

G, North Building / 22 Giffnock Ave Macquarie Park NSW 2113 Australia T: (02) 9889 1800

DETAILED SITE

September 21 J169135-01

SCHOOL INFRASTRUCTURE NSW (SINSW) - DEPARTMENT OF EDUCATION

Proposed Sydney Olympic Park High School

C123934 : SW

greencap.com.au

ABN 76 006 318 010

Statement of Limitations

All and any Services proposed by Greencap to the Client are subject to the Terms and Conditions listed on the Greencap website at: <u>www.greencap.com.au/about-greencap/terms-and-conditions</u>. Unless otherwise expressly agreed to in writing and signed by Greencap, Greencap does not agree to any alternative terms or variation of these terms if subsequently proposed by the Client. The Services are to be carried out in accordance with the current and relevant industry standards of testing, interpretation and analysis. The Services are to be carried out in accordance with Commonwealth, State or Territory legislation, regulations and/or guidelines. The Client will be deemed to have accepted these Terms when the Client signs the Proposal (where indicated) or when the Company commences the Services at the request (written or otherwise) of the Client.

The services were carried out for the Specific Purpose, outlined in the body of the Proposal. To the fullest extent permitted by law, Greencap, its related bodies corporate, its officers, consultants, employees and agents assume no liability, and will not be liable to any person, or in relation to, any losses, damages, costs or expenses, and whether arising in contract, tort including negligence, under statute, in equity or otherwise, arising out of, or in connection with, any matter outside the Specific Purpose.

The Client acknowledges and agrees that proposed investigations rely on information provided to Greencap by the Client or other third parties. Greencap makes no representation or warranty regarding the completeness or accuracy of any descriptions or conclusions based on information supplied to it by the Client, its employees or other third parties during provision of the Services. The Client releases and indemnifies Greencap from and against all Claims arising from errors, omissions or inaccuracies in documents or other information provided to Greencap by the Client, its employees or other third parties. Under no circumstances shall Greencap have any liability for, or in relation to, any work, reports, information, plans, designs, or specifications supplied or prepared by any third party, including any third party recommended by Greencap.

The Client will ensure that Greencap has access to all sites and buildings as required by or necessary for Greencap to undertake the Services. Notwithstanding any other provision in these Terms, Greencap will have no liability to the Client or any third party to the extent that the performance of the Services is not able to be undertaken (in whole or in part) due to access to any relevant sites or buildings being prevented or delayed due to the Client or their respective employees or contractors expressing safety or health concerns associated with such access.

Greencap, its related bodies corporate, its officers, employees and agents assume no liability and will not be liable for lost profit, revenue, production, contract, opportunity, loss arising from business interruption or delay, indirect or consequential loss or loss to the extent caused or contributed to by the Client or third parties, suffered or incurred arising out of or in connection with our Proposals, Reports, the Project or the Agreement. In the event Greencap is found by a Court or Tribunal to be liable to the Client for any loss or damage arising in connection with the Services, the Client's entitlement to recover damages from Greencap shall be reduced by such amount as reflects the extent to which any act, default, omission or negligence of the Client, or any third party, caused or contributed to such loss or damage. Unless otherwise agreed in writing and signed by both parties, Greencap's total aggregate liability will not exceed the total consulting fees paid by the client in relation to this Proposal. For further detail, see Greencap's Terms and Conditions available at www.greencap.com.au/about-greencap/terms-and-conditions

The Report is provided for the exclusive use of the Client for this Project only, in accordance with the Scope and Specific Purpose as outlined in the Agreement, and only those third parties who have been authorised in writing by Greencap. It should not be used for other purposes, other projects or by a third party unless otherwise agreed and authorised in writing by Greencap. Any person relying upon this Report beyond its exclusive use and Specific Purpose, and without the express written consent of Greencap, does so entirely at their own risk and without recourse to Greencap for any loss, liability or damage. To the extent permitted by law, Greencap assumes no responsibility for any loss, liability, damage, costs or expenses arising from interpretations or conclusions made by others, or use of the Report by a third party. Except as specifically agreed by Greencap in writing, it does not authorise the use of this Report by any third party. It is the responsibility of third parties to independently make inquiries or seek advice in relation to their particular requirements and proposed use of the site.

The conclusions, or data referred to in this Report, should not be used as part of a specification for a project without review and written agreement by Greencap. This Report has been written as advice and opinion, rather than with the purpose of specifying instructions for design or redevelopment. Greencap does not purport to recommend or induce a decision to make (or not make) any purchase, disposal, investment, divestment, financial commitment or otherwise in relation to the site it investigated. This Report should be read in whole and should not be copied in part or altered. The Report as a whole sets out the findings of the investigations. No responsibility is accepted by Greencap for use of parts of the Report in the absence (or out of context) of the balance of the Report.

C123934:J169135-01 DSI-SOPHS - V4

greencap.com.au ii

Proposal

The proposed development is for the construction of a school whereby the project is known as Sydney Olympic Park new high school. The school is to be developed in two stages. The SSD application will seek consent for both Stage One and Stage Two. While Stage Two is submitted as part of this proposal, construction is subject to approval of additional funding.

Stage One will provide for a Stream 5 high school, catering for up to 850 students. Stage Two will bring the school up to a stream 9 school capability catering up to 1,530 students.

The design features a six storey building. To the north of the site, a hall building (for sports and performance) is proposed.

The play space required to meet the need of students for Stage One can be generally accommodated onsite, within the 9,511sqm available. Additional play space may be required to accommodate the increased student numbers anticipated during Stage 2. The proposed adjoining play space comprises an area of around 8,800sqm, and will be subject to a Joint Use Arrangement and available for public use outside school hours. The future Wentworth Point Peninsula Park will result in an open space area of approximately 4 ha.

The remainder of the peninsula (TfNSW land) is under review and will be subject to a separate approval process. Redevelopment of this land will include the new access road proposed off Burroway Road along the eastern boundary of the subject site and is proposed to include car parking, drop-off zones and delivery zones.

Site Description

The proposed development is located within the peninsula of Wentworth Point at 7-11 **Burroway** Road, Wentworth Park across parts of three lots; Lot 202 DP1216628, Lot 203 DP1216628 and Lot 204 DP1216628. The site forms part of the Wentworth Point Planned Precinct, which was rezoned in 2014 for the purposes of high density residential, public recreation, school and business purposes.

The site is approximately 9,511sqm in area, with a frontage of approximately 91m to Burroway Road. It currently contains vacant land, which is cleared of all past development, and almost entirely cleared of native vegetation.

The surrounding area is generally characterised by high rise residential and mixed-use developments. The site is directly adjacent to the Wentworth Point Peninsula Park and immediately east of Wentworth Point Public School.

Site Aerial Map Source: Mecone

C123934:J169135-01 DSI-SOPHS - V4

greencap.com.au 4

Document Control

Document Quality Management Details				
Report Name:	Detailed Site Investigation			
Site Details:	Proposed Sydney Olympic Park High School - 7-11 Burroway Road, Wentworth Point, NSW 2127			
Project Number:	J169135-01			
Client Name:	School Infrastructure NSW (SINSW) - Department of Education			
Client Number:	C123934			
	Authorised By:			
Signatures: Shihmi Wang Und		Un P2		
	Shihui Wang	Matthew Barberson		
	Environmental Consultant Contaminated Land Management East	Team Manager Contaminated Land Management East		

Issue Status

Version No.	Date	Creator	Reviewer
Draft 1	10/06/2021	Shihui Wang	Matthew Barberson
1	06/08/2021	Shihui Wang Matthew Barberson	
2	17/08/2021	Shihui Wang	Matthew Barberson
3	29/08/2021	Shihui Wang	Matthew Barberson
4	15/09/2021	Shihui Wang	Matthew Barberson

Document Circulation

No of Copies	Туре	Customer Name	Position & Company
1	Electronic	Sandra Lim	Project Director / Cadence Australia Pty Ltd
1	Electronic	Robert Crestani	Senior Project Director / Department of Education

Executive Summary

Greencap Pty Ltd (Greencap) were engaged by School Infrastructure NSW (SINSW) - Department of Education to undertake a Detail Site Investigation (DSI) at Proposed Sydney Olympic Park High School at 7-11 Burroway Road, Wentworth Point NSW 2127 (the 'site'). The site is identified as parts of three lots: Lot 202 DP1216628, Lot 203 DP1216628 and Lot 204 DP1216628, and covers an approximate area of 0.95 ha (refer to the site boundary displayed in **Figure 1**).

The site was vacant at the time of investigation. The site is planned to be developed by Department of Education (Schools Infrastructure of NSW) as a high school site, which is known as the Sydney Olympic Park new high school (SOPHS).

The site is situated on a reclaimed land and has a history of contamination. Previous contamination reports indicated historical filling, various industrial land uses (inc. timber treatment and waste processing), demolition and partial remedial activities had occurred on-site. The contamination risks identified in previous contamination reports included ground gases, petroleum hydrocarbons, polycyclic aromatic hydrocarbons (PAH), heavy metals and asbestos. Acid sulphate soils were also identified on the site.

Greencap completed a Preliminary Site Investigation (PSI) and prepared a Sampling Analysis Quality Plan (SAQP) for the site. The SAQP included a review of a former Remediation Action Plan (RAP) prepared by Parsons Brinckerhoff (2015), which covered a larger area, including the proposed high school site and adjacent blocks of land.

As per NSW EPA Sampling Design Guidelines (1995), the minimum systematic sampling locations required for a 0.95ha site is estimated as 21 investigation locations. A total of 21 locations were investigated by Greencap in this Detail Site Investigation to meet the guidelines requirements.

Objectives and Scope

The objectives of this Detailed Site Investigation are as follows: (i) obtain sample analysis data to assess the site suitability for the proposed land use, (ii) close out the data gaps specified in the PSI Report and SAQP; and (iii) collect the necessary data and information for improving the conceptual site model (CSM) and risk assessment and planning further investigations and/ or remedial actions.

To achieve the above-mentioned project objectives, soil, ground gas, soil vapor and groundwater investigations were conducted on site. Chemical results obtained from these investigations were compared with applicable human health, ecological criteria and regulatory threshold levels for further investigation and corrective actions. Consequently, the CSM was updated to inform the decision-making process for further investigations and remedial actions.

Findings

The DSI identified ground gas impact on site. Methane and carbon dioxide were identified exceeding the trigger levels for further investigation and/or corrective action at multiple locations at the planned building footprints. The semi-quantitative risk assessment conducted in this scope of this DSI, with Six rounds of monitoring data obtained within two months, indicated the site can be classified as "Low Risk" of ground gas, which require physical gas protection measures as per NSW EPA Guideline on Hazardous Ground Gasses (NSW EPA 2020).

Soil contamination assessment identified localised elevated concentrations of contaminants in soil samples including some exceedances of the Health-based Investigation Levels (HIL-C exposure setting). These

C123934:J169135-01 DSI-SOPHS - V4

included lead at BH4 (870 mg/kg), Benzo(a)pyrene TEQ at BH4 (3.5 mg/kg), GG8 (6.2 mg/kg) and GG12 (8.6 mg/kg), TRH F2 at GG8 after silica-gel clean up (2400 mg/kg, hotspot). Among them, the TCLP (Toxicity Characteristic Leaching Procedure) test results of Benzo(a)pyrene at BH4, GG8 and GG12 were all lower than the Limit of Reporting (LOR). The 95% UCL average concentrations of Lead across the site (excluding the soil mound area) was below the HIL-C criteria. The level of TRH >C10-C16 less Naphthalene (F2) at GG8 (0.4-0.5mBGL) exceeded the selected soil vapor intrusion criteria HSL A after silica-gel clean-up.

Asphalt was observed at borehole GG12 where Bzeno(a)yprene TEQ exceedance was noted.

Three pieces of Asbestos fines were detected in one borehole sample collected at north-eastern section of the site where the ground surface was covered by concrete slab. The detection was noted as 0.21% w/w which exceeded the adopt HSL-C criteria. Bonded asbestos on the ground surface was observed at two locations.

Acid sulphate soil was identified on site at depths ranging between 2.0-4.6 m and an ASS management plan is required for site redevelopment works.

Groundwater assessment identified ammonia and copper concentrations, at the single location sampled, that exceeded the groundwater investigation criteria levels. Groundwater monitoring results did not indicate the presence of any other contamination in the assessed perched aquifer beneath the site at the single location sampled.

One legacy underground storage tank – UST, (potentially an oil sump) was identified in the south-east section of the site. Another potential legacy UST location, not yet investigated, was marked up on a figure attached to the former RAP (PB 2015)—"*this area was inaccessible for investigation due to the soil mound and concrete slab*".

Conclusion

As a result of this DSI, it is concluded that the site can be made suitable for the proposed development with appropriate remediation and gas mitigation measures and implementation of a long-term environmental management plan.

Recommendations

In the light of the available information Greencap recommends the following actions to be taken:

- A Remediation Action Plan (RAP) is required establishing the necessary remedial actions for the mitigation of the following contamination risks:
 - ➤ Hazardous ground gas risk on-site;
 - > Decommissioning of the identified UST; and
 - > Residual soil contamination risk if identified on site.
- The ground gas mitigation system must incorporate sufficient levels of protection as per the NSW EPA (2020) guidelines on hazardous ground gases;
- An Asbestos Management Plan (AMP) is required to manage the identified asbestos risk during construction activities;
- An Acid Sulfate Soils Management Plan (ASSMP) is required to manage the acid sulfate soil risk during excavation, piling and construction works; and
- Further investigation to close out the following data gaps:
 - > Potential presence of an additional legacy UST location indicated at the western section of the site;
 - > Type and extent of asbestos contamination beneath the concrete slab area of the site;
- A long-term Environmental Management Plan (EMP) will be required for ongoing management of the site contamination.

Note: This executive summary is not a standalone document and must be read in conjunction with the rest of our report with all documents attached.

Detailed Site Investigation

School Infrastructure NSW (SINSW) - Department of Education

Proposed Sydney Olympic Park High School

Table of Contents

Execu	itive Summary	vi	
1.	Introduction	12	
2.	Site History and Background	12	
3.	Project Objectives	12	
4.	Project Scope	12	
5.	Site Description Summary	13	
	5.1 Site Surrounds and Sensitive Receptors	13	
	5.2 Site Setting	14	
	5.3 Services on Site	14	
6.	Summary of Previous Site Assessment Reports	15	
	6.1 Preliminary Site Investigations	15	
	6.2 Previous Detailed Site Investigations	15	
	6.3 Former RAP (Parsons Brinckerhoff 2015)	15	
	6.4 Interim Validation Report – Early Works Package (Zoic 2020)	16	
	6.5 Preliminary Site Inspection (PSI) and Sampling Analysis Quality Plan (SAQP)	(Greencap 2021)	16
7.	Sampling Program and Assessment Works Completed	17	
	7.1 Works Completed	17	
	7.2 Drilling and Installation of Monitoring Wells	17	
	7.3 Well Construction, Screening Depth Intervals and Groundwater Levels	17	
	7.4 Observed Soil Stratigraphy and Contamination	19	
	7.5 Push Tube and Test Pit Soil Sampling	20	
	7.5.1 Soil Analytical Schedule	21	
	7.6 Ground Gas Monitoring and Soil Vapour Sampling	22	
	7.6.1 Soil Vapour Analytical Schedule	22	
	7.7 Surface Gas Monitoring and Service Pit Monitoring	23	
	7.8 Groundwater Sampling		
	7.8.1 Groundwater Analytical Schedule		
8.	Investigation Criteria	24	
	8.1 Criteria for Soil Contamination	24	
	8.1.1 Criteria for Chemical Contaminants in Soil	24	
	8.1.2 Criteria for Asbestos Contamination in Soil	25	
	8.2 Criteria for Acid Sulphate Soils	25	
	8.3 Criteria for Soil Vapour and Soil Vapour Intrusion	26	
C1239	34:J169135-01 DSI-SOPHS - V4	greencap.com.au	9

	8.4 Criteria for Ground Gases in Monitoring Wells	27
	8,5 Criteria for Soil Vapour	27
	8.6 Criteria for Bulk Gases in Service Pits	28
	8.7 Criteria for Surface Gas	29
	8.8 Criteria for Groundwater	29
	8.8.1 Groundwater Criteria for Vapour Intrusion	29
	8.8.2 Ecological Groundwater Criteria	29
9.	Results	31
	9.1 Soil Analytical Results	31
	9.1.1 Acid Sulphate Soils Results	31
	9.1.2 Soil Chemical Analysis Results at Monitoring Well Boreholes GG1 to GG9	31
	9.1.3 Soil Chemical Analysis Results at other 9 Boreholes and 3 Test pits	32
	9.1.4 Soil Asbestos Results	32
	9.2 Gas Monitoring Well Results	32
	9.2.1 Ground Gas – 1 st Round (7 th & 13 th May 2021)	32
	9.2.2 Ground Gas – 2 nd Round (21 May 2021)	33
	9.2.3 Ground Gas – 3 rd Round (3 rd June 2021)	34
	9.2.4 Ground Gas – 4 th Round (9 th June 2021)	34
	9.2.5 Ground Gas – 5 th Round (16 th June 2021)	35
	9.2.6 Ground Gas – 6 th Round (25 th June 2021)	36
	9.2.7 Worst Case Gas Risk Scenario	37
	Soil Vapour Sample Results	37
	9.3 Service Pit Monitoring Results (14 th May 2021)	38
	9.4 Surface Gas Walkover Results	38
	9.5 Groundwater Monitoring Results	38
	9.6 Quality Assurance and Quality Control	39
10.	Discussions	40
	10.1 Soil	40
	10.2 Ground Gas	40
	10.3 Soil Vapour	40
	10.4 Service Pits	40
	10.5 Surface Gas	
	10.6 Groundwater	
	10.7 Potential Asbestos Containing Material (PACM)	
	10.8 Depth of Fill	
	10.9 Other Areas of Concern	
11.	Updated Conceptual Site Model	42

	11.1 Sources	42
	11.1.1 Chemicals of Potential Concern	42
	11.2 Pathways	42
	11.3 Receptors	43
	11.4 Source, Pathway and Receptor Analysis	
12.	Data Gaps	45
13.	Conclusions	45
14.	Recommendations	46
15.	References	47
Figur	es	1
Appe	ndix A: Field Photographs	II
Appe	ndix B: Field Logs	1
Appe	ndix C: Results Summary Tables	II
Appe	ndix D: QA-QC Procedures	. 111
Appe	ndix E: Calibration Certificates	.IV
Appe	ndix F: Laboratory Certificates of Analysis	v

.

1. Introduction

Greencap Pty Ltd (Greencap) were engaged by School Infrastructure NSW (SINSW) - Department of Education (DoE) to undertake a Detailed Site Investigation (DSI) at Proposed Sydney Olympic Park High School ('the site'). A figure depicting the site location has been included as **Figure 1** in the Figures section at the end of this report.

As per NSW EPA Sampling Design Guidelines (1995), the minimum systematic sampling locations required for a 0.95ha site is estimated as 21 investigation locations. A total of 21 locations were investigated by Greencap in this Detail Site Investigation to meet the guidelines requirements. Refer to **Figure 2** for sampling locations.

2. Site History and Background

The site was vacant land at the time of the detailed investigation. The site is planned to be developed by Department of Education (Schools Infrastructure of NSW) as a new high school site, which is called the Sydney Olympic Park High School (SOPHS). Refer to **Figure 1** for site location and locality.

Greencap undertook a Preliminary Site Investigation (PSI) for the site and prepared the PSI Report (Greencap 2021). Based on the finding of the PSI, the site was situated on a reclaimed land, it had been used as a timber treatment plant, a waste processing plant, and a legacy landfill. Extensive filling had occurred in the past. The site has a history of contamination associated with petroleum hydrocarbons, poly-cyclic aromatic hydrocarbons (PAH), heavy metals, asbestos in fill (bonded and friable), and ground gas. During the preliminary site inspection, a large soil mound (~30m wide and ~110m long) was observed along the western boundary of the site. Apart from the soil mound, the site was largely sealed with concrete.

The site locates on a Class 2 Acid Sulphate Soil zone, which requires Acid Sulphate Soils Assessment and Management Planning for the proposed development. Former RAP (PB 2015) concluded the site is characterised as moderate to high risk for hazardous ground gases (characteristic gas situation 4).

Based on the documents provided by the client, 2 high school buildings are planned to be built at the site which is currently largely sealed with concrete. A sports field area is planned to be built to the north of the site. To further assess the site suitability for the proposed land use and to close out the data gas mentioned in the PSI, a Sampling Analysis and Quality Plan (SAQP) was prepared by Greencap for this Detail Site investigations. This Detail Site Investigation has been conducted in accordance with the SAQP.

3. Project Objectives

The objectives of this Detailed Site Investigation are as follows:

- Assess whether the site is suitable for the proposed land use;
- Close out the data gaps specified in the PSI Report; and
- Collect the necessary data and information for improving the conceptual site model (CSM) and planning further investigations and/or remedial actions, to enable preparation of a remediation action plan (RAP).

4. Project Scope

In order to achieve the above-mentioned project objectives, the following scope was established for the Detailed Site Investigation in accordance with the SAQP:

C123934:J169135-01 DSI-SOPHS - V4

greencap.com.au 12

- Installation of nine gas monitoring wells at the proposed building footprint area;
- Soil sampling at 21 borehole and testpit investigation locations;
- Ground gas monitoring and soil vapour sampling at the nine gas monitoring wells installed;
- Surface ground gas monitoring for gas composition across the site;
- Service pit monitoring for gas composition at on-site service pits and/or drainage gutters;
- Groundwater monitoring and sampling at one ground gas well where groundwater is encountered;
- Chemical analysis of the collected samples by NATA Accredited Laboratories for the contaminants of concern;
- Comparison of the results obtained by chemical analysis and field measurements with the selected investigation criteria; and
- Providing advice regarding further investigation and / or remedial action.

5. Site Description Summary

General site information is provided in Table 1. Site locality and layout maps are provided in Figure 1.

Table 1: Site Information				
Site Address:	Proposed Sydney Olympic Park High School: 7-11 Burroway Road, Wentworth Point, NSW 2127			
Property Identification:	Part of 202, 20	3, and 204 / DP1216628		
Local Government Area	Parramatta Cit	y Council		
Approximate Area:	0.95 ha			
Current Zoning:	B1 Neighbourh	nood Centre, R4 High Density Residential and RE1 Public Recreation		
Current Site Use:	Vacant Land			
Proposed Site Use:	Proposed Sydr	ey Olympic Park High School		
Potential Site Users:		dents and staff, parents of the students; and d future site workers and other temporary visitors.		
Surrounding Site Use:	NorthParramatta RiverEastParramatta RiverSouthRiverside Medicine Park WharfWestWentworth Point Public School, Marina Square Shopping Mall			
Surface Water Bodies:	North Parramatta River (~146 m distance) East Parramatta River (~126 m distance)			
Heritage items	No known heritage items were identified on the site			

5.1 Site Surrounds and Sensitive Receptors

High density commercial/residential buildings locate southeast to the site. To the east is the Went Worth Point Public School and to the south is Riverside Medicine Park. To the immediate north and west of site is vacant lands, Parramatta River locates further north and west to the stie.

Nearest sensitive human receptors are the students and staff of the Wentworth Point Public School, workers/employee/users of the Riverside Medicine Park, and the residents/staff/customers at the high-density commercial/residential buildings southeast to the site. Parramatta river which is north and west to the site is considered as the nearest environmental receptor.

5.2 Site Setting

The site is covered by various fill materials from historical importing of fill soils, wastes and/or natural dredged sediment material from the Parramatta River. The natural material is soft, wet, grey/dark grey to black clay with high plasticity. Strong hydrocarbon odours and sulfide odours have been noted in different fill material layers across the site.

The site's general surface level elevation is approximately 2m Australian Height Datum (AHD). The site has a generally flat topography, with local relief of <2m, sloping down-gradient to the north. An exception is the relatively large mound onsite in the shape of a road, which locates along the western boundary of the site. The elevation of the soil mound ranges from 4mAHD to 7.5mAHD from southwest corner to western of the north boundary. Topographic contours of the site are displayed in the PSI Report (Greencap, 2021). A couple of trees were at the eastern section of the site, no other natural vegetation was present on-site. The site is dominated by concrete slabs with the exception of the soil mound at west boundary and imported fill near the north and south boundary. Refer to **Appendix A. Photos.**

Based on site topography and survey data provided by the client, it is expected that surface runoff would flow towards the south-east and into the stormwater drain at the southern section of the site. The groundwater flow direction is estimated to be flowing towards the south-east.

5.3 Services on Site

A review of the DBYD drawings indicated that Ausgrid has out of service cables at the western boundary of the site and two in-service Low Voltage cables at the southern boundary and eastern end of the southern boundary, respectively. Sydney Water drawings indicated there is a pipeline along the eastern boundary. Jemena has no network on-site. Telstra drawings indicate that there are services along the western boundary, and at southern portion of the site.

6. Summary of Previous Site Assessment Reports

6.1 Preliminary Site Investigations

Greencap undertook a Preliminary Site Investigation (PSI) for the site (Greencap 2021). The site is situated on reclaimed land and site history data indicates extensive filling has occurred in the past. Desktop data and previous investigation reports, including a former remediation action plan (PB 2015), indicated the site has a history of contamination associated with petroleum hydrocarbons, polycyclic aromatic hydrocarbons (PAH), heavy metals, asbestos in fill (bonded and friable), and ground gas. Former potentially contaminating activities identified included: legacy landfilling, industrial operations (inc. waste recycling, and timber production), and legacy demolition activities on-site. The southern section of the site is largely sealed with concrete. A relatively large (potentially > 15,000 m³) soil mound was observed along the western border of the site. The stratigraphy on site is expected to be fill material overlying alluvial soils and sediments, followed by sandstone bedrock. The site is situated in a Class 2 Acid Sulfate Soil zone, which means the site may contain Acid Sulfate Soils below the natural ground surface and an Acid Sulfate Soils Assessment and Management Plan will be required for the proposed development.

The previous PSI carried out by GHD in 2009, covered a larger area which included the proposed school site within a larger block of land (referred to as Area 1B). Two separate legacy Underground Storage Tank (UST) Areas were identified.

6.2 Previous Detailed Site Investigations

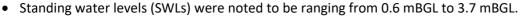
Report: "4 Homebush Bay West - Ground Gas Monitoring (GHD 2013)"

This investigation included ground gas monitoring at 9 locations near the proposed SOPHS school site and 3 monitoring rounds. These locations were not within the SOPHS site but were located nearby in the adjacent eastern and western neighbouring sites. Maximum observed gas readings as part of this investigation were noted as follows: Peak methane: 87.2% v/v (1CW02), Peak carbon dioxide: 14.7% v/v (1CW01), Hydrogen sulphide: 16 ppm (1CW02), Carbon monoxide: 53 ppm (1BW05), Flow rate: 7.012 L/hr (1BW06).

Based on above the gas screening values (GSV) in the scope of a "worst possible scenario" (W&C 2009) for methane and carbon dioxide are calculated as follows:

- Methane: 87.2% x 7.012 L / hr = 6.114 L/ hr
- Carbon dioxide: 14.7 % x 7.012 L / hr = 1.030 L/ hr

Above GSV's indicate a risk classification of Moderate to High Ground Gas Risk for methane. GHD (2013) conclude that this classification is applicable to the entire Stage 1B area, which included the site. However, as all the 2013 investigation locations were outside of the SOPHS site borders, further consideration needs to be given to this classification.


6.3 Former RAP (Parsons Brinckerhoff 2015)

Greencap was provided with a previous Remediation Action Plan (RAP) for the site, titled as "Parsons Brinckerhoff – Detailed Remediation Action Plan - Infrastructure Delivery, January 2015". This RAP covered a larger project area and the site defined in the scope of this investigation fell into an area defined as "Stage 1 Area" in the former RAP.

Information from the PB 2015 RAP and previous investigation reports (GHD PSI 2012 and Additional Assessment 2012, Ground Gas Monitoring GHD 2013 and Health risk assessment GHD 2013), is summarised as follows:

- Fill layer material across the site ranged in depth, noted as: 0.0 2.4 mBGL (below ground surface level);
- Natural soil material depth intervals were noted as: 1.0 4.8 mBGL and
- Sandstone was encountered at some locations with recorded depths of 4.4 4.8 mBGL.

 Lead, total recoverable hydrocarbons (TRH) (C10-C36), Benzo(a)pyrene, polycyclic aromatic hydrocarbon (PAH) exceedances were identified in soil assessment, asbestos (both friable and bonded) was identified in fill material, groundwater contamination of copper, chromium and zinc was identified (Additional contamination assessment – Stage 1 Area, incorporated results from the 2010 detailed site investigation GHD, 2012).

GREEN

- A potential unacceptable ground gas vapour risk was identified to future land users via the vapour inhalation exposure pathway (Stage 1 health risk assessment GHD, 2013c).
- Based on the maximum characteristic situation (CS) values obtained for Stage 1 Area certain locations/areas were considered to require remediation including gas protection measures for buildings post-development (Additional ground gas monitoring GHD, 2013d).
- Three areas in Stage 1 area were given CS4 ratings, which represents a moderate to high ground gas risk (Ground gas monitoring conducted by GHD).

The historical RAP (PB 2015) indicated the highest readings were taken from the eastern section of Stage 1 Area (off-site), however, suggested the entire site to be classified as CS4 (including the proposed SOPHS site). This required the proposed SOPHS site to be further investigated.

6.4 Interim Validation Report – Early Works Package (Zoic 2020)

This report included a Virgin Excavated Natural Material (VENM) report for the sandstone fill imported to the site in 2019, which corresponds to the sandstone mound on-site and capping material applied to the west and north of the mound. Results of this report showed the sandstone fill area included a minimum of 500 mm capping in-line with the requirements of PB RAP (2015). Greencap understands Zoic undertook asbestos air monitoring during the remediation works targeting the school boundary to the north.

6.5 Preliminary Site Inspection (PSI) and Sampling Analysis Quality Plan (SAQP) (Greencap 2021)

In 2021 Greencap prepared a Sampling Analysis Quality Plan (SAQP), together with the PSI, for the further investigation. The PSI also recommended the following actions:

- A Dangerous Goods Search is required to be undertaken from SafeWork NSW for Lots 202, 203, and 204 in Deposited Plan (DP) 1216628;
- This Detailed Site Investigation (DSI) scope;
- An Acid Sulfate Soils Assessment and a Management Plan is required as excavation and piling activities will likely disturb alluvial soils on-site; and
- A Level 2 (semi-quantitative) Ground Gas Risk Assessment targeting the proposed building footprints is required to establish the updated ground gas risk profile of the site.

September 2021

7. Sampling Program and Assessment Works Completed

7.1 Works Completed

Following works were completed during the Detailed Site Investigations from 29th April to 23rd August 2021:

- Nine (9) ground gas monitoring wells, labelled GG1 to GG9, have been installed at the locations shown on **Figure 2**;
- 1 round of soil vapour sampling and 6 rounds of ground gas monitoring were undertaken at nine locations, GG1 to GG9;
- 8 boreholes (BH1 to BH5, BH10, GG10 and GG12) were advanced up to 6 mBGL or to natural soil by Geoprobe drill rig/push tube soil sampling, refer to Figure 2;
- 1 borehole was advanced to 0.5 mBGL (shallow borehole due to potential underground service) by hand augur at western side of the soil mound;
- 3 test pits (BH6, BH7 and BH9) were advanced up to 1.5 mBGL by excavator, with one on the soil mound and two at western side of the soil mound;
- Soil sampling for lab analysis and sample headspace PID readings were undertaken at all 21 locations (9 ground gas well, 9 boreholes and 3 test pits);
- 10L Bulk Soil Sample Sieve testing for asbestos containing material (ACM) was undertaken at 3 test pits.
- Groundwater monitoring was undertaken at one location (GG5).
- Surface ground gas monitoring was measured at 45 locations across the site; and
- Three service pits were accessible and measured for potential gas accumulation.

Please refer to **Figure 2** for sampling locations, refer to **Figure 3** for surface gas monitoring locations and **Figure 4** for soil vapor and groundwater sampling locations.

7.2 Drilling and Installation of Monitoring Wells

Prior to drilling and push tubing, DBYD drawings were obtained from <u>www.1100.com.au</u>. Hand auguring, drilling and 50 mm diameter push tube soil sampling, was undertaken on 29th & 30th April and 3rd May 2021, by Greencap's subcontractor Epoca Environment using a standard hand auger and Geoprobe 7822DT. For the protection of potential unknown services hand-auguring was undertaken at each location down to 0.4-0.5 mBGL depth (refer to **Appendix A Photos** for field photographs taken during drilling and **Appendix B** for Field Logs).

Drilling and push tubing was supervised by Greencap's Senior Environmental Consultant, Matthew Barberson and Environmental Consultant, Shihui Wang. At each borehole, the material from the hand auger, drill rig or push tube was firstly laid on a black plastic sheet on the ground next to the boreholes in the same depth sequence to the drilling / sampling process. Soil materials were inspected for asbestos containing material (ACM) and logged, PID readings and chemical analysis samples were taken from each selected layer. At least one sample for asbestos analysis was taken from each borehole and acid sulphate soil analysis samples were taken where alluvial soil, sediment or sulphide odour was observed. The drilling cuttings soil material from the borehole was collected and put in a 200L drum on site after the monitoring wells were installed. Drilling equipment and sampling tools were cleaned and rinsed properly by the subcontractor to avoid cross contamination. Refer to **Appendix B** for the Field Logs. Refer to **Section 7.5.1** for soil sample analytical schedule.

7.3 Well Construction, Screening Depth Intervals and Groundwater Levels

Installation and screening depth interval details of the nine ground gas monitoring wells are presented in Table 2. Locations of these wells are presented on **Figure 2**. Six (6) of the ground gas wells (GG2, 5, 6, 7, 8 and 9) encountered groundwater and can be used both as groundwater monitoring wells and gas wells.

Installed groundwater wells were dipped using an interface meter and water levels were measured by Environmental Consultant, Shihui Wang, on 14th May 2021 during the groundwater sampling event. No LANPL (light non aqueous phase liquid) was recorded in any of the wells.

Well construction details are shown on the borehole logs in **Appendix B**. Well screening depth intervals commenced above the level of the water table at all locations. Slotted 50 mm diameter PVC standpipe was installed from either 0.5m or 0.7 m depth, down to the base of the wells. The borehole space around the well standpipe was backfilled with coarse sand filter media from the base of the borehole up to above the level of the slotted pipe. From the ground surface to approximately 0.5-0.6 m depth, the borehole annulus around the standpipe was sealed with a layer bentonite (minimum 300 mm interval) and also a cement grout collar in the 0-0.2 m surface layer.

Groundwater elevations (m AHD) were calculated using site survey ground surface levels provided by the Client and standing water levels at each well (Table 2). No distinct gradient was indicated, likely due to the limited small area in which the wells are located (below proposed buildings). Groundwater flow direction is inferred to be to the north and/or east toward the river.

Table 2:	Table 2: Ground Gas & Ground Water Monitoring Well Installation Details ¹ (Measured on 14 th May 2021)						
Well ID	Depth (mBGL)	Screened interval (mBGL)	Screened layer material description	Standing water level below top of standpipe (mBGL)	Standing water level below ground surface (mBGL)	Ground surface Elevation* (mAHD)	Standing Water Elevation (mAHD)
GG1	1.51	0.70-1.51	Fill – stiff, clay, moist; Fill – silty soil with gravels (15%) and rock (~35mm), dry; and Fill/Natural – soft, grey clay.	Dry	Dry	+2.88	Dry
GG2	3.33	0.70-3.33	Fill/Natural – stiff, clay, moist.	1.75	1.9	+3.30	1.40
GG3	0.99	0.50-0.99	Fill – silty sand with gravels (10%) and rocks, dry.	Dry	Dry	+3.27	Dry
GG4	1.48	0.70-1.48	Fill – stiff, sandy clay with rocks (10%), dry.	Dry	Dry	+2.7	Dry
GG5	5.99	0.70-5.99	Fill – loose, medium sand, wet; Fill/Natural – soft sandy clay, moist to wet and Fill/Natural – soft sandy clay with shells, moist to wet.	1.15	1.27	+2.22	0.95
GG6	2.05	0.70-2.05	Fill – stiff, clay and Fill/Natural – loose sand with shells (5%-10%), wet.	1.14	1.26	+2.21	0.95
GG7	1.50	0.70-1.50	Fill/Natural – sandy clay with shells, moist to wet.	1.08	1.18	+2.20	1.02
GG8	2.59	0.70-2.59	Fill/Natural – loose clayey sand and coarse sand with shell, moist to wet.	0.785	0.94	+2.29	1.35
GG9	1.22	0.70-1.22	Fill – coarse sand with clayey sand (10%) and rocks (15%), moist and Fill/Natural – Clayey sand with shells, wet.	0.79	0.89	+2.13	1.24

- 1. Refer to Appendix B for borehole logs and well installation details.
- 2. mBGL: Metres below ground level.

September 2021

- 3. mAHD: Metres above Australian Height Datum.
- 4. *Ground surface elevations estimated from site survey contours.
- 5. Fill/Natural: Fill or natural dredged material.

7.4 Observed Soil Stratigraphy and Contamination

Stratigraphy noted during the drilling and excavation works undertaken on 29th & 30th April,3rd & 13th May and 23rd August 2021 were as follows (refer to **Appendix B** for borehole logs):

- Concrete slabs with 14-30 cm measured thickness sealing the soil surface were noted at GG1, GG2, GG4, GG5, GG6, BH2, BH3, BH4, BH5, GG10 and GG12. (refer to **Appendix A** Photographs).
- Fill soil layer comprised of combinations of imported clay, sandy clay and crushed rock as well as alluvium/sediment dredged from the Parramatta River
- Natural high plasticity clay was encountered at depth from 1.2 mBGL to 6.0 mBGL from west to east across the site.
- Material with strong sulfide odour and black staining was noted at boreholes GG1, 2, 3, 4, 5, 6 and 9.
- A layer of dark grey coarse sand and rocks (10%) with strong hydrocarbon odour was noted at GG8 (0.4-0.5 mBGL).
- The material from the test pits on/near the soil mound (BH6, 7 and 9) is mainly light brown to pink sandstone with inclusions of clayey cobbles and grey shale.
- Asphalt was observed at 0.25-1.0 mBGL at GG12.
- One of the groundwater monitoring wells was a deep well GG5 installed to 8 m depth in the south-eastern part of the site at the proposed building footprint area. Push tube soil sampling was undertaken at this location to a depth of 8 mBGL. The following layers were noted at this location from top to the bottom (see Photograph 7 and 8):
 - A 150 mm thick concrete slab (0.0-0.15 mBGL),
 - > A 100 mm layer of moist yellow loose sand (0.15-0.25 mBGL),
 - > A 150 mm layer of dark grey to black sand and gravel mixture (0.25-0.40 mBGL),
 - A 300 mm layer of dry stiff red clay (with grey mottle) and sandy gravel with organic matter odour (0.4-0.7 mBGL),
 - A 800 mm thick layer of wet, loose yellow medium sand (0.7-1.5 mBGL),
 - > A 1500 mm layer of soft brown to grey sandy clay with sulphate odour (1.5-3.0 mBGL),
 - > A 900 mm layer of moist to wet, soft, dark grey clay with sulphide odour (3.0-3.9 mBGL),
 - > A 2100 mm layer of soft sandy clay with sulphide odour (3.9-6.0 mBGL),
 - > A 1000 mm layer of yellow to reddish-yellow stiff clay with organic matter odour (6.0-7.0 mBGL),
 - > A 1000 mm layer of natural moist stiff grey clay (with red and yellow mottled) (7.0-8.0 mBGL)
 - > End of borehole at 8 mBGL due to the targeted natural soil layer was reached.
- Soil types along the soil mound were observed as sandstone with inclusions of clay cobbles and shale during the test pitting event on 14th May 2021 at BH9, refer to **Figure 2** for the test pitting location.
- Other field observations noted during the drilling works on 29th & 30th April and 3rd &14th May 2021 were as follows:
 - Strong hydrocarbon odour and high PID reading was observed during drilling at GG8.

- Strong sulphurous odours were noted at GG5 at 0.4-0.5 mBGL.
- Two asbestos cement sheeting fragments were observed on the ground surface near GG7 and near the site gate (these were sealed in double plastic bags and sent to Greencap lab for analysis (refer to Figure 2 for ACMs locations).
- An Underground Storage Tank was found at eastern boundary southern side of the site (refer Figure 2).
- > One on-site legacy well was found southern to GG2.
- > One off-site legacy well was found eastern side of the site.

7.5 Push Tube and Test Pit Soil Sampling

12 locations were investigated in total apart from above mentioned 9 wells on 3rd & 14th May and 23rd August 2021:

 3^{rd} May 2021 – Push tubing was undertaken at 6 locations by Greencap's subcontractor Epoca and it was supervised by Greencap's Senior Environmental Consultant, Matthew Barberson and Environmental Consultant, Shihui Wang. Concrete coring was undertaken at 4 locations in the area of the concrete slab (BH2, BH3, BH4 and BH5) before the hand auguring and push tubing.

 14^{th} May 2021 – Test pitting was undertaken by Greencap's subcontractor GKC at 3 locations, with one location on the soil mound and two locations at west side to the soil mound. The test pitting was supervised by Greencap's Environmental Consultant, Shihui Wang.

<u>23rd August 2021</u> – Borehole drilling by Geoprobe auguring was undertaken at three locations by Greencap's subcontractor Epoca and was supervised by Greencap's Environmental Consultant, Shihui Wang. Concrete coring was undertaken at 2 locations (GG10 and GG12) in the area of the concrete slab before the hand auguring and Geoprobe auguring. One shallow borehole was undertaken by manual hand auguring at one borehole (GG11) due to potential underground service.

Prior to auguring, push tubing and excavation, DBYD drawings were obtained from <u>www.1100.com.au</u> and were reviewed by the subcontractor. For the protection of potential unknown services hand-auguring was undertaken at 6 locations down to 0.4-0.5 mBGL depth before drilling. After the sampling, all investigation locations were reinstated. Soil material from the borehole, drill rig (Geoprobe augur), push tubes or tespits was used to backfill the holes, generally in the same sequence. Concrete cores were put back in place to the cover boreholes in the slab area. Excavated material was put back into the test pits in reverse order to the excavation process and compacted by the excavator (refer to **Appendix A** for field photographs taken during the field works and **Appendix B** for field logs). At each borehole, the material from the test pits, push tubes or drill rig was firstly laid on a black plastic sheet on the ground next to the borehole/test pit in the same order to the drilling/excavation process. Soil material details were logged, inspected for asbestos material and PID readings and chemical analysis samples were taken from each layer. At least one asbestos sample was taken from each borehole. Acid sulfate soil samples were collected where sulfate odour was noted.

7.5.1 Soil Analytical Schedule

Soil samples were collected & analysed at 21 locations, including the 9 ground gas wells (during drilling & well installation), 9 borehole locations and 3 test pitting locations. In this scope the following soil sampling tasks were accomplished:

- At least one 250ml glass jar chemical analysis sample and one 500ml AF/FA asbestos analysis sample (asbestos fines/fibrous asbestos) were collected at 21 locations;
- Acid sulphate soil samples were collected at GG5 and other locations where alluvial sediment soils or sulphide odour were observed
- All soil samples were placed in eskies with ice bricks right after sampling,
- Soil vapour readings with a calibrated photoionization detector (PID) were taken at each selected layer at 21 locations, using the headspace method (sealed plastic bag samples),
- Field duplicate and field triplicate samples were collected at a rate of 1/20 primary samples,
- Sieve testing for visible asbestos containing materials ACM was undertaken at 3 test pits,
- All samples were labelled with a unique ID and date, chemical analysis samples were placed in chilled eskies with ice bricks.
- Chemical analysis glass jar samples, duplicate samples and acid sulphate samples were then submitted to Eurofins (a NATA Accredited Laboratory) under chain of custody procedures on the same day of the sampling event.
- Triplicate samples (interlab duplicates) were submitted to Envirolab under chain of custody procedures within the required holding times and were tested for heavy metals.
- Asbestos analysis samples (AF/FA) were submitted to Greencap lab (a NATA Accredited Laboratory) same day after sampling event.
- Acid sulphate samples which had low pH or pH decreasing by greater than 2 pH units during the pH field screen were tested for Acid sulphate soils (SPOCAS suite testing).

Table 3 below summarises the analyses for soil samples (also refer to Tables of Analytical Results in **Appendix C** and **Appendix F** for Laboratory Certificates of Analysis).

Table 3: Soil Sample Analytical Suites						
	Chemical samples	Acid Sulphate Samples	Asbestos Samples	Duplicate Samples	Triplicate Samples	
Container	250ml glass jar	500ml double zip plastic bag	500ml AF/FA plastic bag	250ml glass jar	250ml glass jar	
NATA Accredited Lab	Eurofins	Eurofins	Greencap	Eurofins	Envirolab	
Analytical Suite	 TRH BTEX Heavy metals PAH PCBs OCPs TOC (only for GG5) VOC and SVOC (for GG8, GG10, GG11 and GG12) 	 Acid sulphate soils field screen Acid sulphate soils SPOCAS testing 	• Asbestos AF/FA test	• Heavy metals	• Heavy metals	

Note:

1. TRH: Total Recoverable Hydrocarbon.

- 2. BETX: Benzene, Ethylbenzene, Toluene, Xylene.
- 3. Heavy Metals: Arsenic, Cadmium, Chromium, Copper, Lead, Mercury, Nickel and Zinc.
- 4. PAH: Polycyclic Aromatic Hydrocarbons.
- 5. PCBs: Polychlorinated Biphenyls.
- 6. OCPs: Organochlorine Pesticides.

C123934:J169135-01 DSI-SOPHS - V4

greencap.com.au 21

- 7. TOC: Total Organic Carbon.
- 8. VOC: Volatile Organic Compounds.
- 9. SVOC: Semi-Volatile Organic Compounds.

7.6 Ground Gas Monitoring and Soil Vapour Sampling

The 1st round ground gas monitoring and soil vapour sampling was undertaken by Shihui Wang, Emma Lavas and Matthew Barberson on 7th May 2021, and by Shihui Wang on 13th May 2021, when a falling barometric pressure trend was noted. Please refer to **Appendix D** for weather observation details before and during the sampling event. In this scope the following monitoring and sampling tasks were accomplished in accordance with the SAQP:

- Flowrate, pressure and gas composition measurements were taken at each monitoring location by using a calibrated landfill gas analyser (GA5000),
- Helium leak tests were undertaken prior to soil vapour sampling,
- Readings with a calibrated photoionizing detector (PID) were taken prior to and after the collection of soil vapour samples at each sampling point,
- Nine (9) primary and two (2) duplicate soil vapour samples were collected into 1 Litre summa canisters provided by Envirolab (a NATA Accredited laboratory),
- An interface meter was used to verify the screened intervals of the gas wells were not flooded with water, the interface meter was cleaned and rinsed properly after each measurement to avoid cross contamination.

The 2nd round ground gas monitoring was undertaken by Emma Lavas on 21st May 2021, when a falling barometric pressure trend was noted. Following tasks were accomplished in accordance with the SAQP:

- Flowrate, pressure and gas composition measurements were taken at each monitoring location by using a calibrated landfill gas analyser (GA5000),
- An interface probe was used to verify the screened intervals of the gas wells were not flooded with water, the interface probe was cleaned and rinsed properly after each measurement to avoid cross contamination.

The 3rd, 4th, 5th and 6th rounds ground gas monitoring were undertaken by Shihui Wang on 21st May 2021, and 3rd, 9th, 16th & 25th June 2021 respectively, when a general falling barometric pressure trends were noted. Following tasks were accomplished in accordance with the SAQP:

- Flowrate, pressure and gas composition measurements were taken at each monitoring location by using a calibrated landfill gas analyser (GA5000),
- An interface probe was used to verify the screened intervals of the gas wells were not flooded with water, the interface probe was cleaned and rinsed properly after each measurement to avoid cross contamination.

Please refer to **Appendix C3** for soil vapor lab results, refer to **Appendix C5** for gas monitoring GA5000 field readings, and refer to **Appendix E** for equipment calibration certificates.

7.6.1 Soil Vapour Analytical Schedule

Collected soil vapour samples were sent to the NATA accredited laboratory, Envirolab for analysis. The samples were analysed for following suite:

- Benzene, Toluene, Ethylbenzene, Xylenes, and Naphthalene (BTEXN),
- Total Recoverable Hydrocarbons (TRH) F1 and F2 fractions,
- Volatile Organic Carbon (VOC) scan.

C123934:J169135-01 DSI-SOPHS - V4

greencap.com.au 22

• QA/QC samples were tested for BTEX and TRH.

7.7 Surface Gas Monitoring and Service Pit Monitoring

A surface gas site walkover and service pit monitoring survey were undertaken on 14th May 2021 by Greencap's Consultant Shihui Wang using an Inspectra Laser Unit (ILU) and a GA5000 gas meter at 5cm above the ground surface at 45 locations across the site (< 25m x 25m grid basis). The surface gas monitoring included measurements above the cracks in concrete slabs. Three service pits were found and monitored on site. Refer to **Figure 2** for service pit locations and refer to **Figure 3** for surface gas monitoring locations.

7.8 Groundwater Sampling

One groundwater well was sampled at GG5 on 13th May 2021. GG5 was sampled with a low flow peristaltic pump. Water quality parameters (pH, temperature, conductivity, oxidation reduction potential and dissolved oxygen) were monitored during purging and sampling using a calibrated YSI Pro DDS water quality meter and a flow cell. Samples were collected after water quality parameters had stabilised. Please refer to **Appendix E** for calibration certificate.

One (1) primary and one (1) duplicate groundwater sample were collected using appropriately preserved bottles supplied by Eurofins (a NATA Accredited Laboratory). The collected groundwater samples were labelled with a unique ID and date before being placed in an esky with ice bricks. Samples were then submitted to Eurofins under chain of custody procedures same day after the sampling event.

7.8.1 Groundwater Analytical Schedule

The analytical schedule for the groundwater samples included the following contaminants of potential concern (CoPC):

- TRH,
- BTEXN,
- Heavy metals (As, Cd, Cr, Cu, Pb, Zn, Ni, Hg),
- Ammonia, nitrite and nitrate (NH3, NO2 and NO3),
- Volatile organic compounds (VOCs) and Semi-volatile organic compounds (SVOC) scan,
- QA/QC duplicate sample was tested for heavy metals.

8. Investigation Criteria

8.1 Criteria for Soil Contamination

8.1.1 Criteria for Chemical Contaminants in Soil

Criteria for chemical contaminants in soil is selected based on the Health-based Investigation Levels presented in National Environmental Protection (Assessment of Site Contamination) Measure 1999 – Schedule B 1 Guideline on Investigation Levels for Soil and Groundwater, Table 1A (1).

The criteria are presented in Table 4 below.

Table 4: Health investigation levels for soil contaminants				
	Chemical	Health-based investigation levels (mg/kg) Recreational ¹ C		
	Arsenic	300		
	Cadmium	90		
	Chromium (VI)	300		
Motolo	Copper	17000		
Metals	Lead	600		
	Mercury (inorganic)	80		
	Nickel	1200		
	Zinc	30000		
DALL	Carcinogenic PAHs (as BaP TEQ)	3		
PAH	Total PAHs	300		
	Phenol	40000		
Phenols	Pentachlorophenol	120		
	Cresols	4000		
	DDT+DDE+DDD	400		
	Aldrin and dieldrin	10		
	Chlordane	70		
	Endosulfan	340		
Organochlorine	Endrin	20		
Pesticides	Hephtachlor	10		
	НСВ	10		
	Methoxychlor	400		
	Mirex	20		
	Toxaphene	30		

Note:

1. HIL C – Public open space such as parks, playgrounds, playing fields (e.g. ovals), secondary schools and footpaths.

C123934:J169135-01 DSI-SOPHS - V4

8.1.2 Criteria for Asbestos Contamination in Soil

Criteria for asbestos contamination in soil is selected based on the Health Screening Levels for asbestos contamination in soil presented in *National Environmental Protection (Assessment of Site Contamination) Measure 1999 – Schedule B 1 Guideline on Investigation Levels for Soil and Groundwater, Table 7.*

The criteria is presented in Table 5 below.

Table 5: Health Screening levels for asbestos contamination in soil				
Form of asbestos	Form of asbestos Health screening level (w/w) Recreational C ¹			
Bonded ACM	0.02%			
FA and AF ² (friable asbestos)	0.001%			
All forms of asbestos	No visible asbestos for surface soil			

Note:

- 1. Recreational C includes public open space such as parks, playgrounds, playing fields (e.g. ovals), secondary schools and unpaved footpaths.
- 2. The screening level of 0.001% w/w asbestos in soil for FA and AF (i.e.fibrous asbestos/asbestos fines, non-bonded/friable asbestos) only applies where the FA and AF are able to be quantified by gravimetric laboratory procedures. This screening level is not applicable to free fibres.

8.2 Criteria for Acid Sulphate Soils

Criteria for acid sulphate soil is selected based on the ASSMAC action criteria triggering the need for further investigation and management including preparation of a management plan, presented in *the Acid Sulfate Soil Manual (NSW Acid Sulphate Soils Management Advisory Committee 1998), Table 4.4.*

The criteria is presented in Table 6 below.

Table 6: Acid Sulphate Soil Criteria						
		Action Criteria 1-1000 tonnes disturbed				
Type of Material	Approx. clay content (%<0.002 mm)	Sulfur trail %S oxidisable (oven-dry basis) eg, STOS or SPOS	Acid trail Mol H+/tonne (oven-dry basis) eg, TPA or TSA			
Coarse Texture Sands to loamy sands	≤5	0.03	18			

8.3 Criteria for Soil Vapour and Soil Vapour Intrusion

Criteria for soil vapour are selected based on the Interim Soil Vapour Health Investigation Levels for volatile organic chlorinated compounds presented in *National Environmental Protection (Assessment of Site Contamination) Measure 1999 – Schedule B 1 Guideline on Investigation Levels for Soil and Groundwater, Table 1A (2).*

The investigation criteria for chlorinated compounds is presented in Table 7 below.

Table 7: Interim soil vapour health investigation levels for volatile chlorinated compounds				
		Interim soil vapour HIL (mg/m ³) Residentional ¹ A/B		
	ТСЕ	0.02		
Chemical	1,1,1-TCA	60		
	PCE	2		
	Cis-1,2-dichloroethene	0.08		
	Vinyl chloride	0.03		

Note:

1. Secondary school buildings should be assessed using residential 'A/B' for vapour intrusion purposes.

2. Please refer to Appendix C6 for more details.

Soil criteria for vapor intrusion were selected based on the Health Screening Levels for vapour intrusion presented in National Environmental Protection (Assessment of Site Contamination) Measure 1999 – Schedule B 1 Guideline on Investigation Levels for Soil and Groundwater, Table 1A (3).

The soil criteria is presented in Table 8 below.

Table 8: Soil Health Screening levels for vapour intrusion (mg/kg)								
		HSL A & HSL B Low-high density residential ¹ – Sand						
	0m to < 1m	Om to < 1m						
Toluene	160	220	310	540				
Ethylbenzene	55	-	-	-				
Xylenes	40	60	95	170				
Naphthalene	3	-	-	-				
Benzene	0.5	0.5	0.5	0.5				
F1 ²	45	70	110	200				
F2 ³	110	240	440	-				

Note:

1. Secondary school buildings should be assessed using residential 'A/B' for vapour intrusion purposes.

2. For soil texture classification undertaken in accord with AS 1726, the classifications of sand, silt and clay may be applied as coarse, fine with liquid limit <50% and fine with liquid limit >50% respectively as the underlying properties to develop the HSLs may reasonably be selected to be similar. Where there is uncertainty, either a conservative approach may be adopted or laboratory analysis should be carried out. In this particular case a conservative approach is adopted and the soil texture classification is assumed to be coarse (sand).

- 3. To obtain F1 subtract the sum of BTEX concentrations form the C6-C10 fraction.
- 4. To obtain F2 subtract naphthalene form the >C10-C16 fraction.

C123934:J169135-01 DSI-SOPHS - V4

8.4 Criteria for Ground Gases in Monitoring Wells

Criteria for ground gases in gas monitoring wells is selected based on the threshold levels presented in *Solid Waste Landfills Guideline (NSW EPA 2016)* and presented in Table 9.

Table 9: Threshold Level	Table 9: Threshold Levels for Hazardous Gasses							
Analyte	Threshold level Unit Threshold		Threshold Level	Comments				
Methane (CH ₄)	NSW EPA 2016 ⁽¹⁾	V EPA 2016 ⁽¹⁾ % (volume/volume) 1		The threshold level for further investigation				
Carbon Dioxide (CO ₂)	1010 21/(2010		1.5	and corrective action				

Note:

1. The threshold levels for further investigation and corrective action are detection of methane at concentrations above 1% (volume/volume) carbon dioxide at concentrations of 1.5% (volume/volume) above established natural background levels.

When above levels are exceeded further characterisation through the calculation of gas screening values (GSV) will be made. The method of deriving a GSV and thus ground gas risk will be based on the *Guidelines for the Assessment and Management of Sites Impacted by Hazardous Ground Gases (NSW EPA 2012)*.

GSV is the concentration of gas measured in a monitoring well multiplied by the measured borehole flow rate. The GSV is used to calculate the Characteristic Gas Situation (CS) which provides a site ranking system of 1 to 6 based upon which different levels of gas protection are required (1 being the lowest risk level and 6 being the highest). Table 10 presents a summary of the GSV and CS as well as risk classification in accordance with the guideline.

Table 10: GSV and CS	and Characterising Land	lfill Gas Risk (NSW EPA 2	2012)
Gas Screening Value Threshold (L/hr)	Characteristic Gas Situation	Risk Classification	Additional Factors
<0.07	1	Very low risk	Typically methane <1% v/v and/or carbon dioxide <5% v/v, otherwise consider increase to Situation 2
<0.7	2	Low risk	Borehole flow rate not to exceed 70L/hr otherwise consider increase to Situation 3
<3.5	3	Moderate risk	-
<15	4	Moderate to high risk	Consider need for Level 3 risk assessment
<70	5	High risk	Lovel 2 rick accomment required
>70	6	Very high risk	Level 3 risk assessment required

8,5 Criteria for Soil Vapour

Criteria for soil vapour (trace gases) in gas monitoring wells is selected based on the Soil Vapour Health Screening Levels for vapour intrusion presented in *National Environmental Protection (Assessment of Site Contamination) Measure 1999 – Schedule B 1 Guideline on Investigation Levels for Soil and Groundwater, Table 1A (5).*

The criteria is presented in Table 11 below.

Table 11: Soil Vapour Health Screening levels for vapour intrusion (mg/m ³)							
		HSL A & HSL B Low-high density residential ¹ – Sand					
	0m to < 1m	1m to < 2m	2m to < 4m	4m to < 8m			
Toluene	1300	3800	7300	15000			
Ethylbenzene	330	1100	2200	4300			
Xylenes	220	750	1500	3000			
Naphthalene	0.8	3	6	10			
Benzene	1	3	6	10			
F1 ²	180	640	1300	2600			
F2 ³	130	560	1200	2400			

Note:

1. Secondary school buildings should be assessed using residential 'A/B' for vapour intrusion purposes.

2. For soil texture classification undertaken in accord with AS 1726, the classifications of sand, silt and clay may be applied as coarse, fine with liquid limit <50% and fine with liquid limit >50% respectively as the underlying properties to develop the HSLs may reasonably be selected to be similar. Where there is uncertainty, either a conservative approach may be adopted or laboratory analysis should be carried out. In this particular case a conservative approach is adopted and the soil texture classification is assumed to be coarse (sand).

- 3. To obtain F1 subtract the sum of BTEX concentrations form the C6-C10 fraction.
- 4. To obtain F2 subtract naphthalene form the >C10-C16 fraction.

8.6 Criteria for Bulk Gases in Service Pits

Applicable gas criteria for service pits is presented in Table 12.

Table 12: Threshold Leve	Table 12: Threshold Levels for Service Pits							
Analyte	Threshold level reference	Unit	Threshold Level	Comments				
Methane (CH ₄)	NSW EPA 2016 ⁽¹⁾	% (volume/volume)	1.0	The threshold level for				
Carbon Dioxide (CO ₂)			1.5	 further investigation and corrective action 				
Carbon Dioxide (CO ₂)	Safe Work Australia HSIS ⁽²⁾	ppm	TWA ⁽³⁾ : 5000 STEL ⁽⁴⁾ : 30,000	Work Place Exposure Standards				
Hydrogen Sulphide (H ₂ S)	en Sulphide Safe Work Australia HSIS ⁽²⁾		TWA: 10 STEL: 15	- Only applicable to service pits to assess risks for utility workers				
Carbon Monoxide (CO)	Safe Work Australia HSIS ⁽²⁾	ppm	TWA: 30	- Not applicable for ground gas				

Note:

1. The threshold levels for further investigation and corrective action are detection of methane at concentrations above 1% (volume/volume) carbon dioxide at concentrations of 1.5% (volume/volume) above established natural background levels.

- 2. HSIS: Hazardous Substances Information System.
- 3. TWA: Time weighted average.
- 4. STEL: Short term exposure limit.

8.7 Criteria for Surface Gas

Criteria for surface gas is selected based on the threshold presented in *Environmental Guidelines: Solid waste landfills (2016).* The threshold level of further investigation and corrective action is 500 parts per million (volume/volume) of methane at any point on the landfill surface for intermediate and finally capped areas. Methane should be tested in the atmosphere 5 centimetres above the landfill surface in areas with intermediate or final cover/capping. Testing should be conducted in a grid pattern across the landfill surface at 25-metre spacings. Depressions in the cover material, or surface fissures away from the sampling grid, should also be investigated.

8.8 Criteria for Groundwater

8.8.1 Groundwater Criteria for Vapour Intrusion

For the assessment of a potential risk of vapour intrusion, groundwater HSL criteria for volatile organic compounds (VOCs) provided in NEPC (2013) for a low- high density residential land use scenario (HSL A & B), which includes secondary schools, have been adopted. Selected criteria is presented in Table 13.

Vapour Headspace readings using sealed groundwater monitoring wells is recommended for groundwater assessment and vapour intrusion assessment, if VOCs are detected in groundwater at less than 2 m depth.

Table 13: Groundwater H	HSL for vapour intrusion						
Analyte	Unit	HSL A & B ⁽¹⁾ Low - high density residential Soil texture classification: Coarse (sand) ⁽²⁾					
		2 m to < 4 m	4 m to < 8 m	8 m+			
Toluene		NL ⁽⁵⁾	NL	NL			
Ethylbenzene		NL	NL	NL			
Xylenes		NL	NL	NL			
Naphthalene	mg/L	NL	NL	NL			
Benzene		0.8	0.8	0.9			
F1 ⁽³⁾		1	1	1			
F2 ⁽⁴⁾		1	1	1			

Note:

1. Secondary school buildings should be assessed using residential 'A/B' for vapour intrusion purposes.

2. For soil texture classification undertaken in accord with AS 1726, the classifications of sand, silt and clay may be applied as coarse, fine with liquid limit <50% and fine with liquid limit >50% respectively as the underlying properties to develop the HSLs may reasonably be selected to be similar. Where there is uncertainty, either a conservative approach may be adopted or laboratory analysis should be carried out. In this particular case a conservative approach is adopted and the soil texture classification is assumed to be coarse (sand).

- 3. To obtain F1 subtract the sum of BTEX concentrations from the C_6 - C_{10} fraction.
- 4. To obtain F2 subtract naphthalene from the $>C_{10}-C_{16}$ fraction.

5. NL: No limit

8.8.2 Ecological Groundwater Criteria

The nearest water body to the site is Parramatta River which flows easterly into Port Jackson. Thus, ecological criteria for groundwater is selected based on the Groundwater Investigation Levels (GILs) presented in NEPC (NEPM 2013), which refers to the *Australian and New Zealand Guidelines for Marine Water Quality (ANZECC/ ARMCANZ, 2000)*. Adopted ecological groundwater criteria is presented in Table 14.

September 2021

NetWorkNEPM GLS/ANZECC (2000)AnalytesTrigger Values for Marine water ^ (ug/L) Level of Protection: 95% of the speciesAtals and MetalloidsInternet of Protection: 95% of the speciesAuminium, AI pH>6.5Internet of Protection: 95% of the speciesArsenicInternet of Protection: 95% of the speciesCadmiumInternet of Protection: 95% of the speciesArsenicInternet of Protection: 95% of the speciesCadmiumInternet of Protection: 95% of the speciesChromium, Cr (UI)Internet of Internet of Protection: 95% of the speciesChromium, Cr (UI)Internet of Internet of Protection: 95% of the speciesCadmium, Cr (UI)Internet of Internet of Internet of Internet of Internet of Protection: 95% of the speciesChromium, Cr (UI)Internet of Internet of Interne	Table 14: Adopted Ecological Groundwater Investigation Levels Criteria (GILs)				
Level of Protection: 95% of the species Metals and Metalloids Aluminium, Al pH>6.5 - Arsenic - Cadmium 0.7 Cadmium, Cr (III) 27 Chromium, Cr (VI) 4.4 Copper 1.3 Lead 4.44 Manganese - Mercury (inorganic) 0.1/0.4c Nickel 7 Zinc 15 ^c Ammonia ^e (as NH ₃ -N at pH8) 910 Chloride (as un-ionised CN) 4 Moncyclic Aromatic Hydrocarbons 4 Benzene 500 Toluene -		NEPM GILs/ANZECC (2000)			
Metals and Metalloids Aluminium, Al pH>6.5 - Arsenic - Cadmium 0.7 Cadmium 0.7 Chromium, Cr (III) 27 Chromium, Cr (VI) 4.4 Copper 1.3 Lead 4.4 Manganese - Mercury (inorganic) 0.1/0.4 ^c Nickel 7 Zinc 15 ^c Ammonia ^E (as NH ₃ -N at pH8) 910 Choride - Quantic Hydrocarbons 4 Benzene 500 Toluene - Ethylbenzene -	Analytes	Trigger Values for Marine water ^A (µg/L)			
Aluminium, Al pH>6.5-Arsenic-Cadmium0.7Cadmium, Cr (III)27Chromium, Cr (VI)4.4Copper1.3Lead4.4Manganese-Mercury (inorganic)0.1/0.4cNickel7Zinc15cNon-metallic InorganicsAmmonia ^E (as NH ₃ -N at pH8)910Chloride-Cyanide (as un-ionised CN)4Benzene500Toluene-Ethylbenzene-Ethylbenzene-Ethylbenzene-Churide-Coluene-Coluene-Churide-Coluene-Coluene-Churide-Coluene-Col		Level of Protection: 95% of the species			
Arsenic-Cadmium0.7Chromium, Cr (III)27Chromium, Cr (VI)4.4Copper1.3Lead4.4Maganese-Mercury (inorganic)0.1 / 0.4c ^c Nickel7Zinc15c ^c Mermetallic Inorganics910Chloride-Quantized (as un-ionised CN)4Mencury (inorganic Hydrocarbons1Eenzene500Toluene-Forlene-Coluene-Coluene-Coluene-Choride-Coluene-<	Metals and Metalloids				
Cadmium0.7Chromium, Cr (III)27Chromium, Cr (VI)4.4Copper1.3Lead4.4Manganese-Mercury (inorganic)0.1/0.4cNickel7Zinc15cNon-metallic InorganicsAmmonia ^E (as NH ₃ -N at pH8)910Chloride-Cyanide (as un-ionised CN)4Benzene500Toluene-Louene-Coluene-	Aluminium, Al pH>6.5	-			
Chromium, Cr (III) 27 Chromium, Cr (VI) 4.4 Copper 1.3 Lead 4.4 Manganese - Mercury (inorganic) 0.1/0.4 ^c Nickel 7 Zinc 7 Ammonia ^E (as NH ₃ -N at pH8) 910 Chloride - Cyanide (as un-ionised CN) 4 Benzene 500 Toluene - Toluene -	Arsenic	-			
Chromium, Cr (VI)4.4Copper1.3Lead4.4Manganese-Mercury (inorganic)0.1/0.4cNickel7Zinc15cNon-metallic InorganicsAmmonia ^E (as NH ₃ -N at pH8)910Chloride-Cyanide (as un-ionised CN)4Benzene500Toluene-Ethylbenzene-Inolation-Commetalle-	Cadmium	0.7			
Copper1.3Lead4.4Manganese-Mercury (inorganic)0.1/0.4cNickel7Zinc15cNon-metallic InorganicsAmmonia ^E (as NH ₃ -N at pH8)910Chloride-Cyanide (as un-ionised CN)4Monocyclic Aromatic Hydrocarbons500Benzene500Toluene-Ethylbenzene-	Chromium, Cr (III)	27			
Lead4.4Manganese-Mercury (inorganic)0.1/0.4°Nickel7Zinc15°Non-metallic InorganicsAmmonia ^E (as NH ₃ -N at pH8)910Chloride-Cyanide (as un-ionised CN)4Benzene500Toluene-Ethylbenzene-Hubbenzene-Columna <t< td=""><td>Chromium, Cr (VI)</td><td>4.4</td></t<>	Chromium, Cr (VI)	4.4			
Manganese-Manganese-Mercury (inorganic)0.1/0.4°Nickel7Zinc15°Non-metallic InorganicsAmmonia ^E (as NH ₃ -N at pH8)910Chloride-Cyanide (as un-ionised CN)4Monocyclic Aromatic Hydrocarbons500Benzene500Toluene-Ethylbenzene-	Copper	1.3			
Mercury (inorganic)0.1/0.4cNickel7Zinc7Non-metallic Inorganics15cAmmonia ^E (as NH ₃ -N at pH8)910Chloride-Cyanide (as un-ionised CN)4Monocyclic Aromatic Hydrocarbons500Benzene500Toluene-Ethylbenzene-	Lead	4.4			
Nickel7Zinc15cNon-metallic Inorganics910Ammonia ^E (as NH ₃ -N at pH8)910Chloride-Cyanide (as un-ionised CN)4Monocyclic Aromatic Hydrocarbons500Benzene500Toluene-Ethylbenzene-	Manganese	-			
Zinc15°Non-metallic InorganicsAmmonia ^E (as NH ₃ -N at pH8)910Chloride-Cyanide (as un-ionised CN)4Monocyclic Aromatic HydrocarbonsBenzene500Toluene-Ethylbenzene-	Mercury (inorganic)	0.1 / 0.4 ^c			
Non-metallic InorganicsAmmonia ^E (as NH ₃ -N at pH8)910Chloride-Cyanide (as un-ionised CN)4Monocyclic Aromatic Hydrocarbons500Benzene500Toluene-Ethylbenzene-	Nickel	7			
Ammonia ^E (as NH ₃ -N at pH8)910Chloride-Cyanide (as un-ionised CN)4Monocyclic Aromatic Hydrocarbons500Benzene500Toluene-Ethylbenzene-	Zinc	15 ^c			
Chloride - Cyanide (as un-ionised CN) 4 Monocyclic Aromatic Hydrocarbons 4 Benzene 500 Toluene - Ethylbenzene -	Non-metallic Inorganics				
Cyanide (as un-ionised CN) 4 Monocyclic Aromatic Hydrocarbons 500 Benzene 500 Toluene - Ethylbenzene -	Ammonia ^E (as NH ₃ -N at pH8)	910			
Monocyclic Aromatic Hydrocarbons Benzene 500 Toluene - Ethylbenzene -	Chloride	-			
Benzene 500 Toluene - Ethylbenzene -	Cyanide (as un-ionised CN)	4			
Toluene - Ethylbenzene -	Monocyclic Aromatic Hydrocarbons				
Ethylbenzene -	Benzene	500			
	Toluene	-			
	Ethylbenzene	-			
Xylenes -	Xylenes	-			
Polycyclic Aromatic Hydrocarbons (PAH)					
Naphthalene 50	Naphthalene	50			
Benzo(a)pyrene -	Benzo(a)pyrene	-			
Phenols	Phenols				
Phenol 400	Phenol	400			

Note:

A. Investigation levels apply to typical slightly-moderately disturbed systems. See ANZECC & ARMCANZ (2000) for guidance on applying these levels to different ecosystem conditions.

B. Investigation levels are taken from the health values of the Australian Drinking Water Guidelines (NHMRC 2011).

C. Figure may not protect key species from chronic toxicity, refer to ANZECC & ARMCANZ (2000) for further guidance.

D. Chemical for which possible bioaccumulation and secondary poisoning effects should be considered, refer to ANZECC & ARMCANZ (2000) for further guidance.

E. For changes in GIL with pH refer to ANZECC & ARMCANZ (2000) for further guidance.

H. Values have been calculated using a hardness of 30 mg/L CaCO3 refer to ANZECC & ARMCANZ (2000) for further guidance on recalculating for site-specific hardness.

9. Results

9.1 Soil Analytical Results

In total, 25 primary soil samples, 6 field duplicates and 3 field triplicates were analysed for the list of contaminants comprising the analytical suite (refer **Appendix C1** to **C4** results summary tables and refer to **Appendix D** for QAQC procudures).

9.1.1 Acid Sulphate Soils Results

Acid sulphate SPOCAS test results for 6 soil samples in the southern site area, showed exceedances at GG1 (2.6-2.7mBGL), GG2 (3.5-3.6mBGL) and three GG5 samples (2.0- 4.6mBGL). The result is present in Table 15.

Table 15: Acid S	Table 15: Acid Sulphate SPOCAS Test Results								
Suite	Criteria	Unit	GG5-05-ASS (2.0-2.1)	GG5-06-ASS (3.5-3.6)	GG5-07-ASS (4.5-4.6)	GG1-07-ASS (2.0-2.1	GG1-08-ASS (2.6-2.7)	GG2-04-ASS (3.5-3.6)	
Acid trail – TPA ¹	18	mol H+/t	35	390	< 2	< 2	< 2	290	
Sulphur – POS ²	0.03	% S	< 0.02	1.2	1.2	0.06	1.1	0.79	
Liming rate	-	kg CaCO₃/t	3	38	< 1	< 1	12	27	

Note:

1. Acid trail – Titratable Actual Acidity.

2. Sulphur – Peroxide Oxidisable Sulphur.

3. Shade – Result exceeds the Action criteria.

9.1.2 Soil Chemical Analysis Results at Monitoring Well Boreholes GG1 to GG9

Soil samples collected during the installation of 9 monitoring wells were submitted to Eurofins (a NATA Accredited Laboratory) after the sampling event on 29th & 30th May 2021. GG1 to GG9 results are listed in Table C1.

TRH, OCPs, PCBs were not detected. PAH compounds were detected at GG3, GG4, GG6, GG8 and GG9.

Benzo(a)pyrene TEQ level at GG8 (6.7 mg/kg) located in the central of southern site area, was above the HIL-C criteria (3 mg/kg). Following a TCLP test was undertaken, and result was lower than LOR.

TRH (F2) exceeded the criteria for soil vapour intrusion HSL A&B at GG8 (0.4-0.5m) after silica gel clean-up (2400 mg/kg), as the result is greater than 2.5 times the HSL-A for Soil Vapor Intrusion (110 mg/kg), thus GG8 was considered as a hotspot.

Heavy metals results were below the HIL criteria at all 9 locations.

Total Organic Carbon (TOC) analysis was undertaken for all soil samples collected at GG5, the deepest borehole for monitoring well installation. The results were compared with the criteria for TOC noted in *Assessment and Management of Hazardous Ground Gas (EPA, 2020)*. An exceedance was noted for the sample collected at 3.5-3.6 mBGL depth, indicating further ground gas investigation is required. The results of TOC at GG5 are listed in Table 16 below.

Table 16: Total Organic Carbon Results at GG5 (
Sample ID	Criteria	Unit	Total Organic Carbon			
GG5-01 (0.15-0.2)	3	%	0.1			
GG5-02 (0.3-0.4)	3	%	0.6			
GG5-03 (0.5-0.6)	3	%	<0.1			
GG5-04 (1.0-1.1)	3	%	0.4			
GG5-05 (2.0-2.1)	3	%	1.5			

C123934:J169135-01 DSI-SOPHS - V4

greencap.com.au 31

GG5-06 (3.5-3.6)	3	%	3.2
GG5-07 (4.5-4.6)	3	%	<0.1
GG5-08 (5.5-5.6)	3	%	0.9

Note:

1. LOR: Limit of Reporting

2. Shade – Result exceeds the criteria.

9.1.3 Soil Chemical Analysis Results at other 9 Boreholes and 3 Test pits

Benzo(a)pyrene TEQ level exceeded the criteria at borehole BH4 and GG12 (3.5 mg/kg and 8.6 mg/kg respectively). TCLP tests were undertaken for the samples, all TCLP results were lower than the LOR.

TRH was detected at BH10, but the results were all lower than the limit of reporting (LOR) after silica-gel clean-up. Refer to **Appendix C2 and C3** for result summary tables.

OCPs, PCBs and BTEX were not detected at any of the boreholes and test pits.

Lead exceeded the criteria at BH4 at 1.0-1.2 mBGL (870 mg/kg). All other heavy metal detections were below the adopted HIL-C criteria. The Lead 95% UCL average concentration for all samples, with the exception of one location on the soil mound, is 149.5 mg/kg, which is below the criteria (600 mg/kg). Refer to **Appendix C4** for Lead 95% UCL Calculation.

Sample analysis results and the 95% UCL average concentrations are included in **Appendix C** summary tables.

9.1.4 Soil Asbestos Results

AF/FA asbestos was analysed in 21 soil samples (500 ml sample size) collected in plastic bags and submitted to the Greencap laboratory. Three pieces of Asbestos fines were detected in the sample collected at GG10 in forms of fibre cement fragments and discrete fibre bundles (1.97g, 0.10g and 0.0022g), and detection was noted as 0.21% w/w which exceeded the adopt HSL-C criteria. No asbestos was detected at or above reporting limit in other 20 soil samples. Two suspected ACM samples were also sampled in the southern site area and analysed, which identified compressed asbestos fibre-cement sheet in the small samples (10g and 4g). Refer to **Appendix F** Lab Certificate for more detail. Please refer to **Figure 2** for the sampling locations and the ACMs locations.

9.2 Gas Monitoring Well Results

Ground gas flow and composition was analysed by GA5000 landfill gas analyser and laboratory testing of SUMA cannister gas samples collected over two days due to access restrictions (refer to **Appendix C5** and **C6**). Gas sampling was done using the sealed wells fitted with valve caps. Refer to **Figure 2** for sampling locations GG1 to GG9.

9.2.1 Ground Gas – 1st Round (7th & 13th May 2021)

 1^{st} round GA5000 ground gas monitoring results are summarised in Table 17 below. Methane-CH₄ exceedances of screening criteria were recorded at five monitoring well locations (GG1, 2, 4, 8 and 9), Carbon dioxide-CO₂ exceedances were observed at eight monitoring locations (GG1, 2, 3, 4, 5, 6, 7 and 9). The threshold level of CH₄ is 1.0% v/v and the threshold level for CO₂ is 1.5% v/v, which is specified in the *Solid Waste Landfills Guideline (NSW EPA 2016*). The threshold level is for further investigation and corrective action if required.

Table 17 below lists results for 1st round ground gas monitoring GA5000 readings.

Table 17: Ground Gas Monitoring - 1st Round (7th & 13th May 2021)

Field Reading with GA5000 (%v/v)

September 2021

	CH4 (%v/v)1	CO ₂ (%v/v) ²	O ₂ (%)	CO (ppm)	H ₂ S (ppm)	Initial flow rate (L/hr)	Stable flow rate (L/hr)
Criteria	1.0	1.5	-	-	-	-	-
GG1	6.1	2.9	0.1	1.8	1.0	4.1	0.6
GG2	6.2	3.2	0.0	0.0	1.0	0.1	0.0
GG3	0.0	7.3	0.1	0.0	0.0	0.0	0.0
GG4	3.7	2.5	0.6	0.0	0.0	0.0	0.0
GG5	0.0	5.8	5.1	1	0.0	0.1	0.1
GG6	0.1	5.5	0.0	0.0	0.0	0.0	0.0
GG7	0.9	6.6	0.0	1.0	0.0	0.1	0.1
GG8	1.1	1.3	1.4	0.0	0.0	0.0	0.0
GG9	1.4	3.2	2.2	0.0	0.0	0.0	0.0

Note:

1. Shade in CH4: reading exceeded methane threshold level (1.5% v/v) specified in the Solid Waste Landfills Guideline (NSW EPA 2016) for further investigation and corrective action.

2. Shade in CO₂: reading exceeded carbon dioxide threshold level (1.5% v/v) specified in the Solid Waste Landfills Guideline (NSW EPA 2016) for further investigation and corrective action.

3. GSV = stable flow rate (L/hr) x maximum gas concentration (% v/v).

The gas screening value, GSV, at gas well GG1 was 0.25 litres/hour for methane-CH4 and 0.30 litres/hour for carbon dioxide-CO2, indicating a classification of Low Risk according to the Modified Wilson and Card classification method outlined in NSW EPA (2012) (refer to **Appendix C5** for GSV calculations). This corresponds to Characteristic Gas Situation of 2 (CS2).

9.2.2 Ground Gas – 2nd Round (21 May 2021)

GA5000 meter gas monitoring undertaken on 21^{st} May 2021 recorded CH₄ exceedance at three monitoring locations (GG1, GG4 and GG9), and CO₂ exceedance at four monitoring locations (GG2, 3, 5 and 8). No flow rate was detected at these wells (were all 0.0 Litres/hr), thus the GSV values were 0, falling into the Very Low Risk category. However, as CO₂ levels greater than 5% (v/v) and CH₄ levels greater than 1% (v/v) were recorded at various locations, the option of raising the CS from CS1 (very low risk) to CS2 (low risk) should be considered. (refer to Table 18 below and **Appendix C5**).

Please refer to Table 18 below for 2nd round ground gas monitoring GA5000 readings.

Table 18: Ground Gas Monitoring – 2 nd Round (21 st May 2021)									
2nd Round Field Reading with GA5000 (%v/v) (21st May 2021)									
	CH4 (%v/v)1	CO ₂ (%v/v) ²	O ₂ (%)	CO (ppm)	H ₂ S (ppm)	Initial flow rate (L/hr)	Stable flow rate (L/hr)		
Criteria	1.0	1.5	-	-	-	-	-		
GG1	12.8	0.8	0.8	0	0	0.0	0.0		
GG2	0.00	1.5	1.5	0	0	0.0	0.0		
GG3	0.00	2.2	2.2	0	0	0.0	0.0		
GG4	3.6	0.7	0.7	0	0	0.0	0.0		
GG5	0.00	5.8	5.0	0	0	0.0	0.0		
GG6	0.00	1.0	1.0	0	0	0.0	0.0		

greencap.com.au 33

Table 18: Ground Gas Monitoring – 2 nd Round (21 st May 2021)									
2nd Round Field Reading with GA5000 (%v/v) (21st May 2021)									
	$CH_4 (\% v/v)^1 CO_2 (\% v/v)^2 O_2 (\%) CO (ppm) H_2S (ppm) Initial flow rate (L/hr) Stable flow (L/hr) (L/hr)$								
Criteria	1.0	1.5	-	-	-	-	-		
GG7	0.5	0.1	0.1	0	0	0.0	0.0		
GG8	0.0	2.8	2.8	0	0	0.0	0.0		
GG9	1.3	0.3	0.3	0	0	0.0	0.0		

Note:

1. Shade in CH4: reading exceeded methane threshold level (1.5% v/v) specified in the Solid Waste Landfills Guideline (NSW EPA 2016) for further investigation and corrective action.

2. Shade in CO₂: reading exceeded carbon dioxide threshold level (1.5% v/v) specified in the Solid Waste Landfills Guideline (NSW EPA 2016) for further investigation and corrective action.

3. GSV = stable flow rate (L/hr) x maximum gas concentration (% v/v).

9.2.3 Ground Gas – 3rd Round (3rd June 2021)

GA5000 meter gas monitoring undertaken on 3rd June 2021 recorded CH_4 exceedance at four monitoring locations (GG1, GG2, GG4 and GG9), and CO_2 exceedance at all nine monitoring locations. The highest CH_4 concentration 14.8 %v/v was recorded at GG1, and highest CO_2 7.5%v/v was recorded at GG3. No flow rate was detected at these wells (were all 0.0 Litres/hr), however, as CH_4 higher than 1%v/v and CO_2 higher than 5%v/v were noted at various wells, increase very low risk to low risk should be considered (refer to Table 19 below and **Appendix C5**).

Table 19: Ground Gas Monitoring – 3rd Round (3rd June 2021) 3rd Round Field Reading with GA5000 (%v/v) (3rd June 2021) Initial flow rate Stable flow rate $CH_4 (\% v/v)^1$ $CO_2 (\% v/v)^2$ O₂ (%) CO (ppm) H_2S (ppm) (L/hr) (L/hr) Criteria 1.0 1.5 _ ---GG1 14.8 3.7 0.3 1.0 0.0 0.0 0.0 3.6 3.9 0.2 0.0 0.0 0.0 0.0 GG2 0.0 7.5 0.0 0.0 0.0 3.6 0.0 GG3 GG4 5.7 5.7 0.1 0.0 0.0 0.0 0.0 GG5 0.0 5.7 5.4 0.0 0.0 0.1 0.1 GG6 0.0 5.0 1.2 0.0 0.0 0.2 0.2 1.0 5.7 0.2 0.0 0.0 0.2 0.2 GG7 0.0 2.2 0.3 0.0 0.0 0.1 0.1 GG8 GG9 1.6 3.3 0.2 0.0 0.0 0.1 0.1

Please refer to Table 19 below for 3rd round ground gas monitoring GA5000 readings.

Note:

1. Shade in CH4: reading exceeded methane threshold level (1.5% v/v) specified in the Solid Waste Landfills Guideline (NSW EPA 2016) for further investigation and corrective action.

 Shade in CO₂: reading exceeded carbon dioxide threshold level (1.5% v/v) specified in the Solid Waste Landfills Guideline (NSW EPA 2016) for further investigation and corrective action.

3. GSV = stable flow rate (L/hr) x maximum gas concentration (% v/v).

9.2.4 Ground Gas – 4th Round (9th June 2021)

C123934:J169135-01 DSI-SOPHS - V4

greencap.com.au 34

GA5000 meter gas monitoring undertaken on 9th June 2021 recorded CH₄ exceedance at four monitoring locations (GG1, GG2, GG4 and GG9), and CO₂ exceedance at all nine monitoring locations. The highest CH₄ concentration 13.0 %v/v was recorded at GG1 and highest CO₂ 7.7 %v/v was recorded at GG3. No flow rate was detected at GG1 (was 0.0 Litres/hr). The stable flow rate at GG3 was 0.2 L/hr, thus the GSV vale at GG3 was 0.02 L/hr, falling into Very Low Risk Category. However, as CH₄ was higher than 1%v/v and CO₂ higher than 5%v/v were noted at various wells, increase very low risk to low risk should be considered (refer to **Appendix C5**).

Table 20: Ground Gas Monitoring – 4th Round (9th June 2021)									
4th Round Field Reading with GA5000 (%v/v) (9th June 2021)									
	CH4 (%v/v)1	CO ₂ (%v/v) ²	O ₂ (%)	CO (ppm)	H₂S (ppm)	Initial flow rate (L/hr)	Stable flow rate (L/hr)		
Criteria	1.0	1.5	-	-	-	-	-		
GG1	13.0	4.3	0.3	0.0	0.0	0.0	0.0		
GG2	3.9	3.9	0.0	0.0	0.0	0.0	0.0		
GG3	0.0	7.7	2.6	0.0	0.0	0.1	0.2		
GG4	5.7	5.2	0.1	0.0	0.0	0.1	0.2		
GG5	0.0	5.7	4.8	0.0	0.0	0.1	0.2		
GG6	0.0	4.9	0.7	0.0	0.0	0.1	0.1		
GG7	0.9	5.5	0.0	0.0	0.0	0.1	0.2		
GG8	0.3	2.0	0.0	0.0	0.0	0.2	0.2		
GG9	1.5	3.0	0.1	0.0	0.0	0.1	0.2		

Please refer to Table 20 below for 4th round ground gas monitoring GA5000 readings.

Note:

1. Shade in CH₄: reading exceeded methane threshold level (1.5% v/v) specified in the Solid Waste Landfills Guideline (NSW EPA 2016) for further investigation and corrective action.

2. Shade in CO₂: reading exceeded carbon dioxide threshold level (1.5% v/v) specified in the Solid Waste Landfills Guideline (NSW EPA 2016) for further investigation and corrective action.

3. GSV = stable flow rate (L/hr) x maximum gas concentration (% v/v).

9.2.5 Ground Gas – 5th Round (16th June 2021)

GA5000 meter gas monitoring undertaken on 16^{th} June 2021 recorded CH₄ exceedance at four monitoring locations (GG1, GG2, GG4 and GG9), and CO₂ exceedance at all nine monitoring locations. The highest CH₄ concentration (5.6 %v/v) was recorded at GG4 and highest CO₂ concentration (7.2 %v/v) was recorded at GG3. Maximum flow rate was 2.4 L/hr at GG1, thus the GSV value at GG1 was 0.06, indicating Low Risk. The flow rate at GG3 was 0.1 L/hr, thus the GSV vale at GG3 was 0.01 L/hr, falling into Very Low Risk Category, however, as CO₂ was higher than 5%v/v at GG3 (and other wells), increase very low risk to low risk should be considered (refer to **Appendix C5**).

Table 21: Ground Gas Monitoring – 5th Round (16th June 2021) 5th Round Field Reading with GA5000 (%v/v) (16th June 2021) Initial flow rate Stable flow rate CH₄ (%v/v)¹ $CO_2 (\% v/v)^2$ O₂ (%) CO (ppm) H_2S (ppm) (L/hr)(L/hr)Criteria 1.0 1.5 _ -GG1 2.7 1.7 13.5 0.0 0.0 1.4 2.4

Please refer to Table 21 below for 5th round ground gas monitoring GA5000 readings.

C123934:J169135-01 DSI-SOPHS - V4

greencap.com.au 35

Table 21: Ground Gas Monitoring – 5th Round (16th June 2021)									
5th Round Field Reading with GA5000 (%v/v) (16th June 2021)									
GG2	3.5	3.5	0.8	0.0	0.0	0.0	0.0		
GG3	0.0	7.2	3.6	1.0	0.0	0.1	0.1		
GG4	5.6	4.5	0.6	0.0	0.0	0.0	0.1		
GG5	0.0	5.5	4.8	1.0	1.0	0.1	0.1		
GG6	0.0	4.7	1.1	1.0	1.0	0.1	0.1		
GG7	0.9	5.0	1.5	0.0	1.0	0.1	0.1		
GG8	0.2	1.7	1.0	1.0	1.0	0.1	0.1		
GG9	1.6	2.7	0.8	0.0	1.0	0.1	0.2		

Note:

1. Shade in CH₄: reading exceeded methane threshold level (1.5% v/v) specified in the Solid Waste Landfills Guideline (NSW EPA 2016) for further investigation and corrective action.

2. Shade in CO₂: reading exceeded carbon dioxide threshold level (1.5% v/v) specified in the Solid Waste Landfills Guideline (NSW EPA 2016) for further investigation and corrective action.

3. GSV = stable flow rate (L/hr) x maximum gas concentration (% v/v).

9.2.6 Ground Gas – 6th Round (25th June 2021)

GA5000 meter gas monitoring undertaken on 25th June 2021 recorded CH₄ exceedance at five monitoring locations (GG1, GG2, GG4, GG7 and GG9), and CO₂ exceedance at eight monitoring locations (GG2 to GG9). The highest CH₄ concentration (6.4 %v/v) was recorded at GG1 and highest CO₂ concentration (6.9 %v/v) was recorded at GG3. The maximum flow rate at GG1 was 0.4 Litres/hr, thus the GSV value at GG1 was 0.03. The flow rate at GG3 was 0.1 L/hr, thus the GSV vale at GG3 was 0.01 L/hr, falling into Very Low Risk Category, however, as CO₂ was higher than 5%v/v at GG3 (and various other wells), increase very low risk to low risk should be considered (refer to **Appendix C5**).

Please refer to Table 22 below for 6th round ground gas monitoring GA5000 readings.

Table 22: Ground Gas Monitoring – 6 th Round (25 th June 2021)									
6 th Round Field Reading with GA5000 (%v/v) (25th June 2021)									
	CH4 (%v/v)1	CO ₂ (%v/v) ²	O ₂ (%)	CO (ppm)	H ₂ S (ppm)	Initial flow rate (L/hr)	Stable flow rate (L/hr)		
Criteria	1.0	1.5	-	-	-	-	-		
GG1	6.4	5.2	2.6	0.0	0.0	0.2	0.4		
GG2	2.5	4.0	0.3	0.0	0.0	0.1	0.2		
GG3	0.0	6.9	3.7	0.0	0.0	0.1	0.1		
GG4	6.1	4.5	0.4	0.0	0.0	0.1	0.1		
GG5	0.0	5.3	4.1	0.0	0.0	0.1	0.1		
GG6	0.0	4.5	0.8	0.0	0.0	0.0	0.0		
GG7	1.1	5.0	0.2	0.0	0.0	0.0	0.0		
GG8	0.3	1.7	0.2	0.0	0.0	0.0	0.0		
GG9	1.9	2.7	0.1	0.0	0.0	0.0	0.0		

Note:

1. Shade in CH4: reading exceeded methane threshold level (1.5% v/v) specified in the Solid Waste Landfills Guideline (NSW EPA 2016) for further investigation and corrective action.

2. Shade in CO₂: reading exceeded carbon dioxide threshold level (1.5% v/v) specified in the Solid Waste Landfills Guideline (NSW EPA 2016) for further investigation and corrective action.

3. GSV = stable flow rate (L/hr) x maximum gas concentration (% v/v).

9.2.7 Worst Case Gas Risk Scenario

The worst-case GSV scenario considering 6 rounds of monitoring is calculated using highest gas reading 14.8 %v/v of CH₄ at GG1 in 3rd round and highest flow rate 4.1 L/hr at GG1 in 1st round, the calculation is shown below:

Worst-case GSV = highest flow rate (L/hr) x maximum gas concentration (% v/v) = 14.8/100 x 4.1 = **0.61 L/hr**

This corresponds to a risk classification of "Low Risk" - Characteristic Gas Situation (CS) 2.

Soil Vapour Sample Results

One round of soil vapour laboratory test results for the 9 SUMA cannister gas samples from wells GG1 to GG9 and 2 duplicates, are presented in **Appendix C6** and are summarised in Table 23below and were compared with the applicable site assessment criteria (refer to **Figure 2** for sampling locations). Laboratory certificates of analysis are included in **Appendix F** and in Table 23below

All BTEXN, TRH F1 & F2 and VOCCs results were below HSL-A criteria.

However, detections of BTEX were noted in soil vapour samples at several wells. These detections were as follows:

Benzene was detected in all wells except GG6;

Toluene was detected in all wells;

Ethylbenzene was detected in all wells except GG6;

Xylenes were detected in all wells;.

Naphthalene was detected in GG1, GG4, GG8 and GG9;

Detections of TRH were as follows:

- TPH C6-C10 (F1) was detected in GG1, GG2, GG8 and GG9, the maximum concentration was 41,000 ug/m³ at GG8.
- TPH > C10-C12 (F2) was detected in GG1, GG2, GG4, GG8 and GG9.
- TPH C5-C8 Aliphatic compounds were detected at up to 33,000 ug/m³, highest at GG1 and GG8 (were both 33,000 ug/m³).

Detections of VOCCs were as follows:

- Trichloroethene (TCE) was detected at GG1, GG2 and GG5.
- 111-Trichloroethane (111 TCA), Tetrachloroethene (PCE), cis-1,2-Dichloroethene and Vinyl chloride were detected at GG1.

The soil vapour results are presented in Table 23 below.

Table 23: Soil Vapor Labor	Table 23: Soil Vapor Laboratory Results (μG/m³)													
	LOR	Criteria	GG1 ^B	GG2	GG3	GG4	GG5	GG6	GG7	GG8	GG9			
Benzene	1.6	1,000	25	17	8	10	7	<1.6	3	8	3			
Toluene	1.9	1,300,000	31	20	51	48	25	3	20	61	130			
Ethylbenzene	2	330,000	10	10	8	20	7	2	5	9	8			
m-& p-Xylene	4	220.0004	30	10	20	100	10	<4.3	8	30	20			
o-Xylene	2	220,000 ^A	<11	8	8	53	6	<2.2	4	10	6			

C123934:J169135-01 DSI-SOPHS - V4

greencap.com.au 37

Table 23: Soil Vapor Labor	Table 23: Soil Vapor Laboratory Results (μG/m³)													
	LOR	Criteria	GG1 ^B	GG2	GG3	GG4	GG5	GG6	GG7	GG8	GG9			
Naphthalene	2.6	800	<13	<2.6	<2.6	3	<2.6	<2.6	<2.6	4	3			
TPH C5 - C8 Aliphatic	200	-	33,000	2,400	2,400	13,000	<200	<200	<200	33,000	2,600			
TPH C9 - C12 Aliphatic	50	-	<250	170	<50	17,000	<50	<50	<50	8,800	250			
TPH C9 - C10 Aromatic	100	-	<500	<100	<100	2,000	<100	<100	<100	110	<100			
TPH C6 - C10 - BTEX (F1)	200	180,000	17,000	1,000	<200	<200	<200	<200	<200	41,000	2,300			
TPH >C10 - C12 Naphthalene (F2)	40	130,000	<200	140	<40	15,000	<40	<40	<40	6,700	200			
TCE (Trichloroethene)	2.7	20	<13.5	6	<2.7	<2.7	3	<2.7	<2.7	<2.7	<2.7			
111 -TCA (111-Trichloroethane)	2.7	60000	<13.5	<2.7	<2.7	<2.7	<2.7	<2.7	<2.7	<2.7	<2.7			
PCE (Tetrachloroethene)	3.4	2000	<17	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4			
cis-1,2-Dichloroethene	2.0	80	<10	<2	<2	<2	<2	<2	<2	<2	<2			
Vinyl chloride	1.3	30	<6.5	<1.3	<1.3	<1.3	<1.3	<1.3	<1.3	<1.3	<1.3			

Note:

1. A: Criteria is for Total Xylenes.

2. B: Levels of Reporting of GG1 were generally raised, but all results were still lower than the adopted criteria.

3. LOR: Limit of Reporting.

4. Shade: Result exceeds the LOR or LOR was elevated.

9.3 Service Pit Monitoring Results (14th May 2021)

Service pit monitoring was undertaken on 14^{th} May 2021 at the three pit locations. No CH₄, CO or H₂S was measured in the monitored service pits. CO₂ concentrations were all below the threshold levels specified in the NSW EPA (2016). Refer to **Appendix C7** for service pit monitoring results. Refer to **Figure 2** for locations of the three service pits.

9.4 Surface Gas Walkover Results

Surface gas walkover was undertaken on 14^{th} May 2021 at 45 locations across the site. No CH₄, CO₂, CO or H₂S were detected during the surface gas monitoring event. Please refer to **Appendix C8** for surface gas monitoring results. Refer to **Figure 3** for the surface gas walkover locations.

9.5 Groundwater Monitoring Results

Monitoring well GG5 was used as both a ground gas monitoring well and groundwater monitoring well was properly developed by purging with a submersible pump on 7th May 2021. Depths to groundwater and LNAPL were measured on 13th May 201 with an interface meter at wells GG2, GG5, GG6, GG7, GG8 and GG9 where groundwater was encountered. Standing water levels (SWL) are presented in Table 2. The groundwater is inferred to be flowing towards in a easterly direction, consistent with previous investigations (refer RAP, GHD).

One groundwater sample and one duplicate were taken for laboratory analysis at GG5. Standing water level was recorded at 1.15m depth, below ground surface, prior to low flow sampling on 13th May 2021. Field readings taken with the YSI water quality meter at GG5 are presented on Table 24.

Table 24: Grou	ndwater Field M	leasurements at	GG5			
Time	Dissolved Oxygen (ppm)	Electrical Conductivity (µS/cm)	рН	Redox Potential (mV)	Temperature (°C)	Comments
8.57	0.98	2132	7.12	-52.7	22.9	Initial reading
9:35	0.51	3499	7.05	-64	22.9	Clear, light grey, very low turbidity, no visual sediment, no odour, no sheen
9:37	0.39	3482	7.05	-66.4	22.8	Same as above
9:39	0.36	3352	7.04	-67.3	22.9	Same as above
9:41	0.34	3425	7.04	-71	23	Same as above
Peristaltic	pump was not w	vorking properly	after 9:42, a nev	v peristaltic pum	p was used, mea	sured data is shown below
11:10	0.49	3963	7.05	-80.9	23.5	Clear, light grey, very low turbidity, no visual sediment, no odour, no sheen
11:24	0.24	4195	7.05	-95.3	23.6	Same as above

Analysis results of the groundwater samples are presented and compared with the applicable criteria on **Appendix Table C9**. Ammonia concentration was 4000 μ g/L which exceeded ecological investigation level (910 ug/l). Copper was detected and concentration is 4 ug/L, slightly higher than and ecological investigation level (1.3 ug/L). Arsenic and zinc were detected but concentrations are below or equal to the GIL criteria. These detections are likely to be due to the local and up-gradient sources of organics and urban contamination sources associated with fill materials and urban drainage water sources.

