Great Western Battery Scoping Report
Great Western Battery Scoping Report

Client: Neoen Australia Pty Ltd
ABN: 160905706

Prepared by

AECOM Australia Pty Ltd
Level 21, 420 George Street, Sydney NSW 2000, PO Box Q410, QVB Post Office NSW 1230, Australia
T +61 2 8934 0000 F +61 2 8934 0001 www.aecom.com
ABN 20 093 846 925

15-Dec-2020

Job No.: 606039954

AECOM in Australia and New Zealand is certified to ISO9001, ISO14001 AS/NZS4801 and OHSAS18001.

© AECOM Australia Pty Ltd (AECOM). All rights reserved.

AECOM has prepared this document for the sole use of the Client and for a specific purpose, each as expressly stated in the document. No other party should rely on this document without the prior written consent of AECOM. AECOM undertakes no duty, nor accepts any responsibility, to any third party who may rely upon or use this document. This document has been prepared based on the Client’s description of its requirements and AECOM’s experience, having regard to assumptions that AECOM can reasonably be expected to make in accordance with sound professional principles. AECOM may also have relied upon information provided by the Client and other third parties to prepare this document, some of which may not have been verified. Subject to the above conditions, this document may be transmitted, reproduced or disseminated only in its entirety.
Quality Information

Document: Great Western Battery Scoping Report -

Date: 15-Dec-2020

Prepared by: Prepared By Jessica Zickar

Reviewed by: Reviewed By William Miles

Revision History

<table>
<thead>
<tr>
<th>Rev</th>
<th>Revision Date</th>
<th>Details</th>
<th>Authorised</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>15-Dec-2020</td>
<td>Final</td>
<td>William Miles</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Technical Director -</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Environment</td>
</tr>
<tr>
<td>4.1</td>
<td>18-Dec-2020</td>
<td>Final DPIE comments addressed</td>
<td>Jamie McMahon</td>
</tr>
</tbody>
</table>
Table of Contents

Executive Summary i

1.0 Introduction 1
 1.1 Overview 1
 1.2 Purpose of this report 2
 1.3 The proponent 2

2.0 Site analysis 4
 2.1 Site location, characteristics and context 4
 2.1.1 Site location and characteristics 4
 2.1.2 Site context 4

3.0 Project description 8
 3.1 Project summary 8
 3.2 Project need 9
 3.3 Project objectives 10
 3.4 Project alternatives 10
 3.4.1 Alternative approaches 10
 3.4.2 Justification of preferred option (the Project) 11
 3.6.1 Construction overview 12
 3.6.2 Workforce 13
 3.6.3 Construction hours 13
 3.7.1 Hours of operation 13
 3.7.2 Staffing 13

4.0 Planning and assessment process 14
 4.1 Environmental Planning and Assessment Act 1979 14
 4.1.1 Overview 14
 4.1.2 Permissibility 14
 4.1.3 Planning approval pathway 14
 4.2.1 State Environmental Planning Policy (State and Regional Development) 2011 16
 4.2.2 State Environmental Planning Policy (Infrastructure) 2007 16
 4.2.3 State Environmental Planning Policy No. 33 – Hazardous and Offensive Development 16
 4.2.4 Lithgow Local Environmental Plan 2014 17
 4.3 Other NSW Legislation 18
 4.4 Strategic planning 20
 4.4.1 NSW Transmission Infrastructure Strategy 20
 4.4.2 The NSW Electricity Strategy 20
 4.4.3 The NSW Climate Change Policy Framework 21
 4.4.4 Central West and Orana Regional Plan, 2036 21
 4.5 Commonwealth environmental approvals 21
 4.5.1 Environment Protection and Biodiversity Conservation Act 1999 21

5.0 Environmental matter identification 23
 5.1.1 Air quality 23
 5.1.2 Biodiversity 23
 5.1.3 Bushfire 26
 5.1.4 Greenhouse gas and energy efficiency 28
 5.1.5 Hazards and risk 28
 5.1.6 Non-Aboriginal heritage 29
 5.1.7 Aboriginal heritage 29
 5.1.8 Land use 30
 5.1.9 Landscape and visual impact 30
 5.1.10 Noise and vibration 31
 5.1.11 Infrastructure requirements 33
 5.1.12 Social impacts 34
 5.1.13 Soils, groundwater and contamination 34
 5.1.14 Surface water, flooding and water use 36
5.1.15 Transport and access 36
5.1.16 Waste management 37
5.1.17 Cumulative impacts 38
5.2 Scoping summary 40
6.0 Consultation 42
6.1 Neoen stakeholder community relations values 42
6.2 Community and stakeholder engagement 42
6.3 Consultation activities 46
6.3.1 Consultation to date 46
6.3.2 Future consultation 49
7.0 Conclusion 50
8.0 References 52
Appendix A
Scoping worksheet A

Figures
Figure 1 Site context 6
Figure 2 Site plan and nearby land use designations 7
Figure 3 Indicative general arrangement for the BESS, Hornsdale South Australia 9
Figure 4 Biodiversity, heritage and waterways 25
Figure 5 Bushfire prone land 27
Figure 6 Sensitive receivers 32
Figure 7 SSD projects within 15 kilometres of the Project 39
Figure 8 Neoen’s community relations values 42

Tables
Table 1 Proponent details 3
Table 2 Review of approvals required under section 4.42 of the EP&A Act 15
Table 3 RU1 Primary production – land use zone objectives 17
Table 4 Other relevant NSW legislation 18
Table 5 Quantities of hazardous material to be stored and their SEPP 33 threshold level 28
Table 6 Summary of scoping assessment outcomes 40
Table 7 Consultation undertaken to date 46
Executive Summary

Introduction

Neoen Australia (the proponent) is proposing to develop a large-scale Battery Energy Storage System (BESS) at Wallerawang, New South Wales (NSW), within the Lithgow Local Government Area (LGA).

The Project is identified as State Significant Development (SSD) under the Environmental Planning and Assessment Act 1979 (EP&A Act) by virtue of meeting thresholds defined in the State Environmental Planning Policy (State and Regional Development) 2011 (SRD SEPP).

The Project seeks to provide a critical element of the expanding renewable energy industry and the future capacity and resilience of the NSW energy network through providing a large-scale energy storage system. Neoen believe that the provision of the physical infrastructure to store electricity is a critical first step to supporting the investment in and development of renewable energy solutions for NSW.

The large-scale BESS that would be delivered by the Project would operate unlike any other device currently connected to the NSW network, and would provide a range of services with extremely fast response times to support a stable network and security of supply. The energy storage capacity provided by the Project would allow for increased installation of renewable energy sources while maintaining network stability and security.

This Scoping Report has been prepared to seek Secretary’s Environmental Assessment Requirements (SEARs) for the Project. These SEARs would allow the preparation of an EIS in line with the expectations of the regulators and in accordance with Part 4 of the EP&A Act.

Project overview

The Project would involve the construction and operation of a large-scale BESS at Wallerawang, NSW, within the Lithgow LGA.

The Project would involve the construction, commissioning, and operation of a large-scale BESS with a generation capacity of about 500 megawatts (MW) and up to 1,000 megawatt-hours (MWh)

The project works are expected to consist of:

- Subdivision of Lot 4 DP 751651 to delineate the extent of the site for the BESS and remaining lands
- Site establishment, including excavation and grading works
- Installation, commissioning, and operation of a large-scale BESS including battery enclosures, inverters, and transformers
- Establishment of a new private access road from Brays Lane to the Project as well as internal access roads and car parking
- Construction of permanent office and staff amenities
- Construction of stormwater controls, lighting, fencing and installation of security devices around the perimeter of the BESS compound
- Establishment of landscaping and screening vegetation
- Above ground and/or underground transmission line connections from the BESS to the existing Wallerawang substation switchyard
- Ancillary upgrades to the existing Wallerawang substation switchyard.
Statutory overview

The Project is classified as a State Significant Development (SSD), as it would comply with clause 8 of State Environment Planning Policy (State and Regional Development) 2011 (SRD SEPP). SSD projects comprise developments that are determined to have State significance due to their size, economic value or potential impacts. The Project is permissible with consent at the Site by virtue of clause 34 of State Environmental Planning Policy (Infrastructure) 2007.

Applications for SSD must be accompanied by an Environmental Impact Statement (EIS) which is required to be prepared in accordance with Secretary’s Environmental Assessment Requirements (SEARs) issued by the NSW Department of Planning, Infrastructure and Environment (DPIE). As an SSD, the Project will be subject to assessment and determination by the NSW Minister for Planning and Public Spaces.

Consideration of environmental aspects

Relevant environmental aspects will be considered within the EIS for the Project. The extent to which each environmental matter is to be assessed will be commensurate to the level of potential impact that may occur as a result of the Project.

The likely scope and extent of required assessment for each environmental aspect has been determined during the development of this scoping assessment and in consideration of the scoping worksheet Guideline 3: Scoping and Environmental Impact Statement – Draft Environmental Impact Assessment Guidance Series (DPIE 2017) which has been completed for the Project. This completed scoping worksheet is provided in Appendix A.

The table below details the intended level of assessment for each environmental aspect, based on the priorities that have been identified during the development of this scoping assessment and accompanying scoping worksheet.

<table>
<thead>
<tr>
<th>Environmental aspect</th>
<th>Likely level of assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air quality</td>
<td>Other issue – desktop assessment</td>
</tr>
<tr>
<td>Biodiversity</td>
<td>Key issue – technical assessment to be prepared</td>
</tr>
<tr>
<td>Bushfire</td>
<td>Key issue – technical assessment to be prepared</td>
</tr>
<tr>
<td>Hazard and risk</td>
<td>Key issue – technical assessment to be prepared</td>
</tr>
<tr>
<td>Heritage (Aboriginal)</td>
<td>Key issue – technical assessment to be prepared</td>
</tr>
<tr>
<td>Heritage (non-Aboriginal)</td>
<td>Key issue – technical assessment to be prepared</td>
</tr>
<tr>
<td>Land use</td>
<td>Other issue – desktop assessment</td>
</tr>
<tr>
<td>Landscape and visual</td>
<td>Other issue – desktop assessment</td>
</tr>
<tr>
<td>Noise and vibration</td>
<td>Key issue – technical assessment to be prepared</td>
</tr>
<tr>
<td>Social and economic impacts</td>
<td>Other issue – desktop assessment</td>
</tr>
<tr>
<td>Soils, groundwater and contamination</td>
<td>Other issue – desktop assessment</td>
</tr>
<tr>
<td>Surface water, flooding and water use</td>
<td>Key issue – technical assessment to be prepared</td>
</tr>
<tr>
<td>Transport and access</td>
<td>Key issue – technical assessment to be prepared</td>
</tr>
<tr>
<td>Waste management</td>
<td>Other issue – desktop assessment</td>
</tr>
<tr>
<td>Cumulative impacts</td>
<td>Other issue – desktop assessment</td>
</tr>
</tbody>
</table>
Community and stakeholder consultation

Consultation with relevant stakeholders has been and will continue to be undertaken at various stages and milestones of the Project. To deliver this consultation, a range of stakeholder engagement tools and activities would be employed, which may include all or a combination of the following:

- Email/ letter/ phone calls/ personalised meetings with adjacent residents
- Meetings/ focus group discussions/ workshops/ forums
- Media statements/ advertising
- Website detail, flyers/ newsletters, notifications and fact sheets
- Community events/ pop ups/ information and feedback sessions.

Consultation activities for the Project would be staged to occur in line with the environmental assessment process and key Project milestones.
1.0 Introduction

1.1 Overview

Founded in 2008, Neoen Australia Pty Ltd (Neoen) is a leading, specialist, and independent producer of renewable energy, with a long-term vision that translates into a strategy to produce renewable, competitively priced energy, sustainably and on a large scale. Neoen specialises in solar power, onshore wind farms, and energy storage. Neoen believes that energy storage is the answer to the current volatile nature of renewable energy sources. Neoen is at the forefront of energy storage and is the operator of the world’s largest lithium-ion Battery Energy Storage System (BESS), located in Hornsdale, South Australia.

Neoen is seeking development consent to construct, operate and maintain a BESS of approximately 500 megawatts (MW) and up to 1000 megawatt-hour (MWh) at Brays Lane, Wallerawang, NSW, as well as a new transmission line that would connect the BESS to the existing TransGrid 330 kilovolt (kV) substation at Wallerawang (the Project).

The Project has two principal aims: providing a world-leading storage facility to improve the resilience and sustainability of the New South Wales (NSW) electricity grid, and to allow for the accelerated development of renewable energy in NSW. The large-scale BESS would reduce the possibility of load-shedding and blackout events in the State, especially considering the multiple existing coal fired power plants that are planned to retire in the next decade.

The proposed location of the Project (the Site) is at one lot located at 173 Brays Lane, Wallerawang NSW, 2854 (Lot 4 Deposited Plan (DP) 751651). The Site is close to the TransGrid Wallerawang substation located about 1.25 kilometres from the Site (Lot 91 of DP 1043967). The Project would also involve the installation of a transmission line connection between the Site and the TransGrid Wallerawang substation. There are two main options that are currently under consideration for this transmission line connection. The eastern transmission line option would traverse:

- Lot 8 and Lot 9 DP 252472
- Lot 2 DP 108089
- Lot 1 DP 108089
- Lot 10 DP 1168824
- Lot 1115 DP 1204803
- Lot 91 DP 1043967.

The southern transmission line option would traverse:

- Lot 6 and Lot 7 DP 252472
- Lot 5 and Lot 8 DP 713684
- Lot 1115 DP 1204803
- Lot 3 DP 1181412
- Lot 920 DP 1164448
- Lot 91 DP 1043967.

The location of the Site is shown on Figure 1 and Figure 2.

As part of the Project, a new formalised access point to the Site would also be established. At present, two options are being considered; one option is located at the eastern boundary of the Site and the other option is located at the southern boundary of the Site, both linking to Brays Lane. The location of the Site, the transmission line options, and access options are shown on Figure 2.

Based on the initial design, and the current procurement and construction markets, the estimated gross CAPEX cost of the Project will be between approximately $300 to $400 million.
The Project is identified as State Significant Development (SSD) under the *Environmental Planning and Assessment Act 1979* (EP&A Act) by virtue of meeting the definition for electricity generating works presented within *State Environmental Planning Policy (Infrastructure) 2007* (ISEPP) and the requirements of *State Environmental Planning Policy (State and Regional Development) 2011* (SRD SEPP). The permissibility and planning approval pathway for the Project are discussed further in Sections 4.1.2 and 4.1.3 of this Scoping Report, respectively.

This Scoping Report has been prepared to seek Secretary’s Environmental Assessment Requirements (SEARs) for the Project. These SEARs would allow the preparation of an EIS in line with the expectations of the regulators and in accordance with Part 4 of the EP&A Act.

1.2 Purpose of this report

This Scoping Report has been prepared in broad accordance with the *Scoping an Environmental Impact Statement – Draft Environmental Impact Assessment Guidelines* (DPIE, 2017).

This Scoping Report has been prepared to seek SEARs for the Project as required by Schedule 2 of the *Environmental Planning and Assessment Regulation 2000* (EP&A Regulation). Once issued, the SEARs will set out the matters to be addressed in the EIS for the Project, in accordance with Part 4 of the EP&A Act.

This Scoping Assessment will assist DPIE’s development of the SEARs by providing the outcomes of the preliminary environmental risk analysis for the Project, and by scoping the matters and impacts that are likely to be relevant to the Project.

