mm observed			No FA observed														
29/09/2021	BH114	0.05-0.2	No	 9,600	No ACM observed			No ACM <7mm observed			No FA observed														
29/09/2021	BH115	0-0.1	No	 11,800	No ACM observed			No ACM <7mm observed			No FA observed														
29/09/2021	BH115	0.1-0.5	NA	 5,900	No ACM observed			No ACM <7mm observed			No FA observed														
29/09/2021	BH116	0-0.1	No	 11,900	No ACM observed			No ACM <7mm observed			No FA observed														
6/10/2021	BH117	0-0.1	No	 10,000	No ACM observed			No ACM <7mm observed			No FA observed														
29/09/2021	BH118	0-0.1	No	 10,600	No ACM observed			No ACM <7mm observed			No FA observed														
29/09/2021	BH118	0.1-1.1	NA	 9,850	No ACM observed			No ACM <7mm observed			No FA observed														
29/09/2021	BH118	1.1-1.6	NA	 8,100	No ACM observed			No ACM <7mm observed			No FA observed														

TABLE S6 SUMMARY OF PFAS CONCENTRATIONS IN SOIL - HUMAN HEALTH

Units are $\mu g/Kg$ unless stated otherwise.

	PQL	NEMP 2020	BH104	BH104 - [LAB_DUP]	BH105	BH105	PFAS DUP1	PFAS DUP3
	Envirolab	Residential	0.04-0.3	0.04-0.3	0.25-0.4	0.5-0.95	0.25-0.4	0.04-0.3
	Services	min. access	Fill: Sandy Gravel	Laboratory Duplicate	Fill: Silty Gravelly Sand	Fill: Clayey Silty Sand	Duplicate of BH105	Duplicate of BH10
PFAS Compound								
Perfluorobutanesulfonic acid	0.1	NSL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluoropentanesulfonic acid	0.1	NSL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluorohexanesulfonic acid - PFHxS	0.1	NSL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluoroheptanesulfonic acid	0.1	NSL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluorooctanesulfonic acid PFOS	0.1	NSL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluorodecanesulfonic acid	0.2	NSL	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Perfluorobutanoic acid	0.2	NSL	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Perfluoropentanoic acid	0.2	NSL	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Perfluorohexanoic acid	0.1	NSL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluoroheptanoic acid	0.1	NSL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluorooctanoic acid PFOA	0.1	20,000	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluorononanoic acid	0.1	NSL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluorodecanoic acid	0.5	NSL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Perfluoroundecanoic acid	0.5	NSL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Perfluorododecanoic acid	0.5	NSL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Perfluorotridecanoic acid	0.5	NSL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Perfluorotetradecanoic acid	5	NSL	<5	<5	<5	<5	<5	<5
4:2 FTS	0.1	NSL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
6:2 FTS	0.1	NSL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
8:2 FTS	0.1	NSL	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
10:2 FTS	0.1	NSL	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Perfluorooctane sulfonamide	1	NSL	<1	<1	<1	<1	<1	<1
N-Methyl perfluorooctane sulfonamide	1	NSL	<1	<1	<1	<1	<1	<1
N-Ethyl perfluorooctanesulfon amide	1	NSL	<1	<1	<1	<1	<1	<1
N-Me perfluorooctanesulfonamid oethanol	1	NSL	<1	<1	<1	<1	<1	<1
N-Et perfluorooctanesulfonamid oethanol	5	NSL	<5	<5	<5	<5	<5	<5
MePer uorooctanesulf-amid oacetic acid	0.2	NSL	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
EtPer uorooctanesulf-amid oacetic acid	0.2	NSL	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total Positive PFHxS & PFOS	0.1	2,000	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Positive PFOS & PFOA	0.1	NSL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Positive PFAS	0.1	NSL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

and Use Category												URBAN RESID	ENTIAL AND PUBL		CE								
				pН	CEC	Clay Content				VY METALS-EILs			EIL						ESLs				1
					(cmolc/kg)	(% clay)	Arsenic	Chromium	Copper	Lead	Nickel	Zinc	Naphthalene	DDT	C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	>C ₁₆ -C ₃₄ (F3)	>C ₃₄ -C ₄₀ (F4)	Benzene	Toluene	Ethylbenzene	Total Xylenes	s B(a)P
QL - Envirolab Services				-	1	-	4	1	1	1	1	1	1	0.1	25	50	100	100	0.2	0.5	1	1	0.05
mbient Background Concent	tration (ABC) Sample			-	-	-	NSL	13	28	163	5	122	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL
Sample Reference	Depth	Sample Description	Soil Texture																				
BH101 BH101	0.02-0.4	Fill: Silty Gravelly Sand Laboratory Duplicate	Coarse Coarse	9.8 9.8	12	NA	<4 <4	62 73	59 57	14 14	47	41 46	<1 <1	<0.1 <0.1	<25 <25	<50 <50	140 <100	140 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<3	0.4
BH101	0.5-0.85	Fill: Silty Sand	Coarse	9.1	NA	NA	<4	17	12	51	15	40	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	0.1
BH101	1.7-1.95	XW Sandstone	Coarse	8.7	NA	NA	<4	9	1	13	<1	9	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.05
BH102	0.05-0.1	Fill: Silty Gravelly Sand	Coarse	9	12	NA	<4	44	74 29	7	73 10	37	<1	<0.1	<25	<50 <50	190	150	<0.2	<0.5	<1	<3	0.2
BH102 BH102	0.5-0.95	Fill: Silty Clay Sandstone	Coarse Coarse	7.8	NA	NA	<4	43	6	8	4	110 18	<1 <1	NA	<25 <25	<50	<100 <100	<100 <100	<0.2	<0.5	<1 <1	<3	<0.05
BH103	0.03-0.4	Fill: Silty Gravelly Sand	Coarse	8.8	12	NA	<4	34	26	42	39	73	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	1.5
BH103	0.5-0.7	Sandy Clay	Coarse	8	3.2	NA	<4	15	<1	4	<1	2	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.05
BH103	0.7-0.95	Silty Clay	Coarse	NA 8	NA	NA	<4	11	<1	7	<1	<1	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	< 0.05
BH103 BH103 - [Replicate]	1.4-1.5 1.4-1.5	Sandy Clay Replicate Sample (re-test)	Coarse Coarse	NA	3.2 NA	NA	<4 NA	36 NA	2 NA	NA	<1 NA	1 NA	<1 NA	NA	NA	<50 <50	<100 <100	<100 <100	<0.2 NA	<0.5 NA	<1 NA	<3 NA	<0.05
BH103 - [LAB-DUP]	1.4-1.5	Laboratory Duplicate	Coarse	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<50	<100	<100	NA	NA	NA	NA	NA
BH104	0.04-0.3	Fill: Sandy Gravel	Coarse	8.5	153	NA	<4	73	24	5	75	37	<1	<0.1	<25	<50	160	<100	<0.2	<0.5	<1	<3	< 0.05
BH104 BH104	0.04-0.3	Laboratory Duplicate Fill: Silty Gravelly Sand	Coarse Coarse	8.5	153 48	NA	<4 <4	83	27	6	83 81	43	<1 <1	<0.1 NA	<25 <25	<50 <50	170 420	<100 120	<0.2	<0.5	<1 <1	<3	<0.05
BH104 BH104 - [Silica Gel]	0.5-0.95	Fill: Silty Gravelly Sand	Coarse	NA	48 NA	NA	<4 NA	76 NA	34 NA	NA	81 NA	48 NA	<1 NA	NA	<25 NA	<50	340	120	<0.2 NA	<0.5 NA	<1 NA	<3 NA	<0.05 NA
BH104 BH104	1.5-1.95	Fill: Silty Gravelly Sand	Coarse	9	48	NA	<4	19	8	83	5	52	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	0.1
BH104	3.0-3.2	Fill: Silty Gravelly Sand	Coarse	9	48	NA	<4	34	12	57	3	38	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	0.08
BH104 BH105	3.8-4.1	Fill: Silty Sand	Coarse	9.1	NA 12	NA	<4 <4	30	17	43	17	70	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	0.05
BH105 BH105 - [LAB_DUP]	0.25-0.4	Fill: Silty Gravelly Sand Laboratory Duplicate	Coarse Coarse	8.8 8.8	12	NA	<4	74	27	13	76	45	<1 <1	<0.1	<25	<50	<100 <100	<100 <100	<0.2	<0.5	<1 <1	<3	<0.05
BH105	0.5-0.95	Fill: Clayey Silty Sand	Coarse	8.7	15	NA	<4	13	6	32	9	30	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	< 0.05
BH105	1.2-1.4	Sandy Clay	Coarse	8	3.2	NA	<4	9	2	12	1	14	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.05
BH106	0.03-0.3	Fill: Clayey Gravelly Sand	Coarse	9.6	25	NA	<4	30	49	2	110	38	<1	<0.1	<25	<50	160	290	<0.2	<0.5	<1	<3	< 0.05
BH106 BH107	0.6-0.8	Silty Clay Fill: Silty Clay	Coarse Coarse	NA 6.8	NA 11	NA	<4 <4	12	<1 18	7 14	<1 6	2	<1 <1	NA <0.1	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5	<1 <1	<3	<0.05
BH107	0.2-0.4	Fill: Sandy Clay	Coarse	7.7	4.5	NA	<4	8	4	14	2	21	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	0.06
BH108	0-0.1	Fill: Sandy Silty Clay	Coarse	4.9	5.2	NA	<4	6	9	63	2	31	<1	<0.1	<25	<50	160	<100	<0.2	<0.5	<1	<3	0.3
BH109	0.01-0.4	Fill: Clayey Gravelly Sand	Coarse	9	18	NA	<4	63	27	8	63	37	<1	<0.1	<25	<50	110	370	<0.2	<0.5	<1	<3	<0.05
BH109 BH109	0.5-0.8	Fill: Sandy Clay	Coarse Coarse	7.7	4.5 3.2	NA	<4 <4	22 15	7	10	16 4	16	<1 <1	NA	<25	<50 <50	<100 <100	<100 <100	<0.2	<0.5	<1 <1	<3	<0.05
BH109 BH110A	0.8-0.95	Sandy Clay Fill: Silty Gravelly Sand	Coarse	8.8	12	NA	<4	63	26	6	69	52	<1	<0.1	<25	<50	290	280	<0.2	<0.5	<1	<3	<0.05
BH110A	0.1-0.2	Fill: Sandy Gravel	Coarse	8.7	18	NA	<4	71	24	6	73	39	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.05
BH110A	0.5-0.8	Fill: Sandy Clay	Coarse	7.7	4.5	NA	7	18	2	16	1	10	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.05
BH111	0-0.1	Fill: Silty Sand	Coarse	9.1	NA	NA	<4	9	12	54	4	50	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	0.3
BH111 - [LAB_DUP] BH111	0-0.1	Laboratory Duplicate Fill: Silty Clay	Coarse Coarse	9.1 6.8	NA 11	NA	<4 4	9	12 52	51 49	4	49	<1 <1	<0.1 NA	<25 <25	<50 <50	<100 <100	<100 <100	<0.2	<0.5	<1 <1	<3	0.2
BH111	0.6-0.8	Fill: Silty Clayey Sand	Coarse	NA	NA	NA	<4	16	13	58	5	120	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	0.2
BH112	0.22-0.65	Fill: Silty Gravelly Sand	Coarse	8.8	12	NA	<4	12	11	44	4	57	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.05
BH112	0.65-0.8	Sandstone	Coarse	NA	NA	NA	<4	8	9	6	1	12	<1	NA	<25	<50	220	<100	<0.2	<0.5	<1	<3	<0.05
BH113 BH113	0-0.1	Fill: Silty Sand Fill: Silty Clayey Sand	Coarse Coarse	9.1 NA	NA	NA	<4 <4	10	4	25 22	3	27	<1 <1	<0.1 NA	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5	<1 <1	<3	<0.05
BH113	0.35-0.45	Sandy Clay	Coarse	8	3.2	NA	<4	6	7	28	1	29	<1	NA	<25	<50	120	<100	<0.2	<0.5	<1	<3	0.3
BH114	0.05-0.2	Fill: Silty Sandy Gravel	Coarse	10.1	36	NA	<4	77	31	4	85	36	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.05
BH114 - [LAB_DUP]	0.05-0.2	Laboratory Duplicate	Coarse	10.1 NA	36 NA	NA	<4	93 11	34	5 40	91 3	41 42	<1	<0.1	<25	<50 <50	<100 <100	<100 <100	<0.2	<0.5	<1	<3	<0.05
BH115 BH115	0-0.1	Fill: Silty Clayey Sand Sandy Clay	Coarse Coarse	NA 8	3.2	NA	4	11	<1	40	<1	42	<1 <1	<0.1 NA	<25	<50	<100	<100	<0.2	<0.5	<1 <1	<3	0.1 <0.05
BH115 BH116	0-0.1	Fill: Silty Sandy Gravel	Coarse	10.1	36	NA	<4	59	22	15	54	42	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.05
BH116	0.1-0.3	Silty Clayey Sand	Coarse	NA	NA	NA	<4	10	7	29	4	29	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	0.1
BH117	0-0.1	Fill: Silty Sand	Coarse	9.1	NA	NA	<4	19	17	28	16	54	<1	<0.1	<25	93	240	100	<0.2	<0.5	<1	<3	<0.05
BH117 BH118	0.5-0.95	Fill: Silty Sand Fill: Silty Sandy Clay	Coarse Coarse	9.1 NA	NA	NA	<4 17	8	26	15 220	2	16 45	<1 <1	NA <0.1	<25	<50 <50	<100 <100	<100 <100	<0.2	<0.5	<1	<3	<0.05 0.2
BH118 - [LAB_DUP]	0-0.1	Laboratory Duplicate	Coarse	NA	NA	NA	<4	6	23	390	3	65	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	0.4
BH118	1.4-1.5	Fill: Silty Sandy Clay	Coarse	NA	NA	NA	11	7	35	99	3	62	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	0.89
BH118	1.6-1.8	Sandy Clay	Coarse	8	3.2	NA	<4	11	1	6	2	14	<1	NA <	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.05
BH119 BH119	0.05-0.3	Fill: Silty Sand Laboratory Duplicate	Coarse Coarse	9.1 9.1	NA	NA	<4 <4	14	29	28	8	37	<1 <1	<0.1	<25 <25	<50 <50	<100 <100	<100 <100	<0.2	<0.5	<1 <1	<3	<0.05
BH119	0.5-0.8	Sandstone	Coarse	NA	NA	NA	<4	15	<1	4	<1	2	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.05
SDUP3	0-0.1	Duplicate of BH111	Coarse	9.1	NA	NA	<4	11	13	54	4	51	<1	NA	<25	<50	160	<100	<0.2	<0.5	<1	<3	0.2
SDUP4	0-0.1	Duplicate of BH115 Duplicate of BH108	Coarse	NA	NA	NA	<4	9	5	20	2	25	<1	<0.1	<25	<50	120	<100	<0.2	<0.5	<1	<3	0.06
SDUP7 SDUP7 - [Silica Gel]	0-0.1	Duplicate of BH108 Duplicate of BH108	Coarse Coarse	4.9 NA	5.2 NA	NA	<4 NA	6 NA	9 NA	66 NA	2 NA	32 NA	<1 NA	NA	<25 NA	<50 <50	310 <100	190 <100	<0.2 NA	<0.5 NA	<1 NA	<3 NA	0.2 NA
SDUP8	0.04-0.3	Duplicate of BH108	Coarse	8.5	153	NA	<4	82	31	5	79	45	<1	NA	<25	<50	450	210	<0.2	<0.5	<1	<1	<0.05
SDUP9	0.02-0.4	Duplicate of BH101	Coarse	9.8	12	NA	<4	62	52	13	48	40	<1	<0.1	<25	<50	110	120	<0.2	<0.5	<1	<3	0.3
SDUP10	0-0.1	Duplicate of BH117	Coarse	9.1	NA	NA	<4	11	17	27	12	60	<1	NA	<25	63	200	120	<0.2	<0.5	<1	<1	<0.05
tal Number of Samples aximum Value				50 10.1	37 153	0 NA	62 17	62 93	62 74	62 390	62 110	62 120	62 <pql< td=""><td>28 <pql< td=""><td>62 68</td><td>62 93</td><td>62 450</td><td>62 370</td><td>62 <pql< td=""><td>62 <pql< td=""><td>62 <pql< td=""><td>62 <pql< td=""><td>62 1.5</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	28 <pql< td=""><td>62 68</td><td>62 93</td><td>62 450</td><td>62 370</td><td>62 <pql< td=""><td>62 <pql< td=""><td>62 <pql< td=""><td>62 <pql< td=""><td>62 1.5</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	62 68	62 93	62 450	62 370	62 <pql< td=""><td>62 <pql< td=""><td>62 <pql< td=""><td>62 <pql< td=""><td>62 1.5</td></pql<></td></pql<></td></pql<></td></pql<>	62 <pql< td=""><td>62 <pql< td=""><td>62 <pql< td=""><td>62 1.5</td></pql<></td></pql<></td></pql<>	62 <pql< td=""><td>62 <pql< td=""><td>62 1.5</td></pql<></td></pql<>	62 <pql< td=""><td>62 1.5</td></pql<>	62 1.5
oncentration above the SAC				VALUE																			

Sample Reference	Sample Depth	Sample Description	Soil Texture	рН	CEC (cmolc/kg)	Clay Content (% clay)	Arsenic	Chromium	Copper	Lead	Nickel	Zinc	Naphthalene	DDT	C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	>C ₁₆ -C ₃₄ (F3)	>C ₃₄ -C ₄₀ (F4)	Benzene	Toluene	Ethylbenzene	Total Xylenes	B(a)P
BH101	0.02-0.4	Fill: Silty Gravelly Sand	Coarse	9.8	12	NA	100	200	240	1300	280	820	170	180	180	120	300	2800	50	85	70	105	20
BH101	0.02-0.4	Laboratory Duplicate	Coarse	9.8	12	NA	100	200	240	1300	280	820	170	180	180	120	300	2800	50	85	70	105	20
BH101	0.5-0.85	Fill: Silty Sand	Coarse	9.1	NA	NA	100	200	90	1300	35	190	170		180	120	300	2800	50	85	70	105	20
BH101	1.7-1.95	XW Sandstone	Coarse	8.7	NA	NA	100	200	90	1300	35	190	170		180	120	300	2800	50	85	70	105	20
BH102	0.05-0.1	Fill: Silty Gravelly Sand	Coarse	9	12	NA	100	200	240	1300	280	820	170	180	180	120	300	2800	50	85	70	105	20
BH102	0.5-0.95	Fill: Silty Clay	Coarse	7	11	NA	100	200	240	1300	280	820	170		180	120	300	2800	50	85	70	105	20
BH102	1.4-1.6	Sandstone	Coarse	7.8	NA	NA	100	200	90	1300	35	190	170		180	120	300	2800	50	85	70	105	20
BH103	0.03-0.4	Fill: Silty Gravelly Sand	Coarse	8.8	12	NA	100	200	240	1300	280	820	170	180	180	120	300	2800	50	85	70	105	20
BH103	0.5-0.7	Sandy Clay	Coarse	8	3.2	NA	100	200	120	1300	35	350	170		180	120	300	2800	50	85	70	105	20
BH103	0.7-0.95	Silty Clay	Coarse	NA	NA	NA	100	200	90	1300	35	190	170		180	120	300	2800	50	85	70	105	20
BH103	1.4-1.5	Sandy Clay	Coarse	8	3.2	NA	100	200	120	1300	35	350	170		180	120	300	2800	50	85	70	105	20
BH103 - [Replicate]	1.4-1.5	Replicate Sample (re-test)	Coarse	NA	NA	NA										120	300	2800					
BH103 - [LAB-DUP]	1.4-1.5	Laboratory Duplicate	Coarse	NA	NA	NA										120	300	2800					
BH104	0.04-0.3	Fill: Sandy Gravel	Coarse	8.5	153	NA	100	200	260	1300	560	1400	170	180	180	120	300	2800	50	85	70	105	20
BH104	0.04-0.3	Laboratory Duplicate	Coarse	8.5	153	NA	100	200	260	1300	560	1400	170	180	180	120	300	2800	50	85	70	105	20
BH104	0.5-0.95	Fill: Silty Gravelly Sand	Coarse	9	48	NA	100	200	260	1300	560	1400	170		180	120	300	2800	50	85	70	105	20
BH104 - [Silica Gel]	0.5-0.95	Fill: Silty Gravelly Sand	Coarse	NA	NA	NA										120	300	2800					
BH104	1.5-1.95	Fill: Silty Gravelly Sand	Coarse	9	48	NA	100	200	260	1300	560	1400	170		180	120	300	2800	50	85	70	105	20
BH104	3.0-3.2	Fill: Silty Gravelly Sand	Coarse	9	48	NA	100	200	260	1300	560	1400	170		180	120	300	2800	50	85	70	105	20
BH104	3.8-4.1	Fill: Silty Sand	Coarse	9.1	NA	NA	100	200	90	1300	35	190	170		180	120	300	2800	50	85	70	105	20
BH105	0.25-0.4	Fill: Silty Gravelly Sand	Coarse	8.8	12	NA	100	200	240	1300	280	820	170	180	180	120	300	2800	50	85	70	105	20
BH105 - [LAB_DUP]	0.25-0.4	Laboratory Duplicate	Coarse	8.8	14	NA	100	200	240	1300	280	820	170	180	180	120	300	2800	50	85	70	105	20
BH105	0.5-0.95	Fill: Clayey Silty Sand	Coarse	8.7	15	NA	100	200	240	1300	280	820	170		180	120	300	2800	50	85	70	105	20
BH105	1.2-1.4	Sandy Clay	Coarse	8	3.2	NA	100	200	120	1300	35	350	170		180	120	300	2800	50	85	70	105	20
BH106	0.03-0.3	Fill: Clayey Gravelly Sand	Coarse	9.6	25	NA	100	200	250	1300	360	1100	170	180	180	120	300	2800	50	85	70	105	20
BH106	0.6-0.8	Silty Clay	Coarse	NA	NA	NA	100	200	90	1300	35	190	170		180	120	300	2800	50	85	70	105	20
BH107	0-0.2	Fill: Silty Clay	Coarse	6.8	11	NA	100	200	240	1300	280	820	170	180	180	120	300	2800	50	85	70	105	20
BH107	0.2-0.4	Fill: Sandy Clay	Coarse	7.7	4.5	NA	100	200	120	1300	35	350	170		180	120	300	2800	50	85	70	105	20
BH108	0-0.1	Fill: Sandy Silty Clay	Coarse	4.9	5.2	NA	100	200	160	1300	180	300	170	180	180	120	300	2800	50	85	70	105	20
BH109	0.01-0.4	Fill: Clayey Gravelly Sand	Coarse	9	18	NA	100	200	240	1300	280	820	170	180	180	120	300	2800	50	85	70	105	20
BH109	0.5-0.8	Fill: Sandy Clay	Coarse	7.7	4.5	NA	100	200	120	1300	35	350	170		180	120	300	2800	50	85	70	105	20
BH109	0.8-0.95	Sandy Clay	Coarse	8	3.2	NA	100	200	120	1300	35	350	170		180	120	300	2800	50	85	70	105	20
BH110A	0-0.1	Fill: Silty Gravelly Sand	Coarse	8.8	12	NA	100	200	240	1300	280	820	170	180	180	120	300	2800	50	85	70	105	20
BH110A	0.1-0.2	Fill: Sandy Gravel	Coarse	8.7	18	NA	100	200	240	1300	280	820	170		180	120	300	2800	50	85	70	105	20
BH110A	0.5-0.8	Fill: Sandy Clay	Coarse	7.7	4.5	NA	100	200	120	1300	35	350	170		180	120	300	2800	50	85	70	105	20
							4.00	200	00	1200	25	400	470	400	400	420	200	2000	50	05	70	405	20

EIL AND ESL ASSESSMENT CRITERIA

TABLE 57 SOIL LABORATORY RESULTS COMPARED TO NEPM 2013 EILs AND ESLs All data in mg/kg unless stated otherwise

BH110A	0.1-0.2	Fill: Sandy Gravel	Coarse	8.7	18	NA	100	200	240	1300	280	820	170		180	120	300	2800	50	85	70	105	20
BH110A	0.5-0.8	Fill: Sandy Clay	Coarse	7.7	4.5	NA	100	200	120	1300	35	350	170		180	120	300	2800	50	85	70	105	20
BH111	0-0.1	Fill: Silty Sand	Coarse	9.1	NA	NA	100	200	90	1300	35	190	170	180	180	120	300	2800	50	85	70	105	20
BH111 - [LAB_DUP]	0-0.1	Laboratory Duplicate	Coarse	9.1	NA	NA	100	200	90	1300	35	190	170	180	180	120	300	2800	50	85	70	105	20
BH111	0.3-0.6	Fill: Silty Clay	Coarse	6.8	11	NA	100	200	240	1300	280	820	170		180	120	300	2800	50	85	70	105	20
BH111	0.6-0.8	Fill: Silty Clayey Sand	Coarse	NA	NA	NA	100	200	90	1300	35	190	170		180	120	300	2800	50	85	70	105	20
BH112	0.22-0.65	Fill: Silty Gravelly Sand	Coarse	8.8	12	NA	100	200	240	1300	280	820	170	180	180	120	300	2800	50	85	70	105	20
BH112	0.65-0.8	Sandstone	Coarse	NA	NA	NA	100	200	90	1300	35	190	170		180	120	300	2800	50	85	70	105	20
BH113	0-0.1	Fill: Silty Sand	Coarse	9.1	NA	NA	100	200	90	1300	35	190	170	180	180	120	300	2800	50	85	70	105	20
BH113	0.1-0.2	Fill: Silty Clayey Sand	Coarse	NA	NA	NA	100	200	90	1300	35	190	170		180	120	300	2800	50	85	70	105	20
BH113	0.35-0.45	Sandy Clay	Coarse	8	3.2	NA	100	200	120	1300	35	350	170		180	120	300	2800	50	85	70	105	20
BH114	0.05-0.2	Fill: Silty Sandy Gravel	Coarse	10.1	36	NA	100	200	250	1300	420	1300	170	180	180	120	300	2800	50	85	70	105	20
BH114 - [LAB_DUP]	0.05-0.2	Laboratory Duplicate	Coarse	10.1	36	NA	100	200	250	1300	420	1300	170	180	180	120	300	2800	50	85	70	105	20
BH115	0-0.1	Fill: Silty Clayey Sand	Coarse	NA	NA	NA	100	200	90	1300	35	190	170	180	180	120	300	2800	50	85	70	105	20
BH115	0.6-0.8	Sandy Clay	Coarse	8	3.2	NA	100	200	120	1300	35	350	170		180	120	300	2800	50	85	70	105	20
BH116	0-0.1	Fill: Silty Sandy Gravel	Coarse	10.1	36	NA	100	200	250	1300	420	1300	170	180	180	120	300	2800	50	85	70	105	20
BH116	0.1-0.3	Silty Clayey Sand	Coarse	NA	NA	NA	100	200	90	1300	35	190	170		180	120	300	2800	50	85	70	105	20
BH117	0-0.1	Fill: Silty Sand	Coarse	9.1	NA	NA	100	200	90	1300	35	190	170	180	180	120	300	2800	50	85	70	105	20
BH117	0.5-0.95	Fill: Silty Sand	Coarse	9.1	NA	NA	100	200	90	1300	35	190	170		180	120	300	2800	50	85	70	105	20
BH118	0-0.1	Fill: Silty Sandy Clay	Coarse	NA	NA	NA	100	200	90	1300	35	190	170	180	180	120	300	2800	50	85	70	105	20
BH118 - [LAB_DUP]	0-0.1	Laboratory Duplicate	Coarse	NA	NA	NA	100	200	90	1300	35	190	170	180	180	120	300	2800	50	85	70	105	20
BH118	1.4-1.5	Fill: Silty Sandy Clay	Coarse	NA	NA	NA	100	200	90	1300	35	190	170		180	120	300	2800	50	85	70	105	20
BH118	1.6-1.8	Sandy Clay	Coarse	8	3.2	NA	100	200	120	1300	35	350	170		180	120	300	2800	50	85	70	105	20
BH119	0.05-0.3	Fill: Silty Sand	Coarse	9.1	NA	NA	100	200	90	1300	35	190	170	180	180	120	300	2800	50	85	70	105	20
BH119	0.05-0.3	Laboratory Duplicate	Coarse	9.1	NA	NA	100	200	90	1300	35	190	170	180	180	120	300	2800	50	85	70	105	20
BH119	0.5-0.8	Sandstone	Coarse	NA	NA	NA	100	200	90	1300	35	190	170		180	120	300	2800	50	85	70	105	20
SDUP3	0-0.1	Duplicate of BH111	Coarse	9.1	NA	NA	100	200	90	1300	35	190	170		180	120	300	2800	50	85	70	105	20
SDUP4	0-0.1	Duplicate of BH115	Coarse	NA	NA	NA	100	200	90	1300	35	190	170	180	180	120	300	2800	50	85	70	105	20
SDUP7	0-0.1	Duplicate of BH108	Coarse	4.9	5.2	NA	100	200	160	1300	180	300	170		180	120	300	2800	50	85	70	105	20
SDUP7 - [Silica Gel]	0-0.1	Duplicate of BH108	Coarse	NA	NA	NA										120	300	2800					
SDUP8	0.04-0.3	Duplicate of BH104	Coarse	8.5	153	NA	100	200	260	1300	560	1400	170		180	120	300	2800	50	85	70	105	20
SDUP9	0.02-0.4	Duplicate of BH101	Coarse	9.8	12	NA	100	200	240	1300	280	820	170	180	180	120	300	2800	50	85	70	105	20
SDUP10	0-0.1	Duplicate of BH117	Coarse	9.1	NA	NA	100	200	90	1300	35	190	170		180	120	300	2800	50	85	70	105	20

Additional Site Investigation Greenwich Hospital, 97-115 River Road, Greenwich, NSW E32507BR

TABLE S8

SUMMARY OF PFAS CONCENTRATIONS IN SOIL - ECOLOGY Units are $\mu g/Kg$ unless stated otherwise.

	PQL	NEMP 2020	NEMP 2020	BH104	BH104 - [LAB_DUP]	BH105	BH105	PFAS DUP1	PFAS DUP3
	Envirolab	Direct exposure	Indirect exposure	0.04-0.3	0.04-0.3	0.25-0.4	0.5-0.95	0.25-0.4	0.04-0.3
	Services	All land use	All land use	Fill: Sandy Gravel	Laboratory Duplicate	Fill: Silty Gravelly Sand	Fill: Clayey Silty Sand	Duplicate of BH105	Duplicate of BH104
PFAS Compound									
Perfluorobutanesulfonic acid	0.1	NSL	NSL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluoropentanesulfonic acid	0.1	NSL	NSL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluorohexanesulfonic acid - PFHxS	0.1	NSL	NSL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluoroheptanesulfonic acid	0.1	NSL	NSL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluorooctanesulfonic acid PFOS	0.1	1000	140	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluorodecanesulfonic acid	0.2	NSL	NSL	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Perfluorobutanoic acid	0.2	NSL	NSL	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Perfluoropentanoic acid	0.2	NSL	NSL	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Perfluorohexanoic acid	0.1	NSL	NSL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluoroheptanoic acid	0.1	NSL	NSL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluorooctanoic acid PFOA	0.1	10,000	NSL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluorononanoic acid	0.1	NSL	NSL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluorodecanoic acid	0.5	NSL	NSL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Perfluoroundecanoic acid	0.5	NSL	NSL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Perfluorododecanoic acid	0.5	NSL	NSL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Perfluorotridecanoic acid	0.5	NSL	NSL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Perfluorotetradecanoic acid	5	NSL	NSL	<5	<5	<5	<5	<5	<5
4:2 FTS	0.1	NSL	NSL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
6:2 FTS	0.1	NSL	NSL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
8:2 FTS	0.1	NSL	NSL	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
10:2 FTS	0.1	NSL	NSL	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Perfluorooctane sulfonamide	1	NSL	NSL	<1	<1	<1	<1	<1	<1
N-Methyl perfluorooctane sulfonamide	1	NSL	NSL	<1	<1	<1	<1	<1	<1
N-Ethyl perfluorooctanesulfon amide	1	NSL	NSL	<1	<1	<1	<1	<1	<1
N-Me perfluorooctanesulfonamid oethanol	1	NSL	NSL	<1	<1	<1	<1	<1	<1
N-Et perfluorooctanesulfonamid oethanol	5	NSL	NSL	<5	<5	<5	<5	<5	<5
MePer uorooctanesulf-amid oacetic acid	0.2	NSL	NSL	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
EtPer uorooctanesulf-amid oacetic acid	0.2	NSL	NSL	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total Positive PFHxS & PFOS	0.1	NSL	NSL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Positive PFOS & PFOA	0.1	NSL	NSL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Positive PFAS	0.1	NSL	NSL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Positive PFAS result

PFAS result above the SAC

Bold

Bold

Additional Site Investigation
Greenwich Hospital, 97-115 River Road, Greenwich, NSW
E32507BR

TABLE S9

SOIL LABORATORY RESULTS COMPARED TO WASTE CLASSIFICATION GUIDELINES

All data in mg/kg unless stated otherwise

All data in mg/kg unle	ess stated othe	rwise																									
						HEAVY	METALS				PA	Hs		OC/OP	PESTICIDES		Total			TRH				BTEX CO	MPOUNDS		
			Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc	Total	B(a)P	Total	Chloropyrifos	Total Moderately	Total	PCBs	C6-C9	C ₁₀ -C ₁₄	C15-C28	C ₂₉ -C ₃₆	Total	Benzene	Toluene	Ethyl	Total	ASBESTOS FIBRES
			Arsenie	cauman	cinomiani	copper	LCOU	wichedry	Mickel	Zinc	PAHs		Endosulfans		Harmful	Scheduled						C ₁₀ -C ₃₆			benzene	Xylenes	
PQL - Envirolab Services			4	0.4	1	1	1	0.1	1	1	-	0.05	0.1	0.1	0.1	0.1	0.1	25	50	100	100	50	0.2	0.5	1	1	100
General Solid Waste CT1			100	20	100	NSL	100	4	40	NSL	200	0.8	60	4	250	50	50	650		NSL		10,000	10	288	600	1,000	-
General Solid Waste SCC			500	100	1900	NSL	1500	50	1050	NSL	200	10	108	7.5	250	50	50	650		NSL		10,000	18	518	1,080	1,800	-
Restricted Solid Waste C Restricted Solid Waste Solid			400 2000	80 400	400 7600	NSL NSL	400 6000	16 200	160 4200	NSL NSL	800 800	3.2 23	240 432	16 30	1000	50 50	50 50	2600 2600		NSL NSL		40,000	40 72	1,152 2,073	2,400 4,320	4,000 7,200	-
Nestificted Solid Waste S	Sample		2000	400	7000	NJL	0000	200	4200	NJL	300	23	432	30	1000	50	50	2000		NUC		40,000	12	2,073	4,320	7,200	-
Sample Reference	Depth	Sample Description																									
BH101	0.02-0.4	Fill: Silty Gravelly Sand	<4	<0.4	62	59	14	<0.1	47	41	3.8	0.4	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	130	130	<0.2	<0.5	<1	<3	Not Detected
BH101 - [LAB_DUP]	0.02-0.4	Laboratory Duplicate	<4	<0.4	73	57	14	<0.1	55	46	4	0.4	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA
BH101 BH101	0.5-0.85	Fill: Silty Sand XW Sandstone	<4 <4	<0.4	17 9	12	51 13	<0.1 <0.1	15 <1	44 9	0.3 <0.05	0.1 <0.05	NA NA	NA	NA	NA	NA NA	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5	<1 <1	<3 <3	Not Detected NA
BH102	0.05-0.1	Fill: Silty Gravelly Sand	<4	<0.4	44	74	7	<0.1	73	37	0.68	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	160	160	<0.2	<0.5	<1	<3	Not Detected
BH102	0.5-0.95	Fill: Silty Clay	6	<0.4	43	29	110 8	<0.1	10	110	10	1.5	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA
BH102 BH103	1.4-1.6 0.03-0.4	Sandstone Fill: Silty Gravelly Sand	<4 <4	<0.4	11 34	6 26	42	<0.1 <0.1	4 39	18 73	<0.05 11	<0.05	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2	<0.5	<1 <1	<3 <3	NA Not Detected
BH103	0.5-0.7	Sandy Clay	<4	<0.4	15	<1	4	<0.1	<1	2	<0.05	< 0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA
BH103	0.7-0.95	Silty Clay	<4	<0.4	11	<1	7	<0.1	<1	<1	< 0.05	< 0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA
BH103 BH104	1.4-1.5 0.04-0.3	Sandy Clay Fill: Sandy Gravel	<4 <4	<0.4	36 73	2	4	<0.1 <0.1	<1 75	1 37	1.2 0.2	<0.05 <0.05	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	34 <25	62 <50	<100 <100	<100 130	62 130	<0.2	<0.5	<1 <1	<3 <3	NA Not Detected
BH104 - [LAB_DUP]	0.04-0.3	Laboratory Duplicate	<4	<0.4	83	27	6	<0.1	83	43	0.2	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	140	140	<0.2	<0.5	<1	<3	NA
BH104	0.5-0.95	Fill: Silty Gravelly Sand	<4	<0.4	76	34	6	<0.1	81	48	0.4	< 0.05	NA	NA	NA	NA	NA	<25	<50	130	340	470	<0.2	<0.5	<1	<3	Not Detected
BH104 BH104	1.5-1.95 3.0-3.2	Fill: Silty Gravelly Sand Fill: Silty Gravelly Sand	<4 <4	<0.4	19 34	8 12	83 57	0.1 <0.1	5	52 38	0.4	0.1	NA NA	NA	NA NA	NA	NA NA	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5	<1 <1	<3 <3	NA NA
BH104	3.8-4.1	Fill: Silty Sand	<4	<0.4	30	17	43	<0.1	17	70	0.05	0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA
BH105	0.25-0.4	Fill: Silty Gravelly Sand	<4	<0.4	74	27	13	<0.1	76	45	0.4	< 0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	Not Detected
BH105 - [LAB_DUP] BH105	0.25-0.4	Laboratory Duplicate Fill: Clayey Silty Sand	<4 <4	<0.4	72 13	26 6	10 32	<0.1 <0.1	72 9	42	0.3 <0.05	<0.05 <0.05	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5	<1 <1	<3 <3	NA
BH105	1.2-1.4	Sandy Clay	<4	<0.4	9	2	12	<0.1	1	14	< 0.05	< 0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA
BH106	0.03-0.3	Fill: Clayey Gravelly Sand	<4	<0.4	30	49	2	<0.1	110	38	< 0.05	< 0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	220	220	<0.2	<0.5	<1	<3	Not Detected
BH106 BH107	0.6-0.8	Silty Clay Fill: Silty Clay	<4 <4	<0.4	12 12	<1 18	7	<0.1 <0.1	<1 6	2	<0.05 <0.05	<0.05 <0.05	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2	<0.5	<1	<3 <3	NA Not Detected
BH107	0.2-0.4	Fill: Sandy Clay	<4	<0.4	8	4	14	<0.1	2	21	0.3	0.06	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA
BH108	0-0.1	Fill: Sandy Silty Clay	<4	<0.4	6	9	63	<0.1	2	31	2.1	0.3	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	130	130	<0.2	<0.5	<1	<3	Not Detected
BH109 BH109	0.01-0.4	Fill: Clayey Gravelly Sand Fill: Sandy Clay	<4 <4	<0.4	63 22	27	8 10	<0.1 <0.1	63 16	37 16	0.3 <0.05	<0.05 <0.05	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<25 <25	<50 <50	<100 <100	190 <100	190 <50	<0.2 <0.2	<0.5	<1 <1	<3 <3	Not Detected NA
BH109	0.8-0.95	Sandy Clay	<4	<0.4	15	2	5	<0.1	4	6	< 0.05	<0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA
BH110A	0-0.1	Fill: Silty Gravelly Sand	<4	<0.4	63	26	6	<0.1	69	52	< 0.05	< 0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	110	290	400	<0.2	<0.5	<1	<3	Not Detected
BH110A BH110A	0.1-0.2	Fill: Sandy Gravel Fill: Sandy Clay	<4 7	<0.4	71 18	24	6 16	<0.1 <0.1	73 1	39 10	0.2 <0.05	<0.05 <0.05	NA NA	NA	NA NA	NA	NA NA	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5	<1	<3 <3	NA Not Detected
BH111	0-0.1	Fill: Silty Sand	<4	<0.4	9	12	54	<0.1	4	50	3.5	0.3	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	Not Detected
BH111 - [LAB_DUP]	0-0.1	Laboratory Duplicate	<4	<0.4	9	12	51	<0.1	4	49	2.5	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA
BH111 BH111	0.3-0.6	Fill: Silty Clay Fill: Silty Clayey Sand	4 <4	<0.4	9 16	52 13	49 58	0.1	6 5	79 120	2.5 1.8	0.3	NA NA	NA	NA	NA	NA NA	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5	<1 <1	<3 <3	NA
BH112	0.22-0.65	Fill: Silty Gravelly Sand	<4	<0.4	12	11	44	<0.1	4	57	<0.05	< 0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	Not Detected
BH112	0.65-0.8	Sandstone	<4	<0.4	8	9	6	<0.1	1	12	< 0.05	< 0.05	NA	NA	NA	NA	NA	<25	<50	<100	160	160	<0.2	<0.5	<1	<3	NA
BH113 BH113	0-0.1	Fill: Silty Sand Fill: Silty Clayey Sand	<4 <4	<0.4	10 11	9	25 22	<0.1 <0.1	3	27	<0.05 0.3	<0.05 0.06	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2	<0.5	<1	<3 <3	Not Detected NA
BH113	0.35-0.45	Sandy Clay	<4	<0.4	6	7	28	<0.1	1	29	3	0.3	NA	NA	NA	NA	NA	<25	<50	<100	120	120	<0.2	<0.5	<1	<3	NA
BH114	0.05-0.2	Fill: Silty Sandy Gravel	<4	<0.4	77	31	4	<0.1	85	36	< 0.05	< 0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	Not Detected
BH114 - [LAB_DUP] BH115	0.05-0.2	Laboratory Duplicate Fill: Silty Clayey Sand	<4 4	<0.4	93 11	34 11	5 40	<0.1 <0.1	91 3	41 42	0.1	<0.05 0.1	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1	<0.1 <0.1	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5	<1 <1	<3 <3	NA Not Detected
BH115	0.6-0.8	Sandy Clay	4	<0.4	15	<1	6	<0.1	<1	1	<0.05	<0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA
BH116	0-0.1	Fill: Silty Sandy Gravel	<4	<0.4	59	22	15	<0.1	54	42	0.3	< 0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	Not Detected
BH116 BH117	0.1-0.3	Silty Clayey Sand Fill: Silty Sand	<4 <4	<0.4	10 19	7 17	29 28	<0.1 <0.1	4	29 54	0.4 <0.05	0.1 <0.05	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	<25 <25	<50 81	<100 120	<100 180	<50 381	<0.2 <0.2	<0.5 <0.5	<1 <1	<3 <3	NA Not Detected
BH117	0.5-0.95	Fill: Silty Sand	<4	<0.4	8	3	15	<0.1	2	16	<0.05	<0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	Not Detected
BH117	0.5-1.5	Fill: Silty Sand (Spoil)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA 150	NA	NA	NA	NA	NA 0.5	NA	NA	Not Detected
BH118 BH118 - [LAB DUP]	0-0.1	Fill: Silty Sandy Clay Laboratory Duplicate	17 <4	<0.4	8	26 23	220 390	<0.1 <0.1	5	45 65	1.3	0.2	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1	<0.1 <0.1	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<3 <3	Not Detected NA
BH118 - [LAB_DOF]	1.4-1.5	Fill: Silty Sandy Clay	11	<0.4	7	35	99	<0.1	3	62	8.5	0.89	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA
BH118	1.6-1.8	Sandy Clay	<4	<0.4	11	1	6	<0.1	2	14	< 0.05	< 0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA
BH119 BH119	0.05-0.3	Fill: Silty Sand Laboratory Duplicate	<4 <4	<0.4	14 14	29 23	28 28	<0.1 <0.1	8	37 41	<0.05	<0.05 <0.05	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1	<0.1 <0.1	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5	<1 <1	<3 <3	Not Detected NA
BH119 BH119	0.5-0.8	Sandstone	<4	<0.4	14	<1	4	<0.1	<1	2	<0.05	<0.05	NA	NA NA	NA	NA	NA NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA
SDUP3	0-0.1	Duplicate of BH111	<4	<0.4	11	13	54	<0.1	4	51	2.6	0.2	NA	NA	NA	NA	NA	<25	<50	<100	160	160	<0.2	<0.5	<1	<3	Not Detected
SDUP4 SDUP7	0-0.1	Duplicate of BH115 Duplicate of BH108	<4 <4	<0.4	9	5 9	20 66	<0.1 <0.1	2	25 32	0.3	0.06	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<25 <25	<50 <50	<100 160	110 270	110 430	<0.2 <0.2	<0.5 <0.5	<1 <1	<3 <3	Not Detected NA
SDUP7 SDUP8	0.04-0.3	Duplicate of BH108	<4	<0.4	82	31	5	<0.1	79	45	0.4	<0.05	NA	NA	NA	NA	NA	<25	<50	150	390	540	<0.2	<0.5	<1	<1	NA
SDUP9	0.02-0.4	Duplicate of BH101	<4	<0.4	62	52	13	<0.1	48	40	2.3	0.3	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA
SDUP10	0-0.1	Duplicate of BH117	<4	<0.4	11	17	27	<0.1	12	60	<0.05	<0.05	NA	NA	NA	NA	NA	<25	<50	100	190	290	<0.2	<0.5	<1	<1	NA
Total Number of Samp	ples		62	62	62	62	62	62	62	62	62	62	28	28	28	28	28	62	62	62	62	62	62	62	62	62	26
Maximum Value			17	<pql< td=""><td>93</td><td>74</td><td>390</td><td>0.2</td><td>110</td><td>120</td><td>11</td><td>1.5</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>34</td><td>81</td><td>160</td><td>390</td><td>540</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	93	74	390	0.2	110	120	11	1.5	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>34</td><td>81</td><td>160</td><td>390</td><td>540</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>34</td><td>81</td><td>160</td><td>390</td><td>540</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>34</td><td>81</td><td>160</td><td>390</td><td>540</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>34</td><td>81</td><td>160</td><td>390</td><td>540</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td>34</td><td>81</td><td>160</td><td>390</td><td>540</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	34	81	160	390	540	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>Not Detected</td></pql<></td></pql<>	<pql< td=""><td>Not Detected</td></pql<>	Not Detected
Concentration above the Concentration above SCC Concentration above the Concentration above PQ	C1 e SCC2			VALUE VALUE VALUE Bold																							

JKEnvironments

Additional Site Investigation Greenwich Hospital, 97-115 River Road, Greenwich, NSW E32507BR

TABLE S10

SUMMARY OF PFAS CONCENTRATIONS IN SOIL - WASTE CLASSIFICATION Units are μ g/Kg unless stated otherwise.