Dissolved volatile organic compounds (VOCs), were not detected, analyses included TRH (C6-C10), BTEX-N and GCMS VOC scan including chlorinated solvents (refer laboratory certificate for full list of VOC analytes in Appendix F). Semi volatiles TRH (C_{10} - C_{40}), PAH and phenols were not detected (all below the laboratory limit of reporting).

9.6 Quality Assurance and Quality Control

A quality assurance and quality control (QA/QC) Report has been prepared and presented in **Appendix D**. The Data Quality Objectives (DQO) and the Data Quality Indicators (DQI) are presented in the QA/QC Report.

Laboratory quality control is achieved by using NATA registered laboratories using NATA approved ASTM standard methods supported by internal quality control and assurance sample analyses including lab duplicates, lab control samples, surrogate and matrix spike recoveries (standard additions) and standard reference materials, including lab analysis data quality indicators and objectives and the checking of high, abnormal or otherwise anomalous results against background and other chemical results for the sample concerned.

Sample quality assurance is also achieved by confirming that field sample results, or anticipated results based upon comparison with field observations, are consistent with laboratory results. In addition, additional inter and intra laboratory duplicate analysis was undertaken on the basis of not less than one intra and one inter laboratory duplicate analysis for every 20 samples analysed.

The QA/QC Report concluded that the data presented in this report is representative of what is sampled, precise, accurate and reproducible.

10.Discussions

10.1 Soil

Acid sulphate soil SPOCAS test results indicate that an Acid Sulphate Soil Management Plan is needed for management of risks associated with excavation or disturbance of soils and sediments, during the proposed site development construction phase.

Soil samples were collected at 21 locations in total (9 monitoring wells and 12 boreholes & test pits). Soil samples collected during the well installations showed that no OCP, PCBs or SVOC were detected. Heavy metals were detected at various locations. The above-mentioned detections were all lower than selected criteria.

Benzo(a)pyrene were detected at GG8 and BH4 and GG12, however the TCLP results of these samples were all lower than LOR, thus they all considered as low risk. TRH>C10-C16 LESS Naphthalene (F2) and TRH>C16-C34 (F3) were detected at GG8 (0.4-0.5) after silica gel clean-up, among which TRH F2 at GG8 (0.4-0.5) (2500 mg/kg) exceeded HSL-A criteria (110 mg/kg) and was considered as a hotspot as it was greater than 2.5 times HSL-A. Additional Total Organic Carbon (TOC) test was undertaken for all samples collected at GG5, exceedance was noted at 3.5-3.6 mBGL. Soil samples collected at boreholes/test pit at other 12 locations showed that OCPs, PCBs and BTEX were not detected at all boreholes and test pits. Heavy metals were detected at various locations. Among them, the lead level at BH4 (1.0-1.2) exceeded the Health-based Investigation Level C (HIL-C), all other heavy metal detections were below selected criteria. 95% UCL test was undertaken for all samples collected & analyzed, the results indicated the site lead level below HIL-C. PAH was detected at BH3, 4, 5 and 10, the detection levels were all lower selected criteria. TRH was detected at BH10, but the results were all lower than LOR after silica-gel clean-up.

No asbestos (AF/FA) was detected at or above reporting limit in all 21 soil samples. Two pieces of asbestos ACMs were identified at southern section of the site and were both pieces of compressed asbestos fibre-cement sheet.

10.2 Ground Gas

The threshold level of CH_4 is 1.0% v/v and the threshold level for CO_2 is 1.5% v/v, which is specified in the *Solid Waste Landfills Guideline (NSW EPA 2016)* for further investigation and corrective action. CH_4 exceedance was observed at GG1, 4 and 9 in all six rounds of monitoring. CO_2 exceedance was observed at all nine monitoring locations form 3rd round to 6th round.

The calculated GSV from six round monitoring results both indicated Low Risk according to the Modified Wilson and Card classification method outlined in NSW EPA (2020).

The worst-case scenario GSV considering both 6 rounds monitoring results is calculated using highest gas level 14.8%v/v and highest flow rate 4.1 L/hr. The GSV result is 0.61 L/hr, indicating Low Risk (CS2). Refer to **Appendix C5** for GSV calculations).

10.3 Soil Vapour

Detections of BTEX, TRH F1 & F2 and VOCCs in soil vapour were all below the HSL-A criteria (applicable to a residential and secondary school land use scenario), therefore, were considered low risk.

10.4 Service Pits

Service pit monitoring results did not indicate gas accumulation in the measured service pits

Accumulation of hazardous gasses within service pits are a risk for potential utility workers. Any detections exceeding relevant threshold criteria must be reported to the relevant stake holders including but not limited

to NSW EPA, Work Cover, and owners of the utility assets. Due to the detection of CH₄ and CO₂ at different monitoring locations, more service pit monitoring rounds together with gas monitoring are recommended.

10.5 Surface Gas

September 2021

Surface gas monitoring was undertaken at 45 locations across the site, no CH4, CO or H2S was detected, the levels of CO₂ were below the criteria al all locations. Refer to **Appendix C7** for surface gas monitoring results table. Refer to **Appendix Figure 3** for surface gas monitoring locations.

10.6 Groundwater

Groundwater assessment identified ammonia and copper concentrations exceeding the groundwater investigation levels. These detections are likely to be due to organic matter in the soil strata and/or the off-site up-gradient sources and dissolved urban contamination primarily associated with the region's history of contamination. Field readings indicated the groundwater had low oxygen levels (0.24-0.51 mg/L) and high electrical conductivity (3352 - 4018 μ S). pH readings indicated the groundwater at both locations were neutral.

As no actual or trace impact was observed at GG5, data obtained for groundwater assessment within the site boundary is considered sufficient for the purpose of this assessment. However, to delineate the impact of the underground storage tank found at eastern to GG5, further investigation is recommended.

10.7 Potential Asbestos Containing Material (PACM)

PACMs identified near well GG7 and to the north to the site gate were identified. Previous reports also identified asbestos in soil. The type and extent of asbestos contamination beneath the concrete slab area of the site requires further investigation. Consolidation of asbestos below a capping layer is recommended and will be included in the RAP.

10.8 Depth of Fill

Among all 21 investigation locations, two types of fill layers were observed above the dark grey to black natural high plasticity clay. The first layer is legacy landfill material consists coarse sand, clay, sandstone with inclusion of rocks, cobbles, glass & tile fragments, etc. It overlies another fill layer comprised of natural dredged sediment material which consists of mixture of sandy clay and coarse sand with inclusion of seashells and sulphur odours.

The depth of first fill layer (landfill material) was approximately 1mBGL in the southern site area section, increasing to approximately 2mBGL at the northern section. The deepest depth of this layer was observed as ~3mBGL at GG5. The depth range of second fill/natural dredged layer was 1.0-2.6mBGL at southern section at southern section, 2.0-3.5mBGL at north-eastern section, 3-6mBGL at central of eastern boundary (GG5), 2-3.6mBGL at northern section of the site.

The depth of fill below the sandstone / soil mound was not investigated, to avoid disturbing the remediation capping layer known to be present in some areas of the site near the mound.

10.9 Other Areas of Concern

An Underground Storage Tank was found in the southern site area at the eastern boundary. The tank dimensions and tank contents were unknown. A potential second Underground Storage Tank is shown in Figure 4a of the previous RAP (Parsons Brinckerhoff, 2015), no more information of this UST was available at the time of reporting. The approximate location is near to BH6 and is shown on **Figure 6**.

September 2021

CSM of the site has been formed by considering the geophysical characteristics of the site, the contaminant source, potential receptors and the pathways to the receptors. The CSM, as required by the NEPC (2013), is an iterative process constantly being updated during the investigation process as more information becomes available. The following CSM is presented based on the results of this Detailed Site Investigation. A graphical illustration of the CSM is displayed on **Appendix Figure 5** and **Figure 6**.

11.1 Sources

The following sources of contamination were identified as a result of this investigation:

- Legacy landfilling;
- Underground Storage Tank;
- Potential former underground petroleum storage;
- PACM noted near GG7 and the site gate.
- Acid Sulphate Soil

11.1.1 Chemicals of Potential Concern

Chemicals of potential concern were determined in accordance with the identified sources and results of this investigation. A breakdown of these chemicals is provided in Table 25.

Table 25: Chemicals of Potentia	l Concern		
Ground Gas/ Soil Vapour	Soil Vapor	Groundwater	Soil
			TRH
			BTEXN
CH_4 and CO_2	BTEX and TPH	-	Heavy metals (As, Cd, Cr, Cu, Hg, Ni Pb, Zn)
			РАН
			Asbestos in soils
			Acid Sulphate Soils

Note:

- 1. TRH = Total Recoverable Hydrocarbons; BTEXN = Benzene, Toluene, Ethylbenzene, Xylenes, and Naphthalene; F1 = TRH C_6 - C_{10} less BTEX; F2 = TRH C_{10} - C_{16} less Naphthalene.
- 2. As = Arsenic; Cd = Cadmium; Cr = Chromium; Cu = Copper; Hg = Mercury; Ni = Nickel; Pb = Lead; Zn = Zinc.

11.2 Pathways

Potential pathways that link human health risk to the identified contamination sources on site are considered as follows:

- Legacy Landfilling:
 - Sub-surface migration of ground gas through unsaturated soil media,
 - Sub-surface migration of ground gas through potential preferential pathways created by on-site service lines,

- > Direct emissions of ground gases from ground surface, and
- > Inhalation, ingestion, and dermal contact with contaminants in soil and fill.
- PACM asbestos noted near GG7 and near the site gate:
 - > Disturbance of asbestos fibres and generation of dust.
 - Inhalation of airborne fibres.
- Underground Storage Tank (UST) & potential former underground petroleum storage:
 - Leaching into groundwater and offsite migration.
 - Ingestion of the contaminants in groundwater.

Pathways that link ecological risk to identified contamination on site are envisaged to be as follows:

- Landfill, USTs and Acid Sulphate Soils:
 - > Leaching of subsurface waters or UST content into groundwater and offsite migration.
 - Surface water run-off carrying dissolved or particulate contaminants.

11.3 Receptors

Human receptors on site include the workers involved in the future development, students, staff and other temporary visitors to the site such as maintenance workers. Off-site human receptors include residents and visitors of the neighbouring residential areas, visitors to the playing field north to the site, as well as workers and customers of the surrounding commercial area facilities.

Parramatta River noted as the closest ecological receptor to the site.

11.4 Source, Pathway and Receptor Analysis

As a result of this investigation a CSM has been developed to assess actual or potential risks to human health and the environment. In this scope, a contaminant source, pathway and receptor analysis has been made and the identified linkages are tabulated in Table 26.

e 26: CSM (Source, Pathway and Receptor Analysis)

Potential Source	Phases of Contaminants	Potential Transport Pathways	Potential Exposure Pathways	Potential Receptors	Long Term Monitoring and Management Required (Yes/ No)	Remedial Action Required (Yes/ No)	
Legacy Land fill	Gaseous phase	 Unsaturated soils Preferential pathways created by utility service lines Direct emissions from ground surfaced soils 	Gas/vapour intrusion into enclosed spaces and inhalation	<u>On-site:</u> Future students, staff, and visitors of the school <u>Off-site:</u> Students, staff and visitors of the Wentworth Point Public School. Visitors to the playing field north to the site. Residents of the high density residential / commercial properties neighbouring the site.	Yes	YES	CH ₄ le and G(CO ₂ le from 3 14.8 9 round: and th gas ma CO ₂ lev The le (0.4-0. criteria
	Liquid phase (leachate)	Leaching into groundwater an	d offsite migration	Off-site: Parramatta River north and east to the site	No	No	Ground investi contan
UST and Potential abandoned UPSS	Gaseous phase	 Unsaturated soils Preferential pathways created by utility service lines Direct emissions from ground surface 	Gas/vapour intrusion into enclosed spaces and inhalation	<u>On-site:</u> Future students, staff, and visitors of the school	Yes	Yes	Assess bound investi recom A pot indicat
	Liquid phase (leachate)	Leaching into groundwater and offsite migration with advection and dispersion.	Vapour intrusion into buildings.	<u>Off-site:</u> Parramatta River north and east to the site	Yes	Yes	
ACM	Bonded asbestos and non- bonded asbestos	Disturbance of asbestos fibres and generation of dust	Inhalation of airborne fibres	<u>On-site:</u> Future students, staff, visitors of the school, temporary visitors, and workers on site <u>Off-site:</u> Students, staff and visitors of the Wentworth Point Public School. Visitors to the playing field north to the site. Residents of the high density residential / commercial properties neighbouring the site.	Yes	Yes	An As manag activiti

GREENCAP

greencap.com.au 44

- levels greater than 1% (v/v) were noted at GG1, GG4 GG9 in all 6 rounds of monitoring.
- level(s) greater than 5% (v/v) were noted at all wells a 3rd to 6^{th} round.
- $3 \,$ %v/v of CH4 at GG1 was the highest reading in 6 nds, the highest flow rate was 4.1L/hr at GG1 in the 1st nd. Thus, worst case scenario GSV for the site is 0.61L/hr the site is classified as low risk (CS2). Long term ground management is required due to the elevated CH₄ and levels within the stagnant ground gas.
- level of TRH >C10-C16 less Naphthalene (F2) at GG8 -0.5mBGL) exceeded the selected soil vapor intrusion eria HSL A&B).
- undwater assessment conducted as part of this stigation did not show any indicators of groundwater amination.
- essment of the liquid in the UST found at the eastern ndary of the site is highly recommended. Further stigation and decommissioning of the UST is ommended.
- otential abundant UST at western boundary was cated in previous RAP (PB, 2015)

Asbestos Management Plan (AMP) is required to hage the identified asbestos risk during construction vities.

12.Data Gaps

Data gaps identified for the site and its surrounds include the following:

- A Safe Work Dangerous Goods Search is required to be undertaken for both lots 202, 203 and 204 DP 1216628;
- Data for the contents in the underground storage tank (UST) found near to GG5 (and for the second possible UST if confirmed to be present);
- Groundwater data around the USTs;
- Details of the legacy monitoring well found at the middle section of the site (south of GG2),
- Extent of asbestos containing materials that may be present in other areas on site.

13.Conclusions

Based on the 6 rounds of gas monitoring, the results indicated the site can be classified as low risk according to criteria in the NSW EPA Assessment and Management of Hazardous Ground Gases (2020). Methane-CH₄ concentration exceedance was observed at wells GG1, 4 and 9 in all six rounds of monitoring. Carbon dioxide-CO₂ exceedance was observed at all nine wells in the 3rd, 4th, 5th and 6th rounds. These levels exceeded the threshold levels established by NSW EPA for further investigation and corrective action. The highest reading was 14.8 %v/v of methane at GG1 in the 3rd round, highest flow rate at 4.1L/hr was noted at GG1 in the 1st monitoring round. Worst-case scenario GSV for the site is 0.61L/hr, falling in CS2 category - low risk. Service pit monitoring results and surface gas monitoring results were all below the regulatory threshold levels.

Soil contamination assessment indicated localised elevated concentrations in soil samples including some exceedances of the Health-based Investigation Level (HIL-C). These included lead at BH4 (870 mg/kg), Benzo(a)pyrene TEQ at BH4 (3.5 mg/kg), GG8 (6.7 mg/kg) and GG12 (8.6 mg/kg, hotspot), and TRH F2 at GG8 (2400 mg/kg). The 95% UCL average concentrations for Lead across the site (except for the soil mound area), were all below the criteria. The level of TRH >C10-C16 less Naphthalene (F2) at GG8 (0.4-0.5mBGL) exceeded the selected soil vapor intrusion criteria HSL A.

Three pieces of Asbestos fines were detected in the sample collected at GG10 in forms of fibre cement fragments and discrete fibre bundles (1.97g, 0.10g and 0.0022g), and detection was noted as 0.21% w/w which exceeded the adopt HSL-C criteria. Bonded asbestos (fibre cement pieces) on the ground surface was observed near GG7 and north to the site gate.

Some further assessment of soils that were inaccessible (areas below concrete slabs and UST areas) will be required following the removal of the concrete slab on-site.

Acid sulphate soil was identified on site and an ASS management plan is required for site redevelopment works.

Groundwater monitoring results did not indicate the presence of significant contamination in the assessed perched aquifer beneath the site at the single location sampled.

14.Recommendations

In the light of the available information Greencap recommends the following:

- A Remediation Action Plan is required establishing the necessary remedial actions for the mitigation of the contamination risks identified in this DSI;
 - > RAP to detail requirements for further investigation to close out the data gaps noted in this DSI;
- Decommissioning and/or removal of the identified UST and associated contaminated soil;
- An Asbestos Management Plan (AMP) is required to manage the identified asbestos risk during construction activities;
- An Acid Sulfate Soils Management Plan (ASSMP) is required to manage the acid sulfate soil risk identified on site; and
- A long-term Environmental Management Plan (EMP) will be required for the site.

15.References

Greencap (2021), *Preliminary Site Investigation (PSI) – Sydney Olympic Park High School*, Date: April 2021, Job number: J169135

Greencap (2021), Sampling and Analysis Quality Plan – Sydney Olympic Park High School, Date: Apri 2021, Job Number: J169135.

NEPC (1999), National Environment Protection (Assessment of Site Contamination) Amendment Measure (ASC NEPM. 2013 amendment).

NSW Acid Sulphate Soils Management Advisory Committee: Acid Sulphate Soils Assessment Guidelines (1998).

NSW EPA (2020), Assessment and Management of Hazardous Ground Gases – Contaminated Land Guidelines.

Environmental Guidelines: Solid waste landfills (2016).

NSW OEH (2011), Contaminated Sites – Guidelines for Consultants Reporting on Contaminated Sites.

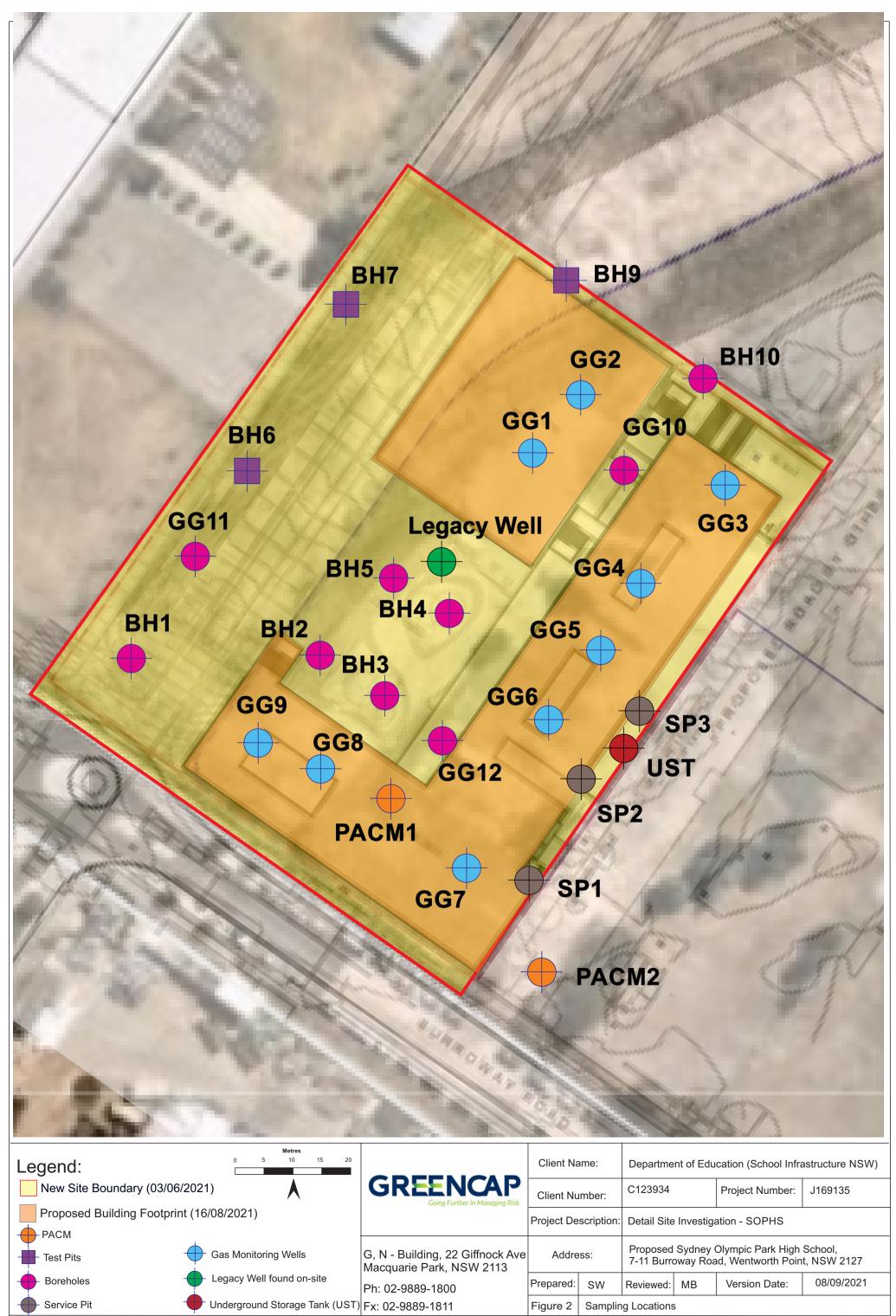
NSW EPA (2012), Guidelines for the Assessment and Management of Sites Impacted by Hazardous Ground Gases.

NSW EPA (2016), Environmental Guidelines: Solid Waste Landfills Guideline.

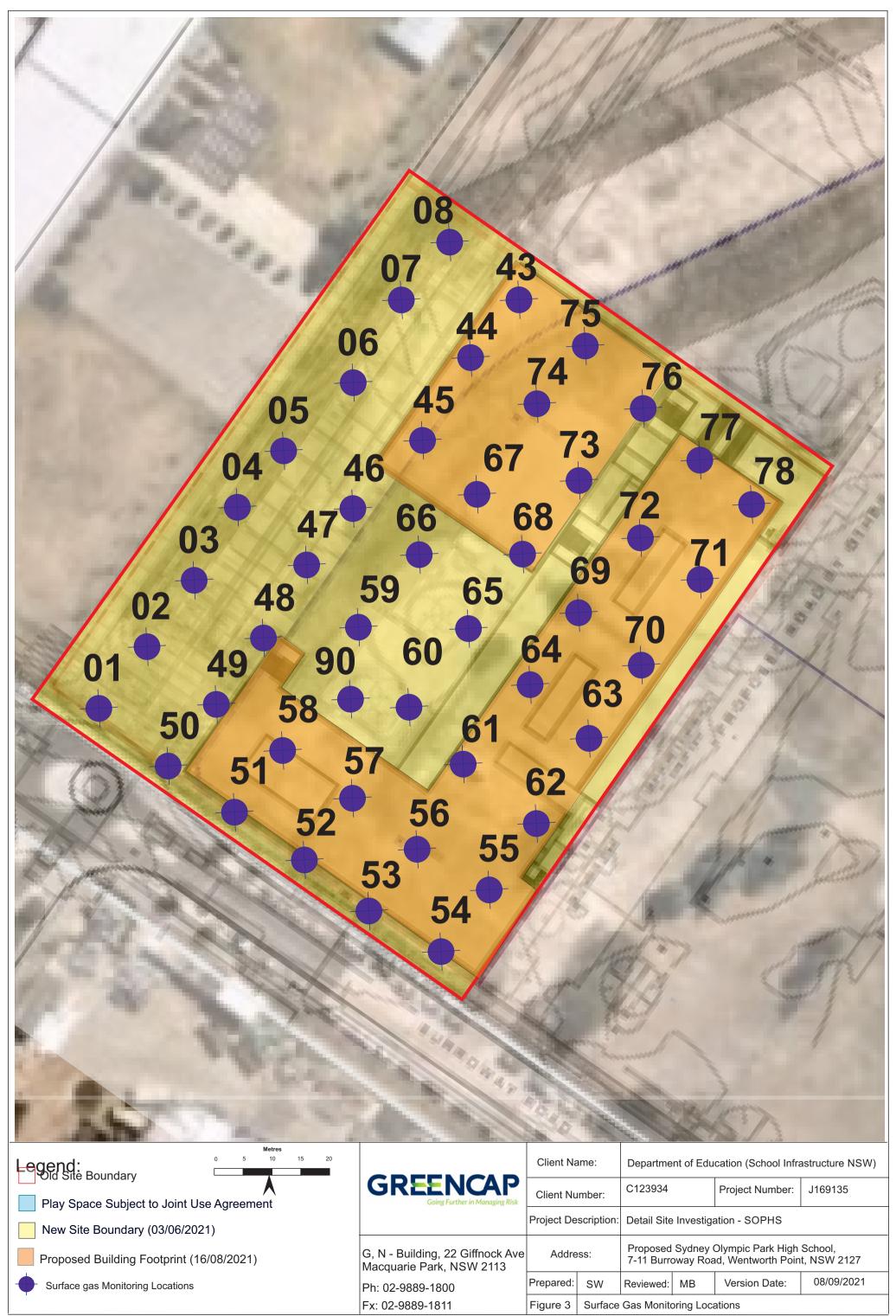
NSW DEC (2007), Guidelines for the Assessment and Management of Groundwater Contamination.

NSW EPA (2015), Guidelines on the Duty to Report Contamination under the Contaminated Land Management Act 1997.

Detailed Site Investigation


School Infrastructure NSW (SINSW) - Department of Education Proposed Sydney Olympic Park High School

Figures


greencap.com.au

		6		Wentwo Poin		Rhodes	Concord Repatriation General Hospital
Legend: 0 15 30 45 60		Client Na	ime:	Departme	nt of Edu	ucation (School Infra	astructure NSW)
A	GREENCAP Going Further in Managing Risk	Client Nu	mber:	C123934		Project Number:	J169135
		Project De	scription:	Detail Site	Investig	ation - SOPHS	
	G, N - Building, 22 Giffnock Ave Macquarie Park, NSW 2113	Addre	ss:			Olympic Park High ad, Wentworth Poin	
	•	Prepared:	SW	Reviewed:	MB	Version Date:	08/09/2021
	Fx: 02-9889-1811	Figure 1	Site Loca	ation and F	egional (Context	

Disclaimer: Greencap-NAA Pty Ltd has produced this map for the purpose of presenting a summary of relevant spatial information and gives no warranty in relation to the data (including accuracy, reliability, completeness or suitability) and accepts no liability (including without limitation liability for negligence) for any loss, damage or costs (including consequential damage) relating to any use of or reliance upon the data. Data must not be used for direct marketing or be used in breach of privacy laws. Service Layer Credits: © 2019 NSW Land and Property Information (Six Maps)

Disclaimer: Greencap-NAA Pty Ltd has produced this map for the purpose of presenting a summary of relevant spatial information and gives no warranty in relation to the data (including accuracy, reliability, completeness or suitability) and accepts no liability (including without limitation liability for negligence) for any loss, damage or costs (including consequential damage) relating to any use of or relevant be used for direct marketing or be used in breach of privacy laws. Service Layer Credits: © 2019 NSW Land and Property Information (Six Maps)

Peak Gas CH₄:14.8 %v/v (noted in 3rd round)

Peak Flow Rate: 4.1L/hr (noted in 1st round)

> Peak Gas C0₂:7.7 %v/v (noted in 4th round)

GG6

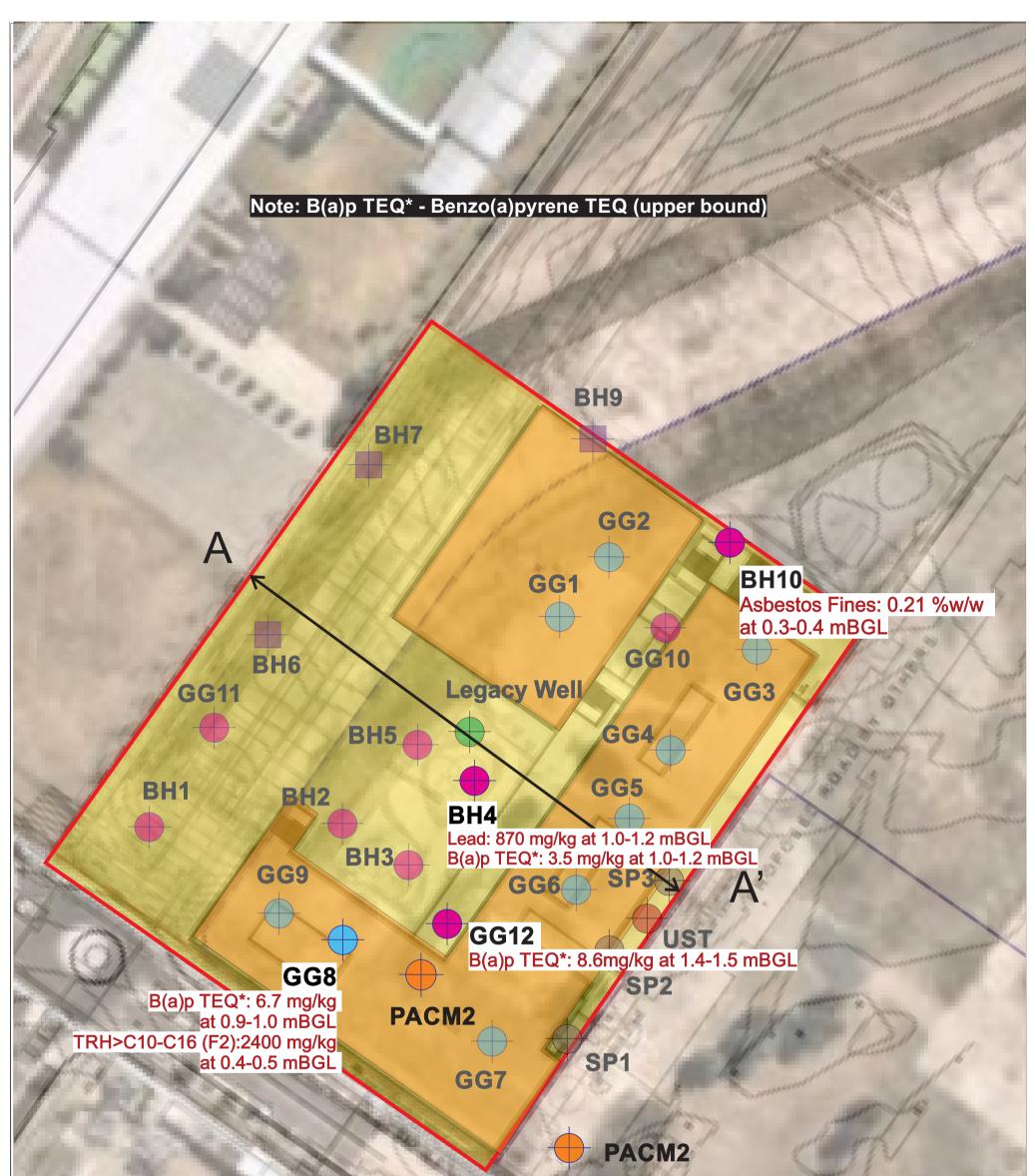
GG2

GG4

GG5

GG3

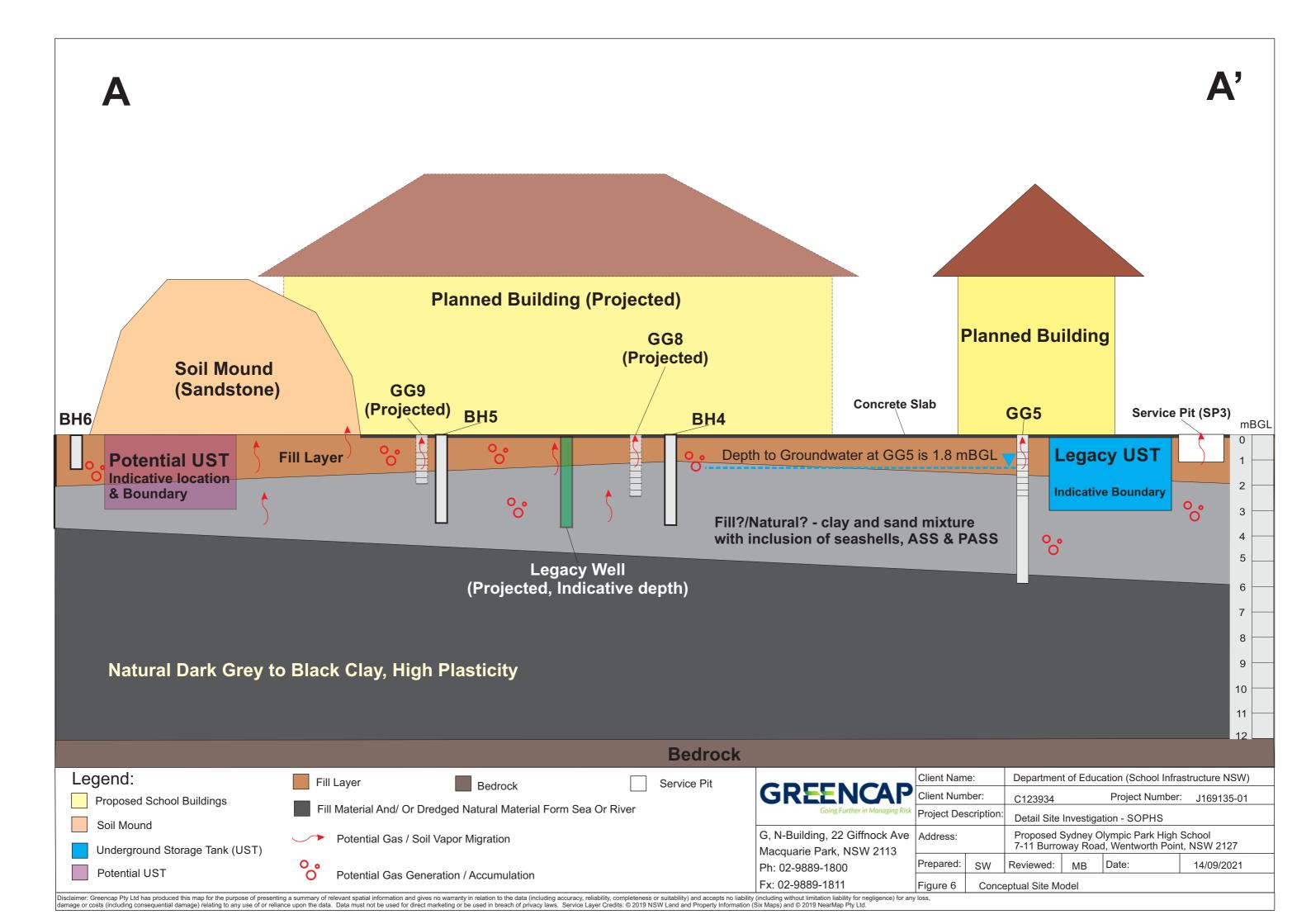
GG


GG9 GG8

Groundwater Sampling Well

GG7

Disclaimer: Greencap-NAA Pty Ltd has produced this map for the purpose of presenting a summary of relevant spatial information and gives no warranty in relation to the data (including accuracy, reliability, completeness or suitability) and accepts no liability (including without limitation liability for negligence) for any loss, damage or costs (including consequential damage) relating to any use of or reliance upon the data. Data must not be used for direct marketing or be used in breach of privacy laws. Service Layer Credits: © 2019 NSW Land and Property Information (Six Maps)



Lead HIL-C Criterion: 600 mg/kg TRH>C10-C16(F2) HSL-A&B (0 to <1m): 110 mg/kg

Benzo(a)pyrene TEQ HILC Criterion: 3mg/kg AF/FA HIL-C Creiterion: 0.001%w/w

Legend:	Metre: 0 10 20	30	40		Client Na	ame:	Departme	nt of Edu	cation (School Infra	structure NSW)
Site Boundary (03/06/2	2021)	\wedge		GREENCAP Going Further in Managing Risk	Client Nu	ımber:	C123934		Project Number:	J169135
Proposed Building Foc	otprint (16/08/2021)				Project De	scription:	Detail Site	Investiga	ation - SOPHS	
Boreholes	Service Pit			G, N - Building, 22 Giffnock Ave	Addre	ess:			Olympic Park High ad, Wentworth Poin	
Test Pits				Macquarie Park, NSW 2113			7-11 Duite			I, INSVV 2127
	Legacy Well	ouna on-site		Ph: 02-9889-1800	Prepared:	SW	Reviewed:	MB	Version Date:	08/09/2021
Gas Monitoring Wells		Storage Tan	k (UST)	Fx: 02-9889-1811	Figure 5	Sample	Locations -	Exceeda	ance of Criteria	

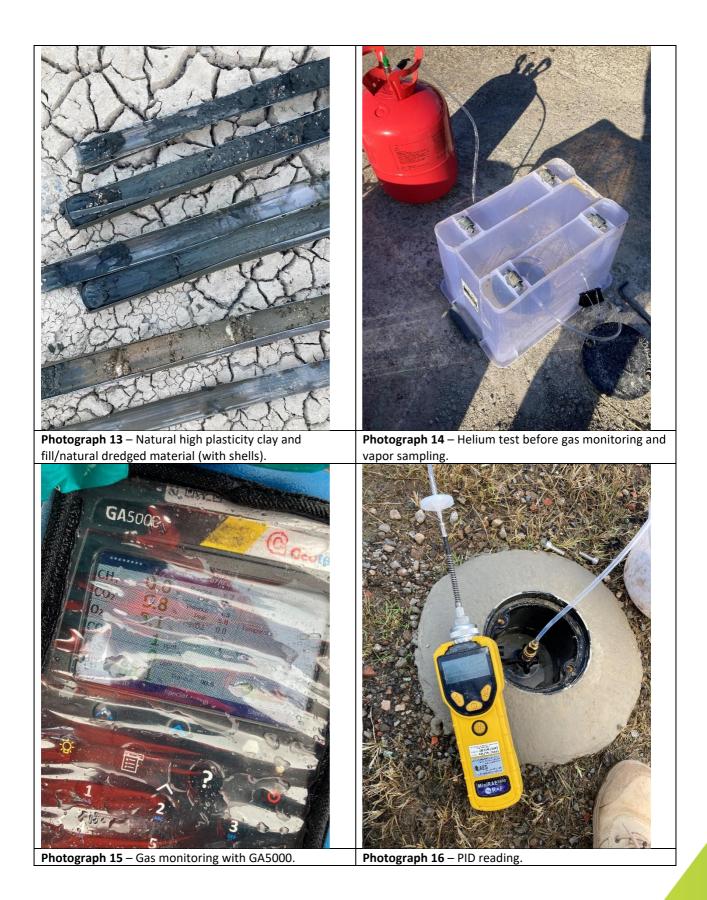
Disclaimer: Greencap-NAA Pty Ltd has produced this map for the purpose of presenting a summary of relevant spatial information and gives no warranty in relation to the data (including accuracy, reliability, completeness or suitability) and accepts no liability (including without limitation liability for negligence) for any loss, damage or costs (including consequential damage) relating to any use of or reliance upon the data. Data must not be used for direct marketing or be used in breach of privacy laws. Service Layer Credits: © 2019 NSW Land and Property Information (Six Maps)

Detailed Site Investigation

School Infrastructure NSW (SINSW) - Department of Education Proposed Sydney Olympic Park High School

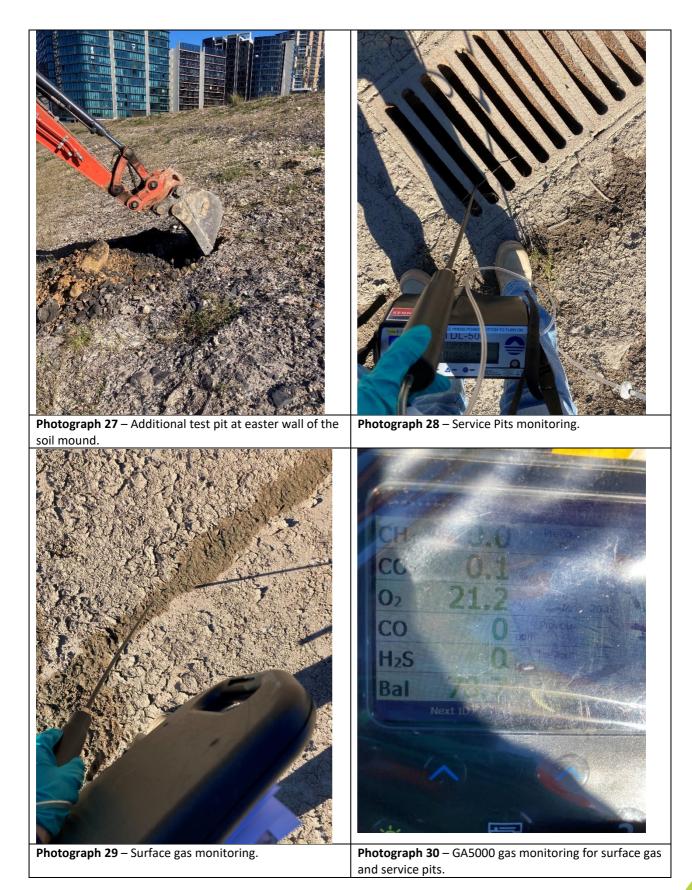
Appendix A: Field Photographs

greencap.com.au



Photograph 19 – Soil vapor primary and duplicate samples.

Photograph 20 – Measure the well, rinse the meter with surfactant and clean water (provided by Eurofins) after each measurement.



Detailed Site Investigation

School Infrastructure NSW (SINSW) - Department of Education Proposed Sydney Olympic Park High School

Appendix B: Field Logs

greencap.com.au

BOREHOLE ID: GG1 PROJECT NAME: DSI - SOPHS JOB NO.: J169135-01 CLIENT NAME:SINSW

DATE: 30/04/21 LOCATION: 9 Burroway Road, Wentworth Point

LOGGED BY: Shihui Wang APPROVED BY: Matthew Barberson TOTAL HOLE DEPTH: 2.7 DRILL METHOD: Concrete Coring, Hand Auger & Push Tubing DRILLING CONTRACTOR: Epoca

COMMENTS No ACM was observed, no visual indicators. Sulfate odor was noted from 1.8mBGL to 2.7mBGL.

					T.		Γ
Depth (mBGL)	PID (ppm)	Sample ID	Graphic Log	Moisture	Consistency/ Density	Description (Plasticity, colour, particle size and shape, odours/ staining, inclusions and comments)	Well Diagram
-			· ^ ·			Concrete slab	Concrete grout
- 0.2	·72.8		7	Wet	Loose	Fill - brown to yellow, coarse sand.	
	72.8	GG1-01(0.25-0.35)	/	Moist	Stiff	Fill - brown to grey, sandy clay, red clay with white mottled	
- 0.4			0.	Moist	Loose	(40%).	Bentonite
	71.2	GG1-02(0.4-0.5)	þ.° (Fill - dark grey, coarse sand and gravels (angular to subangular, 10mm-50mm, 40%)	Bentonite
- 0.6	22.8	GG1-03(0.5-0.6)		Dry	Loose	Fill - red, coarse sand, organic matter / hydrocarbon odour.	
- 0.8 	72.5	∫GG1-04(0.8-0.9)		Moist	Stiff	Fill - dark grey with yellow and red mottled, organic matter/ hydrocarbon odor, trace organic fibers.	
- 1	68	GG1-05(1.1-1.2)				Fill - light grey, silty soil, angular gravels (10mm-20mm, 15%), one 35mm rock.	Screening clean
- 1.2 - - - 1.4			0		Soft	Fill?/Natural? - grey clay, high plasticity, color changes to yellow form 1.6mBGL.	
- 1.6 - 1.8	84.9	GG1-06(1.6-1.7)					
- 2	134.6	-GG1-07(2.0-2.1)		Wet	Loose	Fill?/Natural? - brown sand with black sulfate odor sand, shell (10%).	
- 2.2	104.0	GG1-07-ASS					
2.4							
2.6		-∕GG1-08(2.6-2.7) ∖		Maist	Coff		-
	69.8	GG1-08-ASS		Moist	Soft	Natural - dark to black clay, high plasticity, sulfate odor.	
2.8						End of depth, natural soil reached.	
3							
3.2							
- 3.4							
- 3.6							
- 3.8							

BOREHOLE ID: GG2 PROJECT NAME: DSI - SOPHS JOB NO.: J169135-01 CLIENT NAME:SINSW

DATE: 30/04/21 LOCATION: 9 Burroway Road, Wentworth Point

LOGGED BY: Shihui Wang APPROVED BY: Matthew Barberson TOTAL HOLE DEPTH: 3.9 DRILL METHOD: Concrete Coring, Hand Auger & Push Tubing DRILLING CONTRACTOR: Epoca

COMMENTS No ACM was observed, no visual indicators. Sulfate/organic matter odor was noted from 2.0mBGL to 3.9mBGL.

	T	I			1		
Depth (mBGL)	PID (ppm)	Sample ID	Graphic Log	Moisture	Consistency/ Density	Description (Plasticity, colour, particle size and shape, odours/ staining, inclusions and comments)	Well Diagram
-			· ^ .			Concrete slab	Concrete grout
	8.4		7	Moist		Fill - yellow, sand.	
-		-	0.	Dry	Loose Loose	Fill - grey, mixture of sand and gravels (rounded to	
- 0.4	7.1	GG2-01(0.3-0.4)	1.00	-		sub-angular, 5-25mm, 40%)	Bentonite
_							
- 0.6			(///	Moist	Stiff	Fill?/Natural? - brown to grey clay with red mottled, high plasticity.	
-							
0.8			11/1	1			
-			(///				
- 1	4.8	GG2-02(1.0-1.1)	¥]//				
_	4.0	002-02(1.0-1.1)	-///	1			
- 1.2			(///				
_			(//				
- 1.4			1/1/	1			
_				1			
- 1.6							
_			(///				
- 1.8			1.	1			
-			¥//	1			
- 2				Wet	Loose	Fill?/Natural? - dark grey, coarse sand, with black	Screening clean
-						sulfate/organic matter odor sand, shell (5-10%).	sand
- 2.2							
-				•			
- 2.4							
-	6.4	GG2-03(2.5-2.6)					
- 2.6			1				
- 2.8				•			
- 2.0							
- 3							
-				Wet	Soft	Natural - dark grey clay, medium to high plasticity, sulfate	
- 3.2						odor.	
-							
- 3.4							
		GG2-03(3.5-3.6)					
- 3.6	8.1	GG2-03-ASS					
-							
- 3.8							
-							<u> </u>
-						End of depth, natural soil reached.	

BOREHOLE ID: GG3 PROJECT NAME: DSI - SOPHS JOB NO.: J169135-01 CLIENT NAME:SINSW

DATE: 30/04/21 LOCATION: 9 Burroway Road, Wentworth Point

LOGGED BY: Shihui Wang APPROVED BY: Matthew Barberson

COMMENTS No ACM was observed, no visual indicators. Sulfate odor was noted from 2.0mBGL to 2.7mBGL.

TOTAL HOLE DEPTH: 2.7 DRILL METHOD: Hand Auger & Push Tubing DRILLING CONTRACTOR: Epoca

Depth (mBGL) Consistency/ Density **Graphic Log** Description PID (ppm) Sample ID (Plasticity, colour, particle size and shape, odours/ Well Diagram Moisture staining, inclusions and comments) Dry Loose Fill - light brown to pink, silty sand with rocks (sub-angular Concrete grout to angular, 5-100mm, 30%) and gravels. 52.2 GG3-01(0.1-0.2) 0.2 Fill - silty sand, gravels (2-10mm, 10%), rocks Bentonite - 0.4 (sub-angular to angular, 20-150mm), with inclusion of glass fragments. 0.6 Screening clean sand 0.8 58.2 GG3-02(0.9-1.0) 1 - 1.2 14 Stiff Moist Fill?/Natural? - yellow to brown, clay, with brown clayey - 1.6 sand (20%) 50.2 GG3-03(1.7-1.8) 1.8 - 2 Wet Loose Fill?/Natural? - brown, medium sand, with black sulfate odor sand, shell (20%). - 2.2 2.4 GG3-04(2.5-2.6) 48.7 GG3-04-ASS 2.6 End of depth, target depth reached. 2.8 3 3.2 3.4

3.6

3.8

BOREHOLE ID: GG4 PROJECT NAME: DSI - SOPHS JOB NO.: J169135-01 CLIENT NAME:SINSW

DATE: 29/04/21 LOCATION: 9 Burroway Road, Wentworth Point

LOGGED BY: Shihui Wang APPROVED BY: Matthew Barberson TOTAL HOLE DEPTH: 1.7 DRILL METHOD: Concrete Coring, Hand Auger & Push Tubing DRILLING CONTRACTOR: Epoca

COMMENTS No ACM was observed, no visual indicators. Sulfate odor was noted from 0.4mBGL to 1.7mBGL.

	1	1	_		1		1
Depth (mBGL)	PID (ppm)	Sample ID	Graphic Log	Moisture	Consistency/ Density	Description (Plasticity, colour, particle size and shape, odours/ staining, inclusions and comments)	Well Diagram
-			· ^ · · · · · · · · · · · · · · · · · ·			Concrete slab	-Concrete grout
- 0.2 - -	10	GG4-01(0.3-0.4)			Loose	Fill - brown, coarse sand, angular gravels (15-60mm, 50%), one 180mm rock.	
— 0.4 	2.5	/GG4-02(0.5-0.6) GG4-02-ASS	//		Stiff	Fill - brown sandy clay, red clay (stiff, 10%), rocks (angular to sub-angular, 15-30mm, 25%), sulfate odor sand.	Bentonite
- 0.6 - - - 0.8	2.0	_FD2 & FT1				Clay increases from 0.6 to 1.0 mBGL.	
_ _ _ 1							
 1.2	2.8	GG4-03(1.1-1.2) GG4-03-ASS			Medium Stiff	Fill?/Natural? - dark grey, sandy clay, rocks (angular to sub-angular, 10-20mm, 5%), sulfate odor sand. Black color sand increases from 1.5 to 1.7 mBGL.	Screening clean
 1.4 	2.5	GG4-04(1.4-1.5) GG4-04-ASS			Stiff		
1.6 							
- 1.8 -						End of depth, target depth reached.	
- 2 							
- 2.2 							
2.4 							
2.6 							
2.8 							
3 3							
- 3.2 							
3.4 							
3.6 							
- 3.8 -							
_							

BOREHOLE ID: GG5 PROJECT NAME: DSI - SOPHS JOB NO.: J169135-01 CLIENT NAME:SINSW

DATE: 30/04/21 LOCATION: 9 Burroway Road, Wentworth Point

LOGGED BY: Shihui Wang APPROVED BY: Matthew Barberson TOTAL HOLE DEPTH: 8.0 DRILL METHOD: Concrete Coring, Hand Auger & Push Tubing DRILLING CONTRACTOR: Epoca

COMMENTS No ACM was observed, no visual indicators. Sulfate/organic matter odor was noted from 1.5mBGL to 7mBGL.

	1		1	1		1	
Depth (mBGL)	PID (ppm)	Sample ID	Graphic Log	Moisture	Consistency/ Density	Description (Plasticity, colour, particle size and shape, odours/ staining, inclusions and comments)	Well Diagram
_			· ^			Concrete slab	Concrete grout
- 0.2	10.9	GG5-01(0.15-0.2)		Moist	Loose	Fill - yellow, medium sand.	
_	10.2	GG5-02(0.3-0.4)		Moist to Wet	Loose	Fill - dark grey to black, sand and gravels (sub-angular to angular, 10mm-60mm).	
- 0.4				Dry to	Stiff	Fill - red clay with grey mottled, sandy gravels (grey,	Bentonite
0.6	9.5	GG5-03(0.5-0.6)		Moist		5-25mm, rounded to sub-angular, 10%), organic matter odor.	
				Wet	Loose	Fill - yellow, medium sand.	
_ 1	10.8	GG5-04(1.0-1.1)					
- 1.2	10.0						
- - - 1.4							
- - - 1.6				Saturated	Soft	Fill - brown to grey, sandy clay, low plasticity, sulfate/organic matter odor.	
- 1.8							
-							
-2	11.2	GG5-05(2.0-2.1) GG5-05-ASS					
- 2.2 - -							Screening clean
2.4							sand
2.6							
2.8							
- 3				Moist	Soft	Fill?/Natural? - dark grey clay, shell (10%), medium	
- 3.2				to Wet		plasticity, sulfate/organic matter odor.	
- 3.4							
- 3.6	13.6	GG5-06(3.5-3.6) GG5-06-ASS					
				10/ot	Soft		
			17	Wet	Soft	Fill?/Natural? - brownish grey, sandy clay, shell (5%),	

Depth (mBGL)	PID (ppm)	Sample ID	Graphic Log	Moisture	Consistency/ Density	Description (Plasticity, colour, particle size and shape, odours/ staining, inclusions and comments)	Well Diagram
- 4.2 - 4.2 - 4.4 - 4.6 - 4.8	7.0	∫GG5-07(4.5-4.60 GG5-07-ASS				medium plasticity, sulfate/organic matter odor.	
- - - - - - - - - - - - - - - - - - -	11.3	∫GG5-08(5.5-5.6) FD3		Moist to Wet	Soft	Fill?/Natural? - brown to yellow sandy clay, gravels (5-10mm, 5%), medium plasticity, sulfate odor.	Screening clean sand
- 6.2 - 6.2 - 6.4 - 6.6 - 6.8 - 6.8	10.8			Moist	Stiff	Natural - red and yellow clay, rock (5%), high plasticity, organic matter odor.	
- 7 - 7.2 - 7.4 - 7.4 - 7.6				Moist	Stiff	Natural - grey clay with red and yellow mottled, high plasticity.	
- - - - - - - - - - - -						End of depth, natural soil reached.	
- 8.2 - 8.4 - 8.6 - 8.6 - 8.8							

BOREHOLE ID: GG6 PROJECT NAME: DSI - SOPHS JOB NO.: J169135-01 CLIENT NAME:SINSW DATE: 29/04/21 LOCATION: 9 Burroway Road, Wentworth Point

LOGGED BY: Matthew Barberson APPROVED BY:

COMMENTS No ACM was observed, no visual indicators. Sulfate odor was noted from 0.9mBGL to 2.3mBGL.

TOTAL HOLE DEPTH: 2.3 DRILL METHOD: Concrete Coring, Hand Auger & Push Tubing DRILLING CONTRACTOR: Epoca

Depth (mBGL) Consistency/ Density Graphic Log Description PID (ppm) Sample ID (Plasticity, colour, particle size and shape, odours/ Well Diagram Moisture staining, inclusions and comments) ^. Concrete slab Concrete grout F Cill grey medium sand with gravel (5-20m

0.4 0.4 0.5 Very Stiff Fill - red, grey and orange mottled clay. Bentonite 0.6 0.9 GG6-02(0.7-0.8) Very Stiff Fill - red, grey and orange mottled clay. Bentonite 1 24.6 GG6-03(1.0-1.1) Very GG6-03-ASS Fill?/Natural? - yellow to brown, snad with inclusions of shells (10%), silty clay (5%). Screening sand 1.2 Very GG6-03-ASS Vert Loose Fill?/Natural? - dark grey sand, shells (5%), with inclusion of dark grey sand, sulfate odor. Screening sand 1.8 Vert Loose Fill?/Natural? - dark grey sand, shells (5%), with inclusion of dark grey sand, sulfate odor. Screening sand 2.2 12.6 GG6-04(2.0-2.1) Vert Loose Fill?/Natural? - dark grey sand, sulfate odor.	
-0.6 0.9 GG6-02(0.7-0.8) 0.8 -0.6 -0.6 1 24.6 GG6-03(1.0-1.1) -1.2 -0.6 -0.6 -1.4 -0.8 -0.8 -1.4 -0.8 -0.8 -1.6 -0.8 -0.8 -1.6 -0.8 -0.8 -1.8 -0.8 -0.8 -1.8 -0.8 -0.8 -1.8 -0.8 -0.8 -1.8 -0.8 -0.8 -1.8 -0.6 -0.9 -1.8 -0.8 -0.8 -1.8 -0.6 -0.4 -1.8 -0.6 -0.4 -1.8 -0.6 -0.4 -1.8 -0.6 -0.4 -1.8 -0.6 -0.4 -1.8 -0.6 -0.4 -1.8 -0.6 -0.4 -1.8 -0.6 -0.4 -1.10 -0.6 -0.4 -1.8 -0.6 -0.4 -1.8 -0.6 -0.4 -1.8 -0	
 0.8 1 24.6 GG6-03(1.0-1.1) GG6-03-ASS 1.2 1.4 1.4 1.6 1.6 1.8 2 12.6 GG6-04(2.0-2.1) GG6-04-ASS GG6-04-ASS 	
1 24.6 GG6-03(1.0-1.1) GG6-03-ASS Screening sand -1.2 -1.4 V V -1.4 V V V -1.6 V V V -1.6 GG6-04(2.0-2.1) GG6-04-ASS Fill?/Natural? - dark grey sand, shells (5%), with inclusion of dark grey sand, sulfate odor. Screening sand	
1.2 Image: state of the st	
-1.4 ↓ <td></td>	
1.6 Wet Loose Fill?/Natural? - dark grey sand, shells (5%), with inclusion of dark grey sand, sulfate odor. 1.8 -1.8 2 12.6 GG6-04(2.0-2.1) GG6-04-ASS	clean
- 1.8 - 2 12.6 GG6-04(2.0-2.1) GG6-04-ASS	
2 GG6-04(2.0-2.1) 12.6 GG6-04-ASS	
12.6 GG6-04-ASS	
- End of depth, target depth reached.	
-3.2	

BOREHOLE ID: GG7 PROJECT NAME: DSI - SOPHS JOB NO.: J169135-01 CLIENT NAME:SINSW

DATE: 29/04/21 LOCATION: 9 Burroway Road, Wentworth Point

LOGGED BY: Shihui Wang APPROVED BY: Matthew Barberson TOTAL HOLE DEPTH: 1.6 DRILL METHOD: Hand Auger & Drill Rig

DRILLING CONTRACTOR: Epoca

COMMENTS No ACM was observed, no visual or olfactory indicators was noted.

		1					1
Depth (mBGL)	PID (ppm)	Sample ID	Graphic Log	Moisture	Consistency/ Density	Description (Plasticity, colour, particle size and shape, odours/ staining, inclusions and comments)	Well Diagram
_	70.4	GG7-01(0.05-0.15)	0.0	Dry		Fill - light brown, silty sand, cobbles (30%), rocks (10%).	Concrete grout
- 0.2			0.	Dry		Fill - dark grey, coarse sand, rocks (10-40mm, 10%).	
- - - 0.4	20.4	GG7-02(0.3-0.4)	0.0 0.0				Dentenite
- 0.6						Fill - dark grey, coarse sand, with yellow/black sandy clay and red clay (white mottled), trace tile and china fragments.	Bentonite
	21.4	GG7-03(0.7-0.8)					
- - 1				Moist to Wet	Soft	Fill?/Natural? - yellow clayey sand (90%), grey clay (10%), with inclusion of shell.	Screening clean
_ 1.2 _	25.8	GG7-04(1.1-1.2)					
- 1.4 	24.1	GG7-05(1.5-1.6)		Wet	Soft	Fill?/Natural? - grey sandy clay, with inclusion of shell (25%).	
1.6						End of depth, target depth reached.	
_ 1.8 							
- 2							
- 2.2							
- 2.4							
-							
- 2.6 - -							
2.8							
- 3.2							
- 3.4							
3.6							
3.8 							
_							

BOREHOLE ID: GG8 PROJECT NAME: DSI - SOPHS JOB NO.: J169135-01 CLIENT NAME:SINSW

DATE: 29/04/21 LOCATION: 9 Burroway Road, Wentworth Point

LOGGED BY: Shihui Wang APPROVED BY: Matthew Barberson TOTAL HOLE DEPTH: 3.0 DRILL METHOD: Hand Auger & Drill Rig

DRILLING CONTRACTOR: Epoca

COMMENTS No ACM was observed, no visual indicators was noted. Strong hydrocarbon odor was noted at 0.5mBGL.

Depth (mBGL)	PID (ppm)	Sample ID	Graphic Log	Moisture	Consistency/ Density	Description (Plasticity, colour, particle size and shape, odours/ staining, inclusions and comments)	Well Diagram
			-0	Dry	-	Fill - light brown, clay and rock.	
0.2				Dry		Fill - grey, coarse sand, rocks (15%).	Concrete grout
0.2	34.1	GG8-01(0.2-0.3)					
0.4						Fill - dark grey, coarse sand, rocks (5-10mm, 10%), strong	Bentonite
-	438	GG8-02(0.4-0.5)		Moist	Loose	hydrocarbon odor at 0.5mBGL.	Bentonite
0.6 0.8				Moist		Fill?/Natural? - dark grey clayey sand and yellow sand, with inclusion of shells, trace wood fragements, hydrocarbon odor.	
0.0							
1	80.1	GG8-03(0.9-1.0)	/ /		-		
				Wet		Fill?/Natural? - dark grey, coarse, with inclusion of shells, organic matter odor.	
1.2							
1.4							Screening clear
1.6							Sand
1.8							
2	19.8	GG8-04(1.9-2)	_				
2.2							
2.4							
2.6				Wet	Soft	Natural - black clay, high plasticity.	1
2.8							
3		GG8-05(2.9-3.0)					
						End of depth, natural material reached.	
3.2							
3.4							
3.6							
			1		1		1

BOREHOLE ID: GG9 PROJECT NAME: DSI - SOPHS JOB NO.: J169135-01 CLIENT NAME:SINSW

DATE: 29/04/21 LOCATION: 9 Burroway Road, Wentworth Point

LOGGED BY: Shihui Wang APPROVED BY: Matthew Barberson TOTAL HOLE DEPTH: 1.2 DRILL METHOD: Hand Auger & Drill Rig

DRILLING CONTRACTOR: Epoca

							1
Depth (mBGL)	PID (ppm)	Sample ID	Graphic Log	Moisture	Consistency/ Density	Description (Plasticity, colour, particle size and shape, odours/ staining, inclusions and comments)	Well Diagram
_	31.8	GG9-01(0.1-0.2)	0.00	Dry		Fill - grey, coarse sand, rocks and cobbles 930%).	Concrete grout
0.2 0.4			0.00	Moist		Fill - grey to dark grey, coarse sand, rocks (25%), yellow clay (20%, increase to 60% at 0.5mBGL).	
- - - - 0.6	21.3	GG9-02(0.4-0.5)		Moist Moist		Fill - yellow, coarse sand, rocks (15%), grey clayey sand (10%).	Bentonite
 0.8	22.7	GG9-03(0.7-0.8)		Wet		Fill?/Natural? - grey clayey sand, with inclusion of shells	
- 1 	42.2	GG8904(1.0-1.1)				(30%). ¥	Screening clean
<u>1.2</u>						End of depth, borehole clapsed due to groundwater encountered.	
1.4 							
- 1.6 - - - 1.8							
- - 							
- 							
2.6							
- 2.8 							
- 3 - - - 3.2							
- 3.6							
-							

BOREHOLE ID: BH1 PROJECT NAME: DSI - SOPHS JOB NO.: J169135-01 CLIENT NAME:SINSW

DATE: 03/05/21 LOCATION: 9 Burroway Road, Wentworth Point

TOTAL HOLE DEPTH: 2.9 DRILL METHOD: Hand Auger & Push Tubing

LOGGED BY: Matthew Barberson APPROVED BY: DRILLING CONTRACTOR: Epoca

COMMENTS No ACM was observed, white fabric was noted at 1.1mBGL, slight sulfate odor was noted at 2.4-2.9mBGL.

		1	1		1	
Depth (mBGL)	PID (ppm)	Sample ID	Graphic Log	Moisture	Consistency/ Density	Description (Plasticity, colour, particle size and shape, odours/ staining, inclusions and comments)
- 0.2 - 0.4				Moist	Firm	Fill - brown/red, clayey sand.
0.6	9.7	BH1 (0.5-0.6)	-///			
- - 0.8 - - - 1		BH1(0.7-0.9)			Firm	Fill - dark brown, clayey gravel.
- - 1.2 - - - 1.4	5.0	BH1(1.2-1.4)		Moist		Fill - light grey, crushed rock with sand. White fabric noted at 1.1mBGL.
- 1.6				Moist		Fill - white, sandstone.
- 1.8 - 2 - 2.2 - 2.2 - 2.4 2.6	24.4	BH1(1.8-1.9)		Moist	Loose	Fill?/Natural? - yellow, medium sand, with inclusion of shells. Color changes to brown gradually from 2.4mBGL.
- 2.8	23.1	BH1(2.6-2.8)		Saturate	Soft	Natural - dark brown, silty clay, slight sulfate odor.
			<i>\</i>			End of hole, target depth reached.
3.2 						
- 3.4 - - 3.6						
- 3.8						
_						

BOREHOLE ID: BH2 PROJECT NAME: DSI - SOPHS JOB NO.: J169135-01 CLIENT NAME:SINSW DATE: 03/05/21 LOCATION: 9 Burroway Road, Wentworth Point

LOGGED BY: Shihui Wang APPROVED BY: Matthew Barberson TOTAL HOLE DEPTH: 3.9 DRILL METHOD: Concrete Coring, Hand Auger & Push Tubing DRILLING CONTRACTOR: Epoca

COMMENTS No ACM was observed, no visual or olfactory indicators was noted. Depth (mBGL) Consistency/ Density Graphic Log Description PID (ppm) Sample ID (Plasticity, colour, particle size and shape, odours/ staining, inclusions Moisture and comments) . < Fill - concrete 0.2 Fill - black, coarse sand (50%), rocks (10-30mm, su-angular). BH2(0.2-0.3) 0 Noo Fill - yellow to red clay (light grey mottled), trace organic matters (roots), Dry - 0.4 low plasticity. BH2(0.5-0.7) BHFD7 0.6 Wet Loose Fill?/Natural? - brown to dark grey, coarse sand, shells (20-30%). 0.8 1 - 1.2 -14 BH2(1.5-1.6) - 1.6 Wet Loose Fill?/Natural? - dark grey, sandy clay, shells (5%). - 1.8 Soft - 2 BH2(2.0-2.1) - 2.2 Wet Soft Natural - dark grey clay, sandy clay (20%), shells (5-20%), medium to high plasticity, organic matter odor. 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 End of hole, target depth reached.

BOREHOLE ID: BH3 PROJECT NAME: DSI - SOPHS JOB NO.: J169135-01 CLIENT NAME:SINSW DATE: 03/05/21 LOCATION: 9 Burroway Road, Wentworth Point

LOGGED BY: Shihui Wang APPROVED BY: Matthew Barberson TOTAL HOLE DEPTH: 3.9 DRILL METHOD: Concrete Coring, Hand Auger & Push Tubing DRILLING CONTRACTOR: Epoca

COMMENTS No ACM was observed, no visual or olfactory indicators was noted. Depth (mBGL) Consistency/ Density Graphic Log Description PID (ppm) Sample ID (Plasticity, colour, particle size and shape, odours/ staining, inclusions Moisture and comments) ·...< Fill - concrete 0.2 Moist Firm Fill - brown/grey/red clay with sand. 21.3 BH3(0.2-0.4) - 0.4 0.6 0.8 1 5.1 BH3(1.0-1.2) BHFT4 - 1.2 Fill?/Natural? - grey, medium sand, with inclusion of shells. Moist Loose 14.9 BH3(1.3-1.5) - 1.4 - 1.6 Saturate Soft Fill?/Natural? - grey clay with inclusion of seashells and sand. - 1.8 - 2 11.2 BH3(2.0-2.2) - 2.2 - 2.4 2.6 2.8 3 3.2 3.4 21.4 BH3(3.4-3.5) 3.6 3.8 End of hole, target depth reached.

BOREHOLE ID: BH4 PROJECT NAME: DSI - SOPHS JOB NO.: J169135-01 CLIENT NAME:SINSW

DATE: 03/05/21 LOCATION: 9 Burroway Road, Wentworth Point

COMMENTS No ACM was observed, orange geofabric was noted at 0.14mBGL, ash was noted between 0.35mBGL to 1.3mBGL.Sulfate odor was noted from 1.3mB

LOGGED BY: Shihui Wang APPROVED BY: Matthew Barberson TOTAL HOLE DEPTH: 3.9 DRILL METHOD: Concrete Coring, Hand Auger & Push Tubing DRILLING CONTRACTOR: Epoca

Depth (mBGL) Consistency/ Density Graphic Log Description PID (ppm) Sample ID (Plasticity, colour, particle size and shape, odours/ staining, inclusions Moisture and comments) · · · · · · · · Fill - concrete, orange geofabric was observed under concrete slab. Loose Fill - yellow, medium sand. Moist 0.2 BH4(0.2-0.35) Nº00 Fill - dark grey, sandy gravel(10-20mm) and sub-angular rocks. 0. Firm - 0.4 Fill - brown/grey sandy clay, trace ash. 4.4 BH4(0.4-0.5) Saturate 0.6 0.8 1 7.7 BH4(1.0-1.2) - 1.2 Loose Fill?/Natural? - green/grey medium sand with shells, sulfate odor. - 1.4 - 1.6 - 1.8 - 2 7.3 BH4(2.0-2.2) - 2.2 - 2.4 Soft Fill?/Natural? - dark grey clay with inclusion of and and seashells, sulfate odor. 2.6 2.8 3 - 3.2 - 3.4 6.1 BH4(3.5-3.7) 3.6

End of hole, target depth reached.

3.8

BOREHOLE ID: BH5 PROJECT NAME: DSI - SOPHS JOB NO.: J169135-01 CLIENT NAME:SINSW

DATE: 03/05/21 LOCATION: 9 Burroway Road, Wentworth Point

LOGGED BY: Shihui Wang APPROVED BY: Matthew Barberson TOTAL HOLE DEPTH: 3.9 DRILL METHOD: Concrete Coring, Hand Auger & Push Tubing DRILLING CONTRACTOR: Epoca

COMMENTS No ACM was observed, no visual indicators was noted. Slight hydrocarbon/organic matter odor was noted at 0.3-3.9mBGL.

		1	1		1	1
Depth (mBGL)	PID (ppm)	Sample ID	Graphic Log	Moisture	Consistency/ Density	Description (Plasticity, colour, particle size and shape, odours/ staining, inclusions and comments)
_			· · · · · · · · · · · · · · · · · · ·			Fill - concrete
- 0.2			لــــد ۲			
				Moist	1	Fill - dark grey to yellowish grey, silty clay (red/yellow mottled, red sandstone (10mm, 5%), clay cobbles (angular to sub-angular, 30-50mm, 10%), slight hydrocarbon odor, medium plasticity.
- 0.6	31.4	BH5(0.5-0.7) BHFD6				
- 0.8						
- 1 -						
- 1.2				Wet	Loose	Fill?/Natural? - dark grey to brown, coarse sand with sandy clay, organic matter odor.
- 1.4						
1.6	29.5	BH5(1.5-1.6)				
- - 1.8						
- - - 2				Wet	Soft	Fill?/Natural? - dark grey clay with sandy clay (10%), shells (5-10%),
- 2.2						medium plasticity, organic matter odor.
- 2.4						
	16.5	BH5(2.5-2.6)				
- 2.8						
- 3						
- 3.2						
- 3.4						
- 3.6	23.8	BH5(3.5-3.6)				
- 3.8						
_						End of hole, target depth reached.

BOREHOLE ID: BH6 PROJECT NAME: DSI - SOPHS JOB NO.: J169135-01 CLIENT NAME:SINSW

DATE: 14/05/21 LOCATION: 9 Burroway Road, Wentworth Point

LOGGED BY: Shihui Wang APPROVED BY: Matthew Barberson TOTAL HOLE DEPTH: 0.8 DRILL METHOD: Excavator

DRILLING CONTRACTOR: GKC

		-	1		1	
Depth (mBGL)	PID (ppm)	Sample ID	Graphic Log	Moisture	Consistency/ Density	Description (Plasticity, colour, particle size and shape, odours/ staining, inclusions and comments)
- 0.2				Moist to Dry		Fill - light brown, clay cobble (50%), sandstone (30%), clayey sand and coarse sand.
	2.6	BH6-01(0.4-0.5)				
- 0.6	2.0	вно-от(0.4-0.3)				
- 0.8 						End of test pit due to potential underground service.
-1						
- 1.2						
- 1.4						
- - - 1.6						
- - - 1.8						
- 2						
- 2.2						
- 2.4						
- 2.6						
_ _ _ 2.8						
-						
- 3						
- 3.2						
- - 3.8						

BOREHOLE ID: BH7 PROJECT NAME: DSI - SOPHS JOB NO.: J169135-01 CLIENT NAME:SINSW

DATE: 14/05/21 LOCATION: 9 Burroway Road, Wentworth Point

LOGGED BY: Shihui Wang APPROVED BY: Matthew Barberson TOTAL HOLE DEPTH: 1.0 DRILL METHOD: Excavator

DRILLING CONTRACTOR: GKC

					[
Depth (mBGL)	PID (ppm)	Sample ID	Graphic Log	Moisture	Consistency/ Density	Description (Plasticity, colour, particle size and shape, odours/ staining, inclusions and comments)
- 0.2				Moist to Dry		Fill - light brown, sandstone (30%), clayey sand (40%), clay cobble (25%), dark grey shale (5%).
- - 0.4 -						
- 0.6	2.5	BH7-01(0.5-0.6)				
- 0.8 						
- - 1			<i></i>			End of test pit due to potential underground service.
- - 1.2						
- - 1.4						
- 1.6 						
- 1.8 -						
- 2						
- 2.2						
- 2.4 -						
_ 2.6						
- 2.8 -						
- 3 -						
- 3.2						
- 3.4 -						
- 3.6 -						
- 3.8 -						
_						

BOREHOLE ID: BH9 PROJECT NAME: DSI - SOPHS JOB NO.: J169135-01 CLIENT NAME:SINSW

DATE: 14/05/21 LOCATION: 9 Burroway Road, Wentworth Point

LOGGED BY: Shihui Wang APPROVED BY: Matthew Barberson TOTAL HOLE DEPTH: 1.5 DRILL METHOD: Excavator

DRILLING CONTRACTOR: GKC

Depth (mBGL)	PID (ppm)	Sample ID	Graphic Log	Moisture	Consistency/ Density	Description (Plasticity, colour, particle size and shape, odours/ staining, inclusions and comments)
-				Moist to Dry		Fill - light brown to pink, sandstone with coarse sand (10%), clay cobble (soft to stiff), grey shale (5%).
- 0.2			· · · · · · · · · · · · · · · · · · ·			
0.4			· · · · · · · · · · · · · · · · · · ·			
- 						
- 						
-1	2.7	BH9-01(0.9-1.0)				
- - - 1.2						
- 1.4						
- 1.6						End of test pit, target depth reached.
- 1.8						
-2						
- 2.2						
- 2.4						
- 2.6						
- - 2.8						
- - 3 						
- 						
- 3.4						
- 3.6 						
- 3.8 						
-						

BOREHOLE ID: BH10 PROJECT NAME: DSI - SOPHS JOB NO.: J169135-01 CLIENT NAME:SINSW

DATE: 03/05/21 LOCATION: 9 Burroway Road, Wentworth Point

LOGGED BY: Shihui Wang APPROVED BY: Matthew Barberson TOTAL HOLE DEPTH: 3.9 DRILL METHOD: Hand Auger & Push Tubing

DRILLING CONTRACTOR: Epoca

COMMENTS No ACM was observed, no visual indicators was noted. Hydrocarbon odor was noted at 0.7-1.2mBGL.

			1		1	
Depth (mBGL)	PID (ppm)	Sample ID	Graphic Log	Moisture	Consistency/ Density	Description (Plasticity, colour, particle size and shape, odours/ staining, inclusions and comments)
				Dry	Hard (compress	Fill - light brown, coarse sand with white sandstone (10%), grey clay cobble (soft).
- 0.4 				Dry	Medium to Hard	Fill - grey to brown, sandy soil with gravels 95-25mm, 20%), with inclusion of glass and tile fragments, organic matter odor.
- 0.6			000			
- 0.8 	18.3	BH10-(0.7-0.9) BHFD1				
- 1 -						
- 1.2 -						
- 1.4 -				Most to Dry	Stiff	Fill - yellow to red clay, with coarse sand (25%), rocks (rounded to angular, 10-30mm, 5%), dark grey clay (5%), low plasticity.
- 1.6						
- 1.8 -	10.4	BH10(1.7-1.8)				
- 2				Wet	Loose	Fill?/Natural? - yellow to brown coarse sand, shells (10-30%), grey clay (20%).
- 2.2 						
- 2.4						
2.6						
- 2.8 						
- 3	12.0	BH10(3.0-3.1)				
- 3.2						
- 3.4						
 3.6				Wet	Soft	Natural - dark grey to black clay, high plasticity.
- 3.8	12.9	BH10(3.7-3.8)				
-						End of hole, target depth reached.

BOREHOLE ID: GG10 JOB NO.: J169135 CLIENT NAME:SINSW

DATE: 23/08/21

LOGGED BY: Shihui Wang APPROVED BY: Matthew Barberson

TOTAL HOLE DEPTH: 3.0 mBGL PROJECT NAME: SOPHS - DSI - Additional Test LOCATION: 7-11 Burroway Road, Wentworth Poir DRILL METHOD: Concrete Coring, Hand Auguring & Geoprobe Auguring DRILLING CONTRACTOR: Epoca

COMMENTS No ACM was observed, no visual or olfactory contamination indicators were observed.

Depth (mBGL)	PID (ppm)	Sample ID	Graphic Log	Moisture	Consistency/ Density	Description (Plasticity, colour, particle size and shape, odours/ staining, inclusions and comments)	Well Diagram 0ද හ
-			· ^ .			Concrete	Concrete grout
0.2			7	Moist	Loose	Fill - Brown, gravels (rounded to sub-angular, 8-20mm)	Bentonite
	2.0	GG10(0.3-0.4)		Dry to Moist	Loose	with coarse sand. Fill - Black, coarse sand with gravels (road base material), sandy clay (10%), with inclusion of brick fragments. Sandy clay increased to 40% at 0.65 mBGL. Hand Auger	Screening clean
0.6 						refusal at 0.75mBGL.	
- 0.8				Moist	Soft	Fill - Dark brown to black, clayey sand with sandy clay (40%), gravels (10%, 5-15 mm).	
- - - 1.2 -				Moist	Stiff	Fill - Yellow brown, clay with red mottled.	-
- 1.4							
- 1.6	0.6	GG10(1.5-1.6)					
- 1.8 -				Moist	Soft	Fill?/Natural? - Black, clay withe coarse sand and shells.	-
- 2			/	Saturated	Loose	Fill?/Natural? - Dark grey, coarse sand with black clay and	
- 2.2					and Soft	shells.	
- 2.4	0.6	GG10(2.4-2.5)					
- 2.6				Moist	Soft	Natural - Grey Clay, medium to high plasticity.	
- 2.8 -							
3						End of hole: natural soil reached.	
- 3.2							
- 3.4 -							
- 3.6 -							
- 3.8 							
			1			I	1

BOREHOLE ID: GG11 DATE: 23/08/21 PROJECT NAME: SOPHS - DSI - Additional Test LOCATION: 7-11 Burroway Road, Wentworth Poir DRILL METHOD: Hand Auguring JOB NO.: J169135 CLIENT NAME:SINSW

TOTAL HOLE DEPTH: 0.5 mBGL

DRILLING CONTRACTOR: Epoca

LOGGED BY: Shihui Wang APPROVED BY: Matthew Barberson

COMMENTS No ACM was observed, no visual or olfactory contamination indicators were observed.

	-		_				
Depth (mBGL)	PID (ppm)	Sample ID	Graphic Log	Moisture	Consistency/ Density	Description (Plasticity, colour, particle size and shape, odours/ staining, inclusions and comments)	Well Diagram କ୍ ଓ ଓ
				Dry	Loose	Fill - Light brown, silty sand with rocks (angular, 30-50 mm, with inclusion of a 10cm sandstone.	Concrete grout Bentonite
0.2	0.2 0.1	GG11(0.2-0.3)	2.2	Dry to Moist	Soft	Fill - Brown, sandy clay, with shales and sandsotoens (30-70mm).	Screening clean
- 0.6						End of hole due to potential underground service.	
- 0.8							
- 1 - -							
- 1.2 - - - 1.4							
- 1.4 - - - 1.6							
- - 1.8							
- 2							
- 2.2							
- 2.4							
- 2.6 - - - 2.8							
- 3.2							
- 3.4							
3.8 							

BOREHOLE ID: GG12	DA
PROJECT NAME: SOPHS - DSI - Additional Test	LO
JOB NO.: J169135	
CLIENT NAME:SINSW	LO

ATE: 23/08/21

TOTAL HOLE DEPTH: 3.0 mBGL CATION: 7-11 Burroway Road, Wentworth Poir DRILL METHOD: Concrete Coring, Hand Auguring & Geoprobe Auguring DRILLING CONTRACTOR: Epoca

GGED BY: Shihui Wang APPROVED BY: Matthew Barberson

COMMENTS No ACM was observed, asphalt was noted at 0.25-1.0 mBGL.

							-
Depth (mBGL)	PID (ppm)	Sample ID	Graphic Log	Moisture	Consistency/ Density	Description (Plasticity, colour, particle size and shape, odours/ staining, inclusions and comments)	Well Diagram
-						Concrete	Concrete grout
- 0.2							Bentonite
-			0	Moist	Loose	Fill - Brown, coarse sand, asphalt (2%).	
- 0.4 - - - 0.6	0.9	GG12(0.4-0.5)		Moist	Loose and Soft	Fill - Brown, sandy clay (6%), clayey sand (30%), rocks (10%), asphalt (2%). Hand augur refusal at 1.0 mBGL.	Screening clean
- 0.8							
- - - - 1							_
- 1.2				Moist	Loose and Soft	Fill - Brown, coarse sand with sandy clay, gravels. Grey soft clay with medium plasticity was present at 1.4-1.5 mBGL.	
- - 1.4	0.2	GG12(1.4-1.5)	-				
- - - 1.6				Moist to	Loose	Fill?/Natural? - Yellow brown, coarse sand with shells.	
-	0.5	GG12(1.7-1.8)	-	Saturated			
- 1.8 - -							
- 2							
 2.2							
- 2.4				Moist	Soft	Natural - Dark grey, clay with high plasticity.	
- 2.6							
- 2.8 							
- 3						End of hole: natural material reached.	
- 3.2							
3.4 							
- 3.6 							
- 3.8							

Detailed Site Investigation

School Infrastructure NSW (SINSW) - Department of Education Proposed Sydney Olympic Park High School

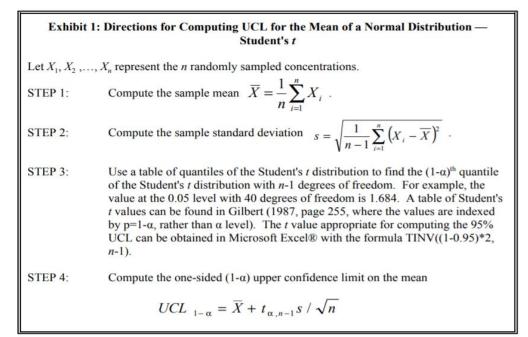
Appendix C: Results Summary Tables

greencap.com.au

										G1	GG2	GG3	GG4	GG5	GG6	GG7		GG8			GG9
									GG1-04(0.8-0.9) S21-My04182	S21-My20312	GG2-01(0.3-0.4) S21-My04183	GG3-02(0.9-1.0) S21-My04181	GG14-04(0.8-0.9) S21-My04182	GG5-05(2.0-2.1) S21-My04177	GG6-03(1.0-1.1) S21-My04028	GG7-01(0.05-0.15) S21-My04024	GG8-01(0.2-0.3) S21-My04075	S21-My04025		GG8-04(1.9-2.0) S21-My20311	GG9-04(1.0-1.1 S21-My04027
									30/04/2021	30/04/2021	30/04/2021	30/04/2021	30/04/2021	30/04/2021	29/04/2021	29/04/2021	29/04/2021	29/04/2021	29/04/2021	29/04/2021	29/04/2021
			Health-based Investigation Level	Interim Soil Vapour	Soil HSLs for Va	pour Intrusion HSL A&	B Low-high Density Re	sidential (mg/kg)													
	1		(HIL C)	HIL-A/B		1	1	1													
Method Type	Chemical Name Arsenic	Unit EQL	3000		0 m to <1 m	1 m to < 2 m	2 m to < 4 m	4 m +	9.3		< 2	6.7	9.3	27		2.8	2		13		13
wetais	Cadmium	mg/kg 2 mg/kg 0.4 mg/kg 5	3000 90 300						< 0.4 26		< 0.4	< 0.4	< 0.4 19	< 0.4 9.3	3.5 < 0.4 < 5	< 0.4	< 0.4 170	< 0.4 16	< 0.4 17		< 0.4 10
	Copper	mg/kg 5 mg/kg 5	17000						38		28	51	30	11 22	12	52	48 8.9	9 12	19 47		6.9 16
	Mercury (inorganic)	mg/kg 0.1 mg/kg 5	80 1200						0.2	-	< 0.1 100	0.2	< 0.1	0.1	< 0.1	< 0.1 28	< 0.1 150	< 0.1 11	0.2		< 0.1
Physical Parameters	Zinc	mg/kg 5 % 1	30000						120 13	-	68 5.7	140 8.3	140 13	30 27	24 7.5	110 2.5	98 20	29 7.7	53 18	-	34 17
Pesticides	4,4-DDE	mg/kg 0.05 mg/kg 0.05							< 0.05 < 0.05	-	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.5 < 0.5	< 0.5	< 0.05 < 0.05	< 0.05 < 0.05	-	< 0.05 < 0.05
	Aldrin + Dieldrin	mg/kg 0.05 mg/kg 0.05	10						< 0.05 < 0.05	-	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.5 < 0.5	< 0.5 < 0.5	< 0.05 < 0.05	< 0.05 < 0.05	-	< 0.05 < 0.05
	b-BHC	mg/kg 0.2 mg/kg 0.05							- < 0.05		< 0.05	- < 0.05	< 0.05	< 0.05	- < 0.05	- < 0.5	< 0.5	< 0.05	- < 0.05	-	< 0.05
	chlordane	mg/kg 0.2 mg/kg 0.1	70						< 0.2 < 0.1		< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.5	< 0.5	< 0.2	< 0.2	-	< 0.2
	Chlorpyrifos	mg/kg 0.2 mg/kg 0.2							< 0.2		< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.5	< 0.5	< 0.2	< 0.2 < 0.2		< 0.2
		mg/kg 0.2 mg/kg 0.05							< 0.2 < 0.05		< 0.2 < 0.05	< 0.2 < 0.05	< 0.2 < 0.05	< 0.2 < 0.05	< 0.2 < 0.05	< 0.5 < 0.5	< 0.5	< 0.2 < 0.05	< 0.2 < 0.05		< 0.2 < 0.05
	DDT	mg/kg 0.05 mg/kg 0.05 mg/kg 0.05	400						< 0.05		< 0.05	- < 0.05	< 0.05	< 0.05	- < 0.05	< 0.5	< 0.5	< 0.05	- < 0.05		< 0.05
	Demeton-S	mg/kg 0.2 mg/kg 0.2	400						< 0.2	-	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.5	< 0.5	< 0.2	< 0.2		< 0.2
	Dichlorvos	mg/kg 0.2 mg/kg 0.05							< 0.2 < 0.05		< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.5	< 0.5	< 0.2	< 0.2	-	< 0.2
	Dimethoate Disulfoton	mg/kg 0.2 mg/kg 0.2							< 0.2 < 0.2	-	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.5 < 0.5	< 0.5 < 0.5	< 0.2 < 0.2	< 0.2 < 0.2	-	< 0.2 < 0.2
	Endosulfan I Endosulfan II	mg/kg 0.05 mg/kg 0.05	340 340						< 0.05 < 0.05	-	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.5 < 0.5	< 0.5 < 0.5	< 0.05 < 0.05	< 0.05 < 0.05	-	< 0.05 < 0.05
	Endosulfan sulphate Endrin	mg/kg 0.05 mg/kg 0.05	20						< 0.05 < 0.05		< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.5	< 0.5 < 0.5	< 0.05	< 0.05 < 0.05		< 0.05 < 0.05
	Endrin ketone	mg/kg 0.05 mg/kg 0.05							< 0.05		< 0.05 < 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.5	< 0.5	< 0.05	< 0.05	-	< 0.05
	Ethion Fenitrothion Fenthion	mg/kg 0.2 mg/kg 0.2							< 0.2 < 0.2 < 0.2		< 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2	< 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5	< 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2	-	< 0.2 < 0.2 < 0.2
	g-BHC (Lindane)	mg/kg 0.2 mg/kg 0.05 mg/kg 0.05	10						< 0.2 < 0.05 < 0.05		< 0.2 < 0.05 < 0.05	< 0.2 < 0.05 < 0.05	< 0.2 < 0.05 < 0.05	< 0.2 < 0.05 < 0.05	< 0.2 < 0.05 < 0.05	< 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5	< 0.2 < 0.05 < 0.05	< 0.2 < 0.05 < 0.05	-	< 0.2 < 0.05 < 0.05
	Heptachlor epoxide	mg/kg 0.05 mg/kg 0.05	10						< 0.05		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.5	< 0.5	< 0.05	< 0.05		< 0.05
	Malathion	mg/kg 0.2 mg/kg 0.2							< 0.2		< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.5	< 0.5	< 0.2	< 0.2	-	< 0.2
		mg/kg 0.2 mg/kg 0.2	400						< 0.2		< 0.2	< 0.2	< 0.2	< 0.2	< 0.2 < 0.2	< 0.5	< 0.5	< 0.2	< 0.2		< 0.2 < 0.2
	Monocrotophos Omethoate	mg/kg 2 mg/kg 2							<2 <2 <2		< 2 < 2	< 2 < 2	< 2 < 2	< 2 < 2	< 2 < 2	< 5 < 5	< 5	< 2 < 2	< 2 < 2	-	< 2 < 2
	Organochlorine pesticides	mg/kg 0.1 mg/kg 0.1							-	-	-	-	-	-	-		-	-	-	-	-
	Phorate	mg/kg 0.2 mg/kg 0.2							- < 0.2		< 0.2	- < 0.2	- < 0.2	- < 0.2	- < 0.2	- < 0.5	< 0.5	- < 0.2	- < 0.2	-	- < 0.2
	Pirimiphos-methyl Pyrazophos	mg/kg 0.2 mg/kg 0.2							< 0.2 < 0.2		< 0.2	< 0.2	< 0.2	< 0.2 < 0.2	< 0.2	< 0.5 < 0.5	< 0.5 < 0.5	< 0.2 < 0.2	< 0.2 < 0.2	-	< 0.2 < 0.2
		mg/kg 0.2 mg/kg 0.2							< 0.2	-	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.5	< 0.5	< 0.2	< 0.2 < 0.2	-	< 0.2
		mg/kg 0.2 mg/kg 0.2	30						< 0.2		< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.5	< 0.5	< 0.2	< 0.2		< 0.2
PCBs	Toxaphene Arochlor 1016 Arochlor 1221	mg/kg 1 mg/kg 0.5	30						< 0.1 < 0.5 < 0.1		< 0.1 < 0.5 < 0.1	< 0.1 < 0.5 < 0.1	0.3 < 0.5 < 0.1	< 0.1 < 0.5 < 0.1	0.3 < 0.5 < 0.1	< 10 < 1 < 1	< 10 < 1 < 1	0.3 < 0.5 < 0.1	0.2 < 0.5 < 0.1		0.3 < 0.5 < 0.1
	Arochlor 1232	mg/kg 0.1 mg/kg 0.5 mg/kg 0.5							< 0.1 < 0.5 < 0.5		< 0.5	< 0.5	< 0.5	< 0.5	< 0.1 < 0.5 < 0.5	<1 <1 <1	<1 <1 <1 <1	< 0.1 < 0.5 < 0.5	< 0.1 < 0.5 < 0.5		< 0.1 < 0.5 < 0.5
	Arochlor 1248	mg/kg 0.5 mg/kg 0.5							< 0.5	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<1 <1 <1	<1 <1 <1 <1	< 0.5	< 0.5		< 0.5
		mg/kg 0.5 mg/kg 0.5	1						< 0.5		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<1 <1	<1 <1	< 0.5	< 0.5	-	< 0.5
РАН	Benz(a)anthracene Benzo(a)pyrene	mg/kg 0.5 mg/kg 0.5							< 0.5		< 0.5	< 0.5	0.6	< 0.5 < 0.5	1.4	< 0.5	< 0.5	< 0.5	4.7		0.8
	Benzo(a)pyrene TEQ (lower bound) * Benzo(a)pyrene TEQ (medium bound) *	mg/kg 0.5 mg/kg 0.5							< 0.5 0.6		< 0.5 0.6	< 0.5 0.6	0.8	< 0.5 0.6	1.9	< 0.5 0.6	< 0.5 0.6	< 0.5 0.6	6.2 6.4		0.8
	Benzo(g,h,i)perylene	mg/kg 0.5 mg/kg 0.5	3						1.2 < 0.5		1.2 < 0.5	1.2 < 0.5	1.4 < 0.5	1.2 < 0.5	2.4	1.2 < 0.5	1.2 < 0.5	1.2 < 0.5	6.7 2.4		1.4 < 0.5
	Benzo(k)fluoranthene Benzo(b+i)fluoranthene	mg/kg 0.5 mg/kg 0.5							< 0.5		< 0.5	< 0.5	< 0.5	< 0.5	1.1	< 0.5	< 0.5	< 0.5	3.9		< 0.5
	Chrysene Dibenz(a,h)anthracene Indeno(1,2,3-c,d)pyrene	mg/kg 0.5 mg/kg 0.5							< 0.5 < 0.5 < 0.5		< 0.5 < 0.5 < 0.5	0.5 < 0.5 < 0.5	0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5	1.1 < 0.5 0.6	< 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5	3.5 < 0.5 2.2		0.5 < 0.5 < 0.5
SVOCs		mg/kg 0.5 mg/kg 0.5 mg/kg 0.5							< 0.5		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5 0.6		< 0.5
	Anthracene	mg/kg 0.5 mg/kg 2							< 0.5		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6		< 0.5
	Demeton-O	mg/kg 0.2 mg/kg 0.2							< 0.2		< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.5	< 0.5	< 0.2	< 0.2	-	< 0.2
	Ethoprop Fensulfothion	mg/kg 0.2 mg/kg 0.2							< 0.2 < 0.2	-	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.5 < 0.5	< 0.5	< 0.2 < 0.2	< 0.2 < 0.2	-	< 0.2 < 0.2
	Fluoranthene Fluorene	mg/kg 0.5 mg/kg 0.5							0.7 < 0.5	-	< 0.5 < 0.5	1 < 0.5	1 < 0.5	< 0.5 < 0.5	2 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 1.3	7.3 < 0.5	-	1.3 < 0.5
	Mevinphos (Phosdrin) Naled (Dibrom)	mg/kg 0.2 mg/kg 0.2							< 0.2 < 0.2		< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.5	< 0.5 < 0.5	< 0.2 < 0.2	< 0.2 < 0.2	-	< 0.2 < 0.2
	PAHs (Sum of total)	mg/kg 0.5 mg/kg 0.5	300						0.5	-	0.5	0.5 2.9	0.5	0.5	0.5	0.5	0.5	0.5	0.5 42.5	-	0.5 4.6
	Pyrene	mg/kg 0.5 mg/kg 0.5							< 0.5 0.7 < 0.2	-	< 0.5 < 0.5 < 0.2	0.5 0.9 < 0.2	< 0.5 1 < 0.2	< 0.5 < 0.5 < 0.2	0.7 2 < 0.2	< 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5	< 0.5 2 < 0.2	2 8 < 0.2	-	< 0.5 1.3 < 0.2
рн	C10 - C14	mg/kg 0.2 mg/kg 20 mg/kg 50							< 0.2 < 20 < 50		< 0.2 < 20 172	< 0.2 < 20 168	< 0.2 < 20 < 50	< 0.2 < 20 < 50	< 0.2 < 20 < 50	< 0.5 < 100 < 250	< 0.5 < 20 370	< 0.2 1400 4957	< 0.2 120 560	-	< 0.2 < 20 97
	C10 - C40 (Sum of total)	mg/kg 50 mg/kg 100 mg/kg 50							< 50 - < 50		- 74	168 - 88	< 50 - < 50	< 50 - < 50	< 50 - < 50	< 250 - < 250	- 160	4957 - 3500	440	-	97 - 97
		mg/kg 50 mg/kg 50 mg/kg 20							< 50		98 < 20	88 80 < 20	< 50 < 50 < 20	< 50	< 50 < 50 < 20	< 250	210 < 20	57 < 20	< 50 < 20	-	< 50
PH Ifter silica gel	C10 - C14 (after silica gel clean-up)	mg/kg 20 mg/kg 20 mg/kg 50							< 50		< 50	< 50	< 50	< 50	< 50 < 100	< 50	< 50	1300	< 50 < 100	-	< 50
lean -up)	C15 - C28 (after silica gel clean-up)	mg/kg 50 mg/kg 50							< 100 < 100 < 100	-	< 100 < 100 < 100	< 100 < 100 < 100	< 100 < 100 < 100	< 100 < 100 < 100	< 100 < 100 < 100	100	< 100 < 100 < 100	3000 < 100	< 100 < 100 < 100	-	< 100 < 100 < 100
RH	C6-C10	mg/kg 50 mg/kg 20 mg/kg 20			45	70	110	200	< 100 - < 20	-	< 100 - < 20	< 100 - < 20	< 100 - < 20	< 100 - < 20	< 100 - < 20	< 100 - < 20	< 100 - < 20	< 100 - < 20	< 100 - < 20	-	< 100 - < 20
	TRH >C10-C16	mg/kg 20 mg/kg 50 mg/kg 50			45	240	440		< 50		< 50	< 20 < 50 < 50	< 50 < 50	< 50	< 20 < 50 < 50	< 20 < 250 < 250	< 50 < 50	2400 2400	290 290 290	:	< 50
	TRH >C16-C34 (F3) TRH >C34-C40 (F4)	mg/kg 100 mg/kg 100							< 100 < 100	-	160 < 100	160 < 100	< 100 < 100	< 100 < 100	< 100 < 100	< 500 < 500	320 210	2300 < 100	360 < 100	-	130 < 100
RH	TRH >C10-C40 (total)	mg/kg 100 mg/kg 50			110	240	440		< 100 < 50	-	160	160 < 50	< 100 < 100 < 50	< 100 < 100 < 50	< 100 < 100 < 50	< 500	530 < 50	4700 2500	650 < 50	-	130 < 50
(after silica gel clean -up)	TRH >C16-C34 (after silica gel clean-up)	mg/kg 100 mg/kg 100							< 100 < 100	-	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100	120 < 100	< 100 < 100	1900 < 100	< 100 < 100	-	< 100 < 100
BTEX	Benzene	mg/kg 0.1 mg/kg 0.1			0.5	0.5	0.5	0.5	< 0.1	-	< 0.1	< 0.1 < 0.1	< 0.1	< 0.1	< 0.1	< 0.1 < 0.1	< 0.1	< 0.1	< 0.1 < 0.1	-	< 0.1
	Toluene Xylene (m & p)	mg/kg 0.1 mg/kg 0.2			160	220	210	540	< 0.1	-	< 0.1 < 0.1 < 0.2	< 0.1 < 0.2	< 0.1 < 0.2	< 0.1	< 0.1 < 0.2	< 0.1 < 0.2	< 0.1	< 0.1	< 0.1 < 0.2	-	< 0.1
	Widene (a)	mg/kg 0.1							< 0.1	1	101		< 0.1	101	101	< 0.1	101	104		1	< 0.1
	Xylene (o) Xylene Total TCE (Trichloroethene)	mg/kg 0.3			40	60	95	170	< 0.3		< 0.1 < 0.3	< 0.1 < 0.3	< 0.3	< 0.1 < 0.3	< 0.1 < 0.3	< 0.3	< 0.1 < 0.3	< 0.1 < 0.3	< 0.1 < 0.3 < 0.5	-	< 0.3

111 -TCA (111-Trichloroethane)	mg/kg	0.5					< 0.5			-				-	< 0.5	< 0.5	< 0.5	
PCE (Tetrachloroethene)	mg/kg					-	< 0.5			-	-	-			< 0.5	< 0.5	< 0.5	
cis-1,2-Dichloroethene	mg/kg	0.5					< 0.5			-				-	< 0.5	< 0.5	< 0.5	
Vinyl chloride	mg/kg	0.5				-	< 0.5			-	-	-			< 0.5	< 0.5	< 0.5	
Naphthalene MAH	mg/kg	0.5		3		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5

