

North Sydney Public School

Detailed Site Investigation

Department of Education

Reference: SYDGE290593-AD

NORTH SYDNEY PUBLIC SCHOOL

Detailed Site Investigation

Report reference number: SYDGE290593-AD

1 October 2021

PREPARED FOR

Department of Education Level 8, 259 George Street Sydney NSW 2000

PREPARED BY

Tetra Tech CoffeyLevel 19, Tower B, Citadel Tower,
799 Pacific Highway, Chatswood NSW 2067 Australia
p: +61 2 9406 1000
ABN 55 139 460 521

QUALITY INFORMATION

Revision history

Revision	Description	Date	Author	Reviewer
V1	Version 1	1 October 2021	Jack Young	Matthew Locke CEnvP-SC

Distribution

Report Status	No. of copies	Format	Distributed to	Date
V1	1	PDF	Department of Education	1 October 2021

EXECUTIVE SUMMARY

Tetra Tech Coffey Pty Ltd (Coffey) was engaged by the Department of Education (DoE) to undertake a Detailed Site Investigation (DSI) to support the proposed upgrades to North Sydney Public School, which is located at Bay Road, North Sydney, NSW.

Coffey understands that the proposed development will comprise the demolition of the existing School Hall and the classroom building downslope from the Hall for the construction of a new three level school building. Plans describing the proposed development are presented within Appendix A.

This report collates the findings from a Preliminary Site Investigation and field and laboratory data from intrusive investigations conducted within the development footprint (the 'site'). The following presents a summary of the key findings of this assessment:

- The site has functioned as a school dating back to the early 1930's and the buildings undergoing development were built in the 1930's and 1950's as indicated by aerial images and previous reports.
- Subsurface conditions across the site comprise variable fill material described as sandy Clay with some gravel, Sand and gravelly Sand that graded in colour from brown to grey. Fill materials typically ranged in thickness from 0.4m to 0.6m with thicker fill deposits encountered at HA7 which may be indicative of fill used to reinstate a former air raid shelter. Fill materials were underlain by form to stiff residual clay.
- Visual signs of contamination were typically not observed in soils encountered during this investigation.
 Small fragments of ash were noted in HA2 and HA4, and other anthropogenic materials including asphalt and brick fragments were noted.
- Analysis of samples of fill and natural soil collected from the site reported concentrations of potential contaminants below the adopted health and ecological assessment criteria, with the exception of arsenic (HA7_0.9-1.0) and Benzo(a)pyrene (HA2_0.1-0.2, HA3_0.1-0.2, HA4_0.1-0.2, HA5_0.1-0.2 and HA8_0.2-0.3). However, when considering either the distribution of these potential contaminants across the site and/or the proposed development, no complete pollutant linkages were identified.
- Based on the findings of the DSI, it is assessed that a Remedial Action Plan (RAP) and Long term
 Environmental Management Plan (LEMP) are not required to support the State Significant Development
 Application for the proposed development.

Based on the findings of the desk-based assessment and investigation completed within the site, Coffey conclude that the development site defined within Figure 3 can be made suitable for the proposed development described by the drawings presented within Appendix A, in accordance with SEPP55 – Remediation of Land, subject to the implementation of the following works:

- Hazardous Building Materials Survey completed prior to the demolition of each structure on site. The
 results of the Hazardous Materials Survey shall be used to guide the removal of these materials during
 the demolition of each structure. Once the results of the Hazardous Materials Survey are available, these
 findings should be reviewed by an environmental consultant and used to develop appropriate controls
 within the Construction Environmental Management Plan.
- Construction Environmental Management Plan (CEMP) developed to inform contractors undertaking
 the proposed development of the known and reasonably likely environmental constraints, including
 potentially contaminated materials that may be present within the site. It is recommended that the CEMP
 include:
 - Procedures to remove existing structures and subsurface infrastructure. This should include controls
 to minimise the potential for cross contamination and expose occupants of adjoining school land.
 - Procedures to excavate and classify fill and shallow natural soils as part of site preparation works.
 - Procedures to manage and classify natural soil and bedrock excavated from the proposed basement.
 - Procedures to assess fill materials and shallow natural soils that remain in-situ to determine whether such materials are suitable for future use of the site.
 - An unexpected finds management protocol. The unexpected finds protocol should include procedures and protocols for managing risks and protecting human health and environment should unexpected finds of contamination be identified at the site.

- Site access controls to prevent unauthorised access during construction.
- Site Preparation Works Investigation of soil conditions beneath existing buildings was not possible during this investigation. Following the site demolition works, Coffey recommends that a competent environmental consultant is engaged to assess whether fill materials below existing buildings that will remain in-situ are suitable for their intended use. This would comprise visual inspection and intrusive investigations. Where materials are identified that are unsuitable, these materials shall be excavated and stockpiled for waste classification and disposal off site to a licensed landfill. It is recommended that the outcome of these works is collated within a Completion Report.

Following implementation of the above works, including the appropriate management of any unexpected finds of contamination, it is assessed that the site would be suitable for the proposed development.

This report should be read in conjunction with the attached *Important Information about your Tetra Tech Coffey Environmental Report*.

ABBREVIATIONS

DoE	Department of Education	
SEARS	Planning Secretary's Environmental Assessment Requirements	
SSDA	State Significant Development Application	
SEPP55	State Environment Planning Policy No. 55 – Remediation of Land	
DSI	Detailed Site Investigation	
PSI	Preliminary Site Investigation	
RAP	Remedial Action Plan	
LEMP	Long-term Environmental Management Plan	
COPC	Contaminant of Potential Concern	
NSW EPA	Environment Protection Authority of New South Wales	
mAHD	Metres above Australian Heigh Datum	
COLA	Covered Outdoor Learning Area	
ACM	Asbestos Containing Material	
PAH	Polycyclic Aromatic Hydrocarbons	
TRH	Total Recoverable Hydrocarbons	
AEC	Areas of Environmental Concern	
CSM	Conceptual Site Model	
SOP	Standard Operating Procedure	
PID	Photoionisation Detector	
BTEX	Benzene, Toluene, Ethybenzene and Xylene	
ОСР	Organochlorine Pesticides	
ОРР	Organophosphate Pesticides	
РСВ	Polychlorinated Biphenyls	
QA/QC	Quality Assurance/Quality Control	
ASC NEPM	National Environment Protection (Assessment of Site Contamination) Measure 1999	
HIL	Health Investigation Level	
HSL	Health Screening Level	
EIL	Ecological Investigation Level	
ESL	Ecological Screening Level	
95% UCL	95 th percentile upper confidence level of the mean concentration	
LOR	Limit of Reporting	
TEF	Toxicity Equivalence Factor	
TEQ	Toxicity Equivalence Quotient	
SQG	Soil Quality Guideline	

CONTENTS

1.	INTF	RODUCTION	1
	1.1	General	1
	1.2	Development Description	1
	1.3	Objectives	2
	1.4	Scope of Works	2
2.	SITE	IDENTIFICATION	3
	2.1	Site Location	3
	2.2	Site Description	3
	2.3	Surrounding Land Uses	4
	2.4	Environmental Site Setting	4
	2.5	Summary of Site History	5
	2.6	Previous Reports	5
3.	PRE	LIMINARY CONCEPTUAL SITE MODEL	5
	3.1	Summary	5
4.	INVE	ESTIGATION SCOPE AND METHOD	6
	4.1	Investigation Scope and Rationale	6
	4.2	Soil Investigation and Sampling Methodology	6
	4.3	Laboratory Analysis	7
	4.4	Quality Assurance and Quality Control	7
5.	ASS	ESSMENT CRITERIA	7
	5.1	Health Assessment Criteria	7
	5.2	Ecological Assessment Criteria	8
	5.3	Management Limits	9
	5.4	Aesthetic Considerations	9
6.	INVE	ESTIGATION FINDINGS	9
	6.1	Ground Conditions Encountered	9
	6.2	Visual and Olfactory Indications of Potential Contamination	9
	6.3	Discussion of Analytical Results & Potential Risks	10
		6.3.1 General	10
		6.3.2 Human Health	10
		6.3.3 Ecological Risks	11
		6.3.4 Management Limits	11
7.	CON	ICLUSIONS AND RECOMMENDATIONS	12

APPENDICES

APPENDIX A: DEVELOPMENT DRAWINGS

APPENDIX B: PRELIMINARY CONCEPTUAL SITE MODEL

APPENDIX C: BORE LOGS

APPENDIX D: LABORATORY ANALYTICAL CERTIFICATES AND CHAIN OF CUSTODY DOCUMENTS

APPENDIX E: LABORATORY DATA: SUMMARY TABLES

APPENDIX F: DATA QUALITY ASSESSMENT

APPENDIX G: STATISTICAL ANALYSIS OUTPUT

1. INTRODUCTION

1.1 GENERAL

The NSW Department of Education (DoE) propose to submit a State Significant Development Application (SSDA) to upgrade facilities within the North Sydney Public School, which is located on 182 Pacific Highway, North Sydney NSW 2060. The location and boundary of the North Sydney Public School is provided in Figures 1 and 2, respectively. The footprint of the proposed development (i.e. the 'site') is provided in Figure 3.

Item 19 of the Planning Secretary's Environmental Assessment Requirements (SEARS) for SSD-11869481 dated 24 December 2020 states:

- Assess and quantify any soil and groundwater contamination and demonstrate that the site is suitable for the proposed use in accordance with SEPP55. This must include the following prepared by certified consultants recognised by the NSW Environment Protection Authority:
 - o PSI
 - o DSI, where recommended in the PSI
 - Remediation Action Plan (RAP) where remediation is required. This must specify the proposed remediation strategy.
 - Preliminary Long-Term Environmental Management Plan (LEMP) where contaminant is proposed onsite.

Coffey was previously engaged by the DoE to prepare a Preliminary Site Investigation (PSI) for the site. The findings of the PSI are presented in the following report:

 Coffey (Aug 2021); Preliminary Site Investigation: North Sydney Public School (Ref: SYDGE290593-R01; dated 16 August 2021)

The PSI identified a number of potential contamination sources that were relevant to the site and made recommendations to conduct further investigations to characterise ground contamination conditions. Based on this recommendation, the DoE subsequently engaged Tetra Tech Coffey Pty Ltd (Coffey) to prepare a DSI to address part of Item 19 of the SEARS and determine whether a RAP and LEMP are required to support the SSDA.

This DSI report has been prepared in accordance with the scope of work outlined within our fee proposal dated 23 June 2021 (Ref: SYDGE290593-AA).

Coffey has previously conducted geotechnical and contamination investigations within the site. Records from the following reports as a result of these previous investigations have been used to inform this report:

- Coffey (Nov 2019); North Sydney Public School Site Investigation: Geotechnical and Contamination Desktop Study (Ref: 754-SYDGE232786AB; dated 22 November 2019)
- Coffey (Nov 2019); Limited Stage 2 Environmental Assessment; North Sydney Public School (Ref: SYDGE232786-R02; Final)

1.2 DEVELOPMENT DESCRIPTION

Coffey understands this SSDA seeks consent for alterations and additions to the facilities within part of the existing North Sydney Public School. Drawings describing the proposed development are presented in Appendix A. In summary the development entails the following:

- Demolition of the existing hall (Building B), Haven Building (Building C) and 6 temporary demountable buildings;
- Construction of a three-storey building comprising:

Tetra Tech Coffey
Report reference number: SYDGE290593-AD

- staff administration rooms;
- o 16 home bases
- o a new library;
- o a hall;
- o out of school hours care facilities;
- o covered outdoor learning area;
- o bicycle parking and end of trip facilities for staff; and
- o services, amenities and access.
- New entry gate and forecourt from Bay Road;
- Internal refurbishment of building G ground floor from the existing library to 3 home bases;
- Capacity for an increase in student numbers from 869 to 1,012; and
- · Associated tree removal, excavation and landscaping.

The proposal maintains:

- The gates and fence of former Crows Nest House including the entrance from Pacific Highway and Bay Road;
- · Existing gate along McHatton Street;
- The outdoor play area to the east of Building A;
- · Existing covered outdoor learning area adjacent to Building A;
- The basketball courts and staff carpark in the western portion of the site;
- · The significant tree planting on all school boundaries;
- Buildings A, D and F noting minor internal refurbishments are being undertaken outside of the SSDA scope of work (exempt development) to improve student amenities and canteen; and
- Building G noting ground floor internal refurbishment is proposed in the SSDA.

1.3 OBJECTIVES

Coffey understands that the objective of the DSI was to document the findings of investigations completed within the site that refine the assessment of risk associated with the potential sources of contamination identified in the PSI.

The data collated from the DSI shall be used to formulate an opinion on whether the site is, or can be made suitable for the proposed development as required by State Environmental Planning Policy No. 55 – Remediation of Land (SEPP55). The findings of the DSI shall be used to formulate recommendations on whether a RAP and LEMP are required for the development.

1.4 SCOPE OF WORKS

To address the objectives outlined above, Coffey completed the following scope of works:

- Summarise the findings of the PSI and previous investigations that are relevant to the site, including the current and historic uses of the site and adjoining land.
- Complete a program of investigation within the development area involving drilling of nine boreholes by hand auger.
- Submit soil samples collected from the investigation locations and schedule for laboratory analysis for a range of contaminants of potential concern (COPC).
- Collate field and laboratory data from the investigation and prepare a DSI report in accordance with guidelines published/endorsed by the NSW Environment Protection Authority (NSW EPA).

Tetra Tech Coffey 2

2. SITE IDENTIFICATION

2.1 SITE LOCATION

The location and boundary of the of the site are shown on Figures 1 and 2. Table 2.1 summarises the details identifying the site.

Table 2-1: Site Information

Item	Description		
Address	North Sydney Public School, 182 Pacific Highway, North Sydney 2060		
Total School Area	21,000 m ²		
Site Area	Approx. 3,200m² (Proposed Development footprint as per Figure 3)		
Title identification	Lot 1 DP183591 & Lot 1 DP184559		
Current land use	Primary School		
Current land zone	SP2 Infrastructure (Educational Establishment)		
Local Government Authority	North Sydney Council		

2.2 SITE DESCRIPTION

The existing North Sydney Public School which includes an at-grade parking area, basketball courts, school buildings and demountables. It is bounded by Pacific Highway to the east, McHatton Street to the north, a pedestrian and cycle path to the west, and Bay Road to the south.

The school slopes to the south with a series of benches, reducing from an elevation of approximately 89mAHD on the McHatton Street boundary to 83mAHD at the Bay Road boundary. A concrete/sandstone block retaining wall defines the southern site boundary with an elevation difference of approximately 1m to Bay Road.

Visits by Coffey on 21 June 2021 and 28 August 2021 noted that the site included the Hall Building (Building B), Haven Building (Building C) and two demountable classrooms. Land surrounding these structures comprises a mixture of grassed and synthetic grass surfaced play areas, concrete paths and an asphalt-surfaced covered outdoor learning area (COLA). Areas of established landscaping, including several mature trees are located within the site.

The Haven Building (Building C) comprises a single storey structure constructed from brick and fibre cement cladding. Coffey (Nov, 2019a) noted that given the building materials and suspected age of the structure that potential asbestos containing materials (ACM) and lead based paint may be present. However, during the inspection the building materials appeared to be in good condition and did not show signs of excessive weathering.

No rock outcropping was observed nor any major cracking of existing structures. Concrete paths appeared in good condition. The asphalt shade cloth area immediately west of the School Hall showed signs of potential settlement, with cracking up to 10 mm wide, up to 2 m long and depressions up to 20 mm.

Surface water was noted as flowing south into drains or a gutter above the Bay Road retaining wall.

Evidence of contamination including stained ground surfaces, odorous soil, or suspected ACM impacts to soil were not observed during the site walkover. The chemical storage areas within the school was not accessible during the walkover.

Tetra Tech Coffey
Report reference number: SYDGE290593-AD

2.3 SURROUNDING LAND USES

The land uses surrounding the site are summarised in Table 2.2:

Table 2-2: Summary of land uses surrounding the site

Direction	Description of Land Uses		
North	Low-density residential housing, Cammeray gal High School, commercial/industrial properties (approximately 450 m north).		
East	Pacific Highway, commercial/industrial, Warringah Freeway (approximately 560 m east).		
South	Low-density residential housing, commercial industrial properties, Berry's Bay (approximately 750 m south).		
West	Low-density residential housing, Balls Head Bay (approximately 950 m south-west).		

2.4 ENVIRONMENTAL SITE SETTING

The environmental setting of the site is summarised in Table 2.3:

Table 2-3: Summary of the environmental setting

Regional Geology	Reference to the NSW Seamless Geology (March, 2020) database indicates the site is underlain by Ashfield Shale of the Wianamatta Group, which is characterised by dark-grey to black claystone-siltstone and fine sandstone-siltstone laminite. Hawkesbury Sandstone (which underlies Ashfield Shale), is a medium to coarse-grained quartz sandstone with very minor shale and laminite lenses outcropping at lower elevation approximately 160 m south-west of the site.
Soil Landscape	Reference to the Soil Landscapes of Sydney 1:100,00 Sheet 9030 Map and report1 indicates the soil landscape of the site is on the boundary of the 'Blacktown Residual Soil' and 'Gymea Erosional Soil' units. The Blacktown soils are generally brown-black clay and loam residual soils derived from the underlying Wianamatta Group. They typically range from slightly acid (pH 6.5) to strongly acid (pH 4.0), increasing acidity with depth. Blacktown residual soils are slightly to moderately reactive and moderately to highly plastic. The potential for erosion hazard is considered low to high. Gymea soils are generally yellow-brown clayey sand and sandy clay loams. Derived from the erosion of the Hawkesbury Sandstone, Gymea soil landscapes display undulating to rolling rises and low hills, with localised rock outcropping and benches. The soils typically range from slightly acid (pH 6.5) to strongly acid (4.5 pH). Surface movement potential is considered stable to moderately reactive while the potential for erosion hazard is high to extreme.
Hydrogeology	Groundwater is expected to occur as perched lenses at the soil/rock interface and at depth within the shale bedrock. Coffey conducted a geotechnical investigation at the property located at 225-235 Pacific Highway, Waverton in 2014, which recorded standing groundwater elevations between 68.5m to 73.2m AHD that coincided with sandstone and minor siltstone interbeds. This property is located approximately 80m southeast of the site. Based on the regional setting of the site, groundwater is expected to flow in a southerly direction towards Port Jackson. Information gathered from Enviroportal on 26th July 2021 resource indicates there are no registered groundwater bores within 500m of site.
Hydrology	There are no surface water bodies within the site. The nearest surface water body is Berry's Bay and Lavender Bay, which is located between 750m and 1150m south of the site. Both bays form part of Port Jackson.

¹ Chapman GA, Murphy CL, Tille PJ, Atkinson G and Morse RJ, (2009) Ed. 4, Soil Landscapes of the Sydney 1:100,000 Sheet map, Department of Environment, Climate Change and Water, Sydney.

SUMMARY OF SITE HISTORY 2.5

The PSI (Coffey, Aug 2021) reviewed a range of information sources to describe the historical uses of the site and surrounding land. These records indicate that North Sydney Public School was established on the site in c.1931 and has since remained in use as a school. A suspected air-raid shelter was noted adjacent to the western school boundary, and southern site boundary in the 1943 aerial photograph, and was subsequently backfilled by c.1955.

Post 1943 the site and surrounding areas remain relatively unchanged over the following decades, with the exception of additional school structures on-site.

2.6 PREVIOUS REPORTS

Coffey reviewed the following reports that had been prepared previously for the North Sydney Public School:

- Coffey (Nov 2019); North Sydney Public School Site Investigation: Geotechnical and Contamination Desktop Study (Ref: 754-SYDGE232786AB; dated 22 November 2019)
- Coffey (Nov 2019); Limited Stage 2 Environmental Assessment; North Sydney Public School (Ref: SYDGE232786-R02; Final)

The above reports were prepared at a time where no concept plan have been developed for the proposed school upgrade, and hence considered the entire school boundary. The desktop study identified the following potential sources of contamination:

- The presence of uncontrolled fill of unknown quality or origin.
- Weathering of hazardous building materials

The desktop study recommended that further investigations are completed to refine the assessment of risk associated with these potential sources of contamination. A limited programme of investigation was completed which identified the following:

- Ground conditions encountered typically comprised a thin layer of fill underlain by residual soil described as firm to stiff, medium to high plasticity, grey-brown Clay. The residual soil unit was underlain by Shale bedrock.
- Suspected ACM, stained and malodourous soils were not observed during this investigation.
- Laboratory analysis of fill samples collected during the investigation reported hydrocarbon compounds (i.e., Polycyclic Aromatic Hydrocarbons (PAH) and Total Recoverable Hydrocarbons (TRH)). Concentrations of carcinogenic PAH exceeded the health-based assessment criteria in some samples. The source of these hydrocarbons was considered to be attributable to asphalt inclusions within fill.
- Further investigation was recommended to characterise the quality of fill material within the development area to confirm whether the site is suitable for use as a school, as per the requirements of SEPP 55.

Given the proximity of BH04 and BH05 to the site, data from these boreholes were considered within this assessment.

3. PRELIMINARY CONCEPTUAL SITE MODEL

3.1 **SUMMARY**

The scope of works for this investigation was prepared to investigation the Areas of Environmental Concern (AEC) and COPC as outlined in the Preliminary Conceptual Site Model as presented in the PSI report (Tetra Tech Coffey, 2021). The AEC were:

- Possible fill used in areas where retaining walls and former air-raid bunkers were present.
- Weathering of potential ACM and lead based paint into the topsoil around the footprints of the buildings.

Tetra Tech Coffey Report reference number: SYDGE290593-AD

The preliminary Conceptual Site Model (CSM) developed as part of the PSI (Coffey, Aug 2021) is presented in Appendix B.

4. INVESTIGATION SCOPE AND METHOD

4.1 INVESTIGATION SCOPE AND RATIONALE

Given the AEC identified, investigations were completed to characterise fill across the site, with sampling locations being biased towards areas of exposed soil adjacent to existing buildings to check for hazardous building debris. As uncertainty remains around the exact location of the former air raid shelter, sampling locations along the southern site boundary were positioned in a relatively systematic sampling pattern to check for deeper areas of fill. Sampling was not possible beneath existing structures.

The investigation established nine (9) sampling points across the site. This, combined with the two sampling points (BH04 and BH05) immediately adjacent to the site, exceeds the minimum sampling density recommended for a site covering an area of 3,200m² to detect a contamination hotspot of s certain size with 95% confidence (NSW EPA, 1995).

Boreholes were to be advanced using a hand auger to characterise the thickness and nature of fill materials present across the site. Representative soil samples were recovered from fill material and natural ground (where encountered) for close inspection, field screening and subsequently scheduled for chemical analysis.

4.2 SOIL INVESTIGATION AND SAMPLING METHODOLOGY

A total of nine boreholes (HA1 – HA9) were advanced using a hand auger to approximately 1.0 m depth or refusal, which ever occurred first. The subsurface profile was logged and at least two representative samples per borehole were collected. Soil logging was undertaken by suitably qualified and experienced Coffey environmental scientist in accordance with Coffey's Standard Operating Practices (SOP), which is consistent with AS 1726-2017, Geotechnical Site Investigations and AS 4482.1-2005 Guide to the investigation and sampling of sites with potentially contaminated soil. The ground conditions encountered and logged are presented within logs included in Appendix C.

Soil samples were generally collected by hand directly from the auger bit using a clean pair of nitrile gloves. Samples were collected from the near-surface material 0.1-0.2 m, from the upper natural soil horizon or where suspected contamination was noted. Soil samples collected for laboratory analysis were placed as quickly as practicable into glass sample jars with Teflon lined lids. Sample jars were filled to the top to minimise headspace. Visual/olfactory indications of potential contamination (if present), and field screening data were recorded (refer Appendix C). Duplicate samples were collected by dividing soil from the auger bit and placing into two laboratory jars. These soils were not homogenised prior to splitting to avoid the potential loss of volatile compounds.

Soil materials encountered at each sampling location were observed closely by the Coffey environmental scientist competent in the visual identification of materials suspected to contain asbestos. Discrete samples of fill were collected and placed in clean, zip lock bags supplied by the laboratory for analysis to check for asbestos.

Soil headspace measurements were screened by placing the soil in a sealed zip lock bag and a calibrated photo-ionisation detector (PID) pierced the bag to assess potential presence of volatile organic compounds such as petroleum hydrocarbons. Soil headspace measurements and soil logs are provided in Appendix C.

Soil samples collected during fieldworks were immediately placed into ice-filled eskies and transported to the laboratories with chain of custody documentation.

The auger attachments were decontaminated using a solution of potable water and decon-90.

Tetra Tech Coffey
Report reference number: SYDGE290593-AD

4.3 LABORATORY ANALYSIS

Soil samples were analysed for a range of contaminants of potential concern identified by the PSI (Coffey, Aug 2021) including:

- Total Recoverable Hydrocarbons (TRH)
- Benzene, Toluene, Ethylbenzene and Xylenes (BTEX)
- Polyaromatic Hydrocarbons (PAH)
- Heavy Metals (As, Cd, Cr (total), Cu, Hg, Ni, Pb and Zn)
- Organochlorine Pesticides (OCP)
- Organophosphorus Pesticides (OPP)
- Polychlorinated Biphenyl (PCB)
- Asbestos

In addition to the primary samples collected for the assessment, quality control / quality assurance (QA/QC) samples were collected and analysed as follows:

- One blind intra-laboratory duplicate soil samples (DUP) and one inter-laboratory triplicate soil sample (TRIP) were collected from primary sample location HA4 (0.1-0.2) to assess replicability of soil analytical results.
- One equipment rinsate samples (Rinsate) collected by pouring laboratory-prepared deionised water over the auger bit following decontamination to assess the potential for cross-contamination between sampling locations.

Table 3 presents a comparison of the primary and duplicate/triplicate sample results (refer Appendix E). Analytical results for the rinsate sample are presented within the laboratory analytical certificates presented in Appendix D.

The primary and secondary laboratories for soil were Eurofins and ALS, respectively. Both Eurofins and ALS hold NATA accredited methods for the analysis completed. The laboratory certificates and associated chain of custody documents are provided in Appendix D.

4.4 QUALITY ASSURANCE AND QUALITY CONTROL

A data validation assessment was undertaken to assess whether the field and laboratory data generated met the accuracy, precision, comparability, representativeness, and completeness and whether the data is suitable assessing the site contamination conditions. A standalone Data Validation Assessment is presented within Appendix F. The results of the Data Validation Assessment conclude that the data is directly usable for the purposes of this assessment.

5. ASSESSMENT CRITERIA

HEALTH ASSESSMENT CRITERIA 5 1

In accordance with industry guidance and legislative requirements, environmental assessment criteria for this assessment have been derived from the following guidelines:

- NEPC (2013); National Environmental Protection (Assessment of Site Contamination) Measure 1999 (the 'ASC NEPM').
- Friebel, Nadebaum (2011); Health Screening Levels for Petroleum Hydrocarbons in Soil and Groundwater, CRC Care Technical Report No. 10

7 Tetra Tech Coffey Report reference number: SYDGE290593-AD

Health assessment criteria have been adopted for this assessment based on the proposed continued use of the site as a primary school. As described in the ASC NEPM (NEPC, 2013), Coffey adopted the Health Investigation Levels for a 'residential land-use setting with accessible garden/soil' (HIL A).

Health assessment criteria are outlined in Table 5.1, below, and presented in Table 1 in Appendix E.

Table 5.1: Summary of health assessment criteria applicable for the assessment

Criteria	Source	Criteria relevant to	Applicable pathway
Soil HILs	ASC NEPM 2013	Residential land use (HIL A) All soil depths and types	Direct contact (dermal contact and incidental ingestion and inhalation of soil/dust particles)
Soil HSLs (direct contact)	CRC CARE 2011	Low density Residential (HSL-A) Intrusive maintenance worker (shallow trench) (HSL-D) Clay soil type and depth of 0m to <2 m	Direct contact (dermal contact and incidental ingestion and inhalation of soil/dust particles)
Soil HSLs (vapour intrusion)	ASC NEPM 2013	Vapour intrusion / indoor air inhalation within a Residential land use (HSL-A) Clay soil type, 0m to <2m	Inhalation of soil vapours in indoor setting

For asbestos in soil, a screening level of 0.1g/kg (0.01 % w/w equivalent) was adopted based on the laboratory detection limit for analysis of asbestos in non-homogenous samples using the methodology outlined in *Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples* (AS4964-2004). Furthermore, an assessment criterion of 'no respirable fibres' was adopted; a detection of respirable fibres would indicate an exceedance of the assessment criteria.

5.2 ECOLOGICAL ASSESSMENT CRITERIA

The ASC NEPM (2013) specifies Ecological Investigation Levels (EIL) and Ecological Screening Levels (ESL) for selected metals and organic compounds (naphthalene, DDT, TRH and BTEX), some of which are calculated based on site specific soil physiochemical properties, as shown in Table 4.2, below. Sample BH04 (0.5-0.6m), positioned within the western extent of the site, was analysed for physiochemical parameters (Coffey, Nov 2019), with the average result used for deriving site-specific EIL/ESL. These samples were selected to represent the upper 2m across the site given they are reasonably spread across the site.

Table 5.2, below, provides a summary of the physiochemical parameters used to do determine site-specific EIL/ESL for the site.

Table 5.1 – Summary of physiochemical parameters measured from BH04 (0.5-0.6m) used to determine site-specific EIL/ESL

Physiochemical Parameter	Result		
% Moisture	9.2%		
% Clay	6.3%		
Electrical conductivity	250μS/cm		
pH*	9.2		
% Iron	3.3%		
Cation exchange capacity (CEC)	47meq/100g		
Total Organic Carbon (TOC)	2.6%		

To assess the impact on site vegetation from contamination within the upper 2.0m of the subsurface, contaminant concentrations were assessed against the EIL/ESL derived using the parameters above, and applicable to the following:

'Urban residential / public open space' (aged contaminants) from the ASC NEPM (NEPC, 2013).

The EIL/ESL adopted for this assessment are presented in Table 2 in Appendix E.

5.3 MANAGEMENT LIMITS

In accordance with Section 2.9 of the ASC NEPM (NEPC, 2013), consideration of management limits applicable to a residential, parkland and public open space land use setting has been undertaken to assess whether the reported soil conditions have the potential to pose a potential risk to buried infrastructure, or the formation of NAPL. The management limits were selected considering a coarse soil.

The Management Limits adopted for this assessment are presented in Table 3 in Appendix E.

5.4 **AESTHETIC CONSIDERATIONS**

The following characteristics are considered indicative of soil materials that would have the potential to present unacceptable aesthetic impacts:

- Surface soil materials that exhibit heavy staining, or emit hydrocarbon odours that are perceptible within 2m of the soil investigation area.
- Anthropogenic wastes in near-surface soil material onsite.
- Visible hydrocarbon sheens on ponded surface water.

INVESTIGATION FINDINGS 6.

6 1 GROUND CONDITIONS ENCOUNTERED

Ground conditions encountered during the investigation comprised a variable layer of fill material over a residual soil. Table 6.1 presents a summary of the ground conditions encountered. Detailed soil descriptions recorded at each investigation location is presented in the bore logs in Appendix C.

Table 5.1: Summary of ground conditions encountered within the site

Unit	Thickness Range (m)	Description
Fill	0.4 (HA3) – >1.0m (HA7)	Variable deposits described as sandy Clay with some gravel, Sand and gravelly Sand that graded in colour from brown to grey. The sand graded from fine to coarse grained material. Gravel was fine to medium grained, sub-angular to angular materials. The clay graded from low to high plasticity material. Inclusions of ash were noted in fill materials encountered in HA2 and HA4, and asphalt and bricks noted in HA6 and HA8.
Residual Soil	Not established	Residual soils encountered were described as low plasticity, firm to stiff, pale grey to orange mottled Clay.

Groundwater ingress was not encountered in any of the borehole locations.

VISUAL AND OLFACTORY INDICATIONS OF POTENTIAL 62 CONTAMINATION

Soil excavated was assessed for visual and olfactory indications of contamination, these are summarised below:

- Small fragments of ash approximately 3 to 5 mm in size were identified in 3 boreholes (HA2 and HA4).
- Anthropogenic materials (including bricks) were identified in boreholes (HA6 and HA8) and asphalt pieces were identified in borehole (HA6).

Report reference number: SYDGE290593-AD

Date: 1 October 2021

Tetra Tech Coffey

- PID measurements were low ranging from 0.4 to 1.9 parts per million (ppm), indicating a low likelihood for the presence of volatile hydrocarbons within the soil in the targeted area.
- No suspected ACM was observed in the soils during excavation.
- No other olfactory or visible indications of contamination were observed in the soils during excavation.

In summary, Coffey considers that soil conditions encountered during the investigation are unlikely to pose adverse aesthetic impacts when considering the criteria outlined in Section 5.4.

6.3 DISCUSSION OF ANALYTICAL RESULTS & POTENTIAL RISKS

6.3.1 General

The following tables provided in Appendix E present a comparison of the analytical results and the adopted assessment criteria:

- Table 1: Soil Analytical Data Compared with Health Investigation Levels/Health Screening Levels
- Table 2: Soil Analytical Data Compared with Ecological Investigation Levels/Ecological Screening Levels
- Table 3: Table 4: Soil Analytical Guidelines Compared with Management Limits

The laboratory analytical certificates and associated chain of custody records are presented in Appendix D.

The following sections present a discussion of analytical results and their relevance to human and ecological receptors.

6.3.2 Human Health

Samples collected from the site reported concentrations of COPC below the respective health assessment criteria summarised in Table 5.1, with the exception of:

- Sample HA7_0.9-1.0, which reported a concentration of 140mg/kg arsenic that exceeds the HIL-A criteria of 100mg/kg.
- Sample HA2_0.1-0.2 reported the Benzo(a)pyrene TEQ value of <4mg/kg, which is greater than the HIL of 3mg/kg.

To assess the significance of elevated arsenic reported in sample of fill collected from HA7_at 0.9-1.0mbgs, Coffey conducted further statistical analysis using the ProUCL software (v.5.1) on the reported concentrations of arsenic in fill material within the site. Table 6.2 presents a summary of the dataset considered and output of this statistical analysis, with detailed output presented in Appendix G.

Table 6.2: Statistical analysis of arsenic concentrations reported in fill samples

СОРС	HIL	N	Min Conc	Max Conc	Mean Conc	SD	95% UCL	Distribution
Arsenic	100	14	2.2	140	17.3	35.9	59.1	Non-parametric

Notes:

- 1. All concentrations in mg/kg
- 2. Data set comprises all samples collected from the fill soil unit, excluding the duplicate and triplicate samples collected from HA4_0.1-0.2.

From the summary presented in Table 6.2, the 95% upper confidence level of the mean concentration (95% UCL) of arsenic in fill is less the HIL. The standard deviation is less than 50% of the HIL, and the maximum concentration of arsenic is less than 250% of the HIL. On this basis, it is assessed that the arsenic in fill recorded within the investigation area does not pose unacceptable health risks to school occupants.

Due to 'matrix interference' in the analysis of sample HA2 collected from fill at a depth of 0.1-0.2mbgs, the limit of reporting (LOR) was raised which in turn has resulted in a LOR for Benzo(a)pyrene TEQ value above the HIL. Coffey has reviewed the analytical data for this sample and using the Toxicity Equivalence Factor (TEF) for PAH compounds presented within the ASC NEPM calculated an upper bound Benzo(a)pyrene TEQ

Tetra Tech Coffey Report reference number: SYDGE290593-AD

value of 3.3mg/kg. This value is considered conservative given the TEQ value adopted the full LOR value where a particular PAH compound was not detected. Given this and that the Benzo(a)pyrene TEQ value only slightly exceeds the HIL of 3mg/kg, Coffey considers that trace level of carcinogenic PAH compounds recorded in sample HA2 0.1-0.2 does not pose unacceptable health risks to school occupants.

6.3.3 Ecological Risks

Samples collected from the site reported concentrations of COPC below the respective ecological assessment criteria, with the exception of:

- Sample HA7_0.9-1.0 reported an arsenic concentration of 140mg/kg which exceeds the EIL criteria of 100mg/kg.
- Samples HA2_0.1-0.2, HA3_0.1-0.2, HA4_0.1-0.2, HA5_0.1-0.2 and HA8_0.2-0.3 reported concentrations of Benzo(a)pyrene that exceeded the ESL of 0.7kg/kg.

The likely source of Benzo(a)pyrene in shallow fill is ash, which was observed in several of these locations. Coffey note that the ESL for benzo(a)pyrene of 0.7mg/kg prescribed in the amended ASC NEPM (NEPC, 2013) was based on the *low reliability* 1999 Canadian Soil Quality Guideline (SQG) value of 0.7mg/kg for residential uses, and hence is considered conservative. This value was determined following a review of the Canadian Soil Quality Guidelines, which identified that there was very limited soil toxicity data available for benzo(a)pyrene and insufficient data to enable calculation of a sufficiently robust ESL according to the Australian methodology described in the ASC NEPM (NEPC, 2013). It is noted that the Canadian SQG value was subsequently revised in 2010 to 20mg/kg (i.e., for agriculture, residential/parkland land uses) to account for new toxicity data which enabled the derivation of more robust SQGs based on the species sensitivity distribution approach. It is noted that the maximum reported concentration of benzo(a)pyrene is 1.9mg/kg (i.e. an order of magnitude lower than this revised value of 20mg/kg). For this reason, it is assessed that Benzo(a)pyrene is unlikely to pose a significant risk to ecological receptors that interact with the shallow fill presently on site.

Whilst arsenic reported within sample HA7_0.9-1.0 has the potential to pose risks to ecology, it is noted that HA7 was positioned within the centre of the proposed development in an area that will be occupied by a new building, which will prevent ecology interacting with this soil. For this reason, it is assessed that arsenic in soil at HA7 does not pose unacceptable risks to ecology.

Whilst the assessment of groundwater quality was beyond the scope of this investigation, it is assessed that the investigation has not identified significant contamination within the soil that is expected to pose unacceptable risks to groundwater beneath the site, particularly given the low permeable residual clay which would act as an aquitard, separating soil leachate from groundwater within the shale bedrock at depth. Similarly, runoff from the site is unlikely to pose unacceptable risks to aquatic ecosystems given the nearest surface water body is Berry's Bay, located approximately 750m south of the site.

6.3.4 Management Limits

Samples collected from the site did not report concentrations of TRH that exceeded the adopted Management Limits for this site. This indicates there is a negligible risk that TRH detected in soil within the site would result in the formation of Non-Aqueous Phase Liquids, pose fire or explosive hazards or adverse effects on buried infrastructure.

Tetra Tech Coffey
Report reference number: SYDGE290593-AD

7. CONCLUSIONS AND RECOMMENDATIONS

The NSW DoE propose to implement works to upgrade facilities within the North Sydney Public School. These works will result in the demolition of Buildings B and C and two demountable classrooms located within the central, southern portion of the North Sydney Public School. Coffey has completed a programme of investigation to characterise shallow soil within the development footprint. Based on a review of available data, observations made during fieldwork and an assessment of laboratory analytical data in consideration of the proposed development, Coffey concludes that:

- The site has functioned as a school dating back to the early 1930's and the buildings undergoing development were built in the 1930's and 1950's as indicated by aerial images and previous reports.
- Subsurface conditions across the site comprised of variable fill material described as sandy Clay with some gravel, Sand and gravelly Sand that graded in colour from brown to grey. Fill materials typically ranged in thickness from 0.4m to 0.6m with thicker fill deposits encountered at HA7 which may be indicative of fill used to reinstate a former air raid shelter. Fill materials were underlain by form to stiff residual clay.
- Visual signs of contamination were typically not observed in soils encountered during this investigation.
 Small fragments of ash were noted in HA2 and HA4, and other anthropogenic materials including asphalt and brick fragments were observed.
- Analysis of samples of fill and natural soil collected from the site reported concentrations of COPC below
 the adopted health and ecological assessment criteria, with the exception of arsenic (HA7_0.9-1.0) and
 Benzo(a)pyrene (HA2_0.1-0.2, HA3_0.1-0.2, HA4_0.1-0.2, HA5_0.1-0.2 and HA8_0.2-0.3). However,
 when considering either the distribution of these COPC across the site and/or the proposed development,
 no complete pollutant linkages were identified.
- Based on the findings of the DSI, it is assessed that an RAP and LEMP are not required to support the State Significant Development Application for the proposed development.

Based on the findings of the desk-based assessment and investigation completed within the site Coffey conclude that the site defined within Figure 3 can be made suitable for the proposed development described by the drawings presented within Appendix A, in accordance with SEPP55 – Remediation of Land, subject to the implementation of the following works:

- Hazardous Building Materials Survey completed prior to the demolition of each structure on site. The
 results of the Hazardous Materials Survey shall be used to guide the removal of these materials during
 the demolition of each structure. Once the results of the Hazardous Materials Survey are available, these
 findings should be reviewed by an environmental consultant and used to develop appropriate controls
 within the Construction Environmental Management Plan.
- Construction Environmental Management Plan (CEMP) developed to inform contractors undertaking
 the proposed development of the known and reasonably likely environmental constraints, including
 potentially contaminated materials that may be present within the site. It is recommended that the CEMP
 include:
 - Procedures to remove existing structures and subsurface infrastructure. This should include controls
 to minimise the potential for cross contamination and expose occupants of adjoining school land.
 - Procedures to excavate and classify fill and shallow natural soils as part of site preparation works.
 - Procedures to manage and classify natural soil and bedrock excavated from the proposed basement.
 - Procedures to assess fill materials and shallow natural soils that remain in-situ to determine whether such materials are suitable for future use of the site.
 - An unexpected finds management protocol. The unexpected finds protocol should include procedures and protocols for managing risks and protecting human health and environment should unexpected finds of contamination be identified at the site.
 - Site access controls to prevent unauthorised access during construction.
- **Site Preparation Works** Investigation of soil conditions beneath existing buildings was not possible during this investigation. Following the site demolition works, Coffey recommends that a competent environmental consultant is engaged to assess whether fill materials below existing buildings that will

Tetra Tech Coffey

12

remain in-situ are suitable for their intended use. This would comprise visual inspection and intrusive investigations. Where materials are identified that are unsuitable, these materials shall be excavated and stockpiled for waste classification and disposal off site to a licensed landfill. It is recommended that the outcome of these works are collated in a Completion Report.