To achieve this purpose, the following has been included in this Scoping Report:

- Details of the Proponent
- Site analysis
- Project description, including an overview of the key features of the Project
- Project need and justification
- Project alternatives considered
- Indicative construction details
- Strategic and statutory framework
- Summary of the existing environment relevant to each environmental aspect under consideration
- A preliminary assessment of key potential environmental issues and risks
- Overview of consultation activities that have been undertaken and / or proposed
- Conclusion.

1.3 The proponent

Founded in France in 2008, Neoen one of the world’s leading and most dynamic independent producers of renewable energy. With infrastructure holdings totalling more than 2 gigawatts (GW) capacity in operation or under construction, and a further one GW of projects formally awarded and secured, Neoen has doubled its size in over just 18 months. Neoen is targeting 5 GW capacity in operation and under construction by 2021.

Neoen participates in the energy market in France, Australia, El Salvador, Zambia, Jamaica, Portugal, Mexico, Mozambique, Finland and Argentina, and has assets in more than 15 countries. It operates Europe’s most powerful solar Photo-Voltaic (PV) farm (300 megawatts (MW) in Cestas, France) and the world’s largest lithium-ion power reserve in Hornsdale, Australia (100 MW / 129 MWh storage capacity), that is being expanded by an additional capacity of 50 MW / 65 megawatt hours (MWh).

From its inception, Neoen’s core business model has been to develop, build, own and operate all of its projects for the entirety of their 25-30-year lifespans. This strategy means that Neoen takes a long-
term approach to its assets, to the local communities in which they are situated, and to Australian electricity markets overall.

As of October 2020, Neoen has over 1.6 GW of renewable assets in operation or under construction in Australia, representing over $3 billion Australian dollars in investment. The company intends to reach 3 GW in Australia and approximately $6 billion by 2022.

The details of the Proponent are provided in Table 1.

Table 1 Proponent details

<table>
<thead>
<tr>
<th>Proponent details</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Neoen Australia Pty Ltd</td>
</tr>
<tr>
<td>Postal address</td>
<td>10/227 Elizabeth St, Sydney NSW 2000</td>
</tr>
<tr>
<td>ABN</td>
<td>57 160 905 706</td>
</tr>
<tr>
<td>Nominated contact</td>
<td>Sebastien Roebben</td>
</tr>
<tr>
<td>Contact details</td>
<td>sebastien.roebben@neoen.com</td>
</tr>
<tr>
<td>Scoping report</td>
<td>Prepared by AECOM Australia Pty Ltd</td>
</tr>
</tbody>
</table>
2.0 Site analysis

2.1 Site location, characteristics and context

2.1.1 Site location and characteristics

The Project is located in the Central Tablelands of NSW, in the suburb of Wallerawang, about 110 kilometres west of Sydney. Wallerawang is located in the Lithgow City Local Government Area (LGA).

The BESS part of the Project would be situated off Brays Lane about two kilometres north of the Wallerawang town centre, on land legally designated as Lot 4 Deposited Plan (DP) 751651 (the Site). The Site area is about 13 hectares (ha) in size. The Project would only occupy a portion of the total area of the Site. The Site is privately owned and is currently occupied by a residential property. Beyond the residential property the majority of the Site is used for occasional horse grazing. The eastern transmission line option for the Project would be located on land that is currently owned and / or managed privately, or by Lithgow City Council, TransGrid, and John Holland Rail. The southern transmission line option for the Project would be located on land that is currently owned and / or managed by private stakeholders, Lithgow City Council, and TransGrid.

The transmission line would connect the BESS to the TransGrid Wallerawang 330 kV substation (located at Lot 91 DP 1043965). The location of the Site, proposed transmission alignment and surrounding context is provided on Figure 1 the Site is located on land designated by the Lithgow Local Environment Plan (LEP) 2014 as landuse zone RU1 - Primary Production.

The eastern and southern transmission line options would both be located within the following landuse zones designated by the Lithgow LEP 2014 (as shown on Figure 2):

- RU1 - Primary Production
- IN1 - General Industrial
- SP2 – Infrastructure

The Site can be accessed via the Castlereagh Highway, which feeds traffic directly onto Brays Lane. The Site is located about 1.5 kilometres from the intersection of the Castlereagh Highway and Brays Lane. From this intersection to the bridge crossing of Cox’s River, Brays Lane is a well maintained, wide, paved, dual lane road. The bridge crossing is one-lane wide. Between the bridge and the Site, Brays Lane becomes partially unsealed, narrow but bi-directional road. Brays Lane borders the Site to the south and east.

The Site is relatively flat, and slopes gently from west to east, from a level of approximately 908 metres Australian Height Datum (AHD) to approximately 898 metres AHD with a constant slope gradient between these points.

The Site has undergone vegetation removal during its use for occasional grazing and residential purposes. As a result, the majority of vegetation on the Site consists of pasture grasses. A series of small dams (up to four) are located on the Site and a number of drainage lines run through the Site, generally flowing to the south and east, draining to Pipers Flat Creek. A small area of mature vegetation is located in the north western most corner of the Site, above the small dams.

2.1.2 Site context

The Project is located in an area which is characterised by its dominant land uses of agriculture, industry, infrastructure and mining. Specifically, land uses include those associated with agriculture, Wallerawang power station, Springvale colliery, Lidsdale coal loading facility, and Wallerawang ash depository. The land uses surrounding the Project are shown on Figure 2.

The more rural characteristics of the area around the Site include open cleared pastures, small dams and associated drainage lines. Residences consist mostly of very low-density single dwellings or homesteads, which are often setback some distance from the road, and often several hundred metres from the nearest neighbour. Some nearby properties are used for grazing activities. The closest sensitive receivers to the Site include a residential property located about 40 metres to the south of the Site boundary and a residential receiver located about 50 metres to the north of the Site boundary.
The township of Wallerawang is comprised of low to medium density housing, with associated infrastructure including schools, sporting fields, places of worship, community centres and clubs, shops, etc. At the time of the 2016 census, Wallerawang had a population of about 1,980 people (ABS, 2016). The Site is located about 1.4 kilometres north of the centre of the township of Wallerawang (measured from the Wallerawang Post Office).

In contrast to these rural, residential and agricultural land uses, a number of industrial and extractive industry land uses are present in the area surrounding the Site including; Wallerawang power station; Springvale colliery, Lidsdale coal loading facility and Wallerawang ash repository.

Wallerawang power station is located about 1.5 kilometres south east of the Project. Wallerawang power station was a large coal-powered electrical power station. The power station has been decommissioned although still comprises of two 500 mega-watt steam turbine generators. The large ventilation stacks at the power station have not been demolished and can be viewed from the Site.

Lidsdale coal loading facility is located to the south of the Site (about 400 metres) and processes coal from Springvale colliery, which is located about 3.5 kilometres east of the Site. A series of large conveyer belts cross the landscape, bringing coal to the loading facility. Wallerawang ash repository is located about two kilometres east of the Site and will accept ash from the retired Wallerawang power station as it undergoes dismantling. A detailed Closure and Rehabilitation Plan is being developed for the Wallerawang Ash Repositories and will form part of the reclamation works for the Wallerawang Power Station (Energy Australia, 2018).

As shown on Figure 1 Ben Bullen State Forest is located to the east of the Site and Lidsdale State Forest is located to the south. Both are managed by the Forestry Corporation of NSW and are accessible to the public for hiking and four-wheel driving. However, their primary function is as a forestry resource.

Marrangaroo National Park is located about 3.5 kilometres to the south of the Site and is managed by the NSW National Parks and Wildlife Service.

Pipers Flat Creek is the closest waterway to the Project, located about 50 metres to the east. Pipers Flat Creek is a tributary of Cox River. The Cox River is located about two kilometres north of the Site. Other mapped and named waterways in the vicinity of the Project include:

- Lake Wallace (part of Cox River)
- Adams Creek.

Wallerawang is located on the Main Western railway line at the junction of the Gwabegar line. Wallerawang train station is located about 1.2 kilometres south of the Site.
FIGURE 1: SITE CONTEXT - WALLERAWANG

Legend
- Site boundary
- Substation
- Eastern transmission line option
- Southern transmission line option
- Indicative private access road option
- Energy conveyor belt
- Watercourse
- Primary road
- Railway

Copyright: Copyright in material relating to the base layers (contextual information) on this page is licensed under a Creative Commons Attribution 3.0 Australia licence © Department of Finance, Services & Innovation 2017, (Digital Cadastral Database and/or Digital Topographic Database).

The terms of Creative Commons Attribution 3.0 Australia licence are available from https://creativecommons.org/licenses/by/3.0/au/legalcode (Copyright Licence)

Neither AECOM Australia Pty Ltd (AECOM) nor the Department of Finance, Services & Innovation make any representations or warranties of any kind, about the accuracy, reliability, completeness or suitability for a purpose in relation to the content (in accordance with clause 5 of the Copyright Licence). AECOM has prepared this document for the sole use of its Client based on the Client’s description of its requirements having regard to the assumptions and other limitations set out in this report, including page 2.

Source: Esri, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community.

Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), © OpenStreetMap contributors, and the GIS User Community.
FIGURE 2
SITE PLAN AND SURROUNDING LAND USE ZONES - WALLERAWANG

LEP Land Zoning
- B2 Local Centre
- IN1 General Industrial
- IN2 Light Industrial
- R2 Low Density Residential
- R5 Large Lot Residential
- RE1 Public Recreation
- RE2 Private Recreation
- RU1 Primary Production
- SP2 Infrastructure

Legend
- Site boundary
- Substation
- Eastern transmission line option
- Southern transmission line option
- Indicative private access road option

Watercourse
Primary road
Local road
Railway
Power station

Legend
- Site boundary
- Substation
- Watercourse
- Primary road
- Local road
- Railway
- Power station

Source: Imagery © Nearmap, 2020

Copyright: Copyright in material relating to the base maps/land use information on this page is licensed under a Creative Commons Attribution 3.0 Australia licence © Department of Finance, Services & Innovation 2017, (Digital Cadastral Database and/or Digital Topographic Database).

Neither AECOM Australia Pty Ltd (AECOM) nor the Department of Finance, Services & Innovation make any representations or warranties of any kind, about the accuracy, reliability, completeness or suitability or fitness for purpose in relation to the content in accordance with section 5 of the Copyright Licence. AECOM has prepared this document for the sole use of its Client based on the Client’s description of its requirements having regard to the assumptions and other limitations set out in this report, including page 2.

Source: Imagery © Nearmap, 2020
3.0 Project description

This section provides a detailed overview regarding the key elements of the Project, need and objectives, and an overview of anticipated construction activates that would be undertaken to deliver the Project.

3.1 Project summary

The Project would involve the construction and operation of a large-scale Battery Energy Storage System (BESS) at Wallerawang, NSW, within the Lithgow LGA. Information regarding the Site and its surrounding context is provided in Section 2.0.

The Project would involve the construction, commissioning, and operation of a large-scale BESS with a capacity of about 500 MW and 1000 MWh.

The Project is expected to consist of:

- Subdivision of Lot 4 DP 751651 to delineate the extent of the site for the BESS and remaining lands
- Site establishment, including excavation and grading works
- Installation, commissioning, and operation of a large-scale BESS including battery enclosures, inverters, and transformers. An indicative general arrangement for the BESS is shown on Figure 3. Depicted in this figure is the existing 100 MW BESS at Hornsdale, South Australia
- Establishment of a new access point from Brays Lane on to the Site as well as internal access roads and car parking
- Construction of permanent office and staff amenities
- Construction of stormwater controls, lighting, fencing and installation of security devices around the perimeter of the BESS compound
- Establishment of landscaping and screening vegetation.
- Above ground and/or underground transmission line connections from the BESS to the existing Wallerawang substation switchyard
- Ancillary upgrades to the existing Wallerawang substation switchyard.

Lot 4 DP 751651 would be subdivided as part of the Project to formally delineate the land needed for the BESS from the land to be allocated to the existing residential property. The land would be subdivided to form two new lots; one lot would be provided for the purpose of constructing and operating the Project and the remaining land would retain its existing use for rural residential purposes.

Two main options are currently being investigated to provide transmission line connections from the BESS to the existing Wallerawang substation switchyard. These are shown on Figure 2 and consist of eastern and southern transmission line options.

The Project is intended to have an operational life of at least 20 years, and depending on the selected technology, components may be replaced and or upgraded to extend this timeframe.

Based on the initial design, and the current procurement and construction markets, the estimated gross CAPEX cost of the Project would be between $300 to $400 million. The Project’s Capital Investment Value would be confirmed as part of the SSD application.
3.2 Project need

As identified by the NSW Government’s Electricity Strategy (discussed in more detail in Section 4.4.2), the National Electricity Market (NEM) is experiencing rapid change as existing coal fired power stations across NSW are reaching the end of their operational life. These changes are expected to be compounded with the continued drive to transition to renewable energy sources, as set out in the NSW Climate Change Policy Framework (discussed in more detail in Section 4.4.3).

The NSW government has identified a need for an increase in renewable energy generation projects to be able to meet their commitment to facilitating private investment in this market. However, according to the NSW Government’s Electricity Strategy, a critical barrier to future investment in and uptake of renewable energy in NSW, and the future resilience and sustainability of the delivery of energy to consumers across NSW, is existing limitations in grid reliability and stability. This current limitation also has the potential to restrict the growing renewable energy sector more broadly across Australia.

In addition, the potential for the existing network to fall short of meeting current reliability standards is projected to increase after Liddell Power Station closes in 2022. As NSW’s aging power stations reach the end of their operational life, the potential for early unplanned closures poses an additional high risk to energy security of NSW consumers. A closure of Liddell Power Station would remove about 13 per cent of NSW’s electricity supply contribution from the NEM. The closure of the remaining end-of-life coal fired power stations will potentially see the removal of more than an additional 10,000 MW from the NEM by 2040 (Commonwealth of Australia and NSW Government, 2020). In worst case scenarios this potential future lack of capacity and reliability could lead to load shedding or blackout events.

The Project seeks to provide a critical element for the expanding renewable energy industry and the future capacity and resilience of the NSW energy network through the provision of a large-scale BESS for the purposes of energy storage. Neoen believe that the provision of the physical infrastructure to store electricity is a critical first step to supporting the investment in and development of renewable energy solutions for NSW. The large-scale BESS delivered by the Project would provide services on a scale unlike any other device currently connected to the NSW network, and would provide a range of services with extremely fast response times to support a stable network and security of supply. The energy storage capacity provided by the Project would allow for increased installation of renewable energy sources while maintaining network stability and security.
3.3 Project objectives

Partnering large-scale battery storage with renewable energy will be a key enabler for an affordable, reliable and sustainable energy future for Australia. In addition, through the provision of a large-scale BESS, the Project would contribute to deliver system security, reliability and a stable energy supply through its ability to store power and consequently, provide input and output power upon demand.

In developing the Project, Neoen seeks to deliver a large-scale BESS that would:

- Improve the security, resilience and sustainability of NSW’s electricity grid with a cost effective, environmentally sensitive, and proven solution
- Contribute infrastructure that would directly support the NSW Government’s commitment to facilitating, supporting and securing private investment in renewable energy developments.
- Reduce the potential for future blackout or load shedding events that may occur as a result of an overburdened, underperforming network
- Provide electricity to the NEM during periods of high demand.

