SOIL VAPOUR INVESTIGATION REPORT

11-13 Percy Street, Auburn NSW

Fabcot Pty Ltd – September 2020

DOCUMENT CONTROL

SOIL VAPOUR INVESTIGATION REPORT

11–13 Percy Street Auburn, NSW 2144

PREPARED FOR

Mr Michael Rumble Fabcot Pty Ltd 1 Woolworths Way Bella Vista, NSW 2153

Report reference: 2001029Rpt02FinalV02_21Sep20

Date: 21 September 2020

DISTRIBUTION AND REVISION REGISTER

Revision Number	Date	Description	Recipient	Deliverables
V01	21/07/2020	Final Report 2001029Rpt02FinalV01_21Jul20	Geo-Logix Pty Ltd	1 Electronic Copy
V01	21/07/2020	Final Report 2001029Rpt02FinalV01_21Jul20	Fabcot Ptv Ltd	
V01	21/07/2020	Final Report 2001029Rpt02FinalV01_21Jul20	Ramboll Australia Pty Ltd	1 Electronic Copy
V02	21/09/2020	Final Report 2001029Rpt02FinalV02_21Sep20	Geo-Logix Pty Ltd	1 Electronic Copy
V02	21/09/2020	Final Report 2001029Rpt02FinalV02_21Sep20	Fabcot Pty Ltd	1 Electronic Copy
V02	21/09/2020	Final Report 2001029Rpt02FinalV02_21Sep20	Ramboll Australia Pty Ltd	1 Electronic Copy

 Issued by:
 Geo-Logix Pty Ltd

 ABN:
 86 116 892 936

Kinon

Kiran Baby B.Eng, MSc (Civil) Environmental Scientist

Ben Pearce BSc (Hons), MEIANZ CEnvP Principal

EXECUTIVE SUMMARY

Geo-Logix Pty Ltd (Geo-Logix) was commissioned by Fabcot Pty Ltd (Fabcot) to conduct a Soil Vapour Investigation (SVI) of 11–13 Percy Street, Auburn NSW (Figure 1). Fabcot intends to redevelop the site as a Customer Fulfilment Centre (CFC), comprising a single storey warehouse and distribution centre for online sales. Under the proposed development the western portion of the building would be constructed as slab on grade, and the eastern portion as suspended slab above the floodway area of the adjacent Haslams Creek.

Previous investigation of the site by Geo-Logix in 2019 identified trichloroethene (TCE) and its degradant products cis-1.2-dichloroethene (DCE) and vinyl chloride (VC) sporadically in groundwater across the eastern and northern portion of the site. The highest TCE concentrations were detected at the southeast site boundary with concentrations decreasing south to north across the site. Multiple lines of evidence suggested TCE originated from an off-site source.

TCE vapour intrusion into the proposed building was considered an incomplete exposure pathway under the proposed development as the portion of the site impacted by TCE was to be constructed with a suspended slab. The vapour intrusion pathway to the neighbouring downgradient property 15 Percy Street was also found to be incomplete but requiring further investigation. The only complete exposure pathway identified was to workers undertaking excavation to install the OSD tank in the southeast corner of the site.

The SVI was subsequently triggered to evaluate potential for vapour intrusion due to a change in design to include an enclosed 'basement' carpark beneath the suspended slab area in the southeast portion of the site. A second purpose of the SVI was to address the Site Auditor request to evaluate if a caged drum store in the existing undercroft area in the southeast portion of the site may be the TCE source. Following the completion of this investigation, the design was reverted back to the original plan of suspended slab with open and unoccupied undercroft in the southeast portion of the site.

The objective of this investigation was to evaluate the following:

- Potential vapour inhalation pathway across the south eastern portion of the site where the enclosed 'basement' area and OSD tank was proposed;
- If the caged drum area in the existing undercroft area may be the source of TCE contamination; and
- Vapour intrusion pathway to indoor air of the commercial / industrial building on 15 Percy Street to the north and downgradient of the site.

The approach was to collect soil vapour samples across the areas of concern and use CSI Australia Pty Ltd mobile laboratory to undertake sample collection and analysis and provide near real time results. The results were used to determine if additional sample locations were required to 'chase out' and define the extent of TCE and cis-1,2-DCE in soil vapour. The scope of work comprised:

- Collection of 11 soil vapour samples (VP1-VP6, VP9-VP10, VP14-VP16) on a 25 m grid based sampling plan across the footprint where the enclosed 'basement' carpark was proposed;
- Two soil vapour samples (VP11-VP12) were collected in the proposed OSD tank location and near the caged drum store;
- Two soil vapour samples (VP7-VP8) were collected along the perimeter of the caged drum storage area;

- Three sub slab soil vapour samples (VP17-VP19) were collected along the northern boundary shared with 15 Percy Street; and
- Collection of one soil vapour sample (VP20) paired with well MW102 where the highest TCE concentrations in groundwater have been identified.

Vapour samples VP1 to VP16 and VP20 targeted the vadose zone immediately above the capillary fringe to evaluate vapour concentrations emanating from impacted groundwater. The sample depths corresponded with what would have been the floor level of the enclosed basement carpark. Vapour samples VP17 to VP19 targeted sub slab vapour beneath the driveway and at the elevation of the neighbouring 15 Percy Street.

TCE Vapour Intrusion

TCE and cis-1,2-DCE were detected at concentrations above Tier 1 soil vapour screening criteria in soil vapour sample VP20 on the eastern boundary and nearby sample VP4 located adjacent to the northern end of the caged drum store and on the eastern edge of the existing undercroft area. TCE and cis-1,2-DCE were not detected at concentrations above Tier 1 screening criteria in any other soil vapour sample collected across the undercroft area including the location of the proposed OSD tank.

The results indicate the extent of TCE and cis-1,2-DCE in soil vapour at elevated concentrations is limited to an isolated area on the eastern boundary of the site where the building will be constructed with a suspended slab. On this basis TCE vapour intrusion to indoor air of the proposed development is considered incomplete and there is no requirement for vapour intrusion mitigation measures. In addition, work health and safety measures would not be necessary to control exposure to workers undertaking excavation and installation of the OSD tank.

The only potentially complete exposure pathway to TCE vapour in soil is to workers undertaking subsurface works in the area of VP4 and VP20 (trench worker). Potential exposure can be managed under the provisions of an Environmental Management Plan for both the construction phase and operational phase of the development.

TCE Source

TCE in soil vapour was detected at an elevated concentration in sample VP20 collected on the eastern boundary of the site paired with groundwater well MW102 where the highest TCE concentrations in groundwater have been identified. TCE vapour in soil attenuates rapidly away from VP20 and into the site.

The decreasing concentration away from VP20 toward the caged drum store area, and absence of TCE in any other soil vapour sample completed in the vicinity of the drum store (VP7, VP11 and VP12) indicates the caged drum store area is unlikely to be the TCE source.

The results substantiate the conclusions of the DSI that TCE is migrating onto site from an off-site source to the east or southeast.

15 Percy Street Vapour Intrusion

TCE and cis-1,2-DCE were not detected in shallow soil vapour samples VP17, VP18 and VP19 collected along the northern boundary of the site shared with 15 Percy Street. The indoor air inhalation pathway to occupants of 15 Percy Street is considered incomplete.

The investigation has established the following:

- The extent of TCE and its degradant products in soil vapour across the area that was
 proposed to have a basement carpark have been delineated and are limited to an isolated
 area in the southeast portion of the site. Indoor air inhalation is considered an incomplete
 exposure pathway to occupants of the proposed development and there is no requirement
 for vapour intrusion mitigation measures or remediation of groundwater;
- Potential for trench worker exposure via inhalation of TCE vapour should be managed through implementation of a site-specific Environmental Management Plan detailing safe work procedures during construction and long-term operation of the site;
- Multiple lines of evidence from previous investigations and the current investigation indicate TCE likely originates from an off-site source to the east or southeast; and
- The indoor air inhalation pathway to occupants of 15 Percy Street is considered incomplete.

TABLE OF CONTENTS

1. INTRODUCTION	1
1.1 Proposed Development	1
2. SITE INFORMATION	2
2.1 Site Identification	2
2.2 Site Zoning and Land Use	2
2.3 Site Description	2
2.4 Surrounding Land Use	3
2.5 Topography	3
2.6 Surface Water Receptor	3
2.7 Geology	3
2.8 Hydrogeology	3
2.9 Underground Utilities	4
3. PREVIOUS ENVIRONMENTAL INVESTIGATIONS	4
3.1 OTEK (2000) Phase I & II Environmental Site Assessment	4
3.2 WSP (2012) Stage 1 & 2 Environmental Site Investigation	4
3.3 Geo-Logix (2019) Detailed Site Investigation	5
4. PRELIMINARY CONCEPTUAL SITE MODEL	7
5. DATA QUALITY OBJECTIVES	8
6. ASSESSMENT CRITERIA	9
6.1 Soil Vapour Assessment Criteria	9
7. INVESTIGATION METHODOLOGIES	10
7.1 Soil Vapour Sampling Plan	10
7.2 Soil Vapour Well Installation Methodology	12
7.3 Soil Vapour Sample Collection Methodology	12
7.4 Quality Assurance	14
8. INVESTIGATION RESULTS	14
8.1 Site Geology	14
8.2 Soil Vapour Analytical Data	14

8.3 QA/QC Results	
9. DISCUSSION	
10. REVISED CONCEPTUAL SITE MODEL	
11. CONCLUSIONS	
12. LIMITATIONS	
13. REFERENCES	21

FIGURES

Figure 1: Site Vicinity Map
Figure 2: Site Features Map
Figure 3: Soil Vapour Sample Locations
Figure 4: Soil Vapour Analytical Results
Figure 5: TCE Concentration Map

TABLES

Table 1: Summary of Soil Vapour Analytical Data – BTEXTable 2: Summary of Soil Vapour Analytical Data – Volatile Organic Compounds

ATTACHMENTS

Attachment A: Proposed Development Plans Attachment B: Underground Utilities Plan Attachment C: Soil Vapour Well Construction Logs Attachment D: Equipment Calibration Certificates Attachment E: Laboratory Reports

1. INTRODUCTION

Geo-Logix Pty Ltd (Geo-Logix) was commissioned by Fabcot Pty Ltd (Fabcot) to conduct a Soil Vapour Investigation (SVI) of 11–13 Percy Street, Auburn NSW (Figure 1). Fabcot intends to redevelop the site as a Customer Fulfilment Centre (CFC), comprising a single storey warehouse and distribution centre for online sales. Under the proposed development the western portion of the building would be constructed as slab on grade, and the eastern portion as suspended slab above the floodway area of the adjacent Haslams Creek.

Previous investigation of the site by Geo-Logix in 2019 identified trichloroethene (TCE) and its degradant products cis-1.2-dichloroethene (DCE) and vinyl chloride (VC) sporadically in groundwater across the eastern and northern portion of the site. The highest TCE concentrations were detected at the southeast site boundary with concentrations decreasing south to north across the site. Multiple lines of evidence suggested TCE originated from an off-site source.

TCE vapour intrusion into the proposed building was considered an incomplete exposure pathway under the proposed development as the portion of the site impacted by TCE was to be constructed with a suspended slab. The vapour intrusion pathway to the neighbouring downgradient property 15 Percy Street was also found to be incomplete but required further investigation.

The SVI was subsequently triggered to evaluate potential for vapour intrusion due to a change in design to include an enclosed 'basement' beneath the suspended slab area in the southeast portion of the site. The SVI was also completed to address the Site Auditor request to evaluate if a caged drum store in the existing undercroft area in the southeast portion of the site may be the TCE source.

The objective of this investigation was to evaluate the following:

- Potential vapour inhalation pathway across the south eastern portion of the site where the enclosed 'basement' area was proposed;
- If the caged drum area in the existing undercroft area may be the source of TCE contamination; and
- Vapour intrusion pathway to indoor air of the commercial / industrial building on 15 Percy Street to the north and downgradient of the site.

Following the completion of this investigation, the design was reverted back to the original plan of suspended slab with open and unoccupied undercroft across the eastern, lower portion of the site.

1.1 Proposed Development

The proposed development is for an on-grade warehouse and distribution centre for online sales. The proposed warehouse occupies the majority of the site. The eastern third of the building extends across the lower flood zone area of the site. The building across this area is proposed to be constructed with suspended slab. No filling of the lower area of the site is proposed (Attachment A).

2. SITE INFORMATION

2.1 Site Identification

The investigation area comprises the following properties:

Street Address	Lot and Deposited Plan (DP)	Approximate Area (m ²)
11 Percy Street, Auburn, NSW 2144	Lot 1 DP 1183821	32,500
13 Percy Street, Auburn, NSW 2144	Lot 2 DP 1183821	32,300

2.2 Site Zoning and Land Use

The site is zoned 'General Industrial IN1' under the Auburn Local Environment Plan, 2010.

2.3 Site Description

The following observations were made during site inspection and field works conducted by Geo-Logix in June 2020.

The subject site is located in a commercial/industrial area in Auburn NSW. The site comprises two rectangular shaped lots encompassing an area of approximately 3.25 Ha. The lots are bound by Percy Street to the northwest, Haslams Creek to the southeast and commercial/industrial properties to southwest and northeast. Entry into the site is via two gates (North and South) from Percy Street.

At the time of the investigation Lot 1 was occupied by Chameleon Touring Systems, a stage lighting and equipment supplier and Lot 2 was occupied by Holden new vehicle accessories and auto detailing service centre. The front building (Lot 1) is located in the northwest portion of the site on the boundary with Percy Street. The building is constructed of metal cladding, a saw tooth roof and concrete floor slabs. The building is used for the storing and assembly of stage lighting equipment.

The back building (Lot 2) is located in the southeast portion of the site and is constructed on grade with Lot 1. Haslams Creek (concrete channel) is located on the southeast boundary. The building is constructed of brick, metal cladding and part of the building is on suspended concrete floor slabs with vehicle parking within the undercroft area.

The northeast portion of Lot 2 consists of a car ramp and concrete and bitumen paved car parking. The building is used for a variety of uses including vehicle washing/detailing, vehicle storage and shipping/receiving of goods.

One above ground storage tank (AST) was located in the middle of the site with one fuel dispenser noted. A caged area in the south of the site in the undercroft parking area had storage of polyurethane drums and scrap metal. Two drums were tipped over with evidence of polyurethane spillage noted. The caged area also had brown cloudy standing water approximately 50 mm deep with a sheen. Scrap metal, building rubble and general rubbish was also noted in the undercroft parking area in the south of the site. Fragments of bonded ACM were observed on the ground surface of the embankment leading from the undercroft area to a raised area on the eastern boundary.

Site features are presented on Figure 2.

2.4 Surrounding Land Use

At the time of the investigation, the surrounding land use comprised the following:

- Northwest Percy Street, with commercial / industrial properties including Icon Medical Supplies and residential properties beyond;
- Northeast Commercial / industrial properties, Haslams Creek and Tooheys Brewery beyond;
- **Southeast** Haslams Creek, with commercial/industrial properties including the previous Offset Alpine Printing beyond; and
- Southwest Commercial/industrial properties.

2.5 Topography

The western half of the site is largely level and located at an elevation of approximately 7 m Australian Height Datum (AHD). A retaining wall runs north to south through the central portion of the site. The eastern portion including the undercroft area, car parking area and wash bay is slightly undulating with an elevation of 4–5 mAHD.

2.6 Surface Water Receptor

The nearest surface water is Haslams Creek immediately adjacent to the southeast boundary of the site. Haslams Creek is a concrete lined urban drain that discharges into Homebush Bay (Parramatta River) 0.8 km northeast of the site. The water level in Haslams Creek is highly reactive to rainfall.

Reference to the WaterNSW All Groundwater Map (NSW Government, 2020) indicates there are no registered groundwater bores within 500 m of the site.

2.7 Geology

Review of the NSW 1:100,000 Sydney Map (Geological Survey of NSW, 1983) indicates the majority of the site is underlain by Cenozoic age silty to peaty quartz sand, silt, and clay with occasional ferruginous and humic cementation. The western area of the site is underlain by Triassic age Ashfield shale of the Wianamatta Group comprising black to dark grey shale and laminate (Herbert, 1983).

During the DSI (Geo-Logix 2019), Geo-Logix identified alluvial sediments comprising interbedded layers of mixed of sand, silts and clays with occasional peat layers across the eastern and central portion of the site. The sediments are up to 7 metres deep and originate from infill of the former channel of Haslams Creek. Alluvial sediments and residual clays are underlain by Ashfield Shale bedrock.

2.8 Hydrogeology

Groundwater exists 1.5–3 metres below grade (mbg) within alluvium of the former Haslams Creek. Groundwater flow direction in the alluvial water bearing zone is variable with general flow to the north and northeast. Groundwater flow direction in the bedrock water bearing zone is inferred to follow regional groundwater flow towards the northeast and Homebush Bay.

2.9 Underground Utilities

A Dial Before You Dig search was conducted to determine the presence of underground utilities which may act as conduits for contamination migration both onsite and offsite (Attachment B). The plans indicate:

- Sewer utilities run between the northeast corner of the building on Lot 1 to the southeast corner of the building on Lot 2 and along the south edge of the building;
- NBN utilities run underneath Percy Street and enter the site along the western boundary and run to the middle of Lot 1;
- Telstra utilities run underneath Percy Street and enter the site along the western boundary of Lot 1 and Lot 2 and run to the middle of each Lot on separate lines; and
- Optus, Sydney Water and Ausgrid utilities run underneath Percy Street on the northwest boundary of the site.

3. PREVIOUS ENVIRONMENTAL INVESTIGATIONS

3.1 OTEK (2000) Phase I & II Environmental Site Assessment

OTEK were engaged by Orlani Property Group Pty Ltd to undertake a Phase I and II Environmental Site Assessment (ESA) of the site.

The findings of the report were based on a review of site historical information and a site investigation undertaken during November and December 1999. Potential on-site contamination sources included a flammable goods cabinet and dangerous goods store, two decommissioned Underground Storage Tanks (UST) and one Aboveground Storage Tank (AST), the disused railway line, imported fill materials in the east and adjacent industrial sites.

The results of the soil testing indicated all concentrations were within the relevant guideline criteria for commercial / industrial land use. Groundwater testing indicated elevated levels of short chain hydrocarbons, BTEX and lead adjacent to a decommissioned UST and slightly elevated levels of heavy metals in all groundwater samples.

The report concluded that soils beneath the site were suitable for commercial / industrial land use and the presence of hydrocarbons and heavy metals in groundwater were not considered to pose a potential threat to human health or the environment.

OTEK concluded the site was suitable for continued commercial / industrial land use.

3.2 WSP (2012) Stage 1 & 2 Environmental Site Investigation

WSP were engaged by Motive Properties Pty Limited to conduct a combined Preliminary and Detailed Site Investigation to determine the suitability of the site for ongoing commercial / industrial land use in relation to the potential sale of the site.

The objective of the works was to undertake additional soil and groundwater investigation to supplement the findings of the OTEK (2000) investigation to meet the sampling density requirements of the NSW EPA (1995) Sampling Design Guidelines.

WSP identified trichloroethene (TCE) and its degradant products cis-1.2-dichloroethene (DCE) and vinyl chloride (VC) in shallow groundwater adjacent to a car wash area on Lot 2. The source, extent and magnitude of TCE contamination was not investigated or determined by WSP. The conclusions of the report are summarised below:

- Soils were found to be generally suitable for commercial / industrial land use;
- Offsite migration of TCE in groundwater was not ruled out and further investigation was recommended to delineate the extent of chlorinated solvents and establish the potential for offsite migration; and
- Vapour monitoring for TCE and its degradant products was not considered necessary given chlorinated solvents were detected in outdoor areas. However, Geo-Logix notes that only one groundwater sample was collected and analysed for TCE.

3.3 Geo-Logix (2019) Detailed Site Investigation

Geo-Logix was commissioned by Fabcot to conduct a Detailed Site Investigation of the site to assist Fabcot with their pre-purchase due diligence. Preliminary reviews identified TCE in groundwater as the primary commercial risk to acquisition and development of the property and subsequently the investigation focussed on assessing the source, magnitude and extent of TCE contamination. The investigation also considered other potential contamination issues associated with the site's history and condition. The investigation was undertaken in stages during the period from May to October 2019.

The scope of work comprised the following:

- Sampling and analysis of groundwater from three existing monitoring wells;
- Drilling, installation and sampling of 15 shallow and three deep wells across the site for analysis of a range of contaminants;
- Collection of soil vapour samples from 15 locations across the portion of the site where the building is to be constructed as slab on grade to assess vapour intrusion risk to the proposed building;
- Drilling 22 High Resolution Site Characterisation (HRSC) MiHPT borings across the site to characterise the extent of TCE in groundwater and geology; and
- Drilling, installation and sampling of five shallow wells and two deeper bedrock groundwater wells on the down gradient property 15 Percy Street to assess the off-site extent of TCE / DCE / VC in groundwater.

Groundwater was identified 1.5–3 mbg within alluvium of the former Haslams Creek. Groundwater flow direction in the alluvial water bearing zone was variable with general flow to the north and northeast. Groundwater flow direction in the bedrock water bearing zone was inferred to follow regional groundwater flow towards the northeast and Homebush Bay.

TCE and its degradant products DCE and VC were identified in groundwater across the eastern and northern portion of the site with potential for a minor incursion into 15 Percy Street. Soil vapour investigations did not identify TCE and its degradant products in soil vapour across the western portion of the site where the proposed building will be constructed as slab on grade. Soil vapour was not investigated across the lower eastern half of the site as the proposed construction method, suspended slab, negated the vapour intrusion pathway across this portion of the site.

To assess potential for vapour intrusion into 15 Percy Street a conservative screening method to estimate indoor air concentrations was applied in accordance with NSW EPA (2012) methodology. The estimated indoor air concentrations of TCE and DCE were below the target indoor air concentration for commercial / industrial land use. On this basis the potential for the vapour intrusion pathway to indoor air of the commercial / industrial building on 15 Percy Street was considered unlikely to be complete.

With the exception of potential for trench worker inhalation exposure in the eastern portion of the site where no soil vapour investigation was undertaken, no complete exposure pathways between TCE contaminated groundwater and potential receptors was identified. The potential for trench worker inhalation of TCE was determined to require further investigation.

Multiple lines of evidence indicated TCE in groundwater originated from an off-site source, and while there were a number of industrial properties in the vicinity of the site, the Offset Alpine Printing facility at 42 Boorea Street, Lidcombe located adjacent to the site was considered the most likely origin.

Bonded asbestos fragments were identified on the ground surface in the southeast and northwest corners of the site. Though the risk was considered low, potential for buried asbestos fragments in these areas was identified. Geo-Logix concluded further investigation would be required to determine if a condition exists that requires remediation and/or management.

No other conditions were identified that negate the suitability of the site for the proposed development. On this basis, Geo-Logix recommended the site can be made suitable for the proposed commercial redevelopment, and that if there is potential for worker exposure presented by either trench worker inhalation of TCE or construction worker exposure to bonded asbestos, the risk could be managed through implementation of a site-specific Environmental Management Plan detailing safe work procedures during construction and long-term operation of the site.

4. PRELIMINARY CONCEPTUAL SITE MODEL

For site contamination to present a risk to human health and the environment there has to be a link between the contaminant and the receptor as detailed below.

recopion recopion	Contaminant		Pathway		Receptor
-------------------	-------------	--	---------	--	----------

If any of the links do not exist contaminant exposure cannot occur.

The conceptual models below was prepared based on the results on DSI (Geo-Logix 2019).

Conceptual Site Model – Soil, Vapour & Groundwater								
Belevent Evine over	Receptors							
Relevant Exposure Pathways	Onsite users Onsite construction Neighbouring site users users		Other					
Soil ingestion / Dermal contact / Dust	Х	 ✓ (asbestos inhalation) 	X	Trench worker ✓ (asbestos inhalation) Terrestrial Ecology X ^(a)				
Indoor inhalation of vapours derived from soil	Х	х						
Outdoor inhalation of vapours derived from soil	Х	х		Trench workers X				
Indoor inhalation of vapours derived from groundwater	\checkmark	Х	Х					
Outdoor inhalation of vapours derived from groundwater	X(p)	X(p)	X(p)	Trench workers ✓ ^(c)				
Soils leaching to groundwater				Ongoing groundwater impact X				
Groundwater abstraction	Х	х	х					
Groundwater discharge to surface water				Recreation / Aquatic ecosystem X				
		Comments						
X – exposure pathway incomplete no unacceptable risk ✓ – exposure pathway potentially complete and requires either further investigation or remediation / management Not relevant								

5. DATA QUALITY OBJECTIVES

Geo-Logix has adopted the seven step Data Quality Objective (DQO) process as described in AS 4482.1–2005, US EPA (2000) and DEC (2006).

Step 1: State the problem.

TCE and its degradant products have been identified in groundwater across the eastern and northern portion of the site. Investigation of soil vapour was required to evaluate the following:

- Potential vapour inhalation pathway across the south eastern portion of the site where the enclosed 'basement' area was proposed;
- If the caged drum area in the existing undercroft area may be the source of TCE contamination; and
- Vapour intrusion pathway to indoor air of the commercial / industrial building on 15 Percy Street to the north and downgradient of the site.

Step 2: Identify the decision.

- The vapour intrusion pathway to the proposed 'basement' area beneath the suspended slab in the eastern portion of the site is incomplete and there is no requirement for vapour intrusion mitigation.
- The caged drum store is not the potential TCE source and it can be concluded TCE originates from an off-site source.
- The vapour intrusion pathway to occupants of 15 Percy Street is incomplete and there is no requirement for vapour intrusion mitigation.

Step 3: Identify inputs into the decision.

Soil vapour investigation across the footprint of the proposed enclosed 'basement' area, including investigation of the caged drum store, to assess potential vapour intrusion, the requirement for remediation and / or management and the source of TCE.

Soil vapour investigation along the northern boundary is required to reinforce the conclusion made in the DSI that the TCE vapour intrusion pathway to indoor air of the commercial / industrial building on 15 Percy Street is incomplete.

Step 4: Define the boundaries of the site.

The project boundary is defined as the area within the site boundary (11–13 Percy Street, Auburn NSW) to a vertical depth of 3 mbg.

Step 5: Develop a decision rule.

To conclude the vapour intrusion pathway to the proposed 'basement' area beneath the suspended slab in the eastern portion of the site is incomplete, the following decision rules apply:

 TCE and its degradant products cis-1,2-DCE and VC are not present in shallow soil vapour at concentrations above Tier 1 soil vapour screening criteria across the footprint of the basement.

To conclude whether the caged drum store is a potential TCE source, the following project decision applies:

• TCE concentrations in shallow soil vapour beneath and in the vicinity of the caged drum store are indicative of a TCE source, and soil vapour concentrations decrease with distance away from the caged drum store.

To conclude the vapour intrusion pathway to occupants of 15 Percy Street is incomplete, the following decision rules apply:

 TCE and its degradant products cis-1,2-DCE and VC are not present in shallow soil vapour on the down gradient site boundary with 15 Percy Street at concentrations above Tier 1 soil vapour screening criteria.

Step 6: Specify acceptable limits on decision errors.

The field sampling methodology, sample preservation techniques, and laboratory analytical procedures must be appropriate to provide confidence in data quality so any comparison against assessment criteria can be considered reliable. This is achieved by defining and comparing results against the Data Quality Indicators (DQIs).

Step 7: Optimise the design for obtaining data.

The investigation design has been optimised by considering data gaps and uncertainties associated with the conceptual model. This is achieved by sampling plan design in consideration of the available site history information, area of investigation, contaminant behaviour in the environment, results of previous site investigations and likely spatial distribution of contamination.

6. ASSESSMENT CRITERIA

The primary reference for environmental site assessment in Australia is the Amended Assessment of Site Contamination (ASC) National Environmental Protection Measure (NEPM) 1999 (NEPC, 2013). This document includes soil, soil vapour and groundwater criteria for use in evaluating potential contamination risk to human health and the environment.

The application of these investigation levels and screening levels is subject to a range of limitations and their selection and use must be in the context of the conceptual site model (CSM) relating to the nature and distribution of impacts and potential exposure pathways. Each relevant guideline is discussed further below and the adopted screening criteria are presented in summary sample analytical tables attached to this report.

6.1 Soil Vapour Assessment Criteria

NEPM Health Screening Levels D (HSLs D Soil Vapour)

HSLs are Tier 1 risk based generic soil vapour assessment criteria used for the assessment of potential risks to human health from chronic inhalation exposure of subsurface petroleum vapours (Vapour Risk). They are intentionally conservative and based on a reasonable worst-case scenario for generic soil types, contamination depth and land use settings including Residential (HSLs A/B), Open Space/Recreational (HSLs C) and Commercial Industrial (HSLs D). HSLs D vapour assessment criteria was adopted on the basis the proposed development is commercial / industrial.

NEPM Interim Health Investigation Levels D (HILs D)

NEPM provides interim soil vapour health-based investigation levels (HILs) for Volatile Organic Chlorinated Compounds (VOCCs) driven by the vapour intrusion pathway under particular land use settings. Commercial / Industrial HILs, referred to as HILs D, are the appropriate criteria to assess against sample results. Interim HILs are conservative Tier 1 soil vapour concentrations that apply to shallow (1 m depth) or sub-slab soil vapour. They are to be used to identify sites where further investigation is required to assess potential health risks from soil contamination sources and groundwater plumes.

VOCC	Interim Soil Vapor HILs for Commercial/ Industrial Land use (mg/m³)
Trichloroethene	0.08
Tetrachloroethene	8
cis-1,2-Dichloroethene	0.3
Vinyl Chloride	0.1

7. INVESTIGATION METHODOLOGIES

Geo-Logix conducted the soil vapour investigation during the period 26 May to 19 June 2020. Sample locations are presented in Figure 3. The schedule of events completed is given below:

Date of Field Work	Task Completed
26/05/2020	Drilling of borings VP1-VP12 and VP14-VP16 and installation of soil vapour implants.
28/05/2020	Installation of soil vapour pins VP17-VP20 Collection of soil vapour samples VP1-VP12 and VP14-VP20
15/06/2020	Installation of soil vapour well VP20
19/06/2020	Collection of soil vapour sample VP20

7.1 Soil Vapour Sampling Plan

The approach was to collect soil vapour samples across the areas of concern and use CSI Australia Pty Ltd mobile laboratory to undertake sample collection and analysis and provide near real time results. The results were used to determine if additional sample locations were required to 'chase out' and define the extent of TCE and cis-1,2-DCE in soil vapour. Sample locations are presented on Figure 3 and described below:

- Eleven soil vapour wells (VP1-VP6, VP9-VP10, VP14-VP16) were installed on a 25 m grid based sampling plan across the footprint where the enclosed 'basement' carpark was proposed;
- Two vapour wells (VP11-VP12) were installed in the proposed OSD tank location and near the caged drum store;
- Two soil vapour wells (VP7-VP8) were installed along the perimeter of the caged drum storage area;

- Three sub slab soil vapour pins (VP17-VP19) were installed along the northern boundary shared with 15 Percy Street; and
- One soil vapour well (VP20) was installed paired with well MW102 where the highest TCE concentrations in groundwater have been identified.