	1	r							
	PQL			BH104	BH104 - [LAB_DUP]	BH105	BH105	PFAS DUP1	PFAS DUP3
	Envirolab	SCC1	SCC2	0.04-0.3	0.04-0.3	0.25-0.4	0.5-0.95	0.25-0.4	0.04-0.3
	Services			Fill: Sandy Gravel	Laboratory Duplicate	Fill: Silty Gravelly Sand	Fill: Clayey Silty Sand	Duplicate of BH105	Duplicate of BH104
PFAS Compound									
Perfluorobutanesulfonic acid	0.1	NSL	NSL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluoropentanesulfonic acid	0.1	NSL	NSL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluorohexanesulfonic acid - PFHxS	0.1	NSL	NSL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluoroheptanesulfonic acid	0.1	NSL	NSL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluorooctanesulfonic acid PFOS	0.1	NSL	NSL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluorodecanesulfonic acid	0.2	NSL	NSL	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Perfluorobutanoic acid	0.2	NSL	NSL	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Perfluoropentanoic acid	0.2	NSL	NSL	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Perfluorohexanoic acid	0.1	NSL	NSL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluoroheptanoic acid	0.1	NSL	NSL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluorooctanoic acid PFOA	0.1	18,000	72,000	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluorononanoic acid	0.1	NSL	NSL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluorodecanoic acid	0.5	NSL	NSL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Perfluoroundecanoic acid	0.5	NSL	NSL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Perfluorododecanoic acid	0.5	NSL	NSL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Perfluorotridecanoic acid	0.5	NSL	NSL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Perfluorotetradecanoic acid	5	NSL	NSL	<5	<5	<5	<5	<5	<5
4:2 FTS	0.1	NSL	NSL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
6:2 FTS	0.1	NSL	NSL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
8:2 FTS	0.1	NSL	NSL	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
10:2 FTS	0.1	NSL	NSL	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Perfluorooctane sulfonamide	1	NSL	NSL	<1	<1	<1	<1	<1	<1
N-Methyl perfluorooctane sulfonamide	1	NSL	NSL	<1	<1	<1	<1	<1	<1
N-Ethyl perfluorooctanesulfon amide	1	NSL	NSL	<1	<1	<1	<1	<1	<1
N-Me perfluorooctanesulfonamid oethanol	1	NSL	NSL	<1	<1	<1	<1	<1	<1
N-Et perfluorooctanesulfonamid oethanol	5	NSL	NSL	<5	<5	<5	<5	<5	<5
MePer uorooctanesulf-amid oacetic acid	0.2	NSL	NSL	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
EtPer uorooctanesulf-amid oacetic acid	0.2	NSL	NSL	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total Positive PFHxS & PFOS	0.1	1800	7,200	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Positive PFOS & PFOA	0.1	NSL	NSL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Positive PFAS	0.1	NSL	NSL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Result above SCC1 Criteria Result above SCC2 Criteria

teria <mark>Bold</mark> :eria <mark>Bold</mark>

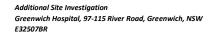
TABLE S11

SOIL LABORATORY TCLP RESULTS

All data in mg/L unless stated otherwise

			Lead	Nickel	B(a)P
PQL - Envirolab Services	5		0.03	0.02	0.001
TCLP1 - General Solid W	/aste		5	2	0.04
TCLP2 - Restricted Solid	Waste		20	8	0.16
TCLP3 - Hazardous Was	te		>20	>8	>0.16
Sample Reference	Sample Depth	Sample Description			
BH101	0.02-0.4	Fill: Silty Gravelly Sand	NA	0.02	NA
BH101 - [LAB_DUP]	0.02-0.4	Laboratory Duplicate	NA	0.02	NA
BH102	0.05-0.1	Fill: Silty Gravelly Sand	NA	0.09	NA
BH102	0.5-0.95	Fill: Silty Clay	0.2	NA	<0.001
BH103	0.03-0.4	Fill: Silty Gravelly Sand	NA	NA	<0.001
BH104	0.04-0.3	Fill: Sandy Gravel	NA	0.07	NA
BH104	0.5-0.95	Fill: Silty Gravelly Sand	NA	0.06	NA
BH105	0.25-0.4	Fill: Silty Gravelly Sand	NA	0.08	NA
BH105 - [LAB_DUP]	0.25-0.4	Laboratory Duplicate	NA	0.08	NA
BH106	0.03-0.3	Fill: Clayey Gravelly Sand	NA	0.1	NA
BH109	0.01-0.4	Fill: Clayey Gravelly Sand	NA	0.09	NA
BH110A	0-0.1	Fill: Silty Gravelly Sand	NA	<0.02	NA
BH110A	0.1-0.2	Fill: Sandy Gravel	NA	0.03	NA
BH114	0.05-0.2	Fill: Silty Sandy Gravel	NA	0.05	NA
BH116	0-0.1	Fill: Silty Sandy Gravel	NA	<0.02	NA
BH118	0-0.1	Fill: Silty Sandy Clay	0.72	NA	NA
BH118	1.4-1.5	Fill: Silty Sandy Clay	NA	NA	<0.001
Total Number of sam	ples		2	13	3
Maximum Value	P 100			-	-
			0.72	0.1	<pql< td=""></pql<>
General Solid Waste			VALUE		
Restricted Solid Waste			VALUE		
Hazardous Waste			VALUE		
Concentration above P	ור		Bold		

TABLE G1 SUMMARY OF GROUNDWATER LABORATORY RESULTS COMPARED TO ECOLOGICAL GILS SAC All results in µg/L unless stated otherwise.


	Envirolab Services	2018 Fresh Waters	MW101	MW101 - [LAB_DUP]	MW102	MW105	MW106	MW107	MW109	WDUP1	WDUP
norganic Compounds and Parameters		6.5 - 8.5			_						
θΗ ilectrical Conductivity (μS/cm)	1	6.5 - 8.5 NSL	6.2 300	6.2 300	7 69	5.4 590	4.5 350	4.9 250	5.3 240	NA	NA
urbidity (NTU)		NSL	NA	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic (As III)	1	24	2	1	1	<1	3	2	1	2	3
Cadmium	0.1	0.2	<0.1	<0.1	<0.1	0.2	0.2	<0.1	<0.1	0.1	0.3
Chromium (SAC for Cr III adopted)	1	3.3	<1	<1	<1	<1	<1	<1	<1	<1	1
Copper .ead	1	1.4 3.4	<1 <1	<1 1	6 <1	5 <1	7 17	5 3	4 <1	4 3	9 19
Fotal Mercury (inorganic)	0.05	0.06	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05
Vickel	1	11	3	3	<1	18	10	5	3	5	11
linc	1	8	40	40	6	81	73	47	18	38	76
Monocyclic Aromatic Hydrocarbons (BTEX Cor Benzene	1	950	<1	<1	<1	<1	<1	<1	<1	<1	<1
oluene	1	180	<1	<1	<1	<1	<1	<1	<1	<1	<1
thylbenzene	1	80	<1	<1	<1	<1	<1	<1	<1	<1	<1
n+p-xylene xylene	2	75 350	<2	<2 <1	<2 <1	<2 <1	<2 <1	<2 <1	<2 <1	<2 <1	<2 <1
otal xylenes	2	NSL	<2	<2	<2	<2	<2	<2	<2	<2	<2
otal Recoverable Hydrocarbons (TRHs)											
RH F1 RH F2	10 50	NSL NSL	44 <50	45 <50	<10 <50	23 <50	<10 <50	<10 <50	<10 <50	<10 <50	<10 <50
RH F3	100	NSL	<100	<100	<100	<100	<100	<100	<100	<100	<100
RH F4	100	NSL	<100	<100	<100	<100	<100	<100	<100	<100	<100
olatile Organic Compounds (VOCs), including											
ichlorodifluoromethane	10	NSL	<10	<10	<10	<10	<10	<10	<10	<10	<10
hloromethane 'inyl Chloride	10	NSL 100	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10
romomethane	10	NSL	<10	<10	<10	<10	<10	<10	<10	<10	<10
hloroethane	10	NSL	<10	<10	<10	<10	<10	<10	<10	<10	<10
richlorofluoromethane	10	NSL 700	<10	<10	<10	<10	<10	<10	<10	<10	<10
,1-Dichloroethene irans-1,2-dichloroethene	1	700 NSL	<1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
,1-dichloroethane	1	90	<1	<1	<1	<1	<1	<1	<1	<1	<1
is-1,2-dichloroethene	1	NSL	<1	<1	<1	<1	<1	<1	<1	<1	<1
romochloromethane	1	NSL	<1	<1	<1	<1	<1	<1	<1	<1	<1
ibromochloromethane romodichloromethane	1	NSL NSL	1 7	<1 5	<1 <1	<1 2	<1 <1	<1 <1	<1 <1	<1 <1	<1
romoform	1	NSL	<1	<1	<1	<1	<1	<1	<1	<1	<1
hloroform	1	370	42	36	<1	16	<1	<1	<1	<1	<1
2,2-dichloropropane	1	NSL 1000	<1	<1	<1	<1	<1	<1	<1	<1	<1
,2-dichloroethane ,1,1-trichloroethane	1	1900 270	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
,1-dichloropropene	1	NSL	<1	<1	<1	<1	<1	<1	<1	<1	<1
yclohexane	1	NSL	<1	<1	<1	<1	<1	<1	<1	<1	<1
Carbon tetrachloride	1	240	<1	<1	<1	<1	<1	<1	<1	<1	<1
lenzene Dibromomethane	1	950 NSL	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
,2-dichloropropane	1	900	<1	<1	<1	<1	<1	<1	<1	<1	<1
richloroethene	1	330	<1	<1	<1	<1	<1	<1	<1	<1	<1
rans-1,3-dichloropropene	1	NSL	<1	<1	<1	<1	<1	<1	<1	<1	<1
is-1,3-dichloropropene	1	NSL 6500	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
oluene	1	180	<1	<1	<1	<1	<1	<1	<1	<1	<1
,3-dichloropropane	1	1100	<1	<1	<1	<1	<1	<1	<1	<1	<1
,,2-dibromoethane	1	NSL 70	<1	<1	<1	<1	<1	<1 <1	<1	<1	<1
etrachloroethene ,1,1,2-tetrachloroethane	1	NSL	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1	<1 <1	<1 <1	<1 <1
Chlorobenzene	1	55	<1	<1	<1	<1	<1	<1	<1	<1	<1
thylbenzene	1	80	<1	<1	<1	<1	<1	<1	<1	<1	<1
n+p-xylene ityrene	2	75 NSL	<2 <1	<2 <1	<2 <1	<2 <1	<2 <1	<2 <1	<2 <1	<2 <1	<2 <1
,1,2,2-tetrachloroethane	1	400	<1	<1	<1	<1	<1	<1	<1	<1	<1
-xylene	1	350	<1	<1	<1	<1	<1	<1	<1	<1	<1
,2,3-trichloropropane	1	NSL	<1	<1	<1	<1	<1	<1	<1	<1	<1
sopropylbenzene romobenzene	1	30 NSL	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
-propyl benzene	1	NSL	<1	<1	<1	<1	<1	<1	<1	<1	<1
-chlorotoluene	1	NSL	<1	<1	<1	<1	<1	<1	<1	<1	<1
-chlorotoluene	1	NSL	<1	<1	<1	<1	<1	<1	<1	<1	<1
,3,5-trimethyl benzene ert-butyl benzene	1	NSL NSL	<1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
,2,4-trimethyl benzene	1	NSL	<1	<1	<1	<1	<1	<1	<1	<1	<1
,3-dichlorobenzene	1	260	<1	<1	<1	<1	<1	<1	<1	<1	<1
ec-butyl benzene	1	NSL	<1	<1	<1	<1	<1	<1	<1	<1	<1
,4-dichlorobenzene -isopropyl toluene	1	60 NSL	<1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
,2-dichlorobenzene	1	160	<1	<1	<1	<1	<1	<1	<1	<1	<1
-butyl benzene	1	NSL	<1	<1	<1	<1	<1	<1	<1	<1	<1
,2-dibromo-3-chloropropane ,2,4-trichlorobenzene	1	NSL 85	<1	<1	<1	<1	<1	<1	<1	<1	<1
,2,4-trichlorobenzene lexachlorobutadiene	1	85 NSL	<1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
,2,3-trichlorobenzene	1	3	<1	<1	<1	<1	<1	<1	<1	<1	<1
olycyclic Aromatic Hydrocarbons (PAHs)											
aphthalene cenaphthylene	0.2	16 NSL	<0.2	NA	<0.2 <0.1	<0.2 <0.1	<0.2 <0.1	<0.2 <0.1	<0.2 <0.1	<0.2 <0.1	<0.1 <0.1
cenaphthene	0.1	NSL	<0.1	NA	<0.1	<0.1	<0.1	<0.1 0.3	<0.1 5.1	<0.1	<0.1
luorene	0.1	NSL	<0.1	NA	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
henanthrene	0.1	0.6	<0.1	NA	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
nthracene	0.1	0.01	<0.1	NA	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1 <0.1
luoranthene yrene	0.1	1 NSL	<0.1	NA	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1
enzo(a)anthracene	0.1	NSL	<0.1	NA	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
hrysene	0.1	NSL	<0.1	NA	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
enzo(b,j+k)fluoranthene	0.2	NSL	<0.2	NA	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene ndeno(1,2,3-c,d)pyrene	0.1	0.1 NSL	<0.1	NA	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1
Dibenzo(a,h)anthracene	0.1	NSL	<0.1	NA	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
ibenzo(a,n)antinacene				NA	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1

Copyright JK Environments

SUMMARY OF PFAS CONCENTRATIONS IN GROUNDWATER - ECOLOGY All results in μ g/L unless stated otherwise.

	PQL	NEMP 2020	SAN	MPLES
	Envirolab	95%	MW105	WPFASDUP1
	Services	Freshwater		
PFAS Compound				
Perfluorobutanesulfonic acid	0.01	NSL	<0.01	<0.01
Perfluoropentanesulfonic acid	0.01	NSL	<0.01	<0.01
Perfluorohexanesulfonic acid - PFHxS	0.01	NSL	< 0.01	<0.01
Perfluoroheptanesulfonic acid	0.01	NSL	<0.01	<0.01
Perfluorooctanesulfonic acid PFOS	0.01	0.13	<0.01	<0.01
Perfluorodecanesulfonic acid	0.02	NSL	<0.02	<0.02
Perfluorobutanoic acid	0.02	NSL	<0.02	<0.02
Perfluoropentanoic acid	0.02	NSL	<0.02	<0.02
Perfluorohexanoic acid	0.01	NSL	<0.01	<0.01
Perfluoroheptanoic acid	0.01	NSL	<0.01	<0.01
Perfluorooctanoic acid PFOA	0.01	220	<0.01	<0.01
Perfluorononanoic acid	0.01	NSL	<0.01	<0.01
Perfluorodecanoic acid	0.02	NSL	<0.02	<0.02
Perfluoroundecanoic acid	0.02	NSL	<0.02	<0.02
Perfluorododecanoic acid	0.05	NSL	<0.05	<0.05
Perfluorotridecanoic acid	0.1	NSL	<0.1	<0.1
Perfluorotetradecanoic acid	0.5	NSL	<0.5	<0.5
4:2 FTS	0.01	NSL	<0.01	<0.01
6:2 FTS	0.01	NSL	<0.01	<0.01
8:2 FTS	0.02	NSL	<0.02	<0.02
10:2 FTS	0.02	NSL	<0.02	<0.02
Perfluorooctane sulfonamide	0.1	NSL	<0.1	<0.1
N-Methyl perfluorooctane sulfonamide	0.05	NSL	<0.05	<0.05
N-Ethyl perfluorooctanesulfon amide	0.1	NSL	<0.1	<0.1
N-Me perfluorooctanesulfonamid oethanol	0.05	NSL	<0.05	<0.05
N-Et perfluorooctanesulfonamid oethanol	0.5	NSL	<0.5	<0.5
MePer uorooctanesulf-amid oacetic acid	0.02	NSL	<0.02	<0.02
EtPer uorooctanesulf-amid oacetic acid	0.02	NSL	<0.02	<0.02
Total Positive PFHxS & PFOS	0.01	NSL	<0.01	<0.01
Total Positive PFOS & PFOA	0.01	NSL	<0.01	<0.01
Total Positive PFAS	0.01	NSL	<0.01	<0.01
Positive PFAS result	Bold			
PFAS result above the SAC	Bold			

SUMMARY OF GROUNDWATER LABORATORY RESULTS COMPARED TO HUMAN CONTACT GILS All results in µg/L unless stated otherwise.

organic Compounds and Parameters		(10 x NHMRC ADWG)		MW101 - [LAB_DUP]	MW102	MW105	MW106	MW107	MW109	WDUP1	WDUP2
		Not Applicable	6.2	6.2	7	5.4	4.5	4.9	5.3	NA	NA
lectrical Conductivity (μS/cm)	1	NSL	300	300	69	590	350	250	240	NA	NA
urbidity (NTU) Ietals and Metalloids	-	NSL	NA	NA	NA	NA	NA	NA	NA	NA	NA
rsenic (As III)	1	100	2	1	1	<1	3	2	1	2	3
admium	0.1	20	<0.1	<0.1	<0.1	0.2	0.2	<0.1	<0.1	0.1	0.3
hromium (total) opper	1	500 20000	<1 <1	<1 <1	<1 6	<1 5	<1 7	<1 5	<1 4	<1 4	1
ead	1	100	<1	1	<1	<1	17	3	<1	3	19
otal Mercury (inorganic) ickel	0.05	10 200	<0.05 3	<0.05 3	<0.05 <1	<0.05 18	<0.05 10	<0.05 5	<0.05 3	<0.05 5	<0.05
inc	1	30000	40	40	6	81	73	47	18	38	76
Ionocyclic Aromatic Hydrocarbons (BTEX Compo	ounds)		1								
enzene	1	10	<1	<1	<1	<1	<1	<1	<1	<1	<1
oluene thylbenzene	1	8000 3000	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1
i+p-xylene	2	NSL	<2	<2	<2	<2	<2	<2	<2	<2	<2
-xylene	1	NSL	<1	<1	<1	<1	<1	<1	<1	<1	<1
otal xylenes otal Recoverable Hydrocarbons (TRHs)	2	6000	<2	<2	<2	<2	<2	<2	<2	<2	<2
RH F1	10	NSL	44	45	<10	23	<10	<10	<10	<10	<10
RH F2	50	NSL	<50	<50	<50	<50	<50	<50	<50	<50	<50
RH F3	100	NSL	<100	<100	<100	<100	<100	<100	<100	<100	<100
RH F4 olatile Organic Compounds (VOCs), including ch	100 Iorinated VOCs	NSL	<100	<100	<100	<100	<100	<100	<100	<100	<100
ichlorodifluoromethane	10	NSL	<10	<10	<10	<10	<10	<10	<10	<10	<10
hloromethane	10	NSL	<10	<10	<10	<10	<10	<10	<10	<10	<10
inyl Chloride romomethane	10 10	3 NSL	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10
hloroethane	10	NSL	<10	<10	<10	<10	<10	<10	<10	<10	<10
richlorofluoromethane	10	NSL	<10	<10	<10	<10	<10	<10	<10	<10	<10
1-Dichloroethene	1	300 600	<1	<1 <1	<1 <1	<1	<1 <1	<1 <1	<1	<1 <1	<1
rans-1,2-dichloroethene ,1-dichloroethane	1	600 NSL	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
is-1,2-dichloroethene	1	600	<1	<1	<1	<1	<1	<1	<1	<1	<1
romochloromethane	1	NSL	<1	<1	<1	<1	<1	<1	<1	<1	<1
ibromochloromethane romodichloromethane	1		1 7	<1 5	<1 <1	<1 2	<1 <1	<1 <1	<1 <1	<1 <1	<1
romoform	1	2500	<1	<1	<1	<1	<1	<1	<1	<1	<1
hloroform	1		42	36	<1	16	<1	<1	<1	<1	<1
.2-dichloropropane .2-dichloroethane	1	NSL 30	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
1,1-trichloroethane	1	NSL	<1	<1	<1	<1	<1	<1	<1	<1	<1
1-dichloropropene	1	NSL	<1	<1	<1	<1	<1	<1	<1	<1	<1
yclohexane	1	NSL	<1	<1	<1	<1	<1	<1	<1	<1	<1
arbon tetrachloride enzene	1	30 10	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
ibromomethane	1	NSL	<1	<1	<1	<1	<1	<1	<1	<1	<1
2-dichloropropane	1	NSL	<1	<1	<1	<1	<1	<1	<1	<1	<1
richloroethene ans-1,3-dichloropropene	1	NSL 1000	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1
s-1,3-dichloropropene	1	1000	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-trichloroethane	1	NSL	<1	<1	<1	<1	<1	<1	<1	<1	<1
oluene	1	8000	<1	<1	<1	<1	<1	<1	<1	<1	<1
.3-dichloropropane .2-dibromoethane	1	NSL	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
etrachloroethene	1	500	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2-tetrachloroethane	1	NSL	<1	<1	<1	<1	<1	<1	<1	<1	<1
hlorobenzene thylbenzene	1	3000 3000	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1
i+p-xylene	2	NSL	<2	<2	<2	<2	<2	<2	<2	<2	<2
tyrene	1	300	<1	<1	<1	<1	<1	<1	<1	<1	<1
,1,2,2-tetrachloroethane	1	NSL	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1
,2,3-trichloropropane	1	NSL	<1	<1	<1	<1	<1	<1	<1	<1	<1
opropylbenzene	1	NSL	<1	<1	<1	<1	<1	<1	<1	<1	<1
romobenzene	1	NSL	<1	<1	<1	<1	<1	<1	<1	<1	<1
-propyl benzene -chlorotoluene	1	NSL	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
-chlorotoluene	1	NSL	<1	<1	<1	<1	<1	<1	<1	<1	<1
3,5-trimethyl benzene	1	NSL	<1	<1	<1	<1	<1	<1	<1	<1	<1
ert-butyl benzene ,2,4-trimethyl benzene	1	NSL	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
3-dichlorobenzene	1	200	<1	<1	<1	<1	<1	<1	<1	<1	<1
ec-butyl benzene	1	NSL	<1	<1	<1	<1	<1	<1	<1	<1	<1
4-dichlorobenzene	1	400 NSI	<1	<1	<1	<1	<1 <1	<1	<1	<1	<1 <1
-isopropyl toluene ,2-dichlorobenzene	1	NSL 15000	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1
-butyl benzene	1	NSL	<1	<1	<1	<1	<1	<1	<1	<1	<1
2-dibromo-3-chloropropane	1	NSL	<1	<1	<1	<1	<1	<1	<1	<1	<1
2,4-trichlorobenzene ,2,3-trichlorobenzene	1	300	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
exachlorobutadiene	1	7	<1	<1	<1	<1	<1	<1	<1	<1	<1
olycyclic Aromatic Hydrocarbons (PAHs)											
aphthalene	0.2	NSL	<0.2	NA	<0.2	<0.2 <0.1	<0.2 <0.1	<0.2	<0.2	<0.2	<0.1 <0.1
cenaphthylene cenaphthene	0.1	NSL	<0.1 <0.1	NA	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1 0.3	<0.1 5.1	<0.1 <0.1	<0.1
uorene	0.1	NSL	<0.1	NA	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
henanthrene	0.1	NSL	<0.1	NA	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
nthracene uoranthene	0.1	NSL	<0.1 <0.1	NA	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1
yrene	0.1	NSL	<0.1	NA	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
enzo(a)anthracene	0.1	NSL	<0.1	NA	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
hrysene	0.1	NSL	<0.1	NA	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
enzo(b,j+k)fluoranthene	0.2	NSL 0.1	<0.2 <0.1	NA	<0.2 <0.1	<0.2 <0.1	<0.2 <0.1	<0.2 <0.1	<0.2 <0.1	<0.2 <0.1	<0.2 <0.1
enzo(a)pyrene				NA	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	0.1	NSL	<0.1	INA		<0.1	<0.1		<0.1	-0.1	<0.1

Copyright JK Environments

GROUNDWATER LABORATORY RESULTS COMPARED TO HSLs All data in $\mu\text{g}/\text{L}$ unless stated otherwise

				C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene	
PQL - Envirolab Service	es			10	50	1	1	1	2	1	PID
NEPM 2013 - Land Use	Category				н	ISL-A/B: LO	W/HIGH D	ENSITY RESIDENT	TAL		
Sample Reference	Water Depth	Depth Category	Soil Category								
MW101	3.58	0m to <2m	Sand	44	<50	<1	<1	<1	<2	<1	29.7
MW101 - [LAB_DUP]	3.58	0m to <2m	Sand	45	<50	<1	<1	<1	<2	<1	29.7
MW102	3.67	2m to <4m	Sand	<10	<50	<1	<1	<1	<2	<1	40.3
MW105	6.03	0m to <2m	Sand	23	<50	<1	<1	<1	<2	<1	2.8
MW106	9.17	0m to <2m	Sand	<10	<50	<1	<1	<1	<2	<1	11.2
MW107	9.9	0m to <2m	Sand	<10	<50	<1	<1	<1	<2	<1	2.4
MW109	7.07	4m to <8m	Sand	<10	<50	<1	<1	<1	<2	<1	27.2
WDUP1	9.9	0m to <2m	Sand	<10	<50	<1	<1	<1	<2	<1	NA
WDUP2	9.17	0m to <2m	Sand	<10	<50	<1	<1	<1	<2	<1	NA
Total Number of Samp	tal Number of Samples					9	9	9	9	9	7
Maximum Value	laximum Value					<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>40.3</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>40.3</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>40.3</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>40.3</td></pql<></td></pql<>	<pql< td=""><td>40.3</td></pql<>	40.3

Site specific assesment (SSA) required Concentration above the PQL

VALUE

Bold

The guideline corresponding to the elevated value is highlighted in grey in the Groundwater Assessment Criteria Table below

HSL GROUNDWATER ASSESSMENT CRITERIA

Sample Reference	Water Depth	Depth Category	Soil Category	C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene
MW101	3.58	0m to <2m	Sand	SSA	SSA	SSA	SSA	SSA	SSA	SSA
MW101 - [LAB_DUP]	3.58	0m to <2m	Sand	SSA	SSA	SSA	SSA	SSA	SSA	SSA
MW102	3.67	2m to <4m	Sand	1000	1000	800	NL	NL	NL	NL
MW105	6.03	0m to <2m	Sand	SSA	SSA	SSA	SSA	SSA	SSA	SSA
MW106	9.17	0m to <2m	Sand	SSA	SSA	SSA	SSA	SSA	SSA	SSA
MW107	9.9	0m to <2m	Sand	SSA	SSA	SSA	SSA	SSA	SSA	SSA
MW109	7.07	4m to <8m	Sand	1000	1000	800	NL	NL	NL	NL
WDUP1	9.9	0m to <2m	Sand	SSA	SSA	SSA	SSA	SSA	SSA	SSA
WDUP2	9.17	0m to <2m	Sand	SSA	SSA	SSA	SSA	SSA	SSA	SSA

GROUNDWATER LABORATORY RESULTS COMPARED TO SITE SPECIFIC HSLs - RISK ASSESSMENT

All results in μ g/L unless stated otherwise.

	Envirolab Services	ADWG 2011 (v3.6 2021)		Tapwater 2021	MW101	MW101 - [LAB_DUP]	MW102	MW105	MW106	MW107	MW109	WDUP1	WDUP2
Fotal Recoverable Hydrocarbons (TRH)													
C_6 - C_9 Aliphatics (assessed using F1)	10	-	15000	-	44	45	<10	23	<10	<10	<10	<10	<10
C_9 - C_{14} Aliphatics (assessed using F2)	50	-	100	-	<50	<50	<50	<50	<50	<50	<50	<50	<50
Monocyclic Aromatic Hydrocarbons (BTEX	Compounds)												-
Benzene	1	1	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Foluene	1	800	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
thylbenzene	1	300	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Fotal xylenes	2	600	-	-	<2	<2	<2	<2	<2	<2	<2	<2	<2
Polycyclic Aromatic Hydrocarbons (PAHs)					_								
Naphthalene	1	-	-	0.12	<1	<1	<1	<1	<1	<1	<1	<1	<1
Acenaphthene	0.1	-	-	530	<0.1	NA	<0.1	<0.1	<0.1	0.3	5.1	<0.1	<0.1
/olatile Organic Compounds (VOCs), inclu	_		_	550	\U.1	INA.	\0.1	\0.1	\0.1	0.5	5.1	\0.1	\0.1
Dichlorodifluoromethane	10	-	-	-	<10	<10	<10	<10	<10	<10	<10	<10	<10
Chloromethane	10	-	-	-	<10	<10	<10	<10	<10	<10	<10	<10	<10
/inyl Chloride	10	0.3	-	-	<10	<10	<10	<10	<10	<10	<10	<10	<10
Bromomethane	10	-	-	-	<10	<10	<10	<10	<10	<10	<10	<10	<10
Chloroethane	10	-	-	-	<10	<10	<10	<10	<10	<10	<10	<10	<10
richlorofluoromethane	10	-	-	-	<10	<10	<10	<10	<10	<10	<10	<10	<10
.,1-Dichloroethene	1	30	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
rans-1,2-dichloroethene	1	60	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
,1-dichloroethane	1	-	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cis-1,2-dichloroethene	1	60	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromochloromethane	1	-	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Dibromochloromethane	1		-	-	1	<1	<1	<1	<1	<1	<1	<1	<1
Bromodichloromethane	1	250	-	-	7	5	<1	2	<1	<1	<1	<1	<1
Bromoform	1	250	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroform	1		-	-	42	36	<1	16	<1	<1	<1	<1	<1
2,2-dichloropropane	1	-	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
.,2-dichloroethane	1	3	_	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1	-	-	-			<1	<1	<1	<1	<1		
					<1	<1						<1	<1
,1-dichloropropene	1	-	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cyclohexane	1	-	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Carbon tetrachloride	1	3	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Benzene	1	1	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Dibromomethane	1	-	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
,2-dichloropropane	1	-	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
richloroethene	1	-	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
rans-1,3-dichloropropene	1	100	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
is-1,3-dichloropropene	1	100	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2-trichloroethane	1	-	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
oluene	1	800	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
,3-dichloropropane	1	-	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
L,2-dibromoethane	1	-	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Fetrachloroethene	1	50	_	_	<1	<1	<1	<1	<1	<1	<1	<1	<1
,1,1,2-tetrachloroethane	1	-	_	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chlorobenzene	1	300	-					<1	<1	<1			
				-	<1	<1	<1				<1	<1	<1
thylbenzene	1	300	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
n+p-xylene	2	-	-	-	<2	<2	<2	<2	<2	<2	<2	<2	<2
ityrene	1	30	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
.,1,2,2-tetrachloroethane	1	-	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
p-xylene	1	-	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
.,2,3-trichloropropane	1	-	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
sopropylbenzene	1	-	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromobenzene	1	-	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
-propyl benzene	1	-	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
2-chlorotoluene	1	-	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
l-chlorotoluene	1	-	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
.,3,5-trimethyl benzene	1	-	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
ert-butyl benzene	1	-	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
,2,4-trimethyl benzene	1	-	_	_	<1	<1	<1	<1	<1	<1	<1	<1	<1
,3-dichlorobenzene	1	20		-	<1	<1	<1	<1	<1	<1	<1	<1	<1
ec-butyl benzene	1	- 20	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
•										<1			
.,4-dichlorobenzene	1	40	-	-	<1	<1	<1	<1	<1		<1	<1	<1
-isopropyl toluene	1	-	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
.,2-dichlorobenzene n-butyl benzene	1	- 1500	-	-	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
L,2-dibromo-3-chloropropane	1	-	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
I,2,4-trichlorobenzene	1		-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
.,2,3-trichlorobenzene	1	30	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
lexachlorobutadiene	1	0.7	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
oncentration above the SAC oncentration above the PQL IL >PQL	VALUE Bold Red												

SUMMARY OF PFAS CONCENTRATIONS IN GROUNDWATER - HUMAN HEALTH All results in μ g/L unless stated otherwise.

	PQL	NEMP 2020	SAN	APLES
	Envirolab		MW105	WPFASDUP1
	Services	Recreational		
PFAS Compound				
Perfluorobutanesulfonic acid	0.01	NSL	<0.01	<0.01
Perfluoropentanesulfonic acid	0.01	NSL	<0.01	<0.01
Perfluorohexanesulfonic acid - PFHxS	0.01	NSL	<0.01	<0.01
Perfluoroheptanesulfonic acid	0.01	NSL	<0.01	<0.01
Perfluorooctanesulfonic acid PFOS	0.01	NSL	<0.01	<0.01
Perfluorodecanesulfonic acid	0.02	NSL	<0.02	<0.02
Perfluorobutanoic acid	0.02	NSL	<0.02	<0.02
Perfluoropentanoic acid	0.02	NSL	<0.02	<0.02
Perfluorohexanoic acid	0.01	NSL	< 0.01	<0.01
Perfluoroheptanoic acid	0.01	NSL	< 0.01	< 0.01
Perfluorooctanoic acid PFOA	0.01	5.6	< 0.01	< 0.01
Perfluorononanoic acid	0.01	NSL	< 0.01	< 0.01
Perfluorodecanoic acid	0.02	NSL	<0.02	<0.02
Perfluoroundecanoic acid	0.02	NSL	<0.02	<0.02
Perfluorododecanoic acid	0.05	NSL	<0.05	<0.05
Perfluorotridecanoic acid	0.1	NSL	<0.1	<0.1
Perfluorotetradecanoic acid	0.5	NSL	<0.5	<0.5
4:2 FTS	0.01	NSL	< 0.01	< 0.01
6:2 FTS	0.01	NSL	< 0.01	< 0.01
8:2 FTS	0.02	NSL	<0.02	<0.02
10:2 FTS	0.02	NSL	<0.02	<0.02
Perfluorooctane sulfonamide	0.1	NSL	<0.1	<0.1
N-Methyl perfluorooctane sulfonamide	0.05	NSL	<0.05	<0.05
N-Ethyl perfluorooctanesulfon amide	0.1	NSL	<0.1	<0.1
N-Me perfluorooctanesulfonamid oethanol	0.05	NSL	<0.05	< 0.05
N-Et perfluorooctanesulfonamid oethanol	0.5	NSL	<0.5	<0.5
MePer uorooctanesulf-amid oacetic acid	0.02	NSL	<0.02	<0.02
EtPer uorooctanesulf-amid oacetic acid	0.02	NSL	<0.02	<0.02
Total Positive PFHxS & PFOS	0.01	0.7	<0.01	<0.01
Total Positive PFOS & PFOA	0.01	NSL	<0.01	< 0.01
Total Positive PFAS	0.01	NSL	<0.01	<0.01
Positive PFAS result	Bold			
PFAS result above the SAC	Bold			

																																																31	Environm	ienta
TABLE O SOIL QA	Q1 A/QC SUMMARY	<i>.</i>																																																
			TRH C6 - C10 TRH >C10-C16	TRH >C16-C34	TRH >C34-C40 Benzene	Toluene	Ethylbenzene	m+p-xylene o-Xylene	Naphthalene	Acenaphthylene Acenaph-thene	Fluorene	Phenanthrene	Anthracene Fluoranthene	Pyrene	Derizo(a)antri acere Chrysene	Benzo(b.j+k)fluoranthene	Benzo(a)pyrene Indeno(1.2.3-c.d)nvrene	Dibenzo(a,h)anthra-cene	Benzo(g,h,i)perylene	HCB alpha- BHC	gamma- BHC	beta- BHC	Heptachlor	della- broc	Heptachlor Epoxide	Gamma- Chlordane	alpha- chlordane Endosulfan I	pp- DDE	Dieldrin Endrin	pp- DDD	Endosulfan II	pp- DDT Endrin Aldehyde	Endosulfan Sulphate Methoxvchlor	Azinphos-methyl (Guthion)	Bromophos-ethyl	Chlorpyriphos Chlorpyriphos-methyl	Diazinon	Dichlorvos	Umernoate Ethion	Fenitrothion	Malathion Parathion	Ronnel	Total PCBS	Arsenic Cadmium	Chromium	Copper Lead	Mercury	Nickel	Zinc ACM >7mm Estimation	FA and AF Estimation
	PQL Enviro PQL Enviro		25 50		100 0.2									0.1 0																			0.1 0.1													1 1			1 0.01	0.001
	PQL Enviro	DIAD VIC	25 50) 100	100 0.2	.2 0.5	1.0 4	2.0 1.0	0.1 0	0.1 0.1	0.1	0.1 0.	.1 0.1	0.1 0.	1 0.1	0.2	0.1 0.	0.1	0.1 0	0.1 0.1	0.1	0.1	0.1 0	1 0.1	0.1	0.1 0	0.1 0.1	0.1	0.1 0	1 0.1	0.1	0.1 0.1	0.1 0.1	1 0.1	0.1	0.1 0.1	1 0.1	0.1 0	.1 0.1	1 0.1	0.1 0.	1 0.1	0.1	4.0 0.4	\$ 1.0	1.0 1.	0 0.1	1.0 1	.0 -	-
Intra	SDUP3	0-0.1	<25 <5	0 160	<100 <0.	0.2 <0.5	<1	<2 <1	<0.1 <	0.1 <0.1	1 <0.1	0.2 <0	0.1 0.4	0.4 0	.3 0.2	0.4	0.2 0.	1 <0.1	0.2	NA NA	NA NA	NA	NA M	A NA	NA	NA M	NA NA	NA	NA N	A NA	NA	NA NA	NA NA	A NA	NA	NA NA	A NA	NA N	IA NA	A NA	NA N	A NA	NA	<4 <0.4	4 11	13 5	4 <0.1	4	51 <0.01	< 0.001
laborator		0-0.1	<25 <5	0 <100	<100 <0.	0.2 <0.5	<1	<2 <1	<0.1 <	:0.1 <0.1	1 <0.1	0.5 0	0.1 0.6				0.3 0.			<0.1 <0.		<0.1	<0.1 <	0.1 <0.1	<0.1	<0.1 <	:0.1 <0.1	<0.1	<0.1 <0	.1 <0.1		<0.1 <0.1			<0.1	<0.1 <0.	.1 <0.1	<0.1 <0	0.1 <0.	.1 <0.1	<0.1 <0		<0.1	<4 <0.	.4 9	12 5	4 <0.1		50 <0.01 ·	
duplicate	MEAN RPD %		nc no	c 105 c 105%	nc no	nc nc	nc	nc nc	nc i	nc nc			075 0.5 7% 40%	0.5 0.			0.25 0.			nc nc nc nc		nc	nc i	ic nc	nc	nc i	nc nc	nc	nc n			nc nc	nc nc		nc	nc nc	c nc	nc r	nc no	c nc	nc n	c nc	nc	nc nc		12.5 5 8% 0			0.5 nc	
	IN D 70		inc inc	105/6	ine ine		ne	ne ne	inc i	ne ne	, nc	00% 0	7/0 40/0	40/6 2.	//6 0/6	0/0	40/6 0.	o ne	0/0	inc inc	. ne	inc.	iic i		inc.	iic i	ne ne	iic	110 11	c nc	iic	ine ine	110 110		iic	inc inc		110 1			110 11		inc	ne ne	20/0	876 0.	70 110	0/0	.76 110	inc
Intra		0-0.1	<25 <5													<0.2														.1 <0.1	<0.1	<0.1 <0.1	<0.1 <0.	.1 <0.1	<0.1	<0.1 <0.			0.1 <0.		<0.1 <0			<4 <0.4			0 <0.1		25 <0.01	
laborator duplicate		0-0.1	<25 <50 nc nc		<100 <0. nc nc	0.2 <0.5		<2 <1 nc nc	<0.1 <	<0.1 <0.1 nc nc			0.1 0.2 nc 0.15	0.2 <0			0.1 <0 0.08 n	1 <0.1		<0.1 <0.2 nc nc		<0.1	<0.1 <	0.1 <0.1	<0.1	<0.1 <	0.1 <0.1	<0.1	<0.1 <0 nc n		<0.1	<0.1 <0.1 nc nc			<0.1	<0.1 <0.	.1 <0.1	<0.1 <0	0.1 <0.	.1 <0.1	<0.1 <0 nc n	.1 <0.1 c nc							12 <0.01 · 3.5 nc	
uupiicate	RPD %		nc nc			ic iic	nc	nc nc	nc i	nc nc				67% r				nc		nc nc		nc	nc r	ic nc	nc	nc i	nc nc	nc	nc n		nc	nc nc			nc	nc nc	c nc	nc r	nc no	c nc	nc n	c nc							1% nc	
Intra			<25 <5		190 <0.	0.2 <0.5			<0.1 <					0.2 0					0.1	NA NA				A NA			NA NA		NA N			NA NA				NA NA	A NA	NA N	IA NA	A NA	NA N			<4 <0.4		9 6				NA
laborator duplicate		0-0.1	<25 <5		<100 <0. 120 no	0.2 <0.5 IC IIC		<2 <1 nc nc	<0.1 <	<0.1 <0.1 nc nc			0.1 0.4 nc 0.35					1 <0.1 1 nc		<0.1 <0.1				0.1 <0.1 Ic nc			:0.1 <0.1 nc nc		<0.1 <0 nc n			<0.1 <0.1 nc nc				<0.1 <0.	.1 <0.1	<0.1 <0	0.1 <0. nc nc	.1 <0.1 c nc	<0.1 <0 nc n		<0.1	<4 <0.4		9 6			81 NA 1.5 NA	NA
uupiicate	RPD %				120 no																												nc nc			nc nc			nc no		nc n		nc			0% 55				
Intra			<25 <5			0.2 < 0.5			<0.1 <				0.1 0.3	0.3 0	.3 0.1	0.3	0.3 0.	1 <0.1 2 <0.1	0.1 <	<0.1 <0.1	1 <0.1	<0.1	<0.1 <	0.1 <0.1	<0.1	<0.1 <	0.1 <0.1	<0.1	<0.1 <0				<0.1 <0.	.1 <0.1					0.1 <0.			.1 <0.1		<4 <0.4		52 1	3 <0.1			NA
laborator duplicate		0.02-0.4	<25 <5		140 <0.	0.2 <0.5	<1	<2 <1	<0.1 <	0.1 <0.1			0.2 0.6 .15 0.45		.4 0.2 35 0.15	0.5	0.35 0.3	2 <0.1 5 nc		0.1 <0.1 nc nc		<0.1	<u.1 <<="" th=""><th>0.1 <0.1</th><th><0.1</th><th><0.1 <</th><th>0.1 <0.1</th><th><0.1</th><th><0.1 <0</th><th>.1 <0.1</th><th><0.1</th><th><0.1 <0.1</th><th><0.1 <0.</th><th>.1 <0.1</th><th><0.1</th><th><0.1 <0.</th><th>.1 <0.1</th><th><0.1 <0</th><th>0.1 <0.</th><th>.1 <0.1</th><th><0.1 <0</th><th>.1 <0.1 c nc</th><th><0.1 nc</th><th><4 <0.4</th><th></th><th>59 1 55.5 13</th><th></th><th></th><th></th><th></th></u.1>	0.1 <0.1	<0.1	<0.1 <	0.1 <0.1	<0.1	<0.1 <0	.1 <0.1	<0.1	<0.1 <0.1	<0.1 <0.	.1 <0.1	<0.1	<0.1 <0.	.1 <0.1	<0.1 <0	0.1 <0.	.1 <0.1	<0.1 <0	.1 <0.1 c nc	<0.1 nc	<4 <0.4		59 1 55.5 13				
aupneute	RPD %				15% no	ic nc	nc	nc nc		nc nc				67% 29								nc	nc i	ic nc	nc	nc i	nc nc	nc	nc n	c nc	nc	nc nc	nc nc	c nc	nc	nc nc	c nc	nc r	nc no	c nc	nc n		nc	nc nc		13% 7				NA
Inter			<25 <5		210 <0.	0.2 < 0.5	<1	<2 <1 <2 <1			1 <0.1 1 <0.1	0.3 <0	0.1 <0.1	<0.1 <0			<0.05 <0	1 <0.1 1 <0.1		NA NA <0.1 <0.1		NA 10.1	NA N	A NA	NA 10.1	NA N	NA NA	NA 10.1	NA N	A NA	NA 10.1	NA NA	NA NA <0.1 <0.		NA 10.1	NA NA	A NA	NA N	A NA	A NA	NA N	A NA	NA <0.1	<4 <0.4	.4 82 .4 73	31 5 24 5	5 <0.1 5 <0.1		15 NA 87 NA	
laborator duplicate		0.04-0.3	<25 <5		130 no	0.2 <0.5 nc nc	nc		0.075				nc nc		ic nc		<0.05 <0 nc n			nc nc			<u.1 <i<br="">nc I</u.1>	IC NC	<0.1 nc	<0.1 <	nc nc	<0.1 nc	<0.1 <0 nc n	c nc	<0.1 nc	nc nc		.1 <0.1	nc	<0.1 <0. nc nc	c nc	<0.1 <0	0.1 <0. nc nc	.1 <0.1	<0.1 <0 nc n	c nc	<0.1 nc	<4 <0.4 nc nc		27.5 5				
	RPD %				123% no									nc r				nc	nc	nc nc	nc	nc	nc i	ic nc	nc	nc i	nc nc	nc	nc n	c nc	nc	nc nc	nc no	c nc	nc	nc no	c nc	nc r	nc no	c nc	nc n	c nc	nc			25% 0				NA
	0011040				100 0																																									17 0		10		
Inter laborator	SDUP10 y BH117	0-0.1	<25 63		120 <0. 100 <0.	0.2 < 0.5		<2 <1 <2 <1				<0.1 <0	0.1 <0.1	<0.1 <0	0.1 <0.1		<0.05 <0 <0.05 <0			NA NA <0.1 <0.1				A NA 0.1 <0.1			NA NA :0.1 <0.1	NA <0.1	NA N/ <0.1 <0			NA NA <0.1 <0.1				NA NA <0.1 <0.	A NA .1 <0.1	NA N <0.1 <0	NA NA 0.1 <0.	A NA .1 <0.1	NA N. <0.1 <0	A NA .1 <0.1		<4 <0.4		17 2 17 2			50 NA 54 NA	
duplicate		0 0.1	nc 78		110 no	nc nc	nc	nc nc	nc	nc nc	nc	nc r	nc nc	nc r	ic nc	nc	nc n	nc	nc	nc nc	nc	nc	nc i	ic nc	nc	nc i	nc nc	nc	nc n	c nc	nc	nc nc	nc nc	c nc	nc	nc nc	c nc	nc r	nc no	c nc	nc n	c nc	nc	nc nc			7.5 nc	14		
	RPD %		nc <u>38</u>	<mark>%</mark> 18%	18% no	nc nc	nc	nc nc	nc i	nc nc	nc	nc r	nc nc	nc r	ic nc	nc	nc n	nc nc	nc	nc nc	nc	nc	nc i	ic nc	nc	nc i	nc nc	nc	nc n	c nc	nc	nc nc	nc no	c nc	nc	nc no	c nc	nc r	nc no	c nc	nc n	c nc	nc	nc nc	5 <mark>3%</mark>	0% 49	% nc	29% 1	1% NA	NA
Circle1	70.01		N/A N/		NA -0		.1	0 0						NA N					NA				NA M	A NA	NA	NA M	NA NA	NA	NA N				NA N/			NA NA	A NA	NA N	IA NA											
Field Blank	TB-S1 27/09/21	-	NA NA	A NA	NA <0.	0.2 <0.5	<1	<2 <1	NA r	NA NA	A NA	NA N	NA INA	NA N	A NA	NA	NA N	A NA	NA	NA NA	A NA	NA	NA P	IA NA	NA	NA P	NA NA	NA	NA N	A NA	NA	NA NA	NA NA	A NA	NA	NA NA	A NA	NA N	NA INA	A NA	NA N	A NA	NA	NA NA	A NA	NA N	A NA	INA I	IA NA	NA
Brank	27/03/21																																																	
Field	FRI-SPT	μg/L	NA NA	A NA	NA <1	:1 <1	<1	<2 <1	NA M	NA NA	A NA	NA N	NA NA	NA N	A NA	NA	NA N	A NA	NA I	NA NA	A NA	NA	NA M	IA NA	NA	NA M	NA NA	NA	NA N	A NA	NA	NA NA	NA NA	A NA	NA	NA NA	A NA	NA N	IA NA	A NA	NA N	A NA	NA	NA NA	A NA	NA N	A NA	NA I	IA NA	NA
Rinsate	6/10/21			_																	_																												_	
Trip	TS-S1			-	- 105	5% 104%	103% 9	7% 106%	-		-	-		-		-		-	-		-	-	-		-	-		-		-	-			-	-		-			-			-		-			-		
Spike	27/09/21																																																	
	Result outsic	de of QA/QC a	acceptance cr	riteria																																														

JKEnvironments

Additional Site Investigation Greenwich Hospital, 97-115 River Road, Greenwich, NSW E32507BR

TABLE Q2

SUMMARY OF PFAS FIELD QA/QC IN SOIL Units are $\mu g/Kg$ unless stated otherwise.