3.4 Project alternatives

3.4.1 Alternative approaches

3.4.1.1 Do nothing

The do-nothing approach would not deliver a dispatchable energy solution for the Central-West Orana Renewable Energy Zone (REZ) and surrounding area (the Central-West Orana REZ is discussed in more detail in Section 4.4.1).

The Do-nothing approach would not improve system security of the NEM nor would it help provide a reliable and stable energy supply. For these reasons, the ‘do nothing’ scenario would fail to contribute to fulfilling Neoen’s objectives for the development, and consequently would not support the NSW Government’s NSW Energy Strategy, the NSW Climate Change Policy Framework or the Central West and Orana Regional Plan, 2036.

This scenario would not meet the objectives of the Project and would deliver no Project benefits. Whilst the ‘do nothing’ approach, would mean that some margin agricultural land would not be developed, it would also mean that wider state level energy security benefits of the Project would not be realised. For these reasons, the ‘do nothing’ scenario is not the preferred option.

3.4.1.2 Alternative technologies

A survey was undertaken to identify available technologies that would be capable of providing dispatchable energy to the NEM.

Neoen has had proven success in the delivery of large-scale BESS technology for the purposes of providing dispatchable energy to the NEM. This is demonstrated by Neoen’s successful construction and operation of the Hornsdale Power Reserve project in South Australia, which was the world’s first large-scale lithium-ion battery energy storage system.

As set out in the Year 2 Report – Technical and Market Impact Case Study for the Hornsdale Power Reserve project (Aurecon, 2020), and in Neoen’s global experience, the use of high capacity battery storage technology has had demonstrated success in its capacity to provide a solution which improves the responsiveness and resilience of the electricity grid to changing energy demands.

It has been determined that the delivery of a large-scale BESS represents a cost effective and environmentally sensitive solution, capable of improving the security, resilience and sustainability of NSW’s electricity grid.
3.4.1.3 Development at an alternative site

A site selection process was undertaken for the Project. This process focused on the key requirements of this type of infrastructure, including proximity to physical services such as reliable road access, existing and available high capacity substations, and existing transmission line easements. Indeed, locating a BESS close to a high capacity substation allows to provide high levels of reliability to the network. As such, the locations considered for the Project were identified around these high capacity substations. The site identification process also considered the likelihood of potential environmental impacts and constraints, based on a review of the existing environment in the area.

While a secondary location within the City of Lithgow LGA was shortlisted as part of this process, this location was not considered to be as favourable a location as the Site for the Project for the following reasons:

- Reduced availability of key services and infrastructure, including the proximity of the closest high capacity substation and suitability of local roads
- The purchase availability of the secondary development site was less favourable
- The highly sloping topographic characteristics of the secondary development site was less favourable to constructability
- The local context was more rural in nature with a range of dissimilar existing developments, potentially increasing the sensitivity of receptors to potential impacts.

3.4.2 Justification of preferred option (the Project)

The Project is deemed justified in this location and in this arrangement as it would:

- Be located within close proximity to key power utility infrastructure and identified future growth zones with regards to investment in renewable energy infrastructure (Central West and Orana Region). In this location, the Project would deliver critical energy infrastructure that would support the uptake of renewable generation in NSW, to help meet the objectives of the NSW Government’s Electricity Strategy for the region
- Be located on a site that when compared to other available options presents environmental impacts that are on balance equal to or less than other available options in the local area
- Present the most economical and environmentally sensitive method of delivering a dispatchable energy facility
- Provide for an advantageous and economically beneficial use of land in a landscape that has a history of power generation and transmission alongside various rural land uses.

It is noted that the design of the Project has been, and will continue to be developed in consideration of a range of alternatives and options for achieving the need and objectives for the Project, as discussed in detail in Section 3.3 and Section 3.4.

The design of the Project has been prepared with a view to the construction of similar layouts to that which Neoen have delivered in other locations. The advantages of this approach are a reduction in design costs, site familiarity for staff who have worked at other locations, and the ability to take advantage of economies of scale though the procurement of standardised equipment.

3.5 Project benefits

The Project would provide the following benefits:

- Improving the security and resilience of the electricity grid
- Attracting new renewable energy investment and projects
- Attracting and growing local expertise in renewable energy technology
- Increasing competition and pushing electricity prices down
- Helping to avoid load shedding and blackouts and the associated costs.
A large-scale BESS can help reduce costs for consumers by supporting more investment in renewable energy technology, which generally represents cheaper forms of power, when compared to traditional fossil fuel driven power generation (such as coal fired operations). The above benefits would apply to a large proportion of NSW’s residents who rely on a secure supply of electricity on a daily basis.

In delivering on the above benefits, the Project would address the specific technical and market needs in the NSW energy network, as identified in key strategic planning documents including:

- The NSW Transmission Infrastructure Strategy
- The NSW Electricity Strategy
- The NSW Climate Change Policy Framework
- The Central West and Orana Regional Plan, 2036.

The Project’s alignment with these key strategic planning documents is discussed in more detail in Section 4.4.

3.6 Project construction

3.6.1 Construction overview

It is anticipated that construction of the Project would take about one year. An indicative Project timeline is provided below, which would be confirmed in the EIS:

- Project construction – estimated to begin in 2022
- Project operation – estimated to commence in 2023.

Construction activities for the Project are expected to include:

- Site preparation activities including establishment of construction and traffic management measures, installation of environmental controls including erosion and sediment controls and security and fencing requirements
- Construction of access road from public road to the construction site for the BESS, which would become the permanent access road after construction for operation and maintenance uses
- Establishment of construction compound / laydown area to allow for temporary site facilities and amenities, storage for plant and materials, and construction car parking facilities
- Earthworks, benching and other civil and ground preparation activities
- Construction of stormwater drainage infrastructure and a hardstand pad for the Site
- Delivery, installation and electrical fit-out for the Project including installation of battery enclosures, invertors, transformers and necessary cabling etc.
- Installation of a new above ground and /or underground transmission cable from the BESS to the Wallerawang 330 kV substation. Above ground transmission lines will be strung along new or existing supporting structures. Underground transmission lines will be installed using a trenching method, underboring at environmentally sensitive locations or where conflicts with other existing infrastructure may arise, for example, under railway lines
- Connections between the BESS and the transmission line and the transmission line and the relevant busbar and switchyard at the Wallerawang 330 KV substation
- Establishment of fire safety envelope setbacks and firefighting systems
- Construction of fencing around the large-scale BESS compound and installation of security features
- Construction of permanent office and staff amenities
- Establishment of landscaping/screening vegetation
• Testing and commissioning activities
• Removal of construction equipment and rehabilitation of construction areas.

Construction of the Project would take place mostly on Site, except for the establishment of the new transmission line and works at the substation.

Some elements of the Project would be prefabricated offsite and transported to the Site using heavy vehicles, where they would then be installed.

The batteries would be installed on concrete footings and would be containerised. Controls for hazardous substances management would be identified and implemented and would be suitable for the selected technology, in accordance with applicable guidelines.

3.6.2 Workforce

It is anticipated that the construction of the Project would take about one year to complete and would require a peak of 150-200 workers.

3.6.3 Construction hours

It is intended that construction activities for the Project would be scheduled during standard construction hours as specified in the Interim Construction Noise Guideline (DECC, 2009), where reasonable and feasible to do so. These hours are:

- Monday to Friday 7:00 am to 6:00 pm
- Saturday 8:00 am to 1:00 pm
- No work on Sundays or public holidays.

The EIS would identify activities or instances where construction works outside of standard construction hours may be required.

3.7 Operational details

3.7.1 Hours of operation

The Project would operate 24 hours a day, seven days a week. Some elements of the Project may be taken offline from time to time for maintenance or replacement, though the broader battery storage facility would remain operational throughout.

3.7.2 Staffing

Up to five staff members are likely to be on-site at any one time, however they would only be present on an as needs basis. Operational workers would include maintenance workers and operational technicians. It is unlikely that there would be permanent staff located on-site however staff may be present for a period of time during certain maintenance activities.
4.0 Planning and assessment process

4.1 Environmental Planning and Assessment Act 1979

4.1.1 Overview

The Environmental Planning and Assessment Act 1979 (EP&A Act) and the Environmental Planning and Assessment Regulation 2000 (the EP&A Regulation) provide the framework for land use planning and development control in NSW. The EP&A Act and the Regulation is supported by a number of Environmental Planning Instruments (EPIs), which include State Environmental Planning Policies (SEPPs) and Local Environment Plans (LEPs).

Part 4 of the EP&A Act establishes a framework for assessing development, categorising it as either 'exempt development', 'complying development', 'development that requires consent', or 'prohibited development'. The term ‘development’ is defined under Section 1.5 of the EP&A Act.

In addition, Section 4.36 of the EP&A Act outlines the key criteria that must be met if a development is to be considered SSD, and establishes that a development can be declared SSD by an EPI (such as a SEPP) or by the NSW Minister for Planning and Public Spaces.

4.1.2 Permissibility

The Project meets the definition of ‘development’ under Section 1.5 of the EP&A Act as it involves the subdivision of land, use of land and the erection of a building. The Project is defined under the Standard Instrument, as ‘electricity generating works’, as this definition includes a building or place used for the purpose of ‘electricity storage’.

The NSW State Environmental Planning Policy (Infrastructure) 2007 (ISEPP) aims to facilitate the effective delivery of infrastructure across NSW. Division 4 of the ISEPP applies to electricity generating works or solar energy systems.

Under Division 4, electricity generating work means a building or place used for the purpose of:

(a) making or generating electricity, or
(b) electricity storage.

The purpose of the Project is to store energy in chemical form and generate electrical energy on demand in discharge mode. As such, the Project would be for the purpose of electricity storage and Division 4 of the ISEPP is applicable.

Clause 34 of the ISEPP provides that development permitted with consent for electricity generating works may be carried out by any person with consent on any land in a prescribed rural, industrial or special use zone.

The Project is located on land zoned under the Lithgow Local Environment Plan 2014 (Lithgow LEP) as: RU1 – Primary production; SP2 - Electricity generating works; and IN1 – General industrial. The eastern and southern transmission line options would both be located within land use zones designated by the Lithgow LEP 2014 as: RU1 – Primary Production; IN1 – General Industrial; and SP2 – Infrastructure (refer to Figure 2).

Under Clause 34 of the ISEPP, electricity generating works are a permissible with consent on RU1, SP2, and IN1 land use zones as they are defined as prescribed rural, industrial or special use zones under Division 4 of the ISEPP.

As such, the Project is permissible with development consent under the ISEPP. Development consent will be sought under Part 4 of the EP&A Act.

4.1.3 Planning approval pathway

To be declared as State Significant Development (SSD) under Section 4.36 of the EP&A Act, a Project can be declared as SSD by the Minister of Planning or Public Places or must meet requirements specified in an EPI. Most projects are classified as SSD by satisfying the requirements outlined in the State Environment Planning Policy (State and Regional Development) 2011 (SRD SEPP).
The Project is classified as SSD under the EP&A Act as it satisfies the requirements of Clause 8 of the SRD SEPP, being:

a. The development on the land concerned is, by the operation of an environmental planning instrument, not permissible without development consent under Part 4 of the EP&A Act; and

b. The development is specified in Schedule 1 or 2 of the SRD SEPP.

As discussed above, in line with clause 34 of the ISEPP, the Project is “not permissible without development consent under Part 4 of the EP&A Act” in the applicable land use zones provided by the Lithgow LEP. The Project is also “development…specified in Schedule 1 or 2 [or the SRD SEPP]” as clause 20 of Schedule 1 of the SRD SEPP refers to electricity generating works with a CIV of greater than $30 million. The Project is defined as electricity generating works and the CIV for the Project is estimated to be between $300 and $400 million. Therefore, the Project is classified as SSD.

Section 4.12(8) of the EP&A Act states that a “development application for State significant development is to be accompanied by an environmental impact statement prepared by or on behalf of the applicant in the form prescribed by the regulations.”

Schedule 2 of the EP&A Regulation sets out the requirements of an EIS and requires that the content of an EIS is ‘subject to the environmental assessment requirements that relate to the EIS’. Environmental assessment requirements are typically sought through an application for SEARs submitted to the NSW Department of Planning, Industry and Environment. This document constitutes the proponent’s application for SEARs for this Project.

In accordance with Section 4.5 of the EP&A Act, the consent authority for the Project is likely to be the NSW Minister for Planning and Public Spaces. In the case of greater than 50 public objections to the application, objection from Lithgow City Council, and/or any reportable political donations made by the proponent in the two years prior to lodgement, the Independent Planning Commission would be assigned as the consent authority for the Project.

As noted in Section 4.40 of the EP&A Act, SSD applications are evaluated and determined in line with the requirements of Section 4.15 of the EP&A Act. Matters for consideration include relevant EPIs, likely impacts to the built and natural environment and social and economic impacts, submissions made on the application, site suitability and the public interest.

Table 2 outlines each of the approvals referred to in section 4.42 of the EP&A Act and their applicability to the Project. These approvals, if required, cannot be refused if they are necessary for carrying out the SSD.

Table 2 Review of approvals required under section 4.42 of the EP&A Act

<table>
<thead>
<tr>
<th>Section of EP&A Act</th>
<th>Authorisation</th>
<th>Applicability review</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.42</td>
<td>An aquaculture permit under section 144 of the Fisheries Management Act 1994</td>
<td>The Project would not involve aquaculture therefore no aquaculture permit would be required.</td>
</tr>
<tr>
<td>4.42</td>
<td>An approval under section 15 of the Mine Subsidence Compensation Act 1961</td>
<td>The Project would not be located within a known mapped mine subsidence district. An approval under section 15 of the Mine Subsidence Compensation Act 1961 would not be required.</td>
</tr>
<tr>
<td>4.42</td>
<td>A mining lease under the Mining Act 1992</td>
<td>The Project does not include any mining activities. A review of the NSW Government’s Resources & Geoscience MinView mapping portal indicated that the Project would not be undertaken within a lease area. A mining lease would not be required.</td>
</tr>
</tbody>
</table>
4.2 Environmental planning instruments

The following EPIs are considered relevant to the Project, or the land to which it relates, and have been considered as part of this Scoping Report:

- State Environmental Planning Policy (State and Regional Development) 2011
- State Environmental Planning Policy (Infrastructure) 2007
- State Environmental Planning Policy 33 – Hazardous and Offensive Development
- Lithgow Local Environmental Plan 2014.

These policies are considered further in the following sections.

4.2.1 State Environmental Planning Policy (State and Regional Development) 2011

Consideration of State Environmental Planning Policy (State and Regional Development) 2011 (SRD SEPP) and its relevance to this Project is discussed in detail in Section 4.1.3. The Project is declared as SSD under Clause 8(1) of this EPI. Clause 8(2) declares that in most cases (including for this Project) where a “development application comprises development that is only partly State significant development declared under subclause (1), the remainder of the development is also declared to be State significant development”. Clause 11 of this SEPP states that Development Control Plans do not apply to SSDs.

4.2.2 State Environmental Planning Policy (Infrastructure) 2007

Section 4.1.2 provides a detailed overview regarding the relevance of the ISEPP to the Project.

As the Project would be for the purpose of electricity storage, Division 4 of ISEPP is applicable.

The Project is permissible with consent, pursuant to Clause 34 of the State Environmental Planning Policy (Infrastructure) 2007.

