

REPORT TO FABCOT PTY LTD

ON DETAILED (STAGE 2) SITE INVESTIGATION

FOR PROPOSED WAREHOUSE AND CUSTOMER FULFILLMENT CENTRE WITH ANCILLARY OFFICES

AT 74 EDINBURGH ROAD, MARRICKVILLE, NSW

Date: 22 September 2020 Ref: E33191Brpt-rev1

JKEnvironments.com.au

T: +61 2 9888 5000 JK Environments Pty Ltd ABN 90 633 911 403

Astei- Meteler

Report prepared by:

Alistair Mitchell Environmental Scientist

Report reviewed by:

Vittal Boggaram Principal Associate | Environmental Scientist

For and on behalf of JKE PO BOX 976 NORTH RYDE BC NSW 1670

DOCUMENT REVISION RECORD

Report Reference	Report Status	Report Date
E33191Brpt	Final Report	11 September 2020
E33191Brpt-rev1	Revised Report	22 September 2020

© Document copyright of JK Environments (JKE)

This Report (which includes all attachments and annexures) has been prepared by JKE for the Client, and is intended for the use only by that Client.

This Report has been prepared pursuant to a contract between JKE and the Client and is therefore subject to:

- a) JKE's proposal in respect of the work covered by the Report;
- b) The limitations defined in the client's brief to JKE; and
- c) The terms of contract between JKE and the Client, including terms limiting the liability of JKE.

If the Client, or any person, provides a copy of this Report to any third party, such third party must not rely on this Report, except with the express written consent of JKE which, if given, will be deemed to be upon the same terms, conditions, restrictions and limitations as apply by virtue of (a), (b), and (c) above.

Any third party who seeks to rely on this Report without the express written consent of JKE does so entirely at their own risk and to the fullest extent permitted by law, JKE accepts no liability whatsoever, in respect of any loss or damage suffered by any such third party.

Executive Summary

Fabcot ('the client') commissioned JK Environments (JKE) to undertake a Detailed (Stage 2) Site Investigation (DSI) for the proposed warehouse and customer fulfillment centre with ancillary offices at 74 Edinburgh Road, Marrickville, NSW. The purpose of the investigation was to make an assessment of site contamination. The site location is shown on Figure 1 and the investigation was confined to the site boundaries as shown on Figure 2 attached in the appendices. The report includes the site history component of a preliminary site investigation (PSI).

This report has been prepared to address the SEARS (SSD 10468) requirements under Item 8 – Contamination. The NSW EPA recommends that the SEARs include a requirement for a detailed site assessment (DSI) and that a NSW EPA Accredited Site Auditor review the adequacy of all contamination reports provided in support of the development.

JKE understand that the proposed development includes a Woolworths Customer Fulfillment Centre (CFC); offices; online pick-up centre; warehouses and ancillary offices. The majority of the development will be at ground level with minor excavations anticipated for services. We understand that the footprint of the new development will occupy the majority of the site. Selected development plans issued to JKE for the preparation of this report are attached in the appendices.

The primary aims of the investigation were to identify any past or present potentially contaminating activities at the site (PSI), identify the potential for site contamination, and make an assessment of the soil and groundwater contamination conditions (DSI). The objectives were to:

- Provide an appraisal of the past site use(s) based on a review of historical records;
- Review the previous EIS and JKG reports;
- Assess the current site conditions and use(s) via a site walkover inspection;
- Identify potential contamination sources/areas of environmental concern (AEC) and contaminants of potential concern (CoPC);
- Assess the soil and groundwater contamination conditions via implementation of a sampling and analysis program;
- Prepare a conceptual site model (CSM);
- Assess the potential risks posed by contamination to the receptors identified in the CSM (Tier 1 assessment);
- Assess whether the site is suitable or can be made suitable for the proposed development (from a contamination viewpoint); and
- Assess whether further intrusive investigation and/or remediation is required.

The CSM identified the following potential contamination sources/AEC at the site:

- Fill material The site appears to have been historically filled to achieve the existing levels. The fill may have been imported from various sources and could be contaminated. A former water body located on the west site boundary was filled as reviewed on the aerial photos. The previous investigations by JKG encountered relatively deep fill >6mBGL in some sections of the site;
- Chemicals and Fuel storage The site has been used for various commercial purposes. Four USTs, an LPG and four hydrogen tanks were identified in the SafeWork. Records indicated that the USTs and ASTs were used to store diesel and petrol. The exact location of these tanks could not be determined;
- Use of pesticides Pesticides may have been used beneath the buildings and/or around the site;
- Hazardous Building Material Hazardous building materials may be present as a result of former building and demolition activities. These materials may also be present in the existing buildings/ structures on site; and
- Off-site Area 1 A dry cleaner is located up-gradient of the site and is considered to be a potential off-site source of contamination.

The DSI included soil samples from 23 locations as shown on the attached Figure 2. Groundwater monitoring wells were installed in BH101 (MW101), BH118 (MW118) and BH121 (MW121). The sampling locations were placed on a judgemental sampling plan and were broadly positioned for site coverage, taking into consideration areas that were not easily accessible. This sampling plan was considered suitable to make an assessment of potential risks associated with the AEC and CoPC identified in the CSM, and assess whether further investigation is warranted. Selected soil and groundwater samples were analysed for a range of CoPC identified in the CSM.

The DSI did not identify widespread soil or groundwater contamination. Minor elevations of individual metals were detected in the soil and groundwater above the ecological Site Assessment Criteria (SAC). A detection of friable asbestos (AF/FA) was encountered in the fill in borehole BH117. The concentration of AF/FA was below the SAC.

Based on the findings of the DSI, JKE are of the opinion that the site is suitable for the proposed development described in Section 1.1. The following recommendations should be implemented for the development works:

- Complete a Hazardous Building Materials Assessment (Hazmat) for the existing structures at the site;
- Prepare and implement an Asbestos Management Plan (AMP) for soil disturbance in the vicinity of BH117;
- Prepare and implement an Unexpected Finds Protocol (UFP) for the development works; and
- Prepare and implement an ASS Management Plan (ASSMP) for the proposed development.

The following should be implemented in the event of an unexpected find:

- All work in the immediate vicinity should cease and temporary barricades should be erected to isolate the area;
- A suitably qualified contaminated land consultant should be engaged to inspect the find and provide advice on the appropriate course of action. In the event that the unexpected find triggers remediation, the requirements of SEPP55 must be addressed (e.g. notifications to Council); and
- Any actions should be implemented and validated to demonstrate that there are no unacceptable risks to the receptors.

The conclusions and recommendations should be read in conjunction with the limitations presented in the body of this report.

Table of Contents

1	INTRO	DUCTION	1
	1.1	PROPOSED DEVELOPMENT DETAILS	1
	1.2	AIMS AND OBJECTIVES	1
	1.3	Scope of Work	2
2	SITE IN	FORMATION	3
	2.1	BACKGROUND	3
	2.2	SITE IDENTIFICATION	4
	2.3	SITE LOCATION AND REGIONAL SETTING	4
	2.4	TOPOGRAPHY	4
	2.5	SITE INSPECTION	5
	2.6	Surrounding Land Use	6
	2.7	UNDERGROUND SERVICES	6
	2.8	SECTION 10.7 PLANNING CERTIFICATE	6
3	GEOLO	GY AND HYDROGEOLOGY	8
	3.1	REGIONAL GEOLOGY	8
	3.2	ACID SULFATE SOIL (ASS) RISK AND PLANNING	8
	3.3	Hydrogeology	8
	3.4	BOTANY GROUNDWATER MANAGEMENT ZONE	8
	3.5	RECEIVING WATER BODIES	9
4	SITE HIS	STORY INFORMATION	10
	4.1	REVIEW OF HISTORICAL AERIAL PHOTOGRAPHS AND HISTORICAL MAPS	10
	4.2	REVIEW OF HISTORICAL LAND TITLE RECORDS	11
	4.3	REVIEW OF COUNCIL RECORDS	12
	4.4	SAFEWORK NSW RECORDS	12
	4.5	NSW EPA AND DEPARTMENT OF DEFENCE RECORDS	13
	4.6		14
	4.7		15
	4.8		10
5	CONCE	PTUAL SITE MODEL	17
	5.1	POTENTIAL CONTAMINATION SOURCES/AEC AND COPC	17
	5.2	MECHANISM FOR CONTAMINATION, AFFECTED MEDIA, RECEPTORS AND EXPOSURE PATHWAYS	18
6	SAMPL	ING, ANALYSIS AND QUALITY PLAN	19
	6.1	DATA QUALITY OBJECTIVES (DQO)	19
	6.2	Soil Sampling Plan and Methodology	21
	6.3	GROUNDWATER SAMPLING PLAN AND METHODOLOGY	23
7	SITE AS	SESSMENT CRITERIA (SAC)	25
	7.1	Soil	25
	7.2	GROUNDWATER	26
8	RESULT	S	28
	8.1	SUBSURFACE CONDITIONS	28

	8.2	FIELD SCREENING	28
	8.3	Soil Laboratory Results	29
	8.4	GROUNDWATER LABORATORY RESULTS	30
	8.5	SUMMARY OF DATA (QA/QC) EVALUATION	32
9	DISCU	ISSION	33
	9.1	TIER 1 RISK ASSESSMENT AND REVIEW OF CSM	33
	9.2	DECISION STATEMENTS	34
	9.3	DATA GAPS	34
10	CONC	LUSIONS AND RECOMMENDATIONS	36
	10.1	REGULATORY REQUIREMENTS	36
11	LIMIT	ATIONS	38

List of Tables

Table 2-1: Site Identification	4
Table 4-1: Summary of Historical Aerial Photographs and Historical Maps	10
Table 4-2: Summary of SafeWork NSW Records	12
Table 4-3: NSW EPA and Department of Defence Records	13
Table 4-4: Historical Business Directory and other Records	14
Table 4-5: Summary of Historical Land Uses / Activities	15
Table 5-1: Potential (and/or known) Contamination Sources/AEC and Contaminants of Potential Concern	17
Table 5-2: CSM	18
Table 6-1: Soil Sampling Plan and Methodology	21
Table 6-2: Groundwater Sampling Plan and Methodology	23
Table 6-3: Laboratory Details	24
Table 7-1: Details for Asbestos SAC	25
Table 8-1: Summary of Subsurface Conditions	28
Table 8-2: Summary of Field Screening	28
Table 8-3: Summary of Soil Laboratory Results – Human Health and Environmental (Ecological)	29
Table 8-4: Summary of Groundwater Laboratory Results – Human Health and Environmental (Ecological)	31
Table 9-1: Data Gap Assessment	35
Table 10-1: Regulatory Requirement	36

Attachments

Appendix A: Report Figures

- Appendix B: Site Information and Site History
- Appendix C: Laboratory Results Summary Tables
- Appendix D: Borehole Logs
- Appendix E: Laboratory Report(s) & COC Documents
- Appendix F: Report Explanatory Notes
- Appendix G: Data (QA/QC) Evaluation
- Appendix H: Field Work Documents
- **Appendix I: Guidelines and Reference Documents**

Abbreviations

Asbestos Fines/Fibrous Asbestos	AF/FA
Ambient Background Concentrations	ABC
Added Contaminant Limits	ACL
Asbestos Containing Material	ACM
Australian Drinking Water Guidelines	ADWG
Area of Environmental Concern	AEC
Australian Height Datum	AHD
Acid Sulfate Soil	ASS
Above-Ground Storage Tank	AST
Below Ground Level	BGL
Benzo(a)pyrene Toxicity Equivalent Factor	BaP TEQ
Bureau of Meteorology	BOM
Benzene, Toluene, Ethylbenzene, Xylene	BTEX
Cation Exchange Capacity	CEC
Contaminated Land Management	CLM
Contaminant(s) of Potential Concern	CoPC
Chain of Custody	COC
Conceptual Site Model	CSM
Development Application	DA
Dial Before You Dig	DBYD
Data Quality Indicator	DQI
Data Quality Objective	DQO
Detailed Site Investigation	DSI
Ecological Investigation Level	EIL
Ecological Screening Level	ESL
Environmental Management Plan	EMP
Excavated Natural Material	ENM
Environment Protection Authority	EPA
Environmental Site Assessment	ESA
Ecological Screening Level	ESL
Fibre Cement Fragment(s)	FCF
General Approval of Immobilisation	GAI
Health Investigation Level	HILs
Hardness Modified Trigger Values	HMTV
Health Screening Level	HSL
Health Screening Level-Site Specific Assessment	HSL-SSA
International Organisation of Standardisation	ISO
JK Environments	JKE
Lab Control Spike	LCS
Light Non-Aqueous Phase Liquid	LNAPL
Map Grid of Australia	MGA
National Association of Testing Authorities	ΝΑΤΑ
National Environmental Protection Measure	NEPM
Organochlorine Pesticides	OCP
Organophosphate Pesticides	OPP
Polycyclic Aromatic Hydrocarbons	РАН
Potential ASS	PASS
Polychlorinated Biphenyls	PCBs
Per-and Polyfluoroalkyl Substances	PFAS
Photo-ionisation Detector	PID
Protection of the Environment Operations	ΡΟΕΟ
Practical Quantitation Limit	POL
Quality Assurance	QA

Quality Control	QC
Remediation Action Plan	RAP
Relative Percentage Difference	RPD
Site Assessment Criteria	SAC
Sampling, Analysis and Quality Plan	SAQP
Site Audit Statement	SAS
Site Audit Report	SAR
Site Specific Assessment	SSA
Source, Pathway, Receptor	SPR
Specific Contamination Concentration	SCC
Standard Penetration Test	SPT
Standing Water Level	SWL
Trip Blank	ТВ
Toxicity Characteristic Leaching Procedure	TCLP
Total Recoverable Hydrocarbons	TRH
Trip Spike	TS
Upper Confidence Limit	UCL
United States Environmental Protection Agency	USEPA
Underground Storage Tank	UST
Virgin Excavated Natural Material	VENM
Volatile Organic Compounds	VOC
World Health Organisation	WHO
Work Health and Safety	WHS

Units

Litres	L
Metres BGL	mBGL
Metres	m
Millivolts	mV
Millilitres	ml or mL
Milliequivalents	meq
micro Siemens per Centimetre	μS/cm
Micrograms per Litre	μg/L
Milligrams per Kilogram	mg/kg
Milligrams per Litre	mg/L
Parts Per Million	ppm
Percentage	%

1 INTRODUCTION

Fabcot ('the client') commissioned JK Environments (JKE) to undertake a Detailed (Stage 2) Site Investigation (DSI) for the proposed warehouse and customer fulfillment centre with ancillary offices at 74 Edinburgh Road, Marrickville, NSW. The purpose of the investigation was to make an assessment of site contamination. The site location is shown on Figure 1 and the investigation was confined to the site boundaries as shown on Figure 2 attached in the appendices. The report includes the site history component of a preliminary site investigation (PSI).

This report has been prepared to address the SEARS (SSD 10468) requirements under Item 8 – Contamination. The NSW EPA recommends that the SEARs include a requirement for a detailed site assessment (DSI) and that a NSW EPA Accredited Site Auditor review the adequacy of all contamination reports provided in support of the development.

An acid sulfate soil (ASS) assessment and geotechnical investigation were undertaken previously to this DSI by Environmental Investigation Services (EIS, now JKE) and JK Geotechnics (JKG). The results of the ASS assessment and geotechnical investigation are presented in separate reports (Ref: 28042Zrpt, dated February 2015 and E28042KBlet, dated 3 February 2015). A summary of the relevant information from the reports is presented in Section 2.1. This report should be read in conjunction with the previous JKE and JKG report.

1.1 Proposed Development Details

JKE understand that the proposed development includes a Woolworths Customer Fulfillment Centre (CFC); offices; online pick-up centre; warehouses and ancillary offices. The majority of the development will be at ground level with minor excavations anticipated for services. We understand that the footprint of the new development will occupy the majority of the site. Selected development plans issued to JKE for the preparation of this report are attached in the appendices.

1.2 Aims and Objectives

The primary aims of the investigation were to identify any past or present potentially contaminating activities at the site (PSI), identify the potential for site contamination, and make an assessment of the soil and groundwater contamination conditions (DSI). The objectives were to:

- Provide an appraisal of the past site use(s) based on a review of historical records;
- Review the previous EIS and JKG reports;
- Assess the current site conditions and use(s) via a site walkover inspection;
- Identify potential contamination sources/areas of environmental concern (AEC) and contaminants of potential concern (CoPC);
- Assess the soil and groundwater contamination conditions via implementation of a sampling and analysis program;
- Prepare a conceptual site model (CSM);
- Assess the potential risks posed by contamination to the receptors identified in the CSM (Tier 1 assessment);
- Assess whether the site is suitable or can be made suitable for the proposed development (from a contamination viewpoint); and

1

Assess whether further intrusive investigation and/or remediation is required.

1.3 Scope of Work

The investigation was undertaken generally in accordance with a JKE proposal (Ref: EP51679B2) of 30 July 2020 and Consultancy Services Agreement (CSA) between the client and JKE. The scope of work included the following:

- Review of site information, including background and site history information from various sources • outlined in the report;
- Preparation of a CSM;
- Design and implementation of a sampling, analysis and quality plan (SAQP);
- Interpretation of the analytical results against the adopted Site Assessment Criteria (SAC);
- Data Quality Assessment; and
- Preparation of a report including a Tier 1 risk assessment.

The scope of work was undertaken with reference to the National Environmental Protection (Assessment of Site Contamination) Measure 1999 as amended (2013)¹, other guidelines made under or with regards to the Contaminated Land Management Act (1997)² and State Environmental Planning Policy No.55 – Remediation of Land (1998)³. A list of reference documents/guidelines is included in the appendices.

¹ National Environment Protection Council (NEPC), (2013). National Environmental Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013). (referred to as NEPM 2013)

² Contaminated Land Management Act 1997 (NSW) (referred to as CLM Act 1997)

³ State Environmental Planning Policy No. 55 – Remediation of Land 1998 (NSW) (referred to as SEPP55)

2 SITE INFORMATION

2.1 Background

2.1.1 JKG 2015

JKG was commissioned in 2015 to undertake a geotechnical investigation for a proposed commercial development at the site. The purpose of the investigation was to assess the subsurface conditions at ten borehole locations and, based on the information obtained, to present comments and recommendations on earthworks, retaining walls, footings, soil aggression, earthquake design parameters, slab-on-grade, and external pavements. An additional (11th) borehole was also drilled. A summary of the subsurface conditions encountered during the investigations is outlined below.

2.1.2 EIS 2015

EIS was previously commissioned to undertake an ASS assessment in conjunction with the JKG geotechnical investigation in February 2015. The scope of work for the assessment include the review of the ASS risk maps prepared and soil sampling from 5 boreholes (BH1, BH4, BH7, BH9 and BH11) drilled for the JKG geotechnical investigation. The sampling locations for the ASS assessment are shown on the attached Figure 2.

The subsurface conditions encountered in the boreholes generally consisted of concrete or asphaltic concrete (AC) pavement which extended from approximately 170mm to 350mm, underlain by fill material to depths of approximately 1.7m to greater than 6mBGL, and underlain by natural silty clay soil to a depth of approximately 9.2mBGL. Siltstone bedrock was encountered beneath the silty clay in selected boreholes.

The fill material typically consisted of sandy gravel, silty clay or gravelly silty sand. Groundwater seepage was encountered during drilling at depths of approximately 6m to 8.8mBGL. Standing water level (SWL) was measured in the selected boreholes at depths of 2.5m to 8.8mBGL on completion of drilling. Reference should be made to the borehole logs attached in the appendices for further details of the subsurface conditions encountered at the site.

The soil laboratory results were assessed against the guidelines adopted for the assessment. The pH_{KCI} results ranged from 3.9 to 8.4. The results indicate that prior to oxidation the pH values of the soil suspended in potassium chloride solution ranged from strongly acidic to alkaline. Following oxidation, the pH_{ox} results for the samples ranged from 4 to 7.8. These results are generally strongly acidic to neutral. The pH of the samples typically dropped by 2 or more units following oxidation.

Acid trail TAA results ranged from less than the PQL (LPQL) to 87mol H+/tonne. One result was above the action criteria of 62mol H+/tonne. TPA results ranged from LPQL to 70mol H+/tonne. One result was above the action criteria of 62mol H+/tonne. TSA results ranged from LPQL to 27mol H+/tonne. All of the results were below the action criteria of 62mol H+/tonne.

The S_{pos} % results ranged for 0.005% to 0.15%. The majority of the results were below the action criterion of 0.1%. One natural soil sample BH11 (3-3.45m) encountered an elevated S_{pos} % result of 0.15% which was above the action criterion. The liming rate required for neutralisation ranged from 1kgCaCO3/tonne to 7.7kgCaCO3/tonne

The soil samples encountered results which were above the action criteria adopted for the assessment. Based on these results, the EIS report concluded that the risk of generating ASS conditions following disturbance of the natural soils for the proposed development at the site is considered to be high. An ASS Management Plan (ASSMP) was recommended for the proposed development.

JKE understand that the proposed development outlined in the ASS assessment did not proceed. Hence, an ASSMP was not prepared or implement for the site. However, as ASSMP should be prepared for the proposed development outlined in the DSI report.

2.2 Site Identification

Current Site Owner	Fabcot Pty Ltd
(certificate of title):	
Site Address:	74 Edinburgh Road, Marrickville, NSW
Lot & Deposited Plan:	Lot 202 DP1133999, Lot 101 DP1237269 and Lot 1 DP539623
Current Land Use:	Commercial and Industrial Warehouses
Proposed Land Use:	Customer Fulfilment Centre
Local Government Authority:	Inner West Council
Current Zoning:	SP2 Infrastructure and IN1 General Industrial
Site Area (m²) (approx.):	28,000
RL (AHD in m) (approx.):	2.9-5.0
Geographical Location (decimal degrees) (approx.):	Latitude: -33.908825
	Longitude: 151.170157
Site Location Plan:	Figure 1
Sample Location Plan:	Figure 2

Table 2-1: Site Identification

2.3 Site Location and Regional Setting

The site is located within a residential, commercial and industrial area of Marrickville and is bound by Edinburgh Road to the north and Sydney Steel Road to the south and east. The site is located approximately 1,400m to the north-west of Alexandra Canal.

2.4 Topography

The regional topography is characterised by a south facing hillside. The site is relatively flat and located towards the toe of the hillside. It gently slopes at approximately 1° to 3°. Parts of the site appear to have been levelled to account for the slope and accommodate the existing development.

2.5 Site Inspection

A walkover inspection of the site was undertaken by JKE on 12 August 2020. The inspection was limited to accessible areas of the site and immediate surrounds. An internal inspection of buildings was undertaken for the DSI. Selected site photographs obtained during the inspection are attached in the appendices.

A summary of the inspection findings is outlined in the following subsections:

2.5.1 Current Site Use and/or Indicators of Former Site Use

At the time of the inspection, the majority of the site was occupied by three warehouses. The warehouse located on the north eastern section of the site was used for a furniture distribution business. The warehouse in the south section was used as part of three separate businesses i.e. Marley Spoon, wine distribution, metal wielding and spray painting. The warehouse in the north western section was vacant and had dangerous good signage for the use of anhydrous ammonia.

The northern and eastern sections of the site were concreted and were used for storage for the welding business, a scaffolding business, a recycling drop off and several shipping containers.

2.5.2 Buildings, Structures and Roads

All of the warehouses on the site appeared in average condition. The north eastern warehouse was constructed from steel and concrete. The north western was constructed from steel, brick and cement fibre. The southern was constructed from steel and concrete. The northern section of the site had a toll booth which was constructed from cement and wood fibre which appeared in average condition.

2.5.3 Boundary Conditions, Soil Stability and Erosion

The site had fencing on all sides, however the gates which gave access were open and accessible to the public.

2.5.4 Presence of Drums/Chemical Storage and Waste

Several fuel drums, petrol and diesel fuel agents and coolants were located between the north western and southern warehouses and in the south eastern corner. Several black microtone spray paint drums were disposed of in a bin located in the centre of the site outside of welding and spray paint business.

2.5.5 Evidence of Cut and Fill

Cut and fill was evident near to the southern warehouse with an approximately 1.8m to 2m retaining wall located either side of the main loading dock.

2.5.6 Visible or Olfactory Indicators of Contamination (odours, spills etc)

Two possible locations of underground storage tanks (USTs) were identified in the eastern concreted area of the site. A fibre cement fragment (FCF) was identified in the southern section of the site.

2.5.7 Drainage and Services

Drainage was expected to flow to the south with the topography. A major stormwater line runs through the northern and eastern sections of the site shown on Figure 2 attached in the appendices.

2.5.8 Sensitive Environments

Sensitive environments such as wetlands, ponds, creeks or extensive areas of natural vegetation were not identified on site or in the immediate surrounds.

2.5.9 Landscaped Areas and Visible Signs of Plant Stress

An assortment of native and exotic vegetation was located on site including trees and shrubs which appeared overgrown and in average condition.

2.6 Surrounding Land Use

During the site inspection, JKE observed the following land uses in the immediate surrounds:

- North ADCO construction site, substation and residential properties;
- South Vacant warehouse;
- East Sydney Metro construction site; and
- West Construction site.

JKE did not observe any land uses in the immediate surrounds that were identified as potential contamination sources for the site.

2.7 Underground Services

The 'Dial Before You Dig' (DBYD) plans were reviewed for the investigation in order to establish whether any major underground services exist at the site or in the immediate vicinity that could act as a preferential pathway for contamination migration.

The DBYD plans indicated that a stormwater main extends through the northern and eastern sections of the site. The stormwater is understood to be at a depth of approximately 1.5m and 3m BGL and also extends through the neighbouring property. Considering the geological conditions (discussed in Section 8.2), there is a potential for the stormwater main to act as a preferential pathway for contamination migration (i.e. through relatively permeable backfill). Sewer and electrical services were also located on site. The approximate location of these services are shown on Figure 2.

2.8 Section 10.7 Planning Certificate

The section 10.7 (2 and 5) planning certificates were reviewed for the investigation. The search was limited to the main Lot 202 in DP1133999. Copies of the certificates are attached in the appendices. A summary of the relevant information is outlined below:

- The land is not deemed to be: significantly contaminated; subject to a management order; subject of an approved voluntary management proposal; or subject to an on-going management order under the provisions of the CLM Act 1997;
- The land is not the subject of a Site Audit Statement (SAS);
- The land is located within a Class 2 acid sulfate soil (ASS) risk area; and
- The land is not located in a conservation area; or have an item of environmental heritage situated on the land.

3 GEOLOGY AND HYDROGEOLOGY

3.1 Regional Geology

Regional geological information was reviewed for the investigation. The information was sources from the Lotsearch report attached in the appendices. The report indicates that the site is underlain by Quaternary deposits of silty to peaty quartz sand, silt and clay. Ferruginous and humic cementation are common in places with layers of shells.

3.2 Acid Sulfate Soil (ASS) Risk and Planning

ASS information presented in the Lotsearch report indicated that the site is located within a Class 2 ASS risk area. Works in a Class 2 risk area that could pose an environmental risk in terms of ASS include all works below existing ground level and works by which the water table is likely to be lowered. The EIS 2015 ASS assessment identified ASS at the site and recommended preparing an ASSMP.

3.3 Hydrogeology

Hydrogeological information presented in the Lotsearch report indicated that the regional aquifer on-site and in the areas immediately surrounding the site includes porous, extensive aquifers of high productivity. There was a total of 96 registered bores within the report buffer of 2,000m. In summary:

- The nearest registered bore was located to the east approximately 370m from the site. This was utilised for monitoring purposes;
- The majority of the bores were registered for monitoring purposes;
- There were no nearby bores (i.e. within 1,373m) registered for domestic or irrigation uses; and
- The drillers log information from the closest registered bores typically identified fill, sand and/or clay soil to depths of 4.5-11.5m, underlain by siltstone or sandstone bedrock. SWLs in the bores ranged from 0.5mBGL to 14.9mBGL.

The information reviewed for the DSI indicates that the subsurface conditions at the site are expected to consist of moderate to high permeability (alluvial) soils overlying relatively deep bedrock. Abstraction and use of groundwater at the site or in the immediate surrounds may be viable under these conditions, however the use of groundwater is not proposed as part of the development. There is a reticulated water supply in the area and consumption of groundwater is not expected to occur.

Considering the local topography and surrounding land features, JKE anticipate groundwater to flow towards the south.

3.4 Botany Groundwater Management Zone

The site is not located in the Botany Groundwater Management Zone associated with the Botany Sand Beds aquifer. An area mapped as management zone 2 is located approximately 219m to the east of the site.

3.5 Receiving Water Bodies

Surface water bodies were not identified in the immediate vicinity of the site. The closest surface water body is Alexandra Canal located approximately 1,400m to the south-east of the site. Due to the distance from the site the Canal is not considered to be a potential receptor.

4 SITE HISTORY INFORMATION

4.1 Review of Historical Aerial Photographs and Historical Maps

Historical aerial photographs were reviewed for the investigation. The information was sourced for the Lotsearch report. JKE has reviewed the photographs and historical maps, and summarised relevant information in the following table:

Table 4-1: Summary of Historical Aerial Photographs and Historical Maps

Year	Details
1930	 On-site: The photograph was of poor quality. The site appeared to be occupied by several individual warehouse buildings and some vacant areas. A water body which appeared to be a low-lying man-made swamp was located on the west site boundary which extended further to the west beyond the site. Off-site: The site was located in a predominantly industrial area. Residential areas were visible to the north. A smaller water body was visible to the west.
1943	 On-site: The site appeared to be occupied by an office building in the northern section and three warehouses, two in the western section and one in the eastern section. The south eastern section appeared to be used for earth works with stockpiled material and small buildings surrounding the area. The north eastern section appeared to be a vegetated area with a canal for waste water from the warehouses running to the east. The south western section appeared to be cleared land and part of the water body visible in the 1930 photograph. Off-site: The surrounds appeared generally similar to the previous photograph.
1951	 On-site: The site appeared to have the south western warehouse extended upon with two new buildings constructed. The north eastern section appeared to be cleared of vegetation and used as a carpark. Off-site: The surrounds appeared generally similar to the previous photograph.
1955	 On-site: The site appeared to have a second level built on the western warehouse and a concrete driveway built in the northern section for access to the site from Edinburgh Road. Off-site: The surrounds appeared generally similar to the previous photograph.
1961	On-site: The site appeared to have a warehouse built in the south eastern section. Off-site: The surrounds appeared to have further industrial development to the south, east and west.
1965	 On-site: The site appeared generally similar to the previous photograph. Large sections of the water body appeared to have been filled. Off-site: The surrounds appeared to have further industrial development to the south.
1970	 On-site: A new warehouse was located in the south eastern section within the earth works area and another warehouse built in the north eastern section on the previous carpark area. Off-site: The surrounds appeared to have further industrial development to the north and south.
1978	On-site: A warehouse had been demolished in the south western section with vacant land present in this area. The water body along the western boundary had been filled. The area was an accessway.

Year	Details		
	Off-site: The surrounds appeared to have further industrial development to the south west and east. The water body to the south west appeared to have been filled.		
1982	On-site: A new shed was located in the northern section.		
	Off-site: The surrounds appeared to have clearing of land to the south west.		
1986	On-site: The site appeared generally similar to the previous photograph.		
	Off-site: The area to the west of the site had been cleared and vacant. New warehouses were located further to the south, east and west of the site.		
1991	On-site: Warehouses in the south west, south and east sections of the site had been demolished and replaced with a large new warehouse and a concrete surfaced yard.		
	Off-site: The surrounds appeared to have been further developed for industrial landuse. Marrickville shopping centre appears to have been constructed to the north.		
1994	On-site: The site appeared generally similar to the previous photograph.		
	Off-site: The surrounds appeared generally similar to the previous photograph.		
2000	On-site: The site appeared to have been further developed with new warehouses and construction underway for a new building and carpark. The large warehouse in the south section of the site remained unchanged.		
	Off-site: The surrounds appeared to have further industrial development to the west and south west.		
2009	On-site: The site appeared to have been further development with some of the older warehouses replaced by new buildings.		
	Off-site: The surrounds appeared to have demolition to north west.		
2015	On-site: The site appeared similar to the previous photograph.		
	Off-site: The surrounds appeared similar to the previous photograph.		
2020	On- On-site: The site appeared similar to the previous photograph.		
	Off-site: The surrounds appeared similar to the previous photograph.		

4.2 Review of Historical Land Title Records

Historical land title records were reviewed for the investigation. The record search was undertaken by Advance Legal Searchers Pty Ltd. Copies of the title records are attached in the appendices. The title records indicate the following:

- Since 2018, the site has been owned Fabcot Pty Ltd (a subsidiary of Woolworths for retail property development);
- From 2011 to 2018, the site was owned by Hydrox Nominees Pty Ltd (a subsidiary of Woolworths and a distributor of cutlery and general hardware);

- From 2005 to 2011, the site was owned by ACPP Industrial Pty Limited and sub leased to several businesses;
- From 1984 to 2005, the site was owned by Unilever Australia Limited (production of food, home and personal care products);
- From 1982 to 1984, the site was owned by Wales Management Pty Limited;
- From 1980 to 1981, part of the site was owned by Unilever Australia Limited; and
- From 1908 to 1980, the site was owned in parts by Margarine Pty Limited, Richard Taylor Limited (merchant), a potter, an accountant, a general storekeeper, the Minister for Public Works, R Flower Limited, the State of New South Wales and manufacturing confectioner.

The historical land title records indicate extensive use of the site for various commercial/industrial landuse. The previous landuse would have included the storage and use of various chemicals resulting in potential contamination.

4.3 Review of Council Records

A search of council records is currently underway. The results will be summarised in a separate letter when received.

4.4 SafeWork NSW Records

SafeWork NSW records in relation to the registered storage of dangerous goods were reviewed for the investigation. Copies of relevant documents are attached in the appendices. A summary of the relevant information is provided in the following table:

Date	Record Number	License Details
12/6/86	DG 8601	Application for licence to keep dangerous goods. Application includes hand drawn plans. Licence includes 10,000L, 15,000L, 13,000L and 10,000L underground fuel storage tanks (USTs) for storing mainly petrol. Cylinder store 2,000, LPG and four 2,100 scm Hydrogen, 19,200 scm aboveground nitrogen tank and 500L aboveground LPG tank.
25/6/97	35/004193	Application for licence to keep dangerous goods. Application includes hand drawn plans showing locations of previously installed aboveground storage tank (AST) for Anhydrous Ammonia in western section of site. Licence included storage of sodium hypochlorite, flammable ink solvents, corrosive detergents and flammable flavours.

Table 4-2: Summary	of SafeWork	NSW Records

Due to the quality of the plans, JKE were unable to determine the exact location of the former USTs at the site. The client has informed JKE that the majority of the USTs have been removed from the site. However, no documents were available to confirm this. The walkover site inspection did not indicate any obvious signs of USTs at the site.

4.5 NSW EPA and Department of Defence Records

A review of the NSW EPA and Department of Defence databases was undertaken for the PSI. Information from the following databases were sourced from the Lotsearch report:

- Records maintained in relation to contaminated land under Section 58 of the CLM Act 1997;
- Records of sites notified in accordance with the Guidelines on the Duty to Report Contamination under Section 60 of the CLM Act 1997 (2015)⁴;
- Licensed activities under the Protection of the Environment Operations Act (1997)⁵;
- Sites being investigated under the NSW EPA per-and polyfluoroalkyl substances (PFAS) investigation program;
- Sites being investigated by the Department of Defence for PFAS contamination; and
- Sites being managed by the Department of Defence for PFAS contamination.

The search included the site and surrounding areas in the report buffer. A summary of the information is provided below:

Records	On-site	Off-site
Records under	None	There were three properties with records in the
Section 58 of the		report buffer. The Sydney Park and former
CLM Act 1997		Tidyburn facility were located greater than 900m
		to the east and south east and down-gradient of
		the site. Due to the distance and down-gradient
		locations, these properties are not considered to
		be potential off-site contamination sources.
		A former dry cleaner was a located
		approximately 107m to the north east and up-
		gradient of the site. Due to the distance and up-
		gradient location, the property is considered to
		be a potential off-site contamination source.
Records under the	None	There were nine properties listed in the report
Duty to Report		buffer. The Camdenville Park, Former Industrial
Contamination under		Manufacturing Facility, SRA Land, Cooks River
Section 60 of the		Rail Terminal, BP Express Service Station,
CLM Act 1997		Sydenham XPT Maintenance Facility, Sydney
		Park and former Tidyburn facility were located
		greater than 300m to the east, south east and
		south west and down-gradient of the site. Due
		to the distance and cross-gradient locations,
		these properties are not considered to be
		potential off-site risk contamination sources.
		The former dry cleaner located approximately
		107m to the north east and up-gradient of the
		site is considered to be a potential off-site
		contamination source.

Table 4-3: NSW EPA and Department of Defence Records

⁴ NSW EPA, (2015). *Guidelines on the Duty to Report Contamination under Section 60 of the CLM Act 1997.* (referred to as Duty to Report Contamination)

⁵ Protection of the Environment Operations Act 1997 (NSW) (referred to as POEO Act 1997)

Records	On-site	Off-site
Licences under the POEO Act 1997	A former license was issued to Peerless Holdings Pty Limited located at the site in 2000 for the generation or storage of Hazardous, Industrial or Group A waste. This license has since been revoked or surrendered.	Current and historical licenses were identified for several properties within the report buffer, including railway systems activities, waste disposal by application to land, non-thermal treatment of general waste, recovery of general waste, waste storage, hazards, industrial or group A waste generation or storage and the application of herbicides along waterways. However, these activities are considered unlikely to pose a contamination risk to the site or represent and off-site source of contamination.
Records relating to the NSW EPA PFAS Investigation Program	None	Botany Bay area and Georges river were located within the report buffer and are confirmed under the EPA PFAS management program. However, due to the distance and down gradient location they are unlikely to pose a contamination risk to the site or represent and off-site source of contamination.
Records relating to the Department of Defence PFAS management and investigation programs	None	None
Records relating to the Airservices Australia National PFAS management program	None	Sydney airport was located within the report buffer and is confirmed under the PFAS management program as a fire station and fire training ground. However, due to the distance and cross gradient location it is unlikely to pose a contamination risk to the site or represent and off-site source of contamination.

4.6 Historical Business Directory and Additional Lotsearch Information

Historical business records and other relevant information were reviewed for the investigation. The information was sourced from the Lotsearch report and summarised in the following table:

Records	On-site	Off-site
Historical dry cleaners, motor garages and service stations	None	There was three historical businesses listed in the report buffer between 1950 and 1990. These property were motor garages located between 124m and 226m to the east and south. Due to the cross-gradient location, the properties are not considered to represent an off-site source of contamination.
Other historical businesses that could represent potential	None	None

Table 4-4: Historical Business Directory and other Records

Records	On-site	Off-site
sources of contamination		
National waste management site database	None	Alexandria Landfill was listed within the report buffer and located approximately 801m from the site. Due to the distance, cross-gradient location, the landfill is not considered to represent an off- site source of contamination.
National liquid fuel facilities	None	Three petrol stations were listed within the report buffer and the closest was located 727m from the site. Due to the distance and cross- gradient location, the properties are not considered to represent an off-site source of contamination.
Mapped heritage items	None	Various heritage items were mapped in the report buffer. These are not considered to have any relevance in the context of the DSI objectives.
Mapped ecological constraints	None	Various ecological items were mapped in the report buffer. These are not considered to have any relevance in the context of the DSI objectives.
Mapped naturally occurring asbestos	None	None

4.7 Summary of Site History Information

A time line summary of the historical land uses and activities is presented in the following table. The information presented in the table is based on a weight of evidence assessment of the site history documentation and observations made by JKE.

Year(s)	On-site - Potential Land Use / Activities	Off-site - Potential Land Use / Activities	
1921-1980	The landuse at the site was predominantly commercial/industrial. Many sections of the site were filled to achieve the existing levels including a water body located on the west site boundary.	Predominantly industrial and residential area to the north. A water body was visible to the south-west which was subsequently filled.	
1980-2011	The landuse at the site was predominantly commercial/industrial. Old warehouses were replaced with new buildings.	Continued industrial with some residential landuse.	
2011 to 2020	The landuse at the site was predominantly commercial/industrial.	Continued industrial with some residential landuse.	

Table 4-5: Summary of Historical Land Uses / Activities

4.8 Integrity of Site History Information

The majority of the site history information was obtained from government organisations as outlined in the relevant sections of this report. The veracity of the information from these sources is considered to be relatively high. A certain degree of information loss can be expected given the lack of specific land use details over time. JKE have relied upon the Lotsearch report and have not independently verified any information contained within. However, it is noted that the Lotsearch report is generated based on databases maintained by various government agencies and is expected to be reliable.

5 CONCEPTUAL SITE MODEL

NEPM (2013) defines a CSM as a representation of site related information regarding contamination sources, receptors and exposure pathways between those sources and receptors. The CSM for the site is presented in the following sub-sections and is based on the site information (including the site inspection information) and the review of site history information. Reference should also be made to the figures attached in the appendices.

A review of the CSM in relation to source, pathway and receptor (SPR) linkages has been undertaken as part of the Tier 1 risk assessment process, as outlined in Section 9.

5.1 Potential Contamination Sources/AEC and CoPC

The potential contamination sources/AEC and CoPC are presented in the following table:

Source / AEC	CoPC
<u>Fill material</u> – The site appears to have been historically	Heavy metals (arsenic, cadmium, chromium, copper,
filled to achieve the existing levels. The fill may have	lead, mercury, nickel and zinc), petroleum hydrocarbons
been imported from various sources and could be	(referred to as total recoverable hydrocarbons – TRHs),
contaminated.	benzene, toluene, ethylbenzene and xylene (BTEX),
	polycyclic aromatic hydrocarbons (PAHs),
A former water body located on the west site boundary	organochlorine pesticides (OCPs), organophosphate
was filled as reviewed on the aerial photos.	pesticides (OPPs), polychlorinated biphenyls (PCBs) and
	asbestos.
The previous investigations by JKG encountered	
relatively deep fill >6mBGL in some sections of the site.	
Chemicals and Fuel storage – The site has been used for	Lead, TRH, BTEX, PAHs and VOCs
various commercial purposes. Four USTs, an LPG and	
four hydrogen tanks were identified in the SafeWork.	
Records indicated that the USTs and ASTs were used to	
store diesel and petrol. The exact location of these tanks	
could not be determined.	
Use of pesticides – Pesticides may have been used	Heavy metals and OCPs
beneath the buildings and/or around the site.	
Hazardous Building Material – Hazardous building	Asbestos, lead and PCBs
materials may be present as a result of former building	
and demolition activities. These materials may also be	
present in the existing buildings/ structures on site.	
Off-site Area 1 – A dry cleaner is located up-gradient of	TRH and VOCs, including tetrachloroethene (also known
the site and is considered to be a potential off-site	as perchloroethylene - PCE) and the breakdown
source of contamination.	products trichloroethene (TCE), cis-1,2-dichloroethene
	(cis-DCE) and vinyl chloride (VC).

Table 5-1: Potential (and/or known) Contamination Sources/AEC and Contaminants of Potential Concern

5.2 Mechanism for Contamination, Affected Media, Receptors and Exposure Pathways

The mechanisms for contamination, affected media, receptors and exposure pathways relevant to the potential contamination sources/AEC are outlined in the following CSM table:

Table 5-2: CSM	
Potential mechanism for contamination	 Potential mechanisms for contamination include: Fill material – importation of impacted material, 'top-down' impacts (e.g. placement of fill, leaching from surficial material etc), or sub-surface release (e.g. impacts from buried material); Chemical and Fuel storage – 'top-down', spills (e.g. during filling of the tanks and/or dispensing activities), or sub-surface release (e.g. from leaking tank or pipework); Use of pesticides – 'top-down' and spills (e.g. during normal use, application and/or improper storage); Hazardous building materials – 'top-down' (e.g. demolition resulting in surficial impacts in unpaved areas); and Off-site land uses – 'top-down', spill or sub-surface release. Impacts to the site could occur via migration of contaminated groundwater.
Affected media	Soil and groundwater have been identified as potentially affected media.
Receptor identification	Human receptors include site occupants/users (adults), construction workers and intrusive maintenance workers. Off-site human receptors include adjacent land users and groundwater users. Ecological receptors include terrestrial organisms and plants within unpaved areas (including the proposed landscaped areas).
Potential exposure pathways	Potential exposure pathways relevant to the human receptors include ingestion, dermal absorption and inhalation of dust (all contaminants) and vapours (volatile TRH, naphthalene and BTEX). The potential for exposure would typically be associated with the construction and excavation works, and future use of the site. Potential exposure pathways for ecological receptors include primary/direct contact and ingestion. Exposure during future site use could occur via direct contact with soil in unpaved areas such as gardens, inhalation of airborne asbestos fibres during soil disturbance, or inhalation of vapours within enclosed spaces such as buildings and basements.
Potential exposure mechanisms	 The following have been identified as potential exposure mechanisms for site contamination: Vapour intrusion into the proposed basement and/or building (either from soil contamination or volatilisation of contaminants from groundwater); Contact (dermal, ingestion or inhalation) with exposed soils in landscaped areas and/or unpaved areas; and Migration of groundwater off-site and into nearby water bodies, including aquatic ecosystems.
Presence of preferential pathways for contaminant movement	The backfill arounds services (see Figure 2) is a potential preferential pathway for contaminant migrations. This could occur via groundwater/seepage if present or via soil/vapour migration through the sewer and/or trench backfill.

6 SAMPLING, ANALYSIS AND QUALITY PLAN

6.1 Data Quality Objectives (DQO)

Data Quality Objectives (DQOs) were developed to define the type and quality of data required to achieve the project objectives outlined in Section 1.2. The DQOs were prepared with reference to the process outlined in Schedule B2 of NEPM (2013) and the Guidelines for the NSW Site Auditor Scheme, 3rd Edition (2017)⁶. The seven-step DQO approach for this project is outlined in the following sub-sections.

The DQO process is validated in part by the Data Quality Assurance/Quality Control (QA/QC) Evaluation. The Data (QA/QC) Evaluation is summarised in Section 8.1 and the detailed evaluation is provided in the appendices.

6.1.1 Step 1 - State the Problem

The CSM identified potential sources of contamination/AEC at the site that may pose a risk to human health and the environment. Investigation data is required to assess the contamination status of the site, assess the risks posed by the contaminants in the context of the proposed development/intended land use, and assess whether remediation is required. This information will be considered by the consent authority in exercising its planning functions in relation to the development proposal.

The DQOs were developed by the author of this report and checked by the reviewer. Both the author and reviewer were joint decision-makers in relation to Step 2 of the DQO process. The investigation was constrained by access limitations associated with the existing structures on site.

6.1.2 Step 2 - Identify the Decisions of the Study

The objectives of the investigation are outlined in Section 1.2. The decisions to be made reflect these objectives and are as follows:

- Did the site inspection, or does the historical information identify potential contamination sources/AEC at the site?
- Are any results above the SAC?
- Do potential risks associated with contamination exist, and if so, what are they?
- Is remediation required?
- Is the site characterisation sufficient to provide adequate confidence in the above decisions?
- Is the site suitable for the proposed development, or can the site be made suitable subject to further characterisation and/or remediation?

6.1.3 Step 3 - Identify Information Inputs

The primary information inputs required to address the decisions outlined in Step 2 include the following:

- Existing relevant environmental data from previous reports;
- Site information, including site observations and site history documentation;
- Sampling of potentially affected media, including soil and groundwater;

⁶ NSW EPA (2017). *Guidelines for the NSW Site Auditor Scheme, 3rd ed.* (referred to as Site Auditor Guidelines 2017)

- Observations of sub-surface variables such as soil type, photo-ionisation detector (PID) concentrations, odours and staining, and groundwater physiochemical parameters;
- Laboratory analysis of soils, fibre cement and groundwater for the CoPC identified in the CSM; and
- Field and laboratory QA/QC data.

6.1.4 Step 4 - Define the Study Boundary

The sampling was confined to the site boundaries as shown in Figure 2 and was limited vertically to a depth of 9.0m BGL (spatial boundary). The sampling was completed between 12 and 14 August 2020 (temporal boundary). The assessment of potential risk to adjacent land users has been made based on data collected within the site boundary.

Sampling was not undertaken within the existing building footprint of some warehouses due to access constraints.

6.1.5 Step 5 - Develop an Analytical Approach (or Decision Rule)

6.1.5.1 Tier 1 Screening Criteria

The laboratory data will be assessed against relevant Tier 1 screening criteria (referred to as SAC), as outlined in Section 7. Exceedances of the SAC do not necessarily indicate a requirement for remediation or a risk to human health and/or the environment. Exceedances are considered in the context of the CSM and valid SPR-linkages.

For this investigation, the individual results have been assessed as either above or below the SAC. Statistical evaluation of the dataset via calculation of mean values and/or 95% upper confidence limit (UCL) values has not been undertaken due to the spatial distribution of the data and the number of samples submitted for analysis.

6.1.5.2 Field and Laboratory QA/QC

Field QA/QC included analysis of inter-laboratory duplicates, intra-laboratory duplicates, trip spike, trip blank and rinsate samples. Further details regarding the sampling and analysis undertaken, and the acceptable limits adopted, is provided in the Data Quality (QA/QC) Evaluation in the appendices.

The suitability of the laboratory data is assessed against the laboratory QA/QC criteria which is outlined in the attached laboratory reports. These criteria were developed and implemented in accordance with the laboratory's National Association of Testing Authorities, Australia (NATA) accreditation and align with the acceptable limits for QA/QC samples as outlined in NEPM (2013) and other relevant guidelines.

In the event that acceptable limits are not met by the laboratory analysis, other lines of evidence are reviewed (e.g. field observations of samples, preservation, handling etc) and, where required, consultation with the laboratory is undertaken in an effort to establish the cause of the non-conformance. Where uncertainty exists, JKE typically adopt the most conservative concentration reported (or in some cases, consider the data from the affected sample as an estimate).

6.1.5.3 Appropriateness of Practical Quantitation Limits (PQLs)

The PQLs of the analytical methods are considered in relation to the SAC to confirm that the PQLs are less than the SAC. In cases where the PQLs are greater than the SAC, a discussion of this is provided.

6.1.6 Step 6 – Specify Limits on Decision Errors

To limit the potential for decision errors, a range of quality assurance processes are adopted. A quantitative assessment of the potential for false positives and false negatives in the analytical results is undertaken with reference to Schedule B(3) of NEPM (2013) using the data quality assurance information collected.

Decision errors can be controlled through the use of hypothesis testing. The test can be used to show either that the baseline condition is false or that there is insufficient evidence to indicate that the baseline condition is false. The null hypothesis is an assumption that is assumed to be true in the absence of contrary evidence. For this investigation, the null hypothesis has been adopted which is that, there is considered to be a complete SPR linkage for the CoPC identified in the CSM unless this linkage can be proven not to (or unlikely to) exist. The null hypothesis has been adopted for this investigation.

6.1.7 Step 7 - Optimise the Design for Obtaining Data

The most resource-effective design will be used in an optimum manner to achieve the investigation objectives. Adjustment of the investigation design can occur following consultation or feedback from project stakeholders. For this investigation, the design was optimised via consideration of the various lines of evidence used to select the sample locations, the media being sampled, and also by the way in which the data were collected.

The sampling plan and methodology are outlined in the following sub-sections.

6.2 Soil Sampling Plan and Methodology

The soil sampling plan and methodology adopted for this investigation is outlined in the table below:

Aspect	Input
Sampling	Samples for were collected from 23 locations as shown on the attached Figure 2. Based on the site
Density	area (28,000m ²), this number of locations corresponded to a sampling density of approximately one sample per 1,217m ² . The sampling plan was not designed to meet the minimum sampling density for hotspot identification, as outlined in the NSW EPA Contaminated Sites Sampling Design Guidelines (1995) ⁷ .
Sampling Plan	The sampling locations were placed on a judgemental sampling plan and were broadly positioned
	for site coverage, taking into consideration areas that were not easily accessible. This sampling plan
	was considered suitable to make an assessment of potential risks associated with the AEC and CoPC
	identified in the CSM, and assess whether further investigation is warranted.

Table 6-1: Soil Sampling Plan and Methodology

⁷ NSW EPA, (1995), *Contaminated Sites Sampling Design Guidelines*. (referred to as EPA Sampling Design Guidelines 1995)

Aspect	Input
Set-out and Sampling Equipment	Sampling locations were set out using an electronic rangefinder and tape measure. In-situ sampling locations were checked for underground services by an external contractor prior to sampling. Samples were collected using a hand auger or a drill rig equipped with spiral flight augers (150mm diameter). Soil samples were obtained from a Standard Penetration Test (SPT) split-spoon sampler, and/or directly from the auger.
Sample Collection and Field QA/QC	Soil samples were obtained between 12 and 14 August 2020 in accordance with our standard field procedures. Soil samples were collected from the fill and natural profiles based on field observations. The sample depths are shown on the logs attached in the appendices. Samples were placed in glass jars with plastic caps and Teflon seals with minimal headspace. Samples for asbestos analysis were placed in zip-lock plastic bags. During sampling, soil at selected depths was split into primary and duplicate samples for field QA/QC analysis. The field splitting procedure included alternately filling the sampling containers to obtain a representative split sample.
Field Screening	 A portable Photoionisation Detector (PID) fitted with a 10.6mV lamp was used to screen the samples for the presence of volatile organic compounds (VOCs). PID screening for VOCs was undertaken on soil samples using the soil sample headspace method. VOC data was obtained from partly filled ziplock plastic bags following equilibration of the headspace gases. PID calibration records are maintained on file by JKE. The field screening for asbestos quantification included the following: A representative 10L sample was collected from the fill within each distinct fill profile for the first metre of the borehole; Each 10L sample was weighed using an electronic scale; Each bulk sample was passed through a sieve with a 7.1mm aperture and inspected for the presence of fibre cement or due to the cohesive nature of the soils, each sample was subsequently placed on a contrasting support (blue tarpaulin) and inspected for the presence of fibre cement or any other suspected asbestos materials was noted on the field records; and If observed, any fragments of fibre cement in the 10L sample were collected, placed in a zip-lock bag and assigned a unique identifier. Calculations for asbestos content were undertaken based on the requirements outlined in Schedule B1 of NEPM (2013), as summarised in Section 7.1. A calibration/check of the accuracy of the scale used for weighing the fibre cement fragments was undertaken using a set of calibration weights. Calibration/check records are maintained on file by JKE. The scale used to weigh the 10L samples was not calibrated, however this is not considered significant as this method of providing a weight for the bulk sample is considered to be considerably more accurate than applying a nominal soil density conversion.
Decontami- nation and Sample	Sampling personnel used disposable nitrile gloves during sampling activities. Re-usable sampling equipment was decontaminated using Decon and potable water.
Preservation	soil samples were preserved by immediate storage in an insulated sample container with ice. On completion of the fieldwork, the samples were stored temporarily in fridges in the JKE warehouse

Aspect	Input
	before being delivered in the insulated sample container to a NATA registered laboratory for analysis under standard chain of custody (COC) procedures

6.3 Groundwater Sampling Plan and Methodology

The groundwater sampling plan and methodology is outlined in the table below:

Table 6-2.	Groundwater	Sampling P	lan and l	Methodology
Table 0-2.	Gloundwater	Jailipilling P	ian anu i	wiethouology

Aspect	Input
Sampling Plan	Groundwater monitoring wells were installed in BH101 (MW101), BH118 (MW118) and BH121 (MW121). The wells were positioned to gain a snap-shot of the groundwater conditions. Considering the topography and the location of the nearest down-gradient water body, MW121 was considered to be in the up-gradient area of the site and would be expected to provide an indication of groundwater flowing onto (beneath) the site from the north. MW118 was considered to be in the intermediate area and would be expected to provide an indication of groundwater flowing across (beneath) the site. MW101 was consider to be down-gradient area and would be expected to provide an indication of groundwater flowing across (beneath) the site. MW101 was consider to be down-gradient area and would be expected to provide an indication of groundwater flowing beyond the site boundary.
Monitoring Well Installation Procedure	 The monitoring well construction details are documented on the appropriate borehole logs attached in the appendices. The monitoring wells were installed to depths of approximately 6m to 9m BGL. The wells were generally constructed as follows: 50mm diameter Class 18 PVC (machine slotted screen) was installed in the lower section of the well to intersect groundwater; 50mm diameter Class 18 PVC casing was installed in the upper section of the well (screw fixed); A 2mm sand filter pack was used around the screen section for groundwater infiltration; A hydrated bentonite seal/plug was used on top of the sand pack to seal the well; and A gatic cover was installed at the surface with a concrete plug to limit the inflow of surface water. The monitoring well installation, including the screen lengths, were considered suitable for assessment of general groundwater quality with regards to Table 5 in Schedule B2 of NEPM 2013.
Monitoring Well Development	The monitoring wells were developed on 14 August 2020 using a submersible electrical pump. Due to the hydrogeological conditions, groundwater inflow into MW121 was relatively slow, therefore the well was pumped until they were effectively dry. The monitoring wells MW101 and MW118 were developed until steady state conditions were achieved. Steady state conditions were considered to have been achieved when the difference in the pH measurements was less than 0.2 units, the difference in conductivity was less than 10%, and when the SWL was not in drawdown. The field monitoring records and calibration data are attached in the appendices.
Groundwater Sampling	The monitoring wells were allowed to recharge for five days after development. Groundwater samples were obtained on 19 August 2020. Prior to sampling, the monitoring wells were checked for the presence of Light Non-Aqueous Phase Liquids (LNAPL) using an inter-phase probe electronic dip meter. The monitoring well
	nead space was checked for VUCs using a calibrated PID unit. The samples were obtained using a -

Aspect	Input
	peristaltic pump. During sampling, the following parameters were monitored using calibrated field instruments:
	 Standing water level (SWL) using an electronic dip meter; and pH, temperature, electrical conductivity (EC), dissolved oxygen (DO) and redox potential (Eh) using a YSI Multi-probe water quality meter.
	Steady state conditions were considered to have been achieved when the difference in the pH measurements was less than 0.2 units, the difference in conductivity was less than 10%, and when the SWL was not in drawdown.
	Groundwater samples were obtained directly from the single use PVC tubing and placed in the sample containers. Duplicate samples were obtained by alternate filling of sample containers. This technique was adopted to minimise disturbance of the samples and loss of volatile contaminants associated with mixing of liquids in secondary containers, etc.
	Groundwater removed from the wells during development and sampling was transported to JKE in jerry cans and stored in holding drums prior to collection by a licensed waste water contractor for off-site disposal.
	The field monitoring record and calibration data are attached in the appendices.
Decontaminant and Sample Preservation	During development, the pump was flushed between monitoring wells with potable water (single-use tubing was used for each well). The pump tubing was discarded after each sampling event and replaced therefore no decontamination procedure was considered necessary.
	The samples were preserved with reference to the analytical requirements and placed in an insulated container with ice or ice bricks. On completion of the fieldwork, the samples were temporarily stored in a fridge at the JKE office, before being delivered in the insulated sample container to a NATA registered laboratory for analysis under standard COC procedures.

6.3.1 Laboratory Analysis

Samples were analysed by an appropriate, NATA Accredited laboratory using the analytical methods detailed in Schedule B(3) of NEPM 2013. Reference should be made to the laboratory reports attached in the appendices for further details.

Table 6-3: Laboratory Details

Samples	Laboratory	Report Reference
All primary samples and field QA/QC samples including (intra-laboratory duplicates, trip blanks, trip spikes and field rinsate samples)	Envirolab Services Pty Ltd NSW, NATA Accreditation Number – 2901 (ISO/IEC 17025 compliance)	249404, 249404-A and 249424
Inter-laboratory duplicates	Envirolab Services Pty Ltd VIC, NATA Accreditation Number – 2901 (ISO/IEC 17025 compliance)	22238 and 22240

7 SITE ASSESSMENT CRITERIA (SAC)

The SAC were derived from the NEPM 2013 and other guidelines as discussed in the following sub-sections. The guideline values for individual contaminants are presented in the attached report tables and further explanation of the various criteria adopted is provided in the appendices.

7.1 Soil

Soil data were compared to relevant Tier 1 screening criteria in accordance with NEPM (2013) as outlined below.

7.1.1 Human Health

- Health Investigation Levels (HILs) for a 'Commercial/Industrial' exposure scenario (HIL-D);
- Health Screening Levels (HSLs) for a 'Commercial/Industrial' exposure scenario (HSL-D). HSLs were calculated based on conservative assumptions including a 'sand' type and a depth interval of 0m to 1m;
- HSLs for direct contact presented in the CRC Care Technical Report No. 10 Health screening levels for hydrocarbons in soil and groundwater Part 1: Technical development document (2011)⁸; and
- Asbestos was assessed against the HSL-D criteria. A summary of the asbestos criteria is provided in the table below:

Guideline	Applicability		
Asbestos in Soil	The HSL-D criteria were adopted for the assessment of asbestos in soil. The SAC adopted for asbestos were derived from the NEPM 2013 and are based on WA DoH (2009) guidance. The SAC include the following:		
 No visible asbestos at the surface/in the top 10cm of soil; 			
	 <0.05% w/w bonded asbestos containing material (ACM) in soil; and 		
	 <0.001% w/w asbestos fines/fibrous asbestos (AF/FA) in soil. 		
	Concentrations for bonded ACM concentrations in soil are based on the following equation which is presented in Schedule B1 of NEPM (2013):		
	% w/w asbestos in soil = % asbestos content x bonded ACM (kg)		
	Soil volume (L) x soil density (kg/L)		
	However, we are of the opinion that the actual soil volume in a 10L bucket varies considerably due to the presence of voids, particularly when assessing cohesive soils. Therefore, each bucket sample was weighed using electronic scales and the above equation was adjusted as follows (we note that the units have also converted to grams):		
	% w/w asbestos in soil = <u>%</u> asbestos content x bonded ACM (g)		
	Soil weight (g)		

Table 7-1: Details for Asbestos SAC

⁸ Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC Care), (2011). Technical Report No. 10 - Health screening levels for hydrocarbons in soil and groundwater Part 1: Technical development document

7.1.2 Environment (Ecological – terrestrial ecosystems)

- Ecological Investigation Levels (EILs) and Ecological Screening Levels (ESLs) for an 'Commercial/Industrial' (URPOS) exposure scenario. These have only been applied to the top 2m of soil as outlined in NEPM (2013). The criterion for benzo(a)pyrene has been increased from the value presented in NEPM (2013) based on the Canadian Soil Quality Guidelines⁹;
- ESLs were adopted based on the soil type; and
- EILs for selected metals were calculated using site specific soil parameters for pH, cation exchange capacity and clay content. These data were used to select the added contaminant limit (ACL) values presented in Schedule B(1) of NEPM (2013), and published ambient background concentration (ABC) presented in the document titled Trace Element Concentrations in Soils from Rural and Urban Areas of Australia (1995)¹⁰. This method is considered to be adequate for the Tier 1 screening.

7.1.3 Management Limits for Petroleum Hydrocarbons

Management limits for petroleum hydrocarbons (as presented in Schedule B1 of NEPM 2013) were considered (if required).

7.2 Groundwater

Groundwater data were compared to relevant Tier 1 screening criteria in accordance with NEPM (2013), following an assessment of environmental values in accordance with the Guidelines for the Assessment and Management of Groundwater Contamination (2007)¹¹. Environmental values for this investigation include aquatic ecosystems and human-health risks in non-use scenarios.

7.2.1 Human Health

- The NEPM (2013) HSLs were not applicable for this project as the groundwater was recorded at depths close to 2mBGL. On this basis, JKE have undertaken a site-specific assessment (SSA) for the Tier 1 screening of human health risks posed by volatile contaminants in groundwater. The assessment included selection of alternative Tier 1 criteria that were considered suitably protective of human health. These criteria are based on drinking water guidelines and have been referred to as HSL-SSA. The criteria were based on the following (as shown in the attached report tables):
 - Australian Drinking Water Guidelines 2011 (updated 2018)¹² for BTEX compounds and selected VOCs;
 - World Health Organisation (WHO) document titled Petroleum Products in Drinking-water, Background document for the development of WHO Guidelines for Drinking Water Quality (2008)¹³ for petroleum hydrocarbons;

⁹ Canadian Council of Ministers of the Environment, (1999). *Canadian soil quality guidelines for the protection of environmental and human health: Benzo(a)Pyrene (1997)* (referred to as the Canadian Soil Quality Guidelines)

¹⁰ Olszowy, H., Torr, P., and Imray, P., (1995), *Trace Element Concentrations in Soils from Rural and Urban Areas of Australia. Contaminated Sites Monograph Series No. 4.* Department of Human Services and Health, Environment Protection Agency, and South Australian Health Commission.

¹¹ NSW Department of Environment and Conservation, (2007). Guidelines for the Assessment and Management of Groundwater Contamination.

¹² National Health and Medical Research Council (NHMRC), (2018). *National Water Quality Management Strategy, Australian Drinking Water Guidelines 2011* (referred to as ADWG 2011)

¹³ World Health Organisation (WHO), (2008). *Petroleum Products in Drinking-water, Background document for the development of WHO Guidelines for Drinking Water Quality* (referred to as WHO 2008)

- USEPA Region 9 screening levels for naphthalene (threshold value for tap water); and
- The use of the laboratory PQLs for other contaminants where there were no Australian guidelines.

7.2.2 Environment (Ecological - aquatic ecosystems)

Groundwater Investigation Levels (GILs) for 95% protection of freshwater species were adopted based on the Default Guideline Values in the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (2018)¹⁴.

¹⁴ Australian and New Zealand Governments (ANZG), (2018). *Australian and New Zealand Guidelines for Fresh and Marine Water Quality*. Australian and New Zealand Governments and Australian state and territory governments, Canberra ACT, Australia (referred to as ANZG 2018)

8 RESULTS

8.1 Subsurface Conditions

A summary of the subsurface conditions encountered during the investigation is presented in the following table. Reference should be made to the borehole logs attached in the appendices for further details.

Profile	Description
Pavement	Asphaltic Concrete (AC) and Concrete pavement was encountered at the surface in BH101 to BH107, BH110 toBH118 and BH120 to BH123. The pavement extended from approximately 140mm to 370mm.
Fill	Fill was encountered at the surface or beneath the pavement in all boreholes and extended to depths of approximately 0.5m to 4.5m BGL. BH102 to BH112, BH114, BH119, BH122 and BH123 were terminated in the fill at a maximum depth of approximately 1.0m BGL due to the use of hand tools and obstructions in the fill.
	The fill typically comprised silty sand, silty sandy clay, silty sandy clay, silty gravelly sand and silty clay with inclusions of sandstone and igneous gravel, ash, slag and building rubble (bricks, concrete and tile fragments).
	Organic odours were encountered in BH101 in silty sandy clay. Staining was not encountered in the fill material during fieldwork. A FCF fragment FCF1 was sampled during the DSI investigation for asbestos screening.
Natural Soil	Natural alluvial soil was encountered beneath the fill in BH101, BH113, BH115 to BH118 and BH120 to BH121. The natural soil comprised of silty clay.
	Neither staining nor odours were encountered in the natural material during fieldwork.
	Bedrock was not encountered during the investigation.
Groundwater	Groundwater seepage was encountered in BH101, BH118 and BH121 during drilling at depths between approximately 2.0m to 6.2mBGL. All other boreholes remained dry on completion of drilling. Monitoring wells installed at the site was monitored during development and sampling as outlined below.

Table 8-1: Summary of Subsurface Conditions

8.2 Field Screening

A summary of the field screening results are presented in the following table:

Aspect	Details
PID Screening of Soil Samples for VOCs	PID soil sample headspace readings are presented in attached report tables and the COC documents attached in the appendices. The results ranged from 0ppm to 1ppm equivalent isobutylene. These results indicate low levels of PID detectable VOCs.
Bulk Screening for Asbestos	The bulk field screening results are summarised in the attached report tables. SAC. All results were below the SAC.
Groundwater Depth	SWLs measured in the monitoring wells installed at the site ranged from approximately 2.77m to 3.08mBGL.

Table 8-2: Summary of Field Screening

Aspect	Details
Groundwater Field Parameters	 Field measurements recorded during sampling were as follows: pH ranged from 4.52 to 6.86; EC ranged from 967μS/cm to 15274μS/cm; Eh ranged from -108.3mV to 288.1mV; and DO ranged from 0.3ppm to 4.6ppm.
LNAPL petroleum hydrocarbons	Phase separated product (i.e. LNAPL) were not detected using the interphase probe during groundwater sampling.

8.3 Soil Laboratory Results

The soil laboratory results were assessed against the SAC presented in Section 7.1. Individual SAC are shown in the report tables attached in the appendices. A summary of the results is presented below:

8.3.1 Human Health and Environmental (Ecological) Assessment

Analyte	N	Max. (mg/kg)	N> Human Health SAC	N> Ecological SAC	Comments
Arsenic	24	11	0	NSL	-
Cadmium	24	1	0	NSL	-
Chromium (total)	24	37	0	0	-
Copper	24	470	0	1	Fill sample BH110 (0.37-0.65m) encountered a copper results of 470mg/kg. This result was at the ecological SAC criterion for copper.
Lead	24	1500	0	0	Fill sample BH110 (0.37-0.65m) encountered a lead results of 1,500mg/kg. This result was at the SAC criterion for lead.
Mercury	24	0.5	0	NSL	-
Nickel	24	89	0	0	-
Zinc	24	980	0	0	-
Total PAHs	24	120	0	NSL	-
Benzo(a)pyrene	24	6.2	NSL	0	-
Carcinogenic PAHs (as BaP TEQ)	24	8.6	0	NSL	-

Table 8-3: Summary of Soil Laboratory Results – Human Health and Environmental (Ecological)

Analyte	N	Max. (mg/kg)	N> Human Health SAC	N> Ecological SAC	Comments
Naphthalene	24	<1	0	NSL	-
DDT+DDE+DDD	6	<0.1	0	NSL	-
DDT	6	<0.1	NSL	0	-
Aldrin and dieldrin	6	<0.1	0	NSL	-
Chlordane	6	<0.1	0	NSL	-
Heptachlor	6	<0.1	0	NSL	-
PCBs	6	<0.1	0	NSL	-
TRH F1	24	<25	0	0	-
TRH F2	24	<50	0	0	-
TRH F3	24	690	0	0	-
TRH F4	24	110	0	0	-
Benzene	24	<0.2	0	0	-
Toluene	24	<0.5	0	0	-
Ethylbenzene	24	<1	0	0	-
Xylenes	24	<3	0	0	-
Asbestos (in soil)	8	Detected	1	NA	Chrysotile asbestos was detected in fill sample BH117 (0.2-0.5). The asbestos was friable AF/FA with a %(w/w) values below the SAC.
Asbestos in fibre cement	1	Not Detected	0	NSL	-

Notes:

N: Total number (primary samples) NSL: No set limit NL: Not limiting

8.4 Groundwater Laboratory Results

The groundwater laboratory results were assessed against the SAC presented in Section 7.2. Individual SAC are shown in the report tables attached in the appendices. A summary of the results is presented below:

Analyte	N ^	Max. (µg/L)	N> Human Health SAC	N> Ecological SAC	Comments
Arsenic	3	<1	0	0	-
Cadmium	3	<0.1	0	0	-
Chromium (total)	3	<1	0	0	-
Copper	3	7	0	1	Copper concentrations exceeded the ecological SAC in one water sample collected from MW118 and its field duplicate. The copper concentration was $7\mu/L$.
Lead	3	<1	0	0	-
Mercury	3	0.07	0	1	Mercury concentration exceeded the ecological SAC in one water sample collected from MW121. The mercury concentration was $0.07\mu/L$. This elevation was marginally above the criterion of $0.06\mu/L$.
Nickel	3	6	0	0	-
Zinc	3	42	0	2	Zinc concentrations exceeded the ecological SAC in two water sample collected from MW118 and MW121. The maximum zinc concentration was 42µ/L.
Total PAHs	3	<0.2	0	0	-
Benzo(a)pyrene	3	<0.1	0	0	-
Carcinogenic PAHs (as BaP TEQ)	3	<0.2	0	0	-
TRH F1	3	<10	0	NSL	-
TRH F2	3	<50	0	NSL	-
Benzene	3	<1	0	0	-
Toluene	3	<1	0	0	-
Ethylbenzene	3	<1	0	0	-
m+p-Xylene	3	<2	0	0	-
o-Xylene	3	<1	0	0	-

Table 8-4: Summary of Groundwater Laboratory Results – Human Health and Environmental (Ecological)

Analyte	N ^	Max. (µg/L)	N> Human Health SAC	N> Ecological SAC	Comments
Total Xylenes	3	<2	0	0	-
Total VOCs	3	<1 to <10	0	0	-

Notes:

^: Primary samples
 N: Total number
 NSL: No set limit
 NL: Not limiting

8.5 Summary of Data (QA/QC) Evaluation

The data evaluation is presented in the appendices. In summary, JKE are of the opinion that the data are adequately precise, accurate, representative, comparable and complete to serve as a basis for interpretation to achieve the investigation objectives.

9 DISCUSSION

9.1 Tier 1 Risk Assessment and Review of CSM

For a contaminant to represent a risk to a receptor, the following three conditions must be present:

- 1. Source The presence of a contaminant;
- 2. Pathway A mechanism or action by which a receptor can become exposed to the contaminant; and
- 3. Receptor The human or ecological entity which may be adversely impacted following exposure to contamination.

If one of the above components is missing, the potential for adverse risks is relatively low.

9.1.1 Asbestos in Soil

The DSI identified one fill sample BH117 (0.2-0.5) with a detection of friable asbestos AF/FA at concentrations of 0.0038mg/kg which was below the %(w/w) criterion outlined in the SAC. The location of the sample is shown on the attached Figure 3. The field screening undertaken of the fill at this depth did not encounter any visible FCF. The source of this contamination is considered to be associated with the brick, concrete and tile fragments detected in the fill at this location.

The extent (vertical or lateral) of this contamination as not been determined. It is likely that the fill to a depth of approximately 1.2mBGL encountered at this located could be impacted. The fill is below approximately 200mm of concrete slab. Considering the on-going landuse for commercial/industrial purposes, the contamination is not considered to pose a risk to human receptors in the current setting. However, site workers who may come into contact with this soil are considered to be at risk. An Asbestos Management Plan (AMP) should be prepared to address this risk.

9.1.2 Heavy Metals in Soil

The DSI identified a copper elevation above the ecological SAC in fill sample BH110 (0.37-0.65m). The copper elevation is not considered to pose a risk to ecological receptors due to the following:

- The fill in this area is below AC and concrete pavements of approximately 370mm thickness. SPR linkages are not complete in this scenario;
- The site has been used for commercial/industrial purposes with limited potential for ecological value or significance;
- Ecological sensitive species were not identified at the site during the DSI; and
- The future development of the site will include pavement over the majority of the site.

9.1.3 Heavy Metals in Groundwater

Elevations of copper, mercury and zinc were encountered above the ecological criteria in the groundwater samples analysed for the DSI. The elevations of copper and zinc are not considered to pose a risk to site receptors and are attributed to background concentrations in urban environments. The detection of mercury in MW121 was marginally above the SAC. This elevation is not considered to pose a risk to ecological receptors due to the following:

- The groundwater at this location was approximately 2.8mBGL;
- The site has been used for commercial/industrial purposes with limited potential for ecological value or significance;
- Ecological sensitive species were not identified at the site during the DSI; and
- The future development of the site will include pavement over the majority of the site. Hence, limiting the potential for exposure to the groundwater.

9.2 Decision Statements

The decision statements are addressed below:

Did the site inspection, or does the historical information identify potential contamination sources/AEC at the site?

Yes. The AEC and CoPC are summarised in Section 5.

Are any results above the SAC?

Elevations of individual metals were detected in one fill soil sample and the groundwater samples.

Do potential risks associated with contamination exist, and if so, what are they?

Site workers who come into contact with the friable asbestos in BH117 should work under an AMP. The concentration of friable asbestos in soil was below the SAC.

Is remediation required?

No. Works in the vicinity of BH117 should be done in accordance with an AMP. An unexpected finds protocol (UFP) should be prepared for the proposed development at the site.

Is the site characterisation sufficient to provide adequate confidence in the above decisions?

Yes. Additional testing is recommended for waste classification during development works.

Is the site suitable for the proposed development, or can the site be made suitable subject to further characterisation and/or remediation?

The site is suitable for the proposed commercial development. The recommendations outlined in Section 10 should be implemented.

9.3 Data Gaps

An assessment of data gaps is provided in the following table:

Table 9-1: Data Gap Assessment

Data Gap	Assessment
SafeWork records	The location of the former USTs could not be determined based on the hand drawn plans available via SafeWork. JKE recommend undertaking a Ground Penetrating Radar (GPR) survey of the site as part of the development works.
Groundwater flow direction not confirmed / groundwater assessment limited in scope	The proposed development does not include the construction of basements or deep excavations. Additional work to address this data gap is not recommended.
Soil sampling beneath building footprints	Additional testing of soil is recommended for waste classification. Areas beneath buildings should be targeted during the development works.

10 CONCLUSIONS AND RECOMMENDATIONS

The investigation included a review of historical information and soil sampling from 23 sampling locations across the site. The investigation included installing three groundwater monitoring wells. The investigation did not identify widespread soil or groundwater contamination. Minor elevations of individual metals were detected in the soil and groundwater above the ecological SAC. A detection of friable asbestos (AF/FA) was encountered in the fill in borehole BH117. The concentration of AF/FA was below the SAC.

Based on the findings of the investigation, JKE are of the opinion that the site is suitable for the proposed development described in Section 1.1. The following recommendations should be implemented for the development works:

- Complete a Hazardous Building Materials Assessment (Hazmat) for the existing structures at the site;
- Prepare and implement an Asbestos Management Plan (AMP) for soil disturbance in the vicinity of BH117;
- Prepare and implement an Unexpected Finds Protocol (UFP) for the development works; and
- Prepare and implement an ASS Management Plan (ASSMP) for the proposed development.

The following should be implemented in the event of an unexpected find:

- All work in the immediate vicinity should cease and temporary barricades should be erected to isolate the area;
- A suitably qualified contaminated land consultant¹⁵ should be engaged to inspect the find and provide advice on the appropriate course of action. In the event that the unexpected find triggers remediation, the requirements of SEPP55 must be addressed (e.g. notifications to Council); and
- Any actions should be implemented and validated to demonstrate that there are no unacceptable risks to the receptors.

JKE consider that the report objectives outlined in Section 1.2 have been addressed.

10.1 Regulatory Requirements

The regulatory requirements applicable for the site are discussed in the following table:

Guideline / Legislation / Policy	Applicability
Duty to Report Contamination to NSW EPA (2015) ¹⁶	The DIS results do not trigger the notification requirements under NSW EPA Guidelines on the Duty to Report Contamination under Section 60 of the CLM Act 1997 (2015).
POEO Act 1997	Section 143 of the POEO Act 1997 states that if waste is transported to a place that cannot lawfully be used as a waste facility for that waste, then the transporter and owner of the waste are each guilty of an offence. The transporter and owner of the waste have a duty to ensure that the waste is disposed of in an appropriate manner.

Table 10-1: Regulatory Requirement

 ¹⁵ JKE recommend that the consultancy engaged for the work be a member of the Australian Contaminated Land Consultants Associated (ACLCA), and/or the individual undertaking the works be certified under one of the NSW EPA endorsed certified practitioner schemes
 ¹⁶ NSW EPA, (2015). *Guidelines on the Duty to Report Contamination under Section 60 of the CLM Act 1997* (referred to as Duty to Report Contamination)

Guideline / Legislation / Policy	Applicability
	Appropriate waste tracking is required for all waste that is disposed off-site. Activities should be carried out in a manner which does not result in the pollution of waters.
POEO (Waste) Regulation 2014	Part 7 of the POEO Waste Regulation 2014 set outs the requirements for the transportation and management of asbestos waste and Clause 79 of the POEO Waste Regulation requires waste transporters to provide information to the NSW EPA regarding the movement of any load in NSW of more than 10 square meters of asbestos sheeting, or 100 kilograms of asbestos waste. To fulfil these legal obligations, asbestos waste transporters must use WasteLocate.
SafeWork NSW Code of Practice: How to manage and control asbestos in the workplace (2019)	Sites with asbestos become a 'workplace' when work is carried out there and require a register and AMP. Appropriate SafeWork NSW notification will be required for licensed (e.g. Class A) asbestos removal works or handling.

11 LIMITATIONS

The report limitations are outlined below:

- JKE accepts no responsibility for any unidentified contamination issues at the site. Any unexpected problems/subsurface features that may be encountered during development works should be inspected by an environmental consultant as soon as possible;
- Previous use of this site may have involved excavation for the foundations of buildings, services, and similar facilities. In addition, unrecorded excavation and burial of material may have occurred on the site. Backfilling of excavations could have been undertaken with potentially contaminated material that may be discovered in discrete, isolated locations across the site during construction work;
- This report has been prepared based on site conditions which existed at the time of the investigation; scope of work and limitation outlined in the JKE proposal; and terms of contract between JKE and the client (as applicable);
- The conclusions presented in this report are based on investigation of conditions at specific locations, chosen to be as representative as possible under the given circumstances, visual observations of the site and immediate surrounds and documents reviewed as described in the report;
- Subsurface soil and rock conditions encountered between investigation locations may be found to be different from those expected. Groundwater conditions may also vary, especially after climatic changes;
- The investigation and preparation of this report have been undertaken in accordance with accepted practice for environmental consultants, with reference to applicable environmental regulatory authority and industry standards, guidelines and the assessment criteria outlined in the report;
- Where information has been provided by third parties, JKE has not undertaken any verification process, except where specifically stated in the report;
- JKE has not undertaken any assessment of off-site areas that may be potential contamination sources or may have been impacted by site contamination, except where specifically stated in the report;
- JKE accept no responsibility for potentially asbestos containing materials that may exist at the site. These materials may be associated with demolition of pre-1990 constructed buildings or fill material at the site;
- JKE have not and will not make any determination regarding finances associated with the site;
- Additional investigation work may be required in the event of changes to the proposed development or landuse. JKE should be contacted immediately in such circumstances;
- Material considered to be suitable from a geotechnical point of view may be unsatisfactory from a soil contamination viewpoint, and vice versa; and
- This report has been prepared for the particular project described and no responsibility is accepted for the use of any part of this report in any other context or for any other purpose.

Important Information About This Report

These notes have been prepared by JKE to assist with the assessment and interpretation of this report.

The Report is based on a Unique Set of Project Specific Factors

This report has been prepared in response to specific project requirements as stated in the JKE proposal document which may have been limited by instructions from the client. This report should be reviewed, and if necessary, revised if any of the following occur:

- The proposed land use is altered;
- The defined subject site is increased or sub-divided;
- The proposed development details including size, configuration, location, orientation of the structures or landscaped areas are modified;
- The proposed development levels are altered, eg addition of basement levels; or
- Ownership of the site changes.

JKE will not accept any responsibility whatsoever for situations where one or more of the above factors have changed since completion of the investigation. If the subject site is sold, ownership of the investigation report should be transferred by JKE to the new site owners who will be informed of the conditions and limitations under which the investigation was undertaken. No person should apply an investigation for any purpose other than that originally intended without first conferring with the consultant.

Changes in Subsurface Conditions

Subsurface conditions are influenced by natural geological and hydrogeological process and human activities. Groundwater conditions are likely to vary over time with changes in climatic conditions and human activities within the catchment (e.g. water extraction for irrigation or industrial uses, subsurface waste water disposal, construction related dewatering). Soil and groundwater contaminant concentrations may also vary over time through contaminant migration, natural attenuation of organic contaminants, ongoing contaminating activities and placement or removal of fill material. The conclusions of an investigation report may have been affected by the above factors if a significant period of time has elapsed prior to commencement of the proposed development.

This Report is based on Professional Interpretations of Factual Data

Site investigations identify actual subsurface conditions at the actual sampling locations at the time of the investigation. Data obtained from the sampling and subsequent laboratory analyses, available site history information and published regional information is interpreted by geologists, engineers or environmental scientists and opinions are drawn about the overall subsurface conditions, the nature and extent of contamination, the likely impact on the proposed development and appropriate remediation measures.

Actual conditions may differ from those inferred, because no professional, no matter how qualified, and no subsurface exploration program, no matter how comprehensive, can reveal what is hidden by earth, rock and time. The actual interface between materials may be far more gradual or abrupt than an investigation indicates. Actual conditions in areas not sampled may differ from predictions. Nothing can be done to prevent the unanticipated, but steps can be taken to help minimise the impact. For this reason, site owners should retain the services of their consultants throughout the development stage of the project, to identify variances, conduct additional tests which may be needed, and to recommend solutions to problems encountered on site.

Investigation Limitations

Although information provided by a site investigation can reduce exposure to the risk of the presence of contamination, no environmental site investigation can eliminate the risk. Even a rigorous professional investigation may not detect all contamination on a site. Contaminants may be present in areas that were not surveyed or sampled, or may migrate to areas which showed no signs of contamination when sampled. Contaminant analysis cannot possibly cover every type of contaminant which may occur; only the most likely contaminants are screened.

Misinterpretation of Site Investigations by Design Professionals

Costly problems can occur when other design professionals develop plans based on misinterpretation of an investigation report. To minimise problems associated with misinterpretations, the environmental consultant should be retained to work with appropriate professionals to explain relevant findings and to review the adequacy of plans and specifications relevant to contamination issues.

Logs Should not be Separated from the Investigation Report

Borehole and test pit logs are prepared by environmental scientists, engineers or geologists based upon interpretation of field conditions and laboratory evaluation of field samples. Logs are normally provided in our reports and these should not be re-drawn for inclusion in site remediation or other design drawings, as subtle but significant drafting errors or omissions may occur in the transfer process. Photographic reproduction can eliminate this problem, however contractors can still misinterpret the logs during bid preparation if separated from the text of the investigation. If this occurs, delays, disputes and unanticipated costs may result. In all cases it is necessary to refer to the rest of the report to obtain a proper understanding of the investigation. Please note that logs with the 'Environmental Log' header are not suitable for geotechnical purposes as they have not been peer reviewed by a Senior Geotechnical Engineer.

To reduce the likelihood of borehole and test pit log misinterpretation, the complete investigation should be available to persons or organisations involved in the project, such as contractors, for their use. Denial of such access and disclaiming responsibility for the accuracy of subsurface information does not insulate an owner from the attendant liability. It is critical that the site owner provides all available site information to persons and organisations such as contractors.

Read Responsibility Clauses Closely

Because an environmental site investigation is based extensively on judgement and opinion, it is necessarily less exact than other disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, model clauses have been developed for use in written transmittals. These are definitive clauses designed to indicate consultant responsibility. Their use helps all parties involved recognise individual responsibilities and formulate appropriate action. Some of these definitive clauses are likely to appear in the environmental site investigation, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to any questions.

Appendix A: Report Figures

Project No:

E33191B

JKEnvironments

Figure No:

1

This plan should be read in conjunction with the Environmental report.

© JK ENVIRONMENTS

Appendix B: Site Information and Site History

Proposed Development Plans

Ground 1 : 500

Client

Builder and/or subcontractors shall verify all project dimensions before commencing on-site work or off-site fabrication. Figured dimensions shall take procedence over scaled dimensions This drawing is copyright and cannot be reproduced in whole or in part or by any medium without the written permission of Nettleton Tribe Partnership Py Lid. Builder

Project Name Warehouse Facility Project Address 74 Edinburgh Road, Marrickville, NSW, 2204

Key Plan

Area Schedule

Land Lise	Area
Lana 030	7100
CFC	60 m ²
Commercial	7,973 m²
Core	154 m²
Office	445 m²
Plant	1,882 m²
Warehouse	25,215 m²
Grand total	35,728 m²

nettletontribe

nettleton tribe partnership pty Itd ABN 58 161 683 122 117 Willoughby Road, Crows Nest, NSW 2065 t +61 2 9431 6431 e: svdne/@nettletontribe.com.au w: nettletontribe.com.au

1 Level 1 1 : 500

Client

Builder and/or subcontractors shall verify all project dimensions before commencing on-site work or off-site fabrication. Figured dimensions shall take procedence over scaled dimension This drawing is copyright and cannot be reproduced in whole or in part or by any medium without the works once of Methem The Partnerschip Put Id Builder

Project Name Warehouse Facility Project Address 74 Edinburgh Road, Marrickville, NSW, 2204

Key Plan

1 Level 2 1 : 500

Client

Builder and/or subcontractors shall verify all project dimensions before commencing on-site work or off-site fabrication. Figured dimensions shall take precedence over stated dimensions This drawing is copyright and cannot be reproduced in whole or in part or by any medium without the witten permission of Netleton Tinto Partneship Pty Lb. Builder

Project Name Warehouse Facility Project Address 74 Edinburgh Road, Marrickville, NSW, 2204

Key Plan

Land Use	Area
CFC	60 m ²
Commercial	7,973 m²
Core	154 m ²
Office	445 m ²
Plant	1,882 m ²
Warehouse	25,215 m ²
Grand total	35,728 m ²

1 Level 3

Client

 Imme

 P1
 Issued for discuss
 Date 27.03.2020 Builder and/or subcontractors shall verify all project dimensions before commencing on-site work or off-site fabrication. Figured dimensions shall take precedence over scaled dimensions. This drawing is copyright and cannot be reproduced in whole or in part or by any medium without the written permission of Netletion Trible Partmentip Pty Lid.

Builder

Project Name Warehouse Facility Project Address 74 Edinburgh Road, Marrickville, NSW, 2204

Key Plan

Area Schedule

Land Use	Area
CFC	60 m ²
Commercial	7,973 m²
Core	154 m ²
Office	445 m ²
Plant	1,882 m²
Warehouse	25,215 m ²
Grand total	35,728 m ²

nettletontribe

Level 5, 344 Queen Street, Brisbane, QLD 4000 t +61 7 3239 2444 e: brisbane@nettletontribe.com.au w: nettletontrib

lasue	Description	Date
P1	Issued for discussion	27.03.2020

Builder and lor subcontractors shall verify all project dimensions before commencing on-eite work or off-kite labrication. Figured dimensions shall take precedence over scaled dimensions. This drawing is copyright and cannot be reproduced in whole or in part or by any medium without the written permission of NetBelon Tribe Partenship Pty Lit. Builder

Project Name Warehouse Facility Project Address 74 Edinburgh Road, Marrickville, NSW, 2204

Key Plan

Land Use	Area
CFC	60 m ²
Commercial	7,973 m ²
Core	154 m ²
Office	445 m ²
Plant	1,882 m²
Warehouse	25,215 m ²
Grand total	35,728 m ²

Builder andior subcontractors shall verify all project dimensions before commencing on-site work or off-kite labrication. Figured dimensions shall take precedence over scated dimensions. This drawing is copyright and cannot be reproduced in whole or in part or by any medium without the written permission on NetBieton Tribe Partienship Phy Lit.

Builder

Project Name
Warehouse Facility Project Address 74 Edinburgh Road, Marrickville, NSW, 2204

Key Plan

Land Use	Area
CFC	60 m ²
Commercial	7,973 m²
Core	154 m ²
Office	445 m ²
Plant	1,882 m ²
Warehouse	25,215 m ²
Grand total	35,728 m²

Builder andior subcontractors shall verify all project dimensions before commencing on-site work or off-kite labrication. Figured dimensions shall take precedence over scated dimensions. This drawing is copyright and cannot be reproduced in whole or in part or by any medium without the written permission on NetBieton Tribe Partienship Phy Lit. Builder

Project Name Warehouse Facility Project Address 74 Edinburgh Road, Marrickville, NSW, 2204

Key Plan

Land Use	Area
CFC	60 m ²
Commercial	7,973 m²
Core	154 m ²
Office	445 m ²
Plant	1,882 m ²
Warehouse	25,215 m ²
Grand total	35,728 m ²

1 DA Plant

lasve	Description	Date
P1	Issued for discussion	27.03.2020

Builder and for subcontractors shall verify all project dimensions before commencing on-eile work or off-kile fabrication. Figured dimensions shall bake precedence over scaled dimensions. This drawing is copyright and cannot be reproduced in whole or in part or by any medium without the written permission of Netifietion Trible Partnership Py Liu. Builder

Project Name Warehouse Facility Project Address 74 Edinburgh Road, Marrickville, NSW, 2204

Key Plan

5000

Land Use	Area
CFC	60 m ²
Commercial	7,973 m²
Core	154 m ²
Office	445 m ²
Plant	1,882 m ²
Warehouse	25,215 m ²
Grand total	35,728 m²

Drawing Title: Plant	nettleton tribe
Author: Checker: Sheet Size:	Scale:
	nettleton tribe partnership pty ltd ABN 58 161 683 122
Desving Number: 10437_DA0109	Introduction Introduction 117 Willoughby Road, Crows Nest, NSW 2065 t +61 2 9431 6431 e: sydney@netileothribe.com.au w: netileothribe.com.au

lasve	Description	Date
P1	Issued for discussion	27.03.2020
_		

Builder and/or subcontractors shall verify all project dimensions before commencing on-eite work or off-alle fabrication. Figured dimensions shall take precedence over scaled dimensions. This drawing is copyright and cannot be reproduced in whole or in part or by any medium without the written permission of Velatieon Trike Partmentip Py Ltd. Builder

Project Name Warehouse Facility Project Address 74 Edinburgh Road, Marrickville, NSW, 2204

Key Plan

Land Use	Area
CFC	60 m ²
Commercial	7,973 m ²
Core	154 m ²
Office	445 m ²
Plant	1,882 m²
Warehouse	25,215 m ²
Grand total	35,728 m ²

Author: Checker: Sheet Size: Scale:	Drawing Number:		
DT Checker	10437 DA301		
	uthor: DT		

nettletontribe

nettleton tribe partnership pty Itd ABN 58 161 683 122 117 Willoughby Road, Crows Nest, NSW 2065 t +61 2 9431 6431 e: sydney@nettletontribe.com.au w: nettletontribe.com

FUTURE MARRICKVILLE METRO EXPANSION

Lotsearch Environmental Risk and Planning Report

Date: 10 Aug 2020 13:09:03 Reference: LS013965 EP Address: 74 Edinburgh Road, Marrickville, NSW 2204

Disclaimer:

The purpose of this report is to provide an overview of some of the site history, environmental risk and planning information available, affecting an individual address or geographical area in which the property is located. It is not a substitute for an on-site inspection or review of other available reports and records. It is not intended to be, and should not be taken to be, a rating or assessment of the desirability or market value of the property or its features. You should obtain independent advice before you make any decision based on the information within the report. The detailed terms applicable to use of this report are set out at the end of this report.

