Proposed Stables Complex at the Newcastle Jockey Club, Darling Street Broadmeadow NSW

Stormwater Management and Soil & Water Management Report

Newcastle Jockey Club

MPC Ref: 160548.1 17 September 2021 [3]

p: 02 4927 5566 e: <u>admin@mpceng.com.au</u> w: <u>www.mpceng.com.au</u>

Level 1, 16 Telford Street Newcastle East NSW 2300 PO Box 553, The Junction NSW 2291

Consulting consulting civil-structural

the maths in: the

Contents

1.	Bac	kgroun	d Information	3				
	1.1	Basis o	of Report	3				
	1.2	Pream	ble	3				
	1.3	Stormv	vater Management Plan	3				
	1.4	Background Information						
2.	Site	and Ca	atchment Details	5				
	2.1	The Ex	kisting Site	5				
	2.2	The Proposed Site						
3.	Sto	rmwate	r Management Philosophy	7				
4.	Pro	posed S	Stormwater Management Facilities	8				
	4.1	Descri	ption of Proposed Stormwater Management Facilities	8				
		4.1.1	Arrivals Area	8				
		4.1.2	Stables Complex	8				
		4.1.3	Car Parks	9				
		4.1.4	Maintenance Precinct	9				
	4.2	Design Storm Events						
	4.3	Site Catchment Parameters						
		4.3.1	Pre-Developed Site	10				
		4.3.2	Post-Developed Site	11				
	4.4	Safety	13					
		4.4.1	Site Discharge Index	13				
		4.4.2	Pits and Pipes	13				
	4.5	4.5 Flooding and Coastal Erosion						
		4.5.1	General	13				
		4.5.2	Filling	14				
		4.5.3	Floor Levels	14				
		4.5.4	Onsite Flood Refuge	15				
		4.5.5	Responses to the Relevant SEARs Requirements	16				
	4.6	Stormwater Quantity (Detention)						
	4.7	Stormwater Quality (WSUD)						
	4.8	Stormwater Re-Use / Harvesting						
	4.9	9 Maintenance of Stormwater Management Facilities						
5.	Cor	structio	on Phase Soil and Water Management	25				

6. Summary

Appendices

- A Photographs of the Existing Site
- B Architectural Site Plan
- C Stormwater Management Plans
- D Stormwater Management Calculations
- E Soil and Water Management Plans
- F Soil and Water Management Calculations
- G Stormwater Quality (MUSICLink) Report
- H City of Newcastle Supplied Information
- I Site Survey
- J Flood Study

MPC Consulting Engineers

ABN 14 904 295 412 Suite 3, Level 1, 16 Telford Street NEWCASTLE NSW 2300 PO Box 553, THE JUNCTION NSW 2291 Tel: (02) 4927 5566 Fax: (02) 4927 5577 Email: admin@mpceng.com.au Web : www.mpcconsultingengineers.com.au

© MPC Consulting Engineers 2021

This document remains the property of MPC Consulting Engineers. It may not be reproduced without written approval from MPC management. Unauthorized use of this document in any form is prohibited.

Revision	Author	Issue	Approved for Issue	Date
0	BC	DRAFT	B. Curran	15.7.2021
1	BC	REVIEW	B. Curran	27.7.2021
2	BC	DA	B. Curran	12.8.2021
3	BC	DA	B. Curran	21.9.2021

1. Background Information

1.1 Basis of Report

This report has been prepared by MPC Consulting Engineers ('MPC') to assist with the Development Approval of the Stormwater Management and Soil & Water Management works for the proposed Stables Complex and associated car park at the Newcastle Jockey Club ('NJC'). It is not intended to represent a final engineering design for the proposed stormwater infrastructure.

Further detailed design and documentation of the stormwater management infrastructure would be conducted for the Construction Certificate application once approval of the concept has been advised and any specific Development Conditions issued by Newcastle City Council ('NCC').

MPC will be happy to provide any additional information, regarding the proposed stormwater management or sediment and erosion control measures, which would assist with the Development Approval process, if requested by NCC.

1.2 Preamble

The general arrangement of the proposed Stables Complex and associated car park is depicted on the architectural drawings by EJE that are included in **Appendix B** of this report.

The Stables Complex will be situated on the south-west corner of the existing NJC site, near the corner of Chatham Street and Darling Street Broadmeadow NSW. The car park will be located to the south and east of the stables area, fronting onto Darling Street to the South.

Pavements will generally comprise a combination of permeable paving and flexible asphalt for the car park, and concrete slabs on ground for pathways.

Management of stormwater runoff for the proposed development has be designed in accordance with the Council's Development Control Plan and relevant Technical Manuals, relevant Australian Standards (in particular AS3500.3) and Australian Rainfall and Runoff.

1.3 Stormwater Management Plan

In devising this Stormwater Management Plan for the proposed development, the following issues have been addressed:

- Water Quality Management;
- Stormwater Management;
- Soil & Water Management;
- Stormwater Harvesting.

The stormwater and environmental management philosophy employed in the Stormwater Management Plan is discussed in Section 3 of this report.

As well as permanent water management controls, construction phase controls are also addressed, in Section 5 of this report.

1.4 Background Information

The following background information has been considered in the design of the proposed stormwater management system.

- A copy of the flood certificate supplied by the City of Newcastle ('CN') for the NJC property is included in **Appendix H** of this report.
- The recently completed Race Day Tie-Up Stalls development on the NJC site serves as a precedent for the overall design approach to management of stormwater on the NJC site. The approach to stormwater harvesting, quality, detention and general management of flows for the proposed Stables Complex will be similar to the approach accepted by CN for the Tie-Up Stalls development.
- MPC has consulted with the CN's asset department and obtained information relating to the existing CN stormwater drainage assets in Darling Street and Chatham Street.
- MPC has obtained confirmation from CN's Mr. Alastair Peddie (Senior Development Officer – Engineering) in an email dated 30 September 2020 that the flood certificate issued by CN in May 2019 (Flood Information Certificate No. FL2019/00101) can be used for this proposed development in the south-west corner of the NJC site.

2. Site and Catchment Details

2.1 The Existing Site

The existing site comprises five lots with a total area of 48.9 Ha and is utilised as an equine racing and training facility.

The proposed development area is to be located in the south-west corner of the site, in the position shown in Figure 1.

Figure 1: Site Location

The northern portion of the development site comprises existing asphalt pavements, existing (decommissioned) race day tie-up stalls, and grassed surfaces. This northern area slopes to the north-east towards the race track where surface stormwater is collected in a network of grassed swales and in-ground pipes.

The existing southern portion of the development site comprises grassed surfaces, and slopes southward towards Darling Street. Existing surface flows in the southern portion of the site drain to the street drainage in Darling Street and Chatham.

Photographs of the existing site are included in Appendix A of this report.

2.2 The Proposed Site

Architectural drawings by EJE Architects have been provided to MPC and show the site layout for the proposed development. These have been used as the basis of the stormwater management and sediment and erosion control concept design. A copy of the architectural site plan is included in **Appendix B** of this report.

The proposed site generally comprises the following:

- An equine arrivals and goods storage area, comprising:
 - o Asphalt pavements for equine and goods drop-offs
 - o Goods storage shed, equipment shed and site office
 - o Stormwater basins
- A two-storey equine stables complex, comprising:
 - Two-storey stables buildings (7x "blocks")
 - o Elevated concourses including access ramps and stairs
 - o Horse walkers, wash bays and sand rolls
- The car park to the south and east, comprising:
 - o Asphalt pavements
 - o Portions of permeable pavement
 - o Concrete dish drains, kerbs and gutters
 - o Raingardens for water quality
- A maintenance area to the north, comprising:
 - o Two-storey maintenance and amenities building
 - o Asphalt hardstand

The proposed site entry points will be from Darling Street and Chatham Street which are consistent with the pre-existing site entry points.

The general arrangement of the proposed car park and the driveway crossings is illustrated on the Stormwater Management Plans in **Appendix C** of this report.

3. Stormwater Management Philosophy

The proposed stormwater management system has been designed in accordance with the requirements of the current Newcastle City Council Development Control Plan, relevant NCC Technical Manuals, *AS3500.3 Stormwater Drainage*, and Australian Rainfall and Runoff.

The key design considerations were as follows.

<u>Safety and Efficiency</u>

Ensure that rainwater runoff from the developed site for all design storms up to a 1:100-year ARI event is directed through the drainage network to the proposed stormwater discharge points safely and efficiently and in accordance with NCC Development Control Plan ('DCP') and AS/NZS 3500.3-2003.

Ensure that overland flow in the event of a choked or blocked piped system does not adversely impact on adjacent properties and does not exceed accepted safe velocity-depth criteria.

Flood

Compliance with the requirements specified in the Flood Certificate supplied by NCC.

<u>Stormwater Quantity</u>

Provide detention of the post-developed flows for all storms up to the 100-year ARI event, such that they do not exceed the pre-developed condition.

Stormwater Quality

Ensure contaminated water from developed areas is passed through an appropriate pollution and sediment control system and meets the WSUD requirements of the NCC DCP.

Stormwater Re-Use / Harvesting

New rainwater collection tanks with a water re-use facility to service horse wash bays and irrigation of surrounding landscaped areas.

4. Proposed Stormwater Management Facilities

4.1 Description of Proposed Stormwater Management Facilities

The stormwater management concept plans are shown in **Appendix C** to this report. The principal stormwater management components are listed below:

4.1.1 Arrivals Area

- Stormwater runoff from roof areas (goods storage shed, equipment shed and site office) will be directed via an in-ground (charged) pipe network to aboveground rainwater storage tanks located adjacent to each respective building. The rainwater tanks will be fitted with a first-flush system to address water quality and will be plumbed back into the facility to re-use collected water for amenities, hose-down and landscaping.
- Overflow from the rainwater collection tank behind the goods storage shed will be directed to Chatham Street.
- Overflow from the rainwater collection tank behind the equipment shed and site office will be directed into an infiltration trench with high-level overflows directed to Chatham Street.
- Where possible, rainwater runoff from new paved surfaces will be directed to landscaped areas or permeable paving for infiltration.
- Stormwater from paved areas will be directed vie an in-ground pipe system to a bio-retention basin (via a Gross Pollutant Trap) for water quality treatment and also with capacity to provide detention for all storms up to and including the 1% AEP storm event.
- The site office building has been specified with a floor level of RL 7.00m AHD which is higher than the minimum habitable floor level of RL 6.85m AHD specified in the flood certificate from CN.
- The goods storage shed and equipment shed (non-habitable buildings) have been specified with a floor level of RL 6.500m AHD which is higher than the 1% AEP flood level of RL 6.35m AHD specified in the flood certificate from CN.

4.1.2 Stables Complex

- Stormwater runoff from roof areas will be directed via an in-ground (charged)
 pipe network to above-ground rainwater storage tanks located adjacent to
 each respective building. The rainwater tanks will be fitted with a first-flush
 system to address water quality and will be plumbed back into the stables
 buildings to re-use collected water for amenities, hose-down and landscaping.
- Overflow from the rainwater collection tanks adjacent to Blocks B, C and D will be directed into an infiltration trench. High-level overflows from each trench will be directed through an in-ground stormwater pit and pipe network to the existing drainage system in Darling Street.

- Overflow from the rainwater collection tanks adjacent to Block A will be directed into an infiltration trench. High-level overflows from this trench will be directed through an in-ground stormwater pit and pipe network to the existing drainage system on the NJC site, directing the stormwater towards the dam in the middle of the track.
- Overflow from the rainwater collection tanks adjacent to Blocks E, F and G will be directed into an infiltration trench. High-level overflows from each trench will be directed through an in-ground stormwater pit and pipe network to the existing drainage system in Chatham Street.
- Stormwater from the southern side of the roof of Block D, and from adjacent pavement areas, will be directed to a bio-retention basin between the building and the arrivals area.
- Stormwater runoff from the elevated concourse areas will generally be directed towards landscaped areas on site for infiltration. Stormwater from the portion of the elevated concourse adjacent to the arrivals area will be directed to the bio-retention basin west of Block D.

4.1.3 Car Parks

- Stormwater runoff from the car parks will be directed towards portions of permeable paving and raingardens at various locations throughout the car parks.
- The design intent for the car parks is to encourage infiltration of stormwater on the site, with water quality provided by the raingardens for treatable flows.
- On-site detention will be provided on the surface of the car parks, keeping storage depths below the required 200mm.

4.1.4 Maintenance Precinct

- Stormwater runoff from paved areas will be directed vie an in-ground pipe system to Gross Pollutant Trap and sand filter pit for water quality, with outflows directed to the existing drainage system in Chatham Street.
- On site detention of stormwater in the maintenance hardstand will be provided on the pavement surface, keeping storage depths below the required 200mm.

Stormwater quality requirements have been addressed further in Section 4.5 of this report.

4.2 Design Storm Events

The stormwater management system will collect runoff for all design events up to the 100-year ARI for subsequent storage, re-use and disposal (as appropriate).

In-ground pits and pipes on the proposed development have been designed for a Minor Storm event of 1:10 years ARI (10% AEP).

The site has been designed for a 1:100-year ARI (1% AEP) Major Storm event using a pit blockage factor of 0.5 for all pits.

4.3 Site Catchment Parameters

4.3.1 Pre-Developed Site

MPC conducted a site analysis using the following information:

- Site survey (copy included in Appendix I of this report)
- · Visual inspection of the existing site
- · Visual inspection of the existing road stormwater drainage infrastructure
- Desktop review of drainage asset data obtained from City of Newcastle asset management department.

The existing site was split into sub-catchments as depicted on Figure 2, based on the existing surface fall directions.

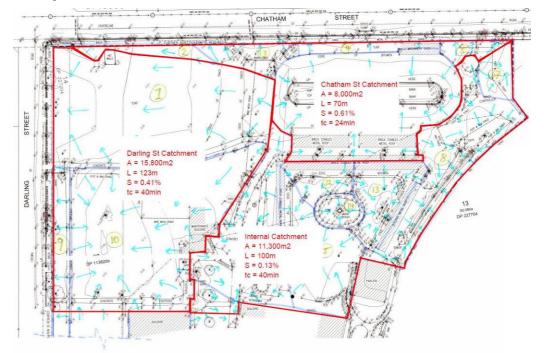


Figure 2: Pre-Developed Sub-Catchment Plan (Site Analysis)

The results of the site analysis were relied on for estimating pre-developed storm flows for all storms up to and including the major storm event. A summary of the minor and major storm pre-developed flows is provided in Table 1.

Table 1. Pre-Developed	Catchment Parameters and Flows
Table I. Fie-Developed	Calcinnent Farameters and Flows

Sub- catchment	Sub-catchment Description	Area (Ha)	Minor Storm (ARI= 10yrs)		Major Storm (ARI= 100yrs)	
ID			tc (min)	Q ₁₀ (L/s)	tc (min)	Q ₁₀₀ (L/s)
Darling	Southern portion of the site, draining to Darling Street	1.58	47	104	35	345
Chatham	Western portion of the site, draining to Chatham Street	0.80	25	105	20	242
Internal	North-east portion of the site, draining to the dam in the middle of the track	1.13	63	84	48	201

Calculations used for estimating the pre-developed flow rates are included in Appendix D of this report.

4.3.2 Post-Developed Site

The arrangement of sub-catchments adopted in the stormwater management design for this development are depicted in Figure 3.

The break-up of the post-developed site is approximately as described in Table 2 (areas shown are approximate):

Table 2: Post-Developed Catchment Parameters

No.	Sub-catchment Description	Area (Ha)	% Impervious	tc (min)
1	Western sub-catchment (Arrivals Area, Stables Blocks E, F and G, and Maintenance Area)	1.570	66%	5
2	North-eastern sub-catchment (Stables Block A and the 3x north-eastern horse-walkers)	0.560	83%	5
3	South-eastern sub-catchment (Stables Blocks B, C and D, and the car parks)	0.870	72%	5

The post-developed stables complex and car park site will therefore incorporate a total of 1.57 + 0.56 + 0.87 = 3.00 ha catchment area (being 71% impervious) and which is only 6.3% of the existing 47.8 ha Newcastle Jockey Club lot area.

Pit Blockage Factors

All stormwater pits were checked for inlet capacity using a 50% pit blockage factor for the major storm analysis.

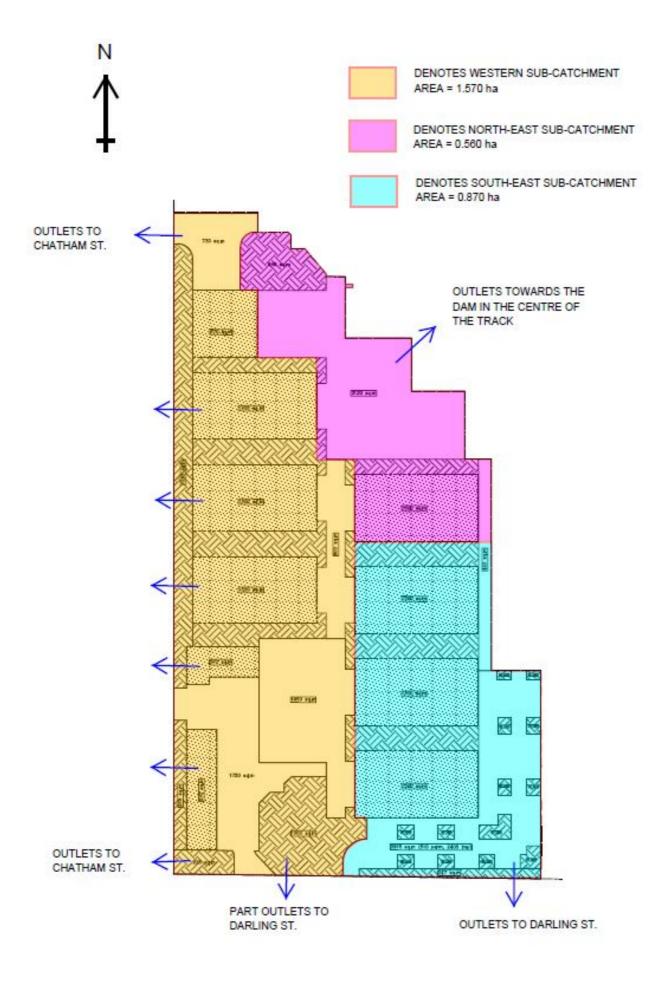


Figure 3: Post-Developed Sub-Catchment Plan

Proposed Stables Complex – Newcastle Jockey Club Stormwater Management Plan MPC Ref No. 160548.1 [3]

4.4 Safety and Efficiency

4.4.1 Site Discharge Index

Calculations relating to the site discharge index are included in **Appendix D** of this report.

The sub-catchments direct-connected to the street drainage are as follows:

- Frontage to Chatham Street = 1,262 + 255 = 1,517 m²
- Frontage to Darling Street = 247 m²

The total direct-connected area is therefore $1,517 + 247 = 1,764 \text{ m}^2$ noting that 100% of this direct-connected area is pervious landscaped / turfed area.

All other areas are managed using the controls described in this report.

The total developed area is 30,000 m². Subsequently, the site discharge index is:

SDI = 1,764 / 30,000 = 0.059 < 0.10 therefore complies with SDI requirement.

4.4.2 Pits and Pipes

In-ground stormwater pits and pipes were sized using the following:

- Rainfall intensities as specified in the IFD table within the stormwater management Technical Manual issued by NCC
- Sub-catchments as illustrated in Figure 2 of this report
- Minor and major storm flow rates calculated for each sub-catchment using the rational method, as summarised in Appendix D
- Pit inlet capacities using methods prescribed in Australian Rainfall and Runoff
- Pipe flow capacities using methods prescribed in Australian Rainfall and Runoff and AS3500.3

4.5 Flooding and Coastal Erosion

4.5.1 General

MPC has identified and considered the flood risk of the site through consultation with the City of Newcastle ('CN'), in particular Alastair Peddie, CN's Senior Development Officer in Engineering. The flooding and coastal erosion requirements of the SEARs have been addressed as follows.

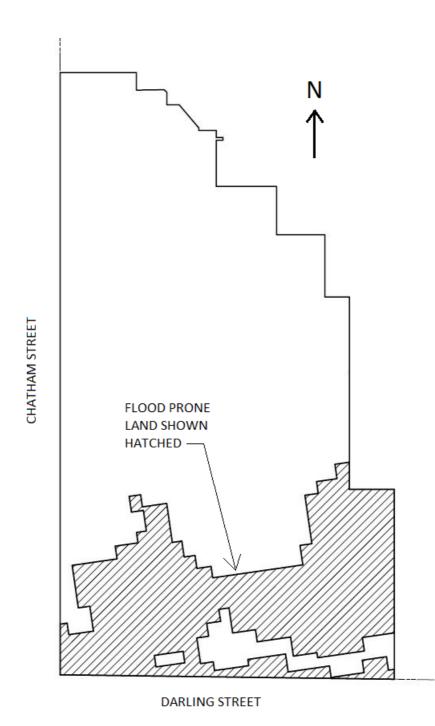
- 1. A flood certificate for the site was issued by CN (Certificate No FL2019/00101), a copy of which is included in Appendix H of this report.
- The constraints specified in the flood certificate issued by CN are informed by the most recent flood modelling that has been undertaken for the local catchment. A copy of the relevant flood study is included in Appendix J of this report ("Throsby, Cottage and CDB Flood Study", BMT WBM, Report No. R.B15058.002.01.doc, revision 0).

- 3. Potential changes to flood risk on-site or off-site due to the proposed development have been considered through the constraint imposed on the quantity of site filling as specified in the flood certificate. The flood certificate prescribes a limit to the amount of filling that can be added to the site by the development to address flood risk associated with redistribution of flood water from flood storage areas.
- 4. Constraints on the finished floor levels for the development were imposed by the flood certificate. These constraints are set at 500mm above the 1% AEP flood surface level so as to take into account potential effects of coastal processes and hazards, climate change, sea level rise and increases in rainfall intensity.
- 5. The flood certificate stipulates that onsite flood refuge is required for the proposed development. This constraint mitigates the on-site flood risk by ensuring there is adequate safe refuge space on site in the event of a flood.

4.5.2 Filling

In accordance with the flood certificate, filling of a flood storage area by more than 20% is not generally allowed due to redistribution of flood water.

The existing NJC site comprises a total of 47.8Ha of land. Of that area virtually 100% of the property is affected by the PMF event at RL 7.3m AHD (Map 3-A, Newcastle Flood plain Risk Management Study, Rev A, and the Flood certificate). MPC conducted an overlay of the site survey data with PMF flood map and determined that the Storage depths for the PMF are likely to be in the vicinity of 1.0m - 1.3m around the majority of the site


The proposed development will overlap with only the south-western portion of the flood storage extent, as illustrated by the hatched area in Figure 4, which has been obtained by overlaying the site survey flood map included with the Flood certificate received from CN.

The maximum possible displaced flood storage extent from the proposed development is approximately 0.75ha, which is 1.6% of the overall property area, which is significantly less than the required 20% as per the flood certificate.

So, considering that the City of Newcastle flood modelling and planning has allowed for fill to be placed on up to 20% of the site to mitigate the risk of adverse impacts to flood risk, and the proposed development only proposes to place fill on 1.6% of the site, the filling associated with the proposed development will not have a detrimental impact on flood risk and so complies with the SEARs.

4.5.3 Floor Levels

According to the flood certificate, the minimum level for occupiable rooms has been set as RL 6.85m AHD, being 500mm above the 1% AEP flood level. All "occupiable rooms" within the proposed stables complex have been set with a floor level of RL 7.000m AHD so comply with the flood certificate and the SEARs.

Figure 4: 1% AEP Flood Storage Extent on the Proposed Development

4.5.4 Onsite Flood Refuge

Onsite flood refuge in a PMF event is already available on the site at the grandstands and buildings located directly east of the proposed development area. In addition, the proposed Stables Complex comprises two-storey construction with an extensive elevated concourse and elevated stables. Access to the elevated concourse is via stairs and ramps that are shown on the architectural drawings. Subsequently, the existing NJC facilities, and the proposed elevated stables and concourse, provide sufficient flood refuge for the development, and so comply with the flood certificate and the SEARs.

SEARs Item No.	Requirement	Response	
9	Flooding & Coastal Erosion – mapping of re Development Manual 2005 (NSW Governm	elevant features as described in the Floodplain ent 2005)	
9a	Flood prone land.	Flood prone land on the proposed development site has been mapped in the flood study Throsby, Cottage and CDB Flood Study (BMT WBM, Report No. R.B15058.002.01.doc, revision 0), a copy of which is included in Appendix J of this report. A flood certificate for the proposed development site was issued by the City of Newcastle (Certificate No FL2019/00101), a copy of which is included in Appendix H of this report. The flood certificate has been prepared by the City of Newcastle on the basis of the flood mapping undertaken by BMT WBM described above. MPC has overlayed the flood mapping with the site	
		survey and produced the flood prone land illustration in Figure 4 of this report.	
9b	Flood planning area.	The flood planning level for habitable floors of the proposed development site is RL 6.85m AHD which is 500mm above the 1% AEP flood level of the flood prone land on the site. Within the plan extent of the proposed redevelopment, the highest pre-existing ground surface level is at approximately RL 6.75m AHD, therefore the full extent of the proposed redevelopment area lies within the Flood Planning Area being the site area below the flood planning area. All "occupiable rooms" within the proposed stables complex have been set with a floor level of not less than RL 7.000m AHD so will not be below the flood planning level.	
9c	Hydraulic categorisation.	Flood storage and flood fringe areas of the flood prone land have been defined by the "Flood Classification" map included with the flood certificate. An annotated copy of the map is included in Appendix H of this report.	

4.5.5 Responses to the Relevant SEARs Requirements

SEARs Item No.	Requirement	Response
10	Describe the flood assessment and flood modelling.	The flood modelling relied on for the flood assessment of the development was undertaken by BMT WBM and is described in their Report No. R.B15058.002.01.doc, revision 0, a copy of which is included in Appendix J of this report.
		Flood levels for the assessment were determined from the flood report, the flood maps (which were generated as part of the flood report), and from the flood certificate.
		The relevant flood maps are included in Appendix J of this report and show the extent of the development area affected by each of the flood events with a 10- year ARI, 20-year ARI, 50-year ARI, 100-year ARI, 200-year ARI, and PMF events.
11	Effects of the proposed development on the flood behaviour under a range of flood design events.	The effect of the proposed development on the flood behaviour has been addressed using the prior assessment and modelling undertaken by the City of Newcastle.
		Potential changes to flood risk on-site or off-site due to the proposed development have been considered through the constraint imposed on the quantity of site filling for the development as specified in the flood certificate.
		The flood certificate prescribes a limit to the amount of filling that can be added to the site by the development to address flood risk associated with redistribution of flood water from flood storage areas.
		In accordance with the flood certificate, filling of a flood storage area by more than 20% is not generally allowed due to redistribution of flood water.
		The existing NJC site comprises a total of 47.8Ha of land. Of that area virtually 100% of the property is affected by the PMF event at RL 7.3m AHD (Map 3-A, Newcastle Flood plain Risk Management Study, Rev A, and the Flood certificate). MPC conducted an overlay of the site survey data with PMF flood map and determined that the Storage depths for the PMF are likely to be in the vicinity of 1.0m – 1.3m around the majority of the site
		The proposed development will overlap with only the south-western portion of the flood storage extent, as illustrated by the hatched area in Figure 4, which has been obtained by overlaying the site survey flood map included with the Flood certificate.
		The maximum possible displaced flood storage extent from the proposed development is approximately 0.75ha, which is 1.6% of the overall property area, which is significantly less than the required 20% as per the flood certificate.
		So, considering that the City of Newcastle flood modelling and planning has allowed for fill to be placed on up to 20% of the site to mitigate the risk of adverse impacts to flood risk, and the proposed development only proposes to place fill on 1.6% of the site, the filling associated with the proposed development will not have a detrimental impact on flood risk and so complies with the SEARs

SEARs	Requirement	Response
ltem No.		
12a	Impact of the development on flood behaviour for flood events up to and including the PMF.	MPC considered the proposed development footprint in conjunction with the flood maps of the flood events with a 10-year ARI, 20-year ARI, 50-year ARI, 100- year ARI, 200-year ARI, and PMF events.
		The results indicated that:
		 The 10, 20 and 50-year ARI flood events are not affected by the proposed development.
		 The 100-year and 200-year ARI flood events partly overlap the proposed development.
		 The PMF flood event fully overlaps the proposed development.
		The extent of fill proposed for the development is generally limited to the building footprints which only partly overlap with the 100-year and 200-year ARI flood events.
		MPC considers the small extent of the site area proposed to be filled for the development (0.75Ha = 1.6% of the Property area) being such a small portion of the 20% permissible under the prescribed conditions of the Flood Certificate, indicates that the impact on the flood behaviour by the proposed development will be negligible.
12b	Impact of the development on flood behaviour affecting other properties.	In addition to the process described in the response to Item 12a, MPC considered the "Risk to Property", "Risk to Life", "PMF Stability" and "Flow velocities" maps included with the flood certificate.
		MPC considers the small extent of the site area proposed to be filled for the development (0.75Ha = 1.6% of the Property area) being such a small portion of the 20% permissible under the prescribed conditions of the Flood Certificate, indicates that the impact on the flood risk to property and life on adjacent properties by the proposed development will be negligible.
12c	Relevant provisions of the NSW Flood plain Development Manual 2005 have been considered	The Newcastle City-wide Floodplain Risk Management Study and Plan (BMT WBM Pty Ltd, No. R.N2246.001.03.docx, revision 3, 2012) was prepared using the principles for floodplain management as outlined in the NSW Floodplain Development Manual (2005), as described in the executive summary of the report.
		The flood modelling relied on for the flood assessment of the proposed development was also undertaken by BMT WBM (Report No. R.B15058.002.01.doc, revision 0).
		MPC therefore considers that the relevant provisions of the NSW Flood plain Development Manual 2005 have been considered in the flood modelling and flood assessment for the proposed development.
13a	Whether there will be detrimental increases in the potential flood affectation of other properties, assets and infrastructure	As described in the response to Item 12b, the impact on the flood risk to property, assets and infrastructure on adjacent properties by the proposed development will be negligible.

SEARs Item No.	Requirement	Response
13b	Consistency with Council floodplain risk management plans	As described in the response to Item 12c, the relevant provisions of the NSW Flood plain Development Manual 2005 have been considered in the flood modelling and flood assessment for the proposed development.
13c	Compatibility with the flood hazard of the land	The proposed development is predominantly within a "flood fringe" classification with a smaller portion being "flood storage". The portions are illustrated on the Flood Classification Map in Appendix H of this report.
		The proposed development is predominantly within a "H2" PMF stability hazard (unsafe for small vehicles) with a smaller portion being ""H3" PMF stability hazard (unsafe for all vehicles, children and the elderly). The portions are illustrated on the PMF Stability Map in Appendix H of this report.
		Considering the nature of the proposed development, being an equine racing and training facility no general public access, the proposed use of the land within the development area is compatible with the flood hazard of the land.
13d	Compatibility with the hydraulic functions of flow conveyance in floodways and storage in flood storage areas of the land	The proposed development is not within a floodway, confirmed by the flood certificate and the "Flood Classification Map" included in Appendix H of this report.
		As described in the response to item 12a the impact on the flood behaviour (which includes flood storage) by the proposed development will be negligible.
		The development is therefore considered to be compatible with the hydraulic functions of flow conveyance in floodways and storage in flood storage areas of the land.
13e	Whether there will be adverse effect to beneficial inundation of the floodplain environment, on, adjacent to or downstream of the site.	MPC considers the small extent of the site area proposed to be filled for the development (0.75Ha = 1.6% of the Property area) being such a small portion of the 20% permissible under the prescribed conditions of the Flood Certificate, indicates that the impact on the flood behaviour by the proposed development will be negligible.
13f	Whether there will be direct or indirect increase in erosion, siltation, destruction of riparian vegetation or a reduction in the stability of river banks or watercourses	As described in the response to item 12a the impact on the flood behaviour by the proposed development will be negligible.
		In addition, the stormwater management infrastructure of the proposed development, and the construction phase soil and water management systems, has been designed with on-site detention to limit discharge flow rates leaving the development site to manage the risk of direct or indirect increases in erosion, siltation, destruction of riparian vegetation or a reduction in the stability of river banks or watercourses.

SEARs Item No.	Requirement	Response
13g	Any impacts the development may have upon existing community emergency management arrangements for flooding. These matters are to be discussed with the SES and Council	The proposed development will have a beneficial impact on existing community emergency management arrangements for flooding due to the extensive area of flood refuge being provided by the development. The requirement for flood refuge space in the development was specified in Council's flood certificate.
13h	Whether the proposal incorporates specific measures to manage risk to life from flood. These matters are to be discussed with the SES and Council	The ground floor equine stables have been designed with a floor level at RL 7.000m AHD which is higher than the flood planning level of RL 6.85m AHD specified by Council, even though the equine stables themselves are not necessarily "occupiable rooms". These floor levels will manage the risk to life for the horses and the people accessing the facility.
13i	Emergency management, evacuation and access, and contingency measures for the development considering the full range or flood risk (based upon the probable maximum flood or an equivalent extreme flood event). These matters are to be discussed with and have the support of Council and the SES.	The flood certificate specifies a PMF flood level of RL7.30m AHD with a maximum flow velocity of 1.10m/s. The floor level in the ground floor stables of the proposed development is designed as RL 7.00m AHD. Subsequently, under a PMF flood event, the depth of water (0.30m) x flow velocity (1.10m/s) = 0.33m/s2 which is below the accepted safe threshold of 0.40m/s2. Subsequently, even during a PMF event the flow depths and velocities will be within levels that are safe for emergency management, evacuation and access.
		In addition, there are numerous egress paths, ramps and stairs providing access to the flood refuge areas on the upper level of the proposed development, which will provide adequate contingency for the protection of life during a PMF event.
13j	Any impacts the development may have on the social and economic costs to the community as consequence of flooding	Considering the responses listed above, MPC is not cognisant of any changes to the social or economic costs to the community as consequence of flooding on the proposed development site.
14	Potential effects of coastal processes and h Management Act 2016), including sea level	
14a	On the proposed development	Existing ground surface levels within the proposed development site are generally higher than RL 6.0m AHD, and the majority of the proposed development will be constructed higher than RL 7.0m AHD. Subsequently, the risk to the proposed development of sea level rise from climate change is considered very low.
14b	Arising from the proposed development	Considering the responses to the previous items listed above, MPC is not cognisant of any potential effects on coastal processes or hazards arising from the proposed development site.

4.6 Stormwater Quantity (Detention)

On-site detention has been provided in the following:

- Arrivals Area OSD storage provided in the bioretention basins "BRB3"
- Southern elevated concourse OSD storage provided in the bioretention basins "BRB1" and "BRB2"
- Stables buildings Rainwater re-use storage provided in above-ground rainwater tanks, plus OSD storage within infiltration trenches.
- Maintenance Area hardstand OSD provided as surface detention on the hardstand (up to 200mm storage depth)
- Northern elevated concourse OSD storage not required since rainwater will be directed to the dam in the centre of the race track
- Car Park OSD provided as surface detention on the hardstand (up to 200mm storage depth) and infiltration through permeable paving and rain gardens.

Basin numbers referred to in this report are as denoted on MPC's stormwater management plans included in **Appendix C** of this report.

The basin geometry has been set using landscaped slopes not exceeding 1V:3H so as to maximise the plan extent of the basin and still enable access for maintenance.

The software package "DRAINS" was used to model the post-developed stormwater system, using an ILSAX hydrological model. Relevant calculations and sketches are included in **Appendix D** of this report.

Pre-developed and post-developed Flows are summarised in Table 3 below.

Sub- catchment ID	Sub-catchment Description	Minor Storm (ARI= 10yrs)		Major Storm (ARI= 100yrs)	
		Pre-dev Flow (L/s)	Controlled Post-dev Flow (L/s)	Pre-dev Flow (L/s)	Controlled Post-dev Flow (L/s)
Darling	Southern portion of the site, draining to Darling Street	104	108	345	212
Chatham	Western portion of the site, draining to Chatham Street	105	13 (north) <u>50 (south)</u> 63 (total)	242	23 (north) <u>208 (south)</u> 231 (total)
Total flows to the public drainage system	Darling St + Chatham St flows	209	171 (<209 therefore acceptable)	587	443 (<587 therefore acceptable)

Table 3: OSD Results

Table 3 demonstrates that the controlled post-developed flows from the proposed Stables Complex site do not exceed the pre-developed flow rates for the minor or the major storm events.

Emergency Overflow Weir from the Basin

Consideration was given to the possibility of full blockage of the outlet pipe system draining the basins. In this event, it was assumed that the OSD basins filled completely and the post-developed (uncontrolled) major storm flows over the weir of the basin.

Overflow of the basins over their respective spillways, resulting from potential system blockages during major storm flows, are summarised in **Table 4** below.

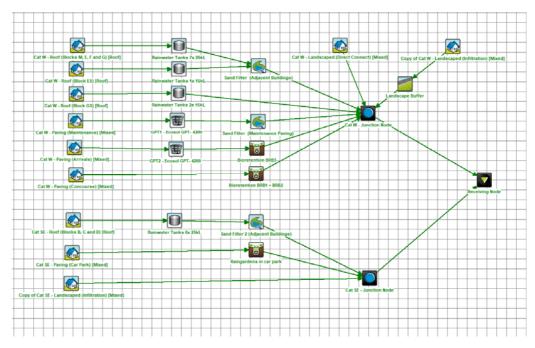
Table 4. OSD Basili Spillway Flows							
Basin ID	Peak Major Storm Flow Rate (L/s)	Weir Length (m)	Flow Depth (m)	Flow Velocity (m/s)	Velocity x Depth (m²/s)		
BRB1 (to BRB2)	870	4	0.291	0.8	0.23 (<0.4 therefore okay)		
BRB2 (to Darling Street)	121	20	0.076	0.8	0.01 (<0.40 there okay)		
BRB3 (to Chatham Street)	175	4	0.054	1.0	0.05 (<0.40 there okay)		

Table 4: OSD Basin Spillway Flows

Table 4 demonstrates that the emergency spillway flows are all within recommended safe levels.

4.7 Stormwater Quality (WSUD)

Stormwater quality requirements from the NCC DCP have been incorporated into the overall stormwater management design for the site.


Water quality measures for the site have been modelled using MUSIC software and include the following:

- Rainwater from the roof of the proposed new buildings will be directed through a first-flush device before being stored in water re-use tanks. Stored water will be re-used on site, and overflows from this system will be directed to infiltration trench with OSD storage capacity. High-level overflows from the infiltration trenches will be directed to the existing site drainage network.
- Stormwater from impermeable car park pavement areas will be directed to areas of permeable paving for infiltration, and to "rain gardens" (similar to WSUD Bioretention System – Roadway – City of Newcastle Standard Drawing A2404) for treatment before being released to the Chatham Street stormwater drainage system.
- Stormwater from pavements in the Arrivals Area will be directed via an inground pipe system to a Gross Pollutant Trap for primary treatment, then to the bio-retention basin "BRB3" for tertiary treatment.
- Stormwater from pavements in the Maintenance Area will be directed via an inground pipe system to a Gross Pollutant Trap for primary treatment, then to a sand filter for tertiary treatment, before being released to the Chatham Street drainage network.
- Stormwater from the southern portion of the elevated concourse will be directed via suspended pipe system with a first-flush system for primary

treatment, then to the bio-retention basin "BRB1" and "BRB2" for tertiary treatment.

• Typical details of the bio-retention basins have been included on the stormwater management drawings.

The stormwater quality devices and systems have been specified on the stormwater management plans included in **Appendix C**. A schematic of the MUSIC model for the car park catchment is included in Figure 5.

Figure 5: MUSIC Model Schematic

The proposed treatment train achieves the water quality targets listed Table 4.

Table 4: Stormwater Quality Outcome Summary

Pollutant	Target Reduction in annual load	Reduction in annual load Achieved
Total Suspended Solids	85%	91.8%
Total Phosphorus	65%	83.1%
Total Nitrogen	45%	80.5%
Gross Pollutants	90%	100%

A copy of the MUSICLink report is included in Appendix G.

The OSD basins have also been sized as a temporary sediment control basin for initial bulk earthworks construction phase, in accordance with the procedures in the "*Soils*"

and Construction – Managing Urban Stormwater" guidelines. Additional details in this regard are included in **Appendix E** and **Appendix F.**

4.8 Stormwater Re-Use / Harvesting

Rainwater from the roof of the new buildings will be directed through a first-flush device before being stored in water re-use tanks. Stored water will be re-used on site as follows:

- In horse wash bays within the new Stables buildings
- In horse wash bays within the new concourse
- For toilets in the Stables Complex
- For irrigation within the Stables Complex precinct

Thirteen (13) rainwater tanks, each holding up to 25,000L, will be adjacent to the Stables buildings.

Three (3) rainwater tanks, each holding up to 15,000L, will be adjacent to the Goods and Equipment Store buildings.

Therefore, there will be a total of 370,000L of additional re-use storage capacity provided in above-ground rainwater tanks within the Stables Complex which will be supplied by the roof areas of the new Stables buildings.

4.9 Maintenance of Stormwater Management Facilities

Maintenance of concrete pits, pipes and paved flow paths will be minimal however will still involve occasional cleaning.

- Ideally, pits and pipes should be inspected (and cleaned if necessary) at 3 month intervals and following large rainfall events.
- Trash screens and silt ponds should be inspected and cleaned at 3 month intervals and following large rainfall events;
- Removal of sediment from the sediment ponds to be undertaken annually, or after heavy rainfall events;
- Bio-retention basins should be inspected and maintained in accordance with the recommendations in "Bioretention Technical Design Guidelines" by Water By Design (October 2014).

5. Construction Phase Soil and Water Management

The construction phase approach adopted for this site will incorporate principles recommended by the NSW Department of Housing, namely:

- Plan for erosion and sediment control concurrently with engineering design and in advance of earthworks proper assessment of site constraints and integration of the various needs;
- Minimise the area of soil exposure;
- Conserve the topsoil where possible:
- Control water flow from top of the development area, through the works and out the bottom of the site, for example,
 - divert clean runoff above denuded areas
 - minimize slope gradient and length. Excavated batter slopes of 3H:1V are considered acceptable provided they are turfed and landscaped as soon as possible;
 - keep runoff at non-erodible velocities
 - trap soil and water pollutants
- Rehabilitate disturbed lands quickly.

A sediment and erosion control plan is shown on MPC Drawings included in **Appendix E** of this report. Calculations used in the sizing of the sediment basins have been included in **Appendix F**. The required volumes for each temporary basin are specified on the sediment and erosion control plan in **Appendix F**.

The volume of the settling and storage zones of the temporary basins have been sized using methods outlined in the "Soils and Construction" (Blue Book) by NSW Department of Housing. The volumes for each temporary basin are specified on the

In addition, general controls will be provided on the site prior to and during all earthworks in accordance with EPA Site Work Practices. Features of the construction phase erosion and sediment controls adopted for this site include:

- Prevention of sediment and polluted runoff water from being directed off the construction site;
- Control of actual and potential soil erosion grassing and stabilization of embankments and drainage outlets where required.
- Stabilised stockpile areas adjacent to existing access roads on the site, to minimise site disturbance required for access to the stockpile areas during initial stages of construction;
- Scour protection at discharge locations, comprising combinations of geofabrics (jute mesh) and rock-filled mattresses.
- Stabilised site access to provide a firm base for vehicle entry/exit and to prevent the main access from becoming a source of sediment;

• Sediment control measures are to be constructed prior to any other site disturbance works.

6. Summary

This report has been prepared by MPC Consulting Engineers to assist with the Development Approval of the Stormwater Management and Soil & Water Management works for the proposed Chatham Street Stables Complex and associated car park at the Newcastle Jockey Club.

This report has been prepared to assist with the Development Approval of the proposed stormwater management works. Further detailed design and documentation would be conducted once approval of the Development Approval has been advised and any specific Development Conditions issued by Newcastle City Council.

For further information in relation to this stormwater management plan please contact the undersigned.

Signed:

MPC Consulting Engineers

BENJAMIN CURRAN BE (Civil)(Hons), MIEAust (#1465387) CPEng, NPER (Civil/Structural) RPEQ Director, Senior Engineer

Appendix A

Photographs of the Existing Site

Proposed Stables Complex – Newcastle Jockey Club Stormwater Management Plan MPC Ref No. 160548.1 [3]

Photograph 1: Existing Pit "ExP1" in Darling Street

Photograph 2: Existing Pits "ExP2" and "ExP3" in Darling Street

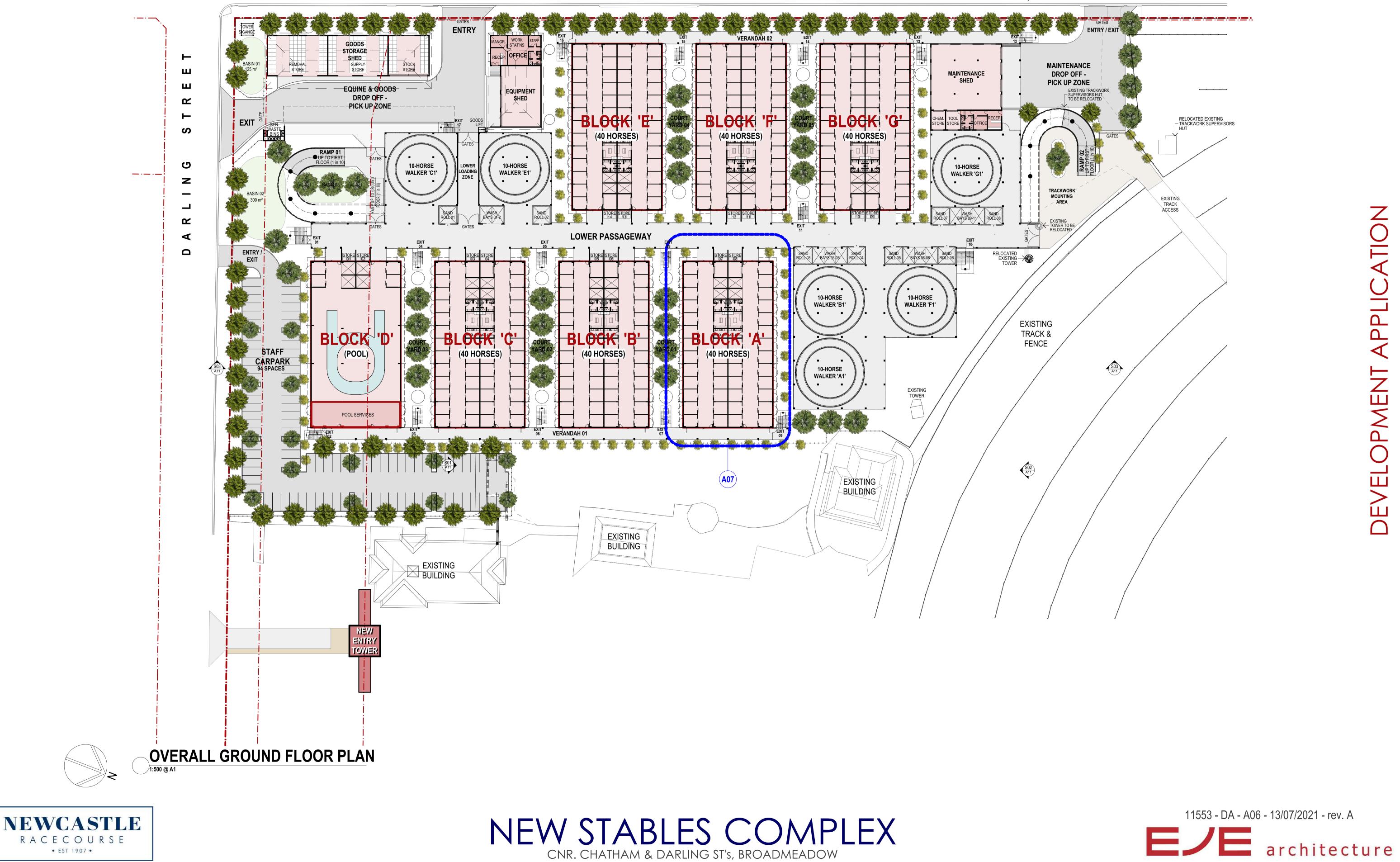
Photograph 3: Existing Pit "ExP4" in Chatham Street

Photograph 4: Existing Pit "ExP5" in Chatham Street

Photograph 5: Existing Pit "ExP6" in Chatham Street

Photograph 6: Existing Pit "ExP7" Adjacent to the Track

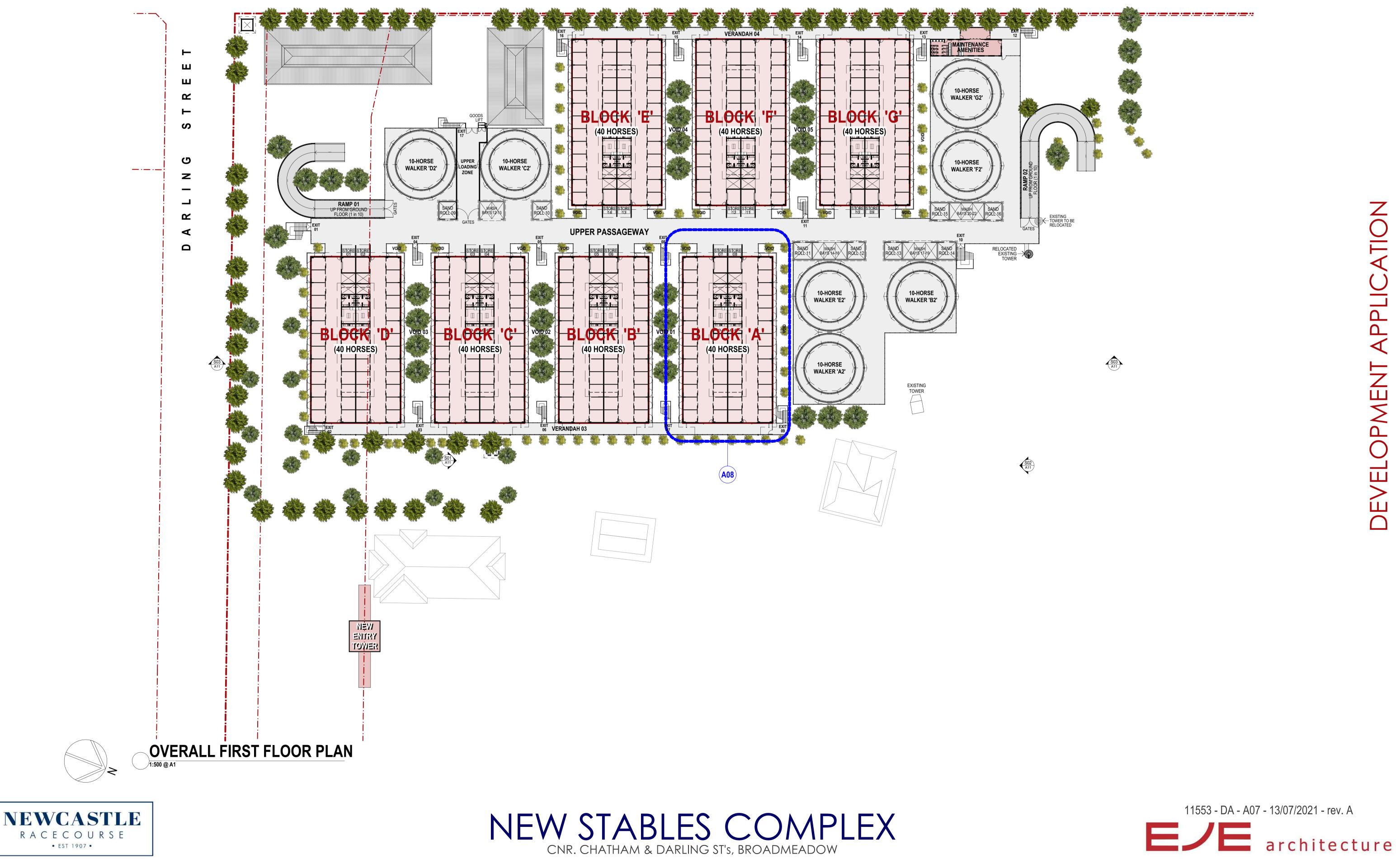
Photograph 7: View of Darling Street – Looking East



Photograph 8: View of the Chatham Street Entry – Looking South

Appendix B

Architectural Site Plan

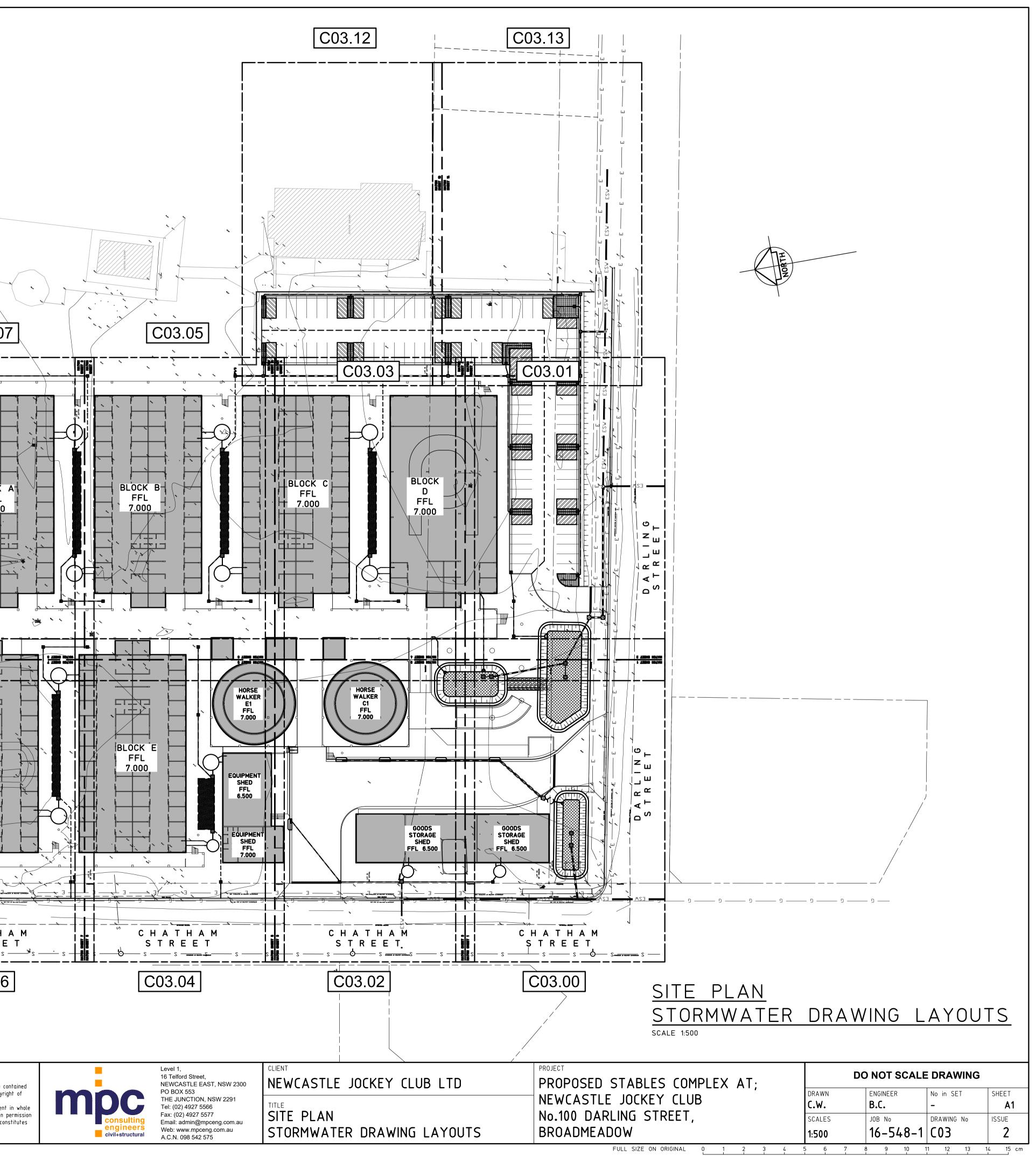

Proposed Stables Complex – Newcastle Jockey Club Stormwater Management Plan MPC Ref No. 160548.1 [3]

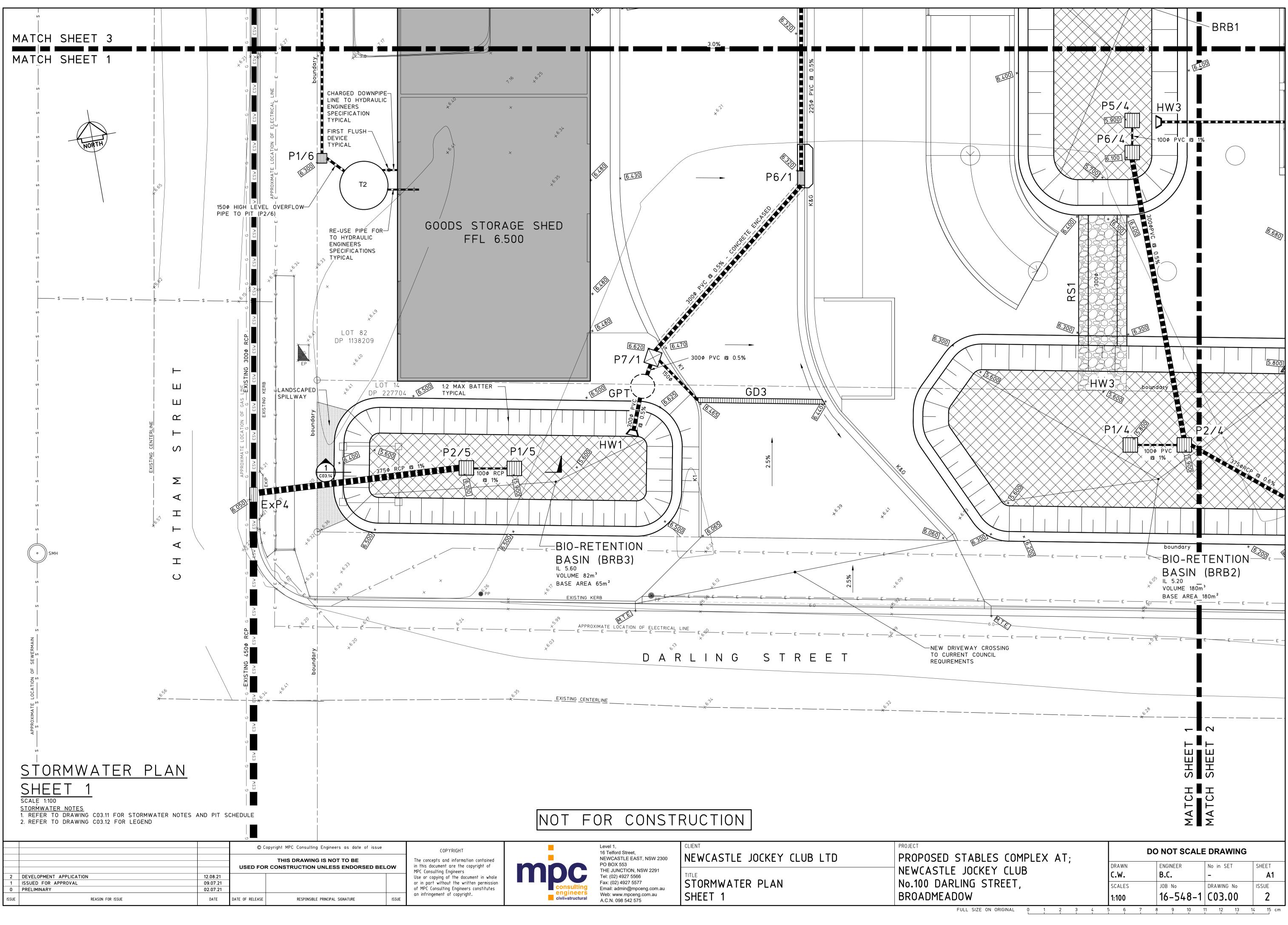
CHATHAM STREET

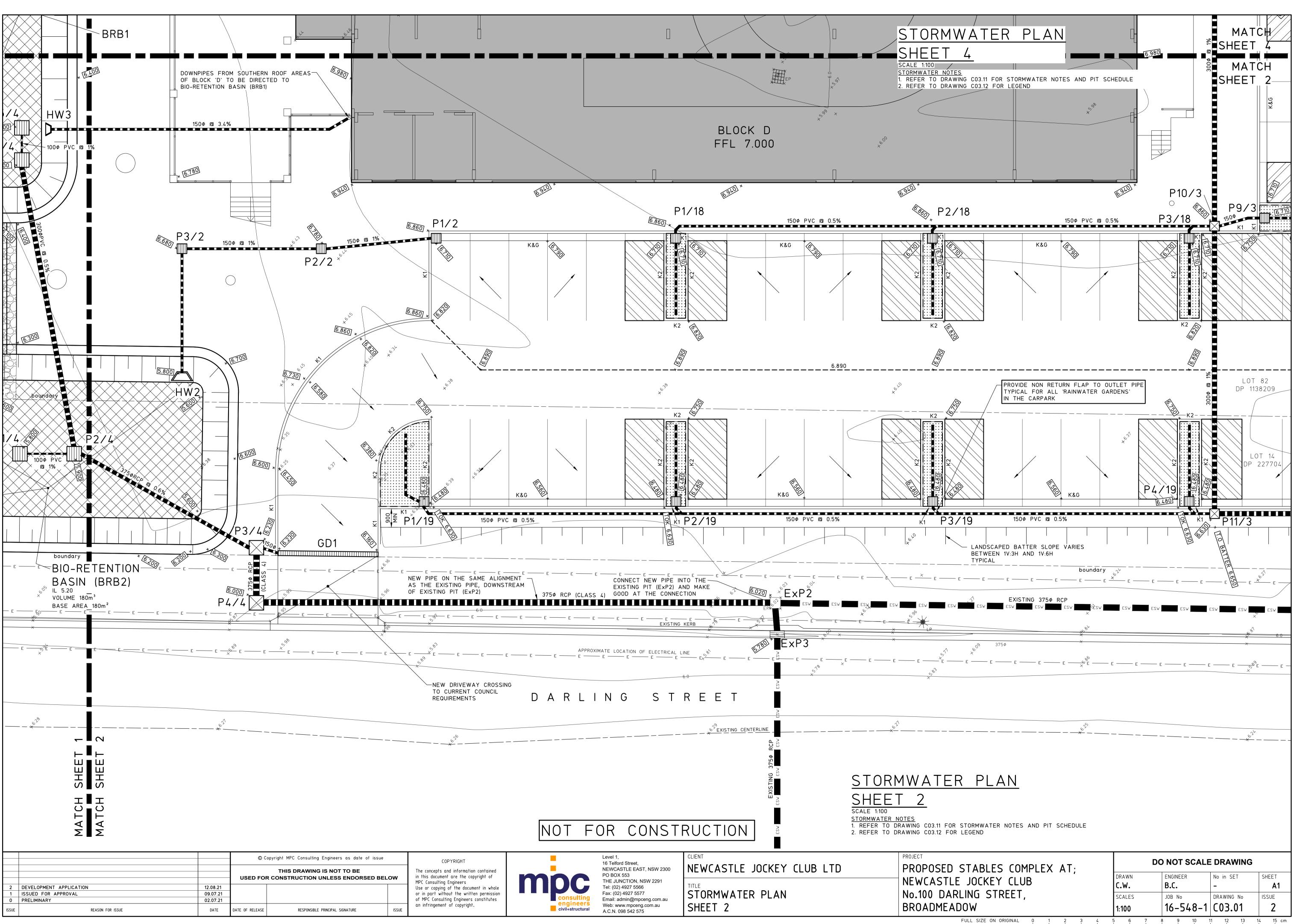
S02 A11

CHATHAM STREET

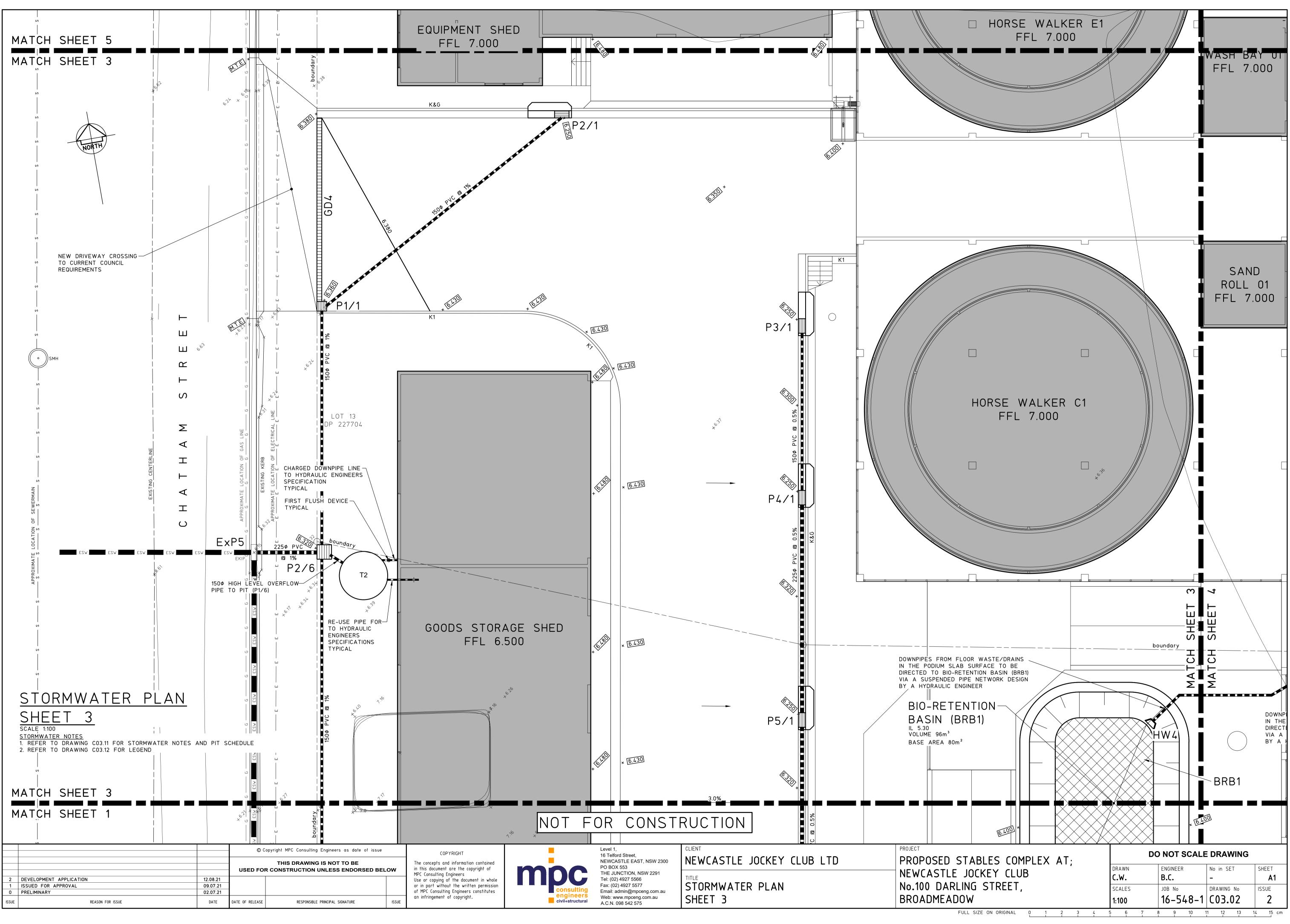
S02 A11

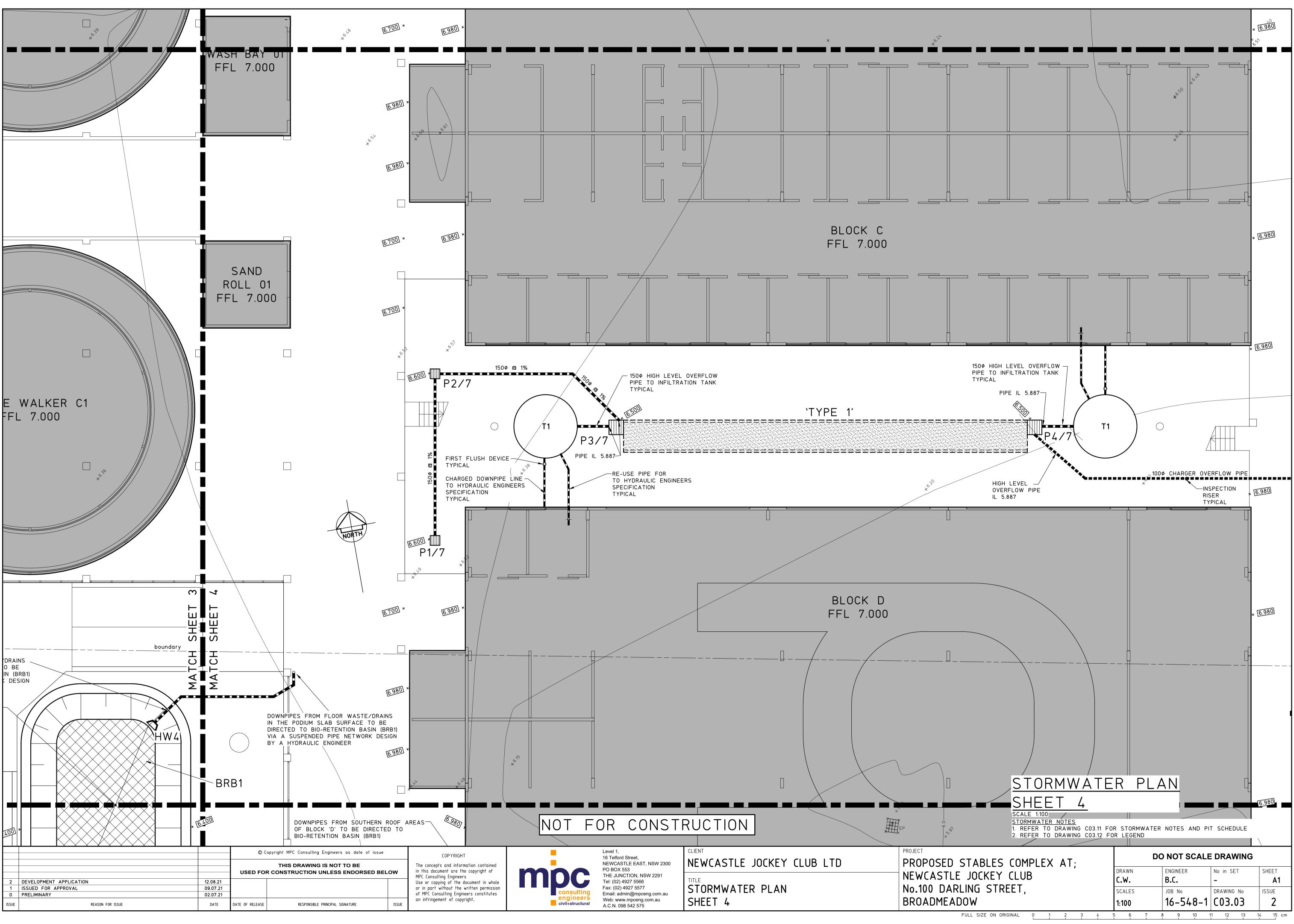


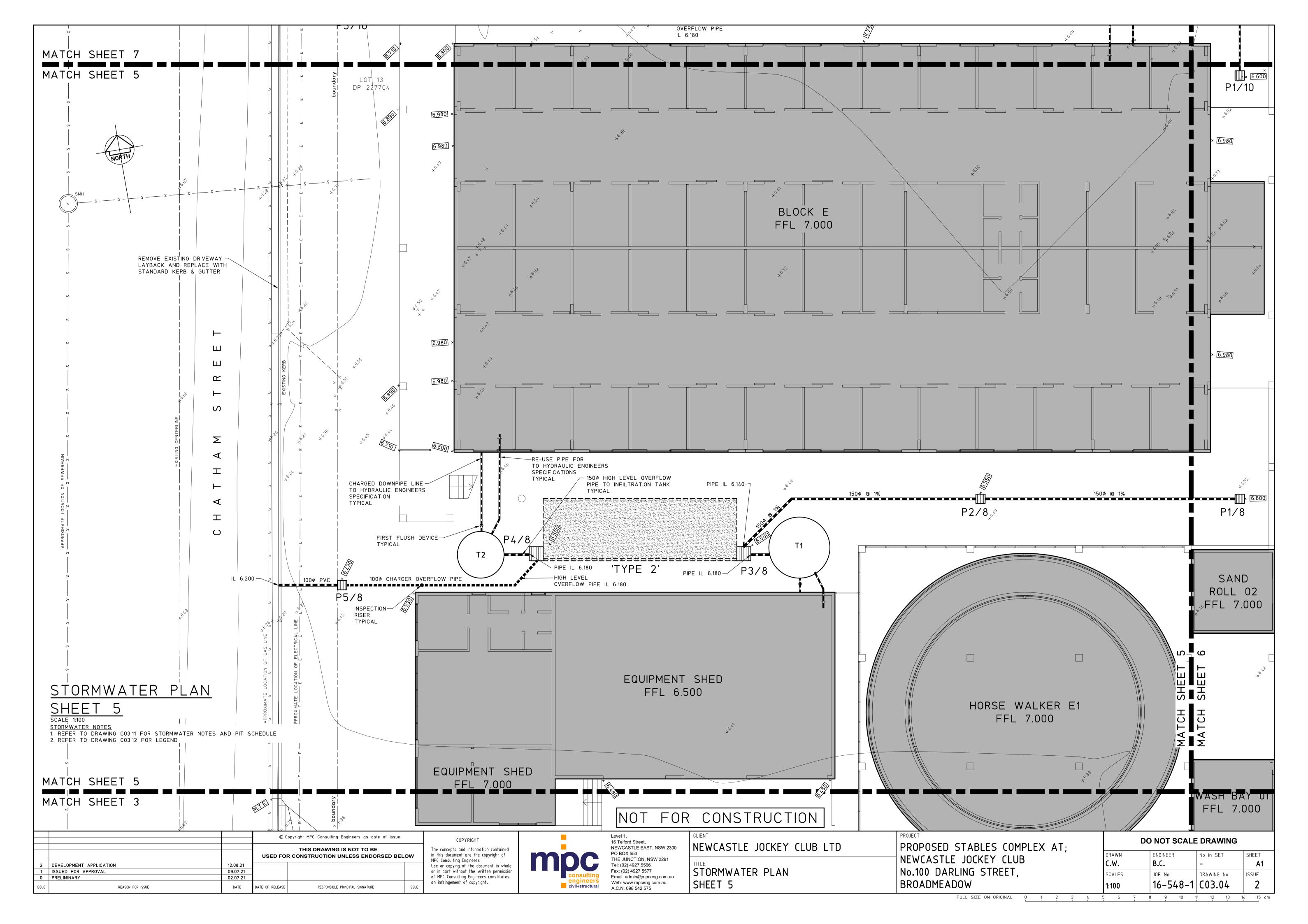

PLIC . Ш DEVEL

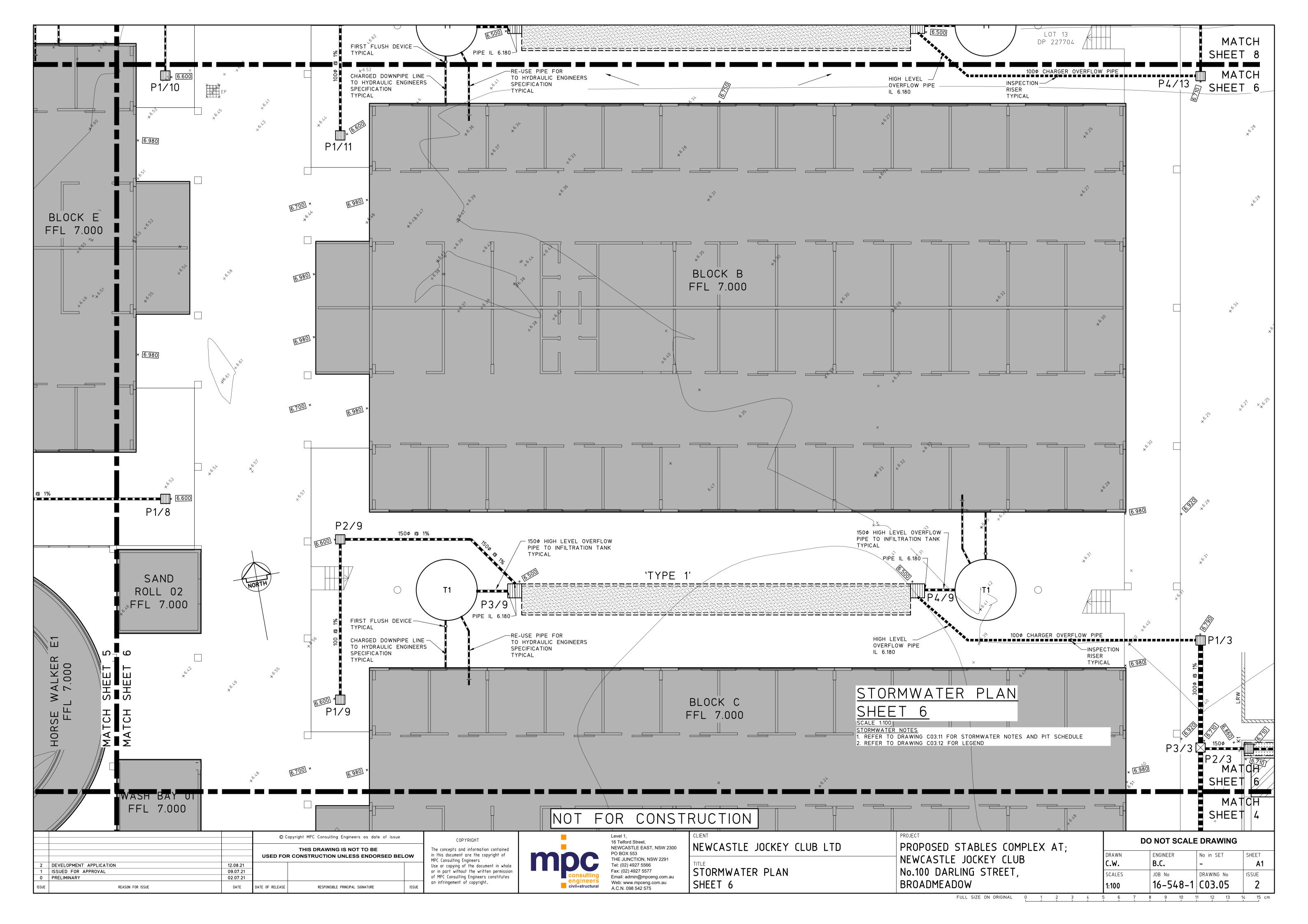

Appendix C

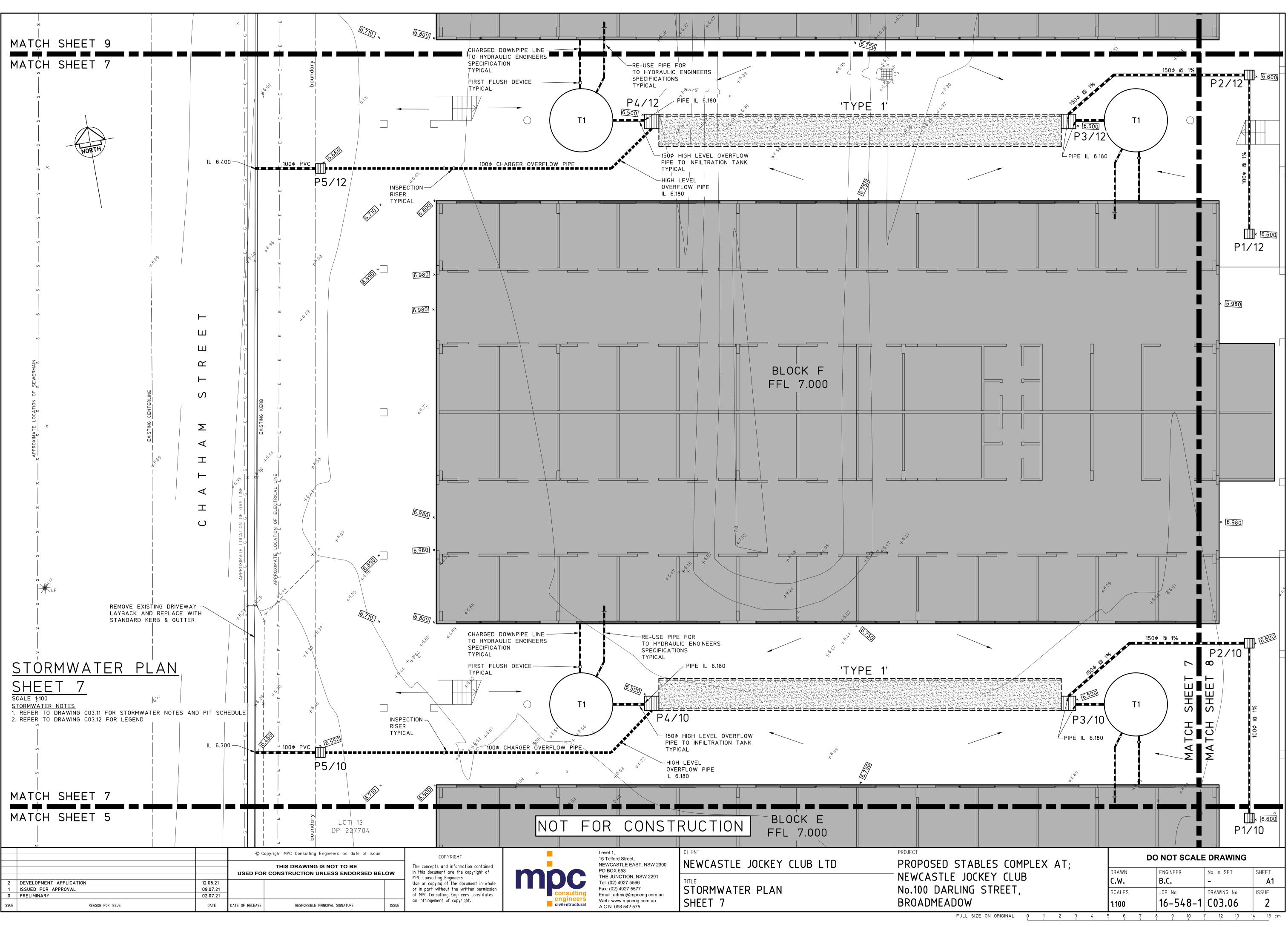
Stormwater Management Plans

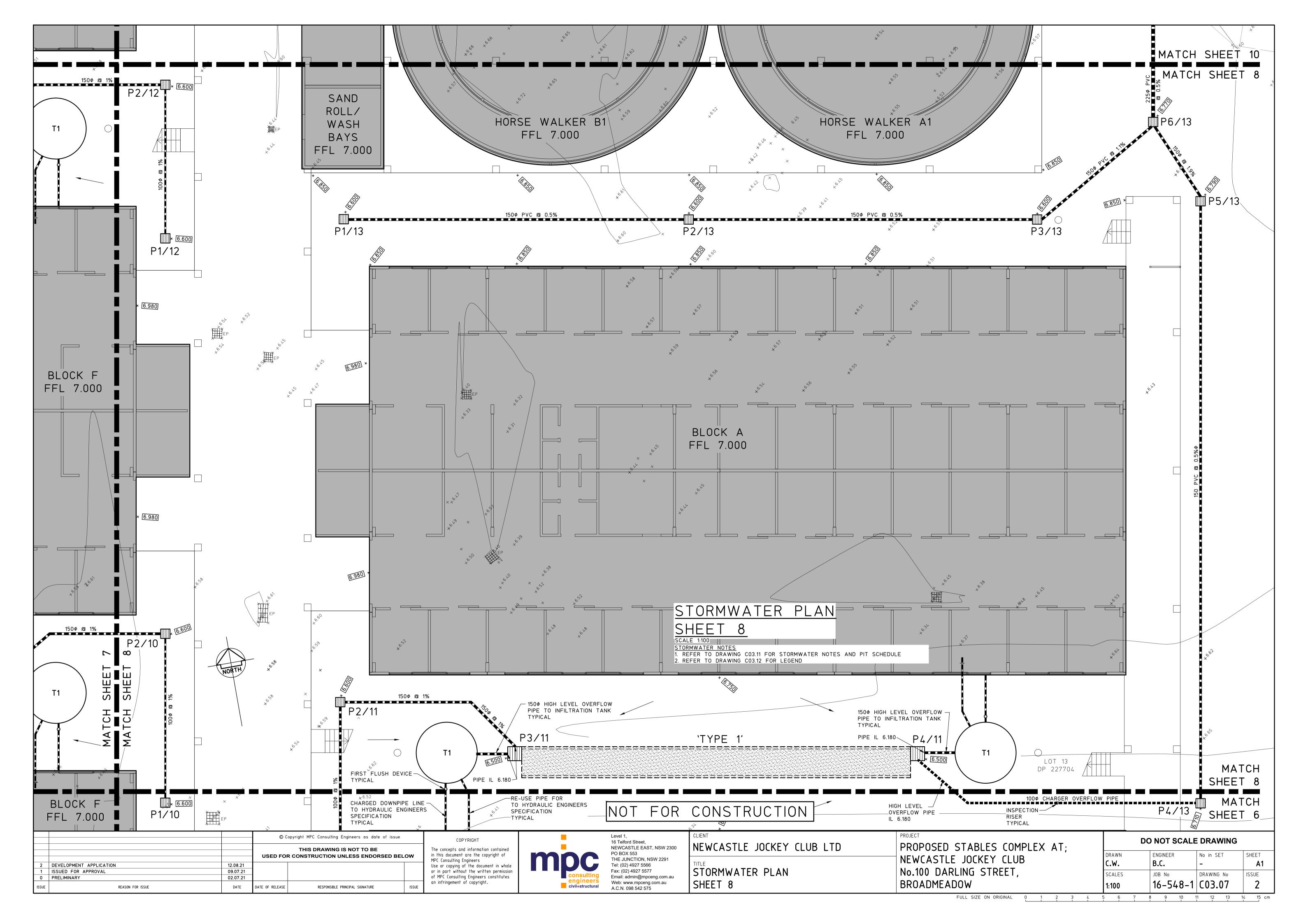

C03.11		C03.0	9	C03.07
CHATHAM STREET SOSSOL	HOF WALL G FF 7.0		HORSE WALKER BI FFL 7.000 C AMERICAN C AMERI	BLOCK F FFL 7.000 C H A T H A S T R E E
NOT FOR CONSTRUCTIO) Copyright MPC Consulting Engin		COPYRIGHT
1 ISSUED FOR APPROVAL	USED F 12.08.21 09.07.21 02.07.21 DATE DATE OF RELEAS		ESS ENDORSED BELOW	The concepts and information cont in this document are the copyright MPC Consulting Engineers Use or copying of the document in or in part without the written per of MPC Consulting Engineers const an infringement of copyright.

