Winterbourne Wind Farm

Noise and Vibration Assessment

October 2022

S6207C14

Contact: Chris Turnbull Director Phone: +61 (0) 417 845 720 Email: ct@sonus.com.au www.sonus.com.au

sonus.

Document Title	: Winterbourne Wind Farm	
		Noise and Vibration Assessment
Document Reference	:	S6207C14
Date	:	October 2022
Author	:	Alexander Lee, Senior Engineer, MAAS
Reviewer	:	Chris Turnbull, Director, MAAS

© Sonus Pty Ltd. All rights reserved.

This report may not be reproduced other than in its entirety. The report is for the sole use of the client for the particular circumstances described in the report. Sonus accepts no responsibility to any other party who may rely upon or use this report without prior written consent.

CONTENTS

GLOSSA	ARY4
1	INTRODUCTION
2	PROJECT LAYOUT
3	ASSESSMENT METHODOLOGY
4	WIND TURBINE OPERATION
5	ANCILLARY INFRASTRUCTURE – SUBSTATIONS/BESS
6	CONSTRUCTION (EXCLUDING BLASTING)
7	BLASTING
8	TRAFFIC
9	CONSTRUCTION VIBRATION
10	NATIONAL PARKS
11	RECOMMENDATIONS
12	CONCLUSION
APPEN	DIX A: Environmental Assessment Requirements56
APPEN	DIX B: Noise Sensitive locations
APPEN	DIX C: Address of Dwellings with Predicted Noise Level Greater than 30 dB(A)60
APPENI	DIX D: Photographs of Logging Equipment at Dwellings61
APPEN	DIX E: Background Noise and Wind Speed Correlation Charts

F1: Site Layout and Background Noise Logging Locations 14 F2: Grid Noise Map for Wind Turbine Noise at Residences 24 F3: Construction Noise Contours (Turbine Sites) 36	4
F4: Construction Noise Contours (Road Construction/Upgrades)	7
F5 Preferred Access Route to the wind farm 45	
F6: Predicted Wind Turbine L _{Aeq, 10min} Noise Level at National Park Locations	L
Table 1: Coordinates of WTGs	5
Table 2: Coordinates of Ancillary Infrastructure	7
Table 3: Monitoring locations and periods13	3
Table 4: Wind mast details	
Table 5: Local weather logger details	
Table 6: Data points	
Table 7: Background noise level L _{A90, 10min} (dB(A)) 17	
Table 8: Project Noise Criteria L _{Aeq, 10min} – Wind Turbine Noise	3
Table 9: Vestas V162-6.2MW Sound Power Levels: Normal Operating Mode (with serrated blade edges) 19	
Table 10: Wind Farm Noise L _{Aeq, 10min} Predictions (dB(A)) at Involved Dwellings	
Table 11: Wind Farm Noise L _{Aeq, 10min} Predictions (dB(A)) at Non-Involved Dwellings	2
Table 12: Wind Farm Low Frequency Noise Predictions at Non-Involved Dwellings	
Table 13: 270MVA substation transformer sound power levels 27	
Table 14: Megapack sound power levels for 100% fan speed27	7
Table 15: Construction Noise Guideline Requirements 29	9
Table 16: Predicted L _{Aeq, 15min} construction noise levels during standard hours	L
Table 17: Predicted construction noise levels outside of standard hours	1
Table 18: Road traffic noise criteria	ŝ
Table 19: Distances between roads and dwellings 46	õ
Table 20: Road traffic noise predictions and distances to achieve criteria	
Table 21: Locations where the road traffic noise criteria may be exceeded	
Table 22: Road traffic noise predictions at "other residences" and distances to achieve criteria	
Table 23: Vibration Criteria	Э

sonus.

GLOSSARY

A-weighting	Frequency adjustment applied to measured noise levels to replicate the frequency response of the human ear.
AGL	Above Ground Level.
Ambient noise level	The noise level of all existing noise sources in the environment (in the absence of the wind farm).
Background noise level	The ambient noise level which excludes intermittent noise sources.
BESS	Battery Energy Storage System
C-weighting	Frequency adjustment applied to measured noise levels to indicate low frequency content.
CONCAWE	The oil companies' international study group for conservation of clean air and water - Europe, <i>The propagation of noise from petrochemical complexes to neighbouring communities</i> (May 1981).
dB(A)	A-weighted noise in decibels.
dB(C)	C-weighted noise in decibels.
DEC 2006	New South Wales Department of Environment and Conservation <i>Assessing Vibration: a technical guideline</i> (2006).
Construction Noise Guideline	New South Wales Department of Environment and Climate Change Interim Construction Noise Guideline (2009).
NSW Road Noise Policy	Department of Environment, Climate Change and Water NSW Road Noise Policy (2011).
EPA	Environment Protection Authority.
Equivalent noise level	Energy averaged noise level over a period of time.
Intermittent noise sources	Noise caused by infrequently occurring events such as from aircraft , dogs barking, mobile farm machinery and the occasional vehicle movements.
Involved dwelling	Any dwelling where the landowner has reached a financial or in kind agreement in relation to the wind farm (except where the agreement excludes noise impacts).
L _{A90} , time period	A-weighted noise level exceeded for 90% of defined time period. Represents the background noise level for the defined time period.
L _{Aeq, time period}	A-weighted equivalent noise level over a defined time period.
RBL	The Rating Background Level is an overall, single-figure background level representing each assessment period (day/evening/night) over the whole monitoring period
SA 2009	South Australian Environment Protection Authority <i>Wind Farms Environmental Noise Guidelines</i> (2009).
SEARs	Secretary's Environmental Assessment Requirements.
Sound power level	A measure of the sound energy emitted from a source of noise.
NPI	New South Wales Environment Protection Authority Noise Policy for Industry (2017).
The Project	Winterbourne Wind Farm
The Bulletin	New South Wales Planning and Environment <i>Wind Energy: Noise Assessment Bulletin</i> (2016).
Non-involved dwelling	Not an Involved dwelling.
Weather category 6	The CONCAWE weather conditions which is most conducive for the propagation of noise, resulting in highest predicted noise levels.
WHO Guidelines	World Health Organisation Guidelines for Community Noise.
Worst-case	Operational and weather conditions which result in the highest noise level at a dwelling
WTG	Wind turbine generator.

1 INTRODUCTION

A noise and vibration assessment has been made of the construction and operation of the proposed Winterbourne Wind Farm (the **Project**). The Project is located approximately 6.5km northeast of Walcha in the Northern Tablelands region of New South Wales (**NSW**).

The proposed wind farm consists of up to 119 wind turbine generators (**WTGs**) with a maximum tip height of 230m and ancillary infrastructure, including substations, a battery energy storage system (**BESS**), new and upgraded roads, overhead cabling and underground cabling. Temporary construction facilities, including batching and crushing facilities will also operate during the construction period.

The NSW Department of Planning, Industry and Environment has provided *Secretary's Environmental Assessment Requirements* (**SEARs**) for the assessment of noise and vibration from the Project. The noise and vibration related sections of the SEARs are provided in Appendix A of this report and seek the following assessment framework:

- Wind turbine noise in accordance with the *NSW Wind Energy: Noise Assessment Bulletin* (EPA/DPE, 2016);
- Noise generated by ancillary infrastructure in accordance with the NSW Noise Policy for Industry (EPA, 2017);
- Construction noise under the Interim Construction Noise Guideline (DECC, 2009);
- Traffic noise under the NSW Road Noise Policy (DECCW, 2011);
- Vibration under the Assessing Vibration: A Technical Guideline (DECC, 2006); and
- Potential noise impacts on amenity / recreational use of the Oxley Wild Rivers National Park (including walking tracks, campgrounds and lookouts) considering the NSW Noise Policy for Industry (EPA, 2017).

This noise and vibration assessment addresses each of the SEARs.

2 PROJECT LAYOUT

2.1 Wind Turbines

The coordinates of the 119 WTG layout are provided in Table 1 and the locations of the ancillary infrastructure and batching and crushing facilities are provided in Table 2.

Table 1: Coordinates of WTGs

Turbine ID	Turbine Coordinates ID (UTM WGS84 56J)		
	Easting	Northing	
B001	375828	6590869	
B002	375652	6590371	
B003	375618	6589834	
B004	375275	6589423	
B005	374739	6589304	
B006	374432	6588438	
B007	374100	6588076	
B011	368111	6585525	
B012	368647	6585231	
B013	369137	6584946	
B014	369259	6584381	
B015	369652	6583823	
B016	369731	6583321	
B018	370123	6582740	
B019	370091	6582074	
B020	369781	6581508	
B021	369712	6580984	
B023	365590	6583241	
B024	365941	6582729	
B025	366255	6582233	
B026	366405	6581690	
B027	366643	6580825	
B028	367018	6580394	
B029	367163	6579707	
B030	367362	6579162	
B032	367273	6578380	
B033	367523	6577620	
B034	367601	6577111	
B036	368799	6578041	
B037	368677	6577562	
B038	369072	6577273	
B039	369053	6576781	
B044	369592	6578929	
B045	369428	6579887	
B046	378440	6584091	
B047	378880	6583793	
B048	378894	6583005	
B051	380341	6585758	
B052	380240	6585140	
B053	380324	6584604	
B054	379855	6584419	
B056	387034	6586730	

Turbine Coo Turbine ID (UTM WGS		
		/GS84 56J)
0057	Easting	Northing
B057	386533	6586241
B060	386061	6586007
B061	385968	6585507
B062	385649	6584921
B063	387183	6583063
B064	387660	6582642
B065	388015	6582186
B066	388232	6581633
B068	388996	6581504
B069	388829	6580914
B070	389165	6580513
B071	380089	6580147
B072	380924	6580571
B073	380194	6581346
B074	380608	6581057
B076	380784	6582284
B078	381488	6581778
B079	381814	6581381
B081	382630	6580415
B082	382731	6579838
B083	381991	6582601
B086	384507	6582082
B087	384243	6581492
B088	383962	6581030
B092	384964	6580578
B093	385212	6579852
B100	384128	6578295
B101	383821	6577802
B102	383689	6577341
B105	386072	6579831
B107	386685	6579594
B108	386693	6578782
B109	386401	6578341
B110	387581	6577821
B111	386332	6577759
B112	386377	6577011
B113	386308	6576515
B115	386941	6575797
B115 B116	387272	6574897
B110 B118	386619	6573827
B118 B119	386566	6573253
B120	386875	6572842

Turbine ID	Turbine Coordinates (UTM WGS84 56J)		
	Easting	Northing	
B121	386483	6572440	
B122	388916	6572121	
B123	389233	6571684	
B124	387721	6571856	
B127	391240	6570525	
B128	390760	6570151	
B129	390556	6569657	
B130	391120	6569366	
B131	391132	6568970	
B132	391059	6568461	
B138	386216	6568123	
B139	386653	6567836	
B140	386442	6567135	
B141	386426	6566677	
B142	386479	6566208	
B144	387968	6566691	
B145	388261	6565947	
B146	389118	6566222	
B149	391317	6567314	
B151	393063	6566094	
B152	393594	6565827	
B153	393480	6565306	
B154	394106	6565126	
B160	370523	6584164	
B161	370454	6583408	

Turbine ID	Turbine Coordinates (UTM WGS84 56J)		
	Easting	Northing	
B168	381631	6579452	
B167	369125	6581617	
B169	381631	6578923	
B170	381578	6578013	
B171	381842	6577595	
B172	369147	6580330	
B173	379245	6588702	
B174	379266	6588197	
B175	379314	6587679	
B176	375067	6588639	

Table 2: Coordinates of Ancillary Infrastructure

ID	Approximate Coordinates (UTM WGS84 56J)		
	Easting	Northing	
	Substations/BESS		
North	373619	6583711	
BESS	373619	6583711	
South	386963	6575283	
	Switching Station		
Uralla	356058	6601369	
Tempora	Temporary Batching & Crushing Plant		
Plant 1	371815	6582879	
Plant 2	383431	6579158	
Plant 3	386687	6569454	

2.2 Dwellings in the Vicinity of the Wind Farm

All dwellings located in the vicinity of the wind farm site¹ are listed in Appendix B, as well as their status as either involved or non-involved and the distance to the closest wind turbine. The closest background noise monitoring location to each dwelling is also noted (refer to the background noise monitoring section of this assessment for further detail).

Appendix C provides the address of dwellings where the $L_{Aeq, 10min}$ noise level from operation of wind turbines is predicted to be greater than 30 dB(A) (refer to Section 4 of this report).

¹ Dwellings within approximately 9 kilometres of the nearest WTG

3 ASSESSMENT METHODOLOGY

The noise related SEARs for the Project establish the following assessment framework:

- assess wind turbine noise in accordance with the NSW Wind Energy: Noise Assessment Bulletin (EPA/DPE, 2016);
- assess noise generated by ancillary infrastructure in accordance with the NSW Noise Policy for Industry (EPA, 2017);
- assess construction noise under the Interim Construction Noise Guideline (DECC, 2009);
- assess traffic noise under the NSW Road Noise Policy (DECCW, 2011);
- assess vibration under the Assessing Vibration: A Technical Guideline (DEC, 2006); and,
- assess the noise impacts on amenity / recreational use of the Oxley Wild Rivers National Park (including walking tracks, campgrounds and lookouts) considering the NSW Noise Policy for Industry (EPA, 2017).

Each of the above assessment elements is described in further detail below.

3.1 Wind Turbines

The SEARs reference the New South Wales Planning and Environment *Wind Energy: Noise Assessment Bulletin* (the **Bulletin**) for the assessment of operational noise from the wind turbine generators.

The Bulletin adopts the South Australian Environment Protection Authority *Wind Farms – Environmental Noise Guidelines* (**SA 2009**) as the basis of the regulatory noise standard and assessment methodology in NSW.

The SA Noise Guidelines was developed with the "core objective.....to balance the advantage of developing wind energy projects ... with protecting the amenity of the surrounding community from adverse noise impacts".

The Bulletin states that:

[The] NSW Government recognises that rural land use zones in NSW are often more densely settled than those of South Australia and that there is a relatively high density of rural residential living in parts of regional NSW with reliable wind resources.

Therefore only the lower base noise criteria in [the SA Noise Guidelines] will be applied in NSW. This Criteria is defined as:

"The predicted equivalent noise level ($L_{Aeq,10 minute}$), adjusted for tonality and low frequency noise in accordance with these guidelines, should not exceed 35 dB(A) or the background noise ($L_{A90,10 minute}$) by more than 5 dB(A), whichever is the greater, at all relevant receivers for wind speed from cut-in to rated power of the wind turbine generator and each integer wind speed in between."

Non-involved Dwellings

Based on the Bulletin, noise from the wind farm at non-involved dwellings should not exceed an outdoor $L_{Aeq, 10min}$ noise level of 35 dB(A) or the background noise ($L_{A90, 10 min}$) by more than 5 dB(A), whichever is the greater.

Involved Dwellings

Where a landowner has formed a commercial agreement with the developer, the Bulletin enables less onerous noise criteria to be used.

The noise criteria at involved dwellings have not been specified and therefore this report provides predicted noise levels at the involved residences, but does not consider objective criteria.