4.2.3 State Environmental Planning Policy No. 33 – Hazardous and Offensive Development

State Environmental Planning Policy No 33 (SEPP 33) outlines the approach used in NSW for planning and assessing the risks and hazards associated with industrial development proposals. SEPP 33 applies to projects that fall under the policy’s definition of ‘potentially hazardous’ or ‘potentially offensive industry’.
The Project is not considered ‘industry’ under the definitions provided in the Lithgow LEP 2014. Under the ISEPP the Project is defined as a type of ‘electricity generating work’. As such the Project is not ‘potentially hazardous industry’ or ‘potentially offensive industry’ under SEPP 33.

Nevertheless, a PHA will be undertaken in line with the Hazardous Industry Advisory Paper (HIPAPs) No 6, Guidelines for Hazard Analysis (DPIE, 2011) and the Multilevel Risk Assessment guideline (DPIE, 2011) (refer to Section 5.1.5).

4.2.4 Lithgow Local Environmental Plan 2014

The Project is located within the Lithgow LGA, which is subject to the Lithgow LEP 2014. According to the Lithgow LEP 2014, the BESS would be located on land zoned as: RU1 Primary production. The landuse objectives of RU1 Primary production, as described in the Lithgow LEP 2014, are presented and discussed in Table 3 below.

Table 3 RU1 Primary production – land use zone objectives

<table>
<thead>
<tr>
<th>RU1 zone objectives</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encourage sustainable primary industry production by maintaining and enhancing the natural resource base</td>
<td>The Project would not conflict with this objective. As discussed in Section 5.1.8 the land has moderate to extreme soil limitations with regards to its value as agricultural land. It is not located on an area that is subject to a mining lease and is not used for forestry. The existing natural resource base of the LGA would be largely maintained.</td>
</tr>
<tr>
<td>Encourage diversity in primary industry enterprises and systems appropriate for the area</td>
<td>The Project would not conflict with this objective. Indeed, indirectly, the Project could help support this objective by helping to secure a reliable source of electricity for future primary industries in the LGA and beyond.</td>
</tr>
<tr>
<td>Minimise the fragmentation and alienation of resource lands</td>
<td>The Project would not conflict with this objective as it is not impacting resource lands.</td>
</tr>
<tr>
<td>Minimise conflict between land uses within this zone and land uses within adjoining zones</td>
<td>The Project is not directly adjacent to other land use zones and would not cause a conflict between land use zones.</td>
</tr>
<tr>
<td>Minimise the environmental and visual impact of development on the rural landscape</td>
<td>The Project would not conflict with this objective. The BESS has been located on a Site that is largely screened from the majority of nearby sensitive visual receivers. Other potential environmental impacts will be assessed and/or considered within the EIS for the Project, as summarised in Table 6. Mitigation measures will be developed to minimise environmental impacts.</td>
</tr>
<tr>
<td>Provide for recreational and tourist development and activities of an appropriate type and scale that do not detract from the economic resource, environmental or conservation value of the land.</td>
<td>The Project would not conflict with this objective and it does not involve recreational or tourist development.</td>
</tr>
<tr>
<td>Maintain or improve the water quality of receiving water catchments.</td>
<td>The Project would not conflict with this objective. The Project is unlikely to contaminate stormwater flows. Stormwater controls would be put in place during construction and operation. A stormwater assessment would be completed as part of the EIS which would outline relevant controls to minimise stormwater impacts.</td>
</tr>
</tbody>
</table>
The transmission line component of the Project (both the eastern and southern options) would cross the RU1 Primary Production; IN1 General Industrial; and SP2 Infrastructure landuse zones. The landuse objectives of IN1 General Industrial, as described in the Lithgow LEP 2014 aim to:

- Provide a wide range of industrial and warehouse land uses
- Encourage employment opportunities
- Minimise any adverse effect of industry on other land uses
- Support and protect industrial land for industrial uses
- Maintain or improve the water quality of receiving water catchments.

The landuse objectives of SP2 Infrastructure, as described in the Lithgow LEP 2014 aim to:

- Provide for infrastructure and related uses
- Prevent development that is not compatible with or that may detract from the provision of infrastructure
- Maintain or improve the water quality of receiving water catchments.

The Project would be compatible with the objectives of the IN1 General Industrial and SP2 Infrastructure zones.

The Lithgow LEP 2014 also includes a number of other provisions including requirements for subdivision minimum lot sizes. As discussed in Section 3.0, the Project would involve the subdivision of Lot 4 DP 751651 to delineate the BESS facility from the remaining land, including the existing homestead. Lot 4 is around 16.5 ha in size. The proposed subdivision would result in two lots that would be smaller than the minimum lot size requirement at this location of 40 ha. One of the lots would retain the existing residential building.

Previously, subdivisions related to SSD energy projects have been consented by the Minister for Planning and Public Spaces in accordance with the provisions in the SRD SEPP. The subdivision component of the Project would be discussed further with DPIE and Lithgow City Council as part of the assessment process.

The Lithgow LEP 2014 also contains other provisions that will need to be considered during the assessment of the SSD application. A number of these are presented in Part 7 of the LEP including, earthworks, flood planning, stormwater management, biodiversity, and groundwater. Where relevant these requirements will be discussed within the EIS. These matters have also been discussed at a high level in Section 5 of this Scoping Report.

Whilst not applicable for SSDs, it is noted, there is currently no local Development Control Plan applicable to the Lithgow City LGA following the repeal of all Development Control Plans for the City on 20 January 2017.

4.3 Other NSW Legislation

Table 4 presents a list of other NSW legislation that are likely to be relevant to the Project and may either be important in terms of the future environmental assessment of the Project or because of secondary approvals.

<table>
<thead>
<tr>
<th>Legislation</th>
<th>Relevance to the Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Parks and Wildlife Act 1974</td>
<td>The National Parks and Wildlife Act 1974 (NPW Act) regulates the management and conservation of land declared as national parks and conservation areas, as well as regulating the management of Aboriginal cultural heritage objects. A permit is required under section 90 of the NP&W Act before harming or desecrating an Aboriginal object, otherwise, such action is an offence under the NP&W Act. Despite this, under Section 4.41 of the EP&A Act, an Aboriginal Heritage Impact Permit is not required for SSD. The potential impact of the Project on Aboriginal cultural heritage values along the preferred alignment will be discussed within the EIS. These matters have also been discussed at a high level in Section 5 of this Scoping Report.</td>
</tr>
<tr>
<td>Legislation</td>
<td>Relevance to the Project</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Legislation</td>
<td>Relevance to the Project</td>
</tr>
<tr>
<td>Great Western Battery Project</td>
<td>be assessed within an Aboriginal Cultural Heritage Assessment Report (ACHAR) and submitted as part of the EIS. No part of the Project is expected to fall within NSW National Parks owned or managed lands.</td>
</tr>
<tr>
<td>Aboriginal Land Rights Act 1983</td>
<td>The Aboriginal Land Rights Act 1983 provides rights for Aboriginal persons in New South Wales and establishes Aboriginal Land Councils. The Project would be located in the Wiradjuri Local Aboriginal Land Council (LALC) area, with Bathurst being the closest LALC office location.</td>
</tr>
<tr>
<td>Water Management Act 2000</td>
<td>The Water Management Act 2000 (WM Act) establishes a framework for managing water in NSW. Section 91 of the WM Act discusses activity approvals and notes that there are two types of approvals, namely controlled activity approvals and aquifer interference approvals. The WM Act specifies certain activities as controlled activities when carried out on waterfront land. This is defined as within 40 metres of the banks of a river, lake or estuary. Pipers Flat Creek is the closest waterway to the Project, located about 50 metres to the east. A controlled activity approval would not be required by virtue of Section 4.41 of the EP&A Act. This Section specifies certain approvals that are not required for SSD, including an activity approval (other than an aquifer interference approval) under section 91 of the WM Act. Despite this provision this section of the Act does not remove the requirement for obtaining an aquifer interference approval. As such, an aquifer interference approval may still be required should the construction of the Project incept groundwater (e.g. during excavation and benching).</td>
</tr>
<tr>
<td>Protection of the Environment Operations Act 1997</td>
<td>The Protection of the Environment Operations Act 1997 (POEO) Act provides for the issue of an Environment Protection Licence (EPL) for premises based scheduled activities pursuant to section 48 of the POEO Act, and non-premises based scheduled activities pursuant to section 49 of the POEO Act. Schedule 1 of the POEO Act provides a list of activities for which an EPL would be required. Clause 17 of this Schedule applies to ‘electricity generation’ and lists four activities. However, the Project does not involve the generation of electricity. The Project stores and releases electricity that has already been generated. As such, Clause 17 does not apply to the Project and an EPL is not required. The POEO Act has a number of regulations relating to waste, air quality, noise etc. Where and if relevant the specifics of these regulations would be considered as part of the environmental assessments within the EIS.</td>
</tr>
<tr>
<td>Biodiversity Conservation Act 2016</td>
<td>The Biodiversity Conservation Act 2016 (BC Act) contains provisions for the assessment of impacts on biodiversity values of a proposed development, providing measures to calculate biodiversity offsets for these impacts and establishing market-based conservation measures, including biodiversity credits. A Biodiversity Development Assessment Report (BDAR) will be prepared for the Project. This report will describe the biodiversity values present within the Site and identify potential impacts of the Project on these values. If applicable, this assessment will use the Biodiversity Credit Calculator (BCC) as required under the NSW Biodiversity Assessment Methodology (BAM)</td>
</tr>
<tr>
<td>Heritage Act 1977</td>
<td>The Heritage Act 1977 (NSW) aims to promote an understanding, encourage conservation and provide for protection of NSW State heritage. State and/or local heritage significance can relate to historical, scientific, cultural, social, archaeological, architectural, natural or aesthetic values of a place, building, work, relic, moveable object or precinct.</td>
</tr>
</tbody>
</table>
4.4 Strategic planning

4.4.1 NSW Transmission Infrastructure Strategy

The NSW government recognises that a key challenge for the electricity grid is the capacity required to connect to the range of technologies that will drive the energy future of the State. The NSW Transmission Infrastructure Strategy (Department of Planning and Environment, 2018) was developed to address this challenge and is underpinned by five driving principles:

- Lower energy bills for NSW households and businesses
- A technology neutral approach to new energy generation projects
- Private sector led investment in transmission and generation
- Regional economic growth and increased job opportunities
- Ongoing secure and reliable energy to power the NSW economy.

The NSW Transmission Infrastructure Strategy sets out a plan to facilitate private sector investment in priority transmission infrastructure projects, which can deliver least-cost energy to customers to 2040 and beyond. The Strategy forms part of the government’s broader plan to make energy more affordable, secure investment in new power stations and network infrastructure; and ensure new technologies deliver benefits for consumers. The objectives of the Project (as outlined in Section 3.3) align with the driving principles and goals set out in the NSW Transmission Infrastructure Strategy.

As part of this Strategy, the NSW Government is also seeking to increase energy capacity by prioritising REZ’s in the Central West Orana, South West and New England regions of NSW. The REZs will be a driving force to deliver affordable energy into the future. The establishment of REZs is discussed in more detail below.

4.4.2 The NSW Electricity Strategy

The NSW Electricity Strategy is the NSW Government’s plan for a reliable, affordable and sustainable electricity future that supports a growing economy. This strategy is designed to complement the NSW Transmission Infrastructure Strategy, and the work of the national energy market (NEM) bodies.

In the development of the strategy, the NSW Government have recognised that congestion in the existing transmission system is leading to a reduced investment in the new infrastructure that is required to reduce electricity prices, improve reliability and protect the environment. Market research indicates that grid connection is the highest concern for potential private investors in the energy market, and at present, it is estimated that there is only sufficient capacity to connect 1 in 20 private sector generation proposals in NSW.

To address this, the strategy aims to improve the efficiency and competitiveness of the NSW electricity market by facilitating investment in new energy saving, energy storage and transmission, demand response and electricity generation technologies.

To assist in promoting investment in renewable energy projects in NSW, the sets out a plan to deliver three Renewable Energy Zones (REZ), including in the State’s Central-West Orana. The establishment of the REZs will coordinate the development of new grid infrastructure in energy rich areas, efficiently connecting multiple generators in the same location. In this way, it is proposed that the REZs would operate as a solution to a power station, by combining generation, transmission, storage and system strength services. It is envisaged that the establishment of the REZs would help to provide NSW with a secure, affordable and reliable energy system. To support the development of the
REZs, the government is seeking to facilitate and support private sector investment in strategic infrastructure upgrades. In doing so, the REZs will boost regional economies and improve resilience of the energy network by ensuring there are new generation projects coming online to replace the retiring power stations.

A review of the indicative extent of the Central-West Orana REZ shows the Project would be located outside of the current boundary, but within close proximity to the Central-West Orana REZ. It is noted that the extent of this REZ in currently under development, however currently the Project is in close enough proximity that it is anticipated that the Project would be capable of supporting the goals associated with the establishment of the REZs and particularly the Central-West Orana REZ.

4.4.3 The NSW Climate Change Policy Framework

The NSW Climate Change Policy Framework (OEH, 2016) sets out the NSW Government’s position on responding to climate change. The Framework seeks to directly influence how energy is generated and consumed in NSW.

The NSW Climate Change Policy Framework aims to maximise the economic, social and environmental wellbeing of NSW in the context of a changing climate and current and emerging international and national policy settings and actions to address climate change. Its aspirational long-term objectives are to achieve net-zero emissions by 2050 and make NSW more resilient to a changing climate.

The Project would complement the NSW Climate Change Policy Framework by helping to facilitate increased investment in renewable energy Projects by improving the capacity and resilience of the network.

4.4.4 Central West and Orana Regional Plan, 2036

The Central West and Orana Regional Plan, 2036 aims to guide the NSW Government’s land use planning priorities and decisions over the next 20 years, to establish the Central West and Orana as the leading, and most diverse regional economy in NSW.

As part of the Central West and Orana Regional Plan, 2036, the NSW Government are seeking to provide quality freight, transport and infrastructure networks for the region.

With regards to developing greater infrastructure networks, Direction 9 of the Plan seeks to increase renewable energy generation within the region. The Plan recognises that the region has significant potential for growth in renewable energy industries, particularly for wind power generation, large-scale solar energy and bioenergy generation. Action 9.1 of the Plan seeks to identify locations with renewable energy generation potential and access to the electricity network.

The Project would complement the Central West and Orana Regional Plan, 2036 by providing energy storage infrastructure that would support investment in renewable energy and would improve access to the electricity network.

4.5 Commonwealth environmental approvals

4.5.1 Environment Protection and Biodiversity Conservation Act 1999

The Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act) applies to developments and activities that have the potential to impact on Matters of National Environmental Significance’ (MNES) protected under the EPBC Act. Part 3 of the EPBC Act states that an action, which has, would have, or is likely to have a significant impact on a MNES may not be undertaken without prior approval of the Commonwealth Minister for Environment.

The EPBC Act identifies the following as MNES:

- World heritage properties
- National heritage places
- Wetlands of international importance (including RAMSAR wetlands)
- Listed threatened species and ecological communities
• Listed migratory species protected under international agreements
• Protection of the environment from nuclear actions
• Commonwealth marine areas
• Great Barrier Reef Marine Park
• A water resource, in relation to coal seam gas development and large coal mining development.

The EPBC Act also protects the environment where any action is proposed to be undertaken on Commonwealth land, or where an external action would affect Commonwealth land.