Dataset Listing

Datasets contained within this report, detailing their source and data currency:

Dataset Name	Custodian	Supply Date	Currency Date	Update Frequency	Dataset Buffer (m)	No. Features Onsite	No. Features within 100m	No. Features within Buffer
Cadastre Boundaries	NSW Department of Finance, Services & Innovation	24/04/2020	24/04/2020	Quarterly	-	-	-	-
Topographic Data	NSW Department of Finance, Services & Innovation	25/06/2019	25/06/2019	As required	-	-	-	-
List of NSW contaminated sites notified to EPA	Environment Protection Authority	13/07/2020	13/07/2020	Monthly	1000	0	0	9
Contaminated Land Records of Notice	Environment Protection Authority	27/07/2020	27/07/2020	Monthly	1000	0	0	3
Former Gasworks	Environment Protection Authority	23/07/2020	11/10/2017	Monthly	1000	0	0	0
National Waste Management Facilities Database	Geoscience Australia	15/05/2020	07/03/2017	Quarterly	1000	0	0	1
National Liquid Fuel Facilities	Geoscience Australia	05/02/2020	13/07/2012	Quarterly	1000	0	0	3
EPA PFAS Investigation Program	Environment Protection Authority	03/08/2020	07/05/2020	Monthly	2000	0	0	1
Defence PFAS Investigation & Management Program - Investigation Sites	Department of Defence	12/02/2020	12/02/2020	Monthly	2000	0	0	0
Defence PFAS Investigation & Management Program - Management Sites	Department of Defence	12/02/2020	12/02/2020	Monthly	2000	0	0	0
Airservices Australia National PFAS Management Program	Airservices Australia	29/07/2020	29/07/2020	Monthly	2000	0	0	1
Defence 3 Year Regional Contamination Investigation Program	Department of Defence	14/07/2020	14/07/2020	Monthly	2000	0	0	0
EPA Other Sites with Contamination Issues	Environment Protection Authority	04/02/2020	13/12/2018	Annually	1000	0	0	0
Licensed Activities under the POEO Act 1997	Environment Protection Authority	15/07/2020	15/07/2020	Monthly	1000	0	1	10
Delicensed POEO Activities still regulated by the EPA	Environment Protection Authority	15/07/2020	15/07/2020	Monthly	1000	0	0	4
Former POEO Licensed Activities now revoked or surrendered	Environment Protection Authority	15/07/2020	15/07/2020	Monthly	1000	1	4	10
UBD Business Directories (Premise & Intersection Matches)	Hardie Grant			Not required	100	58	232	232
UBD Business Directories (Road & Area Matches)	Hardie Grant			Not required	100	-	41	41
UBD Business Directory Dry Cleaners & Motor Garages/Service Stations (Premise & Intersection Matches)	Hardie Grant			Not required	250	0	0	15
UBD Business Directory Dry Cleaners & Motor Garages/Service Stations (Road & Area Matches)	Hardie Grant			Not required	250	-	5	15
Points of Interest	NSW Department of Finance, Services & Innovation	30/03/2020	30/03/2020	Quarterly	1000	0	0	60
Tanks (Areas)	NSW Department of Customer Service - Spatial Services	30/03/2020	30/03/2020	Quarterly	1000	0	0	0
Tanks (Points)	NSW Department of Customer Service - Spatial Services	30/03/2020	30/03/2020	Quarterly	1000	0	0	0
Major Easements	NSW Department of Finance, Services & Innovation	30/03/2020	30/03/2020	Quarterly	1000	0	0	8
State Forest	Forestry Corporation of NSW	18/01/2018	18/01/2018	As required	1000	0	0	0
NSW National Parks and Wildlife Service Reserves	NSW Office of Environment & Heritage	21/01/2020	30/09/2019	Annually	1000	0	0	0
Hydrogeology Map of Australia	Commonwealth of Australia (Geoscience Australia)	08/10/2014	17/03/2000	As required	1000	1	1	1
Botany Groundwater Management Zones	NSW Department of Planning, Industry and Environment	15/03/2018	01/10/2005	As required	1000	0	0	1

Dataset Name	Custodian	Supply Date	Currency Date	Update Frequency	Dataset Buffer (m)	No. Features Onsite	No. Features within 100m	No. Features within Buffer
Groundwater Boreholes	NSW Dept. of Primary Industries - Water NSW; Commonwealth of Australia (Bureau of Meteorology)	24/07/2018	23/07/2018	Annually	2000	0	0	97
Geological Units 1:100,000	NSW Department of Planning, Industry and Environment	20/08/2014		None planned	1000	1	-	4
Geological Structures 1:100,000	NSW Department of Planning, Industry and Environment	20/08/2014		None planned	1000	0	-	1
Naturally Occurring Asbestos Potential	NSW Dept. of Industry, Resources & Energy	04/12/2015	24/09/2015	Unknown	1000	0	0	0
Atlas of Australian Soils	Australian Bureau of Agriculture and Resource Economics and Sciences (ABARES)	19/05/2017	17/02/2011	As required	1000	1	1	1
Soil Landscapes	NSW Department of Planning, Industry and Environment	12/08/2014		None planned	1000	1	-	4
Environmental Planning Instrument Acid Sulfate Soils	NSW Department of Planning, Industry and Environment	15/07/2020	01/05/2020	Monthly	500	1	-	-
Atlas of Australian Acid Sulfate Soils	CSIRO	19/01/2017	21/02/2013	As required	1000	1	2	2
Dryland Salinity - National Assessment	National Land and Water Resources Audit	18/07/2014	12/05/2013	None planned	1000	0	0	0
Dryland Salinity Potential of Western Sydney	NSW Department of Planning, Industry and Environment	12/05/2017	01/01/2002	None planned	1000	-	-	-
Mining Subsidence Districts	NSW Department of Customer Service - Subsidence Advisory NSW	30/03/2020	30/03/2020	Quarterly	1000	0	0	0
Current Mining Titles	NSW Department of Industry	29/07/2020	29/07/2020	Monthly	1000	0	0	0
Mining Title Applications	NSW Department of Industry	29/07/2020	29/07/2020	Monthly	1000	0	0	0
Historic Mining Titles	NSW Department of Industry	29/07/2020	29/07/2020	Monthly	1000	13	13	13
Environmental Planning Instrument SEPP State Significant Precincts	NSW Department of Planning, Industry and Environment	15/07/2020	07/12/2018	Monthly	1000	0	0	0
Environmental Planning Instrument Land Zoning	NSW Department of Planning, Industry and Environment	15/07/2020	05/06/2020	Monthly	1000	2	6	219
Commonwealth Heritage List	Australian Government Department of the Agriculture, Water and the Environment	18/05/2020	20/11/2019	Quarterly	1000	0	0	0
National Heritage List	Australian Government Department of the Agriculture, Water and the Environment	18/05/2020	20/11/2019	Quarterly	1000	0	0	1
State Heritage Register - Curtilages	NSW Department of Planning, Industry and Environment	24/07/2020	02/07/2020	Quarterly	1000	0	0	5
Environmental Planning Instrument Heritage	NSW Department of Planning, Industry and Environment	15/07/2020	05/06/2020	Monthly	1000	0	2	123
Bush Fire Prone Land	NSW Rural Fire Service	04/02/2020	14/12/2019	Quarterly	1000	0	0	0
Native Vegetation of the Sydney Metropolitan Area	NSW Office of Environment & Heritage	01/03/2017	16/12/2016	As required	1000	1	1	1
Ramsar Wetlands of Australia	Department of the Agriculture, Water and the Environment	08/10/2014	24/06/2011	As required	1000	0	0	0
Groundwater Dependent Ecosystems	Bureau of Meteorology	14/08/2017	15/05/2017	Unknown	1000	0	0	0
Inflow Dependent Ecosystems Likelihood	Bureau of Meteorology	14/08/2017	15/05/2017	Unknown	1000	0	0	0
NSW BioNet Species Sightings	NSW Office of Environment & Heritage	07/08/2020	07/08/2020	Weekly	10000	-	-	-

Site Diagram

74 Edinburgh Road, Marrickville, NSW 2204

Contaminated Land

74 Edinburgh Road, Marrickville, NSW 2204

Contaminated Land

74 Edinburgh Road, Marrickville, NSW 2204

List of NSW contaminated sites notified to EPA

Records from the NSW EPA Contaminated Land list within the dataset buffer:

Map Id	Site	Address	Suburb	Activity	Management Class	Status	Location Confidence	Dist (m)	Direction
13463	Former Dry Cleaners and Loading Dock	Smidmore Street	Marrickville	Other Industry	Contamination currently regulated under CLM Act	Current EPA List	Premise Match	107m	North East
1245	Camdenville Park	May Street	St Peters	Other Industry	Regulation under CLM Act not required	Current EPA List	Premise Match	380m	East
13489	Former Industrial Manufacturin g Facility (Taubman's Paints)	75 Mary STREET	St Peters	Other Industry	Regulation under CLM Act not required	Current EPA List	Premise Match	403m	South East
1260	SRA Land	117 Railway Parade	Sydenham	Other Industry	Regulation under CLM Act not required	Current EPA List	Premise Match	699m	South West
1246	Cooks River Rail Terminal	20 Canal Road	St Peters	Unclassified	Regulation under CLM Act not required	Current EPA List	Premise Match	863m	South
1244	BP Express Service Station	2 Princes Highway	St Peters	Service Station	Regulation under CLM Act not required	Current EPA List	Premise Match	894m	East
13456	Sydney Park	Sydney Park Road	ALEXANDRIA	Landfill	Contamination currently regulated under CLM Act	Current EPA List	Premise Match	903m	East
1261	Sydenham XPT Maintenance Facility	Way Street	Sydenham	Other Industry	Regulation under CLM Act not required	Current EPA List	Premise Match	937m	South West
1247	Former Tidyburn Facility	53 Barwon Park Road	St Peters	Chemical Industry	Contamination formerly regulated under the CLM Act	Current EPA List	Premise Match	996m	South East

The values within the EPA site management class in the table above, are given more detailed explanations in the table below:

EPA site management class	Explanation
Contamination being managed via the planning process (EP&A Act)	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation. The contamination of this site is managed by the consent authority under the Environmental Planning and Assessment Act 1979 (EP&A Act) planning approval process, with EPA involvement as necessary to ensure significant contamination is adequately addressed. The consent authority is typically a local council or the Department of Planning and Environment.
Contamination currently regulated under CLM Act	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation under the Contaminated Land Management Act 1997 (CLM Act). Management of the contamination is regulated by the EPA under the CLM Act. Regulatory notices are available on the EPA's Contaminated Land Public Record of Notices.
Contamination currently regulated under POEO Act	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation. Management of the contamination is regulated under the Protection of the Environment Operations Act 1997 (POEO Act). The EPA's regulatory actions under the POEO Act are available on the POEO public register.
EPA site management class	Explanation
---	--
Contamination formerly regulated under the CLM Act	The EPA has determined that the contamination is no longer significant enough to warrant regulation under the Contaminated Land Management Act 1997 (CLM Act). The contamination was addressed under the CLM Act.
Contamination formerly regulated under the POEO Act	The EPA has determined that the contamination is no longer significant enough to warrant regulation. The contamination was addressed under the Protection of the Environment Operations Act 1997 (POEO Act).
Contamination was addressed via the planning process (EP&A Act)	The EPA has determined that the contamination is no longer significant enough to warrant regulation. The contamination was addressed by the appropriate consent authority via the planning process under the Environmental Planning and Assessment Act 1979 (EP&A Act).
Ongoing maintenance required to manage residual contamination (CLM Act)	The EPA has determined that ongoing maintenance, under the Contaminated Land Management Act 1997 (CLM Act), is required to manage the residual contamination. Regulatory notices under the CLM Act are available on the EPA's Contaminated Land Public Record of Notices.
Regulation being finalised	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation under the Contaminated Land Management Act 1997. A regulatory approach is being finalised.
Regulation under the CLM Act not required	The EPA has completed an assessment of the contamination and decided that regulation under the Contaminated Land Management Act 1997 is not required.
Under assessment	The contamination is being assessed by the EPA to determine whether regulation is required. The EPA may require further information to complete the assessment. For example, the completion of management actions regulated under the planning process or Protection of the Environment Operations Act 1997. Alternatively, the EPA may require information via a notice issued under s77 of the Contaminated Land Management Act 1997 or issue a Preliminary Investigation Order.

NSW EPA Contaminated Land List Data Source: Environment Protection Authority @ State of New South Wales through the Environment Protection Authority

Contaminated Land

74 Edinburgh Road, Marrickville, NSW 2204

Contaminated Land: Records of Notice

Record of Notices within the dataset buffer:

Map Id	Name	Address	Suburb	Notices	Area No	Location Confidence	Distance	Direction
375	Former Dry Cleaners and Loading Dock	Smidmore Street	Marrickville	2 current	3408	Premise Match	107m	North East
401	Sydney Park	Sydney Park ROAD	ALEXANDRIA	2 current	3433	Premise Match	903m	East
294	Former Tidyburn Facility	53 Barwon Park Road	St Peters	4 former	3234	Premise Match	996m	South East

Contaminated Land Records of Notice Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority Terms of use and disclaimer for Contaminated Land: Record of Notices, please visit http://www.epa.nsw.gov.au/clm/clmdisclaimer.htm

Former Gasworks

Former Gasworks within the dataset buffer:

Map Id	Location	Council	Further Info	Location Confidence	Distance	Direction
N/A	No records in buffer					

Former Gasworks Data Source: Environment Protection Authority

© State of New South Wales through the Environment Protection Authority

Waste Management & Liquid Fuel Facilities

Waste Management & Liquid Fuel Facilities

74 Edinburgh Road, Marrickville, NSW 2204

National Waste Management Site Database

Sites on the National Waste Management Site Database within the dataset buffer:

Site Id	Owner	Name	Address	Suburb	Class	Landfill	Reprocess	Transfer	Comments	Loc Conf	Dist (m)	Direction
653	Alexandria Landfill Pty Ltd	Alexandria Landfill	Albert Street	St Peters	Multi- Purpose	Operati onal	Operational			Premise Match	801 m	South East

Waste Management Facilities Data Source: Geoscience Australia

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

National Liquid Fuel Facilities

National Liquid Fuel Facilties within the dataset buffer:

Map Id	Owner	Name	Address	Suburb	Class	Operational Status	Operator	Revision Date	Loc Conf	Dist (m)	Direction
4183	BP	BP Connect Sydenham	14 Grove Street	St Peters	Petrol Station	Operational		25/07/2011	Premise Match	727m	South
4186	BP	BP Express St Peters	2 Princes Highway	St Peters	Petrol Station	Operational		25/07/2011	Premise Match	894m	East
4863	7-Eleven Pty Ltd	Enmore	22 Stanmore Road	Enmore	Petrol Station	Operational		13/07/2012	Premise Match	910m	North

National Liquid Fuel Facilities Data Source: Geoscience Australia

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

PFAS Investigation & Management Programs 74 Edinburgh Road, Marrickville, NSW 2204

PFAS Investigation & Management Programs

74 Edinburgh Road, Marrickville, NSW 2204

EPA PFAS Investigation Program

Sites that are part of the EPA PFAS investigation program, within the dataset buffer:

ld	Site	Address	Loc Conf	Dist	Dir
16	Botany Bay area & Georges River		General Area/ Suburb Match	1096m	South

EPA PFAS Investigation Program: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

Defence PFAS Investigation Program

Sites being investigated by the Department of Defence for PFAS contamination within the dataset buffer:

Map ID	Base Name	Address	Loc Conf	Dist	Dir
N/A	No records in buffer				

Defence PFAS Investigation Program Data Custodian: Department of Defence, Australian Government

Defence PFAS Management Program

Sites being managed by the Department of Defence for PFAS contamination within the dataset buffer:

Map ID	Base Name	Address	Loc Conf	Dist	Dir
N/A	No records in buffer				

Defence PFAS Management Program Data Custodian: Department of Defence, Australian Government

Airservices Australia National PFAS Management Program

Sites being investigated or managed by Airservices Australia for PFAS contamination within the dataset buffer:

Map ID	Site Name	Impacts	Loc Conf	Dist	Dir
2	Sydney Airport (NSW)	Confirmed at fire station and fire training ground.	Area Match	1768m	South

Airservices Australia National PFAS Management Program Data Custodian: Airservices Australia

Defence Sites

74 Edinburgh Road, Marrickville, NSW 2204

Defence 3 Year Regional Contamination Investigation Program

Sites which have been assessed as part of the Defence 3 Year Regional Contamination Investigation Program within the dataset buffer:

Property ID	Base Name	Address	Known Contamination	Loc Conf	Dist	Dir
N/A	No records in buffer					

Defence 3 Year Regional Contamination Investigation Program, Data Custodian: Department of Defence, Australian Government

EPA Other Sites with Contamination Issues

74 Edinburgh Road, Marrickville, NSW 2204

EPA Other Sites with Contamination Issues

This dataset contains other sites identified on the EPA website as having contamination issues. This dataset currently includes:

- · James Hardie asbestos manufacturing and waste disposal sites
- Radiological investigation sites in Hunter's Hill
- Pasminco Lead Abatement Strategy Area

Sites within the dataset buffer:

Site Id	Site Name	Site Address	Dataset	Comments	Location Confidence	Distance	Direction
N/A	No records in buffer						

EPA Other Sites with Contamination Issues: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

Current EPA Licensed Activities

EPA Activities

74 Edinburgh Road, Marrickville, NSW 2204

Licensed Activities under the POEO Act 1997

Licensed activities under the Protection of the Environment Operations Act 1997, within the dataset buffer:

EPL	Organisation	Name	Address	Suburb	Activity	Loc Conf	Distance	Direction
20971	JOHN HOLLAND PTY LTD	Sydney Metro City & Southwest Tunnels and Excavation Works	locations between Chatswood railway station and Sydenham railway station, SYDNEY, NSW 2000	SYDNEY, NSW	Concrete works, Railway systems activities	Network of Features	17m	South East
12208	SYDNEY TRAINS		PO BOX K349, HAYMARKET, NSW 1238		Railway systems activities	Network of Features	199m	South
21147	Laing O'Rourke Australia Construction Pty Ltd		Sydenham Station Junction Works Project Site at Sydenham Station, SYDENHAM, NSW 2044		Railway systems activities	Premise Match	485m	South West
21149	LENDLEASE ENGINEERING PTY LIMITED		WestConnex between M4 East at Haberfield and the New M5 at St. Peters, MARRICKVILLE, NSW 2204		Road Construction	Road Match	581m	East
3142	AUSTRALIAN RAIL TRACK CORPORATION LIMITED		Australian Rail Track Corporation (ARTC) network as defined by the ARTC Network Deeds within NSW, SYDNEY, NSW 2001		Railway systems activities	Network of Features	598m	South
20772	CPB CONTRACTORS PTY LIMITED	WESTCONNEX NEW M5	Between Beverly Hills and St Peters, BEVERLY HILLS, NSW 2209		Road construction	Road Match	658m	South
4627	CPB CONTRACTORS PTY LIMITED	ALEXANDRIA LANDFILL	10-16 ALBERT STREET	ST PETERS	Waste disposal by application to land	Premise Match	801m	South East
11483	METROPOLITAN DEMOLITIONS AND RECYCLING PTY LIMITED	METROPOLITAN DEMOLITIONS AND RECYCLING	396 Princes Highway	ST PETERS	Non-thermal treatment of general waste	Premise Match	823m	South
11483	METROPOLITAN DEMOLITIONS AND RECYCLING PTY LIMITED	METROPOLITAN DEMOLITIONS AND RECYCLING	396 Princes Highway	ST PETERS	Recovery of general waste	Premise Match	823m	South
11483	METROPOLITAN DEMOLITIONS AND RECYCLING PTY LIMITED	METROPOLITAN DEMOLITIONS AND RECYCLING	396 Princes Highway	ST PETERS	Waste storage - other types of waste	Premise Match	823m	South

POEO Licence Data Source: Environment Protection Authority

© State of New South Wales through the Environment Protection Authority

Delicensed & Former Licensed EPA Activities

EPA Activities

74 Edinburgh Road, Marrickville, NSW 2204

Delicensed Activities still regulated by the EPA

Delicensed activities still regulated by the EPA, within the dataset buffer:

Licence No	Organisation	Name	Address	Suburb	Activity	Loc Conf	Distance	Direction
11342	ALFRED JOHNS PTY LTD	ALFRED JOHNS PTY LTD	25 FITZROY STREET	MARRICKVILLE	Hazardous, Industrial or Group A Waste Generation or Storage	Premise Match	262m	West
6525	BIOCLONE AUSTRALIA PTY LTD	BIOCLONE	71-73 RAILWAY PARADE	MARRICKVILLE	Hazardous, Industrial or Group A Waste Generation or Storage	Premise Match	554m	South West
6738	VEMADELL PTY. LIMITED	HALLMARK PLATERS	58 MEEKS ROAD	MARRICKVILLE	Hazardous, Industrial or Group A Waste Generation or Storage	Premise Match	872m	South West
3952	RAIL CORPORATION NEW SOUTH WALES	XPT MAINTENANCE CENTRE	WAY STREET	SYDENHAM	Hazardous, Industrial or Group A Waste Generation or Storage	Premise Match	937m	South West

Delicensed Activities Data Source: Environment Protection Authority

© State of New South Wales through the Environment Protection Authority

Former Licensed Activities under the POEO Act 1997, now revoked or surrendered

Former Licensed activities under the Protection of the Environment Operations Act 1997, now revoked or surrendered, within the dataset buffer:

Licence No	Organisation	Location	Status	Issued Date	Activity	Loc Conf	Distance	Direction
1269	PEERLESS HOLDINGS PTY. LIMITED	74 EDINBURGH ROAD, MARRICKVILLE, NSW 2204	Surrendered	15/05/2000	Hazardous, Industrial or Group A Waste Generation or Storage	Premise Match	0m	Onsite
4653	LUHRMANN ENVIRONMENT MANAGEMENT PTY LTD	WATERWAYS THROUGHOUT NSW	Surrendered	06/09/2000	Other Activities / Non Scheduled Activity - Application of Herbicides	Network of Features	17m	-
4838	Robert Orchard	Various Waterways throughout New South Wales - SYDNEY NSW 2000	Surrendered	07/09/2000	Other Activities / Non Scheduled Activity - Application of Herbicides	Network of Features	17m	-
6630	SYDNEY WEED & PEST MANAGEMENT PTY LTD	WATERWAYS THROUGHOUT NSW - PROSPECT, NSW, 2148	Surrendered	09/11/2000	Other Activities / Non Scheduled Activity - Application of Herbicides	Network of Features	17m	-
6530	GLOBUS GROUP PTY LTD	122 EDINBURGH ROAD, MARRICKVILLE, NSW 2204	Surrendered	28/04/2000	Hazardous, Industrial or Group A Waste Generation or Storage	Premise Match	212m	North West
7160	CHAMPION FORMS AUSTRALIA MARRICKVILLE PTY. LTD.	1-21 SMITH STREET, MARRICKVILLE, NSW 2204	Revoked	11/07/2000	Hazardous, Industrial or Group A Waste Generation or Storage	Premise Match	323m	North West
11335	NETWORK GRAPHICS PTY. LTD.	42 Sydneham Road, MARRICKVILLE, NSW 2204	Surrendered	31/01/2001	Hazardous, Industrial or Group A Waste Generation or Storage	Premise Match	471m	South West

Licence No	Organisation	Location	Status	Issued Date	Activity	Loc Conf	Distance	Direction
6844	POROUS HARDCHROME PLATING PTY LTD	8 BROMPTON ST, MARRICKVILLE, NSW 2204	Surrendered	30/11/2000	Hazardous, Industrial or Group A Waste Generation or Storage; Metal coating	Premise Match	490m	North West
12594	ROADS AND MARITIME SERVICES	ALEXANDRIA RECYCLING CENTRE, 10-16 Albert Street, ST PETERS	Surrendered	21/06/2007	Recovery of general waste	Premise Match	801m	South East
12594	ROADS AND MARITIME SERVICES	ALEXANDRIA RECYCLING CENTRE, 10-16 Albert Street, ST PETERS	Surrendered	21/06/2007	Waste storage - other types of waste	Premise Match	801m	South East

Former Licensed Activities Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

Historical Business Directories

Historical Business Directories

74 Edinburgh Road, Marrickville, NSW 2204

Business Directory Records 1950-1991 Premise or Road Intersection Matches

Universal Business Directory records from years 1991, 1986, 1982, 1978, 1975, 1970, 1965, 1961 & 1950, mapped to a premise or road intersection within the dataset buffer:

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Property Boundary or Road Intersection	Direction
1	Food Products Mfrs &/or Processors	Unilever, 74 Edinburgh Rd., Marrickville 2204	46185	1991	Premise Match	0m	On-site
	FOOD PROCESSORS &/OR PACKERS.	Unilever, 74 Edinburgh Rd., Marrickville. 2204	34346	1986	Premise Match	0m	On-site
	FOOD PROCESSORS &/OR PACKERS. (F4925)	Unilever, 74 Edinburgh Rd., Marrickville. 2204.	32032	1982	Premise Match	0m	On-site
	NUT MERCHANTS &/OR ROASTERS.	Eta Foods Pty Ltd, 74 Edinburgh Rd, Marrickville 2204	54509	1978	Premise Match	0m	On-site
	OIL EDIBLE MFRS.&/OR MERCHANTS.	Eta Foods Pty Ltd, 74 Edinburgh Rd, Marrickville 2204	54780	1978	Premise Match	0m	On-site
	FOOD PRODUCTS MFRS.&/OR DISTS.	Eta Foods Pty. Ltd., 74 Edinburgh Rd., Marrickville. 2204	29052	1978	Premise Match	0m	On-site
	HEALTH FOODS MFRS. &/OR DISTS	Eta Foods Pty. Ltd., 74 Edinburgh Rd., Marrickville. 2204	35297	1978	Premise Match	0m	On-site
	OIL EDIBLE MFRS.&/OR MERCHANTS.	Marrickville Margarine Pty Ltd, 74 Edinburgh Rd, Marrickville 2204	54786	1978	Premise Match	0m	On-site
	FOOD PRODUCTS MFRS.&/OR DISTS.	Marrickville Margarine Pty. Ltd., 74 Edinburgh Rd., Marrickville. 2204	29067	1978	Premise Match	0m	On-site
	FOOD. PROCESSORS &/OR PACKERS.	Marrickville Margarine Pty. Ltd., 74 Edinburgh Rd., Marrickville. 2204	29005	1978	Premise Match	0m	On-site
	MARGARINE MFRS. &/OR DISTS.	Marrickville Margarine Pty. Ltd., 74 Edinburgh Rd., Marrickville. 2204	41569	1978	Premise Match	0m	On-site
	HEALTH FOODS MFRS. &/OR DISTS.	Ela Foods Pty. Ltd., 74 Edinburgh Rd., Marrickville. 2204	41733	1975	Premise Match	0m	On-site
	NUT MERCHANTS &/OR ROASTERS.	Eta Foods Pty. Ltd., 74 Edinburgh Rd., Marrickville. 2204	64330	1975	Premise Match	0m	On-site
	OIL EDIBLE MFRS. &/OR MERCHANTS	Eta Foods Pty. Ltd., 74 Edinburgh Rd., Marrickville. 2204	64646	1975	Premise Match	0m	On-site
	FOOD PROCESSORS &/OR PACKERS.	Eta Foods Pty. Ltd., 74 Edinburgh Rd., Marrickville. 2204.	33583	1975	Premise Match	0m	On-site
	FOOD PRODUCTS MFRS. &/OR DISTS.	Eta Foods Pty. Ltd., 74 Edinburgh Rd., Marrickville. 2204.	33645	1975	Premise Match	0m	On-site
	POTATO CRISP MFRS. &/OR MERCHANTS.	Eta Krunchi Krisps., 74 Edinburgh Rd., Marrickville. 2204	68924	1975	Premise Match	0m	On-site
	HOLDING COMPANIES.	Marrickville Holdings Ltd., 74 Edinburgh Rd., Marrickville. 2204	42241	1975	Premise Match	0m	On-site
	FOOD PRODUCTS MFRS. &/OR DISTS.	Marrickville Margarine Pty. Ltd., 74 Edinburgh Rd., Marrickville	33656	1975	Premise Match	0m	On-site
	MARGARINE MFRS. &/OR DISTS.	Marrickville Margarine Pty. Ltd., 74 Edinburgh Rd., Marrickville.	49121	1975	Premise Match	0m	On-site
	OIL EDIBLE MFRS. &/OR MERCHANTS	Marrickville Margarine Pty. Ltd., 74 Edinburgh Rd., Marrickville. 2204	64650	1975	Premise Match	0m	On-site
	BAKERS & PASTRYCOOKS SUPPLIES.	Marrickville Margarine Pty. Ltd., 74 Edinburgh Rd., Marrickville. 2204.	4190	1975	Premise Match	0m	On-site
	FOOD EXPORTERS.	Marrickville Margarine Pty. Ltd., 74 Edinburgh Rd., Marrickville. 2204.	33368	1975	Premise Match	0m	On-site
	FOOD PROCESSORS &/OR PACKERS.	Marrickville Margarine Pty. Ltd., 74 Edinburgh Rd., Marrickville. 2204.	33595	1975	Premise Match	0m	On-site

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Property Boundary or Road Intersection	Direction
1	FOOD PROCESSORS/PACKERS (F430)	Eta Foods Pty. Ltd., 74 Edinburgh Rd., Marrickville	304956	1970	Premise Match	0m	On-site
	FOOD PRODUCTS MFRS. &/OR DISTS.(F432)	Eta Foods Pty. Ltd., 74 Edinburgh Rd., Marrickville	305041	1970	Premise Match	Om	On-site
	HEALTH FOOD MFRS. &/OR D1STS.(H340)	Eta Foods Pty. Ltd., 74 Edinburgh Rd., Marrickville	315867	1970	Premise Match	Om	On-site
	NUT MERCHANTS/ROASTERS (N200)	Eta Foods Pty. Ltd., 74 Edinburgh Rd., Marrickville	344616	1970	Premise Match	0m	On-site
	OILS-EDIBLE-MERCHANTS (O 170)	Eta Foods Pty. Ltd., 74 Edinburgh Rd., Marrickville	345096	1970	Premise Match	Om	On-site
	BAKERS' & PASTRYCOOKS' SUPPLIES (B075)	Marrickville Margarine Pty. Ltd., 74 Edinburgh Rd., Marrickville	264498	1970	Premise Match	Om	On-site
	FOOD EXPORTERS (F400)	Marrickville Margarine Pty. Ltd., 74 Edinburgh Rd., Marrickville	304777	1970	Premise Match	0m	On-site
	FOOD PROCESSORS/PACKERS (F430)	Marrickville Margarine Pty. Ltd., 74 Edinburgh Rd., Marrickville	304978	1970	Premise Match	0m	On-site
	FOOD PRODUCTS MFRS. &/OR DISTS.(F432)	Marrickville Margarine Pty. Ltd., 74 Edinburgh Rd., Marrickville	305060	1970	Premise Match	0m	On-site
	MARGARINE MANUFACTURERS &/OR DISTRIBUTORS	Marrickville Margarine Pty. Ltd., 74 Edinburgh Rd., Marrickville	325481	1970	Premise Match	0m	On-site
	OILS-EDIBLE-MERCHANTS (O 170)	Marrickville Margarine Pty. Ltd., 74 Edinburgh Rd., Marrickville	345106	1970	Premise Match	Om	On-site
	Food Processors/Packers	Eta Foods Pty. Ltd., 74 Edinburgh Rd., Marrickville	88339	1965	Premise Match	Om	On-site
	Food Products Mfrs.	Eta Foods Pty. Ltd., 74 Edinburgh Rd., Marrickville	88421	1965	Premise Match	Om	On-site
	Health Food Manufacturers	Eta Foods Pty. Ltd., 74 Edinburgh Rd., Marrickville	99960	1965	Premise Match	Om	On-site
	Nut Merchants/Roasters	Eta Foods Pty. Ltd., 74 Edinburgh Rd., Marrickville	129226	1965	Premise Match	Om	On-site
	Oils-Edible -Merchants	Eta Foods Pty. Ltd., 74 Edinburgh Rd., Marrickville	129645	1965	Premise Match	Om	On-site
	Margarine Manufacturers &/or Distributors	Marrickville Margarine Pty. Ltd., 74 Edinburgh Rd, M'ckvle	110163	1965	Premise Match	0m	On-site
	Oils-Edible -Merchants	Marrickville Margarine Pty. Ltd., 74 Edinburgh Rd. Marrickville	129655	1965	Premise Match	0m	On-site
	Bakers' & Pastrycooks' Supplies	Marrickville Margarine Pty. Ltd., 74 Edinburgh Rd., Marrickville	49379	1965	Premise Match	0m	On-site
	Food Exporters	Marrickville Margarine Pty. Ltd., 74 Edinburgh Rd., Marrickville	88178	1965	Premise Match	0m	On-site
	Food Processors/Packers	Marrickville Margarine Pty. Ltd., 74 Edinburgh Rd., Marrickville	88363	1965	Premise Match	0m	On-site
	Food Products Mfrs.	Marrickville Margarine Pty. Ltd., 74 Edinburgh Rd., Marrickville	88444	1965	Premise Match	0m	On-site
	FOOD PRODUCTS MFRS.	Eta Foods Pty. Ltd., 74 Edinburgh Rd., Marrickville	312591	1961	Premise Match	0m	On-site
	HEALTH FOOD MFRS.	Eta Foods Pty. Ltd., 74 Edinburgh Rd., Marrickville	324039	1961	Premise Match	0m	On-site
	NUT MERCHANTS/ROASTERS	Eta Foods Pty. Ltd., 74 Edinburgh Rd., Marrickville	354256	1961	Premise Match	0m	On-site
	OILS—EDIBLE—MERCHANTS	Eta Foods Pty. Ltd., 74 Edinburgh Rd., Marrickville	354652	1961	Premise Match	0m	On-site
	OILS—HYDROGENATED— MFRS.	Marrickville Margarine Pty Ltd 74 Edinburgh Rd., Marrickville.	354710	1961	Premise Match	0m	On-site
	BAKERS' & PASTRYCOOKS' SUPPLIES	Marrickville Margarine Pty. Ltd., 74 Edinburgh Rd., Marrickville	270906	1961	Premise Match	0m	On-site
	FOOD EXPORTERS	Marrickville Margarine Pty. Ltd., 74 Edinburgh Rd., Marrickville	312392	1961	Premise Match	Om	On-site
	FOOD PRODUCTS MFRS.	Marrickville Margarine Pty. Ltd., 74 Edinburgh Rd., Marrickville	312616	1961	Premise Match	0m	On-site
	MARGARINE MANUFACTURERS &/OR DISTRIBUTORS	Marrickville Margarine Pty. Ltd., 74 Edinburgh Rd., Marrickville	334043	1961	Premise Match	0m	On-site

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Property Boundary or Road Intersection	Direction
1	OILS—EDIBLE—MERCHANTS	Marrickville Margarine Pty. Ltd., 74 Edinburgh Rd., Marrickville	354666	1961	Premise Match	0m	On-site
	OIL MERCHANTS-GENERAL	Marrickville Margarine Pty., 74 Edinburgh Rd., Marrickville	89660	1950	Premise Match	0m	On-site
	OILS-EDIBLE-MERCHANTS	Nut Foods Pty. Ltd., 74 Edinburgh Rd., Marrickville	89394	1950	Premise Match	0m	On-site
2	BOLT &/OR NUT MFRS.&/OR DISTS. (B4200)	Spurways Industries, 46 Edinburgh Rd., Marrickville. 2204.	7585	1982	Premise Match	18m	South East
	WASHER-HIGH TENSILE- MFRS.	COMMONWEALTH BOLT & RIVET PTY LTD, 46 EDINBURGH RD., MARRICKVILLE, P.O.BOX 47 MARRICKVILLE, 2204	373035	1970	Premise Match	18m	South East
	BOLTS & NUTS-HIGH TENSILE-MFRS.	COMMONWEALTH BOLT & RIVET PTY LTD., 46 EDINBURGH RD., MARRICKVILLE	268091	1970	Premise Match	18m	South East
	WASHER MANUFACTURERS (W050)	Commonwealth Bolt & Rivet Pty. Ltd., 46 Edinburgh Rd, Marrickville.	373017	1970	Premise Match	18m	South East
	BOLT & NUT MFRS. &/OR DISTS. (B520)	Commonwealth Bolt & Rivet Pty. Ltd., 46 Edinburgh Rd., Marrickville	268032	1970	Premise Match	18m	South East
	RIVET MANUFACTURERS (R350)	Commonwealth Bolt & Rivet Pty. Ltd., 46 Edinburgh Rd., Marrickville.	357372	1970	Premise Match	18m	South East
	STEEL BRIDGE MFRS. (S561)	Sydney Steel Co. Pty. Ltd. (The), 46 Edinburgh Rd., Marrickville	365078	1970	Premise Match	18m	South East
	STEEL CYLINDER MFRS. (S567)	Sydney Steel Co. Pty. Ltd. (The), 46 Edinburgh Rd., Marrickville	365091	1970	Premise Match	18m	South East
	STEEL FABRICATORS (S673)	Sydney Steel Co. Pty. Ltd. (The), 46 Edinburgh Rd., Marrickville	365369	1970	Premise Match	18m	South East
	STEEL MERCHANTS- GENERAL (S694)	Sydney Steel Co. Pty. Ltd. (The), 46 Edinburgh Rd., Marrickville	365608	1970	Premise Match	18m	South East
	TANK & TANK STAND MFRS. & SUPPLIERS	Sydney Steel Co. Pty. Ltd. (The), 46 Edinburgh Rd., Marrickville	367100	1970	Premise Match	18m	South East
	ENGINEERS-STRUCTURAL (E165)	Sydney Steel Co. Pty. Ltd. (The), 46 Edinburgh Rd., Marrickville.	301192	1970	Premise Match	18m	South East
	CRANES & DERRICKS-MFRS. &/OR DISTS. (C728)	Sydney Steel Co. Pty. Ltd. (The)., 46 Edinburgh Rd., Marrickville	286241	1970	Premise Match	18m	South East
	FIRE ESCAPE MANUFACTURERS (F190)	Sydney Steel Co. Pty. Ltd. (The)., 46 Edinburgh Rd., Marrickville	303107	1970	Premise Match	18m	South East
	ENGINEERS-FABRICATING (E580)	Sydney Steel Co. Pty. Ltd. (The)., 46 Edinburgh Rd., Marrickville, 2204	298623	1970	Premise Match	18m	South East
	ENGINEERS-FABRICATING (E580)	Trussed Concrete Steel Co. (Aust) Pty. Ltd., 46 Edinburgh Rd., Marrickville, 2204	298636	1970	Premise Match	18m	South East
	Bolt & Nut Mfrs. &/or Dists.	Commonwealth Bolt & Rivet Pty. Ltd., 46 Edinburgh Rd., Marrickville	52462	1965	Premise Match	18m	South East
	Rivet Manufacturers	Commonwealth Bolt & Rivet Pty. Ltd., 46 Edinburgh Rd., Marrickville	140697	1965	Premise Match	18m	South East
	Washer Manufacturers	Commonwealth Bolt & Rivet Pty. Ltd., 46 Edinburgh Rd., Marrickville	155802	1965	Premise Match	18m	South East
	Cranes & Derricks - Mfrs. &/or Dists.	Sydney Steel Co. Pty. Ltd. (The), 46 Edinburgh Rd., Marrickville	70989	1965	Premise Match	18m	South East
	Fire Escape Manufacturers	Sydney Steel Co. Pty. Ltd. (The), 46 Edinburgh Rd., Marrickville	86482	1965	Premise Match	18m	South East
	STEEL BRIDGE MFRS	Sydney Steel Co. Pty. Ltd. (The), 46 Edinburgh Rd., Marrickville	147988	1965	Premise Match	18m	South East
	STEEL CYLINDER MFRS	Sydney Steel Co. Pty. Ltd. (The), 46 Edinburgh Rd., Marrickville	147999	1965	Premise Match	18m	South East
	STEEL MERCHANTS—GENERAL	Sydney Steel Co. Pty. Ltd. (The), 46 Edinburgh Rd., Marrickville	148497	1965	Premise Match	18m	South East
	TANK & TANK STAND MFRS. & SUPPLIERS	Sydney Steel Co. Pty. Ltd. (The), 46 Edinburgh Rd., Marrickville	149977	1965	Premise Match	18m	South East
	Engineers - Structural	Sydney Steel Co. Pty. Ltd. (The)., 46 Edinburgh Rd., Marrickville	84430	1965	Premise Match	18m	South East
	STEEL FABRICATORS	Sydney Steel Co. Pty. Ltd. (The)., 46 Edinburgh Rd., Marrickville	148264	1965	Premise Match	18m	South East
	Engineers - Fabricating	Sydney Steel Co. Pty. Ltd., 46 Edinburgh Rd., Marrickville	81878	1965	Premise Match	18m	South East

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Property Boundary or Road Intersection	Direction
2	BOLT & NUT MFRS. &/OR DISTS.	Commonwealth Bolt & Rivet Pty Ltd 46 Edinburgh Rd., Marrickville	274066	1961	Premise Match	18m	South East
	WASHER MANUFACTURERS	Commonwealth Bolt & Rivet Pty Ltd 46 Edinburgh Rd., Marrickville	261414	1961	Premise Match	18m	South East
	BOLT & NUT MFRS. &/OR DISTS.	Commonwealth Bolt & Rivet Pty. Ltd., 46 Edinburgh Rd., Marrickville	274067	1961	Premise Match	18m	South East
	RIVET MANUFACTURERS	Commonwealth Bolt & Rivet Pty. Ltd., 46 Edinburgh Rd., Marrickville	246116	1961	Premise Match	18m	South East
	WASHER MANUFACTURERS	Commonwealth Bolt & Rivet Pty. Ltd., 46 Edinburgh Rd., Marrickville	261415	1961	Premise Match	18m	South East
	STEEL FABRICATORS	Sydney Steel Co Pty Ltd (The) 46 Edinburgh Rd., Marrickville	253547	1961	Premise Match	18m	South East
	STEEL BRIDGE MFRS.	Sydney Steel Co. Pty. Ltd, (The), 46 Edinburgh Rd., Marrickville	253315	1961	Premise Match	18m	South East
	FIRE ESCAPE MANUFACTURERS	Sydney Steel Co. Pty. Ltd. (The), 46 Edinburgh Rd. Marrickville	310696	1961	Premise Match	18m	South East
	CRANES & DERRICKS-MFRS. &/OR DISTS.	Sydney Steel Co. Pty. Ltd. (The), 46 Edinburgh Rd., Marrickville	293659	1961	Premise Match	18m	South East
	ENGINEERS-STRUCTURAL	Sydney Steel Co. Pty. Ltd. (The), 46 Edinburgh Rd., Marrickville	308692	1961	Premise Match	18m	South East
	STEEL CYLINDER MFRS.	Sydney Steel Co. Pty. Ltd. (The), 46 Edinburgh Rd., Marrickville	253324	1961	Premise Match	18m	South East
	STEEL FABRICATORS	Sydney Steel Co. Pty. Ltd. (The), 46 Edinburgh Rd., Marrickville	253548	1961	Premise Match	18m	South East
	STEEL MERCHANTS- GENERAL	Sydney Steel Co. Pty. Ltd. (The), 46 Edinburgh Rd., Marrickville	253773	1961	Premise Match	18m	South East
	STEEL MERCHANTS- STRUCTURAL	Sydney Steel Co. Pty. Ltd. (The), 46 Edinburgh Rd., Marrickville	253803	1961	Premise Match	18m	South East
	TANK & TANK STAND MFRS. & SUPPLIERS	Sydney Steel Co. Pty. Ltd. (The), 46 Edinburgh Rd., Marrickville	255319	1961	Premise Match	18m	South East
	NUT & BOLT MFRS. &/OR DISTRIBUTORS	Commonwealth Bolt and Rivet Coy. Pty. Ltd., 46 Edinburgh Rd., Marrickville	89352	1950	Premise Match	18m	South East
	ENGINEERS-STRUCTURAL	Sydney Steel Co. Pty. Ltd., 46 Edinburgh Rd., Marrickville	42507	1950	Premise Match	18m	South East
	STEEL MERCHANTS- GENERAL	Sydney Steel Co. Pty. Ltd., 46 Edinburgh Rd., Marrickville	105270	1950	Premise Match	18m	South East
	CRANES & DERRICKS MANUFACTURERS &/OR DISTRIBUTORS	Sydney Steel Co. Pty. Ltd., Edinburgh St., Marrickville	15022	1950	Premise Match	18m	South East
	PIPE MANUFACTURERS- CONCRETE	Taylor, Richard Ltd., 44 Edinburgh Rd., Marrickville	93058	1950	Premise Match	18m	South East
3	OPTOMETRISTS- REGISTERED	Holloway, W. T., 20 Smidmore St., Marrickville	90124	1950	Premise Match	20m	North East
	PHYSICAL CULTURE TEACHERS & GYMNASIUMS	McQuillan, E. E., 47 Edinburgh Rd., Marrickville	92202	1950	Premise Match	20m	North East
4	Builders &/or Building Contractors	Crooks, Richard Intenors, Unit 3/102 Edinburgh Rd., Marrickville 2204	36790	1991	Premise Match	21m	East
	Electronic Equipment Mfrs &/or Dists	Dayang Holdings Pty Ltd, Unit 5/102 Edinburgh Rd Marrickville 2204	42935	1991	Premise Match	21m	East
	Clothing Mfrs &/or W/salers Sportswear	Emgee Collection Pty Ltd, 11, 102 Edinburgh Rd, Marrickville 2204	39570	1991	Premise Match	21m	East
	Water Cooling Equipment Mfrs &/or Dists	Fountainhead, Unit 7/102 Edinburgh Rd Marrickville 2204	65948	1991	Premise Match	21m	East
	Cosmetic Mfrs &/or W/Salers	Liberty Cosmetic, Unit 4/102 Edinburgh Rd., Marrickville 2204	40900	1991	Premise Match	21m	East
	Signs Neon &/or Illuminated	Sign Lite, 19, 102 Edinburgh Rd Marrickville 2204	62603	1991	Premise Match	21m	East
	Manchester Goods Mfrs &/or W/salers	Trademark Imports Pty Ltd, 102 Edinburgh Rd., Marrickville 2204	51182	1991	Premise Match	21m	East
	Roofing Contractors &/or Repairers	Ward, George Roofing, Unit 3/102 Edinburgh Rd Marrickville 2204	61218	1991	Premise Match	21m	East
	BOTTLE SEALS, CAPS &/OR CORKS MFRS. &/OR DISTS.	Kork-N-Seal (Aust) Pty. Ltd, 102 Edinburgh Rd, Marrickville. 2204.	7240	1978	Premise Match	21m	East
	CORK &/OR CORKBOARD MFRS. &/OR MERCHANTS.	Kork-N-Seal (Aust) Pty. Ltd., 102 Edinburgh Rd., Marrickville. 2204	16394	1978	Premise Match	21m	East

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Property Boundary or Road Intersection	Direction
4	PACKAGING &/OR PACKING SPECIALISTS.	Kork-N-Seal (Aust) Pty. Ltd., 102 Edinburgh Rd., Marrickville. 2204	55237	1978	Premise Match	21m	East
	BOTTLE SEALS, CAPS &/OR CORKS MFRS. &/OR DISTS.	Kork-N-Seal (Aust) Pty. Ltd. 102 Edinburgh Rd., Marrickville. 2204.	7965	1975	Premise Match	21m	East
	PACKAGING &/OR PACKING SPECIALISTS	Kork-N-Seal (Aust) Pty. Ltd., 102 Edinburgh Rd., Marrickville. 2204	65144	1975	Premise Match	21m	East
	BOTTLE SEALS, CAPS &/OR CORKS MFRS. &/OR DISTS.	Kork-N-Seal (Aust) Pty. Ltd., 102 Edinburgh Rd., Marrickville. 2204.	7972	1975	Premise Match	21m	East
	CORK &/OR CORKBOARD MFRS.&/OR MERCHANTS.	Kork-N-Seal (Aust.) Pty. Ltd., 102 Edinburgh Rd., Marrickville. 2204	18985	1975	Premise Match	21m	East
	GROCERS-RETAIL (G655)	Edinburgh Road Grocer., 36 Edinburgh Rd., Marrickville	312397	1970	Premise Match	21m	East
	BOTTLE SEALS, CAPS & CORKS MANUFACTURERS (B615)	Kork-N-Seal (Aust.) Pty. Ltd., 102 Edinburgh Rd., Marrickville	269405	1970	Premise Match	21m	East
	CORK & CORKBOARD MFRS. &/OR MERCHANTS(C677)	Kork-N-Seal (Aust.) Pty. Ltd., 102 Edinburgh Rd., Marrickville	285885	1970	Premise Match	21m	East
	Grocers - Retail	Edinburgh Road Grocer., 36 Edinburgh Rd., Marrickville	96444	1965	Premise Match	21m	East
	Cork & Corkboard Mfrs. &/or Merchants	Kork-N-Seal (Aust.) Pty Ltd., 102 Edinburgh Rd., Marrickville	70613	1965	Premise Match	21m	East
	Bottle Seals, Caps, & Corks Mfrs.	Kork-N-Seal (Aust.) Pty. Ltd., 102 Edinburgh Rd., Marrickville	53911	1965	Premise Match	21m	East
	BOTTLE SEALS, CAPS & CORKS MANUFACTURERS	Kork-N-Seal (Aust) Pty Ltd 102 Edinburgh Rd., Marrickville	275466	1961	Premise Match	21m	East
	BOTTLE SEALS, CAPS & CORKS MANUFACTURERS	Kork-N-Seal (Aust.) Pty. Ltd., 102 Edinburgh Rd., Marrickville	275467	1961	Premise Match	21m	East
	CORK & CORKBOARD MFRS. &/OR MERCHANTS	Kork-N-Seal (Aust.) Pty. Ltd., 102 Edinburgh Rd., Marrickville	293249	1961	Premise Match	21m	East
	GROCERS-RETAIL	O'Neill, S., 36 Edinburgh St., Marrickville	320998	1961	Premise Match	21m	East
	BOTTLE SEALS, CAPS & CORKS MANUFACTURERS	Kork-N-Seal (Aust.) Pty. Ltd., 102 Edinburgh Rd., Marrickville	10979	1950	Premise Match	21m	East
	GROCERS-RETAIL	O'Neill, S., 36 Edinburgh St., Marrickville	58599	1950	Premise Match	21m	East
5	Bakers	Bakers Oven, Shop 40, Marrickvile Metro, 36 Victoria Rd., Marrickville 2204	35191	1991	Premise Match	31m	North East
	Nuts Edible &/or Nut Products	Braz Coffee & Nut Factory, Shop 42 Marrickville Metro., 36 Victoria Rd., Marrickville. 2204	55929	1991	Premise Match	31m	North East
	Photographic Developing Printing &/or Colouring Services	Fuji Image, Shop 63, Marrickville Metro, 36 Victoria Rd., Marrickville 2204	57394	1991	Premise Match	31m	North East
	Bakers	S.O. Lovely Pies, Shop 36 Marrickville Metro, 36 Victoria Rd, Marrickville 2204	35349	1991	Premise Match	31m	North East
	CLOTHING - KNITTED GOODS MFRS. &/OR W/SALERS.	Austral Swiss Textiles Pty. Ltd., 34 Victoria Rd., Marrickville. 2204	15011	1978	Premise Match	31m	North East
	KNITTED GOODS MFRS. &/OR KNITTING MILLS.	Austral Swiss Textiles Pty. Ltd., 34 Victoria Rd., Marrickville. 2204	39374	1978	Premise Match	31m	North East
	WOOLLENS, WORSTED MFRS.	Australian Woollen Mills Ltd., The, 34 Victoria Rd., Marrickville. 2204	75281	1978	Premise Match	31m	North East
	WOOLLEN & WORSTED PIECEGOODS-W/SALE.	Vicars John & Co. Ltd., 34 Victoria Rd., Marrickville. 2204	75303	1978	Premise Match	31m	North East
	WOOLLEN KNITTING YARN SPINNERS.	Vicars, John & Co. Ltd., 34 Victoria Rd., Marrickville. 2204	75277	1978	Premise Match	31m	North East
	WOOLLENS, WORSTED MFRS.	Vicars, John & Co. Ltd., 34 Victoria Rd., Marrickville. 2204	75291	1978	Premise Match	31m	North East
	CLOTHING - KNITTED GOODS MFRS. &/OR W/SALER&	Austral Swiss Textiles Pty. Ltd., 34 Victoria Rd., Marrickville. 2204	17321	1975	Premise Match	31m	North East
	KNITTED GOODS MFRS. &/OR KNITTING MILLS.	Austral Swiss Textiles Pty. Ltd., 34 Victoria Rd., Marrickville. 2204	46485	1975	Premise Match	31m	North East
	TEXTILE MFRS.	Campbell, H. B. Pty. Ltd., 34 Victoria Rd., Marrickville. 2204	82826	1975	Premise Match	31m	North East
	KNITTED GOODS MFRS. &/OR KNITTING MILLS.	Campbell. H. B. Pty. Ltd., 34 Victoria Rd., Marrickville. 2204	46493	1975	Premise Match	31m	North East

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Property Boundary or Road Intersection	Direction
5	WOOLLEN KNITTING YARN SPINNERS.	Vicars, John & Co. Ltd., 34 Victoria Rd., Marrickville. 2204	87885	1975	Premise Match	31m	North East
	WOOLLEN & WORSTED MFRS.	Vicars, John & Co. Ltd., 34 Victoria Rd., Marrickville. 2204	87906	1975	Premise Match	31m	North East
	WOOLLEN & WORSTED PIECEGOODS-W/SALE.	Vicars. John & Co. Ltd., 34 Victoria Rd., Marrickville. 2204	87927	1975	Premise Match	31m	North East
	CLOTHING MFRS. &/OR W'SALERS-KNITTED GOODS	Austral Swiss Textiles Pty. Ltd., 34 Victoria Rd., Marrickville	282599	1970	Premise Match	31m	North East
	CLOTHING MFRS. &/OR W'SALERS-KNITTED GOODS	Campbell, H B Pty. Ltd., 34 Victoria Rd., Marrickville	282611	1970	Premise Match	31m	North East
	TEXTILE MANUFACTURERS (T255)	Campbell, H.B.Pty. Ltd., 34 Victoria Rd., Marrickville	368190	1970	Premise Match	31m	North East
	KNITTING MILLS (K095)	Vicars, John & Co. Ltd., 34 Victoria Rd., Marrickville	322230	1970	Premise Match	31m	North East
	WOOLLEN KNITTING YARN SPINNERS(W530)	Vicars, John & Co. Ltd., 34 Victoria Rd., Marrickville	375385	1970	Premise Match	31m	North East
	WOOLLEN/WORSTED MFRS. (W520)	Vicars, John & Co. Ltd., 34 Victoria Rd., Marrickville	375413	1970	Premise Match	31m	North East
	WOOLLEN/WORSTED PIECEGOODS-WHOLESALE	Vicars, John & Co. Ltd., 34 Victoria Rd., Marrickville	375454	1970	Premise Match	31m	North East
	Clothing Mfrs. &/or W'salers - Knitted Goods	Austral Swiss Textiles Pty. Ltd., 34 Victoria Rd., Marrickville	67225	1965	Premise Match	31m	North East
	Clothing Mfrs. &/or W'salers - Knitted Goods	Campbell, H. B. Pty. Ltd., 34 Victoria Rd., Marrickville	67242	1965	Premise Match	31m	North East
	TEXTILE MANUFACTURERS	Campbell, H. B. Pty. Ltd., 34 Victoria Rd., Marrickville	151005	1965	Premise Match	31m	North East
	Woollen Knitting Yarn Spinners	Vicars, John & Co. Ltd., 34 Victoria Rd., Marrickville	158378	1965	Premise Match	31m	North East
	Woollens/ Worsted Piecegoods - Wholesale	Vicars, John & Co. Ltd., 34 Victoria Rd., Marrickville	158370	1965	Premise Match	31m	North East
	ELECTRICAL CONTRACTORS- LICENSED	Vicars, John & Co. Ltd., 34 Victoria Rd., Marrickville	302668	1961	Premise Match	31m	North East
	WOOLLENS & WORSTED MANUFACTURERS	Vicars, John Pty. Ltd., 34 Victoria Rd., Marrickville	114609	1950	Premise Match	31m	North East
6	Rubber Good Mfrs &/or Dists	Elastomer Technologies Pty. Ltd., 49 Fitzroy St Marrickville 2204	61296	1991	Premise Match	44m	West
	INDOOR CRICKET CENTRES.	Indoor Cricket Arenas N.S.W. Pty. Ltd., 49 Fitzroy St., Marrickville. 2204	48039	1986	Premise Match	44m	West
	HYDRAULIC EQUIPMENT MFRS. &/OR IMPS. &/OR DISTS.	Schrader Bellows, 49 Fitzroy St., Marrickville. 2204	47246	1986	Premise Match	44m	West
	HYDRAULIC EQUIPMENT SERVICING.	Schrader Bellows, 49 Fitzroy St., Marrickville. 2204	47263	1986	Premise Match	44m	West
	HYDRAULIC PRESS MFRS. &/OR DISTS.	Schrader Bellows, 49 Fitzroy St., Marrickville. 2204	47361	1986	Premise Match	44m	West
	PNEUMATIC EQUIPMENT.	Schrader Bellows, 49 Fitzroy St., Marrickville. 2204	75320	1986	Premise Match	44m	West
	PNEUMATIC ENGINEERS.	Schrinder Bellows, 49 Fitzroy St., Marrickville. 2204	75303	1986	Premise Match	44m	West
	BATH, BASIN &/OR SINK MFRS. &/OR DISTS.	Fowler Potteries, 49 Fitzroy St., Marrickville. 2204.	4657	1975	Premise Match	44m	West
	BATHROOM EQUIPMENT MFRS. &/OR DISTS.	Fowler Potteries, 49 Fitzroy St., Marrickville. 2204.	4639	1975	Premise Match	44m	West
	PIPE MFRSVITRIFIED CLAY.	Fowler Potteries., 49 Fitzroy St., Marrickville. 2204	67377	1975	Premise Match	44m	West
	POTTERY MFRS. &/OR DISTS.	Fowler Potteries., 49 Fitzroy St., Marrickville. 2204	68943	1975	Premise Match	44m	West
	SANITARY FITTINGS &/OR HARDWARE MFRS. &/OR DISTS.	Fowler Potteries., 49 Fitzroy St., Marrickville. 2204	75556	1975	Premise Match	44m	West
	SANITARYWARE MFRS. &/OR DISTS.	Fowler Potteries., 49 Fitzroy St., Marrickville. 2204	75588	1975	Premise Match	44m	West
	POTTERY MFRS./DISTS. (P672)	FOWLER R LIMITED., 49 FITZROY St., MARRICKVILLE	351134	1970	Premise Match	44m	West
	ACID TANK MANUFACTURERS (A070)	Fowler, R Ltd., 49 Fitzroy St., Marrickville	259519	1970	Premise Match	44m	West

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Property Boundary or Road Intersection	Direction
6	BATHROOM EQUIPMENT MFRS. &/OR DISTS. (B157)	Fowler, R Ltd., 49 Fitzroy St., Marrickville	265102	1970	Premise Match	44m	West
	SANITARYWARE MANUFACTURERS &/OR DISTRIBUTORS (S080)	Fowler, R. Limited, 49-89 Fitzroy St., Marrickville	359076	1970	Premise Match	44m	West
	PIPE MFRSEARTHENWARE (P412)	Fowler, R. Ltd., 49 Fitzroy St., Marrickville	349033	1970	Premise Match	44m	West
	INSULATOR MANUFACTURERS (I505)	Fowler, R. Ltd., 49 Fitzroy St., Marrickville.	319919	1970	Premise Match	44m	West
	POTTERY MFRS./DISTS. (P672)	Fowler, R. Ltd., 49 Fitzroy St., Marrickville.	351135	1970	Premise Match	44m	West
	SANITARY FITTINGS & HARDWARE MFRS. &/OR DISTS. (S068)	Fowler, R. Ltd., 49-89 Fitzroy St., Marrickville	359033	1970	Premise Match	44m	West
	TILE MFRS. &/OR DISTS FLOOR & WALL	Fowler, R.Limited, 49-89 Fitzroy St., Marrickville	368673	1970	Premise Match	44m	West
	HOSPITAL EQUIPMENT MFRS. &/OR SUPPLIERS (H600)	Fowlers, R. Ltd., 49-89 Fitzroy St., Marrickville	316793	1970	Premise Match	44m	West
	Bottle & Jar Mfrs.	Fowler Ltd., 49 Fitzroy St. Marrickville	53866	1965	Premise Match	44m	West
	Acid Tank Mfrs.	Fowler Ltd., 49 Fitzroy St., Marrickville	44417	1965	Premise Match	44m	West
	Insulator Manufacturers	Fowler Ltd., 49 Fitzroy St., Marrickville	104060	1965	Premise Match	44m	West
	Pipe Manufacturers - Earthenware	Fowler Ltd., 49 Fitzroy St., Marrickville	133342	1965	Premise Match	44m	West
	Sanitaryware Mfrs. &/or Dist.	Fowler, R. Limited, 49-89 Fitzroy St., Marrickville	142310	1965	Premise Match	44m	West
	Tile Mfrs. &/or Dists Floor & Wall	Fowler, R. Limited, 49-89 Fitzroy St., Marrickville	151512	1965	Premise Match	44m	West
	Pottery Manufacturers/Distributors	Fowler, R. Limited., 49-89 Fitzroy St., Marrickville	135350	1965	Premise Match	44m	West
	Bathroom Equipment Mfrs.	Fowler, R. Ltd., 49-89 Fitzroy St., Marrickville	49938	1965	Premise Match	44m	West
	Hospital Equipment Mfrs. &/or Suppliers	Fowler, R. Ltd., 49-89 Fitzroy St., Marrickville	100772	1965	Premise Match	44m	West
	Sanitary Fitting & Hardware Mfrs. &/or Dists.	Fowler, R. Ltd., 49-89 Fitzroy St., Marrickville	142279	1965	Premise Match	44m	West
	POTTERY MFRS./DISTS	Fowler R Limited 49-89 Fitzroy St., Marrickville.	361378	1961	Premise Match	44m	West
	HOSPITAL EQUIPMENT MFRS. &/OR SUPPLIERS	Fowler R. Ltd., 49-89 Fitzroy St., Marrickville	324689	1961	Premise Match	44m	West
	BOTTLE & JAR MFRS.	Fowler, R. Limited, 48-89 Fitzroy St., Marrickville	275378	1961	Premise Match	44m	West
	CHEMICAL IMPORTERS &/OR DISTRIBUTORS	Fowler, R. Limited, 49-89 Fitzroy St., Marrickville	286448	1961	Premise Match	44m	West
	INSULATOR MANUFACTURERS	Fowler, R. Limited, 49-89 Fitzroy St., Marrickville	327646	1961	Premise Match	44m	West
	KITCHENWARE MFRS.	Fowler, R. Limited, 49-89 Fitzroy St., Marrickville	330275	1961	Premise Match	44m	West
	PIPE MFRS.—EARTHENWARE	Fowler, R. Limited, 49-89 Fitzroy St., Marrickville	358668	1961	Premise Match	44m	West
	POTTERY MFRS./DISTS	Fowler, R. Limited, 49-89 Fitzroy St., Marrickville	361379	1961	Premise Match	44m	West
	SANITARYWARE MANUFACTURERS &/OR DISTRIBUTORS	Fowler, R. Limited, 49-89 Fitzroy St., Marrickville	247774	1961	Premise Match	44m	West
	TILE MFRS. &/OR DISTS FLOOR & WALL	Fowler, R. Limited, 49-89 Fitzroy St., Marrickville	256967	1961	Premise Match	44m	West
	ACID TANK MANUFACTURERS	Fowler, R. Limited, 49-89 Fltzroy St., Marrickville	266031	1961	Premise Match	44m	West
	BATHROOM EQUIPMENT MFRS.	Fowler, R. Ltd., 49-89 Fitzroy St., Marrickville	271773	1961	Premise Match	44m	West
	PIPE MFRS.—CONCRETE	Fowler, R. Ltd., 49-89 Fitzroy St., Marrickville	358657	1961	Premise Match	44m	West
	PORCELAIN ENAMELLERS	Fowler, R. Ltd., 49-89 Fitzroy St., Marrickville	361322	1961	Premise Match	44m	West

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Property Boundary or Road Intersection	Direction
6	SANITARY FITTINGS & HARDWARE MFRS. &/OR DISTS.	Fowler, R. Ltd., 49-89 Fitzroy St., Marrickville	247728	1961	Premise Match	44m	West
	CHEMICAL IMPORTERS &/OR DISTRIBUTORS	Fowler, R. Limited, 49-89 Fitzroy St., Marrickville	20927	1950	Premise Match	44m	West
	INSULATOR MANUFACTURERS	Fowler, R. Limited, 49-89 Fitzroy St., Marrickville	64553	1950	Premise Match	44m	West
	TILE MFRS. & MERCHANTS- FLOOR & WALL	Fowler, R. Limited, 49-89 Fitzroy St., Marrickville	108364	1950	Premise Match	44m	West
	SANITARYWARE MFRS. &/OR DISTRIBUTORS	Fowler, R. Ltd., 49 Fitzroy St., Marrickville	100512	1950	Premise Match	44m	West
7	MIXED BUSINESSES.	Papadopoulos, H., 1 Leicester St., Marrickville. 2204	55418	1975	Premise Match	57m	North
	MIXED BUSINESSES (M408)	Papadoupoulos, F., 1 Leicester St., Marrickville	333533	1970	Premise Match	57m	North
	Mixed Businesses	Clifton, Mrs. F., 1 Leicester St., Marrickville	116938	1965	Premise Match	57m	North
	MIXED BUSINESSES	Brown, L. R., 1 Leicester St., Marrickville	343185	1961	Premise Match	57m	North
8	Amusement Machines	Amarda Holdings, 4/18 Lilian Fowler PI, Marrickville 2204	34419	1991	Premise Match	64m	South West
	Caterers	Master Catering Services., Unit A/18 Lilian Fowler PI, Marrickville 2204	38601	1991	Premise Match	64m	South West
9	Manchester Goods Mfrs &/or W/salers	Accomodation Linen Pty Ltd, Unit 7/4 Lilian Fowler Pl., Marrickville 2204	51159	1991	Premise Match	94m	South West
	Office Equipment &/or Supplies Mfrs &/or Imps &/or W/salers	Colorocs Aust. Pty. Ltd., Unit 3/4 Lilian Fowler PI., Marrickville. 2204	55968	1991	Premise Match	94m	South West
	Fish Merchants Wholesale	K & K Seafoods., Unit 2/4 Lilian Fowler PI., Marrickville 2204	45838	1991	Premise Match	94m	South West
	Gift Shop Supplies Mfrs &/or W/salers	Stewart Gordon & Co., Unit 1/4 Lilian Fowler PI., Marrickville. 2204	47651	1991	Premise Match	94m	South West
10	Fastener Mfrs &/or Dists	Tower Fasteners Pty Ltd, 2/8 Lilian Fowler PI., Marrickville 2204	45335	1991	Premise Match	94m	South West
	Bolt, Nut &/or Rivet Mfrs &/or Dists	Tower Fasteners Pty Ltd, 2/8 Lillian Fowler PI, Marrickville 2204	36384	1991	Premise Match	94m	South West
	Brass Fittings &/or Brassware Mfrs &/or Suppliers	Tower Fasteners Pty Ltd, 2/8 Lillian Fowler PI, Marrickville 2204	36566	1991	Premise Match	94m	South West
	Screw Mfrs &/or W/Salers	Tower Fasteners Pty. Ltd, 2/8 Lilian Fowler Pl., Marrickville. 2204	61804	1991	Premise Match	94m	South West

Reproduced with permission of UBD and Hardie Grant Media Pty Ltd DD 01/08/2018

Business Directory Records 1950-1991 Road or Area Matches

Universal Business Directory records from years 1991, 1986, 1982, 1978, 1975, 1970, 1965, 1961 & 1950, mapped to a road or an area, within the dataset buffer. Records are mapped to the road when a building number is not supplied, cannot be found, or the road has been renumbered since the directory was published:

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Road Corridor or Area
11	Hardware Mfrs &/or Dists &/or W/salers	Ajax- Spurway Industries Pty. Ltd., Sydney Steel Rd., Marrickville. 2204	48143	1991	Road Match	0m
	Bolt, Nut &/or Rivet Mfrs &/or Dists	Ajax-Spurway Industries Pty. Ltd., Sydney Steel Rd, Marrickville 2204	36330	1991	Road Match	0m
12	Motor Panel Beaters &/or Spray Painters	Kass Smash Repairs Pty Ltd, Edinburgh Rd Marrickville 2204	54501	1991	Road Match	0m
	Motor Towing Services	Kass Smash Repairs Pty. Ltd., Edinburgh Rd., Marrickville 2204	55226	1991	Road Match	Om
	MOTOR PANEL BEATERS &/OR SPRAY PAINTERS.	Kass Smash Repairs Pty. Ltd., Edinburgh Rd., Marrickville. 2204	66447	1986	Road Match	Om
	MOTOR TOWING SERVICES.	Kass Smash Repairs Pty. Ltd., Edinburgh Rd., Marrickville. 2204	67942	1986	Road Match	Om
	BOLT &/OR NUT MFRS. &/OR DISTS.	Spurway-Cooke Industries Pty. Ltd., Edinburgh Rd., Marrickville. 2204	6734	1986	Road Match	Om
	BUILDERS HARDWARE MFRS. &/OR IMPS. &/OR DISTS.	Spurway-Cooke Industries Pty. Ltd., Edinburgh Rd., Marrickville. 2204	8422	1986	Road Match	Om
	CURTAIN RAILS, RODS & RINGS MFRS. &/OR DISTS.	Spurway-Cooke Industries Pty. Ltd., Edinburgh Rd., Marrickville. 2204	20853	1986	Road Match	0m
	ELECTRIC CONDUIT/WIRING ACCESSORIES MFRS. &/OR IMPS. &/OR DISTS.	Spurway-Cooke Industries Pty. Ltd., Edinburgh Rd., Marrickville. 2204	26161	1986	Road Match	0m
	ELECTRIC FITTINGS MFRS. &/OR DISTS.	Spurway-Cooke Industries Pty. Ltd., Edinburgh Rd., Marrickville. 2204	26244	1986	Road Match	0m
	ELECTRICAL ACCESSORIES MFRS. &/OR W/SALERS.	Spurway-Cooke Industries Pty. Ltd., Edinburgh Rd., Marrickville. 2204	26981	1986	Road Match	0m
	ENGINEERS - REPETITION.	Spurway-Cooke Industries Pty. Ltd., Edinburgh Rd., Marrickville. 2204	31175	1986	Road Match	0m
	FLEXIBLE SHAFTING &/OR TUBING MFRS. &/OR DISTS.	Spurway-Cooke Industries Pty. Ltd., Edinburgh Rd., Marrickville. 2204	33441	1986	Road Match	0m
	HARDWARE MFRS. &/OR DISTS.	Spurway-Cooke Industries Pty. Ltd., Edinburgh Rd., Marrickville. 2204	44435	1986	Road Match	0m
	RIVET MFRS.	Spurway-Cooke Industries Pty. Ltd., Edinburgh Rd., Marrickville. 2204	83249	1986	Road Match	0m
	SCREW MFRS. &/OR W/SALERS.	Spurway-Cooke Industries Pty. Ltd., Edinburgh Rd., Marrickville. 2204	85326	1986	Road Match	0m
	Motor Garages & Engineers	Radaire Industries Ltd., Edinburgh Rd. Marrickville	122994	1965	Road Match	0m
	Rustproofing Materials	Radaire Industries Ltd., Edinburgh Rd., Marrickville	141604	1965	Road Match	0m
	ENGINEERS-REPETITION	Radaire Industries Limited, Edinburgh Rd., Marrickville	308310	1961	Road Match	0m
	MOTOR GARAGES & ENGINEERS	Radaire Industries Ltd., Edinburgh Rd. MARRICKVILLE	347970	1961	Road Match	0m
	ELECTROPLATERS	Radaire Industries, Edinburgh Rd., Marrickville	303949	1961	Road Match	0m
	ENGINEERS-GENERAL/MFRG./ MECHANICAL	Radaire Industries, Edinburgh Rd., Marrickville	306958	1961	Road Match	0m
	ENGINEERS-REFRIGERATION	Radaire Industries, Edinburgh Rd., Marrickville	308085	1961	Road Match	0m
	FOUNDERS-FERROUS	Radaire Industries, Edinburgh Rd., Marrickville	313576	1961	Road Match	0m
	FOUNDERS-NON-FERROUS	Radaire Industries, Edinburgh Rd., Marrickville	313698	1961	Road Match	0m
	REFRIGERATOR DEALERS &/OR SERVICEMEN	Radaire Industries, Edinburgh Rd., Marrickville	245601	1961	Road Match	Om
	ENGINEERS-FOUNDRY	Radaire Industries, Edinburgh St., Marrickville	306025	1961	Road Match	0m

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Road Corridor or Area
12	RUSTPROOFING MATERIALS	Radaire Industries, Edinburgh St., Marrickville	247156	1961	Road Match	0m
	AIR CONDITIONING UNITS & MACHINERY MANUFACTURERS	Ferrier and Dickinson Ltd., Edinburgh Rd., Marrickville	1509	1950	Road Match	Om
	ENGINEERS-HOT WATER, HEATING & VENTILATING	Ferrier and Dickinson Ltd., Edinburgh Rd., Marrickville	41516	1950	Road Match	Om
	SHEET METAL WORKERS	Ferrier and Dickinson Ltd., Edinburgh Rd., Marrickville	101702	1950	Road Match	Om
	ENGINEERS-HOT WATER, HEATING & VENTILATING	Ferrier, Dickinson and Weir Drysdale Ltd, Edinburgh Rd, Marrickville	41517	1950	Road Match	Om
	DUST COLLECTION EQUIPMENT MFRS.	Ferrier, Dickinson and Weir, Drysdale Ltd., Edinburgh Rd., Marrickville	36006	1950	Road Match	Om
	BAKERS' & PASTRYCOOKS' SUPPLIES	Marrickville Margarine Pty. Ltd., Edinburgh Rd., Marrickville	5116	1950	Road Match	Om
	MARGARINE MANUFACTURERS	Marrickville Margarine Pty. Ltd., Edinburgh Rd., Marrickville	72017	1950	Road Match	Om
	FOOD PRODUCTS MANUFACTURERS	Nut Foods Pty. Ltd., Edinburgh Rd., Marrickville	46621	1950	Road Match	Om
	FIRE ESCAPE MANUFACTURERS	Sydney Steel Co. Pty. Ltd., Edinburgh Rd., Marrickville	44151	1950	Road Match	Om
	TANK MANUFACTURERS	Sydney Steel Co. Pty. Ltd., Edinburgh Rd., Marrickville	106957	1950	Road Match	Om
13	CARRIERS & CARTAGE CONTRACTORS (C150)	Balmac Transport., Smidmore Rd., Marrickville	277942	1970	Road Match	20m
14	Caterers	Perfect Match Sandwich Bar, Lot 15, Lilian Fowler PI., Marrickville 2204	38607	1991	Road Match	39m

Reproduced with permission of UBD and Hardie Grant Media Pty Ltd DD 01/08/2018

Dry Cleaners, Motor Garages & Service Stations

Historical Business Directories

74 Edinburgh Road, Marrickville, NSW 2204

Dry Cleaners, Motor Garages & Service Stations 1948-1993 Premise or Road Intersection Matches

Dry Cleaners, Motor Garages & Service Stations from UBD Business Directories, mapped to a premise or road intersection, within the dataset buffer.

Note: The Universal Business Directories were published between 1948 and 1993. Dry Cleaners, Motor Garages & Service Stations have been extracted from all of these directories except the following years 1951, 1955, 1957, 1960, 1963, 1973, 1974, 1977, 1987.

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Property Boundary or Road Intersection	Direction
1	MOTOR GARAGES & ENGINEERS.	Auto Road Service., 34 Edinburgh Rd Marrickville	60336	1966	Premise Match	124m	East
	Motor Garages & Engineers	Auto Road Service, 34 Edinburgh Rd. Marrickville	122983	1965	Premise Match	124m	East
	MOTOR GARAGES & ENGINEERS	Auto Road Service., 34 Edinburgh Rd Marrickville	48258	1964	Premise Match	124m	East
	MOTOR GARAGES & ENGINEERS.	O'sullivan E. W., 34 Edinburgh Rd Marrickville	32934	1962	Premise Match	124m	East
	MOTOR SERVICE STATIONS-PETROL, OIL, ETC.	O'sullivan's Towing Service., Cnr Edinburgh & Murray Sts Marrickville	38411	1962	Premise Match	124m	East
	MOTOR GARAGES & ENGINEERS	O'Sullivan, E. W., 34 Edinburgh Rd., Marrickville	347814	1961	Premise Match	124m	East
	MOTOR SERVICE STATIONS—PETROL, OIL, Etc.	O'Sullivan's Towing Service, Cnr. Edinburgh & Murray Sts. MARRICKVILLE	350915	1961	Premise Match	124m	East
	MOTOR GARAGES & ENGINEERS.	O'sullivan E., 34 Edinburgh Rd Marrickville	19534	1959	Premise Match	124m	East
	MOTOR SERVICE STATIONS-PETROL,. OIL, ETC.	O'sullivan's Towing Service., Cnr Edinburgh & Murray Sts Marrickville	24343	1959	Premise Match	124m	East
2	MOTOR GARAGES & ENGINEERS.	Auto Road Service., 34 Murray St Marrickville	42609	1969	Premise Match	132m	East
	MOTOR GARAGES & ENGINEERS	Auto Road Service., 34 Murray St Marrickville	26091	1968	Premise Match	132m	East
	MOTOR GARAGES & ENGINEERS.	Auto Road Service., 34 Murray St Marrickville	10590	1967	Premise Match	132m	East
3	MOTOR GARAGES & SERVICE STATIONS.	American Car Centre, 32 Shirlow St., Marrickville. 2204	5785	1990	Premise Match	226m	South West
	MOTOR GARAGE & SERVICE STATIONS.	American Car Centre, 32 Shirlow St., Marrickville. 2204	64271	1989	Premise Match	226m	South West
	MOTOR GARAGES & SERVICE STATIONS.	Amencan Car Centre, 32 Shirlow St., Marrickville. 2204	53372	1988	Premise Match	226m	South West

Reproduced with permission of UBD and Hardie Grant Media Pty Ltd DD 01/08/2018

Dry Cleaners, Motor Garages & Service Stations 1948-1993 Road or Area Matches

Dry Cleaners, Motor Garages & Service Stations from UBD Business Directories, mapped to a road or an area, within the dataset buffer. Records are mapped to the road when a building number is not supplied, cannot be found, or the road has been renumbered since the directory was published.

Note: The Universal Business Directories were published between 1948 and 1993. Dry Cleaners, Motor Garages & Service Stations have been extracted from all of these directories except the following years 1951, 1955, 1957, 1960, 1963, 1973, 1974, 1977, 1987.

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Road Corridor or Area
4	MOTOR GARAGES & ENGINEERS.	Radaire Industries Ltd., Edinburgh Rd Marrickville	60350	1966	Road Match	Om
	Motor Garages & Engineers	Radaire Industries Ltd., Edinburgh Rd. Marrickville	122994	1965	Road Match	0m
	MOTOR GARAGES & ENGINEERS	Radaire Industries Ltd., Edinburgh Rd Marrickville	48267	1964	Road Match	Om
	MOTOR GARAGES & ENGINEERS.	Radaire Industries Ltd., Edinburgh Rd Marrickville	32936	1962	Road Match	Om
	MOTOR GARAGES & ENGINEERS	Radaire Industries Ltd., Edinburgh Rd. MARRICKVILLE	347970	1961	Road Match	0m
5	MOTOR GARAGES & ENGINEERS.	Marrickville Guard & Radiator Works., Fitzroy St Marrickville	32930	1962	Road Match	145m
	MOTOR GARAGES & ENGINEERS	Marrickville Guard & Radiator Works, Fitzroy St. MARRICKVILLE	347647	1961	Road Match	145m
	MOTOR GARAGES & ENGINEERS.	Marrickville Guard & Radiator Works., Fitzroy St Marrickville	19532	1959	Road Match	145m
6	MOTOR GARAGES &/OR ENGINEERS &/OR SERVICE STATIONS.	Total Emnore South Service Station., Victoria Rd., Marrickville. 2204	58992	1980	Road Match	232m
	MOTOR GARAGES &/OR ENGINEERS &/OR SERVICE STATIONS.	Total (Enmore South) Service Station., Victoria Rd., Marrickville. 2204.	46476	1979	Road Match	232m
	MOTOR GARAGES &/OR ENGINEERS &/OR SERVICE STATIONS.	Total (Enmore South) Service Station, Victoria Rd., Marrickville. 2204	50954	1978	Road Match	232m
	MOTOR GARAGES &/OR ENGINEERS &/OR SERVICE STATIONS.	Wrights Service Station (Ampol)., Victoria Rd., Marrickville 2204	35242	1976	Road Match	232m
	MOTOR SERVICE STATIONS - PETROL, OIL	Wrights Service Station (Ampol)., Victoria Rd., Marrickville. 2204	62057	1975	Road Match	232m
	MOTOR GARAGES & ENGINEERS.	Malouf F., Victoria Rd Marrickville	10600	1967	Road Match	232m
	MOTOR SERVICE STATIONS-PETROL, ETC.	Blunt N E Service Station., Victoria Rd., Marrickville	43976	1953	Road Match	232m

Reproduced with permission of UBD and Hardie Grant Media Pty Ltd DD 01/08/2018

Aerial Imagery 2020 74 Edinburgh Road, Marrickville, NSW 2204

Aerial Imagery 2015 74 Edinburgh Road, Marrickville, NSW 2204

Aerial Imagery 2009 74 Edinburgh Road, Marrickville, NSW 2204

Aerial Imagery 2000 74 Edinburgh Road, Marrickville, NSW 2204

Aerial Imagery 1994

Aerial Imagery 1991 74 Edinburgh Road, Marrickville, NSW 2204

Aerial Imagery 1986

Aerial Imagery 1982 74 Edinburgh Road, Marrickville, NSW 2204

Aerial Imagery 1978

Aerial Imagery 1970 74 Edinburgh Road, Marrickville, NSW 2204

Aerial Imagery 1943 74 Edinburgh Road, Marrickville, NSW 2204

Topographic Map 2015

Historical Map 1975

Historical Map c.1936

Historical Map c.1917

Topographic Features

Topographic Features

74 Edinburgh Road, Marrickville, NSW 2204

Points of Interest

What Points of Interest exist within the dataset buffer?

Map Id	Feature Type	Label	Distance	Direction
1702208	Post Office	MARRICKVILLE METRO SHOP POST OFFICE	173m	North East
1702182	Shopping Centre	MARRICKVILLE METRO SHOPPING CENTRE	185m	North East
1702212	Primary School	ST PIUS' CATHOLIC PRIMARY SCHOOL	291m	North East
1702183	Sports Centre	ANNETTE KELLERMAN AQUATIC CENTRE	350m	North
1702185	Park	ENMORE PARK	366m	North
1702219	Place Of Worship	ST PIUS V CATHOLIC CHURCH	381m	North East
1702225	Park	DARLEY ST PLAYGROUND	437m	East
1702502	Club	MARRICKVILLE BOWLING AND RECREATION CLUB	455m	West
1702518	Sports Field	BOWLING GREENS	462m	West
1702516	Sports Court	TENNIS COURTS	493m	West
1702203	Primary School	CAMDENVILLE PUBLIC SCHOOL	508m	North East
1702186	Park	CAMDENVILLE PARK	521m	East
1702507	Park	WICKS PARK	525m	West
1702213	Preschool	CAMDENVILLE PUBLIC SCHOOL PRESCHOOL	535m	East
1702192	Park	FRANCIS PLAYGROUND	539m	South
1702224	Park	ALICE ST PLAYGROUND	568m	North East
1702532	Club	PORTUGAL MADEIRA SOCIAL SPORTS CLUB	592m	North West
1702215	TAFE College	SYDNEY TAFE COLLEGE DESIGN CENTRE ENMORE	599m	North
1702217	Place Of Worship	JEHOVAHS WITNESSES CHURCH	610m	North
1702233	Child Care Centre	ENMORE CHILDRENS CENTRE	614m	North
1702131	Ambulance Station	MARRICKVILLE AMBULANCE STATION	633m	West
1702536	Railway Station	SYDENHAM RAILWAY STATION	648m	South West
1702527	Transport Interchange	SYDENHAM BUS INTERCHANGE	649m	South West
1702193	Park	SIMPSON PARK	652m	East
1702110	Community Facility	ST PETERS TOWN HALL	658m	South
1702526	Library	ST PETERS SYDENHAM LIBRARY	658m	South
1702197	Park	ROWSWELL PLAYGROUND	665m	South East
1702226	Park	PEARL STREET RESERVE	665m	North East
1702533	Special School	ASPECT SOUTH EAST SYDNEY SCHOOL MARRICKVILLE	666m	West
1702202	Primary School	MARRICKVILLE PUBLIC SCHOOL	671m	West
1702221	Park	COLLYER PLAYGROUND	679m	North East

Map Id	Feature Type	Label	Distance	Direction
1702267	Park	FRANCIS STREET PLAYGROUND	695m	North
1702232	Park	ENMORE TAFE PARK	717m	North East
1702200	Suburb	ST PETERS	734m	South East
1702229	Park	MEMORY RESERVE	753m	South
1702205	Primary School	ST PETERS PUBLIC SCHOOL	755m	South East
1702220	Place Of Worship	ST PETERS ANGLICAN CHURCH	760m	South East
1702230	Park	SYDENHAM GREEN	767m	South
1702276	Suburb	ENMORE	768m	North
1702227	Park	MAY STREET RESERVE	818m	East
1702211	Embassy	CONSULATE OF JAMAICA	834m	South East
1702269	Park	NEWINGTON ROAD PLAYGROUND	838m	North West
1702181	Post Office	ST PETERS POST OFFICE	839m	East
1702222	Park	MATT HOGAN RESERVE	840m	North East
1702231	Sports Court	BASKETBALL COURT	856m	South
1702256	Place Of Worship	SEVENTH DAY ADVENTIST CHURCH	870m	North
1702201	Suburb	SYDENHAM	891m	South
1702510	Park	FRASER PARK	897m	South West
1702311	Place Of Worship	EVANGELICAL CHURCH	898m	North
1702214	Railway Station	ST PETERS RAILWAY STATION	906m	East
1702543	Park	MURDOCH PLAYGROUND	922m	West
1702195	Park	TILLMAN PARK	924m	South West
1702505	Place Of Worship	COPTIC CHURCH	942m	South
1702228	Park	ST PETERS STATION PLAZA	943m	East
1702515	Sports Court	TENNIS COURTS	949m	South West
1702223	Park	PEACE RESERVE	962m	North East
1702288	Post Office	ENMORE POST OFFICE	963m	North
1702544	Park	SILVER STREET PARK	967m	West
1702310	Place Of Worship	ST LUKE'S ANGLICAN CHURCH	989m	North
1702521	Sports Field	BOWLING GREENS	998m	South West

Topographic Data Source: $\ensuremath{\mathbb{C}}$ Land and Property Information (2015)

Topographic Features

74 Edinburgh Road, Marrickville, NSW 2204

Tanks (Areas)

What are the Tank Areas located within the dataset buffer?

Note. The large majority of tank features provided by LPI are derived from aerial imagery & are therefore primarily above ground tanks.

Map Id	Tank Type	Status	Name	Feature Currency	Distance	Direction
	No records in buffer					

Tanks (Points)

What are the Tank Points located within the dataset buffer? Note. The large majority of tank features provided by LPI are derived from aerial imagery & are therefore primarily above ground tanks.

Map Id	Tank Type	Status	Name	Feature Currency	Distance	Direction	
	No records in buffer						

Tanks Data Source: © Land and Property Information (2015)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Major Easements

What Major Easements exist within the dataset buffer?

Note. Easements provided by LPI are not at the detail of local governments. They are limited to major easements such as Right of Carriageway, Electrical Lines (66kVa etc.), Easement to drain water & Significant subterranean pipelines (gas, water etc.).

Map Id	Easement Class	Easement Type	Easement Width	Distance	Direction
120118389	Primary	Undefined		186m	South East
120122274	Primary	Undefined		253m	East
120108903	Primary	Undefined		264m	South East
120118388	Primary	Undefined		410m	East
120119679	Primary	Undefined		558m	South West
120110614	Primary	Undefined		810m	South West
120111792	Primary	Undefined		888m	East
120119487	Primary	Undefined		904m	East

Easements Data Source: © Land and Property Information (2015)

Topographic Features

74 Edinburgh Road, Marrickville, NSW 2204

State Forest

What State Forest exist within the dataset buffer?

State Forest Number	State Forest Name	Distance	Direction
N/A	No records in buffer		

State Forest Data Source: © NSW Department of Finance, Services & Innovation (2018)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

National Parks and Wildlife Service Reserves

What NPWS Reserves exist within the dataset buffer?