			Perfluorobutan esulfonic acid	Perfluoropentanesulfonic acid	Perfluorohexanesulfonic acid - PFHxS	Perfluoroheptanesulfonic acid	Perfluorooctanesulfonic acid PFOS	Perfluorodecanesulfonic acid	Perfluorobutanoic acid	Perfluoropentanoic acid	Perfluorohexanoic acid	Perfluoroheptanoic acid	Perfluorooctanoic acid PFOA	Perfluorononanoic acid	Perfluorodecanoic acid	Perfluoroundecanoic acid	Perfluorododecanoic acid	Perfluo rotridecano ic acid	Perfluorotetradecanoic acid	4:2 FTS	6:2 FTS	8:2 FTS	10:2 FTS	Perfluorooctane sulfonamide	N-Methyl perfluorooctane sulfonamide	N-Ethyl perfluorooctanesulfon amide	N-Me perfluorooctanesulfonamid oethanol	N-Et perfluor ooctanesulfonamid oethanol	MePer uorooctanesulf-amid oacetic acid	EtPer uorooctanesulf-amid oacetic acid	Total Positive PFHxS & PFOS	Total Positive PFOS & PFOA	Total Positive PFAS
PQL Envirola	b		0.1	0.1	0.1	0.1	0.1	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.5	0.5	0.5	0.5	5	0.1	0.1	0.1	0.1	1	1	1	1	5	0.2	0.2	0.1	0.1	0.1
PQL Envirola	ib VIC		0.1	0.1	0.1	0.1	0.1	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.5	0.5	0.5	0.5	5	0.1	0.1	0.1	0.1	1	1	1	1	5	0.2	0.2	0.1	0.1	0.1
																																	
	BH105	0.25-0.4	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.1	<0.1	<0.1	<0.1	<0.5	<0.5	<0.5	<0.5	<5	<0.1	<0.1	<0.2	<0.2	<1	<1	<1	<1	<5	<0.2	<0.2	<0.1	<0.1	<0.1
laboratory	PFAS DUP1	0.25-0.4	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.1	<0.1	<0.1	<0.1	<0.5	<0.5	<0.5	<0.5	<5	<0.1	<0.1	<0.2	<0.2	<1	<1	<1	<1	<5	<0.2	<0.2	<0.1	<0.1	<0.1
duplicate	MEAN		nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
<u> </u>	RPD %		nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
Inter	BH104	0.04-0.3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.1	<0.1	<0.1	<0.1	<0.5	<0.5	<0.5	<0.5	<5	<0.1	<0.1	<0.2	<0.2	<1	<1	<1	<1	<5	<0.2	<0.2	<0.1	<0.1	<0.1
laboratory	PFAS DUP3	0.04-0.3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.1	<0.1	<0.1	<0.1	<0.5	<0.5	<0.5	<0.5	<5	<0.1	<0.1	<0.2	<0.2	<1	<1	<1	<1	<5	<0.2	<0.2	<0.1	<0.1	<0.1
	MEAN	0.04-0.5	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
duplicate			ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	nc	ne	nc	ne	nc	nc	nc	ne	nc	ne	ne	ne	ne	ne	ne	ne	ne

Additional Site Investigation
Greenwich Hospital, 97-115 River Road, Greenwich, NSW

E32507BR

TABLE O3

TABLE Q3 GROUNDWATER QA/QC	C SUMMARY																																																		
		Dichlorodifluoromethane Chloromethane	Vinyl Chloride	Bromomethane	Chloroethane	Trichlorofluoromethane	1,1-Dichloroethene	Trans-1,2-dichloroethene	1,1-dichloroethane Cie-1 2-dichloroethane	Cis-1,∠-dicritoroethene Bromochloromethane	Chloroform	2,2-dichloropropane	1,2-dichloroethane	1,1,1-trichloroethane	1,1-dichloropropene	Cyclohexane	Carbon tetrachloride	Benzene	Dibromomethane	1,2-dichloropropane	Trichloroethene	Bromodichloromethane	trans-1,3-dichloropropene cis-1.3-dichloropropene	ds-1,3-uchiorophopere 1,1,2-trichloroethane	Toluene	1,3-dichloropropane	Dibromochloromethane	1,2-dibromoethane	Tetrachloroethene	1,1,1,2-tetrachloroethane	Chlorobenzene Ethvlbenzene	Bromoform	m+p-xylene	Styrene	1,1,2,2-tetrachloroethane o-xvlene	1,2,3-trichloropropane	Isopropylbenzene	Bromobenzene	n-propyl benzene	4-chlorotoluene	1,3,5-trimethyl benzene	Tert-butyl benzene	1,2,4-trimethyl benzene 1 3_dichlorohenzene	Sec-butyl benzene	1,4-dichlorobenzene	4-isopropyl toluene	1,2-dichlorobenzene A-hutul henzene	1,2-dibromo-3-chloropropane	1,2,4-trichlorobenzene	Hexachlorobutadiene	1,2,3-trichlorobenzene
	PQL Envirolab SYD	10 10	10	10	10	10	1	1	1 1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1 1	1 1	1	1	1	1	1	1	1 1	1	2	1	1 1	1	1	1	1	1 1	1	1	1 1	1	1	1	1 1	1	1	1	1
	PQL Envirolab VIC	10 10	10	10	10	10	1	1	1 1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1 1	1 1	1	1	1	1	1	1	1 1	1	2	1	1 1	1	1	1	1	1 1	1	1	1 1	1	1	1	1 1	1	1	1	1
Intra	MW107	<10 <10) <10	<10	<10	<10	<1	<1	<1 <	1 <1	1 <1	l <1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1 <	1 <1	<1	<1	<1	<1	<1	<1	<1 <1	<1	<2	<1	<1 <	1 <1	<1	<1	<1 <	1 <1	<1	<1	<1 <	1 <1	<1	<1	<1 <	1 <1	. <1	<1	<1
laboratory	WDUP1	<10 <10) <10	<10	<10	<10	<1	<1	<1 <	1 <1	1 <1	l <1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1 <	1 <1	<1	<1	<1	<1	<1	<1	<1 <1	<1	<2	<1	<1 <	1 <1	<1	<1	<1 <	1 <1	<1	<1	<1 <	1 <1	<1	<1	<1 <	1 <1	<1	<1	<1
duplicate	MEAN	nc nc	nc	nc	nc	nc	nc	nc	nc n	nc no	c nc	: nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc n	c nc	nc	nc	nc	nc	nc	nc	nc no	c nc	nc	nc	nc n	c nc	nc	nc	nc r	ic nc	nc	nc	nc n	c nc	nc	nc	nc n	c nc	nc	nc	nc
	RPD %	nc nc	nc	nc	nc	nc	nc	nc	nc n	nc no	c nc	: nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc n	c nc	nc	nc	nc	nc	nc	nc	nc no	c nc	nc	nc	nc n	c nc	nc	nc	nc r	ic nc	nc	nc	nc n	c nc	nc	nc	nc n	c nc	nc	nc	nc
Inter	MW106	<10 <10) <10	<10	<10	<10	<1	<1	<1 <	:1 <1	1 <1	l <1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1 <	1 <1	<1	<1	<1	<1	<1	<1	<1 <1	<1	<2	<1	<1 <	1 <1	<1	<1	<1 <	1 <1	<1	<1	<1 <	1 <1	<1	<1	<1 <	1 <1	<1	<1	<1
laboratory	WDUP2	<10 <10) <10	<10	<10	<10	<1	<1	<1 <	1 <1	1 <1	l <1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1 <	1 <1	<1	<1	<1	<1	<1	<1	<1 <1	<1	<2	<1	<1 <	1 <1	<1	<1	<1 <	1 <1	<1	<1	<1 <	1 <1	<1	<1	<1 <	1 <1	<1	<1	<1
duplicate	MEAN RPD %	nc nc	nc	nc	nc	nc	nc	nc	nc n	nc no	c nc	c nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc n	c nc	nc	nc	nc	nc	nc	nc	nc no	nc	nc	nc	nc n	c nc	nc	nc	nc r	ic nc	nc	nc	nc n	c nc	nc	nc	nc n	c nc	nc	nc	nc
	RPD %	nc nc	nc	nc	nc	nc	nc	nc	nc n	nc no	c nc	c nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc n	c nc	nc	nc	nc	nc	nc	nc	nc no	nc	nc	nc	nc n	c nc	nc	nc	nc r	ic nc	nc	nc	nc n	c nc	nc	nc	nc n	c nc	nc	nc	nc
Field	TB-W1	0 0	0	0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	0 0	0	0	0	0 0) 0	0	0	0	0 0	0	0	0 0) 0	0	0	0 0	0	0	0	0
Blank	13/10/2021																																																		

		TRH C6 - C10	TRH >C10-C16	TRH >C16-C34	TRH >C34-C40	Benzene	Toluene	Ethylbenzene	m+p-xylene	o-Xylene	Naphthalene	Acenaphthylene	Acenaph-thene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo(a)anthracene	Chrysene	Benzo(b,j+k)fluoranthen	Benzo(a)pyrene	Indeno(1,2,3-c,d)pyren€	Dibenzo(a,h)anthra-cen	Benzo(g,h,i)perylene	Arsenic	Cadmium	Chromium VI	Copper	Lead	Mercury	Nickel	Zinc
	PQL Envirolab SYD	10	50	100	100	1	1	1	2	1	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.1	1	0.1	1	1	1	0.05	1	1
	PQL Envirolab VIC	10	50	100	100	1.0	1.0	1.0	2.0	1.0	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.1	1	0.1	1	1	1	0.05	1	1
Intra	MW107	<10	<50	<100	<100	<1	<1	<1	<2	<1	<0.2	<0.1	0.3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	2	<0.1	<1	5	3	< 0.05	5	47
laboratory	WDUP1	<10	<50	<100	<100	<1	<1	<1	<2	<1	<0.2	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	2	0.1	<1	4	3	< 0.05	5	38
duplicate	MEAN	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	0.175	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	2	0.075	nc	4.5	3	nc	5	42.
	RPD %	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	143%	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	0%	67%	nc	22%	0%	nc	0%	219
Inter	MW106	<10	<50	<100	<100	<1	<1	<1	<2	<1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	3	0.2	<1	7	17	< 0.05	10	73
laboratory	WDUP2	<10	<50	<100	<100	<1	<1	<1	<2	<1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1	<0.2	< 0.1	< 0.1	<0.1	<0.1	3	0.3	1	9	19	< 0.05	11	76
duplicate	MEAN	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	3	0.25	0.75	8	18	nc	10.5	74.
	RPD %	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	0%	40%	67%	25%	11%	nc	10%	4%
Field	TB-W1	NA	0	0	0	<1	<1	<1	<2	<1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Blank	13/10/2021																																
	TS-W1	-			-	96%	103%	115%	110%	110%	-			-									-		-	-	-				-	-	-
Trip					_	5070	10070	113/0	110/0	11070																							

Additional Site Investigation

Greenwich Hospital, 97-115 River Road, Greenwich, NSW E32507BR

TABLE Q4 SUMMARY OF PFAS FIELD QA/QC IN GROUNDWATER Units are µg/L unless stated otherwise.

		Perfluorobutanes ulfonic acid	Perfluoropentanesulfonic acid	Perfluorohexanes ulfonic acid - PFHxS	Perfluoroheptanesulfonic acid	Perfluorooctanesulfonic acid PFOS	Perfluorodecanesulfonic acid	Perfluorobutanoic acid	Perfluoropentanoic acid	Perfluorohexanoic acid	Perfluoroh eptanoic acid	Perfluorooctanoic acid PFOA	Perfluoronanoic acid	Perfluorodecanoic acid	Perfluoroundecanoic acid	Perfluorododecanoic acid	Perfluorotridecanoic acid	Perfluorotetradecanoic acid	4:2 FTS	6:2 FTS	8:2 FTS	10:2 FTS	Perfluorooctane sulfonamide	N-Methyl perfluorooctane sulfonamide	N-Ethyl perfluorooctanesulfon amide	N-Me perfluorooctanesulfonamid oethanc	N-Et perfluorooctanesulfonamid oethanol	MePer uorooctanesulf-amid oacetic acid	EtPer uorooctanesulf-amid oacetic acid	Total Positive PFHxS & PFOS	Total Positive PFOS & PFOA	Total Positive PFAS
PQL Envirola	b	0.1	0.1	0.1	0.1	0.1	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.5	0.5	0.5	0.5	5	0.1	0.1	0.1	0.1	1	1	1	1	5	0.2	0.2	0.1	0.1	0.1
PQL Envirola	b VIC	0.1	0.1	0.1	0.1	0.1	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.5	0.5	0.5	0.5	5	0.1	0.1	0.1	0.1	1	1	1	1	5	0.2	0.2	0.1	0.1	0.1
Intra	MW105	<0.01	<0.01	<0.01	<0.01	<0.01	<0.02	<0.02	<0.02	< 0.01	< 0.01	< 0.01	<0.01	<0.02	<0.02	<0.05	<0.1	<0.5	<0.01	<0.01	<0.02	<0.02	<0.1	<0.05	<0.1	<0.05	<0.5	<0.02	<0.02	<0.01	<0.01	< 0.01
laboratory	WPFASDUP1	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.02	<0.02	<0.02	<0.01	<0.01	< 0.01	<0.01	<0.02	<0.02	<0.05	<0.1	<0.5	<0.01	< 0.01	<0.02	<0.02	<0.1	<0.05	<0.1	<0.05	<0.5	<0.02	<0.02	<0.01	<0.01	< 0.01
	MEAN	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	RPD %	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
Field	PFASTB-W	<0.01	<0.01	<0.01	<0.01	<0.01	<0.02	<0.02	<0.02	<0.01	<0.01	<0.01	<0.01	<0.02	<0.02	<0.05	<0.1	<0.5	<0.01	<0.01	<0.02	<0.02	<0.1	<0.05	<0.1	<0.05	<0.5	<0.02	<0.02	<0.01	<0.01	< 0.01
Blank	13/10/2021																															

Additional Site Investigation Greenwich Hospital, 97-115 River Road, Greenwich, NSW E32507BR

ABBREVIATIONS AND EXPLANATIONS

Abbreviations used in the Tables:

CS	Characteristic	Situation

- CH₄ Methane
- CO Carbon Monoxide
- CO₂ Carbon Dioxide
- GSV Gas Screening Value
- H₂S Hydrogen Sulfide
- LEL Lower Explosive Limit
- O₂ Oxygen
- >>> Measured LEL greater than 100%

Flow rates

- If the flow rate measured in the field was zero this has been adjusted to 0.1 L/hr (the minimum measurable flow rate of the instrument). The adjustment is indicated by a green font.
- If the measured flow rate was a negative value this has been converted to a positive value to account for potential flow rates. The adjustment is indicated by a green font.

GSV and CS Values

GSV and CS value calculated using the Modified Wilson Card Classification detailed in the Assessment and Management of Hazardous Ground Gases, NSW EPA 2019. Table 7 of the guidelines suggests the following adjustments:

- If methane >1% and/or carbon dioxide > 5% for CS1 then CS increased to 2 (adjustment indicated by blue italic font);
 - If borehole flow rate > 70L/hr for CS2 then CS increased to 3 (adjustment indicated by blue italic font).

Gas Protection Values

Gas Protection Values derived from Table 8 of the Assessment and Management of Hazardous Ground Gases, NSW EPA 2019.

- For large commercial developments if Gas protection value equals 1 and methane concentration >20% then increase to CS3 (adjustment indicated by blue italic font).

GSV, CS and Gas Protection values for the entire Site

These values are calculated using the maximum values ecountered at the site and are not borehole specific.

Additional Site Investigation Greenwich Hospital, 97-115 River Road, Greenwich, NSW E32507BR

TABLE HGG1

SUMMARY OF FIELD GAS MEASUREMENTS

Site Use:		P	Peak HGG (H	lazardous G	round Gas) N	/leasuremen	ts		Standing		Calculated	Calculated	Methane	Carbon Dioxide		
Medium/High Den	sity Residential	CH₄ (max)	CO ₂ (max)	O ₂ (min)	CH₄ LEL (max)	H ₂ S (max)	CO (max)	Flow (max)	Water Level (SWL)	Atmospheric pressure	Methane Gas Screening Value (GSV)	Carbon Dioxide Gas Screening Value (GSV)	Characteristic Gas Situtation (CS)	Characteristic Gas Situtation (CS)	Maximum CS value	Gas Protectior Guidance Valu
Well Reference	Sampling Round & Date	% v/v	% v/v	% v/v	%LEL	ppm	ppm	L/hr	m	mBar	-	-	-	-	-	-
MW101	6/10/2021 (Round 1)	0	0	21.1	0	0	6	0.1	2.29	1004	0.00	0.00	1	1	1	0
MW102	7/10/2021 (Round 1)	0	0	20.3	0	0	6	0.3	3.7	1003	0.00	0.00	1	1	1	0
MW104	5/10/2021 (Round 1)	0	2.1	18.2	0	0	6	0.2	-	998	0.00	0.00	1	1	1	0
MW105	5/10/2021 (Round 1)	0	5.1	12.3	0	0	31	0.2	5.8	1001	0.00	0.01	1	2	2	3
MW106	5/10/2021 (Round 1)	0	4	17.5	0	0	11	0.7	8.26	1001	0.00	0.03	1	1	1	0
MW107	5/10/2021 (Round 1)	0	0	20.6	0	0	4	0.4	8.75	999	0.00	0.00	1	1	1	0
MW109	5/10/2021 (Round 1)	0	10.6	5.1	0	0	61	0.4	7.27	1000	0.00	0.04	1	2	2	3
MW119	5/10/2021 (Round 1)	0	1	20.4	0	0	6	0.4	-	998	0.00	0.00	1	1	1	0
MW101	13/10/2021 (Round 2)	0	4.2	15.2	0	0	6	0.5	3.68	1006	0.00	0.02	1	1	1	0
MW102	13/10/2021 (Round 2)	0	0.1	20.6	0	0	3	0.6	1.35	1007	0.00	0.00	1	1	1	0
MW104	13/10/2021 (Round 2)	0	0.5	20.2	0	0	6	0.5	-	1007	0.00	0.00	1	1	1	0
MW105	13/10/2021 (Round 2)	0	5.5	15.9	0	0	6	0.3	6.24	1007	0.00	0.02	1	2	2	3
MW106	13/10/2021 (Round 2)	0	5.2	16.6	0	0	4	0.3	-	1007	0.00	0.02	1	2	2	3
MW107	13/10/2021 (Round 2)	0	6.4	10.5	0	0	8	0.3	9.9	1008	0.00	0.02	1	2	2	3
MW109	14/10/2021 (Round 2)	0	13.7	2.7	0	0	9	0.5	7.07	1001	0.00	0.07	1	2	2	3
MW119	13/10/2021 (Round 2)	0	3.8	16.6	0	0	6	0.5	-	1006	0.00	0.02	1	1	1	0
MW101	20/10/2021 (Round 3)	0	8.1	12.8	0	0	0	0.1	3.64	1018	0.00	0.01	1	2	2	3
MW102	20/10/2021 (Round 3)	0	0.3	20.9	0	0	0	0.1	4.37	1015	0.00	0.00	1	1	1	0
MW104	20/10/2021 (Round 3)	0	0	21.4	0	0	0	0.1	-	1013	0.00	0.00	1	1	1	0
MW105	20/10/2021 (Round 3)	0	0	20.9	0	0	0	0.7	5.95	1014	0.00	0.00	1	1	1	0
MW106	20/10/2021 (Round 3)	0	5.9	16.4	0	0	10	1.2	9.35	1015	0.00	0.07	1	2	2	3
MW107	20/10/2021 (Round 3)	0	0	20.6	0	0	0	1.6	9.96	1015	0.00	0.00	1	1	1	0
MW109	20/10/2021 (Round 3)	0	13.3	3.2	0	0	0	0.1	8.57	1015	0.00	0.01	1	2	2	3
MW119	20/10/2021 (Round 3)	0	0	20.9	0	0	0	0.4	-	1015	0.00	0.00	1	1	1	0
Total Number of I		24	24	24	24	24	24	24	24	24	24	24	24	24	24	24
Minimum Value		0	0	2.7	0	0	0	0.1	1.35	998	0	0	1	1	1	0
Maximum Value		0	13.7	21.4	0	0	61	1.6	9.96	1018	0.0	0.1	1	2	2	3
Residential not reco Level 3 Risk Assessn Consider evacuatio		ervention a	nd manager	nent	Level 3 RA	GSV, CS a	nd Gas Prot	ection values	for the enti	re Site	0.00	0.22	1	2	2	3

DSI Data Summary Tables

ABBREVIATIONS AND EXPLANATIONS

Abbreviations used in the Tables:

ABC: ACM: ADWG: AF: ANZG B(a)P: CEC:	Ambient Background Concentration Asbestos Containing Material AustralianDrinking Water Guidelines Asbestos Fines Australian and New Zealand Guidelines Benzo(a)pyrene Cation Exchange Capacity	PCE: pH _{KCL} : pH _{ox} : PQL: RS: RSL: SAC:	Perchloroethylene (Tetrachloroethylene or Teterachloroethene) pH of filtered 1:20, 1M KCL extract, shaken overnight pH of filtered 1:20 1M KCl after peroxide digestion Practical Quantitation Limit Rinsate Sample Regional Screening Levels Site Assessment Criteria
CRC: CT:	Cooperative Research Centre Contaminant Threshold	SCC: S _{Cr} :	Specific Contaminant Concentration Chromium reducible sulfur
EILs:	Ecological Investigation Levels	S _{POS} :	Peroxide oxidisable Sulfur
ESLs:	Ecological Screening Levels	SSA:	Site Specific Assessment
FA:	Fibrous Asbestos	SSHSLs	Site Specific Health Screening Levels
GIL:	Groundwater Investigation Levels	TAA:	Total Actual Acidity in 1M KCL extract titrated to pH6.5
HILs:	Health Investigation Levels	TB:	Trip Blank
HSLs:	Health Screening Levels	TCA:	1,1,1 Trichloroethane (methyl chloroform)
	Health Screening Level-SiteSpecific Assessment	TCE:	Trichloroethylene (Trichloroethene)
NA:	Not Analysed	TCLP:	Toxicity Characteristics Leaching Procedure
NC:	Not Calculated	TPA:	Total Potential Acidity, 1M KCL peroxide digest
NEPM:	National Environmental Protection Measure	TS:	Trip Spike
NHMRC:	National Health and Medical Research Council	TRH:	Total Recoverable Hydrocarbons
NL:	Not Limiting	TSA:	Total Sulfide Acidity (TPA-TAA)
NSL:	No Set Limit	UCL:	Upper Level Confidence Limit on Mean Value
OCP:	Organochlorine Pesticides	USEPA	United States Environmental Protection Agency
OPP:	Organophosphorus Pesticides	VOCs:	Volatile Organic Compounds
PAHs:	Polycyclic Aromatic Hydrocarbons	VOCC:	Volatile Organic Chlorinated Compounds
ppm:	Parts per million	WHO:	World Health Organisation
PCBs:	Polychlorinated Biphenyls		

Table Specific Explanations:

HIL Tables:

- The chromium results are for Total Chromium which includes Chromium III and VI. For initial screening purposes, we have assumed that the samples contain only Chromium VI unless demonstrated otherwise by additional analysis.
- Carcinogenic PAHs is a toxicity weighted sum of analyte concentrations for a specific list of PAH compounds relative to B(a)P. It is also referred to as the B(a)P Toxic Equivalence Quotient (TEQ).
- Statistical calculations are undertaken using ProUCL (USEPA). Statistical calculation is usually undertaken using data from fill samples.

EIL/ESL Table:

 ABC Values for selected metals have been adopted from the published background concentrations presented in Olszowy et. al., (1995), Trace Element Concentrations in Soils from Rural and Urban New South Wales (the 25th percentile values for old suburbs with high traffic have been quoted).

Waste Classification and TCLP Table:

- Data assessed using the NSW EPA Waste Classification Guidelines, Part 1: Classifying Waste (2014).
- The assessment of Total Moderately Harmful pesticides includes: Dichlorovos, Dimethoate, Fenitrothion, Ethion, Malathion and Parathion.
- Assessment of Total Scheduled pesticides include: HBC, alpha-BHC, gamma-BHC, beta-BHC, Heptachlor, Aldrin, Heptachlor Epoxide, gamma-Chlordane, alpha-chlordane, pp-DDE, Dieldrin, Endrin, pp-DDD, pp-DDT, Endrin Aldehyde.

VALUE

oncentration above the SAC

<table-container> Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part<</table-container>								AFTALC					DALLA			ODCANOCIUC					
Partmeter Y Y Y Y<	All data in mg/	/kg unless stat	ed otherwise	Arsenic	Cadmium				Mercury	Nickel	Zinc	Total	Carcinogenic	HCB	Endosulfan		Aldrin &			Heptachlor	OP PESTICIDES (OPI Chlorpyrifos
intracesintrace	POL - Envirolat	Services		4	0.4	1	1	1	0.1	1	1	-		0.1	0.1	0.1		0.1		0.1	0.1
Sample Sample Sample sample Sample sample Sample s)									300									160
Image O D <thd< th=""> D <thd< th=""> <thd< th=""></thd<></thd<></thd<>	Sample	Sample											1				-	1			
Image Quad Quad Quad Quad	BH1	0.2-0.3	Fill: silty sandy gravel	<4	<0.4	14	17	22	<0.1	24	34	0.71	<0.5	<0.1	<0.1	<0.1	0.2	<0.1	<0.1	<0.1	<0.1
Image <td>BH1</td> <td>0.2-0.3</td> <td>Laboratory duplicate</td> <td><4</td> <td><0.4</td> <td>13</td> <td>22</td> <td>8</td> <td><0.1</td> <td>41</td> <td>26</td> <td>0.1</td> <td><0.5</td> <td><0.1</td> <td><0.1</td> <td><0.1</td> <td>0.2</td> <td><0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td>	BH1	0.2-0.3	Laboratory duplicate	<4	<0.4	13	22	8	<0.1	41	26	0.1	<0.5	<0.1	<0.1	<0.1	0.2	<0.1	<0.1	<0.1	<0.1
1010 12.2 12.9 <th< td=""><td>BH1</td><td>0.2-0.3</td><td>Laboratory triplicate</td><td><4</td><td><0.4</td><td>15</td><td>24</td><td>16</td><td><0.1</td><td>40</td><td>29</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></th<>	BH1	0.2-0.3	Laboratory triplicate	<4	<0.4	15	24	16	<0.1	40	29	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Bit Oth Bit Oth Ai Ai Ai Ai Ai <	BH2	0.0-0.1	Fill: silty sand	<4	<0.4	11	21	160	0	5	120	1.5	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Image Barbon Barbon <td>BH2</td> <td>2.5-2.7</td> <td>Sandstone</td> <td><4</td> <td><0.4</td> <td>45</td> <td>10</td> <td>30</td> <td><0.1</td> <td>4</td> <td>150</td> <td>24</td> <td>2.5</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>NA</td>	BH2	2.5-2.7	Sandstone	<4	<0.4	45	10	30	<0.1	4	150	24	2.5	NA	NA	NA	NA	NA	NA	NA	NA
net bit bi	BH3	0.1-0.2	Fill: silty gravelly sand	<4	<0.4	45	46	4	<0.1	37	26	< 0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
met15.715.0mm16.0mm <td>BH4</td> <td>0.1-0.2</td> <td>Fill: silty gravelly sand</td> <td><4</td> <td><0.4</td> <td>92</td> <td>30</td> <td>4</td> <td><0.1</td> <td>76</td> <td>41</td> <td>0.1</td> <td><0.5</td> <td></td> <td><0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td>	BH4	0.1-0.2	Fill: silty gravelly sand	<4	<0.4	92	30	4	<0.1	76	41	0.1	<0.5		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1944 152 17 18 N N N N <td></td> <td></td> <td></td> <td></td> <td>NA</td> <td>NA</td> <td>NA</td> <td></td> <td>NA</td> <td>NA</td> <td></td> <td>NA</td> <td>NA</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>NA</td> <td></td> <td>NA</td>					NA	NA	NA		NA	NA		NA	NA						NA		NA
948 1.0.																					NA
Bit 0102 TR:NyrameN; and 4 0.04 0.9 0.1 0.0 0.05 0.01 <																					NA
916 0.7.3 Cymy and 4 0.4 0.7 4.1 0.4 0.4 0.7 0.4 0.7 0.4 0.7 0.4 0.7 0.4 0.7 0.4 0.7 0.4 0.7 0.4 0.7 0.4 0.7 0.																					NA
Bind Dial Bind Model Mo																					<0.1
986 0.607 Samy Symy 4 0.44 21 4 0.11 3 3 0.05 0.05 NA																					NA
BH9 0.0.1 Fit:shy.and 5 0.0.4 710 100 100 100 100 100 100 100 100 100 100 <																					<0.1
Bes Op104 Filtsitysamic park 64 Op14 Filtsitysamic park 64 Op14 Space Op14 Space Op14 Space Op14 Space Op14 Space																					NA
BHB 0.104 Sandtane e4 040 9 5 15 0 2 17 0.005 15. 0.00 15. 0.00 15. 0.00 15. 0.00 15. 0.00 0.00 0.01 <																					<0.1
Be9 0.102 Birlishysend 64 0.40 37 15 8 0.11 88 0.20 0.15 0.11 0.																					<0.1
Beth 00.01 Filtishyand 64 64 75 7 66 60.1 3 2 0.0 40.5 60.1																					NA
PH1 0.042 Filsilyand 64 0.4 55 11 90 0.1 0.1 0.1 0.11<																					<0.1
BH11 0.002 Isberstryuption edd 0.0 6 0.0 3 7 1.6 0.0 </td <td></td> <td><0.1</td>																					<0.1
BH12 0.3 0.5 Filt: sitysand 44 0.4 15 18 9.4 0.1 9.1 0.1 <																					<0.1
BH13 0.002 Fill: silty send 64 0.4 24 47 84 0.1 12 0.1 <																					<0.1
BH4 050:0 Filtsilysand 64 0.04 2.1 0.1 <																					<0.1
BH14 10.12 Fill: days samt 6 \oddstty and 12 10 0 7 120 5.4 0.6 NA NA <																					<0.1
BH15 0.00.3 Fill: silty and Fill: silty and participants 4.4 0.4 5 6 5.4 0.01 2 3.5 2.7 0.05 0.1 0.01 <																					<0.1
BH16 Ou0.15 Fill-sity-dayes and A A A A B				-																	NA
BH16 O15-03 Fill-singtragent NA <																					<0.1
BH17 0.05 0.25 Fill: sandy gave 4.4 0.4 0.8 0.4 0.5 0.4 0.40																					<0.1
BH17 O.7.075 Fill:singed NA <																					NA
BH17 0.75 0.85 Fill: sandycav NA NA <																					<0.1
BH180.05-0.25Fill: singyenel4.40.40.765.05.00.16.14.30.40.010.010.11 <td></td>																					
BH19 0.0.0.1 Fill: sifty sand 1.7 0.0.4 2.7 1.00 3.2 0.0 9 1.00 0.7.2 0.0.5 0.0.1 0																					NA (0.1
BH20N0.02Fill:sityandS44S44S40S4																					<0.1
BH210.05.03Fill: sity sandi.40.040.010.																					<0.1
BH21 0.0503 Laborator duplicate <																					
BH210.6.0.9Fill: silty sandxdxd0.01275xd.121100.4xd.NA																					<0.1
BH21Fill: days sandNA																					NA
BH22 0.05-0.2 Fill: sandy gravel < 0.0 6.0 3.8 0.2 < 0.0 0.0 0.0 0.0 Fill: silty sand 0.0 1 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <td></td>																					
BH23 0.00.1 Fill: sity sand < 0.0 1.2 2.5 1.20 <0.1 6.0 1.10 <0.05 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1																					<0.1
BH23 $0.3.04$ Fill: silty clay < 4 < 0.4 17 5 28 < 0.1 9 19 < 0.05 $< NA$ NA $BH24$ $0.00.2$ Fill: sity sand 4 0.4 114 37 0.11 5 34 0.05 0.11 0.11 0.11 0.05 0.11 0.11 0.01 0.05 0.11 0.11 0.01 $0.0.$																					<0.1
BH24 0.0-0.3 Fill: silty sand < 0.0 1 1 1 2 5 4 0.0 2 1 0 0.0 0.0 0.0																					NA
BH25 0.00.2 Fill: silty sand 0.0.4 11 14 37 <0.1 5 60 <0.05 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><0.1</td></t<>																					<0.1
BH26 0.0-0.1 Fill: silty sand 4 10 34 <0.1 5 34 <0.05 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><0.1</td></th<>																					<0.1
BH27 0.0-0.2 Fill: silty sand < <																					<0.1
BH28 0.0-0.2 Fill: silty sand 4 <0.4 15 11 41 <0.1 3 40 0.84 <0.5 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><0.1</td></t<>																					<0.1
BH29 0.0-0.2 Fill: silty sand <4 <0.4 6 5 13 <0.1 3 21 <0.05 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1																					<0.1
																					<0.1
BH30 0.05-0.15 Fill: sandy gravel <4 <0.4 82 28 5 <0.1 78 44 0.2 <0.5 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	BH30	0.05-0.15	Fill: sandy gravel	<4	<0.4	82	28	5	<0.1	78	44	0.2	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
																					<0.1
	Total Numb	er of Samples		42	42	42	42	42	42	42	42	41	41	34	34	34	34	34	34	34	34
Total Number of Samples 42 42 42 42 42 42 41 41 34											· · ·					-	-		-	-	·

s)	TOTAL VOCs	TOTAL PCBs	ASBESTOS FIBRES
	0.2	0.1	100
	0.2*	1	Detected/Not Detected
	NA	<0.1	Not Detected
	NA	<0.1	NA
_	NA	NA	NA
_	NA	<0.1 NA	NA
_	NA	<0.1	Not Detected
	NA	<0.1	Not Detected
	<0.1	NA	NA
	<0.2	NA	NA
	<0.2	NA	NA
	<0.2	NA	NA
	NA	<0.1	Not Detected
	NA	NA	NA
	NA	<0.1	Not Detected
	NA	NA	NA
_	NA	<0.1	NA
_	NA	<0.1	NA
_	NA	NA 10.1	Not Detected
_	NA	<0.1 <0.1	Not Detected
-	NA	<0.1	Not Detected
_	NA	<0.1	NA
	NA	<0.1	Not Detected
	NA	<0.1	NA
	NA	<0.1	Not Detected
	NA	NA	NA
	NA	<0.1	Not Detected
	NA	<0.1	Not Detected
_	<0.2	NA	NA
_	NA	<0.1	Not Detected
_	<0.2	NA	NA
_	<0.2	NA 10.1	NA Not Detected
_	NA	<0.1 <0.1	Not Detected
	NA	<0.1	Not Detected
	NA	<0.1	Not Detected
	NA	<0.1	NA
	<0.2	NA	NA
	<0.2	NA	NA
	NA	<0.1	Not Detected
	NA	<0.1	Not Detected
	NA	NA	NA
_	NA	<0.1	Not Detected Not Detected
	NA	<0.1	Not Detected
-	NA	<0.1 <0.1	Not Detected
	NA	<0.1	Not Detected
	NA	<0.1	Not Detected
	NA	<0.1	Not Detected
	NA	<0.1	NA
	9	34	26
	<pql< td=""><td><pql< td=""><td>NC</td></pql<></td></pql<>	<pql< td=""><td>NC</td></pql<>	NC

Detailed Site Investigation Greenwich Hospital, 97-115 River Road, Greenwich, NSW E32507BT

TABLE B SOIL LABORATORY RESULTS COMPARED TO HSLs All data in mg/kg unless stated otherwise												
					C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene	Field PID Measuremen
QL - Envirolab Services				25	50	0.2	0.5	1	1	1	ppm	
EPM 2013 HS	SL Land Use Cat	tegory					HSL-A/B:LO	W/HIGH DENSITY	RESIDENTIAL			
Sample Reference	Sample Depth	Sample Description	Depth Category	Soil Category								
BH1	0.2-0.3	Fill: silty sandy gravel	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH1	0.2-0.3	Laboratory duplicate	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH1	0.2-0.3	Laboratory triplicate	0m to <1m	Sand	NA	NA	NA	NA	NA	NA	NA	0
BH2	0.0-0.1	Fill: silty sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH2	2.5-2.7	Sandstone	2m to <4m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH3	0.1-0.2	Fill: silty gravelly sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH4	0.1-0.2	Fill: silty gravelly sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH5	0.1-0.2	Fill: silty gravelly sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH5	0.7-0.8	Clayey sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH6	0.1-0.2	Fill: silty gravelly sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH6	0.6-0.7	Sandy clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH7	0.0-0.1	Fill: silty sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH8	0.0-0.1	Fill: silty sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH8	0.3-0.4	Sandstone	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH9	0.1-0.2	Fill: silty sandy gravel	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH10	0.0-0.1	Fill: silty sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH11	0.0-0.2	Fill: silty sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH11	0.0-0.2	Laboratory duplicate	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH12	0.3-0.5	Fill: silty sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH13	0.0-0.2	Fill: silty sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH14	0.05-0.25	Fill: silty sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH14	1.0-1.2	Fill: clayey sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH15	0.0-0.3	Fill: silty sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH16	0.0-0.15	Fill: silty clayey sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH17	0.05-0.25	Fill: sandy gravel	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH18	0.05-0.25	Fill: sandy gravel	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH19	0.0-0.1	Fill: silty sand	0m to <1m	Sand	<25	100	<0.2	<0.5	<1	<3	<1	0
BH20	0.0-0.2	Fill: silty sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH21	0.05-0.3	Fill: silty sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH21 BH21	0.05-0.3		0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH21 BH21	0.6-0.9	Fill: silty sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH21 BH22	0.05-0.2	Fill: sandy gravel	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH22 BH23	0.0-0.1	Fill: silty sand	0m to <1m	Sand	<25	210	<0.2	<0.5	<1	<3	<1	0
BH23	0.3-0.4	Fill: silty clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH23 BH24	0.0-0.3	Fill: silty sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH24 BH25	0.0-0.3	Fill: silty sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH25 BH26	0.0-0.2	Fill: silty sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH20 BH27	0.0-0.1	Fill: silty sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH27 BH28	0.0-0.2	Fill: silty sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH28 BH29	0.0-0.2	Fill: silty sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH29 BH30	0.05-0.15	Fill: sandy gravel	0m to <1m		<25	<50	<0.2	<0.5	<1		<1	0
		Laboratory duplicate		Sand						<3		
BH30	0.05-0.15	Laboratory duplicate	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
stal Number	offormular				44	41	41		41	0.1	44	40
Total Number of Samples Maximum Value				41 <pql< td=""><td>41 210</td><td>41 <pql< td=""><td>41 <pql< td=""><td>41 <pql< td=""><td>41 <pql< td=""><td>41 <pql< td=""><td>42 <pql< td=""></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	41 210	41 <pql< td=""><td>41 <pql< td=""><td>41 <pql< td=""><td>41 <pql< td=""><td>41 <pql< td=""><td>42 <pql< td=""></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	41 <pql< td=""><td>41 <pql< td=""><td>41 <pql< td=""><td>41 <pql< td=""><td>42 <pql< td=""></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	41 <pql< td=""><td>41 <pql< td=""><td>41 <pql< td=""><td>42 <pql< td=""></pql<></td></pql<></td></pql<></td></pql<>	41 <pql< td=""><td>41 <pql< td=""><td>42 <pql< td=""></pql<></td></pql<></td></pql<>	41 <pql< td=""><td>42 <pql< td=""></pql<></td></pql<>	42 <pql< td=""></pql<>	

The guideline corresponding to the elevated value is highlighted in grey in the Site Assessment Criteria Table below

SITE ASSESSMENT CRITERIA

					C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalen
QL - Envirolab Services IEPM 2013 HSL Land Use Category					25	50	0.2	0.5	1	1	1
					HSL-A/B:LOW/HIGH DENSITY RESIDENTIAL						
Sample Reference	Sample Depth	Sample Description	Depth Category	Soil Category							
BH1	0.2-0.3	Fill: silty sandy gravel	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH1	0.2-0.3	Laboratory duplicate	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH1	0.2-0.3	Laboratory triplicate	0m to <1m	Sand	NA	NA	NA	NA	NA	NA	NA
BH2	0.0-0.1	Fill: silty sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH2	2.5-2.7	Sandstone	2m to <4m	Sand	110	440	0.5	310	NL	95	NL
BH3	0.1-0.2	10 1		Sand	45	110	0.5	160	55	40	3
BH4	0.1-0.2	Fill: silty gravelly sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH5	0.1-0.2	Fill: silty gravelly sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH5	0.7-0.8	Clayey sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH6	0.1-0.2	Fill: silty gravelly sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH6	0.6-0.7	Sandy clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH7	0.0-0.1	Fill: silty sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH8	0.0-0.1	Fill: silty sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH8	0.3-0.4	Sandstone	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH9	0.1-0.2	Fill: silty sandy gravel	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH10	0.0-0.1	Fill: silty sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH11	0.0-0.2	Fill: silty sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH11	0.0-0.2	Laboratory duplicate	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH12	0.3-0.5	Fill: silty sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH13	0.0-0.2	Fill: silty sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH14	0.05-0.25	Fill: silty sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH14	1.0-1.2	Fill: clayey sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH15	0.0-0.3	Fill: silty sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH16	0.0-0.15	Fill: silty clayey sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH17	0.05-0.25	Fill: sandy gravel	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH18	0.05-0.25	Fill: sandy gravel	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH19	0.0-0.1	Fill: silty sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH20	0.0-0.2	Fill: silty sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH21	0.05-0.3	Fill: silty sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH21	0.05-0.3	Laboratory duplicate	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH21	0.6-0.9	Fill: silty sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH22	0.05-0.2	Fill: sandy gravel	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH23	0.0-0.1	Fill: silty sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH23	0.3-0.4	Fill: silty clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH24	0.0-0.3	Fill: silty sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH25	0.0-0.2	Fill: silty sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH26	0.0-0.1	Fill: silty sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH27	0.0-0.2	Fill: silty sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH28	0.0-0.2	Fill: silty sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH29	0.0-0.2	Fill: silty sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH30	0.05-0.15	Fill: sandy gravel	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH30	0.05-0.15	Laboratory duplicate	0m to <1m	Sand	45	110	0.5	160	55	40	3

Detailed Site Investigation	
Greenwich Hospital, 97-115 River Road, Greenwich, NSW	
E32507BT	