3.1.1 Special Noise Characteristics

The Bulletin prescribes a 5 dB(A) penalty adjustment (added to the measured or predicted noise level) for the presence of repeated and excessive tonality and/or low frequency which occurs for more than 10 percent of an assessment period. Excessive tonality and low frequency are determined as follows:

Tonality

The Bulletin references the methodology described in *ISO 1996.2: 2007 Acoustics - Description, measurement* and assessment of environmental noise – Determination of environmental noise levels (Annex D – Objective method for assessing the audibility of tones in noise – Simplified method). Excessive tonality is present at a particular one-third octave band level if the band level exceeds the adjacent bands on both sides by at least:

- 5 dB, if the centre frequency of the band is in the range 500 Hz to 10,000 Hz;
- 8 dB, if the centre frequency of the band is in the range 160 Hz to 400 Hz; and/or
- 15 dB, if the centre frequency of the band is in the range 25 Hz to 125 Hz.

The penalty for tonality only applies if the tone from the wind farm is audible at the receiver location. The absence of a tone at a location in the vicinity of a WTG (where noise from the WTG is dominant in

comparison to the ambient environment) will be sufficient to demonstrate that the wind farm noise at the relevant receiver location is non-tonal.

Low Frequency Noise

Excessive low frequency noise is present if the low frequency L_{Ceq, 10min} noise levels at non-involved dwellings exceed 60 dB(C).

3.2 Ancillary Infrastructure

The SEARs reference the New South Wales Environment Protection Authority's *Noise Policy for Industry* (the **NPI**) for the assessment of noise from ancillary infrastructure such as substations.

The NPI establishes *noise trigger levels,* which if exceeded, require management measures to be considered to reduce the noise level. The *noise trigger levels are* based on either the:

- existing background noise environment (intrusiveness noise levels); or,
- the amenity for particular land uses (amenity noise levels).

The *noise trigger levels* are the lower of the values provided by the two methods, which in a rural environment will generally be the *intrusiveness noise levels* given their link to the background noise level.

In accordance with the NPI, the Rating Background Level (**RBL**) is used to determine the *intrusiveness noise levels* for each of the day, evening and night periods. The RBL is determined from the lower tenth percentile of the measured background noise level ($L_{A90, 15 \text{ minute}}$) in the environment, effectively representing the quietest periods of the noise monitoring. The NPI also provides minimum RBL levels for quiet environments.

Further detail is provided regarding the existing background noise environment and resulting criteria in the Ancillary Infrastructure Section of this report.

3.3 Construction

The SEARs reference the New South Wales Department of Environment & Climate Change Interim Construction Noise Guideline (Construction Noise Guideline) for the assessment of construction noise.

The construction of a wind farm comprises activities such as road construction, civil works, excavation, foundation construction, electrical infrastructure works and turbine erection. These construction activities require processes such as heavy vehicle movements, crushing and screening, concrete batching, use of mobile plant and equipment (such as loaders, excavators, generators, cranes) and potentially blasting subject

to site conditions.

The Construction Noise Guideline provides an emphasis on implementing "feasible" and "reasonable" noise reduction measures and does not establish mandatory objective criteria. However, the Construction Noise Guideline does establish different "management levels" based on the existing RBL.

For the assessment of any blasting which is required, the Construction Noise Guideline references the *Technical Basis for Guidelines to Minimise Annoyance Due to Blasting Overpressure and Ground Vibration*, (ANZEC 1990) (the **ANZEC Guidelines**). The ANZEC Guidelines provide objective limits to be achieved at sensitive receivers for overpressure and ground vibration from blasting.

3.4 Traffic

The SEARs reference the New South Wales Department of Environment, Climate Change and Water *NSW Road Noise Policy* (**NSW Road Noise Policy**) for the assessment of traffic noise.

Whilst there is no specific category for a wind farm and its construction activities, the most appropriate classification for traffic associated with the wind farm within the NSW Road Noise Policy is considered to be provided by "Local Roads - Existing dwellings affected by additional traffic on existing local roads generated by land use developments".

The traffic associated with the wind farm will predominantly occur during construction. However, it should be noted that the NSW Road Noise Policy criterion / classification applies to an ongoing operation, as distinct to a temporary process and as such provides a conservative criterion for comparison with the predicted noise levels during construction. When taking this factor into account, the criterion can therefore be exceeded without unreasonable impacts to non-involved landowners, provided suitable noise reduction measures and work practices are implemented.

3.5 Vibration

The SEARs reference the New South Wales Department of Environment and Conservation *Assessing Vibration: a technical guideline* (**DEC 2006**) for the assessment of vibration.

DEC 2006 provides an emphasis on construction activity implementing feasible and practicable vibration reduction measures and establishes goal vibration levels for continuous, intermittent and impulsive vibration based on human response.

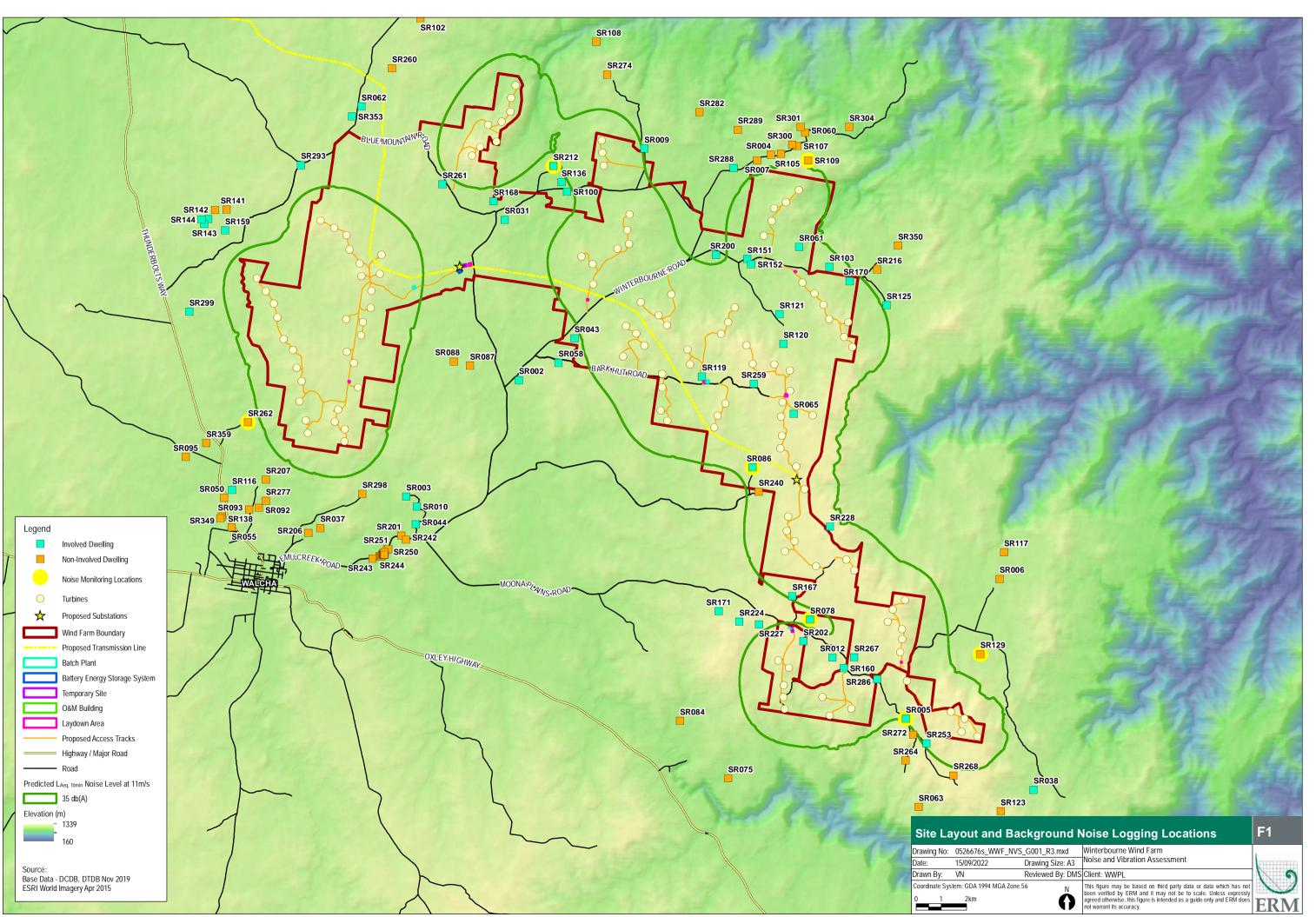
For construction activity occurring during the day time, the DEC 2006 can be interpreted to provide goal vibration levels criteria at the dwellings based on the British Standard *BS 6472-1992 "Evaluation of human exposure to vibration in buildings (1-80Hz)"*.

3.6 National Parks

In addition to the noise impact at dwellings, the SEARs require consideration of the impact on amenity/recreational uses within the Oxley Wild Rivers National Park (including walking tracks, campgrounds and lookouts). The requirements reference the *NSW Noise Policy for Industry* (EPA, 2017).

4 WIND TURBINE OPERATION

4.1 Background Noise Monitoring


Background noise monitoring has been conducted at seven dwellings in the vicinity of the proposed wind farm, between 28 November 2020 and 1 February 2021. The monitoring was conducted in accordance with SA 2009.

The 7 monitoring locations, as summarised in Table 3 and shown in the figure below, were selected based on preliminary noise predictions of the initial wind farm layout². Preference was given to dwellings with the highest predicted noise levels in each direction of the wind farm and without agreement at the time of the monitoring, subject to permission being granted by the landowner to place equipment.

Dwelling ID	Coordinates (UTM WGS84 56J)			Monitoring Period
_	Easting	Northing		
SR005	391269	6565826	28/11/2020 - 1/2/2021	
SR078	387492	6569749	28/11/2020 - 1/2/2021	
SR086	385205	6575756	28/11/2020 - 1/2/2021	
SR109	387413	6587897	1/2/2021 – 18/3/2021	
SR129	394221	6568377	28/11/2020 - 29/1/2021	
SR212	377321	6587671	28/11/2020 - 29/1/2021	
SR262	365240	6577539	28/11/2020 - 1/2/2021	

Table 3: Monitoring locations and periods

² It is noted that the figure shows the turbine layout and predictions at the time of the background noise monitoring (showing why specific residences were selected), but the status of dwellings has since been updated and these changes are included.

The background noise was measured with Rion Type 2 sound level meters, with a noise floor of less than 20 dB(A), calibrated at the beginning and end of the measurement period with a Rion NC74 calibrator (negligible drift observed). All microphones were fitted with weatherproof windshields having a diameter of greater than 150mm, with the microphone positioned approximately 1500mm above ground level. Each noise logger was placed in accordance with SA 2009 (e.g., at an equivalent distance from the facade of the dwelling as any significant trees whilst minimising the influence of fixed noise sources such as air conditioning units) and placed on the wind farm side of the dwellings.

The background L_{A90, 10min} noise level was measured in 10 minute intervals at each of the monitoring locations. Photographs of the noise monitoring equipment are provided in Appendix D.

During the background noise monitoring regime, wind speed was measured by the developer at four wind masts located within the wind farm site. The wind speed was measured in 10 minute intervals at various measurement heights on each wind mast and has been sheared up by the developer to a reference height of 155m. A height of 155m was considered equivalent to the hub height under consideration at the time of the monitoring regime, in accordance with SA 2009.

Wind speed increases with height above ground, and therefore a higher reference hub height results in a higher wind speed for the same measured background noise level. As the noise from wind turbines increases with wind speed, a higher assumed hub height (and therefore reference wind speed) results in more onerous criteria. Therefore, noise criteria determined based on the 155m hub height provide a conservative assessment approach (more onerous criteria) for lower hub heights, such as the representative candidate turbine used for this assessment (149m hub height). That is, if the background noise levels were correlated to wind speeds referenced at 149m, the resulting criteria would be marginally higher.

Table 4 provides details of the wind masts.

Table 4: Wind mast details			
Mast ID	Coordinates (UTM WGS84 56J)		
	Easting	Northing	
Walcha Mast	385152	6580287	
Winterbourne Mast 1	380230	6584873	
Winterbourne Mast 2	367324	6579314	
Winterbourne Mast 3	390761	6570087	

Local weather loggers were also deployed, which measured rainfall and wind speed at approximately 1.5m above ground level. The rainfall and wind speed data were collected to determine the periods when weather directly on the microphone may have influenced the measured background noise levels in the vicinity. Table 5 summarises the location and monitoring period of the local weather loggers, with rain fall collected at all locations and wind speed at locations SR109 and SR129.

Dwelling ID	Monitoring Period
SR109	1/2/2021 – 18/3/2021
SR129	28/11/2020 – 29/1/2021
SR262	28/11/2020 - 1/2/2021

The noise data corresponding to any periods of measured rainfall and/or measured wind speed exceeding 5 m/s at the microphone height for more than 90% of the measurement period were discarded. These periods correspond to times when rain on the wind shield or the excessive wind on the microphone may have artificially increased the noise level.

In addition, data corresponding to periods with an average wind speed below the cut-in wind speed (i.e. 3m/s) and above the rated power wind speed (approximately 12m/s) were also discarded.

Table 6 summarises the number of data points at each monitoring location before and after the removal of data points, as well as the number of data points collected in the downwind (worst case) wind direction.

	Table 6: Data points									
		Number of Data Points								
Dwelling ID	Closest Wind Mast	Total Collected	Total Collected In The Downwind Direction	Remaining After Removal (included in correlations)						
SR005	Mast 3	9351	1628	6852						
SR078	Mast 3	9353	1052	6852						
SR086	Walcha Mast	9351	3548	7236						
SR109	Mast 1	6500	513	5584						
SR129	Mast 3	8948	753	6496						
SR212	Mast 1	8885	4766	7167						
SR262	Mast 2	9317	4201	6887						

Following data removal, the background noise data were correlated with the wind speed at 155m above ground level, measured at the closest wind mast (as provided in Table 6). Any extraneous noise identified in each graph (clear outlying points or clusters of data) has been removed. A least squares regression analysis of the data was undertaken to determine the line of best fit for the correlations in accordance with SA 2009. The data and the regression curves are shown in Appendix E. Based on the regression analysis, the

background L_{A90,10min} noise level at a range of wind speeds within the operating range of the wind turbine is provided in the following table.

Dwalling ID	Integer Wind Speeds at 155m Above Ground Level											
Dwelling ID	3m/s	4m/s	5m/s	6m/s	7m/s	8m/s	9m/s	10m/s	11m/s	12m/s		
SR005	39	39	39	39	39	39	39	39	38	38		
SR078	30	30	31	32	33	34	34	35	36	36		
SR086	32	32	33	33	34	34	34	35	35	34		
SR109	26	26	27	28	29	30	31	32	33	34		
SR129	30	30	31	31	32	33	34	35	36	36		
SR212	27	27	28	29	30	31	32	33	34	34		
SR262	27	28	28	29	30	30	31	32	33	34		

Table 7: Background noise level L_{A90, 10min} (dB(A))

The correlation coefficient of each regression curve in Appendix E indicates the relationship between the background noise at the dwelling and the wind speed at the wind farm site. A low correlation co-efficient indicates a limited relationship, as will naturally occur in many circumstances including locations that are shielded from the wind across the wind farm site, rather than indicating any deficiency in the data analysis.

It is noted that high noise levels have been measured across the entire wind speed range. This indicates that background noise levels in the vicinity of the dwellings are not entirely controlled by the wind speed. Other factors which are independent of wind speed such as insects are likely to also contribute to the background noise levels.