Reserve Number	Reserve Type	Reserve Name	Gazetted Date	Distance	Direction
N/A	No records in buffer				

NPWS Data Source: © NSW Department of Finance, Services & Innovation (2018)

Elevation Contours (m AHD)

Botany Groundwater Management Zones

Hydrogeology & Groundwater

74 Edinburgh Road, Marrickville, NSW 2204

Hydrogeology

Description of aquifers on-site:

Description

Porous, extensive highly productive aquifers

Description of aquifers within the dataset buffer:

Description

Porous, extensive highly productive aquifers

Hydrogeology Map of Australia : Commonwealth of Australia (Geoscience Australia) Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Botany Groundwater Management Zones

Groundwater management zones relating to the Botany Sand Beds aquifer within the dataset buffer:

Management Zone No.	Restriction	Distance	Direction
2	Domestic ban	219m	East

Botany Groundwater Management Zones Data Source : NSW Department of Primary Industries

Groundwater Boreholes

Hydrogeology & Groundwater

74 Edinburgh Road, Marrickville, NSW 2204

Groundwater Boreholes

Boreholes within the dataset buffer:

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)	SWL (m bgl)	Yield (L/s)	Elev (AHD)	Dist	Dir
GW114 924	10BL605 087			Monitoring Bore	Monitoring Bore		24/03/2012	9.00	9.00		7.60			370m	East
GW114 925	10BL605 087			Monitoring Bore	Monitoring Bore		24/03/2012	6.10	6.10		2.80			393m	East
GW109 824	10BL164 967	Bore	Private	Monitoring Bore	Monitoring Bore		05/04/2005	20.70	20.70		4.51			918m	South East
GW109 825	10BL164 967	Bore	Private	Monitoring Bore	Monitoring Bore		10/02/2005	22.00	22.00		14.9 0			972m	South East
GW115 005	10BL605 049			Monitoring Bore	Monitoring Bore		20/12/2011	6.00	6.00		4.00			1000m	South West
GW111 692	10BL605 067	Bore	Local Govt	Monitoring Bore	Monitoring Bore		12/01/2012	1.30	1.30		0.50			1027m	West
GW115 001	10BL605 049			Monitoring Bore	Monitoring Bore		20/12/2011	6.00	6.00		4.00			1048m	South West
GW115 002	10BL605 049			Monitoring Bore	Monitoring Bore		20/12/2011	5.50	5.50		4.00			1051m	South West
GW109 821	10BL164 967	Bore	Private	Monitoring Bore	Monitoring Bore		03/04/1997	35.00	35.00	4400	14.5 0			1056m	South East
GW115 000	10BL605 049			Monitoring Bore	Monitoring Bore		20/12/2011	6.00	6.00					1063m	South West
GW111 687	10BL605 066	Bore	Local Govt	Monitoring Bore	Monitoring Bore		12/01/2012	4.25	4.25		2.50			1071m	North West
GW115 004	10BL605 049			Monitoring Bore	Monitoring Bore		19/12/2011	6.00	6.00		4.00			1073m	South West
GW111 686	10BL605 066	Bore	Local Govt	Monitoring Bore	Monitoring Bore		12/01/2012	3.50	3.50		1.55			1081m	North West
GW115 003	10BL605 049			Monitoring Bore	Monitoring Bore		19/12/2011	5.50	5.50		4.00			1084m	South West
GW111 353	10BL602 389	Well	Private	Monitoring Bore	Monitoring Bore		24/10/2007	7.00	7.00		2.50			1206m	North East
GW111 351	10BL602 389	Well	Private	Monitoring Bore	Monitoring Bore		23/10/2007	9.00	9.00					1213m	North East
GW111 352	10BL602 389	Well	Private	Monitoring Bore	Monitoring Bore		24/10/2007	8.00	8.00		7.70			1217m	North East
GW109 822	10BL164 967	Bore	Private	Monitoring Bore	Monitoring Bore		04/04/1997	10.45	10.45	958	3.00			1225m	South East
GW111 350	10BL602 389	Well	Private	Monitoring Bore	Monitoring Bore		23/10/2007	7.50	7.50					1235m	North East
GW109 823	10BL164 967	Bore	Private	Monitoring Bore	Monitoring Bore		23/10/2000	29.00	29.00	10.6	12.5 0	0.100		1235m	South East
GW114 825	10BL605 691	Bore	Other Govt	Monitoring Bore	Monitoring Bore		16/12/2014	4.99	4.59	379.4	2.71			1274m	South West
GW114 824	10BL605 691	Bore	Other Govt	Monitoring Bore	Monitoring Bore		16/12/2014	4.59	4.99	226.4	2.57			1276m	South West
GW110 122	10BL600 053	Well	Private	Monitoring Bore	Monitoring Bore		16/01/2006	3.50	3.50		2.50			1332m	South West
GW072 643	10BL156 189	Bore	Local Govt	Test Bore	Test Bore		25/09/1996	12.00	12.00					1343m	South East
GW110 121	10BL600 053	Well	Private	Monitoring Bore	Monitoring Bore		16/01/2006	3.50	3.50		3.00			1371m	South West
GW100 053	10BL154 407, 10WA11 4697	Spear	Local Govt	Recreation (groundwater)	Recreation (groundwate r)		20/04/1994	7.00	7.00		1.00	1.800		1374m	South East

GYM1 IOBL INUM INUM Solution Since <th< th=""><th>GW No.</th><th>Licence No</th><th>Work Type</th><th>Owner Type</th><th>Authorised Purpose</th><th>Intended Purpose</th><th>Name</th><th>Complete Date</th><th>Final Depth (m)</th><th>Drilled Depth (m)</th><th>Salinity (mg/L)</th><th>SWL (m bgl)</th><th>Yield (L/s)</th><th>Elev (AHD)</th><th>Dist</th><th>Dir</th></th<>	GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)	SWL (m bgl)	Yield (L/s)	Elev (AHD)	Dist	Dir
CW110 103E.400 Veal Private Bonizoring Bore 1601/2006 6.00 <	GW112 275	10BL161 855	Bore	Private	Monitoring Bore	Monitoring Bore		27/02/2003	16.50	16.50					1399m	South
CYM10 105L600 Weil Pivate Monitoring Borleoring <	GW110 120	10BL600 053	Well	Private	Monitoring Bore	Monitoring Bore		16/01/2006	6.00	6.00		3.00			1399m	South West
GW14 108L605 Bore Other Monitoring Bore Monitoring SW Monitor	GW110 118	10BL600 053	Well	Private	Monitoring Bore	Monitoring Bore		16/01/2006	6.00	6.00		2.00			1404m	South West
CW111 CW1 Private Monitoring Bore Monitoring Bore 160/1/2007 S.50	GW114 919	10BL605 064	Bore	Other Govt	Monitoring Bore	Monitoring Bore	Rail Corp NSW - Erskinville Station	06/07/2015	3.00	3.00					1407m	North East
CW111 10BL601 Bore Private Monitoring Bore Monitoring Bor	GW110 119	10BL600 053	Well	Private	Monitoring Bore	Monitoring Bore		16/01/2006	3.50	3.50		1.50			1453m	South West
GW112 RoBL 161 Bore Private Monitoring Bore Monitoring Bo	GW111 320	10BL601 845	Bore	Private	Monitoring Bore	Monitoring Bore		09/01/2007	5.20	5.20		2.52			1512m	East
GW111 32110BL601 845BorePrivate BoreMonitoring BoreMonitoring Bore09/01/20075.005.005.002.631.572mSouth EastGW112 34610BL162 346BorePrivate BoreMonitoring BoreMonitoring Bore18/04/200316.5016.5016.501001.1011620mSouthGW109 346346Bore BorePrivate BoreMonitoring BoreMonitoring Bore28/08/20036.006.0010001.1011625mNorth EastGW109 34604BL162 346Bore Private BorePrivate BoreMonitoring Bore02/09/20034.304.3010001.501625mNorth EastGW104 34604BL162 346Bore 447Private Monitoring BoreMonitoring Bore02/09/20034.304.3010001.501635mSauth EastGW114 44904BL604 447Sau 447Sau 447Monitoring BoreMonitoring Bore01/01/20023.503.501.001.635mSauth EastGW114 4986047Gu 447Monitoring BoreMonitoring Bore01/01/20023.503.501.401.635mSauth EastGW114 3986046Gu 447Monitoring BoreMonitoring BoreMonitoring Bore21/06/20116.006.001.401.401.40Noth East	GW112 274	10BL161 855	Bore	Private	Monitoring Bore	Monitoring Bore		26/02/2003	13.70	13.70					1520m	South
GW112 28010BL161 855BorePrivate BoreMonitoring <td>GW111 321</td> <td>10BL601 845</td> <td>Bore</td> <td>Private</td> <td>Monitoring Bore</td> <td>Monitoring Bore</td> <td></td> <td>09/01/2007</td> <td>5.00</td> <td>5.00</td> <td></td> <td>2.63</td> <td></td> <td></td> <td>1572m</td> <td>South East</td>	GW111 321	10BL601 845	Bore	Private	Monitoring Bore	Monitoring Bore		09/01/2007	5.00	5.00		2.63			1572m	South East
GW109 731346BreePrivateMonitoring BoreMonitoring Bore28/08/20036.006.001.001.10I.001.62More EastGW104 73210BL162 846BorePrivateMonitoring BoreMonitoring Bore02/09/20034.304.3010001.50I.001.601625mNorth EastGW104 44910BL162 854BorePrivate BoreMonitoring BoreMonitoring Bore01/01/20023.503.50I.001.50I.0001.61More1631mSouth EastGW114 44910BL604 947Private Monitoring BoreMonitoring Bore01/01/20023.500.00I.00I.0I.00I.001.60I.00I	GW112 280	10BL161 855	Bore	Private	Monitoring Bore	Monitoring Bore		18/04/2003	16.50	16.50					1620m	South
GW109 73210BL162 346BorePrivateMonitoring BoreMonitoring BoreMonitoring Bore02/09/20034.304.3010001.50Image: Comparison of the comparison	GW109 731	10BL162 346	Bore	Private	Monitoring Bore	Monitoring Bore		28/08/2003	6.00	6.00	1000	1.10			1625m	North East
GW104 44910BL160 854BorePrivate BoreMonitoring BoreMonitoring Bore01/01/20023.503.501.0001631mSouth FastGW114 98510BL60 947010BL60 94700Monitoring BoreMonitoring Bore21/06/20116.006.0001.0001.631.635mEastGW114 98610BL162 9470Monitoring BoreMonitoring Bore21/06/20116.006.0001.4001.635mEastGW104 98610BL162 346BorePrivate Monitoring BoreMonitoring Bore05/09/20032.401.0001.4001.635mEastGW109 72910BL162 346Bore 947Private Monitoring BoreMonitoring BoreMonitoring Bore02/09/20032.401.0001.4001.635mEastGW109 72910BL162 346Bore 947Private Monitoring BoreMonitoring Bore02/09/20036.006.001.001.4001.635mEastGW109 73010BL162 346Bore 947Private Monitoring BoreMonitoring Bore02/09/20036.006.001.0001.4001.635mAustGW109 73010BL162 346Bore 947Private Monitoring BoreMonitoring Bore02/09/20136.006.006.001.001	GW109 732	10BL162 346	Bore	Private	Monitoring Bore	Monitoring Bore		02/09/2003	4.30	4.30	1000	1.50			1625m	North East
GW114 98510BL604 947Image: Series of the ser	GW104 449	10BL160 854	Bore	Private	Monitoring Bore	Monitoring Bore		01/01/2002	3.50	3.50			1.000		1631m	South East
GW114 986108L604 947wwonitoring BoreMonitoring BoreMonitoring Bore21/06/20116.006.00www1635mEastGW109 733346BorePrivate Monitoring BoreMonitoring BoreMonitoring Bore05/09/20032.401.001.40w1635mNorth EastGW109 729346Bore 346Private Monitoring BoreMonitoring BoreMonitoring Bore02/09/20036.006.001.001.40w1635mNorth EastGW109 730346Bore 346Private Monitoring BoreMonitoring BoreMonitoring Bore02/09/20036.006.001.001.40w1635mNorth EastGW109 346108L162 947Bore 947Private Monitoring BoreMonitoring Bore02/09/20036.506.5010001.40w1642mNorth EastGW114 4981108L604 947WWMonitoring BoreMonitoring Bore09/09/20116.006.001.001.001.001.64North EastGW104 4854108L160 854Bore PrivateMonitoring BoreMonitoring Bore01/01/20023.503.503.501.001.001.64Monitoring EastGW104 448108L160 854Bore PrivatePrivate Monitoring BoreMonitoring Bore25/11/20023.503.501.00 </td <td>GW114 985</td> <td>10BL604 947</td> <td></td> <td></td> <td>Monitoring Bore</td> <td>Monitoring Bore</td> <td></td> <td>21/06/2011</td> <td>6.00</td> <td>6.00</td> <td></td> <td></td> <td></td> <td></td> <td>1635m</td> <td>East</td>	GW114 985	10BL604 947			Monitoring Bore	Monitoring Bore		21/06/2011	6.00	6.00					1635m	East
GW109 73310BL162 346BorePrivateMonitoring BoreMonitoring Bore05/09/20032.402.4010001.40Image: Comparison of C	GW114 986	10BL604 947			Monitoring Bore	Monitoring Bore		21/06/2011	6.00	6.00					1635m	East
GW109 729346BorePrivateMonitoring BoreMonitoring Bore02/09/20036.006.0010001.40Image: Comparison of	GW109 733	10BL162 346	Bore	Private	Monitoring Bore	Monitoring Bore		05/09/2003	2.40	2.40	1000	1.40			1635m	North East
GW109 73010BL162 346BorePrivateMonitoring BoreMonitoring BoreMonitoring Bore28/08/20036.506.5010001.00Monitoring LongNorth EastGW114 98410BL604 9474.00Monitoring BoreMonitoring BoreMonitoring Bore09/09/20116.006.002.70Monitoring Long1644mEastGW104 45010BL160 854BorePrivate Monitoring BoreMonitoring BoreMonitoring Bore01/01/20023.503.503.500.50010001.001644mEastGW104 44810BL160 854BorePrivate Monitoring BoreMonitoring BoreMonitoring Bore25/11/20023.503.503.501.0001.001.001614mEastGW112 44810BL161 10EL161Bore PrivateMonitoring Monitoring MonitoringMonitoring Bore21/03/200312.3512.351.0001.001.0001.6001689mSouth	GW109 729	10BL162 346	Bore	Private	Monitoring Bore	Monitoring Bore		02/09/2003	6.00	6.00	1000	1.40			1636m	North East
GW114 98410BL604 947Monitoring BoreMonitoring BoreMonitoring Bore09/09/20116.006.002.701644mEastGW104 45010BL160 854BorePrivate Monitoring BoreMonitoring BoreMonitoring BoreMonitoring Bore01/01/20023.503.500.5001654mEastGW104 44810BL160 854BorePrivate Monitoring 	GW109 730	10BL162 346	Bore	Private	Monitoring Bore	Monitoring Bore		28/08/2003	6.50	6.50	1000	1.00			1642m	North East
GW104 45010BL160 854BorePrivateMonitoring BoreMonitoring Bore01/01/20023.503.500.5001654mSouth EastGW104 44810BL160 854BorePrivateMonitoring BoreMonitoring BoreMonitoring Bore25/11/20023.503.501.0001654mSouth EastGW112 GW11210BL161 10EL161BorePrivate Monitoring MonitoringMonitoring 	GW114 984	10BL604 947			Monitoring Bore	Monitoring Bore		09/09/2011	6.00	6.00		2.70			1644m	East
GW104 10BL160 Bore Private Monitoring Bore Monitoring Bore Monitoring 25/11/2002 3.50 3.50 1.000 1671m South East GW112 10BL161 Bore Private Monitoring Monitoring 21/03/2003 12.35 12.35 12.35 1671m South	GW104 450	10BL160 854	Bore	Private	Monitoring Bore	Monitoring Bore		01/01/2002	3.50	3.50			0.500		1654m	South East
GW112 10BL161 Bore Private Monitoring Monitoring 21/03/2003 12.35 12.35 1689m South	GW104 448	10BL160 854	Bore	Private	Monitoring Bore	Monitoring Bore		25/11/2002	3.50	3.50			1.000		1671m	South East
Zoz zoz Bore Bore	GW112 268	10BL161 855	Bore	Private	Monitoring Bore	Monitoring Bore		21/03/2003	12.35	12.35					1689m	South
GW112 10BL162 Bore Private Monitoring Bore Monitoring 18/09/2003 8.70 8.70 1695m South West	GW112 122	10BL162 289	Bore	Private	Monitoring Bore	Monitoring Bore		18/09/2003	8.70	8.70					1695m	South West
GW112 10BL162 Bore Private Monitoring Bore Bore Bore Bore Bore Bore Bore Bore	GW112 121	10BL162 289	Bore	Private	Monitoring Bore	Monitoring Bore		18/09/2003	8.00	8.00					1697m	South West
GW112 10BL162 Bore Private Monitoring Bore Monitoring 18/09/2003 8.50 8.50 1698m South West	GW112 123	10BL162 289	Bore	Private	Monitoring Bore	Monitoring Bore		18/09/2003	8.50	8.50					1698m	South West
GW112 10BL160 Bore Private Monitoring Bore Bore Bore Bore 03/12/2002 4.20 4.20 4.20 1704m South East	GW112 221	10BL160 943	Bore	Private	Monitoring Bore	Monitoring Bore		03/12/2002	4.20	4.20					1704m	South East
GW105 10BL161 Bore Monitoring Bore Bore Bore 21/03/2003 6.50 6.50 1.70 1720m North East	GW105 317	10BL161 846	Bore		Monitoring Bore	Monitoring Bore		21/03/2003	6.50	6.50		1.70			1720m	North East
GW112 10BL160 Bore Private Monitoring Monitoring 03/12/2002 4.20 4.20 1734m South East	GW112 222	10BL160 943	Bore	Private	Monitoring Bore	Monitoring Bore		03/12/2002	4.20	4.20					1734m	South East
GW112 10BL161 Bore Private Monitoring Monitoring 03/03/2003 14.84 14.84 1736m South	GW112 272	10BL161 855	Bore	Private	Monitoring Bore	Monitoring Bore		03/03/2003	14.84	14.84					1736m	South
GW112 10BL160 Bore Private Monitoring Bore 943 943 943 1740m South East	GW112 230	10BL160 943	Bore	Private	Monitoring Bore			03/12/2002	4.00	4.00					1740m	South East
GW112 10BL161 Bore Private Monitoring Monitoring 07/03/2003 19.51 19.51 1749m South 271 855 855 Bore Bore Bore Bore Bore Bore Bore Bore 19.51 19.51 19.51 19.51 19.51 19.51 19.51 10.51 <td< td=""><td>GW112 271</td><td>10BL161 855</td><td>Bore</td><td>Private</td><td>Monitoring Bore</td><td>Monitoring Bore</td><td></td><td>07/03/2003</td><td>19.51</td><td>19.51</td><td></td><td></td><td></td><td></td><td>1749m</td><td>South</td></td<>	GW112 271	10BL161 855	Bore	Private	Monitoring Bore	Monitoring Bore		07/03/2003	19.51	19.51					1749m	South
GW112 10BL161 Bore Private Monitoring Bore Monitoring Bore 17/03/2003 11.50 11.50 1762m South	GW112 273	10BL161 855	Bore	Private	Monitoring Bore	Monitoring Bore		17/03/2003	11.50	11.50					1762m	South
GW112 10BL160 Bore Private Monitoring Monitoring 03/12/2002 4.00 4.00 1768m South East	GW112 231	10BL160 943	Bore	Private	Monitoring Bore	Monitoring Bore		03/12/2002	4.00	4.00					1768m	South East
GW112 22310BL160 943BorePrivate Monitoring BoreMonitoring BoreMonitoring Bore31/12/20024.204.204.201768mSouth East	GW112 223	10BL160 943	Bore	Private	Monitoring Bore	Monitoring Bore		31/12/2002	4.20	4.20					1768m	South East

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)	SWL (m bgl)	Yield (L/s)	Elev (AHD)	Dist	Dir
GW112 220	10BL160 943	Bore	Private	Monitoring Bore	Monitoring Bore		03/12/2002	4.00	4.00					1776m	South East
GW110 014	10BL162 024	Well	Private	Monitoring Bore	Monitoring Bore		15/07/2005	7.00	7.00					1776m	South West
GW040 219		Spear	Private		Industrial			6.30	6.30				3.89	1780m	South East
GW110 013	10BL162 024	Well	Private	Monitoring Bore	Monitoring Bore		15/07/2005	5.00	5.00					1790m	West
GW110 011	10BL162 024	Well	Private	Monitoring Bore	Monitoring Bore		18/09/2003	8.70	8.70					1792m	South West
GW107 407	10BL165 620	Bore		Monitoring Bore	Monitoring Bore		15/07/2005	7.00	7.00		6.00			1793m	South West
GW112 224	10BL160 943	Bore	Private	Monitoring Bore	Monitoring Bore		03/12/2002	4.10	4.10					1795m	South East
GW111 164	10BL600 213, 10WA11 4125	Spear	Private	Domestic	Domestic		22/10/2010	8.00	8.00					1799m	East
GW107 406	10BL165 620	Bore		Monitoring Bore	Monitoring Bore		15/07/2005	5.00	5.00					1807m	South West
GW110 012	10BL162 024	Well	Private	Monitoring Bore	Monitoring Bore		18/09/2003	8.00	8.00					1808m	South West
GW112 229	10BL160 943	Bore	Private	Monitoring Bore	Monitoring Bore		03/12/2002	4.00	4.00					1808m	South East
GW112 228	10BL160 943	Bore	Private	Monitoring Bore	Monitoring Bore		03/12/2002	4.00	4.00					1815m	South East
GW110 010	10BL162 024	Well	Private	Monitoring Bore	Monitoring Bore		18/09/2003	8.50	8.50					1821m	South West
GW112 336	10BL603 464	Bore	Other Govt	Monitoring Bore	Monitoring Bore		01/01/2009	10.40	10.40					1828m	South West
GW112 219	10BL160 943	Bore	Private	Monitoring Bore	Monitoring Bore		03/12/2002	4.00	4.00					1835m	South East
GW112 225	10BL160 943	Bore	Private	Monitoring Bore	Monitoring Bore		03/12/2002	4.10	4.10					1838m	South East
GW112 337	10BL603 464	Bore	Private	Monitoring Bore	Monitoring Bore		01/01/2009	9.00	9.00					1855m	South West
GW112 338	10BL603 464	Bore	Private	Monitoring Bore	Monitoring Bore		01/01/2009	10.00	10.00					1869m	South West
GW114 561	10BL605 489	Bore	Other Govt	Monitoring Bore	Monitoring Bore	SCA	06/12/2013	4.00	4.00	529	2.92			1870m	East
GW112 226	10BL160 943	Bore	Private	Monitoring Bore	Monitoring Bore		03/12/2002	4.40	4.40					1874m	South East
GW112 282	10BL161 855	Bore	Private	Monitoring Bore	Monitoring Bore		06/06/2003	18.50	18.50					1876m	South
GW114 562	10BL605 489	Bore	Other Govt	Monitoring Bore	Monitoring Bore	SCA	06/12/2013	4.00	2.70	448	2.51			1878m	East
GW110 351	10BL602 742, 10WA11 4781	Bore	Local Govt	Recreation (groundwater)	Recreation (groundwate r)		01/01/1975	60.00	60.00		25.0 0	1.000		1879m	North East
GW112 267	10BL161 855	Bore	Private	Monitoring Bore	Monitoring Bore		20/03/2003	12.12	12.12					1888m	South
GW112 227	10BL160 943	Bore	Private	Monitoring Bore	Monitoring Bore		03/12/2002	3.50	3.50					1889m	South East
GW114 563	10BL605 489	Bore	Other Govt	Monitoring Bore	Monitoring Bore	SCA	06/12/2013	4.00	3.90	591				1889m	East
GW112 218	10BL160 943	Bore	Private	Monitoring Bore	Monitoring Bore		03/12/2002	4.00	4.00					1897m	South East
GW112 281	10BL161 855	Bore	Private	Monitoring Bore	Monitoring Bore		29/05/2003	9.70	9.70					1901m	South
GW110 456	10BL603 007	Well	Private	Monitoring Bore	Monitoring Bore		01/05/2009	3.20	3.60		2.30			1908m	East
GW112 217	10BL160 943	Bore	Private	Monitoring Bore	Monitoring Bore		03/12/2002	4.10	4.10					1922m	South East
GW103 258	10BL159 644	Bore	Local Govt	Monitoring Bore	Monitoring Bore		18/01/2000	7.00	7.00	795				1928m	North
GW103 261	10BL159 644	Bore	Local Govt	Monitoring Bore	Monitoring Bore		20/01/2000	7.40	7.40	972				1929m	North

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)	SWL (m bgl)	Yield (L/s)	Elev (AHD)	Dist	Dir
GW103 260	10BL159 644	Bore	Local Govt	Monitoring Bore	Monitoring Bore		18/01/2000	10.70	10.70					1929m	North
GW103 259	10BL159 644	Bore	Local Govt	Monitoring Bore	Monitoring Bore		11/12/2000	2.50	2.50					1929m	North
GW113 816	10BL603 258	Bore	Private	Monitoring Bore	Monitoring Bore		22/01/2010	5.75	5.75					1941m	East
GW112 270	10BL161 855	Bore	Private	Monitoring Bore	Monitoring Bore		05/03/2003	19.67	19.67					1944m	South
GW112 266	10BL161 855	Bore	Private	Monitoring Bore	Monitoring Bore		19/03/2003	10.37	10.37					1955m	South
GW110 457	10BL603 007	Well	Private	Monitoring Bore	Monitoring Bore		01/05/2009	3.60	3.60		1.70			1965m	East

Borehole Data Source : NSW Department of Primary Industries - Office of Water / Water Administration Ministerial Corporation for all bores prefixed with GW. All other bores © Commonwealth of Australia (Bureau of Meteorology) 2015. Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Hydrogeology & Groundwater

74 Edinburgh Road, Marrickville, NSW 2204

Driller's Logs

Drill log data relevant to the boreholes within the dataset buffer:

Groundwater No	Drillers Log	Distance	Direction
GW109824	0.00m-4.50m FILL 4.50m-9.00m LAMINITE 9.00m-17.00m SHALE 17.00m-20.70m SANDSTONE	918m	South East
GW109825	0.00m-4.50m FILL 4.50m-22.00m SHALE	972m	South East
GW115005	0.00m-1.00m CLAY SAND FILL,MIXED GRAVEL INCLUSIONS. 1.00m-2.20m SANDY CLAY,SANDSTONE 2.20m-4.20m CLAYEY SAND DARK BROWN 4.20m-6.00m CLAY,GREY AND DARK BROWN	1000m	South West
GW111692	0.00m-0.20m TOPSOIL BROWN SOFT 0.20m-0.60m CLAY BTOWN LOOSE WET 0.60m-1.30m CLAY SOFT VERY WET	1027m	West
GW115001	0.00m-0.70m FILL, SAND FILL,BROWN,GRAVELS,SANDSTONE 0.70m-3.00m FILL, SANDY CLAY,MIXED GRAVEL 3.00m-4.20m SANDY CLAY 4.20m-6.00m SANDY CLAY GREY SOFT,LOW PLASTICITY	1048m	South West
GW115002	0.00m-1.00m FILL, SANDY CLAY,GREY,MAJOR GRAVELS 1.00m-2.80m CLAYEY SANDY FILL,BROWN AND GREY 2.80m-4.20m SANDY CLAY ,GREY,MOIST TO WET 4.20m-5.50m CLAY GREY,WET,SOFT	1051m	South West
GW109821	0.00m-2.20m FILL 2.20m-35.00m ASHFIELD SHALE	1056m	South East
GW115000	0.00m-0.30m FILL, GRAVELLY SAND DARK BROWN 0.30m-1.50m SANDY FILL, DARL GREY AND BLACK 1.50m-2.30m SANDY FILL, MOIST, GRAVELS 2.30m-2.60m CLAY ORANGE, TRACE RED FIRM 2.60m-6.00m SANDY CLAY GREY FIRM TO SOFT,MOIST	1063m	South West
GW111687	0.00m-1.90m FILL, SANDY GRAVEL DARK,SOFT 1.90m-2.70m SILTY CLAY,RED/ORANGE,STIFF 2.70m-3.00m SILTY CLAY,RED,ORANGE,SOFT 3.00m-4.25m SILTY CLAY BEIGE,VERY MOIST,SOFT	1071m	North West
GW115004	0.00m-1.50m SANDY FILL COARSE GRAINED,MAJOR GRAVELS,CONCRETE 1.50m-2.00m SANDY FILL BROWN, GRAVELS AND SANDSTONE 2.00m-4.20m CLAY WITH ROCK,GREY BLACK,SAND 4.20m-5.20m SAND WITH ROCK DARK BROWN,CLAY 5.20m-6.00m CLAY GREY SOFT,WET	1073m	South West
GW111686	0.00m-0.40m FILL,CLAY BANDS,BROWN 0.40m-1.20m SILTY CLAY,BEIGE,HIGH PLASTICITY,FIRM 1.20m-2.50m SILTY CLAY,BEIGE,SOFT,H/PLASTICITY 2.50m-3.50m CLAY GREY,FIRM,DRY	1081m	North West
GW115003	0.00m-1.00m CLAYEY SAND FILL,GREY AND ORANGE 1.00m-3.00m SANDY FILL BROWN,MED TO COARSE GRAINED 3.00m-4.20m SANDY CLAY GREY MOIST TO WET 4.20m-5.50m CLAY GREY WET	1084m	South West
GW111353	0.00m-0.10m CONCRETE 0.10m-4.00m CLAY,BROWN,RED,GREY,HARD, MOIST 4.00m-7.00m SHALE,GREY ,DARK BROWN,WEATHERED,NO COLOUR	1206m	North East
GW111351	0.00m-0.10m CONCRETE 0.10m-3.50m CLAY MOTTLED WITH GREY,BRICK RED COLOURED 3.50m-7.50m SHALE GREY,LIGHT BROWN,SEMI WEATHERED 7.50m-9.00m SHALE,HIGHLY WEATHERED,CLAYEY,DARK BROWN	1213m	North East
GW111352	0.00m-0.10m CONCRETE 0.10m-4.00m CLAY,BRICKS,GRAVELS,FINE SAND,SHALE 4.00m-8.00m SHALE,DARK BROWN,WEATHERED,MOIST	1217m	North East

Groundwater No	Drillers Log	Distance	Direction
GW109822	0.00m-2.60m FILL 2.60m-3.80m CLAYEY SAND 3.80m-8.20m SAND 8.20m-10.45m CLAY	1225m	South East
GW109823	0.00m-3.00m FILL 3.00m-6.00m CLAYEY SAND 6.00m-8.11m SAND 8.11m-11.50m SANDY CLAY 11.50m-29.00m SHALE	1235m	South East
GW111350	0.00m-0.10m CONCRETE 0.10m-0.50m SAND FINE TO MEDIUM 0.50m-3.00m CLAY BROWN MOTTLED 3.00m-4.00m SHALE,WEATHERED,DRY,FIRM 4.00m-5.00m SHALE EXTREM.WEATHERED,GREY 5.00m-7.50m SHALE, WEATHERED,.GREY,RED COLOURED	1235m	North East
GW114825	0.00m-0.25m FILL SANDY SILT 0.25m-0.60m FILL,SAND BROWN MOIST 0.60m-1.00m FILL CLAY DARK BROWN 1.00m-2.00m CLAY BROWN MOIST MED.STIFF 2.00m-2.40m WATER STRIKE AT 2.0 m 2.40m-3.60m SAND LIGHT BROWN 3.60m-4.59m CLAY GREY BROWN,WET	1274m	South West
GW114824	0.00m-0.30m FILL SANDY SILT 0.30m-0.50m FILL SANDY CLAY 0.50m-0.70m NATURAL SILTY CLAY 0.70m-1.40m CLAY BROWN ORANGE 1.40m-2.70m CLAY GREY MOIST 2.70m-3.90m SAND GREY SATURATED MEDIUM GRAIN 3.90m-4.99m REFUSAL WITH PUSHTUBE AT 3.9	1276m	South West
GW110122	0.00m-3.50m CLAY	1332m	South West
GW072643	0.00m-2.00m FILL 2.00m-6.50m MEDIUM SANDY GRAVEL 6.50m-7.20m GREY SILTY CLAY WB 7.20m-8.50m MEDIUM SAND WB 8.50m-10.00m BROWN SILTY SAND WB 10.00m-12.00m GREY SHALE CLAY	1343m	South East
GW110121	0.00m-3.50m CLAY	1371m	South West
GW100053	0.00m-0.95m FILL 0.95m-2.12m BROWN PEAT & SAND 2.12m-6.00m WHITESAND (WB) 6.00m-7.00m DARK GREY CLAY	1374m	South East
GW110120	0.00m-6.00m CLAY	1399m	South West
GW110118	0.00m-6.00m CLAY	1404m	South West
GW110119	0.00m-3.50m CLAY	1453m	South West
GW111320	0.00m-0.18m CONCRETE 0.18m-0.33m SAND,GRAVELLY CLAYEY,M/DENSE 0.33m-0.70m SAND,VERY LOOSE,MOIST 0.70m-1.50m SAND,CLAYEY,MEDIUM DENSE,MOIST,DARK BROWN 1.50m-4.00m SAND,LOOSE, VERY MOIST,BROWN 4.00m-4.50m SAND CLAYEY,MEDIUM DENSE,GREY/BROWN 4.50m-5.20m CLAY SANDY,SOFT,SATURATED,L/PLASTICITY	1512m	East
GW111321	0.00m-0.18m CONCRETE 0.18m-0.90m GRAVELLY CLAYEY SAND,DENSE,MOIST 0.90m-1.60m GRAVEL SILTY,DENSE,VERY MOIST 1.60m-2.00m SAND,CLAYEY SAND,GREY,FINE GRAINED 2.00m-5.00m CLAY,SANDY,SOFT,L/PLASTICITY,SAND FINE GRAINED	1572m	South East
GW109731	0.00m-0.50m TOPSOIL,BROWN,DRY,HETEROGENOUS 0.50m-1.00m FILL.SLAG,BLACK,RESIDUAL WHITE CLAY. 1.00m-1.50m CLAY,BROWN,RED,STIFF,NON PLASTIC,DAMP 1.50m-2.00m CLAY,RED/BROWN,STIFF,PLASTIC,DAMP 2.00m-2.50m CLAY,RED/GREY,STIFF,PLASTIC,DAMP 2.50m-3.00m CLAY,RED/GREY,STIFF,NON PLASTIC 3.00m-4.00m CLAY,RED/GREY,STIFF,NON PLASTIC 4.00m-5.00m CLAY,RED/GREY,STIFF,NON PLASTIC 5.00m-5.50m CLAY,VERY STIFF,NON PLASTIC. 5.00m-5.50m CLAY,BROWN,LOOSE,SOFT,MOIST	1625m	North East

Groundwater No	Drillers Log	Distance	Direction
GW109732	0.00m-0.10m TOPSOIL,SILTY,BLACK,LOOSE,FINE GRAIN,DRY,NO ODOUR 0.10m-1.20m CLAY,LIGHT BROWN,STICKY,STIFF,HIGH PLASTICITY,NO ODOUR 1.20m-2.00m CLAY,RED,ORANGE,STIFF,MODERATE PLASTICITY,DRY,NO ODOUR 2.00m-3.30m CLAY BECOMING LESS PLASTIC,BRITTLE AND DRY WITH DEPTH 3.30m-4.30m CLAY,GREY,WITH IRONSTONE BANDS, SOFT, STIFF,HIGH PLASTICITY,GREY CLAY	1625m	North East
GW109733	0.00m-0.80m FILL,CLAY,SILTY SOIL,CEMENT,GRAVELS,HARD IN GROUND,DRY,NO ODOUR 0.80m-1.50m CLAY,BLACK/GREY SMEARING AND STAINING IN SOIL,HIGH PLASTICITY 1.50m-2.00m CLAY,NATURAL RED COLOURING BECOMING APPARAENT IN SOIL,DRY 2.00m-2.40m CLAY,RED SOIL COLOURING,NO ODOUR	1635m	North East
GW114985	0.00m-0.10m CONCRETE 0.10m-0.40m SANDS DARK GREY 0.40m-0.90m SANDS GREY GRADING TO LIGHTER WITH DEPTH 0.90m-1.30m SAND DARK SILTY 1.30m-1.60m SAND ORANGE FOSSIL 1.60m-2.10m SAND WHITE NATURAL 2.10m-2.70m CONVERTED TO A GROUNDWATER M/WELL 2.70m-6.00m CONVERTED TO A GROUNDWATER M/WELL	1635m	East
GW114986	0.00m-0.10m CONCRETE 0.10m-0.50m SANDS DARK GREY POSSIBLE MIXED WITH FILL 0.50m-0.70m SANDS LIGHT GREY FINE 0.70m-1.10m SANDS DARK BROWN PEATY 1.10m-1.60m SANDS ORANGE TO WHITE 1.60m-2.80m CONVERTED TO A GROUNDWATER MONITORING WELL 2.80m-6.00m CONVERTED TO A GROUNDWATER MONITORING WELL	1635m	East
GW109729	0.00m-0.20m PAVERS,CONCRETE 0.20m-0.70m FILL,CLAY,SILTY SOIL, BROWN,BLACK,HARD IN GROUND,DRY,NO ODOUR 0.70m-1.80m CLAY,TIGHT,LIGHT BROWN,HIGH PLASTICITY,DRY,NO ODOUR 1.80m-3.00m CLAY,RED COLOUR,NO ODOUR,DRY 3.00m-4.00m CLAY,NO ODOUR,DRY 4.00m-6.00m CLAY,VERY HOMOGENEOUS	1636m	North East
GW109730	0.00m-0.50m TOPSOIL 0.50m-1.00m CLAY ORANGE,MOIST,FIRM, MODERATE PLASTICITY 1.00m-1.50m CLAY,ORANGE/GREY,VERY STIFF,MODERATE PLASTICITY 1.50m-2.00m CLAY,ORANGE/GREY,VERY STIFF,MODERATE PLASTICITY3 2.00m-3.00m CLAY,GREY,RED,VRY STIFF,NON PLASTIC,DAMP 3.00m-4.00m CLAY,GREY,RED,VRY STIFF,NON PLASTIC 4.00m-4.50m CLAY,GREY/RED,SOME GRAVEL,NON PLASTIC,DAMP 4.50m-5.00m CLAY,GRAVELLY,GREY/RED,WET,NON PLASTIC,HETEROGENOUS,STIFF 5.00m-6.50m CLAY,BROWN,GREY,WET,HOMOGENOUS	1642m	North East
GW105317	0.00m-1.10m FILL,SILTY, SANDY CLAY 1.10m-6.50m SILTY CLAY,HIGH PLASTICITY	1720m	North East
GW110014	0.00m-1.50m BITUMEN,CONCRETE,FILL,CLAY,GRAVEL 1.50m-3.00m WEATHERED SANDSTONE,SOME SILT 3.00m-4.00m IRONSTONE BANDS 4.00m-6.00m WEATHERED SANDSTONE.GRAVEL AND SILT 6.00m-7.00m AS ABOVE,WET	1776m	South West
GW110013	0.00m-0.50m BITUMEN,CONCRETE,FILL,CLAY BROWN 0.50m-1.50m CLAY ORANGE BROWN,STIFF,FIRM,DAMP.LOW PLASTICITY,GRAVEL 1.50m-4.00m AS ABOVE,BROWN,SOME SILT,CLAY 4.00m-5.00m AS ABOVE,MOIST	1790m	West
GW110011	0.00m-1.00m ASPHALT,GRAVEL,SAND, 1.00m-8.70m SANDSTONE,MAROON TO LIGHT BROWN,SANDY CLAY	1792m	South West
GW107407	0.00m-1.50m CLAY,ORANGE,L/BROWN 1.50m-7.00m WEATHERED SANDSTONE,SOME SILT	1793m	South West
GW111164	0.00m-8.00m SAND	1799m	East
GW107406	0.00m-1.50m CLAY,ORANGE BROWN 1.50m-4.00m WEATHERED SANDSTONE 4.00m-5.00m WEATHERED SANDSTONE,MOIST	1807m	South West
GW110012	0.00m-1.50m ASPHALT,GRAVELSAND L/BROWN, SANDY CLAY 1.50m-8.00m SANDSTONE,BROWN ORANGE TO LIGHT GREY	1808m	South West
GW110010	0.00m-0.10m ASPHALT,ROAD SURFACE 0.10m-0.20m GRAVEL 0.20m-0.30m CLAY BROWN 0.30m-1.00m CLAY BROWN ORANGE 1.00m-7.50m SANDSTONE BROWN ORANGE 7.50m-7.60m CLAY SANDY BROWN ORANGE 7.60m-8.50m SANDSTONE LIGHT BROWN	1821m	South West
GW112336	0.00m-0.20m CONCRETE 0.20m-0.70m FILL 0.70m-10.40m SANDSTONE	1828m	South West

Groundwater No	Drillers Log	Distance	Direction
GW112337	0.00m-0.10m CONCRETE 0.10m-0.40m FILL 0.40m-1.40m SILTY CLAY 1.40m-9.00m SANDSTONE	1855m	South West
GW112338	0.00m-0.10m CONCRETE 0.10m-0.40m FILL 0.40m-2.00m SILTY CLAY 2.00m-10.00m SANDSTONE	1869m	South West
GW114561	0.00m-0.15m ASPHALT 0.15m-0.21m CONCRETE 0.22m-0.50m SILTY SAND BLACK ,CG,SOFT 0.50m-1.00m SAND GREY BROWN CG BROWN 1.00m-1.50m SAND WHITE CG SOFT 1.50m-1.60m SANDY CLAY BLACK SOFT 1.60m-2.15m SAND GREY CG SOFT 2.15m-2.70m SAND BROWN,CG,SOFT	1870m	East
GW114562	0.00m-0.05m ASPHALT 0.05m-0.18m CONCRETE 0.18m-0.58m SILTY SAND DARK BROWN MG.SOFT 0.58m-0.75m SAND, LIGHT BROWN, soft 0.75m-0.95m SILTY SAND DARK BROWN MG.SOFT 0.95m-1.05m SAND,WHITE ORANGE MOTTLED,SOFT 1.05m-1.55m GRAVELLY SAND, LIGHT BEOWN SOFT 1.55m-1.75m SAND ORANGE SOFT 1.75m-2.25m CLAY DARK BROWN FG, SOFT 2.25m-2.70m SILTY CLAY DARK BROWN FG SOFT	1878m	East
GW114563	0.00m-0.08m ASPHALT 0.08m-0.21m CONCRETE 0.21m-0.31m SAND LIGHT BROWN, SOFT 0.31m-0.99m SILTY SAND,DARK BROWN MG SOFT 0.99m-1.23m SANDY CLAY BROWN SOFT FG 1.23m-1.31m SANDY CLAY BROWN SOFT FG 1.31m-1.95m SAND LIGHT BROWN SOFT 1.95m-2.52m CLAYEY SAND,DARK BROWN SOFT 2.80m-3.34m CLAYEY SAND, DADRK BROWN SOFT 3.34m-3.54m CLAY, DARK BROWN SOFT 3.54m-3.90m CLAY, DARK BROWN SOFT	1889m	East
GW110456	0.00m-0.30m CONCRETE 0.30m-0.50m FILL 0.50m-0.60m CONCRETE 0.60m-1.80m SILTY SAND 1.80m-3.60m SAND	1908m	East
GW103258	0.00m-6.20m FILL 6.20m-7.00m SHALE	1928m	North
GW103260	0.00m-8.70m FILL 8.70m-10.20m SHALE	1929m	North
GW103261	0.00m-7.40m FILL	1929m	North
GW110457	0.00m-0.25m CONCRETE 0.25m-0.90m FILL 0.90m-1.70m SANDY SILT,SILT 1.70m-3.60m SAND	1965m	East

Drill Log Data Source: NSW Department of Primary Industries - Office of Water / Water Administration Ministerial Corp Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Geology 1:100,000 74 Edinburgh Road, Marrickville, NSW 2204

Geology

74 Edinburgh Road, Marrickville, NSW 2204

Geological Units

What are the Geological Units onsite?

Symbol	Description	Unit Name	Group	Sub Group	Age	Dom Lith	Map Sheet	Dataset
Qha	Silty to peaty quartz sand, silt, and clay. Ferruginous and humic cementation in places. Common shell layers				Quaternary		Sydney	1:100,000

What are the Geological Units within the dataset buffer?

Symbol	Description	Unit Name	Group	Sub Group	Age	Dom Lith	Map Sheet	Dataset
Qha	Silty to peaty quartz sand, silt, and clay. Ferruginous and humic cementation in places. Common shell layers				Quaternary		Sydney	1:100,000
Qhs	Peat, sandy peat, and mud.				Quaternary		Sydney	1:100,000
Rh	Medium to coarse grained quartz sandstone, very minor shale and laminate lenses				Triassic		Sydney	1:100,000
Rwa	Black to dark grey shale and laminate	Ashfield Shale	Wianamatta Group		Triassic		Sydney	1:100,000

Geological Structures

What are the Geological Structures onsite?

Feature	Name	Description	Map Sheet	Dataset
No features				1:100,000

What are the Geological Structures within the dataset buffer?

Feature	Name	Description	Map Sheet	Dataset
Dyke			Sydney	1:100,000

Geological Data Source : NSW Department of Industry, Resources & Energy

 $\ensuremath{\mathbb{C}}$ State of New South Wales through the NSW Department of Industry, Resources & Energy

Naturally Occurring Asbestos Potential

74 Edinburgh Road, Marrickville, NSW 2204

Naturally Occurring Asbestos Potential

Naturally Occurring Asbestos Potential within the dataset buffer:

Potential	Sym	Strat Name	Group	Formation	Scale	Min Age	Max Age	Rock Type	Dom Lith	Description	Dist	Dir
No records in buffer												

Mining Subsidence District Data Source: © State of New South Wales through NSW Department of Industry, Resources & Energy

Atlas of Australian Soils

Soils

74 Edinburgh Road, Marrickville, NSW 2204

Atlas of Australian Soils

Soil mapping units and Australian Soil Classification orders within the dataset buffer:

Map Unit Code	Soil Order	Map Unit Description	Distance
Pb12	Kurosol	Gently rolling to rounded hilly country with some steep slopes and broad valleys: chief soils are hard acidic red soils (Dr2.21) with hard neutral and acidic yellow mottled soils (Dy3.42 and Dy3.41) on lower slopes and in valleys. Associated are small areas of various soils including (Gn3.54) on some ridges, (Dr3.31) on some slopes; (Dr2.23) in saddles and some mid-slope positions, and some low- lying swampy areas of (Uf6) soils and (Uc1.2) soils with peaty surfaces. Small areas of other soils such as (Db1.2) are likely throughout.	0m

Atlas of Australian Soils Data Source: CSIRO

Soil Landscapes

Soils

74 Edinburgh Road, Marrickville, NSW 2204

Soil Landscapes

What are the onsite Soil Landscapes?

Soil Code	Name	Group	Process	Map Sheet	Scale
ALbg	BIRRONG		ALLUVIAL	Sydney	1:100,000

What are the Soil Landscapes within the dataset buffer?

Soil Code	Name	Group	Process	Map Sheet	Scale
ALbg	BIRRONG		ALLUVIAL	Sydney	1:100,000
DTxx	DISTURBED TERRAIN		DISTURBED TERRAIN	Sydney	1:100,000
ERgy	GYMEA		EROSIONAL	Sydney	1:100,000
REbt	BLACKTOWN		RESIDUAL	Sydney	1:100,000

Soils Landscapes Data Source : NSW Office of Environment and Heritage

Acid Sulfate Soils

Acid Sulfate Soils

74 Edinburgh Road, Marrickville, NSW 2204

Environmental Planning Instrument - Acid Sulfate Soils

What is the on-site Acid Sulfate Soil Plan Class that presents the largest environmental risk?

Soil Class	Description	EPI Name
2	Works below natural ground surface present an environmental risk; Works by which the watertable is likely to be lowered present an environmental risk	Marrickville Local Environmental Plan 2011

If the on-site Soil Class is 5, what other soil classes exist within 500m?

Soil Class	Description	EPI Name	Distance	Direction
N/A				

NSW Crown Copyright - Planning and Environment

Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Atlas of Australian Acid Sulfate Soils

Acid Sulfate Soils

74 Edinburgh Road, Marrickville, NSW 2204

Atlas of Australian Acid Sulfate Soils

Atlas of Australian Acid Sulfate Soil categories within the dataset buffer:

Class	Description	Distance
В	Low Probability of occurrence. 6-70% chance of occurrence.	0m
С	Extremely low probability of occurrence. 1-5% chance of occurrence with occurrences in small localised areas.	12m

Atlas of Australian Acid Sulfate Soils Data Source: CSIRO

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Dryland Salinity

74 Edinburgh Road, Marrickville, NSW 2204

Dryland Salinity - National Assessment

Is there Dryland Salinity - National Assessment data onsite?

No

Is there Dryland Salinity - National Assessment data within the dataset buffer?

No

What Dryland Salinity assessments are given?

Assessment 2000	Assessment 2020	Assessment 2050	Distance	Direction
N/A	N/A	N/A	N/A	N/A

Dryland Salinity Data Source : National Land and Water Resources Audit

The Commonwealth and all suppliers of source data used to derive the maps of "Australia, Forecast Areas Containing Land of High Hazard or Risk of Dryland Salinity from 2000 to 2050" do not warrant the accuracy or completeness of information in this product. Any person using or relying upon such information does so on the basis that the Commonwealth and data suppliers shall bear no responsibility or liability whatsoever for any errors, faults, defects or omissions in the information. Any persons using this information do so at their own risk.

In many cases where a high risk is indicated, less than 100% of the area will have a high hazard or risk.

Dryland Salinity Potential of Western Sydney

Dryland Salinity Potential of Western Sydney within the dataset buffer?

Feature Id	Classification	Description	Distance	Direction
N/A	Outside Data Coverage			

Dryland Salinity Potential of Western Sydney Data Source : NSW Office of Environment and Heritage Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Mining

74 Edinburgh Road, Marrickville, NSW 2204

Mining Subsidence Districts

Mining Subsidence Districts within the dataset buffer:

District	Distance	Direction
There are no Mining Subsidence Districts within the report buffer		

Mining Subsidence District Data Source: © Land and Property Information (2016) Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Mining & Exploration Titles

Mining

74 Edinburgh Road, Marrickville, NSW 2204

Current Mining & Exploration Titles

Current Mining & Exploration Titles within the dataset buffer:

Title Ref	Holder	Grant Date	Expiry Date	Last Renewed	Operation	Resource	Minerals	Dist (m)	Dir'
N/A	No Records in Buffer								

Current Mining & Exploration Titles Data Source: © State of New South Wales through NSW Department of Industry

Current Mining & Exploration Title Applications

Current Mining & Exploration Title Applications within the dataset buffer:

Application Ref	Applicant	Application Date	Operation	Resource	Minerals	Dist (m)	Dir'
N/A	No Records in Buffer						

Current Mining & Exploration Title Applications Data Source: © State of New South Wales through NSW Department of Industry

Mining

74 Edinburgh Road, Marrickville, NSW 2204

Historical Mining & Exploration Titles

Historical Mining & Exploration Titles within the dataset buffer:

Title Ref	Holder	Start Date	End Date	Resource	Minerals	Dist (m)	Dir'
EL0083	CONTINENTAL OIL CO OF AUSTRALIA LIMITED	01 Feb 1967	01 Feb 1968	MINERALS		0m	Onsite
PEL0005	AGL UPSTREAM INVESTMENTS PTY LIMITED	11/11/1993	4/03/2015	PETROLEUM	Petroleum	0m	Onsite
PEL0013	AUSTRALIAN OIL AND GAS CORPORATION LTD			PETROLEUM	Petroleum	0m	Onsite
PEL0102	AUSTRALIAN OIL AND GAS CORPORATION LTD			PETROLEUM	Petroleum	0m	Onsite
PEL0198	JOHN STREVENS (TERRIGAL) NL			PETROLEUM	Petroleum	0m	Onsite
PEL0210	THE AUSTRALIAN GAS LIGHT COMPANY (AGL), NORTH BULLI COLLIERIES PTY LTD			PETROLEUM	Petroleum	0m	Onsite
PEL0260	NORTH BULLI COLLIERIES PTY LTD, AGL PETROLEUM OPERATIONS PTY LTD, THE AUSTRALIAN GAS LIGHT CO.	9/09/1981	8/03/1993	PETROLEUM	Petroleum	0m	Onsite
PEL0279	THE ELECTRICITY COMMISSION OF NSW (TRADING AS PACIFIC POWER)	17/04/1990	11/11/1993	PETROLEUM	Petroleum	0m	Onsite
PEL0463	DART ENERGY (APOLLO) PTY LTD	22/10/2008	6/03/2015	PETROLEUM	Petroleum	0m	Onsite
PEL463	DART ENERGY (APOLLO) PTY LTD			MINERALS		0m	Onsite
PEL5	AGL UPSTREAM INVESTMENTS PTY LIMITED			MINERALS		0m	Onsite
PSPAUTH17	MACQUARIE ENERGY PTY LTD			MINERALS		0m	Onsite
PSPAUTH17	MACQUARIE ENERGY PTY LTD	8/03/2007	7/03/2008	PETROLEUM	Petroleum	0m	Onsite

Historical Mining & Exploration Titles Data Source: © State of New South Wales through NSW Department of Industry

State Environmental Planning Policy

74 Edinburgh Road, Marrickville, NSW 2204

State Significant Precincts

What SEPP State Significant Precincts exist within the dataset buffer?

Map Id	Precinct	EPI Name	Published Date	Commenced Date	Currency Date	Amendment	Distance	Direction
N/A	No Records in Buffer							

State Environment Planning Policy Data Source: NSW Crown Copyright - Planning & Environment Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

EPI Planning Zones

Environmental Planning Instrument

74 Edinburgh Road, Marrickville, NSW 2204

Land Zoning

What EPI Land Zones exist within the dataset buffer?

Zone	Description	Purpose	EPI Name	Published Date	Commenced Date	Currency Date	Amendment	Distance	Direction
IN1	General Industrial		Marrickville Local Environmental Plan 2011	01/12/2017	01/12/2017	06/12/2017	Amendment No 14	0m	Onsite
SP2	Infrastructure	Stormwater Management Systems	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		0m	Onsite
B2	Local Centre		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		20m	North East
R2	Low Density Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		20m	North West
RE1	Public Recreation		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		20m	North
RE1	Public Recreation		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		98m	North
SP2	Infrastructure	Rail Infrastructure Facilities	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		122m	South East
SP2	Infrastructure	Stormwater Management Systems	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		127m	South
IN2	Light Industrial		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		164m	North West
B7	Business Park		Marrickville Local Environmental Plan 2011	25/10/2013	25/10/2013	06/12/2017	Amendment No 1	165m	North West
IN2	Light Industrial		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		167m	North East
SP2	Infrastructure	Stormwater Management Systems	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		174m	North West
SP2	Infrastructure	Rail Infrastructure Facilities	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		190m	South
B7	Business Park		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		195m	North West
B1	Neighbourhood Centre		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		204m	North
IN2	Light Industrial		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		222m	South
SP2	Infrastructure	Educational Establishment	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		237m	North East
RE1	Public Recreation		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		253m	North
IN1	General Industrial		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		263m	East
SP2	Infrastructure	Sewerage System	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		291m	North East
B5	Business Development		Marrickville Local Environmental Plan 2011	01/12/2017	01/12/2017	06/12/2017	Amendment No 14	323m	North West
R4	High Density Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		336m	North East
R4	High Density Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		344m	East
R2	Low Density Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		345m	South East
B1	Neighbourhood Centre		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		348m	North East
RE2	Private Recreation		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		348m	North Fast

Zone	Description	Purpose	EPI Name	Published Date	Commenced Date	Currency Date	Amendment	Distance	Direction
B7	Business Park		Marrickville Local Environmental Plan 2011	01/12/2017	01/12/2017	06/12/2017	Amendment No 14	351m	North West
B5	Business Development		Marrickville Local Environmental Plan 2011	01/12/2017	01/12/2017	06/12/2017	Amendment No 14	365m	West
RE1	Public Recreation		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		371m	North East
IN1	General Industrial		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		377m	South
B1	Neighbourhood Centre		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		378m	North East
B4	Mixed Use		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		379m	North West
RE1	Public Recreation		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		380m	East
IN2	Light Industrial		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		385m	North West
SP2	Infrastructure	Educational Establishment	Marrickville Local Environmental Plan 2011	25/10/2013	25/10/2013	06/12/2017	Amendment No 1	394m	North East
R4	High Density Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		396m	North East
IN2	Light Industrial		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		403m	South East
R1	General Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		407m	East
B4	Mixed Use		Marrickville Local Environmental Plan 2011	01/12/2017	01/12/2017	06/12/2017	Amendment No 14	415m	West
B1	Neighbourhood Centre		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		422m	North East
R1	General Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		431m	North East
RE1	Public Recreation		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		431m	East
R1	General Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		434m	North East
RE2	Private Recreation		Marrickville Local Environmental Plan 2011	01/12/2017	01/12/2017	06/12/2017	Amendment No 14	435m	West
IN1	General Industrial		Marrickville Local Environmental Plan 2011	01/12/2017	01/12/2017	06/12/2017	Amendment No 14	438m	North West
B1	Neighbourhood Centre		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		439m	East
B1	Neighbourhood Centre		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		445m	North East
SP2	Infrastructure	Classified Road	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		449m	West
B1	Neighbourhood Centre		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		451m	North
R4	High Density Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		455m	North East
RE1	Public Recreation		Marrickville Local Environmental Plan 2011	01/12/2017	01/12/2017	06/12/2017	Amendment No 14	456m	West
IN1	General Industrial		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		470m	South West
IN1	General Industrial		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		471m	South West
SP2	Infrastructure	Educational Establishment	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		474m	West
R4	High Density Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		481m	North East
B5	Business Development		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		488m	North West
B1	Neighbourhood Centre		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		501m	South
R2	Low Density Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		506m	East
SP2	Infrastructure	Educational Establishment	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		508m	North East
B7	Business Park		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		510m	North West

Zone	Description	Purpose	EPI Name	Published Date	Commenced Date	Currency Date	Amendment	Distance	Direction
R4	High Density Residential		Marrickville Local Environmental Plan 2011	01/12/2017	01/12/2017	06/12/2017	Amendment No 14	517m	West
B4	Mixed Use		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		519m	North
RE1	Public Recreation		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		524m	South
SP2	Infrastructure	Future Road Corridor	Marrickville Local Environmental Plan 2011	01/12/2017	01/12/2017	06/12/2017	Amendment No 14	526m	West
R3	Medium Density Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		533m	North
RE1	Public Recreation		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		542m	East
R3	Medium Density Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		548m	North East
RE1	Public Recreation		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		552m	North East
IN2	Light Industrial		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		558m	West
R4	High Density Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		566m	North East
R4	High Density Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		573m	North East
SP2	Infrastructure	Educational Establishment	Marrickville Local Environmental Plan 2011	25/10/2013	25/10/2013	06/12/2017	Amendment No 1	575m	South East
R1	General Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		578m	North East
R2	Low Density Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		580m	West
R4	High Density Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		581m	East
B5	Business Development		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		585m	West
B7	Business Park		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		586m	West
R3	Medium Density Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		586m	North
R4	High Density Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		588m	North East
RE1	Public Recreation		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		595m	North
RE1	Public Recreation		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		598m	North East
R1	General Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		599m	North East
B5	Business Development		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		603m	East
R4	High Density Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		607m	North East
R1	General Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		608m	East
SP2	Infrastructure	Air Transport Facilities	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		619m	South
B1	Neighbourhood Centre		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		623m	West
B1	Neighbourhood Centre		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		625m	North
R4	High Density Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		626m	North East
B1	Neighbourhood Centre		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		627m	South
B7	Business Park		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		627m	East
R2	Low Density Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		632m	East
R4	High Density Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		632m	North West
B7	Business Park		Marrickville Local Environmental Plan 2011	06/11/2015	06/11/2015	06/12/2017	Amendment No 2	641m	East

Zone	Description	Purpose	EPI Name	Published Date	Commenced Date	Currency Date	Amendment	Distance	Direction
RE1	Public Recreation		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		646m	South
SP2	Infrastructure	Electricity Supply	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		647m	South West
B1	Neighbourhood Centre		Marrickville Local Environmental Plan 2011	25/10/2013	25/10/2013	06/12/2017		652m	North East
R3	Medium Density Residential		Marrickville Local Environmental Plan 2011	01/12/2017	01/12/2017	06/12/2017	Amendment No 14	652m	West
R3	Medium Density Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		653m	South East
RE1	Public Recreation		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		659m	South East
B1	Neighbourhood Centre		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		664m	South West
R1	General Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		665m	North East
RE1	Public Recreation		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		665m	East
RE1	Public Recreation		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		670m	North East
RE1	Public Recreation		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		675m	North East
R4	High Density Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		684m	East
RE1	Public Recreation		Marrickville Local Environmental Plan 2011	25/10/2013	25/10/2013	06/12/2017		684m	North
R2	Low Density Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		687m	South West
RE2	Private Recreation		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		689m	South East
B1	Neighbourhood Centre		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		692m	West
R3	Medium Density Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		699m	South West
B6	Enterprise Corridor		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		700m	South East
R3	Medium Density Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		705m	East
B4	Mixed Use		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		706m	North East
SP1	Special Activities	Cemetery	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		706m	South East
R4	High Density Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		709m	North East
R1	General Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		710m	East
R3	Medium Density Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		714m	North East
R4	High Density Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		714m	East
B6	Enterprise Corridor		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		722m	East
B1	Neighbourhood Centre		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		725m	South
B7	Business Park		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		727m	North West
R4	High Density Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		731m	East
B1	Neighbourhood Centre		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		732m	West
RE1	Public Recreation		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		733m	South
B1	Neighbourhood Centre		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		739m	North
R3	Medium Density Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		744m	North West
B5	Business Development		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		747m	South West

Zone	Description	Purpose	EPI Name	Published Date	Commenced Date	Currency Date	Amendment	Distance	Direction
R1	General Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		748m	North
B4	Mixed Use		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		749m	North West
R4	High Density Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		752m	North East
B1	Neighbourhood Centre		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		756m	North West
R4	High Density Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		758m	West
B1	Neighbourhood Centre		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		764m	North
B1	Neighbourhood Centre		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		767m	North
B1	Neighbourhood Centre		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		773m	West
SP2	Infrastructure	Drainage	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		774m	South West
SP2	Infrastructure	Rail Infrastructure Facilities	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		774m	West
B1	Neighbourhood Centre		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		775m	South
B4	Mixed Use		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		779m	South East
R2	Low Density Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		780m	South
B6	Enterprise Corridor		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		782m	South East
B7	Business Park		Marrickville Local Environmental Plan 2011	06/11/2015	06/11/2015	06/12/2017	Amendment No 2	783m	East
IN2	Light Industrial		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		787m	South East
B2	Local Centre		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		788m	West
R4	High Density Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		789m	North East
IN1	General Industrial		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		791m	South
SP2	Infrastructure	Stormwater Management Systems	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		792m	West
IN2	Light Industrial		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		794m	South
R2	Low Density Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		797m	South
B6	Enterprise Corridor		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		800m	South East
R4	High Density Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		800m	East
IN1	General Industrial		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		801m	South East
RE1	Public Recreation		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		807m	North East
RE1	Public Recreation		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	16/06/2017		809m	East
IN2	Light Industrial		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		811m	South
B6	Enterprise Corridor		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		816m	South East
B1	Neighbourhood Centre		Marrickville Local Environmental Plan 2011	25/10/2013	25/10/2013	06/12/2017	Amendment No 1	817m	South
B4	Mixed Use		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		818m	East
SP2	Infrastructure	Stormwater Management Systems	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		820m	West
R3	Medium Density Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		822m	West

Zone	Description	Purpose	EPI Name	Published Date	Commenced Date	Currency Date	Amendment	Distance	Direction
B6	Enterprise Corridor		Marrickville Local Environmental Plan 2011	25/10/2013	25/10/2013	06/12/2017	Amendment No 1	823m	South
RE1	Public Recreation		Marrickville Local Environmental Plan 2011	25/10/2013	25/10/2013	06/12/2017		824m	North West
R1	General Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		825m	North East
RE2	Private Recreation		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		827m	South West
R1	General Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		829m	West
R4	High Density Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		837m	East
RE1	Public Recreation		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		837m	South West
B1	Neighbourhood Centre		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		838m	North
IN2	Light Industrial		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		845m	South West
R4	High Density Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		845m	East
RE2	Private Recreation		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		846m	North
R1	General Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		847m	West
R2	Low Density Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		855m	South
R4	High Density Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		855m	North East
B7	Business Park		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		861m	South West
R4	High Density Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		861m	North East
R1	General Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		862m	North
R1	General Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		868m	North
B4	Mixed Use		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		870m	East
SP2	Infrastructure	Community Facilities	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		870m	North West
B2	Local Centre		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		875m	North East
R4	High Density Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		875m	North East
R2	Low Density Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		876m	South West
B1	Neighbourhood Centre		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		877m	West
SP2	Infrastructure	Classified Road	Sydney Local Environmental Plan 2012	14/12/2012	14/12/2012	08/03/2019		886m	North East
RE2	Private Recreation		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		888m	North
IN2	Light Industrial		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		890m	South East
R1	General Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		892m	North
RE1	Public Recreation		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		893m	South
R1	General Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		900m	East
SP2	Infrastructure	Rail Infrastructure Facilities	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		900m	South
B2	Local Centre		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		903m	North East
R3	Medium Density Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		903m	North West
RE1	Public Recreation		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		912m	West

Zone	Description	Purpose	EPI Name	Published Date	Commenced Date	Currency Date	Amendment	Distance	Direction
B4	Mixed Use		Sydney Local Environmental Plan 2012	14/12/2012	14/12/2012	08/03/2019		919m	East
RE1	Public Recreation		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	16/06/2017		923m	East
RE1	Public Recreation		Sydney Local Environmental Plan 2012	14/12/2012	14/12/2012	08/03/2019		928m	East
B2	Local Centre		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		935m	North
RE1	Public Recreation		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		941m	North East
R4	High Density Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		947m	North East
R2	Low Density Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		953m	North
RE1	Public Recreation		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		953m	West
R1	General Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		955m	North
R1	General Residential		Sydney Local Environmental Plan 2012	14/12/2012	14/12/2012	08/03/2019		956m	East
R4	High Density Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		959m	North
B2	Local Centre		Sydney Local Environmental Plan 2012	14/12/2012	14/12/2012	08/03/2019		960m	East
B2	Local Centre		Sydney Local Environmental Plan 2012	14/12/2012	14/12/2012	08/03/2019		961m	North East
RE1	Public Recreation		Sydney Local Environmental Plan 2012	14/12/2012	14/12/2012	08/03/2019		961m	North East
B1	Neighbourhood Centre		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		971m	West
R1	General Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		974m	North
R1	General Residential		Sydney Local Environmental Plan 2012	14/12/2012	14/12/2012	08/03/2019		975m	North East
RE1	Public Recreation		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		975m	North West
SP2	Infrastructure	Railways	Sydney Local Environmental Plan 2012	14/12/2012	14/12/2012	08/03/2019		976m	North East
B1	Neighbourhood Centre		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		980m	North
SP2	Infrastructure	Electricity Supply	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		986m	North
SP2	Infrastructure		Sydney Local Environmental Plan 2012	14/12/2012	14/12/2012	08/03/2019		986m	East
R1	General Residential		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		987m	North
B6	Enterprise Corridor		Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	06/12/2017		1000m	South

Environmental Planning Instrument Data Source: NSW Crown Copyright - Planning & Environment

Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Heritage Items

Heritage

74 Edinburgh Road, Marrickville, NSW 2204

Commonwealth Heritage List

What are the Commonwealth Heritage List Items located within the dataset buffer?

Place Id	Name	Address	Place File No	Class	Status	Register Date	Distance	Direction
N/A	No records in buffer							

Heritage Data Source: Australian Government Department of the Environment and Energy - Heritage Branch Creative Commons 3.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/3.0/au/deed.en

National Heritage List

What are the National Heritage List Items located within the dataset buffer? Note. Please click on Place Id to activate a hyperlink to online website.

Place Id	Name	Address	Place File No	Class	Status	Register Date	Distance	Direction
106068	Sydney Park AIDS Memorial Groves	Barwon Park Rd, Alexandria NSW	1/12/033/0025	Historic	Nomination now ineligible for PPAL		934m	East

Heritage Data Source: Australian Government Department of the Environment and Energy - Heritage Branch Creative Commons 3.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/3.0/au/deed.en

State Heritage Register - Curtilages

What are the State Heritage Register Items located within the dataset buffer?

Map Id	Name	Address	LGA	Listing Date	Listing No	Plan No	Distance	Direction
5053883	Sydenham Pit & Drainage Pumping Station 1	Garden Street, Marrickville	Marrickville	15/11/2002	01644	2057	166m	South
5012227	Sydenham Railway Station group	Illawarra railway, Sydenham	Marrickville	02/04/1999	01254	2413	472m	South West
5045473	St Peter's Anglican Church	187-209 Princes Highway St Peters	Marrickville	02/04/1999	00032	181	689m	South East
5012222	St Peters Railway Station group	Princes Highway (Opposite Sydney Park Rd), St Peters	Marrickville	02/04/1999	01250	2593	753m	East
5045101	Marrickville Town Hall (former)	96-106 Illawarra Road Marrickville	Marrickville	02/04/1999	00573	1570	844m	West

Heritage Data Source: NSW Crown Copyright - Office of Environment & Heritage

Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Environmental Planning Instrument - Heritage

What are the EPI Heritage Items located within the dataset buffer?

Map Id	Name	Classification	Significance	EPI Name	Published Date	Commenced Date	Currency Date	Distance	Direction
198	Brick paving	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	20m	North East
198	Brick paving	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	21m	North
181	Flood storage reserve and brick drain (Sydenham Pit and Drainage Pumping Station 1)	Item - General	State	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	166m	South
1125	Stead House (circa 1850s, also known as Frankfort Villa and Waterloo Villa), including interiors	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	168m	North
1336	Electricty substation No 42 (whole site)	Item - General	Local	Marrickville Local Environmental Plan 2011	22/12/2017	22/12/2017	05/06/2020	175m	North West
C14	Llewellyn Estate Heritage Conservation Area	Conservation Area - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	194m	North
1124	Mill House, including interiors	Item - General	State	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	215m	North East
175	Enmore Park and entry gates and Port Jackson fig trees	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	253m	North
1280	Waugh & Josephson industrial buildings formerInter-war Functionalist Showroom and offices and workshop, including interiors	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	263m	East
198	Brick paving	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	294m	North
198	Brick paving	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	313m	North
174	Enmore Box & Case Factory, including interiors	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	316m	North East
198	Brick paving	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	332m	North
1147	St Pius Church, Church Hall and Presbytery, including interiors	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	348m	North East
C16	Goodsell Estate Heritage Conservation Area	Conservation Area - General	Local	Marrickville Local Environmental Plan 2011	22/12/2017	22/12/2017	05/06/2020	381m	East
1160	Terrace housing, including interiors	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	394m	North East
1176	Camdenville Public School, including interiors	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	394m	North East
198	Brick paving	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	397m	North
198	Brick paving	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	412m	North
198	Brick paving	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	416m	North

Map Id	Name	Classification	Significance	EPI Name	Published Date	Commenced Date	Currency Date	Distance	Direction
1282	Group of Victorian filigree and Victorian italianate terrace houses - "Narara", including interiors	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	416m	East
134	Golden Barley Hotel, including interiors	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	422m	North East
C13	Enmore House Estate Heritage Conservation Area	Conservation Area - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	422m	North
1281	Town and Country Hotel, including interiors	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	439m	East
176	Terrace housing, including interiors	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	458m	North
198	Brick paving	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	464m	North
172	Marrickville Public School, including interiors	Item - General	State	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	474m	West
1286	Sydenham Railway Station group, including interiors	Item - General	State	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	484m	South West
198	Brick paving	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	487m	North
1273	Terrace housing, including interiors	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	506m	East
1367	Federation warehouse	Item - General	Local	Marrickville Local Environmental Plan 2011	22/12/2017	22/12/2017	05/06/2020	512m	South East
1287	Brick retaining walls	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	518m	South West
198	Brick paving	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	530m	North
C37	Lackey Street and Simpson Park Heritage Conservation Area	Conservation Area - General	Local	Marrickville Local Environmental Plan 2011	22/12/2017	22/12/2017	05/06/2020	531m	East
1271	St Peters Public School, including interiors	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	575m	South East
C38	Camden Street and James Street Heritage Conservation Area	Conservation Area - General	Local	Marrickville Local Environmental Plan 2011	22/12/2017	22/12/2017	05/06/2020	578m	North East
1117	Industrial façade	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	583m	North West
1293	Electricity substation No 43 (whole site)	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	597m	South
198	Brick paving	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	603m	North
1279	Group of retail premises, including interiors	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	609m	South
1279	Group of retail premises, including interiors	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	611m	South
1118	Sims Metal Factory, including interiors	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	612m	North West

Map Id	Name	Classification	Significance	EPI Name	Published Date	Commenced Date	Currency Date	Distance	Direction
184	Former Globe Worsted Mills, including interiors and former Globe Worsted Mills substation	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	632m	North West
138	Group of semi- detached cottages, including interiors	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	634m	North
1291	St Peters Town Hall, including interiors	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	643m	South
1284	Brick kerb and sandstone kerb guttering	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	644m	South
1290	General Gordon Hotel, including interiors	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	664m	South West
1272	St Peters Railway Station group, including interiors	Item - General	State	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	669m	East
1279	Group of retail premises, including interiors	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	670m	South
1278	Victorian filigree style mansionClaraville, including interiors	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	676m	South East
198	Brick paving	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	677m	North
1119	Victorian italianate style mansionLauraville, including interiors	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	684m	West
1284	Brick kerb and sandstone kerb guttering	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	685m	South
1275	St Peter's Church of England, including interiors	Item - General	State	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	689m	South East
C12	Enmore-Newtown Heritage Conservation Area	Conservation Area - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	693m	North East
1292	Gothic and italianate houseCarthness, including interiors	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	702m	South
C15	Holmwood Estate Heritage Conservation Area	Conservation Area - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	705m	North East
1284	Brick kerb and sandstone kerb guttering	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	710m	South
133	Group of Mid- Victorian gothic houses, including interiors	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	711m	North
1284	Brick kerb and sandstone kerb guttering	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	712m	South
1285	Victorian filigree terrace and engineering workshop at rear, including interiors	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	715m	South
1350	Elecricity substation No 111 (whole site)	Item - General	Local	Marrickville Local Environmental Plan 2011	22/12/2017	22/12/2017	05/06/2020	719m	North West
1133	Group of Federation Queen Anne style terrace houses, including interiors	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	771m	North East

Map Id	Name	Classification	Significance	EPI Name	Published Date	Commenced Date	Currency Date	Distance	Direction
1287	Brick retaining walls	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	774m	South West
192	Former corner shop, including interiors	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	775m	North West
1284	Brick kerb and sandstone kerb guttering	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	776m	South
193	Henson Park Hotel, including interiors	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	777m	North West
1277	Southern Cross Hotel, including interiors	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	783m	South East
1376	Service garage	Item - General	Local	Marrickville Local Environmental Plan 2011	22/12/2017	22/12/2017	05/06/2020	787m	South East
1167	VillaFerndale, including interiors	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	793m	North East
1284	Brick kerb and sandstone kerb guttering	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	794m	South
1378	Potential archaeological site (including sandstone wall facing Berne Street)	Item - General	Local	Marrickville Local Environmental Plan 2011	22/12/2017	22/12/2017	05/06/2020	796m	South
1284	Brick kerb and sandstone kerb guttering	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	803m	South
1370	Whitehorse Hotel	Item - General	Local	Marrickville Local Environmental Plan 2011	22/12/2017	22/12/2017	05/06/2020	806m	South East
132	Victorian villa, including interiors	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	822m	North
I91	Tunneyfall TerraceVictorian italianate corner shops and Victorian style terrace houses, including interiors	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	827m	North West
190	Victorian italianate corner shop and adjacent pair of Victorian terrace houses, including interiors	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	833m	North West
I146	Group of Victorian italianate style terrace housesDoris, Clifton, Tarana and Glenroy, including interiors	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	833m	North East
194	Former Marrickville Town Hall, including interiors	Item - General	State	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	844m	West
147	Enmore Church of Christ, including interiors	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	846m	North
170	Brick drain	Item - General	State	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	848m	West
1145	Josiah Gentles Victorian italianate style villaThe Towers, including interiors	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	855m	North East
1284	Brick kerb and sandstone kerb guttering	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	860m	South

Map Id	Name	Classification	Significance	EPI Name	Published Date	Commenced Date	Currency Date	Distance	Direction
166	Addison Road Community Centre, including interiors	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	870m	North West
149	Newington Manor - Victorian gothic villa, including interiors	Item - General	State	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	872m	North
1321	Electricity substation No 1493 (whole site)	Item - General	Local	Marrickville Local Environmental Plan 2011	22/12/2017	22/12/2017	05/06/2020	873m	North
146	Former Enmore Public School, including interiors	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	892m	North
1369	Electricty substation No 549 (whole site)	Item - General	Local	Marrickville Local Environmental Plan 2011	22/12/2017	22/12/2017	05/06/2020	893m	East
1366	Cooks River container terminal	Item - General	Local	Marrickville Local Environmental Plan 2011	22/12/2017	22/12/2017	05/06/2020	895m	South East
C2	King Street and Enmore Road Heritage Conservation Area	Conservation Area - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	901m	North East
1283	Remaining brick road and footpath paving and stone guttering	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	906m	South East
1356	Electricity substation No 1466a (whole site)	Item - General	Local	Marrickville Local Environmental Plan 2011	22/12/2017	22/12/2017	05/06/2020	908m	North East
1158	Botany View Hotel, including interiors	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	910m	East
1140	J. Ratner and & Co shop (former), including interiors	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	912m	North East
1159	St Peters Hotel, including interiors	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	917m	East
1288	Victorian filigree style sandstone faced residence, including interiors	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	923m	South
1157	Shop counters, including interiors	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	924m	North East
1289	St Mary and St Mina Coptic Orthodox Church, including interiors	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	925m	South
1366	Cooks River container terminal	Item - General	Local	Marrickville Local Environmental Plan 2011	22/12/2017	22/12/2017	05/06/2020	925m	South East
1284	Brick kerb and sandstone kerb guttering	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	927m	South
1284	Brick kerb and sandstone kerb guttering	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	932m	South
137	Enmore Post Office (former), including interiors	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	935m	North
1156	Formerly "Molloys" shop, including interiors	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	938m	North East
127	Former brickworks group	Item - General	Local	Sydney Local Environmental Plan 2012	14/12/2012	14/12/2012	15/05/2020	941m	East
1366	Cooks River container terminal	Item - General	Local	Marrickville Local Environmental Plan 2011	22/12/2017	22/12/2017	05/06/2020	941m	South East

Map Id	Name	Classification	Significance	EPI Name	Published Date	Commenced Date	Currency Date	Distance	Direction
150	Victorian Georgian style villa, including interiors	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	942m	North
182	Victorian style residenceOurimba h, including interiors	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	945m	West
1169	Victorian italianate style villaYarrowa, including interiors	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	948m	North
C47	King Street	Conservation Area - General	Local	Sydney Local Environmental Plan 2012	14/12/2012	14/12/2012	15/05/2020	951m	North East
151	St Luke's Church of England, including interiors	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	953m	North
l164	Semi-detached house, including interiors	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	956m	North East
136	Sly Fox Hotel, including interiors	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	962m	North
l614	Former St Peter's Theatre facade	Item - General	Local	Sydney Local Environmental Plan 2012	14/12/2012	14/12/2012	15/05/2020	967m	East
179	Group of Federation Queen Anne style terrace houses, including interiors	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	968m	West
l613	Commercial building	Item - General	Local	Sydney Local Environmental Plan 2012	14/12/2012	14/12/2012	15/05/2020	969m	North East
11019	Union Hotel	Item - General	Local	Sydney Local Environmental Plan 2012	14/12/2012	14/12/2012	15/05/2020	972m	North East
171	Henson Park	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	975m	North West
C23	Former Macdonaldtown Estate	Conservation Area - General	Local	Sydney Local Environmental Plan 2012	14/12/2012	14/12/2012	15/05/2020	978m	North East
1168	Victorian italianate style villaButleigh, including interiors	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	984m	North
129	Victorian rustic gothic style house, including interiors	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	989m	North
196	Victorian style house, including interiors	Item - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	992m	West
1623	Cottage group 'Henry Knight Cottages'	Item - General	Local	Sydney Local Environmental Plan 2012	14/12/2012	14/12/2012	15/05/2020	994m	North East
C17	Kingston South Heritage Conservation Area	Conservation Area - General	Local	Marrickville Local Environmental Plan 2011	12/12/2011	12/12/2011	05/06/2020	994m	North

Heritage Data Source: NSW Crown Copyright - Planning & Environment Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Natural Hazards

74 Edinburgh Road, Marrickville, NSW 2204

Bush Fire Prone Land

What are the nearest Bush Fire Prone Land Categories that exist within the dataset buffer?

Bush Fire Prone Land Category	Distance	Direction
No records within buffer		

NSW Bush Fire Prone Land - © NSW Rural Fire Service under Creative Commons 4.0 International Licence

Ecological Constraints - Native Vegetation & RAMSAR Wetlands

74 Edinburgh Road, Marrickville, NSW 2204

Native Vegetation

What native vegetation exists within the dataset buffer?

Map ID	Map Unit Name	Threatened Ecological Community NSW	Threatened Ecological Community EPBC Act	Understorey	Disturbance	Disturbance Index	Dominant Species	Dist	Direction
Urban_E/N	Urban_E/N: Urban Exotic/Native			00: Not assessed	00: Not assessed	0: Not assessed	Urban Exotic/Native	0m	Onsite

Native Vegetation of the Sydney Metropolitan Area : NSW Office of Environment and Heritage Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Ramsar Wetlands

What Ramsar Wetland areas exist within the dataset buffer?

Map Id	Ramsar Name	Wetland Name	Designation Date	Source	Distance	Direction
N/A	No records in buffer					

Ramsar Wetlands Data Source: © Commonwealth of Australia - Department of Environment

74 Edinburgh Road, Marrickville, NSW 2204

Groundwater Dependent Ecosystems Atlas

Туре	GDE Potential	Geomorphology	Ecosystem Type	Aquifer Geology	Distance
N/A	No records within buffer				

Groundwater Dependent Ecosystems Atlas Data Source: The Bureau of Meteorology

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

74 Edinburgh Road, Marrickville, NSW 2204

Inflow Dependent Ecosystems Likelihood

Туре	IDE Likelihood	Geomorphology	Ecosystem Type	Aquifer Geology	Distance
N/A	No records within buffer				

Inflow Dependent Ecosystems Likelihood Data Source: The Bureau of Meteorology

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

74 Edinburgh Road, Marrickville, NSW 2204

NSW BioNet Atlas

Species on the NSW BioNet Atlas that have a NSW or federal conservation status, a NSW sensitivity status, or are listed under a migratory species agreement, and are within 10km of the site?

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Animalia	Amphibia	Crinia tinnula	Wallum Froglet	Vulnerable	Not Sensitive	Not Listed	
Animalia	Amphibia	Litoria aurea	Green and Golden Bell Frog	Endangered	Not Sensitive	Vulnerable	
Animalia	Amphibia	Pseudophryne australis	Red-crowned Toadlet	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Actitis hypoleucos	Common Sandpiper	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Amaurornis moluccana	Pale-vented Bush-hen	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Anseranas semipalmata	Magpie Goose	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Anthochaera phrygia	Regent Honeyeater	Critically Endangered	Not Sensitive	Critically Endangered	
Animalia	Aves	Apus pacificus	Fork-tailed Swift	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Ardenna carneipes	Flesh-footed Shearwater	Vulnerable	Not Sensitive	Not Listed	ROKAMBA;JAMBA
Animalia	Aves	Ardenna grisea	Sooty Shearwater	Not Listed	Not Sensitive	Not Listed	JAMBA
Animalia	Aves	Ardenna pacifica	Wedge-tailed Shearwater	Not Listed	Not Sensitive	Not Listed	JAMBA
Animalia	Aves	Ardenna tenuirostris	Short-tailed Shearwater	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Arenaria interpres	Ruddy Turnstone	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Artamus cyanopterus cyanopterus	Dusky Woodswallow	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Botaurus poiciloptilus	Australasian Bittern	Endangered	Not Sensitive	Endangered	
Animalia	Aves	Burhinus grallarius	Bush Stone- curlew	Endangered	Not Sensitive	Not Listed	
Animalia	Aves	Calidris acuminata	Sharp-tailed Sandpiper	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Calidris alba	Sanderling	Vulnerable	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Calidris canutus	Red Knot	Not Listed	Not Sensitive	Endangered	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Calidris ferruginea	Curlew Sandpiper	Endangered	Not Sensitive	Critically Endangered	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Calidris melanotos	Pectoral Sandpiper	Not Listed	Not Sensitive	Not Listed	ROKAMBA;JAMBA
Animalia	Aves	Calidris ruficollis	Red-necked Stint	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Calidris tenuirostris	Great Knot	Vulnerable	Not Sensitive	Critically Endangered	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Callocephalon fimbriatum	Gang-gang Cockatoo	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Calyptorhynchus banksii banksii	Red-tailed Black- Cockatoo (coastal subspecies)	Critically Endangered	Category 2	Not Listed	
Animalia	Aves	Calyptorhynchus banksii samueli	Red-tailed Black- Cockatoo (inland subspecies)	Vulnerable	Category 2	Not Listed	

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Animalia	Aves	Calyptorhynchus Iathami	Glossy Black- Cockatoo	Vulnerable	Category 2	Not Listed	
Animalia	Aves	Certhionyx variegatus	Pied Honeyeater	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Charadrius Ieschenaultii	Greater Sand- plover	Vulnerable	Not Sensitive	Vulnerable	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Charadrius mongolus	Lesser Sand- plover	Vulnerable	Not Sensitive	Endangered	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Charadrius veredus	Oriental Plover	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Chlidonias leucopterus	White-winged Black Tern	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Diomedea exulans	Wandering Albatross	Endangered	Not Sensitive	Endangered	
Animalia	Aves	Epthianura albifrons	White-fronted Chat	Endangered Population, Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Erythrotriorchis radiatus	Red Goshawk	Critically Endangered	Category 2	Vulnerable	
Animalia	Aves	Fregata ariel	Lesser Frigatebird	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Gallinago hardwickii	Latham's Snipe	Not Listed	Not Sensitive	Not Listed	Rokamba;Jamba
Animalia	Aves	Glossopsitta pusilla	Little Lorikeet	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Haematopus fuliginosus	Sooty Oystercatcher	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Haematopus longirostris	Pied Oystercatcher	Endangered	Not Sensitive	Not Listed	
Animalia	Aves	Haliaeetus leucogaster	White-bellied Sea-Eagle	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Hieraaetus morphnoides	Little Eagle	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Hirundapus caudacutus	White-throated Needletail	Not Listed	Not Sensitive	Vulnerable	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Hydroprogne caspia	Caspian Tern	Not Listed	Not Sensitive	Not Listed	JAMBA
Animalia	Aves	Ixobrychus flavicollis	Black Bittern	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Lathamus discolor	Swift Parrot	Endangered	Category 3	Critically Endangered	
Animalia	Aves	Limicola falcinellus	Broad-billed Sandpiper	Vulnerable	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Limosa lapponica	Bar-tailed Godwit	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Limosa limosa	Black-tailed Godwit	Vulnerable	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Lophochroa leadbeateri	Major Mitchell's Cockatoo	Vulnerable	Category 2	Not Listed	
Animalia	Aves	Lophoictinia isura	Square-tailed Kite	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Macronectes giganteus	Southern Giant Petrel	Endangered	Not Sensitive	Endangered	
Animalia	Aves	Macronectes halli	Northern Giant- Petrel	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Aves	Manorina melanotis	Black-eared Miner	Critically Endangered	Not Sensitive	Endangered	
Animalia	Aves	Melithreptus gularis gularis	Black-chinned Honeyeater (eastern subspecies)	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Neophema chrysogaster	Orange-bellied Parrot	Critically Endangered	Category 3	Critically Endangered	
Animalia	Aves	Neophema pulchella	Turquoise Parrot	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Neophema splendida	Scarlet-chested Parrot	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Ninox connivens	Barking Owl	Vulnerable	Category 3	Not Listed	

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Animalia	Aves	Ninox strenua	Powerful Owl	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Numenius madagascariensi s	Eastern Curlew	Not Listed	Not Sensitive	Critically Endangered	Rokamba;camba; Jamba
Animalia	Aves	Numenius minutus	Little Curlew	Not Listed	Not Sensitive	Not Listed	Rokamba;camba; Jamba
Animalia	Aves	Numenius phaeopus	Whimbrel	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Onychoprion fuscata	Sooty Tern	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Pandion cristatus	Eastern Osprey	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Petroica boodang	Scarlet Robin	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Petroica phoenicea	Flame Robin	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Pezoporus wallicus wallicus	Eastern Ground Parrot	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Phaethon lepturus	White-tailed Tropicbird	Not Listed	Not Sensitive	Not Listed	CAMBA;JAMBA
Animalia	Aves	Phaethon rubricauda	Red-tailed Tropicbird	Vulnerable	Not Sensitive	Not Listed	CAMBA;JAMBA
Animalia	Aves	Pluvialis fulva	Pacific Golden Plover	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Pluvialis squatarola	Grey Plover	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Polytelis anthopeplus monarchoides	Regent Parrot (eastern subspecies)	Endangered	Category 3	Vulnerable	
Animalia	Aves	Polytelis swainsonii	Superb Parrot	Vulnerable	Category 3	Vulnerable	
Animalia	Aves	Pterodroma leucoptera leucoptera	Gould's Petrel	Vulnerable	Not Sensitive	Endangered	
Animalia	Aves	Pterodroma solandri	Providence Petrel	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Ptilinopus regina	Rose-crowned Fruit-Dove	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Ptilinopus superbus	Superb Fruit- Dove	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Puffinus assimilis	Little Shearwater	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Stagonopleura guttata	Diamond Firetail	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Stercorarius parasiticus	Arctic Jaeger	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Stercorarius pomarinus	Pomarine Jaeger	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Sterna hirundo	Common Tern	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Sternula albifrons	Little Tern	Endangered	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Stictonetta naevosa	Freckled Duck	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Sula dactylatra	Masked Booby	Vulnerable	Not Sensitive	Not Listed	ROKAMBA;JAMBA
Animalia	Aves	Thalassarche chrysostoma	Grey-headed Albatross	Not Listed	Not Sensitive	Endangered	
Animalia	Aves	Thalassarche melanophris	Black-browed Albatross	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Aves	Thalasseus bergii	Crested Tern	Not Listed	Not Sensitive	Not Listed	JAMBA
Animalia	Aves	Thinornis rubricollis	Hooded Plover	Critically Endangered	Not Sensitive	Vulnerable	
Animalia	Aves	Tringa brevipes	Grey-tailed Tattler	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Tringa glareola	Wood Sandpiper	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Animalia	Aves	Tringa incana	Wandering Tattler	Not Listed	Not Sensitive	Not Listed	JAMBA
Animalia	Aves	Tringa nebularia	Common Greenshank	Not Listed	Not Sensitive	Not Listed	Rokamba;camba; Jamba
Animalia	Aves	Tringa stagnatilis	Marsh Sandpiper	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Tyto novaehollandiae	Masked Owl	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Tyto tenebricosa	Sooty Owl	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Xenus cinereus	Terek Sandpiper	Vulnerable	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Insecta	Petalura gigantea	Giant Dragonfly	Endangered	Not Sensitive	Not Listed	
Animalia	Mammalia	Aepyprymnus rufescens	Rufous Bettong	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Arctocephalus forsteri	New Zealand Fur- seal	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Arctocephalus pusillus doriferus	Australian Fur- seal	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Cercartetus nanus	Eastern Pygmy- possum	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Chalinolobus dwyeri	Large-eared Pied Bat	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Mammalia	Dasyurus maculatus	Spotted-tailed Quoll	Vulnerable	Not Sensitive	Endangered	
Animalia	Mammalia	Dasyurus viverrinus	Eastern Quoll	Endangered	Not Sensitive	Endangered	
Animalia	Mammalia	Dugong dugon	Dugong	Endangered	Not Sensitive	Not Listed	
Animalia	Mammalia	Eubalaena australis	Southern Right Whale	Endangered	Not Sensitive	Endangered	
Animalia	Mammalia	Macrotis lagotis	Bilby	Presumed Extinct	Not Sensitive	Vulnerable	
Animalia	Mammalia	Megaptera novaeangliae	Humpback Whale	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Mammalia	Micronomus norfolkensis	Eastern Coastal Free-tailed Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Miniopterus australis	Little Bent-winged Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Miniopterus orianae oceanensis	Large Bent- winged Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Myotis macropus	Southern Myotis	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Perameles nasuta	Long-nosed Bandicoot	Endangered Population	Not Sensitive	Not Listed	
Animalia	Mammalia	Petaurus norfolcensis	Squirrel Glider	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Phascolarctos cinereus	Koala	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Mammalia	Pseudomys gracilicaudatus	Eastern Chestnut Mouse	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Pteropus poliocephalus	Grey-headed Flying-fox	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Mammalia	Saccolaimus flaviventris	Yellow-bellied Sheathtail-bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Reptilia	Antaresia stimsoni	Stimson's Python	Vulnerable	Not Sensitive	Not Listed	
Animalia	Reptilia	Aspidites ramsayi	Woma	Vulnerable	Not Sensitive	Not Listed	
Animalia	Reptilia	Caretta caretta	Loggerhead Turtle	Endangered	Not Sensitive	Endangered	
Animalia	Reptilia	Chelonia mydas	Green Turtle	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Reptilia	Dermochelys coriacea	Leatherback Turtle	Endangered	Not Sensitive	Endangered	
Animalia	Reptilia	Hoplocephalus stephensii	Stephens' Banded Snake	Vulnerable	Not Sensitive	Not Listed	

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Animalia	Reptilia	Tiliqua occipitalis	Western Blue- tongued Lizard	Vulnerable	Not Sensitive	Not Listed	
Animalia	Reptilia	Varanus rosenbergi	Rosenberg's Goanna	Vulnerable	Not Sensitive	Not Listed	
Fungi	Flora	Hygrocybe collucera		Endangered	Not Sensitive	Not Listed	
Fungi	Flora	Hygrocybe griseoramosa		Endangered	Not Sensitive	Not Listed	
Fungi	Flora	Hygrocybe reesiae		Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Acacia bynoeana	Bynoe's Wattle	Endangered	Not Sensitive	Vulnerable	
Plantae	Flora	Acacia gordonii		Endangered	Not Sensitive	Endangered	
Plantae	Flora	Acacia prominens	Gosford Wattle	Endangered Population	Not Sensitive	Not Listed	
Plantae	Flora	Acacia pubescens	Downy Wattle	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Acacia terminalis subsp. terminalis	Sunshine Wattle	Endangered	Not Sensitive	Endangered	
Plantae	Flora	Allocasuarina portuensis	Nielsen Park She- oak	Endangered	Category 3	Endangered	
Plantae	Flora	Amperea xiphoclada var. pedicellata		Presumed Extinct	Not Sensitive	Extinct	
Plantae	Flora	Caladenia tessellata	Thick Lip Spider Orchid	Endangered	Category 2	Vulnerable	
Plantae	Flora	Callistemon linearifolius	Netted Bottle Brush	Vulnerable	Category 3	Not Listed	
Plantae	Flora	Dichanthium setosum	Bluegrass	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Diuris arenaria	Sand Doubletail	Endangered	Category 2	Not Listed	
Plantae	Flora	Doryanthes palmeri	Giant Spear Lily	Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Epacris purpurascens var. purpurascens		Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Eucalyptus camfieldii	Camfield's Stringybark	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Eucalyptus fracta	Broken Back Ironbark	Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Eucalyptus leucoxylon subsp. pruinosa	Yellow Gum	Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Eucalyptus nicholii	Narrow-leaved Black Peppermint	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Eucalyptus pulverulenta	Silver-leafed Gum	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Eucalyptus scoparia	Wallangarra White Gum	Endangered	Not Sensitive	Vulnerable	
Plantae	Flora	Genoplesium baueri	Bauer's Midge Orchid	Endangered	Category 2	Endangered	
Plantae	Flora	Hibbertia puberula		Endangered	Not Sensitive	Not Listed	
Plantae	Flora	Macadamia integrifolia	Macadamia Nut	Not Listed	Not Sensitive	Vulnerable	
Plantae	Flora	Macadamia tetraphylla	Rough-shelled Bush Nut	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Maundia triglochinoides		Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Melaleuca deanei	Deane's Paperbark	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Persoonia hirsuta	Hairy Geebung	Endangered	Category 3	Endangered	
Plantae	Flora	Pimelea curviflora var. curviflora		Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Pomaderris prunifolia	Plum-leaf Pomaderris	Endangered Population	Not Sensitive	Not Listed	

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Plantae	Flora	Prostanthera marifolia	Seaforth Mintbush	Critically Endangered	Category 3	Critically Endangered	
Plantae	Flora	Rhodamnia rubescens	Scrub Turpentine	Critically Endangered	Not Sensitive	Not Listed	
Plantae	Flora	Senecio spathulatus	Coast Groundsel	Endangered	Not Sensitive	Not Listed	
Plantae	Flora	Senna acclinis	Rainforest Cassia	Endangered	Not Sensitive	Not Listed	
Plantae	Flora	Syzygium paniculatum	Magenta Lilly Pilly	Endangered	Not Sensitive	Vulnerable	
Plantae	Flora	Tetratheca glandulosa		Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Tetratheca juncea	Black-eyed Susan	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Thesium australe	Austral Toadflax	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Wahlenbergia multicaulis	Tadgell's Bluebell	Endangered Population	Not Sensitive	Not Listed	
Plantae	Flora	Wilsonia backhousei	Narrow-leafed Wilsonia	Vulnerable	Not Sensitive	Not Listed	

Data does not include NSW category 1 sensitive species.