TABLE C SOIL LABORATORY RESULTS COMPARED TO NEPM 2013 EILs AND ESLs All data in mg/kg unless stated otherwise

and Use Categor	ry											URBA	N RESIDENTIAL AN		IN SPACE								
						Clay Content			AGED HEAV	Y METALS-EILs	1	1	EIL	s					ESLs		1		
				рН	CEC (cmol _c /kg)	(% clay)	Arsenic	Chromium	Copper	Lead	Nickel	Zinc	Naphthalene	DDT	C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	>C ₁₆ -C ₃₄ (F3)	>C ₃₄ -C ₄₀ (F4)	Benzene	Toluene	Ethylbenzene	Total Xylenes	B(a)
QL - Envirolab S	ervices			-	1	-	4	1	1	1	1	1	0.1	0.1	25	50	100	100	0.2	0.5	1	1	0.05
mbient Backgro	und Concentra	tion (ABC)		-	-	-	NSL	13	28	163	5	122	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL
Sample Reference	Sample Depth	Sample Description	Soil Texture																				
H1	0.2-0.3	Fill: silty sandy gravel	Coarse	8.3	22.7	8.7	<4	14	17	22	24	34	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	0.1
H1	0.2-0.3	Laboratory duplicate	Coarse	8.3	22.7	8.7	<4	13	22	8	41	26	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	< 0.05
H1 H2	0.2-0.3	Laboratory triplicate	Coarse	8.3	22.7	8.7	<4	15	24	16	40	29	NA	NA	NA	NA	NA	NA	NA	NA IO 5	NA	NA	NA
H2 H2	0.0-0.1 2.5-2.7	Fill: silty sand Sandstone	Coarse Coarse	8.3	22.7	8.7 8.7	<4 <4	45	21 10	160 30	5	120 150	<1 <1	<0.1 NA	<25 <25	<50 <50	<100 <100	<100 <100	<0.2	<0.5 <0.5	<1 <1	<3 <3	0.2
H2 H3	0.1-0.2	Fill: silty gravelly sand	Coarse	8.3	22.7	8.7	<4	45	46	4	37	26	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.05
H4	0.1-0.2	Fill: silty gravelly sand	Coarse	8.3	22.7	8.7	<4	92	30	4	76	41	<1	<0.1	<25	<50	120	180	<0.2	<0.5	<1	<3	<0.05
HS	0.1-0.2	Fill: silty gravelly sand	Coarse	8.3	22.7	8.7	<4	59	19	6	59	33	<1	<0.1	<25	<50	860	310	<0.2	<0.5	<1	<3	0.1
H5	0.7-0.8	Clayey sand	Coarse	8.3	22.7	8.7	<4	7	<1	5	<1	<1	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	< 0.05
H6	0.1-0.2	Fill: silty gravelly sand	Coarse	8.3	22.7	8.7	<4	17	58	2	110	36	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.05
Н6	0.6-0.7	Sandy clay	Coarse	8.3	22.7	8.7	<4	10	<1	4	3	3	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.05
H7	0.0-0.1	Fill: silty sand	Coarse	8.3	22.7	8.7	5	23	13	24	13	43	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.05
H8	0.0-0.1	Fill: silty sand	Coarse	8.3	22.7	8.7	<4	11	17	95	3	89	<1	<0.1	<25	<50	200	150	<0.2	<0.5	<1	<3	0.4
18	0.3-0.4	Sandstone	Coarse	8.3	22.7	8.7	<4	9	5	15	2	17	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	< 0.05
19	0.1-0.2	Fill: silty sandy gravel	Coarse	8.3	22.7	8.7	<4	37	15	8	38	26	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	< 0.05
110	0.0-0.1	Fill: silty sand Fill: silty sand	Coarse Coarse	8.3 8.3	22.7	8.7 8.7	<4	5	7	26 30	2	28 36	<1 <1	<0.1 <0.1	<25 <25	<50 <50	<100 <100	<100 <100	<0.2	<0.5	<1 <1	<3 <3	<0.05
111	0.0-0.2	Laboratory duplicate	Coarse	8.3	22.7	8.7	<4	6	10	30	3	30	<1	<0.1	<25	<50	110	<100	<0.2	<0.5	<1	<3	0.1
H12	0.3-0.2	Fill: silty sand	Coarse	8.3	22.7	8.7	<4	15	18	34	9	43	<1	<0.1	<25	<50	270	270	<0.2	<0.5	<1	<3	0.4
H13	0.0-0.2	Fill: silty sand	Coarse	8.3	22.7	8.7	<4	24	47	84	19	120	<1	<0.1	<25	<50	310	240	<0.2	<0.5	<1	<3	0.2
H14	0.05-0.25	Fill: silty sand	Coarse	8.3	22.7	8.7	<4	23	51	5	47	37	<1	<0.1	<25	<50	480	370	<0.2	<0.5	<1	<3	0.2
H14	1.0-1.2	Fill: clayey sand	Coarse	8.3	22.7	8.7	6	14	23	110	7	120	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	0.4
H15	0.0-0.3	Fill: silty sand	Coarse	8.3	22.7	8.7	<4	5	6	54	2	35	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	0.2
H16	0.0-0.15	Fill: silty clayey sand	Coarse	8.3	22.7	8.7	<4	8	31	17	18	55	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.05
H17	0.05-0.25	Fill: sandy gravel	Coarse	8.3	22.7	8.7	<4	88	38	5	55	34	<1	<0.1	<25	<50	310	470	<0.2	<0.5	<1	<3	<0.05
H18	0.05-0.25	Fill: sandy gravel	Coarse	8.3	22.7	8.7	<4	76	50	5	61	43	<1	<0.1	<25	<50	200	250	<0.2	<0.5	<1	<3	0.05
H19	0.0-0.1	Fill: silty sand	Coarse	8.3	22.7	8.7	17	27	100	32	9	100	<1	<0.1	<25	100	340	240	<0.2	<0.5	<1	<3	0.09
120	0.0-0.2	Fill: silty sand	Coarse	8.3	22.7	8.7	<4	10	16 27	47	4	63	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	0.05
121	0.05-0.3 0.05-0.3	Fill: silty sand Laboratory duplicate	Coarse Coarse	8.3 8.3	22.7	8.7 8.7	<4 <4	8	36	12	23	23 25	<1 <1	<0.1 <0.1	<25 <25	<50 <50	610 690	850 1000	<0.2	<0.5	<1	<3	<0.05
21	0.6-0.9	Fill: silty sand	Coarse	8.3	22.7	8.7	<4	6	12	75	2	110	<1	NA	<25	<50	150	<100	<0.2	<0.5	<1	<3	0.09
22	0.05-0.2	Fill: sandy gravel	Coarse	8.3	22.7	8.7	<4	70	22	4	69	38	<1	<0.1	<25	<50	130	<100	<0.2	<0.5	<1	<3	<0.05
23	0.0-0.1	Fill: silty sand	Coarse	8.3	22.7	8.7	<4	12	25	120	6	110	<1	<0.1	<25	210	1600	610	<0.2	<0.5	<1	<3	< 0.05
23	0.3-0.4	Fill: silty clay	Coarse	8.3	22.7	8.7	<4	17	5	28	9	19	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.05
124	0.0-0.3	Fill: silty sand	Coarse	8.3	22.7	8.7	<4	15	25	54	25	150	<1	<0.1	<25	<50	180	150	<0.2	<0.5	<1	<3	<0.05
125	0.0-0.2	Fill: silty sand	Coarse	8.3	22.7	8.7	<4	11	14	37	5	60	<1	<0.1	<25	<50	170	180	<0.2	<0.5	<1	<3	< 0.05
26	0.0-0.1	Fill: silty sand	Coarse	8.3	22.7	8.7	4	15	10	34	5	34	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.0
127	0.0-0.2	Fill: silty sand	Coarse	8.3	22.7	8.7	<4	9	12	44	7	39	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	0.07
128	0.0-0.2	Fill: silty sand	Coarse	8.3	22.7	8.7	4	15	11	41	3	40	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	0.1
129	0.0-0.2	Fill: silty sand	Coarse	8.3 8.3	22.7	8.7 8.7	<4 <4	6 82	5 28	13	3 78	21 44	<1 <1	<0.1	<25 <25	<50 <50	<100 <100	<100	<0.2 <0.2	<0.5 <0.5	<1 <1	<3	< 0.05
H30 H30	0.05-0.15 0.05-0.15	Fill: sandy gravel Laboratory duplicate	Coarse	8.3	22.7	8.7	<4	70	28	4	69	44 39	<1	<0.1	<25	<50	<100	120 140	<0.2	<0.5	<1	<3	<0.05
		coorder y duplicate	200136	0.5		0.7	-4	70		4	53	33	-1	-0.1	-23	-30	110	1-10	70.2	-0.5	~1	-0	-0.05
Total Number Maximum Va							42 17	42 92	42 100	42 160	42 110	42 150	41 <pql< td=""><td>34 <pql< td=""><td>41 <pql< td=""><td>41 210</td><td>41 1600</td><td>41 1000</td><td>41 <pql< td=""><td>41 <pql< td=""><td>41 <pql< td=""><td>41 <pql< td=""><td>41 1.8</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	34 <pql< td=""><td>41 <pql< td=""><td>41 210</td><td>41 1600</td><td>41 1000</td><td>41 <pql< td=""><td>41 <pql< td=""><td>41 <pql< td=""><td>41 <pql< td=""><td>41 1.8</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	41 <pql< td=""><td>41 210</td><td>41 1600</td><td>41 1000</td><td>41 <pql< td=""><td>41 <pql< td=""><td>41 <pql< td=""><td>41 <pql< td=""><td>41 1.8</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	41 210	41 1600	41 1000	41 <pql< td=""><td>41 <pql< td=""><td>41 <pql< td=""><td>41 <pql< td=""><td>41 1.8</td></pql<></td></pql<></td></pql<></td></pql<>	41 <pql< td=""><td>41 <pql< td=""><td>41 <pql< td=""><td>41 1.8</td></pql<></td></pql<></td></pql<>	41 <pql< td=""><td>41 <pql< td=""><td>41 1.8</td></pql<></td></pql<>	41 <pql< td=""><td>41 1.8</td></pql<>	41 1.8

The guideline corresponding to the elevated value is highlighted in grey in the EIL and ESL Assessment Criteria Table below

EIL AND ESL ASSESSMENT CRITERIA

					1				AGED HEAV	Y METALS-EILs			EI	ls					ESLs				
				рH	CEC (cmol_/kg)	Clay Content						1		-									
					((% clay)	Arsenic	Chromium	Copper	Lead	Nickel	Zinc	Naphthalene	DDT	C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	>C ₁₆ -C ₃₄ (F3)	>C ₃₄ -C ₄₀ (F4)	Benzene	Toluene	Ethylbenzene	Total Xylenes	B(a)P
PQL - Envirolab Se	ervices			-	1	-	4	1	1	1	1	1	0.1	0.1	25	50	100	100	0.2	0.5	1	1	0.05
Ambient Backgro	und Concentra	tion (ABC)		-	-	-	NSL	13	28	163	5	122	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL
Sample	Sample	Sample Description	Soil Texture																				
Reference	Depth 0.2-0.3	Fill: silty sandy gravel	Coores	8.3	22.7	8.7	100	413	248	1263	355	1082	170	180	180	120	300	2800	50	85	70	105	20
BH1	0.2-0.3	Laboratory duplicate	Coarse	8.3	22.7	8.7	100	413	248	1263	355	1082	170	180	180	120	300	2800	50	85	70	105	20
DH1	0.2-0.3	Laboratory triplicate	Coarse	8.3	22.7	8.7	100	413	248	1263	355	1082		180	180			2800		85		105	
BH1 BH2	0.0-0.1	Fill: silty sand	Coarse	8.3	22.7	8.7	100	413	248	1263	355	1082	170	180	180	120	300	2800	50	85	70	105	20
BH2	2.5-2.7	Sandstone	Coarse	8.3	22.7	8.7	100	413	248	1263	355	1082	170	180	180	120	300	2800	50	85	70	105	20
BH3	0.1-0.2	Fill: silty gravelly sand	Coarse	8.3	22.7	8.7	100	413	248	1263	355	1082	170	180	180	120	300	2800	50	85	70	105	20
BH4	0.1-0.2	Fill: silty gravelly sand	Coarse	8.3	22.7	8.7	100	413	248	1263	355	1082	170	180	180	120	300	2800	50	85	70	105	20
BH5	0.1-0.2	Fill: silty gravelly sand	Coarse	8.3	22.7	8.7	100	413	248	1263	355	1082	170	180	180	120	300	2800	50	85	70	105	20
BH5	0.7-0.8	Clayey sand	Coarse	8.3	22.7	8.7	100	413	248	1263	355	1082	170		180	120	300	2800	50	85	70	105	20
BH6	0.1-0.2	Fill: silty gravelly sand	Coarse	8.3	22.7	8.7	100	413	248	1263	355	1082	170	180	180	120	300	2800	50	85	70	105	20
BH6	0.6-0.7	Sandy clay	Coarse	8.3	22.7	8.7	100	413	248	1263	355	1082	170		180	120	300	2800	50	85	70	105	20
BH7	0.0-0.1	Fill: silty sand	Coarse	8.3	22.7	8.7	100	413	248	1263	355	1082	170	180	180	120	300	2800	50	85	70	105	20
BH8	0.0-0.1	Fill: silty sand	Coarse	8.3	22.7	8.7	100	413	248	1263	355	1082	170	180	180	120	300	2800	50	85	70	105	20
BH8	0.3-0.4	Sandstone	Coarse	8.3	22.7	8.7	100	413	248	1263	355	1082	170		180	120	300	2800	50	85	70	105	20
BH9	0.1-0.2	Fill: silty sandy gravel	Coarse	8.3	22.7	8.7	100	413	248	1263	355	1082	170	180	180	120	300	2800	50	85	70	105	20
BH10	0.0-0.1	Fill: silty sand	Coarse	8.3	22.7	8.7	100	413	248	1263	355	1082	170	180	180	120	300	2800	50	85	70	105	20
BH11	0.0-0.2	Fill: silty sand	Coarse	8.3	22.7	8.7	100	413	248	1263	355	1082	170	180	180	120	300	2800	50	85	70	105	20
BH11	0.0-0.2	Laboratory duplicate	Coarse	8.3	22.7	8.7	100	413	248	1263	355	1082	170	180	180	120	300	2800	50	85	70	105	20
BH12	0.3-0.5	Fill: silty sand	Coarse	8.3	22.7	8.7	100	413	248	1263	355	1082	170	180	180	120	300	2800	50	85	70	105	20
BH13	0.0-0.2	Fill: silty sand	Coarse	8.3	22.7	8.7	100	413	248	1263	355	1082	170	180	180	120	300	2800	50	85	70	105	20
BH14	0.05-0.25	Fill: silty sand	Coarse	8.3	22.7	8.7	100	413	248	1263	355	1082	170	180	180	120	300	2800	50	85	70	105	20
BH14	1.0-1.2	Fill: clayey sand	Coarse	8.3	22.7	8.7	100	413	248	1263	355	1082	170		180	120	300	2800	50	85	70	105	20
BH15	0.0-0.3	Fill: silty sand	Coarse	8.3	22.7	8.7	100	413	248	1263	355	1082	170	180	180	120	300	2800	50	85	70	105	20
BH16	0.0-0.15	Fill: silty clayey sand	Coarse	8.3	22.7	8.7	100	413	248	1263	355	1082	170	180	180	120	300	2800	50	85	70	105	20
BH17	0.05-0.25	Fill: sandy gravel	Coarse	8.3	22.7	8.7	100	413	248	1263	355	1082	170	180	180	120	300	2800	50	85	70	105	20
BH18	0.05-0.25	Fill: sandy gravel	Coarse	8.3	22.7	8.7	100	413	248	1263	355	1082	170	180	180	120	300	2800	50	85	70	105	20
BH19	0.0-0.1	Fill: silty sand	Coarse	8.3	22.7	8.7	100	413	248	1263	355	1082	170	180	180	120	300	2800	50	85	70	105	20
BH20	0.0-0.2	Fill: silty sand	Coarse	8.3	22.7	8.7	100	413	248	1263	355	1082	170	180	180	120	300	2800	50	85	70	105	20
BH21	0.05-0.3	Fill: silty sand	Coarse	8.3	22.7	8.7 8.7	100	413	248 248	1263	355	1082	170	180	180	120	300 300	2800	50	85	70	105	20
BH21	0.05-0.3	Laboratory duplicate	Coarse	8.3 8.3	22.7 22.7	8.7	100	413 413	248	1263 1263	355	1082 1082	170 170	180	180 180	120 120	300	2800 2800	50 50	85 85	70	105	20
BH21	0.6-0.9	Fill: silty sand	Coarse						2.0		000												
BH22	0.05-0.2	Fill: sandy gravel	Coarse	8.3 8.3	22.7 22.7	8.7	100	413 413	248	1263 1263	355 355	1082 1082	170 170	180 180	180 180	120	300	2800 2800	50 50	85 85	70	105	20
BH23 BH23	0.0-0.1	Fill: silty sand Fill: silty clay	Coarse Coarse	8.3	22.7	8.7	100	413	248	1263	355	1082	170	180	180	120	300	2800	50	85	70	105	20
BH23 BH24	0.0-0.3	Fill: silty clay	Coarse	8.3	22.7	8.7	100	413	248	1263	355	1082	170	180	180	120	300	2800	50	85	70	105	20
BH25	0.0-0.3	Fill: silty sand	Coarse	8.3	22.7	8.7	100	413	248	1263	355	1082	170	180	180	120	300	2800	50	85	70	105	20
BH25	0.0-0.2	Fill: slity sand	coarse	8.3	22.7	8.7	100	413	248	1263	355	1082	1/0	180	180	120	300	2800	50	85	70	105	20

BH27	0.0-0.2	Fill: silty sand	Coarse	8.3	22.7	8.7	100	413	248	1263	355	1082	170	180	180	120	300	2800	50	85	70	105	20
BH28	0.0-0.2	Fill: silty sand	Coarse	8.3	22.7	8.7	100	413	248	1263	355	1082	170	180	180	120	300	2800	50	85	70	105	20
BH29	0.0-0.2	Fill: silty sand	Coarse	8.3	22.7	8.7	100	413	248	1263	355	1082	170	180	180	120	300	2800	50	85	70	105	20
BH30	0.05-0.15	Fill: sandy gravel	Coarse	8.3	22.7	8.7	100	413	248	1263	355	1082	170	180	180	120	300	2800	50	85	70	105	20
BH30	0.05-0.15	Laboratory duplicate	Coarse	8.3	22.7	8.7	100	413	248	1263	355	1082	170	180	180	120	300	2800	50	85	70	105	20

Г

						HEAVY	METALS				P/	AHs		OC/OF	PESTICIDES		Total	Total	1		TRH				BTEX CON	1POUNDS		
			Arsenic	Cadmium	Chromium		Lead	Mercury	Nickel	Zinc	Total PAHs	B(a)P	Total Endosulfans		Total Moderately Harmful	Total Scheduled	PCBs	VOCs*	C ₆ -C ₉	C ₁₀ -C ₁₄	C ₁₅ -C ₂₈	C ₂₉ -C ₃₆	Total C ₁₀ -C ₃₆	Benzene	Toluene	Ethyl benzene	Total Xylenes	ASBESTOS FIBR
L - Envirolab S	ervices		4	0.4	1	1	1	0.1	1	1	-	0.05	0.1	0.1	0.1	0.1	0.1	0.2	25	50	100	100	50	0.2	0.5	1	1	100
neral Solid Wa	aste CT1		100	20	100	NSL	100	4	40	NSL	200	0.8	60	4	250	<50	<50	4	650		NSL		10,000	10	288	600	1,000	-
eneral Solid Wa			500	100 80	1900	NSL	1500	50	1050	NSL	200	10	108	7.5	250	<50	<50	7.2	650		NSL		10,000	18	518	1,080	1,800	-
stricted Solid \ stricted Solid \			400 2000	400	400 7600	NSL NSL	400 6000	16 200	160 4200	NSL NSL	800 800	3.2 23	240 432	16 30	1000	<50 <50	<50 <50	16 28.8	2600 2600		NSL NSL		40,000	40 72	1,152 2,073	2,400 4,320	4,000 7,200	-
Sample Reference	Sample Depth	Sample Description	2000	100	1000	- Not	0000	200	1200	Hot	000	23	152	50	1000	-50		2010	2000		1102		10,000	72	2,075	1,520	1,200	
1	0.2-0.3	Fill: silty sandy gravel	<4	<0.4	14	17	22	<0.1	24	34	0.71	0.1	<0.1	<0.1	<0.1	0.2	<0.1	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	Not Detecte
1	0.2-0.3	Laboratory duplicate	<4	<0.4	13	22	8	<0.1	41	26	0.1	<0.05	<0.1	<0.1	<0.1	0.2	<0.1	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA
1	0.2-0.3	Laboratory triplicate	<4	<0.4	15	24	16	<0.1	40	29	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2	0.0-0.1	Fill: silty sand	<4	<0.4	11	21	160	0.1	5	120	1.5	0.2	<0.1 NA	<0.1	<0.1 NA	<0.1	<0.1	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA
3	2.5-2.7 0.1-0.2	Sandstone Fill: silty gravelly sand	<4 <4	<0.4	45	10 46	30 4	<0.1	4 37	150 26	24 <0.05	1.8 <0.05	<0.1	NA <0.1	<0.1	NA <0.1	NA <0.1	NA NA	<25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<3 <3	NA Not Detecte
4	0.1-0.2	Fill: silty gravelly sand	<4	<0.4	92	30	4	<0.1	76	41	0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	NA	<25	<50	<100	140	140	<0.2	<0.5	<1	<3	Not Detecte
4	0.5-0.7	Fill: silty sand	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4	0.5-0.7	Laboratory duplicate	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4	1.9-2.0 2.4-2.5	Fill: silty sand Clayey sand	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	<0.2 <0.2	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA
5	0.1-0.2	Fill: silty gravelly sand	NA <4	<0.4	59	NA 19	6	<0.1	59	NA 33	0.4	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2 NA	<25	<50	NA 310	670	NA 980	<0.2	<0.5	NA <1	NA <3	Not Detect
5	0.7-0.8	Clayey sand	<4	<0.4	7	<1	5	<0.1	<1	<1	< 0.05	<0.05	NA	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA
5	0.1-0.2	Fill: silty gravelly sand	<4	<0.4	17	58	2	<0.1	110	36	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	Not Detect
; ,	0.6-0.7	Sandy clay	<4	<0.4	10	<1	4	<0.1	3	3	<0.05	<0.05	NA	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA
	0.0-0.1	Fill: silty sand	5	<0.4	23	13	24 95	<0.1	13	43	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA
	0.0-0.1 0.3-0.4	Fill: silty sand Sandstone	<4 <4	<0.4	9	17	15	0.2	2	89 17	4.1 <0.05	0.4 <0.05	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	NA NA	<25	<50 <50	<100 <100	180 <100	180 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<3 <3	NA
	0.1-0.2	Fill: silty sandy gravel	<4	<0.4	37	15	8	<0.1	38	26	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	Not Detect
.0	0.0-0.1	Fill: silty sand	<4	<0.4	7	7	26	<0.1	2	28	0.2	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	Not Detect
.1	0.0-0.2	Fill: silty sand	<4	<0.4	5	11	30	<0.1	3	36	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	Not Detect
11	0.0-0.2 0.3-0.5	Laboratory duplicate	<4	<0.4	6 15	10	32 34	<0.1	3	37 43	1.6 4	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA NA	<25	<50	<100	<100 240	<50	<0.2	<0.5	<1	<3	NA Not Detect
.3	0.0-0.2	Fill: silty sand Fill: silty sand	<4 <4	<0.4	24	47	34 84	<0.1	19	120	4	0.4	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1	NA	<25 <25	<50 <50	120 140	240	360 400	<0.2 <0.2	<0.5 <0.5	<1 <1	<3 <3	NOL Delect
.4	0.05-0.25	Fill: silty sand	<4	<0.4	23	51	5	<0.1	47	37	1.2	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	NA	<25	<50	210	390	600	<0.2	<0.5	<1	<3	Not Detect
14	1.0-1.2	Fill: clayey sand	6	<0.4	14	23	110	0.2	7	120	5.4	0.4	NA	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA
15	0.0-0.3	Fill: silty sand	<4	<0.4	5	6	54	<0.1	2	35	2.7	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	Not Detect
6	0.0-0.15	Fill: silty clayey sand	<4	<0.4 NA	8 NA	31 NA	17 NA	<0.1 NA	18 NA	55 NA	<0.05 NA	<0.05 NA	<0.1 NA	<0.1	<0.1 NA	<0.1 NA	<0.1 NA	NA <0.2	<25 NA	<50 NA	<100 NA	<100 NA	<50 NA	<0.2 NA	<0.5 NA	<1 NA	<3 NA	Not Detect
16	0.15-0.3 0.05-0.25	Fill: silty clayey sand Fill: sandy gravel	NA <4	<0.4	88	38	5	<0.1	55	34	0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2 NA	<25	<50	<100	380	380	<0.2	<0.5	NA <1	NA <3	Not Detect
.7	0.7-0.75	Fill: silty sand	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
.7	0.75-0.85	Fill: sandy clay	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
18	0.05-0.25	Fill: sandy gravel	<4	<0.4	76	50	5	<0.1	61	43	0.4	0.05	<0.1	<0.1	<0.1	<0.1	<0.1	NA	<25	<50	<100	200	200	<0.2	<0.5	<1	<3	Not Detect
.9	0.0-0.1	Fill: silty sand	17	<0.4	27	100	32	0.2	9	100	0.72	0.09	<0.1	<0.1	<0.1	<0.1	<0.1	NA	<25	98	170	270	538	<0.2	<0.5	<1	<3	Not Detect
20	0.0-0.2 0.05-0.3	Fill: silty sand Fill: silty sand	<4 <4	<0.4	10	16 27	47 9	<0.1	4 23	63 23	0.2	0.05 <0.05	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1	NA NA	<25	<50 <50	<100 220	<100 650	<50 870	<0.2 <0.2	<0.5 <0.5	<1 <1	<3 <3	Not Detect
21	0.05-0.3	Laboratory duplicate	<4	<0.4	8	36	12	<0.1	27	25	0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	NA	<25	<50	250	710	960	<0.2	<0.5	<1	<3	NOLDELEC
21	0.6-0.9	Fill: silty sand	<4	<0.4	6	12	75	<0.1	2	110	0.4	0.09	NA	NA	NA	NA	NA	<0.2	<25	<50	<100	170	170	<0.2	<0.5	<1	<3	NA
21	0.9-1.1	Fill: clayey sand	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2	0.05-0.2	Fill: sandy gravel	<4	<0.4	70	22	4	0.1	69	38	0.2	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	Not Detec
3	0.0-0.1 0.3-0.4	Fill: silty sand Fill: silty clay	<4 <4	<0.4	12	25 5	120 28	<0.1 <0.1	6 9	110 19	<0.05 <0.05	<0.05 <0.05	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	NA NA	<25 <25	180 <50	1000 <100	900 <100	2080 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<3 <3	Not Detec
4	0.0-0.3	Fill: silty sand	<4	<0.4	15	25	54	<0.1	25	150	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	NA	<25	<50	<100	140	140	<0.2	<0.5	<1	<3	Not Detec
!5	0.0-0.2	Fill: silty sand	<4	<0.4	11	14	37	<0.1	5	60	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	NA	<25	<50	<100	180	180	<0.2	<0.5	<1	<3	Not Detec
16	0.0-0.1	Fill: silty sand	4	<0.4	15	10	34	<0.1	5	34	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	Not Detec
27	0.0-0.2	Fill: silty sand	<4	<0.4	9	12	44	0.1	7	39	0.3	0.07	<0.1	<0.1	<0.1	<0.1	<0.1	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	Not Detec
28 29	0.0-0.2 0.0-0.2	Fill: silty sand Fill: silty sand	4	<0.4	15 6	11 5	41 13	<0.1	3	40 21	0.84 <0.05	0.1	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1 <0.1	NA NA	<25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<3 <3	Not Detec Not Detec
30	0.05-0.15	Fill: sandy gravel	<4	<0.4	82	28	5	<0.1	78	44	0.2	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	Not Detect
30	0.05-0.15	Laboratory duplicate	<4	<0.4	70	22	4	<0.1	69	39	0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	NA	<25	<50	<100	100	100	<0.2	<0.5	<1	<3	NA
																											Ţ	
Total Number	-		42	42	42	42	42	42	42	42	41	41	34	34	34	34	34	9	41	41	41	41	41	41	41	41	41	26
Maximum Va	iue		17	<pql< td=""><td>92</td><td>100</td><td>160</td><td>0.2</td><td>110</td><td>150</td><td>24</td><td>1.8</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>0.2</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>180</td><td>1000</td><td>900</td><td>2080</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>NC</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	92	100	160	0.2	110	150	24	1.8	<pql< td=""><td><pql< td=""><td><pql< td=""><td>0.2</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>180</td><td>1000</td><td>900</td><td>2080</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>NC</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>0.2</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>180</td><td>1000</td><td>900</td><td>2080</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>NC</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td>0.2</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>180</td><td>1000</td><td>900</td><td>2080</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>NC</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	0.2	<pql< td=""><td><pql< td=""><td><pql< td=""><td>180</td><td>1000</td><td>900</td><td>2080</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>NC</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>180</td><td>1000</td><td>900</td><td>2080</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>NC</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td>180</td><td>1000</td><td>900</td><td>2080</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>NC</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	180	1000	900	2080	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>NC</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>NC</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>NC</td></pql<></td></pql<>	<pql< td=""><td>NC</td></pql<>	NC

*The VOC vinyl chloride has the lowest classification criteria for waste, therefore it has been adopted it as the criteria for total VOCs VALUE

VALUE

Concentration above the CT1 Concentration above SCC1

Concentration above the SCC2

TABLE E SOIL LABORATORY TCLP RESULTS All data in mg/L unless stated otherwise

			Lead	Nickel
PQL - Envirolab Servio	es		0.03	0.02
TCLP1 - General Solid	Waste		5	2
TCLP2 - Restricted So	id Waste		20	8
TCLP3 - Hazardous W	aste		>20	>8
Sample Reference	Sample Depth	Sample Description		
BH2	0.0-0.1	Fill: silty sand	0.03	NA
BH4	0.1-0.2	Fill: silty gravelly sand	NA	0.06
BH6	0.1-0.2	Fill: silty gravelly sand	NA	0.1
BH18	0.05-0.25	Fill: sandy gravel	NA	0.02
BH22	0.05-0.2	Fill: sandy gravel	NA	0.04
BH23	0.0-0.1	Fill: silty sand	<0.03	NA
BH30	0.05-0.15	Fill: sandy gravel	NA	0.1
BH30	0.05-0.15	Laboratory duplicate	NA	0.09
Total Number of sa	mples		2	6
Maximum Value			0.03	0.1
General Solid Waste			VALUE	
Restricted Solid Wast	e		VALUE	
Hazardous Waste			VALUE	

				ARED TO MANAGEME is stated otherwise	NT LIMITS	
			C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	>C ₁₆ -C ₃₄ (F3)	>C ₃₄ -C ₄₀ (F4)
PQL - Envirola	b Services		25	50	100	100
NEPM 2013 La	and Use Category	r	RE	SIDENTIAL, PARKLAN	D & PUBLIC OPEN SP	ACE
Sample Reference	Sample Depth	Soil Texture				
BH1	0.2-0.3	Coarse	<25	<50	<100	<100
BH1	0.2-0.3	Coarse	<25	<50	<100	<100
BH1	0.2-0.3	Coarse	NA	NA	NA	NA
BH2	0.0-0.1	Coarse	<25	<50	<100	<100
BH2	2.5-2.7	Coarse	<25	<50	<100	<100
BH3	0.1-0.2	Coarse	<25	<50	<100	<100
BH4	0.1-0.2	Coarse	<25	<50	120	180
BH5	0.1-0.2	Coarse	<25	<50	860	310
BH5	0.7-0.8	Coarse	<25	<50	<100	<100
BH6	0.1-0.2	Coarse	<25	<50	<100	<100
BH6	0.6-0.7	Coarse	<25	<50	<100	<100
BH7	0.0-0.1	Coarse	<25	<50	<100	<100
BH8	0.0-0.1	Coarse	<25	<50	200	150
BH8	0.3-0.4	Coarse	<25	<50	<100	<100
BH9	0.1-0.2	Coarse	<25	<50	<100	<100
BH10	0.0-0.1	Coarse	<25	<50	<100	<100
BH11	0.0-0.2	Coarse	<25	<50	<100	<100
BH11	0.0-0.2	Coarse	<25	<50	110	<100
BH12	0.3-0.5	Coarse	<25	<50	270	270
BH13 BH14	0.0-0.2	Coarse	<25	<50 <50	310 480	240 370
BH14 BH14	1.0-1.2	Coarse	<25	<50	<100	<100
BH14 BH15	0.0-0.3	Coarse	<25	<50	<100	<100
BH15 BH16	0.0-0.15	Coarse	<25	<50	<100	<100
BH10 BH17	0.05-0.25	Coarse	<25	<50	310	470
BH18	0.05-0.25	Coarse	<25	<50	200	250
BH19	0.0-0.1	Coarse	<25	100	340	240
BH20	0.0-0.2	Coarse	<25	<50	<100	<100
BH21	0.05-0.3	Coarse	<25	<50	610	850
BH21	0.05-0.3	Coarse	<25	<50	690	1000
BH21	0.6-0.9	Coarse	<25	<50	150	<100
BH22	0.05-0.2	Coarse	<25	<50	130	<100
BH23	0.0-0.1	Coarse	<25	210	1600	610
BH23	0.3-0.4	Coarse	<25	<50	<100	<100
BH24	0.0-0.3	Coarse	<25	<50	180	150
BH25	0.0-0.2	Coarse	<25	<50	170	180
BH26	0.0-0.1	Coarse	<25	<50	<100	<100
BH27	0.0-0.2	Coarse	<25	<50	<100	<100
BH28	0.0-0.2	Coarse	<25	<50	<100	<100
BH29	0.0-0.2	Coarse	<25	<50	<100	<100
BH30	0.05-0.15	Coarse	<25	<50	<100	120
BH30	0.05-0.15	Coarse	<25	<50	110	140
Tatal Number			41	41	41	41
Total Number Maximum Va			41 <pql< td=""><td>210</td><td>41 1600</td><td>41</td></pql<>	210	41 1600	41
vioximum Va	iuc.		VF QL	210	1000	1000

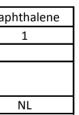
MANAGEMENT LIMIT ASSESSMENT CRITERIA

			C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	>C ₁₆ -C ₃₄ (F3)	>C34-C40 (F4)
PQL - Envirola	b Services		25	50	100	100
NEPM 2013 La	and Use Category	r	RE	SIDENTIAL, PARKLAN	D & PUBLIC OPEN SP	ACE
Sample Reference	Sample Depth	Soil Texture				
BH1	0.2-0.3	Coarse	700	1000	2500	10000
BH1	0.2-0.3	Coarse	700	1000	2500	10000
BH1	0.2-0.3	Coarse				
BH2	0.0-0.1	Coarse	700	1000	2500	10000
BH2	2.5-2.7	Coarse	700	1000	2500	10000
BH3	0.1-0.2	Coarse	700	1000	2500	10000
BH4	0.1-0.2	Coarse	700	1000	2500	10000
BH5	0.1-0.2	Coarse	700	1000	2500	10000
BH5	0.7-0.8	Coarse	700	1000	2500	10000
BH6	0.1-0.2	Coarse	700	1000	2500	10000
BH6	0.6-0.7	Coarse	700	1000	2500	10000
BH7	0.0-0.1	Coarse	700	1000	2500	10000
BH8	0.0-0.1	Coarse	700	1000	2500	10000
BH8	0.3-0.4	Coarse	700	1000	2500	10000
BH9	0.1-0.2	Coarse	700	1000	2500	10000
BH10	0.0-0.1	Coarse	700	1000	2500	10000
BH11	0.0-0.2	Coarse	700	1000	2500	10000
BH11	0.0-0.2	Coarse	700	1000	2500	10000
BH12	0.3-0.5	Coarse	700	1000	2500	10000
BH13	0.0-0.2	Coarse	700	1000	2500	10000
BH14	0.05-0.25	Coarse	700	1000	2500	10000
BH14	1.0-1.2	Coarse	700	1000	2500	10000
BH15	0.0-0.3	Coarse	700	1000	2500	10000
BH16	0.0-0.15	Coarse	700	1000	2500	10000
BH17	0.05-0.25	Coarse	700	1000	2500	10000
BH18	0.05-0.25	Coarse	700	1000	2500	10000
BH19	0.0-0.1	Coarse	700	1000	2500	10000
BH20	0.0-0.2	Coarse	700	1000	2500	10000
BH21	0.05-0.3	Coarse	700	1000	2500	10000
BH21	0.05-0.3	Coarse	700	1000	2500	10000
BH21	0.6-0.9	Coarse	700	1000	2500	10000
BH22	0.05-0.2	Coarse	700	1000	2500	10000
BH23	0.0-0.1	Coarse	700	1000	2500	10000
BH23	0.3-0.4	Coarse	700	1000	2500	10000
BH24	0.0-0.3	Coarse	700	1000	2500	10000
BH25	0.0-0.2	Coarse	700	1000	2500	10000
BH26	0.0-0.1	Coarse	700	1000	2500	10000
BH27	0.0-0.2	Coarse	700	1000	2500	10000
BH28	0.0-0.2	Coarse	700	1000	2500	10000
BH29	0.0-0.2	Coarse	700	1000	2500	10000
BH30	0.05-0.15	Coarse	700	1000	2500	10000
BH30	0.05-0.15	Coarse	700	1000	2500	10000

			SOIL LABOR		COMPARED TO g/kg unless stat	DIRECT CONTA ted otherwise	CT CRITERIA				
Analyte		C6-C10	>C10-C16	>C16-C34	>C ₃₄ -C ₄₀	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene	PID
PQL - Envirolab Services		25	50	100	100	0.2	0.5	1	1	1	
CRC 2011 -Direct contac	t Criteria	82,000	62,000	85,000	120,000	1,100	120,000	85,000	130,000	29,000	
Site Use				Intro	usive Maintena	nce Worker - DII	RECT SOIL CON	ITACT			
Sample Reference	Sample Depth										
BH1	0.2-0.3	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH1	0.2-0.3	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH1	0.2-0.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	0
BH2	0.0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH2	2.5-2.7	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH3	0.1-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH4	0.1-0.2	<25	<50	120	180	<0.2	<0.5	<1	<3	<1	0
BH5	0.1-0.2	<25	<50	860	310	<0.2	<0.5	<1	<3	<1	0
BH5	0.7-0.8	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH6	0.1-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH6	0.6-0.7	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH7	0.0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH8	0.0-0.1	<25	<50	200	150	<0.2	<0.5	<1	<3	<1	0
BH8	0.3-0.4	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH9	0.1-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH10	0.0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH11	0.0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH11	0.0-0.2	<25	<50	110	<100	<0.2	<0.5	<1	<3	<1	0
BH12	0.3-0.5	<25	<50	270	270	<0.2	<0.5	<1	<3	<1	0
BH13	0.0-0.2	<25	<50	310	240	<0.2	<0.5	<1	<3	<1	0
BH14	0.05-0.25	<25	<50	480	370	<0.2	<0.5	<1	<3	<1	0
BH14	1.0-1.2	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH15	0.0-0.3	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH16	0.0-0.15	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH17	0.05-0.25	<25	<50	310	470	<0.2	<0.5	<1	<3	<1	0
BH18	0.05-0.25	<25	<50	200	250	<0.2	<0.5	<1	<3	<1	0
BH19	0.0-0.1	<25	100	340	240	<0.2	<0.5	<1	<3	<1	0
BH20	0.0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH21	0.05-0.3	<25	<50	610	850	<0.2	<0.5	<1	<3	<1	0
BH21	0.05-0.3	<25	<50	690	1000	<0.2	<0.5	<1	<3	<1	0
BH21	0.6-0.9	<25	<50	150	<100	<0.2	<0.5	<1	<3	<1	0
BH22	0.05-0.2	<25	<50	130	<100	<0.2	<0.5	<1	<3	<1	0
BH23	0.0-0.1	<25	210	1600	610	<0.2	<0.5	<1	<3	<1	0
BH23	0.3-0.4	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH24	0.0-0.3	<25	<50	180	150	<0.2	<0.5	<1	<3	<1	0
BH25	0.0-0.2	<25	<50	170	180	<0.2	<0.5	<1	<3	<1	0
BH26	0.0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH27	0.0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
3H28	0.0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH29	0.0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH30	0.05-0.15	<25	<50	<100	120	<0.2	<0.5	<1	<3	<1	0
3H30	0.05-0.15	<25	<50	110	140	<0.2	<0.5	<1	<3	<1	0
Fotal Number of Sample	es	41	41	41	41	41	41	41	41	41	42
Vaximum Value	_	<pql< td=""><td>210</td><td>1600</td><td>1000</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pc< td=""></pc<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	210	1600	1000	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pc< td=""></pc<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pc< td=""></pc<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pc< td=""></pc<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pc< td=""></pc<></td></pql<></td></pql<>	<pql< td=""><td><pc< td=""></pc<></td></pql<>	<pc< td=""></pc<>

Detailed Site investigation	
Greenwich Hospital - 97-115 River Road,	Greenwich, NSW

TABLE H ASBESTOS QUANTIFICATION - FIELD OBSERVATIONS AND LABORATORY RESULTS HSL-A: Residential with garden/accessible soils; children's day care centers; preschools; and primary schools


e Sampled	Sample reference	Sample Depth	Visible ACM in top 100mm	Approx. Volume of Soil (L)	Soil Mass (g)	Mass ACM (g)		from ACM	Mass ACM <7mm (g)	Mass Asbestos in ACM <7mm (g)		Mass FA (g)	Mass Asbestos in FA (g)	[Asbestos from FA in soil] (%w/w)	Lab Report Number	Sample refeference	Sample Depth	Sample Mass (g)	Asbestos ID in soil (AS4964) >0.1g/kg	Trace Analysis	Total Asbestos (g/kg)	Asbestos ID in soil <0.1g/kg	ACM >7mm Estimation (g)	FA and AF Estimation (g)	ACM >7mm Estimatio n %(w/w)	FA a Estir n %(
SAC			No					0.01			0.001	1		0.001								1			0.01	0.
/07/2019 /07/2019	BH1 BH1	0.2-0.3	No No	NA	NA	No ACM observed No ACM observed			No ACM <7mm observed No ACM <7mm observed			No FA observed								-						-
/07/2019		0.75-0.95	-	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed								-						+
07/2019	BH1	1.6-1.8	No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed														T
/07/2019	BH1	2.8-3.0	No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed														
/07/2019	BH2	0.0-0.1	No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed			222520	BH2	0.0-0.1	538.87	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	_
07/2019	BH2	0.6-0.7	No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed														╞
07/2019	BH2	1.0-1.1	No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed							**							╋
/07/2019 /07/2019	BH3 BH3	0.1-0.2	No	NA	NA NA	No ACM observed			No ACM <7mm observed No ACM <7mm observed			No FA observed														+
/07/2019	BH3	0.5-0.6	No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed							**							+
/07/2019	BH4	0.1-0.2	No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed							**							t
/07/2019	BH4	0.2-0.3	No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed														t
/07/2019	BH4	0.5-0.7	No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed														T
/07/2019	BH4	1.3-1.4	No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed							**							
/07/2019	BH4	1.9-2.0	No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed							**							+
/07/2019	BH5	0.1-0.2	No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed														+
/07/2019	BH5	0.2-0.3	No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed														┾
/07/2019 /07/2019	BH6 BH6	0.1-0.2	No No	NA	NA NA	No ACM observed			No ACM <7mm observed No ACM <7mm observed			No FA observed							**							+
/07/2019	BH7	0.0-0.1	No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed			222520	BH7	0.0-0.1	413.74	 No asbestos detected at reporting limit of 0.1g/kg: Organic tibres	 No asbestos detected	<0.1	 No visible asbestos detected		-	<0.01	+
/07/2019	BH8	0.0-0.1	No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed			222520	BH8		381.85	No asbestos detected at reporting limit of 0.1g/kg: Organic tibres	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	┼
/07/2019	BH9	0.1-0.2	No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed							datactad 							t
/07/2019	BH9	0.4-0.6	No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed														Γ
/07/2019	BH9	0.6-0.9	No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed														Ţ
/07/2019	BH10	0.0-0.1	No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed													- 1	1
/07/2019	BH11	0.0-0.2	No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed							**							+
/07/2019 /07/2019	BH11 BH11	0.2-0.4	No No	NA	NA NA	No ACM observed No ACM observed			No ACM <7mm observed No ACM <7mm observed			No FA observed														+
/07/2019	BH11 BH12	0.4-0.6	NO	NA	NA	No ACM observed			No ACM <7mm observed		-	No FA observed							==							+
/07/2019	BH12 BH12	1.0-1.2	No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed							**							t
/07/2019	BH12	2.0-2.2	No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed														t
/07/2019	BH12	2.5-2.7	No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed														Ť
/07/2019	BH12	2.8-3.1	No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed														T
/07/2019	BH12	3.8-4.0	No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed														I
/07/2019	BH13	0.0-0.2	No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed			222520	BH13	0.0-0.2	661.1	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	+
/07/2019	BH13	0.3-0.5	No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed							**							+
/07/2019		0.05-0.25	No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed							**							÷
/07/2019 /07/2019	BH14 BH14	0.46	No No	NA	NA	No ACM observed No ACM observed			No ACM <7mm observed No ACM <7mm observed			No FA observed							==							t
/07/2019	BH14 BH14	1.0-1.2	No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed							**							t
/07/2019	BH14	1.4-1.6	No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed							**							t
/07/2019	BH14	2.3-2.4	No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed														t
/07/2019	BH15	0.0-0.3	No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed														t
/07/2019	BH15	0.4-0.5	No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed							**							Γ
/07/2019	BH15	0.5-0.7	No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed														_
/07/2019	BH15	0.9-1.1	No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed														╇
/07/2019		0.0-0.15	No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed							**							┾
/07/2019 /07/2019		0.15-0.3	No No	NA	NA NA	No ACM observed No ACM observed			No ACM <7mm observed No ACM <7mm observed			No FA observed No FA observed														+
/07/2019		0.05-0.25		NA	NA	No ACM observed			No ACM <7mm observed			No FA observed														t
/07/2019		0.25-0.45		NA	NA	No ACM observed			No ACM <7mm observed			No FA observed							88							t
/07/2019	BH17	0.7-0.75	No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed														t
/07/2019	BH17	0.75-0.85	No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed														Τ
/07/2019	BH18	0.05-0.25	No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed							**							
/07/2019		0.25-0.4	No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed														+
/07/2019	BH18	0.4-0.6	No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed							88							+
/07/2019	BH18	0.6-0.8	No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed							**							+
/07/2019		0.9-1.1	No No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed														+
/07/2019 /07/2019	BH19 BH19	0.0-0.1	No	NA	NA NA	No ACM observed No ACM observed			No ACM <7mm observed No ACM <7mm observed			No FA observed							**		-					+
/07/2019	BH19 BH20	0.0-0.2	No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed							**							t
/07/2019		0.05-0.2	No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed														t
/07/2019	BH21	0.3-0.6	No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed							==	-						Ĵ
/07/2019	BH21	0.6-0.9	No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed							**							1
/07/2019		0.05-0.2	No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed														1
/07/2019		0.3-0.5	No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed														1
/07/2019	BH23	0.0-0.1	No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed							**							+
/07/2019	BH23 BH24	0.3-0.4	No	NA	NA	No ACM observed			No ACM <7mm observed		-	No FA observed														+
/07/2019 /07/2019	BH24 BH24	0.0-0.3	No No	NA	NA NA	No ACM observed No ACM observed			No ACM <7mm observed No ACM <7mm observed			No FA observed														ł
/07/2019	BH24 BH24	0.5-0.7	No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed							**							t
/07/2019		0.0-0.2	No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed								-						t
/07/2019	BH26	0.0-0.1	No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed							-	-						t
/07/2019	BH26	0.1-0.3	No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed														Ĵ
/07/2019		0.0-0.2	No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed														1
/07/2019		0.25-0.45		NA	NA	No ACM observed			No ACM <7mm observed			No FA observed								-						1
/07/2019	BH28	0.0-0.2	No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed							**							4
/07/2019	BH28	0.2-0.3	No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed							**							+
/07/2019	BH29	0.0-0.2	No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed					**									+
/07/2010	BH29 BH29	0.3-0.4	No No	NA	NA NA	No ACM observed No ACM observed			No ACM <7mm observed No ACM <7mm observed			No FA observed														+
/07/2019		0.8-0.9	No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed						-	=	-						+
/07/2019			No	NA	NA	No ACM observed			No ACM <7mm observed			No FA observed								-						t
	BH29	0.9-1.1		1																						t
/07/2019 /07/2019	BH29 BH29	0.9-1.1		NA	NA	No ACM observed			No ACM <7mm observed			No FA observed														1
/07/2019 /07/2019 /07/2019	BH29 BH29 BH30			NA	NA NA	No ACM observed No ACM observed			No ACM <7mm observed No ACM <7mm observed			No FA observed														Ť
/07/2019 /07/2019 /07/2019 /07/2019	BH29 BH29 BH30 BH30	0.05-0.15	No				-												**							Ŧ
07/2019 07/2019 07/2019 07/2019 07/2019	BH29 BH29 BH30 BH30 BH30	0.05-0.15 0.15-0.3	No No	NA	NA	No ACM observed	-		No ACM <7mm observed			No FA observed						 	** **]

				C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene	
QL - Envirola	b Services			10	50	1	1	1	3	1	PID
NEPM 2013 - L	and Use Categor	ý				HSL-A/B: LOV	V/HIGH DENSIT	Y RESIDENTIAL			
Sample Reference	Water Depth	Depth Category	Soil Category								
1W7	6.35	4m to <8m	Sand	19	300	<1	4	<1	15	<1	24.1
otal Numbe	r of Samples			1	1	1	1	1	1	1	1
Maximum Va	luo			19	300	<pql< td=""><td>4</td><td><pql< td=""><td>15</td><td><pql< td=""><td>24.1</td></pql<></td></pql<></td></pql<>	4	<pql< td=""><td>15</td><td><pql< td=""><td>24.1</td></pql<></td></pql<>	15	<pql< td=""><td>24.1</td></pql<>	24.1

HSL GROUNDWATER ASSESSMENT CRITERIA

				C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	Benzene	Toluene	Ethylbenzene	Xylenes	Nap
PQL - Envirolab	Services			10	50	1	1	1	3	
NEPM 2013 - La	nd Use Category	/				HSL-A/B: LOV	V/HIGH DENSITY	(RESIDENTIAL		
Sample	Water Donth	Donth Cotogony	Soil Category							
Reference	water Depth	Depth Category	Soli Category							
MW7	6.35	4m to <8m	Sand	1000	1000	800	NL	NL	NL	