				Health-based Investigation Level	Interim Soil Vapour	Soil HSLs for Va	apour Intrusion HSL A&	B Low-high Density Re	idential (mg/kg)	3/05/2021	3/05/2021	3/05/2021	3/05/2021	3/05/2021	14/05/2021	14/05/2021	14/05/2021	3/05
				(HIL C)	HIL-A/B	0 m to < 1 m	1 m to <2 m	2 m to < 4 m	4 m +	-								
hod Type als	Chemical Name Arsenic	mg/kg	2	3000				2 11 10 5 4 11	-	7.2	16	12	10	11	4.4	13	2.5	5
	Cadmium Chromium (III+VI) Copper	mg/kg mg/kg mg/kg	0.4 5 5	90 300 17000						< 0.4 9.8 42	< 0.4 25 24	< 0.4 21 25	0.6 16 61	< 0.4 24 73	< 0.4 7.8 8.8	< 0.4 15 11	< 0.4 11 < 5	3
	Lead Mercury (inorganic)	mg/kg mg/kg	5 0.1	600 80						20 < 0.1	27 < 0.1	25 < 0.1	870 1.9	210 0.6	15 < 0.1	21 < 0.1	7 < 0.1	
cal Parameters	Nickel Zinc Moisture Content (dried @ 103°C)	mg/kg mg/kg %	5 5 1	1200 30000						50 210 11	6.4 34 15	8 44 14	8.5 1100 19	7.8 800 15	< 5 36 11	< 5 46 10	< 5 5.5 9.2	-
ides	4,4-DDE a-BHC	mg/kg mg/kg	0.05							< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<
	Aldrin Aldrin + Dieldrin Azinophos methyl	mg/kg mg/kg mg/kg	0.05 0.05 0.2	10						< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	<
	b-BHC Bolstar (Sulprofos)	mg/kg mg/kg	0.05							< 0.05 < 0.2	< 0.05	< 0.05 < 0.2	< 0.05	< 0.05 < 0.2	< 0.05	< 0.05	< 0.05	<
	Chlordane Chlorfenvinphos	mg/kg mg/kg	0.1	70						< 0.1 < 0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
	Chlorpyrifos Chlorpyrifos-methyl d-BHC	mg/kg mg/kg mg/kg	0.2 0.2 0.05							< 0.2 < 0.2 < 0.05	< 0.2 < 0.2 < 0.05	< 0.2 < 0.2 < 0.05	< 0.2 < 0.2 < 0.05	< 0.2 < 0.2 < 0.05	< 0.2 < 0.2 < 0.05	< 0.2 < 0.2 < 0.05	< 0.2 < 0.2 < 0.05	
	DDD DDT	mg/kg mg/kg	0.05							-	-	-	•	•	-	-	•	
	DDT+DDE+DDD Demeton-S Diazinon	mg/kg mg/kg mg/kg	0.05 0.2 0.2	400						< 0.05 < 0.2 < 0.2	< 0.05 < 0.2 < 0.2	< 0.05 < 0.2 < 0.2	< 0.05 < 0.2 < 0.2	< 0.05 < 0.2 < 0.2	< 0.05 < 0.2 < 0.2	< 0.05 < 0.2 < 0.2	< 0.05 < 0.2 < 0.2	
	Dichlorvos Dieldrin	mg/kg mg/kg	0.2							< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	<
	Dimethoate Disulfoton Endosulfan I	mg/kg mg/kg mg/kg	0.2 0.2 0.05	340						< 0.2 < 0.2 < 0.05	< 0.2 < 0.2 < 0.05	< 0.2 < 0.2 < 0.05	< 0.2 < 0.2 < 0.05	< 0.2 < 0.2 < 0.05	< 0.2 < 0.2 < 0.05	< 0.2 < 0.2 < 0.05	< 0.2 < 0.2 < 0.05	
	Endosulfan II Endosulfan sulphate	mg/kg mg/kg	0.05	340						< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
	Endrin Endrin aldehyde	mg/kg mg/kg	0.05	20						< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	
	Endrin ketone Ethion Fenitrothion	mg/kg mg/kg mg/kg	0.05 0.2 0.2							< 0.05 < 0.2 < 0.2	< 0.05 < 0.2 < 0.2	< 0.05 < 0.2 < 0.2	< 0.05 < 0.2 < 0.2	< 0.05 < 0.2 < 0.2	< 0.05 < 0.2 < 0.2	< 0.05 < 0.2 < 0.2	< 0.05 < 0.2 < 0.2	
	Fenthion g-BHC (Lindane)	mg/kg mg/kg	0.2							< 0.2 < 0.05	< 0.2 < 0.05	< 0.2 < 0.05	< 0.2 < 0.05	< 0.2 < 0.05	< 0.2 < 0.05	< 0.2 < 0.05	< 0.2 < 0.05	
	Heptachlor Heptachlor epoxide Hexachlorobenzene	mg/kg mg/kg mg/kg	0.05 0.05 0.05	10						< 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05	
	Malathion Merphos	mg/kg mg/kg	0.2							< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	
	Methoxychlor Methyl parathion Monocrotophos	mg/kg mg/kg mg/kg	0.2 0.2 2	400						< 0.05 < 0.2 < 2	< 0.05 < 0.2 < 2	< 0.05 < 0.2 < 2	< 0.05 < 0.2 < 2	< 0.05 < 0.2 < 2	< 0.2 < 0.2 < 2	< 0.2 < 0.2 < 2	< 0.2 < 0.2 < 2	
	Omethoate Organochlorine pesticides	mg/kg mg/kg	2 0.1							<2	< 2	<2	<2	<2	<2	<2	<2	
	Other organochlorine pesticides Parathion	mg/kg mg/kg	0.1 0.2 0.2							- - < 0.2		- - < 0.2		- - < 0.2			- - < 0.2	
	Phorate Pirimiphos-methyl Pyrazophos	mg/kg mg/kg mg/kg	0.2							< 0.2	< 0.2	< 0.2 < 0.2 < 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	
	Ronnel Terbufos	mg/kg mg/kg	0.2							< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	
	Tetrachlorvinphos Tokuthion Toxaphene	mg/kg mg/kg mg/kg	0.2	30						< 0.2 < 0.2 < 0.1	< 0.2 < 0.2 < 0.1	< 0.2 < 0.2 < 0.1	< 0.2 < 0.2 < 0.1	< 0.2 < 0.2 < 0.1	< 0.2 < 0.2 < 0.1	< 0.2 < 0.2 < 0.1	< 0.2 < 0.2 < 0.1	_
	Arochlor 1016 Arochlor 1221	mg/kg mg/kg	0.5	50						< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.5	< 0.5	< 0.5	
	Arochlor 1232 Arochlor 1242 Arochlor 1248	mg/kg mg/kg	0.5 0.5 0.5							< 0.1 < 0.1 < 0.1	< 0.1 < 0.1 < 0.1	< 0.1 < 0.1 < 0.1	< 0.1 < 0.1 < 0.1	<0.1 <0.1 <0.1	< 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5	_
	Arochlor 1248 Arochlor 1254 Arochlor 1260	mg/kg mg/kg mg/kg	0.5							< 0.1 < 0.1 < 0.1	< 0.1	< 0.1 < 0.1 < 0.1	< 0.1	<0.1 <0.1 <0.1	< 0.5	< 0.5	< 0.5	
	PCBs (Sum of total) Benz(a)anthracene	mg/kg mg/kg	0.5	1						< 0.1 < 0.5	< 0.1 < 0.5	< 0.1 0.6	< 0.1 2.4	< 0.1 2.7	< 0.5	< 0.5	< 0.5 < 0.5	
	Benzo(a)pyrene Benzo(a)pyrene TEQ (lower bound) * Benzo(a)pyrene TEQ (medium bound) *	mg/kg mg/kg mg/kg	0.5 0.5 0.5	3						< 0.5 < 0.5 0.6	< 0.5 < 0.5 0.6	0.6 0.7 1	2.3 3 3.3	1.5 2 2.3	< 0.5 < 0.5 0.6	< 0.5 < 0.5 0.6	< 0.5 < 0.5 0.6	
	Benzo(a)pyrene TEQ (upper bound) * Benzo(g,h,i)perylene	mg/kg mg/kg	0.5	3						1.2 < 0.5	1.2	1.3 < 0.5	3.5 1	2.6	1.2 < 0.5	1.2 < 0.5	1.2 < 0.5	
	Benzo(k)fluoranthene Benzo[b+j]fluoranthene	mg/kg mg/kg	0.5							< 0.5	< 0.5 < 0.5 < 0.5	< 0.5	1.7 1.7 2.1	1.1	< 0.5	< 0.5	< 0.5	
	Chrysene Dibenz(a,h)anthracene Indeno(1,2,3-c,d)pyrene	mg/kg mg/kg mg/kg	0.5 0.5 0.5							< 0.5 < 0.5 < 0.5	< 0.5	0.6 < 0.5 < 0.5	< 0.5 1.2	2.4 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5	
	Acenaphthene Acenaphthylene	mg/kg mg/kg	0.5 0.5							< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	
	Anthracene Coumaphos Demeton-O	mg/kg mg/kg mg/kg	0.5 2 0.2							< 0.5 < 2 < 0.2	< 0.5 < 2 < 0.2	< 0.5 < 2 < 0.2	0.8 < 2 < 0.2	< 0.5 < 2 < 0.2				
	EPN Ethoprop	mg/kg mg/kg	0.2							< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	
	Fensulfothion Fluoranthene Fluorene	mg/kg mg/kg mg/kg	0.2 0.5 0.5							< 0.2 < 0.5 < 0.5	< 0.2 < 0.5 < 0.5	< 0.2 1.8 < 0.5	< 0.2 6.7 < 0.5	< 0.2 2.9 < 0.5	< 0.2 < 0.5 < 0.5	< 0.2 < 0.5 < 0.5	< 0.2 < 0.5 < 0.5	
	Mevinphos (Phosdrin) Naled (Dibrom)	mg/kg mg/kg	0.2							< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	
	Naphthalene PAH PAHs (Sum of total) Phenanthrene	mg/kg mg/kg mg/kg	0.5 0.5 0.5	300						< 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5	< 0.5 5.9 0.7	< 0.5 29.9 3.7	< 0.5 17.1 1.5	< 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5	
	Pyrene Trichloronate	mg/kg mg/kg	0.5							< 0.5	< 0.5	1.6 < 0.2	6.3 < 0.2	3.2 < 0.2	< 0.5	< 0.5	< 0.5	
	C10 - C14 C10 - C36 (Sum of total)	mg/kg mg/kg	20 50							< 20 < 50	< 20 < 50	< 20 < 50	< 20 < 50	< 20 < 50	< 20 < 50	< 20 < 50	< 20 < 50	
	C10 - C40 (Sum of total) C15 - C28 C29 - C36	mg/kg mg/kg mg/kg	100 50 50							- < 50 < 50	< 50 < 50	- < 50 < 50	- < 50 < 50	- < 50 < 50	- < 50 < 50	- < 50 < 50	- < 50 < 50	
	C6 - C9 C10 - C14 (after silica gel clean-up)	mg/kg mg/kg	20 20							< 20 < 20	< 20 < 20	< 20 < 20	< 20 < 20	< 20 < 20	< 20	< 20 -	< 20	
silica gel -up)	C10 - C36 (Ttotal) (after silica gel clean-up) C15 - C28 (after silica gel clean-up)	mg/kg mg/kg	50 50							< 50 < 50	< 50 < 50	< 50 < 50	< 50 < 50	< 50 < 50	-	-	-	
	C29 - C36 (after silica gel clean-up) C6-C10 C6-C10 less BTEX (F1)	mg/kg mg/kg mg/kg	50 20 20			45	70	110	200	< 50 - < 20	< 50 - < 20	< 50 - < 20	< 50 - < 20	< 50 - < 20	< 20	- - < 20	- - < 20	
	TRH >C10-C16 TRH >C10-C16 less Naphthalene (F2)	mg/kg mg/kg	50 50			45 110	240	440	200	< 50 < 50	< 50 < 50	< 50 < 50	< 50 < 50	< 50 < 50	< 50 < 50	< 50 < 50	< 50 < 50	
	TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH >C10-C40 (total)	mg/kg mg/kg mg/kg	100 100 100							< 100 < 100 < 100	< 100 < 100 < 100	< 100 < 100 < 100	< 100 < 100 < 100	< 100 < 100 < 100	< 100 < 100 < 100	<100 <100 <100	< 100 < 100 < 100	
silica gel	TRH >C10-C16 (after silica gel clean-up) TRH >C16-C34 (after silica gel clean-up)	mg/kg mg/kg	50 100			45 110	70 240	110 440	200	< 50 < 100	< 50 < 100	< 50 < 100	< 50 < 100	< 50 < 100	-			
-up)	TRH >C34-C40 (after silica gel clean-up) Benzene	mg/kg mg/kg	100 0.1			0.5	0.5	0.5	0.5	< 100 < 0.1	< 100 < 0.1	< 100 < 0.1	< 100 < 0.1	< 100 < 0.1	- < 0.1	- < 0.1	- < 0.1	
	Ethylbenzene Toluene Vulene (m. 8. n)	mg/kg mg/kg	0.1			55 160	220	210	540	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
	Xylene (m & p) Xylene (o) Xylene Total	mg/kg mg/kg mg/kg	0.2 0.1 0.3			40	60	95	170	< 0.2 < 0.1 < 0.3	< 0.2 < 0.1 < 0.3	< 0.2 < 0.1 < 0.3	< 0.2 < 0.1 < 0.3	< 0.2 < 0.1 < 0.3	< 0.2 < 0.1 < 0.3	< 0.2 < 0.1 < 0.3	< 0.2 < 0.1 < 0.3	
	Naphthalene MAH	mg/kg	0.5			3				< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	



				Health-based Investigation Level	Interim Soil Vapour HIL-A/B	Soil HSLs for Va	oour Intrusion HSL A&	B Low-high Density Res	idential (mg/kg)			
thod Type	Chemical Name	Unit	EQL	(HIL C)		0 m to < 1 m	1 m to < 2 m	2 m to < 4 m	4 m +			
tals	Arsenic Cadmium	mg/kg mg/kg	2	3000 90						12 0.4	3.7 < 0.4	14 < 0.
	Chromium (III+VI) Copper	mg/kg mg/kg	5 5	300 17000						35 21	6.3 5.5	29 39
	Lead Mercury (inorganic)	mg/kg mg/kg	5 0.1	600 80						41 < 0.1	7.7 < 0.1	18
	Nickel Zinc	mg/kg mg/kg	5	1200 30000						15 58	7.4	9. 8
ical Parameter icides	4,4-DDE	% mg/kg	1 0.05							12 < 0.05	4.7	< 0.
	a-BHC Aldrin	mg/kg mg/kg	0.05	10						< 0.05	< 0.05	< 0.
	Aldrin + Dieldrin Azinophos methyl b-BHC	mg/kg mg/kg mg/kg	0.05 0.2 0.05	10						< 0.05 - < 0.05	< 0.05 - < 0.05	< 0.
	Bolstar (Sulprofos) Chlordane	mg/kg mg/kg	0.03	70						< 0.2	< 0.2	<0
	Chlorfenvinphos Chlorpyrifos	mg/kg mg/kg	0.2	,,,						< 0.2	< 0.2	<0
	Chlorpyrifos-methyl d-BHC	mg/kg mg/kg	0.2							< 0.2	< 0.2 < 0.05	< 0 < 0
	DDD DDT	mg/kg mg/kg	0.05							-	-	-
	DDT+DDE+DDD Demeton-S	mg/kg mg/kg	0.05	400						< 0.05 < 0.2	< 0.05 < 0.2	< 0. < 0
	Diazinon Dichlorvos	mg/kg mg/kg	0.2							< 0.2 < 0.2	< 0.2 < 0.2	< 0 < 0
	Dieldrin Dimethoate	mg/kg mg/kg	0.05							< 0.05 < 0.2	< 0.05 < 0.2	< 0. < 0
	Disulfoton Endosulfan I	mg/kg mg/kg	0.2	340						< 0.2	< 0.2	< 0.
	Endosulfan II Endosulfan sulphate Endrin	mg/kg mg/kg	0.05	340						< 0.05 < 0.05	< 0.05 < 0.05	< 0. < 0.
	Endrin Endrin aldehyde Endrin katone	mg/kg mg/kg	0.05	20						< 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05	< 0. < 0. < 0.
	Endrin ketone Ethion Fenitrothion	mg/kg mg/kg	0.05 0.2 0.2							< 0.05 < 0.2 < 0.2	< 0.05 < 0.2 < 0.2	< 0. < 0 < 0
	Fenitrothion Fenthion g-BHC (Lindane)	mg/kg mg/kg mg/kg	0.2 0.2 0.05							< 0.2 < 0.2 < 0.05	< 0.2 < 0.2 < 0.05	< 0 < 0 < 0.
	g-BHC (Lindane) Heptachlor Heptachlor epoxide	mg/kg mg/kg mg/kg	0.05	10						< 0.05	< 0.05 < 0.05 < 0.05	< 0.
	Hexachlorobenzene Malathion	mg/kg mg/kg	0.05	10						< 0.05	< 0.05	< 0.
	Merphos Methoxychlor	mg/kg mg/kg	0.2	400						< 0.2 < 0.05	< 0.2 < 0.05	< 0 < 0.
	Methyl parathion Monocrotophos	mg/kg mg/kg	0.2							< 0.2	< 0.2 < 2	< 0
	Omethoate Organochlorine pesticides	mg/kg mg/kg	2 0.1							< 2	< 2	<
	Other organochlorine pesticides Parathion	mg/kg mg/kg								-	-	-
	Phorate Pirimiphos-methyl	mg/kg mg/kg	0.2							< 0.2 < 0.2	< 0.2 < 0.2	< 0 < 0
	Pyrazophos Ronnel	mg/kg mg/kg	0.2							< 0.2	< 0.2	< 0 < 0
	Terbufos Tetrachlorvinphos	mg/kg mg/kg	0.2							< 0.2	< 0.2	< 0
	Tokuthion Toxaphene	mg/kg mg/kg	0.2	30						< 0.2	< 0.2	< 0
5	Arochlor 1016 Arochlor 1221 Arochlor 1232	mg/kg mg/kg	0.5 0.1 0.5							< 0.5 < 0.1 < 0.5	< 0.5 < 0.1 < 0.5	< (< (< (
	Arochlor 1232 Arochlor 1242 Arochlor 1248	mg/kg mg/kg mg/kg	0.5							< 0.5	< 0.5	<(
	Arochlor 1254 Arochlor 1260	mg/kg mg/kg	0.5							< 0.5	< 0.5	<(
	PCBs (Sum of total) Benz(a)anthracene	mg/kg mg/kg	0.5	1						< 0.5	< 0.5 < 0.5	< (
	Benzo(a)pyrene Benzo(a)pyrene TEQ (lower bound) *	mg/kg mg/kg	0.5 0.5	3						< 0.5 < 0.5	< 0.5 < 0.5	4. 5.
	Benzo(a)pyrene TEQ (medium bound) * Benzo(a)pyrene TEQ (upper bound) *	mg/kg mg/kg	0.5 0.5	3						0.6	0.6	7. 8.
	Benzo(g,h,i)perylene Benzo(k)fluoranthene	mg/kg mg/kg	0.5 0.5							< 0.5	< 0.5 < 0.5	< 4
	Benzo[b+j]fluoranthene Chrysene	mg/kg mg/kg	0.5 0.5							< 0.5 < 0.5	< 0.5 < 0.5	3. 3.
	Dibenz(a,h)anthracene Indeno(1,2,3-c,d)pyrene	mg/kg mg/kg	0.5 0.5							< 0.5 < 0.5	< 0.5 < 0.5	<
Cs	Acenaphthene Acenaphthylene	mg/kg mg/kg	0.5							< 0.5	< 0.5	0.
	Anthracene Coumaphos Demetor-O	mg/kg mg/kg	0.5							< 0.5	< 0.5	0. <
	Demeton-O EPN Ethonron	mg/kg mg/kg	0.2 0.2 0.2							< 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2	< 0 < 0 < 0
	Ethoprop Fensulfothion Fluoranthene	mg/kg mg/kg mg/kg	0.2							< 0.2 < 0.2 0.7	< 0.2 < 0.2 < 0.5	< 0 < 0 7.
	Fluorantinene Fluorene Mevinphos (Phosdrin)	mg/kg mg/kg mg/kg	0.5							< 0.5	< 0.5	0. < 0
	Naled (Dibrom) Naphthalene PAH	mg/kg mg/kg	0.2							< 0.2	< 0.2	<0
	PAHs (Sum of total) Phenanthrene	mg/kg mg/kg	0.5	300						2	< 0.5 < 0.5	39 4.
	Pyrene Trichloronate	mg/kg mg/kg	0.5 0.2							0.7 < 0.2	< 0.5 < 0.2	7. <0
	C10 - C14 C10 - C36 (Sum of total)	mg/kg mg/kg	20 50							< 20 175	< 20 < 50	<2
	C10 - C40 (Sum of total) C15 - C28	mg/kg mg/kg	100 50							- 85	- < 50	</td
	C29 - C36 C6 - C9	mg/kg mg/kg	50 20							90 < 20	< 50 < 20	<
	C6-C10 C6-C10 less BTEX (F1)	mg/kg mg/kg	20 20			45	70	110	200	- < 20	- < 20	<
	TRH >C10-C16 TRH >C10-C16 less Naphthalene (F2)	mg/kg mg/kg	50 50			110	240	440		< 50	< 50	</td
	TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH >C10-C40 (total)	mg/kg mg/kg	100 100							150 < 100 150	< 100 < 100 < 100	< 1
(TRH >C10-C40 (total) Benzene	mg/kg mg/kg	100 0.1			0.5	0.5	0.5	0.5	< 0.1	< 100 < 0.1	< 1
	Ethylbenzene Toluene	mg/kg mg/kg	0.1			55 160	220	210	540	< 0.1	< 0.1	< 0
	Xylene (m & p) Xylene (o)	mg/kg mg/kg	0.2							< 0.2 < 0.1	< 0.2 < 0.1	<0
s	Xylene Total TCE (Trichloroethene)	mg/kg mg/kg	0.5			40	60	95	170	< 0.3	< 0.3	< 0 < 0
	111 -TCA (111-Trichloroethane) PCE (Tetrachloroethene) cis-1,2-Dichloroethene	mg/kg mg/kg	0.5 0.5 0.5							< 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5	< 0 < 0 < 0
	cis-1,2-Dichloroethene Vinyl chloride Naphthalene MAH	mg/kg mg/kg mg/kg	0.5							< 0.5	< 0.5 < 0.5 < 0.5	<0<0

	95% UCL Average	
	Chemical:	Lead
Criteria	HIL-C	600
Sample ID	GG1-04(0.8-0.9)	79
	GG2-01(0.3-0.4)	11
	GG3-02(0.9-1.0)	71
	GG4-04(0.8-0.9)	35
	GG5-05(2.0-2.1)	22
	GG6-03(1.0-1.1)	17
	GG7-01(0.05-0.15)	25
	GG8-01(0.2-0.3)	8.9
	GG8-02(0.4-0.5)	12
	GG8-03(0.9-1.0)	47
	GG9-04(1.0-1.1)	16
	BH1(0.7-0.9)	20
	BH2(0.5-0.7)	27
	BH3(1.0-1.2)	25
	BH4(1.0-1.2)	870
	BH5(0.5-0.7)	210
	BH6-01 (0.4-0.5)	15
	BH7-01 (0.5-0.6)	21
	BH10(0.7-0.9)	82
	GG10(0.3-0.4)	41
	GG11(0.2-0.3)	7.7
	GG12(1.4-1.5)	180

95%	UCL calculation table	
population size	n	22.00
sample mean	Х	83.75
standard deviation	S	179.22
standard error	s/√n	38.21
Student's t value	t	1.72
95% UCL	X + t * s/√n	149.51

Source: Calculationg Upper Confidence Limits for Exposure Point Concentrations at Hazardous Waste Sites (USEPA, 2002)

Appendix C5 - Ground Gas GA5000 Results and Gas Screenign Value (GSV) Calculations

ell ID Monitoring Date t Round - 7th & 13th GG1 7/05/2021 GG2 7/05/2021					The GSV in	culding 6 ro	und results i	s 0.61 L/hr, ir	ndicating Lov	v Risk.					
GG1 7/05/2021	CH₄ (%v/v)	CO₂ (%v/v)	O ₂ (%v/v)	CO (ppm)	H ₂ S (ppm)	Balance (%)	Barometric Pressure	Initial relative pressure (mbar)	Stable relative pressure (mbar)	Initial Flow Rate (L/hr)	Stable Flow Rate (L/hr)	CH₄ GSV For Each Well (L/ hr)	CO ₂ GSV For Each Well (L/ hr)	CH₄ GSV For Each Round (L/ hr)	CO₂ GSV Fo Each Roun (L/ hr)
	n May 2021														
iG2 7/05/2021	6.1	2.9	0.1	1.8	1.0	91.0	1007	0.14	0.12	4.1	0.6	0.25	0.02		
GG3 7/05/2021	6.2 0.0	3.2 7.3	0.0	0.0	1.0 0.0	90.6 92.6	1007 1010	0.02	0.07	0.1	0.0	0.00	0.00		
GG3 7/05/2021 GG4 7/05/2021	3.7	2.5	0.1	0.0	0.0	92.6	1010	0.28	0.28	0.0	0.0	0.00	0.00		
G5 7/05/2021	0.0	5.8	5.1	1.0	0.0	89.1	1011	0.05	0.03	0.1	0.0	0.00	0.01	0.25	0.30
GG6 7/05/2021	0.1	5.5	0.0	0.0	0.0	94.4	1010	0.02	0.02	0.0	0.0	0.00	0.00	1	
GG7 7/05/2021	0.9	6.6	0.0	1.0	0.0	92.6	1011	0.72	0.81	0.1	0.1	0.00	0.01		
6G8 13/05/2021 6G9 13/05/2021	1.1 1.4	1.3 3.2	1.4 2.2	0.0	0.0	96.1 93.2	1007 1010	-0.67 0.07	0.00	0.0	0.0	0.00	0.00		
nd Round - 21st May		5.2	2.2	0.0	0.0	55.2	1010	0.07	0.07	0.0	0.0	0.00	0.00		
G1 21/05/2021	12.8	0.8	0.8	0.0	0.0	82.9	1033	0.03	0.03	0.0	0.0	0.00	0.00		
GG2 21/05/2021	0.0	1.5	1.5	0.0	0.0	93.0	1033	0.00	0.00	0.0	0.0	0.00	0.00		
GG3 21/05/2021	0.0	2.2	2.2	0.0	0.0	89.5	1033	0.02	0.02	0.0	0.0	0.00	0.00		
GG4 21/05/2021	3.6	0.7	0.7	0.0	0.0	90.7	1034	0.05	0.05	0.0	0.0	0.00	0.00		
GG5 21/05/2021 GG6 21/05/2021	0.0	5.8 1.0	5.0 1.0	0.0	0.0	89.3 93.8	1034 1032	0.02 -0.03	0.02	0.0	0.0	0.00	0.00	0.00	0.00
GG7 21/05/2021	0.5	0.1	0.1	0.0	0.0	93.3	1032	-0.03	-1.65	0.0	0.0	0.00	0.00		
GG8 21/05/2021	0.0	2.8	2.8	0.0	0.0	95.5	1034	0.00	0.00	0.0	0.0	0.00	0.00		
GG9 21/05/2021	1.3	0.3	0.3	0.0	0.0	94.8	1033	0.00	0.00	0.0	0.0	0.00	0.00		
d Round - 3rd June 2	2021			-											
GG1 3/06/2021	14.8	3.7	0.3	1.0	0.0	81.4	1015	-0.02	-0.03	0.0	0.0	0.00	0.00		
GG2 3/06/2021	3.6	3.9	0.2	0.0	0.0	92.3	1016	0.03	0.09	0.0	0.0	0.00	0.00		
GG3 3/06/2021 GG4 3/06/2021	0.0 5.7	7.5 5.7	3.6 0.1	0.0	0.0	88.9 88.5	1016 1016	-0.02	-0.07 -0.03	0.0	0.0	0.00	0.00		
GG5 3/06/2021	0.0	5.7	5.4	0.0	0.0	88.9	1016	0.02	0.05	0.0	0.0	0.00	0.01	0.03	0.02
GG6 3/06/2021	0.0	5.0	1.2	0.0	0.0	93.8	1016	0.03	0.07	0.2	0.2	0.00	0.01		
GG7 3/06/2021	1.0	5.7	0.2	0.0	0.0	93.1	1017	-0.03	-0.01	0.2	0.2	0.00	0.01		
GG8 3/06/2021	0.0	2.2	0.3	0.0	0.0	97.5	1016	0.00	0.03	0.1	0.1	0.00	0.00		
6G9 3/06/2021 6 h Round - 9th June2	1.6	3.3	0.2	0.0	0.0	94.9	1016	0.05	0.03	0.1	0.1	0.00	0.00		
G1 9/06/2021	13.0	4.3	0.3	0.0	0.0	82.3	1007	0.02	0.02	0.0	0.0	0.00	0.00		
G2 9/06/2021	3.9	3.9	0.0	0.0	0.0	92.3	1007	0.02	0.02	0.0	0.0	0.00	0.00		
GG3 9/06/2021	0.0	7.7	2.6	0.0	0.0	89.7	1007	0.03	0.03	0.1	0.2	0.00	0.02		
GG4 9/06/2021	5.7	5.2	0.1	0.0	0.0	89.1	1008	0.02	0.02	0.1	0.2	0.01	0.01		
GG5 9/06/2021	0.0	5.7	4.8	0.0	0.0	89.5	1009	0.03	0.05	0.1	0.2	0.00	0.01	0.03	0.02
6G6 9/06/2021 6G7 9/06/2021	0.0	4.9 5.5	0.7	0.0	0.0	94.4 93.6	1009 1009	0.03	0.07	0.1	0.1	0.00	0.00		
GG8 9/06/2021	0.3	2.0	0.0	0.0	0.0	97.7	1009	0.02	0.03	0.1	0.2	0.00	0.00		
GG9 9/06/2021	1.5	3.0	0.1	0.0	0.0	95.4	1009	0.03	0.05	0.1	0.2	0.00	0.01		
h Round - 16th June	2021														
GG1 16/06/2021	2.7	1.7	13.5	0.0	0.0	82.0	1007	0.03	0.05	1.4	2.4	0.06	0.04		
GG2 17/06/2021	3.5	3.5	0.8	0.0	0.0	92.2	1007	0.02	0.09	0.0	0.0	0.00	0.00		
6G3 18/06/2021 6G4 19/06/2021	0.0	7.2 4.5	3.6 0.6	1.0 0.0	0.0	89.1 89.3	1007 1007	0	-0.02 0.07	0.1	0.1	0.00	0.01		
GG5 20/06/2021	0.0	4.5 5.5	4.8	1.0	1.0	89.6	1007	0.02	0.07	0.0	0.1	0.01	0.00	0.13	0.17
6G6 21/06/2021	0.0	4.7	1.1	1.0	1.0	94.2	1007	-0.02	-0.02	0.1	0.1	0.00	0.00		
GG7 22/06/2021	0.9	5.0	1.5	0.0	1.0	92.6	1007	-0.02	0.02	0.1	0.1	0.00	0.01		
	0.2	1.7	1.0	1.0	1.0	97.1	1007	0.03	0.05	0.1	0.1	0.00	0.00		
6G8 23/06/2021	1.6	2.7	0.8	0.0	1.0	94.4	1007	0.02	0.02	0.1	0.2	0.00	0.01		
GG9 24/06/2021		5.2	2.6	0.0	0.0	85.7	1014	0.02	-0.08	0.2	0.4	0.03	0.02		
6G9 24/06/2021 A Round - 25th June	6.4	4.0	0.3	0.0	0.0	93.2	1014	0.02	0.08	0.2	0.4	0.03	0.02		
GG9 24/06/2021	6.4 2.5	4.0				89.3	1015	0.02	0.03	0.1	0.1	0.00	0.01		
GG9 24/06/2021 h Round - 25th June GG1 25/06/2021		4.0 6.9	3.7	0.0	0.0			0.00	0.00	0.1	0.1	0.04	0.00		
GG9 24/06/2021 A h Round - 25th June A GG1 25/06/2021 A GG2 26/06/2021 A GG3 27/06/2021 A GG4 28/06/2021 A	2.5 0.0 <mark>6.1</mark>	6.9 4.5	3.7 0.4	0.0	0.0	88.9	1015	0.03	0.00	0.1		0.01	0.00		
GG9 24/06/2021 A h Round - 25th June 361 25/06/2021 362 GG1 25/06/2021 363 327/06/2021 363 GG3 27/06/2021 3664 28/06/2021 3665 29/06/2021 3655 29/06/2021 3655 329/06/2021 3655 329/06/2021 3655 329/06/2021 3655 329/06/2021 3655 329/06/2021 3655 329/06/2021 3655 329/06/2021 3655 329/06/2021 3655 365 36555 36555 36555 </td <td>2.5 0.0 6.1 0.0</td> <td>6.9 4.5 5.3</td> <td>3.7 0.4 4.1</td> <td>0.0 0.0</td> <td>0.0 0.0</td> <td>88.9 90.6</td> <td>1016</td> <td>0.03</td> <td>0.07</td> <td>0.1</td> <td>0.1</td> <td>0.00</td> <td>0.01</td> <td>0.03</td> <td>0.03</td>	2.5 0.0 6.1 0.0	6.9 4.5 5.3	3.7 0.4 4.1	0.0 0.0	0.0 0.0	88.9 90.6	1016	0.03	0.07	0.1	0.1	0.00	0.01	0.03	0.03
GG9 24/06/2021 A h Round - 25th June 361 25/06/2021 362 GG1 25/06/2021 363 27/06/2021 363 GG4 28/06/2021 3665 29/06/2021 3665 30/06/2021	2.5 0.0 6.1 0.0 0.0	6.9 4.5 5.3 4.5	3.7 0.4 4.1 0.8	0.0 0.0 0.0	0.0 0.0 0.0	88.9 90.6 94.6	1016 1016	0.03 0.00	0.07 0.02	0.1 0.0	0.1 0.0	0.00 0.00	0.01 0.00	0.03	0.03
GG9 24/06/2021 h Round - 25th June GG1 25/06/2021 GG2 26/06/2021 GG3 27/06/2021 GG4 28/06/2021 GG5 29/06/2021	2.5 0.0 6.1 0.0	6.9 4.5 5.3	3.7 0.4 4.1	0.0 0.0	0.0 0.0	88.9 90.6	1016	0.03	0.07	0.1	0.1	0.00	0.01	0.03	0.03

Moderate to High Risk GSV<15 - Denotes Characteristic Gas Situation of 3 (NSW EPA (2012), Guidelines for the Assessment and Management of Sites Impacted by Hazardous Ground Gases)

*When total concentration exceeds 1% (v/v) for CH_4 and/ or 5% (v/v) for CO_2 consider raising the characteristic gas situation to 2.

Appendix C6 - Soil Vapour Laboratory Test Results

Analyte	Units	Limit of Reporting	Criteria	GG1	GG2	GG3	GG4	GG5	GG6	GG7	GG8	GG9	FD1	FD2
BTEXN														
Benzene	µg/m3	1.6	1,000	25	17	8	10	7	<1.6	3	8	3	9	7
Toluene	µg/m3	1.9	1,300,000	31	20	51	48	25	3	20	61	130	51	61
Ethylbenzene	µg/m3	2	330,000	10	10	8	20	7	2	5	9	8	8	9
m-& p-Xylene	µg/m3	4	220,000*	30	10	20	100	10	<4.3	8	30	20	20	30
o-Xylene	µg/m3	2	220,000	<11	8	8	53	6	<2.2	4	10	6	8	10
Naphthalene	µg/m3	2.6	800	<13	<2.6	<2.6	3	<2.6	<2.6	<2.6	4	3	<2.6	3
Total Petroleum Hydrocarbons														
TPH C5 - C8 Aliphatic	µg/m3	200	-	33000	2400	2400	13000	<200	<200	<200	33000	2600	2100	33000
TPH C9 - C12 Aliphatic	µg/m3	50	-	<250	170	<50	17000	<50	<50	<50	8800	250	<50	10000
TPH C9 - C10 Aromatic	µg/m3	100	-	<500	<100	<100	2000	<100	<100	<100	110	<100	<100	140
TPH C6 - C10 - BTEX (F1)	µg/m3	200	180000	17000	1000	<200	<200	<200	<200	<200	41000	2300	<200	43000
TPH >C10 - C12 - Naphthalene (F2)	µg/m3	40	130000	<200	140	<40	15000	<40	<40	<40	6700	200	<40	8000
Volatile Organic Chlorinated Compo	unds													
TCE (Trichloroethene)	µg/m3	2.7	20	<13.5	6	<2.7	<2.7	3	<2.7	<2.7	<2.7	<2.7	<2.7	<2.7
111 -TCA	µg/m3	2.7	60000	<13.5	<2.7	<2.7	<2.7	<2.7	<2.7	<2.7	<2.7	<2.7	<2.7	<2.7
PCE (Tetrachloroethene)	µg/m3	3.4	2000	<17	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4
cis-1,2-Dichloroethene	µg/m3	2.0	80	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Vinyl chloride	µg/m3	1.3	30	<6.5	<1.3	<1.3	<1.3	<1.3	<1.3	<1.3	<1.3	<1.3	<1.3	<1.3

Bold: Exceedance of Limit of Reporting but below the adopted criteria

Surface Gas Walkover

SOPHS - Service Pit Gas Monitoring

Date	14/05/2021
Scientist	SW
Weather	Sunny & Low Wind

Service Pits	Time					-	Bal.	Barometric pressure (mbar)
SP1	15:10	0.0	0.1	21.4	0	0	78.6	1013
SP2	15:14	0.0	0.1	21.4	0	0	78.6	1013
SP3	15:15	0.0	0.1	21.4	0	0	78.6	1013

Surface Gas Walkover

SOPHS - Surface Gas Walkover

Date	14/05/2021
Scientist	SW
Weather	Sunny & Low Wind

Orbit(cpm)		Barome		l₂S	H	со	O ₂	CO ₂	Сн₄	-	0.11
1 1322 0.0 0.1 2.09 0 0 787 3 1338 0.0 0.1 2.07 0 0 782 4 1339 0.0 0.1 2.07 0 0 782 5 1340 0.0 0.1 2.07 0 0 792 6 1342 0.0 0.1 2.07 0 0 792 7 1343 0.0 0.1 2.07 0 0 792 6 1345 0.0 0.1 2.07 0 0 792 64 0.0 0.1 2.12 0 0 787 64 0.0 0.1 2.12 0 0 787 64 0.0 0.1 2.12 0 0 787 64 0.0 0.1 2.12 0 0 787 65 0.0 0.1 2.12 0 0 787 65 0.0 0.1 2.12 0 0						(pr				Time	Grid
2 1338 0.0 0.1 207 0 0 772 3 1338 0.0 0.1 207 0 0 772 4 1339 0.0 0.1 207 0 0 772 5 1340 0.0 0.1 207 0 0 792 7 1343 0.0 0.1 207 0 0 792 8 1345 0.0 0.1 207 0 0 792 44 0.0 0.1 212 0 0 787 44 0.0 0.1 212 0 0 787 45 0.0 0.1 212 0 0 787 46 0.0 0.1 212 0 0 787 47 0.0 0.1 212 0 0 787 49 0.0 0.1 212 0 0 787 59 0.0 0.1 212 0 0 787	1013									13:32	1
313.380.00.12.07007.92413.380.00.12.07007.92513.400.00.12.07007.92613.420.00.12.07007.92713.430.00.12.07007.72613.450.00.12.12007.73613.450.00.12.12007.87614.450.00.12.12007.87713.440.00.12.12007.8760.00.12.12007.87713.400.00.12.12007.8760.00.12.12007.8770.00.12.12007.8760.00.12.12007.8770.00.12.12007.8770.00.12.12007.8770.00.12.12007.8770.00.12.12007.8770.00.12.12007.8780.00.12.12007.8790.00.12.14007.8590.0 <th< th=""><td>1013</td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td></th<>	1013					_					
41338000.0120.70079.2513.400.0120.70079.2713.430.00.120.70079.2813.450.00.120.70079.24314.550.00.120.70079.2441.000.0121.20078.745.000.0121.20078.746.0000.0121.20078.747.0000.0121.20078.748.0000.0121.20078.754.0000.0121.20078.755.0000.0121.20078.754.0000.0121.20078.755.0000.0121.20078.755.0000.0121.40078.556.0000.0121.40078.557.0000.0121.40078.556.0000.0121.40078.557.0000.0121.40078.558.0000.0121.40078.559.0000.0121.40078.556.0000.0121.60 <td>1013</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td>	1013					_					
61342000.120.70079.271343000.120.70079.2813450.00.120.70079.24314550.00.121.20078.744-0.00.121.20078.745-0.00.121.20078.746-0.00.121.20078.747-0.00.121.20078.748-0.00.121.20078.749-0.00.121.20078.750-0.00.121.20078.751-0.00.121.20078.753-0.00.121.20078.754-0.00.121.20078.755-0.00.121.40078.556-0.00.121.40078.557-0.00.121.40078.558-0.00.121.40078.559-0.00.121.40078.559-0.00.121.40078.559-0.	1013					_					
7 13.43 0.0 0.1 20.7 0 0 79.2 8 13.45 0.0 0.1 20.7 0 0 78.7 144 0.0 0.1 21.2 0 0 78.7 145 0.0 0.1 21.2 0 0 78.7 146 0.0 0.1 21.2 0 0 78.7 146 0.0 0.1 21.2 0 0 78.7 146 0.0 0.1 21.2 0 0 78.7 146 0.0 0.1 21.2 0 0 78.7 149 0.0 0.1 21.2 0 0 78.7 151 0.0 0.1 21.2 0 0 78.7 155 0.0 0.1 21.2 0 0 78.7 155 0.0 0.1 21.4 0 0 78.5 156 0.0 0.1 21.4 0 0 78.5 156 0.0	1013	:	79.2	0	0	.7	20.	0.1	0.0	13:40	5
8 13:45 0.0 0.1 20.7 0 0 72.2 43 14:55 0.0 0.1 21.2 0 0 78.7 44 0.0 0.1 21.2 0 0 78.7 45 0.0 0.1 21.2 0 0 78.7 45 0.0 0.1 21.2 0 0 78.7 46 0.0 0.1 21.2 0 0 78.7 47 0.0 0.1 21.2 0 0 78.7 48 0.0 0.1 21.2 0 0 78.7 50 0.0 0.1 21.2 0 0 78.7 51 0.0 0.1 21.2 0 0 78.7 51 0.0 0.1 21.4 0 0 78.7 53 0.0 0.1 21.4 0 0 78.7 54 0.	1013		79.2	0	0	.7	20.	0.1	0.0	13:42	6
4414-550.00.121.20078.7440.00.121.20078.7450.00.121.20078.7460.00.121.20078.7470.00.121.20078.7480.00.121.20078.7490.00.121.20078.7510.00.121.20078.7530.00.121.20078.7540.00.121.20078.7550.00.121.20078.7560.00.121.20078.7570.00.121.20078.7580.00.121.20078.7590.00.121.40078.5560.00.121.40078.5570.00.121.40078.5580.00.121.40078.5590.00.121.40078.56115.050.00.121.40078.5630.00.121.40078.5590.00.121.40078.36115.05<	1013		79.2	0	0	.7	20.	0.1	0.0	13:43	7
44 - 0.0 0.1 21.2 0 0 78.7 45 - 0.0 0.1 21.2 0 0 78.7 46 - 0.0 0.1 21.2 0 0 78.7 47 - 0.0 0.1 21.2 0 0 78.7 48 - 0.0 0.1 21.2 0 0 78.7 50 - 0.0 0.1 21.2 0 0 78.7 51 - 0.0 0.1 21.2 0 0 78.7 52 - 0.0 0.1 21.2 0 0 78.7 53 - 0.0 0.1 21.2 0 0 78.7 54 - 0.0 0.1 21.4 0 0 78.5 55 - 0.0 0.1 21.4 0 0 78.5 55 - 0.0 0.1 21.4 0 0 78.5 56 - <td>1013</td> <td></td> <td></td> <td>0</td> <td>0</td> <td>.7</td> <td>20.</td> <td>0.1</td> <td>0.0</td> <td>13:45</td> <td></td>	1013			0	0	.7	20.	0.1	0.0	13:45	
45 0.0 0.1 21.2 0 0 78.7 46 0.0 0.1 21.2 0 0 78.7 47 0.0 0.1 21.2 0 0 78.7 48 0.0 0.1 21.2 0 0 78.7 49 0.0 0.1 21.2 0 0 78.7 50 0.0 0.1 21.2 0 0 78.7 51 0.0 0.1 21.2 0 0 78.7 53 0.0 0.1 21.2 0 0 78.7 54 0.0 0.1 21.4 0 0 78.7 55 0.0 0.1 21.4 0 0 78.5 56 0.0 0.1 21.4 0 0 78.5 <th< th=""><td>1013</td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td>14:55</td><td></td></th<>	1013					_				14:55	
46 0 0.1 212 0 0 78.7 47 0.0 0.1 212 0 0 78.7 48 0.0 0.1 212 0 0 78.7 49 0.0 0.1 212 0 0 78.7 50 0.0 0.1 21.2 0 0 78.7 51 0.0 0.1 21.2 0 0 78.7 52 0.00 0.1 21.2 0 0 78.7 53 0.00 0.1 21.2 0 0 78.7 54 0.00 0.1 21.4 0 0 78.7 55 0.00 0.1 21.4 0 0 78.5 56 0.00 0.1 21.4 0 0 78.5 57 0.00 0.1 21.4 0 0 78.5 58 0.0 0.1 21.4 0 0 78.5 61 15.05 0 0.1 21.	1013					_				-	
47 0.0 0.1 212 0 0 78.7 48 0.0 0.1 21.2 0 0 78.7 50 0.0 0.1 21.2 0 0 78.7 50 0.0 0.1 21.2 0 0 78.7 51 0.0 0.1 21.2 0 0 78.7 53 0.0 0.1 21.2 0 0 78.7 53 0.0 0.1 21.2 0 0 78.7 54 0.0 0.1 21.2 0 0 78.7 55 0.0 0.1 21.4 0 0 78.7 56 0.0 0.1 21.4 0 0 78.5 57 0.0 0.1 21.4 0 0 78.5 59 0.0 0.1 21.4 0 0 78.5 61 1505 0.0 0.1 21.6 0 78.3 62 0.0 0.1 21.6	1013					_				-	
48 - 0.0 0.1 21.2 0 0 78.7 49 - 0.0 0.1 21.2 0 0 78.7 50 - 0.0 0.1 21.2 0 0 78.7 51 - 0.0 0.1 21.2 0 0 78.7 52 - 0.0 0.1 21.2 0 0 78.7 53 - 0.0 0.1 21.2 0 0 78.7 54 - 0.0 0.1 21.2 0 0 78.7 55 - 0.0 0.1 21.4 0 0 78.5 55 - 0.0 0.1 21.4 0 0 78.5 56 - 0.0 0.1 21.4 0 0 78.5 59 - 0.0 0.1 21.4 0 0 78.3 61 15.05 0.0 0.1 21.6 0 78.3 62 - 0	1013					_				-	
46000.121.200078.75000.121.20078.7510.00.121.20078.7520.00.121.20078.7530.00.121.20078.7540.00.121.20078.7550.00.121.40078.5560.00.121.40078.5570.00.121.40078.5580.00.121.40078.5590.00.121.40078.5590.00.121.40078.5590.00.121.40078.5560.00.121.40078.5560.00.121.40078.5570.00.121.40078.5580.00.121.40078.5590.00.121.60078.5560.00.121.60078.3560.00.121.60078.3570.00.121.60078.3580.00.121.60078.3590.00.121.60 <td>1013</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td>-</td> <td></td>	1013					_				-	
50	1013					_				-	
51 0.0 0.1 21.2 0 0 78.7 52 - 0.0 0.1 21.2 0 0 78.7 53 - 0.0 0.1 21.2 0 0 78.7 54 - 0.0 0.1 21.2 0 0 78.7 55 - 0.0 0.1 21.4 0 0 78.5 56 - 0.0 0.1 21.4 0 0 78.5 57 - 0.0 0.1 21.4 0 0 78.5 58 - 0.0 0.1 21.4 0 0 78.5 59 - 0.0 0.1 21.4 0 0 78.5 61 15.05 0.0 0.1 21.6 0 0 78.3 62 - 0.0 0.1 21.6 0 0 78.3 64	1013					_				-	
5200.00.12120078.7530.00.121.20078.7540.00.121.20078.75500.00.121.40078.5560.00.121.40078.5570.00.121.40078.5580.00.121.40078.5590.00.121.40078.56000.121.40078.56115.050.00.121.40078.562000.121.60078.56300.121.60078.5640.00.121.60078.36500.00.121.60078.3660.00.121.60078.3670.00.121.60078.3680.00.121.60078.3700.00.121.60078.3710.00.121.60078.4730.00.121.60078.4740.00.121.60078.4750.00.121.60078.474<	1013 1013					_				-	
530.00.121.200.078.7540.00.121.200.078.7550.00.121.400.078.5560.00.121.400.078.5570.00.121.400.078.5580.00.121.400.078.5590.00.121.400.078.5600.00.121.400.078.56115050.00.121.60.00.078.3620.00.121.60.00.78.3630.00.121.60.078.3640.00.121.60.078.3650.00.121.60.078.3660.00.121.60.078.37670.00.121.60.078.37680.00.121.60.078.37690.00.121.60.078.37690.00.121.60.078.37690.00.121.60.078.37690.00.121.60.078.37690.00.12	1013					_				-	
54	1013					_				-	
55	1013					_					
56 <th< th=""><td>1013</td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td></th<>	1013					_					
570000.121.400078.55800.00.121.400078.55900.00.121.400078.56015.050.00.1121.400078.56115.050.00.1121.600078.3620.00.0121.600078.36300.0121.600078.3640.00.0121.600078.3650.00.0121.600078.3660.00.0121.600078.3760.00.0121.600078.3780.00.0121.600078.3790.00.0121.60078.3740.00.0121.60078.3740.00.0121.60078.3740.00.0121.60078.3750.00.0121.50078.4760.00.0121.50078.4770.00.0121.50078.4780.00.0121.50078.4790.00.0121.50078.4740.00.0121.50	1013					_				-	
580.00.121.40078.5590.00.121.40078.5600.00.121.40078.56115:050.00.121.60078.3620.00.121.60078.3630.00.121.60078.3640.00.121.60078.3640.00.121.60078.3650.00.121.60078.3660.00.121.60078.3670.00.121.60078.3680.00.121.60078.3700.00.121.60078.3710.00.121.60078.3730.00.121.50078.4740.00.121.50078.4740.00.121.50078.4740.00.121.50078.4750.00.121.50078.4750.00.121.50078.474	1013					_				-	
59	1013					_				-	
60	1013			0	0	_				-	
62	1013	,	78.5	0	0	.4	21.		0.0	-	60
6300.121.60078.36400.121.60078.36500.121.60078.36600.121.60078.36700.121.60078.36800.121.60078.36900.121.60078.37000.121.60078.37100.121.50078.473	1013	1	78.3	0	0	.6	21.	0.1	0.0	15:05	61
64	1013	,	78.3	0	0	.6	21.	0.1	0.0	-	62
66	1013		78.3	0	0	.6	21.	0.1	0.0	-	63
66.0.00.121.60076.367.0.00.121.60076.368.0.00.121.60076.369.0.00.121.60078.370.0.00.121.50078.371.0.00.121.50078.472.0.00.121.50078.473.0.00.121.50078.474.0.00.121.50078.474.0.00.121.50078.474.0.00.121.50078.475.0.00.121.50078.476.0.00.121.50078.377.0.00.121.60078.37815:180.00.121.60078.3	1013					.6	21.	0.1	0.0	-	
67	1013					.6	21.	0.1	0.0	-	
68-0.000.0121.60078.369-0.000.0121.60078.370-00.0121.50078.471-00.0121.50078.472-00.0121.50078.473-00.0121.50078.474-00.1121.50078.474-00.1121.50078.474-00.1121.50078.475-00.1121.60078.376-00.1121.60078.377-0.010.1121.60078.37815.180.00.1121.60078.3	1013					_				-	
69.0.00.121.60078.3700.00.121.50078.4710.00.121.50078.4720.00.121.50078.4730.00.121.50078.474.0.00.121.50078.474.0.00.121.50078.474.0.00.121.50078.4750.00.121.50078.476.0.00.121.60078.377.0.00.121.60078.37815.180.00.121.60078.3	1013					_				-	
70	1013					_				-	
71 - 0.00 0.1 21.5 0 0 78.4 72 - - 0.00 0.1 21.5 0 0 78.4 73 - - 0.00 0.1 21.5 0 0 78.4 74 - - 0.00 0.1 21.5 0 0 78.4 74 - - 0.00 0.1 21.5 0 0 78.4 75 - - 0.00 0.1 21.5 0 0 78.4 76 - - 0.00 0.1 21.5 0 0 78.3 77 - - 0.00 0.1 21.6 0 0 78.3 78 15:18 0.0 0.1 21.6 0 0 78.3	1013					_				-	
72 - 0.00 0.1 21.5 0 0 78.4 73 - 0.00 0.1 21.5 0 0 78.4 74 - 0.00 0.1 21.5 0 0 78.4 74 - 0.00 0.1 21.5 0 0 78.4 75 - 0.00 0.1 21.5 0 0 78.4 75 - 0.00 0.1 21.5 0 0 78.4 76 - 0.00 0.1 21.6 0 0 78.3 77 - 0.00 0.1 21.6 0 0 78.3 78 15:18 0.0 0.1 21.6 0 0 78.3	1013	-								-	
73 - 0.0 0.1 21.5 0 0 78.4 74 - - 0.0 0.1 21.5 0 0 78.4 75 - - 0.0 0.1 21.5 0 0 78.4 75 - - 0.0 0.1 21.5 0 0 78.4 75 - - 0.0 0.1 21.5 0 0 78.4 76 - - 0.0 0.1 21.6 0 0 78.3 77 - - 0.0 0.1 21.6 0 0 78.3 78 15:18 0.0 0.1 21.6 0 0 78.3	1013					_				-	
74 - 0.0 0.1 21.5 0 0 78.4 75 - - 0.0 0.1 21.5 0 0 78.4 76 - - 0.0 0.1 21.5 0 0 78.4 76 - - 0.0 0.1 21.6 0 0 78.3 77 - - 0.0 0.1 21.6 0 0 78.3 78 15:8 0.0 0.1 21.6 0 0 78.3	1013 1013					_				-	
75 - 0.0 0.1 21.5 0 0 78.4 76 - - 0.0 0.1 21.6 0 0 78.3 77 - - 0.0 0.1 21.6 0 0 78.3 78 15:18 0.0 0.1 21.6 0 0 78.3	1013					_				-	
76 - 0.0 0.1 21.6 0 0 78.3 77 - - 0.0 0.1 21.6 0 0 78.3 78 15:18 0.0 0.1 21.6 0 0 78.3	1013					_				-	
77 - 0.0 0.1 21.6 0 0 78.3 78 15:18 0.0 0.1 21.6 0 0 78.3	1013					_					
78 15:18 0.0 0.1 21.6 0 0 78.3	1013					_					
	1013					_				15:18	
90 - 0.0 0.1 21.8 0 0 78.6	1013				0	_		0.1	0.0		90

				Criteria				
Analuta	Unit	LOR*	Manaur		GG5-01	GG-FD1 (13, May	TS (13, May	ТВ
Analyte	Unit	LUK	Vapour Intrusion	Ecological(Marine)	(13, May 2021)	2021)	2021)	(13, May 2021)
Malatila Tatal Dasarasa bia ti aka saska sa			Inclusion					
Volatile Total Recoverable Hydrocarbons	ma/l	0.01		_	< 0.02	0	< 0.02	
TRH C6 - C9	mg/L	0.01	-	-	< 0.02	0	< 0.02	-
TRH C6 - C10	mg/L	0.01	-	-	< 0.02	0	< 0.02	-
TRH C6 - C10 lessBTEX (F1)	mg/L	0.01	1		< 0.02	0	< 0.02	-
Benzene	mg/L	0.001	0.8	0.5	< 0.001	0	< 0.001	98
Toluene	mg/L	0.001	-	-	< 0.001	0	< 0.001	88
Ethylbenzene	mg/L	0.001	-	-	< 0.001	0	< 0.001	91
m+p-xylene	mg/L	0.002	-	-	< 0.002	0	< 0.002	100
o-xylene	mg/L	0.001	-	-	< 0.001	0	< 0.001	80
Naphthalene	mg/L	0.001	-	0.05	< 0.001	0	0	-
Surrogate toluene-d8	%	-	-	-	120	0	111	-
Surrogate 4-BFB	%	-	-	-	134	0	107	106
Semi-Volatile Total Recoverable Hydrocarb	1							
TRH C10 - C14	mg/L	0.05	-	-	< 0.05	-	-	-
TRH C15 - C28	mg/L	0.1	-	-	< 0.1	-	-	-
TRH C29 - C36	mg/L	0.1	-	-	< 0.1	-	-	-
TRH >C10 - C16	mg/L	0.05	-	-	< 0.05	-	-	-
TRH >C10 - C16less Naphthalene (F2)	mg/L	0.05	0.0001	-	< 0.05	-	-	-
TRH >C16 - C34	mg/L	0.1	-	-	< 0.1	-	-	-
TRH >C34 - C40	mg/L	0.1	-	-	< 0.1	-	-	-
Surrogate o-Terphenyl	%	-	-	-	-	-	-	-
Poly Aromatic Hydrocarbons	_						_	
Naphthalene	mg/L	0.001	-	-	< 0.001	-	-	-
Acenaphthylene	mg/L	0.001	-	-	< 0.001	-	-	-
Acenaphthene	mg/L	0.001	-	-	< 0.001	-	-	-
Fluorene	mg/L	0.001	-	-	< 0.001	-	-	-
Phenanthrene	mg/L	0.001	-	-	< 0.001	-	-	-
Anthracene	mg/L	0.001	-	-	< 0.001	-	-	-
Fluoranthene	mg/L	0.001	-	-	< 0.001	-	-	-
Pyrene	mg/L	0.001	-	-	< 0.001	-	-	-
Benzo(a)anthracene	mg/L	0.001	-	-	< 0.001	-	-	-
Chrysene	mg/L	0.001	-	-	< 0.001	-	-	-
Benzo(b&j)fluoranthene	mg/L	0.001	-	-	< 0.001	-	-	-
Benzo(k)fluoranthene	mg/L	0.001	-	-	< 0.001	-	-	-
Benzo(a)pyrene	mg/L	0.001	-	-	< 0.001	-	-	-
Indeno(1,2,3-c,d)pyrene	mg/L	0.001	-	-	< 0.001	-	-	-
Dibenzo(a,h)anthracene	mg/L	0.001	-	-	< 0.001	-	-	-
Benzo(g,h,i)perylene	mg/L	0.001	-	-	< 0.001	-	-	-
Total PAH	mg/L	0.001	-	-	< 0.003	-	-	-
Phenols								
Total Phenolics (as Phenol)	mg/L	0.05	-	0.4	< 0.003	-	-	-
Metals	5,							<u> </u>
Arsenic	mg/L	0.001	-	-	0.004	0.003	-	_
Cadmium	mg/L	0.0001	-	0.0007	< 0.0002	< 0.0002	-	_
Chromium	mg/L	0.001	-	0.027	< 0.0002	0.001	-	_
Copper	mg/L	0.001	-	0.0013	0.001	0.001	-	_
Lead	mg/L	0.001	-	0.0044	0.001	< 0.001	_	_
Mercury	mg/L	0.00005	-	0.0004	< 0.0001	< 0.0001	-	_
Nickel	mg/L	0.0000	-	0.007	0.002	0.002	-	-
Zinc	mg/L	0.001		0.015	0.002	0.002	-	_
Inorganics	111g/ L	0.001	_	0.015	0.015	0.000		
Nitrate	mg/L	0.02	-		0.66	-	_	
Nitrate	mg/L	0.02			< 0.02	-	-	-
Ammonia as N in water	-		-	0.91		-	-	-
	mg/L	0.01	-	0.91	4	-	-	-

Shade: Exceedance of ecological criteria.

Detailed Site Investigation

School Infrastructure NSW (SINSW) - Department of Education Proposed Sydney Olympic Park High School

Appendix D: QA-QC Procedures

greencap.com.au

Appendix D – QA/QC Procedures Table of Contents

1. 1 Introd	duction	2 -
2.2 Data	Quality Objectives	3 -
3.3Quali	ty Control and Quality Assurance	6 -
3.1 Meas	surement Data Quality Objectives	6 -
3.1.1	Repeatability (Field collected intra-laboratory duplicates)	6 -
3.1.2	Precision	6 -
3.1.3	Accuracy	7 -
3.1.4	Representativeness	7 -
3.1.5	Completeness	8 -
3.1.6	Comparability	8 -
3.1.7	Sensitivity	8 -
3.1.8	Blanks	9 -
3.1.9	Holding Times	9 -
3.1.10	Confirmation Checking	9 -
3.2 Field	QA/QC	9 -
3.2.1	Details of Sampling Team	9 -
3.2.2	Sampling Controls	9 -
3.2.3	Weather Observations	11 -
3.3 Labo	ratory QA/QC	12 -
3.3.1	Holding time	12 -
3.1 QA/C	C Data Evaluation	12 -
4. 4 QAQ	C Appendix References	14 -

J169135-01: Appendix D QA/QC Procedures Appendix D - QAQC Procedures

1 Introduction

The aim of quality control and quality assurance (QA/QC) is to deliver data that is:

- Representative of what is sampled;
- Precise;
- Accurate; and
- Reproducible.

As investigations involve both field and laboratory QA/QC, these are similarly divided. The objective of this document is to evaluate and identify the data quality objectives (DQOs) and the data quality indicators (DQIs), which are used to assess whether the DQOs have been met.

The NSW guideline documents used in the evaluation of the data set for this investigation are:

- NSW Department of Environment and Conservation (DEC) (2006). Contaminated sites: Guidelines for NSW Site Auditors Scheme (2nd edition);
- National Environment Protection Council (NEPC) (2013). National Environment Protection (Assessment of Site Contamination) Amendment Measure;
- NSW Environment Protection Authority (EPA) (1995). Contaminated Sites: Sampling design guidelines; and
- NSW Office of Environment and Heritage (OEH) (2011). Contaminated sites: Guidelines for consultants reporting on contaminated sites.

Data quality is typically discussed in terms of precision, accuracy, representativeness, comparability and completeness. These are referred to as the PARCC parameters. The PARCC (and additional QA) parameters are discussed within this report.

The following items form part of the QA/QC appendix:

- Repeatability;
- Precision;
- Accuracy;
- Representativeness;
- Completeness;
- Comparability;
- Sensitivity;
- Holding times;
- Procedures for anomalous samples and confirmation checking.

Quality Assurance (QA) is "a set of activities intended to establish confidence that quality requirements will be met" (AS/NZS ISO 9000:2005).

This encompasses all actions, procedures, checks and decisions undertaken to ensure the accuracy and reliability of analysis results. It includes routine procedures which ensure proper sample control, data transfer, instrument calibration, the decisions required to select and properly train staff, select equipment and analytical methods, and the day to day judgments resulting from regular scrutiny and maintenance of the laboratory system.

J169135-01: Appendix D QA/QC Procedures Appendix D - QAQC Procedures

Quality Control (QC) is "a set of activities intended to ensure that quality requirements are actually being met" (AS/NZS ISO 9000:2005). In other words, the operational techniques and activities used to fulfill the requirements for quality.

These are the components of QA which serve to monitor and measure the effectiveness of other QA procedures by comparison with previously decided objectives. They include measurement of the quality of reagents, cleanliness of apparatus, accuracy and precision of methods and instrumentation, and reliability of all of these factors as implemented in a given laboratory from day to day.

A complete discussion of either of these terms or the steps for implementing them is beyond the scope of this document. It is widely recognised, however, that adoption of sound laboratory QA and QC procedures is essential and readers are referred to documentation available from the National Association of Testing Authorities (NATA), if further information is required.

2 Data Quality Objectives

The Data Quality Objectives (DQOs) process is a systematic approach used to define the type, quantity and quality of data supporting decisions which relate to the environmental condition of a site. Undertaking DQOs for site assessment and remediation is a requirement of the DEC (2006). *Contaminated sites: Guidelines for NSW Site Auditors Scheme*. The DQO process was formulated by the US EPA and provides sound guidance for a consistent approach to understanding site assessment and remediation.

Step	Description	Comment							
1	State the problem	The site has a history of contamination associated with petroleum hydrocarbons, poly-cyclic aromatic hydrocarbons (PAH), heavy metals, asbestos in fill (bonded and friable), and ground gas. The site locates on a Class 2 Acid Sulphate Soil zone.							
		or the assessment of the above-mentioned risks, data gaps identified in the PSI re required to be eliminated and a complete CSM for the site is required to be eveloped.							
2	ldentify the decision	Results of the Detail Site Investigation provide sufficient data to complete the identified data gaps identified in the PSI and develop a complete CSM that can inform the decision-making process for further investigations and remedial actions.							
3	Identify the inputs for the decision	Inputs to the decision will include the scientific data collected during the Detail Site Investigation. This will include but not be limited to:							
		 Borehole logs, well installation details and observations made by the field scientist, 							
		• Soil sample results,							
		Gas monitoring well measurement results,							
		Soil vapour sample results,							
		 Service pit gas monitoring results, 							
		 Surface gas monitoring results, 							
		 Groundwater field measurements, and 							
		Groundwater sample results.							
4	boundaries for the boundaries are established as follows:								
	Study	Soil assessment:							

Table 1: Data Quality Objectives

J169135-01: Appendix D QA/QC Procedures Appendix D - QAQC Procedures

		· · · · · · · · · · · · · · · · · · ·
		Lateral study boundaries: Site borders
		 Vertical study boundaries: ~4.0 mBGL
		Ground gas and soil vapour monitoring:
		Lateral study boundaries: Site borders
		 Vertical study boundaries: ~6.0 mBGL
		Service pit monitoring:
		 Lateral study boundaries: Site borders and service pits in the immediate vicinity of the site.
		Surface gas monitoring:
		Lateral study boundaries: Site borders
		 Vertical study boundaries : 5cm above the ground surface.
		Groundwater monitoring:
		 Lateral study boundaries: Site borders and their vicinity.
		 Vertical study boundaries: Latite bedrock underlying the shallow water bearing aquifer (expected to be encountered at ~11 m BGL depth).
		The temporal boundary of the project is restricted to the timing of the investigations.
5	Develop a decision	Following decision rules are identified for the proposed Detail Site Investigation:
	rule	<u>Ground gas:</u> Ground gas measurements indicate the areas around the identified sensitive receptors are classified as "Low Risk" in accordance with Guidelines for the Assessment and Management of Sites impacted by Hazardous Ground Gasses (NSW EPA 2012).
		Soil sample: Chemicals of potential concern do not exist in samples at concentrations in excess of adopted site criteria.
		Soil vapour: Chemicals of potential concern do not exist in samples at concentrations in excess of adopted site criteria.
		<u>Service pit monitoring</u> : Service pits at or in the immediate vicinity of the site do not contain hazardous gases at or above acute toxicity levels (e.g. 35 ppm for CO) and/ or within explosive ranges (e.g $5-15\%$ for CH ₄) and/ or greater than NSW EPA/ WorkCover notification criteria (e.g. 1% for CH ₄).
		<u>Groundwater monitoring</u> : Chemicals of potential concern do not exist in samples at concentrations in excess of adopted site criteria.
		If systematic or judgmental samples fail these decision rules, then further assessment or remediation will be required.
6	Specify tolerable limits on decision error	Potential for decision errors will be minimised through an analysis of a site specific worst case scenario. In this context maximum values and peak concentrations of contaminants will be used for comparison against the acceptance criteria threshold concentrations.
7	Optimise the design for	The design has been optimised to provide the most resource-effective sampling and analysis as follows:
	obtaining data	 By targeting the areas of concern where data gaps remain; and
		 By adopting a discretional sampling approach (risk / target-based) to the assessment of soil vapour, ground gas and groundwater.
		Data will be continuously evaluated in the context of the evolving conceptual model, and modifications to the sampling plan will be made to optimise the design as required.

J169135-01: Appendix D QA/QC Procedures Appendix D - QAQC Procedures

The DQOs are defined in a series of seven steps. Table 1 outlines the seven steps and refers to the sections of the report which address these quality objectives.

Based on the DQOs the following measurement data quality indicators (MDQIs) are provided in Table 2 below.

Table 2 – Measurement Data	a Quality Indicators (MDQIS)
----------------------------	------------------------------

Parameter	Procedure	Minimum Frequency	Criteria		
			(5 to 10x LOR⁴)	>10x LOR	
Precision	Field Duplicates	1 in 20 - metals	<80 RPD	<50 RPD	
		1 in 20 - semi-volatiles	<100 RPD	<80 RPD	
		1 in 20 - volatiles	<150 RPD	<130 RPD	
	Lab Replicate*	1 in 20	<50 RPD	<30 RPD	
Accuracy*	Reference Material	1 in 10	60% to 140%R 80% to 120%R		
	Matrix spikes				
	Surrogate spikes				
Representativeness*	Reagent Blanks	1 per batch	No detection		
	Holding Times*	Every sample	-		
Blanks**	Trip Blank	1 per batch	No detection		
Sensitivity	Limit of Reporting	Every sample	LOR < ½ site criteria		

Notes:

1. RPD – relative percentage difference

2. %R – percent recovery

3. LOR – limit of reporting

4. 4 no limit at <5x LOR

5. * the MDQI is usually specified in the standard method. If not, use the default values set out in this table

6. ** only necessary when measuring dissolved metals and volatile organic compounds in water samples. It is noted that dedicated sampling equipment was utilised, therefore rinsate blanks were not required.

It should be noted that Standards Australia (AS4482.1) specify that typical MDQIs for precision should be \leq 50% RPD, however also acknowledge that low concentrations and organic compounds in particular can be acceptably outside this range. The standard suggests that \leq 50% RPD be used as a 'trigger' and values above this level of repeatability need to be noted and explained.

3.1 Measurement Data Quality Objectives

Step 7 of the DQO process is a focus on the quality of the information by measurement, that is, measurement data quality objectives (MDQOs). The aim of a quality control and quality assurance (QA/QC) is to deliver data that is representative of what is sampled, precise, accurate and reproducible. As investigations involve both field and laboratory QA/QC, these are similarly divided. The objective of this section is to provide the MDQOs and the measurement data quality indicators (MDQIs), which will be used to establish whether the DQOs have been met.

All groundwater sampling procedures need to be undertaken according to a standard procedure, for example those procedures set out in:

- NSW Environment Protection Authority (EPA) (1995). *Contaminated sites: Sampling design guidelines*;
- NSW OEH (2011). Contaminated sites: Guidelines for consultants reporting on contaminated sites;
- Standards Australia (2005). *Guide to the investigation and sampling of sites with potentially contaminated soil, Part 1: Non-volatile and semi-volatile compounds, (AS 4482.1);* and
- Standards Australia (1999). *Guide to the investigation and sampling of sites with potentially contaminated soil, Part 2: Volatile substances, (AS 4482.2).*

Measurement data quality is typically discussed in terms of precision, accuracy, representativeness, comparability and completeness. Although not necessarily considered in list order, the following items should form part of the QA/QC data evaluation:

- Measured Parameters: precision, accuracy, repeatability (comparability), blanks; and
- Assessed Parameters: completeness, representative of site conditions, sensitivity, and holding times.

The laboratories used should be NATA accredited for the analytical methods performed. Containers, sample preservation (if necessary) and holding times should be consistent with industry practices as set out in NEPM and as defined by ASTM.

The QA parameters selected and the criteria used to evaluate the analytical data are defined below and presented in Table 2 of this report.

3.1.1 Repeatability (Field collected intra-laboratory duplicates)

These samples provide a check on the analytical performance of the laboratory. At least 5 percent of samples (1 in 20) per day of sampling from a site are collected in duplicate. For comparability of data, it is important that there is little delay in the sample submission. For split samples, because of error associated with field splitting, an RPD of between 80 and 150% (depending on the substance) will be allowed as the MDQI.

Any value >50% RPD will be noted and discussed, as per Standards Australia requirements, with respect to its acceptability for inclusion in the data-set.

3.1.2 Precision

Precision is a measure of the reproducibility of results, and is assessed on the basis of agreement between a set of replicate results obtained from duplicate analyses. The precision of a duplicate

J169135-01: Appendix D QA/QC Procedures Appendix D - QAQC Procedures

August 2021

determination can be measured as relative percentage difference (RPD), and is calculated from the following equation:

$$\mathsf{RPD} = \left[\frac{\mathsf{X1-X2}}{\left(\frac{\mathsf{X1-X2}}{2}\right)}\right] \times 100$$

where: X1 is the first duplicate value X2 is the second duplicate value

The field duplicate (FD1) and inter lab duplicate (FT1) results and calculated RPDs are presented in the following reports. All results are within the acceptable range, RPD calculations area available in **Attachment One** and **Two** of this report.

3.1.3 Accuracy

Accuracy is a measure of the agreement between an experimental determination and the true value of the parameter being measured. The determination of accuracy can be achieved through the analysis of known reference materials or assessed by the analysis of matrix spikes. Accuracy is measured in terms of percentage recovery as defined by the following equation:

$$\%R = \frac{SSR - SR}{SA} \times 100$$

where:

%R = percentage recovery of the spike SSR = spiked sample result SR = sample result (native) SA = spike added

Laboratories calculate percentage recoveries of spiked compounds, which are evaluated against control or acceptance limits taken from the appropriate method or the Contract Laboratory Program Statement of Work. If the spike recovery for a sample does not fall within the prescribed control limits, laboratory based corrective action is required. Spike recover results are available in **Attachment One** and **Two** of this report.

Surrogate spikes consist of spiking non-target compounds into the sample prior to analysis. The spiked compounds are expected to behave during analysis in the same way as the target compounds. Every sample is spiked prior to extraction or analysis with surrogate compounds that are representative of the analysis. If surrogate spike recovery does not meet the prescribed control limits, samples should be reanalysed. Surrogate spike recover results are available in **Attachment One** and **Two** of this report.

3.1.4 Representativeness

Data Point Evaluation

Representativeness expresses the degree to which sample data accurately and precisely represents a characteristic of a population, parameter variations at a sampling point, or an environmental condition.

J169135-01: Appendix D QA/QC Procedures Appendix D - QAQC Procedures

GREENCAP Going Further in Managing Risk

August 2021

Representativeness is primarily dependent on the design and implementation of the sampling program. Representativeness of the data is partially ensured by the avoidance of contamination, adherence to sample handling and analysis protocols, and use of proper chain-of-custody and documentation procedures. Blanks, holding times and field duplicates are all QA parameters that can assist in the analysis of representativeness for data point evaluation and will need to be analysed as part of the measurement data quality assessment.

Data Set Evaluation

Whether the data is representative of the site is checked in part by undertaking an evaluation of the whole data set to establish the data is compatible. Data compatibility is authenticated by confirming that the laws of chemistry are upheld (i.e. nitrate is not present when Eh is -250 mV), that intralaboratory analysis relationships are consistent (i.e. BTEX is a subset of the TPH C_6 - C_9 fraction), that observations and field measurements are in agreement with other field data and the laboratory data and that results are consistent with the geology, history and logic.

3.1.5 Completeness

The following information is required to check for completeness of data sets:

- chain-of-custody forms (completed by Greencap and the laboratory);
- sample receipt forms;
- all requested sample results reported;
- all blank data reported;
- all laboratory duplicates reported and relative percent differences (RPDs) calculated;
- all surrogate spike data reported;
- all matrix spike data reported; and
- NATA stamp on reports.

3.1.6 Comparability

Comparability is the evaluation of the similarity of conditions (e.g. sample depth, sample homogeneity, sampling procedures) under which separate sets of data are produced to ensure minimal common error. Data comparability should be demonstrated by the use of standardised sampling and analysis procedures. Data comparability was maintained by undertaking the investigations as follows:

- sampling during the monitoring program was conducted by trained Greencap field team using Greencap's standard operating procedures;
- groundwater samples were collected using a dedicated bailer or peristaltic pump with dedicated tubing; and
- the same laboratories (Envirolab and Eurofins) were used for organic and inorganic analysis for all relevant samples using the same NATA approved analytical methods.

3.1.7 Sensitivity

When interferences are present in the sample, a loss of sensitivity can occur resulting in an increase in the method detection limit. In some instances (e.g. where one or more compounds have particularly high concentrations) the sample must be diluted for analysis. This increases the method detection limit by the dilution factor.

J169135-01: Appendix D QA/QC Procedures Appendix D - QAQC Procedures

The detection limits achieved by the laboratory, when adjusted for interferences from the presence of other chemicals within the sampled matrix, must be less than half the site criteria for all analytes tested (i.e. 2 x LOR <site criteria).

3.1.8 Blanks

To meet the QC acceptance criteria, laboratory blanks should have no detectable concentrations of the target compounds. Trip blanks (taken to and returned from the field) and rinsate blanks (taken in the field) will only be necessary for analysing dissolved metals and volatile organic compounds in water samples where the threshold value is near the detection limit for an individual compound or element. Rinsate blanks are not required when dedicated sampling equipment is used.

3.1.9 Holding Times

Where standard holding times are exceeded, a discussion, using professional judgement, as to the integrity of the data will be required, taking into account such factors as field storage, laboratory storage and even sample bottle characteristics.

3.1.10 Confirmation Checking

For blind duplicates, if one sample has more than two analytes exceeding the data quality objectives, the sample is carefully checked. If the error is not apparent, the sample is rejected. If more than three samples are rejected all the samples collected at that time are rejected. These samples are then resampled and reanalysed.

3.2 Field QA/QC

3.2.1 Details of Sampling Team

Fieldwork was conducted by an experienced and qualified Greencap personnel.

3.2.2 Sampling Controls

Decontamination Procedures Carried Out Between Groundwater Sampling Events

Only one groundwater sample was allowed in the Detail Site Investigation scope. For more ground water sampling, dedicated sampling equipment was used during groundwater sampling. This included the usage of dedicated tubing for the peristaltic pump at one location. Between each location the flow cell and water quality metres were rinsed using a mixture of orange based surfactant and distilled water, followed by a rinse with distilled water. Groundwater samples were collected directly from the pump tubing and did not pass through the flow cell.

Samples were supplied to NATA accredited laboratories (Eurofins) under a completed chain of custody (CoC). Copies of the CoC documentation and laboratory transcripts are provided in **Appendix F** of the main report.

Blanks samples

Purging and Screening of Vapour Wells

Prior to sampling, PID readings were collected at each of the soil vapour points. Wells were then purged while monitoring using the GA 5000 landfill gas meter for oxygen, carbon dioxide, carbon monoxide, hydrogen sulphide and methane concentrations for a period of up to three minutes until the gas concentrations were shown to stabilise. PID readings were collected again after the sampling was completed. The stabilised readings are presented in Table 3.

J169135-01: Appendix D QA/QC Procedures Appendix D - QAQC Procedures

Vapour Point	CH₄ ppm	CO₂ ppm	O ₂ ppm	H ₂ S ppm	CO ppm	PID Reading ppm
GG1	6.1	2.9	0.1	1.8	1.0	3.7
GG2	6.2	3.2	0.0	0.0	1.0	0.2
GG3	0.0	7.3	0.1	0.0	0.0	3.2
GG4	3.7	2.5	0.6	0.0	0.0	23.7
GG5	0.0	5.8	5.1	1	0.0	07
GG6	0.1	5.5	0.0	0.0	0.0	0.3
GG7	0.9	6.6	0.0	1.0	0.0	0.0
GG8	1.1	1.3	1.4	0.0	0.0	28.5
GG9	1.4	3.2	2.2	0.0	0.0	1.2

Vapour Well Leak Tests

A helium leak test was undertaken on each soil vapour well to ensure that ambient air was not being drawn into the well(s). The helium leak test methodology adopted comprised the filling of a shroud with helium (which overlies the soil vapour point) and measuring the concentration using a GasCheck handheld helium detector. Soil vapour was drawn from the vapour point and a real-time helium concentration measured. A comparison was made between the helium concentrations within the shroud and the vapour point to assess whether the measured vapour point concentration is less than 10% of the concentration within the shroud. Results are presented in Table 4.

A shut-in test was also performed on each sample train, which included the external components used to sample soil vapour such as tubing / pipes, joints, summa canisters and regulator. The shut-in test involved capping the intake from the soil vapour sampling point and opening the canister regulator to allow the sample train to be under the vacuum from the summa canister. Leak test results are shown in Table 4 below.

J169135-01: Appendix D QA/QC Procedures Appendix D - QAQC Procedures

Table 4: Results of Helium Leak Test and Shut-In Test for Soil Vapour Samp	ing Point Integrity

		Test Results							
Soil	Consula	Helium Leak	Test	Shut-in Test					
Vapour Point	Sample Date	Helium in Concentration Shroud (%)	Helium in Vapour Point (%)	Pressure at start of test (inHg)	Pressure after 5 minutes (inHg)				
GG1	07/05/21	>90	0.0	-30	-30				
GG2	07/05/21	>90	0.0	-30	-30				
GG3	07/05/21	>90	0.0	-28.5	-28.5				
GG4	07/05/21	>90	0.0	<-30	<-30				
GG5	07/05/21	>90	0.0	-29	-29				
GG6	07/05/21	>90	0.0	<-30	<-30				
GG7	07/05/21	>90	0.0	-29.5	-29.5				
GG8	13/05/21	>90	0.0	-30	-30				
GG9	13/05/21	>90	0.0	<-30	<-30				

Soil Vapour Sampling Time and Flow Rate

Following a check of the canister pressure (using a calibrated pressure gauge) a clean calibrated brass flow regulator was connected to the top of each canister, allowing the desired volume (~800mL) to enter the 1 Litre canister over a period of 50 minutes to 90 minutes. Following the completion of sampling, the end pressure of the canister was recorded on the field sheet and check the pressure with a calibrated pressure gauge after 5 minutes. The canisters were transported to a NATA accredited laboratory for the vapour analysis accompanied by appropriate chain of custody documentation same day after the sampling event. Vapour sample analysis was conducted by EnviroLab (a NATA accredited laboratory) at Chatswood.

3.2.3 Weather Observations

Prior to scheduling the ground gas and vapour sampling methodology the weather observations were reviewed from the Sydney Observatory Hill weather station (station number 066214).

The weather station is situated approximately 12 kilometres south-east of the site and records a range of meteorological parameters (barometric pressure, rainfall, temperature, wind speed and wind direction).

Table 5 summarises the meteorological variation experienced in the vicinity of the site during the monitoring event.

Date	e Temperature		Rainfall	Wind Parameters				Barometric Pressure		
		9am 3pm			9am 3pm			ı	9am	3pm
		°C	°C	mm	Direction	Speed	Direction	Speed	hPa	hPa
1 st	05/05/21	15.3	18.6	18	SW	19	SSW	19	1014	1012

Table 5: Weather Observations

J169135-01: Appendix D QA/QC Procedures Appendix D - QAQC Procedures

greencap.com.au 11

GRE	EN	CAP
	Going Furthe	r in Managing Risk

Date		Temp	erature	Rainfall		Wind Pa	rameters			metric ssure
		9am	3pm		9am	ı	3pn	ı	9am	3pm
		°C	°C	mm	Direction	Speed	Direction	Speed	hPa	hPa
	06/05/21	18.9	21.2	25.4	SSE	39	SE	17	1011.8	1011.3
	07/05/21	19.2	21.7	16.4	SSE	19	SSW	22	1011.4	1009.3
	11/05/21	16.7	19.2	0	WNW	6	SW	22	1015.3	1014.7
	12/05/21	15.4	21.9	0.4	w	15	S	15	1020.1	1017.6
	13/05/21	15.3	24	0.8	WNW	15	WNW	6	1014.2	1009.2
2 nd	19/05/21	11.0	18.9	0	w	19	E	13	1029.3	1025.4
	20/05/21	11.3	20.5	0	w	20	SSE	15	1027.1	1025.0
	21/05/21	11.7	16	0	w	19	S	7	1030.4	1028.3
3 rd	01/06/21	10.0	19.6	0	WNW	19	W	6	1023.7	1020.5
	02/06/21	11.0	19.7	0	WNW	15	E	11	1021.8	1017.7
	03/06/21	12.4	13.1	0	WNW	11	WNW	11	1015.2	1010.8
4 th	07/06/21	10.5	19.3	0	W	15	ENE	13	1024.0	1018.7
	08/06/21	14.7	18.4	0	Ν	19	NNE	26	1013.5	1008.5
	09/06/21	10.5	12.8	7.4	WNW	30	NW	19	1005.0	1001.7
5 th	14/06/21	11.0	17.4	0	W	22	SSW	9	1016.6	1014.9
	15/06/21	12.6	16.7	0	WNW	19	S	7	1018.0	1015.7
	16/06/21	10.3	20.0	0	WNW	11	ENE	11	1017.9	1013.5
6 th	23/06/21	12.0	17.3	0	W	6	Ν	19	1027.6	1022.8
	24/06/21	15.4	20.1	0	NNE	9	Ν	24	1015.8	1010.6
	25/06/21	15.1	19.5	0	WNW	17	W	20	1015.5	1013.7

Above data confirms gas monitoring and soil vapour sampling were conducted at a general decreasing barometric pressure trend, which is in line with the sampling analysis quality plan (SAQP) (Greencap 2021).

3.3 Laboratory QA/QC

3.3.1 Holding time

All analysed primary samples were extracted and analysed within acceptable holding times as defined in AS4482.1-2005.

As appropriate sampling procedure was followed and samples were kept refrigerated no significant degradation to samples is thought to have occurred.

3.1 QA/QC Data Evaluation

RPD values for groundwater and ground gas samples are tabulated in the attachment section of this report (QA/QC Attachment – RPD Tables). All RPD values for intra- and inter-laboratory samples were within the acceptable criteria defined in Table 2. Data quality objectives for all analysis undertaken on this project are reliable and accurate.

J169135-01: Appendix D QA/QC Procedures Appendix D - QAQC Procedures

Adelaide | Auckland | Brisbane | Canberra | Darwin | Melbourne | Newcastle | Perth | Sydney | Wollongong

August 2021

Extraction and analysis of primary samples were within the relevant prescribed holding times. As appropriate sampling procedure was followed and samples were kept refrigerated no significant degradation to samples is thought to have occurred.

The internal laboratory control results (blanks, duplicates and spikes) are considered to be acceptable. All results adhered to chemical laws or were not outside logical explanation. Based on information presented in Sections 3.1, 3.2 and 3.3 it can be confidently stated that the MDQO's for this project have been met and the data set is considered to be reliable.

Adelaide | Auckland | Brisbane | Canberra | Darwin | Melbourne | Newcastle | Perth | Sydney | Wollongong

4 QAQC Appendix References

- American Public Health Association (APHA) 2005, *Standard methods for the examination of water and waste-water*, 21st edition, APHA, Washington DC.
- Australian and New Zealand Environment and Conservation Council 1992, Australian and New Zealand Guidelines for the assessment and management of contaminated sites, Australia and New Zealand Environment Council, National Health and Medical Research Council, Melbourne, Victoria.
- Australian/New Zealand Standard 2008, *Quality management systems Requirements* (AS/NZS ISO 9001:2008) Standards Australia/Standards New Zealand, Sydney/Wellington.
- International Organisation for Standardisation 2005, *Quality management systems Fundamentals and vocabulary*, (ISO 9000:2005).Lock, WH 1996, *Composite sampling*, National Environmental Health Forum (NEHF), Adelaide, SA.
- National Environment Protection Council (NEPC) 1999, *National environment protection (assessment of site contamination) measure*, National Environment Protection Council, Adelaide, SA.
- NSW Department of Environment and Conservation (2006), Contaminated sites: Guidelines for NSW Site Auditors Scheme (2nd edition).
- NSW Environment Protection Authority (EPA) 1995, *Contaminated sites: Sampling design guidelines,* EPA NSW, Chatswood, NSW.
- NSW EPA 2011, Contaminated sites: Guidelines for consultants reporting on contaminated sites, EPA NSW, Chatswood, NSW.
- Rayment, GE & Higginson, FR 1992, Australian laboratory handbook of soil and water chemical methods, Inkarta Press, Melbourne.