At residence SR005, the measured noise levels are significantly higher at low wind speeds. There were no fixed noise sources in the vicinity of the noise logger noted at the time of placement or collection and therefore the data is still considered representative of the environment at this location. Notwithstanding, given the discrepancy with noise levels at other logging locations, it is reasonable to not assign these background noise levels to represent of locations where logging was not conducted.

4.2 Criteria

Non-involved Dwellings

The operational noise criteria for non-involved dwellings have been determined from the results at each relevant noise monitoring location as provided in Table 8. The closest non-involved dwelling to the monitoring location has been assigned the relevant criteria from Table 8 (refer to Appendix B for further details). SR005 is an exception, which has not been assigned to any nearby dwellings as being the representative logging location.

	Table 8: Project Noise Criteria L _{Aeq, 10min} – Wind Turbine Noise												
Duvelling ID	Integer Wind Speeds at 155m Above Ground Level												
Dwelling ID	3	4	5	6	7	8	9	10	11	12			
SR005*	43	43	43	43	43	43	43	43	43	43			
SR078	35	35	36	37	38	39	39	40	41	41			
SR086	37	37	38	38	39	39	39	40	40	39			
SR109	35	35	35	35	35	35	36	37	38	39			
SR129	35	35	36	36	37	38	39	40	41	41			
SR212	35	35	35	35	35	36	37	38	39	39			
SR262	35	35	35	35	35	35	36	37	38	39			

* Although the background noise levels at SR005 would result in a higher criterion at low wind speeds, the lowest integer wind speed background noise level has been used to determine the criterion for all wind speeds. The approach has been taken given the results indicate background noise levels are not controlled by wind speed.

4.3 Assessment

Noise Sources

The assessment of WTG noise has been made based on the following:

- A representative contemporary WTG selection comprising a *Vestas V162-6.2MW* with serrated blade edges and a hub height of 149m; and
- Sound Power Levels as provided in Table 9 for the "Normal" operating mode.

SWL (dB(A)) for each One- third Octave Band Centre		Hub Height (149m) Wind Speed (m/s)										
Frequency	4	5	6	7	8	9	10	11	12			
25 Hz	54.6	54.7	56.4	59.5	62.4	64.8	65.4	65.6	65.3			
31.5Hz	58.9	59.1	60.8	63.9	66.7	69.1	69.7	69.9	69.6			
40 Hz	63.0	63.2	65.0	68.0	70.9	73.3	73.8	73.9	73.7			
50 Hz	66.5	66.8	68.5	71.6	74.4	76.8	77.4	77.4	77.2			
63 Hz	69.8	70.1	71.9	75.0	77.8	80.1	80.7	80.7	80.5			
80 Hz	72.9	73.2	75.0	78.1	80.9	83.2	83.7	83.7	83.5			
100 Hz	75.4	75.8	77.6	80.6	83.4	85.8	86.3	86.3	86.0			
125 Hz	77.7	78.0	79.9	82.9	85.7	88.0	88.5	88.5	88.3			
160 Hz	79.8	80.1	82.0	85.0	87.8	90.1	90.6	90.6	90.4			
200 Hz	81.3	81.7	83.6	86.6	89.4	91.7	92.2	92.1	91.9			
250 Hz	82.6	82.9	84.8	87.8	90.6	92.9	93.4	93.3	93.2			
315 Hz	83.6	83.9	85.8	88.8	91.6	93.9	94.4	94.3	94.2			
400 Hz	84.2	84.5	86.4	89.4	92.2	94.5	95.0	94.9	94.8			
500 Hz	84.5	84.8	86.7	89.7	92.5	94.7	95.2	95.2	95.2			
630 Hz	84.5	84.7	86.6	89.6	92.4	94.7	95.2	95.2	95.2			
800 Hz	84.1	84.3	86.2	89.2	92.0	94.3	94.8	94.8	94.8			
1 kHz	83.4	83.5	85.4	88.4	91.2	93.5	94.0	94.1	94.2			
1.25 kHz	82.4	82.5	84.4	87.4	90.2	92.5	93.0	93.1	93.2			
1.6 kHz	80.9	80.9	82.8	85.8	88.6	91.0	91.5	91.6	91.8			
2 kHz	79.3	79.2	81.1	84.1	86.9	89.3	89.8	89.9	90.2			
2.5 kHz	77.3	77.1	79.0	82.0	84.9	87.2	87.8	87.9	88.3			
3.15 kHz	75.0	74.7	76.5	79.6	82.4	84.8	85.3	85.6	86.0			
4 kHz	72.2	71.7	73.6	76.7	79.5	81.9	82.5	82.7	83.3			
5 kHz	69.2	68.7	70.5	73.6	76.5	78.9	79.5	79.8	80.4			
6.3 kHz	65.9	65.2	67.0	70.1	73.0	75.4	76.0	76.4	77.1			
8 kHz	62.0	61.2	63.0	66.1	69.1	71.5	72.1	72.6	73.4			
10 kHz	58.1	57.2	58.9	62.1	65.0	67.5	68.1	68.7	69.5			
Total SWL (dB(A))	94.1	94.3	96.2	99.2	102.0	104.3	104.8	104.8	104.8			

The Bulletin requires that the WTG noise level be adjusted where excessive levels of tonality and/or low frequency noise is identified to a maximum adjustment of 5 dB(A).

This assessment has been made based on the assumption that the turbine model selected for the project will be free of any excessive levels of tonality. The assumption has been confirmed for the representative wind turbine model by reviewing the 1/3 octave band data. The application of a penalty for the noise character of low frequency is discussed further in the following sections.

Noise Propagation Model

The predictions of environmental noise from the Project have been based on the CONCAWE noise propagation model and SoundPLAN noise modelling software. The CONCAWE noise propagation model is

one of the recommended models under SA 2009 for the prediction of wind turbine noise. The sound propagation model considers the following influences:

- sound power levels of each individual noise source;
- the locations of noise sources;
- separation distances between noise sources and dwellings;
- local topography;
- influence of the ground;
- air absorption; and,
- meteorological conditions.

The CONCAWE model divides meteorological conditions into six separate "weather categories", depending on wind speed, wind direction, time of day and level of cloud cover. Weather Category 1 provides the weather conditions associated with the "lowest" propagation of noise, whilst Weather Category 6 provides "worst-case" (i.e. highest noise level) conditions. Weather Category 4 provides "neutral" weather conditions for noise propagation (that is, conditions which do not account for the effects of temperature inversion or wind on propagation).

The assessment has been based on the following widely accepted input conditions:

- weather category 6 (representing a temperature inversion and wind conditions that assist with the propagation of noise);
- atmospheric conditions at 10°C and 80% relative humidity (representing conditions that result in low levels of noise absorption from the atmosphere);
- wind direction from all noise sources to the particular dwelling under consideration, even in circumstances where sources are located in opposite directions from the dwelling (representing the absolute worst-case noise propagation from the wind). This will overestimate the predicted noise level where dwellings have WTGs located around them in more than a singular direction or quadrant as multiple wind directions cannot occur concurrently;
- acoustically soft ground (representing the pastoral nature of the land); and,
- maximum barrier attenuation from topography of 2 dB(A) (representing a conservative assessment of any shielding provided by topography).

The inputs are generally in accordance with the recommendations of SA 2009 to provide conservative predictions of the noise level from turbine operation, with the exception of using soft ground (G=1.0). SA

2009 recommends the use of hard ground (G=0.0), however this often results in significantly over predicting the noise level from similar wind farm developments. The CONCAWE model recommends the use of soft ground for areas which are not concrete or water, such as the pastures in the vicinity of the proposed project. In addition the noise level from a significant number of wind farms has been predicted using the CONCAWE model using the inputs described above and compliance monitoring has demonstrated that the model has slightly over predicted the noise level at critical locations where compliance is marginal.

Noise Predictions

The noise level from operation of wind turbines has been predicted outside each dwelling for all integer wind speeds from cut in to rated power. The following tables are restricted to dwellings where the predicted $L_{Aeq, 10min}$ noise level is greater than 30 dB(A) for a hub height wind speed of 11m/s.

		Hub Height integer wind speeds, 149m AGL (dB(A))								
D	4 m/s	5 m/s	6 m/s	7 m/s	8 m/s	9 m/s	10 m/s	11 m/s	12 m/s	
Dwelling ID	Prediction	Prediction	Prediction	Prediction	Prediction	Prediction	Prediction	Prediction	Prediction	
				Involved	Dwellings					
SR005	25	25	27	30	33	35	36	36	35	
SR009	24	24	26	29	32	34	35	34	34	
SR012	26	26	28	31	34	36	37	37	37	
SR043	23	23	25	28	31	33	34	34	34	
SR061	27	28	29	32	35	38	38	38	38	
SR065	35	35	37	40	43	45	46	46	46	
SR078	24	24	26	29	32	34	35	35	34	
SR086	27	27	29	32	35	37	37	37	37	
SR091	32	33	35	38	40	43	43	43	43	
SR100	24	24	26	29	32	34	35	35	35	
SR103	27	28	29	32	35	38	38	38	38	
SR119	32	32	34	37	40	42	42	42	42	
SR120	30	30	32	35	38	40	41	41	41	
SR121	28	28	30	33	36	38	39	39	39	
SR125	23	24	25	28	31	34	34	34	34	
SR136	23	24	26	29	31	34	34	34	34	
SR151	26	27	29	32	34	37	37	37	37	
SR152	26	27	28	31	34	37	37	37	37	
SR160	27	27	29	32	34	37	37	37	37	
SR167	25	25	27	30	33	35	36	36	35	
SR168	22	22	24	27	30	32	32	32	32	
SR170	27	27	29	32	35	37	37	37	37	
SR200	24	24	26	29	32	34	34	34	34	
SR202	27	27	29	32	35	37	37	37	37	
SR212	24	24	26	29	32	34	34	34	34	
SR227	23	23	25	28	31	33	34	34	33	
SR228	27	28	29	32	35	38	38	38	38	
SR253	25	25	27	30	33	35	36	36	36	

Table 10: Wind Farm Noise LAeq, 10min Predictions (dB(A)) at Involved Dwellings

		Hub Height integer wind speeds, 149m AGL (dB(A))							
D B	4 m/s	5 m/s	6 m/s	7 m/s	8 m/s	9 m/s	10 m/s	11 m/s	12 m/s
Dwelling	Prediction	Prediction	Prediction	Prediction	Prediction	Prediction	Prediction	Prediction	Prediction
				Involved	Dwellings				
SR259	31	32	34	37	39	42	42	42	42
SR261	22	22	24	27	30	32	33	33	33
SR267	26	26	28	31	34	36	37	37	37
SR286	27	28	30	33	35	38	38	38	38
SR288	20	21	23	26	28	31	31	31	31

Table 11: Wind Farm Noise LARG, 10min Predictions (dB(A)) at Non-Involved Dwellings

		Hub Height integer wind speeds, 149m AGL (dB(A))																
9	4 n	n/s	5 n	n/s	6 n	n/s	7 n	n/s	8 n	n/s	9 n	n/s	10	m/s	11	m/s	12	m/s
Dwelling	Criterion	Prediction	Criterion	Prediction	Criterion	Prediction	Criterion	Prediction	Criterion	Prediction	Criterion	Prediction	Criterion	Prediction	Criterion	Prediction	Criterion	Prediction
						No	n-Invo	lved	Dwelli	ings								
SR004	35	22	35	22	35	24	35	27	35	30	36	32	37	32	38	32	39	32
SR007	35	22	35	22	35	24	35	27	35	30	36	32	37	33	38	33	39	33
SR105	35	22	35	22	35	24	35	27	35	30	36	32	37	33	38	33	39	33
SR107	35	21	35	21	35	23	35	26	35	29	36	31	37	31	38	31	39	31
SR109	35	23	35	23	35	25	35	28	35	31	36	33	37	34	38	34	39	34
SR129	35	20	36	20	36	22	37	25	38	28	39	30	40	31	41	31	41	31
SR216	35	21	35	21	35	23	35	26	35	29	36	31	37	31	38	31	39	31
SR240	37	26	38	26	38	28	39	31	39	34	39	36	40	37	40	37	39	37
SR262	35	22	35	22	35	24	35	27	35	30	36	32	37	33	38	32	39	32
SR264	35	20	36	20	36	22	37	25	38	28	39	30	40	30	41	30	41	30
SR268	35	22	36	23	36	25	37	28	38	30	39	33	40	33	41	33	41	33
SR272	35	24	36	24	36	26	37	29	38	32	39	34	40	35	41	35	41	34
SR300	35	20	35	20	35	22	35	25	35	28	36	30	37	31	38	31	39	31

The highest predicted low frequency $L_{Ceq, 10min}$ noise level at non-involved dwellings is less than 53 dB(C) (at SR240), which is less than the 60 dB(C) criterion. The following table provides the low frequency $L_{Ceq, 10min}$ noise level at the closest non-involved dwellings, being those with a level of 45 dB(C) or more.

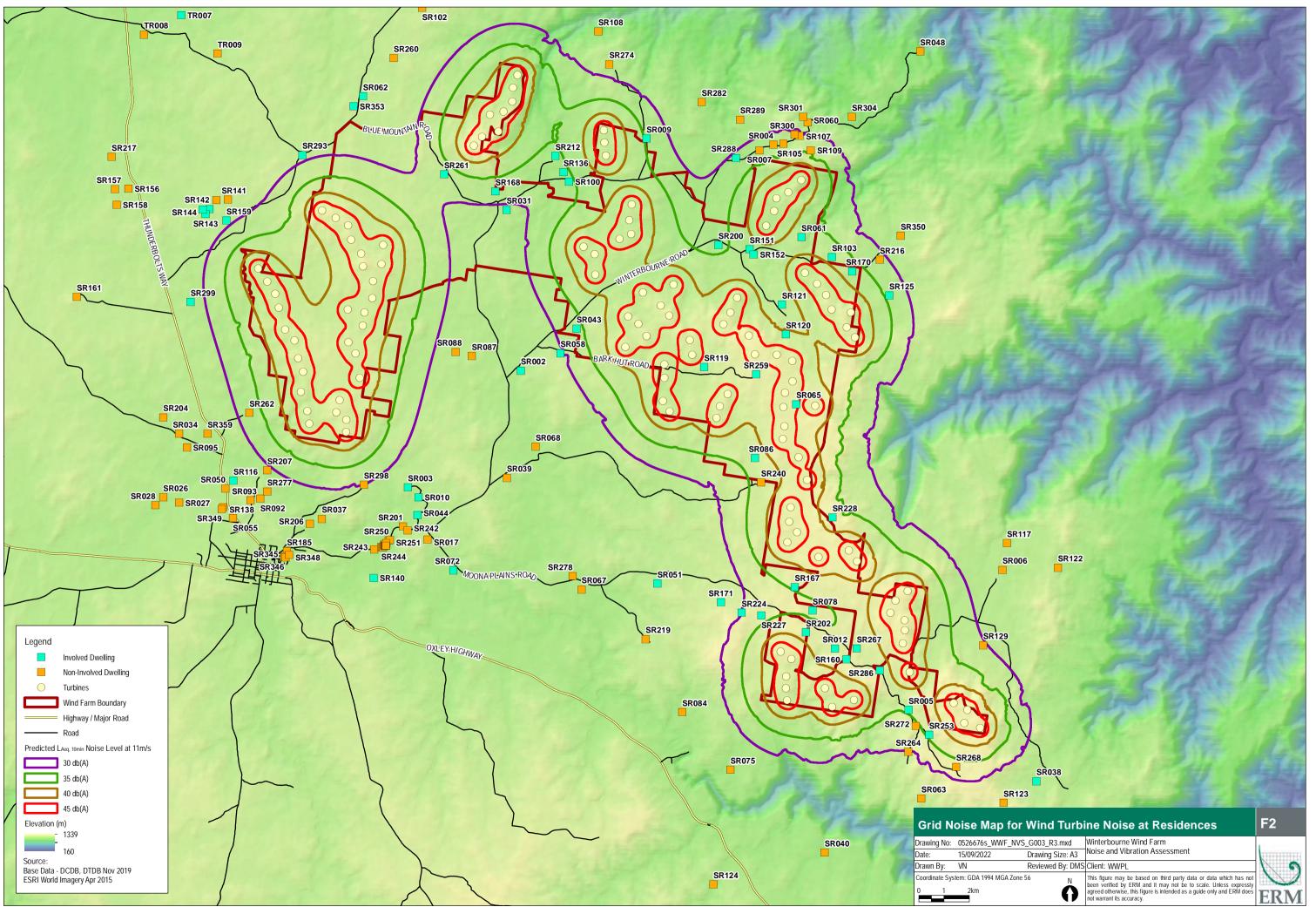

Dwelling ID	Noise Level L _{Aeq, 10min} (dB(A))	Low Frequency Noise Level L _{Ceq, 10min} (dB(C))
SR240	37	53
SR272	35	51
SR268	33	49
SR007	33	49
SR262	32	49
SR216	31	49
SR109	34	48
SR004	32	48
SR105	33	48
SR129	31	48
SR264	30	47

Table 12: Wind Farm Low Frequency Noise Predictions at Non-Involved Dwellings

Based on the above, a penalty for excessive low frequency noise is not applicable and no adjustment has been made to the predictions provided above.