Following implementation of the above works, including the appropriate management of any unexpected finds of contamination, it is assessed that the site would be suitable for the proposed development.

This report should be read in conjunction with the attached *Important Information about your Tetra Tech Coffey Environmental Report*.

Tetra Tech Coffey Report reference number: SYDGE290593-AD

IMPORTANT INFORMATION ABOUT YOUR TETRA TECH COFFEY ENVIRONMENTAL REPORT

Introduction

This report has been prepared by Tetra Tech Coffey for you, as Tetra Tech Coffey's client, in accordance with our agreed purpose, scope, schedule and budget.

The report has been prepared using accepted procedures and practices of the consulting profession at the time it was prepared, and the opinions, recommendations and conclusions set out in the report are made in accordance with generally accepted principles and practices of that profession.

The report is based on information gained from environmental conditions (including assessment of some or all of soil, groundwater, vapour and surface water) and supplemented by reported data of the local area and professional experience. Assessment has been scoped with consideration to industry standards, regulations, guidelines and your specific requirements, including budget and timing. The characterisation of site conditions is an interpretation of information collected during assessment, in accordance with industry practice.

This interpretation is not a complete description of all material on or in the vicinity of the site, due to the inherent variation in spatial and temporal patterns of contaminant presence and impact in the natural environment. Tetra Tech Coffey may have also relied on data and other information provided by you and other qualified individuals in preparing this report. Tetra Tech Coffey has not verified the accuracy or completeness of such data or information except as otherwise stated in the report. For these reasons the report must be regarded as interpretative, in accordance with industry standards and practice, rather than being a definitive record.

Your report has been written for a specific purpose

Your report has been developed for a specific purpose as agreed by us and applies only to the site or area investigated. Unless otherwise stated in the report, this report cannot be applied to an adjacent site or area, nor can it be used when the nature of the specific purpose changes from that which we agreed.

For each purpose, a tailored approach to the assessment of potential soil and groundwater contamination is required. In most cases, a key objective is to identify, and if possible quantify, risks that both recognised and potential contamination pose in the context of the agreed purpose. Such risks may be financial (for example, clean up costs or constraints on site use) and/or physical (for example, potential health risks to users of the site or the general public).

Limitations of the Report

The work was conducted, and the report has been prepared, in response to an agreed purpose and scope, within time and budgetary constraints, and in reliance on certain data and information made available to Tetra Tech Coffey.

The analyses, evaluations, opinions and conclusions presented in this report are based on that purpose and scope, requirements, data or information, and they could change if such requirements or data are inaccurate or incomplete.

This report is valid as of the date of preparation. The condition of the site (including subsurface conditions) and extent or nature of contamination or other environmental hazards can change over time, as a result of either natural processes or human influence. Tetra Tech Coffey should be kept appraised of any such events and should be consulted for further investigations if any changes are noted, particularly during construction activities where excavations often reveal subsurface conditions.

In addition, advancements in professional practice regarding contaminated land and changes in applicable statues and/or guidelines may affect the validity of this report. Consequently, the currency of conclusions and recommendations in this report should be verified if you propose to use this report more than 6 months after its date of issue.

The report does not include the evaluation or assessment of potential geotechnical engineering constraints of the site.

Interpretation of factual data

Environmental site assessments identify actual conditions only at those points where samples are taken and on the date collected. Data derived from indirect field measurements, and sometimes other reports on the site, are interpreted by geologists, engineers or scientists to provide an opinion about overall site conditions, their likely impact with respect to the report purpose and recommended actions.

Variations in soil and groundwater conditions may occur between test or sample locations and actual conditions may differ from those inferred to exist. No environmental assessment program, no matter how comprehensive, can reveal all subsurface details and anomalies. Similarly, no professional, no matter how well qualified, can reveal what is hidden by earth, rock or changed through time.

The actual interface between different materials may be far more gradual or abrupt than assumed based on the facts obtained. Nothing can be done to change the actual site conditions which exist, but steps can be taken to reduce the impact of unexpected conditions.

For this reason, parties involved with land acquisition, management and/or redevelopment should retain the services of a suitably qualified and experienced environmental consultant through the development and use of the site to identify variances, conduct additional tests if required, and recommend solutions to unexpected conditions or other unrecognised features encountered on site. Tetra Tech Coffey would be pleased to assist with any investigation or advice in such circumstances.

Recommendations in this report

This report assumes, in accordance with industry practice, that the site conditions recognised through discrete sampling are representative of actual conditions throughout the investigation area. Recommendations are based on the resulting interpretation.

Should further data be obtained that differs from the data on which the report recommendations are based (such as through excavation or other additional assessment), then the recommendations would need to be reviewed and may need to be revised.

Report for benefit of client

Unless otherwise agreed between us, the report has been prepared for your benefit and no other party. Other parties should not rely upon the report or the accuracy or completeness of any recommendation and should make their own enquiries and obtain independent advice in relation to such matters.

Tetra Tech Coffey assumes no responsibility and will not be liable to any other person or organisation for, or in relation to, any matter dealt with or conclusions expressed in the report, or for any loss or damage suffered by any other person or organisation arising from matters dealt with or conclusions expressed in the report.

To avoid misuse of the information presented in your report, we recommend that Tetra Tech Coffey be consulted before the report is provided to another party who may not be familiar with the background and the purpose of the report. In particular, an environmental disclosure report for a property vendor may not be suitable for satisfying the needs of that property's purchaser. This report should not be applied for any purpose other than that stated in the report.

Interpretation by other professionals

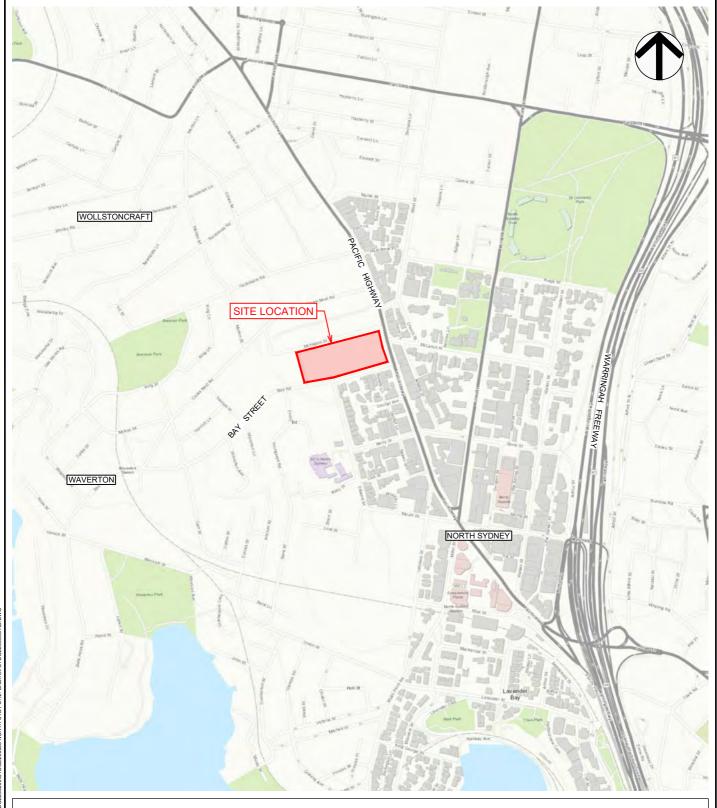
Costly problems can occur when other professionals develop their plans based on misinterpretations of a report. To help avoid misinterpretations, a suitably qualified and experienced environmental consultant should be retained to explain the implications of the report to other professionals referring to the report and then review plans and specifications produced to see how other professionals have incorporated the report findings.

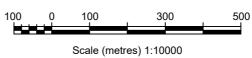
Given Tetra Tech Coffey prepared the report and has familiarity with the site, Tetra Tech Coffey is well placed to provide such assistance. If another party is engaged to interpret the recommendations of the report, there is a risk that the contents of the report may be misinterpreted and Tetra Tech Coffey disowns any responsibility for such misinterpretation.

Data should not be separated from the report

The report as a whole presents the findings of the site assessment and the report should not be copied in part or altered in any way. Logs, figures, laboratory data, drawings, etc. are customarily included in our reports and are developed by scientists or engineers based on their interpretation of field logs, field testing and laboratory evaluation of samples. This information should not under any circumstances be redrawn for inclusion in other documents or separated from the report in any way.

This report should be reproduced in full. No responsibility is accepted for use of any part of this report in any other context or for any other purpose or by third parties.


Responsibility


Environmental reporting relies on interpretation of factual information using professional judgement and opinion and has a level of uncertainty attached to it, which is much less exact than other design disciplines. This has often resulted in claims being lodged against consultants, which are unfounded. As noted earlier, the recommendations and findings set out in this report should only be regarded as interpretive and should not be taken as accurate and complete information about all environmental media at all depths and locations across the site.

FIGURES

Tetra Tech Coffey

Report reference number: SYDGE290593-AD

client:

IMAGERY SOURCE: WORLD STREET MAP SOURCES: ESRI, HERE, GARMIN, USGS, INTERMAP, INCREMENT P, NRCAN, ESRI JAPAN, METI, ESRI CHINA (HONG KONG), ESRI KOREA, ESRI (THAILAND), NGCC, ⊚ OPENSTREETMAP CONTRIBUTORS, AND THE GIS USER COMMUNITY

DRAFT

drawn	JY / AW		
approved	•		
date	30/09/2021		
scale	AS SHOWN		
original size	A4		

project:	NORTH SYDNEY DETAILED SITE PACIFIC HIGHWAY, N	INVESTIGA	TION	
title:	SITE LOCATION PLAN			
project no:	754-SYDGE290593-AD	figure no:	FIGURE 1	rev: A

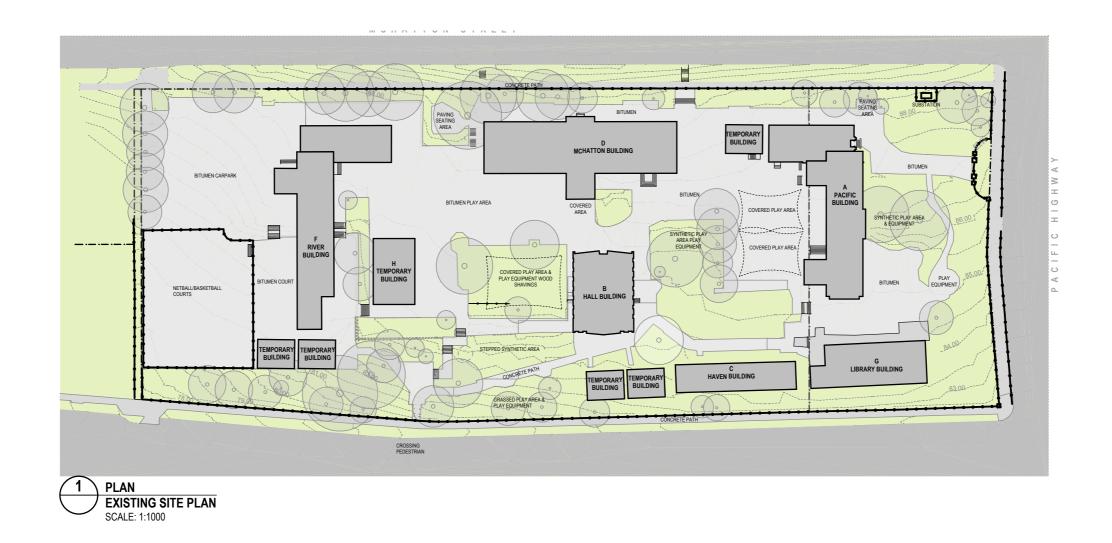
SCHOOL INFRASTRUCTURE NSW

APPENDIX A: DEVELOPMENT DRAWINGS

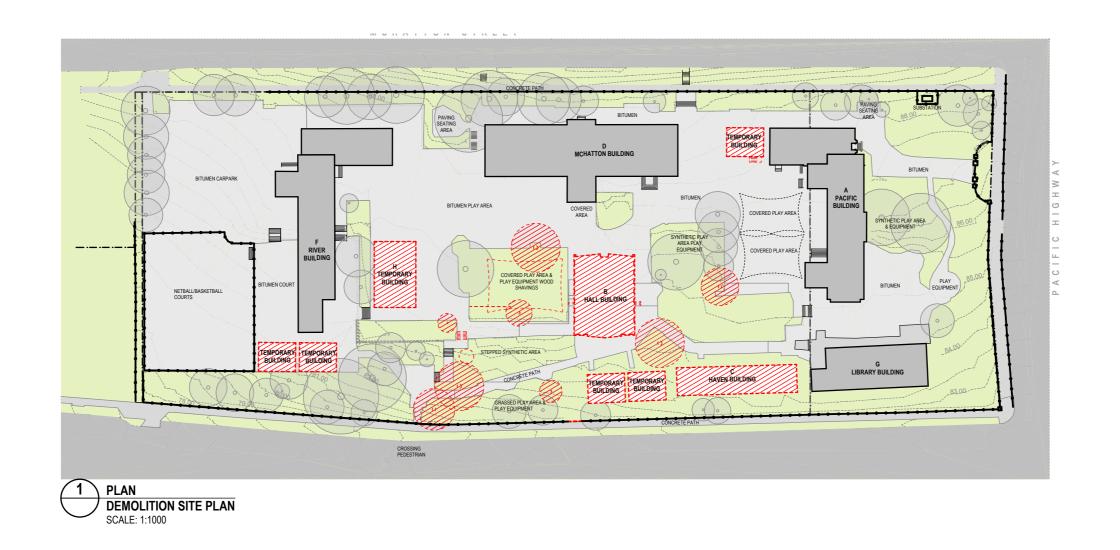
Tetra Tech Coffey

Report reference number: SYDGE290593-AD

NORTH SYDNEY PUBLIC SCHOOL


FOR NSW DEPARTMENT OF EDUCATION

7068WA01

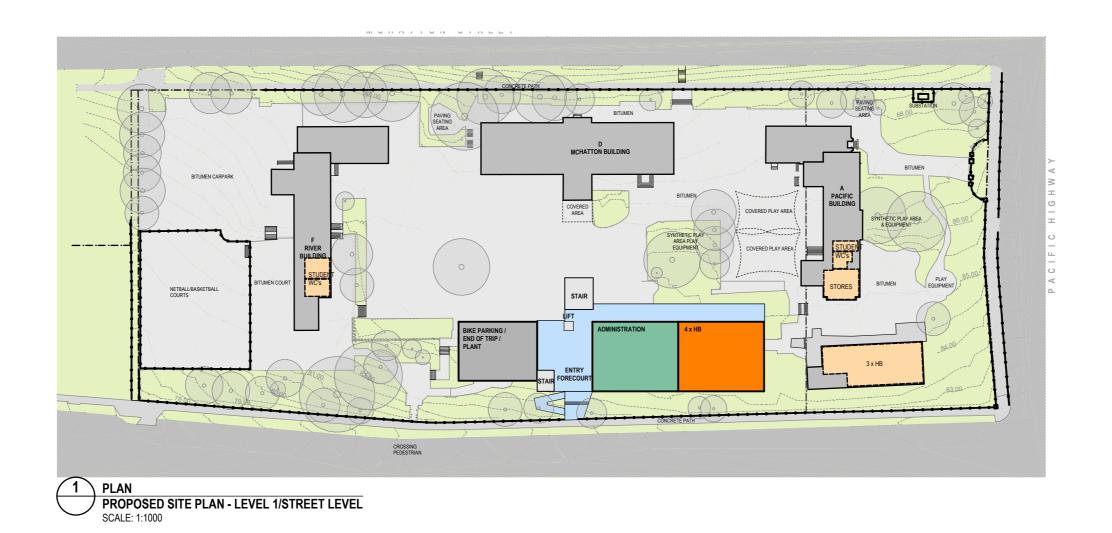


CD-000	Title Page	В
CD-001	Site Analysis 01	В
CD-002	Site Analysis 02	В
CD-003	Site Analysis 03	В
CD-004	Site Analysis 04	В
CD-005	Site Analysis 05	В
CD-006	Site Analysis 06	В
CD-101	Existing Site Plan	В
CD-102	Demolition Plan	С
CD-103	Proposed Site Plan - Level 1 / Street Level	В
CD-104	Proposed Site Plan - Level 2 / Courtyard Level	В
CD-105	Proposed Site Plan - Level 3	В
CD-106	Perspectives	Č
CD-201	Level 1 / Street Level - Hall	Č
CD-202	Level 1 / Street Level - Admin_Home Bases	C
CD-203	Level 2 / Courtyard Level - Hall	C
CD-204	Level 3 - Hall_Plant	ВСССССВ
CD-205	Level 3 - Home bases	Ç
CD-206	Proposed Plans - Building F	
CD-207	Proposed Plans - Building F	В
CD-208	Proposed Plans - Building D	В
CD-209	Proposed Plans - Buildings A & G	В
CD-210	Roof Plan - Home Bases	В
CD-211	Roof Plan - Hall Flevations	В
CD-301 CD-302	Elevations Flevations	B B
CD-302 CD-303	2.0.00.00	В
CD-303 CD-304	Elevations Elevations	ВВ
CD-304 CD-901	Level 1 - Administration FF+E Plan	B
CD-901 CD-902	Home Base Cluster - FF+E Plan	В
CD-902 CD-903	Library - FF+E Plan	Č
OD-303	Library - 11 +L Flair	C

SITE PLAN LEGEND

EXISTING

DEMOLISHED



TREE TO BE REMOVED

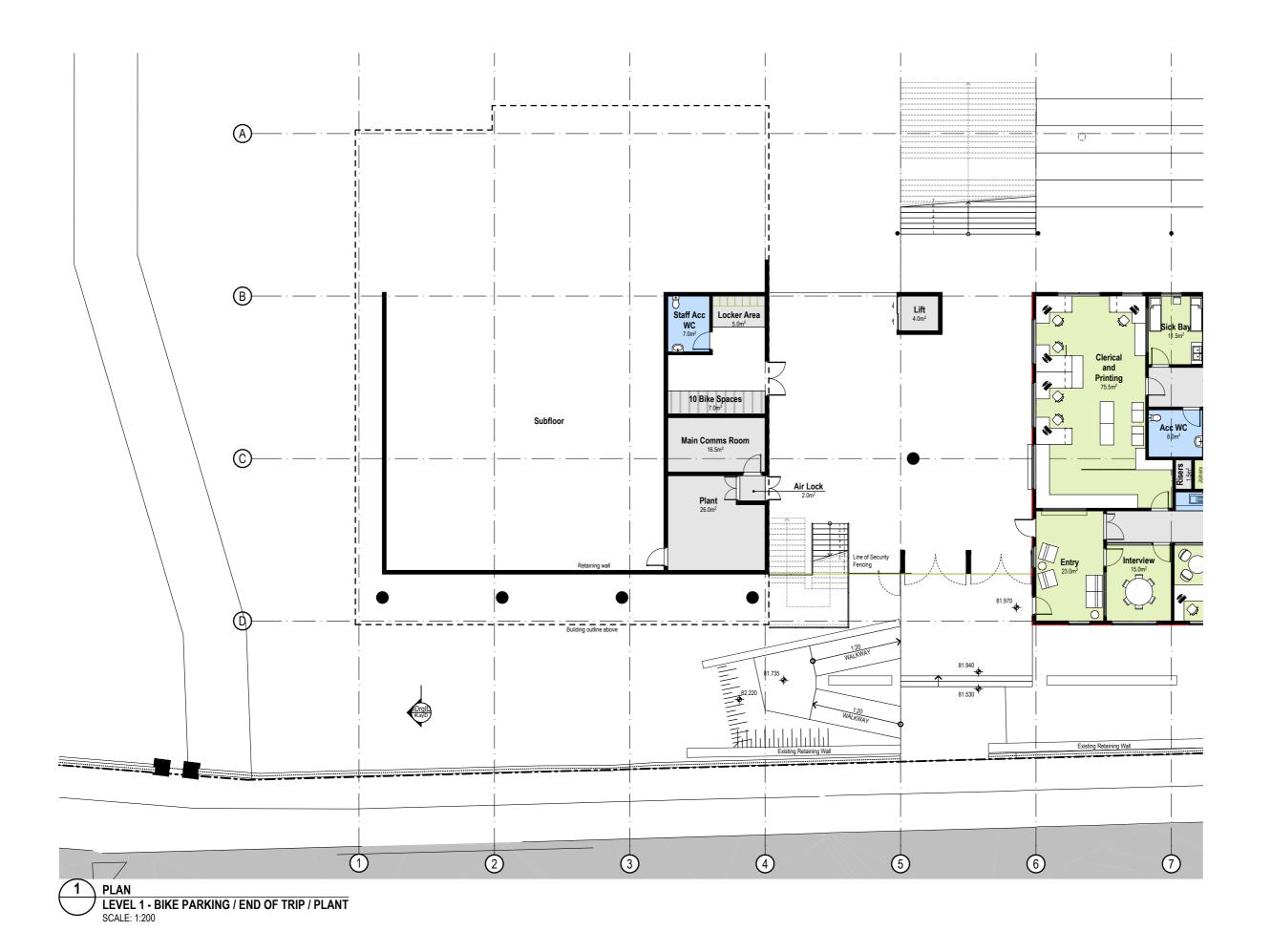
fulton trotter
ARCHITECTS

plot date: Tuesday, 27 July 2021, 8:50 AM

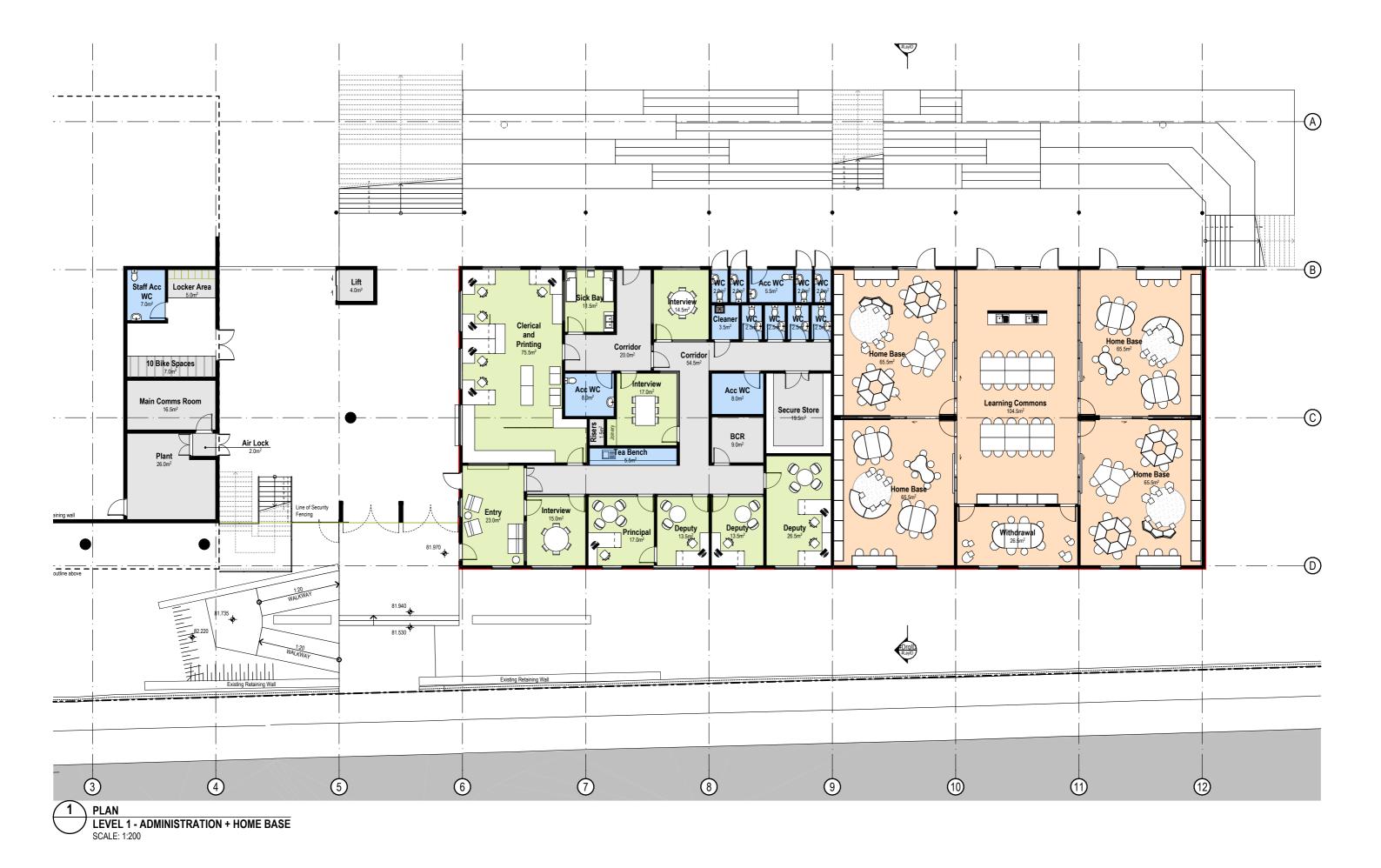
fulton trotter

plot date: Tuesday, 27 July 2021, 8:51 AM

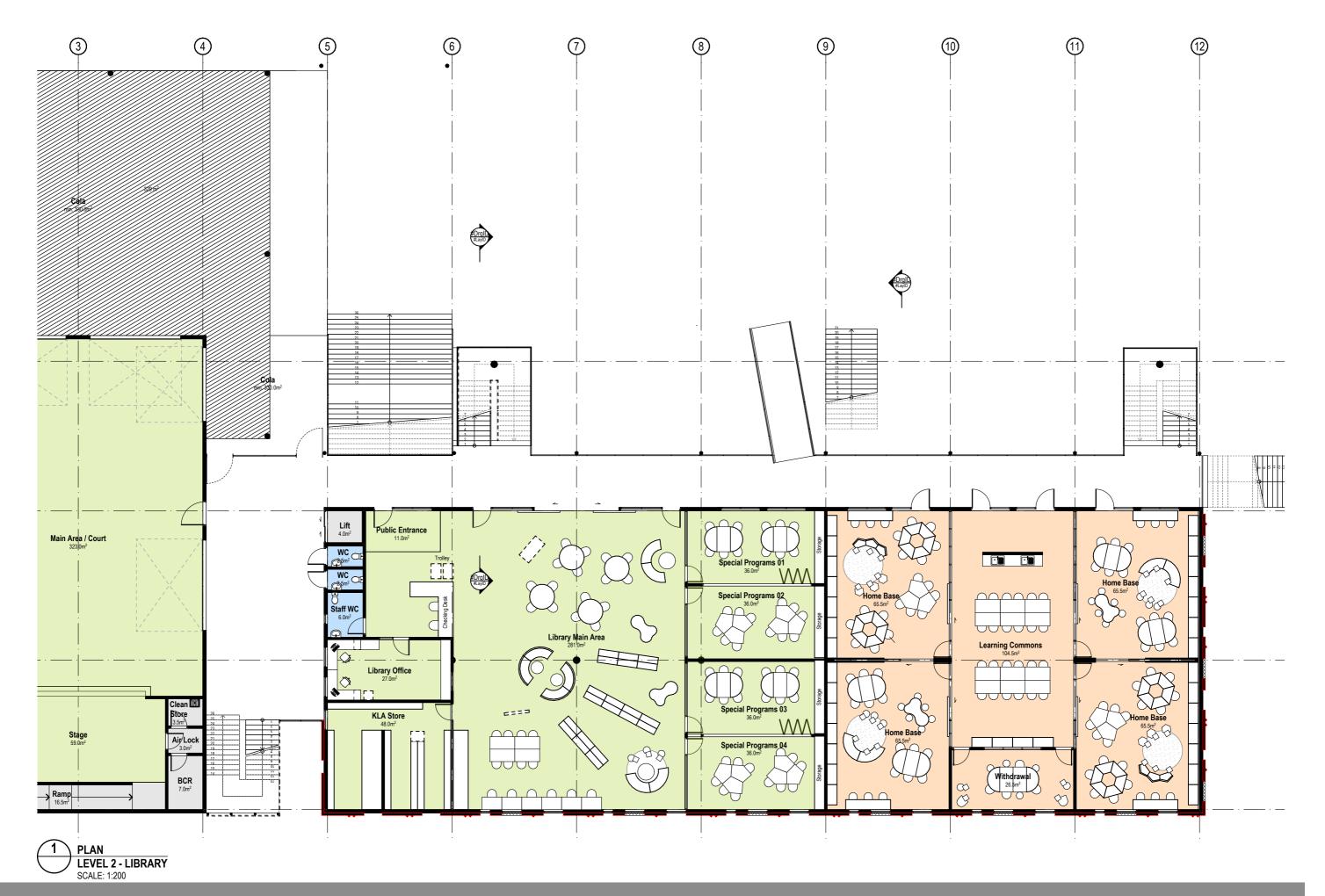
OVERVIEW

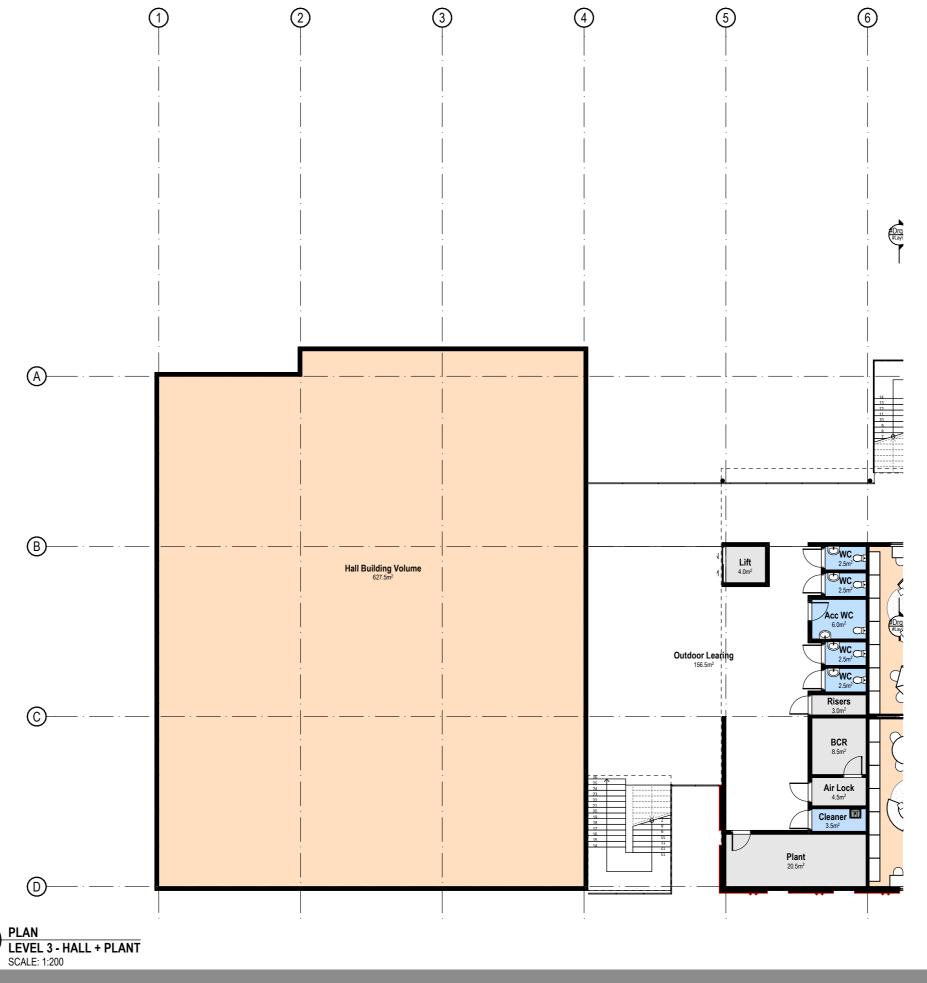

EDWARD STREET

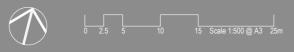
BAY ROAD



PACIFIC HIGHWAY

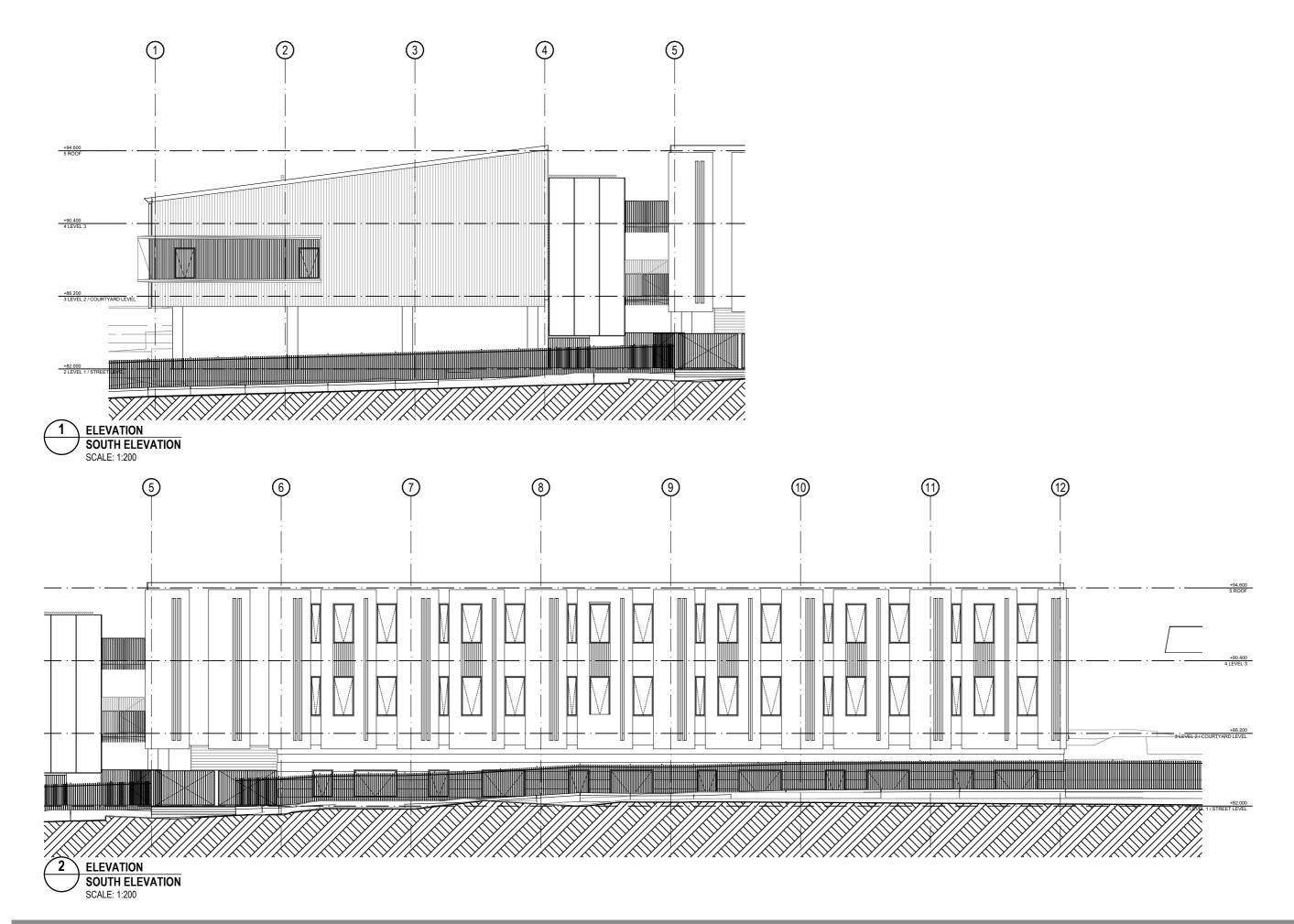


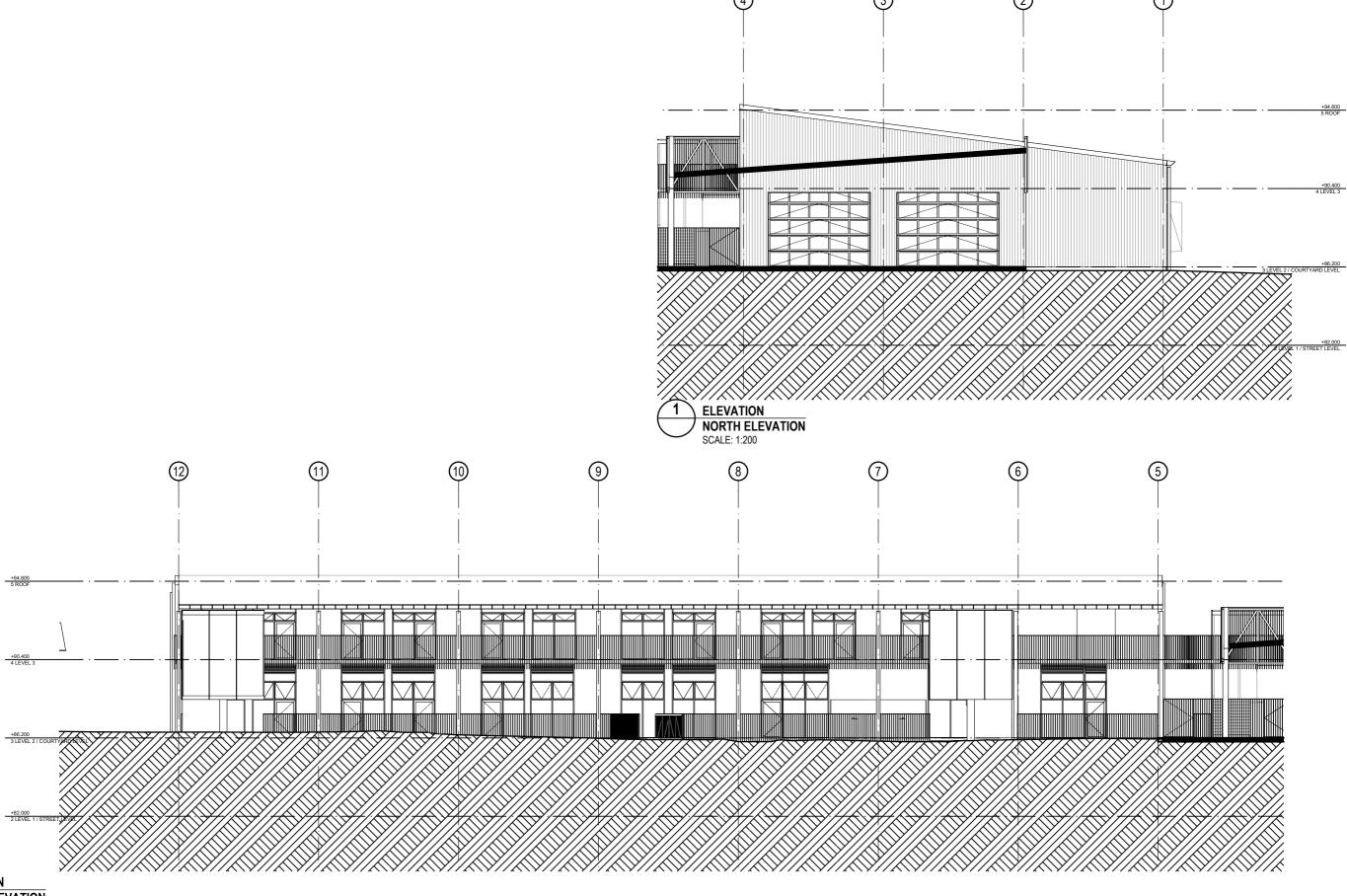

fulton trotter



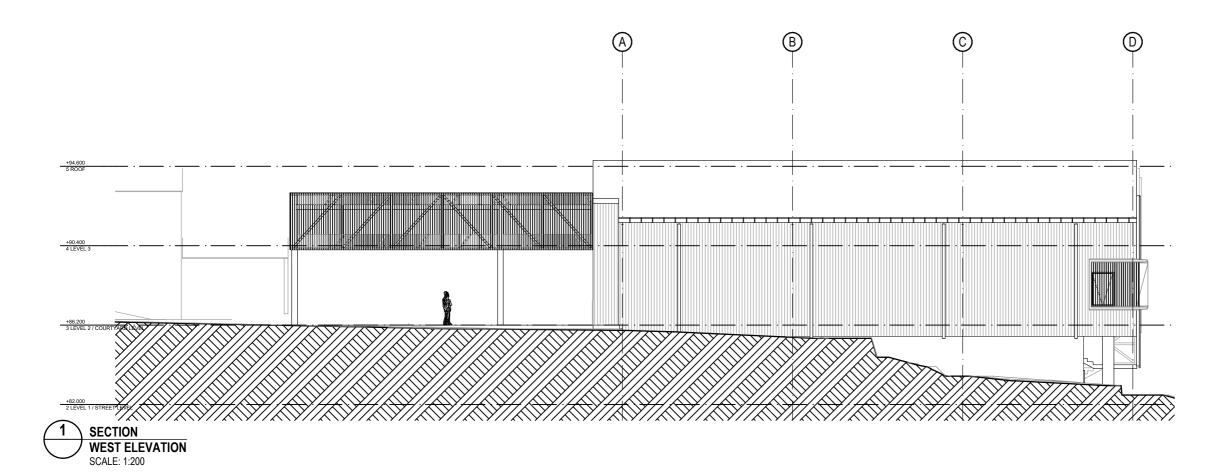
LEVEL 2 / COURTYARD LEVEL - LIBRARY

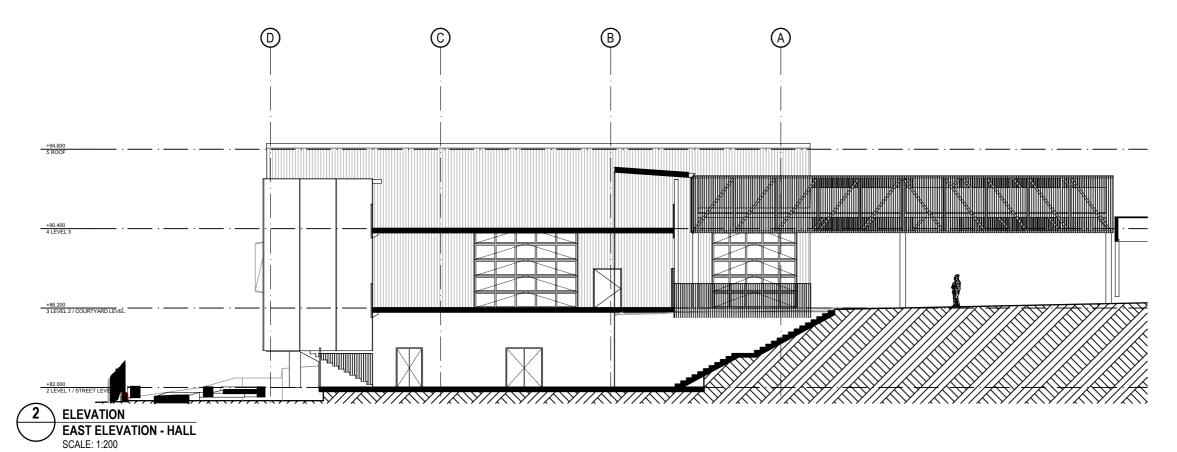
NORTH SYDNEY PUBLIC SCHOOL FOR NSW DEPT OF EDUCATION (SCHOOLS INFRASTRUCTURE)
7068WA01 - CD-204 Rev: A

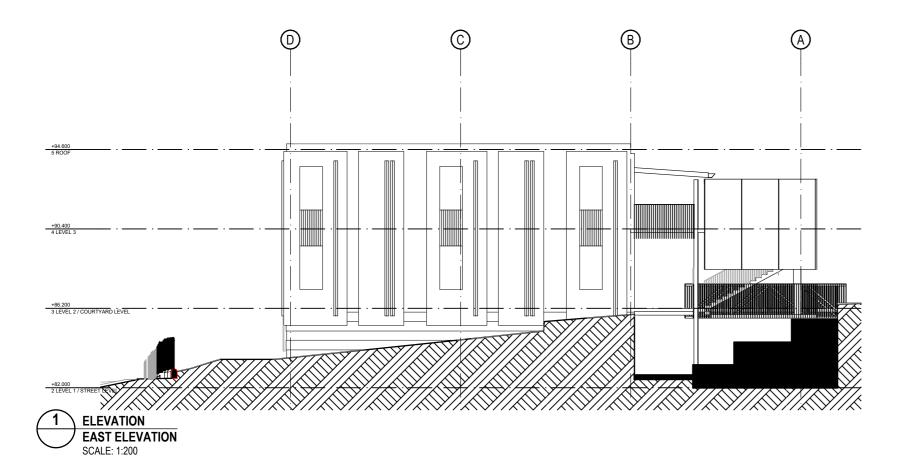




plot date: Tuesday, 27 July 2021, 8:51 AM







APPENDIX B: PRELIMINARY CONCEPTUAL SITE MODEL

Tetra Tech Coffey

Report reference number: SYDGE290593-AD

PRELIMINARY CONCEPTUAL SITE MODEL

A conceptual side model (CSM) was developed based on the information reviewed and conditions of the site that were observable from web-based sources. A CSM is a representation of site-related information regarding potential sources of contamination, receptors and exposure pathways.