	т	ABLE J	
SUMMARY OF GROUN	IDAWATER LABORATO	RY RESULTS COMPARED TO ECOLO	DGICAL GILs SAC
	All results in µg	g/L unless stated otherwise.	
	201	ANZG	SAMPLES
	PQL Envirolab	2018	MW7
	Services	Fresh Waters	1/08/2019
Inorganic Compounds and Parameters			
pH	0.1	6.5 - 8.5	6.7
Electrical Conductivity (µS/cm)	1	NSL	270
Metals and Metalloids			
Arsenic (As III)	1	24	<1
Cadmium	0.1	0.2	<0.1
Chromium (VI)	1	1	<1
Copper Lead	1	1.4	2 <1
Total Mercury (inorganic)	0.05	0.06	<0.05
Nickel	1	11	2
Zinc	1	8	4
Monocyclic Aromatic Hydrocarbons (BTE	X Compounds)		
Benzene	1	950	<1
Toluene	1	180	4
Ethylbenzene	1	80	<1
m+p-xylene	2	75	8
o-xylene	1	350	7
Total xylenes	2	NSL	15
Volatile Organic Compounds (VOCs), inclu Disblazedifueremethane			
Dichlorodifluoromethane	10	NSL	<10 <10
Chloromethane Vinyl Chloride	10	NSL 100	<10
Bromomethane	10	NSL	<10
Chloroethane	10	NSL	<10
Trichlorofluoromethane	10	NSL	<10
1,1-Dichloroethene	1	700	<1
Trans-1,2-dichloroethene	1	NSL	<1
1,1-dichloroethane	1	90	<1
Cis-1,2-dichloroethene	1	NSL	<1
Bromochloromethane	1	NSL	<1
Chloroform	1	370	18
2,2-dichloropropane	1	NSL	<1
1,2-dichloroethane	1	1900	<1
1,1,1-trichloroethane	1	270	<1
1,1-dichloropropene	1	NSL	<1 <1
Cyclohexane Carbon tetrachloride	1	NSL 240	<1 <1
Benzene	1	see BTEX	<1
Dibromomethane	1	NSL	<1
1,2-dichloropropane	1	900	<1
Trichloroethene	1	NSL	<1
Bromodichloromethane	1	NSL	14
trans-1,3-dichloropropene	1	NSL	<1
cis-1,3-dichloropropene	1	NSL	<1
1,1,2-trichloroethane	1	6500	<1
Toluene	1	see BTEX	4
1,3-dichloropropane	1	1100	<1
Dibromochloromethane	1	NSL	6
1,2-dibromoethane	1	NSL 70	<1
Tetrachloroethene 1,1,1,2-tetrachloroethane	1	70 NSL	<1
Chlorobenzene	1	55	<1 <1
Ethylbenzene	1	see BTEX	<1
Bromoform	1	NSL	<1
m+p-xylene	2	see BTEX	8
Styrene	1	NSL	<1
1,1,2,2-tetrachloroethane	1	400	<1
o-xylene	1	see BTEX	7
1,2,3-trichloropropane	1	NSL	<1
Isopropylbenzene	1	30	<1
Bromobenzene	1	NSL	<1
n-propyl benzene	1	NSL	<1
2-chlorotoluene	1	NSL	<1
4-chlorotoluene	1	NSL	<1
1,3,5-trimethyl benzene	1	NSL	3
Tert-butyl benzene	1	NSL	<1 9
1,2,4-trimethyl benzene 1,3-dichlorobenzene	1	260	<1
1,3-dichlorobenzene Sec-butyl benzene	1	NSL	<1 <1
1,4-dichlorobenzene	1	60	<1 <1
4-isopropyl toluene	1	NSL	1
1,2-dichlorobenzene	1	160	<1
n-butyl benzene	1	NSL	<1
1,2-dibromo-3-chloropropane	1	NSL	<1
1.2.4-trichlorobenzene	1	85	<1

1,2-dibromo-3-chloropropane	1	NSL	<1
1,2,4-trichlorobenzene	1	85	<1
Hexachlorobutadiene	1	NSL	<1
1,2,3-trichlorobenzene	1	3	<1
Polycyclic Aromatic Hydrocarbons (PAHs)			
Naphthalene	0.2	16	<0.2
Acenaphthylene	0.1	NSL	<0.1
Acenaphthene	0.1	NSL	<0.1
Fluorene	0.1	NSL	<0.1
Phenanthrene	0.1	0.6	<0.1
Anthracene	0.1	0.01	<0.1
Fluoranthene	0.1	1	<0.1
Pyrene	0.1	NSL	<0.1
Benzo(a)anthracene	0.1	NSL	<0.1
Chrysene	0.1	NSL	<0.1
Benzo(b,j+k)fluoranthene	0.2	NSL	<0.2
Benzo(a)pyrene	0.1	0.1	<0.1
Indeno(1,2,3-c,d)pyrene	0.1	NSL	<0.1
Dibenzo(a,h)anthracene	0.1	NSL	<0.1
Benzo(g,h,i)perylene	0.1	NSL	<0.1
Concentration above the GIL	VALUE		
PQL exceeds GIL	BOLD/RED		

Copyright Environmental Investigation Services

	PQL Envirolab	ANZG 2000	NHMRC ADWG	SAMPLES MW7
	Services	Recreational	2011	1/08/2019
norganic Compounds and Parameters	0.1	6.5 - 8.5	6.5 - 8.5	6.7
Electrical Conductivity (µS/cm)	1	NSL	NSL	270
Metals and Metalloids Arsenic (As III)	1	50	10	<1
Cadmium	0.1	5	2	<0.1
Chromium (total) Copper	1	50 1000	50 2000	<1
Lead	1	50	10	<1
Fotal Mercury (inorganic) Nickel	0.05	1 100	20	<0.05
Zinc	1	5000	3000	4
Monocyclic Aromatic Hydrocarbons (BTEX Co		10	1	-1
Benzene Foluene	1	10 NSL	1 800	<1 4
Ethylbenzene	1	NSL	300	<1
n+p-xylene p-xylene	2	NSL	NSL	8
Fotal xylenes	2	NSL	600	15
Volatile Organic Compounds (VOCs), including				
Dichlorodifluoromethane Chloromethane	10	NSL	NSL	<10 <10
/inyl Chloride	10	NSL	0.3	<10
Bromomethane	10	NSL	NSL	<10
Chloroethane Frichlorofluoromethane	10 10	NSL	NSL	<10 <10
L,1-Dichloroethene	1	0.3	30	<1
Trans-1,2-dichloroethene	1	NSL	NSL	<1
1,1-dichloroethane Cis-1,2-dichloroethene	1	NSL	NSL	<1 <1
Bromochloromethane	1	NSL	250	<1
Chloroform	1	NSL		18
2,2-dichloropropane 1,2-dichloroethane	1	NSL 10	NSL 3	<1 <1
1,1,1-trichloroethane	1	NSL	NSL	<1
1,1-dichloropropene	1	NSL	NSL	<1
Cyclohexane	1	NSL 3	NSL	<1
Carbon tetrachloride Benzene	1	3 NSL	see BTEX	<1 <1
Dibromomethane	1	NSL	NSL	<1
1,2-dichloropropane	1	NSL	NSL	<1 <1
Bromodichloromethane	1	30 NSL	NSL	<1 14
trans-1,3-dichloropropene	1	NSL	NSL	<1
cis-1,3-dichloropropene	1	NSL	NSL	<1
1,1,2-trichloroethane Toluene	1	NSL	NSL see BTEX	<1
1,3-dichloropropane	1	NSL	NSL	<1
Dibromochloromethane	1	NSL	NSL	6
1,2-dibromoethane Tetrachloroethene	1	NSL 10	NSL	<1 <1
1,1,1,2-tetrachloroethane	1	NSL	NSL	<1
Chlorobenzene	1	NSL	300	<1
Ethylbenzene Bromoform	1	NSL	see BTEX NSL	<1 <1
m+p-xylene	2	NSL	see BTEX	8
Styrene	1	NSL	NSL	<1
1,1,2,2-tetrachloroethane	1	NSL	NSL see BTEX	<1 7
1,2,3-trichloropropane	1	NSL	NSL	<1
sopropylbenzene	1	NSL	NSL	<1
Bromobenzene n-propyl benzene	1	NSL	NSL	<1 <1
2-chlorotoluene	1	NSL	NSL	<1
4-chlorotoluene	1	NSL	NSL	<1
1,3,5-trimethyl benzene Tert-butyl benzene	1	NSL	NSL	3 <1
1,2,4-trimethyl benzene	1	NSL	NSL	9
1,3-dichlorobenzene	1	NSL	300	<1
Sec-butyl benzene L,4-dichlorobenzene	1	NSL	NSL 40	<1 <1
1-isopropyl toluene	1	NSL	NSL NSL	1
1,2-dichlorobenzene	1	NSL	1500	<1
n-butyl benzene 1,2-dibromo-3-chloropropane	1	NSL	NSL	<1 <1
1,2,4-trichlorobenzene	1	NSL	NSL	<1
Hexachlorobutadiene	1	NSL	NSL	<1
1,2,3-trichlorobenzene Polycyclic Aromatic Hydrocarbons (PAHs)	1	NSL	NSL	<1
Naphthalene	0.2	NSL	NSL	<0.2
Acenaphthylene	0.1	NSL	NSL	<0.1
Acenaphthene Fluorene	0.1	NSL NSL	NSL	<0.1 <0.1
Phenanthrene	0.1	NSL	NSL	<0.1
Anthracene	0.1	NSL	NSL	<0.1
Fluoranthene Pyrene	0.1	NSL	NSL	<0.1 <0.1
Benzo(a)anthracene	0.1	NSL	NSL	<0.1
Chrysene	0.1	NSL	NSL	<0.1
Benzo(b,j+k)fluoranthene	0.2	NSL 0.01	NSL 0.01	<0.2
Benzo(a)pyrene ndeno(1,2,3-c,d)pyrene	0.1 0.1	0.01 NSL	0.01 NSL	<0.1 <0.1
Dibenzo(a,h)anthracene	0.1	NSL	NSL	<0.1
Benzo(g,h,i)perylene	0.1	NSL	NSL	<0.1

Copyright Environmental Investigation Services

SAMPLE	ANALYSIS	Envirolab PQL	INITIAL	REPEAT	MEAN	RPD %
Sample Ref = BH1 (0.2-0.3)	Arsenic	4	<4	<4	NC	NC
Dup Ref = DUPKT1	Cadmium	0.4	<0.4	<0.4	NC	NC
•	Chromium	1	14	12	13.0	15
Envirolab Report: 222520	Copper	1	22	32	27.0	37
	Lead	1	22	17	19.5	26
	Mercury	0.1	<0.1	<0.1	NC	NC
	Nickel	1	41	46	43.5	11
	Zinc	1	34	33	33.5	3
	Naphthalene	0.1	<0.1	<0.1	NC	NC
	Acenaphthylene	0.1	<0.1	<0.1	NC	NC
	Acenaphthene	0.1	<0.1	<0.1	NC	NC
	Fluorene	0.1	<0.1	<0.1	NC	NC
	Phenanthrene	0.1	<0.1	<0.1	NC	NC
	Anthracene	0.1	<0.1	<0.1	NC	NC
	Fluoranthene	0.1	0.2	<0.1	0.1	120
	Pyrene	0.1	0.2	0.1	0.2	67
	Benzo(a)anthracene	0.1	<0.1	<0.1	NC	NC
	Chrysene	0.1	0.2	<0.1	0.1	120
	Benzo(b,j+k)fluoranthene	0.2	<0.2	<0.2	NC	NC
	Benzo(a)pyrene	0.05	0.1	0.05	0.1	67
	Indeno(123-cd)pyrene	0.1	<0.1	<0.1	NC	NC
	Dibenzo(ah)anthracene	0.1	<0.1	<0.1	NC	NC
	Benzo(ghi)perylene	0.1	<0.1	<0.1	NC	NC
	TRH C ₆ -C ₁₀ (F1)	25	<25	<25	NC	NC
	TRH >C ₁₀ -C ₁₆ (F2)	50	<50	<50	NC	NC
	TRH >C ₁₆ -C ₃₄ (F3)	100	<100	<100	NC	NC
	TRH >C ₃₄ -C ₄₀ (F4)	100	<100	<100	NC	NC
	Benzene	0.2	<0.2	<0.2	NC	NC
	Toluene	0.5	<0.5	<0.5	NC	NC
	Ethylbenzene	1	<1	<1	NC	NC
	m+p-xylene	2	<2	<2	NC	NC
	o-xylene	1	<1	<1	NC	NC

SAMPLE	ANALYSIS	Envirolab PQL	INITIAL	REPEAT	MEAN	RPD %	
ample Ref = BH26 (0.0-0.1)	Arsenic	۲QL 4	4	<4	3.0	67	
Dup Ref = DUPMP1	Cadmium	0.4	<0.4	<0.4	NC	NC	
	Chromium	1	15	12	13.5	22	
nvirolab Report: 222520	Copper	1	10	10	10.0	0	
	Lead	1	34	32	33.0	6	
	Mercury	0.1	<0.1	<0.1	NC	NC	
	Nickel	1	5	4	4.5	22	
	Zinc	1	34	34	34.0	0	
	Naphthalene	0.1	<0.1	<0.1	NC	NC	
	Acenaphthylene	0.1	<0.1	<0.1	NC	NC	
	Acenaphthene	0.1	<0.1	<0.1	NC	NC	
	Fluorene	0.1	<0.1	<0.1	NC	NC	
	Phenanthrene	0.1	<0.1	<0.1	NC	NC	
	Anthracene	0.1	<0.1	<0.1	NC	NC	
	Fluoranthene	0.1	<0.1	<0.1	NC	NC	
	Pyrene	0.1	<0.1	<0.1	NC	NC	
	Benzo(a)anthracene	0.1	<0.1	<0.1	NC	NC	
	Chrysene	0.1	<0.1	<0.1	NC	NC	
	Benzo(b,j+k)fluoranthene	0.2	<0.2	<0.2	NC	NC	
	Benzo(a)pyrene	0.05	<0.05	<0.05	NC	NC	
	Indeno(123-cd)pyrene	0.1	<0.1	<0.1	NC	NC	
	Dibenzo(ah)anthracene	0.1	<0.1	<0.1	NC	NC	
	Benzo(ghi)perylene	0.1	<0.1	<0.1	NC	NC	
	TRH C6-C10 (F1)	25	<25	<25	NC	NC	
	TRH >C10-C16 (F2)	50	<50	<50	NC	NC	
	TRH >C16-C34 (F3)	100	<100	180	115.0	113	
	TRH >C34-C40 (F4)	100	<100	110	80.0	75	
	Benzene	0.2	<0.2	<0.2	NC	NC	
	Toluene	0.5	<0.5	<0.5	NC	NC	
	Ethylbenzene	1	<1	<1	NC	NC	
	m+p-xylene	2	<2	<2	NC	NC	
	o-xylene	1	<1	<1	NC	NC	

SAMPLE	ANALYSIS	Envirolab	Envirolab VIC	INITIAL	REPEAT	MEAN	RPD
SAIWII EL	ANALISIS	PQL	PQL				%
Sample Ref = BH10 (0.0-0.1)	Arsenic	4	4	<4	4	3.0	67
Dup Ref = DUPKT2	Cadmium	0.4	0.4	<0.4	<0.4	NC	NC
	Chromium	1	1	7	13	10.0	60
Envirolab Report: 222520	Copper	1	1	7	16	11.5	78
Envirolab VIC Report: 17565	Lead	1	1	26	88	57.0	109
	Mercury	0.1	0.1	<0.1	0.2	0.1	120
	Nickel	1	1	2	2	2.0	0
	Zinc	1	1	28	78	53.0	94
	Naphthalene	0.1	0.1	<0.1	<0.1	NC	NC
	Acenaphthylene	0.1	0.1	<0.1	<0.1	NC	NC
	Acenaphthene	0.1	0.1	<0.1	<0.1	NC	NC
	Fluorene	0.1	0.1	<0.1	<0.1	NC	NC
	Phenanthrene	0.1	0.1	<0.1	0.3	0.2	143
	Anthracene	0.1	0.1	<0.1	<0.1	NC	NC
	Fluoranthene	0.1	0.1	0.1	0.8	0.5	156
	Pyrene	0.1	0.1	0.1	0.8	0.5	156
	Benzo(a)anthracene	0.1	0.1	<0.1	0.4	0.2	156
	Chrysene	0.1	0.1	<0.1	0.4	0.2	156
	Benzo(b,j+k)fluoranthene	0.2	0.2	<0.2	0.8	0.5	156
	Benzo(a)pyrene	0.05	0.05	< 0.05	0.45	0.2	179
	Indeno(123-cd)pyrene	0.1	0.1	<0.1	0.3	0.2	143
	Dibenzo(ah)anthracene	0.1	0.1	<0.1	0.1	0.1	67
	Benzo(ghi)perylene	0.1	0.1	<0.1	0.3	0.2	143
	TRH C6-C10 (F1)	25	25	<25	<25	NC	NC
	TRH >C10-C16 (F2)	50	50	<50	<50	NC	NC
	TRH >C16-C34 (F3)	100	100	<100	160	105.0	105
	TRH >C34-C40 (F4)	100	100	<100	<100	NC	NC
	Benzene	0.2	0.2	<0.2	<0.2	NC	NC
	Toluene	0.5	0.5	<0.5	<0.5	NC	NC
	Ethylbenzene	1	1	<1	<1	NC	NC
	m+p-xylene	2	2	<2	<2	NC	NC
	o-xylene	1	1	<1	<1	NC	NC

SAMPLE	ANALYSIS	Envirolab	Envirolab VIC	INITIAL	REPEAT	MEAN	RPD
		PQL	PQL				%
Sample Ref = BH24 (0.0-0.3)	Arsenic	4	4	<4	<4	NC	NC
Dup Ref = DUPMP2	Cadmium	0.4	0.4	<0.4	<0.4	NC	NC
	Chromium	1	1	15	16	15.5	6
Envirolab Report: 222520	Copper	1	1	25	27	26.0	8
Envirolab VIC Report: 17565	Lead	1	1	54	57	55.5	5
	Mercury	0.1	0.1	<0.1	<0.1	NC	NC
	Nickel	1	1	25	29	27.0	15
	Zinc	1	1	150	150	150.0	0
	Naphthalene	0.1	0.1	<0.1	<0.1	NC	NC
	Acenaphthylene	0.1	0.1	<0.1	<0.1	NC	NC
	Acenaphthene	0.1	0.1	<0.1	<0.1	NC	NC
	Fluorene	0.1	0.1	<0.1	<0.1	NC	NC
	Phenanthrene	0.1	0.1	<0.1	<0.1	NC	NC
	Anthracene	0.1	0.1	<0.1	<0.1	NC	NC
	Fluoranthene	0.1	0.1	<0.1	<0.1	NC	NC
	Pyrene	0.1	0.1	<0.1	<0.1	NC	NC
	Benzo(a)anthracene	0.1	0.1	<0.1	<0.1	NC	NC
	Chrysene	0.1	0.1	<0.1	<0.1	NC	NC
	Benzo(b,j+k)fluoranthene	0.2	0.2	<0.2	< 0.2	NC	NC
	Benzo(a)pyrene	0.05	0.05	<0.05	<0.05	NC	NC
	Indeno(123-cd)pyrene	0.1	0.1	<0.1	<0.1	NC	NC
	Dibenzo(ah)anthracene	0.1	0.1	<0.1	<0.1	NC	
	Benzo(ghi)perylene TRH C6-C10 (F1)	0.1 25	25	<0.1 <25	<0.1 <25	NC NC	
	TRH >C10-C16 (F2)	50	50	<50	<100	NC	NC
	TRH >C16-C34 (F3)		100		<100		
	TRH >C16-C34 (F3)	100 100	100	180 150	<100	115.0 100.0	113 100
	Benzene	0.2	0.2	<0.2	<0.2	100.0 NC	NC
	Toluene	0.2	0.2	<0.2	<0.2	NC	NC
	Ethylbenzene	1	1	<1	<0.5	NC	NC
	m+p-xylene	2	2	<2	<1	NC	NC
	o-xylene	1	1	<1	<1	NC	NC

Г

PQL µg/L	22/07/2019 mg/kg	1/08/2019
	mg/kg	
		% Recovery
0.2	<0.2	131%
0.5	<0.5	120%
1	<1	120%
2	<2	116%
1	<1	118%
	1 2	1 <1 2 <2

ASI Borehole Logs

С	lie	nt:		HAMM		O CA	RE						
Ρ	roj	ect	:	PROP	OSE	DH	OSPIT	AL RE	DEVELOPMENT				
L	oca	atio	n:	97-115	5 RIV	/ER	ROAD,	GRE	ENWICH, NSW				
J	ob	No	.: 3	2507R2				Me	thod: SPIRAL AUGER	R	.L. Sur	face:	~42.1 m
D	ate	e: 6	/10/	21						D	atum:	AHD	
Ρ	lan	nt T	ype	: JK205				Log	gged/Checked By: J.L./P.R.				
Groundwater Record	SA	MPL DB	ES	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
			9	N > 9 ,9/ 100mm REFUSAL ∫	42			-	ASPHALTIC CONCRETE: 20mm.t FILL: Silty gravelly sand, fine to medium grained, grey, fine to medium grained, igneous gravel, trace of brick fragments. / FILL: Silty sand, fine to medium grained, brown, trace of sandstone gravel, clay nodules, glass, plastic and earthenware fragments.	M			APPEARS MODERATELY COMPACTED SCREEN: 5.2kg 0.02-0.4m NO FCF SCREEN: 6.7kg 0.4-1.4m NO FCF
				N = 11 3,5,6	- 40 -	- 2 -		-	Extremely Weathered sandstone: silty clayey SAND, fine to medium grained, yellow brown. SANDSTONE: fine to medium grained, yellow brown and orange brown.	XW DW	(D - VD) L - M		SCREEN: 1.4-1.7m NO FCF HAWKESBURY SANDSTONE LOW TO MODERATE 'TC' BIT RESISTANCE
∇					- - 39 -	3							
20/10/21					- - 38	- 4							- - - - - - -
					- 	5			REFER TO CORED BOREHOLE LOG				GROUNDWATER MONITORING WELL INSTALLED TO 7.5m. CLASS 18 MACHINE SLOTTED 50mm DIA. PVC STANDPIPE 1.2m TO 7.5m. CASING 0m TO 1.2m. 2mm SAND FILTER PACK 1.0m TO 7.5m. BENTONITE SEAL 0.25m TO 1.0m. BACKFILLED WITH SAND TO THE SURFACE. COMPLETED
						6 							GATIC COVER.

	Cli	en	nt:		HAMM	OND CARE												
1	Pro	oje	ect:		PROPO	OSED HOSPITAL REDEVELC	PME	NT										
	Lo	ca	tion	•	97-115	RIVER ROAD, GREENWICH	, NS\	N										
.	Jol	b l	No.:	325	507R2	Core Size:	NML	0								R.I	L. Surface: ~42.1 m	
1	Da	te	: 6/1	0/21	1	Inclination:	VER	TICA	۱L							Da	tum: AHD	
	Pla	ant	t Typ	e:	JK205	Bearing: N	/A									Lo	gged/Checked By: J.L./P.R.	
			()		g	CORE DESCRIPTION						oad Sth		PAC			DEFECT DETAILS DESCRIPTION	-
Water		Barrel Litt	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength		l,	IDE (50))		(mr			Type, orientation, defect shape and roughness, defect coatings and	Formation
Wate	Loss	Barr	RL (Dept	Grap		Wea	Strei	۲Ľ ،		ף ק ב ב	, ⁴ , ⁴	600	200	60	7	seams, openness and thickness Specific General	Forn
			38 -			START CORING AT 4.37m							ļ	İ			ROCK STRENGTH BASED ON TACTILE ASSESSMENT	
07-00-01				5-		SANDSTONE: medium grained, yellow brown and orange brown, bedded at 0-25°.	HW - MW	(L - M)									(4.95m) Be, 0°, P, R, Fe Ct	ne
100%	RETURN		- - 36 -	6-		SANDSTONE: fine to medium grained, light grey.	FR	(M - H)	_								(5.77m) CS, 0°, 5 mm.t	Hawkesbury Sandstone
			- 35 - -	7-		END OF BOREHOLE AT 7.50 m						 		- 500			-	
			- 34 -	8-													-	
			- 33 - -	9-													-	
			- 32 - -	10-										200			-	
			GHT							TM			1				ERED TO BE DRILLING AND HANDLING BRE	

	lie			HAMN											
	-	ect: atio							DEVELOPMENT ENWICH, NSW						
							NOAD,								
				2507R2				Me	thod: SPIRAL AUGER				~37.7 m		
		e: 6/							read/Checked By U. /D.D.	Datum: AHD					
		11 1 3	/pe.	JK205				LO	gged/Checked By: J.L./P.R.						
Groundwater Record		MPLE DB	_	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks		
DRY ON COMPLETION				N = 7 2,4,3	- - 37 -	- - - 1-		-	ASPHALTIC CONCRETE: 50mm.t FILL: Silty gravely sand, fine to medium grained, brown, fine to medium grained igneous gravel, trace of concrete fragments and slag. FILL: Silty clay, low to medium plasticity, grey and brown, trace of igneous, ironstone and siltstone gravel, and slag.	M w <pl< td=""><td></td><td></td><td>APPEARS POORLY TO MODERATELY COMPACTED SCREEN: 7.60kg 0.05-0.5m NO FCF SCREEN: 9.5kg</td></pl<>			APPEARS POORLY TO MODERATELY COMPACTED SCREEN: 7.60kg 0.05-0.5m NO FCF SCREEN: 9.5kg		
					- - 36 -			-	SANDSTONE: fine to medium grained, orange brown.	DW	(L - M)		O.S-1.2m O.FCF HAWKESBURY SANDSTONE LOW TO MODERATE 'TC' BIT RESISTANCE		
						- - - 3-	-		REFER TO CORED BOREHOLE LOG				GROUNDWATER MONITORING WELL INSTALLED TO 6.1m. CLASS 18 MACHINE SLOTTED 50mm DIA. PVC STANDPIPE 1.2m TO 6.1m. CASING 0m TO 1.2m. 2mm SAND FILTER PACK 1.0m TO 6.1m. BENTONITE SEAL 0.25m TO 1.0m. BACKFILLED WITH SAND TO THE		
					- 34 — - -	- - 4 -	-						- SURFACE. COMPLETED - WITH A CONCRETED - GATIC COVER. - - - - - - - - - -		
					33	- 5 -							- - - - - - - - -		
						- - 6 - -							- - - - - - - - - -		
		RIGH	 T		31 -		-						-		

c	lier	nt:	l	HAMM	OND CARE									
P	roje	ect:	I	PROPO	OSED HOSPITAL REDEVELC	PME	NT							
L	oca	tion	: !	97-115	RIVER ROAD, GREENWICH	, NS\	N							
J	ob	No.:	325	07R2	Core Size:	NML	С					R.	L. Surface: ~37.7 m	
D	ate	: 6/1	0/21		Inclination:	VER	TICA	٩L				Da	atum: AHD	
Р	lan	t Typ	be:	JK205	Bearing: N	/A						Lo	ogged/Checked By: J.L./P.R.	
		()		g	CORE DESCRIPTION	_				ING	 SPA		DEFECT DETAILS DESCRIPTION	
Water Loss\Level	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength		INI اړ بې ۲۰۵۰ ۲۰۱۹	DEX 50) - ໆ	(n		Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness	Formation
<u>> _</u>					START CORING AT 2.05m								Specific General	
	110/211	- - - - - - - - - - - - - - - - - - -	3		SANDSTONE: medium grained, light grey and yellow brown, bedded at 0-20°.	MW	(L - M))				-20		Hawkesbury Sandstone
		33 - - - - 32 - - -	5		light grey laminae, bedded at 0-30°.								 (5.27m) CS, 0 - 10°, 75 mm.t	
		- 31 - - - 30 - - -	7		END OF BOREHOLE AT 6.12 m	FRACTI	IRES		 	 			DERED TO BE DRILLING AND HANDLING BRE	

JKEnvironments ENVIRONMENTAL LOG

Environmental logs are not to be used for geotechnical purposes

Client: Project: Location:		D HOSPITAL	L REDEVELOPMENT GREENWICH, NSW				
Job No.: E32 Date: 6/10/2	021		od: SPIRAL AUGER			.L. Surf atum:	ace: ≈ 38.8m AHD
Plant Type: σ	JK205	Logg	jed/Checked by: M.M.E./V.B				
Groundwater Record ES ASB SAMPLES DB	Field Tests Depth (m)	Graphic Log Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE -TION	N = 16 3,3,13 1	CL-CI CI-CH	ASPHALTIC CONCRETE: 30mm.t / FILL: Silty gravelly sand, fine to medium grained, brown, fine to medium grained, sub-angular, igneous gravel, trace of ironstone gravel, ceramic fragments and concrete. Sandy CLAY: low to medium plasticity, orange brown, fine to medium grained, trace of ironstone gravel. Sandy CLAY: low to medium plasticity, grey and brown, fine to medium grained, trace of ironstone gravel. END OF BOREHOLE AT 1.5m	M w <pl< td=""><td></td><td></td><td>SCREEN: 7.4kg 0.03-0.05m NO FCF HYDROCARBON ODOUR REFUSAL ON INFERRED BEDROCK</td></pl<>			SCREEN: 7.4kg 0.03-0.05m NO FCF HYDROCARBON ODOUR REFUSAL ON INFERRED BEDROCK

Borehole No. 104 1 / 2

	lier	nt:	HAM	MON) CA	ARE						
	-	ect:										
		ation			/ER	ROAD,		ENWICH, NSW				
			32507R	2			Me	thod: SPIRAL AUGER				~41.6 m
		e: 1/1		_					Da	atum:	AHD	
	'lan	tlyp	be: JK30	5	1		LO	gged/Checked By: J.L./P.R.				
Groundwater Record	SAI		Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
DRY ON COMPLETION COMPLETION			N = 9 2,5,4 N = 10 3,3,7 N > 10 4,6,4/100m REFUSAL	41- - - - - - - - - - - - - - - - - - -			-	ASPHALTIC CONCRETE: 40mm.t FILL: Sandy gravel, fine to medium grained, dark grey, fine to medium grained, sub-angular, igneous gravel, trace of ironstone and sandstone gravel, and slag. FILL: Silty gravelly sand, fine to medium grained, yellow brown, fine to medium grained, sandstone gravel, trace of metal and glass fragments, slag and ash. FILL: Silty sand, fine to medium grained, brown, trace of igneous, sandstone and siltstone gravel, glass fragments and ash. REFER TO CORED BOREHOLE LOG	M	<u>w</u>	Hi Pre Re	APPEARS POORLY TO MODERATELY COMPACTED SCREEN: 4.45kg 0.04-0.3m NO FCF SCREEN: 4.7kg 0.3-1.3m NO FCF SCREEN: 4.7kg 0.3-1.3m NO FCF SCREEN: 4.8kg 1.3-2.3m NO FCF SCREEN: 5.45kg 2.3-3.2m NO FCF GROUNDWATER MONITORING WELL SLOTTED 50mm DIA. PVC STANDPIPE 1.2m TO 5.97m. CASING 0m TO 1.2m. 2MS AND FILTER PACK 1.0m TO 5.97m. BENTONITE SEAL 0.25m TO 1.0m. BACKFILLED WITH SAND TO THE SURFACE. COMPLETED WITH ACONCRETED GATIC COVER.
				- 36 - - 35	6-							

	Cli	ien	it:		HAMM	OND CARE											
	Pro	oje	ect:		PROP	OSED HOSPITAL REDEVELC	PME	NT									
	Lo	са	tion		97-115	RIVER ROAD, GREENWICH	, NS\	N									
,	Jo	b l	No.:	325	507R2	Core Size:	NML	С							R	.L. Surface: ~41.6 m	
	Da	te	: 1/1	0/21	1	Inclination:	VER	TICA	L						D	atum: AHD	
	Pla	ant	тур	e:	JK305	Bearing: N	/A								L	ogged/Checked By: J.L./P.R.	
						CORE DESCRIPTION					T LC)AD TH				DEFECT DETAILS	-
	eve	Ë	AHD	(E	ic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions	ering	Ę		IN	DEX (50)	(ACI (mm		DESCRIPTION Type, orientation, defect shape and roughness, defect coatings and	tion
Water	-oss/l	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	and minor components	Weathering	Strength	/L-0.1	0.3	ې ې ب	сн_10 ЕН	000	200 60	0	seams, openness and thickness Specific General	Formation
	-		-		-											-	-
			_			START CORING AT 3.40m			li	İ	ii	Ì	İ	ii	i	ROCK STRENGTH BASED ON TACTILE ASSESSMENT	
			38 –		-	NO CORE 0.74m			li	İ	ii	Ì	İ	ii	i	-	
			-							Ì						-	
			-	4 -												-	
,			-		-	Extremely weathered sandstone: sandy silty CLAY, low to medium plasticity, light	XW	(Hd)	li	i	İİ			X			
~ ~	Z		37 -			grey mottled orange brown.	MW	(L - M)	1	Ì						— (4.45m) J, 40 - 90°, C, R, Fe Sn — (4.58m) Be, 20°, P, R, Fe Sn	e
100	RETURN	_	-	•	-	grey and orange brown, bedded at 0-20°.				ļ						-	ndstor
-			-	5-												– (4.95m) CS, 5°, 50 mm.t	Hawkesbury Sandstone
			-							ļ						- - -	esbui
			-		-											-	Hawk
2			36 -													– – – (5.77m) Cr. 0 - 5°, 10 mm.t	
	_	_	-	6-	 	END OF BOREHOLE AT 5.97 m									' 	(5.77m) Cr, 0 - 5°, 10 mm.t (5.82m) Be, 5′, C, R, Fe Ct 	
			-													-	
			-										. 600	- 500 - 100 -	- - -		
			35 –		-											-	
			_	7-											 	-	
			_													-	
2			-		-											-	
			34 –												 	-	
5			-		-					 						-	
			-	8-												-	
			_													-	
			33 –		-											-	
			-													-	
			-	9-	-										 	-	
			_		-					Ì					 	-	
5 2			32 -							Ì						-	
			-							Ì			30-0		98	⊢ - -	
		/RI	GHT				 FRACTI	JRES N	L IOT	MA		ED A		1 1	1	C DERED TO BE DRILLING AND HANDLING BRI	- AKS

Borehole No. 105 1 / 2

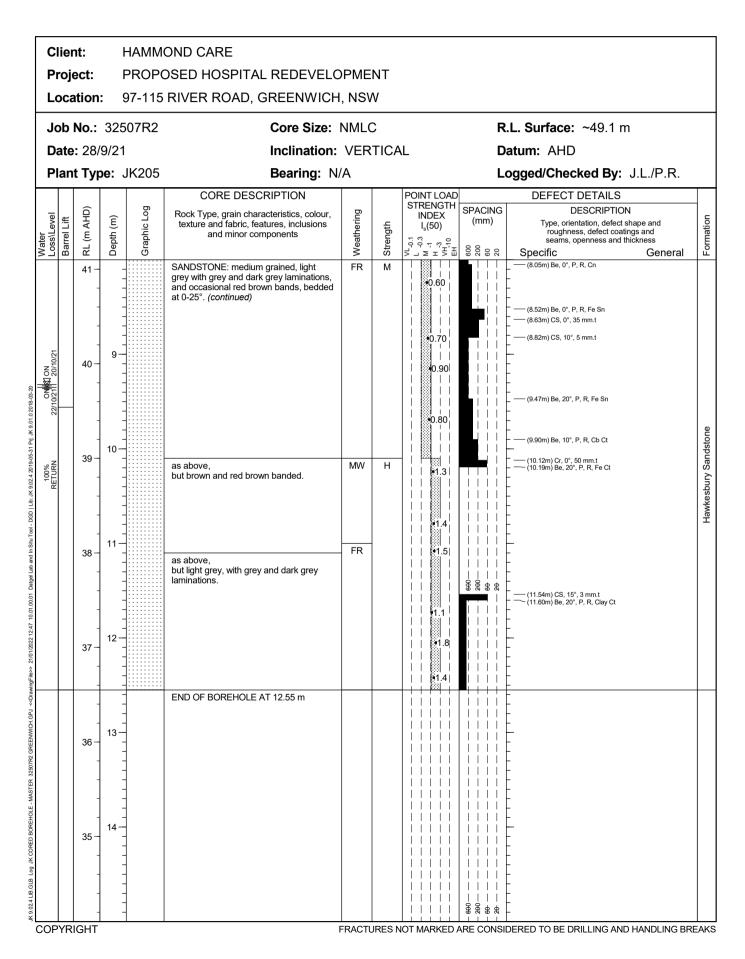
С	lie	nt:		HAMN			RE						
Ρ	roj	ect:		PROP	OSE	DH	OSPIT	AL RE	DEVELOPMENT				
L	.oca	atio	า:	97-115	5 RIV	'ER	ROAD	, GREI	ENWICH, NSW				
J	ob	No.	: 32	2507R2				Me	thod: SPIRAL AUGER	R.	L. Sur	face:	~44.8 m
D	ate	e: 27	/9/2	21						Da	atum:	AHD	
Ρ	lar	nt Ty	pe:	JK205				Lo	gged/Checked By: J.L./P.R.				
Groundwater Record	SA SA	MPLE DB	is SO	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
				N = 8 4,4,4	- - 44 — -	- - - 1-		-	ASPHALTIC CONCRETE: 25mm.t. FILL: Silty gravelly sand, fine to medium grained, grey, fine to coarse grained igneous gravel. FILL: Clayey silty sand, fine to medium grained, dark grey, with fine to coarse grained ironstone and igneous gravel, trace of slag.	М			- SCREEN: 5.25kg - 0.25-0.4m - NO FCF - - - - - - - - - - - - -
					-	-		CL	Sandy CLAY: low plasticity, grey and	w>PL	(St)		- RESIDUAL
			_ F	N > 14 18,14/ 100mm REFUSAL	- 43 - -	- - 2 -			brown, trace of fine to coarse grained ironstone gravel. Extremely Weathered sandstone: Sandy CLAY, low plasticity, orange brown and red brown, with occasional low strength sandstone bands and clay bands.	XW	(Hd)		- HAWKESBURY - SANDSTONE - VERY LOW 'TC' BIT - RESISTANCE WITH LOW - RESISTANCE BANDS -
					42-				SANDSTONE: fine to medium grained, ∖red brown. /	MW	L	-	- - - - - - - - - - - - - - - - - - -
					- - 41 - -	- - 4 -			REFER TO CORED BOREHOLE LOG				 well installed to 7.86m. Class 18 machine slotted 50mm dia. PVC standpipe 0.86m to 7.86m. Casing 0.1m to 0.86m. 2mm sand filter pack 1.6m to 7.86m. Bentonite seal 0.8m to 1.6m. Backfilled with sand to the surface. Completed with a concreted gatic cover.
					- 40 - -	- - 5 -							JKE SAMPLES WERE COLLECTED FROM THE CORED SAMPLES AT THE FOLLOWING DEPTHS: 3.9-4.0m 4.9-5.0m 5.9-6.0m 6.9-7.0m
						- 6 - -							- 7.7-7.83m - - - - - - - - - - - - - - - - - -
					38 -	-							- - -

		ent: ject:			OND CARE DSED HOSPITAL REDEVELC	PME	NT				
		ation			RIVER ROAD, GREENWICH						
	Job	No.:	32	507R2	Core Size:	NML	С		R	. L. Surface: ~44.8 m	
1	Dat	e: 27	/9/2	1	Inclination:	VER	TICA	L	D	atum: AHD	
F	Pla	nt Ty	pe:	JK205	Bearing: N	/A			Le	ogged/Checked By: J.L./P.R.	
				ŋ	CORE DESCRIPTION			POINT LOAD STRENGTH	SPACING	DEFECT DETAILS DESCRIPTION	
Water	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components START CORING AT 3.13m	Weathering	Strength	INDEX I _s (50)	(mm)	Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness Specific General	Formation
	+				SANDSTONE: medium grained, red	MW	M			(3.21m) Be, 25°, P, R, Fe Sn	
	22/10/21 1 20/10/21	41	- 4- - 5- - 6- - 7- - 8-		END OF BOREHOLE AT 7.83 m		M - H	•0.60 I		(4.38m) Be, 30°, P, R, Fe Sn (4.57m) Be, 10°, P, R, Fe Sn (4.57m) Be, 0°, P, R, Fe Sn (4.65m) Be, 0°, P, R, Fe Sn (4.65m) Be, 0°, P, R, Fe Sn (5.15m) Be, 0°, P, R, Fe Sn (5.53m) Be, 20°, P, R, Fe Sn (5.53m) Be, 20°, P, R, Fe Sn (5.58m) Be, 20°, P, R, Fe Sn (5.58m) Be, 0°, P, R, Fe Sn (5.58m) Be, 0°, P, R, Fe Sn (5.58m) Be, 0°, P, R, Fe Sn (5.58m) Be, 0°, P, R, Fe Sn (5.63m) Be, 0°, P, R, Fe Sn (5.63m) Be, 0°, P, R, Fe Sn (5.63m) Be, 0°, P, R, Fe Sn (5.70m) Be,	Hawkesbury Sandstone
JK 9.024 LIB.GEB LOG JK CUPPED BOREHOLE - MASTER 328J/K2		36 - 35 -	9-						660 - 200 color - 400 - 40	- - - - - - - - - - - - - - - - - - -	

COPYRIGHT

ACTURES NOT MARKED ARE CONSIDERED TO BE DRILLING AND HAND

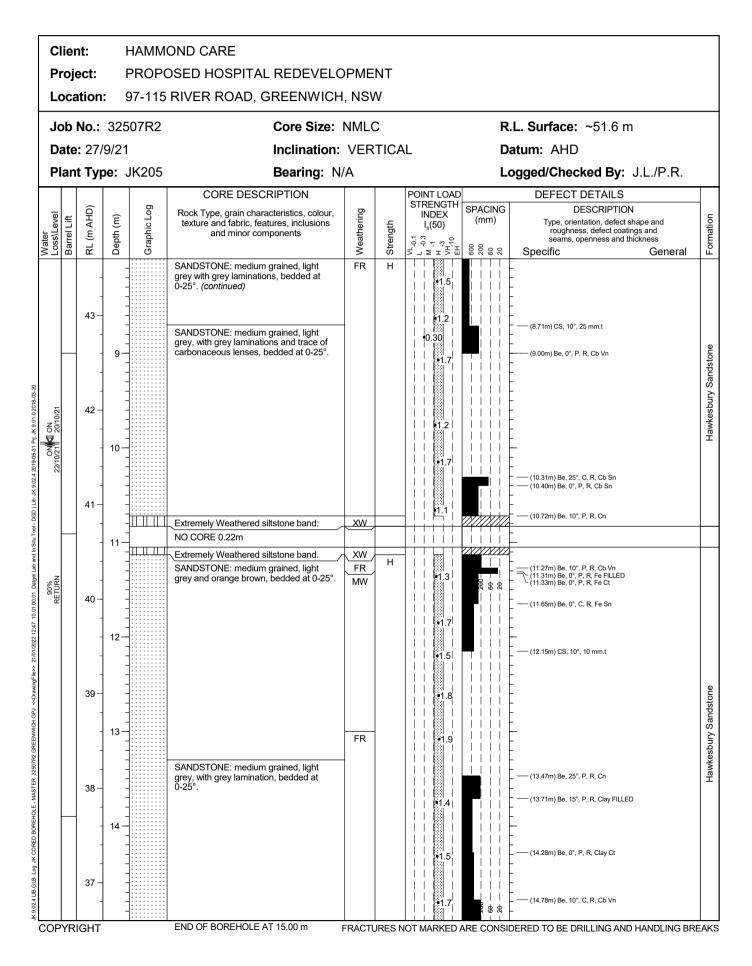
	21:	ant												
		ient ojec			HAMN				ALRF	DEVELOPMENT				
		cati								ENWICH, NSW				
_					507R2					thod: SPIRAL AUGER	D		facol	~49.1 m
		te:							we	IIIOU: SPIRAL AUGER		atum:		~49.1 m
					' JK205				Loc	gged/Checked By: J.L./P.R.		atum.	AIID	
-				1	011200								(F	
Groundwater	Record	SAMF		; -	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
DRY ON COMPLETION	ERING					49 -	-		-	ASPHALTIC CONCRETE: 30mm.t	М			- SCREEN: 3.8kg - 0.03-0.3m
COMPL	OF AUG					-	-		CL	medium grained, grey, medium to coarse grained igneous gravel.	w~PL	VSt - Hd	440	NO FCF /
	Ū			,10, ⁻	N > 10 10/ 50mm EFUSAL /	-	-			Silty CLAY: low plasticity, light grey with fine to medium grained sand and medium to coarse grained ironstone	xw	(Hd)	440 470 300 /	- - HAWKESBURY
					<u></u>	-	1-			gravel. Extremely Weathered sandstone: sandy	MW	H		- SANDSTONE
						48 -				CLAY, low to medium plasticity, fine to medium grained sand, light grey and red				- LOW 'TC' BIT - RESISTANCE WITH VERY
לו המולחו רפות מונותו ביוות הסור הסיפה ברוחה בורגי מו ממדא ביו מהסיבה ו הלי הוג מית ונית ביו הסיבו הסיבה ביו						- - 47 - -	- - 2 -			brown. SANDSTONE: fine to medium grained, light grey and orange brown with occasional clay nodules. REFER TO CORED BOREHOLE LOG				LOW BANDS Groundwater monitoring well installed to 12.52m. Class 18 machine slotted 50mm dia. PVC standpipe 1.52m to 12.52m. Casing 0.11m to 1.52m. 2mm sand filter pack 1.2m to 12.52m. Bentonite seal 0.4m to 1.2m. Backfilled with sand to the surface. Completed with a concreted gatic cover.
						- 46 — -	- 3 - -	-						JKE SAMPLES WERE COLLECTED FROM THE CORED SAMPLES AT THE FOLLOWING DEPTHS: 1.4-1.5m 1.9-2.0m 2.4-2.5m 2.9-3.0m
						- 45 — - -	4 - - -	-						3.9-4.0m 4.9-5.0m 5.9-6.0m 6.9-7.0m 7.9-8.0m 9.9-10.0m 9.9-10.0m 10.9-11.0m 11.9-12.0m 12.45-12.55m
מו מיציה הוצימית בינה לא ווימסור אומריי אומי הדו מרמט וויב מוורד אומי ווים מ						- 44 - -	5 — - -							
		/RIG				43	6 - - -							-



Ρ	-	nt: ect: ation:	:	PROP	OND CARE OSED HOSPITAL REDEVELC RIVER ROAD, GREENWICH							
J	ob	No.:		507R2	Core Size:					R	.L. Surface: ~49.1 m	
D	ate	e: 28/	9/2	1	Inclination:	VER		AL.		D	atum: AHD	
Ρ	lan	nt Typ	e:	JK205	Bearing: N	/A				L	ogged/Checked By: J.L./P.R.	
	Γ				CORE DESCRIPTION			POINT LOAD			DEFECT DETAILS	
Water Loss\Level	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	STRENGTH INDEX I _s (50)	SPAC (mn	า)	DESCRIPTION Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness Specific General	Formation
		48 -		-	START CORING AT 1.24m						-	
		- - - 47 -	2		SANDSTONE: medium grained, light grey with grey laminations, and orange brown bands, bedded at 0-25°.	MW	н				(1.43m) Be, 10°, P, R, Cn 	
		46	3								- - (3.03m) Bex2, P, R, Fe Sn 	
100% RETURN		45	4							50	– – – – – – (4.37m) Be, 0°, P, R, Fe Sn – –	bury Sandstone
		-	5		SANDSTONE: medium grained, light	SW	М-Н				(4.87m) Be, 20°, P, R, Clay Ct	Hawkesb
		44	5		grey with orange brown bands, bedded at 0-25°.						(5.18m) Be, 25°, P, R, Fe Sn (5.43m) CS, 0°, 20 mm.t	Ha
		43-	6		SANDSTONE: medium grained, light	FR	M	• 1.0			– – – – – – – – – – – – – – – – – – – –	
		42	7		grey with grey and dark grey laminations, and red brown bands, bedded at 0-25°. SANDSTONE: medium grained, light grey with grey and dark grey laminations, and occasional red brown bands, bedded at 0-25°.	-		0.90		28		