NSW BioNet: $\ensuremath{\mathbb{C}}$ State of NSW and Office of Environment and Heritage
Location Confidences

Where Lotsearch has had to georeference features from supplied addresses, a location confidence has been assigned to the data record. This indicates a confidence to the positional accuracy of the feature. Where applicable, a code is given under the field heading "LC" or "LocConf". These codes lookup to the following location confidences:

LC Code	Location Confidence
Premise match	Georeferenced to the site location / premise or part of site
General area or suburb match	Georeferenced with the confidence of the general/approximate area
Road match	Georeferenced to the road or rail
Road intersection	Georeferenced to the road intersection
Feature is a buffered point	Feature is a buffered point
Land adjacent to geocoded site	Land adjacent to Georeferenced Site
Network of features	Georeferenced to a network of features

USE OF REPORT - APPLICABLE TERMS

The following terms apply to any person (End User) who is given the Report by the person who purchased the Report from Lotsearch Pty Ltd (ABN: 89 600 168 018) (Lotsearch) or who otherwise has access to the Report (Terms). The contract terms that apply between Lotsearch and the purchaser of the Report are specified in the order form pursuant to which the Report was ordered and the terms set out below are of no effect as between Lotsearch and the purchaser of the purchaser of the Report.

- 1. End User acknowledges and agrees that:
 - (a) the Report is compiled from or using content (Third Party Content) which is comprised of:
 - content provided to Lotsearch by third party content suppliers with whom Lotsearch has contractual arrangements or content which is freely available or methodologies licensed to Lotsearch by third parties with whom Lotsearch has contractual arrangements (Third Party Content Suppliers); and
 - (ii) content which is derived from content described in paragraph (i);
 - (b) Neither Lotsearch nor Third Party Content Suppliers takes any responsibility for or give any warranty in relation to the accuracy or completeness of any Third Party Content included in the Report including any contaminated land assessment or other assessment included as part of a Report;
 - (c) the Third Party Content Suppliers do not constitute an exhaustive set of all repositories or sources of information available in relation to the property which is the subject of the Report (**Property**) and accordingly neither Lotsearch nor Third Party Content Suppliers gives any warranty in relation to the accuracy or completeness of the Third Party Content incorporated into the report including any contaminated land assessment or other assessment included as part of a Report;
 - (d) Reports are generated at a point in time (as specified by the date/time stamp appearing on the Report) and accordingly the Report is based on the information available at that point in time and Lotsearch is not obliged to undertake any additional reporting to take into consideration any information that may become available between the point in time specified by the date/time stamp and the date on which the Report was provided by Lotsearch to the purchaser of the Report;
 - (e) Reports must be used or reproduced in their entirety and End User must not reproduce or make available to other persons only parts of the Report;
 - (f) Lotsearch has not undertaken any physical inspection of the property;
 - (g) neither Lotsearch nor Third Party Content Suppliers warrants that all land uses or features whether past or current are identified in the Report;
 - (h) the Report does not include any information relating to the actual state or condition of the Property;
 - (i) the Report should not be used or taken to indicate or exclude actual fitness or unfitness of Land or Property for any particular purpose
 - (j) the Report should not be relied upon for determining saleability or value or making any other decisions in relation to the Property and in particular should not be taken to be a rating or assessment of the desirability or market value of the property or its features; and
 - (k) the End User should undertake its own inspections of the Land or Property to satisfy itself that there are no defects or failures
- 2. The End User may not make the Report or any copies or extracts of the report or any part of it available to any other person. If End User wishes to provide the Report to any other person or make extracts or copies of the Report, it must contact the purchaser of the Report before doing so to ensure the proposed use is consistent with the contract terms between Lotsearch and the purchaser.
- 3. Neither Lotsearch (nor any of its officers, employees or agents) nor any of its Third Party Content Suppliers will have any liability to End User or any person to whom End User provides the Report and End User must not represent that Lotsearch or any of its Third Party Content Suppliers accepts liability to any such person or make any other representation to any such person on behalf of Lotsearch or any Third Party Content Supplier.
- 4. The End User hereby to the maximum extent permitted by law:
 - (a) acknowledges that the Lotsearch (nor any of its officers, employees or agents), nor any

of its Third Party Content Supplier have any liability to it under or in connection with the Report or these Terms;

- (b) waives any right it may have to claim against Third Party Content Supplier in connection with the Report, or the negotiation of, entry into, performance of, or termination of these Terms; and
- (c) releases each Third Party Content Supplier from any claim it may have otherwise had in connection with the Report, or the negotiation of, entry into, performance of, or termination of these Terms.
- 5. The End User acknowledges that any Third Party Supplier shall be entitled to plead the benefits conferred on it under clause 4, despite not being a party to these terms.
- 6. End User must not remove any copyright notices, trade marks, digital rights management information, other embedded information, disclaimers or limitations from the Report or authorise any person to do so.
- 7. End User acknowledges and agrees that Lotsearch and Third Party Content Suppliers retain ownership of all copyright, patent, design right (registered or unregistered), trade marks (registered or unregistered), database right or other data right, moral right or know how or any other intellectual property right in any Report or any other item, information or data included in or provided as part of a Report.
- 8. To the extent permitted by law and subject to paragraph 9, all implied terms, representations and warranties whether statutory or otherwise relating to the subject matter of these Terms other than as expressly set out in these Terms are excluded.
- 9. Subject to paragraph 6, Lotsearch excludes liability to End User for loss or damage of any kind, however caused, due to Lotsearch's negligence, breach of contract, breach of any law, in equity, under indemnities or otherwise, arising out of all acts, omissions and events whenever occurring.
- 10. Lotsearch acknowledges that if, under applicable State, Territory or Commonwealth law, End User is a consumer certain rights may be conferred on End User which cannot be excluded, restricted or modified. If so, and if that law applies to Lotsearch, then, Lotsearch's liability is limited to the greater of an amount equal to the cost of resupplying the Report and the maximum extent permitted under applicable laws.
- 11. Subject to paragraph 9, neither Lotsearch nor the End User is liable to the other for:
 - (a) any indirect, incidental, consequential, special or exemplary damages arising out of or in relation to the Report or these Terms; or
 - (b) any loss of profit, loss of revenue, loss of interest, loss of data, loss of goodwill or loss of business opportunities, business interruption arising directly or indirectly out of or in relation to the Report or these Terms,

irrespective of how that liability arises including in contract or tort, liability under indemnity or for any other common law, equitable or statutory cause of action or otherwise.

12. These Terms are subject to New South Wales law.

Land Title Records

ADVANCE LEGAL SEARCHERS PTY LTD

(ACN 147 943 842) ABN 82 147 943 842

18/36 Osborne Road, Manly NSW 2095
 Telephone:
 +612 9977 6713

 Mobile:
 0412 169 809

 Email: search@alsearchers.com.au

10th August, 2020

JKENVIRONMENTS PTY LIMITED PO BOX 976, NORTH RYDE BC NSW 1670

Attention: Alistair Mitchell,

RE:

74 Edinburgh Road, Marrickville Job No. E33191B

Current Search

Folio Identifier 202/1133999 (title attached) DP 1133999 (plan attached) Dated 07th August, 2020 Registered Proprietor: **FABCOT PTY LTD**

Title Tree Lot 202 DP 1133999

Folio Identifier 202/1133999

(a)	(b)	(c)
Folio Identifier 2/616215	Folio Identifier 619/720786	Folio Identifier 621/720786
CTVol 14622 Folio 121	Crown L	and
See Notes (ai), (aii), (aiii), (ai	v) & (av) ***	*

(ai)	(aii)	(aiii)
CTVol 11866 Folio 66	CTVol 6135 Folio 138	CTVol 2848 Folio 182
CTVol 5987 Folio 29	PA 36173	
CTVol 4855 Folio 165	Conv Book 1159 No 914	
See Notes (aia), (aib) & (aic)	****	

(aia)	(aib)	(aic)
CTVol 1501 Folio 13	CTVol 3806 Folio 82	CTVol 4053 Folio 173
****	CTVol 1501 Folio 14	CTVol 2314 Folio 102
	****	****

(aiv)

(av)

CTVol 2849 Folio 12 CTVol 1865 Folio 5

Summary of proprietor(s) Lot 202 DP 1133999

Year

Proprietor(s)

	(Lot 202 DP 1133999)
2018 – todate	Fabcot Pty Ltd (ACN 002 960 983)
2011 - 2018	Hydrox Nominees Pty Ltd (ACN 139 262 123)
2009 - 2011	ACPP Industrial Pty Limited (ACN 89 108 662 022)
(2009 – todate)	(various current leases & sub leases shown on Folio Identifier 202/1133999)
(2009 – todate)	(various leases & sub leases shown on Historical Folio 202/1133999)

See Notes (a), (b) & (c)

Note (a)

	(Lot 2 DP 616215)
2005 - 2009	ACPP Industrial Pty Limited (ACN 89 108 662 022)
1988 - 2005	Unilever Australia Limited
(2005 – 2009)	(various leases shown on Historical Folio 2/616215)
	(Lot 2 DP 616215 – CTVol 14622 Fol 121)
1984 - 1988	Unilever Australia Limited
1982 - 1984	Wales Management Pty Limited
1981 - 1982	Unilever Australia Proprietary Limited
(1981 – 1988)	(various leases shown on CTVol 14622 Fol 121)

See Notes (ai), (aii), (aiii) & (aiv)

Note (ai)

	(Lot 2 DP 539623 – CTVol 11866 Fol 66)
1980 - 1981	Unilever Australia Proprietary Limited
1972 – 1980	Marrickville Margarine Pty Limited
(1972 – 1981)	(various leases shown on CTVol 11866 Fol 66)
	(Part Lots 54 to 57 DP 65 – Area 4 Acres 0 Roods 5 Perches – CTVol
	5987 Fol 29)
1949 – 1972	Marrickville Margarine Pty Limited
	(Part Lots 54 to 57 DP 65 – Area 4 Acres 0 Roods 32 ³ / ₄ Perches – CTVol
	4855 Fol 165)
1937 – 1949	Marrickville Margarine Pty Limited
(1937 – 1949)	(various leases shown on CTVol 4855 Fol 165)

See Notes (aia), (aib) & (aic)

Note (aia)

	(Part Lots 54 to 57 DP 65 – Area 2 Roods 31 ³ / ₄ Perches – CTVol 1501 Fol 13)
1913 – 1937	The Sydney Steel Company Limited

Note (aib)

	(Part Lots 54 to 57 DP 65 – Area 3 Acres 1 Rood 33 ³ / ₄ Perches – CTVol 3806 Fol 82)
1935 – 1937	The Sydney Steel Company Limited
1925 – 1935	Richard Taylor Limited
	(Part Lots 54 to 57 DP 65 – Area 3 Acres 1 Rood 33 ³ / ₄ Perches – CTVol
	1501 Fol 14)
1914 - 1925	Richard Taylor Limited
1912 - 1914	Richard Taylor, merchant
1908 - 1912	James Brough, pottery manufacturer
1904 - 1908	Thomas Arthur Ashton, potter
	Joshua Christopher Jagelman, accountant
1903 - 1904	Charles David Murray, general storekeeper
	Thomas Arthur Ashton, potter

-5-

```
****
```

Note (aic)

	(Part Lots 53 to 57 DP 65 – Area 29 Perches – CTVol 4053 Fol 173)
1935 – 1937	The Sydney Steel Company Limited
1927 – 1935	Richard Taylor Limited
	(Part Lots 48 to 57 DP 65 and other lands – Area 1 Acres 0 Roods 15 ³ / ₄
	Perches – CTVol 2314 Fol 102)
1912 - 1927	The Minister for Public Works of the State of New South Wales

Note (aii)

	(Part Lots 37 & 38 Block 3B of the Petersham Estate – Area 16 Acres	
	3 Roods 22 Perches – CTVol 6135 Fol 138)	
1980 - 1981	Unilever Australia Proprietary Limited	
1975 – 1980	Marrickville Holdings Limited	
(1964 – 1981)	(lease to The Sydney County Council of premises known as 49-89 Fitzroy	
	Street, Marrickville)	
1950 - 1975	R. Fowler Limited	
	(Part Lots 37 & 38 Block 3B of the Petersham Estate and other lands –	
	Conv Bk 1159 No 914)	
1919 - 1950	R. Fowler Limited	

Note (aiii)

	(Part Lot 51 DP 65 – Area 9 ³ / ₄ Perches – CTVol 2848 Fol 182)
1980 - 1981	Unilever Australia Proprietary Limited
(1960 – 1981)	(lease to The Sydney County Council of part)
1960 - 1980	Marrickville Margarine Pty Limited
	(formerly Marrickville Margarine Limited)
1928 - 1960	Marrickville Margarine Limited
1918 - 1928	Elizabeth Faram, wife of Arthur Henry Faram, contractor

Note (aiv)

	(Part Lots 50 & 51 DP 65 – Area 1 Acre 1 Rood 6 ½ Perches – CTVol 2849 Fol 12)
1980 - 1981	Unilever Australia Proprietary Limited
(1951 – 1981)	(lease to The Sydney County Council of part)
1960 - 1980	Marrickville Margarine Pty Limited
	(formerly Marrickville Margarine Limited)
1921 - 1960	Marrickville Margarine Limited
1918 - 1921	The Marrickville Margarine Company Limited

Note (av)

	(Part Lots 52 & 53 DP 65 – Area 1 Acre 2 Roods 13 ¼ Perches –
	CTVol 1865 Fol 5)
1980 - 1981	Unilever Australia Proprietary Limited
(1960 – 1981)	(lease to The Sydney County Council of part)
1960 - 1980	Marrickville Margarine Pty Limited
	(formerly Marrickville Margarine Limited)

1921 - 1960	Marrickville Margarine Limited
1908 - 1921	The Marrickville Margarine Company Limited
1908 - 1908	Charles Baldry Abel, manufacturing confectioner

Note (b)

	(Lot 619 DP 720786)
2005 - 2009	ACPP Industrial Pty Limited (ACN 89 108 662 022)
1986 - 2005	State of New South Wales
	(Part Sydney Steel Road, Marrickville)
Prior – 1986	Crown Road

Note (b)

	(Lot 621 DP 720786)
2005 - 2009	ACPP Industrial Pty Limited (ACN 89 108 662 022)
1986 - 2005	State of New South Wales
	(Part Sydney Steel Road, Marrickville)
Prior – 1986	Crown Road

Report Generated 10:26:55 AM, 7 August, 2020 Copyright © Crown in right of New South Wales, 2017 This information is provided as a searching aid only.Whilst every endeavour is made to ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For ALL ACTIVITY PRIOR TO SEPTEMBER 2002 you must refer to the RGs Charting and Reference Maps Page 1 of 7

Cadastral Records Enquiry Report : Lot 202 DP 1133999

Ref: NOUSER

	LAND		Enquiry Report.	LOI 202 DI 1133333	
NSW	REGISTRY	Locality : MARRICKVILLE			
	SERVICES	LGA : INNER WEST		County : CUMBERLAND	
		Status	SundComp	Burnoso	
100190		Status	Survicomp	Fulpose	
ot(s): 38					
Jot(0). 00	NSW GAZ. ACQUIRED FC LOT 38 DP499	06-01 DR THE PURPOSES OF THE 1	-2017 TRANSPORT ADMINIS	Folio : 3 IRATION ACT 1988	
	EX-SUR 82/38	DP985020			
0P165759 .ot(s): 1					
	NSW GAZ. ACQUIRED FC LOT 1 DP1226	06-01 OR THE PURPOSES OF THE 727	-2017 TRANSPORT ADMINIS	Folio : 3 IRATION ACT 1988	
	EX-SUR 82/38	DP985020			
DP613757 ₋ot(s): 1					
7	NSW GAZ. ACQUIRED FC LOT 1 DP6137	20-01 OR THE PURPOSES OF THE 57	-2017 TRANSPORT ADMINIS	Folio : 149 IRATION ACT 1988	
2	NSW GAZ. ACQUIRED FC LOT 1 DP6137	20-02 DR THE PURPOSES OF THE 57	2-2017 TRANSPORT ADMINIS ⁻	Folio : 486 IRATION ACT 1988	
)P623924 _ot(s): 1					
7	NSW GAZ. ACQUIRED FC LOT 1 DP6239	06-01 DR THE PURPOSES OF THE 24 AND LOT 32 DP709081	-2017 TRANSPORT ADMINIS	Folio : 5 FRATION ACT 1988	
3	EX-SUR 82/38	DP985020			
DP629032 _ot(s): 100					
3	DP1228762	REGISTERED	SURVEY	SURVEY INFORM	IATION ONLY
DP630403					
_ot(s): 103		20.01	0047		
	ACQUIRED FC LOT 103 DP63	DR THE PURPOSES OF THE 0403	TRANSPORT ADMINIS	FOID 149 FRATION ACT 1988	
.	NSW GAZ. ACQUIRED FC LOT 1 DP6137	20-01 OR THE PURPOSES OF THE 57	-2017 TRANSPORT ADMINIS	Folio : 149 FRATION ACT 1988	
7	NSW GAZ. ACQUIRED FC LOT 103 DP63	20-02 DR THE PURPOSES OF THE 0403	2-2017 TRANSPORT ADMINIS	Folio : 486 FRATION ACT 1988	
JP667553					
_ot(s): 53					
7	NSW GAZ. ACQUIRED FC LOT 53 DP667	06-01 OR THE PURPOSES OF THE 553	-2017 TRANSPORT ADMINIS	Folio : 3 IRATION ACT 1988	
5	EX-SUR 82/38	DP985020			
DP709081 _ot(s): <u>32</u>					
3	NSW GAZ. ACQUIRED FC LOT 1 DP6239	06-01 OR THE PURPOSES OF THE 24 AND LOT 32 DP709081	-2017 TRANSPORT ADMINIS	Folio : 5 IRATION ACT 1988	
₋ot(s): 31 ट्रे	NSW GAZ. ACQUIRED FC LOT 31 DP709	06-01 DR THE PURPOSES OF THE 081	-2017 TRANSPORT ADMINIS	Folio : 5 FRATION ACT 1988	
_ot(s): 31,	32 EX-SUR 82/38	DP985020			
DP719997 _ot(s): 1					

 Caution:
 This information is provided as a searching aid only. Whilst every endeavour is made the ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For ALL

 ACTIVITY PRIOR TO SEPTEMBER 2002 you must refer to the RGs Charting and Reference Maps.

Cadastral Records Enquiry Report : Lot 202 DP 1133999

Ref: NOUSER

	sw	REGISTRY	Locality : MARRICKVILLE		Parish : PETERSHAM	
\searrow		SERVICES	LGA : INNER WEST		County : CUMBERLAND	
			Status	Surv/Comp	Purpose	
DP720)786					
Lot(s):	618		20.01.2	017		
	3 -	ACQUIRED FOF LOT 618 DP720	R THE PURPOSES OF THE TF 786	RANSPORT ADMINISTRAT	FION ACT 1988	
	7	NSW GAZ. ACQUIRED FOF LOT 618 DP720	20-02-20 R THE PURPOSES OF THE TF 786	017 RANSPORT ADMINISTRAT	Folio : 486 FION ACT 1988	
Lot(s):	620		20.01.0	0.47		
	2	ACQUIRED FOF LOT 620 DP720	20-01-20 R THE PURPOSES OF THE TF 786	RANSPORT ADMINISTRAT	F010 : 149 FION ACT 1988	
	7	NSW GAZ. ACQUIRED FOF LOT 620 DP720	20-02-20 R THE PURPOSES OF THE TF 786	017 RANSPORT ADMINISTRAT	Folio : 486 FION ACT 1988	
DP746 Lot(s):	382 102					
	<u>e</u>	DP1241824	REGISTERED	COMPILATION	EASEMENT	
DP802 Lot(s):	2920 4					
_01(0)!		DP1039750	REGISTERED	SURVEY	EASEMENT	
	7	NSW GAZ. EASEMENT FOI ACQUIRED FOF	11-10-20 R ELECTRICITY PURPOSES 0 R THE PURPOSES OF THE EI	002 6 METRES WIDE AND VAF LECTRICITY SUPPLY ACT	Folio : 8767 RIABLE WIDTH DESIGNATED (C) IN DP1039750 , 1995 - SEE AA107889	
	**	NSW GAZ. ACQUIRED FOF LOT 4 DP80292	20-01-20 R THE PURPOSES OF THE TR D	017 RANSPORT ADMINISTRAT	Folio : 149 FION ACT 1988	
	**	NSW GAZ. ACQUIRED FOF LOT 4 DP80292	20-02-20 R THE PURPOSES OF THE TR D	017 RANSPORT ADMINISTRAT	Folio : 486 FION ACT 1988	
Lot(s):	1					
		NSW GAZ. LEASEHOLD RI DESIGNATED (I	04-10-20 GHTS AS DESCRIBED IN ME D) ACQUIRED FOR THE PURI	002 MORANDUM NO. 7959061 POSES OF THE ELECTRIC	C AND ALSO BEING THAT RIGHT OF WAY CITY SUPPLY ACT, 1995	
Lot(s):	7	CA163514 - I OT	7 DP802920			
DP100	<u>-</u> 277	5	1 21 002020			
Lot(s):	1, 2					
	.	DP61121	HISTORICAL	SURVEY	UNRESEARCHED	
		DP1039750	REGISTERED	SURVEY	EASEMENT	
Lot(s):	1	DP403424	HISTORICAL	SURVEY	UNRESEARCHED	
Lot(s):	2					
	<u>e</u>	DP153	HISTORICAL	COMPILATION	UNRESEARCHED	
DP113	399 202	9				
LOI(3).		DP616215	HISTORICAL	SURVEY	SUBDIVISION	
		DP720786	HISTORICAL	SURVEY	CROWN FOLIO CREATION	
		DP1213640	WITHDRAWN	UNAVAILABLE	SUBDIVISION	
DP116	250 100	6				
		DP4991	HISTORICAL	COMPILATION	UNRESEARCHED	
		DP932146	HISTORICAL	COMPILATION	UNRESEARCHED	
		DP942014	HISTORICAL	COMPILATION	UNRESEARCHED	
		DP1003352	HISTORICAL	SURVEY	CONSOLIDATION	
	**	NSW GAZ. ACQUIRED FOF LOT 100 DP116	06-01-20 R THE PURPOSES OF THE TF 2506	017 RANSPORT ADMINISTRAT	Folio : 4 FION ACT 1988	
	4	EX-SUR 82/38 D	P985020			

 Caution:
 This information is provided as a searching aid only. Whilst every endeavour is made the ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For ALL

 ACTIVITY PRIOR TO SEPTEMBER 2002 you must refer to the RGs Charting and Reference Maps.

LAND

\wedge		<u>Cadastral Records E</u>	nguiry Report : Lo	t 202 DP 1133999	Ref : NOUSER
	SW REGISTRY	Locality : MARRICKVILLE		Parish : PETERSHAM	
\searrow	SERVICES	LGA : INNER WEST		County : CUMBERLAND	
		Status	Surv/Comp	Purpose	
DP116	\$2801	Status	Survicomp	rupose	
Lot(s):	2, 4				
	🖳 DP616215	HISTORICAL	SURVEY	SUBDIVISION	
	🖳 DP1133999	HISTORICAL	SURVEY	SUBDIVISION	
DP121	7644				
Lot(s):		HISTOPICAL			
	DF010215	HISTORICAL	SURVEY	SUBDIVISION	
	DP1162801	HISTORICAL	SURVEY	SUBDIVISION	
DP122	20132	THO FOR A CAL	GORVET	CODDITION	
Lot(s):	1, 2				
	🖳 DP6021	HISTORICAL	SURVEY	UNRESEARCHED)
DP123	31062				
Lot(s):		DECISTEDED			
			SURVET	RESUMPTION OF	ACQUISITION
		DF903020	010		
	ACQUIRED UN	DER THE LAND ACQUISITION	I (JUST TERMS COMPEN	NSATION) ACT 1991	
	LOT 101 DP124	45192			
DD400	💯 PA83485 - LOT	100 DP1231062			
DP123	37269 101 102				
LUI(3).	DP318232	HISTORICAL	SURVEY	UNRESEARCHED)
Lot(s):	100, 101				
()	🖳 DP180969	HISTORICAL	SURVEY	UNRESEARCHED)
Lot(s):	100, 101, 102				
	💯 2016M7100 (58	9) - SYDNEY WATER CORPO	RATION RECONCILIATIC	ON PROJECT - ACTION PEND	ING
DP124	15192 101				
LUI(S).	MSW GAZ.	07-11-2	018	Folio : 8441	
	ACQUIRED FO	R THE PURPOSES OF THE TH	RANSPORT ADMINISTRA	ATION ACT 1988	
	LOT 101 DP124	45192			
	💯 PA83489 - REJ	ECTED			
DP125	20				
LOI(S).	DP65188	HISTORICAL	SURVEY	UNRESEARCHED)
	DP346953	HISTORICAL	SURVEY	UNRESEARCHED)
	DP433715	HISTORICAL	SURVEY	UNRESEARCHED)
	DP434231	HISTORICAL	SURVEY	UNRESEARCHED)
	DP439000	HISTORICAL	SURVEY	UNRESEARCHED)
	DP723976	HISTORICAL	COMPILATION	DEPARTMENTAL	
	Q DP970213	HISTORICAL	COMPILATION	UNRESEARCHED)
	Q DP1056652	HISTORICAL	SURVEY	CONSOLIDATION	l
	👼 CA88537 - LOT	1 DP1056652			
	MSW GAZ.	11-10-2	017	Folio : 5847	
	ACQUIRED				
	FOR THE JUST	TERMS COMPENSATION AC	T 1991 - LOT 203 DP123	1678 (STRATUM LOT). ERRA	TUM VIDE GOV. GAZ
		L3. 0707-0029	010	Folio : 5407	
	ACQUIRED FO	R THE PURPOSES OF THE R	OADS ACT. 1993	1 010 . 5407	
	LOTS 31, 32, 3	3 AND 34 DP1254499			
DP125	55587				
Lot(s):	10				
		HISTORICAL	COMPILATION	UNRESEARCHED)
000	UP612551	HISTORICAL	COMPILATION	SUBDIVISION	
5P341		05-04-2	018	Folio · 1882	
	ACQUIRED FO	R THE PURPOSES OF THE TH	RANSPORT ADMINISTRA	ATION ACT 1988	
	LOTS 1, 4-8, 12	2-14, 16, 18-19 AND COMMON	PROPERTY OF SP34104	AND LOT 21-22 SP5444	

Caution: This information is provided as a searching aid only. Whilst every endeavour is made the ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For **ALL**

ACTIVITY PRIOR TO SEPTEMBER 2002 you must refer to the RGs Charting and Reference Maps.

Cadastral Records Enquiry Report : Lot 202 DP 1133999

Locality : MARRICKVILLE

Ref: NOUSER

Parish : PETERSHAM

	SERVICES	GA : INNER WEST	С	ounty : CUMBERLAND	
		Status	Surv/Comp	Purpose	
SP38356			-	-	
5	NOW LOT 2 DP6239 SP38356	924 - SEE AP178932 TERMINATED	COMPILATION	STRATA PLAN	
	NSW GAZ. ACQUIRED FOR TH LOTS 1-2 AND COM	06-01- E PURPOSES OF THE MON PROPERTY IN SF	-2017 TRANSPORT ADMINISTRATIO ?38356	Folio : 4 DN ACT 1988	
	EX-SUR 82/38 DP98	35020			
SP61322					
	DP777607	HISTORICAL	COMPILATION	CONSOLIDATION	
	DP1006822	HISTORICAL	SURVEY	REDEFINITION	
SP86524					
	DP616215	HISTORICAL	SURVEY	SUBDIVISION	
	DP1133999	HISTORICAL	SURVEY	SUBDIVISION	
	DP1162801	HISTORICAL	SURVEY	SUBDIVISION	
SP88053					
	DP616215	HISTORICAL	SURVEY	SUBDIVISION	
	DP1133999	HISTORICAL	SURVEY	SUBDIVISION	
	DP1162801	HISTORICAL	SURVEY	SUBDIVISION	
SP93123					
	DP616215	HISTORICAL	SURVEY	SUBDIVISION	
	DP1133999	HISTORICAL	SURVEY	SUBDIVISION	
	DP1162801	HISTORICAL	SURVEY	SUBDIVISION	
	DP1217644	HISTORICAL	SURVEY	SUBDIVISION	
Road					
Polygon I	d(s): 105113159				
	DP1257189	REGISTERED	SURVEY	LEASE	
Polygon I	d(s): 105464625	07.44	0040		
<u> </u>	ACQUIRED UNDER LOT 101 DP124519	THE LAND ACQUISITIC	DN (JUST TERMS COMPENSA	TION) ACT 1991	
Polygon lo	d(s): 105346741, 105 EX-SUR 82/38 DP98	464625 85020			

 Caution:
 This information is provided as a searching aid only. Whilst every endeavour is made the ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For ALL

 ACTIVITY PRIOR TO SEPTEMBER 2002 you must refer to the RGs Charting and Reference Maps.

LAND REGISTRY

Locality : MARRICKVILLE

LGA : INNER WEST

Parish : PETERSHAM

County : CUMBERLAND

Plan	Surv/Comp	Purpose
DP761	COMPILATION	UNRESEARCHED
DP4991	COMPILATION	UNRESEARCHED
DP5988	SURVEY	UNRESEARCHED
DP6021	SURVEY	UNRESEARCHED
DP28127	SURVEY	UNRESEARCHED
DP84282	SURVEY	UNRESEARCHED
DP104557	SURVEY	UNRESEARCHED
DP127469	COMPILATION	DEPARTMENTAL
DP165759	COMPILATION	UNRESEARCHED
DP181968	COMPILATION	UNRESEARCHED
DP308353	COMPILATION	UNRESEARCHED
DP316613	COMPILATION	UNRESEARCHED
DP370869	COMPILATION	UNRESEARCHED
DP380799	SURVEY	UNRESEARCHED
DP403977	SURVEY	UNRESEARCHED
DP430090	COMPILATION	UNRESEARCHED
DP443139	SURVEY	UNRESEARCHED
DP507824	SURVEY	SUBDIVISION
DP524035	COMPILATION	RESUMPTION OR ACQUISITION
DP539623	SURVEY	SUBDIVISION
DP558417	SURVEY	SUBDIVISION
DP607677	COMPILATION	CONSOLIDATION
DP607690	COMPILATION	SUBDIVISION
DP608875	COMPILATION	CONSOLIDATION
DP613222	COMPILATION	CONSOLIDATION
DP613713	COMPILATION	SUBDIVISION
DP613757	SURVEY	RESUMPTION OR ACQUISITION
DP623924	SURVEY	SUBDIVISION
DP629032	SURVEY	CONSOLIDATION
DP629914	SURVEY	SUBDIVISION
DP630403	SURVEY	SUBDIVISION
DP635310	SURVEY	SUBDIVISION
DP667181	COMPILATION	DEPARTMENTAL
DP667553	COMPILATION	DEPARTMENTAL
DP709081	COMPILATION	SUBDIVISION
DP715231	SURVEY	SUBDIVISION
DP719997	SURVEY	SUBDIVISION
DP720786	SURVEY	CROWN FOLIO CREATION
DP723723	COMPILATION	DEPARTMENTAL
DP739377	SURVEY	CONSOLIDATION
DP746382	COMPILATION	CONSOLIDATION
DP776050	SURVEY	CONSOLIDATION
DP777511	COMPILATION	SUBDIVISION
DP802920	SURVEY	RESUMPTION OR ACQUISITION
DP850366	SURVEY	PRIMARY APPLN NON SUBDIVISION
DP862489	SURVEY	OLD SYSTEM CONVERSION
DP874363	SURVEY	CONSOLIDATION
DP879442	SURVEY	SUBDIVISION
DP901044	COMPILATION	UNRESEARCHED
DP916909	COMPILATION	UNRESEARCHED
DP924359	COMPILATION	UNRESEARCHED
DP947151	SURVEY	UNRESEARCHED
DP950487	COMPILATION	UNRESEARCHED
DP954848	COMPILATION	UNRESEARCHED
DP977116	COMPILATION	UNRESEARCHED
DP982519	COMPILATION	UNRESEARCHED
DP1002775	SURVEY	REDEFINITION
DP1018983	COMPILATION	DEPARTMENTAL
DP1027787	COMPILATION	DEPARTMENTAL
DP1126661	COMPILATION	DEPARTMENTAL
DP1133999	SURVEY	SUBDIVISION
DP1162506	SURVEY	CONSOLIDATION
DP1162801	SURVEY	SUBDIVISION
DP1217644	SURVEY	SUBDIVISION
DP1217644	UNRESEARCHED	SUBDIVISION

Caution: This information is provided as a searching aid only. Whilst every endeavour is made the ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For **ALL**

ACTIVITY PRIOR TO SEPTEMBER 2002 you must refer to the RGs Charting and Reference Maps.

Cadastral Records Enquiry Report : Lot 202 DP 1133999

NSW REGISTRY	Locality : MARRICKVILLE	Parish : PETERSHAM
SERVICES	LGA : INNER WEST	County : CUMBERLAND
Plan	Surv/Comp	Purpose
DP1220132	SURVEY	SUBDIVISION
DP1220132	UNRESEARCHED	SUBDIVISION
DP1231062	SURVEY	RESUMPTION OR ACQUISITION
DP1231062	UNRESEARCHED	RESUMPTION OR ACQUISITION
DP1237269	SURVEY	SUBDIVISION
DP1245192	SURVEY	RESUMPTION OR ACQUISITION
DP1245192	UNRESEARCHED	RESUMPTION OR ACQUISITION
DP1255587	SURVEY	CONSOLIDATION
SP33490	COMPILATION	STRATA PLAN
SP33648	COMPILATION	STRATA PLAN
SP34104	COMPILATION	STRATA PLAN
SP36047	COMPILATION	STRATA PLAN
SP40314	COMPILATION	STRATA PLAN
SP61322	COMPILATION	STRATA PLAN
SP86524	COMPILATION	STRATA PLAN
SP86524	UNRESEARCHED	STRATA PLAN
SP88053	COMPILATION	STRATA PLAN
SP93123	COMPILATION	STRATA PLAN
SP93123	UNRESEARCHED	STRATA PLAN

Caution: This information is provided as a searching aid only. Whilst every endeavour is made the ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For ALL ACTIVITY PRIOR TO SEPTEMBER 2002 you must refer to the RGs Charting and Reference Maps.

WARNING: THIS DOCUMENT MUST NOT BE REMOVED FROM THE LAND TITLES OFFICE

- "Drainage Easement" in the plan hereon. 3. Easement for Access created by Transfer No.B525027 affecting the pieces of land shown as "Easement for Access Variable Width" in the plan hereon.
- 4. Right of Way created by Transfer No.B525027 appurtenant to part of the land above described affecting the "M.W.S & D.B. Stormwater Channel" shown in the plan hereon.
- S. Covenant created by Transfer No. B525027 affecting part.
- -Entered -9-5-1968. discharged. R672903 6. Mortgage No.L26627-to Superannuation Bourg

Registrar General

NOTE: ENTRIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR GENERAL ARE CANCELLED.

	INSTRUMENT NATURE NILLAGE SIGNATURE of	Trensfe. R672904 - 12-3-19.60.	a listical on 11-12 that the test Sarations: Fol. (DD+D/assuccively			ENTERED Signature of CANCELLATION CANCELLATION	5-22-1972 June Con			1.11.1974 Farture.
FIRST SCHEDULE (continued)	REGISTERED PROPRIETOR	The price tarry heme ted.	Now Certificates of Ticle to for loss in Deposited Pich Lous 1 - 2 - Vol. 1962	A 1 (1, 194 (194)) CA THE BANKEL OF D LA LA JIS.	SECOND SCHEDULE (continued)	ER DATE PARTICULARS	56 16-7-1973 of fast tegether with hights, to The Sydney County	out in the baid instrument allecting that not a for the fast of the land within described shown as "Proposed to the how haven with	12.8.197+ Right of Carriageway appretenand do the land within	· described affections the whole of hot I in the plan Folse les Folse les

Req:R454456 /Doc:CT 14622-121 CT /Rev:24-Jan-2011 /NSW LRS /Pgs:ALL /Prt:07-Aug-2020 10:31 /Seq:1 of © Office of the Registrar-General /Src:GLOBALX /Ref:advlegs **IFICATE OF TITLE** NEW SOUTH WALES **REAL PROPERTY ACT, 1900** Appln. No.2514 14622121 Prior Titles: Val Vol.1569 Pols.216 Vol. 4212 Fol.177 to 223 incl. Vol. 4406 Fol.231 Yol. 5396 Fol. 16 Vol. 6135 Fol.138 Vol. 4414 Fol.169 Vol. 4454 Fol. 85 Vol.1652 Fol. 129 Vol.1865 Fol. 5 Vol. 6915 Fol.115 Vol. 7847 Fol.220 EDITION ISSUED Vol. 4498 Fol. 97 Vol. 4506 Fol. 31 Vol. 4562 Fol.120 Vol. 9865 Fol. 96 Vol.11866 Fol. 66 Vol.2012 Fol. 131 Vol.2079 Fol. 66 വ Vol.2079 Fol. 66 Vol.2459 Fol. 222 Vol.12710 Fol.223 14 1981 12 Vol.2848 Fol. 182 Vol. 5249 Fol.240 Vol.14150 Fol.129 Fol Vol.2849 Fol. 12 2 I certify that the person described in the First Schedule is the registered proprietor of the undermentioned estate in the land within described subject 30 nevertheless to such exceptions encumbrances and interests as are shown in the Second Schedule. *** 1**1 Registrar General PERSONS ARE CAUTIONED AGAINST ALTERING OR ADDING TO THIS CERTIFICATE OR ANY NOTIFICATION HEREON ESTATE AND LAND REFERRED TO Estate in Fee Simple in Lot 2 in Deposited Plan 616215 at Marrickville in the Municipality of 2 Marrickville Parish of Petersham and County of Cumberland being part of 190.2 hectares granted <u>-</u> WARNING: THIS DOCUMENT MUST NOT BE REMOVED FROM THE REGISTRAR GENERAL'S OFFICE! to Thomas Moore on 5-10-1799 and 733.5 square metres, 82.2 square metres, 638.6 square metres and 208.6 square metres granted by Crown Grants Volume 4564 Folio 238, Volume 6915 Folio 115, Volume 7847 Folio 220 and Volume 9865 Folio 96 respectively. EXCEPTING THEREOUT the minerals reserved by the Crown Grant of 733.5 square metres, 82.2 square metres, 638.6 square metres and 208.6 square metres and all mines and deposits specified in Section 114 Public Works Act, 1888, excepted by Resumption 322286 shown in the plan hereon. FIRST SCHEDULE UNILEVER-AUSTRALIA TRIETARY LIMITED. UNILEVER AUSTRALIA PROPRIEDARY LIMITED. 4. 0611 SECOND SCHEDULE GAY 1. Reservations and conditions, if any, contained in the Crown Grants above referred to. Right of drainage affecting the part of the land above described shown so EA(\$2.4353595 P burdened in Deposited Plan 616215. Easement for access affecting the part of the land above described shown so EAMS. B525027 P burdened in Deposited Plan 616215. RWP4. B525027 P Right of way appurtenant to the part of the land above described shown so benefited in Deposited Plan 616215 affecting "M.W.S. and D.B. Stormwater Channel" shown in Deposited Plan 318232. Covenant affecting the land shown so burdened in the plan hereon. CY 5, B525027 P EA(15)6. B715061 P Easement for access affecting the part of the land above described shown so burdened in Deposited Plan 616215. RCP7. B715061 P Right of carriageway appurtemant to the part of the land above described shown so benefited in Deposited Plan 616215 affecting "M.W.S. and D.B. Stormwater Channel" shown in Deposited Plan 318232. Covenant affecting the land shown so burdened in the plan hereon. ⟨Y 8. B715061 P Easement affecting the part of the land above described shown so burdened in 9. **В**971792 р EA Deposited Plan 616215. Covenant affecting the land shown so burdened in the plan hereon. ⊖7 10. B971792 P Easement for access affecting the part of the land above described shown so EA(SA)1. 072950 P burdened in Deposited Plan 616215. () 12. C72950 € Covenant affecting the land shown so burdened in the plan hereon. G247093 P Easement for sewage purposes affecting the part of the land above described shown so burdened in Deposited Plan 616215. Easement for stormwater and drainage affecting the part of the land above と八條例. 11441528 🖡 described shown so burdened in Deposited Plan 616215. EL(SE)15. K650166 P Easement for sewerage affecting the part of the land above described shown so burdened in Deposited Plan 616215. Lease to The Sydney County Council-of that part of the premises situated in-Edinburgh Read, Marrickville as shown in plan with N681656 together with right of way and Easement for electricity purposes over another part of the 16. N681656---land-above-described.-Expires-1-1-1993.-W900568. -Lease-to-The-Sydney-County-Council-of-that-part of the premises situated in-17. N724118----Edinburgh-Road, Marrickville-as-shown-in-plan-with-N724118-together-withrights-of-way-and-easyment-for-electricity-purposes-over-another-part of .the-land-above described. Expires 18-2-1991. Surrendered V462694 18. N987110P Easement for sewerage purposes affecting the part of the land above described shown so burdened in Deposited Plan 616215. ACP 19. N987111P Right of carriageway appurtenant to the part of the land above described shown so benefited in Deposited Plan 616215 affecting the whole of Lot 1 in Deposited Plan 539623.

• •

RG 2/66

SEATEN NI BAA RITOLA

PLAN SHOWING LOCATION OF LAND

121 T21 14622 . loV

Req:R454456 /Doc:CT 14622-121 CT /Rev:24-Jan-2011 /NSW LRS /	Pgs:ALL /Prt:07-Aug-2020 10:31 /Seq:3 of 4
© Office of the Registrar-General /Src:GLOBALX /Ref:advlegs	14622 Fol 121
(Page 3 of 4 pages)	

<u> </u>	FIRST SCHEDULE (continued)		· · · ·
,	REGISTERED PROPRIETOR		Registrar General
7	les-Management Pty-Limited by Transfer 5938838. Registered 23-4-1982.		
	nilever Australia Limited. See T850014. Registered 26-1-1984.		banning
ł			
1			
	SECOND SCHEDULE (continued)		<mark>, , </mark>
	PARTICILLARS	Registrar General	CANCELLATIO
	access of a second seco		
ri S9	affecting the land shown so burdened in the plan hereon. Registered 234-4-1982	2	
PRDF	6304031'The interest of the Council of the Municipality of Marrickville in the	20- min	
	addition to existing road shown on peposited right openies No. 5886 together		
	with a right of way and an easement for electricity purposes over another part		
-	Registered 26-1-1984.	harmin	
W	900569 Please to The Sydney County Council of Substation premises No.2149 and 4743 as shown in DP117952 together with Rights of Way and Easements for Electricity		
	Purposes over other parts of the land within described. Expires: 31.12.2036.		
	Reg13tered 23.0.1907.		
	•	-	
	NOR MANY AND THE POWERDED DE MINOR	<u> </u>	<u> </u>
	NOTATIONS AND UNREGISTERED DEALINGS		
} }			
F	2 2 5 8 5 h		
22	200 200		
ر ب ر کر م			
L	THE ENTRY OF THE PURCHAND ANTHENTICATED BY THE SEAL OF THE REGISTRAR GEN	FRAL ARE CA	NCELLED

Τ ΥΤ Γ	770AT	• • •
161	-66J¥⊧	

-

					·
		SED DEVLINGS	I NOTATIONS AND UNREGISTE		
·				, <u>, , , , , , , , , , , , , , , , , , </u>	
					:
	· .				
	• .				
		•			
				i -	
5					
					, ,
			corace up to popularda	a un unaus neod-fut:	
	ni cee V	u oiaippe-oua ui oltivabia =	Hem io-vileqicinu entra	-lionus out to to the	ant ant cone
			SNVTODELNVJ		
NOTFALISONAS	ranof) tertsland	(1)2021100	2010/0311 20 (10/0313		
		(Domitroo)			
					. *
					· ·
t					
Registral General			RECISTERED PROPRIETOR		

	Form: 01T Release: 4.2	·		NSFER South Wales			
	www.lpma.nsw.g	gov.au	Real Pr	operty Act 1900	AG	159869	9
	PRIVACY NOTE:	Section 31B of	the Real Property Act 1900 (RP	Act) authorises the	Rug		
	by this form for the Register is m	r the establish ade available t	ment and maintenance of t	he Real Property I	Act Register Sect	uion 968 RP Act ita Revenue	-requires
	STAMP DUTY	Office of Sta	te Revenue use only	ayment of a fee, if a	CARSE NSW Treas	ury	FO 4
					Cont No: 333///4	6121	22/
					Duty: <u>///-00</u>	_ Trans No: Q//_/	210
					Asst details:		
(A)	TORRENS TITLE	202/1133	999				
(B)							5
(D)		Document	Name, Address or DX, Telep	hone, and Customer	r Account Number	if any	CODES
		Box	I E DAI • 1	128856X			
		605M	LERN),,		TF
			Reference: Wor	JWOAT	45/11	DROX	TK 1
(C)	TRANSFEROR		א השתידאד DTV ו.דאדייייייייייייייייייייייייייייייייייי	BN 89 109 600	2 022/		
			SINISS FIL DIMILED F	700 07 CU MU	5 V24/		
(D)	CONSIDERATION	The transferor	acknowledges receipt of the co	onsideration of \$ 20	0,000,000.00		and as re
(E)	ESTATE	the abovement	tioned land transfers to the tra	ansferee an esta	te in fee sim	uple	
(F)	SHARE TRANSFERRED	Whole				 	. <u></u>
(G)		Encumbrance	s (if applicable): Nil		_ ,		
(H)	TRANSFEREE	HYDROX NO	MINEES PTY LIMITED F	ACN 139 262 12	23		
m		TENANOV					
(1)))				<u>.</u>		
	DATE DI	1.1 2600	90/1				
(J)	I certify that the j I am personally a otherwise satisfie	person(s) signi acquainted or a ed, signed this	ng opposite, with whom s to whose identity I am instrument in my presence.	Certified Property	correct for the purp Act 1900 by the tra	oses of the Real Insferor.	
	Signature of with	iess:		Signature	e of transferor:		
	Address of witness	: SS: R	efer to Annexure "A"				
		f	or execution				
				— —			
				Certified of 1900 by the	correct for the purp	oses of the Real H mature appears b	Property A
				1700 09 0	P-1001 #11030 31	provine appears 0	
						/	\frown
				Signature	: /	/ /)
					/	X	J
				01	/		
				Signatory Signatory	's name: 's capacity:	Steven Bret	Ches
				2 7		transferee's solici	tor
(K)	The transfer	ee's solic	itor certifies that the eN	NOS data relevant to	o this dealing has b	een submittød an	d stored
	eNOS ID No. 1	.00119	Full name: Steven Br	ett Chesher	Signa	ture:	
							100
101						-/	-

ANNEXURE "A" to Transfer

Parties

ACPP Industrial Pty Limited ABN 89 108 662 022 as Transferor; and Hydrox Nominees Pty Limited ACN 139 262 123 as Transferee.

Certified correct for the purposes of the Real Property Act 1900.

<u>Transferor</u>

Signed by vinson SIMON and DALE PHILLIPS as attorneys for ACPP Industrial Pty Limited under power of attorney dated 5- 4 November 2009 R April 2007 registered number 22 book number 4515 in the presence of ← Signature of witness Signature of attorney Yolanda SARKISS IAN Name of witness (print) 4 Signature of witness Signature of attorney SARKISSIAN

Yolanda Name of witness (print)

Page 2 of 2

•	Form: 01T Release: 61		\bigcirc	TRANS New South V Real Property A	FER /ales .ct 1900		J828 ⁻	7760
	PRIVACY NOTE: by this form for the Begister is ma	Section 31B of the establis	the Real Property A hment and mainte o any person for se	ect 1900 (RP Act) aut mance of the Real arch upon payment	horises the . Property Act H	Register. So	ection 96B Ri	P Act requires ti
the Register is STAMP DUTY		Office of St	ate Revenue use on	ly		NEW SOUTH WALES DUTY 27-08-2018 000916570 SECTION 18(2) DUTY \$ ******* *		
(A)	TORRENS TITLE	Folio id	entifier 202/	1133999				
(B)	LODGED BY	Document Collection Box 41J	Name, Address of King & Wood	DX, Telephone, an Mallesons DX	ad Customer Acc 113 Sydney	count Numb T +61 2 LPN: 123	er if any 9296 200 903U	° CODES T TW
(C)	TRANSFEROR	Hydrox N	ominees Pty I	td (ACN 139 2	262 123)			
(D) (E) (F)	CONSIDERATION ESTATE SHARE	The transfero the abovement	acknowledges recent acknowledges recent	ipt of the consideraters to the transferee	ion of \$ 22,0 an estate	00,000.0 in fee s	0 simple	and as rega
(G)	TRANSFERRED	Encumbrance	es (if applicable):					
(H)	TRANSFEREE	Fabcot P	ty Ltd (ACN 0	02 960 983)		VN	JORX:	AH657623 Am10223
(I)		TENANCY:	2018			()	<u> </u>	H15215
(J)	Certified correct and executed on a authorised persor pursuant to the au Company: Authority: Signature of auth	for the purpose behalf of the or a(s) whose sign athority specific Hydrox Non section 12 orised person	es of the Real Prop ompany named bel nature(s) appear(s) ied. ninees Pty Lto 27 of the Corp	erty Act 1900 ow by the below d (ACN 139 26 porations Act	2 123) 2001 Signature of au	thorised per	off _A	L: ES357
	Name of authoris Office held:	ed person: I I	David Di Pilla Director	X	Name of autho Office held:	rised person	: Andrew Sel Secretary	im
	I certify that I am attorney signed the [See note* below	an eligible w nis dealing in].	itness and that the t my presence.	ransferee's	Certified correction 1900 by the transmission of the transmission	ct for the pu psferee's att power of a	moses of the I orney who sig ttorney specifi	Real Property Act ned this dealing ed.
	Signature of with Name of witness Address of witne	ess: Step ss: 1	Woolworths Way	Killoviciui	Signature of an Attorney's nam Signing on beh Power of attorn	omey: e: alf of: ey-Book:	Troy Bryant Fabcot Pty I 4711 261	 _td ACN 002 960
(K)	The transfer	ee's soli	citor certifie	s that the eNOS dat	a relevant to thi	s dealing ha	s been submitt	ted and stored und

Req:R454608 /Doc:DL AN828776 /Rev:05-Nov-2018 /NSW LRS /Pgs:ALL /Prt:07-Aug-2020 10:43 /Seq:2 of 7 © Office of the Registrar-General /Src:GLOBALX /Ref:advlegs

10 November, 2016

,

.

.

.

The Registrar General Land and Property Information NSW 1 Prince Albert Road Queens Square SYDNEY NSW 2000

Dear Registrar

.

Caveat No. AH657623T Land – Folio Identifier 202/1133999 Dealing – Registration of Transfer of the Land to Fabcot Pty Ltd (ACN 002 960 983)

Luxury Beverage Group Logistics Pty Limited, as caveator under the Caveat noted above, Consents to the registration of the dealing described above.

Yours faithfully, **Provino Logistics** Per Joanne Newton Owner Writers phone 0416 16 331 Email: jo@bacchuswinemerchant.com.au

Business Name Holder - Organisation

Extracted from ASIC's database at AEST 14:32:29 on 01/11/2018

Name: The trustee for Luxury Beverage Group Logistics Trust ABN: 50 102 842 379 Regulator: Australian Securities and Investments Commission Business name(s): Provino Logistics

ABN Lookup

Current details for ABN 50 102 842 379

ABN details

Entity name: ABN status: Entity type: Goods & Services Tax (GST): Main business location: The trustee for Luxury Beverage Group Logistics Trust Active from 26 Nov 2007 **Fixed Unit Trust** Registered from 26 Nov 2007 NSW 2204

Business name(s)

Business name Provino Logistics 🕹

From 12 Sep 2018

Deductible gift recipient status

Not entitled to receive tax deductible gifts

ABN last updated: 12 Sep 2018

Record extracted: 01 Nov 2018

Disclaimer

The Registrar makes every reasonable effort to maintain current and accurate information on this site. The Commissioner of Taxation advises that if you use ABN Lookup for information about another entity for taxation purposes and that information turns out to be incorrect, in certain circumstances you will be protected from liability. For more information see **disclaimer**.

MinterEllison

31 October 2018

.

.

Attention: Sean Park King & Wood Mallesons Level 61, Governor Phillip Tower 1 Farrer Place Sydney NSW 2000

Dear Sean

Caveator consent letter Caveat - AM102238 Land - Lot 202 in Deposited Plan 1133999

We act for ACPP Office Pty Limited (**Caveator**) and enclose a Caveator consent letter consenting to the registration of the transfer of Land between Hydrox Nominees Pty Limited and Fabcot Pty Ltd.

Please do not hesitate to contact us if you wish discuss.

Yours faithfully MinterEllison

Rachel McNaught Partner

Contact: Rachel Gralton t T: +61 2 9921 4925 Rachel.Gralton@minterellison.com Partner: Rachel McNaught T: +61 2 9921 4627

enclosure

Level 40 Governor Macquarie Tower 1 Farrer Place Sydney GPO Box 521 Sydney NSW 2001 Australia DX 117 Sydney T +61 2 9921 8888 F +61 2 9921 8123 minterellison.com ME_154739762_1

MinterEllison

30 October 2018

.

The Registrar General Land Registry Services NSW 1 Prince Albert Road SYDNEY NSW 2000

Dear Registrar

Caveat No. AM102238 Land - Folio Identifier 202/1133999 Dealing - Transfer of Land from HYDROX NOMINEES PTY LIMITED ACN 139 262 123 to FABCOT PTY LTD ACN 002 960 983

We act for ACPP Office Pty Limited ACN 108 662 031 (Caveator) under the Caveat and confirm that the Caveator consents to the registration of the Dealing.

Please note that this consent should not be taken as consent to the registration of any dealing other than the Dealing referred to in this Letter.

Please do not hesitate to contact us if you wish discuss.

Yours faithfully **MinterEllison**

Rachel McNaught Partner

Contact: Rachel Gralton t T: +61 2 9921 4925 Rachel.Gralton@minterellison.com Partner: Rachel McNaught T: +61 2 9921 4627

Level 40 Governor Macquarie Tower 1 Farrer Place Sydney GPO Box 521 Sydney NSW 2001 Australia DX 117 Sydney T +61 2 9921 8888 F +61 2 9921 8123 minterellison.com ME_154717981_I

09 November 2016

The Registrar General Land and Property Information NSW 1 Prince Albert Road Queens Square SYDNEY NSW 2000

Dear Registrar

Caveat No. AH752737W Land – Folio Identifier 202/1133999 Dealing – Registration of Transfer of the Land to Fabcot Pty Ltd (ACN 002 960 983)

The Fire Company Pty Limited, as caveator under the Caveat noted above, consents to the registration of the dealing described above.

Yours faithfully

THOMAS TEDHANE Name 1 12

Position

The Fire Company Pty Limited

Signature of witness

Name of witness

Req:R457081 /Doc:DP 0720786 P /Rev:11-Aug-1992 /NSW LRS /Pgs:ALL /Prt:07-Aug-2020 14:16 /Seq:1 of 1 © Office of the Registrar-General /Src:GLOBALX /Ref:advlegs

R.

- 10

Req:R454457 /Doc:DP 1133999 P /Rev:15-Jan-2009 /NSW LRS /Pgs:ALL /Prt:07-Aug-2020 10:31 /Seq:1 of 4

Req:R454457 /Doc:DP 1133999 P /Rev:15-Jan-2009 /NSW LRS /Pgs:ALL /Prt:07-Aug-2020 10:31 /Seq:2 of 4 © Office of the Registrar-General /Src:GLOBALX /Ref:advlegs

Sheet 2 of 2 sheets
SIGNATURES, SELIS and STATEMENTS of investion to dedicate public roads, to create public reserves, assoments, estrictions on the use of land or positive covenants. Pursuant to Section 888 of the Conveyancing Act 1919, as amended, it is intended to create: 1. Easement to Drain Water 1.5 wide 2. Easement to Drain Water 1.5 wide 3. Easement to Drain Water 1.5 wide 3. Easement to Drain Water 1.95 wide Use PLAN FORM 6A for additional certificates, signatures, easis and statements Crown Lands NSW/Western Lands Office Approven Mathematicates, signatures, easis and statements Crown Lands NSW/Western Lands Office Approven Mathematicates signatures, easis and statements Crown Lands NSW/Western Lands Office Approven Mathematicates is upproving that plan certify Authorised Office / Pursues Subdivision certificate Learthy the provisions of s. 1691 of the Environmental Planning and Assessment Act 1979 have been statisfied in relation to: the proposed. SUBDIVISION Certificate Consent Authority. <u>MARKISCKVILLE</u> Consent Authority. <u>MARKISCKVILLE</u> Parish: PETERSHAM County: CUMBERLAND Surveying Regulation, 2006 1. STEPHEN R. CARR of additional certificates Signature Date: Subdivision certificate Learthy the the provisions of s. 1691 of the Environmental Planning and Assessment Act 1979 have been statisfied in relation to: the proposed. <u>SUBDIVISION</u> sectors pacify any land shown in the plan Assessment Act 1979 have been statisfied in relation to: the proposed. <u>SUBDIVISION certificate</u> Consent Authority. <u>MARKISCKVILLE CONNECT</u> Part Subdivision certificate Consent Authority. <u>MARKISCKVILLE CONNECT</u> Part Ubbar Plans used in the preparation of survey DP 719997 DP 616215 DP 533623 DP 1006647 DP 118067 DP 539623 DP 1006647 DP 118067 DP 539623 DP 1006647 DP 118067 DP 539623 DP 20766 DP 1180699 DP 318232 SP 61322 Mathematicates on <u>Sectors Plances</u> and the survey for the su		
Pursuant to Section 88B of the Conveyancing Act 1919, as amended, it is intended to create: Registered: 14-1-2009 * 1. Easement to Drain Water 1.5 wide TORRENS * 2. Easement to Drain Water 2.5 wide Purpose: SUBDIVISION * 3. Easement to Drain Water 1.95 wide Purpose: SUBDIVISION OF PART LOT 2 IN D.P. 616215 AND LOTS 619 AND 621 IN D.P. 720786. Image: State of the state	GIGNATURES, SEALS and STATEMENTS of intention to dedicate public roads, to create public reserves, drainage reserves, easements, estrictions on the use of land or positive covenants.	DP1133999
Use PLAN FORM 6A for additional certificates, signatures, seals and statements Crown Lands NSW/Western Lands Office Approval	Pursuant to Section 88B of the Conveyancing Act 1919, as amended, it is intended to create: Easement to Drain Water 1.5 wide Easement to Drain Water 2.5 wide Easement to Drain Water 1.95 wide	Registered:14-1-2009*Title System:TORRENSPurpose:SUBDIVISIONPLAN OF SUBDIVISION OF PART LOT 2 IN D.P. 616215 AND LOTS 619 AND 621 IN D.P. 720786.
Use PLAN FORM 6A for additional certificates, signatures, seals and statements Crown Lands NSW/Western Lands Office Approval		LGA: MARRICKVILLE Locality: MARRICKVILLE Parish: PETERSHAM County: CUMBERLAND Surveying Regulation, 2006
Subdivision Certificate Signature Multiplication Dated: ?? Date: ?? Date: ?? Date: ?? Def 2022 Def 2022 Def 2022 Def 2022 Def 2025 Def 2022 Def 2026 Def 2023 Def 2026 Def 2023 Def 2026 Def 2026 Def 2023 Def 2026 Def 2025 Def 2026 Def 20	Use PLAN FORM 6A for additional certificates, signatures, seals and statements Crown Lands NSW/Western Lands Office Approval 	I, STEPHEN R. CARR of William L. Backhouse Pty Ltd PO Box 6807 Baulkham Hills Business Centre 2153 a surveyor registered under the <i>Surveying Act, 2002</i> , certify that the survey represented in this plan is accurate, has been made in accordance with the <i>Surveying Regulation, 2006</i> and was completed on: 19.09.2008 The survey relates to Lots 201 & 202 (specify the land actually surveyed or specify any land shown in the plan that is not the subject of the survey)
JCLack DP 719997 DP 616215 DP 539623 * Authorised Person/General Manager/Accredited Certifier Consent Authority: MARKICKVILLE COUNCIL Date of Endorsement: 26 November DP 318232 SP 61322 Accreditation no: Subdivision Certificate no: Sc 200800032 Image: Council	Subdivision Certificate certify that the provisions of s.109J of the Environmental Planning and Assessment Act 1979 have been satisfied in relation to: the proposed (insert 'subdivision' or 'new road')	Signature <u>Muffuence</u> Dated: <u>20</u> 10.08 Surveyor registered under the Surveying Act, 2002 Datum Line: X - Y Type: Urban Plans used in the preparation of survey
r IIe No:	* Authorised Person/General Manager/Accredited Certifier Consent Authority: MARKICKVILLE (OUNCIL Date of Endorsement: 26 November 2008 Accreditation no: Subdivision Certificate no: 50 20080032	DP 719997 DP 616215 DP 539623 DP 1006822 DP 1006647 DP 118087 DP 630403 DP 720786 DP 180969 DP 318232 SP 61322
	110 no:	(if insufficient space use Plan Form 6A annexure sheet)

Reg:R454457 /Doc:DP 1133999 P /Rev:15-Jan-2009 /NSW LRS /Pgs:ALL /Prt:07-Aug-2020 10:31 /Seg:3 of 4

DEPOSITED PLAN ADMINISTRATION SHEET Sheet 2 of 2 sheet(s) OFFICE USE ONLY * PLAN OF SUBDIVISION OF PART LOT 2 IN D.P. DP1133999 616215 AND LOTS 619 AND 621 IN D.P. 720786. * **Registered:** 14-1-2009 Subdivision Certificate No: Sc 20000032 Date of Endorsement: 26 NOVEMBER 2008 AMP Limited Subsidiary ... A.C.P.P. Industrial Pty Ltd by its undersigned Attorneys pursuant to power of Attorneys Registered No. 22 Book 4515 who declared that they have no notice of revocation of the said Power of Attorney. **GARY QUIG** 1 2 LOUIZA MARRAS LOU SURVEYOR'S REFERENCE: CH4542A4 Jan

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE ------7/8/2020 10:31AM

FOLIO: 2/616215

First Title(s): SEE PRIOR TITLE(S)
Prior Title(s): VOL 14622 FOL 121

Recorded	Number	Type of Instrument	C.T. Issue
28/3/1988		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
2/11/1988		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
9/11/1988	X979353	DEPARTMENTAL DEALING	
3/1/1996	0606895	APPLICATION FOR REPLACEMENT CERTIFICATE OF TITLE	EDITION 1
25/6/1996 25/6/1996	2247723 2247724	SURRENDER OF LEASE LEASE	EDITION 2
15/2/2000	6485321	LEASE	EDITION 3
4/5/2004	AA574124	LEASE	EDITION 4
14/12/2005	AB983287	TRANSFER	EDITION 5
21/11/2008	AE310174	APPLICATION FOR REPLACEMENT CERTIFICATE OF TITLE	EDITION 6
14/1/2009	DP1133999	DEPOSITED PLAN	FOLIO CANCELLED

*** END OF SEARCH ***

advlegs

PRINTED ON 7/8/2020

Obtained from NSW LRS on 07 August 2020 10:31 AM AEST

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE -----7/8/2020 10:31AM

FOLIO: 202/1133999

	First	Title(s):	619/720786	621/7	20786			
	Prio	Title(s):	2/616215 621/720786	619/7	20786			
Record	ed	Number	Type of Instrument	-		C.T. Iss	sue	
14/1/2	009	DP1133999	DEPOSITED PLAN	-		FOLIO CH	REATED	
14/1/2	009	AE443245	DEPARTMENTAL DEAL	ING		EDITION	2	
7/4/2 7/4/2	009 009	AE535295 AE535296	LEASE LEASE			EDITION	3	
16/2/2	010	AF316823	MORTGAGE			EDITION	4	
5/4/2	011	AG159319	CAVEAT					
8/4/2 8/4/2 8/4/2 8/4/2	011 011 011 011	AG165248 AG159867 AG159868 AG159869	WITHDRAWAL OF CAVE DISCHARGE OF MORTO REQUEST TRANSFER	EAT GAGE		EDITION	5	
11/4/2	011	AG169920	CAVEAT					
11/10/2	011	AG545352	CANCELLATION OR EXTINGUISHMENT OF	AN EA	SEMENT			
16/11/2	012	AH371775	DEPARTMENTAL DEAL	ING				
11/4/2	013	AH657623	CAVEAT					
24/5/2	013	AH752737	CAVEAT					
26/9/2	013	AI46983	DEPARTMENTAL DEAL	ING				
17/8/2	016	DP1213640	WITHDRAWN - PROPOS	SED PL	AN			
17/1/2	017	AK629309	REJECTED - VARIATI	ION OF	LEASE			
27/1/2 27/1/2	017 017	AM102238 AM102239	CAVEAT WITHDRAWAL OF CAVE	EAT				
28/2/2 28/2/2	017 017	АК971351 АК971352	LEASE SUB-LEASE					
				END	OF PAGE	1 - CONT	CINUED (OVER

advlegs

PRINTED ON 7/8/2020

SEARCH DATE

7/8/2020 10:31AM

FOLIO: 202/1133999

PAGE 2

Recorded	Number	Type of Instrument	С.Т.	Iss	ue
28/2/2017 28/2/2017 28/2/2017	AK971502 AK971571 AM19350	MORTGAGE OF LEASE CHANGE OF NAME DEPARTMENTAL DEALING			
16/10/2017	AM803477	CAVEAT			
2/11/2018 2/11/2018	AN828775 AN828776	WITHDRAWAL OF CAVEAT TRANSFER	EDITI	ION	6

*** END OF SEARCH ***

advlegs

PRINTED ON 7/8/2020

Obtained from NSW LRS on 07 August 2020 10:31 AM AEST

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE ------7/8/2020 10:31AM

FOLIO: 619/720786

First Title(s): 619/720786 Prior Title(s): CROWN LAND

Recorded	Number	Type of Instrument	C.T. Issue
28/5/1986	DP720786	DEPOSITED PLAN	LOT RECORDED FOLIO NOT CREATED
22/7/1986	FI69520	FOLIO INSTRUCTION	FOLIO CREATED EDITION 1
14/12/2005	AB983287	TRANSFER	EDITION 2
21/11/2008	AE310174	APPLICATION FOR REPLACEMENT CERTIFICATE OF TITLE	EDITION 3
14/1/2009	DP1133999	DEPOSITED PLAN	FOLIO CANCELLED

*** END OF SEARCH ***

advlegs

PRINTED ON 7/8/2020

Obtained from NSW LRS on 07 August 2020 10:31 AM AEST

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE ------7/8/2020 10:31AM

FOLIO: 621/720786

First Title(s): 621/720786 Prior Title(s): CROWN LAND

Recorded	Number	Type of Instrument	C.T. Issue
28/5/1986	DP720786	DEPOSITED PLAN	LOT RECORDED FOLIO NOT CREATED
10/7/1986	FI69524	FOLIO INSTRUCTION	FOLIO CREATED EDITION 1
14/12/2005	AB983287	TRANSFER	EDITION 2
21/11/2008	AE310174	APPLICATION FOR REPLACEMENT CERTIFICATE OF TITLE	EDITION 3
14/1/2009	DP1133999	DEPOSITED PLAN	FOLIO CANCELLED

*** END OF SEARCH ***

advlegs

PRINTED ON 7/8/2020

Obtained from NSW LRS on 07 August 2020 10:31 AM AEST

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH

FOLIO: 202/1133999

SEARCH DATE	TIME	EDITION NO	DATE
7/8/2020	10:31 AM	6	2/11/2018

LAND

LOT 202 IN DEPOSITED PLAN 1133999 AT MARRICKVILLE LOCAL GOVERNMENT AREA INNER WEST PARISH OF PETERSHAM COUNTY OF CUMBERLAND TITLE DIAGRAM DP1133999

FIRST SCHEDULE

FABCOT PTY LTD

```
(T AN828776)
```

SECOND SCHEDULE (24 NOTIFICATIONS)

1	LAND EXCLU CONDITIONS INDICATED AFFECTING	JDES MINERALS AND IS SUBJECT TO RESERVATIONS AND 5 IN FAVOUR OF THE CROWN WITHIN THE PART(S) SHOWN SO IN THE TITLE DIAGRAM - SEE MEMORANDUM S700000A THE PART FORMERLY IN 619 & 621 IN DP720786
2	RESERVATIO	ONS AND CONDITIONS IN THE CROWN GRANT(S) AFFECTING THE
0	PART FORME	SRLY IN 2/616215
3	322286	LAND EXCLUDES MINERALS (S.114 PUBLIC WORKS ACT, 1888) AFFECTING THE PART SHOWN IN THE TITLE DIAGRAM
4	353595	DRAINAGE EASEMENT AFFECTING THE PART(S) SHOWN SO BURDENED IN THE TITLE DIAGRAM
5	B525027	EASEMENT FOR ACCESS AFFECTING THE PART(S) SHOWN SO BURDENED IN THE TITLE DIAGRAM
6	B525027	RIGHT OF WAY APPURTENANT TO THE PART(S) OF THE LAND SHOWN SO BENEFITTED IN THE TITLE DIAGRAM AFFECTING M.W.S. AND D.B. STORMWATER CHANNEL SHOWN IN DP318232
7	B525027	COVENANT AFFECTING THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAM.
8	B715061	EASEMENT FOR ACCESS AFFECTING THE PART(S) SHOWN SO BURDENED IN THE TITLE DIAGRAM
9	B715061	RIGHT OF WAY APPURTENANT TO THE PART(S) OF THE LAND SHOWN SO BENEFITTED IN THE TITLE DIAGRAM AFFECTING THE MW S AND D B STORMWATER CHANNEL SHOWN IN DP318232
10	B715061	COVENANT AFFECTING THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAM.
11	K650166	EASEMENT FOR SEWERAGE AFFECTING THE PART(S) SHOWN
12	N987110	EASEMENT FOR SEWERAGE PURPOSES AFFECTING THE PART(S) SHOWN SO BURDENED IN THE TITLE DIAGRAM
13	N987111	RIGHT OF CARRIAGEWAY VARIABLE WIDTH APPURTENANT TO
		END OF PAGE 1 - CONTINUED OVER

advlegs

PRINTED ON 7/8/2020

FOLIO: 202/1133999

PAGE 2

SECOND SCHEDULE (24 NOTIFICATIONS) (CONTINUED)

		THE PART(S) OF THE LAND SHOWN SO BENEFITED IN THE
1 4	~~~~~	TITLE DIAGRAM AFFECTING THE WHOLE OF LOT 1 IN DP539623
14	5938938	EASEMENT TO DRAIN STORMWATER APPURTENANT TO THE
		PARI OF THE LAND ABOVE DESCRIBED FORMERLY IN 2/010213
		CORRORA THE LAND SHOWN 4.5 WIDE & VAR. IN FLAN WITH
15	TR5001/	Ο ΣΟ
тJ	1030014	PREMISES NO 5886 TOGETHER WITH A RIGHT OF WAY AND AN
		EASEMENT FOR ELECTRICITY PURPOSES AS SHOWN IN PLAN
		WITH T850014 EXPIRES 31-12-2032
16	2247724	LEASE TO SYDNEY ELECTRICITY OF SUBSTATION PREMISES
± 0		NO. 7069 "EOI NO. 2" TOGETHER WITH A RIGHT OF WAY &
		EASEMENT FOR ELECTRICITY PURPOSES AS SHOWN IN PLAN
		WITH 2247724. EXPIRES 31-8-2044
	AG5453	352 RIGHT OF WAY RELEASED IN SO FAR AS IT AFFECTS
		1/1162801, 2/1162801, 4/1162801 & 5/1162801
	AK9713	351 LEASE OF LEASE 2247724 TO BLUE ASSET PARTNER PTY
		LTD, ERIC ALPHA ASSET CORPORATION 1 PTY LTD, ERIC
		ALPHA ASSET CORPORATION 2 PTY LTD, ERIC ALPHA
		ASSET CORPORATION 3 PTY LTD & ERIC ALPHA ASSET
		CORPORATION 4 PTY LTD EXPIRES: SEE DEALING. CLAUSE
		2.3 (b) (ii).
	AK9713	352 LEASE OF LEASE AK971351 TO BLUE OP PARTNER PTY
		LTD, ERIC ALPHA OPERATOR CORPORATION 1 PTY LTD,
		ERIC ALPHA OPERATOR CORPORATION 2 PTY LTD, ERIC
		ALPHA OPERATOR CORPORATION 3 PTY LTD & ERIC ALPHA
		OPERATOR CORPORATION 4 PTY LTD EXPIRES: SEE
		DEALING. CLAUSE 12.1
	AK971	502 MORTGAGE OF LEASE AK971351 TO ANZ FIDUCIARY
		SERVICES PTY LTD
	AK9/1	5/1 CHANGE OF NAME AFFECTING LEASE 224//24 LESSEE
		NOW ALPHA DISTRIBUTION MINISTERIAL HOLDING
1 7	DD1122000	CURPURATION
1/	DP1133999	EASEMENT TO DRAIN WATER 1.5 METRE(S) WIDE AFFECTING
10	000221100	THE PART(5) SHOWN SO BURDENED IN THE TITLE DIAGRAM
ΤO	DF1122999	EASEMENT TO DRAIN WATER 1.3 METRE(S) WIDE APPORTENANT
10	1133000	ΙΟ ΙΠΕ ΔΑΝΟ ΑΘΟΥΕ ΡΕΟΟΚΙΔΕΟ ελοεμενήση το πολικί κλησεο 2.5 μεσός (ο) ωτός λεγεροσικό
19	DETISSAA	THE DADT (S) SHOWN SO BUDDENED IN THE TITLE DIACDAM
20	DD1133999	FASEMENT TO DRAIN WATER 1 95 METRE(S) WIDE
20	DIIIJJJJJ	APPIIRTENANT TO THE LAND ABOVE DESCRIBED
21	AE535295	LEASE TO AUSTRALIAN CO-OPERATIVE FOODS LIMITED OF
21	111000200	PART BEING SHOWN HATCHED IN PLAN (PAGE 48) WITH
		AE535295. EXPIRES: 28/2/2017.
2.2	AH657623	CAVEAT BY LUXURY BEVERAGE GROUP LOGISTICS PTY
-		LIMITED
		END OF PAGE 2 - CONTINUED OVER

advlegs

*

PRINTED ON 7/8/2020

FOLIO: 202/1133999 ____

PAGE 3

SECOND SCHEDULE (24 NOTIFICATIONS) (CONTINUED)

- * AN828776 CAVEATOR CONSENTED
- AH752737 CAVEAT BY THE FIRE COMPANY PTY LIMITED AN828776 CAVEATOR CONSENTED * 23
- * *
- AM102238 CAVEAT BY ACPP OFFICE PTY LIMITED 24 * AN828776 CAVEATOR CONSENTED

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

advlegs

PRINTED ON 7/8/2020

Obtained from NSW LRS on 07 August 2020 10:31 AM AEST

© Office of the Registrar-General 2020

* Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register. GlobalX hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900. Note: Information contained in this document is provided by GlobalX Pty Ltd, ABN 35 099 032 596, www.globalx.com.au an approved NSW Information Broker.

Section 10.7 Certificates

PLANNING CERTIFICATE

UNDER SECTION 10.7 ENVIRONMENTAL PLANNING AND ASSESSMENT ACT, 1979

Cert. No.: PCT/2020/3211 Fee: \$133.00 Application Date: 31 August 2020 Issued Date: 31 August 2020 Applicant's Reference: E33191B am

Applicant	t	Owner (a	as recorded by Council)
Name:	JK Environments Pty Ltd	Name:	Fabcot Pty Ltd
Address: Email:	115 Wicks Road MACQUARIE PARK NSW 2113 <u>MRICHARD@JKGROUP.NET.AU</u>		

Subject property address	Legal description
Street address: 74 Edinburgh Road MARRICKVILLE NSW 2204	Lot 202 DP 1133999

Information provided pursuant to Section 10.7(2) of the EP&A Act

In accordance with the requirements of section 10.7(2) of the *Environmental Planning and Assessment Act* 1979, the following prescribed matters relate to the land at the date of this certificate.

council@innerwest.nsw.gov.au PO Box 14, Petersham NSW 2049

1. Names of relevant planning instruments and DCPs

In accordance with Section 1 (1) & (2) of Schedule 4 of the *Environmental Planning and Assessments Regulations 2000*, the following is a list of State Environmental Planning Policies (SEPPs) & proposed SEPPs that may apply to the carrying out of development on the land:

- State Environmental Planning Policy No.19 Bushland in Urban Areas
- State Environmental Planning Policy No. 21 Caravan Parks
- State Environmental Planning Policy No. 33 Hazardous and Offensive Development
- State Environmental Planning Policy No. 55 Remediation of Land
- State Environmental Planning Policy No. 64 Advertising and Signage
- State Environmental Planning Policy No. 65 Design Quality of Residential Apartment Development
- State Environmental Planning Policy No. 70 Affordable Housing (Revised Schemes)
- State Environmental Planning Policy (Affordable Rental Housing) 2009
- State Environmental Planning Policy (Building Sustainability Index: BASIX) 2004
- State Environmental Planning Policy (Educational Establishments and Child Care Facilities) 2017
- State Environmental Planning Policy (Exempt and Complying Development Codes) 2008
- State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004
- State Environmental Planning Policy (Infrastructure) 2007
- State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007
- State Environmental Planning Policy (State and Regional Development) 2011
- State Environmental Planning Policy (Miscellaneous Consent Provisions) 2007
- State Environmental Planning Policy (Vegetation in Non-Rural Areas) 2017
- State Environmental Planning Policy (Primary Production and Rural Development) 2019
- State Environmental Planning Policy (COVID-19 Response) 2020
- Sydney Regional Environment Plan (Sydney Harbour Catchment) 2005
- Draft State Environmental Planning Policy (Environment) 2017
- Draft State Environmental Planning Policy (Remediation of Land) 2017
- Draft State Environmental Planning Policy (Short-term Rental Accommodation) 2019
- Draft Housing Diversity State Environmental Planning Policy 2020

Note: As part of improvements to simplify the State's planning system, as of 1 July 2009, regional environmental plans (REPs) are no longer part of the hierarchy of environmental planning instruments in NSW. All existing REPs are now deemed State environmental planning policies (SEPPs). Any enquiries regarding these State Planning Policies should be directed to the Department of Planning and Environment. Find contact details on the Department's website at http://www.planning.nsw.gov.au

In accordance with Section 1 (1) of Schedule 4 of the *Environmental Planning and Assessments Regulations 2000*, the following Local Environmental Plan applies to the land:

• Marrickville Local Environmental Plan 2011

In accordance with Section 1 (2) of Schedule 4 of the *Environmental Planning and Assessments Regulations 2000*, the following proposed Local Environmental Plan(s) applies to the land. The following proposed Local Environmental Plan has been the subject of community consultation or has been placed on public exhibition:

Draft Inner West Local Environment Plan 2020

In accordance with Section 1 (3) of Schedule 4 of the *Environmental Planning and Assessments Regulations 2000*, The following Development Control Plan applies to the land:

Marrickville Development Control Plan 2011

2. Zoning and land use under relevant environmental planning instruments referred to in clause 1 (other than a SEPP or proposed SEPP)

Lot 202 DP 1133999

Marrickville Local Environmental Plan 2011

Zone IN1 General Industrial

1 Objectives of zone

- To provide a wide range of industrial and warehouse land uses.
- To encourage employment opportunities.
- To minimise any adverse effect of industry on other land uses.
- To support and protect industrial land for industrial uses.
- To protect industrial land in proximity to Sydney Airport and Port Botany.
- To enable a purpose built dwelling house to be used in certain circumstances as a dwelling house.

2 Permitted without consent

Home occupations

3 Permitted with consent

Agricultural produce industries; Depots; Dwelling houses; Freight transport facilities; Garden centres; General industries; Hardware and building supplies; Industrial training facilities; Intensive plant agriculture; Kiosks; Light industries; Markets; Neighbourhood shops; Oyster aquaculture; Places of public worship; Roads; Take away food and drink premises; Tank-based aquaculture; Timber yards; Warehouse or distribution centres; Any other development not specified in item 2 or 4

4 Prohibited

Agriculture; Air transport facilities; Airstrips; Amusement centres; Animal boarding or training establishments; Boat launching ramps; Boat sheds; Camping grounds; Caravan parks; Cemeteries; Centre-based child care facilities; Charter and tourism boating facilities; Commercial premises; Community facilities; Correctional centres; Eco-tourist facilities; Educational establishments; Environmental facilities; Exhibition homes; Exhibition villages; Extractive industries; Farm buildings; Forestry; Function centres; Health services facilities; Heavy industrial storage establishments; Heavy industries; Helipads; Highway service centres; Home occupations (sex services); Information and education facilities; Jetties; Marinas; Mooring pens; Moorings; Offensive industries; Open cut mining; Passenger transport facilities; Pond-based aquaculture Port facilities; Public administration buildings; Recreation facilities (major); Recreation facilities (outdoor); Registered clubs; Research stations; Residential accommodation; Respite day care centres; Restricted premises; Rural industries; Tourist and visitor accommodation; Transport depots; Veterinary hospitals; Water recreation structures; Water supply systems; Wholesale supplies

Lot 202 DP 1133999

Draft Inner West Local Environmental Plan 2020

Proposed Zone IN1 General Industrial

- 1 Objectives of zone
- To provide a wide range of industrial and warehouse land uses.
- To encourage employment opportunities.
- To minimise any adverse effect of industry on other land uses.
- To support and protect industrial land for industrial uses.
- To protect industrial land in proximity to Sydney Airport and Port Botany and the Greater Sydney Commission's Eastern Economic Corridor.

2 Permitted without consent

Nil.

2. Zoning and land use under relevant environmental planning instruments referred to in clause 1 (other than a SEPP or proposed SEPP)

3 Permitted with consent

Agricultural produce industries; Depots; Freight transport facilities; Garden centres; General industries; Hardware and building supplies; Industrial training facilities; Intensive plant agriculture; Kiosks; Light industries; Markets; Neighbourhood shops; Oyster aquaculture; Places of public worship; Roads; Take away food and drink premises; Tank-based aquaculture; Timber yards; Transport depot; Warehouse or distribution centres; Any other development not specified in item 2 or 4.

4 Prohibited

Agriculture; Air transport facilities; Airstrips; Amusement centres; Animal boarding or training establishments; Boat launching ramps; Boat sheds; Camping grounds; Caravan parks; Cemeteries; Centre-based child care facilities; Charter and tourism boating facilities; Commercial premises; Community facilities; Correctional centres; Eco-tourist facilities; Educational establishments; Environmental facilities; Exhibition homes; Exhibition villages; Extractive industries; Farm buildings; Forestry; Function centres; Health services facilities; Heavy industrial storage establishments; Heavy industries; Helipads; Highway service centres; Home-based child care; Home business; Home occupation; Home occupation (sex services); Information and education facilities; Jetties; Marinas; Mooring pens; Moorings; Offensive industries; Open cut mining; Passenger transport facilities; Pond-based aquaculture; Port facilities; Public administration buildings; Recreation facilities (major); Recreation facilities (outdoor); Registered clubs; Research stations; Residential accommodation; Respite day care centres; Restricted premises; Rural industries; Tourist and visitor accommodation; Veterinary hospitals; Water recreation structures; Water supply systems

Whether any development standards applying to the land fix minimum land dimensions for the erection of a dwelling-house on the land, and if so, the minimum land dimensions so fixed:

Lot 202 DP 1133999 - NO

Whether the land includes or comprises critical habitat:

Lot 202 DP 1133999 - NO

Whether the land is in a conservation area (however described):

Lot 202 DP 1133999 - NO

Whether an item of environmental heritage (however described) is situation on the land:

Lot 202 DP 1133999 - NO

2A. Zoning and land use under State Environmental Planning Policy (Sydney Region Growth Centres) 2006

The land IS NOT land to which State Environmental Planning Policy (Sydney Region Growth Centres) 2006 applies.

Note: In accordance with 2A of Schedule 4 of the *Environmental Planning and Assessment Regulation 2000, State Environmental Planning Policy (Sydney Region Growth Centres) 2006* **DOES NOT** apply to any land in the Inner West Council.

3. Complying Development - State Environmental Planning Policy (Exempt and Complying Development Codes) 2008

Housing Code

Lot 202 DP 1133999:

NO.

Complying Development may not be carried out on this land because of the provisions of clause 1.19 of the *State Environmental Planning Policy (Exempt and Complying Development Codes) 2008* that land is excluded land being land that is:

- Identified on an Acid Sulfate Soils Map as being Class 2 under Marrickville Local Environmental Plan 2011.
- Within the 25 ANEF contour or a higher ANEF contour, unless the development is only for the erection of ancillary
 development, attached development or detached development, or the alteration of, or addition to, ancillary
 development or detached development.

Low Rise Medium Density Housing Code

Lot 202 DP 1133999:

NO.

Complying Development may not be carried out on this land because of the provisions of clause 1.19 of the *State Environmental Planning Policy (Exempt and Complying Development Codes) 2008* that land is excluded land being land that is:

- Identified on an Acid Sulfate Soils Map as being Class 2 under Marrickville Local Environmental Plan 2011.
- Within the 25 ANEF contour or a higher ANEF contour, unless the development is only for the erection of ancillary
 development, attached development or detached development, or the alteration of, or addition to, ancillary
 development or detached development.

Inland Code

NO, the Inland Code does not apply to land within the Inner West Local Government Area.

Rural Housing Code

NO, the Rural Housing Code does not apply to land within the Inner West Local Government Area.

Greenfield Housing Code

NO, the Greenfield Housing Code does not apply to land within the Inner West Local Government Area.

Commercial and Industrial (New Buildings and Additions) Code

Lot 202 DP 1133999:

NO.

Complying Development may not be carried out on this land because of the provisions of clause 1.19 of the *State Environmental Planning Policy (Exempt and Complying Development Codes) 2008* that land is excluded land being land that is:

• Identified on an Acid Sulfate Soils Map as being Class 2 under Marrickville Local Environmental Plan 2011.

Housing Alterations Code

Lot 202 DP 1133999:

YES.

Complying Development under *State Environmental Planning Policy (Exempt and Complying Development Codes) 2008* may be carried out on this land subject to an assessment of compliance with the requirements of the SEPP.

General Development Code

Lot 202 DP 1133999:

YES.

Complying Development under State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 may be carried out on this land subject to an assessment of compliance with the requirements of the SEPP.

Commercial and Industrial Alterations Code

Lot 202 DP 1133999:

YES.

Complying Development under *State Environmental Planning Policy (Exempt and Complying Development Codes) 2008* may be carried out on this land subject to an assessment of compliance with the requirements of the SEPP.

Container Recycling Code

Lot 202 DP 1133999:

YES.

Complying Development under *State Environmental Planning Policy (Exempt and Complying Development Codes) 2008* may be carried out on this land subject to an assessment of compliance with the requirements of the SEPP.

Subdivisions Code

Lot 202 DP 1133999:

YES.

Complying Development under *State Environmental Planning Policy (Exempt and Complying Development Codes) 2008* may be carried out on this land subject to an assessment of compliance with the requirements of the SEPP.

Demolition Code

Lot 202 DP 1133999:

YES.

Complying Development under *State Environmental Planning Policy (Exempt and Complying Development Codes) 2008* may be carried out on this land subject to an assessment of compliance with the requirements of the SEPP.

Fire Safety Code

Lot 202 DP 1133999:

YES. Complying Development under *State Environmental Planning Policy (Exempt and Complying Development Codes) 2008* may be carried out on this land subject to an assessment of compliance with the requirements of the SEPP.

4B Annual charges under Local Government Act 1993 for coastal protection services that relate to existing coastal protection works

Whether the owner (or any previous owner) of the land has consented in writing to the land being subject to annual charges under section 496B of the *Local Government Act 1993 for* coastal protection services that relate to existing coastal protection works (within the meaning of section 553B of that Act).

The land IS NOT subject to any annual charges under Section 496B of the Local Government Act 1993.

Note. "Existing coastal protection works" are works to reduce the impact of coastal hazards on land (such as seawalls, revetments, groynes and beach nourishment) that existed before the commencement of section 553B of the *Local Government Act 1993.*

5. Mine subsidence

Whether or not the land is proclaimed to be a mine subsidence district within the meaning of the *Coal Mine Compensation Act 2017:*

NO

6. Road widening and road realignment

Whether or not the land is affected by any road widening or road realignment under:

(a) Division 2 of Part 3 of the Roads Act 1993, or

- (b) any environmental planning instrument, or
- (c) any resolution of the council.

Lot 202 DP 1133999:

The land IS NOT affected by a road widening or road realignment.

7. Council and other public authority policies on hazard risk restrictions					
(a) Whether or not the land is affect	(a) Whether or not the land is affected by a policy adopted by the Council that restricts the development of the land				
because of the likelihood of:					
Land Slip	NO				
Bushfire	NO				
Tidal Inundation	NO				
Subsidence	NO				
Acid Sulphate Soils	YES.				
	The land has been identified as Class 2 in the Marrickville Local Environmental				
	Plan 2011 Acid Sulfate Soils Map. Refer to Clause 6.1 Acid sulfate soils of				
	Marrickville Local Environmental Plan 2011.				
Any Other Risk (Other than Flooding)	YES.				
	Council has adopted a policy which may restrict the development of the land if				
	the potential for the risk of land contamination exists. This policy is the				
	Marrickville Development Control Plan 2011 refer to Part 2.24: Contamination				
	Land. Persons relying on this certificate should refer to this Development Control				
	Plan to satisfy themselves that the land is suitable for the intended use.				
(b) Whether or not the land is affect	ed by a policy adopted by any other public authority and notified to the Council for				
the express purpose of its adopt	tion by that authority being referred to in planning certificates issued by the Council				
that restricts the development of					
Bushfire	NO				
Tidal Inundation	NO				
Subsidence	NO				
Acid Sulphate Soils	YES.				
	Council has been notified by the Acid Sulphate Soils Management Advisory				
	Committee that certain lands are at risk of containing Acid Sulphate Soils.				
	Persons relying on this certificate should refer to the Acid Sulphate Soils				
	Planning Maps provided by the Department of Land and Water Conservation				

	(now Department of Environment, Climate Change and Water) to satisfy themselves that the land is suitable for the intended use.
Any Other Risk (Other than Flooding)	NO

7A. Flood related development controls information

(1) Whether or not development on the land or part of the land for the purposes of dwelling houses, dual occupancies, multi dwelling housing or residential flat buildings (not including development for the purposes of group homes or seniors housing) is subject to flood related development controls:

Lot 202 DP 1133999:

YES.

Note. the land is identified in the Inner West Council's Flood Study and/or Estuarine Planning Levels Study. For more information please contact Council's Stormwater and Development Team on 9392 5641.

(2) Whether or not development on the land or part of the land for any other purpose is subject to flood related development controls:

Lot 202 DP 1133999:

YES.

Note. the land is identified in the Inner West Council's Flood Study and/or Estuarine Planning Levels Study. For more information please contact Council's Stormwater and Development Team on 9392 5641.

(3) Words and expressions in this clause have the same meanings as in the instrument set out in the Schedule to the *Standard Instrument (Local Environmental Plans) Order 2006.*

8. Land reserved for acquisition

Whether or not any environmental planning instrument or proposed environmental planning instrument referred to in Item 1 makes provision in relation to the acquisition of the land by a public authority, as referred to in section 3.15 of the Act:

Lot 202 DP 1133999:

The land **IS NOT** reserved, in part or whole, for acquisition by a public authority, as referred to in section 3.15 of the *Environmental Planning and Assessment Act* 1979.

9. Contributions plans

The name of each contributions plan applying to the land:

Marrickville Section 94/94A Development Contributions Plan 2014.

Note: The former Section 94 and 94A Development Contributions Plans are now known as Section 7.11 and Section 7.12 Local Infrastructure Contribution Plans under the *Environmental Planning and Assessment Act* 1979.

9A. Biodiversity certified land

If the land is biodiversity certified land (within the meaning of Part 8 of the *Biodiversity Conservation Act 2016*) a statement to that effect.

The land IS NOT biodiversity certified land as defined under Part 8 of the Biodiversity Conservation Act 2016.

Note: Biodiversity certified land includes land certified under Part 7AA of the *Threatened Species Conservation Act* 1995 that is taken to be certified under Part 8 of the *Biodiversity Conservation Act* 2016.

10. Biodiversity stewardship sites

If the land is a biodiversity stewardship site under a biodiversity stewardship agreement under Part 5 of the *Biodiversity Conservation Act 2016*, a statement to that effect (but only if the council has been notified of the existence of the agreement by the Chief Executive of the Office of Environment and Heritage).

The land **IS NOT** biodiversity stewardship site under a biodiversity stewardship agreement under Part 5 of the *Biodiversity Conservation Act 2016.*

Note: Biodiversity stewardship agreements include biobanking agreements under Part 7A of the *Threatened Species Conservation Act 1995* that are taken to be biodiversity stewardship agreements under Part 5 of the *Biodiversity Conservation Act 2016*.

10A. Native vegetation clearing set asides

If the land contains a set aside area under section 60ZC of the *Local Land Services Act 2013*, a statement to that effect (but only if the council has been notified of the existence of the set aside area by Local Land Services or it is registered in the public register under that section).

There are **NO** set asides areas on the land under section 60ZC of the Local Land Services Act 2013.

11. Bush fire prone land

If any of the land is bush fire prone land (as defined in section 4.14 of the Act), a statement that all or, as the case may be, some of the land is bush fire prone land.

The land IS NOT bush fire prone land as defined under the Environmental Planning and Assessment Act, 1979.

12. Property vegetation plans

If the land is land to which a property vegetation plan under the *Native Vegetation Act 2003* applies, a statement to that effect (but only if the council has been notified of the existence of the plan by the person or body that approved the plan under that Act).

The land DOES NOT have an applicable property vegetation plan under the Native Vegetation Act 2003.