A search of the EPBC Act Protected matters Search Tool was generated on the 7th of September 2020. The results of this search did not identify any MNES at, or near the Site. Notwithstanding, due consideration to the EPBC Act will be afforded within the EIS for the Project.
5.0 Environmental matter identification

This section provides a summary of the existing environment at the Site, and potential environmental issues that may be relevant to each environmental matter. This section also summarises the likely scope of the environmental assessment that would be provided for each environmental matter, within the Project’s EIS.

The potential environmental issues identified below have been derived in reference to Guideline 3: Scoping and Environmental Impact Statement – Draft Environmental Impact Assessment Guidance Series (Department of Planning and Environment, 2017). As part of that guideline, it is recommended that proponents use the scoping worksheet (Appendix A to that guideline) to identify relevant environmental matters to be considered. This process has applied to the Project and this Scoping Report, resulting in the broad prioritisation of issues as outlined in detail in Sections 5.1.1 to 5.1.17, and summarised in Section 5.2. A completed version of the scoping worksheet for this Project is provided in Appendix A of this report. In addition to the environmental matters within the scoping worksheet, other matters and/or potential impacts have also been considered as part of the following assessment, based on experience with previous projects of a similar nature.

5.1.1 Air quality

Existing environment

The Site is located in the Lithgow LGA, in the suburb of Wallerawang. Surrounding land uses are predominantly agricultural and industrial. Heavy industry is likely to be the key contributor to the air quality of the local area. Heavy industry nearby the Site includes Wallerawang power station (retired and undergoing decommissioning), Springvale colliery, Lidsdale coal loading facility, and Wallerawang ash depository.

Local traffic is minimal and the likelihood of vehicle emissions contributing to air quality in the vicinity of the Site is low. However, it is noted that Brays Lane which surrounds the Site, is partly unsealed and could result in dust during periods of dry weather.

Receivers that have been identified directly adjacent to Project consist of low-density residential properties, industrial premises and commercial premises.

A search was conducted of the Australian Department of the Environment and Energy National Pollutant Inventory. The inventory identified three registered sources of air pollution near the Project:

- Lidsdale Coal Loading Facility, directly south east of the Site
- Springvale Colliery, about 3.5 kilometres to the east of the Site
- Mt Piper Power Station, about 1.5 kilometres to the north west of the Site.

Preliminary assessment and EIS scope

Construction of the Project could influence local ambient air quality, primarily as a result of dust generation (e.g. during earthworks) and exhaust from plant and equipment. These emissions would be managed through appropriate controls such as the use of water spray carts / vehicles on unsealed surfaces within the construction Site and switching off plant and equipment when not in use.

The Project would not have notable air quality emissions or odorous qualities, characteristics or attributes with potential to interfere with local amenity. Air quality impacts during operation would be negligible.

Air quality impacts are unlikely to eventuate or be of concern to stakeholders provided appropriate measures are employed during construction. In accordance with the scoping worksheet, potential air quality impacts related to dust during construction would be discussed within the EIS.

5.1.2 Biodiversity

Existing environment

An initial desktop review of aerial photos indicates that the Site predominantly contains grazed vegetation with an area of trees to the north west.
The Protected Matters Search Tool (PMST) was used to identify matters of national environmental significance (MNES) or other matters protected under the Commonwealth Environmental Protection and Biodiversity Conservation Act 1999 (EPBC Act) within one kilometre of the Project. A report from the PMST (generated on the 7th of September 2020) indicated that two critically endangered ecological communities (CEECs); have the potential to occur within one kilometre of the Project including:

- **Natural Temperate Grassland of the South Eastern Highlands**
- **White Box-Yellow Box-Blakely’s Red Gum Grassy Woodland and Derived Native Grassland.**

A review of the NSW Department of Energy and Conservation (DEC) (now NSW Department of Agriculture, Water and the Environment) ‘Vegetation of the Western Blue Mountains map data’ was undertaken to understand if the Project would be located in proximity to any known CEECs. According to this map data, the north west corner of the Site contains a patch of mature vegetation that is mapped as Cox Permian Red Stringy Bark – Brittle Gum Woodland. Other mature vegetation found across Site is classified as non-native vegetation – Pine plantation / woodlot. The remainder of the Site is classified as cleared and severely disturbed lands.

Vegetation that is intersected by the southern transmission line option comprises mostly cleared and severely disturbed lands. Some areas mapped as Cox Permian Red Stringy bark – Brittle Gum Woodland, and Tableland Hollows Black Gum - Black Sally would also be intersected by this option.

Vegetation that is intersected by the western transmission line option comprises mostly cleared and severely disturbed lands, however some areas of Tableland Hollows Black Gum - Black Sally would also be intersected by this option.

Neither Cox Permian Red Stringy bark – Brittle Gum Woodland, or Tableland Hollows Black Gum - Black Sally is listed as an CEEC under the NSW Biodiversity Conservation Act, 2016 (BC Act) or the EPBC Act. The extent of these two vegetation communities relative to the Project are shown on Figure 4.

The NSW Office of Energy, Environment and Science (OEES) BioNet Atlas database was reviewed to determine the likelihood of threatened species to be located within proximity of the Project.

No threatened species have been identified as having been previously recorded within the boundary of Site. One threatened flora species and two threatened fauna species have been identified immediately intersecting or within 200 metres of the transmission line options are shown on Figure 4 and are described as follows:

- **Miniopterus orianae oceanensis** (common name: Large Bent-winged Bat) is listed as a Vulnerable fauna species under the BC Act. It is not a listed species under the EPBC Act. One recorded sighting has been identified about 50 metres west of the southern transmission line option

- **Artamus cyanopterus** (common name: Dusky Woodswallow) is listed as a Vulnerable fauna species under the BC Act. It is not a listed species under the EPBC Act. One recorded sighting has been identified within about 20 to 40 metres of the eastern transmission line option.

- **Eucalyptus aggregate** (common name: Black Gum) is listed as Vulnerable species under the BC Act. It is not a listed species under the EPBC Act. A number of recorded sightings have been identified within 200 metres of the Site and associated transmission line options (refer to Figure 4). The eastern transmission line option would traverse immediately adjacent to at least two recorded Eucalyptus aggregate individuals. All other records are mapped as occurring a minimum of 50 metres from the southern transmission line option. In addition to this, a cluster of eight Eucalyptus aggregate records are located along Brays Lane, after its crossing of Cox River, and before the point where the road would turn south to head towards the Site.
FIGURE 4
BIODIVERSITY, HERITAGE, AND SURFACE WATER - WALLERAWANG

Legend
- Site boundary
- Substation
- Eastern transmission line option
- Southern transmission line option
- Watercourse
- Primary road
- Local road
- Railway
- Indicative private access road option

Heritage
- LEP general heritage item
- LEP archaeological heritage
- LEP conservation area
- State Heritage Register
- AHIMS Record

Vegetation Communities
- Tableland Hollows Black Gum - Black Sally Open Forest
- Coxs Permian Red Stringybark - Brittle Gum Woodland

BioNet Records
- Dusky Woodswallow
- Large Bent-winged Bat
- Black Gum

Copyright: Copyright in material relating to the base maps (contextual information) on this page is licensed under a Creative Commons Attribution 3.0 Australia licence © Department of Finance, Services & Innovation 2017, (Digital Cadastral Database and/or Digital Topographic Database).

The terms of Creative Commons Attribution 3.0 Australia licence are available from https://creativecommons.org/licenses/by/3.0/au/legalcode (Copyright Licence)

Neither AECOM Australia Pty Ltd (AECOM) nor the Department of Finance, Services & Innovation make any representations or warranties of any kind, about the accuracy, reliability, completeness or suitability or fitness for purpose in relation to the content or accordance with licence of the Copyright licence. AECOM has prepared this document for the sole use of its Client based on the Client's description of its requirements having regard to the assumptions and other limitations set out in this report, including page 2.

Preliminary assessment and EIS scope

Potential impacts to biodiversity from the Project may result from clearing of vegetation for the installation of the BESS, access tracks and other ancillary infrastructure such as the establishment of the transmission line.

A detailed assessment of potential impacts to biodiversity will be undertaken as part of the EIS. This will include further investigation of the presence of threatened species and communities within the Site, the potential for significant impacts and methods for the avoidance of impacts through, for example, avoidance through design, management practices and biodiversity offsets. The assessment for the EIS will be informed and undertaken in accordance with the Project SEARs.

The assessment of the potential impacts of the Project on biodiversity would be completed in line with the NSW Biodiversity Assessment Method (BAM) and would be documented within a Biodiversity Development Assessment Report (BDAR) as required by the *Biodiversity Conservation Act 2016*. This would build on the preliminary biodiversity work undertaken to inform this Scoping Report. The BDAR would form an appendix to the EIS.

As part of this assessment, a review of the potential impacts of the Project would be undertaken to confirm if a referral to the Commonwealth Department of Agriculture, Water and Environment is required under the EPBC Act. Weed control measures would also be developed to manage the potential dispersal and establishment of weeds during construction. This would include the management and disposal of weeds in accordance with the *Biosecurity Act 2015*.

5.1.3 Bushfire

Existing environment

A review of the NSW Rural Fire Service bush fire prone land mapping tool was undertaken. The result of this search is shown on Figure 5 where:

- Category 1 (red): Land considered to be the highest risk for bushfire
- Category 3 (orange): Land is considered to be a medium bush fire risk.

The result of this search shows that the Project would be located on fire prone land. Specifically, the majority of the Site is mapped as Category 3 Bushfire Prone Land, while a small portion in the north west of the Site is mapped as Category 1 Bushfire Prone Land. Both transmission line options traverse lands mapped as Category 1 and Category 3. No category 2 land is mapped as occurring within proximity to the Project.

As described previously, the Site is mostly cleared of vegetation, however it would be located immediately adjacent to land which is vegetated with mature trees.

Preliminary assessment and EIS scope

As the Project would be located in bushfire prone land and would involve the development of electricity infrastructure, if unmitigated, there is likely to be an associated risk of fire during the construction and operation of the Project. Bushfire protection measures and bushfire compliant development standards would need to be employed to appropriately manage potential bushfire risks.

The design of the Project would include the application of compliant firefighting water supply and systems and would allow for a sufficient fire protection envelope to be established around the perimeter of the BESS.

In accordance with the scoping worksheet, the potential bushfire risk that may be associated with the Project would be assessed within the EIS.
5.1.4 Greenhouse gas and energy efficiency

Preliminary assessment and EIS scope

The Project would facilitate the indiscriminate storage of available electricity. This electricity would be purchased when demand was low and realised when demand is high. The Project itself would not generate electricity but would allow electricity generated from renewable sources outside of peak times (e.g. solar during the day) to be fed back into the NEM during peak times (often in the evening) which in turn reduces the need for other forms of dispatchable energy that typically come from fossil fuel generation (e.g. gas fired peaking power stations). In addition, the Project would help improve the security and resilience of the electricity grid and support the development of the Central-West Orana REZ. In this way it would also support the development of new renewable projects across the Central West region.

Notwithstanding minor combustion emissions during construction, overall, the Project is likely to have direct and indirect positive impacts on greenhouse gas emissions. As such, a greenhouse gas assessment is not required.

5.1.5 Hazards and risk

Existing environment

The Site is located on predominantly cleared agricultural land with three homesteads in close proximity. Other land uses in close proximity to the Site include, agriculture, forestry and various industrial and extractive industry land uses. The nearest town is Wallerawang approximately 830 metres to the south of the Site.

Preliminary assessment and EIS scope

SEPP 33 outlines the approach used in NSW for planning and assessing the risk and hazards associated with industrial development proposals. Through the policy, the permissibility of a development proposal is linked to its safety and pollution control performance. SEPP 33 applies to any proposals that fall under the Policy’s definition of ‘potentially hazardous’ or ‘potentially offensive industry’.

For development proposals classified as ‘potentially hazardous industry’ the Policy establishes a comprehensive test by way of a preliminary screening assessment and PHA to determine the risk to people, property and the environment. A guideline prepared for SEPP 33 (Applying SEPP 33 – Hazardous and Offensive Developments), serves as a guide for the steps to be taken in determining whether a project is potentially hazardous or offensive. It provides a list of threshold levels for the storage and transport of dangerous goods. Where the amount of material to be stored or transported exceeds that threshold, SEPP 33 is considered to apply to the project, potentially requiring a PHA.

Table 5 presents the class of hazardous material under the Australian Code for the Transport of Dangerous Goods by Road & Rail, the amount of material to be stored and the SEPP 33 threshold for that material.

<table>
<thead>
<tr>
<th>Class</th>
<th>Material</th>
<th>SEPP 33 threshold (kg)</th>
<th>Does SEPP 33 apply?</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Lithium ion batteries</td>
<td>N/A</td>
<td>No</td>
</tr>
</tbody>
</table>

Based on the above, the materials considered to be dangerous goods under the Australian Code for the Transport of Dangerous Goods by Road & Rail that would be stored at the Site do not exceed the SEPP 33 thresholds. Accordingly, SEPP 33 does not apply and a PHA is not required.

In any event, it is understood that DPIE has adopted the approach that the assessment of BESS Projects are to be supported by a PHA, in line with the Hazardous Industry Planning Advisory Paper No. 6 – Hazard Analysis (DPIE 2011) and the Multilevel Risk Assessment guideline (DPIE, 2011). In light of this requirement, a PHA will be prepared to support the EIS. The PHA will qualitatively discuss the potential risk to people, the biophysical environment, and property from accidental releases of potentially hazardous material and energy. Concerns related to electric and magnetic fields (EMF) are unlikely to be an issue given the likely low voltage of the transmission line connection to the substation.
5.1.6 Non-Aboriginal heritage

Existing environment

No Commonwealth listed non-Aboriginal heritage items or areas have been identified within 200 metres of the Site.

A review of the State heritage register identified two items of state heritage significance (items listed under the Heritage Act 1977) within 200 metres of the Site. These are shown on Figure 4 and include:

- St. John the Evangelist Church (ID 5053347 / 01702), located about 40 metres west of the eastern transmission line option.
- Wallerawang Railway Station and yard group (ID:5012260 / 01282), located about 180 metres south of the southern transmission line option.

A review of the Lithgow LEP 2014 identified five items and one conservation area of local heritage significance within 200 metres of the Site. These are shown on Figure 4 and include (generally listed as they occur from north to south):

- Old Wallerawang School (former National School) (I113) located about 40 metres east of the eastern transmission line option
- St. John the Evangelist Church (I112), located about 45 metres west of the eastern transmission line option
- Former Wallerawang Public School and Residence (I225) located about 15 metres south of main street, 160 metres north west of the southern transmission line option
- Wallerawang Junction Railway Station Group (I208), located about 180 metres south east of the southern transmission line option
- Bottom Pub (I207) located about 115 metres south of the southern transmission line option
- Surgery (I209) located about 170 metres south of the southern transmission line option
- Wang Antiques and Emporium (I210) located about 180 metres south of the southern transmission line option.

Wallerawang Heritage Conservation Area (C12) is located about 180 metres to the south east of the Site, and is associated with heritage items I207, I209 and I210.

Preliminary assessment and EIS scope

The transmission line options for the Project come close to one or more of the heritage values listed identified above. As such a Historic Heritage Impact Assessment will be prepared for the Project to confirm whether adverse historic heritage impacts are likely to occur. This assessment would be appended to the EIS.

5.1.7 Aboriginal heritage

Existing environment

The NSW Office of Environment, Energy and Science (formerly the Office of Environment and Heritage (OEH)) Aboriginal Heritage Information Management System (AHIMS) database includes:

- Information about Aboriginal objects that have been reported to the Director General, Department of Premier and Cabinet
- Information about Aboriginal Places which have been declared by the Minister for the Environment to have special significance with respect to Aboriginal culture
- Archaeological reports.