QA/QC Attachment RPD Tables

J169135-01: Appendix D QA/QC Procedures Appendix D - QAQC Procedures

greencap.com.au 15

Adelaide | Auckland | Brisbane | Canberra | Darwin | Melbourne | Newcastle | Perth | Sydney | Wollongong

		SAMPLE BATCH DATA QA S	UMMARY	SHEET					
Project Name: Further Validation Assessmen	it	DSI-SO	PHS		Project Number:	J169135-01			
Primary Laboratory:		Eurof	ns		Lab Certificate Number:	792254-S-V2			
Secondary Laboratory:		N/A			Lab Certificate Number:	N/A			
Date Sampled:		29/05/2			Sample Medium:	Soil			
			e Informat						
Number of Primary Samples:		5			licate (Interlab dup) Samples:	1			
Number of Duplicate Samples:		2			er Field QAQC Samples:	0			
		Documentation and S	ample Hai						
				Y/N		Comments			
COC completed properly?				Y	Signed by both field scientists and labs	personnel.			
All requested analysis completed?				Y					
Samples received in appropriate condition for a	nalysis?			Υ					
Samples analysed within appropriate holding tim	nes?			Y					
Sample volumes sufficient for QC analysis?				Y					
Are there non-NATA accredited methods used?				N					
Chromatograms supplied as appropriate?				N/A	Not required				
Laboratory reports signed by authorised person	nel?			Y					
· · ·		ormation (Method Blank - MB,	Rinsate B	lank - RB, Field	Blank - FB, Trip Blank - TB)				
Туре		ple ID		•	Comments				
Lab Method Blanks Method Blank (page 18 Envirolab Report) All results less than Limit Of Reporting (LOR)									
Trip Blank		-	-						
·		Trip Spike I	formation	n (BTEX)					
Analyte	Spike Concentrations	Recovery Comments							
Benzene	-	-		99					
Toluene	-	-		92					
Ethylbenzene	-	-		84	All recoverie	s are within 70-130%			
meta- & para-Xylene	-	-		82	_				
ortho-Xylene	-	-		84					
		Laboratory Contro	ol Spike (L	CS) Analyses	-				
Analyte Group BTEX					Comments				
BIEA		All recoveries are within lab con	ntrol limits	(nom. 70-130%)					
		Matrix Spil	(MS) A	alvoo					
Analysia Crayer		Matrix Spir	(W) 3) AI	lalyses	Comments				
Analyte Group BTEX		All recoveries are within lab co	ntrol limits	(nom. 70-130%)	Comments				
BIER				(
		Laboratory Dup	licates (L	D) Analyses					
Analyte Group					Comments				
BTEX		All duplicate RPDs are within la			5 / < 20%)				
		Field Duplic	ates (FD) /	Analyses					
Analyte Group	Primary ID	Duplicate ID			Comments				
Metals	GG8, GG4	FD1, FD2			esults within acceptable RPD criteria				
	.	Inter-Lab Du	plicates A	Analyses	-				
Analyte Group	Primary ID	Duplicate ID			Comments				
Metals	GG4	FT1			s pass RPD criterial except for Zinc, beca	use the material is inhomogeneous.			
Analyte Group		Surrogate Compor Sample ID	Ind Monit	oring Analyses	Comments				
- Analyte Group		Sample ID	-		Comments				
			0.000	***					
This batch has been validated and is considered	d suitable for interpretive use or		I Comme	าธร					
Note: Data validation assesses each analyte in			ces and o	utliers are reported	ed in this form.				
*When concentrations are less than the LOR for		licate results, not all RPDs are o	alculated	anors are reporte					
Performed By: Date:	Shihu Wang 26/05/2021	Checked By: Matthew Barbe 27/05/2021	rson						

roject Name: Further Validation Assessmen rimary Laboratory: econdary Laboratory:	t	DSI-SO			Design Mumber		
		D3I-30	PHS		Project Number:	J169135-01	
econdary Laboratory:		Eurofi			Lab Certificate Number:	792270-S-V2	
ata Osmulad		N/A			Lab Certificate Number:	N/A	
ate Sampled:		29/05/2 Sample	Information		Sample Medium:	Soil	
umber of Primary Samples:		4		f Tripl	licate (Interlab dup) Samples:	1	
umber of Duplicate Samples:		2			er Field QAQC Samples:	0	
		Documentation and Sa	ample Handling Info	rmatic	on		
			Y/N		Cor	nments	
OC completed properly?			Y		Signed by both field scientists and labs pe	rsonnel.	
I requested analysis completed?			Y				
amples received in appropriate condition for ar	aalueie?		Y				
imples received in appropriate condition for a	alysis !		•				
amples analysed within appropriate holding tim	nes?		Y				
ample volumes sufficient for QC analysis? re there non-NATA accredited methods used?			Y				
hromatograms supplied as appropriate?			N/A		Not required		
aboratory reports signed by authorised personr	nel?		Y				
,		ormation (Method Blank - MB,	Rinsate Blank - RB	Field	Blank - FB, Trip Blank - TB)		
Type Sample ID Comments							
Lab Method Blanks Method Blank (page 16 Envirolab Report) All results less than Limit Of Reporting (LOR)							
Trip Blank		-	-				
		Trip Spike In	formation (BTEX)		1		
Analyte	Spike Concentrations	Recovery Concentration	on % Reco	very	Con	nments	
Benzene	-	-	110				
Toluene	-	-	99				
Ethylbenzene	-		88		All recoveries a	re within 70-130%	
meta- & para-Xylene ortho-Xylene		-	88		-		
		Į	1				
		Laboratory Contro	ol Spike (LCS) Anal	ses	·		
Analyte Group					Comments		
BTEX		All recoveries are within lab cor	ntrol limits (nom. 70-	30%)			
		Matrix Snik	e (MS) Analyses				
Analyte Group			ie (ino) Analyses		Comments		
BTEX		All recoveries are within lab cor	ntrol limits (nom. 70-	30%)			
Analyte Group		Laboratory Dup	licates (LD) Analys	S	Comments		
BTEX		All duplicate RPDs are within la	b control limits (nom	<50%			
		The depicate for Do are wanted		~0070	57 < 2070		
		Field Duplica	ates (FD) Analyses				
Analyte Group	Primary ID	Duplicate ID			Comments		
Metals	GG1, GG2	FD4, FD5		within	acceptable RPD criteria		
Analyta Group	Brimany ID		plicates Analyses		Commente		
Analyte Group Metals	GG1 Primary ID	Duplicate ID FT2	Inter-lab Dublicates	resulte	Comments s pass RPD criterial except for Lead, becaus	se the material is inhomogeneous	
		Surrogate Compou			Pass II D ontonal exception Lead, Decaus	e ale materia le milomogeneous.	
Analyte Group		Sample ID		,	Comments		
<u> </u>		-	-	_			
			I Comments				
his batch has been validated and is considered			and orthogram	000-	ad in this form		
ote: Data validation assesses each analyte in t When concentrations are less than the LOR for				eporte	ea m unis torm.		
erformed By:	Shihu Wang 26/05/2021	Checked By: Matthew Barbe 27/05/2021	rson				

roject Name: Further Validation Assessme	nt	DSI-SC	PHS		Project Number:	J169135-01		
rimary Laboratory:	ĸ	Eurof			Lab Certificate Number:	793145-S-V2		
Secondary Laboratory:		N/A			Lab Certificate Number:	N/A		
Date Sampled:		29/05/2021			Sample Medium:	Soil		
		Sampl	e Informatio	on				
Number of Primary Samples:		15			licate (Intrarlab dup) Samples:	1		
Number of Duplicate Samples:		2			er Field QAQC Samples:	0		
		Documentation and S	ample Han	-	1			
				Y/N	Com	ments		
COC completed properly?				Y	Signed by both field scientists and labs per	sonnel.		
All requested analysis completed?				Y				
Complex reactions in appropriate condition for a	nelveie2			Y				
Samples received in appropriate condition for a	naiysis?			T				
Samples analysed within appropriate holding tir	nes?			Y				
	1001							
Sample volumes sufficient for QC analysis?				Y				
Are there non-NATA accredited methods used?				N				
Chromatograms supplied as appropriate?	10			N/A	Not required			
aboratory reports signed by authorised person				Y				
		ormation (Method Blank - MB,	Rinsate Bl	ank - RB, Field				
Type								
Lab Method Blanks Trip Blank	Method Blank (page	- 26 Envirolab Report)	Report) All results less than Limit Of Reporting (LOR)					
The blank		Trip Spike I	formation	(BTEX)				
Analyte	Spike Concentrations	Recovery Concentrat	on	% Recovery	Com	ments		
Benzene	-	-		-				
Toluene	-	-		-	-			
Ethylbenzene	-	-		-				
meta- & para-Xylene	-	-		-				
ortho-Xylene	-	-		-				
		Laboratory Contro	al Snika (I (S) Analyses				
Analyte Group		Laboratory Contra		3) Analyses	Comments			
BTEX		All recoveries are within lab co	ntrol limits (nom, 70-130%)	Comments			
		Matrix Spi	ke (MS) Ana	lyses				
Analyte Group					Comments			
BTEX		All recoveries are within lab co	ntrol limits (nom. 70-130%)				
		Laboratory Dup	licatos (I D	Analyses				
Analyte Group			noales (LD	/ maiyaca	Comments			
BTEX		All duplicate RPDs are within la	ab control lir	nits (nom. <50%				
		Field Duplic	ates (FD) A	nalyses				
Analyte Group	Primary ID	Duplicate ID			Comments			
Metals	BH2, BH10	BHFD7, BHFD1			acceptable RPD criteria			
		Inter-Lab Du	plicates A	nalyses				
Analyte Group Metals	Primary ID BH1	Duplicate ID	Inter lab D	unligator "	Comments	source the motorial is internet		
weidis		BHFT1			s pass RPD criterial except for Zic at BH1, be	couse the material is innomogeneous.		
Analyte Group	1	Surrogate Compo Sample ID		ing Analyses	Comments			
		-	-					
		Overa	II Comment	s				
This batch has been validated and is considere	d suitable for interpretive use ar							
Note: Data validation assesses each analyte in				liers are reporte	ed in this form.			
When concentrations are less than the LOR for	r both primary and duplicate/trip	licate results, not all RPDs are	calculated					
Performed By:	Shihu Wang	Checked By: Matthew Barbe						
erformed by:								

		SAMPLE BATCH DATA QA S	UMMARY SHE	ET				
Project Name: Further Validation Assessn	nent	DSI-SO	PHS		Project Number:	J169135-01		
Primary Laboratory:		Eurof	ins		Lab Certificate Number:	818921-S		
Secondary Laboratory:		N/A	1		Lab Certificate Number:	N/A		
Date Sampled:		23/08/2021			Sample Medium:	Soil		
		Sample	e Information					
Number of Primary Samples:		3			licate (Intrarlab dup) Samples:	0		
Number of Duplicate Samples:		1			er Field QAQC Samples:	0		
		Documentation and S		-	1			
			Y/	N	Con	iments		
COC completed properly?			Y		Signed by both field scientists and labs per	sonnel.		
All requested analysis completed?			Y					
Samples received in appropriate condition for	r analysis?		Y					
Samples analysed within appropriate holding	times?		Y					
Sample volumes sufficient for QC analysis?			Y					
Are there non-NATA accredited methods use	ed?		N					
Chromatograms supplied as appropriate?			N/	4	Not required			
Laboratory reports signed by authorised pers	onnel?		Y					
	QAQC Sample Inf	ormation (Method Blank - MB,	Rinsate Blank	- RB, Field	Blank - FB, Trip Blank - TB)			
Туре	San	nple ID			Comments			
Lab Method Blanks	Method Blank (pag	e 12 Eurofins Report)	-					
Trip Blank		-	-					
		Trip Spike Ir	nformation (B1	EX)				
Analyte	Spike Concentrations	Recovery Concentration % Recovery Comments						
Benzene	-	-		99%				
Toluene	-	-		88%	-			
Ethylbenzene	-	-		85%				
meta- & para-Xylene	-	-		85%				
ortho-Xylene	-	-		84%				
		Laboratory Contro	ol Spike (LCS)	Analyses				
Analyte Gro	up				Comments			
BTEX		All recoveries are within lab co	ntrol limits (non	n. 70-130%)				
		Matsiy Cuil						
		Matrix Spir	ke (MS) Analys	es				
Analyte Gro BTEX	up	All recoveries are within lab co	ntrol limits (non	70-130%)	Comments			
BIEX		An recoveries are within tab co		1. 10 10070				
		Laboratory Dup	licates (LD) A	nalyses				
Analyte Gro	up				Comments			
BTEX		All duplicate RPDs are within la	ab control limits	(nom. <50%	% / < 20%)			
		· · · · ·	ates (FD) Anal	/ses				
Analyte Group	Primary ID	Duplicate ID			Comments			
Metals	GG12	FD5			RPD criteria, inhomogenous soil.			
Angelor 🗢	B -1 - 15		plicates Analy	ses				
Analyte Group	Primary ID	Duplicate ID	-		Comments			
		0		A				
Analyte Gro	un	Surrogate Compou Sample ID	una monitoring	Analyses	Comments			
-	ч Р	- Sample ID	l.		Comments			
			II Comments					
This batch has been validated and is conside	ared suitable for interpretive use a		n comments					
Note: Data validation assesses each analyte			nces and outlier	s are reporte	ed in this form.			
*When concentrations are less than the LOR								
	· · · · · · ·							
Performed By: Date:	Shihu Wang 9/09/2021	Checked By: Matthew Barbe 9/09/2021	rson					

Soil Sample RPDs DSI-SOPHS													
								GG8	GG4	GG4			
Our Label			GG8-01(0.2-0.3)	FD1(0.2-0.3)	GG4-02(0.5-0.6)	FD2(0.5-0.6)	FT1						
Laboratory Label			S21-My04075	S21-My04036	S21-My04029	S21-My04037	269607-1	RPD	RPD	RPD			
Sample Date			29/04/2021]	29/04/2021]	29/04/2021]	29/04/2021]	29/04/2021]	Primary vs	Primary vs	Primary vs			
Sample Type			PS	FD	PS	FD	FT1	Duplicate	Duplicate	Triplicate			
Analyte	Units	LOR	Result	Result	Result	Result	Result						
BTEXN													
Arsenic	mg/kg	2	3	2.5	9.3	8.8	5.3	18.18	5.52	54.79			
Cadmium	mg/kg	0.4	< 0.4	< 0.4	< 0.4	< 0.4	<0.4	N/A	N/A	N/A			
Chromium	mg/kg	s	170	140	19	29	13.3	19.35	41.67	35.29			
Copper	mg/kg	s	48	38	30	29	22.3	23.26	3.39	29.45			
Lead	mg/kg	5	8.9	7.5	35	50	19.6	17.07	35.29	56.41			
Mercury	mg/kg	0.1	< 0.1	< 0.1	< 0.1	0.2	<0.1	N/A	N/A	N/A			
Nickel	mg/kg	5	150	130	34	32	20.7	14.29	6.06	48.63			
Zinc	mg/kg	5	98	76	140	81	42.3	25.29	53.39	107.19			

						GG1	GG1
Our Label			GG1-04(0.8-0.9)	FD4(0.8-0.9)	FT2		
Laboratory Label		S21-My04029	S21-My04037	44315	RPD	RPD	
Sample Date			30/04/2021]	30/04/2021]	30/04/2021]	Primary vs	Primary vs
Sample Type			PS	FD	FT	Duplicate	Triplicate
Analyte	Units	LOR	Result	Result	Result		
BTEXN							
Arsenic	mg/kg	2	9.3	13	8.3	33.18	11.36
Cadmium	mg/kg	0.4	< 0.4	< 0.4	<0.4	N/A	N/A
Chromium	mg/kg	5	26	19	11	31.11	81.08
Copper	mg/kg	s	38	40	21.7	5.13	54.61
Lead	mg/kg	5	79	95	34.7	18.39	77.92
Mercury	mg/kg	0.1	0.2	0.2	<0.1	N/A	N/A
Nickel	mg/kg	5	17	15	19	12.50	11.11
Zinc	mg/kg	5	120	130	81	8.00	38.81

									BH2	BH10	BH1
Our Label			BH2(0.5-0.7)	BHFD7	BH10(0.7-0.9)	BHFD1	BH1(0.7-0.9)	BHFT1			
Laboratory Label			M21-My10964	0	M21-My10967	0/01/1900	M21-My10973	0/01/1900	RPD	RPD	RPD
Sample Date			3/05/2021	0/01/1900	3/05/2021	0/01/1900	3/05/2021	0/01/1900	Primary vs	Primary vs	Primary vs
Sample Type			PS	FD	PS	FD	PS	FT	Duplicate	Duplicate	Triplicate
Analyte	Units	LOR	Result	Result	Result	Result	Result	Result			
BTEXN											
Arsenic	mg/kg	2	16	17	5.2	7.60	7.2	<4	6.06	37.50	N/A
Cadmium	mg/kg	0.4	< 0.4	< 0.4	< 0.4	0.50	< 0.4	<0.4	N/A	N/A	N/A
Chromium	mg/kg	5	25	20	32	28.00	9.8	4.30	22.22	13.33	78.01
Copper	mg/kg	5	24	37	26	15.00	42	24.00	42.62	53.66	54.55
Lead	mg/kg	5	27	30	82	93.00	20	12.70	10.53	12.57	44.65
Mercury	mg/kg	0.1	< 0.1	< 0.1	0.2	< 0.1	< 0.1	<0.1	N/A	N/A	N/A
Nickel	mg/kg	5	6.4	9.4	19	12.00	50	20.30	37.97	45.16	84.50
Zinc	mg/kg	5	34	50	100	70.00	210	94.00	38.10	35.29	76.32

					GG12
Our Label			GG12(1.4-1.5)	FD5	
Laboratory Label			S21-Au41045	S21-Au41043	RPD
Sample Date			23/08/2021	23/08/2021	Primary vs
Sample Type			PS	FD	Duplicate
Analyte	Units	LOR	Result	Result	
BTEXN					
Arsenic	mg/kg	2	14	15	150.00
Cadmium	mg/kg	0.4	< 0.4	< 0.4	N/A
Chromium	mg/kg	5	29	8.4	141.18
Copper	mg/kg	5	39	18	154.55
Lead	mg/kg	5	180	28	189.19
Mercury	mg/kg	0.1	1	0.1	163.64
Nickel	mg/kg	5	9.9	5.7	65.77
Zinc	mg/kg	5	84	50	177.53
PS: Primary Sample					
FD: Field Duplicate	Γ	Assessable DDDs	<5 x LOR	Any RPD accepta	able
FT: Field Triplicate		Acceptable RPDs:	>5 x LOR	0 - 50% RPD acc	eptable
IL: Inter-Laboratory Duplicate	-				
N/A: Not Applicable (RPDs not calculated	where one or more result <p< td=""><td>01)</td><td>Exceeds Acceptable RPD I</td><td>imits</td><td>1</td></p<>	01)	Exceeds Acceptable RPD I	imits	1

J169135-01

		SAMPLE BATCH DATA QA S	UMMARY	SHEET		
Project Name: Further Validation Assessme	nt	DSI-SO	PHS		Project Number:	J169135-01
Primary Laboratory:		Enviro	lab		Lab Certificate Number:	268574
Secondary Laboratory:		N/A			Lab Certificate Number:	N/A
Date Sampled:		29/06/2				Soil Vapor
			e Informati			
Number of Primary Samples:		7			licate (Interlab dup) Samples:	0
Number of Duplicate Samples:		1			er Field QAQC Samples:	0
		Documentation and S	ample Har	-		N
				Y/N		Comments
COC completed properly?				Y	Signed by both field scientists and labs	personnel.
All requested analysis completed?				Y		
Samples received in appropriate condition for	analysis?			Y		
Samples analysed within appropriate holding ti	mes?			Y		
Sample volumes sufficient for QC analysis?			+	Y		
Are there non-NATA accredited methods used	?			N		
Chromatograms supplied as appropriate?			1	N/A	Not required	
Laboratory reports signed by authorised person	nnel?			Y		
		ormation (Method Blank - MB,	Rinsate B	lank - RB, Field	Blank - FB, Trip Blank - TB)	
Туре		ple ID			Comments	
Lab Method Blanks		e 12 Envirolab Report)	All results	less than Limit	Of Reporting (LOR)	
Trip Blank			-		· · · ·	
		Trip Spike I	nformation	(BTEX)		
Analyte	Spike Concentrations	Recovery Concentrati	on	% Recovery	c	Comments
Benzene	-	-		-		
Toluene	-	-		-		
Ethylbenzene	-	-		-		
meta- & para-Xylene	-	-		-	_	
ortho-Xylene	-	-		-		
Analysia Craw	-	Laboratory Contr	ol Spike (L	CS) Analyses	Commonto	
Analyte Grou BTEX)	All recoveries are within lab co	atrol limita ((nom 70 120%)	Comments	
BIEK		All recoveries are within lab co		(1011. 70-130%)		
		Matrix Spi	ke (MS) An	alvses		
Analyte Grou	2			,	Comments	
BTEX	, ,	All recoveries are within lab co	ntrol limits ((nom. 70-130%)	Comments	
		Laboratory Dup	licates (L	D) Analyses	· · ·	
Analyte Grou BTEX	0				Comments	
BIEX		All duplicate RPDs are within la			5 / < 20%)	
	.	Field Duplic	ates (FD) A	Analyses	_	
Analyte Group BTEXN, TRH	Primary ID GG3	Duplicate ID			Comments	
DIEAN, IKT	000	FD1 Inter-Lab Du			acceptable RPD criteria	
Analyte Group	Primary ID	Duplicate ID	ipiicales A	anaryses	Comments	
, and y to broup					connents	
		Surrogate Compo	and Monito	oring Analyses		
Analyte Grou	0	Sample ID			Comments	
BTEXN		Primary Samples	For all reg	jular sample mat	rices, NO surrogate recovery outliers occ	ur.
			II Commen	its		
This batch has been validated and is consider Note: Data validation assesses each analyte in	terms of all the data validation	nd site assessment variables and only the exceedar	ices and ou		ed in this form.	
*When concentrations are less than the LOR f						
Performed By: Date:	Shihu Wang 26/05/2021	Checked By: Matthew Barbe 27/05/2021	rson			

		SAMPLE BATCH DATA QA S	UMMARY SHEET	r					
Project Name: Further Validation Assessme	ent	DSI-SO	PHS		Project Number:	J169135-01			
Primary Laboratory:		Enviro	lab		Lab Certificate Number:	269024			
Secondary Laboratory:		N/A			Lab Certificate Number:	N/A			
Date Sampled:		29/06/2	018		Sample Medium:	Soil Vapor			
		Sample	e Information						
Number of Primary Samples:		2		umber of Triplicate (Interlab dup) Samples: 0					
Number of Duplicate Samples:		1			er Field QAQC Samples:	0			
		Documentation and S		nformatio					
			Y/N		Com	ments			
COC completed properly?			Y		Signed by both field scientists and labs per	sonnel.			
All requested analysis completed?			Y						
Samples received in appropriate condition for	analysis?		Y						
Samples analysed within appropriate holding	times?		Y						
Sample volumes sufficient for QC analysis?			Y						
Are there non-NATA accredited methods used	1?		N						
Chromatograms supplied as appropriate?			N/A		Not required				
Laboratory reports signed by authorised perso	onnel?		Y						
	QAQC Sample Inf	ormation (Method Blank - MB,	Rinsate Blank - F	R, Field	Blank - FB, Trip Blank - TB)				
Туре	San	nple ID			Comments				
Lab Method Blanks	Method Blank (pag	e 8 Envirolab Report)	All results less th	nan Limit (Of Reporting (LOR)				
Trip Blank		-	-						
		Trip Spike Ir	formation (BTEX	()					
Analyte	Spike Concentrations	Recovery Concentration % Recovery Comments							
Benzene	-								
Toluene	-			-	_				
Ethylbenzene meta- & para-Xylene	-			-	-				
ortho-Xylene	-	-		-	-				
ortho-Aylene	-		I	<u> </u>					
		Laboratory Contro	ol Spike (LCS) An	alvses					
Analyte Grou	p				Comments				
BTEX		All recoveries are within lab co	ntrol limits (nom. 7	70-130%)					
			•						
		Matrix Spik	e (MS) Analyses	,					
Analyte Grou	p				Comments				
BTEX		All recoveries are within lab con	ntrol limits (nom. 7	′0-130%)					
		Laboratory Dun	licates (LD) Anal	VGOG					
Analyte Grou	p	Laboratory Dup	ilcales (LD) Alla	y363	Comments				
BTEX	₽ [*]	All duplicate RPDs are within la	ab control limits (n	om <50%					
		An adplicate IXI Do are Within to		511. <30%	20/01				
		Field Duplica	ates (FD) Analyse	es					
Analyte Group	Primary ID	Duplicate ID	, , , , ,		Comments				
BTEXN, TRH	GG8	FD2	All FD2 RPD res	ults within	n acceptable RPD criteria				
			plicates Analyse	S					
Analyte Group	Primary ID	Duplicate ID			Comments				
Analysis Com	'n	Surrogate Compou	Ind Monitoring A	nalyses	Commonte				
Analyte Grou BTEXN	þ	Sample ID Primary Samples	For all requier or		Comments trices, NO surrogate recovery outliers occur.				
BIEAN			ş	mple mat	unces, no surrogate recovery outliers occur.				
This batch has been validated and is consider	red suitable for interpretive use a		I Comments						
Note: Data validation assesses each analyte i	n terms of all the data validation	variables and only the exceedan		are reporte	ed in this form.				
*When concentrations are less than the LOR	for both primary and duplicate/tri	JILIAIE TESUIIS, TIUL AIT NEDS ATE L	alculated						
	Shihu Wang 26/05/2021	Checked By: Matthew Barbe 27/05/2021							

J169135-01 Field Duplicate RPDs DSI-SOPHS

					GG3
Our Label			GG3	FD1	
Laboratory Label			268574-3	268574-8	RPD
Sample Date			7/05/2021	7/05/2021	Primary vs
Sample Type			PS	FD	Duplicate
Analyte	Units	PQL	Result	Result	
BTEXN					
Benzene	µg/m3	1.6	8	9	N/A
Toluene	µg/m3	1.9	51	51	0.00
Ethylbenzene	µg/m3	2	8	8	0.00
m-& p-Xylene	µg/m3	4	20	20	0.00
o-Xylene	µg/m3	2	8	8	0.00
Naphthalene	µg/m3	2.6	<2.6	<2.6	N/A
Surrogate-Brom ochlorom et hane	% rec	-	108	95	12.81
Surrogate -1,4-Difluorobenzene	% rec	-	115	97	16.98
Surrogate-Chlorobenzene-D5	% rec	-	115	96	18.01
Total Recoverable Hydrocarbons					
TPH C5 - C8 Aliphatic	µg/m 3	200	2400	2100	13.33
TPH C9 - C12 Aliphatic	µg/m 3	50	<50	<50	N/A
TPH C9 - C10 Aromatic	µg/m 3	100	<100	<100	N/A
TPH O6 - C10 - BTEX (F1)	µg/m 3	200	<200	<200	N/A
TPH > C10 - C12 - Naphthalene (F2)	µg/m 3	40	<40	<40	N/A

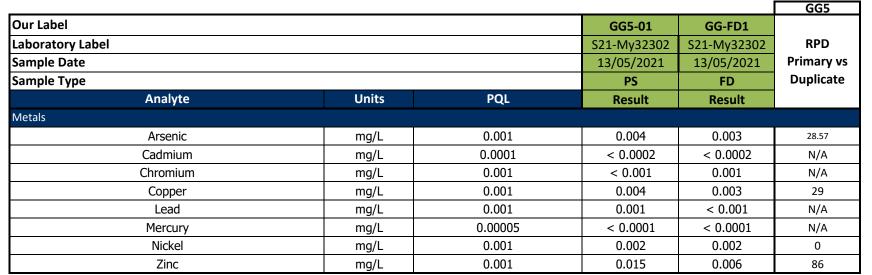
					GG8
Dur Label			GG8	FD2	
aboratory Label			268574-1	269024-3	RPD
Sample Date			13/05/2021	013/05/2021	Primary vs
Sample Type			PS	FD	Duplicate
Analyte	Units	PQL	Result	Result	
BTEXN					
Benzene	µg/m3	1.6	8	7	13.33
Toluene	µg/m3	1.9	61	61	0.00
Ethylbenzene	µg/m3	2	9	9	0.00
m-& p-Xylene	µg/m3	4	30	30	0.00
o-Xylene	µg/m3	2	10	10	0.00
Naphthalene	µg/m3	2.6	4	3	N/A
Surrogate-Brom ochlorom et hane	% rec	-	105	122	14.98
Surrogate -1,4-Difluorobenzene	% rec	-	109	126	14.47
Surrogate-Chlorobenzene-D5	% rec	-	110	126	13.56
otal Recoverable Hydrocarbons					
TPH C5 - C8 Aliphatic	µg/m 3	200	33000	33000	0.00
TPH C9 - C12 Aliphatic	µg/m 3	50	8800	10000	12.77
TPH C9 - C10 Aromatic	µg/m 3	100	110	140	24.00
TPH Q6 - C10 - BTEX (F1)	µg/m 3	200	41000	43000	4.76
TPH > C10 - C12 - Naphthalene (F2)	µg/m 3	40	6700	8000	17.69

Acceptable RPDs:

FD: Field Duplicate

IL: Inter-Laboratory Duplicate

N/A: Not Applicable (RPDs not calculated where one or more result <PQL)


Exceeds Acceptable RPD limits

0 - 50% RPD acceptable

>5 x PQL

		SAMPLE BATCH DATA QA S	UMMARY	SHEET		
Project Name: Further Validation Assessment	t	Cringila Primary S	chool - Ph	nase 2	Project Number:	J169135-01
Primary Laboratory:		Eurof	in		Lab Certificate Number:	795815-W
Secondary Laboratory:		-			Lab Certificate Number:	-
Date Sampled:		13/05/2	021		Sample Medium:	Water
		Sample	e Informat	tion		
Number of Primary Samples:		1			licate (Interlab dup) Samples:	0
Number of Duplicate Samples:		1			er Field QAQC Samples:	0
		Documentation and S	ample Ha			
				Y/N	Cor	nments
COC completed properly?				Y	Signed by both field scientists and labs pe	rsonnel.
All requested analysis completed?				Y		
	- hudia 0			Y		
Samples received in appropriate condition for an	nalysis?			Y		
				Y		
Samples analysed within appropriate holding tim	ies r			Ŷ		
Sample volumes sufficient for QC analysis?				Y		
Are there non-NATA accredited methods used?				N		
Chromatograms supplied as appropriate?				N/A	Not required	
Laboratory reports signed by authorised personn				Y		
	QAQC Sample Inf	ormation (Method Blank - MB,	Rinsate B	Blank - RB, Field	Blank - FB, Trip Blank - TB)	
Туре	Sam	ple ID			Comments	
Lab Method Blanks		e 9 Envirolab Report)			Of Reporting (LOR)	
Trip Blank	-	ТВ			Of Reporting (LOR)	
		Trip Spike I	nformation	n (BTEX)		
Analyte	Spike Concentrations	Recovery Concentration	on	% Recovery	Cor	nments
Benzene	-	-		98	_	
Toluene	-	-		88	_	
Ethylbenzene	-	-		91	-	
meta- & para-Xylene	-	-		100	-	
ortho-Xylene	-	-		123		
		Laboratory Contro	al Calles /I	CC) Analyses	Trip spike recoveries are in the acceptable	range of 60-140%
Analyte Group		Laboratory Contro	ы эріке (і	LCS) Analyses	Comments	
BTEX, TRH, Ammor	nia	All recoveries are within lab cor	atrol limite	(nom 70-130%)	ooninents	
Metals		All recoveries are within lab con				
		Matrix Spil				
Analyte Group					Comments	
svTRH, Ammonia,		All recoveries are within lab cor	ntrol limits	(nom. 70-130%)		
Metals		All recoveries are within lab con				
		Laboratory Dup	licates (L	D) Analyses		
Analyte Group					Comments	
Metals		All duplicate RPDs are within la				
Analytic C	Delay ID	Field Duplica	ates (FD) /	Analyses	-	
Analyte Group Metals	Primary ID GG5	Duplicate ID			ithin acceptable RPD criteria	
INICIDIS	000	GG-FD1 Inter-Lab Du				
Analyte Group	Primary ID	Duplicate ID	ipilicales P		Comments	
-	-		-			
		- Surrogate Compou	Ind Monit	oring Analyses		
Analyte Group		Sample ID			Comments	
-		-	-			
		Overa	II Commei	nts		
This batch has been validated and is considered		nd site assessment				
Note: Data validation assesses each analyte in t *When concentrations are less than the LOR for				utliers are reporte	ed in this form.	
	Shihui Wang 9/06/2021	Checked By: Matthew Barbe 9/06/2021	rson			

J169135-01 Groundwater Sample RPDs DSI-SOPHS

-: Not analysed

PS: Primary Sample

FD: Field Duplicate

IL: Inter-Laboratory Duplicate

N/A: Not Applicable (RPDs not calculated where one or more result <PQL)

Acceptable<5 x PQL</th>Any RPD acceptableRPDs:>5 x PQL0 - 50% RPD acceptable

Exceeds Acceptable RPD limits

Detailed Site Investigation

School Infrastructure NSW (SINSW) - Department of Education Proposed Sydney Olympic Park High School

Appendix E: Calibration Certificates

greencap.com.au

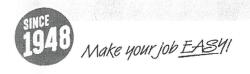
Adelaide | Auckland | Brisbane | Canberra | Darwin | Melbourne | Newcastle | Perth | Sydney | Wollongong

PGN9003827 GAS DETECTOR - PID

Plant Number: _____ 234969

SENSOR	CONCENTRATION	SPAN 1	SPAN 2	TRACEABILITY	PASS
PID Isobutylene	100ppm	0	100ppm	Lot # 112037	

Battery Status(00°(0(%)	Temperature <u>20.9</u> °C
Electrical Test & Tag (AS/NZS 3760)	Inlet Filter Checked/Changed


Note: Calibration traceability information is available upon request.

Please clean/decontaminate instrument and accessories before returning. A minimum 'Cleaning Fee' \$55.00 (Inc GST) may apply if instrument is returned contaminated.

Checked By: Jacob Amott Date: 27 /04/2 Signed:

Accessories List:

User's Manual	Charger / Comms Adaptor	Wall Charger
2x Spare Air Filters	1x Spare Rechargeable Battery	Carry Transit Case
	Calibration Report	

135 135 | kennards.com.au

Threat

Calibration and Service Report – PID

Company:	Greencap Pty Ltd (NSW)	Manufacturer:	RAE	Serial #:	592-912778
Contact:	Jason Green	Instrument:	MINIRAE 3000 SN: 592-912778	Asset #:	
Address:	PO Box 152	Model:	MiniRAE 3000	Part #:	059-B116-000
	MACQUARIE PARK BC NSW	Configuration:	VOC (10.6EV)	Sold:	31.07.2014
		Wireless:	-	Last Cal:	23.10.2020
Phone:	02 9889 1800	Network ID:	-	Job #:	124640
Fax:	02 9889 1811	Unit ID:	-	Cal Spec:	
Email:	jason.green@greencap.com.au	Details:		Order #:	286288

ltem	Test	Pass/Fail	Comments	Serial Number
Battery	NiCd, NiMH, Dry cell, Lilon	Р	(Battery shows deterioration)	
Charger	Power Supply	-		
	Cradle, Travel Charger	Р		
Pump	Flow	Р	>450ml/min	
Filter	Filter, fitting, etc	х	Replaced	
Alarms	Audible, visual, vibration	Р		
Display	Operation	Р		
Switches	Operation	Р		
РСВ	Operation	Р		
Connectors	Condition	Р		настория и полнования и полновани Полнования и полнования и полновани
Firmware	Version	Р	V2.22	
Datalogger	Operation	P		
Monitor Housing	Condition	Р		
Case	Condition / Type	-		
Sensors				
PID	Lamp	Р	Cleaned	
PID	Sensor	Р	Cleaned (sensor shows corrosion)	
THP	Sensor	Р		
		Engi	neer's Report	

Cleaned porous metal filter, checked flowrate and stall values Cleaned lamp, lamp housing and electrode Checked unit settings and configuration Unit serviced and calibrated.

Calibration Certificate

Sensor	Туре	Serial No.	Span	Concentration	Traceability	CF	Read	ling
			Gas		Lot #		Zero	Span
Oxygen								
LEL	-							
PID	050-0000-004. 10.6EV 1/ 2 INCH LAMP	S023030005R6/1062R22 6094	Isobutylene	100ppm	4835-1-1		0	100.0
Battery	059-3051-000. LI-ION BA TTERY FOR MINIRAE	159R6W0026						
Toxic 1	023-3011-000-FRU. THP SENSOR	GHTR5W0150						
Toxic 2								
Toxic 3								
Toxic 4								
Toxic 5								
Toxic 6								
Calibrated	/Repaired by: JERI	RY JI		Date:	28.04.2021	Ne	xt Due: 28.	10.2021

www.aesolutions.com.au

Plant Number: 235 218

Tape Length: 30 m

This is to certify that this unit has been cleaned & checked prior to dispatch. The unit successfully detects the interface between oil & water. PASS_____

Battery Status (min 7.2V)	Temperature <u>21-2</u> °C
Electrical Test & Tag (AS/NZS 3760)	Electrodes Cleaned and Checked

Please clean/decontaminate instrument and accessories before returning. A minimum 'Cleaning Fee' \$55.00 (Inc GST) may apply if instrument is returned contaminated.

Checked By: Jacob Arnott Date: 27/04/21 Signed: Manuelt

Accessories List:

User's Quickguide	Decon90 Bottle	Cleaning Brush
1 x Spare 9v Battery	Black & Red Transit Crate	Tape Guard

1

KENNARDS HIRE

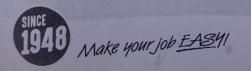
GA5000

PGN9003823 GAS ANALYSER – LANDFILL

Plant Number: 234 893

SENSOR	CONCENTRATION	INSTRUMENT READING	TRACEABILITY	PASS
CH4	60 %	60 %	Lot # 132 71 31	1
CO2	40 %	40 %	Lot # 132 71 31	T
02	15 %	15 %	Lot # 1120454	
СО	<u>60 ppm</u>	<u>60</u> ppm	Lot #1120454	I
H2S	<u>_20</u> ppm	<u>20 ppm</u>	Lot # 1120454	T

Battery Status 100% (%)	Temperature 21.4 °C
Electrical Test & Tag (AS/NZS 3760)	Inlet Filter Cleaned/Replaced


Note: Calibration traceability information is available upon request.

Please clean/decontaminate instrument and accessories before returning. A minimum 'Cleaning Fee' \$55.00 (Inc GST) may apply if instrument is returned contaminated.

Checked By: Jacob Arnott Date: 05/05/21 Signed:

Accessories List:

User's Manual & USB	1x Gas Inlet Hoses	1X Gas Inlet Hose With Filter
1x Gas Inlet Hose & Clip Fitting	2x Spare Inlet Filters	1x Flow Through Desiccant
1x Wall Charger	Carry Pouch With Neck Strap	1x USB Comms Cable
Carry Transit Case	Calibration Certificate	

135 135 | kennards.com.au

Almit

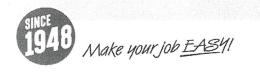
Jate

PGN9003871 WATER QUALITY METER – MULTIFUNCTION (YSI)

Plant Number: ______ (077465

SENSOR	CONCENTRATION	SPAN 1	SPAN 2	TRACEABILITY	PASS
pН	pH 4	pH 4		# 357330	
pН	рН 7	рН 7		# 357587	
Conductivity	12-38 mS/cm	1 <u>2:88</u> mS/cm		# 354761	
Dissolvent Oxygen	Sodium Sulphite / Air	0.0ppm in Sodium Sulphite	ppm Saturation in Air	# 10640	Y
ORP	240mV	240mV		# 5235	

Battery Status(%)	Temperature <u>211</u> °C
Electrical Test & Tag (AS/NZS 3760)	Electrodes Cleaned and Checked


Note: Calibration solution traceability information is available upon request.

Please clean/decontaminate instrument and accessories before returning. A minimum 'Cleaning Fee' \$55.00 (Inc GST) may apply if instrument is returned contaminated.

Checked By: Jacob Arnoff Date: 11 /057 21 Signed: _____

Accessories List:

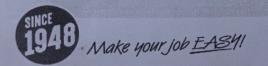
User's Manual	pH and ORP Storage Solution	Transit Case

135 135 kennards.com.au

PGN9003823 GAS ANALYSER – LANDFILL Plant Number: 234892

CONCENTRATION	INCOMPANY		
		TRACEABILITY	PASS
60 %	10		
40 %		Lot # 1327131	V
10	10-	Lot # 132 7131	V
10	%	Lot # 1120454	
	<u>60_ppm</u>		V
<u>20 ppm</u>	<u>20 ppm</u>		
	<u>40 %</u> <u>15 %</u> <u>60 ppm</u>	GO % GO % 60 % 60 % 40 % 40 % 15 % 15 % 60 ppm 60 ppm	READING TRACEABILITY 60 % 60 % Lot # 132.7131 40 % 40 % Lot # 132.7131 15 % 15 % Lot # 132.7131 60 ppm 60 ppm Lot # 112.0454 60 ppm 60 ppm Lot # 112.0454

Battery Status 100% (%)	Temperature 20.7 °C
Electrical Test & Tag (AS/NZS 3760)	Inlet Filter Cleaned/Replaced


Note: Calibration traceability information is available upon request.

Please clean/decontaminate instrument and accessories before returning. A minimum 'Cleaning Fee' \$55.00 (Inc GST) may apply if instrument is returned contaminated. Amit

Checked By: Jacob Arnott Date: 13/05/21 Signed:

Accessories List:

User's Manual & USB	1x Gas Inlet Hoses	1X Gas Inlet Hose With Filter
1x Gas Inlet Hose & Clip Fitting	2x Spare Inlet Filters	1x Flow Through Desiccant
1x Wall Charger	Carry Pouch With Neck Strap	1x USB Comms Cable
Carry Transit Case	Calibration Certificate	

135 135 kennards.com.au

OIL/WATER INTERFACE METER

Plant Number: ______235 21 9

Tape Length: <u>30m</u>

This is to certify that this unit has been cleaned & checked prior to dispatch. The unit successfully detects the interface between oil & water. PASS_____

Ва	ttery Status	_(min 7.2V)	Temperature <u>17.8</u> °C
Ele	ectrical Test & Tag (AS/N	ZS 3760)	Electrodes Cleaned and Checked

Please clean/decontaminate instrument and accessories before returning. A minimum 'Cleaning Fee' \$55.00 (Inc GST) may apply if instrument is returned contaminated.

Checked By:	Jacob	Amott	_ Date: _	21/5/21	_Signed: Amath	
		1			U	

Accessories List:

GA5000

EQUIPMENT CERTIFICATION REPORT

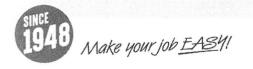
PGN9003823 GAS ANALYSER – LANDFILL

Plant Number: _____234 890

SENSOR	CONCENTRATION	INSTRUMENT READING	TRACEABILITY	PASS
CH4	<u>_60_</u> %	<u> 60 </u> %	Lot # 1327131	
CO2	<u>40</u> %	40 %	Lot # 132 7131	P,
02	<u> (5 %</u>	<u> </u>	Lot # 1120454	
СО	<u>60</u> ppm	ppm	Lot # 1120454	P
H2S	20 ppm	_20 _ppm	Lot # 1120454	

Battery Status (00%) (%)	Temperature <u>17-3</u> °C
Electrical Test & Tag (AS/NZS 3760)	Inlet Filter Cleaned/Replaced

Note: Calibration traceability information is available upon request.


Please clean/decontaminate instrument and accessories before returning. A minimum 'Cleaning Fee' \$55.00 (Inc GST) may apply if instrument is returned contaminated.

Checked By: Jacob Arnott Date: 20 / 5 / 21 Signed:

Anott

Accessories List:

User's Manual & USB	1x Gas Inlet Hoses	1X Gas Inlet Hose With Filter
1x Gas Inlet Hose & Clip Fitting	2x Spare Inlet Filters	1x Flow Through Desiccant
1x Wall Charger	Carry Pouch With Neck Strap	1x USB Comms Cable
Carry Transit Case	Calibration Certificate	

135 135 kennards.com.au

PGN9003823 GAS ANALYSER – LANDFILL

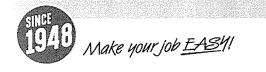
GA5000

Plant Number: 234892

SENSOR	CONCENTRATION	INSTRUMENT READING	TRACEABILITY	PASS
CH4	60_%	<u>60 %</u>	Lot # 1327131	V
CO2	40 %	<u>40</u> %	Lot # 1327131	\square
02	15_%	15_%	Lot # 1370626	Ŀ
со	<u>60</u> ppm	<u>60 ppm</u>	Lot # 1370626	L L
H2S	<u>20_ppm</u>	<u>ppm</u>	Lot # 1370626	ſ
)ata Cleared				

Data Cleared

Battery Status (%)	Temperature <u>l q o</u> c
Electrical Test & Tag (AS/NZS 3760)	Inlet Filter Cleaned/Replaced


Note: Calibration traceability information is available upon request.

Please clean/decontaminate instrument and accessories before returning. A minimum 'Cleaning Fee' \$55.00 (Inc GST) may apply if instrument is returned contaminated.

Checked By: BASALCOLJ Date: 31/05-21 Signed:

Accessories List:

User's Manual & USB	1x Gas Inlet Hoses	1X Gas Inlet Hose With Filter
1x Gas Inlet Hose & Clip Fitting	2x Spare Inlet Filters	1x Flow Through Desiccant
1x Wall Charger	Carry Pouch With Neck Strap	1x USB Comms Cable
Carry Transit Case	Calibration Certificate	

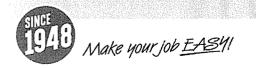
135 135 kennards.com.au

PGN9003823 GAS ANALYSER – LANDFILL GA5000

Plant Number: _234890

SENSOR	CONCENTRATION	INSTRUMENT READING	TRACEABILITY	PASS
CH4	<u>60 %</u>	<u>60</u> %	Lot # 1327131	P
CO2	40 %	<u>40</u> %	Lot # 1327131	2
02	15%	15_%	Lot # 1370626	F
CO	<u>60 ppm</u>	<u>60_ppm</u>	Lot #1370626	I.
H2S	<u>20</u> ppm	<u>20_</u> ppm	Lot # 1370626	2
Data Cleared	7			

Battery Status(%)	Temperature <u>19.5</u> ℃
Electrical Test & Tag (AS/NZS 3760)	Inlet Filter Cleaned/Replaced


Note: Calibration traceability information is available upon request.

Please clean/decontaminate instrument and accessories before returning. A minimum 'Cleaning Fee' \$55.00 (Inc GST) may apply if instrument is returned contaminated.

Checked By: BRNS AR Carl Date: 08/06/21 Signed: _____

Accessories List:

User's Manual & USB	1x Gas Inlet Hoses	1X Gas Inlet Hose With Filter
1x Gas Inlet Hose & Clip Fitting	2x Spare Inlet Filters	1x Flow Through Desiccant
1x Wall Charger	Carry Pouch With Neck Strap	1x USB Comms Cable
Carry Transit Case	Calibration Certificate	

135 135 | kennards.com.au

Certificate of Calibration Conformance

Certificate Number : 34539Date Calibrated : 29/04/2021Reference : 592580Technician : John HadenModel : ION,GASCHECKG3Serial No. :Asset Number : 204779Calibration valid for : 180 days.Description : IONSCIENCE Gascheck G3 Helium Leak Detector

The performance of the above listed equipment has been verified for measurement accuracy to the manufacturers relevant published specification, in accordance with our Quality Assurance Procedures, using the appropriate calibrated equipment, traceable to nationally recognised standards.

SOURCE ASSET 125545 CAL.SUB-CONTRACTED REPORT 549154

DUE 16/02/2022

Cris Ascenzo National Service Manager

QSF 326-1/C

Offices throughout Australia, New Zealand and Malaysia TR Pty Ltd (Box 1185) 18 Joseph Street Blackburn North 3130 VIC Australia Freecall 1800 632 652 P 03 9896 3000 F 03 9896 3099 www.techrentals.com.au ABN 99 005 499 721

TR0147

PGN9003827 GAS DETECTOR - PID

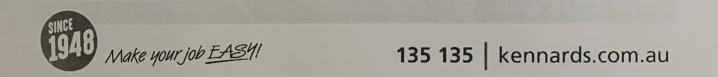
Plant Number: 235042

SENSOR	CONCENTRATION	SPAN 1	SPAN 2	TRACEABILITY	PASS
PID Isobutylene	100ppm	0	100ppm	Lot #1358422	

KENNARD

Data Cleared

Battery Status 100% (%)	Temperature <u>19-2</u> °C
Electrical Test & Tag (AS/NZS 3760)	Inlet Filter Checked/Changed


Note: Calibration traceability information is available upon request.

Please clean/decontaminate instrument and accessories before returning. A minimum 'Cleaning Fee' \$55.00 (Inc GST) may apply if instrument is returned contaminated.

Checked By: Jacob Arnott Date: 19/8/21 Signed: Threat

Accessories List:

User's Manual	Charger / Comms Adaptor	Wall Charger
2x Spare Air Filters	1x Spare Rechargeable Battery	Carry Transit Case
	Calibration Report	

Detailed Site Investigation

School Infrastructure NSW (SINSW) - Department of Education Proposed Sydney Olympic Park High School

Appendix F: Laboratory Certificates of Analysis

greencap.com.au

Adelaide | Auckland | Brisbane | Canberra | Darwin | Melbourne | Newcastle | Perth | Sydney | Wollongong

Certificate of Analysis

Environment Testing

Greencap NSW P/L Ground Floor, North Building, 22 Giffnock Avenue Macquarie Park NSW 2113

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection and proficiency testing scheme providers reports.

Attention:		

Shihui Wang

Report Project name Project ID Received Date **792254-S-V2** SYDNEY OLYMPIC PARK HS J169135-01 May 02, 2021

Client Sample ID			^{G01} GG7- 01(0.05-0.15)	GG8-02(0.4- 0.5)	GG8-03(0.9- 1.0)	GG9-04(1.0- 1.1)
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-My04024	S21-My04025	S21-My04026	S21-My04027
Date Sampled			Apr 29, 2021	Apr 29, 2021	Apr 29, 2021	Apr 29, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Frac	tions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 100	1400	120	< 20
TRH C15-C28	50	mg/kg	< 250	3500	440	97
TRH C29-C36	50	mg/kg	< 250	57	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 250	4957	560	97
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	INT	87	64	69
Total Recoverable Hydrocarbons - 2013 NEPM Frac	tions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 250	2400	290	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 250	2400	290	< 50
TRH >C16-C34	100	mg/kg	< 500	2300	360	130
TRH >C34-C40	100	mg/kg	< 500	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 500	4700	650	130
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	6.2	0.8
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	6.4	1.1
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	6.7	1.4
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	0.6	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	0.6	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	4.7	0.8
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	4.8	0.7
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	2.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	2.4	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	3.9	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	3.5	0.5

Client Sample ID			^{G01} GG7- 01(0.05-0.15)	GG8-02(0.4- 0.5)	GG8-03(0.9- 1.0)	GG9-04(1.0- 1.1)	
Sample Matrix			Soil	Soil	Soil	Soil	
Eurofins Sample No.			S21-My04024	S21-My04025	S21-My04026	S21-My04027	
Date Sampled			Apr 29, 2021	Apr 29, 2021	Apr 29, 2021	Apr 29, 2021	
Test/Reference	LOR	Unit					
Polycyclic Aromatic Hydrocarbons		U.I.I					
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	7.3	1.3	
Fluorene	0.5	mg/kg	< 0.5	1.3	< 0.5	< 0.5	
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	2.2	< 0.5	
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	2.0	< 0.5	
Pyrene	0.5	mg/kg	< 0.5	2.0	8.0	1.3	
Total PAH*	0.5	mg/kg	< 0.5	3.3	42.5	4.6	
2-Fluorobiphenyl (surr.)	1	%	95	118	127	127	
p-Terphenyl-d14 (surr.)	1	%	82	126	135	137	
Organochlorine Pesticides							
Chlordanes - Total	0.1	mg/kg	< 1	< 0.1	< 0.1	< 0.1	
4.4'-DDD	0.05	mg/kg	< 0.5	< 0.05	< 0.05	< 0.05	
4.4'-DDE	0.05	mg/kg	< 0.5	< 0.05	< 0.05	< 0.05	
4.4'-DDT	0.05	mg/kg	< 0.5	< 0.05	< 0.05	< 0.05	
a-BHC	0.05	mg/kg	< 0.5	< 0.05	< 0.05	< 0.05	
Aldrin	0.05	mg/kg	< 0.5	< 0.05	< 0.05	< 0.05	
b-BHC	0.05	mg/kg	< 0.5	< 0.05	< 0.05	< 0.05	
d-BHC	0.05	mg/kg	< 0.5	< 0.05	< 0.05	< 0.05	
Dieldrin	0.05	mg/kg	< 0.5	< 0.05	< 0.05	< 0.05	
Endosulfan I	0.05	mg/kg	< 0.5	< 0.05	< 0.05	< 0.05	
Endosulfan II	0.05	mg/kg	< 0.5	< 0.05	< 0.05	< 0.05	
Endosulfan sulphate	0.05	mg/kg	< 0.5	< 0.05	< 0.05	< 0.05	
Endrin	0.05	mg/kg	< 0.5	< 0.05	< 0.05	< 0.05	
Endrin aldehyde	0.05	mg/kg	< 0.5	< 0.05	< 0.05	< 0.05	
Endrin ketone	0.05	mg/kg	< 0.5	< 0.05	< 0.05	< 0.05	
g-BHC (Lindane)	0.05	mg/kg	< 0.5	< 0.05	< 0.05	< 0.05	
Heptachlor	0.05	mg/kg	< 0.5	< 0.05	< 0.05	< 0.05	
Heptachlor epoxide	0.05	mg/kg	< 0.5	< 0.05	< 0.05	< 0.05	
Hexachlorobenzene	0.05	mg/kg	< 0.5	< 0.05	< 0.05	< 0.05	
Methoxychlor	0.2	mg/kg	< 0.5	< 0.2	< 0.2	< 0.2	
Toxaphene	0.1	mg/kg	< 10	0.3	0.2	0.3	
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.5	< 0.05	< 0.05	< 0.05	
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.5	< 0.05	< 0.05	< 0.05	
Vic EPA IWRG 621 OCP (Total)* Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 1	< 0.2	< 0.2	< 0.2	
	0.1	mg/kg	< 1 INT	< 0.2	< 0.2	< 0.2	
Dibutylchlorendate (surr.) Tetrachloro-m-xylene (surr.)	1	%	112	97	109 INT	119 146	
Organophosphorus Pesticides		/0	112	123		140	
Azinphos-methyl	0.2	malka	< 0.5	< 0.2	< 0.2	< 0.2	
Bolstar	0.2	mg/kg mg/kg	< 0.5	< 0.2	< 0.2	< 0.2	
Chlorfenvinphos	0.2	mg/kg	< 0.5	< 0.2	< 0.2	< 0.2	
Chlorpyrifos	0.2	mg/kg	< 0.5	< 0.2	< 0.2	< 0.2	
Chlorpyrifos-methyl	0.2	mg/kg	< 0.5	< 0.2	< 0.2	< 0.2	
Coumaphos	2	mg/kg	< 5	< 2	< 2	< 2	
Demeton-S	0.2	mg/kg	< 0.5	< 0.2	< 0.2	< 0.2	
Demeton-O	0.2	mg/kg	< 0.5	< 0.2	< 0.2	< 0.2	
Diazinon	0.2	mg/kg	< 0.5	< 0.2	< 0.2	< 0.2	
Dichlorvos	0.2	mg/kg	< 0.5	< 0.2	< 0.2	< 0.2	

Client Sample ID			^{G01} GG7- 01(0.05-0.15)	GG8-02(0.4- 0.5)	GG8-03(0.9- 1.0)	GG9-04(1.0- 1.1)
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-My04024	S21-My04025	S21-My04026	S21-My04027
Date Sampled			Apr 29, 2021	Apr 29, 2021	Apr 29, 2021	Apr 29, 2021
Test/Reference	LOR	Unit				
Organophosphorus Pesticides						
Dimethoate	0.2	mg/kg	< 0.5	< 0.2	< 0.2	< 0.2
Disulfoton	0.2	mg/kg	< 0.5	< 0.2	< 0.2	< 0.2
EPN	0.2	mg/kg	< 0.5	< 0.2	< 0.2	< 0.2
Ethion	0.2	mg/kg	< 0.5	< 0.2	< 0.2	< 0.2
Ethoprop	0.2	mg/kg	< 0.5	< 0.2	< 0.2	< 0.2
Ethyl parathion	0.2	mg/kg	< 0.5	< 0.2	< 0.2	< 0.2
Fenitrothion	0.2	mg/kg	< 0.5	< 0.2	< 0.2	< 0.2
Fensulfothion	0.2	mg/kg	< 0.5	< 0.2	< 0.2	< 0.2
Fenthion	0.2	mg/kg	< 0.5	< 0.2	< 0.2	< 0.2
Malathion	0.2	mg/kg	< 0.5	< 0.2	< 0.2	< 0.2
Merphos	0.2	mg/kg	< 0.5	< 0.2	< 0.2	< 0.2
Methyl parathion	0.2	mg/kg	< 0.5	< 0.2	< 0.2	< 0.2
Mevinphos	0.2	mg/kg	< 0.5	< 0.2	< 0.2	< 0.2
Monocrotophos	2	mg/kg	< 5	< 2	< 2	< 2
Naled	0.2	mg/kg	< 0.5	< 0.2	< 0.2	< 0.2
Omethoate	2	mg/kg	< 5	< 2	< 2	< 2
Phorate	0.2	mg/kg	< 0.5	< 0.2	< 0.2	< 0.2
Pirimiphos-methyl	0.2	mg/kg	< 0.5	< 0.2	< 0.2	< 0.2
Pyrazophos	0.2	mg/kg	< 0.5	< 0.2	< 0.2	< 0.2
Ronnel	0.2	mg/kg	< 0.5	< 0.2	< 0.2	< 0.2
Terbufos	0.2	mg/kg	< 0.5	< 0.2	< 0.2	< 0.2
Tetrachlorvinphos	0.2	mg/kg	< 0.5	< 0.2	< 0.2	< 0.2
Tokuthion	0.2	mg/kg	< 0.5	< 0.2	< 0.2	< 0.2
Trichloronate	0.2	mg/kg	< 0.5	< 0.2	< 0.2	< 0.2
Triphenylphosphate (surr.)	1	%	INT	135	130	INT
Polychlorinated Biphenyls						
Aroclor-1016	0.5	mg/kg	< 1	< 0.5	< 0.5	< 0.5
Aroclor-1221	0.1	mg/kg	< 1	< 0.1	< 0.1	< 0.1
Aroclor-1232	0.5	mg/kg	< 1	< 0.5	< 0.5	< 0.5
Aroclor-1242	0.5	mg/kg	< 1	< 0.5	< 0.5	< 0.5
Aroclor-1248	0.5	mg/kg	< 1	< 0.5	< 0.5	< 0.5
Aroclor-1254	0.5	mg/kg	< 1	< 0.5	< 0.5	< 0.5
Aroclor-1260	0.5	mg/kg	< 1	< 0.5	< 0.5	< 0.5
Total PCB*	0.5	mg/kg	< 1	< 0.5	< 0.5	< 0.5
Dibutylchlorendate (surr.)	1	%	INT	97	109	119
Tetrachloro-m-xylene (surr.)	1	%	112	123	INT	146
TRH - 2013 NEPM Fractions (after silica gel clean-	up)	_				
TRH >C10-C16 (after silica gel clean-up)	50	mg/kg	< 50	2500	< 50	< 50
TRH >C16-C34 (after silica gel clean-up)	100	mg/kg	120	1900	< 100	< 100
TRH >C34-C40 (after silica gel clean-up)	100	mg/kg	< 100	< 100	< 100	< 100
TRH - 1999 NEPM Fractions (after silica gel clean-	up)					
TRH C10-C36 (Total) (after silica gel clean-up)	50	mg/kg	100	4300	< 100	< 100
TRH C10-C14 (after silica gel clean-up)	50	mg/kg	< 50	1300	< 50	< 50
TRH C15-C28 (after silica gel clean-up)	100	mg/kg	100	3000	< 100	< 100
TRH C29-C36 (after silica gel clean-up)	100	mg/kg	< 100	< 100	< 100	< 100

Client Sample ID			^{G01} GG7- 01(0.05-0.15)	GG8-02(0.4- 0.5)	GG8-03(0.9- 1.0)	GG9-04(1.0- 1.1)
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-My04024	S21-My04025	S21-My04026	S21-My04027
Date Sampled			Apr 29, 2021	Apr 29, 2021	Apr 29, 2021	Apr 29, 2021
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic	2	mg/kg	2.8	4.0	13	13
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	30	16	17	10
Copper	5	mg/kg	52	9.0	19	6.9
Lead	5	mg/kg	25	12	47	16
Mercury	0.1	mg/kg	< 0.1	< 0.1	0.2	< 0.1
Nickel	5	mg/kg	28	11	9.0	< 5
Zinc	5	mg/kg	110	29	53	34
% Moisture	1	%	2.5	7.7	18	17

Client Sample ID			GG6-03(1.0- 1.1)	GG4-02(0.5- 0.6)	FD1(0.2-0.3)	FD2(0.5-0.6)	
Sample Matrix			Soil	Soil	Soil	Soil	
Eurofins Sample No.			S21-My04028	S21-My04029	S21-My04036	S21-My04037	
Date Sampled			Apr 29, 2021	Apr 29, 2021	Apr 29, 2021	Apr 29, 2021	
Test/Reference	LOR	Unit			-		
Total Recoverable Hydrocarbons - 1999 NEPM Fr	actions						
TRH C6-C9	20	mg/kg	< 20	< 20	-	-	
TRH C10-C14	20	mg/kg	< 20	< 20	-	-	
TRH C15-C28	50	mg/kg	< 50	< 50	-	-	
TRH C29-C36	50	mg/kg	< 50	< 50	-	-	
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	-	-	
BTEX							
Benzene	0.1	mg/kg	< 0.1	< 0.1	-	-	
Toluene	0.1	mg/kg	< 0.1	< 0.1	-	-	
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	-	-	
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	-	-	
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	-	-	
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	-	-	
4-Bromofluorobenzene (surr.)	1	%	84	88	-	-	
Total Recoverable Hydrocarbons - 2013 NEPM Fr	actions						
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	-	-	
TRH C6-C10	20	mg/kg	< 20	< 20	-	-	
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	-	-	
TRH >C10-C16	50	mg/kg	< 50	< 50	-	-	
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	-	-	
TRH >C16-C34	100	mg/kg	< 100	< 100	-	-	
TRH >C34-C40	100	mg/kg	< 100	< 100	-	-	
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	-	-	
Polycyclic Aromatic Hydrocarbons							
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	1.9	0.8	-	-	
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	2.2	1.1	-	-	
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	2.4	1.4	-	-	
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	-	-	
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	-	-	
Anthracene	0.5	mg/kg	< 0.5	< 0.5	-	-	
Benz(a)anthracene	0.5	mg/kg	1.4	0.6	-	-	

Client Sample ID			GG6-03(1.0- 1.1)	GG4-02(0.5- 0.6)	FD1(0.2-0.3)	FD2(0.5-0.6)
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-My04028	S21-My04029	S21-My04036	S21-My04037
Date Sampled			Apr 29, 2021	Apr 29, 2021	Apr 29, 2021	Apr 29, 2021
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons	ł	1				
Benzo(a)pyrene	0.5	mg/kg	1.5	0.7	_	_
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	1.0	< 0.5	-	-
Benzo(g.h.i)perylene	0.5	mg/kg	0.7	< 0.5	-	-
Benzo(k)fluoranthene	0.5	mg/kg	1.1	< 0.5	-	-
Chrysene	0.5	mg/kg	1.1	0.5	-	-
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	-	-
Fluoranthene	0.5	mg/kg	2.0	1.0	-	-
Fluorene	0.5	mg/kg	< 0.5	< 0.5	-	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	0.6	< 0.5	-	-
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	-	-
Phenanthrene	0.5	mg/kg	0.7	< 0.5	-	-
Pyrene	0.5	mg/kg	2.0	1.0	-	-
Total PAH*	0.5	mg/kg	12.1	3.8	-	-
2-Fluorobiphenyl (surr.)	1	%	111	99	-	-
p-Terphenyl-d14 (surr.)	1	%	125	120	-	-
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	-	-
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	-	-
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	-	-
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	-	-
a-BHC	0.05	mg/kg	< 0.05	< 0.05	-	-
Aldrin	0.05	mg/kg	< 0.05	< 0.05 -		-
b-BHC	0.05	mg/kg	< 0.05	< 0.05	-	-
d-BHC	0.05	mg/kg	< 0.05	< 0.05	-	-
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	-	-
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	-	-
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	-	-
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	-	-
Endrin	0.05	mg/kg	< 0.05	< 0.05	-	-
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	-	-
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	-	-
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	-	-
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	-	-
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	-	-
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	-	-
Methoxychlor	0.2	mg/kg	< 0.2	< 0.2	-	-
Toxaphene	0.1	mg/kg	0.3	0.3	-	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	-	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	-	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.2	< 0.2	-	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.2	< 0.2	-	-
Dibutylchlorendate (surr.)	1	%	76	85	-	-
Tetrachloro-m-xylene (surr.) Organophosphorus Pesticides	1	%	145	142	-	-
Azinphos-methyl	0.2	mg/kg	< 0.2	< 0.2	-	-
Bolstar	0.2	mg/kg	< 0.2	< 0.2	-	-
Chlorfenvinphos	0.2	mg/kg	< 0.2	< 0.2	-	-
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.2	-	-
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	< 0.2	-	-

Client Sample ID			GG6-03(1.0-	GG4-02(0.5-		FD2(0.5-0.6)
Sample Matrix			1.1) Soil	0.6) Soil	FD1(0.2-0.3) Soil	FD2(0.5-0.6) Soil
Eurofins Sample No.			S21-My04028	S21-My04029		S011 S21-My04037
Date Sampled			Apr 29, 2021	Apr 29, 2021	S21-My04036	-
•			Apr 29, 2021	Apr 29, 2021	Apr 29, 2021	Apr 29, 2021
Test/Reference	LOR	Unit				
Organophosphorus Pesticides						
Coumaphos	2	mg/kg	< 2	< 2	-	-
Demeton-S	0.2	mg/kg	< 0.2	< 0.2	-	-
Demeton-O	0.2	mg/kg	< 0.2	< 0.2	-	-
Diazinon	0.2	mg/kg	< 0.2 < 0.2	< 0.2	-	-
Dichlorvos Dimethoate	0.2	mg/kg	< 0.2	< 0.2	-	-
Disulfoton	0.2	mg/kg mg/kg	< 0.2	< 0.2		-
EPN	0.2	mg/kg	< 0.2	< 0.2		-
Ethion	0.2	mg/kg	< 0.2	< 0.2		-
Ethoprop	0.2	mg/kg	< 0.2	< 0.2		-
Ethyl parathion	0.2	mg/kg	< 0.2	< 0.2		-
Fenitrothion	0.2	mg/kg	< 0.2	< 0.2	-	-
Fensulfothion	0.2	mg/kg	< 0.2	< 0.2	-	-
Fenthion	0.2	mg/kg	< 0.2	< 0.2	_	_
Malathion	0.2	mg/kg	< 0.2	< 0.2	_	_
Merphos	0.2	mg/kg	< 0.2	< 0.2	_	_
Methyl parathion	0.2	mg/kg	< 0.2	< 0.2	_	_
Mevinphos	0.2	mg/kg	< 0.2	< 0.2	_	_
Monocrotophos	2	mg/kg	< 2	< 2	_	_
Naled	0.2	mg/kg	< 0.2	< 0.2	_	_
Omethoate	2	mg/kg	< 2	< 2	_	_
Phorate	0.2	mg/kg	< 0.2	< 0.2	_	_
Pirimiphos-methyl	0.2	mg/kg	< 0.2	< 0.2 -		_
Pyrazophos	0.2	mg/kg	< 0.2	< 0.2	_	_
Ronnel	0.2	mg/kg	< 0.2	< 0.2	_	_
Terbufos	0.2	mg/kg	< 0.2	< 0.2	_	_
Tetrachlorvinphos	0.2	mg/kg	< 0.2	< 0.2	_	_
Tokuthion	0.2	mg/kg	< 0.2	< 0.2	_	_
Trichloronate	0.2	mg/kg	< 0.2	< 0.2	_	_
Triphenylphosphate (surr.)	1	%	128	120	_	_
Polychlorinated Biphenyls		,,,				
Aroclor-1016	0.5	mg/kg	< 0.5	< 0.5	-	-
Aroclor-1221	0.0	mg/kg	< 0.1	< 0.1	-	
Aroclor-1232	0.5	mg/kg	< 0.5	< 0.5		_
Aroclor-1242	0.5	mg/kg	< 0.5	< 0.5	_	_
Aroclor-1248	0.5	mg/kg	< 0.5	< 0.5	_	_
Aroclor-1254	0.5	mg/kg	< 0.5	< 0.5	-	_
Aroclor-1260	0.5	mg/kg	< 0.5	< 0.5	_	-
Total PCB*	0.5	mg/kg	< 0.5	< 0.5	_	-
Dibutylchlorendate (surr.)	1	%	76	85	-	-
Tetrachloro-m-xylene (surr.)	1	%	145	142	-	-
TRH - 2013 NEPM Fractions (after silica gel clean-u						
TRH >C10-C16 (after silica gel clean-up)	50	mg/kg	< 50	< 50	-	_
TRH >C16-C34 (after silica gel clean-up)	100	mg/kg	< 100	< 100	_	_
TRH >C34-C40 (after silica gel clean-up)	100	mg/kg	< 100	< 100	_	_
TRH - 1999 NEPM Fractions (after silica gel clean-u						
TRH C10-C36 (Total) (after silica gel clean-up)	50	mg/kg	^{G01} < 100	^{G01} < 100	_	
TRH C10-C14 (after silica gel clean-up)	50	mg/kg	< 50	< 50	-	-
TRH C15-C28 (after silica gel clean-up)	100	mg/kg	< 100	< 100	-	-
TRH C29-C36 (after silica gel clean-up)	100	mg/kg	< 100	< 100	+	+

Client Sample ID			GG6-03(1.0- 1.1)	GG4-02(0.5- 0.6)	FD1(0.2-0.3)	FD2(0.5-0.6)
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-My04028	S21-My04029	S21-My04036	S21-My04037
Date Sampled			Apr 29, 2021	Apr 29, 2021	Apr 29, 2021	Apr 29, 2021
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic	2	mg/kg	3.5	9.3	2.5	8.8
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	< 5	19	140	29
Copper	5	mg/kg	12	30	38	29
Lead	5	mg/kg	17	35	7.5	50
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	0.2
Nickel	5	mg/kg	< 5	34	130	32
Zinc	5	mg/kg	24	140	76	81
% Moisture	1	%	7.5	13	6.4	14

Client Sample ID Sample Matrix			TRIP BLANK Soil	TRIP SPIKE Soil	^{G01} GG8-01(0.2- 0.3) Soil	
Eurofins Sample No.			S21-My04038	S21-My04039		
			1 -	-	S21-My04075	
Date Sampled			Apr 29, 2021	Apr 29, 2021	Apr 29, 2021	
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM F	ractions	1				
TRH C6-C9	20	mg/kg	< 20	-	< 20	
TRH C10-C14	20	mg/kg	-	-	< 20	
TRH C15-C28	50	mg/kg	-	-	160	
TRH C29-C36	50	mg/kg	-	-	210	
TRH C10-C36 (Total)	50	mg/kg	-	-	370	
BTEX						
Benzene	0.1	mg/kg	< 0.1	-	< 0.1	
Toluene	0.1	mg/kg	< 0.1	-	< 0.1	
Ethylbenzene	0.1	mg/kg	< 0.1	-	< 0.1	
m&p-Xylenes	0.2	mg/kg	< 0.2	-	< 0.2	
o-Xylene	0.1	mg/kg	< 0.1	-	< 0.1	
Xylenes - Total*	0.3	mg/kg	< 0.3	-	< 0.3	
4-Bromofluorobenzene (surr.)	1	%	77	-	86	
Total Recoverable Hydrocarbons - 2013 NEPM F	ractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	-	< 0.5	
TRH C6-C10	20	mg/kg	< 20	-	< 20	
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	-	< 20	
TRH >C10-C16	50	mg/kg	-	-	< 50	
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	-	-	< 50	
TRH >C16-C34	100	mg/kg	-	-	320	
TRH >C34-C40	100	mg/kg	-	-	210	
TRH >C10-C40 (total)*	100	mg/kg	-	-	530	
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	-	< 0.5	
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	-	0.6	
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	-	1.2	
Acenaphthene	0.5	mg/kg	-	-	< 0.5	
Acenaphthylene	0.5	mg/kg	-	-	< 0.5	
Anthracene	0.5	mg/kg	-	-	< 0.5	
Benz(a)anthracene	0.5	mg/kg	-	-	< 0.5	

Client Sample ID			TRIP BLANK	TRIP SPIKE	^{G01} GG8-01(0.2- 0.3)
Sample Matrix			Soil	Soil	Soil
Eurofins Sample No.			S21-My04038	S21-My04039	S21-My04075
Date Sampled			Apr 29, 2021	Apr 29, 2021	Apr 29, 2021
Test/Reference	LOR	Unit			
Polycyclic Aromatic Hydrocarbons		1			
Benzo(a)pyrene	0.5	mg/kg	_	_	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	-	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	-	-	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	-	-	< 0.5
Chrysene	0.5	mg/kg	-	-	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	-	-	< 0.5
Fluoranthene	0.5	mg/kg	-	-	< 0.5
Fluorene	0.5	mg/kg	-	-	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	-	< 0.5
Naphthalene	0.5	mg/kg	-	-	< 0.5
Phenanthrene	0.5	mg/kg	-	-	< 0.5
Pyrene	0.5	mg/kg	-	-	< 0.5
Total PAH*	0.5	mg/kg	-	-	< 0.5
2-Fluorobiphenyl (surr.)	1	%	-	-	70
p-Terphenyl-d14 (surr.)	1	%	-	-	66
Organochlorine Pesticides	I.				
Chlordanes - Total	0.1	mg/kg	-	-	< 1
4.4'-DDD	0.05	mg/kg	-	-	< 0.5
4.4'-DDE	0.05	mg/kg	-	-	< 0.5
4.4'-DDT	0.05	mg/kg	-	-	< 0.5
a-BHC	0.05	mg/kg	-	-	< 0.5
Aldrin	0.05	mg/kg	-	-	< 0.5
b-BHC	0.05	mg/kg	-	-	< 0.5
d-BHC	0.05	mg/kg	-	-	< 0.5
Dieldrin	0.05	mg/kg	-	-	< 0.5
Endosulfan I	0.05	mg/kg	-	-	< 0.5
Endosulfan II	0.05	mg/kg	-	-	< 0.5
Endosulfan sulphate	0.05	mg/kg	-	-	< 0.5
Endrin	0.05	mg/kg	-	-	< 0.5
Endrin aldehyde	0.05	mg/kg	-	-	< 0.5
Endrin ketone	0.05	mg/kg	-	-	< 0.5
g-BHC (Lindane)	0.05	mg/kg	-	-	< 0.5
Heptachlor Heptachlor epoxide	0.05	mg/kg	-	-	< 0.5
Hexachlorobenzene	0.05	mg/kg	-	-	< 0.5
Methoxychlor	0.03	mg/kg	-	-	< 0.5
Toxaphene	0.2	mg/kg mg/kg	-	-	< 10
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	-	< 0.5
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	-	< 0.5
Vic EPA IWRG 621 OCP (Total)*	0.03	mg/kg	-	-	< 1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-		< 1
Dibutylchlorendate (surr.)	1	%	_		INT
Tetrachloro-m-xylene (surr.)	1	%	_	_	83
Organophosphorus Pesticides	I •				
Azinphos-methyl	0.2	mg/kg	_	_	< 0.5
Bolstar	0.2	mg/kg	-		< 0.5
Chlorfenvinphos	0.2	mg/kg	_	_	< 0.5
Chlorpyrifos	0.2	mg/kg	-	_	< 0.5
Chlorpyrifos-methyl	0.2	mg/kg	-	_	< 0.5

Client Sample ID			TRIP BLANK	TRIP SPIKE	^{G01} GG8-01(0.2- 0.3)
Sample Matrix			Soil	Soil	Soil
Eurofins Sample No.			S21-My04038	S21-My04039	S21-My04075
Date Sampled			Apr 29, 2021	Apr 29, 2021	Apr 29, 2021
Test/Reference	LOR	Unit			
Organophosphorus Pesticides					
Coumaphos	2	mg/kg	-	-	< 5
Demeton-S	0.2	mg/kg	-	-	< 0.5
Demeton-O	0.2	mg/kg	-	-	< 0.5
Diazinon	0.2	mg/kg	-	-	< 0.5
Dichlorvos	0.2	mg/kg	-	-	< 0.5
Dimethoate	0.2	mg/kg	-	-	< 0.5
Disulfoton	0.2	mg/kg	-	-	< 0.5
EPN	0.2	mg/kg	-	-	< 0.5
Ethion	0.2	mg/kg	-	-	< 0.5
Ethoprop	0.2	mg/kg	-	-	< 0.5
Ethyl parathion	0.2	mg/kg	-	-	< 0.5
Fenitrothion	0.2	mg/kg	-	-	< 0.5
Fensulfothion	0.2	mg/kg	-	-	< 0.5
Fenthion	0.2	mg/kg	-	-	< 0.5
Malathion	0.2	mg/kg	-	-	< 0.5
Merphos	0.2	mg/kg	-	-	< 0.5
Methyl parathion	0.2	mg/kg	-	-	< 0.5
Mevinphos	0.2	mg/kg	-	-	< 0.5
Monocrotophos	2	mg/kg	-	-	< 5
Naled	0.2	mg/kg	-	-	< 0.5
Omethoate	2	mg/kg	-	-	< 5
Phorate	0.2	mg/kg	-	-	< 0.5
Pirimiphos-methyl	0.2	mg/kg	-	-	< 0.5
Pyrazophos	0.2	mg/kg	-	-	< 0.5
Ronnel	0.2	mg/kg	-	-	< 0.5
Terbufos	0.2	mg/kg	-	-	< 0.5
Tetrachlorvinphos	0.2	mg/kg	-	-	< 0.5
Tokuthion	0.2	mg/kg	-	-	< 0.5
Trichloronate	0.2	mg/kg	-	-	< 0.5
Triphenylphosphate (surr.)	1	%	-	-	50
Polychlorinated Biphenyls					
Aroclor-1016	0.5	mg/kg	-	-	< 1
Aroclor-1221	0.1	mg/kg	-	-	< 1
Aroclor-1232	0.5	mg/kg	-	-	< 1
Aroclor-1242	0.5	mg/kg	-	-	< 1
Aroclor-1248	0.5	mg/kg	-	-	< 1
Aroclor-1254	0.5	mg/kg	-	-	< 1
Aroclor-1260	0.5	mg/kg	-	-	< 1
Total PCB*	0.5	mg/kg	-	-	< 1
Dibutylchlorendate (surr.)	1	%	-	-	INT
Tetrachloro-m-xylene (surr.)	1	%	-	-	83
TRH - 2013 NEPM Fractions (after silica gel clean-u	up)				
TRH >C10-C16 (after silica gel clean-up)	50	mg/kg	-	-	< 50
TRH >C16-C34 (after silica gel clean-up)	100	mg/kg	-	-	< 100
TRH >C34-C40 (after silica gel clean-up)	100	mg/kg	-	-	< 100
TRH - 1999 NEPM Fractions (after silica gel clean-u					
TRH C10-C36 (Total) (after silica gel clean-up)	50	mg/kg	-	-	^{G01} < 100
TRH C10-C14 (after silica gel clean-up)	50	mg/kg	-	-	< 50
TRH C15-C28 (after silica gel clean-up)	100	mg/kg	-	-	< 100
TRH C29-C36 (after silica gel clean-up)	100	mg/kg	-	_	< 100

Client Sample ID			TRIP BLANK Soil	TRIP SPIKE Soil	^{G01} GG8-01(0.2 0.3) Soil
Sample Matrix					
Eurofins Sample No.			S21-My04038	S21-My04039	S21-My04075
Date Sampled			Apr 29, 2021	Apr 29, 2021	Apr 29, 2021
Test/Reference	LOR	Unit			
Heavy Metals					
Arsenic	2	mg/kg	-	-	3.0
Cadmium	0.4	mg/kg	-	-	< 0.4
Chromium	5	mg/kg	-	-	170
Copper	5	mg/kg	-	-	48
Lead	5	mg/kg	-	-	8.9
Mercury	0.1	mg/kg	-	-	< 0.1
Nickel	5	mg/kg	-	-	150
Zinc	5	mg/kg	-	-	98
% Moisture	1	%	-	-	20
TRH C6-C10	1	%	-	86	-
Total Recoverable Hydrocarbons					
Naphthalene	1	%	-	73	-
TRH C6-C9	1	%	-	88	-
BTEX					
Benzene	1	%	-	99	-
Ethylbenzene	1	%	-	84	-
m&p-Xylenes	1	%	-	82	-
o-Xylene	1	%	-	84	-
Toluene	1	%	-	92	-
Xylenes - Total	1	%	-	83	-
4-Bromofluorobenzene (surr.)	1	%	-	84	-

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	May 06, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	May 06, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	May 06, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons	Sydney	May 06, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	May 06, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Sydney	May 06, 2021	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Metals M8	Sydney	May 06, 2021	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Eurofins Suite B15			
Organochlorine Pesticides	Sydney	May 11, 2021	14 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Organophosphorus Pesticides	Sydney	May 11, 2021	14 Days
- Method: LTM-ORG-2200 Organophosphorus Pesticides by GC-MS			
Polychlorinated Biphenyls	Sydney	May 11, 2021	28 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
TRH - 2013 NEPM Fractions (after silica gel clean-up)	Sydney	May 06, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
TRH - 1999 NEPM Fractions (after silica gel clean-up)	Sydney	May 06, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
% Moisture	Sydney	May 04, 2021	14 Days
- Method: LTM-GEN-7080 Moisture			

	eurofi				Australia											New Zealand	
	50 005 085 521 web: v	E	nvironmen m.au email: EnviroSi	-	Melbourne 6 Monterey Road Dandenong South VIC 3 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271	U 175 1 0 L P	Gydney Jnit F3, E 6 Mars I ane Cov Phone : + IATA # 1	Road /e West -61 2 99	: NSW 2 900 840	1/: M 066 Pt 0 N/	urarrie hone : +	allwood QLD 41 -61 7 39		Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 767 Phone : 0800 856 450 IANZ # 1290
	ompany Name: Idress:			ding, 22 Giffno	ck Avenue	Order No.: Report #: Phone: Fax:					PO286462 792254 02 9889 1800 02 9889 1811				Received: Due: Priority: Contact Name:	May 2, 2021 9:36 F May 10, 2021 5 Day Shihui Wang	PM
Project Name: SYDNEY OLYMPIC PARK HS Project ID: J169135-01															Eurofins Analytical	Services Manager : I	Jrsula Long
	Sample Detail							Eurofins Suite B15	TRH (after Silica Gel cleanup)	Moisture Set	Eurofins Suite B7	BTEXN and Volatile TRH	BTEXN and Volatile TRH				
Melk	bourne Laborato	ry - NATA S	Site # 1254 & 14	4271													
Syd	ney Laboratory -	NATA Site	# 18217			х	X	Х	х	х	Х	Х	х				
Bris	bane Laboratory	- NATA Sit	e # 20794							ļ							
	h Laboratory - N																
	field Laboratory	- NATA Site	e # 25079								<u> </u>						
Exte No	ernal Laboratory Sample ID	Sample Da	te Sampling Time) Matrix	LAB ID												
1	GG7-01(0.05- 0.15)	Apr 29, 202		Soil	S21-My04024			х	х	x	х						
2	GG8-02(0.4- 0.5)	Apr 29, 202		Soil	S21-My04025			х	x	x	x						
3	GG8-03(0.9- 1.0)	Apr 29, 202		Soil	S21-My04026			х	х	x	х						
4	GG9-04(1.0- 1.1)	Apr 29, 202		Soil	S21-My04027			х	X	x	х						
5	GG6-03(1.0- 1.1)	Apr 29, 202		Soil	S21-My04028		<u> </u>	X	X	X	X						
6	GG4-02(0.5-	Apr 29, 202	1	Soil	S21-My04029	1	1	X	X	X	Х	1	I I				

🔅 eurofii			Australia											New Zealand	
••	Enviro	nment Testing	Melbourne 6 Monterey Road Dandenong South VIC 31 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271	U 75 16 La Pl	ydney nit F3, E 6 Mars F ane Cov hone : + ATA # 1	Road ve West •61 2 99	NSW 2	1/: M 066 Pt 0 N/		Illwood QLD 41 61 7 39		Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 767 Phone : 0800 856 450 IANZ # 1290
Company Name: Address:	Greencap NSW Ground Floor, N Macquarie Park NSW 2113	North Building, 22 Giffno	ck Avenue		Re Ph	rder N eport none: ax:	#:	7 0	PO286 792254 02 988 02 988	4 39 180			Received: Due: Priority: Contact Name:	May 2, 2021 9:36 F May 10, 2021 5 Day Shihui Wang	PM
Project Name: Project ID:											Eurofins Analytical	Services Manager : I	Ursula Long		
		HOLD	Metals M8	Eurofins Suite B15	TRH (after Silica Gel cleanup)	Moisture Set	Eurofins Suite B7	BTEXN and Volatile TRH	BTEXN and Volatile TRH						
Melbourne Laborato						~			X		×				
Sydney Laboratory - Brisbane Laboratory				Х	X	Х	X	Х	Х	X	Х				
Perth Laboratory - N															
Mayfield Laboratory															
External Laboratory															
0.6)					1				1						
,	Apr 29, 2021	Soil	S21-My04036		х			Х							
	Apr 29, 2021	Soil	S21-My04037		х			Х							
9 TRIP BLANK	Apr 29, 2021	Soil	S21-My04038							х					
	Apr 29, 2021	Soil	S21-My04039		ļ						х				
11 GG7-02(0.3- 0.4)	Apr 29, 2021	Soil	S21-My04040	х											
0.8)	Apr 29, 2021	Soil	S21-My04041	х											
1.2)	Apr 29, 2021	Soil	S21-My04042	Х											
14 GG7-05(1.5-	Apr 29, 2021	Soil	S21-My04043	Х											

🛟 eurofir			Australia											New Zealand	
	Envi	ronment Testing email: EnviroSales@eurofins.com	Phone : +61 3 8564 5000 NATA # 1261	rey Road Unit F3, Building F ong South VIC 3175 16 Mars Road +61 3 8564 5000 Lane Cove West NSW 3 1261 Phone : +61 2 9900 840			NSW 2	1/2 M 066 Pt 0 N/	urarrie (hone : +	Illwood QLD 41 61 7 39	72	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: - +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290
Company Name: Address:	Greencap NS Ground Floor Macquarie Pa NSW 2113	, North Building, 22 Giffno	ck Avenue		Re Ph	der N eport none: ix:	#:	7 0					Received: Due: Priority: Contact Name:	May 2, 2021 9:36 I May 10, 2021 5 Day Shihui Wang	PM
Project Name: Project ID:											Eurofins Analytical	Services Manager : I	Ursula Long		
		HOLD	Metals M8	Eurofins Suite B15	TRH (after Silica Gel cleanup)	Moisture Set	Eurofins Suite B7	BTEXN and Volatile TRH	BTEXN and Volatile TRH						
Melbourne Laborato					V	×	V		V	V					
Sydney Laboratory - Brisbane Laboratory				Х	X	Х	X	Х	X	X	X				
Perth Laboratory - N															
Mayfield Laboratory															
External Laboratory															
14 GG7-05(1.5- 1.6)	Apr 29, 2021	Soil	S21-My04043												
2.0)	Apr 29, 2021	Soil	S21-My04044	х											
3.0)	Apr 29, 2021	Soil	S21-My04045	х											
0.2)	Apr 29, 2021	Soil	S21-My04046	х											
0.5)	Apr 29, 2021	Soil	S21-My04047	х											
0.8)	Apr 29, 2021	Soil	S21-My04048	х											
20 GG6-01(0.2-	Apr 29, 2021	Soil	S21-My04049	Х	1		1		1	1					

	eurofi	ns		Australia											New Zealand		
		Env	ironment Testing	Phone : +61 3 8564 5000 NATA # 1261	Interey Road Unit F3, Building F Jenong South VIC 3175 16 Mars Road ue : +61 3 8564 5000 Lane Cove West NSW 2I A # 1261 Phone : +61 2 9900 8400				1/ M 066 PI 0 N	lurarrie hone : +	allwood QLD 4 ⁻ +61 7 39	172	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290	
	mpany Name: dress:	Greencap N Ground Floo Macquarie F NSW 2113	or, North Building, 22 Giffno	ck Avenue	Order No.: Report #: Phone: Fax:					PO286462 792254 02 9889 1800 02 9889 1811				Received: Due: Priority: Contact Name:	May 2, 2021 9:36 PM May 10, 2021 5 Day Shihui Wang		
	oject Name: oject ID:											Eurofins Analytical	Services Manager :	Ursula Long			
			HOLD	Metals M8	Eurofins Suite B15	TRH (after Silica Gel cleanup)	Moisture Set	Eurofins Suite B7	BTEXN and Volatile TRH	BTEXN and Volatile TRH							
			# 1254 & 14271		×		x	v		v	x	×					
		- NATA Site # 1 y - NATA Site #			Х	X	^	X	X	X		X					
		NATA Site # 23															
		y - NATA Site #															
	rnal Laboratory	/															
21	0.3) GG6-02(0.7-	Apr 29, 2021	Soil	S21-My04050	x												
2	0.8) GG6-04(2.0- 2.1)	Apr 29, 2021	Soil	S21-My04051	x												
23	GG4-01(0.3- 0.4)	Apr 29, 2021	Soil	S21-My04052	х												
	GG4-03(1.1- 1.2)	Apr 29, 2021	Soil	S21-My04053	х												
	GG4-04(1.4- 1.5)	Apr 29, 2021	Soil	S21-My04054	х												
26	GG8-01(0.2- 0.3)	Apr 29, 2021	Soil	S21-My04075			х	х	х	х							

ABN: 50 005 085 521 web: w	1S Environment Testing	Australia Melbourne 6 Monterey Road Dandenong South VIC 3179 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271	Uni 5 16 Lar Pho	Mars R le Cove one : +6	e West 51 2 99	F NSW 2 00 8400 e # 182	1/ M 066 PI 0 N	urarrie (hone : +	allwood QLD 41 -61 7 39		Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	New Zealand Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290
Company Name: Address:	ddress: Ground Floor, North Building, 22 Giffn Macquarie Park NSW 2113 roject Name: SYDNEY OLYMPIC PARK HS		Order No.: Report #: Phone: Fax:			7 0	PO286462 792254 02 9889 1800 02 9889 1811			Received: Due: Priority: Contact Name:	М		
Project Name: Project ID:											Eurofins Analytical	Services Manager : U	rsula Long
		HOLD	Metals M8	Eurofins Suite B15	TRH (after Silica Gel cleanup)	Moisture Set	Eurofins Suite B7	BTEXN and Volatile TRH	BTEXN and Volatile TRH				
	ry - NATA Site # 1254 & 14271												
Sydney Laboratory -			X	Х	Х	Х	X	Х	X	Х			
Brisbane Laboratory													
Perth Laboratory - N													
Mayfield Laboratory	- NATA Site # 25079		-+										
External Laboratory			_										
Test Counts			15	2	7	7	9	7	1	1			

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Limit of Reporting.
Addition of the analyte to the sample and reported as percentage recovery.
Relative Percent Difference between two Duplicate pieces of analysis.
Laboratory Control Sample - reported as percent recovery.
Certified Reference Material - reported as percent recovery.
In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
The addition of a like compound to the analyte target and reported as percentage recovery.
A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
United States Environmental Protection Agency
American Public Health Association
Toxicity Characteristic Leaching Procedure
Chain of Custody
Sample Receipt Advice
US Department of Defense Quality Systems Manual Version 5.3
Client Parent - QC was performed on samples pertaining to this report
Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank			•	•		
Total Recoverable Hydrocarbons - 1999 NEPM Fraction	s					
TRH C6-C9	mg/kg	< 20		20	Pass	
TRH C10-C14	mg/kg	< 20		20	Pass	
TRH C15-C28	mg/kg	< 50		50	Pass	
TRH C29-C36	mg/kg	< 50		50	Pass	
Method Blank						
BTEX						
Benzene	mg/kg	< 0.1		0.1	Pass	
Toluene	mg/kg	< 0.1		0.1	Pass	
Ethylbenzene	mg/kg	< 0.1		0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2		0.2	Pass	
o-Xylene	mg/kg	< 0.1		0.1	Pass	
Xylenes - Total*	mg/kg	< 0.3		0.3	Pass	
Method Blank			и и			
Total Recoverable Hydrocarbons - 2013 NEPM Fraction	s					
Naphthalene	mg/kg	< 0.5		0.5	Pass	
TRH C6-C10	mg/kg	< 20		20	Pass	
TRH >C10-C16	mg/kg	< 50		50	Pass	
TRH >C16-C34	mg/kg	< 100		100	Pass	
TRH >C34-C40	mg/kg	< 100		100	Pass	
Method Blank		1100		1.00	1 400	
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	mg/kg	< 0.5		0.5	Pass	
Acenaphthylene	mg/kg	< 0.5		0.5	Pass	
Anthracene	mg/kg	< 0.5		0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5		0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5		0.5	Pass	
Benzo(b&i)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5		0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Chrysene	mg/kg	< 0.5		0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5		0.5	Pass	
Fluoranthene	mg/kg	< 0.5		0.5	Pass	
Fluorene	mg/kg	< 0.5		0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5		0.5	Pass	
Naphthalene	mg/kg	< 0.5		0.5	Pass	
Phenanthrene	mg/kg	< 0.5		0.5	Pass	
Pyrene	mg/kg	< 0.5		0.5	Pass	
Method Blank	iiig/kg	< 0.5		0.5	1 435	
Organochlorine Pesticides				1		
Chlordanes - Total	mg/kg	< 0.1		0.1	Pass	
4.4'-DDD	mg/kg	< 0.05		0.05	Pass	
4.4'-DDE	mg/kg	< 0.05		0.05	Pass	
4.4-DDT	mg/kg	< 0.05		0.05	Pass	
a-BHC	mg/kg	< 0.05		0.05	Pass	
Aldrin	mg/kg	< 0.05		0.05	Pass	
b-BHC	mg/kg	< 0.05		0.05	Pass	
d-BHC	mg/kg	< 0.05		0.05	Pass	
Dieldrin	mg/kg	< 0.05		0.05	Pass	
Endosulfan I		< 0.05		0.05	Pass	
	mg/kg mg/kg	< 0.05		0.05	Pass	

Test	Units	Result 1	Acceptane Limits	e Pass Limits	Qualifying Code
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.2	0.2	Pass	
Toxaphene	mg/kg	< 0.1	0.1	Pass	
Method Blank					
Organophosphorus Pesticides					
Azinphos-methyl	mg/kg	< 0.2	0.2	Pass	
Bolstar	mg/kg	< 0.2	0.2	Pass	
Chlorfenvinphos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos-methyl	mg/kg	< 0.2	0.2	Pass	
Coumaphos	mg/kg	< 2	2	Pass	
Demeton-S	mg/kg	< 0.2	0.2	Pass	
Demeton-O	mg/kg	< 0.2	0.2	Pass	
Diazinon	mg/kg	< 0.2	0.2	Pass	
Dichlorvos	mg/kg	< 0.2	0.2	Pass	
Dimethoate	mg/kg	< 0.2	0.2	Pass	
Disulfoton	mg/kg	< 0.2	0.2	Pass	
EPN	mg/kg	< 0.2	0.2	Pass	
Ethion	mg/kg	< 0.2	0.2	Pass	
Ethoprop	mg/kg	< 0.2	0.2	Pass	
Ethyl parathion	mg/kg	< 0.2	0.2	Pass	
Fenitrothion	mg/kg	< 0.2	0.2	Pass	
Fensulfothion	mg/kg	< 0.2	0.2	Pass	
Fenthion	mg/kg	< 0.2	0.2	Pass	
Malathion	mg/kg	< 0.2	0.2	Pass	
Merphos	mg/kg	< 0.2	0.2	Pass	
Methyl parathion	mg/kg	< 0.2	0.2	Pass	
Mevinphos	mg/kg	< 0.2	0.2	Pass	
Monocrotophos	mg/kg	< 2	2	Pass	
Naled	mg/kg	< 0.2	0.2	Pass	
Omethoate	mg/kg	< 2	2	Pass	
Phorate	mg/kg	< 0.2	0.2	Pass	
Pirimiphos-methyl	mg/kg	< 0.2	0.2	Pass	
Pyrazophos	mg/kg	< 0.2	0.2	Pass	
Ronnel	mg/kg	< 0.2	0.2	Pass	
Terbufos	mg/kg	< 0.2	0.2	Pass	
Tetrachlorvinphos	mg/kg	< 0.2	0.2	Pass	
Tokuthion	mg/kg	< 0.2	0.2	Pass	
Trichloronate	mg/kg	< 0.2	0.2	Pass	
Method Blank		•			
Polychlorinated Biphenyls					
Aroclor-1016	mg/kg	< 0.5	0.5	Pass	
Aroclor-1221	mg/kg	< 0.1	0.1	Pass	
Aroclor-1232	mg/kg	< 0.5	0.5	Pass	
Aroclor-1242	mg/kg	< 0.5	0.5	Pass	
Aroclor-1248	mg/kg	< 0.5	0.5	Pass	1
Aroclor-1254	mg/kg	< 0.5	0.5	Pass	

Test	Units	Result 1	Accepta		Qualifying Code
Aroclor-1260	mg/kg	< 0.5	0.5	Pass	
Total PCB*	mg/kg	< 0.5	0.5	Pass	
Method Blank					
TRH - 2013 NEPM Fractions (after silica gel clean-up)					
TRH >C10-C16 (after silica gel clean-up)	mg/kg	< 50	50	Pass	
TRH >C16-C34 (after silica gel clean-up)	mg/kg	< 100	100	Pass	
TRH >C34-C40 (after silica gel clean-up)	mg/kg	< 100	100	Pass	
Method Blank					
TRH - 1999 NEPM Fractions (after silica gel clean-up)					
TRH C10-C14 (after silica gel clean-up)	mg/kg	< 50	50	Pass	
TRH C15-C28 (after silica gel clean-up)	mg/kg	< 100	100	Pass	
TRH C29-C36 (after silica gel clean-up)	mg/kg	< 100	100	Pass	
Method Blank					
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	%	70	70-13	30 Pass	
TRH C10-C14	%	124	70-13	30 Pass	
LCS - % Recovery					
BTEX	-				
Benzene	%	82	70-13	30 Pass	
Toluene	%	80	70-13	30 Pass	
Ethylbenzene	%	77	70-13	30 Pass	
m&p-Xylenes	%	78	70-13	30 Pass	
o-Xylene	%	79	70-13	30 Pass	
Xylenes - Total*	%	79	70-13	30 Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	-				
Naphthalene	%	126	70-13	30 Pass	
TRH C6-C10	%	72	70-13	30 Pass	
TRH >C10-C16	%	124	70-13	30 Pass	
LCS - % Recovery					
Polycyclic Aromatic Hydrocarbons	-				
Acenaphthene	%	92	70-13	30 Pass	
Acenaphthylene	%	109	70-13	30 Pass	
Anthracene	%	107	70-13	30 Pass	
Benz(a)anthracene	%	82	70-13	30 Pass	
Benzo(a)pyrene	%	83	70-13	30 Pass	
Benzo(b&j)fluoranthene	%	81	70-13	30 Pass	
Benzo(g.h.i)perylene	%	79	70-13	30 Pass	
Benzo(k)fluoranthene	%	121	70-13	30 Pass	
Chrysene	%	103	70-13	30 Pass	
Dibenz(a.h)anthracene	%	76	70-13	30 Pass	
Fluoranthene	%	101	70-13		
Fluorene	%	101	70-13		
Indeno(1.2.3-cd)pyrene	%	78	70-13		

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Naphthalene	%	102		70-130	Pass	
Phenanthrene	%	90		70-130	Pass	
Pyrene	%	103		70-130	Pass	
LCS - % Recovery						
Organochlorine Pesticides						
Chlordanes - Total	%	80		70-130	Pass	
4.4'-DDD	%	88		70-130	Pass	
4.4'-DDE	%	75		70-130	Pass	
4.4'-DDT	%	102		70-130	Pass	
a-BHC	%	85		70-130	Pass	
Aldrin	%	74		70-130	Pass	
b-BHC	%	87		70-130	Pass	
d-BHC	%	80		70-130	Pass	
Dieldrin	%	82		70-130	Pass	
Endosulfan I	%	84		70-130	Pass	
Endosulfan II	%	84		70-130	Pass	
Endosulfan sulphate	%	89		70-130	Pass	
Endrin	%	105		70-130	Pass	
Endrin aldehyde	%	107		70-130	Pass	
Endrin ketone	%	106		70-130	Pass	
g-BHC (Lindane)	%	83		70-130	Pass	
Heptachlor	%	93		70-130	Pass	
Heptachlor epoxide	%	81		70-130	Pass	
Hexachlorobenzene	%	75		70-130	Pass	
Methoxychlor	%	113		70-130	Pass	
LCS - % Recovery			1 1 1			
Organophosphorus Pesticides						
Diazinon	%	90		70-130	Pass	
Dimethoate	%	92		70-130	Pass	
Ethion	%	114		70-130	Pass	
Fenitrothion	%	84		70-130	Pass	
Methyl parathion	%	87		70-130	Pass	
Mevinphos	%	120		70-130	Pass	
LCS - % Recovery	70	120		10 100	1 400	
Polychlorinated Biphenyls						
Aroclor-1016	%	70		70-130	Pass	
Aroclor-1260	%	89		70-130	Pass	
LCS - % Recovery	70	00		10 100	1 433	
TRH - 2013 NEPM Fractions (after silica gel clean-up)						
TRH >C10-C16 (after silica gel clean-up)	%	106		70-130	Pass	
LCS - % Recovery	78	100		70-130	1 435	
TRH - 1999 NEPM Fractions (after silica gel clean-up)		1				
TRH C10-C14 (after silica gel clean-up)	%	108		70-130	Pass	
LCS - % Recovery	70	100		10-130	F d 55	
Heavy Metals	0/	07		90 100	Bass	
Arsenic	%	97 95		80-120	Pass	
Cadmium	%			80-120	Pass	
Chromium	%	103		80-120	Pass	
Copper	%	105		80-120	Pass	
Lead	%	104		80-120	Pass	
Mercury	%	101		80-120	Pass	
Nickel	%	105		80-120	Pass	
Zinc	%	103		80-120	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery							
Total Recoverable Hydrocarbo	ons - 1999 NEPM Fract	ions		Result 1			
TRH C6-C9	S21-My04805	NCP	%	72	70-130	Pass	
TRH C10-C14	S21-My03114	NCP	%	107	70-130	Pass	
Spike - % Recovery							
BTEX				Result 1			
Benzene	S21-My04805	NCP	%	78	70-130	Pass	
Toluene	S21-My04805	NCP	%	76	70-130	Pass	
Ethylbenzene	S21-My04805	NCP	%	81	70-130	Pass	
m&p-Xylenes	S21-My04805	NCP	%	80	70-130	Pass	
o-Xylene	S21-My04805	NCP	%	82	70-130	Pass	
Xylenes - Total*	S21-My04805	NCP	%	81	70-130	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbo	ons - 2013 NEPM Fract	ions		Result 1			
Naphthalene	S21-My04805	NCP	%	113	70-130	Pass	
TRH C6-C10	S21-My04805	NCP	%	73	70-130	Pass	
TRH >C10-C16	S21-My03114	NCP	%	107	70-130	Pass	
Spike - % Recovery			/0				
Organochlorine Pesticides				Result 1			
Chlordanes - Total	S21-My05803	NCP	%	112	70-130	Pass	
4.4'-DDD	S21-My05803	NCP	%	97	70-130	Pass	
4.4'-DDE	S21-My05803	NCP	%	106	70-130	Pass	
4.4'-DDT	S21-My09818	NCP	%	108	70-130	Pass	
a-BHC		NCP	%	71			
	S21-My09818				70-130	Pass	
Aldrin	S21-My05803	NCP	%	101	70-130	Pass	
b-BHC	S21-My05803	NCP	%	112	70-130	Pass	
d-BHC	S21-My05803	NCP	%	105	70-130	Pass	
Dieldrin	S21-My05803	NCP	%	113	70-130	Pass	
Endosulfan I	S21-My05803	NCP	%	107	70-130	Pass	
Endosulfan II	S21-My05803	NCP	%	95	70-130	Pass	
Endosulfan sulphate	S21-My05803	NCP	%	115	70-130	Pass	
Endrin aldehyde	S21-My09818	NCP	%	90	70-130	Pass	
Endrin ketone	S21-My09818	NCP	%	74	70-130	Pass	
g-BHC (Lindane)	S21-My05803	NCP	%	113	70-130	Pass	
Heptachlor	S21-My09818	NCP	%	112	70-130	Pass	
Heptachlor epoxide	S21-My05803	NCP	%	108	70-130	Pass	
Hexachlorobenzene	S21-My05803	NCP	%	102	70-130	Pass	
Methoxychlor	S21-My09818	NCP	%	123	70-130	Pass	
Spike - % Recovery				1 1		1	
Polychlorinated Biphenyls				Result 1			
Aroclor-1016	S21-My09818	NCP	%	103	70-130	Pass	
Aroclor-1260	S21-My09818	NCP	%	127	70-130	Pass	
Spike - % Recovery						-	
Heavy Metals				Result 1			
Arsenic	S21-My08270	NCP	%	93	75-125	Pass	
Cadmium	S21-My08270	NCP	%	100	75-125	Pass	
Chromium	S21-My08270	NCP	%	96	75-125	Pass	
Copper	S21-My08270	NCP	%	98	75-125	Pass	
Lead	S21-My08270	NCP	%	104	75-125	Pass	
Mercury	S21-My08270	NCP	%	107	75-125	Pass	
Nickel	S21-My08270	NCP	%	97	75-125	Pass	
Zinc	S21-My08270	NCP	%	88	75-125	Pass	
Spike - % Recovery	, ,	· · · ·					
Polycyclic Aromatic Hydrocarl	hone			Result 1			

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Benz(a)anthracene	N21-My01708	NCP	%	121			70-130	Pass	
Benzo(a)pyrene	N21-My01708	NCP	%	116			70-130	Pass	
Benzo(b&j)fluoranthene	N21-My01708	NCP	%	109			70-130	Pass	
Benzo(g.h.i)perylene	N21-My01708	NCP	%	124			70-130	Pass	
Dibenz(a.h)anthracene	N21-My01708	NCP	%	111			70-130	Pass	
Indeno(1.2.3-cd)pyrene	N21-My01708	NCP	%	112			70-130	Pass	
Spike - % Recovery							·		
Polycyclic Aromatic Hydrocarbo	ns			Result 1					
Acenaphthene	S21-My04029	CP	%	90			70-130	Pass	
Acenaphthylene	S21-My04029	CP	%	77			70-130	Pass	
Anthracene	S21-My04029	CP	%	76			70-130	Pass	
Benzo(k)fluoranthene	S21-My04029	CP	%	92			70-130	Pass	
Chrysene	S21-My04029	CP	%	82			70-130	Pass	
Fluoranthene	S21-My04029	CP	%	92			70-130	Pass	
Fluorene	S21-My04029	CP	%	79			70-130	Pass	
Naphthalene	S21-My04029	CP	%	89			70-130	Pass	
Phenanthrene	S21-My04029	CP	%	81			70-130	Pass	
Pyrene	S21-My04029	СР	%	89			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate							·		
Total Recoverable Hydrocarbons	s - 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C10-C14	S21-My03320	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S21-My03320	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S21-My03320	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons	s - 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH >C10-C16	S21-My03320	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S21-My03320	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S21-My03320	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate							•		
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S21-My09817	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S21-Ap45606								
4.4'-DDE		NCP	mg/kg	3.3	8.1	83	30%	Fail	Q15
		NCP NCP	mg/kg mg/kg	3.3 88	8.1 90	83 3.0	30% 30%	Fail Pass	Q15
4.4'-DDT	S21-Ap45576 S21-My09817		mg/kg	88	90			Pass	Q15
a-BHC	S21-Ap45576	NCP				3.0	30%		Q15
	S21-Ap45576 S21-My09817 S21-My09817	NCP NCP	mg/kg mg/kg mg/kg	88 < 0.05 < 0.05	90 < 0.05 < 0.05	3.0 <1	30% 30%	Pass Pass Pass	Q15
a-BHC	S21-Ap45576 S21-My09817 S21-My09817 S21-My09817 S21-My09817	NCP NCP NCP	mg/kg mg/kg	88 < 0.05 < 0.05 < 0.05	90 < 0.05 < 0.05 < 0.05	3.0 <1 <1	30% 30% 30%	Pass Pass	Q15
a-BHC Aldrin	S21-Ap45576 S21-My09817 S21-My09817	NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg	88 < 0.05 < 0.05	90 < 0.05 < 0.05	3.0 <1 <1 <1 <1	30% 30% 30% 30%	Pass Pass Pass Pass	Q15
a-BHC Aldrin b-BHC	S21-Ap45576 S21-My09817 S21-My09817 S21-My09817 S21-My09817 S21-My09817	NCP NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg	88 < 0.05 < 0.05 < 0.05 < 0.05	90 < 0.05 < 0.05 < 0.05 < 0.05	3.0 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass	Q15
a-BHC Aldrin b-BHC d-BHC	S21-Ap45576 S21-My09817 S21-My09817 S21-My09817 S21-My09817 S21-My09817 S21-My09817 S21-My09817	NCP NCP NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	88 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	90 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	3.0 <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass	Q15
a-BHC Aldrin b-BHC d-BHC Dieldrin	S21-Ap45576 S21-My09817	NCP NCP NCP NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	88 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	90 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	3.0 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass	Q15
a-BHC Aldrin b-BHC d-BHC Dieldrin Endosulfan I	S21-Ap45576 S21-My09817 S21-My09817 S21-My09817 S21-My09817 S21-My09817 S21-My09817 S21-My09817 S21-My09817 S21-My09817	NCP NCP NCP NCP NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	88 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	90 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	3.0 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	Q15
a-BHC Aldrin b-BHC d-BHC Dieldrin Endosulfan I Endosulfan II	S21-Ap45576 S21-My09817	NCP NCP NCP NCP NCP NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	88 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	90 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	3.0 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	Q15
a-BHC Aldrin b-BHC d-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulphate	S21-Ap45576 S21-My09817	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	88 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	90 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	3.0 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	Q15
a-BHC Aldrin b-BHC d-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulphate Endrin	S21-Ap45576 S21-My09817	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	88 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	90 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	3.0 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	Q15
a-BHC Aldrin b-BHC d-BHC Dieldrin Endosulfan I Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone	S21-Ap45576 S21-My09817	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	$\begin{array}{r} 88 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \end{array}$	90 < 0.05 < 0.05	3.0 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	Q15
a-BHC Aldrin b-BHC d-BHC Dieldrin Endosulfan I Endosulfan sulphate Endrin Endrin aldehyde	S21-Ap45576 S21-My09817	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	$\begin{array}{r} 88 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \end{array}$	90 < 0.05 < 0.05	3.0 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	Q15
a-BHC Aldrin b-BHC d-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone g-BHC (Lindane)	S21-Ap45576 S21-My09817	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	$\begin{array}{r} 88 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \end{array}$	90 < 0.05 < 0.05	3.0 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	Q15
a-BHC Aldrin b-BHC d-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone g-BHC (Lindane) Heptachlor	S21-Ap45576 S21-My09817 S21-My09817	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	$\begin{array}{r} 88 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \end{array}$	90 < 0.05 < 0.05	3.0 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	Q15
a-BHC Aldrin b-BHC d-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone g-BHC (Lindane) Heptachlor Heptachlor epoxide	S21-Ap45576 S21-My09817	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	$\begin{array}{r} 88 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \end{array}$	90 < 0.05 < 0.05	3.0 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	Q15

Duplicate									
Organophosphorus Pesticides				Result 1	Result 2	RPD			
Azinphos-methyl	S21-My09817	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Bolstar	S21-My09817	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorfenvinphos	S21-My09817	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos	S21-My09817	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos-methyl	S21-My09817	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Coumaphos	S21-My09817	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Demeton-S	S21-My09817	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Demeton-O	S21-My09817	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Diazinon	S21-My09817	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dichlorvos	S21-My09817	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dimethoate	S21-My09817	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Disulfoton	S21-My09817	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
EPN	S21-My09817	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethion	S21-My09817	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethoprop	S21-My09817	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethyl parathion	S21-My09817	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenitrothion	S21-My09817	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fensulfothion	S21-My09817	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenthion	S21-My09817	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Malathion	S21-My09817	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Merphos	S21-My09817	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Methyl parathion	S21-My09817	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Mevinphos	S21-My09817	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Monocrotophos	S21-My09817	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Naled	S21-My09817	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Omethoate	S21-My09817	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Phorate	S21-My09817	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pirimiphos-methyl	S21-My09817	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pyrazophos	S21-My09817	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ronnel	S21-My09817	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Terbufos	S21-My09817	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tetrachlorvinphos	S21-My09817	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tokuthion	S21-My09817	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Trichloronate	S21-My09817	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Duplicate									
Polychlorinated Biphenyls				Result 1	Result 2	RPD			
Aroclor-1016	S21-My09817	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1221	S21-My09817	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	S21-My09817	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1242	S21-My09817	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1248	S21-My09817	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1254	S21-My09817	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1260	S21-My09817	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
TRH - 2013 NEPM Fractions (after	silica gel clean-up))		Result 1	Result 2	RPD			
TRH >C10-C16 (after silica gel clean-up)	S21-My08523	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34 (after silica gel clean-up)	S21-My08523	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40 (after silica gel clean-up)	S21-My08523	NCP	mg/kg	< 100	< 100	<1	30%	Pass	

Duplicate									
TRH - 1999 NEPM Fractions (after	r silica gel clean-up)		Result 1	Result 2	RPD			
TRH C10-C14 (after silica gel clean-up)	S21-My08523	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C15-C28 (after silica gel clean-up)	S21-My08523	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH C29-C36 (after silica gel clean-up)	S21-My08523	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate	321-IVI900525		піў/ку	< 100	< 100	<1	30%	F d 55	
Polycyclic Aromatic Hydrocarbo				Result 1	Result 2	RPD			
Acenaphthene	N21-My01702	NCP	mallea	< 0.5	< 0.5		30%	Pass	
Acenaphthylene	N21-My01702	NCP	mg/kg mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	N21-My01702	NCP	<u> </u>	< 0.5	< 0.5	<1 <1	30%	Pass	
Benz(a)anthracene	N21-My01702	NCP	mg/kg mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	N21-My01702	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	N21-My01702	NCP		< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	N21-My01702	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.n.)perylene	N21-My01702	NCP	mg/kg				30%		
Chrysene	N21-My01702	NCP	mg/kg	< 0.5 < 0.5	< 0.5 < 0.5	<1 <1	30%	Pass Pass	
Dibenz(a.h)anthracene	N21-My01702 N21-My01702	NCP	mg/kg	< 0.5	< 0.5 < 0.5	<1	30%	Pass	
Fluoranthene	N21-My01702 N21-My01702	NCP	mg/kg mg/kg	< 0.5	< 0.5 < 0.5	<1	30%	Pass	
Fluorene	N21-My01702	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	N21-My01702	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	N21-My01702	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	N21-My01702	NCP		< 0.5	< 0.5	<1	30%	Pass	
Pyrene	N21-My01702	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate		NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate				Decult 1	Deput 2				
% Moisture	S21-My04026	СР	%	Result 1 18	Result 2 16	<u>RPD</u> 15	30%	Pass	
Duplicate	321-WI904020	UF	/0	10	10	15	30 //	газэ	
Heavy Metals				Result 1	Result 2	RPD	1		
Arsenic	S21-My04037	СР	malka	8.8	7.2	20	30%	Pass	
Cadmium	S21-My04037	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S21-My04037	CP	mg/kg	29	27	9.0	30%	Pass	
	S21-My04037	CP	mg/kg	29	27	<u> </u>	30%	Fass	Q15
Copper Lead	S21-My04037	CP	mg/kg	50	37	30	30%	Pass	QID
	S21-My04037	CP	mg/kg	0.2	< 0.1		30%	Fass	Q15
Mercury Nickel	S21-My04037	CP	mg/kg ma/ka	32	25	24	30%	Pass	QID
Zinc	S21-My04037	CP		-	25 55	38	30%		015
Duplicate	321-1viy04037	UF	mg/kg	81	- 55	30	30%	Fail	Q15
Total Recoverable Hydrocarbons	- 1000 NEPM Eract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S21-My04075	CP	ma/ka	< 20		<1	30%	Pass	
Duplicate	021-1v1y04075		mg/kg	<u> </u>	< 20	~1	50 /0	1 455	
BTEX				Result 1	Result 2	RPD			
Benzene	S21-My04075	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S21-My04075	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S21-My04075	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S21-My04075	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
		CP						Pass	
o-Xylene Xylenes - Total*	S21-My04075 S21-My04075	CP	mg/kg	< 0.1	< 0.1	<1 <1	<u>30%</u> 30%	Pass	
Duplicate	J 321-IVIY04075	68	mg/kg	< 0.3	< 0.3	<1	30%	I FdSS	
Total Recoverable Hydrocarbons	- 2013 NEDM Erect	ions		Recult 1	Result 2	RPD			
Naphthalene	S21-My04075	CP	mg/kg	Result 1 < 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S21-My04075	CP		< 20			30%	Pass	
	321-WIY04075		mg/kg	<u> </u>	< 20	<1	30%	F d 3 3	

Comments

This report was revised V2 to include OCP/OPP/PCB analysis.