Contamination, if not managed appropriately could pose a potential risk to human health or the environment. For an unacceptable risk to exist, there must be a plausible pollutant linkage between the source and a receptor by means of a transport mechanism (pathway).

The following outlines the preliminary CSM developed as part of the PSI prepared for the site (Coffey, Jul 2021).

POTENTIAL SOURCES OF CONTAMINATION

Based on the information reviewed and observations made during the site walkover, the potential contaminating activities/sources identified, associated contaminants of potential concern (CoPC), and the likelihood for contamination to exist at the site are summarised in Table 1.

Table 1: Potential Sources of Contamination and Contaminants of Potential Concern (COPC)

Potential Source/Activity	Discussion	COPC	Likelihood for contamination to exist at the site (low/moderate/high).
Fill material	Based on the topography of the site it is possible fill was used in areas where retaining walls and former air-raid bunkers were present. Previous investigation identified a thin layer of fill within the site. Analysis of samples from this layer reported elevated concentrations of hydrocarbons.	TRH, BTEX, PAH, VOC/SVOC, OCP/OPP asbestos, metals, PCB	Low-Moderate: based on previous reports the soil immediately underlying the slab/road base is potentially a source of contaminated fill (potentially associated with asphaltic inclusions). It is considered that exposure is restricted in areas where asphalt covering remains in place, however exposure could occur where this surface is disturbed, or soft cover is present.
Potential asbestos containing material, lead based paint and poor demolition practices	As identified in previous investigations and due to the age of the buildings, potential ACM may be present within the building materials. Additionally, paint on the buildings may be lead based.	Asbestos and lead	Moderate: The assessment does not identify CoPC in relation to building materials. However, as noted in previous investigations and due to the age of the building it is likely that these CoPC may be present. These materials were noted to be in good condition.

Notes on COPC Abbreviations Used:

ACM: Asbestos containing material

TRH: Total recoverable hydrocarbons

BTEX: Benzene, toluene, ethylbenzene and xylene

PAH: Polycyclic aromatic hydrocarbons

OCP: Organochlorine Pesticides

Organophosphate Pesticides

PCB: Polychlorinated biphenyls

VOC: Volatile organic compounds

SVOC: Semi-volatile organic compounds

RECEPTORS, POTENTIAL TRANSPORT MECHANISMS & EXPOSURE PATHWAYS

Table 2 summarises the potentially affected media, key potential receptors and transport mechanisms assuming the site is developed in the context of the continued use of the site as a primary school.

Table 2: Summary of potentially affected media, receptors, transport mechanisms and exposure routes

Consideration	Information
Potential Transport Mechanisms & Exposure Pathways	 Dermal contact with soil Incidental ingestion of soil Vapour intrusion into indoor air and subsequent inhalation Inhalation of airborne dusts and fibres Lateral and vertical groundwater migration Surface water flow including suspended solids Preferential flows via open drains. Plant uptake mechanisms
Potential Receptors	 Current/Future Site Users – primary school children, teaching staff and site visitors: Neighbouring Site Users Future Construction/Maintenance Workers Groundwater Terrestrial ecology - Mature trees and grass vegetation. Surface water: Berry's Bay (750m South) and Lavender Bay (1150m South)

POTENTIAL AND COMPLETE EXPOSURE PATHWAYS

Table 3 summarises the identified key potential human exposure pathways in the context of the continued use of the site as a primary school.

Table 3: Summary of potentially complete pathways - Human Health

Human Receptor		Exposure Pathy	vays Complete?	
	Dermal Contact	Ingestion of Soil	Inhalation of Dust/Fibres	Indoor Inhalation of Vapours
Current/Future site users	✓	✓	✓	×
Neighbouring Site Users	×	×	√?	×
Construction/Maintenance Worker	✓	✓	✓	×

Notes: ✓ - Complete Pathway, ✓? - Potentially Complete Pathway (dependant on site conditions), × - Incomplete Pathway, NA - Pathway not applicable

Table 4 summarises the identified key potential exposure pathways for environmental receptors.

Table 4: Summary of potentially complete pathways - Environmental Receptors

Environmental Receptor	Exposure Pathways Complete?										
	Soil Leaching	Lateral/Vertical Groundwater Migration	Preferential Pathway	Surface Water Runoff	Direct Contact/ Uptake Mechanisms						
Groundwater (On Site)	√?	NA	*	NA	NA						
Terrestrial Ecology (On Site)	×	NA	NA	✓	✓						
Surface Water	√?	*	*	√?	NA						

Notes: ✓ - Complete Pathway, ✓? - Potentially Complete Pathway (dependant on site conditions), × - Incomplete Pathway, NA - Pathway not applicable

APPENDIX C: BORE LOGS

Tetra Tech Coffey

Hole ID. **HA1** sheet: 1 of 1

project no. **754-SYDGE290953**

client: School Infrastructure New South Wales

date started: 28 Aug 2021

principal:

date completed: 28 Aug 2021

project: North Sydney Public School DSI

logged by: **J.Y**

location: Bay Road, Waverton NSW 2060 checked by:

position: Not Specified surface elevation: Not Specified angle from horizontal: 90°

	equipr	nent t	type: Hand Auger					drilli	ng fluid:	hole dia	meter		
[drilli	ng in	formation				mate	rial sub	stance				
	method & support	water	samples & field tests	photoionization detector (ppmv)	RL (m)	depth (m)	graphic log	soil group symbol	material description SOIL NAME: plasticity or particle chara colour, secondary and minor compo	octeristic, onents	moisture condition	consistency / relative density	structure and additional observations
		Not Encountered	E: HA1_0.1-0.2	1.3		-			FILL: Sandy CLAY: fine - medium graine plasticity, dark brown.	ed, low	О	S	No staining, odour or acm
SI LOGS.GPJ < <drawingfile>> 14/09/2021 14:11</drawingfile>	#HA	Not Er	E: HA1_0.7-0.8	0.6					CLAY: low plasticity, pale grey, orange mo	ottling.		F	- - -
CDF_0_9_07_LIBRARY.GLB rev.AU Log COF BOREHOLE: ENVIRONMENTAL NTH SYD DSI LOGS.GPJ < <drawingfile>> 14/09/2021 14:11</drawingfile>						1.5 —			Hand Auger HA1 terminated at 1.00 m Target depth				-
	Method AD AS HA MR W * e.g. B T	auge hand mud was	k bit vit	suppo M mi C ca N nill	ud sing - 10-C evel wate	Oct-12 wa on date : er inflow er outflow	shown	ESUV	disturbed sample environmental sample split spoon sample undisturbed sample ##mm diameter water sample hammer bouncing standard penetration test (SPT) SPT - sample recovered LS SPT with solid cone photoionization detector	soil group soil des based on As moisture cond D dry M moist W wet Wp plastic lin WI liquid lim	S 1726:	1	consistency / relative density VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense

project:

Environmental Log - Hand Auger

North Sydney Public School DSI

Hole ID. HA2 1 of 1

logged by:

sheet: 754-SYDGE290953 project no.

School Infrastructure New South Wales client: date started: 28 Aug 2021

28 Aug 2021 principal: date completed: J.Y

locat	ion:	Bay Road,	Wav	erto	n NS	SW 20	060			check	ed by:	
positi	on: N	lot Specified					surf	ace elevation: Not Specified	angle	from hor	izontal:	90°
<u> </u>		type: Hand Auger						ing fluid:	hole d	iameter	:	
drill	ing in	formation	<u> </u>			mate	rial sub				>-	
method & support	water	samples & field tests	photoionization detector (ppmv)	RL (m)	depth (m)	graphic log	soil group symbol	material description SOIL NAME: plasticity or particle charac colour, secondary and minor compor	cteristic, nents	moisture condition	consistency / relative density	structure and additional observations
•	ntered	E: HA2_0.1-0.2	1.9		-			FILL: Gravelly Sandy CLAY: fine - mediu 30 mm, sub-angular to angular, high plastic brown.		D	S	No staining, odour or acm Ash Ash
H H H	Not Encountered	E: HA2_0.7-0.8	0.5		0.5 —			CLAY: low plasticity, pale brown.		W D	St	Treet root encountered, surrounding soil was wet
V					1.0			Hand Auger HA2 terminated at 1.00 m Target depth				-
meth AD AS HA MR W	auge auge hand mud wash	k bit it	suppo M mi C ca N nil	ud sing I	Oct-12 wa on date : r inflow r outflow	shown	# E E E E E E E E E E E E E E E E E E E	disturbed sample environmental sample split spoon sample undisturbed sample ##mm diameter water sample hammer bouncing standard penetration test (SPT) SPT - sample recovered Ic SPT with solid cone photoionization detector	soil grousoil de based on Amoisture con D dry M moist W wet Wp plastic I WI liquid lin	escription AS 1726	n	consistency / relative density VS S S Soft F F St St St VSt Very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense

Hole ID. HA3 1 of 1 sheet:

754-SYDGE290953 project no.

School Infrastructure New South Wales client: date started: 28 Aug 2021

28 Aug 2021 principal: date completed: project: North Sydney Public School DSI logged by: J.Y

locati	ion:	Bay Road,	Wav	erto	n NS	W 2	060			check	ed by:	
positio	on: N	ot Specified					surfa	ace elevation: Not Specified	angle	from hor	izontal:	90°
equipr	ment t	ype: Hand Auger					drilli	ng fluid:	hole d	liameter	:	
drilli	ng in	formation	-5	1	1	mate	rial sub	stance				
method & support	water	samples & field tests	photoionization detector (ppmv)	RL (m)	depth (m)	graphic log	soil group symbol	material description SOIL NAME: plasticity or particle chara colour, secondary and minor comp	acteristic, onents	moisture condition	consistency / relative density	structure and additional observations
HA	Not Encountered	E: HA3_0.1-0.2	1.5		-			FILL: Gravelly Sandy CLAY: fine - med high plasticity, dark brown.	ium grained,	D	S	No odour, staining or acm
	Not	E: HA3_0.5-0.6	0.6		0.5			CLAY: low plasticity, pale grey, orange m	ottling.		St	-
y					1.0—			Hand Auger HA3 terminated at 0.70 m Target depth				
Method AD AS HA MR W * e.g. B T V	auge auge hand mud wash	nown by suffix c bit it	suppo M mi C ca N nill	ud sing I	Oct-12 wa on date ser inflow er outflow		A B C E S U V H N N N	disturbed sample environmental sample split spoon sample undisturbed sample ##mm diameter water sample hammer bouncing standard penetration test (SPT) * SPT - sample recovered SPT with solid cone ID photoionization detector		n dition	n	consistency / relative density VS S very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense

project:

Environmental Log - Hand Auger

North Sydney Public School DSI

Hole ID. **HA4** sheet: 1 of 1

logged by:

project no. **754-SYDGE290953**

J.Y

client: School Infrastructure New South Wales date started: 28 Aug 2021

principal: date completed: 28 Aug 2021

_	ositio		lot Specified						ace elevation: Not Specified		rom hor	izontal:	90°
- 1			type: Hand Auger						ng fluid:	-	ameter		
	drilli	ng in	formation				mate	rial sub	stance				
method &	support	water	samples & field tests	photoionization detector (ppmv)	RL (m)	depth (m)	graphic log	soil group symbol	material description SOIL NAME: plasticity or particle characte colour, secondary and minor components	ents	moisture condition	consistency / relative density	structure and additional observations
		id.	E: HA4_0.1-0.2	0.9		_			FILL: Gravelly SAND: fine - medium graine 50 mm, sub-angular to angular, dark brown,	ed, to dark grey.	D		No staining, odour or acm - Ash -
4/09/2021 14:11 HA		Not Encountered				0.5—			CLAY: low plasticity, pale grey, orange mottl	ling.		St	Ash -
CDF_0_9_07_LIBRARY.GLB rev:AU_Log_COF BOREHOLE: ENVIRONMENTAL_NTH SYD DSI LOGS.GPJ_< <drawningfile>> 14/09/2021 14:11</drawningfile>			E: HA4_0.7-0.8	0.8		_			Hand Auger HA4 terminated at 0.90 m				
NTAL NTH SYD DSI LOG						1.0 —			Target depth				-
: BOREHOLE: ENVIRONME						-							-
.GLB rev:AU Log COF						1.5							-
CDF_0_9_07_LIBRARY						-							-
/ / !	AS HA	auge auge hand mud	er drilling* er screwing* I auger rotary nbore	suppo M m C ca N nil	ud sing			E E S U	disturbed sample environmental sample S split spoon sample ## undisturbed sample ##mm diameter /S water sample	moisture cond	S 1726:	n	consistency / relative density VS very soft S soft F firm St stiff VSt very stiff H hard
-	∍.g. 3	bit sl AD/T blanl TC b V bit	k bit it	water	level wate	ct-12 wa on date s r inflow r outflow	shown	F N N	B hammer bouncing standard penetration test (SPT) SPT - sample recovered c SPT with solid cone ID photoionization detector	M moist W wet Wp plastic li Wl liquid lim	mit nit		Fb friable VL very loose L loose MD medium dense D dense VD very dense

principal:

Environmental Log - Hand Auger

Hole ID. **HA5** sheet: 1 of 1

date completed:

project no. **754-SYDGE290953**

28 Aug 2021

client: School Infrastructure New South Wales date started: 28 Aug 2021

project: North Sydney Public School DSI logged by: J.Y

	ion:	Вау Коаа,	vvav	erio	II IVS) V Z	000				ed by:	
		Not Specified						ace elevation: Not Specified	=	from hor		90°
		type: Hand Auger				4.		ng fluid:	hole d	iameter	:	
drilli	ing in	formation	□			mate	rial sub				>	
method & support	water	samples & field tests	photoionization detector (ppmv)	RL (m)	depth (m)	graphic log	soil group symbol	material description SOIL NAME: plasticity or particle charact colour, secondary and minor compon		moisture condition	consistency / relative density	structure and additional observations
		E: HA5_0.1-0.2	0.6		_			FILL: Gravelly SAND: fine - medium grain 30 mm, pale brown, dark brown.	ned, to	D		No staining, odour or acm
		E: HA5_0.3-0.4	0.9		_			FILL: Gravelly SAND: fine - medium grain 60 mm, pale grey.	ned, to			
- HA	Not Encountered				0.5			Increasing clay				
					_			CLAY: low plasticity, orange, red mottling.			S	
		E: HA5_0.8-0.9	0.6		_							
V					1.0			Hand Auger HA5 terminated at 1.10 m Target depth				
					-							
					1.5 —							
					_							
Methodal AD AS HA MR W	auge auge hand mud	er drilling* er screwing* d auger rotary hbore	suppo M mu C ca N nill	ud sing				disturbed sample environmental sample S split spoon sample	soil grou soil de based on /	escriptio AS 1726	n	consistency / relative density VS Very soft S Soft F F St St Stiff VSt VSt VSt ST
* e.g. B T V		hown by suffix Г k bit oit	water	10-C level wate	Oct-12 wa on date ser inflow er outflow	shown	V F N	SPT - sample recovered C SPT with solid cone D photoionization detector	D dry M moist W wet Wp plastic I	limit		VSI very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense

Hole ID. **HA6** sheet: 1 of 1

project no. **754-SYDGE290953**

client: School Infrastructure New South Wales

date started: 28 Aug 2021

principal:

date completed: 28 Aug 2021

project: North Sydney Public School DSI

logged by: **J.Y**

l'		Not Specified		0, 10			surf	ace elevation: Not Specified	angle fro		izontal:	90°
		type: Hand Auger Information				mate	drilli rial sub	ng fluid:	hole diar	neter	:	
method & support	water	samples & field tests	photoionization detector (ppmv)	RL (m)	depth (m)	graphic log	soil group symbol	material description SOIL NAME: plasticity or particle characteris colour, secondary and minor components	stic,	moisture condition	consistency / relative density	structure and additional observations
Ā		E: HA6_0.1-0.2	0.5		-		<i>u u</i>	FILL: Gravelly SAND: fine - medium grained, 30 mm, sub-angular to angular, dark brown, dar	to rk grey.	D	02	No staining, odour or acm
— HA	Not Encountered	E: HA6_0.2-0.3	0.8		-			FILL: Sandy GRAVEL: fine - medium grained, 50 mm, sub-angular to angular, dark brown, dar FILL: Gravelly Sandy CLAY: fine - medium gr sub-angular to angular, low plasticity, dark brow grey.	rk grey. grained,		St	Asphalt gravel and crushed brick
			0.5		- 0.5 - -			Hand Auger HA6 terminated at 0.50 m Refusal				
					1.0 —							
					- 1.5 —							
					- - -							
meth AD AS HA MR W	auge auge hand mud	er drilling* er screwing* d auger I rotary hbore	suppo M m C ca N nil	ud sing I			E E E S U	disturbed sample environmental sample s split spoon sample undisturbed sample ##mm diameter WS water sample ## M	moist	1726	n	consistency / relative density VS S S S S S F F F F St VSt VSt Very soft S S S S H h h ard F B F F F F F F F F F F F F F F F F F
e.g. B T V	AD/	k bit pit	water	10-C level wate	Oct-12 wa I on date er inflow er outflow	shown	N N	I standard penetration test (SPT) W Y SPT - sample recovered U SPT with solid cone U D photoionization detector	p plastic lim			VL very loose L loose MD medium dense D dense VD very dense

Hole ID. **HA7**

 sheet:
 1 of 1

 project no.
 754-SYDGE290953

client: School Infrastructure New South Wales date started: 28 Aug 2021

principal: date completed: 28 Aug 2021

project: North Sydney Public School DSI logged by: J.Y

		lot Specified type: Hand Auger						ace elevation: Not Specified	_	from hor		90°
drill	ing in	formation				mate	rial sub	stance				
method & support	water	samples & field tests	photoionization detector (ppmv)	RL (m)	depth (m)	graphic log	soil group symbol	material description SOIL NAME: plasticity or particle char- colour, secondary and minor comp	acteristic, conents	moisture condition	consistency / relative density	structure and additional observations
		E: HA7_0.1-0.2	0.5		-			FILL: Gravelly SAND: fine - medium gra 30 mm, sub-angular to angular, dark brow		D		No staining, odour or acm
AH —	Not Encountered	E: HA7_0.6-0.7	0.6		0.5 -			FILL: Gravelly CLAYEY SAND: fine - medium grained, to 30 mm, sub-angular t plasticity, dark brown. FILL: SAND: medium - coarse grained, y brown. FILL: Gravelly SAND: fine - medium grave 40 mm, sub-angular to angular, dark grey	vellow, pale			
		E: HA7_0.9-1.0	1		- 1.0			Hand Auger HA7 terminated at 1.00 m Target depth				
					1.5 —							
meth AD AS HA MR W	auge hand mud wash bit si	er drilling* er screwing* d auger rotary hbore hown by suffix r	suppo M m C ca N nil	ud sing I	-coct-12 wa		E E S U	disturbed sample environmental sample split spoon sample undisturbed sample ##mm diameter water sample hammer bouncing standard penetration test (SPT)		n dition	n	consistency / relative density VS S S S S S F F F F F St St VSt Very stiff H H H H H F D F F F F F F F F F F F F F

Hole ID. **HA8** sheet: 1 of 1

date started:

project no. **754-SYDGE290953**

28 Aug 2021

client: School Infrastructure New South Wales

principal: date completed: 28 Aug 2021

project: North Sydney Public School DSI logged by: J.Y

		lot Specified ype: Hand Auger					surf	ace elevation: Not Specified	_	from hor		90°
		formation				mate	rial sub	<u> </u>	i ioie u		•	
method & support	water	samples & field tests	photoionization detector (ppmv)	RL (m)	depth (m)	graphic log	soil group symbol	material description SOIL NAME: plasticity or particle charact colour, secondary and minor components	teristic, nents	moisture condition	consistency / relative density	structure and additional observations
		E: HA8_0.1-0.2	0.7		-			FILL: MULCH. FILL: Gravelly SAND: fine - medium grain 30 mm, sub-angular to angular, dark brown,		D		No staining, odour or acm Crushed brick
	Not Encountered	E: HA8_0.7-0.8			0.5			Increasing clay content	w planticity		Ct.	
		2.1110_0.1 0.0	0.5		1.0—			Gravelly CLAY : sub-angular to angular, lor pale grey.	w plasticity,		St	
					-	<i>(((((((((((((((((((((((((((((((((((((</i>		Hand Auger HA8 terminated at 1.10 m Target depth				
					1.5 —							
metho AD AS HA MR W	auge auge hand mud	er drilling* er screwing* I auger rotary abore	suppo M m C ca N nill	ud sing	-		E E S U	disturbed sample environmental sample S split spoon sample ### undisturbed sample ##mm diameter VS water sample	moisture con	AS 1726	n	consistency / relative density VS very soft S soft F firm St stiff VSt very stiff H hard
* e.g. B T V	bit sh AD/T blanl TC b V bit	k bit it	water	10-C level wate	Oct-12 wa I on date er inflow er outflow	shown	N N	IB hammer bouncing standard penetration test (SPT) SPT - sample recovered SPT with solid cone D photoionization detector	M moist W wet Wp plastic I WI liquid lir	limit mit		Fb friable VL very loose L loose MD medium dense D dense VD very dense

Hole ID. **HA9** sheet: 1 of 1

project no. **754-SYDGE290953**

client: School Infrastructure New South Wales date started: 28 Aug 2021

principal: date completed: 28 Aug 2021
project: North Sydney Public School DSI logged by: J.Y

locati		Bay Road,	vvav	erto	n NS	OVV Z	000			check	ed by:	
		Not Specified						ace elevation: Not Specified	-	from hor		90°
		type: Hand Auger				l		ng fluid:	hole d	iameter	:	
drilli	ng in	formation	-5		ı	mate	rial sub					T
method & support	water	samples & field tests	photoionization detector (ppmv)	RL (m)	depth (m)	graphic log	soil group symbol	material description SOIL NAME: plasticity or particle character colour, secondary and minor compo		moisture condition	consistency / relative density	structure and additional observations
					_			FILL: MULCH.		D		No staining, odour or acm
		E: HA9_0.2-0.3	0.4		-			FILL: Gravelly SAND: fine - medium grain 40 mm, sub-angular to angular, dark brown	ned, to 1.			
	untered				0.5			Gravelly CLAY: to 20 mm, sub-angular to	angular,		St	
HA —	Not Encountered				-			low plasticity, pale grey.				
		E: HA9_0.9-1.0	0.5		1.0 —							
					1.5 —			Hand Auger HA9 terminated at 1.20 m Target depth				
metho AD AS HA MR W	auge hand mud was bit s	er drilling* er screwing* d auger rotary hbore hown by suffix	N nill	ud sing I	- - 0ct-12 wa	ıter	E S V	disturbed sample environmental sample S split spoon sample undisturbed sample ##mm diameter water sample B hammer bouncing standard penetration test (SPT)	moisture cor D dry M moist W wet Wp plastic	escriptio AS 1726 Indition	n	consistency / relative density VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L lesse
e.g. B T V	AD/7 blan TC b V bit	Γ k bit oit		wate	on date : r inflow r outflow	shown		SPT - sample recovered SPT with solid cone D photoionization detector	WI liquid lii	mit		L loose MD medium dense D dense VD very dense

Engineering Log - Borehole

BH04 sheet: 1 of 2

RN

Borehole ID.

SYDGE232786 project no. NSW Department of Education date started: 03 Oct 2019

Coffey Services Australia Pty Ltd 03 Oct 2019 date completed: principal:

North Sydney Public School project: logged by:

I	ocati	on:	Noi	rth Sydi	ney						check	ked by:	RR
þ	ositic	n: Not	Spec	fied					surface elevation: Not Specified	angle	from ho	rizontal: 90	0
٥	lrill m	odel: De	elta Ba	se, Track n	nounte	d			drilling fluid:	hole o	liameter	: 100 mm	
ŀ	drilli	ng info	rmati	on			mate	rial sub		1	_		
9	support	1 2 penetration 3	water	samples & field tests	RL (m)	depth (m)	graphic log	soil group symbol	material description SOIL NAME: plasticity or particle characteristic, colour, secondary and minor components	moisture condition	consistency / relative density	hand penetro- meter (kPa)	structure and additional observations
CDF_0_9_07_LIBRARY GLB rev.AU Log COF BOREHOLE: NON CORED SYDGE232786 (NORTH SYDNEY).GPJ < <drawingfile>> 19/1/2019 17:03</drawingfile>	CASING ————————————————————————————————————		Not Encountered	E		3.0—		CL-CI	ASPHALT. FILL: ROAD BASE. CLAY: low plasticity, brown, grey, with fine to coarse grained sand, trace fine to medium, sub-angular to sub-rounded gravel. CLAY: low - medium plasticity, brown, with fine to coarse grained sand, trace fine to medium sub-rounded gravel. CLAY: medium plasticity, brown, grey, trace fine sand. SHALE: grey, pale grey, recovered as sandy clay, estimated very low to low strength. Borehole BH04 continued as cored hole	<wp< td=""><td>S F St - VSi</td><td></td><td>ASPHALT FILL RESIDUAL SOIL INFERRED WEATHERED BEDROCK </td></wp<>	S F St - VSi		ASPHALT FILL RESIDUAL SOIL INFERRED WEATHERED BEDROCK
	method AD AS HA W * e.g. B T V	bit sho AD/T blank t TC bit V bit	crewi uger ore wn by	ng*	pene	etration		ater shown	E environmental sample SS split spoon sample	soil d ased on isture col dry moist wet	ndition limit	n	consistency / relative density VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense

principal:

Engineering Log - Cored Borehole

Coffey Services Australia Pty Ltd

g Log - Cored Borenole project no. SYDGE232786

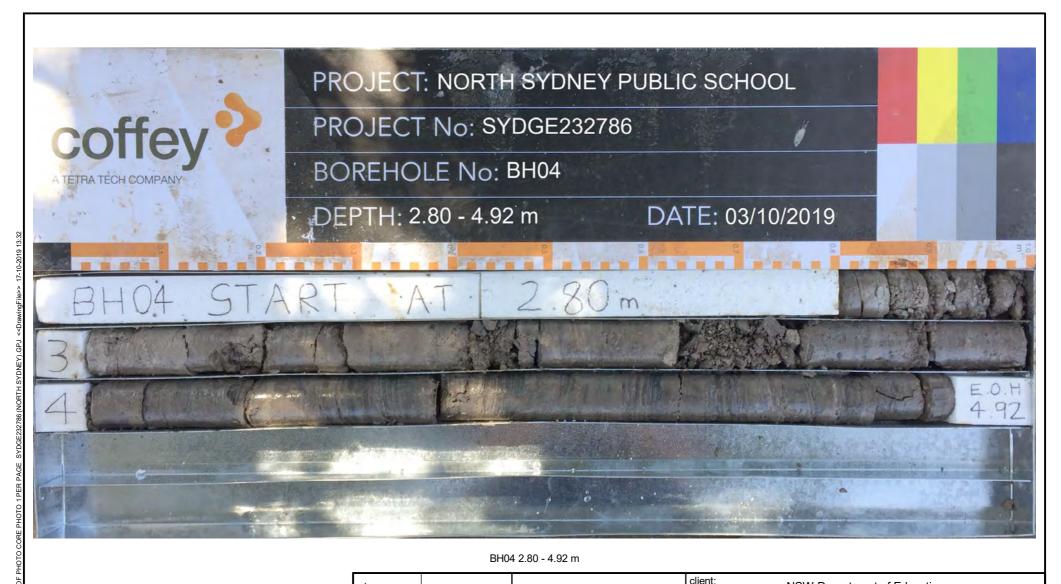
Borehole ID.

date completed:

sheet:

BH04

03 Oct 2019


2 of 2

client: NSW Department of Education date started: 03 Oct 2019

project: North Sydney Public School logged by: RN

location: North Sydney checked by: RR

location:	: ^	iortn	Syd	ney					checked	by: RR	
position:	Not Sp	pecified		surface elevation: Not	Specifie	ed		angle	e from horizo	ntal: 90°	
drill mode	el: Delta	a Base,	Track ı	mounted drilling fluid:				hole	diameter : 10	00 mm	
drilling i	inform	ation	mate	rial substance				rock	mass defec	ts	
method & support water	RL (m)	depth (m)	graphic log	material description ROCK TYPE: grain characterisics, colour, structure, minor components	weathering & alteration	estimated strength & Is50 X=axial; Q=diametral	samples, field tests & Is(50) (MPa) a = axial; d = diametral	core run & RQD	defect spacing (mm)	additional obset defect des (type, inclination, planari thickness	criptions ty, roughness, coating, s, other)
Log COF BOREHOLE: CORED SYDGE232786 (NORTH SYDNEY) GPJ <-DrawingFile>> 19/11/2019 17/04 mr Indiangle of the control of the	R	2.0 —	26	started coring at 2.80m SHALE: grey, pale grey, indistinctly laminated at 0° - 10°.	HW - MW		a=0.01 d=0.00 a=0.02 d=0.03	8		particular □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	Defects are: PT 0 - 20° PL, SO, CN.
CDF_0_9_07_LIBRARY.GLB rev.AU CDF_0_9_07_LIBRARY.GLB rev.AU CDF_0_9_07_LIBRARY.GLB rev.AU CDF_0_9_07_LIBRARY.GLB rev.AU CDF_0_9_07_LIBRARY.GLB rev.AU CDF_0_9_07_LIBRARY.GLB rev.AU	uger sci uger dri aw or b ashbore ick rolle MLC co ireline o ireline o	rewing Illing Ilade bit e er ore (51.9 core (47 core (63	9 mm) ' 6mm)	level on date shown water inflow complete drilling fluid loss partial drilling fluid loss	covered hools indicate recovere	material) ed	HW highly MW mode	al soil nely we weathe rately w y weath th A for alt w	eathered ered reathered	defect type PT parting JT joint SS shear surface SZ shear zone CO contact CS crushed seam SM seam roughness VR very rough RO rough SO smooth	planarity PL planar CU curved UN undulating ST stepped IR Irregular coating CN clean SN stained VN veneer

drawn		
approved		
date	17-10-2019	coffey *
scale	N.T.S.	A TETRA TECH COMPANY
original size	A4	

project no:	SYDGE232786	fig no:	FIGURE 1	rev:
title:	CORE PHO	OTOGRA 104	APH	
project:	North Sydney North	Public S Sydney	chool	
Ollorit.	NSW Departme	ent of Ed	ucation	

principal: project:

Engineering Log - Borehole

NSW Department of Education

North Sydney Public School

Coffey Services Australia Pty Ltd

BH05 sheet: 1 of 2

Borehole ID.

SYDGE232786 project no.

date started: 03 Oct 2019

03 Oct 2019

date completed: logged by: RN

North Sydnov ahaakad h

lo	cati	ion:	No	rth Sydi	ney						check	ed by:	RR
po	ositic	n: No	Spec	ified					surface elevation: Not Specified	angle	from ho	rizontal: 90°	
dr	ill m	odel: D	elta Ba	ase, Track n	nounte	d			drilling fluid:	hole d	iameter	: 100 mm	
ď	Irilli	ng info	rmati	on			mate	rial sub	stance				
method &	support	2 penetration	water	samples & field tests	RL (m)	depth (m)	graphic log	soil group symbol	material description SOIL NAME: plasticity or particle characteristic, colour, secondary and minor components	moisture condition	consistency / relative density	hand penetro- meter (kPa)	structure and additional observations
T	1			E			/////	CL	ASPHALT.	<wp< td=""><td>S</td><td></td><td>ASPHALT 7</td></wp<>	S		ASPHALT 7
Ш								CL	FILL: ROAD BASE.	~vvp	3		FILL
				D+E		-			CLAY : low plasticity, brown, with fine to coarse grained sand, trace fine to coarse, sub-angular to sub-rounded gravel.				RESIDUAL SOIL
			untered	E SPT		1.0 —		CI	CLAY : medium plasticity, brown, pale brown, with fine to coarse grained sand, trace fine grained, sub-rounded gravel.	~Wp	F		<u>-</u>
– AD/T	CASING-		Not Encountered	5, 7, 17 N=24		-			CLAY: medium plasticity, pale brown, grey.				- -
17:03						-							- -
19/11/2019						2.0 —							
< <drawingfile>> 19/11/2019 17:03</drawingfile>				SPT 12, 14/200mm		-	///// 		SHALE: grey, dark grey, recovered as sandy clay, estimated very low to low strength.		St - VSt		INFERRED WEATHERED - BEDROCK
Drawi				HB N=R		3.0 —			Borehole BH05 continued as cored hole				
CDF_0_9_07_LIBRARY.GLB rev.AU Log COF BOREHOLE: NON CORED SYDGE232786 (NORTH SYDNEY).GPJ <													
A A F V	e.g. 3	od auger auger hand a washb bit sho AD/T blank TC bit V bit	screwi luger ore wn by	ng*	pene	etration		ater shown	B bulk disturbed sample D disturbed sample E environmental sample SS split spoon sample	soil grou soil de ased on A sture con dry moist wet plastic l liquid lin	escriptio AS 1726 adition	n	consistency / relative density VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense

principal:

project:

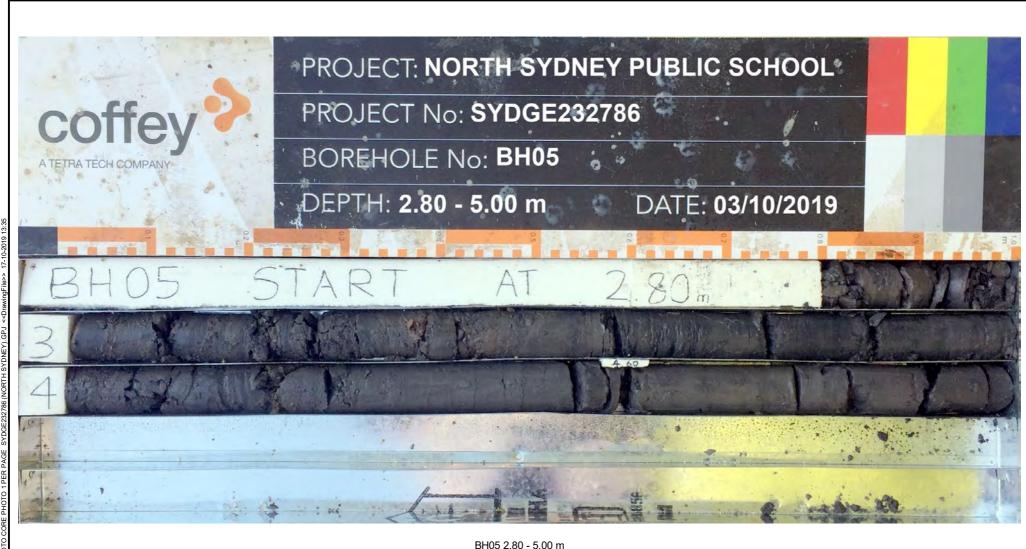
Engineering Log - Cored Borehole

NSW Department of Education

North Sydney Public School

Coffey Services Australia Pty Ltd

Borehole ID. **BH05** sheet: 2 of 2


SYDGE232786 project no.

date started: 03 Oct 2019

03 Oct 2019 date completed:

logged by: RN

loca	ation	: /	lorth	Syd	ney								checked	by: RR	
posit	tion:	Not S	pecified		SL	ırface elevation: Not	Specifie	ed				angle	e from horizo	ntal: 90°	
drill ı	mode	el: Delt	a Base,	Track	mounted dr	illing fluid:						hole	diameter : 10	00 mm	
drill	ling i	inform	ation	mate	rial substance			_				rock	mass defec		
method & support	water	RL (m)	depth (m)	graphic log	material description ROCK TYPE: grain chara colour, structure, minor co	cterisics,	weathering & alteration		stim stren & Is X= as D= diar	gth 50	samples, field tests & Is(50) (MPa) a = axial; d = diametral	core run & RQD	defect spacing (mm)	defect de (type, inclination, plana	servations and scriptions rity, roughness, coating is, other)
NMLC NMLC	Not Encountered		1.0 — 1.0 — 2.0 — 4.0 — 4.0 — 7.0 — 7.0 — 7.0 —		started coring at 2.80m SHALE: grey, dark grey, indistinct - 10°. Borehole BH05 terminated at 5.00 Target depth		MW SW				a=0.21 d=0.31			— CS, 0°, IR, RO, CN — CS, 0°, IR, RO, CN - CS, 0°, IR, RO, CN - PT, 25°, PL, SO, CN - CS, 0°, IR, RO, CN - JT, 35°, PL, SO, CN	
AS AD CB W RR	au cla wa ro ILCNI wi	uger dr aw or l ashbor ck rolle MLC c ireline ireline	rewing illing olade bit e	9 mm) (.6mm) (.5mm)	support C casing M mud N none water 10/10/12, water level on date shown water inflow complete drilling fluid loss partial drilling fluid loss water pressure test result (lugeons) for depth interval shown	no core	covered nbols indicate recovered vithdrawn	mate e mate ed	erial)		HW highly MW mode	ual soil mely we weath rately v ly weatl which A for al which m	eathered ered veathered nered teration	defect type PT parting JT joint SS shear surface SZ shear zone CO contact CS crushed seam SM seam roughness VR very rough RO rough SO smooth POL polished SL slickensided	planarity PL planar CU curved UN undulating ST stepped IR Irregular coating CN clean SN stained VN veneer CO coating

drawn		
approved		
date	17-10-2019	CO
scale	N.T.S.	A TETRA TEC
original size	A4	

CHCTIL.	NSW Departm	ent of Ed	ucation	
project:	North Sydney North	/ Public S Sydney	school	
title:	CORE PHO	OTOGRA	APH	
project no:	SYDGE232786	fig no:	FIGURE 1	rev:

APPENDIX D: LABORATORY ANALYTICAL CERTIFICATES AND CHAIN OF CUSTODY DOCUMENTS

Tetra Tech Coffey

" "

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Page of 2

1 1	TETRA TECH	60	Consigning Office:	-	Do	•							
0:		Rej	Report Results to:	10: Mathew	EW JACK	7	Mobile:			Email:	Matt	ky Locke @tetratech.com	3
Project No:		Tack No:	orces to.	ciciai. da	Con Collegal - Many de Co Hear Com	Mon	Tiolic.		Anal	Analysis Permest Section	A der	· 70~19 @tetratecn.com	13
Project Name: No	Project Name: North Sudapy Public Subsporatory:		Eu/of										_
Sampler's Name:	Jack o J		iger: Matt										
Quote number (if diff	Quote number (if different to current quoted prices):							s.					
Special Instructions:								sto					
								5			d		
Eurofins Lab Batch Ref	Sample ID	Sample Date	Time	Matrix (Soiletc)	Container Type & Preservative*	T-A-T (specify)	M8	BI			Hol	NOTES	
	HAI-0-1-0.2	10/0	A THE PARTY OF	1		5	4	, , ,					
	HAIL 0.7-0.8	1010		c		DIG	1						
	HA2_0.1-0.2	-			+		< ,	111					
	HA2_0.7.0.8						1						
	HA3-01-0.2						< (7 7					
	1						(
	חיון ביו בטיר												
	Tal												
	NAU DO TOS											כאל א ארט	-
THE REAL PROPERTY.	HA5-0.1-0.2						ر ،				4		-
	MAS-0.3-0.4						R	-			<u> </u>	Hold	
	HA5 D.8-0.9						7						
	HA6-01-0.2						1	77					
	16-6						(
	4.04.0 -7.41.			*		1	<	4	-				_
	VETINGOISHED BY					KECEIVED BY				Sample Receipt Advice: (Lab Use Only)	t Advice: (-
Name:	Date:	e 30/8/21	+	Name: AND Company:	A STATE OF THE STA		Date: 3	-4h:21 3108	1	All Samples Recieved in Good Condition All Documentation is in Proper Order	cieved in Go		
Name:	Date:	e:	+	Name:			Date:	Section 18		Samples Received Properly Chilled	ved Properl	ly Chilled	
Company:	Time	e:		Company:			Time:			Lab. Ref/Batch No.	No.	heare	
Preserved, I - Ice, ST	Preserved, I - Ice, ST - Sodium Thiosulfate, NP - No Preservative	ervative	iss Jar, V-Vi	al, Z - Ziplock ba	g, N - Nitric Acid Pres	erved, C - Hydro	ochloric Aci	Preserved, S - Sul	phuric Acid			0 50 11	

Chain of custody
Issued: 30 July 2020
UNCONTROLLED WHEN PRINTED

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Page 2 of 2

	16	Consigning Office:	ice:						
THE TOPECT	Re	Report Results to:	to:			Mobile:		Email:	@tetratech.com
	In	Invoices to:				Phone:		Email:	@tetratech.com
Project No:	Task No:						STREET, STREET	Analysis Request Section	
Project Name: North Sydney Public Schooporators:	choo boratory:								
Sampler's Name: Quote number (if different to current quoted prices):	Project Manager:	ger:							
Special Instructions:							tos		
							es	d	
Eurofins Lab Batch Ref Sample ID	Sample Date	Time	Matrix (Soiletc)	Container Type & Preservative*	T-A-T (specify)	β4	M8 BIS Ask	Hola	NOTES
HA7. 0.6-0.7			2		2				
HA7. 0.1-1.0	0/07		- (Ofd	1			
HA8-0.2-0.3						4	777		
HA8_ 6.7-0.3						7			
110						-	7 7		
77-0-4-1.0			~			7			
Rinsale	<		3		<	4	*		
RELINQUISHED BY	Section of the second				RECEI	RECEIVED BY		Sample Receipt Advice: (Lab Use Only)	ab Use Only)
Name: D. Coffey Ti	Date: 30/8/21 Time:	4	Name: GM	and and		Date:	3018 12:43	All Samples Recieved in Good Condition All Documentation is in Proper Order	od Condition
Name: D:	Date:	+	Name:			Date:		Samples Received Properly Chilled	
Company: Time: Company:	Time:		Company:			Time:		Lab. Ref/Batch No.	2011

Environment Testing

ABN: 50 005 085 521

www.eurofins.com.au

EnviroSales@eurofins.com

New Zealand

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Unit F3. Building F 16 Mars Road NATA # 1261 Site # 18217

NATA # 1261 Site # 4001 1/21 Smallwood Place NATA # 1261 Site # 20794

46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 **Auckland** 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Sample Receipt Advice

Company name:

Coffey Environments Pty Ltd NSW

Contact name:

Matthew Locke

Project name:

NORTH SYDNEY PUBLIC SCHOOL

Project ID:

Not provided

Turnaround time:

5 Day

Date/Time received **Eurofins reference**

Aug 30, 2021 12:43 PM

820974

Sample Information

A detailed list of analytes logged into our LIMS, is included in the attached summary table.