A search of the AHIMS, centred on the Project (with a 200 metre buffer applied) was undertaken. The search identified two AHIMS registered sites (45-1-0237 Open Campsite, artefact scatter and burial and 42-1-0247 Open Campsite) located nearby the eastern transmission line option, as shown on Figure 4. A review of the site cards for these two AHIMS sites was undertaken to understand the
significance of the sites and the likelihood the Project would impact Aboriginal heritage. According to the site cards for each AHIMS site, artefacts have been removed from both sites and both sites have undergone vegetation removal and disturbance. In addition, AHIMS site 45-1-0237 was granted consent for the destruction of an Aboriginal Relic/Place under the National Parks and Wildlife Act 1974 on 31st August 1993 to allow for the development of the Springvale to Mt Piper Coal Conveyer.

Given much of the Project would be located on previously disturbed soil as a result of agricultural, forestry and industrial development it is possible that evidence of Aboriginal cultural values has been removed in certain areas that would undergo disturbance during the construction of the Project.

Preliminary assessment and EIS scope

Although there is low potential for archaeological resources to be present in the Project area (due to the historic clearing and disturbance of the area) further archaeological assessment will be required once final designs impacts are known and potential impacts understood.

An Aboriginal Cultural Heritage Assessment Report (ACHAR) and associated assessment and consultation would be completed for the Project. The Aboriginal cultural assessment would be completed in accordance with the Code of Practice for Archaeological Investigation of Aboriginal Objects in New South Wales and Guide to Investigating, Assessing and Reporting on Aboriginal Cultural Heritage in NSW. The work required to support the production of the ACHAR will help identify Aboriginal cultural heritage values and appropriate mitigation measures. The ACHAR would be appended to the EIS and its findings summarised into the body of the EIS.

5.1.8 Land use

According to the Lithgow LEP 2014, the BESS would be located on land zoned as: RU1 Primary production. The transmission line component of the Project (both the eastern and southern options) would cross the RU1 Primary Production; IN1 General Industrial; and SP2 Infrastructure landuse zones (refer to Figure 2). The TransGrid Wallerawang substation is located on land zoned as RU1 Primary production. The landuse objectives of each of these landuse zones are presented in Section 4.2.4.

As the Site is located on land zoned as RU1 Primary Production, a review of the Land and Soil Capability Mapping of NSW was undertaken to understand the likely capability of the Site to sustain agricultural landuses. The Site is mapped as comprising Class 4, Class 5, and Class 8 land and soil capability, where Class 4 denotes moderate to severe soil limitations, Class 5 denotes severe limitations for high impact land management uses such as cropping, and Class 8 denotes extreme soil limitations. As such, it is considered that the likely capability of the Site to sustain agricultural land uses would be moderate to very low.

The land on which the Site is located is privately owned. The eastern transmission line alignment that would connect the Project to the nearby Wallerawang 330 kV substation is located on land currently managed by John Holland for the purpose of operating and maintaining the existing rail line in this location. A small portion of this alignment would also cross Main Street, which is a Lithgow City Council owned and managed roadway. The southern transmission line option traverses land currently managed by Lithgow City Council.

Preliminary assessment and EIS scope

The Project would be compatible with some of the land use objectives and would be neutral and potentially conflict with others. A review of the relevant land use objectives and existing land uses at the Site and along the preferred transmission alignment would be completed. Following this review potential conflicts would be identified and where available, mitigation measures would be identified.

5.1.9 Landscape and visual impact

Existing environment

The landscape character for the Site is a mixture of rural / urban fringe activities which include industrial uses, agricultural land, forested ridgelines and other urban uses. There are some residential properties within the immediate area, however these are largely homesteads that align with the agricultural land use.
The topography of the Site and surrounding area alongside the trees and forests on the neighbouring land mean that the Site is highly screened from Wallerawang.

Preliminary assessment and EIS scope

The landscape character of the local area is a mixture of agricultural, industrial and extractive industry uses set in an undulating topography that includes open agricultural land, urban areas and forest along ridgelines. The Project would introduce a new industrial land use into this urban fringe environment, but it would be largely screened by the local topography and vegetated areas.

The introduction of the Project would be unlikely to have a significant impact on the landscape character of the area given the existing heavy industry uses within the local area, the fact that the Site is largely screened from surrounding sensitive receivers and that the BESS is unlikely to require structures more than 10 metres in height.

Construction of the Project would temporally result in visual impacts to neighbouring residents who pass the Site or can see it from their properties through the introduction of construction activity, equipment, workers and plant / machinery. This would result in temporary impacts and would be largely mitigated through appropriate controls such as construction hoarding.

During operation the Project will be in the viewshed of a relatively small number of residences. Vehicle movements on Bray Lane are anticipated to be infrequent, resulting in minimal anticipated visual impacts to road users. Further, the visual sensitivity of the road users is likely to be low due to the temporary, transient nature of the view. In addition, the Project would be located in an area which, while partially rural in nature, is also subject to views associated with the operation of numerous nearby heavy industries.

Given the rural/industrial character of the local area and the small number of sensitive visual receivers likely to be impacted, it is unlikely that the Project would result in significant adverse visual or landscape impacts. As such a qualitative discussion of potential visual impacts would be included in the EIS. This discussion would be supported by one photomontage from an appropriate location.

5.1.10 Noise and vibration

Existing environment

The immediate area surrounding the Project can be described as rural in nature with a number of notable industrial land uses. Residences in the vicinity are sparsely distributed with one residence typically located on a lot measuring several hectares in size. Existing background noise levels in the area around the Site are influenced by nearby light to heavy industrial, low density residential, commercial and rural land uses.

One residential receiver is located around 40 metres to the south of the Site boundary and one residential receiver is located about 50 metres to the north of the Site boundary. However, the location of the BESS within the Site is not at this stage determined and therefore it could be located at a greater distance than this from the closest residential receiver. No other residential receivers have been identified within about 300 metres of the Site, however the southern transmission line option would be located within about 130 metres of housing estate, located off Chipps Avenue, Wallerawang. For the purpose of this scoping assessment, those three residential properties closest to the Site are referred to as “associated receivers” and are shown on Figure 6.

The Black and Gold Motel is located adjacent to the southern side of the Lidsdale Coal Loading Facility, about 650 metres south east of the Site, and about 180 metres north of the southern transmission line option. St John The Evangelist Church, Wallerawang is also located adjacent to the southern side of the Lidsdale Coal Loading Facility, about 800 metres east of the Site, and about 80 metres south of the eastern transmission line option. No other sensitive receivers such as schools, hospitals or community centres have been identified nearby the Project. The location of nearby sensitive receivers relative to the Project is shown on Figure 6.
Preliminary assessment and EIS scope

Noise generated during the construction phase of the Project would be temporary and associated with the construction of the built elements. This would include the movement of materials, equipment and personnel to and from the Project, as well as the operation of machinery required to complete earthworks and construct the Project. There would be a potential for nearby sensitive receivers to be impacted by construction noise. Given the low existing background noise immediately surrounding the Project, the construction stage of the project may have the potential to generate noise that would be audible at a local level and may exceed noise management levels in the absence of mitigation.

During operation noise would be generated by electrical plant associated with the BESS, such as inverters and transformers. The potential impact of operational noise of the two nearest receivers would need to be assessed to understand whether any reasonable or feasible mitigation measures are required.

The scoping worksheet prepared for this Project has identified that potential noise impacts during the construction and operation require further assessment. As such, a Noise and Vibration Impact Assessment (NVIA) would be prepared for the Project. This assessment would be undertaken in accordance with applicable legislative requirements, policies and guidelines such as:

- Interim Construction Noise Guideline (ICNG), Department of Environment and Climate Change, 2009

The Noise and Vibration Impact Assessment would assess the potential noise impacts from the Project during construction and operational phases. Baseline monitoring would be used to define the background noise levels and for calculating the applicable noise criteria. The assessment would model noise emissions to understand the magnitude of the potential impacts and a suite of reasonable and feasible mitigation measures would be recommended.

The Project would also have some potential to result in vibration impacts during construction and operation, particularly in the instance that the southern transmission line option is selected – due to its proximity to nearby local heritage listed structures. As such, the NVIA will also consider vibration impacts.

5.1.11 Infrastructure requirements

Existing environment

The infrastructure required to service the Project would consist of local roads that would be used to access the Project during construction and operation, electricity infrastructure connections, and supply of potable and wastewater services.

As the Project would provide a large battery storage facility, a reliable connection to a high capacity substation would be required. A preliminary grid connection investigation has been undertaken. The Project proposes a connection to the Wallerawang 330 kV substation.

Potable water and wastewater services in the area are supplied and managed by Lithgow City Council. A potable and wastewater connection to existing infrastructure may be established to service the Project. If available, the Project would connect to the Lithgow City Council wastewater network. If this is not available, an onsite wastewater collection and treatment device would be installed (such as septic tanks).

Preliminary assessment and EIS scope

The EIS will detail the infrastructure requirements for the Project in accordance with the scoping worksheet. This will include information about anticipated supply of utility services including:

- Electricity
- Water
- Sewer
- Communications.
A Dial Before You Dig request would also be completed, to determine the locations of other utility suppliers. The need for utility works to support the Project would be identified during the design development and in consultation with relevant providers. The need for any works to adjust utilities will be discussed within the EIS.

The small number of workers required during operation and the limited resources required to operate the BESS means that, notwithstanding the connection to the Wallerawang 330 kV substation, the infrastructure and resource requirements for the Project will be negligible. As such a discussion of the infrastructure and utilities required to service the Project will be included in the Project Description but no further assessment is necessary.

5.1.12 Social impacts

The existing social environment surrounding the Site is characterised primarily by rural and industrial uses and associated activities. There is no community infrastructure such as libraries, schools or health care facilities in the immediate vicinity of the Site, however, the transmission line options be in proximity to premises that service the community.

The closest commercial premise to the Site has been identified as the Black and Gold Hotel, located adjacent to the southern side of the Lidsdale Coal Loading Facility, about 650 metres south east of the Site, and about 180 metres north of the southern transmission line option. As described in detail previously, the Project would also be surrounded by a number of large industrial business operations.

Preliminary assessment and EIS scope

The Project would be unlikely to impact on the operation Black and Gold Hotel due to the distance between the Project and this premises. Potential amenity impacts related to the proposed transmission lines would be limited to construction and would be short term and temporary. The Project is also not expected to impede access to any of the larger, industrial businesses surrounding the Site. As such, significant impacts to business operations are not anticipated.

The Project would provide construction jobs and during operation, the increased reliability in the National Energy Market and facilitate the increased penetration of renewable energy and growth in employment opportunities in that sector across the region.

The Project would be unlikely to impact community health, safety, services and facilities, cohesion, capital and resilience or housing.

The EIS will include a succinct qualitative discussion of the potential social and economic impacts of the Project. This would include an estimation of employment generation associated with the construction and operational phases, as well as broader economic benefits of this specific development. This issue is defined as an ‘other issue’ by the scoping spreadsheet and would be assessed accordingly in the EIS. Other social amenity impacts would be assessed within the relevant amenity-impact sections of the EIS including air quality, noise and vibration, and landscape and visual impact.

5.1.13 Soils, groundwater and contamination

Existing environment

The Site has a gently undulating topography that contains a shallow ephemeral drainage channel that drains to the east with slightly higher land to the south, north and west. The highest parts of the Site are located in the north western and south western corners and are between 900 metres and 910 metres AHD. The lowest part of the Site is along the central and south eastern boundary at around 890 metres to 880 metres AHD.

The Australian Soil Map Classification identifies soils in the Site as being characterised as Cullen Bullen erosional soils (ERTb) (DPIE, 2012). The Cullen Bullen soil landscape unit is generally associated with a topography of rolling low hills and rises on Illawarra Coal Measures and the Berry Formation, where slopes are typically between 10 – 25 percent. Extensively cleared open woodland and open forest is associated with this soil landscape. The soils are typically dominated by shallow to moderately deep Yellow Podzolic Soils (Kurosols, Chromosols) and Yellow Leached Earths on crests; moderately deep Yellow Podzolic Soils (Kurosols, Chromosols), Yellow Leached Earths (Kandosols).
This soils type is typically associated with the following limitations: hard setting topsoils; high water erosion hazard; high run-on; rocky outcrops; localised rock fall hazards; and localised high foundation hazards (King, D.P,1993).

Both transmission line options would traverse soils consisting of Pipers Flat (ALpf) and Cullen Bullen (ERcb). The TransGrid Wallerawang substation is located in an area classified as disturbed terrain. Pipers Flat Soil Landscape generally contains moderately deep to deep (>100 cm) Grey-brown Alluvial Soils, Leached Loams, Soloths, and Gleyed Podzolic Soils (King, D.P,1993).

Areas considered to be steep or highly erodible are those with a slope equal to or greater than 18 degrees. An increased risk of slope instability, landslide and erosion may be associated with areas where the slope exceeds 18 degrees. According to the Department of Planning, Industry and Environment Landslide Risk Mapping, the Project would not disturb any areas where the slope is equal to or greater than 18 degrees.

In addition to the above, searches were conducted for the Project to investigate the likely risk of acid sulfate soils, salinity and mine subsidence as follows:

- A review of the Environmental Planning Instrument Acid Sulfate Soil Risk Mapping did not identify any risk of acid sulfate soil
- The NSW Department of Planning, Industry and Environment Hydrogeological Landscape and Salinity Hazard Maps did not identify any areas of inland soil salinity risk
- No risk of mine subsidence was been identified following a review of the NSW Government Mine Subsidence District Mapping. However, it is noted that the Project is located within an area that supports coal mining activities.

A review of the NSW Office of Water ‘realtime’ continuous water monitoring network identified a borehole with available groundwater data at the Lidsdale Coal Loading Facility near to the Site. At this borehole (GW110520), groundwater was recorded as occurring at about 12 metres below ground level. While the Site is in close proximity to the Lidsdale Coal Loading Facility (about 400 metres away) the Site is located between 880 and 910 AHD and the Lidsdale Coal Loading Facility is located at about 880 AHD, as such, conditions experienced at various locations across the Site may differ.

A review of the NSW EPA contaminated land register identified one contaminated site notified to the EPA within 200 metres of the Site. This was Lidsdale Coal Loading Facility, located at Main Street Wallerawang. This site has been notified to the EPA, but no regulation is required under the CLM Act.

The area surrounding the Site has been subject to industrial and potentially contaminating land uses including those associated with agriculture land uses, Wallerawang power station, Lidsdale coal loading facility, and Wallerawang ash depository. In addition, fertilisers, septic tanks, and chemicals may be associated with the historical and ongoing agricultural land uses at and near the Site.

Preliminary assessment and EIS scope

The ground conditions at the Site are unknown, but it is unlikely that the Site contains high levels of contamination given that it has been predominantly used for grazing and, for the majority of the Site, has not been developed previously. The only part of the Site that has been subject to previous development is the south eastern corner which includes a homestead that would not be affected by the Project.

As the subsurface soil profile and conditions are unknown, a soil and contamination assessment would be prepared for the Project. This would involve completing a site walkover and a suite of targeted ground investigations either in areas where conditions suggest the presence of elevate contaminants (e.g. at stockpiles of unknown material) or at random locations across the Site. These investigations will help confirm the soil conditions at the Site, whether the excavations and/or footings for the Project would intercept groundwater and if any contaminants are present at levels that could be a risk to human health or the environment.