13. Orders under Tree (Disputes Between Neighbours) Act 2006

Whether an order has been made under the *Trees (Disputes Between Neighbours) Act 2006* to carry out work in relation to a tree on the land (but only if the Council has been notified of the order):

Lot 202 DP 1133999:

An order HAS NOT been made under the Trees (Disputes Between Neighbours) Act 2006.

14. Directions under Part 3A

If there is a direction by the Minister in force under section 75P (2) (c1) of the Act that a provision of an environmental planning instrument prohibiting or restricting the carrying out of a project or a stage of a project on the land under Part 4 of the Act does not have effect, a statement to that effect identifying the provision that does not have effect.

There **IS NOT** a direction by the Minister in force under section 75P (2) (c1) of the *Environmental Planning and Assessment Act 1979* that a provision of an environmental planning instrument prohibiting or restricting the carrying out of a project or a stage of a project on the land under Part 4 of the Act does not have effect.

Note: Developments may no longer be lodged under Part 3A of the Act and must now be processed via the State Significant pathways of Part 4.7 for State Significant Development and Part 5.2 for State Significant Infrastructure.

15. Site compatibility certificates and conditions for seniors housing

State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 DOES apply to this land.

Lot 202 DP 1133999:

There **IS NOT** a current site compatibility (of which the Council is aware), issued under clause 25 of *State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004* in respect of proposed development on the land.

16. Site compatibility certificates for infrastructure, schools or TAFE establishments

Lot 202 DP 1133999:

There **IS NOT** a valid site compatibility certificate (of which Council is aware) issued under clause 19 of *State Environmental Planning Policy (Infrastructure) 2007* in respect of proposed development on the land.

There **IS NOT** a valid site compatibility certificate (of which Council is aware) issued under clause 15 of *State Environmental Planning Policy (Educational Establishments and Child Care Facilities) 2017* in respect of proposed development on the land.

17. Site compatibility certificates for affordable rental housing

Lot 202 DP 1133999:

There **IS NOT** a valid site compatibility certificate (of which the Council is aware), issued under clause 37 of *State Environmental Planning Policy (Affordable Rental Housing) 2009* in respect of proposed development on the land.

18. Paper subdivision information

- (1) There **IS NOT** any development plan adopted by a relevant authority that applies to the land or that is proposed to be subject to a consent ballot.
- (2) There **IS NOT** any subdivision order that applies to the land.
- (3) Words and expressions used in this clause have the same meaning as they have in Part 16C of the *Environmental Planning and Assessment Regulation 2000.*

19. Site verification certificates

A statement of whether there is a current site verification certificate, of which council is aware, in respect of the land and, if there is a certificate, the statement is to include:

a) the matter certified by the certificate, and

Note: A site verification certificate sets out the Director-General's opinion as to whether the land concerned is or is not biophysical strategic agricultural land or critical industry cluster land – see Division 3 of Part 4AA of the *State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007.*

- b) the date on which the certificate ceases to be current (if any), and
- c) that a copy may be obtained from the head office of the Department

There **IS NOT** a current site verification certificate, of which the Council is aware, in respect of the land.

20. Loose-fill asbestos insulation

If the land includes any residential premises (within the meaning of Division 1A of Part 8 of the *Home Building Act* 1989) that are listed on the register that is required to be maintained under that Division, a statement to that effect.

Council **IS NOT** aware of whether the land includes residential premises listed on the register maintained under Division 1A of Part 8 of the *Home Building Act 1989*).

21. Affected building notices and building product rectification orders

- (1) A statement of whether there is any affected building notice of which the council is aware that is in force in respect of the land.
 - NO
- (2) A statement of:
 - a. Whether there is any building rectification order of which the council is aware that is in force in respect of the land and has not been fully complied with:
 NO
 - b. Whether any notice of intention to make a building product rectification order of which the council is aware has been given in respect of the land and is outstanding:
 - NO
- (3) In this clause:

Affected building notice has the same meaning as in part 4 of the Building Products (Safety) Act 2017.

Building product rectification order has the same meaning as in the Building Products (Safety) Act 2017.

Note. the following matters are prescribed by section 59 (2) of the *Contaminated Land Management Act 1997* as additional matters to be specified in a planning certificate:

(a) that the land to which the certificate relates is significantly contaminated land within the meaning of that Act – if the land (or part of the land) is significantly contaminated land at the date when the certificate is issued,

Lot 202 DP 1133999 - NO

(b) that the land to which the certificate relates is subject to a management order within the meaning of the Act – if it is subject to such an order at the date when the certificate issued,

Lot 202 DP 1133999 – NO

(c) that the land to which the certificate relates is the subject of an approved voluntary management proposal within the meaning of the Act – if it is the subject of such an approved proposal at the date when the certificate is issued,

Lot 202 DP 1133999 - NO

(d) that the land to which the certificate relates is subject to an ongoing maintenance order within the meaning of the Act – if it is subject to such an order at the date when the certificate is issued,

Lot 202 DP 1133999 - NO

(e) that the that the land to which the certificate relates is the subject of a site audit statement within the meaning of the Act - if a copy of such a statement has been provided at any time to the local authority issuing the certificate.

Lot 202 DP 1133999 - NO

THE FOLLOWING INFORMATION IS PROVIDED PURSUANT TO SECTION 10.7(5) OF THE ENVIRONMENTAL PLANNING AND ASSESSMENT ACT, 1979.

Boarding House

Lot 202 DP 1133999:

This property is **NOT** registered with Council as a boarding house. Nevertheless, the provisions of *State Environmental Planning Policy (Affordable Rental Housing) 2009* may apply.

State Environmental Planning Policy (Concurrences) 2018

In February 2019, the NSW State Government introduced *State Environmental Planning Policy* (*Concurrences*) 2018 that allows the Secretary of the Department of Planning, Industry and Environment (the Planning Secretary) to act on behalf of an approval body that requires concurrence under the following environmental planning instruments: *State Environmental Planning Policy* (*Infrastructure*) 2007, *State Environmental Planning Policy* (*Educational Establishments and Child Care Facilities* (2017), and *State Environmental Planning Policy* (Sydney Region Growth Centres (2006).

For more information go to: <u>https://www.legislation.nsw.gov.au/#/view/EPI/2018/764</u>

Draft Inner West Development Control Plan 2020

The Draft Inner West Development Control Plan 2020 is being exhibited concurrently with the Draft Inner West Local Environmental Plan 2020 and applies to land.

Additional Information

AUSTRALIAN NOISE EXPOSURE FORECAST (A.N.E.F.)

Lot 202 DP 1133999:

• The subject land is in the 25 ANEF contour or a higher ANEF contour.

Refer to Australian Noise Exposure Forecast (ANEF) Map available on Sydney Airport's website (http://www.sydneyairport.com.au).

For more information please contact:

Airservices Australia

Noise Enquiry Lines The national number rings at the nearest local noise enquiry office. **National Noise Enquiry Line:** 1800 802 584

Head Office Address: Alan Woods Building 25 Constitution Avenue Canberra ACT 2601

Postal Address: GPO Box 367 Canberra ACT 2601

Phone: 02 6268 4111 or 1300 301 120 Fax: 02 6268 5683 ANEF information can be found under the Airservices Australia web site: http://www.airservicesaustralia.com

Information regarding outstanding notices and orders

For information regarding outstanding notices and orders a Certificate for outstanding notices or intention and/or an Order under section 735A of the *Local Government Act* 1993 may be applied for at any of the Inner West Council's Service Centres in Ashfield, Leichhardt or Petersham.

General Message on matters not able to be included in this Certificate

The s10.7 Certificate provides information relating to the land itself. Persons should make their own enquiries into external matters which may affect the enjoyment of the land such as development consents on adjacent land, Park Plans of Management etc.

General Information

The absence of any reference to a matter affecting the land shall not imply that the land is not affected by that matter not referred to in this certificate.

Information provided under section 10.7(2) is in accordance with the matters prescribed under schedule 4 of the *Environmental Planning and Assessment Regulation 2000* and is provided only to the extent that the Council has been notified by relevant departments or public authorities.

Any enquiries regarding State Environmental Planning Policies and should be directed to Planning and Environment. Please contact Council's Strategic Planning section for further information about this Planning Certificate.

General Information

The absence of any reference to a matter affecting the land shall not imply that the land is not affected by that matter not referred to in this certificate.

Information provided under section 10.7(2) is in accordance with the matters prescribed under schedule 4 of the Environmental Planning and Assessment Regulation 2000 and is provided only to the extent that the Council has been notified by relevant departments or public authorities.

When advice in accordance with section 10.7(5) is requested, the Council is under no obligation to furnish any advice. If advice is provided Council draws your attention to section 10.7(6) and section 2 of schedule 6 of the *Environmental Planning and Assessment Act 1979* which have the effect that Council shall not incur any liability in respect of advice provided in good faith pursuant to section 10.7(5), including the furnishing of advice in respect of contaminated land.

Any enquiries regarding State Environmental Planning Policies should be directed to NSW Department of Planning, Industry and Environment.

Please contact Council's Strategic Planning section for further information about this Planning Certificate.

HARJEET ATWAL SENIOR MANAGER PLANNING

SafeWork NSW Records

Locked Bag 2906, Lisarow NSW 2252 Customer Experience 13 10 50 ABN 81 913 830 179 | www.safework.nsw.gov.au

Our Ref: D20/173799

1 2

27 August 2020

Mr Alistair Mitchell JK Environments amitchell@jkenvironments.com.au

Dear Mr Mitchell

RE SITE: 74 Edinburgh Rd, Marrickville NSW 2204

I refer to your site search request received by SafeWork NSW 13 August 2020 requesting information on Storage of Hazardous Chemicals for the above site.

Enclosed are copies of the documents that SafeWork NSW holds on record number 35/004193 relating to the storage of Hazardous Chemicals at the above-mentioned premises.

For further information or if you have any questions, please call us on 13 10 50 or email licensing@safework.nsw.gov.au

Yours sincerely

Customer Service Officer Customer Experience - Operations SafeWork NSW

SAFEWURK NSW 92 DUNNISUN STREET GUSFLIRD NSW 2250

13708720-15:0708 13708 000030#7584 0008 МАКК

UIHERX \$3U7.50 DIHERX \$1.36 INV IIL \$310.86 GS | \$28.26

UR LARD

* indicates taxable IAX INVLILE, 81 913 830 179 EFTPOS FROM WESTPAC SAFEWORK NSW 92 TO 100 DONNISON STRE GOSFORD 2250 Australia

TIME 13A	NG20	14:46
MID	2	25234691
TSP	10038	81916593
RRN	20081	3055965
Uisa(M)		CR
CARD		3188
AUTH		45400C
мото	AUD	31.0.86
(000)	APPRO	VED

CUSTOMER COPY

NOTIFICATION OF DANGEROUS GOODS ON PREMISES FORM

CONTACT FOR NOTIFICATION INQUIRIES
Title: (Mr) / Miss / Ms / Mrs / Other (please specify) Family name SCICLUN A
Given name <u>5 (0TT</u> Other names
Business phone <u>0418 466 615</u> Business fax number <u>02 95179551</u>
Business email address SCICLUNA & LIVECU. COM
Previous Licence Number or Acknowledgement Number (if known)
35/
Previous Occupier (if known)
Site on which dangerous goods are to be kept
Number Street
74 EDINBURGH ROAD
Suburb/Town/Locality Postcode
MARRICKVILLE TY ZZOLL
Nearest cross Street
SYDNEY STEEL ROAD
Lot and DP if no street number
Is the site staffed? If ves state number of employees $4 - \circ$
Site staffing: Hours per day 74 Days per week 6
Site Emergency Contact
Phone number Name
102 95193361 SCOTT SCICLUNA
Nature of site (eg petrol station, warehouse etc)
WAREHOUSE
Nature of primary business activity
MANUFACTURING-
ABN Number (if any) Website details (if any)
68083019390 WWW. LIONCO. COM
What is the ANSZIC code most applicable to your business? (see guide for list of codes and further information)
Code Description
2129 DAIRY PRODUCT MANUFACTURER

FDG01

Attach a site sketch(s) of the premises. Refer to the Guide GDG01 for information on the requirements for the site sketch.

Attach a legible photocopy page from a local Street Directory or other map showing the locality of the premises. Mark the location of the premises with an X.

Deportito	Type of storage location	n or pro	cess (Class	Maximum Stora	ge Canacity	(1 kg)	
(i)	REFRIGERATION	J PL	ANT	2.3	2000	6 /	(=, 1(5)	
UN Number	Proper Shipping Name	Class	PG	Product or	r Common Name	HazChem	Typical	Unit
1005	AMMONDA	2.3		Amma	NIA	286	4500	cg L,
	ANHYDROUS						15	
Depot No	Type of storage location	n or pro	cess (Class	Maximum Stora	ge Capacity	(L, kg)	
UN Number	Proper Shipping Name	Class	PG (I, II, III)	Product or	Common Name	HazChem Code	Typical Qty	Unit eg L,
						P.		
Depot No	Type of storage location	n or pro	cess (Class	Maximum Stora	ge Capacity	(L, kg)	
UN Number	Proper Shipping Name	Class	PG (I, II, III)	Product or	Common Name	HazChem Code	Typical Qty	Unit eg L,
			1					
Depot No	Type of storage location	n or pro	cess (Class	Maximum Stora	ge Capacity	(L, kg)	
UN Number	Proper Shipping Name	Class	PG (I, II, III)	Product or	Common Name	HazChem Code	Typical Qty	Unit eg L,
					17. 1		•	
Depot No	Type of storage location	n or pro	cess (Class	Maximum Stora	ge Capacity	(L, kg)	

FDG01

EVACUATION DIAGRAM

RENCH MARK	
TELSTRA PIT	an IEL
TELSTRA PHIAR	10 TP
FLECTRIC LIGHT POLE	OELP
WETAL LICHT POLE	(D MLP
ELECTRICITY BOX	CO EL
POWER POLE	e pp
PIT WITH CONCRETE LID	D CPIT
PIT WITH WETAL LID	O MPIT
TRAFFIC LIGHT	# n.
GRATED INLET PIT	I PIT
KERB INLET PIT	- KIP
SEWER INSPECTION POINT	O SIP
SEWER VENT	Ø SEV
SEWER MANHOLE	O SMH
SEWER LAMP HOLE	OUH
STOP VALVE	D SV
HYDRANT	D HYD
WATER METER	M WM
WATER VALVE	
GAS VALVE	C CAS
GAS MARKER	DI GPLQ
VEHICLE CROSSING	(VC)
PRAM CROSSING	(PC)
GAS	
TELSTRA	T
OPTUS	
ELECTRICITY (OVERHEAD)	P
ELECTRICITY (U'GROUND)	E
WATER	
STORMWATER	
SEWER	8
FIRE HYDRANT	F

ent

 SCHEDULE
 of
 CURVED
 BOUNDARIES

 Ho.
 BEARING
 CHORD
 ARC
 RADUS

 1
 17603'
 18.465
 18.845
 26.975

 2
 31179'
 13.905
 13.3102
 13.319
 23.1485

 3
 29647'00'
 22.85
 24.05
 33.596
 4
 116*600'
 22.85
 22.455
 30.445

 5
 131'30'
 15.34
 15.345
 22.855
 22.855
 22.855

(C) EASEMENT FOR ELECTRICITY PURPOSES 2 WIDE (VIDE 1450014) (D) RIGHT OF WAY (VIDE 158014) (E) DARIAGE EASEMENT (VIDE 53599) (F) RIGHT OF WAY (VIDE 2247124) (D) EASEMENT FOR ACCESS (VIDE 655027) (E) EASEMENT FOR ACCESS (VIDE 675001) (E) EASEMENT FOR ACCESS (VIDE 675001) (E) EASEMENT TO DIARI WATER 15 WIDE (VIDE DP 113369) (E) EASEMENT TO DIARI WATER 15 WIDE (VIDE DP 113369) (E) EASEMENT TO DIARI WATER 15 WIDE (VIDE DP 113369) (E) EASEMENT TO DIARI WATER 25 WIDE (VIDE DP 113369) (E) EASEMENT TO EMANTARE 25 WIDE (VIDE DP 113369) (E) EASEMENT TO E ELETION (VIDE DP 11360) (E) EASEMENT TO E ELETION (VIDE DP 11360) (E) EASEMENT EASEMENT (E) EASEMENT EASEMENT (VIDE 224724) (U) SUBSTATION PPENTERS 10 706

NOTES

- 1) THE BOUNDARIES HAVE NOT BEEN MARKED
- 2) ALL AREAS AND DIVENSIONS HAVE BEEN COMPLED FROM PLANS MADE AVAILABLE BY THE OFFICE of LAND & PROPERTY INFORMATION (NSW) AND ARE SUBJECT TO FINAL SURVEY
- 3) ORIGIN OF LEVELS ON A.H.D. IS TAKEN FROM SSM 51509 R.L. 4.635 (A.H.D.) IN EDINBURCH ROAD
- 4) CONTOUR INTERVAL 0.5m
- 5) CONTOURS ARE INDICATIVE ONLY. ONLY SPOT LEVELS SHOULD BE USED FOR CALCULATIONS OF QUANTITIES WITH CAUTION
- 6) KERB LEVELS ARE TO THE TOP OF KERB UNLESS SHOWN OTHERWISE
- 7) FLOOR LEVELS SHOWN ARE THRESHOLD LEVELS. NO INVESTIGATION OF INTERNAL FLOOR LEVELS HAS BEEN UNDERTAKEN
- 8) NO INVESTIGATION OF UNDERGROUND SERVICES HAS BEEN MADE. SERVICES HAVE BEEN PLOTED FROM RELEVANT AUTHORITIES INFORMATION AND HAVE NOT BEEN SURVEYED. ALL RELEVANT AUTHORITIES SHOULD BE NOTIFIED PRIOR TO ANY EXCAVATION ON OR NEAR THE SITE.
- 9) 8/.4/7 DENOTES TREE SPREAD OF 8m, TRUNK DIAMETER OF 0.4m & APPROX HEIGHT OF 7m

10) SHOWS APPROXIMATE POSITION OF ROAD LINEMARKING AND IS INDICATIVE ONLY

Wo	orkCover New So	uth Wales, 400 Kent Street, Sydney 2000, T WORKCO DETAILS DANGEROUS	OF LICENCE FOR KEEPING GOODS ON 25 September 20	BOX 5364 SYDNEY 2001 LES	WORKCOVER NEW SOUTH WALES
	Lice	nce Number 35/004193	Expiry Date 14/01/2002	No of Depots. 22	
	License	e Details			
	Lice	nsee UNILEVER AUSTRALIA	A LTD ACN 004 050 828		
	Trac	ling name UNILEVER AUST	RALAISA- MARRICKVILLE		
	Pos MAF	tal Address UNILEVER AUS ⁻ RRICKVILLE NSW 2204	TRALAISA- MARRICKVILLE BOX	119 P O	
	Lice	nsee Contact ALLAN GARR	ICK Ph. 02 9517 6555 Fax. 02 9	519 2607	
6	Site De	tails			
	Prei	mises Licensed to Keep Dan UNILEVER AUSTRALIA LTD U 74 EDINBURGH RD MARRIC	Igerous Goods JNILEVER AUSTRALAISA- MARRICK KVILLE 2204	VILLE	
	Nati	ure of Site FOOD MANUFACT	URING N.E.C.		
	Majo	or Supplier of Dangerous Go	oods VARIOUS		
	Eme	ergency Contact for this Site	SECURITY Ph. 02 9517 6555		
	Site	staffing 24 HRS 7 DAYS			
	Details o	of Depots			
	Depot No	. Depot Type	Goods Stored in Depot		Qty
	1	ABOVE-GROUND TANK	Class 2.3		5000 L
12	12	CYLINDER STORE	Class 2.1		60 M3
0	2	UN 1049 HYDROGEN	I, COMPRESSED		30 M3
	2	UN 1005 AMMONIA,	ANHYDROUS		100 KG
	3	FLAMMABLE LIQUIDS CA	BINET Class 3		250 L
		UN 1993 FLAMMABL	E LIQUID, , N.O.S.		20 L
	4	FLAMMABLE LIQUIDS CA	BINET Class 3		140 L
		UN 1155 DIETHYL ET	THER (ETHYL ETHER)		20 L 3 L
	5	FLAMMABLE LIQUIDS CA	BINET Class 3		800 L
		UN 1197 EXTRACTS,	, FLAVOURING, LIQUID	2	410 KG
		UN 1197 EXTRACTS,	, FLAVOURING, LIQUID		150 KG
	6	FLAMMABLE LIQUIDS CA	BINET Class 3		120 L 800 L
	6A	UN 1170 ETHANOL (I	ETHYL ALCOHOL)		30 L
		UN 1197 EXTRACTS, UN 1197 EXTRACTS.	, FLAVOURING, LIQUID , FLAVOURING, LIQUID	:	200 KG 60 KG
		UN 1210 PRINTING II	NK		60 L

Printed by Scientific Services Branch, 400 Kent St, Sydney 2000 ph(02) 9370 5187

http://www.workcover.nsw.gov.au

DX 13067, MARKET ST, SYDNEY

		FLAMMABLE LIQUIDS CABINET Class 3	100 L
	1h.	UN 1090 ACETONE	
1	10	UN 1170 ETHANOL (ETHYL ALCOHOL)	20 1
Wo	rkCover New Sou	th Wales UNK1206 HERTANES 1 9370 5000 Fay: 9370 5000 ALL MAIL TO G PO BOX	5364 SVDNEV 2001
100	INCOVEL NEW OUL	UN 1262 OCTANES	
/		UN 1268 PETROLEUM PRODUCTS, N.O.S.	10
		UN 2056 TETRAHYDROFURAN	3L
	8	ROOFED STORE Class 8	VERKCOVER
		UN 1791 HYPOCHLORITE SOLUTION	200 L
	9	ROOFED STORE Class 8	1000 L
		UN 1824 SODIUM HYDROXIDE SOLUTION	900 L
	FLC-10	FLAMMABLE LIQUIDS CABINET Class 3	90 L
		UN 1197 EXTRACTS, FLAVOURING, LIQUID	60 L
	FLC-11	FLAMMABLE LIQUIDS CABINET Class 3	100 L
		UN 1203 PETROL	20 L
		UN 1263 PAINT RELATED MATERIAL	10 L
	RPS-13	ROOFED STORE Class 8	600 L
		UN 1760 CORROSIVE LIQUID, N.O.S.	300 L
	RPS-8	ROOFED STORE Class 8	240 L
		UN 1791 HYPOCHLORITE SOLUTION	160 L
	RPS-9	ROOFED STORE Class 8	2400 L
F		UN 1719 CAUSTIC ALKALI LIQUID, N.O.S.	600 L
5	T 4 F 4	UN 1824 SODIUM HYDROXIDE SOLUTION	600 L
	1151	ABOVE-GROUND TANK Class 2.1	5000 M3
	T0074	UN 1049 HYDROGEN, COMPRESSED	3000 M3
	12074	ABOVE-GROUND TANK Class 8	36000 KG
	20075	UN 1824 SODIUM HYDROXIDE SOLUTION	20000 KG
	12075	ABOVE-GROUND TANK Class 8	24000 KG
	T2076		15000 KG
	12070		10000 KG
	T209		7000 KG
	1200		30000 L
			20000 L
		LIN 1049 HYDROGEN COMPRESSED	3400 M3
	TRAILER?	ABOVE-GROUND TANK Class 2.1	1800 M3
	. I to the her I th	UN 1049 HYDROGEN COMPRESSED	1800 M3
		SIT IS IS IT DIGOEN, SOM TREODED	1000 103

the second

C

LOCATION OF DANGEROUS GOODS DEPOTS

Depot	Dangerous Goods	Class	Maximum Capacity	Туре
T1-FRIG	Anhydrous Ammonia	2.3	5000L	Above Ground Tank
T2- DRY	Anhydrous Ammonia	2.3	300L	Above Ground Tank
CYL-12	Hydrogen, Compressed	2.1	60m ³	Cylinder Store
FLC-3	Flammable Inks, Solvents	3	250L	Cabinet
FLC-4	Flammable Solvents	3	140L	Cabinet
FLC-5	Flammable Flavours	3	800L	Cabinet
FLC-6	Flammable Inks, Solvents	3	800L	Cabinet

Depot	Dangerous Goods	Çlass	Maximum Capacity	Туре
FLC-7	Flammable Solvents	3	100L	Cabinet
RPS-8	Sodium Hypochlorite	3	500L	Roofed Store
RPS-9	Corrosive Detergents	8	1000L	Roofed Store
T151	Hydrogen, Compressed	2.1	5000m ³	Above Ground Tank
Trailer 1	Hydrogen, Compressed	2.1	3400m ³	Cylinder on Trailer
Trailer 2	Hydrogen, Compressed	2.1	1800m ³	Cylinder on Trailer
T2074	Caustic Soda (50%)	8	36000kg	Above Ground Tank

Depot	Dangerous Goods	Class	Maximum Capacity	Туре		
T2075	Sulphuric Acid (98%)	8	24000kg	Above Ground Tank		
T2076	Phosphoric Acid	8	10000kg	Above Ground Tank		
T208	Nitrogen	2.2	20000L	Above Ground Tank		
FLC-10	Flammable Flavours	3	90L	Cabinet		
FLC-11	Flammable Liquids	3	100L	Cabinet		

Dangerous Goods Licensing ph (02) 4321 5500 fax (02) 9287 5500

Attn: IAN KELLY Licensee: PEERLESS HOLDINGS PTY LTD ACN 010 929 914 74 EDINBURGH RD MARRICKVILLE NSW 2204

LICENCE FOR THE KEEPING OF DANGEROUS GOODS

ISSUED UNDER AND SUBJECT TO THE PROVISIONS OF THE DANGEROUS GOODS ACT, 1975 AND REGULATIONS THEREUNDER

Goods Stored in Depot

Qty

Licence Number 35/004193

Expiry Date 13/01/2006 No. of Depots 22

Licensee Contact IAN KELLY Ph. 02 9517 6555 Fax. 02 9519 2607

Premises Licensed to Keep Dangerous Goods PEERLESS HOLDINGS PTY LTD 74 EDINBURGH RD MARRICKVILLE 2204

Nature of Site FOOD MANUFACTURING N.E.C.

Major Supplier of Dangerous Goods VARIOUS

Emergency Contact for this Site

Site staffing 24 HRS 7 DAYS

Details of Depots

Depot No. Depot Type

1 ABOVE-GROUND TANK Class 2.3 5000 L UN 1005 AMMONIA, ANHYDROUS 3000 L 12 CYLINDER STORE 60 M3 Class 2.1 UN 1049 HYDROGEN, COMPRESSED 30 M3 : 2 PROCESS VESSEL/AREA Class 2.3 200 KG UN 1005 AMMONIA, ANHYDROUS 100 KG 3 FLAMMABLE LIQUIDS CABINET Class 3 250 L **UN 1210 PRINTING INK** 60 L UN 1993 FLAMMABLE LIQUID, , N.O.S. 20 L FLAMMABLE LIQUIDS CABINET Δ Class 3 140 L UN 1090 ACETONE 20 L UN 1155 DIETHYL ETHER (ETHYL ETHER) 3 L 5 FLAMMABLE LIQUIDS CABINET Class 3 800 L UN 1170 ETHANOL (ETHYL ALCOHOL) 60 L 410 KG UN 1197 EXTRACTS, FLAVOURING, LIQUID UN 1197 EXTRACTS, FLAVOURING, LIQUID 150 KG 120 L **UN 1210 PRINTING INK** 6 FLAMMABLE LIQUIDS CABINET Class 3 800 L PLEASE RETAIN AS PROOF OF LICENCE Issued by Workcover Authority of New South

Wales on 6 October 2005

WorkCover. Watching out for you.

WorkCover NSW ABN 77 682 742 966 92-100 Donnison Street Gosford NSW 2250 Locked Bag 2906 Lisarow NSW 2252 Telephone 02 4321 5000 Facsimile 02 4325 4145 WorkCover Assistance Service 13 10 50 DX 731 Sydney Website www.workcover.nsw.gov.au

Dangerous Goods Licensing	
ph (02) 4321 5500 fax (02) 9287 5500	
UN 1170 ETHANOL (ETHYL ALCOHOL) 30 L	
UN 1197 EXTRACTS, FLAVOURING, LIQUID 200 KG	
UN 1197 EXTRACTS, FLAVOURING, LIQUID 60 KG	
UN 1210 PRINTING INK 601	
7 FLAMMABLE LIQUIDS CABINET Class 3 100 L	
UN 1090 ACETONE 31	ann an a' ann an an ann an ann an ann an
UN 1155 DIETHYL ETHER (ETHYL ETHER) 51	
UN 1170 ETHANOL (ETHYL ALCOHOL) 201	
UN 1206 HEPTANES 51	
UN 1262 OCTANES 31	
UN 1268 PETROLEUM PRODUCTS NOS 101	
UN 2056 TETRAHYDROFURAN	
8 ROOFED STORE Class 8 500 L	
UN 1791 HYPOCHLORITE SOLUTION 2001	
9 ROOFED STORE Class 8 1000 L	*
UN 1824 SODIUM HYDROXIDE SOLUTION 900 L	
FLC-10 FLAMMABLE LIQUIDS CABINET Class 3 90 L	
UN 1197 EXTRACTS FLAVOURING LIQUID 601	
FLC-11 FLAMMABLE LIQUIDS CABINET Class 3 100 L	
UN 1203 PETROL 201	
UN 1263 PAINT RELATED MATERIAL 101	
RPS-13 ROOFED STORE Class 8 600 I	
LIN 1760 CORROSIVE LIQUID N.O.S. 300 L	
RPS-8 ROOFED STORE Class 8 240 L	
LIN 1791 HYPOCHLORITE SOLUTION 160 L	
RPS-9 ROOFED STORE Class 8 2400 L	
LIN 1040 HYDROGEN COMPRESSED 2000 M2	
T2074 APOVE GPOUND TANK Close 9 20000 KO	
LIN 1824 SODILIM HYDROVIDE SOLUTION 20000 KG	
T2075 ABOVE-GROUND TANK Class 8 26500 L	
IN 1040 HVDPOCEN COMPRESSED	
0N 1049 HTDROGEN, COMPRESSED 1800 M3	

2

PLEASE RETAIN AS PROOF OF LICENCE Issued by Workcover Authority of New South Wales on 6 October 2005

WorkCover. Watching out for you.

WorkCover NSW ABN 77 682 742 966 92-100 Donnison Street Gosford NSW 2250 Locked Bag 2906 Lisarow NSW 2252 Telephone 02 4321 5000 Facsimile 02 4325 4145 WorkCover Assistance Service 13 10 50 DX 731 Sydney Website www.workcover.nsw.gov.au

all a dan D

Г	1				
		WORKCOVER I	NEW SO	UTH WALES	
		DETAILS OF LI	CENCE FOF	KEEPING	
		DANGEROUS GOO	DDS ON 25	JUNE 1997	
	Licence I	Number 35/004193 Expin	ry Date 14/0	01/97	
	Licensee Deta	ails		-15,	
	Licensee	UNILEVER AUSTRALIA LTD	ACN 004 (050 828	
	Trading r	name FLORA FOODS			
	Postal A	ddress BOX 119 P O, MARRIO	CKVILLE 22	04	
	Licensee	Contact Allan Garrick Ph. 95	17 6555 Fa	ax. 9519 2607	
	Site Details				
	Premises	s Licensed to Keep Dangerous G	oods		
		74 EDINBURGH RD MARRICKVILLE 2204		5	
	Nature o	f Site Food Manufacturing NEC	Supplier	NOT APPLICABLE	
	Emergen	cy Contact Security ph. 9517	6555		
	Site staf	fing 24hrs 7days			
	Details of Dep	pots			
	Depot N	o. Depot Type	Go	ods Stored in Depot	Dty
	10				
	10	FLAMMABLE LIQUID CABINE	UN 1210	PRINTING INK, flammabl	800 L 60 L
			UN 1197	EXTRACTS, FLAVOURING,	30 L 60 kg
			UN 1197	EXTRACTS, FLAVOURING,	200 kg
	11	FLAMMABLE LIQUID CABINE		Class 3	100 L
			UN 1155	DIETHYL ETHER (ETHYL E	3 L 5 L
			UN 1170	ETHANOL (ETHYL ALCOHOL	20 L
			UN 1200	PETROLEUM SPIRIT	5 L 10 L
			UN 2056	TETRAHYDROFURAN	3 L
	12	BOOFED STOPE	Class 9	UCTAINED	5 1
	12		UN 1791	HYPOCHLORITE SOLUTIONS	200 L
	13	ROOFED STORE	Class 8 UN 1824	SODIUM HYDROXIDE SOLUT	1000 L 900 L
	1a	ABOVE-GROUND TANK	Class 8 UN 1830	SULFURIC ACID	24000 kg 15000 kg

Printed by Scientific Services Branch, 400 Kent St, Sydney 2000 = (02) 370 5187

8

diffe-

35/004193

1b	ABOVE-GROUND TANK	Class 8 UN 1824	SODIUM HYDROXIDE SOLUT	36000 kg 20000 kg
1c	ABOVE-GROUND TANK	Class 8 UN 1805	PHOSPHORIC ACID	10000 kg 7000 kg
2a	ABOVE-GROUND TANK	Class 2.1 UN 1966	HYDROGEN, REFRIGERATED	5000 m3 3000 m3
2b	ABOVE-GROUND TANK	Class 2.1 UN 1966	HYDROGEN, REFRIGERATED	2500 m3 1800 m3
2c	ABOVE-GROUND TANK	Class 2.1 UN 1966	HYDROGEN, REFRIGERATED	2500 m3 1800 m3
2d	ABOVE-GROUND TANK	Class 2.1 UN 1966	HYDROGEN, REFRIGERATED	2500 m3 1800 m3
3	ABOVE-GROUND TANK	Class 2.2 UN 1977	NITROGEN, REFRIGERATED	30000 L 20000 L
5	ABOVE-GROUND TANK	Class 2.3 UN 1005	AMMONIA, ANHYDROUS, LI	5000 L 3000 L
6	CYLINDER STORE	Class 2.1 UN 1049	HYDROGEN, COMPRESSED	60 m3 30 m3
7	FLAMMABLE LIQUID CABINE	T UN 1210 UN 1993	Class 3 PRINTING INK, flammabl FLAMMABLE LIQUID, N.O.	250 L 60 L 20 L
8	FLAMMABLE LIQUID CABINE	T UN 1090 UN 1155	Class 3 ACETONE DIETHYL ETHER (ETHYL E	140 L 20 L 3 L
9	FLAMMABLE LIQUID CABINE	Т	Class 3	800 L
		UN 1210 UN 1170 UN 1197 UN 1197	PRINTING INK, flammabl ETHANOL (ETHYL ALCOHOL EXTRACTS, FLAVOURING, EXTRACTS, FLAVOURING,	1 20 L 60 L 1 50 kg 4 10 kg

10

Particulars of type of depots and maximum quantities of dangerous goods to be kept at any one time.

Depot number (1 UN 2 UN 3 UN 4 UN 5 CY 6 TH 7 TH 8 TH	Type of depot		Dangerous	goods	
	(See item 3—Explanatory notes—page 4)	Storage capacity	Product bein	ng stored	Office use only
1	UNDERGROUND TANK	10,000 ltrs	PETROL	3.1	2 0 20 14
2	UNDERGROUND TANK	15,000 ltrs	PETROL	3.1	2 020 24
3	UNDERGROUND TANK	13,000 ltrs	PETROL	3.1	2 020 14
4	UNDERGROUND TANK	10,000 ltrs	PETROL	3.1	2 02014
5	CYLINDER STORE	2,000 ltrs	LPG		7 10023
6.	TRAILER	2100 scm max.	HYDROGEN	2.1	110023
7	TRAILER	2100 scm max.	HYDROGEN	2.1	1100 23
8	TRAILER	2100 scm max.	HYDROGEN	2.1	110023
9	TRAILER	2100 scm max.	HYDROGEN	2.1	110023
10	ABOVEGROUND TANK	19200 scm max.	NITROGEN	2.1	104024
11	ABOVEGROUND TANK	500 ltrs	LPG		1100SZ
12			the states	1344	131

Has site plan been approved by the Dangerous Goods Branch? Yes If yes, no plans required. No

If no, please attach site plan, or provide sketch plan overleaf.

Date

Have premises previously been licensed?

Yes If, yes, state name of previous occupier, and licence No. (if known). No

Name of oil company supplying flammable liquid (if applicable). MOBIL LTD. (PETROL)

ann Signature of applicant For external explosives magazine(s), please fill in page 3.

FOR OFFICE USE ONLY CERTIFICATE OF INSPECTION

I, being an Inspector under the Dangerous Goods Act, 1975, do hereby certify that the premises described above do comply with the requirements of the Dangerous Goods Act, 1975, and the Dangerous Goods Regulation with regard to their situation and construction for the keeping of dangerous goods of the nature and in the quantity specified.

Signature of Inspector

m

BULK INSTALLATION PROPOSAL DATE:	7	, May in a street				
UTONER: E.O.I CONTACT: R. TALTY. TAXX SIZE: I × 276000 APPLICATION: LIQUID ICALE: REP: E. JONES DIG: 86.85/85 SORAL GAS (NSW) PTY LTD, BUIRIOWS ROAD SOUTH, ST PLTERS 2014 ITTE SKETCH SUBMITTED TO MINES DEPT BY: DATE: APPROVED NOT APPROVED COMMENDER FORCE, APPROVED COMMENDER FORCE, APPROVED COMMENDER CONTRACT, ST PLTERS 2014 COMMENDER FORCE, APPROVED COMMENDER CONTRACT, ST PLTERS 2014 COMMENDER CONTRACT, ST PLTERS 2014 COMMENTER FORCE, ST	Ú,	BUL	K INSTALLATION	PROPOSAL	DATE: ~ 7	1
ANN SIZE: 1 × 2-TONNE APPLICATION: LIQUID CALE: REP: E. JONES DUGI 0. 85/85 DORAL GAS (NSW) PTY LTD, BUILHOWS ROAD SOUTH, ST PLTERS 2014 SITE: APPROVED NOT APPROVED NOT APPROVED NOT APPROVED ROT APPROVED	U TOMER :	E.O.1		CONTACT:	R TALTY.	an a
ICALE: REP: E. JONES DUC: 6(-85/85 JORAL GAS (NSW) PTY LTD, DURHOWS ROAD SOUTH, ST PLTERS 2044 ITTZ: SKETCH SUBMITTED TO NINES DEPT BY: DATE: APPROVED NOT APPROVED SLOSSFORM GROWING STORE SLOSSFORM GROWING STORE GROWING STO	ANK SIZE:	1×2TONNE A	PPLICATION:	LIQUID		ningen for an
DORAL GAS (NSW) PTY LTD, BURHOWS ROAD SOUTH, ST PETERS 2014 ITÈ SKETCH SUBNITTED TO MINES DEPT BY: DATE: APPROVED NOT APPROVE	CALE:	1999 - 2009 - 2009 - 2009 - 2009 - 2009 - 2009 - 2009 - 2009 - 2009 - 2009 - 2009 - 2009 - 2009 - 2009 - 2009 - 	REP: E.	TONES DNG:	BG-85/85	
APPROVED APPROVED TO NINES DEPT DY: DATE: APPROVED NOT APPROVED State State	ORAL GAS	(NSW) PTY LTD, BU	RHOWS ROAD SOUT	CH, ST PLTERS	2044	********
Sisteres Sub Stanton Grand Junk Fence Fence State State State Stor	ITE SKETC	H SUBMITTED TO MI	NES DEPT BY:	DA	TE: · APPRO NOT APP	VED ROVED
ELECTRIC SLAB STOTION Channellow K Fence Som Fence Stop	North Anna Contractor and an	1918)-61-61-1903-634()-14-4)-64-44-44-44-44-44-6-6-44-44				and and an and a second states of the second states
REAR WORKS ENTRANCE MARSA	ELECTRIC SUB STR CHAINL FE	TOU WK X ACE X	am S BANA	insung Parmet	mense Criznens	* * * * * * * * * * * * * * * * * * *
HOM PROPOSED LAUSTBALATION LESTONAUX L.P.G. CLIQUID USE EACTORY PRIVATE REAR WORKS ENTRANCE MORRICKVILLE ENTRANCE			OPEN AREA.	*	• · · · • · · · · · · · · · · · · · · ·	*
L.P.G. CLIQUID USE DX FACTORY PRIVATE E.O.I. THEORN BURGH RP X REAR WORKS ENTRANCE MORRICKVILLE ED			hom	ROPOSED INSTAL	AATTON 1×270AN	Ex .
REAR NORKS ENTRANCE MARRICKVILLE				. R.G. Carou	io Use D	
WORKS ENTRANCE MARRICKWILLE ED I		Factory	PRIVATE	E.O.I. EDW	RURGH RD	
	Moeks	REAR	NEE	MARRICKVILL	E	

PLAN OF PROPOSED WORK FOR CALTEX

(Measurements as per Page 2)

(Show Buildings, Fences, other Structures, Fall of Ground etc. Switchboard - Vent Location)

ACCURATE MEASUREMENTS MRARICKVILLE NERDINES (T) WEDINBURGH RD ACTORPORTURE CLIENT'S NAME & ADDRESS ACCONE 123 SEAL LIQUID WITH GALTEX DRG. No. C188351F. PROTECTED WORKS WITHIN NO ***************** 240" 58'0" + 20'0" - 10'0"+ 10'0"+ 28'0" BUILDING TO REMAIN. ERRTH. 10000 BUIL DING. TO REMAN. GAL BUILDING TO BE PETROL DEMONISHED TONIN 10000 6AL DISTIKARTE GARTH TRASK DOOR 60" EARTH. EARTH 外 € 120 -> < 15'0" 2 ETROL DISTIAAATE PLOSIVES BRAN Dome DUMP OA CHIEF INSPECTO? 51 激怒感 TO COMPLIANCE WITH REGULATIONS THE ABOVE LAYOUT MEETS WITH MY APPROVAL Customer Signature Essential EXPLOSIVES: Requirements do not permit fill points inside a building or within 5' of any door. No pump inside a building or on a wharf without special approval. U/ground Gasoline Tanks must be seperated i from protected works, as under: 500 gallon - 10' = 7'6'' x 4' 000 '' - 10' = 8'7'' x 5' dia) CALTEX DRAWING 1000 dia) >> $-10' = 9'10'' \times 7'$ dia) 2000 C188353 3 2 = 13'10''x 7' 3000 - 13' dia) 2.2 = 18'0'' x 7' - 15' dia) 4000 - 18' = 22'2'' x 7' 22 dia) 5000 ,, - 18' = 26'3'' x 7' 6000 dia) Each pump to have its own circuit. Fuse 41/2 amps. S/E 9 amps D/E pmp.

Appendix C: Laboratory Results Summary Tables

TABLE S1

SOIL LABORATORY RESULTS COMPARED TO NEPM 2013.

HIL-D: 'Commercial/Industrial'

\II data in mg/kg unless stated otherwise						HEAVY	METALS					PAHs			ORGANOCHLO	RINE PESTICI	DES (OCPs)			OP PESTICIDES (OPPs)		
All data in m	g/kg unless sta	ited otherwise	Arsenic	Cadmium	Chromium VI	Copper	Lead	Mercury	Nickel	Zinc	Total PAHs	Carcinogenic	НСВ	Endosulfan	Methoxychlor	Aldrin &	Chlordane	DDT, DDD & DDF	Heptachlor	Chlorpyrifos	TOTAL PCBs	ASBESTOS FIBRES
POL - Enviro	ab Services		4	0.4	1	1	1	0.1	1	1	-	0.5	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	100
Site Assessm	ent Criteria (SA	AC)	3000	900	3600	240000	1500	730	6000	400000	4000	40	80	2000	2500	45	530	3600	50	2000	7	Detected/Not Detected
Sample Reference	Sample Depth	Sample Description					1											1				
BH101	0.5-0.95	Fill:Silty Sandy Clay	4	<0.4	13	37	48	<0.1	8	61	0.3	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH101	1.5-1.95	Fill:Silty Sandy Clay	<4	<0.4	5	17	31	<0.1	20	120	< 0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH102	0.27-0.4	Fill: Silty Gravelly Sand	<4	<0.4	8	85	2	<0.1	58	22	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
BH102 (Lab	Du 0.27-0.4	Fill: Silty Gravelly Sand	<4	<0.4	8	81	1	<0.1	58	24	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
BH103	0.14-0.3	Fill: Silty Gravelly Sand	<4	<0.4	6	61	2	<0.1	49	22	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
BH104	0.2-0.35	Fill: Silty Gravelly Sand	<4	<0.4	22	62	1	<0.1	79	32	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
BH105	0.19-0.3	Fill: Silty Sand Gravel	<4	<0.4	14	68	61	<0.1	14	120	7.7	1.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH106	0.26-0.3	Fill: Silty Gravelly Sand	<4	<0.4	9	97	3	<0.1	75	31	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
BH107	0.25-0.4	Fill: Silty Gravelly Sand	<4	<0.4	15	68	3	<0.1	61	23	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH108	0-0.2	Fill: Silty Sand	<4	<0.4	13	38	50	<0.1	9	240	4.3	0.6	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH108 (Lab	Du 0-0.2	Fill: Silty Sand	<4	<0.4	13	34	50	0.1	9	210	2	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
BH109	0.25-0.3	Fill: Silty Clay	<4	<0.4	21	34	4	<0.1	89	39	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH110	0.37-0.65	Fill: Silty Clay	7	1	34	470	1500	0.5	21	980	120	8.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH111	0.17-0.3	Fill: Silty Sand	<4	<0.4	2	67	4	<0.1	2	16	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH112	0.4-0.5	Fill: Silty Clay	<4	<0.4	20	33	72	<0.1	17	300	3.7	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH113	0.19-0.4	Fill: Silty Clay	5	<0.4	9	30	13	<0.1	17	65	0.4	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	Not Detected
BH114	0.18-0.35	Fill: Silty Gravelly Sand	<4	<0.4	37	120	360	0.2	45	310	25	1.9	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH115	0.21-0.4	Fill: Silty Sand	<4	<0.4	7	34	11	<0.1	6	21	1.9	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH116	0.13-0.4	Fill: Silty Clay	<4	<0.4	7	51	16	<0.1	5	82	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	Not Detected
BH117	0.2-0.5	Fill: Silty Sand	<4	<0.4	10	20	32	<0.1	9	48	3.6	0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	Detected
BH118	0.6-0.9	Fill: Silty Clay	5	<0.4	17	4	25	<0.1	4	8	0.62	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	Not Detected
BH119	0-0.2	Fill: Silty Sand	<4	0.5	12	47	110	<0.1	10	240	0.9	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH120	0.04-0.3	Fill: Silty Clay	<4	<0.4	16	27	64	<0.1	6	91	39	4.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	Not Detected
BH121	0.18-0.7	Fill: Silty Clay	<4	<0.4	16	5	26	<0.1	2	10	1.1	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH122	0.14-0.25	Fill: Silty Sand	<4	<0.4	5	4	7	<0.1	4	8	0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH123	0.15-0.3	Fill: Silty Clay	<4	<0.4	29	19	14	<0.1	34	44	0.1	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	Not Detected
SDUP1	-	Fill: Silty Sand	<4	0.4	12	45	110	<0.1	10	230	1.1	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SDUP2	-	Fill: Silty Clay	5	<0.4	21	10	27	<0.1	3	23	1.8	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SDUP4	-	Fill: Silty Sand	5	<0.4	12	46	180	0.5	10	230	1.4	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
SDUP4 (Lab	Du -	Fill: Silty Sand	11	<0.4	18	47	160	0.4	17	170	0.69	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
FCF1	Surface	Fragment	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Not Detected
Total Num	ber of Samples	;	30	30	30	30	30	30	30	30	30	30	10	10	10	10	10	10	10	10	10	9
Maximum	Value		11	1	37	470	1500	0.5	89	980	120	8.6	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<>	<pql< td=""><td>Detected</td></pql<>	Detected
Concentratio Concentratio	on above the SA on above the PC	AC QL	VALUE Bold																			

Detailed (Stage 2) Site Investigation 74 Edinburgh Road, Marrickville, NSW E33191B

TABLE S2

I

SOIL LABORATORY RESULTS COMPARED TO HSLs

All data in mg/kg unless stated otherwise

					C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene	Field PID Measurement
PQL - Envirolab Services					25	50	0.2	0.5	1	1	1	ppm
NEPM 2013 HSL Land Use	Category						HSL-D:	COMMERCIAL/INI	DUSTRIAL		•	
Sample Reference	Sample	Sample Description	Depth Category	Soil Category								
BH101	0.5-0.95	Fill:Silty Sandy Clay	0m to <1m	Sand	<25	<50	<0.2	< 0.5	<1	<3	<1	0
BH101	1.5-1.95	Fill:Silty Sandy Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH102	0.27-0.4	Fill: Silty Gravelly Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH102 (Lab Dupilcate)	0.27-0.4	Fill: Silty Gravelly Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH103	0.14-0.3	Fill: Silty Gravelly Sand	0m to <1m	Sand	<25	<50	<0.2	< 0.5	<1	<3	<1	0
BH104	0.2-0.35	Fill: Silty Gravelly Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH105	0.19-0.3	Fill: Silty Sand Gravel	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH106	0.26-0.3	Fill: Silty Gravelly Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH107	0.25-0.4	Fill: Silty Gravelly Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH108	0-0.2	Fill: Silty Sand	0m to <1m	Sand	<25	<50	<0.2	< 0.5	<1	<3	<1	0
BH108 (Lab Duplicate)	0-0.2	Fill: Silty Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH109	0.25-0.3	Fill: Silty Clay	0m to <1m	Sand	<25	<50	<0.2	< 0.5	<1	<3	<1	0
BH110	0.37-0.65	Fill: Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH111	0.17-0.3	Fill: Silty Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH112	0.4-0.5	Fill: Silty Clay	0m to <1m	Sand	<25	<50	<0.2	< 0.5	<1	<3	<1	0
BH113	0.19-0.4	Fill: Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH114	0.18-0.35	Fill: Silty Gravelly Sand	0m to <1m	Sand	<25	<50	<0.2	< 0.5	<1	<3	<1	0
BH115	0.21-0.4	Fill: Silty Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH116	0.13-0.4	Fill: Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH117	0.2-0.5	Fill: Silty Sand	0m to <1m	Sand	<25	<50	<0.2	< 0.5	<1	<3	<1	0
BH118	0.6-0.9	Fill: Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH119	0-0.2	Fill: Silty Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH120	0.04-0.3	Fill: Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH121	0.18-0.7	Fill: Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH122	0.14-0.25	Fill: Silty Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
BH123	0.15-0.3	Fill: Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	0
SDUP1	-	Fill: Silty Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	NA
SDUP2	-	Fill: Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	NA
SDUP4	-	Fill: Silty Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	NA
SDUP4 (Lab Duplicate)	-	Fill: Silty Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	NA
Total Number of Sample	~				20	20	20	20	20	20	20	26
Maximum Value	23				50	50	50	50	50	50	50	20
waximum value					<pql< td=""><td>< PQL</td><td>< PQL</td><td><pql< td=""><td>< PQL</td><td><pql< td=""><td>< PQL</td><td>< PQL</td></pql<></td></pql<></td></pql<>	< PQL	< PQL	<pql< td=""><td>< PQL</td><td><pql< td=""><td>< PQL</td><td>< PQL</td></pql<></td></pql<>	< PQL	<pql< td=""><td>< PQL</td><td>< PQL</td></pql<>	< PQL	< PQL
Concentration above the S Concentration above the F The guideline correspondi	AC QL ng to the cor	ncentration above the SAC	VALUE Bold	in grey in the Site	e Assessment Crite	eria Table below						

	HSL SOIL ASSESSMENT CRITERIA														
Sample Reference	Sample Depth	Sample Description	Depth Category	Soil Category	C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene				
BH101	0.5-0.95	Fill:Silty Sandy Clay	0m to <1m	Sand	260	NL	3	NL	NL	230	NL				
BH101	1.5-1.95	Fill:Silty Sandy Clay	0m to <1m	Sand	260	NL	3	NL	NL	230	NL				
BH102	0.27-0.4	Fill: Silty Gravelly Sand	0m to <1m	Sand	260	NL	3	NL	NL	230	NL				
BH102 (Lab Dupilcate)	0.27-0.4	Fill: Silty Gravelly Sand	0m to <1m	Sand	260	NL	3	NL	NL	230	NL				
BH103	0.14-0.3	Fill: Silty Gravelly Sand	0m to <1m	Sand	260	NL	3	NL	NL	230	NL				
BH104	0.2-0.35	Fill: Silty Gravelly Sand	0m to <1m	Sand	260	NL	3	NL	NL	230	NL				
BH105	0.19-0.3	Fill: Silty Sand Gravel	0m to <1m	Sand	260	NL	3	NL	NL	230	NL				
BH106	0.26-0.3	Fill: Silty Gravelly Sand	0m to <1m	Sand	260	NL	3	NL	NL	230	NL				
BH107	0.25-0.4	Fill: Silty Gravelly Sand	0m to <1m	Sand	260	NL	3	NL	NL	230	NL				
BH108	0-0.2	Fill: Silty Sand	0m to <1m	Sand	260	NL	3	NL	NL	230	NL				
BH108 (Lab Duplicate)	0-0.2	Fill: Silty Sand	0m to <1m	Sand	260	NL	3	NL	NL	230	NL				
BH109	0.25-0.3	Fill: Silty Clay	0m to <1m	Sand	260	NL	3	NL	NL	230	NL				
BH110	H108 (Lab Duplicate) 0-0.2 BH109 0.25-0.3 BH110 0.37-0.65 BH111 0.17-0.3		0m to <1m	Sand	260	NL	3	NL	NL	230	NL				
BH111	0.17-0.3	Fill: Silty Sand	0m to <1m	Sand	260	NL	3	NL	NL	230	NL				
BH112	0.4-0.5	Fill: Silty Clay	0m to <1m	Sand	260	NL	3	NL	NL	230	NL				
BH113	0.19-0.4	Fill: Silty Clay	0m to <1m	Sand	260	NL	3	NL	NL	230	NL				
BH114	0.18-0.35	Fill: Silty Gravelly Sand	0m to <1m	Sand	260	NL	3	NL	NL	230	NL				
BH115	0.21-0.4	Fill: Silty Sand	0m to <1m	Sand	260	NL	3	NL	NL	230	NL				
BH116	0.13-0.4	Fill: Silty Clay	0m to <1m	Sand	260	NL	3	NL	NL	230	NL				
BH117	0.2-0.5	Fill: Silty Sand	0m to <1m	Sand	260	NL	3	NL	NL	230	NL				
BH118	0.6-0.9	Fill: Silty Clay	0m to <1m	Sand	260	NL	3	NL	NL	230	NL				
BH119	0-0.2	Fill: Silty Sand	0m to <1m	Sand	260	NL	3	NL	NL	230	NL				
BH120	0.04-0.3	Fill: Silty Clay	0m to <1m	Sand	260	NL	3	NL	NL	230	NL				
BH121	0.18-0.7	Fill: Silty Clay	0m to <1m	Sand	260	NL	3	NL	NL	230	NL				
BH122	0.14-0.25	Fill: Silty Sand	0m to <1m	Sand	260	NL	3	NL	NL	230	NL				
BH123	0.15-0.3	Fill: Silty Clay	0m to <1m	Sand	260	NL	3	NL	NL	230	NL				
SDUP1	-	Fill: Silty Sand	0m to <1m	Sand	260	NL	3	NL	NL	230	NL				
SDUP2	-	Fill: Silty Clay	0m to <1m	Sand	260	NL	3	NL	NL	230	NL				
SDUP4	-	Fill: Silty Sand	0m to <1m	Sand	260	NL	3	NL	NL	230	NL				
SDUP4 (Lab Duplicate)	-	Fill: Silty Sand	0m to <1m	Sand	260	NL	3	NL	NL	230	NL				

TABLE S3 SOIL LABORATORY RESULTS COMPARED TO MANAGEMENT LIMITS All data in mg/kg unless stated otherwise

			C ₆ -C ₁₀ (F1) plus	>C ₁₀ -C ₁₆ (F2) plus	>C(F3)	>C -C - (E4)
			BTEX	napthalene	×C ₁₆ =C ₃₄ (FS)	>C ₃₄ =C ₄₀ (F4)
PQL - Envirolab Services			25	50	100	100
NEPM 2013 Land Use C	ategory			COMMERCIAL	/INDUSTRIAL	
Sample Reference	Sample Depth	Soil Texture				
BH101	0.5-0.95	Coarse	<25	<50	<100	<100
BH101	1.5-1.95	Coarse	<25	<50	<100	<100
BH102	0.27-0.4	Coarse	<25	<50	<100	<100
BH102 (Lab Dupilcate)	0.27-0.4	Coarse	<25	<50	<100	<100
BH103	0.14-0.3	Coarse	<25	<50	<100	<100
BH104	0.2-0.35	Coarse	<25	<50	<100	<100
BH105	0.19-0.3	Coarse	<25	<50	320	110
BH106	0.26-0.3	Coarse	<25	<50	<100	<100
BH107	0.25-0.4	Coarse	<25	<50	<100	<100
BH108	0-0.2	Coarse	<25	<50	240	<100
BH108 (Lab Duplicate)	0-0.2	Coarse	<25	<50	250	<100
BH109	0.25-0.3	Coarse	<25	<50	<100	<100
BH110	0.37-0.65	Coarse	<25	<50	690	<100
BH111	0.17-0.3	Coarse	<25	<50	<100	<100
BH112	0.4-0.5	Coarse	<25	<50	<100	<100
BH113	0.19-0.4	Coarse	<25	<50	<100	<100
BH114	0.18-0.35	Coarse	<25	<50	230	<100
BH115	0.21-0.4	Coarse	<25	<50	<100	<100
BH116	0.13-0.4	Coarse	<25	<50	<100	<100
BH117	0.2-0.5	Coarse	<25	<50	100	<100
BH118	0.6-0.9	Coarse	<25	<50	<100	<100
BH119	0-0.2	Coarse	<25	<50	140	<100
BH120	0.04-0.3	Coarse	<25	<50	<100	<100
BH121	0.18-0.7	Coarse	<25	<50	<100	<100
BH122	0.14-0.25	Coarse	<25	<50	<100	<100
BH123	0.15-0.3	Coarse	<25	<50	<100	<100
SDUP1	-	Coarse	<25	<50	130	<100
SDUP2	-	Coarse	<25	<50	<100	<100
SDUP4	-	Coarse	<25	<50	290	100
SDUP4 (Lab Duplicate)	-	Coarse	<25	<50	240	<100
Total Number of Sampl	es		30	30	30	30
Maximum Value			<pql< td=""><td><pql< td=""><td>690</td><td>110</td></pql<></td></pql<>	<pql< td=""><td>690</td><td>110</td></pql<>	690	110
Concentration above th	e SAC		VALUE			

	RIA					
Sample Reference	Sample Depth	Soil Texture	C ₆ -C ₁₀ (F1) plus BTEX	>C ₁₀ -C ₁₆ (F2) plus napthalene	>C ₁₆ -C ₃₄ (F3)	>C ₃₄ -C ₄₀ (F4)
BH101	0.5-0.95	Coarse	700	1000	3500	10000
BH101	1.5-1.95	Coarse	700	1000	3500	10000
BH102	0.27-0.4	Coarse	700	1000	3500	10000
BH102 (Lab Dupilcate)	0.27-0.4	Coarse	700	1000	3500	10000
BH103	0.14-0.3	Coarse	700	1000	3500	10000
BH104	0.2-0.35	Coarse	700	1000	3500	10000
BH105	0.19-0.3	Coarse	700	1000	3500	10000
BH106	0.26-0.3	Coarse	700	1000	3500	10000
BH107	0.25-0.4	Coarse	700	1000	3500	10000
BH108	0-0.2	Coarse	700	1000	3500	10000
BH108 (Lab Duplicate)	0-0.2	Coarse	700	1000	3500	10000
BH109	0.25-0.3	Coarse	700	1000	3500	10000
BH110	0.37-0.65	Coarse	700	1000	3500	10000
BH111	0.17-0.3	Coarse	700	1000	3500	10000
BH112	0.4-0.5	Coarse	700	1000	3500	10000
BH113	0.19-0.4	Coarse	700	1000	3500	10000
BH114	0.18-0.35	Coarse	700	1000	3500	10000
BH115	0.21-0.4	Coarse	700	1000	3500	10000
BH116	0.13-0.4	Coarse	700	1000	3500	10000
BH117	0.2-0.5	Coarse	700	1000	3500	10000
BH118	0.6-0.9	Coarse	700	1000	3500	10000
BH119	0-0.2	Coarse	700	1000	3500	10000
BH120	0.04-0.3	Coarse	700	1000	3500	10000
BH121	0.18-0.7	Coarse	700	1000	3500	10000
BH122	0.14-0.25	Coarse	700	1000	3500	10000
BH123	0.15-0.3	Coarse	700	1000	3500	10000
SDUP1	-	Coarse	700	1000	3500	10000
SDUP2	-	Coarse	700	1000	3500	10000
SDUP4	-	Coarse	700	1000	3500	10000
SDUP4 (Lab Duplicate)	-	Coarse	700	1000	3500	10000

Detailed (Stage 2) Site Investigation 74 Edinburgh Road, Marrickville, NSW E33191B

Analyte		$C_{6}-C_{10}$	>C10-C16	>C16-C34	>C34-C40	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene	PID
QL - Envirolab Services		25	50	100	100	0.2	0.5	1	1	1	
CRC 2011 -Direct contact	Criteria	26,000	20,000	27,000	38,000	430	99,000	27,000	81,000	11,000	
Site Use				CC	OMMERCIAL/IN	DUSTRIAL - DIRE	CT SOIL CONT	ACT			
Sample Reference	Sample Depth										
BH101	0.5-0.95	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH101	1.5-1.95	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH102	0.27-0.4	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH102 (Lab Dupilcate)	0.27-0.4	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH103	0.14-0.3	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH104	0.2-0.35	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH105	0.19-0.3	<25	<50	320	110	<0.2	<0.5	<1	<3	<1	0
BH106	0.26-0.3	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH107	0.25-0.4	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH108	0-0.2	<25	<50	240	<100	<0.2	<0.5	<1	<3	<1	0
BH108 (Lab Duplicate)	0-0.2	<25	<50	250	<100	<0.2	<0.5	<1	<3	<1	0
BH109	0.25-0.3	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH110	0.37-0.65	<25	<50	690	<100	<0.2	<0.5	<1	<3	<1	0
BH111	0.17-0.3	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH112	0.4-0.5	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH113	0.19-0.4	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH114	0.18-0.35	<25	<50	230	<100	<0.2	<0.5	<1	<3	<1	0
BH115	0.21-0.4	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH116	0.13-0.4	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH117	0.2-0.5	<25	<50	100	<100	<0.2	<0.5	<1	<3	<1	0
BH118	0.6-0.9	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH119	0-0.2	<25	<50	140	<100	<0.2	<0.5	<1	<3	<1	0
BH120	0.04-0.3	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH121	0.18-0.7	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH122	0.14-0.25	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
BH123	0.15-0.3	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0
SDUP1	-	<25	<50	130	<100	<0.2	<0.5	<1	<3	<1	NA
SDUP2	-	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	NA
SDUP4	-	<25	<50	290	100	<0.2	<0.5	<1	<3	<1	NA
SDUP4 (Lab Duplicate)	-	<25	<50	240	<100	<0.2	<0.5	<1	<3	<1	NA
Tatal Number of Consula	_	20	20	20	20	20	20	20	20	20	20
Total Number of Sample	>	30	30	30	30	30	30	30	30	30	26

TABLE S5 ASBESTOS QUANTIFICATION - FIELD OBSERVATIONS AND LABORATORY RESULTS HSL-A: Residential with garden/accessible soils; children's day care centers; preschools; and primary schools

		FIELD DATA Visible Approx. Mass [Asbestos [Asb																	LABORATO	RY DATA						
Date Sampled	Sample reference	Sample Depth	Visible ACM in top 100mm	Approx Volume of Soil (L)	Soil Mass (g	Mass ACM (g)	Mass Asbestos in ACM (g)	[Asbestos from ACM in soil] (%w/w)	Mass ACM <7mm (g)	Mass Asbestos in ACM <7mm (g)	[Asbestos from ACM <7mm in soil] (%w/w)	Mass FA (g)	Mass Asbestos in FA (g)	[Asbestos from FA in soil] (%w/w)	Lab Report Number	Sample refeference	Sample Depth	Sample Mass (g)	Asbestos ID in soil (AS4964) >0.1g/kg	Trace Analysis	Total Asbestos (g/kg)	Asbestos ID in soil <0.1g/kg	ACM >7mm Estimation (g)	FA and AF Estimation (g)	ACM >7mm Estimation %(w/w)	FA and AF Estimatio n %(w/w)
SAC			No					0.05			0.001			0.001											0.05	0.001
13.8.20	BH101	0.5-1.5	NA	10	6,800	No ACM observed			No ACM <7mm observed			No FA observed														
14.8.20	BH108	0-0.2	No	10	9,200	No ACM observed			No ACM <7mm observed			No FA observed			249404	BH108	0-0.2	443.98	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected: Synthetic mineral fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
14.8.20	BH109	0-0.25	No	10	11,200	No ACM observed			No ACM <7mm observed			No FA observed														
14.8.20	BH111	0.17-0.3	NA	10	1,700	No ACM observed			No ACM <7mm observed			No FA observed							-							
14.8.20	BH112	0.19-0.4	NA	10	2,400	No ACM observed			No ACM <7mm observed			No FA observed							-							
14.8.20	BH113	0.19-0.5	NA	10	2,400	No ACM observed			No ACM <7mm observed			No FA observed			249404	BH113	0.19-0.4	886.77	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected: Synthetic mineral fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
14.8.20	BH114	0.18-0.35	NA	10	2,400	No ACM observed			No ACM <7mm observed			No FA observed							-							
13.8.20	BH115	0.4-0.6	NA	10	6,400	No ACM observed			No ACM <7mm observed			No FA observed							-							
13.8.20	BH116	0.13-0.7	NA	10	6,200	No ACM observed			No ACM <7mm observed			No FA observed			249404	BH116	0.13-0.4	514.34	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
13.8.20	BH116	0.7-1.3	NA	10	6,300	No ACM observed			No ACM <7mm observed			No FA observed							-							
13.8.20	BH117	0.2-1.0	NA	10	10,100	No ACM observed			No ACM <7mm observed			No FA observed			249404	BH117	0.2-0.5	705.17	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	Chrysotile	-	0.0038	<0.01	<0.001
13.8.20	BH117	1.0-1.2	NA	10	2,200	No ACM observed			No ACM <7mm observed			No FA observed							-							
13.8.20	BH118	0.6-1.3	NA	10	11,200	No ACM observed			No ACM <7mm observed			No FA observed			249404	BH118	0.6-0.9	551.44	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
12.8.20	BH119	0-0.6	No	10	3,100	No ACM observed			No ACM <7mm observed			No FA observed														
13.8.20	BH120	0.04-0.6	No	10	6,400	No ACM observed			No ACM <7mm observed			No FA observed			249404	BH120	0.04-0.3	585.74	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
13.8.20	BH120	0.6-1.0	NA	10	3,400	No ACM observed			No ACM <7mm observed			No FA observed														
13.8.20	BH121	0.18-1.0	NA	10	3,000	No ACM observed			No ACM <7mm observed			No FA observed							-							
13.8.20	BH121	1.0-1.5	NA	10	4,200	No ACM observed			No ACM <7mm observed			No FA observed							-							
															249404	BH122	0.14-0.25	872.21	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
															249404	BH123	0.15-0.3	673.82	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
Concentration	above the	SAC	VALUE																							

HIL-D:Commercial/Industrial

TABLE S6 SOIL LABORATORY RESULTS COMPARED TO NEPM 2013 EILs AND ESLs All data in mg/kg unless stated otherwise

Detailed (Stage 2) Site Investigation 74 Edinburgh Road, Marrickville, NSW E33191B

and Use Category													COMMER	CIAL/INDUST	RIAL								
									AGED HEAV	Y METALS-EILs			EIL	s					ESLs				
				рН	CEC (cmolc/kg)	Clay Content (% clay)	Arsenic	Chromium	Copper	Lead	Nickel	Zinc	Naphthalene	DDT	C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2) plus napthalene	>C ₁₆ -C ₃₄ (F3)	>C ₃₄ -C ₄₀ (F4)	Benzene	Toluene	Ethylbenzene	Total Xylenes	B(a)P
QL - Envirolab Services				-	1	-	4	1	1	1	1	1	1	0.1	25	50	100	100	0.2	0.5	1	1	0.05
Ambient Background Conce	entration (AB	C)		-	-	-	NSL	13	28	163	5	122	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL
Sample Reference	Sample Depth	Sample Description	Soil Texture																				
BH101	0.5-0.95	Fill:Silty Sandy Clay	Coarse	8.35	32	NA	4	13	37	48	8	61	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	< 0.05
BH101	1.5-1.95	Fill:Silty Sandy Clay	Coarse	8.35	32	NA	<4	5	17	31	20	120	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	< 0.05
BH102	0.27-0.4	Fill: Silty Gravelly Sand	Coarse	8.35	32	NA	<4	8	85	2	58	22	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.05
BH102 (Lab Dupilcate)	0.27-0.4	Fill: Silty Gravelly Sand	Coarse	8.35	32	NA	<4	8	81	1	58	24	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.05
BH103 BH104	0.14-0.3	Fill: Silty Gravelly Sand	Coarse	8.35	32	NA	<4	22	62	1	49	32	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.05
BH105	0.19-0.3	Fill: Silty Sand Gravel	Coarse	8.35	32	NA	<4	14	68	61	14	120	<1	NA	<25	<50	320	110	<0.2	<0.5	<1	<3	0.78
BH106	0.26-0.3	Fill: Silty Gravelly Sand	Coarse	8.35	32	NA	<4	9	97	3	75	31	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	< 0.05
BH107	0.25-0.4	Fill: Silty Gravelly Sand	Coarse	8.35	32	NA	<4	15	68	3	61	23	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	< 0.05
BH108	0-0.2	Fill: Silty Sand	Coarse	8.35	32	NA	<4	13	38	50	9	240	<1	<0.1	<25	<50	240	<100	<0.2	<0.5	<1	<3	0.4
BH108 (Lab Duplicate)	0-0.2	Fill: Silty Sand	Coarse	8.35	32	NA	<4	13	34	50	9	210	<1	<0.1	<25	<50	250	<100	<0.2	<0.5	<1	<3	0.2
BH109	0.25-0.3	Fill: Silty Clay	Coarse	8.35	32	NA	<4	21	34	4	89	39	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	< 0.05
BH110	0.37-0.65	Fill: Silty Clay	Coarse	7.7	30	NA	7	34	470	1500	21	980	<1	NA	<25	<50	690	<100	<0.2	<0.5	<1	<3	6.2
BH111	0.17-0.3	Fill: Silty Sand	Coarse	8.35	32	NA	<4	2	67	4	2	16	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	< 0.05
BH112	0.4-0.5	Fill: Silty Clay	Coarse	8.35	32	NA	<4	20	33	72	17	300	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	0.2
BH113	0.19-0.4	Fill: Silty Clay	Coarse	8.35	32	NA	5	9	30	13	17	65	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.05
BH114	0.18-0.35	Fill: Slity Gravelly Sand	Coarse	9	34	NA	<4	3/	120	360	45	310	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	1.4
BH115 BH116	0.13-0.4	Fill: Silty Clay	Coarse	8 35	32	NA	<4	7	51	16	5	82	<1	NΔ	<25	<50	<100	<100	<0.2	<0.5	<1	3	<0.05
BH110 BH117	0.2-0.5	Fill: Silty Sand	Coarse	8.35	32	NA	<4	10	20	32	9	48	<1	NA	<25	<50	100	<100	<0.2	<0.5	<1	<3	0.4
BH118	0.6-0.9	Fill: Silty Clay	Coarse	8.35	32	NA	5	17	4	25	4	8	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	0.08
BH119	0-0.2	Fill: Silty Sand	Coarse	8.35	32	NA	<4	12	47	110	10	240	<1	NA	<25	<50	140	<100	<0.2	<0.5	<1	<3	0.1
BH120	0.04-0.3	Fill: Silty Clay	Coarse	8.35	32	NA	<4	16	27	64	6	91	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	3
BH121	0.18-0.7	Fill: Silty Clay	Coarse	8.35	32	NA	<4	16	5	26	2	10	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	0.2
BH122	0.14-0.25	Fill: Silty Sand	Coarse	8.35	32	NA	<4	5	4	7	4	8	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	< 0.05
BH123	0.15-0.3	Fill: Silty Clay	Coarse	8.35	32	NA	<4	29	19	14	34	44	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	< 0.05
SDUP1	-	Fill: Silty Sand	Coarse	8.35	32	NA	<4	12	45	110	10	230	<1	NA	<25	<50	130	<100	<0.2	<0.5	<1	<3	0.2
SDUP2	-	Fill: Silty Clay	Coarse	8.35	32	NA	5	21	10	27	3	23	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<3	0.16
SDUP4	-	Fill: Silty Sand	Coarse	8.35	32	NA	5	12	46	180	10	230	<1	<0.1	<25	<50	290	100	<0.2	<0.5	<1	<3	0.09
SDOF4 (Lab Duplicate)	-	FIII: SIILY SHID	Coarse	8.35	32	NA		18	4/	100	1/	1/0	<1	<u.1< td=""><td>\$25</td><td><5U</td><td>240</td><td><100</td><td><u.z< td=""><td><0.5</td><td><1</td><td><3</td><td>0.1</td></u.z<></td></u.1<>	\$25	<5U	240	<100	<u.z< td=""><td><0.5</td><td><1</td><td><3</td><td>0.1</td></u.z<>	<0.5	<1	<3	0.1
Total Number of Samples			_	30	30	0	30	30	30	30	30	30	30	10	30	30	30	30	30	30	30	30	30
Maximum Value				9	34	NA	11	37	470	1500	89	980	<pol< td=""><td><pol< td=""><td><pol< td=""><td><pql< td=""><td>690</td><td>110</td><td><pql< td=""><td><pol< td=""><td><pol< td=""><td><pql< td=""><td>6.2</td></pql<></td></pol<></td></pol<></td></pql<></td></pql<></td></pol<></td></pol<></td></pol<>	<pol< td=""><td><pol< td=""><td><pql< td=""><td>690</td><td>110</td><td><pql< td=""><td><pol< td=""><td><pol< td=""><td><pql< td=""><td>6.2</td></pql<></td></pol<></td></pol<></td></pql<></td></pql<></td></pol<></td></pol<>	<pol< td=""><td><pql< td=""><td>690</td><td>110</td><td><pql< td=""><td><pol< td=""><td><pol< td=""><td><pql< td=""><td>6.2</td></pql<></td></pol<></td></pol<></td></pql<></td></pql<></td></pol<>	<pql< td=""><td>690</td><td>110</td><td><pql< td=""><td><pol< td=""><td><pol< td=""><td><pql< td=""><td>6.2</td></pql<></td></pol<></td></pol<></td></pql<></td></pql<>	690	110	<pql< td=""><td><pol< td=""><td><pol< td=""><td><pql< td=""><td>6.2</td></pql<></td></pol<></td></pol<></td></pql<>	<pol< td=""><td><pol< td=""><td><pql< td=""><td>6.2</td></pql<></td></pol<></td></pol<>	<pol< td=""><td><pql< td=""><td>6.2</td></pql<></td></pol<>	<pql< td=""><td>6.2</td></pql<>	6.2

The guideline corresponding to the elevated value is highlighted in grey in the EIL and ESL Assessment Crit	teria Table below
---	-------------------

									EIL AND ESL AS	SESSMENT CRIT	TERIA												
Sample Reference	Sample Depth	Sample Description	Soil Texture	pН	CEC (cmolc/kg)	Clay Content (% clay)	Arsenic	Chromium	Copper	Lead	Nickel	Zinc	Naphthalene	DDT	C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2) plus napthalene	>C ₁₆ -C ₃₄ (F3)	>C ₃₄ -C ₄₀ (F4)	Benzene	Toluene	Ethylbenzene	Total Xylenes	B(a)P
BH101	0.5-0.95	Fill:Silty Sandy Clay	Coarse	8.35	32	NA	160	320	360	2000	740	2000	370		215	170	1700	3300	75	135	165	180	72
BH101	1.5-1.95	Fill:Silty Sandy Clay	Coarse	8.35	32	NA	160	320	360	2000	740	2000	370		215	170	1700	3300	75	135	165	180	72
BH102	0.27-0.4	Fill: Silty Gravelly Sand	Coarse	8.35	32	NA	160	320	360	2000	740	2000	370	640	215	170	1700	3300	75	135	165	180	72
BH102 (Lab Dupilcate)	0.27-0.4	Fill: Silty Gravelly Sand	Coarse	8.35	32	NA	160	320	360	2000	740	2000	370	640	215	170	1700	3300	75	135	165	180	72
BH103	0.14-0.3	Fill: Silty Gravelly Sand	Coarse	8.35	32	NA	160	320	360	2000	740	2000	370	640	215	170	1700	3300	75	135	165	180	72
BH104	0.2-0.35	Fill: Silty Gravelly Sand	Coarse	8.35	32	NA	160	320	360	2000	740	2000	370	640	215	170	1700	3300	75	135	165	180	72
BH105	0.19-0.3	Fill: Silty Sand Gravel	Coarse	8.35	32	NA	160	320	360	2000	740	2000	370		215	170	1700	3300	75	135	165	180	72
BH106	0.26-0.3	Fill: Silty Gravelly Sand	Coarse	8.35	32	NA	160	320	360	2000	740	2000	370	640	215	170	1700	3300	75	135	165	180	72
BH107	0.25-0.4	Fill: Silty Gravelly Sand	Coarse	8.35	32	NA	160	320	360	2000	740	2000	370		215	170	1700	3300	75	135	165	180	72
BH108	0-0.2	Fill: Silty Sand	Coarse	8.35	32	NA	160	320	360	2000	740	2000	370	640	215	170	1700	3300	75	135	165	180	72
BH108 (Lab Duplicate)	0-0.2	Fill: Silty Sand	Coarse	8.35	32	NA	160	320	360	2000	740	2000	370	640	215	170	1700	3300	75	135	165	180	72
BH109	0.25-0.3	Fill: Silty Clay	Coarse	8.35	32	NA	160	320	360	2000	740	2000	370		215	170	1700	3300	75	135	165	180	72
BH110	0.37-0.65	Fill: Silty Clay	Coarse	7.7	30	NA	160	320	350	2000	600	1600	370		215	170	1700	3300	75	135	165	180	72
BH111	0.17-0.3	Fill: Silty Sand	Coarse	8.35	32	NA	160	320	360	2000	740	2000	370		215	170	1700	3300	75	135	165	180	72
BH112	0.4-0.5	Fill: Silty Clay	Coarse	8.35	32	NA	160	320	360	2000	740	2000	370		215	170	1700	3300	75	135	165	180	72
BH113	0.19-0.4	Fill: Silty Clay	Coarse	8.35	32	NA	160	320	360	2000	740	2000	370		215	170	1700	3300	75	135	165	180	72
BH114	0.18-0.35	Fill: Silty Gravelly Sand	Coarse	9	34	NA	160	320	360	2000	740	2000	370		215	170	1700	3300	75	135	165	180	72
BH115	0.21-0.4	Fill: Silty Sand	Coarse	8.35	32	NA	160	320	360	2000	740	2000	370		215	170	1700	3300	75	135	165	180	72
BH116	0.13-0.4	Fill: Silty Clay	Coarse	8.35	32	NA	160	320	360	2000	740	2000	370		215	170	1700	3300	75	135	165	180	72
BH117	0.2-0.5	Fill: Silty Sand	Coarse	8.35	32	NA	160	320	360	2000	740	2000	370		215	170	1700	3300	75	135	165	180	72
BH118	0.6-0.9	Fill: Silty Clay	Coarse	8.35	32	NA	160	320	360	2000	740	2000	370		215	170	1700	3300	75	135	165	180	72
BH119	0-0.2	Fill: Silty Sand	Coarse	8.35	32	NA	160	320	360	2000	740	2000	370		215	170	1700	3300	75	135	165	180	72
BH120	0.04-0.3	Fill: Silty Clay	Coarse	8.35	32	NA	160	320	360	2000	740	2000	370		215	170	1700	3300	75	135	165	180	72
BH121	0.18-0.7	Fill: Silty Clay	Coarse	8.35	32	NA	160	320	360	2000	740	2000	370		215	170	1700	3300	75	135	165	180	72
BH122	0.14-0.25	Fill: Silty Sand	Coarse	8.35	32	NA	160	320	360	2000	740	2000	370	640	215	170	1700	3300	75	135	165	180	72
BH123	0.15-0.3	Fill: Silty Clay	Coarse	8.35	32	NA	160	320	360	2000	740	2000	370		215	170	1700	3300	75	135	165	180	72
SDUP1	-	Fill: Silty Sand	Coarse	8.35	32	NA	160	320	360	2000	740	2000	370		215	170	1700	3300	75	135	165	180	72
SDUP2	-	Fill: Silty Clay	Coarse	8.35	32	NA	160	320	360	2000	740	2000	370		215	170	1700	3300	75	135	165	180	72
SDUP4	-	Fill: Silty Sand	Coarse	8.35	32	NA	160	320	360	2000	740	2000	370	640	215	170	1700	3300	75	135	165	180	72
SDUP4 (Lab Duplicate)	-	Fill: Silty Sand	Coarse	8.35	32	NA	160	320	360	2000	740	2000	370	640	215	170	1700	3300	75	135	165	180	72

TABLE S7

SOIL LABORATORY TCLP RESULTS

All data in mg/L unless stated otherwise

			Arsenic	Cadmium	Chromium	Lead	Mercury	Nickel	B(a)P
PQL - Envirolal	o Services		0.05	0.01	0.01	0.03	0.0005	0.02	0.001
TCLP1 - Genera	al Solid Waste		5	1	5	5	0.2	2	0.04
TCLP2 - Restric	ted Solid Was	te	20	4	20	20	0.8	8	0.16
TCLP3 - Hazard	lous Waste		>20	>4	>20	>20	>0.8	>8	>0.16
Sample Reference	Sample Depth	Sample Description							
BH109	0.25-0.3	Fill: Silty Clay	NA	NA	NA	NA	NA	0.1	NA
BH110	0.37-0.65	Fill: Silty Clay	NA	NA	NA	4.5	NA	NA	<0.001
Total Numbe	er of samples		0	0	0	1	0	1	1
Maximum V	alue		NA	NA	NA	4.50	NA	0.1	<pql< td=""></pql<>

General Solid Waste Restricted Solid Waste Hazardous Waste Concentration above PQL

Detailed (Stage 2) Site Investigation 74 Edinburgh Roadd, Marrickville, NSW E33191B

TABLE G1 SUMMARY OF GROUNDWATER LABORATORY RESULTS COMPARED TO ECOLOGICAL GILs SAC All results in µg/L unless stated otherwise.