JKGeotechnics

Client: HAMI	MOND CARE					
Project: PROF	POSED HOSPI	AL REDEVELOPMENT				
-	5 RIVER ROAD), GREENWICH, NSW				
Job No.: 32507R2	2	Method: SPIRAL AUGER	R.L	Sur	face:	~51.6 m
Date: 27/9/21			Dat	tum:	AHD	
Plant Type: JK20	5	Logged/Checked By: J.L./P.R.				
Groundwater Record U50 DB DB DB Field Tests	RL (m AHD) Depth (m) Graphic Log	Ounified Classification DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SU FILL: Silty clay, low plasticity, dark brown, trace of fine to coarse grained igneous, ironstone and sandstone gravel, fine grained sand, roots and root fibres. SM FILL: Sandy clay, low plasticity, grey and brown, fine grained sand, medium to coarse grained ironstone gravel. CI Silty SAND: fine to medium grained, light grey brown mottled orange brown, with clay fines and clay nodules. - Silty CLAY: medium plasticity, orange brown, red brown and grey, with fine to medium grained sand. SANDSTONE: fine to medium grained, light grey and orange brown, with occasional clay seams. REFER TO CORED BOREHOLE LOG	w~PL M w>PL MW	M		TOP 100mm ROOT AFFECTED SCREEN: 11.05kg 0-0.2m NO FCF SCREEN: 4.55kg 0.2-0.4m NO FCF RESIDUAL HAWKESBURY SANDSTONE LOW TC' BIT RESISTANCE Groundwater monitoring well installed to 14.93m. Class 18 machine slotted 50mm dia. PVC standpipe 1.93m to 14.93m. Casing 0.05m to 1.93m. 2mm sand filter pack 1.5m to 14.93m. Bentonite seal 0.3m to 1.5m. Backfilled with sand to the surface. Completed with a concreted gatic cover. JKE SAMPLES WERE COLLECTED FROM THE COLLECTED FROM THE COLLECTED SAMPLES AT THE FOLLOWING DEPTHS: 1.9-2.0m 2.4-2.5m 2.75-2.85m 3.9-4.0m 4.9-5.0m 5.9-60m 6.9-7.0m 7.9-8.0m 8.9-9.0m 9.9-10.0m 10.9-11.0m 11.9-12.0m 12.9-13.0m


JKGeotechnics

		ien oje	nt: ect:			OND CARE DSED HOSPITAL REDEVELC	PME	NT				
	Lo	ca	tion	:	97-115	RIVER ROAD, GREENWICH	I, NSV	N				
	Jo	b l	No.:	32	507R2	Core Size:	NML	С		R.	L. Surface: ~51.6 m	
			: 27/			Inclination:	VER	TICA	L		atum: AHD	
	Pla	ant	t Typ	be:	JK205	Bearing: N	/A			Lo	ogged/Checked By: J.L./P.R.	
			(D	CORE DESCRIPTION	_		POINT LOAD STRENGTH	SPACING	DEFECT DETAILS DESCRIPTION	-
Water	Loss/Level	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	INDEX I _s (50)	(mm)	Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness Specific General	Formation
			- 50 -	2-		START CORING AT 1.80m SANDSTONE: fine to medium grained, light grey, red brown and orange brown,	MW	M			- - - - - - - - -	stone
-02-00-01 02 0.2	RN		- - 49-			bedded at 0-20°.		н	0.60		(2.21m) Be, 10°, P, R, Clay Ct (2.43m) XWS, 5°, 30 mm.t (2.56m) CS, 0 - 5°, 145 mm.t	Hawkesbury Sandstone
30%	RETURN		-								- (2.85m) CS, 5°, 30 mm.t	Haw
U LID: JN & JZ:4 ZU 8-03-31 P			- - 48-	3-		NO CORE 0.13m SANDSTONE: medium to coarse grained, light grey and orange brown, bedded at 0-25°.	MW	Н			(3.16m) Be, 5°, P, R, Fe Sn	
ui Darger Lao ang In Silu 1001 - Do			-	4 -					•1.5 •1.8	200	(4.05m) Be, 25°, P, R, Fe Sn (4.30m) Be, 15°, P, R, Fe Sn	
100-10-01 14-71 17-071 1-10-11			47	5-					€2.0 1 1 1 1 1 1		(4.94m) Bex2, 20°, P, R, Cn (5.06m) Be, 20°, P, R, Fe Sn (5.27m) Be, 0°, P, R, Fe Sn	Hawkesbury Sandstone
%06	RETURN		46	6-			SW				– – —— (5.78m) Be, 15°, P, R, Clay Vn –	Hawkesbur
			-			SANDSTONE: medium grained, light	FR				(6.18m) Be, 20°, P, R, Cn (6.28m) Be, 20°, P, R, Cn	
			45	7-		grey with grey laminations, bedded at 0-25°.					(6.72m) Be, 20°, P, R, Fe Sn 	
P roj JN OOVED			-			grey with grey laminations, bedded at 0-25°.			*1.8 		(7.22m) Be, 20°, P, R, Fe Sn	
			44 – - 		- - - -							

JKGeotechnics

Borehole No. 108 1 / 3

SDUP7: 0-0.1m

P	Pro	ent ojec cati			POSE	DH	OSPIT		DEVELOPMENT ENWICH, NSW				
				32507R2			_ ,		thod: SPIRAL AUGER	R.	.L. Su	face:	~50.5 m
				9/21							atum:		
P	Pla	nt	Тур	e: JK305	5			Log	gged/Checked By: J.L./P.R.				
Groundwater Record	ES 0	IMA N20	PLES BD SD	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
COMPLETION	AUGERING				-				FILL: Sandy silty clay, low plasticity, orange brown, fine grained sand, trace of fine to medium grained ironstone gravel.	w <pl< td=""><td></td><td></td><td>- GRASS COVER - TOP 100mm ROOT - AFFECTED</td></pl<>			- GRASS COVER - TOP 100mm ROOT - AFFECTED
55	5			N=SPT 10/ 50mm REFUSAL	- 50 - - - - -			-	SANDSTONE: fine to medium grained, light grey and red brown, with high strength iron indurated bands.	DW	L L-M		- HAWKESBURY - SANDSTONE - LOW 'TC' BIT - RESISTANCE
									REFER TO CORED BOREHOLE LOG				JKE SAMPLES WERE COLLECTED FROM THE CORED SAMPLES AT THE FOLLOWING DEPTHS: 1.9-2.0m 2.4-2.5m 2.9-3.0m 3.9-4.0m 5.9-6.0m 6.9-7.0m 7.9-8.0m 9.9-10.0m 10.9-11.0m 11.9-12.0m 12.9-13.0m 13.85-13.95m
COF	 PV		нт										

Borehole No. 108 2 / 3

SDUP7: 0-0.1m

Ρ	-	nt: ect: ation:	PRO	OPC	OND CARE DSED HOSPITAL REDEVELO RIVER ROAD, GREENWICH							
Jo	ob	No.:	32507F	R 2	Core Size:	NML	С			R	.L. Surface: ~50.5 m	
D	ate	: 30/9	9/21		Inclination:	VER	TICA	L		D	atum: AHD	
Ρ	lan	t Typ	e: JK3	05	Bearing: N	/A				Lo	ogged/Checked By: J.L./P.R.	
					CORE DESCRIPTION			POINT LOAD STRENGTH			DEFECT DETAILS	
Water Loss\Level	Barrel Lift	RL (m AHD)	Depth (m)		Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	INDEX I _s (50)	SPACIN (mm)		DESCRIPTION Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness Specific General	Formation
		- - 49 			START CORING AT 1.49m						- - - -	
		-	2-		SANDSTONE: fine to medium grained, red brown orange brown and light grey, bedded at 0-25°.	MW	н				(1.58m) Be, 5°, P, R, Fe Sn 	
		- 48									- - (2.35m) Be, 0°, P, R, Fe Sn - -	
		- - - 47 -	3								- - - 	
100% RETURN		- - - 46 -	4		SANDSTONE: medium to coarse grained, light grey, with grey laminations, bedded at 0-25°.	SW	M - H		600		- - - - - - - - - - - - - - - - - - -	Hawkesbury Sandstone
		- - 45 -										Haw
		- - 44 —				FR		•0.90			_ — (6.07m) Be, 10°, P, R, Fe Sn - - - - - (6.56m) Be, 0°, P, R, Cn	
		-	- - 7- - - -				Н				 (7.07m) CS, 0°, 5 mm.t (7.25m) Be, 20°, P, R, Clay Ct	
		43-	-					1.3	- 690	- 39	- - - - -	

Borehole No. 108 3 / 3

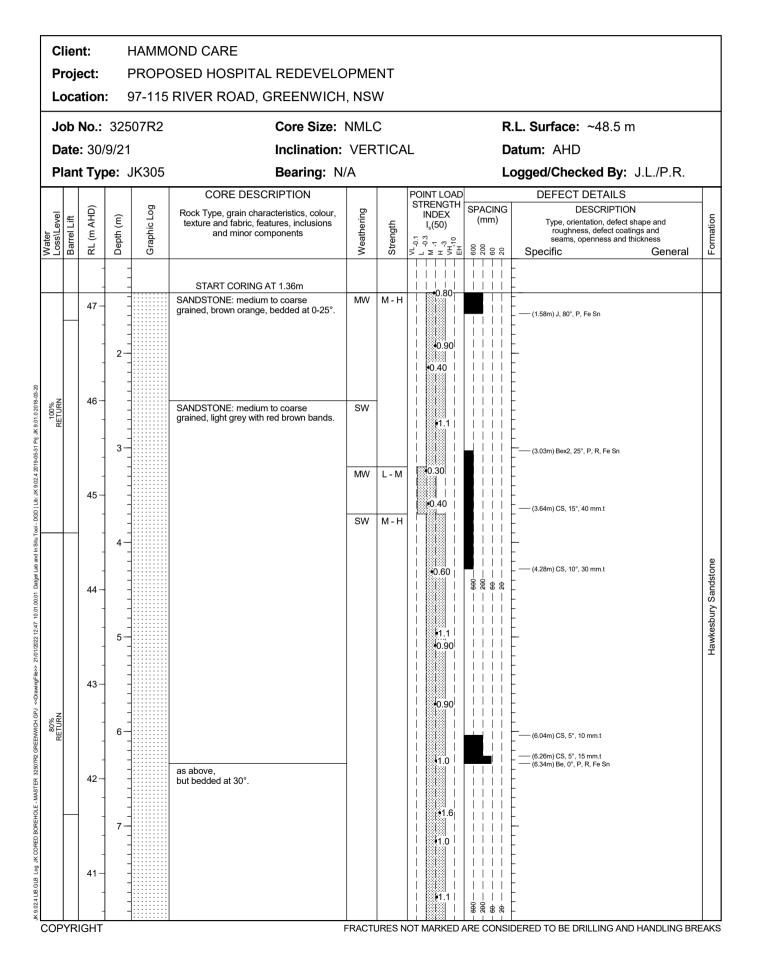
SDUP7: 0-0.1m

P	-	nt: ect: ation	:	PROPO	OND CARE DSED HOSPITAL REDEVELC RIVER ROAD, GREENWICH							
J	Job No.: 3250		507R2	Core Size:	NML	.C R.L. Surface: ~50.5 m						
	Date: 30/9/21			1	Inclination:	VER	TICA	L	Da	atum: AHD		
P	Plant Type: JK305			JK305	Bearing: N	/A		Logged/Checked By: J.L./P.R.				
					CORE DESCRIPTION			POINT LOAD STRENGTH		DEFECT DETAILS	_	
Water Loss/Level	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	INDEX اړ(50)	(mm)	DESCRIPTION Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness Specific General	Formation	
		- 	9		SANDSTONE: medium to coarse grained, light grey, with grey laminations, bedded at 0-25°. <i>(continued)</i>	FR	Н	*2.0 1.1 1.1 1.1		(8.67m) Bex2, P, R, Clay Ct		
ידי וטטו.וטטטו שמפו נופות ופינו באסיבר אמצע אינו איניט בעופיט באיני איני איני איני איני איני איני אינ		41	10								Sandstone	
	KEIUKN	- - - 39 - -	11								Hawkesbury Sa	
אני אנגביד רוס סומי רוס) אור לטארם וסטרבווטרב - ווואיסו בא אנצטורע טארבאאווטרו שא - אבא שאוון ווואיש - צוע וומעד דר		38	13							-		
		37 -								-		
ניא רוסיטוע רטק אר עראבוע פרע		- - 36 - -	14		END OF BOREHOLE AT 13.95 m							
		- RIGHT		-		FRACTI	JRES N			- DERED TO BE DRILLING AND HANDLING BR		

Client:		HAMM	10NE) CA	RE								
Project	:	PROP	OSE	DH	OSPIT	AL RE	DEVELOPMENT						
Locatio	on:	97-115	5 RIV	′ER	ROAD,	GRE	ENWICH, NSW						
Job No	.: 32	507R2				Me	thod: SPIRAL AUGER	R	.L. Sur	face:	~49.1 m		
Date: 3	0/9/2	1						Da	atum:	AHD			
Plant T	ype:	JK205				Log	gged/Checked By: J.L./P.R.						
Groundwater Record U50 DB DB		Field Tests RL (m AHD)		Field Tests RL (m AHD)		Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
SERING SERING			49 -	-		-	ASPHALTIC CONCRETE: 100mm.t	М			- SCREEN: 4.7kg		
COMPLETION COMPLETION OF AUGERING		N = 28 4,16,12 48 - 48 - 48 - CL medium grained, dark g medium grained, dark g medium grained, dark g medium grained, dark g medium grained, dark g with clay nodules. FILL: Sandy clay, low p brown and orange brow to coarse grained irons and igneous gravel, tra Sandy CLAY: low plast brown, fine to medium g	medium grained, dark grey and brown, fine to coarse grained igneous gravel, with clay nodules. FILL: Sandy clay, low plasticity, grey brown and orange brown, with medium to coarse grained ironstone sandstone and igneous gravel, trace of slag. Sandy CLAY: low plasticity, orange brown, fine to medium grained sand, trace of fine to medium grained	w <pl w~PL MW</pl 	VSt - Hd M - H	280 140 180 560 500 340	0.1-0.4m NO FCF APPEARS MODERATELY COMPACTED SCREEN: 7.4kg 0.4-0.8m NO FCF RESIDUAL						
			- - 47 -	- - 2 -	· · · · · · · · · · · · · · · · · · ·		Sandstone. SANDSTONE: fine to medium grained, light grey and orange brown. REFER TO CORED BOREHOLE LOG				HAWKESBURY SANDSTONE LOW TO MODERATE 'TC' BIT RESISTANCE Groundwater monitoring well installed to 12.54m. Class 18 machine slotted 50mm dia. PVC standpipe 1.54m to 12.54m. Casing 0.1m to 1.54m. 2mm sand		
			- - 46	- 3	-						filter pack 1.4m to 12.54m. Bentonite seal 0.3m to 1.4m. Backfilled with sand to the surface. Completed with a concreted gatic cover.		
			- - 45 -	- - 4 - -	-						- JRE SAMPLES WERE - COLLECTED FROM THE - CORED SAMPLES AT - THE FOLLOWING - DEPTHS: - 1.42-1.5m - 1.9-2.0m - 2.9-3.0m - 3.9-4.0m - 4.9-5.0m - 5.9-6.0m - 6.9-7.0m		
			- - 44 -	- 5 -							7.9-8.0m 8.9-9.0m 9.9-10.0m 10.96-11.0m 11.35-11.45m 11.9-12.0m 12.45-12.56m		
			43 -	- 6 -	-						- - - - - - - -		
			-	-	-						-		

Client: Project:				OND CARE DSED HOSPITAL REDEVELC		NT										
	-	ation		97-115 RIVER ROAD, GREENWICH, NSW												
J	Job No.: 32507R				Core Size: NMLC								R.L. Surface: ~49.1 m			
	Date: 30/9/21				Inclination: VERTICAL						Datum: AHD					
F	lan	t Typ	e:	JK205	Bearing: N/A						Logged/Checked By: J.L./P.R.					
				ß	CORE DESCRIPTION	Weathering			DINT LOA TRENGT	1 I H	SDAC	ING	DEFECT DETAILS DESCRIPTION	-		
Water	Barrel Lift	Barrel Lift RL (m AHD) Depth (m) Graphic Log		Graphic Lo	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components		Strength	VL-0.1	INDEX (mm) Type, orientation, d I _s (50) roughness, defect		Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness	Formation				
		48		-	START CORING AT 1.42m								-			
		- - 47 - - -	2-		SANDSTONE: fine to medium grained, light grey with red brown bands, bedded at 0-25°. JKE sample 1.42-1.5m	MW	M - H		•1.2 •1.7 •0.80				- - - - - - - (2.15m) Cr, 20 mm.t 			
		46	5		SANDSTONE: medium grained, light grey with grey lamination, and orange brown bands, bedded at 0-25°.	SW			•0.90							
100%		- 45 - - - - - -	4 -						•0.80 •0.80 •0.70					Hawkesbury Sandstone		
ביים אין הסוינים סטינים וסבר - וואיס ובוי מבסיו ובי טינים אווסו ויטו מ- אימ שאווש אייד בווס מיני		- - - 43 - - - - - - - - - - - - - - - - - - -	6-						•0.80 •1.5 •1.1 •1.1					H		
	-	- - IGHT				FRACT	JRESN		+0.80			 	- - - - - - (7.83m) Be, P, R, Cb Ct - — (7.91m) CS, 3 mm.t DERED TO BE DRILLING AND HANDLING BRE			

C	Client: HAMM		HAMM	OND CARE								
F	Proj	ect:	I	PROP	OSED HOSPITAL REDEVELC	PME	NT					
L	.oc	ation	: !	97-115	RIVER ROAD, GREENWICH	I, NS\	N					
J	lob	No.:	325	507R2	Core Size:	NML	R.L. Surface: ~49.1 m					
	Date: 30/9/21				Inclination:	VER	D	atum: AHD				
F	Plar	nt Typ	be: .	JK205	Bearing: N	/A	Le	ogged/Checked By: J.L./P.R.				
	Τ				CORE DESCRIPTION					DEFECT DETAILS		
Water	Barrel Lift	RL (m AHD)	Depth (m) Graphic Log		Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	STRENGTH INDEX I _s (50)	(mm)	DESCRIPTION Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness Specific General	Formation	
		41			SANDSTONE: medium grained, light grey with grey lamination, and orange brown bands, bedded at 0-25°.	SW	M - H	 		(8.27m) Be, 15°, P, R, Cb Ct		
	20/10/211	- 40	- - - 9 -					•1.3 		– – – – – (8.88m) Be, 25°, P, R, Fe Sn – –		
3-03-20		-	-							– (9.37m) Be, 25°, P, R, Cb Ct		
01.0 2018			-					•0.60		_ —— (9.57m) XWS, 15°, 15 mm.t		
Prj: JK 9		-	- - 10-							(9.85m) CS, 10°, 20 mm.t	stone	
10.01.00.01 Dangai Lab and In Situ Tool - DGD Lib: JK 9.02.4 2019-05-31 Pr; JK 9.01.0.2019-03-20 		39-	- - - - - - - - - - - - - - - - - - -		SILTSTONE: dark grey, bedded sub	MW	L	• • • • • • • • • • • • • • • • • • •		(10.76m) Be, 0°, P, R, Clay Ct (10.96m) Be, 0 - 20°, C, R, Cn	Hawkesbury Sandstone	
Lab and		38-	-		horizontally.			0.30		-		
/2022 12:47 10.01.00.01 Datgel			- - - - - - - - - - - - - - - - - - -		SANDSTONE: medium grained, light gey with grey lamination, trace of siltstone, bedded at 0-20°.	FR	н	1.0 •1.3	200 200 200 200 200 200 200 200 200	(11.45m) CS, 0°, 30 mm.t (11.48m) Cr, 0°, 25 mm.t		
< <drawingfile>> 21/01/202212:47</drawingfile>		-						 1.4				
sPJ < <dr< td=""><td></td><td>-</td><td>-</td><td></td><td>END OF BOREHOLE AT 12.56 m</td><td></td><td></td><td></td><td></td><td>-</td><td></td></dr<>		-	-		END OF BOREHOLE AT 12.56 m					-		
JK 9.024 LB GLB Log JK CORED BOREHOLE - MASTER 32507R2 GREENWICH.GRJ		- 36 -	- 13-	-						-		
2507R2 GI		-	-							-		
ASTER 3		-	-	-						-		
HOLE - M		-	-	-						-		
ED BORE		35 -	14	-						-		
JK COR		-	-							-		
.GLB Lo		-	-	-						-		
9.02.4 LIB			-							-		
		L RIGHT			<u> </u>	 FRACT	JRES N	OT MARKED		DERED TO BE DRILLING AND HANDLING BR		



cat b N ite:	: 30/9/	97-11 32507R2 /21 e: JK305	5 RIV			GRE	DEVELOPMENT ENWICH, NSW						
b N te: ant	No.: 3 30/9, Type	32507R2 /21 9: JK305											
ant	Туре	: JK305				Method: SPIRAL AUGER R.L. Surface: ~4							
								Da	atum:	AHD			
MAS Into	1PLES ദ്രേഗ	ests				Log	gged/Checked By: J.L./P.R.						
		Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks		
			-	_			FILL: Clayey silt, low plasticity, dark $_{\rm b}$ brown, trace of fine grained igneous and $_{\rm c}$	w <pl< td=""><td></td><td></td><td>MULCH COVER</td></pl<>			MULCH COVER		
		N = 9 4,5,4	- 48 -	-			Vironstone gravel. FILL: Clayey sand, fine to medium grained, orange brown, trace of fine to medium grained sandstone and ironstone gravel, and clay nodules.	D w <pl< td=""><td></td><td></td><td>APPEARS MODERATELY COMPACTED</td></pl<>			APPEARS MODERATELY COMPACTED		
			-	1		CI	grey and orange brown, with fine to medium grained sand, trace of medium to coarse grained ironstone and sandstone gravel.	 w~PL	(St - VSt)		RESIDUAL		
			47	2			Silicy CLAY: medium plasticity, orange brown, trace of fine to medium grained sand. REFER TO CORED BOREHOLE LOG				-		
			- - 46 -								-		
			- 45 — -	-							-		
			- - 44 -								-		
				5	-								
			- - 42-	6	-								
	RI	/RIGHT					4.5.4 4.5.4 4.5.4 4.5.4 4.5.4 4.5.4 4.5.4 4.7- 4.6-	4,5,4 4,5,4 1 CI CI CI CI CI CI CI CI CI CI	4.5.4 1 Ironstone gravel, and clay nodules. FIL: Sity clay, low plasticity, brown, grey and orange drivenstone and bandstone gravel. w~PL_ 47- 1 Cl 47- 1 Sity Clay, readium plasticity, orange brown, with fire to madum grained and trace of fine to medium graine	4.5.4 - <td>4.5.4 4.</td>	4.5.4 4.		

JKGeotechnics

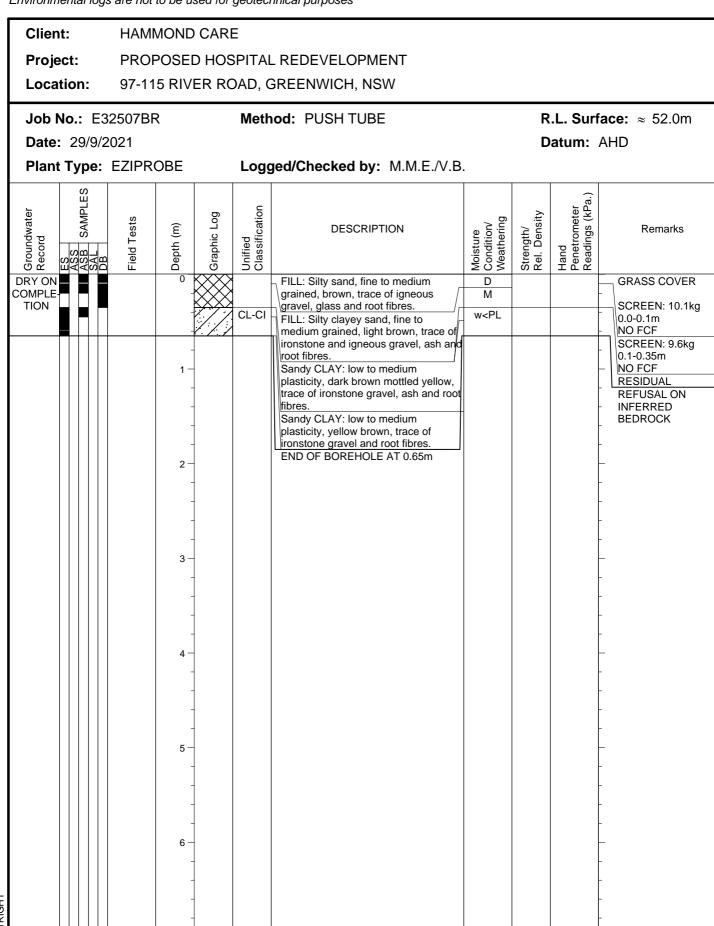
CORED BOREHOLE LOG

JKGeotechnics


CORED BOREHOLE LOG

	Clier Proje	ect:		PRC	PC	OND CARE DSED HOSPITAL REDEVELO						
_		ation No.:				RIVER ROAD, GREENWICH				R.	L. Surface: ~48.5 m	
	Date	: 30/	9/2 ⁻	1		Inclination:	VER		L	Da	atum: AHD	
	Plan	t Typ	be:	JK30)5	Bearing: N	/A			Lo	ogged/Checked By: J.L./P.R.	
-						CORE DESCRIPTION			POINT LOAD		DEFECT DETAILS	
Water	Loss\Level Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	-	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	STRENGTH INDEX I _s (50)	(mm)	DESCRIPTION Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness Specific General	Formation
		- - 40				SANDSTONE: medium to coarse grained, light grey with red brown bands, bedded at 30°.	FR	M - H				
	RETURN	- - 39 —	9-			SILTSTONE: dark grey, bedded at 20-30°.	MW	L	0.30		(8.97m) CS, 10° 	
In Situ Tool - DGD LIb: JK 9.02.4 2019-05-31 Prj: JK		- - 38 - -	10 -			SANDSTONE: medium grained, light grey with grey lamination, trace of siltstone clasts, bedded at 0-20°.	FR	M-H	1 0.90) 1 1 0.90) 1			Hawkesbury Sandstone
JK 9.024 LIB GLB Log JK CORED BOREHOLE - MASTER 32507R2 GREENWICH GPJ < <dawngr lieb=""> 21/01/3022 12.47 10:01:00:01 bage lub and in Stu Tool - DGD Lb. JK 9.02.4 2019-05-31 PJ; JK 9.01.02018-03-30 [JK 9.01.02018-03-30 JK 9.01.02018-03-30 [JK 9.01 JK 9.01.02018-03-30 [JK 9.01.02018-03-30 [JK 9.01.02018-03-30 [JK 9.01.02018-03-30 [JK 9.01.02018-03-30 [JK 9.01.02018-03-30 [JK 9.01.02018-03-30 [JK 9.01.02018-03-30 [JK 9.01.02018-03-30 [JK 9.01.02018-03-30 [JK 9.01.02018-0</dawngr>	RETURN		12-						i i=1.4 i i i i i i i i=1.4 i i=1.7			
DREHOLE - MASTER 32507R2 GREENWICH.GPJ			13-			END OF BOREHOLE AT 12.85 m					- 	
		- 34 – - IGHT					ERACT				- - - - - - - - - - - - - - - - - - -	

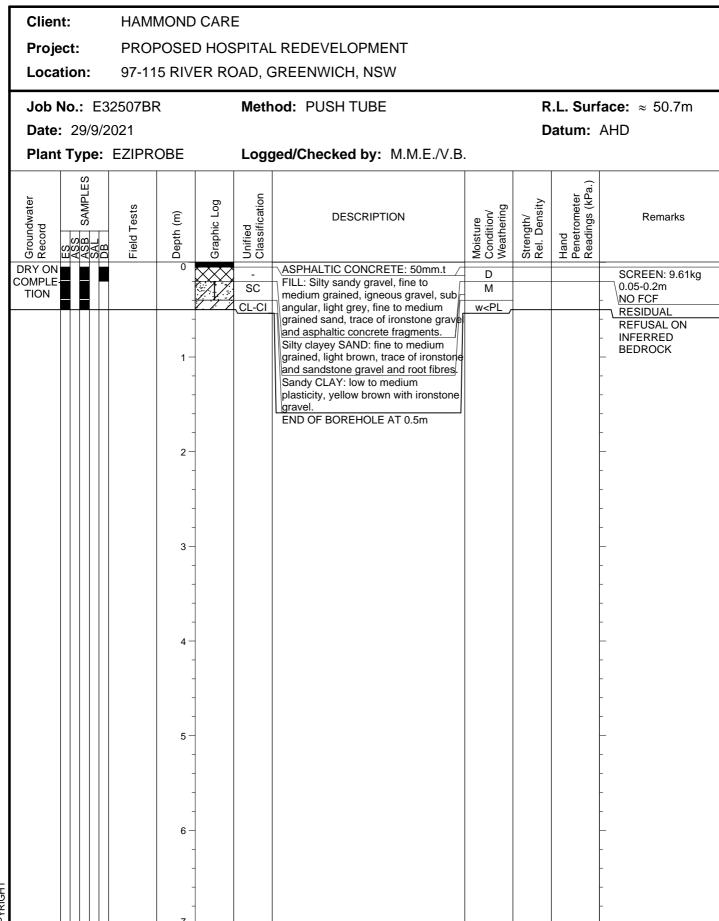
Clien Proje Loca	ect:	PRO		D HOS	PITA	_ REDEVELOPMENT GREENWICH, NSW							
Job N	No.: E	32507BI	R		Meth	od: PUSH TUBE	R.L. Surface: ≈ 48.5m						
Date:	29/9/	2021						D	atum: /	AHD			
Plant	Туре:	EZIPR	OBE		Logo	ged/Checked by: M.M.E./V.B	•						
Groundwater Record	ES ASB SAL SAL	DB Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks			
DRY ON Comple- Tion			0			FILL: Silty gravelly sand, fine to medium grained, dark brown, fine to medium grained igneous gravel, trace of ash, slag and root fibres. FILL: Sandy gravel, fine to medium grained igneous gravel, grey, fine to medium grained, trace of ash, asphaltic concrete fragments and root	M w <pl< td=""><td></td><td>-</td><td>GRASS COVER SCREEN: 10.0kg 0.0-0.1m NO FCF SCREEN: 4.2kg 0.1-0.2m NO FCF</td></pl<>		-	GRASS COVER SCREEN: 10.0kg 0.0-0.1m NO FCF SCREEN: 4.2kg 0.1-0.2m NO FCF			
					CL-CI	Fibres. FILL: Sandy clay, low to medium plasticity, yellow brown mottled red	w <pl< td=""><td></td><td></td><td>SCREEN: 5.8kg 0.2-1.1m NO FCF</td></pl<>			SCREEN: 5.8kg 0.2-1.1m NO FCF			
			2-			brown, trace of sandstone cobble and ironstone gravel, terracotta and root fibres. Sandy CLAY: low to medium plasticity, yellow brown, trace of ironstone gravel, ash and root fibres. END OF BOREHOLE AT 1.3m				RESIDUAL REFUSAL ON INFERRED BEDROCK			
			4-	-					-				
			5-	-						-			
			6-	-						-			
			7	-									



	Clien	t:			HAM	MONE) CAR	E								
	Proje	ct:			PROF	POSE	D HOS	SPITAL	REDEVELOPMENT							
	Loca	tio	n:		97-11	5 RIV	ER RO	DAD, C	GREENWICH, NSW							
T.	Job N	lo.	: E	32	2507BF	र		Meth	R	R.L. Surface: ≈ 48.6m						
1	Date:	2	8/9	/20)21						D	atum:	AHD			
	Plant	Ту	pe	: -				Logo	jed/Checked by: M.M.E./V.B							
Croinchor	Grounawater Record	ss	SI∢	DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks			
DF CO						0			FILL: Silty sand, fine to medium grained, dark brown, trace of	D			GRASS COVER			
	ΓΙΟΝ						\mathbb{X}		rionstone, siltstone and sandstone gravel, tile fragments and root fibres.	w <pl< td=""><td></td><td></td><td>SCREEN: 10.8kg 0.0-0.1m</td></pl<>			SCREEN: 10.8kg 0.0-0.1m			
									FILL: Silty clay, medium to high plasticity, brown, trace of sand,	D			NO FCF SCREEN: 4.8kg 0.1-			
						1 -			ironstone and igneous gravel and ash. FILL: Silty clayey sand, fine to				0.3m NO FCF SCREEN: 5.2kg			
							-		medium grained, brown, trace of ironstone and igneous gravel and ash.				0.3-0.6m NO FCF			
							-		END OF BOREHOLE AT 0.8m				 SCREEN: 4.9kg 0.6-0.8m NO FCF 			
							-						- HAND AUGER REFUSAL ON			
						2 -							- INFERRED - BEDROCK			
							_						- BEBROOK			
							-						-			
						3-	-						-			
							-						-			
							-						-			
							_						-			
						4 -	-						_			
							-						-			
							_						-			
							_						-			
						5-							_			
							-						-			
							-						-			
						6-							-			
							-						-			
⊢							-						_			
COPYRIGHT							-						-			
ő L						7.										

Clien	t:	I	HAMI	MOND	CARE	Ξ					
Proje	ct:	I	PROF	POSEI	D HOS	PITA	REDEVELOPMENT				
Loca	tion:	ę	97-11	5 RIV	ER RC	DAD, C	GREENWICH, NSW				
Job N	lo.: E	325	507BF	२		Meth	od: PUSH TUBE		R	L. Surf	ace: ≈ 48.6m
Date:										atum:	
Plant	Туре	: E	ZIPR	OBE		Logo	jed/Checked by: H.W./V.B.				
							-			<u> </u>	
Groundwater Record	ES ASS ASB SAMPLES	<u>JB</u>	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON			<u> </u>				CONCRETE: 220mm.t	202	<u>, , , , , , , , , , , , , , , , , , , </u>		STEEL
OMPLE- TION				-		-	FILL: Silty gravelly sand, fine to medium grained, brown, fine to medium grained sandstone gravel,	М			REINFORCEMEN AT 150mm SCREEN: 6.90kg 0.22-0.65m
						-	trace of clay nodules, igneous and rightering for the second seco	XW			NO FCF HAWKESBURY
				1 -			concrete fragments. Extremely Weathered sandstone: silty				- SANDSTONE
				-			SAND, fine to medium grained, yellow brown.				REFUSAL
				-			END OF BOREHOLE AT 0.8m				-
				-							-
				2-	-					-	_
				-						-	
				-						-	
				-	-					-	-
				3-							-
				-	-						-
				-	-					-	
				-	-						-
				-						-	
				4 -							-
				-							-
				-	-						
				-						-	-
				5 -							_
				-							-
				-							-
				-							-
				6-							_
				-						-	-
				-							-
				-							-
				7_							_

Environmental logs are not to be used for geotechnical purposes


Log No.

113

1/1

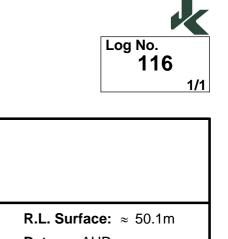
COPYRIGHT

Environmental logs are not to be used for geotechnical purposes

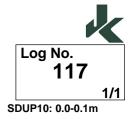
Log No.

114

1/1



Client:	HAMMOND CARI	E						
Project:								
Location:		DAD, GREENWICH, NSW						
Job No.: E3 Date: 29/9/2		Method: PUSH TUBE	R.L. Surface: ≈ 50.1m Datum: AHD					
Plant Type:		Logged/Checked by: M.M.E./V.B.						
Groundwater Record <u>ASS</u> ASL DB DB	Field Tests Depth (m) Graphic Log	Unified Classification DESCRIPTION	Moisture Condition/ Weathering Strength/ Rel. Density Hand Penetrometer Readings (kPa.) swawa					
DRY ON COMPLE- TION		FILL: Silty clayey sand, fine to medium grained, brown, trace of ironstone and sandstone gravel, and root fibres.	D GRASS COVER SCREEN: 11.8kg 0.0-0.1m					
	1-	CL-CI Silty CLAY: low to medium plasticity, light grey, with ironstone banding, trace of root fibres.	w <pl -="" <u="">NO FCF RESIDUAL</pl>					
COPYRIGHT		END OF BORHEOLE AT 1.1m	- REFUSAL ON INFERRED BEDROCK - - - - - - - - - - - - - - - - - - -					


Environmental logs are not to be used for geotechnical purposes

HAMMOND CARE

Client:

Project: Location:		- SPITAL REDEVELOPMENT DAD, GREENWICH, NSW							
Job No.: E3 Date: 29/9/2 Plant Type:	2507BR 021	Method: PUSH TUBE	R.L. Surface: ≈ 50.1m Datum: AHD						
Groundwater Record ES ASB ASB SAMPLES ASB SAMPLES	Field Tests Depth (m) Graphic Log	e l	Condition/ Weathering Strength/ Rel. Density Hand Penetrometer Readings (kPa.)	narks					
		- ASPHALTIC CONCRETE: 20mm.t D SC FILL: Silty sandy gravel, fine to medium grained, igneous gravel, sub angular, light grey, fine to medium grained sand, trace of ironstone gravel XV and asphaltic concrete fragments. XV - grained sand, trace of ironstone gravel XV and asphaltic concrete fragments. XV Silty clayey SAND: light brown mottle yellow brown, trace of ironstone gravel, sh and root fibres. Sandy CLAY: low to medium plasticity, yellow brown, with ironstone banding. Extremely Weathered sandstone: silty SAND, fine to medium grained, yellow brown. END OF BOREHOLE AT 0.6m	DSCREEN M	n AL SBURY ONE					

Clien Proje Loca		PROF	HAMMOND CARE PROPOSED HOSPITAL REDEVELOPMENT 97-115 RIVER ROAD, GREENWICH, NSW										
Date	: 6/10	32507BF /2021 : JK205	R			od: SPIRAL AUGER ged/Checked by: A.D./V.B.		R.L. Surface: ≈ 49.3m Datum: AHD					
Groundwater Record	ES ASS ASB SAL	DB Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks			
DRY ON COMPLE- TION		N = 25 8,13,12	0 - - 1 - -			FILL: Silty sand, fine to medium grained, brown, trace of tile fragments and root fibres.FILL: Silty sand, fine to medium grained, grey and brown, trace of igneous gravel and sandstone gravel.	D			GRASS COVER SCREEN: 10.0kg 0-0.1m NO FCF			
			2			END OF BOREHOLE AT 1.5m				- - - - - - -			
			4 - - - 5 -							-			
			6 - - - - - - - - - - - - - - - - - -							-			

Clien	nt:	HAMM	IOND	CARE	Ē								
Proje	ect:	PROP	OSEI	D HOS	PITAL	REDEVELOPMENT							
Loca	ation:	97-115	5 RIV	ER RC	DAD, C	BREENWICH, NSW							
Job I	No.: E3	32507BR			Meth	od: PUSH TUBE		R.L. Surface: ≈ 40.0m					
Date	: 29/9/2	2021						D	atum:	AHD			
Plant	t Type:	EZIPRO)BE		Logo	ed/Checked by: M.M.E./V.B							
	ES ASS SAL DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks			
DRY ON COMPLE TION			0			FILL: Silty sandy clay, low to medium plasticity, light brown mottled red and yellow, trace of siltstone, ironstone and sandstone gravel, ash, tile fragments and root fibres.	D			GRASS COVER SCREEN: 10.6kg 0.0-0.1m NO FCF SCREEN: 9.85kg 0.1-1.1m NO FCF SCREEN: 8.1kg 1.1-1.6m NO FCF			
			2-		CL-CI CI-CH	Sandy CLAY: low to medium plasticity, yellow brown mottled red, trace of ironstone gravel. Sandy CLAY: medium to high plasticity, light brown mottled yellow	w <pl< td=""><td></td><td></td><td>RESIDUAL</td></pl<>			RESIDUAL			
			3			[<u>\and red, with ironstone banding.</u> END OF BOREHOLE AT 2.5m				- REFUSAL - - -			
			- - 4 -							- - -			
			- 5 -							-			
			- - 6 -							- - - -			
			- 7_							-			

С	lient	:	HAMN) CA	RE						
Р	roje	ct:	PROP	OSE	DH	OSPIT	AL RE	DEVELOPMENT				
L	ocat	ion:	97-115	5 RIV	/ER	ROAD	GRE	ENWICH, NSW				
J	ob N	o.: 3	32507R2				Me	thod: SPIRAL AUGER	R.	L. Sur	face: 4	42.5 m
D	ate:	1/10/	/21						AHD			
Р	lant	Туре	: JK305				Lo	gged/Checked By: J.L./P.R.				
Groundwater Record	SAME N20		Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
Comber of Automatic Rect	E E E E E E E E E E E E E E E E E E E		Field	1) 12 12 142 - - - - - - - - - - - - -		Grap	- Cutit	ASPHALTIC CONCRETE: 50mm.t FILL: Sitty sand, fine to medium grained, yellow brown, trace of igneous and sandstone gravel, and ceramic tile fragments. SANDSTONE: fine to medium grained, yellow brown. REFER TO CORED BOREHOLE LOG	Mai Mai Mai	H / M / Rel	Hand	SCREEN: 3.2kg 0.05-0.3m NO FCF HAWKESBURY SANDSTONE MODERATE 'TC' BIT RESISTANCE LOW TO MODERATE RESISTANCE HIGH RESISTANCE HIGH RESISTANCE HIGH RESISTANCE HIGH RESISTANCE HIGH RESISTANCE HIGH RESISTANCE HIGH RESISTANCE CLASS 18 MACHINE SLOTTED 50mm DIA. PVC STANDPIPE 1.2m TO 5.75m. CASING 0m TO 1.2m. 2mm SAND FILTER PACK 1.0m TO 5.75m. BENTONITE SEAL 0.25m TO 1.0m. BACKFILLED WITH SAND TO THE SURFACE. COMPLETED WITH SAND TO THE SURFACE. COMPLETED WITH A CONCRETED WITH A CONCRETED WITH A CONCRETED
	YRIG			- 37 - - - 36 - -	- - - - - - - -							

CORED BOREHOLE LOG

0	Cli	ien	it:		HAMM	OND CARE											
F	Pr	oje	ect:		PROPO	OSED HOSPITAL REDEVELC	PME	NT									
L	_0	ca	tion		97-115	RIVER ROAD, GREENWICH	, NS\	N									
	Jo	b I	No.:	325	507R2	Core Size:	NML	С						R	.L. Surface: 42.5 m		
1	Da	ite	: 1/1	0/21		Inclination:	VER	TICA	L					Datum: AHD			
F	Pla	ant	Тур	e:	JK305	Bearing: N	/A							L	ogged/Checked By: J.L./P.R.		
			()		ð	CORE DESCRIPTION	_		PC S	DINT TREM	IGTH			G	DEFECT DETAILS DESCRIPTION	-	
er Store	LOSS/LEVEI	el Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength		I _s (5	0)	(m	im)	0	Type, orientation, defect shape and roughness, defect coatings and	Formation	
Water	Loss	Barr	RL (Dept	Grap		Wea	Strei	VL-0.1	ר ⊼ : 5 לי 8	14.9 19.9	 600 200	60	50	seams, openness and thickness Specific General	Forn	
			-		-										-		
			40-		-										- - -		
			-		-					ii	ii	ii	i	 	- - - ROCK STRENGTH BASED ON TACTILE		
	+		-	3-	-	START CORING AT 2.94m SANDSTONE: medium grained, light	MW	(L - M)							- ASSESSMENT		
			-			grey, orange brown and red brown, bedded at 0-25°.						 			-		
			39 -		-										-		
			-											-	- - -		
			-	4 -										-	- — - —— (4.10m) CS, 5°, 10 mm.t	dstone	
100%	IURN		-	•	-										-	y San	
-	Ш		38 -		-					ii	ii	i	i		– – – —— (4.61m) J, 45°, P, R, Fe Ct	Hawkesbury Sandstone	
			-												- · · ·	Hawl	
			-	5-	-										 (5.15m) Be. 20° C. R. Fe.Sn		
6			-	· ·		SANDSTONE: fine to medium grained, light grey, bedded at 0-20°.	FR	(M)							(5.15m) Be, 20°, C, R, Fe Sn (5.16m) CS, 5°, 10 mm.t (5.32m) Be x 2, 0°, C, R, Fe Ct		
5			37 -										99	12 	– (5.49m) Cr, 0°, 15 mm.t –		
			-		-	END OF BOREHOLE AT 5.75 m									-		
			-	6-	-					ii	ii		i				
			26		-								Ì		-		
			36 -		-										- - -		
			-	7-											-		
			-	,	-										-		
			35 -												-		
			-												-		
			-	8-	-										-		
			-		-										-		
n			34 –												-		
			-		-							600 200	- - -		-		
			СНТ		1							1 1		1			

FRACTURES NOT MARKED ARE CONSIDERED TO BE DRILLING AND HANDLING BREAKS

ENVIRONMENTAL LOGS EXPLANATION NOTES

INTRODUCTION

These notes have been provided to amplify the environmental report in regard to classification methods, field procedures and certain matters relating to the logging of soil and rock. Not all notes are necessarily relevant to all reports.

Where geotechnical borehole logs are utilised for environmental purpose, reference should also be made to the explanatory notes included in the geotechnical report. Environmental logs are not suitable for geotechnical purposes.

The ground is a product of continuing natural and man-made processes and therefore exhibits a variety of characteristics and properties which vary from place to place and can change with time. Environmental studies include gathering and assimilating limited facts about these characteristics and properties in order to understand or predict the behaviour of the ground on a particular site under certain conditions. This report may contain such facts obtained by inspection, excavation, probing, sampling, testing or other means of investigation. If so, they are directly relevant only to the ground at the place where and time when the investigation was carried out.

DESCRIPTION AND CLASSIFICATION METHODS

The methods of description and classification of soils and rocks used in this report are based on Australian Standard 1726:2017 *'Geotechnical Site Investigations'*. In general, descriptions cover the following properties – soil or rock type, colour, structure, strength or density, and inclusions. Identification and classification of soil and rock involves judgement and the Company infers accuracy only to the extent that is common in current geoenvironmental practice.

Soil types are described according to the predominating particle size and behaviour as set out in the attached soil classification table qualified by the grading of other particles present (eg. sandy clay) as set out below:

Soil Classification	Particle Size
Clay	< 0.002mm
Silt	0.002 to 0.075mm
Sand	0.075 to 2.36mm
Gravel	2.36 to 63mm
Cobbles	63 to 200mm
Boulders	> 200mm

Non-cohesive soils are classified on the basis of relative density, generally from the results of Standard Penetration Test (SPT) as below:

Relative Density	SPT 'N' Value (blows/300mm)
Very loose (VL)	< 4
Loose (L)	4 to 10
Medium dense (MD)	10 to 30
Dense (D)	30 to 50
Very Dense (VD)	> 50

Cohesive soils are classified on the basis of strength (consistency) either by use of a hand penetrometer, vane shear, laboratory testing and/or tactile engineering examination. The strength terms are defined as follows.