Sample Temperature of a random sample selected from the batch as recorded by Eurofins Sample Receipt:

14.1 degrees Celsius.

All samples have been received as described on the above COC.

COC has been completed correctly.

Attempt to chill was evident.

Appropriately preserved sample containers have been used.

All samples were received in good condition.

Samples have been provided with adequate time to commence analysis in accordance with the relevant

holding times.

Appropriate sample containers have been used.

Sample containers for volatile analysis received with zero headspace.

Split sample sent to requested external lab.

Some samples have been subcontracted.

N/A Custody Seals intact (if used).

Notes

TRIP (jar and bag) forwarded to ALS. HA6_0.2-0.3 (jar) received extra and placed on hold.

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Ursula Long on phone: or by email: UrsulaLong@eurofins.com

Results will be delivered electronically via email to Matthew Locke - Matthew.Locke@coffey.com.

Note: A copy of these results will also be delivered to the general Coffey Environments Pty Ltd NSW email address.

Environment Testing

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Received:

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Coffey Environments Pty Ltd NSW

Address: Level 20, Tower B, Citadel Tower 799 Pacific Highway Chatswood

NSW 2067

Project Name:

NORTH SYDNEY PUBLIC SCHOOL

Order No.:

Report #: 820974

Phone: +61 2 9406 1000

+61 2 9406 1004 Fax:

Due: Sep 6, 2021

Priority: 5 Day

Matthew Locke **Contact Name:**

Eurofins Analytical Services Manager: Ursula Long

Aug 30, 2021 12:43 PM

New Zealand

		Sa	mple Detail			Asbestos - AS4964	HOLD	Eurofins Suite B15	Moisture Set	Eurofins Suite B7
Melk	ourne Laborate	ory - NATA Site	# 1254							
Sydi	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site #	20794							
Pert	h Laboratory - I	NATA Site # 237	'36							
		y - NATA Site #	25079							
Exte	rnal Laboratory	/		,						
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID					
1	HA1_0.1-0.2	Aug 28, 2021		Soil	S21-Au58559	Х		Х	Х	Х
2	HA1_0.7-0.8	Aug 28, 2021		Soil	S21-Au58560				Х	Х
3	HA2_0.1-0.2	Aug 28, 2021		Soil	S21-Au58561	Х		Х	Х	Х
4	HA2_0.7-0.8	Aug 28, 2021		Soil	S21-Au58562				Х	Х
5	HA3_0.1-0.2	Aug 28, 2021		Soil	S21-Au58563	Х		Х	Х	Х
6	HA3_0.5-0.6	Aug 28, 2021		Soil	S21-Au58564				Х	Х
7	HA4_0.1-0.2	Aug 28, 2021		Soil	S21-Au58565	Х		Х	Х	Х
8	DUP	Aug 28, 2021		Soil	S21-Au58566	Х		Х	Х	Х
9	HA4_0.7-0.8	Aug 28, 2021		Soil	S21-Au58567				Х	Х
10	HA5_0.1-0.2	Aug 28, 2021		Soil	S21-Au58568	Х		Х	Х	X

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone: +61 3 8564 5000
NATA # 1261 Site # 1254
Phone: +61 2 54

Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Received:

Priority:

Contact Name:

Due:

 Auckland
 Christchurch

 35 O'Rorke Road
 43 Detroit Drive

 Penrose, Auckland 1061
 Rolleston, Christchurch 7675

 Phone : +64 9 526 45 51
 Phone : 0800 856 450

 IANZ # 1327
 IANZ # 1290

Aug 30, 2021 12:43 PM

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Coffey Environments Pty Ltd NSW

Address: Level

Level 20, Tower B, Citadel Tower 799 Pacific Highway

Chatswood

NSW 2067

Project Name:

NORTH SYDNEY PUBLIC SCHOOL

Order No.:

Report #: 820974

Phone: +61 2 9406 1000 **Fax:** +61 2 9406 1004

Eurofins Analytical Services Manager: Ursula Long

5 Day

Sep 6, 2021

Matthew Locke

New Zealand

Sample Detail							Asbestos - AS4964	HOLD	Eurofins Suite B15	Moisture Set	Eurofins Suite B7
	ourne Laborato										
Syd	ney Laboratory	- NATA Site # 1	8217				Х	Х	Х	Х	Х
Brisbane Laboratory - NATA Site # 20794											
Perth Laboratory - NATA Site # 23736											
Mayfield Laboratory - NATA Site # 25079											
External Laboratory											
11	HA5_0.8-0.9	Aug 28, 2021		Soil	5	S21-Au58569				Х	Х
12	HA6_0.1-0.2	Aug 28, 2021		Soil	5	S21-Au58570	Х		Х	Х	Х
13	HA6_0.4-0.5	Aug 28, 2021		Soil	5	S21-Au58571				Х	Х
14	HA7_0.1-0.2	Aug 28, 2021		Soil	5	S21-Au58572	Х		Х	Х	Х
15	HA7_0.9-1.0	Aug 28, 2021		Soil	5	S21-Au58573				Х	Х
16	HA8_0.2-0.3	Aug 28, 2021		Soil	5	S21-Au58574	Х		Х	Х	Х
17	HA8_0.7-0.8	Aug 28, 2021		Soil	5	S21-Au58575				Х	Х
18	HA9_0.2-0.3	Aug 28, 2021		Soil	5	S21-Au58576	Х		Х	Х	Х
19	HA5_0.3-0.4	Aug 28, 2021		Soil	5	S21-Au58577		Х			
20	RINSATE	Aug 28, 2021		Water	5	S21-Au58578					Х
21	HA7_0.6-0.7	Aug 28, 2021		Soil	5	S21-Au58579		Х			

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane Sydney Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Address:

Coffey Environments Pty Ltd NSW

NSW 2067

Project Name:

Level 20, Tower B, Citadel Tower 799 Pacific Highway

Chatswood

NORTH SYDNEY PUBLIC SCHOOL

Order No.: Report #:

820974

Phone: +61 2 9406 1000 Fax:

+61 2 9406 1004

Received: Aug 30, 2021 12:43 PM

Due: Sep 6, 2021 **Priority:** 5 Day

Matthew Locke **Contact Name:**

Eurofins Analytical Services Manager: Ursula Long

New Zealand

		Sa	mple Detail			Asbestos - AS4964	HOLD	Eurofins Suite B15	Moisture Set	Eurofins Suite B7
Melb	ourne Laborato	ory - NATA Site	# 1254							
Sydr	ey Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х
Brisk	oane Laborator	y - NATA Site#	20794							
Perth	Laboratory - N	NATA Site # 237	36							
Mayf	ield Laboratory	- NATA Site # :	25079							
Exte	rnal Laboratory									
22	HA9_0.9-1.0	Aug 28, 2021		Soil	S21-Se00001				Х	Х
23	HA6_0.2-0.3	Aug 28, 2021		Soil	S21-Se00002		Х			
Test	Counts					10	3	10	19	20

Certificate of Analysis

Environment Testing

Coffey Environments Pty Ltd NSW Level 20, Tower B, Citadel Tower 799 Pacific Highwa Chatswood

Chatswood NSW 2067

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025—Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: Matthew Locke
Report 820974-AID

Project Name NORTH SYDNEY PUBLIC SCHOOL

Received Date Aug 30, 2021 **Date Reported** Sep 07, 2021

Methodology:

Asbestos Fibre

Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion

staining (DS) techniques.

NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.

Unknown Mineral Fibres

Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity.

NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an

independent technique.

Subsampling Soil Samples

The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a subsampling routine based on ISO 3082:2009(E) is employed.

sampling routine based on ISO 3082:2009(E) is employed.

NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis, in accordance with AS 4964-2004.

Bonded asbestoscontaining material (ACM) The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004. NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk

NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.

Limit of Reporting

The performance limitation of the AS 4964 (2004) method for non-homogeneous samples is around 0.1 g/kg (equivalent to 0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis, this is considered to be at the nominal reporting limit of 0.01% (w/w).

The NEPM screening level of 0.001% (w/w) is intended as an on-site determination, not a laboratory Limit of Reporting (LOR), per se. Examination of a large sample size (e.g. 500 mL) may improve the likelihood of detecting asbestos, particularly AF, to aid assessment against the NEPM criteria. Gravimetric determinations to this level of accuracy are outside of AS 4964 and hence NATA Accreditation does not cover the performance of this service (non-NATA results shown with an asterisk).

NOTE: NATA News March 2014, p.7, states in relation to AS 4964: "This is a qualitative method with a nominal reporting limit of 0.01 %" and that currently in Australia "there is no validated method available for the quantification of asbestos". This report is consistent with the analytical procedures and reporting recommendations in the NEPM and the WA DoH.

Accredited for compliance with ISO/IEC 17025—Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Project Name Project ID

NORTH SYDNEY PUBLIC SCHOOL

Date Sampled Aug 28, 2021 820974-AID Report

Client Sample ID	Eurofins Sample No.	Date Sampled	Sample Description	Result
HA1_0.1-0.2	21-Au58559	Aug 28, 2021	Approximate Sample 239g Sample consisted of: Brown fine-grained clayey soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
HA2_0.1-0.2	21-Au58561	Aug 28, 2021	Approximate Sample 232g Sample consisted of: Brown fine-grained clayey soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
HA3_0.1-0.2	21-Au58563	Aug 28, 2021	Approximate Sample 217g Sample consisted of: Brown fine-grained clayey soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
HA4_0.1-0.2	21-Au58565	Aug 28, 2021	Approximate Sample 221g Sample consisted of: Brown fine-grained clayey soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
DUP	21-Au58566	Aug 28, 2021	Approximate Sample 246g Sample consisted of: Brown fine-grained clayey soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
HA5_0.1-0.2	21-Au58568	Aug 28, 2021	Approximate Sample 274g Sample consisted of: Brown coarse-grained sandy soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
HA6_0.1-0.2	21-Au58570	Aug 28, 2021	Approximate Sample 415g Sample consisted of: Brown coarse-grained soil, bitumen, organic debris and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
HA7_0.1-0.2	21-Au58572	Aug 28, 2021	Approximate Sample 238g Sample consisted of: Brown coarse-grained sandy soil, organic debris and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025—Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Client Sample ID	Eurofins Sample No.	Date Sampled	Sample Description	Result
HA8_0.2-0.3	21-Au58574	Aug 28, 2021	Sample consisted of: Brown coarse-grained sandy soil, organic debris	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
HA9_0.2-0.3	21-Au58576	Aug 28, 2021	Sample consisted of: Brown coarse-grained soil hitumen and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description **Testing Site** Extracted **Holding Time** Asbestos - LTM-ASB-8020 Sydney Sep 01, 2021 Indefinite

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Asbes

HOLL

Brisbane Sydney Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: Coffey Environments Pty Ltd NSW

Level 20, Tower B, Citadel Tower 799 Pacific Highway

Chatswood

NSW 2067

Project Name:

Address:

NORTH SYDNEY PUBLIC SCHOOL

Order No.:

Moist

Report #: 820974

Phone: +61 2 9406 1000

Fax: +61 2 9406 1004

Eurof

Received: Aug 30, 2021 12:43 PM

Sep 6, 2021 Due: **Priority:** 5 Day

Contact Name: Matthew Locke

Eurofins Analytical Services Manager: Ursula Long

		Sa	mple Detail			stos - AS4964	0	fins Suite B15	ture Set	fins Suite B7	
Melb	ourne Laborate	ory - NATA Site	# 1254								
Sydr	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Χ	Χ	
Bris	oane Laborator	y - NATA Site #	20794								
Pert	n Laboratory - N	NATA Site # 237	36								
May	ield Laboratory	- NATA Site # 2	25079								
Exte	rnal Laboratory										
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID						
1	HA1_0.1-0.2	Aug 28, 2021		Soil	S21-Au58559	Х		Χ	Χ	Χ	
2	HA1_0.7-0.8	Aug 28, 2021		Soil	S21-Au58560				Χ	Χ	
3	HA2_0.1-0.2	Aug 28, 2021		Soil	S21-Au58561	Х		Х	Χ	Χ	
4	HA2_0.7-0.8	Aug 28, 2021		Soil	S21-Au58562				Χ	Χ	
5	HA3_0.1-0.2	Aug 28, 2021		Soil	S21-Au58563	Х		Х	Χ	Χ	
6	HA3_0.5-0.6	Aug 28, 2021		Soil	S21-Au58564				Χ	Х	
7	HA4_0.1-0.2	Aug 28, 2021		Soil	S21-Au58565	Х		Х	Χ	Х	
8	DUP	Aug 28, 2021		Soil	S21-Au58566	Х		Х	Χ	Х	
9	HA4_0.7-0.8	Aug 28, 2021		Soil	S21-Au58567				Χ	Х	
10	HA5_0.1-0.2	Aug 28, 2021		Soil	S21-Au58568	Х		Χ	Χ	Х	

 Melbourne
 Sydney

 6 Monterey Road
 Unit F3, Buildin

 Dandenong South VIC 3175
 16 Mars Road

 Phone : +61 3 8564 5000
 Lane Cove We

 NATA # 1261 Site # 1254
 Phone : +61 2 **

Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Received:

Due:

Auckland Ch 35 O'Rorke Road 43 Penrose, Auckland 1061 Rc Phone : +64 9 526 45 51 Ph

Aug 30, 2021 12:43 PM

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: Coffey Environments Pty Ltd NSW

Address:

Level 20, Tower B, Citadel Tower 799 Pacific Highway

Chatswood

NSW 2067

Order No.: Report #:

820974

Phone: +61 2 9406 1000 **Fax:** +61 2 9406 1004

Priority: 5 Day
Contact Name: Matthew Locke

Eurofins Analytical Services Manager: Ursula Long

Sep 6, 2021

New Zealand

Pro	oject Name:	NORTH SYE	NEY PUBLIC	SCHOOL						
		Sa	mple Detail			Asbestos - AS4964	HOLD	Eurofins Suite B15	Moisture Set	Eurofins Suite B7
Melb	ourne Laborato	ory - NATA Site	# 1254							
Sydı	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site #	20794							
Pert	h Laboratory - N	NATA Site # 237	' 36							
May	field Laboratory	- NATA Site #	25079							
Exte	rnal Laboratory									
11	HA5_0.8-0.9	Aug 28, 2021		Soil	S21-Au58569				Х	Х
12	HA6_0.1-0.2	Aug 28, 2021		Soil	S21-Au58570	Х		Х	Х	Х
13	HA6_0.4-0.5	Aug 28, 2021		Soil	S21-Au58571				Х	Х
14	HA7_0.1-0.2	Aug 28, 2021		Soil	S21-Au58572	Х		Х	Х	Х
15	HA7_0.9-1.0	Aug 28, 2021		Soil	S21-Au58573				Х	Х
16	HA8_0.2-0.3	Aug 28, 2021		Soil	S21-Au58574	Х		Х	Х	Х
17	HA8_0.7-0.8	Aug 28, 2021		Soil	S21-Au58575				Х	Х
18	HA9_0.2-0.3	Aug 28, 2021		Soil	S21-Au58576	Х		Х	Х	Х
19	HA5_0.3-0.4	Aug 28, 2021		Soil	S21-Au58577		Х			
20	RINSATE	Aug 28, 2021		Water	S21-Au58578					Х
21	HA7_0.6-0.7	Aug 28, 2021		Soil	S21-Au58579		Х			

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane Sydney Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Auckland Christchurch 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 IANZ # 1290

43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: Coffey Environments Pty Ltd NSW

Level 20, Tower B, Citadel Tower 799 Pacific Highway

Chatswood

Address:

Project Name:

NSW 2067

NORTH SYDNEY PUBLIC SCHOOL

Order No.: Report #:

820974

Phone: +61 2 9406 1000

Fax: +61 2 9406 1004 Received: Aug 30, 2021 12:43 PM Due:

Sep 6, 2021 **Priority:** 5 Day

Contact Name: Matthew Locke

Eurofins Analytical Services Manager: Ursula Long

New Zealand

		Sa	mple Detail			Asbestos - AS4964	HOLD	Eurofins Suite B15	Moisture Set	Eurofins Suite B7
Melb	ourne Laborato	ory - NATA Site	# 1254							
Sydr	ey Laboratory	- NATA Site # 1	8217			Χ	Х	Х	Х	Х
Brist	oane Laborator	y - NATA Site #	20794							
Perti	Laboratory - N	NATA Site # 237	36							
		- NATA Site #								
	rnal Laboratory									
22	HA9_0.9-1.0	Aug 28, 2021		Soil	S21-Se00001				Х	Х
23	HA6_0.2-0.3	Aug 28, 2021		Soil	S21-Se00002		Х			
Test	Counts					10	3	10	19	20

Internal Quality Control Review and Glossary

General

- 1. QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated
- 3. Samples were analysed on an 'as received' basis.
- 4. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 5. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

Units

% w/w: weight for weight basis grams per kilogram
Filter loading: fibres/100 graticule areas

Reported Concentration: fibres/mL Flowrate: L/min

Terms

ΑF

Dry Sample is dried by heating prior to analysis

LOR Limit of Reporting
COC Chain of Custody
SRA Sample Receipt Advice

ISO International Standards Organisation

AS Australian Standards

WA DOH Reference document for the NEPM. Government of Western Australia, Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated

Sites in Western Australia (2009), including supporting document Recommended Procedures for Laboratory Analysis of Asbestos in Soil (2011)

NEPM National Environment Protection (Assessment of Site Contamination) Measure, 2013 (as amended)

ACM Asbestos Containing Materials. Asbestos contained within a non-asbestos matrix, typically presented in bonded and/or sound condition. For the purposes of the

NEPM, ACM is generally restricted to those materials that do not pass a 7mm x 7mm sieve.

Asbestos Fines. Asbestos containing materials, including friable, weathered and bonded materials, able to pass a 7mm x 7mm sieve. Considered under the NEPM as

equivalent to "non-bonded / friable".

FA

Fibrous Asbestos. Asbestos containing materials in a friable and/or severely weathered condition. For the purposes of the NEPM, FA is generally restricted to those

materials that do not pass a 7mm x 7mm sieve.

Friable Asbestos-containing materials of any size that may be broken or crumbled by hand pressure. For the purposes of the NEPM, this includes both AF and FA. It is

outside of the laboratory's remit to assess degree of friability

Trace Analysis Analytical procedure used to detect the presence of respirable fibres in the matrix.

Page 8 of 9

Comments

Sample Integrity

Custody Seals Intact (if used)

Attempt to Chill was evident

Yes
Sample correctly preserved

Appropriate sample containers have been used

Yes
Sample containers for volatile analysis received with minimal headspace

Yes
Samples received within HoldingTime

Yes
Some samples have been subcontracted

No

Qualifier Codes/Comments

Code Description N/A Not applicable

Asbestos Counter/Identifier:

Chamath JHM Annakkage Senior Analyst-Asbestos (NSW)

Authorised by:

Sayeed Abu Senior Analyst-Asbestos (NSW)

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please $\underline{\text{click here.}}$

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Coffey Environments Pty Ltd NSW Level 20, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: Matthew Locke

Report 820974-S

Project name NORTH SYDNEY PUBLIC SCHOOL

Received Date Aug 30, 2021

Client Sample ID			HA1_0.1-0.2	HA1_0.7-0.8	G01HA2_0.1-0.2	HA2_0.7-0.8
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Au58559	S21-Au58560	S21-Au58561	S21-Au58562
Date Sampled			Aug 28, 2021	Aug 28, 2021	Aug 28, 2021	Aug 28, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons	ļ.	•				
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	36	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	88	< 50	200	< 50
TRH C29-C36	50	mg/kg	55	< 50	130	< 50
TRH C10-C36 (Total)	50	mg/kg	179	< 50	330	< 50
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	120	< 100	290	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	120	< 100	290	< 100
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	102	110	105	90
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	0.7	< 0.5	< 4	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	1.0	0.6	< 4	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.3	1.2	< 4	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 4	< 0.5
Benzo(a)pyrene	0.5	mg/kg	0.6	< 0.5	1.9	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	1.2	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 2	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	0.5	< 0.5	2.0	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 4	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	0.8	< 0.5	3.9	< 0.5

Client Sample ID			HA1_0.1-0.2	HA1_0.7-0.8	^{G01} HA2_0.1-0.2	HA2_0.7-0.8
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Au58559	S21-Au58560	S21-Au58561	S21-Au58562
Date Sampled			Aug 28, 2021	Aug 28, 2021	Aug 28, 2021	Aug 28, 2021
Test/Reference	LOR	Unit		3 3, 3	3 3,	3 ,
Polycyclic Aromatic Hydrocarbons	1 2011					
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	1.2	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	2.0	< 0.5
Pyrene	0.5	mg/kg	0.8	< 0.5	3.8	< 0.5
Total PAH*	0.5	mg/kg	2.7	< 0.5	16	< 0.5
2-Fluorobiphenyl (surr.)	1	%	107	72	68	101
p-Terphenyl-d14 (surr.)	1	%	108	97	60	100
Organochlorine Pesticides	· '					
Chlordanes - Total	0.1	mg/kg	< 0.1	-	< 0.1	-
4.4'-DDD	0.05	mg/kg	< 0.05	-	< 0.05	-
4.4'-DDE	0.05	mg/kg	< 0.05	-	< 0.05	-
4.4'-DDT	0.05	mg/kg	< 0.05	-	< 0.05	-
a-HCH	0.05	mg/kg	< 0.05	_	< 0.05	-
Aldrin	0.05	mg/kg	< 0.05	-	< 0.05	-
b-HCH	0.05	mg/kg	< 0.05	-	< 0.05	-
d-HCH	0.05	mg/kg	< 0.05	-	< 0.05	-
Dieldrin	0.05	mg/kg	0.09	-	< 0.05	-
Endosulfan I	0.05	mg/kg	< 0.05	-	< 0.05	-
Endosulfan II	0.05	mg/kg	< 0.05	-	< 0.05	-
Endosulfan sulphate	0.05	mg/kg	< 0.05	-	< 0.05	-
Endrin .	0.05	mg/kg	< 0.05	-	< 0.05	-
Endrin aldehyde	0.05	mg/kg	0.07	-	< 0.05	-
Endrin ketone	0.05	mg/kg	< 0.05	-	< 0.05	-
g-HCH (Lindane)	0.05	mg/kg	< 0.05	-	< 0.05	-
Heptachlor	0.05	mg/kg	< 0.05	-	< 0.05	-
Heptachlor epoxide	0.05	mg/kg	< 0.05	-	< 0.05	-
Hexachlorobenzene	0.05	mg/kg	< 0.05	-	< 0.05	-
Methoxychlor	0.05	mg/kg	< 0.05	-	< 0.05	-
Toxaphene	0.5	mg/kg	< 0.5	-	< 0.5	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	0.09	-	< 0.05	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	-	< 0.05	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	0.16	-	< 0.1	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	-	< 0.1	-
Dibutylchlorendate (surr.)	1	%	Q09INT	-	Q09INT	-
Tetrachloro-m-xylene (surr.)	1	%	99	-	72	-
Organophosphorus Pesticides						
Azinphos-methyl	0.2	mg/kg	< 0.2	-	< 0.2	-
Bolstar	0.2	mg/kg	< 0.2	-	< 0.2	-
Chlorfenvinphos	0.2	mg/kg	< 0.2	-	< 0.2	-
Chlorpyrifos	0.2	mg/kg	< 0.2	-	< 0.2	-
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	-	< 0.2	-
Coumaphos	2	mg/kg	< 2	-	< 2	-
Demeton-S	0.2	mg/kg	< 0.2	-	< 0.2	-
Demeton-O	0.2	mg/kg	< 0.2	-	< 0.2	-
Diazinon	0.2	mg/kg	< 0.2	-	< 0.2	-
Dichlorvos	0.2	mg/kg	< 0.2	-	< 0.2	-
Dimethoate	0.2	mg/kg	< 0.2	-	< 0.2	-
Disulfoton	0.2	mg/kg	< 0.2	-	< 0.2	-

Client Sample ID			HA1_0.1-0.2	HA1_0.7-0.8	G01HA2_0.1-0.2	HA2_0.7-0.8
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Au58559	S21-Au58560	S21-Au58561	S21-Au58562
Date Sampled			Aug 28, 2021	Aug 28, 2021	Aug 28, 2021	Aug 28, 2021
Test/Reference	LOR	Unit				
Organophosphorus Pesticides	ļ -					
EPN	0.2	mg/kg	< 0.2	-	< 0.2	-
Ethion	0.2	mg/kg	< 0.2	-	< 0.2	-
Ethoprop	0.2	mg/kg	< 0.2	-	< 0.2	-
Ethyl parathion	0.2	mg/kg	< 0.2	-	< 0.2	-
Fenitrothion	0.2	mg/kg	< 0.2	-	< 0.2	-
Fensulfothion	0.2	mg/kg	< 0.2	-	< 0.2	_
Fenthion	0.2	mg/kg	< 0.2	-	< 0.2	_
Malathion	0.2	mg/kg	< 0.2	-	< 0.2	_
Merphos	0.2	mg/kg	< 0.2	-	< 0.2	_
Methyl parathion	0.2	mg/kg	< 0.2	-	< 0.2	-
Mevinphos	0.2	mg/kg	< 0.2	-	< 0.2	_
Monocrotophos	2	mg/kg	< 2	-	< 2	_
Naled	0.2	mg/kg	< 0.2	-	< 0.2	_
Omethoate	2	mg/kg	< 2	_	< 2	_
Phorate	0.2	mg/kg	< 0.2	-	< 0.2	_
Pirimiphos-methyl	0.2	mg/kg	< 0.2	-	< 0.2	-
Pyrazophos	0.2	mg/kg	< 0.2	-	< 0.2	-
Ronnel	0.2	mg/kg	< 0.2	_	< 0.2	_
Terbufos	0.2	mg/kg	< 0.2	-	< 0.2	-
Tetrachlorvinphos	0.2	mg/kg	< 0.2	-	< 0.2	-
Tokuthion	0.2	mg/kg	< 0.2	-	< 0.2	-
Trichloronate	0.2	mg/kg	< 0.2	-	< 0.2	-
Triphenylphosphate (surr.)	1	%	146	-	Q09INT	-
Polychlorinated Biphenyls	!					
Aroclor-1016	0.1	mg/kg	< 0.1	-	< 0.1	_
Aroclor-1221	0.1	mg/kg	< 0.1	-	< 0.1	-
Aroclor-1232	0.1	mg/kg	< 0.1	-	< 0.1	-
Aroclor-1242	0.1	mg/kg	< 0.1	-	< 0.1	_
Aroclor-1248	0.1	mg/kg	< 0.1	-	< 0.1	_
Aroclor-1254	0.1	mg/kg	< 0.1		< 0.1	-
Aroclor-1260	0.1	mg/kg	< 0.1		< 0.1	-
Total PCB*	0.1	mg/kg	< 0.1		< 0.1	-
Dibutylchlorendate (surr.)	1	%	Q09INT		Q09INT	-
Tetrachloro-m-xylene (surr.)	1	%	99	-	72	-
Heavy Metals	<u>'</u>					
Arsenic	2	mg/kg	7.1	15	16	11
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	9.8	13	29	7.6
Copper	5	mg/kg	26	22	76	15
Lead	5	mg/kg	46	20	100	12
Mercury	0.1	mg/kg	< 0.1	< 0.1	0.2	< 0.1
Nickel	5	mg/kg	< 5	< 5	22	< 5
Zinc	5	mg/kg	42	8.2	110	5.8
		,g/ng	1.2	J.2		5.5
% Moisture	1	%	23	19	20	23

					T _{aa} ,	
Client Sample ID			G01HA3_0.1-0.2		G01HA4_0.1-0.2	G01DUP
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Au58563	S21-Au58564	S21-Au58565	S21-Au58566
Date Sampled			Aug 28, 2021	Aug 28, 2021	Aug 28, 2021	Aug 28, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	130	< 50	140	140
TRH C29-C36	50	mg/kg	120	< 50	130	130
TRH C10-C36 (Total)	50	mg/kg	250	< 50	270	270
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	220	< 100	230	230
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	220	< 100	230	230
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	109	100	106	97
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	1.0	< 0.5	< 2	< 2
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	1.3	0.6	< 2	< 2
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.6	1.2	< 2	< 2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 1	< 0.5	< 1	< 2
Benzo(a)pyrene	0.5	mg/kg	0.8	< 0.5	0.9	1.0
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	0.7	< 0.5	0.8	0.9
Benzo(g.h.i)perylene	0.5	mg/kg	< 1	< 0.5	< 1	< 1
Benzo(k)fluoranthene	0.5	mg/kg	1.0	< 0.5	1.0	1.0
Chrysene	0.5	mg/kg	< 1	< 0.5	< 2	< 2
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	1.1	< 0.5	1.7	2.0
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	0.5	< 0.5	0.6	0.6
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	0.5	< 0.5	0.9	1.1
Pyrene	0.5	mg/kg	1.3	< 0.5	1.6	1.9
Total PAH*	0.5	mg/kg	5.9	< 0.5	7.5	8.5
2-Fluorobiphenyl (surr.)	1	%	85	95	90	84
p-Terphenyl-d14 (surr.)	1	%	77	94	80	75
Organochlorine Pesticides	1					
Chlordanes - Total	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05

Client Sample ID			^{G01} HA3_0.1-0.2	HA3_0.5-0.6	G01HA4_0.1-0.2	G01DUP
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Au58563	S21-Au58564	S21-Au58565	S21-Au58566
Date Sampled			Aug 28, 2021	Aug 28, 2021	Aug 28, 2021	Aug 28, 2021
•	LOD	1.1:-	Aug 20, 2021	Aug 20, 2021	Aug 20, 2021	Aug 20, 2021
Test/Reference	LOR	Unit				
Organochlorine Pesticides		T ,,				
a-HCH	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
b-HCH	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
d-HCH	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
Dieldrin 5 de selfe et le	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
Heptachlor enevide	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
Heptachlor epoxide Hexachlorobenzene	0.05	mg/kg	< 0.05 < 0.05	-	< 0.05	< 0.05 < 0.05
	0.05	mg/kg		-	< 0.05	
Methoxychlor	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
Toxaphene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05 < 0.1	-	< 0.05 < 0.1	< 0.05 < 0.1
Vic EPA IWRG 621 OCP (Total)* Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	mg/kg %	58	-	62	61
Tetrachloro-m-xylene (surr.)	1	%	88	-	97	82
Organophosphorus Pesticides	1	70	00	-	91	02
<u> </u>	0.0		.00		.00	.00
Azinphos-methyl	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
Bolstar	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
Chlorenvirtee	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
Chloropyrifos	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
Coumaphos Domaton S	2	mg/kg	< 2	-	< 2	< 2
Demeton-S	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
Demeton-O	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
Diazinon Diablemes	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
Dichlorvos	0.2	mg/kg	< 0.2		< 0.2	< 0.2
Dimethoate	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
Disulfoton EPN	0.2	mg/kg	< 0.2 < 0.2	-	< 0.2 < 0.2	< 0.2 < 0.2
Ethion	0.2	mg/kg mg/kg	< 0.2	-	< 0.2	< 0.2
Ethoprop	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
Etnoprop Ethyl parathion	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
Ethyl parathlon Fenitrothion	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
Fensulfothion	0.2	mg/kg	< 0.2	_	< 0.2	< 0.2
Fenthion	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
Malathion	0.2		< 0.2		< 0.2	< 0.2
Merphos	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
Methyl parathion	0.2	mg/kg mg/kg	< 0.2	-	< 0.2	< 0.2
Mevinphos	0.2		< 0.2	-	< 0.2	< 0.2
Monocrotophos	2	mg/kg	< 0.2		< 0.2	< 0.2
Naled	0.2	mg/kg mg/kg	< 0.2	-	< 0.2	< 0.2

Client Sample ID			G01HA3_0.1-0.2	HA3_0.5-0.6	G01HA4_0.1-0.2	G01 DUP
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Au58563	S21-Au58564	S21-Au58565	S21-Au58566
Date Sampled			Aug 28, 2021	Aug 28, 2021	Aug 28, 2021	Aug 28, 2021
Test/Reference	LOR	Unit				
Organophosphorus Pesticides	•	•				
Omethoate	2	mg/kg	< 2	-	< 2	< 2
Phorate	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
Pirimiphos-methyl	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
Pyrazophos	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
Ronnel	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
Terbufos	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
Tetrachlorvinphos	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
Tokuthion	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
Trichloronate	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
Triphenylphosphate (surr.)	1	%	50	-	54	57
Polychlorinated Biphenyls						
Aroclor-1016	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Aroclor-1221	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Aroclor-1232	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Aroclor-1242	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Aroclor-1248	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Aroclor-1254	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Aroclor-1260	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Total PCB*	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	58	-	62	61
Tetrachloro-m-xylene (surr.)	1	%	88	-	97	82
Heavy Metals						
Arsenic	2	mg/kg	6.4	5.5	13	7.7
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	16	9.3	18	17
Copper	5	mg/kg	30	16	26	33
Lead	5	mg/kg	51	19	180	200
Mercury	0.1	mg/kg	< 0.1	< 0.1	0.2	0.3
Nickel	5	mg/kg	6.7	< 5	5.5	7.3
Zinc	5	mg/kg	74	7.8	130	150
% Moisture	1	%	24	20	16	19

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			HA4_0.7-0.8 Soil S21-Au58567 Aug 28, 2021	G01HA5_0.1-0.2 Soil S21-Au58568 Aug 28, 2021	HA5_0.8-0.9 Soil S21-Au58569 Aug 28, 2021	G01HA6_0.1-0.2 Soil S21-Au58570 Aug 28, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 100
TRH C15-C28	50	mg/kg	< 50	180	< 50	< 250
TRH C29-C36	50	mg/kg	< 50	180	< 50	340
TRH C10-C36 (Total)	50	mg/kg	< 50	360	< 50	340
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 250

Olivert Occurred ID				C01		C01	
Client Sample ID			HA4_0.7-0.8	G01HA5_0.1-0.2	HA5_0.8-0.9	G01HA6_0.1-0.2	
Sample Matrix			Soil	Soil	Soil	Soil	
Eurofins Sample No.			S21-Au58567	S21-Au58568	S21-Au58569	S21-Au58570	
Date Sampled			Aug 28, 2021	Aug 28, 2021	Aug 28, 2021	Aug 28, 2021	
Test/Reference	LOR	Unit					
Total Recoverable Hydrocarbons							
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 250	
TRH >C16-C34	100	mg/kg	< 100	310	< 100	< 500	
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 500	
TRH >C10-C40 (total)*	100	mg/kg	< 100	310	< 100	< 500	
ВТЕХ							
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2	
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3	
4-Bromofluorobenzene (surr.)	1	%	98	103	110	104	
Polycyclic Aromatic Hydrocarbons							
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 2	< 0.5	< 0.5	
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	< 2	0.6	0.6	
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	2.1	1.2	1.2	
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 2	< 0.5	< 0.5	
Benzo(a)pyrene	0.5	mg/kg	< 0.5	1.1	< 0.5	< 0.5	
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	0.9	< 0.5	< 0.5	
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 1	< 0.5	< 0.5	
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	1.1	< 0.5	< 0.5	
Chrysene	0.5	mg/kg	< 0.5	< 2	< 0.5	< 0.5	
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Fluoranthene	0.5	mg/kg	< 0.5	3.1	< 0.5	< 0.5	
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	0.6	< 0.5	< 0.5	
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Phenanthrene	0.5	mg/kg	< 0.5	2.7	< 0.5	< 0.5	
Pyrene	0.5	mg/kg	< 0.5	2.9	< 0.5	< 0.5	
Total PAH*	0.5	mg/kg	< 0.5	12.4	< 0.5	< 0.5	
2-Fluorobiphenyl (surr.)	1	%	56	85	104	81	
p-Terphenyl-d14 (surr.)	1	%	54	75	108	61	
Organochlorine Pesticides							
Chlordanes - Total	0.1	mg/kg	-	< 0.1	-	< 1	
4.4'-DDD	0.05	mg/kg	-	< 0.05	-	< 0.5	
4.4'-DDE	0.05	mg/kg	-	< 0.05	-	< 0.5	
4.4'-DDT	0.05	mg/kg	-	< 0.05	-	< 0.5	
а-НСН	0.05	mg/kg	-	< 0.05	-	< 0.5	
Aldrin	0.05	mg/kg	-	< 0.05	-	< 0.5	
b-HCH	0.05	mg/kg	-	< 0.05	-	< 0.5	
d-HCH	0.05	mg/kg	-	< 0.05	-	< 0.5	
Dieldrin	0.05	mg/kg	-	< 0.05	-	< 0.5	
Endosulfan I	0.05	mg/kg	-	< 0.05	-	< 0.5	
Endosulfan II	0.05	mg/kg	-	< 0.05	-	< 0.5	
Endosulfan sulphate	0.05	mg/kg	-	< 0.05	-	< 0.5	
Endrin	0.05	mg/kg	-	< 0.05	-	< 0.5	