Bernvirol ServirolMetais and MetailoidsArsenic (As III)1Cadmium0.1Chromium (SAC for Cr III adopted)1Copper1Itead1Total Mercury (Inorganic)0.05Nickel1Zinc1Monocyclic Aromatic Hydrocarbons (BTEX Com-1Totala servine1Eenzene1Totala sylenes2Orabile Organic Compounds (VOCs), including tracting the servine10Choromethane100Choromethane100Choromethane100Choromethane101Trichlorofluoromethane101Choromethane101Choromethane101Choromethane101Choromethane101Choromethane101Choromethane101Choroform111,1-dichloroethene111,2-dichloropropane111,2-dichloropropane111,2-dichloropropane111,1,2-dichloropropane111,1,2-dichloropropane111,1,2-dichloropropane111,1,2-dichloropropane111,1,2-dichloropropane111,1,2-dichloropropane111,1,2-dichloropropane111,1,2-dichloropropane111,1,2-dichloropropane111,1,2-dichloropropane111,1,2-dichloropropane111,1,2-dichloropropane111,1,2-dichlorobenzene1	b 2018 Fresh Waters 24 0.2 3.3 1.4 3.4 0.06 11 8 950 180 80 75	MW101 <1 <1 <1 <1 <1 <1 <1	MW101 (Lab Duplicate) [NT] [NT] [NT] [NT]	<1 <0.1 <1 <1 <7	<1 <0.1 <1	VDUP1	VDUP2
Metals and MetalloidsArsenic (AS III)1Cadmium0.1Corper1ICorper1I1Corper0.05Nickel1Zinc1Monacyclic Aromatic Hydrocarbons (BTEX Compounds)Benzene1Toluene1Toluene1Toluene1Toluene1Toluene1Toluene1Tolus Aylene2Volatile Organic Compounds (VOCs), includingbrientoDichlorodifluoromethane10Chlorodethane10Chlorodethane10Chlorodethane10Trichlorofluoromethane111,1-2-dichloroethene11,1-2-dichloroethene11,1-2-dichloroethene11,1-1,1-dichloroethene11,1,1-trichloroethene11,1,2-dichloroethene11,1,2-dichloroethene11,1,2-dichloroethene11,1,2-dichloropopane11,1,2-dichloropopane11,1,1-trichloroethene11,1,2-dichloropopane11,1,2-dichloropropane11,1,2-dichloropropane11,1,2-dichloropropane11,1,2-dichloropropane11,1,2-dichloropropane11,1,2-dichloropropane11,1,2-dichloropropane11,1,2-dichloropropane11,1,2-dichloropropane11,1,2-dichloropropane	24 0.2 3.3 1.4 3.4 0.06 11 8 950 180 80 75	<1 <0.1 <1 <1 <1 <1 <1 <1 <0.05 1	[NT] [NT] [NT] [NT]	<1 <0.1 <1 7	<1 <0.1	<1 <0.1	<1
Arsenic (As III)1Cadmium0.1Copper1Lead1Total Mercury (inorganic)0.05Nickel1Zinc1Monocyclic Aromatic Hydrocarbons (BTEX Communds)Benzene1Totuene1Totuene1Totuene1Total Mercury (inorganic)2oxylene1Total xylenes2Volatile Organic Compounds (VOCs), including thermaticDichlorodifluoromethane10Chloromethane10Chloromethane10Trichlorofluoromethane10Trichlorofluoromethane10Trichlorofluoromethane111,1-dichloroethane111,2-dichloroethene111,2-dichloroethene111,2-dichloroethane111,2-dichloroethane111,2-dichloropropane111,2-dichloropropane111,2-dichloropropane111,2-dichloropropane111,2-dichloropropane111,2-dichloropropane111,2-dichloropropane111,2-dichloropropane111,2-dichloropropane111,2-dichloropropane111,2-dichloropropane111,2-dichloropropane111,2-dichloropropane111,2-dichloropropane111,2-dichloropropane111,2-dichloropropane111,2-dichloropropane111,2-dichloropr	24 0.2 3.3 1.4 3.4 0.06 11 8 950 180 80 75	<1 <0.1 <1 <1 <1 <1 <0.05 1	[NT] [NT] [NT] [NT]	<1 <0.1 <1	<1 <0.1	<1 <0.1	<1
CaloCommum (SAC for Cr III adopted)1Copper1Lead1Total Mercury (inorganic)0.05Nickel1Zinc1Monocyclic Aromatic Hydrocarbons (BTEX Compounds)Benzene1Total vertice1Total program1Total program2oxylene2oxylene10Chlorodfiluoromethane10Chlorodfiluoromethane10Chlorodfiluoromethane10Chlorodfiluoromethane10Trichlorofluoromethane10Trichlorofluoromethane10Chlorodethane111,1-Dichloroethane111,2-dichloroethene111,2-dichloroethane111,2-dichloroethane111,1-dichloroethane111,1-dichloropropane111,1-dichloropropane111,1-dichloropropane111,2-dichloropropane111,2-dichloropropane111,2-dichloropropane111,2-dichloropropane111,2-dichloropropane111,2-dichloropropane111,1,2-trichloroethane111,1,2-trichloroethane111,1,2-trichloroethane111,1,2-trichloroethane111,1,2-trichloropropane111,1,2-trichloropropane111,1,2-trichloroethane111,1,2-trichloroethane111,1,2-trichloroethane111,	3.3 1.4 3.4 0.06 11 8 950 180 80 75	<0.1 <1 <1 <1 <1 <0.05 1	[NT] [NT]	<1	<0.1	NO.1	<0.2
ImageImageImage1Image1Total Mercury (inorganic)0.05Nickel1Image1Monocyclic Aromatic Hydrocarbons (BTEX Compounds)Benzene1Totalurylenes2o-xylene1Total xylenes2Ovlatile Organic Compounds (VOCs), including chorinateDichlorodifluoromethane10Chioromethane10Chioromethane10Chiorodifluoromethane10Chiorodifluoromethane10Trichlorodibroethene11Trichlorodibroethene11Tins-1,2-dichloroethene111,1-dichloroethane111,1-dichloroethane111,1-dichloroethane111,1-dichloroethane111,1-dichloroethane111,1-dichloroethane111,1-dichloroethane111,1-dichloroethane111,1-dichloroethane111,1-dichloroethane111,1-dichloroethane111,1-dichloroethane111,1-dichloroethane111,1,2-trichloroethane111,1,2-trichloroethane111,1,2-trichloroethane111,1,1,2-trichloroethane111,1,1,2-trichloroethane111,1,2-trichloroethane111,1,2-trichloroethane111,1,2-trichloroethane111,1,2-trichloroethane111,1,2-trichloroethane111,1,2-trich	1.4 3.4 0.06 11 8 950 180 80 75	<1 <1 <0.05 1	[NT]	7		<1	<1
Lead1Total Mercury (inorganic)0.05Nickel1Incel1Monocyclic Aromatic Hydrocarbons (BTEX Com	3.4 0.06 111 8 950 180 80 75	<1 <0.05 1	[5:7]		1	7	<1
Total Mercury (inorganic)0.05Nickel1Zinc1Monocyclic Aromatic Hydrocarbons (BTEX Compounds)Benzene1Totluene1Ethylbenzene2o-xylene2o-xylene2Ordia Sylenes2Volatil Organic Compounds (VOCs), including	0.06 11 8 950 180 80 75	<0.05 1	[N1]	<1	<1	<1	<1
Nickel1Nickel1Monocyclic Aromatic Hydrocarbons (BTEX Compounds)Benzene1Toluene1Toluene1Toluene1Toluene1Tola xylenes2Valatile Organic Compounds (VOCs), including chorinate10Dichlorodifluoromethane10Vinyl Chloride10Bromomethane10Chloromethane10Trichlorofluoromethane10Trichlorofluoromethane11Trans-1,2-dichloroethene11Trans-1,2-dichloroethene111,1-dichloroethane11Chloromethane11Chloromethane111,1-dichloropropane111,1-dichloropropane111,1-dichloropropane111,1-dichloropropane111,1-dichloropropane111,1-dichloropropane111,1-dichloropropane111,1-dichloropropane111,1,2-trichloroethane111,1,2-trichloroethane111,1,2-trichloroethane111,1,1,2-trichloroethane111,1,1,2-trichloroethane111,1,1,1,2-trichloroethane111,1,1,1,2-trichloroethane111,1,1,1,2-trichloroethane111,1,1,2-trichloroethane111,1,1,1,2-trichloroethane111,1,1,2,2-trichloroethane111,1,1,2,2-trichloroethane111,1,1,2,2-trichloroethane111,1,1,2,2-tr	11 8 950 180 80 75	1	<0.05	< 0.05	0.07	<0.05	<1
Zinc1Monocyclic Aromatic Hydrocarbons (BTEX Compounds)Benzene1Toluene1Ethylbenzene1Toluene1Ethylbenzene1Total xylenes2Valatile Organic Compounds (VOCS), including Chlorinate10Uindiroddifluoromethane10Chloroddifluoromethane10Chlorodethane10Trichiorofluoromethane10Trichiorofluoromethane10Trichiorofluoromethane111,1-Dichloroethene11Tarnas-1,2-dichloroethene111,1-dichloroethane111,1-dichloroethane111,1-dichloroethane111,1-dichloroethane111,1-dichloroethane111,1-dichloroethane111,1-dichloroethane111,1-dichloropopane111,1-dichloropopane111,1-dichloropopane111,1-dichloropopane111,1-dichloropropane111,1,2-trichloropopane111,1,2-trichloropopane111,1,2-trichloropopane111,1,2-trichloropopane111,1,2-trichloropopane111,1,2-trichloropopane111,1,2-trichloropopane111,1,2-trichloropopane111,1,2-trichloropopane111,1,2-trichloropopane111,1,2,2-trichloropopane111,1,2,2-trichloropopane111,1,2,2-trichloropopane111	8 950 180 80 75		[NT]	3	6	3	6
Monocyclic Aromatic Hydrocarbons (BTEX Compounds)Benzene1Toluene1Ethylbenzene1Ethylbenzene2o-xylene2Ovaltile Organic Compounds (VOCs), including chorinate10Dichlorodifluoromethane10Chloromethane10Chlorodethane10Chlorodethane10Chlorodethane10Chlorodethane10Chlorodethane10Chlorodethane11Trans-1,2-dichloroethene11L,1-dichloroethane11Chloroform11L,2-dichloroethane11Chloroform11L,2-dichloroethane11L,2-dichloroethane11Cyclohexane11Cyclohexane11Cyclohexane11Cyclohexane11Cyclohexane11Cyclohexane11Trichloroethane11L,2-dichloropropane11L,2-dichloropropane11L,2-dichloropropane11L,2-dichloropropane11L,2-dichloropropane11L,2-dichloropropane11L,2-dichloropropane11L,2-dichloropropane11L,2-dichloropropane11L,2-dichloropropane11L,2-dichloropropane11L,2-dichloropropane11L,2-dichloropropane11L,2-dichloropropane11L,2-dichloropropane11L,2-dichloropropane<	950 180 80 75	6	[NT]	11	42	11	<0.05
Benzene1Toluene1Toluene1Toluene1Toluene1Total xylenes2Ovalatie Organic Compounds (VOCS), including chorinate10Dichorodifluoromethane10Chlorotentane10Bromomethane10Chlorotentane10Trichlorofluoromethane10Trichlorofluoromethane101,1-Dichloroethene111,1-dichloroethane11Chorotentane11Chorotentane111,1-dichloroethane111,1-dichloroethane111,1-dichloroethane111,1-dichloroethane111,1-dichloroethane111,1-dichloroethane111,1-dichloroethane111,1-dichloroethane111,1-dichloroethane111,1-dichloropropane111,1-dichloropropane111,1-dichloropropane111,1-dichloropropane111,1-dichloropropane111,1,1-trichloroethane111,1,1,1-trichloroethane111,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	950 180 80 75						
Jouene1Ethylbenzene1Theykylene2Oxylene1Total xylenes2Volatile Organic Compounds (VOCs), Including chlorinattDichlorodfilbuoromethane10Chlorodthuoromethane10Chlorodthuoromethane10Chlorodthuoromethane10Trichlorofluoromethane10J.1-Dichloroethene11Trans-1,2-dichloroethene11Stemochloromethane11Chloroform112,2-dichloroethene11L,1-dichlorogropane11L,1-dichlorogropane11L,2-dichlorogenzene11 </td <td>80</td> <td><1</td> <td><1</td> <td><1</td> <td><1</td> <td><1</td> <td><1</td>	80	<1	<1	<1	<1	<1	<1
Lityperige1Total xylenes2ovylene1Total xylenes2Volatile Organic Compounds (VOCs), including t-bornate10Dichlorodifluoromethane10Chloromethane10Bromomethane10Trichlorofluoromethane10Trichlorofluoromethane111,1-Dichlorocethene111,1-Dichlorocethene111,1-Dichloropropane112,2-dichloroethane112,2-dichloropropane112,2-dichloropropane111,2-dichloropropane111,2-dichloropropane111,1-trichloropropane111,2-dichloropropane111,2-dichloropropane111,2-dichloropropane111,2-dichloropropane111,2-dichloropropane111,3-dichloropropane111,3-dichloropropane111,3-dichloropropane111,3-dichloropropane111,3-dichloropropane111,3-dichloropropane111,1,1,2-terachloroethane111,1,1,2-terachloroethane111,1,1,2,2-terachloroethane111,1,2,2-terachloroethane111,1,2,2-terachloroethane111,1,2,2-terachloroethane111,1,2,2-terachloroethane111,1,2,2-terachloroethane111,1,2,2-terachloroethane111,1,2,2-terachloroethane111,1,2,2-terachloroethane111,2,2-tera	75	<1	<1	<1	<1	<1	<1
mp prynkn1Total xylenes1Total xylenes2Volatile Organic Compounds (VOCs), including chlorinate10Chloromethane10Okloromethane10Bromomethane10Trichlorofluoromethane10Trichlorofluoromethane10Trichlorofluoromethane11Tarans.1,2-dichloroethene11Tarans.1,2-dichloroethene11Tarans.1,2-dichloroethane11Chloroform11Z-dichloropropane111,2-dichloropropane111,2-dichloropropane111,2-dichloropropane111,2-dichloropropane111,2-dichloropropane111,2-dichloropropane111,3,1-trichloropropane111,2-dichloropropane111,3-dichloropropane111,3-dichloropropane111,3-dichloropropane111,3-dichloropropane111,3-dichloropropane111,3-dichloropropane111,1,2-tetrachloroethane111,1,2-tetrachloroethane111,1,2,2-tetrachloroethane111,1,2,2-tetrachloroethane111,1,2,2-tetrachloroethane111,1,2,2-tetrachloroethane111,1,2,2-tetrachloroethane111,1,2,2-tetrachloroethane111,1,2,2-tetrachloroethane111,1,2,2-tetrachloroethane111,1,2,2-tetrachloroethane111,2,2-tetrachloroet		<2	<2	<2	<2	<2	<2
Total xylenes2Volatile Organic Compounds (VOCs), including chlorinate10Otchlorodifluoromethane10Organic Compounds (VOCs), including chlorinate10Dichlorodthane10Stromomethane10Chloroethane11Trichlorofluoromethane11Trians-1,2-dichloroethene11Lj-dichloroethane11Chloroethane11Z,2-dichloroethane11Lj-dichloroethane11Lj-dichloroethane11Lj-dichloroethane11Lj-dichloroethane11Lj-dichloroethane11Lj-dichloroethane11Lj-dichloroethane11Lj-dichloropropane11Lj-dichloropropane11Dibromomethane11Lj-dichloropropane11Lj-dichloropropane11Lj.2-trichloropropane11Lj.2-trichloropropane11Lj.2-trichloropropane11Lj.2-trichloropropane11Lj.2-trichloropropane11Lj.2-trichloropropane11Lj.2-trichloropropane11Lj.2-trichloropropane11Lj.2-trichloropropane11Lj.2-trichloropropane11Lj.2-trichloropropane11Lj.2-trichloropropane11Lj.2-trichloropropane11Lj.2-trichloropropane11Lj.2-trichloropropane11Lj.2-trichloropropane11Lj.2-trichloropropane11Lj.3-trich	350	<1	<1	<1	<1	<1	<1
Volatile Organic Compounds (VOCs), including ethlorinateDichlorodifluoromethane10Chloromethane10Bromomethane10Bromomethane10Chloroethane10Trichlorofluoromethane101,1-Dichloroethene111,1-dichloroethane11Chlorofthane112,1-dichloroethane11Chlorofthane11Chlorofthane112,2-dichloroethane112,2-dichloroethane111,1-dichloroethane111,1-dichloroethane111,1-dichloroethane111,1-dichloroethane111,1-dichloropropane111,1-dichloropropane111,1-dichloropropane111,1-dichloropropane111,1-dichloropropane111,1-dichloropropane111,1,2-trichloroethane111,1,2-trichloropropane111,1,2-trichloropropane111,1,2-trichloropropane111,1,2-trichloropropane111,1,2-trichloropropane111,1,2-trichloroethane111,1,2-trichloroethane111,1,2,2-trichloroethane111,1,2,2-trichloroethane111,1,2,2-trichloroethane111,1,2,2-trichloroethane111,1,2,2-trichloroethane111,1,2,2-trichloroethane111,1,2,2-trichloroethane111,2,3-trichloropropane111,2,4-trimethyl benzene11	NSL	<2	<2	<2	<2	<2	<2
Dichlorodifluoromethane10Chloromethane10Vinyl Chloride10Bromomethane10Trichlorofluoromethane101,1-Dichloroethene11Trians-1,2-dichloroethene11Cis-1,2-dichloroethene11Stomochloromethane11Cis-1,2-dichloroethene11Stomochloromethane112,2-dichloroethane111,1-dichloroethane111,1-dichloroethane111,1-dichloroethane111,1-dichloroethane111,1-dichloroethane111,1-dichloropropane111,1-dichloropropane111,1-dichloropropane111,2-dichloropropane111,1-dichloropropane111,1,2-dichloropropane11	d VOCs						
Chloromethane10Vinyl Chloride10Bromomethane10Intorethane10Trichlorofluoromethane101,1-Dichloroethene11Trans-1,2-dichloroethene11Cis-1,2-dichloroethene11Bromochloromethane11Chloroform112,2-dichloroethene11L,1-dichloroethane11L,1-dichloroethane111,2-dichloroethane111,2-dichloroethane111,1-trichloroethane111,1-dichloropropane111,1-dichloropropene11Cyclohexane11Carbon tetrachloride11Benzene11Dibromochhoromethane11Trichloroptopane111,2-dichloropropene111,3-dichloropropene111,3-dichloropropene111,3-dichloropropane111,3-dichloropropane111,3-dichloropropane111,1,2-tetrachloroethane111,1,2-tetrachloroethane111,1,2-tetrachloroethane111,1,2-tetrachloroethane111,1,2-tetrachloroethane111,1,2-tetrachloroethane111,1,2-tetrachloroethane111,1,2-tetrachloroethane111,1,2-tetrachloroethane111,1,2-tetrachloroethane111,1,2-tetrachloroethane111,1,2-tetrachloroethane111,2-dichloropropane111,2-dichloropropan	NSL	<10	<10	<10	<10	<10	<10
Vinyl Chloride10Bromomethane10Chloroethane10Chloroethane10Trins-1,2-dichloroethene1Trans-1,2-dichloroethene11,1-dichloroethene1Somochloromethane1Chloroform12,2-dichloropropane11,2-dichloroethane11,2-dichloropropane11,2-dichloropropane11,2-dichloroethane11,1,1-trichloroethane11,1,1-trichloroethane11,1,2-trichloroethane11,2-dichloropropane11,2-dichloropropane11,2-dichloropropane11,2-dichloropropane11,2-dichloropropane11,2-dichloropropane11,2-trichloroethane11,2-trichloropropane11,2-trichloropropane11,2-trichloropropane11,2-trichloropropane11,2-trichloropropane11,2-trichloropropane11,2-trichloropropane11,2-trichloropropane11,2-trichloropropane11,2-trichloropropane11,2-trichloropropane11,2-trichloropropane11,2-trichloropropane11,2-trichloropropane11,2-trichloropropane11,1,2,2-tetrachloroethane11,1,2,2-tetrachloroethane11,1,2,2-tetrachloropropane1 <trr>1,2,3-trichloropropane1<td>NSL</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td><td><10</td></trr>	NSL	<10	<10	<10	<10	<10	<10
Bromomethane10Chloroethane10Trichlorofluoromethane10Trichlorofluoroethene11L,1-dichloroethene11I,1-dichloroethene11Cis-1,2-dichloroethene11Bromochloromethane112,-dichloroethene112,-dichloropropane112,-dichloropropane111,1-trichloroethane111,1-dichloropropene112,-dichloroethane111,1-trichloroethane111,1-dichloropropene11Cyclohexane11Carbon tetrachloride11Benzene11Dibromomethane111,2-dichloropropane11Trichloroethene11Bromodichloropropene111,2-dichloropropene111,2-dichloropropene111,2-trichloroethane11Toluene111,2-dichloropropane111,2-dichloropropane111,1,2-trichloroethane111,1,1,1,2-tetrachloroethane111,1,1,2,2-trichloroethane111,1,1,2,2-trichloroethane111,1,2,2-trichloropane11Bromobenzene111,1,2,2-trichloropane111,1,2,2-trichloroethane111,1,2,2-trichloroethane111,1,2,2-trichloroethane111,1,2,2-trichloroethane111,1,2,2-trichloroethane111,2,3-trichloroethane111,2,2-trichloroethane<	100	<10	<10	<10	<10	<10	<10
Choroethane10Trichlorofluoroethane101,1-Dichloroethene1Irans-1,2-dichloroethene1Itrans-1,2-dichloroethene1Bromochloromethane1Clis-1,2-dichloroethane12,2-dichloroethane11,2-dichloroethane11,2-dichloroethane11,1-trichloroethane11,1-dichloroethane11,1-dichloroethane11,1-dichloroethane11,1-dichloropropene1Cyclohexane1Benzene1Dibromomethane11,2-dichloropropane11,2-dichloropropene11,1,2-dichloropropene11,1,2-dichloropropene11,1,2-dichloropropene11,1,2-trichloroethane11,1,2-trichloroethane11,1,2-trichloroethane11,1,2-tetrachloroethane11,1,2-tetrachloroethane11,1,2,2-tetrachloroethane11,1,2,2-tetrachloroethane11,1,2,2-tetrachloroethane11,1,2,2-tetrachloroethane11,2,3-trichloropropane11,2,4-trinethyl benzene11,2,4-trinethyl benzene11,2,4-trichlorobenzene11,2,4-trichlorobenzene11,2,4-trichlorobenzene11,2,4-trichlorobenzene11,2,4-trichlorobenzene11,2,4-trichlorobenzene11,2,4-trichlorobenzene11,	NSL	<10	<10	<10	<10	<10	<10
Trichloroothoromethane101,1-Dichloroothene11,1-Dichloroethane1Cis-1,2-dichloroethane1Cis-1,2-dichloroethane11,2-dichloroethane11,2-dichloroethane11,2-dichloropthane11,2-dichloropthane11,1-trichloroethane11,1-trichloroethane11,1-dichloropthane11,1-dichloropthane11,1-dichloropthane1Carbon tetrachloride1Benzene1Dibromomethane11,2-dichloropropane1Trichloroethane1Bromodichloromethane11,2-dichloropropane11,2-dichloropropane11,2-dichloropropane11,2-dichloropropane11,2-dichloropropane11,2-dichloropropane11,1,2-trichloroethane1111,2-dichloropropane11,1,2-trichloroethane1111,1,2-tetrachloroethane111,1,2-tetrachloroethane111,1,2,2-tetrachloroethane111,1,2,2-tetrachloroethane111,1,2,2-tetrachloroethane111,1,2,2-tetrachloroethane111,2,3-trichlorophane111,2,3-trichlorophane111,2,2-tetrachloroethane111,2,2-tetrachloroethane111,2,2-tetra	NSL	<10	<10	<10	<10	<10	<10
1.1.1.1.Trans-1,2-dichloroethene11.1dichloroethane11.1dichloroethane1Bromochloromethane12,2-dichloroptopane11.2dichloroptopane11.2dichloroptopane11.1dichloroptopane11.1dichloroptopane11.1dichloroptopane11.1dichloroptopane1Carbon tetrachloride1Benzene1Dibromomethane11.2dichloropropane1Trichloroethane11.2dichloropropane11.1.2dichloropropane1Toluene11.1.2dichloropropane11.1.2dichloropropane11.1.2dichloropropane11.1.2dichloropropane11.1.2dichloropropane11.1.2dichloropropane11.1.2dichloropropane11.1.1.1.1.2tetrachloroethane11.1.1.1.1.2tetrachloroethane11.1.1.1.1.2tetrachloroethane11.1.1.1.2tetrachloroethane11.1.1.2.2tetrachloroethane11.1.1.2.2tetrachloroethane11.1.1.2.2tetrachloroethane11.1.1.2.2tetrachloroethane11.1.1.2.2tetrachloroethane11.1.1.2.2tetrachloroethane11.1.2.2tetrachloroethane11.1.2.2tetrachloroethane11.1.2.2tetrachloroethane11.1.2.2tetrachloroethane1	NSL	<10	<10	<10	<10	<10	<10
Trains 1,2-uchtoroethene11,1-dichloroethane11,1-dichloroethane1Bromochloromethane12,2-dichloropropane11,2-dichloroethane11,2-dichloroethane11,1-trichloroethane11,1-trichloroethane11,1-trichloroethane11,1-trichloroethane11,1-trichloroethane1Cyclohexane1Carbon tetrachloride1Benzene1Dibromomethane11,2-dichloropropane1Trichloroethene1Bromodichloromethane11,1,2-trichloroethane11,1,2-trichloroethane11,2-dichloropropene11,1,2-trichloroethane11,1,2-trichloroethane11,1,2-tetrachloroethane11,1,2,2-tetrachloroethane11,1,2,2-tetrachloroethane11,1,2,2-tetrachloroethane11,1,2,2-tetrachloroethane11,1,2,2-tetrachloroethane11,1,2,2-tetrachloroethane11,1,2,2-tetrachloroethane11,1,2,2-tetrachloroethane11,1,2,2-tetrachloroethane11,1,2,2-tetrachloroethane11,2,3-trichloropropane11,2,4-trichloropropane11,2,4-trichloropropane11,2,2-tetrachloroethane11,2,2-tetrachloroethane11,2,2-trichlorobenzene11,2,4-trichlorobenzene1<	700	<1	<1	<1	<1	<1	<1
11Cis-1,2-dichloroethene1Bromochloromethane11,2-dichloropropane11,2-dichloroethane11,1-trichloroethane11,1-trichloroethane11,1-trichloroethane11,1-trichloroethane11,1-trichloroethane11,1-dichloropropene1Cyclohexane1Carbon tetrachloride1Benzene1Dibromomethane11,2-dichloropropane1Trichloroethene1Bromodichloromethane11,3-dichloropropene11,3-dichloropropene11,3-dichloropropane11,3-dichloropropane11,3-dichloropropane11,1,2-tetrachloroethane11,1,2-tetrachloroethane11Bromochloromethane11,1,1,2-tetrachloroethane11Bromoform11,2,2-tetrachloroethane11,1,2,2-tetrachloroethane11,1,2,2-tetrachloroethane11,1,2,2-tetrachloroethane11,1,2,3-trichloropropane11,2,3-trichloropropane11,2,3-trichloropropane11,2,4-trichloropropane11,2,4-trichlorobenzene11,2,4-trichlorobenzene11,2,4-trichlorobenzene11,2,4-trichlorobenzene11,2,4-trichlorobenzene11,2,4-trichlorobenzene11,2,4-trichlorobenzene<	90	<1	<1	<1	<1	<1	<1
11112121112111	NSL	<1	<1	<1	<1	<1	<1
- - - - 2,2-dichloropropane 1 1,2-dichloroethane 1 1,1-trichloroethane 1 1,1-dichloropropene 1 Cyclohexane 1 Carbon tetrachloride 1 Benzene 1 Dibromomethane 1 1,2-dichloropropane 1 Trichloroethene 1 Bromodichloromethane 1 1,2-trichloroethene 1 1,2-trichloroopropene 1 1,2-trichloroethane 1 Toluene 1 1,2-trichloroethane 1 1,2-trichloroethane 1 1,2-trichloroethane 1 1,1,2-trichloroethane 1 1,1,2-trichloroethane 1 1,1,2,2-tetrachloroethane 1 1,1,2,2-tetrachloroethane 1 1,1,2,2-tetrachloroethane 1 1,2,3-trichloropropane 1 1,2,3-trichloropropane 1 1,2,3-trichloropropane 1 <td>NSL</td> <td><1</td> <td><1</td> <td><1</td> <td><1</td> <td><1</td> <td><1</td>	NSL	<1	<1	<1	<1	<1	<1
2,2-dichloropropane11,2-dichloroethane11,1-trichloroethane11,1-trichloroethane11,1-dichloropropene1Cyclohexane1Carbon tetrachloride1Benzene1Dibromomethane11,2-dichloropropane1Trichloroethene1Bromodichloromethane1Trians-1,3-dichloropropene11,1,2-trichloroethane11,3-dichloropropene11,1,2-trichloroethane11,1,2-trichloroethane11,1,1,2-tetrachloroethane11,1,1,2-tetrachloroethane12,2-dibromochlane11,1,1,2-tetrachloroethane11,1,1,2-tetrachloroethane11,1,1,2-tetrachloroethane11,1,2,2-tetrachloroethane11,2,3-trichloropropane11,2,3-trichloropropane11,2,3-trichloropropane11,2,3-trichloropropane11,2,3-trichloropropane11,2,3-trichloropropane11,3-trimethyl benzene11,3-trimethyl benzene11,3-trimethyl benzene11,2-dichlorobenzene11,2,4-trimethyl benzene11,2,4-trichlorobenzene11,2,4-trichlorobenzene11,2,4-trichlorobenzene11,2,4-trichlorobenzene11,2,4-trichlorobenzene11,2,4-trichlorobenzene11,2,4-trichlorobenzene1<	370	<1	<1	<1	<1	<1	<1
1,2-dichloroethane11,1,1-trichloroethane11,1-dichloropropene1Cyclohexane1Carbon tetrachloride1Benzene1Dibromomethane11,2-dichloropropane1Trichloroethene1Bromodichloromethane1Itrans-1,3-dichloropropene11,1,2-trichloroethane1Toluene11,3-dichloropropane11,1,2-trichloroethane11,1,2-trichloroethane11,1,2-tetrachloroethane11,1,1,2-tetrachloroethane111Ethylbenzene1Bromodichloropropane11,1,1,2-tetrachloroethane11,1,1,2,2-tetrachloroethane11,2,3-trichloropropane11,2,3-trichloropropane11,2,3-trichloropropane11,2,3-trichloropropane11,2,3-trichloropropane11,2,3-trichloropropane11,3-trichloropropane11,3-trichloropropane11,3-trichloropropane11,3-trichlorobenzene11,3-trichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlor	NSL	<1	<1	<1	<1	<1	<1
1,1,1-trichloroethane11,1-dichloropropene1Cyclohexane1Carbon tetrachloride1Benzene1Dibromomethane11,2-dichloropropane1Trichloroethene1Bromodichloromethane1Itrans-1,3-dichloropropene11,1,2-trichloroethane11,3-dichloropropene11,3-dichloropropene11,3-dichloropropene11,2-trichloroethane11,2-trichloroethane11,1,2-tetrachloroethane11,1,1,2-tetrachloroethane11,1,1,2-tetrachloroethane11,1,2,2-tetrachloroethane11,1,2,2-tetrachloroethane11,1,2,2-tetrachloroethane11,1,2,2-tetrachloroethane11,2,3-trichloropropane11,2,3-trichloropropane11,2,3-trichloropropane11,2,3-trichloropropane11,2,3-trichloropropane11,2,3-trimethyl benzene11,1,2,4-trimethyl benzene11,2,4-trimethyl benzene11,2,4-trichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene1	1900	<1	<1	<1	<1	<1	<1
1,1-dichloropropene1Cyclohexane1Cyclohexane1Carbon tetrachloride1Benzene1Dibromomethane11,2-dichloropropane1Trichloroethene1Bromodichloromethane1trans-1,3-dichloropropene11,3-dichloropropene11,3-dichloropropene11,3-dichloropropene11,3-dichloropropane11,2-trichloroethane11,2-trichloroethane11,2-dibromochloromethane11,1,2-tetrachloroethane11,1,1,2-tetrachloroethane11,1,1,2-tetrachloroethane11,1,2,2-tetrachloroethane11,1,2,2-tetrachloroethane11,1,2,2-tetrachloroethane11,1,2,2-tetrachloroethane11,1,2,2-tetrachloroethane11,1,2,2-tetrachloroethane11,2,3-trichloropropane11,2,3-trichloropropane11,2,3-trichloropropane11,2,3-trichloropropane11,2,4-trimethyl benzene11,2,4-trimethyl benzene11,2,4-trimethyl benzene11,2,4-trichlorobenzene11,2,4-trichlorobenzene11,2,4-trichlorobenzene11,2,4-trichlorobenzene11,2,4-trichlorobenzene11,2,4-trichlorobenzene11,2,4-trichlorobenzene11,2,4-trichlorobenzene11,2,4-trichlorobenzene	270	<1	<1	<1	<1	<1	<1
Cyclohexane1Carbon tetrachloride1Benzene1Dibromomethane11,2-dichloropropane1Trichloroethene1Bromodichloromethane1trans-1,3-dichloropropene11,1,2-trichloroethane1Toluene11,3-dichloropropane11,3-dichloropropane1Dibromochloromethane11,2-trichloroethane11,2-dibromoethane11,2-dibromoethane11,1,2-tetrachloroethane11,1,1,2-tetrachloroethane11,1,2,2-tetrachloroethane11,1,2,2-tetrachloroethane11,1,2,2-tetrachloroethane11,2,3-trichloropropane11,2,3-trichloropropane11,2,3-trichloropropane1112-chlorotoluene11,3,5-trimethyl benzene11,3,5-trimethyl benzene11,3-dichlorobenzene11,3-dichlorobenzene11,2-diblorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene </td <td>NSL</td> <td><1</td> <td><1</td> <td><1</td> <td><1</td> <td><1</td> <td><1</td>	NSL	<1	<1	<1	<1	<1	<1
Carbon tetrachloride1Benzene1Benzene1Dibromomethane11,2-dichloropropane1Trichloroethene1Bromodichloromethane1trans-1,3-dichloropropene11,1,2-trichloroethane1Toluene11,3-dichloropropane11,3-dichloropropane1Dibromochloromethane11,2-dibromoethane11,2-dibromoethane11,1,2-tetrachloroethane11,1,2-tetrachloroethane11,1,2,2-tetrachloroethane11,1,2,2-tetrachloroethane11,1,2,2-tetrachloroethane11,2,3-trichloropropane11,2,2-tetrachloroethane11,2,2-tetrachloroethane11,2,3-trichloropropane11,2,3-trichloropropane11,2,3-trichloropropane111,2,3-trichloropropane111,3-dichlorobenzene11,3-dichlorobenzene11,3-dichlorobenzene11,3-dichlorobenzene11,3-dichlorobenzene11,2-dibrono-3-chloropropane11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenze	NSL	<1	<1	<1	<1	<1	<1
Benzene1Dibromomethane11,2-dichloropropane1Trichloroethene1Bromodichloromethane1trans-1,3-dichloropropene11,1,2-trichloroethane1Toluene11,3-dichloropropane11,3-dichloropropane11,3-dichloropropane11,2-trichloroethane11,2-trichloroethane11,2-dibromochloromethane11,1,2-tetrachloroethane11,1,1,2-tetrachloroethane1Chlorobenzene1Bromoform1m+p-xylene2Styrene11,2,2-tetrachloroethane11,2,2-tetrachloroethane11,2,2-trichloropropane11,2,2-trichloropropane11,2,2-trichloropropane11,3,2-trichloropropane11,3,5-trimethyl benzene11,3,5-trimethyl benzene11,3-dichlorobenzene11,3-dichlorobenzene11,3-dichlorobenzene11,4-dichlorobenzene11,2-dichlorobenzene11,2-dibromo-3-chloropropane11,2,4-trichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenz	240	<1	<1	<1	<1	<1	<1
Dibromomethane11,2-dichloropropane1Trichloroethene1Bromodichloropropene1cis-1,3-dichloropropene11,1,2-trichloroethane1Toluene11,3-dichloropropane1Dibromochloromethane11,2-trichloroethane11,2-dibromoethane11,2-dibromoethane11,1,2-titrachloroethane11,1,2-tetrachloroethane11,1,1,2-tetrachloroethane1Ethylbenzene1Bromoform1m+p-xylene2Styrene11,2,2-tetrachloroethane11,2,2-tetrachloroethane11,2,2-tetrachloroethane11,2,3-trichloropropane11,2,3-trichloropropane11,3,2-trichloropropane11,3,5-trimethyl benzene11,3,5-trimethyl benzene11,3,5-trimethyl benzene11,2,4-trichlorobenzene11,2,4-trichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2,2-trichlorobenzene11,2,2-trichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-d	950	<1	<1	<1	<1	<1	<1
1,2-dichlorobyropane1Trichloroethene1Bromodichloroomethane1trans-1,3-dichloropropene11,1,2-trichloroethane1Toluene11,3-dichloropropane11,3-dichloropropane11,3-dichloropropane11,2-trichloroethane11,2-trichloroethane11,2-dibromoethane11,1,2-tetrachloroethane11,1,1,2-tetrachloroethane11,1,2,2-tetrachloroethane11,1,2,2-tetrachloroethane11,1,2,2-tetrachloroethane11,1,2,2-tetrachloroethane11,2,3-trichloropropane11,2,3-trichloropropane11,2,3-trichloropropane11,2,3-trichloropropane11,3-trichloropropane11,3-trimethyl benzene11,3-trimethyl benzene11,3-trimethyl benzene11,3-trimethyl benzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dich	NSL	<1	<1	<1	<1	<1	<1
Inclusion1Bromodichloromethane1trans-1,3-dichloropropene11,1,2-trichloroethane11,1,2-trichloroethane11,3-dichloropropane1Dibromochloromethane11,1,2-trichloroethane11,1,2-tetrachloroethane11,1,1,2-tetrachloroethane11,1,1,2-tetrachloroethane11,1,1,2-tetrachloroethane1Ethylbenzene1Bromoform1m+p-xylene2Styrene11,2,2-tetrachloroethane11,2,2-tetrachloroethane11,2,2-tetrachloroethane11,2,2-tetrachloroethane11,2,2-tetrachloroethane11,2,2-tetrachloroethane11,2,2-tetrachloroethane11,3,2,2-tetrachloroethane11,2,2-tetrachloroethane11,2,3-trichloropropane11,2,2-tetrachloroethane11,2,2-tetrachloroethane11,2,3-trichloropropane11,2-chlorotoluene11,3,5-trimethyl benzene11,2,4-trimethyl benzene11,2,4-trimethyl benzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2,3-trichlorobenzene11,2,3-trichlorobenzene11,2,3-trichlorobenzene11,2,3-trichlorobenzene11,2,3-trichlorobenzene1 <td>330</td> <td><1</td> <td><1</td> <td><1</td> <td><1</td> <td><1</td> <td><1</td>	330	<1	<1	<1	<1	<1	<1
InterastingImage: 1 Image: 1,3-dichloropropeneImage: 1 Image: 1,3-dichloropropene1,1,2-trichloroethane1Toluene11,3-dichloropropane1Dibromochloromethane11,2-dibromoethane11,1,2-tetrachloroethane11,1,1,2-tetrachloroethane1Ethylbenzene1Bromoform1m+p-xylene2Styrene11,1,2,2-tetrachloroethane11,1,2,2-tetrachloroethane11,1,2,2-tetrachloroethane11,1,2,2-tetrachloroethane11,2,3-trichloropropane11,2,3-trichloropropane11,2,3-trichloropropane11,3,5-trimethyl benzene11,2,4-trimethyl benzene11,2,4-trimethyl benzene11,2,4-trimethyl benzene11,2,4-trichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichloro	NSL	<1	<1	<1	<1	<1	<1
Lis-1,3-dichloropropene11,1,2-trichloroethane1Toluene11,3-dichloropropane1Dibromochloromethane11,2-dibromoethane11,1,2-tetrachloroethane11,1,1,2-tetrachloroethane1Ethylbenzene1Bromoform1m+p-xylene2Styrene11,2,2-tetrachloroethane11,2,2-tetrachloroethane11,2,2-tetrachloroethane11,2,2-tetrachloroethane11,2,2-tetrachloroethane11,2,2-tetrachloroethane11,2,3-trichloropropane1Isopropylbenzene1Bromobenzene11,2-chtorotoluene14-chlorotoluene11,3,5-trimethyl benzene11,3,5-trimethyl benzene11,2,4-trimethyl benzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dibromo-3-chloropropane11,2,4-trichlorobenzene11,2,3-trichlorobenzene11,2-dibromo-3-chloropropane11,2,3-trichlorobenzene11,2,3-trichlorobenzene11,2,3-trichlorobenzene11,2,3-trichlorobenzene11,2,3-trichlorobenzene11,2,3-trichlorobenzene11,2,3-trichlorobenzene11,2,3-trichlorobenzene11,2,3-trichlorobenzene	NSL	<1	<1	<1	<1	<1	<1
1,1,2-trichloroethane1Toluene11,3-dichloropropane1Dibromochloromethane11,2-dibromoethane11,2-dibromoethane1Tetrachloroethane11,1,1,2-tetrachloroethane1Ethylbenzene1Bromoform1m+p-xylene2Styrene11,2,2-tetrachloroethane11,2,2-tetrachloroethane10-xylene11,2,2-tetrachloroethane10-xylene11,2,2-tetrachloroethane10-xylene111,2,2-tetrachloroethane10-xylene11,2,3-trichloropropane1Bromobenzene11,2-chtorotoluene11,3-5-trimethyl benzene11,2-4-trimethyl benzene11,2,4-trimethyl benzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenze	NSL	<1	<1	<1	<1	<1	<1
Toluene11,3-dichloropropane11,3-dichloropropane1Dibromochloromethane11,2-dibromoethane1Tetrachloroethane11,1,1,2-tetrachloroethane1Chlorobenzene1Ethylbenzene1Bromoform1m+p-xylene2Styrene11,1,2,2-tetrachloroethane10-xylene11,1,2,2-tetrachloroethane10-xylene11,2,3-trichloropropane1Isopropylbenzene1Bromobenzene11,2-chtorotoluene14-chlorotoluene11,3,5-trimethyl benzene11,3,5-trimethyl benzene11,4-dichlorobenzene11,2-dichlorobenzene1<	6500	<1	<1	<1	<1	<1	<1
1,3-dichloropropane1Dibromochloromethane11,2-dibromoethane1Tetrachloroethane11,1,1,2-tetrachloroethane1Chlorobenzene1Ethylbenzene1Bromoform1m+p-xylene2Styrene11,1,2,2-tetrachloroethane11,1,2,2-tetrachloroethane10-xylene11,2,2-tetrachloroethane10-xylene11,2,2-tetrachloroethane10-xylene11,2,3-trichloropropane1Bromobenzene1n-propyl benzene12-chlorotoluene14-chlorotoluene11,3,5-trimethyl benzene11,3,5-trimethyl benzene11,4-dichlorobenzene11,2-dichlorobenzene <td>180</td> <td><1</td> <td><1</td> <td><1</td> <td><1</td> <td><1</td> <td><1</td>	180	<1	<1	<1	<1	<1	<1
Dibromochloromethane11,2-dibromoethane1Tetrachloroethane11,1,1,2-tetrachloroethane1Chlorobenzene1Ethylbenzene1Bromoform1m+p-xylene2Styrene11,1,2,2-tetrachloroethane11,1,2,2-tetrachloroethane1o-xylene11,1,2,2-tetrachloroethane1o-xylene11,2,3-trichloropropane1Isopropylbenzene1Bromobenzene1-n-propyl benzene12-chlorotoluene14-chlorotoluene11,3,5-trimethyl benzene11,3,5-trimethyl benzene11,4-dichlorobenzene11,2-diblorobenzene11,2-diblorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-diblorobenzene11,2-diblorobenzene11,2-diblorobenzene11,2-diblorobenzene11,2-diblorobenzene11,2-diblorobenzene11,2-diblorobenzene11,2-diblorobenzene11,2-diblorobenzene11,2-diblorobenzene11,2-diblorobenzene11,2-diblorobenzene11,2-diblorobenzene11,2-diblorobenzene11,2-diblorobenzene11,2-diblorobenzene11,2-diblorobenzene11,2-diblorobenzene1 </td <td>1100</td> <td><1</td> <td><1</td> <td><1</td> <td><1</td> <td><1</td> <td><1</td>	1100	<1	<1	<1	<1	<1	<1
1,2-dibromoethane1Tetrachloroethane11,1,1,2-tetrachloroethane1Chlorobenzene1Ethylbenzene1Bromoform1m+p-xylene2Styrene11,1,2,2-tetrachloroethane11,1,2,2-tetrachloroethane1o-xylene11,2,3-trichloropropane1Isopropylbenzene1Bromobenzene1-n-propyl benzene12-chlorotoluene11,3,5-trimethyl benzene11,3,5-trimethyl benzene11,3-dichlorobenzene11,2-dich	NSL	<1	<1	<1	<1	<1	<1
Tetrachloroethene11,1,1,2-tetrachloroethane1Chlorobenzene1Ethylbenzene1Bromoform1m+p-xylene2Styrene11,1,2,2-tetrachloroethane11,1,2,2-tetrachloroethane11,2,3-trichloropropane1Isopropylbenzene1Bromobenzene1-ryropyl benzene12-chlorotoluene11,3,5-trimethyl benzene11,3,5-trimethyl benzene11,2,4-trimethyl benzene11,2-dichlorobenzene1	NSL	<1	<1	<1	<1	<1	<1
1,1,1,2-tetrachloroethane1Chlorobenzene1Ethylbenzene1Bromoform1m+p-xylene2Styrene11,1,2,2-tetrachloroethane11,2,3-trichloropropane1Isopropylbenzene1Bromobenzene1-n-propyl benzene12-chlorotoluene11,3,5-trimethyl benzene11,3,5-trimethyl benzene11,3,5-trimethyl benzene11,2-dichlorobenzene1 <tr< td=""><td>70</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td></tr<>	70	<1	<1	<1	<1	<1	<1
Chlorobenzene1Ethylbenzene1Bromoform1m+p-xylene2Styrene11,1,2,2-tetrachloroethane11,2,3-trichloropropane1Isopropylbenzene1Bromobenzene1n-ropyl benzene12-chlorotoluene11,3,5-trimethyl benzene11,3,5-trimethyl benzene11,3,5-trimethyl benzene11,4-dichlorobenzene11,2	NSL	<1	<1	<1	<1	<1	<1
Ethylonzene1Bromoform1m+p-xylene2Styrene11,1,2,2-tetrachloroethane11,2,3-trichloropropane1Isopropylbenzene1Bromobenzene1n-propyl benzene12-chlorotoluene14-chlorotoluene11,3,5-trimethyl benzene11,3,5-trimethyl benzene11,4-dichlorobenzene11,4-dichlorobenzene11,2-d	55	<1	<1	<1	<1	<1	<1
Bothoff1m+p-xylene2Styrene11,1,2,2-tetrachloroethane1o-xylene11,2,3-trichloropropane1Isopropylbenzene1Bromobenzene1a-rpropyl benzene12-chlorotoluene14-chlorotoluene11,3,5-trimethyl benzene11,3,5-trimethyl benzene11,3-dichlorobenzene11,4-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dirichlorobenzene11,2-dirichlorobenzene11,2-dibromo-3-chloropropane11,2-dirichlorobenzene11,2-dirichlorobenzene11,2-dirichlorobenzene11,2-dirichlorobenzene11,2-dirichlorobenzene11,2-dirichlorobenzene11,2-dirichlorobenzene11,2-dirichlorobenzene11,2-dirichlorobenzene11,2-dirichlorobenzene11,2-dirichlorobenzene11,2-dirichlorobenzene11,2-dirichlorobenzene11,2-dirichlorobenzene11,2-dirichlorobenzene11,2-dirichlorobenzene11,2-dirichlorobenzene11,2-dirich	80	<1	<1	<1	<1	<1	<1
Impryvene2Styrene11,1,2,2-tetrachloroethane1o-xylene11,2,3-trichloropropane1Isopropylbenzene1Bromobenzene12-chlorotoluene11,3,5-trimethyl benzene11,3,5-trimethyl benzene11,3,5-trimethyl benzene11,3,4-trimethyl benzene11,3-dichlorobenzene11,4-dichlorobenzene11,2-dithlorobenzene11,2-dithlorobenzene11,2-dithlorobenzene11,2-dithlorobenzene11,2-dithlorobenzene11,2-dithlorobenzene11,2,4-trichlorobenzene11,2,4-trichlorobenzene11,2,4-trichlorobenzene11,2,3-trichlorobenzene11,2,3-trichlorobenzene11,2,3-trichlorobenzene11,2,3-trichlorobenzene11,2,3-trichlorobenzene11,2,3-trichlorobenzene11,2,3-trichlorobenzene0.1Polycyclic Aromatic Hydrocarbons (PAHs)0.1Naphthalene0.2Acenaphthylene0.1Acenaphthene0.1Fluoranthene0.1Pinoranthene0.1Pinoranthene0.1Pinoranthene0.1Pinoranthene0.1	75	<1	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane 1 o-xylene 1 1,2,3-trichloropropane 1 1,2,3-trichloropropane 1 stopropylbenzene 1 Bromobenzene 1 n-propyl benzene 1 2-chlorotoluene 1 4-chlorotoluene 1 1,3,5-trimethyl benzene 1 1,2,4-trimethyl benzene 1 1,3-dichlorobenzene 1 1,4-dichlorobenzene 1 1,2-dichlorobenzene 1 <td>NSL</td> <td><1</td> <td><1</td> <td><1</td> <td><1</td> <td><1</td> <td><1</td>	NSL	<1	<1	<1	<1	<1	<1
p-xylene11,2,3-trichloropropane1Isopropylbenzene1Bromobenzene1Archlorotoluene11,3,5-trimethyl benzene11,3,5-trimethyl benzene11,2,4-trimethyl benzene11,3,4-trimethyl benzene11,3-dichlorobenzene11,4-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dibromo-3-chloropropane11,2,4-trichlorobenzene1	400	<1	<1	<1	<1	<1	<1
1,2,3-trichloropropane1Isopropylbenzene1Bromobenzene1n-propyl benzene12-chlorotoluene14-chlorotoluene11,3,5-trimethyl benzene11,2,4-trimethyl benzene11,3-dichlorobenzene11,3-dichlorobenzene11,4-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dibromo-3-chloropropane11,2,4-trichlorobenzene1112,3-trichlorobenzene11,2-dibromo-3-chloropropane11,2-dibrombenzene11,2-dibrombe	350	<1	<1	<1	<1	<1	<1
Isopropylbenzene1Bromobenzene1n-propyl benzene12-chlorotoluene14-chlorotoluene11,3,5-trimethyl benzene11,2,4-trimethyl benzene11,2,4-trimethyl benzene11,3-dichlorobenzene11,4-dichlorobenzene11,4-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-diblorobenzene11,2-diblorobenzene11,2-dibromo-3-chloropropane11,2,4-trichlorobenzene11,2-dibromo-3-chloropropane11,2,4-trichlorobenzene011Polycyclic Aromatic Hydrocarbons (PAHs)1Naphthalene0.2Acenaphthylene0.1Fluorene0.1Phenanthrene0.1Fluorantene0.1Fluorantene0.1Fluoranthene0.1Fluoranthene0.1	NSL	<1	<1	<1	<1	<1	<1
Bromobenzene1n-propyl benzene12-chlorotoluene14-chlorotoluene11,3,5-trimethyl benzene11,3,5-trimethyl benzene11,2,4-trimethyl benzene11,2,4-trimethyl benzene11,3-dichlorobenzene1Sec-butyl benzene11,4-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dibromo-3-chloropropane11,2,4-trichlorobenzene11,2,4-trichlorobenzene11,2,4-trichlorobenzene1Polycyclic Aromatic Hydrocarbons (PAHs)NaphthaleneNaphthalene0.1Fluorene0.1Phenanthrene0.1Fluorene0.1Fluoranthene0.1Fluoranthene0.1Fluoranthene0.1Fluoranthene0.1	30	<1	<1	<1	<1	<1	<1
n-propyl benzene12-chlorotoluene14-chlorotoluene11,3,5-trimethyl benzene11,3,5-trimethyl benzene11,2,4-trimethyl benzene11,2,4-trimethyl benzene11,3-dichlorobenzene1Sec-butyl benzene11,4-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2,4-trichlorobenzene11,2,4-trichlorobenzene11,2,3-trichlorobenzene1Polycyclic Aromatic Hydrocarbons (PAHs)0.1Naphthalene0.2Acenaphthylene0.1Fluorene0.1Phenanthrene0.1Fluoranthene0.1Fluoranthene0.1Fluoranthene0.1	NSL	<1	<1	<1	<1	<1	<1
2-chlorotoluene14-chlorotoluene11,3,5-trimethyl benzene11,3,5-trimethyl benzene11,2,4-trimethyl benzene11,3-dichlorobenzene11,3-dichlorobenzene11,4-dichlorobenzene11,4-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2-dichlorobenzene11,2,4-trichlorobenzene11,2,4-trichlorobenzene11,2,4-trichlorobenzene1111,2,3-trichlorobenzene1Polycyclic Aromatic Hydrocarbons (PAHs)0.1Naphthalene0.2Acenaphthylene0.1Fluorene0.1Phenanthrene0.1Fluoranthene0.1Fluoranthene0.1Fluoranthene0.1Fluoranthene0.1	NSL	<1	<1	<1	<1	<1	<1
4-chlorotoluene 1 1,3,5-trimethyl benzene 1 I,3,5-trimethyl benzene 1 1,2,4-trimethyl benzene 1 1,3-dichlorobenzene 1 1,4-dichlorobenzene 1 1,4-dichlorobenzene 1 1,4-dichlorobenzene 1 1,4-dichlorobenzene 1 1,2-dichlorobenzene 1 1,2-dichlorobenzene 1 1,2-dichlorobenzene 1 1,2-dichlorobenzene 1 1,2-dichlorobenzene 1 1,2-dichlorobenzene 1 1,2,4-trichlorobenzene 1 1,2,4-trichlorobenzene 1 1,2,3-trichlorobenzene 1 1,2,3-trichlorobenzene 1 1,2,3-trichlorobenzene 0.1 Polycyclic Aromatic Hydrocarbons (PAHs) 1 Naphthalene 0.2 Acenaphthylene 0.1 Acenaphthene 0.1 Fluorene 0.1 Phenanthrene 0.1 Phenanthrene 0.1 Fluoranthene 0.1	NSL	<1	<1	<1	<1	<1	<1
1,3,3rrimetnyi benzene 1 1,2,3rrimetnyi benzene 1 1,2,4-trimethyl benzene 1 1,3-dichlorobenzene 1 1,3-dichlorobenzene 1 1,4-dichlorobenzene 1 1,4-dichlorobenzene 1 1,2-dichlorobenzene 1 1,2-dichlorobenzene 1 1,2-dichlorobenzene 1 1,2-dichlorobenzene 1 1,2-dirborobenzene 1 1,2-dirborobenzene 1 1,2,4-trichlorobenzene 1 1,2,4-trichlorobenzene 1 1,2,4-trichlorobenzene 1 1,2,3-trichlorobenzene 1 1,2,3-trichlorobenzene 1 1,2,3-trichlorobenzene 0.1 Polycyclic Aromatic Hydrocarbons (PAHs) N Naphthalene 0.2 Acenaphthylene 0.1 Fluorene 0.1 Phenanthrene 0.1 Phenanthrene 0.1 Fluoranthene 0.1 Purene 0.1	NSL	<1	<1	<1	<1	<1	<1
I err-outyl benzene 1 1,2,4-trimethyl benzene 1 1,3-dichlorobenzene 1 1,3-dichlorobenzene 1 1,4-dichlorobenzene 1 1,4-dichlorobenzene 1 1,2-dichlorobenzene 1 1,2-dichlorobenzene 1 1,2-dichlorobenzene 1 n-butyl benzene 1 1,2-dichlorobenzene 1 1,2-dichlorobenzene 1 1,2,4-trichlorobenzene 1 1,2,3-trichlorobenzene 1 Polycyclic Aromatic Hydrocarbons (PAHs) 1 Naphthalene 0.2 Acenaphthylene 0.1 Fluorene 0.1 Phenanthrene 0.1 Phenanthrene 0.1 Phenanthrene 0.1 Purene 0.1	NSL	<1	<1	<1	<1	<1	<1
1,3-circhineury benzene 1 1,3-circhineury benzene 1 1,4-circhiorobenzene 1 1,4-dichlorobenzene 1 1,2-dichlorobenzene 1 1,2,4-trichlorobenzene 1 1,2,3-trichlorobenzene 1 Polycyclic Aromatic Hydrocarbons (PAHs) Naphthalene 0.2 Acenaphthylene 0.1 Acenaphthene 0.1 Fluorene 0.1 Phenanthrene 0.1 Fluoranthene 0.1 Purspee 0.1	NSL	<1	<1	<1	<1	<1	<1
Acenaphthene 0.1 Nambroschieftene 1 1,4-dichlorobenzene 1 1,2-dichlorobenzene 1 1,2,4-trichlorobenzene 1 1,2,3-trichlorobenzene 1 Polycyclic Aromatic Hydrocarbons (PAHs) Naphthalene 0.2 Acenaphthylene 0.1 Fluorene 0.1 Phenanthrene 0.1 Fluoranthene 0.1 Fluoranthene 0.1 Purene 0.1	INSL 260	<1	<1	<1	<1	<1	<1
1,4-dichlorobenzene 1 1,4-dichlorobenzene 1 4-isopropyl toluene 1 1,2-dichlorobenzene 1 1,2-dichlorobenzene 1 1,2-dichlorobenzene 1 1,2-dichlorobenzene 1 1,2,4-trichlorobenzene 1 1,2,3-trichlorobenzene 1 Polycyclic Aromatic Hydrocarbons (PAHs) Naphthalene 0.2 Acenaphthylene 0.1 Acenaphthene 0.1 Phenanthrene 0.1 Phenanthrene 0.1 Fluorantene 0.1 Purene 0.1	NSI	<1	<1	<1	<1	<1	<1
1 1 4-isopropyl toluene 1 1,2-dichlorobenzene 1 n-butyl benzene 1 1,2-dichlorobenzene 1 1,2-dichlorobenzene 1 1,2-dichlorobenzene 1 Hexachlorobutadiene 1 1,2,3-trichlorobenzene 1 Polycyclic Aromatic Hydrocarbons (PAHs) 0.2 Naphthalene 0.2 Acenaphthylene 0.1 Acenaphthylene 0.1 Phenanthrene 0.1 Fluorene 0.1 Fluoranthene 0.1 Fluoranthene 0.1	60	<1	<1	<1	<1	<1	<1
1,2-dichlorobenzene 1 n-butyl benzene 1 1,2-dibromo-3-chloropropane 1 1,2-dibromo-3-chloropropane 1 1,2-ditromo-3-chloropropane 1 1,2-ditromo-3-chloropropane 1 1,2-ditromo-3-chloropropane 1 1,2-ditromotosenzene 1 Hexachlorobutadiene 1 1,2,3-trichlorobenzene 1 Polycyclic Aromatic Hydrocarbons (PAHs) Naphthalene 0.2 Acenaphthylene 0.1 Acenaphthylene 0.1 Fluorene 0.1 Phenanthrene 0.1 Fluoranthene 0.1 Fluoranthene 0.1	NSL	<1	<1	<1	<1	<1	<1
n-butyl benzene 1 1,2-dibromo-3-chloropropane 1 1,2,4-trichlorobenzene 1 Hexachlorobutadiene 1 1,2,3-trichlorobenzene 1 Polycyclic Aromatic Hydrocarbons (PAHs) Naphthalene 0.2 Acenaphthylene 0.1 Acenaphthylene 0.1 Fluorene 0.1 Phenanthrene 0.1 Phenanthrene 0.1 Phenanthrene 0.1 Phenanthrene 0.1 Phenanthrene 0.1	160	<1	<1	<1	<1	<1	<1
1,2-dibromo-3-chloropropane 1 1,2,4-trichlorobenzene 1 Hexachlorobutadiene 1 1,2,3-trichlorobenzene 1 Polycyclic Aromatic Hydrocarbons (PAHs) 1 Naphthalene 0.2 Acenaphthylene 0.1 Acenaphthene 0.1 Fluorene 0.1 Phenanthrene 0.1 Fluorantene 0.1 Fluoranthene 0.1	NSL	<1	<1	<1	<1	<1	<1
1,2,4-trichlorobenzene 1 Hexachlorobutadiene 1 1,2,3-trichlorobenzene 1 Polycyclic Aromatic Hydrocarbons (PAHs) 1 Naphthalene 0.2 Acenaphthylene 0.1 Acenaphthene 0.1 Fluorene 0.1 Phenanthrene 0.1 Anthracene 0.1 Fluoranthene 0.1	NSL	<1	<1	<1	<1	<1	<1
Hexachlorobutadiene 1 1,2,3-trichlorobenzene 1 Polycyclic Aromatic Hydrocarbons (PAHs) Naphthalene 0.2 Acenaphthylene 0.1 Acenaphthene 0.1 Fluorene 0.1 Phenanthrene 0.1 Anthracene 0.1 Fluoranthene 0.1	85	<1	<1	<1	<1	<1	<1
1,2,3-trichlorobenzene 1 Polycyclic Aromatic Hydrocarbons (PAHs) Naphthalene 0.2 Acenaphthylene 0.1 Acenaphthene 0.1 Fluorene 0.1 Phenanthrene 0.1 Anthracene 0.1 Fluoranthene 0.1 Polycyclic Aromatic Hydrocarbons (PAHs) 0.1	NSL	<1	<1	<1	<1	<1	<1
Polycyclic Aromatic Hydrocarbons (PAHs) Naphthalene 0.2 Acenaphthylene 0.1 Acenaphthene 0.1 Fluorene 0.1 Phenanthrene 0.1 Anthracene 0.1 Fluoranthene 0.1 Surgene 0.1	3	<1	<1	<1	<1	<1	<1
Naphthalene 0.2 Acenaphthylene 0.1 Acenaphthene 0.1 Fluorene 0.1 Phenanthrene 0.1 Anthracene 0.1 Fluoranthene 0.1 Duranthene 0.1			-				
Accenaphthylene 0.1 Accenaphthene 0.1 Fluorene 0.1 Phenanthrene 0.1 Anthracene 0.1 Fluoranthene 0.1 Devrene 0.1	16	<0.2	NA	<0.2	<0.2	<0.2	<0.1
Inverse 0.1 Fluorene 0.1 Phenanthrene 0.1 Anthracene 0.1 Fluoranthene 0.1 Durgene 0.1	NSL	<0.1	NA	<0.1	<0.1	<0.1	<0.1
Norme 0.1 Phenanthrene 0.1 Anthracene 0.1 Fluoranthene 0.1 Durgene 0.1	NSL	<0.1	NA NA	<0.1	<0.1	<0.1	<0.1
Anthracene 0.1 Anthracene 0.1 Fluoranthene 0.1 Durene 0.1	0.6	<0.1	NA	<0.1	<0.1	<0.1	<0.1
Fluoranthene 0.1	0.01	<0.1	NA	<0.1	<0.1	<0.1	<0.1
Ovrene 0.1	1	<0.1	NA	<0.1	<0.1	<0.1	<0.1
0.1	NSL	<0.1	NA	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene 0.1	NSL	<0.1	NA	<0.1	<0.1	<0.1	<0.1
Chrysene 0.1	NSL	<0.1	NA	<0.1	<0.1	<0.1	<0.1
3enzo(b,j+k)fluoranthene 0.2	NSL	<0.2	NA	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene 0.1	0.1	<0.1	NA	<0.1	<0.1	<0.1	<0.1
ndeno(1,2,3-c,d)pyrene 0.1	NSL	<0.1	NA	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene 0.1	NSL	<0.1	NA	<0.1	<0.1	<0.1	<0.1
зенгоцв,п,прегутеле 0.1	NSL	<0.1	NA	<0.1	<0.1	<0.1	<0.1
Concentration above the SAC							

Copyright JK Environments

Detailed (Stage 2) Site Investigation 74 Edinburgh Roadd, Marrickville, NSW E33191B

TABLE G2

GROUNDWATER LABORATORY RESULTS COMPARED TO SITE SPECIFIC HSLs - RISK ASSESSMENT

All results in μ g/L unless stated otherwise.

	PQL	NHMRC	WHO 2008	USEPA RSL			SAM	IPLES		
	Envirolab	ADWG 2011		Tapwater	MW101	MW101	MW118	MW121	WDUP1	WDUP2
	Services	(v3.5 2018)		2017						
Total Recoverable Hydrocarbons (TRH)				1	1	1	1			
C_6 - C_9 Aliphatics (assessed using F1)	10	-	15000	-	<10	<10	<10	<10	<10	<10
>Cg-C14 Allphatics (assessed using r2)	50 	-	100	-	<50	NA	<50	<50	<50	<50
		1	+		<1	-1	<1	<1	<1	<1
Toluene	1	800	_	_	<1	<1	<1	<1	<1	<1
Fthvlbenzene	1	300	-	_	<1	<1	<1	<1	<1	<1
Total xvlenes	2	600	-	-	<2	<2	<2	<2	<2	<2
Polycyclic Aromatic Hydrocarbons (PAHs)										
Naphthalene	1	-	-	6.1	<1	<1	<1	<1	<1	<1
Volatile Organic Compounds (VOCs), including c	hlorinated VC	Cs		1		1				-1
Dichlorodifluoromethane	10	-	-	-	<10	<10	<10	<10	<10	<10
Chloromethane	10	-	-	-	<10	<10	<10	<10	<10	<10
Vinyl Chloride	10	0.3	-	-	<10	<10	<10	<10	<10	<10
Bromomethane	10	-	-	-	<10	<10	<10	<10	<10	<10
Chloroetnane	10	-	-	-	<10	<10	<10	<10	<10	<10
1 1-Dichloroethene	1	30		_	<1	<1	<1	<1	<1	<1
Trans-1.2-dichloroethene	1	60	_	_	<1	<1	<1	<1	<1	<1
1.1-dichloroethane	- 1	-	-	-	<1	<1	<1	<1	<1	<1
Cis-1,2-dichloroethene	1	60	-	-	<1	<1	<1	<1	<1	<1
Bromochloromethane	1	250	-	-	<1	<1	<1	<1	<1	<1
Chloroform	1	250	-	-	<1	<1	<1	<1	<1	<1
2,2-dichloropropane	1	-	-	-	<1	<1	<1	<1	<1	<1
1,2-dichloroethane	1	3	-	-	<1	<1	<1	<1	<1	<1
1,1,1-trichloroethane	1	-	-	-	<1	<1	<1	<1	<1	<1
1,1-dichloropropene	1	-	-	-	<1	<1	<1	<1	<1	<1
Cyclohexane	1	-	-	-	<1	<1	<1	<1	<1	<1
Carbon tetrachloride	1	3	-	-	<1	<1	<1	<1	<1	<1
Benzene		1	-	-	<1	<1	<1	<1	<1	<1
1.2-dichloropropage	1	-	-	-	<1	<1	<1	<1	<1	<1
Trichloroethene	1	_		_	<1	<1	<1	<1	<1	<1
Bromodichloromethane	1	_	_	_	<1	<1	<1	<1	<1	<1
trans-1,3-dichloropropene	1	100	-	-	<1	<1	<1	<1	<1	<1
cis-1,3-dichloropropene	1	100	-	-	<1	<1	<1	<1	<1	<1
1,1,2-trichloroethane	1	-	-	-	<1	<1	<1	<1	<1	<1
Toluene	1	800	-	-	<1	<1	<1	<1	<1	<1
1,3-dichloropropane	1	-	-	-	<1	<1	<1	<1	<1	<1
Dibromochloromethane	1	-	-	-	<1	<1	<1	<1	<1	<1
1,2-dibromoethane	1	-	-	-	<1	<1	<1	<1	<1	<1
Tetrachloroethene	1	50	-	-	<1	<1	<1	<1	<1	<1
1,1,1,2-tetrachloroethane			-	-	<1	<1	<1	<1	<1	<1
Chlorobenzene	1	300	-	-	<1	<1	<1	<1	<1	<1
Ethyldenzene			-	-	<1	<1	<1	<1	<1	<1
m+n-xylene	2	-		-	<2	<2	<2	<2	<2	<2
Stvrene	1	30	_	_	<1	<1	<1	<1	<1	<1
1.1.2.2-tetrachloroethane	1	-	-	-	<1	<1	<1	<1	<1	<1
o-xylene	1	-	-	-	<1	<1	<1	<1	<1	<1
1,2,3-trichloropropane	1	-	-	-	<1	<1	<1	<1	<1	<1
Isopropylbenzene	1	-	-	-	<1	<1	<1	<1	<1	<1
Bromobenzene	1	-		-	<1	<1	<1	<1	<1	<1
n-propyl benzene	1	-	-	-	<1	<1	<1	<1	<1	<1
2-chlorotoluene	1	-	-	-	<1	<1	<1	<1	<1	<1
4-chlorotoluene	1	-	-	-	<1	<1	<1	<1	<1	<1
1,3,5-trimethyl benzene	1	-	-	-	<1	<1	<1	<1	<1	<1
Tert-butyl benzene		-	-	-	<1	<1	<1	<1	<1	<1
1,2,4-trimetnyi penzene		- 20	-	-	<1	<1 ~1	<1 <1	<1	<1	<1
	1		-	_	<1	<1	<1	<1	<1	<1
1 4-dichlorobenzene	1	40	_	_	<1	<1	<1	<1	<1	<1
4-isopropyl toluene	1	-	-	_	<1	<1	<1	<1	<1	<1
1,2-dichlorobenzene	1	1500	-	-	<1	<1	<1	<1	<1	<1
n-butyl benzene	1	-	-	-	<1	<1	<1	<1	<1	<1
1.2-dibromo-3-chiloropropane 1.2.4-trichlorobenzene	1	-	-	-	<1	<1	<1	<1	<1	<1
1,2,3-trichlorobenzene	1	30	-	-	<1	<1	<1	<1	<1	<1
Hexachlorobutadiene	1	7	-	-	<1	<1	<1	<1	<1	<1
Concentration above the SAC Concentration above the PQL GIL >PQL	VALUE Bold Red	I								

TABLE Q1 SOIL QA/C	C SUMMAF	Y																																															
			TRH C6 - C10	TRH >C10-C16	TRH >C16-C34	TRH >C34-C40	Benzene	Toluene	Ethylbenzene	m+p-xylene	o-Xylene	Naphthalene	Acenaphthylene	Ace naph-thene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo(a)anthracene	Chrysene	Benzo(b,j+k)fluoranthene	Benzo(a)pyrene	Indeno(1,2,3-c,d)pyrene	Dibenzo(a,h)anthra-cene	Benzo(g,h,i)perylene HCB	alpha- BHC	gamma- BHC	beta- BHC	Heptachlor	delta- BHC	Aldrin	Heptachlor Epoxide	Gamma- Chlordane	alpha- chlordane	Endosulfan I	pp-DDE	Dieldrin	Endrin	pp- DDD	Endosulfan II	pp-DDT	Endrin Aldehyde	Endosulfan Sulphate	Methoxychlor	Azinphos-methyl (Guthion)	Bromophos-ethyl	Chlorpyriphos	Chlorpyriphos-methyl
	PQL Envir	olab SYD	25	50	100	100	0.2	0.5	1	2	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.05	0.1	0.1	0.1 0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
	PQL Envir	OIAD VIC	25	50	100	100	0.2	0.5	1.0	2.0	1.0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.1 0	0.1 0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
otra	RH110	0-0.2	<25	<50	140	<100	<0.2	<0.5	-1	0	<1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.2	0.2	0.1	0.1	<0.2	0.1	<01	(0.1)	0.1 N/	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
horatory	SDUP1	-	<25	<50	140	<100	<0.2	<0.5	<1	<2	<1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	0.2	0.2	0.1	0.1	<0.2	0.1	<0.1	<0.1 <	0.1 N/			NA	NA	NA	NΔ	NA	NΔ	NΔ	NΔ	NΔ	NA	NA	NΔ	NA	NΔ	NΔ	NΔ	NA	NΔ	NA	NA	NA
uplicate	MEAN		nc	nc	135	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	0.075	nc	0.25	0.2	0.1	0.1	nc	0.15	nc	nc	nc no	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	RPD %		nc	nc	7%	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	67%	nc	40%	0%	0%	0%	nc	67%	nc	nc	nc no	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
nter	BH121	0.18-0.7	<25	<50	<100	<100	<0.2	<0.5	<1	<2	<1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	0.3	0.3	0.1	0.1	<0.2	0.2	<0.1	<0.1	0.1 N/	A NA	A NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
aboratory	SDUP2	-	<25	<50	<100	<100	<0.2	<0.5	<1	<2	<1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.3	0.3	0.2	0.2	0.4	0.16	0.1	<0.1	0.1 N/	A NA	A NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
luplicate	MEAN		nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	0.3	0.3	0.15	0.15	0.25	0.18 (0.075	nc	0.1 nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	KPD %		nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	0%	0%	6/%	6/%	120%	22%	6/%	nc	U% nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
ntra	BH108	0-0.2	<25	<50	240	<100	<0.2	<0.5	<1	<2	<1	<0.1	<0.1	<0.1	<0.1	0.7	<0.1	0.6	0.7	0.3	0.5	0.7	0.4	0.2	<0.1	0.2 <0.	1 <0.	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
aboratory	SDUP4	-	<25	<50	290	100	<0.2	<0.5	<1	<2	<1	<0.1	<0.1	<0.1	<0.1	0.4	<0.1	0.2	0.2	<0.1	0.2	0.2	0.09	<0.1	<0.1 <	0.1 <0.	1 <0.	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
luplicate	MEAN		nc	nc	265	75	nc	nc	nc	nc	nc	nc	nc	nc	nc	0.55	nc	0.4	0.45	0.175	0.35	0.45	0.245 0	0.125	nc 0	.125 no	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
	RPD %		nc	nc	19%	67%	nc	nc	nc	nc	nc	nc	nc	nc	nc	55%	nc	100%	111%	143%	86%	111%	127%	120%	nc 1	20% no	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
ield	TB-S1	-	NA	NA	NA	NA	<0.2	<0.5	<1	<2	<1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	A NA	A NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Blank	13/08/20												_												_	_	_	_		_																	<u> </u>		
iold		ug/I	NA	NA	NA	NA	-1	- 1	- 1	~2	- 1	NA	NA	NA	NA	NIA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NIA	NA	NA	NA
linsate	13/09/20	μg/ L	NA	NA	INA	INA	~1	<1	~1	~2	<1	NA	NA	NA	NA	NA	INA	INA	NA	NA	Part	INA	NA	INA	INA	INFA INF	N/A	NA NA	INA	NA	NA	NA	INA	INA	INA	NA	NA	NA	niA	INA	niA	nA	nA	niA	ΝA	niA	INA	AIT	INA
ansate	13/03/20					-		-			-		-	-							-				-		-	-	-	-	-					-		-	-										
rip	TS-S1		-	-		-	95%	95%	105%	113%	111%	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
pike	13/08/20																																																

Bromophos-ethyl	Chlorpyriphos	Chlorpyriphos-methyl	Diazinon	Dichlorvos	Dimethoate	Ethion	Fenitrothion	Malathion	Parathion	Ronnel	Total PCBS	Arsenic	Cadmium	Chromium VI	Copper	Lead	Mercury	Nickel	Zinc
0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	4	0.4	1	1	1	0.1	1	1
0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	4.0	0.4	1.0	1.0	1.0	0.1	1.0	1.0
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<4	0.5	12	47	110	< 0.1	10	240
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<4	0.4	12	45	110	< 0.1	10	230
nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	0.45	12	46	110	nc	10	235
nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	22%	0%	4%	0%	nc	0%	4%
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<4	<0.4	16	5	26	<0.1	2	10
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	5	<0.4	21	10	27	< 0.1	3	23
nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	3.5	nc	18.5	7.5	26.5	nc	2.5	16.5
nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	86%	nc	27%	67%	4%	nc	40%	79%
<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<4	<0.4	13	38	50	<0.1	9	240
<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	5	<0.4	12	46	180	0.5	10	230
nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	3.5	nc	12.5	42	115	0.275	9.5	235
nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	86%	nc	8%	19%	113%	164%	11%	4%
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	_		_	_	_	_		_						_	_		_		
NA	NIA	NA	NIA	NIA	NIA	NIA	NIA	NIA	NA	NA	NIA	NIA	NA	NIA	NA	NIA	NA	NIA	NA
NA	NA	NA	INA	INA	NA	NA	NA	INA	INA	INA	NA	NA	NA	INA	NA	INA	NA	NA	NA
							-		-						-				
																			-
TABLE Q2

GROUNDWATER QA/QC SUMMARY

			Dichlorodifluoromethane Chloromethane	Vinyl Chloride	Bromomethane	Chloroethane	Trichlorofluoromethane	1,1-Dichloroethene	Trans-1,2-dichloroethene	1,1-dichloroethane	Cis-1, 2-dichloroethene	Bromochloromethane	Chloroform	2,2-dichloropropane	1 1 1-trichloroethane	1,1-dichloropropene	Cyclohexane	Carbon tetrachloride	Benzene	Dibromomethane	1,2-dichloropropane	l richloroethene	Bromodichloromethane	irans-1,3-dicnioropropene cis-1,3-dichloropropene	1,1,2-trichloroethane	Toluene	1,3-dichloropropane	Dibromochloromethane	1,2-dibromoetnane	Tetrachloroethene	1,1,1,2-tetrachloroethane	Chlorobenzene Ethvlbenzene	Bromoform	m+p-xylene	otyrene 1,1,2,2-tetrachloroethane	o-xylene 1 2 3-trichloronronane	Isopropylbenzene	Bromobenzene	n-propyl benzene 2-chlorotoluene	4-chlorotoluene	1,3,5-trimethyl benzene Tert-butyl benzene	1,2,4-trimethyl benzene	1,3-dichlorobenzene	1,4-dichlorobenzene	4-isopropyl toluene	1,2-dichlorobenzene n-butyl benzene	1,2-dibromo-3-chloropropane	1,2,4-trichlorobenzene Hexachlorobutadiene	1,2,3-trichlorobenzene
	PQL Envirolat	b SYD	10 10	10	10	10	10	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1 1	1	2	1 1	1 1	1	1	1 1	1	1 1	1	1 1	1	1	1 1	1	1 1	1
	PQL Envirolat	b VIC	10 10	10	10	10	10	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1 1	1	2	1 1	1 1	1	1	1 1	1	1 1	1	1 1	1	1	1 1	1	1 1	1
Intra	MW118	2.83	<10 <1	0 <10	<10	<10	<10	<1	<1	<1	<1	<1	<1	<1 <	1 <	1 <1	<1	<1	<1	<1	<1 <	1	<1 <	<1 <1	l <1	l <1	<1	<1 <	1	<1	<1	<1 <1	l <1	<2 <	1 <1	<1 <	1 <1	<1 <	<1 <1	<1	<1 <1	<1	<1 <	1 <1	<1 <	<1 <1	<1 <	<1 <1	<1
laboratory	WDUP1	2.83	<10 <1	0 <10	<10	<10	<10	<1	<1	<1	<1	<1	<1	<1 <	1 <	1 <1	<1	<1	<1	<1	<1 <	1 4	<1 <	<1 <1	L <1	L <1	<1	<1 <	1	<1	<1	<1 <1	l <1	<2 <	1 <1	<1 <	1 <1	<1 <	<1 <1	<1	<1 <1	<1	<1 <	1 <1	<1 <	<1 <1	<1 <	<1 <1	<1
, duplicate	MEAN	2.83	nc no	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc n	c n	c nc	nc	nc	nc	nc	nc r	าเวิ่า	nc r	nc no	c nc	c nc	nc	nc r	าด	nc	nc	nc no	c nc	nc r	ic nc	nc n	c nc	nc r	nc no	: nc	nc no	nc	nc n	c nc	nc r	nc nc	ncı	nc nc	nc
	RPD %	0%	nc no	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc n	c n	c nc	nc	nc	nc	nc	nc r	าเวิ่า	nc r	nc no	c nc	c nc	nc	nc r	าด	nc	nc	nc no	c nc	nc r	ic nc	nc n	c nc	nc r	nc no	: nc	nc no	nc	nc n	c nc	nc r	nc nc	ncı	nc nc	: nc
ļ,																		-																														-	
Inter	MW101	3.08	<10 <1	0 <10	<10	<10	<10	<1	<1	<1	<1	<1	<1 ·	<1 <	1 <	1 <1	<1	<1	<1	<1	<1 <	<1 ·	<1 <	:1 <1	l <1	L <1	<1	<1 <	1	<1	<1	<1 <1	l <1	<2 <	1 <1	<1 <	1 <1	<1 <	<1 <1	. <1	<1 <1	. <1	<1 <	1 <1	<1 <	<1 <1	<1 <	<1 <1	. <1
laboratory	WDUP2	3.08	<10 <1	0 <10	<10	<10	<10	<1	<1	<1	<1	<1	<1 ·	<1 <	1 <	1 <1	<1	<1	<1	<1	<1 <	<1 ·	<1 <	:1 <1	l <1	l <1	<1	<1 <	1	<1	<1	<1 <1	l <1	<2 <	1 <1	<1 <	1 <1	<1 <	<1 <1	. <1	<1 <1	. <1	<1 <	1 <1	<1 <	<1 <1	<1 <	<1 <1	. <1
duplicate	MEAN	3.08	nc no	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc n	c n	c nc	nc	nc	nc	nc	nc r	nc	nc r	nc no	nc	nc	nc	nc r	nc	nc	nc	nc no	nc	nc r	ic nc	nc n	c nc	nc r	nc no	: nc	nc no	nc	nc n	c nc	nc r	nc nc	ncı	nc nc	nc

	PQL Envirolat PQL Envirolat	o SYD	01 01 01 01 01 01 01 01 01 01 01 01 01 0	65 65 TRH >C10-C16	001 001 2016-C34	001 001 001 001 001 001 001	Benzena 1 1.0	euenolo 1 1.0	1 0.1	enelyx-d+m 2	ечение ХХ-о 1 1.0	0.2 Naphthalene	1:0 1:0	Acenaph-thene 1.0	Eluorene 0.1	Dhenanthrene 0.1	1.0 Anthracene	Eluoranthene Fluoranthene	ыларана Волара Воларана Воларана Воларана Воларана Воларана Воларана Воларана Воларана Воларана Воларана Воларана Воларана Воларана Воларана Воларана Воларана Волара Воларана Воларана Воларана Воларана Воларана Воларана Воларана Воларана Воларана Воларана Воларана Воларона Восла Вола Воларона Восло	1:0 1:0	Chrysene 1.0	20 20 Benzo(b,j+k)fluoranth	1.0 Benzo(a)pyrene	10 10 Indeno(1,2,3-c,d)pyre	1:0 Dibenzo(a,h)anthra-c	1.0 Benzo(g,h,i)perylene	1 Arsenic	Cadmium 1.0	1 1	1 1	read 1	Mercury 0.05 0.05	1 I I	L I I
Intra	MW118	2.83	<10	<50	<100	<100	<1	<1	<1	<2	<1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<1	<0.1	<1	7	<1	< 0.05	3	11
laboratory	WDUP1	2.83	<10	<50	<100	<100	<1	<1	<1	<2	<1	<0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.2	< 0.1	< 0.1	< 0.1	< 0.1	<1	< 0.1	<1	7	<1	< 0.05	3	11
duplicate	MEAN		nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	7	nc	nc	3	11
	RPD %		nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	0%	nc	nc	0%	0%
Inter	MW101	3.08	<10	<50	<100	<100	<1	<1	<1	<2	<1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<1	<0.1	<1	<1	<1	<0.05	1	6
laboratory	WDUP2	3.08	<10	<50	<100	<100	<1	<1	<1	<2	<1	<0.1	<0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1	<0.2	< 0.1	< 0.1	< 0.1	< 0.1	<1	<0.2	<1	<1	<1	<1	6	< 0.05
, duplicate	MEAN		nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	3.5	3.25
	RPD %		nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	<mark>143%</mark>	<mark>169%</mark>
Field	TB-W1		NA	NA	NA	NA	<1	<1	<1	<2	<1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Blank	19/08/2020																																	
	TS-W1		-	-	-	-	115%	100%	95%	105%	102%	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Trip																																		

Appendix D: Borehole Logs

Clie Pro Loc	ent: ject: ation:	WOO PROF 74 ED	LWOF POSEI DINBU	RTHS (D COM RGH F	C/-NE /IMER ROAD	TTLETONTRIBE CIAL DEVELOPEMT , MARRICKVILLE, NSW				
Job Dat Plai	• No.: E: •e: 13/8// nt Type:	33191B 20 JK205			Meth Logo	od: SPIRAL AUGER ged/Checked by: A.M./		R D	.L. Surf atum:	ace: N/A -
Groundwater Record	ES ASS ASB SAL SAL	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
			0		-	ASPHALTIC CONCRETE: 60mm.t CONCRETE: 240mm.t				
			-		-	VOID: 200mm.t				-
		N = 4 2,2,2	- - 1 -		-	FILL: Silty sandy clay, low to medium plasticity, dark grey, fine to medium grained sand, trace of sandstone gravel.	w>PL			- SCREEN: 0.5-1.5m 6.8kg NO FCF
•		N = 3 1,2,1	2-							-
		N = 8 3,3,5	3-							ORGANINC ODOUR
		N = 11	- 4 - - -		CL	Silty CLAY: low plasticity, grey.	w>PL			MONITORING WELL INSTALLED TO 6.0m. CLASS 18 MACHINE SLOTTED 50mm DIA. PVC STANDPIPE 6.0m TO 2.0m. CASING 2.0m TO 0m. 2mm SAND FILTER
		3,4,7	5							 PACK 6.0m TO 1.3m. BENTONITE SEAL 1.3m TO 0m. BACKFILLED WITH SAND TO THE SURFACE. COMPLETED WITH A CONCRETED GATIC COVER.
сорукіен			7			END OF BORHOLE AT 6.0m			-	-

Client: Project: Location:	WOOLWOF PROPOSEI 74 EDINBU	RTHS C/-NE D COMMER RGH ROAD	TTLETONTRIBE CIAL DEVELOPEMT , MARRICKVILLE, NSW				
Job No.: E3 Date: 14/8/2 Plant Type:	3191B 0 -	Meth	od: HAND AUGER ged/Checked by: A.M./		R D	.L. Surf atum:	ace: N/A -
Groundwater Record ASS AL BAL DB	Field Tests Depth (m)	Graphic Log Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
			CONCRETE: 270mm.t FILL: Silty gravelly sand, fine to medium grained, grey, fine to coarse grained, igneous, sub-angular. END OF BOREHOLE AT 0.4m BOREHOLE AT 0.4m				ORANGE PLASTIC LAYER NOT ENOUGH SAMPLE FOR BUCKET HAND AUGER REFUSAL

Client:	WOOLWORTHS	S C/-NETTLETONTRIBE		
Project:	PROPOSED CC	DMMERCIAL DEVELOPEMT		
Location:	74 EDINBURGH	I ROAD, MARRICKVILLE, NSW		
Job No.: E3 Date: 14/8/2	3191B 0	Method: HAND AUGER	R.L. Surface: Datum: -	N/A
Plant Type:	-	Logged/Checked by: A.M./		
Groundwater Record <u>ASS</u> ASB SAMPLES DB	Field Tests Depth (m)	DESCRIPTION Classification Classification	Moisture Condition/ Weathering Strength/ Rel. Density Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE		CONCRETE: 140mm.t	D - NOT	ENOUGH
		medium grained, brown, fine to coarse	SAM	PLE FOR
		END OF BOREHOLE AT 0.3m		
COPYRIGHT		DRAF		

Client:	WOOLWOR						
Project: Location:	74 EDINBUR	RGH ROAD,	MARRICKVILLE, NSW				
Job No.: E3	3191B	Meth	od: HAND AUGER		R	.L. Surf	ace: N/A
Plant Type:	-	Logg	ed/Checked by: A.M./		D		-
Groundwater Record <u>ASS</u> ASB DB DB DB	Field Tests Depth (m)	Graphic Log Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
			CONCRETE: 200mm.t FILL: Silty gravelly sand, fine to medium grained, brown, trace of igneous gravel and ash. END OF BOREHOLE AT 0.35m				NOT ENOUGH SAMPLE FOR BUCKET WEIGHT HAND AUGER REFUSAL

Client: Project: Location:	WOOLWOR PROPOSEI 74 EDINBU	RTHS C/-NE D COMMER RGH ROAD	TTLETONTRIBE CIAL DEVELOPEMT , MARRICKVILLE, NSW				
Job No.: E33 Date: 14/8/20 Plant Type:	3191B D	Meth Logo	od: HAND AUGER ged/Checked by: A.M./		R	.L. Surf atum:	ace: N/A -
Groundwater Record SAL SAL SAL SAL SAL SAL	-ield Tests Depth (m)	Graphic Log Unified Classification	DESCRIPTION	Moisture Condition/ Meathering	Strength/ Rel. Density	Hand ⊃enetrometer Readings (kPa.)	Remarks
			CONCRETE: 190mm.t	205	SR	TUR	_
			FILL: Silty sandy gravel fine to coarse	М			
			RRAAF				NOT ENOUGH SAMPLE FOR BUCKET WEIGHT HAND AUGER REFUSAL

Project: PR Location: 74 Job No.: E33191	ROPOSED COMM EDINBURGH RO	ERCIAL DEVELOPEMT AD, MARRICKVILLE, NSW				
Location: 74 Job No.: E33191	EDINBURGH RO					
Job No.: E33191	1B M					
		ethod: HAND AUGER		R.	.L. Surfa	ace: N/A
Date: 14/8/20				Da	atum: -	
Groundwater Record ES ASS SAL DB Field Tests	Depth (m) Graphic Log	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE		CONCRETE: 260mm.t				
		- FILL: Silty gravelly sand, fine to medium grained, grey, fine to medium grained, igneous, sub-angular. END OF BOREHOLE AT 0.3m				HAND AUGER REFUSAL ON IGNEOUS BOULDER

Client:	WOOLWOR	THS C/-NE	TTLETONTRIBE				
Project: Location:	PROPOSED	COMMER	CIAL DEVELOPEMT				
Job No.: E33 Date: 14/8/20 Plant Type:	3191B 0 -	Meth	od: HAND AUGER		R D	.L. Surf atum:	ace: N/A
Groundwater Record ASS SAL DB DB C	Field Tests Depth (m)	Graphic Log Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
			CONCRETE: 250mm.t FILL: Silty gravelly sand, fine to medium grained, grey, fine to coarse grained, igneous, sub-angular. END OF BOREHOLE AT 0.4m				NOT ENOUGH SAMPLE FOR BUCKET WEIGHT HAND AUGER REFUSAL

COPYRIGHT

Client: Project: Location:	WOOL PROPC 74 EDI	WOR DSEE NBUI	THS (COM RGH F	C/-NE IMER ROAD	TTLETONTRIBE CIAL DEVELOPEMT , MARRICKVILLE, NSW				
Job No.: E3 Date: 14/8/2	3191B 0			Meth	nod: HAND AUGER		R D	.L. Surf atum:	f ace: N/A -
Plant Type:	-			Logo	ged/Checked by: A.M./				
Groundwater Record <u>ES</u> ASB SAL DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE- TION					FILL: Silty sand, fine to medium grained, brown, with organic material, trace of igneous gravel and slag.	М			SCREEN: 0-0.6m - 9.2kg NO FCF -
		- - 1 -	~~~~		FILL: Silty sandy clay, low to medium plasticity, brown, fine to medium grained sand, trace of igneous gravel and slag.	w>PL_r			NOT ENOUGH SAMPLE FOR BUCKET HAND AUGER
					RAF		T		INFERRED ROOTS

Client: Project: Location:	WOOLWOF PROPOSEI 74 EDINBU	RTHS C/-NE D COMMER RGH ROAD	TTLETONTRIBE CIAL DEVELOPEMT , MARRICKVILLE, NSW				
Job No.: E3	3191B	Meth	od: HAND AUGER		R	.L. Surf	ace: N/A
Plant Type:	-	Logg	ged/Checked by: A.M./		D	atum:	-
Groundwater Record ES ASS SAL DB	Field Tests Depth (m)	Graphic Log Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE	0		FILL: Silty clay, low to medium plasticity, dark brown, trace of root	w>PL			GRASS COVER
		****	fibres.	/			SCREEN:0-0.25m
	-		grained, brown, trace of igneous gravel, ash and root fibres.				- NOT ENOUGH SAMPLE FOR
	1-		END OF BOREHOLE AT 0.3m				BUCKET WEIGHT HAND AUGER
							 HAND AUGER REFUSAL
COPYRIGHT	-		KAF				-

Client:	WOOLWORTHS	C/-NETTLETONTRIBE	
Project:	PROPOSED CO	MMERCIAL DEVELOPEMT	
Location:	74 EDINBURGH	ROAD, MARRICKVILLE, NSW	
Job No.: E33	3191B	Method: HAND AUGER	R.L. Surface: N/A
Date: 14/8/20	D		Datum: -
Plant Type:	-	Logged/Checked by: A.M./	
Groundwater Record ES ASB SAMPLES SAL DB	Field Tests Depth (m) Graphic Log	Unified Classification DESCRIPTION	Moisture Condition/ Weathering Strength/ Rel. Density Hand Penetrometer Readings (kPa.) ssyname
DRY ON COMPLE-		ASPHALTIC CONCRETE: 70mm.t CONCRETE: 300mm.t	
TION		- FILL: Silty clay, low to medium	w>PL NOT ENOUGH
		plasticity, brown, trace of igneous	
CopyRigHT		DRAF	REFUSAL

	Clier	nt:		WOO	LWOF	RTHS	C/-NE	TTLETONTRIBE				
	Proje	ect:		PROF	POSEI		IMER	CIAL DEVELOPEMT				
	Loca	tio	n:	74 ED	DINBU	RGH I	ROAD	, MARRICKVILLE, NSW				
ſ	Job	No.	: E	33191B			Meth	nod: HAND AUGER		R	L. Surf	ace: N/A
	Date	: 1	4/8/	20						Datum: -		
	Plan	t Ty	pe:	-		Logged/Checked by: A.M./						
	Groundwater Record	ES ASS	ASB SAMPLES	UB Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
	DRY ON COMPLE				0		-	CONCRETE: 170mm.t	NA			
F					-			grained, light brown, trace of igneous				_ 1.7kg NO FCF
					-			END OF BOREHOLE AT 0.3m				HAND AUGER REFUSAL
					- 1-							_
												-
					-							-
					-							-
					2-							-
					-							-
					-							-
					-							-
					3-							-
					-							-
					-							-
					-							-
					4 -							-
					-							-
					-							-
					-							-
					5-							-
					-							-
					-							-
					-							-
					6 -							_
Ŧ									-	T		-
OPYRIG					7_							-

Clien	t:	WOOL	WOF	RTHS (C/-NE						
Proje Locat	ct: tion:	PROP 74 ED	OSEI INBU	D CON RGH F	IMER ROAD	CIAL DEVELOPEMT , MARRICKVILLE, NSW					
Job N	lo.: E33	3191B			Meth	nod: HAND AUGER		R.L. Surface: N/A			
Date: Plant	14/8/20 Type:	-			Log	ged/Checked by: A.M./		D	atum:	-	
Groundwater Record	ASS ASB SAL DB	Field Tests	Depth (m)	Graphic Log	Jnified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand ⊃enetrometer ⋜eadings (kPa.)	Remarks	
DRY ON COMPLE TION					-	CONCRETE: 190mm.t FILL: Silty sand, fine to medium grained, with slag, trace of igneous gravel. FILL: Silty clay, low to medium plasticity, brown, trace of igneous gravel, slag and ash. END OF BOREHOLE AT 0.5m	D w>PL _			SCREEN: 0.19-0. 4m 2.4kg NO FCF NOT ENOUGH SAMPLE FOR BUCKET WEIGHT	
COPYRIGHT			5 - - - - - - - - - - - - - - - - - -			RAF		Τ	-	-	

Client: Projec	t:	WOOLV PROPO	VOR ⁻ SED	THS C COM	C/-NE	TTLETONTRIBE CIAL DEVELOPEMT				
Locati	on:	74 EDIN	IBUR	RGH F	ROAD,	MARRICKVILLE, NSW				
Job No	o.: E33	3191B	Method: HAND AUGER R.L. Surface:							ace: N/A
Plant 1	Гч/0/20 Гуре: •				Logg	ed/Checked by: A.M./		U		-
Groundwater Record ES	ASS ASB SAL DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
			0	V 0 . N		CONCRETE: 190mm.t				
TION			R		-	FILL: Silty clay, low to medium plasticity, with siltstone gravel, trace of slag and sandstone gravel.	w>PL			SCREEN: 0.19-0.5m 2.4kg NO FCF
					СН	Silty CLAY: high plasticity, grey mottled red brown.	w>PL			-
			1-			END OF BOREHOLE AT 1.1m				-
COPYRIGHT						RAF				

Project: PROPOSED COMMERCIAL DEVELOPENT Location: 74 EDINBURGH ROAD, MARRICKVILLE, NSW Job No: E33191B Method: HAND AUGER R.L. Surface: N/A Date: 14/8/20 Datum: - Plant Type: - Logged/Checked by: A.M./ Too Plant Type: - Logged/Checked by: A.M./ DESCRIPTION DESCRIPTION	Client:	WOOLWO							
Job No.: E33191B Date: 14/8/20 Plant Type: - Cogged/Checked by: A.M./	Project: Location:	PROPOSE 74 EDINBL	D COMMER	CIAL DEVELOPEMT					
Plant Type: - Logged/Checked by: A.M./	Job No.: E3	3191B	Meth	nod: HAND AUGER		R.L. Surface: N/A			
DRY ON COMPLE TON COMPLE C	Plant Type:	-	Log	ged/Checked by: A.M./		U	atum:	-	
COMPLETE: 180mm.t COMPLETE: 180mm.t TION COMPLETE: 180mm.t TION COMPLETE: 180mm.t FILL Sity gravely sand, fire to Ugrained, igneous, sub-angular. END OF BOREHOLE AT 0.35m COMPLETE: 180mm.t Complete Grained, igneous, sub-angular. END OF BOREHOLE AT 0.35m COMPLETE: 180mm.t Complete C	Groundwater Record ES ASB SAMPLES DB	Field Tests Depth (m)	Graphic Log Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks	
TION CALLS IN gravely sand, the to Carse M SCREENO.180.38 CALLS NO FOR HAND AUGER REFUSAL REFUSAL REFUSAL CALLS IN CALS IN CALLS IN CALLS IN CALLS IN CALLS IN CALLS		0		CONCRETE: 180mm.t		0, 1			
		1 · 2 · 3 · 4 · 5 ·		FILL: Silty gravelly sand, fine to medium grained, grey, fine to coarse grained, igneous, sub-angular. END OF BOREHOLE AT 0.35m				SCREEN:0.18-0.3 5m 2.4kg NO FCF HAND AUGER REFUSAL - - - - - - - - - - - - -	

Client: Projec Locatio	t: on:	WOOI PROP 74 ED	LWOF POSEI	RTHS (D COM RGH F	C/-NE IMER ROAD	TTLETONTRIBE CIAL DEVELOPEMT , MARRICKVILLE, NSW						
Job No Date: Plant T	5.: E3 13/8/2 Г уре:	3191B 0 JK205		Method: SPIRAL AUGER Logged/Checked by: A.M./					R.L. Surface: N/A Datum: -			
Groundwater Record ES	ASS ASB SAL DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks		
DRY ON COMPLE- TION		N = 0 1,0,0	0 - - - 1 -		-	CONCRETE: 30mm.t CONCRETE: 180mm.t FILL: Silty sand, fine to medium grained, brown, trace of igneous and sandstone gravel. FILL: Silty clay, low to medium plasticity, brown, trace of igneous gravel.	M w>PL			NOT ENOUGH SAMPLE FOR BUCKET SCREEN:0.5 -1.0m 6.4kg NO FCF SPT SUNK UNDER SELF WEIGHT		
		N = 6 2,2,4	- - - 2		СН	Silty CLAY: high plasticity, grey mottled red brown. END OF BOREHOLE AT 1.95m	w>PL			-		
СОРУКІСНІ			-			KAF				-		

	Clien Proje Loca	t: ect: tior	n:	WOO PROF 74 ED	LWOF POSEI DINBU	RTHS (D CON RGH F	C/-NE IMER ROAD	TTLETONTRIBE CIAL DEVELOPEMT , MARRICKVILLE, NSW						
, , , ,	Job N Date: Plant	No.: 13 : Ty	E3/8/2 pe:	33191B 20 JK205		Method: SPIRAL AUGER Logged/Checked by: A.M./					R.L. Surface: N/A Datum: -			
	Groundwater Record	ES ASS ASS ASS ASS ASS ASS ASS ASS ASS A	ASB SAMPLES SAL DR	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks		
DF CO T	RY ON MPLE- FION			N = 3 1,2,1			-	CONCRETE: 130mm.t	w>PL w>PL			SCREEN: 0.13-0. 7m 6.2kg NO FCF SCREEN: 0.7-1.3m		
				N = 10	1 - - -		СН	brown, trace of igneous gravel. Silty CLAY: high plasticity, grey mottled red brown and orange brown.	w>PL			6.3kg NO FCF		
				4,4,0	2 -			END OF BOREHOLE AT 1.95m				-		
					3 - - -									
					4 - -	-						- 		
					5							-		
					6					т	-	-		
COPYRIGHT					- - 7			KAL				-		

Client:	WOOLWO	RTHS C/-NE	TTLETONTRIBE					
Project:	PROPOSE							
Location:	74 EDINBU	IRGH ROAL), MARRICKVILLE, NSW					
Job No.: E3	3191B	Met	hod: SPIRAL AUGER		R.L. Surface: N/A			
Plant Type:	.UK205	Log	ned/Checked by: A M /		U	atum:	-	
ා ant Type. ග								
Groundwater Record <u>ASS</u> ABL SAMPLE SAMPLE	Field Tests Depth (m)	Graphic Log Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.	Remarks	
	0		CONCRETE: 200mm.t				-	
TION	1N = SPT 15/50mm REFUSAL 1 -		FILL: Silty sand, fine to medium grained, brown, with igneous gravel, trace of brick, concrete and tile fragments.	D			SCREEN: 0.2-1.0m 10.1kg NO FCF SPT REFUSAL - SCREEN: 1.0-1.2m	
		СН	Silty CLAY: high plasticity, grey	w>PL			2.2kg NO FCF	
	N = 18 5,9,9		mottled red brown.				-	
	2 -		END OF BOREHOLE AT 1.95m				_	
PYRIGHT	3 - 4 - 5 -		RAF		Т			

ſ	Clier	nt:	WOO	LWOF	RTHS	C/-NE	TTLETONTRIBE					
	Proj	ect:	PROF	POSEI								
╞	Loca	ation:	74 ED	INBU	RGH	ROAD	, MARRICKVILLE, NSW					
	Job Data	No.: E	33191B			Meth	od: SPIRAL AUGER		R.L. Surface: N/A			
	Plan	t Type:	: JK205			Logo	ed/Checked by: A.M./	D		_		
╞		ES ES								a.)		
	Groundwater Record	ES ASS SAL SAL	DB Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kP	Remarks	
	Gro				Cita		Silty CLAY: high plasticity, grey mottled red brown. (continued)	W>PL	Stre	Har	GROUNDWATER MONITORING WELL INSTALLED TO 9.0m. CLASS 18 MACHINE SLOTTED 50mm DIA. PVC STANDPIPE 9.0m TO 3.0m. CASING 3.0m TO 0m. 2mm SAND FILTER PACK 9.0m TO 2.7m. BENTONITE SEAL 2.7m TO 0m. BENTONITE SEAL 2.7m TO 0m. BACKFILLED WITH SAND TO THE SURFACE. COMPLETED WITH A CONCRETED GATIC COVER.	
COPYRIGHT				- 13 - - - - - - - - - - - - - - - - - - -			RAF	-	Τ	-	-	

Client: Project:	WOOLWOF	RTHS C/-NE	TTLETONTRIBE CIAL DEVELOPEMT					
Location:	74 EDINBU	RGH ROAD	, MARRICKVILLE, NSW					
Job No.: E3	3191B	Meth	od: HAND AUGER		R.L. Surface: N/A			
Plant Type:	-	Load	ed/Checked by: A.M./		U	atum.	-	
Groundwater Record ASS ASB SAMPLES	Field Tests Depth (m)	Graphic Log Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks	
DRY ON COMPLE- TION	0		FILL: Silty sand, fine to medium grained, dark brown, with clay fines, trace of ash and slag.	D			GRASS COVER 0.1m NO FCF	
	-		FILL: Silty clay, medium plasticity, orange brown, trace of igneous and ironstone gravel, and ash.	w>PL			SCREEN: 0-0.6m 3.1kg NO FCF NOT ENOUGH SAMPLE BUCKET	
OPYRIGHT			RAF		T		HAND AUGER REFUSAL	

Clier Proje Loca	nt: ect: ation:	WOOI PROF 74 ED	OOLWORTHS C/-NETTLETONTRIBE ROPOSED COMMERCIAL DEVELOPEMT 4 EDINBURGH ROAD, MARRICKVILLE, NSW								
Job Date Plan	No.: E33 : 13/8/2 t Type:	3191B 0 JK205			Meth Logg	od: SPIRAL AUGER jed/Checked by: A.M./		R.L. Surface: N/A Datum: -			
Groundwater Record	ASS ASB SAL DB DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks	
DRY ON COMPLE TION			0 - - - - 1 -		-	CONCRETE: 180mm.t FILL: Silty clay, low to medium plasticity, brown, trace of ironstone gravel, and ash.	w>PL			SCREEN: 0.18-1. 0m 3kg NO FCF SCREEN: 1.0-1.5m 4.2kg NO FCF	
			- - 2 -		СН	Silty CLAY: high plasticity, grey mottled red brown and orange brown.	w <pl< td=""><td></td><td></td><td>- - - -</td></pl<>			- - - -	
			- 3 - - - -			Silty CLAY: high plasticity, grey, trace of root fibres.	w>PL			- - - - - - GROUNDWATER	
			4 - - 5 - - - - - - - - - - 			Silty CLAY: high plasticity, grey, with iron indurated bands.	w <pl< th=""><th></th><th></th><th> MONITORING WELL INSTALLED TO 6.0m. CLASS 18 MACHINE SLOTTED 50mm DIA. PVC STANDPIPE 6.0m TO 3.0m. CASING 3.0m TO 0m. 2mm SAND FILTER PACK 6.0m TO 2.5m. BACKFILLED WITH SAND TO THE SURFACE. COMPLETED WITH A CONCRETED GATIC COVER. </th></pl<>			 MONITORING WELL INSTALLED TO 6.0m. CLASS 18 MACHINE SLOTTED 50mm DIA. PVC STANDPIPE 6.0m TO 3.0m. CASING 3.0m TO 0m. 2mm SAND FILTER PACK 6.0m TO 2.5m. BACKFILLED WITH SAND TO THE SURFACE. COMPLETED WITH A CONCRETED GATIC COVER. 	
						END OF BOREHOLE AT 6.0m				-	

Client:	WOOLWORTHS	C/-NETTLETONTRIBE	
Project:	PROPOSED CO	MMERCIAL DEVELOPEMT	
Location:	74 EDINBURGH	ROAD, MARRICKVILLE, NSW	
Job No.: E3	3191B	Method: HAND AUGER	R.L. Surface: N/A
Date: 14/8/2	0		Datum: -
Plant Type:	JK205	Logged/Checked by: A.M./	
Groundwater Record <u>ASB</u> ASB AMPLES ABB	Field Tests Depth (m)	DESCRIPTION Classification CCase	Moisture Condition/ Weathering Strength/ Rel. Density Hand Penetrometer Readings (kPa.)
DRY ON COMPLE		CONCRETE: 140mm.t	
		grained, light brown.	D SAMPLE FOR
		medium grained, light brown, fine to medium grained igneous, sub-angular.	- NOT ENOUGH SAMPLE FOR
	1	END OF BOREHOLE AT 0.35m	- HAND AUGER
COPYRIGHT		DRAF	REFUSAL

Client:	WOOLWOR	THS C/-NE	TTLETONTRIBE					
Project:	PROPOSED		CIAL DEVELOPEMT					
Location:	74 EDINBU	RGH ROAD	, MARRICKVILLE, NSW					
Job No.: E33 Date: 14/8/2	3191B 0	Meth	od: HAND AUGER		R.L. Surface: N/A Datum: -			
Plant Type:	JK205	Logg	jed/Checked by: A.M./					
Groundwater Record <u>ASS</u> AMPLES SAL DB	Field Tests Depth (m)	Graphic Log Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks	
	0	- 🕅	ASPHALTIC CONCRETE: 50mm.t	W			0.1m NO FCF	
COMPLE TION			FILL: Silty sandy gravel, fine to coarse grained, igneous, sub-angular, grey, fine to medium grained sand. FILL: Silty clay, low to medium plasticity, brown, trace of igneous and ironstone gravel, concrete fragments and ash. END OF BOREHOLE AT 0.3m		T		NOT ENOUGH SAMPLE FOR BUCKET WEIGHT NOT ENOUGH SAMPLE FOR BUCKET WEIGHT HAND AUGER REFUSAL	

ENVIRONMENTAL LOGS EXPLANATION NOTES

INTRODUCTION

These notes have been provided to amplify the environmental report in regard to classification methods, field procedures and certain matters relating to the logging of soil and rock. Not all notes are necessarily relevant to all reports.