Vapour wells VP1 to VP16 and VP20 targeted the vadose zone immediately above the capillary fringe to evaluate vapour concentrations emanating from impacted groundwater. The depth corresponded with what would have been the floor level of the enclosed basement carpark. Sample depths are presented in the table below:

Vapour Well ID	Approximate Surface Elevation (mAHD)	Well Depth (mbg)	Sample Depth (mAHD)	Status			
VP1	4.5	1.0	3.5	Sampled			
VP2	4.5	0.8	3.7	Sampled			
VP3	4.5	1.0	3.5	Waterlogged – not sampled			
VP4	4.5	0.8	3.7	Sampled			
VP5	4.5	0.8	3.7	Waterlogged – not sampled			
VP6	7.0	3.1	4.0	Sampled			
VP7	4.5	0.8	3.7	Sampled			
VP8	4.5	0.8	3.7	Waterlogged – not sampled			
VP9	4.5	0.8	3.7	Sampled			
VP10	7.0	3.0	4.0	Sampled			
VP11	6.8	3.0	3.8	Sampled			
VP12	6.0	2.0	4.0	Sampled			
VP13	Not installed due to shallow groundwater						
VP14	4.5	0.8	3.7	Waterlogged – not sampled			
VP15	4.5	0.6	3.9	Waterlogged – not sampled			
VP16	7.0	3.0	4.0	Sampled			
VP20	5.9	2.8	3.1	Sampled			

Vapour samples VP17 to VP19 targeted sub slab vapour beneath the driveway and at the elevation of the floor slab of the building on the neighbouring property 15 Percy Street.

7.2 Soil Vapour Well Installation Methodology

Soil Vapour Wells

Soil vapour wells were constructed in accordance with the *Soil Vapour and Indoor Air Sampling Guidance* (State of Hawai'i, 2017) as follows. Vapour well construction logs are presented in Attachment C:

- Borings VP1 to VP16 were drilled to targeted depths by a Miniprobe drilling rig equipped with push tube. Boring VP20 was drilled to the target depth by a truck mounted drill rig equipped with 100 mm diameter solid stem auger;
- The vapour well was constructed by inserting 0.25 inch Teflon® tubing into the soil boring at the selected depth. A 150 mm stainless steel gauze sampling port was attached to the end of the tubing;
- The vapour well was completed by backfilling the bore annulus with 5 mm graded sand to 5 cm above the sampling port. The bore was sealed with hydrated bentonite and grouted to the surface; and
- Wells were purged of three system volumes with a syringe and capped with an air tight Swagelok fitting.

The vapour wells were left to equilibrate for a minimum of 17 hours before sampling. The equilibration time is in accordance with CRC CARE (2013) minimum requirement of eight hours for vapour probes where tubing is buried in the ground.

Soil Vapour Pins

Sub slab soil vapour pins were installed at locations VP17–VP19 near the northern boundary. The pins were installed in accordance with the manufacturer's specification as described below:

- A 16 mm diameter hole was drilled through the concrete slab and into underlying base course using a hand operated rotary hammer drill;
- The hole was cleaned using a bottle brush;
- The vapour pins were inserted into the holes;
- A short section of nylon tubing was attached to the barbed end of the vapour pin and capped with a two way valve;
- The pins were purged with a syringe at a flow rate of approximately 100 mL/min. 250 mL of air was removed; and
- The vapour pins were left to equilibrate before sampling. Vapour pins were installed on the day of analysis and were left to equilibrate for 1 hour before sample collection and analysis, in accordance with minimum equilibration requirements as per CRC CARE (2013).

7.3 Soil Vapour Sample Collection Methodology

CSI Australia Pty Ltd (CSI) were engaged to collect and analyse soil vapour samples VP1 to VP19 using an on-site mobile laboratory. The sample and analysis method comprised the following:

- Prior to sampling, field screening was completed with a PID to determine dilution requirements;
- 300 mL was purged from each well using a syringe;

- At sampling, a 50 cubic centimetre sample was extracted in a glass syringe. The sample was directly injected into a field vapour chromatogram for analysis. Samples were analysed by gas chromatography (GC) equipped with an electron capture detector (ECD) and a photo ionisation detector, following USEPA method TO-14 for tetrachloroethene (PCE), TCE, DCE and isopropyl alcohol;
- BTEX were also reported;
- Each analysis cycle was between 8–10 minutes;
- As vinyl chloride readily breaks down in the presence of oxygen, it is rarely the risk driver for vapour intrusion. For this reason, CSI did not analyse for vinyl chloride;
- Internal QA/QC procedures adopted by CSI include duplicate soil vapour samples, method blanks and calibration gas spikes;
- Leak detection was performed by pacing an isopropanol soaked rag at the well head covered by a shroud; and
- One duplicate soil vapour samples were collected via syringe method onto thermal desorption tubes and submitted to Eurofins to confirm accuracy of the field vapour chromatogram.

Calibration certificates are included in Attachment D.

Soil vapour well locations VP3, VP5, VP8, VP14 and VP15 could not be sampled due to saturated ground conditions.

Soil vapour sample VP20 was collected in a 1 litre SUMMA canister in accordance with the following methodology:

- A section of 1/4" Teflon tubing was connected to the swagelok fitting at the well head;
- The sample train consists of a two-way brass Swagelok valve connected to the well tubing. A small (50 mm) section of tubing was attached to the down flow side of the valve;
- Prior to sampling, 300 mL of soil gas was purged from the system using a hand held pump. Following purging, the valve was closed to prevent backflow into the tubing;
- The soil vapour sample was collected in a 1 litre canister with flow controller set to 40 mL/min. Prior to sample collection the canister vacuum was checked to ensure it had not leaked in transit. Canister vacuum was satisfactory;
- Two rounds of shut in tests were completed prior to sampling. The first was completed as above to test the connection between the flow controller and the canister. The second was completed to test the connection between the tubing and the flow controller by connecting the sample tubing to the flow controller, leaving the valve on the tubing closed and opening the valve on the canister;
- The two-way brass valve on the sample tubing was opened and the valve on the canister was opened;
- During sampling, the well head connection was kept under a shroud with an Isopropyl Alcohol (IPA) soaked rag for leak detection;

- After approximately 60 minutes, and when remaining vacuum measure 12" Hg, the canister was closed and the remaining canister vacuum was recorded on the chain of custody. This point marked equilibrium between canister vacuum and vapour well vacuum;
- Samples were transported under chain of custody to Eurofins laboratory. Eurofins checked the canister vacuum upon sample receipt, vacuums were consistent with field measured vacuums; and
- The sample was analysed for volatile organic compounds, which include TCE, cis-1,2-DCE and VC by US EPA Method TO-15.

7.4 Quality Assurance

Quality control (QC) sampling was undertaken in general accordance with specifications outlined in AS4482.1, *Guide to Sampling and Investigation of Potentially Contaminated Soil.* Field QC samples were collected and included the following:

Sample Identification	Sample Lyne		Rate of Collection
VP4DUP	Field duplicate of VP4	Soil Vapour	2 in 14 samples
VP9DUP	Field duplicate of VP9	Soil Vapour	2 in 14 samples
VP4-TD	Field triplicate of VP4 collected using a thermal desorption tube.	Soil Vapour	1 in 14 samples

Note - Rate of QC sample collection specified as 1 in 20 samples in AS4482.1

The laboratory internal QC procedures are consistent with NEPM policy on laboratory analysis of contaminated soils.

One triplicate sample (VP4-TD) was collected onto thermal desorption tubes and analysed in a different laboratory to confirm accuracy of the field vapour chromatogram.

8. INVESTIGATION RESULTS

8.1 Site Geology

Fill material was encountered across the borings to a maximum depth of 2.6 m. The fill material generally consisted of moderately compacted clayey sands. Anthropogenic material including glass, plastic and steel were observed in fill at VP6. In the area of soil vapour investigation, natural soils immediately underlying fill generally comprised alluvial clay.

8.2 Soil Vapour Analytical Data

Soil vapour analytical results are summarised in Tables 1 and 2. Laboratory reports are presented in Attachment E.

BTEX

BTEX were variously detected at concentrations above the laboratory reporting limits but well below the assessment criteria in the soil vapour samples analysed (Table 1).

VOCs

Trichloroethene was detected at concentrations greater than the Interim HILs assessment criteria in soil vapour samples VP4 and VP20 (Table 2).

cis-1.2-Dichloroethene was detected at concentrations greater than the Interim HILs assessment criteria in soil vapour samples VP4 and VP20.

Vinyl chloride was detected at concentrations greater than the Interim HILs assessment criteria in soil vapour samples VP20.

No other VOC's analysed were detected at concentrations above the assessment criteria.

8.3 QA/QC Results

RPD Results

Soil vapour duplicate results of samples analysed by CSI Australia Pty Ltd mobile laboratory are within the adopted acceptance criteria of 30-50% (AS4482.1).

One inter-laboratory triplicate sample (VP4-TD) was collected onto thermal desorption tubes to confirm accuracy of the field vapour chromatogram. The triplicate results are within the adopted acceptance criteria of 30–50% (AS4482.1) relative percent difference (RPD) except cis-1.2-Dichloroethene and trichloroethene in soil triplicate pair VP4 and VP4-TD. The RPD exceedances indicate TCE and cis-1,2-DCE concentrations may have been over reported by CSI Australia. This does not affect the outcome of the investigation.

Isopropyl alcohol was not detected in any soil vapour sample analysed indicating the sample train integrity was tight and potential for atmospheric breakthrough was minimal.

CSI Australia internal field duplicates passed their internal QA/QC requirements. A summary of Laboratory QA/QC data is presented on the following table.

Analysis Within Holding Time	Within Recove		Lab. Duplicate RPD %	Lab Matrix Spike Recovery	Lab. Control Sample	Lab Method Blank	
\checkmark	-		\checkmark			\checkmark	
\checkmark	\checkmark				\checkmark	\checkmark	
\checkmark	\checkmark				\checkmark	\checkmark	
√ = Pa			X = Fail = not re	equired			
Quality Assurance Criteria			Quality Control Criteria				
		Accu	Accuracy				
VOCs: 7 days soil, 7 days water SVOCs: 14 days soil, 7 days water			Surrogate, matrix spike, control sample 70–130% and 30–130% for Phenols. Surrogate recovery 50–150% and 20–130% for Phenols.				
TRH and BTEX: 14 days soil, 7 days water Metals: 6 months soil (mercury 28 days), 28			Precision				
days water. Asbestos: no limit			Method Blank Not detected Duplicate – No limit (<10xEQL), 0–50% (10–20xEQL), 0–200% (>20xEQL)				
	Within Holding Time ✓ ✓ ✓ Criteria days water , 7 days water days soil, 7 days w	Within Holding Time Surrog Recover ✓ - ✓ ✓ </td <td>Within Holding Time Surrogate Recovery ✓ - ✓ ✓ ✓ <td< td=""><td>Within Holding Time Surrogate Recovery Lab. Duplicate RPD % ✓ - RPD % ✓ - ✓ ✓ ✓ ✓ Pass X = Fail ✓ Quality Control Criteria Accuracy days water Surrogate, matrix spike, cd Jays soil, 7 days water I (mercury 28 days), 28 Method Blank Not detected</td><td>Within Holding Time Surrogate Recovery Lab. Duplicate RPD % Lab. Matrix Spike Recovery ✓ - ✓ ✓ - ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Pass X = Fail ✓ Pass X = Fail ✓ Quality Control Criteria Accuracy days water Surrogate, matrix spike, control sample 70–13 Joyays water Surrogate recovery 50–150% and 20–130% for Hays soil, 7 days water Method Blank Not detected</td><td>Within Holding Time Surrogate Recovery Lab. Duplicate RPD % Lab. Matrix Spike Recovery Lab. Control Sample ✓ - ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ·· ✓ ✓ ✓ ·· ✓ ✓ ✓ ·· ✓ ✓ Pass X = Fail ·· = not required Ketrogate, matrix spike, control sample 70–130% and 30–130% Gays water Jays water Surrogate, matrix spike, control sample 70–130% for Phenols. Frecision I (mercury 28 days), 28 Method Blank Not detected Method Blank Not detected <</td></td<></td>	Within Holding Time Surrogate Recovery ✓ - ✓ ✓ ✓ <td< td=""><td>Within Holding Time Surrogate Recovery Lab. Duplicate RPD % ✓ - RPD % ✓ - ✓ ✓ ✓ ✓ Pass X = Fail ✓ Quality Control Criteria Accuracy days water Surrogate, matrix spike, cd Jays soil, 7 days water I (mercury 28 days), 28 Method Blank Not detected</td><td>Within Holding Time Surrogate Recovery Lab. Duplicate RPD % Lab. Matrix Spike Recovery ✓ - ✓ ✓ - ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Pass X = Fail ✓ Pass X = Fail ✓ Quality Control Criteria Accuracy days water Surrogate, matrix spike, control sample 70–13 Joyays water Surrogate recovery 50–150% and 20–130% for Hays soil, 7 days water Method Blank Not detected</td><td>Within Holding Time Surrogate Recovery Lab. Duplicate RPD % Lab. Matrix Spike Recovery Lab. Control Sample ✓ - ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ·· ✓ ✓ ✓ ·· ✓ ✓ ✓ ·· ✓ ✓ Pass X = Fail ·· = not required Ketrogate, matrix spike, control sample 70–130% and 30–130% Gays water Jays water Surrogate, matrix spike, control sample 70–130% for Phenols. Frecision I (mercury 28 days), 28 Method Blank Not detected Method Blank Not detected <</td></td<>	Within Holding Time Surrogate Recovery Lab. Duplicate RPD % ✓ - RPD % ✓ - ✓ ✓ ✓ ✓ Pass X = Fail ✓ Quality Control Criteria Accuracy days water Surrogate, matrix spike, cd Jays soil, 7 days water I (mercury 28 days), 28 Method Blank Not detected	Within Holding Time Surrogate Recovery Lab. Duplicate RPD % Lab. Matrix Spike Recovery ✓ - ✓ ✓ - ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Pass X = Fail ✓ Pass X = Fail ✓ Quality Control Criteria Accuracy days water Surrogate, matrix spike, control sample 70–13 Joyays water Surrogate recovery 50–150% and 20–130% for Hays soil, 7 days water Method Blank Not detected	Within Holding Time Surrogate Recovery Lab. Duplicate RPD % Lab. Matrix Spike Recovery Lab. Control Sample ✓ - ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ·· ✓ ✓ ✓ ·· ✓ ✓ ✓ ·· ✓ ✓ Pass X = Fail ·· = not required Ketrogate, matrix spike, control sample 70–130% and 30–130% Gays water Jays water Surrogate, matrix spike, control sample 70–130% for Phenols. Frecision I (mercury 28 days), 28 Method Blank Not detected Method Blank Not detected <	

Geo-Logix accepts the integrity of the analytical data.

9. DISCUSSION

Vapour wells VP3, VP5, VP8, VP14 and VP15 could not be sampled due to waterlogging from shallow groundwater across the undercroft area.

TCE Vapour Intrusion

TCE and cis-1,2-DCE were detected at concentrations above Tier 1 soil vapour screening criteria in soil vapour sample VP20 on the eastern boundary and nearby sample VP4 located adjacent to the northern end of the caged drum store and on the eastern edge of the existing undercroft area (Figure 4). TCE and cis-1,2-DCE were not detected at concentrations above Tier 1 screening criteria in any other soil vapour sample collected across the undercroft area including the location of the proposed OSD tank. TCE was also not detected in WSP (2012) soil samples collected from beneath the drum store slab and MiHPT borings around the drum store completed by Geo-Logix (2019).

The results indicate the extent of TCE and cis-1,2-DCE in soil vapour at elevated concentrations is limited to an isolated area on the eastern boundary of the site where the building will be constructed with a suspended slab. On this basis TCE vapour intrusion to indoor air of the proposed development is considered incomplete and there is no requirement for vapour intrusion mitigation measures. In addition, work health and safety measures would not be necessary to control exposure to workers undertaking excavation and installation of the OSD tank.

The only potentially complete exposure pathway to TCE vapour in soil is to workers undertaking subsurface works in the area of VP4 and VP20 (trench worker). Potential exposure can be managed under the provisions of an Environmental Management Plan for both the construction phase and operational phase of the development.

TCE Source

TCE in soil vapour was detected at an elevated concentration in sample VP20 collected on the eastern boundary of the site paired with groundwater well MW102 where the highest TCE concentrations in groundwater have been identified. TCE vapour in soil attenuates rapidly away from VP20 (Figure 5).

The decreasing concentration away from VP20 toward the caged drum store area, and absence of TCE in any other soil vapour sample completed in the vicinity of the drum store (VP7, VP11 and VP12) also indicates the caged drum store area is unlikely to be the TCE source.

The results substantiate the conclusions of the DSI that TCE is migrating onto site from an off-site source to the east or southeast.

15 Percy Street Vapour Intrusion

TCE and cis-1,2-DCE were not detected in shallow soil vapour samples VP17, VP18 and VP19 collected along the northern boundary of the site with 15 Percy Street. The indoor air inhalation pathway to occupants of 15 Percy Street is considered incomplete.

10. REVISED CONCEPTUAL SITE MODEL

A summary of the revised CSM for TCE, DCE and VC contamination is presented below.

Conceptual Site Model – Soil, Vapour & Groundwater								
	Receptors							
Relevant Exposure Pathways	On site users On site construction Neighbouring site users users		Other					
Soil ingestion / Dermal contact / Dust	Х	x	х	Trench worker X Terrestrial Ecology X				
Indoor inhalation of vapours derived from soil	Х	X	Х					
Outdoor inhalation of vapours derived from soil	Х	x		Trench workers X				
Indoor inhalation of vapours derived from groundwater	Х	x	Х					
Outdoor inhalation of vapours derived from groundwater	Х	x	Х	Trench workers ✓				
Soils leaching to groundwater				Ongoing groundwater impact X				
Groundwater abstraction	Х	х	Х					
Groundwater discharge to surface water				Recreation / Aquatic ecosystem X				
		Comments		· 				
 ✓ – exposure pathw 		e pathway incomplete no una e and requires either further Not relevant		tion / management				

11. CONCLUSIONS

The investigation has established the following:

- The extent of TCE and its degradant products in soil vapour in the area of the proposed basement carpark area have been delineated and are limited to an isolated area in the southeast portion of the site. Indoor air inhalation is considered an incomplete exposure pathway to occupants of the proposed development and there is no requirement for vapour intrusion mitigation measures or remediation of groundwater;
- Potential for trench worker exposure via inhalation of TCE vapour should be managed through implementation of a site-specific Environmental Management Plan detailing safe work procedures during construction and long-term operation of the site;
- Multiple lines of evidence from previous investigations and the current investigation indicate TCE likely originates from an off-site source to the east or southeast; and
- The indoor air inhalation pathway to occupants of 15 Percy Street is considered incomplete.

12. LIMITATIONS

This report should be read in full, and no executive summary, conclusion or other section of the report may be used or relied on in isolation, or taken as representative of the report as a whole. No responsibility is accepted by Geo-Logix, and any duty of care that may arise but for this statement is excluded, in relation to any use of any part of this report other than on this basis.

This report has been prepared for the sole benefit of and use by the Client. No other person may rely on the report for any purpose whatsoever except with Geo-Logix's express written consent. Any duty of care to third parties that would or may arise in respect of persons other than the Client, but for this statement, is excluded.

Geo-Logix owns the copyright in this report. No copies of this report are to be made or distributed by any person without express written consent to do so from Geo-Logix. If the Client provides a copy of this report to a third party, without Geo-Logix's consent, the Client indemnifies Geo-Logix against all loss, including without limitation consequential loss, damage and/or liability, howsoever arising, in connection with any use or reliance by a Third Party.

The works undertaken by Geo-Logix are based solely on the scope of works, as agreed by the Client (Scope of Works). No other investigations, sampling, monitoring works or reporting will be carried out other than as expressly provided in the Scope of Works. A COPY OF THE SCOPE OF WORKS IS AVAILABLE ON REQUEST.

To the extent permitted by law, Geo-Logix makes no warranties or representations as to the:

- a. suitability of the Site for any specific use, or category of use, or
- b. potential statutory requirements for remediation, if any, of the Site,
- c. approvals, if any, that may be needed in respect of any use or category of use, or
- d. level of remediation, if any, that is warranted to render the Site suitable for any specific use, or category of use, or
- e. level of ongoing monitoring of Site conditions, if any, that is required in respect of any specific use, or category of use, or
- f. presence, extent or absence of any substance in, on or under the Site, other than as expressly stated in this report.

The conclusions stated in this report are based solely on the information, Scope of Works, analysis and data that are stated or expressly referred to in this report.

To the extent that the information and data relied upon to prepare this report has been conveyed to Geo-Logix by the Client or third parties orally or in the form of documents, Geo-Logix has assumed that the information and data are completely accurate and has not sought independently to verify the accuracy of the information or data. Geo-Logix assumes no responsibility or duty of care in respect of any errors or omissions in the information or data provided to it.

Without limiting the paragraph above, where laboratory tests have been carried out by others on Geo-Logix's behalf, the tests are reproduced in this report on the assumption that the tests are accurate. Geo-Logix has not sought independently to verify the accuracy of those tests and assumes no responsibility in respect of them.

Geo-Logix assumes no responsibility in respect of any changes in the condition of the Site which have occurred since the time when Geo-Logix gathered data and/or took samples from the Site on its site inspections from 26 May to 19 June 2020

Given the nature of asbestos, and the difficulties involved in identifying asbestos fibres, despite the exercise of all reasonable due care and diligence, thorough investigations may not always reveal its presence in either buildings or fill. Even if asbestos has been tested for and those tests' results do not reveal the presence of asbestos at those specific points of sampling, asbestos or asbestos containing materials may still be present at the Site, particularly if fill has been imported at any time, buildings constructed prior to 1980 have been demolished on the Site or materials from such buildings have been disposed of on the Site.

Where the Scope of Works does not include offsite investigations, Geo-Logix provides no warranty as to offsite conditions, including the extent if any to which substances in the Site may be emanating off site, and if so whether any adjoining sites have been or may be impacted by contamination originating from the Site.

Where the Scope of Works does not include the investigation, sampling, monitoring or other testing of groundwater in, on or under the Site, Geo-Logix provides no warranty or representation as to the quality of groundwater on the Site or the actual or potential migration of contamination in groundwater across or off the Site.

Subsurface site conditions are typically heterogeneous, and may change with time. Samples taken from different points on the Site may not enable inferences to be drawn about the condition of areas of the Site significantly removed from the sample points, or about the condition of any part of the Site whatsoever, in particular where the proposed inferences are to be drawn a long time after the date of the report.

Geo-Logix has prepared this report with the diligence, care and skill which a reasonable person would expect from a reputable environmental consultancy and in accordance with environmental regulatory authority and industry standards, guidelines and assessment criteria applicable as at the date of this report. Industry standards and environmental criteria change frequently, and may change at any time after the date of this report.

13. REFERENCES

Australian Standard (2005) AS 4482.1-2005 Guide to the investigation and sampling of sites with potentially contaminated soil. Part 1: Volatile and Semi-volatile compounds. Standards Australia.

Australian Standard (2005) AS 4482.2-1999 Guide to the investigation and sampling of sites with potentially contaminated soil. Part 2: Volatile substances. Standards Australia.

Dial Before You Dig (2019) http://www.1100.com.au/, Accessed (14 August and 26 September 2019)

Geo-Logix (2019) Detailed Site Investigation Report, 11-13 Percy Street, Auburn NSW. Report Ref 1901048Rpt01FinalV01_22Oct19.

Google Earth (2019). Sydney, NSW.

Herbert, C. (1983) Sydney 1:100 000 Geological Series Sheet 9130 (Edition 1), NSW Department of Mineral Resources 1983.

NEPC (1999, Amended) National Environmental Protection Council (Assessment of Site Contamination) Measure 1999 (as amended 2013), National Environmental Protection Council, April 2013.

National Environment Protection (Assessment of Site Contamination) Measure 1999 (April 2013).

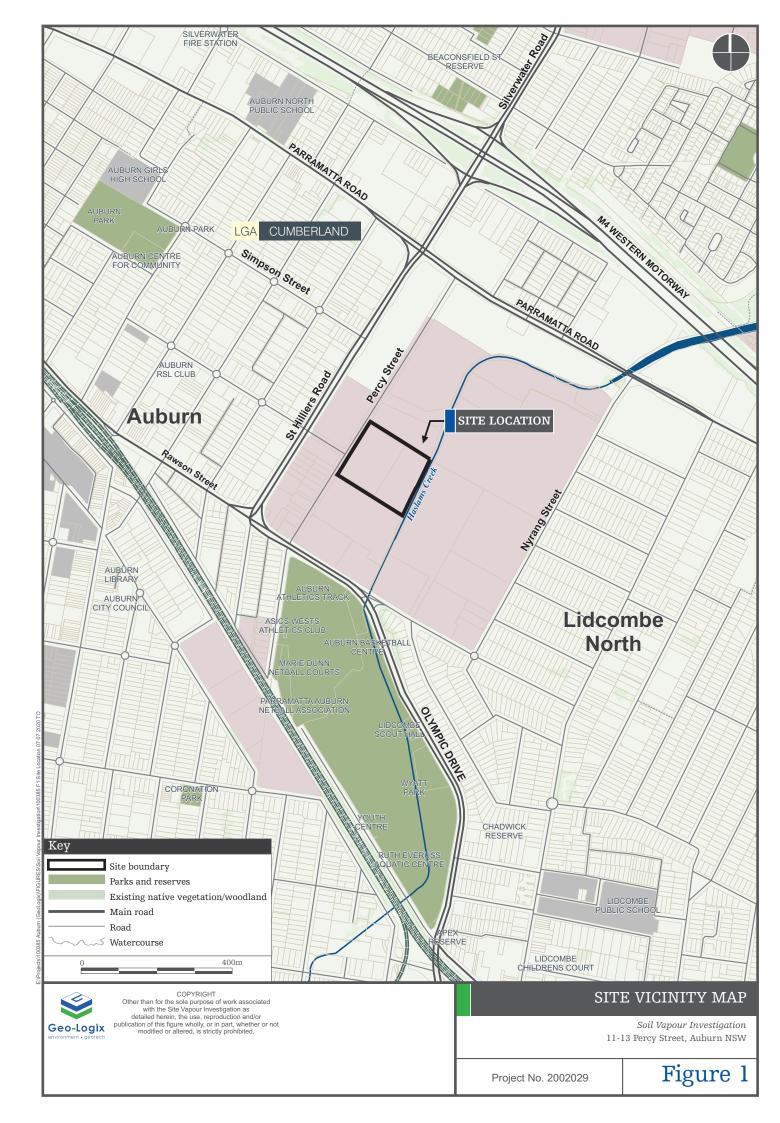
NSW Department of Environment & Conservation (2007). Guidelines for the Assessment and Management of Groundwater Contamination.

NSW DEC (2006) Guidelines for NSW Site Auditor Scheme, NSW Department of Environment and Conservation.

NSW Environment Protection Agency (1995). Contaminated Sites: Sampling Design Guidelines.

NSW Environment Protection Agency (2012). Guidelines for the Assessment and Management of Sites Impacted by Hazardous Ground Gases.

NSW Office of Environment & Heritage (2011). Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites.


OTEK Australia Pty, Ltd. (2000) Phase I & II Environmental Site Assessment, 11-13 Percy Street, Auburn New South Wales. 14 January 2000. Reference (S99126).

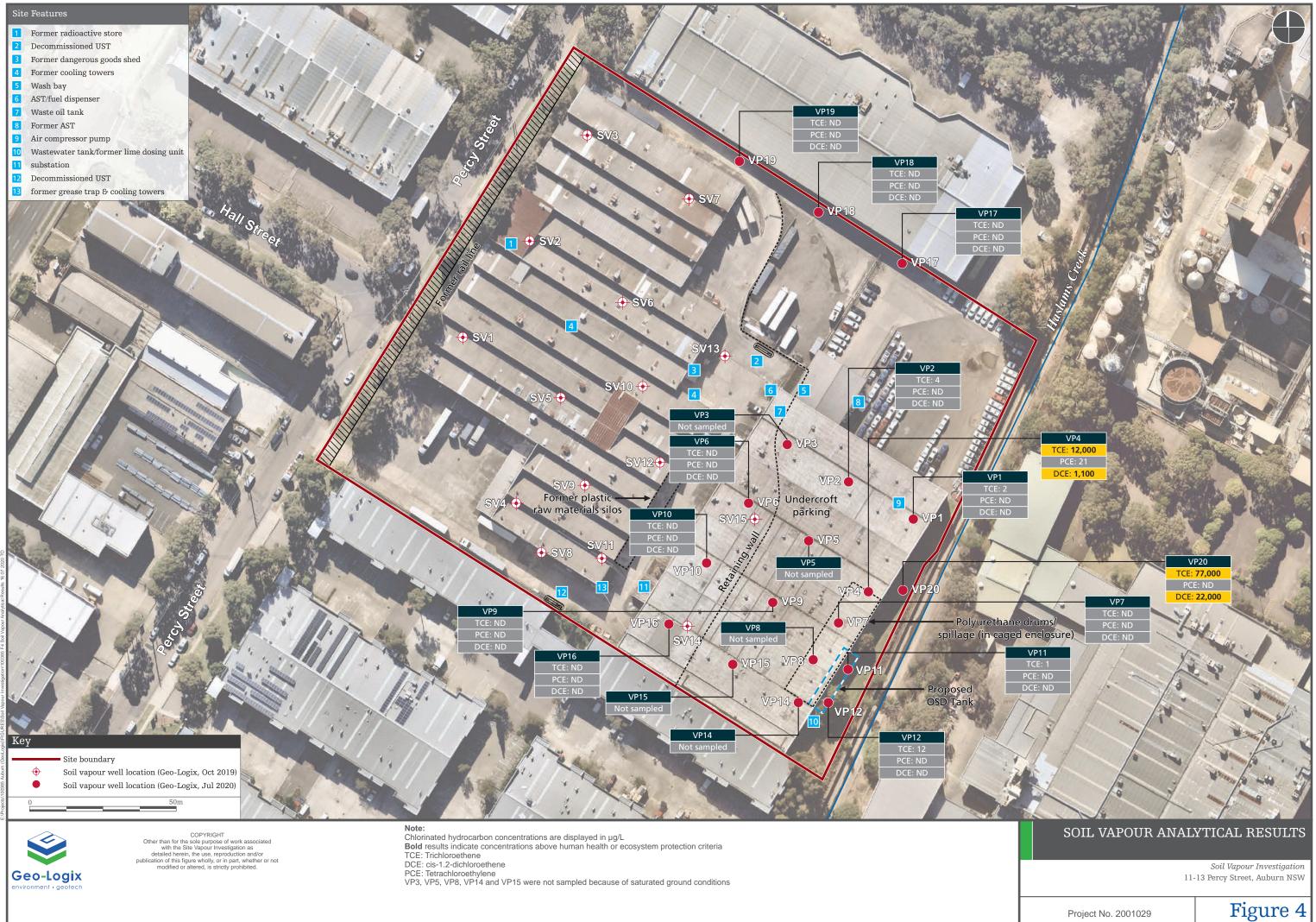
State of Hawai'i, Department of Health, Technical Guidance Manual for the Implementation of the Hawai'i State Contingency Plan, Section 7: Soil Vapour and Indoor Air Sampling Guidance (Interim Final - December 2017).