Client Sample ID			HA4_0.7-0.8	^{G01} HA5_0.1-0.2	HA5_0.8-0.9	^{G01} HA6_0.1-0.2	
Sample Matrix			Soil	Soil	Soil	Soil	
Eurofins Sample No.			S21-Au58567	S21-Au58568	S21-Au58569	S21-Au58570	
Date Sampled			Aug 28, 2021	Aug 28, 2021	Aug 28, 2021	Aug 28, 2021	
Test/Reference	LOR	Unit					
Organochlorine Pesticides		, O					
Endrin aldehyde	0.05	mg/kg	-	< 0.05	_	< 0.5	
Endrin ketone	0.05	mg/kg	_	< 0.05	_	< 0.5	
g-HCH (Lindane)	0.05	mg/kg	-	< 0.05	_	< 0.5	
Heptachlor	0.05	mg/kg	-	< 0.05	_	< 0.5	
Heptachlor epoxide	0.05	mg/kg	-	< 0.05	-	< 0.5	
Hexachlorobenzene	0.05	mg/kg	-	< 0.05	-	< 0.5	
Methoxychlor	0.05	mg/kg	-	< 0.05	_	< 0.5	
Toxaphene	0.5	mg/kg	-	< 0.5	-	< 10	
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	< 0.05	-	< 0.5	
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	< 0.05	-	< 0.5	
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	< 0.1	-	< 1	
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	< 0.1	-	< 1	
Dibutylchlorendate (surr.)	1	%	-	95	-	50	
Tetrachloro-m-xylene (surr.)	1	%	-	66	-	68	
Organophosphorus Pesticides							
Azinphos-methyl	0.2	mg/kg	-	< 0.2	-	< 0.5	
Bolstar	0.2	mg/kg	-	< 0.2	-	< 0.5	
Chlorfenvinphos	0.2	mg/kg	-	< 0.2	-	< 0.5	
Chlorpyrifos	0.2	mg/kg	-	< 0.2	-	< 0.5	
Chlorpyrifos-methyl	0.2	mg/kg	-	< 0.2	-	< 0.5	
Coumaphos	2	mg/kg	-	< 2	-	< 5	
Demeton-S	0.2	mg/kg	-	< 0.2	-	< 0.5	
Demeton-O	0.2	mg/kg	-	< 0.2	-	< 0.5	
Diazinon	0.2	mg/kg	-	< 0.2	-	< 0.5	
Dichlorvos	0.2	mg/kg	-	< 0.2	-	< 0.5	
Dimethoate	0.2	mg/kg	-	< 0.2	-	< 0.5	
Disulfoton	0.2	mg/kg	-	< 0.2	-	< 0.5	
EPN	0.2	mg/kg	-	< 0.2	-	< 0.5	
Ethion	0.2	mg/kg	-	< 0.2	-	< 0.5	
Ethoprop	0.2	mg/kg	-	< 0.2	-	< 0.5	
Ethyl parathion	0.2	mg/kg	-	< 0.2	-	< 0.5	
Fenitrothion	0.2	mg/kg	-	< 0.2	-	< 0.5	
Fensulfothion	0.2	mg/kg	-	< 0.2	-	< 0.5	
Fenthion	0.2	mg/kg	-	< 0.2	-	< 0.5	
Malathion	0.2	mg/kg	-	< 0.2	-	< 0.5	
Merphos	0.2	mg/kg	-	< 0.2	-	< 0.5	
Methyl parathion	0.2	mg/kg	-	< 0.2	-	< 0.5	
Mevinphos	0.2	mg/kg	-	< 0.2	-	< 0.5	
Monocrotophos	2	mg/kg	-	< 2	-	< 5	
Naled	0.2	mg/kg	-	< 0.2	-	< 0.5	
Omethoate	2	mg/kg	-	< 2	-	< 5	
Phorate District has mostly decorated.	0.2	mg/kg	-	< 0.2	-	< 0.5	
Pirimiphos-methyl	0.2	mg/kg	-	< 0.2	-	< 0.5	
Pyrazophos	0.2	mg/kg	-	< 0.2	-	< 0.5	
Ronnel	0.2	mg/kg	-	< 0.2	-	< 0.5	
Terbufos Tetrachloruinahos	0.2	mg/kg	-	< 0.2	-	< 0.5	
Tetrachlorvinphos Tokuthion	0.2	mg/kg	-	< 0.2	-	< 0.5	
Tokuthion Trickloropato	0.2	mg/kg	-	< 0.2	-	< 0.5	
Trichloronate Triphenylphosphate (surr.)	0.2	mg/kg %	-	< 0.2 80	-	< 0.5 Q09INT	

Client Sample ID			HA4_0.7-0.8	G01HA5_0.1-0.2	HA5_0.8-0.9	G01HA6_0.1-0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Au58567	S21-Au58568	S21-Au58569	S21-Au58570
Date Sampled			Aug 28, 2021	Aug 28, 2021	Aug 28, 2021	Aug 28, 2021
Test/Reference	LOR	Unit				
Polychlorinated Biphenyls						
Aroclor-1016	0.1	mg/kg	-	< 0.1	-	< 1
Aroclor-1221	0.1	mg/kg	-	< 0.1	-	< 1
Aroclor-1232	0.1	mg/kg	-	< 0.1	-	< 1
Aroclor-1242	0.1	mg/kg	-	< 0.1	-	< 1
Aroclor-1248	0.1	mg/kg	-	< 0.1	-	< 1
Aroclor-1254	0.1	mg/kg	-	< 0.1	-	< 1
Aroclor-1260	0.1	mg/kg	-	< 0.1	-	< 1
Total PCB*	0.1	mg/kg	-	< 0.1	-	< 1
Dibutylchlorendate (surr.)	1	%	-	95	-	50
Tetrachloro-m-xylene (surr.)	1	%	-	66	-	68
Heavy Metals						
Arsenic	2	mg/kg	16	5.4	26	2.6
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	9.3	9.0	8.7	12
Copper	5	mg/kg	16	16	7.9	54
Lead	5	mg/kg	23	46	20	16
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	< 5	< 5	< 5	11
Zinc	5	mg/kg	8.2	47	< 5	71
% Moisture	1	%	19	12	15	20

			Tan.	1		T	
Client Sample ID			_	G01HA7_0.1-0.2	HA7_0.9-1.0	G01HA8_0.2-0.3	
Sample Matrix			Soil	Soil	Soil	Soil	
Eurofins Sample No.			S21-Au58571	S21-Au58572	S21-Au58573	S21-Au58574	
Date Sampled			Aug 28, 2021	Aug 28, 2021	Aug 28, 2021	Aug 28, 2021	
Test/Reference	LOR	Unit					
Total Recoverable Hydrocarbons							
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20	
TRH C10-C14	20	mg/kg	< 100	< 20	25	< 100	
TRH C15-C28	50	mg/kg	< 250	200	130	330	
TRH C29-C36	50	mg/kg	340	220	130	380	
TRH C10-C36 (Total)	50	mg/kg	340	420	285	710	
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20	
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20	
TRH >C10-C16	50	mg/kg	< 250	< 50	< 50	< 250	
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 250	< 50	< 50	< 250	
TRH >C16-C34	100	mg/kg	< 500	350	210	590	
TRH >C34-C40	100	mg/kg	< 500	< 100	< 100	< 500	
TRH >C10-C40 (total)*	100	mg/kg	< 500	350	210	590	
BTEX							
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2	
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3	
4-Bromofluorobenzene (surr.)	1	%	109	98	89	95	

Client Sample ID			G01HA6_0.4-0.5	G01HA7_0.1-0.2	HA7_0.9-1.0	G01HA8_0.2-0.3
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Au58571	S21-Au58572	S21-Au58573	S21-Au58574
Date Sampled			Aug 28, 2021	Aug 28, 2021	Aug 28, 2021	Aug 28, 2021
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons		•				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 1	0.6	< 1
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	1.2	0.9	1.3
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.5	1.2	1.6
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 1	0.5	< 1
Benzo(a)pyrene	0.5	mg/kg	< 0.5	0.7	0.5	0.8
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	0.5	< 0.5	0.6
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 1	< 0.5	< 1
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	0.8	0.5	0.9
Chrysene	0.5	mg/kg	< 0.5	< 1	0.6	< 1
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	1.4	1.0	0.9
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	0.6	0.7	< 0.5
Pyrene	0.5	mg/kg	< 0.5	1.3	1.0	1.0
Total PAH*	0.5	mg/kg	< 0.5	5.3	4.8	4.2
2-Fluorobiphenyl (surr.)	1	%	73	88	83	85
p-Terphenyl-d14 (surr.)	1	%	54	84	80	77
Organochlorine Pesticides	<u> </u>					
Chlordanes - Total	0.1	mg/kg	-	< 0.1	-	< 1
4.4'-DDD	0.05	mg/kg	-	< 0.05	-	< 0.5
4.4'-DDE	0.05	mg/kg	-	< 0.05	-	< 0.5
4.4'-DDT	0.05	mg/kg	-	< 0.05	-	< 0.5
a-HCH	0.05	mg/kg	-	< 0.05	-	< 0.5
Aldrin	0.05	mg/kg	-	< 0.05	-	< 0.5
b-HCH	0.05	mg/kg	-	< 0.05	-	< 0.5
d-HCH	0.05	mg/kg	-	< 0.05	-	< 0.5
Dieldrin	0.05	mg/kg	-	< 0.05	-	< 0.5
Endosulfan I	0.05	mg/kg	-	< 0.05	-	< 0.5
Endosulfan II	0.05	mg/kg	-	< 0.05	-	< 0.5
Endosulfan sulphate	0.05	mg/kg	-	< 0.05	-	< 0.5
Endrin	0.05	mg/kg	-	< 0.05	-	< 0.5
Endrin aldehyde	0.05	mg/kg	-	< 0.05	-	< 0.5
Endrin ketone	0.05	mg/kg	-	< 0.05	-	< 0.5
g-HCH (Lindane)	0.05	mg/kg	-	< 0.05	-	< 0.5
Heptachlor enovide	0.05 0.05	mg/kg	<u> </u>	< 0.05 < 0.05	-	< 0.5 < 0.5
Heptachlor epoxide Hexachlorobenzene	0.05	mg/kg mg/kg	<u> </u>	< 0.05	-	< 0.5
Methoxychlor	0.05	mg/kg	-	< 0.05	_	< 0.5
Toxaphene	0.05	mg/kg	<u> </u>	< 0.05	-	< 10
Aldrin and Dieldrin (Total)*	0.05	mg/kg		< 0.05		< 0.5
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	< 0.05		< 0.5
Vic EPA IWRG 621 OCP (Total)*	0.05	mg/kg	-	< 0.05		< 1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	< 0.1	_	< 1
Dibutylchlorendate (surr.)	1	%	_	117	_	Q09INT
Tetrachloro-m-xylene (surr.)	1	%	-	74	-	78

Client Commis ID			6011140 0 4 0 5	601114 - 0.4.0.0		6011140 0 0 0 0	
Client Sample ID			G01HA6_0.4-0.5	G01HA7_0.1-0.2	HA7_0.9-1.0	G01HA8_0.2-0.3	
Sample Matrix			Soil	Soil Soil		Soil	
Eurofins Sample No.			S21-Au58571	S21-Au58572	S21-Au58573	S21-Au58574	
Date Sampled			Aug 28, 2021	Aug 28, 2021	Aug 28, 2021	Aug 28, 2021	
Test/Reference	LOR	Unit					
Organophosphorus Pesticides							
Azinphos-methyl	0.2	mg/kg	=	< 0.2	-	< 0.5	
Bolstar	0.2	mg/kg	=	< 0.2	-	< 0.5	
Chlorfenvinphos	0.2	mg/kg	-	< 0.2	-	< 0.5	
Chlorpyrifos	0.2	mg/kg	-	< 0.2	-	< 0.5	
Chlorpyrifos-methyl	0.2	mg/kg	-	< 0.2	-	< 0.5	
Coumaphos	2	mg/kg	-	< 2	-	< 5	
Demeton-S	0.2	mg/kg	-	< 0.2	-	< 0.5	
Demeton-O	0.2	mg/kg	-	< 0.2	-	< 0.5	
Diazinon	0.2	mg/kg	-	< 0.2	-	< 0.5	
Dichlorvos	0.2	mg/kg	-	< 0.2	-	< 0.5	
Dimethoate	0.2	mg/kg	-	< 0.2	-	< 0.5	
Disulfoton	0.2	mg/kg	-	< 0.2	-	< 0.5	
EPN	0.2	mg/kg	-	< 0.2	-	< 0.5	
Ethion	0.2	mg/kg	-	< 0.2	-	< 0.5	
Ethoprop	0.2	mg/kg	-	< 0.2	_	< 0.5	
Ethyl parathion	0.2	mg/kg	_	< 0.2	_	< 0.5	
Fenitrothion	0.2	mg/kg	_	< 0.2	_	< 0.5	
Fensulfothion	0.2	mg/kg	_	< 0.2	_	< 0.5	
Fenthion	0.2	mg/kg	_	< 0.2	_	< 0.5	
Malathion	0.2	mg/kg	_	< 0.2	_	< 0.5	
Merphos	0.2	mg/kg	_	< 0.2	_	< 0.5	
Methyl parathion	0.2	mg/kg	-	< 0.2	_	< 0.5	
Mevinphos	0.2	mg/kg	-	< 0.2	_	< 0.5	
Monocrotophos	2	mg/kg	_	< 2	_	< 5	
Naled	0.2	mg/kg	-	< 0.2	_	< 0.5	
Omethoate	2	mg/kg	-	< 2	_	< 5	
Phorate	0.2	mg/kg	-	< 0.2	_	< 0.5	
Pirimiphos-methyl	0.2	mg/kg	-	< 0.2	_	< 0.5	
Pyrazophos	0.2	mg/kg	-	< 0.2	_	< 0.5	
Ronnel	0.2	ma/ka		< 0.2		< 0.5	
Terbufos	0.2	3 3	-	< 0.2	-	< 0.5	
Tetrachlorvinphos	0.2	mg/kg mg/kg	-	< 0.2	-	< 0.5	
Tokuthion	0.2			< 0.2		< 0.5	
		mg/kg	-		-		
Trichloronate	0.2	mg/kg	-	< 0.2	-	< 0.5 Q09INT	
Triphenylphosphate (surr.)	1	%	-	88	-	IINI	
Polychlorinated Biphenyls				0.4		+ ,	
Aroclor-1016	0.1	mg/kg	-	< 0.1	-	< 1	
Aroclor-1221	0.1	mg/kg	-	< 0.1	-	< 1	
Aroclor-1232	0.1	mg/kg	-	< 0.1	-	< 1	
Aroclor-1242	0.1	mg/kg	-	< 0.1	-	< 1	
Aroclor-1248	0.1	mg/kg	-	< 0.1	-	< 1	
Aroclor-1254	0.1	mg/kg	-	< 0.1	-	< 1	
Aroclor-1260	0.1	mg/kg	-	< 0.1	-	< 1	
Total PCB*	0.1	mg/kg	-	< 0.1	-	< 1	
Dibutylchlorendate (surr.)	1	%	-	117	-	Q09INT	
Tetrachloro-m-xylene (surr.)	1	%	-	74	-	78	

Client Sample ID Sample Matrix Eurofins Sample No.			G01HA6_0.4-0.5 Soil S21-Au58571	Soil S21-Au58572	HA7_0.9-1.0 Soil S21-Au58573	G01HA8_0.2-0.3 Soil S21-Au58574
Date Sampled	1.05		Aug 28, 2021	Aug 28, 2021	Aug 28, 2021	Aug 28, 2021
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic	2	mg/kg	4.2	7.7	140	4.2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	1.1	< 0.4
Chromium	5	mg/kg	16	15	21	14
Copper	5	mg/kg	31	45	78	41
Lead	5	mg/kg	27	61	190	110
Mercury	0.1	mg/kg	< 0.1	0.1	0.4	0.1
Nickel	5	mg/kg	13	7.1	13	7.2
Zinc	5	mg/kg	45	110	870	160
% Moisture	1	%	12	22	29	14

Client Sample ID			HA8_0.7-0.8	HA9_0.2-0.3	HA9_0.9-1.0
Sample Matrix			Soil	Soil	Soil
Eurofins Sample No.			S21-Au58575	S21-Au58576	S21-Se00001
Date Sampled			Aug 28, 2021	Aug 28, 2021	Aug 28, 2021
Test/Reference	LOR	Unit			
Total Recoverable Hydrocarbons					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	51	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	51	< 50
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100
ВТЕХ					
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	100	109	83
Polycyclic Aromatic Hydrocarbons					
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5

Client Sample ID			HA8_0.7-0.8	НАО О 2 О 2	HAO 0040
Sample Matrix			Soil	HA9_0.2-0.3 Soil	HA9_0.9-1.0 Soil
Eurofins Sample No.			S21-Au58575	S21-Au58576	S21-Se00001
Date Sampled			Aug 28, 2021	Aug 28, 2021	Aug 28, 2021
Test/Reference	LOR	Unit			
Polycyclic Aromatic Hydrocarbons					
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	0.6	< 0.5
Pyrene	0.5	mg/kg	< 0.5	0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	1.6	< 0.5
2-Fluorobiphenyl (surr.)	1	%	76	Q09INT	93
p-Terphenyl-d14 (surr.)	1	%	107	150	123
Organochlorine Pesticides		1		1	
Chlordanes - Total	0.1	mg/kg	-	< 0.1	-
4.4'-DDD	0.05	mg/kg	-	< 0.05	-
4.4'-DDE	0.05	mg/kg	-	< 0.05	-
4.4'-DDT	0.05	mg/kg	-	< 0.05	-
a-HCH	0.05	mg/kg	-	< 0.05	-
Aldrin	0.05	mg/kg	-	< 0.05	-
b-HCH	0.05	mg/kg	-	< 0.05	-
d-HCH	0.05	mg/kg	-	< 0.05	-
Dieldrin	0.05	mg/kg	-	< 0.05	-
Endosulfan I	0.05	mg/kg	-	< 0.05	-
Endosulfan II	0.05	mg/kg	-	< 0.05	-
Endosulfan sulphate	0.05	mg/kg	-	< 0.05	-
Endrin	0.05	mg/kg	-	< 0.05	-
Endrin aldehyde	0.05	mg/kg	-	< 0.05	-
Endrin ketone	0.05	mg/kg	-	< 0.05	-
g-HCH (Lindane)	0.05	mg/kg	-	< 0.05	-
Heptachlor	0.05	mg/kg	-	< 0.05	-
Heptachlor epoxide	0.05	mg/kg	-	< 0.05	-
Hexachlorobenzene Methovichlor	0.05	mg/kg	-	< 0.05	-
Methoxychlor Toyonhone	0.05	mg/kg	-	< 0.05	-
Toxaphene	0.5	mg/kg	-	< 0.5	-
Aldrin and Dieldrin (Total)* DDT + DDE + DDD (Total)*	0.05 0.05	mg/kg	-	< 0.05	-
Vic EPA IWRG 621 OCP (Total)*	0.05	mg/kg	-	< 0.05 < 0.1	-
Vic EPA IWRG 621 OCP (Total)* Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg mg/kg	-	< 0.1	-
Dibutylchlorendate (surr.)	1	mg/kg %	-	< 0.1	-
Tetrachloro-m-xylene (surr.)	1	%	-	143	-
Organophosphorus Pesticides	l I	/0	-	143	-
	0.2	malle		-00	
Azinphos-methyl Roletor	0.2	mg/kg	-	< 0.2	-
Bolstar	0.2	mg/kg	-	< 0.2	
Chloreurites	0.2	mg/kg	-	< 0.2	-
Chlorourifos mothyd	0.2	mg/kg	-	< 0.2	-
Coumaphos	0.2	mg/kg mg/kg	-	< 0.2 < 2	-
		1 111(1/K/1			-

Client Sample ID Sample Matrix			HA8_0.7-0.8 Soil	HA9_0.2-0.3 Soil	HA9_0.9-1.0 Soil
•					
Eurofins Sample No.			S21-Au58575	S21-Au58576	S21-Se00001
Date Sampled			Aug 28, 2021	Aug 28, 2021	Aug 28, 2021
Test/Reference	LOR	Unit			
Organophosphorus Pesticides					
Demeton-O	0.2	mg/kg	-	< 0.2	-
Diazinon	0.2	mg/kg	-	< 0.2	-
Dichlorvos	0.2	mg/kg	-	< 0.2	-
Dimethoate	0.2	mg/kg	-	< 0.2	-
Disulfoton	0.2	mg/kg	-	< 0.2	-
EPN	0.2	mg/kg	-	< 0.2	-
Ethion	0.2	mg/kg	-	< 0.2	-
Ethoprop	0.2	mg/kg	-	< 0.2	-
Ethyl parathion	0.2	mg/kg	-	< 0.2	-
Fenitrothion	0.2	mg/kg	-	< 0.2	-
Fensulfothion	0.2	mg/kg	-	< 0.2	-
Fenthion	0.2	mg/kg	-	< 0.2	-
Malathion	0.2	mg/kg	-	< 0.2	-
Merphos	0.2	mg/kg	-	< 0.2	-
Methyl parathion	0.2	mg/kg	-	< 0.2	-
Mevinphos	0.2	mg/kg	-	< 0.2	-
Monocrotophos	2	mg/kg	-	< 2	-
Naled	0.2	mg/kg	-	< 0.2	-
Omethoate	2	mg/kg	-	< 2	-
Phorate	0.2	mg/kg	-	< 0.2	-
Pirimiphos-methyl	0.2	mg/kg	-	< 0.2	=
Pyrazophos	0.2	mg/kg	-	< 0.2	=
Ronnel	0.2	mg/kg	-	< 0.2	-
Terbufos	0.2	mg/kg	-	< 0.2	-
Tetrachlorvinphos	0.2	mg/kg	-	< 0.2	-
Tokuthion	0.2	mg/kg	-	< 0.2	-
Trichloronate	0.2	mg/kg	-	< 0.2	-
Triphenylphosphate (surr.)	1	%	-	149	-
Polychlorinated Biphenyls		-			
Aroclor-1016	0.1	mg/kg	-	< 0.1	-
Aroclor-1221	0.1	mg/kg	-	< 0.1	-
Aroclor-1232	0.1	mg/kg	_	< 0.1	-
Aroclor-1242	0.1	mg/kg	_	< 0.1	-
Aroclor-1248	0.1	mg/kg	_	< 0.1	_
Aroclor-1254	0.1	mg/kg	_	< 0.1	_
Aroclor-1260	0.1	mg/kg	_	< 0.1	_
Total PCB*	0.1	mg/kg	_	< 0.1	_
Dibutylchlorendate (surr.)	1	%	_	Q09INT	_
Tetrachloro-m-xylene (surr.)	1	%	_	143	_
Heavy Metals		,,,		1	1
Arsenic	2	mg/kg	3.9	2.2	6.5
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	10.0	85	12
Copper	5	mg/kg	22	29	17
Lead	5	mg/kg	14	11	24
	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Mercury Nickel	5		< 0.1	84	< 5
	5	mg/kg	21	64	35
Zinc] 5	mg/kg	<u> </u>	04	35
OV NA sistema		0,	10	10	
% Moisture	1	%	18	12	17

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Sep 02, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Sep 02, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Sep 02, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Sep 02, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Sydney	Sep 02, 2021	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Metals M8	Sydney	Sep 02, 2021	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Eurofins Suite B15			
Organochlorine Pesticides	Sydney	Sep 02, 2021	14 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Organophosphorus Pesticides	Sydney	Sep 02, 2021	14 Days
- Method: LTM-ORG-2200 Organophosphorus Pesticides by GC-MS			
Polychlorinated Biphenyls	Sydney	Sep 02, 2021	28 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
% Moisture	Sydney	Sep 01, 2021	14 Days
Method: LTM CEN 7090 Moisture			

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane Sydney Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: Coffey Environments Pty Ltd NSW

Address:

Project Name:

Level 20, Tower B, Citadel Tower 799 Pacific Highway

NORTH SYDNEY PUBLIC SCHOOL

Chatswood

NSW 2067

Order No.: Report #:

820974

Phone: +61 2 9406 1000

Fax: +61 2 9406 1004 Received: Aug 30, 2021 12:43 PM Due: Sep 6, 2021

Priority: 5 Day **Contact Name:** Matthew Locke

Eurofins Analytical Services Manager: Ursula Long

New Zealand

			Asbestos - AS4964	HOLD	Eurofins Suite B15	Moisture Set	Eurofins Suite B7			
Melb	ourne Laborato	ory - NATA Site	# 1254							
Melbourne Laboratory - NATA Site # 1254 Sydney Laboratory - NATA Site # 18217								Х	Х	Х
Brisbane Laboratory - NATA Site # 20794										
Perti	h Laboratory - N	NATA Site # 237	36							
May	field Laboratory	- NATA Site # 2	25079							
Exte	rnal Laboratory									
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID					
1	HA1_0.1-0.2	Aug 28, 2021		Soil	S21-Au58559	Х		Х	Х	Х
2	HA1_0.7-0.8	Aug 28, 2021		Soil	S21-Au58560				Х	Х
3	HA2_0.1-0.2	Aug 28, 2021		Soil	S21-Au58561	Х		Х	Х	Х
4	HA2_0.7-0.8	Aug 28, 2021		Soil	S21-Au58562				Х	Х
5	HA3_0.1-0.2	Aug 28, 2021		Soil	S21-Au58563	Х		Х	Х	Х
6	HA3_0.5-0.6	Aug 28, 2021		Soil	S21-Au58564				Х	Х
7	HA4_0.1-0.2	Aug 28, 2021		Soil	S21-Au58565	Х		Х	Х	Х
8	DUP	Aug 28, 2021		Soil	S21-Au58566	Х		Х	Х	Х
9	HA4_0.7-0.8	Aug 28, 2021 Aug 28, 2021		Soil Soil	S21-Au58567 S21-Au58568				Х	Х
10	HA5_0.1-0.2	Χ		Χ	Χ	Х				

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Aug 30, 2021 12:43 PM

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Address:

Coffey Environments Pty Ltd NSW

NSW 2067

Project Name:

Level 20, Tower B, Citadel Tower 799 Pacific Highway

Chatswood

NORTH SYDNEY PUBLIC SCHOOL

Order No.: Report #:

820974

Phone: +61 2 9406 1000 +61 2 9406 1004 Fax:

Due: **Priority: Contact Name:**

Received:

Sep 6, 2021 Matthew Locke

Eurofins Analytical Services Manager: Ursula Long

5 Day

		Sa	mple Detail			Asbestos - AS4964	HOLD	Eurofins Suite B15	Moisture Set	Eurofins Suite B7
Melk	ourne Laborate	ory - NATA Site	# 1254							
Syd	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site #	20794							
		NATA Site # 237								
May	field Laboratory	y - NATA Site #	25079							
Exte	rnal Laboratory	/		1						
11	HA5_0.8-0.9	Aug 28, 2021		Soil	S21-Au58569				Х	Х
12	HA6_0.1-0.2	Aug 28, 2021		Soil	S21-Au58570	Х		Х	Х	Х
13	HA6_0.4-0.5	Aug 28, 2021		Soil	S21-Au58571				Х	Х
14	HA7_0.1-0.2	Aug 28, 2021		Soil	S21-Au58572	Х		Х	Х	Х
15	HA7_0.9-1.0	Aug 28, 2021		Soil	S21-Au58573				Х	Х
16	HA8_0.2-0.3	Aug 28, 2021		Soil	S21-Au58574	Х		Х	Х	Х
17	HA8_0.7-0.8	Aug 28, 2021		Soil	S21-Au58575				Х	Х
18	HA9_0.2-0.3	Aug 28, 2021		Soil	S21-Au58576	Х		Х	Х	Х
19	HA5_0.3-0.4	Aug 28, 2021		Soil	S21-Au58577		Х			
20	RINSATE	Aug 28, 2021		Water	S21-Au58578					Х
21	HA7_0.6-0.7	Aug 28, 2021		Soil	S21-Au58579		Х			

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone: +61 3 8564 5000
NATA # 1261 Site # 1254
Phone: +61 2:

Fax:

Perth
46-48 Banksia Road
Welshpool WA 6106
Phone: +61 8 9251 9600
NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079
 Auckland
 Christchurch

 35 O'Rorke Road
 43 Detroit Drive

 Penrose, Auckland 1061
 Rolleston, Christchurch 7675

 Phone : +64 9 526 45 51
 Phone : 0800 856 450

 IANZ # 1327
 IANZ # 1290

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: Coffey Environments Pty Ltd NSW

Level 20, Tower B, Citadel Tower 799 Pacific Highway

Chatswood

NSW 2067

Project Name:

Address:

NORTH SYDNEY PUBLIC SCHOOL

Order No.: Received:

 Report #:
 820974
 Due:
 Sep 6, 2021

 Phone:
 +61 2 9406 1000
 Priority:
 5 Day

+61 2 9406 1004 Contact Name: Matthew Locke

Eurofins Analytical Services Manager: Ursula Long

New Zealand

Aug 30, 2021 12:43 PM

Sample Detail						Asbestos - AS4964	HOLD	Eurofins Suite B15	Moisture Set	Eurofins Suite B7
Melb	ourne Laborate	ory - NATA Site	# 1254							
Sydn	ey Laboratory	- NATA Site # 1	8217			Χ	Х	Х	Х	Х
Brisk	oane Laborator	y - NATA Site#	20794							
Perth	Laboratory - N	NATA Site # 237	36							
Mayf	ield Laboratory	- NATA Site # :	25079							
Exte	rnal Laboratory	1								
22	HA9_0.9-1.0	Aug 28, 2021		Soil	S21-Se00001				Х	Х
23	HA6_0.2-0.3	Aug 28, 2021		Soil	S21-Se00002		Х			
Test	Test Counts								19	20

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons					
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank					
втех					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xvlenes - Total*	mg/kg	< 0.3	0.3	Pass	
Method Blank		10.0		1 466	
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene		< 0.5	0.5	Pass	
` '	mg/kg	< 0.5	0.5	Pass	
Chrysene Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
	mg/kg				
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene Math ad Plants	mg/kg	< 0.5	0.5	Pass	
Method Blank				Т	
Organochlorine Pesticides		0.4	0.4	D	
Chlordanes - Total	mg/kg	< 0.1	0.1	Pass	
4.4'-DDD	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	0.05	Pass	-
a-HCH	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-HCH	mg/kg	< 0.05	0.05	Pass	-
d-HCH	mg/kg	< 0.05	0.05	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-HCH (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.05	0.05	Pass	
Toxaphene	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Organophosphorus Pesticides					
Azinphos-methyl	mg/kg	< 0.2	0.2	Pass	
Bolstar	mg/kg	< 0.2	0.2	Pass	
Chlorfenvinphos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos-methyl	mg/kg	< 0.2	0.2	Pass	
Coumaphos	mg/kg	< 2	2	Pass	
Demeton-S	mg/kg	< 0.2	0.2	Pass	
Demeton-O	mg/kg	< 0.2	0.2	Pass	
Diazinon	mg/kg	< 0.2	0.2	Pass	
Dichlorvos	mg/kg	< 0.2	0.2	Pass	
Dimethoate	mg/kg	< 0.2	0.2	Pass	
Disulfoton	mg/kg	< 0.2	0.2	Pass	
EPN	mg/kg	< 0.2	0.2	Pass	
Ethion	mg/kg	< 0.2	0.2	Pass	
Ethoprop	mg/kg	< 0.2	0.2	Pass	
Ethyl parathion	mg/kg	< 0.2	0.2	Pass	
Fenitrothion	mg/kg	< 0.2	0.2	Pass	
Fensulfothion	mg/kg	< 0.2	0.2	Pass	
Fenthion	mg/kg	< 0.2	0.2	Pass	
Malathion	mg/kg	< 0.2	0.2	Pass	
Merphos	mg/kg	< 0.2	0.2	Pass	
Methyl parathion	mg/kg	< 0.2	0.2	Pass	
Mevinphos	mg/kg	< 0.2	0.2	Pass	
Monocrotophos	mg/kg	< 2	2	Pass	
Naled	mg/kg	< 0.2	0.2	Pass	
Omethoate	mg/kg	< 2	2	Pass	
Phorate	mg/kg	< 0.2	0.2	Pass	
Pirimiphos-methyl	mg/kg	< 0.2	0.2	Pass	
Pyrazophos	mg/kg	< 0.2	0.2	Pass	
Ronnel	mg/kg	< 0.2	0.2	Pass	
Terbufos	mg/kg	< 0.2	0.2	Pass	
Tetrachlorvinphos	mg/kg	< 0.2	0.2	Pass	
Tokuthion	mg/kg	< 0.2	0.2	Pass	
Trichloronate	mg/kg	< 0.2	0.2	Pass	
Method Blank					
Polychlorinated Biphenyls					
Aroclor-1016	mg/kg	< 0.1	0.1	Pass	
Aroclor-1221	mg/kg	< 0.1	0.1	Pass	
Aroclor-1232	mg/kg	< 0.1	0.1	Pass	
Aroclor-1242	mg/kg	< 0.1	0.1	Pass	
Aroclor-1248	mg/kg	< 0.1	0.1	Pass	
Aroclor-1254	mg/kg	< 0.1	0.1	Pass	
Aroclor-1260	mg/kg	< 0.1	0.1	Pass	
Total PCB*	mg/kg	< 0.1	0.1	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank	·				
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery	1 3 3				
Total Recoverable Hydrocarbons					
TRH C6-C9	%	89	70-130	Pass	
TRH C10-C14	%	92	70-130	Pass	
Naphthalene	%	115	70-130	Pass	
TRH C6-C10	%	87	70-130	Pass	
TRH >C10-C16	%	97	70-130	Pass	
LCS - % Recovery	/0	31	10-130	1 033	
BTEX					
Benzene	%	106	70-130	Pass	
Toluene	%	100	70-130	Pass	
		100			
Ethylbenzene	%		70-130	Pass	
m&p-Xylenes	%	103	70-130	Pass	
o-Xylene	%	104	70-130	Pass	
Xylenes - Total*	%	103	70-130	Pass	
LCS - % Recovery		1		I	
Polycyclic Aromatic Hydrocarbons				_	
Acenaphthene	%	92	70-130	Pass	
Acenaphthylene	%	93	70-130	Pass	
Anthracene	%	130	70-130	Pass	
Benz(a)anthracene	%	88	70-130	Pass	
Benzo(a)pyrene	%	122	70-130	Pass	
Benzo(b&j)fluoranthene	%	115	70-130	Pass	
Benzo(g.h.i)perylene	%	79	70-130	Pass	
Benzo(k)fluoranthene	%	126	70-130	Pass	
Chrysene	%	90	70-130	Pass	
Dibenz(a.h)anthracene	%	82	70-130	Pass	
Fluoranthene	%	127	70-130	Pass	
Fluorene	%	96	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	82	70-130	Pass	
Naphthalene	%	91	70-130	Pass	
Phenanthrene	%	88	70-130	Pass	
Pyrene	%	126	70-130	Pass	
LCS - % Recovery					
Organochlorine Pesticides					
Chlordanes - Total	%	98	70-130	Pass	
4.4'-DDD	%	76	70-130	Pass	
4.4'-DDE	%	107	70-130	Pass	
a-HCH	%	96	70-130	Pass	
Aldrin	%	98	70-130	Pass	
b-HCH	%	93	70-130	Pass	
d-HCH	%	104	70-130	Pass	
Dieldrin	%	91	70-130	Pass	
Endosulfan I	%	97	70-130	Pass	

Test	Test			Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Endosulfan II			%	87		70-130	Pass	
Endosulfan sulphate			%	76		70-130	Pass	
Endrin			%	90		70-130	Pass	
Endrin aldehyde			%	91		70-130	Pass	
g-HCH (Lindane)			%	101		70-130	Pass	
Heptachlor			%	76		70-130	Pass	
Heptachlor epoxide			%	101		70-130	Pass	
Hexachlorobenzene			%	103		70-130	Pass	
Methoxychlor			%	86		70-130	Pass	
LCS - % Recovery			7.5				1 0.00	
Organophosphorus Pesticides								
Diazinon			%	87		70-130	Pass	
Dimethoate			%	86		70-130	Pass	
Ethion			%	113		70-130	Pass	
Fenitrothion			%	87		70-130	Pass	
Methyl parathion			%	75		70-130	Pass	
Mevinphos			%	75		70-130	Pass	
			%	/5		70-130	Pass	
LCS - % Recovery								
Polychlorinated Biphenyls			0/			70.400	_	
Aroclor-1016	%	93		70-130	Pass			
Aroclor-1260	%	127		70-130	Pass			
LCS - % Recovery				T				
Heavy Metals			I					
Arsenic			%	97		80-120	Pass	
Cadmium			%	103		80-120	Pass	
Chromium			%	106		80-120	Pass	
Copper			%	110		80-120	Pass	
Lead			%	106		80-120	Pass	
Mercury			%	111		80-120	Pass	
Nickel			%	110		80-120	Pass	
Zinc			%	105		80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Polycyclic Aromatic Hydrocarboi	ns			Result 1				
Acenaphthene	S21-Se02658	NCP	%	119		70-130	Pass	
Acenaphthylene	S21-Se02658	NCP	%	120		70-130	Pass	
Anthracene	S21-Se02658	NCP	%	125		70-130	Pass	
Benz(a)anthracene	S21-Se02658	NCP	%	116		70-130	Pass	
Benzo(a)pyrene	S21-Se02658	NCP	%	117		70-130	Pass	
Benzo(b&i)fluoranthene	S21-Se02658	NCP	%	116		70-130	Pass	
Benzo(g.h.i)perylene	S21-Se02658	NCP	%	103		70-130	Pass	
Benzo(k)fluoranthene	S21-Se02658	NCP	%	117		70-130	Pass	
Chrysene	S21-Se02658	NCP	%	117		70-130	Pass	
Dibenz(a.h)anthracene	S21-Se02658	NCP	%	106		70-130	Pass	
,								
Fluoranthene	S21-Se02658	NCP	%	120		70-130	Pass	
Fluorene	S21-Se02658	NCP	%	126		70-130	Pass	
Indeno(1.2.3-cd)pyrene	S21-Se02658	NCP	%	105		70-130	Pass	
Naphthalene	S21-Se02658	NCP	%	111		70-130	Pass	
Phenanthrene	S21-Se02658	NCP	%	114		70-130	Pass	
Pyrene	S21-Se02658	NCP	%	117		70-130	Pass	
								1
Spike - % Recovery					T T			
Organochlorine Pesticides	1	1		Result 1				
	S21-Se02658 S21-Se02658	NCP NCP	%	Result 1 87 92		70-130 70-130	Pass Pass	