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

G01 The LORs have been raised due to matrix interference

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised by:

John Nguyen Andrew Sullivan John Nguyen Analytical Services Manager Senior Analyst-Organic (NSW) Senior Analyst-Metal (NSW)

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Certificate of Analysis

Environment Testing

Greencap NSW P/L Ground Floor, North Building, 22 Giffnock Avenue Macquarie Park NSW 2113

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection and proficiency testing scheme providers reports.

Attention:	
Report	

Project name

Received Date

Project ID

792270-S-V2 SYDNEY OLYMPIC PARK HS J169135-01 May 02, 2021

Shihui Wang

Client Sample ID			GG5-05(2.0- 2.1)	GG5-06(3.5- 3.6)	GG5-07(4.5- 4.6)	GG5-08(5.5- 5.6)
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-My04177	S21-My04178	S21-My04179	S21-My04180
Date Sampled			Apr 30, 2021	Apr 30, 2021	Apr 30, 2021	Apr 30, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fra	actions					
TRH C6-C9	20	mg/kg	< 20	-	-	-
TRH C10-C14	20	mg/kg	< 20	-	-	-
TRH C15-C28	50	mg/kg	< 50	-	-	-
TRH C29-C36	50	mg/kg	< 50	-	-	-
TRH C10-C36 (Total)	50	mg/kg	< 50	-	-	-
BTEX						
Benzene	0.1	mg/kg	< 0.1	-	-	-
Toluene	0.1	mg/kg	< 0.1	-	-	-
Ethylbenzene	0.1	mg/kg	< 0.1	-	-	-
m&p-Xylenes	0.2	mg/kg	< 0.2	-	-	-
o-Xylene	0.1	mg/kg	< 0.1	-	-	-
Xylenes - Total*	0.3	mg/kg	< 0.3	-	-	-
4-Bromofluorobenzene (surr.)	1	%	68	-	-	-
Total Recoverable Hydrocarbons - 2013 NEPM Fra	actions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	-	-	-
TRH C6-C10	20	mg/kg	< 20	-	-	-
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	-	-	-
TRH >C10-C16	50	mg/kg	< 50	-	-	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	-	-	-
TRH >C16-C34	100	mg/kg	< 100	-	-	-
TRH >C34-C40	100	mg/kg	< 100	-	-	-
TRH >C10-C40 (total)*	100	mg/kg	< 100	-	-	-
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	-	-	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	-	-	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	-	-	-
Acenaphthene	0.5	mg/kg	< 0.5	-	-	-
Acenaphthylene	0.5	mg/kg	< 0.5	-	-	-
Anthracene	0.5	mg/kg	< 0.5	-	-	-
Benz(a)anthracene	0.5	mg/kg	< 0.5	-	-	-
Benzo(a)pyrene	0.5	mg/kg	< 0.5	-	-	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	-	-	-
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	-	-	-
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	-	-	-
Chrysene	0.5	mg/kg	< 0.5	-	-	-

Client Sample ID			GG5-05(2.0- 2.1)	GG5-06(3.5- 3.6)	GG5-07(4.5- 4.6)	GG5-08(5.5- 5.6)
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-My04177	S21-My04178	S21-My04179	S21-My04180
Date Sampled			Apr 30, 2021	Apr 30, 2021	Apr 30, 2021	Apr 30, 2021
·		1.1	Apr 30, 202 i	Apr 30, 2021	Apr 30, 202 i	Apr 30, 2021
Test/Reference Polycyclic Aromatic Hydrocarbons	LOR	Unit				
	0.5		.0.5			
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5 < 0.5	-	-	-
Fluoranthene	0.5	mg/kg	< 0.5	-	-	-
Fluorene Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	-	-	-
Naphthalene	0.5	mg/kg mg/kg	< 0.5	-		-
Phenanthrene	0.5	mg/kg	< 0.5	-		-
Pyrene	0.5	mg/kg	< 0.5			-
Total PAH*	0.5	mg/kg	< 0.5			-
2-Fluorobiphenyl (surr.)	1		127			
p-Terphenyl-d14 (surr.)	1	%	122			
Organochlorine Pesticides	1	70	122			-
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.1	< 0.05	< 0.05	< 0.05
4.4 -DDD 4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4-DDE 4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Toxaphene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dibutylchlorendate (surr.)	1	%	95	95	71	96
Tetrachloro-m-xylene (surr.)	1	%	128	117	101	136
Organophosphorus Pesticides						
Azinphos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Bolstar	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorfenvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Coumaphos	2	mg/kg	< 2	< 2	< 2	< 2
Demeton-S	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Demeton-O	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Diazinon	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dichlorvos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2

Client Sample ID			GG5-05(2.0- 2.1)	GG5-06(3.5- 3.6)	GG5-07(4.5- 4.6)	GG5-08(5.5- 5.6)
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-My04177	S21-My04178	S21-My04179	S21-My04180
Date Sampled			Apr 30, 2021	Apr 30, 2021	Apr 30, 2021	Apr 30, 2021
Test/Reference	LOR	Unit	,		, ip: 00, 202.	
Organophosphorus Pesticides	LOIN	Unit				
Dimethoate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Disulfoton	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
EPN	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethoprop	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenitrothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fensulfothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Malathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Merphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Methyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Mevinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Monocrotophos	2	mg/kg	< 2	< 2	< 2	< 2
Naled	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Omethoate	2	mg/kg	< 2	< 2	< 2	< 2
Phorate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Pirimiphos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Pyrazophos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ronnel	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Terbufos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tetrachlorvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tokuthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Trichloronate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Triphenylphosphate (surr.)	1	%	119	109	95	130
Polychlorinated Biphenyls						
Aroclor-1016	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1221	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1232	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1242	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1248	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1254	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1260	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PCB*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibutylchlorendate (surr.)	1	%	95	95	71	96
Tetrachloro-m-xylene (surr.)	1	%	128	117	101	136
TRH - 2013 NEPM Fractions (after silica gel clean-	up)					
TRH >C10-C16 (after silica gel clean-up)	50	mg/kg	< 50	-	-	-
TRH >C16-C34 (after silica gel clean-up)	100	mg/kg	< 100	-	-	-
TRH >C34-C40 (after silica gel clean-up)	100	mg/kg	< 100	-	-	-
TRH - 1999 NEPM Fractions (after silica gel clean-						
TRH C10-C36 (Total) (after silica gel clean-up)	50	mg/kg	< 100	-	-	-
TRH C10-C14 (after silica gel clean-up)	50	mg/kg	< 50	-	-	-
TRH C15-C28 (after silica gel clean-up)	100	mg/kg	< 100	-	-	-
TRH C29-C36 (after silica gel clean-up)	100	mg/kg	< 100	-	-	-
Total Organic Carbon	0.1	%	1.5	3.2	< 0.1	0.9
% Moisture	1	%	27	34	17	23

Client Sample ID			GG5-05(2.0- 2.1)	GG5-06(3.5- 3.6)	GG5-07(4.5- 4.6)	GG5-08(5.5- 5.6)
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-My04177	S21-My04178	S21-My04179	S21-My04180
Date Sampled			Apr 30, 2021	Apr 30, 2021	Apr 30, 2021	Apr 30, 2021
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic	2	mg/kg	27	-	-	-
Cadmium	0.4	mg/kg	< 0.4	-	-	-
Chromium	5	mg/kg	9.3	-	-	-
Copper	5	mg/kg	11	-	-	-
Lead	5	mg/kg	22	-	-	-
Mercury	0.1	mg/kg	0.1	-	-	-
Nickel	5	mg/kg	< 5	-	-	-
Zinc	5	mg/kg	30	-	-	-

Client Sample ID			GG3-02(0.9- 1.0)	GG1-04(0.8- 0.9)	GG2-01(0.3- 0.4)	FD3(5.5-5.6)
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-My04181	S21-My04182	S21-My04183	S21-My04191
Date Sampled			Apr 30, 2021	Apr 30, 2021	Apr 30, 2021	Apr 30, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	-
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	-
TRH C15-C28	50	mg/kg	88	< 50	74	-
TRH C29-C36	50	mg/kg	80	< 50	98	-
TRH C10-C36 (Total)	50	mg/kg	168	< 50	172	-
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	-
4-Bromofluorobenzene (surr.)	1	%	90	66	86	-
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	-
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	-
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	-
TRH >C16-C34	100	mg/kg	160	< 100	160	-
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	-
TRH >C10-C40 (total)*	100	mg/kg	160	< 100	160	-
Polycyclic Aromatic Hydrocarbons		_				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	-
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-

Client Sample ID			GG3-02(0.9- 1.0)	GG1-04(0.8- 0.9)	GG2-01(0.3- 0.4)	FD3(5.5-5.6)
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-My04181	S21-My04182	S21-My04183	S21-My04191
Date Sampled			Apr 30, 2021	Apr 30, 2021	Apr 30, 2021	Apr 30, 2021
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons		U.I.I				
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	_
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Chrysene	0.5	mg/kg	0.5	< 0.5	< 0.5	-
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Fluoranthene	0.5	mg/kg	1.0	0.7	< 0.5	-
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Phenanthrene	0.5	mg/kg	0.5	< 0.5	< 0.5	-
Pyrene	0.5	mg/kg	0.9	0.7	< 0.5	-
Total PAH*	0.5	mg/kg	2.9	1.4	< 0.5	-
2-Fluorobiphenyl (surr.)	1	%	53	103	95	-
p-Terphenyl-d14 (surr.)	1	%	53	110	90	-
Organochlorine Pesticides	· .					
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
a-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
b-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
d-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
Methoxychlor	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Toxaphene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.2	< 0.2	< 0.2	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.2	< 0.2	< 0.2	-
Dibutylchlorendate (surr.)	1	%	95	93	70	-
Tetrachloro-m-xylene (surr.)	1	%	INT	116	101	-
Organophosphorus Pesticides						
Azinphos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Bolstar	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Chlorfenvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Coumaphos	2	mg/kg	< 2	< 2	< 2	-
Demeton-S	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-

Client Sample ID			GG3-02(0.9- 1.0)	GG1-04(0.8- 0.9)	GG2-01(0.3- 0.4)	FD3(5.5-5.6)
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-My04181	S21-My04182	S21-My04183	S21-My04191
Date Sampled			Apr 30, 2021	Apr 30, 2021	Apr 30, 2021	Apr 30, 2021
Test/Reference	LOR	Unit				
Organophosphorus Pesticides	LOIN	Onit				
Demeton-O	0.2	mg/kg	< 0.2	< 0.2	< 0.2	
Diazinon	0.2	mg/kg	< 0.2	< 0.2	< 0.2	
Dichlorvos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	_
Dimethoate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	_
Disulfoton	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
EPN	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Ethion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Ethoprop	0.2	mg/kg	< 0.2	< 0.2	< 0.2	_
Ethyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Fenitrothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	_
Fensulfothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	_
Fenthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	_
Malathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Merphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Methyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Mevinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Monocrotophos	2	mg/kg	< 2	< 2	< 2	-
Naled	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Omethoate	2	mg/kg	< 2	< 2	< 2	-
Phorate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Pirimiphos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Pyrazophos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Ronnel	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Terbufos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Tetrachlorvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Tokuthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Trichloronate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Triphenylphosphate (surr.)	1	%	126	115	80	-
Polychlorinated Biphenyls		•				
Aroclor-1016	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Aroclor-1221	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
Aroclor-1232	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Aroclor-1242	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Aroclor-1248	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Aroclor-1254	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Aroclor-1260	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Total PCB*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Dibutylchlorendate (surr.)	1	%	95	93	70	-
Tetrachloro-m-xylene (surr.)	1	%	INT	116	101	-
TRH - 2013 NEPM Fractions (after silica gel clean-u	ıp)					
TRH >C10-C16 (after silica gel clean-up)	50	mg/kg	< 50	< 50	< 50	-
TRH >C16-C34 (after silica gel clean-up)	100	mg/kg	< 100	< 100	< 100	-
TRH >C34-C40 (after silica gel clean-up)	100	mg/kg	< 100	< 100	< 100	-
TRH - 1999 NEPM Fractions (after silica gel clean-u						
TRH C10-C36 (Total) (after silica gel clean-up)	50	mg/kg	< 100	< 100	< 100	_
TRH C10-C14 (after silica gel clean-up)	50	mg/kg	< 50	< 50	< 50	-
TRH C15-C28 (after silica gel clean-up)	100	mg/kg	< 100	< 100	< 100	-
TRH C29-C36 (after silica gel clean-up)	100	mg/kg	< 100	< 100	< 100	_

Client Sample ID			GG3-02(0.9- 1.0)	GG1-04(0.8- 0.9)	GG2-01(0.3- 0.4)	FD3(5.5-5.6)
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-My04181	S21-My04182	S21-My04183	S21-My04191
Date Sampled			Apr 30, 2021	Apr 30, 2021	Apr 30, 2021	Apr 30, 2021
Test/Reference	LOR	Unit				
% Moisture	1	%	8.3	13	5.7	24
Heavy Metals						
Arsenic	2	mg/kg	6.7	9.3	< 2	20
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	26	26	110	24
Copper	5	mg/kg	51	38	28	19
Lead	5	mg/kg	71	79	11	25
Mercury	0.1	mg/kg	0.2	0.2	< 0.1	< 0.1
Nickel	5	mg/kg	29	17	100	< 5
Zinc	5	mg/kg	140	120	68	9.0

Client Sample ID Sample Matrix			FD4(0.8-0.9) Soil	GG5-01(0.15- 02) Soil	GG5-02(0.3- 0.4) Soil	GG5-03(0.5- 0.6) Soil
Eurofins Sample No.			S21-My04192	S21-My04194	S21-My04195	S21-My04196
Date Sampled			Apr 30, 2021	Apr 30, 2021	Apr 30, 2021	Apr 30, 2021
Test/Reference	LOR	Unit				
Total Organic Carbon	0.1	%	-	0.1	0.6	< 0.1
% Moisture	1	%	15	8.4	8.2	14
Heavy Metals						
Arsenic	2	mg/kg	13	-	-	-
Cadmium	0.4	mg/kg	< 0.4	-	-	-
Chromium	5	mg/kg	19	-	-	-
Copper	5	mg/kg	40	-	-	-
Lead	5	mg/kg	95	-	-	-
Mercury	0.1	mg/kg	0.2	-	-	-
Nickel	5	mg/kg	15	-	-	-
Zinc	5	mg/kg	130	-	-	-

Client Sample ID Sample Matrix			GG5-04(1.0- 1.1) Soil	TRIP BLANK Soil	TRIP SPIKE Soil
Eurofins Sample No.			S21-My04197	S21-My04210	S21-My04211
Date Sampled			Apr 30, 2021	Apr 30, 2021	Apr 30, 2021
Test/Reference	LOR	Unit			
Total Recoverable Hydrocarbons - 1999 N	EPM Fractions				
TRH C6-C9	20	mg/kg	-	< 20	-
ВТЕХ					
Benzene	0.1	mg/kg	-	< 0.1	-
Toluene	0.1	mg/kg	-	< 0.1	-
Ethylbenzene	0.1	mg/kg	-	< 0.1	-
m&p-Xylenes	0.2	mg/kg	-	< 0.2	-
o-Xylene	0.1	mg/kg	-	< 0.1	-
Xylenes - Total*	0.3	mg/kg	-	< 0.3	-
4-Bromofluorobenzene (surr.)	1	%	-	86	-

Client Sample ID			GG5-04(1.0- 1.1)	TRIP BLANK	TRIP SPIKE
Sample Matrix			Soil	Soil	Soil
Eurofins Sample No.			S21-My04197	S21-My04210	S21-My04211
Date Sampled			Apr 30, 2021	Apr 30, 2021	Apr 30, 2021
Test/Reference	LOR	Unit			
Total Recoverable Hydrocarbons - 2013 NEPM F	ractions				
Naphthalene ^{N02}	0.5	mg/kg	-	< 0.5	-
TRH C6-C10	20	mg/kg	-	< 20	-
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	-	< 20	-
Total Organic Carbon	0.1	%	0.4	-	-
% Moisture	1	%	11	-	-
TRH C6-C10	1	%	-	-	95
Total Recoverable Hydrocarbons					
Naphthalene	1	%	-	-	84
TRH C6-C9	1	%	-	-	98
BTEX					
Benzene	1	%	-	-	110
Ethylbenzene	1	%	-	-	88
m&p-Xylenes	1	%	-	-	91
o-Xylene	1	%	-	-	88
Toluene	1	%	-	-	99
Xylenes - Total	1	%	-	-	89
4-Bromofluorobenzene (surr.)	1	%	-	-	82

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	May 06, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	May 06, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	May 06, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons	Sydney	May 06, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	May 06, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Sydney	May 19, 2021	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Metals M8	Sydney	May 06, 2021	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Eurofins Suite B15			
Organochlorine Pesticides	Sydney	May 17, 2021	14 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Organophosphorus Pesticides	Sydney	May 17, 2021	14 Days
- Method: LTM-ORG-2200 Organophosphorus Pesticides by GC-MS			
Polychlorinated Biphenyls	Sydney	May 17, 2021	28 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
TRH - 2013 NEPM Fractions (after silica gel clean-up)	Sydney	May 06, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
TRH - 1999 NEPM Fractions (after silica gel clean-up)	Sydney	May 06, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Organic Carbon	Melbourne	May 10, 2021	28 Days
- Method: LTM-INO-4060 Total Organic Carbon in water and soil			
% Moisture	Sydney	May 05, 2021	14 Days
- Method: LTM-GEN-7080 Moisture			

	eurofi	nc			Australia											New Zealand	
			ironment 1 email: EnviroSale		Melbourne 6 Monterey Road Dandenong South VIC 3 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271	U 175 1) La P	6 Mars I ane Cov hone : +		NSW 2	1/ M 066 PI 0 N.	lurarrie hone : +	allwood QLD 41 +61 7 39		Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: - 664 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 76 Phone: 0800 856 450 IANZ # 1290
	npany Name: dress:	Greencap N Ground Floo Macquarie F NSW 2113	r, North Build	ing, 22 Giffnoo	ck Avenue		R¢ Pl	Order No.: PO286462 Report #: 792270 Phone: 02 9889 1800 Fax: 02 9889 1811					Received: Due: Priority: Contact Name:	May 2, 2021 9:36 F May 10, 2021 5 Day Shihui Wang	M		
Project Name:SYDNEY OLYMPIC PARK HSProject ID:J169135-01															Eurofins Analytical	Services Manager : l	Jrsula Long
			HOLD	Total Organic Carbon	Metals M8	TRH (after Silica Gel cleanup)	Moisture Set	Eurofins Suite B7	BTEXN and Volatile TRH	BTEXN and Volatile TRH							
/lelb	ourne Laborate	ory - NATA Site	# 1254 & 142	271			X										
		- NATA Site # 1				Х		х	х	Х	х	х	Х				
		y - NATA Site #															
Perth	Laboratory - I	NATA Site # 237	736														
Mayf	ield Laboratory	y - NATA Site #	25079														
	nal Laboratory																
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID												
	GG5-05(2.0- 2.1)	Apr 30, 2021		Soil	S21-My04177		x		x	х	х						
	GG5-06(3.5- 3.6)	Apr 30, 2021		Soil	S21-My04178		x			х							
	GG5-07(4.5- 4.6)	Apr 30, 2021		Soil	S21-My04179		x			х							
1	GG5-08(5.5- 5.6)	Apr 30, 2021		Soil	S21-My04180		х			х							
5	GG3-02(0.9- 1.0)	Apr 30, 2021		Soil	S21-My04181				x	х	х						
6	GG1-04(0.8-	Apr 30, 2021		Soil	S21-My04182	- T	1	1	Х	Х	Х	1	I I				

	eurofi	Australia											New Zealand			
		Env	email: EnviroSales@eurofins.com	Melbourne 6 Monterey Road Dandenong South VIC 31 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271	Sydney Unit F3, Building F 3175 16 Mars Road 10 Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217				1/: M 066 Pt 0 N/	urarrie hone : +	allwood QLD 4' +61 7 39	72	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 76 Phone : 0800 856 450 IANZ # 1290
	ompany Name: Idress:	Greencap N Ground Floo Macquarie F NSW 2113	r, North Building, 22 Giffno	ock Avenue	Order No.: Report #: Phone: Fax:					PO286462 792270 02 9889 1800 02 9889 1811				Received: Due: Priority: Contact Name:	May 2, 2021 9:36 F May 10, 2021 5 Day Shihui Wang	РМ
Project Name: SYDNEY OLYMPIC PARK HS Project ID: J169135-01														Eurofins Analytical	Services Manager : I	Ursula Long
			HOLD	Total Organic Carbon	Metals M8	TRH (after Silica Gel cleanup)	Moisture Set	Eurofins Suite B7	BTEXN and Volatile TRH	BTEXN and Volatile TRH						
			# 1254 & 14271			X										
	ney Laboratory				Х		Х	X	Х	Х	Х	X				
	bane Laborator															
	th Laboratory - I															
	ernal Laborator		23019													
		y														
7	GG2-01(0.3- 0.4)	Apr 30, 2021	Soil	S21-My04183				x	х	x						
3	FD3(5.5-5.6)	Apr 30, 2021	Soil	S21-My04191			Х		Х							
9	FD4(0.8-0.9)	Apr 30, 2021	Soil	S21-My04192			Х		Х							
10	FD5(3.5-3.6)	Apr 30, 2021	Soil	S21-My04193	Х											
11	GG5-01(0.15- 02)	Apr 30, 2021	Soil	S21-My04194		х			х							
12	GG5-02(0.3- 0.4)	Apr 30, 2021	Soil	S21-My04195		x			х							
13	GG5-03(0.5- 0.6)	Apr 30, 2021	Soil	S21-My04196		x			х							

🛟 eurofii	nc		Australia											New Zealand	
	Envir	nail: EnviroSales@eurofins.com	Melbourne 6 Monterey Road Dandenong South VIC 3 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271	Sydney Unit F3, Building F C3175 16 Mars Road 5000 Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217				1/ M 066 PI 0 N	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794			Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 76: Phone : 0800 856 450 IANZ # 1290
Company Name: Address:	Greencap NSV Ground Floor, Macquarie Par NSW 2113	North Building, 22 Giffno	ock Avenue	Order No.: Report #: Phone: Fax:					PO286462 792270 02 9889 1800 02 9889 1811				Received: Due: Priority: Contact Name:	May 2, 2021 9:36 F May 10, 2021 5 Day Shihui Wang	PM
Project Name: Project ID:											Eurofins Analytical	Services Manager :	Ursula Long		
		HOLD	Total Organic Carbon	Metals M8	TRH (after Silica Gel cleanup)	Moisture Set	Eurofins Suite B7	BTEXN and Volatile TRH	BTEXN and Volatile TRH						
Melbourne Laborato					X										
Sydney Laboratory -				X		Х	X	Х	Х	Х	X				
Brisbane Laboratory															
Perth Laboratory - N Mayfield Laboratory															
External Laboratory	- NATA Sile # 23	015													
	Apr 30, 2021	Soil	S21-My04197		x			x							
5 GG3-01(0.1- 0.2)	Apr 30, 2021	Soil	S21-My04198	х											
6 GG3-03(1.7- 1.8)	Apr 30, 2021	Soil	S21-My04199	х											
17 GG3-04(2.5- 2.6)	Apr 30, 2021	Soil	S21-My04200	х											
0.35)	Apr 30, 2021	Soil	S21-My04201	х											
19 GG1-02(0.4- 0.5)	Apr 30, 2021	Soil	S21-My04202	х											
20 GG1-03(0.5-	Apr 30, 2021	Soil	S21-My04203	X	1	1	1	1	1	1	I				

🛟 eurofii			Australia											New Zealand		
	Envi	email: EnviroSales@eurofins.com	Melbourne 6 Monterey Road Dandenong South VIC 31 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271	U 75 16 La Pl	ane Cov hone : +	Road ve West •61 2 99		1/: M 066 Pł 0 N/	urarrie hone : +	allwood QLD 4 ⁻ +61 7 39		Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 767 Phone : 0800 856 450 IANZ # 1290	
Company Name: Greencap NSW P/L Address: Ground Floor, North Building, 22 Giffnock Avenue Macquarie Park NSW 2113					Order No.: Report #: Phone: Fax:			7 0	PO286462 792270 02 9889 1800 02 9889 1811				Received: Due: Priority: Contact Name:	May 2, 2021 9:36 PM May 10, 2021 5 Day Shihui Wang I Services Manager : Ursula Long		
Project Name:SYDNEY OLYMPIC PARK HSProject ID:J169135-01													Eurofins Analytical			
	Sa	mple Detail		HOLD	Total Organic Carbon	Metals M8	TRH (after Silica Gel cleanup)	Moisture Set	Eurofins Suite B7	BTEXN and Volatile TRH	BTEXN and Volatile TRH					
Melbourne Laborato	•				X											
Sydney Laboratory -				Х		Х	Х	Х	Х	X	X					
Brisbane Laboratory																
Perth Laboratory - N											$\left - \right $					
Mayfield Laboratory External Laboratory	- MATA SILE #	23013														
0.6)																
/	Apr 30, 2021	Soil	S21-My04204	х												
22 GG1-06(1.6- 1.7)	Apr 30, 2021	Soil	S21-My04205	х												
23 GG1-07(2.0- 2.1)	Apr 30, 2021	Soil	S21-My04206	х												
1.1)	Apr 30, 2021	Soil	S21-My04207	х												
25 GG2-03(2.5- 2.6)	Apr 30, 2021	Soil	S21-My04208	Х												
26 GG2-04(3.5- 3.6)	Apr 30, 2021	Soil	S21-My04209	Х												

🔅 eurofii		onment Testing	Australia Melbourne 6 Monterey Road Dandenong South VIC 37 Phone : +61 3 8564 5000	U 175 16) La		Road ve West	NSW 2	1/ M 066 PI	urarrie hone : +	allwood QLD 41 +61 7 39	72 02 4600	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 9251 9600	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293	New Zealand Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51	Christchurch 43 Detroit Drive Rolleston, Christchurch 76 Phone : 0800 856 450
BN: 50 005 085 521 web: w	ww.eurofins.com.au e	mail: EnviroSales@eurofins.com	NATA # 1261 Site # 1254 & 14271				900 840 e # 182		NATA # 1261 Site # 20794		e # 20794	NATA # 1261 Site # 23736	Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	IANZ # 1327	IANZ # 1290
Company Name: Greencap NSW P/L Address: Ground Floor, North Building, 22 Giffnock Avenue Macquarie Park NSW 2113					Order No.: Report #: Phone: Fax:			7 0	PO286462 792270 02 9889 1800 02 9889 1811				Received: Due: Priority: Contact Name:	May 2, 2021 9:36 F May 10, 2021 5 Day Shihui Wang	M
Project Name:SYDNEY OLYMPIC PARK HSProject ID:J169135-01													Eurofins Analytical	Services Manager : I	Jrsula Long
	Sam	ıple Detail		HOLD	Total Organic Carbon	Metals M8	TRH (after Silica Gel cleanup)	Moisture Set	Eurofins Suite B7	BTEXN and Volatile TRH	BTEXN and Volatile TRH				
Aelbourne Laborato	ry - NATA Site #	1254 & 14271			X										
ydney Laboratory -	•			Х		х	х	Х	Х	Х	Х				
Brisbane Laboratory	- NATA Site # 2	0794													
Perth Laboratory - N	ATA Site # 2373	6													
Mayfield Laboratory	- NATA Site # 2	5079													
External Laboratory															
7 TRIP BLANK	Apr 30, 2021	Soil	S21-My04210							Х					
8 TRIP SPIKE	Apr 30, 2021	Soil	S21-My04211								Х				
9 TRIP SPIKE LAB	Apr 30, 2021	Soil	S21-My04212								x				
GG5-09(6.5- 6.6)	Apr 30, 2021	Soil	S21-My04250	х											
						2		13							

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
QSM	US Department of Defense Quality Systems Manual Version 5.3
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank						
Total Recoverable Hydrocarbons - 1999 NEPM Fractions						
TRH C6-C9	mg/kg	< 20		20	Pass	
TRH C10-C14	mg/kg	< 20		20	Pass	
TRH C15-C28	mg/kg	< 50		50	Pass	
TRH C29-C36	mg/kg	< 50		50	Pass	
Method Blank						
BTEX						
Benzene	mg/kg	< 0.1		0.1	Pass	
Toluene	mg/kg	< 0.1		0.1	Pass	
Ethylbenzene	mg/kg	< 0.1		0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2		0.2	Pass	
o-Xylene	mg/kg	< 0.1		0.1	Pass	
Xylenes - Total*	mg/kg	< 0.3		0.3	Pass	
Method Blank	1 0 0					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions						
Naphthalene	mg/kg	< 0.5		0.5	Pass	
TRH C6-C10	mg/kg	< 20		20	Pass	
TRH >C10-C16	mg/kg	< 50		50	Pass	
TRH >C16-C34	mg/kg	< 100		100	Pass	
TRH >C34-C40	mg/kg	< 100		100	Pass	
Method Blank		1.00			1 400	
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	mg/kg	< 0.5		0.5	Pass	
Acenaphthylene	mg/kg	< 0.5		0.5	Pass	
Anthracene	mg/kg	< 0.5		0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5		0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5		0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5		0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Chrysene	mg/kg	< 0.5		0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5		0.5	Pass	
Fluoranthene	mg/kg	< 0.5		0.5	Pass	
Fluorene	mg/kg	< 0.5		0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5		0.5	Pass	
Naphthalene	mg/kg	< 0.5		0.5	Pass	
Phenanthrene	mg/kg	< 0.5		0.5	Pass	
		< 0.5		0.5	Pass	
Pyrene Method Blank	mg/kg	< 0.5		0.5	F 455	
		1		1	1	
Organochlorine Pesticides Chlordanes - Total	malka	-01		0.1	Baaa	
4.4'-DDD	mg/kg	< 0.1		0.1	Pass	
	mg/kg	< 0.05		0.05	Pass	
4.4'-DDE	mg/kg	< 0.05		0.05	Pass	
4.4'-DDT	mg/kg	< 0.05		0.05	Pass	
a-BHC	mg/kg	< 0.05		0.05	Pass	
Aldrin	mg/kg	< 0.05		0.05	Pass	
b-BHC	mg/kg	< 0.05		0.05	Pass	
d-BHC	mg/kg	< 0.05		0.05	Pass	
Dieldrin	mg/kg	< 0.05		0.05	Pass	
Endosulfan I	mg/kg	< 0.05		0.05	Pass	
Endosulfan II	mg/kg	< 0.05		0.05	Pass	

Test	Units	Result 1	Accepta Limits	nce Pass Limits	Qualifying Code
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.2	0.2	Pass	
Toxaphene	mg/kg	< 0.1	0.1	Pass	
Method Blank					
Organophosphorus Pesticides					
Azinphos-methyl	mg/kg	< 0.2	0.2	Pass	
Bolstar	mg/kg	< 0.2	0.2	Pass	
Chlorfenvinphos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos-methyl	mg/kg	< 0.2	0.2	Pass	
Coumaphos	mg/kg	< 2	2	Pass	
Demeton-S	mg/kg	< 0.2	0.2	Pass	
Demeton-O	mg/kg	< 0.2	0.2	Pass	
Diazinon	mg/kg	< 0.2	0.2	Pass	
Dichlorvos	mg/kg	< 0.2	0.2	Pass	
Dimethoate	mg/kg	< 0.2	0.2	Pass	
Disulfoton	mg/kg	< 0.2	0.2	Pass	
EPN	mg/kg	< 0.2	0.2	Pass	
Ethion	mg/kg	< 0.2	0.2	Pass	
Ethoprop	mg/kg	< 0.2	0.2	Pass	
Ethyl parathion	mg/kg	< 0.2	0.2	Pass	
Fenitrothion	mg/kg	< 0.2	0.2	Pass	
Fensulfothion	mg/kg	< 0.2	0.2	Pass	
Fenthion	mg/kg	< 0.2	0.2	Pass	
Malathion	mg/kg	< 0.2	0.2	Pass	
Merphos	mg/kg	< 0.2	0.2	Pass	
Methyl parathion	mg/kg	< 0.2	0.2	Pass	
Mevinphos	mg/kg	< 0.2	0.2	Pass	
Monocrotophos	mg/kg	< 2	2	Pass	
Naled	mg/kg	< 0.2	0.2	Pass	
Omethoate	mg/kg	< 2	2	Pass	
Phorate	mg/kg	< 0.2	0.2	Pass	
Pirimiphos-methyl	mg/kg	< 0.2	0.2	Pass	
Pyrazophos	mg/kg	< 0.2	0.2	Pass	
Ronnel	mg/kg	< 0.2	0.2	Pass	
Terbufos	mg/kg	< 0.2	0.2	Pass	
Tetrachlorvinphos	mg/kg	< 0.2	0.2	Pass	
Tokuthion	mg/kg	< 0.2	0.2	Pass	
Trichloronate	mg/kg	< 0.2	0.2	Pass	
Method Blank				1 400	
Polychlorinated Biphenyls					
Aroclor-1016	mg/kg	< 0.5	0.5	Pass	
Aroclor-1221	mg/kg	< 0.1	0.3	Pass	
Aroclor-1232	mg/kg	< 0.1	0.1	Pass	
Aroclor-1242	mg/kg	< 0.5	0.5	Pass	
Aroclor-1248	mg/kg	< 0.5	0.5	Pass	
Aroclor-1248	mg/kg	< 0.5	0.5	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Aroclor-1260	mg/kg	< 0.5	0.5	Pass	
Total PCB*	mg/kg	< 0.5	0.5	Pass	
Method Blank			· · · ·		
TRH - 2013 NEPM Fractions (after silica gel clean-up)					
TRH >C10-C16 (after silica gel clean-up)	mg/kg	< 50	50	Pass	
TRH >C16-C34 (after silica gel clean-up)	mg/kg	< 100	100	Pass	
TRH >C34-C40 (after silica gel clean-up)	mg/kg	< 100	100	Pass	
Method Blank		•	· ·		
TRH - 1999 NEPM Fractions (after silica gel clean-up)					
TRH C10-C14 (after silica gel clean-up)	mg/kg	< 50	50	Pass	
TRH C15-C28 (after silica gel clean-up)	mg/kg	< 100	100	Pass	
TRH C29-C36 (after silica gel clean-up)	mg/kg	< 100	100	Pass	
Method Blank					
Total Organic Carbon	%	< 0.1	0.1	Pass	
Method Blank					
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 1999 NEPM Fraction	IS				
TRH C6-C9	%	74	70-130	Pass	
TRH C10-C14	%	124	70-130	Pass	
LCS - % Recovery					
BTEX					
Benzene	%	91	70-130	Pass	
Toluene	%	89	70-130	Pass	
Ethylbenzene	%	91	70-130	Pass	
m&p-Xylenes	%	94	70-130	Pass	
o-Xylene	%	89	70-130	Pass	
Xylenes - Total*	%	92	70-130	Pass	
LCS - % Recovery		· · · · · ·			
Total Recoverable Hydrocarbons - 2013 NEPM Fraction	IS				
Naphthalene	%	99	70-130	Pass	
TRH C6-C10	%	71	70-130	Pass	
TRH >C10-C16	%	124	70-130	Pass	
LCS - % Recovery					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	100	70-130	Pass	
Acenaphthylene	%	99	70-130	Pass	
Anthracene	%	99	70-130	Pass	
Benz(a)anthracene	%	97	70-130	Pass	
Benzo(a)pyrene	%	100	70-130	Pass	
Benzo(b&j)fluoranthene	%	103	70-130	Pass	
Benzo(g.h.i)perylene	%	93	70-130	Pass	
Benzo(k)fluoranthene	%	106	70-130	Pass	
Chrysene	%	99	70-130	Pass	
Dibenz(a.h)anthracene	%	97	70-130	Pass	
Fluoranthene	%	102	70-130	Pass	

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Fluorene	%	102		70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	98		70-130	Pass	
Naphthalene	%	97		70-130	Pass	
Phenanthrene	%	101		70-130	Pass	
Pyrene	%	101		70-130	Pass	
LCS - % Recovery				-		
Organochlorine Pesticides						
Chlordanes - Total	%	106		70-130	Pass	
4.4'-DDD	%	90		70-130	Pass	
4.4'-DDE	%	104		70-130	Pass	
4.4'-DDT	%	89		70-130	Pass	
a-BHC	%	94		70-130	Pass	
Aldrin	%	101		70-130	Pass	
b-BHC	%	87		70-130	Pass	
d-BHC	%	93		70-130	Pass	
Dieldrin	%	94		70-130	Pass	
Endosulfan I	%	94		70-130	Pass	
Endosulfan II	%	92		70-130	Pass	
Endosulfan sulphate	%	70		70-130	Pass	
Endrin	%	89		70-130	Pass	
Endrin aldehyde	%	97		70-130	Pass	
Endrin ketone	%	82		70-130	Pass	
g-BHC (Lindane)	%	95		70-130	Pass	
Heptachlor	%	89		70-130	Pass	
Heptachlor epoxide	%	100		70-130	Pass	
Hexachlorobenzene	%	107		70-130	Pass	
Methoxychlor	%	90		70-130	Pass	
LCS - % Recovery						
Organophosphorus Pesticides						
Diazinon	%	120		70-130	Pass	
Dimethoate	%	76		70-130	Pass	
Ethion	%	80		70-130	Pass	
Fenitrothion	%	127		70-130	Pass	
Methyl parathion	%	126		70-130	Pass	
Mevinphos	%	112		70-130	Pass	
LCS - % Recovery				-		
Polychlorinated Biphenyls						
Aroclor-1016	%	106		70-130	Pass	
Aroclor-1260	%	125		70-130	Pass	
LCS - % Recovery		-				
TRH - 2013 NEPM Fractions (after silica gel clean-up)						
TRH >C10-C16 (after silica gel clean-up)	%	106		70-130	Pass	
LCS - % Recovery						
TRH - 1999 NEPM Fractions (after silica gel clean-up)						
TRH C10-C14 (after silica gel clean-up)	%	108		70-130	Pass	
LCS - % Recovery		1	1			
Total Organic Carbon	%	97		70-130	Pass	
LCS - % Recovery			1		1	
Heavy Metals	-					
Arsenic	%	100		80-120	Pass	
Cadmium	%	107		80-120	Pass	
Chromium	%	111		80-120	Pass	
Copper	%	111		80-120	Pass	
Lead	%	110		80-120	Pass	

Те	st		Units	Result 1		eptance imits	Pass Limits	Qualifying Code
Mercury			%	112	8	0-120	Pass	
Nickel			%	107	8	0-120	Pass	
Zinc			%	105	8	0-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		eptance imits	Pass Limits	Qualifying Code
Spike - % Recovery				1	i i i			
Total Recoverable Hydrocarbo	ons - 1999 NEPM Fract	ions		Result 1				
TRH C6-C9	S21-My03124	NCP	%	77	7	0-130	Pass	
TRH C10-C14	S21-My03114	NCP	%	107	7	0-130	Pass	
Spike - % Recovery				-	1 1 1			
BTEX	1			Result 1				
Benzene	S21-My03124	NCP	%	98		0-130	Pass	
Toluene	S21-My03124	NCP	%	94		0-130	Pass	
Ethylbenzene	S21-My03124	NCP	%	102	7	0-130	Pass	
m&p-Xylenes	S21-My03124	NCP	%	99		0-130	Pass	
o-Xylene	S21-My03124	NCP	%	98	7	0-130	Pass	
Xylenes - Total*	S21-My03124	NCP	%	99	7	0-130	Pass	
Spike - % Recovery				1	r r r			
Total Recoverable Hydrocarbo	ns - 2013 NEPM Fract	ions		Result 1				
Naphthalene	S21-My03124	NCP	%	113	7	0-130	Pass	
TRH C6-C10	S21-My03124	NCP	%	78	7	0-130	Pass	
TRH >C10-C16	S21-My03114	NCP	%	107	7	0-130	Pass	
Spike - % Recovery				1				
Polycyclic Aromatic Hydrocarl	oons			Result 1				
Acenaphthene	N21-My01621	NCP	%	114	7	0-130	Pass	
Acenaphthylene	N21-My01621	NCP	%	99	7	0-130	Pass	
Anthracene	N21-My01621	NCP	%	98	7	0-130	Pass	
Benz(a)anthracene	N21-My01621	NCP	%	94	7	0-130	Pass	
Benzo(a)pyrene	N21-My01621	NCP	%	88	7	0-130	Pass	
Benzo(b&j)fluoranthene	N21-My01621	NCP	%	85	7	0-130	Pass	
Benzo(g.h.i)perylene	N21-My01621	NCP	%	89	7	0-130	Pass	
Benzo(k)fluoranthene	N21-My01621	NCP	%	112	7	0-130	Pass	
Chrysene	N21-My01621	NCP	%	103	7	0-130	Pass	
Dibenz(a.h)anthracene	N21-My01621	NCP	%	84	7	0-130	Pass	
Fluoranthene	N21-My01621	NCP	%	117	7	0-130	Pass	
Fluorene	N21-My01621	NCP	%	101	7	0-130	Pass	
Indeno(1.2.3-cd)pyrene	N21-My01621	NCP	%	83	7	0-130	Pass	
Naphthalene	N21-My01621	NCP	%	104	7	0-130	Pass	
Phenanthrene	N21-My01621	NCP	%	100	7	0-130	Pass	
Pyrene	N21-My01621	NCP	%	116	7	0-130	Pass	
Spike - % Recovery								
Organochlorine Pesticides				Result 1				
Chlordanes - Total	S21-My16171	NCP	%	102	7	0-130	Pass	
4.4'-DDD	S21-My16171	NCP	%	91	7	0-130	Pass	
4.4'-DDE	S21-My16171	NCP	%	102	7	0-130	Pass	
4.4'-DDT	S21-My16171	NCP	%	98	7	0-130	Pass	
a-BHC	S21-My16171	NCP	%	86	7	0-130	Pass	
Aldrin	S21-My16171	NCP	%	96	7	0-130	Pass	
b-BHC	S21-My16171	NCP	%	83	7	0-130	Pass	
d-BHC	S21-My16171	NCP	%	88	7	0-130	Pass	
Dieldrin	S21-My16171	NCP	%	94		0-130	Pass	
Endosulfan I	S21-My16171	NCP	%	88		0-130	Pass	
Endosulfan II	S21-My16171	NCP	%	88		0-130	Pass	
Endosulfan sulphate	S21-My16171	NCP	%	82		0-130	Pass	
Endrin	S21-My26205	NCP	%	88		0-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Endrin aldehyde	S21-My26205	NCP	%	83			70-130	Pass	
Endrin ketone	S21-My16171	NCP	%	109			70-130	Pass	
g-BHC (Lindane)	S21-My16171	NCP	%	89			70-130	Pass	
Heptachlor	S21-My16171	NCP	%	90			70-130	Pass	
Heptachlor epoxide	S21-My16171	NCP	%	95			70-130	Pass	
Hexachlorobenzene	S21-My16171	NCP	%	96			70-130	Pass	
Methoxychlor	S21-My16171	NCP	%	95			70-130	Pass	
Spike - % Recovery							-		
Organophosphorus Pesticides				Result 1					
Diazinon	S21-My16171	NCP	%	113			70-130	Pass	
Dimethoate	S21-My16171	NCP	%	70			70-130	Pass	
Ethion	S21-My16171	NCP	%	73			70-130	Pass	
Fenitrothion	S21-My16171	NCP	%	96			70-130	Pass	
Methyl parathion	S21-My16171	NCP	%	104			70-130	Pass	
Mevinphos	S21-My16171	NCP	%	123			70-130	Pass	
Spike - % Recovery	· ·								
Polychlorinated Biphenyls				Result 1					
Aroclor-1016	S21-My16171	NCP	%	79			70-130	Pass	
Aroclor-1260	S21-My16171	NCP	%	115			70-130	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Arsenic	S21-My04571	NCP	%	112			75-125	Pass	
Cadmium	S21-My04571	NCP	%	119			75-125	Pass	
Chromium	S21-My08210	NCP	%	109			75-125	Pass	
Copper	S21-My08210	NCP	%	109			75-125	Pass	
Lead	S21-My08230	NCP	%	91			75-125	Pass	
Mercury	S21-My08210	NCP	%	114			75-125	Pass	
Nickel	S21-My08210	NCP	%	114			75-125	Pass	
Zinc	S21-My04571	NCP	%	124			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate		Course					Linito	Linito	0000
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	tions		Result 1	Result 2	RPD			
TRH C6-C9	S21-My08210	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S21-My03113	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S21-My03113	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S21-My03113	NCP	mg/kg	< 50	82	76	30%	Fail	Q15
Duplicate	0211000110		iiig/kg		02	70	3070	1 611	
BTEX				Result 1	Result 2	RPD			
Benzene	S21-My08210	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S21-My08210	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S21-My08210	NCP		< 0.1	< 0.1	<1	30%	Pass	
	S21-My08210 S21-My08210	NCP	mg/kg		< 0.1	<1	30%	Pass	
m&p-Xylenes	S21-My08210 S21-My08210	NCP	mg/kg	< 0.2					
o-Xylene			mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total*	S21-My08210	NCP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate	2042 NEDM 5	lene		Deguit 1	Depute	000			
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD	2001	Derr	
Naphthalene	S21-My08210	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S21-My08210	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	S21-My03113	NCP	mg/kg	< 50	< 50	<1	30%	Pass	

Duplicate									
Polycyclic Aromatic Hydrocarbons	5			Result 1	Result 2	RPD			
Acenaphthene	S21-My03348	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S21-My03348	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S21-My03348	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S21-My03348	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S21-My03348	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S21-My03348	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S21-My03348	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S21-My03348	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S21-My03348	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S21-My03348	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S21-My03348	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S21-My03348	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S21-My03348	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S21-My03348	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S21-My03348	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S21-My03348	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate				1	1		-		
Organochlorine Pesticides	1			Result 1	Result 2	RPD			
Chlordanes - Total	S21-My26206	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S21-My26206	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S21-My26206	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S21-My26206	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	S21-My26206	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S21-My26206	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	S21-My26206	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	S21-My26206	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S21-My26206	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S21-My26206	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S21-My26206	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S21-My26206	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S21-My26206	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S21-My26206	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S21-My26206	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	S21-My26206	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S21-My26206	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S21-My26206	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S21-My26206	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S21-My26206	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Toxaphene	S21-My26206	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Duplicate				D 144				1	
Organophosphorus Pesticides	004 14 00000	NOD		Result 1	Result 2	RPD	0.001/	Dese	
Azinphos-methyl	S21-My26206	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Bolstar	S21-My26206	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorfenvinphos	S21-My26206	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos	S21-My26206	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos-methyl	S21-My26206	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Coumaphos	S21-My26206	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Demeton-S	S21-My26206	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Demeton-O	S21-My26206	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Diazinon	S21-My26206	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dichlorvos	S21-My26206	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dimethoate	S21-My26206	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Disulfoton	S21-My26206	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
EPN	S21-My26206	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	

Duplicate									
Organophosphorus Pesticides				Result 1	Result 2	RPD			
Ethion	S21-My26206	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethoprop	S21-My26206	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethyl parathion	S21-My26206	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenitrothion	S21-My26206	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fensulfothion	S21-My26206	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenthion	S21-My26206	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Malathion	S21-My26206	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Merphos	S21-My26206	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Methyl parathion	S21-My26206	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Mevinphos	S21-My26206	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Monocrotophos	S21-My26206	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Naled	S21-My26206	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Omethoate	S21-My26206	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Phorate	S21-My26206	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pirimiphos-methyl	S21-My26206	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pyrazophos	S21-My26206	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ronnel	S21-My26206	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Terbufos	S21-My26206	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tetrachlorvinphos	S21-My26206	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tokuthion	S21-My26206	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Trichloronate	S21-My26206	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Duplicate									
Polychlorinated Biphenyls				Result 1	Result 2	RPD			
Aroclor-1016	S21-My26206	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1221	S21-My26206	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	S21-My26206	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1242	S21-My26206	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1248	S21-My26206	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1254	S21-My26206	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1260	S21-My26206	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Total PCB*	S21-My26206	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
TRH - 2013 NEPM Fractions (after	silica gel clean-up)		Result 1	Result 2	RPD			
TRH >C10-C16 (after silica gel clean-up)	S21-My08523	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34 (after silica gel clean-up)	S21-My08523	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40 (after silica gel clean-up)	S21-My08523	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate					1 1		1		
TRH - 1999 NEPM Fractions (after	silica gel clean-up)	1	Result 1	Result 2	RPD			
TRH C10-C14 (after silica gel clean-up)	S21-My08523	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C15-C28 (after silica gel clean-up)	S21-My08523	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH C29-C36 (after silica gel clean-up)	S21-My08523	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate							1		
		1		Result 1	Result 2	RPD			
Total Organic Carbon	S21-My04180	CP	%	0.9	0.8	9.1	30%	Pass	
% Moisture	S21-My04180	CP	%	23	21	7.0	30%	Pass	

Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S21-My04182	CP	mg/kg	9.3	11	18	30%	Pass	
Cadmium	S21-My04182	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S21-My04182	CP	mg/kg	26	23	11	30%	Pass	
Copper	S21-My04182	CP	mg/kg	38	29	27	30%	Pass	
Lead	S21-My04182	CP	mg/kg	79	94	18	30%	Pass	
Mercury	S21-My04182	CP	mg/kg	0.2	0.2	10	30%	Pass	
Nickel	S21-My04182	CP	mg/kg	17	13	24	30%	Pass	
Zinc	S21-My04182	CP	mg/kg	120	97	25	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Total Organic Carbon	S21-My04197	CP	%	0.4	< 0.1	200	30%	Fail	Q15

Comments

This report was revised V2 to review PAH LORs on sample My04181.

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.

N07 Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised by:

John Nguyen	Analytical Services Manager
Andrew Sullivan	Senior Analyst-Organic (NSW)
John Nguyen	Senior Analyst-Metal (NSW)
Roopesh Rangarajan	Senior Analyst-Volatile (NSW)
Scott Beddoes	Senior Analyst-Inorganic (VIC)

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service
- Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Certificate of Analysis

Environment Testing

Greencap NSW P/L Ground Floor, North Building, 22 Giffnock Avenue Macquarie Park NSW 2113

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection and proficiency testing scheme providers reports.

Attention:

Shihui Wang

Report Project name Project ID Received Date 794321-S ADDITIONAL - SYDNEY OLYMPIC PARK HS J169135-01 May 10, 2021

Client Sample ID			GG8-02(0.4- 0.5)	GG8-03(0.9- 1.0)	GG8-04(1.9- 2.0)	GG1-07(2.0- 2.1)
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-My20309	S21-My20310	S21-My20311	S21-My20312
Date Sampled			Apr 29, 2021	Apr 29, 2021	Apr 29, 2021	Apr 29, 2021
Test/Reference	LOR	Unit				
Volatile Organics						
1.1-Dichloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.1-Dichloroethene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.1.1-Trichloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.1.1.2-Tetrachloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.1.2-Trichloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.1.2.2-Tetrachloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2-Dibromoethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2-Dichlorobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2-Dichloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2-Dichloropropane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2.3-Trichloropropane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.2.4-Trimethylbenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.3-Dichlorobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.3-Dichloropropane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.3.5-Trimethylbenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1.4-Dichlorobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Butanone (MEK)	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Propanone (Acetone)	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
4-Chlorotoluene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
4-Methyl-2-pentanone (MIBK)	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Allyl chloride	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Bromobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Bromochloromethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Bromodichloromethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Bromoform	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Bromomethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Carbon disulfide	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Carbon Tetrachloride	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chlorobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chloroform	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chloromethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
cis-1.2-Dichloroethene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
cis-1.3-Dichloropropene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

GG8-02(0.4- 0.5) GG8-03(0.9- 1.0) GG8-04(1.9- 2.0) GG1-07(2.0- 2.1)				lient Sample ID
Soil Soil Soil Soil	S			ample Matrix
S21-My20309 S21-My20310 S21-My20311 S21-My20312	s			urofins Sample No.
Apr 29, 2021 Apr 29, 2021 Apr 29, 2021 Apr 29, 2021	A			ate Sampled
LOR Unit	t	ι	LOR	est/Reference
			_	olatile Organics
0.5 mg/kg < 0.5 < 0.5 < 0.5 < 0.5	a	m	0.5	ibromochloromethane
0.5 mg/kg < 0.5 < 0.5 < 0.5 < 0.5	-			ibromomethane
0.5 mg/kg < 0.5 < 0.5 < 0.5 < 0.5				ichlorodifluoromethane
0.1 mg/kg < 0.1 < 0.1 < 0.1 < 0.1				thylbenzene
0.5 mg/kg < 0.5 < 0.5 < 0.5 < 0.5			0.5	domethane
0.5 mg/kg < 0.5 < 0.5 < 0.5 < 0.5			0.5	opropyl benzene (Cumene)
0.2 mg/kg < 0.2 < 0.2 < 0.2 < 0.2			0.2	&p-Xylenes
0.5 mg/kg < 0.5 < 0.5 < 0.5 < 0.5			0.5	ethylene Chloride
0.1 mg/kg < 0.1 < 0.1 < 0.1 < 0.1			0.1	Xylene
0.5 mg/kg < 0.5 < 0.5 < 0.5 < 0.5	g	m	0.5	tyrene
0.5 mg/kg < 0.5 < 0.5 < 0.5 < 0.5	g	m	0.5	etrachloroethene
0.1 mg/kg < 0.1 < 0.1 < 0.1 < 0.1	g	m	0.1	oluene
0.5 mg/kg < 0.5 < 0.5 < 0.5 < 0.5	g	m	0.5	ans-1.2-Dichloroethene
0.5 mg/kg < 0.5 < 0.5 < 0.5 < 0.5	g	m	0.5	ans-1.3-Dichloropropene
0.5 mg/kg < 0.5 < 0.5 < 0.5 < 0.5	.g	m	0.5	richloroethene
0.5 mg/kg < 0.5 < 0.5 < 0.5 < 0.5	.g	m	0.5	richlorofluoromethane
0.5 mg/kg < 0.5 < 0.5 < 0.5 < 0.5	g	m	0.5	inyl chloride
0.3 mg/kg < 0.3 < 0.3 < 0.3 < 0.3	.g	m	0.3	ylenes - Total*
0.5 mg/kg < 0.5 < 0.5 < 0.5 < 0.5	g	m	0.5	otal MAH*
0.5 mg/kg < 0.5 < 0.5 < 0.5 < 0.5	g	m	0.5	ic EPA IWRG 621 CHC (Total)*
0.5 mg/kg < 0.5 < 0.5 < 0.5 < 0.5	.g	m	0.5	ic EPA IWRG 621 Other CHC (Total)*
<u>1 % 92 94 90 94</u>			1	Bromofluorobenzene (surr.)
1 % 118 112 104 111			1	oluene-d8 (surr.)
				emivolatile Organics
0.5 mg/kg < 0.5 4.6 7.8 < 0.5	g	m	0.5	enzo(a)pyrene TEQ (lower bound) *
0.5 mg/kg 0.6 4.8 8.1 0.7	.g	m	0.5	enzo(a)pyrene TEQ (medium bound) *
0.5 mg/kg 1.2 5.1 8.3 1.2	g	m	0.5	enzo(a)pyrene TEQ (upper bound) *
5 mg/kg <5 <5 <5 <5	g	m	5	Methyl-4.6-dinitrophenol
0.5 mg/kg < 0.5 < 0.5 < 0.5 < 0.5	g	m	0.5	Chloronaphthalene
0.5 mg/kg < 0.5 < 0.5 < 0.5 < 0.5	<u>.g</u>	m	0.5	Naphthylamine
0.5 mg/kg < 0.5 < 0.5 < 0.5 < 0.5	<u>.g</u>	m	0.5	2-Dichlorobenzene
0.5 mg/kg < 0.5 < 0.5 < 0.5 < 0.5	<u>.g</u>	m	0.5	2.3-Trichlorobenzene
0.5 mg/kg < 0.5 < 0.5 < 0.5 < 0.5	<u>.g</u>	<u> </u>		2.3.4-Tetrachlorobenzene
0.5 mg/kg < 0.5 < 0.5 < 0.5 < 0.5	-			2.3.5-Tetrachlorobenzene
0.5 mg/kg < 0.5 < 0.5 < 0.5 < 0.5	-			2.4-Trichlorobenzene
0.5 mg/kg < 0.5 < 0.5 < 0.5 < 0.5	-			2.4.5-Tetrachlorobenzene
0.5 mg/kg < 0.5 < 0.5 < 0.5 < 0.5	-			3-Dichlorobenzene
0.5 mg/kg < 0.5 < 0.5 < 0.5 < 0.5	-			3.5-Trichlorobenzene
0.5 mg/kg < 0.5 < 0.5 < 0.5 < 0.5	-			4-Dichlorobenzene
0.5 mg/kg < 0.5 < 0.5 < 0.5 < 0.5	-			Chloronaphthalene
0.5 mg/kg < 0.5 < 0.5 < 0.5 < 0.5	g			Chlorophenol
1 % 85 107 95 96	+			Fluorobiphenyl (surr.)
0.5 mg/kg < 0.5 < 0.5 < 0.5 < 0.5	-			Methylnaphthalene
0.2 mg/kg < 0.2 < 0.2 < 0.2 < 0.2	-			Methylphenol (o-Cresol)
0.5 mg/kg < 0.5 < 0.5 < 0.5 < 0.5	-			Naphthylamine
1 mg/kg <1 <1 <1 <1	-			Nitroaniline
1 mg/kg <1 <1 <1 <1	-			Nitrophenol
0.5 mg/kg < 0.5 < 0.5 < 0.5 < 0.5 0.5 mg/kg < 0.5	-			Picoline
0.5 mg/kg < 0.5 < 0.5 < 0.5	-			3.4.6-Tetrachlorophenol

Client Sample ID			GG8-02(0.4- 0.5)	GG8-03(0.9- 1.0)	GG8-04(1.9- 2.0)	GG1-07(2.0- 2.1)
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-My20309	S21-My20310	S21-My20311	S21-My20312
Date Sampled			Apr 29, 2021	Apr 29, 2021	Apr 29, 2021	Apr 29, 2021
Test/Reference	LOR	Unit				
Semivolatile Organics	Lon	Onit				
2.4-Dichlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4-Dimethylphenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4-Dinitrophenol	5	mg/kg	< 5	< 5	< 5	< 5
2.4-Dinitrotoluene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4.5-Trichlorophenol	1	mg/kg	< 1	< 1	<1	< 1
2.4.6-Tribromophenol (surr.)	1	%	INT	INT	INT	INT
2.4.6-Trichlorophenol	1	mg/kg	< 1	< 1	< 1	< 1
2.6-Dichlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.6-Dinitrotoluene	1	mg/kg	< 1	< 1	< 1	< 1
3&4-Methylphenol (m&p-Cresol)	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
3-Methylcholanthrene	0.5	mg/kg	< 0.5	< 0.5	0.5	< 0.5
3.3'-Dichlorobenzidine	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
4-Aminobiphenyl	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
4-Bromophenyl phenyl ether	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
4-Chloro-3-methylphenol	1	mg/kg	< 1	< 1	< 1	< 1
4-Chlorophenyl phenyl ether	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
4-Nitrophenol	5	mg/kg	< 5	< 5	< 5	< 5
4.4'-DDD	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
4.4'-DDE	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
4.4'-DDT	1	mg/kg	< 1	< 1	< 1	< 1
7.12-Dimethylbenz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
a-BHC	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	1.3	< 0.5
Acetophenone	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aldrin	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aniline	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	0.6	4.3	< 0.5
b-BHC	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	3.2	6.9	0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	3.5	5.8	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	2.2	3.9	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	1.4	1.2	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	3.9	7.9	0.7
Benzyl chloride	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Bis(2-chloroethoxy)methane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Bis(2-chloroisopropyl)ether	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Bis(2-ethylhexyl)phthalate	5	mg/kg	< 5	< 5	< 5	< 5
Butyl benzyl phthalate	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	2.7	5.6	0.8
d-BHC	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Di-n-butyl phthalate	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Di-n-octyl phthalate	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.j)acridine	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenzofuran	0.5	mg/kg	< 0.5	< 0.5	0.6	< 0.5
Dieldrin	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Diethyl phthalate	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Client Sample ID			GG8-02(0.4- 0.5)	GG8-03(0.9- 1.0)	GG8-04(1.9- 2.0)	GG1-07(2.0- 2.1)
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-My20309	S21-My20310	S21-My20311	S21-My20312
Date Sampled			Apr 29, 2021	Apr 29, 2021	Apr 29, 2021	Apr 29, 2021
Test/Reference	LOR	Unit				
Semivolatile Organics		1				
Dimethylaminoazobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Diphenylamine	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Endosulfan I	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Endosulfan II	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Endosulfan sulphate	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Endrin	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Endrin aldehyde	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Endrin ketone	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	9.5	27	1.4
Fluorene	0.5	mg/kg	2.2	< 0.5	1.7	< 0.5
g-BHC (Lindane)	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Heptachlor	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Heptachlor epoxide	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Hexachlorobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Hexachlorobutadiene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Hexachlorocyclopentadiene	1	mg/kg	< 1	< 1	< 1	< 1
Hexachloroethane	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	1.1	0.8	< 0.5
Methoxychlor	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
N-Nitrosodibutylamine	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
N-Nitrosodipropylamine	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
N-Nitrosopiperidine	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	0.8	< 0.5
Nitrobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Nitrobenzene-d5 (surr.)	1	%	111	91	69	76
Pentachlorobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pentachloronitrobenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pentachlorophenol	1	mg/kg	< 1	< 1	< 1	< 1
Phenanthrene	0.5	mg/kg	< 0.5	2.8	13	< 0.5
Phenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenol-d6 (surr.)	1	%	94	103	79	83
Pronamide	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	1.4	7.8	21	1.2
Trifluralin	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
% Moisture	1	%	11	13	21	14

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Volatile Organics	Testing Site Sydney	Extracted May 12, 2021	Holding Time 7 Days
- Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices Semivolatile Organics	Sydney	May 12, 2021	14 Day
- Method: LTM-ORG-2190 SVOC in Water & Soil by GC-MS % Moisture - Method: LTM-GEN-7080 Moisture	Sydney	May 12, 2021	14 Days

	eurofi	nc			Australia								New Zealand	
			ironment u email: EnviroSale	0	Melbourne 6 Monterey Road Dandenong South VIC 31 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271	U 75 10 La P	ydney nit F3, I 6 Mars ane Cov hone : - ATA # -	Road /e Wes -61 2 9	V 2066 400	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : -61 2 4968 8448 NATA # 1261 Site # 25079	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 76 Phone : 0800 856 450 IANZ # 1290
	npany Name: dress:	Greencap N Ground Floo Macquarie F NSW 2113	or, North Buildi	ing, 22 Giffnoc	sk Avenue		R Pl	rder epor hone ax:		794321 02 9889 1800 02 9889 1811		Received: Due: Priority: Contact Name:	May 10, 2021 1:45 May 17, 2021 5 Day Shihui Wang	РМ
	ject Name: ject ID:	ADDITIONA J169135-01	L - SYDNEY (OLYMPIC PAF	RK HS							Eurofins Analytical	Services Manager : I	Jrsula Long
		Sa	Imple Detail			Volatile Organics	Moisture Set	Semivolatile Organics						
		ory - NATA Site		271										
		- NATA Site # 1				Х	X	X						
		y - NATA Site # NATA Site # 237												
		- NATA Site # 23/												
	nal Laboratory													
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID									
	GG8-02(0.4- 0.5)	Apr 29, 2021		Soil	S21-My20309	х	х	х						
2	GG8-03(0.9- 1.0)	Apr 29, 2021		Soil	S21-My20310	х	х	х						
3	GG8-04(1.9- 2.0)	Apr 29, 2021		Soil	S21-My20311	х	х	х						
ţ	GG1-07(2.0- 2.1)	Apr 29, 2021		Soil	S21-My20312	х	x	х						

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
QSM	US Department of Defense Quality Systems Manual Version 5.3
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank			· · ·			
Volatile Organics						
1.1-Dichloroethane	mg/kg	< 0.5		0.5	Pass	
1.1-Dichloroethene	mg/kg	< 0.5		0.5	Pass	
1.1.1-Trichloroethane	mg/kg	< 0.5		0.5	Pass	
1.1.1.2-Tetrachloroethane	mg/kg	< 0.5		0.5	Pass	
1.1.2-Trichloroethane	mg/kg	< 0.5		0.5	Pass	
1.1.2.2-Tetrachloroethane	mg/kg	< 0.5		0.5	Pass	
1.2-Dibromoethane	mg/kg	< 0.5		0.5	Pass	
1.2-Dichlorobenzene	mg/kg	< 0.5		0.5	Pass	
1.2-Dichloroethane	mg/kg	< 0.5		0.5	Pass	
1.2-Dichloropropane	mg/kg	< 0.5		0.5	Pass	
1.2.3-Trichloropropane	mg/kg	< 0.5		0.5	Pass	
1.2.4-Trimethylbenzene	mg/kg	< 0.5		0.5	Pass	
1.3-Dichlorobenzene	mg/kg	< 0.5		0.5	Pass	
1.3-Dichloropropane	mg/kg	< 0.5		0.5	Pass	
1.3.5-Trimethylbenzene	mg/kg	< 0.5		0.5	Pass	
1.4-Dichlorobenzene	mg/kg	< 0.5		0.5	Pass	
2-Butanone (MEK)	mg/kg	< 0.5		0.5	Pass	
2-Propanone (Acetone)	mg/kg	< 0.5		0.5	Pass	
4-Chlorotoluene	mg/kg	< 0.5		0.5	Pass	
4-Methyl-2-pentanone (MIBK)	mg/kg	< 0.5		0.5	Pass	
Allyl chloride	mg/kg	< 0.5		0.5	Pass	
Benzene	mg/kg	< 0.1		0.0	Pass	
Bromobenzene	mg/kg	< 0.5		0.5	Pass	
Bromochloromethane	mg/kg	< 0.5		0.5	Pass	
Bromodichloromethane	mg/kg	< 0.5		0.5	Pass	
Bromoform	mg/kg	< 0.5		0.5	Pass	
Bromomethane	mg/kg	< 0.5		0.5	Pass	
Carbon disulfide	mg/kg	< 0.5		0.5	Pass	
Carbon Tetrachloride	mg/kg	< 0.5		0.5	Pass	
Chlorobenzene	mg/kg	< 0.5		0.5	Pass	
Chloroethane	mg/kg	< 0.5		0.5	Pass	
Chloroform	mg/kg	< 0.5		0.5	Pass	
Chloromethane	mg/kg	< 0.5		0.5	Pass	
cis-1.2-Dichloroethene	mg/kg	< 0.5		0.5	Pass	
cis-1.3-Dichloropropene	mg/kg	< 0.5		0.5	Pass	
Dibromochloromethane	mg/kg	< 0.5		0.5	Pass	
Dibromomethane	mg/kg	< 0.5		0.5	Pass	
Dichlorodifluoromethane	mg/kg	< 0.5		0.5	Pass	
Ethylbenzene	mg/kg	< 0.1		0.1	Pass	
lodomethane	mg/kg	< 0.5		0.5	Pass	
Isopropyl benzene (Cumene)	mg/kg	< 0.5		0.5	Pass	
m&p-Xylenes	mg/kg	< 0.2		0.2	Pass	
Methylene Chloride	mg/kg	< 0.5		0.5	Pass	
o-Xylene	mg/kg	< 0.1		0.0	Pass	
Styrene	mg/kg	< 0.5		0.5	Pass	
Tetrachloroethene	mg/kg	< 0.5		0.5	Pass	
Toluene	mg/kg	< 0.1		0.0	Pass	
trans-1.2-Dichloroethene	mg/kg	< 0.5		0.5	Pass	
trans-1.3-Dichloropropene	mg/kg	< 0.5		0.5	Pass	
Trichloroethene	mg/kg	< 0.5		0.5	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Trichlorofluoromethane	mg/kg	< 0.5	0.5	Pass	
Vinyl chloride	mg/kg	< 0.5	0.5	Pass	
Xylenes - Total*	mg/kg	< 0.3	0.3	Pass	
Method Blank					
Semivolatile Organics					
2-Methyl-4.6-dinitrophenol	mg/kg	< 5	5	Pass	
1-Chloronaphthalene	mg/kg	< 0.5	0.5	Pass	
1-Naphthylamine	mg/kg	< 0.5	0.5	Pass	
1.2-Dichlorobenzene	mg/kg	< 0.5	0.5	Pass	
1.2.3-Trichlorobenzene	mg/kg	< 0.5	0.5	Pass	
1.2.3.4-Tetrachlorobenzene	mg/kg	< 0.5	0.5	Pass	
1.2.3.5-Tetrachlorobenzene	mg/kg	< 0.5	0.5	Pass	
1.2.4-Trichlorobenzene	mg/kg	< 0.5	0.5	Pass	
1.2.4.5-Tetrachlorobenzene	mg/kg	< 0.5	0.5	Pass	
1.3-Dichlorobenzene	mg/kg	< 0.5	0.5	Pass	
1.3.5-Trichlorobenzene	mg/kg	< 0.5	0.5	Pass	
1.4-Dichlorobenzene	mg/kg	< 0.5	0.5	Pass	
2-Chloronaphthalene	mg/kg	< 0.5	0.5	Pass	
2-Chlorophenol	mg/kg	< 0.5	0.5	Pass	
2-Methylnaphthalene	mg/kg	< 0.5	0.5	Pass	
2-Methylphenol (o-Cresol)	mg/kg	< 0.2	0.2	Pass	
2-Naphthylamine	mg/kg	< 0.5	0.5	Pass	
2-Nitroaniline	mg/kg	< 1	1	Pass	
2-Nitrophenol	mg/kg	< 1	1	Pass	
2-Picoline	mg/kg	< 0.5	0.5	Pass	
2.3.4.6-Tetrachlorophenol	mg/kg	< 0.5	0.5	Pass	
2.4-Dichlorophenol	mg/kg	< 0.5	0.5	Pass	
2.4-Dimethylphenol	mg/kg	< 0.5	0.5	Pass	
2.4-Dinitrophenol	mg/kg	< 5	5	Pass	
2.4-Dinitrotoluene	mg/kg	< 0.5	0.5	Pass	
2.4.5-Trichlorophenol	mg/kg	< 1	1	Pass	
2.4.6-Trichlorophenol	mg/kg	< 1	1	Pass	
2.6-Dichlorophenol	mg/kg	< 0.5	0.5	Pass	
2.6-Dinitrotoluene	mg/kg	< 1	1	Pass	
3&4-Methylphenol (m&p-Cresol)	mg/kg	< 0.4	0.4	Pass	
3-Methylcholanthrene	mg/kg	< 0.5	0.5	Pass	
3.3'-Dichlorobenzidine	mg/kg	< 0.5	0.5	Pass	
4-Aminobiphenyl	mg/kg	< 0.5	0.5	Pass	
4-Bromophenyl phenyl ether	mg/kg	< 0.5	0.5	Pass	
4-Chloro-3-methylphenol	mg/kg	< 1	1	Pass	
4-Chlorophenyl phenyl ether	mg/kg	< 0.5	0.5	Pass	
4-Nitrophenol	mg/kg	< 5	5	Pass	
4.4'-DDD	mg/kg	< 0.5	0.5	Pass	
4.4'-DDE	mg/kg	< 0.5	0.5	Pass	
4.4'-DDT	mg/kg	< 1	1	Pass	
7.12-Dimethylbenz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
a-BHC	mg/kg	< 0.5	0.5	Pass	
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Acetophenone	mg/kg	< 0.5	0.5	Pass	
Aldrin	mg/kg	< 0.5	0.5	Pass	
Aniline	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
b-BHC	mg/kg	< 0.5	0.5	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
enz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
enzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
enzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
enzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
enzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
enzyl chloride	mg/kg	< 0.5	0.5	Pass	
s(2-chloroethoxy)methane	mg/kg	< 0.5	0.5	Pass	
s(2-chloroisopropyl)ether	mg/kg	< 0.5	0.5	Pass	
s(2-ethylhexyl)phthalate	mg/kg	< 5	5	Pass	
utyl benzyl phthalate	mg/kg	< 0.5	0.5	Pass	
hrysene	mg/kg	< 0.5	0.5	Pass	
BHC	mg/kg	< 0.5	0.5	Pass	
i-n-butyl phthalate	mg/kg	< 0.5	0.5	Pass	
i-n-octyl phthalate	mg/kg	< 0.5	0.5	Pass	
ibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
ibenz(a.i)acridine	mg/kg	< 0.5	0.5	Pass	
ibenzofuran	mg/kg	< 0.5	0.5	Pass	
ieldrin	mg/kg	< 0.5	0.5	Pass	
iethyl phthalate	mg/kg	< 0.5	0.5	Pass	
imethyl phthalate	mg/kg	< 0.5	0.5	Pass	
		< 0.5	0.5	Pass	
imethylaminoazobenzene	mg/kg				
iphenylamine	mg/kg	< 0.5	0.5	Pass	
ndosulfan l	mg/kg	< 0.5	0.5	Pass	
ndosulfan II	mg/kg	< 0.5	0.5	Pass	
ndosulfan sulphate	mg/kg	< 0.5	0.5	Pass	
ndrin	mg/kg	< 0.5	0.5	Pass	
ndrin aldehyde	mg/kg	< 0.5	0.5	Pass	
ndrin ketone	mg/kg	< 0.5	0.5	Pass	
uoranthene	mg/kg	< 0.5	0.5	Pass	
uorene	mg/kg	< 0.5	0.5	Pass	
BHC (Lindane)	mg/kg	< 0.5	0.5	Pass	
eptachlor	mg/kg	< 0.5	0.5	Pass	
eptachlor epoxide	mg/kg	< 0.5	0.5	Pass	
exachlorobenzene	mg/kg	< 0.5	0.5	Pass	
exachlorobutadiene	mg/kg	< 0.5	0.5	Pass	
exachlorocyclopentadiene	mg/kg	< 1	1	Pass	
exachloroethane	mg/kg	< 0.5	0.5	Pass	
deno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
ethoxychlor	mg/kg	< 0.5	0.5	Pass	
Nitrosodibutylamine	mg/kg	< 0.5	0.5	Pass	
Nitrosodipropylamine	mg/kg	< 0.5	0.5	Pass	
Nitrosopiperidine	mg/kg	< 0.5	0.5	Pass	
aphthalene	mg/kg	< 0.5	0.5	Pass	
itrobenzene	mg/kg	< 0.5	0.5	Pass	
entachlorobenzene	mg/kg	< 0.5	0.5	Pass	
entachloronitrobenzene	mg/kg	< 0.5	0.5	Pass	
entachlorophenol	mg/kg	< 1	1	Pass	
henanthrene	mg/kg	< 0.5	0.5	Pass	
henol	mg/kg	< 0.5	0.5	Pass	
ronamide	mg/kg	< 0.5	0.5	Pass	
yrene	mg/kg	< 0.5	0.5	Pass	
ifluralin	mg/kg	< 0.5	0.5	Pass	
ITIUralin					1

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
1.1-Dichloroethene			%	87		70-130	Pass	
1.1.1-Trichloroethane			%	98		70-130	Pass	
1.2-Dichlorobenzene			%	92		70-130	Pass	
1.2-Dichloroethane			%	99		70-130	Pass	
Benzene			%	96		70-130	Pass	
Ethylbenzene			%	100		70-130	Pass	
m&p-Xylenes			%	106		70-130	Pass	
o-Xylene			%	100		70-130	Pass	
Toluene			%	101		70-130	Pass	
Trichloroethene			%	86		70-130	Pass	
Xylenes - Total*			%	104		70-130	Pass	
LCS - % Recovery								
Semivolatile Organics								
2-Methyl-4.6-dinitrophenol			%	80		30-130	Pass	
1.2.4-Trichlorobenzene			%	112		70-130	Pass	
1.4-Dichlorobenzene			%	98		70-130	Pass	
2-Chlorophenol			%	113		30-130	Pass	
2-Methylphenol (o-Cresol)			%	93		30-130	Pass	
2.4-Dichlorophenol			%	100		30-130	Pass	
2.4-Dimethylphenol			%	101		30-130	Pass	
2.4-Dinitrophenol			%	72		30-130	Pass	
2.4-Dinitrotoluene			%	115		70-130	Pass	
2.4.5-Trichlorophenol			%	99		30-130	Pass	
2.4.6-Trichlorophenol			%	108		30-130	Pass	
2.6-Dichlorophenol			%	104		30-130	Pass	
3&4-Methylphenol (m&p-Cresol)			%	99		30-130	Pass	
4-Chloro-3-methylphenol			%	98		30-130	Pass	
4-Nitrophenol			%	82		30-130	Pass	
Acenaphthene			%	93		70-130	Pass	
Acenaphthylene			%	92		70-130	Pass	
Anthracene			%	98		70-130	Pass	
Benz(a)anthracene			%	95		70-130	Pass	
Benzo(a)pyrene			%	95		70-130	Pass	
Benzo(b&j)fluoranthene			%	105		70-130	Pass	
Benzo(k)fluoranthene			%	104		70-130	Pass	
Chrysene			%	99		70-130	Pass	
Fluoranthene			%	99		70-130	Pass	
Fluorene			%	100		70-130	Pass	
N-Nitrosodipropylamine			%	103		70-130	Pass	
Naphthalene			%	90		70-130	Pass	
Phenanthrene			%	100		70-130	Pass	
Phenol			%	111		30-130	Pass	
Pyrene			%	123		70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Volatile Organics				Result 1				
Benzene	S21-My25182	NCP	%	89		70-130	Pass	
Ethylbenzene	S21-My25182	NCP	%	94		70-130	Pass	
m&p-Xylenes	S21-My25182	NCP	%	88		70-130	Pass	
o-Xylene	S21-My25182	NCP	%	98		70-130	Pass	
Toluene	S21-My25182	NCP	%	95		70-130	Pass	
Xylenes - Total*	S21-My25182	NCP	%	92		70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Volatile Organics				Result 1	Result 2	RPD			
Benzene	S21-My25181	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S21-My25181	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S21-My25181	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S21-My25181	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S21-My25181	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total*	S21-My25181	NCP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S21-My20311	CP	%	21	22	1.0	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used) N	√A/
Attempt to Chill was evident Y	/es
Sample correctly preserved Y	/es
Appropriate sample containers have been used Y	/es
Sample containers for volatile analysis received with minimal headspace Y	/es
Samples received within HoldingTime Y	/es
Some samples have been subcontracted N	No

Qualifier Codes/Comments

Code

Description

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Authorised by:

John Nguyen Andrew Sullivan Roopesh Rangarajan

Analytical Services Manager Senior Analyst-Organic (NSW) Senior Analyst-Volatile (NSW)

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Certificate of Analysis

Environment Testing

Greencap NSW P/L Ground Floor, North Building, 22 Giffnock Avenue Macquarie Park **NSW 2113**

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

	NSW 2113	
Attention: Sh	Attention:	Shi

Shihui Wang

Report Project name Project ID **Received Date**

824748-S SYDNEY OLYMPIC PARK HS J169135-01 May 04, 2021

Client Sample ID			BH2(0.5-0.7)	BH5(0.5-0.7)	BH10(0.7-0.9)	BH1(0.7-0.9)
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-My10964	S21-My10965	S21-My10967	S21-My10973
Date Sampled			May 03, 2021	May 03, 2021	May 03, 2021	May 03, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons	ł					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	61	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	110	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	171	< 50
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	140	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	140	< 100
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	92	126	52	102
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	2.0	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	2.3	0.7	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	2.6	1.3	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	2.7	1.1	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	1.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	1.1	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	0.7	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	1.1	0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	2.4	1.1	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Client Sample ID			BH2(0.5-0.7)	BH5(0.5-0.7)	BH10(0.7-0.9)	BH1(0.7-0.9)
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-My10964	S21-My10965	S21-My10967	S21-My10973
Date Sampled			May 03, 2021	May 03, 2021	May 03, 2021	May 03, 2021
		11-26	Way 03, 2021	Way 03, 2021	Way 05, 2021	Way 03, 2021
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons	0.5	mallea	: 0 F	2.0	0.0	- 0.5
Fluoranthene	0.5	mg/kg mg/kg	< 0.5 < 0.5	2.9	0.9	< 0.5
Fluorene Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	1.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	3.2	1.0	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	17.1	4.6	< 0.5
2-Fluorobiphenyl (surr.)	1	%	80	87	96	80
p-Terphenyl-d14 (surr.)	1	%	102	53	69	96
Organochlorine Pesticides	I	,,,				
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Toxaphene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	53	97	126	99
Tetrachloro-m-xylene (surr.) Organophosphorus Pesticides	1	%	87	102	119	79
	0.0	m a/l	.00	.0.0	.0.0	- 0.0
Azinphos-methyl Relator	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Bolstar Chlorfenvinphos	0.2	mg/kg mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Coumaphos	2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Demeton-S	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Demeton-O	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Diazinon	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dichlorvos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dimethoate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2

Client Sample ID			BH2(0.5-0.7)	BH5(0.5-0.7)	BH10(0.7-0.9)	BH1(0.7-0.9)
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-My10964	S21-My10965	S21-My10967	S21-My10973
Date Sampled			May 03, 2021	May 03, 2021	May 03, 2021	May 03, 2021
•		1.1	Way 05, 2021	Way 03, 2021	Way 03, 2021	Way 03, 2021
Test/Reference	LOR	Unit				
Organophosphorus Pesticides						
Disulfoton	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
EPN	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethoprop	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenitrothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fensulfothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Malathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Merphos Mathyl parathian	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Methyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Mevinphos Monocrotophos	2	mg/kg	< 0.2	< 0.2	< 0.2	
Naled	0.2	mg/kg			< 0.2	< 2
Omethoate	2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Phorate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Pirimiphos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Pyrazophos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ronnel	0.2	mg/kg mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Terbufos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tetrachlorvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tokuthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Trichloronate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Triphenylphosphate (surr.)	1	111g/kg %	99	67	73	92
Polychlorinated Biphenyls	I	70		07	/3	52
Aroclor-1016	0.1	ma/ka	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1018 Aroclor-1221	0.1	mg/kg mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1221 Aroclor-1232	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1232	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1242 Aroclor-1248	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1254	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1260	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Total PCB*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	53	97	126	99
Tetrachloro-m-xylene (surr.)	1	%	87	102	119	79
TRH - 2013 NEPM Fractions (after silica gel clean-u		70	01	102		10
TRH >C10-C16 (after silica gel clean-up)	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34 (after silica gel clean-up)	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40 (after silica gel clean-up)	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total) (after silica-gel clean up)*	100	mg/kg	< 100	-	-	-
TRH - 1999 NEPM Fractions (after silica gel clean up)	-	i iiig/ikg				
TRH C10-C14 (after silica gel clean-up)		ma/ka	< 20	< 20	~ 20	< 20
TRH C10-C14 (after silica gel clean-up) TRH C15-C28 (after silica gel clean-up)	20 50	mg/kg	< 20	< 20	< 20	< 20 < 50
TRH C13-C28 (after silica gel clean-up)	50	mg/kg mg/kg	< 50 < 50	< 50	< 50	< 50
TRH C10-C36 (Total) (after silica gel clean-up)	100	mg/kg	< 50	< 50	< 50	< 50

Client Sample ID			BH2(0.5-0.7)	BH5(0.5-0.7)	BH10(0.7-0.9)	BH1(0.7-0.9)
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-My10964	S21-My10965	S21-My10967	S21-My10973
Date Sampled			May 03, 2021	May 03, 2021	May 03, 2021	May 03, 2021
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic	2	mg/kg	16	11	5.2	7.2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	25	24	32	9.8
Copper	5	mg/kg	24	73	26	42
Lead	5	mg/kg	27	210	82	20
Mercury	0.1	mg/kg	< 0.1	0.6	0.2	< 0.1
Nickel	5	mg/kg	6.4	7.8	19	50
Zinc	5	mg/kg	34	800	100	210
% Moisture	1	%	15	15	9.8	11

Client Sample ID			BH3(1.0-1.2)	BH4(1.0-1.2)
Sample Matrix			Soil	Soil
Eurofins Sample No.			S21-My10974	S21-My10975
Date Sampled			May 03, 2021	May 03, 2021
Test/Reference	LOR	Unit		
Total Recoverable Hydrocarbons				
TRH C6-C9	20	mg/kg	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100
BTEX				
Benzene	0.1	mg/kg	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	78	107
Polycyclic Aromatic Hydrocarbons				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	0.7	3.0
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	1.0	3.3
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.3	3.5
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	0.8
Benz(a)anthracene	0.5	mg/kg	0.6	2.4
Benzo(a)pyrene	0.5	mg/kg	0.6	2.3
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	1.7

Client Sample ID Sample Matrix			BH3(1.0-1.2) Soil	BH4(1.0-1.2) Soil
Eurofins Sample No.			S21-My10974	S21-My10975
Date Sampled			May 03, 2021	May 03, 2021
Test/Reference	LOR	Unit	····· , ····	
Polycyclic Aromatic Hydrocarbons	Lon	Onic		
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	1.0
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	1.7
Chrysene	0.5	mg/kg	0.6	2.1
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	1.8	6.7
Fluorene	0.5	mg/kg	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	1.2
Naphthalene	0.5	mg/kg	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	0.7	3.7
Pyrene	0.5	mg/kg	1.6	6.3
Total PAH*	0.5	mg/kg	5.9	29.9
2-Fluorobiphenyl (surr.)	1	%	98	100
p-Terphenyl-d14 (surr.)	1	%	121	113
Organochlorine Pesticides				
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05
a-HCH	0.05	mg/kg	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05
b-HCH	0.05	mg/kg	< 0.05	< 0.05
d-HCH	0.05	mg/kg	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05
Toxaphene	0.5	mg/kg	< 0.5	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	61	83
Tetrachloro-m-xylene (surr.)	1	%	118	110
Organophosphorus Pesticides		1		
Azinphos-methyl	0.2	mg/kg	< 0.2	< 0.2
Bolstar	0.2	mg/kg	< 0.2	< 0.2
Chlorfenvinphos	0.2	mg/kg	< 0.2	< 0.2
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.2
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	< 0.2
Coumaphos	2	mg/kg	< 2	< 2
Demeton-S	0.2	mg/kg	< 0.2	< 0.2

Client Sample ID Sample Matrix			BH3(1.0-1.2) Soil	BH4(1.0-1.2) Soil
Eurofins Sample No.			S21-My10974	S21-My10975
Date Sampled			May 03, 2021	May 03, 2021
Test/Reference	LOR	Unit	, , , , , , , , , , , , , , , , , , , ,	
Organophosphorus Pesticides	LOIX	Onit		
Demeton-O	0.2	mg/kg	< 0.2	< 0.2
Diazinon	0.2	mg/kg	< 0.2	< 0.2
Dichlorvos	0.2	mg/kg	< 0.2	< 0.2
Dimethoate	0.2	mg/kg	< 0.2	< 0.2
Disulfoton	0.2	mg/kg	< 0.2	< 0.2
EPN	0.2	mg/kg	< 0.2	< 0.2
Ethion	0.2	mg/kg	< 0.2	< 0.2
Ethoprop	0.2	mg/kg	< 0.2	< 0.2
Ethyl parathion	0.2	mg/kg	< 0.2	< 0.2
Fenitrothion	0.2	mg/kg	< 0.2	< 0.2
Fensulfothion	0.2		< 0.2	< 0.2
Fenthion	0.2	mg/kg	< 0.2	< 0.2
Malathion	0.2	mg/kg	< 0.2	< 0.2
	0.2	mg/kg	< 0.2	< 0.2
Merphos		mg/kg		
Methyl parathion	0.2	mg/kg	< 0.2	< 0.2
Mevinphos	0.2	mg/kg	< 0.2	< 0.2
Monocrotophos	2	mg/kg	< 2	< 2
Naled	0.2	mg/kg	< 0.2	< 0.2
Omethoate	2	mg/kg	< 2	< 2
Phorate	0.2	mg/kg	< 0.2	< 0.2
Pirimiphos-methyl	0.2	mg/kg	< 0.2	< 0.2
Pyrazophos	0.2	mg/kg	< 0.2	< 0.2
Ronnel	0.2	mg/kg	< 0.2	< 0.2
Terbufos	0.2	mg/kg	< 0.2	< 0.2
Tetrachlorvinphos	0.2	mg/kg	< 0.2	< 0.2
Tokuthion	0.2	mg/kg	< 0.2	< 0.2
Trichloronate	0.2	mg/kg	< 0.2	< 0.2
Triphenylphosphate (surr.)	1	%	70	79
Polychlorinated Biphenyls				
Aroclor-1016	0.1	mg/kg	< 0.1	< 0.1
Aroclor-1221	0.1	mg/kg	< 0.1	< 0.1
Aroclor-1232	0.1	mg/kg	< 0.1	< 0.1
Aroclor-1242	0.1	mg/kg	< 0.1	< 0.1
Aroclor-1248	0.1	mg/kg	< 0.1	< 0.1
Aroclor-1254	0.1	mg/kg	< 0.1	< 0.1
Aroclor-1260	0.1	mg/kg	< 0.1	< 0.1
Total PCB*	0.1	mg/kg	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	61	83
Tetrachloro-m-xylene (surr.)	1	%	118	110
TRH - 2013 NEPM Fractions (after silica gel clean-up	Í .	1		
TRH >C10-C16 (after silica gel clean-up)	50	mg/kg	< 50	< 50
TRH >C16-C34 (after silica gel clean-up)	100	mg/kg	< 100	< 100
TRH >C34-C40 (after silica gel clean-up)	100	mg/kg	< 100	< 100
TRH - 1999 NEPM Fractions (after silica gel clean-up				
TRH C10-C14 (after silica gel clean-up)	20	mg/kg	< 20	< 20
TRH C15-C28 (after silica gel clean-up)	50	mg/kg	< 50	< 50
TRH C29-C36 (after silica gel clean-up)	50	mg/kg	< 50	< 50
TRH C10-C36 (Total) (after silica gel clean-up)	100	mg/kg	< 50	< 50

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			BH3(1.0-1.2) Soil S21-My10974 May 03, 2021	BH4(1.0-1.2) Soil S21-My10975 May 03, 2021
Test/Reference	LOR	Unit		
Heavy Metals				
Arsenic	2	mg/kg	12	10
Cadmium	0.4	mg/kg	< 0.4	0.6
Chromium	5	mg/kg	21	16
Copper	5	mg/kg	25	61
Lead	5	mg/kg	25	870
Mercury	0.1	mg/kg	< 0.1	1.9
Nickel	5	mg/kg	8.0	8.5
Zinc	5	mg/kg	44	1100
% Moisture	1	%	14	19

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins Suite B7			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	May 10, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	May 10, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	May 10, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Melbourne	May 10, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Melbourne	May 10, 2021	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Metals M8	Melbourne	May 10, 2021	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Eurofins Suite B15			
Organochlorine Pesticides	Melbourne	May 10, 2021	14 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water (USEPA 8270)			
Organophosphorus Pesticides	Melbourne	May 10, 2021	14 Days
- Method: LTM-ORG-2200 Organophosphorus Pesticides by GC-MS (USEPA 8270)			
Polychlorinated Biphenyls	Melbourne	May 10, 2021	28 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water (USEPA 8082)			
TRH - 2013 NEPM Fractions (after silica gel clean-up)	Melbourne	May 10, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
TRH - 1999 NEPM Fractions (after silica gel clean-up)	Melbourne	May 10, 2021	14 Days
- Method: TRH C6-C36 (Silica Gel Cleanup) - MGT 100A			
% Moisture	Melbourne	May 06, 2021	14 Days
- Method: LTM-GEN-7080 Moisture			

- Method: LTM-GEN-7080 Moisture

	eurofi				Eurofins Environme ABN: 50 005 085 521	ent Te	sting A	Austra	lia Pty	Ltd			Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environment NZBN: 9429046024954	Testing NZ Limited
web: www	w.eurofins.com.au	Envi	ironment	Testing	Melbourne 6 Monterey Road Dandenong South VIC 3 Phone : +61 3 8564 500 NATA # 1261 Site # 125	U 175 1 0 L 4 P	hone : +	Road /e West +61 2 99		1. N 066 P 0 N	Brisbane /21 Smallwood Place /urarrie QLD 4172 Phone : +61 7 3902 4600 IATA # 1261 Site # 20794	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 6253 4444 NATA # 2377 Site # 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7679 Phone : 0800 856 450 IANZ # 1290
Com Addr	npany Name: ress:	Greencap N Ground Floo Macquarie P NSW 2113	r, North Buildi	ing, 22 Giffnoc	k Avenue		Re	rder I eport hone: ax:	#:	8	PO286525 824748 02 9889 1800 02 9889 1811		Received: Due: Priority: Contact Name:	May 4, 2021 5:00 F May 11, 2021 5 Day Shihui Wang	M
-	ect Name: ect ID:	SYDNEY OL J169135-01	YMPIC PAR	(HS									Eurofins Analytical	Services Manager : L	Jrsula Long
		Sa	mple Detail			HOLD	Eurofins Suite B15	TRH (after Silica Gel cleanup)	Moisture Set	Eurofins Suite B7					
		rv - NATA # 12	61 Site # 125	4		Х	Х	Х	Х	Х					
Melbou	ourne Laborato	· , · · · · · · · · · · · · · · · · · · ·													
Sydne	y Laboratory -	NATA # 1261									_				
Sydne Brisba	ey Laboratory - ane Laboratory	NATA # 1261 - NATA # 126	1 Site # 20794								-				
Sydne Brisba Mayfie	ey Laboratory - ane Laboratory eld Laboratory	NATA # 1261 - NATA # 126 - NATA # 1261	1 Site # 2079 Site # 25079								-				
Sydney Brisba Mayfie Perth L	ey Laboratory - ane Laboratory eld Laboratory Laboratory - N	NATA # 1261 - NATA # 126 - NATA # 1261	1 Site # 2079 Site # 25079								-				
Sydne Brisba Mayfie Perth I Extern	ey Laboratory - ane Laboratory eld Laboratory Laboratory - N nal Laboratory	NATA # 1261 - NATA # 1267 - NATA # 1267 ATA # 2377 Sid	1 Site # 20794 Site # 25079 te # 2370		LAB ID						-				
Sydne Brisba Mayfie Perth I Extern No	y Laboratory - ane Laboratory eld Laboratory Laboratory - N nal Laboratory Sample ID	NATA # 1261 - NATA # 1267 - NATA # 1261 ATA # 2377 Sit Sample Date	1 Site # 2079 Site # 25079	Matrix							-				
Sydne Brisba Mayfie Perth L Extern No 1 B	ey Laboratory - ane Laboratory eld Laboratory Laboratory - N nal Laboratory Sample ID 3H2(0.5-0.7)	NATA # 1261 - NATA # 1267 - NATA # 1267 ATA # 2377 Sin Sample Date May 03, 2021	1 Site # 2079 Site # 25079 te # 2370 Sampling	Matrix	S21-My10964										
Sydne Brisba Mayfie Perth I Extern No 1 B 2 B	ey Laboratory - ane Laboratory eld Laboratory Laboratory - N nal Laboratory Sample ID 3H2(0.5-0.7) 3H5(0.5-0.7)	NATA # 1261 - NATA # 1267 - NATA # 1267 ATA # 2377 Sin Sample Date May 03, 2021 May 03, 2021	1 Site # 2079 Site # 25079 te # 2370 Sampling	Matrix Soil Soil	S21-My10964 S21-My10965		Х	Х	Х	Х					
Sydne Brisba Mayfie Perth I Extern No 1 B 2 B 3 B	ey Laboratory - ane Laboratory eld Laboratory Laboratory - N nal Laboratory Sample ID 3H2(0.5-0.7) 3H5(0.5-0.7) 3H10(0.7-0.9)	NATA # 1261 - NATA # 1267 - NATA # 1267 ATA # 2377 Sin Sample Date May 03, 2021 May 03, 2021 May 03, 2021	1 Site # 2079 Site # 25079 te # 2370 Sampling	Matrix Soil Soil Soil	S21-My10964 S21-My10965 S21-My10967		X X	X X	X X	X X					
Sydner Brisba Mayfie Perth I Extern No 1 B 2 B 3 B 4 B	ey Laboratory - ane Laboratory eld Laboratory Laboratory - N nal Laboratory Sample ID 3H2(0.5-0.7) 3H5(0.5-0.7) 3H10(0.7-0.9) 3H1(0.7-0.9)	NATA # 1261 - NATA # 1267 - NATA # 1267 ATA # 2377 Sin Sample Date May 03, 2021 May 03, 2021 May 03, 2021 May 03, 2021	1 Site # 2079 Site # 25079 te # 2370 Sampling	Matrix Soil Soil Soil Soil Soil	S21-My10964 S21-My10965 S21-My10967 S21-My10973		X X X	X X X	X X X	X X X					
Sydne Brisba Mayfie Perth I Extern No 1 B 2 B 3 B 4 B 5 B	ey Laboratory - ane Laboratory eld Laboratory Laboratory - N nal Laboratory Sample ID 3H2(0.5-0.7) 3H5(0.5-0.7) 3H10(0.7-0.9) 3H1(0.7-0.9) 3H3(1.0-1.2)	NATA # 1261 - NATA # 1267 - NATA # 1261 ATA # 2377 Sin Sample Date May 03, 2021 May 03, 2021 May 03, 2021 May 03, 2021 May 03, 2021	1 Site # 2079 Site # 25079 te # 2370 Sampling	Matrix Soil Soil Soil Soil Soil Soil	S21-My10964 S21-My10965 S21-My10967 S21-My10973 S21-My10974		X X X X	X X	X X X X	X X X X					
Sydner Brisba Mayfie Perth I Extern No 1 B 2 B 3 B 4 B 5 B 6 B	Ey Laboratory - ane Laboratory ald Laboratory Laboratory - hal Laboratory Sample ID 3H2(0.5-0.7) 3H5(0.5-0.7) 3H10(0.7-0.9) 3H3(1.0-1.2) 3H4(1.0-1.2)	NATA # 1261 - NATA # 1267 - NATA # 1261 ATA # 2377 Site Sample Date May 03, 2021 May 03, 2021 May 03, 2021 May 03, 2021 May 03, 2021 May 03, 2021	1 Site # 2079 Site # 25079 te # 2370 Sampling	Matrix Soil Soil Soil Soil Soil Soil Soil	S21-My10964 S21-My10965 S21-My10967 S21-My10973 S21-My10974 S21-My10975		X X X	X X X X	X X X	X X X					
Sydner Brisba Mayfie Perth I Extern No 1 B 2 B 3 B 4 B 5 B 6 B 7 B	Ey Laboratory - ane Laboratory ald Laboratory ald Laboratory Laboratory Laboratory Laboratory Sample ID 3H2(0.5-0.7) 3H10(0.7-0.9) 3H1(0.7-0.9) 3H3(1.0-1.2) 3H4(1.0-1.2) 3H2(0.2-0.3)	NATA # 1261 - NATA # 1267 - NATA # 1261 ATA # 2377 Sin Sample Date May 03, 2021 May 03, 2021 May 03, 2021 May 03, 2021 May 03, 2021	1 Site # 2079 Site # 25079 te # 2370 Sampling	Matrix Soil Soil Soil Soil Soil Soil	S21-My10964 S21-My10965 S21-My10967 S21-My10973 S21-My10974		X X X X	X X X X	X X X X	X X X X					