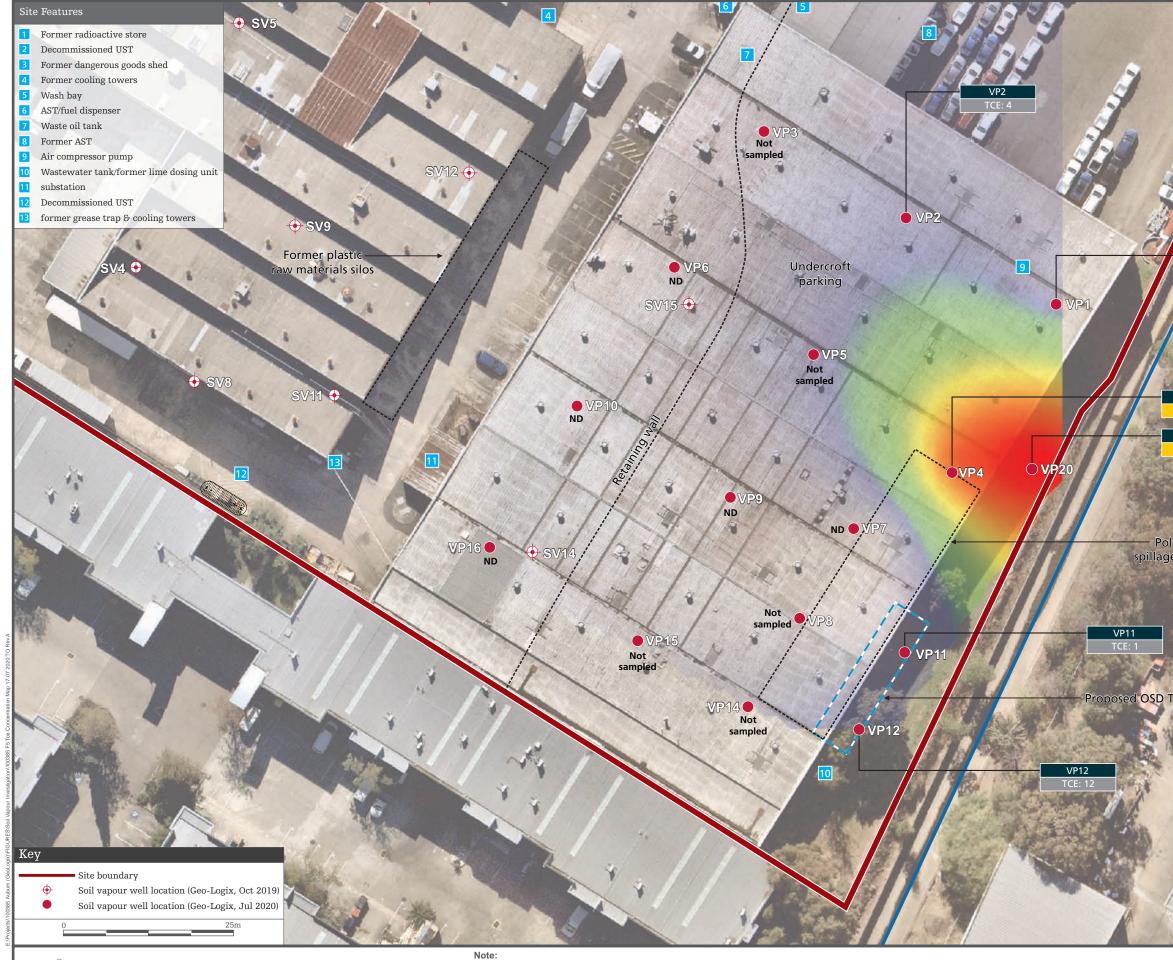
US EPA (2017) EPA Spreadsheet for Modelling Subsurface Vapour Intrusion https://www.epa.gov/vaporintrusion/epa-spreadsheet-modeling-subsurface-vapor-intrusion

WSP (2012) Stage 1 & 2 Environmental Site Investigation, 11-13 Percy Street, Auburn, NSW. Revised 12 June 2012. Reference (00030196.01).

FIGURES

Project No. 2001029


Figure 2



Project No. 2001029

Figure 3

COPYRIGHT Other than for the sole purpose of work associated with the Site Vapour Investigation as detailed herein, the use, reproduction and/or publication of this figure wholly, or in part, whether or not modified or altered, is strictly prohibited.

Chlorinated hydrocarbon concentrations are displayed in µg/L **Bold** results indicate concentrations above human health or ecosystem protection criteria TCE: Trichloroethene DCE: cis-1.2-dichloroethene

PCE: Tetrachloroethylene VP3, VP5, VP8, VP14 and VP15 were not sampled because of saturated ground conditions

e (in caged enclosure) Colour Scale 10000	<complex-block></complex-block>	
Project No. 2001029 Figure 5	Tank Tank Difference of the second of the se	000 00

TABLES

11-13 Percy Street, Auburn NSW

	Criteria 1						
	HSLs - D						
	Sand	Sample ID	VP1	VP2	VP4	VP4DUP	RPD_VP4DUP
	0 to <1 m	Date	28/05/2020	28/05/2020	28/05/2020	28/05/2020	-
Benzene	4,000		< 60	< 60	< 60	< 60	пс
Toluene	4,800,000		< 100	< 100	< 100	< 100	пс
Ethylbenzene	1,300,000		< 200	< 200	430	340	23%
m&p-Xylenes	-		1,200	950	2,000	1,900	5%
o-Xylene	-		750	< 120	1,500	1,500	0%
Xylenes - Total	840,000		1,950	950	3,500	3,400	3%
			.,		-,	-,	

Notes:

Criteria 1 = NEPC (1999) Amended, 'D' Comm./ind. Soil vapour Health Screening Levels for vapour intrusion, sand 0 to <1m.

Total concentrations in µg/m³

- = assessment criteria not available

VP4DUP = duplicate of VP4

VP4-TD = triplicate of VP4 VP9DUP = duplicate of VP9

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit</pre>

-- = sample not analysed

11-13 Percy Street, Auburn NSW

	Criteria 1						
	HSLs - D						
	Sand	Sample ID	VP4-TD	RPD_VP4-TD	VP6	VP7	VP9
	0 to <1 m	Date	28/05/2020	-	28/05/2020	28/05/2020	28/05/2020
Benzene	4,000		< 4	пс	< 60	< 60	< 60
Toluene	4,800,000		< 4	nc	< 100	< 100	< 100
Ethylbenzene	1,300,000		640	39%	< 200	350	< 200
m&p-Xylenes	-		2,920	37%	< 300	1,500	2,800
o-Xylene	-		1,200	22%	< 120	< 120	2,900
Xylenes - Total	840,000		4,120	16%	ND	1,500	5,700

Notes:

Criteria 1 = NEPC (1999) Amended, 'D' Comm./ind. Soil vapour Health Screening Levels for vapour intrusion, sand 0 to <1m.

Total concentrations in µg/m³

- = assessment criteria not available

VP4DUP = duplicate of VP4

VP4-TD = triplicate of VP4

VP9DUP = duplicate of VP9

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

11-13 Percy Street, Auburn NSW

	Criteria 1						
	HSLs - D						
	Sand	Sample ID	VP9DUP	RPD_VP9DUP	VP10	VP11	VP12
	0 to <1 m	Date	28/05/2020	-	28/05/2020	28/05/2020	28/05/2020
Benzene	4,000		< 60	пс	< 60	< 60	< 60
Toluene	4,800,000		< 100	пс	< 100	< 100	< 100
Ethylbenzene	1,300,000		< 200	пс	< 200	< 200	< 200
m&p-Xylenes	-		2,500	11%	< 300	< 300	< 300
o-Xylene	-		2,000	37%	< 120	< 120	< 120
Xylenes - Total	840,000		4,500	24%	ND	ND	ND

Notes:

Criteria 1 = NEPC (1999) Amended, 'D' Comm./ind. Soil vapour Health Screening Levels for vapour intrusion, sand 0 to <1m.

Total concentrations in µg/m³

- = assessment criteria not available

VP4DUP = duplicate of VP4

VP4-TD = triplicate of VP4

VP9DUP = duplicate of VP9

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit</pre>

-- = sample not analysed

11-13 Percy Street, Auburn NSW

	Criteria 1						
	HSLs - D						
	Sand	Sample ID	VP16	VP17	VP18	VP19	VP20
	0 to <1 m	Date	28/05/2020	28/05/2020	28/05/2020	28/05/2020	19/06/2020
Benzene	4,000		< 60	80	90	< 60	< 16
Toluene	4,800,000		< 100	< 100	< 100	< 100	750
Ethylbenzene	1,300,000		200	< 200	< 200	< 200	60
m&p-Xylenes	-		530	< 300	< 300	< 300	260
o-Xylene	-		130	< 120	< 120	< 120	52
Xylenes - Total	840,000		660	ND	ND	ND	310

Notes:

Criteria 1 = NEPC (1999) Amended, 'D' Comm./ind. Soil vapour Health Screening Levels for vapour intrusion, sand 0 to <1m.

Total concentrations in µg/m³

- = assessment criteria not available

VP4DUP = duplicate of VP4

VP4-TD = triplicate of VP4

VP9DUP = duplicate of VP9

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

11-13 Percy Street, Auburn NSW

	Criteria 1						
	HILs - D						
	Interim	Sample ID	VP1	VP2	VP4	VP4DUP	RPD_VP4DUP
	Soll Vapour	Date	28/05/2020	28/05/2020	28/05/2020	28/05/2020	-
cis-1.2-Dichloroethene	300		< 80	< 80	1,100	1,000	10%
trans-1.2-Dichloroethene	-		< 40	< 40	250	240	4%
1.2-Dichloroethene (Total)	-		ND	ND	1,350	1,240	8%
Trichloroethene	80		2	4	12,000	10,500	13%
Tetrachloroethene	8,000		< 1	< 1	21	15	33%
Isopropanol	-		< 50	< 50	< 50	< 50	пс
Vinyl chloride	100						

Notes:

Criteria 1 = NEPC (1999) Amended, 'D' Commercial/industrial Interim soil vapour Health Investigation Levels for VOCCs. Total concentrations in μ g/m³

- = assessment criteria not available

VP4DUP = duplicate of VP4

VP4-TD = triplicate of VP4

VP9DUP = duplicate of VP9

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

11-13 Percy Street, Auburn NSW

	Criteria 1						
	HILs - D						
	Interim	Sample ID	VP4-TD	RPD_VP4-TD	VP6	VP7	VP9
	Soll Vapour	Date	28/05/2020	-	28/05/2020	28/05/2020	28/05/2020
cis-1.2-Dichloroethene	300		168	147%	< 80	< 80	< 80
trans-1.2-Dichloroethene	-		< 4	пс	< 40	< 40	80
1.2-Dichloroethene (Total)	-		168	156%	ND	ND	80
Trichloroethene	80		5,600	73%	< 1	< 1	< 1
Tetrachloroethene	8,000		13.2	46%	< 8	< 1	< 1
Isopropanol	-			пс	< 50	< 50	< 50
Vinyl chloride	100						

Notes:

Criteria 1 = NEPC (1999) Amended, 'D' Commercial/industrial Interim soil vapour Health Investigation Levels for VOCCs. Total concentrations in μ g/m³

- = assessment criteria not available

VP4DUP = duplicate of VP4

VP4-TD = triplicate of VP4

VP9DUP = duplicate of VP9

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

11-13 Percy Street, Auburn NSW

	Criteria 1						
	HILs - D						
	Interim	Sample ID	VP9DUP	RPD_VP9DUP	VP10	VP11	VP12
	Soll Vapour	Date	28/05/2020	-	28/05/2020	28/05/2020	28/05/2020
cis-1.2-Dichloroethene	300		< 80	пс	< 80	< 80	< 80
trans-1.2-Dichloroethene	-		60	29%	< 40	41	< 40
1.2-Dichloroethene (Total)	-		60	29%	ND	41	ND
Trichloroethene	80		< 1	nc	< 1	1	12
Tetrachloroethene	8,000		< 1	пс	< 1	< 1	< 5
Isopropanol	-		< 50	nc	< 50	< 50	< 50
Vinyl chloride	100						

Notes:

Criteria 1 = NEPC (1999) Amended, 'D' Commercial/industrial Interim soil vapour Health Investigation Levels for VOCCs. Total concentrations in μ g/m³

- = assessment criteria not available

VP4DUP = duplicate of VP4

VP4-TD = triplicate of VP4

VP9DUP = duplicate of VP9

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

11-13 Percy Street, Auburn NSW

	Criteria 1						
	HILs - D						
	Interim	Sample ID	VP16	VP17	VP18	VP19	VP20
	Soll Vapour	Date	28/05/2020	28/05/2020	28/05/2020	28/05/2020	19/06/2020
cis-1.2-Dichloroethene	300		< 80	< 80	< 80	< 80	22,000
trans-1.2-Dichloroethene	<u> </u>		60	< 40	< 40	< 40	1,100
1.2-Dichloroethene (Total)	-		60	ND	ND	ND	23,100
Trichloroethene	80		< 1	< 1	< 1	< 1	77,000
Tetrachloroethene	8,000		< 4	< 1	< 1	< 1	< 33
Isopropanol	-		< 50	< 50	< 50	< 50	< 482
Vinyl chloride	100						650

Notes:

Criteria 1 = NEPC (1999) Amended, 'D' Commercial/industrial Interim soil vapour Health Investigation Levels for VOCCs. Total concentrations in μ g/m³

- = assessment criteria not available

VP4DUP = duplicate of VP4

VP4-TD = triplicate of VP4

VP9DUP = duplicate of VP9

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

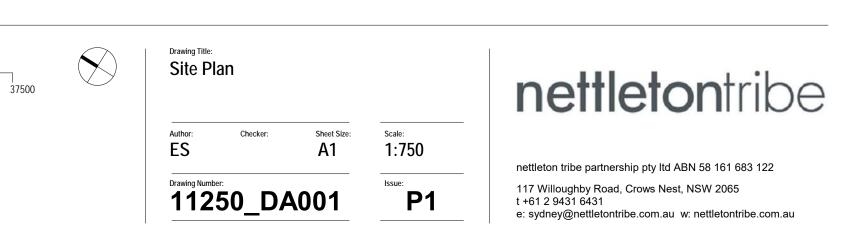
< # or ND = analyte(s) not detected in excess of laboratory reporting limit

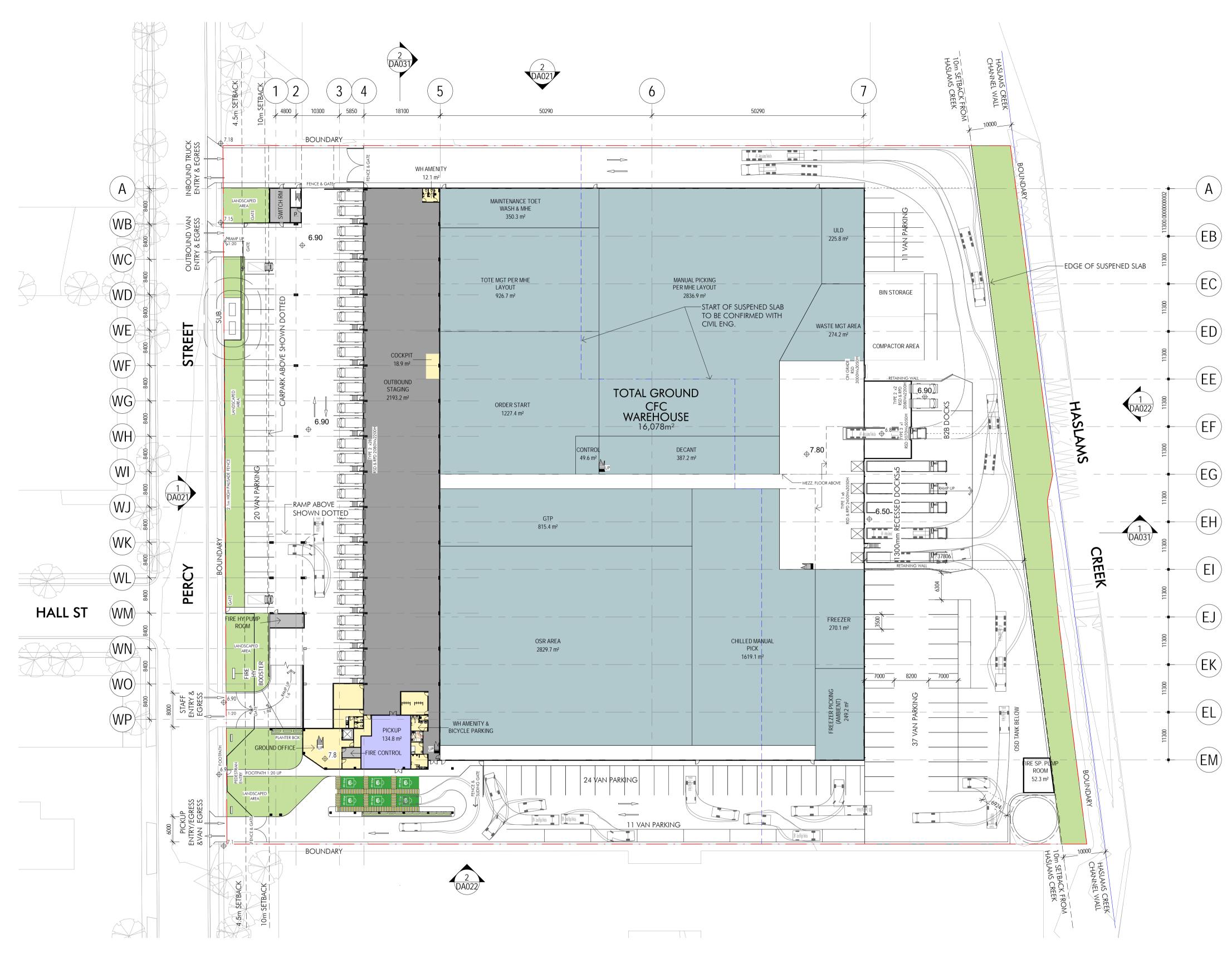
-- = sample not analysed

ATTACHMENT A

Client

Issu	e	Description	Date
P	Draft DA		18.09.20


Builder and/or subcontractors shall verify all project dimensions before commencing on-site work or off-site fabrication. Figured dimensions shall take precedence over scaled dimensions. This drawing is copyright and cannot be reproduced in whole or in part or by any medium without the written permission of Nettleton Tribe Partnership Pty Ltd. Builder

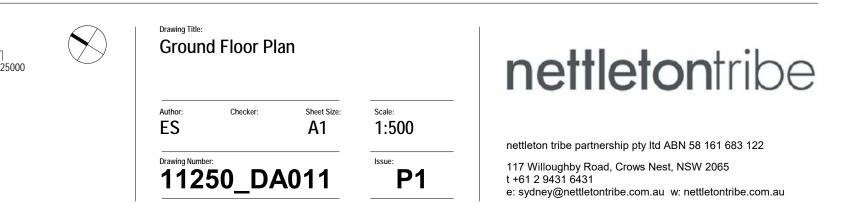

Project Name CFC Percy St. Auburn Project Address 13 Percy Street, Auburn, NSW 2144

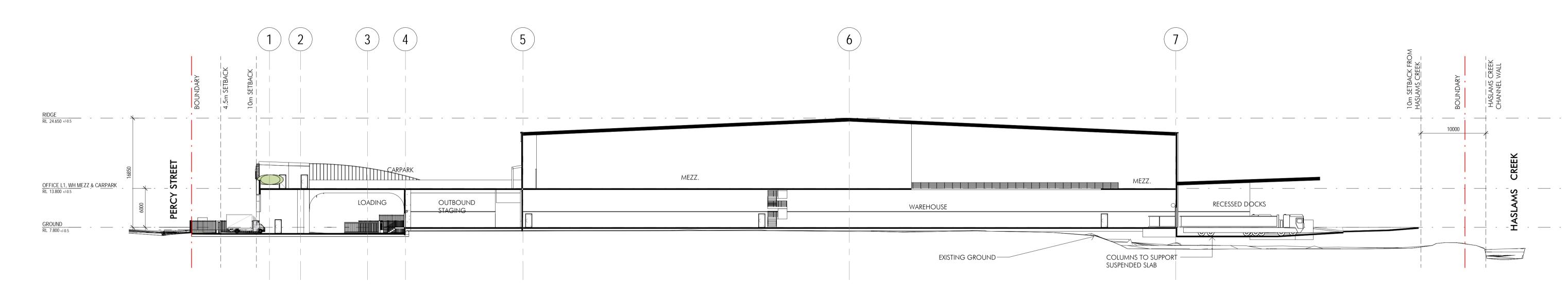
Key Plan	
	15000

k

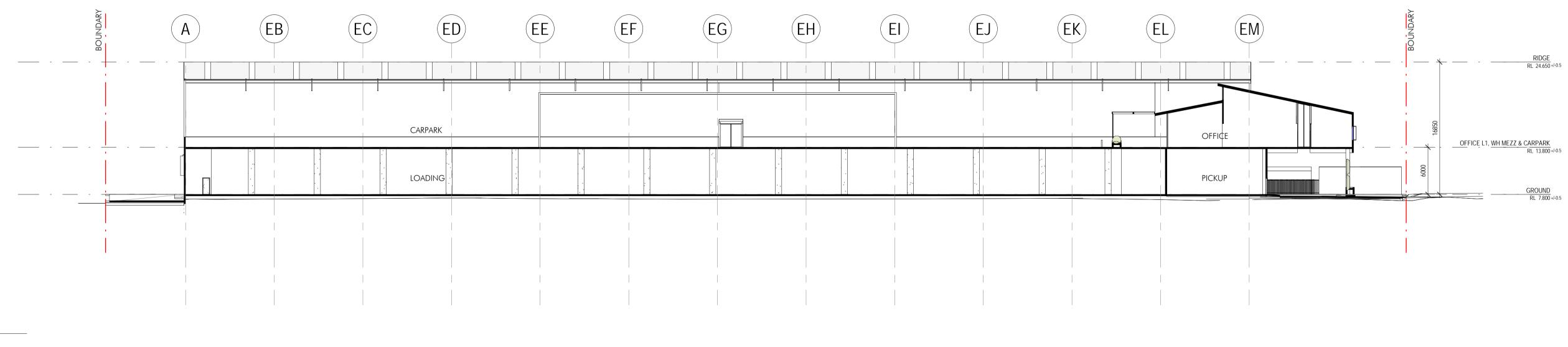
Builders Logo

Issue	Description	Date
P1	Draft DA	18.09.20


Builder and/or subcontractors shall verify all project dimensions before commencing on-site work or off-site fabrication. Figured dimensions shall take precedence over scaled dimensions. This drawing is copyright and cannot be reproduced in whole or in part or by any medium without the written permission of Nettleton Tribe Partnership Pty Ltd.


Builder

Project Name CFC Percy St. Auburn Project Address 13 Percy Street, Auburn, NSW 2144 Key Plan

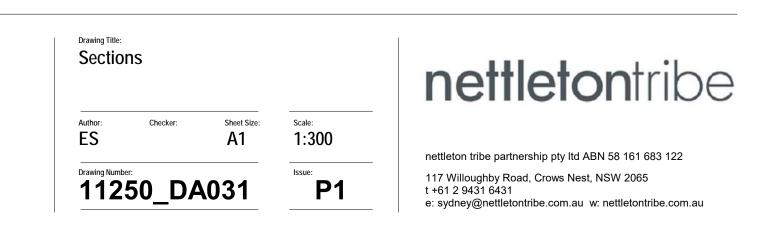

Builders Logo

DEVELOPMENT SCHEDULE	
SITE AREA	32,453 m ²
WAREHOUSE GROUND FLOOR MEZZ. FLOOR	1 9,260 m ² 16,078 m ² 3,182 m ²
OFFICE CFC OFFICE - GROUND CFC OFFICE - LEVEL 1	1,220 m ² 309 m ² 911 m ²
PICKUP	135 m ²
TOTAL GFA AREA	<u>20,615 m²</u>
<u>TOTAL GFA AREA</u> <u>PARKING</u>	<u>20,615 m²</u>

1 Section 1 DA011 1 : 300

Client

Issue P1 Draft D/ Date 18.09.20 _____ _____ _____ _____

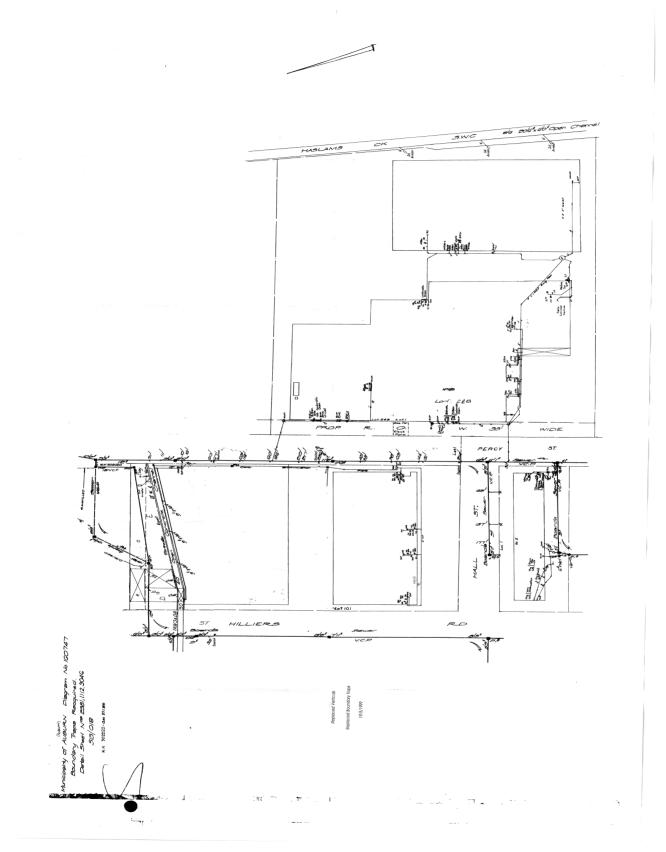

Builder and/or subcontractors shall verify all project dimensions before commencing on-site work or off-site fabrication. Figured dimensions shall take precedence over scaled dimensions. This drawing is copyright and cannot be reproduced in whole or in part or by any medium without the written permission of Nettleton Tribe Partnership Pty Ltd.

Key Plan

15000

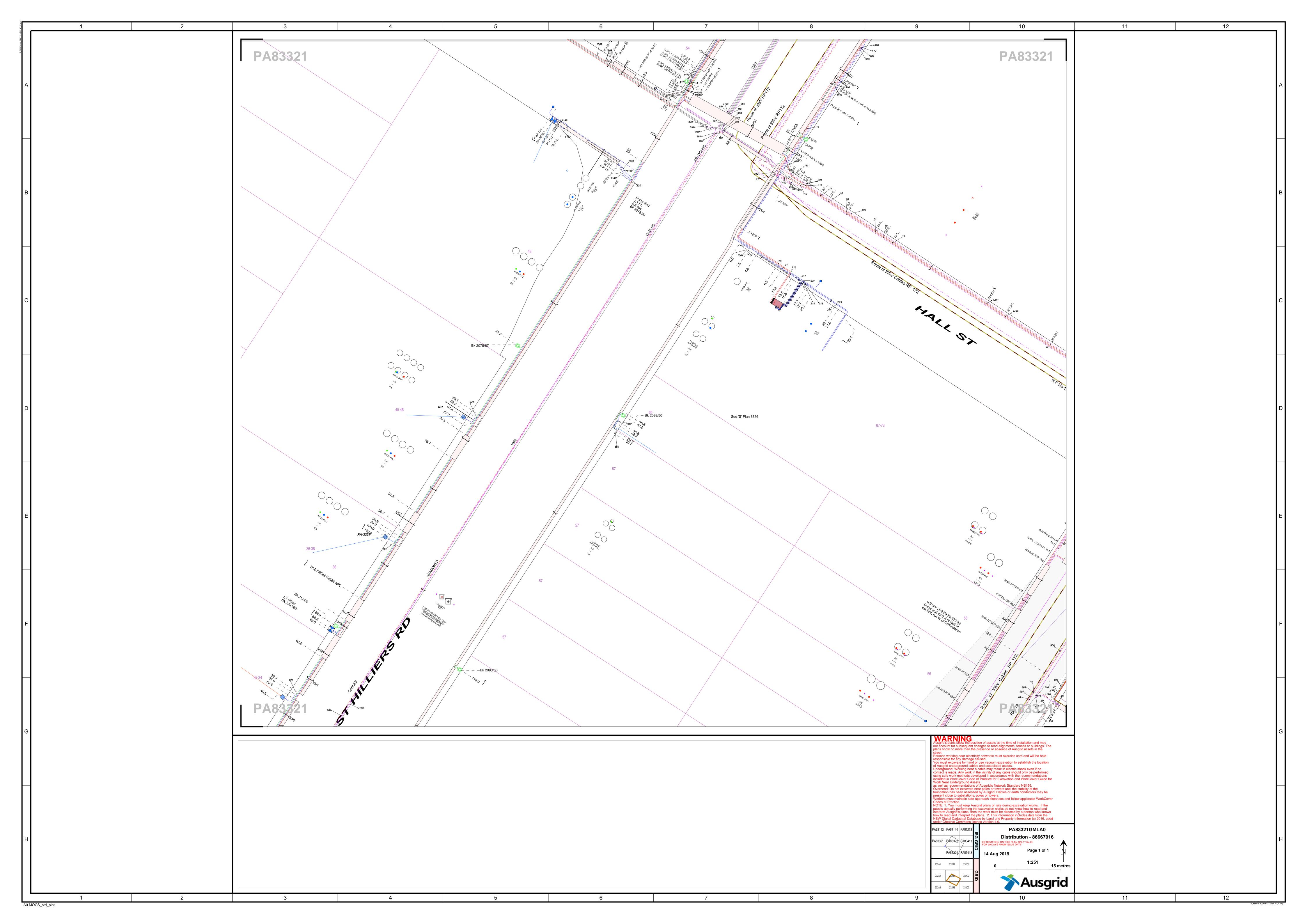
Builders Logo

Project Name CFC Percy St. Auburn Project Address **13 Percy Street, Auburn, NSW 2144**



ATTACHMENT B

Sewer Service Diagram


Application Number: 659910

Document generated at 22-05-2019 03:37:57 PM

Disclaimer

The information in this diagram shows the private wastewater pipes on this property. It may not be accurate or to scale and may not show our pipes, structures or all property boundaries. If you'd like to see these, please buy a **Service location print**.