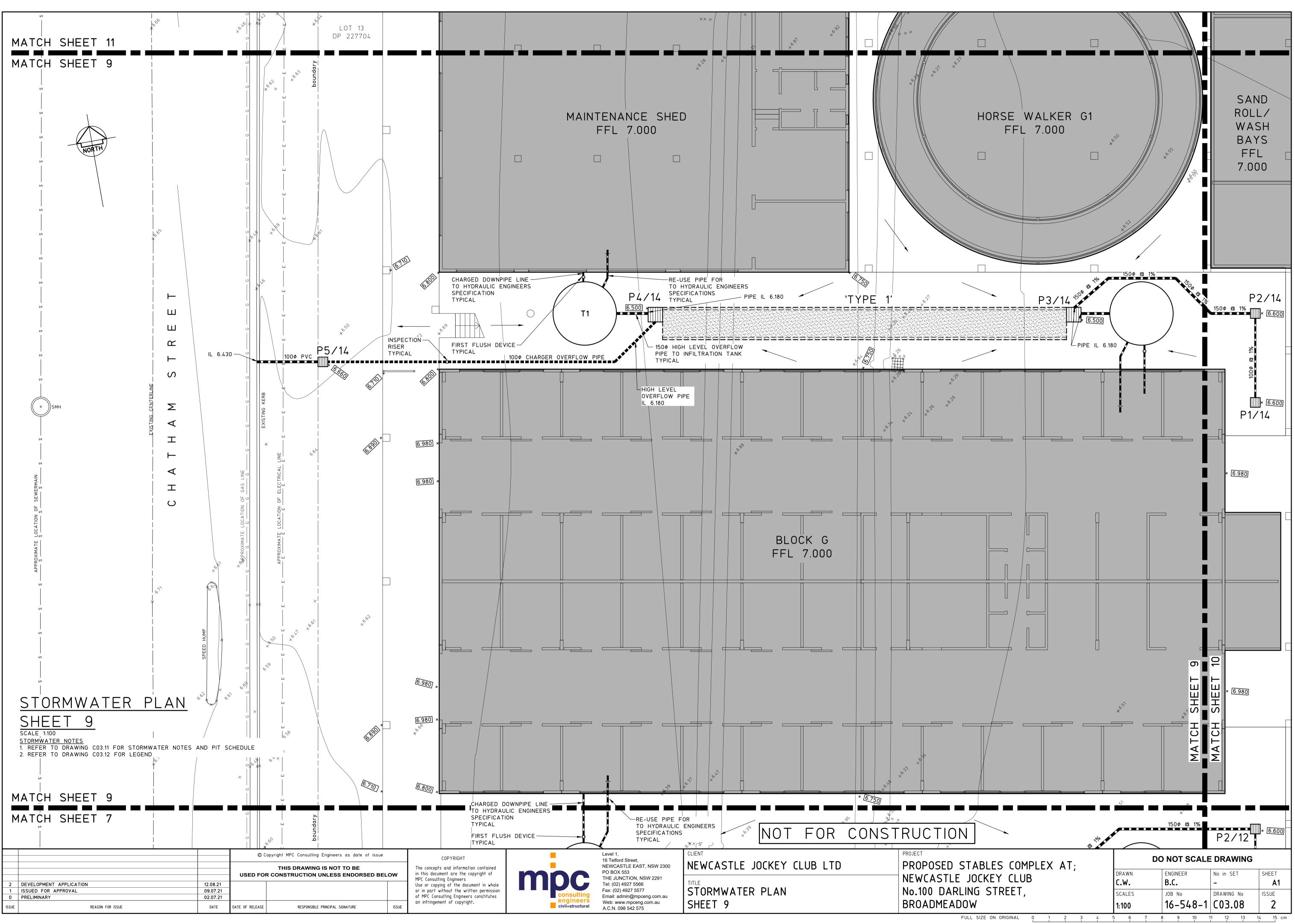


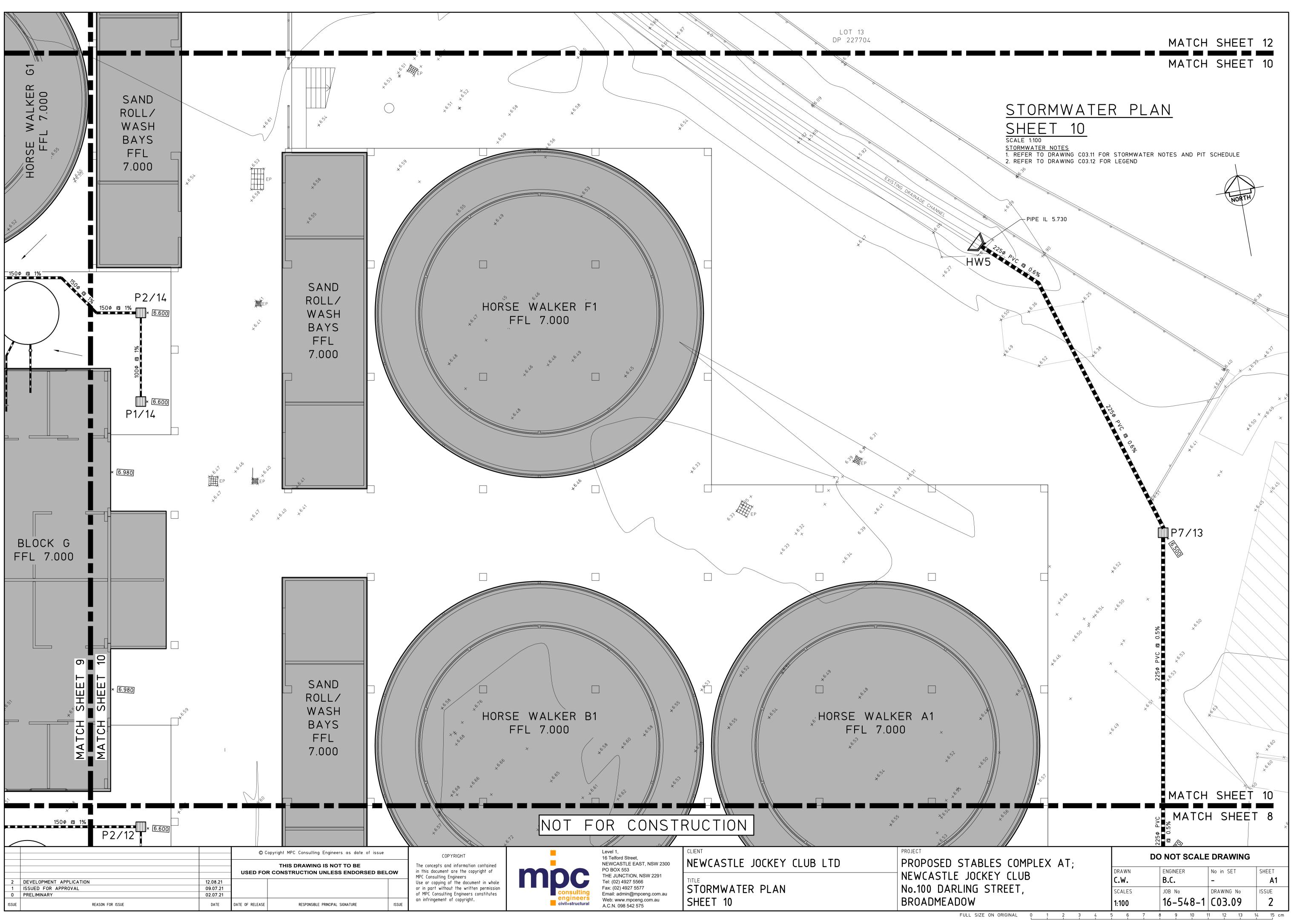


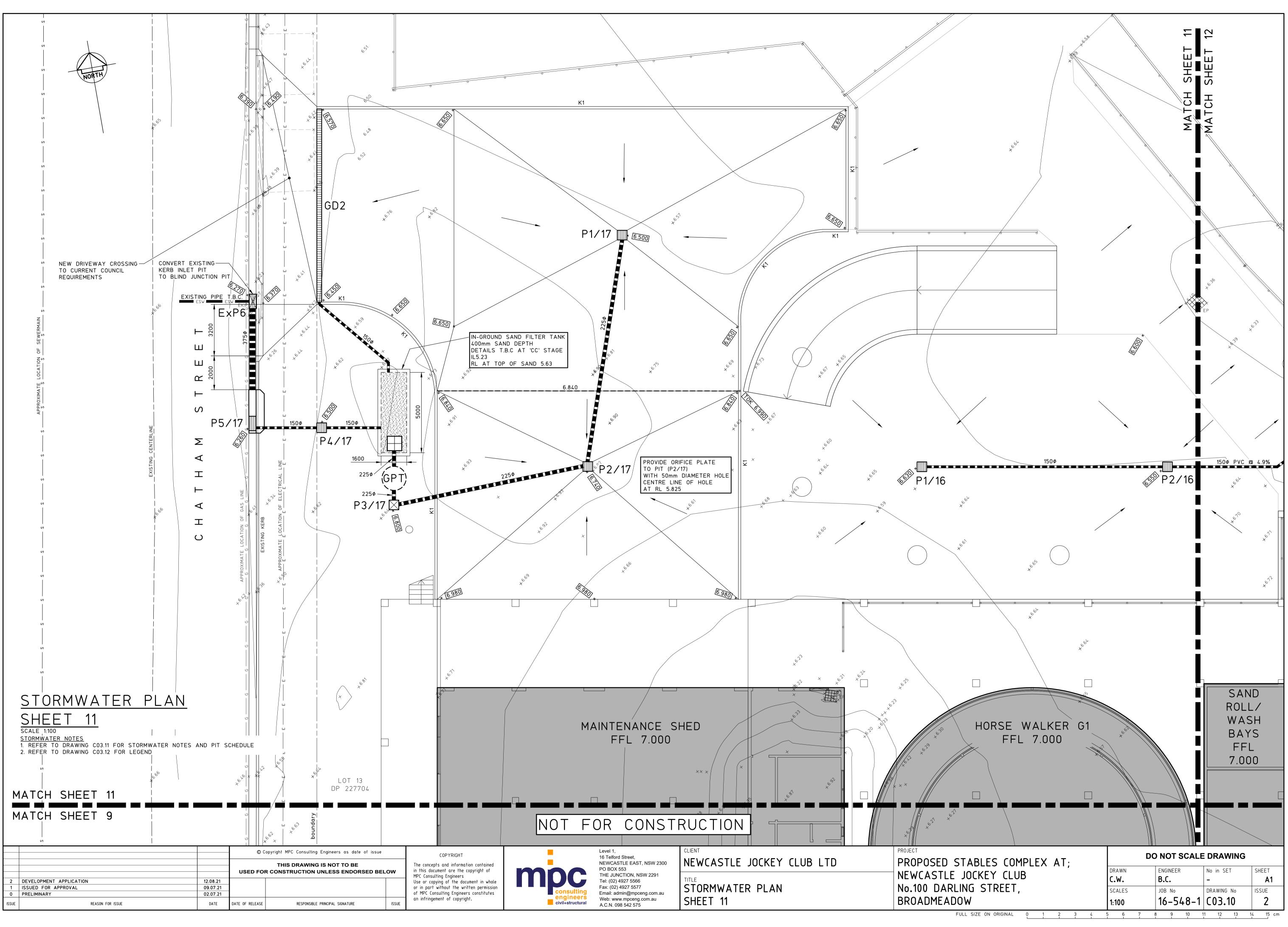


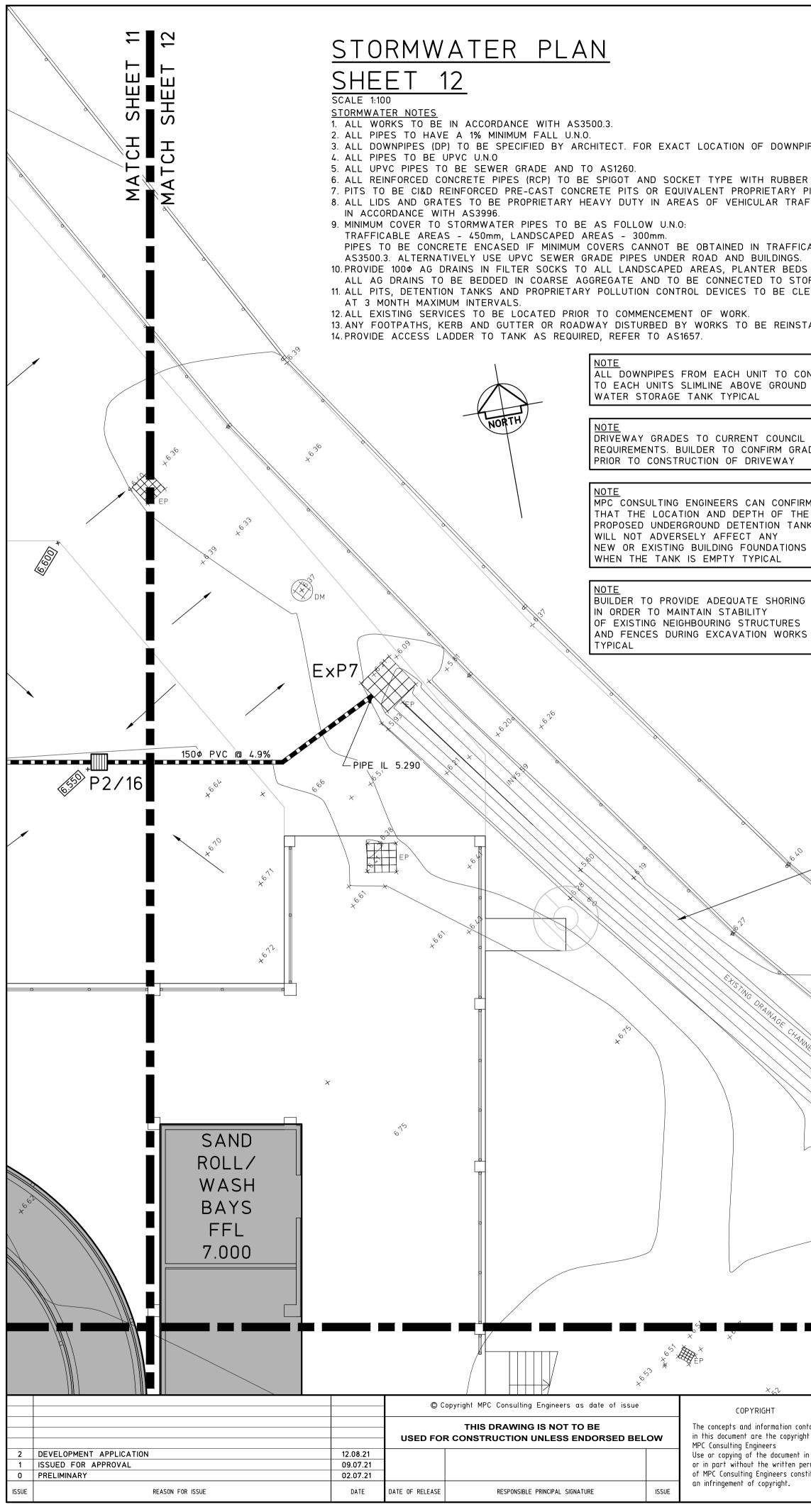

						1:	100		1	6-5	48-	1 C	03.	01	
N ORIGINAL	0 L	1	2	3	4	5	6	7	8	9	10	11	12	13	

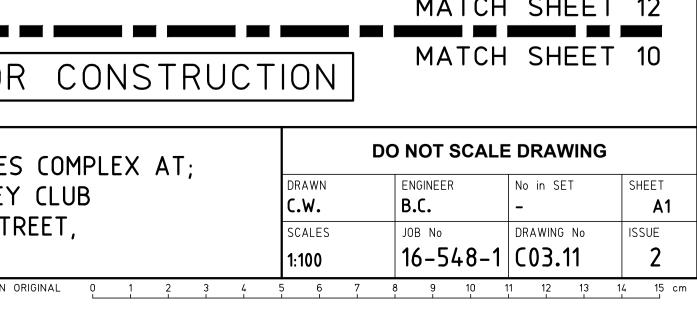


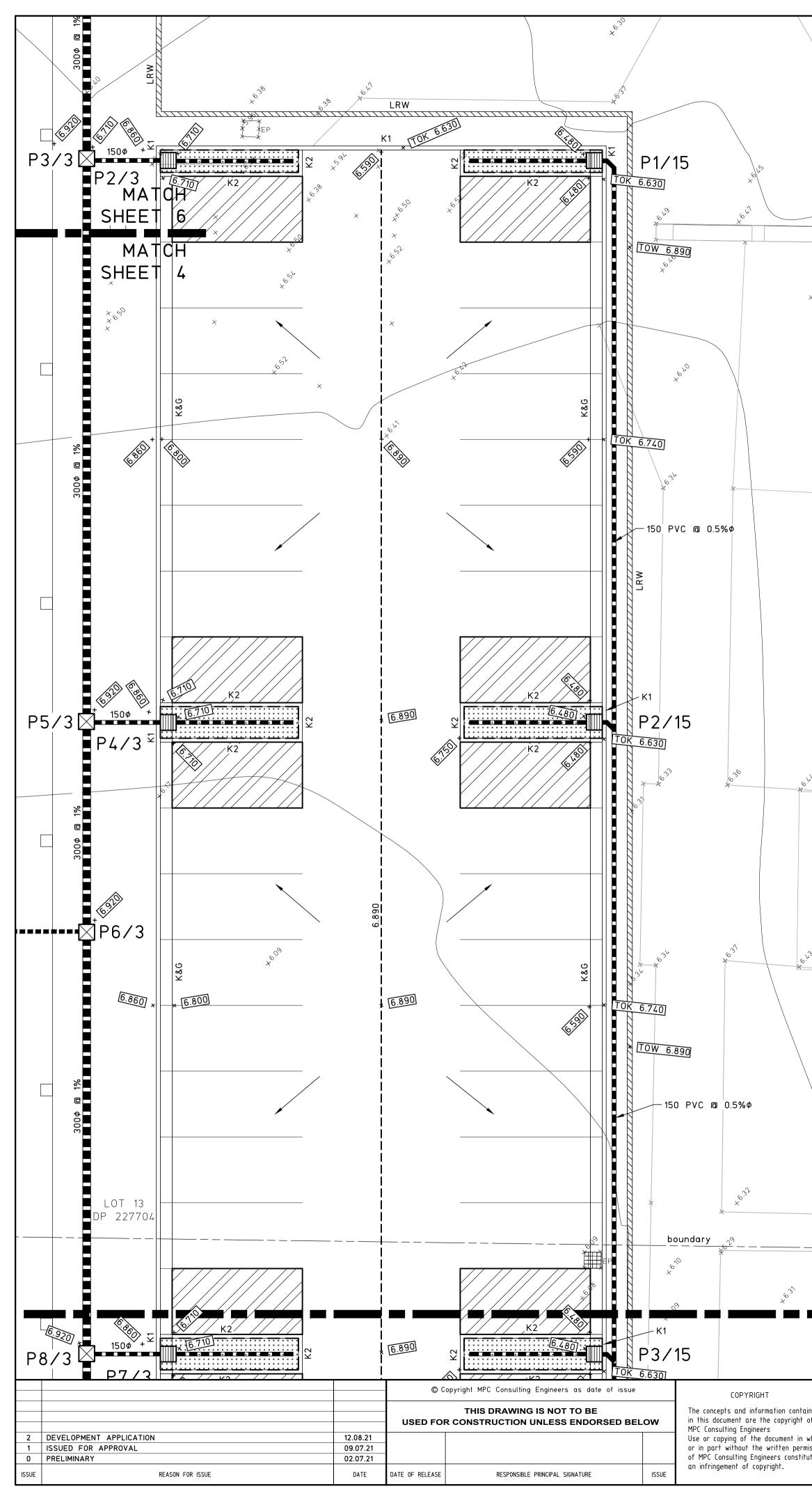


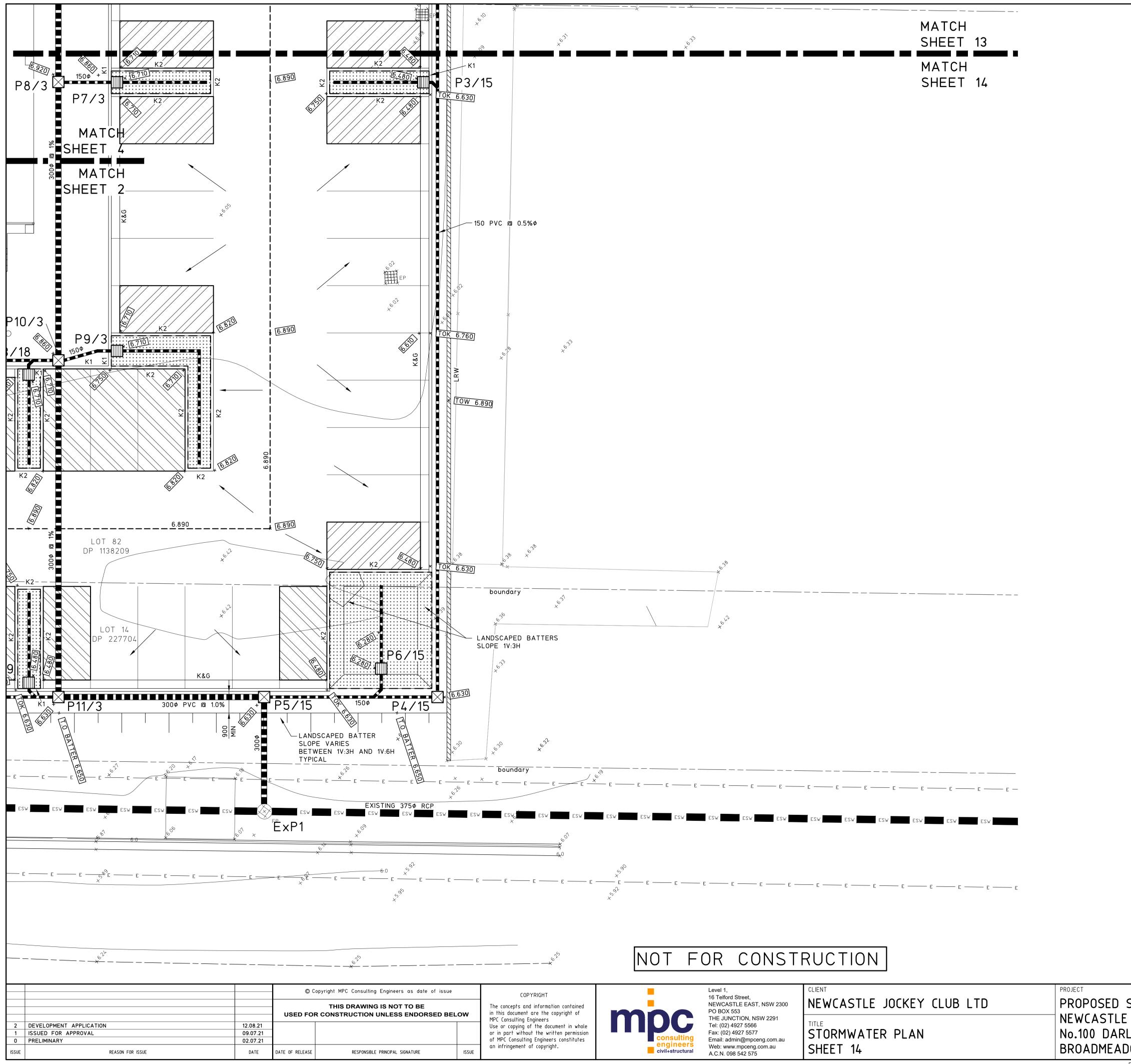




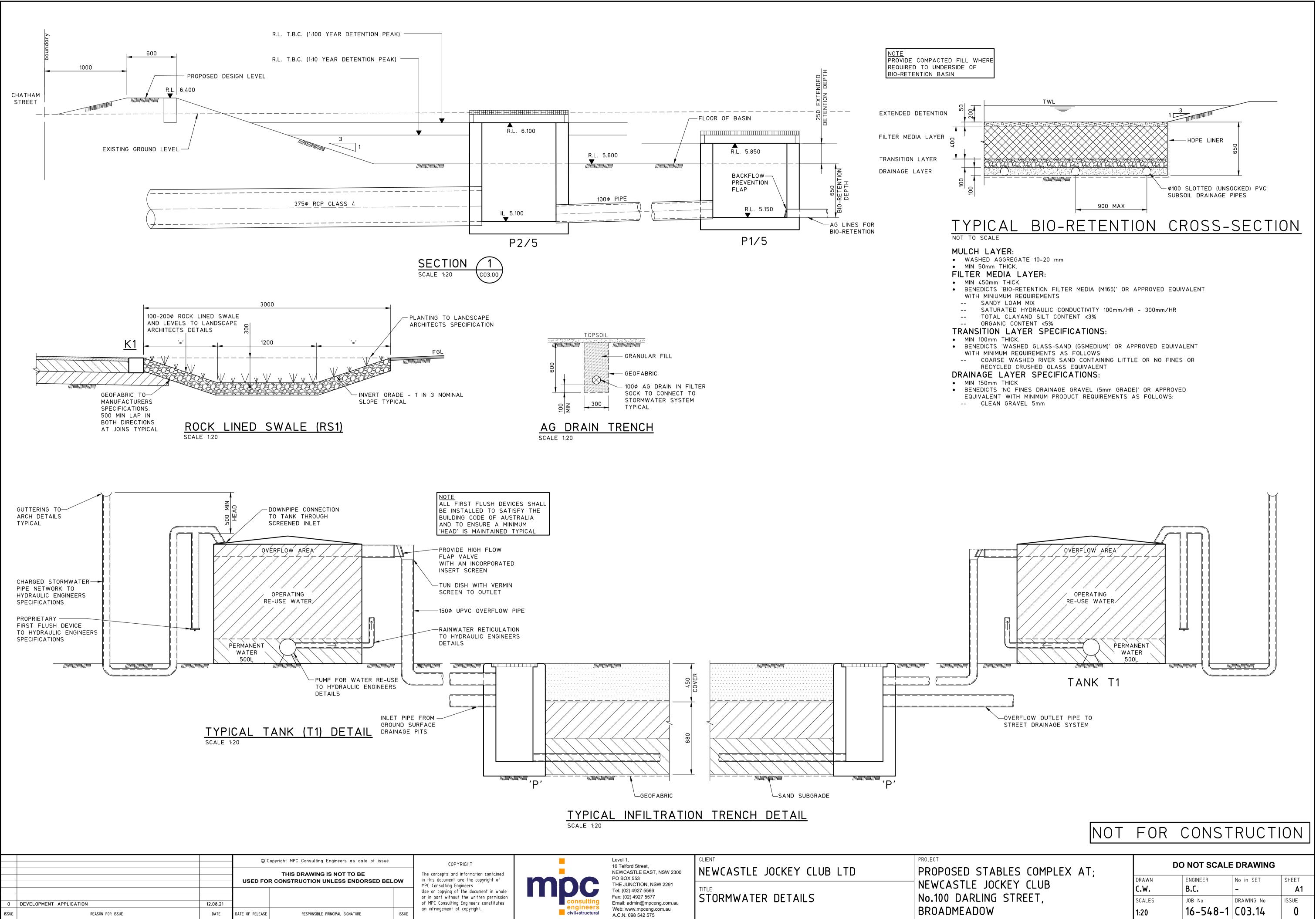








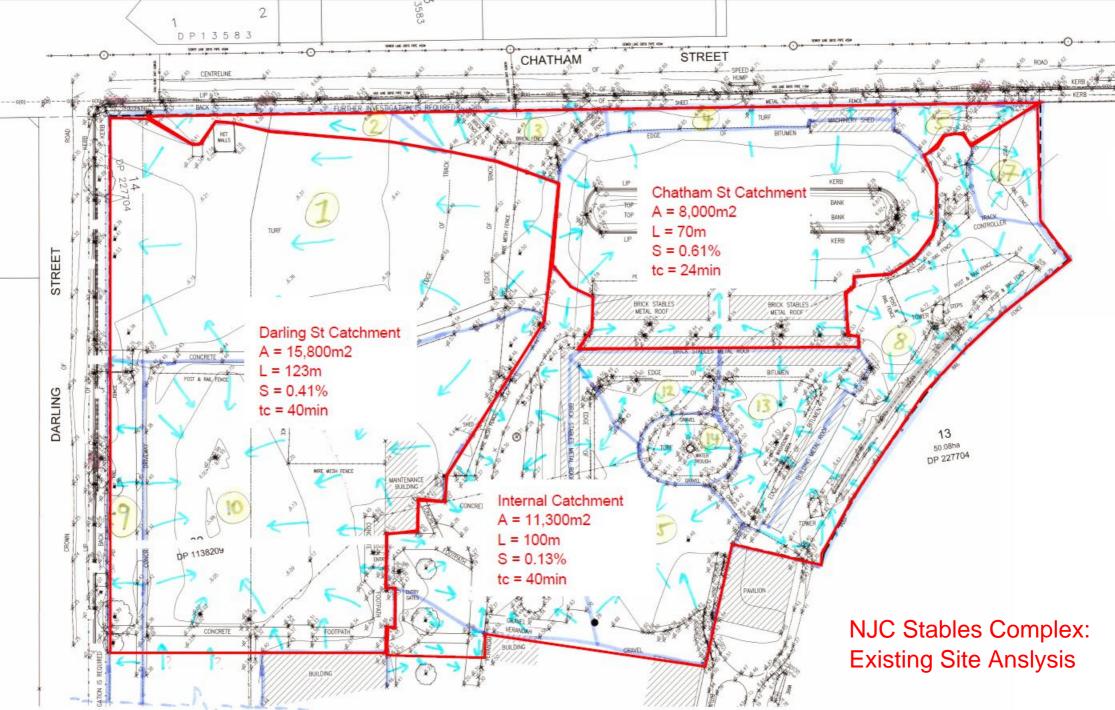
						PIT SC	HEDUL	E				
	LINE	PIT No.	SIZE	TYPE	SURFACE LEVEL S.L.	INVERT LEVEL	LINE	PIT No.	SIZE	TYPE	SURFACE LEVEL S.L.	INVERT LEVE
	LINE 1	P1/1	600×600	GRATED PIT	6.360	5.708	LINE 11	P1/11	600×600	GRATED PIT	6.600	6.150
		P2/1	2400 LINTEL	GRATED KIP	6.250	5.800		P2/11	600×600	GRATED PIT	6.600	6.003
		P3/1	2400 LINTEL	GRATED KIP	6.250	5.857	_	P3/11	900×900	GRATED PIT	6.500	5.170
, REFER TO ARCHITECTURAL DRAWING	۶.	P4/1	2400 LINTEL	GRATED KIP	6.250	5.808		P4/11	900×900	GRATED PIT	6.500	5.170
NGS CLASS 2 TO AS4058.		P5/1	2400 LINTEL	GRATED KIP	6.250	5.744	LINE 12	P1/12	600×600	GRATED PIT	6.600	6.150
		P6/1 P7/1	2400 LINTEL 900×900	GRATED KIP JUNCTION PIT	6.320 6.620	5.682	-	P2/12 P3/12	600×600 900×900	GRATED PIT	6.600	6.003 5.170
, LIGHT DUTY ELSEWHERE,	LINE 2	P1/2	600×600	GRATED PIT	6.710	6.068	-	P4/12	900×900	GRATED PIT	6.500	5.170
		P2/2	600×600	GRATED PIT	6.780	6.003		P5/12	600×600	GRATED PIT	6.660	6.440
E AREAS, REFER TO CLAUSE 3.8		P3/2	600×600	GRATED PIT	6.680	5.873	LINE 13	P1/13	600×600	GRATED PIT	6.600	6.280
D STORMWATER PIPE TRENCHES. /ATER SYSTEM.	LINE 3	P1/3	600×600	GRATED PIT	6.790	6.218	1	P2/13	600×600	GRATED PIT	6.600	6.170
D OF SEDIMENT		P2/3	600×600	GRATED PIT	6.710	6.207	-	P3/13	600×600	GRATED PIT	6.600	6.060
		P3/3	600×600	JUNCTION PIT	6.920	6.187		P4/13	600×600	GRATED PIT	6.710	6.250
) TO CURRENT COUNCIL REQUIREMENT	5.	P4/3	600×600	GRATED PIT	6.710	5.999		P5/13	600×600	GRATED PIT	6.770	6.060
		P5/3	600×600	JUNCTION PIT	6.920	5.979		P6/13	600×600	GRATED PIT	6.790	5.960
T PITS P1, P10-P11 TO BE SILT TI		P6/3	600×600	JUNCTION PIT	6.920	5.905		P7/13	600×600	GRATED PIT	6.500	5.860
PROVIDE 300 MIN EXTRA DEPTH FROM PIPE INVERT LEVEL (IL) 1		P7/3	600×600	GRATED PIT	6.710	5.771	LINE 14	P1/14	600×600	GRATED PIT	6.600	6.150
		P8/3	600×600	JUNCTION PIT	6.920	5.751		P2/14	900×900	GRATED PIT	6.600	6.003
<u>NOTE</u> PROVIDE EXTRA SLEEPERS UND		P9/3	600×600	GRATED PIT	6.710	5.630	-	P3/14	900×900	GRATED PIT	6.500	5.170
BOUNDARY FENCE TO RETAIN S	OIL	P10/3	600×600	JUNCTION PIT	6.860	5.610	-	P4/14	600×600	GRATED PIT	6.500	5.170
AS REQUIRED (400 MAX RETAIN TYPICAL		P11/3	600x600	JUNCTION PIT	6.630	5.438		P5/14	600×600	GRATED PIT	6.660	6.470
		P1/4	900×900 900×900	GRATED INLET PIT	5.800	5.120	LINE 15	P1/15 P2/15	600×600 600×600	GRATED PIT	6.480	5.801
<u>NOTE</u> ALL STRIP DRAINS AND AG LIN		P2/4 P3/4	600×600	JUNCTION PIT	5.900 6.230	5.000	-	P2/15 P3/15	600×600	GRATED PIT	6.480	5.581
BEHIND RETAINING WALLS (RW1) AND KERBS (K1) TO CONNECT T		P3/4 P4/4	600×600	JUNCTION PIT	6.000	5.066	-	P 37 15 P 4 / 15	600×600	JUNCTION PIT	6.630	5.581
STORMWATER SYSTEM TYPICAL		P5/4	900×900	GRATED PIT	5.900	5.053	-	P5/15	600x600	JUNCTION PIT	6.630	5.235
NOTE		P6/4	900×900	GRATED PIT	6.100	5.200	-	P6/15	600×600	GRATED PIT	6.280	5.441
SETOUT AND ALIGNMENT OF	LINE 5	P1/5	900×900	GRATED INLET PIT	5.900	5.120	LINE 16	P1/16	600×600	GRATED PIT	6.630	6.030
WALLS TO BOUNDARY TO ARCHITECTS DETAILS TYPICAL		P2/5	900×900	GRATED INLET PIT	6.100	5.100	-	P2/16	600×600	GRATED PIT	6.550	5.830
	LINE 6	P1/6	600×600	GRATED PIT	6.300	5.868	LINE 17	P1/17	600×600	GRATED PIT	6.500	5.900
<u>NOTE</u> ALL SETOUT, DIMENSIONS		P2/6	900×900	GRATED PIT	6.320	5.635	-	P2/17	600×600	GRATED PIT	6.740	5.800
AND RL'S TO ARCHITECTS SPECIFICATION & DETAILS	LINE 7	P1/7	600×600	GRATED PIT	6.600	6.150		P3/17	600×600	GRATED PIT	6.800	5.700
SI ECHICATION & DETAILS		P2/7	600×600	GRATED PIT	6.600	6.003		P4/17	600×600	GRATED PIT	6.500	5.200
		P3/7	900×900	GRATED PIT	6.500	5.170		P5/17	2700 LINTEL	GRATED KIP	6.260	5.140
		P4/7	900×900	GRATED PIT	6.500	5.170	LINE 18	P1/18	600×600	GRATED PIT	6.710	5.770
	LINE 8	P1/8	600×600	GRATED PIT	6.600	6.300		P2/18	600×600	GRATED PIT	6.710	5.694
		P2/8	600×600	GRATED PIT	6.550	6.140		P3/18	600×600	GRATED PIT	6.710	5.620
		P3/8	900×900	GRATED PIT	6.500	5.170	LINE 19	P1/19	600×600	GRATED PIT	6.480	5.674
		P4/8	900×900	GRATED PIT	6.500	5.170	_	P2/19	600×600	GRATED PIT	6.480	5.599
		P5/8	600×600	GRATED PIT	6.430	6.240	-	P3/19	600×600	GRATED PIT	6.480	5.523
	LINE 9	P1/9	600×600	GRATED PIT	6.600	6.150		P4/19 GD1	600×600	GRATED PIT	6.480 REFER TO PLAN	5.458 200 MIN DE
-EXISTING DRAINAGE CHANNEL TO BE CLEANED, STRIPPED		P2/9 P3/9	600×600 900×900	GRATED PIT GRATED PIT	6.600 6.500	6.003 5.170	_	GD1 GD2	300 WIDE 300 WIDE	GRATED DRAIN	REFER TO PLAN	200 MIN DE 200 MIN DE
TRIMMED AND RE-VEGETATED		P4/9	900×900	GRATED PIT	6.500	5.170	-	GD3	300 WIDE	GRATED DRAIN	REFER TO PLAN	200 MIN DE
	LINE 10	P1/10	600×600	GRATED PIT	6.600	6.150	-	GD4	300 WIDE	GRATED DRAIN	REFER TO PLAN	200 MIN DE
		P2/10	600×600	GRATED PIT	6.600	6.003		ExP1	Ex PIT	JUNCTION PIT	6.120	4.820 (TBC
		P3/10	900×900	GRATED PIT	6.500	5.170	-	ExP2	Ex PIT	JUNCTION PIT	6.020	4.947 (TB
		P4/10	900×900	GRATED PIT	6.500	5.170		ExP3	Ex LINTEL	EXISTING KIP	5.780	4.961 (TB
No. and the second s		P5/10	600×600	GRATED PIT	6.550	6.340	1	ExP4	Ex LINTEL	EXISTING KIP	6.050	5.000 (TB
			•	-			1	ExP5	Ex LINTEL	EXISTING KIP	6.150	5.102 (TB
		<u>REFER</u> TO	<u>DRAWING</u>	C03.12 FOR L	EGEND			ExP6	Ex LINTEL	NEW JUNCTION PIT	6.260	5.070 (TB
								ExP7	Ex PIT	GRATED PIT	6.210 (GRATE)	4.760 (TB
			8									
					LOT 13 DP 227704		FOF		NSTRU	CTION	MATCH MATCH	
	ford Street,	CLIENT	דו ד וחרע	EY CLUB LTI	ן ח	PROPOSED S	STARIFO		Έχ ΔΤ.		DO NOT SCALE	DRAWING
	SASTIE EAST NEW 2000		ILL JULN	LI LLUD LIL		TINOPUJLU J			$- \wedge \wedge \downarrow$	DRAWN		
16 Te NEW	CASTLE EAST, NSW 2300 DX 553 IUNCTION NSW 2291											No in SET
16 Te NEW PO B THE Tel: (I	DX 553 JUNCTION, NSW 2291)2) 4927 5566	TITLE				NEWCASTLE				C.W.	B.C. ·	-
n n n n n n n n n n n n n n n n n n n	DX 553 IUNCTION, NSW 2291	TITLE	ATER PL	AN		NEWCASTLE No.100 DARL BROADMEAD	ING STR				B.C. ·	- DRAWING No


		DENOTES STORMWATER PIPE		DENOTES DIRECTION OF SURFACE FLOWS
2 ²		DENOTES CHARGED STORMWATER PIPE		DENOTES PERMEABLE PAVING TO LANDSCAPE ARCHITECTS DETAILS
	6.0	DENOTES EXISTING CONTOUR		DENOTES PROPRIETARY ABOVE-GROUND STORAGE TANK STORING ROOF RAINWATER TO MANUFACTURERS SPECIFICATION. TANK SHALL BE FITTE
	<u> </u>	DENOTES DESIGN CONTOUR	("T1" = 25,000 L "T2" = 15,000 L	WITH A FIRST FLUSH SYSTEM, PUMP TO SUPPLY TOILETS AND LAUNDRY AND A DIVERSION SWITCH TO MAINS SUPPLY ON TANK BEING EMPTY.
	00 ² .9+	DENOTES EXISTING LEVELS		BACK FLOW PREVENTION TO MAINS WATER SHALL BE PROVIDED. TANK TO OVERFLOW TO STORMWATER SYSTEM.
	* 6.710	DENOTES DESIGN SPOT LEVELS	AG	DENOTES 1000 AG DRAIN IN FILTER SOCK
	K1 K2	DENOTES 150 HIGH KERB U.N.O. DENOTES 150 WIDE EDGE STRIP	TYPE 1	DENOTES INFILTRATION TRENCH 25m LONG x 2m WIDE x 0.88m DEEP REFER TO DETAILS
	KZ K&G	FLUSH WITH THE ADJACENT PAVEMENT DENOTES 120 HIGH KERB AND GUTTER		DENOTES INFILTRATION TRENCH 12.5m LONG x 4m WIDE x 0.88m DEEP REFER TO DETAILS
	RW1/RW2	DENOTES RETAINING WALL		DENOTES 900×900 MANHOLE PIT LID
	LRW	DENOTES LANDSCAPE RETAINING WALL	\Rightarrow	DENOTES OVERLAND FLOW DIRECTION IN MAJOR STORM EVENT
	REB	DENOTES RETAINING EDGE BEAM TO BUILDING SLAB	(GPT)	DENOTES ECOSOL GPT-4200 GROSS POLLUTANT TRAP OR APPROVED EQUIVALENT TO MANUFACTURERS SPECIFICATION
	GS1	DENOTES 2000 WIDE × 200 MIN DEEP GRASS LINED SWALE, 1% MIN FALL UNO	RS1	DENOTES ROCK LINED TRAPAZOIDAL SPILLWAY CHANNEL, REFER TO DETAILS
EXISTING BUILDING				
MATCH S ² NOT FOR CONSTRUCTION MATCH SHEET 14	Sc ST 1.	STORMWATER PLA SHEET 13 ALE 1:100 ORMWATER NOTES REFER TO DRAWING CO3.11 FOR STORMWATER REFER TO DRAWING CO3.12 FOR LEGEND		HEDULE
MATCH 13	S SC ST 1. 2. PROJECT PROPC	SHEET 13 CALE 1:100 CORMWATER NOTES REFER TO DRAWING CO3.11 FOR STORMWATER	R NOTES AND PIT SCI	HEDULE

PROPOSED STABL NEWCASTLE JOCKE No.100 DARLING S BROADMEADOW

STORMWATER PLAN SHEET 14 SCALE 1:100 <u>STORMWATER NOTES</u> 1. REFER TO DRAWING CO3.11 FOR STORMWATER NOTES AND PIT SCHEDULE 2. REFER TO DRAWING CO3.12 FOR LEGEND

.ES COM	1PL	ΕX	AT	•					DO	ΝΟΤ	SCALE	E DR	AW	'ING		
EY CLU		_, ,		,			RAWN . W.			INGINEE B.C.	R	No ir —	n SET		SH	EET A1
STREET,						SC	CALES		J	OB No		DRAV	VING	No	ISS	UE
						1:	100			16-5	48-1	C0	3.1	3		2
ON ORIGINAL	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15 cm



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 cm

Appendix D

Stormwater Management Calculations

Pre-Developed site analysis Pre-Developed flow calculations DRAINS schematic DRAINS calculation summary

Project:NJC Chatham StJob No:16-548Subject:Chatham St Sub-Catchment - Pre-developed flow estimates

Date: 27.7.2021

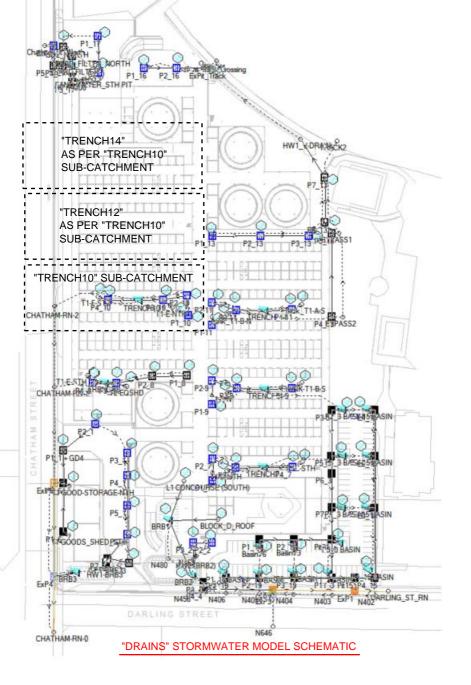
PRE-DEVELOPED SITE FLOWS - Chatham Street Sub-Catchment

Cub astabusent Na		Ch oth ora	
Sub-catchment No. Sub-catchment area	<u>م</u> –	Chatham 8000	m2
	A _{sub} =		
Sub-catchment length	L _{sub} =	70	m
Average slope	s =	0.0061	
Roughness	n =	0.2	
Runoff coefficients:	C ₅	0.48	
	C ₁₀	0.50	
	C ₂₀	0.53	
	C ₅₀	0.58	
	C ₁₀₀	0.61	
20% AEP Storm: (ARI=4.48)			
Initial trial time of concentration	t _{c_i} =	28	min
5 Yr Storm Rainfall Intensity	$I_{tc_5} =$	71.9	mm/hr
Calculated time of concentration	t _{c_5} =	28.2	min
Actual rainfall intensity (Minor storm)	$I_{tc_5} =$	71.9	mm/hr
Minor Flow	Q ₅ =	77	L/s
MINOR Storm: (ARI=10)			
Initial trial time of concentration	t _{c_i} =		min
10 Yr Storm Rainfall Intensity	$I_{tc_{10}} =$		mm/hr
Calculated time of concentration	$t_{c_{10}} =$	25.4	min
Actual rainfall intensity (Minor storm)	I _{tc_10} =	93.9	mm/hr
Minor Flow	Q ₁₀ =	105	L/s
MAJOR Storm: (ARI=20)			
Initial trial time of concentration	t _{c i} =	25	min
20 Yr Storm Rainfall Intensity	$I_{tc 20} =$		mm/hr
Calculated time of concentration	$t_{c_{20}} = t_{c_{20}} =$	25.4	
Actual rainfall intensity (Minor storm)			mm/hr
Minor Flow	$I_{tc_{20}} =$	110	
Minor Flow	Q ₂₀ =	110	L/5
MAJOR Storm: (ARI=50)			
Initial trial time of concentration	t _{c_i} =	21	min
50 Yr Storm Rainfall Intensity	$I_{tc_{50}} =$	152	mm/hr
Calculated time of concentration	$t_{c 50} =$	20.9	min
Actual rainfall intensity (Minor storm)	$I_{tc_{50}} =$	152	mm/hr
Minor Flow	Q ₅₀ =	196	L/s
	00		
MAJOR Storm: (ARI=100)			
Initial trial time of concentration	t _{c_i} =	20	min
100 Yr Storm Rainfall Intensity	I _{tc_100} =	180	mm/hr
Calculated time of concentration	t _{c_100} =	19.6	min
Actual rainfall intensity (Minor storm)	I _{tc_100} =	180	mm/hr
Minor Flow	Q ₁₀₀ =	242	L/s

Project:NJC Chatham StJob No:16-548Subject:Darling St Sub-Catchment - Pre-developed flow estimates

Date: 27.7.2021

PRE-DEVELOPED SITE FLOWS - Darling Street Sub-Catchment


Sub-catchment No.	<u> </u>	Darling 15800	
Sub-catchment area	A _{sub} =	123	
Sub-catchment length	L _{sub} = s =	0.0041	m
Average slope Roughness	s = n =	0.0041	
Roughness		0.2	
Runoff coefficients:	C ₅	0.48	
	C ₁₀	0.50	
	C ₂₀	0.53	
	C ₅₀	0.58	
	C ₁₀₀	0.61	
20% AEP Storm: (ARI=4.48)		50	
Initial trial time of concentration	t _{c_i} =		min "
5 Yr Storm Rainfall Intensity	$I_{tc_5} =$		mm/hr
Calculated time of concentration	t _{c_5} =	51.9	
Actual rainfall intensity (Minor storm)	$I_{tc_5} =$		mm/hr
Minor Flow	Q ₅ =	104	L/s
MINOR Storm: (ARI=10)			
Initial trial time of concentration	t _{c_i} =	47	min
10 Yr Storm Rainfall Intensity	$I_{tc_{10}} =$		mm/hr
Calculated time of concentration	$t_{c 10} =$	46.6	
Actual rainfall intensity (Minor storm)	$I_{tc 10} =$		mm/hr
Minor Flow	$Q_{10} =$	142	
	-10		
MAJOR Storm: (ARI=20)			
Initial trial time of concentration	t _{c_i} =	43	min
20 Yr Storm Rainfall Intensity	$I_{tc_{20}} =$	80.9	mm/hr
Calculated time of concentration	t _{c_20} =	42.6	min
Actual rainfall intensity (Minor storm)	I _{tc_20} =		mm/hr
Minor Flow	Q ₂₀ =	188	L/s
MAJOR Storm: (ARI=50)			
Initial trial time of concentration	t _{c i} =	38	min
50 Yr Storm Rainfall Intensity	$I_{tc} = \frac{1}{50}$		mm/hr
Calculated time of concentration	$t_{c 50} =$	38.0	
Actual rainfall intensity (Minor storm)	$I_{tc_{50}} =$		mm/hr
Minor Flow	$Q_{50} =$	272	
	Q 50	212	L/3
MAJOR Storm: (ARI=100)			
Initial trial time of concentration	t _{c_i} =	35	min
100 Yr Storm Rainfall Intensity	$I_{tc_{100}} =$	130	mm/hr
Calculated time of concentration	t _{c_100} =	35.2	min
Actual rainfall intensity (Minor storm)	I _{tc_100} =	130	mm/hr
Minor Flow	Q ₁₀₀ =	345	L/s

Project:NJC Chatham StJob No:16-548Subject:Internal Sub-Catchment - Pre-developed flow estimates

Date: 27.7.2021

PRE-DEVELOPED SITE FLOWS - Internal Sub-Catchment

Sub astabaset No		Informal	
Sub-catchment No. Sub-catchment area	A _{sub} =	Internal 11300	m2
Sub-catchment length	$L_{sub} =$	100	
Average slope	⊂ _{sub} s =	0.0013	
Roughness	n =	0.0013	
Runoff coefficients:	C ₅	0.48	
	C ₁₀	0.50	
	C ₂₀	0.53	
	C ₅₀	0.58	
	C ₁₀₀	0.61	
20% AEP Storm: (ARI=4.48) Initial trial time of concentration	t . =	70	min
5 Yr Storm Rainfall Intensity	t _{c_i} = I _{tc_5} =		mm/hr
Calculated time of concentration	$t_{c_5} = t_{c_5} =$	69.8	
Actual rainfall intensity (Minor storm)	$I_{tc_5} =$		mm/hr
Minor Flow	$Q_5 =$		L/s
	C 5	01	2/0
MINOR Storm: (ARI=10)			
Initial trial time of concentration	t _{c_i} =	63	min
10 Yr Storm Rainfall Intensity	I _{tc_10} =		mm/hr
Calculated time of concentration	t _{c_10} =	62.7	
Actual rainfall intensity (Minor storm)	$I_{tc_{10}} =$		mm/hr
Minor Flow	Q ₁₀ =	84	L/s
MAJOR Storm: (ARI=20)			
Initial trial time of concentration	t _{ci} =	57	min
20 Yr Storm Rainfall Intensity	$I_{tc 20} =$		mm/hr
Calculated time of concentration	$t_{c 20} =$	57.0	
Actual rainfall intensity (Minor storm)	I _{tc_20} =		mm/hr
Minor Flow	$Q_{20} =$	113	L/s
	20		
MAJOR Storm: (ARI=50)			
Initial trial time of concentration	t _{c_i} =		min
50 Yr Storm Rainfall Intensity	$I_{tc_{50}} =$		mm/hr
Calculated time of concentration	t _{c_50} =	51.1	
Actual rainfall intensity (Minor storm)	$I_{tc_{50}} =$		mm/hr
Minor Flow	Q ₅₀ =	162	L/s
MAJOR Storm: (ARI=100)			
Initial trial time of concentration	t _{c i} =	48	min
100 Yr Storm Rainfall Intensity	$I_{tc_{100}} =$	106	mm/hr
Calculated time of concentration	$t_{c_{100}} =$	47.6	min
Actual rainfall intensity (Minor storm)	I _{tc_100} =	106	mm/hr
Minor Flow	Q ₁₀₀ =	201	L/s

PIT / NODE DETAILS			Version 15	5																	
Name	Туре	Family	Size	Ponding	Pressure	Surface	Max Pond		Blocking	х	у	Bolt-down	id			Pit is	Internal			fe Major Safe	
				Volume	Change	Elev (m)	Depth (m)		Factor			lid		Shock Loss	Hydrograph	ı	Width	Misaligneo		pt Pond Dept	h
				(cu.m)	Coeff. Ku			(cu.m/s)	-								(mm)		(m)	(m)	
P4_13	OnGrade				1.5	6.71		0	0		-254767.77		38			New	900	Yes			
P5_13 P6 13		Grated inle			1.5 2.1	6.79 6.78		0	0		-216062.77 -210966.78		91 90			New New	900	No			
P7 13		Grated inle			1.5	6.50		-	0		-210900.78		90 95			New	900	No			
HW1 V-DRAIN	Node	Oraled Init	3007300		1.5	5.73		0	0		-172554.09		844		No	INCW	300	NO			
P1-11		Grated inle	600x600	3.7	2.8	6.6			0.5		-258577.77		42			New	600	No	0.10	0.15	
P2-11		Grated inle		3.7	2.6	6.6			0.5		-248267.77		41	1 x Ku	No		600	Yes	0.10	0.15	
P3-11		Grated inle	900x900	14	1.8	6.5			0.5		1-251577.77		40	1 x Ku	No	New	900	No	0.15	0.30	
P3_1			3.0m Linte		2.0	6.25		0	0.5		-317871.98		55			New	900	No	0.15	0.30	
P4_1			2.4m Linte		4.7	6.25			0.5		-328326.84		74278			New		No	0.15	0.30	
P5_1	v		2.4m Linte		5.1	6.25			0.5		-342200.70		74480			New	900	No	0.15	0.30	
P6_1			2.4m Linte	2.4	1.6	6.25			0.5	-864178.62	-355519.60	No	74671			New	900	No	0.15	0.30	
P7_1		Grated inle			1.3	6.62		0	0		-366716.74		51			New	900	No			
GPT-BRB3		Grated inle	900x900		1.3	6.625		0	0		-368501.77		50			New	900	No			
HW1-BRB3 P2 1	Node Sag		2.4m Linte	115	4.9	5.60 6.25		0	0.5		-371252.45 -304676.38		76266 56		No No	New	900	No	0.15	0.25	
P2_1 P1 1+GD4		Grated inle		94.3	1.9	6.36			0.5		-304676.30		57			New	900	Yes	0.15	0.25	
P2 6		Grated inle			2.7	6.32		-	0		-331911.59		58				900	Yes			
ExP5			2.4m Linte		5.9	6.15		-	0		-331763.52		117748				900	No			
ExP4			2.4m Linte		0.9	6.05			0.5		-375073.69		118365				900	No	0.15	0.30	
CHATHAM-RN-0	Node			1		6.19		0			-401070.25		121172		No	5					
P2_2	Sag	Grated inle	600x600	2.6	5.2	6.78	0.08	0	0.5		-359454.36		67	1 x Ku	No	New	600	No	0.08	0.20	
P3_2	Sag	Grated inle	600x600	1.3	4.7	6.68	0.08	0	0.5		-359454.36		66	1 x Ku	No	New	600	Yes	0.08	0.20	
HW2 (BRB2)	Node					5.8		0			-367050.32		52843		No						
GD2_NORTH		Grated inle			5.9	6.45		0	0		7-129650.08		100			New	900	No			
SAND_FILTER_NORTH		Grated inle			0.0	6.80		0	0		1-133882.84		110			New	900	No			
P4_27		Grated inle			0.2	6.50		0	0		-138449.95		99			New	900	No			
P5_17	OnGrade				1.5	6.27		0	0		-138435.98		98			New	600	Yes	0.45	0.50	
ExP6 Chatham St - North	Sag Node	Grated Inte	900x900	130	0.3	6.26 6.27		0 0	0.5		-129160.17 -129186.36		97 805		No No	New	900	Yes	0.15	0.50	
P1 17		Grated inle	0002000	30	2.9	6.50			0.5		-129166.30		103			New	900	No	0.20	0.30	
P1_17 P2_17		Grated inle		12	1.5	6.74			0.5		-124071.73		497			New	900	Yes	0.20	0.30	
P1 16		Grated inle		6	5.2	6.63			0.5		-139457.59		104			New	900	No	0.10	0.30	
P2 16		Grated inle		10	1.8	6.55			0.5		1-139457.59		105			New	900	No	0.15	0.30	
ExPit Track	v	Grated inle	1200x1200	120	7.9	5.59			0.5		-139526.30		108	1 x Ku	No	Existing	1200	Yes	0.61	0.93	
JP at Track Crossing	Node					6.37		0		-830096.26	-137200.94		842		No	Ŭ					
Tank_T1-B-N	Node					6.5		0			-253777.21		285		No						
Tank_T1-A-S	Node					6.5		0			-249188.99		328		No						
P4-11	Sag	Grated inle		14	1.8	6.5			0.5		-251537.67		317			New		No	0.15	0.30	
P1-9			600x600		2.8	6.6			0.5		-295337.78		378			New		No	0.10	0.15	
P2-9 P3-9	v		600x600		2.3 1.8	6.6 6.5			0.5 0.5		1-284456.24 -287785.16		380 403			New New		No No	0.10	0.15 0.30	
T1-C-N	Sag Node	Grated Inte	900x900	14	1.0	6.5 6.5		0	0.5		-290169.00		390		No	new		INO	0.15	0.30	
TANK-T1-B-S	Node					6.5		0			-285392.52		417		No						
P4-9		Grated inle	900x900	14	1.8	6.5			0.5		-287851.88		412			New		No	0.15	0.30	
TRACK1	Node			1		6.04		0			-136342.96		1045		No						
P1_13		Grated inle	900x900	5	5.9	6.60			0.5		-217311.43		1148			New	900	No	0.15	0.30	
P2_13	Sag		900x900	18	5.9	6.60	0.25	0	0.5	-802600.75	-217232.90	No	1144	1 x Ku	No	New	900	No	0.15	0.30	
P3_13	Sag	Grated inle	900x900	11	2.0	6.60	0.25	0	0.5		-217237.77		89			New	900	No	0.15	0.30	
TRACK2	Node					6.37		0			-173487.44		1214		No						
BYPASS2	Node					6.65		0			1-254927.81		1392		No						
BYPASS1	Node	Orat 111	000000		4.5	6.60		0	0		-216164.79		1394		No	N		Ma a			
P3-3	OnGrade				1.5	6.92		0	0		-297932.80		30			New	000	Yes			
P5_3 P6 3	OnGrade			-	1.8 0.2	6.92 6.92		0	0		-319331.81 -327308.09		1689 1735			New	900 900	No No			
P6_3 P7 3	OnGrade OnGrade				1.2	6.92 6.92		0	0		-327308.08		1735			New New	900	NO			
Pit21		Grated inle		1	2.1	6.860		0	0		-343254.37		20			New	900	No			
P11_3		Grated inle			1.3	6.63		0	0		-375857.77		15			New		No			
Pit15		Grated inle		1	2.3	6.630		0	0		-375857.77		14			New	900	Yes			
ExP1	OnGrade				1.9	6.12		0	0		-381882.56		32910				900	Yes			
DARLING ST RN	Node			1		6.09		0			-382077.63		33012		No						
P1_15		Grated inle	900x900	1	1.5	6.480		0	0		-297955.55		28	1 x Ku	No	New	900	No			
P2 15		Grated inle			2.1	6.48		0	0		-319355.55		27		No	New	900	No			

P4_15	OnGrade	Grated inle	900x900	2.5	6.48		0	0	-749693.23	-375857.77Yes	13	1 x Ku	No	New	900	Yes			
BLOCK_D_ROOF	Node				7		0		-822499.52	-348744.928	16868		No						
P3 4	OnGrade	Grated inle	900x900	0.0	6.23		0	0	-829071.99	-377968.81Yes	6	1 x Ku	No	New	900	Yes			
P4_4	OnGrade	Grated inle	900x900	0.2	6.0		0	0		-380874.88Yes	7	1 x Ku	No	New	900	Yes			
		Grated inle		2.0	6.02		0	0		-381299.38Yes	33247	1 x Ku	No	Existing	900	Yes			
		Grated inle		1.3	6.630		0	0		-375857.77Yes	16	1 x Ku	No	New	900	No			
_		Grated inle		1.8	6.63		0	0		-375857.77Yes	17	1 x Ku	No	New	900	No			
		Grated inle		0.9			0	0		-375710.13 Yes	25794	1 x Ku	No		900				
		Grated mie	9008900	0.9	6.63		•	0				I X NU		New	900	No			
-	Node				5.94		0			-384017.368	30043		No						
	Node				5.87		0			1-383722.576	30160		No						
	Node				5.81		0			-383398.305	30235		No						
	Node				5.803		0			-383250.909	30385		No						
N406	Node				5.866		0		-818593.49	-382956.117	30481		No						
ExP3	Sag	NEWCAST	2.4m Lintel 240	7.9	5.78	0.49	0	0.5	-796866.16	-383181.33No	32056	1 x Ku	No	Existing	900	Yes	0.15	0.22	
P2 18	OnGrade	Grated inle	900x900	1.5	6.86		0	0	-787193.23	-358057.77Yes	19	1 x Ku	No	New	900	No			
_		Grated inle		1.8	6.86		0	0		-358057.77Yes	18	1 x Ku	No	New	900	No			
-	Node			1.0	6.16		0	•		-378257.136	46775	TATG	No		000				
	Node				5.944		0			-382459.688	50539		No						
	Node				6.4		0			-365522.128	53656		No						
					0.4		v												
	Node				/		0			-330964.006	56961		No						+
	Node				6.0		0			-366775.253	58595		No					-	
	0		600x600 3.7	2.8	6.6	0.1	0	0.5		-330787.95No	63010	1 x Ku	No	New		No	0.10	0.15	
	5	Grated inle	600x600 3.7	2.3	6.6	0.1		0.5		-320665.15No	63119	1 x Ku	No	New		No	0.10	0.15	
P3_7	Sag	Grated inle	900x900 14	1.8	6.5	0.2	0	0.5	-814049.18	-324802.30No	63237	1 x Ku	No	New		No	0.15	0.30	
T1-D-NTH	Node				6.5		0			-326125.110	63683		No						
	Node				6.5		0	1		-322102.886	64590		No						
		Grated inle	900x900 14	1.8	6.5	0.2	0	0.5		-324538.22No	63354	1 x Ku	No	New		No	0.15	0.30	
-	Node			1.0	6.35	0.2	0	0.0		-356051.925	85816	T X T G	No	1101			0.10	0.00	
		Grated inle	6007600	1.2	6.30		0	0		-354321.05Yes	63	1 x Ku	No	New	600	Yes			
		Grateu inie	000000	1.2			0	0				I X Ku		INEW	000	Tes			
	Node	<u> </u>			6.35		0			-333253.948	86315	4 14	No						
—		Grated inle		4.5	6.6		0	0		-282071.90No	90566	1 x Ku	No	New	600	No			
—		Grated inle	600x600	3.3	6.55		0	0		-282299.11No	90813	1 x Ku	No	New	600	No			
—	Sag	Grated inle	900x900 14	1.8	6.5	0.2	0	0.5		-285474.75No	70	1 x Ku	No	New	900	No	0.15	0.30	
T2-EQSHD	Node				6.5		0		-864582.22	-287149.517	91746		No						
T1-E-STH	Node				6.5		0		-882693.9	1-281862.036	94069		No						
P4 8	Sag	Grated inle	900x900 14	1.8	6.5	0.2	0	0.5	-880319.93	-285474.75No	69	1 x Ku	No	New	900	No	0.15	0.30	
-	Node	-			6.20	-	0			1-287449.612	97152		No						
-		Grated inle	600x600 3.7	2.8	6.6	0.1	0	0.5		1-254174.86No	103436	1 x Ku	No	New		No	0.10	0.15	
-		Grated inle		2.3	6.6	0.1	•	0.5		-244851.62No	103530	1 x Ku	No	New		No	0.10	0.15	
	0						0								000				
	U	Grated mie	900x900 14	1.8	6.5	0.2	•	0.5		-246970.54No	103840	1 x Ku	No	New	900	No	0.50	0.40	
	Node				6.5		0			-250650.059	104045		No						
T1-F-STH	Node				6.5		0			-245422.838	107970		No						
	Sag	Grated inle	900x900 14	1.8	6.5	0.2	0	0.5		-247055.30No	106798	1 x Ku	No	New		No	0.20	0.40	
CHATHAM-RN-2	Node				6.300		0			-250077.481	109193		No						
N646	Node				5.78		0			-398236.965	126392		No		L				
GD3	OnGrade	Grated inle	900x900	5.0	6.440		0	0	-863367.84	-368856.63No	131576	1 x Ku	No	New	600	No			
	Node				6.78		0	1		1-142962.757	522		No						
	OnGrade	Grated inle	900x900	3.0	6.80		0	0		-146012.33Yes	102	1 x Ku	No	New	900	Yes			
	OnGrade			1.3	6.80		0	0		-144926.06Yes	101	1 x Ku	No	New	900	No		-	
	OnGrade			0.2	6.80		0	0		-143566.10No	101	1 x Ku	No	New	900	No	-	-	+
SAND_FILLER_STEPT	UllGlade		3007300	0.2	0.00		0	U	-009004.3	- 143300. IUNO	109	I X NU	INU	INEW	300	INU			+
									_									_	<u> </u>
DETENTION BASIN DETAILS		<u> </u>										a	l				-		
			Not Used Outlet Ty	vpe K	Dia(mm)	Centre RL	Pit Family	Pit Type	х	y HED	Crest RL	Crest Len	3						
		31.6	None						-800798.46	-252083.82No			347						
	5.95	31.6																	
		1.62																	
		1.62						1											
		31.6						1											+
		140						1	-								-		+
		248					-		-							_			+
													+						+
		600																	<u> </u>
		620																	
		0.81	Culvert	2					-889985.00	-138377.33No			487						
	5.63	0.81						1											
		8						1											
		8					1					1				-			
		0.81					+	1											
		0.81		-		-	+		-			-	+						+
	0.0	0.01				1	1	1				1	1		1				

TRENCH9	5.07 31.6	None		-800600.49-288516.79No	1537		
	5.95 31.6						
	5.951 1.62						
	6.5 1.62						
	6.501 31.6						
	6.55 140						
	6.6 248						
	6.7 600						
	6.8 620						
P2_3 BASIN	6.61 6	Pit/Sump	Grated inle 600x600	-764445.68-297976.02No	3317		
	6.709 6	· · · · · · · · · · · · · · · · · · ·					
	6.71 20						
	6.8 46						
	6.86 50						
P1_15 BASIN	6.38 6	Pit/Sump	Grated inle 600x600	-752853.52-297949.07No	4453		
	6.479 6						
	6.48 20						
	6.59 46						
	6.74 50						
				750000 04 040457 0514	7100		
P2_15 BASIN	6.38 6	Pit/Sump	Grated inle 600x600	-753002.31-319457.95No	7100		
	6.479 6						
	6.48 33						
	6.59 90						
	6.74 100						
P4_3 BASIN	6.61 6	Pit/Sump	Grated inle 600x600	-764499.19-319369.51No	8150		
			Grated IIIE 000x000	-10-77-00.13-010000.0 INU	0130		
	6.71 33						
	6.8 90						
	6.86 100						
P3_15 BASIN	6.38 6	Pit/Sump	Grated inle 600x600	-753193.92-343390.14No	9202		
	6.479 6						
	6.59 90						
	6.74 100						
P7_3 BASIN	6.61 6	Pit/Sump	Grated inle 600x600	-764731.49-343312.27No	9285		
	6.709 6						
	6.71 33						
	6.8 90						
DO O DA ONI	6.86 100	577.0		700004 50 050700 0011	40070		
P9_3 BASIN	6.61 12	Pit/Sump	Grated inle 600x600	-766061.59-359720.62No	10270		
	6.709 12						
	6.71 68						
	6.82 68						
	6.89 286						
P4 15 BASIN	6.28 18	Pit/Sump	Grated inle 600x600	-752434.56-372521.28No	11005		
	6.479 32	1 le Oump	Clated line 600x000	-732434.30-372321.2010	11000		
	6.48 60						
	6.63 120						
	6.89 195						
BRB1	5.2 0.81	Pit/Sump	Grated inle 900x900	-844945.73-349097.02No	57810		
	5.699 0.81						
	5.7 80						
	6.4 146						
1		Dit/Ourses		924247 64 274042 2011-	40000		
PPP2	E 1 0 0 4	Pit/Sump	Grated inle 900x900	-834347.66-374912.39No	49280		
BRB2	5.1 0.81						
BRB2	5.599 0.81						
BRB2	5.599 0.81 5.6 180						
BRB2	5.599 0.81 5.6 180 6.2 280						
BRB2	5.599 0.81 5.6 180 6.2 280						
	5.599 0.81 5.6 180 6.2 280 6.3 350		Grated inle 600x600	-771353 69-373621 59No	24980		
	5.599 0.81 5.6 180 6.2 280 6.3 350 6.38 6	Pit/Sump	Grated inle 600x600	-771353.65-373621.55No	24980		
BRB2 P11_3 BASIN	5.599 0.81 5.6 180 6.2 280 6.3 350 6.38 6 6.479 6		Grated inle 600x600	-771353.69-373621.59No	24980		
	5.599 0.81 5.6 180 6.2 280 6.3 350 6.38 6 6.479 6 6.48 20		Grated inle 600x600	-771353.69-373621.59No	24980		
	5.599 0.81 5.6 180 6.2 280 6.3 350 6.38 6 6.479 6 6.48 20 6.59 90		Grated inle 600x600	-771353.69-373621.59No	24980		
P11_3 BASIN	5.599 0.81 5.6 180 6.2 280 6.3 350 6.38 6 6.479 6 6.48 20 6.59 90 6.74 100	Pit/Sump					
P11_3 BASIN	5.599 0.81 5.6 180 6.2 280 6.3 350 6.38 6 6.479 6 6.59 90 6.74 100 6.38 6			-771353.69-373621.59No	24980		
	5.599 0.81 5.6 180 6.2 280 6.3 350 6.38 6 6.479 6 6.59 90 6.74 100 6.38 6	Pit/Sump					
P11_3 BASIN	$\begin{array}{c cccc} 5.599 & 0.81 \\ \hline 5.6 & 180 \\ \hline 6.2 & 280 \\ \hline 6.3 & 350 \\ \hline 6.38 & 6 \\ \hline 6.479 & 6 \\ \hline 6.48 & 20 \\ \hline 6.59 & 90 \\ \hline 6.74 & 100 \\ \hline 6.38 & 6 \\ \hline 6.479 & 6 \\ \end{array}$	Pit/Sump					
P11_3 BASIN	$\begin{array}{c cccc} 5.599 & 0.81 \\ \hline 5.6 & 180 \\ \hline 6.2 & 280 \\ \hline 6.3 & 350 \\ \hline 6.38 & 6 \\ \hline 6.479 & 6 \\ \hline 6.48 & 20 \\ \hline 6.59 & 90 \\ \hline 6.74 & 100 \\ \hline 6.38 & 6 \\ \hline 6.479 & 6 \\ \hline 6.48 & 20 \\ \hline \end{array}$	Pit/Sump					
P11_3 BASIN	$\begin{array}{c cccc} 5.599 & 0.81 \\ \hline 5.6 & 180 \\ \hline 6.2 & 280 \\ \hline 6.3 & 350 \\ \hline 6.38 & 6 \\ \hline 6.479 & 6 \\ \hline 6.48 & 20 \\ \hline 6.59 & 90 \\ \hline 6.74 & 100 \\ \hline 6.38 & 6 \\ \hline 6.479 & 6 \\ \end{array}$	Pit/Sump				Image: set of the set of th	

	0.00	0		D:+/0	-		1	One to all inde	000000	000000.00	070005 00	AL.	1		05074			Т
P2_19 BASIN	6.38 6.479	6 6		Pit/Sump)			Grated inle	600x600	-803089.33	-3/3825.3	INO			25271			ł
	6.479	20																+
	6.59	90																
	6.74	100																
P1 19 BASIN	6.38	6		Pit/Sump	2			Grated inle	600x600	-819746.72	-373774 4	1No			25525			t
	6.479	6		i iu ourrip	-			Cratod mit	000,000	010110.12	0101111				20020			t
	6.48	20																
	6.59	90																
	6.74	100																
Basin73	6.61	6		Pit/Sump	2			Grated inle	600x600	-787230.00	-361277.12	No			42163			ľ
	6.709	6																
	6.71	33																
	6.8	90																
	6.86	100																
Basin76	6.61	6		Pit/Sump	2			Grated inle	600x600	-803140.27	-361701.62	No			42724			
	6.709	6																
	6.71	33																
	6.8	90																Ļ
	6.86	100																
TRENCH7	5.07	31.6		None						-801211.77	-324643.45	No			64276			
	5.95	31.6																
	5.951 6.5	1.62 1.62			_									_				1
	6.501 6.55	31.6 140																-
	6.6	248																
	6.7	600																-
	6.8	620																
BRB3	5.1	0.81		Pit/Sump	<u>,</u>			Grated inle	0002000	-887985.60	-373335 60	No			82268			
	5.599	0.81		r ia Ourrip	,			Grated mile	500,500	-007 505.00	-010000.00				02200			t
	5.6	69																T
	6.4	143																
	6.5	180																T
TRENCH8	5.07	50		None						-874672.30	-285494.46	No			96056			
	5.95	50										-						
	5.951	1.62																
	6.5	1.62																
	6.501	50																
	6.55	140																
	6.6	248																
	6.6 6.7	600																
TRENCH10	6.7 6.8 5.07	600 620 31.6		None						-858897.47	-247127.94	No			106594			
TRENCH10	6.7 6.8 5.07 5.95	600 620 31.6 31.6		None						-858897.47	-247127.94	4No			106594			
TRENCH10	6.7 6.8 5.07 5.95 5.951	600 620 31.6 31.6 1.62		None						-858897.47	-247127.94	No			106594			
TRENCH10	6.7 6.8 5.07 5.95 5.951 6.5	600 620 31.6 31.6 1.62 1.62		None						-858897.47	-247127.94	4No			106594			
TRENCH10	6.7 6.8 5.07 5.95 5.951 6.5 6.501	600 620 31.6 1.62 1.62 31.6 31.6		None						-858897.47	-247127.94	4No			106594			
TRENCH10	6.7 6.8 5.07 5.95 5.951 6.5 6.501 6.55	600 620 31.6 1.62 1.62 31.6 1.62 31.6 140		None						-858897.47	-247127.94	4No			106594			
TRENCH10	6.7 6.8 5.07 5.95 5.951 6.5 6.501 6.55 6.6	600 620 31.6 1.62 1.62 31.6 31.6 1.40 248		None						-858897.47	-247127.94	No			106594			
TRENCH10	6.7 6.8 5.07 5.95 6.5 6.5 6.501 6.55 6.6 6.7	600 620 31.6 1.62 1.62 31.6 1.62 31.6 600		None						-858897.47	-247127.94	No			106594			
TRENCH10	6.7 6.8 5.07 5.95 5.951 6.5 6.501 6.55 6.6	600 620 31.6 1.62 1.62 31.6 31.6 1.40 248		None						-858897.47	-247127.94	No			106594			
	6.7 6.8 5.07 5.95 6.5 6.501 6.55 6.6 6.7 6.8	600 620 31.6 1.62 1.62 31.6 1.62 31.6 600		None						-858897.47	-247127.94	No No			106594			
SUB-CATCHMENT DET/	6.7 6.8 5.07 5.95 6.5 6.501 6.55 6.6 6.7 6.8 AILS	600 620 31.6 1.62 1.62 31.6 1.62 31.6 600 600 600 620																
TRENCH10 SUB-CATCHMENT DET/ Name	6.7 6.8 5.07 5.95 6.5 6.501 6.55 6.6 6.7 6.8 AILS Pit or	600 620 31.6 1.62 1.62 31.6 1.62 31.6 140 248 600 620 7 Total	Paved	Grass	Supp	Paved	Grass		Paved	Grass	Supp	Paved	Grass	Supp	Paved	Grass	Supp	
SUB-CATCHMENT DET/	6.7 6.8 5.07 5.95 6.5 6.501 6.55 6.6 6.7 6.8 AILS	600 620 31.6 1.62 1.62 31.6 1.62 31.6 140 248 600 620 520 Total Area	Area	Grass Area	Area	Time	Time	Time	Length	Grass	Supp	Paved Slope(%)	Slope	Slope		Grass Rough	Supp	
SUB-CATCHMENT DET/ Name	6.7 6.8 5.07 5.95 6.5 6.501 6.55 6.6 6.7 6.8 AILS Pit or Node	600 620 31.6 1.62 1.62 31.6 1.62 31.6 140 248 600 620 620 Total Area (ha)	Area %	Grass Area %	Area %	Time (min)	Time (min)	Time (min)		Grass	Supp	Paved			Paved			
SUB-CATCHMENT DET/ Name CAT P6_13	6.7 6.8 5.07 5.95 6.5 6.501 6.55 6.6 6.7 6.8 AILS Pit or Node P6_13	600 620 31.6 1.62 1.62 31.6 140 248 600 620 520 Total Area (ha) 0.0170	Area % 0.0	Grass Area % 100.0	Area % 0.0	Time (min) 5	Time (min) 5	Time (min) 2	Length	Grass	Supp	Paved Slope(%)	Slope	Slope	Paved			
SUB-CATCHMENT DET/ Name CAT P6_13 CAT P7_13	6.7 6.8 5.07 5.95 6.5 6.501 6.55 6.6 6.7 6.8 AILS Pit or Node P6_13 P7_13	600 620 31.6 1.62 1.62 31.6 140 248 600 620 620 Total Area (ha) 0.0170 0.0110	Area % 0.0 0.0	Grass Area % 100.0 100.0	Area % 0.0 0.0	Time (min) 5 5	Time (min) 5 5	Time (min) 2 2	Length	Grass	Supp	Paved Slope(%)	Slope	Slope	Paved			
SUB-CATCHMENT DET/ Name CAT P6_13 CAT P7_13 CAT_P1-11	6.7 6.8 5.07 5.95 6.5 6.5 6.5 6.6 6.7 6.8 AILS Pit or Node P6_13 P7_13 P1-11	600 620 31.6 1.62 1.62 31.6 140 248 600 620 620 Total Area (ha) 0.0170 0.0110 0.0134	Area % 0.0 0.0 75.0	Grass Area % 100.0 100.0 25.0	Area % 0.0 0.0 0.0 0.0	Time (min) 5 5 5 5	Time (min) 5 5 5 5	Time (min) 2 2 0	Length	Grass	Supp	Paved Slope(%)	Slope	Slope	Paved			
SUB-CATCHMENT DET/ Name CAT P6_13 CAT P7_13 CAT_P1-11 CAT_P2-11	6.7 6.8 5.07 5.95 6.5 6.5 6.5 6.6 6.7 6.8 AILS Pit or Node P6_13 P7_13 P1-11 P2-11	600 620 31.6 1.62 1.62 31.6 140 248 600 620 620 Total Area (ha) 0.0170 0.0110 0.0134 0.0134	Area % 0.0 0.0 75.0 75.0	Grass Area % 100.0 100.0 25.0 25.0	Area % 0.0 0.0 0.0 0.0 0.0	Time (min) 5 5 5 5 5 5	Time (min) 5 5 5 5 5 5	Time (min) 2 2 0 0	Length	Grass	Supp	Paved Slope(%)	Slope	Slope	Paved			
SUB-CATCHMENT DET/ Name CAT P6_13 CAT P7_13 CAT_P1-11 CAT_P2-11 CAT_P2-11	6.7 6.8 5.07 5.95 6.5 6.501 6.55 6.6 6.7 6.8 AILS Pit or Node P6_13 P7_13 P1-11 P2-11 P3-11	600 620 31.6 1.62 1.62 31.6 140 248 600 620 620 Total Area (ha) 0.0170 0.0110 0.0134 0.0134 0.0243	Area % 0.0 75.0 75.0 0.0	Grass Area % 100.0 100.0 25.0 25.0 100.0	Area % 0.0 0.0 0.0 0.0 0.0 0.0	Time (min) 5 5 5 5 5 5 5 5 5 5	Time (min) 5 5 5 5 5 5 5 5	Time (min) 2 2 0 0 0 0	Length	Grass	Supp	Paved Slope(%)	Slope	Slope	Paved			
SUB-CATCHMENT DET/ Name CAT P6_13 CAT P7_13 CAT_P1-11 CAT_P2-11 CAT_P2-11 CAT_P3-11 CAT P3_1	6.7 6.8 5.07 5.95 6.5 6.5 6.5 6.6 6.7 6.8 AILS Pit or Node P6_13 P7_13 P1-11 P2-11 P3-11 P3_1	600 620 31.6 1.62 1.62 31.6 140 248 600 620 620 Total Area (ha) 0.0170 0.0110 0.0134 0.0134 0.0243 0.0330	Area % 0.0 75.0 75.0 0.0 100.0	Grass Area % 100.0 100.0 25.0 25.0 100.0 0.0	Area % 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Time (min) 5 5 5 5 5 5 5 5 5 5	Time (min) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Time (min) 2 2 0 0 0 2	Length	Grass	Supp	Paved Slope(%)	Slope	Slope	Paved			
SUB-CATCHMENT DET/ Name CAT P6_13 CAT P7_13 CAT_P1-11 CAT_P2-11 CAT_P2-11 CAT_P3-11 CAT P3_1 CAT P4_1	6.7 6.8 5.07 5.95 6.5 6.5 6.5 6.6 6.7 6.8 AILS Pit or Node P6_13 P7_13 P1-11 P2-11 P3-11 P3_1 P4_1	600 620 31.6 1.62 1.62 31.6 140 248 600 620 620 Total Area (ha) 0.0170 0.0110 0.0134 0.0134 0.0243 0.0330 0.0210	Area % 0.0 75.0 75.0 0.0 100.0 100.0	Grass Area % 100.0 100.0 25.0 25.0 25.0 100.0 0.0 0.0	Area % 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Time (min) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Time (min) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Time (min) 2 2 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Length	Grass	Supp	Paved Slope(%)	Slope	Slope	Paved			
SUB-CATCHMENT DET/ Name CAT P6_13 CAT P7_13 CAT_P1-11 CAT_P2-11 CAT_P2-11 CAT_P3-11 CAT P3_1 CAT P4_1 CAT P5_1	6.7 6.8 5.07 5.95 5.951 6.5 6.501 6.55 6.6 6.7 6.8 AILS Pit or Node P6_13 P7_13 P1-11 P2-11 P3-11 P3_1 P4_1 P5_1	600 620 31.6 1.62 1.62 31.6 140 248 600 620 620 Total Area (ha) 0.0170 0.0110 0.0134 0.0134 0.0243 0.0330 0.0210 0.0440	Area % 0.0 75.0 75.0 0.0 100.0 100.0 100.0	Grass Area % 100.0 100.0 25.0 25.0 25.0 100.0 0.0 0.0 0.0	Area % 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Time (min) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Time (min) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Time (min) 2 2 0 0 2	Length	Grass	Supp	Paved Slope(%)	Slope	Slope	Paved			
SUB-CATCHMENT DET/	6.7 6.8 5.07 5.95 6.5 6.5 6.5 6.6 6.7 6.8 AILS Pit or Node P6_13 P7_13 P1-11 P2-11 P3-11 P3_1 P4_1	600 620 31.6 1.62 1.62 31.6 140 248 600 620 620 Total Area (ha) 0.0170 0.0110 0.0134 0.0134 0.0243 0.0330 0.0210	Area % 0.0 75.0 75.0 0.0 100.0 100.0	Grass Area % 100.0 100.0 25.0 25.0 25.0 100.0 0.0 0.0	Area % 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Time (min) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Time (min) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Time (min) 2 2 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Length	Grass	Supp	Paved Slope(%)	Slope	Slope	Paved			

 .	0	0#	0#	D-5.6."
Lag Time	Gutter	Gutter	Gutter	Rainfall
or Factor	Length (m)	Slope %	FlowFactor	Multiplier
	(m)			•
0	\/			1
0				1
0				1
0				1
0				
0				1
0				1
0				1
0				
0				1
0				1
0				1
0				
0 0				1