			Eurofins Environme ABN: 50 005 085 521	nt Te	sting A	Austra	lia Pty	Ltd			Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environmen NZBN: 9429046024954	t Testing NZ Limited
web: www.eurofins.com.au email: EnviroSales@eurofins.	Envir	onment Testing	Melbourne 6 Monterey Road Dandenong South VIC 37 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254	U 175 1) La 4 P	ane Cov hone : +	Road ve West -61 2 9		1. N 066 P 0 N	Brisbane /21 Smallwood Place /lurarrie QLD 4172 /hone : +61 7 3902 4600 IATA # 1261 Site # 20794	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 6253 4444 NATA # 2377 Site # 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290
Company Name: Address:	Greencap NS\ Ground Floor, Macquarie Par NSW 2113	North Building, 22 Giffno	ck Avenue		Re	rder I eport none: ax:	#:	8	PO286525 824748 02 9889 1800 02 9889 1811		Received: Due: Priority: Contact Name:	May 4, 2021 5:00 I May 11, 2021 5 Day Shihui Wang	PM
Project Name: Project ID:	SYDNEY OLY J169135-01	MPIC PARK HS									Eurofins Analytical	Services Manager :	Ursula Long
	Sam	ple Detail		HOLD	Eurofins Suite B15	TRH (after Silica Gel cleanup)	Moisture Set	Eurofins Suite B7					
Melbourne Laborato	ry - NATA # 126 ⁻	I Site # 1254		Х	Х	Х	Х	Х					
Sydney Laboratory -	NATA # 1261 Si	te # 18217											
Brisbane Laboratory	- NATA # 1261	Site # 20794											
Mayfield Laboratory	- NATA # 1261 S	ite # 25079											
Perth Laboratory - N	ATA # 2377 Site	# 2370							_				
External Laboratory									_				
	May 03, 2021	Soil	S21-My10985	Х					4				
· · · · · · · · · · · · · · · · · · ·	May 03, 2021	Soil	S21-My10986	Х					4				
	May 03, 2021	Soil	S21-My10987	Х					4				
	May 03, 2021	Soil	S21-My10991	Х					4				
	May 03, 2021	Soil	S21-My10992	Х					4				
	May 03, 2021	Soil	S21-My10993	Х					4				
	May 03, 2021	Soil	S21-My11006	Х					4				
17 BH1(1.8-1.9)	May 03, 2021	Soil	S21-My11007	Х					4				
							1	1	1				
18 BH1(2.6-2.8)	May 03, 2021	Soil	S21-My11008	Х					_				
18 BH1(2.6-2.8)		Soil Soil Soil	S21-My11008 S21-My11009 S21-My11010	X X X					-				

🛟 eurofir			Eurofins Environme ABN: 50 005 085 521	nt Tes	sting A	ustral	lia Pty	Ltd			Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environment	Testing NZ Limited
web: www.eurofins.com.au amail: EnviroSales@eurofins.c	Environment 1	Testing	Melbourne 6 Monterey Road Dandenong South VIC 3' Phone : +61 3 8564 5000 NATA # 1261 Site # 1254	Ur 175 16 0 La 4 Ph		Road e West 61 2 99	NSW 20	1/: M 066 Pi 0 N/	risbane 21 Smallwood Place urarrie QLD 4172 hone : +61 7 3902 4600 ATA # 1261 Site # 20794	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 6253 4444 NATA # 2377 Site # 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290
Company Name: Address:	Greencap NSW P/L Ground Floor, North Buildin Macquarie Park NSW 2113	g, 22 Giffnock	Avenue		Re	der N eport none: ix:	#:	8 0	PO286525 324748 92 9889 1800 92 9889 1811		Received: Due: Priority: Contact Name:	May 4, 2021 5:00 F May 11, 2021 5 Day Shihui Wang	M
Project Name: Project ID:	SYDNEY OLYMPIC PARK J169135-01	HS									Furofins Analytical	Services Manager : L	Irsula Long
	Sample Detail			НОГД	Eurofins Suite B15	TRH (after Silica Gel cleanup)	Moisture Set	Eurofins Suite B7					
				·					-				
Melbourne Laborator	y - NATA # 1261 Site # 1254			Х	X	Х	Х	Х					
Sydney Laboratory -	NATA # 1261 Site # 18217			X	X	X	X	Х	-				
Sydney Laboratory - Brisbane Laboratory	NATA # 1261 Site # 18217 - NATA # 1261 Site # 20794			X	×	X	X	X					
Sydney Laboratory - Brisbane Laboratory Mayfield Laboratory	NATA # 1261 Site # 18217 - NATA # 1261 Site # 20794 NATA # 1261 Site # 25079			X	X	X	X	X	-				
Sydney Laboratory - Brisbane Laboratory Mayfield Laboratory Perth Laboratory - N	NATA # 1261 Site # 18217 - NATA # 1261 Site # 20794			×	×	X	×	X					
Sydney Laboratory - Brisbane Laboratory Mayfield Laboratory Perth Laboratory - N External Laboratory	NATA # 1261 Site # 18217 - NATA # 1261 Site # 20794 NATA # 1261 Site # 25079 ATA # 2377 Site # 2370				×	X	X	X					
Sydney Laboratory - Brisbane Laboratory Mayfield Laboratory Perth Laboratory - N/ External Laboratory 21 BH3(2.0-2.2)	NATA # 1261 Site # 18217 - NATA # 1261 Site # 20794 NATA # 1261 Site # 25079 ATA # 2377 Site # 2370 May 03, 2021	Soil	S21-My11011	x	X	X	X	X					
Sydney Laboratory - Brisbane Laboratory Mayfield Laboratory - Perth Laboratory - NA External Laboratory 21 BH3(2.0-2.2) 1 22 BH3(3.4-3.5)	NATA # 1261 Site # 18217 - NATA # 1261 Site # 20794 NATA # 1261 Site # 25079 NATA # 2377 Site # 2370 May 03, 2021 May 03, 2021	Soil	S21-My11012	x	X	X	X	X					
Sydney Laboratory - Brisbane Laboratory Mayfield Laboratory Perth Laboratory - Na External Laboratory 21 BH3(2.0-2.2) 22 BH3(3.4-3.5) 23 BH4(0.2-0.35)	NATA # 1261 Site # 18217 - NATA # 1261 Site # 20794 NATA # 1261 Site # 25079 ATA # 2377 Site # 2370 May 03, 2021 May 03, 2021 May 03, 2021 May 03, 2021	Soil Soil Soil	S21-My11012 S21-My11013	x x x x	×	X	X	X					
Sydney Laboratory - Brisbane Laboratory Mayfield Laboratory - Perth Laboratory - NA External Laboratory - 21 BH3(2.0-2.2) 1 22 BH3(3.4-3.5) 1 23 BH4(0.2-0.35) 1 24 BH4(0.4-0.5) 1	NATA # 1261 Site # 18217 - NATA # 1261 Site # 20794 NATA # 1261 Site # 25079 ATA # 2377 Site # 2370 May 03, 2021	Soil Soil Soil Soil	S21-My11012 S21-My11013 S21-My11014	x x x x x	X	X	×	×					
Sydney Laboratory - Brisbane Laboratory Mayfield Laboratory - Perth Laboratory - N/ External Laboratory - 21 BH3(2.0-2.2) 1 22 BH3(3.4-3.5) 1 23 BH4(0.2-0.35) 1 24 BH4(0.4-0.5) 1 25 BH4(2.0-2.2) 1	NATA # 1261 Site # 18217 - NATA # 1261 Site # 20794 NATA # 1261 Site # 25079 ATA # 2377 Site # 2370 May 03, 2021 May 03, 2021	Soil Soil Soil	S21-My11012 S21-My11013	x x x x	X	×	×	×					

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Limit of Reporting.
Addition of the analyte to the sample and reported as percentage recovery.
Relative Percent Difference between two Duplicate pieces of analysis.
Laboratory Control Sample - reported as percent recovery.
Certified Reference Material - reported as percent recovery.
In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
The addition of a like compound to the analyte target and reported as percentage recovery.
A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
United States Environmental Protection Agency
American Public Health Association
Toxicity Characteristic Leaching Procedure
Chain of Custody
Sample Receipt Advice
US Department of Defense Quality Systems Manual Version 5.3
Client Parent - QC was performed on samples pertaining to this report
Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank						
Total Recoverable Hydrocarbons						
TRH C6-C9	mg/kg	< 20		20	Pass	
TRH C10-C14	mg/kg	< 20		20	Pass	
TRH C15-C28	mg/kg	< 50		50	Pass	
TRH C29-C36	mg/kg	< 50		50	Pass	
Naphthalene	mg/kg	< 0.5		0.5	Pass	
TRH C6-C10	mg/kg	< 20		20	Pass	
TRH >C10-C16	mg/kg	< 50		50	Pass	
TRH >C16-C34	mg/kg	< 100		100	Pass	
TRH >C34-C40	mg/kg	< 100		100	Pass	
Method Blank				•	•	
BTEX						
Benzene	mg/kg	< 0.1		0.1	Pass	
Toluene	mg/kg	< 0.1		0.1	Pass	
Ethylbenzene	mg/kg	< 0.1		0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2		0.2	Pass	
o-Xylene	mg/kg	< 0.1		0.1	Pass	
Xylenes - Total*	mg/kg	< 0.3		0.3	Pass	
Method Blank				0.0	1.000	
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	mg/kg	< 0.5		0.5	Pass	
Acenaphthylene	mg/kg	< 0.5		0.5	Pass	
Anthracene	mg/kg	< 0.5		0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5		0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5		0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5		0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Chrysene	mg/kg	< 0.5		0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5		0.5	Pass	
Fluoranthene	mg/kg	< 0.5		0.5	Pass	
Fluorene	mg/kg	< 0.5		0.5	Pass	
Indeno(1.2.3-cd)pyrene		< 0.5		0.5	Pass	
	mg/kg mg/kg	< 0.5		0.5	Pass	
Naphthalene Phenanthrene				0.5	Pass	
Pyrene	mg/kg	< 0.5 < 0.5		0.5	Pass	
	mg/kg	< 0.5		0.5	F d 55	
Method Blank		1				
Organochlorine Pesticides	maller	.01		0.1	Deee	
Chlordanes - Total	mg/kg	< 0.1		0.1	Pass	
4.4'-DDD	mg/kg	< 0.05		0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	<u> </u>	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	<u> </u>	0.05	Pass	
a-HCH	mg/kg	< 0.05	<u> </u>	0.05	Pass	
Aldrin	mg/kg	< 0.05	<u> </u>	0.05	Pass	
b-HCH	mg/kg	< 0.05	<u> </u>	0.05	Pass	
d-HCH	mg/kg	< 0.05	├ ───	0.05	Pass	
Dieldrin	mg/kg	< 0.05		0.05	Pass	
Endosulfan I	mg/kg	< 0.05		0.05	Pass	
Endosulfan II	mg/kg	< 0.05		0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05		0.05	Pass	
Endrin	mg/kg	< 0.05		0.05	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-HCH (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.05	0.05	Pass	
Toxaphene	mg/kg	< 0.5	0.5	Pass	
Method Blank				-	
Organophosphorus Pesticides					
Azinphos-methyl	mg/kg	< 0.2	0.2	Pass	
Bolstar	mg/kg	< 0.2	0.2	Pass	
Chlorfenvinphos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos-methyl	mg/kg	< 0.2	0.2	Pass	
Coumaphos	mg/kg	< 2	2	Pass	
Demeton-S	mg/kg	< 0.2	0.2	Pass	
Demeton-O	mg/kg	< 0.2	0.2	Pass	
Diazinon	mg/kg	< 0.2	0.2	Pass	
Dichlorvos	mg/kg	< 0.2	0.2	Pass	
Dimethoate	mg/kg	< 0.2	0.2	Pass	
Disulfoton	mg/kg	< 0.2	0.2	Pass	
EPN	mg/kg	< 0.2	0.2	Pass	
Ethion	mg/kg	< 0.2	0.2	Pass	
Ethoprop	mg/kg	< 0.2	0.2	Pass	
Ethyl parathion	mg/kg	< 0.2	0.2	Pass	
Fenitrothion	mg/kg	< 0.2	0.2	Pass	
Fensulfothion	mg/kg	< 0.2	0.2	Pass	
Fenthion	mg/kg	< 0.2	0.2	Pass	
Malathion	mg/kg	< 0.2	0.2	Pass	
Merphos	mg/kg	< 0.2	0.2	Pass	
Methyl parathion	mg/kg	< 0.2	0.2	Pass	
Mevinphos	mg/kg	< 0.2	0.2	Pass	
Monocrotophos	mg/kg	< 2	2	Pass	
Naled	mg/kg	< 0.2	0.2	Pass	
Omethoate	mg/kg	< 2	2	Pass	
Phorate	mg/kg	< 0.2	0.2	Pass	
Pirimiphos-methyl	mg/kg	< 0.2	0.2	Pass	
Pyrazophos	mg/kg	< 0.2	0.2	Pass	
Ronnel	mg/kg	< 0.2	0.2	Pass	
Terbufos	mg/kg	< 0.2	0.2	Pass	
Tetrachlorvinphos	mg/kg	< 0.2	0.2	Pass	
Tokuthion	mg/kg	< 0.2	0.2	Pass	
Trichloronate	mg/kg	< 0.2	0.2	Pass	
Method Blank			0.2	1 400	
Polychlorinated Biphenyls					
Aroclor-1016	mg/kg	< 0.1	0.1	Pass	
Aroclor-1221	mg/kg	< 0.1	0.1	Pass	
Aroclor-1232	mg/kg	< 0.1	0.1	Pass	
Aroclor-1242	mg/kg	< 0.1	0.1	Pass	
Aroclor-1248	mg/kg	< 0.1	0.1	Pass	
Aroclor-1246 Aroclor-1254	mg/kg	< 0.1	0.1	Pass	
Aroclor-1260	mg/kg	< 0.1	0.1	Pass	
Total PCB*	mg/kg	< 0.1	0.1	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank		· ·			
RH - 2013 NEPM Fractions (after silica gel clean-up)					
TRH >C10-C16 (after silica gel clean-up)	mg/kg	< 50	50	Pass	
TRH >C16-C34 (after silica gel clean-up)	mg/kg	< 100	100	Pass	
TRH >C34-C40 (after silica gel clean-up)	mg/kg	< 100	100	Pass	
Method Blank			· · ·	•	
RH - 1999 NEPM Fractions (after silica gel clean-up)					
TRH C10-C14 (after silica gel clean-up)	mg/kg	< 20	20	Pass	
TRH C15-C28 (after silica gel clean-up)	mg/kg	< 50	50	Pass	
TRH C29-C36 (after silica gel clean-up)	mg/kg	< 50	50	Pass	
Method Blank					
leavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
-CS - % Recovery			· · ·	•	
Fotal Recoverable Hydrocarbons					
TRH C6-C9	%	84	70-130	Pass	
TRH C10-C14	%	123	70-130	Pass	
Naphthalene	%	114	70-130	Pass	
TRH C6-C10	%	78	70-130	Pass	
TRH >C10-C16	%	124	70-130	Pass	
-CS - % Recovery					
BTEX					
Benzene	%	88	70-130	Pass	
Toluene	%	81	70-130	Pass	
Ethylbenzene	%	75	70-130	Pass	
m&p-Xylenes	%	78	70-130	Pass	
Xylenes - Total*	%	78	70-130	Pass	
-CS - % Recovery					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	108	70-130	Pass	
Acenaphthylene	%	124	70-130	Pass	
Anthracene	%	88	70-130	Pass	
Benz(a)anthracene	%	106	70-130	Pass	
Benzo(a)pyrene	%	100	70-130	Pass	
Benzo(b&j)fluoranthene	%	127	70-130	Pass	
Benzo(g.h.i)perylene	%	89	70-130	Pass	
Benzo(k)fluoranthene	%	122	70-130	Pass	
Chrysene	%	110	70-130	Pass	
Dibenz(a.h)anthracene	%	105	70-130	Pass	
Fluoranthene	%	95	70-130	Pass	
Fluorene	%	113	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	101	70-130	Pass	
Naphthalene	%	108	70-130	Pass	
Phenanthrene	%	101	70-130	Pass	
		91		Pass	
Pyrene	%	91	70-130	1 0 3 3	

Test	Test			Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Chlordanes - Total		%	101		70-130	Pass		
4.4'-DDD	-DDD					70-130	Pass	
4.4'-DDE			%	100		70-130	Pass	
4.4'-DDT			%	94		70-130	Pass	
a-HCH			%	97		70-130	Pass	
Aldrin			%	109		70-130	Pass	
b-HCH			%	107		70-130	Pass	
d-HCH			%	102		70-130	Pass	
Dieldrin			%	88		70-130	Pass	
Endosulfan I			%	82		70-130	Pass	
Endosulfan II			%	102		70-130	Pass	
Endosulfan sulphate			%	79		70-130	Pass	
Endrin			%	96		70-130	Pass	
Endrin aldehyde			%	88		70-130	Pass	
Endrin ketone			%	103		70-130	Pass	
g-HCH (Lindane)			%	101		70-130	Pass	
Heptachlor			%	94		70-130	Pass	
Heptachlor epoxide			%	94		70-130	Pass	
Hexachlorobenzene			%	105		70-130	Pass	
Methoxychlor			%	79		70-130	Pass	
			70	19		70-130	F d 55	
LCS - % Recovery Organophosphorus Pesticides							[
Diazinon			%	89		70-130	Deee	
			%	119		70-130	Pass Pass	
Dimethoate								
Ethion			%	84		70-130	Pass	
Fenitrothion			%	97		70-130	Pass	
Methyl parathion			%	99		70-130	Pass	
Mevinphos			%	92		70-130	Pass	
LCS - % Recovery							1	
Polychlorinated Biphenyls							_	
Aroclor-1260			%	89		70-130	Pass	
LCS - % Recovery								
TRH - 2013 NEPM Fractions (after s)					_	
TRH >C10-C16 (after silica gel clear	n-up)		%	126		70-130	Pass	
LCS - % Recovery				-	I I		_	
TRH - 1999 NEPM Fractions (after s								
TRH C10-C14 (after silica gel clean-	up)	_	%	124		70-130	Pass	
LCS - % Recovery								
Heavy Metals								
Arsenic			%	107		80-120	Pass	
Cadmium			%	103		80-120	Pass	
Chromium			%	111		80-120	Pass	
Copper			%	107		80-120	Pass	
Lead	%	113	ļ	80-120	Pass			
Mercury				116		80-120	Pass	
Nickel			%	106		80-120	Pass	
Zinc	1		%	106		80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery				i				
Total Recoverable Hydrocarbons				Result 1				
TRH C6-C9	S21-My10964	CP	%	77		70-130	Pass	
Naphthalene	S21-My10964	CP	%	84		70-130	Pass	
TRH C6-C10	S21-My10964	CP	%	97		70-130	Pass	
Spike - % Recovery			•	•			-	

Test	Lab Sample ID	QA Source	Units	Result 1	A	cceptance Limits	Pass Limits	Qualifying Code
BTEX				Result 1				
Benzene	S21-My10964	CP	%	79		70-130	Pass	
Toluene	S21-My10964	CP	%	72		70-130	Pass	
Ethylbenzene	S21-My10964	CP	%	87		70-130	Pass	
m&p-Xylenes	S21-My10964	CP	%	92		70-130	Pass	
o-Xylene	S21-My10964	CP	%	88		70-130	Pass	
Xylenes - Total*	S21-My10964	CP	%	90		70-130	Pass	
Spike - % Recovery								
Organophosphorus Pesticides				Result 1				
Diazinon	M21-My02639	NCP	%	94		70-130	Pass	
Dimethoate	M21-My02639	NCP	%	106		70-130	Pass	
Ethion	M21-My02639	NCP	%	85		70-130	Pass	
Fenitrothion	M21-My02639	NCP	%	95		70-130	Pass	
Methyl parathion	M21-My02639	NCP	%	84		70-130	Pass	
Mevinphos	M21-My02639	NCP	%	116		70-130	Pass	
Spike - % Recovery				•				
Polychlorinated Biphenyls				Result 1				
Aroclor-1016	M21-My00438	NCP	%	80		70-130	Pass	
Aroclor-1260	M21-My00438	NCP	%	82		70-130	Pass	
Spike - % Recovery	1 7				4 I I			
Heavy Metals				Result 1				
Zinc	M21-My13461	NCP	%	104		75-125	Pass	
Spike - % Recovery		1101	70	101		10 120	1 400	
Organochlorine Pesticides				Result 1				
Chlordanes - Total	S21-My10973	СР	%	95		70-130	Pass	
4.4'-DDD	S21-My10973	CP	%	85		70-130	Pass	
4.4'-DDE	S21-My10973	CP	%	99		70-130	Pass	
4.4'-DDT	S21-My10973	CP	%	89		70-130	Pass	
a-HCH	S21-My10973	CP	%	99		70-130	Pass	
Aldrin	S21-My10973	CP	%	101		70-130	Pass	
b-HCH	S21-My10973	CP	%	97		70-130	Pass	
d-HCH	S21-My10973	CP	%	88		70-130	Pass	
Dieldrin	S21-My10973	CP	%	82		70-130	Pass	
Endosulfan I	S21-My10973	CP	%	102		70-130	Pass	
Endosulfan II	S21-My10973	CP	%	102		70-130	Pass	
Endosulfan sulphate	S21-My10973	CP	%	75		70-130	Pass	
Endrin	S21-My10973	CP	%	91		70-130	Pass	
Endrin aldehyde	S21-My10973	CP	%	78		70-130	Pass	
Endrin ketone	S21-My10973	CP	%	106		70-130	Pass	
g-HCH (Lindane)	S21-My10973	CP	%	114		70-130	Pass	
Heptachlor	S21-My10973	CP	%	89		70-130	Pass	
Heptachlor epoxide	S21-My10973	CP	%	90		70-130	Pass	
Hexachlorobenzene	S21-My10973	CP	%	107		70-130	Pass	
Methoxychlor	S21-My10973	CP	%	77		70-130	Pass	
Spike - % Recovery	021-Wy109/3		/0			10-100	1 033	
Heavy Metals				Result 1				
Arsenic	S21-My10973	CP	%	101		75-125	Pass	
Cadmium	S21-My10973	CP	%	99		75-125	Pass	
Chromium		CP	%	101			Pass	
	S21-My10973	CP				75-125		
Copper	S21-My10973	CP	%	97		75-125	Pass	
Lead	S21-My10973		%	98		75-125	Pass	
Mercury	S21-My10973	CP	%	105		75-125	Pass	
Nickel	S21-My10973	CP	%	90		75-125	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Total Recoverable Hydrocarbons	Result 1								
TRH C6-C9	S21-My10974	CP	%	75			70-130	Pass	
Naphthalene	S21-My10974	CP	%	84			70-130	Pass	
TRH C6-C10	S21-My10974	CP	%	77			70-130	Pass	
Spike - % Recovery				-					
ВТЕХ				Result 1					
Benzene	S21-My10974	CP	%	75			70-130	Pass	
Toluene	S21-My10974	CP	%	72			70-130	Pass	
Ethylbenzene	S21-My10974	CP	%	73			70-130	Pass	
m&p-Xylenes	S21-My10974	CP	%	79			70-130	Pass	
o-Xylene	S21-My10974	CP	%	77			70-130	Pass	
Xylenes - Total*	S21-My10974	CP	%	79			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbons	·			Result 1	Result 2	RPD			
TRH C10-C14	M21-My13393	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	M21-My13393	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	M21-My13393	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate									
Polycyclic Aromatic Hydrocarbons	5			Result 1	Result 2	RPD			
Acenaphthene	M21-My10979	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	M21-My10979	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	M21-My10979	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	M21-My10979	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	M21-My10979	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	M21-My10979	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	M21-My10979	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	M21-My10979	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	M21-My10979	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate				i			1	i	
TRH - 2013 NEPM Fractions (after	silica gel clean-up)		Result 1	Result 2	RPD			
TRH >C10-C16 (after silica gel clean-up)	M21-My13236	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34 (after silica gel clean-up)	M21-My13236	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40 (after silica gel clean-up)	M21-My13236	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate				1				1	
TRH - 1999 NEPM Fractions (after	silica gel clean-up)		Result 1	Result 2	RPD			
TRH C10-C14 (after silica gel clean-up)	M21-My13236	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28 (after silica gel clean-up)	M21-My13236	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36 (after silica gel clean-up)	M21-My13236	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C10-C36 (Total) (after silica gel clean-up)	M21-My13236	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate				1			T		
	I	1		Result 1	Result 2	RPD			
% Moisture	M21-My09517	NCP	%	13	14	4.0	30%	Pass	
Duplicate				1					
Organochlorine Pesticides				Result 1	Result 2	RPD			
Toxaphene	M21-My11626	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Duplicate				_					
Polychlorinated Biphenyls	Result 1	Result 2	RPD						
Aroclor-1016	M21-My04347	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1221	M21-My04347	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	M21-My04347	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1242	M21-My04347	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1248	M21-My04347	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1254	M21-My04347	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1260	M21-My04347	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Total PCB*	M21-My04347	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
TRH C6-C9	S21-My10973	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Naphthalene	S21-My10973	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S21-My10973	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate									
втех				Result 1	Result 2	RPD			
Benzene	S21-My10973	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S21-My10973	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S21-My10973	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S21-My10973	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S21-My10973	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total*	S21-My10973	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to N07 the total of the two co-eluting PAHs

Authorised by:

Ursula Long Vivian Wang Joseph Edouard Emily Rosenberg Analytical Services Manager Senior Analyst-Volatile (VIC) Senior Analyst-Organic (VIC) Senior Analyst-Metal (VIC)

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Certificate of Analysis

Environment Testing

Greencap NSW P/L Ground Floor, North Building, 22 Giffnock Avenue Macquarie Park NSW 2113

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention:	Shihui Wang
Report	796688-L-V2
Project name	SYDNEY OLYMPIC PARK HS
Project ID	J169135-01
Received Date	May 20, 2021

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled Test/Reference Polycyclic Aromatic Hydrocarbons	LOR	Unit	BH4(1.0-1.2) US Leachate M21-My39311 May 03, 2021	BH5(0.5-0.7) US Leachate M21-My39312 May 03, 2021
Benzo(a)pyrene	0.001	mg/L	< 0.001	< 0.001
USA Leaching Procedure				
Leachate Fluid ^{C01}		comment	1.0	1.0
pH (initial)	0.1	pH Units	6.2	6.1
pH (Leachate fluid)	0.1	pH Units	4.9	4.9
pH (off)	0.1	pH Units	5.1	5.3
pH (USA HCI addition)	0.1	pH Units	1.7	1.7

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Polycyclic Aromatic Hydrocarbons	Melbourne	May 21, 2021	7 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			

🔅 euro	eurofins Environment Testing A ABN: 50 005 085 521 Methourne Sydney						ustralia Pty Lto	ł		Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environment Testing NZ Limited NZBN: 9429046024954		
web: www.eurofins.com email: EnviroSales@eu	.au	vironment	Testing	Melbourne Sydney Brisbane Newcastle 6 Monterey Road Unit F3, Building F 1/21 Smallwood Place 4/52 Industrial Dandenong South VIC 3175 16 Mars Road Murarrie QLD 4172 Mayfield East Phone : +61 3 8564 5000 Lane Cove West NSW 2066 Phone : +61 7 3902 4600 PO Box 60 Wi NATA # 1261 Site # 1254 Phone : +61 2 9900 8400 NATA # 1261 Site # 20794 Phone : +61 2			Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 6253 4444 NATA # 2377 Site # 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 767 Phone : 0800 856 450 IANZ # 1290			
Company Nan Address:		oor, North Build Park	ing, 22 Giffnock	Avenue		R	der No.: port #: one: x:	796688 02 9889 1800 02 9889 1811		Received: Due: Priority: Contact Name:	May 20, 2021 12:0 May 25, 2021 3 Day Shihui Wang	6 PM	
Project Name: Project ID:	SYDNEY J169135-0	OLYMPIC PARI	K HS							Eurofins Analytical	Services Manager : I	Jrsula Long	
		Sample Detail			Benzo(a)pyrene	USA Leaching Procedure							
Melbourne Labo	ratory - NATA #	1261 Site # 125	54		Х	X							
Sydney Laborat													
Brisbane Labora													
Mayfield Labora	•)		<u> </u>	_							
Perth Laborator		Site # 2370											
External Labora No Sample		e Sampling Time	Matrix	LAB ID									
1 BH4(1.0-1.2	2) May 03, 202		US Leachate	M21-My39311	Х	X							
2 BH5(0.5-0.			US Leachate	M21-My39312	Х	X							
Test Counts	•				2	2							

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Limit of Reporting.
Addition of the analyte to the sample and reported as percentage recovery.
Relative Percent Difference between two Duplicate pieces of analysis.
Laboratory Control Sample - reported as percent recovery.
Certified Reference Material - reported as percent recovery.
In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
The addition of a like compound to the analyte target and reported as percentage recovery.
A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
United States Environmental Protection Agency
American Public Health Association
Toxicity Characteristic Leaching Procedure
Chain of Custody
Sample Receipt Advice
US Department of Defense Quality Systems Manual Version 5.3
Client Parent - QC was performed on samples pertaining to this report
Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Polycyclic Aromatic Hydrocarbons		Result 1	Result 2	RPD					
Benzo(a)pyrene	M21-My28237	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	

Comments

This report has been revised (V2) to migrate sample My39313 to report 824613.

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Description

Code C01

Leachate Fluid Key: 1 - pH 5.0; 2 - pH 2.9; 3 - pH 9.2; 4 - Reagent (DI) water; 5 - Client sample, 6 - other

Authorised by:

Ursula Long Joseph Edouard Analytical Services Manager Senior Analyst-Organic (VIC)

Glenn Jackson General Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Certificate of Analysis

Environment Testing

Greencap NSW P/L Ground Floor, North Building, 22 Giffnock Avenue Macquarie Park NSW 2113

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection and proficiency testing scheme providers reports.

Atte	ntia	n.	
Аше	nuo		

Shihui Wang

Report Project name Project ID Received Date **795689-L** ADDITIONAL SYDNEY OLYMPIC PARK HS J169135-01 May 17, 2021

Client Sample ID			GG6-03(1.0- 1.1)	GG8-03(0.9- 1.0)
Sample Matrix			US Leachate	US Leachate
Eurofins Sample No.			S21-My31565	S21-My31566
Date Sampled			Apr 29, 2021	Apr 29, 2021
Test/Reference	LOR	Unit		
Polycyclic Aromatic Hydrocarbons				
Benzo(a)pyrene	0.001	mg/L	< 0.001	< 0.001
USA Leaching Procedure				
Leachate Fluid ^{C01}		comment	1.0	1.0
pH (initial)	0.1	pH Units	9.4	9.3
pH (off)	0.1	pH Units	6.2	6.2
pH (USA HCI addition)	0.1	pH Units	1.7	1.7

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Polycyclic Aromatic Hydrocarbons	Sydney	May 17, 2021	7 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
USA Leaching Procedure	Sydney	May 17, 2021	14 Days
- Method: LTM-GEN-7010 Leaching Procedure for Soils & Solid Wastes			

	eurofi	ns		1	Australia							New Zealand	
••	curon		ironment	Testing	Melbourne 5 Monterey Road Dandenong South VIC 3 Phone : +61 3 8564 5000 NATA # 1261	U 175 1) L	6 Mars ane Co		Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 9251 9600 NATA # 1261	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7 Phone : 0800 856 450 IANZ # 1290
BN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com					Site # 1254 & 14271			1261 Site # 18217		Site # 23736	NATA # 1261 Site # 25079		
Company Name: Greencap NSW P/L Address: Ground Floor, North Building, 22 Giffnock Avenue Macquarie Park NSW 2113				Avenue		R P	order No.: eport #: hone: ax:	795689 02 9889 1800 02 9889 1811		Received: Due: Priority: Contact Name:	May 17, 2021 1:38 May 20, 2021 3 Day Shihui Wang	PM	
	oject Name: oject ID:	ADDITIONA J169135-01	L SYDNEY OI	LYMPIC PARK	HS						Eurofins Analytical	Services Manager : l	Jrsula Long
Sample Detail					Benzo(a)pyrene	USA Leaching Procedure							
Nelk	ourne Laborate	ory - NATA Site	# 1254 & 142	271									
-	ney Laboratory					Х	X	4					
	bane Laborator	-					-	4					
	h Laboratory - I field Laboratory							-					
	ernal Laboratory					L	1	1					
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID			1					
I	GG6-03(1.0-	Apr 29, 2021		US Leachate	S21-My31565	х	x						
2	GG8-03(0.9- 1.0)	Apr 29, 2021		US Leachate	S21-My31566	х	x						
T 4	Counts	•	•	•		2	2						

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
QSM	US Department of Defense Quality Systems Manual Version 5.3
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test		Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code	
Method Blank									
Polycyclic Aromatic Hydrocarbons	6								
Benzo(a)pyrene			mg/L	< 0.001			0.001	Pass	
LCS - % Recovery									
Polycyclic Aromatic Hydrocarbons	5								
Benzo(a)pyrene			%	110			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
Polycyclic Aromatic Hydrocarbons	5			Result 1					
Benzo(a)pyrene	S21-My27384	NCP	%	102			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Polycyclic Aromatic Hydrocarbons	6			Result 1	Result 2	RPD			
Benzo(a)pyrene	S21-My31566	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code

Description Leachate Fluid Key: 1 - pH 5.0; 2 - pH 2.9; 3 - pH 9.2; 4 - Reagent (DI) water; 5 - Client sample, 6 - other C01

Authorised by:

Asim Khan Andrew Sullivan

Analytical Services Manager Senior Analyst-Organic (NSW)

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service
- Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Certificate of Analysis

Environment Testing

Greencap NSW P/L Ground Floor, North Building, 22 Giffnock Avenue Macquarie Park NSW 2113

Sep 15, 2021

NATA

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention:	Shihui Wang
Report	824736-S
Project name	DSL-SOBHS
Project ID	J169135-01

Received Date

Client Sample ID			BH9-01 (0.9- 1.0)	BH7-01 (0.5- 0.6)	BH6-01 (0.4- 0.5)
Sample Matrix			Soil	Soil	Soil
Eurofins Sample No.			S21-My28861	S21-My28862	S21-My28863
Date Sampled			May 14, 2021	May 14, 2021	May 14, 2021
Test/Reference	LOR	Unit			
Total Recoverable Hydrocarbons					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100
BTEX					
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	85	70	71
Polycyclic Aromatic Hydrocarbons					
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5

Client Sample ID			BH9-01 (0.9- 1.0)	BH7-01 (0.5- 0.6)	BH6-01 (0.4- 0.5)
Sample Matrix			Soil	Soil	Soil
Eurofins Sample No.			S21-My28861	S21-My28862	S21-My28863
Date Sampled			May 14, 2021	May 14, 2021	May 14, 2021
Test/Reference	LOR	Unit			
Polycyclic Aromatic Hydrocarbons	Lon	Onit			
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	118	110	116
p-Terphenyl-d14 (surr.)	1	%	INT	INT	INT
Organochlorine Pesticides		,,,			
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05
a-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05
b-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05
d-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Toxaphene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	71	75	70
Tetrachloro-m-xylene (surr.)	1	%	111	105	117
Organophosphorus Pesticides					
Azinphos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Bolstar	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Chlorfenvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Coumaphos	2	mg/kg	< 2	< 2	< 2
Demeton-S	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Demeton-O	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Diazinon	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Dichlorvos	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Dimethoate	0.2	mg/kg	< 0.2	< 0.2	< 0.2

Sample Matrix Eurofins Sample No. Date Sampled Fest/Reference Drganophosphorus Pesticides Disulfoton EPN Ethion Ethoprop Ethyl parathion Fenitrothion Fensulfothion Fensulfothion Fensulfothion Fensulfothion Malathion Merphos Methyl parathion Merphos Monocrotophos Naled Domethoate Phorat	LOR 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	Unit mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Soil S21-My28861 May 14, 2021 <pre></pre>	Soil S21-My28862 May 14, 2021 <pre></pre>	Soil S21-My28863 May 14, 2021 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2
Date Sampled Fest/Reference Drganophosphorus Pesticides Disulfoton EPN Ethion Ethoprop Ethyl parathion Fensulfothion Fensulfothion Fensulfothion Fensulfothion Fensulfothion Fensulfothion Fensulfothion Sensulfothion Mathion Merphos Methyl parathion Merphos Monocrotophos Naled Domethoate Phorate Pirimiphos-methyl Pyrazophos Ronnel Ferbufos Fetrachlorvinphos Fokuthion Trichloronate Friphenylphosphate (surr.) Polychlorinated Biphenyls Aroclor-1016 Aroclor-1221 Aroclor-1232	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	May 14, 2021 < 0.2 	May 14, 2021 < 0.2 <li< th=""><th>May 14, 2021 < 0.2 < 2 < 0.2 < 2 </th></li<>	May 14, 2021 < 0.2 < 2 < 0.2 < 2
Fest/Reference Organophosphorus Pesticides Disulfoton EPN Ethion Ethoprop Ethyl parathion Fensulfothion Fensulfothion Fensulfothion Penthion Malathion Merphos Methyl parathion Mevinphos Monocrotophos Naled Dmethoate Phorate Pirimiphos-methyl Pyrazophos Ronnel Ferbufos Fetrachlorvinphos Fokuthion Trichloronate Friphenylphosphate (surr.) Polychlorinated Biphenyls Aroclor-1016 Aroclor-1221 Aroclor-1232	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<pre>< 0.2 < 0.2 <</pre>	<pre>< 0.2 < 2 < 0.2 < 3 < 0.2 < 1 < 0</pre>
Drganophosphorus Pesticides Disulfoton EPN Ethion Ethoprop Ethyl parathion Fenitrothion Fensulfothion Fensulfothion Malathion Malathion Merphos Methyl parathion Merphos Monocrotophos Naled Dmethoate Phorate Pirimiphos-methyl Pyrazophos Ronnel Ferbufos Fetrachlorvinphos Fokuthion Friphenylphosphate (surr.) Polychlorinated Biphenyls Aroclor-1016 Aroclor-1221 Aroclor-1232	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2
Disulfoton EPN Ethion Ethoprop Ethyl parathion Fenitrothion Fensulfothion Fensulfothion Malathion Malathion Merphos Methyl parathion Mevinphos Monocrotophos Naled Dmethoate Phorate Phorate Phorate Phorate Phorate Pirimiphos-methyl Pyrazophos Ronnel Ferbufos Fetrachlorvinphos Fokuthion Frichloronate Friphenylphosphate (surr.) Polychlorinated Biphenyls Aroclor-1016 Aroclor-1221 Aroclor-1232	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2
Disulfoton EPN Ethion Ethoprop Ethyl parathion Fenitrothion Fensulfothion Fensulfothion Malathion Malathion Merphos Methyl parathion Mevinphos Monocrotophos Naled Dmethoate Phorate Phorate Phorate Phorate Phorate Pirimiphos-methyl Pyrazophos Ronnel Ferbufos Fetrachlorvinphos Fokuthion Frichloronate Friphenylphosphate (surr.) Polychlorinated Biphenyls Aroclor-1016 Aroclor-1221 Aroclor-1232	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2
EPN Ethion Ethoprop Ethoprop Ethyl parathion Fenitrothion Fensulfothion Fensulfothion Malathion Merphos Methyl parathion Merphos Methyl parathion Mevinphos Monocrotophos Naled Dmethoate Phorate Primiphos-methyl Pyrazophos Ronnel Ferbufos Fetrachlorvinphos Fokuthion Frichloronate Friphenylphosphate (surr.) Polychlorinated Biphenyls Aroclor-1016 Aroclor-1221 Aroclor-1232	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2
Ethion Ethoprop Ethyl parathion Fenitrothion Fensulfothion Fensulfothion Fenthion Malathion Merphos Methyl parathion Meryinphos Monocrotophos Naled Dmethoate Phorate Pirimiphos-methyl Pyrazophos Ronnel Ferbufos Fetrachlorvinphos Fokuthion Trichloronate Friphenylphosphate (surr.) Polychlorinated Biphenyls Aroclor-1016 Aroclor-1221 Aroclor-1232	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	 < 0.2 < 2 < 0.2 < 2 < 2 < 2
Ethoprop Ethyl parathion Fenitrothion Fensulfothion Fensulfothion Malathion Malathion Malathion Merphos Methyl parathion Mevinphos Monocrotophos Monocrotophos Naled Domethoate Phorate Phorate Phorate Pirimiphos-methyl Pyrazophos Ronnel Ferbufos Fetrachlorvinphos Fokuthion Frichloronate Friphenylphosphate (surr.) Polychlorinated Biphenyls Aroclor-1016 Aroclor-1221 Aroclor-1232	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<pre>< 0.2 < 2 < 0.2 < 3 < 0.2 < 1 < 0.2 <</pre>
Ethyl parathion Fenitrothion Fenitrothion Fensulfothion Fenthion Malathion Malathion Merphos Methyl parathion Methyl parathion Mevinphos Monocrotophos Naled Dmethoate Phorate Pirimiphos-methyl Pyrazophos Ronnel Ferbufos Fetrachlorvinphos Fokuthion Frichloronate Friphenylphosphate (surr.) Polychlorinated Biphenyls Aroclor-1016 Aroclor-1221 Aroclor-1232	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.2 < 2 < 0.2 < 2 < 0.2 < 0	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<pre>< 0.2 < 2 < 0.2 <</pre>
Fenitrothion Fenitrothion Fensulfothion Fensulfothion Malathion Malathion Merphos Methyl parathion Mevinphos Monocrotophos Valed Omethoate Phorate Primiphos-methyl Pyrazophos Ronnel Ferbufos Fetrachlorvinphos Fokuthion Frichloronate Friphenylphosphate (surr.) Polychlorinated Biphenyls Aroclor-1016 Aroclor-1232	0.2 0.2 0.2 0.2 0.2 0.2 0.2 2 0.2 2 0.2 0.	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	 < 0.2 < 2 < 0.2 < 2 < 0.2 < 2 < 0.2 < 2 < 0.2 	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2
Fensulfothion Fenthion Malathion Malathion Merphos Methyl parathion Mevinphos Monocrotophos Monocrotophos Valed Dmethoate Phorate Primiphos-methyl Pyrazophos Ronnel Ferbufos Fetrachlorvinphos Fokuthion Frichloronate Friphenylphosphate (surr.) Polychlorinated Biphenyls Aroclor-1016 Aroclor-1232	0.2 0.2 0.2 0.2 0.2 0.2 2 0.2 2 0.2 0.2	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2
Fenthion Malathion Merphos Methyl parathion Mevinphos Monocrotophos Monocrotophos Naled Domethoate Phorate Phorate Phorate Phorate Primiphos-methyl Pyrazophos Ronnel Pyrazophos Ronnel Ferbufos Fetrachlorvinphos Fotuthion Frichloronate Friphenylphosphate (surr.) Polychlorinated Biphenyls Aroclor-1016 Aroclor-1221 Aroclor-1232	0.2 0.2 0.2 0.2 2 0.2 2 0.2 2 0.2 0.2 0.	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 2 < 0.2 < 2 < 0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <2 <0.2 <2 <2
Malathion Merphos Methyl parathion Mevinphos Monocrotophos Monocrotophos Naled Domethoate Phorate Phorate Phorate Phorate Primiphos-methyl Pyrazophos Ronnel Perbufos Ronnel Ferbufos Fetrachlorvinphos Fokuthion Frichloronate Friphenylphosphate (surr.) Polychlorinated Biphenyls Aroclor-1016 Aroclor-1221 Aroclor-1232	0.2 0.2 0.2 2 0.2 2 0.2 2 0.2 0.2 0.2 0.	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<0.2 <0.2 <0.2 <0.2 <2 <0.2 <2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <2 <0.2 <2 <0.2 <2 <0.2	<0.2 <0.2 <0.2 <0.2 <2 <0.2 <0.2 <2 <0.2 <2
Merphos Methyl parathion Mevinphos Monocrotophos Monocrotophos Valed Domethoate Phorate Phorate Phorate Phorate Primiphos-methyl Pyrazophos Ronnel Pyrazophos Ronnel Ferbufos Fetrachlorvinphos Fokuthion Frichloronate Friphenylphosphate (surr.) Polychlorinated Biphenyls Aroclor-1016 Aroclor-1221 Aroclor-1232	0.2 0.2 2 0.2 2 0.2 0.2 0.2 0.2 0.2 0.2	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.2 < 0.2 < 0.2 < 2 < 0.2 < 2 < 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 2 < 0.2 < 2 < 2 < 2 < 0.2 < 2 < 0.2	<0.2 <0.2 <0.2 <2 <0.2 <0.2 <2 <2
Methyl parathion Mevinphos Monocrotophos Naled Domethoate Phorate Phorate Phorate Primiphos-methyl Pyrazophos Ronnel Ferbufos Fetrachlorvinphos Fokuthion Frichloronate Friphenylphosphate (surr.) Polychlorinated Biphenyls Aroclor-1016 Aroclor-1221 Aroclor-1232	0.2 0.2 2 0.2 2 0.2 0.2 0.2 0.2 0.2 0.2	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.2 < 0.2 < 2 < 0.2 < 2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 2 < 0.2 < 2 < 2 < 2 < 0.2	< 0.2 < 0.2 < 2 < 0.2 < 0.2 < 2
Mevinphos Monocrotophos Valed Dmethoate Phorate Primiphos-methyl Pyrazophos Ronnel Ferbufos Fetrachlorvinphos Fokuthion Frichloronate Friphenylphosphate (surr.) Polychlorinated Biphenyls Aroclor-1016 Aroclor-1221 Aroclor-1232	0.2 2 0.2 2 0.2 0.2 0.2 0.2 0.2	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<0.2 <2 <0.2 <2 <0.2 <0.2 <0.2 <0.2	< 0.2 < 2 < 0.2 < 2 < 2 < 0.2	< 0.2 < 2 < 0.2 < 2 < 2
Monocrotophos Valed Naled Dmethoate Phorate Phorate Pirimiphos-methyl Pyrazophos Ronnel Ferbufos Fetrachlorvinphos Fokuthion Frichloronate Friphenylphosphate (surr.) Polychlorinated Biphenyls Aroclor-1016 Aroclor-1221 Aroclor-1232	2 0.2 2 0.2 0.2 0.2 0.2 0.2	mg/kg mg/kg mg/kg mg/kg mg/kg	< 2 < 0.2 < 2 < 0.2 < 0.2 < 0.2	< 2 < 0.2 < 2 < 0.2	< 2 < 0.2 < 2
Valed Dmethoate Phorate Primiphos-methyl Pyrazophos Ronnel Ferbufos Fetrachlorvinphos Fokuthion Frichloronate Friphenylphosphate (surr.) Polychlorinated Biphenyls Aroclor-1016 Aroclor-1221 Aroclor-1232	0.2 2 0.2 0.2 0.2 0.2 0.2	mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.2 < 2 < 0.2 < 0.2	< 0.2 < 2 < 0.2	< 0.2 < 2
Dmethoate Phorate Phorate Pirimiphos-methyl Pyrazophos Ronnel Ferbufos Fetrachlorvinphos Fokuthion Frichloronate Friphenylphosphate (surr.) Polychlorinated Biphenyls Aroclor-1016 Aroclor-1221 Aroclor-1232	2 0.2 0.2 0.2 0.2	mg/kg mg/kg mg/kg mg/kg	< 2 < 0.2 < 0.2	< 2 < 0.2	< 2
Phorate Pirimiphos-methyl Pyrazophos Ronnel Ferbufos Fetrachlorvinphos Fokuthion Frichloronate Friphenylphosphate (surr.) Polychlorinated Biphenyls Aroclor-1016 Aroclor-1221 Aroclor-1232	0.2 0.2 0.2 0.2	mg/kg mg/kg mg/kg	< 0.2 < 0.2	< 0.2	
Pirimiphos-methyl Pyrazophos Ronnel Ferbufos Fetrachlorvinphos Fokuthion Frichloronate Friphenylphosphate (surr.) Polychlorinated Biphenyls Aroclor-1016 Aroclor-1221 Aroclor-1232	0.2 0.2 0.2	mg/kg mg/kg	< 0.2		
Pyrazophos Ronnel Ferbufos Fetrachlorvinphos Fokuthion Frichloronate Friphenylphosphate (surr.) Polychlorinated Biphenyls Aroclor-1016 Aroclor-1221 Aroclor-1232	0.2 0.2	mg/kg			< 0.2
Ronnel Ferbufos Fetrachlorvinphos Fokuthion Frichloronate Friphenylphosphate (surr.) Polychlorinated Biphenyls Aroclor-1016 Aroclor-1221 Aroclor-1232	0.2			< 0.2	< 0.2
Terbufos Tetrachlorvinphos Tokuthion Trichloronate Triphenylphosphate (surr.) Polychlorinated Biphenyls Aroclor-1016 Aroclor-1221 Aroclor-1232			< 0.2	< 0.2	< 0.2
Tetrachlorvinphos Fokuthion Frichloronate Friphenylphosphate (surr.) Polychlorinated Biphenyls Aroclor-1016 Aroclor-1221 Aroclor-1232	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Fokuthion Frichloronate Friphenylphosphate (surr.) Polychlorinated Biphenyls Aroclor-1016 Aroclor-1221 Aroclor-1232	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Trichloronate Triphenylphosphate (surr.) Polychlorinated Biphenyls Aroclor-1016 Aroclor-1221 Aroclor-1232	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Triphenylphosphate (surr.) Polychlorinated Biphenyls Aroclor-1016 Aroclor-1221 Aroclor-1232	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Polychlorinated Biphenyls Aroclor-1016 Aroclor-1221 Aroclor-1232	1	%	103	98	99
Aroclor-1016 Aroclor-1221 Aroclor-1232	1	70	105	30	
Aroclor-1221 Aroclor-1232	0.1	~~~// <i>c</i> a	< 0.1	< 0.1	< 0.1
Aroclor-1232	0.1	mg/kg	< 0.1	< 0.1	< 0.1
	1	mg/kg			
	0.1	mg/kg	< 0.1	< 0.1	< 0.1
	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Aroclor-1248	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Aroclor-1254	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Aroclor-1260	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Fotal PCB*	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	71	75	70
Fetrachloro-m-xylene (surr.)	1	%	111	105	117
Heavy Metals					
Arsenic	2	mg/kg	2.5	13	4.4
	0.4	mg/kg	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	11	15	7.8
Copper	5	mg/kg	< 5	11	8.8
Lead	5	mg/kg	7.0	21	15
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	< 5	< 5	< 5
Zinc	5	mg/kg	5.5	46	36
% Moisture	5				<u> </u>

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	May 14, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	May 14, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	May 14, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	May 14, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Sydney	May 14, 2021	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Metals M8	Sydney	May 14, 2021	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Eurofins Suite B15			
Organochlorine Pesticides	Sydney	May 14, 2021	14 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Organophosphorus Pesticides	Sydney	May 14, 2021	14 Days
- Method: LTM-ORG-2200 Organophosphorus Pesticides by GC-MS			
Polychlorinated Biphenyls	Sydney	May 14, 2021	28 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
% Moisture	Sydney	May 14, 2021	14 Days
- Method: LTM-GEN-7080 Moisture			

	eurofi	nc			Eurofins Environme ABN: 50 005 085 521	ent Te	sting /	Austra	Eurofins ARL Pty LtdEurofins Environment Testing NZ LimitABN: 91 05 0159 898NZBN: 9429046024954
veb: ww	Environment Testing ww.eurofins.com.au EnviroSales@eurofins.com		Melbourne 6 Monterey Road Dandenong South VIC 3 Phone : +61 3 8564 500 NATA # 1261 Site # 125	5000 Lane Cove West NSW 206		Road ve Wes +61 2 9	NewcastlePerthAucklandChristchurch4/52 Industrial Drive46-48 Banksia Road35 O'Rorke Road43 Detroit DriveMayfield East NSW 2304Welshpool WA 6106Penrose, Auckland 1061Rolleston, ChristchPO Box 60 Wickham 2293Phone : +61 8 6253 4444Phone : +64 9 526 45 51Phone : 0800 856Phone : +61 2 4968 8448NATA # 2377 Site # 2370IANZ # 1327IANZ # 1290		
	npany Name: Iress:			ling, 22 Giffnoc	k Avenue		R P	rder eport hone ax:	Received:May 14, 2021 5:24 PMDue:May 19, 2021Priority:3 DayContact Name:Shihui Wang
	oject Name: DSL-SOBHS oject ID: J169135-01							Eurofins Analytical Services Manager : Ursula Long	
			Sample Detail			Eurofins Suite B15	Moisture Set	Eurofins Suite B7	
Velbo	ourne Laborato	ory - NATA #	1261 Site # 125	54					
	ey Laboratory					X	X	Х	
	ane Laboratory					<u> </u>			
-	eld Laboratory			9		-			
	Laboratory - N nal Laboratory		Site # 23/0				+	-	
No	Sample ID	Sample Da	te Sampling Time	Matrix	LAB ID				
	BH9-01 (0.9- 1.0)	May 14, 202		Soil	S21-My28861	x	x	x	
(BH7-01 (0.5- 0.6)	May 14, 202		Soil	S21-My28862	x	x	x	
	BH6-01 (0.4- 0.5)	May 14, 202	1	Soil	S21-My28863	x	x	x	
fest (Counts					3	3	3	

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
QSM	US Department of Defense Quality Systems Manual Version 5.3
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank	· ·				
Total Recoverable Hydrocarbons					
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank					
BTEX					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xylenes - Total*	mg/kg	< 0.3	0.3	Pass	
Method Blank					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Organochlorine Pesticides					
Chlordanes - Total	mg/kg	< 0.1	0.1	Pass	
4.4'-DDD	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	0.05	Pass	
a-HCH	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-HCH	mg/kg	< 0.05	0.05	Pass	
d-HCH	mg/kg	< 0.05	0.05	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endosulari suprate	mg/kg	< 0.05	0.05	Pass	

Test	Units	Result 1	Accepta Limits		Qualifying Code
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-HCH (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.05	0.05	Pass	
Toxaphene	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Organophosphorus Pesticides					
Azinphos-methyl	mg/kg	< 0.2	0.2	Pass	
Bolstar	mg/kg	< 0.2	0.2	Pass	
Chlorfenvinphos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos-methyl	mg/kg	< 0.2	0.2	Pass	
Coumaphos	mg/kg	< 2	2	Pass	
Demeton-S	mg/kg	< 0.2	0.2	Pass	
Demeton-O	mg/kg	< 0.2	0.2	Pass	
Diazinon	mg/kg	< 0.2	0.2	Pass	
Dichlorvos	mg/kg	< 0.2	0.2	Pass	
Dimethoate	mg/kg	< 0.2	0.2	Pass	
Disulfoton	mg/kg	< 0.2	0.2	Pass	1
EPN	mg/kg	< 0.2	0.2	Pass	1
Ethion	mg/kg	< 0.2	0.2	Pass	
Ethoprop	mg/kg	< 0.2	0.2	Pass	
Ethyl parathion	mg/kg	< 0.2	0.2	Pass	1
Fenitrothion	mg/kg	< 0.2	0.2	Pass	1
Fensulfothion	mg/kg	< 0.2	0.2	Pass	1
Fenthion	mg/kg	< 0.2	0.2	Pass	1
Malathion	mg/kg	< 0.2	0.2	Pass	1
Merphos	mg/kg	< 0.2	0.2	Pass	
Methyl parathion	mg/kg	< 0.2	0.2	Pass	
Mevinphos	mg/kg	< 0.2	0.2	Pass	1
Monocrotophos	mg/kg	< 2	2	Pass	1
Naled	mg/kg	< 0.2	0.2	Pass	
Omethoate	mg/kg	< 2	2	Pass	
Phorate	mg/kg	< 0.2	0.2	Pass	
Pirimiphos-methyl	mg/kg	< 0.2	0.2	Pass	
Pyrazophos	mg/kg	< 0.2	0.2	Pass	
Ronnel	mg/kg	< 0.2	0.2	Pass	
Terbufos	mg/kg	< 0.2	0.2	Pass	1
Tetrachlorvinphos	mg/kg	< 0.2	0.2	Pass	1
Tokuthion	mg/kg	< 0.2	0.2	Pass	1
Trichloronate	mg/kg	< 0.2	0.2	Pass	1
Method Blank	······································	<u> </u>	0.2		
Polychlorinated Biphenyls					
Aroclor-1016	mg/kg	< 0.1	0.1	Pass	1
Aroclor-1221	mg/kg	< 0.1	0.1	Pass	1
Aroclor-1232	mg/kg	< 0.1	0.1	Pass	1
Aroclor-1242	mg/kg	< 0.1	0.1	Pass	1
Aroclor-1248	mg/kg	< 0.1	0.1	Pass	1
Aroclor-1248	mg/kg	< 0.1	0.1	Pass	+
Aroclor-1254	mg/kg	< 0.1	0.1	Pass	+
Method Blank			0.1	1 435	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons					
TRH C6-C9	%	73	70-130	Pass	
TRH C10-C14	%	74	70-130	Pass	
Naphthalene	%	82	70-130	Pass	
TRH C6-C10	%	73	70-130	Pass	
TRH >C10-C16	%	75	70-130	Pass	
LCS - % Recovery					
BTEX					
Benzene	%	75	70-130	Pass	
Toluene	%	85	70-130	Pass	
Ethylbenzene	%	80	70-130	Pass	
m&p-Xylenes	%	79	70-130	Pass	
o-Xylene	%	73	70-130	Pass	
Xylenes - Total*	%	77	70-130	Pass	
LCS - % Recovery	,,,	,		1.000	
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	93	70-130	Pass	
Acenaphthylene	%	91	70-130	Pass	
Anthracene	%	96	70-130	Pass	
Benz(a)anthracene	%	92	70-130	Pass	
Benzo(a)pyrene	%	104	70-130	Pass	
Benzo(b&j)fluoranthene	%	110	70-130	Pass	
Benzo(g.h.i)perylene	%	89	70-130	Pass	
Benzo(k)fluoranthene	%	128	70-130	Pass	
Chrysene	%	102	70-130	Pass	
Dibenz(a.h)anthracene	%	76	70-130	Pass	
Fluoranthene	%	88	70-130	Pass	
Fluorene	%	95	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	96	70-130	Pass	
Naphthalene	%	98	70-130	Pass	
Phenanthrene	%	88	70-130	Pass	
Pyrene	%	88	70-130	Pass	
LCS - % Recovery	70	00	10130	1 435	
Organochlorine Pesticides					
Chlordanes - Total	%	88	70-130	Pass	
4.4'-DDD	%	95	70-130	Pass	
4.4'-DDE	%	94	70-130	Pass	
4.4'-DDT	%	112	70-130	Pass	
a-HCH	%	112	70-130	Pass	
Aldrin	%	84	70-130	Pass	
b-HCH	%	114	70-130	Pass	
d-HCH	%	114	70-130	Pass	
Dieldrin	%	116	70-130	Pass	
					1

Test			Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endosulfan II			%	107	70-130	Pass	
Endosulfan sulphate			%	107	70-130	Pass	
Endrin			%	115	70-130	Pass	
Endrin aldehyde			%	92	70-130	Pass	
Endrin ketone			%	109	70-130	Pass	
g-HCH (Lindane)			%	103	70-130	Pass	
Heptachlor			%	125	70-130	Pass	
Heptachlor epoxide			%	104	70-130	Pass	
Hexachlorobenzene			%	105	70-130	Pass	
Methoxychlor			%	126	70-130	Pass	
LCS - % Recovery							
Organophosphorus Pesticides							
Diazinon			%	128	70-130	Pass	
Dimethoate			%	89	70-130	Pass	
Ethion			%	106	70-130	Pass	
Fenitrothion			%	122	70-130	Pass	
Methyl parathion			%	121	70-130	Pass	
Mevinphos			%	95	70-130	Pass	
LCS - % Recovery							
Polychlorinated Biphenyls							
Aroclor-1016			%	95	70-130	Pass	
Aroclor-1260			%	110	70-130	Pass	
LCS - % Recovery							
Heavy Metals							
Arsenic			%	96	80-120	Pass	
Cadmium			%	101	80-120	Pass	
Chromium			%	106	80-120	Pass	
Copper			%	110	80-120	Pass	
Lead			%	106	80-120	Pass	
Mercury			%	114	80-120	Pass	
Nickel			%	105	80-120	Pass	
Zinc			%	112	80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery					 -		
Total Recoverable Hydrocarbons				Result 1			
TRH C6-C9	S21-My17492	NCP	%			_	
TDU CAO CAA	021 111 102	INCE	70	81	70-130	Pass	
TRH C10-C14	S21-My21718	NCP	%	81 76	70-130 70-130	Pass Pass	
Naphthalene							
	S21-My21718	NCP	%	76	70-130	Pass	
Naphthalene	S21-My21718 S21-My17492	NCP NCP	% %	76 81	70-130 70-130	Pass Pass	
Naphthalene TRH C6-C10	S21-My21718 S21-My17492 S21-My17492	NCP NCP NCP	% % %	76 81 80	70-130 70-130 70-130	Pass Pass Pass	
Naphthalene TRH C6-C10 TRH >C10-C16	S21-My21718 S21-My17492 S21-My17492	NCP NCP NCP	% % %	76 81 80	70-130 70-130 70-130	Pass Pass Pass	
Naphthalene TRH C6-C10 TRH >C10-C16 Spike - % Recovery	S21-My21718 S21-My17492 S21-My17492	NCP NCP NCP	% % %	76 81 80 74	70-130 70-130 70-130	Pass Pass Pass	
Naphthalene TRH C6-C10 TRH >C10-C16 Spike - % Recovery BTEX	S21-My21718 S21-My17492 S21-My17492 S21-My17492 S21-My21718	NCP NCP NCP NCP	% % %	76 81 80 74 Result 1	70-130 70-130 70-130 70-130	Pass Pass Pass Pass	
Naphthalene TRH C6-C10 TRH >C10-C16 Spike - % Recovery BTEX Benzene	S21-My21718 S21-My17492 S21-My17492 S21-My21718 S21-My21718	NCP NCP NCP NCP	% % % 	76 81 80 74 Result 1 77	70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass	
Naphthalene TRH C6-C10 TRH >C10-C16 Spike - % Recovery BTEX Benzene Toluene	S21-My21718 S21-My17492 S21-My17492 S21-My21718 S21-My21718 S21-My17492 S21-My17492 S21-My17492	NCP NCP NCP NCP NCP NCP	% % % %	76 81 80 74 Result 1 77 93	70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass	
Naphthalene TRH C6-C10 TRH >C10-C16 Spike - % Recovery BTEX Benzene Toluene Ethylbenzene	S21-My21718 S21-My17492 S21-My17492 S21-My21718 S21-My21718 S21-My17492 S21-My17492 S21-My17492 S21-My17492 S21-My17492 S21-My17492	NCP NCP NCP NCP NCP NCP NCP	% % % % %	76 81 80 74 Result 1 77 93 88	70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass	
Naphthalene TRH C6-C10 TRH >C10-C16 Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes	S21-My21718 S21-My17492 S21-My17492 S21-My21718 S21-My17492 S21-My17492 S21-My17492 S21-My17492 S21-My17492	NCP NCP NCP NCP NCP NCP NCP NCP	% % % % % %	76 81 80 74 Result 1 77 93 88 88 87	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Naphthalene TRH C6-C10 TRH >C10-C16 Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene	S21-My21718 S21-My17492 S21-My17492 S21-My21718 S21-My17492 S21-My17492 S21-My17492 S21-My17492 S21-My17492 S21-My17492	NCP NCP NCP NCP NCP NCP NCP NCP NCP	% % % % % % %	76 81 80 74 Result 1 77 93 88 87 85	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Naphthalene TRH C6-C10 TRH >C10-C16 Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total*	S21-My21718 S21-My17492 S21-My17492	NCP NCP NCP NCP NCP NCP NCP NCP NCP	% % % % % % %	76 81 80 74 Result 1 77 93 88 87 85	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Naphthalene TRH C6-C10 TRH >C10-C16 Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total* Spike - % Recovery	S21-My21718 S21-My17492 S21-My17492	NCP NCP NCP NCP NCP NCP NCP NCP NCP	% % % % % % %	76 81 80 74 Result 1 77 93 88 88 87 85 87	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Naphthalene TRH C6-C10 TRH >C10-C16 Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total* Spike - % Recovery Polycyclic Aromatic Hydrocarboor	S21-My21718 S21-My17492 S21-My17492 S21-My17492 S21-My17492 S21-My17492 S21-My17492 S21-My17492 S21-My17492 S21-My17492	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% % % % % % %	76 81 80 74 Result 1 77 93 88 87 85 87 Result 1	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Naphthalene TRH C6-C10 TRH >C10-C16 Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total* Spike - % Recovery Polycyclic Aromatic Hydrocarbon Acenaphthene	S21-My21718 S21-My17492 S21-My17492 S21-My17492 S21-My17492 S21-My17492 S21-My17492 S21-My17492 S21-My17492 S21-My17492 S21-My17492 S21-My17492	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% % % % % % %	76 81 80 74 Result 1 77 93 88 87 85 87 Result 1 Result 1 87	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	

Test	Lab Sample ID	QA Source	Units	Result 1		ceptance Limits	Pass Limits	Qualifying Code
Benzo(a)pyrene	S21-My23419	NCP	%	95		70-130	Pass	
Benzo(b&j)fluoranthene	S21-My23419	NCP	%	96		70-130	Pass	
Benzo(g.h.i)perylene	S21-My23419	NCP	%	86		70-130	Pass	
Benzo(k)fluoranthene	S21-My23419	NCP	%	104		70-130	Pass	
Chrysene	S21-My23419	NCP	%	93		70-130	Pass	
Dibenz(a.h)anthracene	S21-My23419	NCP	%	84		70-130	Pass	
Fluoranthene	S21-My23419	NCP	%	78		70-130	Pass	
Fluorene	S21-My23419	NCP	%	89		70-130	Pass	
Indeno(1.2.3-cd)pyrene	S21-My23419	NCP	%	95		70-130	Pass	
Naphthalene	S21-My23419	NCP	%	90		70-130	Pass	
Phenanthrene	S21-My23419	NCP	%	84	-	70-130	Pass	
Pyrene	S21-My23419	NCP	%	80		70-130	Pass	
Spike - % Recovery								
Organochlorine Pesticides				Result 1				
Chlordanes - Total	S21-My23419	NCP	%	70		70-130	Pass	
4.4'-DDD	S21-My23419	NCP	%	94		70-130	Pass	
4.4'-DDE	S21-My23419	NCP	%	88		70-130	Pass	
4.4'-DDT	S21-My18477	NCP	%	130		70-130	Pass	
a-HCH	S21-My23419	NCP	%	97		70-130	Pass	
Aldrin	S21-My23419	NCP	%	73		70-130	Pass	
b-HCH	S21-My23419	NCP	%	89		70-130	Pass	
d-HCH	S21-My23419	NCP	%	98		70-130	Pass	
Dieldrin	S21-My23419	NCP	%	96		70-130	Pass	
Endosulfan I	S21-My23419	NCP	%	97		70-130	Pass	
Endosulfan II	S21-My23419	NCP	%	92		70-130	Pass	
Endosulfan sulphate	S21-My23419	NCP	%	99		70-130	Pass	
Endrin	S21-My23419	NCP	%	95		70-130	Pass	
Endrin aldehyde	S21-My11325	NCP	%	76		70-130	Pass	
Endrin ketone	S21-My23419	NCP	%	95		70-130	Pass	
g-HCH (Lindane)	S21-My23419	NCP	%	83		70-130	Pass	
Heptachlor	S21-My23419	NCP	%	106		70-130	Pass	
Heptachlor epoxide	S21-My23419	NCP	%	82		70-130	Pass	
Hexachlorobenzene	S21-My23419	NCP	%	94		70-130	Pass	
Methoxychlor	S21-My23419	NCP	%	120		70-130	Pass	
Spike - % Recovery	021 My20410		/0	120		10 100	1 400	
Organophosphorus Pesticides				Result 1				
Dimethoate	S21-My23419	NCP	%	86		70-130	Pass	
Ethion	S21-My23419	NCP	%	105		70-130	Pass	
Fenitrothion	S21-My23419	NCP	%	112		70-130	Pass	
Methyl parathion	S21-My23419	NCP	%	112		70-130	Pass	
Mevinphos	S21-My23419	NCP	%	96		70-130	Pass	
Spike - % Recovery	021-My20419	INCI	70			70-130	1 455	
Polychlorinated Biphenyls				Result 1				
Aroclor-1016	S21-My23419	NCP	%	70		70-130	Pass	
Aroclor-1260	S21-My23419 S21-My23419	NCP	%	67		70-130	Fail	Q08
Spike - % Recovery	021-101920419		/0			10-130	i ali	400
Heavy Metals				Result 1				
Arsenic	S21-My22166	NCP	%	91		75-125	Pass	
Cadmium	S21-My22166	NCP	%	104		75-125 75-125	Pass	
Chromium	S21-My22166	NCP	%	104		75-125 75-125	Pass	
				96				
Copper	S21-My22166	NCP	%			75-125	Pass	
Lead	S21-My22166	NCP	%	104		75-125	Pass	
Mercury	S21-My22166	NCP	%	115		75-125	Pass	
Nickel	S21-My22166	NCP	%	77		75-125	Pass	
Zinc	S21-My22166	NCP	%	83		75-125	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbo	ons			Result 1	Result 2	RPD			
TRH C6-C9	S21-My24732	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S21-My26164	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S21-My26164	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S21-My26164	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
Naphthalene	S21-My24732	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S21-My24732	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	S21-My26164	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S21-My26164	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S21-My26164	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate				T			1		
BTEX				Result 1	Result 2	RPD			
Benzene	S21-My24732	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S21-My24732	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S21-My24732	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S21-My24732	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S21-My24732	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total*	S21-My24732	NCP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate				1			1		
Polycyclic Aromatic Hydrocar	bons	1		Result 1	Result 2	RPD			
Acenaphthene	S21-My33658	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S21-My33658	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S21-My33658	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S21-My33658	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S21-My33658	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S21-My33658	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S21-My33658	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S21-My33658	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S21-My33658	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S21-My33658	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S21-My33658	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S21-My33658	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S21-My33658	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S21-My33658	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S21-My33658	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S21-My33658	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate				1			1	[
Organochlorine Pesticides				Result 1	Result 2	RPD		_	
Chlordanes - Total	S21-My33658	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S21-My33658	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S21-My33658	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S21-My33658	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-HCH	S21-My33658	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S21-My33658	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-HCH	S21-My33658	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-HCH	S21-My33658	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S21-My33658	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S21-My33658	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S21-My33658	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S21-My33658	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin Exatria a lata harda	S21-My33658	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S21-My33658	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S21-My33658	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	

Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
g-HCH (Lindane)	S21-My33658	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S21-My33658	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S21-My33658	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S21-My33658	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S21-My33658	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Toxaphene	S21-My31943	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Organophosphorus Pesticides				Result 1	Result 2	RPD			
Azinphos-methyl	S21-My33658	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Bolstar	S21-My33658	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorfenvinphos	S21-My33658	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos	S21-My33658	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos-methyl	S21-My33658	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Coumaphos	S21-My33658	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Demeton-S	S21-My33658	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Demeton-O	S21-My33658	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Diazinon	S21-My33658	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dichlorvos	S21-My33658	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dimethoate	S21-My33658	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Disulfoton	S21-My33658	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
EPN	S21-My33658	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethion	S21-My33658	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethoprop	S21-My33658	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethyl parathion	S21-My33658	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenitrothion	S21-My33658	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fensulfothion	S21-My33658	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenthion	S21-My33658	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Malathion	S21-My33658	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Merphos	S21-My33658	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Methyl parathion	S21-My33658	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Mevinphos	S21-My33658	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Monocrotophos	S21-My33658	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Naled	S21-My33658	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Omethoate	S21-My33658	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Phorate	S21-My33658	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pirimiphos-methyl	S21-My33658	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pyrazophos	S21-My33658	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ronnel	S21-My33658	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Terbufos	S21-My33658	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tetrachlorvinphos	S21-My33658	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tokuthion	S21-My33658	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Trichloronate	S21-My33658	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Duplicate	021-101935050		шу/ку	< 0.2	< 0.2		5078	1 855	
Polychlorinated Biphenyls				Result 1	Result 2	RPD			
Aroclor-1016	S21-My33658	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1221	S21-My33658	NCP	mg/kg	< 0.1	< 0.5	<1	30%	Pass	
Aroclor-1232	S21-My33658	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	S21-My33658	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
		NCP							
Aroclor-1248	S21-My33658	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1254	S21-My33658	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1260	S21-My33658	1	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Total PCB*	S21-My18477	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S21-My28836	NCP	mg/kg	16	21	28	30%	Pass	
Cadmium	S21-My28836	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S21-My28836	NCP	mg/kg	25	29	16	30%	Pass	
Copper	S21-My28836	NCP	mg/kg	28	34	20	30%	Pass	
Lead	S21-My28836	NCP	mg/kg	19	20	9.0	30%	Pass	
Mercury	S21-My28836	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S21-My28836	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Zinc	S21-My28836	NCP	mg/kg	34	25	32	30%	Fail	Q15
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S21-My27695	NCP	%	15	19	24	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
N07	Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs
Q08	The matrix spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference.
045	

Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised by:

Ursula Long	Analytical Services Manager
Andrew Sullivan	Senior Analyst-Organic (NSW)
John Nguyen	Senior Analyst-Metal (NSW)
Roopesh Rangarajan	Senior Analyst-Volatile (NSW)

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Certificate of Analysis

Environment Testing

Greencap NSW P/L Ground Floor, North Building, 22 Giffnock Avenue Macquarie Park NSW 2113

Aug 23, 2021

עיוייא

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention:	Shihui Wang
Report	818921-S
Project name	SOPHS
Project ID	J169135

Received Date

Client Sample ID			GG10(0.3-0.4)	FD5	GG11(0.2-0.3)	^{G01} GG12(1.4- 1.5)
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Au41042	S21-Au41043	S21-Au41044	S21-Au41045
Date Sampled			Aug 23, 2021	Aug 23, 2021	Aug 23, 2021	Aug 23, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	-	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	-	< 20	< 20
TRH C15-C28	50	mg/kg	85	-	< 50	< 50
TRH C29-C36	50	mg/kg	90	-	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	175	-	< 50	< 50
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	-	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	-	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	-	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	-	< 50	< 50
TRH >C16-C34	100	mg/kg	150	-	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	-	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	150	-	< 100	< 100
втех						
Benzene	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	-	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	92	-	81	73
Volatile Organics						
1.1-Dichloroethane	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
1.1-Dichloroethene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
1.1.1-Trichloroethane	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
1.1.1.2-Tetrachloroethane	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
1.1.2-Trichloroethane	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
1.1.2.2-Tetrachloroethane	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
1.2-Dibromoethane	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
1.2-Dichlorobenzene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
1.2-Dichloroethane	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
1.2-Dichloropropane	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
1.2.3-Trichloropropane	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
1.2.4-Trimethylbenzene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
1.3-Dichlorobenzene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5

Client Sample ID						G01GG12(1.4-
Sample Matrix			GG10(0.3-0.4) Soil	FD5 Soil	GG11(0.2-0.3) Soil	1.5) Soil
Eurofins Sample No.			S21-Au41042	S21-Au41043	S21-Au41044	S21-Au41045
Date Sampled			Aug 23, 2021	Aug 23, 2021	Aug 23, 2021	Aug 23, 2021
Test/Reference	LOR	Unit		_	_	
Volatile Organics						
1.3-Dichloropropane	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
1.3.5-Trimethylbenzene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
1.4-Dichlorobenzene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
2-Butanone (MEK)	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
2-Propanone (Acetone)	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
4-Chlorotoluene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
4-Methyl-2-pentanone (MIBK)	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Allyl chloride	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Benzene	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Bromobenzene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Bromochloromethane	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Bromodichloromethane	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Bromoform	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Bromomethane	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Carbon disulfide	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Carbon Tetrachloride	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Chlorobenzene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Chloroethane	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Chloroform	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Chloromethane	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
cis-1.2-Dichloroethene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
cis-1.3-Dichloropropene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Dibromochloromethane	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Dibromomethane	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Dichlorodifluoromethane	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Ethylbenzene	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
lodomethane	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Isopropyl benzene (Cumene)	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
m&p-Xylenes	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
Methylene Chloride	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
o-Xylene	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Styrene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Tetrachloroethene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Toluene	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
trans-1.2-Dichloroethene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
trans-1.3-Dichloropropene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Trichloroethene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Trichlorofluoromethane	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Vinyl chloride	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Xylenes - Total*	0.3	mg/kg	< 0.3	-	< 0.3	< 0.3
Total MAH*	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Vic EPA IWRG 621 CHC (Total)*	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Vic EPA IWRG 621 Other CHC (Total)*	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
4-Bromofluorobenzene (surr.)	1	%	92	-	81	73
Toluene-d8 (surr.)	1	%	113	-	104	104

Client Sample ID			GG10(0.3-0.4)	FD5	GG11(0.2-0.3)	^{G01} GG12(1.4- 1.5)
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Au41042	S21-Au41043	S21-Au41044	S21-Au41045
Date Sampled			Aug 23, 2021	Aug 23, 2021	Aug 23, 2021	Aug 23, 2021
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons		U.I.I				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	-	< 0.5	5.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	_	0.6	7.1
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	-	1.2	8.6
Acenaphthene	0.5	mg/kg	< 0.5	-	< 0.5	0.5
Acenaphthylene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	-	< 0.5	0.9
Benz(a)anthracene	0.5	mg/kg	< 0.5	-	< 0.5	< 5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	-	< 0.5	4.7
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	-	< 0.5	3.9
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	-	< 0.5	< 5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	-	< 0.5	4.0
Chrysene	0.5	mg/kg	< 0.5	-	< 0.5	3.7
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	-	< 0.5	< 2
Fluoranthene	0.5	mg/kg	0.7	-	< 0.5	7.7
Fluorene	0.5	mg/kg	< 0.5	-	< 0.5	0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	-	< 0.5	< 5
Naphthalene	0.5	mg/kg	< 0.5	-	< 0.5	0.9
Phenanthrene	0.5	mg/kg	0.6	-	< 0.5	4.4
Pyrene	0.5	mg/kg	0.7	-	< 0.5	7.9
Total PAH*	0.5	mg/kg	2	-	< 0.5	39.1
2-Fluorobiphenyl (surr.)	1	%	134	-	125	130
p-Terphenyl-d14 (surr.)	1	%	140	-	113	137
Organochlorine Pesticides		•				
Chlordanes - Total	0.1	mg/kg	< 0.1	_	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	_	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	_	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	_	< 0.05	< 0.05
a-HCH	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
b-HCH	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
d-HCH	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	_	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
Toxaphene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	84	-	114	79
Tetrachloro-m-xylene (surr.)	1	%	132	-	120	127

Client Sample ID			GG10(0.3-0.4)	FD5	GG11(0.2-0.3)	^{G01} GG12(1.4- 1.5)
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Au41042	S21-Au41043	S21-Au41044	S21-Au41045
Date Sampled			Aug 23, 2021	Aug 23, 2021	Aug 23, 2021	Aug 23, 2021
Test/Reference	LOR	Unit	Aug 20, 2021	Aug 20, 2021	Aug 10, 1011	Aug 20, 2021
Organophosphorus Pesticides	LOK	Unit				
	0.2	mallea	.0.2		.0.2	.0.2
Azinphos-methyl	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
Bolstar	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
Chlorfenvinphos	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
Chlorpyrifos Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
Coumaphos	2	mg/kg	< 0.2	-	< 0.2	< 0.2
Demeton-S	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
Demeton-O	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
Diazinon	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
Dichlorvos	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
Dimethoate	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
Disulfoton EPN	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
Ethion	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
Ethoprop	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
Ethyl parathion Fenitrothion	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
Fensulfothion	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
Fenthion Malathion	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
Merphos	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
Methyl parathion	0.2	mg/kg mg/kg	< 0.2	-	< 0.2	< 0.2
Mevinphos	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
Monocrotophos	2	mg/kg	< 2	-	< 2	< 2
Naled	0.2	mg/kg	< 0.5	-	< 0.5	< 0.5
Omethoate	2	mg/kg	< 2	_	< 2	< 2
Phorate	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
Pirimiphos-methyl	0.2	mg/kg	< 0.2	_	< 0.2	< 0.2
Pyrazophos	0.2	mg/kg	< 0.2	_	< 0.2	< 0.2
Ronnel	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
Terbufos	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
Tetrachlorvinphos	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
Tokuthion	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
Trichloronate	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
Triphenylphosphate (surr.)	1	%	124	-	143	135
Polychlorinated Biphenyls		,,,				
Aroclor-1016	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Aroclor-1221	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Aroclor-1221 Aroclor-1232	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Aroclor-1242	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Aroclor-1248	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Aroclor-1254	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Aroclor-1260	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Total PCB*	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Dibutylchlorendate (surr.)	1	%	84	-	114	79
Tetrachloro-m-xylene (surr.)	1	%	132	-	120	127

Client Sample ID			GG10(0.3-0.4)	FD5	GG11(0.2-0.3)	^{G01} GG12(1.4- 1.5)
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Au41042	S21-Au41043	S21-Au41044	S21-Au41045
Date Sampled			Aug 23, 2021	Aug 23, 2021	Aug 23, 2021	Aug 23, 2021
Test/Reference	LOR	Unit	3 - 0, - 0 - 1	J ,	j	, 3 ,
Semivolatile Organics	LOIN	Onit				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5		< 0.5	5.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	_	0.6	7.1
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	_	1.2	8.6
2-Methyl-4.6-dinitrophenol	5	mg/kg	< 5	_	< 5	< 5
1-Chloronaphthalene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
1-Naphthylamine	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
1.2-Dichlorobenzene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
1.2.3-Trichlorobenzene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
1.2.3.4-Tetrachlorobenzene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
1.2.3.5-Tetrachlorobenzene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
1.2.4-Trichlorobenzene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
1.2.4.5-Tetrachlorobenzene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
1.3-Dichlorobenzene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
1.3.5-Trichlorobenzene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
1.4-Dichlorobenzene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
2-Chloronaphthalene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
2-Chlorophenol	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	134	-	125	130
2-Methylnaphthalene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
2-Methylphenol (o-Cresol)	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
2-Naphthylamine	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
2-Nitroaniline	1	mg/kg	< 1	-	< 1	< 1
2-Nitrophenol	1	mg/kg	< 1	-	< 1	< 1
2-Picoline	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
2.3.4.6-Tetrachlorophenol	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
2.4-Dichlorophenol	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
2.4-Dimethylphenol	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
2.4-Dinitrophenol	5	mg/kg	< 5	-	< 5	< 5
2.4-Dinitrotoluene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
2.4.5-Trichlorophenol	1	mg/kg	< 1	-	< 1	< 1
2.4.6-Tribromophenol (surr.)	1	%	56	-	111	60
2.4.6-Trichlorophenol	1	mg/kg	< 1	-	< 1	< 1
2.6-Dichlorophenol	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
2.6-Dinitrotoluene	1	mg/kg	< 1	-	< 1	< 1
3&4-Methylphenol (m&p-Cresol)	0.4	mg/kg	< 0.4	-	< 0.4	< 0.5
3-Methylcholanthrene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
3.3'-Dichlorobenzidine	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
4-Aminobiphenyl	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
4-Bromophenyl phenyl ether	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
4-Chloro-3-methylphenol	1	mg/kg	< 1	-	< 1	< 1
4-Chlorophenyl phenyl ether	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
4-Nitrophenol	5	mg/kg	< 5	-	< 5	< 5
4.4'-DDD	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
4.4'-DDE	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
4.4'-DDT	1	mg/kg	< 1	-	< 1	< 1
7.12-Dimethylbenz(a)anthracene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
a-HCH Acenaphthene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Acenaodinene	0.5	mg/kg	< 0.5	-	< 0.5	0.5

Client Sample ID			GG10(0.3-0.4)	FD5	GG11(0.2-0.3)	^{G01} GG12(1.4- 1.5)
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Au41042	S21-Au41043	S21-Au41044	S21-Au41045
Date Sampled			Aug 23, 2021	Aug 23, 2021	Aug 23, 2021	Aug 23, 2021
Test/Reference	LOR	Unit				
Semivolatile Organics	Lon	Onic				
Acetophenone	0.5	mg/kg	< 0.5		< 0.5	< 0.5
Aldrin	0.5	mg/kg	< 0.5	_	< 0.5	< 0.5
Aniline	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	_	< 0.5	0.9
b-HCH	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	-	< 0.5	< 5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	-	< 0.5	4.7
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	-	< 0.5	3.9
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	-	< 0.5	< 5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	-	< 0.5	4.0
Benzyl chloride	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Bis(2-chloroethoxy)methane	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Bis(2-chloroisopropyl)ether	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Bis(2-ethylhexyl)phthalate	5	mg/kg	< 5	-	< 5	< 5
Butyl benzyl phthalate	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	-	< 0.5	3.7
d-HCH	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Di-n-butyl phthalate	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Di-n-octyl phthalate	0.5	mg/kg	< 2	-	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	-	< 0.5	< 2
Dibenz(a.j)acridine	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Dibenzofuran	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Dieldrin	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Diethyl phthalate	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Dimethyl phthalate	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Dimethylaminoazobenzene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Diphenylamine	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Endosulfan I	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Endosulfan II	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Endosulfan sulphate	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Endrin	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Endrin aldehyde	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Endrin ketone	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	0.7	-	< 0.5	7.7
Fluorene	0.5	mg/kg	< 0.5	-	< 0.5	0.5
g-HCH (Lindane)	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Heptachlor	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Heptachlor epoxide	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Hexachlorobenzene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Hexachlorobutadiene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Hexachlorocyclopentadiene	1	mg/kg	< 1	-	< 1	< 1
Hexachloroethane	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	-	< 0.5	< 5
Methoxychlor	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
N-Nitrosodibutylamine	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
N-Nitrosodipropylamine	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
N-Nitrosopiperidine	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	-	< 0.5	0.9
Nitrobenzene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5

Client Sample ID Sample Matrix			GG10(0.3-0.4) Soil	FD5 Soil	GG11(0.2-0.3) Soil	^{G01} GG12(1.4- 1.5) Soil
Eurofins Sample No.			S21-Au41042	S21-Au41043	S21-Au41044	S21-Au41045
Date Sampled			Aug 23, 2021	Aug 23, 2021	Aug 23, 2021	Aug 23, 2021
Test/Reference	LOR	Unit				
Semivolatile Organics						
Nitrobenzene-d5 (surr.)	1	%	138	-	149	130
Pentachlorobenzene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Pentachloronitrobenzene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Pentachlorophenol	1	mg/kg	< 5	-	< 5	< 5
Phenanthrene	0.5	mg/kg	0.6	-	< 0.5	4.4
Phenol	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Phenol-d6 (surr.)	1	%	138	-	141	141
Pronamide	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Pyrene	0.5	mg/kg	0.7	-	< 0.5	7.9
Trifluralin	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Heavy Metals						
Arsenic	2	mg/kg	12	15	3.7	14
Cadmium	0.4	mg/kg	0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	35	8.4	6.3	29
Copper	5	mg/kg	21	18	5.5	39
Lead	5	mg/kg	41	28	7.7	180
Mercury	0.1	mg/kg	< 0.1	0.1	< 0.1	1.0
Nickel	5	mg/kg	15	5.7	7.4	9.9
Zinc	5	mg/kg	58	50	35	84
% Moisture	1	%	12	27	4.7	25

Client Sample ID Sample Matrix			TS Soil	TB Soil
Eurofins Sample No.			S21-Au41046	S21-Au41047
Date Sampled			Aug 23, 2021	Aug 23, 2021
Test/Reference	LOR	Unit		
Total Recoverable Hydrocarbons				
TRH C6-C9	20	mg/kg	-	< 20
Naphthalene ^{N02}	0.5	mg/kg	-	< 0.5
TRH C6-C10	20	mg/kg	-	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	-	< 20
BTEX				
Benzene	0.1	mg/kg	-	< 0.1
Toluene	0.1	mg/kg	-	< 0.1
Ethylbenzene	0.1	mg/kg	-	< 0.1
m&p-Xylenes	0.2	mg/kg	-	< 0.2
o-Xylene	0.1	mg/kg	-	< 0.1
Xylenes - Total*	0.3	mg/kg	-	< 0.3
4-Bromofluorobenzene (surr.)	1	%	-	92
TRH C6-C10	1	%	87	-
Total Recoverable Hydrocarbons				
Naphthalene	1	%	80	-
TRH C6-C9	1	%	88	-

Client Sample ID Sample Matrix			TS Soil	TB Soil
Eurofins Sample No.			S21-Au41046	S21-Au41047
Date Sampled			Aug 23, 2021	Aug 23, 2021
Test/Reference	LOR	Unit		
втех				
Benzene	1	%	99	-
Ethylbenzene	1	%	85	-
m&p-Xylenes	1	%	85	-
o-Xylene	1	%	84	-
Toluene	1	%	88	-
Xylenes - Total	1	%	84	-
4-Bromofluorobenzene (surr.)	1	%	80	-

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Aug 23, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40		-	·
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Aug 23, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons	Sydney	Aug 23, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Aug 23, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Aug 23, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Sydney	Aug 23, 2021	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Metals M8	Sydney	Aug 23, 2021	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Volatile Organics	Sydney	Aug 23, 2021	7 Days
- Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices			
Semivolatile Organics	Sydney	Aug 23, 2021	14 Day
- Method: LTM-ORG-2190 SVOC in Water & Soil by GC-MS			
Eurofins Suite B15			
Organochlorine Pesticides	Sydney	Aug 23, 2021	14 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Organophosphorus Pesticides	Sydney	Aug 23, 2021	14 Days
- Method: LTM-ORG-2200 Organophosphorus Pesticides by GC-MS			
Polychlorinated Biphenyls	Sydney	Aug 23, 2021	28 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
% Moisture	Sydney	Aug 23, 2021	14 Days
- Method: LTM-GEN-7080 Moisture			

	eurofi	nc			Australia											New Zealand	
	0 005 085 521 web:	Envi	ironment u email: EnviroSa	0	Melbourne 6 Monterey Road Dandenong South VIC 3 Phone : +61 3 8564 500 NATA # 1261 Site # 125	U 175 1 0 L 4 P	6 Mars I ane Cov Phone : +	ve West +61 2 99		1/2 M 2066 Ph 0 N/	urarrie hone : +	allwood QLD 41 +61 7 39		Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 70 Phone : 0800 856 450 IANZ # 1290
	Company Name: Greencap NSW P/L Address: Ground Floor, North Building, 22 Giffnock Avenue Macquarie Park NSW 2113				ck Avenue		R¢ Pl	rder N eport hone: ax:	#:	8 0	PO291240 818921 02 9889 1800 02 9889 1811				Received: Due: Priority: Contact Name:	Aug 23, 2021 3:35 Aug 24, 2021 1 Day Shihui Wang	РМ
	oject Name: oject ID:	SOPHS J169135													Eurofins Analytical	Services Manager : l	Jrsula Long
			mple Detail			HOLD	Metals M8	Eurofins Suite B15	Moisture Set	Eurofins Suite B7	BTEXN and Volatile TRH	Eurofins Suite SVV: SVOC/VOC	BTEXN and Volatile TRH				
	ourne Laborato	•							+				~				
	hey Laboratory					X	X	X	X	X	X	X	X				
	bane Laboratory							┼──	+	+							
	h Laboratory - N							┼──	+	+							
	field Laboratory rnal Laboratory	- NATA SILE #	23073				+	<u> </u>	<u> </u>	<u> </u>	<u> </u>						
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID				<u> </u>								
	GG10(0.3-0.4)	Aug 23, 2021		Soil	S21-Au41042			Х	Х	Х		Х					
2	FD5	Aug 23, 2021		Soil	S21-Au41043		Х		Х								
}	GG11(0.2-0.3)	Aug 23, 2021		Soil	S21-Au41044			Х	Х	Х		Х					
	GG12(1.4-1.5)	Aug 23, 2021		Soil	S21-Au41045			Х	Х	Х		Х					
;	TS	Aug 23, 2021		Soil	S21-Au41046				\vdash				х				
6	тв	Aug 23, 2021		Soil	S21-Au41047			\square	\square	<u> </u>	х						
7	GG10(1.5-1.6)	Aug 23, 2021		Soil	S21-Au41049	х			\perp								
3	GG10(2.4-2.5)	Aug 23, 2021		Soil	S21-Au41050	х			\square	<u> </u>							
	GG12(0.4-0.5)			Soil		Х		1									

eurofir ABN: 50 005 085 521 web: v	S Environment Testing www.eurofins.com.au email: EnviroSales@eurofins.com	Australia Melbourne 6 Monterey Road Dandenong South VIC 37 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254	U 175 1() La 4 P	6 Mars ane Cov hone : -	Building Road ve West +61 2 99 1261 Sit	: NSW 2 900 840	1/ M 2066 P 0 N		allwood QLD 4' -61 7 39		Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	New Zealand Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290
Company Name: Greencap NSW P/L Address: Ground Floor, North Building, 22 Giffnock Avenue Macquarie Park NSW 2113				R Pl	rder N eport hone: ax:	#:	8 (PO29 ⁷ 31892)2 988)2 988	1 39 180			Received: Due: Priority: Contact Name:	Aug 23, 2021 3:35 Aug 24, 2021 1 Day Shihui Wang	PM
Project Name: Project ID:	SOPHS J169135											Eurofins Analytical	Services Manager : l	Jrsula Long
	Sample Detail		HOLD	Metals M8	Eurofins Suite B15	Moisture Set	Eurofins Suite B7	BTEXN and Volatile TRH	Eurofins Suite SVV: SVOC/VOC	BTEXN and Volatile TRH				
Melbourne Laborator	ry - NATA Site # 1254													
Sydney Laboratory -			Х	X	Х	X	X	Х	X	х				
Brisbane Laboratory														
Perth Laboratory - N														
Mayfield Laboratory	- NATA Site # 25079													
External Laboratory		004 4 44075												
10 GG12(2.7-2.8)	Aug 23, 2021 Soil	S21-Au41052	X											
Test Counts			4	1	3	4	3	1	3	1				

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Limit of Reporting.
Addition of the analyte to the sample and reported as percentage recovery.
Relative Percent Difference between two Duplicate pieces of analysis.
Laboratory Control Sample - reported as percent recovery.
Certified Reference Material - reported as percent recovery.
In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
The addition of a like compound to the analyte target and reported as percentage recovery.
A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
United States Environmental Protection Agency
American Public Health Association
Toxicity Characteristic Leaching Procedure
Chain of Custody
Sample Receipt Advice
US Department of Defense Quality Systems Manual Version 5.3
Client Parent - QC was performed on samples pertaining to this report
Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank				1		
Total Recoverable Hydrocarbons						
TRH C6-C9	mg/kg	< 20		20	Pass	
TRH C10-C14	mg/kg	< 20		20	Pass	
TRH C15-C28	mg/kg	< 50		50	Pass	
TRH C29-C36	mg/kg	< 50		50	Pass	
Naphthalene	mg/kg	< 0.5		0.5	Pass	
TRH C6-C10	mg/kg	< 20		20	Pass	
TRH >C10-C16	mg/kg	< 50		50	Pass	
TRH >C16-C34	mg/kg	< 100		100	Pass	
TRH >C34-C40	mg/kg	< 100		100	Pass	
Method Blank						
BTEX						
Benzene	mg/kg	< 0.1		0.1	Pass	
Toluene	mg/kg	< 0.1		0.1	Pass	
Ethylbenzene	mg/kg	< 0.1		0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2		0.2	Pass	
o-Xylene	mg/kg	< 0.1		0.1	Pass	
Xylenes - Total*	mg/kg	< 0.3		0.3	Pass	
Method Blank			· ·			
Volatile Organics						
1.1-Dichloroethane	mg/kg	< 0.5		0.5	Pass	
1.1-Dichloroethene	mg/kg	< 0.5		0.5	Pass	
1.1.1-Trichloroethane	mg/kg	< 0.5		0.5	Pass	
1.1.1.2-Tetrachloroethane	mg/kg	< 0.5		0.5	Pass	
1.1.2-Trichloroethane	mg/kg	< 0.5		0.5	Pass	
1.1.2.2-Tetrachloroethane	mg/kg	< 0.5		0.5	Pass	
1.2-Dibromoethane	mg/kg	< 0.5		0.5	Pass	
1.2-Dichlorobenzene	mg/kg	< 0.5		0.5	Pass	
1.2-Dichloroethane	mg/kg	< 0.5		0.5	Pass	
1.2-Dichloropropane	mg/kg	< 0.5		0.5	Pass	
1.2.3-Trichloropropane	mg/kg	< 0.5		0.5	Pass	
1.2.4-Trimethylbenzene	mg/kg	< 0.5		0.5	Pass	
1.3-Dichlorobenzene	mg/kg	< 0.5		0.5	Pass	
1.3-Dichloropropane	mg/kg	< 0.5		0.5	Pass	
1.3.5-Trimethylbenzene	mg/kg	< 0.5		0.5	Pass	
1.4-Dichlorobenzene	mg/kg	< 0.5		0.5	Pass	
2-Butanone (MEK)	mg/kg	< 0.5		0.5	Pass	
2-Propanone (Acetone)	mg/kg	< 0.5		0.5	Pass	
4-Chlorotoluene	mg/kg	< 0.5		0.5	Pass	
4-Methyl-2-pentanone (MIBK)	mg/kg	< 0.5		0.5	Pass	
Allyl chloride	mg/kg	< 0.5		0.5	Pass	
Bromobenzene	mg/kg	< 0.5		0.5	Pass	
Bromochloromethane	mg/kg	< 0.5		0.5	Pass	
Bromodichloromethane	mg/kg	< 0.5		0.5	Pass	
Bromoform	mg/kg	< 0.5		0.5	Pass	
Bromomethane	mg/kg	< 0.5		0.5	Pass	
Carbon disulfide	mg/kg	< 0.5		0.5	Pass	
Carbon Tetrachloride	mg/kg	< 0.5		0.5	Pass	
Chlorobenzene	mg/kg	< 0.5		0.5	Pass	
Chloroethane	mg/kg	< 0.5		0.5	Pass	
Chloroform	mg/kg	< 0.5		0.5	Pass	