Classification	Unconfined Compressive Strength (kPa)	Indicative Undrained Shear Strength (kPa)
Very Soft (VS)	≤25	≤12
Soft (S)	> 25 and \leq 50	> 12 and \leq 25
Firm (F)	> 50 and \leq 100	> 25 and \leq 50
Stiff (St)	$>$ 100 and \leq 200	> 50 and \leq 100
Very Stiff (VSt)	$>$ 200 and \leq 400	$>$ 100 and \leq 200
Hard (Hd)	> 400	> 200
Friable (Fr)	Strength not attainable	– soil crumbles

Rock types are classified by their geological names, together with descriptive terms regarding weathering, strength, defects, etc. Where relevant, further information regarding rock classification is given in the text of the report. In the Sydney Basin, 'shale' is used to describe fissile mudstone, with a weakness parallel to bedding. Rocks with alternating inter-laminations of different grain size (eg. siltstone/claystone and siltstone/fine grained sandstone) are referred to as 'laminite'.

INVESTIGATION METHODS

The following is a brief summary of investigation methods currently adopted by the Company and some comments on their use and application. All methods except test pits, hand auger drilling and portable Dynamic Cone Penetrometers require the use of a mechanical rig which is commonly mounted on a truck chassis or track base.

Test Pits: These are normally excavated with a backhoe or a tracked excavator, allowing close examination of the insitu soils and 'weaker' bedrock if it is safe to descend into the pit. The depth of penetration is limited to about 3m for a backhoe and up to 6m for a large excavator. Limitations of test pits are the problems associated with disturbance and difficulty of reinstatement and the consequent effects on close-by structures. Care must be taken if construction is to be carried out near test pit locations to either properly recompact the backfill during construction or to design and construct the

structure so as not to be adversely affected by poorly compacted backfill at the test pit location.

Hand Auger Drilling: A borehole of 50mm to 100mm diameter is advanced by manually operated equipment. Refusal of the hand auger can occur on a variety of materials such as obstructions within any fill, tree roots, hard clay, gravel or ironstone, cobbles and boulders, and does not necessarily indicate rock level.

Continuous Spiral Flight Augers: The borehole is advanced using 75mm to 115mm diameter continuous spiral flight augers, which are withdrawn at intervals to allow sampling and insitu testing. This is a relatively economical means of drilling in clays and in sands above the water table. Samples are returned to the surface by the flights or may be collected after withdrawal of the auger flights, but they can be very disturbed and layers may become mixed. Information from the auger sampling (as distinct from specific sampling by SPTs or undisturbed samples) is of limited reliability due to mixing or softening of samples by groundwater, or uncertainties as to the original depth of the samples. Augering below the groundwater table is of even lesser reliability than augering above the water table.

Rock Augering: Use can be made of a Tungsten Carbide (TC) bit for auger drilling into rock to indicate rock quality and continuity by variation in drilling resistance and from examination of recovered rock cuttings. This method of investigation is quick and relatively inexpensive but provides only an indication of the likely rock strength and predicted values may be in error by a strength order. Where rock strengths may have a significant impact on construction feasibility or costs, then further investigation by means of cored boreholes may be warranted.

Wash Boring: The borehole is usually advanced by a rotary bit, with water being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be assessed from the cuttings, together with some information from "feel" and rate of penetration.

Mud Stabilised Drilling: Either Wash Boring or Continuous Core Drilling can use drilling mud as a circulating fluid to stabilise the borehole. The term 'mud' encompasses a range of products ranging from bentonite to polymers. The mud tends to mask the cuttings and reliable identification is only possible from intermittent intact sampling (eg. from SPT and U50 samples) or from rock coring, etc.

Continuous Core Drilling: A continuous core sample is obtained using a diamond tipped core barrel. Provided full core recovery is achieved (which is not always possible in very low strength rocks and granular soils), this technique provides a very reliable (but relatively expensive) method of investigation. In rocks, NMLC or HQ triple tube core barrels, which give a core of about 50mm and 61mm diameter, respectively, is usually used with water flush. The length of core recovered is compared to the length drilled and any length not recovered is shown as NO CORE. The location of NO CORE recovery is determined on site by the supervising engineer; where the location is uncertain, the loss is placed at the bottom of the drill run.

Standard Penetration Tests: Standard Penetration Tests (SPT) are used mainly in non-cohesive soils, but can also be used in cohesive soils, as a means of indicating density or strength and also of obtaining a relatively undisturbed sample. The test procedure is

described in Australian Standard 1289.6.3.1–2004 (R2016) 'Methods of Testing Soils for Engineering Purposes, Soil Strength and Consolidation Tests – Determination of the Penetration Resistance of a Soil – Standard Penetration Test (SPT)'.

The test is carried out in a borehole by driving a 50mm diameter split sample tube with a tapered shoe, under the impact of a 63.5kg hammer with a free fall of 760mm. It is normal for the tube to be driven in three successive 150mm increments and the 'N' value is taken as the number of blows for the last 300mm. In dense sands, very hard clays or weak rock, the full 450mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form:

• In the case where full penetration is obtained with successive blow counts for each 150mm of, say, 4, 6 and 7 blows, as

N = 13 4, 6, 7

 In a case where the test is discontinued short of full penetration, say after 15 blows for the first 150mm and 30 blows for the next 40mm, as

> N > 30 15, 30/40mm

The results of the test can be related empirically to the engineering properties of the soil.

A modification to the SPT is where the same driving system is used with a solid 60° tipped steel cone of the same diameter as the SPT hollow sampler. The solid cone can be continuously driven for some distance in soft clays or loose sands, or may be used where damage would otherwise occur to the SPT. The results of this Solid Cone Penetration Test (SCPT) are shown as 'N_c' on the borehole logs, together with the number of blows per 150mm penetration.

LOGS

The borehole or test pit logs presented herein are an interpretation of the subsurface conditions, and their reliability will depend to some extent on the frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will enable the most reliable assessment, but is not always practicable or possible to justify on economic grounds. In any case, the boreholes or test pits represent only a very small sample of the total subsurface conditions.

The terms and symbols used in preparation of the logs are defined in the following pages.

Interpretation of the information shown on the logs, and its application to design and construction, should therefore take into account the spacing of boreholes or test pits, the method of drilling or excavation, the frequency of sampling and testing and the possibility of other than 'straight line' variations between the boreholes or test pits. Subsurface conditions between boreholes or test pits may vary significantly from conditions encountered at the borehole or test pit locations.

GROUNDWATER

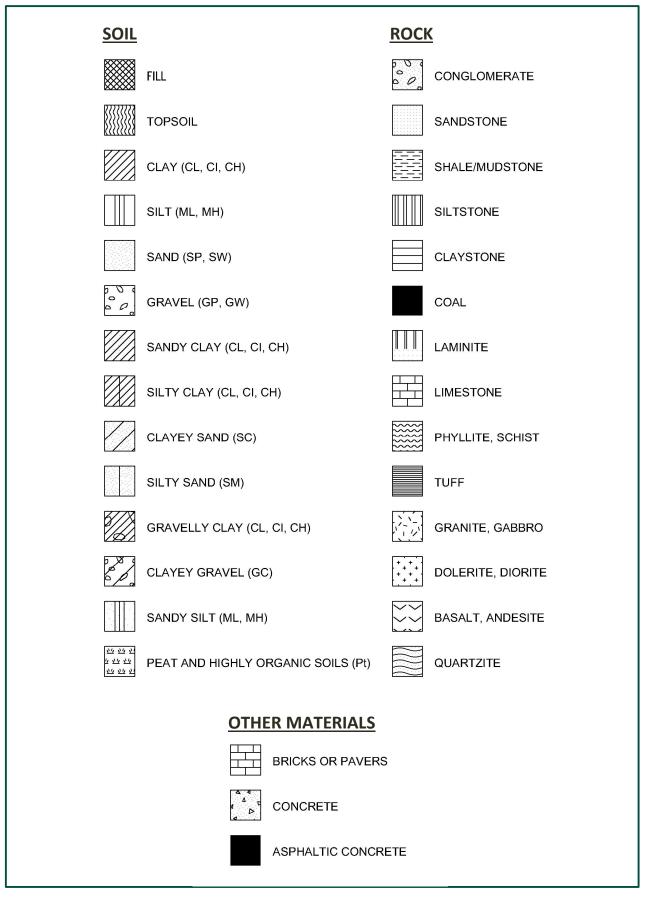
Where groundwater levels are measured in boreholes, there are several potential problems:

- Although groundwater may be present, in low permeability soils it may enter the hole slowly or perhaps not at all during the time it is left open.
- A localised perched water table may lead to an erroneous indication of the true water table.
- Water table levels will vary from time to time with seasons or recent weather changes and may not be the same at the time of construction.
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must be washed out of the hole or 'reverted' chemically if reliable water observations are to be made.

More reliable measurements can be made by installing standpipes which are read after the groundwater level has stabilised at intervals ranging from several days to perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from perched water tables or surface water.

FILL

The presence of fill materials can often be determined only by the inclusion of foreign objects (eg. bricks, steel, etc) or by distinctly unusual colour, texture or fabric. Identification of the extent of fill materials will also depend on investigation methods and frequency. Where natural soils similar to those at the site are used for fill, it may be difficult with limited testing and sampling to reliably assess the extent of the fill.


The presence of fill materials is usually regarded with caution as the possible variation in density and material type is much greater than with natural soil deposits. Consequently, there is an increased risk of adverse environmental characteristics or behaviour. If the volume and nature of fill is of importance to a project, then frequent test pit excavations are preferable to boreholes.

LABORATORY TESTING

Laboratory testing has not been undertaken to confirm the soil classification and rock strengths indicated on the environmental logs unless noted in the report.

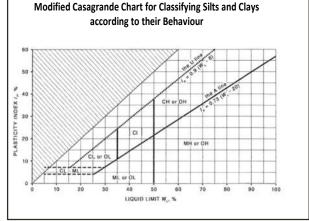
SYMBOL LEGENDS

CLASSIFICATION OF COARSE AND FINE GRAINED SOILS

Ma	ajor Divisions	Group Symbol	Typical Names	Field Classification of Sand and Gravel	Laboratory Cl	assification
ianis	GRAVEL (more than half	GW	Gravel and gravel-sand mixtures, little or no fines	Wide range in grain size and substantial amounts of all intermediate sizes, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	C _u >4 1 <c<sub>c<3</c<sub>
oversize fraction is	of coarse fraction is larger than 2.36mm	GP	Gravel and gravel-sand mixtures, little or no fines, uniform gravels	Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	Fails to comply with above
		GM	Gravel-silt mixtures and gravel- sand-silt mixtures	'Dirty' materials with excess of non-plastic fines, zero to medium dry strength	≥ 12% fines, fines are silty	Fines behave as silt
Coarse grained soil (more than 65% of soil excluding greater than 0.0075mm)		GC	Gravel-clay mixtures and gravel- sand-clay mixtures	'Dirty' materials with excess of plastic fines, medium to high dry strength	≥ 12% fines, fines are clayey	Fines behave as clay
than 65% sater than	SAND (more than half	SW	Sand and gravel-sand mixtures, little or no fines	Wide range in grain size and substantial amounts of all intermediate sizes, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	Cu>6 1 <cc<3< td=""></cc<3<>
ail (mare. gn	of coarse fraction is smaller than	SP	Sand and gravel-sand mixtures, little or no fines	Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	Fails to comply with above
egraineds	2.36mm)	SM	Sand-silt mixtures	'Dirty' materials with excess of non-plastic fines, zero to medium dry strength	≥ 12% fines, fines are silty	
Coarse		SC	Sand-clay mixtures	'Dirty' materials with excess of plastic fines, medium to high dry strength	≥ 12% fines, fines are clayey	N/A

		Group			Field Classification of Silt and Clay		Laboratory Classification
Majo	or Divisions	Symbol	Typical Names	Dry Strength	Dilatancy	Toughness	% < 0.075mm
gnbu	SILT and CLAY (low to medium	ML	Inorganic silt and very fine sand, rock flour, silty or clayey fine sand or silt with low plasticity	None to low	Slow to rapid	Low	Below A line
inegrained soils (more than 35% of soil excluding oversize fraction is less than 0.075mm)	plasticity)	CL, CI	Inorganic clay of low to medium plasticity, gravelly clay, sandy clay	Medium to high	None to slow	Medium	Above A line
an 35% ss than		OL	Organic silt	Low to medium	Slow	Low	Below A line
onisle	SILT and CLAY	MH	Inorganic silt	Low to medium	None to slow	Low to medium	Below A line
soils (m te fracti	(high plasticity)	СН	Inorganic clay of high plasticity	High to very high	None	High	Above A line
regrained		ОН	Organic clay of medium to high plasticity, organic silt	Medium to high	None to very slow	Low to medium	Below A line
.=	Highly organic soil	Pt	Peat, highly organic soil	-	-	-	-

Laboratory Classification Criteria


A well graded coarse grained soil is one for which the coefficient of uniformity Cu > 4 and the coefficient of curvature $1 < C_c < 3$. Otherwise, the soil is poorly graded. These coefficients are given by:

$$C_U = \frac{D_{60}}{D_{10}}$$
 and $C_C = \frac{(D_{30})^2}{D_{10}D_{60}}$

Where D_{10} , D_{30} and D_{60} are those grain sizes for which 10%, 30% and 60% of the soil grains, respectively, are smaller.

NOTES:

- 1 For a coarse grained soil with a fines content between 5% and 12%, the soil is given a dual classification comprising the two group symbols separated by a dash; for example, for a poorly graded gravel with between 5% and 12% silt fines, the classification is GP-GM.
- 2 Where the grading is determined from laboratory tests, it is defined by coefficients of curvature (C_c) and uniformity (C_u) derived from the particle size distribution curve.
- 3 Clay soils with liquid limits > 35% and ≤ 50% may be classified as being of medium plasticity.
- 4 The U line on the Modified Casagrande Chart is an approximate upper bound for most natural soils.

JKEnvironments

LOG SYMBOLS

Log Column	Symbol	Definition						
Groundwater Record	—	Standing water level. Ti	me delay following compl	etion of drilling/excavation may be shown.				
	— с —	Extent of borehole/test	pit collapse shortly after o	drilling/excavation.				
		Groundwater seepage i	nto borehole or test pit no	oted during drilling or excavation.				
Samples	ES	Sample taken over dept	h indicated, for environm	ental analysis.				
	U50	Undisturbed 50mm diar	neter tube sample taken	over depth indicated.				
	DB		aken over depth indicated					
	DS	-	nple taken over depth ind					
	ASB		lepth indicated, for asbes	-				
	ASS		lepth indicated, for acid s	-				
	SAL	Soil sample taken over o	lepth indicated, for salinit	y analysis.				
	PFAS	Soil sample taken over o	lepth indicated, for analys	sis of Per- and Polyfluoroalkyl Substances.				
Field Tests	N = 17 4, 7, 10		150mm penetration. 'Refu	tween depths indicated by lines. Individual isal' refers to apparent hammer refusal within				
	N _c = 5	Solid Cone Penetration	Test (SCPT) performed b	etween depths indicated by lines. Individual				
	7	figures show blows per :	150mm penetration for 60	0° solid cone driven by SPT hammer. 'R' refers				
	3R	to apparent hammer re	fusal within the correspor	nding 150mm depth increment.				
	VNS = 25	Vano shoar roading in k	Pa of undrained shear stre	anoth				
	PID = 100	-	or reading in ppm (soil sam	-				
	FID = 100							
Moisture Condition	w > PL		ated to be greater than pl					
(Fine Grained Soils)	w≈PL		ated to be approximately					
	w < PL		ated to be less than plasti					
	w≈LL w>LL		ated to be near liquid limi ated to be wet of liquid lir					
(Coorse Crained Saile)		Moisture content estimated to be wet of liquid limit. DRY – runs freely through fingers.						
(Coarse Grained Soils)	D		nrougn fingers. I freely but no free water	vicible on soil surface				
	M W		isible on soil surface.	visible on soil surface.				
Strongth (Consistoney)								
Strength (Consistency) Cohesive Soils	VS S		fined compressive streng					
	F		fined compressive streng					
	St			th > 50kPa and \leq 100kPa.				
	VSt			th > 100kPa and \leq 200kPa.				
	Hd			th > 200kPa and \leq 400kPa.				
	Fr		fined compressive streng					
	()		gth not attainable, soil cru					
		assessment.	cates estimated consiste	ncy based on tactile examination or other				
Density Index/ Relative Density			Density Index (I _D) Range (%)	SPT 'N' Value Range (Blows/300mm)				
(Cohesionless Soils)	VL	VERY LOOSE	≤15	0-4				
	L	LOOSE	$>$ 15 and \leq 35	4-10				
	MD	MEDIUM DENSE	$>$ 35 and \leq 65	10-30				
	D	DENSE	$>$ 65 and \leq 85	30 – 50				
	VD	VERY DENSE	> 85	> 50				
	()	Bracketed symbol indica	ates estimated density bas	sed on ease of drilling or other assessment.				

Log Column	Symbol	Definition								
Hand Penetrometer Readings	300 250		g in kPa of unconfined compressive strength. Numbers indicate individual presentative undisturbed material unless noted otherwise.							
Remarks	'V' bit	Hardened steel '	/' shaped bit.							
	'TC' bit	Twin pronged tu	ngsten carbide bit.							
	T_{60}	Penetration of au without rotation	iger string in mm under static load of rig applied by drill head hydraulics of augers.							
	Soil Origin	The geological origin of the soil can generally be described as:								
		RESIDUAL	 soil formed directly from insitu weathering of the underlying rock. No visible structure or fabric of the parent rock. 							
		EXTREMELY WEATHERED	 soil formed directly from insitu weathering of the underlying rock. Material is of soil strength but retains the structure and/or fabric of the parent rock. 							
		ALLUVIAL	 soil deposited by creeks and rivers. 							
		ESTUARINE	 soil deposited in coastal estuaries, including sediments caused by inflowing creeks and rivers, and tidal currents. 							
		MARINE	 soil deposited in a marine environment. 							
		AEOLIAN	 soil carried and deposited by wind. 							
		COLLUVIAL	 soil and rock debris transported downslope by gravity, with or without the assistance of flowing water. Colluvium is usually a thick deposit formed from a landslide. The description 'slopewash' is used for thinner surficial deposits. 							
		LITTORAL	 beach deposited soil. 							

Classification of Material Weathering

Term		Abbre	viation	Definition			
Residual Soil		R	RS	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.			
Extremely Weathered		x	W	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible.			
Highly Weathered	H Distinctly Weathered		DW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.			
Moderately Weathered	(Note 1)	MW		The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.			
Slightly Weathered		S	W	Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.			
Fresh		F	R	Rock shows no sign of decomposition of individual minerals or colour changes			

NOTE 1: The term 'Distinctly Weathered' is used where it is not practicable to distinguish between 'Highly Weathered' and 'Moderately Weathered' rock. 'Distinctly Weathered' is defined as follows: '*Rock strength usually changed by weathering.* The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores'. There is some change in rock strength.

Rock Material Strength Classification

				Guide to Strength
Term	Abbreviation	Uniaxial Compressive Strength (MPa)	Point Load Strength Index Is ₍₅₀₎ (MPa)	Field Assessment
Very Low Strength	VL	0.6 to 2	0.03 to 0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 30mm thick can be broken by finger pressure.
Low Strength	L	2 to 6	0.1 to 0.3	Easily scored with a knife; indentations 1mm to 3mm show in the specimen with firm blows of the pick point; has dull sound under hammer. A piece of core 150mm long by 50mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.
Medium Strength	М	6 to 20	0.3 to 1	Scored with a knife; a piece of core 150mm long by 50mm diameter can be broken by hand with difficulty.
High Strength	н	20 to 60	1 to 3	A piece of core 150mm long by 50mm diameter cannot be broken by hand but can be broken by a pick with a single firm blow; rock rings under hammer.
Very High Strength	VH	60 to 200	3 to 10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.
Extremely High Strength	EH	> 200	> 10	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.

DSI Borehole Logs

		nt:	HAM									
	-	ect:										
		ation:		5 RIV	/ER	ROAD,		ENWICH, NSW				
			32507R				Me	thod: SPIRAL AUGER			face:	37.3 m
		: 22/		_			_			atum:	AHD	
Ρ	lan	t Typ	e: JK20	о ————————————————————————————————————	1	1 1	Lo	gged/Checked By: S.M./P.R.	1		1	
Groundwater Record	SAI	MPLES	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
PLETION				-	_			CONCRETE: 170mm.t				8mm DIA. REINFORCEMENT,
COMPLET OF COF			N = 11 4,7,4	37	-		-	FILL: Silty sandy gravel, fine to medium grained, igneous, angular, dark grey, fine to coarse grained sand. FILL: Clayey sand, medium to coarse grained, yellow brown and orange brown, with sub-angular fine to medium grained sandstone gravel.	M D w>PL		490 390 360	12mm & 35mm BOTTOM COVER 60mm VOID UNDERNEATH SLAB APPEARS MODERATELY
				36 -	1			FILL: Silty clay, medium to high plasticity, light grey mottled brown and dark grey, trace of ash, slag, and angular fine to medium grained igneous gravel. FILL: Silty clay, medium plasticity, light	-		250	- COMPACTED
			N = 8 3,4,4	 	2			grey, with angular medium to coarse grained ironstone gravel.			270 190	- MODERATELY - COMPACTED
	-		N = 2 1,1,1		3-			FILL: Sand, medium to coarse grained, light grey and brown.	M 		200 180 140	
				-	4		-	SANDSTONE: fine to medium grained, light grey.	DW SW	 M-H		- HAWKESBURY SANDSTONE
				33 -	-	-		REFER TO CORED BOREHOLE LOG				LOW TO MODERATE 'TC' BIT RESISTANCE HIGH RESISTANCE
				32 -	5	-						
					6							

CORED BOREHOLE LOG

		ien						NT												
		-	ect: tion			DSED HOSPITAL REDEVELC RIVER ROAD, GREENWICH														
	Jo	b I	No.:	32	507R	Core Size:	NML	С					R.L. Surface: 37.3 m							
1	Da	ite	: 22/	7/19	9	Inclination: VERTICAL									Da	atum: AHD				
1	Pla	ant	t Typ)e:	JK205	Bearing: N	/A								Lo	ogged/Checked By: S.M./P.R.				
			(D	CORE DESCRIPTION			PC S)INT [REI	NGT					DEFECT DETAILS DESCRIPTION				
Water	Loss/Level	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength		IND I₅(5 - ;3 - ;9 - ; - ;	0)		(mm)			Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness Specific General	Formation			
			-		-	START CORING AT 4.24m								1		-				
8.02.4 2018-02-01 FIJ. 41 8.01.0 2018-02-20	RETURN RETURN		33 - - - - - - - - - - - - - - - - -	5- 6- 7-		SANDSTONE: fine to medium grained, light grey, with shale clasts, bedded at 0-10°.	SW	M - H								(5.15m) J, 15°, P, S, Cn (5.27m) Be, 5°, P, S, Cn (5.55m) XWS, 0°, 4 mm.t	Hawkesbury Sandstone			
			30 	8- 9- 10-		END OF BOREHOLE AT 7.29 m	EPACT							$-\frac{69}{69}$		DERED TO BE DRILLING AND HANDLING BR				

P	lien roje	ect:		OSE	DΗ	OSPIT		DEVELOPMENT				
		tion:	97-118 32507R	5 RIV	'ER	ROAD,		ENWICH, NSW thod: SPIRAL AUGER	R		face: 3	30 m
		: 23/7					Mic			atum:		55 111
Ρ	lant	Туре	ə: JK205				Lo	gged/Checked By: S.M./P.R.				
Groundwater Record	SAMPLES		Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
				-	-			FILL: Silty sand, fine to medium grained, dark brown, with root fibres.	М			- GRASS COVER - APPEARS - WELL - COMPACTED
			N = 21 2,12,9		- - 1			FILL: Silty sand, medium to coarse grained, brown, with clay fines an sub-angular medium to coarse grained sandstone gravel, trace of ash.				-
				-	-			FILL: Silty sandy clay, low to medium plasticity, brown mottled orange brown, medium to coarse grained sand, with sub-angular medium to coarse grained ironstone and sandstone gravel, trace of				APPEARS MODERATELY COMPACTED
			N = 4 2,2,2	37	2-			slag and ash.				- - - -
				-	-		-	SANDSTONE: fine to medium grained, light grey.	SW	M - H		- HAWKESBURY - SANDSTONE
				- 36 -	3-			as above.	DW SW	VL M		- HIGH 'TC' BIT - RESISTANCE WITH VER` - LOW RESISTANCE - BANDS
				-	-			but yellow brown. as above, but orange brown.	DW	VL		- - - -
				- 35 -	4-			as above, but light grey.	SW	M		-
				-	-				SW	M	-	GROUNDWATER
				34	5	-						 INSTALLED TO 2.3m. CLASS 18 MACHINE SLOTTED 50mm DIA. PV0 STANDPIPE 0.4m TO 2.3m. CASING 0.11m TO 0.4m. 2mm SAND FILTER PACK 0.4m TO 2.3m. BENTONITE SEAL 0.11m TO 0.4m. BACKFILLED
					6-							WITH SAND TO THE SURFACE. COMPLETED WITH A CONCRETED GATIC COVER.
				-	-	-		END OF BOREHOLE AT 6.30 m				-
		GHT			-							-

С	lie	nt:		HAMN		D CA	RE										
		ject	::					AL RE	DEVELOPMENT								
		atio		97-115	5 RIV	′ER	ROAD	, GREI	ENWICH, NSW								
J	ob	No).: (32507R				Me	thod: SPIRAL AUGER	R	.L. Sur	face: 4	42.8 m				
D	at	e: 2	3/7	/19						Da	Datum: AHD						
P	laı	nt T	ype	: JK205				Loę	gged/Checked By: S.M./P.R.								
Groundwater Record	S/	AMPL 020	ES SQ	Field Tests	Field Tests RL (m AHD) Denth (m)		Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks				
DRY ON COMPLETION OF CORING				N = 11 8,4,7	- - 42	- - -		-	ASPHALTIC CONCRETE: 45mm.t FILL: Silty gravelly sand, medium to coarse grained, dark grey, angular medium to coarse grained igneous gravel. FILL: Sand, medium to coarse grained, light grey, with dark grey silty clay nodules, trace of ash.	D			APPEARS MODERATELY COMPACTED				
					-	1			FILL: Silty sand, medium to coarse grained, brown and light grey, with	SW	M - H		- HAWKESBURY				
						2			sub-angular medium to coarse grained sandstone gravel, trace of clay fines, slag and ash. FILL: Clayey sand, medium to coarse grained, light brown. SANDSTONE: fine to medium grained, light grey. REFER TO CORED BOREHOLE LOG				HIGH 'TC' BIT RESISTANCE				
					- 38 - - - - - - - - - - - - - - - - - -												

CORED BOREHOLE LOG

		oje	t: ct: tion:		PROPO	OND CARE DSED HOSPITAL REDEVELC RIVER ROAD, GREENWICH										
					507R	Core Size:								R.	.L. Surface: 42.8 m	
1	Dat	te:	23/	7/19)	Inclination:	VER		۱L					Da	atum: AHD	
1	Pla	nt	Тур	e:	JK205	Bearing: N	/A							Lo	ogged/Checked By: S.M./P.R.	
-	Т					CORE DESCRIPTION				INT LO					DEFECT DETAILS	
Water	LOSS/LEVEI		RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	0.1	REN(INDE) I₅(50)	, 6 X	(1			DESCRIPTION Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness Specific General	Formation
			_			START CORING AT 1.22m			I						-	
	ETION 1		41 -	2-		SANDSTONE: fine to medium grained, dark red brown, light grey and orange brown, bedded at 0-20°.	MW	H								Hawkesbury Sandstone
	OMPL		-		-	NO CORE 0.42m					Ť			İ	= (2.21m) XWS, 10°, 15 mm.t 	
7-00-010											Ì	ļ			-	
10.10.8 No.[11 10.008 to 10.0 4			40	3-		SANDSTONE: fine to medium grained, light grey and dark red brown, bedded at 0-10°.	MW	M								
100%	ETURN		- 39 - -	4 -			SW	-							(3.67m) Be, 0°, P, S, Cb Sn, 5 mm.t (3.84m) XWS, 0°, 75 mm.t	
10000 00000 0000 00000 00000 000000 00000			- 38 - -	5-		as above, but light grey and orange brown.	300	Н				-009	- 09			Hawkesbury Sandstone
			37 -	6-											- - - - - - - - - - - - - -	
			36 -	7-		as above, but light grey, red brown and yellow brown, with slump bedding structure.									(6.57m) XWS, 0°, 65 mm.t 	
			- 35 – GHT			END OF BOREHOLE AT 7.20 m									- - - - - - - DERED TO BE DRILLING AND HANDLING BR	

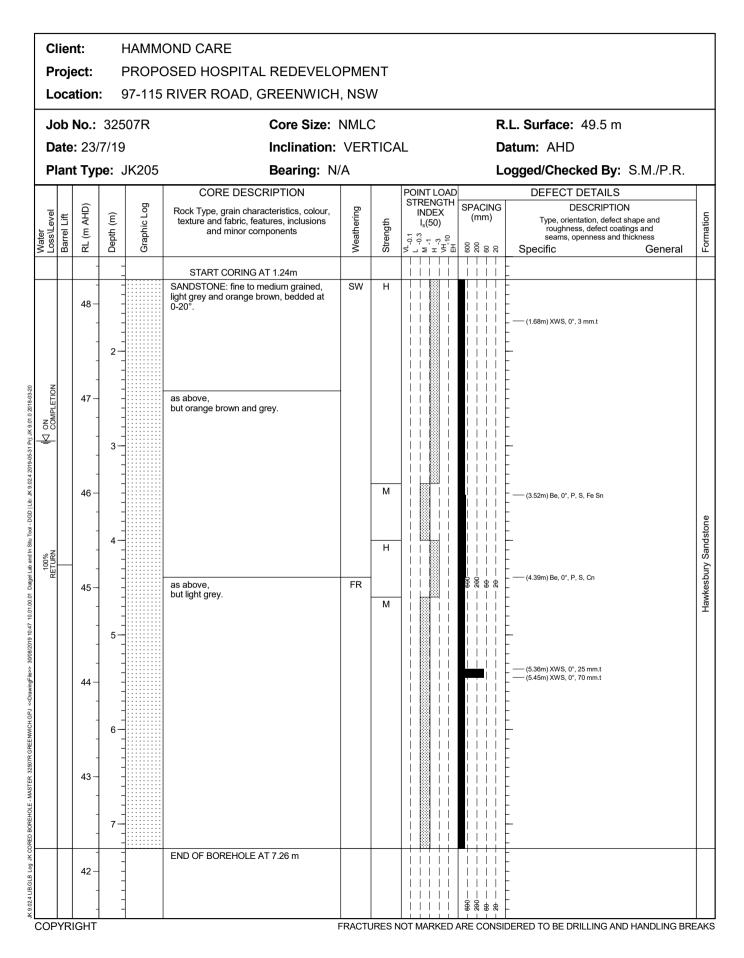
lier	nt:	HA	MMONE	D CA	ARE						
roje	ect:	PR	OPOSE	DΗ	OSPIT	AL RE	DEVELOPMENT				
oca	ation	ı: 97-	115 RI\	/ER	ROAD,	GRE	ENWICH, NSW				
ob	No.:	32507	R			Me	thod: SPIRAL AUGER	R.	L. Sur	face: 4	11.5 m
ate	: 23/	/7/19						Da	atum:	AHD	
lan	t Tyj	pe: JK2	205			Lo	gged/Checked By: S.M./P.R.				
SAN		Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
			- 41-	-		-	ASPHALTIC CONCRETE: FILL: Silty gravelly sand, medium to coarse grained, dark grey, angular fine to coarse grained igneous gravel.	M W			APPEARS POORLY COMPACTED
				- - 1			grained, brown and dark yellow brown, with sub-angular medium to coarse grained sandstone gravel. as above,	М			-
				-			but orange brown and yellow brown.				-
				2-		SC	as above, but brown, with clay fines. Clayey SAND: fine to medium grained, red brown and grange brown	M	(L)	-	- RESIDUAL
			39 -	-		-	SANDSTONE: fine to medium grained, light grey.	DW	VL - L		- - HAWKESBURY - SANDSTONE - - LOW 'TC' BIT
				3= - - - - - - - - - - -			REFER TO CORED BOREHOLE LOG				RESISTANCE GROUNDWATER MONITORING WELL INSTALLED TO 2.2m. CLASS 18 MACHINE SLOTTED 50mm DIA. PVC STANDPIPE 0.1m TO 2.2m. 2mm SAND FILTER PACK 0.3m TO 2.2m. BENTONITE SEAL 0.1m TO 0.3m. BACKFILLED WITH SAND TO THE SURFACE. COMPLETED WITH A CONCRETED
			37	- 5 -							GATIC COVER.
			36 - - - - 35 -	- - 6 - -							- - - - - - - - - - - -
	oca ob ate Ian	ob No.: pate: 23, lant Typ SAMPLES	roject: PR ocation: 97- ob No.: 32507 ate: 23/7/19 lant Type: JK2 SAMPLES State State State SAMPLES State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State	roject: PROPOSE ocation: 97-115 RIV ob No.: 32507R ate: 23/7/19 Iant Type: JK205 SAMPLES \$\$ SMPLES \$\$ SAMPLES ject: PROPOSED H ocation: 97-115 RIVER ob No.: 32507R ate: 23/7/19 Iant Type: JK205 $\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>roject: PROPOSED HOSPITA ocation: 97-115 RIVER ROAD, ob No.: 32507R tate: 23/7/19 SAMPLES 98 (1 10 10 10 10 10 10 10 10 10 10 10 10 10</td> <td>roject: PROPOSED HOSPITAL RE ocation: 97-115 RIVER ROAD, GREI bb No.: 32507R Me rate: 23/7/19 Iant Type: JK205 Log $SAMPLES$ g_{i} p_{i} h_{i} g_{i} p_{i} h_{i} g_{i} p_{i} h_{i} /td> <td>roject: PROPOSED HOSPITAL REDEVELOPMENT ocation: 97-115 RIVER ROAD, GREENWICH, NSW bh No: 32507R Hethod: SPIRAL AUGER at: 237/19 Int Type: JK205 Logged/Checked By: S.M./P.R. SAMPLES SAMPLES A Cogged/Checked By: S.M./P.R. SAMPLES SAMPLES A Cogged/Checked By: S.M./P.R. ASPHALTIC CONCRETE: FILL: Silty garant medium to coarse grained, fireway stand, medium to coarse grained, fireway and, medium to coarse grained, fireway and the fill booms of the standard file N = 3 N = 3 N = 4 N</td> <td>rojest: PROPOSED HOSPITAL REDEVELOPMENT ocation: 97-115 RIVER ROAD, GREENWICH, NSW bb No: 32507R Reading and the second</td> <td>rojest: PROPOSED HOSPITAL REDEVELOPMENT dottion: 97-115 RIVER ROAD, GREENWICH, NSW bb No: 32507R R.L. Sur tat: 237/19 Description data Int Type: JK205 Logged/Checked By: S.M./P.R. SAMPLES S HAUSE ST. Logged/Checked By: S.M./P.R. SAMPLES S HAUSE ST. Logged/Checked By: S.M./P.R. APPLIES S HAUSE ST. Logged/Checked By: S.M./P.R. SAMPLES S H</td> <td>rojeci PROPOSED HOSPITAL REDEVELOPMENT determined by the second process of the second p</td>	roject: PROPOSED H ocation: 97-115 RIVER ob No.: 32507R ate: 23/7/19 Iant Type: JK205 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	roject: PROPOSED HOSPITA ocation: 97-115 RIVER ROAD, ob No.: 32507R tate: 23/7/19 SAMPLES 98 (1 10 10 10 10 10 10 10 10 10 10 10 10 10	roject: PROPOSED HOSPITAL RE ocation: 97-115 RIVER ROAD, GREI bb No.: 32507R Me rate: 23/7/19 Iant Type: JK205 Log $SAMPLES$ g_{i} p_{i} h_{i} g_{i} p_{i} h_{i} g_{i} p_{i} h_{i}	roject: PROPOSED HOSPITAL REDEVELOPMENT ocation: 97-115 RIVER ROAD, GREENWICH, NSW bh No: 32507R Hethod: SPIRAL AUGER at: 237/19 Int Type: JK205 Logged/Checked By: S.M./P.R. SAMPLES SAMPLES A Cogged/Checked By: S.M./P.R. SAMPLES SAMPLES A Cogged/Checked By: S.M./P.R. ASPHALTIC CONCRETE: FILL: Silty garant medium to coarse grained, fireway stand, medium to coarse grained, fireway and, medium to coarse grained, fireway and the fill booms of the standard file N = 3 N = 3 N = 4 N	rojest: PROPOSED HOSPITAL REDEVELOPMENT ocation: 97-115 RIVER ROAD, GREENWICH, NSW bb No: 32507R Reading and the second	rojest: PROPOSED HOSPITAL REDEVELOPMENT dottion: 97-115 RIVER ROAD, GREENWICH, NSW bb No: 32507R R.L. Sur tat: 237/19 Description data Int Type: JK205 Logged/Checked By: S.M./P.R. SAMPLES S HAUSE ST. Logged/Checked By: S.M./P.R. SAMPLES S HAUSE ST. Logged/Checked By: S.M./P.R. APPLIES S HAUSE ST. Logged/Checked By: S.M./P.R. SAMPLES S H	rojeci PROPOSED HOSPITAL REDEVELOPMENT determined by the second process of the second p

CORED BOREHOLE LOG

	Pr	-	nt: ect: tion		PROP	OND CARE DSED HOSPITAL REDEVELO RIVER ROAD, GREENWICH												
	Jo	b l	No.:	32	507R	Core Size:	NML	С		R	R.L. Surface: 41.5 m							
	Da	ate	: 23/	7/19	9	Inclination:	VER	TICA	L	atum: AHD								
	Pla	ant	t Typ	e:	JK205	Bearing: N	/A			L	ogged/Checked By: S.M./P.R.							
			-		_	CORE DESCRIPTION			POINT LOA STRENGTH		DEFECT DETAILS							
Water	Loss/Level	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	INDEX ا _s (50)	(mm)	DESCRIPTION Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness Specific General	Formation						
			- 39— -	3-		START CORING AT 3.03m												
			-		_	SANDSTONE: fine to medium grained, light grey and orange brown, bedded at	DW	L			– (3.11m) XWS, 0°, 5mm.t, – HP: 150, 330, 410 kPa							
03-50			- 38			0-10°.	XW	Hd										
-8102.0.11	TION		30 -			CLAY: low to medium plasticity, light grey mottled orange brown, fine to medium					- - - -							
	RETURN COMPLETION			4-		\grained sand. SANDSTONE: fine to medium grained, light grey, yellow brown and red brown, bedded at 0-20°.	SW	M		690	- - - - - - - - - - - - - - - - - - -	Hawkesbury Sandstone						
L0:00:L0:	+		-		-			М-Н			(5.66m) CS, 0°, 3 mm.t	Ha						
griess surgizaties in:4/ 10			- - 35 —	6-														
<< DTaWing			- 35			as above, but light grey and yellow brown, with slump bedding structure.		н			-							
GREENWICH.GPJ			-	7-							- - - - - -							
H/0626 Hi			- 34		-	END OF BOREHOLE AT 7.25 m					-							
8/02/4 LID/GLD LOG JN CORED BOREHOLE - MASIE			- - 33 – -	8-						690								
; 	<u>ו</u> יפו		GHT		1	1	FRACT			ARE CONSI	L DERED TO BE DRILLING AND HANDLING BF	PEAKS						

COPYRIGH

Client:	HAMMOI	ND CA	ARE						
Project:	PROPOS	SED H	OSPIT	AL RE	DEVELOPMENT				
Location:	97-115 R	IVER	ROAD,	GRE	ENWICH, NSW				
Job No.:	32507R			Me	thod: SPIRAL AUGER	R.	L. Sur	face: 4	14.5 m
Date: 23/7	/19					Da	atum:	AHD	
Plant Type	ə: JK205			Log	gged/Checked By: S.M./P.R.				
Groundwater Record ES DB DB SandmyS SandmyS SandmyS DS SandmyS	Field Tests RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
DRY ON COMPLETION		-		-	ASPHALTIC CONCRETE: 65mm.t	D			-
COMP	N = 14 5,5,9	4-		CL-CI	coarse grained igneous, angular, dark grey, medium to coarse grained sand. FILL: Sand, medium to coarse grained, orange brown, with clay fines, and sub-angular medium to coarse grained sandstone gravel.	w <pl< td=""><td>Hd</td><td>460 600 570</td><td>- RESIDUAL - - -</td></pl<>	Hd	460 600 570	- RESIDUAL - - -
		1-		-	Sandy CLAY: low to medium plasticity, orange brown and yellow brown, fine to medium grained.	DW	L		- HAWKESBURY - SANDSTONE -
	43	3			as above, but light grey, with low strength iron indurated bands. SANDSTONE: fine to medium grained,	SW	М		LOW 'TC' BIT RESISTANCE HIGH RESISTANCE
		2-	-		light grey and orange brown.	DW	VL		
		-			as above, ر but red brown and light grey.	SW	М		HIGH RESISTANCE
	42	- 3- - 4- 0- 5- 9- 6-			END OF BOREHOLE AT 2.30 m				



С	lient	t:	HAMM		D CA	ARE										
P	roje	ct:	PROP	OSE	DH	OSPIT	AL RE	DEVELOPMENT								
L	ocat	ion:	97-115	5 RIV	/ER	ROAD,	GRE	ENWICH, NSW								
J	Job No.: 32507R Date: 23/7/19						Ме	thod: SPIRAL AUGER	R	.L. Sur	face: 4	49.5 m				
D	ate:	23/7	7/19						D	atum:	AHD					
P	lant	Тур	e: JK205				Log	gged/Checked By: S.M./P.R.								
Groundwater Record	SAMF N20	PLES 80	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks				
DRY ON COMPLETION OF CORING			N=SPT 2/ 20mm	- - 49-	-		- CI-CH	ASPHALTIC CONCRETE: 60mm.t FILL: Silty gravelly sand, medium to coarse grained, dark grey, sub-angular medium to coarse grained igneous gravel.	D w <pl< td=""><td>(VSt)</td><td></td><td>- - - - - RESIDUAL</td></pl<>	(VSt)		- - - - - RESIDUAL				
			REFUSAL	-	- 1-		-	FILL: Clayey sand, medium to coarse grained, with sub-angular medium to coarse grained sandstone gravel. Sandy CLAY: low plasticity, light grey, fine to medium grained, with low	SW	L		- HAWKESBURY - SANDSTONE				
				48		-		strength iron indurated bands. SANDSTONE: fine to medium grained, light grey. REFER TO CORED BOREHOLE LOG		<u>M-H</u>		LOW 'TC' BIT RESISTANCE HIGH RESISTANCE				
				- - 47 -	2-											
				- - 46	3-	-						- - - - - - -				
				- - 45—	4-	-						- - - - - - -				
				-	5-							- - - - - - - -				
				44	- 6											
	YRIG			43-	-	-						-				

CORED BOREHOLE LOG

	lient:		MMON											
	Project: PROPOSED HOSPITA Location: 97-115 RIVER ROAD, Job No.: 32507R						DEVELOPMENT ENWICH, NSW							
J	ob No.:	32507	′R			Ме	thod: SPIRAL AUGER	R.	R.L. Surface: 52 m					
)ate: 23							Da	atum:	AHD				
F	Plant Ty	pe: JK	205	1		Lo	gged/Checked By: S.M./P.R.	1						
Groundwater Record	SAMPLES SAMPLES	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks			
COMPLETION				-	-		FILL: Silty sand, fine to medium grained, dark brown, with root fibres.	D			-			
Ō			51	- - - - -		-	SANDSTONE: fine to medium grained, yellow brown and brown, with extremely weathered bands.	DW	L		HAWKESBURY SANDSTONE LOW 'TC' BIT RESISTANCE			
				-	-				VL		VERY LOW RESISTANCE			
				_	-				L		LOW RESISTANCE			
			50	- 2-	-		as above, but red brown and light grey.	SW	Μ		_ MODERATE RESISTANCE			
					-		as above, but light grey.				-			
			49	- 3-	-		REFER TO CORED BOREHOLE LOG				-			
			48	- - - - -	-									
D			47	- 5- - -	-						- - - - - - - -			
			46	- - 6- - -	-									

Clier	nt:	HAMM	IOND	CARE						
Proj	ect: ation:									
						GREENWICH, NSW				
	No.: E3				Meth	od: SPIRAL AUGER/PUSHT	UBE		.L. Surf atum:	
	t Type:		BE		Logg	ed/Checked by: M.M.P./T.H.		_		
Groundwater Record	ES ASS ASB SAMPLES DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE TION	1		0			FILL: Silty sand, fine to medium grained, dark brown, trace of root	D			GRASS COVER
TION			- - 0.5 —			fibres. FILL: Sandy clay, low to medium plasticity, light grey and red brown, trace of ironstone, sandstone and igneous gravel and ash. FILL: Silty sand, fine to medium	w <pl D</pl 			-
			-			grained, light brown, trace of ironstone, igneous and sandstone				-
			-			r gravel, ash and slag. r END OF BOREHOLE AT 0.7m				REFUSAL
			- 1 —							-
			-							-
			-							-
			- 1.5 —							-
			-							-
			-							-
			2-							-
			-							-
			-							-
			2.5 —							_
			-							-
			-							-
			3-							_
			-							-
			-							-
بر			3.5							

Clier Proje	ect:		OSEE	рноз	SPITAL	. REDEVELOPMENT						
	ation:		RIVI	ER RC		GREENWICH, NSW						
	No.: E32 : 25/7/1				Meth	od: SPIRAL AUGER/PUSHT	JBE		.L. Surf			
		- EZIPRO	BE		Logo	ed/Checked by: M.M.P./T.H.		U				
	1 1					-			$\widehat{}$			
Groundwater Record	ES ASS SAL DB DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks		
DRY ON COMPLE			0			MULCH: 300mm.t.				MULCH COVER		
TION			-							-		
			0.5			FILL: Silty sand, fine to medium grained, light brown, trace of blue metal, igneous, ironstone and sandstone gravel and ash.	D					
			1			FILL: Sandy clay, low to medium plasticity, dark brown, trace of igneous and sandstone gravel and ash.	w <pl< td=""><td></td><td></td><td>- - - - - -</td></pl<>			- - - - - -		
			2-			FILL: Sandy clay, low to medium plasticity, yellow brown and brown, trace of sandstone, igneous and ironstone gravel, ash and slag.	w <pl< td=""><td></td><td></td><td>- - - - -</td></pl<>			- - - - -		
			2.5			FILL: Silty clay, low to medium plasticity, light grey, trace of igneous gravel.	w <pl< td=""><td></td><td></td><td></td></pl<>					
			3-			FILL: Sand, fine to medium grained, yellow brown, trace of sandstone gravel.	D			-		

Clier	nt:	HAM	HAMMONDCARE										
Proje	ect:	PROF	POSE	D HOS	PITAL	REDEVELOPMENT							
Loca	ition:	97-11	5 RIV	'ER RC	DAD, C	GREENWICH, NSW							
Job	No.: E3	2507BT	-		Method: SPIRAL AUGER/PUSHTUBE				R.L. Surface: 37.0m				
Date	: 25/7/1	9			Datum: AHD								
Plant	t Type:	EZIPR	OBE		Logo	Logged/Checked by: M.M.P./T.H.							
Groundwater Record	Field Tests Bepth (m) Caraphic Log			Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks			
						FILL: Sand, fine to medium grained, yellow brown, trace of sandstone gravel.	D			-			
			4 -			FILL: Silty sand, fine to medium grained, brown, trace of sandstone and quartz gravel.	М			-			
				_		END OF BOREHOLE AT 4.1m				REFUSAL			
				-						-			
			4.5 -	-						-			
				-						-			
				-						-			
				_						-			
			5 -	-						_			
				_						-			
				-						-			
			5.5 -	-						-			
				_						-			
				_						-			
				_						-			
			6 -	-						_			
				-						-			
				-						-			
			6.5 -							-			
			- c.u	-						-			
				-						_			
										-			
			7_										