The information from this investigation would be used to inform an assessment of the potential impacts related to soils, contamination and groundwater. Where potential impacts are identified, appropriate
management and mitigation measures would be recommended to address these impacts. As the Project also will include earthworks, appropriate erosion and sediment controls will also be recommended to manage this activity.

5.1.14 Surface water, flooding and water use

Existing environment

Pipers Flat Creek is the closest waterway to the Site, located about 50 metres to the east. Pipers Flat Creek is a tributary of the Cox River. The Cox River is located about two kilometres north of the Site. Other mapped and named waterways in the vicinity of the Site are shown on Figure 4 and include:

- Lake Wallace (part of Cox River)
- Adams Creek.

A series of small farm dams (up to four) are located on the Site. These dams appear to be fed and linked by ephemeral drainage lines that run through the Site, generally entering the Site on its western boundary and exiting to the east, eventually draining to Pipers Flat Creek.

A review of the Lithgow City Council flood risk mapping available as part of the Lithgow Flood Study (2017) did not provide any flood information relevant to the Site.

Preliminary assessment and EIS scope

The development of the BESS will require the removal or relocation of the farm dams, earthworks to level parts of the Site, retention or relocation of drainage channels through the Site, an increase in hard stand and installation of stormwater management controls to retain and manage the release of runoff as required.

While the transmission line options for the Project would traverse Piper Flat Creek, construction methods would be employed to avoid work occurring within the waterway, such as underboring technologies or installation of overheard wiring. As such, no works are proposed within water ways.

During construction, surface water flows would need to be managed to avoid sediments or other materials being mobilised offsite and impacting the water quality of nearby waterways. Equally the quantity and rate of runoff leaving the Site will also need to be managed to avoid offsite erosion impacts. The EIS would include an assessment of the potential construction impacts related to surface water and would identify appropriate sediment and erosion controls to mitigate these and other relevant impacts.

During operation, surface runoff would derive primarily from hard surfaced areas which would be directed to the ephemeral drainage channels and/or stormwater management controls within the Site. During operation it is unlikely that the quality of stormwater flows would be impacted by the Project. The quantity of stormwater runoff could potentially increase and therefore stormwater management controls will be required to mitigate potential erosion / scour impacts. Nevertheless, the Project is not expected to significantly alter existing surface water flow regimes, as runoff will still leave the Site to the east and be directed to Pipers Flat Creek. The Project’s potential impact on surface water flows during operation and its proposed design (including stormwater design), would be assessed and mitigation measures or additional controls identified as required.

As the Site is sloped and elevated above the surrounding area, the risk of flooding impacting the Site and Project is likely to be low. Therefore, the EIS will include a qualitative assessment of flood risk.

5.1.15 Transport and access

Existing environment

The Site would be accessed via Brays Lane which links to the Castlereagh Highway. The Castlereagh Highway is located approximately 1.5 kilometres east of the Site and provides a key route through central and northern NSW, connecting Lithgow to south-west Queensland. The Castlereagh Highway connects to the Great Western Highway, about 12 kilometres south east of the Site. The Great Western Highway is the major route that connects the Lithgow LGA with Sydney.

Brays Lane borders the Site to the east and the south. It connects to the Castlereagh Highway in the east, passes the Site and eventually connects to Pipers Flat Road in Wallerawang. Access to the Site
would be from Brays Lane. From the Castlereagh Highway intersection to the bridge crossing of Cox’s River, Brays Lane is a well maintained, wide, paved, dual lane road. The bridge crossing is one-lane wide. Between the bridge and the Site, Brays Lane becomes partially unsealed, narrow but bi-directional road.

The eastern transmission line option would be located within an existing rail corridor managed by John Holland Rail. The township of Wallerawang is situated on the Main Western and Gwabegar railway lines. The Main Western Railway Line is major railway, running through the Blue Mountains, Central West, North West Slopes and the Far West region of NSW. The Main Western Line is a continuation of the Main Suburban Line from Sydney and supports passenger and freight trains. The Gwabegar Railway Line runs through the Central West and North West Slopes regions of NSW. Primarily, the Gwabegar Railway Line is used to run freight trains, carrying coal and other materials.

Roads and railway lines surrounding the Project are shown on Figure 4.

Preliminary assessment and EIS scope

A new access point on to the Site would be constructed off Brays Lane. This new access point would be used for construction and eventually operation.

During construction, the Project would introduce additional traffic to Brays Lane. This additional traffic would consist of heavy and private vehicles. Heavy vehicles would be required for the delivery of construction equipment, removal of spoil (if required) and the delivery of the various Project components. Light vehicles would be used by the construction workforce. Oversized and over mass vehicles are not expected to be required for the construction of the Project. Should oversized vehicles be required this would be confirmed within the EIS.

A qualitative assessment of potential construction traffic impacts will be completed as part of the EIS. A quantitative assessment is not considered necessary as potential impacts would be limited to the construction phase. Vehicle volumes associated with construction of the Project are likely to be relatively low and it is unlikely that the roads connecting the Site to the wider road network are at or close to capacity.

The qualitative assessment of potential construction traffic impacts would review previous traffic impact assessments from the area and traffic counts undertaken for the surrounding road network as well as any information available on road safety. Consultation with Transport for NSW and the City of Lithgow Council will be undertaken, and a high-level assessment of potential traffic impacts will be completed. Mitigation measures would be identified as required.

No material change to traffic would arise from the operation of the Project. Private property access would be unaffected and no offsite parking would be required. The Project would require relatively few vehicle movements during operation, thus the operational traffic impacts are considered negligible. The Project is not considered to be ‘traffic generating development’ under Schedule 3 of the Infrastructure SEPP due to its likely low number of day-to-day traffic movements that would be required to accommodate an intermittent workforce of up to five people. No operational traffic assessment will be completed due to the low numbers of operational staff.

5.1.16 **Waste management**

Preliminary assessment and EIS scope

The Project would generate several waste streams that will require management in accordance with relevant legislation and guidelines.

It is expected that during construction, the primary waste generated would consist of excess construction materials and excavated material which may include:

- Spoil
- Vegetation
- Concrete
- Soil
- Steel
- Bitumen
- Plastic
- Sewerage and other construction worker related wastes.

Small quantities of waste may be produced intermittently during operational maintenance activities; however, operation of the Project would have little or no impact on waste disposal resources in the region. Operational waste is likely to be mainly limited to waste associated with human use such as general solid waste and sewerage.

As per the scoping worksheet, the generation and management of waste will be discussed as part of the EIS.

5.1.17 **Cumulative impacts**

Cumulative impacts may arise in the event that the Project is developed concurrently to other major projects in close proximity. Where two or more projects impact the same receptor or value, the combined impact of these projects may become potentially greater than each project’s individual impact.

A review of the NSW Government Major Project website was completed to identify SSD projects that are planned or currently underway that may result in cumulative impact with the Project. SSD projects listed on the NSW Government Major Project website that are within 15 kilometres of the Project are shown on Figure 7. It is not considered likely that any of these projects would result in cumulative impacts with the Project due to distance to the Site, the scale of construction, the operational activities proposed, and the anticipated timing (in that construction would be unlikely to coincide with the Project).

While no cumulative SSD projects have been identified at this time, this may change in the future. As such, a complete review of relevant development applications and other major projects would be undertaken to identify projects which could impact the same receptors or values as the Project following the application of controls and mitigation.

Cumulative impacts associated with the Project are expected to be limited to amenity impacts such as noise, visual amenity and traffic. This would be further confirmed within the EIS.
5.2 Scoping summary

Table 5 below presents a summary of the environmental scoping assessment and the proposed level of mitigation and assessment proposed for the EIS.

Table 6 Summary of scoping assessment outcomes

<table>
<thead>
<tr>
<th>Environmental matter</th>
<th>Summary of potential impacts based on unmitigated / inherent risk</th>
<th>Safeguards / management measures to be applied</th>
<th>Level of assessment proposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air quality</td>
<td>Dust emissions generated during construction affecting nearby sensitive receivers and/or mechanical systems on nearby buildings</td>
<td>Standard</td>
<td>Desktop assessment</td>
</tr>
<tr>
<td>Biodiversity</td>
<td>Potential impacts on threatened flora and fauna, endangered ecological communities, and/or habitats during construction</td>
<td>Project specific</td>
<td>Technical assessment to be prepared</td>
</tr>
<tr>
<td>Bushfire</td>
<td>Potential impacts of bushfires on the operation of the Project</td>
<td>Project specific</td>
<td>Technical assessment to be prepared</td>
</tr>
<tr>
<td></td>
<td>Potential for the Project to cause or enhance bushfires</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hazard and risk</td>
<td>Potential hazardous materials used during construction and operation resulting in impacts onsite and offsite.</td>
<td>Project specific</td>
<td>Technical assessment to be prepared</td>
</tr>
<tr>
<td>Aboriginal Heritage</td>
<td>Potential destruction, damage or removal of Aboriginal cultural heritage items</td>
<td>Project specific</td>
<td>Technical assessment to be prepared</td>
</tr>
<tr>
<td>Non-Aboriginal Heritage</td>
<td>Potential destruction, damage or removal of non-Aboriginal heritage items</td>
<td>Project specific</td>
<td>Technical assessment to be prepared</td>
</tr>
<tr>
<td>Land use</td>
<td>Conflicts with land use zone objectives and potential impacts to surrounding land uses</td>
<td>Standard</td>
<td>Desktop assessment</td>
</tr>
<tr>
<td>Landscape and visual</td>
<td>Potential impacts upon landscape and visual amenity during construction of the Project</td>
<td>Standard</td>
<td>Desktop assessment</td>
</tr>
<tr>
<td></td>
<td>Potential impacts upon landscape and visual amenity during operation of the Project</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noise and vibration</td>
<td>Disturbance of sensitive receivers during construction</td>
<td>Project specific</td>
<td>Technical assessment to be prepared</td>
</tr>
<tr>
<td></td>
<td>Disturbance of sensitive receivers during operation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exceedance of applicable vibration criteria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social and Economic</td>
<td>Increased regional employment needs during the construction of the Project</td>
<td>Standard</td>
<td>Desktop assessment</td>
</tr>
<tr>
<td>Environmental matter</td>
<td>Summary of potential impacts based on unmitigated / inherent risk</td>
<td>Safeguards / management measures to be applied</td>
<td>Level of assessment proposed</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
<td>---</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Soils, groundwater and contamination</td>
<td>Mobilisation of sediment during construction activities</td>
<td>Standard</td>
<td>Desktop assessment</td>
</tr>
<tr>
<td></td>
<td>Impacts on groundwater during construction</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contamination of the soils and sediments on the Site through leaks or spills during construction.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Discovering contaminated material on the Site</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Issues with the stability of the subsurface, issues with soil chemistry and issues with the capability of the soils to support the Project.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface water and flooding</td>
<td>Release of sediment-laden water during construction, which may impact downstream water quality</td>
<td>Project specific</td>
<td>Technical assessment to be prepared</td>
</tr>
<tr>
<td></td>
<td>Release of stormwater runoff from the Site</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flooding of the Site during construction or operation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport and access</td>
<td>Additional traffic associated with construction that effects the local road network and wider transport network</td>
<td>Project specific</td>
<td>Technical assessment to be prepared</td>
</tr>
<tr>
<td></td>
<td>Additional traffic associated with the operation that effects the local road network</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Access to Site and neighbouring properties being restricted during construction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waste management</td>
<td>Construction waste not being disposed of correctly</td>
<td>Standard</td>
<td>Desktop assessment</td>
</tr>
<tr>
<td></td>
<td>Operation waste not being disposed of correctly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cumulative impacts</td>
<td>Construction phase of the project resulting in detrimental amenity impacts when combined with potential nearby construction projects.</td>
<td>Standard</td>
<td>Desktop assessment</td>
</tr>
</tbody>
</table>
6.0 Consultation

6.1 Neoen stakeholder community relations values

Stakeholder and community relations are led by Neoen’s project managers with support from community relations specialists in accordance with a community relations plan prepared for each project. It is important that trusting relationships are developed between the people on the ground who know the project the best, and the stakeholders that are part of and connected to their region and local community.

To engage the local community, the overall approach to consultation for the Project will be open, relaxed, flexible and responsive. Neoen has a vertically integrated business model, meaning that they ‘develop to own’ their projects. This model is unusual in the industry, affording a clear advantage over competitors in respect to community relations – with a starting point of a clear understanding that they will be long term neighbours and participants in the local community for the lifetime of the project. As such, relationships are established and nurtured, partnerships and innovation embraced, with the community confident that Neoen will be there to see projects and benefits to fruition. Neoen’s community relations values are expressed in Figure 8.

<table>
<thead>
<tr>
<th>Integrity</th>
<th>Commitment</th>
<th>Audacity</th>
<th>Esprit de corps</th>
</tr>
</thead>
<tbody>
<tr>
<td>We operate with integrity, whatever we do, whenever and wherever we do it.</td>
<td>We uphold all our commitments, internal and external. We believe in hard work and take pleasure in seeing a good job well done.</td>
<td>We believe we can become a world leader in renewable energy. We have the ability to operate globally, imagining, designing and implementing competitive, effective energy solutions.</td>
<td>We are loyal to each other and form a close-knit team. We are proud of our company, our goals and our accomplishments.</td>
</tr>
</tbody>
</table>

Figure 8 Neoen’s community relations values

Neoen is committed to engaging with relevant stakeholders to help identify potential or perceived impacts of the Project early and to identify and incorporate design and control measures that avoid and/or mitigate risks and issues where possible.

To achieve this objective, Neoen would undertake consultation through the implementation of a comprehensive community relations plan (described in more detail below), with the aim of providing stakeholders with an opportunity to have meaningful involvement by expressing their views and concerns.

The key objectives of consultation and engagement for the Project are as follows:

- Involving the community in the development, construction and operation of the Project
- Collaborating with the community to ensure that local advice and insights are shaping our approach to engagement and benefit sharing
- Empowering the community to shape key elements of the Project, such as co-designing the long-term framework of the shared benefits program.

6.2 Community and stakeholder engagement

A Community Relations Plan (CRP) would be developed for the Project. This document would identify the community relations approach and objectives for the Project and surrounding communities. It would outline the overall framework for consultation for the Project. It would also provide a summary of
the key stakeholders including landholders, neighbours, local community, government and business and includes a record of the consultation undertaken to date.

The CRP would be developed in accordance with guidelines set out in the NSW DPIE’s (formerly the Department of Planning and Environment) Community and Stakeholder Engagement Draft Environmental Impact Assessment Guidance Series, and in line with the Clean Energy Council’s community engagement and benefit-sharing guidelines. The CRP would be a living document which will be updated progressively as the Project advances through each stage in its lifecycle.

The CRP is one of the three tools, along with the stakeholder register and the project website, that is intended to accompany the Project all the way from early feasibility stage through to decommissioning.

The key objectives of the CRP would be as follows:

- Foster a transparent and open approach to the development of the Project and ensure ‘no surprises’ for the local community
- Keep the community and stakeholders informed about the Project through the provision of accurate, timely and factual project information
- Identify and address community and stakeholder concerns and maintain transparency in the project design, implementation and ongoing operations
- Involve stakeholders and community regarding key decisions
- Identify opportunities for local business involvement and local employment in the construction and operation of the Project
- Co-design, develop and deliver a benefit sharing program in collaboration with the community, and in partnership with local stakeholders where possible
- Develop long-term relationships and partnerships with community and stakeholders.