Where geotechnical borehole logs are utilised for environmental purpose, reference should also be made to the explanatory notes included in the geotechnical report. Environmental logs are not suitable for geotechnical purposes.

The ground is a product of continuing natural and man-made processes and therefore exhibits a variety of characteristics and properties which vary from place to place and can change with time. Environmental studies include gathering and assimilating limited facts about these characteristics and properties in order to understand or predict the behaviour of the ground on a particular site under certain conditions. This report may contain such facts obtained by inspection, excavation, probing, sampling, testing or other means of investigation. If so, they are directly relevant only to the ground at the place where and time when the investigation was carried out.

DESCRIPTION AND CLASSIFICATION METHODS

The methods of description and classification of soils and rocks used in this report are based on Australian Standard 1726:2017 *'Geotechnical Site Investigations'*. In general, descriptions cover the following properties – soil or rock type, colour, structure, strength or density, and inclusions. Identification and classification of soil and rock involves judgement and the Company infers accuracy only to the extent that is common in current geoenvironmental practice.

Soil types are described according to the predominating particle size and behaviour as set out in the attached soil classification table qualified by the grading of other particles present (eg. sandy clay) as set out below:

Soil Classification	Particle Size
Clay	< 0.002mm
Silt	0.002 to 0.075mm
Sand	0.075 to 2.36mm
Gravel	2.36 to 63mm
Cobbles	63 to 200mm
Boulders	> 200mm

Non-cohesive soils are classified on the basis of relative density, generally from the results of Standard Penetration Test (SPT) as below:

Relative Density	SPT 'N' Value (blows/300mm)
Very loose (VL)	< 4
Loose (L)	4 to 10
Medium dense (MD)	10 to 30
Dense (D)	30 to 50
Very Dense (VD)	> 50

Cohesive soils are classified on the basis of strength (consistency) either by use of a hand penetrometer, vane shear, laboratory testing and/or tactile engineering examination. The strength terms are defined as follows.

Classification	Unconfined Compressive Strength (kPa)	Indicative Undrained Shear Strength (kPa)
Very Soft (VS)	≤25	≤12
Soft (S)	> 25 and \leq 50	> 12 and \leq 25
Firm (F)	$> 50 \text{ and} \le 100$	> 25 and \leq 50
Stiff (St)	$>$ 100 and \leq 200	> 50 and \leq 100
Very Stiff (VSt)	$>$ 200 and \leq 400	$>$ 100 and \leq 200
Hard (Hd)	> 400	> 200
Friable (Fr)	Strength not attainable	– soil crumbles

Rock types are classified by their geological names, together with descriptive terms regarding weathering, strength, defects, etc. Where relevant, further information regarding rock classification is given in the text of the report. In the Sydney Basin, 'shale' is used to describe fissile mudstone, with a weakness parallel to bedding. Rocks with alternating inter-laminations of different grain size (eg. siltstone/claystone and siltstone/fine grained sandstone) are referred to as 'laminite'.

INVESTIGATION METHODS

The following is a brief summary of investigation methods currently adopted by the Company and some comments on their use and application. All methods except test pits, hand auger drilling and portable Dynamic Cone Penetrometers require the use of a mechanical rig which is commonly mounted on a truck chassis or track base.

Test Pits: These are normally excavated with a backhoe or a tracked excavator, allowing close examination of the insitu soils and 'weaker' bedrock if it is safe to descend into the pit. The depth of penetration is limited to about 3m for a backhoe and up to 6m for a large excavator. Limitations of test pits are the problems associated with disturbance and difficulty of reinstatement and the consequent effects on close-by structures. Care must be taken if construction is to be carried out near test pit locations to either properly recompact the backfill during construction or to design and construct the

JKEnvironments

structure so as not to be adversely affected by poorly compacted backfill at the test pit location.

Hand Auger Drilling: A borehole of 50mm to 100mm diameter is advanced by manually operated equipment. Refusal of the hand auger can occur on a variety of materials such as obstructions within any fill, tree roots, hard clay, gravel or ironstone, cobbles and boulders, and does not necessarily indicate rock level.

Continuous Spiral Flight Augers: The borehole is advanced using 75mm to 115mm diameter continuous spiral flight augers, which are withdrawn at intervals to allow sampling and insitu testing. This is a relatively economical means of drilling in clays and in sands above the water table. Samples are returned to the surface by the flights or may be collected after withdrawal of the auger flights, but they can be very disturbed and layers may become mixed. Information from the auger sampling (as distinct from specific sampling by SPTs or undisturbed samples) is of limited reliability due to mixing or softening of samples by groundwater, or uncertainties as to the original depth of the samples. Augering below the groundwater table is of even lesser reliability than augering above the water table.

Rock Augering: Use can be made of a Tungsten Carbide (TC) bit for auger drilling into rock to indicate rock quality and continuity by variation in drilling resistance and from examination of recovered rock cuttings. This method of investigation is quick and relatively inexpensive but provides only an indication of the likely rock strength and predicted values may be in error by a strength order. Where rock strengths may have a significant impact on construction feasibility or costs, then further investigation by means of cored boreholes may be warranted.

Wash Boring: The borehole is usually advanced by a rotary bit, with water being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be assessed from the cuttings, together with some information from "feel" and rate of penetration.

Mud Stabilised Drilling: Either Wash Boring or Continuous Core Drilling can use drilling mud as a circulating fluid to stabilise the borehole. The term 'mud' encompasses a range of products ranging from bentonite to polymers. The mud tends to mask the cuttings and reliable identification is only possible from intermittent intact sampling (eg. from SPT and U50 samples) or from rock coring, etc.

Continuous Core Drilling: A continuous core sample is obtained using a diamond tipped core barrel. Provided full core recovery is achieved (which is not always possible in very low strength rocks and granular soils), this technique provides a very reliable (but relatively expensive) method of investigation. In rocks, NMLC or HQ triple tube core barrels, which give a core of about 50mm and 61mm diameter, respectively, is usually used with water flush. The length of core recovered is compared to the length drilled and any length not recovered is shown as NO CORE. The location of NO CORE recovery is determined on site by the supervising engineer; where the location is uncertain, the loss is placed at the bottom of the drill run.

Standard Penetration Tests: Standard Penetration Tests (SPT) are used mainly in non-cohesive soils, but can also be used in cohesive soils, as a means of indicating density or strength and also of obtaining a relatively undisturbed sample. The test procedure is

described in Australian Standard 1289.6.3.1–2004 (R2016) 'Methods of Testing Soils for Engineering Purposes, Soil Strength and Consolidation Tests – Determination of the Penetration Resistance of a Soil – Standard Penetration Test (SPT)'.

The test is carried out in a borehole by driving a 50mm diameter split sample tube with a tapered shoe, under the impact of a 63.5kg hammer with a free fall of 760mm. It is normal for the tube to be driven in three successive 150mm increments and the 'N' value is taken as the number of blows for the last 300mm. In dense sands, very hard clays or weak rock, the full 450mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form:

• In the case where full penetration is obtained with successive blow counts for each 150mm of, say, 4, 6 and 7 blows, as

N = 13 4, 6, 7

 In a case where the test is discontinued short of full penetration, say after 15 blows for the first 150mm and 30 blows for the next 40mm, as

> N > 30 15, 30/40mm

The results of the test can be related empirically to the engineering properties of the soil.

A modification to the SPT is where the same driving system is used with a solid 60° tipped steel cone of the same diameter as the SPT hollow sampler. The solid cone can be continuously driven for some distance in soft clays or loose sands, or may be used where damage would otherwise occur to the SPT. The results of this Solid Cone Penetration Test (SCPT) are shown as 'N_c' on the borehole logs, together with the number of blows per 150mm penetration.

LOGS

The borehole or test pit logs presented herein are an interpretation of the subsurface conditions, and their reliability will depend to some extent on the frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will enable the most reliable assessment, but is not always practicable or possible to justify on economic grounds. In any case, the boreholes or test pits represent only a very small sample of the total subsurface conditions.

The terms and symbols used in preparation of the logs are defined in the following pages.

Interpretation of the information shown on the logs, and its application to design and construction, should therefore take into account the spacing of boreholes or test pits, the method of drilling or excavation, the frequency of sampling and testing and the possibility of other than 'straight line' variations between the boreholes or test pits. Subsurface conditions between boreholes or test pits may vary significantly from conditions encountered at the borehole or test pit locations.

JKEnvironments

GROUNDWATER

Where groundwater levels are measured in boreholes, there are several potential problems:

- Although groundwater may be present, in low permeability soils it may enter the hole slowly or perhaps not at all during the time it is left open.
- A localised perched water table may lead to an erroneous indication of the true water table.
- Water table levels will vary from time to time with seasons or recent weather changes and may not be the same at the time of construction.
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must be washed out of the hole or 'reverted' chemically if reliable water observations are to be made.

More reliable measurements can be made by installing standpipes which are read after the groundwater level has stabilised at intervals ranging from several days to perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from perched water tables or surface water.

FILL

The presence of fill materials can often be determined only by the inclusion of foreign objects (eg. bricks, steel, etc) or by distinctly unusual colour, texture or fabric. Identification of the extent of fill materials will also depend on investigation methods and frequency. Where natural soils similar to those at the site are used for fill, it may be difficult with limited testing and sampling to reliably assess the extent of the fill.

The presence of fill materials is usually regarded with caution as the possible variation in density and material type is much greater than with natural soil deposits. Consequently, there is an increased risk of adverse environmental characteristics or behaviour. If the volume and nature of fill is of importance to a project, then frequent test pit excavations are preferable to boreholes.

LABORATORY TESTING

Laboratory testing has not been undertaken to confirm the soil classification and rock strengths indicated on the environmental logs unless noted in the report.

JKEnvironments

SYMBOL LEGENDS

CLASSIFICATION OF COARSE AND FINE GRAINED SOILS

Ma	jor Divisions	Group Symbol	Typical Names	Field Classification of Sand and Gravel	Laboratory Cl	assification
ianis	GRAVEL (more than half	GW	Gravel and gravel-sand mixtures, little or no fines	Wide range in grain size and substantial amounts of all intermediate sizes, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	C _u >4 1 <c<sub>c<3</c<sub>
rsizefract	of coarse fraction is larger than 2.36mm	GP	Gravel and gravel-sand mixtures, little or no fines, uniform gravels	Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	Fails to comply with above
lucing ove)		GM	Gravel-silt mixtures and gravel- sand-silt mixtures	'Dirty' materials with excess of non-plastic fines, zero to medium dry strength	≥ 12% fines, fines are silty	Fines behave as silt
of sail exc 10.075mn		GC	Gravel-clay mixtures and gravel- sand-clay mixtures	'Dirty' materials with excess of plastic fines, medium to high dry strength	≥ 12% fines, fines are clayey	Fines behave as clay
than 65% sater thar	SAND (more than half	SW	Sand and gravel-sand mixtures, little or no fines	Wide range in grain size and substantial amounts of all intermediate sizes, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	Cu>6 1 <cc<3< td=""></cc<3<>
iai (mare gr	of coarse fraction is smaller than	SP	Sand and gravel-sand mixtures, little or no fines	Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	Fails to comply with above
egraineds	2.36mm)	SM	Sand-silt mixtures	'Dirty' materials with excess of non-plastic fines, zero to medium dry strength	≥ 12% fines, fines are silty	
Coairs		SC	Sand-clay mixtures	'Dirty' materials with excess of plastic fines, medium to high dry strength	≥ 12% fines, fines are clayey	N/A

		Group			Field Classification of Silt and Clay		Laboratory Classification
Majo	or Divisions	Symbol	Typical Names	Dry Strength	Dilatancy	Toughness	% < 0.075mm
Bupr	SILT and CLAY (low to medium	ML	Inorganic silt and very fine sand, rock flour, silty or clayey fine sand or silt with low plasticity	None to low	Slow to rapid	Low	Below A line
of sail exdu 0.075mm)	plasticity)	CL, CI	Inorganic clay of low to medium plasticity, gravelly clay, sandy clay	Medium to high	None to slow	Medium	Above A line
an 35% ssthan		OL	Organic silt	Low to medium	Slow	Low	Below A line
onisle	SILT and CLAY	MH	Inorganic silt	Low to medium	None to slow	Low to medium	Below A line
soils (m te fracti	(high plasticity)	СН	Inorganic clay of high plasticity	High to very high	None	High	Above A line
re grained: oversiz		OH	Organic clay of medium to high plasticity, organic silt	Medium to high	None to very slow	Low to medium	Below A line
,	Highly organic soil	Pt	Peat, highly organic soil	-	-	-	-

Laboratory Classification Criteria

A well graded coarse grained soil is one for which the coefficient of uniformity Cu > 4 and the coefficient of curvature $1 < C_c < 3$. Otherwise, the soil is poorly graded. These coefficients are given by:

$$C_U = \frac{D_{60}}{D_{10}}$$
 and $C_C = \frac{(D_{30})^2}{D_{10} D_{60}}$

Where D_{10} , D_{30} and D_{60} are those grain sizes for which 10%, 30% and 60% of the soil grains, respectively, are smaller.

NOTES:

- 1 For a coarse grained soil with a fines content between 5% and 12%, the soil is given a dual classification comprising the two group symbols separated by a dash; for example, for a poorly graded gravel with between 5% and 12% silt fines, the classification is GP-GM.
- 3 Clay soils with liquid limits > 35% and ≤ 50% may be classified as being of medium plasticity.
- 4 The U line on the Modified Casagrande Chart is an approximate upper bound for most natural soils.

LOG SYMBOLS

Log Column	Symbol	Definition
Groundwater Record		Standing water level. Time delay following completion of drilling/excavation may be shown.
	— с —	Extent of borehole/test pit collapse shortly after drilling/excavation.
		Groundwater seepage into borehole or test pit noted during drilling or excavation.
Samples	ES	Sample taken over depth indicated, for environmental analysis.
	U50	Undisturbed 50mm diameter tube sample taken over depth indicated.
	DB	Bulk disturbed sample taken over depth indicated.
	DS	Small disturbed bag sample taken over depth indicated.
	ASS	Soil sample taken over depth indicated, for acid sulfate soil analysis.
	SAL	Soil sample taken over depth indicated, for salinity analysis.
Field Tests	N = 17	Standard Penetration Test (SPT) performed between depths indicated by lines. Individual
	4, 7, 10	figures show blows per 150mm penetration. 'Refusal' refers to apparent hammer refusal within the corresponding 150mm depth increment.
	N _c = 5	Solid Cone Penetration Test (SCPT) performed between depths indicated by lines. Individual
	7	figures show blows per 150mm penetration for 60° solid cone driven by SPT hammer. 'R' refers to apparent hammer refusal within the corresponding 150mm depth increment
	3R	
	VNS = 25	Vane shear reading in kPa of undrained shear strength.
	PID = 100	Photoionisation detector reading in ppm (soil sample headspace test).
Moisture Condition	w > PL	Moisture content estimated to be greater than plastic limit.
(Fine Grained Soils)	w≈PL	Moisture content estimated to be approximately equal to plastic limit.
	W < PL w ≈ II	Moisture content estimated to be less than plastic limit.
	w > LL	Moisture content estimated to be wet of liquid limit.
(Coarse Grained Soils)	D	DRY – runs freely through fingers.
	М	MOIST – does not run freely but no free water visible on soil surface.
	W	WET – free water visible on soil surface.
Strength (Consistency)	VS	VERY SOFT $-$ unconfined compressive strength ≤ 25 kPa.
Cohesive Soils	S	SOFT – unconfined compressive strength > 25kPa and \leq 50kPa.
	F	FIRM – unconfined compressive strength > 50 kPa and ≤ 100 kPa.
	St VSt	STIFF – unconfined compressive strength > 100kPa and \leq 200kPa.
	Hd	VERY STIFF – Unconfined compressive strength > 200kPa and \leq 400kPa.
	Fr	FRIARI F - strength not attainable, soil crumbles.
	()	Bracketed symbol indicates estimated consistency based on tactile examination or other
		assessment.
Density Index/ Relative Density		Density Index (I _D) SPT 'N' Value Range Range (%) (Blows/300mm)
(Cohesionless Soils)	VL	VERY LOOSE ≤ 15 0-4
	L	LOOSE > 15 and \leq 35 4 - 10
	MD	MEDIUM DENSE> 35 and ≤ 65 10 - 30
	D	DENSE > 65 and ≤ 85 30 – 50
	()	VERY DENSE > 85 > 50 Bracketed symbol indicates estimated density based on ease of drilling or other assessment
		bracketed symbol indicates estimated density based on ease of drining of other assessment.
Hand Penetrometer Readings	300 250	Measures reading in kPa of unconfined compressive strength. Numbers indicate individual test results on representative undisturbed material unless noted otherwise.
February 2019		⁶ JKEnvironments

Log Column	Symbol	Definition	
Remarks	'V' bit	Hardened steel 'V	" shaped bit.
	'TC' bit	Twin pronged tun	gsten carbide bit.
	T_{60}	Penetration of au without rotation of	ger string in mm under static load of rig applied by drill head hydraulics of augers.
	Soil Origin	The geological ori	gin of the soil can generally be described as:
		RESIDUAL	 soil formed directly from insitu weathering of the underlying rock. No visible structure or fabric of the parent rock.
		EXTREMELY WEATHERED	 soil formed directly from insitu weathering of the underlying rock. Material is of soil strength but retains the structure and/or fabric of the parent rock.
		ALLUVIAL	- soil deposited by creeks and rivers.
		ESTUARINE	 soil deposited in coastal estuaries, including sediments caused by inflowing creeks and rivers, and tidal currents.
		MARINE	- soil deposited in a marine environment.
		AEOLIAN	 soil carried and deposited by wind.
		COLLUVIAL	 soil and rock debris transported downslope by gravity, with or without the assistance of flowing water. Colluvium is usually a thick deposit formed from a landslide. The description 'slopewash' is used for thinner surficial deposits.
		LITTORAL	 beach deposited soil.

DR⁷ JKEnvironments

Classification of Material Weathering

Term		Abbreviation		Definition
Residual Soil		RS		Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.
Extremely Weathered		xw		Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible.
Highly Weathered	Distinctly Weathered	HW stinctly athered	DW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.
Moderately Weathered	(Note 1)	MW		The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.
Slightly Weathered		S	W	Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.
Fresh		F	R	Rock shows no sign of decomposition of individual minerals or colour changes.

NOTE 1: The term 'Distinctly Weathered' is used where it is not practicable to distinguish between 'Highly Weathered' and 'Moderately Weathered' rock. 'Distinctly Weathered' is defined as follows: 'Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores'. There is some change in rock strength.

Rock Material Strength Classification

				Guide to Strength
Term	Abbreviation	Uniaxial Compressive Strength (MPa)	Point Load Strength Index Is ₍₅₀₎ (MPa)	Field Assessment
Very Low Strength	VL	0.6 to 2	0.03 to 0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 30mm thick can be broken by finger pressure.
Low Strength	L	2 to 6	0.1 to 0.3	Easily scored with a knife; indentations 1mm to 3mm show in the specimen with firm blows of the pick point; has dull sound under hammer. A piece of core 150mm long by 50mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.
Medium Strength	М	6 to 20	0.3 to 1	Scored with a knife; a piece of core 150mm long by 50mm diameter can be broken by hand with difficulty.
High Strength	н	20 to 60	1 to 3	A piece of core 150mm long by 50mm diameter cannot be broken by hand but can be broken by a pick with a single firm blow; rock rings under hammer.
Very High Strength	VH	60 to 200	3 to 10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.
Extremely High Strength	EH	> 200	> 10	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.
February 2019	L	ノ Г	8	JKEnvironments

Appendix E: Laboratory Report(s) & COC Documents

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 249404

Client Details	
Client	Environmental Investigation Services
Attention	Vittal Boggaram
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	E33191B, Marrickville
Number of Samples	56 soil
Date samples received	19/08/2020
Date completed instructions received	20/08/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details

 Date results requested by
 27/08/2020

 Date of Issue
 27/08/2020

 NATA Accreditation Number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Panika Wongchanda, Nyovan Moonean Authorised by Asbestos Approved Signatory: Lucy Zhu **Results Approved By** Dragana Tomas, Senior Chemist Jaimie Loa-Kum-Cheung, Metals Supervisor Josh Williams, Senior Chemist Lucy Zhu, Asbestos Supervisor Authorised By

Nancy Zhang, Laboratory Manager

Lucy Zhu, Asbestos Supervisor Steven Luong, Organics Supervisor

Envirolab Reference: 249404 Revision No: R00

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		249404-1	249404-2	249404-6	249404-7	249404-8
Your Reference	UNITS	BH101	BH101	BH102	BH103	BH104
Depth		0.5-0.95	1.5-1.95	0.27-0.4	0.14-0.3	0.2-0.35
Date Sampled		13/08/2030	13.8.30	14.8.20	14.8.20	14.8.20
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	24/08/2020	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Date analysed	-	25/08/2020	25/08/2020	25/08/2020	25/08/2020	25/08/2020
TRH C6 - C9	mg/kg	<25	<25	<25	<25	<25
TRH C6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	86	87	96	98	101
vTRH(C6-C10)/BTEXN in Soil						
vTRH(C6-C10)/BTEXN in Soil Our Reference		249404-9	249404-10	249404-11	249404-12	249404-15
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference	UNITS	249404-9 BH105	249404-10 BH106	249404-11 BH107	249404-12 BH108	249404-15 BH109
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth	UNITS	249404-9 BH105 0.19-0.3	249404-10 BH106 0.26-0.3	249404-11 BH107 0.25-0.4	249404-12 BH108 0-0.2	249404-15 BH109 0.25-0.3
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled	UNITS	249404-9 BH105 0.19-0.3 14.8.20	249404-10 BH106 0.26-0.3 14.8.20	249404-11 BH107 0.25-0.4 14.8.20	249404-12 BH108 0-0.2 14.8.20	249404-15 BH109 0.25-0.3 14.8.20
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample	UNITS	249404-9 BH105 0.19-0.3 14.8.20 soil	249404-10 BH106 0.26-0.3 14.8.20 soil	249404-11 BH107 0.25-0.4 14.8.20 soil	249404-12 BH108 0-0.2 14.8.20 soil	249404-15 BH109 0.25-0.3 14.8.20 soil
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted	UNITS	249404-9 BH105 0.19-0.3 14.8.20 soil 24/08/2020	249404-10 BH106 0.26-0.3 14.8.20 soil 24/08/2020	249404-11 BH107 0.25-0.4 14.8.20 soil 24/08/2020	249404-12 BH108 0-0.2 14.8.20 soil 24/08/2020	249404-15 BH109 0.25-0.3 14.8.20 soil 24/08/2020
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed	UNITS - -	249404-9 BH105 0.19-0.3 14.8.20 soil 24/08/2020 25/08/2020	249404-10 BH106 0.26-0.3 14.8.20 soil 24/08/2020 25/08/2020	249404-11 BH107 0.25-0.4 14.8.20 soil 24/08/2020 25/08/2020	249404-12 BH108 0-0.2 14.8.20 soil 24/08/2020 25/08/2020	249404-15 BH109 0.25-0.3 14.8.20 soil 24/08/2020 25/08/2020
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9	UNITS - - mg/kg	249404-9 BH105 0.19-0.3 14.8.20 soil 24/08/2020 25/08/2020 <25	249404-10 BH106 0.26-0.3 14.8.20 soil 24/08/2020 25/08/2020 <25	249404-11 BH107 0.25-0.4 14.8.20 soil 24/08/2020 25/08/2020 <25	249404-12 BH108 0-0.2 14.8.20 soil 24/08/2020 25/08/2020 <25	249404-15 BH109 0.25-0.3 14.8.20 soil 24/08/2020 25/08/2020 <25
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10	UNITS - mg/kg mg/kg	249404-9 BH105 0.19-0.3 14.8.20 soil 24/08/2020 25/08/2020 <25 <25	249404-10 BH106 0.26-0.3 14.8.20 soil 24/08/2020 25/08/2020 <25 <25	249404-11 BH107 0.25-0.4 14.8.20 soil 24/08/2020 25/08/2020 <25 <25	249404-12 BH108 0-0.2 14.8.20 soil 24/08/2020 25/08/2020 <25 <25	249404-15 BH109 0.25-0.3 14.8.20 soil 24/08/2020 25/08/2020 <25 <25
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 VTPH C6 - C10 less BTEX (F1)	UNITS - - mg/kg mg/kg mg/kg	249404-9 BH105 0.19-0.3 14.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25	249404-10 BH106 0.26-0.3 14.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25	249404-11 BH107 0.25-0.4 14.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25	249404-12 BH108 0-0.2 14.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25	249404-15 BH109 0.25-0.3 14.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25 <25
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 VTPH C6 - C10 less BTEX (F1) Benzene	UNITS - mg/kg mg/kg mg/kg mg/kg	249404-9 BH105 0.19-0.3 14.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25 <25 <25	249404-10 BH106 0.26-0.3 14.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25 <25 <0.2	249404-11 BH107 0.25-0.4 14.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25 <25 <25 <0.2	249404-12 BH108 0-0.2 14.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25 <25 <0.2	249404-15 BH109 0.25-0.3 14.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25 <25 <0.2
vTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH C6 - C9TRH C6 - C10vTPH C6 - C10 less BTEX (F1)BenzeneToluene	UNITS - mg/kg mg/kg mg/kg mg/kg mg/kg	249404-9 BH105 0.19-0.3 14.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25 <25 <25 <0.2	249404-10 BH106 0.26-0.3 14.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25 <25 <25 <0.2	249404-11 BH107 0.25-0.4 14.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25 <25 <25 <0.2	249404-12 BH108 0-0.2 14.8.20 soil 24/08/2020 25/08/2020 25/08/2020 <25 <25 <25 <25 <0.2	249404-15 BH109 0.25-0.3 14.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25 <25 <25 <0.2 <0.2
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH C6 - C9TRH C6 - C10vTPH C6 - C10 less BTEX (F1)BenzeneTolueneEthylbenzene	UNITS - - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	249404-9 BH105 0.19-0.3 14.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1	249404-10 BH106 0.26-0.3 14.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1	249404-11 BH107 0.25-0.4 14.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1	249404-12 BH108 0-0.2 14.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1	249404-15 BH109 0.25-0.3 14.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25 <25 <25 <0.2 <0.2 <0.5
vTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH C6 - C9TRH C6 - C10vTPH C6 - C10 less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xylene	UNITS - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	249404-9 BH105 0.19-0.3 14.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2	249404-10 BH106 0.26-0.3 14.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	249404-11 BH107 0.25-0.4 14.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2	249404-12 BH108 0-0.2 14.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	249404-15 BH109 0.25-0.3 14.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH C6 - C9TRH C6 - C10vTPH C6 - C10 less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xyleneo-Xylene	UNITS - - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	249404-9 BH105 0.19-0.3 14.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1	249404-10 BH106 0.26-0.3 14.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1	249404-11 BH107 0.25-0.4 14.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1	249404-12 BH108 0-0.2 14.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1	249404-15 BH109 0.25-0.3 14.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH C6 - C9TRH C6 - C10vTPH C6 - C10 less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xyleneo-Xylenenaphthalene	UNITS - - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	249404-9 BH105 0.19-0.3 14.8.20 soil 24/08/2020 25/08/2020 <25/08/2020 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1	249404-10 BH106 0.26-0.3 14.8.20 soil 24/08/2020 25/08/2020 <25/08/2020 <25 <25 <25 <0.2 <0.2 <0.2 <0.2 <0.5 <1 <2 <1 <1 <1	249404-11 BH107 0.25-0.4 14.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1	249404-12 BH108 0-0.2 14.8.20 soil 24/08/2020 25/08/2020 <25/08/2020 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <1 <2 <1 <1	249404-15 BH109 0.25-0.3 14.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH C6 - C9TRH C6 - C10VTPH C6 - C10 less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xyleneo-XylenenaphthaleneTotal +ve Xylenes	UNITS - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	249404-9 BH105 0.19-0.3 14.8.20 soil 24/08/2020 25/08/2020 <25/08/2020 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <1 <2 <1 <1 <3	249404-10 BH106 0.26-0.3 14.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1 <2 <1 <3	249404-11 BH107 0.25-0.4 14.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1 <2 <1 <3	249404-12 BH108 0-0.2 14.8.20 soil 24/08/2020 25/08/2020 <25/08/2020 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <1 <2 <1 <1 <3	249404-15 BH109 0.25-0.3 14.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1 <1 <1 <3

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		249404-16	249404-17	249404-19	249404-20	249404-22
Your Reference	UNITS	BH110	BH111	BH112	BH113	BH114
Depth		0.37-0.65	0.17-0.3	0.4-0.5	0.19-0.4	0.18-0.35
Date Sampled		14.8.20	14.8.20	14.8.20	14.8.20	14.8.20
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	24/08/2020	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Date analysed	-	25/08/2020	25/08/2020	25/08/2020	25/08/2020	25/08/2020
TRH C6 - C9	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	91	107	81	98	96
vTRH(C6-C10)/BTEXN in Soil						
vTRH(C6-C10)/BTEXN in Soil Our Reference		249404-23	249404-26	249404-29	249404-32	249404-34
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference	UNITS	249404-23 BH115	249404-26 BH116	249404-29 BH117	249404-32 BH118	249404-34 BH119
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth	UNITS	249404-23 BH115 0.21-0.4	249404-26 BH116 0.13-0.4	249404-29 BH117 0.2-0.5	249404-32 BH118 0.6-0.9	249404-34 BH119 0-0.2
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled	UNITS	249404-23 BH115 0.21-0.4 13.8.20	249404-26 BH116 0.13-0.4 13.8.20	249404-29 BH117 0.2-0.5 13.8.20	249404-32 BH118 0.6-0.9 13.8.20	249404-34 BH119 0-0.2 12.8.20
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample	UNITS	249404-23 BH115 0.21-0.4 13.8.20 soil	249404-26 BH116 0.13-0.4 13.8.20 soil	249404-29 BH117 0.2-0.5 13.8.20 soil	249404-32 BH118 0.6-0.9 13.8.20 soil	249404-34 BH119 0-0.2 12.8.20 soil
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted	UNITS -	249404-23 BH115 0.21-0.4 13.8.20 soil 24/08/2020	249404-26 BH116 0.13-0.4 13.8.20 soil 24/08/2020	249404-29 BH117 0.2-0.5 13.8.20 soil 24/08/2020	249404-32 BH118 0.6-0.9 13.8.20 soil 24/08/2020	249404-34 BH119 0-0.2 12.8.20 soil 24/08/2020
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed	UNITS - -	249404-23 BH115 0.21-0.4 13.8.20 soil 24/08/2020 25/08/2020	249404-26 BH116 0.13-0.4 13.8.20 soil 24/08/2020 25/08/2020	249404-29 BH117 0.2-0.5 13.8.20 soil 24/08/2020 25/08/2020	249404-32 BH118 0.6-0.9 13.8.20 soil 24/08/2020 25/08/2020	249404-34 BH119 0-0.2 12.8.20 soil 24/08/2020 25/08/2020
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9	UNITS - - mg/kg	249404-23 BH115 0.21-0.4 13.8.20 soil 24/08/2020 25/08/2020 <25	249404-26 BH116 0.13-0.4 13.8.20 soil 24/08/2020 25/08/2020 <25	249404-29 BH117 0.2-0.5 13.8.20 soil 24/08/2020 25/08/2020 <25	249404-32 BH118 0.6-0.9 13.8.20 soil 24/08/2020 25/08/2020 <25	249404-34 BH119 0-0.2 12.8.20 soil 24/08/2020 25/08/2020 <25
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10	UNITS - mg/kg mg/kg	249404-23 BH115 0.21-0.4 13.8.20 soil 24/08/2020 25/08/2020 <25 <25	249404-26 BH116 0.13-0.4 13.8.20 soil 24/08/2020 25/08/2020 <25 <25	249404-29 BH117 0.2-0.5 13.8.20 soil 24/08/2020 25/08/2020 <25 <25	249404-32 BH118 0.6-0.9 13.8.20 soil 24/08/2020 25/08/2020 <25 <25	249404-34 BH119 0-0.2 12.8.20 soil 24/08/2020 25/08/2020 <25 <25
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 vTPH C6 - C10 less BTEX (F1)	UNITS - mg/kg mg/kg mg/kg	249404-23 BH115 0.21-0.4 13.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25	249404-26 BH116 0.13-0.4 13.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25	249404-29 BH117 0.2-0.5 13.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25	249404-32 BH118 0.6-0.9 13.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25	249404-34 BH119 0-0.2 12.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH C6 - C9TRH C6 - C10vTPH C6 - C10 less BTEX (F1)Benzene	UNITS - - mg/kg mg/kg mg/kg mg/kg	249404-23 BH115 0.21-0.4 13.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25 <25 <25	249404-26 BH116 0.13-0.4 13.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25 <25 <25	249404-29 BH117 0.2-0.5 13.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25 <25 <25	249404-32 BH118 0.6-0.9 13.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25 <25 <0.2	249404-34 BH119 0-0.2 12.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25 <25 <0.2
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH C6 - C9TRH C6 - C10vTPH C6 - C10 less BTEX (F1)BenzeneToluene	UNITS - mg/kg mg/kg mg/kg mg/kg mg/kg	249404-23 BH115 0.21-0.4 13.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25 <25 <25 <0.2	249404-26 BH116 0.13-0.4 13.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25 <25 <25 <0.2	249404-29 BH117 0.2-0.5 13.8.20 soil 24/08/2020 25/08/2020 25/08/2020 <25 <25 <25 <25 <25 <0.2	249404-32 BH118 0.6-0.9 13.8.20 soil 24/08/2020 25/08/2020 25/08/2020 <25 <25 <25 <25 <25 <0.2	249404-34 BH119 0-0.2 12.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25 <25 <25 <0.2
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH C6 - C9TRH C6 - C10vTPH C6 - C10 less BTEX (F1)BenzeneTolueneEthylbenzene	UNITS - - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	249404-23 BH115 0.21-0.4 13.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1	249404-26 BH116 0.13-0.4 13.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1	249404-29 BH117 0.2-0.5 13.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1	249404-32 BH118 0.6-0.9 13.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1	249404-34 BH119 0-0.2 12.8.20 soil 24/08/2020 25/08/2020 <25/08/2020 <25 <25 <25 <25 <0.2 <0.2 <0.5
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH C6 - C9TRH C6 - C10vTPH C6 - C10 less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xylene	UNITS - - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	249404-23 BH115 0.21-0.4 13.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	249404-26 BH116 0.13-0.4 13.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	249404-29 BH117 0.2-0.5 13.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	249404-32 BH118 0.6-0.9 13.8.20 soil 24/08/2020 25/08/2020 <25/08/2020 <25 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <1 <2	249404-34 BH119 0-0.2 12.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <1
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH C6 - C9TRH C6 - C10vTPH C6 - C10 less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xyleneo-Xylene	UNITS - - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	249404-23 BH115 0.21-0.4 13.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1	249404-26 BH116 0.13-0.4 13.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1	249404-29 BH117 0.2-0.5 13.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1	249404-32 BH118 0.6-0.9 13.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25	249404-34 BH119 0-0.2 12.8.20 soil 24/08/2020 25/08/2020 25/08/2020 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH C6 - C9TRH C6 - C10vTPH C6 - C10 less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xyleneo-Xylenenaphthalene	UNITS - - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	249404-23 BH115 0.21-0.4 13.8.20 soil 24/08/2020 25/08/2020 <25/08/2020 <25 <25 <25 <25 <0.2 <0.5 <0.5 <1 <2 <1 <2 <1	249404-26 BH116 0.13-0.4 13.8.20 soil 24/08/2020 25/08/2020 <25/08/2020 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1	249404-29 BH117 0.2-0.5 13.8.20 soil 24/08/2020 25/08/2020 <25/08/2020 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1	249404-32 BH118 0.6-0.9 13.8.20 soil 24/08/2020 25/08/2020 <25/08/2020 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1 <1 <1	249404-34 BH119 0-0.2 12.8.20 soil 24/08/2020 25/08/2020 <25/08/2020 <25/08/2020 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1 <1
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$ less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xyleneo-XylenenaphthaleneTotal +ve Xylenes	UNITS - - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	249404-23 BH115 0.21-0.4 13.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1 <3	249404-26 BH116 0.13-0.4 13.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1 <2 <1 <3	249404-29 BH117 0.2-0.5 13.8.20 soil 24/08/2020 25/08/2020 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1 <2 <1 <3	249404-32 BH118 0.6-0.9 13.8.20 soil 24/08/2020 25/08/2020 <25/08/2020 <25 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	249404-34 BH119 0-0.2 12.8.20 soil 24/08/2020 25/08/200 25/08/2000 25/08/2000 25/08/2000 25

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		249404-36	249404-41	249404-44	249404-47	249404-48
Your Reference	UNITS	BH120	BH121	BH122	BH123	SDUP1
Depth		0.04-0.3	0.18-0.7	0.14-0.25	0.15-0.3	-
Date Sampled		13.8.20	13.8.20	14.8.20	14.8.20	12.8.20
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	24/08/2020	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Date analysed	-	25/08/2020	25/08/2020	25/08/2020	25/08/2020	25/08/2020
TRH C6 - C9	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	102	94	97	102	93

	249404-51	249404-53	249404-54
UNITS	SDUP4	TS-S1	TB-S1
	-	-	-
	14.8.20	13.8.20	13.8.20
	soil	soil	soil
-	24/08/2020	24/08/2020	24/08/2020
-	25/08/2020	25/08/2020	25/08/2020
mg/kg	<25	[NA]	<25
mg/kg	<25	[NA]	<25
mg/kg	<25	[NA]	<25
mg/kg	<0.2	95%	<0.2
mg/kg	<0.5	95%	<0.5
mg/kg	<1	105%	<1
mg/kg	<2	113%	<2
mg/kg	<1	111%	<1
mg/kg	<1	[NA]	<1
mg/kg	<3	[NA]	<3
%	110	93	103
	UNITS - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	249404-51 SDUP4 - 14.8.20 soil - 14.8.20 soil - 14.8.20 soil - 24/08/2020 - 25/08/2020 mg/kg <25	249404-51 249404-53 UNITS SDUP4 TS-S1 - - - 14.8.20 13.8.20 soil soil soil soil - 24/08/2020 24/08/2020 - 25/08/2020 25/08/2020 mg/kg <25

svTRH (C10-C40) in Soil						i .
Our Reference		249404-1	249404-2	249404-6	249404-7	249404-8
Your Reference	UNITS	BH101	BH101	BH102	BH103	BH104
Depth		0.5-0.95	1.5-1.95	0.27-0.4	0.14-0.3	0.2-0.35
Date Sampled		13/08/2030	13.8.30	14.8.20	14.8.20	14.8.20
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	24/08/2020	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Date analysed	-	24/08/2020	24/08/2020	24/08/2020	24/08/2020	24/08/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C10 -C16	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	94	96	85	94	91
svTRH (C10-C40) in Soil						
Our Reference		249404-9	249404-10	249404-11	249404-12	249404-15
Your Reference	UNITS	BH105	BH106	BH107	BH108	BH109
Depth		0.19-0.3	0.26-0.3	0.25-0.4	0-0.2	0.25-0.3
Date Sampled		14.8.20	14.8.20	14.8.20	14.8.20	14.8.20
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	24/08/2020	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Date analysed	-	24/08/2020	24/08/2020	24/08/2020	24/08/2020	24/08/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	190	<100	<100	150	<100
TRH C ₂₉ - C ₃₆	mg/kg	180	<100	<100	130	<100

<50

<50

320

110

430

104

<50

<50

<100

<100

<50

95

<50

<50

<100

<100

<50

92

<50

<50

240

<100

240

#

<50

<50

<100

<100

<50

107

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

%

TRH >C10 -C16

TRH >C16 -C34

TRH >C₃₄ -C₄₀

Total +ve TRH (>C10-C40)

Surrogate o-Terphenyl

TRH >C10 - C16 less Naphthalene (F2)

svTRH (C10-C40) in Soil						
Our Reference		249404-16	249404-17	249404-19	249404-20	249404-22
Your Reference	UNITS	BH110	BH111	BH112	BH113	BH114
Depth		0.37-0.65	0.17-0.3	0.4-0.5	0.19-0.4	0.18-0.35
Date Sampled		14.8.20	14.8.20	14.8.20	14.8.20	14.8.20
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	24/08/2020	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Date analysed	-	24/08/2020	24/08/2020	24/08/2020	24/08/2020	24/08/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C15 - C28	mg/kg	450	<100	<100	<100	150
TRH C ₂₉ - C ₃₆	mg/kg	300	<100	<100	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	690	<100	<100	<100	230
TRH >C34 -C40	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	690	<50	<50	<50	230
Surrogate o-Terphenyl	%	120	98	101	100	105

svTRH (C10-C40) in Soil						
Our Reference		249404-23	249404-26	249404-29	249404-32	249404-34
Your Reference	UNITS	BH115	BH116	BH117	BH118	BH119
Depth		0.21-0.4	0.13-0.4	0.2-0.5	0.6-0.9	0-0.2
Date Sampled		13.8.20	13.8.20	13.8.20	13.8.20	12.8.20
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	24/08/2020	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Date analysed	-	24/08/2020	24/08/2020	24/08/2020	24/08/2020	24/08/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	100	<100	140
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	100	<50	140
Surrogate o-Terphenyl	%	100	99	101	100	110

svTRH (C10-C40) in Soil						
Our Reference		249404-36	249404-41	249404-44	249404-47	249404-48
Your Reference	UNITS	BH120	BH121	BH122	BH123	SDUP1
Depth		0.04-0.3	0.18-0.7	0.14-0.25	0.15-0.3	-
Date Sampled		13.8.20	13.8.20	14.8.20	14.8.20	12.8.20
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	24/08/2020	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Date analysed	-	24/08/2020	24/08/2020	24/08/2020	24/08/2020	24/08/2020
TRH C10 - C14	mg/kg	<50	<50	<50	<50	<50
TRH C15 - C28	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C10 -C16	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	130
TRH >C34 -C40	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	130
Surrogate o-Terphenyl	%	95	108	109	114	107

svTRH (C10-C40) in Soil		
Our Reference		249404-51
Your Reference	UNITS	SDUP4
Depth		-
Date Sampled		14.8.20
Type of sample		soil
Date extracted	-	24/08/2020
Date analysed	-	24/08/2020
TRH C ₁₀ - C ₁₄	mg/kg	59
TRH C ₁₅ - C ₂₈	mg/kg	180
TRH C ₂₉ - C ₃₆	mg/kg	180
TRH >C10 -C16	mg/kg	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50
TRH >C ₁₆ -C ₃₄	mg/kg	290
TRH >C ₃₄ -C ₄₀	mg/kg	100
Total +ve TRH (>C10-C40)	mg/kg	400
Surrogate o-Terphenyl	%	#

PAHs in Soil						
Our Reference		249404-1	249404-2	249404-6	249404-7	249404-8
Your Reference	UNITS	BH101	BH101	BH102	BH103	BH104
Depth		0.5-0.95	1.5-1.95	0.27-0.4	0.14-0.3	0.2-0.35
Date Sampled		13/08/2030	13.8.30	14.8.20	14.8.20	14.8.20
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	24/08/2020	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Date analysed	-	24/08/2020	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	0.3	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	82	103	104	87	101

PAHs in Soil						
Our Reference		249404-9	249404-10	249404-11	249404-12	249404-15
Your Reference	UNITS	BH105	BH106	BH107	BH108	BH109
Depth		0.19-0.3	0.26-0.3	0.25-0.4	0-0.2	0.25-0.3
Date Sampled		14.8.20	14.8.20	14.8.20	14.8.20	14.8.20
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	24/08/2020	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Date analysed	-	24/08/2020	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.6	<0.1	<0.1	0.7	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	1.3	<0.1	<0.1	0.6	<0.1
Pyrene	mg/kg	1.6	<0.1	<0.1	0.7	<0.1
Benzo(a)anthracene	mg/kg	0.7	<0.1	<0.1	0.3	<0.1
Chrysene	mg/kg	0.6	<0.1	<0.1	0.5	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	0.6	<0.2	<0.2	0.7	<0.2
Benzo(a)pyrene	mg/kg	0.78	<0.05	<0.05	0.4	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	0.4	<0.1	<0.1	0.2	<0.1
Dibenzo(a,h)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.8	<0.1	<0.1	0.2	<0.1
Total +ve PAH's	mg/kg	7.7	<0.05	<0.05	4.3	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	1.1	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	1.1	<0.5	<0.5	0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	1.1	<0.5	<0.5	0.6	<0.5
Surrogate p-Terphenyl-d14	%	106	102	104	114	88

PAHs in Soil						
Our Reference		249404-16	249404-17	249404-19	249404-20	249404-22
Your Reference	UNITS	BH110	BH111	BH112	BH113	BH114
Depth		0.37-0.65	0.17-0.3	0.4-0.5	0.19-0.4	0.18-0.35
Date Sampled		14.8.20	14.8.20	14.8.20	14.8.20	14.8.20
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	24/08/2020	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Date analysed	-	24/08/2020	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Naphthalene	mg/kg	2.5	<0.1	<0.1	<0.1	0.6
Acenaphthylene	mg/kg	0.2	<0.1	<0.1	<0.1	0.4
Acenaphthene	mg/kg	4.5	<0.1	0.1	<0.1	1.0
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.8
Phenanthrene	mg/kg	29	<0.1	1.1	0.2	5.8
Anthracene	mg/kg	6.2	<0.1	0.1	0.1	1.5
Fluoranthene	mg/kg	18	<0.1	0.7	<0.1	4.0
Pyrene	mg/kg	19	<0.1	0.7	<0.1	4.3
Benzo(a)anthracene	mg/kg	6.7	<0.1	0.3	0.1	2.1
Chrysene	mg/kg	7.7	<0.1	0.3	<0.1	1.4
Benzo(b,j+k)fluoranthene	mg/kg	8.9	<0.2	<0.2	<0.2	1
Benzo(a)pyrene	mg/kg	6.2	<0.05	0.2	<0.05	1.4
Indeno(1,2,3-c,d)pyrene	mg/kg	2.5	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	0.5	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	3.5	<0.1	0.1	<0.1	0.8
Total +ve PAH's	mg/kg	120	<0.05	3.7	0.4	25
Benzo(a)pyrene TEQ calc (zero)	mg/kg	8.6	<0.5	<0.5	<0.5	1.8
Benzo(a)pyrene TEQ calc(half)	mg/kg	8.6	<0.5	<0.5	<0.5	1.8
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	8.6	<0.5	<0.5	<0.5	1.9
Surrogate p-Terphenyl-d14	%	94	110	90	102	113

PAHs in Soil						
Our Reference		249404-23	249404-26	249404-29	249404-32	249404-34
Your Reference	UNITS	BH115	BH116	BH117	BH118	BH119
Depth		0.21-0.4	0.13-0.4	0.2-0.5	0.6-0.9	0-0.2
Date Sampled		13.8.20	13.8.20	13.8.20	13.8.20	12.8.20
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	24/08/2020	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Date analysed	-	24/08/2020	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.3	<0.1	0.4	0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.5	<0.1	0.7	0.2	0.2
Pyrene	mg/kg	0.5	<0.1	0.7	0.2	0.2
Benzo(a)anthracene	mg/kg	0.2	<0.1	0.5	0.1	0.1
Chrysene	mg/kg	0.2	<0.1	0.3	<0.1	0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	0.3	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.2	<0.05	0.4	0.08	0.1
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	0.2	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.1	<0.1	0.2	<0.1	<0.1
Total +ve PAH's	mg/kg	1.9	<0.05	3.6	0.62	0.90
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	106	108	105	116	114

PAHs in Soil						
Our Reference		249404-36	249404-41	249404-44	249404-47	249404-48
Your Reference	UNITS	BH120	BH121	BH122	BH123	SDUP1
Depth		0.04-0.3	0.18-0.7	0.14-0.25	0.15-0.3	-
Date Sampled		13.8.20	13.8.20	14.8.20	14.8.20	12.8.20
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	26/08/2020	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Date analysed	-	27/08/2020	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Naphthalene	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.6	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.5	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	6.4	<0.1	0.1	<0.1	0.1
Anthracene	mg/kg	1.2	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	6.3	0.3	<0.1	<0.1	0.3
Pyrene	mg/kg	6.7	0.3	<0.1	<0.1	0.2
Benzo(a)anthracene	mg/kg	2.8	0.1	<0.1	0.1	0.1
Chrysene	mg/kg	3.1	0.1	<0.1	<0.1	0.1
Benzo(b,j+k)fluoranthene	mg/kg	4.5	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	3.0	0.2	<0.05	<0.05	0.2
Indeno(1,2,3-c,d)pyrene	mg/kg	1.3	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	0.3	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	1.8	0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	39	1.1	0.1	0.1	1.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	4.2	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	4.2	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	4.2	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	104	114	71	78	81

PAHs in Soil		
Our Reference		249404-51
Your Reference	UNITS	SDUP4
Depth		-
Date Sampled		14.8.20
Type of sample		soil
Date extracted	-	26/08/2020
Date analysed	-	27/08/2020
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	<0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	0.4
Anthracene	mg/kg	<0.1
Fluoranthene	mg/kg	0.2
Pyrene	mg/kg	0.2
Benzo(a)anthracene	mg/kg	<0.1
Chrysene	mg/kg	0.2
Benzo(b,j+k)fluoranthene	mg/kg	0.2
Benzo(a)pyrene	mg/kg	0.09
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1
Total +ve PAH's	mg/kg	1.4
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5
Surrogate p-Terphenyl-d14	%	114

Organochlorine Pesticides in soil						
Our Reference		249404-6	249404-7	249404-8	249404-10	249404-12
Your Reference	UNITS	BH102	BH103	BH104	BH106	BH108
Depth		0.27-0.4	0.14-0.3	0.2-0.35	0.26-0.3	0-0.2
Date Sampled		14.8.20	14.8.20	14.8.20	14.8.20	14.8.20
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	24/08/2020	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Date analysed	-	24/08/2020	24/08/2020	24/08/2020	24/08/2020	24/08/2020
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	101	103	100	95	94

Organochlorine Pesticides in soil			
Our Reference		249404-44	249404-51
Your Reference	UNITS	BH122	SDUP4
Depth		0.14-0.25	-
Date Sampled		14.8.20	14.8.20
Type of sample		soil	soil
Date extracted	-	24/08/2020	24/08/2020
Date analysed	-	24/08/2020	24/08/2020
alpha-BHC	mg/kg	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1
Surrogate TCMX	%	95	93

Organophosphorus Pesticides in Soil						
Our Reference		249404-6	249404-7	249404-8	249404-10	249404-12
Your Reference	UNITS	BH102	BH103	BH104	BH106	BH108
Depth		0.27-0.4	0.14-0.3	0.2-0.35	0.26-0.3	0-0.2
Date Sampled		14.8.20	14.8.20	14.8.20	14.8.20	14.8.20
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	24/08/2020	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Date analysed	-	24/08/2020	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	101	103	100	95	94

Organophosphorus Pesticides in Soil			
Our Reference		249404-44	249404-51
Your Reference	UNITS	BH122	SDUP4
Depth		0.14-0.25	-
Date Sampled		14.8.20	14.8.20
Type of sample		soil	soil
Date extracted	-	24/08/2020	24/08/2020
Date analysed	-	24/08/2020	24/08/2020
Dichlorvos	mg/kg	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1
Surrogate TCMX	%	95	93

PCBs in Soil						
Our Reference		249404-6	249404-7	249404-8	249404-10	249404-12
Your Reference	UNITS	BH102	BH103	BH104	BH106	BH108
Depth		0.27-0.4	0.14-0.3	0.2-0.35	0.26-0.3	0-0.2
Date Sampled		14.8.20	14.8.20	14.8.20	14.8.20	14.8.20
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	24/08/2020	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Date analysed	-	24/08/2020	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	101	103	100	95	94

PCBS IN SOIL			
Our Reference		249404-44	249404-51
Your Reference	UNITS	BH122	SDUP4
Depth		0.14-0.25	-
Date Sampled		14.8.20	14.8.20
Type of sample		soil	soil
Date extracted	-	24/08/2020	24/08/2020
Date analysed	-	24/08/2020	24/08/2020
Aroclor 1016	mg/kg	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1
Surrogate TCMX	%	95	93

Acid Extractable metals in soil						
Our Reference		249404-1	249404-2	249404-6	249404-7	249404-8
Your Reference	UNITS	BH101	BH101	BH102	BH103	BH104
Depth		0.5-0.95	1.5-1.95	0.27-0.4	0.14-0.3	0.2-0.35
Date Sampled		13/08/2030	13.8.30	14.8.20	14.8.20	14.8.20
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	24/08/2020	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Date analysed	-	24/08/2020	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Arsenic	mg/kg	4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	13	5	8	6	22
Copper	mg/kg	37	17	85	61	62
Lead	mg/kg	48	31	2	2	1
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	8	20	58	49	79
Zinc	mg/kg	61	120	22	22	32

Acid Extractable metals in soil						
Our Reference		249404-9	249404-10	249404-11	249404-12	249404-15
Your Reference	UNITS	BH105	BH106	BH107	BH108	BH109
Depth		0.19-0.3	0.26-0.3	0.25-0.4	0-0.2	0.25-0.3
Date Sampled		14.8.20	14.8.20	14.8.20	14.8.20	14.8.20
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	24/08/2020	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Date analysed	-	24/08/2020	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	14	9	15	13	21
Copper	mg/kg	68	97	68	38	34
Lead	mg/kg	61	3	3	50	4
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	14	75	61	9	89
Zinc	mg/kg	120	31	23	240	39

Acid Extractable metals in soil						
Our Reference		249404-16	249404-17	249404-19	249404-20	249404-22
Your Reference	UNITS	BH110	BH111	BH112	BH113	BH114
Depth		0.37-0.65	0.17-0.3	0.4-0.5	0.19-0.4	0.18-0.35
Date Sampled		14.8.20	14.8.20	14.8.20	14.8.20	14.8.20
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	24/08/2020	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Date analysed	-	24/08/2020	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Arsenic	mg/kg	7	<4	<4	5	<4
Cadmium	mg/kg	1	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	34	2	20	9	37
Copper	mg/kg	470	67	33	30	120
Lead	mg/kg	1,500	4	72	13	360
Mercury	mg/kg	0.5	<0.1	<0.1	<0.1	0.2
Nickel	mg/kg	21	2	17	17	45
Zinc	mg/kg	980	16	300	65	310

Acid Extractable metals in soil						
Our Reference		249404-23	249404-26	249404-29	249404-32	249404-34
Your Reference	UNITS	BH115	BH116	BH117	BH118	BH119
Depth		0.21-0.4	0.13-0.4	0.2-0.5	0.6-0.9	0-0.2
Date Sampled		13.8.20	13.8.20	13.8.20	13.8.20	12.8.20
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	24/08/2020	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Date analysed	-	24/08/2020	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Arsenic	mg/kg	<4	<4	<4	5	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	0.5
Chromium	mg/kg	7	7	10	17	12
Copper	mg/kg	34	51	20	4	47
Lead	mg/kg	11	16	32	25	110
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	6	5	9	4	10
Zinc	mg/kg	21	82	48	8	240

Acid Extractable metals in soil						
Our Reference		249404-36	249404-41	249404-44	249404-47	249404-48
Your Reference	UNITS	BH120	BH121	BH122	BH123	SDUP1
Depth		0.04-0.3	0.18-0.7	0.14-0.25	0.15-0.3	-
Date Sampled		13.8.20	13.8.20	14.8.20	14.8.20	12.8.20
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	24/08/2020	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Date analysed	-	24/08/2020	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	0.4
Chromium	mg/kg	16	16	5	29	12
Copper	mg/kg	27	5	4	19	45
Lead	mg/kg	64	26	7	14	110
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	6	2	4	34	10
Zinc	mg/kg	91	10	8	44	230

Acid Extractable metals in soil			
Our Reference		249404-51	249404-57
Your Reference	UNITS	SDUP4	SDUP4 - [TRIPLICATE]
Depth		-	-
Date Sampled		14.8.20	14.8.20
Type of sample		soil	soil
Date prepared	-	24/08/2020	24/08/2020
Date analysed	-	24/08/2020	24/08/2020
Arsenic	mg/kg	5	5
Cadmium	mg/kg	<0.4	<0.4
Chromium	mg/kg	12	19
Copper	mg/kg	46	42
Lead	mg/kg	180	210
Mercury	mg/kg	0.5	0.4
Nickel	mg/kg	10	12
Zinc	mg/kg	230	190

Moisture						
Our Reference		249404-1	249404-2	249404-6	249404-7	249404-8
Your Reference	UNITS	BH101	BH101	BH102	BH103	BH104
Depth		0.5-0.95	1.5-1.95	0.27-0.4	0.14-0.3	0.2-0.35
Date Sampled		13/08/2030	13.8.30	14.8.20	14.8.20	14.8.20
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	24/08/2020	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Date analysed	-	25/08/2020	25/08/2020	25/08/2020	25/08/2020	25/08/2020
Moisture	%	19	25	5.7	6.9	6.6
Moisture						
Our Reference		249404-9	249404-10	249404-11	249404-12	249404-15
Your Reference	UNITS	BH105	BH106	BH107	BH108	BH109
Depth		0.19-0.3	0.26-0.3	0.25-0.4	0-0.2	0.25-0.3
Date Sampled		14.8.20	14.8.20	14.8.20	14.8.20	14.8.20
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	24/08/2020	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Date analysed	-	25/08/2020	25/08/2020	25/08/2020	25/08/2020	25/08/2020
Moisture	%	13	10	7.7	20	16
Moisture						
Our Reference		249404-16	249404-17	249404-19	249404-20	249404-22
Your Reference	UNITS	BH110	BH111	BH112	BH113	BH114
Depth		0.37-0.65	0.17-0.3	0.4-0.5	0.19-0.4	0.18-0.35
Date Sampled		14.8.20	14.8.20	14.8.20	14.8.20	14.8.20
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	24/08/2020	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Date analysed	-	25/08/2020	25/08/2020	25/08/2020	25/08/2020	25/08/2020
Moisture	%	22	9.7	20	9.0	17
Moisture						
Our Reference		249404-23	249404-26	249404-29	249404-32	249404-34
Your Reference	UNITS	BH115	BH116	BH117	BH118	BH119
Depth		0.21-0.4	0.13-0.4	0.2-0.5	0.6-0.9	0-0.2
Date Sampled		13.8.20	13.8.20	13.8.20	13.8.20	12.8.20
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	24/08/2020	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Date analysed	-	25/08/2020	25/08/2020	25/08/2020	25/08/2020	25/08/2020
		23/00/2020	23/00/2020	20/00/2020	20,00,2020	20/00/2020

Moisture						
Our Reference		249404-36	249404-41	249404-44	249404-47	249404-48
Your Reference	UNITS	BH120	BH121	BH122	BH123	SDUP1
Depth		0.04-0.3	0.18-0.7	0.14-0.25	0.15-0.3	-
Date Sampled		13.8.20	13.8.20	14.8.20	14.8.20	12.8.20
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	24/08/2020	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Date analysed	-	25/08/2020	25/08/2020	25/08/2020	25/08/2020	25/08/2020
Moisture	%	15	17	4.8	7.4	16

Moisture		
Our Reference		249404-51
Your Reference	UNITS	SDUP4
Depth		-
Date Sampled		14.8.20
Type of sample		soil
Date prepared	-	24/08/2020
Date analysed	-	25/08/2020
Moisture	%	19

Asbestos ID - materials		
Our Reference		249404-56
Your Reference	UNITS	FCF1
Depth		-
Date Sampled		12.8.20
Type of sample		soil
Date analysed	-	21/08/2020
Mass / Dimension of Sample	-	45x33x5mm
Sample Description	-	Beige layered fibre cement material
Asbestos ID in materials	-	No asbestos detected
		Organic fibres detected
Trace Analysis	-	No asbestos detected

Asbestos ID - soils NEPM - ASB-001						
Our Reference		249404-12	249404-20	249404-26	249404-29	249404-32
Your Reference	UNITS	BH108	BH113	BH116	BH117	BH118
Depth		0-0.2	0.19-0.4	0.13-0.4	0.2-0.5	0.6-0.9
Date Sampled		14.8.20	14.8.20	13.8.20	13.8.20	13.8.20
Type of sample		soil	soil	soil	soil	soil
Date analysed	-	24/08/2020	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Sample mass tested	g	443.98	886.77	514.34	705.17	551.44
Sample Description	-	Brown fine- grained soil, rocks & debris	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected Synthetic mineral fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected Synthetic mineral fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected	No visible asbestos detected	No visible asbestos detected	Chrysotile	No visible asbestos detected
ACM >7mm Estimation*	g	-	-	-	-	-
FA and AF Estimation*	g	-	-	-	0.0038	-
ACM >7mm Estimation*	%(w/w)	<0.01	<0.01	<0.01	<0.01	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001	<0.001

Asbestos ID - soils NEPM - ASB-001				
Our Reference		249404-36	249404-44	249404-47
Your Reference	UNITS	BH120	BH122	BH123
Depth		0.04-0.3	0.14-0.25	0.15-0.3
Date Sampled		13.8.20	14.8.20	14.8.20
Type of sample		soil	soil	soil
Date analysed	-	24/08/2020	24/08/2020	24/08/2020
Sample mass tested	g	585.74	872.21	673.82
Sample Description	-	Brown coarse- grained soil & rocks	Brown fine- grained soil & rocks	Brown coarse- grained soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres	No asbestos detected at reporting limit of 0.1g/kg Organic fibres	No asbestos detected at reporting limit of 0.1g/kg Organic fibres
		detected	detected	detected
	-	detected	No aspestos detected	detected
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected	No visible asbestos detected	No visible asbestos detected
ACM >7mm Estimation*	g	_	_	-
FA and AF Estimation*	g	-	_	_
ACM >7mm Estimation*	%(w/w)	<0.01	<0.01	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001

BTEX in Water		
Our Reference		249404-55
Your Reference	UNITS	FR-HA1
Depth		-
Date Sampled		14.8.20
Type of sample		soil
Date extracted	-	21/08/2020
Date analysed	-	24/08/2020
Benzene	µg/L	<1
Toluene	μg/L	<1
Ethylbenzene	µg/L	<1
m+p-xylene	µg/L	<2
o-xylene	µg/L	<1
Surrogate Dibromofluoromethane	%	127
Surrogate toluene-d8	%	93
Surrogate 4-BFB	%	88

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
ASB-001	Asbestos ID - Identification of asbestos in soil samples using Polarised Light Microscopy and Dispersion Staining Techniques. Minimum 500mL soil sample was analysed as recommended by "National Environment Protection (Assessment of site contamination) Measure, Schedule B1 and "The Guidelines from the Assessment, Remediation and Management of Asbestos- Contaminated Sites in Western Australia - May 2009" with a reporting limit of 0.1g/kg (0.01% w/w) as per Australian Standard AS4964-2004. Results reported denoted with * are outside our scope of NATA accreditation.
	NOTE ^{#1} Total Asbestos g/kg was analysed and reported as per Australian Standard AS4964 (This is the sum of ACM >7mm, <7mm and FA/AF)
	NOTE ^{#2} The screening level of 0.001% w/w asbestos in soil for FA and AF only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.
	Estimation = Estimated asbestos weight
	Results reported with "" is equivalent to no visible asbestos identified using Polarised Light microscopy and Dispersion Staining Techniques.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.

Method ID	Methodology Summary
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC- MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<br="" teq="" teqs="" that="" the="" this="" to="">2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<br="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.="">3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<br="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" the="">Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	249404-7
Date extracted	-			24/08/2020	6	24/08/2020	24/08/2020		24/08/2020	24/08/2020
Date analysed	-			25/08/2020	6	25/08/2020	25/08/2020		25/08/2020	25/08/2020
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	6	<25	<25	0	81	85
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	6	<25	<25	0	81	85
Benzene	mg/kg	0.2	Org-023	<0.2	6	<0.2	<0.2	0	72	75
Toluene	mg/kg	0.5	Org-023	<0.5	6	<0.5	<0.5	0	84	86
Ethylbenzene	mg/kg	1	Org-023	<1	6	<1	<1	0	78	83
m+p-xylene	mg/kg	2	Org-023	<2	6	<2	<2	0	85	90
o-Xylene	mg/kg	1	Org-023	<1	6	<1	<1	0	83	94
naphthalene	mg/kg	1	Org-023	<1	6	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	95	6	96	99	3	121	117

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	249404-44
Date extracted	-			[NT]	12	24/08/2020	24/08/2020		24/08/2020	24/08/2020
Date analysed	-			[NT]	12	25/08/2020	25/08/2020		25/08/2020	25/08/2020
TRH C ₆ - C ₉	mg/kg	25	Org-023	[NT]	12	<25	<25	0	71	82
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	[NT]	12	<25	<25	0	71	82
Benzene	mg/kg	0.2	Org-023	[NT]	12	<0.2	<0.2	0	71	75
Toluene	mg/kg	0.5	Org-023	[NT]	12	<0.5	<0.5	0	86	93
Ethylbenzene	mg/kg	1	Org-023	[NT]	12	<1	<1	0	75	76
m+p-xylene	mg/kg	2	Org-023	[NT]	12	<2	<2	0	73	83
o-Xylene	mg/kg	1	Org-023	[NT]	12	<1	<1	0	71	84
naphthalene	mg/kg	1	Org-023	[NT]	12	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	12	89	98	10	108	104

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	51	24/08/2020	24/08/2020		[NT]	[NT]
Date analysed	-			[NT]	51	25/08/2020	25/08/2020		[NT]	[NT]
TRH C ₆ - C ₉	mg/kg	25	Org-023	[NT]	51	<25	<25	0	[NT]	[NT]
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	[NT]	51	<25	<25	0	[NT]	[NT]
Benzene	mg/kg	0.2	Org-023	[NT]	51	<0.2	<0.2	0	[NT]	[NT]
Toluene	mg/kg	0.5	Org-023	[NT]	51	<0.5	<0.5	0	[NT]	[NT]
Ethylbenzene	mg/kg	1	Org-023	[NT]	51	<1	<1	0	[NT]	[NT]
m+p-xylene	mg/kg	2	Org-023	[NT]	51	<2	<2	0	[NT]	[NT]
o-Xylene	mg/kg	1	Org-023	[NT]	51	<1	<1	0	[NT]	[NT]
naphthalene	mg/kg	1	Org-023	[NT]	51	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	51	110	88	22	[NT]	[NT]

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	249404-7
Date extracted	-			24/08/2020	6	24/08/2020	24/08/2020		24/08/2020	24/08/2020
Date analysed	-			24/08/2020	6	24/08/2020	24/08/2020		24/08/2020	24/08/2020
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	6	<50	<50	0	85	103
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	6	<100	<100	0	109	139
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	6	<100	<100	0	92	92
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	6	<50	<50	0	85	103
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	6	<100	<100	0	109	139
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	6	<100	<100	0	92	92
Surrogate o-Terphenyl	%		Org-020	95	6	85	94	10	131	94

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	249404-44
Date extracted	-			[NT]	12	24/08/2020	24/08/2020		24/08/2020	24/08/2020
Date analysed	-			[NT]	12	24/08/2020	24/08/2020		24/08/2020	24/08/2020
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	[NT]	12	<50	<50	0	120	98
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	[NT]	12	150	160	6	108	108
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	[NT]	12	130	140	7	138	122
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	[NT]	12	<50	<50	0	120	98
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	[NT]	12	240	250	4	108	108
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	[NT]	12	<100	<100	0	138	122
Surrogate o-Terphenyl	%		Org-020	[NT]	12	#	#		98	109

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	51	24/08/2020	24/08/2020		[NT]	[NT]
Date analysed	-			[NT]	51	24/08/2020	24/08/2020		[NT]	[NT]
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	[NT]	51	59	<50	17	[NT]	[NT]
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	[NT]	51	180	150	18	[NT]	[NT]
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	[NT]	51	180	140	25	[NT]	[NT]
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	[NT]	51	<50	<50	0	[NT]	[NT]
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	[NT]	51	290	240	19	[NT]	[NT]
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	[NT]	51	100	<100	0	[NT]	[NT]
Surrogate o-Terphenyl	%		Org-020	[NT]	51	#	#		[NT]	[NT]

QUALIT	Y CONTRC	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	249404-7
Date extracted	-			24/08/2020	6	24/08/2020	24/08/2020		24/08/2020	24/08/2020
Date analysed	-			24/08/2020	6	24/08/2020	24/08/2020		24/08/2020	24/08/2020
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	84	90
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	[NT]	[NT]
Fluorene	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	91	91
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	119	123
Anthracene	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	109	109
Pyrene	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	109	116
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	82	86
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	6	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	6	<0.05	<0.05	0	95	86
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	95	6	104	105	1	125	112

QUALIT	Y CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	249404-44
Date extracted	-			[NT]	12	24/08/2020	24/08/2020		24/08/2020	24/08/2020
Date analysed	-			[NT]	12	24/08/2020	24/08/2020		24/08/2020	24/08/2020
Naphthalene	mg/kg	0.1	Org-022/025	[NT]	12	<0.1	<0.1	0	92	100
Acenaphthylene	mg/kg	0.1	Org-022/025	[NT]	12	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	[NT]	12	<0.1	<0.1	0	[NT]	[NT]
Fluorene	mg/kg	0.1	Org-022/025	[NT]	12	<0.1	<0.1	0	96	102
Phenanthrene	mg/kg	0.1	Org-022/025	[NT]	12	0.7	0.4	55	115	106
Anthracene	mg/kg	0.1	Org-022/025	[NT]	12	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	[NT]	12	0.6	0.3	67	112	106
Pyrene	mg/kg	0.1	Org-022/025	[NT]	12	0.7	0.3	80	107	100
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	[NT]	12	0.3	0.1	100	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-022/025	[NT]	12	0.5	0.2	86	86	80
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	[NT]	12	0.7	0.3	80	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	[NT]	12	0.4	0.2	67	93	72
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	[NT]	12	0.2	<0.1	67	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	[NT]	12	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	[NT]	12	0.2	0.1	67	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	[NT]	12	114	100	13	126	104

QUALIT	Y CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				51	26/08/2020	24/08/2020		[NT]	
Date analysed	-				51	27/08/2020	24/08/2020		[NT]	
Naphthalene	mg/kg	0.1	Org-022/025		51	<0.1	<0.1	0	[NT]	
Acenaphthylene	mg/kg	0.1	Org-022/025		51	<0.1	<0.1	0	[NT]	
Acenaphthene	mg/kg	0.1	Org-022/025		51	<0.1	<0.1	0	[NT]	
Fluorene	mg/kg	0.1	Org-022/025		51	<0.1	<0.1	0	[NT]	
Phenanthrene	mg/kg	0.1	Org-022/025		51	0.4	<0.1	120	[NT]	
Anthracene	mg/kg	0.1	Org-022/025		51	<0.1	<0.1	0	[NT]	
Fluoranthene	mg/kg	0.1	Org-022/025		51	0.2	0.1	67	[NT]	
Pyrene	mg/kg	0.1	Org-022/025		51	0.2	0.2	0	[NT]	
Benzo(a)anthracene	mg/kg	0.1	Org-022/025		51	<0.1	0.1	0	[NT]	
Chrysene	mg/kg	0.1	Org-022/025		51	0.2	0.1	67	[NT]	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025		51	0.2	<0.2	0	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-022/025		51	0.09	0.1	11	[NT]	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025		51	<0.1	<0.1	0	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025		51	<0.1	<0.1	0	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025		51	<0.1	<0.1	0	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025		51	114	77	39	[NT]	[NT]

QUALITY CONTR	OL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	249404-7
Date extracted	-			24/08/2020	6	24/08/2020	24/08/2020		24/08/2020	24/08/2020
Date analysed	-			24/08/2020	6	24/08/2020	24/08/2020		24/08/2020	24/08/2020
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	92	89
НСВ	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	96	100
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	103	103
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	85	101
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	90	128
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	111	111
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	125	103
Endrin	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	98	109
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	109	112
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	91	78
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	100	6	101	102	1	98	95

QUALITY CONTR	OL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	249404-44
Date extracted	-			[NT]	12	24/08/2020	24/08/2020		24/08/2020	24/08/2020
Date analysed	-			[NT]	12	24/08/2020	24/08/2020		24/08/2020	24/08/2020
alpha-BHC	mg/kg	0.1	Org-022/025	[NT]	12	<0.1	<0.1	0	97	102
НСВ	mg/kg	0.1	Org-022/025	[NT]	12	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-022/025	[NT]	12	<0.1	<0.1	0	104	84
gamma-BHC	mg/kg	0.1	Org-022/025	[NT]	12	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-022/025	[NT]	12	<0.1	<0.1	0	101	80
delta-BHC	mg/kg	0.1	Org-022/025	[NT]	12	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-022/025	[NT]	12	<0.1	<0.1	0	117	102
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	[NT]	12	<0.1	<0.1	0	126	94
gamma-Chlordane	mg/kg	0.1	Org-022/025	[NT]	12	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	[NT]	12	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	[NT]	12	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-022/025	[NT]	12	<0.1	<0.1	0	111	106
Dieldrin	mg/kg	0.1	Org-022/025	[NT]	12	<0.1	<0.1	0	121	94
Endrin	mg/kg	0.1	Org-022/025	[NT]	12	<0.1	<0.1	0	104	88
Endosulfan II	mg/kg	0.1	Org-022/025	[NT]	12	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-022/025	[NT]	12	<0.1	<0.1	0	112	94
Endrin Aldehyde	mg/kg	0.1	Org-022/025	[NT]	12	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-022/025	[NT]	12	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	[NT]	12	<0.1	<0.1	0	93	78
Methoxychlor	mg/kg	0.1	Org-022/025	[NT]	12	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	[NT]	12	94	89	5	101	102

QUALITY CONTR	OL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				51	24/08/2020	24/08/2020		[NT]	
Date analysed	-				51	24/08/2020	24/08/2020		[NT]	
alpha-BHC	mg/kg	0.1	Org-022/025		51	<0.1	<0.1	0	[NT]	
НСВ	mg/kg	0.1	Org-022/025		51	<0.1	<0.1	0	[NT]	
beta-BHC	mg/kg	0.1	Org-022/025		51	<0.1	<0.1	0	[NT]	
gamma-BHC	mg/kg	0.1	Org-022/025		51	<0.1	<0.1	0	[NT]	
Heptachlor	mg/kg	0.1	Org-022/025		51	<0.1	<0.1	0	[NT]	
delta-BHC	mg/kg	0.1	Org-022/025		51	<0.1	<0.1	0	[NT]	
Aldrin	mg/kg	0.1	Org-022/025		51	<0.1	<0.1	0	[NT]	
Heptachlor Epoxide	mg/kg	0.1	Org-022/025		51	<0.1	<0.1	0	[NT]	
gamma-Chlordane	mg/kg	0.1	Org-022/025		51	<0.1	<0.1	0	[NT]	
alpha-chlordane	mg/kg	0.1	Org-022/025		51	<0.1	<0.1	0	[NT]	
Endosulfan I	mg/kg	0.1	Org-022/025		51	<0.1	<0.1	0	[NT]	
pp-DDE	mg/kg	0.1	Org-022/025		51	<0.1	<0.1	0	[NT]	
Dieldrin	mg/kg	0.1	Org-022/025		51	<0.1	<0.1	0	[NT]	
Endrin	mg/kg	0.1	Org-022/025		51	<0.1	<0.1	0	[NT]	
Endosulfan II	mg/kg	0.1	Org-022/025		51	<0.1	<0.1	0	[NT]	
pp-DDD	mg/kg	0.1	Org-022/025		51	<0.1	<0.1	0	[NT]	
Endrin Aldehyde	mg/kg	0.1	Org-022/025		51	<0.1	<0.1	0	[NT]	
pp-DDT	mg/kg	0.1	Org-022/025		51	<0.1	<0.1	0	[NT]	
Endosulfan Sulphate	mg/kg	0.1	Org-022/025		51	<0.1	<0.1	0	[NT]	
Methoxychlor	mg/kg	0.1	Org-022/025		51	<0.1	<0.1	0	[NT]	
Surrogate TCMX	%		Org-022/025	[NT]	51	93	97	4	[NT]	[NT]

QUALITY CONTROL: Organophosphorus Pesticides in Soil					Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	249404-7
Date extracted	-			24/08/2020	6	24/08/2020	24/08/2020		24/08/2020	24/08/2020
Date analysed	-			24/08/2020	6	24/08/2020	24/08/2020		24/08/2020	24/08/2020
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	108	96
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	[NT]	[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	112	114
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	93	107
Malathion	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	92	76
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	113	115
Parathion	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	96	98
Bromophos-ethyl	mg/kg	0.1	Org-022	<0.1	6	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	119	121
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	100	6	101	102	1	98	95

QUALITY CONTROL: Organophosphorus Pesticides in Soil					Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	249404-44
Date extracted	-			[NT]	12	24/08/2020	24/08/2020		24/08/2020	24/08/2020
Date analysed	-			[NT]	12	24/08/2020	24/08/2020		24/08/2020	24/08/2020
Dichlorvos	mg/kg	0.1	Org-022/025	[NT]	12	<0.1	<0.1	0	98	98
Dimethoate	mg/kg	0.1	Org-022/025	[NT]	12	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-022/025	[NT]	12	<0.1	<0.1	0	[NT]	[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025	[NT]	12	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-022/025	[NT]	12	<0.1	<0.1	0	112	100
Fenitrothion	mg/kg	0.1	Org-022/025	[NT]	12	<0.1	<0.1	0	103	70
Malathion	mg/kg	0.1	Org-022/025	[NT]	12	<0.1	<0.1	0	94	104
Chlorpyriphos	mg/kg	0.1	Org-022/025	[NT]	12	<0.1	<0.1	0	107	94
Parathion	mg/kg	0.1	Org-022/025	[NT]	12	<0.1	<0.1	0	100	76
Bromophos-ethyl	mg/kg	0.1	Org-022	[NT]	12	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-022/025	[NT]	12	<0.1	<0.1	0	123	96
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	[NT]	12	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	[NT]	12	94	89	5	101	102
QUALITY CONTRO	L: Organoph	nosphorus	s Pesticides in Soil			Du	plicate		Spike Re	covery %
---------------------------	-------------	-----------	----------------------	-------	----	------------	------------	-----	----------	----------
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				51	24/08/2020	24/08/2020		[NT]	[NT]
Date analysed	-				51	24/08/2020	24/08/2020		[NT]	[NT]
Dichlorvos	mg/kg	0.1	Org-022/025		51	<0.1	<0.1	0	[NT]	[NT]
Dimethoate	mg/kg	0.1	Org-022/025		51	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-022/025		51	<0.1	<0.1	0	[NT]	[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025		51	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-022/025		51	<0.1	<0.1	0	[NT]	[NT]
Fenitrothion	mg/kg	0.1	Org-022/025		51	<0.1	<0.1	0	[NT]	[NT]
Malathion	mg/kg	0.1	Org-022/025		51	<0.1	<0.1	0	[NT]	[NT]
Chlorpyriphos	mg/kg	0.1	Org-022/025		51	<0.1	<0.1	0	[NT]	[NT]
Parathion	mg/kg	0.1	Org-022/025		51	<0.1	<0.1	0	[NT]	[NT]
Bromophos-ethyl	mg/kg	0.1	Org-022		51	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-022/025		51	<0.1	<0.1	0	[NT]	[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025		51	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025		51	93	97	4	[NT]	[NT]

QUALIT		Du	Spike Recovery %							
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	249404-7
Date extracted	-			24/08/2020	6	24/08/2020	24/08/2020		24/08/2020	24/08/2020
Date analysed	-			24/08/2020	6	24/08/2020	24/08/2020		24/08/2020	24/08/2020
Aroclor 1016	mg/kg	0.1	Org-021	<0.1	6	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021	<0.1	6	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021	<0.1	6	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021	<0.1	6	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021	<0.1	6	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021	<0.1	6	<0.1	<0.1	0	70	70
Aroclor 1260	mg/kg	0.1	Org-021	<0.1	6	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-021	100	6	101	102	1	98	95

QUALIT		Du	Spike Recovery %							
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	249404-44
Date extracted	-			[NT]	12	24/08/2020	24/08/2020		24/08/2020	24/08/2020
Date analysed	-			[NT]	12	24/08/2020	24/08/2020		24/08/2020	24/08/2020
Aroclor 1016	mg/kg	0.1	Org-021	[NT]	12	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021	[NT]	12	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021	[NT]	12	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021	[NT]	12	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021	[NT]	12	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021	[NT]	12	<0.1	<0.1	0	72	102
Aroclor 1260	mg/kg	0.1	Org-021	[NT]	12	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-021	[NT]	12	94	89	5	101	102

QUALIT		Du	Spike Recovery %							
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	51	24/08/2020	24/08/2020			
Date analysed	-			[NT]	51	24/08/2020	24/08/2020			
Aroclor 1016	mg/kg	0.1	Org-021	[NT]	51	<0.1	<0.1	0		
Aroclor 1221	mg/kg	0.1	Org-021	[NT]	51	<0.1	<0.1	0		
Aroclor 1232	mg/kg	0.1	Org-021	[NT]	51	<0.1	<0.1	0		
Aroclor 1242	mg/kg	0.1	Org-021	[NT]	51	<0.1	<0.1	0		
Aroclor 1248	mg/kg	0.1	Org-021	[NT]	51	<0.1	<0.1	0		
Aroclor 1254	mg/kg	0.1	Org-021	[NT]	51	<0.1	<0.1	0		
Aroclor 1260	mg/kg	0.1	Org-021	[NT]	51	<0.1	<0.1	0		
Surrogate TCMX	%		Org-021	[NT]	51	93	97	4	[NT]	[NT]

QUALITY CONT		Du	Spike Recovery %							
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	249404-7
Date prepared	-			24/08/2020	6	24/08/2020	24/08/2020		24/08/2020	24/08/2020
Date analysed	-			24/08/2020	6	24/08/2020	24/08/2020		24/08/2020	24/08/2020
Arsenic	mg/kg	4	Metals-020	<4	6	<4	<4	0	95	79
Cadmium	mg/kg	0.4	Metals-020	<0.4	6	<0.4	<0.4	0	89	86
Chromium	mg/kg	1	Metals-020	<1	6	8	8	0	90	77
Copper	mg/kg	1	Metals-020	<1	6	85	81	5	91	91
Lead	mg/kg	1	Metals-020	<1	6	2	1	67	91	72
Mercury	mg/kg	0.1	Metals-021	<0.1	6	<0.1	<0.1	0	90	84
Nickel	mg/kg	1	Metals-020	<1	6	58	58	0	90	70
Zinc	mg/kg	1	Metals-020	<1	6	22	24	9	97	72

QUALITY CONT	ROL: Acid E	xtractabl		Du	Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	249404-44
Date prepared	-			[NT]	12	24/08/2020	24/08/2020		24/08/2020	24/08/2020
Date analysed	-			[NT]	12	24/08/2020	24/08/2020		24/08/2020	24/08/2020
Arsenic	mg/kg	4	Metals-020	[NT]	12	<4	<4	0	99	95
Cadmium	mg/kg	0.4	Metals-020	[NT]	12	<0.4	<0.4	0	96	86
Chromium	mg/kg	1	Metals-020	[NT]	12	13	13	0	97	88
Copper	mg/kg	1	Metals-020	[NT]	12	38	34	11	97	107
Lead	mg/kg	1	Metals-020	[NT]	12	50	50	0	99	95
Mercury	mg/kg	0.1	Metals-021	[NT]	12	<0.1	0.1	0	87	87
Nickel	mg/kg	1	Metals-020	[NT]	12	9	9	0	97	87
Zinc	mg/kg	1	Metals-020	[NT]	12	240	210	13	100	92

QUALITY CONT		Du		Spike Recovery %						
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	51	24/08/2020	24/08/2020		[NT]	[NT]
Date analysed	-			[NT]	51	24/08/2020	24/08/2020		[NT]	[NT]
Arsenic	mg/kg	4	Metals-020	[NT]	51	5	11	75	[NT]	[NT]
Cadmium	mg/kg	0.4	Metals-020	[NT]	51	<0.4	<0.4	0	[NT]	[NT]
Chromium	mg/kg	1	Metals-020	[NT]	51	12	18	40	[NT]	[NT]
Copper	mg/kg	1	Metals-020	[NT]	51	46	47	2	[NT]	[NT]
Lead	mg/kg	1	Metals-020	[NT]	51	180	160	12	[NT]	[NT]
Mercury	mg/kg	0.1	Metals-021	[NT]	51	0.5	0.4	22	[NT]	[NT]
Nickel	mg/kg	1	Metals-020	[NT]	51	10	17	52	[NT]	[NT]
Zinc	mg/kg	1	Metals-020	[NT]	51	230	170	30	[NT]	[NT]

QUALITY	Duplicate Spike F					covery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			24/08/2020	[NT]		[NT]	[NT]	21/08/2020	[NT]
Date analysed	-			25/08/2020	[NT]		[NT]	[NT]	24/08/2020	[NT]
Benzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	102	[NT]
Toluene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	94	[NT]
Ethylbenzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	97	[NT]
m+p-xylene	µg/L	2	Org-023	<2	[NT]		[NT]	[NT]	106	[NT]
o-xylene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	106	[NT]
Surrogate Dibromofluoromethane	%		Org-023	108	[NT]		[NT]	[NT]	95	
Surrogate toluene-d8	%		Org-023	93	[NT]		[NT]	[NT]	94	[NT]
Surrogate 4-BFB	%		Org-023	88	[NT]	[NT]	[NT]	[NT]	112	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	I Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Asbestos-ID in soil: NEPM

This report is consistent with the reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013. This is reported outside our scope of NATA accreditation.

Acid Extractable Metals in Soil: The laboratory RPD acceptance criteria has been exceeded for 249404-51 for Cr & Ni. Therefore a triplicate result has been issued as laboratory sample number 249404-57.

TRH Soil C10-C40 NEPM - # Percent recovery for the surrogate is not possible to report as the high concentration of analytes in sample 249404-21 and 51 have caused interference.

PAHs in Soil - The RPD for duplicate results is accepted due to the non homogenous nature of sample 249404-12.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Environmental Investigation Services
Attention	Vittal Boggaram

Sample Login Details	
Your reference	E33191B, Marrickville
Envirolab Reference	249404
Date Sample Received	19/08/2020
Date Instructions Received	20/08/2020
Date Results Expected to be Reported	27/08/2020

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	56 soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	9.6
Cooling Method	Ice
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	VTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBsin Soil	Acid Extractable metalsin soil	Asbestos ID - materials	Asbestos ID - soils NEPM - ASB- 001	BTEX in Water	On Hold
BH101-0.5-0.95	\checkmark	\checkmark	\checkmark				\checkmark				
BH101-1.5-1.95	\checkmark	\checkmark	✓				\checkmark				
BH101-3.0-3.45											\checkmark
BH101-3.8-4.0											\checkmark
BH101-4.5-4.7											\checkmark
BH102-0.27-0.4	\checkmark	✓	\checkmark	✓	\checkmark	\checkmark	✓				
BH103-0.14-0.3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
BH104-0.2-0.35	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
BH105-0.19-0.3	\checkmark	\checkmark	\checkmark				\checkmark				
BH106-0.26-0.3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
BH107-0.25-0.4	\checkmark	✓	\checkmark				✓				
BH108-0-0.2	✓	✓	✓	✓	✓	\checkmark	✓		✓		
BH108-0.6-0.7											✓
BH109-0-0.2											\checkmark
BH109-0.25-0.3	✓	✓	✓				✓				
BH110-0.37-0.65	✓	✓	✓				✓				
BH111-0.17-0.3	✓	✓	✓				✓				
BH112-0.19-0.3											✓
BH112-0.4-0.5	✓	✓	✓				✓				
BH113-0.19-0.4	✓	✓	✓				✓		\checkmark		
BH113-0.6-0.8											✓
BH114-0.18-0.35	✓	✓	✓				✓				
BH115-0.21-0.4	✓	✓	✓				✓				
BH115-0.4-0.7											✓
BH115-1.5-1.7											✓
BH116-0.13-0.4	✓	✓	✓				✓		✓		
BH116-0.7-0.9											✓
BH116-1.5-1.7											✓
BH117-0.2-0.5	✓	✓	✓				✓		✓		
BH117-1.5-1.7											✓
BH118-0.16-0.4											✓
BH118-0.6-0.9	 ✓ 	\checkmark	✓				\checkmark		✓		

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	VTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBsin Soil	Acid Extractable metalsin soil	Asbestos ID - materials	Asbestos ID - soils NEPM - ASB- 001	BTEX in Water	On Hold
BH118-1.5-1.7											✓
BH119-0-0.2	✓	\checkmark	✓				✓				
BH119-0.6-1.0											\checkmark
BH120-0.04-0.3	\checkmark	\checkmark	✓				✓		✓		
BH120-0.6-0.8											✓
BH120-1.4-1.6											\checkmark
BH120-2.2-2.4											\checkmark
BH120-3.0-3.45											✓
BH121-0.18-0.7	✓	\checkmark	\checkmark				✓				
BH121-1.0-1.3											\checkmark
BH121-1.5-1.7											\checkmark
BH122-0.14-0.25	\checkmark	✓	✓	✓	\checkmark	\checkmark	✓		✓		
BH122-0.25-0.35											\checkmark
BH123-0.05-0.15											\checkmark
BH123-0.15-0.3	✓	✓	✓				✓		✓		
SDUP1	\checkmark	\checkmark	\checkmark				✓				
-											✓
SDUP3											\checkmark
SDUP4	✓	✓	✓	✓	✓	✓	✓				
SDUP5											✓
TS-S1	✓										
TB-S1	✓										
FR-HA1										\checkmark	
FCF1								✓			

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

updated COC

.