Based on the predictions above, without any noise mitigation measures, the noise from the 119 WTGs will achieve the operational noise criteria at all dwellings in the vicinity of the wind farm.

Predicted $L_{Aeq, 10min}$ noise level contours at a wind speed corresponding to the WTG maximum sound power level (11m/s) are provided in the following figure.

Recommendations

To ensure the project achieves the noise criteria, it is recommended that a pre-construction noise assessment be made based on the final turbine selection, layout and turbine specific sound power levels which are guaranteed by the manufacturer for the project. In addition, operational noise monitoring will be carried out following commissioning of the Project to verify compliance with the noise criteria.

5 ANCILLARY INFRASTRUCTURE – SUBSTATIONS/BESS

5.1 Criteria

The NPI establishes noise trigger levels based on lower of the following two methods;

- 1. the existing background noise environment (*intrusiveness noise levels*); and,
- 2. the amenity for particular land uses (amenity noise levels).

To provide a conservative assessment approach, the minimum RBL under the NPI has been applied, being 30 dB(A) during the evening and night and 35 dB(A) during the day.

As such, for activity occurring during the day, evening and night, the noise trigger level is based on the *project intrusiveness noise level* of 35 dB(A) (*Method 1* above). This level is lower than the *project amenity noise level* of 40 dB(A) (*Method 2* above) that applies in a rural area during the night.

If noise assessed under the NPI is found to have a character that has the potential to be annoying, such as tonality, modulation or dominant low-frequency content, a modifying correction factor is to be applied to the predicted noise levels at the dwelling before comparison with the project *noise trigger levels*.

5.2 Assessment

Noise Sources

The Project will comprise of two substations and a switching station, in the locations provided in Section 2 of this report and shown in Figure 1.

Noise at the proposed substations will include transformers and at the northern location the BESS facility. These sources have been assessed against the objective noise criteria under the NPI. The switching station does not propose any significant noise generating equipment and has not been considered as a noise source.

The predictions have been made based on a high-voltage transformer with an overall capacity of 350MVA at each substation location. The sound power level for the prediction has been derived from the Australian/New Zealand Standard AS/NZS60076.10:2009, *Power transformers - Determination of sound levels (IEC 60076-10, Ed. 1(2001) MOD)* and is summarised in Table 13.

Octave Band Centre Frequency (Hz)	Sound Power Level (dB(A) re 1 ρW)
63 Hz	81
125 Hz	89
250 Hz	96
500 Hz	99
1,000 Hz	91
2,000 Hz	88
4,000 Hz	81
Total	102

Table 13: 270MVA substation transformer sound power levels

The noise from the BESS facility has been predicted based on a capacity of 100MW / 200MWhr (2 hour facility). The facility is proposed to consist of containerised batteries with associated inverters, transformers and cooling systems which operate at variable fan speeds. The noise level assumed for the facility has been based on Tesla "Megapacks" with the total sound power level for all units provided below. The assessment has been based on the units operating at full capacity (100% fan speed) at all times. Notwithstanding, based on the manufacturer's information for similar projects, these operating conditions are unlikely to occur and therefore lower noise levels would result, particularly at night.

Octave Band Centre Frequency (Hz)	Sound Power Level (dB(A) re 1 ρW)
100 Hz	85
125 Hz	87
160 Hz	89
200 Hz	89
250 Hz	88
315 Hz	92
400 Hz	103
500 Hz	100
630 Hz	102
800 Hz	106
1000 Hz	98
1250 Hz	104
1600 Hz	101
2000 Hz	102
2500 Hz	100
3150 Hz	98
4000 Hz	97
5000 Hz	100
6300 Hz	98
8000 Hz	92
10000 Hz	86
Total (Overall)	113

Table 14: Megapack sound power levels for 100% fan speed

It is noted that although the assessment has been based on the sound power levels provided above, it should not preclude the project from selecting an alternate manufacturer or containerised battery solution as the

design progresses. The design and the sound power levels in this report have been used to demonstrate that a facility of this size can achieve the environmental noise criteria at nearby residences. The project should not be restricted from using newer technology, where it is developed between the time of approval and construction.

Noise Predictions

A L_{Aeq} noise level of less than 20 dB(A) is predicted for the non-involved dwelling with the highest prediction (SR088) under worst case weather conditions, therefore easily achieving the criteria.

Transformers will often have audible tonality in close proximity, although the potential for it to be a dominant characteristic is diminished at the separation distances to the dwellings. Given the low predicted noise levels, it is unlikely that a penalty would apply to the noise level, however if a 5 dB(A) adjustment were to be conservatively applied, the 35 dB(A) criterion would still easily be achieved.

Recommendations

In order to demonstrate compliance with the SEARs, it is recommended that the assessment of noise from the substations and BESS facility be updated if the size of the BESS or substation transformer(s) is increased or the sound power level change from that assumed in this report.

Any updates to the predictions should ensure that the highest equivalent noise level at a non-involved dwelling from operation of the substation transformers will comply with the criteria established by the SEARs, under conditions most conducive to noise propagation (such as temperature inversions).

6 CONSTRUCTION (EXCLUDING BLASTING)

6.1 Criteria

The Construction Noise Guideline provides an emphasis on implementing "feasible" and "reasonable" noise reduction measures and does not set mandatory objective criteria. The Construction Noise Guideline establishes "management levels" based on the existing RBL. As noted in Section 5.1 the minimum RBL is 30 dB(A) for the evening and night and 35 dB(A) for the day.

Based on the above, the framework to address construction activity is provided in Table 15:

Time of Day	Management level L _{Aeq (15 min)}	How to apply
Recommended standard hours: Monday to Friday 7 am to 6 pm Saturday 8 am to 1 pm	Noise affected RBL + 10 dB = <u>45dB(A)</u>	 The noise affected level represents the point above which there may be some community reaction to noise. Where the predicted or measured L_{Aeq (15 min)} is greater than the noise affected level, the proponent should apply all feasible and reasonable work practices to meet the noise affected level. The proponent should also inform all potentially impacted residents of the nature of works to be carried out, the expected noise levels and duration, as well as contact details.
No work on Sundays or public holidays	Highly noise affected <u>75 dB(A)</u>	 The highly noise affected level represents the point above which there may be strong community reaction to noise. Where noise is above this level, the relevant authority (consent, determining or regulatory) may require respite periods by restricting the hours that the very noisy activities can occur, taking into account: times identified by the community when they are less sensitive to noise (such as before and after school for works near schools, or mid-morning or mid-afternoon for works near dwellings if the community is prepared to accept a longer period of construction in exchange for restrictions on construction times.
Outside recommended standard hours	Noise affected RBL + 5 dB = <u>35dB(A)</u>	A strong justification would typically be required for works outside the recommended standard hours. The proponent should apply all feasible and reasonable work practices to meet the noise affected level. Where all feasible and reasonable practices have been applied and noise is more than 5 dB(A) above the noise affected level, the proponent should negotiate with the community.

Table 15: Construction Noise Guideline Requirements

It is noted that the proposed work hours on Saturday extend outside of that recommended by the Construction Noise Guideline (1pm to 6pm). Works during these hours are addressed in the Scheduling component of Section 6.2 below.

6.2 Assessment

Noise Predictions

The equipment and activities on site will vary throughout the project, depending on various stages of construction, required processes and specific equipment used over the planned 30 month construction and commissioning period. The predicted noise from construction activity is presented as a typical worst case (highest noise level) scenario for the various stages of construction.

The predictions are based on weather conditions that are the most conducive for the propagation of noise, being CONCAWE Category 6 conditions (receivers being down wind of noise sources and light to no cloud cover prior to sunrise or after sunset). Other weather conditions would result in lower noise levels than those predicted for day-time construction.

All non-involved dwellings are:

- Separated by 1225m or more from the closest proposed WTG location (with SR109 being approximately 1227m from turbine B056); and,
- Separated by 3320m or more from the closest temporary concrete batching and crushing plants (with SR088 being approximately 3326m to the closest plant location).

The predicted noise level from activities undertaken during the day period at the WTG location sites (at a separation distance of 1225m to SR109) and the batching and crushing plants (at a separation distance of 3320m to SR088) are provided in Table 16. The required separation distance in order to achieve the *noise affected level* of 45 dB(A) during standard hours (the day period) is also provided. The table provides the estimated time that each project phase will occur for during the project construction, noting that the time at each turbine site will be a fraction of that estimated for the whole project. Predictions for each "Phase" are based on the assumption that all equipment stated is being operated concurrently and cumulatively.

sonus.

Table 16: Predicted L _{Aeq, 15min} construction noise levels during standard hours					
Phase	Noise Management Level	Main Plant and Equipment	Predicted L _{Aeq, 15min} Noise Level at Closest Dwelling (1225m to activity)	Outcome/Action	
Site Set-Up and Civil Works (10 Months)	45 dB(A)	Generator Transport truck Excavator Low loader	43 dB(A)	Achieves criterion at all non-involved dwellings.	
Road Construction (External Road Upgrades 9 Months) (Internal Roads 14 Months)		Mobile crushing and screening plant Dozer Roller Low loader Tipper truck Excavator Scraper Transport truck	49 dB(A)	Predicted to exceed criterion at dwellings within 1,800m of the construction activity (7 non-involved dwellings, SR004, SR105, SR107, SR109, SR240, SR268, SR272). Implement "feasible and reasonable" noise control strategies to minimise noise during construction in accordance with the recommendations below.	
Excavation and foundation construction (13 Months)		Excavator Front end loader Mobile crushing and screening plant Truck-mounted concrete pump Concrete mixer truck Mobile crane Transport truck Tipper truck	48 dB(A)	Predicted to exceed criterion at dwellings within 1,700m of the construction activity (3 non-involved dwellings, SR105, SR109, SR240). Implement "feasible and reasonable" noise control strategies to minimise noise during construction in accordance with the recommendations below.	
Electrical Installation (16 Months)		Rock trencher Concrete mixer truck Low loader Tipper truck Mobile crane	49 dB(A)	Predicted to exceed criterion at dwellings within 1,800m of the construction activity (7 non-involved dwellings, SR004, SR105, SR107, SR109, SR240, SR268, SR272). Implement "feasible and reasonable" noise control strategies to minimise noise during construction in accordance with the recommendations below.	

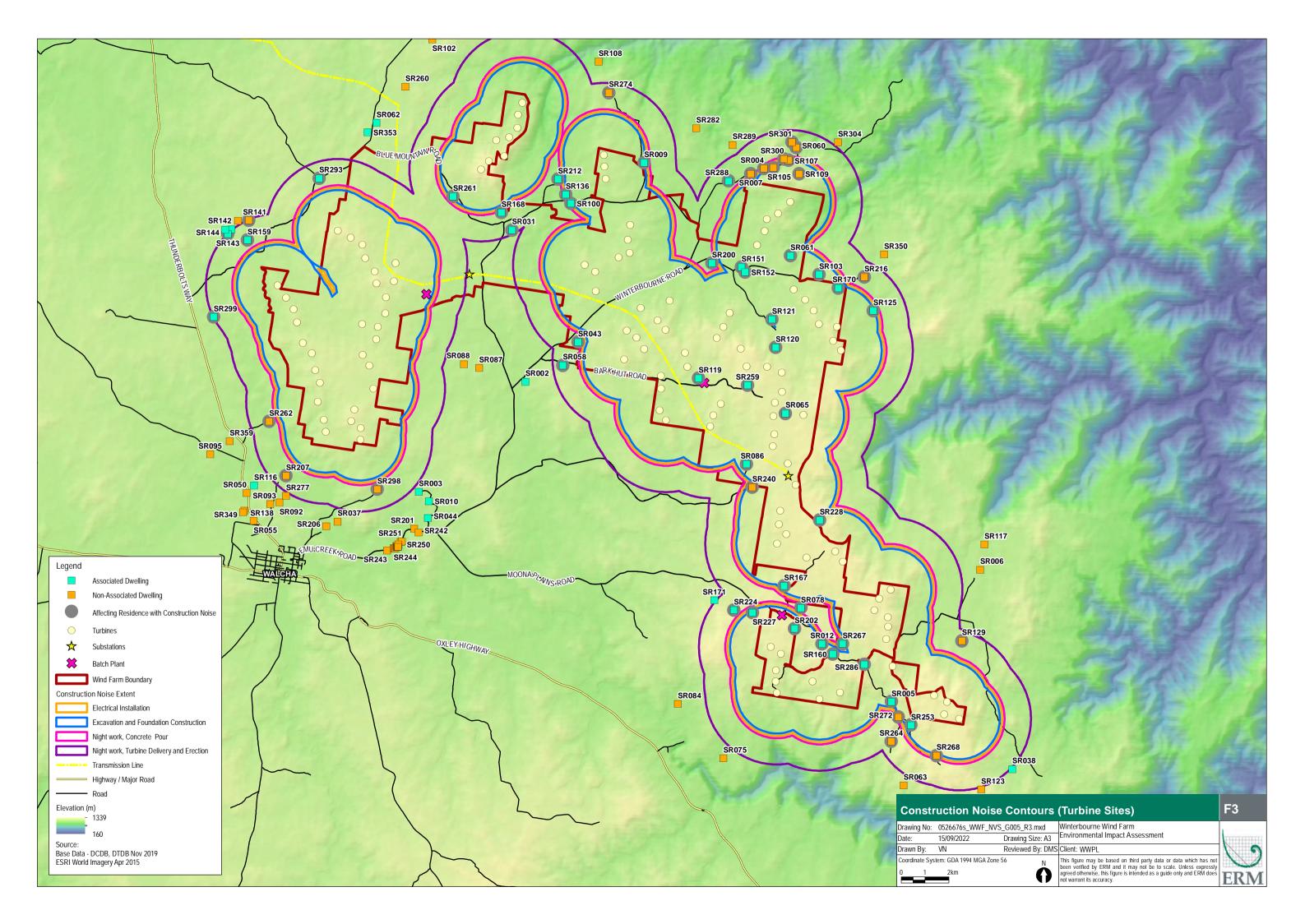
sonus.