2 4 3 PA833 - XO1 PA833 - AX2 PA83322 •) (• } 4x100 PVC 3x150 AC NA _____ 0.9-1.2 0.6 ----0.6 Ref: A6 Ref: E4 0
 JOINT DETAIL REPORT

 No.
 Bk-Pg
 P//Cvr
 Joint Location

 Map:
 PA833
 22
 597-54
 /0.91
 29.2 NE of Hall St ext NEPL

 23
 597-54
 2.36/0.91
 28.7 NE of Hall St ext NEPL
 25
 1834-36
 1.9 N of Sub 982 SBL

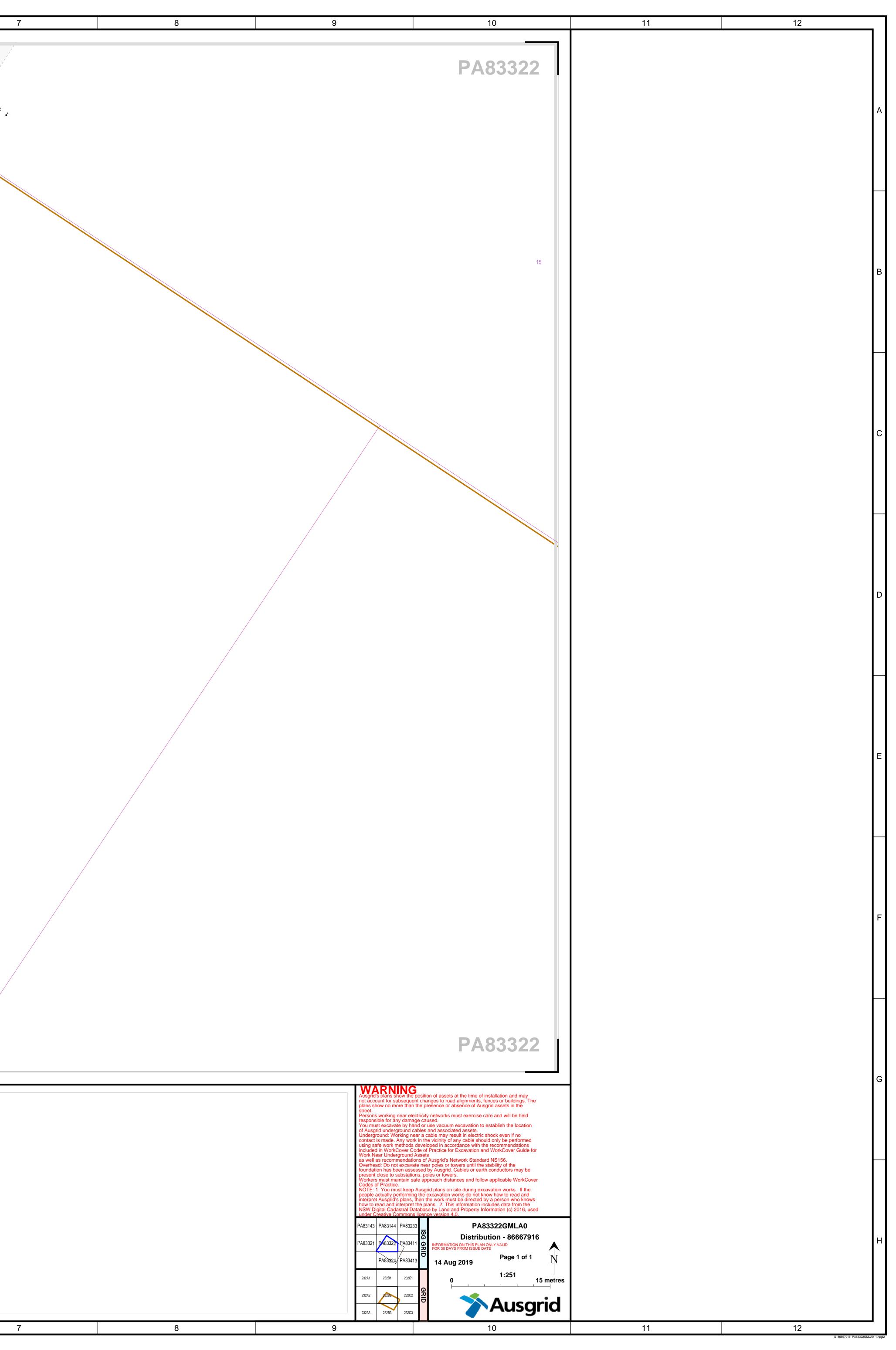
 32
 393-9
 10.66/0.91
 NA
 34
 389-88
 10.13/0.91
 NA

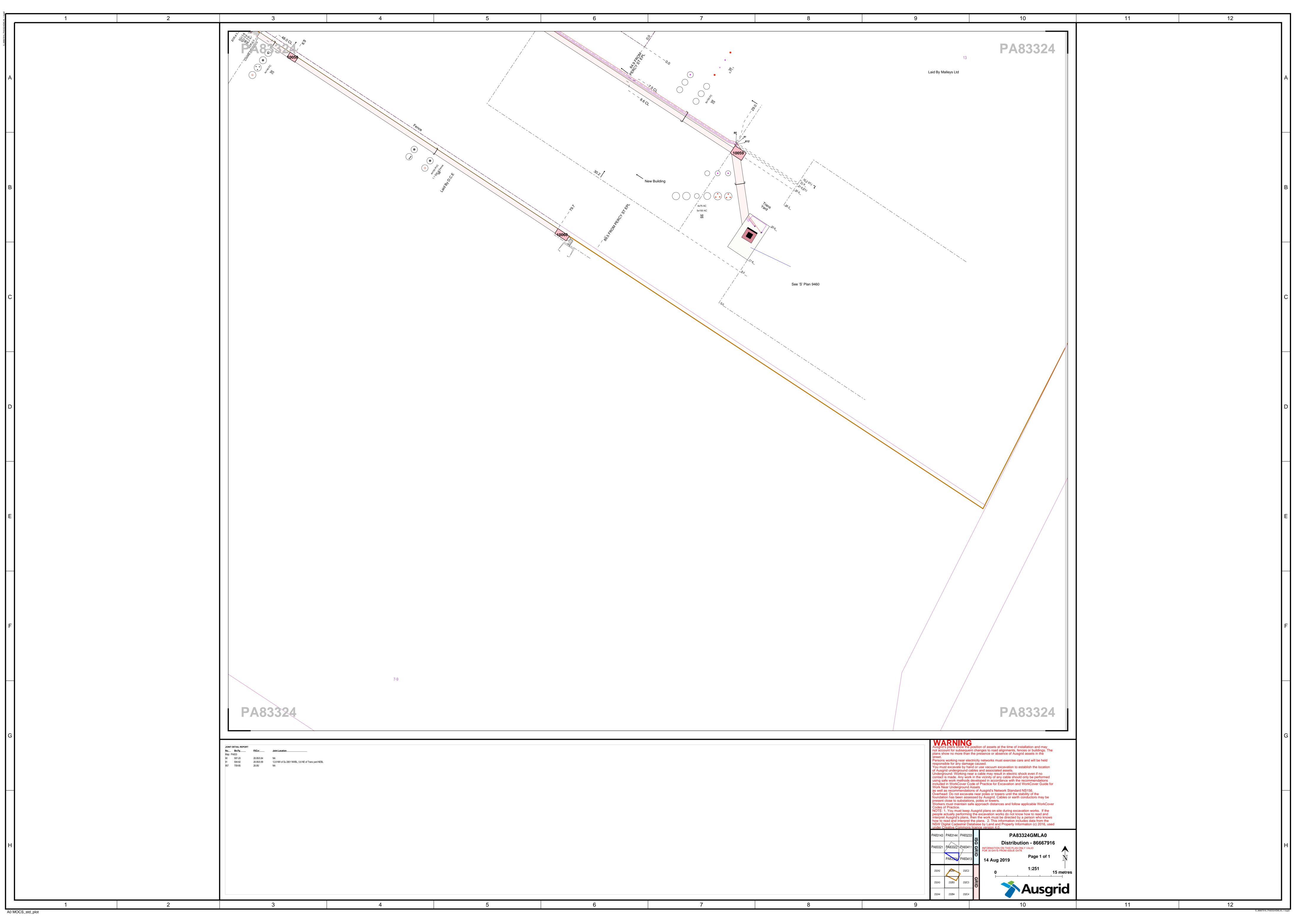
 412
 393-9
 10.66/0.61
 NA
 413
 393-9
 10.82/0.76
 NA

 425
 1206-39
 10.10/0.99
 NA
 426
 1206-39
 10.10/0.99
 NA

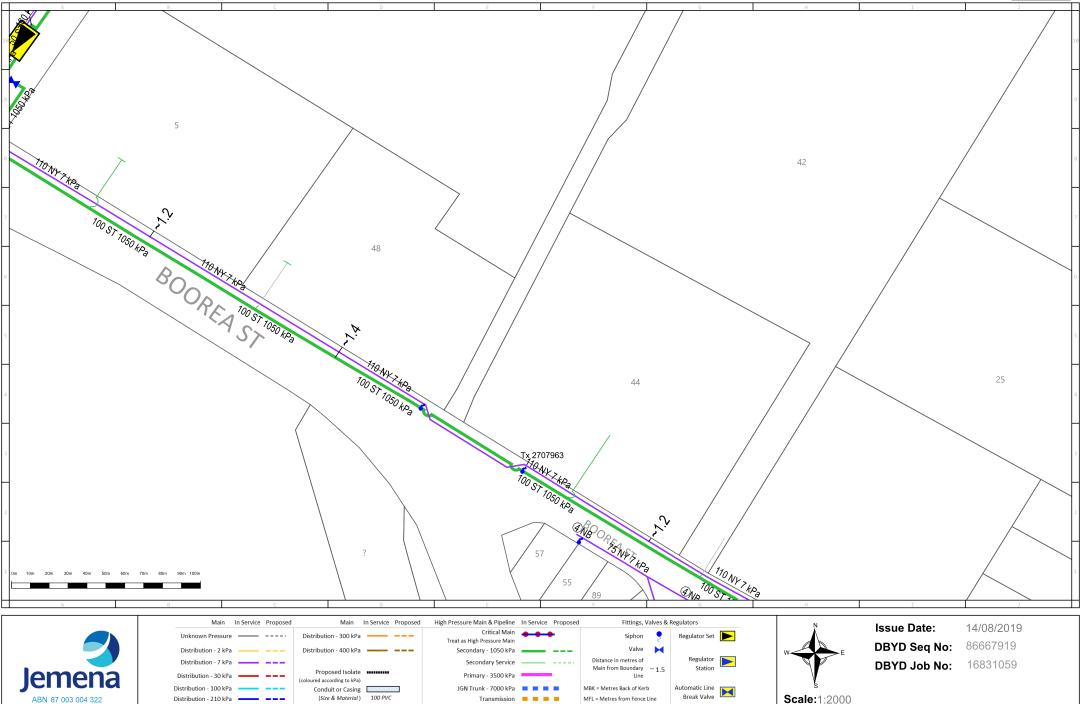
 426
 1206-39
 10.10/0.99
 NA
 34
 389-85
 50.74/0.84
 37.1 SW of Building X

 939
 709-85
 59.99/0.84
 7.3 SW of Building X
 1064
 2374-101
 0.20/0.50
 45.8 N OF HALL ST NPL

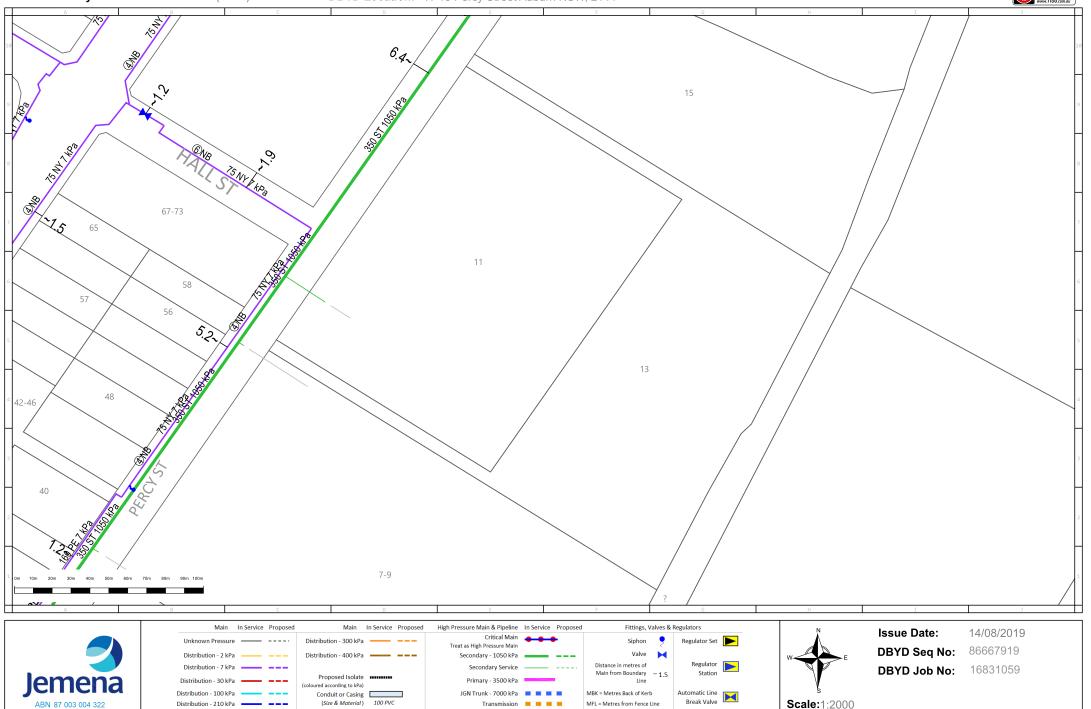

 1219
 BT06-666
 0.20/1.20
 10.6 S OF HALL ST EXTD SPL
 1226
 BT06-549
 0.50/0.90
 19.5 N OF HALL ST EXTD SPL

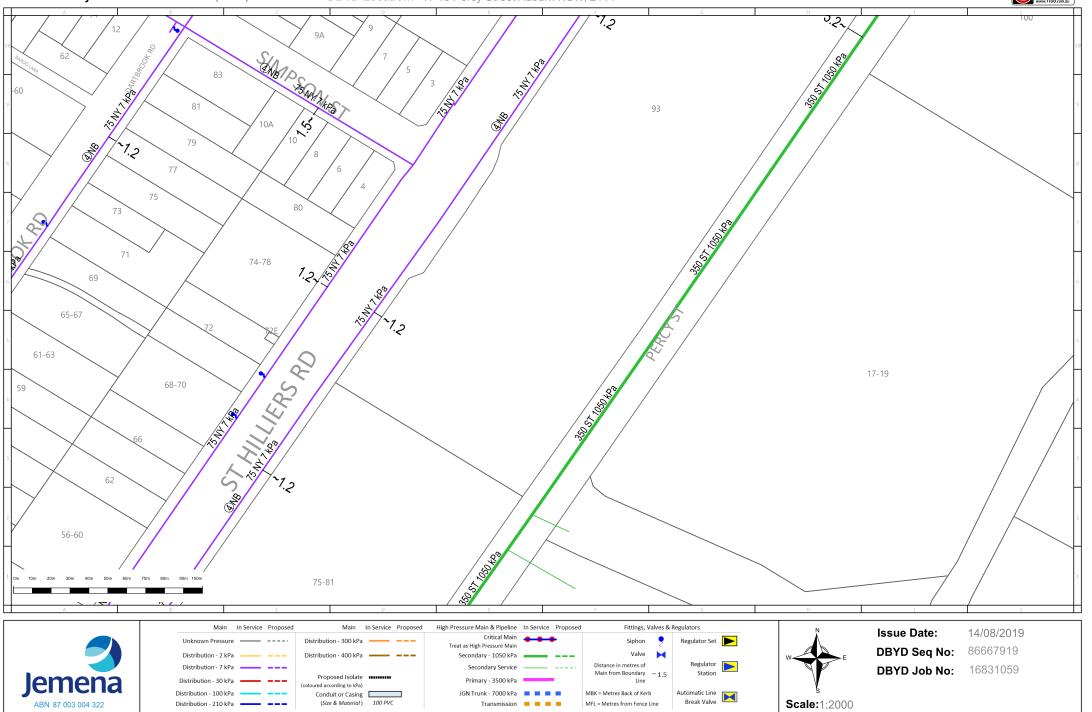

 1227
 BT06-549
 0.50/0.90
 19.5 N OF HALL ST EXTD SPL</td JOINT DETAIL REPORT
 1320
 BT12-0190
 0.40/0.60
 20.8 NE OF HALL ST EXT'D NEPL

 1328
 BT12-0190
 0.80/0.80
 33.7 NE OF HALL ST EXT'D NEPL
 2 3 1 A0 MOCS_std_plot



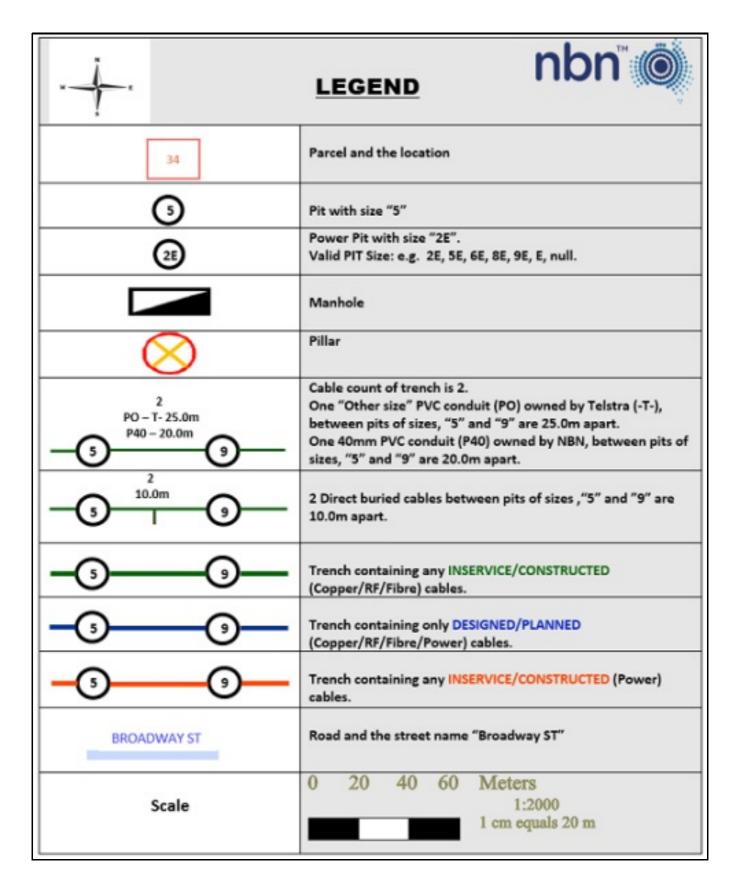
5



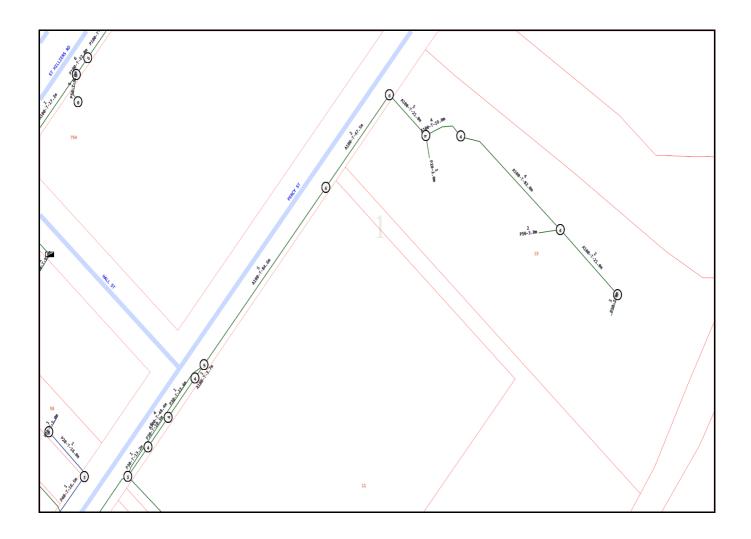

WARNING: This is a representation of Jemena Gas Networks underground assets only and may not indicate all assets in the area. It must not be used for the purpose of exact asset location in order to undertake any type of excavation. This plan is diagramatic only, and distances scaled from this plan may not be accurate. Please read all conditions and information on the attached information sheet. This extract is subject to those conditions. The information contained on this plan is only valid for 28 days from the date of issue.

WARNING: This is a representation of Jemena Gas Networks underground assets only and may not indicate all assets in the area. It must not be used for the purpose of exact asset location in order to undertake any type of excavation. This plan is diagramatic only, and distances scaled from this plan may not be accurate. Please read all conditions and information on the attached information sheet. This extract is subject to those conditions. The information contained on this plan is only valid for 28 days from the date of issue.

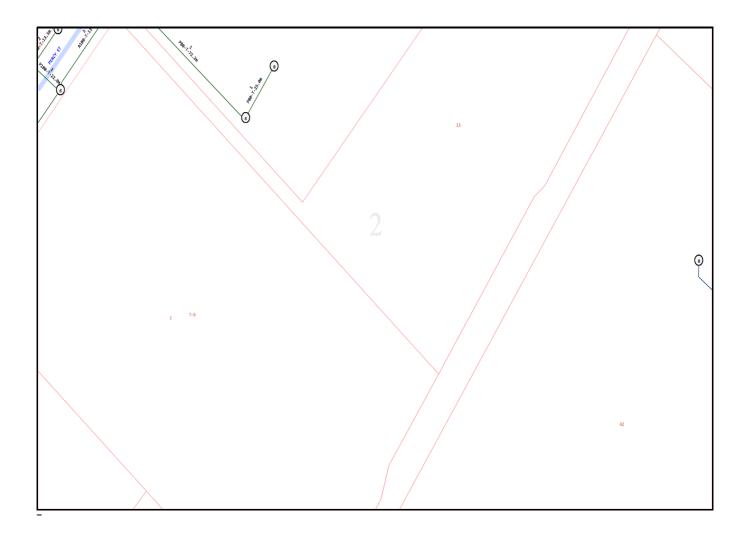
WARNING: This is a representation of Jemena Gas Networks underground assets only and may not indicate all assets in the area. It must not be used for the purpose of exact asset location in order to undertake any type of excavation. This plan is diagramatic only, and distances scaled from this plan may not be accurate. Please read all conditions and information on the attached information sheet. This extract is subject to those conditions. The information contained on this plan is only valid for 28 days from the date of issue.


Indicative Plans

Г


Issue Date:	13/08/2019	DIAL BEFORE
Location:	11-13 Percy Street , Auburn , NSW , 2144	🚯 YOU DIG

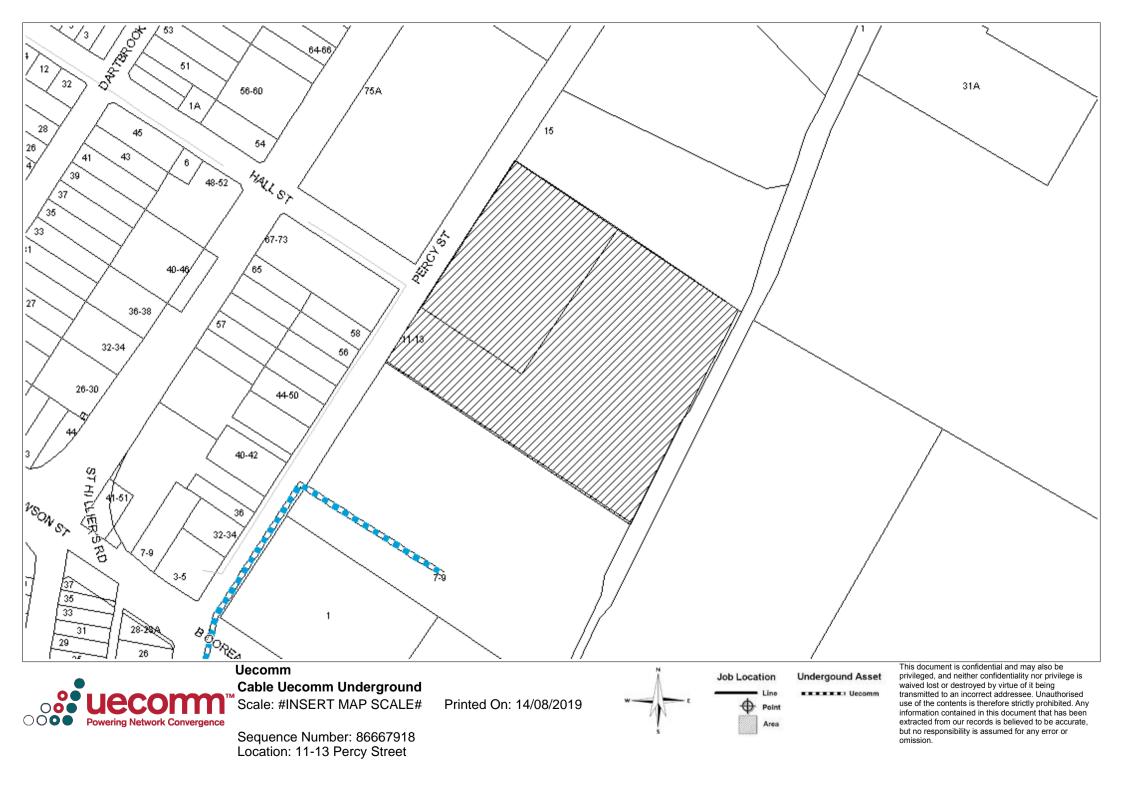
	1	
	2	

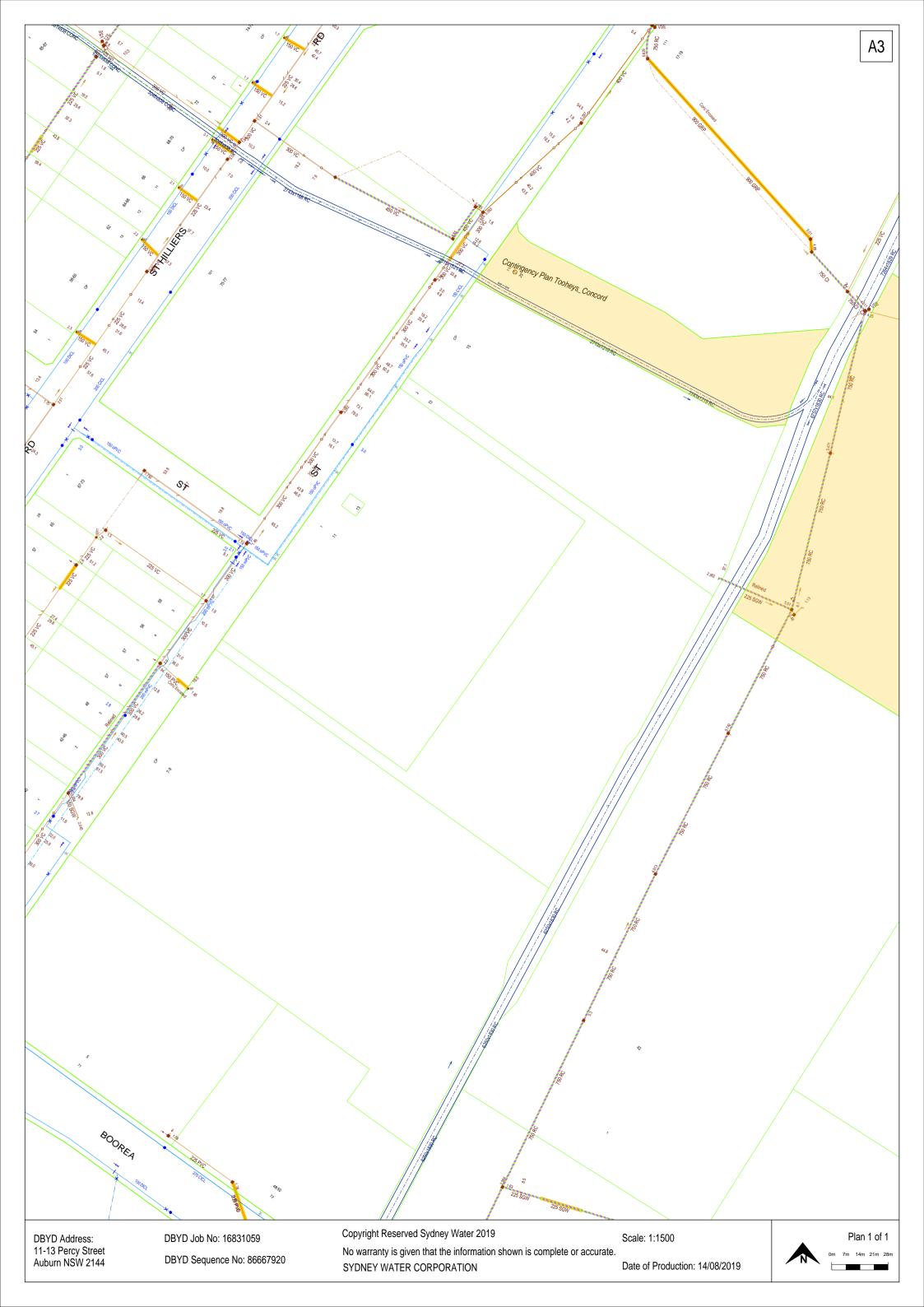


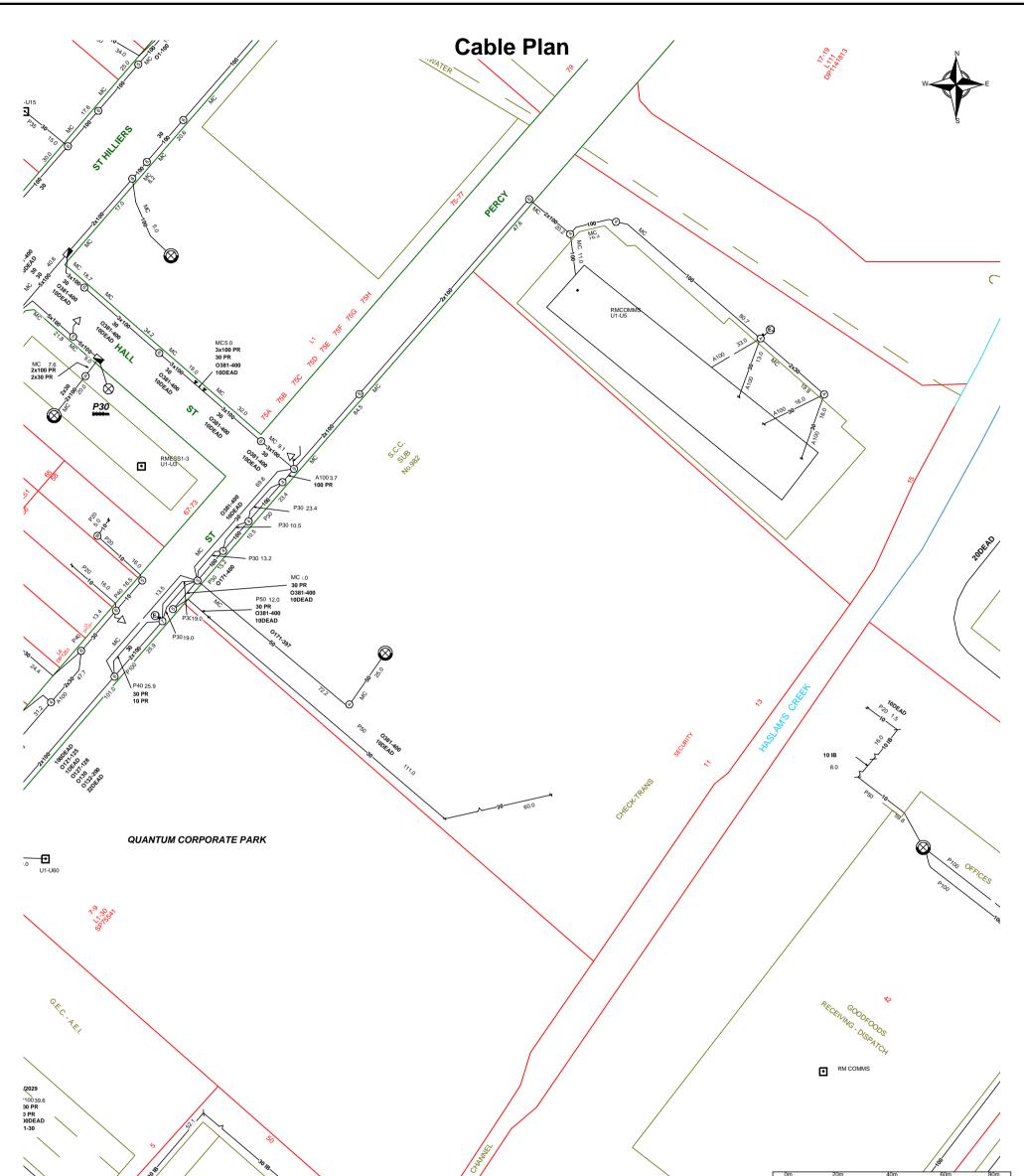
Emergency Contacts

You must immediately report any damage to **nbn™** network that you are/become aware of. Notification may be by telephone - 1800 626 329.