CAT P2 2	P2 2	0.0060	100.0	0.0	0.0	5	5	2							0	1
CAT P3 2	P3 2	0.0060	100.0	0.0	0.0	5	5	2							0	1
CAT GD2 NORTH	GD2 NOF		100.0	0.0	0.0	5	5	2							0	1
Cat-P1 17	P1 17	0.0400	100.0	0.0	0.0	5	-	2							0	1
Cat P2 17	P2 17	0.0250	100.0	0.0	0.0	5	-	2							0	1
CAT P1 16	P1 16		0.0	100.0	0.0	5	•	2							0	1
CAT P2 16	P2 16		0.0	100.0	0.0	5	-	2							0	1
CAT ExPit Track	_					5	-	2							0	1
	ExPit_Tra		0.0	100.0	0.0	-	-	-							0	1
CAT-T1-B-N	Tank_T1-		100.0	0.0	0.0	5	U U	0							•	1
CAT-Tank_T1-A-S	Tank_T1-/		100.0	0.0	0.0	5	-	0							0	1
CAT_P4-11	P4-11		0.0	100.0	0.0	5	•	0							0	1
CAT_P1-9	P1-9		75.0	25.0	0.0	5	0	0							0	1
CAT_P2-9	P2-9	0.0134	75.0	25.0	0.0	5	-	0							0	1
CAT_P3-9	P3-9		0.0	100.0	0.0	5	5	0							0	1
CAT-T1-C-N	T1-C-N	0.0243	100.0	0.0	0.0	5	0	0							0	1
CAT_TANK-T1-B-S	TANK-T1-	E0.0243	100.0	0.0	0.0	5	0	0							0	1
CAT_P4-9	P4-9	0.0243	0.0	100.0	0.0	5	5	0							0	1
CAT P1_13	P1_13	0.0100	0.0	100.0	0.0	5	5	2							0	1
CAT P2 13	P2 13	0.0140	0.0	100.0	0.0	5	5	2							0	1
CAT P3 13	P3 13		0.0	100.0	0.0	5	5	2							0	1
CAT P2 3 BASIN	P2 3 BAS		87.0	13.0	0.0	5		2							0	1
CAT P1 15 BASIN	P1 15 BA		83.0	17.0	0.0	5	-	2							0	1
CAT P2 15 BASIN	P2 15 BA		83.0	17.0	0.0	5	-	2							0	1
CAT P4 3 BASIN	P4 3 BAS		87.0	13.0	0.0	5	-	2							0	1
CAT P3 15 BASIN	P3 15 BA		81.0	19.0	0.0	5	•	2							0	1
CAT P3_15 BASIN CAT P7_3 BASIN	P7_3 BAS		86.0	19.0	0.0	5	•	2		_					0	1
CAT P7_3 BASIN	P9 3 BAS		71.0	29.0	0.0	5	-	2		_					0	1
-			80.0			5	•								0	1
CAT P4_15 BASIN	P4_15 BA			20.0	0.0	-	•	2								1
CAT BLOCK_D ROOF	BLOCK_D		100.0	0.0	0.0	5		2							0	1
CAT BRB1			50.0	50.0	0.0	5		2							0	1
CAT BRB2	BRB2		0.0	100.0	0.0	5	-	2							0	1
CAT P1_3 BASIN	P11_3 BA		74.0	26.0	0.0	5	-	2							0	1
CAT P3_19 BASIN	P3_19 BA		74.0	26.0	0.0	5		2							0	1
CAT P2_19 BASIN	P2_19 BA		74.0	26.0	0.0	5	-	2							0	1
CAT P1_19 BASIN	P1_19 BA	\$0.0139	90.0	10.0	0.0	5	5	2							0	1
CAT P2_18 BASIN	Basin73		81.0	19.0	0.0	5	5	2							0	1
CAT P1_18 BASIN	Basin76	0.0263	87.0	13.0	0.0	5	5	2							0	1
CAT L1 CONCOURSE	L1 CONC	0.2100	100.0	0.0	0.0	5	5	2							0	1
CAT P1 7	P1 7	0.0134	75.0	25.0	0.0	5	5	0							0	1
CAT P2 7	P2 7	0.0134	75.0	25.0	0.0	5	5	0							0	1
CAT P3 7	P3 7		0.0	100.0	0.0	5	5	0							0	1
CAT T1-D-NTH	T1-D-NTH		100.0	0.0	0.0	5	0	0							0	1
CAT T1-C-STH	T1-C-STH		100.0	0.0	0.0	5	0	0							0	1
CAT P4 7	P4 7		0.0	100.0	0.0	5	5	0							0	1
CAT GOOD SHED STH	T1-GOOD		100.0	0.0	0.0	5	-	2							0	1
CAT GOOD SHED STR	T1-GOOD		100.0	0.0	0.0	5	-	2							0	1
CAT GOODS SHED NTH	P1 8		75.0	25.0	0.0	5	-	2		_					0	1
CAT P1_8 CAT P2_8			75.0	25.0	0.0	5 5	-	0							0	1
						-	-	-							0	1
			0.0	100.0	0.0	5	-	0							-	
	T2-EQSHI		100.0	0.0	0.0	5	-	2	_						0	1
CAT T1-E-STH	T1-E-STH		100.0	0.0	0.0	5	-	0							0	1
CAT P4_8	P4_8		0.0	100.0	0.0	5	-	0							0	1
CAT P1_10			75.0	25.0	0.0	5	-	0							0	1
CAT P2_10			75.0	25.0	0.0	5	-	0							0	1
Cat619			0.0	100.0	0.0	5	v	0							0	1
CAT T1-E-NTH	T1-E-NTH		100.0	0.0	0.0	5	0	0							0	1
CAT T1-F-STH	T1-F-STH	0.0243	100.0	0.0	0.0	5	0	0							0	1
CAT P4_10	P4_10	0.0243	0.0	100.0	0.0	5	5	0							0	1
CAT GD3	GD3	0.0040	100.0	0.0	0.0	5	5	2							0	1
PIPE DETAILS																
Name	From	То	Length	U/S IL	D/S IL	Slope	Туре	Dia	I.D.	Rough	Pipe Is No. Pipes	Chg From At Chg	Chg	RI Chg	RL etc	
			(m)	(m)	(m)	(%)		(mm)	(mm)	Ŭ Ŭ				(m) (m)	(m) (m)	
P4 13 - P5 13	P4 13	P5 13	38.1		6.060	0.50	uPVC, not	\ /	242	0.01	NewFixed 1	P4 13 0	. /			
P5 13 - P6 13			5.2	6.060	5.960	1.92	uPVC, not		242	0.01	NewFixed 1	P5 13 0				
P6 13 - P7 13			20.1	5.960	5.860	0.50	uPVC, not		242	0.01		P6 13 0				
P7 13 - HW1		HW1 V-D		5.860	5.730	0.63	uPVC, not		242	0.01		P7 13 0				
P1_11 - P2_11	P1-11		9.7	6.150	6.053	1.00	uPVC, not		154	0.01	NewFixed 1	P1-11 0				
	11 1 1 1	p = - 1 + 1	5.1	0.100	0.000	1.00		100	107	0.01			1			1

Particit														
1 1 1 1 1 1 1 1 0	P2-11_P3-11						uPVC, not 150		0.01	NewFixed		0		
	TRENCH-11_1	P3-11 TRENCH	_ 12.5	5.320	5.070	2.00	uPVC, not 150	154	0.01	NewFixed	1 P3-11	0		
0 0	P3 1-P4 1	P3 1 P4 1	9.7	5.857	5.808	0.51	uPVC, und 100	105	0.01	NewFixed	1 P3 1	0		
0 0	P4 1 - P5 1	P4 1 P5 1	12.8	5.808	5.744	0.50	uPVC, und 225	239	0.01	NewFixed	1 P4 1	0		
No.PT No.Pt <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>														
Desc P1 Desc P2 Desc P3 Desc P3 Desc P3 Desc Desc <thdesc< th=""> <thdesc< th=""> <thdesc< th=""></thdesc<></thdesc<></thdesc<>											-			
prim prim< prim prim prim prim prim prim prim< prim< prim< prim< prim prim prim< prim prim <											—			
P P														
1.1. P. 2. P. 1. F. 2. MADE MADE <td></td>														
P2 C.F.S. P2 C.F.S. P2 D.F.S. P2 P2<							2					-		
Supple Supple<											_			
Nortice DM CMANUMA Store Association Concerned in Transition Store Distance		_					uPVC, und 225		0.01	NewFixed				
The PL PL 2 <	ExP5 - ExP4	ExP5 ExP4	42.3	5.102	5.000	0.24	Concrete, 1375	375	0.013	Existing	1 ExP5	0		
No.7 P2 P3 8 600 PPC res 1001 NeeFact 1 P2 0 0 0 S1 MM C1 RP1 S130 MO2 MU2 MM C1 RP1	Pipe1059	ExP4 CHATHA	M21	5.000	4.958	0.20	Concrete, 1375	375	0.013	Existing	1 ExP4	0		
S.2. HOV2 P.2. HOV2 <t< td=""><td></td><td></td><td></td><td>6.003</td><td></td><td></td><td></td><td></td><td></td><td>v</td><td>1 P2 2</td><td>0</td><td></td><td></td></t<>				6.003						v	1 P2 2	0		
DZ: SMD TH SMD SMD TH PUC SMD TH SMD TH SMD TH SMD														
BAND FUTER NUTT BAND FUTE NUTT BA														
SAMD TUTP, TAL, T SAMD TUPAL 27 S.S. S.S. <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>														
Yet 7: Po 27 P4 27 P5 27 P4 27 P5 27 P4 28														
95 17 ExPline 17 ExPline 17 Controls 177 P </td <td></td>														
SAB Outlam Nutle File Outlam Nutle			3.8								_			
P1 17- P2 17 P1 17 P2 17 P2 17 P3 P1 7 P2 17 F3 5.000 5.800 0.53	—	_	-						0.013		_			
P1 17- P2 17 P1 17 P2 17 P2 17 P3 P1 7 P2 17 F3 5.000 5.800 0.53	ExP6 - Chatham North	ExP6 Chatham	S12	5.070	4.950	1.00	Concrete, 1375	375	0.013	Existing	1 ExP6	0		
P1 0- P2 10 P1 10 P2 10 P3 10	P1 17 - P2 17	P1 17 P2 17	15	5.900				239	0.01					
Physion Physion <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td></t<>											_			
The AT and Crossen Exit Tax Tax <thtax< th=""> <thtax< th=""> <thtax< th=""></thtax<></thtax<></thtax<>														
Hisk Port1 Tank (1+8) Port											_			
Ti-AS_P4-9 Tank_TI-FP-611 2 6.050 2.00 µP/C. not 150 154 0.01 NewFraid Tank_TI-F0 Image of the temperature Image of temperatur										U U	_			
FRENCH-112 PH-11 THENCH 12.5 6.300 6.000 PH-20 PH-11 0 PH-24 PH														
P14_0 P14_0 P24_0 P14_0 P14_0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>														
P2-0 P2-0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>														
P196 P1-30 TREL/NDE 12.5 S.30 S.70 2.00 IPVC, not 150 154 0.11 NewTixed 1 P3-9 0 CAU P3-8 T1-CAV P3-4 C.800 6.050 2.00 UVC, not 150 154 0.01 NewTixed 1 T1-CAV 0	_			6.150		1.00		154	0.01	NewFixed				
Ti-CA P3-9 2 6.050 6.050 6.001 164 0.01 NewFixed 1 Ti-CA 0 1 P196 P4-6 TRENHE 25 6.300 6.050 2.00 UPVC, not 150 154 0.01 NewFixed 1 P1.4 0 1 </td <td>P2-9_P3-9</td> <td></td> <td></td> <td>6.003</td> <td>5.887</td> <td>1.00</td> <td>uPVC, not 150</td> <td>154</td> <td>0.01</td> <td>NewFixed</td> <td>1 P2-9</td> <td>0</td> <td></td> <td></td>	P2-9_P3-9			6.003	5.887	1.00	uPVC, not 150	154	0.01	NewFixed	1 P2-9	0		
Ti-CA P3-9 2 6.050 6.050 6.001 164 0.01 NewFixed 1 Ti-CA 0 1 P196 P4-6 TRENHE 25 6.300 6.050 2.00 UPVC, not 150 154 0.01 NewFixed 1 P1.4 0 1 </td <td>P196</td> <td>P3-9 TRENCH</td> <td>9 12.5</td> <td>5.320</td> <td>5.070</td> <td>2.00</td> <td>uPVC, not 150</td> <td>154</td> <td>0.01</td> <td>NewFixed</td> <td>1 P3-9</td> <td>0</td> <td></td> <td></td>	P196	P3-9 TRENCH	9 12.5	5.320	5.070	2.00	uPVC, not 150	154	0.01	NewFixed	1 P3-9	0		
CANK T1-85 P4-9 TANK T1-87-9 Z 6.000 G.000 G.000 G.000 G.000 G.000 Figs 10 TANK T1-10 9186 P4.9 P1.13 P2.13 P2.14 P2.14 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>NewFixed</td> <td></td> <td>0</td> <td></td> <td></td>										NewFixed		0		
P198 P13 P13 <td></td>														
P1 13 P1 13 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>														
P2 P3 P2 P3 P2 P3 P3 P4 P3 P4 P3 P4 P3 P4 P3 P4 P4 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>														
313 P6 13 9 6.060 5.900 1.11 uPVC, not 150 164 0.01 NewFixed 1 P3 0 0 0 0 32,3 PAS, OUTLET P2,3 BASR/P3-3 P5.3 P6.3 P6.3<											_			
22 38.NIN OUTLET P2.3 38.NIN OUTLET P2.3 0.0 0.01 NewFixed 1 P2.3 0.0 0														
33 - P5 3 P5 3 P6 3 P7 3 16.4 5.056 5.761 1.00 uPVC, not 300 303 0.01 NewFixed P7 3 0 P3 3 0 P7 3 0 P3 3 0 P1 15 P3 3 15 20 15 20 <														
P5 3 P6 3 7.4 5.97 5.905 1.00 UPVC, not 300 303 0.01 NewFixed 1 P5 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NewFixed 1 P5 3 0 0 0 0 NewFixed 1 P6 3 0 0 0 NewFixed 1 P7 3 0 0 0 0 NewFixed 1 P7 3 0 0 0 0 NewFixed 1 P7 3 0 0 0 NewFixed 1 P1 13 0 0 0 0 NewFixed 1 P1	P2_3 BASIN OUTLET	P2_3 BASI P3-3	2.4	6.211		1.00		105	0.01	NewFixed	1 P2_3 BASI	0		
P5.3 P6.3 7.4 59.79 59.05 1.00 UPVC, nol. 300 30.3 0.01 NewFixed I P5.3 0 0 0 0 P6.3 P8.3 P1.3 P121 14.4 5.751 5.610 1.00 UPVC, nol. 300 303 0.01 NewFixed I P7.3 0 0 0 NewFixed 1 P1.3 0 0 0 NewFixed 1 P1.3 0 0 0 0 NewFixed 1 P1.3 0 0 NewFixed 1 P1.3 0 0 NewFixed 1 P1.3 0 NewFixed 1 P1.3 0 0 NewFixed 1 P1.3 0 0 0 NewFixed 1 11.3	P3_3 - P5_3	P3-3 P5 3	20.8	6.187	5.979	1.00	uPVC, not 300	303	0.01	NewFixed	1 P3-3	0		
P6 3. PR 3 P6 3 P7 3 P1 4 P5 3. F10 100 uPVC, nol 300 303 0.01 NewFixed 1 P6 3 0 0 0 0 0 P13 3. P11 3 P12 1 P11 3 17.2 5.610 5.438 1.00 uPVC, nol 300 303 0.01 NewFixed 1 P12 1 0										NewFixed	1 P5 3	0		
P6 3. P10 3 P7 3 P(21 14.1 5.751 5.610 1.00 uPVC, not 300 303 0.01 NewFixed 1 P7 3 0														
P10.3 P12.1 P11.3 P12.4 P11.3 P12.4 P11.3 P11.3 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>														
P11 3 P11 3 <th< td=""><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		_												
55 15 EAP1 BA1 52.48 54.27 200 uPVC, not 100 003 0.01 NewFixed 1 PIt15 0 0 0 SP1 - DARLING, 10 4.820 4.820 5.81 0.01 UPVC, not 100 105 0.01 NewFixed 1 P1.15 BAS 0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td></td<>												-		
Expl - LOARLING, ST. N. ExPl - DARLING, ST. N.							-							
P1 15 BASIN OUTLET P1 15 BASIN P1 15 2.4 5.825 5.801 1.0.0 UPC, not 100 105 0.01 NewFixed 1 P1 15 BASIN Image: Constraint of the constand the constraint of the constraint of the														
P1_15 P2_15 P2_15 P2_15 P3_15 P2_15 P3_15 P2_15 P3_15 P4_15 P3_15 P4_15 P3_15 P4_15 P4_15 P1_15 P3_15 P4_15 P1_15 P3_15 P4_15 P3_15 P4_15 P3_15 P4_15 P4_15 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>														
P2_15 P3_15 P2_15 P3_15 P3_4 Seal Seal </td <td></td> <td></td> <td>2.4</td> <td>5.825</td> <td>5.801</td> <td>1.00</td> <td>uPVC, not 100</td> <td>105</td> <td>0.01</td> <td>NewFixed</td> <td></td> <td>0</td> <td></td> <td></td>			2.4	5.825	5.801	1.00	uPVC, not 100	105	0.01	NewFixed		0		
P2_15 P3_15 P2_15 P3_15 P3_4 Seal Seal </td <td>P1_15 - P2_15</td> <td>P1_15 P2_15</td> <td>20.7</td> <td>5.801</td> <td>5.698</td> <td>0.50</td> <td>uPVC, not 150</td> <td>154</td> <td>0.01</td> <td>New</td> <td>1 P1_15</td> <td>0</td> <td></td> <td></td>	P1_15 - P2_15	P1_15 P2_15	20.7	5.801	5.698	0.50	uPVC, not 150	154	0.01	New	1 P1_15	0		
P3_15 P4_15 P4_15 P4_15 P4_15 P115 8.68 5.421 0.50 uPVC, not 150 154 0.01 NewFixed 1 P4_15 0 <th< td=""><td>P2_15 - P3_15</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>NewFixed</td><td>_</td><td>0</td><td></td><td></td></th<>	P2_15 - P3_15									NewFixed	_	0		
P4_15 P15 B.6 5.421 5.335 1.00 uPVC, not 150 0.01 NewFixed 1 P4_15 0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>														
P2_15 BASIN OUTLET P2_15 BASIP_13 2.4 5.722 5.698 1.00 uPVC, not 100 105 0.01 NewFixed 1 P2_15 BASIO 0<														
P4_3 BASIN OUTLET P4_3 BASI P5_3 2.4 6.003 5.979 1.00 uPVC, not 100 105 0.01 NewFixed 1 P4_3 BASIO 0 0 0 23 15 BASIN OUTLET P3 15 BAS(P5_3) 2.4 5.050 5.581 1.00 uPVC, not 100 105 0.01 NewFixed 1 P3_15 BAS(0 0														
P3_15 BASIN OUTLET P3_15 BAS P3_15 2.4 5.695 5.581 1.00 uPVC, not 100 105 0.01 NewFixed 1 P3_15 BAS 0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							-							
P7_3 BASIN OUTLET P7_3 BASIN P7_3 2.4 5.75 5.751 1.00 uPVC, not 100 105 0.01 NewFixed 1 P7_3 BASIO Image: Constraint of the c														
P9_3 BASI PUI21 2.4 5.634 5.610 1.00 uPVC, not 100 105 0.01 NewFixed 1 P9_3 BASI 0 0														
P4_15 BASIN OUTLET P4_15 BAS P4_15			2.4					105						
P4_15 BASIN OUTLET P4_15 BAS P4_15	P9_3 BASIN OUTLET	P9_3 BASI Pit21	2.4	5.634	5.610	1.00	uPVC, not 100	105	0.01	NewFixed				
block d roof - brb1 BLOCK_D BRB1 19 6.550 5.900 3.42 uPVC, not 150 154 0.01 NewFixed 1 BLOCK_D 0 1 Image: Constraint of the constraint of			2.4	5.445				105	0.01	NewFixed				
BRB1 BRB2 22 5.200 5.100 0.45 uPVC, not 100 105 0.01 NewFixed 1 BRB1 0														
P2_4 - P3_4 BRB2 P3_4 6 5.100 5.066 0.57 uPVC, not 100 105 0.01 NewFixed 1 P3_4 0		— •												
P3_4 P4_4 2.6 5.066 5.053 0.50 Concrete, 375 375 0.013 NewFixed 1 P3_4 0 Image: Concrete 1 Concrete 1 <td></td>														
P4_4 ExP2 31.3 5.053 4.947 0.34 Concrete, 375 375 0.013 NewFixed 1 P4_4 0 1		_	-											
ExP2 ExP1 37.4 4.947 4.820 0.34 Concrete, 375 375 0.013 Existing 1 ExP2 0 1														
P11_3 BAS IN OUTLET P11_3 BAS P11_3 2.4 5.462 5.438 1.00 uPVC, not 100 105 0.01 NewFixed 1 P11_3 BAS 0 0		-									_			
P3_19 BASIN OUTLET P3_19 BASIN P3_19 2.4 5.547 5.523 1.00 uPVC, not 100 105 0.01 NewFixed 1 P3_19 BASIN DASIN	ExP2 - ExP1	ExP2 ExP1	37.4	4.947	4.820	0.34	Concrete, 1375	375	0.013	Existing				
P3_19 BASIN OUTLET P3_19 BASIN P3_19 2.4 5.547 5.523 1.00 uPVC, not 100 105 0.01 NewFixed 1 P3_19 BASIN DASIN	P11_3 BASIN OUTLET	P11_3 BASP11_3	2.4	5.462	5.438	1.00	uPVC, not 100	105	0.01	NewFixed	1 P11 3 BAS	0		
P3_19 P1_3 16.9 5.523 5.438 0.50 uPVC, not 150 154 0.01 NewFixed 1 P3_19 0										NewFixed				
P2_19 BASIN OUTLET P2_19 BA\$P2_19 2.4 5.623 5.599 1.00 uPVC, not 100 105 0.01 NewFixed 1 P2_19 BA\$0														
-2_19-F3_19 F3_19														
	FZ_19-FJ_19	FZ_18 F3_19	10.2	0.099	0.023	0.50	ur v 0, 1101 100	104	0.01	NewFixed	I [F2_19	v		

P1 19 BASIN OUTLET																			
	P1 19 BA	SP1 19	2.4	5.698	5.674	1.00	uPVC, not	100	105	0.01	NewFixed	1	P1 19 BAS	0					
P1 19 - P2 19	P1 19	P2 19	15	5.674	5.599	0.50	uPVC, not	150	154	0.01	NewFixed	1	P1 19	0					
ExP3 - ExP2	ExP3			4.961	4.947	1.00	Concrete,			0.013	Existing			0					
P2 18 BASIN OUTLET	Basin73			5.718	5.694	1.00	uPVC, und			0.01	NewFixed			0					
P2 18 - P10 3	P2 18	Pit21		5.694	5.610	0.50	uPVC, und			0.01	NewFixed			0					
	-													•					
P1_18 BASIN OUTLET	Basin76			5.794	5.770	1.00	uPVC, und			0.01	NewFixed		-	0					
P1_19 - P2_18	P1_18			5.770	5.694	0.50	uPVC, und			0.01	NewFixed			0					
GD1 - P3_4	GD1	P3_4	7	5.136	5.066	1.00	Concrete,	150	150	0.013	NewFixed	1	GD1	0					
CONCOURSE - BRB1	L1 CONC	CBRB1	13	6.550	5.900	5.00	uPVC, not	225	242	0.01	NewFixed	1	L1 CONCO	0					
P1 7 - P2 7	P1 7			6.150	6.053	1.00	uPVC, not			0.01	NewFixed			0					
P2 7 - P3 7	P2 7			6.003	5.887	1.00	uPVC, not			0.01	NewFixed			0					
P3 7 - TRENCH7	_	TRENCH7																	
	P3_7			5.320	5.070	2.00	uPVC, not			0.01	NewFixed			0					
T1-D-NTH OVERFLOW	T1-D-NTH			6.090	6.050	2.00	uPVC, not			0.01	NewFixed		T1-D-NTH						
T1-C-STH - P4_7	T1-C-ST⊢	I P4_7	2	6.090	6.050	2.00	uPVC, not	150	154	0.01	NewFixed	1	T1-C-STH	0					
P4 7 = TRENCH7	P4 7	TRENCH7	12.5	5.320	5.070	2.00	uPVC, not	150	154	0.01	NewFixed	1	P4 7	0					
BRB3 - ExP4	BRB3	ExP4		5.100	5.000	1.00	uPVC, not			0.01	NewFixed	1	BRB3	0					
T1 - P1 6	T1-GOOD			5.900	5.888	1.00	uPVC, und			0.01	NewFixed		T1-GOOD						
P1 6 - P2 6	P1 6			5.868	5.652	1.00	uPVC, und			0.01	NewFixed			0					
													-	-					
T1 - P2_6	T1-GOOD	_		5.900	5.888	1.00	uPVC, und			0.01	NewFixed		T1-GOOD						
P1_8 - P2_8	P1_8	P2_8		6.300	6.140	1.00	uPVC, not			0.01	NewFixed		_	0					
P2_8 - TRENCH8	P2_8			6.140	5.967	1.00	uPVC, not		154	0.01	NewFixed			0					
P3 8 - TRENCH8	P3 8	TRENCH8	5	5.320	5.070	5.00	uPVC, not	150	154	0.01	NewFixed	1		0					
T2-EQPSHD - P3 8	T2-EQSH			6.090	6.050	2.00	uPVC, not			0.01	NewFixed		T2-EQSH			1			
T1-E-STH - P4 8	T1-E-STH			6.090	6.050	2.00	uPVC, not			0.01	NewFixed		T1-E-STH		+	1			
		-														+			
P4_8 - TRENCH8	P4_8	TRENCH8		5.320	5.070	5.00	uPVC, not			0.01	NewFixed			0					
P1_10 - P2_10	P1_10			6.150	6.053	1.00	uPVC, not			0.01	NewFixed			0					
P2_10 - P3_10	P2_10			6.003	5.887	1.00	uPVC, not		154	0.01	NewFixed		_	0					
P3_10 - TRENCH10	P3_10	TRENCH1	12.5	5.320	5.070	2.00	uPVC, not	150	154	0.01	NewFixed	1	P3_10	0					
P1008	T1-E-NT⊢	P3 10	2	6.090	6.050	2.00	uPVC, not	150	154	0.01	NewFixed	1	T1-E-NTH	0					
T1-F-STH - P4 10	T1-F-STH			6.090	6.050	2.00	uPVC, not			0.01	NewFixed	1	T1-F-STH	0					
P4 10 - TRENCH10	P4 10	TRENCH1		5.320	5.070	2.00	uPVC, not			0.01	NewFixed			0					
	_																		
GD3 - P7_1	GD3	_		5.791	5.691	1.00	uPVC, und			0.01	NewFixed			0					
P2_17 - P3_17	N197	_	13	5.800	5.700	0.77	uPVC, und			0.01	NewFixed			0					
P3_17 - GPT	P3_17	GPT-4200	2.4	5.700	5.680	0.83	uPVC, not	225	242	0.01	NewFixed	1	P3_17	0					
GPT - SAND FILTER	GPT-4200	SAND_FIL	2.4	5.680	5.660	0.83	uPVC, not	225	242	0.01	NewFixed	1	GPT-4200	0					
SAND TANK INLET1	SAND FI	SAND FIL	2.5	5.660	5.630	1.20	uPVC, not	225	242	0.01	NewFixed	1	SAND FIL	0					
			-			-	- /	-						-					
DETAILS of SERVICES CR		PES																	
			Laight of C	Cha	Pottom	Hoight of	Cha	Pottom	Lloight of S	oto									
Pipe	Chg		Height of S		Bottom	Height of	-		Height of S										
	(m)	Elev (m)	(m)	(m)	Elev (m)	(m)	(m)	Elev (m)	(m)	etc									
CHANNEL DETAILS																			
Name	From	То	Туре	Length	U/S IL	D/S IL	Slope	Base Widtl	L.B. Slope	R.B. Slope	Manning	Depth	Roofed						
				(m)	(m)	(m)	(%)	(m)		(1:?)	U U	(m)							
				()	()	()	(,,,,	()	(,	()		()							
OVERFLOW ROUTE DETA																			
	1-	-	Ŧ .	0.11						0.(•					
Name	From			Spill	Crest	Weir			SafeDepth			D/S Area		id	U/S IL	D/S IL	Length (m)		
Name	1-		Time	Level	Length	Weir Coeff. C		Major Stori	Minor Storr	DxV	Slope	Contributin		id	U/S IL	D/S IL	Length (m)		
	1-						Section	Major Stori (m)	Minor Storr (m)		Slope		g		U/S IL		Length (m)		
Name OF P4 13 - BYPASS2	1-		Time (min)	Level	Length			Major Stori (m)	Minor Storr (m)	DxV	Slope) (%)	Contributin	g	id 1413	U/S IL 6.71	D/S IL 6.65	Length (m)		
OF P4_13 - BYPASS2	From P4_13	BYPASS2	Time (min) 0.1	Level	Length		Section 4m wide gr	Major Stori (m) 1.2	Minor Storr (m) 0.3	DxV (sq.m/sec) 0.4	Slope) (%) 0.79	Contributin %	g	1413	6.71	6.65	7		
OF P4_13 - BYPASS2 OF P5_13 - BYPASS1	From P4_13 P5_13	BYPASS2 BYPASS1	Time (min) 0.1 0.1	Level	Length		Section 4m wide gr 4m wide gr	Major Storr (m) 1.2 1.2	Minor Storr (m) 0.3 0.3	DxV (sq.m/sec) 0.4 0.4	Slope) (%) 0.79 16.67	Contributin % 0 0	g	1413 1395	6.71 6.79	6.65 6.6	7 1.14		
OF P4_13 - BYPASS2 OF P5_13 - BYPASS1 OF P6_13 - P7_13	From P4_13 P5_13 P6_13	BYPASS2 BYPASS1 P7_13	Time (min) 0.1 0.1 0.2	Level	Length		Section 4m wide gr 4m wide gr 4m wide gr	Major Stori (m) 1.2 1.2 1.2	Minor Storr (m) 0.3 0.3 0.3	DxV (sq.m/sec) 0.4 0.4 0.4	Slope) (%) 0.79 16.67 1.39	Contributin % 0 0 0	g	1413 1395 1213	6.71 6.79 6.78	6.65 6.6 6.5	7 1.14 20.1		
OF P4_13 - BYPASS2 OF P5_13 - BYPASS1 OF P6_13 - P7_13 OF P7_13 - TRACK2	From P4_13 P5_13 P6_13 P7_13	BYPASS2 BYPASS1 P7_13 TRACK2	Time (min) 0.1 0.1 0.2 0.2	Level	Length		Section 4m wide gr 4m wide gr 4m wide gr 4m wide gr	Major Storn (m) 1.2 1.2 1.2 1.2 1.2	Minor Storr (m) 0.3 0.3 0.3 0.3 0.3	DxV (sq.m/sec) 0.4 0.4 0.4 0.4	Slope) (%) 0.79 16.67 1.39 0.81	Contributin % 0 0 0 0 0	9	1413 1395 1213 1215	6.71 6.79 6.78 6.5	6.65 6.6 6.5 6.37	7 1.14 20.1 16		
OF P4_13 - BYPASS2 OF P5_13 - BYPASS1 OF P6_13 - P7_13 OF P7_13 - TRACK2 V-DRAIN	From P4_13 P5_13 P6_13 P7_13 HW1_V-D	BYPASS2 BYPASS1 P7_13 TRACK2 fExPit_Trac	Time (min) 0.1 0.1 0.2 0.2 1.4	Level	Length		Section 4m wide gr 4m wide gr 4m wide gr 4m wide gr NJC V-DR	Major Storr (m) 1.2 1.2 1.2 1.2 1.2 1.2 1.2	Minor Storr (m) 0.3 0.3 0.3 0.3 0.3 0.6	DxV (sq.m/sec) 0.4 0.4 0.4 0.4 0.4 0.6	Slope) (%) 0.79 16.67 1.39 0.81 0.24	Contributin % 0 0 0 0 0 100	9	1413 1395 1213 1215 845	6.71 6.79 6.78 6.5 5.73	6.65 6.6 6.5 6.37 5.59	7 1.14 20.1 16 58		
OF P4_13 - BYPASS2 OF P5_13 - BYPASS1 OF P6_13 - P7_13 OF P7_13 - TRACK2 V-DRAIN OF P1_11 - P3_11	From P4_13 P5_13 P6_13 P7_13	BYPASS2 BYPASS1 P7_13 TRACK2 FEXPit_Trac P3-11	Time (min) 0.1 0.2 0.2 1.4 0.1	Level	Length		Section 4m wide gr 4m wide gr 4m wide gr 4m wide gr NJC V-DR 4m wide gr	Major Storn (m) 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	Minor Storr (m) 0.3 0.3 0.3 0.3 0.3 0.6 0.3	DxV (sq.m/sec) 0.4 0.4 0.4 0.4	Slope) (%) 0.79 16.67 1.39 0.81 0.24 1.00	Contributin % 0 0 0 0 0	9	1413 1395 1213 1215	6.71 6.79 6.78 6.5 5.73 6.7	6.65 6.6 6.5 6.37 5.59 6.6	7 1.14 20.1 16 58 10		
OF P4_13 - BYPASS2 OF P5_13 - BYPASS1 OF P6_13 - P7_13 OF P7_13 - TRACK2 V-DRAIN	From P4_13 P5_13 P6_13 P7_13 HW1_V-D	BYPASS2 BYPASS1 P7_13 TRACK2 FEXPit_Trac P3-11	Time (min) 0.1 0.1 0.2 0.2 1.4	Level	Length		Section 4m wide gr 4m wide gr 4m wide gr 4m wide gr NJC V-DR	Major Storn (m) 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	Minor Storr (m) 0.3 0.3 0.3 0.3 0.3 0.6 0.3	DxV (sq.m/sec) 0.4 0.4 0.4 0.4 0.4 0.6	Slope (%) 0.79 16.67 1.39 0.81 0.24 1.00	Contributin % 0 0 0 0 0 100	9	1413 1395 1213 1215 845	6.71 6.79 6.78 6.5 5.73	6.65 6.6 6.5 6.37 5.59 6.6	7 1.14 20.1 16 58		
OF P4_13 - BYPASS2 OF P5_13 - BYPASS1 OF P6_13 - P7_13 OF P7_13 - TRACK2 V-DRAIN OF P1_11 - P3_11 OF P2_11 - P3_11	From P4_13 P5_13 P6_13 P7_13 HW1_V-D P1-11 P2-11	BYPASS2 BYPASS1 P7_13 TRACK2 fExPit_Trac P3-11 P3-11	Time (min) 0.1 0.2 1.4 0.1 0.1	Level	Length		Section 4m wide gr 4m wide gr 4m wide gr 4m wide gr NJC V-DR 4m wide gr 4m wide gr	Major Storn (m) 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	Minor Storr (m) 0.3 0.3 0.3 0.3 0.3 0.6 0.3 0.3 0.3	DxV (sq.m/sec) 0.4 0.4 0.4 0.4 0.6 0.4 0.4 0.4	Slope) (%) 0.79 16.67 1.39 0.81 0.24 1.00 1.33	Contributin % 0 0 0 0 0 100 0 0 0	9	1413 1395 1213 1215 845 1386 1387	6.71 6.79 6.78 6.5 5.73 6.7 6.7	6.65 6.6 6.5 6.37 5.59 6.6 6.6	7 1.14 20.1 16 58 10 7.5		
OF P4_13 - BYPASS2 OF P5_13 - BYPASS1 OF P6_13 - P7_13 OF P7_13 - TRACK2 V-DRAIN OF P1_11 - P3_11 OF P2_11 - P3_11 OF P3_11 - TRENCH11	From P4_13 P5_13 P6_13 P7_13 HW1_V-D P1-11 P2-11 P3-11	BYPASS2 BYPASS1 P7_13 TRACK2 fExPit_Trac P3-11 P3-11 TRENCH_	Time (min) 0.1 0.2 0.2 1.4 0.1 0.1 0.2	Level (m)	Length	Coeff. C	Section 4m wide gr 4m wide gr 4m wide gr 4m wide gr NJC V-DR 4m wide gr 4m wide gr 4m wide gr	Major Storr (m) 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	Minor Storr (m) 0.3 0.3 0.3 0.3 0.3 0.6 0.3 0.3 0.3 0.3	DxV (sq.m/sec) 0.4 0.4 0.4 0.4 0.6 0.4 0.4 0.4 0.4	Slope) (%) 0.79 16.67 1.39 0.81 0.24 1.00 1.33 0.80	Contributin % 0 0 0 0 100 0 0 0 0	9	1413 1395 1213 1215 845 1386 1387 1388	6.71 6.79 6.78 6.5 5.73 6.7 6.7 6.7 6.5	6.65 6.6 6.5 6.37 5.59 6.6 6.6 6.6 6.4	7 1.14 20.1 16 58 10 7.5 12.5		
OF P4_13 - BYPASS2 OF P5_13 - BYPASS1 OF P6_13 - P7_13 OF P7_13 - TRACK2 V-DRAIN OF P1_11 - P3_11 OF P2_11 - P3_11 OF P3_11 - TRENCH11 OF TRENCH11 - BYPASS2	From P4_13 P5_13 P6_13 P7_13 HW1_V-D P1-11 P2-11 P3-11 2 TRENCH	BYPASS2 BYPASS1 P7_13 TRACK2 fExPit_Trac P3-11 P3-11 TRENCH_ P4_13	Time (min) 0.1 0.2 0.2 1.4 0.1 0.2 0.2 0.3 0.4 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1	Level	Length		Section 4m wide gr 4m wide gr 4m wide gr 4m wide gr NJC V-DR 4m wide gr 4m wide gr 4m wide gr 4m wide gr	Major Storr (m) 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	Minor Storr (m) 0.3 0.3 0.3 0.3 0.3 0.6 0.3 0.3 0.3 0.3 0.3	DxV (sq.m/sec) 0.4 0.4 0.4 0.4 0.6 0.4 0.4 0.4 0.4 0.4	Slope) (%) 0.79 16.67 1.39 0.81 0.24 1.00 1.33 0.80 1.00	Contributin % 0 0 0 0 100 0 0 0 0 0 0	9 	1413 1395 1213 1215 845 1386 1387 1388 1499	6.71 6.79 6.78 6.5 5.73 6.7 6.7 6.7 6.5 6.8	6.65 6.6 6.5 6.37 5.59 6.6 6.6 6.6 6.4 6.71	7 1.14 20.1 16 58 10 7.5 12.5 9		
OF P4_13 - BYPASS2 OF P5_13 - BYPASS1 OF P6_13 - P7_13 OF P7_13 - TRACK2 V-DRAIN OF P1_11 - P3_11 OF P2_11 - P3_11 OF P3_11 - TRENCH11 OF TRENCH11 - BYPASS2 OF P3_1 - P4_1	From P4_13 P5_13 P6_13 P7_13 HW1_V-D P1-11 P2-11 P3-11 P3_1 P3_1	BYPASS2 BYPASS1 P7_13 TRACK2 FEXPit_Trac P3-11 P3-11 TRENCH_ P4_13 P4_1	Time (min) 0.1 0.2 0.2 1.4 0.1 0.2 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.2 0.1	Level (m)	Length	Coeff. C	Section 4m wide gr 4m wide gr 4m wide gr 4m wide gr NJC V-DR 4m wide gr 4m wide gr 4m wide gr 4m wide gr 4m wide gr 4m wide gr	Major Storr (m) 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	Minor Storr (m) 0.3 0.3 0.3 0.3 0.3 0.6 0.3 0.3 0.3 0.3 0.3 0.3 0.3	DxV (sq.m/sec) 0.4 0.4 0.4 0.4 0.6 0.4 0.4 0.4 0.4 0.4 0.4 0.36	Slope) (%) 0.79 16.67 1.39 0.81 0.24 1.00 1.33 0.80 1.00	Contributin % 0 0 0 0 100 0 0 0 0 0 0 0 0	<u>9</u>	1413 1395 1213 1215 845 1386 1387 1388 1499 79375	6.71 6.79 6.78 6.5 5.73 6.7 6.7 6.7 6.5 6.8 6.8 6.3	6.65 6.6 6.5 6.37 5.59 6.6 6.6 6.6 6.4 6.71 6.25	7 1.14 20.1 16 58 10 7.5 12.5 9 4.85		
OF P4_13 - BYPASS2 OF P5_13 - BYPASS1 OF P6_13 - P7_13 OF P7_13 - TRACK2 V-DRAIN OF P1_11 - P3_11 OF P2_11 - P3_11 OF P3_11 - TRENCH11 OF TRENCH11 - BYPASS2 OF P3_1 - P4_1 OF P4_1 - P5_1	From P4_13 P5_13 P6_13 P7_13 HW1_V-D P1-11 P2-11 P3-11 P3-11 P3_1 P3_1 P4_1	BYPASS2 BYPASS1 P7_13 TRACK2 FEXPit_Trac P3-11 P3-11 TRENCH_ P4_13 P4_1 P5_1	Time (min) 0.1 0.2 0.2 1.4 0.1 0.2 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Level (m)	Length	Coeff. C	Section 4m wide gr 4m wide gr 4m wide gr 4m wide gr NJC V-DR 4m wide gr 4m wide gr 4m wide gr 4m wide gr 4m wide gr 6utter Flow Gutter Flow	Major Storr (m) 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	Minor Storr (m) 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	DxV (sq.m/sec) 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	Slope) (%) 0.79 16.67 1.39 0.81 0.24 1.00 1.33 0.80 1.00 1.03 0.78	Contributin % 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0	<u>9</u>	1413 1395 1213 1215 845 1386 1387 1388 1499 79375 79565	6.71 6.79 6.78 6.5 5.73 6.7 6.7 6.7 6.5 6.8 6.8 6.3 6.3	6.65 6.6 6.5 6.37 5.59 6.6 6.6 6.6 6.4 6.71 6.25 6.25	7 1.14 20.1 16 58 10 7.5 12.5 9 4.85 6.4		
OF P4_13 - BYPASS2 OF P5_13 - BYPASS1 OF P6_13 - P7_13 OF P7_13 - TRACK2 V-DRAIN OF P1_11 - P3_11 OF P2_11 - P3_11 OF P3_11 - TRENCH11 OF TRENCH11 - BYPASS2 OF P3_1 - P4_1 OF P4_1 - P5_1 OF P5_1 - P6_1	From P4_13 P5_13 P6_13 P7_13 HW1_V-D P1-11 P2-11 P3-11 P3_1 P3_1 P4_1 P5_1	BYPASS2 BYPASS1 P7_13 TRACK2 ExPit_Trac P3-11 P3-11 TRENCH_ P4_13 P4_1 P5_1 P6_1	Time (min) 0.1 0.2 0.2 1.4 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Level (m)	Length	Coeff. C	Section 4m wide gr 4m wide gr 4m wide gr 4m wide gr NJC V-DR 4m wide gr 4m wide gr 4m wide gr 4m wide gr 4m wide gr 6utter Flow Gutter Flow Gutter Flow	Major Stor (m) 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	Minor Storr (m) 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	DxV (sq.m/sec) 0.4 0.4 0.4 0.4 0.6 0.4 0.4 0.4 0.4 0.4 0.36 0.36 0.36	Slope) (%) 0.79 16.67 1.39 0.81 0.24 1.00 1.33 0.80 1.00 1.03 0.78 0.81	Contributin % 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0	9 	1413 1395 1213 1215 845 1386 1387 1388 1499 79375 79565 79657	6.71 6.79 6.78 6.5 5.73 6.7 6.7 6.7 6.5 6.8 6.3 6.3 6.3 6.3	6.65 6.6 6.5 6.37 5.59 6.6 6.6 6.6 6.4 6.71 6.25 6.25 6.25	7 1.14 20.1 16 58 10 7.5 12.5 9 4.85 6.4 6.15	Image: Constraint of the sector of	
OF P4_13 - BYPASS2 OF P5_13 - BYPASS1 OF P6_13 - P7_13 OF P7_13 - TRACK2 V-DRAIN OF P1_11 - P3_11 OF P2_11 - P3_11 OF P3_11 - TRENCH11 OF TRENCH11 - BYPASS2 OF P3_1 - P4_1 OF P4_1 - P5_1	From P4_13 P5_13 P6_13 P7_13 HW1_V-D P1-11 P2-11 P3-11 P3-11 P3_1 P3_1 P4_1	BYPASS2 BYPASS1 P7_13 TRACK2 ExPit_Trac P3-11 P3-11 TRENCH_ P4_13 P4_1 P5_1 P6_1 GD3	Time (min) 0.1 0.2 0.2 1.4 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Level (m)	Length	Coeff. C	Section 4m wide gr 4m wide gr 4m wide gr 4m wide gr NJC V-DR 4m wide gr 4m wide gr 4m wide gr 4m wide gr 6utter Flow Gutter Flow Gutter Flow Gutter Flow	Major Stor (m) 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	Minor Storr (m) 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	DxV (sq.m/sec) 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	Slope) (%) 0.79 16.67 1.39 0.81 0.24 1.00 1.33 0.80 1.00 1.03 0.78 0.81	Contributin % 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0	9 	1413 1395 1213 1215 845 1386 1387 1388 1499 79375 79565	6.71 6.79 6.78 6.5 5.73 6.7 6.7 6.7 6.5 6.8 6.3 6.3 6.3 6.3 6.45	6.65 6.6 6.5 6.37 5.59 6.6 6.6 6.6 6.4 6.71 6.25 6.25 6.25 6.25 6.44	7 1.14 20.1 16 58 10 7.5 12.5 9 4.85 6.4	Image: Constraint of the sector of	
OF P4_13 - BYPASS2 OF P5_13 - BYPASS1 OF P6_13 - P7_13 OF P7_13 - TRACK2 V-DRAIN OF P1_11 - P3_11 OF P2_11 - P3_11 OF P3_11 - TRENCH11 OF TRENCH11 - BYPASS2 OF P3_1 - P4_1 OF P4_1 - P5_1 OF P5_1 - P6_1	From P4_13 P5_13 P6_13 P7_13 HW1_V-D P1-11 P2-11 P3-11 P3_1 P3_1 P4_1 P5_1	BYPASS2 BYPASS1 P7_13 TRACK2 ExPit_Trac P3-11 P3-11 TRENCH_ P4_13 P4_1 P5_1 P6_1 GD3	Time (min) 0.1 0.2 0.2 1.4 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Level (m)	Length	Coeff. C	Section 4m wide gr 4m wide gr 4m wide gr 4m wide gr NJC V-DR 4m wide gr 4m wide gr 4m wide gr 4m wide gr 4m wide gr 6utter Flow Gutter Flow Gutter Flow	Major Stor (m) 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	Minor Storr (m) 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	DxV (sq.m/sec) 0.4 0.4 0.4 0.4 0.6 0.4 0.4 0.4 0.4 0.4 0.36 0.36 0.36	Slope) (%) 0.79 16.67 1.39 0.81 0.24 1.00 1.33 0.80 1.00 1.03 0.78 0.81 0.33	Contributin % 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0	9 	1413 1395 1213 1215 845 1386 1387 1388 1499 79375 79565 79657	6.71 6.79 6.78 6.5 5.73 6.7 6.7 6.7 6.5 6.8 6.3 6.3 6.3 6.3	6.65 6.6 6.5 6.37 5.59 6.6 6.6 6.6 6.4 6.71 6.25 6.25 6.25 6.25 6.44	7 1.14 20.1 16 58 10 7.5 12.5 9 4.85 6.4 6.15	Image: Constraint of the sector of	
OF P4_13 - BYPASS2 OF P5_13 - BYPASS1 OF P6_13 - P7_13 OF P7_13 - TRACK2 V-DRAIN OF P1_11 - P3_11 OF P2_11 - P3_11 OF P3_11 - TRENCH11 OF TRENCH11 - BYPASS2 OF P3_1 - P4_1 OF P4_1 - P5_1 OF P5_1 - P6_1 OF P6_1 - GD3 OF HW1 - BRB3	From P4_13 P5_13 P6_13 P7_13 HW1_V-D P1-11 P2-11 P3-11 P3-11 P3_1 P4_1 P5_1 P6_1 HW1-BRE	BYPASS2 BYPASS1 P7_13 TRACK2 FEXPit_Trac P3-11 P3-11 TRENCH_ P4_13 P4_1 P5_1 P5_1 P6_1 GD3 BRB3	Time (min) 0.1 0.2 0.2 1.4 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Level (m)	Length	Coeff. C	Section 4m wide gr 4m wide gr 4m wide gr 4m wide gr MJC V-DR 4m wide gr 4m wide gr 4m wide gr 4m wide gr Gutter Flow Gutter Flow Gutter Flow Gutter Flow Gutter Flow Gutter Flow	Major Stor (m) 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	Minor Storr (m) 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	DxV (sq.m/sec) 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.36 0.36 0.36 0.36 0.4	Slope) (%) 0.79 16.67 1.39 0.81 0.24 1.00 1.33 0.80 1.00 1.03 0.78 0.81 0.33 1.00	Contributin % 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0	9 	1413 1395 1213 1215 845 1386 1387 1388 1499 79375 79565 79657 79768 83853	6.71 6.79 6.78 6.5 5.73 6.7 6.7 6.7 6.5 6.8 6.3 6.3 6.3 6.3 6.45 5.6	6.65 6.6 6.5 6.37 5.59 6.6 6.6 6.4 6.71 6.25 6.25 6.25 6.25 6.44 5.5	7 1.14 20.1 16 58 10 7.5 12.5 9 4.85 6.4 6.15 3 10		
OF P4_13 - BYPASS2 OF P5_13 - BYPASS1 OF P6_13 - P7_13 OF P7_13 - TRACK2 V-DRAIN OF P1_11 - P3_11 OF P3_11 - TRENCH11 OF P3_11 - TRENCH11 OF P4_1 - P5_1 OF P4_1 - P5_1 OF P5_1 - P6_1 OF P5366	From P4_13 P5_13 P6_13 P7_13 HW1_V-D P1-11 P2-11 P3-11 P3_11 P3_1 P4_1 P5_1 P6_1 HW1-BRE P2_1	BYPASS2 BYPASS1 P7_13 TRACK2 ExPit_Trac P3-11 P3-11 TRENCH_ P4_13 P4_1 P5_1 P6_1 GD3 BRB3 P3_1	Time (min) 0.1 0.2 0.2 1.4 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Level (m)	Length	Coeff. C	Section 4m wide gr 4m wide gr 4m wide gr 4m wide gr MJC V-DR 4m wide gr 4m wide gr 4m wide gr 4m wide gr Gutter Flow Gutter Flow	Major Stor (m) 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	Minor Storr (m) 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	DxV (sq.m/sec) 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	Slope) (%) 0.79 16.67 1.39 0.81 0.24 1.00 1.33 0.80 1.00 1.03 0.78 0.81 0.33 1.00 1.49	Contributin % 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0	9 	1413 1395 1213 1215 845 1386 1387 1388 1499 79375 79565 79657 79565 79657 79768 83853 125429	6.71 6.79 6.78 6.5 5.73 6.7 6.7 6.7 6.3 6.3 6.45 5.6 6.35	6.65 6.6 6.5 6.37 5.59 6.6 6.6 6.71 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25	7 1.14 20.1 16 58 10 7.5 12.5 9 4.85 6.4 6.15 3 10 6.7		
OF P4_13 - BYPASS2 OF P5_13 - BYPASS1 OF P6_13 - P7_13 OF P7_13 - TRACK2 V-DRAIN OF P1_11 - P3_11 OF P3_11 - TRENCH11 OF P3_11 - TRENCH11 OF P4_1 - P5_1 OF P4_1 - P5_1 OF P5_1 - P6_1 OF P6_1 - GD3 OF HW1 - BRB3 OF32	From P4_13 P5_13 P6_13 P7_13 HW1_V-D P1-11 P2-11 P3-11 P3_1 P4_1 P5_1 P4_1 P5_1 P4_1 P5_1 P6_1 HW1-BRE P2_1 ExP5	BYPASS2 BYPASS1 P7_13 TRACK2 FEXPit_Trac P3-11 P3-11 TRENCH_ P4_13 P4_1 P5_1 P6_1 GD3 BRB3 P3_1 ExP4	Time (min) 0.1 0.2 0.2 1.4 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Level (m)	Length	Coeff. C	Section 4m wide gr 4m wide gr 4m wide gr 4m wide gr MJC V-DR 4m wide gr 4m wide gr 4m wide gr 4m wide gr Gutter Flow Gutter Flow	Major Storr (m) 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	Minor Storr (m) 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	DxV (sq.m/sec) 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	Slope) (%) 0.79 16.67 1.39 0.81 0.24 1.00 1.33 0.80 1.00 1.03 0.78 0.81 0.33 1.00 1.49 0.24	Contributin % 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0	9 	1413 1395 1213 1215 845 1386 1387 1388 1499 79375 79565 79657 79768 83853 125429 119287	6.71 6.79 6.78 6.5 5.73 6.7 6.7 6.5 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.3 6.3 6.45 5.6 6.35 6.15	6.65 6.6 6.5 6.37 5.59 6.6 6.4 6.71 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25	7 1.14 20.1 16 58 10 7.5 12.5 9 4.85 6.4 6.15 3 10 6.7 41.3		
OF P4_13 - BYPASS2 OF P5_13 - BYPASS1 OF P6_13 - P7_13 OF P7_13 - TRACK2 V-DRAIN OF P1_11 - P3_11 OF P3_11 - TRENCH11 OF P3_11 - TRENCH11 OF P4_1 - P5_1 OF P5_1 - P6_1 OF P6_1 - GD3 OF HW1 - BRB3 OF372 OF374	From P4_13 P5_13 P6_13 P7_13 HW1_V-D P1-11 P2-11 P3-11 P3_1 P4_1 P5_1 P4_1 P5_1 P4_1 P5_1 P6_1 HW1-BRE P2_1 ExP5 ExP4	BYPASS2 BYPASS1 P7_13 TRACK2 FEXPit_Trac P3-11 P3-11 TRENCH_ P4_13 P4_1 P5_1 P6_1 GD3 BRB3 P3_1 ExP4 CHATHAM	Time (min) 0.1 0.2 0.2 1.4 0.1 0.2 0.1	Level (m)	Length	Coeff. C	Section 4m wide gr 4m wide gr 4m wide gr 4m wide gr MJC V-DR 4m wide gr 4m wide gr 4m wide gr 4m wide gr 6utter Flow Gutter Flow Gutter Flow Gutter Flow Gutter Flow Gutter Flow Gutter Flow 9m wide gr Dummy Of Gutter Flow 9m wide gr 9m wi	Major Stor (m) 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	Minor Storr (m) 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	DxV (sq.m/sec) 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36	Slope) (%) 0.79 16.67 1.39 0.81 0.24 1.00 1.33 0.80 1.00 1.03 0.78 0.81 0.33 1.00 1.49 0.24 1.30	Contributin % 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 	1413 1395 1213 1215 845 1386 1387 1388 1499 79375 79565 79657 79565 79657 79768 83853 125429 119287 121667	6.71 6.79 6.78 6.5 5.73 6.7 6.7 6.5 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.3 6.3 6.45 5.6 6.35 6.15 6.17	6.65 6.6 6.5 6.37 5.59 6.6 6.4 6.71 6.25 6.25 6.25 6.25 6.44 5.5 6.25 6.25 6.44 5.5 6.25 6.40	7 1.14 20.1 16 58 10 7.5 12.5 9 4.85 6.4 6.15 3 10 6.7 41.3 9.2	Image: state	
OF P4_13 - BYPASS2 OF P5_13 - BYPASS1 OF P6_13 - P7_13 OF P7_13 - TRACK2 V-DRAIN OF P1_11 - P3_11 OF P3_11 - TRENCH11 OF P3_11 - TRENCH11 OF P4_1 - P5_1 OF P5_1 - P6_1 OF P6_1 - GD3 OF HW1 - BRB3 OF372 OF374 OF P2_2 - BRB2	From P4_13 P5_13 P6_13 P7_13 HW1_V-D P1-11 P2-11 P3-11 P3_1 P4_1 P5_1 P6_1 HW1-BRE P2_1 ExP5 ExP4 P2_2	BYPASS2 BYPASS1 P7_13 TRACK2 FEXPit_Trac P3-11 P3-11 TRENCH_ P4_13 P4_1 P5_1 P6_1 GD3 BRB3 P3_1 ExP4 CHATHAM N469	Time (min) 0.1 0.2 0.2 1.4 0.1 0.2 0.1	Level (m)	Length	Coeff. C	Section 4m wide gr 4m wide gr 6utter Flow Gutter Flow Gutter Flow Gutter Flow Gutter Flow Gutter Flow Gutter Flow 9m wide gr Dummy Of Gutter Flow 9m Wide gr 9m	Major Stor (m) 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	Minor Storr (m) 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	DxV (sq.m/sec) 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36	Slope) (%) 0.79 16.67 1.39 0.81 0.24 1.00 1.33 0.80 1.00 1.03 0.78 0.81 0.33 1.00 1.49 0.24 1.30 9.58	Contributin % 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 	1413 1395 1213 1215 845 1386 1387 1388 1499 79375 79565 79657 79565 79657 79768 83853 125429 119287 121667 53808	6.71 6.79 6.78 6.5 5.73 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.3 6.3 6.35 6.15 6.17 6.86	6.65 6.6 6.5 6.37 5.59 6.6 6.71 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.05 6.05 6.4	7 1.14 20.1 16 58 10 7.5 12.5 9 4.85 6.4 6.15 3 10 6.7 41.3 9.2 4.8	Image: state	
OF P4_13 - BYPASS2 OF P5_13 - BYPASS1 OF P6_13 - P7_13 OF P7_13 - TRACK2 V-DRAIN OF P1_11 - P3_11 OF P3_11 - TRENCH11 OF P3_11 - TRENCH11 OF P4_1 - P5_1 OF P5_1 - P6_1 OF P6_1 - GD3 OF HW1 - BRB3 OF372 OF374	From P4_13 P5_13 P6_13 P7_13 HW1_V-D P1-11 P2-11 P3-11 P3_1 P4_1 P5_1 P4_1 P5_1 P4_1 P5_1 P6_1 HW1-BRE P2_1 ExP5 ExP4	BYPASS2 BYPASS1 P7_13 TRACK2 FEXPit_Trac P3-11 P3-11 TRENCH_ P4_13 P4_1 P5_1 P6_1 GD3 BRB3 P3_1 ExP4 CHATHAM N469	Time (min) 0.1 0.2 0.2 1.4 0.1 0.2 0.1	Level (m)	Length	Coeff. C	Section 4m wide gr 4m wide gr 4m wide gr 4m wide gr MJC V-DR 4m wide gr 4m wide gr 4m wide gr 4m wide gr 6utter Flow Gutter Flow Gutter Flow Gutter Flow Gutter Flow Gutter Flow Gutter Flow 9m wide gr Dummy Of Gutter Flow 9m wide gr 9m wi	Major Stor (m) 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	Minor Storr (m) 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	DxV (sq.m/sec) 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36	Slope) (%) 0.79 16.67 1.39 0.81 0.24 1.00 1.33 0.80 1.00 1.03 0.78 0.81 0.33 1.00 1.49 0.24 1.30 9.58	Contributin % 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 	1413 1395 1213 1215 845 1386 1387 1388 1499 79375 79565 79657 79565 79657 79768 83853 125429 119287 121667	6.71 6.79 6.78 6.5 5.73 6.7 6.7 6.5 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.3 6.3 6.45 5.6 6.35 6.15 6.17	6.65 6.6 6.5 6.37 5.59 6.6 6.71 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.05 6.05 6.4	7 1.14 20.1 16 58 10 7.5 12.5 9 4.85 6.4 6.15 3 10 6.7 41.3 9.2	Image: state	

<u>.</u>														
OF234	HW2 (BRB BRB2	0.1			4m wide gr 1.2	0.3	0.4	2.86	0	54467	5.8	5.6	7	
OF GD2 - ExP6	GD2 NOR ExP6	0.1			Gutter Flov 0.3	0.3	0.36	4.75	0	43863681		6.26	4	
		0.1			Spillway 0.3	0.3		6.63	0		6.8	6.27	8	
		0.1 6.800	5	1.62	7.5m wide 0.3	0.3		6.63	0		6.8	6.27	8	
		0.1		1.02	7.5m wide 0.3	0.3		5.75	0		6.5	6.27	4	
									J				-	
		0.2			Gutter Flov 0.3	0.3	0.36	0.12	0		6.27	6.26	8	
OF ExP6 - ChathamSt Node					20 m wide 0.2	0.2		6.67	0		6.61	6.27	6	
OF P1_17 - GD2	P1_17 GD2_NOR				7.5m wide 0.3	0.3	0.36	1.67	100	846	6.65	6.45	12	
OF P2 17 - GD2	P2 17 GD2 NOR	0.1			Gutter Flov 0.3	0.3	0.36	3.90	0	847	6.84	6.45	10	
OF P1 16 - P2 16		0.1			7.5m wide 0.3	0.3	0.36	2.74	0		6.75	6.55	7.3	
	P2 16 ExPit Trac				7.5m wide 0.3	0.3	0.36	13.47	0		6.6		7.5	
	ExPit Trac TRACK1						0.30	3.30	0		6.37			
	_				20 m wide 0.2	0.2			•			6.04	10	
	P4-11 TRENCH_				4m wide gr 1.2	0.3	0.4	0.80	0		6.5	6.4	12.5	
OF P1_9 - P3_9	P1-9 P3-9	0.1			4m wide gr 1.2	0.3	0.4	1.00	0	1567	6.7	6.6	10	
OF P2 9 - P3 9	P2-9 P3-9	0.1			4m wide gr 1.2	0.3	0.4	1.33	0	1553	6.7	6.6	7.5	
	P3-9 TRENCH9				4m wide gr 1.2	0.3	0.4	0.80	0		6.5	6.4	12.5	
	TRENCH9 P2 3 BASI		4	1.62	4m wide gr 1.2	0.3	0.4	1.00	0		6.8	6.71	9	
			4	1.02					0				-	
	P4-9 TRENCH9				4m wide gr 1.2	0.3		0.80	•		6.5	6.4	12.5	
		0.1			4m wide gr 1.2	0.3		2.38	0		6.85	6.6	10.5	
		0.1			4m wide gr 1.2	0.3		2.38	0		6.85	6.6	10.5	
OF P3_13 - P6_13	P3_13 P6_13	0.1			4m wide gr 1.2	0.3	0.4	1.56	0	1212	6.85	6.78	4.5	
	BYPASS2 BYPASS1				4m wide gr 1.2	0.3	0.4	0.15	0		6.65	6.6	36	
		0.6			4m wide gr 1.2	0.3	0.4	0.38	0		6.6	6.5	26	
	P2 3 BASI P1 15 BAS		10	1.62	Spillway 0.3	0.3		4.88	0		6.89	6.48	8.4	
			10		, ,				•					
	P1_15 BAS P2_15 BAS		2.7	1.62	Gutter Flov 0.3	0.3	0.36	1.03	50		6.59	6.48	10.7	
	P2_15 BA&P3_15 BA&		2.7	1.62	Gutter Flov 0.3	0.3	0.36	0.87	50		6.59	6.48	12.7	
OF P4_3 - P2_15	P4_3 BASI P2_15 BAS	0.1 6.890	20	1.62	20 m wide 0.2	0.2	0.4	4.88	0	17172	6.89	6.48	8.4	
OF P3 15 - P4 15 BASIN	P3 15 BAS P4 15 BAS	0.1 6.590	2.7	1.62	Gutter Flov 0.3	0.3	0.36	0.87	40	24193	6.59	6.48	12.7	
	P7 3 BASI P3 15 BAS		20	1.62	20 m wide 0.2	0.2	0.4	4.88	0		6.89	6.48	8.4	
OF P9 3 BASIN - P11 3 BAS			10	1.62	Spillway 0.3	0.3		4.88	0		6.89	6.48	8.4	
									•					
		0.1 6.630	10	1.62	Spillway 0.3	0.3	0.36	10.62	0		6.63	5.94	6.5	
		0.1 6.100	3	1.62	4m wide gr 1.2	0.3	0.4	1.00	0		6.1	6	10	
OF BRB2 - N458	BRB2 N458	0.1 6.200	18	1.62	20 m wide 0.2	0.2	0.4	5.45	0	51134	6.2	5.944	4.7	
OF P11 3 BASIN	P11 3 BA5 N403	0.1 6.630	10	1.62	Spillway 0.3	0.3	0.36	11.69	0	31421	6.63	5.87	6.5	
	P3 19 BASN404	0.1 6.630	10	1.62	Spillway 0.3	0.3	0.36	12.62	0		6.63	5.81	6.5	
	_	0.1 6.630	10	1.62	Spillway 0.3	0.3	0.36	12.72	0		6.63	5.803	6.5	
			4						0					
	_	0.1 6.630	4	1.62	4m wide gr 1.2	0.3	0.4	11.75	0		6.63		6.5	
		0.3			Gutter Flov 0.3	0.3		0.35	0		5.94	5.87	20	
OF181	N403 N404	0.3			Gutter Flov 0.3	0.3	0.36	0.34	0	33856	5.87	5.81	17.6	
OF184	N404 ExP3	0.1			Gutter Flov 0.3	0.3	0.36	0.32	0	34151	5.81	5.78	9.5	
		0.1			Gutter Flov 0.3	0.3	0.36	0.37	0	33625	5.803	5.78	6.2	
		0.2			Gutter Flov 0.3	0.3	0.36	0.40	0		5.866	5.803	15.8	
		0.2			30m wide \$0.3	0.3	0.6	8.17	0		6.27	5.78	6	
		-		1.00				-	•				•	
OF P2_18 BASIN - P3_19 BA			10	1.62	Spillway 0.3	0.3		4.88	0		6.89		8.4	
OF P1_18 BASIN - P2_19 BA	Basin76 P2_19 BAS	0.1 6.890	10	1.62	Spillway 0.3	0.3		4.88	0		6.89	6.48	8.4	
OF219	N458 N406	0.3			Gutter Flov 0.3	0.3	0.36	0.34	0	50632	5.944	5.866	23	
OF230	N469 HW2 (BRB	0.1			4m wide gr 1.2	0.3	0.4	37.50	0	53962	6.4	5.8	1.6	
		0.1			4m wide gr 1.2	0.3		2.86	0		6	5.6	14	
		0.1			4m wide gr 1.2	0.3	0.4	1.00	0		6.7	6.6	10	
		0.1			4m wide gr 1.2				0		6.7 6.7	6.6	7.5	
						0.3	0.4	1.33	-					
	P3_7 TRENCH7				4m wide gr 1.2	0.3	0.4	0.80	0		6.5	6.4	12.5	
	TRENCH7 P4_3 BASI		4	1.62	4m wide gr 1.2	0.3	0.4	1.00	0		6.8	6.71	9	
OF254	P4_7 TRENCH7	0.2			4m wide gr 1.2	0.3	0.4	0.80	0	67340	6.5	6.4	12.5	
OF BRB3 - ExP4	BRB3 ExP4	0.1 6.400	4	1.62	4m wide gr 1.2	0.3	0.4	7.00	0	84179	6.4	6.05	5	
		0.2			4m wide gr 1.2	0.3	0.4	0.59	0		6.6	6.55	8.5	
		0.2			4m wide gr 1.2	0.3	0.4	0.53	0		6.55	6.5	9.5	
									-					
	P3_8 TRENCH8			4.00	4m wide gr 1.2	0.3		2.00	0		6.5	6.4	5	
OF TRENCH8 - CHATHAM-F			4	1.62	4m wide gr 1.2	0.3		4.55	0		6.7	6.2	11	
	P4_8 TRENCH8	0.1			4m wide gr 1.2	0.3	0.4	2.00	0		6.5	6.4	5	
OF370	CHATHAN ExP5	1.1			Gutter Flov 0.3	0.3	0.36	0.11	0	118007	6.2	6.15	44	
		0.1			4m wide gr 1.2	0.3	0.4	1.00	0		6.7	6.6	10	
		0.1			4m wide gr 1.2	0.3	0.4	1.33	0		6.7	6.6	7.5	
									0					
	P3_10 TRENCH1			1.00	4m wide gr 1.2	0.3	0.4	0.80	•		6.5	6.4	12.5	
OF TRENCH10 - CHATHAM-			4	1.62	4m wide gr 1.2	0.3	0.4	3.64	0		6.7	6.3	11	
	P4_10 TRENCH1				4m wide gr 1.2	0.3	0.4	0.80	0		6.5	6.4	12.5	
OF368	CHATHAN CHATHAM	0.6			Gutter Flov 0.3	0.3	0.36	0.27	0	117085	6.3	6.2	36.8	
	GD3 HW1-BRB				PAVEMEN 0.3	0.3		5.20	0		6.44	5.8	12.3	
		0.1			Spillway 0.3	0.3		6.63	0		6.8	6.27	8	
		0.1				0.0	0.00	0.00	v	0+0	0.0	0.21	•	

·				1	I	 1			 	
PIPE COVER DETAILS										
Name		Safe Cover								
P4_13 - P5_13	uPVC, not 242		0.21	Unsafe						
P5_13 - P6_13	uPVC, not 242		0.48	Unsafe						
P6_13 - P7_13 P7_13 - HW1			0.39 -0.25	Unsafe Unsafe						
P1 11 - P2 11	uPVC, not 242 uPVC, not 154		-0.25 0.29	Unsafe						
P2-11_P3-11			0.29	Unsafe						
TRENCH-11 1			-0.16	Unsafe						
P3 1 - P4 1	uPVC, und 105		0.29	Unsafe						
P4_1 - P5_1	uPVC, und 239		0.20	Unsafe						
P5 1 - P6 1			0.26	Unsafe						
P6 1 - P7 1	uPVC, und 303		0.26	Unsafe						
P7 1-GPT BRB3	uPVC, not 242		0.76							
GPT BRB3 - BRB3			-0.25	Unsafe						
 P2 1-P1 1+GD4			0.29	Unsafe						
P1_1 - P2_6	uPVC, und 154	0.6	0.49	Unsafe						
P2_6 - ExP5		0.6	0.31	Unsafe						
ExP5 - ExP4			0.64							
Pipe1059	Concrete, 1375		0.64							
Pipe17	uPVC, not 154		0.60							
P3_2 - HW2			-0.16	Unsafe	L					
GD2 - SAND FILTER	uPVC, not 154		0.36	Unsafe						
SAND_FILTER_INLET2	uPVC, not 242		-0.65	Unsafe						
SAND FILTER - P4_17			-0.16	Unsafe						
P4_17 - P5_27			0.95							
P5_17 - ExP6	Concrete, 375		0.72							
ExP6 - Chatham North P1_17 - P2_17			0.78 0.36	Unsafe						
P1_17 - P2_17 P1_16 - P2_16	uPVC, und 239 uPVC, not 154		0.36	Unsafe						
Pipe69	uPVC, not 154		0.44	Unsafe						
Pipe at Track Crossing			0.42	Unsafe						
T1-B-N P3-11	uPVC, not 154		0.25	Unsafe						
T1-A-S_P4-9	uPVC, not 154		0.25	Unsafe						
TRENCH-11 2			-0.16	Unsafe						
P1-9 P2-9			0.29	Unsafe						
P2-9 P3-9	uPVC, not 154		0.44	Unsafe						
P196		0.6	-0.16	Unsafe						
T1-C-N_P3-9			0.25	Unsafe						
TANK-T1-B-S_P4-9	uPVC, not 154		0.25	Unsafe						
P198			-0.16	Unsafe						
P1_13 - P2_13			0.16	Unsafe						
P2_13 - P3_13			0.27	Unsafe						
P3_13 - P6_13	uPVC, not 154		0.38	Unsafe						
P2_3 BASIN OUTLET			0.29	Unsafe						
P3_3 - P5_3			0.42	Unsafe						
P5_3 - P6_3	uPVC, not 303		0.63							
P6_3 - P8_3 P8_3 - P10_3			0.71 0.86							
P8_3 - P10_3 P10_3 - P11_3	uPVC, not 303 uPVC, not 303		0.86							
P10_3 - P11_3 P11_3 - P5_15	uPVC, not 303		0.88							
P5_15 - ExP1			0.68							
ExP1 - DARLING_ST_RN	Concrete, 1375		0.89							
P1 15 BASIN OUTLET	uPVC, not 105		0.45	Unsafe						
P1_15 - P2_15			0.52	Unsafe						
P2 15 - P3 15			0.63		<u> </u>					
P3_15 - P4_15	uPVC, not 154		0.74							
P4_15 - P5_15			0.90							
P2_15 BASIN OUTLET	uPVC, not 105	0.6	0.55	Unsafe						
P4_3 BASIN OUTLET	uPVC, not 105	0.6	0.50	Unsafe						
P3_15 BASIN OUTLET	uPVC, not 105		0.67							
P7_3 BASIN OUTLET	uPVC, not 105	0.6	0.73							
P9_3 BASIN OUTLET			0.87							
P4_15 BASIN OUTLET	uPVC, not 105		0.73							
block d roof - brb1			-0.86	Unsafe						
BRB1 - BRB2	uPVC, not 105	0.6	-0.11	Unsafe						

1					1				I	1				
P2_4 - P3_4	uPVC, not 105	0.6	-0.11	Unsafe										
P3_4 - P4_4	Concrete, 1375	0.6	0.54	Unsafe										
P4_4 - ExP2	Concrete, 1375	0.6	0.54	Unsafe										
ExP2 - ExP1	Concrete, 1375	0.6	0.66											
P11_3 BASIN OUTLET	uPVC, not 105	0.6	0.81											
P3_19 BASIN OUTLET	uPVC, not 105	0.6	0.73											
P3_19 - P11_3	uPVC, not 154	0.6	0.95											
P2_19 BASIN OUTLET	uPVC, not 105	0.6	0.65											
P2_19 - P3_19	uPVC, not 154	0.6	0.87											
P1_19 BASIN OUTLET	uPVC, not 105	0.6	0.57	Unsafe										
P1 19 - P2 19	uPVC, not 154	0.6	0.80											
ExP3 - ExP2	Concrete, 1375	0.6	0.41	Unsafe										
P2 18 BASIN OUTLET	uPVC, und 105	0.6	0.78											
P2 18 - P10 3	uPVC, und 154	0.6	1.01											
P1 18 BASIN OUTLET	uPVC, und 105	0.6	0.71											
P1 19 - P2 18	uPVC, und 154	0.6	0.93											
GD1 - P3 4	Concrete, 1150	0.6	0.85											
CONCOURSE - BRB1	uPVC, not 242	0.6	-0.95	Unsafe										
P1 7 - P2 7	uPVC, not 154	0.6	0.29	Unsafe							-			
P2 7 - P3 7	uPVC, not 154	0.6	0.44	Unsafe										
P3 7 - TRENCH7	uPVC, not 154	0.6	-0.16	Unsafe										
T1-D-NTH OVERFLOW	uPVC, not 154	0.6	0.25	Unsafe										
T1-C-STH - P4 7	uPVC, not 154	0.6	0.25	Unsafe										
P4 7 = TRENCH7	uPVC, not 154	0.6	-0.16	Unsafe										
BRB3 - ExP4	uPVC, not 105	0.6	-0.10	Unsafe										
T1 - P1 6	uPVC, und 154	0.6	0.25	Unsafe										
P1 6 - P2 6	uPVC, und 154	0.6	0.23	Unsafe										
T1 - P2 6	uPVC, und 154	0.6	0.27	Unsafe										
P1 8 - P2 8	uPVC, und 154 uPVC, not 154	0.6	0.27	Unsafe										
P2_8 - TRENCH8	uPVC, not 154	0.6	0.25	Unsafe										
P3_8 - TRENCH8	uPVC, not 154	0.6	-0.16	Unsafe										
T2-EQPSHD - P3_8	uPVC, not 154	0.6	0.25	Unsafe										
T1-E-STH - P4_8	uPVC, not 154	0.6	0.25	Unsafe										
P4_8 - TRENCH8	uPVC, not 154	0.6	-0.16	Unsafe										
P1_10 - P2_10	uPVC, not 154	0.6	0.29	Unsafe										
P2_10 - P3_10	uPVC, not 154	0.6	0.44	Unsafe										
P3_10 - TRENCH10	uPVC, not 154	0.6	-0.16	Unsafe										
P1008	uPVC, not 154	0.6	0.25	Unsafe										
T1-F-STH - P4_10	uPVC, not 154	0.6	0.25	Unsafe										
P4_10 - TRENCH10	uPVC, not 154	0.6	-0.16	Unsafe										
GD3 - P7_1	uPVC, und 154	0.6	0.49	Unsafe										
P2_17 - P3_17	uPVC, und 239	0.6	0.74											
P3_17 - GPT	uPVC, not 242	0.6	0.85											
GPT - SAND FILTER	uPVC, not 242	0.6	0.87											
SAND_TANK_INLET1	uPVC, not 242	0.6	-0.65	Unsafe										
These pipes have non-return	rn valves: GPT_BRB3	- BRB3, P	P1_17 - P2_1	7, P2_3 BASIN OUTLET	, P1_15 BAS	SIN OUTLET, P2_15	BASIN OUTLET, P4	_3 BASIN OU	TLET, P3_1	5 BASIN OUTLET, P7_	3 BASIN O	UTLET, P9	_3 BASIN OUTLET, P4_15 BASIN OUTLET,	BRB1 -
BRB2, P11_3 BASIN OUTL	LET, P3_19 BASIN OL	JTLET, P2	_19 BASIN (DUTLET, P1_19 BASIN (DUTLET, P2	_18 BASIN OUTLET	<u>, P1_18 BASIN OUT</u>	LET			•			1

Pit	Initial K	Revised K Chart (2008)	Ratios
GD3	5.01	5 A1-4	H/Do=0.5, Vo2/(2gDo)=0.01
ExP4	0.94	0.94 A1-25	Du/Do=1.00, Qg/Qo=0.00, S/Do=1.0
ExP5	5.93		H/Do=0.0, Vo2/(2gDo)=0.02
P4 10	1.79		H/Do=7.4, Vo2/(2gDo)=0.34
P3 10	1.79		H/Do=7.5, Vo2/(2gDo)=0.80
P2 10	2.27		
-			H/Do=3.0, Vo2/(2gDo)=0.12
P1_10	2.84	2.83 A1-4	H/Do=2.1, Vo2/(2gDo)=0.03
P2_8	3.3		H/Do=1.6, Vo2/(2gDo)=0.08
P1_8	4.53		H/Do=0.7, Vo2/(2gDo)=0.02
P6_1	1.56	1.56 A1-9	Du/Do=0.79, Qg/Qo=0.37, S/Do=1.3
P5_1	5.05	5.05 A1-4	H/Do=0.4, Vo2/(2gDo)=0.12
P4_1	4.68	4.66 A1-4	H/Do=0.6, Vo2/(2gDo)=0.02
P4 7	1.79	1.79 A1-4	H/Do=7.4, Vo2/(2gDo)=0.34
P3_7	1.79	1.79 A1-4	H/Do=7.5, Vo2/(2gDo)=0.80
P2_7	2.27		H/Do=3.0, Vo2/(2gDo)=0.12
P1_7	2.84		H/Do=2.1, Vo2/(2gDo)=0.03
ExP2	1.95		Qg/Qo=0.00, S/Do=1.0
ExP1	1.92		DI/Do=0.81, B/Do=2.40, (Qu/Qo)(Do/Du)=0.30
ExP3	7.92		H/Do=0.0, Vo2/(2gDo)=0.01
P1_19	0.88		Du/Do=0.68, Qg/Qo=0.00, S/Do=1.7
P7_3	1.23		Du/Do=1.00, Qg/Qo=0.00, S/Do=1.0
P6_3	0.2	0.2 A1-5	Du/Do=1.00, Qg/Qo=0.00, S/Do=1.0
P5_3	1.75	1.75 A1-25	Du/Do=1.00, Qg/Qo=0.00, S/Do=1.0
P1_13	5.93	5.93 A1-4	H/Do=0.0, Vo2/(2gDo)=0.01
P2_13	5.93	5.93 A1-4	H/Do=0.0, Vo2/(2gDo)=0.06
P2 17		not calculated	
P4-9	1.79	1.79 A1-4	H/Do=7.4, Vo2/(2gDo)=0.34
P3-9	1.79		H/Do=7.5, Vo2/(2gDo)=0.80
P2-9	2.27		H/Do=3.0, Vo2/(2gDo)=0.12
P1-9	2.84		H/Do=2.1, Vo2/(2gDo)=0.03
P4-11	1.79		H/Do=7.4, Vo2/(2gDo)=0.34
SAND_FILTER_NORTH	0	0 A1-9	Du/Do=0.64, Qg/Qo=0.00, S/Do=1.0
SAND_FILTER_STH PIT	0.2	0.2 A1-5	Du/Do=1.00, Qg/Qo=0.00, S/Do=1.0
ExPit_Track	7.92	7.92 A1-4	H/Do=0.0, Vo2/(2gDo)=0.05
P2 16	1.75		Du/Do=1.00, Qg/Qo=0.42, S/Do=1.6
P1_16	5.18		H/Do=0.0, Vo2/(2gDo)=0.17
P1 17	2.93		H/Do=2.0, Vo2/(2gDo)=0.01
P3 17	3.02		Qg/Qo=0.00, S/Do=1.0
GD2 NORTH	5.93		H/Do=0.0, Vo2/(2gDo)=0.07
-	0.2		
P4_27			Du/Do=1.00, Qg/Qo=0.00, S/Do=1.0
P5_17		not calculated	
ExP6	0.29	0.3 A1-18	Du/Do=1.00, Qg/Qo=0.00, S/Do=0.2
P7_13	1.48	1.48 A1-6	Du/Do=1.00, Qg/Qo=0.28, S/Do=1.0
P5_13	1.5	not calculated	
P6_13	2.11	2.11 H-O'L	Qg/Qo=0.45, S/Do=1.0
P3_13	1.94	1.95 A1-9	Du/Do=1.00, Qg/Qo=0.41, S/Do=1.2
P3_8	1.79	1.79 A1-4	H/Do=6.8, Vo2/(2gDo)=0.82
P4_8	1.79		H/Do=6.8, Vo2/(2gDo)=0.23
P2_2	5.22		H/Do=0.4, Vo2/(2gDo)=0.01
P3 2	4.67		H/Do=1.2, Vo2/(2gDo)=0.03
P1 6	1.2		Qg/Qo=0.00, S/Do=1.2
-		2.72 H-O'L	
P2_6	1.81		Qg/Qo=0.34, S/Do=1.5
P1_1 + GD4	1.85		Du/Do=1.00, Qg/Qo=0.20, S/Do=1.7
P2_1	4.53		H/Do=0.4, Vo2/(2gDo)=0.13
P3_1	2.04	2.04 A1-4	H/Do=2.9, Vo2/(2gDo)=0.68
P7_1	1.25	1.25 H-O'L	Qg/Qo=0.00, S/Do=1.9
P1-11	2.84	2.84 A1-4	H/Do=2.1, Vo2/(2gDo)=0.03
P2-11	2.57	2.57 A1-4	H/Do=3.0, Vo2/(2gDo)=0.11
P3-11	1.79	1.79 A1-4	H/Do=7.5, Vo2/(2gDo)=0.80
P4 13		not calculated	· · · · · · · · · · · · · · · · · · ·
P3-3		not calculated	
P1_15	1.46		Du/Do=0.68, Qg/Qo=0.00, S/Do=3.3
P2_15	2.1	2.1 A1-24	DI/Do=0.68, B/Do=5.84, (Qu/Qo)(Do/Du)=0.37
P3_15	1.46		DI/Do=0.68, B/Do=5.84, (Qu/Qo)(Do/Du)=0.63
Pit21	2.09		Qg/Qo=0.00, S/Do=1.2
P2_18	1.55		DI/Do=0.68, B/Do=5.84, (Qu/Qo)(Do/Du)=0.59
P1_18	1.82		Du/Do=0.68, Qg/Qo=0.00, S/Do=2.2
P2_19	1.78	1.78 A1-24	DI/Do=0.68, B/Do=5.84, (Qu/Qo)(Do/Du)=0.52
P3_19	1.3	1.3 A1-24	DI/Do=0.68, B/Do=5.84, (Qu/Qo)(Do/Du)=0.67
P11 3	1.32		Du/Do=0.51, Qg/Qo=0.00, S/Do=1.3
Pit15	2.3		Qg/Qo=0.00, S/Do=1.7
P4 15	2.46		Qg/Qo=0.00, S/Do=2.6
P4_4	0.37	0.16 A1-18	Du/Do=1.00, Qg/Qo=0.00, S/Do=0.3
P3_4	0.37		Qg/Qo=0.00, S/Do=1.0
· J_T	0	UTI-UL	