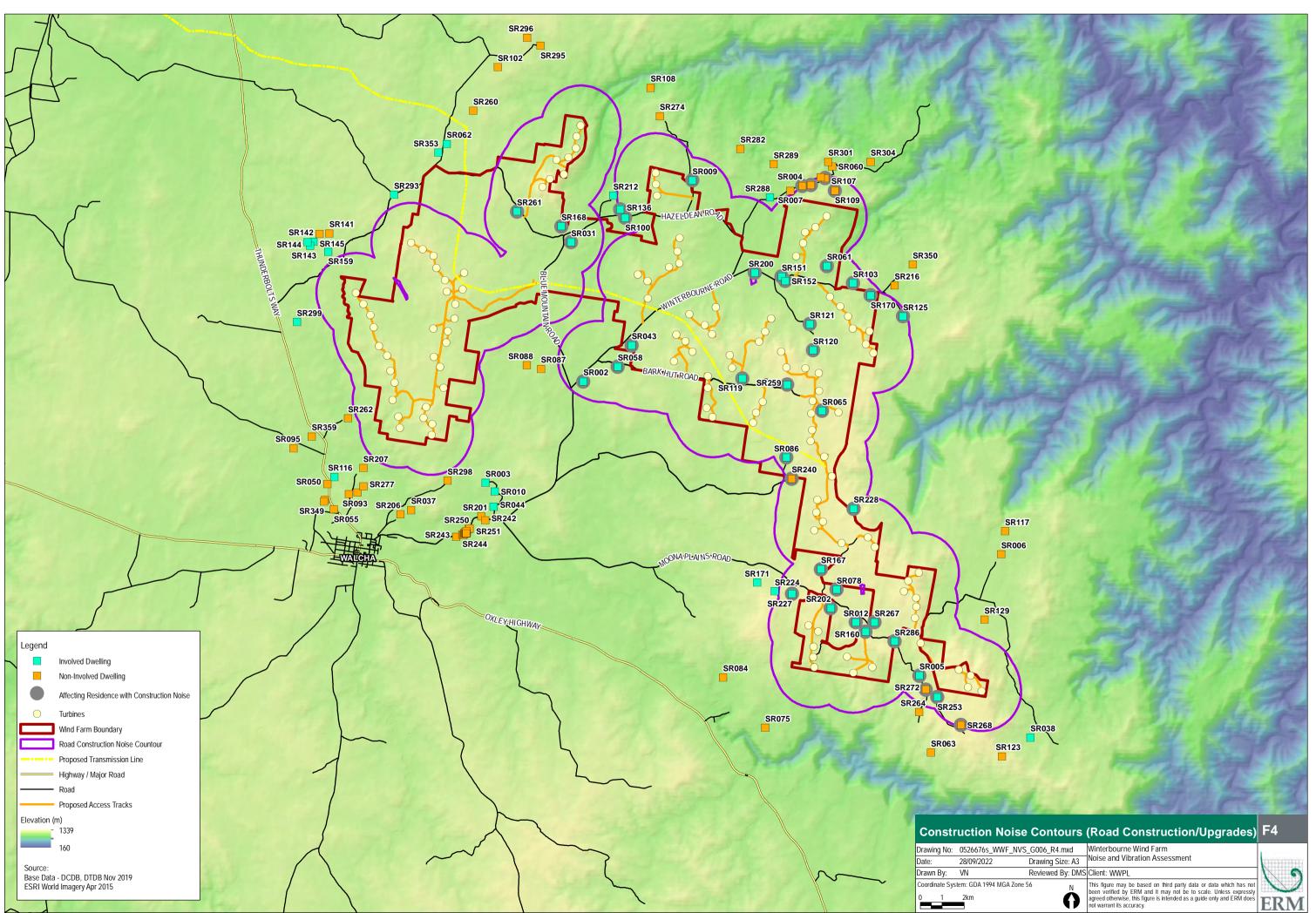
Phase	Noise Management Level	Main Plant and Equipment	Predicted L _{Aeq, 15min} Noise Level at Closest Dwelling (1225m to activity)	Outcome/Action
Turbine Delivery and Erection (at the turbine locations) (16 Months)	45 dB(A)	Extendable trailer truck Low loader Mobile crane Support crane Grinder Rattle Gun	43 dB(A)	Achieves criterion at all non-involved dwellings.
Concrete Batching and Crushing (13 Months)		Mobile crushing and screening plant Front end loader Truck	31 dB(A) (3320m to activity)	Achieves criterion at all non-involved dwellings.

In addition to construction activities during the day period, some low noise impact works may occur on Saturday afternoons outside of the "standard hours" and a small number of activities may need to be undertaken early in the mornings. The activities which may occur early in the morning may include the operation of a batching plant and concrete pouring at WTG sites or cranes lifting turbine components early in the morning during low wind speed conditions. The predicted noise level for these activities is provided in Table 17, noting that for the batching plant locations, rock crushing has not been included outside of "standard hours". The required separation distance in order to achieve the noise affected level of 35 dB(A) for activity outside of standard hours is also provided. Predictions will be made of any low noise impact works undertaken on Saturday afternoons once the processes and equipment have been proposed by the construction contractor.

Table 17: Predicted construction noise levels outside of standard hours						
Phase	Noise Management Level	Main Plant and Equipment	Predicted L _{Aeq, 15min} Noise Level at Closest Dwelling	Outcome/Action		
Batching		Front end loader Truck	30 dB(A) (3320m from Dwelling)	Achieves criterion at all non-involved dwellings.		
Concrete Pour	35 dB(A)	Generator Truck Concrete pump	38 dB(A) (1200m from Dwelling)	Predicted to exceed criterion at dwellings within 1,900m of the construction activity (8 non-involved Dwellings, SR004, SR105, SR107, SR109, SR240, SR268, SR272, SR300). Implement "feasible and reasonable" noise control strategies to minimise noise during construction in accordance with the recommendations below.		
Turbine Delivery and Erection (at the turbine locations)		Extendable trailer truck Low loader Mobile crane Support crane Grinder Rattle Gun	43 dB(A) (1200m from Dwelling)	Predicted to exceed criterion at dwellings within 3,000m of the construction activity (19 non-involved Dwellings, SR004, SR007, SR060, SR105, SR107, SR109, SR129, SR141, SR207, SR216, SR240, SR262, SR264, SR268, SR272, SR274, SR298, SR300, SR301). Implement "feasible and reasonable" noise control strategies to minimise noise during construction in accordance with the recommendations below.		

Page 34


In accordance with the Construction Noise Guideline, if the noise is "particularly annoying" to nearby residents, a modifying correction factor is to be applied to the measured level. The noise associated with construction activity can exhibit annoying characteristics on occasion and therefore a 5 dB(A) correction (increase to the predicted level) has been applied to the noise predictions.


It is noted that separation distances greater than the distances presented in the above tables will result in lower noise levels.

Based on the predicted noise levels, it is expected that construction:

- during standard hours will potentially be at noise levels of greater than 45 dB(A) for some activities at a limited number of non-involved dwellings (7 locations). However, the predicted noise levels are significantly less than 75 dB(A) (the point where there may be strong community reaction to noise).
- Outside of standard hours will potentially be at noise levels of greater than 35 dB(A) for some activities. That is, the noise from temporary batching, concrete pouring and turbine erection may exceed 35 dB(A) at up to 19 non-involved dwellings.

The following figures can be used to identify the project areas within the separation distances where specific phases are predicted to exceed the noise affected level of 45 dB(A) during the day period or 35 dB(A) during the night period.

It is noted that there may be road upgrades in the vicinity of the Walcha township, which may affect additional residences. The noise from these upgrades will be predicted once the extent of the upgrades is known and the processes to undertake them are designed. The activities will be assessed in accordance with the framework in this section and affected residences identified.

Recommendations

For construction with $L_{Aeq, 15min}$ noise levels greater than 45 dB(A) and 35 dB(A) during standard hours and outside of standard hours respectively, the Construction Noise Guidelines requires the developer to apply all feasible and reasonable work practices, and to inform the residents of the proposed construction work.

"Feasible and reasonable" noise control strategies to minimise noise during construction may include engineering measures such as the construction of temporary acoustic barriers, the use of proprietary enclosures around machines, the use of silencers, the substitution of alternative construction processes and the fitting of broadband reversing signals. It may also include administrative measures such as inspections, scheduling and providing training to establish a noise minimisation culture for the works.

The following mitigation measures are recommended to be implemented for the construction works by the construction team once the final construction methods, timing, locations and equipment has been determined.

Scheduling

Construction works, including heavy vehicle movements into and out of the site, will generally be restricted to the standard hours of 7am to 6pm Monday to Friday, and between 8am and 1pm on Saturdays. An exception to these hours is Saturdays when work is proposed to occur until 6:00pm.

Works carried out outside of the standard hours will be limited to:

- works that do not cause noise emissions above 35 dB(A) at any nearby non-involved dwellings not located on the site; or,
- the delivery of materials as requested by Police or other authorities for safety reasons; or,
- emergency work to avoid the loss of lives, property, and/or to prevent environmental harm; or
- works where a proponent demonstrates and justifies a need to operate outside the recommended standard hours.

If any other works are required outside of the specified hours, they will only be carried out with the prior consent of the relevant authority.

Location of Fixed Noise Sources

Locate fixed noise sources such as crushing and screening plant, concrete batching plant, generators and compressors at the maximum practicable distance to the nearest dwellings, and where possible, use existing topography (or raw or processed materials) to block line of sight between the fixed noise source and the dwelling.

Provide Acoustic Screens around Fixed Noise Sources

Provide acoustic screens or mounding for *fixed* crushing and screening plant and concrete batching plant wherever these noise sources are located within 2400m of a non-involved dwelling and do not have direct line of sight blocked by site topography to that dwelling, in accordance with the following requirements:

- Locate the acoustic screens or mounding as close as practicable to the noise source;
- Construct from mounding using excavated soil from the site or a material with a minimum surface density of 10 kg/m², such as 1.2mm thick sheet steel or 9mm thick compressed fibre cement sheeting, or use proprietary barriers such as the *FlexShield* "Sonic Quilt";
- Construct to a minimum height that blocks direct line of sight between the noise source and any dwellings within 2400m; and,
- Construct such that air gaps or openings at joints between sections of the acoustic screens are minimised.

Enclose Generators and Compressors

Provide proprietary acoustic enclosures for site compressors and generators located within 2400m of a noninvolved dwelling.

Alternative Processes

Investigate and implement alternative processes where feasible and reasonable, such as hydraulic or chemical splitters as an alternative to impact rock breaking, or the use of broadband reversing alarms in lieu of the high-pitched alarms. A broadband reversing alarm emits a sound which addresses the annoyance from the high-pitched alarms. The fitting of a broadband alarm should be subject to an appropriate risk assessment, with the construction team being responsible for ensuring the alarms are installed and operated in accordance with all relevant occupational, health and safety legislative requirements.

Site Management

- Select and locate centralised site activities and material stores as far from dwellings as practicable;
- Care should be taken not to excessively drop materials such as rock, to cause peak noise events, including materials from a height into a truck. Site personnel should be directed as part of a training regime to consider such practices;
- Plant known to emit noise strongly in one direction, such as the exhaust outlet of generator set, shall be orientated so that the noise is directed away from noise sensitive areas if practicable;
- Machines that are used intermittently shall be shut down in the intervening periods between works or throttled down to a minimum; and,
- Implement worksite induction training, educating staff.

Equipment and Vehicle Management

- Ensure equipment has Original Equipment Manufacturer (OEM) mufflers (or better) installed;
- Ensure equipment is well maintained and fitted with adequately maintained silencers which meet the OEM design specifications. This inspection should be part of a monitoring regime;
- Ensure silencers and enclosures are intact, rotating parts are balanced, loose bolts are tightened, frictional noise is reduced through lubrication and cutting noise reduced by keeping equipment sharp. These items should be part of a monitoring regime;
- Use only necessary power to complete the task; and,
- Inspect, as part of a monitoring regime, plant and equipment to determine if it is noisier than other similar machines, and replace or rectify as required.

Community Consultation

Implement the following noise related elements into the overall community consultation process. The aim of the consultation is to ensure adequate community awareness and notice of expected construction noise.

The minimum elements should include:

- Community Information newsletters, providing details of the construction plan and duration of the construction phases;
- A site notice board in a community location providing copies of the newsletters, updated construction program details, and contact details of relevant project team members;

- A feedback mechanism for the community to submit questions to the construction team, and for the construction team to respond;
- Regular updates on the construction activities to local authorities to assist in complaint management if necessary; and,
- Contact details of the project manager and/or site "Environmental Representative".

In addition, prior to any construction activity outside of standard work hours occurring within 3000m of a non-involved dwelling, or significant construction traffic periods or impacts on local road conditions:

- Contact the local community potentially affected by the proposed works and inform them of the proposed work, the location of the work, the day(s) and date(s) of the work and the hours involved;
- This contact should be made a reasonable time before the proposed commencement of the work; and,
- Contact details of the project manager and / or site "Environmental Representative" should be provided.

The above measures should be incorporated and implemented through the construction phase. The mitigation measures should be determined by the construction team once the actual construction activities and schedule have been determined.

7 BLASTING

7.1 Criteria

The ANZEC Guidelines provide airblast overpressure and ground vibration objective criteria to minimise the annoyance and discomfort to residences from blasting activities which may be required during construction.

In addition to the criteria below, the ANZEC Guidelines also recommends that blasting be restricted to the hours of 9:00am to 5:00pm on Monday to Saturday, with no blasting activity on Sunday or public holidays.

Airblast Overpressure

To minimise the annoyance and discomfort from airblast overpressure the ANZEC Guidelines recommend:

- a maximum level for airblast overpressure is 115 dB (Lin, Peak).
- the level of 115 dB may be exceeded on up to 5% of the total number of blasts over a period of 12 months, but the level should not exceed 120 dB (Lin, Peak) at any time.