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
4.4'-DDE	S21-Se02658	NCP	%	87	70-130	Pass	
a-HCH	S21-Se02658	NCP	%	85	70-130	Pass	
Aldrin	S21-Se02658	NCP	%	86	70-130	Pass	
b-HCH	S21-Se02658	NCP	%	84	70-130	Pass	
d-HCH	S21-Se02658	NCP	%	82	70-130	Pass	
Dieldrin	S21-Se02658	NCP	%	90	70-130	Pass	
Endosulfan I	S21-Se02658	NCP	%	86	70-130	Pass	
Endosulfan II	S21-Se02658	NCP	%	82	70-130	Pass	
Endrin	S21-Se02658	NCP	%	101	70-130	Pass	
Endrin ketone	W21-Au48688	NCP	%	72	70-130	Pass	
g-HCH (Lindane)	S21-Se02658	NCP	%	90	70-130	Pass	
Heptachlor	S21-Se02658	NCP	%	89	70-130	Pass	
Heptachlor epoxide	S21-Se02658	NCP	%	89	70-130	Pass	
Hexachlorobenzene	S21-Se02658	NCP	%	87	70-130	Pass	
Methoxychlor	S21-Se02658	NCP	%	82	70-130	Pass	
Spike - % Recovery							
Organophosphorus Pesticides				Result 1			
Diazinon	S21-Se02658	NCP	%	88	70-130	Pass	
Dimethoate	S21-Se02658	NCP	%	87	70-130	Pass	
Ethion	S21-Se02658	NCP	%	112	70-130	Pass	
Fenitrothion	S21-Se02658	NCP	%	87	70-130	Pass	
Mevinphos	W21-Au48688	NCP	%	92	70-130	Pass	
Spike - % Recovery							
Polychlorinated Biphenyls	1			Result 1			
Aroclor-1016	S21-Se02658	NCP	%	81	70-130	Pass	
Aroclor-1260	W21-Au48688	NCP	%	114	70-130	Pass	
Spike - % Recovery						T	
Heavy Metals	1	1		Result 1			
Arsenic	S21-Au58556	NCP	%	92	75-125	Pass	
Cadmium	S21-Au58556	NCP	%	116	75-125	Pass	
Chromium	S21-Au58556	NCP	%	121	75-125	Pass	
Copper	S21-Au58556	NCP	%	125	75-125	Pass	
Lead	S21-Se00632	NCP	%	99	75-125	Pass	
Mercury	S21-Au58556	NCP	%	118	75-125	Pass	
Nickel	S21-Se00632	NCP	%	90	75-125	Pass	
Zinc	S21-Se00632	NCP	%	96	75-125	Pass	
Spike - % Recovery						T	
Heavy Metals	ı	1		Result 1			
Arsenic	S21-Au58567	CP	%	75	75-125	Pass	
Cadmium	S21-Au58567	CP	%	86	75-125	Pass	
Chromium	S21-Au58567	CP	%	79	75-125	Pass	
Copper	S21-Au58567	CP	%	79	75-125	Pass	
Lead	S21-Au58567	CP	%	88	75-125	Pass	
Mercury	S21-Au58567	CP	%	84	75-125	Pass	
Nickel	S21-Au58567	CP	%	84	75-125	Pass	
Zinc	S21-Au58567	CP	%	81	75-125	Pass	
Spike - % Recovery				B		I	
Total Recoverable Hydrocarbons	004 4 55555	05	0.4	Result 1		-	
TRH C6-C9	S21-Au58568	CP	%	86	70-130	Pass	
Naphthalene	S21-Au58568	CP	%	103	70-130	Pass	
TRH C6-C10	S21-Au58568	CP	<u>%</u>	86	70-130	Pass	
Spike - % Recovery							
BTEX	1	1		Result 1		-	
Benzene	S21-Au58568	CP	%	101	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Toluene	S21-Au58568	СР	%	93			70-130	Pass	
Ethylbenzene	S21-Au58568	СР	%	95			70-130	Pass	
m&p-Xylenes	S21-Au58568	СР	%	95			70-130	Pass	
o-Xylene	S21-Au58568	СР	%	96			70-130	Pass	
Xylenes - Total*	S21-Au58568	СР	%	96			70-130	Pass	
Spike - % Recovery				•	,				
Total Recoverable Hydrocarbons				Result 1					
TRH C10-C14	S21-Au58569	СР	%	123			70-130	Pass	
TRH >C10-C16	S21-Au58569	СР	%	120			70-130	Pass	
Spike - % Recovery									
Total Recoverable Hydrocarbons				Result 1					
TRH C10-C14	S21-Au58575	СР	%	109			70-130	Pass	
TRH >C10-C16	S21-Au58575	СР	%	106			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S21-Au58588	NCP	mg/kg	5.0	6.9	32	30%	Fail	Q15
Cadmium	S21-Au58588	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S21-Au58588	NCP	mg/kg	18	22	19	30%	Pass	
Copper	S21-Au58588	NCP	mg/kg	17	18	8.0	30%	Pass	
Lead	S21-Au58588	NCP	mg/kg	66	65	1.0	30%	Pass	
Mercury	S21-Au58588	NCP	mg/kg	0.2	0.1	21	30%	Pass	
Nickel	S21-Au58588	NCP	mg/kg	11	13	21	30%	Pass	
Zinc	S21-Au58588	NCP	mg/kg	50	44	12	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S21-Au58565	CP	%	16	15	8.0	30%	Pass	
Duplicate									
Heavy Metals	1			Result 1	Result 2	RPD			
Arsenic	S21-Au58566	CP	mg/kg	7.7	8.5	10	30%	Pass	
Cadmium	S21-Au58566	CP	mg/kg	< 0.4	0.4	70	30%	Fail	Q15
Chromium	S21-Au58566	CP	mg/kg	17	19	12	30%	Pass	
Copper	S21-Au58566	CP	mg/kg	33	44	30	30%	Pass	
Lead	S21-Au58566	CP	mg/kg	200	300	37	30%	Fail	Q02
Mercury	S21-Au58566	CP	mg/kg	0.3	0.4	35	30%	Fail	Q15
Nickel	S21-Au58566	CP	mg/kg	7.3	7.6	4.0	30%	Pass	
Zinc	S21-Au58566	CP	mg/kg	150	190	25	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons	1			Result 1	Result 2	RPD			
TRH C6-C9	S21-Au58567	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Naphthalene	S21-Au58567	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S21-Au58567	СР	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate									
BTEX	1			Result 1	Result 2	RPD		_	
Benzene	S21-Au58567	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S21-Au58567	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S21-Au58567	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S21-Au58567	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S21-Au58567	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total*	S21-Au58567	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	

Duplicate				T _	_				
Polycyclic Aromatic Hydrocarbons	5			Result 1	Result 2	RPD			
Acenaphthene	S21-Au58567	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S21-Au58567	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S21-Au58567	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S21-Au58567	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S21-Au58567	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S21-Au58567	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S21-Au58567	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S21-Au58567	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S21-Au58567	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S21-Au58567	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S21-Au58567	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S21-Au58567	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S21-Au58567	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S21-Au58567	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S21-Au58567	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S21-Au58567	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate			, ,	•	,				
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S21-Au58567	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S21-Au58567	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S21-Au58567	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S21-Au58567	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-HCH	S21-Au58567	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S21-Au58567	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-HCH	S21-Au58567	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-HCH	S21-Au58567	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S21-Au58567	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S21-Au58567	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S21-Au58567	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S21-Au58567	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S21-Au58567	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S21-Au58567	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin alderryde Endrin ketone	S21-Au58567	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
	S21-Au58567	CP		< 0.05	< 0.05	<1	30%	Pass	
g-HCH (Lindane)		CP	mg/kg						
Heptachlor on oxide	S21-Au58567		mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S21-Au58567	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene Methoxychlor	S21-Au58567	CP CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S21-Au58567		mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Toxaphene	S21-Au58567	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Organish aspharus Posticidas				Descrit 4	Dogude 0	DDD			
Organophosphorus Pesticides	CO4 A.: FOFO7	CD	ma e: /1:	Result 1	Result 2	RPD	200/	Desa	
Azinphos-methyl	S21-Au58567	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Bolstar	S21-Au58567	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorfenvinphos	S21-Au58567	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos	S21-Au58567	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos-methyl	S21-Au58567	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Coumaphos	S21-Au58567	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Demeton-S	S21-Au58567	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Demeton-O	S21-Au58567	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Diazinon	S21-Au58567	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dichlorvos	S21-Au58567	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dimethoate	S21-Au58567	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Disulfoton	S21-Au58567	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
EPN	S21-Au58567	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	

Duplicate									
Organophosphorus Pesticides				Result 1	Result 2	RPD			
Ethion	CO4 A., EDEC7	СР	m a/l.a	1	1		200/	Pass	
Ethoprop	S21-Au58567 S21-Au58567	CP	mg/kg mg/kg	< 0.2 < 0.2	< 0.2 < 0.2	<1 <1	30% 30%	Pass	
Ethyl parathion	S21-Au58567	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenitrothion	S21-Au58567	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fensulfothion	S21-Au58567	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenthion	S21-Au58567	CP	mg/kg	< 0.2	< 0.2	<u> </u>	30%	Pass	
Malathion	S21-Au58567	CP	mg/kg	< 0.2	< 0.2	<u> </u>	30%	Pass	
Merphos	S21-Au58567	CP	mg/kg	< 0.2	< 0.2	<u> </u>	30%	Pass	
Methyl parathion	S21-Au58567	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Mevinphos	S21-Au58567	CP	mg/kg	< 0.2	< 0.2	<u> </u>	30%	Pass	
•		CP			1	<u> </u>	30%	Pass	
Monocrotophos	S21-Au58567		mg/kg	< 2	< 2				
Naled	S21-Au58567	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Omethoate	S21-Au58567	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Phorate	S21-Au58567	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pirimiphos-methyl	S21-Au58567	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pyrazophos	S21-Au58567	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ronnel	S21-Au58567	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Terbufos	S21-Au58567	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tetrachlorvinphos	S21-Au58567	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tokuthion	S21-Au58567	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Trichloronate	S21-Au58567	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Duplicate				I	T 1				
Polychlorinated Biphenyls			1	Result 1	Result 2	RPD		1	
Aroclor-1016	S21-Au58567	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1221	S21-Au58567	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	S21-Au58567	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1242	S21-Au58567	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1248	S21-Au58567	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1254	S21-Au58567	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1260	S21-Au58567	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Total PCB*	S21-Au58567	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons	s		1	Result 1	Result 2	RPD			
TRH C10-C14	S21-Au58568	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S21-Au58568	CP	mg/kg	180	100	54	30%	Fail	Q15
TRH C29-C36	S21-Au58568	CP	mg/kg	180	140	29	30%	Pass	
TRH >C10-C16	S21-Au58568	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S21-Au58568	CP	mg/kg	310	200	42	30%	Fail	Q15
TRH >C34-C40	S21-Au58568	CP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S21-Au58575	CP	%	18	18	3.0	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S21-Au58576	CP	mg/kg	2.2	< 2	16	30%	Pass	
Cadmium	S21-Au58576	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S21-Au58576	CP	mg/kg	85	85	<1	30%	Pass	
Copper	S21-Au58576	CP	mg/kg	29	29	<1	30%	Pass	
Lead	S21-Au58576	CP	mg/kg	11	18	50	30%	Fail	Q15
Mercury	S21-Au58576	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S21-Au58576	СР	mg/kg	84	84	<1	30%	Pass	
	S21-Au58576								

Duplicate									
Total Recoverable Hydrocarbo	ons			Result 1	Result 2	RPD			
TRH C6-C9	S21-Se00001	СР	mg/kg	< 20	< 20	<1	30%	Pass	
Naphthalene	S21-Se00001	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S21-Se00001	СР	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	S21-Se00001	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S21-Se00001	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S21-Se00001	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S21-Se00001	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S21-Se00001	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total*	S21-Se00001	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code	Description

G01 The LORs have been raised due to matrix interference

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed N02

all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to

N07 the total of the two co-eluting PAHs

Q02 The duplicate %RPD is outside the recommended acceptance criteria. Further analysis indicates sample heterogeneity as the cause

Q09 The Surrogate recovery is outside of the recommended acceptance criteria due to matrix interference. Acceptance criteria were met for all other QC

The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report. Q15

Authorised by:

Ursula Long Analytical Services Manager Andrew Sullivan Senior Analyst-Organic (NSW) John Nauven Senior Analyst-Metal (NSW) Senior Analyst-Volatile (NSW) Roopesh Rangarajan

Glenn Jackson **General Manager**

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Coffey Environments Pty Ltd NSW Level 20, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: Matthew Locke

Report 820974-W

Project name NORTH SYDNEY PUBLIC SCHOOL

Received Date Aug 30, 2021

Client Sample ID			RINSATE
Sample Matrix			Water
Eurofins Sample No.			S21-Au58578
Date Sampled			Aug 28, 2021
Test/Reference	LOR	Unit	,,
Total Recoverable Hydrocarbons	LOR	Offic	
TRH C6-C9	0.02	mg/L	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1
TRH C10-C36 (Total)	0.1	mg/L	< 0.1
Naphthalene ^{N02}	0.01	mg/L	< 0.01
TRH C6-C10	0.02	mg/L	< 0.02
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	< 0.02
TRH >C10-C16	0.05	mg/L	< 0.05
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05
TRH >C16-C34	0.1	mg/L	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1
ВТЕХ	'		
Benzene	0.001	mg/L	< 0.001
Toluene	0.001	mg/L	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002
o-Xylene	0.001	mg/L	< 0.001
Xylenes - Total*	0.003	mg/L	< 0.003
4-Bromofluorobenzene (surr.)	1	%	73
Polycyclic Aromatic Hydrocarbons			
Acenaphthene	0.001	mg/L	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001
Anthracene	0.001	mg/L	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001
Chrysene	0.001	mg/L	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001
Fluoranthene	0.001	mg/L	< 0.001
Fluorene	0.001	mg/L	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001
Naphthalene	0.001	mg/L	< 0.001

Client Sample ID			RINSATE
Sample Matrix			Water
Eurofins Sample No.			S21-Au58578
Date Sampled			Aug 28, 2021
Test/Reference	LOR	Unit	
Polycyclic Aromatic Hydrocarbons			
Phenanthrene	0.001	mg/L	< 0.001
Pyrene	0.001	mg/L	< 0.001
Total PAH*	0.001	mg/L	< 0.001
2-Fluorobiphenyl (surr.)	1	%	83
p-Terphenyl-d14 (surr.)	1	%	60
Heavy Metals			
Arsenic	0.001	mg/L	< 0.001
Cadmium	0.0002	mg/L	< 0.0002
Chromium	0.001	mg/L	< 0.001
Copper	0.001	mg/L	< 0.001
Lead	0.001	mg/L	< 0.001
Mercury	0.0001	mg/L	< 0.0001
Nickel	0.001	mg/L	< 0.001
Zinc	0.005	mg/L	< 0.005

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Sep 02, 2021	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Sep 01, 2021	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Sep 02, 2021	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Sep 01, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Sydney	Sep 02, 2021	7 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Metals M8	Sydney	Sep 06, 2021	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane Sydney Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Address:

Coffey Environments Pty Ltd NSW

Project Name:

Level 20, Tower B, Citadel Tower 799 Pacific Highway

Chatswood

NSW 2067

NORTH SYDNEY PUBLIC SCHOOL

Order No.: Report #:

Moist

Asbes

HOLL

820974

Phone: +61 2 9406 1000

Fax: +61 2 9406 1004

Eurof

Received: Aug 30, 2021 12:43 PM Sep 6, 2021 Due:

Priority: 5 Day

Contact Name: Matthew Locke

Eurofins Analytical Services Manager: Ursula Long

New Zealand

		Sa	mple Detail			stos - AS4964	0	fins Suite B15	ture Set	fins Suite B7
Melb	ourne Laborat	ory - NATA Site	# 1254							
Sydı	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х
		y - NATA Site #								
		NATA Site # 237								
		y - NATA Site # :	25079							
	rnal Laboratory	1								
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID					
1	HA1_0.1-0.2	Aug 28, 2021		Soil	S21-Au58559	Х		Х	Х	Х
2	HA1_0.7-0.8	Aug 28, 2021		Soil	S21-Au58560				Х	Х
3	HA2_0.1-0.2	Aug 28, 2021		Soil	S21-Au58561	Х		Х	Х	Х
4	HA2_0.7-0.8	Aug 28, 2021		Soil	S21-Au58562				Х	Х
5	HA3_0.1-0.2	Aug 28, 2021		Soil	S21-Au58563	Х		Х	Х	Х
6	HA3_0.5-0.6	Aug 28, 2021		Soil	S21-Au58564				Х	Х
7	HA4_0.1-0.2	Aug 28, 2021		Soil	S21-Au58565	Х		Х	Х	Х
8	DUP	Aug 28, 2021		Soil	S21-Au58566	Х		Х	Х	Х
9	HA4_0.7-0.8	Aug 28, 2021		Soil	S21-Au58567				Х	Х
10	HA5_0.1-0.2	Aug 28, 2021		Soil	S21-Au58568	Х		Х	Х	Х

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Address:

Coffey Environments Pty Ltd NSW

Chatswood

Project Name:

Level 20, Tower B, Citadel Tower 799 Pacific Highway

NSW 2067

NORTH SYDNEY PUBLIC SCHOOL

Order No.: Report #:

820974

Phone: +61 2 9406 1000 Fax:

+61 2 9406 1004

Received: Aug 30, 2021 12:43 PM Due: Sep 6, 2021

Priority: 5 Day

Matthew Locke **Contact Name:**

Eurofins Analytical Services Manager: Ursula Long

New Zealand

		Sampl	e Detail		Asbestos - AS4964	HOLD	Eurofins Suite B15	Moisture Set	Eurofins Suite B7
Mell	oourne Laborat	ory - NATA Site # 1	254						
Syd	ney Laboratory	- NATA Site # 1821	7		Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site # 207	' 94						
Pert	h Laboratory - I	NATA Site # 23736							
May	field Laborator	y - NATA Site # 250	79						
Exte	rnal Laboratory	у							
11	HA5_0.8-0.9	Aug 28, 2021	Soil	S21-Au58569				Х	Х
12	HA6_0.1-0.2	Aug 28, 2021	Soil	S21-Au58570	Х		Х	Х	Х
13	HA6_0.4-0.5	Aug 28, 2021	Soil	S21-Au58571				Х	Х
14	HA7_0.1-0.2	Aug 28, 2021	Soil	S21-Au58572	Х		Х	Х	Х
15	HA7_0.9-1.0	Aug 28, 2021	Soil	S21-Au58573				Х	Х
16	HA8_0.2-0.3	Aug 28, 2021	Soil	S21-Au58574	Х		Х	Х	Х
17	HA8_0.7-0.8	Aug 28, 2021	Soil	S21-Au58575				Х	Х
18	HA9_0.2-0.3	Aug 28, 2021	Soil	S21-Au58576	Х		Х	Х	Х
19	HA5_0.3-0.4	Aug 28, 2021	Soil	S21-Au58577		Х			
20	RINSATE	Aug 28, 2021	Water	S21-Au58578					Х
21	HA7_0.6-0.7	Aug 28, 2021	Soil	S21-Au58579		Х			

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone: +61 3 8564 5000
NATA # 1261 Site # 1254
Phone: +61 2 1

Perth
46-48 Banksia Road
Welshpool WA 6106
Phone: +61 8 9251 9600
NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 Auckland 35 O'Rorke Road 4 Penrose, Auckland 1061 Phone : +64 9 526 45 51 RANZ # 1327

Aug 30, 2021 12:43 PM

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: Coffey Environments Pty Ltd NSW

Address:

Project Name:

Level 20, Tower B, Citadel Tower 799 Pacific Highway

Chatswood

NSW 2067

NORTH SYDNEY PUBLIC SCHOOL

Order No.: Report #:

820974

Phone: +61 2 9406 1000 **Fax:** +61 2 9406 1004

Due:
Priority:

Received:

Contact Name: Matthew Locke

Eurofins Analytical Services Manager: Ursula Long

5 Day

Sep 6, 2021

San	nple Detail			Asbestos - AS4964	HOLD	Eurofins Suite B15	Moisture Set	Eurofins Suite B7
Melbourne Laboratory - NATA Site #	1254							
Sydney Laboratory - NATA Site # 18	217			Х	Χ	Χ	Χ	Х
Brisbane Laboratory - NATA Site # 2	20794							
Perth Laboratory - NATA Site # 2373	36							
Mayfield Laboratory - NATA Site # 2	5079							
External Laboratory	<u> </u>							
22 HA9_0.9-1.0 Aug 28, 2021	Soil	5	S21-Se00001				Х	Х
23 HA6_0.2-0.3 Aug 28, 2021	Soil	5	S21-Se00002		Х			
Test Counts				10	3	10	19	20

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons					
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Naphthalene	mg/L	< 0.01	0.01	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank					
BTEX					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total*	mg/L	< 0.003	0.003	Pass	
Method Blank	1 3				
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/L	< 0.001	0.001	Pass	
Acenaphthylene	mg/L	< 0.001	0.001	Pass	
Anthracene	mg/L	< 0.001	0.001	Pass	
Benz(a)anthracene	mg/L	< 0.001	0.001	Pass	
Benzo(a)pyrene	mg/L	< 0.001	0.001	Pass	
Benzo(b&j)fluoranthene	mg/L	< 0.001	0.001	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.001	0.001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.001	0.001	Pass	
Chrysene	mg/L	< 0.001	0.001	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.001	0.001	Pass	
Fluoranthene	mg/L	< 0.001	0.001	Pass	
Fluorene	mg/L	< 0.001	0.001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001	0.001	Pass	
Naphthalene	mg/L	< 0.001	0.001	Pass	
		< 0.001	0.001	Pass	
Phenanthrene	mg/L	< 0.001	0.001	Pass	
Pyrene LCS - % Recovery	mg/L	< 0.001	0.001	Fass	
Total Recoverable Hydrocarbons		Τ			
TRH C6-C9	%	74	70-130	Pass	
TRH C10-C14	%	73	70-130	Pass	
Naphthalene	%	87	70-130	Pass	
TRH C6-C10	%	76	70-130	Pass	
TRH >C10-C16	%	90	70-130	Pass	
LCS - % Recovery					
BTEX		+ , +	70.400	D-	
Benzene	%	94	70-130	Pass	
Toluene	%	85	70-130	Pass	
Ethylbenzene	%	83	70-130	Pass	
m&p-Xylenes	%	72	70-130	Pass	
o-Xylene	%	93	70-130	Pass	
Xylenes - Total*	%	79	70-130	Pass	

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
LCS - % Recovery									
Polycyclic Aromatic Hydrocarbons	S								
Acenaphthene			%	99			70-130	Pass	
Acenaphthylene			%	96			70-130	Pass	
Anthracene			%	101			70-130	Pass	
Benz(a)anthracene			%	95			70-130	Pass	
Benzo(a)pyrene			%	107			70-130	Pass	
Benzo(b&j)fluoranthene			%	104			70-130	Pass	
Benzo(g.h.i)perylene			%	88			70-130	Pass	
Benzo(k)fluoranthene			%	115			70-130	Pass	
Chrysene			%	105			70-130	Pass	
Dibenz(a.h)anthracene			%	96			70-130	Pass	
Fluoranthene			%	95			70-130	Pass	
Fluorene			%	111			70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	99			70-130	Pass	
Naphthalene			%	96			70-130	Pass	
Phenanthrene			%	99			70-130	Pass	
Pyrene			%	98			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery		1000.00							
Total Recoverable Hydrocarbons				Result 1					
TRH C6-C9	N21-Au54895	NCP	%	87			70-130	Pass	
TRH C10-C14	S21-Au56210	NCP	%	102			70-130	Pass	
Naphthalene	N21-Au54895	NCP	%	89			70-130	Pass	
TRH C6-C10	N21-Au54895	NCP	%	87			70-130	Pass	
TRH >C10-C16	S21-Au56210	NCP	%	126			70-130	Pass	
Spike - % Recovery	321-Au30210	INCI	/0	120			70-130	1 433	
BTEX				Result 1					
Benzene	N21-Au54895	NCP	%	106			70-130	Pass	
Toluene	N21-Au54895	NCP	%	93			70-130	Pass	
	N21-Au54895	NCP	%	90			70-130	Pass	
Ethylbenzene m&p-Xylenes	N21-Au54895	NCP	%	77			70-130	Pass	
		NCP							
o-Xylene Xvlenes - Total*	N21-Au54895		%	99			70-130	Pass	
Xylenes - Total*	N21-Au54895	NCP	%	84			70-130	Pass	0 117 1
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate				T	1		T		
Total Recoverable Hydrocarbons	T		T	Result 1	Result 2	RPD			
TRH C6-C9	S21-Au56096	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH C10-C14	S21-Au56215	NCP	mg/L	6.1	5.2	15	30%	Pass	
TRH C15-C28	S21-Au56215	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH C29-C36	S21-Au56215	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Naphthalene	S21-Au56096	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
TRH C6-C10	S21-Au56096	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH >C10-C16	S21-Au56215	NCP	mg/L	1.5	1.2	18	30%	Pass	
TRH >C16-C34	S21-Au56215	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH >C34-C40	S21-Au56215	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
11(11/034-040									
Duplicate Duplicate				1	D 11.0	DDD			
				Result 1	Result 2	RPD			
Duplicate	S21-Au56096	NCP	mg/L	Result 1 < 0.001	< 0.001	<1	30%	Pass	
Duplicate BTEX	S21-Au56096 S21-Au56096	NCP NCP	mg/L mg/L		1		30%	Pass Pass	
Duplicate BTEX Benzene				< 0.001	< 0.001	<1			
Duplicate BTEX Benzene Toluene Ethylbenzene	S21-Au56096	NCP	mg/L	< 0.001 < 0.001	< 0.001 < 0.001	<1 <1	30%	Pass	
Duplicate BTEX Benzene Toluene	S21-Au56096 S21-Au56096	NCP NCP	mg/L mg/L	< 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001	<1 <1 <1	30% 30%	Pass Pass	

Duplicate									
Polycyclic Aromatic Hydrocar	bons			Result 1	Result 2	RPD			
Acenaphthene	S21-Au56096	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Acenaphthylene	S21-Au56096	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Anthracene	S21-Au56096	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benz(a)anthracene	S21-Au56096	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(a)pyrene	S21-Au56096	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(b&j)fluoranthene	S21-Au56096	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(g.h.i)perylene	S21-Au56096	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(k)fluoranthene	S21-Au56096	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chrysene	S21-Au56096	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dibenz(a.h)anthracene	S21-Au56096	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluoranthene	S21-Au56096	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluorene	S21-Au56096	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S21-Au56096	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Naphthalene	S21-Au56096	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Phenanthrene	S21-Au56096	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Pyrene	S21-Au56096	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Authorised by:

N02

Analytical Services Manager Ursula Long Andrew Sullivan Senior Analyst-Organic (NSW) John Nguyen Senior Analyst-Metal (NSW) Roopesh Rangarajan Senior Analyst-Volatile (NSW)

Glenn Jackson **General Manager**

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

TETB A	Consigning Office:	Office: (hatswood	od		
	Report Results to:	Its to: Mathew	T Jack	Mobile:	Email: Methon Lorb.
	Invoices to:	General admin	Invoices to: Gelleral. admin & Coffey. COM	Phone:	Email:
roject No:	Task No:		C		Analysis Request Section
roject Name: North Suday, Inbit Subaboratory:	1	100			
ampler's Name: Jack	Project Manager: Ma#	#			
wote number (if different to current quoted prices):					
pecial Instructions:				1. s	Environmental Division
				?	•
Batch Ref Sample ID	Date Time	(Soiletc) Pr	Container Type & T-A-T Preservative* (specify)		中 ES2131757
HA1-0-1-0-2	10/0	,	5		
HAI- 0.7-0.8	1010	v) <u>a</u>		
HA2_0.1-0.2				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
HA2.0.7.0.8					
13-01-0.2				7 7 7 7	Telephone : ±61-2-8784 8555
HA4 0.1 -0.7		+		ر	
Ono					
100				\ \ \	
MA4-6.7-0.8					2 2 3
HA5-0.1-0.2				\(\sigma\)	
MAS-0.3-0.4				**	V Hold
HA5 0.8-0.9				_	
HA6-0.1-0.2		1			
HA6-04-05			3	ر ر	
1.01.01.01.	-	*	4	V V V V	
RELINQUISHED BY			RECEIVED BY	ÆD 8Y	Sample Receipt Advice: (Lab Use Only)
lame: Date:	ne: 3°/8/2/ →	Name: Olas		Date: 3018 17:43,-	_
	te:	Name:	SAM SAM	Date: (2) /9/L/	Samples Received Properly Chilled
ompany: Time:	ne:	Company:	C. Pers	Time: 1500 11-20	Lab. Ref/Batch No.
Container Type & Preservation Codes: P - Plastic, G- Glass Bottle, J - Glass Jar, V- Vial, Z - Ziplock bag, N - Nitric Acid Preserved, C - Hydrochloric Acid Preserved, S - Sulphuric Acid reserved, I - Ice, ST - Sodium Thiosulfate, NP - No Preservative	Slass Bottle, J • Glass Jar, V- ¹ servative	/ial, Z - Ziplock bag, N -	Nitric Acid Preserved, C - Hγdr	ochloric Acid Preserved, S - Sulphuric Acid	

nain of custody sued: 30 July 2020 NCONTROLLED WHEN PRINTED

TETRA	Consigning Office:	ice:					
COFFEY	Report Results to:	to:		Mobile:		Email:	@tetratech com
	invoices to:			Phone:		Email:	@tetratech.com
Marilla S. I.	Task No:					Analysis Request Section	
School School Capter Lable School boratory:	oratory:						
	Project Manager:						
pecial Instructions:			7		S		
					esh		
Eurofins Lab Batch Ref Sample ID L	Sample Date Time	Matrix (Soiletc)	Container Type & T-A-T Preservative* (specify)	Β4 M8	BIS Asb	lold	NOTES
\bot)	+				NOIL
HA7. 09-10 /	78/87	V	240				
HA8-0.2-0.3							
HA8_ 6.7-0.8				-+	<		
HA9-0.2-0.3				7 7 7			
7A1-0.9-1.0		•		7 7			
Kinsafe		٤		く く 多			
	E						
RELINQUISHED BY			REC	RECEIVED BY			
ame: 30/8/21	¥	Name:			57.21 3/08	All Complete Receipt Advice: (Lab Use Only)	
offey Time:		Company:				All Documentation is in Proper Order	ner Order
	.	Name:	3-884 m	Date: C / / 89/	12/10	Samples Received Properly Chilled	9
Inne: Container Type & Preservation Codes: P - Plastic, G - Glass Bor	tle J-Glass lar V-Via	Company:	A Control of the Cont	Time:	1.Soc	Lab. Ref/Batch No.	40000
eserved, I - Ice, ST - Sodium Thiosulfate, NP - No Preservative	orange and A. A. A.	, e - zipiock bag, N	N - NITTIC ACID Preserved, C - Hy	drochloric Acid Preserv	ed, S - Sulphuric Acid		000

ain of custody .ed: 30 July 2020 CONTROLLED WHEN PRINTED

CERTIFICATE OF ANALYSIS

Work Order Page : ES2131757 : 1 of 8

Client : TETRA TECH COFFEY PTY LTD Laboratory : Environmental Division Sydney

Contact : Matthew Locke Contact : Khaleda Ataei

Address Address : 277-289 Woodpark Road Smithfield NSW Australia 2164 : LEVEL 19. TOWER B- CITADEL TOWER 799 PACIFIC

HIGHWAY

CHATSWOOD NSW, AUSTRALIA 2067

Telephone Telephone : + 61 2 8784 8555

Project : North Sydney Public School Date Samples Received : 01-Sep-2021 15:00

Order number **Date Analysis Commenced** : 02-Sep-2021 Issue Date

C-O-C number Sampler Jack

Site

Quote number : EN/222

No. of samples received : 1 No. of samples analysed : 1

Accreditation No. 825 Accredited for compliance with ISO/IEC 17025 - Testing

: 08-Sep-2021 16:46

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Descriptive Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Position Accreditation Category Signatories

Alana Smylie Asbestos Identifier Newcastle - Asbestos, Mayfield West, NSW Edwandy Fadjar Organic Coordinator Sydney Organics, Smithfield, NSW Ivan Taylor Analyst Sydney Inorganics, Smithfield, NSW

Page : 2 of 8 Work Order : ES2131757

Client : TETRA TECH COFFEY PTY LTD

Project : North Sydney Public School

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

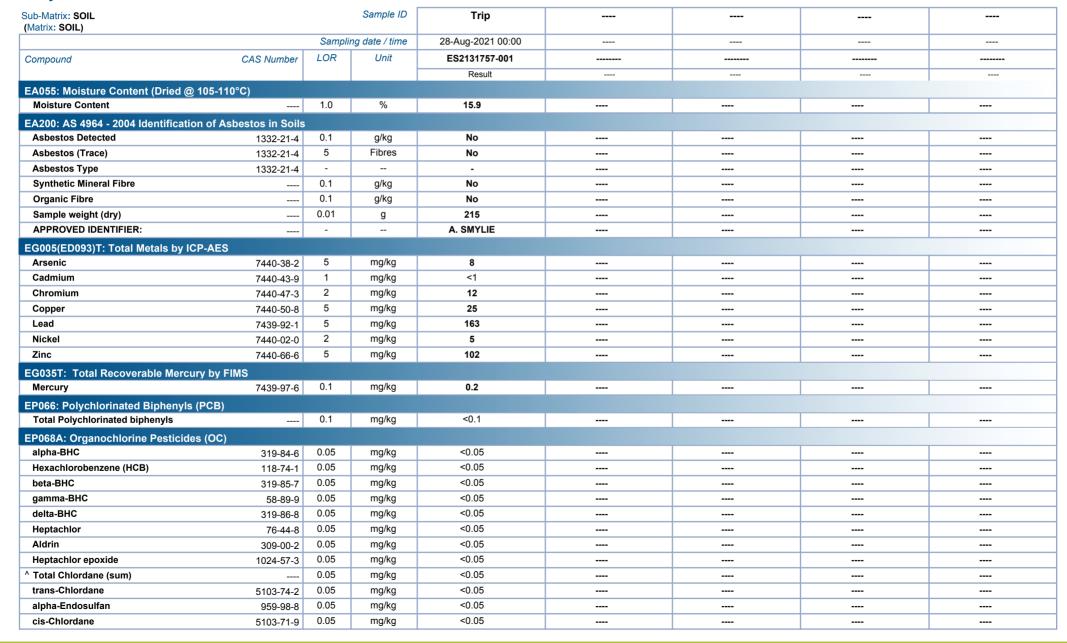
Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting


- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP068: Where reported, Total Chlordane (sum) is the sum of the reported concentrations of cis-Chlordane and trans-Chlordane at or above the LOR.
- EP068: Where reported, Total OCP is the sum of the reported concentrations of all Organochlorine Pesticides at or above LOR.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.
- EA200 'Am' Amosite (brown asbestos)
- EA200 'Cr' Crocidolite (blue asbestos)
- EA200 'Trace' Asbestos fibres ("Free Fibres") detected by trace analysis per AS4964. The result can be interpreted that the sample contains detectable 'respirable' asbestos fibres
- EA200: Asbestos Identification Samples were analysed by Polarised Light Microscopy including dispersion staining.
- EA200 Legend
- EA200 'Ch' Chrysotile (white asbestos)
- EA200: 'UMF' Unknown Mineral Fibres. "-" indicates fibres detected may or may not be asbestos fibres. Confirmation by alternative techniques is recommended.
- EA200: For samples larger than 30g, the <2mm fraction may be sub-sampled prior to trace analysis as outlined in ISO23909:2008(E) Sect 6.3.2-2
- EA200: 'Yes' Asbestos detected by polarised light microscopy including dispersion staining.
- EA200: 'No*' No asbestos found, at the reporting limit of 0.1g/kg, by polarised light microscopy including dispersion staining. Asbestos material was detected and positively identified at concentrations estimated to be below 0.1g/kg.
- EA200: 'No' No asbestos found at the reporting limit 0.1g/kg, by polarised light microscopy including dispersion staining.

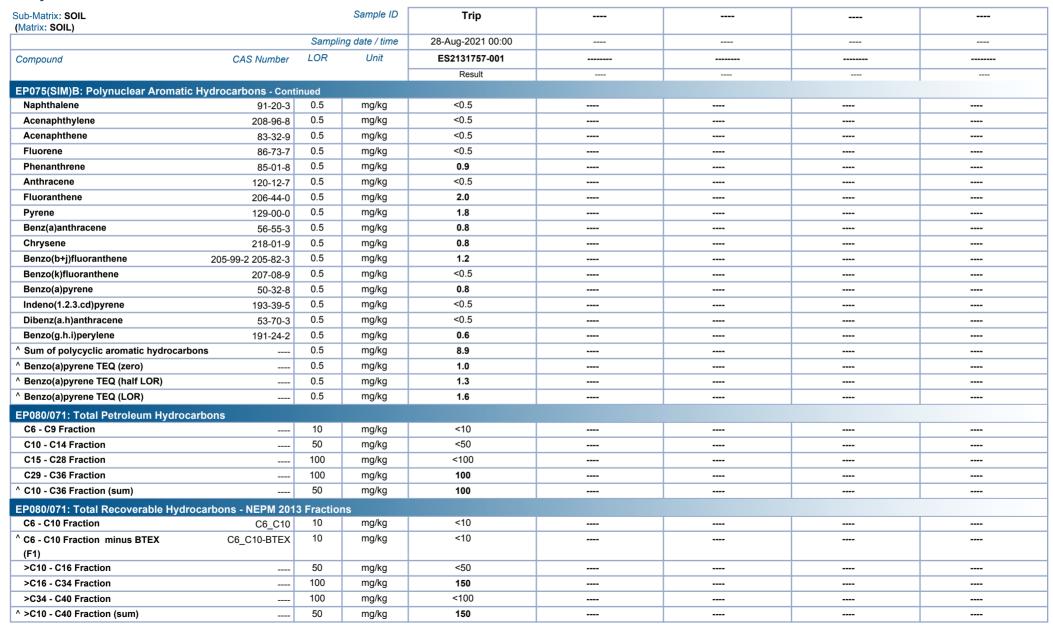
Page : 3 of 8 Work Order : ES2131757

Client : TETRA TECH COFFEY PTY LTD

Project : North Sydney Public School

Page : 4 of 8 Work Order : ES2131757

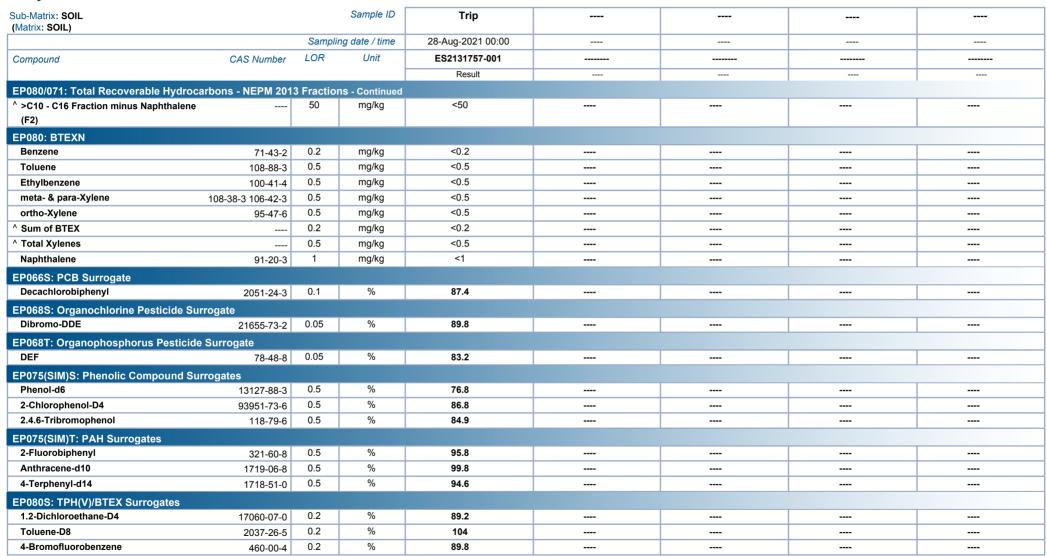
Client : TETRA TECH COFFEY PTY LTD


Project : North Sydney Public School

Page : 5 of 8 Work Order : ES2131757

Client : TETRA TECH COFFEY PTY LTD

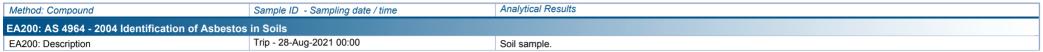
Project : North Sydney Public School



Page : 6 of 8 Work Order : ES2131757

Client : TETRA TECH COFFEY PTY LTD

Project : North Sydney Public School

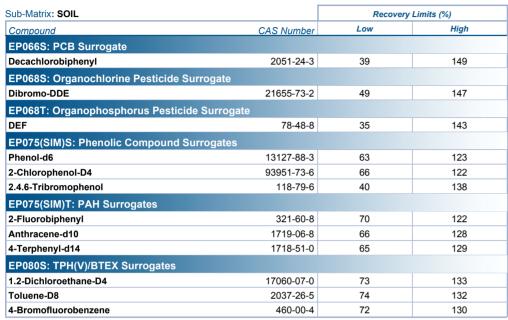

Page : 7 of 8
Work Order : ES2131757

Client : TETRA TECH COFFEY PTY LTD

Project : North Sydney Public School

Analytical Results Descriptive Results

Sub-Matrix: SOIL



Page : 8 of 8 Work Order : ES2131757

Client : TETRA TECH COFFEY PTY LTD

Project : North Sydney Public School

Surrogate Control Limits

Inter-Laboratory Testing

Analysis conducted by ALS Newcastle, NATA accreditation no. 825, site no. 1656 (Chemistry) 9854 (Biology).