DRAINS results prepared from Version 2020.061

Name Max HGL Max Pord Max Pord Min Overflow Constraint HGL Flow Artivi Vourme (cumm) (m) (cumm) (m) P4_13 6.25 0.000 0.46 0.000 None P5_13 6.09 0.000 0.69 0.000 None P7_13 5.99 0.006 0.51 0.000 None P1-11 6.62 6.63 0.003 0.00 0.000 Outlet System P3-11 6.52 6.62 0.013 6.5 0.00 0.000 Intel Capacity P3-1 6.22 6.20 0.020 1.0 0.03 0.000 Intel Capacity P5-1 6.02 0.000 0.62 None None P5-1 6.02 0.000 0.62 None None P5-1 6.02 0.000 0.62 None None P5-1 6.02 0.000 0.45 None P2-2	PIT / NODE DETAILS				Version 8			
(u.m.m) (u.m.m) (m) vert P5_13 6.09 0.000 0.76 0.000 None P5_13 6.09 0.009 0.69 0.000 None P7_13 5.99 0.006 0.51 0.000 None P1-11 6.62 6.63 0.008 1.0 0.00 0.000 Outel System P3-11 6.62 6.63 0.026 1.0 0.00 0.000 Outel System P3-1 6.30 0.320 1.0 0.03 0.000 Init Capacity P5_1 6.04 6.29 0.020 0.3 0.21 0.000 Init Capacity P5_1 6.04 6.29 0.020 0.3 0.37 None P6_14 5.20 6.05 0.000 0.82 None None P7_1 6.04 6.29 0.061 1.0 0.11 0.000 Init Capacity P7_11 6.14 6.29 0.000 0.82 <td>Name</td> <td>Max HGL</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Constraint</td>	Name	Max HGL						Constraint
P4 13 6.25 0.000 0.46 0.000 None P5 13 6.09 0.009 0.68 0.000 None P7.13 5.99 0.006 0.51 0.000 None P1-11 6.62 6.63 0.008 1.0 0.000 Outlet System P2-11 6.62 6.63 0.008 1.0 0.00 Outlet System P3.11 6.30 6.28 0.020 1.0 0.00 Outlet System P3.11 6.12 6.28 0.03 0.22 0.000 Intel Capacity P5.1 6.19 6.30 0.026 1.0 0.000 Intel Capacity P5.1 6.14 6.29 0.000 0.46 None None P2.1 6.14 6.29 0.016 1.0 0.11 0.000 None ExP4 5.20 6.05 0.000 0.42 0.001 Intel Capacity P1.1 6.64 0.000 0.00 <t< td=""><td></td><td></td><td>HGL</td><td></td><td></td><td></td><td>(cu.m/s)</td><td></td></t<>			HGL				(cu.m/s)	
PE_13 6.09 0.009 0.69 0.000 None HW1.VDRAIN 5.93 0.000 0.01 0.000 Outlet System P2-11 6.62 6.63 0.008 0.9 0.000 Outlet System P3-11 6.62 6.62 0.013 0.00 0.000 Outlet System P3-11 6.30 6.33 0.020 1.0 0.00 0.000 Outlet System P3-11 6.12 6.28 0.013 0.21 0.000 Inlet Capacity P5-1 6.14 6.29 0.020 0.3 0.21 0.000 Inlet Capacity P7-1 6.02 0.000 0.45 None None P7-1 6.14 6.29 0.016 1.0 0.11 0.000 Inlet Capacity P2-1 6.14 6.29 0.016 1.0 0.11 0.000 None ExP4 5.20 6.05 0.000 0.43 0.000 None ExP4<	P4_13	6.25		· /	()	. ,	0.000	None
P7_13 5.99 0.006 0.51 0.000 None P1-11 6.62 6.63 0.008 1.0 0.000 0.000 Outlet System P3-11 6.62 6.63 0.008 1.0 0.00 0.000 Outlet System P3-11 6.62 6.63 0.013 6.5 0.000 0.001 Outlet System P4_11 6.62 6.28 0.013 1.0 0.03 0.000 Intel Capacity P5_1 6.04 6.29 0.020 0.3 0.21 0.000 Intel Capacity P7_1 6.04 6.29 0.020 0.3 0.37 None P2_11 6.14 6.29 0.016 1.0 0.11 0.000 None P2_1 6.14 6.29 0.016 0.00 0.35 0.000 None P2_1 6.05 0.000 0.02 0.35 0.000 None P2_1 6.04 0.000 0.03 0.37	-							
HVT V-DRAIN 5.93 0.000	-							
P1-11 6.62 6.63 0.008 1.0 0.000 Outlet System P3-11 6.62 6.63 0.008 0.00 0.000 Outlet System P3-1 6.62 6.62 0.013 6.5 0.00 0.000 Outlet System P4-1 6.62 6.63 0.026 1.0 0.06 0.000 Intel Capacity P5-1 6.14 6.29 0.020 0.3 0.21 0.000 Intel Capacity P7-1 6.04 6.29 0.020 0.3 0.21 None PV1-1+ 6.14 6.29 0.000 0.62 None P2-1 6.14 6.29 0.016 1.0 0.11 0.000 None P2-1 6.14 6.29 0.016 1.0 None None ExP5 5.33 0.000 0.45 None None CP1-1+ 6.04 0.000 0.43 0.000 None CP2-2 6.21	—					0.51	0.000	None
P2-11 6.62 6.63 0.008 0.90 0.000 Outlet System P3.11 6.32 6.23 0.020 1.0 0.001 Outlet System P4.1 6.32 6.28 0.013 1.0 0.03 0.000 Intel Capacity P5.1 6.14 6.29 0.020 0.30 0.000 Intel Capacity P7.1 6.02 0.000 0.60 None None P7.1 6.02 0.000 0.60 None None P2.1 6.04 6.29 0.015 1.0 Intel Capacity P2.1 5.87 0.000 0.45 None P2.2 5.33 0.000 0.45 None P3.2 6.21 6.76 0.000 None None P3.2 6.21 6.76 0.000 None None P3.2 6.21 6.76 0.000 None None P3.2 6.21 6.76 0.000	—		6.63		1.0	0.00	0.000	Outlet System
P3.1 6.30 6.33 0.020 1.0 0.001 Outlet Capacity P5.1 6.19 6.30 0.028 1.0 0.06 0.000 Intel Capacity P5.1 6.04 6.29 0.020 0.3 0.21 0.000 Intel Capacity P7.1 6.02 0.000 0.60 None None P2.1 6.14 6.29 0.016 0.01 Intel Capacity P2.1 6.14 6.29 0.016 0.01 None None ExP5 5.33 0.000 0.45 None None P2.2 6.21 6.76 0.000 None None P3.2 6.21 6.76 0.000 None None P4.27 6.21 6.76 0.000 1.00 Intel Capacity P3.2 6.21 6.76 0.000 1.00 None P4.27 7 5.30 0.000 1.01 0.000 None								
P4_1 6.22 6.28 0.013 1.0 0.03 0.000 Init Capacity P5_1 6.04 6.29 0.020 0.3 0.21 0.000 Init Capacity P7_1 6.02 0.000 0.60 None None P7_TARBB3 6.00 0.000 0.62 None P1_1 + 6D4 5.99 0.000 0.45 None P2_5 5.33 0.000 0.45 None ExP5 5.33 0.000 0.48 0.000 None CHATHAMEN-0 5.11 0.000 0.62 0.000 None CH22_2 6.21 6.78 0.004 0.1 0.47 0.000 Inite Capacity P3_2 6.21 6.68 0.004 0.1 0.47 0.000 Inite Capacity P3_2 6.21 6.68 0.004 0.1 0.47 0.000 Inite Capacity P4_27 5.30 0.000 1.000 None Expentinite Ca								
PE_1 6.19 6.30 0.026 1.0 0.06 Intel Capacity PT_1 6.04 6.29 0.000 0.60 None GPT_SRB3 6.00 0.000 0.60 None P2_1 6.14 6.29 0.016 1.0 0.11 None P2_1 6.14 6.29 0.016 1.0 0.11 None P2_6 5.87 0.000 0.45 None ExP5 5.33 0.000 0.82 0.000 None P2_2 6.21 6.78 0.004 0.2 0.57 0.000 Intel Capacity P3_2 6.21 6.78 0.000 1.09 0.000 None P4_27 6.21 6.78 0.000 1.09 0.000 None CD2_NORTH 6.04 0.005 0.41 0.000 None SAND_FILTER_NORTH 5.71 5.22 0.000 1.01 0.000 None P4_27 <td< td=""><td>—</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></td<>	—							-
PE_1 6.04 6.29 0.20 0.3 0.21 0.000 Index Capacity CPT_1RBB3 6.00 0.000 0.60 None MV1-BRB3 5.99 0.000 0.62 None PT_1 6.14 6.29 0.016 1.0 0.11 0.000 None P2_6 5.87 0.000 0.42 0.000 None Exp4 F2_6 5.87 0.000 0.00 0.82 0.000 None ExP4 5.20 6.65 0.000 0.00 1.085 0.000 None CP2_2 6.21 6.78 0.004 0.1 0.47 0.000 Intel Capacity P3_2 6.21 6.78 0.004 0.1 0.47 0.000 None SAND_FILTER_NORTH 6.41 0.000 1.09 0.000 None P4_27 5.15 6.26 0.000 0.01 1.11 0.000 None ExP6 5.15	—							
P7_1 6.02 0.000 0.60 None QPT-BRB3 6.00 0.000 0.62 None P2_1 6.14 6.29 0.016 1.0 0.11 0.000 P2_1 6.14 6.29 0.033 0.37 None P2_6 5.87 0.000 0.45 None ExP5 5.33 0.000 0.82 0.000 None CHATHAM.RN0 5.11 0.000 0.00 0.85 0.000 None P3_2 6.21 6.68 0.004 0.1 0.47 0.000 Inlet Capacity HW2 (BR2) 6.21 6.68 0.000 1.09 0.000 None SAND FILTER_NORTH 6.04 0.000 1.05 0.000 None P4_27 5.30 0.000 1.11 0.000 None P2_17 6.61 6.61 0.02 0.00 O.000 Outlet System P1_17 6.61 6.61 0.02								
HW1-BRE3 5.99 0.000 P2_1 6.14 6.29 0.015 0.01 0.01 None P2_6 5.87 0.000 0.45 None ExP5 5.33 0.000 0.45 None ExP4 5.20 6.05 0.000 0.82 0.000 None P3_2 6.21 6.78 0.004 0.1 0.47 None GD2_NORTH 6.04 0.005 0.41 0.000 None SAND_FILTER_NORTH 5.71 0.000 1.05 0.000 None SAND_FILTER_NORTH 5.71 0.000 1.09 0.000 None P4_27 5.30 0.000 1.05 0.000 None P5_17 5.22 0.000 0.00 1.01 0.000 None P2_17 6.61 6.61 0.024 18.8 0.000 Outel System P1_16 6.18 6.66 0.020 0.8 0.45 0.000	-							
P2_1 6.14 6.29 0.016 1.0 0.11 0.000 None P2_6 5.87 0.000 0.45 None ExP5 5.33 0.000 0.82 0.000 None CHATHAM-RN0 5.11 0.000 0.085 0.000 None CHATHAM-RN0 5.11 0.000 0.00 0.82 0.000 None CHATHAM-RN0 5.11 0.000 0.00 0.85 0.000 None CALL 6.68 0.004 0.1 0.47 0.000 Inlet Capacity P3_2 6.21 6.68 0.004 0.1 0.47 0.000 None SAND_FILTER_NORTH 5.71 0.000 1.05 0.000 None ExP6 5.15 6.26 0.000 0.01 1.10 0.000 None P1_17 5.22 0.000 0.000 None None None P1_17 6.77 6.78 0.015 2.9	GPT-BRB3	6.00		0.000		0.62		None
P1_1 + GD4 5.99 0.003 0.37 None P2_6 5.87 0.000 0.45 None ExP5 5.33 0.000 0.82 0.000 None ExP4 5.20 6.05 0.000 0.0 0.85 0.000 None P2_2 6.21 6.78 0.004 0.2 0.57 0.000 Inlet Capacity P3_2 6.21 6.78 0.000 0.41 0.000 None GD2_NORTH 6.04 0.000 1.09 0.000 None P4_17 5.30 0.000 1.10 0.000 None P4_17 5.30 0.000 1.11 0.000 None P4_17 6.77 6.78 0.015 2.9 0.00 None P4_16 6.18 6.66 0.020 0.8 0.45 0.000 Inlet Capacity P2_16 5.98 6.56 0.014 Inlet Capacity P.2 None Inlet Capacity<								
P2_6 5.87 0.000 0.45 None ExP4 5.20 6.05 0.000 0.82 0.000 None CHATHAM-RN-0 5.11 0.000 0.85 0.000 None CP2_2 6.21 6.78 0.004 0.1 0.47 0.000 Inlet Capacity P3_2 6.21 6.68 0.004 0.1 0.47 0.000 Inlet Capacity P42_27 5.30 0.000 1.09 0.000 None SAND_FILTER_NORTH 5.44 0.000 1.05 0.000 None P4_27 5.30 0.000 1.11 0.000 None P4_17 5.22 0.000 1.11 0.000 None P1_17 6.71 6.78 0.015 2.9 0.00 Outlet System P1_17 6.77 6.78 0.010 0.5 0.57 0.000 Inlet Capacity P2_16 5.88 6.66 0.000 0.000 Outlet Syste	—		6.29		1.0		0.000	
ExFg 5.33 0.000 0.82 0.000 None ExP4 5.20 6.05 0.000 0.65 0.000 None P2_2 6.21 6.78 0.004 0.2 0.57 0.000 Inlet Capacity HW2 (BR2) 6.21 6.68 0.004 0.1 0.47 0.000 Inlet Capacity GD2_NORTH 6.04 0.005 0.41 0.000 None SAND_FILTER_NORTH 5.71 0.000 1.05 0.000 None P4_27 5.30 0.000 1.05 0.000 None Chaham St - North 5.02 0.000 1.05 0.000 Outlet System P1_16 6.18 6.66 0.020 0.8 0.45 0.000 Inlet Capacity P2_17 6.61 6.61 0.02 0.8 0.45 0.000 Inlet Capacity P2_16 5.86 6.66 0.010 0.5 0.57 0.000 Inlet Capacity P2 H7	—							
ExP4 5.20 6.05 0.000 0.0 0.85 0.000 None CHATHAM-RN-0 5.11 0.000 0.00 0.47 0.000 Inlet Capacity P3_2 6.21 6.68 0.004 0.1 0.47 0.000 Inlet Capacity GD2_NORTH 6.64 0.005 0.41 0.000 None SAND_FILTER_NORTH 5.71 0.000 1.09 0.000 None P4_27 5.30 0.000 1.05 0.000 None ExF6 5.15 6.26 0.000 1.11 0.000 None P2_17 6.61 6.61 0.024 18.8 0.000 0.000 Outlet System P2_16 5.98 6.56 0.010 0.5 0.000 Inlet Capacity P2_17 6.62 0.63 0.000 Outlet System 1.16 Capacity P2_16 5.98 6.56 0.010 0.57 0.000 Inlet Capacity P2_17 <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.000</td> <td></td>	-						0.000	
P2_2 6.21 6.78 0.004 0.2 0.57 0.000 Intel Capacity P3_2 6.21 6.68 0.000 0.41 0.000 Intel Capacity GD2_NORTH 6.04 0.005 0.41 0.000 None SAND_FILER_NORTH 5.71 0.000 1.09 0.000 None P4_27 5.30 0.000 1.05 0.000 None P5_17 5.22 0.000 1.05 0.000 None P1_17 6.77 6.78 0.012 1.00 None P2_17 6.77 6.78 0.012 0.00 Outlet System P1_16 6.18 6.66 0.020 0.8 0.45 0.000 Intel Capacity P2_16 5.98 6.56 0.010 0.5 0.57 0.000 Intel Capacity P2_17 6.62 6.62 0.014 Intel Capacity P2 1.000 Intel Capacity P2_16 6.82 6.62			6.05		0.0			
P3_2 6.21 6.68 0.004 0.1 0.47 0.000 Inlet Capacity HW2 (BRE2) 6.21 0.000 1.09 0.000 None SAND_FILTER_NORTH 5.71 0.000 1.09 0.000 None P4_27 5.30 0.000 1.05 0.000 None P5_17 5.22 0.000 1.05 0.000 None Chatham St - North 5.01 6.26 0.000 0.0 1.11 0.000 None P1_17 6.61 6.64 0.015 2.9 0.00 0.000 Inlet Capacity P1_16 6.18 6.66 0.010 0.5 0.57 0.000 Inlet Capacity Pat Tack Crossing 4.88 0.000 0.005 Outlet System P1-16 6.62 6.62 0.014 Tank_T1-A-S 6.62 0.014 P4-11 6.62 6.62 0.014 Tank_T1-A-S 6.62 0.000 0.000 Outlet System	CHATHAM-RN-0	5.11		0.000				
HW2 (BRB2) 6.21 0.000 GD2 NORTH 6.04 0.005 0.41 0.000 None SAND_FILTE_NORTH 5.71 0.000 1.09 0.000 None P4_27 5.30 0.000 1.05 0.000 None P5_17 5.22 0.000 1.05 0.000 None Chatham St - North 5.02 0.000 0.01 1.11 0.000 None P1_17 6.77 6.78 0.015 2.9 0.00 Outlet System P2_16 6.61 6.61 0.024 18.8 0.00 Outlet Capacity P2_16 5.98 6.56 0.010 0.5 0.57 0.000 Inlet Capacity ZPA Track Crossing 4.88 0.000 0.000 Outlet System P1-9 6.62 6.62 0.014 Tank_T1-B-N 6.62 6.62 0.014 P4-11 P4-11 CAC2 0.014 Outlet System P3-9 6.62 6.62	—							
GD2_NORTH 6.04 0.005 0.41 0.000 None SAND_FILTER_NORTH 5.71 0.000 1.09 0.000 None P4_27 5.30 0.000 1.05 0.000 None P5_17 5.22 0.000 1.11 0.000 None Chaham St - North 5.02 0.000 0.000 Outlet System P2_17 6.61 6.61 0.024 18.8 0.000 Outlet System P1_16 6.76 6.76 0.015 0.57 0.000 Inlet Capacity P2_17 6.61 6.64 0.020 0.8 0.45 0.000 Inlet Capacity P1_16 6.76 6.76 0.010 0.50 0.000 Inlet Capacity FXPIL_Track 5.07 5.64 0.049 4.3 0.52 0.000 Inlet Capacity P14 6.62 6.62 0.014 Tank_T1-A-S 6.62 0.014 Yet P4-9 6.62 6.62	-		6.68		0.1	0.47	0.000	Inlet Capacity
SAND_FILTER_NORTH 5.71 0.000 1.09 0.000 None P4_27 5.30 0.000 1.20 0.000 None EXP6 5.15 6.26 0.000 0.01 1.11 0.000 None Chatham St - North 5.02 0.000 0.01 1.11 0.000 Outlet System P1_17 6.61 6.61 0.024 18.8 0.00 0.000 Outlet System P1_16 6.18 6.66 0.020 0.8 0.45 0.000 Inlet Capacity P2_16 5.98 6.56 0.010 0.5 0.57 0.000 Inlet Capacity P2 at Track Crossing 4.88 0.000 0.000 Outlet System 1 Tank_T1-8-N 6.62 0.014 Tank_T1-8-N 6.62 0.014 P4-9 6.62 6.62 0.013 6.6 0.00 0.000 Outlet System P1-9 6.62 6.62 0.013 6.6 0.00 0.005 <td>. ,</td> <td></td> <td></td> <td></td> <td></td> <td>0.41</td> <td>0 000</td> <td>None</td>	. ,					0.41	0 000	None
P4 27 5.30 0.000 1.20 0.000 None P5_17 5.22 0.000 1.05 0.000 None Chatham St - North 5.02 0.000 0.011 0.000 None P1_17 6.61 6.61 0.024 18.8 0.00 0.000 Outlet System P1_16 6.18 6.66 0.020 0.8 0.45 0.000 Inlet Capacity P2_16 5.98 6.56 0.010 0.5 0.57 0.000 Inlet Capacity P2_16 5.98 6.56 0.014 - - - Tank_T1-AS 6.62 0.014 - - - - P1-9 6.62 6.62 0.014 - - - - P2-9 6.62 6.62 0.014 - - - - - - - - - - - - - - - - -	_							
P5_17 5.22 0.000 1.05 0.000 None ExP6 5.15 6.26 0.000 1.11 0.000 None P1_17 6.61 6.61 0.024 18.8 0.00 0.000 Outlet System P1_16 6.18 6.66 0.020 0.8 0.45 0.000 Inlet Capacity P2_16 5.98 6.56 0.010 0.5 0.57 0.000 Inlet Capacity JP at Track 5.07 5.64 0.044 3 0.52 0.000 Inlet Capacity JP at Track 5.07 5.64 0.044 3 0.52 0.000 Inlet Capacity JP at Track Crossing 4.88 0.000 0.00 0.000 Outlet System P1-9 6.62 6.62 0.014 Inlet Capacity Inlet Capacity P2-9 6.62 6.62 0.014 Outlet System T1-C-N 6.62 6.62 0.014 P4-9 6.62 6.62 0.01<								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	P5_17						0.000	None
P1_17 6.61 6.61 0.024 18.8 0.00 0.000 Outlet System P2_17 6.77 6.78 0.015 2.9 0.00 0.000 Outlet System P1_16 6.18 6.66 0.020 0.8 0.45 0.000 Inlet Capacity P2_16 5.98 6.56 0.010 0.5 0.57 0.000 Inlet Capacity P2_17 Tack Crossing 4.88 0.000 1.81 Capacity P4.17 6.62 0.014 - - - Tank_T1-8-N 6.62 0.014 - - - P4-11 6.62 6.62 0.014 - - - P4-9 6.62 6.62 0.013 6.6 0.000 Outlet System T1-C-N 6.62 0.62 0.014 - - - P4-9 6.62 6.61 0.005 0.11 0.23 0.000 Inlet Capacity P3-3			6.26		0.0	1.11	0.000	None
P2_17 6.77 6.78 0.015 2.9 0.00 0.000 Outlet System P1_16 6.18 6.66 0.020 0.8 0.45 0.000 Inlet Capacity P2_16 5.98 6.56 0.010 0.5 0.000 Inlet Capacity ExPlt_Track 5.07 5.64 0.049 4.3 0.52 0.000 Inlet Capacity JP at Track Crossing 4.88 0.000 1 1 Capacity J P4.1 6.62 0.014 Least Leas			6 61		10 0	0.00	0.000	Outlat System
P1_16 6.18 6.66 0.020 0.8 0.45 0.000 Inlet Capacity P2_16 5.98 6.56 0.010 0.5 0.52 0.000 Inlet Capacity JP at Track 5.07 5.64 0.049 4.3 0.52 0.000 Inlet Capacity JP at Track Crossing 4.88 0.000 0.014 Inlet Capacity Tank_T1-B-N 6.62 0.014 Vertain Vertain Vertain P4-11 6.62 6.62 0.013 6.4 0.00 0.000 Outlet System P2-9 6.62 6.63 0.008 0.9 0.00 0.000 Outlet System P3-9 6.62 6.62 0.014 Vertains Vertains Vertains P4-9 6.62 6.62 0.014 Vertains Vertains Vertains P4-9 6.62 6.62 0.014 Vertains Vertains Vertains P1_13 6.18 0.007 0.5 0.31	—							-
P2_16 5.98 6.56 0.010 0.5 0.57 0.000 Inlet Capacity JP at Track Crossing 4.88 0.000 0.52 0.000 Inlet Capacity JP at Track Crossing 4.88 0.000 0.52 0.000 Inlet Capacity Tank_T1-B-N 6.62 0.014	—							
JP at Track Crossing 4.88 0.000 Tank_T1-B-N 6.62 0.014 P4-11 6.62 6.62 0.014 P4-11 6.62 6.63 0.008 1.0 0.00 Outlet System P2-9 6.62 6.63 0.008 0.9 0.00 Outlet System P3-9 6.62 6.62 0.013 6.6 0.00 Outlet System T1-C-N 6.62 0.014 Utilet System P4-9 6.62 6.61 0.005 Outlet System P1_13 6.37 6.61 0.005 0.1 0.23 P2_13 6.37 6.61 0.005 0.2 0.42 0.000 BYPASS2 6.65 0.000 0.84 None P5_3 6.08 0.000 0.84 None P5_3 5.89 0.000 0.93 None P1_13 5.69 0.000 0.94 None P1_15 5.54	-							Inlet Capacity
Tank_T1-B-N 6.62 0.014 Tank_T1-A-S 6.62 0.014 P4-11 6.62 6.62 0.013 P1-9 6.62 6.63 0.008 1.0 0.00 Outlet System P2-9 6.62 6.63 0.008 0.9 0.00 0.000 Outlet System P3-9 6.62 6.62 0.013 6.6 0.005 Outlet System T1-C-N 6.62 0.014 P4-9 6.62 6.62 0.013 6.6 0.000 Outlet System P1_13 6.37 6.61 0.005 0.1 0.23 0.000 Inlet Capacity P3_13 6.18 6.61 0.005 0.2 0.42 0.000 Inlet Capacity BYPASS1 6.60 0.000 0.84 None P6_3 S.99 0.000 0.84 None P121 5.85 0.000 1.01 None None P115 </td <td>ExPit_Track</td> <td>5.07</td> <td>5.64</td> <td>0.049</td> <td>4.3</td> <td>0.52</td> <td>0.000</td> <td>Inlet Capacity</td>	ExPit_Track	5.07	5.64	0.049	4.3	0.52	0.000	Inlet Capacity
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0							
P4-11 6.62 6.62 0.013 6.4 0.00 0.005 Outlet System P1-9 6.62 6.63 0.008 0.9 0.00 0.000 Outlet System P3-9 6.62 6.63 0.008 0.9 0.00 0.005 Outlet System T1-C-N 6.62 0.013 6.6 0.00 0.005 Outlet System P4-9 6.62 6.62 0.014 Outlet System P1_13 6.37 6.61 0.005 0.1 0.23 0.000 Inlet Capacity P2_13 6.18 6.61 0.005 0.2 0.42 0.000 Inlet Capacity P3-13 6.18 6.61 0.000 0.67 None P5-3 6.65 0.000 0.84 None P6_3 5.99 0.000 0.84 None P11_3 5.69 0.000 1.03 None P11_13 5.69 0.000 0.99 None </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
P1-9 6.62 6.63 0.008 1.0 0.00 0.000 Outlet System P3-9 6.62 6.63 0.008 0.9 0.00 0.000 Outlet System P3-9 6.62 6.62 0.013 6.6 0.00 0.005 Outlet System T1-C-N 6.62 0.014 P4-9 6.62 6.62 0.014 P1_13 6.37 6.61 0.005 0.1 0.23 0.000 Inlet Capacity P3_13 6.18 6.61 0.007 0.5 0.31 0.000 Inlet Capacity BYPASS2 6.65 0.000 0.67 None P5_3 6.08 0.000 0.84 None P1_13 5.69 0.000 1.01 None P1435 5.85 0.000 0.93 None <td></td> <td></td> <td>6 62</td> <td></td> <td>64</td> <td>0.00</td> <td>0 005</td> <td>Outlet System</td>			6 62		64	0.00	0 005	Outlet System
P3-9 6.62 6.62 0.013 6.6 0.00 0.005 Outlet System T1-C-N 6.62 0.014 TANK-T1-B-S 6.62 0.013 6.6 0.00 0.005 Outlet System P1-13 6.37 6.61 0.005 0.1 0.23 0.000 Inlet Capacity P2_13 6.29 6.61 0.007 0.5 0.31 0.000 Inlet Capacity P3_13 6.18 6.61 0.005 0.2 0.42 0.000 Inlet Capacity BYPASS2 6.65 0.000 0.67 None None P6_3 None P6_3 None P6_3 None P11_3 None P11_3 None P11_3 None P11_3 None P11_3 None P11_3 None P11_5 S.54 0.000 0.94 None P11_5 None P11_5 S.54 0.000 0.99 None P3_15 S.63								
T1-C-N 6.62 0.014 TANK-T1-B-S 6.62 0.014 P4-9 6.62 6.62 0.013 P1_13 6.37 6.61 0.005 0.1 0.23 0.000 P2_13 6.29 6.61 0.005 0.2 0.42 0.000 Inlet Capacity P3_13 6.18 6.61 0.005 0.2 0.42 0.000 Inlet Capacity BYPASS2 6.65 0.000 0.67 None P5_3 6.08 0.000 0.84 None P6_3 5.99 0.000 0.93 None P11_13 5.69 0.000 1.03 None P11_13 5.69 0.000 1.09 None P11_5 5.54 0.000 1.09 None P11_3 0.61 0.000 0.99 None P11_5 5.69 0.000 0.99 None P11_5 5.69 0.000 0.99 None<		6.62		0.008	0.9	0.00	0.000	
TANK-T1-B-S6.620.014P4-96.626.620.0136.60.000.005Outlet SystemP1_136.376.610.0050.10.230.000Inlet CapacityP2_136.296.610.0070.50.310.000Inlet CapacityP3_136.186.610.0050.20.420.000Inlet CapacityBYPASS26.650.0000.67NoneP3-36.250.0000.67NoneP5_36.080.0000.84NoneP6_35.990.0001.03NoneP7_35.890.0001.03NoneP11_35.690.0001.01NoneP11_35.690.0001.03NoneP11_35.690.0001.09NoneP11_55.540.0001.09NoneP11_55.540.0000.99NoneP2_156.300.0000.99NoneP3-156.170.0000.18NoneP3-156.170.0000.31NoneP3-155.170.0000.66NoneP3-45.180.0001.05NoneP4_445.170.0000.83NoneP3-195.840.0000.79None			6.62		6.6	0.00	0.005	Outlet System
P4-9 6.62 6.62 0.013 6.6 0.00 0.005 Outlet System P1_13 6.37 6.61 0.005 0.1 0.23 0.000 Inlet Capacity P2_13 6.29 6.61 0.005 0.2 0.42 0.000 Inlet Capacity P3_13 6.18 6.61 0.005 0.2 0.42 0.000 Inlet Capacity BYPASS2 6.65 0.000 0.67 None None P5_3 6.25 0.000 0.84 None P6_3 5.99 0.000 0.93 None P121 5.85 0.000 1.03 None P113 5.69 0.000 0.94 None P1142 5.85 0.000 1.01 None P113 5.69 0.000 0.94 None P115 5.54 0.000 0.99 None P2_15 6.30 0.000 0.18 None								
P1_13 6.37 6.61 0.005 0.1 0.23 0.000 Inlet Capacity P2_13 6.29 6.61 0.007 0.5 0.31 0.000 Inlet Capacity P3_13 6.18 6.61 0.005 0.2 0.42 0.000 Inlet Capacity BYPASS2 6.65 0.000 0.67 None P5_3 6.25 0.000 0.84 None P6_3 5.99 0.000 0.84 None P7_3 5.89 0.000 1.03 None P11_3 5.69 0.000 0.94 None Pit21 5.85 0.000 1.09 None Pit15 5.54 0.000 1.09 None Pit15 5.69 0.000 0.99 None P2_15 6.29 0.000 0.99 None P2_15 6.29 0.000 0.19 None P3_15 6.17 0.000 0.31 Non			6 62		6.6	0.00	0.005	Outlet System
P2_13 6.29 6.61 0.007 0.5 0.31 0.000 Inlet Capacity P3_13 6.18 6.61 0.005 0.2 0.42 0.000 Inlet Capacity BYPASS2 6.65 0.000 0.67 None P3-3 6.25 0.000 0.67 None P5_3 6.08 0.000 0.84 None P6_3 5.99 0.000 0.93 None P7_3 5.89 0.000 1.03 None P11_3 5.69 0.000 0.94 None Pit21 5.85 0.000 1.09 None Pit15 5.54 0.000 0.99 None DARLING_ST_RN 5.01 0.000 0.18 None P2_15 6.29 0.000 0.18 None P3_15 6.17 0.000 0.31 None P4_15 5.82 0.000 0.31 None P3_4 5.18								
BYPASS2 6.65 0.000 BYPASS1 6.60 0.000 P3-3 6.25 0.000 0.67 None P5_3 6.08 0.000 0.84 None P6_3 5.99 0.000 0.93 None P7_3 5.89 0.000 1.03 None Pit21 5.85 0.000 1.04 None Pit15 5.54 0.000 0.94 None Pit15 5.54 0.000 0.99 None ExP1 5.13 0.000 0.99 None P2_15 6.30 0.000 0.18 None P2_15 6.29 0.000 0.18 None P3_15 6.17 0.000 0.31 None P4_15 5.82 0.000 0.66 None P4_4 5.18 0.000 0.83 None P4_4 5.17 0.000 0.83 None P4_4	P2_13	6.29		0.007		0.31	0.000	
BYPASS16.600.000P3-36.250.0000.67NoneP5_36.080.0000.84NoneP6_35.990.0000.93NoneP7_35.890.0001.03NonePit215.850.0001.01NonePit1_35.690.0000.94NonePit155.540.0001.09NoneExP15.130.0000.99NoneP2_156.300.0000.18NoneP2_156.290.0000.31NoneP3_156.170.0000.31NoneBLOCK_D_ROOF6.680.046P3_45.180.0000.83NoneP4_45.170.0000.83NoneP3_195.840.0000.79None	—		6.61		0.2	0.42	0.000	Inlet Capacity
P3-3 6.25 0.000 0.67 None P5_3 6.08 0.000 0.84 None P6_3 5.99 0.000 0.93 None P7_3 5.89 0.000 1.03 None Pit21 5.85 0.000 1.01 None Pit1_3 5.69 0.000 0.94 None Pit15 5.54 0.000 1.09 None ExP1 5.13 0.000 0.99 None DARLING_ST_RN 5.01 0.000 0.18 None P2_15 6.30 0.000 0.18 None P3_15 6.17 0.000 0.31 None P4_15 5.82 0.000 0.66 None BLOCK_D_ROOF 6.68 0.046 V V P3_4 5.17 0.000 0.83 None P4_4 5.17 0.000 0.87 None P4_4 5.15 0.000								
P5_3 6.08 0.000 0.84 None P6_3 5.99 0.000 0.93 None P7_3 5.89 0.000 1.03 None Pit21 5.85 0.000 1.01 None P11_3 5.69 0.000 0.94 None Pit15 5.54 0.000 1.09 None ExP1 5.13 0.000 0.99 None DARLING_ST_RN 5.01 0.000 0.18 None P2_15 6.29 0.000 0.31 None P3_15 6.17 0.000 0.31 None P4_15 5.82 0.000 0.66 None BLOCK_D_ROOF 6.68 0.046 V V P3_4 5.18 0.000 0.83 None P4_4 5.17 0.000 0.87 None P4_4 5.15 0.000 0.87 None P3_19 5.84 0.000						0.67		None
P6_3 5.99 0.000 0.93 None P7_3 5.89 0.000 1.03 None Pit21 5.85 0.000 1.01 None P11_3 5.69 0.000 0.94 None Pit15 5.54 0.000 1.09 None ExP1 5.13 0.000 0.99 None DARLING_ST_RN 5.01 0.000 1.18 None P2_15 6.30 0.000 0.18 None P3_15 6.17 0.000 0.31 None P4_15 5.82 0.000 0.66 None BLOCK_D_ROOF 6.68 0.046 P3_4 5.18 0.000 0.83 None P4_4 5.17 0.000 0.83 None P4_4 5.15 0.000 0.87 None P3_19 5.84 0.000 0.79 None								
Pit21 5.85 0.000 1.01 None P11_3 5.69 0.000 0.94 None Pit15 5.54 0.000 1.09 None ExP1 5.13 0.000 0.99 None DARLING_ST_RN 5.01 0.000 0.18 None P1_15 6.30 0.000 0.18 None P2_15 6.29 0.000 0.11 None P3_15 6.17 0.000 0.31 None P4_15 5.82 0.000 0.66 None BLOCK_D_ROOF 6.68 0.046 P3_4 5.18 0.000 1.05 None P4_4 5.17 0.000 0.83 None ExP2 5.15 0.000 0.87 None P3_19 5.84 0.000 0.79 None								
P11_3 5.69 0.000 0.94 None Pit15 5.54 0.000 1.09 None ExP1 5.13 0.000 0.99 None DARLING_ST_RN 5.01 0.000 0.18 None P1_15 6.30 0.000 0.18 None P2_15 6.29 0.000 0.31 None P3_15 6.17 0.000 0.31 None P4_15 5.82 0.000 0.66 None BLOCK_D_ROOF 6.68 0.046 P3_4 5.18 0.000 1.05 None P4_4 5.17 0.000 0.833 None ExP2 5.15 0.000 0.87 None P3_19 5.84 0.000 0.79 None	_							
Pit15 5.54 0.000 1.09 None ExP1 5.13 0.000 0.99 None DARLING_ST_RN 5.01 0.000 0.18 None P1_15 6.30 0.000 0.18 None P2_15 6.29 0.000 0.19 None P3_15 6.17 0.000 0.31 None P4_15 5.82 0.000 0.66 None BLOCK_D_ROOF 6.68 0.046 P3_4 5.18 0.000 1.05 None P4_4 5.17 0.000 0.833 None ExP2 5.15 0.000 0.87 None P3_19 5.84 0.000 0.79 None								
ExP15.130.0000.99NoneDARLING_ST_RN5.010.0000.18NoneP1_156.300.0000.18NoneP2_156.290.0000.19NoneP3_156.170.0000.31NoneP4_155.820.0000.66NoneBLOCK_D_ROOF6.680.046P3_45.180.0001.05NoneP4_45.170.0000.83NoneExP25.150.0000.87NoneP3_195.840.0000.79None	—							
DARLING_ST_RN5.010.000P1_156.300.0000.18NoneP2_156.290.0000.19NoneP3_156.170.0000.31NoneP4_155.820.0000.66NoneBLOCK_D_ROOF6.680.046P3_45.180.0001.05NoneP4_45.170.0000.83NoneExP25.150.0000.87NoneP3_195.840.0000.79None								
P1_156.300.0000.18NoneP2_156.290.0000.19NoneP3_156.170.0000.31NoneP4_155.820.0000.66NoneBLOCK_D_ROOF6.680.046P3_45.180.0001.05NoneP4_45.170.0000.83NoneExP25.150.0000.87NoneP3_195.840.0000.79None						0.00		
P3_156.170.0000.31NoneP4_155.820.0000.66NoneBLOCK_D_ROOF6.680.046P3_45.180.0001.05NoneP4_45.170.0000.83NoneExP25.150.0000.87NoneP3_195.840.0000.79None				0.000		0.18		None
P4_155.820.0000.66NoneBLOCK_D_ROOF6.680.046P3_45.180.0001.05NoneP4_45.170.0000.83NoneExP25.150.0000.87NoneP3_195.840.0000.79None	_							
BLOCK_D_ROOF6.680.046P3_45.180.0001.05NoneP4_45.170.0000.83NoneExP25.150.0000.87NoneP3_195.840.0000.79None	—							
P3_4 5.18 0.000 1.05 None P4_4 5.17 0.000 0.83 None ExP2 5.15 0.000 0.87 None P3_19 5.84 0.000 0.79 None	—					0.00		NONE
P4_45.170.0000.83NoneExP25.150.0000.87NoneP3_195.840.0000.79None						1.05		None
P3_19 5.84 0.000 0.79 None	—	5.17						
rz_19 5.92 0.000 0./1 None								
	F2_19	J.9Z		0.000		0.71		NUTE

Minor	Results

P1_19	5.93		0.000		0.70		None
N402	5.94		0.000				
N403	5.87		0.000				
N404	5.83		0.000				
N405	5.89		0.111				
N406	5.96	5.04	0.158	<u> </u>	0.50	0.000	
ExP3	5.19	5.84	0.082	20.2	0.59	0.000	Inlet Capacity
P2_18 P1_18	6.04 6.12		0.000 0.000		0.82 0.74		None None
P1_18 GD1	5.18		0.000		0.74		None
N458	6.04		0.259				
N469	6.40		0.000				
L1 CONCOURSE (SOUTH)			0.125				
N480	6.24		0.635				
P1 7	6.62	6.63	0.008	1.0	0.00	0.000	Outlet System
P2_7	6.62	6.63	0.008	0.9	0.00	0.000	Outlet System
P3_7	6.62	6.62	0.013	6.6	0.00	0.005	Outlet System
T1-D-NTH	6.62		0.014				
T1-C-STH	6.62		0.014				
P4_7	6.62	6.62	0.013	6.6	0.00	0.005	Outlet System
T1-GOODS_SHED_STH	6.01		0.018				
P1_6	6.00		0.000		0.30		None
T1-GOOD-STORAGE-NTH			0.018				
P1_8	6.59		0.006		0.01	0.000	None
P2_8	6.55		0.006		0.00	0.000	None
P3_8	6.53	6.52	0.007	1.6	0.00	0.001	Outlet System
T2-EQSHD	6.53		0.022				
T1-E-STH	6.52	6 50	0.014	1 1	0.00	0.001	Outlat Sustan
P4_8	6.52	6.52	0.007	1.4	0.00	0.001	Outlet System
CHATHAM-RN-1	6.20	6 62	0.000	1.0	0.00	0.000	Outlat System
P1_10 P2_10	6.62 6.62	6.63 6.63	0.008 0.008	1.0 0.9	0.00 0.00	0.000 0.000	Outlet System Outlet System
P3 10	6.62	6.62	0.000	6.6	0.00	0.005	Outlet System
T1-E-NTH	6.62	0.02	0.013	0.0	0.00	0.000	Outlet Oystem
T1-F-STH	6.62		0.014				
P4 10	6.62	6.62	0.013	6.6	0.00	0.005	Outlet System
CHATHAM-RN-2	6.30	0.02	0.000	0.0	0.00	0.000	
GD3	6.02		0.002		0.42	0.000	None
N197	5.85		0.000				
P3_17	5.77		0.000		1.03		None
GPT-4200	5.74		0.000		1.06		None
SAND_FILTER_STH PIT	5.71		0.000		1.09	0.000	None
SUB-CATCHMENT DETAIL					. .		
SUB-CATCHMENT DETAIL Name	Max	Paved	Grassed	Paved	Grassed	Supp.	Due to Storm
	Max Flow Q	Max Q	Max Q	Тс	Тс	Тс	Due to Storm
Name	Max Flow Q (cu.m/s)	Max Q (cu.m/s)	Max Q (cu.m/s)	Tc (min)	Tc (min)	Tc (min)	
Name CAT P6_13	Max Flow Q (cu.m/s) 0.006	Max Q (cu.m/s) 0.000	Max Q (cu.m/s) 0.006	Tc (min) 5.00	Tc (min) 5.00	Tc (min) 2.00	10% AEP, 15 min burst, Storm 5
Name CAT P6_13 CAT P7_13	Max Flow Q (cu.m/s) 0.006 0.004	Max Q (cu.m/s) 0.000 0.000	Max Q (cu.m/s) 0.006 0.004	Tc (min) 5.00 5.00	Tc (min) 5.00 5.00	Tc (min) 2.00 2.00	10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 5
Name CAT P6_13 CAT P7_13 CAT_P1-11	Max Flow Q (cu.m/s) 0.006 0.004 0.006	Max Q (cu.m/s) 0.000 0.000 0.005	Max Q (cu.m/s) 0.006 0.004 0.001	Tc (min) 5.00 5.00 5.00	Tc (min) 5.00 5.00 5.00	Tc (min) 2.00 2.00 0.00	10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 10
Name CAT P6_13 CAT P7_13 CAT_P1-11 CAT_P2-11	Max Flow Q (cu.m/s) 0.006 0.004 0.006 0.006	Max Q (cu.m/s) 0.000 0.000 0.005 0.005	Max Q (cu.m/s) 0.006 0.004 0.001 0.001	Tc (min) 5.00 5.00 5.00 5.00	Tc (min) 5.00 5.00 5.00 5.00	Tc (min) 2.00 2.00 0.00 0.00	10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 10 10% AEP, 15 min burst, Storm 10
Name CAT P6_13 CAT P7_13 CAT_P1-11 CAT_P2-11 CAT_P3-11	Max Flow Q (cu.m/s) 0.006 0.004 0.006 0.006 0.009	Max Q (cu.m/s) 0.000 0.000 0.005 0.005 0.000	Max Q (cu.m/s) 0.006 0.004 0.001 0.001 0.009	Tc (min) 5.00 5.00 5.00 5.00 5.00	Tc (min) 5.00 5.00 5.00 5.00 5.00	Tc (min) 2.00 2.00 0.00 0.00 0.00	10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 10 10% AEP, 15 min burst, Storm 10 10% AEP, 15 min burst, Storm 5
Name CAT P6_13 CAT P7_13 CAT_P1-11 CAT_P2-11 CAT_P3-11 CAT P3_1	Max Flow Q (cu.m/s) 0.006 0.004 0.006 0.006 0.006 0.009 0.016	Max Q (cu.m/s) 0.000 0.000 0.005 0.005 0.000 0.016	Max Q (cu.m/s) 0.006 0.004 0.001 0.001 0.009 0.000	Tc (min) 5.00 5.00 5.00 5.00 5.00 5.00	Tc (min) 5.00 5.00 5.00 5.00 5.00 5.00	Tc (min) 2.00 2.00 0.00 0.00 0.00 2.00	10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 10 10% AEP, 15 min burst, Storm 10 10% AEP, 15 min burst, Storm 5 10% AEP, 5 min burst, Storm 1
Name CAT P6_13 CAT P7_13 CAT_P1-11 CAT_P2-11 CAT_P3-11 CAT P3_1 CAT P4_1	Max Flow Q (cu.m/s) 0.006 0.004 0.006 0.006 0.009 0.016 0.010	Max Q (cu.m/s) 0.000 0.005 0.005 0.005 0.000 0.016 0.010	Max Q (cu.m/s) 0.006 0.004 0.001 0.001 0.009 0.000 0.000	Tc (min) 5.00 5.00 5.00 5.00 5.00 5.00 5.00	Tc (min) 5.00 5.00 5.00 5.00 5.00 5.00 5.00	Tc (min) 2.00 2.00 0.00 0.00 0.00 2.00 2.00	10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 10 10% AEP, 15 min burst, Storm 10 10% AEP, 15 min burst, Storm 5 10% AEP, 5 min burst, Storm 1
Name CAT P6_13 CAT P7_13 CAT_P1-11 CAT_P2-11 CAT_P3-11 CAT P3_1 CAT P4_1 CAT P5_1	Max Flow Q (cu.m/s) 0.006 0.004 0.006 0.006 0.009 0.016 0.010 0.021	Max Q (cu.m/s) 0.000 0.005 0.005 0.005 0.000 0.016 0.010 0.021	Max Q (cu.m/s) 0.006 0.004 0.001 0.001 0.009 0.000	Tc (min) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.0	Tc (min) 5.00 5.00 5.00 5.00 5.00 5.00	Tc (min) 2.00 2.00 0.00 0.00 0.00 2.00 2.00 2.0	10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 10 10% AEP, 15 min burst, Storm 10 10% AEP, 15 min burst, Storm 5 10% AEP, 5 min burst, Storm 1
Name CAT P6_13 CAT P7_13 CAT_P1-11 CAT_P2-11 CAT_P3-11 CAT P3_1 CAT P4_1	Max Flow Q (cu.m/s) 0.006 0.004 0.006 0.006 0.009 0.016 0.010	Max Q (cu.m/s) 0.000 0.005 0.005 0.005 0.000 0.016 0.010	Max Q (cu.m/s) 0.006 0.004 0.001 0.001 0.009 0.000 0.000 0.000	Tc (min) 5.00 5.00 5.00 5.00 5.00 5.00 5.00	Tc (min) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.0	Tc (min) 2.00 2.00 0.00 0.00 0.00 2.00 2.00	10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 10 10% AEP, 15 min burst, Storm 10 10% AEP, 15 min burst, Storm 5 10% AEP, 5 min burst, Storm 1 10% AEP, 5 min burst, Storm 1
Name CAT P6_13 CAT P7_13 CAT_P1-11 CAT_P2-11 CAT_P3-11 CAT P3_1 CAT P4_1 CAT P5_1 CAT P5_1 CAT P6_1	Max Flow Q (cu.m/s) 0.006 0.004 0.006 0.006 0.006 0.009 0.016 0.010 0.021 0.016	Max Q (cu.m/s) 0.000 0.005 0.005 0.005 0.000 0.016 0.010 0.021 0.016	Max Q (cu.m/s) 0.006 0.004 0.001 0.001 0.009 0.000 0.000 0.000 0.000 0.000	Tc (min) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.0	Tc (min) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.0	Tc (min) 2.00 2.00 0.00 0.00 0.00 2.00 2.00 2.0	10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 10 10% AEP, 15 min burst, Storm 10 10% AEP, 15 min burst, Storm 5 10% AEP, 5 min burst, Storm 1 10% AEP, 5 min burst, Storm 1 10% AEP, 5 min burst, Storm 1
Name CAT P6_13 CAT P7_13 CAT_P1-11 CAT_P2-11 CAT_P3-11 CAT P3_1 CAT P4_1 CAT P5_1 CAT P5_1 CAT P5_1 CAT P6_1 CAT P2_1	Max Flow Q (cu.m/s) 0.006 0.004 0.006 0.006 0.009 0.016 0.010 0.021 0.016 0.013	Max Q (cu.m/s) 0.000 0.005 0.005 0.005 0.000 0.016 0.010 0.021 0.016 0.013	Max Q (cu.m/s) 0.006 0.004 0.001 0.001 0.009 0.000 0.000 0.000 0.000 0.000 0.000	Tc (min) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.0	Tc (min) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.0	Tc (min) 2.00 2.00 0.00 0.00 2.00 2.00 2.00 2.0	10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 10 10% AEP, 15 min burst, Storm 10 10% AEP, 5 min burst, Storm 1 10% AEP, 5 min burst, Storm 1
Name CAT P6_13 CAT P7_13 CAT_P1-11 CAT_P2-11 CAT_P3-11 CAT P3_1 CAT P4_1 CAT P5_1 CAT P5_1 CAT P6_1 CAT P2_1 CAT P1_1 + GD4	Max Flow Q (cu.m/s) 0.006 0.004 0.006 0.006 0.009 0.016 0.010 0.021 0.016 0.013 0.002	Max Q (cu.m/s) 0.000 0.005 0.005 0.000 0.016 0.010 0.021 0.016 0.013 0.002	Max Q (cu.m/s) 0.006 0.004 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Tc (min) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.0	Tc (min) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.0	Tc (min) 2.00 2.00 0.00 0.00 0.00 2.00 2.00 2.0	10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 10 10% AEP, 15 min burst, Storm 10 10% AEP, 5 min burst, Storm 5 10% AEP, 5 min burst, Storm 1 10% AEP, 5 min burst, Storm 1
Name CAT P6_13 CAT P7_13 CAT_P1-11 CAT_P2-11 CAT_P3-11 CAT P3_1 CAT P4_1 CAT P5_1 CAT P6_1 CAT P6_1 CAT P2_1 CAT P1_1 + GD4 CAT P2_2 CAT P3_2 CAT_GD2_NORTH	Max Flow Q (cu.m/s) 0.006 0.004 0.006 0.006 0.006 0.009 0.016 0.010 0.021 0.016 0.013 0.002 0.003	Max Q (cu.m/s) 0.000 0.005 0.005 0.005 0.005 0.016 0.010 0.021 0.016 0.013 0.002 0.003 0.003 0.003 0.009	Max Q (cu.m/s) 0.006 0.004 0.001 0.009 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Tc (min) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.0	Tc (min) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.0	Tc (min) 2.00 2.00 0.00 0.00 2.00 2.00 2.00 2.0	10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 10 10% AEP, 15 min burst, Storm 10 10% AEP, 15 min burst, Storm 1 10% AEP, 5 min burst, Storm 1
Name CAT P6_13 CAT P7_13 CAT_P1-11 CAT_P2-11 CAT_P3-11 CAT P3_1 CAT P4_1 CAT P5_1 CAT P6_1 CAT P6_1 CAT P1_1 + GD4 CAT P2_2 CAT P3_2 CAT_GD2_NORTH Cat-P1_17	Max Flow Q (cu.m/s) 0.006 0.004 0.006 0.009 0.016 0.010 0.021 0.016 0.013 0.002 0.003 0.003 0.003 0.009 0.019	Max Q (cu.m/s) 0.000 0.005 0.005 0.005 0.000 0.016 0.010 0.011 0.016 0.013 0.002 0.003 0.003 0.003 0.009 0.019	Max Q (cu.m/s) 0.006 0.004 0.001 0.009 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Tc (min) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.0	Tc (min) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.0	Tc (min) 2.00 2.00 0.00 0.00 2.00 2.00 2.00 2.0	10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 10 10% AEP, 15 min burst, Storm 10 10% AEP, 5 min burst, Storm 5 10% AEP, 5 min burst, Storm 1 10% AEP, 5 min burst, Storm 1
Name CAT P6_13 CAT P7_13 CAT_P1-11 CAT_P2-11 CAT_P3-11 CAT P3_1 CAT P4_1 CAT P5_1 CAT P5_1 CAT P5_1 CAT P1_1 + GD4 CAT P2_2 CAT P3_2 CAT_GD2_NORTH Cat_P1_17 Cat_P2_17	Max Flow Q (cu.m/s) 0.006 0.004 0.006 0.009 0.016 0.010 0.021 0.016 0.013 0.002 0.003 0.003 0.003 0.009 0.019 0.012	Max Q (cu.m/s) 0.000 0.005 0.005 0.005 0.000 0.016 0.010 0.021 0.016 0.013 0.002 0.003 0.003 0.003 0.003 0.009 0.019 0.012	Max Q (cu.m/s) 0.006 0.004 0.001 0.009 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Tc (min) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.0	Tc (min) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.0	Tc (min) 2.00 2.00 0.00 0.00 2.00 2.00 2.00 2.0	10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 10 10% AEP, 15 min burst, Storm 10 10% AEP, 15 min burst, Storm 5 10% AEP, 5 min burst, Storm 1 10% AEP, 5 min burst, Storm 1
Name CAT P6_13 CAT P7_13 CAT_P1-11 CAT_P2-11 CAT_P3-11 CAT P3_1 CAT P4_1 CAT P5_1 CAT P5_1 CAT P5_1 CAT P1_1 + GD4 CAT P2_2 CAT P3_2 CAT_GD2_NORTH Cat_P1_17 CAT_P1_16	Max Flow Q (cu.m/s) 0.006 0.004 0.006 0.006 0.009 0.016 0.010 0.021 0.016 0.013 0.002 0.003 0.003 0.003 0.009 0.019 0.012 0.014	Max Q (cu.m/s) 0.000 0.005 0.005 0.005 0.000 0.016 0.010 0.021 0.016 0.013 0.002 0.003 0.003 0.009 0.019 0.012 0.000	Max Q (cu.m/s) 0.006 0.004 0.001 0.009 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Tc (min) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.0	Tc (min) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.0	Tc (min) 2.00 2.00 0.00 0.00 2.00 2.00 2.00 2.0	10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 10 10% AEP, 15 min burst, Storm 10 10% AEP, 15 min burst, Storm 5 10% AEP, 5 min burst, Storm 1 10% AEP, 5 min burst, Storm 1
Name CAT P6_13 CAT P7_13 CAT_P1-11 CAT_P2-11 CAT_P3-11 CAT P3_1 CAT P4_1 CAT P5_1 CAT P5_1 CAT P6_1 CAT P2_1 CAT P1_1 + GD4 CAT P2_2 CAT P3_2 CAT_GD2_NORTH Cat-P1_17 Cat_P2_17 CAT P1_16 CAT P2_16	Max Flow Q (cu.m/s) 0.006 0.004 0.006 0.006 0.009 0.016 0.010 0.021 0.016 0.013 0.002 0.003 0.003 0.003 0.009 0.019 0.012 0.014 0.007	Max Q (cu.m/s) 0.000 0.005 0.005 0.005 0.000 0.016 0.010 0.021 0.016 0.013 0.002 0.003 0.003 0.003 0.009 0.019 0.012 0.000 0.000	Max Q (cu.m/s) 0.006 0.004 0.001 0.000	Tc (min) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.0	Tc (min) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.0	Tc (min) 2.00 2.00 0.00 0.00 2.00 2.00 2.00 2.0	10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 10 10% AEP, 15 min burst, Storm 10 10% AEP, 5 min burst, Storm 1 10% AEP, 5 min burst, Storm 5 10% AEP, 15 min burst, Storm 5
Name CAT P6_13 CAT P7_13 CAT_P1-11 CAT_P2-11 CAT_P3-11 CAT P3_1 CAT P4_1 CAT P5_1 CAT P5_1 CAT P6_1 CAT P5_1 CAT P1_1 + GD4 CAT P2_2 CAT P3_2 CAT_GD2_NORTH Cat_P1_17 Cat_P2_17 CAT P1_16 CAT P2_16 CAT ExPit_Track	Max Flow Q (cu.m/s) 0.006 0.004 0.006 0.006 0.009 0.016 0.010 0.021 0.016 0.013 0.002 0.003 0.003 0.003 0.009 0.019 0.012 0.014 0.007 0.045	Max Q (cu.m/s) 0.000 0.005 0.005 0.000 0.016 0.010 0.021 0.016 0.013 0.002 0.003 0.003 0.003 0.009 0.019 0.012 0.000 0.000 0.000	Max Q (cu.m/s) 0.006 0.004 0.001 0.000	Tc (min) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.0	Tc (min) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.0	Tc (min) 2.00 2.00 0.00 0.00 2.00 2.00 2.00 2.0	10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 10 10% AEP, 15 min burst, Storm 10 10% AEP, 5 min burst, Storm 1 10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 5
Name CAT P6_13 CAT P7_13 CAT_P1-11 CAT_P2-11 CAT_P3-11 CAT P3_1 CAT P4_1 CAT P5_1 CAT P5_1 CAT P6_1 CAT P5_1 CAT P1_1 + GD4 CAT P2_2 CAT P1_1 + GD4 CAT P2_2 CAT_GD2_NORTH Cat_P1_17 Cat_P2_17 CAT_P1_16 CAT P2_16 CAT P2_16 CAT ExPit_Track CAT-T1-B-N	Max Flow Q (cu.m/s) 0.006 0.004 0.006 0.009 0.016 0.010 0.021 0.016 0.013 0.002 0.003 0.003 0.003 0.009 0.019 0.012 0.014 0.007 0.045 0.012	Max Q (cu.m/s) 0.000 0.005 0.005 0.000 0.016 0.010 0.021 0.016 0.013 0.002 0.003 0.003 0.003 0.009 0.019 0.019 0.012 0.000 0.000 0.000 0.000 0.000 0.0012	Max Q (cu.m/s) 0.006 0.004 0.001 0.009 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	Tc (min) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.0	Tc (min) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.0	Tc (min) 2.00 2.00 0.00 0.00 2.00 2.00 2.00 2.0	10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 10 10% AEP, 15 min burst, Storm 10 10% AEP, 5 min burst, Storm 1 10% AEP, 5 min burst, Storm 5 10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 5
Name CAT P6_13 CAT P7_13 CAT_P1-11 CAT_P2-11 CAT_P3-11 CAT P3_1 CAT P4_1 CAT P5_1 CAT P5_1 CAT P6_1 CAT P2_1 CAT P1_1 + GD4 CAT P2_2 CAT P3_2 CAT_GD2_NORTH Cat-P1_17 CaT_P1_16 CAT P2_16 CAT P2_16 CAT ExPit_Track CAT-T1-B-N CAT-Tank_T1-A-S	Max Flow Q (cu.m/s) 0.006 0.004 0.006 0.009 0.016 0.010 0.021 0.016 0.013 0.002 0.003 0.003 0.003 0.003 0.009 0.019 0.012 0.014 0.007 0.045 0.012 0.012	Max Q (cu.m/s) 0.000 0.005 0.005 0.000 0.016 0.010 0.021 0.016 0.013 0.002 0.003 0.003 0.003 0.003 0.009 0.019 0.012 0.000 0.000 0.000 0.000 0.0012 0.0012	Max Q (cu.m/s) 0.006 0.004 0.001 0.009 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.014 0.007 0.045 0.000 0.000	Tc (min) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.0	Tc (min) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.0	Tc (min) 2.00 2.00 0.00 0.00 2.00 2.00 2.00 2.0	10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 10 10% AEP, 15 min burst, Storm 10 10% AEP, 5 min burst, Storm 1 10% AEP, 5 min burst, Storm 5 10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 5 10% AEP, 5 min burst, Storm 1 10% AEP, 5 min burst, Storm 5 10% AEP, 5 min burst, Storm 1 10% AEP, 5 min burst, Storm 1
Name CAT P6_13 CAT P7_13 CAT_P1-11 CAT_P2-11 CAT_P3-11 CAT P3_1 CAT P5_1 CAT P5_1 CAT P6_1 CAT P6_1 CAT P2_1 CAT P1_1 + GD4 CAT P2_2 CAT P1_1 + GD4 CAT P2_2 CAT GD2_NORTH Cat-P1_17 Cat_P2_17 CAT P2_16 CAT P2_16 CAT ExPit_Track CAT-T1-B-N CAT-Tank_T1-A-S CAT_P4-11	Max Flow Q (cu.m/s) 0.006 0.004 0.006 0.009 0.016 0.010 0.021 0.016 0.013 0.002 0.003 0.003 0.003 0.009 0.019 0.012 0.014 0.007 0.045 0.012 0.012 0.009	Max Q (cu.m/s) 0.000 0.005 0.005 0.000 0.016 0.010 0.021 0.016 0.013 0.002 0.003 0.003 0.003 0.003 0.009 0.019 0.012 0.000 0.000 0.000 0.000 0.0012 0.000	Max Q (cu.m/s) 0.006 0.004 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.007 0.045 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001	Tc (min) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.0	Tc (min) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.0	Tc (min) 2.00 2.00 0.00 0.00 2.00 2.00 2.00 2.0	10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 10 10% AEP, 15 min burst, Storm 10 10% AEP, 5 min burst, Storm 1 10% AEP, 5 min burst, Storm 5 10% AEP, 15 min burst, Storm 5 10% AEP, 5 min burst, Storm 1 10% AEP, 5 min burst, Storm 5 10% AEP, 5 min burst, Storm 1 10% AEP, 5 min burst, Storm 1
Name CAT P6_13 CAT P7_13 CAT_P1-11 CAT_P2-11 CAT_P3-11 CAT P3_1 CAT P5_1 CAT P5_1 CAT P6_1 CAT P2_1 CAT P1_1 + GD4 CAT P2_2 CAT P1_1 + GD4 CAT P2_2 CAT_GD2_NORTH Cat-P1_17 Cat_P2_17 CAT P2_16 CAT P2_16 CAT P2_16 CAT ExPit_Track CAT-T1-B-N CAT-T1-B-N CAT-Tank_T1-A-S CAT_P4-11 CAT_P1-9	Max Flow Q (cu.m/s) 0.006 0.004 0.006 0.009 0.016 0.010 0.021 0.016 0.013 0.002 0.003 0.003 0.003 0.009 0.019 0.012 0.014 0.007 0.045 0.012 0.012 0.009 0.009 0.009	Max Q (cu.m/s) 0.000 0.005 0.005 0.005 0.005 0.016 0.010 0.021 0.016 0.013 0.002 0.003 0.003 0.003 0.009 0.019 0.012 0.000 0.000 0.000 0.000 0.012 0.000 0.012 0.000 0.012 0.000 0.012 0.000 0.000	Max Q (cu.m/s) 0.006 0.004 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.014 0.007 0.045 0.000 0.000 0.000 0.000 0.000	Tc (min) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.0	Tc (min) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.0	Tc (min) 2.00 2.00 0.00 0.00 2.00 2.00 2.00 2.0	10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 10 10% AEP, 15 min burst, Storm 10 10% AEP, 5 min burst, Storm 1 10% AEP, 5 min burst, Storm 5 10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 1 10% AEP, 5 min burst, Storm 1 10% AEP, 5 min burst, Storm 5 10% AEP, 5 min burst, Storm 1 10% AEP, 5 min burst, Storm 1 10% AEP, 5 min burst, Storm 1
Name CAT P6_13 CAT P7_13 CAT_P1-11 CAT_P2-11 CAT_P3-11 CAT P3_1 CAT P4_1 CAT P5_1 CAT P5_1 CAT P6_1 CAT P2_1 CAT P1_1 + GD4 CAT P2_2 CAT P1_1 + GD4 CAT P2_2 CAT_GD2_NORTH Cat-P1_17 Cat_P2_17 CAT P2_16 CAT P2_16 CAT ExPit_Track CAT-T1-B-N CAT-T1-B-N CAT_P4-11 CAT_P1-9 CAT_P2-9	Max Flow Q (cu.m/s) 0.006 0.004 0.006 0.009 0.016 0.010 0.021 0.016 0.013 0.002 0.003 0.003 0.003 0.003 0.009 0.019 0.012 0.014 0.007 0.045 0.012 0.009 0.006 0.006 0.006	Max Q (cu.m/s) 0.000 0.005 0.005 0.005 0.001 0.016 0.010 0.021 0.016 0.013 0.002 0.003 0.003 0.003 0.003 0.009 0.019 0.012 0.000 0.000 0.000 0.000 0.012 0.000 0.012 0.000 0.005 0.005 0.005 0.005	Max Q (cu.m/s) 0.006 0.004 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.014 0.007 0.045 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	Tc (min) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.0	Tc (min) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.0	Tc (min) 2.00 2.00 0.00 0.00 2.00 2.00 2.00 2.0	10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 10 10% AEP, 15 min burst, Storm 10 10% AEP, 15 min burst, Storm 1 10% AEP, 5 min burst, Storm 5 10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 1 10% AEP, 5 min burst, Storm 1 10% AEP, 15 min burst, Storm 1 10% AEP, 15 min burst, Storm 1 10% AEP, 15 min burst, Storm 1
Name CAT P6_13 CAT P7_13 CAT_P1-11 CAT_P2-11 CAT_P3-11 CAT P3_1 CAT P4_1 CAT P5_1 CAT P5_1 CAT P6_1 CAT P2_1 CAT P1_1 + GD4 CAT P2_2 CAT_GD2_NORTH Cat-P1_17 Cat_P2_17 CAT P1_16 CAT P2_16 CAT P2_16 CAT P2_16 CAT ExPit_Track CAT-T1-B-N CAT-T1-B-N CAT-T1-B-N CAT_P4-11 CAT_P1-9 CAT_P2-9 CAT_P3-9	Max Flow Q (cu.m/s) 0.006 0.004 0.006 0.009 0.016 0.010 0.021 0.016 0.013 0.002 0.003 0.003 0.003 0.003 0.009 0.019 0.012 0.014 0.007 0.045 0.012 0.012 0.012 0.012 0.009 0.006 0.009	Max Q (cu.m/s) 0.000 0.005 0.005 0.005 0.005 0.016 0.010 0.016 0.010 0.021 0.016 0.013 0.002 0.003 0.003 0.003 0.009 0.019 0.012 0.000 0.000 0.000 0.012 0.000 0.0012 0.000 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.000	Max Q (cu.m/s) 0.006 0.004 0.001 0.0000 0.0000 0.0000 0.0000 0.000000	Tc (min) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.0	Tc (min) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.0	Tc (min) 2.00 2.00 0.00 0.00 2.00 2.00 2.00 2.0	10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 10 10% AEP, 15 min burst, Storm 10 10% AEP, 15 min burst, Storm 1 10% AEP, 5 min burst, Storm 5 10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 1 10% AEP, 15 min burst, Storm 10 10% AEP, 15 min burst, Storm 10 10% AEP, 15 min burst, Storm 10
Name CAT P6_13 CAT P7_13 CAT_P1-11 CAT_P2-11 CAT_P3-11 CAT P3_1 CAT P4_1 CAT P5_1 CAT P5_1 CAT P6_1 CAT P2_1 CAT P1_1 + GD4 CAT P2_2 CAT P3_2 CAT_GD2_NORTH Cat-P1_17 Cat_P2_17 CAT P1_16 CAT P2_16 CAT ExPit_Track CAT-Tank_T1-A-S CAT_P4-11 CAT_P2-9 CAT_P3-9 CAT_P3-9 CAT-T1-C-N	Max Flow Q (cu.m/s) 0.006 0.004 0.006 0.006 0.009 0.016 0.010 0.021 0.016 0.013 0.002 0.013 0.002 0.003 0.003 0.003 0.003 0.003 0.009 0.012 0.014 0.007 0.045 0.012 0.012 0.004 0.006 0.006 0.009 0.006 0.006 0.006	Max Q (cu.m/s) 0.000 0.005 0.005 0.005 0.005 0.016 0.010 0.021 0.016 0.013 0.002 0.003 0.003 0.003 0.009 0.019 0.012 0.000 0.000 0.000 0.0012 0.000 0.005 0.005 0.005 0.005 0.000 0.012	Max Q (cu.m/s) 0.006 0.004 0.001 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000	Tc (min) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.0	Tc (min) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.0	Tc (min) 2.00 2.00 0.00 0.00 2.00 2.00 2.00 2.0	10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 10 10% AEP, 15 min burst, Storm 10 10% AEP, 15 min burst, Storm 1 10% AEP, 5 min burst, Storm 5 10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 1 10% AEP, 15 min burst, Storm 10 10% AEP, 15 min burst, Storm 10 10% AEP, 15 min burst, Storm 10 10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 10
Name CAT P6_13 CAT P7_13 CAT_P1-11 CAT_P2-11 CAT_P3-11 CAT P3_1 CAT P4_1 CAT P5_1 CAT P5_1 CAT P6_1 CAT P2_1 CAT P1_1 + GD4 CAT P2_2 CAT_GD2_NORTH Cat-P1_17 Cat_P2_17 CAT P1_16 CAT P2_16 CAT P2_16 CAT P2_16 CAT ExPit_Track CAT-T1-B-N CAT-T1-B-N CAT-T1-B-N CAT_P4-11 CAT_P1-9 CAT_P2-9 CAT_P3-9	Max Flow Q (cu.m/s) 0.006 0.004 0.006 0.009 0.016 0.010 0.021 0.016 0.013 0.002 0.003 0.003 0.003 0.003 0.009 0.019 0.012 0.014 0.007 0.045 0.012 0.012 0.012 0.012 0.009 0.006 0.009	Max Q (cu.m/s) 0.000 0.005 0.005 0.005 0.005 0.016 0.010 0.016 0.010 0.021 0.016 0.013 0.002 0.003 0.003 0.003 0.009 0.019 0.012 0.000 0.000 0.000 0.012 0.000 0.0012 0.000 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.000	Max Q (cu.m/s) 0.006 0.004 0.001 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000	Tc (min) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.0	Tc (min) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.0	Tc (min) 2.00 2.00 0.00 0.00 2.00 2.00 2.00 2.0	10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 10 10% AEP, 15 min burst, Storm 10 10% AEP, 15 min burst, Storm 1 10% AEP, 5 min burst, Storm 5 10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 1 10% AEP, 15 min burst, Storm 10 10% AEP, 15 min burst, Storm 10 10% AEP, 15 min burst, Storm 10