Ground Vibration

To minimise the annoyance and discomfort from ground vibration the ANZEC Guidelines recommend:

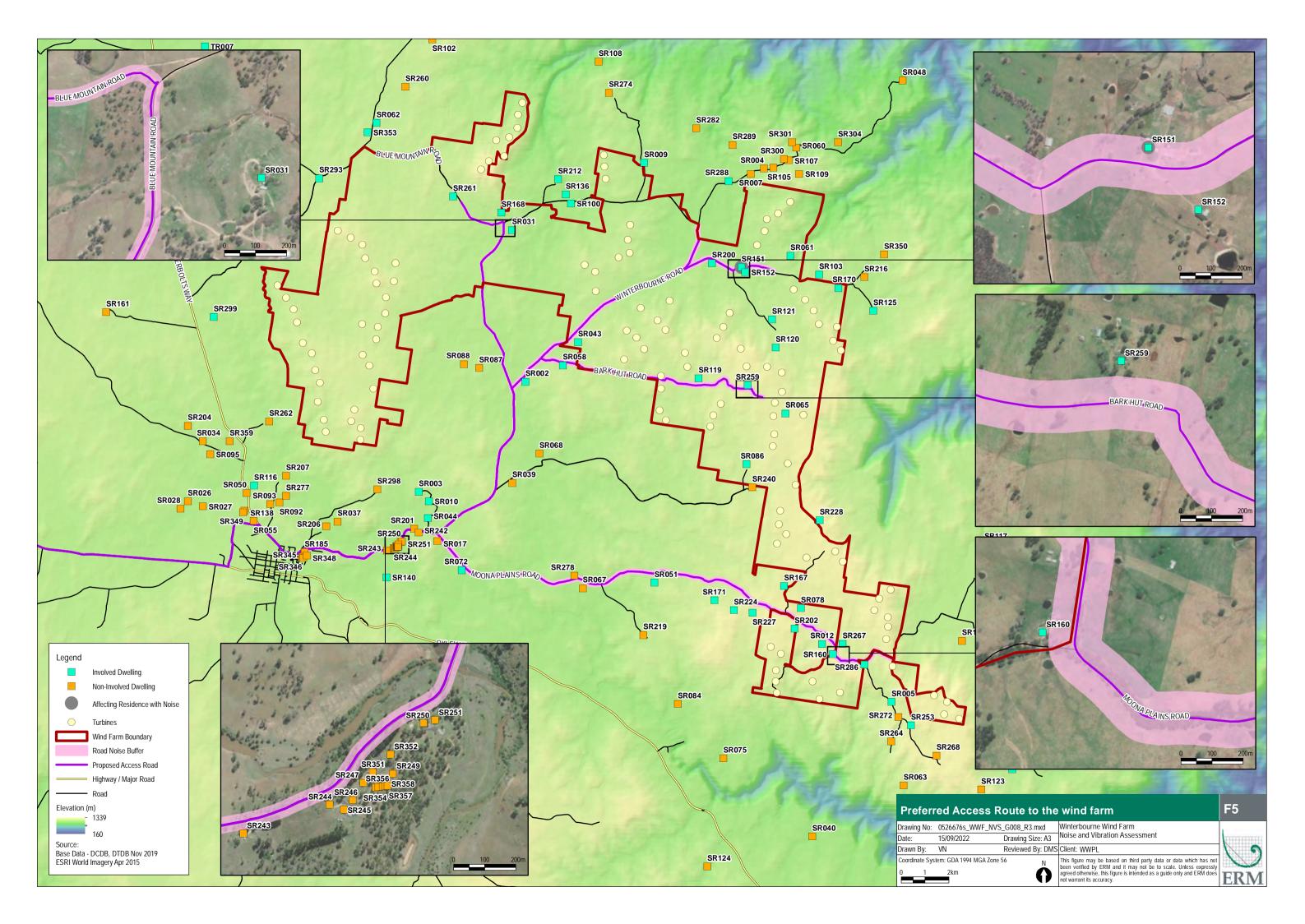
- a maximum level for ground vibration of 5mm/sec (peak particle velocity (ppv)).
- the ppv level of 5mm/sec may be exceeded on up to 5% of the total number of blasts over a period of 12 months, but the level should not exceed 10mm/sec at any time.

7.2 Assessment

The relationship between the airblast overpressure and ground vibration from blasting for a given site is dependent on a number of variables specific to that site. The magnitude of the airblast overpressure and ground vibration decreases with increasing distance from the blast and from decreasing the charge weight per delay. Other variables such as particular source to receiver geometries, rock type and formation and the local geology of the site also influence the result of blasting. It is therefore common practice for the blasting specialist to design each blast to achieve the project criterion, once the locations and the requirement for blasting are known.

The separation distances between any potential blasting activity associated with the Project and the nearest dwellings are of the order of magnitude for which ground vibration and airblast levels have been adequately controlled at other sites by limiting the charge size.

Recommendations


Given the range of factors associated with both the generation and control of blasting, it is recommended that in the event that blasting is necessary, the blasting specialist design each blast to achieve the project criterion and a monitoring regime is implemented to ensure compliance with the blasting criteria provided above.

A monitoring regime at the closest dwellings may include both noise and vibration measurements to confirm the blast specialist's design and ensure that the criteria are achieved.

8 TRAFFIC

The traffic associated with the wind farm will predominantly occur during construction and will include semitrailers, low loaders, trucks, mobile cranes, water tankers, four-wheel-drive vehicles and passenger vehicles.

An assessment of access to the wind farm is provided in Amber Traffic & Transportation Direction report titled "Winterbourne Wind Farm Traffic Impact Assessment", *Reference: 100 rep 220601 final* (Amber, 2022). The preferred access routes includes the Golden Highway followed by access to the New England Highway, via Bengalla Road, Wybong Road, Kayuga Road, Invermein Street, Stair Street, and the Dartbrook Mine access road to bypass Muswellbrook. Other vehicles would use Thomas Mitchell Drive, Bell Street, Victoria Street, and Market Street to access the New England Highway. The following figure shows the preferred access rout to the wind farm.

Once on the New England Highway, all vehicles are proposed to travel through Tamworth to reach the Oxley Highway, then on to Saleyard Road and Darjeeling Road to access Thunderbolts Way and subsequently Jamieson Street. Once vehicles reach Jamieson Street they would access the wider local road network and the individual access locations throughout the site.

8.1 Criteria

The NSW Road Noise Policy provides criteria for additional traffic noise generated by land use developments. The following table summarises the criteria for both Local Roads and arterial/sub-arterial roads.

Table 18: Road traffic noise criteria					
Existing residences on:Day-time (7am to 10pm)Night-time (10pm to 7am)					
Arterial/Sub-arterial roads	60 dB(A) (L _{eq,15hour})	55 dB(A) (L _{eq,9hour})			
Local Roads	55 dB(A) (L _{eq,1hour})	50 dB(A) (L _{eq,1hour})			

The noise levels are to be achieved outside, at a distance of 1m from the facade of a dwelling and at a height of 1.5m.

The preferred access route consists predominantly of arterial (freeway) and sub-arterial roads, which have a 60 dB(A) day time criterion (15 hour average noise level). There may also be some local roads used near townships, which are assessed against the more onerous 55 dB(A) day time criterion (1 hour average noise level).

8.2 Assessment

The traffic noise assessment considers the specific residences between Walcha and the Project, as well as a more general assessment based on worst case (closest) setback distances for the remainder of the route.

8.2.1 Residences between Walcha and the Project

The residences from where the access route reaches Walcha and proceeds to the wind farm have been considered and the following table summarises the minimum setback distances between a dwelling and the access route. Roads have been divided into high speed (>60km/hr) such as outside townships and low speed areas being within townships, such as Walcha:

Road Type	Noise Criterion	Within / Outside Township	Minimum Distance Between Access Route and Dwelling
Arterial/Sub-Arterial Roads	(0, dP(A)) (1 $(1 - 1)$	Within	14m
	60 dB(A) (15 Hour)	Outside	17m
Logal Doods		Within	40m
Local Roads	55 dB(A) (1 Hour)	Outside	40m

Table 19: Distances between roads and dwelli	ngs
--	-----

During the peak of construction, daily traffic levels are expected to reach 270 light vehicle trips (workers accessing site) and 288 large vehicles. The peak one hour traffic volume during this period is predicted to be 105 light vehicles and 32 heavy vehicles. The following table provides the predicted noise level for these traffic levels and corresponding to the distances provided above:

Road Type	Number of Passenger Vehicle Movements	Number of Heavy Vehicle Movements	Noise Criterion	Minimum Distance of Residences from the Road	Predicted Noise Level	Minimum Distance to Achieve Criterion
Arterial / Sub-	270 over a	288 over a 15 hour	60 dB(A)	14m from Township Road	58 dB(A)	9m
Arterial Roads	15 hour period	period	(15 Hour)	17m from other Roads	59 dB(A)	16m
Local Boads	105 within	32 within	55 dB(A)	40m from Township Road	56 dB(A)	50m
	1 hour 1 hour (1 Hour)	(1 Hour)	40m from other Roads	58 dB(A)	80m	

Table 20: Road traffic noise predictions and distances to achieve criteria

Based on the above, there is the potential the traffic noise criteria to be exceeded at any residence within:

- 80m of a Local Road outside of townships; or,
- 50m of a Local Road within townships.

For the area between Walcha and the wind farm, the following non-associated residences have the potential to result in the criteria being exceeded:

Table 21: Locations where the road traffic noise criteria may be exceeded

Residence ID	Road Type	Distance to the Road	Predicted Noise Level
Residences without identity in the Wind Farm Assessment on Saleyard Road and Darjeeling Road	Local Road	40m	56-58 dB(A)

For residences further from the roads and at times other than the peak of construction, the noise level from traffic will be less than that provided in the tables above.

8.2.2 Other Residences

Further from the Project, residences within other townships may be as close as 10m from roads and as close as 15m from roads outside of townships. The following table provides the predicted noise level for these distances based on the peak traffic volumes.

Table 22: Road traffic noise predictions at "other residences" and distances to achieve criteria						
Road Type	Number of Passenger Vehicle Movements	Number of Heavy Vehicle Movements	Criterion	Minimum Distance of Residences from the Road	Predicted Noise Level	Minimum Distance to Achieve Criterion
Arterial / Sub-	270 over a	15 hour	60 dB(A)	10m from Township Road	59 dB(A)	9m
Arterial Roads	15 hour period		(15 Hour)	15m from other Roads	60 dB(A)	16m
Less Deede	105 within	32 within	55 dB(A)	10m from Township Road	62 dB(A)	50m
	Local Roads	(1 Hour)	15m from other Roads	62 dB(A)	80m	

Outside of the peak of construction, the noise level will be 3 dB(A) less for every halving of the traffic volume. That is, for 50% of the traffic volume provided above, the noise level will be 3 dB(A) less, for 25% it would be 6 dB(A) less and for 12.5% of the traffic volume above it would be 9 dB(A) less than in the tables.

8.2.3 Recommendations

In accordance with the general principles of dealing with temporary construction noise impacts, where the NSW Road Noise Policy criteria are exceeded (during the peak construction period), the following mitigation measures are recommended to be employed to reduce construction traffic noise:

- Communicate with the affected community;
- Establish and maintain a route into the site so that heavy vehicles do not enter noise sensitive areas for access where practicable;
- Incorporate information regarding the route to all drivers prior to accessing the site and the need to minimise impacts through driver operation at certain locations;
- Schedule construction traffic deliveries such that it is as evenly dispersed as practicable; and,
- Restrict heavy vehicle deliveries to the day-time where practical, subject to the justifications for activity outside of this time as detailed in the construction management plan;
- Implement driver training as part of the induction process. The training should include the requirement to avoid excessive acceleration of trucks and the use of truck engine brakes in close proximity to dwellings.

9 CONSTRUCTION VIBRATION

9.1 Criteria

For construction activity occurring during the day time, the DECC 2006 can be interpreted to provide the vibration criteria in the Table 23 at the dwellings, based on the core document used as the technical basis for the Technical Guideline, the British Standard *BS 6472-1992 "Evaluation of human exposure to vibration in buildings (1-80Hz)"*.

	Continuous Vibration Vertical (rms)		Impulsive Vibration Vertical (rms)		ose Value for It Vibration
Preferred	Maximum	Preferred	Maximum	Preferred	Maximum
0.01 m/s ²	0.02 m/s ²	0.3 m/s ²	0.6 m/s ²	0.2 m/s ^{1.75}	0.4 m/s ^{1.75}

Table 23: Vibration Criteria

Continuous vibration is uninterrupted for an extended period of time. Intermittent vibration is an interrupted form of continuous vibration, and impulsive vibration is a sudden event or events.

9.2 Assessment

It is expected that the main sources of construction vibration will be the rock trenching equipment and roller operation during the road and hard stand construction. The level of vibration at a distance will be subject to the input of the equipment and the local ground conditions. Typically, the distances required to achieve the construction vibration criteria provided in DECC 2006 are in the order of 20m. At a distance of 100m, vibration from these activities is unlikely to be detectable.

Based on the separation distances between the construction activities and the nearest dwellings being well in excess of 100m, vibration levels are predicted to easily achieve the criteria.

If construction activities producing high levels of vibration occur within 100m of a dwelling, such as upgrading existing roads (which may be within 25m of the closest dwelling), it is recommended that a monitoring regime is implemented during these times to ensure compliance with DECC 2006.

10 NATIONAL PARKS

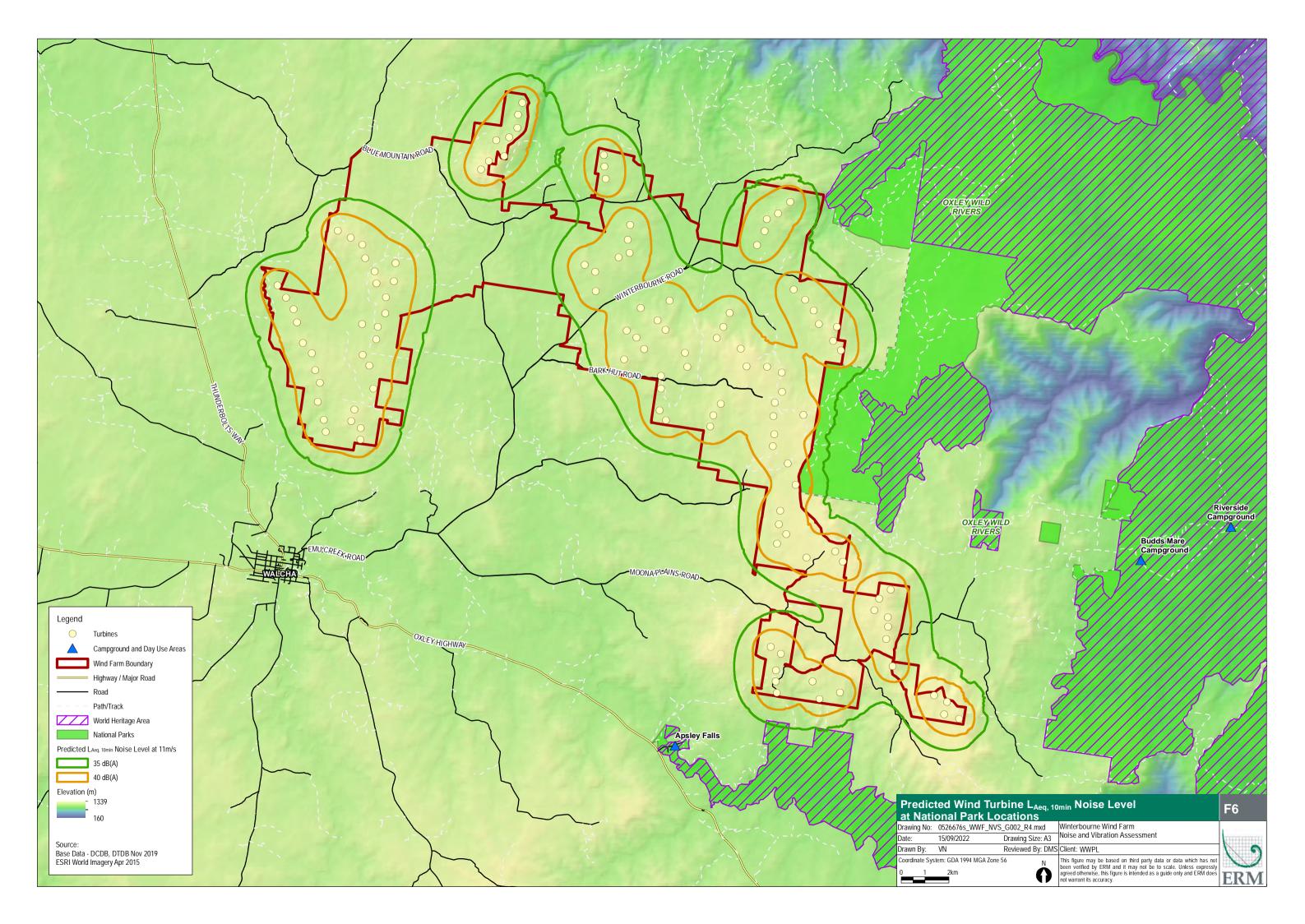
10.1 Criteria

In addition to the noise impact at dwellings, the SEARs require consideration of the impact on amenity/recreational uses within the Oxley Wild Rivers National Park (including walking tracks, campgrounds and lookouts).