Choromethane mgkg 0.5 0.5 Pass cis-12-Dichromethane mgkg <0.5 0.5 Pass Dibromochloromethane mgkg <0.5 0.5 Pass Dibromochlane mgkg <0.5 0.5 Pass Dichtrondfluoromethane mgkg <0.5 0.5 Pass Dichtrondfluoromethane mgkg <0.5 0.5 Pass Ibdomethanie mgkg <0.5 0.5 Pass Ibdomethanie mgkg <0.5 0.5 Pass Mathylane Churcidus mgkg <0.5 0.5 Pass Styrane mgkg <0.5 0.5 Pass Trans-1-32Dichloromethane mgkg <0.5 0.5 Pass Trans-1-32Dichloromethane <th>Test</th> <th>Units</th> <th>Result 1</th> <th>Acceptance Limits</th> <th>Pass Limits</th> <th>Qualifying Code</th>	Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
cis-13-20ctiorograppen mg/kg <0.5	Chloromethane	mg/kg	< 0.5	0.5	Pass	
Dibmonethane mgkg c.0.5 M 0.5. Pass Dibrondmethane mgkg c.0.5 0.5 Pass Lodonethane mgkg c.0.5 0.5 Pass Lodonethane mgkg c.0.5 0.5 Pass Lodonethane mgkg c.0.5 0.5 Pass Mathylene Chloride mgkg c.0.5 0.5 Pass Styrene mgkg c.0.5 0.5 Pass Tetrachorothene mgkg c.0.5 0.5 Pass Trichcorothorethane mgkg c.0.5 0.5 Pass Acanaphthene mgkg c.0.5 0.5 Pass Acanaphthene mgkg	cis-1.2-Dichloroethene	mg/kg	< 0.5	0.5	Pass	
Dbrommethane mgkg <0.5 0.5.5 Pass Dichlorodifluoromethane mgkg <0.5	cis-1.3-Dichloropropene	mg/kg	< 0.5	0.5	Pass	
Dicktoondiutoromethane mg/kg < 0.5 Pass Isdomethane mg/kg < 0.5	Dibromochloromethane	mg/kg	< 0.5	0.5	Pass	
Iodomethane mg/kg < 0.5 0.5 Pass Isopropul berzene (Cumene) mg/kg < 0.5	Dibromomethane	mg/kg	< 0.5	0.5	Pass	
Isoprophenzene (Cumene) mg/kg < 0.5 Pass Metrylene Chloride mg/kg < 0.5	Dichlorodifluoromethane	mg/kg	< 0.5	0.5	Pass	
Methylene Chloride mg/kg < 0.5 0.5 Pass Styrene mg/kg < 0.5	lodomethane	mg/kg	< 0.5	0.5	Pass	
Styrene mg/kg < 0.5 Pass Tetrachicorethene mg/kg < 0.5	Isopropyl benzene (Cumene)	mg/kg	< 0.5	0.5	Pass	
Tetrachloroethene mg/kg < 0.5 0.5 Pass trans-1.3-Dichloroethene mg/kg < 0.5	Methylene Chloride	mg/kg	< 0.5	0.5	Pass	
trans-1.2-Dichloroethene mg/kg < 0.5 Pass trans-1.3-Dichloropropene mg/kg < 0.5	Styrene	mg/kg	< 0.5	0.5	Pass	
trans-1.3-Dichloropropene mg/kg < 0.5 Pass Trichiorodthone mg/kg < 0.5	Tetrachloroethene	mg/kg	< 0.5	0.5	Pass	
Trichloroethene mg/kg < 0.5 0.5 Pass Trichlorofluoromethane mg/kg < 0.5	trans-1.2-Dichloroethene	mg/kg	< 0.5	0.5	Pass	
Trichlorolluoromethane mg/kg < 0.5 Pass Viny choride mg/kg < 0.5	trans-1.3-Dichloropropene	mg/kg	< 0.5	0.5	Pass	
Yinyi chloride mg/kg < 0.5 Pass Method Blank	Trichloroethene	mg/kg	< 0.5	0.5	Pass	
Method Blank Polycyclic Aromatic Hydrocarbons Image: Constraint of the system of the	Trichlorofluoromethane	mg/kg	< 0.5	0.5	Pass	
Polycyclic Aromatic Hydrocarbons mg/kg < 0.5 Acenaphthylene mg/kg < 0.5	Vinyl chloride	mg/kg	< 0.5	0.5	Pass	
Acenaphthene mg/kg < 0.5 Pass Acenaphthylene mg/kg < 0.5	Method Blank			•		
Acenaphthylene mg/kg < 0.5 0.5 Pass Anthracene mg/kg < 0.5	Polycyclic Aromatic Hydrocarbons					
Anthracene mg/kg < 0.5 0.5 Pass Benz(a)anthracene mg/kg < 0.5		mg/kg	< 0.5	0.5	Pass	
Anthracene mg/kg < 0.5 0.5 Pass Benz(a)anthracene mg/kg < 0.5	•		< 0.5	0.5	Pass	
Benz(a)anthracene mg/kg < 0.5 0.5 Pass Benz(a)anthracene mg/kg < 0.5	· · ·					
Benzo(a)pyrene mg/kg <.0.5 0.5 Pass Benzo(b&)ifluoranthene mg/kg <.0.5						
Benzo(b&)/fluoranthene mg/kg < 0.5 Pass Benzo(b,h)perylene mg/kg < 0.5						
Benzo(g,hi)perylene mg/kg < 0.5 0.5 Pass Benzo(g,hi)perylene mg/kg < 0.5						
Benzo(k)/tuoranthene mg/kg < 0.5 0.5 Pass Chrysene mg/kg < 0.5						
Chrysene mg/kg < 0.5 0.5 Pass Dibenz(a.h)anthracene mg/kg < 0.5						
Dibenz(a.h)anthracene mg/kg < 0.5 0.5 Pass Fluoranthene mg/kg < 0.5						
Fluorathene mg/kg < 0.5 0.5 Pass Fluorene mg/kg < 0.5						
Fluorene mg/kg < 0.5 Pass Indeno(1.2.3-cd)pyrene mg/kg < 0.5						
Indeno(1.2.3-cd)pyrene mg/kg < 0.5 Pass Naphthalene mg/kg < 0.5						
Naphthalene mg/kg < 0.5 Pass Phenanthrene mg/kg < 0.5	Indeno(1.2.3-cd)pyrene					
Phenanthrene mg/kg < 0.5 Pass Pyrene mg/kg < 0.5						
Pyrene mg/kg < 0.5 Pass Method Blank Corganochlorine Pesticides Image Image <t< td=""><td>1</td><td></td><td></td><td></td><td></td><td></td></t<>	1					
Method Blank mg/kg < 0.1 Pass Chlordanes - Total mg/kg < 0.1						
Organochlorine Pesticides Img/kg < 0.1 Pass Chlordanes - Total mg/kg < 0.1	· · ·					
Chlordanes - Total mg/kg < 0.1 Pass 4.4'-DDD mg/kg < 0.05						
4.4'-DDD mg/kg < 0.05		ma/ka	< 0.1	0.1	Pass	
4.4'-DDE mg/kg < 0.05						
4.4'-DDT mg/kg < 0.05						
a-HCH mg/kg < 0.05 Pass Aldrin mg/kg < 0.05						
Aldrin mg/kg < 0.05 Pass b-HCH mg/kg < 0.05						
b-HCH mg/kg < 0.05 Pass d-HCH mg/kg < 0.05						
d-HCH mg/kg < 0.05 0.05 Pass Dieldrin mg/kg < 0.05						
Dieldrin mg/kg < 0.05 Pass Endosulfan I mg/kg < 0.05						
Endosulfan I mg/kg < 0.05 0.05 Pass Endosulfan II mg/kg < 0.05						
Endosulfan II mg/kg < 0.05 0.05 Pass Endosulfan sulphate mg/kg < 0.05						
Endosulfan sulphate mg/kg < 0.05 0.05 Pass Endrin mg/kg < 0.05						
Endrin mg/kg < 0.05 0.05 Pass Endrin aldehyde mg/kg < 0.05						
Endrin aldehyde mg/kg < 0.05 0.05 Pass Endrin ketone mg/kg < 0.05	•					
Endrin ketone mg/kg < 0.05 0.05 Pass g-HCH (Lindane) mg/kg < 0.05						
g-HCH (Lindane) mg/kg < 0.05 0.05 Pass Heptachlor mg/kg < 0.05	-					
Heptachlor mg/kg < 0.05 0.05 Pass						
Heptachlor epoxidemg/kg< 0.05Pass	•					

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.05	0.05	Pass	
Toxaphene	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Organophosphorus Pesticides					
Azinphos-methyl	mg/kg	< 0.2	0.2	Pass	
Bolstar	mg/kg	< 0.2	0.2	Pass	
Chlorfenvinphos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos-methyl	mg/kg	< 0.2	0.2	Pass	
Coumaphos	mg/kg	< 2	2	Pass	
Demeton-S	mg/kg	< 0.2	0.2	Pass	
Demeton-O	mg/kg	< 0.2	0.2	Pass	
Diazinon	mg/kg	< 0.2	0.2	Pass	
Dichlorvos	mg/kg	< 0.2	0.2	Pass	
Dimethoate	mg/kg	< 0.2	0.2	Pass	
Disulfoton	mg/kg	< 0.2	0.2	Pass	
EPN	mg/kg	< 0.2	0.2	Pass	
Ethion	mg/kg	< 0.2	0.2	Pass	
Ethoprop	mg/kg	< 0.2	0.2	Pass	
Ethyl parathion	mg/kg	< 0.2	0.2	Pass	
Fenitrothion	mg/kg	< 0.2	0.2	Pass	
Fensulfothion	mg/kg	< 0.2	0.2	Pass	
Fenthion	mg/kg	< 0.2	0.2	Pass	
Malathion	mg/kg	< 0.2	0.2	Pass	
Merphos	mg/kg	< 0.2	0.2	Pass	
Methyl parathion	mg/kg	< 0.2	0.2	Pass	
Mevinphos	mg/kg	< 0.2	0.2	Pass	
Monocrotophos	mg/kg	< 2	2	Pass	
Naled	mg/kg	< 0.2	0.2	Pass	
Omethoate	mg/kg	< 2	2	Pass	
Phorate	mg/kg	< 0.2	0.2	Pass	
Pirimiphos-methyl	mg/kg	< 0.2	0.2	Pass	
Pyrazophos	mg/kg	< 0.2	0.2	Pass	
Ronnel	mg/kg	< 0.2	0.2	Pass	
Terbufos	mg/kg	< 0.2	0.2	Pass	
Tetrachlorvinphos	mg/kg	< 0.2	0.2	Pass	
Tokuthion	mg/kg	< 0.2	0.2	Pass	
Trichloronate	mg/kg	< 0.2	0.2	Pass	
Method Blank					
Polychlorinated Biphenyls					
Aroclor-1016	mg/kg	< 0.5	0.5	Pass	
Aroclor-1221	mg/kg	< 0.1	0.1	Pass	
Aroclor-1232	mg/kg	< 0.5	0.5	Pass	
Aroclor-1242	mg/kg	< 0.5	0.5	Pass	
Aroclor-1248	mg/kg	< 0.5	0.5	Pass	
Aroclor-1254	mg/kg	< 0.5	0.5	Pass	
Aroclor-1260	mg/kg	< 0.5	0.5	Pass	
Total PCB*	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Semivolatile Organics					
2-Methyl-4.6-dinitrophenol	mg/kg	< 5	5	Pass	
1-Chloronaphthalene	mg/kg	< 0.5	0.5	Pass	
1-Naphthylamine	mg/kg	< 0.5	0.5	Pass	

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
1.2-Dichlorobenzene	mg/kg	< 0.5		0.5	Pass	
1.2.3-Trichlorobenzene	mg/kg	< 0.5		0.5	Pass	
1.2.3.4-Tetrachlorobenzene	mg/kg	< 0.5		0.5	Pass	
1.2.3.5-Tetrachlorobenzene	mg/kg	< 0.5		0.5	Pass	
1.2.4-Trichlorobenzene	mg/kg	< 0.5		0.5	Pass	
1.2.4.5-Tetrachlorobenzene	mg/kg	< 0.5		0.5	Pass	
1.3-Dichlorobenzene	mg/kg	< 0.5		0.5	Pass	
1.3.5-Trichlorobenzene	mg/kg	< 0.5		0.5	Pass	
1.4-Dichlorobenzene	mg/kg	< 0.5		0.5	Pass	
2-Chloronaphthalene	mg/kg	< 0.5		0.5	Pass	
2-Chlorophenol	mg/kg	< 0.5		0.5	Pass	
2-Methylnaphthalene	mg/kg	< 0.5		0.5	Pass	
2-Methylphenol (o-Cresol)	mg/kg	< 0.2		0.2	Pass	
2-Naphthylamine	mg/kg	< 0.5		0.5	Pass	
2-Nitroaniline	mg/kg	< 1		1	Pass	
2-Nitrophenol	mg/kg	< 1		1	Pass	
2-Picoline	mg/kg	< 0.5		0.5	Pass	
2.3.4.6-Tetrachlorophenol	mg/kg	< 0.5		0.5	Pass	
2.4-Dichlorophenol	mg/kg	< 0.5		0.5	Pass	
2.4-Dimethylphenol	mg/kg	< 0.5		0.5	Pass	
2.4-Dinitrophenol	mg/kg	< 5		5	Pass	
2.4-Dinitrotoluene	mg/kg	< 0.5		0.5	Pass	
2.4.5-Trichlorophenol	mg/kg	<1		1	Pass	
2.4.6-Trichlorophenol	mg/kg	<1		1	Pass	
2.6-Dichlorophenol	mg/kg	< 0.5		0.5	Pass	
2.6-Dinitrotoluene	mg/kg	<1		1	Pass	
3&4-Methylphenol (m&p-Cresol)	mg/kg	< 0.4		0.4	Pass	
3-Methylcholanthrene	mg/kg	< 0.5		0.5	Pass	
3.3'-Dichlorobenzidine	mg/kg	< 0.5		0.5	Pass	
4-Aminobiphenyl	mg/kg	< 0.5		0.5	Pass	
4-Bromophenyl phenyl ether	mg/kg	< 0.5		0.5	Pass	
4-Chloro-3-methylphenol	mg/kg	<1		1	Pass	
4-Chlorophenyl phenyl ether	mg/kg	< 0.5		0.5	Pass	
4-Nitrophenol	mg/kg	< 5		5	Pass	
4.4'-DDD	mg/kg	< 0.5		0.5	Pass	
4.4'-DDE	mg/kg	< 0.5		0.5	Pass	
4.4'-DDT	mg/kg	< 1		1	Pass	
7.12-Dimethylbenz(a)anthracene	mg/kg	< 0.5		0.5	Pass	
a-HCH	mg/kg	< 0.5		0.5	Pass	
Acetophenone	mg/kg	< 0.5		0.5	Pass	
Aldrin	mg/kg	< 0.5		0.5	Pass	
Aniline	mg/kg	< 0.5		0.5	Pass	
b-HCH	mg/kg	< 0.5		0.5	Pass	
Benzyl chloride	mg/kg	< 0.5		0.5	Pass	
Bis(2-chloroethoxy)methane	mg/kg	< 0.5		0.5	Pass	
Bis(2-chloroisopropyl)ether	mg/kg	< 0.5		0.5	Pass	
Bis(2-ethylhexyl)phthalate	mg/kg	< 5		5	Pass	
Butyl benzyl phthalate	mg/kg	< 0.5		0.5	Pass	
d-HCH	mg/kg	< 0.5		0.5	Pass	
Di-n-butyl phthalate	mg/kg	< 0.5		0.5	Pass	
Di-n-octyl phthalate	mg/kg	< 0.5		0.5	Pass	
Dibenz(a.j)acridine	mg/kg	< 0.5		0.5	Pass	
Dibenzofuran	mg/kg	< 0.5		0.5	Pass	
Dieldrin	mg/kg	< 0.5		0.5	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Diethyl phthalate	mg/kg	< 0.5	0.5	Pass	
Dimethyl phthalate	mg/kg	< 0.5	0.5	Pass	
Dimethylaminoazobenzene	mg/kg	< 0.5	0.5	Pass	
Diphenylamine	mg/kg	< 0.5	0.5	Pass	
Endosulfan I	mg/kg	< 0.5	0.5	Pass	
Endosulfan II	mg/kg	< 0.5	0.5	Pass	
Endosulfan sulphate	mg/kg	< 0.5	0.5	Pass	
Endrin	mg/kg	< 0.5	0.5	Pass	
Endrin aldehyde	mg/kg	< 0.5	0.5	Pass	
Endrin ketone	mg/kg	< 0.5	0.5	Pass	
g-HCH (Lindane)	mg/kg	< 0.5	0.5	Pass	
Heptachlor	mg/kg	< 0.5	0.5	Pass	
Heptachlor epoxide	mg/kg	< 0.5	0.5	Pass	
Hexachlorobenzene	mg/kg	< 0.5	0.5	Pass	
Hexachlorobutadiene	mg/kg	< 0.5	0.5	Pass	
Hexachlorocyclopentadiene	mg/kg	< 1	1	Pass	
Hexachloroethane	mg/kg	< 0.5	0.5	Pass	
Methoxychlor	mg/kg	< 0.5	0.5	Pass	
N-Nitrosodibutylamine	mg/kg	< 0.5	0.5	Pass	
N-Nitrosodipropylamine	mg/kg	< 0.5	0.5	Pass	
N-Nitrosopiperidine	mg/kg	< 0.5	0.5	Pass	
Nitrobenzene	mg/kg	< 0.5	0.5	Pass	
Pentachlorobenzene	mg/kg	< 0.5	0.5	Pass	
Pentachloronitrobenzene	mg/kg	< 0.5	0.5	Pass	
Pentachlorophenol	mg/kg	< 1	1	Pass	
Phenol	mg/kg	< 0.5	0.5	Pass	
Pronamide	mg/kg	< 0.5	0.5	Pass	
Trifluralin	mg/kg	< 0.5	0.5	Pass	
Method Blank	ing/itg	4 0.0	0.0	1 400	
Heavy Metals				1	
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel		< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery	mg/kg	< 5	D	Pass	
				1	
Total Recoverable Hydrocarbons	0/	02	70.400	Page	
TRH C6-C9	%	92	70-130	Pass	
TRH C10-C14	%	83	70-130	Pass	
Naphthalene	%	115	70-130	Pass	
TRH C6-C10	%	91	70-130	Pass	
TRH >C10-C16	%	87	70-130	Pass	
LCS - % Recovery				1	
BTEX			70.400	Dere	
Benzene	%	91	70-130	Pass	
Toluene	%	91	70-130	Pass	
Ethylbenzene	%	91	70-130	Pass	
m&p-Xylenes	%	94	70-130	Pass	
				-	
o-Xylene Xylenes - Total*	%	92 93	70-130 70-130	Pass Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Volatile Organics					
1.1-Dichloroethene	%	127	70-130	Pass	
1.1.1-Trichloroethane	%	121	70-130	Pass	
1.2-Dichlorobenzene	%	128	70-130	Pass	
1.2-Dichloroethane	%	118	70-130	Pass	
Trichloroethene	%	103	70-130	Pass	
LCS - % Recovery		• • • • • • • • • • • • • • • • • • •		1	
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	99	70-130	Pass	
Acenaphthylene	%	91	70-130	Pass	
Anthracene	%	91	70-130	Pass	
Benz(a)anthracene	%	79	70-130	Pass	
Benzo(a)pyrene	%	90	70-130	Pass	
Benzo(b&j)fluoranthene	%	80	70-130	Pass	
Benzo(g.h.i)perylene	%	91	70-130	Pass	
Benzo(k)fluoranthene	%	84	70-130	Pass	
Chrysene	%	82	70-130	Pass	
Dibenz(a.h)anthracene	%	92	70-130	Pass	
Fluoranthene	%	82	70-130	Pass	
Fluorene	%	85	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	92	70-130	Pass	
Naphthalene	%	84	70-130	Pass	
Phenanthrene	%	83	70-130	Pass	
Pyrene	%	104	70-130	Pass	
LCS - % Recovery		•		-	
Organochlorine Pesticides					
Chlordanes - Total	%	91	70-130	Pass	
4.4'-DDD	%	113	70-130	Pass	
4.4'-DDE	%	85	70-130	Pass	
4.4'-DDT	%	100	70-130	Pass	
a-HCH	%	89	70-130	Pass	
Aldrin	%	87	70-130	Pass	
b-HCH	%	91	70-130	Pass	
d-HCH	%	91	70-130	Pass	
Dieldrin	%	91	70-130	Pass	
Endosulfan I	%	94	70-130	Pass	
Endosulfan II	%	95	70-130	Pass	
Endosulfan sulphate	%	73	70-130	Pass	
Endrin	%	104	70-130	Pass	
Endrin aldehyde	%	79	70-130	Pass	
Endrin ketone	%	76	70-130	Pass	
g-HCH (Lindane)	%	99	70-130	Pass	
Heptachlor	%	95	70-130	Pass	
Heptachlor epoxide	%	111	70-130	Pass	
Hexachlorobenzene	%	84	70-130	Pass	
Methoxychlor	%	98	70-130	Pass	
LCS - % Recovery		1			
Organophosphorus Pesticides					
Diazinon	%	126	70-130	Pass	
Dimethoate	%	97	70-130	Pass	
Ethion	%	122	70-130	Pass	
		I	70.400	D	
Mevinphos	%	128	70-130	Pass	

Test			Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Aroclor-1016			%	93	70-130	Pass	
Aroclor-1260			%	108	70-130	Pass	
LCS - % Recovery							
Semivolatile Organics							
2-Methyl-4.6-dinitrophenol			%	89	30-130	Pass	
1.2.4-Trichlorobenzene			%	95	70-130	Pass	
1.4-Dichlorobenzene			%	95	70-130	Pass	
2-Chlorophenol			%	97	30-130	Pass	
2-Methylphenol (o-Cresol)			%	107	30-130	Pass	
2-Nitrophenol			%	124	30-130	Pass	
2.4-Dichlorophenol			%	114	30-130	Pass	
2.4-Dimethylphenol			%	111	30-130	Pass	
2.4-Dinitrophenol			%	127	30-130	Pass	
2.4-Dinitrotoluene			%	124	70-130	Pass	
2.4.5-Trichlorophenol			%	110	30-130	Pass	
2.4.6-Trichlorophenol			%	121	30-130	Pass	
2.6-Dichlorophenol			%	115	30-130	Pass	
3&4-Methylphenol (m&p-Cresol)			%	114	30-130	Pass	
4-Chloro-3-methylphenol			%	97	30-130	Pass	
4-Nitrophenol			%	99	30-130	Pass	
N-Nitrosodipropylamine			%	107	70-130	Pass	
Pentachlorophenol			%	106	30-130	Pass	
Phenol			%	99	30-130	Pass	
LCS - % Recovery							
Heavy Metals							
Arsenic			%	112	80-120	Pass	
Cadmium			%	96	80-120	Pass	
Chromium			%	103	80-120	Pass	
Copper			%	97	80-120	Pass	
Lead			%	99	80-120	Pass	
Mercury			%	99	80-120	Pass	
Nickel			%	100	80-120	Pass	
Zinc			%	96	80-120	Pass	
		QA			Acceptance	Pass	Qualifying
Test	Lab Sample ID	Source	Units	Result 1	Limits	Limits	Code
Spike - % Recovery				-		-	
Total Recoverable Hydrocarbons	I	,		Result 1			
TRH C6-C9	S21-Au33287	NCP	%	73	70-130	Pass	
TRH C10-C14	S21-Au39938	NCP	%	115	70-130	Pass	
Naphthalene	S21-Au30139	NCP	%	75	70-130	Pass	
TRH C6-C10	S21-Au33287	NCP	%	72	70-130	Pass	
TRH >C10-C16	S21-Au39938	NCP	%	120	70-130	Pass	
Spike - % Recovery				1			
ВТЕХ	Γ	,		Result 1			
Benzene	S21-Au30139	NCP	%	92	70-130	Pass	
Toluene	S21-Au30139	NCP	%	102	70-130	Pass	
Ethylbenzene	S21-Au30139	NCP	%	98	70-130	Pass	
m&p-Xylenes	S21-Au30139	NCP	%	100	70-130	Pass	
o-Xylene	S21-Au30139	NCP	%	100	70-130	Pass	
Xylenes - Total*	S21-Au30139	NCP	%	100	70-130	Pass	
Aylenes - Total					-		
Spike - % Recovery							
	i			Result 1			
Spike - % Recovery	S21-Au41042	СР	%	Result 1 92	70-130	Pass	
Spike - % Recovery Polycyclic Aromatic Hydrocarbons		CP CP	%		70-130 70-130	Pass Pass	

Test	Lab Sample ID	QA Source	Units	Result 1		ceptance Limits	Pass Limits	Qualifying Code
Benz(a)anthracene	S21-Au41042	CP	%	88		70-130	Pass	
Benzo(a)pyrene	S21-Au41042	CP	%	113		70-130	Pass	
Benzo(b&j)fluoranthene	S21-Au41042	CP	%	87	-	70-130	Pass	
Benzo(g.h.i)perylene	S21-Au41042	CP	%	83		70-130	Pass	
Benzo(k)fluoranthene	S21-Au41042	CP	%	90		70-130	Pass	
Chrysene	S21-Au41042	CP	%	99		70-130	Pass	
Dibenz(a.h)anthracene	S21-Au41042	CP	%	85	-	70-130	Pass	
Fluoranthene	S21-Au41042	CP	%	93		70-130	Pass	
Fluorene	S21-Au41042	CP	%	94	-	70-130	Pass	
Indeno(1.2.3-cd)pyrene	S21-Au41042	CP	%	90	-	70-130	Pass	
Naphthalene	S21-Au41042	CP	%	94	-	70-130	Pass	
Phenanthrene	S21-Au41042	CP	%	89	-	70-130	Pass	
Pyrene	S21-Au41042	CP	%	98		70-130	Pass	
Spike - % Recovery								
Organochlorine Pesticides				Result 1				
Chlordanes - Total	S21-Au41042	CP	%	99		70-130	Pass	
4.4'-DDD	S21-Au41042	CP	%	111		70-130	Pass	
4.4'-DDE	S21-Au41042	CP	%	93		70-130	Pass	
4.4'-DDT	S21-Au41042	CP	%	81	-	70-130	Pass	
a-HCH	S21-Au41042	CP	%	93		70-130	Pass	
Aldrin	S21-Au41042	CP	%	75		70-130	Pass	
b-HCH	S21-Au41042	CP	%	90		70-130	Pass	
d-HCH	S21-Au41042	CP	%	96		70-130	Pass	
Dieldrin	S21-Au41042	CP	%	96	-	70-130	Pass	
Endosulfan I	S21-Au41042	CP	%	122		70-130	Pass	
Endosulfan II	S21-Au41042	CP	%	98		70-130	Pass	
Endrin	S21-Au41042	CP	%	105		70-130	Pass	
g-HCH (Lindane)	S21-Au41042	CP	%	107		70-130	Pass	
Heptachlor	S21-Au28930	NCP	%	82		70-130	Pass	
Heptachlor epoxide	S21-Au41042	CP	%	128		70-130	Pass	
Hexachlorobenzene	S21-Au41042	CP	%	93		70-130	Pass	
Spike - % Recovery								
Organophosphorus Pesticides				Result 1				
Dimethoate	S21-Au41042	CP	%	70		70-130	Pass	
Spike - % Recovery								
Polychlorinated Biphenyls				Result 1				
Aroclor-1016	S21-Au41042	CP	%	101		70-130	Pass	
Aroclor-1260	S21-Au41042	CP	%	116		70-130	Pass	
Spike - % Recovery								
Semivolatile Organics				Result 1				
2-Chlorophenol	S21-Au28930	NCP	%	94		30-130	Pass	
2-Methylphenol (o-Cresol)	S21-Au28930	NCP	%	95		30-130	Pass	
2.4-Dichlorophenol	W21-Au32071	NCP	%	114		30-130	Pass	
2.4-Dimethylphenol	S21-Au28930	NCP	%	85		30-130	Pass	
2.4-Dinitrophenol	W21-Au32071	NCP	%	117		70-130	Pass	
2.4.5-Trichlorophenol	W21-Au32071	NCP	%	112		30-130	Pass	
2.4.6-Trichlorophenol	W21-Au32071	NCP	%	129		30-130	Pass	
2.6-Dichlorophenol	S21-Au28930	NCP	%	80		30-130	Pass	
3&4-Methylphenol (m&p-Cresol)	S21-Au28930	NCP	%	80		30-130	Pass	
4-Chloro-3-methylphenol	S21-Au41042	СР	%	97		30-130	Pass	
Pentachlorophenol	W21-Au32071	NCP	%	130		30-130	Pass	
Phenol	S21-Au28930	NCP	%	95		30-130	Pass	
Spike - % Recovery					· · · · · · · · · · · · · · · · · · ·			
Heavy Metals				Result 1				

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Arsenic	S21-Au41107	NCP	%	98			75-125	Pass	
Cadmium	S21-Au41107	NCP	%	86			75-125	Pass	
Chromium	S21-Au41107	NCP	%	88			75-125	Pass	
Copper	S21-Au36366	NCP	%	86			75-125	Pass	
Lead	S21-Au41107	NCP	%	85			75-125	Pass	
Mercury	S21-Au41107	NCP	%	86			75-125	Pass	
Nickel	S21-Au41107	NCP	%	79			75-125	Pass	
Zinc	S21-Au41107	NCP	%	84			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbons		-		Result 1	Result 2	RPD			
TRH C6-C9	S21-Au41042	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S21-Au39937	NCP	mg/kg	< 20	24	43	30%	Fail	Q15
TRH C15-C28	S21-Au39937	NCP	mg/kg	81	110	34	30%	Fail	Q15
TRH C29-C36	S21-Au39937	NCP	mg/kg	78	110	30	30%	Pass	
Naphthalene	S21-Au41042	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S21-Au41042	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	S21-Au39937	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S21-Au39937	NCP	mg/kg	140	190	31	30%	Fail	Q15
TRH >C34-C40	S21-Au39937	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	S21-Au41042	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S21-Au41042	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S21-Au41042	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S21-Au41042	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S21-Au41042	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total*	S21-Au41042	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate				1 0.0	1 010		0070	1 0.00	
Volatile Organics				Result 1	Result 2	RPD			
1.1-Dichloroethane	S21-Au41042	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.1-Dichloroethene	S21-Au41042	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.1.1-Trichloroethane	S21-Au41042	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.1.1.2-Tetrachloroethane	S21-Au41042	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.1.2-Trichloroethane	S21-Au41042	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.1.2.2-Tetrachloroethane	S21-Au41042	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.2-Dibromoethane	S21-Au41042	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.2-Dichlorobenzene	S21-Au41042	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.2-Dichloroethane	S21-Au41042	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.2-Dichloropropane	S21-Au41042	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.2.3-Trichloropropane	S21-Au41042	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.2.4-Trimethylbenzene	S21-Au41042	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.3-Dichlorobenzene	S21-Au41042 S21-Au41042	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.3-Dichloropropane	S21-Au41042 S21-Au41042	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.3.5-Trimethylbenzene	S21-Au41042 S21-Au41042	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.4-Dichlorobenzene	S21-Au41042 S21-Au41042	CP		< 0.5	< 0.5	<1	30%	Pass	
2-Butanone (MEK)	S21-Au41042 S21-Au41042	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2-Propanone (Acetone)	S21-Au41042 S21-Au41042	CP	mg/kg	< 0.5	< 0.5	<1 <1	30%	Pass	
· · · · · · · · · · · · · · · · · · ·		CP	mg/kg						
4-Chlorotoluene	S21-Au41042	-	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
4-Methyl-2-pentanone (MIBK)	S21-Au41042	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Allyl chloride	S21-Au41042	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Bromobenzene	S21-Au41042	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Bromochloromethane	S21-Au41042	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Bromodichloromethane	S21-Au41042	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Duplicate									
Volatile Organics				Result 1	Result 2	RPD			
Bromoform	S21-Au41042	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Bromomethane	S21-Au41042	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Carbon disulfide	S21-Au41042	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Carbon Tetrachloride	S21-Au41042	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chlorobenzene	S21-Au41042	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chloroethane	S21-Au41042	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chloroform	S21-Au41042	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chloromethane	S21-Au41042	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
cis-1.2-Dichloroethene	S21-Au41042	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
cis-1.3-Dichloropropene	S21-Au41042	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibromochloromethane	S21-Au41042	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibromomethane	S21-Au41042	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dichlorodifluoromethane	S21-Au41042	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
lodomethane	S21-Au41042	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Isopropyl benzene (Cumene)	S21-Au41042	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Methylene Chloride	S21-Au41042	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Styrene	S21-Au41042	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Tetrachloroethene	S21-Au41042	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
trans-1.2-Dichloroethene	S21-Au41042	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
trans-1.3-Dichloropropene	S21-Au41042	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Trichloroethene	S21-Au41042	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Trichlorofluoromethane	S21-Au41042	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Vinyl chloride	S21-Au41042	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Polycyclic Aromatic Hydrocarbons	5			Result 1	Result 2	RPD			
Acenaphthene	S21-Au39937	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S21-Au39937	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S21-Au39937	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S21-Au39937	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S21-Au39937	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S21-Au39937	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S21-Au39937	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S21-Au39937	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S21-Au39937	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S21-Au39937	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S21-Au39937	NCP	mg/kg	< 0.5	0.7	55	30%	Fail	
Fluorene	S21-Au39937	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S21-Au39937	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S21-Au39937	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S21-Au39937	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S21-Au39937	NCP	mg/kg	< 0.5	0.8	62	30%	Fail	
Duplicate				1	1		_	_	
Organochlorine Pesticides	1	1		Result 1	Result 2	RPD			
Chlordanes - Total	S21-Au39937	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S21-Au39937	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S21-Au39937	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S21-Au39937	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-HCH	S21-Au39937	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S21-Au39937	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-HCH	S21-Au39937	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-HCH	S21-Au39937	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S21-Au39937	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S21-Au39937	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S21-Au39937	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	

Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Endosulfan sulphate	S21-Au39937	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S21-Au39937	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S21-Au39937	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S21-Au39937	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-HCH (Lindane)	S21-Au39937	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S21-Au39937	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S21-Au39937	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S21-Au39937	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S21-Au39937	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Toxaphene	S21-Au39937	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate	0217/000007		iiig/kg	v 0.0	< 0.0		0070	1 400	
Organophosphorus Pesticides	8			Result 1	Result 2	RPD			
Azinphos-methyl	S21-Au28082	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Bolstar	S21-Au28082	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorfenvinphos	S21-Au28082	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos	S21-Au28082	NCP	mg/kg	< 0.2	< 0.2	<1 <1	30%	Pass	
Chlorpyrifos-methyl	S21-Au28082	NCP	mg/kg	< 0.2	< 0.2	<1 <1	30%	Pass	
Coumaphos	S21-Au28082	NCP		< 0.2	< 0.2	<1 <1	30%	Pass	
Demeton-S	S21-Au28082	NCP	mg/kg	< 0.2	< 0.2	<1 <1	30%	Pass	
Demeton-S Demeton-O	S21-Au28082 S21-Au28082	NCP	mg/kg				30%	Pass	
Demeton-O Diazinon	S21-Au28082 S21-Au28082	NCP	mg/kg	< 0.2 < 0.2	< 0.2 < 0.2	<1 <1	30%	Pass	
			mg/kg						
Dichlorvos	S21-Au28082	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dimethoate	S21-Au28082	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Disulfoton	S21-Au28082	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
EPN	S21-Au28082	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethion	S21-Au28082	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethoprop	S21-Au28082	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethyl parathion	S21-Au28082	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenitrothion	S21-Au28082	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fensulfothion	S21-Au28082	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenthion	S21-Au28082	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Malathion	S21-Au28082	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Merphos	S21-Au28082	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Methyl parathion	S21-Au28082	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Mevinphos	S21-Au28082	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Monocrotophos	S21-Au28082	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Naled	S21-Au28082	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Omethoate	S21-Au28082	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Phorate	S21-Au28082	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pirimiphos-methyl	S21-Au28082	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pyrazophos	S21-Au28082	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ronnel	S21-Au28082	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Terbufos	S21-Au28082	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tetrachlorvinphos	S21-Au28082	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tokuthion	S21-Au28082	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Trichloronate	S21-Au28082	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Duplicate				1				-	
Polychlorinated Biphenyls				Result 1	Result 2	RPD		<u> </u>	
Aroclor-1016	S21-Au39937	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1221	S21-Au39937	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	S21-Au39937	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1242	S21-Au39937	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1248	S21-Au39937	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1254	S21-Au39937	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

mg/kg mg/kg	Result 1 < 0.5	Result 2	RPD		
	< 0.5				
mg/kg		< 0.5	<1	30%	Pass
	< 0.5	< 0.5	<1	30%	Pass
	Result 1	Result 2	RPD		
mg/kg	< 5	< 5	<1	30%	Pass
mg/kg	< 0.5	< 0.5	<1	30%	Pass
mg/kg	< 0.5	< 0.5	<1	30%	Pass
mg/kg	< 0.5	< 0.5	<1	30%	Pass
mg/kg	< 0.5	< 0.5	<1	30%	Pass
mg/kg	< 0.5	< 0.5	<1	30%	Pass
mg/kg	< 0.5	< 0.5	<1	30%	Pass
mg/kg	< 0.5	< 0.5	<1	30%	Pass
mg/kg	< 0.5	< 0.5	<1	30%	Pass
mg/kg	< 0.5	< 0.5	<1	30%	Pass
mg/kg	< 0.5	< 0.5	<1	30%	Pass
mg/kg	< 0.5	< 0.5	<1	30%	Pass
mg/kg	< 0.5	< 0.5	<1	30%	Pass
mg/kg	< 0.5	< 0.5	<1	30%	Pass
mg/kg	< 0.5	< 0.5	<1	30%	Pass
mg/kg	< 0.2	< 0.2	<1	30%	Pass
mg/kg	< 0.5	< 0.5	<1	30%	Pass
mg/kg	< 1	< 1	<1	30%	Pass
mg/kg	< 1	< 1	<1	30%	Pass
mg/kg	< 0.5	< 0.5	<1	30%	Pass
mg/kg	< 0.5	< 0.5	<1	30%	Pass
mg/kg	< 0.5	< 0.5	<1	30%	Pass
mg/kg	< 0.5	< 0.5	<1	30%	Pass
mg/kg	< 5	< 5	<1	30%	Pass
mg/kg	< 0.5	< 0.5	<1	30%	Pass
mg/kg	< 1	< 1	<1	30%	Pass
mg/kg	< 1	< 1	<1	30%	Pass
mg/kg	< 0.5	< 0.5	<1	30%	Pass
mg/kg	< 1	< 1	<1	30%	Pass
mg/kg	< 0.4	< 0.4	<1	30%	Pass
mg/kg	< 0.5	< 0.5	<1	30%	Pass
mg/kg	< 0.5	< 0.5	<1	30%	Pass
mg/kg	< 0.5	< 0.5	<1	30%	Pass
mg/kg	< 0.5	< 0.5	<1	30%	Pass
mg/kg	< 1	< 1	<1	30%	Pass
mg/kg	< 0.5	< 0.5	<1	30%	Pass
mg/kg	< 5	< 5	<1	30%	Pass
mg/kg	< 0.5	< 0.5	<1	30%	Pass
mg/kg	< 0.5	< 0.5	<1	30%	Pass
mg/kg	< 1	< 1	<1	30%	Pass
mg/kg	< 0.5	< 0.5	<1	30%	Pass
mg/kg	< 0.5	< 0.5	<1	30%	Pass
mg/kg	< 0.5	< 0.5	<1	30%	Pass
mg/kg	< 0.5	< 0.5	<1	30%	Pass
mg/kg					Pass
					Pass Pass
n n n	ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg	ng/kg < 0.5 ng/kg < 0.5 ng/kg < 0.5 ng/kg < 0.5 ng/kg < 0.5	ng/kg < 0.5 < 0.5 ng/kg < 0.5	ng/kg < 0.5 < 0.5 < 1 ng/kg < 0.5	ng/kg < 0.5 < 0.5 < 1 30% ng/kg < 0.5

Duplicate									
Semivolatile Organics				Result 1	Result 2	RPD			
Butyl benzyl phthalate	S21-Au28082	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
d-HCH	S21-Au28082	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Di-n-butyl phthalate	S21-Au28082	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Di-n-octyl phthalate	S21-Au28082	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.j)acridine	S21-Au28082	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenzofuran	S21-Au28082	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dieldrin	S21-Au28082	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Diethyl phthalate	S21-Au28082	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dimethyl phthalate	S21-Au28082	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dimethylaminoazobenzene	S21-Au28082	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Diphenylamine	S21-Au28082	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Endosulfan I	S21-Au28082	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Endosulfan II	S21-Au28082	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Endosulfan sulphate	S21-Au28082	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Endrin	S21-Au28082	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Endrin aldehyde	S21-Au28082	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Endrin ketone	S21-Au28082	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
g-HCH (Lindane)	S21-Au28082	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Heptachlor	S21-Au28082	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Heptachlor epoxide	S21-Au28082	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Hexachlorobenzene	S21-Au28082	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Hexachlorobutadiene	S21-Au28082	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Hexachlorocyclopentadiene	S21-Au28082	NCP	mg/kg	< 1	< 1	<1	30%	Pass	
Hexachloroethane	S21-Au28082	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Methoxychlor	S21-Au28082	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
N-Nitrosodibutylamine	S21-Au28082	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
N-Nitrosodipropylamine	S21-Au28082	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
N-Nitrosopiperidine	S21-Au28082	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Nitrobenzene	S21-Au28082	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pentachlorobenzene	S21-Au28082	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pentachloronitrobenzene	S21-Au28082	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pentachlorophenol	W21-Au32070	NCP	mg/kg	< 1	< 1	<1	30%	Pass	
Phenol	W21-Au32070	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pronamide	S21-Au28082	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Trifluralin	S21-Au28082	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Lead	S21-Au38651	NCP	mg/kg	13	13	2.0	30%	Pass	
Zinc	S21-Au38651	NCP	mg/kg	17	17	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S21-Au41044	CP	%	4.7	4.7	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S21-Au41045	CP	mg/kg	14	22	48	30%	Fail	Q15
Cadmium	S21-Au41045	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S21-Au41045	CP	mg/kg	29	35	20	30%	Pass	
Copper	S21-Au41045	CP	mg/kg	39	58	37	30%	Fail	Q15
Mercury	S21-Au41045	CP	mg/kg	1.0	1.3	27	30%	Pass	
Nickel	S21-Au41045	CP	mg/kg	9.9	15	40	30%	Fail	Q15

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code	Description
G01	The LORs have been raised due to matrix interference
N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
N07	Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised by:

Ursula Long	Analytical Services Manager
Andrew Sullivan	Senior Analyst-Organic (NSW)
John Nguyen	Senior Analyst-Metal (NSW)
Roopesh Rangarajan	Senior Analyst-Volatile (NSW)

li fil

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Certificate of Analysis

Environment Testing

Greencap NSW P/L Ground Floor, North Building, 22 Giffnock Avenue Macquarie Park NSW 2113

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention:	
Report	
Project name	
Project ID	

Received Date

823273-L ADDITIONAL SOPHS J169135 Sep 09, 2021

Shihui Wang

Client Sample ID Sample Matrix Eurofins Sample No.			GG12(1.4-1.5) US Leachate S21-Se17228
Date Sampled			Aug 23, 2021
Test/Reference	LOR	Unit	
Polycyclic Aromatic Hydrocarbons			
Benzo(a)pyrene	0.001	mg/L	< 0.001
USA Leaching Procedure			
Leachate Fluid ^{C01}		comment	1.0
pH (initial)	0.1	pH Units	7.6
pH (off)	0.1	pH Units	5.2
pH (USA HCI addition)	0.1	pH Units	1.8

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Polycyclic Aromatic Hydrocarbons	Sydney	Sep 09, 2021	7 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
USA Leaching Procedure	Sydney	Sep 09, 2021	14 Days
- Method: LTM-GEN-7010 Leaching Procedure for Soils & Solid Wastes			

	eurofi	ns		1	Australia							New Zealand	
			ironment u email: EnviroSa	Testing	Velbourne 5 Monterey Road Dandenong South VIC 3 Phone : +61 3 8564 500 NATA # 1261 Site # 125	U 175 1 0 L 4 P	hone : +	Iding F 1/ ad M West NSW 2066 Pt	risbane /21 Smallwood Place lurarrie QLD 4172 hone : +61 7 3902 4600 ATA # 1261 Site # 20794	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 76 Phone: 0800 856 450 IANZ # 1290
	ipany Name: ress:	Greencap N Ground Floo Macquarie P NSW 2113	r, North Build	ing, 22 Giffnock	Avenue		R	one: C	323273 02 9889 1800 02 9889 1811		Received: Due: Priority: Contact Name:	Sep 9, 2021 1:59 F Sep 10, 2021 1 Day Shihui Wang	M
	ect Name: ect ID:	ADDITIONA J169135	L SOPHS								Eurofins Analytical	Services Manager : l	Jrsula Long
		Sa	mple Detail			Benzo(a)pyrene	USA Leaching Procedure						
		ry - NATA Site											
		NATA Site # 1				X	X						
		- NATA Site #											
		ATA Site # 237											
		- NATA Site #	20079										
No	nal Laboratory Sample ID	Sample Date	Sampling Time	Matrix	LAB ID								
1 (GG12(1.4-1.5)	Aug 23, 2021		US Leachate	S21-Se17228	Х	Х						
	Counts					1	1						

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
QSM	US Department of Defense Quality Systems Manual Version 5.3
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code		
Method Blank									
Polycyclic Aromatic Hydrocarbons									
Benzo(a)pyrene			mg/L	< 0.001			0.001	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Polycyclic Aromatic Hydrocarbons		Result 1	Result 2	RPD					
Benzo(a)pyrene	S21-Se09101	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code

Description Leachate Fluid Key: 1 - pH 5.0; 2 - pH 2.9; 3 - pH 9.2; 4 - Reagent (DI) water; 5 - Client sample, 6 - other C01

Authorised by:

Ursula Long Andrew Sullivan

Analytical Services Manager Senior Analyst-Organic (NSW)

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service
- Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Certificate of Analysis

Environment Testing

Greencap NSW P/L Ground Floor, North Building, 22 Giffnock Avenue Macquarie Park NSW 2113

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection and proficiency testing scheme providers reports.

Attention:

Shihui Wang

Report Project name Project ID Received Date **794152-S-V2** ADDITIONAL - SYDNEY OLYMPIC PARK HS J169135-01 May 10, 2021

Client Sample ID			GG5-05-ASS (2.0-2.1)	GG5-06-ASS (3.5-3.6)	GG5-07-ASS (4.5-4.6)	GG1-07-ASS (2.0-2.1)
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-My19417	S21-My19418	S21-My19419	S21-My19420
Date Sampled			Apr 29, 2021	Apr 29, 2021	Apr 29, 2021	Apr 29, 2021
Test/Reference	LOR	Unit				
SPOCAS Suite						
pH-KCL	0.1	pH Units	4.7	8.4	9.0	9.0
pH-OX	0.1	pH Units	5.7	3.4	8.0	8.0
Acid trail - Titratable Actual Acidity	2	mol H+/t	34	< 2	< 2	< 2
Acid trail - Titratable Peroxide Acidity	2	mol H+/t	35	390	< 2	< 2
Acid trail - Titratable Sulfidic Acidity	2	mol H+/t	< 2	390	< 2	< 2
sulfidic - TAA equiv. S% pyrite	0.003	% pyrite S	0.050	< 0.003	< 0.003	< 0.003
sulfidic - TPA equiv. S% pyrite	0.02	% pyrite S	0.06	0.62	< 0.02	< 0.02
sulfidic - TSA equiv. S% pyrite	0.02	% pyrite S	< 0.02	0.62	< 0.02	< 0.02
Sulfur - KCI Extractable	0.02	% S	0.02	0.07	0.10	< 0.02
Sulfur - Peroxide	0.02	% S	0.03	1.3	1.3	0.07
Sulfur - Peroxide Oxidisable Sulfur	0.02	% S	< 0.02	1.2	1.2	0.06
acidity - Peroxide Oxidisable Sulfur	10	mol H+/t	< 10	750	730	39
HCI Extractable Sulfur Correction Factor	1	factor	2.0	2.0	2.0	2.0
HCI Extractable Sulfur	0.02	% S	N/A	N/A	N/A	N/A
Net Acid soluble sulfur	0.02	% S	N/A	N/A	N/A	N/A
Net Acid soluble sulfur - acidity units	10	mol H+/t	N/A	N/A	N/A	N/A
Net Acid soluble sulfur - equivalent S% pyrite ^{S02}	0.02	% S	N/A	N/A	N/A	N/A
Calcium - KCI Extractable	0.02	% Ca	< 0.02	0.30	0.22	0.17
Calcium - Peroxide	0.02	% Ca	< 0.02	0.60	3.7	0.74
Acid Reacted Calcium	0.02	% Ca	< 0.02	0.30	3.5	0.57
acidity - Acid Reacted Calcium	10	mol H+/t	< 10	150	1700	280
sulfidic - Acid Reacted Ca equiv. S% pyrite	0.02	% S	< 0.02	0.24	2.8	0.46
Magnesium - KCI Extractable	0.02	% Mg	0.11	0.14	0.06	0.02
Magnesium - Peroxide	0.02	% Mg	0.12	0.33	0.16	0.03
Acid Reacted Magnesium	0.02	% Mg	< 0.02	0.19	0.10	< 0.02
acidity - Acid Reacted Magnesium	10	mol H+/t	< 10	160	85	< 10
sulfidic - Acid Reacted Mg equiv. S% pyrite	0.02	% S	< 0.02	0.25	0.14	< 0.02
Acid Neutralising Capacity (ANCE)	0.02	% CaCO3	N/A	N/A	4.6	1.6
Acid Neutralising Capacity - Acidity units (a-ANCE)	10	mol H+/t	n/a	n/a	910	310
Acid Neutralising Capacity - equivalent S% pyrite(s- ANCE)	0.02	% S	N/A	N/A	1.5	0.50
ANC Fineness Factor		factor	1.5	1.5	1.5	1.5
SPOCAS - Net Acidity (Sulfur Units)	0.02	% S	0.06	0.82	< 0.02	< 0.02
SPOCAS - Net Acidity (Acidity Units)	10	mol H+/t	40	510	< 10	< 10
SPOCAS - Liming rate	1	kg CaCO3/t	3.0	38	< 1	< 1

Client Sample ID			GG5-05-ASS (2.0-2.1)	GG5-06-ASS (3.5-3.6)	GG5-07-ASS (4.5-4.6)	GG1-07-ASS (2.0-2.1)
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-My19417	S21-My19418	S21-My19419	S21-My19420
Date Sampled			Apr 29, 2021	Apr 29, 2021	Apr 29, 2021	Apr 29, 2021
Test/Reference	LOR	Unit				
Extraneous Material						
<2mm Fraction	0.005	g	94	32	64	79
>2mm Fraction	0.005	g	8.4	5.7	26	8.2
Analysed Material	0.1	%	92	85	71	91
Extraneous Material	0.1	%	8.2	15	29	9.4
% Moisture	1	%	12	40	26	20

Γ	1	1		
Client Sample ID			GG1-08-ASS (2.6-2.7)	GG2-04- ASS(3.5-3.6)
Sample Matrix			Soil	Soil
Eurofins Sample No.			S21-My19421	S21-My19422
Date Sampled			Apr 29, 2021	Apr 29, 2021
Test/Reference	LOR	Unit		
SPOCAS Suite	LOIX	Offic		
pH-KCL	0.1	pH Units	8.8	7.9
pH-OX	0.1	pH Units	7.2	3.8
Acid trail - Titratable Actual Acidity	2	mol H+/t	< 2	< 2
Acid trail - Titratable Peroxide Acidity	2	mol H+/t	< 2	290
Acid trail - Titratable Sulfidic Acidity	2	mol H+/t	< 2	290
sulfidic - TAA equiv. S% pyrite	0.003	% pyrite S	< 0.003	< 0.003
sulfidic - TPA equiv. S% pyrite	0.02	% pyrite S	< 0.02	0.46
sulfidic - TSA equiv. S% pyrite	0.02	% pyrite S	< 0.02	0.46
Sulfur - KCI Extractable	0.02	% S	0.07	0.06
Sulfur - Peroxide	0.02	% S	1.2	0.85
Sulfur - Peroxide Oxidisable Sulfur	0.02	% S	1.1	0.79
acidity - Peroxide Oxidisable Sulfur	10	mol H+/t	710	490
HCI Extractable Sulfur Correction Factor	1	factor	2.0	2.0
HCI Extractable Sulfur	0.02	% S	N/A	N/A
Net Acid soluble sulfur	0.02	% S	N/A	N/A
Net Acid soluble sulfur - acidity units	10	mol H+/t	N/A	N/A
Net Acid soluble sulfur - equivalent S% pyrite ^{S02}	0.02	% S	N/A	N/A
Calcium - KCI Extractable	0.02	% Ca	0.25	0.14
Calcium - Peroxide	0.02	% Ca	1.7	0.24
Acid Reacted Calcium	0.02	% Ca	1.4	0.10
acidity - Acid Reacted Calcium	10	mol H+/t	710	50
sulfidic - Acid Reacted Ca equiv. S% pyrite	0.02	% S	1.1	0.08
Magnesium - KCI Extractable	0.02	% Mg	0.06	0.14
Magnesium - Peroxide	0.02	% Mg	0.12	0.30
Acid Reacted Magnesium	0.02	% Mg	0.06	0.17
acidity - Acid Reacted Magnesium	10	mol H+/t	47	140
sulfidic - Acid Reacted Mg equiv. S% pyrite	0.02	% S	0.08	0.22
Acid Neutralising Capacity (ANCE)	0.02	% CaCO3	0.62	N/A
Acid Neutralising Capacity - Acidity units (a-ANCE)	10	mol H+/t	120	n/a
Acid Neutralising Capacity - equivalent S% pyrite(s- ANCE)	0.02	% S	0.20	N/A
ANC Fineness Factor		factor	1.5	1.5
SPOCAS - Net Acidity (Sulfur Units)	0.02	% S	0.25	0.57
SPOCAS - Net Acidity (Acidity Units)	10	mol H+/t	150	350
SPOCAS - Liming rate	1	kg CaCO3/t	12	27

Client Sample ID Sample Matrix Eurofins Sample No.			GG1-08-ASS (2.6-2.7) Soil S21-My19421	GG2-04- ASS(3.5-3.6) Soil S21-My19422
Date Sampled			Apr 29, 2021	Apr 29, 2021
Test/Reference	LOR	Unit		
Extraneous Material				
<2mm Fraction	0.005	g	78	20
>2mm Fraction	0.005	g	4.8	< 0.005
Analysed Material	0.1	%	94	100
Extraneous Material	0.1	%	5.8	< 0.1
% Moisture	1	%	31	36

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
SPOCAS Suite SPOCAS Suite	Brisbane	May 13, 2021	6 Week
- Method: LTM-GEN-7050	Disbane	Way 13, 2021	0 WEEK
Extraneous Material	Brisbane	May 13, 2021	6 Week
- Method: LTM-GEN-7050/7070	Drickers	May 14, 0004	
% Moisture - Method: LTM-GEN-7080 Moisture	Brisbane	May 11, 2021	14 Days

	eurofi	nc			Australia							New Zealand	
	0 005 085 521 web:	Envi	email: EnviroSale	0	Melbourne 6 Monterey Road Dandenong South VIC 3 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271	U 175 1) L P	6 Mars ane Co hone : -		Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7 Phone : 0800 856 450 IANZ # 1290
	ompany Name: Greencap NSW P/L ddress: Ground Floor, North Building, 22 Giffnock Avenue Macquarie Park NSW 2113						R P	rder No.: eport #: none: ax:	794152 02 9889 1800 02 9889 1811		Received: Due: Priority: Contact Name:	May 10, 2021 1:20 May 17, 2021 5 Day Shihui Wang	PM
	ject Name: ject ID:	ADDITIONA J169135-01	L - SYDNEY (OLYMPIC PAF	RK HS						Eurofins Analytical	Services Manager : I	Jrsula Long
		Sa	mple Detail			SPOCAS Suite	Moisture Set						
lelb	ourne Laborato	ory - NATA Site	# 1254 & 142	271				-					
	ey Laboratory							-					
-	ane Laborator					Х	X	1					
Perth	h Laboratory - N	ATA Site # 237	736]					
Mayf	ield Laboratory	- NATA Site #	25079					-					
	rnal Laboratory	1	1	1				-					
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID								
I	GG5-05-ASS (2.0-2.1)	Apr 29, 2021		Soil	S21-My19417	х	x						
2	GG5-06-ASS (3.5-3.6)	Apr 29, 2021		Soil	S21-My19418	х	x						
3	GG5-07-ASS (4.5-4.6)	Apr 29, 2021		Soil	S21-My19419	х	х						
1	GG1-07-ASS (2.0-2.1)	Apr 29, 2021		Soil	S21-My19420	х	x						
	GG1-08-ASS	Apr 29, 2021		Soil	S21-My19421	х	x						
5	(2.6-2.7)				S21-My19422			4					

🚯 eurofir	15	Australia						New Zealand	
•••	Environment Testing	Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271	Unit 16 M Lan Pho	Iney F3, Building F Mars Road e Cove West NSW 2066 ine : +61 2 9900 8400 FA # 1261 Site # 18217	Brisbane 1/21 Smallwood Place Murarie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7 Phone : 0800 856 450 IANZ # 1290
Company Name: Address:	Greencap NSW P/L Ground Floor, North Building, 22 Giffno Macquarie Park NSW 2113	ck Avenue		Order No.: Report #: Phone: Fax:	794152 02 9889 1800 02 9889 1811		Received: Due: Priority: Contact Name:	May 10, 2021 1:20 May 17, 2021 5 Day Shihui Wang	РМ
Project Name: Project ID:	ADDITIONAL - SYDNEY OLYMPIC PA J169135-01	RK HS					Eurofins Analytical	Services Manager : l	Jrsula Long
	Sample Detail		SPOCAS Suite	Moisture Set					
Melbourne Laborator	y - NATA Site # 1254 & 14271								
Sydney Laboratory -									
Brisbane Laboratory	- NATA Site # 20794		x	x					
Perth Laboratory - N/	ATA Site # 23736								
Mayfield Laboratory -	- NATA Site # 25079								
External Laboratory									
ASS(3.5-3.6)									

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Limit of Reporting.
Addition of the analyte to the sample and reported as percentage recovery.
Relative Percent Difference between two Duplicate pieces of analysis.
Laboratory Control Sample - reported as percent recovery.
Certified Reference Material - reported as percent recovery.
In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
The addition of a like compound to the analyte target and reported as percentage recovery.
A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
United States Environmental Protection Agency
American Public Health Association
Toxicity Characteristic Leaching Procedure
Chain of Custody
Sample Receipt Advice
US Department of Defense Quality Systems Manual Version 5.3
Client Parent - QC was performed on samples pertaining to this report
Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code		
LCS - % Recovery									
SPOCAS Suite									
pH-KCL			%	102			80-120	Pass	
Acid trail - Titratable Actual Acidity			%	97			80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate							Í	1	
SPOCAS Suite		1	1	Result 1	Result 2	RPD			
pH-KCL	S21-My22121	NCP	pH Units	8.3	8.3	<1	30%	Pass	
pH-OX	S21-My22121	NCP	pH Units	7.4	7.4	<1	30%	Pass	
Acid trail - Titratable Actual Acidity	S21-My22121	NCP	mol H+/t	< 2	< 2	<1	30%	Pass	
Acid trail - Titratable Peroxide Acidity	S21-My22121	NCP	mol H+/t	< 2	< 2	<1	30%	Pass	
Acid trail - Titratable Sulfidic Acidity	S21-My22121	NCP	mol H+/t	< 2	< 2	<1	30%	Pass	
sulfidic - TAA equiv. S% pyrite	S21-My22121	NCP	% pyrite S	< 0.003	< 0.003	<1	30%	Pass	
sulfidic - TPA equiv. S% pyrite	S21-My22121	NCP	% pyrite S	< 0.02	< 0.02	<1	30%	Pass	
sulfidic - TSA equiv. S% pyrite	S21-My22121	NCP	% pyrite S	< 0.02	< 0.02	<1	30%	Pass	
Sulfur - KCI Extractable	S21-My22121	NCP	% S	< 0.02	< 0.02	<1	30%	Pass	
Sulfur - Peroxide	S21-My22121	NCP	% S	0.11	0.11	2.0	30%	Pass	
Sulfur - Peroxide Oxidisable Sulfur	S21-My22121	NCP	% S	0.11	0.11	2.0	30%	Pass	
acidity - Peroxide Oxidisable Sulfur	S21-My22121	NCP	mol H+/t	67	66	2.0	30%	Pass	
HCI Extractable Sulfur	S21-My22121	NCP	% S	N/A	N/A	N/A	30%	Pass	
Net Acid soluble sulfur	S21-My22121	NCP	% S	N/A	N/A	N/A	30%	Pass	
Net Acid soluble sulfur - acidity units	S21-My22121	NCP	mol H+/t	N/A	N/A	N/A	30%	Pass	
Net Acid soluble sulfur - equivalent S% pyrite	S21-My22121	NCP	% S	N/A	N/A	N/A	30%	Pass	
Calcium - KCI Extractable	S21-My22121	NCP	% Ca	0.38	0.38	1.0	30%	Pass	
Calcium - Peroxide	S21-My22121	NCP	% Ca	1.6	1.6	2.0	30%	Pass	
Acid Reacted Calcium	S21-My22121	NCP	% Ca	1.2	1.2	3.0	30%	Pass	
acidity - Acid Reacted Calcium	S21-My22121	NCP	mol H+/t	620	600	3.0	30%	Pass	
sulfidic - Acid Reacted Ca equiv. S% pyrite	S21-My22121	NCP	% S	0.99	0.96	3.0	30%	Pass	
Magnesium - KCI Extractable	S21-My22121	NCP	% Mg	< 0.02	< 0.02	<1	30%	Pass	
Magnesium - Peroxide	S21-My22121	NCP	% Mg	0.04	0.04	3.0	30%	Pass	
Acid Reacted Magnesium	S21-My22121	NCP	% Mg	0.03	0.02	4.0	30%	Pass	
acidity - Acid Reacted Magnesium	S21-My22121	NCP	mol H+/t	20	20	4.0	30%	Pass	
sulfidic - Acid Reacted Mg equiv. S% pyrite	S21-My22121	NCP	% S	0.03	0.03	4.0	30%	Pass	
Acid Neutralising Capacity (ANCE)	S21-My22121	NCP	% CaCO3	3.3	3.2	1.0	30%	Pass	
Acid Neutralising Capacity - Acidity units (a-ANCE)	S21-My22121	NCP	mol H+/t	650	640	1.0	30%	Pass	
ANC Fineness Factor	S21-My22121	NCP	factor	1.5	1.5	<1	30%	Pass	
SPOCAS - Net Acidity (Sulfur Units)	S21-My22121	NCP	% S	< 0.02	< 0.02	<1	30%	Pass	
SPOCAS - Net Acidity (Acidity Units)	S21-My22121	NCP	mol H+/t	< 10	< 10	<1	30%	Pass	
SPOCAS - Liming rate	S21-My22121	NCP	kg CaCO3/t	< 1	< 1	<1	30%	Pass	
Duplicate	,								
				Result 1	Result 2	RPD			
% Moisture	S21-My19420	CP	%	20	20	<1	30%	Pass	

Comments

This report was revised V2 to amend sample ID GG2-04-ASS(3.5-3.6) for samples My19422.

Same	ole	Integrity
Canny		meeging

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code

Description

S02 Retained Acidity is Reported when the pHKCl is less than pH 4.5

Authorised by:

John Nguyen Myles Clark Analytical Services Manager Senior Analyst-SPOCAS (QLD)

Glenn Jackson General Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Certificate of Analysis

Environment Testing

Greencap NSW P/L Ground Floor, North Building, 22 Giffnock Avenue Macquarie Park NSW 2113

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection and proficiency testing scheme providers reports.

Attention	:

Shihui Wang

Report Project name Project ID Received Date **795815-W** SYDNEY OLYMPIC PARK HS J169135-01 May 13, 2021

Client Sample ID			GG5-01	GG-FD1	TRIP BLANK	TRIP SPIKE	
Sample Matrix			Water	Water	Water	Water	
Eurofins Sample No.			S21-My32302	S21-My32303	S21-My32304	S21-My32305	
Date Sampled			May 13, 2021	May 13, 2021	May 13, 2021	May 13, 2021	
· ·			Way 15, 2021	Way 13, 2021	Way 13, 2021	Way 13, 2021	
Test/Reference	LOR	Unit					
Total Recoverable Hydrocarbons - 1999 NEPM F							
TRH C6-C9	0.02	mg/L	< 0.02	-	< 0.02	-	
TRH C10-C14	0.05	mg/L	< 0.05	-	-	-	
TRH C15-C28	0.1	mg/L	< 0.1	-	-	-	
TRH C29-C36	0.1	mg/L	< 0.1	-	-	-	
TRH C10-C36 (Total)	0.1	mg/L	< 0.1	-	-	-	
ВТЕХ		1					
Benzene	0.001	mg/L	< 0.001	-	< 0.001	-	
Toluene	0.001	mg/L	< 0.001	-	< 0.001	-	
Ethylbenzene	0.001	mg/L	< 0.001	-	< 0.001	-	
m&p-Xylenes	0.002	mg/L	< 0.002	-	< 0.002	-	
o-Xylene	0.001	mg/L	< 0.001	-	< 0.001	-	
Xylenes - Total*	0.003	mg/L	< 0.003	-	< 0.003	-	
4-Bromofluorobenzene (surr.)	1	%	134	-	107	-	
Volatile Organics							
1.1-Dichloroethane	0.001	mg/L	< 0.001	-	< 0.001	-	
1.1-Dichloroethene	0.001	mg/L	< 0.001	-	< 0.001	-	
1.1.1-Trichloroethane	0.001	mg/L	< 0.001	-	< 0.001	-	
1.1.1.2-Tetrachloroethane	0.001	mg/L	< 0.001	-	< 0.001	-	
1.1.2-Trichloroethane	0.001	mg/L	< 0.001	-	< 0.001	-	
1.1.2.2-Tetrachloroethane	0.001	mg/L	< 0.001	-	< 0.001	-	
1.2-Dibromoethane	0.001	mg/L	< 0.001	-	< 0.001	-	
1.2-Dichlorobenzene	0.001	mg/L	< 0.001	-	< 0.001	-	
1.2-Dichloroethane	0.001	mg/L	< 0.001	-	< 0.001	-	
1.2-Dichloropropane	0.001	mg/L	< 0.001	-	< 0.001	-	
1.2.3-Trichloropropane	0.001	mg/L	< 0.001	-	< 0.001	-	
1.2.4-Trimethylbenzene	0.001	mg/L	< 0.001	-	< 0.001	-	
1.3-Dichlorobenzene	0.001	mg/L	< 0.001	-	< 0.001	-	
1.3-Dichloropropane	0.001	mg/L	< 0.001	-	< 0.001	-	
1.3.5-Trimethylbenzene	0.001	mg/L	< 0.001	-	< 0.001	-	
1.4-Dichlorobenzene	0.001	mg/L	< 0.001	-	< 0.001	-	
2-Butanone (MEK)	0.001	mg/L	< 0.001	-	< 0.001	-	
2-Propanone (Acetone)	0.001	mg/L	< 0.001	-	< 0.001	-	
4-Chlorotoluene	0.001	mg/L	< 0.001	-	< 0.001	-	
4-Methyl-2-pentanone (MIBK)	0.001	mg/L	< 0.001	-	< 0.001	-	
Allyl chloride	0.001	mg/L	< 0.001	_	< 0.001	-	

Client Sample ID			GG5-01	GG-FD1	TRIP BLANK	TRIP SPIKE	
Sample Matrix			Water	Water	Water	Water	
Eurofins Sample No.							
•			S21-My32302	S21-My32303	S21-My32304	S21-My32305	
Date Sampled			May 13, 2021	May 13, 2021	May 13, 2021	May 13, 2021	
Test/Reference	LOR	Unit		-	-		
Volatile Organics							
Benzene	0.001	mg/L	< 0.001	-	< 0.001	-	
Bromobenzene	0.001	mg/L	< 0.001	-	< 0.001	-	
Bromochloromethane	0.001	mg/L	< 0.001	-	< 0.001	-	
Bromodichloromethane	0.001	mg/L	< 0.001	-	< 0.001	-	
Bromoform	0.001	mg/L	< 0.001	-	< 0.001	-	
Bromomethane	0.001	mg/L	< 0.001	-	< 0.001	-	
Carbon disulfide	0.001	mg/L	< 0.001	-	< 0.001	-	
Carbon Tetrachloride	0.001	mg/L	< 0.001	-	< 0.001	-	
Chlorobenzene	0.001	mg/L	< 0.001	-	< 0.001	-	
Chloroethane	0.001	mg/L	< 0.001	-	< 0.001	-	
Chloroform	0.005	mg/L	< 0.005	-	< 0.005	-	
Chloromethane	0.001	mg/L	< 0.001	-	< 0.001	-	
cis-1.2-Dichloroethene	0.001	mg/L	< 0.001	-	< 0.001	-	
cis-1.3-Dichloropropene	0.001	mg/L	< 0.001	-	< 0.001	-	
Dibromochloromethane	0.001	mg/L	< 0.001	-	< 0.001	-	
Dibromomethane	0.001	mg/L	< 0.001	-	< 0.001	-	
Dichlorodifluoromethane	0.001	mg/L	< 0.001	_	< 0.001	-	
Ethylbenzene	0.001	mg/L	< 0.001	_	< 0.001	_	
Iodomethane	0.001	mg/L	< 0.001	_	< 0.001	_	
Isopropyl benzene (Cumene)	0.001	mg/L	< 0.001	_	< 0.001	_	
m&p-Xylenes	0.001	mg/L	< 0.002	_	< 0.002	_	
Methylene Chloride	0.002	mg/L	< 0.002	_	< 0.001	_	
o-Xylene	0.001	mg/L	< 0.001	_	< 0.001	_	
Styrene	0.001	mg/L	< 0.001	_	< 0.001	_	
Tetrachloroethene	0.001	mg/L	< 0.001	_	< 0.001		
Toluene	0.001	mg/L	< 0.001	_	< 0.001		
trans-1.2-Dichloroethene	0.001	mg/L	< 0.001		< 0.001	-	
	0.001		< 0.001		< 0.001	-	
trans-1.3-Dichloropropene Trichloroethene	0.001	mg/L	< 0.001		< 0.001	-	
		mg/L		-		-	
Trichlorofluoromethane	0.001	mg/L	< 0.001	-	< 0.001	-	
Vinyl chloride	0.001	mg/L	< 0.001	-	< 0.001	-	
Xylenes - Total*	0.003	mg/L	< 0.003	-	< 0.003	-	
	0.003	mg/L	< 0.003	-	< 0.003	-	
Vic EPA IWRG 621 CHC (Total)*	0.005	mg/L	< 0.005	-	< 0.005	-	
Vic EPA IWRG 621 Other CHC (Total)*	0.005	mg/L	< 0.005	-	< 0.005	-	
4-Bromofluorobenzene (surr.)	1	%	134	-	107	-	
Toluene-d8 (surr.)	1	%	120	-	111	-	
Total Recoverable Hydrocarbons - 2013 NEPM Fra		[
Naphthalene ^{N02}	0.01	mg/L	< 0.01	-	< 0.01	-	
TRH C6-C10	0.02	mg/L	< 0.02	-	< 0.02	-	
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	< 0.02	-	< 0.02	-	
TRH >C10-C16	0.05	mg/L	< 0.05	-	-	-	
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05	-	-	-	
TRH >C16-C34	0.1	mg/L	< 0.1	-	-	-	
TRH >C34-C40	0.1	mg/L	< 0.1	-	-	-	
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1	-	-	-	

Client Sample ID			GG5-01	GG-FD1	TRIP BLANK	TRIP SPIKE
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			S21-My32302	S21-My32303	S21-My32304	S21-My32305
Date Sampled			May 13, 2021	May 13, 2021	May 13, 2021	May 13, 2021
Test/Reference	LOR	Unit				
Semivolatile Organics	2011	U.I.I				
2-Methyl-4.6-dinitrophenol	0.03	mg/L	< 0.03	-		
1-Chloronaphthalene	0.005	mg/L	< 0.005	_	_	_
1-Naphthylamine	0.002	mg/L	< 0.002	-	-	-
1.2-Dichlorobenzene	0.002	mg/L	< 0.002	-	-	-
1.2.3-Trichlorobenzene	0.005	mg/L	< 0.005	-	-	-
1.2.3.4-Tetrachlorobenzene	0.005	mg/L	< 0.005	-	-	-
1.2.3.5-Tetrachlorobenzene	0.005	mg/L	< 0.005	-	-	-
1.2.4-Trichlorobenzene	0.002	mg/L	< 0.002	-	-	-
1.2.4.5-Tetrachlorobenzene	0.002	mg/L	< 0.002	-	-	-
1.3-Dichlorobenzene	0.002	mg/L	< 0.002	-	-	-
1.3.5-Trichlorobenzene	0.005	mg/L	< 0.005	-	-	-
1.4-Dichlorobenzene	0.002	mg/L	< 0.002	-	-	-
2-Chloronaphthalene	0.002	mg/L	< 0.002	-	-	-
2-Chlorophenol	0.003	mg/L	< 0.003	-	-	-
2-Fluorobiphenyl (surr.)	1	%	92	-	-	-
2-Methylnaphthalene	0.002	mg/L	< 0.002	-	-	-
2-Methylphenol (o-Cresol)	0.003	mg/L	< 0.003	-	-	-
2-Naphthylamine	0.002	mg/L	< 0.002	-	-	-
2-Nitroaniline	0.004	mg/L	< 0.004	-	-	-
2-Nitrophenol	0.01	mg/L	< 0.01	-	-	-
2-Picoline	0.005	mg/L	< 0.005	-	-	-
2.3.4.6-Tetrachlorophenol	0.002	mg/L	< 0.002	-	-	-
2.4-Dichlorophenol	0.003	mg/L	< 0.003	-	-	-
2.4-Dimethylphenol	0.003	mg/L	< 0.003	-	-	-
2.4-Dinitrophenol	0.03	mg/L	< 0.03	-	-	-
2.4-Dinitrotoluene	0.005	mg/L	< 0.005	-	-	-
2.4.5-Trichlorophenol	0.01	mg/L	< 0.01	-	-	-
2.4.6-Tribromophenol (surr.)	1	%	106	-	-	-
2.4.6-Trichlorophenol	0.01	mg/L	< 0.01	-	-	-
2.6-Dichlorophenol	0.003	mg/L	< 0.003	-	-	-
2.6-Dinitrotoluene	0.004	mg/L	< 0.004	-	-	-
3&4-Methylphenol (m&p-Cresol)	0.006	mg/L	< 0.006	-	-	-
3-Methylcholanthrene	0.002	mg/L	< 0.002	-	-	-
3.3'-Dichlorobenzidine	0.005	mg/L	< 0.005	-	-	-
4-Aminobiphenyl	0.002	mg/L	< 0.002	-	-	-
4-Bromophenyl phenyl ether	0.002	mg/L	< 0.002	-	-	-
4-Chloro-3-methylphenol	0.01	mg/L	< 0.01	-	-	-
4-Chlorophenyl phenyl ether	0.002	mg/L	< 0.002	-	-	-
4-Nitrophenol	0.03	mg/L	< 0.03	-	-	-
4.4'-DDD	0.002	mg/L	< 0.002	-	-	-
4.4'-DDE	0.002	mg/L	< 0.002	-	-	-
4.4'-DDT	0.004	mg/L	< 0.004	-	-	-
7.12-Dimethylbenz(a)anthracene	0.002	mg/L	< 0.002	-	-	-
a-BHC	0.002	mg/L	< 0.002	-	-	-
Acenaphthene	0.001	mg/L	< 0.001	-	-	-
Acenaphthylene	0.001	mg/L	< 0.001	-	-	-
Acetophenone	0.002	mg/L	< 0.002	-	-	-
Aldrin	0.002	mg/L	< 0.002	-	-	-
Aniline	0.002	mg/L	< 0.002	-	-	-

Client Sample ID			GG5-01	GG-FD1	TRIP BLANK	TRIP SPIKE	
Sample Matrix			Water	Water	Water	Water	
•							
Eurofins Sample No.			S21-My32302	S21-My32303	S21-My32304	S21-My32305	
Date Sampled			May 13, 2021	May 13, 2021	May 13, 2021	May 13, 2021	
Test/Reference	LOR	Unit					
Semivolatile Organics							
Anthracene	0.001	mg/L	< 0.001	-	-	-	
b-BHC	0.002	mg/L	< 0.002	-	-	-	
Benz(a)anthracene	0.001	mg/L	< 0.001	-	-	-	
Benzo(a)pyrene	0.001	mg/L	< 0.001	-	-	-	
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001	-	-	-	
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	-	-	-	
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	-	-	-	
Benzyl chloride	0.005	mg/L	< 0.005	-	-	-	
Bis(2-chloroethoxy)methane	0.002	mg/L	< 0.002	-	-	-	
Bis(2-chloroisopropyl)ether	0.002	mg/L	< 0.002	-	-	-	
Bis(2-ethylhexyl)phthalate	0.02	mg/L	< 0.02	-	-	-	
Butyl benzyl phthalate	0.002	mg/L	< 0.002	-	-	-	
Chrysene	0.001	mg/L	< 0.001	-	-	-	
d-BHC	0.002	mg/L	< 0.002	-	-	-	
Di-n-butyl phthalate	0.002	mg/L	< 0.002	-	-	-	
Di-n-octyl phthalate	0.002	mg/L	< 0.002	-	-	-	
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	-	-	-	
Dibenz(a.j)acridine	0.005	mg/L	< 0.005	-	-	-	
Dibenzofuran	0.002	mg/L	< 0.002	-	-	-	
Dieldrin	0.002	mg/L	< 0.002	-	-	-	
Diethyl phthalate	0.002	mg/L	< 0.002	-	-	-	
Dimethyl phthalate	0.002	mg/L	< 0.002	-	-	-	
Dimethylaminoazobenzene	0.002	mg/L	< 0.002	-	-	-	
Diphenylamine	0.002	mg/L	< 0.002	-	-	-	
Endosulfan I	0.002	mg/L	< 0.002	-	-	-	
Endosulfan II	0.002	mg/L	< 0.002	-	-	-	
Endosulfan sulphate	0.002	mg/L	< 0.002	-	-	-	
Endrin	0.002	mg/L	< 0.002	-	-	-	
Endrin aldehyde	0.002	mg/L	< 0.002	-	-	-	
Endrin ketone	0.002	mg/L	< 0.002	-	-	-	
Fluoranthene	0.001	mg/L	< 0.001	-	-	-	
Fluorene	0.001	mg/L	< 0.001	-	-	-	
g-BHC (Lindane)	0.002	mg/L	< 0.002	-	-	-	
Heptachlor	0.002	mg/L	< 0.002	-	-	-	
Heptachlor epoxide	0.002	mg/L	< 0.002	-	-	-	
Hexachlorobenzene	0.002	mg/L	< 0.002	-	-	-	
Hexachlorobutadiene	0.002	mg/L	< 0.002	-	-	-	
Hexachlorocyclopentadiene	0.004	mg/L	< 0.004	-	-	-	
Hexachloroethane	0.002	mg/L	< 0.002	-	-	-	
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	-	-	-	
Methoxychlor	0.005	mg/L	< 0.005	-	=	-	
N-Nitrosodibutylamine	0.002	mg/L	< 0.002	-	-	-	
N-Nitrosodipropylamine	0.002	mg/L	< 0.002	-	-	-	
N-Nitrosopiperidine	0.002	mg/L	< 0.002	-	-	-	
Naphthalene	0.001	mg/L	< 0.001	-	-	-	
Nitrobenzene	0.005	mg/L	< 0.005	-	-	-	
Nitrobenzene-d5 (surr.)	1	%	136	-	-	-	
Pentachlorobenzene	0.002	mg/L	< 0.002	-	-	-	
Pentachloronitrobenzene	0.002	mg/L	< 0.002	-	-	-	

Client Sample ID			GG5-01	GG-FD1	TRIP BLANK	TRIP SPIKE
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			S21-My32302	S21-My32303	S21-My32304	S21-My32305
Date Sampled			May 13, 2021	May 13, 2021	May 13, 2021	May 13, 2021
Test/Reference	LOR	Unit				
Semivolatile Organics	•					
Pentachlorophenol	0.01	mg/L	< 0.01	-	-	-
Phenanthrene	0.001	mg/L	< 0.001	-	-	-
Phenol	0.003	mg/L	< 0.003	-	-	-
Phenol-d6 (surr.)	1	%	34	-	-	-
Pronamide	0.005	mg/L	< 0.005	-	-	-
Pyrene	0.001	mg/L	< 0.001	-	-	-
Trifluralin	0.005	mg/L	< 0.005	-	-	-
Ammonia (as N)	0.01	mg/L	4.0	-	-	-
Nitrate (as N)	0.02	mg/L	0.66	-	-	-
Nitrite (as N)	0.02	mg/L	< 0.02	-	-	-
TRH C6-C10	1	%	-	-	-	71
Heavy Metals						
Arsenic	0.001	mg/L	0.004	0.003	-	-
Cadmium	0.0002	mg/L	< 0.0002	< 0.0002	-	-
Chromium	0.001	mg/L	< 0.001	0.001	-	-
Copper	0.001	mg/L	0.004	0.003	-	-
Lead	0.001	mg/L	0.001	< 0.001	-	-
Mercury	0.0001	mg/L	< 0.0001	< 0.0001	-	-
Nickel	0.001	mg/L	0.002	0.002	-	-
Zinc	0.005	mg/L	0.015	0.006	-	-
Total Recoverable Hydrocarbons						
Naphthalene	1	%	-	-	-	100
TRH C6-C9	1	%	-	-	-	73
втех	1					
Benzene	1	%	-	-	-	98
Ethylbenzene	1	%	-	-	-	91
m&p-Xylenes	1	%	-	-	-	100
o-Xylene	1	%	-	-	-	80
Toluene	1	%	-	-	-	88
Xylenes - Total	1	%	-	-	-	87
4-Bromofluorobenzene (surr.)	1	%	-	-	-	106

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	May 17, 2021	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	May 17, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	May 17, 2021	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons	Sydney	May 17, 2021	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Eurofins Suite B6			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	May 17, 2021	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Metals M8	Sydney	May 18, 2021	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Volatile Organics	Sydney	May 17, 2021	7 Days
- Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices			
Semivolatile Organics	Sydney	May 19, 2021	7 Day
- Method: LTM-ORG-2190 SVOC in Water & Soil by GC-MS			
Ammonia (as N)	Melbourne	May 19, 2021	28 Days
- Method: APHA 4500-NH3 Ammonia Nitrogen by FIA			
Nitrate (as N)	Melbourne	May 19, 2021	28 Days
- Method: LTM-INO-4120 Analysis of NOx NO2 NH3 by FIA			
Nitrite (as N)	Melbourne	May 19, 2021	2 Days
- Method: LTM-INO-4120 Analysis of NOx NO2 NH3 by FIA			

🛟 eurofii	ns			Australia												New Zealand	
		ironment	Testing	Melbourne 6 Monterey Road Dandenong South VIC 3 Phone : +61 3 8564 5000 NATA # 1261	U 175 10 0 La	Sydney Jnit F3, E 6 Mars F ane Cov Phone : +	Road ve West	t NSW 20	1/: M 066 Pt	lurarrie (hone : +	allwood F QLD 41 +61 7 39		40 W	Perth 16-48 Banksia Road Velshpool WA 6106 Phone : +61 8 9251 9600 VATA # 1261	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7679 Phone : 0800 856 450 IANZ # 1290
ABN: 50 005 085 521 web: w	vww.eurofins.com.au	email: EnviroSale	eurofins.com	Site # 1254 & 14271		NATA # 1				AIA#1	201 310	3#2079		Site # 23736	NATA # 1261 Site # 25079	IANZ # 1327	IAINZ # 1290
Company Name: Address:	Greencap N Ground Floo Macquarie P NSW 2113	r, North Buildi	ing, 22 Giffnoc	k Avenue		Re Pl	rder N eport hone: ax:	#:	7 0		-				Received: Due: Priority: Contact Name:	May 13, 2021 8:53 May 18, 2021 3 Day Shihui Wang	PM
Project Name: Project ID:	SYDNEY OL J169135-01	YMPIC PARK	< HS												Eurofins Analytical	Services Manager : l	Jrsula Long
	Sa	mple Detail			Ammonia (as N)	Nitrate (as N)	Nitrite (as N)	Metals M8	Volatile Organics	Eurofins Suite B6	BTEXN and Volatile TRH	Eurofins Suite SVV: SVOC/VOC	BTEXN and Volatile TRH				
Melbourne Laborato	rv - NATA Site	# 1254 & 143	271		X	X	X					X		-			
Sydney Laboratory -						+	<u> </u>	x	х	х	x	x	Х	1			
Brisbane Laboratory						1			i	1				1			
Perth Laboratory - N						1			i					1			
Mayfield Laboratory - NATA Site # 25079												1					
External Laboratory]			
No Sample ID	Sample Date	Sampling Time	Matrix	LAB ID]			
1 GG5-01	May 13, 2021		Water	S21-My32302	Х	X	Х			Х		х		1			
	May 13, 2021		Water	S21-My32303				Х]			
	May 13, 2021		Water	S21-My32304					Х		Х						
4 TRIP SPIKE	May 13, 2021		Water	S21-My32305									Х				
					1	1	4	1	1	4 7	4	1	1				

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Limit of Reporting.
Addition of the analyte to the sample and reported as percentage recovery.
Relative Percent Difference between two Duplicate pieces of analysis.
Laboratory Control Sample - reported as percent recovery.
Certified Reference Material - reported as percent recovery.
In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
The addition of a like compound to the analyte target and reported as percentage recovery.
A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
United States Environmental Protection Agency
American Public Health Association
Toxicity Characteristic Leaching Procedure
Chain of Custody
Sample Receipt Advice
US Department of Defense Quality Systems Manual Version 5.3
Client Parent - QC was performed on samples pertaining to this report
Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptar Limits	nce Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Method Blank			· · ·	•	
ВТЕХ					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total*	mg/L	< 0.003	0.003	Pass	
Method Blank			· · ·	•	
Volatile Organics					
1.1-Dichloroethane	mg/L	< 0.001	0.001	Pass	
1.1-Dichloroethene	mg/L	< 0.001	0.001	Pass	
1.1.1-Trichloroethane	mg/L	< 0.001	0.001	Pass	
1.1.1.2-Tetrachloroethane	mg/L	< 0.001	0.001	Pass	
1.1.2-Trichloroethane	mg/L	< 0.001	0.001	Pass	
1.1.2.2-Tetrachloroethane	mg/L	< 0.001	0.001	Pass	
1.2-Dibromoethane	mg/L	< 0.001	0.001	Pass	
1.2-Dichlorobenzene	mg/L	< 0.001	0.001	Pass	
1.2-Dichloroethane	mg/L	< 0.001	0.001	Pass	
1.2-Dichloropropane	mg/L	< 0.001	0.001	Pass	
1.2.3-Trichloropropane	mg/L	< 0.001	0.001	Pass	
1.2.4-Trimethylbenzene	mg/L	< 0.001	0.001	Pass	
1.3-Dichlorobenzene	mg/L	< 0.001	0.001	Pass	
1.3-Dichloropropane	mg/L	< 0.001	0.001	Pass	
1.3.5-Trimethylbenzene	mg/L	< 0.001	0.001	Pass	
1.4-Dichlorobenzene	mg/L	< 0.001	0.001	Pass	
2-Butanone (MEK)	mg/L	< 0.001	0.001	Pass	
2-Propanone (Acetone)	mg/L	< 0.001	0.001	Pass	
4-Chlorotoluene	mg/L	< 0.001	0.001	Pass	
4-Methyl-2-pentanone (MIBK)	mg/L	< 0.001	0.001	Pass	
Allyl chloride	mg/L	< 0.001	0.001	Pass	
Bromobenzene	mg/L	< 0.001	0.001	Pass	
Bromochloromethane	mg/L	< 0.001	0.001	Pass	
Bromodichloromethane	mg/L	< 0.001	0.001	Pass	
Bromoform	mg/L	< 0.001	0.001	Pass	
Bromomethane	mg/L	< 0.001	0.001	Pass	
Carbon disulfide	mg/L	< 0.001	0.001	Pass	
Carbon Tetrachloride	mg/L	< 0.001	0.001	Pass	
Chlorobenzene	mg/L	< 0.001	0.001	Pass	
Chloroethane	mg/L	< 0.001	0.001	Pass	
Chloroform	mg/L	< 0.005	0.005	Pass	
Chloromethane	mg/L	< 0.000	0.000	Pass	
cis-1.2-Dichloroethene	mg/L	< 0.001	0.001	Pass	
cis-1.3-Dichloropropene	mg/L	< 0.001	0.001	Pass	
Dibromochloromethane	mg/L	< 0.001	0.001	Pass	
Dibromomethane	mg/L	< 0.001	0.001	Pass	

Test	Units	Result 1		eptance mits	Pass Limits	Qualifying Code
Dichlorodifluoromethane	mg/L	< 0.001	0.	.001	Pass	
lodomethane	mg/L	< 0.001	0.	.001	Pass	
Isopropyl benzene (Cumene)	mg/L	< 0.001	0.	.001	Pass	
Methylene Chloride	mg/L	< 0.001	0.	.001	Pass	
Styrene	mg/L	< 0.001	0.	.001	Pass	
Tetrachloroethene	mg/L	< 0.001	0.	.001	Pass	
trans-1.2-Dichloroethene	mg/L	< 0.001	0.	.001	Pass	
trans-1.3-Dichloropropene	mg/L	< 0.001	0.	.001	Pass	
Trichloroethene	mg/L	< 0.001	0.	.001	Pass	
Trichlorofluoromethane	mg/L	< 0.001	0.	.001	Pass	
Vinyl chloride	mg/L	< 0.001	0.	.001	Pass	
Method Blank						
Total Recoverable Hydrocarbons - 2013 NEPM Fra	ctions					
Naphthalene	mg/L	< 0.01	0	0.01	Pass	
TRH C6-C10	mg/L	< 0.02	0).02	Pass	
TRH >C10-C16	mg/L	< 0.05	0	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1		0.1	Pass	
TRH >C34-C40	mg/L	< 0.1		0.1	Pass	
Method Blank						
Semivolatile Organics						
2-Methyl-4.6-dinitrophenol	mg/L	< 0.03	0	0.03	Pass	
1-Chloronaphthalene	mg/L	< 0.005		.005	Pass	
1-Naphthylamine	mg/L	< 0.002		.002	Pass	
1.2-Dichlorobenzene	mg/L	< 0.002		.002	Pass	
1.2.3-Trichlorobenzene	mg/L	< 0.005		.005	Pass	
1.2.3.4-Tetrachlorobenzene	mg/L	< 0.005		.005	Pass	
1.2.3.5-Tetrachlorobenzene	mg/L	< 0.005		.005	Pass	
1.2.4-Trichlorobenzene	mg/L	< 0.002		.002	Pass	
1.2.4.5-Tetrachlorobenzene	mg/L	< 0.002		.002	Pass	
1.3-Dichlorobenzene	mg/L	< 0.002	0.	.002	Pass	
1.3.5-Trichlorobenzene	mg/L	< 0.005		.005	Pass	
1.4-Dichlorobenzene	mg/L	< 0.002		.002	Pass	
2-Chloronaphthalene	mg/L	< 0.002	0.	.002	Pass	
2-Chlorophenol	mg/L	< 0.003		.003	Pass	
2-Methylnaphthalene	mg/L	< 0.002	0.	.002	Pass	
2-Methylphenol (o-Cresol)	mg/L	< 0.003		.003	Pass	
2-Naphthylamine	mg/L	< 0.002		.002	Pass	
2-Nitroaniline	mg/L	< 0.004		.004	Pass	
2-Nitrophenol	mg/L	< 0.01).01	Pass	
2-Picoline	mg/L	< 0.005		.005	Pass	
2.3.4.6-Tetrachlorophenol	mg/L	< 0.002		.002	Pass	
2.4-Dichlorophenol	mg/L	< 0.003		.003	Pass	
2.4-Dimethylphenol	mg/L	< 0.003		.003	Pass	
2.4-Dinitrophenol	mg/L	< 0.03		0.03	Pass	
2.4-Dinitrotoluene	mg/L	< 0.005		.005	Pass	
2.4.5-Trichlorophenol	mg/L	< 0.01		0.01	Pass	
2.4.6-Trichlorophenol	mg/L	< 0.01		0.01	Pass	
2.6-Dichlorophenol	mg/L	< 0.003		.003	Pass	
2.6-Dinitrotoluene	mg/L	< 0.004		.004	Pass	
3&4-Methylphenol (m&p-Cresol)	mg/L	< 0.006		.006	Pass	
3-Methylcholanthrene	mg/L	< 0.002		.002	Pass	
3.3'-Dichlorobenzidine	mg/L	< 0.005		.005	Pass	
4-Aminobiphenyl	mg/L	< 0.002		.002	Pass	
4-Bromophenyl phenyl ether	mg/L	< 0.002		.002	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
4-Chloro-3-methylphenol	mg/L	< 0.01	0.01	Pass	
4-Chlorophenyl phenyl ether	mg/L	< 0.002	0.002	Pass	
4-Nitrophenol	mg/L	< 0.03	0.03	Pass	
4.4'-DDD	mg/L	< 0.002	0.002	Pass	
4.4'-DDE	mg/L	< 0.002	0.002	Pass	
4.4'-DDT	mg/L	< 0.004	0.004	Pass	
7.12-Dimethylbenz(a)anthracene	mg/L	< 0.002	0.002	Pass	
a-BHC	mg/L	< 0.002	0.002	Pass	
Acenaphthene	mg/L	< 0.001	0.001	Pass	
Acenaphthylene	mg/L	< 0.001	0.001	Pass	
Acetophenone	mg/L	< 0.002	0.002	Pass	
Aldrin	mg/L	< 0.002	0.002	Pass	
Aniline	mg/L	< 0.002	0.002	Pass	
Anthracene	mg/L	< 0.001	0.001	Pass	
b-BHC	mg/L	< 0.002	0.002	Pass	
Benz(a)anthracene	mg/L	< 0.001	0.001	Pass	
Benzo(a)pyrene	mg/L	< 0.001	0.001	Pass	
Benzo(b&j)fluoranthene	mg/L	< 0.001	0.001	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.001	0.001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.001	0.001	Pass	
Benzyl chloride	mg/L	< 0.005	0.005	Pass	
Bis(2-chloroethoxy)methane	mg/L	< 0.002	0.002	Pass	
Bis(2-chloroisopropyl)ether	mg/L	< 0.002	0.002	Pass	
Bis(2-ethylhexyl)phthalate	mg/L	< 0.02	0.02	Pass	
Butyl benzyl phthalate	mg/L	< 0.002	0.002	Pass	
Chrysene	mg/L	< 0.001	0.001	Pass	
d-BHC	mg/L	< 0.002	0.002	Pass	
Di-n-butyl phthalate	mg/L	< 0.002	0.002	Pass	
Di-n-octyl phthalate	mg/L	< 0.002	0.002	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.001	0.001	Pass	
Dibenz(a.j)acridine	mg/L	< 0.005	0.005	Pass	
Dibenzofuran	mg/L	< 0.002	0.002	Pass	
Dieldrin	mg/L	< 0.002	0.002	Pass	
Diethyl phthalate	mg/L	< 0.002	0.002	Pass	
Dimethyl phthalate	mg/L	< 0.002	0.002	Pass	
Dimethylaminoazobenzene	mg/L	< 0.002	0.002	Pass	
Diphenylamine	mg/L	< 0.002	0.002	Pass	
Endosulfan I	mg/L	< 0.002	0.002	Pass	
Endosulfan II	mg/L	< 0.002	0.002	Pass	
Endosulfan sulphate	mg/L	< 0.002	0.002	Pass	
Endrin	mg/L	< 0.002	0.002	Pass	
Endrin aldehyde	mg/L	< 0.002	0.002	Pass	
Endrin ketone	mg/L	< 0.002	0.002	Pass	
Fluoranthene	mg/L	< 0.001	0.001	Pass	
Fluorene	mg/L	< 0.001	0.001	Pass	
g-BHC (Lindane)	mg/L	< 0.002	0.002	Pass	
Heptachlor	mg/L	< 0.002	0.002	Pass	
Heptachlor epoxide		< 0.002	0.002	Pass	
Hexachlorobenzene	mg/L	< 0.002	0.002	Pass	
Hexachlorobutadiene	mg/L	< 0.002	0.002	Pass	
Hexachlorocyclopentadiene	mg/L	< 0.004	0.004	Pass	
Hexachloroethane	mg/L	< 0.002	0.002	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001	0.002	Pass	
Methoxychlor	mg/L	< 0.005	0.005	Pass	

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
N-Nitrosodibutylamine	mg/L	< 0.002		0.002	Pass	
N-Nitrosodipropylamine	mg/L	< 0.002		0.002	Pass	
N-Nitrosopiperidine	mg/L	< 0.002		0.002	Pass	
Naphthalene	mg/L	< 0.001		0.001	Pass	
Nitrobenzene	mg/L	< 0.005		0.005	Pass	
Pentachlorobenzene	mg/L	< 0.002		0.002	Pass	
Pentachloronitrobenzene	mg/L	< 0.002		0.002	Pass	
Pentachlorophenol	mg/L	< 0.01		0.01	Pass	
Phenanthrene	mg/L	< 0.001		0.001	Pass	
Phenol	mg/L	< 0.003		0.003	Pass	
Pronamide	mg/L	< 0.005		0.005	Pass	
Pyrene	mg/L	< 0.001		0.001	Pass	
Trifluralin	mg/L	< 0.005		0.005	Pass	
Method Blank		-				
Ammonia (as N)	mg/L	< 0.01		0.01	Pass	
Nitrate (as N)	mg/L	< 0.02		0.02	Pass	
Nitrite (as N)	mg/L	< 0.02		0.02	Pass	
Method Blank						
Heavy Metals						
Arsenic	mg/L	< 0.001		0.001	Pass	
Cadmium	mg/L	< 0.0002		0.0002	Pass	
Chromium	mg/L	< 0.001		0.001	Pass	
Copper	mg/L	< 0.001		0.001	Pass	
Lead	mg/L	< 0.001		0.001	Pass	
Mercury	mg/L	< 0.0001		0.0001	Pass	
Nickel	mg/L	< 0.001		0.001	Pass	
Zinc	mg/L	< 0.005		0.005	Pass	
LCS - % Recovery						
Total Recoverable Hydrocarbons - 1999 NEPM Fractions						
TRH C6-C9	%	113		70-130	Pass	
TRH C10-C14	%	117		70-130	Pass	
LCS - % Recovery						
BTEX						
Benzene	%	116		70-130	Pass	
Toluene	%	113		70-130	Pass	
Ethylbenzene	%	116		70-130	Pass	
m&p-Xylenes	%	123		70-130	Pass	
o-Xylene	%	114		70-130	Pass	
Xylenes - Total*	%	120		70-130	Pass	
LCS - % Recovery						
Volatile Organics						
1.1-Dichloroethene	%	105		70-130	Pass	
1.1.1-Trichloroethane	%	98		70-130	Pass	
1.2-Dichlorobenzene	%	82		70-130	Pass	
1.2-Dichloroethane	%	103		70-130	Pass	
Trichloroethene	%	89		70-130	Pass	
LCS - % Recovery						
Total Recoverable Hydrocarbons - 2013 NEPM Fractions						
Naphthalene	%	93		70-130	Pass	
TRH C6-C10	%	108		70-130	Pass	
TRH >C10-C16	%	115		70-130	Pass	
			· ·			
LCS - % Recovery						
LCS - % Recovery Semivolatile Organics						

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Pyrene			%	88			70-130	Pass	
LCS - % Recovery									
Ammonia (as N)			%	100			70-130	Pass	
Nitrate (as N)			%	103			70-130	Pass	
Nitrite (as N)			%	104			70-130	Pass	
LCS - % Recovery									
Heavy Metals									
Arsenic			%	94			80-120	Pass	
Cadmium			%	97			80-120	Pass	
Chromium			%	98			80-120	Pass	
Copper			%	100			80-120	Pass	
Lead			%	98			80-120	Pass	
Mercury			%	92			80-120	Pass	
Nickel			%	99			80-120	Pass	
Zinc			%	96			80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery					1				
Total Recoverable Hydrocarbons -	1999 NEPM Fract			Result 1					
TRH C10-C14	N21-My26487	NCP	%	81			70-130	Pass	
Spike - % Recovery				İ	1 1		1	l	
Total Recoverable Hydrocarbons -	2013 NEPM Fract	tions		Result 1					
TRH >C10-C16	N21-My26487	NCP	%	84			70-130	Pass	
Spike - % Recovery				1			1	r	
				Result 1					
Ammonia (as N)	M21-My29685	NCP	%	84			70-130	Pass	
Nitrate (as N)	M21-My29685	NCP	%	98			70-130	Pass	
Nitrite (as N)	M21-My29685	NCP	%	108			70-130	Pass	
Spike - % Recovery								-	
Heavy Metals				Result 1					
Arsenic	S21-My32303	CP	%	96			75-125	Pass	
Cadmium	S21-My32303	CP	%	96			75-125	Pass	
Chromium	S21-My32303	CP	%	94			75-125	Pass	
Copper	S21-My32303	CP	%	92			75-125	Pass	
Lead	S21-My32303	CP	%	94			75-125	Pass	
Mercury	S21-My32303	CP	%	91			75-125	Pass	
Nickel	S21-My32303	CP	%	94			75-125	Pass	
Zinc	S21-My32303	CP	%	92			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate				1	,				
Total Recoverable Hydrocarbons -				Result 1	Result 2	RPD			
TRH C10-C14	N21-My26475	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH C15-C28	N21-My26475	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH C29-C36	N21-My26475	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate				1					
Total Recoverable Hydrocarbons -				Result 1	Result 2	RPD			
TRH >C10-C16	N21-My26475	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH >C16-C34	N21-My26475	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH >C34-C40	N21-My26475	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate							T		
	I	,		Result 1	Result 2	RPD			
Ammonia (as N)	M21-My29685	NCP	mg/L	0.60	0.60	2.0	30%	Pass	
· · · · · · · · · · · · · · · · · · ·									1
Nitrate (as N)	M21-My29685	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	

Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S21-My32302	CP	mg/L	0.004	0.004	2.0	30%	Pass	
Cadmium	S21-My32302	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium	S21-My32302	CP	mg/L	< 0.001	0.001	30	30%	Pass	
Copper	S21-My32302	CP	mg/L	0.004	0.004	6.0	30%	Pass	
Lead	S21-My32302	CP	mg/L	0.001	0.001	20	30%	Pass	
Mercury	S21-My32302	CP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel	S21-My32302	СР	mg/L	0.002	0.002	10	30%	Pass	
Zinc	S21-My32302	СР	mg/L	0.015	0.016	7.0	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
N07	Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Authorised by:

John Nguyen
Andrew Sullivan
John Nguyen
Roopesh Rangarajan
Scott Beddoes

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Analytical Services Manager Senior Analyst-Organic (NSW) Senior Analyst-Metal (NSW) Senior Analyst-Volatile (NSW) Senior Analyst-Inorganic (VIC)

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 268574

Client Details	
Client	Greencap Pty Ltd
Attention	Shihui Wang
Address	Ground Floor, North Building, 22 Giffnock Ave, MACQUARIE PARK, NSW, 2113

Sample Details	
Your Reference	DSI - Sydney Olympic Park High School
Number of Samples	8xCanisters
Date samples received	10/05/2021
Date completed instructions received	10/05/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details	
Date results requested by	17/05/2021
Date of Issue	17/05/2021
NATA Accreditation Number 29	01. This document shall not be reproduced except in full.
Accredited for compliance with I	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

<u>Results Approved By</u> Giovanni Agosti, Group Technical Manager Authorised By

Nancy Zhang, Laboratory Manager

TO15 in Canisters/Bags						
Our Reference		268574-1	268574-2	268574-3	268574-4	268574-5
Your Reference	UNITS	GG1	GG2	GG3	GG4	GG5
Date Sampled		07/05/2021	07/05/2021	07/05/2021	07/05/2021	07/05/2021
Type of sample		Air	Air	Air	Air	Air
Air Kit Security No.		2469	1702	3513	1881	2544
Vacuum before Shipment	Hg"	-30	-30	-30	-30	-30
Vacuum before Analysis	Hg"	-4	-6	-3	-5	-0.11
Date prepared	-	11/05/2021	11/05/2021	11/05/2021	11/05/2021	11/05/2021
Date analysed	-	11/05/2021	11/05/2021	11/05/2021	11/05/2021	11/05/2021
Propylene	ppbv	<3	<0.5	79	<0.5	5.8
Dichlorodifluoromethane	ppbv	<3	<0.5	<0.5	<0.5	<0.5
Chloromethane	ppbv	<3	<0.5	<0.5	<0.5	<0.5
1,2-Dichlorotetrafluoroethane	ppbv	<3	<0.5	<0.5	<0.5	<0.5
Vinyl chloride	ppbv	<3	<0.5	<0.5	<0.5	<0.5
1,3-Butadiene	ppbv	<3	<0.5	<0.5	<0.5	2
Bromomethane	ppbv	<3	<0.5	<0.5	<0.5	<0.5
Chloroethane	ppbv	<3	<0.5	<0.5	<0.5	<0.5
Ethanol	ppbv	<30	8	9	5	10
Acrolein	ppbv	<30	<5	<5	<5	<5
Trichlorofluoromethane (Freon 11)	ppbv	<3	<0.5	<0.5	<0.5	<0.5
Acetone	ppbv	<30	<5	<5	<5	7
Isopropyl Alcohol	ppbv	<30	83	<5	<5	<5
1,1-Dichloroethene	ppbv	<3	<0.5	0.8	0.9	<0.5
1,1,2-Trichlorotrifluoroethane	ppbv	<3	<0.5	<0.5	<0.5	<0.5
Methylene chloride (Dichloromethane)	ppbv	<30	<5	<5	<5	<5
Carbon Disulfide	ppbv	100	<5	20	<5	40
trans-1,2-dichloroethene	ppbv	<3	<0.5	<0.5	<0.5	<0.5
МТВЕ	ppbv	<3	<0.5	<0.5	<0.5	<0.5
1,1- Dichloroethane	ppbv	<3	0.8	0.7	<0.5	<0.5
Vinyl Acetate	ppbv	<3	<0.5	<0.5	<0.5	<0.5
МЕК	ppbv	<30	<5	<5	<5	<5
Hexane	ppbv	730	58	41	45	2
cis-1,2-Dichloroethene	ppbv	<3	<0.5	<0.5	<0.5	<0.5
Ethyl Acetate	ppbv	<3	<0.5	<0.5	<0.5	<0.5
Chloroform	ppbv	16	4	15	13	34
Tetrahydrofuran	ppbv	<3	<0.5	<0.5	<0.5	<0.5
1,1,1-Trichloroethane	ppbv	<3	<0.5	<0.5	<0.5	<0.5
1,2-Dichloroethane	ppbv	<3	<0.5	<0.5	<0.5	<0.5
Benzene	ppbv	7.8	5.3	3	3	1
Carbon tetrachloride	ppbv	<3	<0.5	<0.5	<0.5	<0.5

TO15 in Canisters/Bags						
Our Reference		268574-1	268574-2	268574-3	268574-4	268574-5
Your Reference	UNITS	GG1	GG2	GG3	GG4	GG5
Date Sampled		07/05/2021	07/05/2021	07/05/2021	07/05/2021	07/05/2021
Type of sample		Air	Air	Air	Air	Air
Air Kit Security No.		2469	1702	3513	1881	2544
Cyclohexane	ppbv	390	72	53	33	1
Heptane	ppbv	620	22	29	10	<0.5
Trichloroethene	ppbv	<3	1	<0.5	<0.5	0.6
1,2-Dichloropropane	ppbv	<3	<0.5	<0.5	<0.5	<0.5
1,4-Dioxane	ppbv	<3	<0.5	<0.5	<0.5	<0.5
Bromodichloromethane	ppbv	<3	<0.5	<0.5	<0.5	1
Methyl Methacrylate	ppbv	<3	<0.5	<0.5	<0.5	<0.5
МІВК	ppbv	<30	<5	<5	<5	<5
cis-1,3-Dichloropropene	ppbv	<3	<0.5	<0.5	<0.5	<0.5
trans-1,3-Dichloropropene	ppbv	<3	<0.5	<0.5	<0.5	<0.5
Toluene	ppbv	8.3	5	13	13	5
1,1,2-Trichloroethane	ppbv	<3	<0.5	<0.5	<0.5	<0.5
Methyl Butyl Ketone	ppbv	<3	<0.5	<0.5	<0.5	<0.5
Dibromochloromethane	ppbv	<3	<0.5	<0.5	<0.5	<0.5
Tetrachloroethene	ppbv	<3	<0.5	<0.5	<0.5	<0.5
1,2-Dibromoethane	ppbv	<3	<0.5	<0.5	<0.5	<0.5
Chlorobenzene	ppbv	<3	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	ppbv	3	3	2	3	1
m-& p-Xylene	ppbv	6	3	4	24	2
Styrene	ppbv	9.1	32	15	8.4	5
o-Xylene	ppbv	<3	2	2	12	1
Bromoform	ppbv	<3	<0.5	<0.5	<0.5	<0.5
1,1,2,2-Tetrachloroethane	ppbv	<3	<0.5	<0.5	<0.5	<0.5
4-ethyl toluene	ppbv	<3	0.6	<0.5	16	<0.5
1,3,5-Trimethylbenzene	ppbv	<3	0.8	0.8	22	<0.5
1,2,4-Trimethylbenzene	ppbv	<3	1	1	67	0.9
1,3-Dichlorobenzene	ppbv	<3	<0.5	<0.5	<0.5	<0.5
Benzyl chloride	ppbv	<3	<0.5	<0.5	<0.5	<0.5
1,4-Dichlorobenzene	ppbv	<3	<0.5	<0.5	<0.5	<0.5
1,2-Dichlorobenzene	ppbv	<3	<0.5	<0.5	<0.5	<0.5
1,2,4-Trichlorobenzene	ppbv	<3	<0.5	<0.5	<0.5	<0.5
Naphthalene	ppbv	<3	<0.5	<0.5	0.6	<0.5
Hexachloro- 1,3-butadiene	ppbv	<3	<0.5	<0.5	<0.5	<0.5
Surrogate-Bromochloromethane	% rec	91	95	108	82	95
Surrogate -1,4-Difluorobenzene	% rec	88	96	115	74	97
Surrogate-Chlorobenzene-D5	% rec	90	97	115	75	96

TO15 in Canisters/Bags				
Our Reference		268574-6	268574-7	268574-8
Your Reference	UNITS	GG6	GG7	FD1
Date Sampled		07/05/2021	07/05/2021	07/05/2021
Type of sample		Air	Air	Air
Air Kit Security No.		1877	3645	1875
Vacuum before Shipment	Hg"	-30	-30	-30
Vacuum before Analysis	Hg"	-7	-8	-3
Date prepared	-	11/05/2021	11/05/2021	11/05/2021
Date analysed	-	11/05/2021	11/05/2021	11/05/2021
Propylene	ppbv	<0.5	<0.5	80
Dichlorodifluoromethane	ppbv	<0.5	<0.5	<0.5
Chloromethane	ppbv	<0.5	<0.5	<0.5
1,2-Dichlorotetrafluoroethane	ppbv	<0.5	<0.5	<0.5
Vinyl chloride	ppbv	<0.5	<0.5	<0.5
1,3-Butadiene	ppbv	<0.5	<0.5	<0.5
Bromomethane	ppbv	<0.5	<0.5	<0.5
Chloroethane	ppbv	<0.5	<0.5	<0.5
Ethanol	ppbv	30	30	10
Acrolein	ppbv	<5	<5	<5
Trichlorofluoromethane (Freon 11)	ppbv	<0.5	<0.5	<0.5
Acetone	ppbv	<5	<5	<5
Isopropyl Alcohol	ppbv	10	<5	<5
1,1-Dichloroethene	ppbv	<0.5	0.6	0.9
1,1,2-Trichlorotrifluoroethane	ppbv	<0.5	<0.5	<0.5
Methylene chloride (Dichloromethane)	ppbv	<5	<5	<5
Carbon Disulfide	ppbv	<5	8	20
trans-1,2-dichloroethene	ppbv	<0.5	<0.5	<0.5
МТВЕ	ppbv	<0.5	<0.5	<0.5
1,1- Dichloroethane	ppbv	<0.5	<0.5	0.7
Vinyl Acetate	ppbv	<0.5	<0.5	<0.5
МЕК	ppbv	<5	<5	<5
Hexane	ppbv	<0.5	15	44
cis-1,2-Dichloroethene	ppbv	<0.5	<0.5	<0.5
Ethyl Acetate	ppbv	<0.5	<0.5	<0.5
Chloroform	ppbv	3	6.1	15
Tetrahydrofuran	ppbv	<0.5	<0.5	<0.5
1,1,1-Trichloroethane	ppbv	<0.5	<0.5	<0.5
1,2-Dichloroethane	ppbv	<0.5	<0.5	<0.5
Benzene	ppbv	<0.5	0.9	3
Carbon tetrachloride	ppbv	<0.5	<0.5	<0.5

TO15 in Canisters/Bags				
Our Reference		268574-6	268574-7	268574-8
Your Reference	UNITS	GG6	GG7	FD1
Date Sampled		07/05/2021	07/05/2021	07/05/2021
Type of sample		Air	Air	Air
Air Kit Security No.		1877	3645	1875
Cyclohexane	ppbv	1	8.6	57
Heptane	ppbv	<0.5	4	27
Trichloroethene	ppbv	<0.5	<0.5	<0.5
1,2-Dichloropropane	ppbv	<0.5	<0.5	<0.5
1,4-Dioxane	ppbv	<0.5	<0.5	<0.5
Bromodichloromethane	ppbv	<0.5	<0.5	<0.5
Methyl Methacrylate	ppbv	<0.5	<0.5	<0.5
МІВК	ppbv	<5	<5	<5
cis-1,3-Dichloropropene	ppbv	<0.5	<0.5	<0.5
trans-1,3-Dichloropropene	ppbv	<0.5	<0.5	<0.5
Toluene	ppbv	0.8	4	13
1,1,2-Trichloroethane	ppbv	<0.5	<0.5	<0.5
Methyl Butyl Ketone	ppbv	<0.5	<0.5	<0.5
Dibromochloromethane	ppbv	<0.5	<0.5	<0.5
Tetrachloroethene	ppbv	<0.5	<0.5	<0.5
1,2-Dibromoethane	ppbv	<0.5	<0.5	<0.5
Chlorobenzene	ppbv	<0.5	<0.5	<0.5
Ethylbenzene	ppbv	0.5	1	2
m-& p-Xylene	ppbv	<1	2	4
Styrene	ppbv	7.6	9.6	16
o-Xylene	ppbv	<0.5	0.9	2
Bromoform	ppbv	<0.5	<0.5	<0.5
1,1,2,2-Tetrachloroethane	ppbv	<0.5	<0.5	<0.5
4-ethyl toluene	ppbv	<0.5	<0.5	<0.5
1,3,5-Trimethylbenzene	ppbv	<0.5	<0.5	0.8
1,2,4-Trimethylbenzene	ppbv	<0.5	0.6	1
1,3-Dichlorobenzene	ppbv	<0.5	<0.5	<0.5
Benzyl chloride	ppbv	<0.5	<0.5	<0.5
1,4-Dichlorobenzene	ppbv	<0.5	<0.5	<0.5
1,2-Dichlorobenzene	ppbv	<0.5	<0.5	<0.5
1,2,4-Trichlorobenzene	ppbv	<0.5	<0.5	<0.5
Naphthalene	ppbv	<0.5	<0.5	<0.5
Hexachloro- 1,3-butadiene	ppbv	<0.5	<0.5	<0.5
Surrogate-Bromochloromethane	% rec	100	99	95
Surrogate -1,4-Difluorobenzene	% rec	99	97	97
Surrogate-Chlorobenzene-D5	% rec	97	94	96

TO15 in Canisters μg/m3						
Our Reference		268574-1	268574-2	268574-3	268574-4	268574-5
Your Reference	UNITS	GG1	GG2	GG3	GG4	GG5
Date Sampled		07/05/2021	07/05/2021	07/05/2021	07/05/2021	07/05/2021
Type of sample		Air	Air	Air	Air	Air
Air Kit Security No.		2469	1702	3513	1881	2544
Vacuum before Shipment	Hg"	-30	-30	-30	-30	-30
Vacuum before Analysis	Hg"	-4	-6	-3	-5	-0.11
Date prepared	-	11/05/2021	11/05/2021	11/05/2021	11/05/2021	11/05/2021
Date analysed	-	11/05/2021	11/05/2021	11/05/2021	11/05/2021	11/05/2021
Propylene	µg/m³	<4.5	<0.9	140	<0.9	10
Dichlorodifluoromethane	µg/m³	<12.5	<2.5	<2.5	<2.5	<2.5
Chloromethane	µg/m³	<5	<1.0	<1	<1	<1
1,2-Dichlorotetrafluoroethane	µg/m³	<12.5	<2.5	<2.5	<2.5	<2.5
Vinyl chloride	µg/m³	<6.5	<1.3	<1.3	<1.3	<1.3
1,3-Butadiene	µg/m³	<5.5	<1.1	<1.1	<1.1	5
Bromomethane	µg/m³	<9.5	<1.9	<1.9	<1.9	<1.9
Chloroethane	µg/m³	<6.5	<1.3	<1.3	<1.3	<1.3
Ethanol	µg/m³	<45	20	20	10	30
Acrolein	µg/m³	<55	<11	<11	<11	<11
Trichlorofluoromethane (Freon 11)	μg/m³	<14	<2.8	<2.8	<2.8	<2.8
Acetone	µg/m³	<59.5	<11.9	<11.9	<11.9	20
Isopropyl Alcohol	µg/m³	<60	200	<12	<12	<12
1,1-Dichloroethene	µg/m³	<10	<2	3	4	<2
1,1,2-Trichlorotrifluoroethane	µg/m³	<19	<3.8	<3.8	<3.8	<3.8
Methylene chloride (Dichloromethane)	µg/m³	<85	<17	<17	<17	<17
Carbon Disulfide	μg/m³	310	<16	50	<16	100
trans-1,2-dichloroethene	µg/m³	<10	<2	<2	<2	<2
МТВЕ	µg/m³	<9	<1.8	<1.8	<1.8	<1.8
1,1- Dichloroethane	µg/m³	<10	3	3	<2	<2
Vinyl Acetate	µg/m³	<9	<1.8	<1.8	<1.8	<1.8
MEK	µg/m³	<75	<15	<15	<15	<15
Hexane	µg/m³	2,600	200	140	160	8
cis-1,2-Dichloroethene	µg/m³	<10	<2	<2	<2	<2
Ethyl Acetate	µg/m³	<9	<1.8	<1.8	<1.8	<1.8
Chloroform	µg/m³	79	20	74	64	170
Tetrahydrofuran	µg/m³	<7.5	<1.5	<1.5	<1.5	<1.5
1,1,1-Trichloroethane	µg/m³	<13.5	<2.7	<2.7	<2.7	<2.7
1,2-Dichloroethane	µg/m³	<10	<2	<2	<2	<2
Benzene	µg/m³	25	17	8	10	5
Carbon tetrachloride	µg/m³	<15.5	<3.1	<3.1	<3.1	<3.1

TO15 in Canisters μg/m3						
Our Reference		268574-1	268574-2	268574-3	268574-4	268574-5
Your Reference	UNITS	GG1	GG2	GG3	GG4	GG5
Date Sampled		07/05/2021	07/05/2021	07/05/2021	07/05/2021	07/05/2021
Type of sample		Air	Air	Air	Air	Air
Air Kit Security No.		2469	1702	3513	1881	2544
Cyclohexane	µg/m³	1,300	250	180	110	4
Heptane	µg/m³	2,500	90	120	42	<2
Trichloroethene	µg/m³	<13.5	6	<2.7	<2.7	3
1,2-Dichloropropane	µg/m³	<11.5	<2.3	<2.3	<2.3	<2.3
1,4-Dioxane	µg/m³	<9	<1.8	<1.8	<1.8	<1.8
Bromodichloromethane	µg/m³	<17	<3.4	<3.4	<3.4	8
Methyl Methacrylate	µg/m³	<10	<2	<2	<2	<2
МІВК	µg/m³	<100	<20	<20	<20	<20
cis-1,3-Dichloropropene	µg/m³	<11.5	<2.3	<2.3	<2.3	<2.3
trans-1,3-Dichloropropene	µg/m³	<11.5	<2.3	<2.3	<2.3	<2.3
Toluene	µg/m³	31	20	51	48	20
1,1,2-Trichloroethane	µg/m³	<13.5	<2.7	<2.7	<2.7	<2.7
Methyl Butyl Ketone	µg/m³	<10	<2	<2	<2	<2
Dibromochloromethane	µg/m³	<8	<1.6	<1.6	<1.6	<1.6
Tetrachloroethene	µg/m³	<17	<3.4	<3.4	<3.4	<3.4
1,2-Dibromoethane	µg/m³	<19	<3.8	<3.8	<3.8	<3.8
Chlorobenzene	µg/m³	<11.5	<2.3	<2.3	<2.3	<2.3
Ethylbenzene	µg/m³	10	10	8	20	5
m-& p-Xylene	µg/m³	30	10	20	100	10
Styrene	µg/m³	39	140	66	36	21
o-Xylene	µg/m³	<11	8	8	53	4
Bromoform	µg/m³	<26	<5.2	<5.2	<5.2	<5.2
1,1,2,2-Tetrachloroethane	µg/m³	<17	<3.4	<3.4	<3.4	<3.4
4-ethyl toluene	µg/m³	<12.5	3	<2.5	80	<2.5
1,3,5-Trimethylbenzene	µg/m³	<12.5	4	4	110	<2.5
1,2,4-Trimethylbenzene	µg/m³	<12.5	5	5	330	4
1,3-Dichlorobenzene	µg/m³	<15	<3	<3	<3	<3
Benzyl chloride	µg/m³	<13	<2.6	<2.6	<2.6	<2.6
1,4-Dichlorobenzene	µg/m³	<15	<3	<3	<3	<3
1,2-Dichlorobenzene	µg/m³	<15	<3	<3	<3	<3
1,2,4-Trichlorobenzene	µg/m³	<18.5	<3.7	<3.7	<3.7	<3.7
Naphthalene	µg/m³	<13	<2.6	<2.6	3	<2.6
Hexachloro- 1,3-butadiene	µg/m³	<26.5	<5.3	<5.3	<5.3	<5.3
Surrogate-Bromochloromethane	% rec	91	95	108	82	95
Surrogate -1,4-Difluorobenzene	% rec	88	96	115	74	97
Surrogate-Chlorobenzene-D5	% rec	90	97	115	75	96

TO15 in Canisters μg/m3				
Our Reference		268574-6	268574-7	268574-8
Your Reference	UNITS	GG6	GG7	FD1
Date Sampled		07/05/2021	07/05/2021	07/05/2021
Type of sample		Air	Air	Air
Air Kit Security No.		1877	3645	1875
Vacuum before Shipment	Hg"	-30	-30	-30
Vacuum before Analysis	Hg"	-7	-8	-3
Date prepared	-	11/05/2021	11/05/2021	11/05/2021
Date analysed	-	11/05/2021	11/05/2021	11/05/2021
Propylene	µg/m³	<0.9	<0.9	140
Dichlorodifluoromethane	µg/m³	<2.5	<2.5	<2.5
Chloromethane	µg/m³	<1	<1	<1.0
1,2-Dichlorotetrafluoroethane	µg/m³	<2.5	<2.5	<2.5
Vinyl chloride	µg/m³	<1.3	<1.3	<1.3
1,3-Butadiene	µg/m³	<1.1	<1.1	<1.1
Bromomethane	µg/m³	<1.9	<1.9	<1.9
Chloroethane	µg/m³	<1.3	<1.3	<1.3
Ethanol	µg/m³	50	50	30
Acrolein	µg/m³	<11	<11	<11
Trichlorofluoromethane (Freon 11)	µg/m³	<2.8	<2.8	<2.8
Acetone	µg/m³	<11.9	<11.9	<11.9
Isopropyl Alcohol	µg/m³	20	<12	<12
1,1-Dichloroethene	µg/m³	<2	2	3
1,1,2-Trichlorotrifluoroethane	µg/m³	<3.8	<3.8	<3.8
Methylene chloride (Dichloromethane)	µg/m³	<17	<17	<17
Carbon Disulfide	µg/m³	<16	20	50
trans-1,2-dichloroethene	µg/m³	<2	<2	<2.0
МТВЕ	µg/m³	<1.8	<1.8	<1.8
1,1- Dichloroethane	µg/m³	<2	<2	3
Vinyl Acetate	µg/m³	<1.8	<1.8	<1.8
МЕК	µg/m³	<15	<15	<15
Hexane	µg/m³	<1.8	53	150
cis-1,2-Dichloroethene	µg/m³	<2	<2	<2.0
Ethyl Acetate	µg/m³	<1.8	<1.8	<1.8
Chloroform	µg/m³	10	30	73
Tetrahydrofuran	µg/m³	<1.5	<1.5	<1.5
1,1,1-Trichloroethane	µg/m³	<2.7	<2.7	<2.7
1,2-Dichloroethane	µg/m³	<2	<2	<2.0
Benzene	µg/m³	<1.6	3	9
Carbon tetrachloride	µg/m³	<3.1	<3.1	<3.1

TO15 in Canisters μg/m3				
Our Reference		268574-6	268574-7	268574-8
Your Reference	UNITS	GG6	GG7	FD1
Date Sampled		07/05/2021	07/05/2021	07/05/2021
Type of sample		Air	Air	Air
Air Kit Security No.		1877	3645	1875
Cyclohexane	µg/m³	3	30	200
Heptane	µg/m³	<2	20	110
Trichloroethene	µg/m³	<2.7	<2.7	<2.7
1,2-Dichloropropane	µg/m³	<2.3	<2.3	<2.3
1,4-Dioxane	µg/m³	<1.8	<1.8	<1.8
Bromodichloromethane	µg/m³	<3.4	<3.4	<3.4
Methyl Methacrylate	µg/m³	<2	<2	<2.0
МІВК	µg/m³	<20	<20	<20
cis-1,3-Dichloropropene	µg/m³	<2.3	<2.3	<2.3
trans-1,3-Dichloropropene	µg/m³	<2.3	<2.3	<2.3
Toluene	µg/m³	3	20	51
1,1,2-Trichloroethane	µg/m³	<2.7	<2.7	<2.7
Methyl Butyl Ketone	µg/m³	<2	<2	<2.0
Dibromochloromethane	µg/m³	<1.6	<1.6	<1.6
Tetrachloroethene	µg/m³	<3.4	<3.4	<3.4
1,2-Dibromoethane	µg/m³	<3.8	<3.8	<3.8
Chlorobenzene	µg/m³	<2.3	<2.3	<2.3
Ethylbenzene	µg/m³	2	5	8
m-& p-Xylene	µg/m³	<4.3	8	20
Styrene	µg/m³	32	41	66
o-Xylene	µg/m³	<2.2	4	8
Bromoform	µg/m³	<5.2	<5.2	<5.2
1,1,2,2-Tetrachloroethane	µg/m³	<3.4	<3.4	<3.4
4-ethyl toluene	µg/m³	<2.5	<2.5	<2.5
1,3,5-Trimethylbenzene	µg/m³	<2.5	<2.5	4
1,2,4-Trimethylbenzene	µg/m³	<2.5	3	6
1,3-Dichlorobenzene	µg/m³	<3	<3	<3.0
Benzyl chloride	µg/m³	<2.6	<2.6	<2.6
1,4-Dichlorobenzene	µg/m³	<3	<3	<3.0
1,2-Dichlorobenzene	µg/m³	<3	<3	<3.0
1,2,4-Trichlorobenzene	µg/m³	<3.7	<3.7	<3.7
Naphthalene	µg/m³	<2.6	<2.6	<2.6
Hexachloro- 1,3-butadiene	µg/m³	<5.3	<5.3	<5.3
Surrogate-Bromochloromethane	% rec	100	99	95
Surrogate -1,4-Difluorobenzene	% rec	99	97	97
Surrogate-Chlorobenzene-D5	% rec	97	94	96

TPH Air/ Air Phase Hydrocarbon				_		
Our Reference		268574-1	268574-2	268574-3	268574-4	268574-5
Your Reference	UNITS	GG1	GG2	GG3	GG4	GG5
Date Sampled		07/05/2021	07/05/2021	07/05/2021	07/05/2021	07/05/2021
Type of sample		Air	Air	Air	Air	Air
Air Kit Security No.		2469	1702	3513	1881	2544
Date prepared	-	11/05/2021	11/05/2021	11/05/2021	11/05/2021	11/05/2021
Date analysed	-	11/05/2021	11/05/2021	11/05/2021	11/05/2021	11/05/2021
TPH C₅ - Cଃ Aliphatic	µg/m³	33,000	2,400	2,400	13,000	<200
TPH C ₉ - C ₁₂ Aliphatic	µg/m³	<250	170	<50	17,000	<50
TPH C ₉ - C ₁₀ Aromatic	µg/m³	<500	<100	<100	2,000	<100
TPH C ₆ - C ₁₀ - BTEX (F1)	µg/m³	17,000	1,000	<200	<200	<200
TPH >C ₁₀ - C ₁₂ - Naphthalene (F2)	µg/m³	<200	140	<40	15,000	<40

TPH Air/ Air Phase Hydrocarbon				
Our Reference		268574-6	268574-7	268574-8
Your Reference	UNITS	GG6	GG7	FD1
Date Sampled		07/05/2021	07/05/2021	07/05/2021
Type of sample		Air	Air	Air
Air Kit Security No.		1877	3645	1875
Date prepared	-	11/05/2021	11/05/2021	11/05/2021
Date analysed	-	11/05/2021	11/05/2021	11/05/2021
TPH C₅ - C ₈ Aliphatic	µg/m³	<200	<200	2,100
TPH C ₉ - C ₁₂ Aliphatic	µg/m³	<50	<50	<50
TPH C9 - C10 Aromatic	µg/m³	<100	<100	<100
TPH C ₆ - C ₁₀ - BTEX (F1)	µg/m³	<200	<200	<200
TPH >C ₁₀ - C ₁₂ - Naphthalene (F2)	µg/m³	<40	<40	<40

Method ID	Methodology Summary
AT-005	Measurement of Air-Phase Petroleum Hydrocarbons and Ozone Precursors by GC/MS
TO15	USEPA TO15 - Analysis of VOC's in air using USEPA TO15 and in house method AT-002. Note, longer term stability of some oxygenated compounds is questionable where significant humidity is present.
USEPA 18	Measurement of Gaseous Organic Compound Emissions by Gas Chromatography using USEPA m18.

QUALITY CO	ONTROL: TO	15 in Car	nisters/Bags			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Vacuum before Shipment	Hg"			[NT]	3	-30	-30	0	[NT]	[NT]
Vacuum before Analysis	Hg"			[NT]	3	-3	-3	0	[NT]	[NT]
Date prepared	-			11/05/2021	3	11/05/2021	11/05/2021		11/05/2021	[NT]
Date analysed	-			11/05/2021	3	11/05/2021	11/05/2021		11/05/2021	[NT]
Propylene	ppbv	0.5	TO15	<0.5	3	79	80	1	115	[NT]
Dichlorodifluoromethane	ppbv	0.5	TO15	<0.5	3	<0.5	<0.5	0	[NT]	[NT]
Chloromethane	ppbv	0.5	TO15	<0.5	3	<0.5	<0.5	0	[NT]	[NT]
1,2-Dichlorotetrafluoroethane	ppbv	0.5	TO15	<0.5	3	<0.5	<0.5	0	[NT]	[NT]
Vinyl chloride	ppbv	0.5	TO15	<0.5	3	<0.5	<0.5	0	[NT]	[NT]
1,3-Butadiene	ppbv	0.5	TO15	<0.5	3	<0.5	<0.5	0	[NT]	[NT]
Bromomethane	ppbv	0.5	TO15	<0.5	3	<0.5	<0.5	0	[NT]	[NT]
Chloroethane	ppbv	0.5	TO15	<0.5	3	<0.5	<0.5	0	[NT]	[NT]
Ethanol	ppbv	5	TO15	<5	3	9	9	0	[NT]	[NT]
Acrolein	ppbv	5	TO15	<5	3	<5	<5	0	[NT]	[NT]
Trichlorofluoromethane (Freon 11)	ppbv	0.5	TO15	<0.5	3	<0.5	<0.5	0	[NT]	[NT]
Acetone	ppbv	5	TO15	<5	3	<5	<5	0	[NT]	[NT]
Isopropyl Alcohol	ppbv	5	TO15	<5	3	<5	<5	0	[NT]	[NT]
1,1-Dichloroethene	ppbv	0.5	TO15	<0.5	3	0.8	0.8	0	[NT]	[NT]
1,1,2-Trichlorotrifluoroethane	ppbv	0.5	TO15	<0.5	3	<0.5	<0.5	0	[NT]	[NT]
Methylene chloride (Dichloromethane)	ppbv	5	TO15	<5	3	<5	<5	0	[NT]	[NT]
Carbon Disulfide	ppbv	5	TO15	<5	3	20	20	0	[NT]	[NT]
trans-1,2-dichloroethene	ppbv	0.5	TO15	<0.5	3	<0.5	<0.5	0	[NT]	[NT]
МТВЕ	ppbv	0.5	TO15	<0.5	3	<0.5	<0.5	0	[NT]	[NT]
1,1- Dichloroethane	ppbv	0.5	TO15	<0.5	3	0.7	0.7	0	[NT]	[NT]
Vinyl Acetate	ppbv	0.5	TO15	<0.5	3	<0.5	<0.5	0	[NT]	[NT]
MEK	ppbv	5	TO15	<5	3	<5	<5	0	[NT]	[NT]
Hexane	ppbv	0.5	TO15	<0.5	3	41	42	2	103	[NT]
cis-1,2-Dichloroethene	ppbv	0.5	TO15	<0.5	3	<0.5	<0.5	0	[NT]	[NT]
Ethyl Acetate	ppbv	0.5	TO15	<0.5	3	<0.5	<0.5	0	[NT]	[NT]
Chloroform	ppbv	0.5	TO15	<0.5	3	15	15	0	[NT]	[NT]
Tetrahydrofuran	ppbv	0.5	TO15	<0.5	3	<0.5	<0.5	0	[NT]	[NT]
1,1,1-Trichloroethane	ppbv	0.5	TO15	<0.5	3	<0.5	<0.5	0	[NT]	[NT]
1,2-Dichloroethane	ppbv	0.5	TO15	<0.5	3	<0.5	<0.5	0	[NT]	[NT]
Benzene	ppbv	0.5	TO15	<0.5	3	3	3	0	100	[NT]
Carbon tetrachloride	ppbv	0.5	TO15	<0.5	3	<0.5	<0.5	0	[NT]	[NT]
Cyclohexane	ppbv	0.5	TO15	<0.5	3	53	54	2	108	[NT]
Heptane	ppbv	0.5	TO15	<0.5	3	29	28	4	103	[NT]

QUALITY C	ONTROL: TO	015 in Car	nisters/Bags			D	uplicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Trichloroethene	ppbv	0.5	TO15	<0.5	3	<0.5	<0.5	0		[NT]
1,2-Dichloropropane	ppbv	0.5	TO15	<0.5	3	<0.5	<0.5	0		[NT]
1,4-Dioxane	ppbv	0.5	TO15	<0.5	3	<0.5	<0.5	0		[NT]
Bromodichloromethane	ppbv	0.5	TO15	<0.5	3	<0.5	<0.5	0		[NT]
Methyl Methacrylate	ppbv	0.5	TO15	<0.5	3	<0.5	<0.5	0		[NT]
MIBK	ppbv	5	TO15	<5	3	<5	<5	0		[NT]
cis-1,3-Dichloropropene	ppbv	0.5	TO15	<0.5	3	<0.5	<0.5	0		[NT]
trans-1,3-Dichloropropene	ppbv	0.5	TO15	<0.5	3	<0.5	<0.5	0		[NT]
Toluene	ppbv	0.5	TO15	<0.5	3	13	13	0	105	[NT]
1,1,2-Trichloroethane	ppbv	0.5	TO15	<0.5	3	<0.5	<0.5	0		[NT]
Methyl Butyl Ketone	ppbv	0.5	TO15	<0.5	3	<0.5	<0.5	0		[NT]
Dibromochloromethane	ppbv	0.5	TO15	<0.5	3	<0.5	<0.5	0		[NT]
Tetrachloroethene	ppbv	0.5	TO15	<0.5	3	<0.5	<0.5	0		[NT]
1,2-Dibromoethane	ppbv	0.5	TO15	<0.5	3	<0.5	<0.5	0		[NT]
Chlorobenzene	ppbv	0.5	TO15	<0.5	3	<0.5	<0.5	0		[NT]
Ethylbenzene	ppbv	0.5	TO15	<0.5	3	2	2	0	108	[NT]
m-& p-Xylene	ppbv	1	TO15	<1	3	4	4	0	106	[NT]
Styrene	ppbv	0.5	TO15	<0.5	3	15	15	0	85	[NT]
o-Xylene	ppbv	0.5	TO15	<0.5	3	2	2	0	107	[NT]
Bromoform	ppbv	0.5	TO15	<0.5	3	<0.5	<0.5	0		[NT]
1,1,2,2-Tetrachloroethane	ppbv	0.5	TO15	<0.5	3	<0.5	<0.5	0		[NT]
4-ethyl toluene	ppbv	0.5	TO15	<0.5	3	<0.5	<0.5	0	109	[NT]
1,3,5-Trimethylbenzene	ppbv	0.5	TO15	<0.5	3	0.8	0.8	0	106	[NT]
1,2,4-Trimethylbenzene	ppbv	0.5	TO15	<0.5	3	1	1	0	108	[NT]
1,3-Dichlorobenzene	ppbv	0.5	TO15	<0.5	3	<0.5	<0.5	0		[NT]
Benzyl chloride	ppbv	0.5	TO15	<0.5	3	<0.5	<0.5	0		[NT]
1,4-Dichlorobenzene	ppbv	0.5	TO15	<0.5	3	<0.5	<0.5	0		[NT]
1,2-Dichlorobenzene	ppbv	0.5	TO15	<0.5	3	<0.5	<0.5	0		[NT]
1,2,4-Trichlorobenzene	ppbv	0.5	TO15	<0.5	3	<0.5	<0.5	0		[NT]
Naphthalene	ppbv	0.5	TO15	<0.5	3	<0.5	<0.5	0		[NT]
Hexachloro- 1,3-butadiene	ppbv	0.5	TO15	<0.5	3	<0.5	<0.5	0		[NT]
Surrogate-Bromochloromethane	% rec		TO15	106	3	108	116	7	98	[NT]
Surrogate -1,4-Difluorobenzene	% rec		TO15	101	3	115	126	9	94	[NT]
Surrogate-Chlorobenzene-D5	% rec		TO15	94	3	115	125	8	96	[NT]

QUALITY CO	ONTROL: TO	15 in Can	isters µg/m3			Du	iplicate		Spike Re	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Vacuum before Shipment	Hg"			[NT]	3	-30	-30	0		[NT]
Vacuum before Analysis	Hg"			[NT]	3	-3	-3	0		[NT]
Date prepared	-			11/05/2021	3	11/05/2021	11/05/2021			[NT]
Date analysed	-			11/05/2021	3	11/05/2021	11/05/2021			[NT]
Propylene	µg/m³	0.9	TO15	<0.9	3	140	140	0		[NT]
Dichlorodifluoromethane	µg/m³	2.5	TO15	<2.5	3	<2.5	<2.5	0		[NT]
Chloromethane	µg/m³	1.0	TO15	<1.0	3	<1	<1.0	0		[NT]
1,2-Dichlorotetrafluoroethane	µg/m³	2.5	TO15	<2.5	3	<2.5	<2.5	0		[NT]
Vinyl chloride	µg/m³	1.3	TO15	<1.3	3	<1.3	<1.3	0		[NT]
1,3-Butadiene	µg/m³	1.1	TO15	<1.1	3	<1.1	<1.1	0		[NT]
Bromomethane	µg/m³	1.9	TO15	<1.9	3	<1.9	<1.9	0		[NT]
Chloroethane	µg/m³	1.3	TO15	<1.3	3	<1.3	<1.3	0		[NT]
Ethanol	µg/m³	9	TO15	<9	3	20	20	0		[NT]
Acrolein	µg/m³	11	TO15	<11	3	<11	<11	0		[NT]
Trichlorofluoromethane (Freon 11)	µg/m³	2.8	TO15	<2.8	3	<2.8	<2.8	0		[NT]
Acetone	µg/m³	11.9	TO15	<11.9	3	<11.9	<11.9	0		[NT]
Isopropyl Alcohol	µg/m³	12	TO15	<12	3	<12	<12	0		[NT]
1,1-Dichloroethene	µg/m³	2.0	TO15	<2.0	3	3	3	0		[NT]
1,1,2-Trichlorotrifluoroethane	µg/m³	3.8	TO15	<3.8	3	<3.8	<3.8	0		[NT]
Methylene chloride (Dichloromethane)	µg/m³	17	USEPA 18	<17	3	<17	<17	0		[NT]
Carbon Disulfide	µg/m³	16	TO15	<16	3	50	50	0		[NT]
trans-1,2-dichloroethene	µg/m³	2.0	TO15	<2.0	3	<2	<2	0		[NT]
МТВЕ	µg/m³	1.8	TO15	<1.8	3	<1.8	<1.8	0		[NT]
1,1- Dichloroethane	µg/m³	2.0	TO15	<2.0	3	3	3	0		[NT]
Vinyl Acetate	µg/m³	1.8	TO15	<1.8	3	<1.8	<1.8	0		[NT]
MEK	µg/m³	15	TO15	<15	3	<15	<15	0		[NT]
Hexane	µg/m³	1.8	TO15	<1.8	3	140	150	7		[NT]
cis-1,2-Dichloroethene	µg/m³	2.0	TO15	<2.0	3	<2	<2	0		[NT]
Ethyl Acetate	µg/m³	1.8	TO15	<1.8	3	<1.8	<1.8	0		[NT]
Chloroform	µg/m³	2.4	TO15	<2.4	3	74	74	0		[NT]
Tetrahydrofuran	µg/m³	1.5	TO15	<1.5	3	<1.5	<1.5	0		[NT]
1,1,1-Trichloroethane	µg/m³	2.7	TO15	<2.7	3	<2.7	<2.7	0		[NT]
1,2-Dichloroethane	µg/m³	2.0	TO15	<2.0	3	<2	<2	0		[NT]
Benzene	µg/m³	1.6	TO15	<1.6	3	8	9	12		[NT]
Carbon tetrachloride	µg/m³	3.1	TO15	<3.1	3	<3.1	<3.1	0		[NT]
Cyclohexane	µg/m³	1.7	TO15	<1.7	3	180	190	5		[NT]
Heptane	µg/m³	2.0	TO15	<2.0	3	120	120	0		[NT]

QUALITY CO	ONTROL: TO	15 in Can	isters µg/m3			D	uplicate		Spike Re	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Trichloroethene	µg/m³	2.7	TO15	<2.7	3	<2.7	<2.7	0		[NT]
1,2-Dichloropropane	µg/m³	2.3	TO15	<2.3	3	<2.3	<2.3	0		[NT]
1,4-Dioxane	µg/m³	1.8	TO15	<1.8	3	<1.8	<1.8	0		[NT]
Bromodichloromethane	µg/m³	3.4	TO15	<3.4	3	<3.4	<3.4	0		[NT]
Methyl Methacrylate	µg/m³	2.0	TO15	<2.0	3	<2	<2	0		[NT]
МІВК	µg/m³	20	TO15	<20	3	<20	<20	0		[NT]
cis-1,3-Dichloropropene	µg/m³	2.3	TO15	<2.3	3	<2.3	<2.3	0		[NT]
trans-1,3-Dichloropropene	µg/m³	2.3	TO15	<2.3	3	<2.3	<2.3	0		[NT]
Toluene	µg/m³	1.9	TO15	<1.9	3	51	50	2		[NT]
1,1,2-Trichloroethane	µg/m³	2.7	TO15	<2.7	3	<2.7	<2.7	0		[NT]
Methyl Butyl Ketone	µg/m³	2.0	TO15	<2.0	3	<2	<2	0		[NT]
Dibromochloromethane	µg/m³	1.6	TO15	<1.6	3	<1.6	<1.6	0		[NT]
Tetrachloroethene	µg/m³	3.4	TO15	<3.4	3	<3.4	<3.4	0		[NT]
1,2-Dibromoethane	µg/m³	3.8	TO15	<3.8	3	<3.8	<3.8	0		[NT]
Chlorobenzene	µg/m³	2.3	TO15	<2.3	3	<2.3	<2.3	0		[NT]
Ethylbenzene	µg/m³	2.2	TO15	<2.2	3	8	8	0		[NT]
m-& p-Xylene	µg/m³	4.3	TO15	<4.3	3	20	20	0		[NT]
Styrene	µg/m³	2.1	TO15	<2.1	3	66	66	0		[NT]
o-Xylene	µg/m³	2.2	TO15	<2.2	3	8	7	13		[NT]
Bromoform	µg/m³	5.2	TO15	<5.2	3	<5.2	<5.2	0		[NT]
1,1,2,2-Tetrachloroethane	µg/m³	3.4	TO15	<3.4	3	<3.4	<3.4	0		[NT]
4-ethyl toluene	µg/m³	2.5	TO15	<2.5	3	<2.5	<2.5	0		[NT]
1,3,5-Trimethylbenzene	µg/m³	2.5	TO15	<2.5	3	4	4	0		[NT]
1,2,4-Trimethylbenzene	µg/m³	2.5	TO15	<2.5	3	5	5	0		[NT]
1,3-Dichlorobenzene	µg/m³	3.0	TO15	<3.0	3	<3	<3	0		[NT]
Benzyl chloride	µg/m³	2.6	TO15	<2.6	3	<2.6	<2.6	0		[NT]
1,4-Dichlorobenzene	µg/m³	3.0	TO15	<3.0	3	<3	<3	0		[NT]
1,2-Dichlorobenzene	µg/m³	3.0	TO15	<3.0	3	<3	<3	0		[NT]
1,2,4-Trichlorobenzene	µg/m³	3.7	TO15	<3.7	3	<3.7	<3.7	0		[NT]
Naphthalene	µg/m³	2.6	TO15	<2.6	3	<2.6	<2.6	0		[NT]
Hexachloro- 1,3-butadiene	µg/m³	5.3	TO15	<5.3	3	<5.3	<5.3	0		[NT]
Surrogate-Bromochloromethane	% rec		TO15	106	3	108	116	7		[NT]
Surrogate -1,4-Difluorobenzene	% rec		TO15	101	3	115	126	9		[NT]
Surrogate-Chlorobenzene-D5	% rec		TO15	94	3	115	125	8		[NT]

QUALITY CONTR	ROL: TPH Ai	r/ Air Pha	se Hydrocarbon			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			11/05/2021	3	11/05/2021	11/05/2021		11/05/2021	
Date analysed	-			11/05/2021	3	11/05/2021	11/05/2021		11/05/2021	
TPH C ₅ - C ₈ Aliphatic	µg/m³	200	AT-005	<200	3	2400	2300	4	103	
TPH C ₉ - C ₁₂ Aliphatic	µg/m³	50	AT-005	<50	3	<50	<50	0	[NT]	
TPH C ₉ - C ₁₀ Aromatic	µg/m³	100	AT-005	<100	3	<100	<100	0	106	
TPH C ₆ - C ₁₀ - BTEX (F1)	µg/m³	200	TO15	<200	3	<200	<200	0	102	
TPH >C ₁₀ - C ₁₂ - Naphthalene (F2)	µg/m³	40	TO15	<40	3	<40	<40	0	105	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

TO15, TPH

PQL has been raised due to the high level of analytes present in sample #1.

CERTIFICATE OF ANALYSIS 269024

Client Details	
Client	Greencap Pty Ltd
Attention	Shihui Wang
Address	Ground Floor, North Building, 22 Giffnock Ave, MACQUARIE PARK, NSW, 2113

Sample Details	
Your Reference	DSI - Sydney Olympic park High School
Number of Samples	3xCanister
Date samples received	14/05/2021
Date completed instructions received	14/05/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details			
Date results requested by	19/05/2021		
Date of Issue	19/05/2021		
NATA Accreditation Number 2901. This document shall not be reproduced except in full.			
Accredited for compliance with I	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *		

<u>Results Approved By</u> Giovanni Agosti, Group Technical Manager Authorised By

Nancy Zhang, Laboratory Manager

TO15 in Canisters/Bags				
Our Reference		269024-1	269024-2	269024-3
Your Reference	UNITS	GG8	GG9	FD2
Date Sampled		13/05/2021	13/05/2021	13/05/2021
Type of sample		Air	Air	Air
Air Kit Security No.		3639	3497	3644
Vacuum before Shipment	Hg"	-30	-30	-30
Vacuum before Analysis	Hg"	-8	-7	-8
Date prepared	-	14/05/2021	14/05/2021	14/05/2021
Date analysed	-	14/05/2021	14/05/2021	14/05/2021
Propylene	ppbv	66	65	68
Dichlorodifluoromethane	ppbv	<0.5	<0.5	<0.5
Chloromethane	ppbv	<0.5	<0.5	<0.5
1,2-Dichlorotetrafluoroethane	ppbv	<0.5	<0.5	<0.5
Vinyl chloride	ppbv	<0.5	<0.5	<0.5
1,3-Butadiene	ppbv	<0.5	<0.5	<0.5
Bromomethane	ppbv	<0.5	<0.5	<0.5
Chloroethane	ppbv	<0.5	<0.5	<0.5
Ethanol	ppbv	94	6	20
Acrolein	ppbv	<5	<5	<5
Trichlorofluoromethane (Freon 11)	ppbv	<0.5	<0.5	<0.5
Acetone	ppbv	20	7	9
Isopropyl Alcohol	ppbv	<5	<5	<5
1,1-Dichloroethene	ppbv	<0.5	<0.5	<0.5
1,1,2-Trichlorotrifluoroethane	ppbv	<0.5	<0.5	<0.5
Methylene chloride (Dichloromethane)	ppbv	<5	<5	<5
Carbon Disulfide	ppbv	10	10	10
trans-1,2-dichloroethene	ppbv	<0.5	<0.5	<0.5
МТВЕ	ppbv	<0.5	<0.5	<0.5
1,1- Dichloroethane	ppbv	<0.5	<0.5	<0.5
Vinyl Acetate	ppbv	<0.5	<0.5	<0.5
MEK	ppbv	6	<5	<5
Hexane	ppbv	45	20	45
cis-1,2-Dichloroethene	ppbv	<0.5	<0.5	<0.5
Ethyl Acetate	ppbv	<0.5	<0.5	<0.5
Chloroform	ppbv	<0.5	2	<0.5
Tetrahydrofuran	ppbv	<0.5	<0.5	<0.5
1,1,1-Trichloroethane	ppbv	<0.5	<0.5	<0.5
1,2-Dichloroethane	ppbv	<0.5	<0.5	<0.5
Benzene	ppbv	2	1	2
Carbon tetrachloride	ppbv	<0.5	<0.5	<0.5

TO15 in Canisters/Bags				
Our Reference		269024-1	269024-2	269024-3
Your Reference	UNITS	GG8	GG9	FD2
Date Sampled		13/05/2021	13/05/2021	13/05/2021
Type of sample		Air	Air	Air
Air Kit Security No.		3639	3497	3644
Cyclohexane	ppbv	<0.5	11	<0.5
Heptane	ppbv	12	6.5	12
Trichloroethene	ppbv	<0.5	<0.5	<0.5
1,2-Dichloropropane	ppbv	<0.5	<0.5	<0.5
1,4-Dioxane	ppbv	<0.5	<0.5	<0.5
Bromodichloromethane	ppbv	<0.5	<0.5	<0.5
Methyl Methacrylate	ppbv	<0.5	1	<0.5
MIBK	ppbv	<5	<5	<5
cis-1,3-Dichloropropene	ppbv	<0.5	<0.5	<0.5
trans-1,3-Dichloropropene	ppbv	<0.5	<0.5	<0.5
Toluene	ppbv	16	34	16
1,1,2-Trichloroethane	ppbv	<0.5	<0.5	<0.5
Methyl Butyl Ketone	ppbv	<0.5	<0.5	<0.5
Dibromochloromethane	ppbv	<0.5	<0.5	<0.5
Tetrachloroethene	ppbv	<0.5	<0.5	<0.5
1,2-Dibromoethane	ppbv	<0.5	<0.5	<0.5
Chlorobenzene	ppbv	<0.5	0.5	<0.5
Ethylbenzene	ppbv	2	2	2
m-& p-Xylene	ppbv	6	4	6
Styrene	ppbv	3	6.4	3
o-Xylene	ppbv	3	1	3
Bromoform	ppbv	<0.5	<0.5	<0.5
1,1,2,2-Tetrachloroethane	ppbv	<0.5	<0.5	<0.5
4-ethyl toluene	ppbv	<0.5	<0.5	<0.5
1,3,5-Trimethylbenzene	ppbv	0.8	<0.5	0.7
1,2,4-Trimethylbenzene	ppbv	1	0.5	1
1,3-Dichlorobenzene	ppbv	<0.5	0.8	<0.5
Benzyl chloride	ppbv	<0.5	<0.5	<0.5
1,4-Dichlorobenzene	ppbv	<0.5	5.6	<0.5
1,2-Dichlorobenzene	ppbv	<0.5	<0.5	<0.5
1,2,4-Trichlorobenzene	ppbv	<0.5	<0.5	<0.5
Naphthalene	ppbv	0.7	0.7	0.7
Hexachloro- 1,3-butadiene	ppbv	<0.5	<0.5	<0.5
Surrogate-Bromochloromethane	% rec	105	125	122
Surrogate -1,4-Difluorobenzene	% rec	109	130	126
Surrogate-Chlorobenzene-D5	% rec	110	128	126

TO15 in Canisters μg/m3				
Our Reference		269024-1	269024-2	269024-3
Your Reference	UNITS	GG8	GG9	FD2
Date Sampled		13/05/2021	13/05/2021	13/05/2021
Type of sample		Air	Air	Air
Air Kit Security No.		3639	3497	3644
Vacuum before Shipment	Hg"	-30	-30	-30
Vacuum before Analysis	Hg"	-8	-7	-8
Date prepared	-	14/05/2021	14/05/2021	14/05/2021
Date analysed	-	14/05/2021	14/05/2021	14/05/2021
Propylene	µg/m³	110	110	120
Dichlorodifluoromethane	µg/m³	<2.5	<2.5	<2.5
Chloromethane	µg/m³	<1	<1	<1
1,2-Dichlorotetrafluoroethane	µg/m³	<2.5	<2.5	<2.5
Vinyl chloride	µg/m³	<1.3	<1.3	<1.3
1,3-Butadiene	µg/m³	<1.1	<1.1	<1.1
Bromomethane	µg/m³	<1.9	<1.9	<1.9
Chloroethane	µg/m³	<1.3	<1.3	<1.3
Ethanol	µg/m³	180	10	30
Acrolein	µg/m³	<11	<11	<11
Trichlorofluoromethane (Freon 11)	µg/m³	<2.8	<2.8	<2.8
Acetone	µg/m³	50	20	20
Isopropyl Alcohol	µg/m³	<12	<12	<12
1,1-Dichloroethene	µg/m³	<2	<2	<2
1,1,2-Trichlorotrifluoroethane	µg/m³	<3.8	<3.8	<3.8
Methylene chloride (Dichloromethane)	µg/m³	<17	<17	<17
Carbon Disulfide	µg/m³	50	30	50
trans-1,2-dichloroethene	µg/m³	<2	<2	<2
МТВЕ	µg/m³	<1.8	<1.8	<1.8
1,1- Dichloroethane	µg/m³	<2	<2	<2
Vinyl Acetate	µg/m³	<1.8	<1.8	<1.8
MEK	µg/m³	19	<15	<15
Hexane	µg/m³	160	70	160
cis-1,2-Dichloroethene	µg/m³	<2	<2	<2
Ethyl Acetate	µg/m³	<1.8	<1.8	<1.8
Chloroform	µg/m³	<2.4	10	<2.4
Tetrahydrofuran	µg/m³	<1.5	<1.5	<1.5
1,1,1-Trichloroethane	µg/m³	<2.7	<2.7	<2.7
1,2-Dichloroethane	µg/m³	<2	<2	<2
Benzene	µg/m³	8	3	7
Carbon tetrachloride	µg/m³	<3.1	<3.1	<3.1

TO15 in Canisters μg/m3				
Our Reference		269024-1	269024-2	269024-3
Your Reference	UNITS	GG8	GG9	FD2
Date Sampled		13/05/2021	13/05/2021	13/05/2021
Type of sample		Air	Air	Air
Air Kit Security No.		3639	3497	3644
Cyclohexane	μg/m³	<1.7	38	<1.7
Heptane	μg/m³	49	27	51
Trichloroethene	µg/m³	<2.7	<2.7	<2.7
1,2-Dichloropropane	µg/m³	<2.3	<2.3	<2.3
1,4-Dioxane	µg/m³	<1.8	<1.8	<1.8
Bromodichloromethane	µg/m³	<3.4	<3.4	<3.4
Methyl Methacrylate	µg/m³	<2	5	<2
MIBK	µg/m³	<20	<20	<20
cis-1,3-Dichloropropene	μg/m³	<2.3	<2.3	<2.3
trans-1,3-Dichloropropene	μg/m³	<2.3	<2.3	<2.3
Toluene	µg/m³	61	130	61
1,1,2-Trichloroethane	µg/m³	<2.7	<2.7	<2.7
Methyl Butyl Ketone	µg/m³	<2	<2	<2
Dibromochloromethane	µg/m³	<1.6	<1.6	<1.6
Tetrachloroethene	μg/m³	<3.4	<3.4	<3.4
1,2-Dibromoethane	μg/m³	<3.8	<3.8	<3.8
Chlorobenzene	μg/m³	<2.3	2	<2.3
Ethylbenzene	μg/m³	9	8	9
m-& p-Xylene	μg/m³	30	20	30
Styrene	µg/m³	10	27	10
o-Xylene	μg/m³	10	6	10
Bromoform	μg/m³	<5.2	<5.2	<5.2
1,1,2,2-Tetrachloroethane	μg/m³	<3.4	<3.4	<3.4
4-ethyl toluene	µg/m³	<2.5	<2.5	<2.5
1,3,5-Trimethylbenzene	μg/m³	4	<2.5	4
1,2,4-Trimethylbenzene	µg/m³	7	3	7
1,3-Dichlorobenzene	μg/m³	<3	5	<3
Benzyl chloride	µg/m³	<2.6	<2.6	<2.6
1,4-Dichlorobenzene	μg/m³	<3	34	<3
1,2-Dichlorobenzene	μg/m³	<3	<3	<3
1,2,4-Trichlorobenzene	μg/m³	<3.7	<3.7	<3.7
Naphthalene	μg/m³	4	3	3
Hexachloro- 1,3-butadiene	μg/m³	<5.3	<5.3	<5.3
Surrogate-Bromochloromethane	% rec	105	125	122
Surrogate -1,4-Difluorobenzene	% rec	109	130	126
Surrogate-Chlorobenzene-D5	% rec	110	128	126

TPH Air/ Air Phase Hydrocarbon				
Our Reference		269024-1	269024-2	269024-3
Your Reference	UNITS	GG8	GG9	FD2
Date Sampled		13/05/2021	13/05/2021	13/05/2021
Type of sample		Air	Air	Air
Air Kit Security No.		3639	3497	3644
Date prepared	-	14/05/2021	14/05/2021	14/05/2021
Date analysed	-	14/05/2021	14/05/2021	14/05/2021
TPH C₅ - Cଃ Aliphatic	µg/m³	33,000	2,600	33,000
TPH C ₉ - C ₁₂ Aliphatic	µg/m³	8,800	250	10,000
TPH C ₉ - C ₁₀ Aromatic	µg/m³	110	<100	140
TPH C ₆ - C ₁₀ - BTEX (F1)	µg/m³	41,000	2,300	43,000
TPH >C ₁₀ - C ₁₂ - Naphthalene (F2)	µg/m³	6,700	200	8,000

Method ID	Methodology Summary
AT-005	Measurement of Air-Phase Petroleum Hydrocarbons and Ozone Precursors by GC/MS
TO15	USEPA TO15 - Analysis of VOC's in air using USEPA TO15 and in house method AT-002. Note, longer term stability of some oxygenated compounds is questionable where significant humidity is present.
USEPA 18	Measurement of Gaseous Organic Compound Emissions by Gas Chromatography using USEPA m18.

QUALITY CO	ONTROL: TO	15 in Car	nisters/Bags			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Vacuum before Shipment	Hg"			[NT]	1	-30	-30	0	[NT]	
Vacuum before Analysis	Hg"			[NT]	1	-8	-8	0	[NT]	
Date prepared	-			14/05/2021	1	14/05/2021	14/05/2021		14/05/2021	
Date analysed	-			14/05/2021	1	14/05/2021	14/05/2021		14/05/2021	
Propylene	ppbv	0.5	TO15	<0.5	1	66	68	3	108	
Dichlorodifluoromethane	ppbv	0.5	TO15	<0.5	1	<0.5	<0.5	0	[NT]	
Chloromethane	ppbv	0.5	TO15	<0.5	1	<0.5	<0.5	0	[NT]	
1,2-Dichlorotetrafluoroethane	ppbv	0.5	TO15	<0.5	1	<0.5	<0.5	0	[NT]	
Vinyl chloride	ppbv	0.5	TO15	<0.5	1	<0.5	<0.5	0	[NT]	
1,3-Butadiene	ppbv	0.5	TO15	<0.5	1	<0.5	<0.5	0	[NT]	
Bromomethane	ppbv	0.5	TO15	<0.5	1	<0.5	<0.5	0	[NT]	
Chloroethane	ppbv	0.5	TO15	<0.5	1	<0.5	<0.5	0	[NT]	
Ethanol	ppbv	5	TO15	<5	1	94	95	1	[NT]	
Acrolein	ppbv	5	TO15	<5	1	<5	<5	0	[NT]	
Trichlorofluoromethane (Freon 11)	ppbv	0.5	TO15	<0.5	1	<0.5	<0.5	0	[NT]	
Acetone	ppbv	5	TO15	<5	1	20	20	0	[NT]	
Isopropyl Alcohol	ppbv	5	TO15	<5	1	<5	<5	0	[NT]	
1,1-Dichloroethene	ppbv	0.5	TO15	<0.5	1	<0.5	<0.5	0	[NT]	
1,1,2-Trichlorotrifluoroethane	ppbv	0.5	TO15	<0.5	1	<0.5	<0.5	0	[NT]	
Methylene chloride (Dichloromethane)	ppbv	5	TO15	<5	1	<5	<5	0	[NT]	
Carbon Disulfide	ppbv	5	TO15	<5	1	10	10	0	[NT]	
trans-1,2-dichloroethene	ppbv	0.5	TO15	<0.5	1	<0.5	<0.5	0	[NT]	
МТВЕ	ppbv	0.5	TO15	<0.5	1	<0.5	<0.5	0	[NT]	
1,1- Dichloroethane	ppbv	0.5	TO15	<0.5	1	<0.5	<0.5	0	[NT]	
Vinyl Acetate	ppbv	0.5	TO15	<0.5	1	<0.5	<0.5	0	[NT]	
MEK	ppbv	5	TO15	<5	1	6	6	0	[NT]	
Hexane	ppbv	0.5	TO15	<0.5	1	45	45	0	99	
cis-1,2-Dichloroethene	ppbv	0.5	TO15	<0.5	1	<0.5	<0.5	0	[NT]	
Ethyl Acetate	ppbv	0.5	TO15	<0.5	1	<0.5	<0.5	0	[NT]	
Chloroform	ppbv	0.5	TO15	<0.5	1	<0.5	<0.5	0	[NT]	
Tetrahydrofuran	ppbv	0.5	TO15	<0.5	1	<0.5	<0.5	0	[NT]	
1,1,1-Trichloroethane	ppbv	0.5	TO15	<0.5	1	<0.5	<0.5	0	[NT]	
1,2-Dichloroethane	ppbv	0.5	TO15	<0.5	1	<0.5	<0.5	0	[NT]	
Benzene	ppbv	0.5	TO15	<0.5	1	2	2	0	98	
Carbon tetrachloride	ppbv	0.5	TO15	<0.5	1	<0.5	<0.5	0	[NT]	
Cyclohexane	ppbv	0.5	TO15	<0.5	1	<0.5	<0.5	0	99	
Heptane	ppbv	0.5	TO15	<0.5	1	12	12	0	100	

QUALITY C	ONTROL: TC	015 in Car	nisters/Bags			Du	ıplicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Trichloroethene	ppbv	0.5	TO15	<0.5	1	<0.5	<0.5	0		[NT]
1,2-Dichloropropane	ppbv	0.5	TO15	<0.5	1	<0.5	<0.5	0		[NT]
1,4-Dioxane	ppbv	0.5	TO15	<0.5	1	<0.5	<0.5	0		[NT]
Bromodichloromethane	ppbv	0.5	TO15	<0.5	1	<0.5	<0.5	0		[NT]
Methyl Methacrylate	ppbv	0.5	TO15	<0.5	1	<0.5	<0.5	0		[NT]
МІВК	ppbv	5	TO15	<5	1	<5	<5	0		[NT]
cis-1,3-Dichloropropene	ppbv	0.5	TO15	<0.5	1	<0.5	<0.5	0		[NT]
trans-1,3-Dichloropropene	ppbv	0.5	TO15	<0.5	1	<0.5	<0.5	0		[NT]
Toluene	ppbv	0.5	TO15	<0.5	1	16	16	0	105	[NT]
1,1,2-Trichloroethane	ppbv	0.5	TO15	<0.5	1	<0.5	<0.5	0		[NT]
Methyl Butyl Ketone	ppbv	0.5	TO15	<0.5	1	<0.5	<0.5	0		[NT]
Dibromochloromethane	ppbv	0.5	TO15	<0.5	1	<0.5	<0.5	0		[NT]
Tetrachloroethene	ppbv	0.5	TO15	<0.5	1	<0.5	<0.5	0		[NT]
1,2-Dibromoethane	ppbv	0.5	TO15	<0.5	1	<0.5	<0.5	0		[NT]
Chlorobenzene	ppbv	0.5	TO15	<0.5	1	<0.5	<0.5	0		[NT]
Ethylbenzene	ppbv	0.5	TO15	<0.5	1	2	2	0	106	[NT]
m-& p-Xylene	ppbv	1	TO15	<1	1	6	6	0	107	[NT]
Styrene	ppbv	0.5	TO15	<0.5	1	3	3	0	84	[NT]
o-Xylene	ppbv	0.5	TO15	<0.5	1	3	3	0	108	[NT]
Bromoform	ppbv	0.5	TO15	<0.5	1	<0.5	<0.5	0		[NT]
1,1,2,2-Tetrachloroethane	ppbv	0.5	TO15	<0.5	1	<0.5	<0.5	0		[NT]
4-ethyl toluene	ppbv	0.5	TO15	<0.5	1	<0.5	<0.5	0	109	[NT]
1,3,5-Trimethylbenzene	ppbv	0.5	TO15	<0.5	1	0.8	0.8	0	107	[NT]
1,2,4-Trimethylbenzene	ppbv	0.5	TO15	<0.5	1	1	1	0	107	[NT]
1,3-Dichlorobenzene	ppbv	0.5	TO15	<0.5	1	<0.5	<0.5	0		[NT]
Benzyl chloride	ppbv	0.5	TO15	<0.5	1	<0.5	<0.5	0		[NT]
1,4-Dichlorobenzene	ppbv	0.5	TO15	<0.5	1	<0.5	<0.5	0		[NT]
1,2-Dichlorobenzene	ppbv	0.5	TO15	<0.5	1	<0.5	<0.5	0		[NT]
1,2,4-Trichlorobenzene	ppbv	0.5	TO15	<0.5	1	<0.5	<0.5	0		[NT]
Naphthalene	ppbv	0.5	TO15	<0.5	1	0.7	0.8	13		[NT]
Hexachloro- 1,3-butadiene	ppbv	0.5	TO15	<0.5	1	<0.5	<0.5	0		[NT]
Surrogate-Bromochloromethane	% rec		TO15	[NT]	1	105	113	7	92	[NT]
Surrogate -1,4-Difluorobenzene	% rec		TO15	[NT]	1	109	117	7	88	[NT]
Surrogate-Chlorobenzene-D5	% rec		TO15	[NT]	1	110	117	6	89	[NT]

QUALITY CO	ONTROL: TO	15 in Can	isters µg/m3			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Vacuum before Shipment	Hg"			[NT]	1	-30	-30	0		[NT]
Vacuum before Analysis	Hg"			[NT]	1	-8	-8	0		[NT]
Date prepared	-			14/05/2021	1	14/05/2021	14/05/2021			[NT]
Date analysed	-			14/05/2021	1	14/05/2021	14/05/2021			[NT]
Propylene	µg/m³	0.9	TO15	<0.9	1	110	120	9		[NT]
Dichlorodifluoromethane	µg/m³	2.5	TO15	<2.5	1	<2.5	<2.5	0		[NT]
Chloromethane	µg/m³	1.0	TO15	<1.0	1	<1	<1	0		[NT]
1,2-Dichlorotetrafluoroethane	µg/m³	2.5	TO15	<2.5	1	<2.5	<2.5	0		[NT]
Vinyl chloride	µg/m³	1.3	TO15	<1.3	1	<1.3	<1.3	0		[NT]
1,3-Butadiene	µg/m³	1.1	TO15	<1.1	1	<1.1	<1.1	0		[NT]
Bromomethane	µg/m³	1.9	TO15	<1.9	1	<1.9	<1.9	0		[NT]
Chloroethane	µg/m³	1.3	TO15	<1.3	1	<1.3	<1.3	0		[NT]
Ethanol	µg/m³	9	TO15	<9	1	180	180	0		[NT]
Acrolein	µg/m³	11	TO15	<11	1	<11	<11	0		[NT]
Trichlorofluoromethane (Freon 11)	µg/m³	2.8	TO15	<2.8	1	<2.8	<2.8	0		[NT]
Acetone	µg/m³	11.9	TO15	<11.9	1	50	50	0		[NT]
Isopropyl Alcohol	µg/m³	12	TO15	<12	1	<12	<12	0		[NT]
1,1-Dichloroethene	µg/m³	2.0	TO15	<2.0	1	<2	<2	0		[NT]
1,1,2-Trichlorotrifluoroethane	µg/m³	3.8	TO15	<3.8	1	<3.8	<3.8	0		[NT]
Methylene chloride (Dichloromethane)	µg/m³	17	USEPA 18	<17	1	<17	<17	0		[NT]
Carbon Disulfide	µg/m³	16	TO15	<16	1	50	50	0		[NT]
trans-1,2-dichloroethene	µg/m³	2.0	TO15	<2.0	1	<2	<2	0		[NT]
МТВЕ	µg/m³	1.8	TO15	<1.8	1	<1.8	<1.8	0		[NT]
1,1- Dichloroethane	µg/m³	2.0	TO15	<2.0	1	<2	<2	0		[NT]
Vinyl Acetate	µg/m³	1.8	TO15	<1.8	1	<1.8	<1.8	0		[NT]
MEK	µg/m³	15	TO15	<15	1	19	19	0		[NT]
Hexane	µg/m³	1.8	TO15	<1.8	1	160	160	0		[NT]
cis-1,2-Dichloroethene	µg/m³	2.0	TO15	<2.0	1	<2	<2	0		[NT]
Ethyl Acetate	µg/m³	1.8	TO15	<1.8	1	<1.8	<1.8	0		[NT]
Chloroform	µg/m³	2.4	TO15	<2.4	1	<2.4	<2.4	0		[NT]
Tetrahydrofuran	µg/m³	1.5	TO15	<1.5	1	<1.5	<1.5	0		[NT]
1,1,1-Trichloroethane	µg/m³	2.7	TO15	<2.7	1	<2.7	<2.7	0		[NT]
1,2-Dichloroethane	µg/m³	2.0	TO15	<2.0	1	<2	<2	0		[NT]
Benzene	µg/m³	1.6	TO15	<1.6	1	8	8	0		[NT]
Carbon tetrachloride	µg/m³	3.1	TO15	<3.1	1	<3.1	<3.1	0		[NT]
Cyclohexane	µg/m³	1.7	TO15	<1.7	1	<1.7	<1.7	0		[NT]
Heptane	µg/m³	2.0	TO15	<2.0	1	49	50	2		[NT]

QUALITY CC	NTROL: TO	15 in Can	isters µg/m3			Du	ıplicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Trichloroethene	µg/m³	2.7	TO15	<2.7	1	<2.7	<2.7	0		[NT]
1,2-Dichloropropane	µg/m³	2.3	TO15	<2.3	1	<2.3	<2.3	0		[NT]
1,4-Dioxane	µg/m³	1.8	TO15	<1.8	1	<1.8	<1.8	0		[NT]
Bromodichloromethane	µg/m³	3.4	TO15	<3.4	1	<3.4	<3.4	0		[NT]
Methyl Methacrylate	µg/m³	2.0	TO15	<2.0	1	<2	<2	0		[NT]
МІВК	µg/m³	20	TO15	<20	1	<20	<20	0		[NT]
cis-1,3-Dichloropropene	µg/m³	2.3	TO15	<2.3	1	<2.3	<2.3	0		[NT]
trans-1,3-Dichloropropene	µg/m³	2.3	TO15	<2.3	1	<2.3	<2.3	0		[NT]
Toluene	µg/m³	1.9	TO15	<1.9	1	61	61	0		[NT]
1,1,2-Trichloroethane	µg/m³	2.7	TO15	<2.7	1	<2.7	<2.7	0		[NT]
Methyl Butyl Ketone	µg/m³	2.0	TO15	<2.0	1	<2	<2	0		[NT]
Dibromochloromethane	µg/m³	1.6	TO15	<1.6	1	<1.6	<1.6	0		[NT]
Tetrachloroethene	µg/m³	3.4	TO15	<3.4	1	<3.4	<3.4	0		[NT]
1,2-Dibromoethane	µg/m³	3.8	TO15	<3.8	1	<3.8	<3.8	0		[NT]
Chlorobenzene	µg/m³	2.3	TO15	<2.3	1	<2.3	<2.3	0		[NT]
Ethylbenzene	µg/m³	2.2	TO15	<2.2	1	9	9	0		[NT]
m-& p-Xylene	µg/m³	4.3	TO15	<4.3	1	30	30	0		[NT]
Styrene	µg/m³	2.1	TO15	<2.1	1	10	10	0		[NT]
o-Xylene	µg/m³	2.2	TO15	<2.2	1	10	10	0		[NT]
Bromoform	µg/m³	5.2	TO15	<5.2	1	<5.2	<5.2	0		[NT]
1,1,2,2-Tetrachloroethane	µg/m³	3.4	TO15	<3.4	1	<3.4	<3.4	0		[NT]
4-ethyl toluene	µg/m³	2.5	TO15	<2.5	1	<2.5	<2.5	0		[NT]
1,3,5-Trimethylbenzene	µg/m³	2.5	TO15	<2.5	1	4	4	0		[NT]
1,2,4-Trimethylbenzene	µg/m³	2.5	TO15	<2.5	1	7	7	0		[NT]
1,3-Dichlorobenzene	µg/m³	3.0	TO15	<3.0	1	<3	<3	0		[NT]
Benzyl chloride	µg/m³	2.6	TO15	<2.6	1	<2.6	<2.6	0		[NT]
1,4-Dichlorobenzene	µg/m³	3.0	TO15	<3.0	1	<3	<3	0		[NT]
1,2-Dichlorobenzene	µg/m³	3.0	TO15	<3.0	1	<3	<3	0		[NT]
1,2,4-Trichlorobenzene	µg/m³	3.7	TO15	<3.7	1	<3.7	<3.7	0		[NT]
Naphthalene	µg/m³	2.6	TO15	<2.6	1	4	4	0		[NT]
Hexachloro- 1,3-butadiene	µg/m³	5.3	TO15	<5.3	1	<5.3	<5.3	0		[NT]
Surrogate-Bromochloromethane	% rec		TO15	[NT]	1	105	113	7		[NT]
Surrogate -1,4-Difluorobenzene	% rec		TO15	[NT]	1	109	117	7		[NT]
Surrogate-Chlorobenzene-D5	% rec		TO15	[NT]	1	110	117	6		[NT]

QUALITY CONTROL: TPH Air/ Air Phase Hydrocarbon					Du	plicate	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			14/05/2021	1	14/05/2021	14/05/2021		14/05/2021	[NT]
Date analysed	-			14/05/2021	1	14/05/2021	14/05/2021		14/05/2021	[NT]
TPH C ₅ - C ₈ Aliphatic	µg/m³	200	AT-005	<200	1	33000	33000	0	99	[NT]
TPH C ₉ - C ₁₂ Aliphatic	µg/m³	50	AT-005	<50	1	8800	10000	13	[NT]	[NT]
TPH C ₉ - C ₁₀ Aromatic	µg/m³	100	AT-005	<100	1	110	140	24	95	[NT]
TPH C ₆ - C ₁₀ - BTEX (F1)	µg/m³	200	TO15	<200	1	41000	39000	5	97	[NT]
TPH >C ₁₀ - C ₁₂ - Naphthalene (F2)	µg/m³	40	TO15	<40	1	6700	8400	23	94	[NT]

Result Definiti	Result Definitions								
NT	Not tested								
NA	Test not required								
INS	Insufficient sample for this test								
PQL	Practical Quantitation Limit								
<	Less than								
>	Greater than								
RPD	Relative Percent Difference								
LCS	Laboratory Control Sample								
NS	Not specified								
NEPM	National Environmental Protection Measure								
NR	Not Reported								

Quality Control Definitions					
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.				
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.				
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.				
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.				
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which				

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

are similar to the analyte of interest, however are not expected to be found in real samples.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

CERTIFICATE OF ANALYSIS 269607-A

Client Details	
Client	Greencap Pty Ltd
Attention	Shihui Wang
Address	Ground Floor, North Building, 22 Giffnock Ave, MACQUARIE PARK, NSW, 2113

Sample Details	
Your Reference	DSI - Sydney Olympic Park High School
Number of Samples	3 x soil
Date samples received	21/05/2021
Date completed instructions received	15/09/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details		
Date results requested by	15/09/2021	
Date of Issue	15/09/2021	
NATA Accreditation Number 29	1. This document shall not be reproduced except in full.	
Accredited for compliance with	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *	

<u>Results Approved By</u> Hannah Nguyen, Metals Supervisor Authorised By

Nancy Zhang, Laboratory Manager

Acid Extractable metals in soil				
Our Reference		269607-A-1	269607-A-2	269607-A-3
Your Reference	UNITS	FT1	FT2	BHFT1
Depth		0.5-0.6	0.8-0.9	0.7-0.9
Date Sampled		29/04/2021	30/04/2021	3/05/2021
Type of sample		Soil	Soil	Soil
Date prepared	-	24/05/2021	24/05/2021	24/05/2021
Date analysed	-	24/05/2021	24/05/2021	24/05/2021
Arsenic	mg/kg	<4	5	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4
Chromium	mg/kg	7	14	4
Copper	mg/kg	14	16	22
Lead	mg/kg	12	46	13
Mercury	mg/kg	<0.1	<0.1	<0.1
Nickel	mg/kg	11	8	20
Zinc	mg/kg	33	50	89

Moisture				
Our Reference		269607-A-1	269607-A-2	269607-A-3
Your Reference	UNITS	FT1	FT2	BHFT1
Depth		0.5-0.6	0.8-0.9	0.7-0.9
Date Sampled		29/04/2021	30/04/2021	3/05/2021
Type of sample		Soil	Soil	Soil
Date prepared	-	21/05/2021	21/05/2021	21/05/2021
Date analysed	-	24/05/2021	24/05/2021	24/05/2021
Moisture	%	11	17	12

Methodology Summary
Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Determination of various metals by ICP-AES.
Determination of Mercury by Cold Vapour AAS.

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	olicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-11	[NT]
Date prepared	-			24/05/2021	[NT]	[NT]		[NT]	24/05/2021	
Date analysed	-			24/05/2021	[NT]	[NT]		[NT]	24/05/2021	
Arsenic	mg/kg	4	Metals-020	<4	[NT]	[NT]		[NT]	94	
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]	[NT]		[NT]	98	
Chromium	mg/kg	1	Metals-020	<1	[NT]	[NT]		[NT]	97	
Copper	mg/kg	1	Metals-020	<1	[NT]	[NT]		[NT]	90	
Lead	mg/kg	1	Metals-020	<1	[NT]	[NT]		[NT]	92	
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]	[NT]		[NT]	104	
Nickel	mg/kg	1	Metals-020	<1	[NT]	[NT]		[NT]	94	
Zinc	mg/kg	1	Metals-020	<1	[NT]	[NT]		[NT]	92	

Result Definiti	Result Definitions				
NT	Not tested				
NA	Test not required				
INS	Insufficient sample for this test				
PQL	Practical Quantitation Limit				
<	Less than				
>	Greater than				
RPD	Relative Percent Difference				
LCS	Laboratory Control Sample				
NS	Not specified				
NEPM	National Environmental Protection Measure				
NR	Not Reported				

Quality Control Definitions					
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.				
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.				
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.				
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.				
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which				

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

are similar to the analyte of interest, however are not expected to be found in real samples.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Greencap Pty Ltd ABN: 76 006 318 010 Ground Floor, North Building, 22 Giffnock Avenue Macquarie Park NSW 2113 Australia T: 02 9889 1800

Report Date: Tuesday, 11/05/2021

Our ref: C123934:J169135-01

Sandra Lim NSW Department of Education Level 9, 259 George Street SYDNEY NSW 2000

Dear Sandra,

Re: Asbestos Identification Analysis - Proposed Sydney Olympic Park High School, 9 Burroway Road, Wentworth Point NSW 2127 (GG01 - GG09)

This letter presents the results of asbestos fibre identification analysis performed on 10 samples collected by Shihui Wang of Greencap on 29 to 30/04/2021. The samples were collected from Proposed Sydney Olympic Park High School, 9 Burroway Road, Wentworth Point NSW 2127 (GG01 - GG09).

All sample analysis was performed using polarised light microscopy, including dispersion staining and trace analysis in our Sydney Laboratory by the method of Australian Standard AS4964-2004 and supplementary work instruction in house method LAB04 Asbestos Identification by PLM. Any and all services carried out by Greencap for the Client are subject to the Terms and Conditions listed on the Greencap website at https://www.greencap.com.au/terms-conditions and are governed by our statements of limitation available at https://www.greencap.com.au/statements-limitation.

The analysis was completed on Tuesday, 04 May 2021.

The samples will be kept for three months and then disposed of, unless otherwise directed.

The results of the asbestos identification analysis are presented in the appended table. Accreditation covers testing activities only, sampling activity is outside the scope of ISO 17025 accreditation. Results relate only to the items tested and are for the sole use by the client.

Should you require further information please contact Shihui Wang.

Yours sincerely, Greencap

Vince Nguyen : Approved Identifier

Vince Nguyen : Approved Signatory

This document shall not be reproduced except in full. Accredited for compliance with ISO/IEC 17025 - Testing. Accreditation No. 5450, Site No. 3402 Sydney Laboratory. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/National standards.

Sydney Laboratory Sample Analysis Results

Our ref: C123934:J169135-01

Report Date: Tuesday, 11/05/2021

	Our ref: C123934:J169135-0
ntworth Point	NSW 2127 (CC01 - CC00)

Si	Site Location: Proposed Sydney Olympic Park High School, 9 Burroway Road, Wentworth Point NSW 2127 (GG01 - GG09				
	Sample ID	Sample Location/Description/Weight or Size	Analysis Result		
1	J169135-01 GG1-02(0.4- 0.5)	Samples Collected During Drilling at Groundgas Well 1 Grey non-homogenous sandy soil, rocks & loose fibres ~ 943.2 g	No Asbestos Detected At or Above Reporting Limit Organic Fibres NOTE 1 & 2		
2	J169135-01 GG2-01(0.3- 0.4)	Samples Collected During Drilling at Groundgas Well 2 Grey non-homogenous sandy soil, rocks & loose fibres ~ 981.3 g	No Asbestos Detected At or Above Reporting Limit Organic Fibres NOTE 1 & 2		
3	J169135-01 GG3-02(0.9- 1.0)	Samples Collected During Drilling at Groundgas Well 3 Brown-grey non-homogenous sandy soil, rocks, organic matter & loose fibres ~ 1011.3 g	No Asbestos Detected At or Above Reporting Limit Organic Fibres NOTE 1 & 2		
4	J169135-01 GG4-01(0.3- 0.4)	Samples Collected During Drilling at Groundgas Well 4 Brown-grey non-homogenous sandy soil, rocks & loose fibres ~ 958.0 g	No Asbestos Detected At or Above Reporting Limit Organic Fibres Synthetic Mineral Fibres NOTE 1 & 2		
5	J169135-01 GG5-02(0.3- 0.4)	Samples Collected During Drilling at Groundgas Well 5 Grey non-homogenous sandy soil, rocks & loose fibres ~ 974.8 g	No Asbestos Detected At or Above Reporting Limit Organic Fibres NOTE 1 & 2		
6	J169135-01 GG6-01(0.2- 0.3)	Samples Collected During Drilling at Groundgas Well 6 Grey non-homogenous sandy soil, rocks & loose fibres ~ 1018.5 g	No Asbestos Detected At or Above Reporting Limit Organic Fibres NOTE 1 & 2		
7	J169135-01 GG7(-02(0.3- 0.4)	Samples Collected During Drilling at Groundgas Well 7 Grey non-homogenous sandy soil, rocks, organic matter & loose fibres ~ 1150.1 g	No Asbestos Detected At or Above Reporting Limit Organic Fibres NOTE 1 & 2		
8	J169135-01 GG8-01(0.2- 0.3)	Samples Collected During Drilling at Groundgas Well 8 Grey non-homogenous sandy soil, rocks & loose fibres ~ 1035.0 g	No Asbestos Detected At or Above Reporting Limit Organic Fibres NOTE 1 & 2		
9	J169135-01 GG9-02(0.4- 0.5)	Samples Collected During Drilling at Groundgas Well 9 Grey non-homogenous sandy soil, rocks & loose fibres ~ 1043.5 g	No Asbestos Detected At or Above Reporting Limit Organic Fibres NOTE 1 & 2		

Sydney Laboratory Sample Analysis Results GREENCAP Going Further in Managing Risk

Our ref: C123934:J169135-01

Report Date: Tuesday, 11/05/2021

	Site Location:		Proposed Sydney Olympic Park High School, 9 Burroway Road, Wentworth Point NSW 2127 (GG01 - GG09)	
		Sample ID	Sample Location/Description/Weight or Size	Analysis Result
		J169135-01	Sample Collected Near GG7.	Chrysotile (white asbestos) Amosite (brown asbestos)
	10	PACM1	Unpainted grey compacted fibre-cement sheet material	Crocidolite (blue asbestos)
			M: ~ 10.4 g D: ~ 45 x 25 x 10 mm	

* Shaded row with bolded text indicates sample contains a positive Analysis Result for asbestos.

If Synthetic Mineral Fibre and Organic Fibre are not stated in Analysis Results, it implies not detected.

- NOTE 1 The reporting limit for this non-homogeneous analysis is 0.1g/kg (0.01%). The above result can be interpreted that the sample contains no detectable 'respirable' asbestos fibres (AS4964-2004 Clause 9.5).
- NOTE 2 Soil analysis conducted in accordance with WA Guidelines for the assessment, remediation and management of asbestos-contaminated sites (May 2009), Recommended procedures for laboratory analysis of asbestos in soil (June 2011) and NEPM Schedule B1: Guideline on investigation levels for soil & groundwater, Schedule B2: Guideline on site characterisation.

Greencap Pty Ltd ABN: 76 006 318 010 Ground Floor, North Building, 22 Giffnock Avenue Macquarie Park NSW 2113 Australia T: 02 9889 1800

Report Date: Friday, 09/07/2021

Our ref: C123934:J169135-01 - V2

Sandra Lim NSW Department of Education Level 9, 259 George Street SYDNEY NSW 2000

Dear Sandra,

Re: Asbestos Identification Analysis - Proposed Sydney Olympic Park High School, 9 Burroway Road, Wentworth Point NSW 2127 (BH Samples)

This letter presents the results of asbestos fibre identification analysis performed on 7 samples collected by Shihui Wang of Greencap on Monday, 03 May 2021. The samples were collected from Proposed Sydney Olympic Park High School, 9 Burroway Road, Wentworth Point NSW 2127 (BH Samples).

All sample analysis was performed using polarised light microscopy, including dispersion staining and trace analysis in our Sydney Laboratory by the method of Australian Standard AS4964-2004 and supplementary work instruction in house method LAB04 Asbestos Identification by PLM. Any and all services carried out by Greencap for the Client are subject to the Terms and Conditions listed on the Greencap website at https://www.greencap.com.au/terms-conditions and are governed by our statements of limitation available at https://www.greencap.com.au/statements-limitation.

The analysis was completed on Tuesday, 11 May 2021.

The samples will be kept for three months and then disposed of, unless otherwise directed.

The results of the asbestos identification analysis are presented in the appended table. Accreditation covers testing activities only, sampling activity is outside the scope of ISO 17025 accreditation. Results relate only to the items tested and are for the sole use by the client. Please note this report replaces the previous version issued on Tuesday, 11 May 2021. Amendments were made to the number of samples included in the report. The changes were made at the client's request to reduce the number of samples and report the results only within the new site boundary. This has no bearing on the analysis results, which remain unchanged.

Should you require further information please contact Shihui Wang.

Yours sincerely, Greencap

Vince Nguyen : Approved Identifier

Vince Nguyen : Approved Signatory

This document shall not be reproduced except in full. Accredited for compliance with ISO/IEC 17025 - Testing. Accreditation No. 5450, Site No. 3402 Sydney Laboratory. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/National standards.

greencap.com.au Adelaide | Auckland | Brisbane | Canberra | Darwin | Geelong | Melbourne | Perth | Sydney | Wollongong J169135-01_BH_ASB_030521_SoilTesting_1_V2 Page 1 of 2

Sydney Laboratory Sample Analysis Results

Report Date: Friday, 09/07/2021

Our ref: C123934:J169135-01 - V2

Sit	te Location:	Location: Proposed Sydney Olympic Park High School, 9 Burroway Road, Wentworth Point NSW 2127 (BH Samples)	
	Sample ID	Sample Location/Description/Weight or Size	Analysis Result
1	J169135-01 BH1 (1.2-1.4)	Samples Collected From Push Tube At Borehole 1 Grey non-homogenous sandy soil, rocks, organic matter & loose fibres ~ 649.5 g	No Asbestos Detected At or Above Reporting Limit Organic Fibres NOTE 1 & 2
2	J169135-01 BH2 (0.3-0.7)	Samples Collected From Push Tube At Borehole 2 Brown-grey non-homogenous clay soil, rocks, organic matter & loose fibres ~ 604.2 g	No Asbestos Detected At or Above Reporting Limit Organic Fibres NOTE 1 & 2
3	J169135-01 BH3 (1.0-1.2)	Samples Collected From Push Tube At Borehole 3 Brown-grey non-homogenous clay soil, rocks, organic matter & loose fibres ~ 577.6 g	No Asbestos Detected At or Above Reporting Limit Organic Fibres NOTE 1 & 2
4	J169135-01 BH4 (0.4-0.5)	Samples Collected From Push Tube At Borehole 4 Brown-grey non-homogenous clay soil, rocks, organic matter & loose fibres ~ 373.9 g	No Asbestos Detected At or Above Reporting Limit Organic Fibres NOTE 1 & 2
5	J169135-01 BH5 (0.4-0.8)	Samples Collected From Push Tube At Borehole 5 Brown-grey non-homogenous clay soil, rocks, organic matter & loose fibres ~ 787.3 g	No Asbestos Detected At or Above Reporting Limit Organic Fibres NOTE 1 & 2
6	J169135-01 BH10 (0.5-0.9)	Samples Collected From Push Tube At Borehole 10 Grey non-homogenous sandy soil, rocks, organic matter & loose fibres ~ 1016.8 g	No Asbestos Detected At or Above Reporting Limit Organic Fibres NOTE 1 & 2
7	J169135-01 PACM2	Sample Collected From Northern Side Of The Site Gate Unpainted grey compacted fibre-cement sheet material Weight: ~ 3.8 g Size: ~ 25 x 20 x 5 mm	Chrysotile (white asbestos)

* Shaded row with bolded text indicates sample contains a positive Analysis Result for asbestos.

If Synthetic Mineral Fibre and Organic Fibre are not stated in Analysis Results, it implies not detected.

- NOTE 1 The reporting limit for this non-homogeneous analysis is 0.1g/kg (0.01%). The above result can be interpreted that the sample contains no detectable 'respirable' asbestos fibres (AS4964-2004 Clause 9.5).
- NOTE 2 Soil analysis conducted in accordance with WA Guidelines for the assessment, remediation and management of asbestos-contaminated sites (May 2009), Recommended procedures for laboratory analysis of asbestos in soil (June 2011) and NEPM Schedule B1: Guideline on investigation levels for soil & groundwater, Schedule B2: Guideline on site characterisation.

Greencap Pty Ltd ABN: 76 006 318 010 Ground Floor, North Building, 22 Giffnock Avenue Macquarie Park NSW 2113 Australia T: 02 9889 1800

Report Date: Monday, 12/07/2021

Our ref: C123934:J169135-01 - V2

Sandra Lim NSW Department of Education Level 9, 259 George Street SYDNEY NSW 2000

Dear Sandra,

Re: Asbestos Identification Analysis - Proposed Sydney Olympic Park High School, 9 Burroway Road, Wentworth Point NSW 2127 (BH Samples)

This letter presents the results of asbestos fibre identification analysis performed on 3 samples collected by Shihui Wang of Greencap on Friday, 14 May 2021. The samples were collected from Proposed Sydney Olympic Park High School, 9 Burroway Road, Wentworth Point NSW 2127 (BH Samples).

All sample analysis was performed using polarised light microscopy, including dispersion staining and trace analysis in our Sydney Laboratory by the method of Australian Standard AS4964-2004 and supplementary work instruction in house method LAB04 Asbestos Identification by PLM. Any and all services carried out by Greencap for the Client are subject to the Terms and Conditions listed on the Greencap website at https://www.greencap.com.au/terms-conditions and are governed by our statements of limitation available at https://www.greencap.com.au/statements-limitation.

The analysis was completed on Tuesday, 18 May 2021.

The samples will be kept for three months and then disposed of, unless otherwise directed.

The results of the asbestos identification analysis are presented in the appended table. Accreditation covers testing activities only, sampling activity is outside the scope of ISO 17025 accreditation. Results relate only to the items tested and are for the sole use by the client. Please note this report replaces the previous version issued on Tuesday, 18 May 2021. Amendments were made to the number of samples included in the report. The changes were made at the client's request to reduce the number of samples and report the results only within the new site boundary. This has no bearing on the analysis results, which remain unchanged.

Should you require further information please contact Shihui Wang.

Yours sincerely, Greencap

Vince Nguyen : Approved Identifier

Vince Nguyen : Approved Signatory

This document shall not be reproduced except in full. Accredited for compliance with ISO/IEC 17025 - Testing. Accreditation No. 5450, Site No. 3402 Sydney Laboratory. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/National standards.

greencap.com.au Adelaide | Auckland | Brisbane | Canberra | Darwin | Geelong | Melbourne | Perth | Sydney | Wollongong J169135-01_BH_ASB_140521_SoilTesting_1_V2 Page 1 of 2

Sydney Laboratory Sample Analysis Results

Our ref: C123934:J169135-01 - V2

Going Further in Managing Risk

Site Location:		Proposed Sydney Olympic Park High School, 9 Burroway Road, Wentworth Point NSW 2127 (BH Samples)		
	Sample ID	Sample Location/Description/Weight or Size	Analysis Result	
1	J169135-01 BH9-01 (0.9-1.0)	Samples Collected From test pit at BH9 Grey-pink non-homogenous sandy soil, rocks, organic matter & loose fibres ~ 1078.2 g	No Asbestos Detected At or Above Reporting Limit Organic Fibres NOTE 1 & 2	
2	J169135-01 BH7-01 (0.5-0.6)	Samples Collected From test pit at BH7 Grey-pink non-homogenous sandy soil, rocks, organic matter & loose fibres ~ 916.6 g	No Asbestos Detected At or Above Reporting Limit Organic Fibres NOTE 1 & 2	
3	J169135-01 BH6-01 (0.4-0.5)	Samples Collected From test pit at BH6 Grey-pink non-homogenous sandy soil, rocks, organic matter & loose fibres ~ 845.2 g	No Asbestos Detected At or Above Reporting Limit Organic Fibres NOTE 1 & 2	

* Shaded row with bolded text indicates sample contains a positive Analysis Result for asbestos.

If Synthetic Mineral Fibre and Organic Fibre are not stated in Analysis Results, it implies not detected.

- NOTE 1 The reporting limit for this non-homogeneous analysis is 0.1g/kg (0.01%). The above result can be interpreted that the sample contains no detectable 'respirable' asbestos fibres (AS4964-2004 Clause 9.5).
- NOTE 2 Soil analysis conducted in accordance with WA Guidelines for the assessment, remediation and management of asbestos-contaminated sites (May 2009), Recommended procedures for laboratory analysis of asbestos in soil (June 2011) and NEPM Schedule B1: Guideline on investigation levels for soil & groundwater, Schedule B2: Guideline on site characterisation.

Greencap Pty Ltd ABN: 76 006 318 010 Ground Floor, North Building, 22 Giffnock Avenue Macquarie Park NSW 2113 Australia T: 02 9889 1800

Report Date: Wednesday, 25/08/2021

Our ref: C123934:J169135 - GG

Sandra Lim NSW Department of Education Level 9, 259 George Street SYDNEY NSW 2000

Dear Sandra,

Re: Asbestos Identification Analysis - Proposed Sydney Olympic Park High School, 9 Burroway Road, Wentworth Point NSW 2127 (GG Samples)

This letter presents the results of asbestos fibre identification analysis performed on 3 samples collected by Shihui Wang of Greencap on Monday, 23 August 2021. The samples were collected from Proposed Sydney Olympic Park High School, 9 Burroway Road, Wentworth Point NSW 2127 (GG Samples).

All sample analysis was performed using polarised light microscopy, including dispersion staining and trace analysis in our Sydney Laboratory by the method of Australian Standard AS4964-2004 and supplementary work instruction in house method LAB04 Asbestos Identification by PLM. Any and all services carried out by Greencap for the Client are subject to the Terms and Conditions listed on the Greencap website at https://www.greencap.com.au/terms-conditions and are governed by our statements of limitation available at https://www.greencap.com.au/statements-limitation.

The analysis was completed on Wednesday, 25 August 2021.

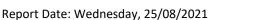
The samples will be kept for three months and then disposed of, unless otherwise directed.

The results of the asbestos identification analysis are presented in the appended table. Accreditation covers testing activities only, sampling activity is outside the scope of ISO 17025 accreditation. Results relate only to the items tested and are for the sole use by the client.

Should you require further information please contact Shihui Wang.

Yours sincerely, Greencap

Vince Nguyen : Approved Identifier


Vince Nguyen : Approved Signatory

This document shall not be reproduced except in full. Accredited for compliance with ISO/IEC 17025 - Testing. Accreditation No. 5450, Site No. 3402 Sydney Laboratory. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/National standards.

Sydney Laboratory Sample Analysis Results

Going Further in Managing Risk Our ref: C123934:J169135 - GG

Site Location:		Proposed Sydney Olympic Park High School, 9 Burroway Road, Wentworth Point NSW 2127 (GG Samples)		
	Sample ID	Sample Location/Description/Weight or Size	Analysis Result	
1	J169135 - GG GG10 (0.3 - 0.4)	Samples collected during borehole drilling at GG10 Brown-grey non-homogenous sandy soil, rocks, organic matter & loose fibres, including fibre cement fragments and discrete fibre bundles of white & brown asbestos of approximately 1.97g (>10mm fraction), 0.10g (<7mm & >2mm fraction) and 0.0022g (<2mm fraction). * This is estimated to be above the reporting limit of 0.1g/kg (0.21% w/w) ~ 1001.3 g	Chrysotile (white asbestos) Amosite (brown asbestos) Organic Fibres NOTE 1 & 2	
2	J169135 - GG GG11 (0.2 - 0.3)	Samples collected during borehole drilling at GG11 Grey-brown non-homogenous sandy soil, rocks, organic matter & loose fibres ~ 1097.8.g	No Asbestos Detected At or Above Reporting Limit Organic Fibres NOTE 1 & 2	
3	J169135 - GG GG12 (0.4 - 0.5)	Samples collected during borehole drilling at GG12 Red-brown non-homogenous clay soil, rocks, organic matter & loose fibres ~ 935.0 g	No Asbestos Detected At or Above Reporting Limit Organic Fibres NOTE 1 & 2	

* Shaded row with bolded text indicates sample contains a positive Analysis Result for asbestos.

If Synthetic Mineral Fibre and Organic Fibre are not stated in Analysis Results, it implies not detected.

- NOTE 1 The reporting limit for this non-homogeneous analysis is 0.1g/kg (0.01%). The above result can be interpreted that the sample contains no detectable 'respirable' asbestos fibres (AS4964-2004 Clause 9.5).
- NOTE 2 Soil analysis conducted in accordance with WA Guidelines for the assessment, remediation and management of asbestos-contaminated sites (May 2009), Recommended procedures for laboratory analysis of asbestos in soil (June 2011) and NEPM Schedule B1: Guideline on investigation levels for soil & groundwater, Schedule B2: Guideline on site characterisation.

Results denoted with * are outside our scope of accreditation.