CAT P1_13	0.004	0.000	0.004	5.00	5.00	2.00	10% AEP	15 min burst, Storm 5
CAT P2 13	0.005	0.000	0.005	5.00	5.00	2.00		15 min burst, Storm 5
CAT P3_13	0.004	0.000	0.004	5.00	5.00	2.00		15 min burst, Storm 5
CAT P2_3 BASIN	0.007	0.006	0.001	5.00	5.00	2.00	10% AEP	, 5 min burst, Storm 1
CAT P1_15 BASIN	0.005	0.005	0.001	5.00	5.00	2.00	10% AEP	, 5 min burst, Storm 1
CAT P2 15 BASIN	0.009	0.008	0.001	5.00	5.00	2.00	10% AEP	5 min burst, Storm 1
CAT P4_3 BASIN	0.012	0.011	0.001	5.00	5.00	2.00		5 min burst, Storm 1
								,
CAT P3_15 BASIN	0.008	0.007	0.001	5.00	5.00	2.00		5 min burst, Storm 1
CAT P7_3 BASIN	0.011	0.011	0.001	5.00	5.00	2.00	10% AEP,	, 5 min burst, Storm 1
CAT P9_3 BASIN	0.014	0.010	0.004	5.00	5.00	2.00	10% AEP	, 15 min burst, Storm 10
CAT P4 15 BASIN	0.012	0.010	0.002	5.00	5.00	2.00	10% AFP	15 min burst, Storm 10
CAT BLOCK D ROOF	0.038	0.038	0.000	5.00	5.00	2.00		5 min burst, Storm 1
—								· · · · · · · · · · · · · · · · · · ·
CAT BRB1	0.031	0.020	0.013	5.00	5.00	2.00		, 15 min burst, Storm 3
CAT BRB2	0.019	0.000	0.019	5.00	5.00	2.00	10% AEP,	, 15 min burst, Storm 5
CAT P1 3 BASIN	0.006	0.005	0.001	5.00	5.00	2.00	10% AEP	, 15 min burst, Storm 10
CAT P3 19 BASIN	0.006	0.005	0.001	5.00	5.00	2.00		15 min burst, Storm 10
—								
CAT P2_19 BASIN	0.006	0.005	0.001	5.00	5.00	2.00		, 15 min burst, Storm 10
CAT P1_19 BASIN	0.006	0.006	0.000	5.00	5.00	2.00	10% AEP,	, 5 min burst, Storm 1
CAT P2_18 BASIN	0.008	0.007	0.001	5.00	5.00	2.00	10% AEP	5 min burst, Storm 1
CAT P1 18 BASIN	0.012	0.011	0.001	5.00	5.00	2.00		5 min burst, Storm 1
—				5.00				
CAT L1 CONCOURSE	0.101	0.101	0.000		5.00	2.00		5 min burst, Storm 1
CAT P1_7	0.006	0.005	0.001	5.00	5.00	0.00		, 15 min burst, Storm 10
CAT P2_7	0.006	0.005	0.001	5.00	5.00	0.00	10% AEP	, 15 min burst, Storm 10
CAT P3 7	0.009	0.000	0.009	5.00	5.00	0.00	10% AFP	15 min burst, Storm 5
CAT T1-D-NTH	0.012	0.012	0.000	5.00	0.00	0.00		5 min burst, Storm 1
								,
CAT T1-C-STH	0.012	0.012	0.000	5.00	0.00	0.00	10% AEP,	, 5 min burst, Storm 1
CAT P4_7	0.009	0.000	0.009	5.00	5.00	0.00	10% AEP	, 15 min burst, Storm 5
CAT GOOD SHED STH	0.015	0.015	0.000	5.00	5.00	2.00	10% AEP	, 5 min burst, Storm 1
CAT GOODS SHED NTH	0.015	0.015	0.000	5.00	5.00	2.00		, 5 min burst, Storm 1
CAT P1_8	0.005	0.004	0.001	5.00	5.00	0.00		, 15 min burst, Storm 10
CAT P2_8	0.004	0.003	0.001	5.00	5.00	0.00	10% AEP	, 15 min burst, Storm 10
CAT P3 8	0.005	0.000	0.005	5.00	5.00	0.00	10% AEP	15 min burst, Storm 5
CAT EQPTSHD	0.018	0.018	0.000	5.00	5.00	2.00		5 min burst, Storm 1
CAT T1-E-STH	0.012	0.012	0.000	5.00	0.00	0.00		, 5 min burst, Storm 1
CAT P4_8	0.005	0.000	0.005	5.00	5.00	0.00	10% AEP,	, 15 min burst, Storm 5
CAT P1 10	0.006	0.005	0.001	5.00	5.00	0.00	10% AEP.	15 min burst, Storm 10
CAT P2 10	0.006	0.005	0.001	5.00	5.00	0.00		15 min burst, Storm 10
						0.00	10/0/101	
Cote 10		0 000	0 000	E 00	E 00	0.00	100/ AED	1E min hurat Starm E
Cat619	0.009	0.000	0.009	5.00	5.00	0.00		15 min burst, Storm 5
Cat619 CAT T1-E-NTH	0.009 0.012	0.000 0.012	0.009 0.000	5.00	5.00 0.00	0.00 0.00		, 15 min burst, Storm 5 , 5 min burst, Storm 1
							10% AEP	
CAT T1-E-NTH CAT T1-F-STH	0.012 0.012	0.012 0.012	0.000 0.000	5.00 5.00	0.00 0.00	0.00 0.00	10% AEP 10% AEP	, 5 min burst, Storm 1 , 5 min burst, Storm 1
CAT T1-E-NTH CAT T1-F-STH CAT P4_10	0.012 0.012 0.009	0.012 0.012 0.000	0.000 0.000 0.009	5.00 5.00 5.00	0.00 0.00 5.00	0.00 0.00 0.00	10% AEP 10% AEP 10% AEP	, 5 min burst, Storm 1 , 5 min burst, Storm 1 , 15 min burst, Storm 5
CAT T1-E-NTH CAT T1-F-STH	0.012 0.012	0.012 0.012	0.000 0.000	5.00 5.00	0.00 0.00	0.00 0.00	10% AEP 10% AEP 10% AEP	, 5 min burst, Storm 1 , 5 min burst, Storm 1
CAT T1-E-NTH CAT T1-F-STH CAT P4_10	0.012 0.012 0.009	0.012 0.012 0.000	0.000 0.000 0.009	5.00 5.00 5.00	0.00 0.00 5.00	0.00 0.00 0.00	10% AEP 10% AEP 10% AEP	, 5 min burst, Storm 1 , 5 min burst, Storm 1 , 15 min burst, Storm 5
CAT T1-E-NTH CAT T1-F-STH CAT P4_10 CAT GD3	0.012 0.012 0.009	0.012 0.012 0.000	0.000 0.000 0.009	5.00 5.00 5.00	0.00 0.00 5.00	0.00 0.00 0.00	10% AEP 10% AEP 10% AEP	, 5 min burst, Storm 1 , 5 min burst, Storm 1 , 15 min burst, Storm 5
CAT T1-E-NTH CAT T1-F-STH CAT P4_10	0.012 0.012 0.009	0.012 0.012 0.000	0.000 0.000 0.009	5.00 5.00 5.00	0.00 0.00 5.00	0.00 0.00 0.00	10% AEP 10% AEP 10% AEP	, 5 min burst, Storm 1 , 5 min burst, Storm 1 , 15 min burst, Storm 5
CAT T1-E-NTH CAT T1-F-STH CAT P4_10 CAT GD3 PIPE DETAILS	0.012 0.012 0.009 0.002	0.012 0.012 0.000 0.002	0.000 0.000 0.009 0.000	5.00 5.00 5.00 5.00	0.00 0.00 5.00 5.00	0.00 0.00 0.00 2.00	10% AEP 10% AEP 10% AEP	, 5 min burst, Storm 1 , 5 min burst, Storm 1 , 15 min burst, Storm 5
CAT T1-E-NTH CAT T1-F-STH CAT P4_10 CAT GD3	0.012 0.012 0.009 0.002 Max Q	0.012 0.012 0.000 0.002 Max V	0.000 0.000 0.009 0.000 Max U/S	5.00 5.00 5.00 5.00 Max D/S	0.00 0.00 5.00	0.00 0.00 0.00 2.00	10% AEP 10% AEP 10% AEP	, 5 min burst, Storm 1 , 5 min burst, Storm 1 , 15 min burst, Storm 5
CAT T1-E-NTH CAT T1-F-STH CAT P4_10 CAT GD3 PIPE DETAILS Name	0.012 0.012 0.009 0.002 Max Q (cu.m/s)	0.012 0.012 0.000 0.002 Max V (m/s)	0.000 0.000 0.009 0.000 Max U/S HGL (m)	5.00 5.00 5.00 5.00 Max D/S HGL (m)	0.00 0.00 5.00 5.00	0.00 0.00 0.00 2.00	10% AEP 10% AEP 10% AEP 10% AEP	, 5 min burst, Storm 1 , 5 min burst, Storm 1 , 15 min burst, Storm 5
CAT T1-E-NTH CAT T1-F-STH CAT P4_10 CAT GD3 PIPE DETAILS Name P4_13 - P5_13	0.012 0.012 0.009 0.002 Max Q (cu.m/s) 0.000	0.012 0.012 0.000 0.002 Max V (m/s) 0.00	0.000 0.009 0.009 0.000 Max U/S HGL (m) 6.250	5.00 5.00 5.00 5.00 Max D/S HGL (m) 6.091	0.00 0.00 5.00 5.00 Due to Str 10% AEP	0.00 0.00 0.00 2.00 prm 5 min burs	10% AEP, 10% AEP, 10% AEP, 10% AEP,	, 5 min burst, Storm 1 , 5 min burst, Storm 1 , 15 min burst, Storm 5
CAT T1-E-NTH CAT T1-F-STH CAT P4_10 CAT GD3 PIPE DETAILS Name	0.012 0.012 0.009 0.002 Max Q (cu.m/s)	0.012 0.012 0.000 0.002 Max V (m/s)	0.000 0.000 0.009 0.000 Max U/S HGL (m)	5.00 5.00 5.00 5.00 Max D/S HGL (m)	0.00 0.00 5.00 5.00 Due to Str 10% AEP	0.00 0.00 0.00 2.00	10% AEP, 10% AEP, 10% AEP, 10% AEP,	, 5 min burst, Storm 1 , 5 min burst, Storm 1 , 15 min burst, Storm 5
CAT T1-E-NTH CAT T1-F-STH CAT P4_10 CAT GD3 PIPE DETAILS Name P4_13 - P5_13 P5_13 - P6_13	0.012 0.009 0.002 Max Q (cu.m/s) 0.000 0.000	0.012 0.012 0.000 0.002 Max V (m/s) 0.00 0.00	0.000 0.009 0.009 0.000 Max U/S HGL (m) 6.250 6.091	5.00 5.00 5.00 5.00 Max D/S HGL (m) 6.091 6.091	0.00 0.00 5.00 5.00 Due to Sta 10% AEP 10% AEP	0.00 0.00 0.00 2.00 prm , 5 min burs , 10 min bur	10% AEP 10% AEP 10% AEP 10% AEP 10% AEP	, 5 min burst, Storm 1 , 5 min burst, Storm 1 , 15 min burst, Storm 5
CAT T1-E-NTH CAT T1-F-STH CAT P4_10 CAT GD3 PIPE DETAILS Name P4_13 - P5_13 P5_13 - P6_13 P6_13 - P7_13	0.012 0.009 0.002 Max Q (cu.m/s) 0.000 0.000 0.015	0.012 0.012 0.000 0.002 Max V (m/s) 0.00 0.00 0.66	0.000 0.009 0.000 Max U/S HGL (m) 6.250 6.091 6.082	5.00 5.00 5.00 5.00 Max D/S HGL (m) 6.091 6.091 5.993	0.00 0.00 5.00 5.00 Due to Sta 10% AEP 10% AEP	0.00 0.00 0.00 2.00 5 min burs , 10 min bur , 15 min burs	10% AEP 10% AEP 10% AEP 10% AEP 10% AEP t, Storm 1 st, Storm 7 st, Storm 6	, 5 min burst, Storm 1 , 5 min burst, Storm 1 , 15 min burst, Storm 5
CAT T1-E-NTH CAT T1-F-STH CAT P4_10 CAT GD3 PIPE DETAILS Name P4_13 - P5_13 P5_13 - P6_13 P6_13 - P7_13 P7_13 - HW1	0.012 0.009 0.002 Max Q (cu.m/s) 0.000 0.000 0.015 0.018	0.012 0.012 0.000 0.002 Max V (m/s) 0.00 0.00 0.66 0.75	0.000 0.009 0.000 Max U/S HGL (m) 6.250 6.091 6.082 5.988	5.00 5.00 5.00 5.00 Max D/S HGL (m) 6.091 6.091 5.993 5.930	0.00 0.00 5.00 5.00 Due to Stu 10% AEP 10% AEP 10% AEP	0.00 0.00 2.00 5 min burs , 10 min bur , 15 min bur , 15 min bur	10% AEP 10% AEP 10% AEP 10% AEP 10% AEP t, Storm 1 st, Storm 7 st, Storm 6 st, Storm 6	, 5 min burst, Storm 1 , 5 min burst, Storm 1 , 15 min burst, Storm 5
CAT T1-E-NTH CAT T1-F-STH CAT P4_10 CAT GD3 PIPE DETAILS Name P4_13 - P5_13 P5_13 - P6_13 P6_13 - P7_13 P7_13 - HW1 P1_11 - P2_11	0.012 0.012 0.009 0.002 Max Q (cu.m/s) 0.000 0.000 0.015 0.018 0.006	0.012 0.012 0.000 0.002 Max V (m/s) 0.00 0.00 0.66 0.75 0.30	0.000 0.009 0.000 Max U/S HGL (m) 6.250 6.091 6.082 5.988 6.623	5.00 5.00 5.00 5.00 Max D/S HGL (m) 6.091 6.091 5.993 5.930 6.623	0.00 0.00 5.00 5.00 Due to Sta 10% AEP 10% AEP 10% AEP 10% AEP	0.00 0.00 0.00 2.00 5 min burs , 5 min burs , 10 min bur , 15 min bur , 15 min bur	10% AEP 10% AEP 10% AEP 10% AEP 10% AEP t, Storm 1 st, Storm 7 st, Storm 6 st, Storm 8	5 min burst, Storm 1 5 min burst, Storm 1 15 min burst, Storm 5 5 min burst, Storm 1
CAT T1-E-NTH CAT T1-F-STH CAT P4_10 CAT GD3 PIPE DETAILS Name P4_13 - P5_13 P5_13 - P6_13 P6_13 - P7_13 P7_13 - HW1 P1_11 - P2_11 P2-11_P3-11	0.012 0.009 0.002 Max Q (cu.m/s) 0.000 0.000 0.015 0.018	0.012 0.012 0.000 0.002 Max V (m/s) 0.00 0.00 0.00 0.66 0.75 0.30 0.59	0.000 0.009 0.000 Max U/S HGL (m) 6.250 6.091 6.082 5.988	5.00 5.00 5.00 5.00 Max D/S HGL (m) 6.091 6.091 5.993 5.930 6.623 6.623	0.00 0.00 5.00 5.00 Due to Stu 10% AEP 10% AEP 10% AEP 10% AEP	0.00 0.00 2.00 2.00 5 min burs , 10 min bur , 15 min bur , 15 min bur , 15 min bur , 10 min bur	10% AEP 10% AEP	5 min burst, Storm 1 5 min burst, Storm 1 15 min burst, Storm 5 5 min burst, Storm 1
CAT T1-E-NTH CAT T1-F-STH CAT P4_10 CAT GD3 PIPE DETAILS Name P4_13 - P5_13 P5_13 - P6_13 P6_13 - P7_13 P7_13 - HW1 P1_11 - P2_11	0.012 0.012 0.009 0.002 Max Q (cu.m/s) 0.000 0.000 0.015 0.018 0.006	0.012 0.012 0.000 0.002 Max V (m/s) 0.00 0.00 0.66 0.75 0.30	0.000 0.009 0.000 Max U/S HGL (m) 6.250 6.091 6.082 5.988 6.623	5.00 5.00 5.00 5.00 Max D/S HGL (m) 6.091 6.091 5.993 5.930 6.623	0.00 0.00 5.00 5.00 Due to Stu 10% AEP 10% AEP 10% AEP 10% AEP	0.00 0.00 0.00 2.00 5 min burs , 5 min burs , 10 min bur , 15 min bur , 15 min bur	10% AEP 10% AEP	5 min burst, Storm 1 5 min burst, Storm 1 15 min burst, Storm 5 5 min burst, Storm 1
CAT T1-E-NTH CAT T1-F-STH CAT P4_10 CAT GD3 PIPE DETAILS Name P4_13 - P5_13 P5_13 - P6_13 P6_13 - P7_13 P7_13 - HW1 P1_11 - P2_11 P2-11_P3-11 TRENCH-11_1	0.012 0.012 0.009 0.002 Max Q (cu.m/s) 0.000 0.000 0.015 0.018 0.006 0.011 0.029	0.012 0.012 0.000 0.002 Max V (m/s) 0.00 0.00 0.66 0.75 0.30 0.59 1.56	0.000 0.009 0.000 Max U/S HGL (m) 6.250 6.091 6.082 5.988 6.623 6.623 6.623 6.621	5.00 5.00 5.00 5.00 Max D/S HGL (m) 6.091 6.091 5.993 5.930 6.623 6.623 6.623	0.00 0.00 5.00 5.00 Due to Stu 10% AEP 10% AEP 10% AEP 10% AEP 10% AEP	0.00 0.00 2.00 5 min burs , 5 min burs , 10 min bur , 15 min bur , 15 min bur , 10 min bur , 10 min bur	10% AEP 10% AEP	5 min burst, Storm 1 5 min burst, Storm 1 15 min burst, Storm 5 5 min burst, Storm 1
CAT T1-E-NTH CAT T1-F-STH CAT P4_10 CAT GD3 PIPE DETAILS Name P4_13 - P5_13 P5_13 - P6_13 P5_13 - P6_13 P6_13 - P7_13 P7_13 - HW1 P1_11 - P2_11 P2-11_P3-11 TRENCH-11_1 P3_1 - P4_1	0.012 0.012 0.009 0.002 Max Q (cu.m/s) 0.000 0.015 0.018 0.006 0.011 0.029 0.010	0.012 0.012 0.000 0.002 Max V (m/s) 0.00 0.00 0.66 0.75 0.30 0.59 1.56 1.18	0.000 0.009 0.000 Max U/S HGL (m) 6.250 6.091 6.082 5.988 6.623 6.623 6.623 6.621 6.263	5.00 5.00 5.00 5.00 Max D/S HGL (m) 6.091 6.091 5.993 5.930 6.623 6.623 6.623 6.620 6.219	0.00 0.00 5.00 5.00 Due to Str 10% AEP 10% AEP 10% AEP 10% AEP 10% AEP 10% AEP	0.00 0.00 2.00 2.00 5 min burs , 10 min burs , 15 min burs , 15 min bur , 15 min bur , 10 min bur , 10 min bur , 10 min bur	10% AEP 10% AE	5 min burst, Storm 1 5 min burst, Storm 1 15 min burst, Storm 5 5 min burst, Storm 1
CAT T1-E-NTH CAT T1-F-STH CAT P4_10 CAT GD3 PIPE DETAILS Name P4_13 - P5_13 P5_13 - P6_13 P5_13 - P6_13 P6_13 - P7_13 P7_13 - HW1 P1_11 - P2_11 P2-11_P3-11 TRENCH-11_1 P3_1 - P4_1 P4_1 - P5_1	0.012 0.009 0.002 Max Q (cu.m/s) 0.000 0.000 0.015 0.018 0.006 0.011 0.029 0.010 0.015	0.012 0.012 0.000 0.002 Max V (m/s) 0.00 0.00 0.66 0.75 0.30 0.59 1.56 1.18 0.34	0.000 0.009 0.000 Max U/S HGL (m) 6.250 6.091 6.082 5.988 6.623 6.623 6.623 6.623 6.623 6.623 6.623 6.623 6.623	5.00 5.00 5.00 5.00 Max D/S HGL (m) 6.091 6.091 5.993 5.930 6.623 6.623 6.623 6.623 6.623 6.621 9.6192	0.00 0.00 5.00 5.00 Due to Stu 10% AEP 10% AEP 10% AEP 10% AEP 10% AEP 10% AEP	0.00 0.00 2.00 2.00 5rm 5 min burs , 10 min burs , 15 min burs , 15 min burs , 15 min bur , 15 min bur , 10 min bur , 10 min bur , 10 min bur	10% AEP, 10% AEP, 10% AEP, 10% AEP, 10% AEP, t, Storm 1 st, Storm 6 st, Storm 6 st, Storm 8 st, Storm 9 st, Storm 9 st, Storm 3	5 min burst, Storm 1 5 min burst, Storm 1 15 min burst, Storm 5 5 min burst, Storm 1
CAT T1-E-NTH CAT T1-F-STH CAT P4_10 CAT GD3 PIPE DETAILS Name P4_13 - P5_13 P5_13 - P6_13 P6_13 - P7_13 P7_13 - HW1 P1_11 - P2_11 P2-11_P3-11 TRENCH-11_1 P3_1 - P4_1 P4_1 - P5_1 P5_1 - P6_1	0.012 0.009 0.002 Max Q (cu.m/s) 0.000 0.000 0.005 0.015 0.018 0.006 0.011 0.029 0.010 0.015 0.034	0.012 0.012 0.000 0.002 Max V (m/s) 0.00 0.00 0.00 0.66 0.75 0.30 0.59 1.56 1.18 0.34 0.75	0.000 0.009 0.000 Max U/S HGL (m) 6.250 6.091 6.082 5.988 6.623 6.623 6.623 6.623 6.623 6.621 6.263 6.197 6.067	5.00 5.00 5.00 5.00 Max D/S HGL (m) 6.091 6.091 5.993 5.930 6.623 6.623 6.623 6.623 6.621 6.621 6.621 6.219 6.192 6.041	0.00 0.00 5.00 5.00 Due to Str 10% AEP 10% AEP 10% AEP 10% AEP 10% AEP 10% AEP	0.00 0.00 2.00 2.00 5 min burs , 10 min burs , 15 min burs , 15 min burs , 15 min burs , 16 min bur , 10 min bur , 10 min bur , 10 min bur	10% AEP, 10% AEP, 10% AEP, 10% AEP, 10% AEP, t, Storm 1 st, Storm 6 st, Storm 6 st, Storm 6 st, Storm 8 st, Storm 9 st, Storm 9 st, Storm 3 st, Storm 3 st, Storm 5	5 min burst, Storm 1 5 min burst, Storm 1 15 min burst, Storm 5 5 min burst, Storm 1
CAT T1-E-NTH CAT T1-F-STH CAT P4_10 CAT GD3 PIPE DETAILS Name P4_13 - P5_13 P5_13 - P6_13 P5_13 - P6_13 P6_13 - P7_13 P7_13 - HW1 P1_11 - P2_11 P2-11_P3-11 TRENCH-11_1 P3_1 - P4_1 P4_1 - P5_1	0.012 0.009 0.002 Max Q (cu.m/s) 0.000 0.000 0.015 0.018 0.006 0.011 0.029 0.010 0.015	0.012 0.012 0.000 0.002 Max V (m/s) 0.00 0.00 0.66 0.75 0.30 0.59 1.56 1.18 0.34	0.000 0.009 0.000 Max U/S HGL (m) 6.250 6.091 6.082 5.988 6.623 6.623 6.623 6.623 6.623 6.623 6.623 6.623 6.623	5.00 5.00 5.00 5.00 Max D/S HGL (m) 6.091 6.091 5.993 5.930 6.623 6.623 6.623 6.623 6.623 6.621 9.6192	0.00 0.00 5.00 5.00 Due to Str 10% AEP 10% AEP 10% AEP 10% AEP 10% AEP 10% AEP	0.00 0.00 2.00 2.00 5rm 5 min burs , 10 min burs , 15 min burs , 15 min burs , 15 min bur , 15 min bur , 10 min bur , 10 min bur , 10 min bur	10% AEP, 10% AEP, 10% AEP, 10% AEP, 10% AEP, t, Storm 1 st, Storm 6 st, Storm 6 st, Storm 6 st, Storm 8 st, Storm 9 st, Storm 9 st, Storm 3 st, Storm 3 st, Storm 5	5 min burst, Storm 1 5 min burst, Storm 1 15 min burst, Storm 5 5 min burst, Storm 1
CAT T1-E-NTH CAT T1-F-STH CAT P4_10 CAT GD3 PIPE DETAILS Name P4_13 - P5_13 P5_13 - P6_13 P6_13 - P7_13 P7_13 - HW1 P1_11 - P2_11 P2-11_P3-11 TRENCH-11_1 P3_1 - P4_1 P4_1 - P5_1 P5_1 - P6_1 P6_1 - P7_1	0.012 0.012 0.009 0.002 Max Q (cu.m/s) 0.000 0.000 0.015 0.018 0.006 0.011 0.029 0.010 0.015 0.034 0.049	0.012 0.012 0.000 0.002 Max V (m/s) 0.00 0.00 0.66 0.75 0.30 0.59 1.56 1.18 0.34 0.75 0.68	0.000 0.009 0.000 Max U/S HGL (m) 6.250 6.091 6.082 5.988 6.623 6.623 6.623 6.623 6.623 6.621 6.263 6.197 6.067 6.024	5.00 5.00 5.00 5.00 Max D/S HGL (m) 6.091 6.091 5.993 5.930 6.623 6.623 6.623 6.623 6.620 6.219 6.192 6.041 6.015	0.00 0.00 5.00 5.00 Due to Sta 10% AEP 10% AEP 10% AEP 10% AEP 10% AEP 10% AEP 10% AEP 10% AEP	0.00 0.00 2.00 2.00 5 min burs , 10 min bur , 15 min bur , 15 min bur , 10 min bur , 5 min burs	10% AEP 10% AE	5 min burst, Storm 1 5 min burst, Storm 1 15 min burst, Storm 5 5 min burst, Storm 1
CAT T1-E-NTH CAT T1-F-STH CAT P4_10 CAT GD3 PIPE DETAILS Name P4_13 - P5_13 P5_13 - P6_13 P6_13 - P7_13 P7_13 - HW1 P1_11 - P2_11 P2-11_P3-11 TRENCH-11_1 P3_1 - P4_1 P4_1 - P5_1 P5_1 - P6_1 P6_1 - P7_1 P7_1 - GPT_BRB3	0.012 0.012 0.009 0.002 Max Q (cu.m/s) 0.000 0.015 0.018 0.006 0.011 0.029 0.010 0.015 0.034 0.049 0.051	0.012 0.012 0.000 0.002 Max V (m/s) 0.00 0.66 0.75 0.30 0.59 1.56 1.18 0.34 0.75 0.68 1.11	0.000 0.009 0.000 Max U/S HGL (m) 6.250 6.091 6.082 5.988 6.623 6.623 6.623 6.621 6.263 6.197 6.067 6.067 6.024 6.004	5.00 5.00 5.00 5.00 Max D/S HGL (m) 6.091 6.091 5.993 5.930 6.623 6.623 6.623 6.623 6.620 6.219 6.192 6.041 6.015 6.003	0.00 0.00 5.00 5.00 Due to Sta 10% AEP 10% AEP 10% AEP 10% AEP 10% AEP 10% AEP 10% AEP 10% AEP	0.00 0.00 0.00 2.00 5 min burs , 10 min bur , 15 min bur , 15 min bur , 10 min bur , 5 min burs , 5 min burs	10% AEP 10% AE	5 min burst, Storm 1 5 min burst, Storm 1 15 min burst, Storm 5 5 min burst, Storm 1
CAT T1-E-NTH CAT T1-F-STH CAT P4_10 CAT GD3 PIPE DETAILS Name P4_13 - P5_13 P5_13 - P6_13 P6_13 - P7_13 P7_13 - HW1 P1_11 - P2_11 P2-11_P3-11 TRENCH-11_1 P3_1 - P4_1 P4_1 - P5_1 P5_1 - P6_1 P5_1 - P6_1 P6_1 - P7_1 P7_1 - GPT_BRB3 GPT_BRB3 - BRB3	0.012 0.012 0.009 0.002 Max Q (cu.m/s) 0.000 0.015 0.018 0.006 0.011 0.029 0.010 0.015 0.034 0.049 0.051 0.053	0.012 0.012 0.000 0.002 Max V (m/s) 0.00 0.66 0.75 0.30 0.59 1.56 1.18 0.34 0.75 0.68 1.11 1.16	0.000 0.009 0.000 Max U/S HGL (m) 6.250 6.091 6.082 5.988 6.623 6.623 6.623 6.621 6.263 6.197 6.067 6.024 6.004 5.994	5.00 5.00 5.00 5.00 Max D/S HGL (m) 6.091 6.091 5.993 5.930 6.623 6.623 6.623 6.623 6.620 6.219 6.192 6.041 6.015 6.003 5.993	0.00 0.00 5.00 5.00 Due to Sta 10% AEP 10% AEP 10% AEP 10% AEP 10% AEP 10% AEP 10% AEP 10% AEP 10% AEP	0.00 0.00 0.00 2.00 5 min burs , 5 min burs , 10 min bur , 15 min bur , 15 min bur , 10 min bur , 10 min bur , 10 min bur , 10 min burs , 5 min burs , 5 min burs , 5 min burs	10% AEP, 10%	5 min burst, Storm 1 5 min burst, Storm 1 15 min burst, Storm 5 5 min burst, Storm 1
CAT T1-E-NTH CAT T1-F-STH CAT P4_10 CAT GD3 PIPE DETAILS Name P4_13 - P5_13 P5_13 - P6_13 P6_13 - P7_13 P7_13 - HW1 P1_11 - P2_11 P2-11_P3-11 TRENCH-11_1 P3_1 - P4_1 P4_1 - P5_1 P5_1 - P6_1 P6_1 - P7_1 P6_1 - P7_1 P7_1 - GPT_BRB3 GPT_BRB3 - BRB3 P2_1 - P1_1 + GD4	0.012 0.012 0.009 0.002 Max Q (cu.m/s) 0.000 0.015 0.018 0.006 0.011 0.029 0.010 0.015 0.034 0.049 0.051 0.053 0.012	0.012 0.012 0.000 0.002 Max V (m/s) 0.00 0.00 0.66 0.75 0.30 0.59 1.56 1.18 0.34 0.75 0.68 1.11 1.16 0.63	0.000 0.009 0.000 Max U/S HGL (m) 6.250 6.091 6.082 5.988 6.623 6.623 6.623 6.623 6.621 6.263 6.197 6.067 6.024 6.004 5.994 6.043	5.00 5.00 5.00 5.00 Max D/S HGL (m) 6.091 6.091 5.993 5.930 6.623 6.623 6.623 6.623 6.620 6.219 6.041 6.015 6.003 5.993 5.993 5.989	0.00 0.00 5.00 5.00 Due to Stu 10% AEP 10% AEP 10% AEP 10% AEP 10% AEP 10% AEP 10% AEP 10% AEP 10% AEP	0.00 0.00 2.00 2.00 5 min burs 5 min burs 10 min bur 15 min bur 10 min bur 10 min bur 10 min bur 10 min bur 5 min burs 5 min burs 5 min burs 5 min burs	10% AEP, 10% AE, 500 M, 10%	5 min burst, Storm 1 5 min burst, Storm 1 15 min burst, Storm 5 5 min burst, Storm 1
CAT T1-E-NTH CAT T1-F-STH CAT P4_10 CAT GD3 PIPE DETAILS Name P4_13 - P5_13 P5_13 - P6_13 P6_13 - P7_13 P7_13 - HW1 P1_11 - P2_11 P2-11_P3-11 TRENCH-11_1 P3_1 - P4_1 P4_1 - P5_1 P5_1 - P6_1 P6_1 - P7_1 P7_1 - GPT_BRB3 GPT_BRB3 - BRB3 P2_1 - P1_1 + GD4 P1_1 - P2_6	0.012 0.012 0.009 0.002 Max Q (cu.m/s) 0.000 0.015 0.018 0.006 0.011 0.029 0.010 0.015 0.034 0.049 0.051 0.053 0.012 0.014	0.012 0.012 0.000 0.002 Max V (m/s) 0.00 0.00 0.66 0.75 0.30 0.59 1.56 1.18 0.34 0.75 0.68 1.11 1.16 0.63 0.74	0.000 0.009 0.000 Max U/S HGL (m) 6.250 6.091 6.082 5.988 6.623 6.623 6.623 6.623 6.623 6.623 6.623 6.621 6.263 6.263 6.197 6.067 6.024 6.004 5.994 6.043 5.935	5.00 5.00 5.00 5.00 Max D/S HGL (m) 6.091 6.091 5.993 5.930 6.623 6.623 6.620 6.219 6.192 6.041 6.015 6.003 5.993 5.993 5.989 5.873	0.00 0.00 5.00 5.00 Due to Sta 10% AEP 10% AEP 10% AEP 10% AEP 10% AEP 10% AEP 10% AEP 10% AEP 10% AEP 10% AEP	0.00 0.00 2.00 2.00 0 0 0 0 0 0 0 0 0 0	10% AEP, 10% AE, 500 M, 10% AE, 5	5 min burst, Storm 1 5 min burst, Storm 1 15 min burst, Storm 5 5 min burst, Storm 1
CAT T1-E-NTH CAT T1-F-STH CAT P4_10 CAT GD3 PIPE DETAILS Name P4_13 - P5_13 P5_13 - P6_13 P6_13 - P7_13 P7_13 - HW1 P1_11 - P2_11 P2-11_P3-11 TRENCH-11_1 P3_1 - P4_1 P4_1 - P5_1 P5_1 - P6_1 P6_1 - P7_1 P6_1 - P7_1 P7_1 - GPT_BRB3 GPT_BRB3 - BRB3 P2_1 - P1_1 + GD4	0.012 0.012 0.009 0.002 Max Q (cu.m/s) 0.000 0.015 0.018 0.006 0.011 0.029 0.010 0.015 0.034 0.049 0.051 0.053 0.012	0.012 0.012 0.000 0.002 Max V (m/s) 0.00 0.00 0.66 0.75 0.30 0.59 1.56 1.18 0.34 0.75 0.68 1.11 1.16 0.63	0.000 0.009 0.000 Max U/S HGL (m) 6.250 6.091 6.082 5.988 6.623 6.623 6.623 6.623 6.621 6.263 6.197 6.067 6.024 6.004 5.994 6.043	5.00 5.00 5.00 5.00 Max D/S HGL (m) 6.091 6.091 5.993 5.930 6.623 6.623 6.623 6.623 6.620 6.219 6.041 6.015 6.003 5.993 5.993 5.989	0.00 0.00 5.00 5.00 Due to Sta 10% AEP 10% AEP 10% AEP 10% AEP 10% AEP 10% AEP 10% AEP 10% AEP 10% AEP 10% AEP	0.00 0.00 2.00 2.00 5 min burs 5 min burs 10 min bur 15 min bur 10 min bur 10 min bur 10 min bur 10 min bur 5 min burs 5 min burs 5 min burs 5 min burs	10% AEP, 10% AE, 500 M, 10% AE, 5	5 min burst, Storm 1 5 min burst, Storm 1 15 min burst, Storm 5 5 min burst, Storm 1
CAT T1-E-NTH CAT T1-F-STH CAT P4_10 CAT GD3 PIPE DETAILS Name P4_13 - P5_13 P5_13 - P6_13 P6_13 - P7_13 P7_13 - HW1 P1_11 - P2_11 P2-11_P3-11 TRENCH-11_1 P3_1 - P4_1 P4_1 - P5_1 P5_1 - P6_1 P6_1 - P7_1 P7_1 - GPT_BRB3 GPT_BRB3 - BRB3 P2_1 - P1_1 + GD4 P1_1 - P2_6 P2_6 - ExP5	0.012 0.012 0.009 0.002 Max Q (cu.m/s) 0.000 0.015 0.018 0.006 0.011 0.029 0.010 0.015 0.014 0.053 0.012 0.014 0.042	0.012 0.012 0.000 0.002 Max V (m/s) 0.00 0.00 0.66 0.75 0.30 0.59 1.56 1.18 0.34 0.75 0.68 1.11 1.16 0.63 0.74 1.64	0.000 0.009 0.000 Max U/S HGL (m) 6.250 6.091 6.082 5.988 6.623 6.623 6.623 6.623 6.623 6.623 6.623 6.623 6.623 6.623 6.624 6.004 5.994 6.004 5.994 6.043 5.935 5.804	5.00 5.00 5.00 5.00 Max D/S HGL (m) 6.091 6.091 6.091 5.993 5.930 6.623 6.623 6.620 6.219 6.192 6.041 6.015 6.003 5.993 5.989 5.873 5.731	0.00 0.00 5.00 5.00 Due to Sta 10% AEP 10% AEP	0.00 0.00 2.00 2.00 0 0 0 0 0 0 0 0 0 0	10% AEP, 10%	5 min burst, Storm 1 5 min burst, Storm 1 15 min burst, Storm 5 5 min burst, Storm 1
CAT T1-E-NTH CAT T1-F-STH CAT P4_10 CAT GD3 PIPE DETAILS Name P4_13 - P5_13 P5_13 - P6_13 P6_13 - P7_13 P7_13 - HW1 P1_11 - P2_11 P2-11_P3-11 TRENCH-11_1 P3_1 - P4_1 P4_1 - P5_1 P5_1 - P6_1 P6_1 - P7_1 P5_1 - P6_1 P6_1 - P7_1 P7_1 - GPT_BRB3 GPT_BRB3 - BRB3 P2_1 - P1_1 + GD4 P1_1 - P2_6 P2_6 - ExP5 ExP5 - ExP4	0.012 0.012 0.009 0.002 Max Q (cu.m/s) 0.000 0.015 0.018 0.006 0.011 0.029 0.010 0.015 0.034 0.049 0.051 0.053 0.012 0.014 0.042 0.040	0.012 0.012 0.000 0.002 Max V (m/s) 0.00 0.00 0.00 0.66 0.75 0.30 0.59 1.56 1.18 0.34 0.75 0.68 1.11 1.16 0.63 0.74 1.64 0.72	0.000 0.009 0.000 Max U/S HGL (m) 6.250 6.091 6.082 5.988 6.623 6.623 6.623 6.623 6.623 6.623 6.623 6.623 6.623 6.623 6.623 6.623 6.623 6.623 6.624 6.067 6.024 6.004 5.994 6.043 5.935 5.804 5.293	5.00 5.00 5.00 5.00 Max D/S HGL (m) 6.091 6.091 5.993 5.930 6.623 6.623 6.623 6.623 6.623 6.620 6.219 6.192 6.041 6.015 6.003 5.989 5.873 5.731 5.731 5.196	0.00 0.00 5.00 5.00 Due to Sta 10% AEP 10% AEP	0.00 0.00 2.00 2.00 0 0 0 0 0 0 0 0 0 0	10% AEP, 10%	5 min burst, Storm 1 5 min burst, Storm 1 15 min burst, Storm 5 5 min burst, Storm 1
CAT T1-E-NTH CAT T1-F-STH CAT P4_10 CAT GD3 PIPE DETAILS Name $P4_{13} - P5_{13}$ $P5_{13} - P6_{13}$ $P6_{13} - P7_{13}$ $P7_{13} - HW1$ $P1_{11} - P2_{11}$ $P2-11_{P3-11}$ TRENCH-11_1 $P3_{1} - P4_{1}$ $P4_{1} - P5_{1}$ $P5_{1} - P6_{1}$ $P6_{1} - P7_{1}$ $P7_{1} - GPT_{BRB3}$ $GPT_{BRB3} - BRB3$ $P2_{1} - P1_{1} + GD4$ $P1_{1} - P2_{6}$ $P2_{6} - ExP5$ ExP5 - ExP4 Pipe1059	0.012 0.012 0.009 0.002 Max Q (cu.m/s) 0.000 0.015 0.018 0.006 0.011 0.029 0.010 0.015 0.034 0.049 0.051 0.053 0.012 0.014 0.042 0.040 0.045	0.012 0.012 0.000 0.002 Max V (m/s) 0.00 0.00 0.00 0.00 0.66 0.75 0.30 0.59 1.56 1.18 0.34 0.75 0.68 1.11 1.16 0.63 0.74 1.64 0.72 1.06	0.000 0.009 0.000 Max U/S HGL (m) 6.250 6.091 6.082 5.988 6.623 6.623 6.623 6.623 6.623 6.623 6.623 6.623 6.623 6.623 6.623 6.623 6.623 6.623 6.624 6.067 6.024 6.043 5.935 5.804 5.293 5.196	5.00 5.00 5.00 5.00 Max D/S HGL (m) 6.091 6.091 6.091 5.993 5.930 6.623 6.623 6.623 6.620 6.219 6.192 6.041 6.015 6.003 5.989 5.873 5.989 5.873 5.731 5.196 5.112	0.00 0.00 5.00 5.00 Due to Sta 10% AEP 10% AEP	0.00 0.00 2.00 2.00 0 0 0 5 min burs 5 min burs 10 min bur 15 min bur 10 min bur 10 min bur 10 min bur 10 min bur 5 min burs 5 min burs 5 min burs 5 min burs 5 min burs 5 min burs 5 min burs	10% AEP, 10%	5 min burst, Storm 1 5 min burst, Storm 1 15 min burst, Storm 5 5 min burst, Storm 1
CAT T1-E-NTH CAT T1-F-STH CAT P4_10 CAT GD3 PIPE DETAILS Name P4_13 - P5_13 P5_13 - P6_13 P5_13 - P6_13 P6_13 - P7_13 P7_13 - HW1 P1_11 - P2_11 P2-11_P3-11 TRENCH-11_1 P3_1 - P4_1 P4_1 - P5_1 P5_1 - P6_1 P6_1 - P7_1 P7_1 - GPT_BRB3 GPT_BRB3 - BRB3 GPT_BRB3 - BRB3 P2_1 - P1_1 + GD4 P1_1 - P2_6 P2_6 - ExP5 ExP5 - ExP4 Pipe1059 Pipe17	0.012 0.012 0.009 0.002 Max Q (cu.m/s) 0.000 0.015 0.018 0.006 0.011 0.029 0.010 0.015 0.014 0.049 0.051 0.053 0.012 0.014 0.042 0.040 0.045 0.003	0.012 0.012 0.000 0.002 Max V (m/s) 0.00 0.00 0.00 0.00 0.66 0.75 0.30 0.59 1.56 1.18 0.34 0.75 0.68 1.11 1.16 0.63 0.74 1.64 0.72 1.06 0.14	0.000 0.009 0.000 Max U/S HGL (m) 6.250 6.091 6.082 5.988 6.623 6.623 6.623 6.623 6.623 6.623 6.623 6.623 6.621 6.263 6.004 5.994 6.043 5.935 5.804 5.293 5.196 6.211	5.00 5.00 5.00 5.00 Max D/S HGL (m) 6.091 6.091 6.091 5.993 5.930 6.623 6.623 6.623 6.623 6.623 6.620 6.219 6.192 6.041 6.015 6.003 5.993 5.989 5.873 5.731 5.196 5.712 6.211	0.00 0.00 5.00 5.00 Due to Sta 10% AEP 10% AEP	0.00 0.00 2.00 2.00 0 0 0 0 0 0 0 0 0 0	10% AEP, 10%	5 min burst, Storm 1 5 min burst, Storm 1 15 min burst, Storm 5 5 min burst, Storm 1
CAT T1-E-NTH CAT T1-F-STH CAT P4_10 CAT GD3 PIPE DETAILS Name $P4_{13} - P5_{13}$ $P5_{13} - P6_{13}$ $P6_{13} - P7_{13}$ $P7_{13} - HW1$ $P1_{11} - P2_{11}$ $P2-11_{P3-11}$ TRENCH-11_1 $P3_{1} - P4_{1}$ $P4_{1} - P5_{1}$ $P5_{1} - P6_{1}$ $P6_{1} - P7_{1}$ $P7_{1} - GPT_{BRB3}$ $GPT_{BRB3} - BRB3$ $P2_{1} - P1_{1} + GD4$ $P1_{1} - P2_{6}$ $P2_{6} - ExP5$ ExP5 - ExP4 Pipe1059	0.012 0.012 0.009 0.002 Max Q (cu.m/s) 0.000 0.015 0.018 0.006 0.011 0.029 0.010 0.015 0.034 0.049 0.051 0.053 0.012 0.014 0.042 0.040 0.045	0.012 0.012 0.000 0.002 Max V (m/s) 0.00 0.00 0.00 0.66 0.75 0.30 0.59 1.56 1.18 0.34 0.75 0.68 1.11 1.16 0.63 0.74 1.64 0.72 1.06	0.000 0.009 0.000 Max U/S HGL (m) 6.250 6.091 6.082 5.988 6.623 6.623 6.623 6.623 6.623 6.623 6.623 6.623 6.623 6.623 6.623 6.623 6.623 6.623 6.624 6.067 6.024 6.043 5.935 5.804 5.293 5.196	5.00 5.00 5.00 5.00 Max D/S HGL (m) 6.091 6.091 6.091 5.993 5.930 6.623 6.623 6.623 6.620 6.219 6.192 6.041 6.015 6.003 5.989 5.873 5.989 5.873 5.731 5.196 5.112	0.00 0.00 5.00 5.00 Due to Sta 10% AEP 10% AEP	0.00 0.00 2.00 2.00 0 0 0 5 min burs 5 min burs 10 min bur 15 min bur 10 min bur 10 min bur 10 min bur 10 min bur 5 min burs 5 min burs 5 min burs 5 min burs 5 min burs 5 min burs 5 min burs	10% AEP, 10%	5 min burst, Storm 1 5 min burst, Storm 1 15 min burst, Storm 5 5 min burst, Storm 1
CAT T1-E-NTH CAT T1-F-STH CAT P4_10 CAT GD3 PIPE DETAILS Name P4_13 - P5_13 P5_13 - P6_13 P5_13 - P6_13 P6_13 - P7_13 P7_13 - HW1 P1_11 - P2_11 P2-11_P3-11 TRENCH-11_1 P3_1 - P4_1 P4_1 - P5_1 P5_1 - P6_1 P6_1 - P7_1 P7_1 - GPT_BRB3 GPT_BRB3 - BRB3 GPT_BRB3 - BRB3 P2_1 - P1_1 + GD4 P1_1 - P2_6 P2_6 - ExP5 ExP5 - ExP4 Pipe1059 Pipe17	0.012 0.012 0.009 0.002 Max Q (cu.m/s) 0.000 0.015 0.018 0.006 0.011 0.029 0.010 0.015 0.034 0.049 0.051 0.053 0.012 0.014 0.042 0.040 0.045 0.003 0.005	0.012 0.012 0.000 0.002 Max V (m/s) 0.00 0.00 0.66 0.75 0.30 0.59 1.56 1.18 0.34 0.75 0.68 1.11 1.16 0.63 0.74 1.64 0.72 1.06 0.14 0.28	0.000 0.009 0.009 0.000 Max U/S HGL (m) 6.250 6.091 6.082 5.988 6.623 6.623 6.623 6.623 6.623 6.623 6.623 6.623 6.623 6.624 6.067 6.024 6.004 5.994 6.043 5.994 6.043 5.935 5.804 5.293 5.196 6.211 6.211	5.00 5.00 5.00 5.00 5.00 Max D/S HGL (m) 6.091 6.091 5.993 5.930 6.623 6.623 6.620 6.219 6.041 6.015 6.003 5.993 5.873 5.731 5.196 5.112 6.211 6.212	0.00 0.00 5.00 5.00 Due to Sta 10% AEP 10% AEP	0.00 0.00 2.00 2.00 0 0 0 0 0 0 0 0 0 0	10% AEP, 10%	5 min burst, Storm 1 5 min burst, Storm 1 15 min burst, Storm 5 5 min burst, Storm 1
CAT T1-E-NTH CAT T1-F-STH CAT P4_10 CAT GD3 PIPE DETAILS Name P4_13 - P5_13 P5_13 - P6_13 P6_13 - P7_13 P7_13 - HW1 P1_11 - P2_11 P2-11_P3-11 TRENCH-11_1 P3_1 - P4_1 P4_1 - P5_1 P5_1 - P6_1 P6_1 - P7_1 P5_1 - P6_1 P6_1 - P7_1 P7_1 - GPT_BRB3 GPT_BRB3 - BRB3 GPT_BRB3 - BRB3 P2_1 - P1_1 + GD4 P1_1 - P2_6 P2_6 - ExP5 ExP5 - ExP4 Pipe1059 Pipe17 P3_2 - HW2 GD2 - SAND FILTER	0.012 0.012 0.009 0.002 Max Q (cu.m/s) 0.000 0.005 0.015 0.018 0.006 0.011 0.029 0.010 0.015 0.034 0.049 0.051 0.053 0.012 0.014 0.042 0.042 0.045 0.003 0.005 0.009	0.012 0.012 0.000 0.002 Max V (m/s) 0.00 0.00 0.66 0.75 0.30 0.59 1.56 1.18 0.34 0.75 0.68 1.11 1.16 0.63 0.74 1.64 0.72 1.06 0.14 0.28 1.14	0.000 0.009 0.009 0.000 Max U/S HGL (m) 6.250 6.091 6.082 5.988 6.623 6.623 6.623 6.623 6.623 6.621 6.263 6.197 6.067 6.024 6.004 5.994 6.043 5.935 5.804 5.293 5.196 6.211 6.211 6.211 6.014	5.00 5.00 5.00 5.00 5.00 Max D/S HGL (m) 6.091 6.091 5.993 5.930 6.623 6.623 6.620 6.219 6.623 6.620 6.219 6.041 6.015 6.003 5.989 5.873 5.731 5.196 5.112 6.211 6.212 5.925	0.00 0.00 5.00 5.00 5.00 Due to Sta 10% AEP 10% AEP	0.00 0.00 2.00 2.00 5 min burs 5 min burs 10 min bur 15 min bur 15 min bur 15 min bur 10 min bur 10 min bur 5 min burs 5 min burs	10% AEP, 10%	5 min burst, Storm 1 5 min burst, Storm 1 15 min burst, Storm 5 5 min burst, Storm 1
CAT T1-E-NTH CAT T1-F-STH CAT P4_10 CAT GD3 PIPE DETAILS Name P4_13 - P5_13 P5_13 - P6_13 P6_13 - P7_13 P7_13 - HW1 P1_11 - P2_11 P2-11_P3-11 TRENCH-11_1 P3_1 - P4_1 P4_1 - P5_1 P5_1 - P6_1 P6_1 - P7_1 P5_1 - GPT_BRB3 GPT_BRB3 - BRB3 GPT_BRB3 - BRB3 P2_1 - P1_1 + GD4 P1_1 - P2_6 P2_6 - ExP5 ExP5 - ExP4 Pipe1059 Pipe17 P3_2 - HW2 GD2 - SAND FILTER SAND_FILTER_INLET2	0.012 0.012 0.009 0.002 Max Q (cu.m/s) 0.000 0.015 0.018 0.006 0.011 0.029 0.010 0.015 0.034 0.049 0.051 0.053 0.012 0.014 0.042 0.040 0.045 0.003 0.005 0.009 0.009	0.012 0.012 0.000 0.002 Max V (m/s) 0.00 0.66 0.75 0.30 0.59 1.56 1.18 0.34 0.75 0.68 1.11 1.16 0.63 0.74 1.64 0.72 1.06 0.14 0.28 1.14 1.22	0.000 0.009 0.009 0.000 Max U/S HGL (m) 6.250 6.091 6.082 5.988 6.623 6.623 6.621 6.263 6.197 6.067 6.024 6.004 5.994 6.043 5.935 5.804 5.293 5.196 6.211 6.211 6.211 6.014 5.714	5.00 5.00 5.00 5.00 5.00 Max D/S HGL (m) 6.091 6.091 5.993 5.930 6.623 6.623 6.623 6.623 6.620 6.219 6.041 6.015 6.003 5.993 5.989 5.873 5.731 5.196 5.112 6.211 6.212 5.925 5.681	0.00 0.00 5.00 5.00 Due to Sta 10% AEP 10% AEP	0.00 0.00 2.00 2.00 5 min burs 5 min burs 10 min bur 15 min bur 15 min bur 10 min bur 10 min bur 10 min burs 5 min burs	10% AEP, 10%	5 min burst, Storm 1 5 min burst, Storm 1 15 min burst, Storm 5 5 min burst, Storm 1
CAT T1-E-NTH CAT T1-F-STH CAT P4_10 CAT GD3 PIPE DETAILS Name P4_13 - P5_13 P5_13 - P6_13 P5_13 - P6_13 P6_13 - P7_13 P7_13 - HW1 P1_11 - P2_11 P2-11_P3-11 TRENCH-11_1 P3_1 - P4_1 P4_1 - P5_1 P5_1 - P6_1 P5_1 - P6_1 P6_1 - P7_1 P7_1 - GPT_BRB3 GPT_BRB3 - BRB3 P2_1 - P1_1 + GD4 P1_1 - P2_6 P2_6 - ExP5 ExP5 - ExP4 Pipe1059 Pipe17 P3_2 - HW2 GD2 - SAND FILTER SAND_FILTER_INLET2 SAND FILTER_P4_17	0.012 0.012 0.009 0.002 Max Q (cu.m/s) 0.000 0.015 0.018 0.006 0.011 0.029 0.010 0.015 0.034 0.049 0.051 0.034 0.049 0.051 0.053 0.012 0.014 0.042 0.040 0.045 0.003 0.005 0.009 0.009 0.009 0.013	0.012 0.012 0.000 0.002 Max V (m/s) 0.00 0.66 0.75 0.30 0.59 1.56 1.18 0.34 0.75 0.68 1.11 1.16 0.63 0.74 1.64 0.72 1.06 0.14 0.28 1.14 1.22 1.08	0.000 0.009 0.009 0.000 Max U/S HGL (m) 6.250 6.091 6.082 5.988 6.623 6.623 6.621 6.263 6.621 6.263 6.197 6.067 6.024 6.004 5.994 6.043 5.935 5.804 5.293 5.196 6.211 6.213 6.211 6.211 6.213 6.211 6.213 6.211 6.213 6.211 6.213 6.214 6.223 6.214 6.214 6.214 6.214 6.214 6.214 6.214 6.214 6.214 6.214 6.214 6.214 6.211	5.00 5.00 5.00 5.00 5.00 Max D/S HGL (m) 6.091 6.091 5.993 5.930 6.623 6.623 6.623 6.623 6.623 6.620 6.219 6.041 6.015 6.003 5.993 5.989 5.873 5.731 5.196 5.112 6.211 6.212 5.925 5.681 5.298	0.00 0.00 5.00 5.00 Due to Sta 10% AEP 10% AEP	0.00 0.00 2.00 2.00 5 min burs 5 min burs 10 min bur 15 min bur 15 min bur 10 min bur 10 min bur 10 min bur 5 min burs 5 min burs	10% AEP, 10%	5 min burst, Storm 1 5 min burst, Storm 1 15 min burst, Storm 5 5 min burst, Storm 1
CAT T1-E-NTH CAT T1-F-STH CAT P4_10 CAT GD3 PIPE DETAILS Name P4_13 - P5_13 P5_13 - P6_13 P6_13 - P7_13 P7_13 - HW1 P1_11 - P2_11 P2-11_P3-11 TRENCH-11_1 P3_1 - P4_1 P4_1 - P5_1 P5_1 - P6_1 P6_1 - P7_1 P5_1 - GPT_BRB3 GPT_BRB3 - BRB3 P2_1 - P1_1 + GD4 P1_1 - P2_6 P2_6 - ExP5 ExP5 - ExP4 Pipe1059 Pipe17 P3_2 - HW2 GD2 - SAND FILTER SAND_FILTER_INLET2	0.012 0.012 0.009 0.002 Max Q (cu.m/s) 0.000 0.015 0.018 0.006 0.011 0.029 0.010 0.015 0.034 0.049 0.051 0.053 0.012 0.014 0.042 0.040 0.045 0.003 0.005 0.009 0.009	0.012 0.012 0.000 0.002 Max V (m/s) 0.00 0.66 0.75 0.30 0.59 1.56 1.18 0.34 0.75 0.68 1.11 1.16 0.63 0.74 1.64 0.72 1.06 0.14 0.28 1.14 1.22	0.000 0.009 0.009 0.000 Max U/S HGL (m) 6.250 6.091 6.082 5.988 6.623 6.623 6.621 6.263 6.197 6.067 6.024 6.004 5.994 6.043 5.935 5.804 5.293 5.196 6.211 6.211 6.211 6.014 5.714	5.00 5.00 5.00 5.00 5.00 Max D/S HGL (m) 6.091 6.091 5.993 5.930 6.623 6.623 6.623 6.623 6.623 6.620 6.219 6.041 6.015 6.003 5.993 5.989 5.873 5.731 5.196 5.112 6.211 6.212 5.925 5.681	0.00 0.00 5.00 5.00 5.00 Due to Sta 10% AEP 10% AEP	0.00 0.00 2.00 2.00 5 min burs 5 min burs 10 min bur 15 min bur 15 min bur 10 min bur 10 min bur 10 min bur 5 min burs 5 min burs 15 min burs 5 min burs 5 min burs	10% AEP, 10%	5 min burst, Storm 1 5 min burst, Storm 1 15 min burst, Storm 5 5 min burst, Storm 1
CAT T1-E-NTH CAT T1-F-STH CAT P4_10 CAT GD3 PIPE DETAILS Name P4_13 - P5_13 P5_13 - P6_13 P5_13 - P6_13 P6_13 - P7_13 P7_13 - HW1 P1_11 - P2_11 P2-11_P3-11 TRENCH-11_1 P3_1 - P4_1 P4_1 - P5_1 P5_1 - P6_1 P5_1 - P6_1 P6_1 - P7_1 P7_1 - GPT_BRB3 GPT_BRB3 - BRB3 P2_1 - P1_1 + GD4 P1_1 - P2_6 P2_6 - ExP5 ExP5 - ExP4 Pipe1059 Pipe17 P3_2 - HW2 GD2 - SAND FILTER SAND_FILTER_INLET2 SAND FILTER_P4_17	0.012 0.012 0.009 0.002 Max Q (cu.m/s) 0.000 0.015 0.018 0.006 0.011 0.029 0.010 0.015 0.034 0.049 0.051 0.034 0.049 0.051 0.053 0.012 0.014 0.042 0.040 0.045 0.003 0.005 0.009 0.009 0.009 0.013	0.012 0.012 0.000 0.002 Max V (m/s) 0.00 0.66 0.75 0.30 0.59 1.56 1.18 0.34 0.75 0.68 1.11 1.16 0.63 0.74 1.64 0.72 1.06 0.14 0.28 1.14 1.22 1.08	0.000 0.009 0.009 0.000 Max U/S HGL (m) 6.250 6.091 6.082 5.988 6.623 6.623 6.621 6.263 6.621 6.263 6.197 6.067 6.024 6.004 5.994 6.043 5.935 5.804 5.293 5.196 6.211 6.213 6.211 6.211 6.213 6.211 6.213 6.211 6.213 6.211 6.213 6.214 6.223 6.214 6.214 6.214 6.214 6.214 6.214 6.214 6.214 6.214 6.214 6.214 6.214 6.211	5.00 5.00 5.00 5.00 5.00 Max D/S HGL (m) 6.091 6.091 5.993 5.930 6.623 6.623 6.623 6.623 6.623 6.620 6.219 6.041 6.015 6.003 5.993 5.989 5.873 5.731 5.196 5.112 6.211 6.212 5.925 5.681 5.298	0.00 0.00 5.00 5.00 5.00 Due to Sta 10% AEP 10% AEP	0.00 0.00 2.00 2.00 5 min burs 5 min burs 10 min bur 15 min bur 15 min bur 10 min bur 10 min bur 10 min bur 5 min burs 5 min burs	10% AEP, 10%	5 min burst, Storm 1 5 min burst, Storm 1 15 min burst, Storm 5 5 min burst, Storm 1
CAT T1-E-NTH CAT T1-F-STH CAT P4_10 CAT GD3 PIPE DETAILS Name P4_13 - P5_13 P5_13 - P6_13 P6_13 - P7_13 P7_13 - HW1 P1_11 - P2_11 P2-11_P3-11 TRENCH-11_1 P3_1 - P4_1 P4_1 - P5_1 P5_1 - P6_1 P6_1 - P7_1 P7_1 - GPT_BRB3 GPT_BRB3 - BRB3 P2_1 - P1_1 + GD4 P1_1 - P2_6 P2_6 - ExP5 ExP5 - ExP4 Pipe1059 Pipe17 P3_2 - HW2 GD2 - SAND FILTER SAND_FILTER_INLET2 SAND_FILTER_INLET2 SAND_FILTER_P4_17 P4_17 - P5_27 P5_17 - ExP6	0.012 0.012 0.009 0.002 Max Q (cu.m/s) 0.000 0.015 0.018 0.006 0.011 0.029 0.010 0.015 0.034 0.049 0.051 0.053 0.012 0.014 0.042 0.040 0.045 0.003 0.005 0.009 0.009 0.009 0.013 0.013 0.013	0.012 0.012 0.000 0.002 Max V (m/s) 0.00 0.00 0.66 0.75 0.30 0.59 1.56 1.18 0.34 0.75 0.68 1.11 1.16 0.63 0.74 1.64 0.72 1.06 0.14 0.72 1.06 0.14 0.28 1.14 1.22 1.08 1.25 0.80	0.000 0.009 0.009 0.000 Max U/S HGL (m) 6.250 6.091 6.082 5.988 6.623 6.623 6.623 6.623 6.623 6.623 6.623 6.623 6.623 6.624 6.004 5.994 6.043 5.935 5.804 5.293 5.196 6.211 6.211 6.014 5.714 5.336 5.298 5.222	5.00 5.00 5.00 5.00 5.00 Max D/S HGL (m) 6.091 6.091 6.091 5.993 5.930 6.623 6.623 6.620 6.219 6.192 6.041 6.015 6.003 5.993 5.989 5.873 5.731 5.196 5.112 6.211 6.212 5.925 5.681 5.298 5.245 5.245 5.147	0.00 0.00 5.00 5.00 5.00 Due to Sta 10% AEP 10% AEP	0.00 0.00 2.00 2.00 5 min burs 5 min burs 10 min bur 15 min bur 15 min bur 10 min bur 10 min bur 10 min bur 10 min burs 5 min burs 15 min burs 15 min burs 15 min burs 15 min burs	10% AEP, 10%	5 min burst, Storm 1 5 min burst, Storm 1 15 min burst, Storm 5 5 min burst, Storm 1
CAT T1-E-NTH CAT T1-F-STH CAT P4_10 CAT GD3 PIPE DETAILS Name P4_13 - P5_13 P5_13 - P6_13 P6_13 - P7_13 P7_13 - HW1 P1_11 - P2_11 P2-11_P3-11 TRENCH-11_1 P3_1 - P4_1 P4_1 - P5_1 P5_1 - P6_1 P6_1 - P7_1 P7_1 - GPT_BRB3 GPT_BRB3 - BRB3 P2_1 - P1_1 + GD4 P1_1 - P2_6 P2_6 - ExP5 ExP5 - ExP4 Pipe1059 Pipe17 P3_2 - HW2 GD2 - SAND FILTER SAND_FILTER_INLET2 SAND_FILTER_INLET2 SAND_FILTER_P4_17 P4_17 - P5_27 P5_17 - ExP6 ExP6 - Chatham North	0.012 0.012 0.009 0.002 Max Q (cu.m/s) 0.000 0.015 0.018 0.006 0.011 0.029 0.010 0.015 0.034 0.049 0.051 0.053 0.012 0.014 0.042 0.040 0.045 0.003 0.005 0.003 0.005 0.009 0.009 0.013 0.013 0.013 0.013	0.012 0.012 0.000 0.002 Max V (m/s) 0.00 0.66 0.75 0.30 0.59 1.56 1.18 0.34 0.75 0.68 1.11 1.16 0.63 0.74 1.64 0.72 1.06 0.14 0.28 1.14 1.22 1.08 1.25 0.80 0.93	0.000 0.009 0.009 0.000 Max U/S HGL (m) 6.250 6.091 6.082 5.988 6.623 6.623 6.623 6.623 6.623 6.623 6.623 6.623 6.623 6.624 6.004 5.994 6.043 5.935 5.804 5.293 5.196 6.211 6.223 5.804 5.293 5.804 5.293 5.222 5.117	5.00 5.00 5.00 5.00 5.00 Max D/S HGL (m) 6.091 6.091 6.091 5.993 5.930 6.623 6.623 6.620 6.219 6.192 6.041 6.015 6.003 5.993 5.989 5.873 5.731 5.196 5.112 6.211 6.211 6.212 5.925 5.681 5.298 5.245 5.245 5.147 5.019	0.00 0.00 5.00 5.00 5.00 Due to Sta 10% AEP 10% AEP	0.00 0.00 2.00 2.00 5 min burs 5 min burs 10 min bur 15 min bur 15 min bur 10 min bur 10 min bur 10 min bur 10 min bur 5 min burs 5 min burs 15 min bur 15 min bur 15 min bur	10% AEP, 10%	5 min burst, Storm 1 5 min burst, Storm 1 15 min burst, Storm 5 5 min burst, Storm 1
CAT T1-E-NTH CAT T1-F-STH CAT P4_10 CAT GD3 PIPE DETAILS Name P4_13 - P5_13 P5_13 - P6_13 P6_13 - P7_13 P7_13 - HW1 P1_11 - P2_11 P2-11_P3-11 TRENCH-11_1 P3_1 - P4_1 P4_1 - P5_1 P5_1 - P6_1 P6_1 - P7_1 P7_1 - GPT_BRB3 GPT_BRB3 - BRB3 P2_1 - P1_1 + GD4 P1_1 - P2_6 P2_6 - ExP5 ExP5 - ExP4 Pipe1059 Pipe17 P3_2 - HW2 GD2 - SAND FILTER SAND_FILTER_INLET2 SAND_FILTER_INLET2 SAND_FILTER_P4_17 P4_17 - P5_27 P5_17 - ExP6 ExP6 - Chatham North P1_17 - P2_17	0.012 0.012 0.009 0.002 Max Q (cu.m/s) 0.000 0.015 0.018 0.000 0.015 0.018 0.006 0.011 0.029 0.010 0.015 0.034 0.049 0.051 0.053 0.012 0.014 0.049 0.051 0.053 0.012 0.014 0.045 0.003 0.005 0.009 0.009 0.013 0.013 0.013 0.013 0.011	0.012 0.012 0.000 0.002 Max V (m/s) 0.00 0.66 0.75 0.30 0.59 1.56 1.18 0.34 0.75 0.68 1.11 1.16 0.63 0.74 1.64 0.72 1.06 0.14 0.28 1.14 1.22 1.08 1.125 0.80 0.93 0.25	0.000 0.009 0.009 0.000 Max U/S HGL (m) 6.250 6.091 6.082 5.988 6.623 6.623 6.623 6.623 6.623 6.623 6.623 6.623 6.623 6.623 6.623 6.624 6.004 5.994 6.043 5.935 5.804 5.293 5.196 6.211 6.223 5.804 5.293 5.804 5.293 5.804 5.293 5.196 6.211 6.211 6.211 6.211 6.211 6.211 6.211 6.211 6.211 6.211 6.211 6.211 6.211 6.211 6.211 6.211 6.223 5.804 5.293 5.804 5.293 5.804 5.293 5.196 6.211 6.211 6.211 6.211 6.211 6.223 5.804 5.293 5.804 5.293 5.804 5.293 5.804 5.293 5.804 5.293 5.804 5.293 5.804 5.293 5.804 5.293 5.804 5.293 5.804 5.293 5.804 5.293 5.804 5.293 5.293 5.222 5.214 6.211 6.211 6.211 6.211 6.211 6.211 6.211 6.211 6.211 6.211 6.211 6.211 6.211 6.211 6.211 6.211 6.211 6.224 6.211 6.211 6.211 6.211 6.224 6.211 6.211 6.211 6.211 6.224 5.298 5.298 5.298 5.298 5.298 5.298 5.298 5.298 5.298 5.298 5.222 5.2147 6.612	5.00 5.00 5.00 5.00 5.00 Max D/S HGL (m) 6.091 6.091 5.993 5.930 6.623 6.623 6.620 6.219 6.192 6.041 6.015 6.003 5.993 5.989 5.873 5.731 5.196 5.112 6.211 6.212 5.925 5.681 5.298 5.245 5.245 5.147 5.019 6.770	0.00 0.00 5.00 5.00 5.00 Due to Sta 10% AEP 10% AEP	0.00 0.00 2.00 2.00 5 min burs 5 min burs 10 min bur 15 min bur 15 min bur 10 min bur 10 min bur 10 min bur 10 min bur 5 min burs 5 min burs	10% AEP, 10%	5 min burst, Storm 1 5 min burst, Storm 1 15 min burst, Storm 5 5 min burst, Storm 1
CAT T1-E-NTH CAT T1-F-STH CAT P4_10 CAT GD3 PIPE DETAILS Name P4_13 - P5_13 P5_13 - P6_13 P6_13 - P7_13 P7_13 - HW1 P1_11 - P2_11 P2-11_P3-11 TRENCH-11_1 P3_1 - P4_1 P4_1 - P5_1 P5_1 - P6_1 P6_1 - P7_1 P7_1 - GPT_BRB3 GPT_BRB3 - BRB3 P2_1 - P1_1 + GD4 P1_1 - P2_6 P2_6 - ExP5 ExP5 - ExP4 Pipe1059 Pipe17 P3_2 - HW2 GD2 - SAND FILTER SAND_FILTER_INLET2 SAND_FILTER_INLET2 SAND_FILTER_P4_17 P4_17 - P5_27 P5_17 - ExP6 ExP6 - Chatham North	0.012 0.012 0.009 0.002 Max Q (cu.m/s) 0.000 0.015 0.018 0.006 0.011 0.029 0.010 0.015 0.034 0.049 0.051 0.053 0.012 0.014 0.042 0.040 0.045 0.003 0.005 0.003 0.005 0.009 0.009 0.013 0.013 0.013 0.013	0.012 0.012 0.000 0.002 Max V (m/s) 0.00 0.66 0.75 0.30 0.59 1.56 1.18 0.34 0.75 0.68 1.11 1.16 0.63 0.74 1.64 0.72 1.06 0.14 0.28 1.14 1.22 1.08 1.25 0.80 0.93	0.000 0.009 0.009 0.000 Max U/S HGL (m) 6.250 6.091 6.082 5.988 6.623 6.623 6.623 6.623 6.623 6.623 6.623 6.623 6.623 6.624 6.004 5.994 6.043 5.935 5.804 5.293 5.196 6.211 6.223 5.804 5.293 5.804 5.293 5.222 5.117	5.00 5.00 5.00 5.00 5.00 Max D/S HGL (m) 6.091 6.091 6.091 5.993 5.930 6.623 6.623 6.620 6.219 6.192 6.041 6.015 6.003 5.993 5.989 5.873 5.731 5.196 5.112 6.211 6.211 5.925 5.681 5.298 5.245 5.245 5.245 5.147 5.019	0.00 0.00 5.00 5.00 5.00 Due to Sta 10% AEP 10% AEP	0.00 0.00 2.00 2.00 5 min burs 5 min burs 10 min bur 15 min bur 15 min bur 10 min bur 10 min bur 10 min bur 10 min bur 5 min burs 5 min burs 15 min bur 15 min bur 15 min bur	10% AEP, 10%	5 min burst, Storm 1 5 min burst, Storm 1 15 min burst, Storm 5 5 min burst, Storm 1

Pipe69	0.019	2.41	5.957	5.359	10% AEP, 15 min burst, Storm 5
Pipe at Track Crossing	0.066	1.47	4.947	4.881	10% AEP, 15 min burst, Storm 5
T1-B-N P3-11	0.012	0.63	6.623	6.623	10% AEP, 5 min burst, Storm 1
-					, , ,
T1-A-S_P4-9	0.012	0.63	6.621	6.621	10% AEP, 5 min burst, Storm 1
TRENCH-11_2	0.019	1.01	6.620	6.620	10% AEP, 15 min burst, Storm 5
P1-9_P2-9	0.006	0.31	6.623	6.623	10% AEP, 10 min burst, Storm 5
P2-9_P3-9	0.011	0.59	6.623	6.623	10% AEP, 10 min burst, Storm 10
P196	0.029	1.56	6.621	6.620	10% AEP, 15 min burst, Storm 9
T1-C-N_P3-9	0.012	0.63	6.623	6.623	10% AEP, 5 min burst, Storm 1
TANK-T1-B-S P4-9	0.012	0.63	6.621	6.621	10% AEP, 5 min burst, Storm 1
P198	0.012	1.01	6.620	6.620	10% AEP, 15 min burst, Storm 5
					, ,
P1_13 - P2_13	0.004	0.41	6.353	6.290	10% AEP, 15 min burst, Storm 5
P2_13 - P3_13	0.008	0.79	6.250	6.179	10% AEP, 15 min burst, Storm 5
P3_13 - P6_13	0.010	0.89	6.153	6.091	10% AEP, 15 min burst, Storm 5
P2_3 BASIN OUTLET	0.006	0.98	6.316	6.261	10% AEP, 15 min burst, Storm 9
P3 3-P5 3	0.006	0.53	6.254	6.079	10% AEP, 15 min burst, Storm 9
P5_3 - P6_3	0.017	1.04	6.079	5.991	10% AEP, 15 min burst, Storm 9
P6_3 - P8_3	0.017	1.03	5.991	5.894	10% AEP, 15 min burst, Storm 9
P8_3 - P10_3	0.028	0.82	5.894	5.846	10% AEP, 15 min burst, Storm 9
P10_3 - P11_3	0.057	1.24	5.794	5.686	10% AEP, 15 min burst, Storm 3
P11_3 - P5_15	0.078	1.50	5.654	5.542	10% AEP, 15 min burst, Storm 9
P5_15 - ExP1	0.098	2.60	5.478	5.284	10% AEP, 15 min burst, Storm 3
ExP1 - DARLING_ST_RN	0.091	1.35	5.100	5.008	10% AEP, 20 min burst, Storm 3
P1_15 BASIN OUTLET	0.005	0.55	6.329	6.305	10% AEP, 15 min burst, Storm 9
P1 15 - P2 15	0.005	0.25	6.300	6.291	10% AEP, 15 min burst, Storm 9
P2 15 - P3 15	0.013	0.68	6.245	6.169	10% AEP, 15 min burst, Storm 10
P3 15 - P4 15	0.020	1.09	6.089	5.825	10% AEP, 15 min burst, Storm 9
P4 15 - P5 15	0.023	1.22	5.639	5.542	10% AEP, 20 min burst, Storm 3
					10% AEP, 15 min burst, Storm 9
P2_15 BASIN OUTLET	0.008	0.93	6.318	6.291	
P4_3 BASIN OUTLET	0.011	1.30	6.165	6.079	10% AEP, 15 min burst, Storm 9
P3_15 BASIN OUTLET	0.008	0.88	6.212	6.169	10% AEP, 15 min burst, Storm 9
P7_3 BASIN OUTLET	0.010	1.20	6.004	5.894	10% AEP, 15 min burst, Storm 9
P9_3 BASIN OUTLET	0.011	1.28	5.962	5.846	10% AEP, 15 min burst, Storm 5
P4_15 BASIN OUTLET	0.007	0.75	5.912	5.825	10% AEP, 1 hour burst, Storm 2
block d roof - brb1	0.038	2.28	6.678	6.214	10% AEP, 5 min burst, Storm 1
BRB1 - BRB2	0.011	1.28	6.214	6.227	10% AEP, 3 hour burst, Storm 3
P2 4-P3 4	0.017	1.94	5.465	5.178	10% AEP, 3 hour burst, Storm 5
P3 4 - P4 4	0.017	0.61	5.178	5.172	10% AEP, 3 hour burst, Storm 10
P4_4 - ExP2	0.017	0.56	5.172	5.149	10% AEP, 3 hour burst, Storm 8
_					
ExP2 - ExP1	0.040	0.66	5.148	5.127	10% AEP, 3 hour burst, Storm 6
P11_3 BASIN OUTLET	0.005	0.63	5.791	5.686	10% AEP, 15 min burst, Storm 3
P3_19 BASIN OUTLET	0.005	0.63	5.928	5.843	10% AEP, 15 min burst, Storm 9
P3_19 - P11_3	0.017	0.89	5.790	5.686	10% AEP, 15 min burst, Storm 9
P2_19 BASIN OUTLET	0.005	0.63	5.994	5.918	10% AEP, 15 min burst, Storm 9
P2_19 - P3_19	0.011	0.60	5.885	5.843	10% AEP, 15 min burst, Storm 9
P1 19 BASIN OUTLET	0.006	0.67	6.007	5.934	10% AEP, 15 min burst, Storm 9
P1 ⁻ 19 - P2 19	0.006	0.31	5.930	5.918	10% AEP, 15 min burst, Storm 9
ExP3 - ExP2	0.023	0.40	5.152	5.149	10% AEP, 3 hour burst, Storm 4
P2_18 BASIN OUTLET	0.007	0.85	6.134	6.045	10% AEP, 15 min burst, Storm 3
_					
P2_18 - P10_3	0.018	0.98	5.970	5.846	10% AEP, 15 min burst, Storm 9
P1_18 BASIN OUTLET	0.011	1.25	6.196	6.116	10% AEP, 15 min burst, Storm 9
P1_19 - P2_18	0.011	0.58	6.084	6.045	10% AEP, 15 min burst, Storm 9
GD1 - P3_4	0.000	0.00	5.178	5.178	10% AEP, 15 min burst, Storm 2
CONCOURSE - BRB1	0.102	3.63	6.692	6.214	10% AEP, 5 min burst, Storm 1
P1_7 - P2_7	0.006	0.31	6.623	6.623	10% AEP, 10 min burst, Storm 5
P2 7 - P3 7	0.011	0.59	6.623	6.623	10% AEP, 10 min burst, Storm 10
P3 7 - TRENCH7	0.029	1.56	6.621	6.620	10% AEP, 15 min burst, Storm 9
-			6.623	6.623	10% AEP, 5 min burst, Storm 1
T1-D-NTH OVERFLOW	0.012	0.63			
T1-C-STH - P4_7	0.012	0.63	6.621	6.621	10% AEP, 5 min burst, Storm 1
P4_7 = TRENCH7	0.019	1.01	6.620	6.620	10% AEP, 15 min burst, Storm 5
BRB3 - ExP4	0.014	1.61	5.503	5.196	10% AEP, 1 hour burst, Storm 3
T1 - P1_6	0.014	1.02	6.009	6.005	10% AEP, 5 min burst, Storm 1
P1_6 - P2_6	0.015	1.02	5.978	5.873	10% AEP, 5 min burst, Storm 1
T1 - P2_6	0.015	1.24	5.993	5.981	10% AEP, 5 min burst, Storm 1
P1 8 - P2 8	0.005	0.26	6.561	6.548	10% AEP, 15 min burst, Storm 9
P2_8 - TRENCH8	0.009	0.50	6.535	6.525	10% AEP, 15 min burst, Storm 10
_	0.009				10% AEP, 15 min burst, Storm 4
		1.58	6.524 6.525	6.523 6.525	
T2-EQPSHD - P3_8	0.018	0.97	6.525	6.525	10% AEP, 5 min burst, Storm 1
T1-E-STH - P4_8	0.012	0.63	6.523	6.523	10% AEP, 5 min burst, Storm 1
P4_8 - TRENCH8	0.015	0.83	6.523	6.523	10% AEP, 15 min burst, Storm 4
P1_10 - P2_10	0.006	0.31	6.623	6.623	10% AEP, 10 min burst, Storm 5
P2_10 - P3_10	0.011	0.59	6.623	6.623	10% AEP, 10 min burst, Storm 10
P3_10 - TRENCH10	0.029	1.56	6.621	6.620	10% AEP, 15 min burst, Storm 9
P1008	0.012	0.63	6.623	6.623	10% AEP, 5 min burst, Storm 1
T1-F-STH - P4_10	0.012	0.63	6.621	6.621	10% AEP, 5 min burst, Storm 1

P4_10 - TRENCH10	0.019	1.01	6.620	6.620		15 min burs		
GD3 - P7_1	0.003	0.17	6.016	6.015 5.772		12 hour bur		
P2_17 - P3_17	0.005	0.82	5.847	5.773		15 min burs		
P3_17 - GPT GPT - SAND FILTER	0.005	0.58	5.773	5.739 5.708		15 min burs		
SAND_TANK_INLET1	0.005 0.005	0.78 1.08	5.739 5.708	5.669		15 min burs 15 min burs		
	0.000	1.00	0.700	0.000	10707121,	To min bars		
CHANNEL DETAILS								
Name	Max Q	Max V			Due to Sto	orm		
	(cu.m/s)	(m/s)						
	10							
OVERFLOW ROUTE DETAIL		Max Q D/S	Safe O	Max D	Max DxV	Max Width	Max V	Due to Storm
OF P4 13 - BYPASS2	0	0	1.248	0	0	0	0	
OF P5 13 - BYPASS1	0	0	1.467	0	0	0	0	
OF P6_13 - P7_13	0	0	1.535	0	0	0	0	
OF P7_13 - TRACK2	0	0	1.264	0	0	0	0	
V-DRAIN	0.019	0.053	0.535	0.200	0.04	0.86	0.22	10% AEP, 15 min burst, Storm 5
OF P1_11 - P3_11	0	0	1.404	0	0	0	0	
OF P2_11 - P3_11	0	0	1.542	0	0	0	0	
OF P3_11 - TRENCH11	0.005	0.005	1.256	0.220	0.00	3.98	0.01	10% AEP, 12 hour burst, Storm 9
OF TRENCH11 - BYPASS2	0 0.001	0 0.001	1.404 3.052	0 0.023	0 0.01	0 0.25	0 0.36	10% AEP, 15 min burst, Storm 3
OF P3_1 - P4_1 OF P4_1 - P5_1	0.001	0.001	3.392	0.025	0.01	0.25	0.50	10% ALF, 13 min burst, Storm 3
OF P5_1 - P6_1	0	0	3.298	0	0	0	0	
OF P6 1 - GD3	0	0	4.206	0	0	0	0	
OF HW1 - BRB3	0.103	0.103	1.404	0.492	0.03	3.98	0.07	10% AEP, 3 hour burst, Storm 9
OF386	0	0	0.077	0	0	0	0	
OF372	0	0	3.587	0	0	0	0	
OF374	0	0	1.020	0	0	0	0	
OF P2_2 - BRB2	0	0	1.567	0	0	0	0	
OF P3_2	0	0	1.567	0	0	0	0	
OF234 OF GD2 - ExP6	0.138 0	0.138 0	1.520 1.511	0.627 0	0.04 0	3.98 0	0.08 0	10% AEP, 9 hour burst, Storm 3
OF SandFilterNth - P5_17	0	0	3.814	0	0	0	0	
OF SandFilter - P5_17	0	0	2.723	0	0	0	0	
OF P4_17 - P5_17	0	0	2.707	0	0	0	0	
OF P5_17 - eXp6	0	0	2.536	0	0	0	0	
OF ExP6 - ChathamSt Node	0	0	7.935	0	0	0	0	
OF P1_17 - GD2	0.000	0.009	2.695	0.005	0.00	7.50		10% AEP, 5 min burst, Storm 1
OF P2_17 - GD2	0	0	1.711	0	0	0	0	
Orifice_P2_17	0.005	0.000	0.063	0.450	0.00	20.00		10% AEP, 15 min burst, Storm 10
OF P1_16 - P2_16 OF P2_16 - ExPt_Track	0 0	0 0	2.682 2.676	0 0	0 0	0 0	0 0	
OF_TO_TRACK1	0	0	7.970	0	0	0	0	
OF P4 11 - TRENCH11	0.005	0.005	1.256	0.220	0.00	3.98	0.01	10% AEP, 12 hour burst, Storm 9
OF P1_9 - P3_9	0	0	1.404	0	0	0	0	
OF P2_9 - P3_9	0	0	1.542	0	0	0	0	
OF P3_9 - TRENCH9	0.005	0.005	1.256	0.220	0.00	3.98	0.01	10% AEP, 12 hour burst, Storm 10
OF TRENCH9 - BYPASS3	0	0	1.404	0	0	0	0	
OF P4-9 - TRENCH9	0.005	0.005	1.256	0.220	0.00	3.98	0.01	10% AEP, 12 hour burst, Storm 10
OF P1_13 - P2_13 OF P2_13 - P3_13	0 0	0 0	1.531 1.531	0 0	0 0	0 0	0 0	
OF P3_13 - P6_13	0	0	1.540	0	0	0	0	
OF BYP2 - BYP1	0	0	0.544	0	0	0	0	
OF BYP1 - P7_13	0	0	0.866	0	0	0	0	
OF1 P2_3 - P1_15	0	0	3.807	0	0	0	0	
OF P1_15 - P2_15	0.000	0.004	3.052	0.039	0.02	0.43	0.53	10% AEP, 5 min burst, Storm 1
OF P2_15 - P3_15	0.000	0.004	3.258	0.040	0.02	0.44		10% AEP, 15 min burst, Storm 10
OF P4_3 - P2_15	0	0	7.982	0	0	0	0	10% AEP, 15 min burst, Storm 10
OF P3_15 - P4_15 BASIN OF P7_3 - P3_15	0.000 0	0.005 0	3.258 7.982	0.045 0	0.02 0	0.84 0	0.40 0	10% AEF, 15 min burst, Storm 10
OF P9_3 BASIN - P11_3 BAS		0	3.807	0	0	0	0	
OF P4_15 BASIN	0	0	3.815	0	0	0	0	
OF BRB1 - BRB2	0.440	0.440	1.404	0.239	0.12	3.98	0.52	10% AEP, 3 hour burst, Storm 6
OF BRB2 - N458	0.118	0.118	8.006	0.092	0.01	20.00	0.76	10% AEP, 3 hour burst, Storm 6
OF P11_3 BASIN	0	0	3.780	0	0	0	0	
OF P3_19 BASIN	0	0	3.814	0	0	0	0	
OF P2_19 BASIN	0	0	3.772	0	0	0	0	
OF P1_19 BASIN OF179	0 0	0 0	1.486 4.332	0 0	0 0	0 0	0 0	
OF181	0	0	4.332 4.270	0	0	0	0	
OF184	0	0	4.142	0	0	0	0	
OF178	0.061	0.061	4.427	0.088	0.04	5.17	0.43	10% AEP, 3 hour burst, Storm 5
OF172	0.076	0.076	4.279	0.094	0.05	5.74	0.53	10% AEP, 3 hour burst, Storm 10

DETENTION BASIN DETAILS

OF395	0	0	13.746	0	0	0	0	
OF P2_18 BASIN - P3_19 I		0	3.807	0	0	0	0	
OF P1_18 BASIN - P2_19 I		0	3.807	0	0	0	0	
OF219	0.090	0.090	4.270	0.099	0.05	6.31	0.52	10% AEP, 3 hour burst, Storm 10
OF230	0	0	1.447	0	0	0	0	
OF N480 - BRB2	0.249	0.249	1.520	0.627	0.07	3.98	0.28	10% AEP, 3 hour burst, Storm 7
OF262	0	0	1.404	0	0	0	0	
OF P2_7 - P3_7	0	0	1.542	0	0	0	0	
OF P3_7 - TRENCH7	0.005	0.005	1.256	0.220	0.00	3.98	0.01	10% AEP, 12 hour burst, Storm 10
OF243	0	0	1.404	0	0	0	0	
OF254	0.005	0.005	1.256	0.220	0.00	3.98	0.01	10% AEP, 12 hour burst, Storm 10
OF BRB3 - ExP4	0	0	1.493	0	0	0	0	
OF P1_8 - P2_8	0	0	1.079	0	0	0	0	
OF P2_8 - P3_8	0	0	1.022	0	0	0	0	
OF P3_8 - TRENCH8	0.001	0.001	1.530	0.129	0.00	3.98	0.00	10% AEP, 4.5 hour burst, Storm 6
OF TRENCH8 - CHATHAM	I-F 0	0	1.508	0	0	0	0	
OF P4_8 - TRENCH8	0.001	0.001	1.530	0.129	0.00	3.98	0.00	10% AEP, 4.5 hour burst, Storm 6
OF370	0	0	2.428	0	0	0	0	
OF P1_10 - P3_10	0	0	1.404	0	0	0	0	
OF P2_10 - P3_10	0	0	1.542	0	0	0	0	
OF P3_10 - TRENCH10	0.005	0.005	1.256	0.220	0.00	3.98	0.01	10% AEP, 12 hour burst, Storm 10
OF TRENCH10 - CHATHAI	M-0	0	1.514	0	0	0	0	
OF P4_10 - TRENCH10	0.005	0.005	1.256	0.220	0.00	3.98	0.01	10% AEP, 12 hour burst, Storm 10
OF368	0	0	3.805	0	0	0	0	
OF GD3 - BRB3	0	0	0.925	0	0	0	0	
OF SandFilterSth - P5_17	0	0	3.814	0	0	0	0	

Name	Max WL	MaxVol	Max Q	Max Q	Max Q
			Total	Low Level	High Level
TRENCH_11	6.62	47.7	0.000	0.000	0.000
SAND FILTER	5.39	0.1	0.013	0.013	0.000
TRENCH9	6.62	47.7	0.000	0.000	0.000
P2_3 BASIN	6.72	0.9	0.006	0.006	0.000
P1_15 BASIN	6.49	0.8	0.005	0.005	0.000
P2_15 BASIN	6.50	1.2	0.008	0.008	0.000
P4_3 BASIN	6.73	1.4	0.011	0.011	0.000
P3_15 BASIN	6.50	1.2	0.008	0.008	0.000
P7_3 BASIN	6.73	1.3	0.010	0.010	0.000
P9_3 BASIN	6.73	2.6	0.011	0.011	0.000
P4_15 BASIN	6.49	5.8	0.007	0.007	0.000
BRB1	6.21	53.1	0.451	0.011	0.440
BRB2	6.23	145.1	0.135	0.017	0.118
P11_3 BASIN	6.49	0.9	0.005	0.005	0.000
P3_19 BASIN	6.49	0.9	0.005	0.005	0.000
P2_19 BASIN	6.49	0.9	0.005	0.005	0.000
P1_19 BASIN	6.49	0.9	0.006	0.006	0.000
Basin73	6.72	1.2	0.007	0.007	0.000
Basin76	6.73	1.4	0.011	0.011	0.000
TRENCH7	6.62	47.7	0.000	0.000	0.000
BRB3	5.99	33.8	0.014	0.014	0.000
TRENCH8	6.52	46.4	0.000	0.000	0.000
TRENCH10	6.62	47.7	0.000	0.000	0.000

	1	Device al la	(Oh and (0000)	Deties
Pit	Initial K		Chart (2008)	
GD3	3.53	3.36	A1-4	H/Do=1.5, Vo2/(2gDo)=0.02
ExP4	1.22	1.18	A1-24	DI/Do=1.00, B/Do=2.40, (Qu/Qo)(Do/Du)=0.58
ExP5	5.93	5.93	A1-4	H/Do=0.0, Vo2/(2gDo)=0.05
P4_10	1.79	1.79	A1-4	H/Do=8.1, Vo2/(2gDo)=1.11
P3_10	1.79	1.79	A1-4	H/Do=8.1, Vo2/(2gDo)=2.05
P2_10	2.04	2.04	A1-4	H/Do=3.6, Vo2/(2gDo)=0.30
P1_10	2.42	2.42	A1-4	H/Do=2.7, Vo2/(2gDo)=0.14
P2 8	2.26	2.23	A1-4	H/Do=2.9, Vo2/(2gDo)=0.21
P1_8	3.13	3.12	A1-4	H/Do=1.8, Vo2/(2gDo)=0.06
P6_1	1.61	1.65	A1-9	Du/Do=0.79, Qg/Qo=0.48, S/Do=1.9
P5 1	3.44	3.53	A1-4	H/Do=1.1, Vo2/(2gDo)=0.18
P4 1	4.01	3.96	A1-4	H/Do=1.1, Vo2/(2gDo)=0.08
P4_7	1.79	1.79	A1-4	H/Do=8.2, Vo2/(2gDo)=1.12
P3 7	1.79	1.79	A1-4	H/Do=8.2, Vo2/(2gDo)=2.06
P2 7	2.02	2.02	A1-4 A1-4	H/Do=3.8, Vo2/(2gDo)=0.30
			A1-4 A1-4	
P1_7	2.34	2.35		H/Do=2.8, Vo2/(2gDo)=0.14
ExP2	0.44	0.46	H-O'L	Qg/Qo=0.00, S/Do=2.1
ExP1	1.61	1.62	A1-24	DI/Do=0.81, B/Do=2.40, (Qu/Qo)(Do/Du)=0.48
ExP3	4.85	4.91	A1-4	H/Do=1.1, Vo2/(2gDo)=0.00
P1_19	0.66	0.66	A1-14	Du/Do=0.68, Qg/Qo=0.00, S/Do=4.0
P7_3	1.19	1.21	A1-25	Du/Do=1.00, Qg/Qo=0.00, S/Do=1.5
P6_3	0.2	0.2	A1-5	Du/Do=1.00, Qg/Qo=0.00, S/Do=1.0
P5_3	1.62	1.62	A1-25	Du/Do=1.00, Qg/Qo=0.00, S/Do=1.0
P1_13	3.99	4.08	A1-4	H/Do=1.0, Vo2/(2gDo)=0.04
P2_13	4.06	3.74	A1-4	H/Do=0.9, Vo2/(2gDo)=0.19
P2_17	1.5	not calcul	ated	
P4-9	1.79	1.79	A1-4	H/Do=8.2, Vo2/(2gDo)=1.12
P3-9	1.79	1.79	A1-4	H/Do=8.2, Vo2/(2gDo)=2.06
P2-9	2.02	2.02	A1-4	H/Do=3.8, Vo2/(2gDo)=0.30
P1-9	2.34	2.35	A1-4	H/Do=2.8, Vo2/(2gDo)=0.14
P4-11	1.79	1.79	A1-4	H/Do=8.2, Vo2/(2gDo)=1.12
SAND_FI	IL 0	0	A1-9	Du/Do=0.64, Qg/Qo=0.00, S/Do=1.0
SAND_FI		0.2	A1-5	Du/Do=1.00, Qg/Qo=0.00, S/Do=1.0
ExPit Tra		6.12	A1-4	H/Do=0.0, Vo2/(2gDo)=0.19
P2_16		1.33	A1-5	Du/Do=1.00, Qg/Qo=0.41, S/Do=2.6
P1 16	3.09	2.75	A1-4	H/Do=0.8, Vo2/(2gDo)=0.60
P1 17	2.74	2.74	A1-4	H/Do=2.2, Vo2/(2gDo)=0.02
P3_17	3.02	2.9	H-O'L	Qg/Qo=0.00, S/Do=1.0
GD2 NO		4.26	A1-4	H/Do=0.0, Vo2/(2gDo)=0.29
P4 27	0.2	0.2	A1-5	Du/Do=1.00, Qg/Qo=0.00, S/Do=1.1
P5_17	1.5	not calcul		Da/D0 = 1.00, ag/a0 = 0.00, 0/D0 = 1.1
ExP6	0.23	0.26	A1-18	Du/Do=1.00, Qg/Qo=0.04, S/Do=0.3
	0.23 1.44	1.43		
P7_13			A1-6	Du/Do=1.00, Qg/Qo=0.26, S/Do=1.2
P5_13	1.5	not calcul		
P6_13	2.55	2.49	H-O'L	Qg/Qo=0.42, S/Do=1.2
P3_13	1.78	1.68	A1-9	Du/Do=1.00, Qg/Qo=0.41, S/Do=2.0
P3_8	1.79	1.79	A1-4	H/Do=8.1, Vo2/(2gDo)=2.35
P4_8	1.79	1.79	A1-4	H/Do=8.1, Vo2/(2gDo)=0.67
P2_2	5.69	5.71	A1-4	H/Do=0.1, Vo2/(2gDo)=0.02
P3_2	5.33	5.27	A1-4	H/Do=0.9, Vo2/(2gDo)=0.10
P1_6	1.2	1.2	H-O'L	Qg/Qo=0.00, S/Do=3.6
P2_6	1.69	1.72	H-O'L	Qg/Qo=0.00, S/Do=1.8
P1_1 + G	E 1.6	1.59	A1-10	Du/Do=1.00, Qg/Qo=0.22, S/Do=3.1
P2_1	2.79	2.68	A1-4	H/Do=1.7, Vo2/(2gDo)=0.31
P3_1	1.94	1.94	A1-4	H/Do=3.5, Vo2/(2gDo)=0.73

P7 1	1.21	1.26	H-O'L	Qg/Qo=0.00, S/Do=2.6
P1-11	2.34	2.34	A1-4	H/Do=2.8, Vo2/(2gDo)=0.14
P2-11	2.11	2.11	A1-4	H/Do=3.8, Vo2/(2gDo)=0.30
P3-11	1.79	1.79	A1-4	H/Do=8.2, Vo2/(2gDo)=2.05
	1.5	not calcul		
P3-3	1.5	not calcul		
	1.38	1.38	A1-18	Du/Do=0.68, Qg/Qo=0.00, S/Do=4.0
_	2.22	2.22	A1-24	DI/Do=0.68, B/Do=5.84, (Qu/Qo)(Do/Du)=0.30
P3 15	1.66	1.65	A1-24	DI/Do=0.68, B/Do=5.84, (Qu/Qo)(Do/Du)=0.56
Pit21	2.01	2.02	H-O'L	Qg/Qo=0.00, S/Do=2.0
P2_18	1.67	1.68	H-O'L	Qg/Qo=0.00, S/Do=5.0
P1_18	1.38	2.3	H-O'L	Qg/Qo=0.00, S/Do=4.9
P2_19	1.77	1.76	A1-24	DI/Do=0.68, B/Do=5.84, (Qu/Qo)(Do/Du)=0.52
P3_19	1.39	1.4	A1-24	DI/Do=0.68, B/Do=5.84, (Qu/Qo)(Do/Du)=0.64
P11_3	1.32	1.32	A1-20	Du/Do=0.51, Qg/Qo=0.00, S/Do=2.1
Pit15	2.3	2.3	H-O'L	Qg/Qo=0.00, S/Do=2.4
P4_15	2.62	2.63	H-O'L	Qg/Qo=0.00, S/Do=5.8
P4_4	1.97	1.95	A1-18	Du/Do=1.00, Qg/Qo=0.00, S/Do=2.2
P3_4	1.38	1.36	H-O'L	Qg/Qo=0.00, S/Do=2.4

DRAINS results prepared from Version 2020.061

PIT / NODE DETAIL	S		Version 8			
Name Max HG	_ Max Pond	Max Surfa	Max Pond		Overflow	Constraint
	HGL	Flow Arrivi		Freeboard	(cu.m/s)	
D/ 12 6 25		(cu.m/s)	(cu.m)	(m) 0.46	0.000	None
P4_13 6.25 P5 13 6.18		0.000 0.000		0.40	0.000	None
P6 13 6.18		0.017		0.60	0.000	None
P7_13 6.10		0.011		0.40	0.000	None
HW1_V-DF6.00		0.000				
P1-11 6.74	6.74	0.014	3.2	0.00	0.001	Outlet System
P2-11 6.74	6.74	0.014	3.2	0.00	0.001	Outlet System
P3-11 6.74 P3 1 6.34	6.74 6.35	0.024 0.034	12.0 1.0	0.00 0.00	0.007 0.011	Outlet System Outlet System
P4 1 6.32	6.35	0.029	1.0	0.00	0.007	Outlet System
P5_1 6.30	6.34	0.039	1.0	0.00	0.005	Outlet System
P6_1 6.23	6.31	0.039	0.5	0.02	0.000	Inlet Capacity
P7_1 6.18		0.000		0.44		None
GPT-BRB36.11		0.000		0.52		None
HW1-BRB(6.04 P2_1 6.29	6.33	0.000 0.028	3.9	0.00	0.000	Outlet System
P1 1 + GD 6.16	0.55	0.028	3.9	0.00	0.000	Outlet System None
P2 6 6.01		0.000		0.31		None
ExP5 5.42		0.040		0.73	0.000	None
ExP4 5.28	6.05	0.002	0.5	0.77	0.000	Inlet Capacity
CHATHAM 5.17		0.000				
P2_2 6.18	6.80	0.006	0.3	0.60	0.000	Inlet Capacity
P3_2 6.17 HW2 (BRB 6.16	6.70	0.006 0.000	0.2	0.51	0.000	Inlet Capacity
GD2 NOR 6.20		0.022		0.25	0.000	None
SAND_FIL 5.74		0.000		1.06	0.000	None
P4_27 5.35		0.000		1.15	0.000	None
P5_17 5.25		0.000		1.02	0.000	None
ExP6 5.17	6.26	0.001	0.1	1.09	0.000	Inlet Capacity
Chatham S 5.04 P1_17	6.66	0.000 0.041	25.7	0.00	0.013	Outlet System
P2 17 6.67	6.76	0.041	2.2	0.00	0.000	Inlet Capacity
P1 16 6.54	6.67	0.037	2.2	0.09	0.000	Inlet Capacity
P2_16 6.09	6.57	0.018	0.9	0.46	0.000	Inlet Capacity
ExPit_Trac 5.43	5.68	0.094	8.1	0.16	0.000	Inlet Capacity
JP at Track 4.96		0.000				
Tank_T1-B6.74 Tank T1-A6.74		0.025 0.025				
P4-11 6.74	6.74	0.025	12.0	0.00	0.007	Outlet System
P1-9 6.74	6.74	0.014	3.2	0.00	0.001	Outlet System
P2-9 6.74	6.74	0.014	3.2	0.00	0.001	Outlet System
P3-9 6.74	6.74	0.024	12.0	0.00	0.007	Outlet System
T1-C-N 6.74		0.025				
TANK-T1-E6.74 P4-9 6.74	6.74	0.025 0.024	12.0	0.00	0.007	Outlet System
P1_13 6.60	6.62	0.024	0.7	0.00	0.007	Outlet System
P2_13 6.57	6.62	0.014	1.1	0.03	0.000	Inlet Capacity
P3_13 6.36	6.62	0.010	0.4	0.24	0.000	Inlet Capacity
BYPASS2 6.65		0.000				
BYPASS1 6.60		0.000		0.04		News
P3-3 6.28 P5_3 6.22		0.000 0.000		0.64 0.70		None None
P6 3 6.21		0.000		0.70		None
P7 3 6.21		0.000		0.71		None
Pit21 6.19		0.000		0.67		None
P11_3 6.06		0.000		0.57		None
Pit15 5.90		0.000		0.73		None
ExP1 5.56 DARLING 5.12		0.000 0.000		0.56		None
P1_15 6.49		0.000		0.00		Outlet System
P2_15 6.48		0.000		0.00		Outlet System
P3_15 6.42		0.000		0.06		None
P4_15 6.22		0.000		0.26		None
BLOCK_D 7.88		0.081		0.00		Nama
P3_4 5.93 P4_4 5.87		0.000 0.000		0.30 0.13		None None
ExP2 5.74		0.000		0.13		None
P3_19 6.28		0.000		0.35		None
P2_19 6.37		0.000		0.26		None
P1_19 6.39		0.000		0.24		None

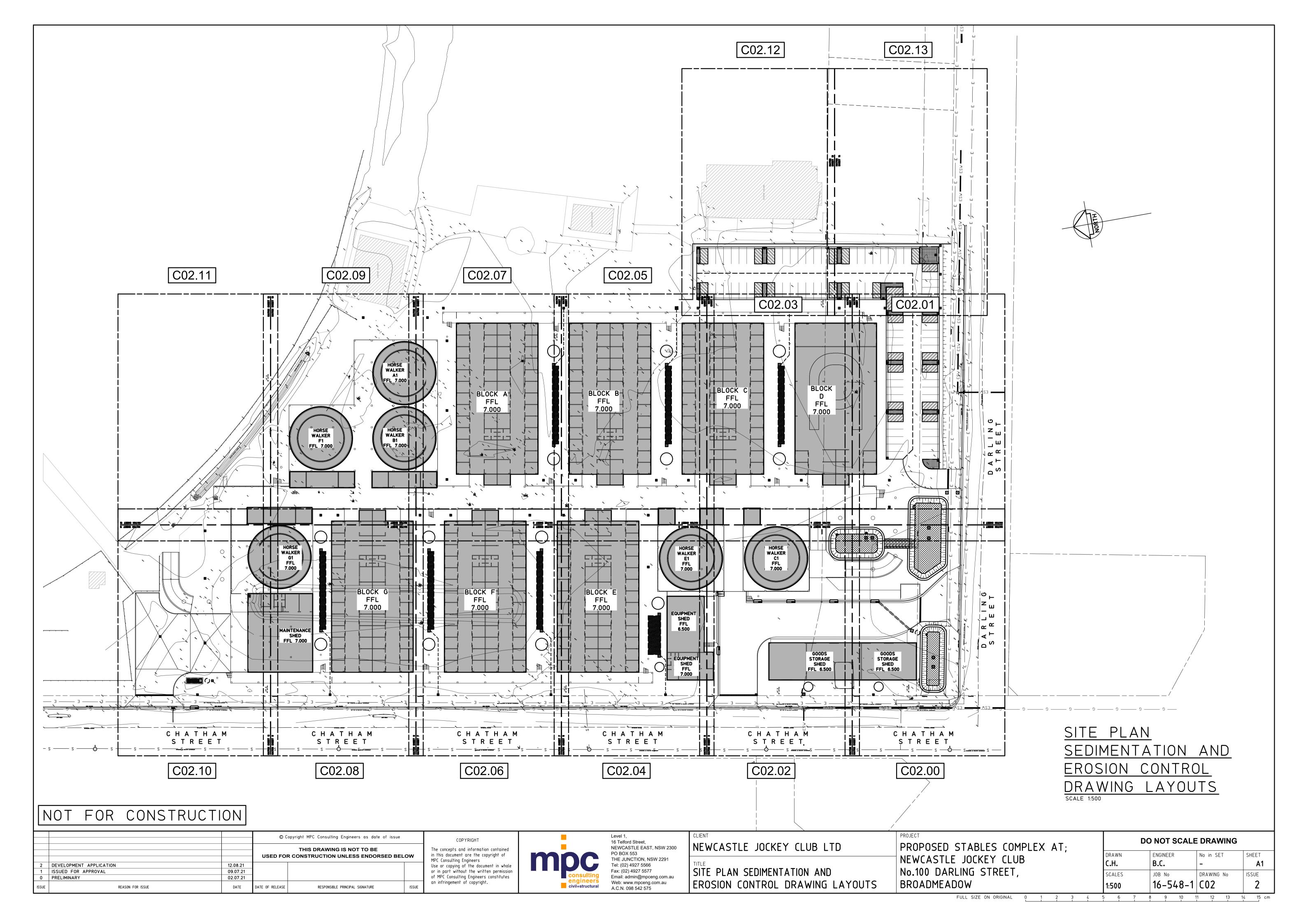
Major I	Results
---------	---------

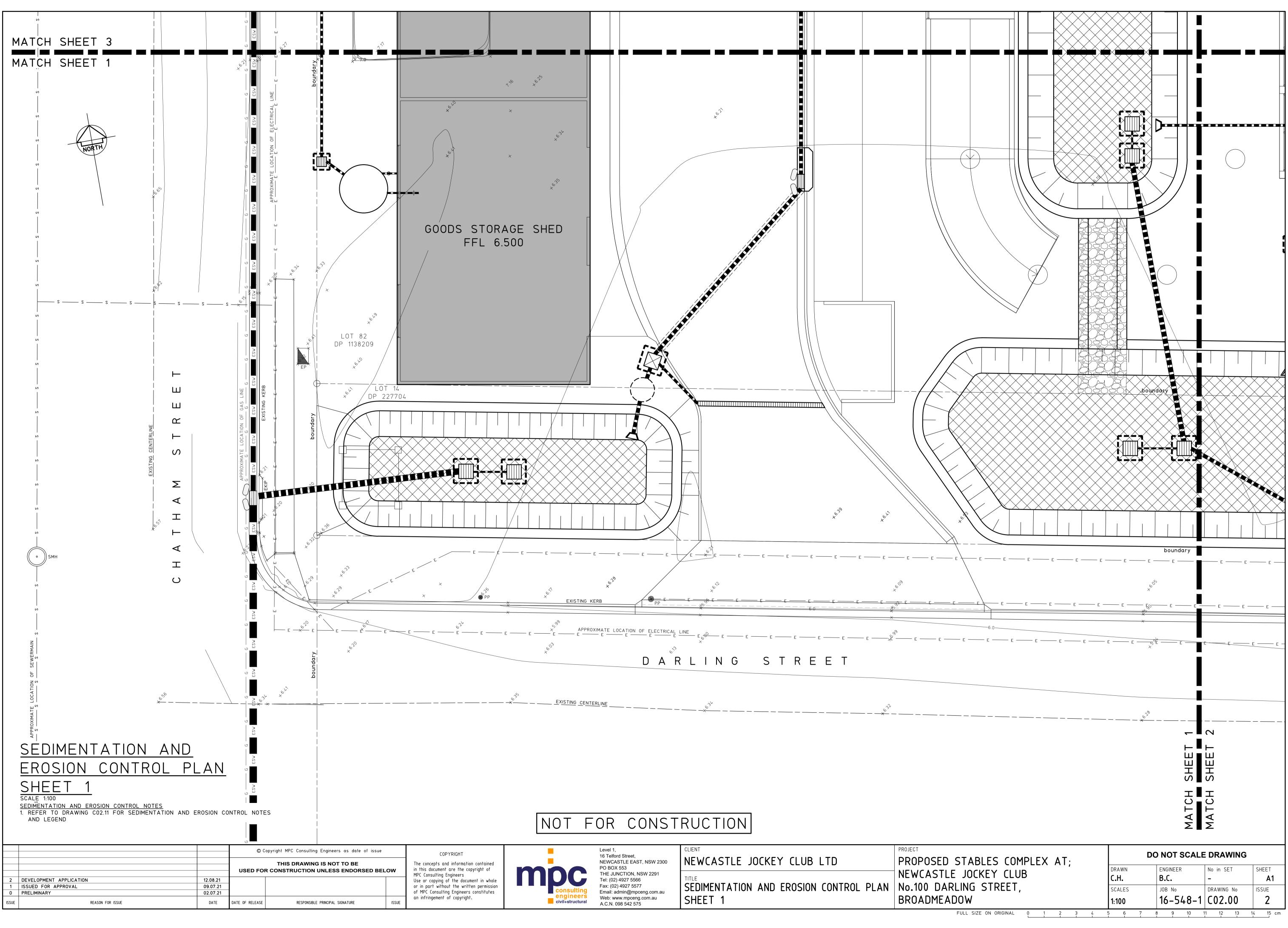
N402 5.94 N403 5.87 N404 5.81 N405 5.80 N406 5.87 ExP3 5.74 P2_18 6.42 P1_18 6.48 GD1 5.94 N458 5.94 N469 6.40 L1 CONCC 7.08	5.78	0.000 0.000 0.014 0.024 0.007 0.000 0.000 0.000 0.036 0.000 0.217	2.4	0.04 0.44 0.38	0.000	Inlet Capacity None None
N480 6.16 P1_7 6.74 P2_7 6.74 P3_7 6.74 T1-D-NTH 6.74	6.74 6.74 6.74	0.275 0.014 0.014 0.024 0.025	3.2 3.2 12.0	0.00 0.00 0.00	0.001 0.001 0.007	Outlet System Outlet System Outlet System
T1-C-STH 6.74 P4_7 6.74 T1-GOOD\$6.44	6.74	0.025 0.024 0.031	12.0	0.00	0.007	Outlet System
P1_6 6.42 T1-GOOD-6.06		0.000 0.031		0.00		Outlet System
P1_8 6.73 P2_8 6.74 P3_8 6.72 T2-EQSHE 6.72 T1-E-STH 6.72	6.72	0.011 0.206 0.076 0.038 0.025	12.0	0.00 0.00 0.00	0.038 0.035 0.053	Outlet System Outlet System Outlet System
P4_8 6.72 CHATHAM6.28	6.72	0.013 0.040	12.0	0.00	0.053	Outlet System
P1_10 6.72 P2_10 6.72 P3_10 6.72 T1-E-NTH 6.72 T1-F-STH 6.72	6.72 6.72 6.72	0.014 0.014 0.024 0.025 0.025	3.2 3.2 12.0	0.00 0.00 0.00	0.001 0.001 0.009	Outlet System Outlet System Outlet System
P4_10 6.72 CHATHAM6.35	6.72	0.024 0.015	12.0	0.00	0.009	Outlet System
GD3 6.18 N197 5.85		0.004		0.26	0.000	None
P3_17 5.77 GPT-4200 5.74 SAND_FIL 5.71		0.000 0.000 0.000		1.03 1.06 1.09	0.000	None None None
– SUB-CATCHMEN Name Max	IT DETAILS Paved	Grassed	Paved	Grassed	Supp.	Due to Storm
Flow C (cu.m/ CAT P6_1:0.012 CAT P7_1:0.008 CAT_P1-1 0.010 CAT_P2-1 0.010 CAT_P3-1 0.017 CAT P3_1 0.027 CAT P4_1 0.017 CAT P5_1 0.037 CAT P6_1 0.028 CAT P2_1 0.022 CAT P1_1 0.004 CAT P2_2 0.005 CAT_GD2_0.015 CAT_GD2_0.015 CAT_GD2_0.015 CAT_GD2_0.015 CAT_GD2_0.015 CAT_P1_1:0.026 CAT P2_1:0.012 CAT P1_1:0.020 CAT_P4-1 0.017 CAT_P1-9_0.010 CAT_P3-9_0.017 CAT_P4-9_0.017 CAT_P4-9_0.017 CAT_P4-9_0.010 CAT_P4-9_0.010 CAT_P4-9_0.017 CAT_P1_1:0.007 CAT_P2_1:0.010		Max Q (cu.m/s) 0.012 0.008 0.002 0.002 0.000	Tc (min) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.0	Tc (min) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.0	Tc (min) 2.00 2.00 0.00 0.00 2.00 2.00 2.00 2.0	1% AEP, 10 min burst, Storm 1 1% AEP, 5 min burst, Storm 1 1% AEP, 10 min burst, Storm 1 1% AEP, 10 min burst, Storm 1 1% AEP, 10 min burst, Storm 1 1% AEP, 5 min burst, Storm 1 1% AEP, 10 min burst, Storm 1