(SOIL) EA200: AS 4964 - 2004 Identification of Asbestos in Soils

QUALITY CONTROL REPORT

Work Order : **ES2131757** Page : 1 of 9

Client : TETRA TECH COFFEY PTY LTD Laboratory : Environmental Division Sydney

Contact : Matthew Locke Contact : Khaleda Ataei

Address : LEVEL 19, TOWER B- CITADEL TOWER 799 PACIFIC Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

HIGHWAY

CHATSWOOD NSW, AUSTRALIA 2067

Telephone : ---- Telephone : + 61 2 8784 8555

 Project
 : North Sydney Public School
 Date Samples Received
 : 01-Sep-2021

 Order number
 : --- Date Analysis Commenced
 : 02-Sep-2021

C-O-C number : ---- Issue Date

Sampler : Jack Site :

Quote number : EN/222

No. of samples received : 1

No. of samples analysed : 1

Accreditation No. 825
Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

· 08-Sep-2021

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Alana Smylie Asbestos Identifier Newcastle - Asbestos, Mayfield West, NSW Edwandy Fadjar Organic Coordinator Sydney Organics, Smithfield, NSW

Ivan Taylor Analyst Sydney Inorganics, Smithfield, NSW

Page : 2 of 9
Work Order : ES2131757

Client : TETRA TECH COFFEY PTY LTD
Project : North Sydney Public School

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EG005(ED093)T: To	tal Metals by ICP-AES	(QC Lot: 3887401)							
ES2131757-001	Trip	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	12	20	0.0	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	5	8	0.0	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	8	13	0.0	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	25	45	13.2	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	163	213	17.2	0% - 20%
		EG005T: Zinc	7440-66-6	5	mg/kg	102	192	19.6	0% - 20%
EA055: Moisture Co	ntent (Dried @ 105-11	10°C) (QC Lot: 3887403)							
ES2131798-010	Anonymous	EA055: Moisture Content		0.1	%	20.9	20.3	2.8	0% - 20%
EG035T: Total Reco	overable Mercury by F	FIMS (QC Lot: 3887402)							
ES2131757-001	Trip	EG035T: Mercury	7439-97-6	0.1	mg/kg	0.2	0.5	40.5	No Limit
EP066: Polychlorina	ated Biphenyls (PCB)	(QC Lot: 3881242)							
ES2131281-002	Anonymous	EP066: Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	<0.1	0.0	No Limit
EP068A: Organochl	orine Pesticides (OC)	(QC Lot: 3881239)							
ES2131281-002	Anonymous	EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit

Page : 3 of 9
Work Order : ES2131757

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP068A: Organochio	orine Pesticides (O	C) (QC Lot: 3881239) - continued							
ES2131281-002	Anonymous	EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
EP068B: Organopho	sphorus Pesticides	s (OP) (QC Lot: 3881239)							
ES2131281-002	Anonymous	EP068: Dichlorvos	62-73-7	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Dimethoate	60-51-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Diazinon	333-41-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Malathion	121-75-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Fenthion	55-38-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Prothiofos	34643-46-4	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Ethion	563-12-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Carbophenothion	786-19-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP068: Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP068: Parathion	56-38-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
EP075(SIM)B: Polyni	uclear Aromatic Hy	rdrocarbons (QC Lot: 3881241)							
ES2131798-005	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	2.2	2.0	7.2	No Limit

Page : 4 of 9
Work Order : ES2131757

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP075(SIM)B: Polyr	nuclear Aromatic Hydr	ocarbons (QC Lot: 3881241) - continued							
ES2131798-005	Anonymous	EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	1.7	1.6	8.6	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	1.2	1.2	0.0	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	1.2	1.1	0.0	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	2.0	1.8	14.3	No Limit
			205-82-3						
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	0.8	0.7	0.0	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	1.3	1.2	12.2	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	0.8	0.7	17.5	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	0.8	0.7	0.0	No Limit
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	12.0	11.0	8.7	0% - 20%
		hydrocarbons							
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	1.8	1.6	8.2	No Limit
ES2131281-002	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	0.8	1.0	19.1	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	0.8	1.0	20.2	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	0.6	0.0	No Limit
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	1.6	2.6	47.6	No Limit
		hydrocarbons							
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
EP080/071: Total Pe	troleum Hydrocarbon	s (QC Lot: 3880915)							
ES2131757-001	Trip	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
ES2131798-011	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
EP080/071: Total Pe	etroleum Hydrocarbon								
ES2131798-005	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit

Page : 5 of 9
Work Order : ES2131757

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP080/071: Total Pe	troleum Hydrocarboi	ns (QC Lot: 3881240) - continued							
ES2131281-002	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit
EP080/071: Total Re	coverable Hydrocark	ons - NEPM 2013 Fractions (QC Lot: 3880915)							
ES2131757-001	Trip	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit
ES2131798-011	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit
EP080/071: Total Re	coverable Hydrocark	ons - NEPM 2013 Fractions (QC Lot: 3881240)							
ES2131798-005	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	100	100	0.0	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.0	No Limit
ES2131281-002	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	<100	100	0.0	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.0	No Limit
EP080: BTEXN (QC	Lot: 3880915)								
ES2131757-001	Trip	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit
ES2131798-011	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit

Page : 6 of 9
Work Order : ES2131757

Client : TETRA TECH COFFEY PTY LTD
Project : North Sydney Public School

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LCS	S) Report	
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG005(ED093)T: Total Metals by ICP-AES (QC	Lot: 3887401)							
G005T: Arsenic	7440-38-2	5	mg/kg	<5	121.1 mg/kg	90.9	88.0	113
G005T: Cadmium	7440-43-9	1	mg/kg	<1	0.74 mg/kg	97.6	70.0	130
G005T: Chromium	7440-47-3	2	mg/kg	<2	19.6 mg/kg	99.7	68.0	132
G005T: Copper	7440-50-8	5	mg/kg	<5	52.9 mg/kg	98.9	89.0	111
G005T: Lead	7439-92-1	5	mg/kg	<5	60.8 mg/kg	95.3	82.0	119
G005T: Nickel	7440-02-0	2	mg/kg	<2	15.3 mg/kg	92.0	80.0	120
G005T: Zinc	7440-66-6	5	mg/kg	<5	139.3 mg/kg	90.0	66.0	133
G035T: Total Recoverable Mercury by FIMS	(QCLot: 3887402)							
G035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	0.087 mg/kg	97.7	70.0	125
P066: Polychlorinated Biphenyls (PCB) (QCL	_ot: 3881242)							
P066: Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	1 mg/kg	92.8	62.0	126
P068A: Organochlorine Pesticides (OC) (QC	Lot: 3881239)							
P068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	0.5 mg/kg	83.3	69.0	113
P068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	0.5 mg/kg	83.1	65.0	117
P068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	0.5 mg/kg	82.0	67.0	119
P068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	0.5 mg/kg	88.7	68.0	116
P068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	0.5 mg/kg	78.2	65.0	117
P068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	0.5 mg/kg	80.2	67.0	115
P068: Aldrin	309-00-2	0.05	mg/kg	<0.05	0.5 mg/kg	85.9	69.0	115
:P068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	0.5 mg/kg	85.8	62.0	118
P068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	0.5 mg/kg	86.4	63.0	117
:P068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	0.5 mg/kg	88.4	66.0	116
:P068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	0.5 mg/kg	82.7	64.0	116
P068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	0.5 mg/kg	84.3	66.0	116
:P068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	0.5 mg/kg	86.7	67.0	115
P068: Endrin	72-20-8	0.05	mg/kg	<0.05	0.5 mg/kg	78.0	67.0	123
P068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	0.5 mg/kg	86.0	69.0	115
P068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	0.5 mg/kg	85.5	69.0	121
P068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	0.5 mg/kg	86.3	56.0	120
P068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	0.5 mg/kg	86.2	62.0	124
P068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	0.5 mg/kg	80.0	66.0	120
P068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	0.5 mg/kg	87.6	64.0	122
EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	0.5 mg/kg	76.7	54.0	130

Page : 7 of 9
Work Order : ES2131757

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP068B: Organophosphorus Pesticides (OP) (QCLot: 38	381239) - continu	ed						
EP068: Dichlorvos	62-73-7	0.05	mg/kg	<0.05	0.5 mg/kg	91.2	59.0	119
EP068: Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	0.5 mg/kg	87.3	62.0	128
EP068: Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	0.5 mg/kg	77.2	54.0	126
EP068: Dimethoate	60-51-5	0.05	mg/kg	<0.05	0.5 mg/kg	86.3	67.0	119
EP068: Diazinon	333-41-5	0.05	mg/kg	<0.05	0.5 mg/kg	82.6	70.0	120
EP068: Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	0.5 mg/kg	80.8	72.0	120
EP068: Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	0.5 mg/kg	77.4	68.0	120
EP068: Malathion	121-75-5	0.05	mg/kg	<0.05	0.5 mg/kg	81.4	68.0	122
EP068: Fenthion	55-38-9	0.05	mg/kg	<0.05	0.5 mg/kg	82.0	69.0	117
EP068: Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	0.5 mg/kg	83.8	76.0	118
EP068: Parathion	56-38-2	0.2	mg/kg	<0.2	0.5 mg/kg	80.9	64.0	122
EP068: Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	0.5 mg/kg	82.4	70.0	116
EP068: Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	0.5 mg/kg	86.3	69.0	121
EP068: Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	0.5 mg/kg	86.9	66.0	118
EP068: Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	0.5 mg/kg	81.7	68.0	124
EP068: Prothiofos	34643-46-4	0.05	mg/kg	<0.05	0.5 mg/kg	84.9	62.0	112
EP068: Ethion	563-12-2	0.05	mg/kg	<0.05	0.5 mg/kg	82.9	68.0	120
EP068: Carbophenothion	786-19-6	0.05	mg/kg	<0.05	0.5 mg/kg	81.9	65.0	127
EP068: Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	0.5 mg/kg	74.1	41.0	123
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCI	Lot: 3881241)							
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	6 mg/kg	91.0	77.0	125
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	6 mg/kg	84.4	72.0	124
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	6 mg/kg	92.3	73.0	127
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	6 mg/kg	87.9	72.0	126
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	6 mg/kg	90.6	75.0	127
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	6 mg/kg	93.8	77.0	127
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	6 mg/kg	91.4	73.0	127
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	6 mg/kg	90.0	74.0	128
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	6 mg/kg	77.8	69.0	123
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	6 mg/kg	91.4	75.0	127
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	6 mg/kg	77.6	68.0	116
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	6 mg/kg	88.7	74.0	126
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	6 mg/kg	86.6	70.0	126
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	6 mg/kg	77.9	61.0	121
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	6 mg/kg	79.7	62.0	118
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	6 mg/kg	84.4	63.0	121
EP080/071: Total Petroleum Hydrocarbons (QCLot: 3880	0915)							
EP080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	86.0	68.4	128

Page : 8 of 9
Work Order : ES2131757

Client : TETRA TECH COFFEY PTY LTD
Project : North Sydney Public School

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP080/071: Total Petroleum Hydrocarbons (QCLot: 3881240)								
EP071: C10 - C14 Fraction		50	mg/kg	<50	300 mg/kg	106	75.0	129
EP071: C15 - C28 Fraction		100	mg/kg	<100	450 mg/kg	104	77.0	131
EP071: C29 - C36 Fraction		100	mg/kg	<100	300 mg/kg	99.3	71.0	129
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fra	ctions (QCL	ot: 3880915)						
EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	31 mg/kg	87.2	68.4	128
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fra	ctions (QCL	ot: 3881240)						
EP071: >C10 - C16 Fraction		50	mg/kg	<50	375 mg/kg	107	77.0	125
EP071: >C16 - C34 Fraction		100	mg/kg	<100	525 mg/kg	101	74.0	138
EP071: >C34 - C40 Fraction		100	mg/kg	<100	225 mg/kg	96.2	63.0	131
EP080: BTEXN (QCLot: 3880915)								
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	87.4	62.0	116
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	1 mg/kg	84.6	67.0	121
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1 mg/kg	84.1	65.0	117
EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	2 mg/kg	82.0	66.0	118
	106-42-3							
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	1 mg/kg	81.3	68.0	120
EP080: Naphthalene	91-20-3	1	mg/kg	<1	1 mg/kg	86.6	63.0	119

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

ub-Matrix: SOIL				Ma	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)
aboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG005(ED093)T:	Total Metals by ICP-AES (QCLot: 3887401)						
ES2131757-001	Trip	EG005T: Arsenic	7440-38-2	50 mg/kg	92.8	70.0	130
		EG005T: Cadmium	7440-43-9	50 mg/kg	94.5	70.0	130
		EG005T: Chromium	7440-47-3	50 mg/kg	92.9	68.0	132
		EG005T: Copper	7440-50-8	250 mg/kg	94.0	70.0	130
		EG005T: Lead	7439-92-1	250 mg/kg	83.5	70.0	130
		EG005T: Nickel	7440-02-0	50 mg/kg	91.5	70.0	130
		EG005T: Zinc	7440-66-6	250 mg/kg	94.6	66.0	133
G035T: Total Re	ecoverable Mercury by FIMS (QCLot: 3887402)						
ES2131757-001	Trip	EG035T: Mercury	7439-97-6	5 mg/kg	101	70.0	130
P066: Polychlor	inated Biphenyls (PCB) (QCLot: 3881242)						
ES2131281-002	Anonymous	EP066: Total Polychlorinated biphenyls		1 mg/kg	93.3	70.0	130

Page : 9 of 9
Work Order : ES2131757

Sub-Matrix: SOIL				M	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)
aboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP068A: Organocl	nlorine Pesticides (OC) (QCLot: 3881239)						
ES2131281-002	Anonymous	EP068: gamma-BHC	58-89-9	0.5 mg/kg	83.4	70.0	130
		EP068: Heptachlor	76-44-8	0.5 mg/kg	103	70.0	130
		EP068: Aldrin	309-00-2	0.5 mg/kg	86.4	70.0	130
		EP068: Dieldrin	60-57-1	0.5 mg/kg	80.9	70.0	130
		EP068: Endrin	72-20-8	2 mg/kg	85.2	70.0	130
		EP068: 4.4`-DDT	50-29-3	2 mg/kg	76.3	70.0	130
EP068B: Organopl	nosphorus Pesticides (OP) (QCLot: 3881239)						
ES2131281-002	Anonymous	EP068: Diazinon	333-41-5	0.5 mg/kg	77.6	70.0	130
		EP068: Chlorpyrifos-methyl	5598-13-0	0.5 mg/kg	84.5	70.0	130
		EP068: Pirimphos-ethyl	23505-41-1	0.5 mg/kg	81.6	70.0	130
		EP068: Bromophos-ethyl	4824-78-6	0.5 mg/kg	99.3	70.0	130
		EP068: Prothiofos	34643-46-4	0.5 mg/kg	84.5	70.0	130
EP075(SIM)B: Poly	nuclear Aromatic Hydrocarbons (QCLot: 38812	41)					
ES2131281-002	Anonymous	EP075(SIM): Acenaphthene	83-32-9	10 mg/kg	90.4	70.0	130
		EP075(SIM): Pyrene	129-00-0	10 mg/kg	96.0	70.0	130
EP080/071: Total F	etroleum Hydrocarbons (QCLot: 3880915)	2. 5. 5 (6.11)		3 3			
ES2131757-001	Trip	EP080: C6 - C9 Fraction		32.5 mg/kg	111	70.0	130
	etroleum Hydrocarbons (QCLot: 3881240)	El 666. CO COTTACION					
				400	140	70.0	407
ES2131281-002	Anonymous	EP071: C10 - C14 Fraction		480 mg/kg	110	73.0	137
		EP071: C15 - C28 Fraction		3100 mg/kg	114	53.0	131
		EP071: C29 - C36 Fraction		2060 mg/kg	117	52.0	132
EP080/071: Total F	ecoverable Hydrocarbons - NEPM 2013 Fraction	ns (QCLot: 3880915)					
ES2131757-001	Trip	EP080: C6 - C10 Fraction	C6_C10	37.5 mg/kg	117	70.0	130
EP080/071: Total F	ecoverable Hydrocarbons - NEPM 2013 Fraction	is (QCLot: 3881240)					
ES2131281-002	Anonymous	EP071: >C10 - C16 Fraction		860 mg/kg	114	73.0	137
		EP071: >C16 - C34 Fraction		4320 mg/kg	116	53.0	131
		EP071: >C34 - C40 Fraction		890 mg/kg	99.6	52.0	132
EP080: BTEXN (Q	CLot: 3880915)						
ES2131757-001	Trip	EP080: Benzene	71-43-2	2.5 mg/kg	80.8	70.0	130
		EP080: Toluene	108-88-3	2.5 mg/kg	86.2	70.0	130
		EP080: Ethylbenzene	100-41-4	2.5 mg/kg	82.3	70.0	130
		EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	90.0	70.0	130
			106-42-3				
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	79.8	70.0	130
		EP080: Naphthalene	91-20-3	2.5 mg/kg	81.8	70.0	130

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES2131757** Page : 1 of 6

Client : TETRA TECH COFFEY PTY LTD Laboratory : Environmental Division Sydney

Contact: Matthew LockeTelephone: + 61 2 8784 8555Project: North Sydney Public SchoolDate Samples Received: 01-Sep-2021

Site : Issue Date : 08-Sep-2021
Sampler : Jack No. of samples received : 1

Sampler : Jack No. or samples received : 1
Order number : ---- No. of samples analysed : 1

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 6 Work Order : ES2131757

Client : TETRA TECH COFFEY PTY LTD
Project : North Sydney Public School

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: **SOIL**Evaluation: ▼ = Holding time breach; ✓ = Within holding time.

Matrix. Soil				Lvaluation	i. × - Holding time	breach, V - Willing	in noiding tin
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content (Dried @ 105-110°C)							
Soil Glass Jar - Unpreserved (EA055)							
Trip	28-Aug-2021				07-Sep-2021	11-Sep-2021	✓
EA200: AS 4964 - 2004 Identification of Asbestos in Soils							
Snap Lock Bag - Friable Asbestos/PSD Bag (EA200)							
Trip	28-Aug-2021				02-Sep-2021	24-Feb-2022	✓
EG005(ED093)T: Total Metals by ICP-AES							
Soil Glass Jar - Unpreserved (EG005T)							
Trip	28-Aug-2021	07-Sep-2021	24-Feb-2022	✓	07-Sep-2021	24-Feb-2022	✓
EG035T: Total Recoverable Mercury by FIMS							
Soil Glass Jar - Unpreserved (EG035T)							
Trip	28-Aug-2021	07-Sep-2021	25-Sep-2021	✓	08-Sep-2021	25-Sep-2021	✓
EP066: Polychlorinated Biphenyls (PCB)							
Soil Glass Jar - Unpreserved (EP066)			44.0 0004			40.04.004	
Trip	28-Aug-2021	03-Sep-2021	11-Sep-2021	✓	07-Sep-2021	13-Oct-2021	✓
EP068A: Organochlorine Pesticides (OC)							
Soil Glass Jar - Unpreserved (EP068)			44.0 0004			40.04.004	
Trip	28-Aug-2021	03-Sep-2021	11-Sep-2021	✓	07-Sep-2021	13-Oct-2021	✓
EP068B: Organophosphorus Pesticides (OP)							
Soil Glass Jar - Unpreserved (EP068)	00.4	22.0	44 0 2024		27.0	13-Oct-2021	
Trip	28-Aug-2021	03-Sep-2021	11-Sep-2021	✓	07-Sep-2021	13-Oct-2021	✓
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons							
Soil Glass Jar - Unpreserved (EP075(SIM))	00 4 0004	00 0 0004	11-Sep-2021		07.0 0004	13-Oct-2021	
Trip	28-Aug-2021	03-Sep-2021	11-Sep-2021	✓	07-Sep-2021	13-001-2021	✓
EP080/071: Total Petroleum Hydrocarbons						ı	
Soil Glass Jar - Unpreserved (EP080)	20 4 2024	02 San 2024	11 Son 2021	,	07 San 2024	11 Son 2021	
Trip	28-Aug-2021	02-Sep-2021	11-Sep-2021	✓	07-Sep-2021	11-Sep-2021	√
Soil Glass Jar - Unpreserved (EP071) Trip	28-Aug-2021	03-Sep-2021	11-Sep-2021	1	07-Sep-2021	13-Oct-2021	
пр	20-Aug-2021	00-00p-2021	11 OCP 2021	<u> </u>	01-00p-2021	10 000 2021	<u> </u>

Page : 3 of 6
Work Order : ES2131757

Soil Glass Jar - Unpreserved (EP080)

Client : TETRA TECH COFFEY PTY LTD
Project : North Sydney Public School

11-Sep-2021

07-Sep-2021

Matrix: SOIL Evaluation: **x** = Holding time breach ; ✓ = Within holding time. Method Extraction / Preparation Sample Date Analysis Container / Client Sample ID(s) Date extracted Due for extraction Evaluation Date analysed Due for analysis Evaluation EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions Soil Glass Jar - Unpreserved (EP080) 28-Aug-2021 02-Sep-2021 11-Sep-2021 07-Sep-2021 11-Sep-2021 Trip Soil Glass Jar - Unpreserved (EP071) 28-Aug-2021 03-Sep-2021 11-Sep-2021 13-Oct-2021 Trip 07-Sep-2021 EP080: BTEXN

28-Aug-2021

02-Sep-2021

11-Sep-2021

Page : 4 of 6 Work Order : ES2131757

Client : TETRA TECH COFFEY PTY LTD
Project : North Sydney Public School

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

the expected rate. A listing or breaches is provided in the Summary of Outliers.

Matrix: SOIL

Evaluation: × = Quality Control frequency not within specification; ✓ = Quality Control frequency within specification.

						or oquooj .	to the contraction of the contra
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055	1	7	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM)	EP075(SIM)	2	19	10.53	10.00	√	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	7	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	4	25.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	6	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	7	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
PAH/Phenols (SIM)	EP075(SIM)	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	7	14.29	5.00	<u>√</u>	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	4	25.00	5.00	√	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	6	16.67	5.00	√	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	7	14.29	5.00	<u>√</u>	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	20	5.00	5.00	√	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	19	5.26	5.00	√	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
PAH/Phenols (SIM)	EP075(SIM)	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	7	14.29	5.00	1	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	4	25.00	5.00	√	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	6	16.67	5.00	<u>√</u>	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	20	5.00	5.00	√	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
PAH/Phenols (SIM)	EP075(SIM)	1	19	5.26	5.00	1	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	7	14.29	5.00		NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	4	25.00	5.00	√	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	6	16.67	5.00	<u>√</u>	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	7	14.29	5.00	√	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	20	5.00	5.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	19	5.26	5.00	<u>√</u>	NEPM 2013 B3 & ALS QC Standard

Page : 5 of 6
Work Order : ES2131757

Client : TETRA TECH COFFEY PTY LTD
Project : North Sydney Public School

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM Schedule B(3).
Asbestos Identification in Soils	EA200	SOIL	AS 4964 Method for the qualitative identification of asbestos in bulk samples Analysis by Polarised Light Microscopy including dispersion staining
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2) (Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3)
Polychlorinated Biphenyls (PCB)	EP066	SOIL	In house: Referenced to USEPA SW 846 - 8270 Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3).
Pesticides by GCMS	EP068	SOIL	In house: Referenced to USEPA SW 846 - 8270 Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This technique is compliant with NEPM Schedule B(3).
TRH - Semivolatile Fraction	EP071	SOIL	In house: Referenced to USEPA SW 846 - 8015 Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40. Compliant with NEPM Schedule B(3).
PAH/Phenols (SIM)	EP075(SIM)	SOIL	In house: Referenced to USEPA SW 846 - 8270. Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3)
TRH Volatiles/BTEX	EP080	SOIL	In house: Referenced to USEPA SW 846 - 8260. Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. Compliant with NEPM Schedule B(3) amended.
Preparation Methods	Method	Matrix	Method Descriptions
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM Schedule B(3).
Methanolic Extraction of Soils for Purge and Trap	ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.

Page : 6 of 6
Work Order : ES2131757

Client : TETRA TECH COFFEY PTY LTD
Project : North Sydney Public School

Preparation Methods	Method	Matrix	Method Descriptions
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.

APPENDIX E: LABORATORY DATA: SUMMARY TABLES

Tetra Tech Coffey

Report reference number: SYDGE290593-AD

		Asbestos				BTEX							Met	als															ОСР						_
	Moisture Content (dried @ 103°C)	ksbestos	enzene	thylbenzene	oluene	Kylene (m & p)	Kylene (o)	(ylene Total	:6-C10 less BTEX (F1)	Vsenic	admium	hromium	Opper	ead	Aercury	licke!	linc	,4-ррЕ	-внс	Ndrin	-	hlordane	-BHC	aaa	DDT	DT+DDE+DDD	Dieldrin	ndosulfan I	ndosulfan II	indosulfan sulphate	indrin	indrin aldehyde	indrin ketone		ובלימינויים
	%		mg/kg	mg/kg	mg/kg	mg/kg		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg mg	/kg mg/	kg mg	/kg mg/k			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg i	mg/kg mg/	/kg mg	/kg
EQL	1		0.1		0.1	0.2	0.1	0.3	20	2	0.4	5	5	5	0.1	5	5	0.05		0.05 0.			1 0.05		0.05			0.05			0.05		0.05 0.0		
NEPM 2013 HILs Residential A Soil		Detect								100	20		6000	300	40	400	7400				5	50)			240					10			(
NEPM 2013 HSL Low Density Residential (HSL-A) (Clay; 0-1m)			0.7		480			110	50																										
CRC Care 2011 Direct Contact Low Density Residential (HSL-A)			100	4500	14,000			12,000																											
CRC Care 2011 Direct Contact Intrusive Maintenance Worker			1100	85,000	120,000			130,000																											
Field_ID Sample Depth Sampled_Date-Time Soil Unit																																			
HA1_0.1-0.2 0.1-0.2 28/08/2021 Fill	23	ND	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<20	7.1	<0.4	9.8	26	46	<0.1	<5	42	<0.05	<0.05	<0.05 0.	0.0>	05 <0	.1 <0.0	5 <0.05	5 <0.05	<0.05	0.09	<0.05	<0.05	<0.05	<0.05	0.07	<0.05 <0.	.05 <0	05
HA1_0.7-0.8 0.7-0.8 28/08/2021 Natural	19	-	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<20	15	<0.4	13	22	20	<0.1	<5	8.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			
HA2_0.1-0.2 0.1-0.2 28/08/2021 Fill	20	ND	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<20	16	<0.4	29	76	100	0.2	22	110	<0.05	<0.05	<0.05 <0	05 <0.0	05 <0	.1 <0.0	5 <0.05	5 <0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05 <0.	.05 <0	05
HA2_0.7-0.8 0.7-0.8 28/08/2021 Natural	23	-	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<20	11	<0.4	7.6	15	12	<0.1	<5	5.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			
HA3_0.1-0.2 0.1-0.2 28/08/2021 Fill	24	ND	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<20	6.4	<0.4	16	30	51	<0.1	6.7	74	<0.05	<0.05	<0.05 <0	05 <0.0	05 <0	.1 <0.0	5 <0.05	5 <0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05 <0.	.05 <0	05
HA3_0.5-0.6 0.5-0.6 28/08/2021 Natural	20	-	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<20	5.5	<0.4	9.3	16	19	<0.1	<5	7.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			
HA4_0.1-0.2 0.1-0.2 28/08/2021 Fill	16	ND	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<20	13	<0.4	18	26	180	0.2	5.5	130	<0.05	<0.05	<0.05 <0	05 <0.0)5 <0	.1 <0.0	5 <0.05	5 <0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05 <0.	.05 <0	05
HA4_0.7-0.8 0.7-0.8 28/08/2021 Natural	19	-	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<20	16	<0.4	9.3	16	23	<0.1	<5	8.2	-	-	-	-			-	-	-	-		-	-		-			
HA5_0.1-0.2	12	ND	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<20	5.4	<0.4	9	16	46	<0.1	<5	47	<0.05	<0.05	<0.05 <0	05 <0.0	05 <0	.1 <0.0	5 <0.05	5 <0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05 <0.	.05 <0	05
HA5_0.8-0.9 0.8-0.9 28/08/2021 Fill	15	-	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<20	26	<0.4	8.7	7.9	20	<0.1	<5	<5	-	-	-	-	٦-	-	-	-	-	-	-	-	-	-	-			
HA6_0.1-0.2	20	ND	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<20	2.6	<0.4	12	54	16	<0.1	11	71	<0.5	<0.5	<0.5 <0	.5 <0.	5 <	1 <0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 <0).5 <0	.5
HA6_0.4-0.5	12	-	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<20	4.2	<0.4	16	31	27	<0.1	13	45	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			
HA7_0.1-0.2	22	ND	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<20	7.7	<0.4	15	45	61	0.1	7.1	110	<0.05	<0.05	<0.05 <0	05 <0.0	05 <0	.1 <0.0	5 <0.05	5 <0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05 <0.	.05 <0	05
HA7_0.9-1.0 0.9-1.0 28/08/2021 Fill	29	-	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<20	140	1.1	21	78	190	0.4	13	870	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		. .	
HA8_0.2-0.3	14	ND	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<20	4.2	<0.4	14	41	110	0.1	7.2	160	<0.5	<0.5	<0.5 <0	.5 <0.	5 <	1 <0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 <0).5 <0	.5
HA8_0.7-0.8 0.7-0.8 28/08/2021 Natural	18	-	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<20	3.9	<0.4	10	22	14	<0.1	<5	21	-	-	-		-	-	-	-	-	-	-	-	-	-	-			
HA9_0.2-0.3 0.2-0.3 28/08/2021 Fill	12	ND	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<20	2.2	<0.4	85	29		<0.1	84	64	<0.05	<0.05	<0.05 <0	05 <0.0	05 <0	.1 <0.0	5 <0.05	5 <0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05 <0.	.05 <0	05
HA9_0.9-1.0 0.9-1.0 28/08/2021 Natural	17	-	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<20	6.5	<0.4	12	17	24	<0.1	<5	35	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	- -	. .	\neg

			_				-																OP	P															_			
	Heptachlor epoxide	Hexachlorobenzene	Methoxychlor	Toxaphene	Vic EPA IWRG 621 OCP (Total)*	Vir EPA IWRG 621 Other OCP (Total)*		Azinophos methyl Rolesar (Sulprofas)	Chlorfenvinnhos	Chlorpyrifos	Chloravrifos-methyl	on manhoe	Countablicos	Demeton-O	Demeton-S	Diazinon	Dichlorvos	Dimethoate	Disulfoton	Ethion	Ethoprop	Fenitrothion	Fensulfothion	Fenthion	Malathion	Merphos	Methyl parathion	Mevinphos (Phosdrin)	Monocrotophos	Naled (Dibrom)	Omethoate	Parathion	Phorate	Pyrazophos	Ronnel	Terbufos	Trichloronate	Tetrachlorvinphos	Tokuthion	Acenaphthene	Acenaphthylene	Anthracene
	mg/kg	mg/kg	g mg/k	kg mg/k	g MG/I	KG MG,	/KG m	g/kg mg,	/kg mg/	'kg mg/	'kg mg/	kg mg	/kg mg	g/kg m	g/kg m	ng/kg r	mg/kg	mg/kg		mg/kg	mg/kg n	ng/kg r	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg i	ng/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	ng/kg
EQL	0.05	0.05	0.05	5 0.5	0.1	. 0.	1	0.2 0.	2 0.	2 0.2	2 0.2	2 2	2 0	.2).2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	2	0.2	2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.5	0.5	0.5
NEPM 2013 HILs Residential A Soil		10	300	20						160	0																															
NEPM 2013 HSL Low Density Residential (HSL-A) (Clay; 0-1m)																																										
CRC Care 2011 Direct Contact Low Density Residential (HSL-A)																																										
CRC Care 2011 Direct Contact Intrusive Maintenance Worker																																										
Field_ID Sample Depth Sampled_Date-Time																																										
HA1_0.1-0.2 0.1-0.2 28/08/2021	<0.05	<0.05	<0.0	5 <0.5	0.16	6 <0	.1 <	0.2 <0	.2 <0	.2 <0.	.2 <0.	.2 <	2 <	0.2 <	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	<0.5	<0.5
HA1_0.7-0.8 0.7-0.8 28/08/2021	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- [<0.5	<0.5	<0.5
HA2_0.1-0.2 0.1-0.2 28/08/2021	<0.05	<0.05	<0.0	5 <0.5	<0.1	1 <0	.1 <	:0.2 <0	.2 <0	.2 <0.	.2 <0.	.2 <	2 <	0.2 <	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	<0.5	<0.5
HA2_0.7-0.8 0.7-0.8 28/08/2021	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.5	<0.5	<0.5
HA3_0.1-0.2 0.1-0.2 28/08/2021	<0.05	<0.05	<0.0	5 <0.5	<0.:	1 <0	.1 <	:0.2 <0	.2 <0	.2 <0.	.2 <0.	.2 <	2 <(0.2 <	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	<0.5	<0.5
HA3_0.5-0.6 0.5-0.6 28/08/2021	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	<0.5	<0.5	<0.5
HA4_0.1-0.2 0.1-0.2 28/08/2021	<0.05	<0.05	<0.0	5 <0.5	<0.1	1 <0	.1 <	0.2 <0	.2 <0	.2 <0.	.2 <0.	.2 <	2 <	0.2 <	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	<0.5	<0.5
HA4_0.7-0.8 0.7-0.8 28/08/2021	-	-	T -	-	-	-			-	-	-	٠	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	- 1	-	-	-	-	-	-	-	-	-	-	-	- 1	<0.5	<0.5	<0.5
HA5_0.1-0.2 0.1-0.2 28/08/2021	<0.05	<0.05	<0.0	5 <0.5	<0.1	1 <0	.1 <	0.2 <0	.2 <0	.2 <0.	.2 <0.	.2 <	2 <	0.2 <	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	<0.5	<0.5
HA5_0.8-0.9 0.8-0.9 28/08/2021	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	- 1	<0.5	<0.5	<0.5
HA6_0.1-0.2	<0.5	<0.5	<0.5	5 <10	<1	<:	1 <	:0.5 <0	.5 <0	.5 <0.	.5 <0.	.5 <	5 <	0.5 <	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<0.5	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
HA6_0.4-0.5 0.4-0.5 28/08/2021	-	-	-	-	-	-			-	-	-	1 -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	- 1	-	-	-	-	-	<0.5	<0.5	<0.5
HA7_0.1-0.2	<0.05	<0.05	<0.0	5 <0.5	<0.3	1 <0	.1 <	:0.2 <0	.2 <0	.2 <0.	.2 <0.	.2 <	2 <	0.2 <	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	<0.5	<0.5
HA7_0.9-1.0 0.9-1.0 28/08/2021	-	-	-	-	-	-			-	-	-	٠	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.5	<0.5	<0.5
HA8_0.2-0.3 0.2-0.3 28/08/2021	<0.5	<0.5	<0.5	5 <10	<1	<:	1 <	:0.5 <0	.5 <0	.5 <0.	.5 <0.	.5 <	5 <	0.5 <	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<0.5	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
HA8_0.7-0.8 0.7-0.8 28/08/2021	-	-	-	-	-	-			-	-	-	1 -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.5	<0.5	<0.5
HA9_0.2-0.3 0.2-0.3 28/08/2021	<0.05	<0.05	<0.0	5 <0.5	<0.:	1 <0	.1 <	:0.2 <0	.2 <0	.2 <0.	.2 <0.	.2 <	2 <(0.2 <	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	<0.5	<0.5
HA9_0.9-1.0 0.9-1.0 28/08/2021	-	-	-	T -	T -	T -			-	-	-		-	-	-	-	-	- 1	-	-	- 1	_	-	-	-	-	-		-	-	-	-	-	-	-	- 1	-	-	- 1	<0.5	<0.5	<0.5

								PAH													Poly	chlorina	ted Biph	enyls									ТРН				
		Benzo(a)anthracene	Benzo(a)pyrene	Benzo(a)pyrene TEQ (lower bound) *	Benzo(a)pyrene TEQ (medium bound) *	Benzo(a)pyrene TEQ (upper bound) *	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Benzo[b+j]fluoranthene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-c,d)pyrene	Naphthalene	Phenanthrene	Pyrene	Total PAHs	Arochlor 1221	Aroclor 1016	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	PCBs (Sum of total)	F2-NAPHTHALENE	69 - 93	C10 - C14	C15 - C28	C29 - C36	C10 - C36 (Sum of total)	C10 - C40 (Sum of total)	C10-C16	C16-C34	C34-C40	C6 - C10
		mg/kg	mg/kg	MG/KG	MG/KG	MG/KG	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	ng/kg	mg/kg	mg/kg	mg/kg			mg/kg	mg/kg	mg/kg	mg/kg
EQL		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	50	20	20	50	50	50	100	50	100	100	20
NEPM 2013 HILs Residential A	A Soil					3												300								1											
NEPM 2013 HSL Low Density	Residential (HSL-A) (Clay; 0-1m)																										280										
CRC Care 2011 Direct Contact	t Low Density Residential (HSL-A)																																	3300	4500	6300	4400
CRC Care 2011 Direct Contact	t Intrusive Maintenance Worker																																	62,000	85,000	120,000	82,000
	Sampled_Date-Time																																				
HA1_0.1-0.2 0.1-0.2	28/08/2021	<0.5		0.7	1	1.3	<0.5		<0.5		<0.5		<0.5	_	_		_	2.7	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<20	36	88			120	<50	120	<100	<20
HA1_0.7-0.8 0.7-0.8	28/08/2021	<0.5	<0.5	<0.5	0.6	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	-	-	-	-	-	-	<50	<20	<20	<50	<50	<50	<100	<50	<100	<100	<20
HA2_0.1-0.2 0.1-0.2	28/08/2021	<4	1.9	<4	<4	<4	<2	2	<4	1.2	<0.5	3.9	<0.5	1.2	<0.5	2	3.8	16	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<50	<20	<20	200	130	330	290	<50	290	<100	<20
HA2_0.7-0.8 0.7-0.8	28/08/2021	<0.5	<0.5	<0.5	0.6	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	-	-	-	-	-	-	<50	<20	<20	<50	<50	<50	<100	<50	<100	<100	<20
HA3_0.1-0.2 0.1-0.2	28/08/2021	<1	0.8	1	1.3	1.6	<1	1	<1	0.7	<0.5	1.1	<0.5	0.5	<0.5	0.5	1.3	5.9	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<50	<20	<20	130	120	250	220	<50	220	<100	<20
HA3_0.5-0.6 0.5-0.6	28/08/2021	<0.5	<0.5	<0.5	0.6	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	-	-	-	-	-	-	<50	<20	<20	<50	<50	<50	<100	<50	<100	<100	<20
HA4_0.1-0.2 0.1-0.2	28/08/2021	<1	0.9	<2	<2	<2	<1	1	<2	0.8	<0.5	1.7	<0.5	0.6	<0.5	0.9	1.6	7.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<50	<20	<20	140	130	270	230	<50	230	<100	<20
HA4_0.7-0.8 0.7-0.8	28/08/2021	<0.5	<0.5	<0.5	0.6	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	-	-	-	-	-	-	<50	<20	<20	<50	<50	<50	<100	<50	<100	<100	<20
HA5_0.1-0.2 0.1-0.2	28/08/2021	<2	1.1	<2	<2	2.1	<1	1.1	<2	0.9	<0.5	3.1	<0.5	0.6	<0.5	2.7	2.9	12.4	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<50	<20	<20	180	180	360	310	<50	310	<100	<20
HA5_0.8-0.9 0.8-0.9	28/08/2021	<0.5	<0.5	<0.5	0.6	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	-	-	-	-	-	-	<50	<20	<20	<50	<50	<50	<100	<50	<100	<100	<20
HA6_0.1-0.2 0.1-0.2	28/08/2021	<0.5	<0.5	<0.5	0.6	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1	<1	<1	<1	<1	<1	<1	<1	<250	<20	<100	<250	340	340	<500	<250	<500	<500	<20
HA6_0.4-0.5 0.4-0.5	28/08/2021	<0.5	<0.5	<0.5	0.6	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	_	-	-	-	-	-	-	- 1	<250	<20	<100	<250	340	340	<500	<250	<500	<500	<20
HA7_0.1-0.2 0.1-0.2	28/08/2021	<1	0.7	<1	1.2	1.5	<1	0.8	<1	0.5	<0.5	1.4	<0.5	<0.5	<0.5	0.6	1.3	5.3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<50	<20	<20	200	220	420	350	<50	350	<100	<20
HA7_0.9-1.0 0.9-1.0	28/08/2021	0.5	0.5	0.6	0.9	1.2	<0.5	0.5	0.6	<0.5	<0.5	1	<0.5	<0.5	<0.5	0.7	1	4.8	_	-	-	-	-	-	-	- 1	<50	<20	25	130	130	285	210	<50	210	<100	<20
HA8_0.2-0.3 0.2-0.3	28/08/2021	<1	0.8	<1	1.3	1.6	<1	0.9	<1	0.6	<0.5	0.9	<0.5	<0.5	<0.5	<0.5	1	4.2	<1	<1	<1	<1	<1	<1	<1	<1	<250	<20	<100	330	380	710	590	<250	590	<500	<20
HA8_0.7-0.8 0.7-0.8	28/08/2021	<0.5	<0.5	<0.5	0.6	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	-	-	-	-	-	-	<50	<20	<20	<50	<50	<50	<100	<50	<100	<100	<20
HA9_0.2-0.3 0.2-0.3	28/08/2021	<0.5	<0.5	<0.5	0.6	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	0.5	<0.5	<0.5	<0.5	0.6	0.5	1.6	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<50	<20	<20	51	<50	51	<100	<50	<100	<100	<20
HA9_0.9-1.0 0.9-1.0	28/08/2021	<0.5	<0.5	<0.5	0.6	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	-	-	-	-	-	-	<50	<20	<20	<50	<50	<50	<100	<50	<100	<100	<20