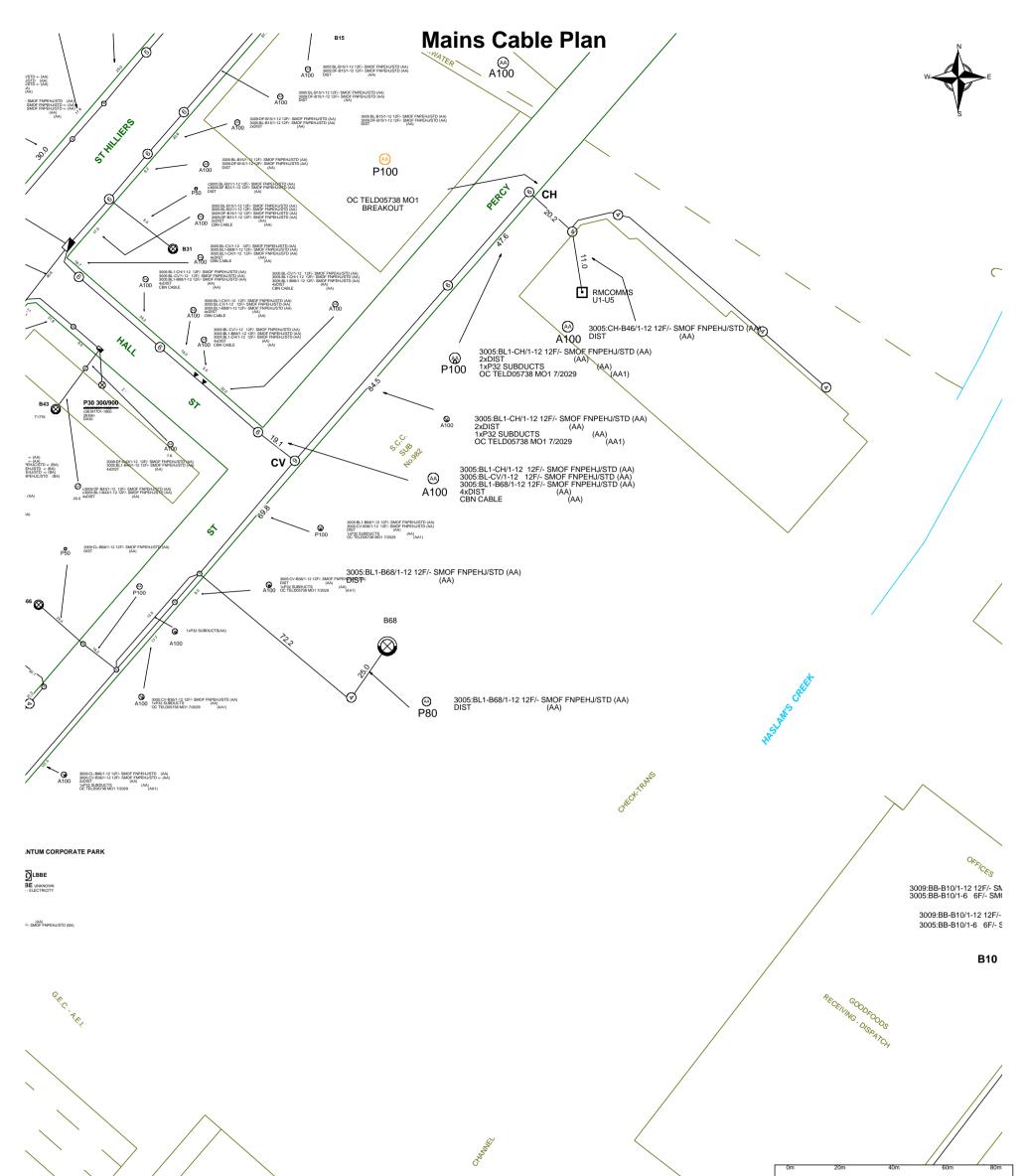
WARNING: This document is confidential and may also be privileged. Confidentiality nor privilege is not waived or destroyed by virtue of it being transmitted to an incorrect addressee. Unauthorised use of the contents is therefore strictly prohibited. Any information contained in this document that has been extracted from our records is believed to be accurate, but no responsibility is assumed for any error or omission. Optus Plans and information supplied are valid for 30 days from the date of issue. If this timeline has elapsed please raise a new enquiry.


Sequence Number: 86667918




For all Optus DBYD plan enquiries – Email: <u>Fibre.Locations@optus.net.au</u> For urgent onsite assistance contact 1800 505 777 Optus Limited ACN 052 833 208

šn. 30.		
T elstra	For all Telstra DBYD plan enquiries -	Sequence Number: 86667917
email - Telstra.Plans@team.telstra.com For urgent onsite contact only - ph 1800 653 935 (b		CAUTION: Fibre optic and/ or major network present in plot area. Please read the Duty of Care and
TELSTRA C	ORPORATION LIMITED A.C.N. 051 775 556	
Gene	erated On 14/08/2019 08:55:27	contact Telstra Plan Services should you require any assistance.


The above plan must be viewed in conjunction with the Mains Cable Plan on the following page

WARNING - Due to the nature of Telstra underground plant and the age of some cables and records, it is impossible to ascertain the precise location of all Telstra plant from Telstra's plans. The accuracy and/or completeness of the information supplied can not be guaranteed as property boundaries, depths and other natural landscape features may change over time, and accordingly the plans are indicative only. Telstra does not warrant or hold out that its plans are accurate and accepts no responsibility for any inaccuracy shown on the plans.

It is your responsibility to locate Telstra's underground plant by careful hand pot-holing prior to any excavation in the vicinity and to exercise due care during that excavation.

Please read and understand the information supplied in the duty of care statement attached with the Telstra plans. TELSTRA WILL SEEK COMPENSATION FOR LOSS CAUSED BY DAMAGE TO ITS PLANT.

Telstra plans and information supplied are valid for 60 days from the date of issue. If this timeframe has elapsed, please reapply for plans.

T elstra	For all Telstra DBYD plan enquiries - email - Telstra.Plans@team.telstra.com	Sequence Number: 86667917
	For urgent onsite contact only - ph 1800 653 935 (bus hrs)	CAUTION: Fibre optic and/ or major network present in plot area. Please read the Duty of Care and
TELSTRA C	ORPORATION LIMITED A.C.N. 051 775 556	
Gene	erated On 14/08/2019 08:55:29	contact Telstra Plan Services should you require any assistance.

WARNING - Due to the nature of Telstra underground plant and the age of some cables and records, it is impossible to ascertain the precise location of all Telstra plant from Telstra's plans. The accuracy and/or completeness of the information supplied can not be guaranteed as property boundaries, depths and other natural landscape features may change over time, and accordingly the plans are indicative only. Telstra does not warrant or hold out that its plans are accurate and accepts no responsibility for any inaccuracy shown on the plans.

It is your responsibility to locate Telstra's underground plant by careful hand pot-holing prior to any excavation in the vicinity and to exercise due care during that excavation.

Please read and understand the information supplied in the duty of care statement attached with the Telstra plans. TELSTRA WILL SEEK COMPENSATION FOR LOSS CAUSED BY DAMAGE TO ITS PLANT.

Telstra plans and information supplied are valid for 60 days from the date of issue. If this timeframe has elapsed, please reapply for plans.

ATTACHMENT C

Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au

2001029	Project Number:
1.00 m	Hole Depth:
26/05/2020	Date Started:
26/05/2020	Date Completed:

Project Name:	Vapour Well Install
Location / Site:	Auburn NSW
Client:	Fabcot Pty Ltd
Contractor:	Terratest Pty Ltd
Method:	Push Tube

Method	Water Level	Depth (mBGL)	Material Type	USCS Symbol	Graphic Log	Material Description	Moisture	Observations / Comments	Well Details	Well Construction
		_0.1 0.15				FILL - moderate yellowish brown (10YR 5/4), 20% clay, 10% silt, 30% sand, 40% gravel, moderately compacted. FILL - pale yellowish brown (10YR 6/2) and dark yellowish orange (10YR 6/6), 10%	damp	a 10 Fibre like fill mixed.		h Gatic
		0.2 0.3 0.40	E			silt, 90% sand, poorly compacted.			-	∱ Bentonite
.reumad.com.au PT	-	<u>0</u> .5 _0.6		СН		CLAY - moderate yellowish brown (10YR 5/4), 90% clay, 10% sand, medium to high plasticity, soft.	moist		4	Teflon Tube
GL.GDT 7/16/20 8:32:47 AM - drawn by laurie white at www.reumad.com.au		_0.7 _0.8 	Natural					0.75 0.80		mplant Sand
8:32:47 AM - dr		1.0		СН		CLAY with Sand - moderate yellowish brown (10YR 5/4), 80% clay, 20% sand, medium to high plasticity, soft. Terminated at 1.000 m Target depth.	moist	0.95	U	
		_1.1 _1.2								
0ATED 20200716.G		_ ^{1.3}								
		dium v		D U B R C J	Undist Bulk Repre Contin	bed SPT Standard Penetration Test burbed DCP Dynamic Cone Penetrometer PP Pocket Penetrometer sentative Water Levels Ducus Encountered Groundwater				

Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au

Project Number:	2001029
Hole Depth:	0.80 m
Date Started:	26/05/2020
Date Completed:	26/05/2020

Project Name:	Vapour Well Install
Location / Site:	Auburn NSW
Client:	Fabcot Pty Ltd
Contractor:	Terratest Pty Ltd
Method:	Push Tube

					Moisture		Well Details	0 11 101
_0.1				FILL - moderate yellowish brown (10YR 5/4) and pale yellowish brown (10YR 6/2) and greyish orange (10YR 7/4), 65% clay, 10% sand, 25% gravel, low plasticity, moderately compacted.	damp	0.10		
_0.3	Fill						4	
_0.6 <u>0.65</u> _0.7	Natural	СН		CLAY with Silt - brownish grey (5YR 4/1), 80% clay, 20% silt, high plasticity, soft.	moist	0.55 0.60 0.75		
0.8				Terminated at 0.800 m Target depth.			<u></u>	-1
_1.1 _1.2 _1.3								
1.4 iation rbon O um		D U B R C J	Disturl Undist Bulk Repre Contin Jar	bed SPT Standard Penetration Test breve DCP Dynamic Cone Penetrometer PP Pocket Penetrometer sentative Water Levels V Encountered Groundwater				
	.0.0 .0.0 .0.0 .1.1 .1.2 .3 .3	1.3 International Internationa	0.3 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	1.3 Image: Constraint of the second	3 E CLAY with Silt - brownish grey (5YR 4/1), 80% clay, 20% silt, high plasticity, soft. 7 E CLAY with Silt - brownish grey (5YR 4/1), 80% clay, 20% silt, high plasticity, soft. 7 E CLAY with Silt - brownish grey (5YR 4/1), 80% clay, 20% silt, high plasticity, soft. 7 E CLAY with Silt - brownish grey (5YR 4/1), 80% clay, 20% silt, high plasticity, soft. 9 Image: Comparison of the second sec	3 Image: Second Provide	13 14 15 15 15 15 15 15 15 14 16 17 18 17 18 17 18 17 18 17 18 17 18 10 <t< td=""><td>13 Image: Section Provided Pr</td></t<>	13 Image: Section Provided Pr

Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au

Project Number:	2001029
Hole Depth:	1.00 m
Date Started:	26/05/2020
Date Completed:	26/05/2020

Project Name:	Vapour Well Install
Location / Site:	Auburn NSW
Client:	Fabcot Pty Ltd
Contractor:	Geo-Logix
Method:	Hand Auger

3LL0G2020

Method	Water Level	Depth (mBGL)	Material Type	USCS Symbol	Graphic Log	Material Description	Moisture	Observations / Comments
		_0.1	Fil			FILL - moderate yellowish brown (10YR 5/4), and greyish orange (10YR 7/4), 65% clay, 10% sand, 25% gravel, low plasticity, moderately compacted.	damp	
		0.20 0.3 0.4 0.5 0.6 0.7	Natural	CL		CLAY with Silt - moderate reddish brown (10R 4/6), 80% clay, 20% silt, high plasticity, soft.	moist	
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	_0.9 1.0 _1.1 _1.2 _1.3				Terminated at 1.000 m Target depth.	wet	
H H H H H		viatior arbon C n fium		D U B R C J	Undist Bulk Repre Contin	bed SPT Standard Penetration Test FK Wein Installed. Urbed DCP Dynamic Cone Penetrometer PP Pocket Penetrometer sentative uous ↓ Encountered Groundwater		

Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au

2001029	Project Number:
0.80 m	Hole Depth:
26/05/2020	Date Started:
26/05/2020	Date Completed:

Project Name:	Vapour Well Install
Location / Site:	Auburn NSW
Client:	Fabcot Pty Ltd
Contractor:	Terratest Pty Ltd
Method:	Push Tube

Method	Water Level	Depth (mBGL)	Material Type	USCS Symbol	Graphic Log	Material Description	Moisture	Observations / Comments	Well Details	
		0.10	ΠI			FILL - dusky red (5R 3/4), 30% clay, 70% sand, moderately compacted.	damp	a.10	100K @00K @	
	-	_0.2				CLAY - moderate reddish brown (10R 4/6) and pale red (10R 6/2), 85% clay, 15% sand, medium plasticity, stiff.	moist			4
ΡΤ	-	_0.4 _0.5	Natural	CL				0.55	4	
	-	_0.7				Terminated at 0.800 m		0.60		
	-	_0.9				Target depth.				
	-	_1.1								
		_1.3 1.4 iation			Sample Ty	Additional Comments				
H M L	High Medi	um		L E F J	D Distur U Undis B Bulk R Repre C Contir	bed SPT Standard Penetration Test turbed DCP Dynamic Cone Penetrometer PP Pocket Penetrometer seantative Turous Veter Levels Encountered Groundwater				
R	[U		A	Þ	Log Drawn By: Laurie White Logged By: Caden Peng Contact: laurie.white@reumad.com.au Checked By: Kiran Baby	jelly	Date: 26/05/2020 Date: 16/07/2020		

Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au

Project Number:	2001029
Hole Depth:	0.80 m
Date Started:	26/05/2020
Date Completed:	26/05/2020

Project Name:	Vapour Well Install
Location / Site:	Auburn NSW
Client:	Fabcot Pty Ltd
Contractor:	Terratest Pty Ltd
Method:	Push Tube

Method	Water Level	Depth (mBGL)	Material Type	USCS Symbol	Graphic Log	Material Description	Moisture	Observations / Comments	Well Details	Moll Construction
		_0.1				FILL - moderate yellowish brown (10YR 5/4) and dark yellowish orange (10YR 6/6) and greyish orange (10YR 7/4), 50% clay, 20% sand, 30% gravel, low plasticity, moderately compacted.	damp	a.10		
PT		_0.3 _0.40	Fill							4
₽		0.5	اد			CLAY - olive grey (5Y 4/1), 90% clay, 10% sand, high plasticity, firm.	moist	0.55	<	
		_0.6	Natural	СН				0.60		
		0.8				Terminated at 0.800 m Target depth.			<u></u>	
		_1.0 _1.1								
		_1.2								
Hyd H M		ium		S	Undis	bed SPT Standard Penetration Test				
Z	Zero			F C J	R Repre	sentative Water Levels	gelly	Date: 26/05/2020 Date: 16/07/2020		

eumad	Log Drawn By:	Laurie White	Logged By: Caden Pengelly		Date:	26/05/2020
	Contact:	laurie.white@reumad.com.au	Checked By:	Kiran Baby	Date:	16/07/2020

Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au

Project Number:	2001029
Hole Depth:	3.10 m
Date Started:	26/05/2020
Date Completed:	26/05/2020

Project Name:	Vapour Well Install
Location / Site:	Auburn NSW
Client:	Fabcot Pty Ltd
Contractor:	Terratest Pty Ltd
Method:	Push Tube

GLOG2020

Method	Water Level	Depth (mBGL)	Material Type	USCS Symbol	Graphic Log	Material Description	Moisture	Observations / Comments	Well Details	Well Construction
00		0.1				CONCRETE HARDSTAND.				⊈ Gatic
Ō	-	0.20				FILL - pale brown (5YR 5/2), 85% clay, 15% sand, low plasticity, well compacted.	moist	Aggregate, glass, plastic, steel.	A A A	Grout
		_0.4 _0.5 _0.6						0.40	P S	N Q
		0.7								0
		_0.9 _1.0								∱ Bentonite
au		_1.1 _1.2 _1.3								
umad.com.		_1.4 _1.5	Fill						V	Teflon Tube
PT		_1.6 _1.7 _1.8								-
laurie white		_1.9 _2.0						1.95 2.00		∱ Sand
- drawn by		_2.1 _2.2 _2.3						2.15	ŀŀ	Imp.
GL/GUT //16/20 8:32:38 AM - drawn by laurle white at www.reumag.com.au PT		_2.4 _2.5								
//16/20		2.60 2.7 2.8				CLAY - moderate orange pink (10R 7/4), 85% clay, 15% sand, medium plasticity, stiff.	moist		-	∱ Bentonite
		_2.9 _3.0	Nat.	CL						
200/16.61		3.1 _3.2				Terminated at 3.100 m Target depth.				
		_3.3 3.4								
Ону ИХН		viatior arbon C h dium		S		bed SPT Standard Penetration Test				
101029 AUE N T	Low Zero	1		B R C J	Bulk	PP Pocket Penetrometer sentative uous Vater Levels Encountered Groundwater				

Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au

Project Number:	2001029
Hole Depth:	0.80 m
Date Started:	26/05/2020
Date Completed:	26/05/2020

Project Name:	Vapour Well Install
Location / Site:	Auburn NSW
Client:	Fabcot Pty Ltd
Contractor:	Terratest Pty Ltd
Method:	Push Tube

Method	Water Level	Depth (mBGL)	Material Type	USCS Symbol	Graphic Log	Material Description	Moisture	Observations / Comments	Well Details	Well Construction
	-	_0.1				Gravel surface CLAY - dusky brown (5YR 2/2), 90% clay, 10% sand, firm, medium dense.	moist	0.10		
ΡΤ	-	_0.4 _0.5 _0.6 _0.7	Natural	CL				0.55 0.60 0.75		
	-	_0.9 _1.0 _1.1				Terminated at 0.800 m Target depth.				
Abb Hydi H I M I L I Z 2	previ irocar High Mediu Low Zero	_1.3 1.4 iation rbon C	IS Odour	S D U U B B R C J J A	ample Ty Distur Undist Bulk Reprevent Sab Asbes	bed SPT Standard Penetration Test urbed DCP Dynamic Cone Penetrometer PP Pocket Penetrometer sentative Water Levels V Encountered Groundwater				
R	6	J	-	A	Þ	Log Drawn By: Laurie White Logged By: Ted Lilly Contact: laurie.white@reumad.com.au Checked By: Kiran Baby		Date: 26/05/2020 Date: 16/07/2020		_

Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au

Project Number:	2001029
Hole Depth:	0.80 m
Date Started:	26/05/2020
Date Completed:	26/05/2020

Project Name:	Vapour Well Install
Location / Site:	Auburn NSW
Client:	Fabcot Pty Ltd
Contractor:	Terratest Pty Ltd
Method:	Push Tube

Method	Water Level	Depth (mBGL)	Material Type	USCS Symbol	Graphic Log	Material Description	Moisture	Observations / Comments	Well Details	
	-	0.05 _0.1 0.15 0.2	Fill			ASPHALT. FILL - moderate brown (5YR 3/4), 30% clay, 60% sand, 10% gravel, moderately compacted. CLAY - moderate brown (5YR 3/4), 90% clay, 10% sand, medium plasticity, firm.	wet	0.10		
РТ		_0.3	Natural	CL					4	3
	-	_0.5 _0.6	Nat	OL				0.55 0.60 0.75		·
		0.8 0.9				Terminated at 0.800 m Target depth.				
		_1.1								
Hydr H H M N	previ rocar High Mediu	_1.3 1.4 iation rbon O		D U	Undist	bed SPT Standard Penetration Test turbed DCP Dynamic Cone Penetrometer				
L L Z Z	Low Zero			B R C J A	Bulk Repre Contir	PP Pocket Penetrometer sentative Juous Vater Levels Locumbered Groundwater		Date: 26/05/2020 Date: 16/07/2020		

Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au

Project Number:	2001029
Hole Depth:	0.80 m
Date Started:	26/05/2020
Date Completed:	26/05/2020

Project Name:	Vapour Well Install
Location / Site:	Auburn NSW
Client:	Fabcot Pty Ltd
Contractor:	Terratest Pty Ltd
Method:	Push Tube

Method Water Level	Depth (mBGL)	Material Type	USCS Symbol	Graphic Log	Material Description	Moisture	Observations / Comments	Well Details	Well Construction
	_0.1 0.20				FILL - dark yellowish orange (10YR 6/6), 30% clay, 70% sand, moderately compacted.	damp	0.10		
Id	_0.3	III.			FILL - light brownish grey (5YR 6/1), 30% clay, 20% sand, 50% gravel, moderately compacted.	damp		~	
	<u>0</u> .5 0.60				CLAY - olive grey (5Y 4/1), 90% clay, 10% sand, high plasticity, firm.	moist	0.55 0.60		•
	0.7	Natural	СН		Terminated at 0.800 m Target depth.		0.75		
	_0.9								
	_1.2								
Abbrev Hydroca H High M Med L Low Z Zerc	arbon C n dium		D U B R C J	Undist Bulk Repres	bed SPT Standard Penetration Test DCP Dynamic Cone Penetrometer PP Pocket Penetrometer uous Verter Verter Verter Encountered Groundwater				

Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au

Project Number:	2001029
Hole Depth:	3.00 m
Date Started:	26/05/2020
Date Completed:	26/05/2020

Project Name:	Vapour Well Install
Location / Site:	Auburn NSW
Client:	Fabcot Pty Ltd
Contractor:	Terratest Pty Ltd
Method:	Push Tube

Method	Water Level	Depth (mBGL)	Material Type	USCS Symbol	Graphic Log	Material Description	Moisture	Observations / Comments	Well Details	Moll Construction
8		-				CONCRETE HARDSTAND.				
_		0.30 0.35	Fill			∖ FILL - 100% sand, well compacted, bedding sand.	n damp ₁	0.30		
		0.5			\overline{V}	CLAY - moderate orange pink (10R 7/4), 85% clay, 15% sand, firm.	moist			
РТ		1_0 	Natural	CL				1.95 2.00	~	4
7	⊻	- - <u>2.50</u> - - -		CL		CLAY - olive grey (5Y 4/1), 90% clay, 10% sand, soft, organics.	wet	2 15 2 20	J	4
+	_	3.0				Terminated at 3.000 m				-
Abi	brev	- - riatior	IS			Target depth. Additional Comments				
Hyd H M L		i rbon (i ium		L E F J	3 Bulk	ype Strength Testing bed SPT Standard Penetration Test burbed DCP Dynamic Cone Penetrometer PP Pocket Penetrometer unuus Variantice Fraction Test Dester Encountered Groundwater Encountered Groundwater				
R	0	l		A	Þ	Log Drawn By: Laurie White Logged By: Ted Lilly Contact: laurie.white@reumad.com.au Checked By: Kiran Baby		Date: 26/05/2020 Date: 16/07/2020		

Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au

Project Number:	2001029
Hole Depth:	3.00 m
Date Started:	26/05/2020
Date Completed:	26/05/2020

Project Name:	Vapour Well Install
Location / Site:	Auburn NSW
Client:	Fabcot Pty Ltd
Contractor:	Terratest Pty Ltd
Method:	Push Tube

Method	Water Level	Depth (mBGL)	Material Type	USCS Symbol	Graphic Log	Material Description	Moisture	Observations / Comments	Well Details	Well Construction
	Wate	<u>1.70</u> <u>1.70</u> <u>2.0</u>	Natural Mater	CL CL GP		Sandy CLAY - pale brown (5YR 5/2), 60% clay, 40% sand, firm. CLAY - pale brown (5YR 5/2) and dark yellowish orange (10YR 6/6) and greyish pink (5R 8/2) and moderate reddish brown (10R 4/6), 90% clay, 10% sand, low plasticity, soft, becoming stiffer with some shale like components. Clayey Sandy GRAVEL - moderate yellowish brown (10YR 5/4) and light brown (5YR 5/6), 20% clay, 30% sand, 50% gravel, loose, increasing shale component & hard rock. SHALE BAND - greyish orange pink (5YR 7/2). CLAY with Sand - greyish orange pink (5YR 7/2) and greyish orange (10YR 7/4), 80% clay, 20% sand, soft, ironstone component at transition with next layer.	dry		Well	Bentonite
ED 20200716.GPJ GL.GDT 7/16/20 8:33:10 AM - drawn by laurie white at www.reumad.com.au		- - - - - - 3.0		CL		CLAY with Sand - greyish orange pink (5YR 7/2), 80% clay, 20% sand, very soft. Terminated at 3.000 m Target depth.	-	275 280 295		Imp. Sand Tube
		lium		D U B R C J	Repre	bed SPT Standard Penetration Test Urbed DCP Dynamic Cone Penetrometer PP Pocket Penetrometer sentative uuous Veter Levels Encountered Groundwater				

Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au

2001029	Project Number:
2.00 m	Hole Depth:
26/05/2020	Date Started:
26/05/2020	Date Completed:

Project Name:	Vapour Well Install
Location / Site:	Auburn NSW
Client:	Fabcot Pty Ltd
Contractor:	Terratest Pty Ltd
Method:	Push Tube

3LL0G2020

Method	Water Level	Depth (mBGL)	Material Type	USCS Symbol	Graphic Log	Material Description	Moisture	Observations / Comments	Well Details	Well Construction
GL.GDT 7/16/20 8:33:13 AM - drawn by laurie white at www.reumad.com.au PT		- - - - - - - - - - - - - - - - - - -	Natural	CL		CLAY with Sand - moderate yellowish brown (10YR 5/4) and greyish orange (10YR 7/4) and greyish orange pink (10R 8/2) and moderate reddish brown (10R 4/6), 60% clay, 10% silt, 30% sand, low plasticity, firm. CLAY with Sand - moderate yellowish brown (10YR 5/4), 60% clay, 10% silt, 30% sand, low plasticity, firm, becoming stiffer, increasing clay. CLAY with Silt - 70% clay, 30% silt, stiff.	damp dry to damp			Implant Sand Tefton Tube Bentonite Grout Gatic
UBURN UPDATED 20200716.GPJ 「ミエチ ま 」		lium		L E F J	Undist Bulk Repre Contir	bed SPT Standard Penetration Test burbed DCP Dynamic Cone Penetrometer PP Pocket Penetrometer sentative Water Levels Lucus Encountered Groundwater				

Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au

Project Number:	2001029
Hole Depth:	0.80 m
Date Started:	26/05/2020
Date Completed:	26/05/2020

Project Name:	Vapour Well Install
Location / Site:	Auburn NSW
Client:	Fabcot Pty Ltd
Contractor:	Terratest Pty Ltd
Method:	Push Tube

Method	Water Level	Depth (mBGL)	Material Type	USCS Symbol	Graphic Log	Material Description	Moisture	Observations / Comments	Well Details	Well Construction
	-	_0.1				CLAY - dark yellowish orange (10YR 6/6), 85% clay, 15% sand, medium plasticity, firm.	moist	a.10		↓ ↓
PT	-	-	Natural	CL				0.55 0.60		· · · ·
		0.7				Terminated at 0.800 m Target depth.		0.75		
		<u>1.0</u> 1.1								
	orevia rocarl High	_1.3 1.4 ation bon O		D	Undist	bed SPT Standard Penetration Test turbed DCP Dynamic Cone Penetrometer				
Hydr H H	orevia rocarl High Mediu Low	1.4 iation		D U B R C J	Distur Undist Bulk Repre Contir	ype Strength Testing bed SPT Standard Penetration Test burbed DCP Dynamic Cone Penetrometer PP Pocket Penetrometer sentative Water Levels V Encountered Groundwater				

Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au

2001029	Project Number:
0.60 m	Hole Depth:
26/05/2020	Date Started:
26/05/2020	Date Completed:

Project Name:	Vapour Well Install
Location / Site:	Auburn NSW
Client:	Fabcot Pty Ltd
Contractor:	Terratest Pty Ltd
Method:	Push Tube