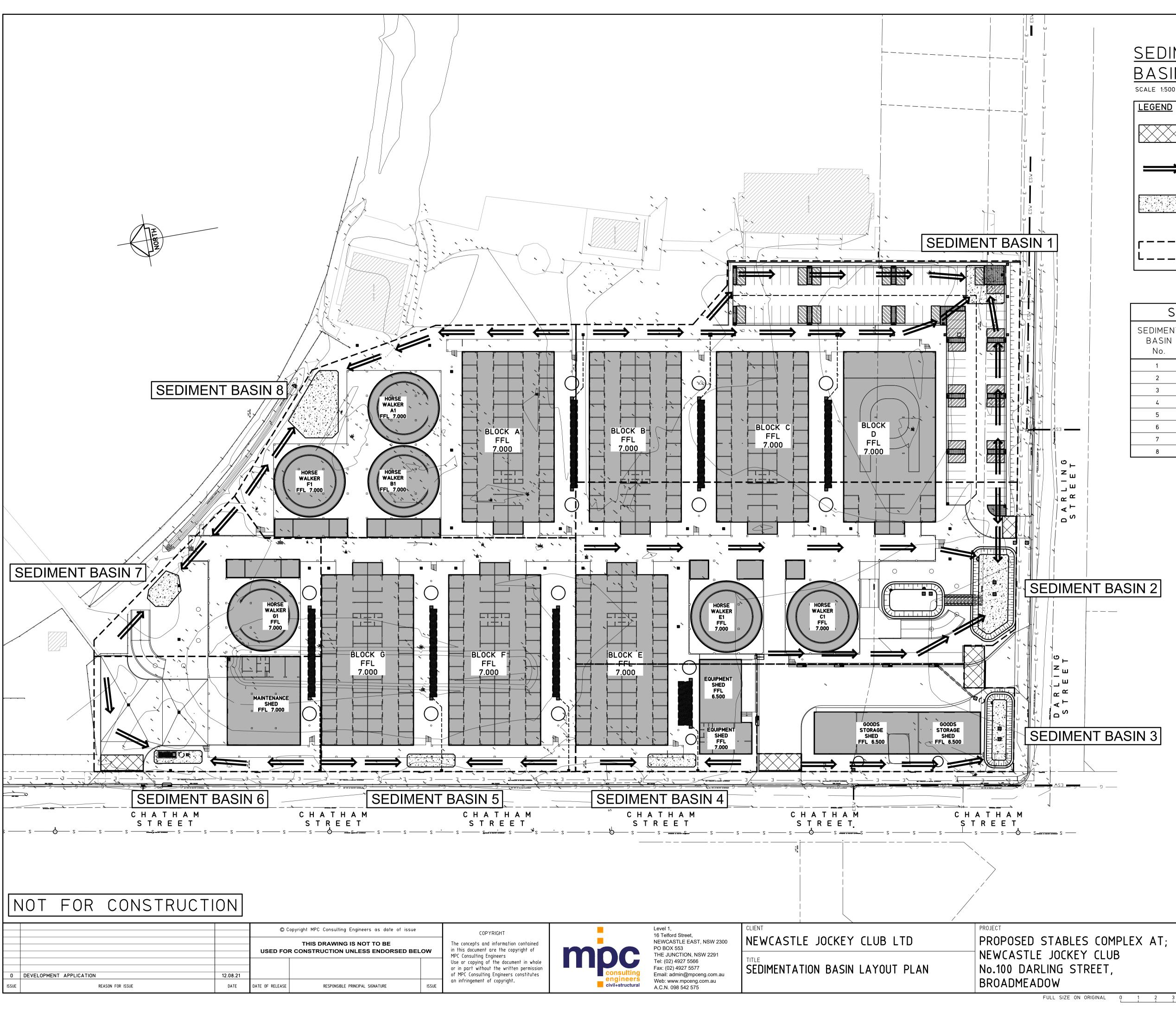
CAT P3_1:0.007	0.000	0.007	5.00	5.00	2.00	1% AEP, 10 min burst, Storm 1
CAT P2_3 0.012	0.011	0.001	5.00	5.00	2.00	1% AEP, 5 min burst, Storm 1
CAT P1_1(0.009	0.008	0.001	5.00	5.00	2.00	1% AEP, 5 min burst, Storm 1
CAT P2_1(0.016	0.014	0.002	5.00	5.00	2.00	1% AEP, 5 min burst, Storm 1
CAT P4_3 0.022	0.019	0.002	5.00	5.00	2.00	1% AEP, 5 min burst, Storm 1
CAT P3_1(0.015	0.013	0.002	5.00	5.00	2.00	1% AEP, 5 min burst, Storm 1
CAT P7_3 0.020	0.018	0.002	5.00	5.00	2.00	1% AEP, 5 min burst, Storm 1
CAT P9_3 0.024	0.019	0.006	5.00	5.00	2.00	1% AEP, 5 min burst, Storm 1
CAT P4_1(0.021	0.018	0.003	5.00	5.00	2.00	1% AEP, 5 min burst, Storm 1
CAT BLOC 0.065	0.065	0.000	5.00	5.00	2.00	1% AEP, 5 min burst, Storm 1
CAT BRB10.054	0.030	0.025	5.00	5.00	2.00	1% AEP, 10 min burst, Storm 1
CAT BRB2 0.035	0.000	0.035	5.00	5.00	2.00	1% AEP, 10 min burst, Storm 1
CAT P1_3 0.011	0.008	0.002	5.00	5.00	2.00	1% AEP, 5 min burst, Storm 1
CAT P3_1{0.010	0.008	0.002	5.00	5.00	2.00	1% AEP, 5 min burst, Storm 1
CAT P2_1(0.010	0.008	0.002	5.00	5.00	2.00	1% AEP, 5 min burst, Storm 1
CAT P1_1(0.011	0.010	0.001	5.00	5.00	2.00	1% AEP, 5 min burst, Storm 1
CAT P2_1{0.014	0.012	0.002	5.00	5.00	2.00	1% AEP, 5 min burst, Storm 1
CAT P1_1{0.021	0.019	0.002	5.00	5.00	2.00	1% AEP, 5 min burst, Storm 1
CAT L1 CC 0.174	0.174	0.000	5.00	5.00	2.00	1% AEP, 5 min burst, Storm 1
CAT P1_7 0.010	0.008	0.002	5.00	5.00	0.00	1% AEP, 5 min burst, Storm 1
CAT P2_7 0.010	0.008	0.002	5.00	5.00	0.00	1% AEP, 5 min burst, Storm 1
CAT P3 7 0.017	0.000	0.017	5.00	5.00	0.00	1% AEP, 10 min burst, Storm 1
CAT T1-D- 0.020	0.020	0.000	5.00	0.00	0.00	1% AEP, 5 min burst, Storm 1
CAT T1-C-0.020	0.020	0.000	5.00	0.00	0.00	1% AEP, 5 min burst, Storm 1
CAT P4_7 0.017	0.000	0.017	5.00	5.00	0.00	1% AEP, 10 min burst, Storm 1
CAT GOOI 0.025	0.025	0.000	5.00	5.00	2.00	1% AEP, 5 min burst, Storm 1
CAT GOOI 0.025	0.025	0.000	5.00	5.00	2.00	1% AEP, 5 min burst, Storm 1
CAT P1_8 0.009	0.007	0.002	5.00	5.00	0.00	1% AEP, 5 min burst, Storm 1
CAT P2_8 0.008	0.006	0.002	5.00	5.00	0.00	1% AEP, 5 min burst, Storm 1
CAT P3_8 0.009	0.000	0.009	5.00	5.00	0.00	1% AEP, 10 min burst, Storm 1
CAT EQPT 0.031	0.031	0.000	5.00	5.00	2.00	1% AEP, 5 min burst, Storm 1
CAT T1-E- 0.020	0.020	0.000	5.00	0.00	0.00	1% AEP, 5 min burst, Storm 1
CAT P4_8 0.009	0.000	0.009	5.00	5.00	0.00	1% AEP, 10 min burst, Storm 1
CAT P1 1(0.010	0.008	0.002	5.00	5.00	0.00	1% AEP, 5 min burst, Storm 1
CAT P2 1(0.010	0.008	0.002	5.00	5.00	0.00	1% AEP, 5 min burst, Storm 1
Cat619 0.017	0.000	0.017	5.00	5.00	0.00	1% AEP, 10 min burst, Storm 1
CAT T1-E- 0.020	0.020	0.000	5.00	0.00	0.00	1% AEP, 5 min burst, Storm 1
CAT T1-F- 0.020	0.020	0.000	5.00	0.00	0.00	1% AEP, 5 min burst, Storm 1
CAT P4 1(0.017	0.000	0.017	5.00	5.00	0.00	1% AEP, 10 min burst, Storm 1
CAT GD3 0.003	0.003	0.000	5.00	5.00	2.00	1% AEP, 5 min burst, Storm 1

PIPE DETAILS				
Name Max Q	Max V	Max U/S	Max D/S	Due to Storm
(cu.m/s)	(m/s)	HGL (m)	HGL (m)	
P4_13 - P50.000	0.00	6.250	6.184	1% AEP, 5 min burst, Storm 1
P5_13 - P60.003	0.13	6.184	6.184	1% AEP, 10 min burst, Storm 7
P6_13 - P70.030	0.85	6.134	6.095	1% AEP, 10 min burst, Storm 7
P7_13 - H\ 0.036	0.92	6.053	6.000	1% AEP, 10 min burst, Storm 7
P1_11 - P20.012	0.66	6.737	6.737	1% AEP, 5 min burst, Storm 1
P2-11_P3- 0.018	0.96	6.737	6.737	1% AEP, 5 min burst, Storm 1
TRENCH-10.046	2.49	6.737	6.737	1% AEP, 5 min burst, Storm 1
P3_1 - P4_0.011	1.22	6.331	6.318	1% AEP, 5 min burst, Storm 1
P4_1 - P5_0.027	0.60	6.304	6.300	1% AEP, 5 min burst, Storm 1
P5_1 - P6_0.041	0.91	6.242	6.225	1% AEP, 5 min burst, Storm 1
P6_1 - P7_0.064	0.89	6.194	6.178	1% AEP, 5 min burst, Storm 1
P7_1 - GP 0.068	1.47	6.115	6.110	1% AEP, 5 min burst, Storm 1
GPT_BRB: 0.069	1.50	6.046	6.037	1% AEP, 5 min burst, Storm 1
P2_1 - P1_0.018	0.98	6.223	6.155	1% AEP, 10 min burst, Storm 7
P1_1 - P2_0.019	1.02	6.094	6.010	1% AEP, 10 min burst, Storm 1
P2_6 - ExF 0.066	1.73	5.840	5.787	1% AEP, 5 min burst, Storm 1
ExP5 - ExF0.064	0.85	5.342	5.280	1% AEP, 5 min burst, Storm 1
Pipe1059 0.081	1.29	5.280	5.166	1% AEP, 25 min burst, Storm 5
Pipe17 0.005	0.25	6.173	6.172	1% AEP, 10 min burst, Storm 1
P3_2 - HW 0.010	0.55	6.163	6.162	1% AEP, 10 min burst, Storm 4
GD2 - SAN 0.018	1.36	6.051	5.961	1% AEP, 45 min burst, Storm 6
SAND_FIL 0.018	1.38	5.738	5.708	1% AEP, 45 min burst, Storm 6
SAND FIL10.022	1.22	5.400	5.347	1% AEP, 45 min burst, Storm 6
P4_17 - P50.022	1.31	5.347	5.293	1% AEP, 45 min burst, Storm 6
P5_17 - Ex0.022	0.92	5.251	5.172	1% AEP, 45 min burst, Storm 6
ExP6 - Cha0.022	1.09	5.172	5.040	1% AEP, 45 min burst, Storm 6
P1_17 - P20.014	0.31	6.672	6.675	1% AEP, 5 min burst, Storm 1
P1_16 - P20.025	1.35	6.290	6.086	1% AEP, 10 min burst, Storm 1
Pipe69 0.035	1.98	5.981	5.429	1% AEP, 10 min burst, Storm 1
Pipe at Tra 0.132	1.74	5.026	4.965	1% AEP, 10 min burst, Storm 7
T1-B-N_P30.020	1.08	6.738	6.737	1% AEP, 5 min burst, Storm 1

T1-A-S P40.021	1.11	6.738	6.737	1% AEP, 5 min burst, Storm 1
TRENCH-10.034	1.85	6.737	6.737	1% AEP, 10 min burst, Storm 1
P1-9 P2-9 0.012	0.65	6.738	6.738	1% AEP, 5 min burst, Storm 1
P2-9 P3-9 0.018	0.96	6.738	6.738	1% AEP, 5 min burst, Storm 1
P196 0.046	2.49	6.738	6.738	1% AEP, 5 min burst, Storm 1
T1-C-N_P:0.020	1.08	6.739	6.738	1% AEP, 5 min burst, Storm 1
TANK-T1-E0.021	1.11	6.739	6.738	1% AEP, 5 min burst, Storm 1
P198 0.034	1.85	6.738	6.738	1% AEP, 10 min burst, Storm 1
P1 13 - P20.007	0.37	6.582	6.566	1% AEP, 10 min burst, Storm 2
P2_13 - P30.014	0.77	6.457	6.364	1% AEP, 10 min burst, Storm 1
P3 13 - P60.020	1.09	6.264	6.184	1% AEP, 10 min burst, Storm 1
P2_3 BASI 0.011	1.35	6.337	6.285	1% AEP, 10 min burst, Storm 5
P3_3 - P5_0.011	0.63	6.277	6.224	1% AEP, 10 min burst, Storm 5
P5_3 - P6_0.025	0.41	6.217	6.214	1% AEP, 5 min burst, Storm 1
P6 3 - P8 0.028	0.39	6.213	6.209	1% AEP, 10 min burst, Storm 3
P8 3 - P10.042	0.59	6.196	6.187	1% AEP, 5 min burst, Storm 1
P10_3 - P10.074	1.03	6.101	6.057	1% AEP, 5 min burst, Storm 1
P11 3 - P50.104	1.44	5.949	5.898	1% AEP, 10 min burst, Storm 6
P5_15 - Ex0.129	1.79			
_		5.598	5.555	1% AEP, 10 min burst, Storm 7
ExP1 - DAI 0.209	2.03	5.258	5.116	1% AEP, 20 min burst, Storm 7
P1_15 BA\$ 0.007	0.85	6.496	6.490	1% AEP, 5 min burst, Storm 1
P1_15 - P20.006	0.31	6.487	6.481	1% AEP, 20 min burst, Storm 10
P2_15 - P30.014	0.74	6.456	6.417	1% AEP, 20 min burst, Storm 1
P3_15 - P40.022	1.16	6.368	6.224	1% AEP, 15 min burst, Storm 8
P4_15 - P50.028	1.51	6.005	5.898	1% AEP, 25 min burst, Storm 9
P2_15 BA\$0.013	1.55	6.492	6.481	1% AEP, 20 min burst, Storm 6
P4_3 BASI 0.014	1.65	6.294	6.224	1% AEP, 5 min burst, Storm 1
P3_15 BA\$0.011	1.24	6.433	6.417	1% AEP, 5 min burst, Storm 1
P7_3 BASI 0.016	1.87	6.280	6.209	1% AEP, 5 min burst, Storm 1
P9_3 BASI 0.016	1.83	6.261	6.187	1% AEP, 10 min burst, Storm 8
P4_15 BA\$0.011	1.31	6.262	6.224	1% AEP, 25 min burst, Storm 7
block d roo 0.065	3.49	7.877	6.230	1% AEP, 5 min burst, Storm 1
BRB1 - BR 0.096	1.33	6.178	6.161	1% AEP, 5 min burst, Storm 1
P2_4 - P3_0.118	1.00	5.947	5.933	1% AEP, 30 min burst, Storm 8
P3_4 - P4_0.118	1.07	5.876	5.868	1% AEP, 30 min burst, Storm 8
P4_4 - ExF 0.118	1.07	5.810	5.738	1% AEP, 30 min burst, Storm 8
ExP2 - ExF0.118	1.07	5.713	5.555	1% AEP, 30 min burst, Storm 8
P11_3 BA\$0.010	1.14	6.115	6.057	1% AEP, 10 min burst, Storm 1
P3_19 BA\$ 0.009	1.08	6.308	6.279	1% AEP, 10 min burst, Storm 6
P3 19 - P10.025	1.35	6.200	6.057	1% AEP, 5 min burst, Storm 1
P2_19 BA\$ 0.009	0.99	6.386	6.368	1% AEP, 5 min burst, Storm 1
P2_19 - P30.017	0.90	6.329	6.279	1% AEP, 5 min burst, Storm 1
P1_19 BA\$0.009	1.06	6.403	6.386	1% AEP, 10 min burst, Storm 7
P1_19 - P20.009	0.50	6.382	6.368	1% AEP, 10 min burst, Storm 7
ExP3 - ExF 0.005	0.05	5.738	5.738	1% AEP, 10 min burst, Storm 4
P2 18 BA\$0.012	1.37	6.459	6.418	1% AEP, 5 min burst, Storm 1
P2 18 - P10.023	1.23	6.326	6.187	1% AEP, 5 min burst, Storm 1
P1_18 BA\$0.015	1.69	6.519	6.479	1% AEP, 15 min burst, Storm 9
P1_19 - P20.015	0.79	6.448	6.418	1% AEP, 15 min burst, Storm 5
GD1 - P3_0.001	0.03	5.935	5.933	1% AEP, 10 min burst, Storm 1
CONCOUF 0.177	3.85	7.084	6.230	1% AEP, 5 min burst, Storm 1
P1_7 - P2_0.012	0.65	6.738	6.738	1% AEP, 5 min burst, Storm 1
P2_7 - P3_0.018	0.96	6.738	6.738	1% AEP, 5 min burst, Storm 1
P3_7 - TRI 0.046	2.49	6.738	6.738	1% AEP, 5 min burst, Storm 1
T1-D-NTH 0.020	1.08	6.739	6.738	1% AEP, 5 min burst, Storm 1
T1-C-STH 0.021	1.11	6.739	6.738	1% AEP, 5 min burst, Storm 1
P4_7 = TR 0.034	1.85	6.738	6.738	1% AEP, 10 min burst, Storm 1
BRB3 - Ex10.043	0.49	5.403	5.280	1% AEP, 25 min burst, Storm 8
T1 - P1_6 0.025	1.34	6.440	6.425	1% AEP, 5 min burst, Storm 1
P1_6 - P2_0.025	1.34	6.313	6.010	1% AEP, 5 min burst, Storm 1
T1 - P2_6 0.025	1.43	6.057	6.025	1% AEP, 5 min burst, Storm 1
P1_8 - P2_0.008	0.42	6.728	6.740	1% AEP, 5 min burst, Storm 1
P2 8 - TRE0.015	0.80	6.731	6.721	1% AEP, 5 min burst, Storm 1
P3_8 - TRE0.050			6.719	1% AEP, 10 min burst, Storm 5
_	2.66	6.720		
T2-EQPSH 0.031	1.65	6.721 6.720	6.721 6.720	1% AEP, 5 min burst, Storm 1
T1-E-STH 0.020	1.09	6.720	6.720 6.710	1% AEP, 5 min burst, Storm 1
P4_8 - TRE0.027	1.42	6.720	6.719 6.719	1% AEP, 5 min burst, Storm 1
P1_10 - P20.012	0.66	6.718	6.718	1% AEP, 5 min burst, Storm 1
P2_10 - P30.018	0.96	6.718	6.718	1% AEP, 5 min burst, Storm 1
P3_10 - TF 0.046	2.49	6.717	6.717	1% AEP, 5 min burst, Storm 1
P1008 0.020	1.08	6.719	6.718	1% AEP, 5 min burst, Storm 1
T1-F-STH 0.021	1.11	6.719	6.719	1% AEP, 5 min burst, Storm 1
P4_10 - TF 0.034	1.85	6.718	6.717	1% AEP, 10 min burst, Storm 1
GD3 - P7_ 0.005	0.26	6.179	6.178	1% AEP, 5 min burst, Storm 1
P2_17 - P30.005	0.80	5.846	5.770	1% AEP, 30 min burst, Storm 6
P3_17 - GF0.005	0.58	5.770	5.737	1% AEP, 30 min burst, Storm 6

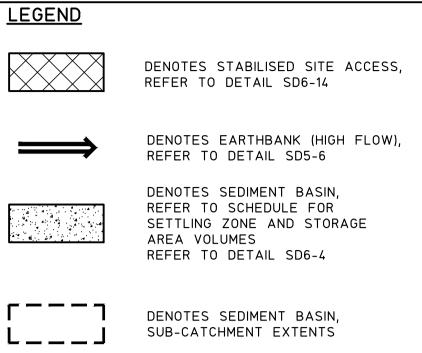

GPT - SAN 0.005 SAND_TAI 0.005	0.78 1.06	5.737 5.707	5.707 5.668		30 min burs 30 min burs		
CHANNEL DETAILS Name Max Q (cu.m/s)	Max V (m/s)			Due to St	orm		
OVERFLOW ROUTE Name Max Q U/	S Max Q D	/S Safe Q	Max D	Max DxV	Max Width	ו Max V	Due to Storm
OF P4_13 0	0	1.250	0	0	0	0	
OF P5_13 0	0	1.468	0	0	0	0	
OF P6_13 0	0	1.538	0	0	0	0	
OF P7_13 0 V-DRAIN 0.037	0 0.105	1.266 1.624	0 0.270	0 0.06	0 1.17	0 0.24	1% AEP, 10 min burst, Storm 7
OF P1 11 0.001	0.001	1.406	0.037	0.00	3.98	0.01	1% AEP, 6 hour burst, Storm 8
OF P2_11 0.001	0.001	1.534	0.037	0.00	3.98	0.01	1% AEP, 6 hour burst, Storm 8
OF P3_11 0.007	0.007	1.258	0.339	0.00	3.99	0.01	1% AEP, 12 hour burst, Storm 8
OF TRENC0 OF P3_1 - 0.011	0 0.011	1.406 3.052	0 0.053	0 0.03	0 1.70	0 0.50	1% AEP, 20 min burst, Storm 10
OF P4 1 - 0.007	0.007	3.392	0.050	0.02	1.34	0.40	1% AEP, 20 min burst, Storm 2
OF P5_1 - 0.005	0.005	3.298	0.044	0.02	0.75	0.43	1% AEP, 20 min burst, Storm 2
OF P6_1 - 0	0	4.206	0	0	0	0	
OF HW1 - 0.103	0.103	1.406	0.537	0.03	4.00	0.06	1% AEP, 6 hour burst, Storm 7
OF386 0 OF372 0	0 0	1.645 3.587	0 0	0 0	0 0	0 0	
OF374 0	0	1.020	0	0	0	0	
OF P2_2 - 0	0	1.567	0	0	0	0	
OF P3_2 0	0	1.567	0	0	0	0	
OF234 0.024 OF GD2 - 10	0.024 0	1.522 1.511	0.561 0	0.01 0	4.00 0	0.02 0	1% AEP, 12 hour burst, Storm 7
OF SandFi 0	0	3.814	0	0	0	0	
OF SandFi 0	0	2.723	0	0	0	0	
OF P4_17 0	0	2.707	0	0	0	0	
OF P5_17_0 OF ExP6 - 0	0 0	2.536 7.935	0 0	0 0	0 0	0 0	
OF P1 17 0.013	0.018	2.695	0.008	0.00	7.50	0.37	1% AEP, 45 min burst, Storm 6
OF P2_17 0	0	1.711	0	0	0	0	, - , -
Orifice_P2_0.005	0.000	1.348	0.450	0.00	20.00	0.00	1% AEP, 30 min burst, Storm 6
OF P1_16 0 OF P2_16 0	0 0	2.682 2.676	0 0	0 0	0 0	0 0	
OF_TO_TF0	0	7.970	0	0	0	0	
OF P4_11 0.007	0.007	1.258	0.337	0.00	3.99	0.01	1% AEP, 12 hour burst, Storm 2
OF P1_9 - 0.001	0.001	1.406	0.038	0.00	3.98	0.01	1% AEP, 6 hour burst, Storm 8
OF P2_9 - 0.001 OF P3_9 - 0.007	0.001 0.007	1.534 1.258	0.038 0.338	0.00 0.00	3.98 3.99	0.01 0.01	1% AEP, 6 hour burst, Storm 8 1% AEP, 12 hour burst, Storm 8
OF TRENCO	0.007	1.406	0.000	0.00	0	0.01	
OF P4-9 - 0.007	0.007	1.258	0.354	0.00	3.99	0.01	1% AEP, 12 hour burst, Storm 9
OF P1_13 0	0	1.533	0	0	0	0	
OF P2_13 0 OF P3_13 0	0 0	1.533 1.531	0 0	0 0	0 0	0 0	
OF BYP2 - 0	0	0.545	0	0	0	0	
OF BYP1 - 0	0	0.867	0	0	0	0	
OF1 P2_3 0	0	3.807	0	0	0	0	
OF P1_15 0.000 OF P2_15 0.000	0.008 0.007	3.052 3.258	0.084 0.059	0.02 0.01	4.81 2.23	0.33 0.30	1% AEP, 5 min burst, Storm 1 1% AEP, 5 min burst, Storm 1
OF P4_3 - 0	0.007	7.982	0	0.01	0	0	
OF P3_15 0.000	0.008	3.258	0.053	0.02	1.63	0.39	1% AEP, 5 min burst, Storm 1
OF P7_3 - 0	0	7.982	0	0	0	0	
OF P9_3 B0 OF P4_15_0	0 0	3.807 3.815	0 0	0 0	0 0	0 0	
OF BRB1 - 0.168	0.168	1.406	0.087	0.05	3.98	0.74	1% AEP, 10 min burst, Storm 7
OF BRB2 - 0	0	8.006	0	0	0	0	
OF P11_3 0	0	3.780	0	0	0	0	
OF P3_19 0 OF P2_19 0	0 0	3.814 3.772	0 0	0 0	0 0	0 0	
OF P1_19 0	0	1.487	0	0	0	0	
OF179 0	0	4.332	0	0	0	0	
OF181 0	0	4.270	0	0	0	0	
OF184 0 OF178 0	0 0	4.142 4.427	0 0	0 0	0 0	0 0	
OF172 0	0	4.279	0	0	0	0	
OF395 0	0	13.746	0	0	0	0	
OF P2_18 0 OF P1_18_0	0 0	3.807 3.807	0 0	0 0	0 0	0 0	
OF P1_18_0 OF219 0	0	3.807 4.270	0	0	0	0	
OF230 0	0	1.447	0	0	0	0	

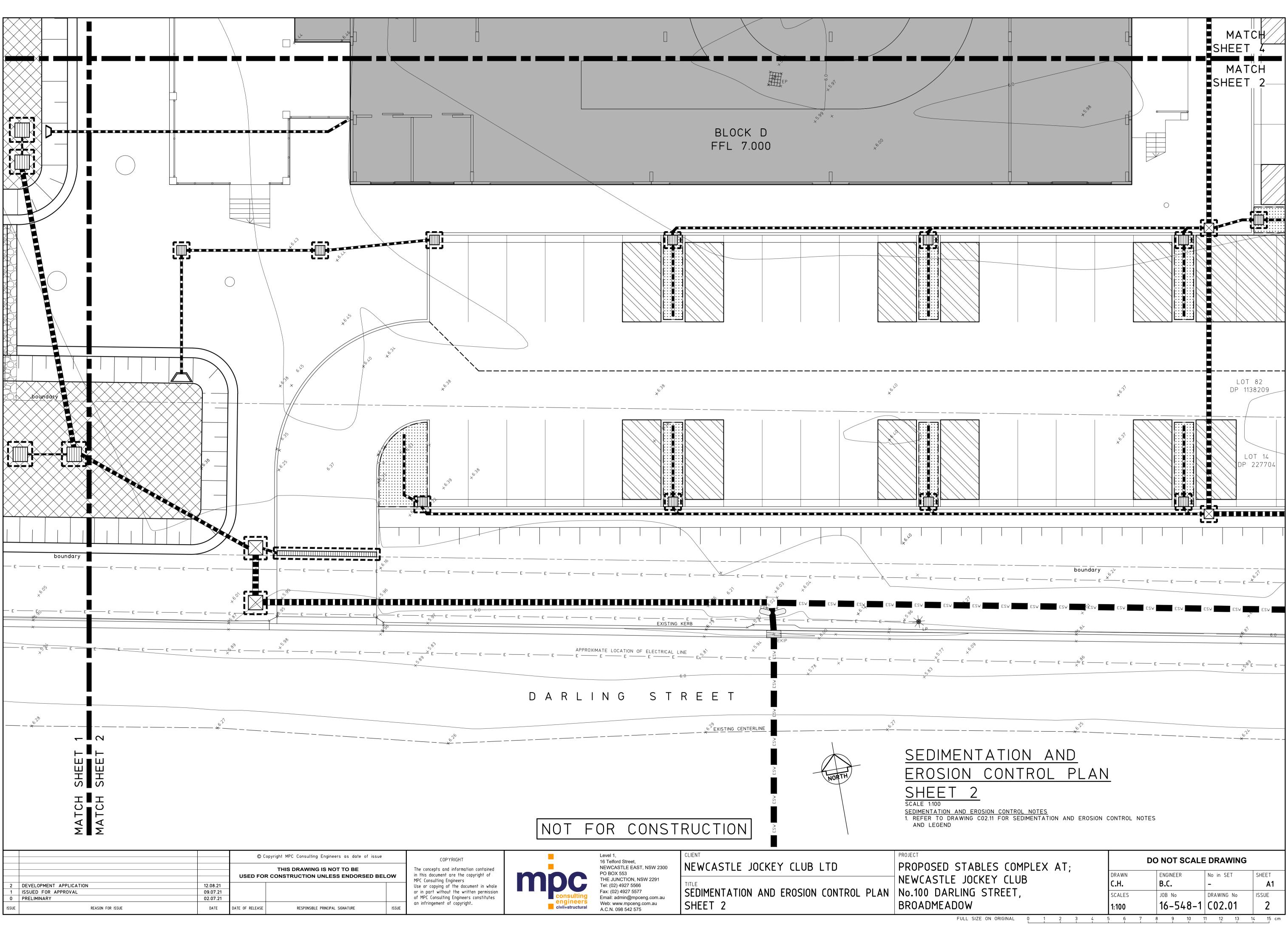

OF N480 - 0.167	0.167	1.522	0.561	0.04	4.00	0.28	1% AEP, 10 min burst, Storm 7
OF262 0.001	0.001	1.406	0.038	0.00	3.98	0.01	1% AEP, 6 hour burst, Storm 8
OF P2_7 - 0.001	0.001	1.534	0.038	0.00	3.98	0.01	1% AEP, 6 hour burst, Storm 8
OF P3_7 - 0.007	0.007	1.258	0.338	0.00	3.99	0.01	1% AEP, 12 hour burst, Storm 8
OF243 0	0	1.406	0	0	0	0	
OF254 0.007	0.007	1.258	0.354	0.00	3.99	0.01	1% AEP, 12 hour burst, Storm 9
OF BRB3 - 0	0	1.494	0	0	0	0	
OF P1_8 - 0.038	0.038	1.080	0.175	0.01	3.99	0.08	1% AEP, 12 hour burst, Storm 6
OF P2_8 - 0.035	0.035	1.024	0.181	0.01	3.99	0.05	1% AEP, 12 hour burst, Storm 2
OF P3_8 - 0.053	0.053	1.532	0.319	0.01	3.99	0.06	1% AEP, 6 hour burst, Storm 1
OF TRENC 0.009	0.009	1.509	0.073	0.01	3.98	0.34	1% AEP, 12 hour burst, Storm 8
OF P4_8 - 0.053	0.053	1.532	0.319	0.01	3.99	0.06	1% AEP, 6 hour burst, Storm 1
OF370 0.014	0.014	2.428	0.076	0.01	3.95	0.16	1% AEP, 9 hour burst, Storm 7
OF P1_10 0.001	0.001	1.406	0.017	0.00	3.45	0.04	1% AEP, 9 hour burst, Storm 6
OF P2_10 0.001	0.001	1.534	0.017	0.00	3.45	0.04	1% AEP, 9 hour burst, Storm 6
OF P3_10 0.009	0.009	1.258	0.317	0.00	3.99	0.01	1% AEP, 12 hour burst, Storm 1
OF TRENC 0.007	0.007	1.515	0.055	0.00	3.98	0.30	1% AEP, 9 hour burst, Storm 6
OF P4_10 0.009	0.009	1.258	0.317	0.00	3.99	0.01	1% AEP, 9 hour burst, Storm 5
OF368 0.007	0.007	3.805	0.065	0.01	2.89	0.26	1% AEP, 9 hour burst, Storm 6
OF GD3 - 10	0	0.925	0	0	0	0	
OF SandFi 0	0	3.814	0	0	0	0	

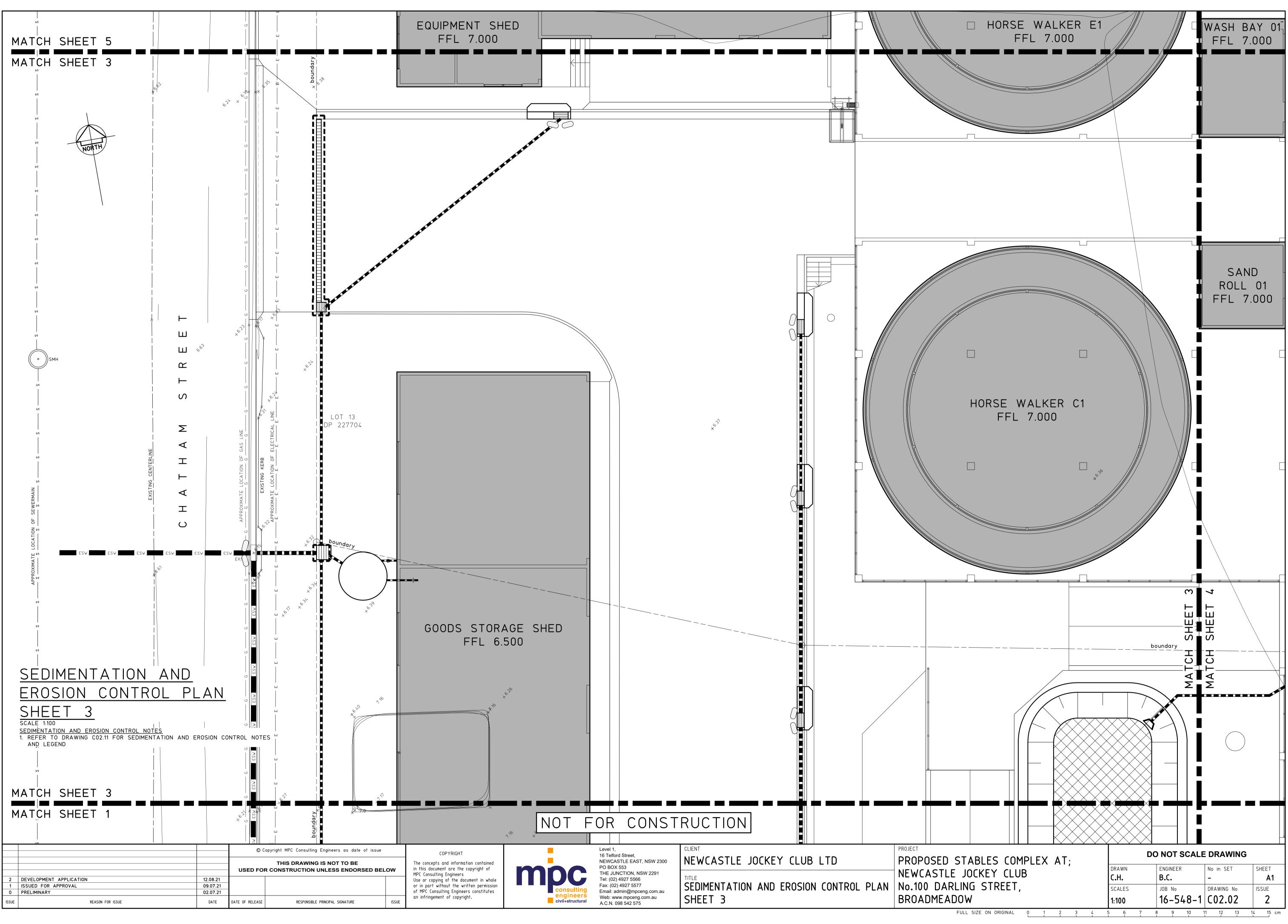

DETENTIO	ON BASIN I	DETAILS			
Name	Max WL	MaxVol	Max Q	Max Q	Max Q
			Total	Low Level	High Level
TRENCH_	6.74	105.7	0.000	0.000	0.000
SAND FIL	15.60	0.3	0.022	0.022	0.000
TRENCH9	6.74	106.3	0.000	0.000	0.000
P2_3 BAS	16.73	1.1	0.011	0.011	0.000
P1_15 BA	\$6.53	2.0	0.007	0.007	0.000
P2_15 BA	\$6.56	5.0	0.013	0.013	0.000
P4_3 BAS	16.76	2.9	0.014	0.014	0.000
P3_15 BA	\$6.54	3.3	0.011	0.011	0.000
P7_3 BAS	16.75	2.3	0.016	0.016	0.000
P9_3 BAS	16.76	4.4	0.016	0.016	0.000
P4_15 BA	\$6.52	7.5	0.011	0.011	0.000
BRB1	6.23	55.1	0.263	0.096	0.168
BRB2	6.16	126.6	0.118	0.118	0.000
P11_3 BA		1.0	0.010	0.010	0.000
P3_19 BA	\$6.50	1.0	0.009	0.009	0.000
P2_19 BA	\$6.51	1.4	0.009	0.009	0.000
P1_19 BA	\$6.52	1.7	0.009	0.009	0.000
Basin73	6.74	1.7	0.012	0.012	0.000
Basin76	6.78	4.2	0.015	0.015	0.000
TRENCH7	6.74	106.3	0.000	0.000	0.000
BRB3	6.04	38.4	0.043	0.043	0.000
TRENCH8	6.72	111.8	0.009	0.000	0.009
TRENCH1	6.72	93.3	0.007	0.000	0.007

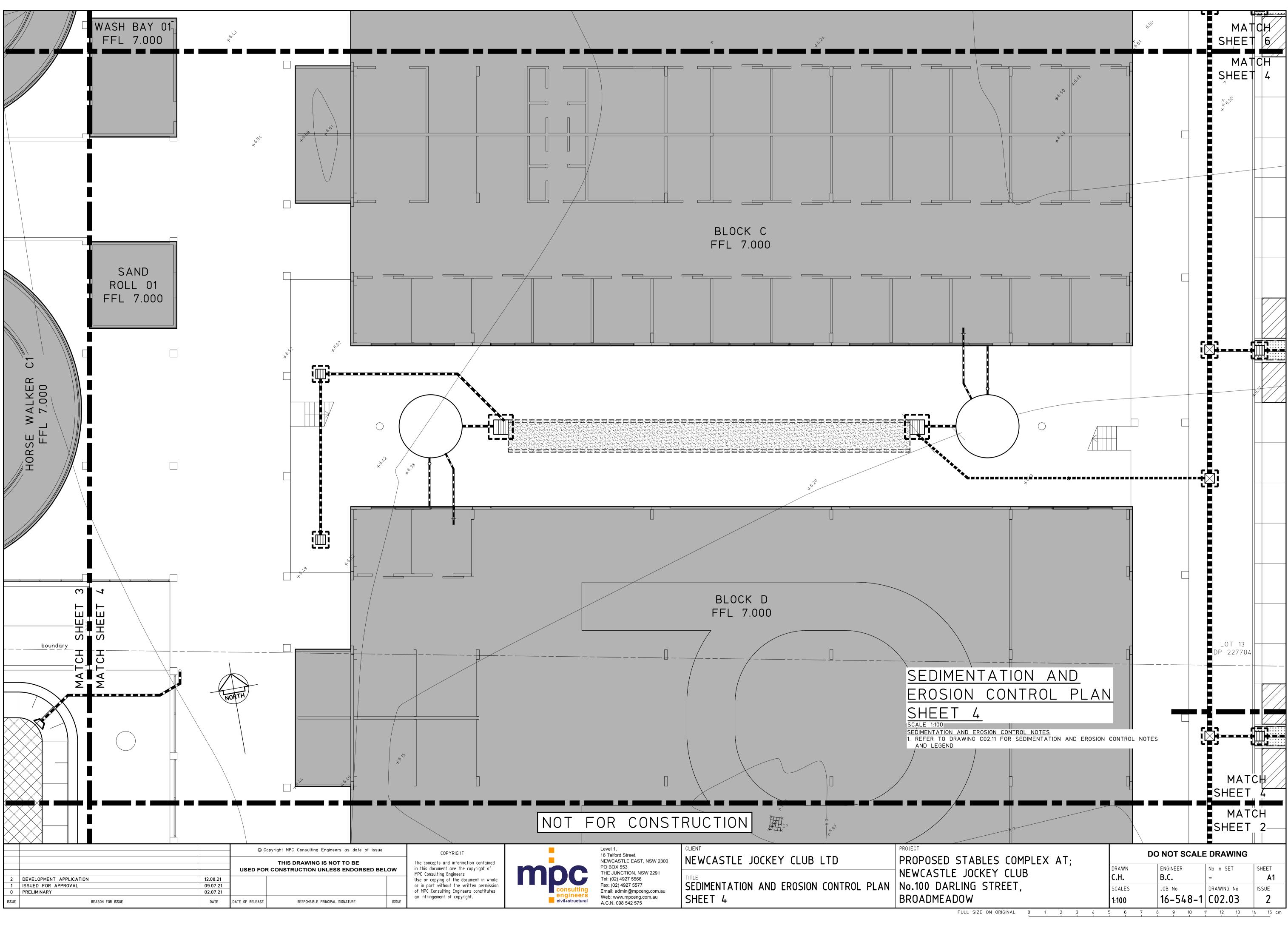
Appendix E

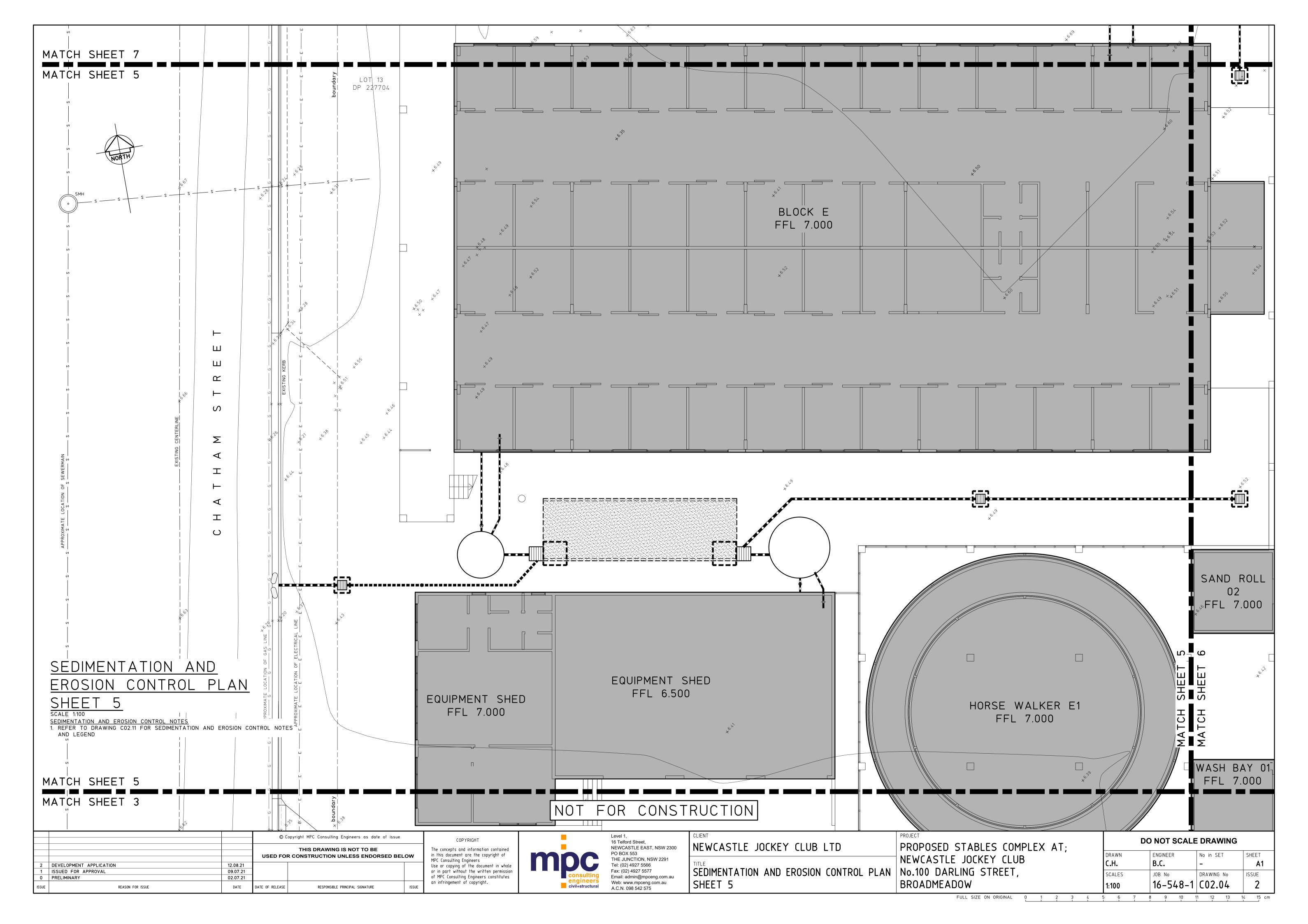
Soil and Water Management Plans

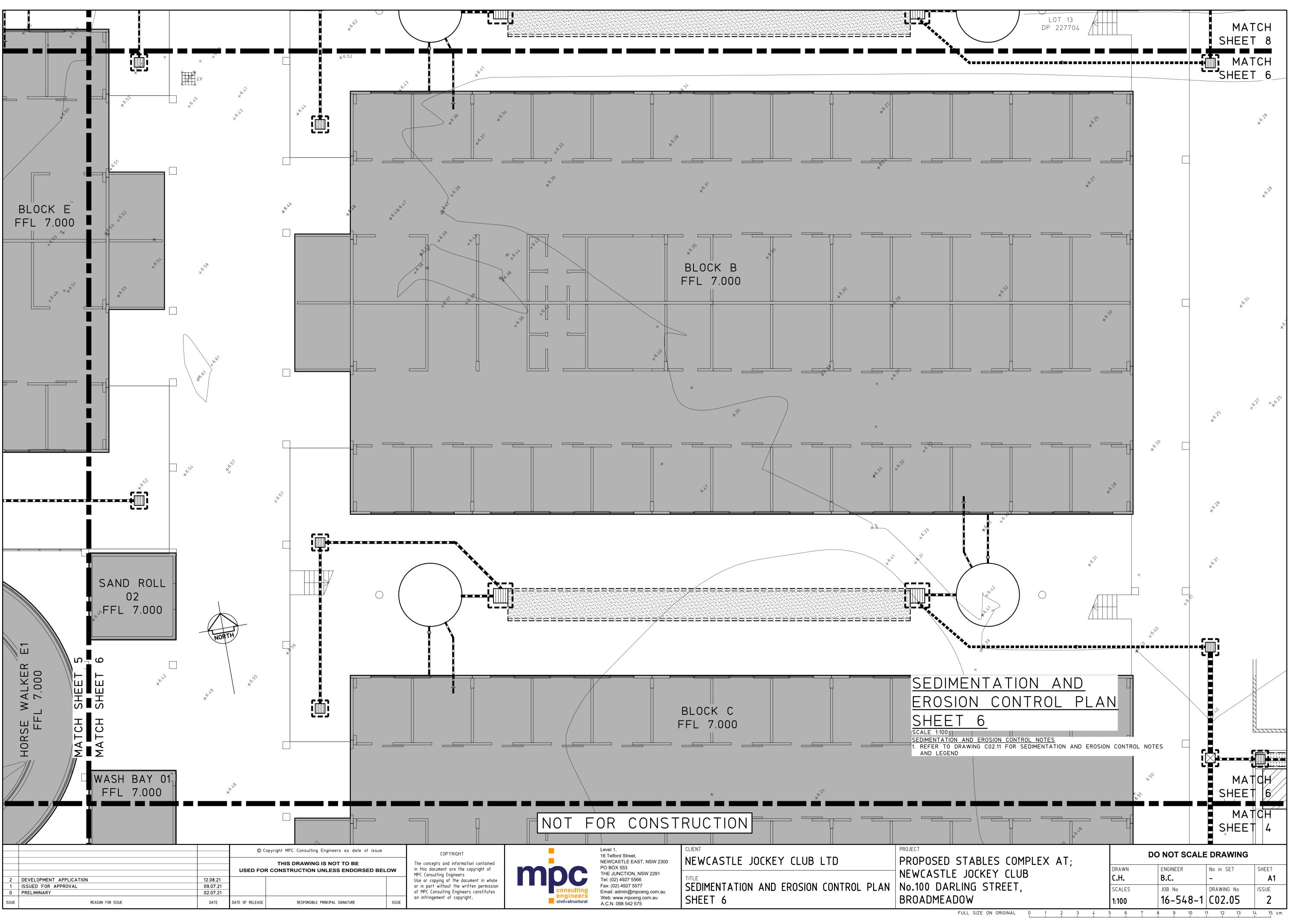


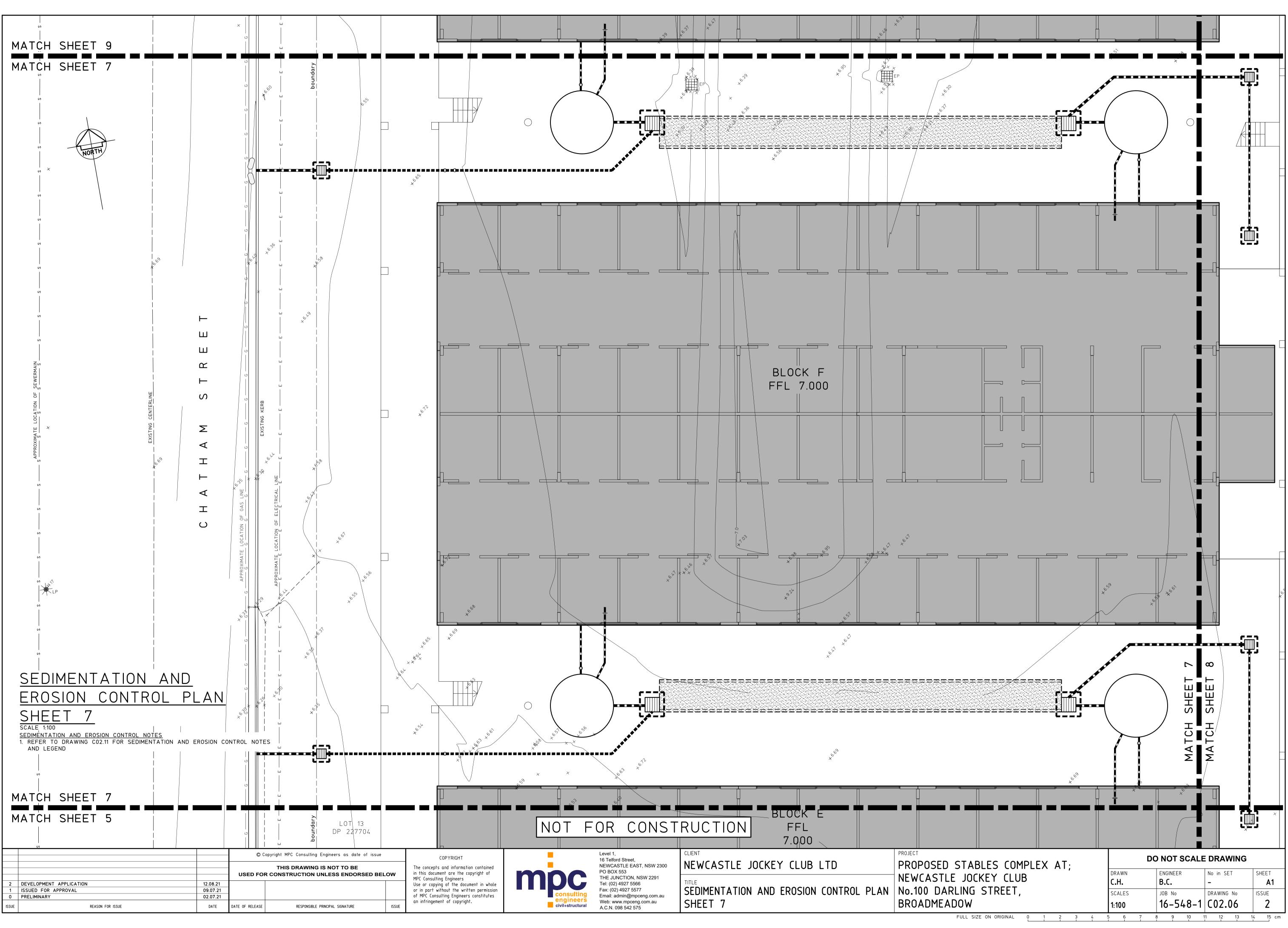

Ľ		J				
				opyright MPC Consulting Engineers as date of issue	COPYRIGHT	
			USED FO	THIS DRAWING IS NOT TO BE R CONSTRUCTION UNLESS ENDORSED BE	The concepts and information cont in this document are the copyright MPC Consulting Engineers	
			-			Use or copying of the document i or in part without the written pe
0	DEVELOPMENT APPLICATION	12.08.21				of MPC Consulting Engineers cons
ISSUE	REASON FOR ISSUE	DATE	DATE OF RELEASE	RESPONSIBLE PRINCIPAL SIGNATURE	ISSUE	an infringement of copyright.

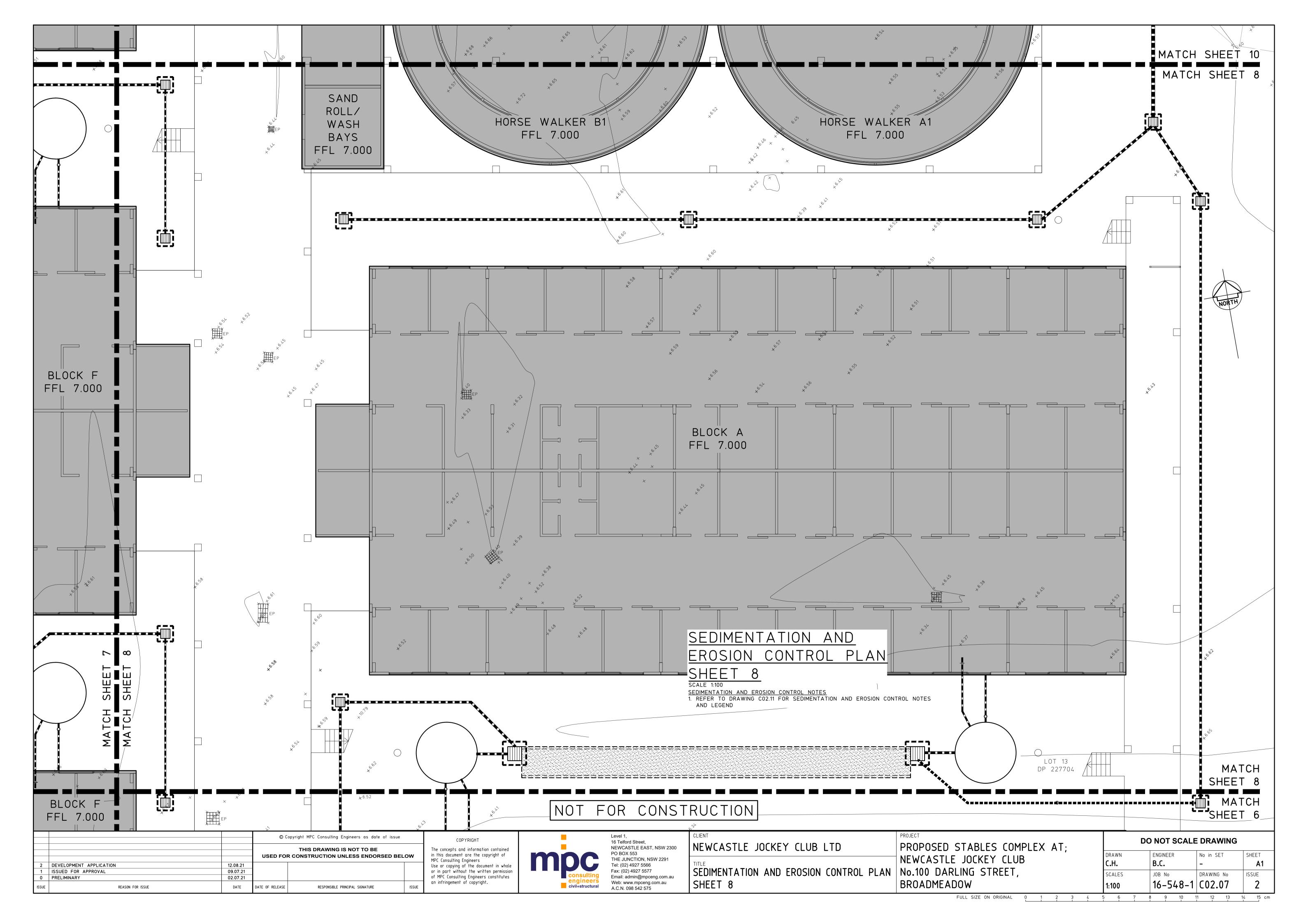


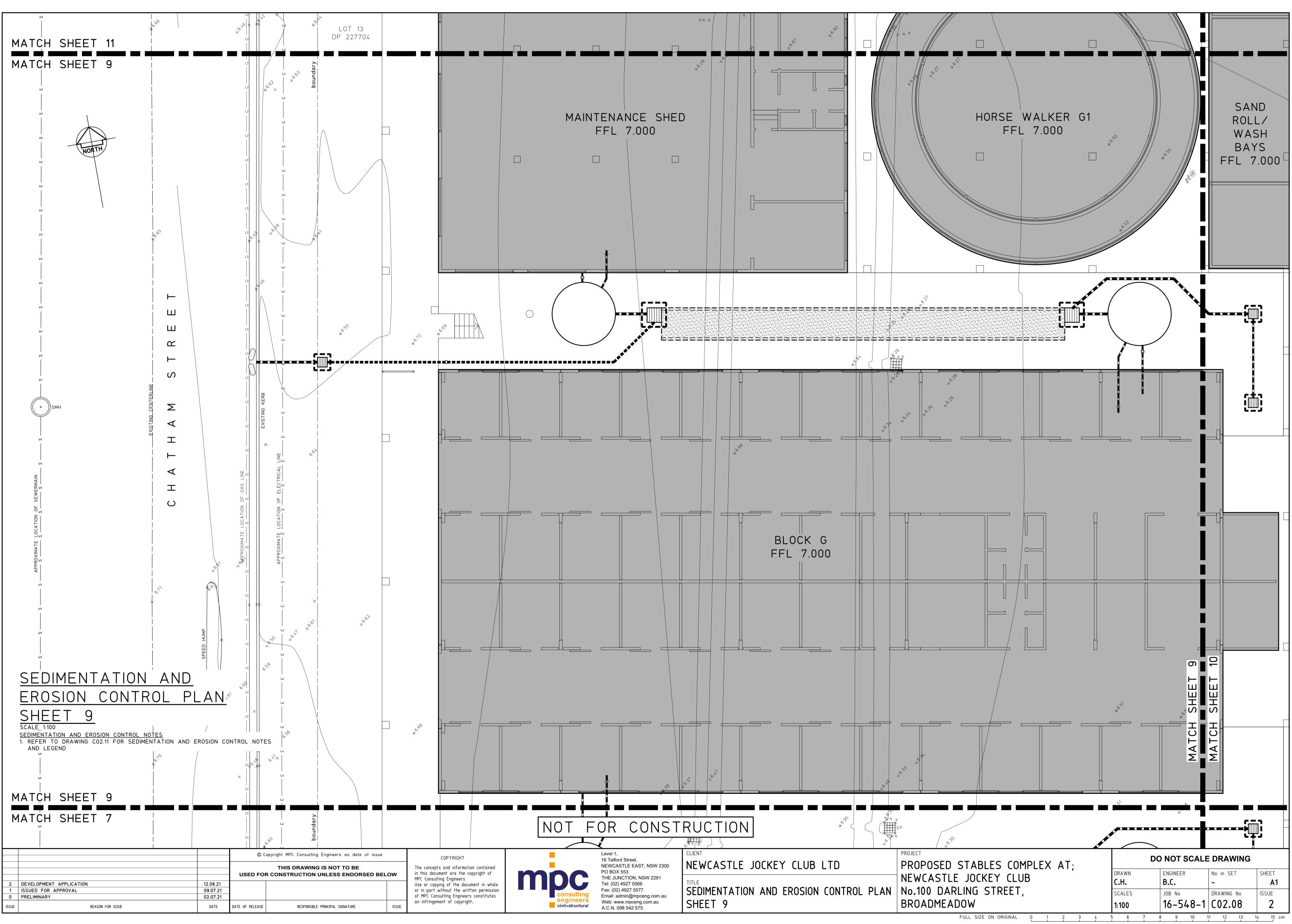


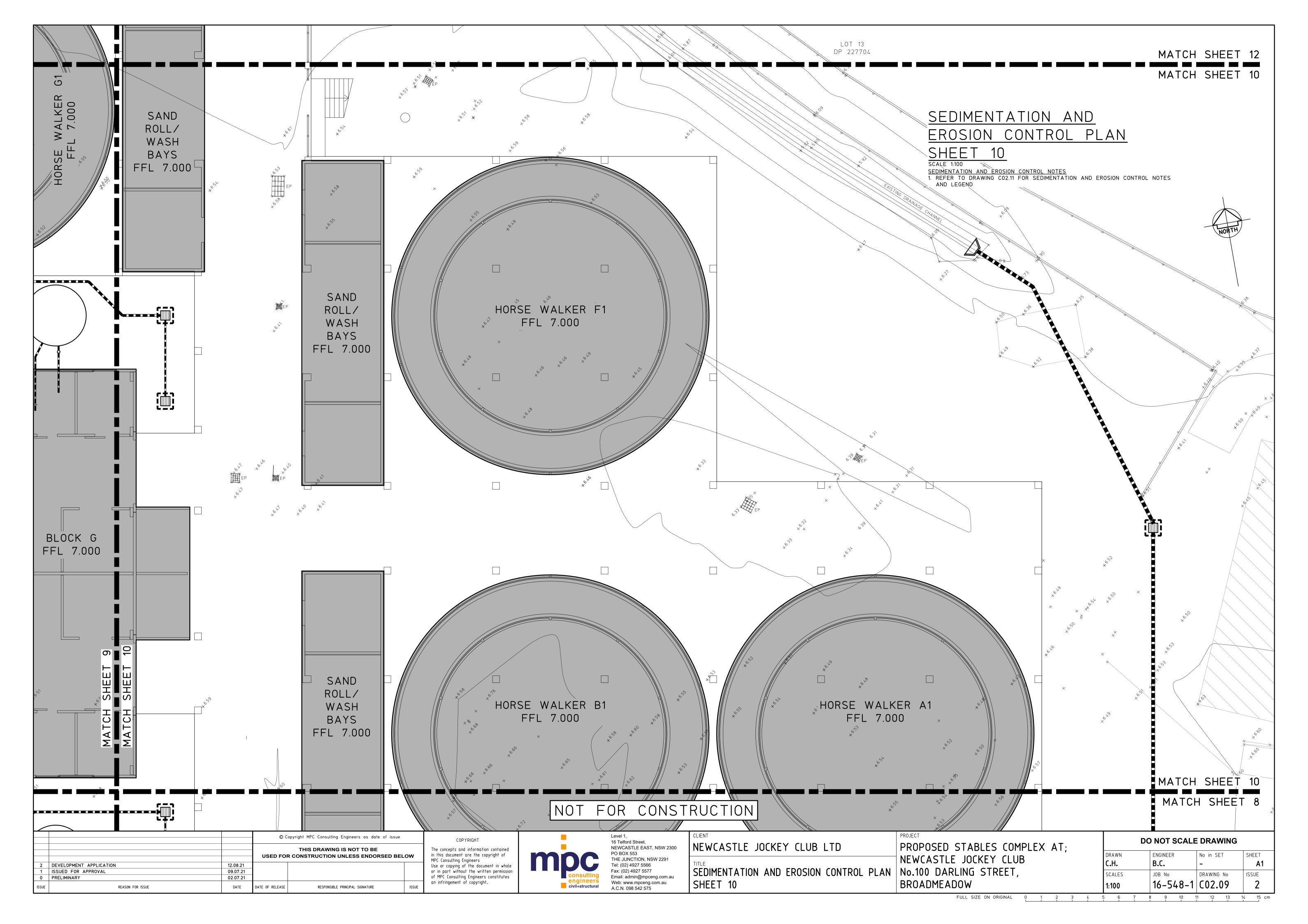

SE	DIMEN	T BASIN	SCHED	SEDIMENT BASIN SCHEDULE										
SEDIMENT BASIN No.	PLAN AREA (m2)	SETTLING ZONE (m3)	STORAGE ZONE (m3)	TOTAL BASIN VOLUME (m3)										
1	225	90	45	135										
2	192	77	38	115										
3	72	29	14	43										
4	54	21	11	32										
5	154	61	31	92										
6	65	26	13	39										
7	60	24	12	36										
8	160	64	32	96										

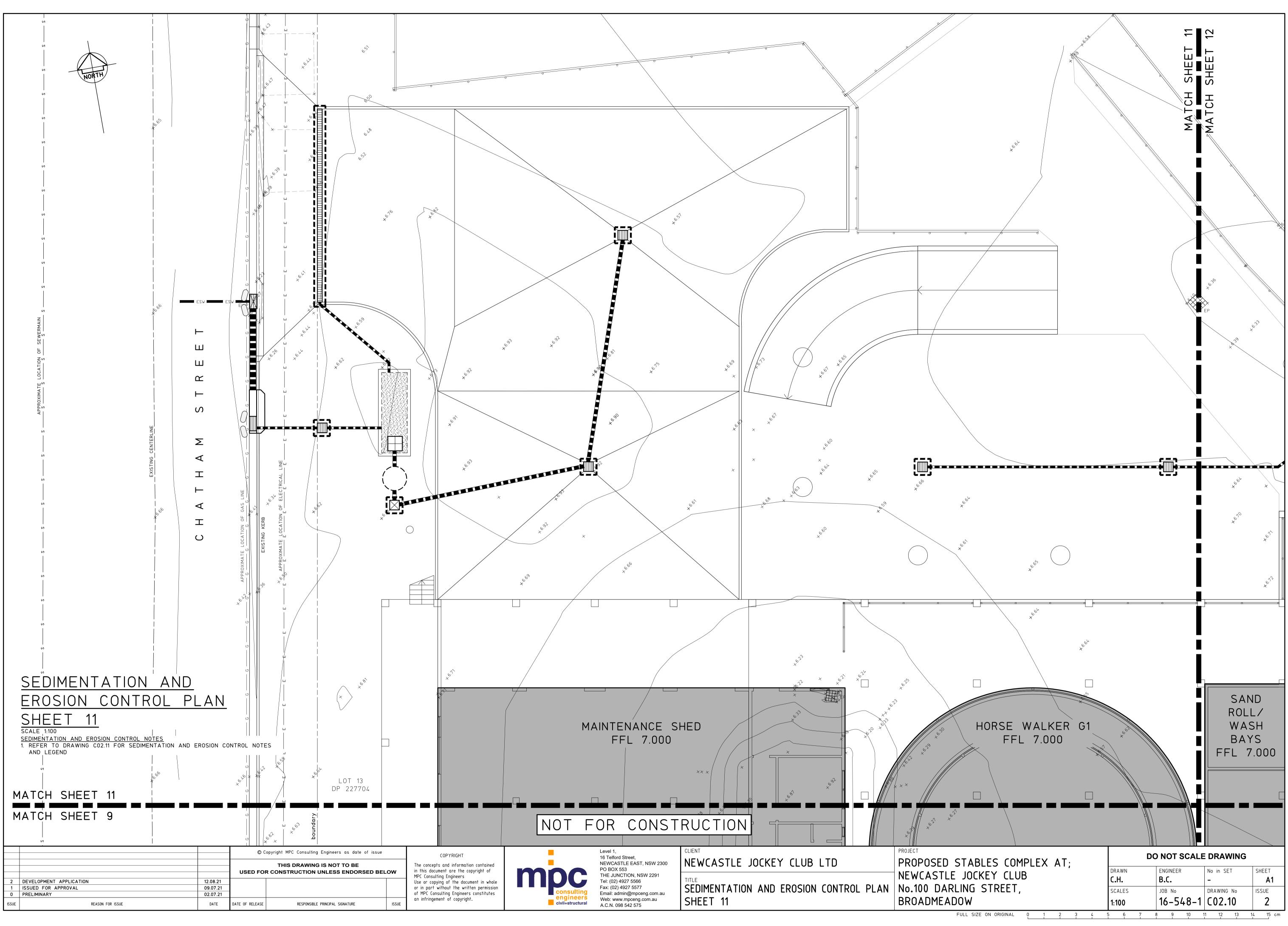

ES COMPLEX	DO NOT SCALE DRAWING									
EY CLUB	,		DRAWN C.H.		ENGINEER B.C.		No in SET -		SHEET A1	
STREET,			SCALES		JOB No		DRAWING	No	ISSUE	
			1:500		16-5	48-1	C02.0)	0	
ON ORIGINAL 0 1	2 3	4	56	7 8	3 9	10 1	1 12	13	14 15	cm

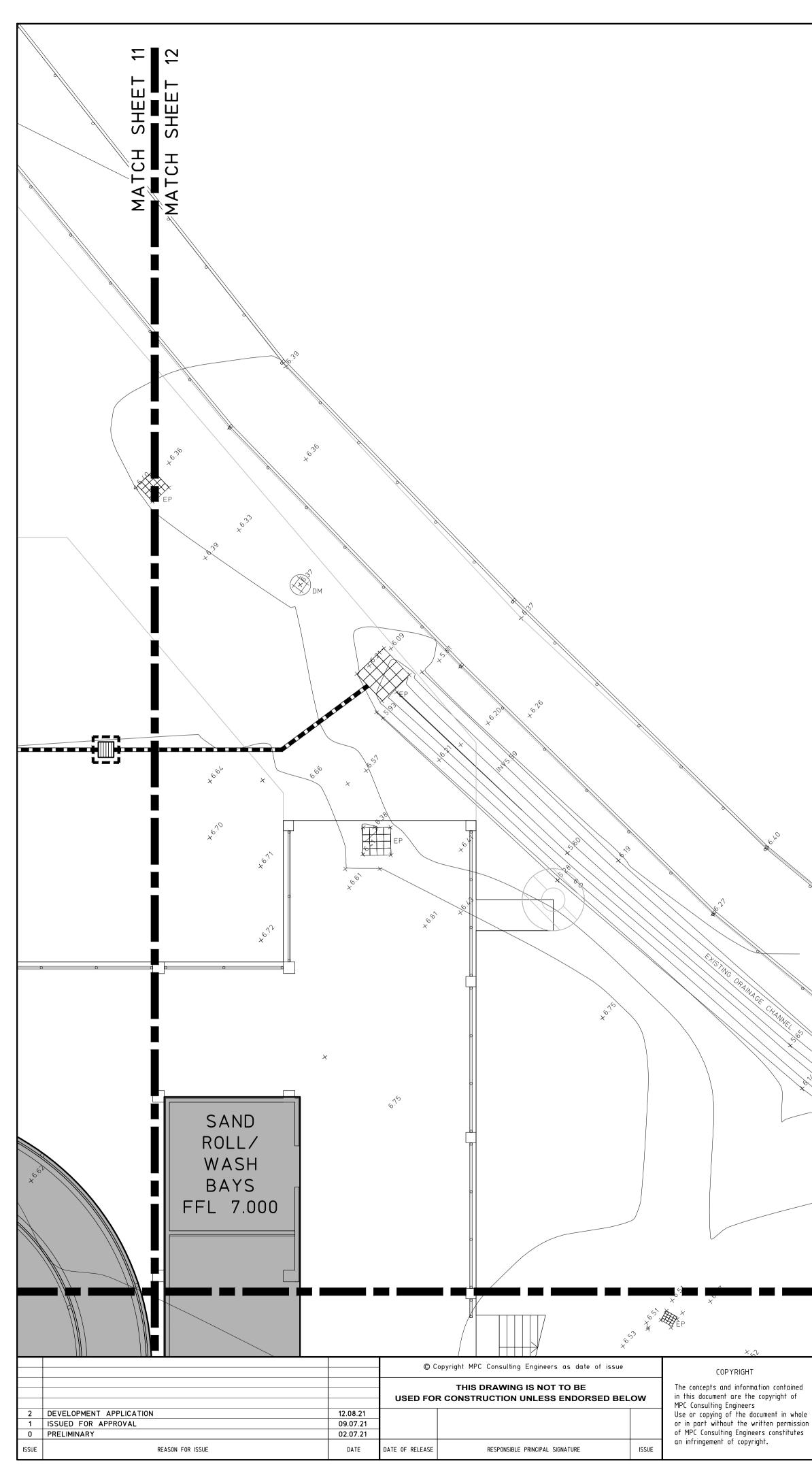












SEDIMENTATION AND EROSION CONTROL PLAN

SHEET 12 SCALE 1:100

SEDIMENTATION AND EROSION CONTROL NOTES

1. SELECTIVE CLEARING OF VEGETATION TO BE RESTRICTED TO NOMINATED AREAS WITH CLEARED VEGETATION WIND ROWED ON THE CONTOUR.

2. ALL EROSION AND SEDIMENT CONTROL MEASURES TO BE INSTALLED PRIOR TO SITE DISTURBANCE. 3. TOPSOIL FROM ALL AREAS THAT WILL BE DISTURBED TO BE STRIPPED AND STOCKPILED AT THE NOMINATED SITE. 4. NO MORE THAN 150m OF TRENCH TO BE OPEN AT ANY ONE TIME.

5. CUT AND FILL BATTER GRADIENTS OF 1:2 (MAXIMUM).

6. A STRIP OF TURF 450mm WIDE IS TO BE PLACED IMMEDIATELY BEHIND THE KERB ON ALL NEW ROAD

TO ACT AS A FILTER TRAP. REFER TO DETAIL SD6-13. 7. ALL SEDIMENT CONTROL STRUCTURES TO BE INSPECTED BY SITE SUPERVISOR AFTER EACH RAINFALL EVENT FOR STRUCTURAL DAMAGE AND ALL TRAPPED SEDIMENT TO BE REMOVED TO A NOMINATED STOCKPILE SITE. 8. THE PROJECT MANAGER TO INFORM ALL CONTRACTORS AND SUB-CONTRACTORS OF THEIR OBLIGATIONS UNDER THE

EROSION AND SEDIMENT CONTROL PLAN.

9. NO DISTURBED AREA IS TO REMAIN DENUDED LONGER THAN 14 DAYS. 10. ALL FILLS ARE TO BE LEFT WITH A LIP AT THE TOP OF THE SLOPE AT THE END OF EACH DAY'S OPERATION.

11. THE CONTRACTOR MUST ENSURE THE SUITABILITY AND INTEGRITY OF ALL WORKS AT THE END OF EACH DAY'S WORK. 12. ORANGE BARRIER TAPE TO BE AFFIXED TO TOP OF SEDIMENT CONTROL BARRIER TO IDENTIFY WORK AREA.

13. ALL SEDIMENTATION & EROSION CONTROL MEASURES ARE TO STRICTLY COMPLY WITH THE GUIDELINES DETAILED IN THE DEPARTMENT OF HOUSING PUBLICATION, "MANAGING URBAN STORMWATER - SOILS AND CONSTRUCTION", 4TH EDITION. 14. WATER TRUCKS TO BE USED AS REQUIRED TO PREVENT WIND EROSION.