Indirect impacts of noise on fauna is included in the 'Biodiversity Development Assessment Report' (NGH, 2022).

The SEARs reference the *NSW Noise Policy for Industry* (EPA, 2017) when considering the potential impact, however the NPI specifically excludes the assessment of wind farm noise. An exception to this is the noise from ancillary infrastructure, which is assessed in accordance with this policy in Section 5.

In addition, under SA 2009, a relevant receiver location is "where someone resides or has development approval to build a residential dwelling". The recreational, physical and transient use of walking trails and lookouts do not fall under this definition.


Based on the above, and in the absence of any tailored legislative objective requirements for National Parks, and based on camp grounds being more aligned with the amenity expected at permanent dwellings, the noise level at the closest camp grounds have been considered against wind farm assessment criteria which would otherwise apply at dwellings.

That is, a baseline noise criterion of 35 dB(A) has been considered at the camp grounds to satisfy the SEARs.

10.2 Assessment

Based on the wind turbine noise predictions in Section 4, a 35 dB(A) and 40 dB(A) noise contour (for the highest noise level wind speed, being 11m/s) have been overlaid on a map of the Oxley Wild Rivers National Park.

The map shown below demonstrates that the closest camp ground to the wind farm (Apsley Falls) is well outside of the 35 dB(A) contour, easily achieving the baseline criterion which would apply at a land use such as a dwelling.

Noise levels within the national park are 40 dB(A) or less at areas commonly used, such as along walking trails and at lookout locations, which indicates wind farm noise levels will be well within the rise and fall of the ambient environment (due to sources such as wind in trees, birdsong and insects).

Based on the above, it is considered that the Project will not impact on amenity/recreational uses within the Oxley Wild Rivers National Park (including walking tracks, campgrounds and lookouts).

11 RECOMMENDATIONS

The following summarises the recommendations made to address potential noise and vibration impacts associated with all aspects of the project:

Wind Turbine Operation

A pre-construction noise assessment is recommended to be undertaken based on the final turbine selection, layout and guaranteed sound power levels. Predictions will be compared against the criteria and if exceeded, the need for an operating strategy (consisting of operating specific turbines in "noise reduced" modes) will be determined.

Operational noise monitoring is also recommended following the commissioning of the Project to verify compliance with the noise criteria.

Ancillary Infrastructure

In order to ensure compliance with the SEARs, the assessment of noise from the substations and BESS facility is recommended to be updated should the size of the BESS or substation transformer(s) be increased or the sound power level change from that assumed in this report.

Any updates to the predictions should ensure that the highest equivalent noise level at a non-involved dwelling from operation of the substation transformers will comply with the criteria established by the SEARs, under conditions most conducive to noise propagation (such as temperature inversions).

Construction

For construction activities with noise levels greater than 45 dB(A) and 35 dB(A) during standard hours and outside of standard hours respectively, the Construction Noise Guidelines requires the developer to apply all feasible and reasonable work practices, and to inform the residents of the proposed construction work.

It is recommended that all "feasible and reasonable" construction noise mitigation measures as detailed in Section 6 of this report be implemented by the construction team once final construction methods, timing, locations and equipment have been determined.

These measures may include engineering measures such as the construction of temporary acoustic barriers, the use of proprietary enclosures around machines, the use of silencers, the substitution of alternative

construction processes and the fitting of broadband reversing signals. It may also include administrative measures such as inspections, scheduling and providing training to establish a noise minimisation culture for the works.

Blasting

It is recommended that in the event that blasting is necessary, the blasting specialist design each blast to achieve the project criterion and a monitoring regime is implemented to ensure compliance with the blasting criteria provided above.

Traffic

In accordance with the general principles of dealing with temporary construction noise impacts as compared to permanent operational noise, where the NSW Road Noise Policy criteria are exceeded (during the peak construction period), the following mitigation measures are recommended to reduce construction traffic noise:

- Communicate with the affected community in accordance with the provisions above;
- Establish and maintain a route into the site so that heavy vehicles do not enter noise sensitive areas for access where practicable;
- Incorporate information regarding the route to all drivers prior to accessing the site and the need to minimise impacts through driver operation at certain locations;
- Schedule construction traffic deliveries such that it is as evenly dispersed as practicable; and,
- Restrict construction to the day-time operating hours for the construction site, subject to the justifications for activity outside of this time as detailed in the construction management plan.

12 CONCLUSION

A noise and vibration assessment has been made of the construction and operation of the Winterbourne Wind Farm.

The Project will generally involve up to 119 wind turbine sites and ancillary infrastructure, including electricity substation, BESS facility, access tracks and temporary batching and rock crushing facilities during construction.

The noise and vibration assessment addresses the "Secretary's Environmental Assessment Requirements" (SEARs) issued for the Project (SS-10471) dated 17 September 2020.

Noise predictions have been made of the wind turbine operation, the potential substation transformers and BESS, traffic on local roads and construction activities including batching. Vibration predictions have also been made for construction activities.

Although there are no mandatory criteria for the assessment of wind farm noise within national parks, consideration has also been given to the potential impact from operation of turbines at locations such as camping grounds, walking trails and lookouts.

Based on the predictions, the relevant noise and vibration criteria will be achieved under conditions most conducive to noise propagation at all dwellings. Construction and traffic will also achieve the general intent of the NSW policies where activity is managed in accordance with the recommendations within this report.

Based on the above, the Project satisfies the noise related aspects of the SEARs.

APPENDIX A: Environmental Assessment Requirements

Secretary's Environmental Assessment Requirements (SEARs)

Planning Secretary's Environmental Assessment Requirements

Section 4.12(8) of the *Environmental Planning and Assessment Act* 1979 Schedule 2 of the Environmental Planning and Assessment Regulation 2000

Application Number	SSD-10471
Project	 Winterbourne Wind Farm, which includes: the construction, operation and decommissioning of a wind farm with an estimated capacity of 700 megawatts (MW), a maximum of 126 turbines and a maximum height of 250 metres (to blade tip); and ancillary infrastructure including access tracks, road upgrades, underground and overhead electricity cabling, substations, transmission lines and grid connection to the TransGrid transmission network.
Location	Approximately 6.5 km north east of Walcha and 7 km south east of Uralla within the Walcha and Uralla Shire local government areas.
Applicant	Winterbourne Wind Pty Ltd
Date of Issue	17 September 2020

•••

N	oise and Vibration – the EIS must:
•	assess wind turbine noise in accordance with the NSW Wind Energy: Noise Assessment Bulletin (EPA/DPE, 2016);
•	assess noise generated by ancillary infrastructure in accordance with the NSW Noise Policy for Industry (EPA, 2017);
•	assess construction noise under the <i>Interim Construction Noise Guideline</i> (DECC, 2009);
•	assess traffic noise under the NSW Road Noise Policy (DECCW, 2011); and
•	assess vibration under the Assessing Vibration: A Technical Guideline (DECC, 2006); and
•	assess the noise impacts on amenity / recreational use of the Oxley Wild Rivers National Park (including walking tracks, campgrounds and lookouts) considering the <i>NSW Noise Policy for Industry</i> (EPA, 2017).

APPENDIX B: Noise Sensitive locations

Non-involved Dwelling Locations

Non-involved Dwelling Locations						
Dwelling		GS84 56J)	Rep' Logging	Distance to Closest		
ID	Easting	Northing	Location	Turbine		
SR004	385929	6588126	SR109	1780		
SR004	394987	6571349	SR105	3837		
SR000	385382	6587897	SR125	2008		
SR011	367342	6571758	SR262	5306		
SR011	372277	6572542	SR262	5326		
SR017	361833	6574211	SR262	6456		
SR020	362459	6574004	SR262	6008		
SR027	361527	6573901	SR262	6870		
SR028	362460	6576713	SR262	5094		
			SR262	3547		
SR037	368103	6573364				
SR039	375407	6574970	SR086	6607		
SR040	387964	6560198	SR078	5757		
SR048	391739	6591800	SR109	6917		
SR050	364294	6574551	SR262	4182		
SR055	364584	6573394	SR262	4787		
SR057	364336	6573063	SR262	5201		
SR060	387285	6588997	SR109	2281		
SR063	391784	6562332	SR129	3424		
SR066	380076	6597682	SR212	8029		
SR067	378363	6570579	SR086	7831		
SR068	376546	6576208	SR086	5298		
SR073	364749	6570193	SR262	7483		
SR075	384236	6563459	SR078	3548		
SR083	382159	6562801	SR078	5502		
SR084	382329	6565743	SR078	4176		
SR087	374027	6579791	SR212	4477		
SR088	373385	6579947	SR262	3817		
SR092	365669	6574165	SR262	3523		
SR093	365275	6574097	SR262	3807		
SR094	369486	6595281	SR212	7726		
SR095	362766	6576176	SR262	4925		
SR101	381462	6596434	SR212	7919		
SR102	372060	6593523	SR212	4609		
SR105	386330	6588153	SR109	1588		
SR107	386974	6588461	SR109	1732		
SR108	379024	6592585	SR212	3628		
SR109	387413	6587897	SR109	1227		
SR117	395162	6572402	SR129	4348		
SR122	397179	6571437	SR129	6009		
SR123	395024	6562160	SR129	3105		
SR124	383570	6558934	SR078	7834		
SR129	394221	6568377	SR129	2560		
SR131	371571	6594231	SR212	5424		
SR132	367836	6568781	SR262	8092		
SR133	365608	6569713	SR262	7662		

Dwelling	Coor	dinates	Rep'	Distance
ID	(UTM W	GS84 56J)	Logging	to Closest
	Easting	Northing	Location	Turbine
SR137	376943	6567024	SR078	9338
SR138	364202	6573828	SR262	4726
SR139	369400	6570628	SR262	6163
SR141	364389	6585954	SR262	2967
SR145	363939	6585930	SR262	3155
SR156	360458	6586384	SR262	6018
SR157	359931	6586365	SR262	6464
SR158	359992	6585748	SR262	6134
SR161	358423	6582109	SR262	7256
SR172	383451	6560905	SR078	6107
SR173	374743	6598118	SR212	7330
SR174	368473	6571731	SR262	5083
SR175	364842	6572306	SR262	5541
SR176	366063	6572278	SR262	5072
SR179	366158	6572260	SR262	5061
SR180	366220	6572240	SR262	5063
SR181	366292	6572195	SR262	5087
SR182	366343	6572191	SR262	5078
SR183	366341	6572175	SR262	5094
SR184	366337	6572151	SR262	5119
SR185	366718	6572078	SR262	5110
SR186	365400	6572581	SR262	5036
SR187	366834	6572075	SR262	5094
SR188	367074	6572183	SR262	4956
SR190	367218	6572088	SR262	5038
SR191	367522	6572091	SR262	4934
SR192	365425	6572548	SR262	5055
SR193	365440	6572540	SR262	5056
SR194	365517	6572412	SR262	5140
SR195	365804	6572309	SR262	5127
SR196	365885	6572295	SR262	5113
SR197	365832	6572294	SR262	5132
SR198	365882	6572264	SR262	5143
SR201	371307	6573062	SR262	4349
SR204	361839	6577359	SR262	5529
SR206	367628	6573167	SR262	3885
SR207	365941	6575274	SR262	2476
SR208	365154	6573265	SR262	4558
SR216	390137	6583586	SR109	2374
SR217	359795	6587634	SR262	7272
SR219	380893	6568618	SR078	5346
SR240	385447	6574786	SR086	1514
SR242	371487	6572902	SR262	4579
SR243	370164	6572155	SR262	4758
SR244	370443	6572247	SR262	4742

Dwelling	Coordinates		Rep'	Distance
ID	(UTM W	GS84 56J)	Logging	to Closest
	Easting	Northing	Location	Turbine
SR245	370488	6572232	SR262	4770
SR246	370516	6572261	SR262	4751
SR247	370551	6572317	SR262	4709
SR248	370606	6572304	SR262	4739
SR249	370646	6572346	SR262	4712
SR250	370744	6572509	SR262	4595
SR251	370782	6572519	SR262	4599
SR256	375269	6598303	SR212	7455
SR260	370936	6591535	SR212	4409
SR262	365240	6577539	SR262	2200
SR264	391259	6564166	SR129	2496
SR268	393159	6563576	SR129	1760
SR270	365407	6569570	SR262	7854
SR272	391556	6565190	SR129	1757
SR273	364283	6572187	SR262	5938
SR274	379445	6591286	SR212	2592
SR276	376604	6566486	SR078	9750
SR277	365938	6574439	SR262	3147
SR278	378009	6571101	SR086	7541
SR280	378483	6566746	SR078	7855
SR281	379210	6565070	SR078	7358
SR282	383109	6589801	SR109	4017
SR289	384624	6589109	SR109	3386
SR295	373999	6594493	SR212	4059
SR296	373393	6594860	SR212	4675
SR297	379398	6561010	SR078	8784
SR298	369766	6574701	SR262	2199
SR300	386776	6588517	SR109	1806
SR301	387117	6589217	SR109	2488
SR301	367550	6572384	SR262	4647
SR302	383325	6561989	SR078	5268
SR303	389044	6589217	SR109	3198
		6572149	SR262	5294
SR305 SR306	365757 365794	6572149	SR262	5239
SR307	365726	6572183	SR262	5273
SR308	365782	6572207	SR262	5230 5215
SR309	365774	6572227	SR262 SR262	5215
SR310	365718	6572201		5259 5204
SR311	365758	6572244	SR262	5204
SR312	365707	6572215	SR262	5250 5104
SR313	365747	6572259	SR262	5194
SR314	365680	6572253	SR262	5224
SR315	365729	6572290	SR262	5172
SR316	365817	6572177	SR262	5247
SR317	365871	6572171	SR262	5234
SR318	365818	6572218	SR262	5208
SR319	365875	6572196	SR262	5209