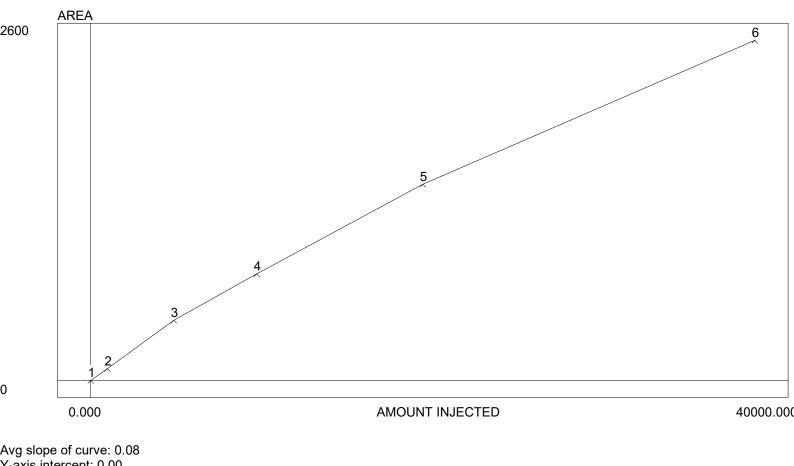
Method	Water Level	Depth (mBGL)	Material Type	USCS Symbol	Graphic Log	Material Description	Moisture	Observations / Comments	Well Details	Moll Construction
		_0.1		CL		CLAY - greyish orange (10YR 7/4), 70% clay, 30% sand, low plasticity, firm.	moist	0.10		
PT		<u>0.30</u> _0.4	Natural	сн		CLAY - olive grey (5Y 4/1), 90% clay, 10% sand, high plasticity, firm.	moist	0.35 0.40 0.55		· · · · · · · · · · · · · · · · · · ·
		0.6 _0.7 _0.8 _0.9 _1.0 _1.1				Terminated at 0.600 m Target depth.				
Hyc H M L		lium		L E F	C Contir	bed SPT Standard Penetration Test burbed DCP Dynamic Cone Penetrometer PP Pocket Penetrometer sentative Water Levels Turus Encountered Groundwater				
ſ	6				Jar	Luous		Date: 26/05/2020 Date: 16/07/2020		

Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au

2001029	Project Number:
3.00 m	Hole Depth:
26/05/2020	Date Started:
26/05/2020	Date Completed:

Project Name:	Vapour Well Install
Location / Site:	Auburn NSW
Client:	Fabcot Pty Ltd
Contractor:	Terratest Pty Ltd
Method:	Push Tube

Method	Water Level	Depth (mBGL)	Material Type	USCS Symbol	Graphic Log	Material Description	Moisture	Observations / Comments	Well Details	
S		0.1 0.20 0.30 0.4 0.50 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3	Fill			CONCRETE HARDSTAND. FILL - 20% sand, 80% gravel, aggregate. FILL - greyish orange (10YR 7/4), 70% clay, 30% sand, low plasticity, well compacted. CLAY - moderate orange pink (10R 7/4), 90% clay, 10% sand, medium plasticity, stiff.	damp moist	0.90	4 0 4 0 4 0 4 0 4 0 4 0 4	
PT		1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5	Natural	CL				1.95 2.00 2.15 2.20		
Ab	bbrev	_2.6 _2.7 _2.8 _2.9 _3.0 _3.1 _3.2 _3.3 _3.4				Terminated at 3.000 m Target depth. Additional Comments				
Hyc H M L Z	droca High Med Low Zerc	dium / D	Ddour	L E F C J	C Contir	bed SPT Standard Penetration Test turbed DCP Dynamic Cone Penetrometer PP Pocket Penetrometer seantative Turous Veter Levels Encountered Groundwater		Date: 26/05/2020 Date: 16/07/2020		


Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au

2001029	Project Number:
2.80 m	Hole Depth:
15/06/2020	Date Started:
15/06/2020	Date Completed:

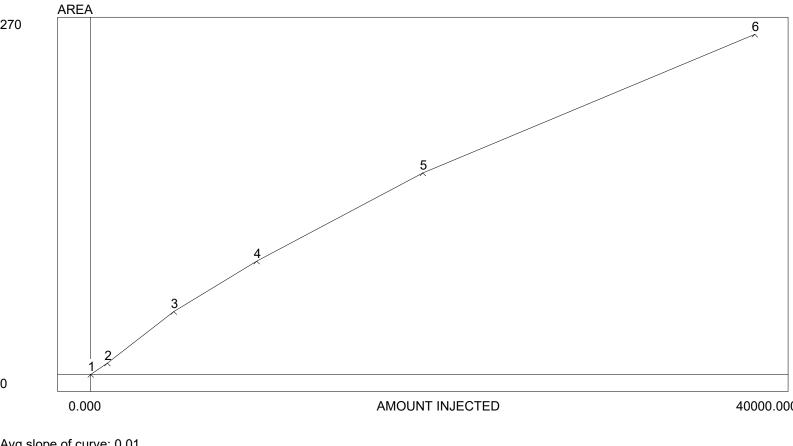
Project Name:	Vapour Well Install
Location / Site:	Auburn NSW
Client:	Fabcot Pty Ltd
Contractor:	Fico Group Pty Limited
Method:	Solid Flight Auger

Visit CLAY with Sand & Silt - moderate brown (5YR 3/4), 50% clay, 20% silt, 30% sand, axis damp 0.1 CLAY - light brown (5YR 5/6), 90% clay, 10% sand, medium plasticity, soft. damp 0.4 CLAY - light brown (5YR 5/6), 90% clay, 10% sand, medium plasticity, soft. damp 0.4 CLAY - light brown (5YR 5/6), 90% clay, 10% sand, medium plasticity, soft. damp 0.5 CLAY - light brown (5YR 5/6), 90% clay, 10% sand, medium plasticity, soft. damp 0.6 CLAY with Sand - dark yellowish orange (10YR 6/6) and pale yellowish brown dry 1.5 CLAY with Sand - dark yellowish orange (10YR 6/6) and pale yellowish brown dry 1.5 CLAY with Sand - dark yellowish orange (10YR 6/6) and pale yellowish brown dry 1.5 CLAY with Sand - dark yellowish orange (10YR 6/6) and pale yellowish brown dry 1.5 CLAY - pale yellowish brown (10YR 6/2), 90% clay, 10% sand, low plasticity, firm. dry 2.5 CLAY - pale yellowish brown (10YR 6/2), 90% clay, 10% sand, low plasticity, firm. dry	Method Water Level	Depth (mBGL)	Material Type	USCS Symbol	Graphic Log	Material Description	Moisture	Observations / Comments	Well Details	
U 0.0		_0.2 0.30	_	CL		medium plasticity, soft.				
Y ^{1,2} ^{1,3} ^{1,4} ^{1,5} ^{1,6} ^{1,6} ^{1,7} ^{1,8} ^{1,7} ^{1,8} ^{1,9} ^{2,0} ^{2,1} ^{2,2} ^{2,3} ^{2,4} ^{2,4} ^{2,6} ^{2,6} ^{2,7} ^{2,6} ^{2,6} ^{2,7} ^{2,7} ^{2,6} ^{2,7} ^{2,7} ^{2,7} ^{2,6} ^{2,7} ^{2,7} ^{2,6} ^{2,7}		0.5 0.6 0.7 0.8 0.9 1.0		CL			Gamp	1.00		
19 CL 20 20 21 20 21 20 22 23 23 24 250 26 26 2.1 27 CL AY - pale yellowish brown (10YR 6/2), 90% clay, 10% sand, low plasticity, firm. dry 250 250 26 2.1 27 CL AY - pale yellowish brown (10YR 6/2), 90% clay, 10% sand, low plasticity, firm. dry	SFA	_1.2 _1.3 _1.4 _1.5 _1.6 _1.7				CLAY with Sand - dark yellowish orange (10YR 6/6) and pale yellowish brown (10YR 6/2), 80% clay, 20% sand, low plasticity, stiff.	dry		-	4
CLAY - pale yellowish brown (10YR 6/2), 90% clay, 10% sand, low plasticity, firm. dry		_1.9 _2.0 _2.1 _2.2 _2.3		CL					-	
		_2.6 _2.7		CL		CLAY - pale yellowish brown (10YR 6/2), 90% clay, 10% sand, low plasticity, firm.	dry	2.60		
3.4	Hydro H Hig M Me L Lo	eviation carbon (igh edium		L E F J	Distur Undist Bulk Repre Contir Jar	bed SPT Standard Penetration Test turbed DCP Dynamic Cone Penetrometer PP Pocket Penetrometer seantative Turous Veter Levels Encountered Groundwater				<u> </u>
Abbreviations Additional Comments Hydrocarbon Odour Sample Type Strength Testing H High D Disturbed SPT Jar Continuous Jar Encountered Groundwater		1-1	ŀN		Þ	Log Drawn By: Laurie White Logged By: Caden Pene Contact: laurie.white@reumad.com.au Checked By: Kiran Baby	gelly	Date: 15/06/2020		_

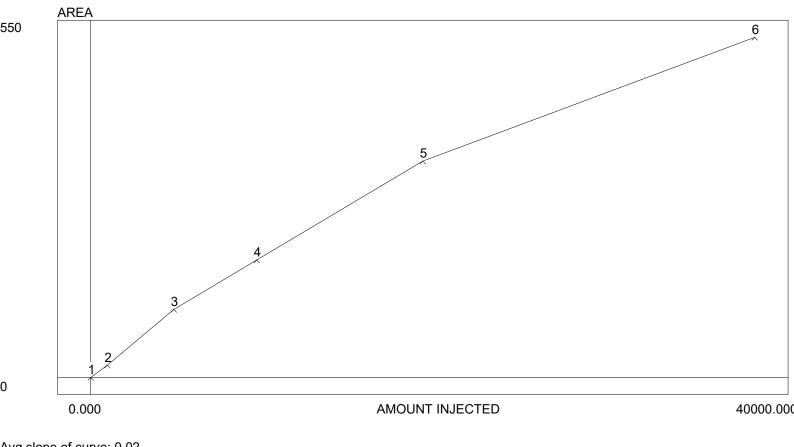
ATTACHMENT D

Avg slope of curve: 0.08 Y-axis intercept: 0.00 Linearity: 0.82 Number of levels: 6 SD/rel SD of CF's: 0.0/51.2 Y=<multi-line> r2: 1.0000 Last calibrated: Fri Apr 05 07:43:20 2019

Lvl	. Area/ht.	Amount	CF	Current	Previous #1	Previous #2
1	0.000	0.000	0.000	0.000	N/A	N/A
2	91.000	1000.000	0.091	91.000	N/A	N/A
3	460.000	5000.000	0.092	460.000	N/A	N/A
4	815.000	10000.000	0.082	815.000	N/A	N/A
5	1500.000	20000.000	0.075	1500.000	N/A	N/A
6	2600.000	40000.000	0.065	2600.000	N/A	N/A


Calibration file: C:\peak454-64bitWin10\cis DCE Hi Range Hi gain.cal

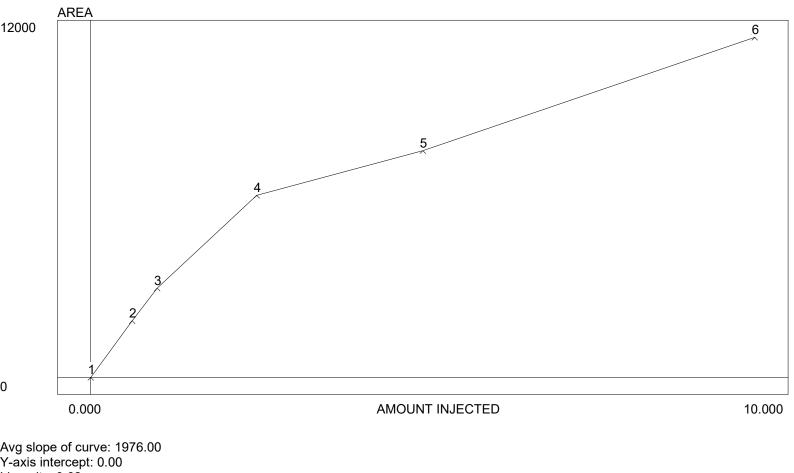
Y-axis intercept: 0.00 Linearity: 0.60 Number of levels: 5 SD/rel SD of CF's: 0.1/65.2 Y=<multi-line> r2: 1.0000 Last calibrated: Thu Nov 15 11:58:10 2018


Lvl	. Area/ht.	Amount	CF	Current	Previous #1	Previous #2
1	0.000	0.000	0.000	0.000	N/A	N/A
2	150.000	1000.000	0.150	150.000	N/A	N/A
3	1060.000	3200.000	0.331	1060.000	N/A	N/A
4	1847.000	6400.000	0.289	1847.000	N/A	N/A
5	3034.000	12800.000	0.237	3034.000	N/A	N/A

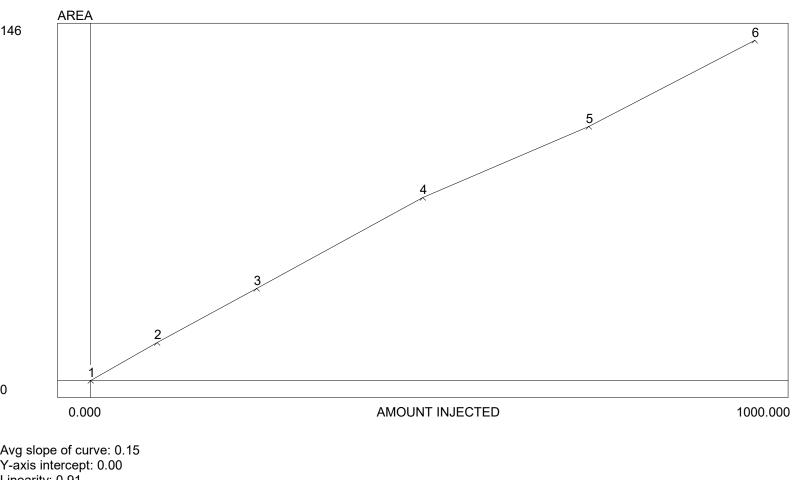
Calibration file: C:\peak454-64bitWin10\PID Ethyl B.cal


Avg slope of curve: 0.01 Y-axis intercept: 0.00 Linearity: 0.78 Number of levels: 6 SD/rel SD of CF's: 0.0/51.4 Y=<multi-line> r2: 1.0000 Last calibrated: Fri Apr 05 07:45:30 2019

Area/ht.	Amount	CF	Current	Previous #1	Previous #2
0.000	0.000	0.000	0.000	N/A	N/A
9.000	1000.000	0.009	9.000	N/A	N/A
50.000	5000.000	0.010	50.000	N/A	N/A
90.000	10000.000	0.009	90.000	N/A	N/A
160.000	20000.000	0.008	160.000	N/A	N/A
270.000	40000.000	0.007	270.000	N/A	N/A
	0.000 9.000 50.000 90.000 160.000	0.0000.0009.0001000.00050.0005000.00090.00010000.000160.00020000.000	0.0000.0000.0009.0001000.0000.00950.0005000.0000.01090.00010000.0000.009160.00020000.0000.008	0.0000.0000.0000.0009.0001000.0000.0099.00050.0005000.0000.01050.00090.00010000.0000.00990.000160.00020000.0000.008160.000	0.000 0.000 0.000 0.000 N/A 9.000 1000.000 0.009 9.000 N/A 50.000 5000.000 0.010 50.000 N/A 90.000 10000.000 0.009 90.000 N/A 90.000 10000.000 0.009 90.000 N/A 160.000 20000.000 0.008 160.000 N/A

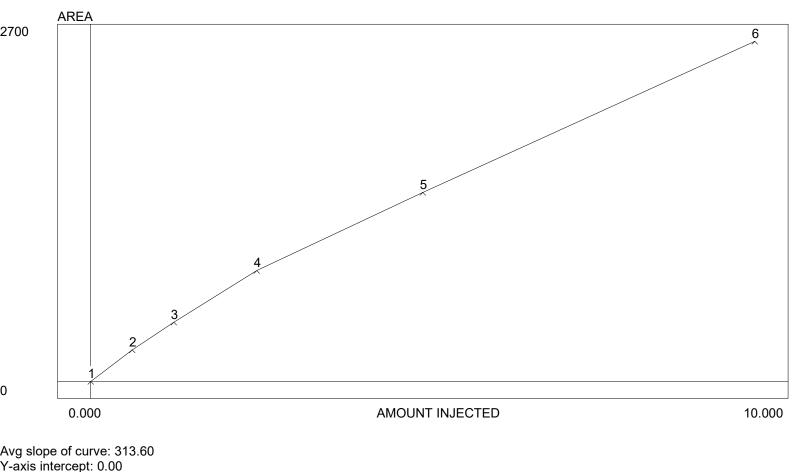

Avg slope of curve: 0.02 Y-axis intercept: 0.00 Linearity: 0.75 Number of levels: 6 SD/rel SD of CF's: 0.0/52.2 Y=<multi-line> r2: 1.0000 Last calibrated: Fri Apr 05 07:48:47 2019

Area/ht.	Amount	CF	Current	Previous #1	Previous #2
0.000	0.000	0.000	0.000	N/A	N/A
20.000	1000.000	0.020	20.000	N/A	N/A
110.000	5000.000	0.022	110.000	N/A	N/A
190.000	10000.000	0.019	190.000	N/A	N/A
350.000	20000.000	0.018	350.000	N/A	N/A
550.000	40000.000	0.014	550.000	N/A	N/A
	0.000 20.000 110.000 190.000 350.000	0.0000.00020.0001000.000110.0005000.000190.00010000.000350.00020000.000	0.0000.0000.00020.0001000.0000.020110.0005000.0000.022190.00010000.0000.019350.00020000.0000.018	0.0000.0000.0000.00020.0001000.0000.02020.000110.0005000.0000.022110.000190.00010000.0000.019190.000350.00020000.0000.018350.000	0.0000.0000.0000.000N/A20.0001000.0000.02020.000N/A110.0005000.0000.022110.000N/A190.00010000.0000.019190.000N/A350.00020000.0000.018350.000N/A

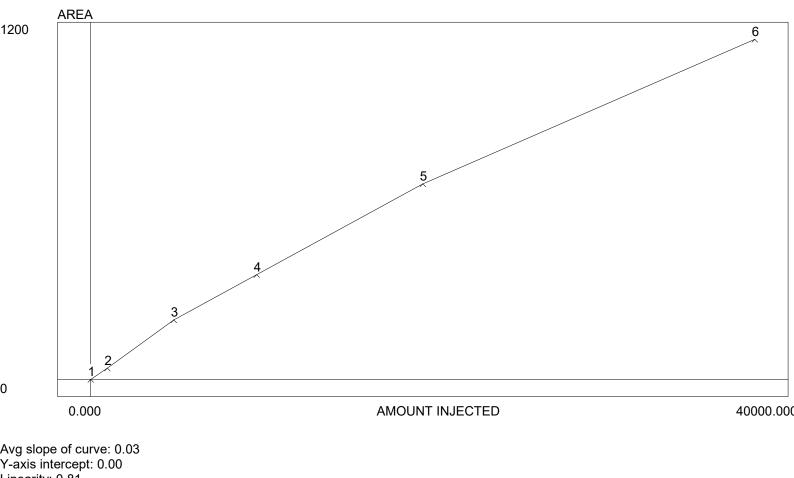


Avg slope of curve: 0.00 Y-axis intercept: 0.00 Linearity: 0.75 Number of levels: 5 SD/rel SD of CF's: 0.0/63.1 Y=<multi-line> r2: 1.0000 Last calibrated: Thu Dec 19 08:53:10 2019

Lvl	. Area/ht.	Amount	CF	Current	Previous #1	Previous #2
1	0.000	0.000	0.000	0.000	N/A	N/A
2	4.000	1000.000	0.004	4.000	N/A	N/A
3	20.000	5000.000	0.004	20.000	N/A	N/A
4	30.000	10000.000	0.003	30.000	N/A	N/A
5	140.000	65000.000	0.002	140.000	N/A	N/A



Avg slope of curve: 1976.00 Y-axis intercept: 0.00 Linearity: 0.62 Number of levels: 6 SD/rel SD of CF's: 1254.9/64.2 Y=<multi-line> r2: 1.0000 Last calibrated: Fri Feb 14 10:52:35 2020


Avg slope of curve: 0.15 Y-axis intercept: 0.00 Linearity: 0.91 Number of levels: 6 SD/rel SD of CF's: 0.1/49.3 Y=<multi-line> r2: 1.0000 Last calibrated: Tue Oct 16 14:13:44 2018

Lvl	. Area/ht.	Amount	CF	Current	Previous #	1Previous #2
1	0.000	0.000	0.000	0.000	N/A	N/A
2	16.300	100.000	0.163	16.300	N/A	N/A
3	39.500	250.000	0.158	39.500	N/A	N/A
4	78.550	500.000	0.157	78.550	N/A	N/A
5	109.000	750.000	0.145	109.000	N/A	N/A
6	146.000	1000.000	0.146	146.000	N/A	N/A

Avg slope of curve: 313.60 Y-axis intercept: 0.00 Linearity: 0.78 Number of levels: 6 SD/rel SD of CF's: 146.7/51.8 Y=<multi-line> r2: 1.0000 Last calibrated: Fri Jun 21 15:57:37 2019

Lvl	. Area/ht.	Amount	CF	Current	Previous #	1Previous #2
1	0.000	0.000	0.000	0.000	N/A	N/A
2	250.000	0.625	400.000	250.000	N/A	N/A
3	470.000	1.250	376.000	470.000	N/A	N/A
4	880.000	2.500	352.000	880.000	N/A	N/A
5	1500.000	5.000	300.000	1500.000	N/A	N/A
6	2700.000	10.000	270.000	2700.000	N/A	N/A

Avg slope of curve: 0.03 Y-axis intercept: 0.00 Linearity: 0.81 Number of levels: 6 SD/rel SD of CF's: 0.0/50.9 Y=<multi-line> r2: 1.0000 Last calibrated: Fri Apr 05 07:44:25 2019

Area/ht.	Amount	CF	Current	Previous #1	Previous #2
0.000	0.000	0.000	0.000	N/A	N/A
40.000	1000.000	0.040	40.000	N/A	N/A
210.000	5000.000	0.042	210.000	N/A	N/A
370.000	10000.000	0.037	370.000	N/A	N/A
690.000	20000.000	0.035	690.000	N/A	N/A
1200.000	40000.000	0.030	1200.000	N/A	N/A
	0.000 40.000 210.000 370.000 690.000	0.0000.00040.0001000.000210.0005000.000370.00010000.000690.00020000.000	0.0000.0000.00040.0001000.0000.040210.0005000.0000.042370.00010000.0000.037690.00020000.0000.035	0.0000.0000.0000.00040.0001000.0000.04040.000210.0005000.0000.042210.000370.00010000.0000.037370.000690.00020000.0000.035690.000	0.0000.0000.0000.000N/A40.0001000.0000.04040.000N/A210.0005000.0000.042210.000N/A370.00010000.0000.037370.000N/A690.00020000.0000.035690.000N/A

ATTACHMENT E

Site:	11-13 Percy St, Auburn
Instrument:	SRI 8610 Gas Chromatograph with ECD & PID
Operator:	D.Egelton
File Route	ECD Geo_Logix_Auburn-01+
Detction limit	Working Range of <1.0 to <50,000µg/m ³ for TCE and PCE
Date:	28-May-20

Date:	28-May	-20							
	-			ECD & PID DATA (units = µg/m3)					
Sample ID	FIELD PID	File	Analysis Time	TCE	PCE		Notes		
VP12	0.4	04	9:50	12	<5	Raised	DL due to interference		
VP11	0.5	05	10:01	1	<1				
VP1	1.2	06	10:17	2	<1				
VP2	0.9	07	10:29	4	<1				
VP9	2.6	08	10:37	<1	<1				
VP9 DUP	2.6	09	10:50	<1	<1		Duplicate		
VP7	2.4	10	11:04	<1	<1				
VP4	7.9	11	11:37	12,000	21				
VP4 DUP	7.9	12	11:49	10,500	15		Duplicate		
VP10	0.8	13	12:05	<1	<1				
VP6	1.2	14	12:19	<1	<8	Raised	DL due to interference		
VP16	3.2	15	12:35	<1	<4	Raised DL due to interference			
VP17		16	12:48	<1	<1				
VP18		17	12:59	<1	<1				
VP19		18	13:25	<1	<1				
			•	EC	units = μg/m³				
Sample ID	FIELD PID	File	Analysis Time	TrDCE	cDCE	IPA	Notes		
VP12	0.4	04	9:50	<40	<80	<50			
VP11	0.5	05	10:01	41	<80	<50			
VP1	1.2	06	10:17	<40	<80	<50			
VP2	0.9	07	10:29	<40	<80	<50			
VP9	2.6	08	10:37	80	<80	<50			
VP9 DUP	2.6	09	10:50	60	<80	<50	Duplicate		
VP7	2.4	10	11:04	<40	<80	<50			
VP4	7.9	11	11:37	250	1,100	<50			
VP4 DUP	7.9	12	11:49	240	1,000	<50	Duplicate		
VP10	0.8	13	12:05	<40	<80	<50			
VP6	1.2	14	12:19	<40	<80	<50			
VP16	3.2	15	12:35	60	<80	<50			
VP17		16	12:48	<40	<80	<50			
VP1/									
VP17 VP18		17	12:59	<40	<80	<50			

Site:	11-13 Percy St, Auburn
Instrument:	SRI 8610 Gas Chromatograph with ECD & PID
Operator:	D.Egelton
File Route	PID Geo_Logix_Auburn-01+
Detction limit	Working range of <60 to <300,000 μ g/m ³ for BTEX
Date:	28-May-20

		PID Data (units = μg/m3)					
Sample ID	Benzene	Toluene	Ethylbenze	M+P-	0-		
Sample ID	ample ID Benzene Toldene		ne	Xylene	Xylene	Notes	
VP12	<60	<100	<200	<300	<120		
VP11	<60	<100	<200	<300	<120		
VP1	<60	<100	<200	1,200	750.0		
VP2	<60	<100	<200	950	<120		
VP9	<60	<100	<200	2,800	2,900		
VP9 DUP	<60	<100	<200	2,500	2,000	Duplicate	
VP7	<60	<100	350	1,500	<120		
VP4	<60	<100	430	2,000	1,500		
VP4 DUP	<60	<100	340	1,900	1,500	Duplicate	
VP10	<60	<100	<200	<300	<120		
VP6	<60	<100	<200	<300	<120		
VP16	<60	<100	200	530	130		
VP17	80	<100	<200	<300	<120		
VP18	90	<100	<200	<300	<120		
VP19	<60	<100	<200	<300	<120		
	Metho	d Blanks ar	nd Site Calib	ration Che	ecks		
ID	PID	File	Time	Compound & Recovery %			
				TCE	PCE	T DCE	
Filtered Air	<1	01	9:08	ND	ND	ND	
Filtered Air	<1	19	13:55	ND	ND	ND	
10ppm	N/A	02	9:18	87%	91%	100%	
500ppm	N/A	03	9:29	73%	71%	100%	
		Duplicat	e RPD Value	s (%)			
Sample ID	TCE	RPD	PCE	RPD	M+P Xyl	RPD	
VP9	<1	0	<1	0	2,800	33	
VP9 DUP	<1	0	<1	0	2,000	55	
VP4	12,000	13	21	33	2,000	5	
VP4 DUP	10,500		15	55	1,900	J	
Sample ID	cDCE	RPD	tDCE	RPD	Ethyl B	RPD	
VP4	1,100	10	250	4	350	-21	
VP4 DUP	1,000	10	240	4	430	-21	
Sample ID	Ortho Xy	RPD					
VP9	2,900	37					
VP9 DUP	2,000	57					

Certificate of Analysis

Environment Testing

Geo-Logix P/L Bld Q2 Level 3, 2309/4 Daydream St Warriewood NSW 2102

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:

Ben Pearce

Report Project name Project ID Received Date **723076-TO-V4** AUBURN 2001029 Jun 02, 2020

Г			[
Client Sample ID			VP4
Sample Matrix			Thermal Desorption
Eurofins Sample No.			S20-Jn02504
Date Sampled			May 28, 2020
Receipt Vac./Pressure (inHg)			
Final Pressure (psi)			
Test/Reference	LOR	Unit	
US EPA Compendium Method TO-17	Lon	Onit	
1.1.1.2-Tetrachloroethane	0.004	mg/m3	< 0.004
1.2-Dibromo-3-chloropropane	0.004	mg/m3	< 0.004
1.2-Dibromoethane (EDB)	0.004	mg/m3	< 0.004
1.2.3-Trichloropropane	0.004	mg/m3	< 0.004
2-Chlorotoluene	0.004	mg/m3	< 0.004
4-Chlorotoluene	0.004	mg/m3	< 0.004
Bromobenzene	0.004	mg/m3	< 0.004
Bromodichloromethane	0.004	mg/m3	< 0.004
Bromoform	0.004	mg/m3	< 0.004
cis-1.3-Dichloropropene	0.004	mg/m3	< 0.004
Dibromochloromethane	0.004	mg/m3	< 0.004
Dibromomethane	0.004	mg/m3	< 0.004
n-Butylbenzene	0.004	mg/m3	< 0.004
p-Isopropyltoluene	0.004	mg/m3	0.0100
sec-Butylbenzene	0.004	mg/m3	< 0.004
tert-Butylbenzene	0.004	mg/m3	< 0.004
trans-1.3-Dichloropropene	0.004	mg/m3	< 0.004
1.1-Dichloroethane	0.004	mg/m3	0.156
1.1-Dichloroethene	0.004	mg/m3	< 0.004
1.1.1-Trichloroethane	0.004	mg/m3	< 0.004
1.1.2-Trichloroethane	0.004	mg/m3	< 0.004
1.1.2.2-Tetrachloroethane	0.004	mg/m3	< 0.004
1.2-Dichlorobenzene	0.004	mg/m3	< 0.004
1.2-Dichloroethane	0.004	mg/m3	< 0.004
1.2-Dichloropropane	0.004	mg/m3	< 0.004
1.2.4-Trichlorobenzene	0.004	mg/m3	< 0.004
1.2.4-Trimethylbenzene	0.004	mg/m3	< 0.004
1.3-Dichlorobenzene	0.004	mg/m3	< 0.004
1.3.5-Trimethylbenzene	0.004	mg/m3	< 0.004
1.4-Dichlorobenzene	0.004	mg/m3	< 0.004
Benzene	0.004	mg/m3	< 0.004
Carbon Tetrachloride	0.004	mg/m3	< 0.004

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled Receipt Vac./Pressure (inHg) Final Pressure (psi)			VP4 Thermal Desorption S20-Jn02504 May 28, 2020
Test/Reference	LOR	Unit	
US EPA Compendium Method TO-17	LOR	Unit	
Chlorobenzene	0.004	mg/m3	< 0.004
Chloroform	0.004	mg/m3	0.088
cis-1.2-Dichloroethene	0.004	mg/m3	0.168
Isopropyl benzene (Cumene)	0.004	mg/m3	0.0380
Ethylbenzene	0.004	mg/m3	0.640
m.p-Xylene	0.004	mg/m3	2.920
Naphthalene	0.004	mg/m3	< 0.004
o-Xylene	0.004	mg/m3	1.200
n-Propylbenzene	0.004	mg/m3	< 0.004
Styrene	0.004	mg/m3	< 0.004
Tetrachloroethene	0.004	mg/m3	0.0132
Toluene	0.004	mg/m3	< 0.004
trans-1.2-Dichloroethene	0.004	mg/m3	< 0.004
Trichloroethene	0.004	mg/m3	5.600
Vinyl Chloride	0.004	mg/m3	< 0.004
4-Bromofluorobenzene (surr.)	1	%	80

Air Toxics

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
US EPA Compendium Method TO-17	BrisbaneAir	Jun 09, 2020	30 Days

- Method: SOP #109 Analysis of Volatile and Semi-Volatile Organic Compounds in Vapour by Thermal Desorption GC/MS Full Scan using Modified EPA Method TO-17

🛟 eurofins							a		New Zealand			
Environment Testing						Melbourne 6 Monterey Road Dandenong South VIC 317 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271		Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 76 Phone : 0800 856 450 IANZ # 1290
	mpany Name: dress:	Geo-Logix P/ Bld Q2 Level Warriewood NSW 2102	/L 3, 2309/4 Da	ydream St			Order No.: Report #: Phone: Fax:	PO3828 723076 02 9979 1722 02 9979 1222		Received: Due: Priority: Contact Name:	Jun 2, 2020 8:40 Al Jun 9, 2020 5 Day Ben Pearce	Λ
	oject Name: oject ID:	AUBURN 2001029								Eurofins Analytica	l Services Manager : U	rsula Long
	Sample Detail					US EPA Compendium Method TO-17						
Melbourne Laboratory - NATA Site # 1254 & 14271												
	ney Laboratory bane Laborator											
	h Laboratory - I											
	rnal Laboratory											
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID							
1	VP4	May 28, 2020		Thermal Desorption	S20-Jn02504	х						
Test Counts						1						

Air Toxics

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. Dilutions are performed on samples due to the presence of high level target species or the presence of high level non-target species.
- 3. Results are uncorrected for surrogate recoveries.
- 4. All QC limit exceedances and affected sample results are noted by flags. Each qualifying flag is defined below in section entitled 'Definition of Data Qualifying Flags' and additionally on individual sample results (where relevant).
- 5. "100% certification" is defined as evaluating the sampling system with humid zero air/N2 and humid calibration gases that pass through all active components of the sampling system. The system is "100% certified" if no significant additions or deletions (less than 0.2 ppbv each of target compounds) have occurred when challenged with the test gas stream.
- 6. The conversion equation from ppbv to q/m3 uses a temperature of 25 °C and an ambient sea level atmospheric pressure of 1 atmosphere (101.325 kPa) is assumed.
- 7. All canister samples are only analysed once temperature equilibrium with the laboratory has been achieved.
- 8. Safe Sampling Volume (SSV) calculated by taking two-thirds of the breakthrough volume (direct method) and Appendix 1 of Method T0-17.
- 9. Samples were analysed on an 'as received' basis.
- 10. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 11. This report replaces any interim results previously issued.