				Asbestos				BTEX							Met	als														OCF										
			Moisture Content (dried @ 103°C)	Asbestos	Benzene	Ethylbenzene	Toluene	Xylene (m & p)	Xylene (o)	Xylene Total	C6-C10 less BTEX (F1)	Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc	4,4-DDE	а-ВНС	Aldrin	Aldrin + Dieldrin	р-внс	Chlordane	д-внс	ааа	_	DDT+DDE+DDD Dieldrin	Endosulfan I	Endosulfan II	Endosulfan sulphate	Endrin	Endrin aldehyde	Endrin ketone	g-BHC (Lindane)	Heptachlor	Heptachlor epoxide	Hexachlorobenzene	Methoxychlor
			%		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg n	-	0. 0 1							mg/kg						
EQL			1		0.1	0.1	0.1	0.2	0.1	0.3	20	2	0.4	5	5	5	0.1	5	5	0.05	0.05	0.05	0.05	0.05	0.1	0.05	0.05 0	.05 0	.05 0.0	5 0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
NEPM 2013 EIL/	/ ESLs Urban Reside	ential / Public Open Space (Clay)			65	125	105			45	800	100		410	260	1100		480	1500								1	.80												
Field_ID		Sampled_Date-Time																																						
HA1_0.1-0.2	0.1-0.2	28/08/2021	23	ND	<0.1	_	<0.1		<0.1	<0.3	<20	7.1	<0.4	9.8	26	46	<0.1	<5	42	<0.05	<0.05	<0.05	0.09	<0.05	<0.1 <	<0.05	<0.05 <0	0.05 <0	0.05 0.0	9 <0.0	5 <0.0	5 <0.05	<0.05	0.07	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
HA1_0.7-0.8	0.7-0.8	28/08/2021	19	-	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<20	15	<0.4	13	22	20	<0.1	<5	8.2	-	-	-	-	-	-	-	-	-		-	-	-	-	-			-			
HA2_0.1-0.2	0.1-0.2	28/08/2021	20	ND	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<20	16	<0.4	29	76	100	0.2	22	110	<0.05	<0.05	<0.05	<0.05	<0.05	<0.1 <	<0.05	<0.05 <0	0.05 <0	0.05 <0.0	0.0	5 <0.0	5 <0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
HA2_0.7-0.8	0.7-0.8	28/08/2021	23	-	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<20	11	<0.4	7.6	15	12	<0.1	<5	5.8	-	-	-	-	-	-	-	-	-		-	-	-	-	-			-			
HA3_0.1-0.2	0.1-0.2	28/08/2021	24	ND	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<20	6.4	<0.4	16	30	51	<0.1	6.7	74	<0.05	<0.05	<0.05	<0.05	<0.05	<0.1 <	<0.05	<0.05 <0	0.05 <0	0.05 <0.0	0.0	5 <0.0	5 <0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
HA3_0.5-0.6	0.5-0.6	28/08/2021	20	-	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<20	5.5	<0.4	9.3	16	19	<0.1	<5	7.8	-	-	-	-	-	-	-	-	-		-	-	-	-	-			-			
HA4_0.1-0.2	0.1-0.2	28/08/2021	16	ND	<0.1		<0.1	<0.2	<0.1	<0.3	<20	13	<0.4	18	26	180	0.2	5.5	130	<0.05	<0.05	<0.05	<0.05	<0.05	<0.1	<0.05	<0.05 <0	0.05 <	0.05 < 0.0	0.0	5 <0.0	5 < 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
HA4_0.7-0.8	0.7-0.8	28/08/2021	19	-	_	<0.1	<0.1	<0.2	<0.1	<0.3	<20	16	<0.4	9.3	16	23	<0.1	<5	8.2	-	-	-	-	-	-	-	-	-		-	 -	<u> </u>	-	 - 			-	-		
HA5_0.1-0.2	0.1-0.2	28/08/2021	12	ND	_	<0.1	<0.1	<0.2	<0.1	<0.3	<20	5.4	<0.4	9	16	46	<0.1	<5	47	<0.05	<0.05	<0.05	<0.05	<0.05	<0.1 <	<0.05	<0.05 <0	0.05 <	0.05 <0.0	0.0 5	5 <0.0	5 < 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
HA5_0.8-0.9	0.8-0.9	28/08/2021	15	-	<0.1	_	<0.1	<0.2	<0.1	<0.3	<20	26	<0.4	8.7	7.9	20	<0.1	<5	<5		-	-	-	-	-	-	-	-		-	-	-	-	 - 				-		
HA6_0.1-0.2	0.1-0.2	28/08/2021	20	ND	<0.1	_	<0.1	<0.2	<0.1	<0.3	<20	2.6	<0.4	12	54	16	<0.1	11	71	<0.5	<0.5	<0.5	<0.5	<0.5	<1	<0.5	<0.5 <	0.5 <	0.5 <0.	5 <0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
HA6_0.4-0.5	0.4-0.5	28/08/2021	12	-	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<20	4.2	<0.4	16	31	27	<0.1	13	45	-	-	-	-	-	-	-	-	-		-	-	-	-	-			-	-		
HA7_0.1-0.2	0.1-0.2	28/08/2021	22	ND	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<20	7.7	<0.4	15	45	61	0.1	7.1	110	<0.05	<0.05	<0.05	<0.05	<0.05	<0.1 <	<0.05	<0.05 <0	0.05 <	0.05 <0.0	0.0	5 <0.0	5 < 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
HA7_0.9-1.0	0.9-1.0	28/08/2021	29	-	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<20	140	1.1	21	78	190	0.4	13	870	-	-	-	-	-	-	-	-	-		-	-	-	-	-		-	-	-		
HA8_0.2-0.3	0.2-0.3	28/08/2021	14	ND	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<20	4.2	<0.4	14	41	110	0.1	7.2	160	<0.5	<0.5	<0.5	<0.5	<0.5	<1	<0.5	<0.5 <	0.5 <	0.5 <0.	5 <0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
HA8_0.7-0.8	0.7-0.8	28/08/2021	18	-	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<20	3.9	<0.4	10	22	14	<0.1	<5	21	-	-	-	-	-	-	-	-	-		-	-	-	-	<u> </u>						
HA9_0.2-0.3	0.2-0.3	28/08/2021	12	ND	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<20	2.2	<0.4	85	29	11	<0.1	84	64	<0.05	<0.05	<0.05	<0.05	<0.05	<0.1	<0.05	<0.05 <0	0.05 <	0.05 < 0.0	0.0	5 <0.0	5 <0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
HA9_0.9-1.0	0.9-1.0	28/08/2021	17	-	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<20	6.5	<0.4	12	17	24	<0.1	<5	35	-	-	-	-	-	-	-	-	-	- -	-	-	-	-	-	-	-	-	-	-	-

																		OP	P																					
	Toxaphene	Azinophos methyl	Bolstar (Sulprofos)	Chlorfenvinphos	Chlorpyrifos	Chlorpyrifos-methyl	Coumaphos	Demeton-O	Demeton-S	Diazinon	Dichlorvos	Dimethoate	Disulfoton		Ethion	Ethoprop	Fenitrothion	Fensulfothion	Fenthion	Malathion	Merphos	Methyl parathion	Mevinphos (Phosdrin)	Monocrotophos	Naled (Dibrom)	Omethoate	Parathion	Phorate	Pyrazophos	Ronnel	Terbufos	Trichloronate	Tetrachlorvinphos	Tokuthion	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(a)pyrene TEQ (lower bound) *
	mg/kg	mg/kg	mg/kg	g mg/k	kg mg/k	g mg/k	g mg/	kg mg/	kg mg/	kg mg/	kg mg/	kg mg	'kg mg/	kg mg	g/kg n	ng/kg r	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	g mg/kg	mg/kg	g mg/k	g mg/k	g mg/k	g mg/k	g mg/k	g mg/k	g mg/kg	g mg/kg	MG/KG
EQL	0.5	0.2	0.2	0.2	0.2	0.2	2	0.2	2 0.2	2 0.2	. 0.2	0.	2 0.2	2 0).2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	2	0.2	2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.5	0.5	0.5	0.5	0.5	0.5
NEPM 2013 EIL/ ESLs Urban Residential / Public Open Space (Clay)																																							0.7	

NIEDNA 2042 EU /	ECLA Habana Bandalan Atal	/ Public Open Space (Clay)	1
NIEPMI MITTELLI	ESI s I Irhan Residential	/ Public Open Space (Clay)	1

Field_ID	Sample Depth	Sampled_Date-Time																																							
HA1_0.1-0.2	0.1-0.2	28/08/2021	<0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	<0.5	<0.5	<0.5	0.6	0.7
HA1_0.7-0.8	0.7-0.8	28/08/2021	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
HA2_0.1-0.2	0.1-0.2	28/08/2021	<0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	<0.5	<0.5	<4	1.9	<4
HA2_0.7-0.8	0.7-0.8	28/08/2021	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
HA3_0.1-0.2	0.1-0.2	28/08/2021	<0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	<0.5	<0.5	<1	0.8	1
HA3_0.5-0.6	0.5-0.6	28/08/2021	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
HA4_0.1-0.2	0.1-0.2	28/08/2021	<0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	<0.5	<0.5	<1	0.9	<2
HA4_0.7-0.8	0.7-0.8	28/08/2021	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
HA5_0.1-0.2	0.1-0.2	28/08/2021	<0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	<0.5	<0.5	<2	1.1	<2
HA5_0.8-0.9	0.8-0.9	28/08/2021	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
HA6_0.1-0.2	0.1-0.2	28/08/2021	<10	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<0.5	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
HA6_0.4-0.5	0.4-0.5	28/08/2021	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
HA7_0.1-0.2	0.1-0.2	28/08/2021	<0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	<0.5	<0.5	<1	0.7	<1
HA7_0.9-1.0	0.9-1.0	28/08/2021	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.5	<0.5	<0.5	0.5	0.5	0.6
HA8_0.2-0.3	0.2-0.3	28/08/2021	<10	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<0.5	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1	0.8	<1
HA8_0.7-0.8	0.7-0.8	28/08/2021	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
HA9_0.2-0.3	0.2-0.3	28/08/2021	<0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
HA9_0.9-1.0	0.9-1.0	28/08/2021	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

				PAH	1												Polyc	hlorinat	ted Biph	enyls									ТРН				
	Benzo(a)pyrene TEQ (medium bound) *	Benzo(a)pyrene TEQ (upper bound) *	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Benzo[b+j]fluoranthene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-c,d)pyrene	Naphthalene	Phenanthrene	Pyrene	Total PAHs	Arochlor 1221	Aroclor 1016	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	PCBs (Sum of total)	F2-NAPHTHALENE	62 - 63	C10 - C14	C15 - C28	C29 - C36	C10 - C36 (Sum of total)	C10 - C40 (Sum of total)	C10-C16	C16-C3 <i>4</i>	C34-C40	06 - C10
	MG/KG	MG/KG	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	50	20	20	50	50	50	100	50	100	100	20
EPM 2013 EIL/ ESLs Urban Residential / Public Open Space (Clay)											170												1000								3500	10,000	

Field_ID	Sample Depth	Sampled_Date-Time																																	
HA1_0.1-0.2	0.1-0.2	28/08/2021	1	1.3	<0.5	0.5	<0.5	<0.5	<0.5	0.8	<0.5	<0.5	<0.5	<0.5	0.8	2.7	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<50	<20	36	88	55	179	120	<50	120	<100	<20
HA1_0.7-0.8	0.7-0.8	28/08/2021	0.6	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	-	-	-	-	-	-	<50	<20	<20	<50	<50	<50	<100	<50	<100	<100	<20
HA2_0.1-0.2	0.1-0.2	28/08/2021	<4	<4	<2	2	<4	1.2	<0.5	3.9	<0.5	1.2	<0.5	2	3.8	16	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<50	<20	<20	200	130	330	290	<50	290	<100	<20
HA2_0.7-0.8	0.7-0.8	28/08/2021	0.6	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	-	-	-	-	-	-	<50	<20	<20	<50	<50	<50	<100	<50	<100	<100	<20
HA3_0.1-0.2	0.1-0.2	28/08/2021	1.3	1.6	<1	1	<1	0.7	<0.5	1.1	<0.5	0.5	<0.5	0.5	1.3	5.9	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<50	<20	<20	130	120	250	220	<50	220	<100	<20
HA3_0.5-0.6	0.5-0.6	28/08/2021	0.6	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	-	-	-	-	-	-	<50	<20	<20	<50	<50	<50	<100	<50	<100	<100	<20
HA4_0.1-0.2	0.1-0.2	28/08/2021	<2	<2	<1	1	<2	0.8	<0.5	1.7	<0.5	0.6	<0.5	0.9	1.6	7.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<50	<20	<20	140	130	270	230	<50	230	<100	<20
HA4_0.7-0.8	0.7-0.8	28/08/2021	0.6	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	-	-	-	-	-	-	<50	<20	<20	<50	<50	<50	<100	<50	<100	<100	<20
HA5_0.1-0.2	0.1-0.2	28/08/2021	<2	2.1	<1	1.1	<2	0.9	<0.5	3.1	<0.5	0.6	<0.5	2.7	2.9	12.4	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<50	<20	<20	180	180	360	310	<50	310	<100	<20
HA5_0.8-0.9	0.8-0.9	28/08/2021	0.6	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	-	-	-	-	-	-	<50	<20	<20	<50	<50	<50	<100	<50	<100	<100	<20
HA6_0.1-0.2	0.1-0.2	28/08/2021	0.6	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1	<1	<1	<1	<1	<1	<1	<1	<250	<20	<100	<250	340	340	<500	<250	<500	<500	<20
HA6_0.4-0.5	0.4-0.5	28/08/2021	0.6	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	-	-	-	-	-	-	<250	<20	<100	<250	340	340	<500	<250	<500	<500	<20
HA7_0.1-0.2	0.1-0.2	28/08/2021	1.2	1.5	<1	0.8	<1	0.5	<0.5	1.4	<0.5	<0.5	<0.5	0.6	1.3	5.3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<50	<20	<20	200	220	420	350	<50	350	<100	<20
HA7_0.9-1.0	0.9-1.0	28/08/2021	0.9	1.2	<0.5	0.5	0.6	<0.5	<0.5	1	<0.5	<0.5	<0.5	0.7	1	4.8	-	-	-	-	-	-	-	-	<50	<20	25	130	130	285	210	<50	210	<100	<20
HA8_0.2-0.3	0.2-0.3	28/08/2021	1.3	1.6	<1	0.9	<1	0.6	<0.5	0.9	<0.5	<0.5	<0.5	<0.5	1	4.2	<1	<1	<1	<1	<1	<1	<1	<1	<250	<20	<100	330	380	710	590	<250	590	<500	<20
HA8_0.7-0.8	0.7-0.8	28/08/2021	0.6	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	-	-	-	-	-	-	<50	<20	<20	<50	<50	<50	<100	<50	<100	<100	<20
HA9_0.2-0.3	0.2-0.3	28/08/2021	0.6	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	0.5	<0.5	<0.5	<0.5	0.6	0.5	1.6	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<50	<20	<20	51	<50	51	<100	<50	<100	<100	<20
HA9_0.9-1.0	0.9-1.0	28/08/2021	0.6	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	-	-	-	-	-	-	<50	<20	<20	<50	<50	<50	<100	<50	<100	<100	<20

						TRH	
			Moisture Content (dried @ 103°C)	F1 (C6-C10 less BTEX)	F2 (C10-C16-NAPHTHALENE)	F3 (C16-C34)	F4 (C34-C40)
			%	mg/kg	mg/kg	mg/kg	mg/kg
EQL	agament Limits: Ba	sidential / Public Open Space (Fine)	1	20 800	50 1000	100 3500	100
INCLI IVI 2013 IVIALI	agement Linits. No	sidentiary i done open space (rine)		300	1000	3300	10,000
Field_ID	Sample Depth	Sampled_Date-Time					
HA1_0.1-0.2	0.1-0.2	28/08/2021	23	<20	<50	120	<100
HA1_0.7-0.8	0.7-0.8	28/08/2021	19	<20	<50	<100	<100
HA2_0.1-0.2	0.1-0.2	28/08/2021	20	<20	<50	290	<100
HA2_0.7-0.8	0.7-0.8	28/08/2021	23	<20	<50	<100	<100
HA3_0.1-0.2	0.1-0.2	28/08/2021	24	<20	<50	220	<100
HA3_0.5-0.6	0.5-0.6	28/08/2021	20	<20	<50	<100	<100
HA4_0.1-0.2	0.1-0.2	28/08/2021	16	<20	<50	230	<100
HA4_0.7-0.8	0.7-0.8	28/08/2021	19	<20	<50	<100	<100
HA5_0.1-0.2	0.1-0.2	28/08/2021	12	<20	<50	310	<100
HA5_0.8-0.9	0.8-0.9	28/08/2021	15	<20	<50	<100	<100
HA6_0.1-0.2	0.1-0.2	28/08/2021	20	<20	<250	<500	<500
HA6_0.4-0.5	0.4-0.5	28/08/2021	12	<20	<250	<500	<500
HA7_0.1-0.2	0.1-0.2	28/08/2021	22	<20	<50	350	<100
HA7_0.9-1.0	0.9-1.0	28/08/2021	29	<20	<50	210	<100
HA8_0.2-0.3	0.2-0.3	28/08/2021	14	<20	<250	590	<500
HA8_0.7-0.8	0.7-0.8	28/08/2021	18	<20	<50	<100	<100
HA9_0.2-0.3	0.2-0.3	28/08/2021	12	<20	<50	<100	<100
HA9 0.9-1.0	0.9-1.0	28/08/2021	17	<20	<50	<100	<100

			Lab Report Number	820974	820974		820974	Interlab D	
			Field ID	HA4 0.1-0.2	DUP	RPD	HA1 0.1-0.2	Trip	RPD
			Sampled Date/Time	28/08/2021	28/08/2021		28/08/2021	28/08/2021	
			•						
Chem_Group	ChemName	Units							
BTEX	Benzene Ethylbenzene		0.1 (Primary): 0.2 (Interlab) 0.1 (Primary): 0.5 (Interlab)	<0.1 <0.1	<0.1 <0.1	0	<0.1 <0.1	<0.2 <0.5	0
	Toluene		0.1 (Primary): 0.5 (Interlab)	<0.1	<0.1	0	<0.1	<0.5	0
	Xylene (m & p)		0.2 (Primary): 0.5 (Interlab)	<0.2	<0.2	0	<0.2	<0.5	0
	Xylene (o)		0.1 (Primary): 0.5 (Interlab)	<0.1	<0.1	0	<0.1	<0.5	0
	Xylene Total	mg/kg	0.3 (Primary): 0.5 (Interlab)	<0.3	<0.3	0	<0.3	<0.5	0
	C6-C10 less BTEX (F1)	mg/kg	20 (Primary): 10 (Interlab)	<20.0	<20.0	0	<20.0	<10.0	0
	Maintage Content (duind @ 400°C)	0/		10.0	40.0	47	10.0	45.0	4
Inorganics	Moisture Content (dried @ 103°C)	%	1	16.0	19.0	17	16.0	15.9	1
Metals	Arsenic	mg/kg	2 (Primary): 5 (Interlab)	13.0	7.7	51	7.1	8.0	12
	Cadmium	mg/kg	0.4 (Primary): 1 (Interlab)	<0.4	<0.4	0	<0.4	<1.0	0
	Chromium	0 0	5 (Primary): 2 (Interlab)	18.0	17.0	6	9.8	12.0	20
	Copper	mg/kg		26.0	33.0	24	26.0	25.0	4
	Lead	mg/kg	5	180.0 0.2	200.0	11	46.0	163.0	112
	Mercury Nickel	mg/kg mg/kg	5 (Primary): 2 (Interlab)	5.5	0.3 7.3	40 28	<0.1 <5.0	0.2 5.0	67 0
	Zinc	mg/kg	5	130.0	150.0	14	42.0	102.0	83
		Jg		1					
OCP	4,4-DDE	mg/kg		<0.05	<0.05	0	<0.05	<0.05	0
	a-BHC	mg/kg	0.05	<0.05	<0.05	0	< 0.05	<0.05	0
	Aldrin	mg/kg		<0.05	<0.05	0	<0.05	<0.05	0
<u> </u>	Aldrin + Dieldrin	mg/kg	0.05	<0.05	<0.05	0	0.09	<0.05	57
<u> </u>	b-BHC Chlordane	mg/kg mg/kg	0.05 0.1 (Primary): 0.05 (Interlab)	<0.05 <0.1	<0.05 <0.1	0	<0.05 <0.1	<0.05 <0.05	0
	d-BHC	mg/kg	0.05	<0.05	<0.05	0	<0.05	<0.05	0
	DDD	mg/kg		<0.05	<0.05	0	<0.05	<0.05	0
	DDT	mg/kg	0.05 (Primary): 0.2 (Interlab)	<0.05	<0.05	0	<0.05	<0.2	0
	DDT+DDE+DDD	mg/kg	0.05	< 0.05	< 0.05	0	< 0.05	< 0.05	0
	Dieldrin	mg/kg	0.05	<0.05	<0.05	0	0.09	< 0.05	57
	Endosulfan I	mg/kg	0.05	<0.05	<0.05	0	<0.05	<0.05	0
	Endosulfan II			<0.05	<0.05	0	<0.05	< 0.05	0
	Endosulfan sulphate	mg/kg		<0.05	<0.05	0	<0.05	<0.05	0
	Endrin Endrin aldehyde	mg/kg mg/kg	0.05 0.05	<0.05 <0.05	<0.05 <0.05	0	<0.05 0.07	<0.05 <0.05	33
	Endrin ketone	mg/kg		<0.05	<0.05	0	<0.05	<0.05	0
	g-BHC (Lindane)	mg/kg	0.05	<0.05	<0.05	0	<0.05	<0.05	0
	Heptachlor	mg/kg		< 0.05	< 0.05	0	< 0.05	< 0.05	0
	Heptachlor epoxide	mg/kg	0.05	< 0.05	< 0.05	0	<0.05	< 0.05	0
	Hexachlorobenzene	mg/kg	0.05	<0.05	<0.05	0	<0.05	<0.05	0
	Methoxychlor	mg/kg		<0.05	<0.05	0	<0.05	<0.2	0
	Toxaphene	mg/kg	0.5	<0.5	< 0.5	0		-	-
	Vic EPA IWRG 621 OCP (Total)* Vic EPA IWRG 621 Other OCP (Total)*	mg/kg mg/kg	0.1 0.1	<0.1 <0.1	<0.1 <0.1	0	-	-	-
	VIOLET / TWING GET GRIEF GOT (Total)	mg/kg	0.1	-0.1	-0.1				
OPP	Azinophos methyl	mg/kg	0.2 (Primary): 0.05 (Interlab)	<0.2	<0.2	0	<0.2	< 0.05	0
	Bolstar (Sulprofos)	mg/kg	0.2	<0.2	<0.2	0			
	Chlorfenvinphos		0.2 (Primary): 0.05 (Interlab)	<0.2	<0.2	0	<0.2	<0.05	0
	Chlorpyrifos		0.2 (Primary): 0.05 (Interlab)	<0.2	<0.2	0	<0.2	<0.05	0
	Chlorpyrifos-methyl		0.2 (Primary): 0.05 (Interlab)	<0.2	<0.2	0	<0.2	<0.05	0
-	Coumaphos Demeton-O	mg/kg mg/kg	0.2	<2.0 <0.2	<2.0 <0.2	0	-	-	-
	Demeton-S	mg/kg	0.2	<0.2	<0.2	0	-	-	-
	Diazinon		0.2 (Primary): 0.05 (Interlab)	<0.2	<0.2	0	<0.2	<0.05	0
	Dichlorvos	mg/kg	0.2 (Primary): 0.05 (Interlab)	<0.2	<0.2	0	<0.2	<0.05	0
	Dimethoate		0.2 (Primary): 0.05 (Interlab)	<0.2	<0.2	0	<0.2	<0.05	0
	Disulfoton	mg/kg		<0.2	<0.2	0	-	0.0=	-
	Ethon		0.2 (Primary): 0.05 (Interlab)	<0.2	<0.2	0	<0.2	<0.05	0
	Ethoprop Fenitrothion	mg/kg mg/kg		<0.2 <0.2	<0.2 <0.2	0	-	-	-
 	Fensulfothion	mg/kg		<0.2	<0.2	0	-	-	H -
	Fenthion	mg/kg	0.2 (Primary): 0.05 (Interlab)	<0.2	<0.2	0	<0.2	<0.05	0
	Malathion		0.2 (Primary): 0.05 (Interlab)	<0.2	<0.2	0	<0.2	<0.05	0
	Merphos	mg/kg		<0.2	<0.2	0	-	-	-
	Methyl parathion	mg/kg		<0.2	<0.2	0	<0.2	<0.2	0
	Mevinphos (Phosdrin)	mg/kg		<0.2	<0.2	0	-		-
-	Monocrotophos Naled (Dibrom)	mg/kg		<2.0 <0.2	<2.0 <0.2	0	<2.0	<0.2	0
	Omethoate	mg/kg mg/kg		<0.2 <2.0	<0.2	0		-	-
	Parathion	mg/kg		<0.2	<0.2	0	<0.2	<0.2	0
	Phorate	mg/kg		<0.2	<0.2	0	-	-	-
	Pyrazophos	mg/kg		<0.2	<0.2	0	-	-	-
	Ronnel	mg/kg	0.2	<0.2	<0.2	0	-	-	-
	Terbufos	mg/kg		<0.2	<0.2	0	-	-	-
	Trichloronate	mg/kg		<0.2	<0.2	0	-	-	-
-	Tetrachlorvinphos Tokuthion	mg/kg		<0.2	<0.2	0	-	-	-
<u> </u>	Tokuthion	mg/kg	U.Z	<0.2	<0.2	0	-	-	-

			Lab Report Number	820974	820974		820974	Interlab_D	
			Field ID	HA4_0.1-0.2	DUP	RPD	HA1_0.1-0.2	Trip	RPD
			Sampled Date/Time	28/08/2021	28/08/2021		28/08/2021	28/08/2021	
			•						
PAH	Acenaphthene	mg/kg	0.5	<0.5	<0.5	0	<0.5	< 0.5	0
	Acenaphthylene	mg/kg	0.5	<0.5	<0.5	0	<0.5	< 0.5	0
	Anthracene	mg/kg	0.5	<0.5	<0.5	0	<0.5	< 0.5	0
	Benzo(a)anthracene	mg/kg		<1.0	<2.0	0	<0.5	0.8	46
	Benzo(a)pyrene	mg/kg		0.9	1.0	11	0.6	0.8	29
	Benzo(a)pyrene TEQ (lower bound) *	mg/kg		<2.0	<2.0	0	0.7	1.0	35
	Benzo(a)pyrene TEQ (medium bound) *	mg/kg		<2.0	<2.0	0	1.0	1.3	26
	Benzo(a)pyrene TEQ (upper bound) *	mg/kg		<2.0	<2.0	0	1.3	1.6	21
	Benzo(g,h,i)perylene	mg/kg		<1.0	<1.0	0	<0.5	0.6	18
	Benzo(k)fluoranthene	mg/kg		1.0	1.0	0	0.5	<0.5	0
	Chrysene	mg/kg		<2.0	<2.0	0	<0.5	0.8	46
	Benzo[b+j]fluoranthene	mg/kg		0.8	0.9	12	<0.5	1.2	82
	Dibenz(a,h)anthracene	mg/kg	0.5	<0.5	<0.5	0	<0.5	< 0.5	0
	Fluoranthene	mg/kg		1.7	2.0	16	0.8	2.0	86
	Fluorene	mg/kg		<0.5	<0.5	0	<0.5	<0.5	0
	Indeno(1,2,3-c,d)pyrene	mg/kg		0.6	0.6	0	<0.5	<0.5	0
	Naphthalene		0.5 (Primary): 1 (Interlab)	<0.5	<0.5	0	<0.5	<0.5	0
	Naphthalene		0.5 (Primary): 1 (Interlab)	<0.5	<0.5	0	<0.5	<0.5	0
	Phenanthrene	mg/kg		0.9	1.1	20	<0.5	0.9	57
	Pyrene	mg/kg		1.6	1.9	17	0.8	1.8	77
	Total PAHs	mg/kg	0.5	7.5	8.5	13	2.7	8.9	107
	TOTAL PAINS	mg/kg	0.5	7.5	0.0	13	2.1	0.9	107
Pesticides	Pirimiphos-methyl	mg/kg	0.2	<0.2	<0.2	0	_	-	-
resticides	Fillilipilos-metryi	ilig/kg	0.2	~ 0.2	\0.2	U			-
Polychlorinated Bi	inhe Arochlor 1221	mg/kg	0.1	<0.1	<0.1	0	_	_	-
r oryonionnated bi	Aroclor 1016	mg/kg		<0.1	<0.1	0	_	-	-
	Aroclor 1232	mg/kg		<0.1	<0.1	0	_	-	-
	Aroclor 1242	mg/kg		<0.1	<0.1	0	_	-	-
	Aroclor 1242 Aroclor 1248	mg/kg		<0.1	<0.1	0			
	Aroclor 1248 Aroclor 1254	mg/kg		<0.1	<0.1	0		-	-
	Aroclor 1260	mg/kg		<0.1	<0.1	0		_	-
	PCBs (Sum of total)	mg/kg		<0.1	<0.1	0	<0.1	<0.1	0
ated Biphenyls	1 OB3 (Odili of total)	ilig/kg	0.1	٦٥.1	٧٥.١	0	٧٥.١	~ 0.1	- 0
SVOCs	EPN	mg/kg	0.2	<0.2	<0.2	0	_	_	-
30005	LFIN	ilig/kg	0.2	~ 0.2	\0.2	U		_	
TPH	F2-NAPHTHALENE	mg/kg	50	<50.0	<50.0	0	<50.0	<50.0	0
IFII	C6 - C9		20 (Primary): 10 (Interlab)	<20.0	<20.0	0	<20.0	<10.0	0
	C10 - C14		20 (Primary): 50 (Interlab)	<20.0	<20.0	0	36.0	<50.0	0
	C15 - C28		50 (Primary): 100 (Interlab)	140.0	140.0	0	88.0	<100.0	0
	C29 - C36	mg/kg	50 (Primary): 100 (Interlab)	130.0	130.0	0	55.0	100.0	58
	C10 - C36 (Sum of total)	mg/kg		270.0	270.0	0	179.0	100.0	57
	C10 - C36 (Sum of total)		100 (Primary): 50 (Interlab)	270.0	230.0	0	120.0	150.0	22
				<50.0	<50.0	-	<50.0		
	C10-C16	mg/kg				0		<50.0 150.0	0 22
	C16-C34	mg/kg		230.0	230.0	_	120.0		
	C34-C40 C6 - C10	mg/kg		<100.0 <20.0	<100.0 <20.0	0	<100.0 <20.0	<100.0 <10.0	0
	00 - 010	mg/kg	20 (Primary): 10 (Interlab)	<2U.U	<2U.U	U	<2 0.0	< 1U.U	U

^{**}RPDs have only been considered where a concentration is greater than 0 times the EQL.

**High RPDs are in bold (Acceptable RPDs for each EQL multiplier range are: unlimited (0-10 x EQL); 50 (10-20 x EQL); 30 (> 20 x EQL))

***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

APPENDIX F: DATA QUALITY ASSESSMENT

Tetra Tech Coffey

Report reference number: SYDGE290593-AD

Job No: SYDGE290593

Lab Batch References – 820974, ES2131757

ı	SAME) F	НΔ	וחמ	ING
				IVL	.1140

Sample Handling was:

		below)
1. Were the sample holding times met?	\boxtimes	
2. Were the samples in proper custody between the field and reaching the laboratory?		
3. Were the samples properly and adequately preserved?	\boxtimes	
This includes keeping the samples chilled, where applicable.		
4. Were the samples received by the laboratory in good condition?		
COMMENTS:		
Coffey is of the opinion that all samples analysed have been preserved a received in a condition to enable to laboratory to complete the analysis re	•	ately and were

☐ Partially Satisfactory

Yes

Unsatisfactory

No (Comment

Job No: SYDGE290593

Lab Batch References – 820974, ES2131757

II PRECISION/ACCURACY ASSESSMENT

1.	Was a	NATA	registered	laboratory	/ used?

- 2. Did the laboratory perform the requested tests?
- 3. Were the laboratory methods adopted NATA endorsed?
- 4. Were the appropriate test procedures followed?
- 5. Were the reporting limits satisfactory?
- 6. Was the NATA Seal on the reports?
- 7. Were the reports signed by an authorised person?

Yes	No
	(Comment below)
	\boxtimes

COMMENTS:

The limits of reporting (LOR) for Benzo(a)pyrene TEQ in sample HA2_0.1-0.2 were raised above the HIL due to matrix interference reported by the lab. Where this occurred, Coffey manually estimated the TEQ value using the TEF published within the NEPM. Whilst not ideal, the raising of the LOR in sample HA2_0.1-0.2 did not alter the outcome of this assessment.

Precision/Accuracy of the Laboratory Report	Satisfactory	Unsatisfactory
	☐ Partially Satisfactory	

Job No: SYDGE290593

Lab Batch References – 820974, ES2131757

III. FIELD QA/QC

1. Number of Samples Analysed Soil: 18

2. Number of Days of Sampling: Soil: 1

3. Number and Type of QA/QC Samples Collected:

Quality Control Sample Type	No.	% Total No. Samples
Intra-lab Duplicates – Soil	1	5.5%
Inter-lab Duplicates - Soil	1	5.5%
Trip Blanks	0	-
Trip Spike	0	-
Equipment Rinsate	1	-

4. FIELD DUPLICATES

- A. Were an Adequate Number of field duplicates analysed for each chemical?
- B. Were RPDs within Control Limits?
 - a. Metals/Inorganics (No limit (<10 x LOR); 50% (10-20 x LOR); 30% (>20 x LOR))
 - b. Volatile & semi volatile organics (No limit (<10 x LOR); 50% (10-20 x LOR); 30% (>20 x LOR))

Yes	No (Comment below)
	\boxtimes

COMMENTS:

The comparison of soil primary/duplicate samples is presented in Table 4 (Appendix E).

In general, the comparison of primary and duplicate/triplicate samples showed good reproducibility with RPD values within acceptable tolerances. Some variance was observed in the analysis of soil samples for heavy metals (lead and zinc) and PAH in soils, which is likely attributable to the heterogeneous nature of the media being sampled. On review, the variability did not alter the outcome of this assessment.

Job No:	SYDGE290593
---------	-------------

Lab Batch References – 820974, ES2131757

DATA VALIDATION REPORT

Job No: SYDGE290593

Lab Batch References – 820974, ES2131757

IV. TRIP BLANKS (TB) AND TRIP SPIKES (TS
--

	res	(Comment
		below)
A. Were an Adequate Number of trip blanks and spikes analysed?		
B. Were the trip blanks free of contaminants and trip spike were within acceptance limit?		
C. Were the trip spikes reported within acceptable recoveries?		
	•	•

COMMENTS:

VOC and SVOC were not a primary COPC in this assessment. As soil samples were stored within chilled insulated containers and delivered to the lab on the day they were collected, Coffey considers the storage procedures are considered adequate for this investigation.

6. EQUIPMENT RINSATE SAMPLES

Rinsate blanks consist of pre-preserved bottles filled with laboratory prepared water that is passed over decontaminated field equipment and then collected in containers used for the sampling process. Rinsate blanks were preserved in a similar manner to the original samples. The rinsate blank was a check on decontamination procedures.

A.	Were an	adequate	number o	f Equipment	Rinsate	Samples	collected?
----	---------	----------	----------	-------------	---------	---------	------------

B. Were the Equipment Rinsate Samples free of contaminants?

Yes	No
	(Comment below)
\boxtimes	
\boxtimes	

COMMENTS:

Field QA/QC was:		Unsatisfactory
	Partially Satisfactory	

Job No: SYDGE290593

Lab Batch References – 820974, ES2131757

V LABORATORY INTERNAL QUALITY CONTROL PROCEDURES

1. Type of QA/QC Samples

The laboratories conducted their own internal quality program for assessment of the repeatability of the analytical procedures and instrument accuracy under their NATA accreditation. This included analysis of laboratory blank samples, duplicate samples, spike samples, control samples and surrogate spikes. The laboratory QA/QC procedures and results are described within the laboratory reports presented in Appendix D

	Yes	No
Laboratory Blanks/Reagent Blanks		
Laboratory Duplicates		
Matrix Spikes/Matrix Spike Duplicates		
Laboratory Control Spike		
Surrogate (where appropriate)*		

2 Were the laboratory blanks/reagents blanks free of contamina
--

- 3. Were the spike recoveries within control limits?
 - a. Organics (70% to 130%)
 - b. Metals/Inorganic (70% to 130%)
- 4. Were the RPDs of the laboratory duplicates within control limits?
- 5. Were the surrogate recoveries within control limits?

Yes	No
	(Comment
	below)
\square	
\boxtimes	
	\boxtimes

COMMENTS:

Laboratory prepared duplicate samples were generally reported within acceptable tolerances, with the exception of some heavy metals, TRH C15-28 and C16-34. On review this variance was noted to be within acceptable tolerances when the LOR was considered.

Batch 820974 reported elevated RPD for lead duplicates, which was reported to be attributable to heterogeneity in the samples. The variance wont not affect the outcome of this assessment.

5. The laboratory internal QA/QC was:		Unsatisfactory
	Partially Satisfactory	

Job No: SYDGE290593

Lab Batch References – 820974, ES2131757

VI DATA USABILITY

1.	Data Directly Usable	\boxtimes
2.	Data Usable with the following considerations	
3.	Data Not Usable.	

COMMENTS:

Overall, Coffey consider that the data collected from this investigation is usable for the assessment of potential contamination risks.

APPENDIX G: STATISTICAL ANALYSIS OUTPUT

Tetra Tech Coffey Report reference number: SYDGE290593-AD

	Α	В	С	D	E	F	G	H	1	J	K	L
1					UCL Statist	ics for Unce	nsored Full	Data Sets				
2		User Selected	l Ontion									
3		Time of Comp	-		.130/09/2021	4·19·∩4 PM						
4 5	Date	-	om File	WorkShee		7.10.0 7 1 W						
6		Full Pre		OFF								
7	C	onfidence Coe		95%								
8		Bootstrap Ope		2000								
9												
10												
11	Arsenic_Fil	l										
12												
13						General S	tatistics					
14			Total	Number of (Observations	14			Number o	f Distinct Obse	rvations	13
15									Number of	f Missing Obse	rvations	0
16					Minimum	2.2					Mean	17.34
17					Maximum	140					Median	5.9
18				o "·	SD	35.9				Std. Error		9.593
19				Coefficien	t of Variation	2.07				Sk	ewness	3.541
20						Normal G	OE Toot					
21			SI	haniro Wilk	Test Statistic	0.436	or rest	c	Shaniro Will	GOF Test		
22				-	Critical Value	0.430			-	% Significance	l evel	
23 24			0 70 01	-	Test Statistic	0.372		Data Not	Lilliefors (_	20101	
25			59		Critical Value	0.226		Data Not		% Significance	Level	
26						Normal at 59	6 Significan			.		
27							_					
28					Ass	uming Norm	al Distributi	ion				
29			95% N	ormal UCL				95% L	JCLs (Adjus	ted for Skewne	ess)	
30				95% Stu	ident's-t UCL	34.33		959	% Adjusted-	CLT UCL (Che	n-1995)	42.82
31								95	% Modified	t UCL (Johnso	n-1978)	35.85
32												
33						Gamma G	OF Test					
34					Test Statistic	1.603			=	Gamma GOF T		
35					Critical Value	0.772	Data			d at 5% Signific		/el
36					Test Statistic Critical Value	0.293 0.238	Data	_		/ Gamma GOF		, ol
37					ita Not Gamm					d at 5% Signific	cance Lev	rei
38				Da	ita Not Gaillii	a Distributed	at 570 Olg	illicance Le	5VGI			
39 40						Gamma S	tatistics					
41					k hat (MLE)	0.73			k sta	ar (bias correcte	ed MLE)	0.621
42				The	eta hat (MLE)	23.75				ar (bias correcte	-	27.91
43					nu hat (MLE)	20.45				nu star (bias co	•	17.4
44			ML	E Mean (bia	as corrected)	17.34			M	ILE Sd (bias co	rrected)	22
45								Ap	proximate C	hi Square Valu	e (0.05)	8.959
46			Adjus	ted Level of	Significance	0.0312			Adju	sted Chi Squar	e Value	8.166
47												
48					Assı	uming Gamn	na Distribut	ion				
49	95%	Approximate (Gamma	UCL (use w	/hen n>=50))	33.68		95% Adjus	ted Gamma	UCL (use whe	n n<50)	36.96
50							00==					
51			<u>-</u> -	hamina 1870 :		Lognormal	GOF Test	Ot- :	\A/:II- I		.at	
52				-	Test Statistic	0.869		-	_	normal GOF Te		
53			o‰ Sr	-	Critical Value Test Statistic	0.874 0.21			-	5% Significanc rmal GOF Test		
54			50		Critical Value	0.21	ח		=	at 5% Significar		
55 56			J		ppear Approx					at 0 /0 Orginilodi	.50 FEAEI	
56 57				Data a	FPSSI / (PPIOX	ato Logile	ai at 0 /0	J.g.moand	.5 _0 101			
57												

	Α	В	С	D	Е	F	G	Н	I	J	K	L
58						Lognormal	Statistics					
59			Mi	nimum of Lo	ogged Data	0.788				Mean of lo	ogged Data	2.031
60			Ма	ximum of Lo	ogged Data	4.942				SD of lo	ogged Data	1.086
61												
62	Assuming Lognormal Distribution											
63	95% H-UCL 33.3 90% Chebyshev (MVUE) UCL									IVUE) UCL	25.28	
64			95% Cł	nebyshev (M	IVUE) UCL	30.87			97.5% C	Chebyshev (M	IVUE) UCL	38.63
65			99% Cł	nebyshev (M	IVUE) UCL	53.87						
66												
67				ľ	Nonparamet	ric Distributi	on Free UCI	L Statistic	s			
68			Da	ita appear t	o follow a D	iscernible D	istribution a	t 5% Sign	ificance Le	vel		
69												
70					Nonpara	metric Distr	ibution Free	UCLs				
71				95%	6 CLT UCL	33.12				95% Jac	kknife UCL	34.33
72			95% S	tandard Boo	tstrap UCL	32.89				122.8		
73			959	% Hall's Boo	tstrap UCL	90.84			95% P	ercentile Boo	otstrap UCL	35.94
74			95	% BCA Boo	tstrap UCL	46.22						
75			90% Chel	yshev(Mea	n, Sd) UCL	46.12			95% Che	ebyshev(Mea	n, Sd) UCL	59.16
76			97.5% Chel	yshev(Mea	n, Sd) UCL	77.25			99% Che	ebyshev(Mea	n, Sd) UCL	112.8
77												
78					5	Suggested L	JCL to Use					
79			95% Cheb	yshev (Mea	n, Sd) UCL	59.16						
80												
81	Note:	Suggestion	s regarding	the selectio	n of a 95% l	JCL are pro	vided to help	the user	to select the	e most appro	priate 95% L	JCL.
82			Rec	ommendatio	ons are base	d upon data	size, data d	istribution,	, and skewn	ess.		
83	The	se recomme	endations are	e based upo	on the results	s of the simu	ılation studie	es summar	rized in Sin	gh, Maichle, a	and Lee (200	06).
84	Howeve	er, simulatio	ns results w	ill not cover	all Real Wo	rld data sets	; for addition	nal insight	the user ma	ay want to co	nsult a statis	stician.
85												