Client:		HAM	AMMONDCARE											
Project:		PROF	POSEI	D HOS	PITAL	REDEVELOPMENT								
Location	1:	97-11	5 RIV	ER RC	DAD, C	GREENWICH, NSW								
Job No.:	E32	2507BT	-		Meth	od: SPIRAL AUGER/PUSHT	UBE	R	.L. Surf	ace: 37.0m				
Date: 25	5/7/19	9			Datum: AHD									
Plant Ty	pe:	EZIPR	OBE		Logg	Logged/Checked by: M.M.P./T.H.								
Ground Record ASS	ASB SAMPLES SAL DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks				
DRY ON COMPLE- TION						FILL: Silty sand, fine to medium grained, dark brown, trace of ironstone and sandstone gravel, brick, terracotta pipe and concrete fragments. FILL: Silty clayey sand, fine to medium grained, brown and red brown, trace of ironstone, igneous and sandstone gravel, brick, concrete and terracotta fragments. END OF BOREHOLE AT 0.9m	D			- - <td< th=""></td<>				

Client: HAMMONDCARE													
Proje	ect:	PRO	POSE	DSED HOSPITAL REDEVELOPMENT									
Loca	ition:	97-11	15 RIV	RIVER ROAD, GREENWICH, NSW									
Job	No.: E3	2507B	Г		Meth	od: SPIRAL AUGER/PUSHT	UBE	R.L. Surface: 38.0m					
	: 25/7/1						-		atum:				
Plan	t Type:	EZIPR	OBE		Logo	ged/Checked by: M.M.P./T.H.							
Groundwater Record	ES ASS ASB SAL DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks			
RY ON			0	xxxx		ASPHALTIC CONCRETE: 50mm.t.	D	07 E					
omple Tion						FILL: Silty sand, fine to medium grained, dark brown, trace of blue metal gravel.	U			-			
			0.5 -			FILL: Sandy clay, low to medium plasticity, light grey and light red brown, trace of ironstone gravel.	w <pl< td=""><td></td><td></td><td></td></pl<>						
						FILL: Sandy clay, low to medium plasticity, dark brown and yellow brown, trace of ironstone, igneous and sandstone gravel and brick fragments.	w <pl< td=""><td></td><td></td><td>-</td></pl<>			-			
			1 -			FILL: Clayey sand, fine to medium grained, yellow brown, trace of ironstone gravel and brick fragments.	D						
			1.5 -			FILL: Silty sandy clay, low to medium plasticity, yellow brown mottled grey, trace of ironstone gravel.	w <pl< td=""><td></td><td></td><td>-</td></pl<>			-			
			2-							- - -			
			·			FILL: Silty sand, fine to medium	D			-			
			2.5 -			grained, dark brown, trace of sandstone gravel. END OF BOREHOLE AT 2.4m				REFUSAL			
			3-	-						- - - -			
			35	-						-			

Environmental logs are not to be used for geotechnical purposes

Client:	HAMMONDCARE										
Project:	PROPOSE	D HOSPITA	L REDEVELOPMENT								
Location:	97-115 RIV	ER ROAD,	GREENWICH, NSW								
Job No.: E3	2507BT	Metl	nod: SPIRAL AUGER/PUSHT	UBE	R	.L. Surf	ace: 37.5m				
Date: 25/7/1	9				D	atum:	AHD				
Plant Type:	EZIPROBE	Log	Logged/Checked by: M.M.P./T.H.								
Groundwater Record ES ASB ASB SAMPLES SAD DB	Field Tests Depth (m)	Graphic Log Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks				
DRY ON COMPLE- TION	0		FILL: Silty sand, fine to medium grained, brown, trace of root fibres, ironstone and igneous gravel.	D			GRASS COVER				
	0.5 -		FILL: Silty clay, low to medium plasticity, grey and red brown, trace of ironstone gravel. FILL: Clayey sand, fine to medium grained, yellow brown and brown, trace of ironstone, igneous and sandstone gravel and ash.	W <pl D</pl 			-				
	1 -		FILL: Clayey sand, fine to medium grained, brown, trace of sandstone gravel.	D			-				
			END OF BOREHOLE AT 1.1m				REFUSAL ON INFERRED SANDSTONE BEDROCK				

COPYRIGHT

Cli	en	t:			HAM	AMMONDCARE									
Pro	-														
Lo	cat	ior	ו:		97-11	15 RIV	ER RC		GREENWICH, NSW						
					2507B	Г		Meth	od: SPIRAL AUGER/PUSHT	UBE		.L. Sur			
Da											D	atum:	AHD		
	Plant Type: EZIPROBE							Logged/Checked by: M.M.P./T.H.							
Groundwater Record	5 5 0 0 1	ES ASS	ASB SAMPLES	DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks		
DRY COMP	JNC					0	$\times\!\!\times\!\!\times$		ASPHALTIC COVER: 50mm.t.	D			-		
TIOI	N					-			The dium grained, dark grey, trace of blue metal gravel.	D			-		
						-	\bigotimes		FILL: Silty clayey sand, fine to medium grained, grey, trace of	w <pl< td=""><td></td><td></td><td></td></pl<>					
						0.5 -	\bigotimes		ironstone and igneous gravel.				_		
						-	\bigotimes		plasticity, grey mottled orange brown, trace of ironstone gravel.				-		
				-		-			FILL: Sandstone, medium to coarse	,			- REFUSAL		
						-			END OF BOREHOLE AT 0.75m				-		
						1-							-		
						-							-		
						-							-		
						1.5 -							-		
						-							-		
						-							-		
						-							-		
						2 -							_		
						-							-		
						-							-		
						2.5 -							-		
						-							-		
						-							-		
						-							-		
						3-							_		
						-							-		
						-							-		
						3.5							-		

Environmental logs are not to be used for geotechnical purposes

Client:	HAMMONDCA	ARE						
Project:	PROPOSED H	IOSPITAL	REDEVELOPMENT					
Location:	97-115 RIVER	ROAD, G	GREENWICH, NSW					
Job No.: E3		Meth	od: SPIRAL AUGER/PUSHT	UBE	R.L. Surface: 41.5m			
Date: 25/7/1			Datum: AHD					
Plant Type:	EZIPROBE	Logg	Logged/Checked by: M.M.P./T.H.					
Groundwater Record <u>ES</u> <u>ASB</u> SAMPLES DB		Graphic Log Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks	
			ASPHALTIC COVER: 50mm.t. FILL: Sandy gravel, medium to coarse grained, dark grey, fine to medium grained, blue metal gravel. FILL: Silty sand, fine to medium grained, brown, trace of ironstone, igneous and sandstone gravel and ash. FILL: Sandy clay, low to medium grained, dark brown, trace of ironstone, igneous and sandstone gravel and ash. END OF BOREHOLE AT 0.9m	∑ D W≈PL D			ROADBASE	
	3.5						-	

COPYRIGHT

Client:												
Project: Location:			L REDEVELOPMENT GREENWICH, NSW									
Job No.: E3 Date: 25/7/1 Plant Type:	9		nod: SPIRAL AUGER/PUSHT		R.L. Surface: 41.0m Datum: AHD							
Groundwater Record ES ASB ASB SAMPLES SAMPLES DB	Field Tests Depth (m)	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks					
			ASPHALTIC CONCRETE: 50mm.t. FILL: Sandy gravel, medium to coarse grained, dark grey, blue metal gravel. FILL: Silty sand, fine to medium grained, light brown and orange brown, trace of ironstone and sandstone gravel. FILL: Sand, fine to medium grained, yellow brown. FILL: Silty sand, medium to coarse grained, orange brown, trace of ironstone gravel. FILL: Silty sand, fine to medium grained, brown, trace of ironstone and igneous gravel. END OF BOREHOLE AT 1.1m	D D D D								

Client:		HAMMONDCARE									
Project: Location:			L REDEVELOPMENT GREENWICH, NSW								
Job No.: E3 Date: 25/7/1		Met	hod: HAND AUGER			L. Surf					
Plant Type:	N/A	Log	ged/Checked by: M.M.P./T.H								
Groundwater Record <u>ASS</u> ASB SAMPLES	Field Tests Depth (m)	Graphic Log Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks				
DRY ON COMPLE- TION	0		FILL: Silty sand, fine to medium grained, dark brown, trace of mulch. FILL: Silty sand, fine to medium grained, dark brown, trace of blue	D D			MULCH COVER				
	0.5 - 1 - 1.5 - 2 - 2.5 - 3 - 3 -		END OF BOREHOLE AT 0.3m				HAND AUGER REFUSAL				

Environmental logs are not to be used for geotechnical purposes

Client:	HAMMONI	HAMMONDCARE										
Project: Location:			L REDEVELOPMENT GREENWICH, NSW									
Job No.: E			nod: HAND AUGER		P	L. Surf	ace: 45.5m					
Date: 24/7/		Weti	IU. HAND AUGEN			atum:						
Plant Type:	N/A	Log	ged/Checked by: M.M.P./T.H									
Groundwater Record ES ASB SAMPLES		Graphic Log Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks					
DRY ON COMPLE- TION	0		FILL: Silty sand, fine to medium grained, dark brown, trace of ironstone, igneous and sandstone gravel, concrete fragments and mulch.	D			-					
	0.5		END OF BOREHOLE AT 0.4m				HAND AUGER REFUSAL ON INFERRED BURRIED SLAB					
	1.	-					-					
	1.5	-					-					
	2	-					-					
	2.5	-					- - -					
	3.5	-					-					

COPYRIGHT

Client:	HAMMONDC	AMMONDCARE										
Project: Location:			L REDEVELOPMENT GREENWICH, NSW									
Job No.: E3 Date: 25/7/1 Plant Type:	2507BT 9	Meth	od: SPIRAL AUGER/PUSHT Jed/Checked by: M.M.P./T.H	-	R.L. Surface: 44.5m Datum: AHD							
Groundwater Record ES ASB ASB SAMPLES SAL DB	Field Tests Depth (m)	Graphic Log Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks					
		CL-CI	ASPHALTIC COVER: 50mm.t. FILL: Silty sand, fine to medium grained, dark grey, with fine to medium grained blue metal gravel. FILL: Silty sand, fine to medium grained blue metal gravel, trace of ironstone, igneous and sandstone gravel. FILL: Clayey sand, fine to medium grained, dark brown, trace of ironstone and sandstone gravel and ash. Sandy CLAY: low to medium plasticity, yellow brown, fine to medium grained, trace of ironstone gravel. END OF BOREHOLE AT 1.4m	D D w <pl< td=""><td></td><td></td><td></td></pl<>								

Clier	nt:	HAMM	HAMMONDCARE										
Proje													
Loca	ition:	97-115	RIVI	ER RC		GREENWICH, NSW							
	No.: E3				Meth	od: SPIRAL AUGER/PUSHT	UBE		.L. Surf				
	: 25/7/1	9 EZIPROI	DE		Datum: AHD								
	T				Logged/Checked by: M.M.P./T.H.								
	ES ASB SAMPLES SAMPLES DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks			
DRY ON COMPLE TION			0		-	ASPHALTIC COVER: 50mm.t. FILL: Sandy gravel, medium to coarse grained, dark grey, blue metal gravel, fine to medium grained.	D			- ROADBASE -			
			0.5 -			FILL: Silty sand, fine to medium grained, brown, trace of ironstone, igneous and sandstone gravel and ash.	D			-			
			-		SP	SAND: fine to medium grained, yellow brown, trace of ironstone gravel.	D			-			
	$\Box \sqcup \sqcup$			///	CL-CI	Sandy CLAY: low to medium \prod_{i} plasticity, grey, fine to medium	w≈PL			REFUSAL			
			1			International In							
			- 1.5 — -							-			
										-			
			-							-			
			- 2.5 — -							-			
			-							- - -			
			3-							-			
			- - 3.5_							-			

Clien			HAMMONDCARE									
Proje Loca	ect: tion:				_ REDEVELOPMENT GREENWICH, NSW							
	No.: E32 : 25/7/1			Meth	od: HAND AUGER			.L. Surf				
	t Type:			Logo	ged/Checked by: M.M.P./T.H		_					
	ES ASS SAL DB DB	Field Tests Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks			
DRY ON COMPLE TION		0			FILL: Silty sand, fine to medium grained, dark brown, trace of organic material, mulch, igneous gravel and ash.	D			-			
		0.5 - 1 - 1.5 - 2 - 2.5 -			FILL: Silty clay, low to medium plasticity, red brown mottled grey, trace of ironstone gravel. END OF BOREHOLE AT 0.4m	w <pl< th=""><th></th><th></th><th>HAND AUGER REFUSAL</th></pl<>			HAND AUGER REFUSAL			
		3-	-						-			

Client: Project:	HAMMONDCARE PROPOSED HOSPITAL REDEVELOPMENT								
Location:	97-115 RIV	ER ROAD	GREENWICH, NSW						
Job No.: E3		Ме	hod: HAND AUGER			.L. Surf			
Date: 24/7/1					D	atum:	AHD		
Plant Type:	N/A	LO	ged/Checked by: M.M.P./T.H.						
Groundwater Record ES ASB ASP SAMPLES DB	Field Tests Depth (m)	Graphic Log Unified	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks		
DRY ON COMPLE- TION	0		FILL: Silty sand, fine to medium grained, dark brown, trace of root fibres and mulch.	D			MULCH COVER		
	0.5		FILL: Silty sand, fine to medium grained, dark brown and yellow brown, trace of ironstone and igneous \gravel and root fibres.	D			-		
	-		FILL: Silty sand, fine to medium grained, yellow brown and dark				-		
			Librown, trace of ironstone gravel.				HAND AUGER REFUSAL ON INFERRED SANDSTONE BEDROCK		

Client:								
Project: Location:				L REDEVELOPMENT GREENWICH, NSW				
Job No.: E			Meth	od: HAND AUGER			.L. Surf	
Date: 24/7/ Plant Type	b: 24/7/19 Datum: AHD Int Type: N/A Logged/Checked by: M.M.P./T.H.							
Groundwater Record ES ASB SAMPLES	DB Field Tests	Depth (m) Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE- TION				FILL: Silty sand, fine to medium grained, dark brown, trace of ironstone, igneous and sandstone gravel and root fibres.	D			GRASS COVER
		0.5 - 1 - 1 - 1 - 2 - - 2.5 - - 3 - - 3.5 -		END OF BOREHOLE AT 0.4m				HAND AUGER REFUSAL ON INFERRED SANDSTONE BEDROCK

Client: Project:		HAMMONDCARE PROPOSED HOSPITAL REDEVELOPMENT								
Location:	97-115 RIVER I	ROAD, C	GREENWICH, NSW							
Job No.: E3 Date: 24/7/1 Plant Type:	9		nod: SPIRAL AUGER/PUSHT			.L. Surf atum:				
Groundwater Record ES ASS ASB SAL BD	Field Tests Depth (m) Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks			
		CL-CI	FILL: Silty sand, fine to medium grained, dark brown, trace of root fibres. FILL: Clayey sand, fine to medium grained, dark yellow brown, trace of ironstone, igneous and sandstone gravel and root fibres. Sandy CLAY: low to medium plasticity, yellow brown, trace of ironstone gravel. Sandy CLAY: low to medium plasticity, red brown and light grey, trace of ironstone gravel. END OF BOREHOLE AT 1.2m	v <pl< td=""><td></td><td></td><td>GRASS COVER GRASS COVER GRAS</td></pl<>			GRASS COVER GRASS COVER GRAS			

Clien [.] Proje			HAMMONDCARE PROPOSED HOSPITAL REDEVELOPMENT								
Locat	tion:	97-115	RIV	ER RC	DAD, G	GREENWICH, NSW					
Date:	Job No.: E32507BT Date: 24/7/19 Plant Type: EZIPROBE					od: SPIRAL AUGER/PUSHT			.L. Surf atum:		
Groundwater Record	ES ASS SAL DB DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks	
DRY ON COMPLE- TION					CL-CI	FILL: Silty sand, fine to medium grained, dark brown, trace of root fibres and sandstone gravel. FILL: Sandy clay, low to medium plasticity, dark grey, fine to medium grained, trace of ironstone and sandstone gravel and root fibres. Sandy CLAY: low to medium plasticity, yellow brown, fine to medium grained sand. Sandy CLAY: low to medium plasticity, yellow brown and grey, fine to medium grained sand, trace of ironstone gravel. END OF BOREHOLE AT 0.9m	v <pl w<pl< th=""><th></th><th></th><th>GRASS COVER GRASS COVER GRAVEL GRAVEL GRAVEL GRAVEL</th></pl<></pl 			GRASS COVER GRASS COVER GRAVEL GRAVEL GRAVEL GRAVEL	
			- - - 3.5_							- - -	

Clie	ent			HAM	HAMMONDCARE									
Pro	ojec	:t:		PRO	POSE	D HOS	SPITAL	REDEVELOPMENT						
Loo	cati	on	:	97-11	5 RIV	ER RC	DAD, C	GREENWICH, NSW						
Jok	b N	o.:	E3	32507B	Г		Meth	od: SPIRAL AUGER/PUSHT	UBE	R	.L. Surf	ace: 40.8m		
Dat	e:	24	/7/′	19						D	atum:	AHD		
Pla	nt	Тур	be:	EZIPR	OBE		Logo	ged/Checked by: M.M.P./T.H.						
Groundwater Record	ES E	ASS SAMPLES	SAL SAL DR	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks		
DRY C COMPL	_E·				0	\otimes		FILL: Silty sand, fine to medium grained, dark brown, trace of	D			GRASS COVER		
TION	1					\bigotimes		ironstone gravel and root fibres. FILL: Silty sand, fine to medium	D					
							SC	grained, light yellow brown, trace of ironstone and igneous gravel, ash and	D			_		
					0.5 -	///	CL-CI	\root fibres/ Clayey SAND: fine to medium \grained, yellow brown	w <pl< td=""><td></td><td></td><td></td></pl<>					
								Sandy CLAY: low to medium plasticity, fine to medium grained,				REFUSAL ON IRONSTONE		
			-		yellow brown, with ironstone gravel. END OF BOREHOLE AT 0.6m				GRAVEL					
						-						-		
					1-							-		
						-						-		
					-	-						-		
					1.5 -							-		
						-						-		
												-		
						-						-		
					2 -							_		
												-		
						-						-		
												-		
					2.5 -							-		
												-		
												-		
					3-							-		
												-		
⊢												-		
COPYRIGHT												-		
á L					3.5							_		

Environmental logs are not to be used for geotechnical purposes

Client:	HAMMONDCARE										
Project:	PROPOSE	D HOSPI	ITAL F	REDEVELOPMENT							
Location:	97-115 RI\	ER ROA	D, GF	REENWICH, NSW							
Job No.: E3	32507BT	N	Netho	d: SPIRAL AUGER/PUSHT	UBE	R	.L. Surf	ace: 52.0m			
Date: 24/7/1	19					D	atum:	AHD			
Plant Type:	EZIPROBE	L	_ogge	d/Checked by: M.M.P./T.H.							
Groundwater Record ES ASB ASB SAMPLES DB	Field Tests Depth (m)	Graphic Log Unified	Unined Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks			
O 22 III 4 € Ø Ø Ø DRY ON COMPLE- TION	1 · · · · · · · · · · · · · · · · · · ·		 	FILL: Silty sand, fine to medium grained, dark brown, trace of root fibres. FILL: Silty sand, fine to medium grained, light brown, trace of ironstone, sandstone, igneous and blue metal gravel. FILL: Sandy gravel, fine to medium grained, dark brown, blue metal gravel and fine to medium grained sand. FILL: Sand, fine to medium grained, yellow brown. FILL: Clayey sand, fine to medium grained, dark grey, trace of ironstone gravel. Sandy CLAY: low to medium plasticity, yellow brown, trace of ironstone gravel. END OF BOREHOLE AT 1.5m	D D D			GRASS COVER			
	2 · 2.5 · 3 ·	-									

COPYRIGHT

Client: Project: Location:	HAMMONDCARE PROPOSED HOSPITAL REDEVELOPMENT 97-115 RIVER ROAD, GREENWICH, NSW								
Job No.: E3 Date: 24/7/ Plant Type:	19		nod: SPIRAL AUGER/PUSHT ged/Checked by: M.M.P./T.H			L. Surf			
Groundwater Record ASB AMPLES	Field Tests Depth (m)	Graphic Log Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks		
	0 0.5 1 1.5 2- 2.5 3 3		ASPHALTIC COVER: 50mm.t. FILL: Sandy gravel, medium to coarse grained, dark grey, trace of metal fragments and ironstone gravel. FILL: Silty sand, fine to medium grained, dark grey, with ash, trace of rounded igneous and sandstone gravel and slag. FILL: Silty sand, fine to medium grained, light brown, trace of ironstone, sandstone and igneous gravel. FILL: Sand, fine to medium grained, yellow brown. FILL: Sand, fine to medium grained, yellow brown, trace of ironstone gravel. END OF BOREHOLE AT 0.7m						

ENVIRONMENTAL LOGS EXPLANATION NOTES

INTRODUCTION

These notes have been provided to amplify the environmental report in regard to classification methods, field procedures and certain matters relating to the logging of soil and rock. Not all notes are necessarily relevant to all reports.

Where geotechnical borehole logs are utilised for environmental purpose, reference should also be made to the explanatory notes included in the geotechnical report. Environmental logs are not suitable for geotechnical purposes.

The ground is a product of continuing natural and man-made processes and therefore exhibits a variety of characteristics and properties which vary from place to place and can change with time. Environmental studies include gathering and assimilating limited facts about these characteristics and properties in order to understand or predict the behaviour of the ground on a particular site under certain conditions. This report may contain such facts obtained by inspection, excavation, probing, sampling, testing or other means of investigation. If so, they are directly relevant only to the ground at the place where and time when the investigation was carried out.

DESCRIPTION AND CLASSIFICATION METHODS

The methods of description and classification of soils and rocks used in this report are based on Australian Standard 1726:2017 *'Geotechnical Site Investigations'*. In general, descriptions cover the following properties – soil or rock type, colour, structure, strength or density, and inclusions. Identification and classification of soil and rock involves judgement and the Company infers accuracy only to the extent that is common in current geoenvironmental practice.

Soil types are described according to the predominating particle size and behaviour as set out in the attached soil classification table qualified by the grading of other particles present (eg. sandy clay) as set out below:

Soil Classification	Particle Size
Clay	< 0.002mm
Silt	0.002 to 0.075mm
Sand	0.075 to 2.36mm
Gravel	2.36 to 63mm
Cobbles	63 to 200mm
Boulders	> 200mm

Non-cohesive soils are classified on the basis of relative density, generally from the results of Standard Penetration Test (SPT) as below:

Relative Density	SPT 'N' Value (blows/300mm)
Very loose (VL)	< 4
Loose (L)	4 to 10
Medium dense (MD)	10 to 30
Dense (D)	30 to 50
Very Dense (VD)	> 50

Cohesive soils are classified on the basis of strength (consistency) either by use of a hand penetrometer, vane shear, laboratory testing and/or tactile engineering examination. The strength terms are defined as follows.

Classification	Unconfined Compressive Strength (kPa)	Indicative Undrained Shear Strength (kPa)		
Very Soft (VS)	≤25	≤12		
Soft (S)	> 25 and \leq 50	> 12 and \leq 25		
Firm (F)	> 50 and \leq 100	> 25 and \leq 50		
Stiff (St)	$>$ 100 and \leq 200	> 50 and \leq 100		
Very Stiff (VSt)	$>$ 200 and \leq 400	$>$ 100 and \leq 200		
Hard (Hd)	> 400	> 200		
Friable (Fr)	Strength not attainable	– soil crumbles		

Rock types are classified by their geological names, together with descriptive terms regarding weathering, strength, defects, etc. Where relevant, further information regarding rock classification is given in the text of the report. In the Sydney Basin, 'shale' is used to describe fissile mudstone, with a weakness parallel to bedding. Rocks with alternating inter-laminations of different grain size (eg. siltstone/claystone and siltstone/fine grained sandstone) are referred to as 'laminite'.

INVESTIGATION METHODS

The following is a brief summary of investigation methods currently adopted by the Company and some comments on their use and application. All methods except test pits, hand auger drilling and portable Dynamic Cone Penetrometers require the use of a mechanical rig which is commonly mounted on a truck chassis or track base.

Test Pits: These are normally excavated with a backhoe or a tracked excavator, allowing close examination of the insitu soils and 'weaker' bedrock if it is safe to descend into the pit. The depth of penetration is limited to about 3m for a backhoe and up to 6m for a large excavator. Limitations of test pits are the problems associated with disturbance and difficulty of reinstatement and the consequent effects on close-by structures. Care must be taken if construction is to be carried out near test pit locations to either properly recompact the backfill during construction or to design and construct the

structure so as not to be adversely affected by poorly compacted backfill at the test pit location.

Hand Auger Drilling: A borehole of 50mm to 100mm diameter is advanced by manually operated equipment. Refusal of the hand auger can occur on a variety of materials such as obstructions within any fill, tree roots, hard clay, gravel or ironstone, cobbles and boulders, and does not necessarily indicate rock level.

Continuous Spiral Flight Augers: The borehole is advanced using 75mm to 115mm diameter continuous spiral flight augers, which are withdrawn at intervals to allow sampling and insitu testing. This is a relatively economical means of drilling in clays and in sands above the water table. Samples are returned to the surface by the flights or may be collected after withdrawal of the auger flights, but they can be very disturbed and layers may become mixed. Information from the auger sampling (as distinct from specific sampling by SPTs or undisturbed samples) is of limited reliability due to mixing or softening of samples by groundwater, or uncertainties as to the original depth of the samples. Augering below the groundwater table is of even lesser reliability than augering above the water table.

Rock Augering: Use can be made of a Tungsten Carbide (TC) bit for auger drilling into rock to indicate rock quality and continuity by variation in drilling resistance and from examination of recovered rock cuttings. This method of investigation is quick and relatively inexpensive but provides only an indication of the likely rock strength and predicted values may be in error by a strength order. Where rock strengths may have a significant impact on construction feasibility or costs, then further investigation by means of cored boreholes may be warranted.

Wash Boring: The borehole is usually advanced by a rotary bit, with water being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be assessed from the cuttings, together with some information from "feel" and rate of penetration.

Mud Stabilised Drilling: Either Wash Boring or Continuous Core Drilling can use drilling mud as a circulating fluid to stabilise the borehole. The term 'mud' encompasses a range of products ranging from bentonite to polymers. The mud tends to mask the cuttings and reliable identification is only possible from intermittent intact sampling (eg. from SPT and U50 samples) or from rock coring, etc.

Continuous Core Drilling: A continuous core sample is obtained using a diamond tipped core barrel. Provided full core recovery is achieved (which is not always possible in very low strength rocks and granular soils), this technique provides a very reliable (but relatively expensive) method of investigation. In rocks, NMLC or HQ triple tube core barrels, which give a core of about 50mm and 61mm diameter, respectively, is usually used with water flush. The length of core recovered is compared to the length drilled and any length not recovered is shown as NO CORE. The location of NO CORE recovery is determined on site by the supervising engineer; where the location is uncertain, the loss is placed at the bottom of the drill run.

Standard Penetration Tests: Standard Penetration Tests (SPT) are used mainly in non-cohesive soils, but can also be used in cohesive soils, as a means of indicating density or strength and also of obtaining a relatively undisturbed sample. The test procedure is

described in Australian Standard 1289.6.3.1–2004 (R2016) 'Methods of Testing Soils for Engineering Purposes, Soil Strength and Consolidation Tests – Determination of the Penetration Resistance of a Soil – Standard Penetration Test (SPT)'.

The test is carried out in a borehole by driving a 50mm diameter split sample tube with a tapered shoe, under the impact of a 63.5kg hammer with a free fall of 760mm. It is normal for the tube to be driven in three successive 150mm increments and the 'N' value is taken as the number of blows for the last 300mm. In dense sands, very hard clays or weak rock, the full 450mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form:

• In the case where full penetration is obtained with successive blow counts for each 150mm of, say, 4, 6 and 7 blows, as

N = 13 4, 6, 7

 In a case where the test is discontinued short of full penetration, say after 15 blows for the first 150mm and 30 blows for the next 40mm, as

> N > 30 15, 30/40mm

The results of the test can be related empirically to the engineering properties of the soil.

A modification to the SPT is where the same driving system is used with a solid 60° tipped steel cone of the same diameter as the SPT hollow sampler. The solid cone can be continuously driven for some distance in soft clays or loose sands, or may be used where damage would otherwise occur to the SPT. The results of this Solid Cone Penetration Test (SCPT) are shown as 'N_c' on the borehole logs, together with the number of blows per 150mm penetration.

LOGS

The borehole or test pit logs presented herein are an interpretation of the subsurface conditions, and their reliability will depend to some extent on the frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will enable the most reliable assessment, but is not always practicable or possible to justify on economic grounds. In any case, the boreholes or test pits represent only a very small sample of the total subsurface conditions.

The terms and symbols used in preparation of the logs are defined in the following pages.

Interpretation of the information shown on the logs, and its application to design and construction, should therefore take into account the spacing of boreholes or test pits, the method of drilling or excavation, the frequency of sampling and testing and the possibility of other than 'straight line' variations between the boreholes or test pits. Subsurface conditions between boreholes or test pits may vary significantly from conditions encountered at the borehole or test pit locations.

GROUNDWATER

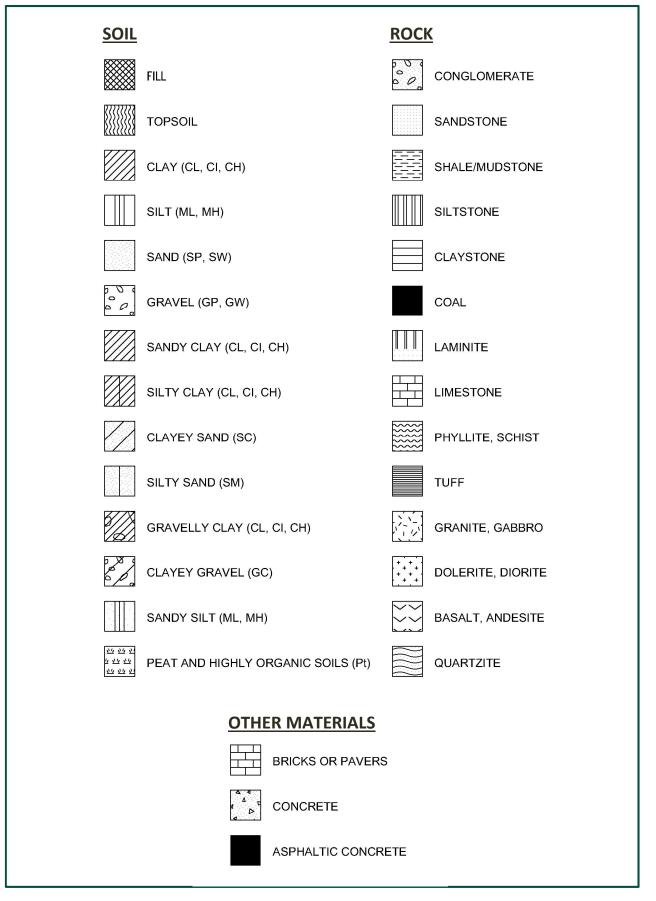
Where groundwater levels are measured in boreholes, there are several potential problems:

- Although groundwater may be present, in low permeability soils it may enter the hole slowly or perhaps not at all during the time it is left open.
- A localised perched water table may lead to an erroneous indication of the true water table.
- Water table levels will vary from time to time with seasons or recent weather changes and may not be the same at the time of construction.
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must be washed out of the hole or 'reverted' chemically if reliable water observations are to be made.

More reliable measurements can be made by installing standpipes which are read after the groundwater level has stabilised at intervals ranging from several days to perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from perched water tables or surface water.

FILL

The presence of fill materials can often be determined only by the inclusion of foreign objects (eg. bricks, steel, etc) or by distinctly unusual colour, texture or fabric. Identification of the extent of fill materials will also depend on investigation methods and frequency. Where natural soils similar to those at the site are used for fill, it may be difficult with limited testing and sampling to reliably assess the extent of the fill.


The presence of fill materials is usually regarded with caution as the possible variation in density and material type is much greater than with natural soil deposits. Consequently, there is an increased risk of adverse environmental characteristics or behaviour. If the volume and nature of fill is of importance to a project, then frequent test pit excavations are preferable to boreholes.

LABORATORY TESTING

Laboratory testing has not been undertaken to confirm the soil classification and rock strengths indicated on the environmental logs unless noted in the report.

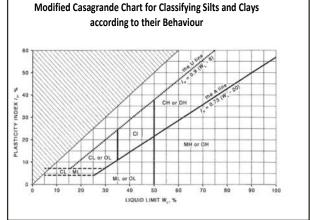
SYMBOL LEGENDS

CLASSIFICATION OF COARSE AND FINE GRAINED SOILS

Ma	ajor Divisions	Group Symbol	Typical Names	Field Classification of Sand and Gravel	Laboratory Cl	assification
ianis	GRAVEL (more than half	GW	Gravel and gravel-sand mixtures, little or no fines	Wide range in grain size and substantial amounts of all intermediate sizes, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	C _u >4 1 <c<sub>c<3</c<sub>
oversize fraction is	of coarse fraction is larger than 2.36mm	GP	Gravel and gravel-sand mixtures, little or no fines, uniform gravels	Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	Fails to comply with above
luding ove		GM	Gravel-silt mixtures and gravel- sand-silt mixtures	'Dirty' materials with excess of non-plastic fines, zero to medium dry strength	≥ 12% fines, fines are silty	Fines behave as silt
65% of sail excluding than 0.075mm)		GC	Gravel-clay mixtures and gravel- sand-clay mixtures	'Dirty' materials with excess of plastic fines, medium to high dry strength	≥ 12% fines, fines are clayey	Fines behave as clay
re than 65% greater thar	SAND (more than half	SW	Sand and gravel-sand mixtures, little or no fines	Wide range in grain size and substantial amounts of all intermediate sizes, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	Cu>6 1 <cc<3< td=""></cc<3<>
iai (mare gn	of coarse fraction is smaller than	SP	Sand and gravel-sand mixtures, little or no fines	Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	Fails to comply with above
egraineds	than half of coarse fraction 2.36mm)	SM	Sand-silt mixtures	'Dirty' materials with excess of non-plastic fines, zero to medium dry strength	≥ 12% fines, fines are silty	
Coarse		SC	Sand-clay mixtures	'Dirty' materials with excess of plastic fines, medium to high dry strength	≥ 12% fines, fines are clayey	N/A

	Major Divisions				Laboratory Classification		
Maj			Typical Names	Dry Strength	Dilatancy Toughness		% < 0.075mm
Bupr	SILT and CLAY (low to medium	ML	Inorganic silt and very fine sand, rock flour, silty or clayey fine sand or silt with low plasticity	None to low	None to low Slow to rapid		Below A line
ained soils (Incre than 35% of soil excl oversize fraction is less than 0.075mm)	plasticity)	CL, CI	Inorganic clay of low to medium plasticity, gravelly clay, sandy clay	Medium to high	None to slow	Medium	Above A line
an 35% ssthan		OL	Organic silt	Low to medium	Slow	Low	Below A line
onisle	SILT and CLAY	MH	Inorganic silt	Low to medium	None to slow	Low to medium	Below A line
soils (m e fracti	(high plasticity)	СН	Inorganic clay of high plasticity	High to very high	None	High	Above A line
iregrained soils (more than 35% of soil excluding oversize fraction is less than 0.075mm)		ОН	Organic clay of medium to high plasticity, organic silt	Medium to high	None to very slow	Low to medium	Below A line
.=	Highly organic soil	Pt	Peat, highly organic soil	-	-	-	-

Laboratory Classification Criteria


A well graded coarse grained soil is one for which the coefficient of uniformity Cu > 4 and the coefficient of curvature $1 < C_c < 3$. Otherwise, the soil is poorly graded. These coefficients are given by:

$$C_U = \frac{D_{60}}{D_{10}}$$
 and $C_C = \frac{(D_{30})^2}{D_{10} D_{60}}$

Where D_{10} , D_{30} and D_{60} are those grain sizes for which 10%, 30% and 60% of the soil grains, respectively, are smaller.

NOTES:

- 1 For a coarse grained soil with a fines content between 5% and 12%, the soil is given a dual classification comprising the two group symbols separated by a dash; for example, for a poorly graded gravel with between 5% and 12% silt fines, the classification is GP-GM.
- 3 Clay soils with liquid limits > 35% and ≤ 50% may be classified as being of medium plasticity.
- 4 The U line on the Modified Casagrande Chart is an approximate upper bound for most natural soils.

JKEnvironments

LOG SYMBOLS

Log Column	Symbol	Definition							
Groundwater Record	—	Standing water level. Time delay following completion of drilling/excavation may be shown.							
		Extent of borehole/test pit collapse shortly after drilling/excavation.							
		Groundwater seepage into borehole or test pit noted during drilling or excavation.							
Samples	ES U50 DB DS ASB ASS SAL	Sample taken over depth indicated, for environmental analysis. Undisturbed 50mm diameter tube sample taken over depth indicated. Bulk disturbed sample taken over depth indicated. Small disturbed bag sample taken over depth indicated. Soil sample taken over depth indicated, for asbestos analysis. Soil sample taken over depth indicated, for acid sulfate soil analysis. Soil sample taken over depth indicated, for salinity analysis.							
Field Tests	N = 17 4, 7, 10	Standard Penetration Test (SPT) performed between depths indicated by lines. Individual figures show blows per 150mm penetration. 'Refusal' refers to apparent hammer refusal within the corresponding 150mm depth increment.							
	N _c = 5 7 3R	Solid Cone Penetration Test (SCPT) performed between depths indicated by lines. Individual figures show blows per 150mm penetration for 60° solid cone driven by SPT hammer. 'R' refers to apparent hammer refusal within the corresponding 150mm depth increment.							
	VNS = 25 PID = 100	Vane shear reading in kPa of undrained shear strength. Photoionisation detector reading in ppm (soil sample headspace test).							
Moisture Condition (Fine Grained Soils)	w > PL w ≈ PL w < PL w ≈ LL w > LL	Moisture content estimated to be greater than plastic limit. Moisture content estimated to be approximately equal to plastic limit. Moisture content estimated to be less than plastic limit. Moisture content estimated to be near liquid limit. Moisture content estimated to be wet of liquid limit.							
(Coarse Grained Soils)	D M W	 DRY – runs freely through fingers. MOIST – does not run freely but no free water visible on soil surface. WET – free water visible on soil surface. 							
Strength (Consistency) Cohesive Soils	VS F St VSt Hd Fr ()	VERY SOFT- unconfined compressive strength < 25kPa.SOFT- unconfined compressive strength > 25kPa and < 50kPa.							
Density Index/ Relative Density		Density Index (I _D) SPT 'N' Value Range Range (%) (Blows/300mm)							
(Cohesionless Soils)	VL	VERY LOOSE ≤ 15 0-4							
	L	LOOSE > 15 and \leq 35 4 - 10							
	MD	MEDIUM DENSE > 35 and ≤ 65 10 - 30							
	D	DENSE > 65 and \leq 85 30 - 50							
	VD ()	VERY DENSE > 85 > 50							
Hand Penetrometer Readings	300 250	Bracketed symbol indicates estimated density based on ease of drilling or other assessment. Measures reading in kPa of unconfined compressive strength. Numbers indicate individual test results on representative undisturbed material unless noted otherwise.							

6

Log Column	Symbol	Definition					
Remarks	'V' bit	Hardened steel 'V' shaped bit.					
	'TC' bit	Twin pronged tun	gsten carbide bit.				
	T_{60}	Penetration of aug without rotation of	ger string in mm under static load of rig applied by drill head hydraulics of augers.				
	Soil Origin	The geological ori	gin of the soil can generally be described as:				
		RESIDUAL	 soil formed directly from insitu weathering of the underlying rock. No visible structure or fabric of the parent rock. 				
		EXTREMELY WEATHERED	 soil formed directly from insitu weathering of the underlying rock. Material is of soil strength but retains the structure and/or fabric of the parent rock. 				
		ALLUVIAL	- soil deposited by creeks and rivers.				
		ESTUARINE	 soil deposited in coastal estuaries, including sediments caused by inflowing creeks and rivers, and tidal currents. 				
		MARINE	 soil deposited in a marine environment. 				
		AEOLIAN	 soil carried and deposited by wind. 				
СОШ		COLLUVIAL	 soil and rock debris transported downslope by gravity, with or without the assistance of flowing water. Colluvium is usually a thick deposit formed from a landslide. The description 'slopewash' is used for thinner surficial deposits. 				
		LITTORAL	 beach deposited soil. 				

Classification of Material Weathering

Term	Abbreviation		Definition			
Residual Soil	RS		Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible but the soil has not been significantly transported.			
Extremely Weathered		xw		Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible.		
Highly Weathered	Distinctly Weathered	HW	DW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.		
Moderately Weathered	(Note 1)	MW		The whole of the rock material is discoloured, usually by iron staining bleaching to the extent that the colour of the original rock is not recognisal but shows little or no change of strength from fresh rock.		
Slightly Weathered		SW		Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.		
Fresh		FR		Rock shows no sign of decomposition of individual minerals or colour changes.		

NOTE 1: The term 'Distinctly Weathered' is used where it is not practicable to distinguish between 'Highly Weathered' and 'Moderately Weathered' rock. 'Distinctly Weathered' is defined as follows: '*Rock strength usually changed by weathering.* The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores'. There is some change in rock strength.

Rock Material Strength Classification

			Guide to Strength				
Term	Abbreviation	Uniaxial Compressive Strength (MPa)	Point Load Strength Index Is ₍₅₀₎ (MPa)	Field Assessment			
Very Low Strength	VL	0.6 to 2	0.03 to 0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 30mm thick can be broken by finger pressure.			
Low Strength	L	2 to 6	0.1 to 0.3	Easily scored with a knife; indentations 1mm to 3mm show in the specimen with firm blows of the pick point; has dull sound under hammer. A piece of core 150mm long by 50mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.			
Medium Strength	М	6 to 20	0.3 to 1	Scored with a knife; a piece of core 150mm long by 50mm diameter can be broken by hand with difficulty.			
High Strength	н	20 to 60	1 to 3	A piece of core 150mm long by 50mm diameter cannot be broken by hand but can be broken by a pick with a single firm blow; rock rings under hammer.			
Very High Strength	VH	60 to 200	3 to 10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.			
Extremely High Strength	EH	> 200	> 10	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.			

Appendix D: Example Waste Tracking Record

Offsite Disposal

Waste Classification Report/ Letter			Stockpile ²				Material Observations		Treatments ⁷				Statistics ⁷			
Reference	Classification Under Letter ¹	Volume Classified Under Letter (m ³)	Source Area Matches Area in Classification Letter/ Report?	ID	Volume	Temporary Storage Area/ Reference	Volume (m ³)	Bulking Factor Used	Description	Evidence of Contamination	Treatment Details	Post-Treatment	Post Treatment Sampling	Post Treatment Classification ¹	Туре	Results
										_						
																
																<u> </u>
																<u> </u>
										_						
										-						<u> </u>
																<u> </u>
										1						<u> </u>
																ļ
																
																<u> </u>
					I											L

¹ After NSW EPA Waste Classification Guidelines/ The excavated natural material order 2014 / Meets POEO VENM Definition / other

² If material was excavated and stockpiled post classification

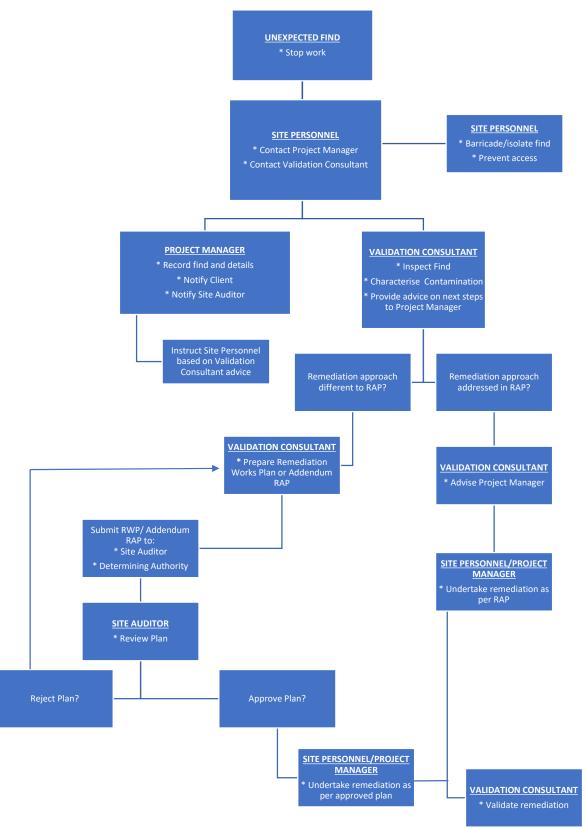
³ Samples must include those collected specifically for waste classification purposes and samples collected from the source area for purposes other than waste classification

⁴ Keep Units Consistant

⁵ If volume on docket is different to volume on Waste Classification Letter

⁶ If one is available

⁷ If undertaken


Disposal											
Receiving Facility	Receiving Facility Disposal Doc Licence Reference Numbr		Quantity on Docket (m ³ / tonnes) ⁴	Consignment Note Reference ⁶	Running Total Under the Waste Classification Letter (m3/ tonnes) ⁴						

Appendix E: Unexpected Finds Protocol Summary

UNEXPECTED FINDS PROTOCOL FLOW-CHART

Appendix F: Guidelines and Reference Documents

Contaminated Land Management Act 1997 (NSW)

Conveyancing Act (1919) (NSW).

Environmental Planning and Assessment Act 1979 (NSW)

Managing Land Contamination, Planning Guidelines SEPP55 – Remediation of Land (1998)

NSW DECCW, (2010). UPSS Technical Note: Decommissioning, Abandonment and Removal of UPSS

NSW DECCW, (2010). UPSS Technical Note: Site Validation Reporting

NSW EPA, (1995). Contaminated Sites Sampling Design Guidelines.

NSW EPA, (2015). Guidelines on the Duty to Report Contamination under Section 60 of the CLM Act 1997

NSW EPA, (2017). Guidelines for the NSW Site Auditor Scheme, 3rd Edition

NSW EPA, (2020). Consultants Reporting on Contaminated Land, Contaminated Land Guidelines

NSW EPA, (2020). Guidelines for the Implementation of the Protection of the Environment Operations (Underground Petroleum Storage Systems) Regulation 2019

National Environment Protection Council (NEPC), (2013). National Environmental Protection (Assessment of Site Contamination) Measure 1999 as amended (2013)

Protection of the Environment Operations Act 1997 (NSW)

Protection of the Environment Operations (Underground Petroleum Storage Systems) Regulation 2019 (NSW)

SafeWork NSW, (2019). Code of Practice, How to Manage and Control Asbestos in the Workplace

Standards Australia, (2002). AS2460: Acoustics - Measurement of the Reverberation Time in Rooms

Standards Australia, (2008). AS4976: The Removal and Disposal of Underground Petroleum Storage Tanks

State Environmental Planning Policy Resilience and Hazards 2021 (NSW)

WA DOH, (2021). Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia

Work Health and Safety Regulation 2017 (NSW)