Definition of Data Qualifying Flags

Qualifiers may have been used on the data analysis sheets and indicates as follows:

A01 Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

- A02 Estimated value.
- A03 Exceeds instrument calibration range
- A04 Saturated peak.
- A05 Exceeds quality control limits.
- A06 Compound analysed for but not detected above the Limit of Reporting (LOR). See data page for project specific U-flag definition.
- A07 Non-detected compound associated with low bias in the CCV.
- A08 The identification is based on presumptive evidence.
- A09 SSV has been exceeded for this compound. It is likely that this compound has been underestimated.
- A10 LORs cited do not take into account sample dilution due to canister pressurisation.
- A11 Naphthalene elutes outside the >C10-C12 range on the system used for sample analysis. As a result, >C10-C12 TRH value is equivalent to the modified F2 value.

Holding Times

Under conditions of normal usage for sampling ambient air, most Volatile Organic Compounds (VOCs) can be recovered from canisters near their original concentrations after storage times of up to thirty days. For thermal desorption tubes (TDT) samples should be refrigerated at <4°C in a clean environment during storage and analysed within 30 days of sample collection (within one week for limonene, carene, bis-chloromethyl ether and labile sulfur or nitrogen containing volatiles).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

Units

ppbv: parts per billion by volume **ug/m3:** micrograms per cubic metre kPa: kilopascal psig: pounds per square inch gauge

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank						
US EPA Compendium Method TO-17						
1.1.1.2-Tetrachloroethane	mg/m3	< 0.004		0.004	Pass	
1.2-Dibromo-3-chloropropane	mg/m3	< 0.004		0.004	Pass	
1.2-Dibromoethane (EDB)	mg/m3	< 0.004		0.004	Pass	
1.2.3-Trichloropropane	mg/m3	< 0.004		0.004	Pass	
2-Chlorotoluene	mg/m3	< 0.004		0.004	Pass	
4-Chlorotoluene	mg/m3	< 0.004		0.004	Pass	
Bromobenzene	mg/m3	< 0.004		0.004	Pass	
Bromodichloromethane	mg/m3	< 0.004		0.004	Pass	
Bromoform	mg/m3	< 0.004		0.004	Pass	
cis-1.3-Dichloropropene	mg/m3	< 0.004		0.004	Pass	
Dibromochloromethane	mg/m3	< 0.004		0.004	Pass	
Dibromomethane	mg/m3	< 0.004		0.004	Pass	
n-Butylbenzene	mg/m3	< 0.004		0.004	Pass	
p-lsopropyltoluene	mg/m3	< 0.004		0.004	Pass	
sec-Butylbenzene	mg/m3	< 0.004		0.004	Pass	
tert-Butylbenzene	mg/m3	< 0.004		0.004	Pass	
trans-1.3-Dichloropropene	mg/m3	< 0.004		0.004	Pass	
1.1-Dichloroethane	mg/m3	< 0.004		0.004	Pass	
1.1-Dichloroethene	mg/m3	< 0.004		0.004	Pass	
1.1.1-Trichloroethane	mg/m3	< 0.004		0.004	Pass	
1.1.2-Trichloroethane	mg/m3	< 0.004		0.004	Pass	
1.1.2.2-Tetrachloroethane	mg/m3	< 0.004		0.004	Pass	
1.2-Dichlorobenzene	mg/m3	< 0.004		0.004	Pass	
1.2-Dichloroethane	mg/m3	< 0.004		0.004	Pass	
1.2-Dichloropropane	mg/m3	< 0.004		0.004	Pass	
1.2.4-Trichlorobenzene	mg/m3	< 0.004		0.004	Pass	
1.2.4-Trimethylbenzene	mg/m3	< 0.004		0.004	Pass	
1.3-Dichlorobenzene	mg/m3	< 0.004		0.004	Pass	
1.3.5-Trimethylbenzene	mg/m3	< 0.004		0.004	Pass	
1.4-Dichlorobenzene	mg/m3	< 0.004		0.004	Pass	
Benzene	mg/m3	< 0.004		0.004	Pass	
Carbon Tetrachloride	mg/m3	< 0.004		0.004	Pass	
Chlorobenzene	mg/m3	< 0.004		0.004	Pass	
Chloroform	mg/m3	< 0.004		0.004	Pass	
cis-1.2-Dichloroethene	mg/m3	< 0.004		0.004	Pass	
Isopropyl benzene (Cumene)	mg/m3	< 0.004		0.004	Pass	
Ethylbenzene	mg/m3	< 0.004		0.004	Pass	
m.p-Xylene	mg/m3	< 0.004		0.004	Pass	
Naphthalene	mg/m3	< 0.004		0.004	Pass	
o-Xylene	mg/m3	< 0.004		0.004	Pass	
n-Propylbenzene	mg/m3	< 0.004		0.004	Pass	
Styrene	mg/m3	< 0.004		0.004	Pass	
Tetrachloroethene	mg/m3	< 0.004		0.004	Pass	
Toluene	mg/m3	< 0.004		0.004	Pass	
trans-1.2-Dichloroethene	mg/m3	< 0.004		0.004	Pass	
Trichloroethene	mg/m3	< 0.004		0.004	Pass	
Vinyl Chloride	mg/m3	< 0.004		0.004	Pass	
LCS - % Recovery	IIIg/III3	0.004		0.004	1 000	
US EPA Compendium Method TO-17						
1.1.1.2-Tetrachloroethane	%	95		70-130	Pass	

Test	Units	Result 1	Acceptance Limits	e Pass Limits	Qualifying Code
1.2-Dibromo-3-chloropropane	%	72	70-130	Pass	
1.2-Dibromoethane (EDB)	%	85	70-130	Pass	
1.2.3-Trichloropropane	%	75	70-130	Pass	
2-Chlorotoluene	%	78	70-130	Pass	
4-Chlorotoluene	%	87	70-130	Pass	
Bromobenzene	%	80	70-130	Pass	
Bromodichloromethane	%	78	70-130	Pass	
Bromoform	%	89	70-130	Pass	
cis-1.3-Dichloropropene	%	92	70-130	Pass	
Dibromochloromethane	%	89	70-130	Pass	
Dibromomethane	%	92	70-130	Pass	
n-Butylbenzene	%	73	70-130	Pass	
p-Isopropyltoluene	%	73	70-130	Pass	
sec-Butylbenzene	%	76	70-130	Pass	
tert-Butylbenzene	%	80	70-130	Pass	
trans-1.3-Dichloropropene	%	92	70-130	Pass	
1.1-Dichloroethane	%	100	70-130	Pass	
1.1-Dichloroethene	%	123	70-130	Pass	
1.1.1-Trichloroethane	%	117	70-130	Pass	
1.1.2-Trichloroethane	%	86	70-130	Pass	
1.1.2.2-Tetrachloroethane	%	82	70-130	Pass	
1.2-Dichlorobenzene	%	75	70-130	Pass	
1.2-Dichloroethane	%	86	70-130	Pass	
1.2-Dichloropropane	%	88	70-130	Pass	
1.2.4-Trichlorobenzene	%	75	70-130	Pass	
1.2.4-Trimethylbenzene	%	80	70-130	Pass	
1.3-Dichlorobenzene	%	75	70-130	Pass	
1.3.5-Trimethylbenzene	%	95	70-130	Pass	
1.4-Dichlorobenzene	%	72	70-130	Pass	
Benzene	%	77	70-130	Pass	
Carbon Tetrachloride	%	92	70-130	Pass	
Chlorobenzene	%	77	70-130	Pass	
Chloroform	%	97	70-130	Pass	
cis-1.2-Dichloroethene	%	113	70-130	Pass	
Isopropyl benzene (Cumene)	%	82	70-130	Pass	
Ethylbenzene	%	79	70-130	Pass	
m.p-Xylene	%	78	70-130	Pass	
Naphthalene	%	79	70-130	Pass	
o-Xylene	%	84	70-130	Pass	
n-Propylbenzene	%	84	70-130	Pass	
Styrene	%	82	70-130	Pass	
Tetrachloroethene	%	81	70-130	Pass	
Toluene	%	74	70-130	Pass	
trans-1.2-Dichloroethene	%	105	70-130	Pass	
Trichloroethene	%	73	70-130	Pass	
Vinyl Chloride	%	107	70-130	Pass	

Air Toxics

Comments

This report has been revised (V2) to apply unit conversion. This report has been revised (V3) to amend project name. This report has been revised (V4) to amend LORs.

Sample Integrity

N/A
N/A
Yes
Yes
Yes
Yes
No

Authorised By

Ursula Long Laurence Hearn Analytical Services Manager Senior Analyst-Air (QLD)

Glenn Jackson General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Coo Logix D/

Environment TestingMelbourne
6 Monterey Road
Dandenong South Vic 3175 16 Mars Road
Phone : +61 3 8564 5000
NATA # 1261
Site # 1254 & 14271Sydney
Unit F3, Building F
Lane Cove West NSW 2066
Phone : +61 2 9900 8400
NATA # 1261 Site # 122794Brisbane
1/21 Smallwood Place
Murarie QLD 4172
Phone : +61 7 3902 4600
NATA # 1261 Site # 122794

web : www.eurofins.com.au

Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

e.mail : EnviroSales@eurofins.com ABN - 50 005 085 521

Sample Receipt Advice

Company name.	Geo-Logix P/L
Contact name:	Ben Pearce
Project name:	AUBURN
Project ID:	2001029
COC number:	Not provided
Turn around time:	5 Day
Date/Time received:	Jun 2, 2020 8:40 AM
Eurofins reference:	723076

Sample information

Company pama

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- N/A Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- \boxtimes Split sample sent to requested external lab.
- \times Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Ursula Long on Phone : or by e.mail: UrsulaLong@eurofins.com

Results will be delivered electronically via e.mail to Ben Pearce - bpearce@geo-logix.com.au.

Geo-Log Building Q2, I 2309/4 Daydr		Project Mana					Pe								Page Purc				<u>ا</u>		PC	34	\$2'	8				5			
Warriewood,		Contact emai	Ŀ	_b()ll	x	eċ	Dgeo-logix.com.	a	λ					Quo	te Re	feren	iće:													
ABN: 86 116 892	936	Project Name	:	R	00	لاح	y a	Je							Send	d Invo	oice (:0:		acco	ounts	@g	eo-lo	gix.c	om.	au					
P: (02) 9979 17 F: (02) 9979 12		Project Numb	er:	2	0	3\0	DZ	Dgeo-log1X.com. Je 9 Date Submitted: <u>2/(</u> ANALY				DEI	n		ТАТ	requ	irəd:			5	J	au)	100							
	1			N	latri	x					GO						Chiese to														
Lab ID	Sample ID	Date	soil	-	air	paint, filters	other	Comments	COMPOSITE	TRH - C6 - C10	TRH - C10 - C40	vocs	BTEXN	PAHs	PCBs	oces	OPPs	Phenois	Metals - M8	Metals - Lead	Metals - Specify **	TCLP	Asbestos (ID only)	Asbestos (WA DOH)	Foreign Materials	Conductivity (EC)	Ha	7017	Link in the second s	DION	SUITE
	XP4 VP4	2815/20			а. 		×	tube A01880																				×			
								0:25L volume																							
								100m4min fbw																							
				_		_		rade														_								_	
				-	_	_	_													_						-				_	_
				-	_	-	-									_					_									_	
							_		-								_			_	_	_								_	_
			-	-			_			-	_						_	_	-	-	-								_	+	_
			-	_	-		-		-									_		-											
											-		-							-	-			-						+	-
																			-				-					\rightarrow		+	-
																														+	
																														-	
													_																		
																		_													

Metals**(circle) As, Cd, Cr, Cu, Ni, Pb, Zn, Hg, Cr ⁶⁺, Cr ³⁺, Fe ²⁺, Fe ³⁺, Be, B, Al, V, Mn, Fe, Co, Se, Sr, Sn, Mo, Ag, Ba, Tl, Bi, Sb

Chain of Custody Date/Time: 1/6/20 Signature: In _ Date/Time: <u>02/06/20</u> Signature: <u>2000/2000</u> # 723076 Luca Exercifins Relinquished by: Received by: Version: V1 Date Issued: April 2019 Q3.2.1 QF_034 Chain of Custody Review Date: April 2071

Ursula Long

From: Sent: To: Subject: Attachments:	Ben Pearce <bpearce@geo-logix.com.au> Thursday, 11 June 2020 2:42 PM Ursula Long FW: Eurofins Test Results - Report 723076 : Site ROCKDALE (2001029) 2001029.723076.Header.xml; ROCKDALE 2001029.723076.Chemistry2e.csv; ROCKDALE 2001029.723076.Sample2e.csv; 723076_data.csv; 723076_COC.pdf; 723076 _sample_receipt_coc.pdf; 723076_summary.pdf; 723076-TO.pdf</bpearce@geo-logix.com.au>
Follow Up Flag:	Follow up
Flag Status:	Flagged

EXTERNAL EMAIL*

Hi Ursula,

Can you please change the job name Auburn and re issue.

Thanks,

Ben

From: UrsulaLong@eurofins.com <UrsulaLong@eurofins.com>
Sent: Tuesday, 9 June 2020 1:58 PM
To: Ben Pearce <bpearce@geo-logix.com.au>
Subject: Eurofins Test Results - Report 723076 : Site ROCKDALE (2001029)

Please find attached results for your project in the subject header.

Regards

Ursula Long

Eurofins

Unit F3, Parkview Building 16 Mars Road LANE COVE WEST NSW 2066 AUSTRALIA Phone: +61 299 008 420 Email: <u>UrsulaLong@eurofins.com</u> Website:<u>environment.eurofins.com.au</u> <u>EnviroNote 1098 - Melbourne PFAS Accreditation</u> <u>EnviroNote 1103 - NATA Accreditation for Dioxins</u>

Click <u>here</u> to report this email as spam.

Scanned By Websense For Eurofins

Certificate of Analysis

Environment Testing

Geo-Logix P/L Bld Q2 Level 3, 2309/4 Daydream St Warriewood NSW 2102

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Ben Pearce

Report Project name Project ID Received Date 726829-TO-V2 AUBURN 2001029 Jun 19, 2020

		1	
Client Sample ID			VP20
Sample Matrix			1L Summa Canister
Eurofins Sample No.			S20-Jn34726
Date Sampled			Jun 19, 2020
Receipt Vac./Pressure (inHg)			5.3
Final Pressure (psi)			15
		llait	15
Test/Reference	LOR	Unit	
Dilution Factor	0.1		9.8
Dilution Factor	0.1		9.0
US EPA Compendium Methods TO-14a/TO-15	0		200
1.1-Dichloroethane	2	ug/m3	300
	2.7	ug/m3	610
1.1.1-Trichloroethane		ug/m3	< 27 140
1.1.2-Trichloroethane 1.1.2.2-Tetrachloroethane	2.7	ug/m3	< 34
	3.4	ug/m3	
1.2-Dibromoethane (EDB)		ug/m3	< 35
1.2-Dichlorobenzene	3	ug/m3	< 29
1.2-Dichloroethane	2.3	ug/m3	< 20
1.2-Dichloropropane 1.2.4-Trichlorobenzene	15	ug/m3 ug/m3	< 23 < 145
1.2.4-Trimethylbenzene	2.5		< 145
1.3-Butadiene	1.1	ug/m3 ug/m3	< 11
1.3-Dichlorobenzene	3	ug/m3	< 29
1.3.5-Trimethylbenzene	2.5	ug/m3	< 29
1.4-Dichlorobenzene	3	ug/m3	< 29
1.4-Dictionoberizene 1.4-Dictionoberizene	7.2	ug/m3	< 71
2-Butanone (Methyl Ethyl Ketone)	5.9	ug/m3	< 58
2-Hexanone	8.2	ug/m3	< 80
2.2.4-Trimethylpentane	9.3	ug/m3	< 91
3-Chloropropene	6.3	ug/m3	< 61
4-Ethyltoluene	2.5	ug/m3	< 24
4-Methyl-2-Pentanone (MIBK)	2.1	ug/m3	< 20
Acetone	11.9	ug/m3	< 116
Benzene	1.6	ug/m3	< 16
Bromodichloromethane	3.4	ug/m3	< 33
Bromoform	5.2	ug/m3	< 51
Bromomethane	19.4	ug/m3	< 190
Carbon Disulfide	6.2	ug/m3	< 61
Carbon Tetrachloride	3.1	ug/m3	< 31
Chlorobenzene	2.3	ug/m3	< 23

Client Sample ID			VP20
Sample Matrix			1L Summa Canister
Eurofins Sample No.			S20-Jn34726
Date Sampled			Jun 19, 2020
Receipt Vac./Pressure (inHg)			5.3
Final Pressure (psi)			15
Test/Reference	LOR	Unit	
US EPA Compendium Methods TO-14a/TO-15	LOIN	Offic	
Chloroethane	5.3	ug/m3	< 52
Chloroform	2.4	ug/m3	140
Chloromethane	10.3	ug/m3	< 101
Chlorotoluene (Benzyl Chloride)	2.6	ug/m3	< 25
cis-1.2-Dichloroethene	2:0	ug/m3	22000
cis-1.3-Dichloropropene	2.3	ug/m3	< 22
Cyclohexane	1.7	ug/m3	< 17
Dibromochloromethane	4.3	ug/m3	< 42
Methylene Chloride	17.4	ug/m3	< 170
Ethanol	3.8	ug/m3	< 37
Ethylbenzene	2.2	ug/m3	60
Freon 11 (Trichlorofluoromethane)	2.8	ug/m3	< 28
Freon 113 (Trichlorotrifluoroethane)	3.8	ug/m3	< 38
Freon 114	3.5	ug/m3	< 34
Freon 12 (Dichlorodifluoromethane)	2.5	ug/m3	< 24
Heptane	2.1	ug/m3	< 20
Hexachlorobutadiene	21.3	ug/m3	< 209
Hexane	3.5	ug/m3	< 17
Isopropanol	49	ug/m3	< 482
m.p-Xylene	4.4	ug/m3	260
Xylenes - Total	6.6	ug/m3	310
Methyl t-Butyl Ether (MTBE)	7.2	ug/m3	< 71
Naphthalene	10.5	ug/m3	< 105
o-Xylene	2.2	ug/m3	52
Propylene	3.4	ug/m3	< 34
Styrene	2.1	ug/m3	< 21
Tetrachloroethene	3.4	ug/m3	< 33
Tetrahydrofuran	1.5	ug/m3	< 14
Toluene	7.5	ug/m3	750
trans-1.2-Dichloroethene	2	ug/m3	1100
trans-1.3-Dichloropropene	2.3	ug/m3	< 22
Trichloroethene	2.7	ug/m3	77000
Vinyl Acetate	7.0	ug/m3	< 69
Vinyl Chloride	1.3	ug/m3	650
4-Bromofluorobenzene (surr.)	1	%	83

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
US EPA Compendium Methods TO-14a/TO-15	BrisbaneAir	Jun 20, 2020	30 Days

- Method: SOP #6 Analysis of Volatile Organic Compounds in Summa Polished Canisters EPA Method TO-15 And Modified EPA Method TO-14A

• eurofine				Australia						New Zealand				
ABN - 50 005 085 521 web : www.eurofins.com.au e.mail : EnviroSales@eurofins.com		esting	Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271		Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7 Phone: 0800 856 450 IANZ # 1290					
	ompany Name: ddress:	Geo-Logix P, Bld Q2 Level Warriewood NSW 2102	/L I 3, 2309/4 Da	ydream St			R P	order eport hone ax:	: #:	3893 726829 02 9979 1722 02 9979 1222		Received: Due: Priority: Contact Name:	Jun 19, 2020 5:20 F Jun 26, 2020 5 Day Ben Pearce	PM
Project Name:AUBURNProject ID:2001029											Eurofins Analytica	l Services Manager : U	rsula Long	
		Sa	mple Detail			Dilution Factor	Final Pressure (psi)	Receipt Vac./Pressure (in Hg)	US EPA Compendium Methods TO-14a/TO- 15					
	Ibourne Laborato	-		271			+	-		-				
	dney Laboratory sbane Laboratory							-	+	-				
	rth Laboratory - N	•							+	1				
	ternal Laboratory								1	1				
No		Sample Date	Sampling Time	Matrix	LAB ID									
1	VP20	Jun 19, 2020		1L Summa Canister	S20-Jn34726	x	x	x	x					
Тор	st Counts					1	1	1	1					

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. Dilutions are performed on samples due to the presence of high level target species or the presence of high level non-target species.
- 3. Results are uncorrected for surrogate recoveries.
- 4. All QC limit exceedances and affected sample results are noted by flags. Each qualifying flag is defined below in section entitled 'Definition of Data Qualifying Flags' and additionally on individual sample results (where relevant).
- 5. "100% certification" is defined as evaluating the sampling system with humid zero air/N2 and humid calibration gases that pass through all active components of the sampling system. The system is "100% certified" if no significant additions or deletions (less than 0.2 ppbv each of target compounds) have occurred when challenged with the test gas stream.
- 6. The conversion equation from poby to g/m3 uses a temperature of 25 °C and an ambient sea level atmospheric pressure of 1 atmosphere (101.325 kPa) is assumed.
- 7. All canister samples are only analysed once temperature equilibrium with the laboratory has been achieved.
- 8. Safe Sampling Volume (SSV) calculated by taking two-thirds of the breakthrough volume (direct method) and Appendix 1 of Method T0-17.
- 9. Samples were analysed on an 'as received' basis.
- 10. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 11. This report replaces any interim results previously issued.

Definition of Data Qualifying Flags

Qualifiers may have been used on the data analysis sheets and indicates as follows:

A01 Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

- A02 Estimated value.
- A03 Exceeds instrument calibration range
- A04 Saturated peak.
- A05 Exceeds quality control limits.
- A06 Compound analysed for but not detected above the Limit of Reporting (LOR). See data page for project specific U-flag definition.
- A07 Non-detected compound associated with low bias in the CCV.
- A08 The identification is based on presumptive evidence.
- A09 SSV has been exceeded for this compound. It is likely that this compound has been underestimated.
- A10 LORs cited do not take into account sample dilution due to canister pressurisation.
- A11 Naphthalene elutes outside the >C10-C12 range on the system used for sample analysis. As a result, >C10-C12 TRH value is equivalent to the modified F2 value.

Holding Times

Under conditions of normal usage for sampling ambient air, most Volatile Organic Compounds (VOCs) can be recovered from canisters near their original concentrations after storage times of up to thirty days. For thermal desorption tubes (TDT) samples should be refrigerated at <4°C in a clean environment during storage and analysed within 30 days of sample collection (within one week for limonene, carene, bis-chloromethyl ether and labile sulfur or nitrogen containing volatiles).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

Units

ppbv: parts per billion by volume **ug/m3:** micrograms per cubic metre kPa: kilopascal psig: pounds per square inch gauge

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
US EPA Compendium Methods TO-14a/TO-15					
1.1-Dichloroethane	ug/m3	< 2	2	Pass	
1.1-Dichloroethene	ug/m3	< 2	2	Pass	
1.1.1-Trichloroethane	ug/m3	< 2.7	2.7	Pass	
1.1.2-Trichloroethane	ug/m3	< 2.7	2.7	Pass	
1.1.2.2-Tetrachloroethane	ug/m3	< 3.4	3.4	Pass	
1.2-Dibromoethane (EDB)	ug/m3	< 3.6	3.6	Pass	
1.2-Dichlorobenzene	ug/m3	< 3	3	Pass	
1.2-Dichloroethane	ug/m3	< 2	2	Pass	
1.2-Dichloropropane	ug/m3	< 2.3	2.3	Pass	
1.2.4-Trichlorobenzene	ug/m3	< 15	15	Pass	
1.2.4-Trimethylbenzene	ug/m3	< 2.5	2.5	Pass	
1.3-Butadiene	ug/m3	< 1.1	1.1	Pass	
1.3-Dichlorobenzene	ug/m3	< 3	3	Pass	
1.3.5-Trimethylbenzene	ug/m3	< 2.5	2.5	Pass	
1.4-Dichlorobenzene	ug/m3	< 3	3	Pass	
1.4-Dioxane	ug/m3	< 7.2	7.2	Pass	
2-Butanone (Methyl Ethyl Ketone)	ug/m3	< 5.9	5.9	Pass	
2-Hexanone	ug/m3	< 8.2	8.2	Pass	
2.2.4-Trimethylpentane	ug/m3	< 9.3	9.3	Pass	
3-Chloropropene	ug/m3	< 6.3	6.3	Pass	
4-Ethyltoluene	ug/m3	< 2.5	2.5	Pass	
4-Methyl-2-Pentanone (MIBK)	ug/m3	< 2.1	2.0	Pass	
Acetone	ug/m3	< 11.9	11.9	Pass	
Benzene	ug/m3	< 1.6	1.6	Pass	
Bromodichloromethane	ug/m3	< 3.4	3.4	Pass	
Bromoform	ug/m3	< 5.2	5.2	Pass	
Bromomethane	ug/m3	< 19.4	19.4	Pass	
Carbon Disulfide	ug/m3	< 6.2	6.2	Pass	
Carbon Tetrachloride	ug/m3	< 3.1	3.1	Pass	
Chlorobenzene	ug/m3	< 2.3	2.3	Pass	
Chloroethane	ug/m3	< 5.3	5.3	Pass	
Chloroform	ug/m3	< 2.4	2.4	Pass	
Chloromethane	ug/m3	< 10.3	10.3	Pass	
Chlorotoluene (Benzyl Chloride)	ug/m3	< 2.6	2.6	Pass	
cis-1.2-Dichloroethene	ug/m3	< 2	2.0	Pass	
cis-1.3-Dichloropropene	ug/m3	< 2.3	2.3	Pass	
Cyclohexane	ug/m3	< 1.7	1.7	Pass	
Dibromochloromethane	ug/m3	< 4.3	4.3	Pass	
Methylene Chloride	ug/m3	< 4.3	4.3	Pass	
Ethanol	ug/m3	< 3.8	3.8	Pass	
Ethylbenzene	ug/m3	< 2.2	2.2	Pass	
Freon 11 (Trichlorofluoromethane)	ug/m3	< 2.2	2.2	Pass	
Freon 113 (Trichlorotrifluoroethane)	ug/m3	< 3.8	3.8	Pass	
Freon 113 (Inchlorotiniuoroetinane)	ug/m3	< 3.6	3.5	Pass	
Freon 12 (Dichlorodifluoromethane)			2.5		
	ug/m3	< 2.5		Pass	
Heptane	ug/m3	< 2.1	2.1	Pass	
Hexachlorobutadiene	ug/m3	< 21.3	21.3	Pass	
Hexane	ug/m3	< 3.5	3.5	Pass	
Isopropanol	ug/m3	< 49	49	Pass	

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Xylenes - Total	ug/m3	< 6.6		6.6	Pass	
Methyl t-Butyl Ether (MTBE)	ug/m3	< 7.2		7.2	Pass	
Naphthalene	ug/m3	< 10.5		10.5	Pass	
o-Xylene	ug/m3	< 2.2		2.2	Pass	
Propylene	ug/m3	< 3.4		3.4	Pass	
Styrene	ug/m3	< 2.1		2.1	Pass	
Tetrachloroethene	ug/m3	< 3.4		3.4	Pass	
Tetrahydrofuran	ug/m3	< 1.5		1.5	Pass	
Toluene	ug/m3	< 7.5		7.5	Pass	
trans-1.2-Dichloroethene	ug/m3	< 2		2	Pass	
trans-1.3-Dichloropropene	ug/m3	< 2.3		2.3	Pass	
Trichloroethene	ug/m3	< 2.7		2.7	Pass	
Vinyl Acetate	ug/m3	< 7		7.0	Pass	
Vinyl Chloride	ug/m3	< 1.3		1.3	Pass	
LCS - % Recovery		1	r T			
US EPA Compendium Methods TO-14a/TO-15						
1.1-Dichloroethane	%	110		70-130	Pass	
1.1-Dichloroethene	%	126		70-130	Pass	
1.1.1-Trichloroethane	%	97		70-130	Pass	
1.1.2-Trichloroethane	%	104		70-130	Pass	
1.1.2.2-Tetrachloroethane	%	99		70-130	Pass	
1.2-Dibromoethane (EDB)	%	93		70-130	Pass	
1.2-Dichlorobenzene	%	72		70-130	Pass	
1.2-Dichloroethane	%	127		70-130	Pass	
1.2-Dichloropropane	%	122		70-130	Pass	
1.2.4-Trichlorobenzene	%	82		70-130	Pass	
1.2.4-Trimethylbenzene	%	77		70-130	Pass	
1.3-Butadiene	%	120		70-130	Pass	
1.3-Dichlorobenzene	%	84		70-130	Pass	
1.3.5-Trimethylbenzene	%	82		70-130	Pass	
1.4-Dichlorobenzene	%	82		70-130	Pass	
1.4-Dioxane	%	87		70-130	Pass	
2-Butanone (Methyl Ethyl Ketone)	%	93		70-130	Pass	
2-Hexanone	%	85		70-130	Pass	
2.2.4-Trimethylpentane	%	122		70-130	Pass	
3-Chloropropene	%	127		70-130	Pass	
4-Ethyltoluene	%	94		70-130	Pass	
4-Methyl-2-Pentanone (MIBK)	%	71		70-130	Pass	
Acetone	%	112		70-130	Pass	
Benzene	%	106		70-130	Pass	
Bromodichloromethane	%	107		70-130	Pass	
Bromoform	%	85		70-130	Pass	
Bromomethane	%	104		70-130	Pass	
Carbon Disulfide	%	103		70-130	Pass	
Carbon Tetrachloride	%	99		70-130	Pass	
Chlorobenzene	%	90		70-130	Pass	
Chloroethane	%	122		70-130	Pass	
Chloroform	%	108		70-130	Pass	
Chloromethane	%	118		70-130	Pass	
Chlorotoluene (Benzyl Chloride)	%	72		70-130	Pass	
cis-1.2-Dichloroethene	%	108		70-130	Pass	
cis-1.3-Dichloropropene	%	99		70-130	Pass	
Cyclohexane	%	96		70-130	Pass	
Dibromochloromethane	%	99		70-130	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Methylene Chloride	%	125	70-130	Pass	
Ethanol	%	87	70-130	Pass	
Ethylbenzene	%	99	70-130	Pass	
Freon 11 (Trichlorofluoromethane)	%	98	70-130	Pass	
Freon 113 (Trichlorotrifluoroethane)	%	80	70-130	Pass	
Freon 114	%	83	70-130	Pass	
Freon 12 (Dichlorodifluoromethane)	%	111	70-130	Pass	
Heptane	%	90	70-130	Pass	
Hexachlorobutadiene	%	92	70-130	Pass	
Hexane	%	98	70-130	Pass	
Isopropanol	%	106	70-130	Pass	
m.p-Xylene	%	101	70-130	Pass	
Xylenes - Total	%	102	70-130	Pass	
Methyl t-Butyl Ether (MTBE)	%	98	70-130	Pass	
Naphthalene	%	79	70-130	Pass	
o-Xylene	%	104	70-130	Pass	
Propylene	%	125	70-130	Pass	
Styrene	%	86	70-130	Pass	
Tetrachloroethene	%	80	70-130	Pass	
Tetrahydrofuran	%	94	70-130	Pass	
Toluene	%	94	70-130	Pass	
trans-1.2-Dichloroethene	%	117	70-130	Pass	
trans-1.3-Dichloropropene	%	105	70-130	Pass	
Trichloroethene	%	83	70-130	Pass	
Vinyl Acetate	%	103	70-130	Pass	
Vinyl Chloride	%	122	70-130	Pass	

Comments

This report has been revised (V2) to amend sample name.