15. SUBGRADE MATERIAL TO BE CONSTRUCTED IMMEDIATELY FOLLOWING FILL.

LOT 13 DP 227704

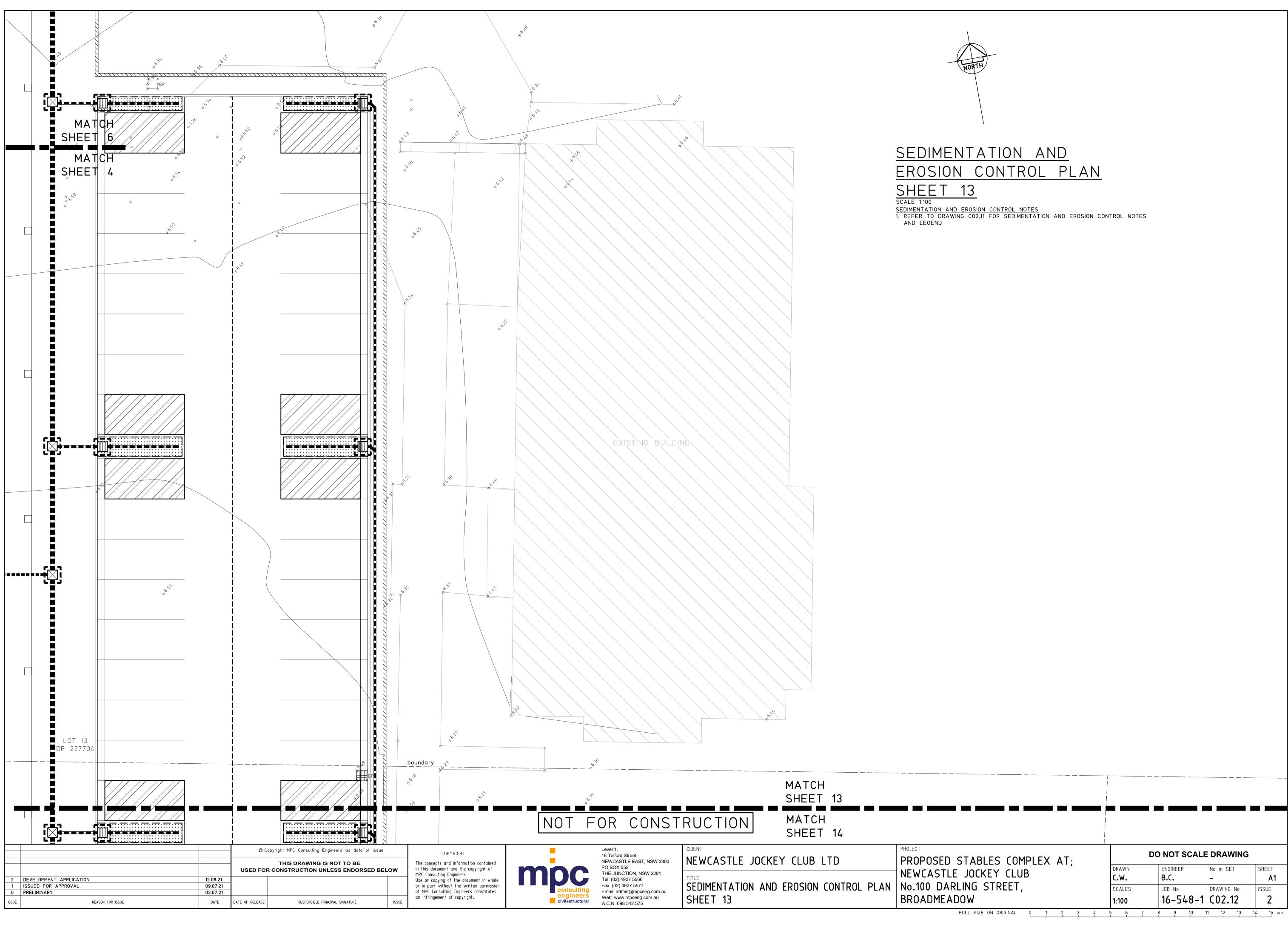
CLIENT

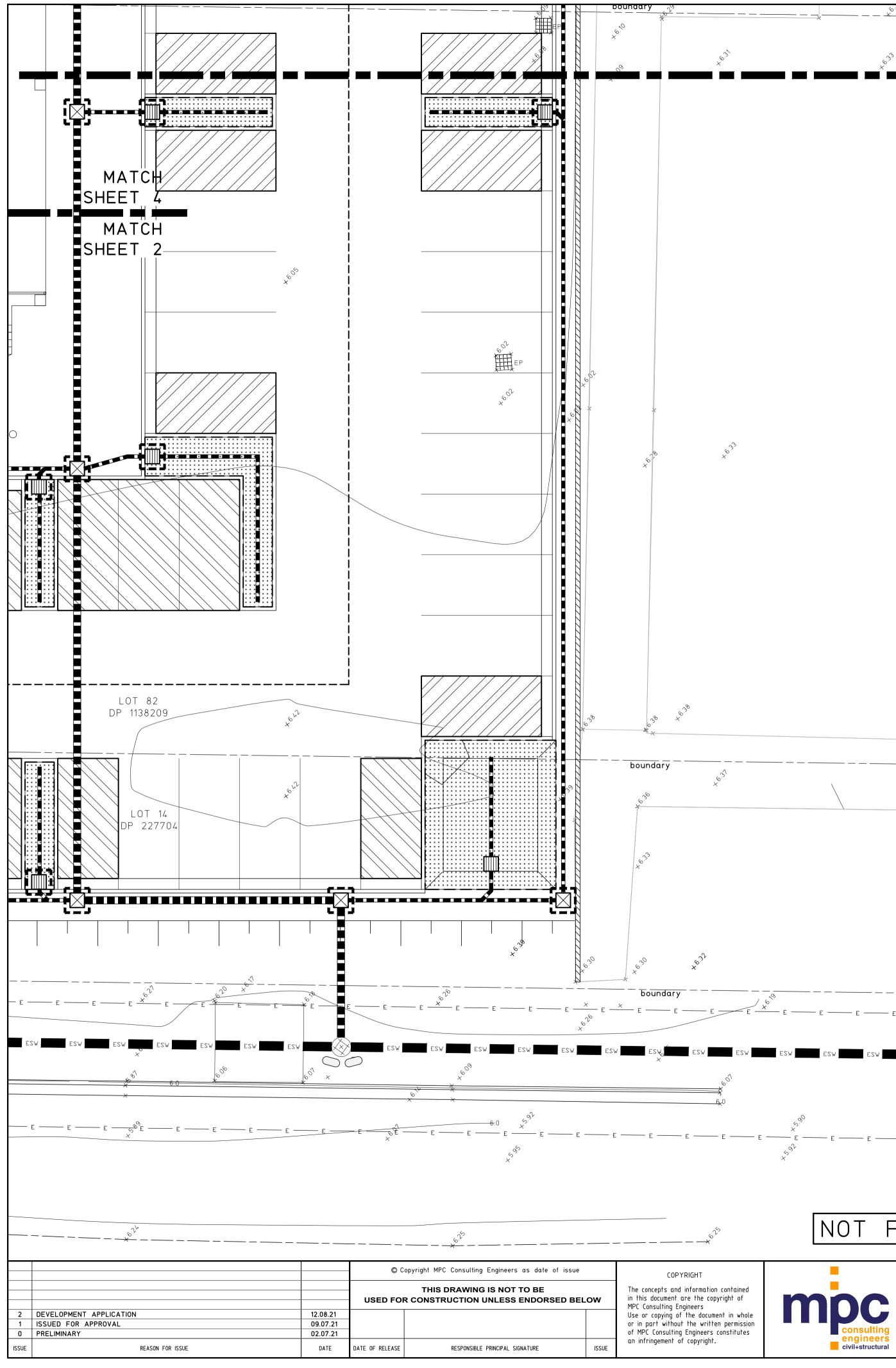
16 Telford Street, NEWCASTLE EAST, NSW 2300 PO BOX 553 THE JUNCTION, NSW 2291 Tel: (02) 4927 5566 Fax: (02) 4927 5577 Email: admin@mpceng.com.au Web: www.mpceng.com.au A.C.N. 098 542 575

Level 1,

NEWCASTLE JOCKEY CLUB LTD

ITLE SEDIMENTATION AND EROSION CONTROL PLAN No.100 DARLING STI SHEET 12


PROJECT PROPOSED STABLES NEWCASTLE JOCKEY BROADMEADOW


LEGEND	
	DENOTES ALLOWABLE AREA FOR TEMPORARY STOCKPILING OF CUT SOIL MATERIAL, REFER TO DETAIL SD4-1
	DENOTES ROCK CHECK DAM, REFER TO DETAIL SD5-4
←	DENOTES EARTH BANK (LOW FLOW), REFER TO DETAIL SD5-5
→	DENOTES EARTHBANK (HIGH FLOW), REFER TO DETAIL SD5-6
₩	DENOTES RECP: CONCENTRATED FLOW, REFER TO DETAIL SD5-7
POND 1	DENOTES SEDIMENT POND, m ³ SETTLING ZONE, m ³ SEDIMENT STORAGE, m ³ MINIMUM STORAGE, REFER TO DETAIL SD6-4
	DENOTES STRAW BALE FILTER, REFER TO DETAIL SD6-7
/	DENOTES SEDIMENT FENCE, REFER TO DETAIL SD6-8
\bigcirc \bigcirc	DENOTES MESH AND GRAVEL INLET FILTER, REFER TO DETAIL SD6-11
	DENOTES GEOTEXTILE INLET FILTER, REFER TO DETAIL SD6-12
	DENOTES STABILISED SITE ACCESS, REFER TO DETAIL SD6-14
בֿב	DENOTES LEVEL SPREADER

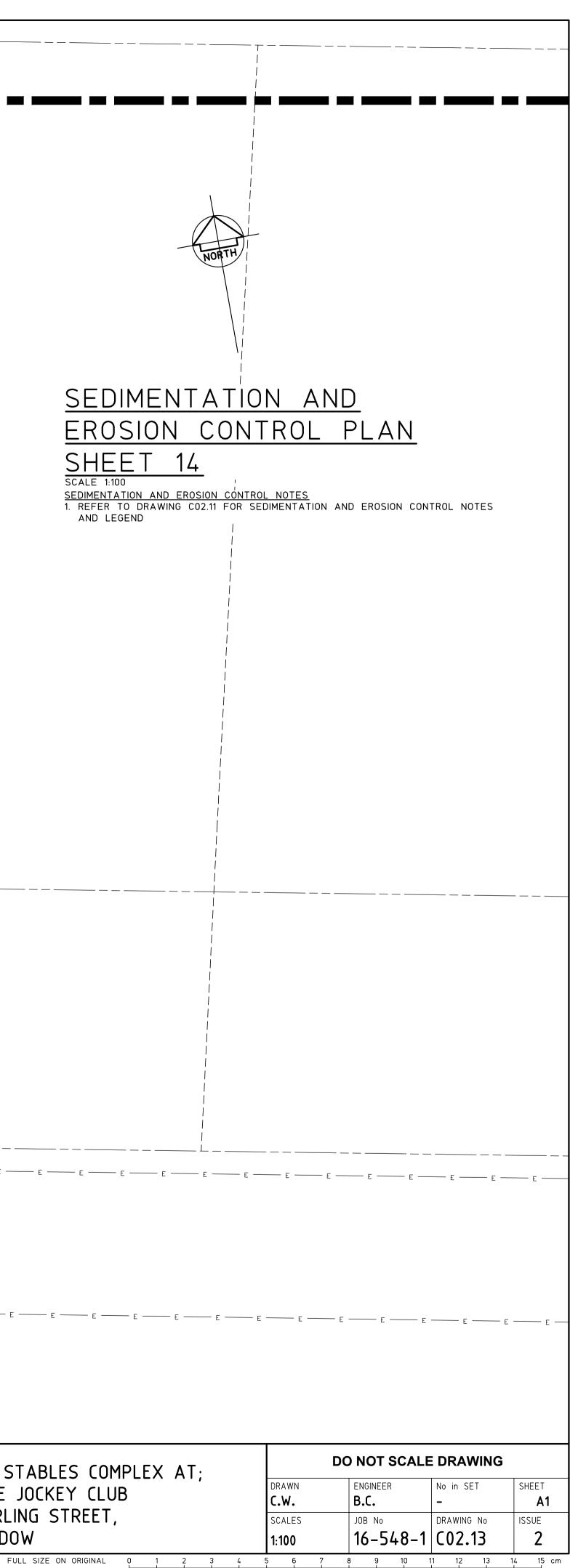
S COMPLEX AT;	DO NOT SCALE DRAWING								
Y CLUB	DRAWN C.H.	ENGINEER B.C.	No in SET -	SHEET A1					
REET,	SCALES	JOB No	DRAWING No	ISSUE					
	1:100	16-548-1	C02.11	2					
ORIGINAL 0 1 2 3 4	5 6 7	8 9 10 1	1 12 13 1	4 15 cr					

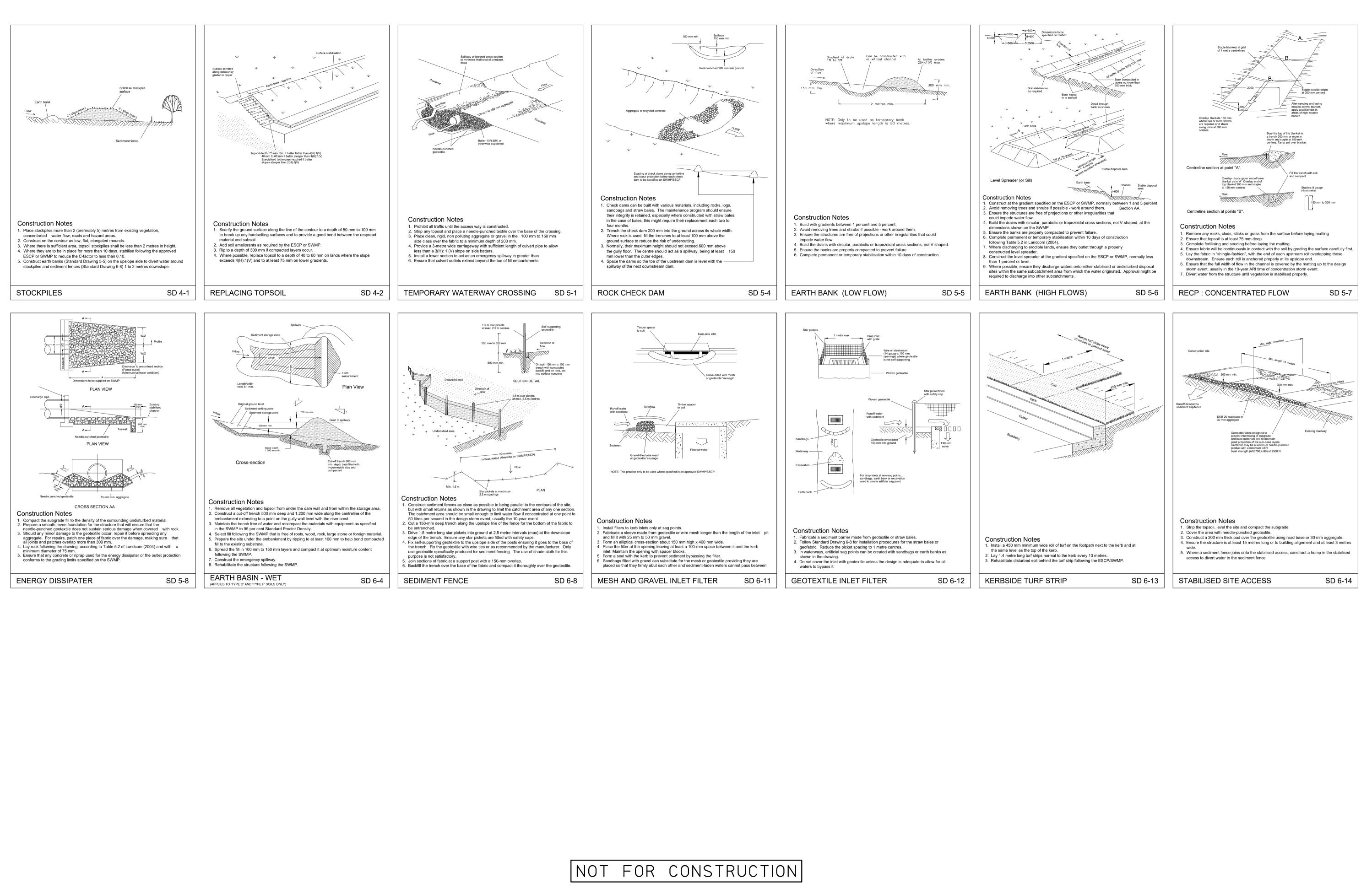
MATCH SHEET 12

MATCH SHEET 10

MATCH SHEET 13 MATCH SHEET 14

6^{.0}


NOT FOR CONSTRUCTION


Level 1, 16 Telford Street, NEWCASTLE EAST, NSW 2300 PO BOX 553 THE JUNCTION, NSW 2291 Tel: (02) 4927 5566 Fax: (02) 4927 5577 Email: admin@mpceng.com.au Web: www.mpceng.com.au A.C.N. 098 542 575

CLIENT NEWCASTLE JOCKEY CLUB LTD

TITLE SEDIMENTATION AND EROSION CONTROL PLAN No.100 DARLING STREET, SHEET 14

PROJECT PROPOSED STABLES COMPLEX AT; NEWCASTLE JOCKEY CLUB BROADMEADOW

			© C	opyright MPC Consulting Engineers as date of issue	COPYRIGHT		
			USED FO	THIS DRAWING IS NOT TO BE R CONSTRUCTION UNLESS ENDORSED BEI	Low	The concepts and information cont in this document are the copyright MPC Consulting Engineers	
	DEVELOPMENT APPLICATION	12.08.21	-			Use or copying of the document in or in part without the written per of MPC Consulting Engineers consti	
ISSUE	REASON FOR ISSUE		DATE OF RELEASE	RESPONSIBLE PRINCIPAL SIGNATURE	ISSUE	an infringement of copyright.	

Level 1, 16 Telford Street, NEWCASTLE EAST, NSW 2300 PO BOX 553 THE JUNCTION, NSW 2291 Tel: (02) 4927 5566 Fax: (02) 4927 5577 Email: admin@mpceng.com.au Web: www.mpceng.com.au A.C.N. 098 542 575

CLIENT NEWCASTLE JOCKEY CLUB LTD

SEDIMENTATION AND EROSION CONTROL DETAILS

PROJECT PROPOSED STABLE NEWCASTLE JOCKE No.100 DARLING ST BROADMEADOW

ES COMPLEX AT;						DO NOT SCALE DRAWING									
EY CLUB			drawn C.W.			ER		No in SET -			SHEET A1				
TREET,					SCALE	ĒS		JOB No)		DRAW	ING N	0	ISSU	Ξ
					N.T.	s.		16-5	548	8–1	C02	2.14	F	()
ON ORIGINAL O	1	2	3	4	5 6	3 7	' 8	3 9	10	1	1 1	2	13	14	15 cm

Appendix F

Soil and Water Management Calculations

Proposed Stables Complex – Newcastle Jockey Club Stormwater Management Plan MPC Ref No. 160548.1 [3] Note: These "Standard Calculation" spreadsheets relate only to low erosion hazard lands as identified in figure 4.6 where the designer chooses to not use the RUSLE to size sediment basins. The more "Detailed Calculation" spreadsheets should be used on high erosion hazard lands as identified by figure 4.6 or where the designer chooses to run the RUSLE in calculations.

1. Site Data Sheet

Site name: Newcastle Jockey Club

Site location: Chatham and Darling Streets, Broadmeadow NSW

Precinct: Newcastle

Description of site: Proposed Stables Comples and Car Park

Site area			Si	ite		Remarks	
Site alea	1	2	3	4	5	6	Reillaiks
Total catchment area (ha)	0.7	0.6	0.226	0.164	0.48	0.2	
Disturbed catchment area (ha)	0.7	0.6	0.226	0.164	0.48	0.2	

Soil analysis

Soil landscape	Sloping Site - Silty soils with some sand and gravel					From Geotech report for the iste	
Soil Texture Group	Type D	Type D	Type D	Type D	Type D	Type D	Sections 6.3.3(c), (d) and (e)

Rainfall data

Design rainfall depth (days)	5	5	5	5	5	5	See Sections 6.3.4 (d) and (e)
Design rainfall depth (percentile)	80	80	80	80	80	80	See Sections 6.3.4 (f) and (g)
x-day, y-percentile rainfall event	30.5	30.5	30.5	30.5	30.5	30.5	See Section 6.3.4 (h)
Rainfall intensity: 2-year, 6-hour storm	10.89	10.89	10.89	10.89	10.89	10.89	See IFD chart for the site
Rainfall erosivity (R-factor)	2580	2580	2580	2580	2580	2580	Automatic calculation from above data

Comments:

Note: These "Standard Calculation" spreadsheets relate only to low erosion hazard lands as identified in figure 4.6 where the designer chooses to not use the RUSLE to size sediment basins. The more "Detailed Calculation" spreadsheets should be used on high erosion hazard lands as identified by figure 4.6 or where the designer chooses to run the RUSLE in calculations.

1. Site Data Sheet

Site name: Newcastle Jockey Club

Site location: Chatham and Darling Streets, Broadmeadow NSW

Precinct: Newcastle

Description of site: Proposed Stables Comples and Car Park

Site area			Si	te	Remarks	
Site alea	7	8				Reillarks
Total catchment area (ha)	0.19	0.5				
Disturbed catchment area (ha)	0.19	0.5				

Soil analysis

Soil landscape	Sloping Site - Silty soils with some sand and gravel					From Geotech report for the iste
Soil Texture Group	Type D Ty	ype D				Sections 6.3.3(c), (d) and (e)

Rainfall data

Design rainfall depth (days)	5	5			See Sections 6.3.4 (d) and (e)
Design rainfall depth (percentile)	80	80			See Sections 6.3.4 (f) and (g)
x-day, y-percentile rainfall event	30.5	30.5			See Section 6.3.4 (h)
Rainfall intensity: 2-year, 6-hour storm	10.89	10.89			See IFD chart for the site
Rainfall erosivity (R-factor)	2580	2580			Automatic calculation from above data

Comments:

2. Storm Flow Calculations

Peak flow is given by the Rational Formula:

$$Qy = 0.00278 \times C_{10} \times F_Y \times I_{y, tc} \times A$$

where: Q_v is peak flow rate (m³/sec) of average recurrence interval (ARI) of "Y" years

- C₁₀ is the runoff coefficient (dimensionless) for ARI of 10 years. Rural runoff coefficients are given in Volume 2, figure 5 of Pilgrim (1998), while urban runoff coefficients are given in Volume 1, Book VIII, figure 1.13 of Pilgrim (1998) and construction runoff coefficients are given in Appendix F
 - Fy is a frequency factor for "Y" years. Rural values are given in Volume 1, Book IV, Table 1.1 of Pilgrim (1998) while urban coefficients are given in Volume 1, Book VIII, Table 1.6 of Pilgrim (1998)
 - A is the catchment area in hectares (ha)
 - $I_{y, tc}$ is the average rainfall intensity (mm/hr) for an ARI of "Y" years and a design duration of "tc" (minutes or hours)

Time of concentration (t_c) = 0.76 x (A/100)^{0.38} hrs (Volume 1, Book IV of Pilgrim, 1998)

Note: For urban catchments the time of concentration should be determined by more precise calculations or reduced by a factor of 50 per cent.

Site	А	tc	Rainfall intensity, I, mm/hr							
Sile	(ha)	(mins)	1 _{yr,tc}	5 _{yr,tc}	10 _{yr,tc}	20 _{yr,tc}	50 _{yr,tc}	100 _{yr,tc}	C ₁₀	
1	0.7	7	78	122	135	154	177	195	0.76	
2	0.6	7	78	122	135	154	177	195	0.76	
3	0.226	5	78	122	135	154	177	195	0.76	
4	0.164	4	78	122	135	154	177	195	0.76	
5	0.48	6	78	122	135	154	177	195	0.76	
6	0.2	4	78	122	135	154	177	195	0.76	

Peak flow calculations, 1

Peak flow calculations, 2

	Frequency							
ARI yrs	factor	1	2	3	4	5	6	Comment
yrs (F _y)	(F _y)	(m ³ /s)	(m3/s)					
1 _{yr, tc}	0.8	0.092	0.079	0.030	0.022	0.063	0.026	
5 _{yr, tc}	0.95	0.171	0.147	0.055	0.040	0.118	0.049	
10 _{yr, tc}	1	0.200	0.171	0.064	0.047	0.137	0.057	
20 _{yr, tc}	1.05	0.239	0.205	0.077	0.056	0.164	0.068	
50 _{yr, tc}	1.15	0.301	0.258	0.097	0.071	0.206	0.086	
100 _{yr, tc}	1.2	0.346	0.297	0.112	0.081	0.237	0.099	

2. Storm Flow Calculations

Peak flow is given by the Rational Formula:

$$Qy = 0.00278 \times C_{10} \times F_Y \times I_{y, tc} \times A$$

where: Q_v is peak flow rate (m³/sec) of average recurrence interval (ARI) of "Y" years

- C₁₀ is the runoff coefficient (dimensionless) for ARI of 10 years. Rural runoff coefficients are given in Volume 2, figure 5 of Pilgrim (1998), while urban runoff coefficients are given in Volume 1, Book VIII, figure 1.13 of Pilgrim (1998) and construction runoff coefficients are given in Appendix F
 - Fy is a frequency factor for "Y" years. Rural values are given in Volume 1, Book IV, Table 1.1 of Pilgrim (1998) while urban coefficients are given in Volume 1, Book VIII, Table 1.6 of Pilgrim (1998)
 - A is the catchment area in hectares (ha)
 - $I_{y, tc}$ is the average rainfall intensity (mm/hr) for an ARI of "Y" years and a design duration of "tc" (minutes or hours)

Time of concentration (t_c) = 0.76 x (A/100)^{0.38} hrs (Volume 1, Book IV of Pilgrim, 1998)

Note: For urban catchments the time of concentration should be determined by more precise calculations or reduced by a factor of 50 per cent.

Site	А	tc	Rainfall intensity, I, mm/hr								
Sile	(ha)	(mins)	1 _{yr,tc}	5 _{yr,tc}	10 _{yr,tc}	20 _{yr,tc}	50 _{yr,tc}	100 _{yr,tc}	C ₁₀		
7	0.19	4	78	122	135	154	177	195	0.76		
8	0.5	6	78	122	135	154	177	195	0.76		

Peak flow calculations, 1

Peak flow calculations, 2

ADI Fr	Frequency			Peak	flows			
	ARI factor yrs (F _y)	7	8					Comment
,		(m ³ /s)	(m³/s)	(m ³ /s)	(m ³ /s)	(m ³ /s)	(m3/s)	
1 _{yr, tc}	0.8	0.025	0.066					
5 _{yr, tc}	0.95	0.047	0.122					
10 _{yr, tc}	1	0.054	0.143					
20 _{yr, tc}	1.05	0.065	0.171					
50 _{yr, tc}	1.15	0.082	0.215					
100 _{yr, tc}	1.2	0.094	0.247					

4. Volume of Sediment Basins, Type D and Type F Soils

Basin volume = settling zone volume + sediment storage zone volume

Settling Zone Volume

The settling zone volume for *Type F* and *Type D* soils is calculated to provide capacity to contain all runoff expected from up to the y-percentile rainfall event. The volume of the basin's settling zone (V) can be determined as a function of the basin's surface area and depth to allow for particles to settle and can be determined by the following equation:

 $V = 10 \times C_v \times A \times R_{y-\% ile, x-day} (m^3)$

where:

10 = a unit conversion factor

- C_v = the volumetric runoff coefficient defined as that portion of rainfall that runs off as stormwater over the x-day period
- R = is the x-day total rainfall depth (mm) that is not exceeded in y percent of rainfall events. (See Sections 6.3.4(d), (e), (f), (g) and (h)).

A = total catchment area (ha)

Sediment Storage Zone Volume

In the standard calculation, the sediment storage zone is 50 percent of the setting zone. However, designers can work to capture the 2-month soil loss as calculated by the RUSLE (Section 6.3.4(i)(ii)), in which case the "Detailed Calculation" spreadsheets should be used.

Site	Cv	R x-day y-%ile	Total catchment area (ha)	Settling zone volume (m ³)	Sediment storage volume (m ³)	Total basin volume (m ³)
1	0.42	30.5	0.7	89.67	45	134.505
2	0.42	30.5	0.6	76.86	38	115.29
3	0.42	30.5	0.226	28.9506	14	43.4259
4	0.42	30.5	0.164	21.0084	11	31.5126
5	0.42	30.5	0.48	61.488	31	92.232
6	0.42	30.5	0.2	25.62	13	38.43

4. Volume of Sediment Basins, Type D and Type F Soils

Basin volume = settling zone volume + sediment storage zone volume

Settling Zone Volume

The settling zone volume for *Type F* and *Type D* soils is calculated to provide capacity to contain all runoff expected from up to the y-percentile rainfall event. The volume of the basin's settling zone (V) can be determined as a function of the basin's surface area and depth to allow for particles to settle and can be determined by the following equation:

 $V = 10 \times C_v \times A \times R_{y-\% ile, x-day} (m^3)$

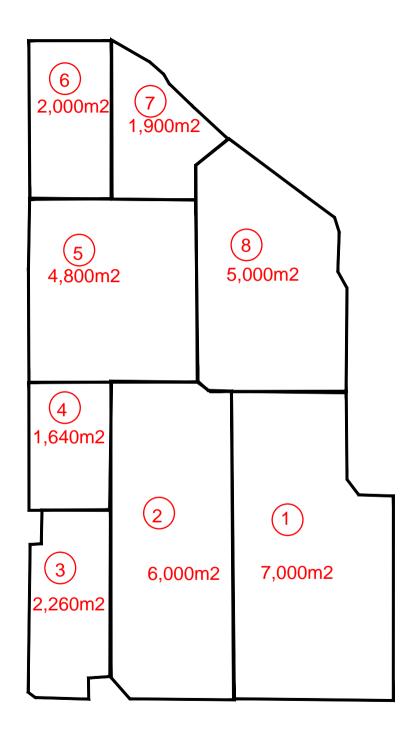
where:

10 = a unit conversion factor

- C_v = the volumetric runoff coefficient defined as that portion of rainfall that runs off as stormwater over the x-day period
- R = is the x-day total rainfall depth (mm) that is not exceeded in y percent of rainfall events. (See Sections 6.3.4(d), (e), (f), (g) and (h)).

A = total catchment area (ha)

Sediment Storage Zone Volume


In the standard calculation, the sediment storage zone is 50 percent of the setting zone. However, designers can work to capture the 2-month soil loss as calculated by the RUSLE (Section 6.3.4(i)(ii)), in which case the "Detailed Calculation" spreadsheets should be used.

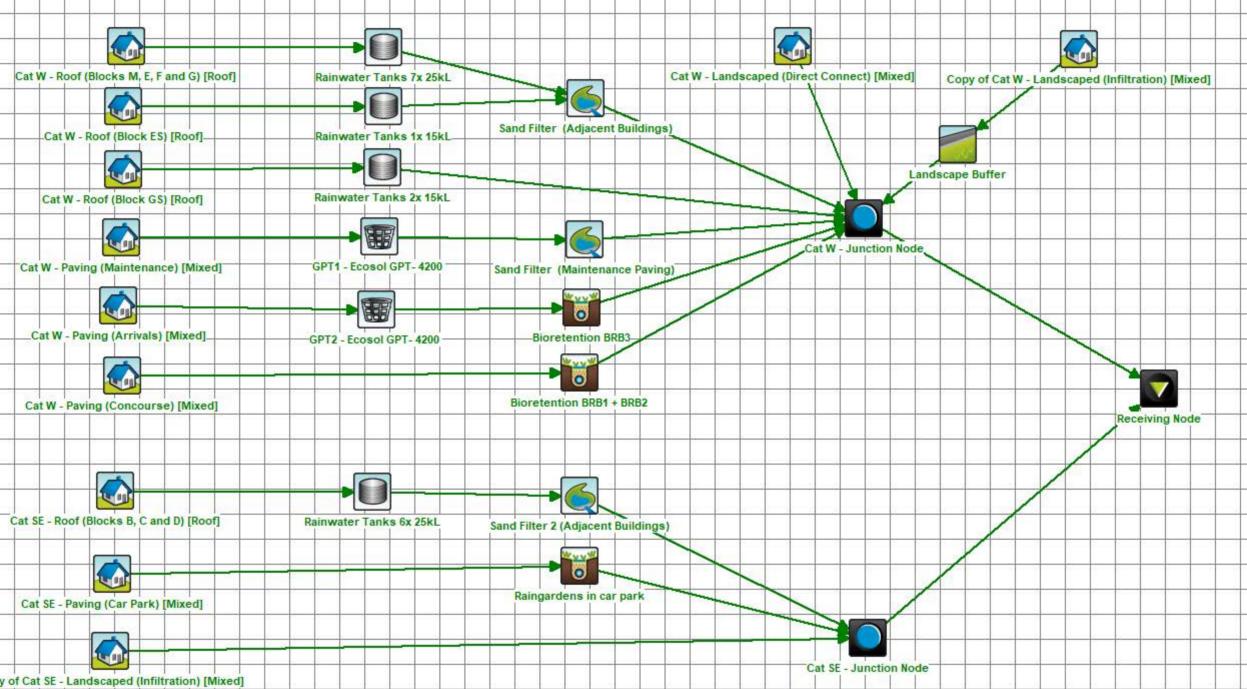
Total Basin Volume

Site	Cv	R x-day y-%ile	Total catchment area (ha)	Settling zone volume (m ³)	Sediment storage volume (m ³)	Total basin volume (m³)
7	0.42	30.5	0.19	24.339	12	36.5085
8	0.42	30.5	0.5	64.05	32	96.075

MPC Ref:160548.1Project:Newcastle Jockey Club - Proposed Stables ComplesSubject:Summary of Construction Phase Sediment Basin Volumes

Sediment Basin No.	Plan Area of base (m2)	Settling Zone (m3)	Storage Zone (m3)	Total Basin Volume (m3)
1	225	90	45	135
2	192	77	38	115
3	72	29	14	43
4	54	21	11	32
5	154	61	31	92
6	65	26	13	39
7	60	24	12	36
8	160	64	32	96

Appendix G


Stormwater Quality (MUSICLink) Report

Proposed Stables Complex – Newcastle Jockey Club Stormwater Management Plan MPC Ref No. 160548.1 [3]

"MUSIC" MODEL SCHEMATIC

NEWCASTLE JOCKEY CLUB - CHATHAM ST STABLES COMPLEX

Copy of Cat SE - Landscaped (Infiltration) [Mixed]

music@link

MUSIC-link Report

Project Details		Company D	etails
Project:	N IC Stables Complex	Company	MPC Consulting Engineers
Project:	NJC Stables Complex	Company:	MPC Consulting Engineers
Report Export Date:	22/07/2021	Contact:	Benjamin Curran
Catchment Name:	160548 NJC Chatham	Address:	Suite 3, Level 1, 16 Telford St Newcastle NSW 2300
	MUSIC_08.12.2021	Phone:	02 4927 5566
Catchment Area:	2.382ha	Email:	benjaminc@mpceng.com.au
Impervious Area*:	70.84%		Sol Jamma & Apoortgioon mad
Rainfall Station:	61078 WILLIAMTOWN		
Modelling Time-step:	6 Minutes		
Modelling Period:	1/01/1995 - 31/12/2008 11:54:00 PM		
Mean Annual Rainfall:	1125mm		
Evapotranspiration:	1735mm		
MUSIC Version:	6.3.0		
MUSIC-link data Version:	6.33		
Study Area:	Newcastle		
Scenario:	Newcastle		

* takes into account area from all source nodes that link to the chosen reporting node, excluding Import Data Nodes

Treatment Train Effecti	Treatment Train Effectiveness		Treatment Nodes		
Node: Receiving Node	Reduction	Node Type	Number	Node Type	Number
How	57.1%	Rain Water Tank Node	4	Urban Source Node	11
TSS	91.8%	Bio Retention Node	3		
TP	83.1%	Infiltration System Node	3		
TN	80.5%	Buffer Node	1		
GP	100%	GPT Node	2		

Comments

THE CITY OF NEWCASTLE

music@link

Passing Parameters

Node Type	Node Name	Parameter	Min	Max	Actual
Bio	Bioretention BRB1 + BRB2	Hi-flow bypass rate (cum/sec)	None	None	100
Bio	Bioretention BRB1 + BRB2	PET Scaling Factor	2.1	2.1	2.1
Bio	Bioretention BRB3	Hi-flow bypass rate (cum/sec)	None	None	100
Bio	Bioretention BRB3	PET Scaling Factor	2.1	2.1	2.1
Bio	Raingardens in car park	Hi-flow bypass rate (cum/sec)	None	None	100
Bio	Raingardens in car park	PET Scaling Factor	2.1	2.1	2.1
Buffer	Landscape Buffer	Proportion of upstream impervious area treated	None	None	1
GPT	GPT1 - Ecosol GPT- 4200	Hi-flow bypass rate (cum/sec)	None	None	0.051
GPT	GPT2 - Ecosol GPT- 4200	Hi-flow bypass rate (cum/sec)	None	None	0.051
Infiltration	Sand Filter (Adjacent Buildings)	Area (sqm)	None	None	162
Infiltration	Sand Filter (Adjacent Buildings)	Filter area (sqm)	None	None	162
Infiltration	Sand Filter (Adjacent Buildings)	Hi-flow bypass rate (cum/sec)	None	None	100
Infiltration	Sand Filter (Maintenance Paving)	Area (sqm)	None	None	7.8
Infiltration	Sand Filter (Maintenance Paving)	Filter area (sqm)	None	None	7.8
Infiltration	Sand Filter (Maintenance Paving)	Hi-flow bypass rate (cum/sec)	None	None	100
Infiltration	Sand Filter 2 (Adjacent Buildings)	Area (sqm)	None	None	150
Infiltration	Sand Filter 2 (Adjacent Buildings)	Filter area (sqm)	None	None	150
Infiltration	Sand Filter 2 (Adjacent Buildings)	Hi-flow bypass rate (cum/sec)	None	None	100
Rain	Rainwater Tanks 1x15kL	% Reuse Demand Met	70	None	90.9891
Rain	Rainwater Tanks 2x 15kL	% Reuse Demand Met	70	None	98.1171
Rain	Rainwater Tanks 6x25kL	% Reuse Demand Met	70	None	100
Rain	Rainwater Tanks 7x25kL	% Reuse Demand Met	70	None	100
Receiving	Receiving Node	% Load Reduction	None	None	57.1
Receiving	Receiving Node	GP % Load Reduction	90	None	100
Receiving	Receiving Node	TN % Load Reduction	45	None	80.5
Receiving	Receiving Node	TP % Load Reduction	65	None	83.1
Receiving	Receiving Node	TSS % Load Reduction	85	None	91.8
Urban	Cat SE - Paving (Car Park)	Area Impervious (ha)	None	None	0.241
Urban	Cat SE - Paving (Car Park)	Area Pervious (ha)	None	None	0.050
Urban	Cat SE - Paving (Car Park)	Total Area (ha)	None	None	0.292
Urban	Cat SE - Roof (Blocks B_C and D)	Area Impervious (ha)	None	None	0.39
Urban	Cat SE - Roof (Blocks B_C and D)	Area Pervious (ha)	None	None	0
Urban	Cat SE - Roof (Blocks B_C and D)	Total Area (ha)	None	None	0.39
Urban	Cat W - Landscaped (Direct Connect)	Area Impervious (ha)	None	None	0
Urban	Cat W - Landscaped (Direct Connect)	Area Pervious (ha)	None	None	0.026
Urban	Cat W - Landscaped (Direct Connect)	Total Area (ha)	None	None	0.026
Urban	Cat W - Paving (Arrivals)	Area Impervious (ha)	None	None	0.175
Urban	Cat W - Paving (Arrivals)	Area Pervious (ha)	None	None	0.022
Urban	Cat W - Paving (Arrivals)	Total Area (ha)	None	None	0.198
Urban	Cat W-Paving (Concourse)	Area Impervious (ha)	None	None	0.276

Only certain parameters are reported when they pass validation

NOTE: A successful self-validation check of your model does not constitute an approved model by The City of Newcastle MUSIC-*link* now in MUSIC by eWater – leading software for modelling stormwater solutions

THE CITY OF NEWCASTLE

music@link

Node Type	Node Name	Parameter	Min	Max	Actual
Urban	Cat W-Paving (Concourse)	Area Pervious (ha)	None	None	0.093
Urban	Cat W - Paving (Concourse)	Total Area (ha)	None	None	0.37
Urban	Cat W - Paving (Maintenance)	Area Impervious (ha)	None	None	0.073
Urban	Cat W - Paving (Maintenance)	Area Pervious (ha)	None	None	0
Urban	Cat W - Paving (Maintenance)	Total Area (ha)	None	None	0.073
Urban	Cat W-Roof (Block ES)	Area Impervious (ha)	None	None	0.037
Urban	Cat W - Roof (Block ES)	Area Pervious (ha)	None	None	0
Urban	Cat W-Roof (Block ES)	Total Area (ha)	None	None	0.037
Urban	Cat W - Roof (Block GS)	Area Impervious (ha)	None	None	0.037
Urban	Cat W - Roof (Block GS)	Area Pervious (ha)	None	None	0
Urban	Cat W - Roof (Block GS)	Total Area (ha)	None	None	0.037
Urban	Cat W - Roof (Blocks M_E_F and G)	Area Impervious (ha)	None	None	0.457
Urban	Cat W - Roof (Blocks M_E_F and G)	Area Pervious (ha)	None	None	0
Urban	Cat W - Roof (Blocks M_E_F and G)	Total Area (ha)	None	None	0.457
Urban	Copy of Cat SE - Landscaped (Infiltration)	Area Impervious (ha)	None	None	0
Urban	Copy of Cat SE - Landscaped (Infiltration)	Area Pervious (ha)	None	None	0.191
Urban	Copy of Cat SE - Landscaped (Infiltration)	Total Area (ha)	None	None	0.191
Urban	Copy of Cat W - Landscaped (Infiltration)	Area Impervious (ha)	None	None	0
Urban	Copy of Cat W - Landscaped (Infiltration)	Area Pervious (ha)	None	None	0.311
Urban	Copy of Cat W - Landscaped (Infiltration)	Total Area (ha)	None	None	0.311

Only certain parameters are reported when they pass validation

NOTE: A successful self-validation check of your model does not constitute an approved model by The City of Newcastle MUSIC-*link* now in MUSIC by eWater – leading software for modelling stormwater solutions

THE CITY OF NEWCASTLE

NOTE: A successful self-validation check of your model does not constitute an approved model by The City of Newcastle MUSIC-*link* now in MUSIC by eWater – leading software for modelling stormwater solutions Appendix H

City of Newcastle Supplied Information

Flood Certificate and Relevant Flood Maps Existing road drainage information 22 May 2019

Avid Project Management Pty Ltd C/- Ncle Jockey Club Ltd Po Box 30 BROADMEADOW NSW 2292

Flood Information Certificate No:	FL2019/00101
Land:	Lot 13 DP 227704
Property Address:	125 Chatham Street Broadmeadow NSW 2292

Thank you for your recent enquiry regarding flood behaviour at the above property. This letter confirms the property is located in a flood prone area.

The pertinent features of the flood behaviour are estimated as follows:

Local Catchment Flooding

Is any part of the site affected by a floodway?	No
Is any part of the site affected by a flood storage area?	Yes (See Attachment)
Estimated 1% Annual Exceedance Probability event level: (equivalent to the " <i>Defined Flood Level</i> " in the Building Code of Australia)	6.35m AHD (North West corner)6.35m AHD (South West corner)6.10m AHD (middle of race track)
Estimated Maximum Flow Velocity of floodwaters	0.8m/s
(in the " <i>Defined Flood Event</i> " as per the Building Code of Australia)	
Highest Property Hazard Category	P2
Estimated Probable Maximum Flood Level	7.3m AHD (maximum velocity 1.10m/s)
Highest Life Hazard Category	L4 (H3)

The flood study from which the above information is derived is part of a Newcastle City Wide Floodplain Management Plan. The above advice may change in the future, however the advice is based on the best information held by Council at the time of issue of this certificate.

The Newcastle Development Control Plan 2012 addresses the issues of flood management for new development. You can view the development control plan at www.newcastle.nsw.gov.au. In summary, the following requirements apply for all future development applications on the site.

Development in a floodway is not generally allowable due to likely redistribution of flood water.	Not Applicable
Filling of a flood storage area by more than 20% is not generally allowable due to redistribution of flood water.	Applicable
Minimum floor level for occupiable rooms in a new development on this site is: (equivalent to the <i>"Flood Hazard Level"</i> in the Building	6.85m AHD
Code of Australia) Is onsite flood refuge required?	Yes

Council holds no information concerning floor levels of existing structures on the site. Site levels and floor levels should be verified by survey based on the Australian Height Datum.

Please note that:

- 1. No assessment of the lot's suitability for the purposes of making an application for a complying development certificate under the Housing Code or Rural Housing Code of *State Environmental Planning Policy (Exempt and Complying Development Codes)* 2008, or for a Secondary Dwelling under *State Environmental Planning Policy* (*Affordable Rental Housing*) 2009, has been made. This type of flood information can also be obtained from Council via a Flood Information Application. There are two services provided by Council relating to Complying Development flood criteria, as follows:
 - a) Identification of lots affected by any of the flood control lot exclusions identified in subclause 3.5(1) or 3A.38(1) of *State Environmental Planning Policy (Exempt and Complying Development Codes) 2008.* If this information is required, select Box 4. b) (i) on the Flood Information Application form and pay the required fee.
 - b) An assessment of a proposal for development of the lot for compliance with the requirements of subclause 3.36(2) or 3A.38(2) of *State Environmental Planning Policy (Exempt and Complying Development Codes) 2008.* If this information is required, select Box 4. b) (ii) on the Flood Information Application form, submit plans and other relevant documentation for the proposal and pay the required fee.
- 2. The information contained in this certificate may alter in the future. The applicant should at all times ensure the currency of this information.

Should you require any further clarification please contact Alastair Peddie on 4974 2788. Yours faithfully

Alastair Peddie SENIOR DEVELOPMENT OFFICER (ENGINEERING)

Additional information for the holders of Flood Information Certificates

This information explains the terms used in Newcastle City Council's Flood Information Certificates and provides some basic information on Councils requirements for future development of flood prone land.

Compliance with these requirements in the Development Control Plan does not guarantee approval, however, in most cases, the flood issues can be resolved by adhering to these guidelines.

FLOOD CERTIFICATE NOTES GENERAL:

- The information presented in the Certificate relates to the Newcastle City-wide Floodplain Risk Management Plan and the Newcastle Development Control Plan, which have been developed in accordance with the principles of the NSW Government's Flood Prone Land Policy.
- Council's flood information is compiled from a composite of data. The variability of rainfall itself is a major factor in the uncertainty of flood information and accordingly, this certificate is only an estimate of real flood characteristics. Any particular flood is likely to be different to the conditions described in this certificate.
- Council acknowledges that its flood information is incomplete and varies in accuracy, however it is the best available to Council at the time of issue.
- Where information is presently not known, it is denoted by "unknown"
- From time to time, on going research and studies will replace or add to Council's flood information. Accordingly, the information in this certificate is not warranted after the day of issue.
- Should you disagree with Council's assessment of the flood behaviour, you may conduct your own investigations or enquires and submit them to Council for consideration. Where revision of this assessment is warranted, Council is committed to making such amendments to its information.

EXPLANATIONS FOR TERMS USED IN THE FLOOD INFORMATION CERTIFICATE

Is any part of the site affected by a Floodway?

Generally, where a property is affected by a floodway, we will provide you with additional information on where we believe the floodway to be by way of a map. In some circumstances it may be possible to redirect a floodway subject to appropriate engineering advice. You should start by discussing the matter with a development officer from Council.

A *Floodway* is a pathway taken by major discharges of floodwaters, the obstruction or partial obstruction of which would cause a significant redistribution of floodwaters, or a significant increase in flood levels. Floodways are often aligned with natural channels and are usually characterised by deep and relatively fast flowing water.

The Newcastle DCP 2012 states:

"No building or structure is to be erected and no land is to be filled by way of the deposition of any material within any area identified as a floodway except for:

Minor alterations to ground levels for roads, parking, below ground structures and landscaping, provided that the fundamental flow patterns are not significantly altered.

Where dividing fences across floodways are unavoidable, they are to be constructed only of open type fencing that will not restrict the flow of flood waters and be resistant to blockage. New development shall be designed to avoid fences in floodways."

Is any part of the site affected by a flood storage area?

Where a property is wholly affected by flood storage area, we will answer "yes" to this question on the Flood Information Certificate. Where a property is partly affected, we will provide additional information by way of a map.

Flood storage area is an area where flood water accumulates and the displacement of that floodwater will cause a significant redistribution of floodwaters, or a significant increase in

flood levels, or a significant increase in downstream flood frequency. Flood storage areas are often aligned with floodplains and are usually characterised by deep and slow moving floodwater.

The Newcastle DCP 2012 states:

"Not more than 20% of the area of any development site in a flood storage area is to be filled. The remaining 80% can generally be developed allowing for underfloor storage of floodwater by the use of suspended floor techniques such as pier and beam construction.

Where it is proposed to fill development sites, the fill is not to impede the flow of ordinary drainage from neighbouring properties, including overland flow."

1% Annual Exceedence Probability (AEP) event level:

The 1% AEP event is the basic benchmark for Council's development controls. It is a flood event that has a 1 in 100 chance of being exceeded in any one year. Conceptually, it is similar to a "1 in 100 year" event, except that the term 1 in 100 years conveys the notion that the event is definitely going to happen in a 100 year time frame, and will only occur once in that time frame. In fact, a 1 in 100 year event has a 67% probability of occurring once in any nominate hundred year period.

Levels are reduced to the Australian Height Datum. This means that the quoted levels are heights above sea level. They can be compared to ground levels determined by a surveyor using the same datum to ascertain the likely flood depth.

In general, the minimum requirement for development of flood prone land is to set floor levels above the **Flood planning level (FPL)**. The flood planning level is the peak flood level for the flood planning event (usually the 1% AEP flood) **plus** the appropriate freeboard (usually, but not always 500mm, depending on the circumstances) to account for uncertainty, wave action and model error.

The Newcastle DCP 2012 states:

"Floor levels of all occupiable rooms of all buildings are not to be set lower than the FPL."

"Garage floor levels are to be set no lower than the 1% AEP flood event. However it is recognised that in some circumstances this may be impractical due to vehicular access constraints. In these cases, garage floor levels should be as high as practicable."

"Basement garages may be acceptable where all potential water entry points are at or above the probable maximum flood (PMF), excepting that vehicular entry points can be at the FPL. In these cases, explicit points of refuge should be accessible from the carpark in accordance with the provisions for risk to life set out below."

"Electrical fixtures such as power points, light fittings and switches are to be sited above the FPL unless they are on a separate circuit (with earth leakage protection) to the rest of the building."

"Where parts of the building are proposed to be below the flood planning level, they are to be constructed of water-resistant materials."

Highest Property Hazard Category:

Property hazards describe the danger that flood waters might pose to the property of persons affected by flooding. Generally, the descriptions are:

- P1 Parked or moving cars remain stable
- P2 Parked or moving heavy vehicles remain stable
- **P3** Suitable for light construction (eg timber frame, masonry and brick veneer)

- P4 Suitable for heavy construction (eg steel frame, and concrete)
- P5 Hydraulically unsuitable for normal building construction

They are determined by direct correlation to the Hydraulic Behaviour Threshold (P1 relates to a Hydraulic Behaviour Threshold of H1) as determined at the flood-planning event, usually the 1% AEP flood. The Hydraulic behaviour thresholds used in the determination of these hazards are shown in the figure N1.

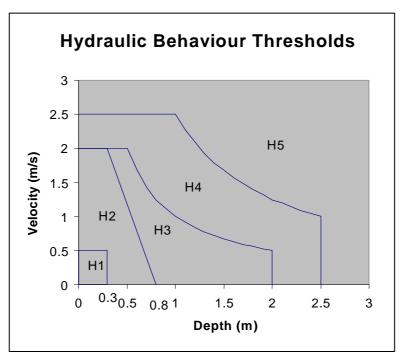


Figure N1 – Hydraulic Behaviour Thresholds

For the purposes of the flood information quoted here, the property hazard relates to the ground level as understood by Council at the time the information was collected. The property hazard cannot be used to determine the ground level of the site.

Property hazards can be reduced by filling a site, or raising floor levels as appropriate provided that the work is compatible with the applicable (if any) floodway or flood storage area.

In general, the minimum requirement for managing property risk is to set floor levels to the Flood planning level. The flood planning level is the level (usually expressed as a reduced level above the Australian Height Datum (AHD).

The Newcastle DCP 2012 states:

"Areas where cars, vans and trailers etc are parked, displayed or stored are not to be located in areas subject to property hazard of P2 or higher. Containers, bins, hoppers and other large floatable objects also are not to be stored in these areas. Heavy vehicle parking areas are not to be located in areas subject to property hazard P3 or higher."

"Timber framed, light steel construction, cavity brickwork and other conventional domestic building materials are generally not suitable forms of construction where the property hazard is P4 or higher. Where property hazard is P4, the structure shall be certified by a practising structural engineer to withstand the hydraulic loads (including debris) induced by the flood waters."

"Property hazards of P5 are generally unsuitable for any type of building construction and building is discouraged from these areas. Where building is necessary, the structure is to be certified by a practising structural engineer to withstand the hydraulic loads (including debris) induced by the flood waters."

Highest life Hazard Category:

Life hazards describe the danger that flood waters might pose to the lives of persons affected by flooding. Generally, the descriptions are:

Table N1 Life hazard descriptions

	HAZARD CLASSIFICATION						
HAZARD FACTOR Effective Warning	L1 Y	L2 N	L3 N	L4 N	L5 N		
Effictive capacity to allow evacuation to flood free land Rate of rise of flood waters	Y Slow	Y Flash	N Flash	N Flash	N Flash		
Duration of Flooding	Too long for refuge enclosed by floodwaters to be appropriate.	Short enough for occupation during the entire flood to be appropriate	Short enough for occupation during the entire flood to be appropriate	Short enough for flood free refuge enclosed by floodwaters to be appropriate	Short enough for flood free refuge enclosed by floodwaters to be appropriate		
Escape route	An obvious rising escape route to flood free land outside of the entire flood is available	route to flood free land outside of the entire flood	There is be no obvious rising escape route to flood free land outside of the entire flood.	There is be no obvious rising escape route to flood free land outside of the entire flood. An obvious rising escape route to flood free land outside of the entire flood is available	There is be no obvious rising escape route to flood free land outside of the entire flood.		
Nature of enclsing floodwaters	Flood free land outside of the enture flood can be reached before the flooding affects the site itself	requires evacuation	Enclosing flodwaters are suitable for waiding and for medical emegrency evacuation by waiding or heavy vehichle at all times		No form of normal building construction would be feasible to ensure structural satbility in enclosing floodwaters		
Evacuation need:	Required to flood free land otuside of the entire flood	Required to flood free land otuside of the entire flood	Not Required	Required to a suitable flood free refuge within the enclosed flood waters	Normally not possible (therefore normally unsuitable for development)		
Evacuation problems			Nil (for abled bodied adults)	Hour waters Evacuation shall be self directed and fail safe.	Erclosing flood waters are so hazardous that evacuation by normal means to flood free land outside the entire flood would not be contemplated. The structural stability of an an on- site refuge cannot be assured by normally available building types, and therefore a refuge enclosed by floodwaters cannot (normally) be provided		

Life hazards are used to manage risks to life and accordingly, are determined by considering the hydraulic behaviour threshold (see figure N1) at the Probable Maximum Flood (PMF).

oonse	Riverine				L1		
Catchment Response Time	Flack	Escape Route to flood free land vallable available		L2			L5
Catchr	riasn	Escape to floo lar	Not available	L3	L4		Lə
L1	No On Site Refuge (Evacuation to flood free land before flood) No On Site Refuge (Evacuation to flood free land through flood possible) No On Site Refuge (Evacuation not required) On Site Refuge required (Evacuation to on site refuge) On Site Refuge generally not feasible No On Site Refuge						

Figure N2 – Life Hazard determination

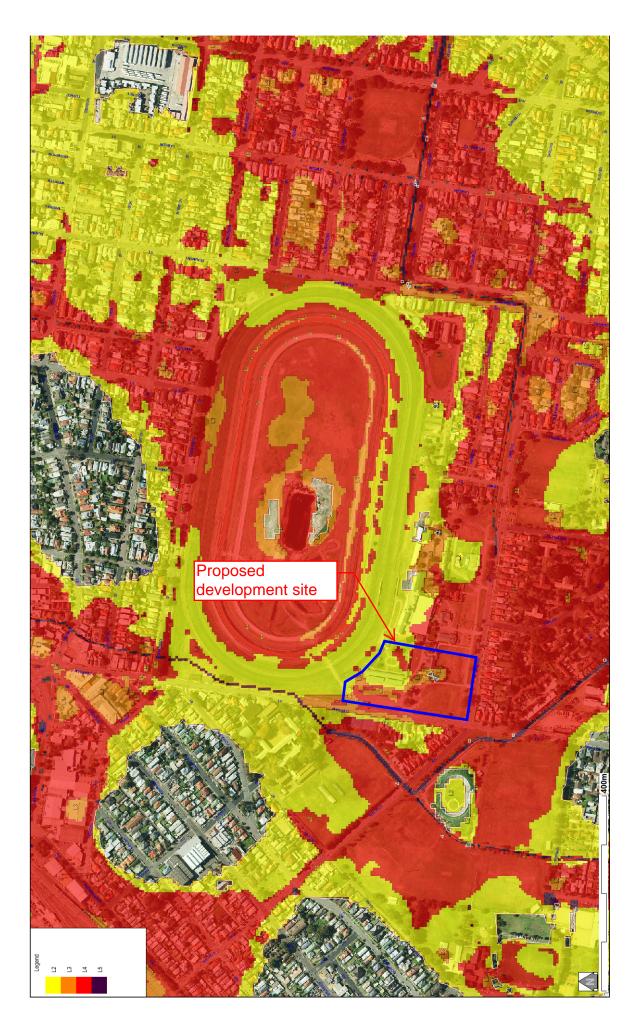
Figure N2 shows how the life hazard categories are determined in accordance with the methodology of the Newcastle City-wide Floodplain Risk Management Plan.

The Newcastle DCP 2012 states:

"On site refuge is to be provided for all development where the life hazard category is L4 or higher unless the proposed development is less than 40m from the perimeter of the PMF extent and the higher ground is accessible."

"The minimum on-site refuge level is to be the level of the PMF. On site refuges are to be designed to cater for the number of people reasonably expected to be on the development site and are to be provided with emergency lighting."

"On site refuges are to be of a construction type able to withstand the effects of flooding. Design certification by a practising structural engineer that the building is able to withstand the hydraulic loading due to flooding (at the PMF) is required. "

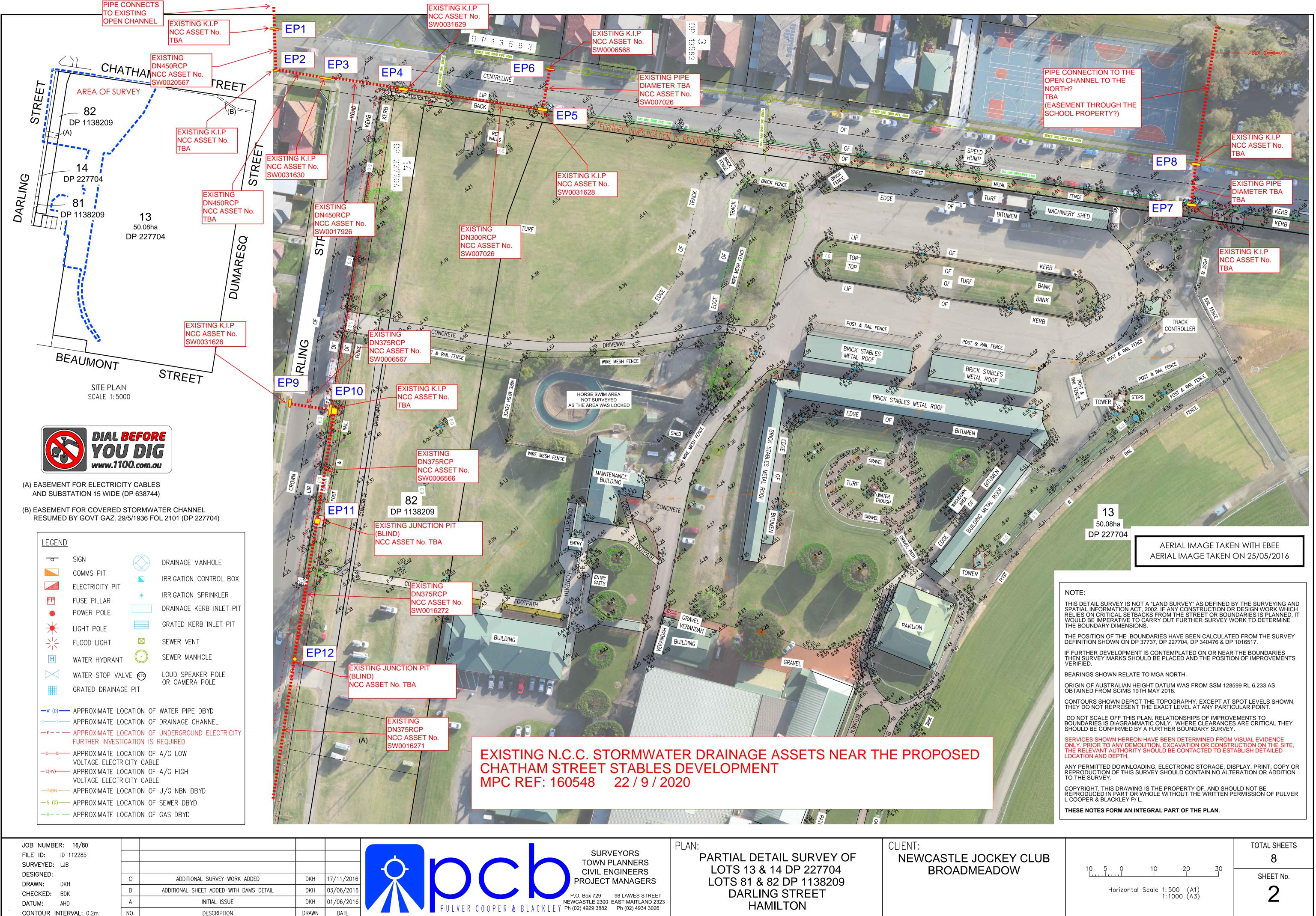

The requirement for on site refuge (where applicable) will generally be satisfied by a two storey building form. However, for residential properties, an attic access ladder and suitable small platform will usually also suffice.

In most cases where on site refuge is required, the duration of the peak flood event is short and accordingly, it is not expected to have to utilise flood refuge areas for long periods of time, especially when their use the chance of them being used is generally less than 1% in any given year. Accordingly, comfort factors are not of large concern to owners, occupiers or Council in determining the suitability of flood refuges.

FLOOD CLASSIFICATION MAP

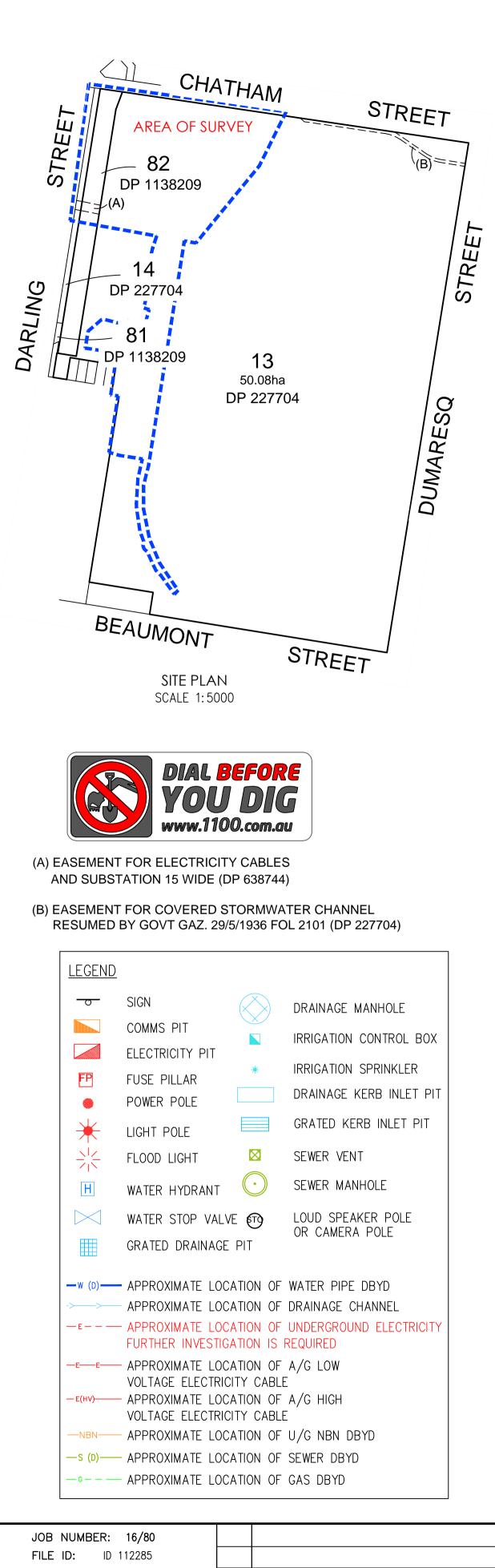
"RISK TO LIFE" MAP

"RISK TO PROPERTY" MAP

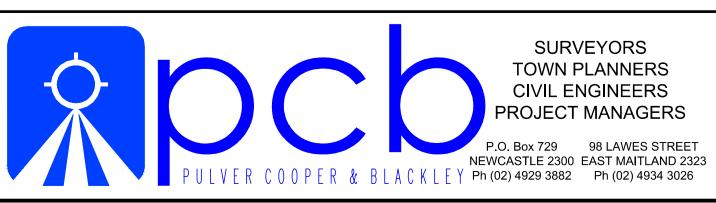


"FLOW VELOCITIES" MAP

"PMF STABILITY" MAP



Appendix I


Site Survey

Proposed Stables Complex – Newcastle Jockey Club Stormwater Management Plan MPC Ref No. 160548.1 [3]

JOB NUMBER: 16/80					
FILE ID: ID 112285					
SURVEYED: LJB					
DESIGNED: DRAWN: DKH	С	ADDITIONAL SURVEY WORK ADDED	DKH	17/11/2016	
CHECKED: BDK	В	ADDITIONAL SHEET ADDED WITH DAMS DETAIL	DKH	03/06/2016	
DATUM: AHD	А	INITIAL ISSUE	DKH	01/06/2016	
CONTOUR INTERVAL: 0.2m	NO.	DESCRIPTION	DRAWN	DATE	

PLAN:

PARTIAL DETAIL SURVEY OF LOTS 13 & 14 DP 227704 LOTS 81 & 82 DP 1138209 DARLING STREET HAMILTON

CLIENT: NEWCASTLE JOCKE BROADMEADO

- Halasa	and and the	the section is	A.		T
		120			
				SU TANK	
244					1
SEWER LINE DBY	D PIPE 4500				
6,65					
LINE DBYD PIPE 1100	6,60	<u></u>			9 .
6.0 <u>0</u>	FENCE CONTENT	and chite to a sthis		ROAD 61	
MEN SS MACHIN	ERY SHED	6.6 ^h (1.6 ¹³)	- 190.0.5 M	WI WAR NICH KERB	DE
	Rom N	693691613 C	76 0.548.50 82	6.5. KERB	
	16.6	6.92 6.93			0 0
KERB	6.28 6.76	6.90 6.90	Port		
BANK	6.33 6.81* 538 0203	1.8 65 69 65			and the second
BANK	6.91	000 00 00 00 00 00 00 00 00 00 00 00 00	RAIL FENCE		THE .
KERB	6.21 6.30 6.13	CONTROLLER	1 Str		
	62 65 6	ENCE	Į		1 - 1
6.52 6.50 NBN 655	NBN 6.61 6.65 6.64 POST & RAIL	II FEINO	5 68	6.16	
854	RALL FENCE	POST & RAL STEPS 6.39 6.40 FOST & RAL FENCE	6.79		
A6.4 6.58.53 61	6,151 TOWER 6,15	POST Ce STEPS 6.39 6.40 927 29 6.35 6.35 POST & PNL FERCE 927 29 6.31 6.35 6.39 FERCE			1 E
5. 6.3°5.58 6.54	661 64 63	922.33 6.31 6.36 6.39 FENCE			. B
6.59 6.51 6.55 6.54 6.54 6.55 6.55 6.55 6.55 6.55 6.55	and the second s	6 6.3]			1
56.6.5	5-555 157 640 RML			1112	-
0. 6.0.0	3 AN			Ser Ser A	H
6. 663 6 6. 663 6	8-14				H
6.66 ³ 6 6.5 ⁴ 6.46 ³	8-14 8-16-5-7 8-16-5-7 13		and the		H
6 66 ³ 6 65 ⁴ 69	844 84 8				H H H H H H H H H H H H H H H H H H H
6. 66 ³ 6 6. 66 ³ 6	8.44 8.463 13 50.08ha			N WITH EBEE ON 25/05/2016	a set of the
6.66 ³ 6 6.5 ⁴ 6.46 ³	8.44 8.463 13 50.08ha				H
55% 55% 55%	8.44 8.463 13 50.08ha				
5.5% 5.5% 5.5% 5.5% 5.5% 5.5% 5.5% 5.5% 5.5% 5.5% 5.5% 5.5% 5.5% 5.5% 5.5%	B B B B B B B B B B B B B B	AERIAL IMAGE NOT A "LAND SURVEY" AS CT, 2002. IF ANY CONSTRU- BACKS FROM THE STREE	DEFINED E JCTION OF T OR BOUN	ON 25/05/2016 BY THE SURVEYING AND R DESIGN WORK WHICH NDARIES IS PLANNED, IT	
	ANA ANA ANA ANA ANA ANA ANA ANA	AERIAL IMAGE NOT A "LAND SURVEY" AS ACT, 2002. IF ANY CONSTRU- BACKS FROM THE STREE TO CARRY OUT FURTHER IONS.	TAKEN (DEFINED E JCTION OF T OR BOUN SURVEY W CALCULATE	ON 25/05/2016 BY THE SURVEYING AND DESIGN WORK WHICH NDARIES IS PLANNED, IT ORK TO DETERMINE	
	ANA ANA ANA ANA ANA ANA ANA ANA	AERIAL IMAGE AERIAL IMAGE NOT A "LAND SURVEY" AS ACT, 2002. IF ANY CONSTRU- BACKS FROM THE STREE TO CARRY OUT FURTHER IONS. OUNDARIES HAVE BEEN CO DP 37737, DP 227704, DP 34 ENT IS CONTEMPLATED ON	TAKEN (DEFINED E JCTION OF T OR BOUN SURVEY W CALCULATE 60476 & DP	ON 25/05/2016 BY THE SURVEYING AND DESIGN WORK WHICH NDARIES IS PLANNED, IT ORK TO DETERMINE ED FROM THE SURVEY 1016517. THE BOUNDARIES	
	AND	AERIAL IMAGE AERIAL IMAGE CT, 2002. IF ANY CONSTRU- BACKS FROM THE STREE TO CARRY OUT FURTHER IONS. OUNDARIES HAVE BEEN CO OP 37737, DP 227704, DP 34 ENT IS CONTEMPLATED ON HOULD BE PLACED AND TH	TAKEN (DEFINED E JCTION OF T OR BOUN SURVEY W CALCULATE 60476 & DP	ON 25/05/2016 BY THE SURVEYING AND DESIGN WORK WHICH NDARIES IS PLANNED, IT ORK TO DETERMINE ED FROM THE SURVEY 1016517. THE BOUNDARIES	
	A A A A A A A A A A A A A A A A A A A	AERIAL IMAGE AERIAL IMAGE AERIAL IMAGE ACT, 2002. IF ANY CONSTRU- BACKS FROM THE STREE TO CARRY OUT FURTHER IONS. OUNDARIES HAVE BEEN CO OP 37737, DP 227704, DP 34 ENT IS CONTEMPLATED ON HOULD BE PLACED AND TH TE TO MGA NORTH. HEIGHT DATUM WAS FROM	TAKEN (DEFINED E JCTION OF T OR BOUN SURVEY W CALCULATE 0476 & DP I OR NEAR HE POSITIC	ON 25/05/2016 BY THE SURVEYING AND DESIGN WORK WHICH NDARIES IS PLANNED, IT ORK TO DETERMINE ED FROM THE SURVEY 1016517. THE BOUNDARIES ON OF IMPROVEMENTS	
	ANA A A A A A A A A A A A A A A A A A A A	AERIAL IMAGE AERIAL IMAGE AERIAL IMAGE ACT, 2002. IF ANY CONSTRU- BACKS FROM THE STREE TO CARRY OUT FURTHER IONS. OUNDARIES HAVE BEEN CO OP 37737, DP 227704, DP 34 ENT IS CONTEMPLATED ON HOULD BE PLACED AND TH TE TO MGA NORTH. HEIGHT DATUM WAS FROM	TAKEN (DEFINED E JCTION OF T OR BOUN SURVEY W CALCULATE 0476 & DP I OR NEAR HE POSITIC M SSM 1288 (CEPT AT S	ON 25/05/2016 BY THE SURVEYING AND R DESIGN WORK WHICH NDARIES IS PLANNED, IT ORK TO DETERMINE ED FROM THE SURVEY 1016517. THE BOUNDARIES ON OF IMPROVEMENTS 599 RL 6.233 AS SPOT LEVELS SHOWN,	
	AND	AERIAL IMAGE AERIAL IMAGE AERIAL IMAGE ACT, 2002. IF ANY CONSTRU- BACKS FROM THE STREE TO CARRY OUT FURTHER IONS. OUNDARIES HAVE BEEN CO P 37737, DP 227704, DP 34 ENT IS CONTEMPLATED ON HOULD BE PLACED AND TH TE TO MGA NORTH. HEIGHT DATUM WAS FROM 19TH MAY 2016.	TAKEN (DEFINED E JCTION OF T OR BOUN SURVEY W CALCULATE 10476 & DP NOR NEAR 1E POSITIC M SSM 1285 (CEPT AT S NY PARTIC OF IMPROVI EARANCES	ON 25/05/2016 BY THE SURVEYING AND DESIGN WORK WHICH NDARIES IS PLANNED, IT ORK TO DETERMINE ED FROM THE SURVEY 1016517. THE BOUNDARIES ON OF IMPROVEMENTS 599 RL 6.233 AS SPOT LEVELS SHOWN, CULAR POINT. EMENTS TO S ARE CRITICAL THEY	
	AND	AERIAL IMAGE AERIAL IMAGE AERIAL IMAGE AERIAL IMAGE AERIAL IMAGE AERIAL IMAGE AERIAL IMAGE AERIAL IMAGE AERIAL AND SURVEY AS ACT, 2002. IF ANY CONSTRU- BACKS FROM THE STREET TO CARRY OUT FURTHER IONS. OUNDARIES HAVE BEEN CO DP 37737, DP 227704, DP 34 ENT IS CONTEMPLATED ON HOULD BE PLACED AND TH TE TO MGA NORTH. HEIGHT DATUM WAS FROM 19TH MAY 2016. ICT THE TOPOGRAPHY. EX NT THE EXACT LEVEL AT A S PLAN. RELATIONSHIPS O MMATIC ONLY. WHERE CL	TAKEN (DEFINED E JCTION OF T OR BOUN SURVEY W CALCULATE 0476 & DP I OR NEAR TE POSITIC I OR NEAR TE POSITIC I OR NEAR TE POSITIC I OR NEAR TE POSITIC I OF IMPROVI EARANCES Y SURVEY	ON 25/05/2016 BY THE SURVEYING AND R DESIGN WORK WHICH NDARIES IS PLANNED, IT ORK TO DETERMINE ED FROM THE SURVEY 1016517. THE BOUNDARIES ON OF IMPROVEMENTS 599 RL 6.233 AS SPOT LEVELS SHOWN, CULAR POINT. EMENTS TO S ARE CRITICAL THEY	
	AND	AERIAL IMAGE AERIAL IMAGE AERIAL IMAGE AERIAL IMAGE AERIAL IMAGE AERIAL IMAGE ACKS FROM THE STREE TO CARRY OUT FURTHER IONS. OUNDARIES HAVE BEEN OF OP 37737, DP 227704, DP 34 INT IS CONTEMPLATED ON HOULD BE PLACED AND TH TE TO MGA NORTH. HEIGHT DATUM WAS FROM 19TH MAY 2016. ICT THE TOPOGRAPHY. EX NT THE EXACT LEVEL AT A S PLAN. RELATIONSHIPS OF MATIC ONLY. WHERE CL BY A FURTHER BOUNDAR ON HAVE BEEN DETERMIN MOLITION, EXCAVATION OF ITY SHOULD BE CONTACTION OADING, ELECTRONIC STO	TAKEN (DEFINED E JCTION OF T OR BOUN SURVEY W CALCULATE 0476 & DP I OR NEAR TE POSITIC M SSM 1285 (CEPT AT S NY PARTIC OF IMPROVI EARANCES Y SURVEY IED FROM R CONSTR ED TO EST DRAGE, DIS	ON 25/05/2016 BY THE SURVEYING AND R DESIGN WORK WHICH NDARIES IS PLANNED, IT ORK TO DETERMINE ED FROM THE SURVEY 1016517. THE BOUNDARIES ON OF IMPROVEMENTS 599 RL 6.233 AS SPOT LEVELS SHOWN, CULAR POINT. EMENTS TO S ARE CRITICAL THEY VISUAL EVIDENCE EVICTION ON THE SITE, ABLISH DETAILED SPLAY, PRINT, COPY OR	
	AND	AERIAL IMAGE AERIAL IMAGE AERIAL IMAGE AERIAL IMAGE AERIAL IMAGE AERIAL IMAGE ACKS FROM THE STREE TO CARRY OUT FURTHER IONS. OUNDARIES HAVE BEEN O DO 37737, DP 227704, DP 34 ENT IS CONTEMPLATED ON HOULD BE PLACED AND TH TE TO MGA NORTH. HEIGHT DATUM WAS FROM 19TH MAY 2016. ICT THE TOPOGRAPHY. EX NT THE EXACT LEVEL AT A S PLAN. RELATIONSHIPS O MMATIC ONLY. WHERE CL BY A FURTHER BOUNDAR ON HAVE BEEN DETERMIN MOLITION, EXCAVATION O ITY SHOULD BE CONTACTI	TAKEN (DEFINED E JCTION OF T OR BOUN SURVEY W CALCULATE 0476 & DP I OR NEAR HE POSITIC M SSM 1288 (CEPT AT S NY PARTIC OF IMPROVI EARANCES Y SURVEY IED FROM R CONSTR ED TO EST DRAGE, DIS IN NO ALTE	ON 25/05/2016 BY THE SURVEYING AND DESIGN WORK WHICH NDARIES IS PLANNED, IT ORK TO DETERMINE ED FROM THE SURVEY 1016517. THE BOUNDARIES ON OF IMPROVEMENTS 599 RL 6.233 AS SPOT LEVELS SHOWN, CULAR POINT. EMENTS TO SARE CRITICAL THEY VISUAL EVIDENCE PUCTION ON THE SITE, ABLISH DETAILED SPLAY, PRINT, COPY OR ERATION OR ADDITION	
	AND	AERIAL IMAGE AERIAL IMAGE AERIAL IMAGE AERIAL IMAGE AERIAL IMAGE AERIAL IMAGE ACKS FROM THE STREET TO CARRY OUT FURTHER IONS. OUNDARIES HAVE BEEN CO DP 37737, DP 227704, DP 34 INT IS CONTEMPLATED ON HOULD BE PLACED AND TH TE TO MGA NORTH. HEIGHT DATUM WAS FROM 19TH MAY 2016. ICT THE TOPOGRAPHY. EX NT THE EXACT LEVEL AT A S PLAN. RELATIONSHIPS ON MATIC ONLY. WHERE CL BY A FURTHER BOUNDAR ON HAVE BEEN DETERMIN MOLITION, EXCAVATION ON ITY SHOULD BE CONTACTION OADING, ELECTRONIC STO SURVEY SHOULD CONTA ING IS THE PROPERTY OF, WHOLE WITHOUT THE V 7/L.	TAKEN (DEFINED E JCTION OF T OR BOUN SURVEY W CALCULATE 0476 & DP I OR NEAR IE POSITIC I OR NEAR IE POSITIC I OR NEAR IE POSITIC F IMPROVI EARANCES Y SURVEY IED FROM R CONSTR ED TO EST DRAGE, DIS IN NO ALTE ORAGE, DIS IN NO ALTE AND SHOI VRITTEN P	ON 25/05/2016 BY THE SURVEYING AND DESIGN WORK WHICH NDARIES IS PLANNED, IT ORK TO DETERMINE ED FROM THE SURVEY 1016517. THE BOUNDARIES ON OF IMPROVEMENTS 599 RL 6.233 AS SPOT LEVELS SHOWN, CULAR POINT. EMENTS TO S ARE CRITICAL THEY VISUAL EVIDENCE SUCTION ON THE SITE, ABLISH DETAILED SPLAY, PRINT, COPY OR ERATION OR ADDITION ULD NOT BE	
	AND	AERIAL IMAGE AERIAL IMAGE AERIA	TAKEN (DEFINED E JCTION OF T OR BOUN SURVEY W CALCULATE 0476 & DP I OR NEAR IE POSITIC I OR NEAR IE POSITIC I OR NEAR IE POSITIC F IMPROVI EARANCES Y SURVEY IED FROM R CONSTR ED TO EST DRAGE, DIS IN NO ALTE ORAGE, DIS IN NO ALTE AND SHOI VRITTEN P	ON 25/05/2016 BY THE SURVEYING AND DESIGN WORK WHICH NDARIES IS PLANNED, IT ORK TO DETERMINE ED FROM THE SURVEY 1016517. THE BOUNDARIES ON OF IMPROVEMENTS 599 RL 6.233 AS SPOT LEVELS SHOWN, CULAR POINT. EMENTS TO S ARE CRITICAL THEY VISUAL EVIDENCE SUCTION ON THE SITE, ABLISH DETAILED SPLAY, PRINT, COPY OR ERATION OR ADDITION ULD NOT BE	
	AND	AERIAL IMAGE AERIAL IMAGE AERIAL IMAGE AERIAL IMAGE AERIAL IMAGE AERIAL IMAGE ACKS FROM THE STREET TO CARRY OUT FURTHER IONS. OUNDARIES HAVE BEEN CO DP 37737, DP 227704, DP 34 INT IS CONTEMPLATED ON HOULD BE PLACED AND TH TE TO MGA NORTH. HEIGHT DATUM WAS FROM 19TH MAY 2016. ICT THE TOPOGRAPHY. EX NT THE EXACT LEVEL AT A S PLAN. RELATIONSHIPS ON MATIC ONLY. WHERE CL BY A FURTHER BOUNDAR ON HAVE BEEN DETERMIN MOLITION, EXCAVATION ON ITY SHOULD BE CONTACTION OADING, ELECTRONIC STO SURVEY SHOULD CONTA ING IS THE PROPERTY OF, WHOLE WITHOUT THE V 7/L.	TAKEN (DEFINED E JCTION OF T OR BOUN SURVEY W CALCULATE 0476 & DP I OR NEAR IE POSITIC I OR NEAR IE POSITIC I OR NEAR IE POSITIC F IMPROVI EARANCES Y SURVEY IED FROM R CONSTR ED TO EST DRAGE, DIS IN NO ALTE ORAGE, DIS IN NO ALTE AND SHOI VRITTEN P	ON 25/05/2016 BY THE SURVEYING AND R DESIGN WORK WHICH NDARIES IS PLANNED, IT ORK TO DETERMINE ED FROM THE SURVEY 1016517. THE BOUNDARIES ON OF IMPROVEMENTS 599 RL 6.233 AS SPOT LEVELS SHOWN, CULAR POINT. EMENTS TO SARE CRITICAL THEY VISUAL EVIDENCE EVICTION ON THE SITE, ABLISH DETAILED SPLAY, PRINT, COPY OR ERATION OR ADDITION ULD NOT BE ERMISSION OF PULVER	
The set of	A State of the second s	AERIAL IMAGE AERIAL PART OF THE F	TAKEN (DEFINED E JCTION OF T OR BOUN SURVEY W CALCULATE 0476 & DP I OR NEAR TE POSITIC I OR NEAR TE POSITIC I OR NEAR TE POSITIC I OR NEAR TE POSITIC F IMPROVI EARANCES Y SURVEY ED FROM R CONSTR ED TO EST DRAGE, DIS IN NO ALTE NN O ALTE AND SHOU VRITTEN P PLAN.	ON 25/05/2016 BY THE SURVEYING AND DESIGN WORK WHICH NDARIES IS PLANNED, IT ORK TO DETERMINE ED FROM THE SURVEY 1016517. THE BOUNDARIES ON OF IMPROVEMENTS 599 RL 6.233 AS SPOT LEVELS SHOWN, CULAR POINT. EMENTS TO S ARE CRITICAL THEY VISUAL EVIDENCE SUCTION ON THE SITE, ABLISH DETAILED SPLAY, PRINT, COPY OR ERATION OR ADDITION ULD NOT BE	
	AND	AERIAL IMAGE AERIAL IMAGE AERIAL IMAGE AERIAL IMAGE AERIAL IMAGE AERIAL IMAGE ACKS FROM THE STREET TO CARRY OUT FURTHER IONS. OUNDARIES HAVE BEEN CO DP 37737, DP 227704, DP 34 INT IS CONTEMPLATED ON HOULD BE PLACED AND TH TE TO MGA NORTH. HEIGHT DATUM WAS FROM 19TH MAY 2016. ICT THE TOPOGRAPHY. EX NT THE EXACT LEVEL AT A S PLAN. RELATIONSHIPS ON MATIC ONLY. WHERE CL BY A FURTHER BOUNDAR ON HAVE BEEN DETERMIN MOLITION, EXCAVATION ON ITY SHOULD BE CONTACTION OADING, ELECTRONIC STO SURVEY SHOULD CONTA ING IS THE PROPERTY OF, WHOLE WITHOUT THE V 7/L.	TAKEN (DEFINED E JCTION OF T OR BOUN SURVEY W CALCULATE 0476 & DP I OR NEAR IE POSITIC I OR NEAR IE POSITIC I OR NEAR IE POSITIC F IMPROVI EARANCES Y SURVEY IED FROM R CONSTR ED TO EST DRAGE, DIS IN NO ALTE ORAGE, DIS IN NO ALTE AND SHOI VRITTEN P	ON 25/05/2016 BY THE SURVEYING AND R DESIGN WORK WHICH NDARIES IS PLANNED, IT ORK TO DETERMINE ED FROM THE SURVEY 1016517. THE BOUNDARIES ON OF IMPROVEMENTS 599 RL 6.233 AS SPOT LEVELS SHOWN, CULAR POINT. EMENTS TO SARE CRITICAL THEY VISUAL EVIDENCE EVICTION ON THE SITE, ABLISH DETAILED SPLAY, PRINT, COPY OR ERATION OR ADDITION ULD NOT BE ERMISSION OF PULVER TOTAL SHEETS	

Appendix J Flood Study

Throsby, Cottage and CBD

Flood Study

Throsby, Cottage and CBD Flood Study

Offices

Brisbane Denver Karratha Melbourne Morwell Newcastle Perth Sydney Vancouver

Prepared For:

Newcastle City Council

Prepared By: BMT WBM Pty Ltd (Member of the BMT group of companies)

DOCUMENT CONTROL SHEET

BMT WBM Pty Ltd		
BMT WBM Pty Ltd Level 11, 490 Upper Edward Street Brisbane 4000	Document :	R.B15058.002.01.doc
Queensland Australia PO Box 203 Spring Hill 4004	Project Manager :	Bill Syme
Tel: +61 7 3831 6744 Fax: + 61 7 3832 3627		
ABN 54 010 830 421		
www.wbmpl.com.au	Client :	Newcastle City Council
	Client Contact:	David Gibbins
	Client Reference	

Title :	Throsby, Cottage and CBD Flood Study
Author :	Bill Syme, Phillip Ryan
Synopsis :	Presents the findings from the Throsby, Cottage and CBD Flood Study in Newcastle.

REVISION/CHECKING HISTORY

REVISION NUMBER	DATE OF ISSUE	Cł	IECKED BY	IS	SUED BY
0	15 th Aug 2008	WJS		PAR	

DISTRIBUTION

DESTINATION	REVISION			
	0	1	2	3
Newcastle City Council	PDF			
BMT WBM File	PDF			
BMT WBM Library	PDF			

CONTENTS

1	INTRODU	CTION	1-1
	1.1 B	ackground	1-1
	1.2 F	unding	1-2
	1.3 P	revious Studies	1-2
	1.4 A	bout This Report	1-2
	1.5 P	rovision of Electronic Data	1-3
2	METHOD		2-1
3	AVAILAB		3-1
	3.1 To	opographic Data	3-1
	3.1.1	Photogrammetry	3-1
	3.1.2	Bathymetry	3-1
	3.1.3	Ground Surveys	3-1
	3.1.4	Structure Data	3-2
	3.2 H	ydrographic Data	3-2
	3.2.1	Rainfall	3-2
	3.2.2	Streamflow Gauging	3-2
	3.2.3	Tidal	3-2
	3.3 G	IS Data	3-2
	3.3.1	Aerial Photos	3-2
	3.3.2	Cadastre	3-2
4	Сомрит	ER MODEL DEVELOPMENT	4-1
	4.1 D	EMs	4-1
	4.1.1	DEM 2000	4-1
	4.1.2	DEM Modified for hydrology	4-1
	4.1.3	DEM 2004	4-1
	4.2 W	/BNM Hydrologic Model	4-2
	4.2.1	Sub-Catchment Delineation	4-2
	4.2.2	Land-Use Types	4-2
	4.3 T	UFLOW Hydraulic Model	4-2
	4.3.1	Model Extent	4-2
	4.3.2	2D Grid Dimensions and Cell Size	4-3

I

	4.3.3	Topography in Hydraulic Model	4-3
	4.3.4	1D Domains	4-3
	4	.3.4.1 Open Stormwater Channels	4-4
	4	.3.4.2 Underground Conduits	4-4
	4	.3.4.3 Bridges, Culverts and Weirs	4-4
	4.3.5	1D/2D Dynamic Linking	4-5
	4.4 H	lydrologic/Hydraulic Model Linkage	4-5
5		CALIBRATION	5-1
	5.1 S	election of Calibration/Verification Events	5-1
	5.1.1	February 1990 Flood	5-1
	5.1.2	April 1988 Flood	5-2
	5.2 N	Iodel Calibration and Verification	5-2
	5.2.1	Changes to 2000 Topography	5-2
	5.2.2	Interpretation of Calibration Data and Model Predictions	5-3
	5.2.3	Presentation Formats of Model Calibration	5-4
	Calib	ration to February 1990 Flood	5-5
	5.2.4	April 1988 Verification	5-8
	5.2.5	Public Exhibition and Fine-Tuning	5-10
	5.3 C	alibrated Model Parameters	5-10
	5.3.1	Hydrological Parameters	5-10
	5.3.2	Hydraulic Model Parameters	5-10
6	DESIGN	FLOODS	6-1
	6.1 T	opography Adjustments (1990 to 2005)	6-1
	6.1.1	DEM and Bathymetry	6-1
	6.1.2	Cross-Sections	6-1
	6.1.3	Land-Use	6-1
	6.1.4	Hydraulic Structures	6-2
	6.2 D	esign Flood Behaviour	6-2
	6.2.1	Flood Mechanisms	6-2
	6.2.2	Critical Duration Analysis	6-2
	6.3 D	esign Flood Combinations	6-4
	6.3.1	Design Event Abbreviations	6-4
	6.3.2	Design Event Probabilities	6-5
	6.3.3	Design Event Combinations	6-5
	6.4 P	resentation of Results	6-6

	6.5 De	esign Flood Peak Envelopes	6-7
	6.5.1	2 year ARI Event	6-7
	6.5.2	5 year ARI Event	6-8
	6.5.3	10 year ARI Event	6-8
	6.5.4	20 year ARI Event	6-8
	6.5.5	50 year ARI Event	6-9
	6.5.6	100 year ARI Event	6-9
	6.5.7	200 year ARI Event	6-9
	6.5.8	PMF Event	6-9
7	CONCLUS	SIONS AND RECOMMENDATIONS	7-1
	7.1 Co	onclusions	7-1
	7.2 Re	ecommendations	7-1
8	Referen	ICES	8-1

LIST OF FIGURES

Figure 2-1	Study Approach	2-2
Figure 3-1	Example Structure Details	3-3
Figure 4-1	Schematic TUFLOW 2D / 1D Link in Urban Pipe Networks	4-5
Figure 4-2	Modelling an Open Channel in 1D and Floodplain in 2D	4-6
Figure 5-1	1990 Calibration to Flood Level Gauges	5-11
Figure 5-2	1990 – Calibration Profile to Recorded Levels with 100m of Throsby Creek	5-12
Figure 5-3	1988 Verification to Flood Level Gauges	5-12
Figure 5-4	1988 Verification Profile to Recorded Levels within 100m of Throsby Creek	5-13

III

LIST OF TABLES

Table 3-1	Ground Survey Details	3-1
Table 5-1	Modifications to 2000 Topography for Calibration Modelling	5-3
Table 5-2	Feb 1990 Calibration to Flood Marks	5-6
Table 5-3	Regional Statistical Analysis of Feb 1990 Flood Marks	5-7
Table 5-4	Apr 1988 Calibration to Flood Marks	5-8
Table 5-5	Regional Statistical Analysis of Apr 1988 Flood Marks	5-9
Table 5-6	Calibrated Hydrologic Parameters	5-10
Table 5-7	Calibrated Manning's n Values	5-11
Table 6-1	Modifications to 2000 Topography for Design Modelling	6-1
Table 6-2	Results Critical Duration Analysis of 1% AEP	6-3
Table 6-3	Design Event Abbreviations	6-4
Table 6-4	Design Flood Combinations	6-6
Table 6-5	Index Of Long Profiles	6-7
Table 6-6	Index of Design Flood Maps	6-7

1 INTRODUCTION

1.1 Background

Throsby and Cottage Creeks, and to a lesser extent the Newcastle CBD, have an established history of flooding. The catchments are steep around their perimeter, but drain onto low-lying, flat areas, where it is difficult for floodwaters to escape. In response to the flooding problems, the creeks have been heavily engineered into concrete lined stormwater channels, or replaced by underground pipes and box culverts. In a number of areas, the creek lines have become non-existent, with the pipes and culverts being relied upon to carry the floodwaters. Roads also act as flowpaths once the capacity of the channels and culverts is exceeded. A number of rail, road and other embankments exacerbate the flood problem by diverting and blocking floodwaters.