An eight-phased approach will guide the implementation of the CRP in alignment with each of the lifespan stages. Key project activities and milestones are outlined on the page below, with the associated community relations activities on the following page.
Project Activities and Milestones by Stage

DEVELOPMENT

1. Site Selection
 - Desktop survey
 - Identify potential landowners
 - Fatal flaw assessment
 - Meet and negotiate with landowners
 - Enter options to lease

2. Feasibility
 - Meet and discuss with neighbours
 - Mapping of site constraints
 - Commence development application (DA) studies
 - Preliminary project design
 - Internal approval to proceed

3. Planning & Approvals
 - Completion of studies and surveys
 - Community engagement
 - Preparation of DA
 - Investigate power purchase agreement (PPA) options
 - Grid connection inquiries
 - Refining detailed project design

4. Post DA Lodgement
 - Business engagement
 - Begin procurement process
 - Finalise detailed design
 - Commence PPA negotiations
 - Commence grid connection application process

5. Pre-Construction
 - DA approval
 - Finalise procurement and appoint EPC and O&M contractor
 - Finalise connection agreement
 - Finalise PPA agreement
 - Secure project finance leading to ‘financial close’
 - Development Manager hands over to Construction Manager

CONSTRUCTION

6. Construction
 - Mobilise on site
 - Civil, mechanical & electrical installation
 - Commissioning
 - Generation commences
 - Construction Manager hands over to Asset Manager

OPERATION

7. Operation
 - Ongoing asset maintenance and management
 - Generation and revenue tracking & optimisation

8. Decommissioning
 - Explore business case for site renewal
 - Cease or extend landowner contracts
 - Removal of infrastructure
 - Site rehabilitation
6.3 Consultation activities

6.3.1 Consultation to date

The Project is in its early development stage and ongoing environmental assessment is proceeding in parallel with the development of the design. As discussed above, Neoen seeks to establish and maintain open and effective communication and relationships with the community and interested stakeholders. As such, Neoen have commenced consultation with the community and relevant agencies / other stakeholders. Detail regarding consultation activities undertaken to date is provided in Table 7.

Properties that are located immediately adjacent to the Project are referred to as ‘associated recievers’ and includes two properties location on Brays Lane. These include 137 and 173 Brays Lane, and are denoted on Figure 6 and Table 7 as recievers 2 and 3, respectively. The remainder of recievers in the area are considered to be non-associated recievers. Of these non-associated receivers, the properties at 233 and 113 Brays Lane are located within 300 metres of the Site and as such, have been recipients of more detailed and personalised consultation. The remaining receivers are at least 500 metres from the Site and would be consulted with as per those methods detailed for ‘Community’ in Table 7.

Table 7 Consultation undertaken to date

<table>
<thead>
<tr>
<th>Individual or agency</th>
<th>Detail of consultation undertaken</th>
</tr>
</thead>
</table>
| Community | • A website has been developed that provides detail regarding the Project to inform the community. The website will continue to be updated to inform the community of key project milestones and changes as they occur.
• Contact details of Neoen’s Great Western Battery Project Manager are available on the website
• The website can be accessed at www.greatwesternbattery.com.au
• A flyer has been produced for distribution that that provides detail regarding the Project, the website address, and the contact details of Neoen’s Great Western Battery Project Manager
• The flyer will be distributed to the Wallerawang community in early 2021 |
| Receiver 1 (non-associated)
233 Brays Lane Owner occupied | • A phone call was conducted on 4 December 2020 to inform the owner/occupier about the Project. At this time, Neoen offered to meet with the owner/occupier, however, they indicated that they do not wish for Neoen to conduct individual, personalised meetings on their behalf
• In follow up to the phone call, a letter was sent to this owner/occupier on 7 December 2020. The content of this letter provided the detail discussed on the phone regarding the Project, and how residents can be involved in the ongoing consultation process. The letter included a link to the website for the Project, as well as the contact details of the project manager
• At the time of this scoping assessment, no additional reponse to consultation has been received from the owner/occupier of this property |
| Receiver 2 (associated)
173 Brays Lane. Tenant occupied | • The owner of the property has been involved in ongoing consultation with Neoen since May 2020. Throughout this consultation process, the owner has raised various questions about the Project. Questions raised have included those related to the Project footprint, design and concerns regarding likely visual impact
• The owner informed the tenant residing at the property of the Project in early December 2020, prior to the phone call detailed below |
Individual or agency

<table>
<thead>
<tr>
<th>Receiver 3 (associated)</th>
<th>Detail of consultation undertaken</th>
</tr>
</thead>
</table>
| 137 Brays Lane. Owner occupied | - A phone call was conducted on 7 December 2020 with the tenant of the property. As a result of this call, the tenant agreed to a meeting with Neoen on 10 December
- A meeting was scheduled with the tenant on 10 December 2020 to inform them of the Project and to answer any detailed questions or concerns
- The meeting on the 10 December 2020 was cancelled by the tenant on the day in question. The meeting has been rescheduled for early January 2021.
- The owner/occupier of the property has been involved in ongoing consultation with Neoen since May 2020. Throughout this consultation process, the owner/occupier has raised various questions about the Project. Questions raised have included those related to the Project footprint, design and concerns regarding likely visual impact
- A phone call was conducted on 7 December 2020 to inform the owner/occupier in more detail about the Project. At this time, Neoen offered to meet with them |

<table>
<thead>
<tr>
<th>Receiver 4 (non-associated)</th>
<th>Detail of consultation undertaken</th>
</tr>
</thead>
</table>
| 113 Brays Lane. Owner occupied | - Phone call conducted on 4 December 2020 to inform the owner/occupier about the Project. At this time, Neoen offered to meet with the occupants, however, they indicated that they do not wish for Neoen to conduct individual, personalised meetings on their behalf
- In follow up to phone call, a letter was sent to this owner/occupier on 7 December 2020. The content of this letter provided, in writing, the detail discussed on the phone regarding the Project, and how residents can be involved in the ongoing consultation process. The letters included a link to the website for the Project, as well as the contact details of the project manager
- At the time of this scoping assessment, no additional response to consultation has been received from this owner/occupier |

<table>
<thead>
<tr>
<th>Department of Planning and Industry (DPIE)</th>
<th>Detail of consultation undertaken</th>
</tr>
</thead>
</table>
| | - A meeting was conducted with DPIE on 3 December 2020 to provide a detailed overview of the Project.
- The meeting was attended by representatives of Neoen, DPIE and AECOM
- At the meeting, the following was discussed:
 - Project background, need and objectives
 - proposed site, alignment and project description
 - statutory planning context
 - community and agency consultation undertaken to date and plans for future community and agency consultation
 - key matters with regards to potential environmental impacts were discussed including: Aboriginal heritage, historic heritage, biodiversity, visual impacts, traffic, bushfire, hazards and risk, surface water and flooding
 - proposed timing of the EIS
 - proposed timing of the construction and operation of the Project
- In response to the above items of discussion, DPIE provided the following feedback:
 - the proposed planning approval pathway was agreed (as described in Section 4.1.3)
 - no significant concerns raised with regards to potential environmental impacts |

- A meeting was conducted with DPIE on 3 December 2020 to provide a detailed overview of the Project.
- The meeting was attended by representatives of Neoen, DPIE and AECOM
- At the meeting, the following was discussed:
 - Project background, need and objectives
 - proposed site, alignment and project description
 - statutory planning context
 - community and agency consultation undertaken to date and plans for future community and agency consultation
 - key matters with regards to potential environmental impacts were discussed including: Aboriginal heritage, historic heritage, biodiversity, visual impacts, traffic, bushfire, hazards and risk, surface water and flooding
 - proposed timing of the EIS
 - proposed timing of the construction and operation of the Project
- In response to the above items of discussion, DPIE provided the following feedback:
 - the proposed planning approval pathway was agreed (as described in Section 4.1.3)
 - no significant concerns raised with regards to potential environmental impacts |
Individual or agency

<table>
<thead>
<tr>
<th>Individual or agency</th>
<th>Detail of consultation undertaken</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paul Toole, State Member for Bathurst</td>
<td>• A letter was sent to the State Member to inform them of the Project on 3 December 2020.</td>
</tr>
<tr>
<td>Hon Andrew Gee, Federal Member for Calare</td>
<td>• A letter was sent to the Federal Member to inform them of the Project on 3 December 2020.</td>
</tr>
</tbody>
</table>
| NSW Rural Fire Service (RFS) and Lithgow City Council | • A meeting was held with Lithgow City Council and the NSW RFS on Thursday 10 December 2020 in conjunction with Lithgow City Council
 • The meeting was held at Lithgow City Council Chambers at 180 Mort Street, Lithgow NSW.
 • At the meeting Neoen presented on the Project description, strategic justification and need for the Project, and gave an overview of the likely steps that will be undertaken to construct and operate the Project
 • In response, representatives from NSW RFS expressed they wish to know more about the Project as design development continues, and that they wish to continue to be involved during the development application process.
 • In response, representatives from Lithgow City Council raised the following:
 • requested that during the assessment process Neoen consider how the benefits of the Project would be shared with the community
 • requested that the existing Lidsdale coal conveyor belt is considered when completing the Traffic Management Plan for the Project. |
| TransGrid | • A connection enquiry was lodged with TransGrid on 19 November 2020 |
| John Holland Rail | • Consultation with John Holland Rail (specifically, with a representative from the Country Rail Network division of John Holland Rail) commenced in August 2020 with informal discussions about the Project
 • A combination of phone calls and email communication has been undertaken to provide representatives of John Holland Rail with Project maps, lot numbers and an outline of key Project design elements, including the proposed location and extent of the transmission line options, noting the eastern transmission line option utilises land managed by John Holland Rail
 • John Holland Rail provided advice regarding the filing of an application to John Holland Rail for an ‘Approval In Principle’. This process would take 6-12 weeks. Neoen intends to submit this application in January 2021. As per the requirements of John Holland Rail, the application would include technical details about the easement being sought from John Holland Rail. Once the ‘Approval in Principle’ is received, an application for the easement itself would be prepared and submitted to John Holland Rail
 • To date, John Holland Rail have not raised any objections or concerns related to the Project. |
6.3.2 Future consultation

As discussed in the pages above, consultation would be undertaken as environmental impact information is made available (as technical assessments progress) so that there can be an exchange of information with stakeholders, and feedback received would help inform the assessment and development of mitigation measures.

Consultation with agencies would focus on keeping agencies up to date with technical impact assessments and assessment findings to ensure these are in line with regulatory standards and expectations.

Consultation with relevant stakeholders would be undertaken during the preparation of the Project design and subsequent EIS and would continue for the duration of the construction of the Project. Some of the key stakeholders would include, but not necessarily be limited to:

- Department of Planning, Industry and Environment
- NSW Environment Protection Authority
- TransGrid
- Transport for NSW
- NSW Fire and Rescue
- Forestry Corporation of NSW
- Lithgow City Council.

Neoen would undertake consultation with the nominated stakeholder agencies at key stages during the development of the EIS and the results and outcomes of this consultation would be detailed in the EIS and considered in design.

Other stakeholders may be identified during the preparation of the EIS and consulted, as required.

A community information session is booked to take place at the Commercial Hotel Wallerawang on 3 February 2021. The community have been informed of the upcoming meeting via flyers (distributed 14 December) and via the Project website. Closer to the date, adverts will be placed in the local paper to provide additional notification to the community regarding the meeting.

All consultation will be undertaken within current NSW and Commonwealth government COVID-19 related travel restrictions, and social distancing limits placed on interactions. It is expected that most consultation interactions will occur electronically.
7.0 Conclusion

Neoen is seeking approval a new large-scale BESS under Part 4 of the EP&A Act. The Project would be located on land that is currently occupied by rural and low-density residential uses.

The Project would comprise

- Subdivision of Lot 4 DP 751651 to delineate the extent of the site for the BESS and remaining lands
- Site establishment, including excavation and grading works
- Installation, commissioning, and operation of a large-scale BESS including battery enclosures, inverters, and transformers
- Establishment of a new private access road from Brays Lane to the Project as well as internal access roads and car parking
- Construction of permanent office and staff amenities
- Construction of stormwater controls, lighting, fencing and installation of security devices around the perimeter of the BESS compound
- Establishment of landscaping and screening vegetation.
- Above ground and/or underground transmission line connections from the BESS to the existing Wallerawang substation switchyard
- Ancillary upgrades to the existing Wallerawang substation switchyard.

The estimated capital investment value of the Project is approximately $300 - $400 million.

This Scoping Report provides a preliminary assessment of the environmental and planning considerations to guide the preparation of SEARs for the SSD application. The key issues that have been identified for further detailed assessment during the preparation of the EIS include the potential for:

- Biodiversity – in relation to the potential for the Project to require vegetation removal
- Bushfire – the Project would be located within a bushfire risk zone. As such this is considered a key issue
- Hazard and risk – it is understood that DPIE has adopted the approach that the assessment of BESS Projects are to be supported by a PHA, in line with the Hazardous Industry Planning Advisory Paper No. 6 – Hazard Analysis (DPIE 2011) and the Multilevel Risk Assessment guideline (DPIE, 2011). In response to this current preferred approach, a PHA will be prepared for the EIS, which will include Project specific management measures. As such, for the purpose of this scoping assessment, hazard and risk is considered to be a key issue
- Non-Aboriginal, and Aboriginal heritage – as a result of the construction of underground transmission line infrastructure in proximity to items of heritage significance
- Noise and vibration – as a result of the potential construction and operation impacts of the Project on the existing noise environment
- Traffic and access – in relation to the addition of heavy vehicles and constructions traffic on low traffic, unsealed local roads and the establishment of any new access roads or upgrades to existing roads
- Surface water, flooding and water use – the Project is expected to require the removal or relocation of existing farm dams, earthworks to level parts of the Site, retention or relocation of drainage channels through the Site, an increase in hard stand and installation of stormwater management controls to retain and manage the release of runoff as required. These actions may have the potential to results in erosion and sedimentation impacts and changes to surface water flows in the immediate Project area.
All other relevant matters would be considered at a desktop level.

In preparing the EIS for the Project, the focus would be avoidance and minimisation of impacts on the environment and local communities, where practical and feasible. The assessment would also identify mitigation and management measures to minimise impacts on the environment during construction and operation of the Project. Consultation with stakeholders and the local community would continue throughout the Project assessment, design and construction phases.

It is requested that DPIE confirm the Project as SSD and issue SEARs to enable an EIS to be prepared.

Following the receipt of the SEARs, Neoen will prepare the EIS in line with the requirements of the EP&A Act and EP&A Regulation and lodge the EIS with DPIE.
8.0 References

DPIE 2012, Australian Soil Map Classification (ASC) Soil Type map of NSW

DPE 2018, NSW Transmission Infrastructure Strategy, November 2018

DPIE 2019a, NSW Electricity Strategy, November 2019

DPIE 2019b, State Vegetation Type Map: Western Region v1.0. VIS_ID 4492

NSW Department of Planning & Environment, 2017. Central West and Orana Regional Plan, 2036

NSW Office of Environment and Heritage (2013) Land and Soil Capability mapping of NSW. Bioregional Assessment Source Dataset

NSW Trade and Investment, 2013, NSW Renewable Energy Action Plan
Appendix A

Scoping worksheet
Appendix A Scoping worksheet