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	N/A
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Authorised By

Ursula Long Laurence Hearn Analytical Services Manager Senior Analyst-Air (QLD)

Glenn Jackson General Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Coo Logix D/

Environment TestingMelbourne
6 Monterey Road
Dandenong South Vic 3175 16 Mars Road
Phone : +61 3 8564 5000
NATA # 1261
Site # 1254 & 14271Sydney
Unit F3, Building F
Lane Cove West NSW 2066
Phone : +61 2 9900 8400
NATA # 1261 Site # 18217Brisbane
1/21 Smallwood Place
Murarie QLD 4172
Phone : +61 2 9900 8400
NATA # 1261 Site # 18217

web : www.eurofins.com.au

Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

e.mail : EnviroSales@eurofins.com ABN - 50 005 085 521

Sample Receipt Advice

Company name.	Geo-Logix P/L
Contact name:	Ben Pearce
Project name:	AUBURN
Project ID:	2001029
COC number:	Not provided
Turn around time:	5 Day
Date/Time received:	Jun 19, 2020 5:20 PM
Eurofins reference:	726829

Sample information

Company pama

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- N/A Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- \boxtimes Split sample sent to requested external lab.
- \times Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Ursula Long on Phone : or by e.mail: UrsulaLong@eurofins.com

Results will be delivered electronically via e.mail to Ben Pearce - bpearce@geo-logix.com.au.

Geo-Logix Pty Ltd	G	BAS SAMPLING SHEET AND CHAIN OF CUSTODY
Building Q2, Level 3	Project Manager: Ben Peance	Purchase Order No: 3893
2309/4 Daydream St Warriewood, NSW 2102	Project Name: Auburn	Quote Reference:
ABN: 86 116 892 936		bpearel@geo-logix.com.au Send Invoice to: accounts@geo-logix.com.au
P: (02) 9979 1722 F: (02) 9979 1222	Project Number: 2001029	TAT required: Stevel are

Sample ID	Date	Oxygen conc (%)	Purge Volume (L)	Canister ID	Vacuum Before Sampling	Start Date/Time	Vacuum After Sampling	Stop Date/Time	Analysis
VP17	19/6		250 mL	27416/N2336	26	11:15	9.5	12:20	TO 15 (studied) G
					1.				

Chain of Custody

Received by:

Relinquished by: (aden Pergelly Date/Time: 19/6_ Signature: Gerything

19/6/20 5.20

Date/Time: _____ Signature:

Una D. 19/6/20 5:20 em Jun humer # 726829

EXCAVATION SKETCH

From:	Ben Pearce <bpearce@geo-logix.com.au></bpearce@geo-logix.com.au>
Sent:	Friday, 26 June 2020 3:23 PM
To:	Ursula Long
Subject:	RE: Eurofins Test Results - Report 726829 : Site AUBURN (2001029)
Follow Up Flag:	Follow up
Flag Status:	Flagged

EXTERNAL EMAIL*

Hi Ursula,

Can you please change the sample ID on this to VP20.

Thanks

Ben

From: UrsulaLong@eurofins.com <UrsulaLong@eurofins.com>
Sent: Friday, 26 June 2020 2:32 PM
To: Ben Pearce <bpearce@geo-logix.com.au>
Subject: Eurofins Test Results - Report 726829 : Site AUBURN (2001029)

Please find attached results for your project in the subject header.

Regards

Ursula Long

Eurofins

Unit F3, Parkview Building 16 Mars Road LANE COVE WEST NSW 2066 AUSTRALIA Phone: +61 299 008 420 Email: <u>UrsulaLong@eurofins.com</u> Website:<u>environment.eurofins.com.au</u> <u>EnviroNote 1098 - Melbourne PFAS Accreditation</u> <u>EnviroNote 1103 - NATA Accreditation for Dioxins</u>

Click here to report this email as spam.

From:	Ben Pearce <bpearce@geo-logix.com.au></bpearce@geo-logix.com.au>
Sent:	Friday, 26 June 2020 3:23 PM
To:	Ursula Long
Subject:	RE: Eurofins Test Results - Report 726829 : Site AUBURN (2001029)
Follow Up Flag:	Follow up
Flag Status:	Flagged

EXTERNAL EMAIL*

Hi Ursula,

Can you please change the sample ID on this to VP20.

Thanks

Ben

From: UrsulaLong@eurofins.com <UrsulaLong@eurofins.com>
Sent: Friday, 26 June 2020 2:32 PM
To: Ben Pearce <bpearce@geo-logix.com.au>
Subject: Eurofins Test Results - Report 726829 : Site AUBURN (2001029)

Please find attached results for your project in the subject header.

Regards

Ursula Long

Eurofins

Unit F3, Parkview Building 16 Mars Road LANE COVE WEST NSW 2066 AUSTRALIA Phone: +61 299 008 420 Email: <u>UrsulaLong@eurofins.com</u> Website:<u>environment.eurofins.com.au</u> <u>EnviroNote 1098 - Melbourne PFAS Accreditation</u> <u>EnviroNote 1103 - NATA Accreditation for Dioxins</u>

Click here to report this email as spam.

Certificate of Analysis

Environment Testing

Geo-Logix P/L Bld Q2 Level 3, 2309/4 Daydream St Warriewood NSW 2102

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Ben Pearce

Report Project name Project ID Received Date 726829-TO-V2 AUBURN 2001029 Jun 19, 2020

		1	
Client Sample ID			VP20
Sample Matrix			1L Summa Canister
Eurofins Sample No.			S20-Jn34726
Date Sampled			Jun 19, 2020
Receipt Vac./Pressure (inHg)			5.3
Final Pressure (psi)			15
		llait	15
Test/Reference	LOR	Unit	
Dilution Factor	0.1		9.8
Dilution Factor	0.1		9.0
US EPA Compendium Methods TO-14a/TO-15	0		200
1.1-Dichloroethane	2	ug/m3	300
	2.7	ug/m3	610
1.1.1-Trichloroethane		ug/m3	< 27 140
1.1.2-Trichloroethane 1.1.2.2-Tetrachloroethane	2.7	ug/m3	< 34
	3.4	ug/m3	
1.2-Dibromoethane (EDB)		ug/m3	< 35
1.2-Dichlorobenzene	3	ug/m3	< 29
1.2-Dichloroethane	2.3	ug/m3	< 20
1.2-Dichloropropane 1.2.4-Trichlorobenzene	15	ug/m3 ug/m3	< 23 < 145
1.2.4-Trimethylbenzene	2.5		< 145
1.3-Butadiene	1.1	ug/m3 ug/m3	< 11
1.3-Dichlorobenzene	3	ug/m3	< 29
1.3.5-Trimethylbenzene	2.5	ug/m3	< 29
1.4-Dichlorobenzene	3	ug/m3	< 29
1.4-Dictiloidenzene 1.4-Dictiloidenzene	7.2	ug/m3	< 71
2-Butanone (Methyl Ethyl Ketone)	5.9	ug/m3	< 58
2-Hexanone	8.2	ug/m3	< 80
2.2.4-Trimethylpentane	9.3	ug/m3	< 91
3-Chloropropene	6.3	ug/m3	< 61
4-Ethyltoluene	2.5	ug/m3	< 24
4-Methyl-2-Pentanone (MIBK)	2.1	ug/m3	< 20
Acetone	11.9	ug/m3	< 116
Benzene	1.6	ug/m3	< 16
Bromodichloromethane	3.4	ug/m3	< 33
Bromoform	5.2	ug/m3	< 51
Bromomethane	19.4	ug/m3	< 190
Carbon Disulfide	6.2	ug/m3	< 61
Carbon Tetrachloride	3.1	ug/m3	< 31
Chlorobenzene	2.3	ug/m3	< 23

Client Sample ID			VP20
Sample Matrix			1L Summa Canister
Eurofins Sample No.			S20-Jn34726
Date Sampled			Jun 19, 2020
Receipt Vac./Pressure (inHg)			5.3
Final Pressure (psi)			15
Test/Reference	LOR	Unit	
US EPA Compendium Methods TO-14a/TO-15	LOIN	Offic	
Chloroethane	5.3	ug/m3	< 52
Chloroform	2.4	ug/m3	140
Chloromethane	10.3	ug/m3	< 101
Chlorotoluene (Benzyl Chloride)	2.6	ug/m3	< 25
cis-1.2-Dichloroethene	2:0	ug/m3	22000
cis-1.3-Dichloropropene	2.3	ug/m3	< 22
Cyclohexane	1.7	ug/m3	< 17
Dibromochloromethane	4.3	ug/m3	< 42
Methylene Chloride	17.4	ug/m3	< 170
Ethanol	3.8	ug/m3	< 37
Ethylbenzene	2.2	ug/m3	60
Freon 11 (Trichlorofluoromethane)	2.8	ug/m3	< 28
Freon 113 (Trichlorotrifluoroethane)	3.8	ug/m3	< 38
Freon 114	3.5	ug/m3	< 34
Freon 12 (Dichlorodifluoromethane)	2.5	ug/m3	< 24
Heptane	2.1	ug/m3	< 20
Hexachlorobutadiene	21.3	ug/m3	< 209
Hexane	3.5	ug/m3	< 17
Isopropanol	49	ug/m3	< 482
m.p-Xylene	4.4	ug/m3	260
Xylenes - Total	6.6	ug/m3	310
Methyl t-Butyl Ether (MTBE)	7.2	ug/m3	< 71
Naphthalene	10.5	ug/m3	< 105
o-Xylene	2.2	ug/m3	52
Propylene	3.4	ug/m3	< 34
Styrene	2.1	ug/m3	< 21
Tetrachloroethene	3.4	ug/m3	< 33
Tetrahydrofuran	1.5	ug/m3	< 14
Toluene	7.5	ug/m3	750
trans-1.2-Dichloroethene	2	ug/m3	1100
trans-1.3-Dichloropropene	2.3	ug/m3	< 22
Trichloroethene	2.7	ug/m3	77000
Vinyl Acetate	7.0	ug/m3	< 69
Vinyl Chloride	1.3	ug/m3	650
4-Bromofluorobenzene (surr.)	1	%	83

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
US EPA Compendium Methods TO-14a/TO-15	BrisbaneAir	Jun 20, 2020	30 Days

- Method: SOP #6 Analysis of Volatile Organic Compounds in Summa Polished Canisters EPA Method TO-15 And Modified EPA Method TO-14A

•	s euro	fine 1				Austra	lia						New Zealand	
	- 50 005 085 521	web : www.eurofin		nment To	esting	Melbour 6 Monter Dandend Phone : NATA # Site # 12	rey Roa ong Sou +61 3 8 1261	uth VIC 3 564 500		Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch Phone : 0800 856 450 IANZ # 1290
	ompany Name: ddress:	Geo-Logix P, Bld Q2 Level Warriewood NSW 2102	/L I 3, 2309/4 Da	ydream St			R P	order eport hone ax:	: #:	3893 726829 02 9979 1722 02 9979 1222		Received: Due: Priority: Contact Name:	Jun 19, 2020 5:20 F Jun 26, 2020 5 Day Ben Pearce	PM
	roject Name: roject ID:	AUBURN 2001029										Eurofins Analytica	l Services Manager : U	rsula Long
		Sa	mple Detail			Dilution Factor	Final Pressure (psi)	Receipt Vac./Pressure (in Hg)	US EPA Compendium Methods TO-14a/TO- 15					
	Ibourne Laborato	-		271			+	-		-				
	dney Laboratory sbane Laboratory							-	+	-				
	rth Laboratory - N	•							+	-				
	ternal Laboratory								1	1				
No		Sample Date	Sampling Time	Matrix	LAB ID									
1	VP20	Jun 19, 2020		1L Summa Canister	S20-Jn34726	x	x	x	x					
Тор	st Counts					1	1	1	1					

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. Dilutions are performed on samples due to the presence of high level target species or the presence of high level non-target species.
- 3. Results are uncorrected for surrogate recoveries.
- 4. All QC limit exceedances and affected sample results are noted by flags. Each qualifying flag is defined below in section entitled 'Definition of Data Qualifying Flags' and additionally on individual sample results (where relevant).
- 5. "100% certification" is defined as evaluating the sampling system with humid zero air/N2 and humid calibration gases that pass through all active components of the sampling system. The system is "100% certified" if no significant additions or deletions (less than 0.2 ppbv each of target compounds) have occurred when challenged with the test gas stream.
- 6. The conversion equation from poby to g/m3 uses a temperature of 25 °C and an ambient sea level atmospheric pressure of 1 atmosphere (101.325 kPa) is assumed.
- 7. All canister samples are only analysed once temperature equilibrium with the laboratory has been achieved.
- 8. Safe Sampling Volume (SSV) calculated by taking two-thirds of the breakthrough volume (direct method) and Appendix 1 of Method T0-17.
- 9. Samples were analysed on an 'as received' basis.
- 10. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 11. This report replaces any interim results previously issued.

Definition of Data Qualifying Flags

Qualifiers may have been used on the data analysis sheets and indicates as follows:

A01 Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

- A02 Estimated value.
- A03 Exceeds instrument calibration range
- A04 Saturated peak.
- A05 Exceeds quality control limits.
- A06 Compound analysed for but not detected above the Limit of Reporting (LOR). See data page for project specific U-flag definition.
- A07 Non-detected compound associated with low bias in the CCV.
- A08 The identification is based on presumptive evidence.
- A09 SSV has been exceeded for this compound. It is likely that this compound has been underestimated.
- A10 LORs cited do not take into account sample dilution due to canister pressurisation.
- A11 Naphthalene elutes outside the >C10-C12 range on the system used for sample analysis. As a result, >C10-C12 TRH value is equivalent to the modified F2 value.

Holding Times

Under conditions of normal usage for sampling ambient air, most Volatile Organic Compounds (VOCs) can be recovered from canisters near their original concentrations after storage times of up to thirty days. For thermal desorption tubes (TDT) samples should be refrigerated at <4°C in a clean environment during storage and analysed within 30 days of sample collection (within one week for limonene, carene, bis-chloromethyl ether and labile sulfur or nitrogen containing volatiles).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

Units

ppbv: parts per billion by volume **ug/m3:** micrograms per cubic metre kPa: kilopascal psig: pounds per square inch gauge

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
US EPA Compendium Methods TO-14a/TO-15					
1.1-Dichloroethane	ug/m3	< 2	2	Pass	
1.1-Dichloroethene	ug/m3	< 2	2	Pass	
1.1.1-Trichloroethane	ug/m3	< 2.7	2.7	Pass	
1.1.2-Trichloroethane	ug/m3	< 2.7	2.7	Pass	
1.1.2.2-Tetrachloroethane	ug/m3	< 3.4	3.4	Pass	
1.2-Dibromoethane (EDB)	ug/m3	< 3.6	3.6	Pass	
1.2-Dichlorobenzene	ug/m3	< 3	3	Pass	
1.2-Dichloroethane	ug/m3	< 2	2	Pass	
1.2-Dichloropropane	ug/m3	< 2.3	2.3	Pass	
1.2.4-Trichlorobenzene	ug/m3	< 15	15	Pass	
1.2.4-Trimethylbenzene	ug/m3	< 2.5	2.5	Pass	
1.3-Butadiene	ug/m3	< 1.1	1.1	Pass	
1.3-Dichlorobenzene	ug/m3	< 3	3	Pass	
1.3.5-Trimethylbenzene	ug/m3	< 2.5	2.5	Pass	
1.4-Dichlorobenzene	ug/m3	< 3	3	Pass	
1.4-Dioxane	ug/m3	< 7.2	7.2	Pass	
2-Butanone (Methyl Ethyl Ketone)	ug/m3	< 5.9	5.9	Pass	
2-Hexanone	ug/m3	< 8.2	8.2	Pass	
2.2.4-Trimethylpentane	ug/m3	< 9.3	9.3	Pass	
3-Chloropropene	ug/m3	< 6.3	6.3	Pass	
4-Ethyltoluene	ug/m3	< 2.5	2.5	Pass	
4-Methyl-2-Pentanone (MIBK)	ug/m3	< 2.1	2.0	Pass	
Acetone	ug/m3	< 11.9	11.9	Pass	
Benzene	ug/m3	< 1.6	1.6	Pass	
Bromodichloromethane	ug/m3	< 3.4	3.4	Pass	
Bromoform	ug/m3	< 5.2	5.2	Pass	
Bromomethane	ug/m3	< 19.4	19.4	Pass	
Carbon Disulfide	ug/m3	< 6.2	6.2	Pass	
Carbon Tetrachloride	ug/m3	< 3.1	3.1	Pass	
Chlorobenzene	ug/m3	< 2.3	2.3	Pass	
Chloroethane	ug/m3	< 5.3	5.3	Pass	
Chloroform	ug/m3	< 2.4	2.4	Pass	
Chloromethane	ug/m3	< 10.3	10.3	Pass	
Chlorotoluene (Benzyl Chloride)	ug/m3	< 2.6	2.6	Pass	
cis-1.2-Dichloroethene	ug/m3	< 2	2.0	Pass	
cis-1.3-Dichloropropene	ug/m3	< 2.3	2.3	Pass	
Cyclohexane	ug/m3	< 1.7	1.7	Pass	
Dibromochloromethane	ug/m3	< 4.3	4.3	Pass	
Methylene Chloride	ug/m3	< 4.3	4.3	Pass	
Ethanol	ug/m3	< 3.8	3.8	Pass	
Ethylbenzene	ug/m3	< 2.2	2.2	Pass	
Freon 11 (Trichlorofluoromethane)	ug/m3	< 2.2	2.2	Pass	
Freon 113 (Trichlorotrifluoroethane)	ug/m3	< 3.8	3.8	Pass	
Freon 113 (Inchlorotiniuoroetinane)	ug/m3	< 3.6	3.5	Pass	
Freon 12 (Dichlorodifluoromethane)			2.5		
	ug/m3	< 2.5		Pass	
Heptane	ug/m3	< 2.1	2.1	Pass	
Hexachlorobutadiene	ug/m3	< 21.3	21.3	Pass	
Hexane	ug/m3	< 3.5	3.5	Pass	
Isopropanol	ug/m3	< 49	49	Pass	

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Xylenes - Total	ug/m3	< 6.6		6.6	Pass	
Methyl t-Butyl Ether (MTBE)	ug/m3	< 7.2		7.2	Pass	
Naphthalene	ug/m3	< 10.5		10.5	Pass	
o-Xylene	ug/m3	< 2.2		2.2	Pass	
Propylene	ug/m3	< 3.4		3.4	Pass	
Styrene	ug/m3	< 2.1		2.1	Pass	
Tetrachloroethene	ug/m3	< 3.4		3.4	Pass	
Tetrahydrofuran	ug/m3	< 1.5		1.5	Pass	
Toluene	ug/m3	< 7.5		7.5	Pass	
trans-1.2-Dichloroethene	ug/m3	< 2		2	Pass	
trans-1.3-Dichloropropene	ug/m3	< 2.3		2.3	Pass	
Trichloroethene	ug/m3	< 2.7		2.7	Pass	
Vinyl Acetate	ug/m3	< 7		7.0	Pass	
Vinyl Chloride	ug/m3	< 1.3		1.3	Pass	
LCS - % Recovery		1	r T			
US EPA Compendium Methods TO-14a/TO-15						
1.1-Dichloroethane	%	110		70-130	Pass	
1.1-Dichloroethene	%	126		70-130	Pass	
1.1.1-Trichloroethane	%	97		70-130	Pass	
1.1.2-Trichloroethane	%	104		70-130	Pass	
1.1.2.2-Tetrachloroethane	%	99		70-130	Pass	
1.2-Dibromoethane (EDB)	%	93		70-130	Pass	
1.2-Dichlorobenzene	%	72		70-130	Pass	
1.2-Dichloroethane	%	127		70-130	Pass	
1.2-Dichloropropane	%	122		70-130	Pass	
1.2.4-Trichlorobenzene	%	82		70-130	Pass	
1.2.4-Trimethylbenzene	%	77		70-130	Pass	
1.3-Butadiene	%	120		70-130	Pass	
1.3-Dichlorobenzene	%	84		70-130	Pass	
1.3.5-Trimethylbenzene	%	82		70-130	Pass	
1.4-Dichlorobenzene	%	82		70-130	Pass	
1.4-Dioxane	%	87		70-130	Pass	
2-Butanone (Methyl Ethyl Ketone)	%	93		70-130	Pass	
2-Hexanone	%	85		70-130	Pass	
2.2.4-Trimethylpentane	%	122		70-130	Pass	
3-Chloropropene	%	127		70-130	Pass	
4-Ethyltoluene	%	94		70-130	Pass	
4-Methyl-2-Pentanone (MIBK)	%	71		70-130	Pass	
Acetone	%	112		70-130	Pass	
Benzene	%	106		70-130	Pass	
Bromodichloromethane	%	107		70-130	Pass	
Bromoform	%	85		70-130	Pass	
Bromomethane	%	104		70-130	Pass	
Carbon Disulfide	%	103		70-130	Pass	
Carbon Tetrachloride	%	99		70-130	Pass	
Chlorobenzene	%	90		70-130	Pass	
Chloroethane	%	122		70-130	Pass	
Chloroform	%	108		70-130	Pass	
Chloromethane	%	118		70-130	Pass	
Chlorotoluene (Benzyl Chloride)	%	72		70-130	Pass	
cis-1.2-Dichloroethene	%	108		70-130	Pass	
cis-1.3-Dichloropropene	%	99		70-130	Pass	
Cyclohexane	%	96		70-130	Pass	
Dibromochloromethane	%	99		70-130	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Methylene Chloride	%	125	70-130	Pass	
Ethanol	%	87	70-130	Pass	
Ethylbenzene	%	99	70-130	Pass	
Freon 11 (Trichlorofluoromethane)	%	98	70-130	Pass	
Freon 113 (Trichlorotrifluoroethane)	%	80	70-130	Pass	
Freon 114	%	83	70-130	Pass	
Freon 12 (Dichlorodifluoromethane)	%	111	70-130	Pass	
Heptane	%	90	70-130	Pass	
Hexachlorobutadiene	%	92	70-130	Pass	
Hexane	%	98	70-130	Pass	
Isopropanol	%	106	70-130	Pass	
m.p-Xylene	%	101	70-130	Pass	
Xylenes - Total	%	102	70-130	Pass	
Methyl t-Butyl Ether (MTBE)	%	98	70-130	Pass	
Naphthalene	%	79	70-130	Pass	
o-Xylene	%	104	70-130	Pass	
Propylene	%	125	70-130	Pass	
Styrene	%	86	70-130	Pass	
Tetrachloroethene	%	80	70-130	Pass	
Tetrahydrofuran	%	94	70-130	Pass	
Toluene	%	94	70-130	Pass	
trans-1.2-Dichloroethene	%	117	70-130	Pass	
trans-1.3-Dichloropropene	%	105	70-130	Pass	
Trichloroethene	%	83	70-130	Pass	
Vinyl Acetate	%	103	70-130	Pass	
Vinyl Chloride	%	122	70-130	Pass	

Comments

This report has been revised (V2) to amend sample name.

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	N/A
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Authorised By

Ursula Long Laurence Hearn Analytical Services Manager Senior Analyst-Air (QLD)

Glenn Jackson General Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Coo Logix D/

Environment TestingMelbourne
6 Monterey Road
Dandenong South Vic 3175 16 Mars Road
Phone : +61 3 8564 5000
NATA # 1261
Site # 1254 & 14271Sydney
Unit F3, Building F
Lane Cove West NSW 2066
Phone : +61 2 9900 8400
NATA # 1261 Site # 18217Brisbane
1/21 Smallwood Place
Murarie QLD 4172
Phone : +61 2 9900 8400
NATA # 1261 Site # 18217

web : www.eurofins.com.au

Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

e.mail : EnviroSales@eurofins.com ABN - 50 005 085 521

Sample Receipt Advice

Company name.	Geo-Logix P/L
Contact name:	Ben Pearce
Project name:	AUBURN
Project ID:	2001029
COC number:	Not provided
Turn around time:	5 Day
Date/Time received:	Jun 19, 2020 5:20 PM
Eurofins reference:	726829

Sample information

Company pama

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- N/A Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- \boxtimes Split sample sent to requested external lab.
- \times Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Ursula Long on Phone : or by e.mail: UrsulaLong@eurofins.com

Results will be delivered electronically via e.mail to Ben Pearce - bpearce@geo-logix.com.au.

9/101	Date		
	Oxygen conc (%)	Project Manager: Project Name: Project Number:	
250mL	Purge Volume (L)		
27416/N2336	Canister ID		
26	Vacuum Before Sampling	PLING SHEET ש- (מין:אָ-נסיירימע	
(1:15	Start Date/Time		
cl» (Vacuum After Sampling	OF CUSTOD	
12:20	Stop Date/Time	om.au	
TOIS (starda	Analysis		
	27416/N233 26 [1:15 9.5 1	Purge Volume (L) Canister ID Vacuum Before Sampling Start Date/Time Vacuum After Sampling Stop Date/Time 2.SOmL 27(16/N 233) 2.6 []: 1.5 9.5 1.2: 2.0	GAS SAMPLING SHEET AND CHAIN OF CUSTODY Purchase Order No: S&qS Auburn Sampling Quote Reference: Send Invoice to: accounts@seo-logix.com.au TAT required: Sud Grd 200(02q Vacuum Before Sampling Vacuum Before Sampling Purge Volume (L) Canister ID Vacuum Before Sampling Start Date/Time Vacuum After Sampling 250mL 27416/N 233 26 []: 15 q.5 []: 200

43.7 THE INFORMATION HAVE NO WAS DO INCOME.

1 #726824

From:	Ben Pearce <bpearce@geo-logix.com.au></bpearce@geo-logix.com.au>
Sent:	Friday, 26 June 2020 3:23 PM
To:	Ursula Long
Subject:	RE: Eurofins Test Results - Report 726829 : Site AUBURN (2001029)
Follow Up Flag:	Follow up
Flag Status:	Flagged

EXTERNAL EMAIL*

Hi Ursula,

Can you please change the sample ID on this to VP20.

Thanks

Ben

From: UrsulaLong@eurofins.com <UrsulaLong@eurofins.com>
Sent: Friday, 26 June 2020 2:32 PM
To: Ben Pearce <bpearce@geo-logix.com.au>
Subject: Eurofins Test Results - Report 726829 : Site AUBURN (2001029)

Please find attached results for your project in the subject header.

Regards

Ursula Long

Eurofins

Unit F3, Parkview Building 16 Mars Road LANE COVE WEST NSW 2066 AUSTRALIA Phone: +61 299 008 420 Email: <u>UrsulaLong@eurofins.com</u> Website:<u>environment.eurofins.com.au</u> <u>EnviroNote 1098 - Melbourne PFAS Accreditation</u> <u>EnviroNote 1103 - NATA Accreditation for Dioxins</u>

Click here to report this email as spam.

From:	Ben Pearce <bpearce@geo-logix.com.au></bpearce@geo-logix.com.au>
Sent:	Friday, 26 June 2020 3:23 PM
To:	Ursula Long
Subject:	RE: Eurofins Test Results - Report 726829 : Site AUBURN (2001029)
Follow Up Flag:	Follow up
Flag Status:	Flagged

EXTERNAL EMAIL*

Hi Ursula,

Can you please change the sample ID on this to VP20.

Thanks

Ben

From: UrsulaLong@eurofins.com <UrsulaLong@eurofins.com>
Sent: Friday, 26 June 2020 2:32 PM
To: Ben Pearce <bpearce@geo-logix.com.au>
Subject: Eurofins Test Results - Report 726829 : Site AUBURN (2001029)

Please find attached results for your project in the subject header.

Regards

Ursula Long

Eurofins

Unit F3, Parkview Building 16 Mars Road LANE COVE WEST NSW 2066 AUSTRALIA Phone: +61 299 008 420 Email: <u>UrsulaLong@eurofins.com</u> Website:<u>environment.eurofins.com.au</u> <u>EnviroNote 1098 - Melbourne PFAS Accreditation</u> <u>EnviroNote 1103 - NATA Accreditation for Dioxins</u>

Click here to report this email as spam.

GEO-LOGIX PTY LTD

ABN 86 116 892 936

Building Q2, Level 3 Suite 2309, 4 Daydream Street Warriewood NSW 2102

> Phone 02 9979 1722 Fax 02 9979 1222

Email info@geo-logix.com.au Web www.geo-logix.com.au