While the engineering works have reduced the flood risk, problem areas remain and it is not unfeasible for floods to exceed the capacity of the channels and culverts, with the potential for wide-spread flooding, risk to life-and-limb and damage to buildings and infrastructure. This was demonstrated during the April 1988, February 1990 and June 2007 floods.

This Flood Study of Throsby and Cottage Creeks, and the Newcastle CBD area, was carried out to better understand the flood behaviour and the flood risk to the community. A product of the study is leading-edge computer based models that simulate the flooding processes of the whole catchment, and also the potential interaction between catchments in the low-lying areas, hence the combining of the three catchments into one study. The study is carried out in preparation for a Flood Risk Management Study that will investigate options and planning strategies for reducing the flood risk and minimising damage to buildings and infrastructure. Drawing 1-1 shows the locality and coverage of the study area.

The computer models were developed to quantify flood discharges, the speed of floodwaters, flood heights and the flood depths. As part of their development process, the models were calibrated to historical flood events, to demonstrate their ability to reproduce reality. Calibrated computer models were used with statistically generated rainfall estimates to represent possible future flood scenarios and their likelihoods (such as a 1 in 100 annual chance flood). These design flood events were simulated and mapped.

On the Queens Birthday long weekend in 2007 the Newcastle district experienced a devastating flood. Heavy rainfall was experienced on the afternoon and evening of the 8/6/2007. This resulted in severe flooding within the Newcastle area, including the Throsby, Cottage and CBD catchments. This flood occurred towards the end of the study, after the computer models had been calibrated and design flood modelling completed.

After the 2007 flood a major data collection exercise was conducted by Newcastle City Council and BMT WBM staff, providing the opportunity for further validation of the computer models. Due to the near completion status of this study, it was decided to incorporate the June 207 flood validation of the models into the early stages of the flood risk management investigations rather than this present study.

A Flood Risk Management Study is scheduled to start in 2008. This risk management study will investigate measures to reduce the flood risk. Possible measures vary from community education to building modifications to voluntary house raising and voluntary purchase schemes. The computer models will be verified to the data collected from the June 2007 flood events as part of the study.

The sensitivity of model results to a number of factors such as blockages to pipes and structures, increased rainfalls, structure losses and roughness will also be investigated as part of the floodplain risk management study.

1.2 Funding

This study is being carried out under the State Government's flood programme, with State and Commonwealth Grant assistance for flood investigations and implementation of flood risk management measures. To receive implementation funding, the State Government requires councils to carry out the necessary studies so that informed decisions are made in consultation with the community.

1.3 Previous Studies

A number of investigations have addressed the issues of flooding in the catchment and/or elevated ocean levels. Studies relevant to the current flood study are:

- Lawson and Treloar (1994), Lower hunter River Flood Study (Green Rocks to Newcastle)
- Newcastle City Council (1997), Brief: Cottage Creek Flood Study
- Newcastle City Council (1997), Brief: Newcastle City Wide Historic Flood Date Collection Study
- Newcastle City Council (1997), Brief: Newcastle City Wide Design of Flood Data Collection System
- Lawson and Treloar (1999), Design Water Levels in Newcastle Harbour Joint Probability Study
- Lawson and Treloar (2000), Design of a City-Wide Flood Data Collection System
- WBM Oceanics Australia (2000), Newcastle City Wide Flood Studies Data Collection Study
- WBM Oceanics Australia (2004), Cottage Creek Flood Study Final Report

1.4 About This Report

This report documents the Throsby, Cottage and CBD Flood Study objectives, results and conclusions. All A3 drawings are included in a separate volume. The report consists of the following sections:

Volume 1 of 2: Main Body of Report

1 Introduction

Introduces the background of the study.

2 Methodology Overview

1-2

Presents a general discussion on the study methodology.

3 Available Data

Details of the topographic, hydrographic and GIS data available for the flood study.

4 Computer Model Development

Details the hydrologic and hydraulic models developed for the flood study.

5 Model Calibration

Discusses the calibration of the hydrologic and hydraulic models.

6 Design Floods

Presents the derivation of design floods and discusses design flood results.

7 Conclusions and Recommendations

Presents the general conclusions and recommendations of the study.

8 References

Reference list

Volume 2 of 2: A3 Drawing Addendum

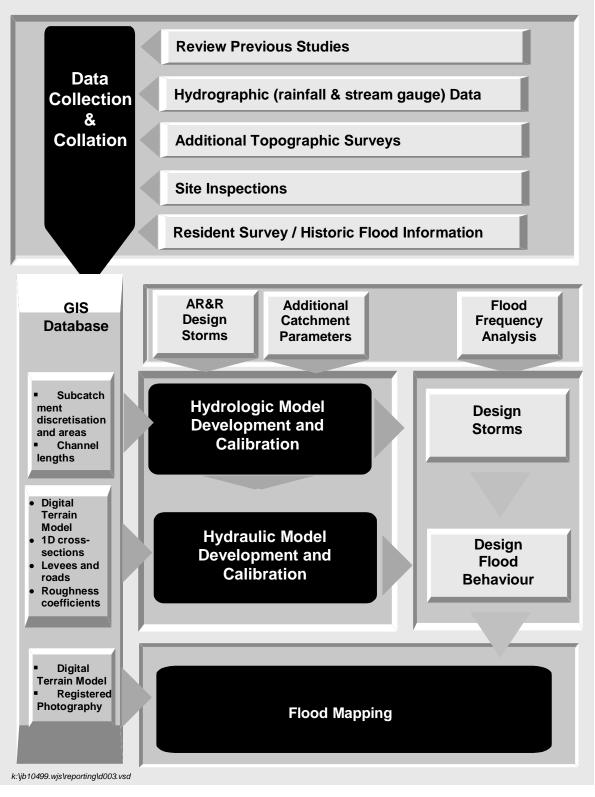
Volume 2 is an addendum of A3 drawings which accompanies this report.

1.5 Provision of Electronic Data

Hydraulic modelling results have been provided to Newcastle City Council in WaterRIDE format. Both time-varying and peak results have been provided.

Modelling files in MapInfo and TUFLOW format are provided on DVD to accompany this report.

Newcastle City Council has been provided with a location specific version of TUFLOW. This allows Newcastle City Council to use the hydraulic model, developed as part of the Throsby, Cottage and CBD Flood Study.



2 METHODOLOGY OVERVIEW

The general approach and method employed to achieve the study objectives involved the following steps (as shown in Figure 2-1).

- Compilation and review of available information
- Acquisition of additional data required for flood study
- Development of hydrological and hydraulic models
- Calibration and verification of models
- Selection of design event combinations
- Modelling of design events under existing conditions
- Reporting and mapping

Selection of calibration events was based on the availability of historic rainfall, river and flood level data. This is discussed in more detail in Section 5.1.

3 AVAILABLE DATA

3.1 Topographic Data

This section of the report details the topographical, hydrographic and GIS data used as part of the flood study.

3.1.1 Photogrammetry

Photogrammetry was collected by QASCO in 2000. It covers the majority of the study area and has a vertical accuracy $\pm 0.2m$.

2004 photogrammetry is of lower vertical accuracy (higher plane flying level) than 2000 photogrammetry. The vertical accuracy of the 2004 photogrammetry is ± 0.5 m.

The photogrammetry extents are presented in Drawing 3-1.

3.1.2 Bathymetry

Current bathymetric survey of the tidal areas was provided by Newcastle Port Corporation. The data was provided as points with easting, northing and levels, and is a compilation of surveys over various years.

3.1.3 Ground Surveys

A number of different surveys using ground based techniques were utilised to supplement the DEM data due to civil works since 2000, where an improved vertical accuracy was beneficial (eg. along the creeks and concrete lined drains) or the aerial survey was inadequate (eg. through the Kotara shopping centre carpark). Ground survey is used in both the calibration and design modelling. Details of ground survey used in modelling are presented in Table 3-1 and their locations are presented in Drawing 3-1.

2005	
	NCC
2005	NCC
1998	NCC
1990	NCC
1990	NCC
	2005 2005 2005 2005 2005 2005 1998 1990

Table 3-1 Ground Survey Details

I:\B15058_I_BRH_ Throsby

Cottage_WJS\MPI\[Topography_Sources_TUFLOW.xls]Ground_Survey

3.1.4 Structure Data

Structure details were provided by Newcastle City Council. These included a comprehensive database of photographs, each annotated with field measurements of the structure's openings, deck and handrails. Examples of the structure details are provided in Figure 3-1. Drawing 3-3 illustrates the location of the structures measured and photographed.

3.2 Hydrographic Data

3.2.1 Rainfall

Historic rainfall data was primarily obtained from data collected by Hunter Water Corporation (HWC) during the 1980s and early 1990s. In addition to these data, Bureau of Meteorology data was available from the Nobby's Head gauge. Locations of rainfall pluviograph data are presented in Drawing 3-3.

For design flood events, the estimated rainfall volumes and distribution were based on Australian Rainfall and Runoff, 1987.

3.2.2 Streamflow Gauging

HWC also operated a number of stream gauging stations during the same period as the rainfall monitoring. This data was also extracted from data collected by Hunter Water Corporation. The locations of the stream flow gauges are presented in Drawing 3-3.

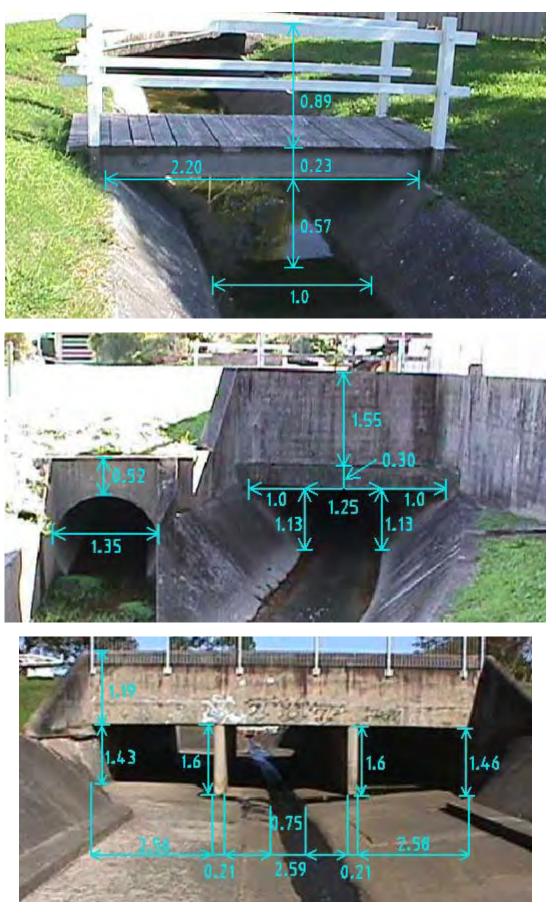
3.2.3 Tidal

Recorded tidal data was available from a tidal gauge at Dyke Point in Throsby Basin. This gauge data is provided by the National Tidal Facility. Recordings are taken on an hourly basis.

3.3 GIS Data

3.3.1 Aerial Photos

Three aerial photo sets were available. These are all geographically registered.


- 1983 aerial photography
- 1990 aerial photography
- 2004 aerial photography

The 1990 aerial photography is presented in Drawing 3-4, and the 2004 photography in Drawing 3-5.

3.3.2 Cadastre

Newcastle City Council provided cadastral data to BMT WBM in GIS format (MapInfo). Newcastle City Council also provided GIS format data of suburb boundaries, street names and house numbers.

4 COMPUTER MODEL DEVELOPMENT

4.1 DEMs

A digital elevation model (DEM) is a three dimensional (3D) representation of the ground surface. A number of different DEMs were utilised in the current flood study. These were derived from various topographical data sources and have varying accuracies. The DEMs utilised in the Throsby, Cottage and CBD flood study are listed and described below.

4.1.1 DEM 2000

The DEM of conditions in the year 2000 was prepared by WBM for the purpose of this flood study. The DEM is based on various data sources including low level (higher accuracy) photogrammetry, ground survey and bathymetry. Of note is the use of ground survey to accurately define concrete lined drains using surveyed breaklines along the channel (eg. top of bank, toe, low flow drains). The ground surveys were merged with the photogrammetry to produce a high quality DEM. It was decided that the DEM should include bridge decks and other obstructions picked up by the aerial survey so as to aid in identifying evacuation routes, rather than replace the decks with the ground surveys.

This is the most accurate representation of the topography of the Throsby, Cottage and CBD catchments. The DEM of 2000 conditions is presented in Drawing 4-1.

For more information on this DEM see Appendix A.

4.1.2 DEM Modified for hydrology

An automated process of delineating the sub-catchments for the hydrologic was used. This process required that the DEM did not include obstructions across flow paths, such as bridge decks, and that major culverts (eg. the 1.6km racecourse culvert) be incised so as to delineate the low flow paths. Therefore, the DEM was artificially incised to create low flow paths, allowing automated delineation of these low flow routes and sub-catchments emanating from them.

The 2000 DEM also does not cover the whole of the Throsby, Cottage and CBD catchments. This is also necessary for sub-catchment delineation, so the 2000 DEM was extended to the catchment boundaries using a DEM created from 2m contour data.

The catchment delineation process is further described in Section 4.2.1. The modified DEM used for sub-catchment delineation is presented in Drawing 4-2.

4.1.3 DEM 2004

This DEM was created from the photogrammetry flown in 2004. This photogrammetry is of lower vertical accuracy than the 2000 photogrammetry, hence, the 2000 DEM is preferred for flood modelling. A section of this DEM was used in Hamilton South, where major changes have occurred to the topography between 2000 and 2004 due to a residential estate that was previously a dog racing track.

4.2 WBNM Hydrologic Model

Hydrologic modelling calculates the quantity and rate of catchment runoff from rainfall during a flood event. The model produces estimates of the discharges in the creeks and tributaries during the course of a flood. The Watershed Bounded Network Model (WBNM) software was utilised for the hydrological modelling. WBNM is distributed by the University of Wollongong.

WBNM requires input for each subcatchment of:

- Catchment area
- Percentage impervious

Calibration parameters within the WBNM model are:

- Initial loss
- Continuing loss
- Stream Lag Factor

4.2.1 Sub-Catchment Delineation

The hydrological model was split into 198 subcatchments. The sub-catchments are delineated using an automated process. The software package Streambuilder (Avantra Geosystems Pty Ltd) was used for the catchment delineation. A modified version of the DEM of 2000 conditions was used for the catchment delineation. Section 4.1.2 describes the modifications the 2000 DEM for hydrological modelling.

The modified DEM and catchment delineation are presented in Drawing 4-2.

4.2.2 Land-Use Types

Land use types were digitised from aerial photos, and a percentage impervious for each land use type was assigned. The average percentage impervious for each subcatchment was based on field inspections and the aerial photography. Percentage impervious is used as an input to the WBNM model.

4.3 TUFLOW Hydraulic Model

4.3.1 Model Extent

The complicated nature of flow patterns in the urban study area required the use of advanced modelling techniques and software. During low flows, stormwater is mostly restricted to the underground piped drainage and concrete lined drains, and is relatively simple to model. However, once the capacity of these conduits are exceeded, as amply demonstrated in April 1988, February 1990 and June 2007, the flow patterns become highly complex with flow into and out of drains, surcharging of manholes, along streets, and through houses, gardens and commercial properties. This requires a more advanced modelling approach to simulate the flow interaction between pipes, open channels and overland areas. As such, TUFLOW (www.tuflow.com), a fully 2D/1D dynamically

linked hydraulic modelling system was used to model flooding behaviour in the Throsby/Cottage Creek catchments.

Pipes smaller than 900mm in diameter were generally excluded from the model to keep the model simulation times manageable and pipe survey costs within budget. Similarly, broad assumptions on gully traps and manholes were assumed as data on these were not available. This does not significantly reduce the accuracy of the hydraulic model for the study objectives, because in large flood events the majority of flow is carried in overland areas, open channels or larger conduits. It is noted however, that for detailed local drainage assessments into the future, that the sub-900mm pipe drainage and surface/pipe flow exchange via gully-traps may need to be added to the model for a more accurate representation.

The hydraulic model covers an extent of 28.2km². The extent of hydraulic modelling is shown in Drawing 4-3.

There may be areas subject to flooding that are outside the extent of the hydraulic modelling. This may occur for a variety of reasons, including:

- The area is outside the extent of the 2000 photogrammetry.
- Pipe sizes less than 900mm need to be included.
- Broad assumptions associated with gully traps.
- Blockages in drains and culverts due to debris and other obstructions.
- Vertical inaccuracies associated with DEM data.
- Uncertainties associated with data inputs, modelling and rainfall estimates.

4.3.2 2D Grid Dimensions and Cell Size

The 2D domain of the hydraulic model is based on a 10m square grid. This results in approximately 280,000 2D cells over the hydraulic model. Approximately 195,000 2D cells are active or wet near the peak of a large flood (PMF).

4.3.3 Topography in Hydraulic Model

TUFLOW allows topographic data to be inputted sequentially. This facilitates changes to be made easily, for example, ground survey data can be inputted to overwrite the DEM data. This is particularly useful to model changes in the floodplain, where development has occurred after the photogrammetry.

The base data for the hydraulic model is the DEM of 2000 conditions. Changes are made to this topography to represent the calibration (1988/1990) and existing (2005) conditions. Topographic changes for the calibration and design are discussed in Section 5.2.1 and 6.1 respectively.

4.3.4 1D Domains

The 10m cell size of the 2D model is too coarse to accurately model some sections of the drainage network, particularly the open drains. These and the underground pipe drainage network are modelled as 1D elements. Cross-sections were used to define the geometry of the open channel 1D

elements, and measured dimensions of bridges, culverts and pipes were used for 1D hydraulic structure elements. The model includes over 2,000 1D elements. The three main types of 1D elements are described below.

4.3.4.1 Open Stormwater Channels

Open stormwater channels are modelled as 1D elements. The geometry of these open channels is defined by assigning a cross-section to each channel. Bed resistance is varied across the section based on land-use mapping to allow for changes in construction type and vegetation to be represented.

The DEM of the open channels is based on ground survey break lines along the channels at key points in the section. The survey, which consists of break-lines along the top of bank, toe of batter, low flow channels, etc, was built into the 2000 DEM, and is sufficiently detailed to allow cross-sections to be extracted from the DEM.

4.3.4.2 Underground Conduits

Underground conduits of greater than 900mm in size were included in the hydraulic model based on surveys carried out by Newcastle City Council. Details required for accurate representation include:

- Size
- Shape
- Inverts
- Number of barrels

The underground pipe network is connected to the surface via pits, which are modelled as an upright rectangular channel. The pit inlet is dynamically connected to the 2D model, see Section 4.3.5.

4.3.4.3 Bridges, Culverts and Weirs

The many structures play a major role in determining flood behaviour in the study area. It is important to represent these structures correctly in the hydraulic model. These structures were typically modelled as 1D elements.

Bridges are modelled using depth varying energy losses to simulate extra losses associated with piers and the bridge deck. Losses were calculated using the standard techniques outlined in AustRoads (1994).

Culverts can be either rectangular or circular in shape, and can accommodate all inlet and outlet controlled flow regimes including uni-directional flow due to flap-gates.

Flow over structures are modelled as 1D weir channels. Cross-sections were used to define the shape of the 1D weirs.

4.3.5 1D/2D Dynamic Linking

1D elements are dynamically linked to the 2D model. The 2D/1D hydraulic model layout is shown in Drawing 4-3.

The underground pipe network is linked to the 2D model via a pit inlet, allowing flow in both directions. A schematic diagram of this linkage is presented in Figure 4-1.

1D open channels are linked to the 2D domain, usually along the top of bank of the open channel to ensure the exchange of water between open channel and overland area occurs at the correct height. The arrangement allows for both flows into and out of the open channel. The 2D cells within the open channel are deactivated, to prevent conveyance being duplicated. A schematic diagram for this type of linkage is presented in Figure 4-2. An example of the linkages utilised in the hydraulic model are presented in Drawing 4-4.

4.4 Hydrologic/Hydraulic Model Linkage

Flows into the hydraulic model are generated using the hydrological model. At the upstream of the hydraulic model cumulative flows (from multiple subcatchments) are added to the 1D pipe/open channel model. For subcatchments within the hydraulic model extent, flows are either added directly to 2D cells or split evenly between 1D nodes within the subcatchment. Hydrological inflow boundaries for the hydraulic model are presented in Drawing 4-5.

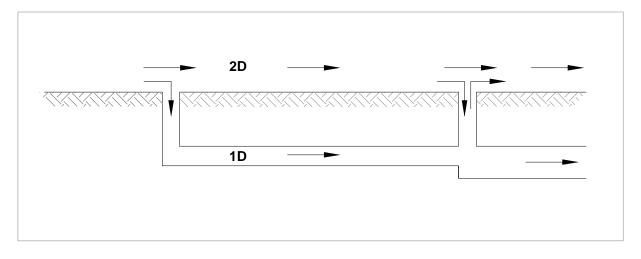


Figure 4-1 Schematic TUFLOW 2D / 1D Link in Urban Pipe Networks

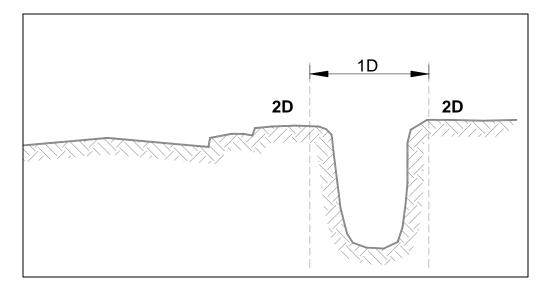


Figure 4-2 Modelling an Open Channel in 1D and Floodplain in 2D

5 MODEL CALIBRATION

5.1 Selection of Calibration/Verification Events

Data from known flood events were collated and reviewed to select events from which to calibrate and verify the computer models. The main criteria for a flood event to be a useful calibration/verification event are:

- pluviograph (a recorder that records rainfall over short time intervals) data are available in or close to the study area;
- preferably daily rainfall totals from other gauges within and/or close to the study area; and
- recorded flood levels are available.

Two floods, those in April 1988 and February 1990, stand out from other floods based on the criteria above. Two minor floods in 1992 in the Cottage Creek area are also potentially useful should further model verification be required.

The June 2007 flood, which occurred after the hydraulic model was calibrated, also has the potential to be an excellent calibration or verification event due to the large volume of flood marks that have been recorded and available for survey. Unfortunately the HWC rain and streamflow gauges were decommissioned in the 1990s, so there will be much greater uncertainty over the rainfall timing, depths and distribution for this flood compared with the 1988 and 1990 events. It is planned to validate the computer models to the June 2007 event during the following flood risk management study.

5.1.1 February 1990 Flood

Around 300 mm in a 48 hour period fell over the study area on the 2nd and 3rd of February 1990 in several bursts. The rainfall records show that the rainfall across the catchments was relatively uniform varying from around 316 mm in the west to 250 mm in the east. Six pluviograph recordings within the study area were available, of which one was discarded due to suspected malfunctioning.

Five flood height gauges recorded the rises and falls of the flood within the stormwater channels. There is some doubt over the actual water level heights for one or two of these gauges, however, the gauges clearly show the timing of when the flood peaks occurred. The first and largest peak, which caused the worst overland flooding, occurred around 3pm on the 2^{nd} of February, 1990.

From previous investigations commissioned by Council, around 160 sites within the study area provided information on flooding. Of these, around 70 have identified a potential flood height to assist in the model calibration. These flood marks provide valuable information on flood levels away from the stormwater channels. In addition, there are a number of photographs and recollections that also assist in the model calibration process.

Drawing 5-1 shows the rainfall totals recorded and the location of the flood height information. Due to the comprehensive data set available for the February 1990 flood, it was selected as the primary calibration event.

5.1.2 April 1988 Flood

Unlike the February 1990 flood, the April 1988 flood rainfall was extremely varied over the study area. For the 48 hour period from 9:00am, 27th April, 141 mm of rain fell at Rankin Park Hospital, 101 mm to the south at Kotara Bowling Club, 44 mm in Waratah, 22 mm in Merewether and just 8 mm at Nobbys Head. At Rankin Park Hospital 75 mm (3 inches) of rain fell in just one hour from 9:30pm to 10:30pm on the 27th causing flash flooding in nearby creeks.

Only one of the Hunter Water Cooperation flood height gauges at Jellicoe Parade recorded the rise and fall of the flood within the stormwater channels. The second flood peak, which occurred around 11:00pm on the 27th, caused the worst overland flooding.

From previous investigations commissioned by Council, around 180 sites provided information on flooding. Of these, around 80 have identified a potential flood height to assist in the model calibration. These flood marks provide valuable information on flood levels away from the stormwater channels. In addition, there are a number of photographs and recollections that also assist in the model verification process.

Drawing 5-2 shows the rainfall totals recorded and the location of the flood height information. Due to the less comprehensive data set and greater uncertainty associated with the high variation in rainfall over the catchments, the April 1988 flood was selected as a verification event.

5.2 Model Calibration and Verification

5.2.1 Changes to 2000 Topography

A number of changes have occurred in the catchment since the calibration events. As the DEM is based on the conditions as of 2000, a number of layers were added (overwriting the 2000 topography) to adjust the calibration model so as to reflect conditions in 1988/1990. Layers added to modify the elevations sampled from the 2000 DEM are listed below in Table 5-1. The location of these modifications is presented in Drawing 5-3.

Description/Source	Area	Change
DEM 2000	Hydraulic Modelling Area	Base
Harbour Data	Harbour	Missing in DEM 2000
Harbour Data	Harbour	Missing in DEM 2000
Harbour Data	Harbour	Missing in DEM 2000
Allworth St DEM (NCC)	Glebe Road	Missing in DEM 2000
Based on 1998 Ground		Changes to Homemaker
Survey	Kotara	Centre
DEM (NCC)	Maryville	Pre Subdivision
	Broadmeadow Soccer	
DEM (NCC)	Fields	Pre Soccer Fields
		Changes to bridge
Cowper St Bridge pre 1993	Harbour	arrangement and isthmus
Elevations of Cycleway along		
Throsby Ck	Cycleway Maryville	No bund along cycleway
Harbour area pre-fill	Edges of Harbour	Pre-fill conditions
RTA Carpark above Cottage		
Ck	Newcastle West	DEM picks up channel
Ground Survey	Waratah Rail	More Accurate Ground Survey
Ground Survey	Glebe Road	More Accurate Ground Survey

 Table 5-1
 Modifications to 2000 Topography for Calibration Modelling

K:\B15058.k.wjs.Throsby\Tuflow_Design\model\[TUFLOW_Topography_Layers_123.xls]Data_Sources_Calibration

5.2.2 Interpretation of Calibration Data and Model Predictions

Calibration of computer models involves the adjustment of model parameters within industryaccepted ranges. It also requires having an understanding of uncertainties in the data sets used to build the model.

Reasons for differences between model results and recorded information are important to understand and appreciate when reviewing comparisons between the model and historical observations. Key areas of uncertainty are:

 Rainfall recorders (pluviographs) only represent a record of the rainfall at their exact location. Therefore, the rainfall used in the modelling away from the pluviograph sites is an estimate using interpolation or extrapolation techniques. A good example of a difficult rainfall event is the 1988 flood, where there are major variations in rainfall over relatively short distances, making it difficult to confidently estimate the rainfall at locations away from the pluviographs.

It is noted that the New Lambton pluviograph was not used for modelling the 1988 and 1990 events on the basis that it's recordings were not consistent with the other pluviographs (this could be due to malfunctioning, an error in storing the data or other reason).

Flood marks vary greatly in quality depending on how they are recorded (or recollected). Most of
the flood marks available were derived and documented in previous studies, during which they
were graded from 1 to 5 in terms of their reliability (i.e. accuracy). A Grade 1 level is one that is
considered to be well defined (eg. a watermark on a wall) and should be representative of the
flood peak. A Grade 4 level is considered to have considerable uncertainty associated with it. A
Grade 5 has no level associated with it, but some recollections or observations of flooding were
noted.

The general approach to calibrating the model is that the model's predicted levels are at or around Grade 1 levels (preferably within +/- 0.2m, i.e. 20cm). For lesser grades, the flood model should be predicting levels at or above these levels as the recorded levels are not necessarily indicative of the flood peak.

- The flood gauges in the open stormwater channels not only provide information on the flood peak, but also the rate of rise and fall of the floodwaters. The gauges record the depth of water over time in the stormwater channel, however, the datum (the height of the gauges relative to a fixed survey mark) is not known, so there is some uncertainty over the level of the gauges. There is also believed to be considerable uncertainty of the Bates St gauge (see Figure 5-1) as desktop analyses have shown that the gauge was underestimating the depth of water. However, the gauge clearly shows the rise and fall of the floodwaters which is still of considerable use. The average speed of the water in the channel at Bates St gauge is very high at around 6 m/s (over 20 km/h), which may cause problems with the gauge's performance.
- As discussed previously, the hydraulic model only includes the underground pipe drainage system for pipes 900 mm diameter or larger. Consequently, some areas are modelled as having no underground drainage and may show considerable extents of quite shallow inundation that may not have occurred.
- The ground level data over the floodplain is from photogrammetry (a technique that uses aerial photography to determine the level of the ground surface). The vertical accuracy of the photogrammetric ground levels on clearly visible surfaces is as a rule no more than 0.1 metres (about 4 inches) higher or lower than the real ground level. This is a very high accuracy that was needed to support the prediction of past and future flood levels. In some areas, such as under vegetation and other obstructions, the accuracy can be considerably less. This uncertainty affects the extent of flooding predicted, particularly where wide shallow inundation is displayed.

Also of note, is that photogrammetry cannot "see" underneath building roofs, therefore, if the building is on a built up pad or the floor is elevated above the ground, the information on the floor level is not known. This means that buildings may appear as flooded, when they may not have experienced flooding above the floor. Conversely, some larger buildings have been modelled as a total blockage to floodwaters, and therefore appear not to have been flooded when they may have experienced inundation above their floors.

- Any debris build-up and partial blockage of bridges, culverts and pipes, which maybe the cause of more extensive flooding, were not included in the computer model simulations.
- The computer models themselves have uncertainties, as no computer model can be a perfect representation of reality. The hydraulic model presented in this report simulates flooding down to a resolution of 10 metres. Therefore, fine-scale obstructions to floodwaters such as fences, small buildings, etc are only roughly represented, and any localised flood affects (eg. water surcharging against a wall) are not necessarily depicted.

5.2.3 Presentation Formats of Model Calibration

The performance of the computer models to reproduce the 1988 and 1990 floods are presented in several formats as follows:

- Maps showing information at the flood peak including:
 - Predicted maximum extent and depths of inundation (the darker blue shades indicate greater depths of inundation refer to the legend on the map).
 - Small coloured circles indicating the location of a recorded flood mark. Next to some circles is a number representing the difference in metres between the model's prediction and the flood mark. The circles and numbers are colour coded according to their grade (Magenta for Grade 1, Orange for Grade 2, Yellow for 3 and Green for 4 no recorded flood marks are available for Grade 5 sites). A positive number indicates the model is above the recorded level, while a negative number indicates the model is below the recorded level. Refer to the discussion in Section 5.2.2 on reasons why there may be a difference. If no number appears next to the flood mark, the flood mark is located outside the area covered by the model, or the model did not predict any inundation at that site.
 - The predicted speed and direction of the water illustrated by the size and direction of the red arrows.
 - > Predicted water level contours, shown as blue lines, on a half metre interval.
- Graphs showing a comparison between the recorded levels at the Hunter Water Cooperation gauges and the model's predictions. These show the rise and fall of the flood. Of particular interest here is the timing of the flood rise and fall, and whether the model is reproducing this.
- A profile of the peak water level down Throsby Creek is provided along with any recorded flood marks within 100 m of the creek centreline.
- Profiles down the major tributaries are presented with the design modelling results. This has been done to avoid replication and wastage. See Section 6.4 for detail on long sections.

Calibration to February 1990 Flood

The adopted rainfall isohyets for the February 1990 event are presented in Drawing 5-7.

Five maps, as described in Section 5.2.3, are provided in Drawing 5-8 to Drawing 5-12, to illustrate the predicted flood extent, depths and flow patterns. The first map is a key map showing the locations of the local map sheets. The local map sheets present the difference between the model's predicted level and the recorded level.

Figure 5-1 shows the model predictions at the five HWC gauges. Figure 5-2 presents the profile of peak water levels along Throsby Creek along with the recorded levels within 100 m of the creek centreline.

Observed and predicted flood levels for the 1990 calibration are presented in Table 5-2. A statistical analysis of flood marks by region is presented in Table 5-3.

Flood ID	Recorded Flood Level (mAHD)	Modelled Level (mAHD)	Difference [Modelled - Recorded] (m)	Data Grade
tc008a	12.70	12.88	0.18	1
tc207b	8.03	8.28	0.25	1
tc214	8.61	8.29	-0.32	1
tc404b	8.31	8.28	-0.03	1
tc601	15.73	15.65	-0.08	1
tc604	13.83	13.68	-0.15	1
tc702a	5.71	5.91	0.19	1
tc707	5.80	5.85	0.05	1
tc707b	5.68	5.84	0.16	1
tc708a	5.52	5.57	0.05	1
tc713	12.47	12.61	0.14	1
tc725c	17.39	17.55	0.15	1
tc743	9.34	9.30	-0.04	1
tc799b	12.06	12.13	0.06	1
tc804a	5.25	5.25	0.00	1
tc1207a	8.51	8.27	-0.24	1
tc1210	12.62	12.61	-0.01	1
tc1303	13.86	13.69	-0.17	1
tc1304b	13.15	13.04	-0.12	1
tc1306	12.68	12.80	0.12	1
tc1306a	12.69	12.65	-0.04	1
tc1307	14.62	14.64	0.02	1
tc1308	12.89	12.81	-0.08	1
cc3010	19.32	19.75	0.43	1
tc203	8.15	8.38	0.22	2
tc707a	5.87	5.64	-0.23	2
tc1304a	12.97	12.79	-0.18	2
tc1521	5.64	6.03	0.39	2
tc1604	2.58	3.04	0.46	2
tc1702	23.53	23.51	-0.02	2
cc011	9.83	9.59	-0.24	2
cc021	3.59	3.52	-0.07	2
cc058a	5.24	5.65	0.41	2
cc076	6.74	6.59	-0.15	2
tc218	7.98	8.32	0.34	3
tc219	7.79	8.29	0.5	3
tc717	13.60	13.65	0.05	3
tc725	16.83	16.99	0.16	3
tc725a	16.68	16.80	0.12	3
tc729	15.87	16.00	0.13	3
tc748	8.96	9.19	0.24	3
tc750	10.72	11.00	0.28	3
tc767	29.44	29.64	0.2	3
tc768	23.03	23.10	0.07	3
tc771	29.65	29.64	-0.01	3
tc772	30.29	30.40	0.11	3
tc774	32.41	32.43	0.02	3

tc781	32.28	32.31	0.03	3
tc782	8.10	8.41	0.31	3
tc787	11.55	11.50	-0.05	3
tc1014	18.68	19.08	0.4	3
tc1101	5.42	13.08	7.66	3
tc769	22.88	23.75	0.87	4
tc1526	11.28	11.50	0.22	4
cc012	8.56	8.65	0.09	4
cc016	8.56	8.71	0.15	4
cc1040	4.79	5.58	0.79	4

K:\B15058.k.wjs.Throsby\Tuflow_Calibration\results_summary_1990\[Calibration_Point_Statistics_1990_ 10m_052.xls]Calib_1990_10m_052_Table

Region/Grade	% Levels Within ±0.1m	% Levels Within ±0.2m	Average Deviation (m)	Total Number of Levels
Total				
Grade 1	46%	83%	0.02	24
Grade 2	20%	40%	0.06	10
Grade 3	33%	56%	0.59	18
Grade 4	20%	40%	0.42	5
All Grades	33%	61%	0.24	57
Merewether				
Grade 1	0%	0%	0.43	1
Grade 2	25%	50%	-0.01	4
Grade 3	N/A	N/A	N/A	0
Grade 4	50%	100%	0.12	2
All Grades	29%	57%	0.09	7
Kotara				
Grade 1	N/A	N/A	N/A	0
Grade 2	100%	100%	-0.02	1
Grade 3	57%	71%	0.12	7
Grade 4	0%	0%	0.87	1
All Grades	56%	67%	0.19	9
Mayfield				
Grade 1	50%	100%	0.11	4
Grade 2	0%	0%	0.12	2
Grade 3	N/A	N/A	N/A	0
Grade 4	N/A	N/A	N/A	0
All Grades	33%	67%	0.11	6
ISC				
Grade 1	25%	25%	-0.09	4
Grade 2	0%	0%	0.22	1
Grade 3	0%	0%	0.42	2
Grade 4	N/A	N/A	N/A	0
All Grades	14%	14%	0.10	7
Lambton				
Grade 1	50%	100%	0.00	14
Grade 2	0%	100%	-0.18	1
Grade 3	14%	57%	0.18	7
Grade 4	N/A	N/A	N/A	0
All Grades	36%	86%	0.05	22

 $K: B15058.k.wjs. Throsby \\ Tuflow_Calibration/results_summary_1990 \\ [Calibration_Point_Statistics_1990_10m_052.xls]\\ Statistics_Summary_1090 \\ [Calibration_Point_Statistics_1900_10m_052.xls]\\ Statistics_Summary_1900 \\ [Calibration_Point_Statistics_1900_10m_050_10m_0500_10m_050_10m_050_10m_050_10m_050_10m_050_10m_050_$

5.2.4 April 1988 Verification

The April 1988 flood event was simulated through the model as a verification of the 1990 flood calibration. As discussed previously, the 1988 event is more problematic given the large variation and uncertainty in the rainfall that fell over the catchment, and was therefore selected for verification purposes. The objective of the verification stage is to check the model performs satisfactorily to another flood event, using the same parameters as adopted for the calibration stage. The same level of agreement as achieved during the model calibration stage is not necessarily expected for the verification stage.

The adopted rainfall isohyets for the April 1988 calibration are presented in Drawing 5-13.

As for the 1990 flood calibration, the 1988 verification is presented using the same map arrangement. These maps are presented in (Drawing 5-14 to Drawing 5-18).

Figure 5-3 shows the model predictions at the Jellicoe Parade HWC gauge, the only gauge for which information was available. Figure 5-4 presents the profile of peak water levels along Throsby Creek, along with the recorded levels within 100 m of the creek centreline.

Observed and predicted flood levels for the 1988 verification are presented in Table 5-4. A statistical analysis of flood marks by region is presented in Table 5-4.

Flood ID	Recorded Flood Level (mAHD)	Modelled Level (mAHD)	Difference [Modelled - Recorded] (m)	Data Grade
tc006	8.34	8.21	-0.13	1
tc006a	8.28	8.24	-0.04	1
tc010	10.21	10.22	0.01	1
tc017	14.65	14.19	-0.46	1
tc765	12.21	11.84	-0.37	1
tc765a	11.80	11.84	0.05	1
tc1017	20.80	20.40	-0.4	1
tc1308b	12.31	12.29	-0.02	1
tc021	8.62	8.06	-0.55	2
tc776	29.59	29.39	-0.2	2
tc1308a	12.39	12.39	0.01	2
tc1018	8.11	8.08	-0.03	3

 Table 5-4
 Apr 1988 Calibration to Flood Marks

K:\B15058.k.wjs.Throsby\Tuflow_Calibration\results_summary_1988\[Calibration_Point_Statistics_1988_ night_10m_052.xls]Calib_1988_10m_052_Table

Region/Grade	% Levels Within ±0.1m	% Levels Within ±0.2m	Average Deviation (m)	Total Number of Levels
Total				
Grade 1	50%	63%	-0.17	
Grade 2	33%	33%	-0.25	
Grade 3	100%	100%	-0.03	
Grade 4	N/A	N/A	N/A	
All Grades	50%	58%	-0.18	1
Merewether				
Grade 1	N/A	N/A	N/A	
Grade 2	N/A	N/A	N/A	
Grade 3	N/A	N/A	N/A	
Grade 4	N/A	N/A	N/A	
All Grades	N/A	N/A	N/A	
Kotara				
Grade 1	N/A	N/A	N/A	
Grade 2	0%	0%	-0.20	
Grade 3	N/A	N/A	N/A	
Grade 4	N/A	N/A	N/A	
All Grades	0%	0%	-0.20	
Mayfield				
Grade 1	N/A	N/A	N/A	
Grade 2	N/A	N/A	N/A	
Grade 3	N/A	N/A	N/A	
Grade 4	N/A	N/A	N/A	
All Grades	N/A	N/A	N/A	
ISC				
Grade 1	50%	75%	-0.12	
Grade 2	0%	0%	-0.55	
Grade 3	100%	100%	-0.03	
Grade 4	N/A	N/A	N/A	
All Grades	50%	67%	-0.18	
Lambton				
Grade 1	50%	50%	-0.22	
Grade 2	100%	100%	0.01	
Grade 3	N/A	N/A	N/A	
Grade 4	N/A	N/A	N/A	
All Grades	60%	60%	-0.17	

 Table 5-5
 Regional Statistical Analysis of Apr 1988 Flood Marks

K:\B15058.k.wjs.Throsby\Tuflow_Calibration\results_summary_1988\[Calibration_Point_Statistics_1988_night_10m_052.xls] Statistics_Summary

5.2.5 Public Exhibition and Fine-Tuning

The calibration/verification of the computer models was placed on public exhibition and presented at community workshops. No negative feedback or changes in the models' calibration/verification resulted from the community feedback, although on-going investigation and fine-tuning occurred in localised areas (Broadmeadow/Adamstown area at start of racecourse culvert, Waratah Railway Station, Glebe Road, and upper areas of New Lambton) based on feedback from committee meetings.

5.3 Calibrated Model Parameters

5.3.1 Hydrological Parameters

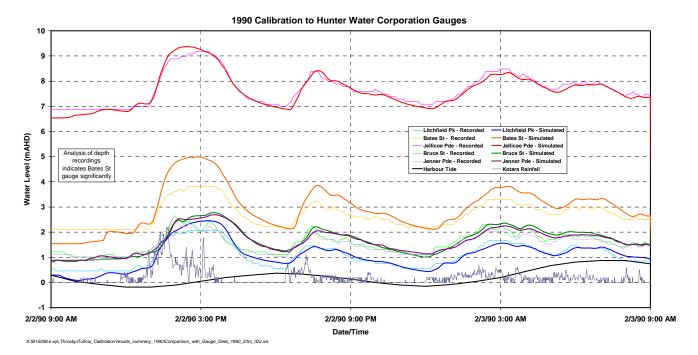
The main calibration parameters in the WBNM hydrological model are the lag parameter, the initial rainfall loss and the continuing rainfall losses.

A number of other parameters in WBNM can be changed if justification for modifying these exist. For the Throsby, Cottage and CBD hydrological model these remained at the recommended default values. The calibrated model parameters are presented in Table 5-6.

Parameter	1988 Calibration	1990 Calibration
Initial Loss (mm)	5.0	10.0
Continuing Losses (mm/hr)	2.0	2.0
Lag Parameter	1.3	1.3

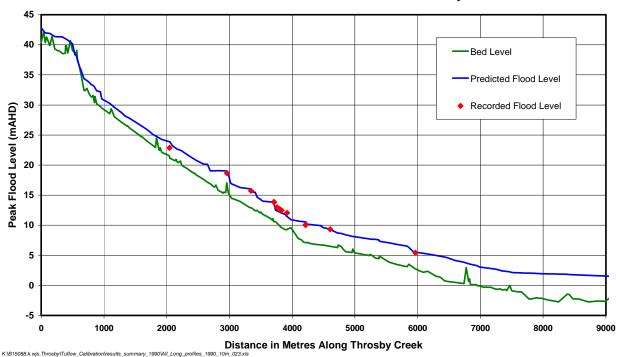
 Table 5-6
 Calibrated Hydrologic Parameters

K:\B15058.k.wjs.Throsby\Tuflow_Calibration\WBNM\[Calibrated_Parameters_048.xls]WBNM_Calib_Param

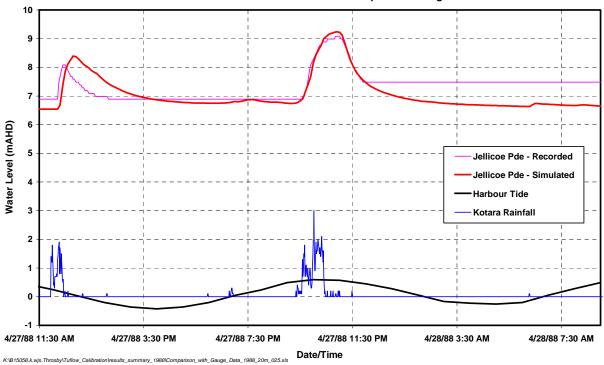

5.3.2 Hydraulic Model Parameters

The focus of the hydraulic model calibration was on varying hydraulic roughness (Manning's n). The calibrated Manning's n values are listed in Table 5-7.

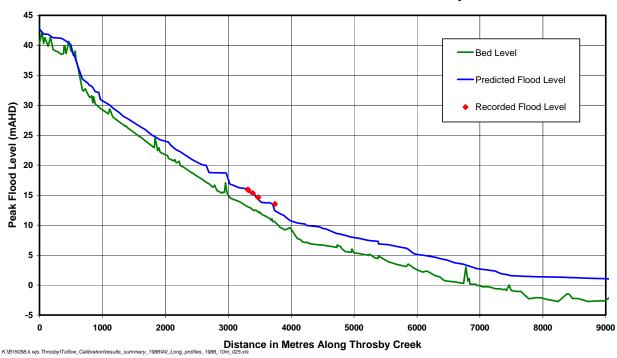
Land Use	Manning's n Value
2D Areas	
Grass (maintained)	0.030
Parkland	0.040
Roads / Railway	0.020
Open Concrete/Asphalt	0.020
Riparian Vegetation	0.100
Dense Land Vegetation / Forest	0.090
Building	1.000
Urban Block	0.300
Concrete Lined Channel	0.018
Bare Earth / unkempt low-level foliage	0.045
Harbour, dams, water	0.022
1D Areas	
Channel overbank	0.030
Parkland	0.040
Roads	0.020
Open Concrete/Asphalt	0.020
Riparian Vegetation	0.100
Dense Land Vegetation / Forest	0.090
Building	1.000
Urban Block	0.300
Concrete Lined Channels	0.018
Tidal Creek Bed	0.022
Fences	0.300
Bare Earth / unkempt low-level foliage	0.045


Table 5-7	Calibrated Manning's n Value	S
-----------	------------------------------	---

K:\B15058.k.wjs.Throsby\Tuflow_Calibration\model\[TCC_Materials_054.xls]Materials



1990 Calibration Profile to Recorded Levels within 100 m of Throsby Creek



1988 Verification to Hunter Water Corporation Gauges

BMT WBM

1988 Verification Profile to Recorded Levels within 100 m of Throsby Creek

6 DESIGN FLOODS

6.1 Topography Adjustments (1990 to 2005)

There have been a number of changes to the catchment since the 1990 calibration event that need to be incorporated as the design modelling is based on existing (2005) topography. The topography of the calibrated model was updated to ensure that the design model was reflective of the existing topography.

6.1.1 DEM and Bathymetry

The primary DEM is based on the conditions as of 2000. Changes made to reflect conditions as of 1988/1990 were removed from the design model, and changes to the topography between 2000 and 2005 included. Layers added to modify the DEM of 2000 are listed below in Table 6-1. The locations of these modifications are presented in Drawing 6-1.

Description	Area	Change
DEM 2000	Hydraulic Modelling Area	Base
Bathymetry	Harbour	Missing in DEM 2000
Bathymetry	Harbour	Missing in DEM 2000
Bathymetry	Harbour	Missing in DEM 2000
Allworth St DEM (NCC)	Glebe Road	Missing in DEM 2000
2005 Ground Survey	Stewart Avenue	Development Since DEM 2000
2005 Ground Survey	Linwood St	Development Since DEM 2000
2005 Ground Survey	Carrington	Development Since DEM 2000
2005 Ground Survey	Honeysuckle	Development Since DEM 2000
2005 Ground Survey	Wickham	Development Since DEM 2000
2005 Ground Survey	Kotara	Development Since DEM 2000
DEM 2004 Photogrammetry	Hamilton South	Development Since DEM 2000
Ground Survey	Waratah Railway	More Accurate Ground Survey
Ground Survey	Glebe Road	More Accurate Ground Survey

 Table 6-1
 Modifications to 2000 Topography for Design Modelling

 $\label{thm:constraint} K: B15058.k.w js. Throsby \table Design \table$

6.1.2 Cross-Sections

The lower sections of Throsby Creek and the harbour are modelled in 2D. Changes to topography caused by dredging and development in these areas are represented.

6.1.3 Land-Use

The 2004 aerial photographs were used to digitise the current land uses in areas that have changed since the calibration events. The land uses used in the design modelling are presented in Drawing 6-2.

6.1.4 Hydraulic Structures

The rail bridge over Styx Creek was replaced in 2004. Newcastle City Council provided details of both bridges. The model was updated to reflect the current arrangement.

Details for the hydraulic structures are based on the drawings provided by Newcastle City Council. These structures were surveyed / measured in the years 2000 and 2001. It is assumed that these are reflective of the current structures.

6.2 Design Flood Behaviour

6.2.1 Flood Mechanisms

In general, the flooding behaviour in the Throsby, Cottage and CBD areas in its current developed state can be summarised as follows:

- Rainfall on the catchment initially drains via the underground drainage network to the network of concrete lined open channels that discharge to the harbour.
- When runoff exceeds the capacity of the underground drainage and open channel network, floodwaters primarily travel along the road system as a network of flowpaths draining the catchment into the open channels or parallel to open channels.
- In some areas, the major overland flowpaths are through residential/commercial buildings and grounds and parkland.
- Flooding in the lower areas (Carrington in particular) can result as a back up from Throsby Basin either from a Hunter River flood, an elevated ocean level (eg storm surge) or from a combination of both.

6.2.2 Critical Duration Analysis

The hydrological model was used to simulate 11 rainfall durations for the 1% AEP event to ascertain the critical duration storm periods. Flows generated were input to the hydraulics model to determine the design rainfall durations that result in the highest modelled water level at locations throughout the study area.

To ensure that the timing of the tide in the harbour did not influence the critical duration analysis, the downstream water level for the critical duration simulations was held constant at 0.0mAHD. Results of the critical duration analysis are presented in Drawing 6-3. This figure shows where the various rainfall durations yield the highest predicted water level.

The rainfall durations used in the critical duration and the area that each of these is critical is presented in Table 6-2. It should be noted that while the 1 and 1.5 hour durations have a greater percentage than the 9 hour, the depth is generally very close in value to the 2 hour duration. In lower areas, the longer durations are critical and these are significantly deeper than the 2 hour duration.

The locations where the depth of the 2 and 9 hour durations is within 50mm of the critical depth was calculated. Drawing 6-5 shows areas where the 2 and 9 hour events are within 50mm of the critical

duration. This drawing shows that over the extent of the model the 2 and 9 hour events are generally either critical or within 50mm of the critical depth.

In consultation with the flood study technical committee it was decided that two and nine hour rainfall durations would be used for design flood simulations.

Duration	Area km ²	Percentage of Area Critical
0.5 hour	0.28	3.0%
1 hour	1.25	13.5%
1.5 hour	1.53	16.5%
2 hour	3.97	42.9%
3 hour	0.32	3.5%
4.5 hour	0.22	2.4%
6 hour	0.22	2.4%
9 hour	0.71	7.6%
12 hour	0.26	2.8%
18 hour	0.16	1.7%
24 hour	0.35	3.8%
Total	9.26	100.0%

Table 6-2 Results Critical Duration Analysis of 1% AEP

K:\B15058.k.wjs.Throsby\Tuflow_Design\results_summary\critical_duration_analysis_to_DG_051219\ [TCC_Q100_Critical_Duration_Statistics.xls]Crit_Dur_Stat 6-3

6.3 Design Flood Combinations

6.3.1 Design Event Abbreviations

The following abbreviations are used for the design event section of the Throsby, Cottage and CBD Flood study:

Abbreviatio	on Description	
Topography		
TEX	TEX Topography as at 2005 (ie. existing conditions)	
TFD Fully developed topography		
Event Probab	bility	
QPMF	PMF Flood Event	
Q200	200 year ARI or 0.5% AEP Event	
Q100	100 year ARI or 1% AEP Event	
Q050	50 year ARI or 2% AEP Event	
Q020	20 year ARI or 5% AEP Event	
Q010	10 year ARI or 10% AEP Event	
Q005	5 year ARI or 20% AEP Event	
Q002	2 year ARI or 50% AEP Event	
Duration		
D0030m	30 minute critical duration	
D01.0h	1 hour critical duration	
D01.5h	90 minute critical duration	
D02.0h	2 hour critical duration	
D03.0h	3 hour critical duration	
D04.5h	4.5 hour critical duration	
D06.0h	6 hour critical duration	
D09.0h	9 hour critical duration	
D12.0h	12 hour critical duration	
D18.0h	18 hour critical duration	
D24.0h	24 hour critical duration	
Harbour Con	ditions (Hunter River / Ocean Combinations)	
RPMF	Hunter River PMF flood event with a 1.3m ocean storm tide. The two peaks are timed to coincide within the harbour.	
H0.5e	0.5% exceedance for any given hour harbour boundary from L&T joint probability study.	
H01e	1% exceedance for any given hour harbour boundary from L&T joint probability study.	
H02e	2% exceedance for any given hour harbour boundary from L&T joint probability study.	

 Table 6-3
 Design Event Abbreviations

H05e	5% exceedance for any given hour harbour boundary from L&T joint probability study.
H10e	10% exceedance for any given hour harbour boundary from L&T joint probability study.
H20e	20% exceedance for any given hour harbour boundary from L&T joint probability study.
H50e	50% exceedance for any given hour harbour boundary from L&T joint probability study.
Climate Change	
C01	Climate Change Scenario 01: 0.4m sea level rise.

6.3.2 Design Event Probabilities

Flooding was simulated using the hydraulic model for eleven combinations of design event probabilities for the TEX (Existing) and TFD (Future) topographic scenarios as follows.

- Existing (TEX) conditions: PMF, Q200, Q100, Q50, Q20, Q10, Q5 and Q2.
- Future (TFD) conditions: PMF, Q100 and Q10.

6.3.3 Design Event Combinations

The selection of rainfall event durations (two and nine hour) was based on the critical duration analysis, see Section 6.2.2. The following combinations were simulated for the design probabilities listed in Table 6-4.

All design events have a 1 hour, 1% AEP time varying tailwater condition, based on the joint probability study of water levels in Newcastle Harbour (Lawson and Treloar, 1999). The fully developed condition simulations have an allowance of 0.4m on tailwater levels to account for possible sea level rise in the future.

Design Flood Probability	Combinations
Existing Condition (TEX)) Combinations
PMF	1. TEX_QPMF_D02.0h_H01e
Q200	2. TEX_Q200_D02.0h_H01e
	3. TEX_Q200_D09.0h_H01e
Q100	4. TEX_Q100_D02.0h_H01e
	5. TEX_Q100_D09.0h_H01e
Q050	6. TEX_Q050_D02.0h_H01e
	7. TEX_Q050_D09.0h_H01e
Q020	8. TEX_Q020_D02.0h_H01e
	9. TEX_Q020_D09.0h_H01e
Q010	10. TEX_Q010_D02.0h_H10e
	11. TEX_Q010_D09.0h_H10e
Q005	12. TEX_Q005_D02.0h_H01e
	13. TEX_Q005_D09.0h_H01e
Q002	14. TEX_Q002_D02.0h_H01e
	15. TEX_Q002_D09.0h_H01e
Fully Developed Condition	on (TFD) Combinations
PMF	16. TFD_QPMF_D02.0h_H01e_C01
Q100	17. TFD_Q100_D02.0h_H01e_C01
	18. TFD_Q100_D02.0h_H01e_C01
Q010	19. TFD_Q010_D02.0h _H01e_C01
	20. TFD_Q010_D09.0h_H01e_C01

Table 6-4	Design	Flood	Combinations
	Design	11000	Combinations

6.4 Presentation of Results

Design flood levels and depths are presented for the eight existing design event probabilities. The results for each design probability are the maximum envelope of two critical durations (two and nine hour durations).

The peak water level does not occur everywhere at the same time, therefore, values presented are based on the maximum that occurred at each computational point in the model during a combination of event durations. Hence, results do not represent an instantaneous point in time, but rather an envelope of the maximum values that have occurred.

Unless otherwise stated, presentations in this report are based on peak values, not at an instant in time. Peak velocity and peak velocity-depth products are those that occur at the time of the peak water level.

Long sections down each of the major tributaries are presented for all the design and calibration events. An index of the long profiles is presented in Table 6-5. A map of the location of profiles is presented in Drawing 6-5.

Branch	Drawing Number
Location Plan	Drawing 6-4
Adamstown	Drawing 6-5
Broadmeadow East	Drawing 6-6
Broadmeadow	Drawing 6-7
Cottage Creek	Drawing 6-8
Georgetown	Drawing 6-9
Griffiths Flat	Drawing 6-10
Kotara	Drawing 6-11
Lambton	Drawing 6-12
Mayfield	Drawing 6-13
New Lambton	Drawing 6-14
Orchardtown	Drawing 6-15
Racecourse	Drawing 6-16
Throsby Upper	Drawing 6-17
Throsby Lower	Drawing 6-18
Waratah	Drawing 6-19
K:\B15058 k wis ThroshylTuflow Design/results summary	

Table 6-5	Index Of Long Profiles

K:\B15058.k.wjs.Throsby\Tuflow_Design\results_summary\ Long_Profiles_123\Excel\[Index_of_LPs.xls]Index_Table

Five drawings are presented for each design event probability and output type, as a keysheet (A3) and four A3 maps. An index of the design mapping is presented in Table 6-6.

Event	Levels	Depths
Q002_TEX	Drawing 6-20 to Drawing 6-24	Drawing 6-25 to Drawing 6-29
Q005_TEX	Drawing 6-30 to Drawing 6-34	Drawing 6-35 to Drawing 6-39
Q010_TEX	Drawing 6-40 to Drawing 6-44	Drawing 6-45 to Drawing 6-49
Q020_TEX	Drawing 6-50 to Drawing 6-54	Drawing 6-55 to Drawing 6-59
Q050_TEX	Drawing 6-60 to Drawing 6-64	Drawing 6-65 to Drawing 6-69
Q100_TEX	Drawing 6-70 to Drawing 6-74	Drawing 6-75 to Drawing 6-79
Q200_TEX	Drawing 6-80 to Drawing 6-84	Drawing 6-85 to Drawing 6-89
QPMF_TEX	Drawing 6-90 to Drawing 6-94	Drawing 6-95 to Drawing 6-99

Table 6-6 Index of Design Flood Maps

I:\B15058_I_BRH_ Throsby Cottage_WJS\DRG\Design_Mapping\[A3_Drawing_Addendum.xls]Table

6.5 Design Flood Peak Envelopes

6.5.1 2 year ARI Event

The following comments are made with respect to the 50% AEP (2 year ARI) flood probability combination:

 There are significant areas predicted to experience shallow flooding, these include New Lambton, The Junction, Hamilton North and Carrington. Many of these are likely to be as a result of the sub-900mm pipes not being included.

- Velocity and velocity-depth products are typically low for overland areas, the exception being Merewether.
- The railway embankment at Kotara acts as a significant restriction to flow with a head drop of approximately 1.5m at the culverts.
- There is no interaction between the Throsby and Cottage Creek catchments.
- Predicted area inundated is 5.9km².

6.5.2 5 year ARI Event

The following comments are made with respect to the 5 year ARI (20% AEP) probability design event combination:

- Significant increases to flood extent (compared with the 2 year ARI event) occur in New Lambton (Bridges Road and Errington Ave / Mackie Ave) and the CBD (Hunter and King Streets).
- A flow path is created along Bridges Road, New Lambton (between Longworth Ave and Russell Rd).
- A small interaction between the Throsby and Cottage Creek catchments occurs. A peak flow of approximately 0.5m³/s from the Cottage Creek catchment to the Throsby Creek occurs in the nine hour event. The flow occurs along Fowler and Coady Streets in Hamilton South.
- Predicted area inundated is 7.3km².

6.5.3 10 year ARI Event

The following comments are made with respect to the 10 year ARI (10% AEP) probability design event combination:

- Significant increases to flood extent (compared to the 5 year ARI event) occur in Mayfield and New Lambton.
- Proportion of flow along Bridges Road / Penman Avenue / Fairfield Avenue increases. Velocities
 of greater than 1m/s are predicted.
- Approximately 40% of flow in overland areas along Selwyn and Wilton Streets (Merewether).
- Predicted area inundated is 7.9km².

6.5.4 20 year ARI Event

The following comments are made with respect to the 20 year ARI (5% AEP) probability design event combination:

- Increases in flood extent and overland flow.
- Flowpath along Silsoe Street / Dangar Park in Mayfield develops.
- Overland flow path along Dawson, Queen and Darby Streets in Cooks Hill develops.
- Overland flow path along Mitchell St (between Llewellyn and Robert Streets) in Merewether develops.
- Predicted area inundated is 8.7km².

6.5.5 50 year ARI Event

The following comments are made with respect to the 50 year ARI (2% AEP) probability design event combination:

- General increases in flood extent and overland flow, notably in Hamilton North, Broadmeadow, Adamstown and Cooks Hill.
- Overland flowpath along Griffiths Road and Broadmeadow Road into Hamilton North develops.
- Overland flowpath north along Brunker, Chatham and Broadmeadow Roads develops.
- Overland flowpath along Mowbray and Wood Streets Adamstown develops.
- Overland flowpath along St James Road (east of Evenscourt Road) develops.
- Peak flow between the Throsby and Cottage Creek catchments is 2.6m³/s from Throsby Creek to Cottage Creek catchment.
- Predicted area inundated is 9.6km².

6.5.6 100 year ARI Event

The following comments are made with respect to the 100 year ARI (1% AEP) probability design event combination:

- General increases in flood extent and overland flow, notably in New Lambton, Hamilton, Hamilton South and Newcastle West.
- Overland flow occurs north along Orchardtown Road, Birdwood Street and Knight Street.
- 75% of flow occurs in overland areas (as opposed to underground conduits) along Selwyn and Wilton Streets (Merewether).
- Predicted area inundated is 10.2km².

6.5.7 200 year ARI Event

The following comments are made with respect to the 200 year ARI (0.5% AEP) probability design event combination:

- General increases in flood extent and overland flow.
- A significant number of streets have velocities of greater than 1m/s, particularly in Merewether and New Lambton.
- Predicted area inundated is 10.8km².

6.5.8 PMF Event

The following comments are made with respect to the Probable Maximum Flood (PMF) event combination:

• The PMF event combination results in very large areas being inundated.

- Large portions of Broadmeadow, Hamilton, Hamilton North, Hamilton South, Hamilton East, The Junction, Wickham, Islington, Maryville, Carrington and New Lambton are predicted to experience flooding.
- Numerous roads have peak velocities of greater then 1m/s and a significant number have predicted velocities greater than 2m/s.
- Predicted area inundated is 19.3km².

7 CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

The following points summarise the findings for the Throsby, Cottage and CBD Flood Study:

- A hydrological model of the Throsby, Cottage and CBD catchments has been developed. The model uses industry standard parameters.
- A dynamically linked two-dimensional/one-dimensional (2D/1D) TUFLOW hydraulic model of the Throsby, Cottage and CBD areas was developed and calibrated/verified to the 1988 and 1990 flood events
- The models have successfully been used to derive a detailed representation of flooding in creek/channel and urban areas for the 50%, 20%, 10%, 5%, 2%, 1% and 0.5% AEP design flood events as well as the probable maximum flood.
- The models are considered to form a reliable and representative base from which to carry out flood risk management investigations and quantitatively assess impacts of flood mitigation options.

7.2 Recommendations

The following recommendations are made with respect to the Throsby, Cottage and CBD flood study:

- The computer models developed of the Throsby, Cottage and CBD catchments should be verified against the June 2007 flood event.
- The computer models should form the basis of all future floodplain risk management investigations for the study area.

8 **REFERENCES**

AUSTROADS (1994), Waterway Design A Guide to the Hydraulic Design of Bridges, Culverts and Floodways

Lawson and Treloar (1994), Lower hunter River Flood Study (Green Rocks to Newcastle)

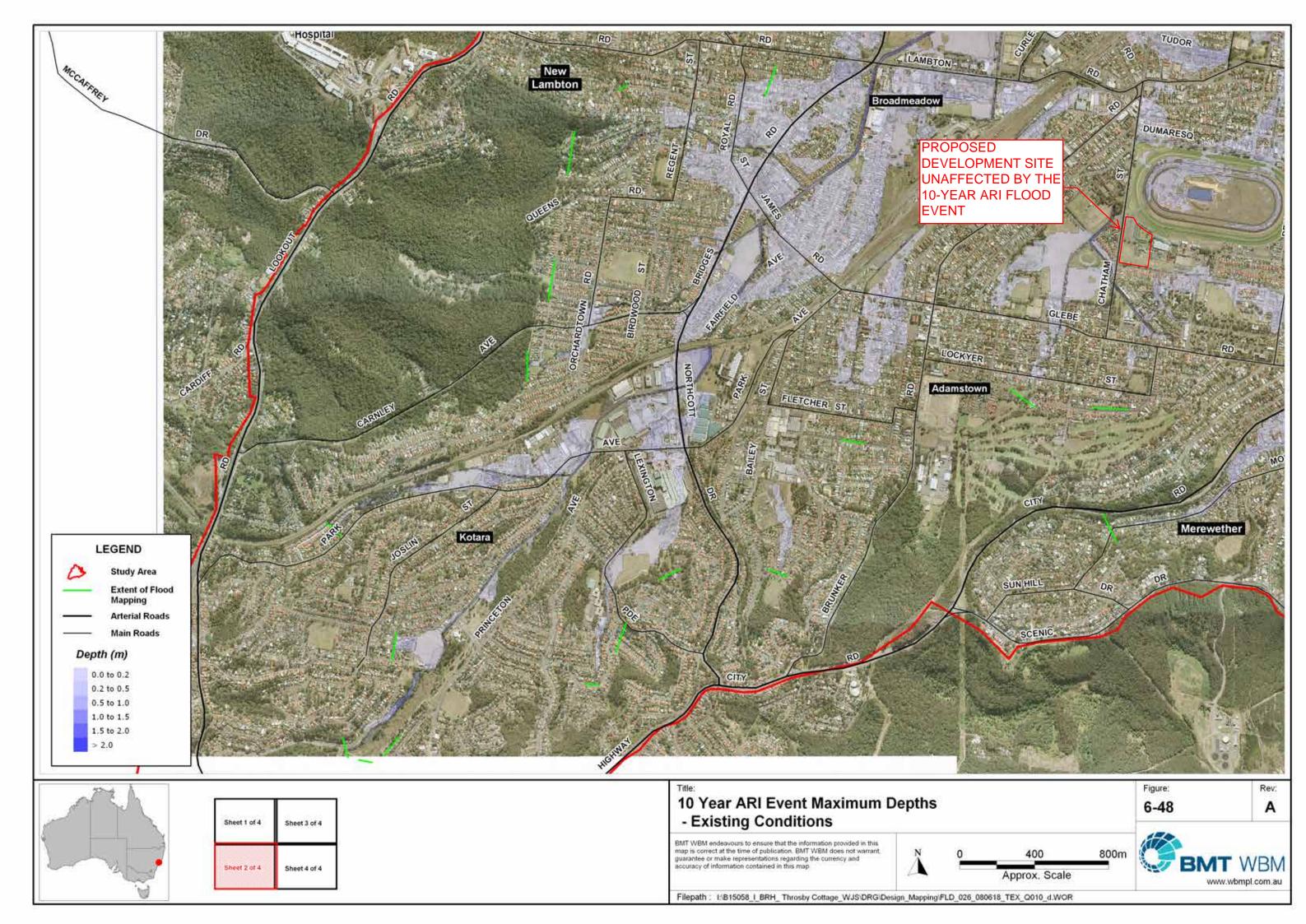
Lawson and Treloar (1999), Design Water Levels in Newcastle Harbour - Joint Probability Study

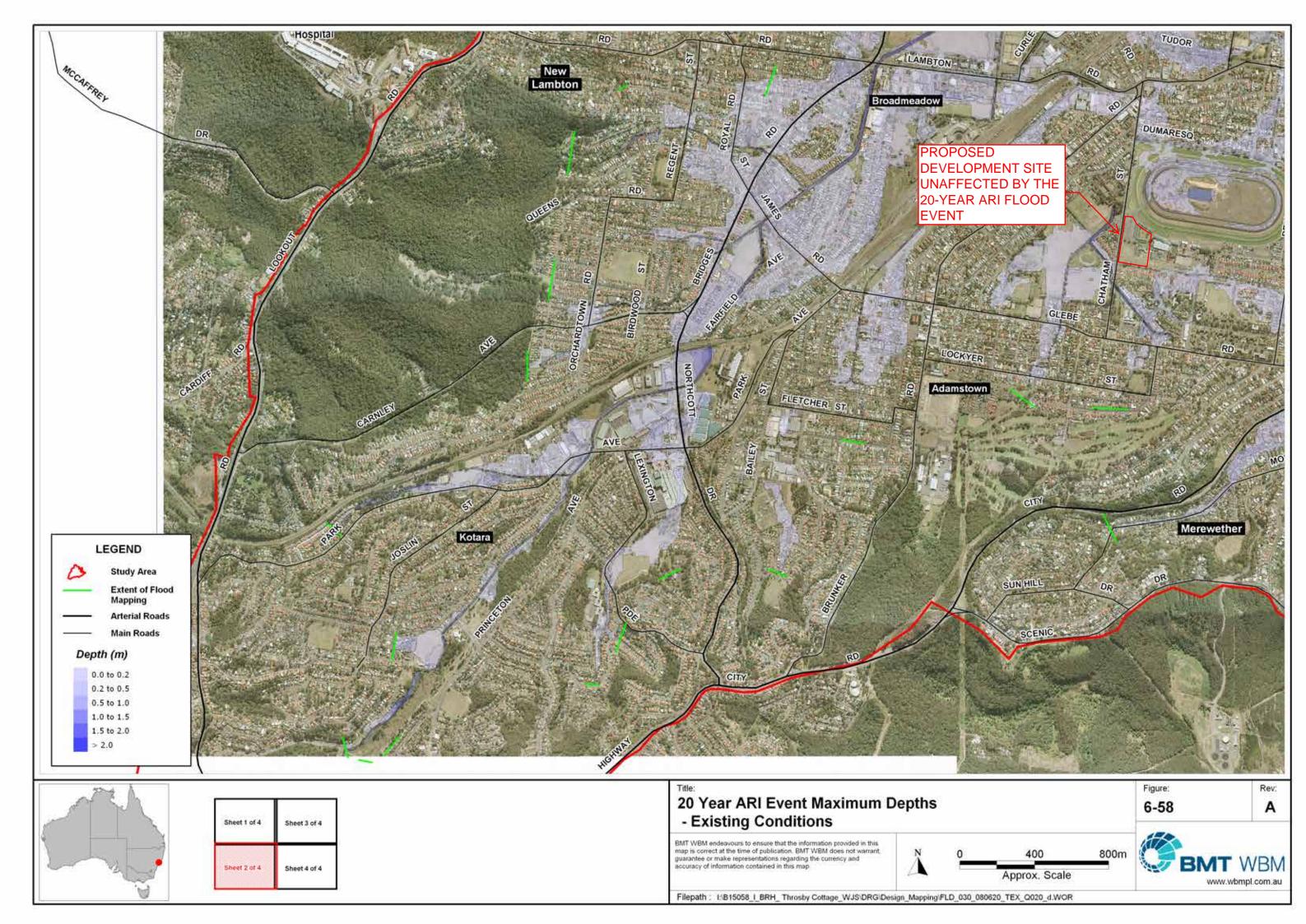
Lawson and Treloar (2000), Design of a City-Wide Flood Data Collection System

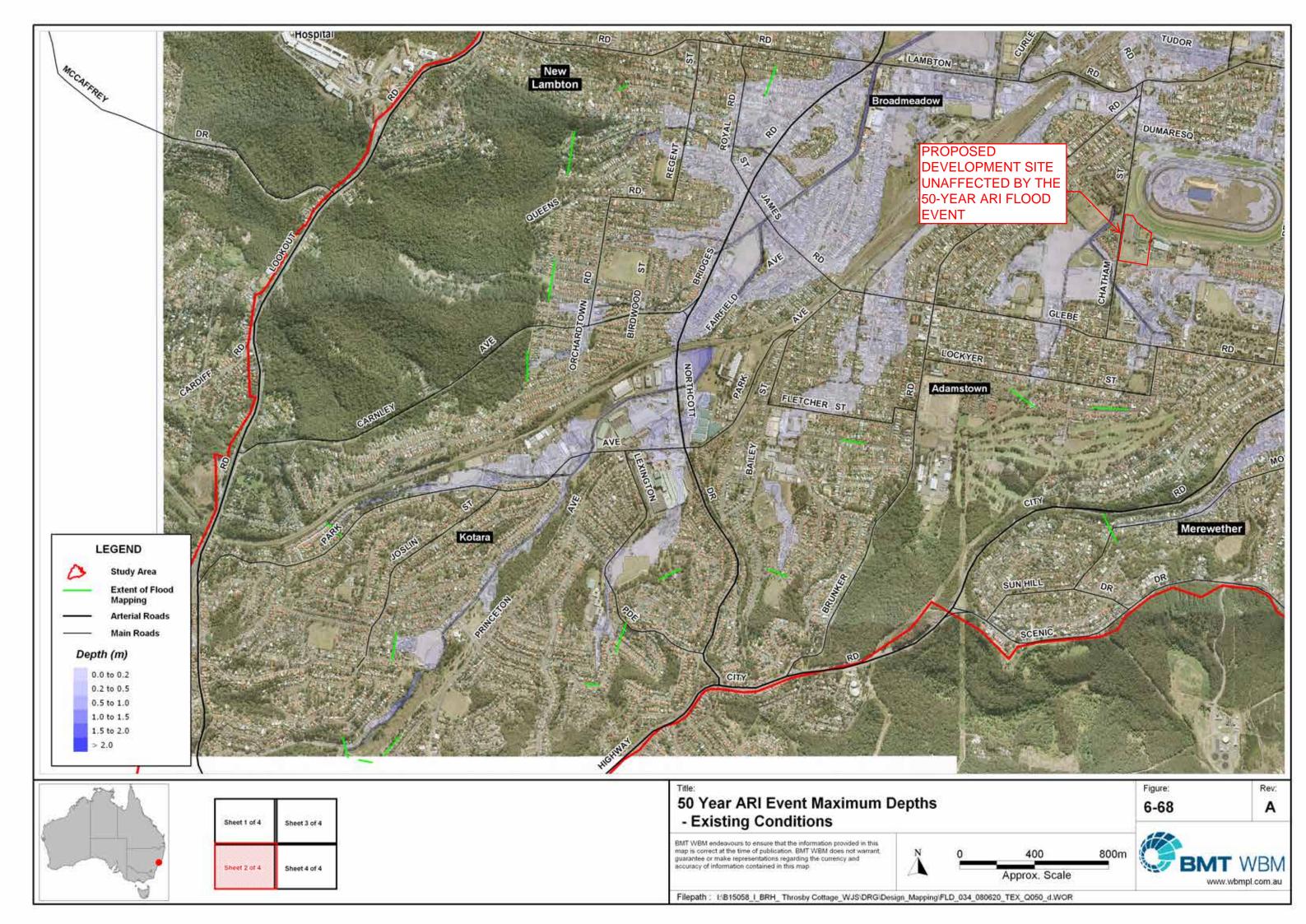
Newcastle City Council (1997), Brief: Cottage Creek Flood Study

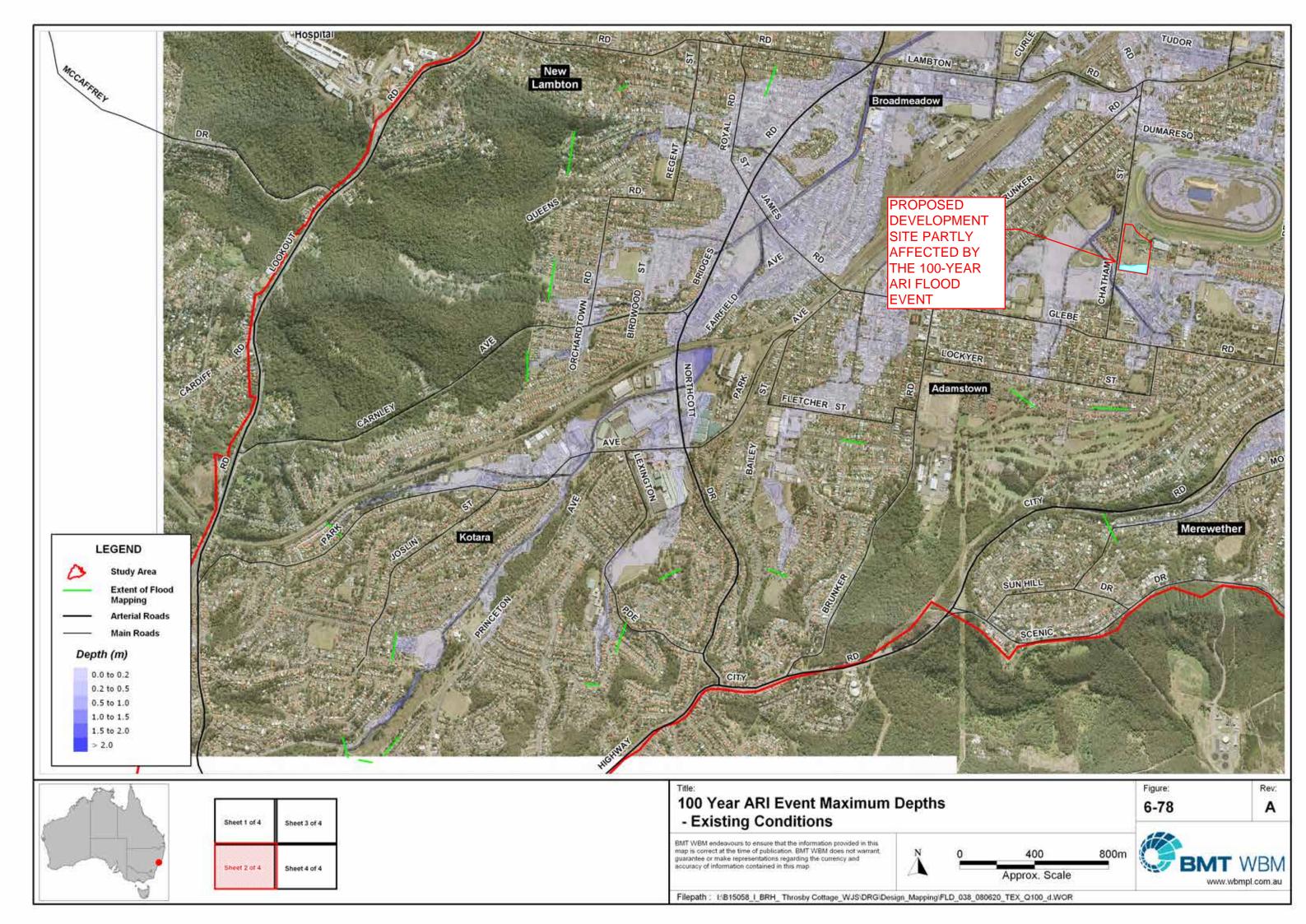
Newcastle City Council (1997), Brief: Newcastle City Wide - Historic Flood Date Collection Study

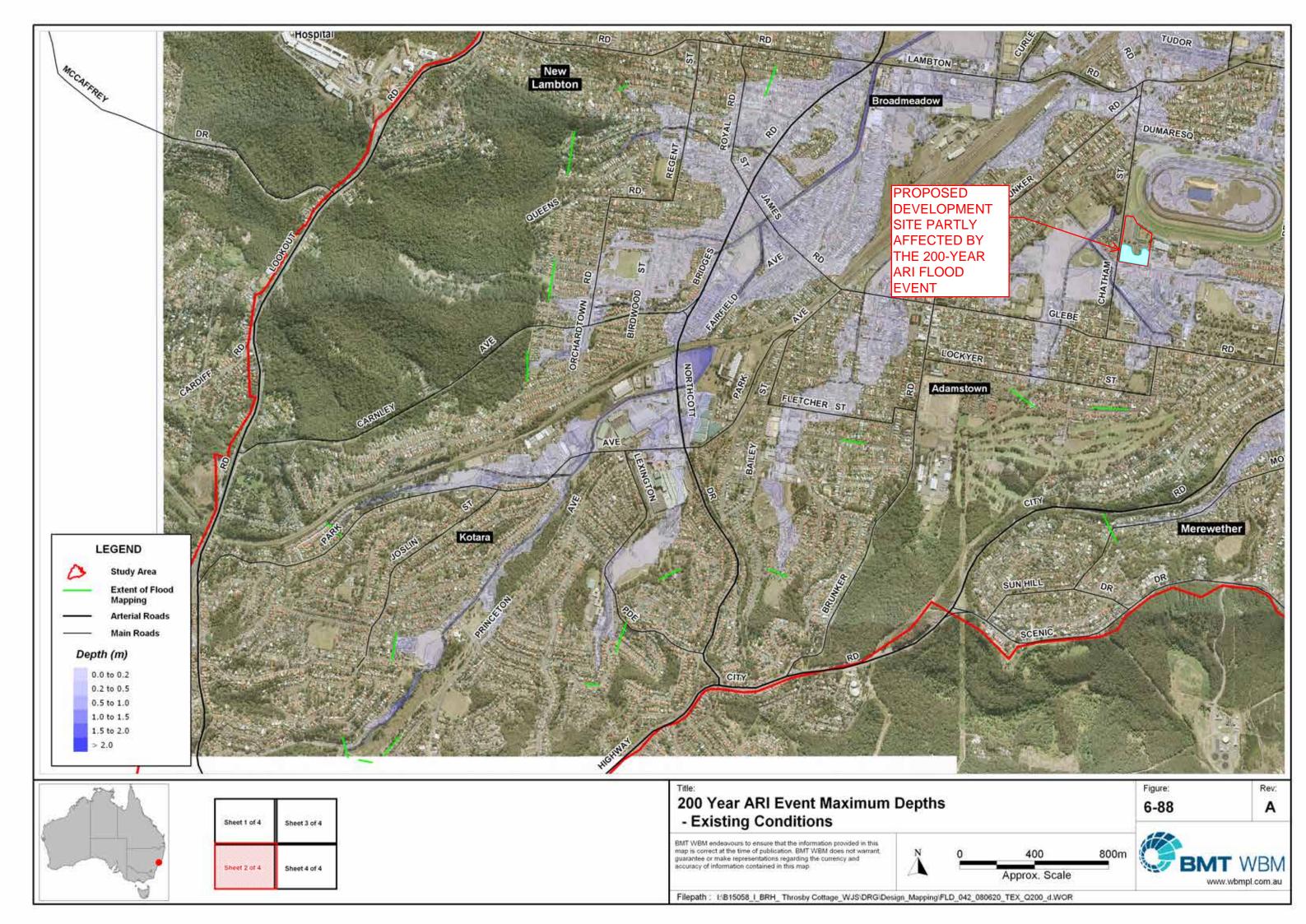
Newcastle City Council (1997), Brief: Newcastle City Wide - Design of Flood Data Collection System


Pilgrim, DH, (ed). (1978), Australian Rainfall & Runoff - A Guide to Flood Estimation, Institution of Engineers, Australia, Barton, ACT


WBM Oceanics Australia (2000), Newcastle City Wide Flood Studies - Data Collection Study


WBM Oceanics Australia (2004), Cottage Creek Flood Study - Final Report




BMT WBM Brisbane	Level 11, 490 Upper Edward Street Brisbane 4000 PO Box 203 Spring Hill QLD 4004 Tel +61 7 3831 6744 Fax +61 7 3832 3627 Email wbm@wbmpl.com.au Web www.wbmpl.com.au
BMT WBM Denver	14 Inverness Drive East, #B132 Englewood Denver Colorado 80112 USA Tel +1 303 792 9814 Fax +1 303 792 9742 Email wbmdenver@wbmpl.com.au Web www.wbmpl.com.au
BMT WBM Melbourne	Level 5, 99 King Street Melbourne 3000 PO Box 604 Collins Street West VIC 8007 Tel +61 3 8620 6100 Fax +61 3 8620 6105 Email wbmmelbourne@wbmpl.com.au Web www.wbmpl.com.au
BMT WBM Morwell	Cnr Hazelwood Drive & Miners Way Morwell 3840 PO Box 888 Morwell VIC 3840 Tel +61 3 5135 3400 Fax +61 3 5135 3444 Email wbmmorwell@wbmpl.com.au Web www.wbmpl.com.au
BMT WBM Newcastle	126 Belford Street Broadmeadow 2292 PO Box 266 Broadmeadow NSW 2292 Tel +61 2 4940 8882 Fax +61 2 4940 8887 Email wbmnewcastle@wbmpl.com.au Web www.wbmpl.com.au
BMT WBM Perth	1 Brodie Hall Drive Technology Park Bentley 6102 Tel +61 8 9328 2029 Fax +61 8 9486 7588 Email wbmperth@wbmpl.com.au Web www.wbmpl.com.au
BMT WBM Sydney	Suite 206, 118 Great North Road Five Dock 2046 PO Box 129 Five Dock NSW 2046 Tel +61 2 9713 4836 Fax +61 2 9713 4890 Email wbmsydney@wbmpl.com.au Web www.wbmpl.com.au
BMT WBM Vancouver	1190 Melville Street #700 Vancouver British Columbia V6E 3W1 Canada Tel +1 604 683 5777 Fax +1 604 608 3232 Email wbmvancouver@wbmpl.com.au Web www.wbmpl.com.au