Dwalling	Coord	dinates	Rep'	Distance	
Dwelling ID	(UTM W	(GS84 56J)	Logging	to Closest	
	Easting Northing		Location	Turbine	
SR320	365809	6572256	SR262	5175	
SR321	365826	6572270	SR262	5156	
SR322	365881	6572237	SR262	5169	
SR323	365868	6572131	SR262	5273	
SR324	365883	6572126	SR262	5273	
SR325	365905	6572123	SR262	5268	
SR326	365926	6572118	SR262	5266	
SR327	366108	6572149	SR262	5182	
SR328	366166	6572115	SR262	5198	
SR329	366162	6571980	SR262	5329	
SR330	366212	6572017	SR262	5280	
SR331	366392	6571990	SR262	5262	
SR332	366443	6571982	SR262	5258	
SR333	366471	6571980	SR262	5254	
SR334	366307	6571953	SR262	5318	
SR335	366362	6571941	SR262	5316	
SR336	366316	6572007	SR262	5263	
SR337	366326	6572063	SR262	5207	
SR338	366437	6571928	SR262	5312	
SR339	366482	6571909	SR262	5321	
SR340	366549	6571969	SR262	5249	
SR341	366535	6571946	SR262	5274	
SR342	366536	6571924	SR262	5295	
SR343	366534	6571903	SR262	5316	
SR344	366529	6571888	SR262	5332	
SR345	366616	6571886	SR262	5317	
SR346	366610	6571852	SR262	5352	
SR347	366673	6571840	SR262	5352	
SR348	366811	6571939	SR262	5232	
SR349	364146	6573758	SR262	4815	
SR350	390966	6584536	SR109	3616	
SR351	370581	6572351	SR262	4686	
SR352	370638	6572408	SR262	4651	
SR354	370591	6572301	SR262	4737	
SR355	370599	6572303	SR262	4737	
SR356	370613	6572305	SR262	4740	
SR357	370621	6572306	SR262	4742	
SR358	370629	6572307	SR262	4743	
SR359	363586	6576717	SR262	4034	
TR003	357396	6599013	SR262	17226	
TR006	359820	6596922	SR212	14094	
TR008	361072	6592467	SR262	9886	
TR009	363979	6591709	SR212	7437	
TR011	366225	6594341	SR212	9015	
TR012	356663	6593946	SR262	13939	

Involved D	Involved Dwelling Locations									
Dwelling (UTA WOR			Rep' Logging	Distance to Closest	Dwelling	Coordinates		Rep'	Distance	
ID	(UTM WGS84 56J)					ID	(UTM WGS84 56J)		Logging	to Closest
	Easting	Northing	Location	Turbine			Easting	Northing	Location	Turbine
SR002	375959	6579209	SR212	4235		SR152	385157	6583792	SR109	1232
SR003	371504	6574602	SR262	3280		SR159	364337	6585129	SR262	2266
SR005	391269	6565826	SR129	1489		SR160	388814	6567825	SR078	1415
SR009	380923	6588366	SR212	1666		SR167	386778	6570665	SR078	1519
SR010	371916	6574209	SR262	3849		SR168	374958	6586279	SR212	1991
SR012	388366	6568246	SR078	1605		SR170	389047	6583131	SR109	1399
SR031	375398	6585552	SR212	2838		SR171	383868	6570065	SR078	3047
SR038	396327	6563009	SR129	3068		SR189	367060	6572009	SR262	5131
SR043	378160	6580858	SR212	2056		SR200	383771	6584162	SR109	2026
SR044	371875	6573511	SR262	4319		SR202	387223	6568891	SR078	1199
SR051	381359	6570806	SR078	5378		SR212	377321	6587671	SR212	1993
SR058	377527	6579893	SR212	2575		SR224	384679	6569658	SR078	2172
SR061	387048	6584466	SR109	1409		SR227	385460	6569552	SR078	1617
SR062	369733	6590030	SR212	4784		SR228	388270	6573420	SR078	1451
SR065	386835	6577879	SR086	517		SR253	392084	6564851	SR129	1468
SR072	373293	6571329	SR262	6907		SR259	385251	6579064	SR086	789
SR078	387492	6569749	SR078	2067		SR261	372931	6586956	SR212	1619
SR086	385205	6575756	SR086	1339		SR267	389226	6568250	SR078	1845
SR091	391501	6566924	SR129	431		SR286	390138	6567387	SR078	1181
SR100	377860	6586658	SR212	1777		SR288	384455	6587591	SR109	2256
SR103	388250	6583682	SR109	1196		SR293	367331	6587711	SR212	2321
SR116	364614	6574869	SR262	3735		SR299	362913	6581916	SR262	2987
SR119	383200	6579348	SR086	678		SR353	369353	6589632	SR212	4291
SR120	386425	6580639	SR086	882		TR001	356408	6599732	SR262	18406
SR121	386274	6581817	SR086	1542		TR002	356871	6599176	SR262	17683
SR142	363665	6585585	SR262	3033		TR004	357756	6600502	SR212	18208
SR143	363512	6585384	SR262	2985		TR005	359497	6596041	SR262	13594
SR144	363401	6585558	SR262	3188		TR007	362551	6593234	SR212	9505
SR125	390519	6582179	SR109	1666		TR010	365013	6595725	SR212	10660
SR136	377641	6587039	SR212	1791						
SR140	370147	6571026	SR262	5858						
SR151	384996	6583992	SR109	1136	1					

Dwelling ID's prefixed by "TR" are in the vicinity of the transmission corridor and "SR" are in the vicinity of wind turbines

sonus.

APPENDIX C: Address of Dwellings with Predicted Noise Level Greater than 30 dB(A)

Dwelling ID	Dwelling Address			
	Non-Involved Dwellings			
SR004	1953 Winterbourne Rd, Walcha NSW 2354			
SR007	1878 Winterbourne Rd, Walcha NSW 2354			
SR105	1995 Winterbourne Rd, Walcha NSW 2354			
SR107	Winterbourne Rd, Walcha NSW 2354			
SR109	2094 Winterbourne Road, Walcha NSW 2354			
SR129	16 Brooklyn Rd, Walcha NSW 2354			
SR216	790 Table Top Rd, Walcha NSW 2354			
SR240	784 Old Brookmount Rd, Walcha NSW 2354			
SR262	221 Ohio North Road, Walcha NSW 2354			
SR264	100 Echo Point Rd, Walcha NSW 2354			
SR268	549 Chinnocks Rd, Walcha NSW 2354			
SR272	332 Chinnocks Rd, Walcha NSW 2354			
SR300	2059 Winterbourne Road, Walcha NSW 2354			
	Involved Dwellings			
SR005	245 Chinnocks Rd, Walcha NSW 2354			
SR009	156 Uruga Rd, Walcha NSW 2354			
SR012	Moona Plains Rd, Walcha NSW 2354			
SR043	762 Winterbourne Road, Walcha NSW 2354			
SR061	629 Table Top Road, Walcha NSW 2354			
SR065	1007 Bark Hut Rd, Walcha NSW 2354			
SR078	36 Rowleys Creek Rd, Walcha NSW 2354			
SR086	1232 Old Brookmount Road, Walcha NSW 2354			
SR091	2210 Moona Plains Rd, Walcha NSW 2354			
SR100	316 Hazeldean Rd, Walcha NSW 2354			
SR103	629 Table Top Rd, Walcha NSW 2354			
SR119	701 Bark Hut Rd, Walcha NSW 2354			
SR120	323 Florida Road, Walcha NSW 2354			
SR121	323 Florida Road, Walcha NSW 2354			
SR125	754 Table Top Road, Walcha NSW 2354			
SR136	279 Hazeldean Rd, Walcha NSW 2354			
SR151	265 Table Top Rd, Walcha NSW 2354			
SR152	265 Table Top Rd, Walcha NSW 2354			
SR160	10 Lockyer Ln, Walcha NSW 2354			
SR167	93 Rowleys Creek Rd, Walcha NSW 2354			
SR168	1 Hazeldean Road, Walcha NSW 2354			
SR170	704 Table Top Rd, Walcha NSW 2354			
SR200	136 Table Top Rd, Walcha NSW 2354			
SR202	1672 Moona Plains Rd, Walcha NSW 2354			
SR212	111 Oorawilly Rd, Walcha NSW 2354			
SR227	1488 Moona Plains Rd, Walcha NSW 2354			
SR228	423 Rowleys Creek Rd, Walcha NSW 2354			
SR253	375 Chinnocks Rd, Walcha NSW 2354			
SR259	913 Bark Hut Rd, Walcha NSW 2354			
SR261	Blue Mountain Rd, Walcha NSW 2354			
SR267	1889 Moona Plains Rd, Walcha NSW 2354			
SR286	2060 Moona Plains Rd, Walcha NSW 2354			
SR288	Winterbourne Rd, Walcha NSW 2354			

sonus.

APPENDIX D: Photographs of Logging Equipment at Dwellings

Noise and Weather Loggers at SR129

Noise Logger at SR005

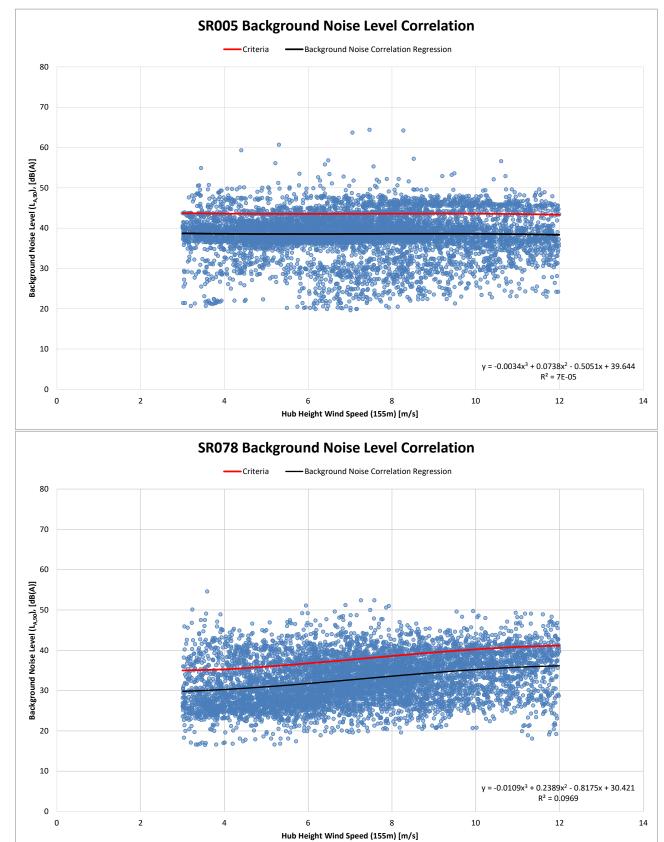
sonus.

Noise Logger at SR078

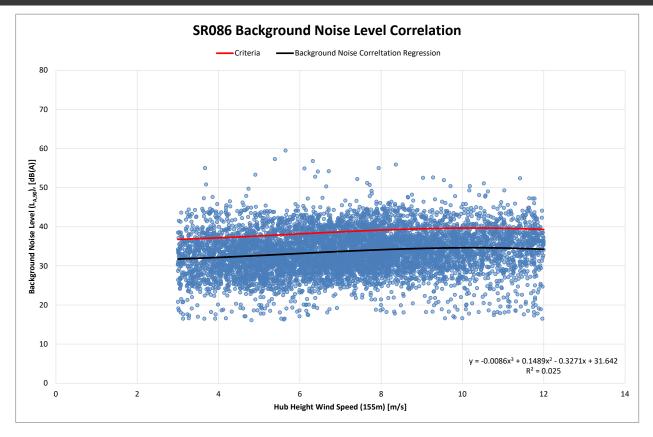
sonus.

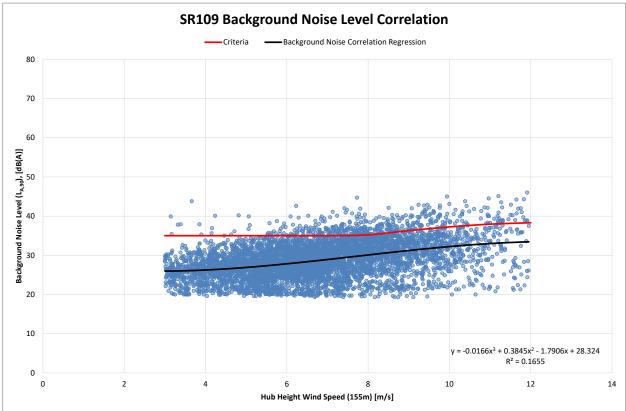
Noise Logger at SR212

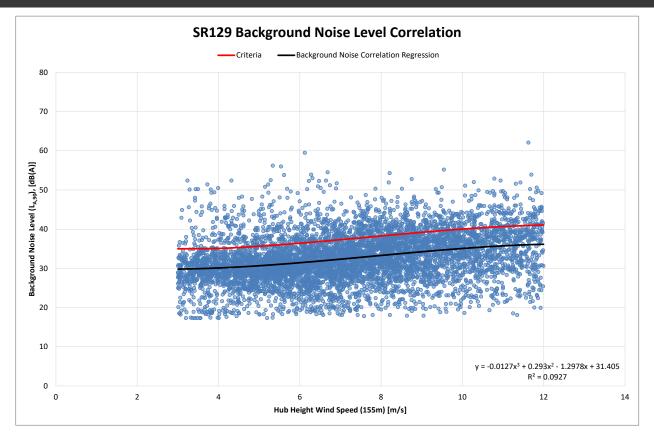
Noise Logger at SR086

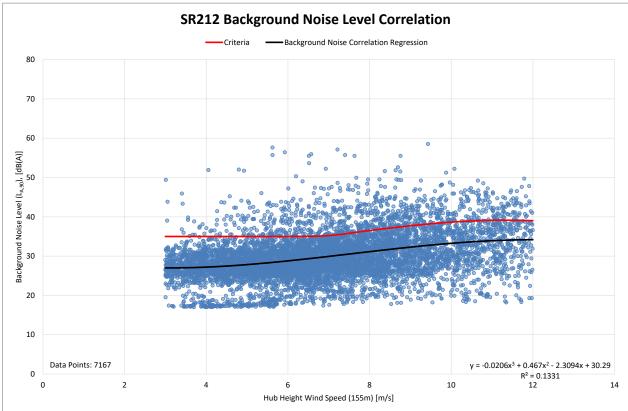

Noise and Weather Loggers at SR262

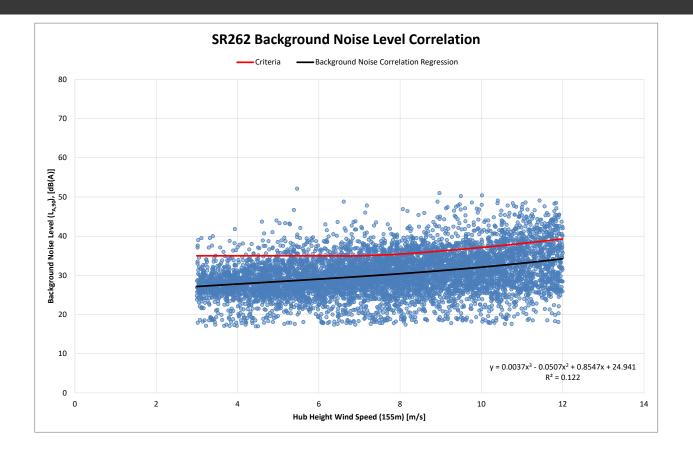
sonus.


Noise Logger at SR109


sonus.




APPENDIX E: Background Noise and Wind Speed Correlation Charts


Page 68