SAMPLE AND CHAIN OF CUSTODY FORM

<u>TO:</u> ENVIROLAB S	ERVICE	S PTY LTD		JKE Job		E33191B		l		E33191B										
12 ASHLEY ST	REET			Number:								J	KE	Ìnv	iro	nm	her	nts		
CHAISWOOD	200 NSW 2	2067		Data Bar	ulte	STANDARD		Ì			DEAD	05.1								
F: (02) 99106	200			Required	:	JIANDARD		-			MACOLIARIE PARK NSW 2113									
				ficquireu	•						P: 07-9888 5000 E: 07-9888 5001									
Attention: Ai	leen			Page:		'1 of 3						Attention: Vittal Boggaram								
Location:	Marrie	kville								Sam	nple Pr	eserv	ed in l	Esky o	n ice					
Sampler:	AM										Tests Required									
Date Sampled	Lab Ref:	Sample Number	Depth (m)	Sample Container	PID	Sample Description	Combo 6	Combo 3	Asbestos (WA 500ml method)	BTEX										
13.8.30	ı	BH101	0.5-0.95	G, A	0	Fill: Silty Sand Clay		Х						_						
13.8.30	2	вн101	1.5-1.95	G, A	0	Fill: Silty Sand		X			his		E	nvirola 1	b Ser 2 Ashi	vices ey St				
13.8.30	3	BH101	3.0-3.45	G, A	0	Clay					GROUT	2	Chat	5WOOC	NSW	2067 6200				
13.8.30	4	BH101	3.8-4.0	G, A	1	Fill: Silty Sand Clav				16	ob N	<u>o:</u>	240	140	34					
13.8.30	5	вн101	4.5-4.7	G, A	0	Silty Clay					ate R	eceiv	ed: I	nlo	81	6	0			
14.8.20	6	BH102	0.27-0.4	G, A	0	Fill: Silty Gravelly Sand	X			7	ime F	eceiv	ed:	6; 2	20					
14.8.20	7	BH103	0.14-0.3	G, A	0	Fill: Silty Gravelly Sand	х				emp:	6001	Ambie	DIC nt	m					
14.8.20	8	BH104	0.2-0.35	G, A	0	Fill: Silty Gravelly Sand	х	-		5	oolin ecuri	y: Int	cépa adt/Br	çk bken/	None					
14.8.20	9	BH105	0.19-0.3	G, A	0	Fill: Silty Sand Gravel		X					ľ							
14.8.20	10	BH106	0.26-0.3	G, A	0	Fill: Silty Gravelly Sand	X					_		ι	24-	hed	۲	bC		
14.8.20	11	BH107	0.25-0.4	G, A	0	Fill: Silty Gravelly Sand		Х					2	00	812	04	Ð			
14.8.20	12	BH108	0-0.2	G, A	0	Fill:Silty Sand	Х		X					\dot{pq}	f.°	S				
14.8.20	13	BH108	0.6-0.7	G, A	0	Fill:Silty Sandy Clay							$\overline{\mathbf{S}}$		Sign (* Sters		te.	9		
14.8.20	14	вн109	0-0.2	G, A	0	Fill: Silty Clay				·										
14.8.20	15	вн109	0.25-0.3	G, A	0	Fill:Silty Sand		Х												
14.8.20	16	вн110	0.37-0.65	G, A	0	Fill: Silty Clay		Х					•							
14.8.20	FI	BH111	0.17-0.3	G, A	0	Fill:Silty Sand		Х												
14.8.20	18	ВН112	0.19-0.3	G, A	0	Fill:Silty Sand														
14.8.20	61	BH112	0.4-0.5	G, A	, O	Fill: Silty Clay		X	X											
14.8.20	20	BH113	0.19-0.4	G, A	. 0	Fill: Silty Clay		Х	X				-							
14.8.20	21	BH113	0.6-0.8	G, A	0	Silty Clay														
14.8.20	22	BH114	0.18-0.35	G, A	0	Gravelly Sand		Х												
13.8.20	23	BH115	0.21-0.4	G, A	0	Fill:Silty Sand		X												
13.8.20	24	BH115	0.4-0.7	G, A	0	Fill: Silty Clay														
13.8.20	2S	BH115	1.5-1.7	G, A	0	Silty Clay														
Remarks (comments/detection limits required):							Sample Containers: G - 250mg Glass Jar A - Ziplock Asbestos Bag P - Plastic Bag													
Relinquished	Relinquished By:			Date: 20-08-202	20		Time: 16	:20	ව_		Recei	ved B	$\overset{\mathfrak{r}}{\diamond}$			Date:	<i>c</i> 8 2	20		

SAMPLE AND CHAIN OF CUSTODY FORM

<u>TO:</u> ENVIROLAB 12 ASHLEY S	SERVICE	S PTY LTD		JKE Job Number:		E33191B		a I								her	nte	
CHATSWOOI P: (02) 99106 F: (02) 99106	5 NSW 2 5200 5201	2067		Date Res Required	ults I:	STANDARD	REAR OF 115 WIC					CKS RO RK, NS	CKS ROAD ₹K, NSW 2113 F: 02-9888 5001					
Attention: A	ileen			Page:		2 of 3	Attention: Vittal						ittal B	l Boggaram				
Location:	Marrie	:kville					Sample Preserved in Esky on Ice											
Sampler:	АМ	1				1		1		ı —	T	ests R	lequir	ed				
Date Sampled	Lab Ref:	Sample Number	Depth (m)	Sample Container	PID	Sample Description	Combo 6	Combo 3	Asbestos (WA 500ml method)	BTEX								
13.8.20	26	BH116	0.13-0.4	G, A	0	Fill: Silty Clay		X	X									
13.8.20	27	BH116	0.7-0.9	G, A	0	Fill: Silty Clay												
13.8.20	28	BH116	1.5-1.7	G, A	0	Silty Clay												
13.8.20	29	BH117	0.2-0.5	G, A	0	Fili: Silty Sand		Х	Х									
13.8.20	30	BH117	1.5-1.7	G, A	0	Silty Clay												
13.8.20	31	BH118	0.16-0.4	G	0	Fill: Silty Gravelly Sand												
13.8.20	32	BH118	0.6-0.9	G, A	0	Fill: Silty Clay		X	Х									
13.8.20	35	BH118	1.5-1.7	G, A	0	Silty Clay												
12.8.20	34	BH119	0-0.2	G, A	0	Fill: Silty Sand		Х										
12.8.20	35	BH119	0.6-1.0	G, A	0	Fill: Silty Clay												
13.8.20	36	BH120	0.04-0.3	G, A	0	Fill: Silty Clay		X	X									
13.8.20	ટન	BH120	0.6-0.8	G, A	0	Fill: Silty Sand												
13.8.20	38	BH120	1.4-1.6	G, A	0	Fill: Silty Clay												
13.8.20	391	BH120	2.2-2.4	G, A	0	Fill: Silty Clay				Å								
13.8.20	40	BH120	3.0-3.45	G, A	0	Silty Clay				,								
13.8.20	41	BH121	0.18-0.7	G, A	0	Fill: Silty Clay		X										
13.8.20	42	BH121	1.0-1.3	G, A	0	Fill: Silty Clay												
13.8.20	43	BH121	1.5-1.7	G, A	0	Silty Clay												
14.8.20	44	BH122	0.14-0.25	G, A	0	Fill: Silty Sand	X		Х									
<u>1</u> 4.8.20	45	BH122	0.25-0.35	G, A	0	Fill: Silty Gravelly Sand												
14.8.20	46	BH123	0.05-0.15	G, A	0	Fill: Silty Sandy Gravel												
14.8.20	47	BH123	0.15-0.3	G, A	0	Fill: Silty Clay		Х	Х									
12.8.20	48	SDUP1	-	G	-	Soil DUP		Х										
13.8.20	49	SDUP2		G	-	Soil DUP	_	X		PLE	ASE	SEN	DT		С			
14.8.20	50	SDUP3	-	G	-	Soil DUP												
Remarks (cor	emarks (comments/detection limits required):						Samp G - 25 A - Zi P - Pl	ile Cor 50mg (plock a astic B	ntaine Glass J Asbes Bag	rs: lar tos Ba	g							·
Relinquished	linquished By:			Date: 20-08-2020			Time: \	6. 2	20		Received By: Date: 17/48/2020							

249404

.

`

<u>TO:</u> ENVIROLAB S 12 ASHLEY ST CHATSWOOD	ERVICE REET NSW 2	S PTY LTD 2067		JKE Job Number:		E33191B		1								nts			
P: (02) 99106 F: (02) 99106	200 201			Date Res Required	ults l:	STANDARD		1		REAR OF 115 WICKS ROAD MACQUARIE PARK, NSW 2113					5001				
Attention: Ai	een			Page:		3 of 3		1			Atter	tion:		v	ittal B	oggara	aŭ		
Location:	Marrio	kville								San	Imple Preserved in Esky on Ice								
Sampler:	АМ	r		·····	r			1	, ,		Tests Required								
Date Sampled	Lab Ref:	Sample Number	Depth (m)	Sample Container	PID	Sample Description	Combo 6	Combo 3	Asbestos (WA 500ml method)	BTEX	Asbestos								
14.8.20	Si	SDUP4		G	-	Soil DUP	X												
14.8.20	52	SDUP5	-	G	-	Soil DUP													
13.8.20	કડે	TS-S1	-	v	-	Soil Trip Spike				Х									
13.8.20	Śч	TB-S1	-	v	-	Soil Trip Blank				Х								Ì	
14.8.20	ક્ક	FR-HA1	-	v	-	Field Rinsate				Х							_		
12.8.20	56	FCF1	-	Α	-	Fragment					x								
											<u> </u>					-			
					-										-				
														<u> </u>			-		
					-														
											<u> </u>								
		· · · ·						-							<u> </u>				
					-										<u> </u>				
											-								
]	
						-													
	-																	—	
					ļ							\vdash							
Remarks (con	iments	/detection lir	nits required)	 :		L,	Samp	le Co	ntainer	s:						l			
							G - 25 A - Zij <u>P - Pl</u> á	iOmg plock <u>astic E</u>	Glass Ja Asbest Bag	ar os Ba	g								
Relinquished By: P. Date: 20-08-2020				Time: 16:20 Received By: Date: 10/08 Complete Indiana						08/2	<u>e</u> 20								
			•										徽						

.'

SAMPLE AND CHAIN OF CUSTODY FORM

249404

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 249424

Client Details	
Client	Environmental Investigation Services
Attention	Vittal Boggaram
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	E33191B, Marrickville
Number of Samples	6 WATER
Date samples received	20/08/2020
Date completed instructions received	20/08/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details	
Date results requested by	27/08/2020
Date of Issue	27/08/2020
NATA Accreditation Number 2901. This do	ocument shall not be reproduced except in full.
Accredited for compliance with ISO/IEC 17	7025 - Testing. Tests not covered by NATA are denoted with *

Results Approved By

Dragana Tomas, Senior Chemist Hannah Nguyen, Senior Chemist Josh Williams, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager

VOCs in water					
Our Reference		249424-1	249424-2	249424-3	249424-4
Your Reference	UNITS	MW101	MW118	MW121	WDUP1
Date Sampled		19/08/2020	19/08/2020	19/08/2020	19/08/2020
Type of sample		WATER	WATER	WATER	WATER
Date extracted	-	21/08/2020	21/08/2020	21/08/2020	21/08/2020
Date analysed	-	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Dichlorodifluoromethane	μg/L	<10	<10	<10	<10
Chloromethane	µg/L	<10	<10	<10	<10
Vinyl Chloride	µg/L	<10	<10	<10	<10
Bromomethane	µg/L	<10	<10	<10	<10
Chloroethane	µg/L	<10	<10	<10	<10
Trichlorofluoromethane	µg/L	<10	<10	<10	<10
1,1-Dichloroethene	µg/L	<1	<1	<1	<1
Trans-1,2-dichloroethene	µg/L	<1	<1	<1	<1
1,1-dichloroethane	µg/L	<1	<1	<1	<1
Cis-1,2-dichloroethene	µg/L	<1	<1	<1	<1
Bromochloromethane	µg/L	<1	<1	<1	<1
Chloroform	µg/L	<1	<1	<1	<1
2,2-dichloropropane	µg/L	<1	<1	<1	<1
1,2-dichloroethane	µg/L	<1	<1	<1	<1
1,1,1-trichloroethane	µg/L	<1	<1	<1	<1
1,1-dichloropropene	µg/L	<1	<1	<1	<1
Cyclohexane	μg/L	<1	<1	<1	<1
Carbon tetrachloride	µg/L	<1	<1	<1	<1
Benzene	µg/L	<1	<1	<1	<1
Dibromomethane	µg/L	<1	<1	<1	<1
1,2-dichloropropane	µg/L	<1	<1	<1	<1
Trichloroethene	µg/L	<1	<1	<1	<1
Bromodichloromethane	μg/L	<1	<1	<1	<1
trans-1,3-dichloropropene	μg/L	<1	<1	<1	<1
cis-1,3-dichloropropene	μg/L	<1	<1	<1	<1
1,1,2-trichloroethane	μg/L	<1	<1	<1	<1
Toluene	μg/L	<1	<1	<1	<1
1,3-dichloropropane	μg/L	<1	<1	<1	<1
Dibromochloromethane	µg/L	<1	<1	<1	<1
1,2-dibromoethane	μg/L	<1	<1	<1	<1
Tetrachloroethene	µg/L	<1	<1	<1	<1
1,1,1,2-tetrachloroethane	µg/L	<1	<1	<1	<1
Chlorobenzene	µg/L	<1	<1	<1	<1
Ethylbenzene	µg/L	<1	<1	<1	<1

VOCs in water					
Our Reference		249424-1	249424-2	249424-3	249424-4
Your Reference	UNITS	MW101	MW118	MW121	WDUP1
Date Sampled		19/08/2020	19/08/2020	19/08/2020	19/08/2020
Type of sample		WATER	WATER	WATER	WATER
Bromoform	μg/L	<1	<1	<1	<1
m+p-xylene	µg/L	<2	<2	<2	<2
Styrene	μg/L	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	µg/L	<1	<1	<1	<1
o-xylene	μg/L	<1	<1	<1	<1
1,2,3-trichloropropane	µg/L	<1	<1	<1	<1
Isopropylbenzene	µg/L	<1	<1	<1	<1
Bromobenzene	µg/L	<1	<1	<1	<1
n-propyl benzene	μg/L	<1	<1	<1	<1
2-chlorotoluene	µg/L	<1	<1	<1	<1
4-chlorotoluene	µg/L	<1	<1	<1	<1
1,3,5-trimethyl benzene	µg/L	<1	<1	<1	<1
Tert-butyl benzene	µg/L	<1	<1	<1	<1
1,2,4-trimethyl benzene	µg/L	<1	<1	<1	<1
1,3-dichlorobenzene	µg/L	<1	<1	<1	<1
Sec-butyl benzene	µg/L	<1	<1	<1	<1
1,4-dichlorobenzene	μg/L	<1	<1	<1	<1
4-isopropyl toluene	µg/L	<1	<1	<1	<1
1,2-dichlorobenzene	µg/L	<1	<1	<1	<1
n-butyl benzene	µg/L	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	µg/L	<1	<1	<1	<1
1,2,4-trichlorobenzene	µg/L	<1	<1	<1	<1
Hexachlorobutadiene	µg/L	<1	<1	<1	<1
1,2,3-trichlorobenzene	µg/L	<1	<1	<1	<1
Surrogate Dibromofluoromethane	%	130	129	130	129
Surrogate toluene-d8	%	92	94	94	93
Surrogate 4-BFB	%	84	85	83	86

vTRH(C6-C10)/BTEXN in Water						
Our Reference		249424-1	249424-2	249424-3	249424-4	249424-5
Your Reference	UNITS	MW101	MW118	MW121	WDUP1	TB-W1
Date Sampled		19/08/2020	19/08/2020	19/08/2020	19/08/2020	19/08/2020
Type of sample		WATER	WATER	WATER	WATER	WATER
Date extracted	-	21/08/2020	21/08/2020	21/08/2020	21/08/2020	21/08/2020
Date analysed	-	24/08/2020	24/08/2020	24/08/2020	24/08/2020	24/08/2020
TRH C ₆ - C ₉	μg/L	<10	<10	<10	<10	[NA]
TRH C ₆ - C ₁₀	µg/L	<10	<10	<10	<10	[NA]
TRH C ₆ - C ₁₀ less BTEX (F1)	µg/L	<10	<10	<10	<10	[NA]
Benzene	µg/L	<1	<1	<1	<1	<1
Toluene	µg/L	<1	<1	<1	<1	<1
Ethylbenzene	µg/L	<1	<1	<1	<1	<1
m+p-xylene	µg/L	<2	<2	<2	<2	<2
o-xylene	µg/L	<1	<1	<1	<1	<1
Naphthalene	µg/L	<1	<1	<1	<1	[NA]
Surrogate Dibromofluoromethane	%	130	129	130	129	130
Surrogate toluene-d8	%	92	94	94	93	94
Surrogate 4-BFB	%	84	85	83	86	88

vTRH(C6-C10)/BTEXN in Water		
Our Reference		249424-6
Your Reference	UNITS	TS-W1
Date Sampled		19/08/2020
Type of sample		WATER
Date extracted	-	21/08/2020
Date analysed	-	24/08/2020
Benzene	μg/L	115%
Toluene	μg/L	100%
Ethylbenzene	μg/L	95%
m+p-xylene	µg/L	105%
o-xylene	μg/L	102%
Surrogate Dibromofluoromethane	%	117
Surrogate toluene-d8	%	92
Surrogate 4-BFB	%	103

svTRH (C10-C40) in Water					
Our Reference		249424-1	249424-2	249424-3	249424-4
Your Reference	UNITS	MW101	MW118	MW121	WDUP1
Date Sampled		19/08/2020	19/08/2020	19/08/2020	19/08/2020
Type of sample		WATER	WATER	WATER	WATER
Date extracted	-	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Date analysed	-	25/08/2020	25/08/2020	25/08/2020	25/08/2020
TRH C ₁₀ - C ₁₄	µg/L	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	µg/L	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	µg/L	<100	<100	<100	<100
TRH >C ₁₀ - C ₁₆	µg/L	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	µg/L	<50	<50	<50	<50
TRH >C ₁₆ - C ₃₄	µg/L	<100	<100	<100	<100
TRH >C ₃₄ - C ₄₀	µg/L	<100	<100	<100	<100
Surrogate o-Terphenyl	%	76	97	83	119

PAHs in Water - Low Level					
Our Reference		249424-1	249424-2	249424-3	249424-4
Your Reference	UNITS	MW101	MW118	MW121	WDUP1
Date Sampled		19/08/2020	19/08/2020	19/08/2020	19/08/2020
Type of sample		WATER	WATER	WATER	WATER
Date extracted	-	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Date analysed	-	25/08/2020	25/08/2020	25/08/2020	25/08/2020
Naphthalene	μg/L	<0.2	<0.2	<0.2	<0.2
Acenaphthylene	μg/L	<0.1	<0.1	<0.1	<0.1
Acenaphthene	μg/L	<0.1	<0.1	<0.1	<0.1
Fluorene	μg/L	<0.1	<0.1	<0.1	<0.1
Phenanthrene	μg/L	<0.1	<0.1	<0.1	<0.1
Anthracene	μg/L	<0.1	<0.1	<0.1	<0.1
Fluoranthene	μg/L	<0.1	<0.1	<0.1	<0.1
Pyrene	μg/L	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	μg/L	<0.1	<0.1	<0.1	<0.1
Chrysene	µg/L	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	μg/L	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	µg/L	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	μg/L	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	μg/L	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	μg/L	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ	µg/L	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	µg/L	<0.1	<0.1	<0.1	<0.1
Surrogate p-Terphenyl-d14	%	100	111	100	107

HM in water - dissolved				_	
Our Reference		249424-1	249424-2	249424-3	249424-4
Your Reference	UNITS	MW101	MW118	MW121	WDUP1
Date Sampled		19/08/2020	19/08/2020	19/08/2020	19/08/2020
Type of sample		WATER	WATER	WATER	WATER
Date prepared	-	21/08/2020	21/08/2020	21/08/2020	21/08/2020
Date analysed	-	21/08/2020	21/08/2020	21/08/2020	21/08/2020
Arsenic-Dissolved	µg/L	<1	<1	<1	<1
Cadmium-Dissolved	µg/L	<0.1	<0.1	<0.1	<0.1
Chromium-Dissolved	µg/L	<1	<1	<1	<1
Copper-Dissolved	µg/L	<1	7	1	7
Lead-Dissolved	µg/L	<1	<1	<1	<1
Mercury-Dissolved	µg/L	<0.05	<0.05	0.07	<0.05
Nickel-Dissolved	µg/L	1	3	6	3
Zinc-Dissolved	µg/L	6	11	42	11

Method ID	Methodology Summary
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

QUALIT	Y CONTROL	: VOCs i	n water			Du	Duplicate		Spike Re	Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]	
Date extracted	-			21/08/2020	1	21/08/2020	24/08/2020		21/08/2020	[NT]	
Date analysed	-			24/08/2020	1	24/08/2020	25/08/2020		24/08/2020	[NT]	
Dichlorodifluoromethane	µg/L	10	Org-023	<10	1	<10	<10	0	[NT]	[NT]	
Chloromethane	µg/L	10	Org-023	<10	1	<10	<10	0	[NT]	[NT]	
Vinyl Chloride	μg/L	10	Org-023	<10	1	<10	<10	0	[NT]	[NT]	
Bromomethane	µg/L	10	Org-023	<10	1	<10	<10	0	[NT]	[NT]	
Chloroethane	µg/L	10	Org-023	<10	1	<10	<10	0	[NT]	[NT]	
Trichlorofluoromethane	µg/L	10	Org-023	<10	1	<10	<10	0	[NT]	[NT]	
1,1-Dichloroethene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]	
Trans-1,2-dichloroethene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]	
1,1-dichloroethane	µg/L	1	Org-023	<1	1	<1	<1	0	99	[NT]	
Cis-1,2-dichloroethene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]	
Bromochloromethane	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]	
Chloroform	µg/L	1	Org-023	<1	1	<1	<1	0	91	[NT]	
2,2-dichloropropane	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]	
1,2-dichloroethane	µg/L	1	Org-023	<1	1	<1	<1	0	97	[NT]	
1,1,1-trichloroethane	µg/L	1	Org-023	<1	1	<1	<1	0	100	[NT]	
1,1-dichloropropene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]	
Cyclohexane	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]	
Carbon tetrachloride	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]	
Benzene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]	
Dibromomethane	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]	
1,2-dichloropropane	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]	
Trichloroethene	µg/L	1	Org-023	<1	1	<1	<1	0	99	[NT]	
Bromodichloromethane	µg/L	1	Org-023	<1	1	<1	<1	0	91	[NT]	
trans-1,3-dichloropropene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]	
cis-1,3-dichloropropene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]	
1,1,2-trichloroethane	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]	
Toluene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]	
1,3-dichloropropane	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]	
Dibromochloromethane	µg/L	1	Org-023	<1	1	<1	<1	0	82	[NT]	
1,2-dibromoethane	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]	
Tetrachloroethene	µg/L	1	Org-023	<1	1	<1	<1	0	101	[NT]	
1,1,1,2-tetrachloroethane	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]	
Chlorobenzene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]	
Ethylbenzene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]	
Bromoform	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]	
m+p-xylene	µg/L	2	Org-023	<2	1	<2	<2	0	[NT]	[NT]	
Styrene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]	
1,1,2,2-tetrachloroethane	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]	

QUALIT	Y CONTROL	: VOCs i	n water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
o-xylene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,2,3-trichloropropane	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Isopropylbenzene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Bromobenzene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
n-propyl benzene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
2-chlorotoluene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
4-chlorotoluene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,3,5-trimethyl benzene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Tert-butyl benzene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,2,4-trimethyl benzene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,3-dichlorobenzene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Sec-butyl benzene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,4-dichlorobenzene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
4-isopropyl toluene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,2-dichlorobenzene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
n-butyl benzene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,2-dibromo-3-chloropropane	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,2,4-trichlorobenzene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Hexachlorobutadiene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,2,3-trichlorobenzene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	99	1	130	119	9	87	
Surrogate toluene-d8	%		Org-023	93	1	92	95	3	94	
Surrogate 4-BFB	%		Org-023	86	1	84	86	2	110	

QUALITY CONTR	ROL: vTRH(C6-C10)/E	BTEXN in Water			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			21/08/2020	1	21/08/2020	24/08/2020		21/08/2020	[NT]
Date analysed	-			24/08/2020	1	24/08/2020	25/08/2020		24/08/2020	[NT]
TRH C ₆ - C ₉	µg/L	10	Org-023	<10	1	<10	<10	0	101	[NT]
TRH C ₆ - C ₁₀	µg/L	10	Org-023	<10	1	<10	<10	0	101	[NT]
Benzene	μg/L	1	Org-023	<1	1	<1	<1	0	100	[NT]
Toluene	µg/L	1	Org-023	<1	1	<1	<1	0	94	[NT]
Ethylbenzene	µg/L	1	Org-023	<1	1	<1	<1	0	100	[NT]
m+p-xylene	µg/L	2	Org-023	<2	1	<2	<2	0	106	[NT]
o-xylene	µg/L	1	Org-023	<1	1	<1	<1	0	105	[NT]
Naphthalene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Surrogate Dibromofluoromethane	%		Org-023	99	1	130	119	9	87	[NT]
Surrogate toluene-d8	%		Org-023	93	1	92	95	3	94	[NT]
Surrogate 4-BFB	%		Org-023	86	1	84	86	2	110	[NT]

QUALITY CON	QUALITY CONTROL: svTRH (C10-C40) in Water							Duplicate Sp				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]		
Date extracted	-			24/08/2020	[NT]		[NT]	[NT]	24/08/2020			
Date analysed	-			25/08/2020	[NT]		[NT]	[NT]	25/08/2020			
TRH C ₁₀ - C ₁₄	µg/L	50	Org-020	<50	[NT]		[NT]	[NT]	95			
TRH C ₁₅ - C ₂₈	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	89			
TRH C ₂₉ - C ₃₆	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	72			
TRH >C ₁₀ - C ₁₆	µg/L	50	Org-020	<50	[NT]		[NT]	[NT]	95			
TRH >C ₁₆ - C ₃₄	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	89			
TRH >C ₃₄ - C ₄₀	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	72			
Surrogate o-Terphenyl	%		Org-020	86	[NT]	[NT]	[NT]	[NT]	129	[NT]		

QUALITY CON	ITROL: PAH	ls in Wate	r - Low Level			Du	plicate	Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			25/08/2020	[NT]		[NT]	[NT]	25/08/2020	
Date analysed	-			25/08/2020	[NT]		[NT]	[NT]	25/08/2020	
Naphthalene	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	94	
Acenaphthylene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Acenaphthene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluorene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	111	
Phenanthrene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	114	
Anthracene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluoranthene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	116	
Pyrene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	118	
Benzo(a)anthracene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Chrysene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	108	
Benzo(b,j+k)fluoranthene	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	95	
Indeno(1,2,3-c,d)pyrene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	123	[NT]	[NT]	[NT]	[NT]	132	[NT]

QUALITY CC	NTROL: HN	l in water	- dissolved		Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			21/08/2020	1	21/08/2020	21/08/2020		21/08/2020	[NT]
Date analysed	-			21/08/2020	1	21/08/2020	21/08/2020		21/08/2020	[NT]
Arsenic-Dissolved	µg/L	1	Metals-022	<1	1	<1	[NT]		96	[NT]
Cadmium-Dissolved	µg/L	0.1	Metals-022	<0.1	1	<0.1	[NT]		109	[NT]
Chromium-Dissolved	µg/L	1	Metals-022	<1	1	<1	[NT]		107	[NT]
Copper-Dissolved	µg/L	1	Metals-022	<1	1	<1	[NT]		106	[NT]
Lead-Dissolved	µg/L	1	Metals-022	<1	1	<1	[NT]		103	[NT]
Mercury-Dissolved	µg/L	0.05	Metals-021	<0.05	1	<0.05	<0.05	0	103	[NT]
Nickel-Dissolved	µg/L	1	Metals-022	<1	1	1	[NT]		99	[NT]
Zinc-Dissolved	µg/L	1	Metals-022	<1	1	6	[NT]		99	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control Definitions						
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.					
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.					
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.					
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.					
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.					

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Environmental Investigation Services
Attention	Vittal Boggaram

Sample Login Details	
Your reference	E33191B, Marrickville
Envirolab Reference	249424
Date Sample Received	20/08/2020
Date Instructions Received	20/08/2020
Date Results Expected to be Reported	27/08/2020

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	6 WATER
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	7.9
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst					
Phone: 02 9910 6200	Phone: 02 9910 6200					
Fax: 02 9910 6201	Fax: 02 9910 6201					
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au					

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	VOCs in water	vTRH(C6-C10)/BTEXN in Water	svTRH (C10-C40) in Water	PAHs in Water - Low Level	HM in water - dissolved
MW101	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
MW118	 ✓ 	\checkmark	\checkmark	\checkmark	\checkmark
MW121	 ✓ 	\checkmark	\checkmark	\checkmark	\checkmark
WDUP1	 ✓ 	\checkmark	\checkmark	\checkmark	\checkmark
TB-W1		\checkmark			

The '\screw' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

UPPATED.

SAMPLE AND CHAIN OF CUSTODY FORM.

-

.

<u>TO:</u> ENVIROLAB S 12 ASHLEY ST	ERVICES REET	PTY LTD	JKE Job Number:		E33191B					FROM	<u>/:</u>		- Env	iro	nn	her	nts
CHATSWOOD NSW 2067 P: (02) 99106200 Date Results F: (02) 99106201 Required:				STANDARD				REAR OF 115 WICKS ROAD MACQUARIE PARK, NSW 2113 P: 02-9888 5000 E: 02-9889 5001									
Attention: Ail	leen		Page:		1 of 1		j			Atter	ntion: <u>vbog</u>	garam	Vi @jker	ttal B	oggar ments	am .com.a	<u>au</u>
Location:	Marrick	ville	·						Sam	nple Pi	reserv	ed in I	Esky o	n ice			
Sampler:	нw						1		-	T	ests R	equir	ed	1	1	1	
Date Sampled	Lab Ref:	Sample Number	Sample Containers	PID	Sample Description	Combo 2	Combo 3L	VOCs	pH / EC	8 Metals	PAHs	TRH/BTEX	втех	Hardness			
19.08.20	1	MW101	2xG1, 6xV, H	0.6	Water		x	x									
19.08.20	2	MW118	2xG1, 6xV, H	0.6	Water		x	x									
19.08.20	3	MW121	2xG1, 6xV, H	1.4	Water		x	x									
19.08.20	4	WDUP1	2xG1, 6xV, H	NA	Water		x	x									<u> </u>
19.08.20	5	WDUP2	2xG1, 6xV, H	NA	Water		x	x	Pleas	e seno	l to Vi	c					
19.08.20	65	TB-W1	v	NĂ	Water blank								x				
19.08.20	6.	TS-W1	V	NA	Water spike						,		x .				
			Envirolab	Services	,												
		ENVIR	LAB 12 A Chatswood N Ph: (02) 99	shley St SW 2067 10 6200													
			£ 249421	ļ.													
		Date R	eceived: 20/0:	K/20	20					<u>.</u>							
		Receiv	ELBY: RL	Ĩ													
		Cooling Securit	Cool/Ambient tce/cepack	7- ¹	1°C.					-							
kemarks (con All analysis P	nments/ QLs to A	aetection limits NZECC (2000) De lab	required): etection Limits, send duplicate	WDUP2	to VIC as inter	G1 - V - B	ple Co 500mi TEX Vi	ntaine L Amb ial	ers: er Gla H - H	ss Bot NO3 \	tle Vash i	νc					
Relinquished	Ву:		Date:			Time	۴٦.۲	10		Rece	ived B	y: Sy	dn	ey	Date ද	; >/o	3/20
										0	1g	h	2		,	7.	າິເ
				, -					Z	, ,	7						

Envirolab Services Pty Ltd ABN 37 112 535 645 - 002 25 Research Drive Croydon South VIC 3136 ph 03 9763 2500 fax 03 9763 2633 melbourne@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 22238

Client Details	
Client	JK Environments
Attention	Vittal Boggaram
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	<u>E33191B</u>
Number of Samples	1 Soil
Date samples received	21/08/2020
Date completed instructions received	21/08/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details				
Date results requested by	27/08/2020			
Date of Issue	27/08/2020			
NATA Accreditation Number 2901. This document shall not be reproduced except in full.				
Accredited for compliance with ISO/IEC 17	7025 - Testing. Tests not covered by NATA are denoted with *			

<u>Results Approved By</u> Chris De Luca, Operations Manager

Authorised By

Pamela Adams, Laboratory Manager

Client Reference: E33191B

vTRH(C6-C10)/BTEXN in Soil		
Our Reference		22238-1
Your Reference	UNITS	SDUP2
Date Sampled		13/08/2020
Type of sample		Soil
Date extracted	-	22/08/2020
Date analysed	-	22/08/2020
vTRH C ₆ - C ₉	mg/kg	<25
vTRH C6 - C10	mg/kg	<25
TRH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
Naphthalene	mg/kg	<1
Total BTEX	mg/kg	<1
Total +ve Xylenes	mg/kg	<1
Surrogate aaa-Trifluorotoluene	%	90

TRH Soil C10-C40 NEPM		
Our Reference		22238-1
Your Reference	UNITS	SDUP2
Date Sampled		13/08/2020
Type of sample		Soil
Date extracted	-	22/08/2020
Date analysed	-	24/08/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100
Total +ve TRH (C10-C36)	mg/kg	<50
TRH >C10 -C16	mg/kg	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100
Total +ve TRH (>C10-C40)	mg/kg	<50
Surrogate o-Terphenyl	%	94

Client Reference: E33191B

PAHs in Soil		
Our Reference		22238-1
Your Reference	UNITS	SDUP2
Date Sampled		13/08/2020
Type of sample		Soil
Date extracted	-	22/08/2020
Date analysed	-	24/08/2020
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	<0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	<0.1
Anthracene	mg/kg	<0.1
Fluoranthene	mg/kg	0.3
Pyrene	mg/kg	0.3
Benzo(a)anthracene	mg/kg	0.2
Chrysene	mg/kg	0.2
Benzo(b,j&k)fluoranthene	mg/kg	0.4
Benzo(a)pyrene	mg/kg	0.16
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1
Benzo(g,h,i)perylene	mg/kg	0.1
Total +ve PAH's	mg/kg	1.8
Benzo(a)pyrene TEQ calc (Zero)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc (Half)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc (PQL)	mg/kg	<0.5
Surrogate p-Terphenyl-d ₁₄	%	130
Acid Extractable metals in soil		
---------------------------------	-------	------------
Our Reference		22238-1
Your Reference	UNITS	SDUP2
Date Sampled		13/08/2020
Type of sample		Soil
Date digested	-	22/08/2020
Date analysed	-	22/08/2020
Arsenic	mg/kg	5
Cadmium	mg/kg	<0.4
Chromium	mg/kg	21
Copper	mg/kg	10
Lead	mg/kg	27
Mercury	mg/kg	<0.1
Nickel	mg/kg	3
Zinc	mg/kg	23

Moisture		
Our Reference		22238-1
Your Reference	UNITS	SDUP2
Date Sampled		13/08/2020
Type of sample		Soil
Date prepared	-	22/08/2020
Date analysed	-	24/08/2020
Moisture	%	19

Method ID	Methodology Summary
Inorg-008	Moisture content determined by heating at 105 deg C for a minimum of 12 hours.
Metals-020 ICP-AES	Determination of various metals by ICP-AES.
Metals-021 CV-AAS	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-022	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
	For soil results:-
	 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" li="" may="" most="" not="" pahs="" positive="" pql.="" present.<="" teq="" teqs="" that="" the="" this="" to=""> 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" li="" more="" negative="" pahs="" pql.<="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""> 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" li="" mid-point="" most="" pql.="" stipulated="" the=""> Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PAHs" is simply a sum of the positive individual PAHs. </pql></pql></pql>
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil						Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			22/08/2020	[NT]		[NT]	[NT]	22/08/2020	
Date analysed	-			22/08/2020	[NT]		[NT]	[NT]	22/08/2020	
vTRH C ₆ - C ₉	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	106	
vTRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	106	
Benzene	mg/kg	0.2	Org-023	<0.2	[NT]		[NT]	[NT]	106	[NT]
Toluene	mg/kg	0.5	Org-023	<0.5	[NT]		[NT]	[NT]	102	
Ethylbenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	105	
m+p-xylene	mg/kg	2	Org-023	<2	[NT]		[NT]	[NT]	108	
o-Xylene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	106	[NT]
Naphthalene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	98	[NT]		[NT]	[NT]	110	

QUALITY COM	Duplicate Spike R				Spike Re	covery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			22/08/2020	[NT]		[NT]	[NT]	22/08/2020	
Date analysed	-			24/08/2020	[NT]		[NT]	[NT]	24/08/2020	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	96	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	99	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	93	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	96	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	99	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	93	
Surrogate o-Terphenyl	%		Org-020	94	[NT]	[NT]	[NT]	[NT]	89	[NT]

QUALITY CONTROL: PAHs in Soil						Duplicate Spike Reco				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			22/08/2020	[NT]		[NT]	[NT]	22/08/2020	
Date analysed	-			24/08/2020	[NT]		[NT]	[NT]	24/08/2020	
Naphthalene	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	104	
Acenaphthylene	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	98	
Acenaphthene	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluorene	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	110	
Phenanthrene	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	108	
Anthracene	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluoranthene	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	112	
Pyrene	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	104	
Benzo(a)anthracene	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	
Chrysene	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	124	
Benzo(b,j&k)fluoranthene	mg/kg	0.2	Org-022	<0.2	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-022	<0.05	[NT]		[NT]	[NT]	92	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d ₁₄	%		Org-022	132	[NT]	[NT]	[NT]	[NT]	118	[NT]

QUALITY CONT	QUALITY CONTROL: Acid Extractable metals in soil						Duplicate Spike Recovery				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]	
Date digested	-			22/08/2020	[NT]		[NT]	[NT]	22/08/2020		
Date analysed	-			22/08/2020	[NT]		[NT]	[NT]	22/08/2020		
Arsenic	mg/kg	4	Metals-020 ICP- AES	<4	[NT]		[NT]	[NT]	104		
Cadmium	mg/kg	0.4	Metals-020 ICP- AES	<0.4	[NT]		[NT]	[NT]	99		
Chromium	mg/kg	1	Metals-020 ICP- AES	<1	[NT]		[NT]	[NT]	95		
Copper	mg/kg	1	Metals-020 ICP- AES	<1	[NT]		[NT]	[NT]	96		
Lead	mg/kg	1	Metals-020 ICP- AES	<1	[NT]		[NT]	[NT]	93		
Mercury	mg/kg	0.1	Metals-021 CV-AAS	<0.1	[NT]		[NT]	[NT]	102		
Nickel	mg/kg	1	Metals-020 ICP- AES	<1	[NT]		[NT]	[NT]	93		
Zinc	mg/kg	1	Metals-020 ICP- AES	<1	[NT]		[NT]	[NT]	94		

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Services Pty Ltd ABN 37 112 535 645 - 002 25 Research Drive Croydon South VIC 3136 ph 03 9763 2500 fax 03 9763 2633 melbourne@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	JK Environments
Attention	Vittal Boggaram

Sample Login Details	
Your reference	E33191B
Envirolab Reference	22238
Date Sample Received	21/08/2020
Date Instructions Received	21/08/2020
Date Results Expected to be Reported	27/08/2020

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	1 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	9.2
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Pamela Adams	Chris De Luca
Phone: 03 9763 2500	Phone: 03 9763 2500
Fax: 03 9763 2633	Fax: 03 9763 2633
Email: padams@envirolab.com.au	Email: cdeluca@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 - 002 25 Research Drive Croydon South VIC 3136 ph 03 9763 2500 fax 03 9763 2633 melbourne@envirolab.com.au www.envirolab.com.au

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

SAMPLE AND CHAIN OF CUSTODY FORM

TO:		6 073/170		WE Lab		1	_				FRON	<u>1:</u>		,				
12 ASHLEY ST	TREET	SPITLID		Number:		F331A1B [~]	•••						K					
CHATSWOOD NSW 2067			1								J	KE	inv	iro	nm	۱er	າts	
P: (02) 99106	5200			Date Res	ults	STANDARD	P REAR OF 115 WICKS ROAD											
F: (02) 99106	201			Required	:						MAC	QUARI	E PAR	K, NS	W 211	.3		
Attention: Ai	ileen			Page:		2 of 3:	P: 02-9888 5000 F: 02-9888 5001 Attention: Vittal Boggaram											
Location: Marrickville Sample Preserved in Esky on Ice																		
Sampler:	AM		· ·			, ^ر ,		-	 _		T	ests R	equire	.d				
 Date Sampled	Lab Ref:	Sample Number	Depth (m)	Sample Container	PID	Sample Description	Combo 6	Combo 3	Asbestos (WA 500ml method)	BTEX								
13.8.20	26	BH116	0.13-0.4	G, A	0	Fill: Silty Clay		Х	X									
13.8.20	27	BH116	0.7-0.9	G, A	0	Fill: Silty Clay												
13.8.20	28	BH116	1.5-1.7	G, A	0	Silty Clay												
13.8.20	29	BH117	0.2-0.5	G, A	0	Fill: Silty Sand		х	X									
13.8.20	30	BH117	1.5-1.7	G, A	0	Silty Clay	-			_	†							
13.8.20	31	BH118	0.16-0.4	G	0	Fill: Silty			· ·		<u> </u>							
13.8.20	32	BH118	0.6-0.9	G, A	0	Fill: Silty Clay		X	X									
13.8.20	33	BH118	1.5-1.7	G, A	0	Silty Clay			-									
12.8.20	34	BH119	0-0.2	G, A	0	Fill: Silty Sand		x							 	<u>-</u> .		
12.8.20	35_	BH119	0.6-1.0	G, A		Fill: Silty Clay						<u> </u>						
13.8.20	36	BH120	0.04-0.3	G, A	0	Fill: Silty Clay	<u> </u>	x	X				<u> -</u>					
13.8.20	ઉન	BH120	0.6-0.8	G, A	0	Fill: Silty Sand		<u> </u>			+				Genuier	lah Sa		
13.8.20	38	BH120	1.4-1.6	G, A	0	Fill: Silty Clay					1 6	NVIR	PLAB	Cray	25 Re	search	Drive	
13.8.20	39	BH120	2.2-2.4	G, A	0	Fill: Silty Clay			-	:		Lob (Croyo	Ph: (0	3) 976	2500	
13.8.20	40	BH120	3.0-3.45	G, A	0	Silty Clay			1					22	23	2		
13.8.20	4,	BH121	0.18-0.7	G, A	[.] 0	Fill: Silty Clay		x				Date f Time	Recei Recei	red. 2 ved:	<u>-</u> 1+- 12.	20	<u>e</u>	
13.8.20	42	BH121	1.0-1.3	G, A	0	Fill: Silty Clay			 ~ -			Rocei	ved B	1.65	è	Ċ	A. 2	+
13.8.20	43	BH121	1.5-1.7	G, A	0	Silty Clay		-				Lemp Coollr	g: Ice	(Cop	ent.			+
14.8.20	Ļц	BH122	0.14-0.25	G, A	0	Fill: Silty Sand	x	<u> </u>	x			Secur	†©	acvB	oken	None		<u> </u>
14.8.20	45	BH122	0.25-0.35	G, A	0:	Fill: Silty Gravelly Sand			-								┟──	
14.8.20	46	BH123	0.05-0.15	G, A	0	Fill: Silty	· ·	-	\square		-			<u> </u>	-		<u> </u>	<u> </u>
14.8.20	47	BH123	0.15-0.3	G, A	0	Fill: Silty Clay-		-X	x									<u>+</u>
12.8.20	48	SDUP1	-	G	-	Soil DUP		x	\square							Î		+
13.8.20	49	SDUP2		Ĝ		Soil DUP		x		PLE	ASE	SEN			c /			
14.8.20	50	SDUP3	-	G	-	Soil DUP			\square					1	<u> </u>			
Remarks (con	nments	/detection li	mits required):	<u> </u>		Samp G - 2 A - Z P - P	ie Co 50mg iplock lastic	ntaine Glass . Asbes Bag	rs: Jar tos B	ag	1	1	<u> </u>	I	1	L	1
Relinquished	Ву:	业		Date: 20-08-20	20		Time \	6.	20		Rece	ived E	19: 5~~ ^	>		Date パ	: 68	2,920
Play- 20	.ES (8/40	sydne 220 1	2.46.															
		24	-140	4														

ł

Envirolab Services Pty Ltd ABN 37 112 535 645 - 002 25 Research Drive Croydon South VIC 3136 ph 03 9763 2500 fax 03 9763 2633 melbourne@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 22240

Client Details	
Client	JK Environments
Attention	Vittal Boggaram
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	<u>E33191B</u>
Number of Samples	1 WATER
Date samples received	21/08/2020
Date completed instructions received	21/08/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details			
Date results requested by	27/08/2020		
Date of Issue	27/08/2020		
NATA Accreditation Number 2901. This document shall not be reproduced except in full.			
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *			

<u>Results Approved By</u> Chris De Luca, Operations Manager

Authorised By

Pamela Adams, Laboratory Manager

VOCs in water		
Our Reference		22240-1
Your Reference	UNITS	WDUP2
Date Sampled		19/08/2020
Type of sample		WATER
Date extracted	-	24/08/2020
Date analysed	-	24/08/2020
Dichlorodifluoromethane	µg/L	<10
Chloromethane	μg/L	<10
Vinyl Chloride	μg/L	<10
Bromomethane	µg/L	<10
Chloroethane	µg/L	<10
Trichlorofluoromethane	µg/L	<10
1,1-Dichloroethene	µg/L	<1
Trans-1,2-dichloroethene	µg/L	<1
1,1-dichloroethane	µg/L	<1
Cis-1,2-dichloroethene	μg/L	<1
Bromochloromethane	µg/L	<1
Chloroform	µg/L	<1
2,2-dichloropropane	µg/L	<1
1,2-dichloroethane	µg/L	<1
1,1,1-trichloroethane	µg/L	<1
1,1-dichloropropene	μg/L	<1
Cyclohexane	µg/L	<1
Carbon tetrachloride	µg/L	<1
Benzene	μg/L	<1
Dibromomethane	μg/L	<1
1,2-dichloropropane	μg/L	<1
Trichloroethene	μg/L	<1
Bromodichloromethane	μg/L	<1
trans-1,3-dichloropropene	µg/L	<1
cis-1,3-dichloropropene	µg/L	<1
1,1,2-trichloroethane	µg/L	<1
Toluene	μg/L	<1
1,3-dichloropropane	μg/L	<1
Dibromochloromethane	μg/L	<1
1,2-dibromoethane	µg/L	<1
Tetrachloroethene	µg/L	<1
1,1,1,2-tetrachloroethane	µg/L	<1
Chlorobenzene	µg/L	<1
Ethylbenzene	µg/L	<1

VOCs in water		
Our Reference		22240-1
Your Reference	UNITS	WDUP2
Date Sampled		19/08/2020
Type of sample		WATER
Bromoform	µg/L	<1
m+p-xylene	µg/L	<2
Styrene	µg/L	<1
1,1,2,2-tetrachloroethane	µg/L	<1
o-xylene	µg/L	<1
1,2,3-trichloropropane	µg/L	<1
Isopropylbenzene	µg/L	<1
Bromobenzene	µg/L	<1
n-propyl benzene	µg/L	<1
2-chlorotoluene	μg/L	<1
4-chlorotoluene	μg/L	<1
1,3,5-trimethyl benzene	µg/L	<1
Tert-butyl benzene	µg/L	<1
1,2,4-trimethyl benzene	µg/L	<1
1,3-dichlorobenzene	µg/L	<1
Sec-butyl benzene	µg/L	<1
1,4-dichlorobenzene	µg/L	<1
4-isopropyl toluene	µg/L	<1
1,2-dichlorobenzene	µg/L	<1
n-butyl benzene	µg/L	<1
1,2-dibromo-3-chloropropane	µg/L	<1
1,2,4-trichlorobenzene	µg/L	<1
Hexachlorobutadiene	µg/L	<1
1,2,3-trichlorobenzene	µg/L	<1
Surrogate Dibromofluoromethane	%	103
Surrogate toluene-d8	%	100
Surrogate 4-BFB	%	99

vTRH(C6-C10)/BTEXN in Water		
Our Reference		22240-1
Your Reference	UNITS	WDUP2
Date Sampled		19/08/2020
Type of sample		WATER
Date extracted	-	24/08/2020
Date analysed	-	24/08/2020
TRH C ₆ - C ₉	µg/L	<10
TRH C ₆ - C ₁₀	µg/L	<10
TRH C ₆ -C ₁₀ less BTEX (F1)	µg/L	<10
Benzene	µg/L	<1
Toluene	µg/L	<1
Ethylbenzene	µg/L	<1
m+p-xylene	µg/L	<2
o-xylene	µg/L	<1
Naphthalene	µg/L	<1
Total +ve Xylenes	µg/L	<1
Total BTEX in water	µg/L	<1
Surrogate Dibromofluoromethane	%	109
Surrogate toluene-d8	%	101
Surrogate 4-BFB	%	100

TRH Water(C10-C40) NEPM		
Our Reference		22240-1
Your Reference	UNITS	WDUP2
Date Sampled		19/08/2020
Type of sample		WATER
Date extracted	-	25/08/2020
Date analysed	-	25/08/2020
TRH C ₁₀ - C ₁₄	µg/L	<50
TRH C ₁₅ - C ₂₈	µg/L	<100
TRH C ₂₉ - C ₃₆	µg/L	<100
Total +ve TRH (C10-C36)	µg/L	<50
TRH >C10 - C16	µg/L	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	µg/L	<50
TRH >C ₁₆ - C ₃₄	µg/L	<100
TRH >C ₃₄ - C ₄₀	µg/L	<100
Total +ve TRH (>C10-C40)	µg/L	<50
Surrogate o-Terphenyl	%	97

PAHs in Water - Low Level		
Our Reference		22240-1
Your Reference	UNITS	WDUP2
Date Sampled		19/08/2020
Type of sample		WATER
Date extracted	-	25/08/2020
Date analysed	-	26/08/2020
Naphthalene	μg/L	<0.1
Acenaphthylene	µg/L	<0.1
Acenaphthene	µg/L	<0.1
Fluorene	µg/L	<0.1
Phenanthrene	µg/L	<0.1
Anthracene	µg/L	<0.1
Fluoranthene	µg/L	<0.1
Pyrene	µg/L	<0.1
Benzo(a)anthracene	µg/L	<0.1
Chrysene	μg/L	<0.1
Benzo(b,j&k)fluoranthene	μg/L	<0.2
Benzo(a)pyrene	µg/L	<0.1
Indeno(1,2,3-c,d)pyrene	µg/L	<0.1
Dibenzo(a,h)anthracene	µg/L	<0.1
Benzo(g,h,i)perylene	µg/L	<0.1
Total +ve PAH's	µg/L	NIL (+)VE PAH
Benzo(a)pyrene TEQ	µg/L	<0.5
Surrogate p-Terphenyl-d ₁₄	%	114

HM in water - dissolved		
Our Reference		22240-1
Your Reference	UNITS	WDUP2
Date Sampled		19/08/2020
Type of sample		WATER
Date prepared	-	21/08/2020
Date analysed	-	21/08/2020
Arsenic-Dissolved	µg/L	<1
Cadmium-Dissolved	µg/L	<0.2
Chromium-Dissolved	µg/L	<1
Copper-Dissolved	µg/L	<1
Lead-Dissolved	µg/L	<1
Nickel-Dissolved	µg/L	<1
Zinc-Dissolved	µg/L	6
Mercury-Dissolved	µg/L	<0.05

Method ID	Methodology Summary
Metals-021 CV-AAS	Determination of Mercury by Cold Vapour AAS.
Metals-022 ICP-MS	Determination of various metals by ICP-MS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-022	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater 2013.
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALIT			Duplicate		Spike Re		ecovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			24/08/2020	[NT]	[NT]		[NT]	24/08/2020	
Date analysed	-			24/08/2020	[NT]	[NT]		[NT]	24/08/2020	
Dichlorodifluoromethane	µg/L	10	Org-023	<10	[NT]	[NT]		[NT]	[NT]	
Chloromethane	µg/L	10	Org-023	<10	[NT]	[NT]		[NT]	[NT]	
Vinyl Chloride	µg/L	10	Org-023	<10	[NT]	[NT]		[NT]	[NT]	
Bromomethane	µg/L	10	Org-023	<10	[NT]	[NT]		[NT]	[NT]	
Chloroethane	µg/L	10	Org-023	<10	[NT]	[NT]		[NT]	[NT]	
Trichlorofluoromethane	µg/L	10	Org-023	<10	[NT]	[NT]		[NT]	[NT]	
1,1-Dichloroethene	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
Trans-1,2-dichloroethene	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
1,1-dichloroethane	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	99	
Cis-1,2-dichloroethene	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
Bromochloromethane	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
Chloroform	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	100	
2,2-dichloropropane	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
1,2-dichloroethane	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	92	
1,1,1-trichloroethane	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	101	
1,1-dichloropropene	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
Cyclohexane	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
Carbon tetrachloride	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
Benzene	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
Dibromomethane	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
1,2-dichloropropane	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
Trichloroethene	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	100	
Bromodichloromethane	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	96	
trans-1,3-dichloropropene	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
cis-1,3-dichloropropene	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
1,1,2-trichloroethane	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
Toluene	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
1,3-dichloropropane	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
Dibromochloromethane	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	93	
1,2-dibromoethane	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
Tetrachloroethene	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	100	
1,1,1,2-tetrachloroethane	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
Chlorobenzene	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
Ethylbenzene	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
Bromoform	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
m+p-xylene	µg/L	2	Org-023	<2	[NT]	[NT]		[NT]	[NT]	
Styrene	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
1,1,2,2-tetrachloroethane	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	

QUALIT	Y CONTROL	: VOCs i	n water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
o-xylene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
1,2,3-trichloropropane	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
Isopropylbenzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
Bromobenzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
n-propyl benzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
2-chlorotoluene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
4-chlorotoluene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
1,3,5-trimethyl benzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
Tert-butyl benzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
1,2,4-trimethyl benzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
1,3-dichlorobenzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
Sec-butyl benzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
1,4-dichlorobenzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
4-isopropyl toluene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
1,2-dichlorobenzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
n-butyl benzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
1,2-dibromo-3-chloropropane	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
1,2,4-trichlorobenzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
Hexachlorobutadiene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
1,2,3-trichlorobenzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
Surrogate Dibromofluoromethane	%		Org-023	101	[NT]		[NT]	[NT]	100	[NT]
Surrogate toluene-d8	%		Org-023	100	[NT]		[NT]	[NT]	101	[NT]
Surrogate 4-BFB	%		Org-023	98	[NT]		[NT]	[NT]	100	[NT]

QUALITY CONTR	QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Water							Duplicate			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]	
Date extracted	-			24/08/2020	[NT]		[NT]	[NT]	24/08/2020	[NT]	
Date analysed	-			24/08/2020	[NT]		[NT]	[NT]	24/08/2020	[NT]	
TRH C ₆ - C ₉	µg/L	10	Org-023	<10	[NT]		[NT]	[NT]	108	[NT]	
TRH C ₆ - C ₁₀	µg/L	10	Org-023	<10	[NT]		[NT]	[NT]	108	[NT]	
Benzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	106	[NT]	
Toluene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	108	[NT]	
Ethylbenzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	108	[NT]	
m+p-xylene	µg/L	2	Org-023	<2	[NT]		[NT]	[NT]	110	[NT]	
o-xylene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	108	[NT]	
Naphthalene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	96	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	107	[NT]		[NT]	[NT]	101	[NT]	
Surrogate toluene-d8	%		Org-023	102	[NT]		[NT]	[NT]	100	[NT]	
Surrogate 4-BFB	%		Org-023	99	[NT]		[NT]	[NT]	100	[NT]	

QUALITY CON	TROL: TRH	Water(C1	0-C40) NEPM			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			25/08/2020	[NT]		[NT]	[NT]	25/08/2020	
Date analysed	-			25/08/2020	[NT]		[NT]	[NT]	25/08/2020	
TRH C ₁₀ - C ₁₄	µg/L	50	Org-020	<50	[NT]		[NT]	[NT]	98	
TRH C ₁₅ - C ₂₈	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	119	
TRH C ₂₉ - C ₃₆	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	93	
TRH >C ₁₀ - C ₁₆	µg/L	50	Org-020	<50	[NT]		[NT]	[NT]	98	
TRH >C ₁₆ - C ₃₄	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	119	
TRH >C ₃₄ - C ₄₀	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	93	
Surrogate o-Terphenyl	%		Org-020	99	[NT]	[NT]	[NT]	[NT]	93	[NT]

QUALITY CON	TROL: PAH	ls in Wate	r - Low Level			Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			25/08/2020	[NT]		[NT]	[NT]	25/08/2020	
Date analysed	-			26/08/2020	[NT]		[NT]	[NT]	26/08/2020	
Naphthalene	µg/L	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	
Acenaphthylene	µg/L	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	92	
Acenaphthene	µg/L	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluorene	µg/L	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	108	
Phenanthrene	µg/L	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	110	
Anthracene	µg/L	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluoranthene	µg/L	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	114	
Pyrene	µg/L	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	106	
Benzo(a)anthracene	µg/L	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	
Chrysene	µg/L	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	
Benzo(b,j&k)fluoranthene	µg/L	0.2	Org-022	<0.2	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene	µg/L	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	74	
Indeno(1,2,3-c,d)pyrene	µg/L	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene	µg/L	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene	µg/L	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d ₁₄	%		Org-022	114	[NT]	[NT]	[NT]	[NT]	108	[NT]

QUALITY CC		Du	plicate	Spike Recovery %						
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			21/08/2020	[NT]		[NT]	[NT]	21/08/2020	
Date analysed	-			21/08/2020	[NT]		[NT]	[NT]	21/08/2020	
Arsenic-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	102	
Cadmium-Dissolved	µg/L	0.1	Metals-022 ICP-MS	<0.1	[NT]		[NT]	[NT]	104	
Chromium-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	103	
Copper-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	101	
Lead-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	105	
Nickel-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	103	
Zinc-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	103	
Mercury-Dissolved	µg/L	0.05	Metals-021 CV-AAS	<0.05	[NT]		[NT]	[NT]	88	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

METALS: The PQL has been raised for Cadmium due to the sample matrix requiring dilution.

Envirolab Services Pty Ltd ABN 37 112 535 645 - 002 25 Research Drive Croydon South VIC 3136 ph 03 9763 2500 fax 03 9763 2633 melbourne@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	JK Environments
Attention	Vittal Boggaram

Sample Login Details	
Your reference	E33191B
Envirolab Reference	22240
Date Sample Received	21/08/2020
Date Instructions Received	21/08/2020
Date Results Expected to be Reported	27/08/2020

Sample Condition	
Samples received in appropriate condition for analysis	Broken Sample
No. of Samples Provided	1 WATER
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	10.3
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments

Sample lids received broken for ident WDUP2 (one vial and one 500ml amber bottle). Additional bottles have be provided for this sample.

Please contact the laboratory within 24 hours if you wish to cancel the aformentioned testing. Otherwise testing will proceed as per the COC and hence invoice accordingly.

Please direct any queries to:

Pamela Adams	Chris De Luca
Phone: 03 9763 2500	Phone: 03 9763 2500
Fax: 03 9763 2633	Fax: 03 9763 2633
Email: padams@envirolab.com.au	Email: cdeluca@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 - 002 25 Research Drive Croydon South VIC 3136 ph 03 9763 2500 fax 03 9763 2633 melbourne@envirolab.com.au www.envirolab.com.au

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

UPPATED

SAMPLE AND CHAIN OF CUSTODY FORM

÷. - _

TO: ENVIROLAB SERVICES PTY LTD 12 ASHLEY STREET CHATSWOOD NSW 2067 P: (02) 99106200		JKE Job Number:		E331918					<u>FROI</u>		k	Înv	viro	nn	ner	nts		
F: (02) 99106201		Required:			·				REAR OF 115 WICKS ROAD MACQUARIE PARK, NSW 2113 P: 02-9888 5000 F: 02-9888 5001									
Attention: A	lieen		Page:		1 of 1	• ·	<u>.</u>			Atter	ntion: <u>vbog</u>	t garam	V <u>@iker</u>	ittal B	oggar: ments	am .com.a	au	
Location: Marrickville			Sample Preserved in Esky on Ice															
Description: Tests Required																		
Date Sampled	Lab Ref:	Sample Number	Sample Containers	PiD	Sample Description	Combo 2	Combo 3L	VOCs	pH / EC	8 Metals	PAHs	TRH/BTEX	BTEX	Hardness				
19.08.20	1	MW101	2xG1, 6xV, H	0.6	Water		x	x										
19.08.20	2	MW118	.2xG1, 6xV, H	0.6	Water		x	x				_				-		
19.08.20	<u>ئ</u>	MW121	2xG1, 6xV, H	1.4	Water	 	x	x										
<u>19.08.20</u>	4	WDUP1	2xG1, 6xV, H	NA	Water		x	x	 									
19.08.20	<u>F</u>	WDUP2	2xG1, 6xV, H ,	NA	Water .		- X	x	Pleas	e send	i to Vi	c	/					
<u>19</u> .08.2 <u>0 </u>	<u>_65</u>	TB-W1	V .	NA 	Water, blank				 				X				-~	
19.08.20	6.	<u>TS-W1</u>	v	NA	Water spike			<u> </u>					x					
				<u> </u>					 									
			Envirolab	ervices_														
			LAB 12 A Chatswood NS Ph: (02) 99	shley St W 2067 10 6200														
		Date R	= 249424). > へ ~	20						εń	VIROL	АВ С	En 25	virola Rese	o Serv arch D	ces rive	
		Time R Receive	eceived: 9.40 gBy: RL		×-c)						<u> </u>	<u></u>	<u> </u>	5yac. Pi ZZ	- (03) Z 40	5763 2 5763 2	500	
		Ceoling Security	coll/Ambeni tce/cepack	7- ⁰	1 C .						Da Tii	ite Re ne Re	ceive	d:	동 2 12	1612: ZOPN	10	3.
					· .	-	-	۰ -		1	F . Te Cr	ne: (ne: (TBY:		٨٠٠			
											Se	curi:,	t (nta	Bru	en/N	one		
Remarks (com All analysis PC	iments/c QLs to AN	letection limits IZECC (2000) De lab (required): tection Limits, send duplicate	WDUP2 t	o VIC as inter-	Samp G1 - S V - B	le Co 500m1 FEX Vi	I ntaine Amb al	ers: er Gia: H - H	ss Boti NO3 V	L tle Vash F	vc	<u> </u>	L				
lelinquished	Ву:		Date:			Time				Recei	ved B	y:	1		Date			
ELS-SH			2018/2020	> 13	<u></u>		1.4	10	•	61		દ્ય	dr	ey	ఎం	10	7/2	þ.
											ig i	h	> ?		۰۰	Ŧ.	9°	С
									2		-4							

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 249404-A

Client Details	
Client	Environmental Investigation Services
Attention	Alistair Mitchell
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details							
Your Reference	E33191B, Marrickville						
Number of Samples	56 soil						
Date samples received	19/08/2020						
Date completed instructions received	28/08/2020						

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details						
Date results requested by	04/09/2020					
Date of Issue	03/09/2020					
NATA Accreditation Number 2901. This document shall not be reproduced except in full.						
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *						

Results Approved By Diego Bigolin, Team Leader, Inorganics Dragana Tomas, Senior Chemist Hannah Nguyen, Senior Chemist

Authorised By

Nancy Zhang, Laboratory Manager

Client Reference: E33191B, Marrickville

PAHs in TCLP (USEPA 1311)		
Our Reference		249404-A-16
Your Reference	UNITS	BH110
Depth		0.37-0.65
Date Sampled		14.8.20
Type of sample		soil
Date extracted	-	02/09/2020
Date analysed	-	02/09/2020
Naphthalene in TCLP	mg/L	0.001
Acenaphthylene in TCLP	mg/L	<0.001
Acenaphthene in TCLP	mg/L	<0.001
Fluorene in TCLP	mg/L	<0.001
Phenanthrene in TCLP	mg/L	<0.001
Anthracene in TCLP	mg/L	<0.001
Fluoranthene in TCLP	mg/L	<0.001
Pyrene in TCLP	mg/L	<0.001
Benzo(a)anthracene in TCLP	mg/L	<0.001
Chrysene in TCLP	mg/L	<0.001
Benzo(bjk)fluoranthene in TCLP	mg/L	<0.002
Benzo(a)pyrene in TCLP	mg/L	<0.001
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	<0.001
Dibenzo(a,h)anthracene in TCLP	mg/L	<0.001
Benzo(g,h,i)perylene in TCLP	mg/L	<0.001
Total +ve PAH's	mg/L	0.0012
Surrogate p-Terphenyl-d14	%	106

Client Reference: E33191B, Marrickville

Metals in TCLP USEPA1311								
Our Reference		249404-A-15	249404-A-16					
Your Reference	UNITS	BH109	BH110					
Depth		0.25-0.3	0.37-0.65					
Date Sampled		14.8.20	14.8.20					
Type of sample		soil	soil					
Date extracted	-	01/09/2020	01/09/2020					
Date analysed	-	01/09/2020	01/09/2020					
pH of soil for fluid# determ.	pH units	8.7	9.1					
pH of soil TCLP (after HCl)	pH units	1.8	1.9					
Extraction fluid used	-	1	1					
pH of final Leachate	pH units	5.0	5.1					
Lead in TCLP	mg/L	[NA]	4.5					
Nickel in TCLP	mg/L	0.1	[NA]					

Client Reference: E33191B, Marrickville

Misc Inorg - Soil								
Our Reference		249404-A-16	249404-A-22					
Your Reference	UNITS	BH110	BH114					
Depth		0.37-0.65	0.18-0.35					
Date Sampled		14.8.20	14.8.20					
Type of sample		soil	soil					
Date prepared	-	02/09/2020	02/09/2020					
Date analysed	-	02/09/2020	02/09/2020					
pH 1:5 soil:water	pH Units	7.7	9.0					
CEC								
--------------------------	----------	-------------	-------------					
Our Reference		249404-A-16	249404-A-22					
Your Reference	UNITS	BH110	BH114					
Depth		0.37-0.65	0.18-0.35					
Date Sampled		14.8.20	14.8.20					
Type of sample		soil	soil					
Date prepared	-	03/09/2020	03/09/2020					
Date analysed	-	03/09/2020	03/09/2020					
Exchangeable Ca	meq/100g	29	27					
Exchangeable K	meq/100g	0.5	0.6					
Exchangeable Mg	meq/100g	0.64	3.3					
Exchangeable Na	meq/100g	0.10	2.5					
Cation Exchange Capacity	meq/100g	30	34					

Method ID	Methodology Summary
EXTRACT.7	Toxicity Characteristic Leaching Procedure (TCLP) using Zero Headspace Extraction (zHE) using AS4439 and USEPA 1311.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-004	Toxicity Characteristic Leaching Procedure (TCLP) using in house method INORG-004. Please note that the mass used may be scaled down from the default based on sample mass available.
Metals-020	Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-AES analytical finish.
Metals-020 ICP-AES	Determination of various metals by ICP-AES.
Org-022/025	Leachates are extracted with Dichloromethane and analysed by GC-MS/GC-MSMS.

QUALITY CONTROL: PAHs in TCLP (USEPA 1311)						Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]	
Date extracted	-			02/09/2020	[NT]		[NT]	[NT]	02/09/2020		
Date analysed	-			02/09/2020	[NT]		[NT]	[NT]	02/09/2020		
Naphthalene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	83		
Acenaphthylene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]		
Acenaphthene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	105		
Fluorene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	95		
Phenanthrene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	92		
Anthracene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]		
Fluoranthene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	93		
Pyrene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	93		
Benzo(a)anthracene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]		
Chrysene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	106		
Benzo(bjk)fluoranthene in TCLP	mg/L	0.002	Org-022/025	<0.002	[NT]		[NT]	[NT]	[NT]		
Benzo(a)pyrene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	88		
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]		
Dibenzo(a,h)anthracene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]		
Benzo(g,h,i)perylene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]		
Surrogate p-Terphenyl-d14	%		Org-022/025	104	[NT]	[NT]	[NT]	[NT]	100	[NT]	

QUALITY CONTROL: Metals in TCLP USEPA1311						Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]	
Date extracted	-			01/09/2020	[NT]		[NT]	[NT]	01/09/2020	[NT]	
Date analysed	-			01/09/2020	[NT]		[NT]	[NT]	01/09/2020	[NT]	
Lead in TCLP	mg/L	0.03	Metals-020 ICP- AES	<0.03	[NT]		[NT]	[NT]	98	[NT]	
Nickel in TCLP	mg/L	0.02	Metals-020 ICP- AES	<0.02	[NT]		[NT]	[NT]	101	[NT]	

QUALITY CONTROL: Misc Inorg - Soil						Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]	
Date prepared	-			02/09/2020	[NT]			[NT]	02/09/2020		
Date analysed	-			02/09/2020	[NT]			[NT]	02/09/2020		
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	[NT]	[NT]	[NT]	[NT]	100	[NT]	

QU.	Duplicate			Spike Re	Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			03/09/2020	[NT]		[NT]	[NT]	03/09/2020	
Date analysed	-			03/09/2020	[NT]		[NT]	[NT]	03/09/2020	
Exchangeable Ca	meq/100g	0.1	Metals-020	<0.1	[NT]		[NT]	[NT]	119	
Exchangeable K	meq/100g	0.1	Metals-020	<0.1	[NT]		[NT]	[NT]	113	
Exchangeable Mg	meq/100g	0.1	Metals-020	<0.1	[NT]		[NT]	[NT]	110	
Exchangeable Na	meq/100g	0.1	Metals-020	<0.1	[NT]	[NT]	[NT]	[NT]	99	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	Quality Control Definitions						
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.						
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.						
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.						
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.						
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.						

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

pH Samples were out of the recommended holding time for this analysis.

SAMPLE RECEIPT ADVICE

Client Details	
Client	Environmental Investigation Services
Attention	Alistair Mitchell

Sample Login Details	
Your reference	E33191B, Marrickville
Envirolab Reference	249404-A
Date Sample Received	19/08/2020
Date Instructions Received	28/08/2020
Date Results Expected to be Reported	04/09/2020

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	56 soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	9.6
Cooling Method	Ice
Sampling Date Provided	YES

Comments

pH - out of recommended holding time

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Sample ID	Naphthalene in TCLP	Acenaphthylene in TCLP	Acenaphthene in TCLP	Fluorene in TCLP	Phenanthrene in TCLP	Anthracene in TCLP	Fluoranthene in TCLP	Pyrene in TCLP	Benzo(a)anthracene in TCLP	Chrysene in TCLP	Benzo(bjk)fluoranthene in TCLP	Benzo(a)pyrene in TCLP	Indeno(1,2,3-c,d)pyrene - TCLP	Dibenzo(a,h)anthracene in TCLP	Benzo(g,h,i)perylene in TCLP	Total +vePAH's	Surrogate p-Terphenyl-d14	pH of soil for fluid#determ.	pH of soil TCLP (after HCI)	Extraction fluid used	pH of final Leachate	Lead in TCLP	Nickel in TCLP	Misc Inorg - Soil	CEC	On Hold
BH101-0.5-0.95																										\checkmark
BH101-1.5-1.95																										✓
BH101-3.0-3.45																										\checkmark
BH101-3.8-4.0																										✓
BH101-4.5-4.7																										\checkmark
BH102-0.27-0.4																										\checkmark
BH103-0.14-0.3																										✓
BH104-0.2-0.35																										\checkmark
BH105-0.19-0.3																										✓
BH106-0.26-0.3																										\checkmark
BH107-0.25-0.4																										\checkmark
BH108-0-0.2																										\checkmark
BH108-0.6-0.7																										\checkmark
BH109-0-0.2																										\checkmark
BH109-0.25-0.3																		✓	✓	✓	\checkmark		✓			
BH110-0.37-0.65	✓	✓	✓	\checkmark	✓	✓	✓	✓	✓	✓	\checkmark	\checkmark	✓	✓	✓	✓	✓	✓	✓	✓	✓	\checkmark		\checkmark	\checkmark	
BH111-0.17-0.3																										\checkmark
BH112-0.19-0.3																										✓
BH112-0.4-0.5																										✓
BH113-0.19-0.4																										✓

Sample ID	Naphthalene in TCLP	Acenaphthylene in TCLP	Acenaphthene in TCLP	Fluorene in TCLP	Phenanthrene in TCLP	Anthracene in TCLP	Fluoranthene in TCLP	Pyrene in TCLP	Benzo(a)anthracene in TCLP	Chrysene in TCLP	Benzo(bjk)fluoranthene in TCLP	Benzo(a)pyrene in TCLP	Indeno(1,2,3-c,d)pyrene - TCLP	Dibenzo(a,h)anthracene in TCLP	Benzo(g,h,i)perylene in TCLP	Total +vePAH's	Surrogate p-Terphenyl-d14	pH of soil for fluid#determ.	pH of soil TCLP (after HCI)	Extraction fluid used	pH of final Leachate	Lead in TCLP	Nickel in TCLP	Misc Inorg - Soil	CEC	On Hold
BH113-0.6-0.8																										\checkmark
BH114-0.18-0.35																								\checkmark	\checkmark	
BH115-0.21-0.4																										\checkmark
BH115-0.4-0.7																										\checkmark
BH115-1.5-1.7																										\checkmark
BH116-0.13-0.4																										\checkmark
BH116-0.7-0.9																										\checkmark
BH116-1.5-1.7																										\checkmark
BH117-0.2-0.5																										\checkmark
BH117-1.5-1.7																										\checkmark
BH118-0.16-0.4																										\checkmark
BH118-0.6-0.9																										\checkmark
BH118-1.5-1.7																										\checkmark
BH119-0-0.2																										\checkmark
BH119-0.6-1.0																										\checkmark
BH120-0.04-0.3																										\checkmark
BH120-0.6-0.8																										\checkmark
BH120-1.4-1.6																										✓
BH120-2.2-2.4																										\checkmark
BH120-3.0-3.45																										\checkmark

Sample ID	Naphthalene in TCLP	Acenaphthylene in TCLP	Acenaphthene in TCLP	Fluorene in TCLP	Phenanthrene in TCLP	Anthracene in TCLP	Fluoranthene in TCLP	Pyrene in TCLP	Benzo(a)anthracene in TCLP	Chrysene in TCLP	Benzo(bjk)fluoranthene in TCLP	Benzo(a)pyrene in TCLP	Indeno(1,2,3-c,d)pyrene - TCLP	Dibenzo(a,h)anthracene in TCLP	Benzo(g,h,i)perylene in TCLP	Total +vePAH's	Surrogate p-Terphenyl-d14	pH of soil for fluid#determ.	pH of soil TCLP (after HCI)	Extraction fluid used	pH of final Leachate	Lead in TCLP	Nickel in TCLP	Misc Inorg - Soil	CEC	On Hold
BH121-0.18-0.7																										\checkmark
BH121-1.0-1.3																										\checkmark
BH121-1.5-1.7																										\checkmark
BH122-0.14-0.25																										\checkmark
BH122-0.25-0.35																										✓
BH123-0.05-0.15																										✓
BH123-0.15-0.3																										✓
SDUP1																										✓
-																										\checkmark
SDUP3																										\checkmark
SDUP4																										\checkmark
SDUP5																										\checkmark
TS-S1																										\checkmark
TB-S1																										\checkmark
FR-HA1																										\checkmark
FCF1																										\checkmark
SDUP4 - [TRIPLICATE]																										\checkmark

The '√' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Ming To

From:	Ken Nguyen	
Sent:	Friday, 28 August 2020 3:45 PM	
То:	Alistair Mitchell	
Cc:	Vittal Boggaram; Ming To	
Subject:	RE: Results for Registration 249404 E33191B, Marrickville	
Follow Up Flag:	Follow up	
Flag Status:	Flagged	
Hi Alistair.	Ref: 249404 - A	
,	TAT: Standard	
No problem, we'll get it logged in.	Due: 04/09/2020 MT	
Kind Regards, Ken		

Kind Regards,

Ken Nguyen | Customer Service / Chemist | Envirolab Services

Celebrating 15 years of Great Science. Great Service.

12 Ashley Street Chatswood NSW 2067 T 612 9910 6200 E <u>KNguyen@envirolab.com.au</u> | W <u>www.envirolab.com.au</u>

Follow us on: LinkedIn | Facebook | Twitter

Samples will be analysed per our T&C's.

From: Alistair Mitchell <AMitchell@jkenvironments.com.au>

Sent: Friday, 28 August 2020 3:43 PM

To: Ken Nguyen <KNguyen@envirolab.com.au>

Cc: Vittal Boggaram <VBoggaram@jkenvironments.com.au>

Subject: RE: Results for Registration 249404 E33191B, Marrickville

CAUTION: This email originated from outside of the organisation. Do not act on instructions, click links or open attachments unless you recognise the sender and know the content is authentic and safe.

Hi Ken,

Can I please get additional testing for the following sample:

- 15 BH109 (0.25-0.3) for Nickel TCLP;
- 16 BH110 (0.37-0.65) for pH, CEC, lead and B(a)P TCLP; and
- •22BH114 (0.18-0.35) for pH and CEC.

Thanks,

Regards Alistair Mitchell

1

Appendix F: Report Explanatory Notes

QA/QC Definitions

The QA/QC terms used in this report are defined below. The definitions are in accordance with US EPA publication SW-846, entitled *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods* (1994)¹⁷ methods and those described in *Environmental Sampling and Analysis, A Practical Guide,* (1991)¹⁸. The NEPM (2013) is consistent with these documents.

A. <u>Practical Quantitation Limit (PQL), Limit of Reporting (LOR) & Estimated Quantitation Limit (EQL)</u>

These terms all refer to the concentration above which results can be expressed with a minimum 95% confidence level. The laboratory reporting limits are generally set at ten times the standard deviation for the Method Detection Limit for each specific analyte. For the purposes of this report the LOR, PQL, and EQL are considered to be equivalent.

When assessing laboratory data it should be borne in mind that values at or near the PQL have two important limitations: *"The uncertainty of the measurement value can approach, and even equal, the reported value. Secondly, confirmation of the analytes reported is virtually impossible unless identification uses highly selective methods. These issues diminish when reliably measurable amounts of analytes are present. Accordingly, legal and regulatory actions should be limited to data at or above the reliable detection limit" (Keith, 1991).*

B. <u>Precision</u>

The degree to which data generated from repeated measurements differ from one another due to random errors. Precision is measured using the standard deviation or Relative Percent Difference (RPD).

C. <u>Accuracy</u>

Accuracy is a measure of the agreement between an experimental result and the true value of the parameter being measured (i.e. the proximity of an averaged result to the true value, where all random errors have been statistically removed). The assessment of accuracy for an analysis can be achieved through the analysis of known reference materials or assessed by the analysis of surrogates, field blanks, trip spikes and matrix spikes. Accuracy is typically reported as percent recovery.

D. <u>Representativeness</u>

Representativeness expresses the degree to which sample data accurately and precisely represents a characteristic of a population, parameter variations at a sampling point, or an environmental condition. Representativeness is primarily dependent upon the design and implementation of the sampling program. Representativeness of the data is partially ensured by the avoidance of contamination, adherence to sample handing and analysis protocols and use of proper chain-of-custody and documentation procedures.

E. <u>Completeness</u>

Completeness is a measure of the number of valid measurements in a data set compared to the total number of measurements made and overall performance against DQIs. The following information is assessed for completeness:

- Chain-of-custody forms;
- Sample receipt form;
- All sample results reported;
- All blank data reported;
- All laboratory duplicate and RPDs calculated;
- All surrogate spike data reported;

 ¹⁷ US EPA, (1994). SW-846: Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. (US EPA SW-846)
¹⁸ Keith., H, (1991). Environmental Sampling and Analysis, A Practical Guide

- All matrix spike and lab control spike (LCS) data reported and RPDs calculated;
- Spike recovery acceptable limits reported; and
- NATA stamp on reports.

F. <u>Comparability</u>

Comparability is the evaluation of the similarity of conditions (e.g. sample depth, sample homogeneity) under which separate sets of data are produced. Data comparability checks include a bias assessment that may arise from the following sources:

- Collection and analysis of samples by different personnel; Use of different techniques;
- Collection and analysis by the same personnel using the same methods but at different times; and
- Spatial and temporal changes (due to environmental dynamics).

G. <u>Blanks</u>

The purpose of laboratory and field blanks is to check for artefacts and interferences that may arise during sampling, transport and analysis.

H. Matrix Spikes

Samples are spiked with laboratory grade standards to detect interactive effects between the sample matrix and the analytes being measured. Matrix Spikes are reported as a percent recovery and are prepared for 1 in every 20 samples. Sample batches that contain less than 20 samples may be reported with a Matrix Spike from another batch. The percent recovery is calculated using the formula below. Acceptable recovery limits are 70% to 130%.

(Spike Sample Result – Sample Result) x 100 Concentration of Spike Added

I. <u>Surrogate Spikes</u>

Samples are spiked with a known concentration of compounds that are chemically related to the analyte being investigated but unlikely to be detected in the environment. The purpose of the Surrogate Spikes is to check the accuracy of the analytical technique. Surrogate Spikes are reported as percent recovery.

J. <u>Duplicates</u>

Laboratory duplicates measure precision, expressed as Relative Percent Difference. Duplicates are prepared from a single field sample and analysed as two separate extraction procedures in the laboratory. The RPD is calculated using the formula where D1 is the sample concentration and D2 is the duplicate sample concentration:

 $\frac{(D1 - D2) \times 100}{\{(D1 + D2)/2\}}$

Appendix G: Data (QA/QC) Evaluation

Data (QA/QC) Evaluation

A. <u>INTRODUCTION</u>

This Data (QA/QC) Evaluation forms part of the validation process for the DQOs documented in Section 6.1 of this report. Checks were made to assess the data in terms of precision, accuracy, representativeness, comparability and completeness. These 'PARCC' parameters are referred to collectively as DQIs and are defined in the Report Explanatory Notes attached in the report appendices.

1. Field and Laboratory Considerations

The quality of the analytical data produced for this project has been considered in relation to the following:

- Sample collection, storage, transport and analysis;
- Laboratory PQLs;
- Field QA/QC results; and
- Laboratory QA/QC results.

2. Field QA/QC Samples and Analysis

A summary of the field QA/QC samples collected and analysed for this investigation is provided in the following table:

Sample Type	Sample Identification	Frequency (of Sample Type)	Analysis Performed
Intra-laboratory duplicate (soil)	SDup 1 (primary sample BH119 0-0.2m)	Approximately 8% of primary samples	Heavy metals, TRH/BTEX and PAHs
Intra-laboratory duplicate (soil)	SDup 4 (primary sample BH108 0-0.2m)	As above	Heavy metals, TRH/BTEX, PAHs, OCPs, OPPs and PCBs
Inter-laboratory duplicate (soil)	SDup 2 (primary sample BH121 0.18-0.7m)	Approximately 4% of primary samples	Heavy metals, TRH/BTEX, PAHs
Intra-laboratory duplicate (groundwater)	WDup 1 (primary sample BH118)	Approximately 33% of primary samples	Heavy metals, TRH/BTEX, PAHs and VOCs
Intra-laboratory duplicate (groundwater)	WDup 2 (primary sample BH101)	Approximately 33% of primary samples	Heavy metals, TRH/BTEX, PAHs and VOCs
Trip spike (soil)	TS-TS1 (13/08/20) TS-W1 (19/08/20)	One for the investigation to demonstrate adequacy of preservation, storage and transport methods	BTEX
Trip blank (soil)	TB-TB1 (13/08/20) TB-W1 (19/08/20)	One for the investigation to demonstrate adequacy of storage and transport methods	BTEX
Rinsate (soil SPT)	FR-HA1 (13/08/20)	One for the investigation to demonstrate adequacy	BTEX

Sample Type	Sample Identification	Frequency (of Sample Type)	Analysis Performed
		of decontamination methods	

The results for the field QA/QC samples are detailed in the laboratory summary tables (Table Q1 to Table Q2 inclusive) attached to the investigation report and are discussed in the subsequent sections of this Data (QA/QC) Evaluation report.

3. Data Assessment Criteria

JKE adopted the following criteria for assessing the field and laboratory QA/QC analytical results:

Field Duplicates

Acceptable targets for precision of field duplicates in this report will be 30% or less, consistent with NEPM (2013). RPD failures will be considered qualitatively on a case-by-case basis taking into account factors such as the concentrations used to calculate the RPD (i.e. RPD exceedance where concentrations are close to the PQL are typically not as significant as those where concentrations are reported at least five or 10 times the PQL), sample type, collection methods and the specific analyte where the RPD exceedance was reported.

Field/Trip Blanks and Rinsates

Acceptable targets for field blank and rinsate samples in this report will be less than the PQL for organic analytes. Metals will be considered on a case-by-case basis with regards to typical background concentrations in soils and published drinking water guidelines for waters.

Trip Spikes

Acceptable targets for trip spike samples in this report will be 70% to 130%.

Laboratory QA/QC

The suitability of the laboratory data is assessed against the laboratory QA/QC criteria which is outlined in the laboratory reports. These criteria were developed and implemented in accordance with the laboratory's NATA accreditation and align with the acceptable limits for QA/QC samples as outlined in NEPM (2013) and other relevant guidelines.

A summary of the acceptable limits adopted by the primary laboratory (Envirolab) is provided below:

RPDs

- Results that are <5 times the PQL, any RPD is acceptable; and
- Results >5 times the PQL, RPDs between 0-50% are acceptable.

Laboratory Control Samples (LCS) and Matrix Spikes

- 70-130% recovery acceptable for metals and inorganics;
- 60-140% recovery acceptable for organics; and
- 10-140% recovery acceptable for VOCs.

JKEnvironments

Surrogate Spikes

- 60-140% recovery acceptable for general organics; and
- 10-140% recovery acceptable for VOCs.

Method Blanks

• All results less than PQL.

B. DATA EVALUATION

1. Sample Collection, Storage, Transport and Analysis

Samples were collected by trained field staff in accordance. Field sampling procedures were designed to be consistent with relevant guidelines, including NEPM (2013) and other guidelines made under the CLM Act 1997.

Appropriate sample preservation, handling and storage procedures were adopted. Laboratory analysis was undertaken within specified holding times in accordance with Schedule B(3) of NEPM (2013) and the laboratory NATA accredited methodologies.

Envirolab noted that the asbestos results were reported to be consistent with the recommendations in NEPM (2013), however this level of reporting is outside the scope of their NATA accreditation. In the absence of other available analytical methods for asbestos, this was found to be acceptable for the purpose of this investigation.

Review of the project data also indicated that:

- COC documentation was adequately maintained;
- Sample receipt advice documentation was provided for all sample batches;
- All analytical results were reported; and
- Consistent units were used to report the analysis results.

2. Laboratory PQLs

Appropriate PQLs were adopted for the analysis and all PQLs were below the SAC with the exception of the anthracene PQL for groundwater analysis which was 10 times greater than the ecological SAC. In light of the PAH concentrations reported for soil and groundwater, JKE are of the opinion that this is not significant, and it does not affect the quality of the dataset as a whole or the outcome of the investigation.

3. Field QA/QC Sample Results

Field Duplicates

The results indicated that field precision was acceptable. RPD non-conformances were reported for some analytes as discussed below:

- Elevated RPDs were reported for several PAH and individual metal compounds in all of the soil field duplicates and their primary samples; and
- Elevated RPDs were reported for individual metal compounds in groundwater sample MW101 and WDUP2.

Values outside the acceptable limits have been attributed to sample heterogeneity and the difficulties associated with obtaining homogenous duplicate samples of heterogeneous matrices. Where applicable, the higher duplicate value has been adopted as a conservative measure (see attached report tables).

Field/Trip Blanks

During the investigation, soil and groundwater trip blank were placed in the esky during sampling and transported back to the laboratory. The results were all less than the PQLs, therefore cross contamination between samples that may have significance for data validity did not occur.

Rinsates

All results were below the PQL. This indicated that cross-contamination artefacts associated with sampling equipment were not present and the potential for cross-contamination to have occurred was low.

Trip Spikes

The results ranged from 95% to 115% and indicated that field preservation methods were appropriate.

4. <u>Laboratory QA/QC</u>

The analytical methods implemented by the laboratory were performed in accordance with their NATA accreditation and were consistent with Schedule B(3) of NEPM (2013). The frequency of data reported for the laboratory QA/QC (i.e. duplicates, spikes, blanks, LCS) was considered to be acceptable for the purpose of this investigation. JKE note that due to the limited number of samples submitted for analysis, duplicates and matrix spikes were not reported in some of the batches. This is not considered to have an impact on the data quality for this investigation.

C. DATA QUALITY SUMMARY

JKE are of the opinion that the data are adequately precise, accurate, representative, comparable and complete to serve as a basis for interpretation to achieve the investigation objectives.

There was only one groundwater monitoring event undertaken for the investigation. On this basis there is some uncertainty around the representativeness of the groundwater data, particularly during different climatic conditions and after wet/dry periods.

Appendix H: Field Work Documents

Chent:	Woolworths, c/- Net	ttletontribe				Job No		E	33191B
Project:	Proposed Commerce	cial Development				Well No			101
Location:	74 Edinburgh Road	, MARRICKVILLE,	NSW			Depth	(m):		6.0
WELL FINIS			_	_	_			1	
	1	1 1					1		
	Gatic (Cover 🖄	Standp	ipe 🛄			Other (des	cribe) 🔲	
WELL DEV	ELOPMENT DETAIL	.s		_	_				
Method:		Darlo	ment	SWL – Be	efore (m):			RA	3.02
Date:	******	14/81	20	Time – B	efore:			4:3	3
Undertaker	By:	AM		SWL - Af	fter (m):			3.04	
Total Vol. F	emoved:	55		Time – A	fter:			4:5	}
PID Readin	g (ppm):	0.6							
		NTE				_			
Volu	me Removed	1		DO	T	FC			
	(L)	Temp (°C)	(mg/L)	(μS	S/cm)	рН		Eh (mV)
	5	19.5	ŀ	6	120	57	6.80		-47.4
	0	19.4	1	. 3	90	33	6.8	7.	-73.4
	15	19-5	0	.9	91	2	6.80	7	-86.2
(20	19-5	1	- <u>Z</u>	89	6	6.8	0	-8e. 2
(25	9.4	0	r.8	90	1	6.81		-87.3
	30	19.6		F	87	2	6.79		-86.9
	15	9.5	1.	0	87	, 9	6.81		_9/0
à	fo	19.5	2.	4	67	12	6. 20	3	-88.6
A	.5	19.4	0	7	8	18	6.03		-581
f	 つ	10.5	1		960		6.81		-86.7
5	5	16.5	7	. 4	8	14	(7	9	-272
				••••••	0		······································		

					-30				
				*****	+				

			•••••						
				••••••	••••••				
				••••••		*******			
		1		**********					1

Client:	Woolworths	s, c/- Nettletc	ontribe				Job No.	;		E33191B
Project:	Proposed C	Commercial D	Development				Well No	······).:		118
ocation:	74 Edinburg	gh Road, MA	RRICKVILLE, N	SW			Depth (m):		9m
ELL FIN	SH DETAILS	5		_						1
		Gatic Cove		Standpin	۵П			Other (desc	ribo) [7
VELL DEV	ELOPMENT	DETAILS		Totandpip				Totilei (desci		-
lethod:			On ula m	. 4	SWL – Be	fore (m):		1	2.7	2
Date:			14/0/12	57.J	Time – Be	fore:			1.:0	
Indertake	n Bv:		AM		SWI - Af	er (m).			7.0	. k.
otal Vol	Pamovad:				Time Af				4:5	
					rime – Ar				7.2	1
io Readir	ig (ppm):		US		I					
EVEL OP					_			(ja	_	
Vol	ume Remove	ed I		1 1	00	<u> </u>	EC	T	_	
U ON	(L)		Temp (°C)	(m	g/L)	(µ\$	5/cm)	рH		Eh (mV)
	5		21.1	2.	(147	17	5.91		266.5
	10		21.1	7.	3	170	7/2	F-G1		201.2
	15		21.8		9	12	811	18.7		172.6
	20		27.0	7.3	,	140	it z	579		1/1-
	25		210	7.0		17	1) 7 a.	· · · · · · · · · · · · · · · · · · ·		1460
	23		11.7	20		14 5	7/	5.88		1159
	<i>{</i> 0	·····	21.7		5	103	68	5.84		106.0
3	5		21-7	1.8	~	197	47	2.82		104 9
4	0.		22.0	19		152	19	5.85		101.8
4	2		21-9	2.5	-	1566	3	5.86		802
	Pa	mped	Dru			I				
	****************	1	J	A	2			1		
					*****		********			

	•••••									

		·····								

						1		-		
						1			•••••	*****
					••••••	1				
							•••••			
mmente				NOLSH	on (VES /	NOL Str	ady Sta	te Achieved//V		<u>ا</u>
		- 1 HOh		- no, an		110), 30	auy Jid		ン	-,
Used: 5	Kigh	siA	Gad					ŧ		
-	0									
		1	1					0		
sted By:		MM	Rema	rks:	ilian-					
		14/8/20	- Stea	ay state cond	ILIONS	0.2 unite	differen	ce in the conduc	stiveitu	ase than 10%
ite Tested	t		and S	NL stable/noi	t in drawdow	vn	, ancien		Saveity	GGS (HAH 1070
ecked By	· · · · · ·	12	Minin	num 3 monito	oring well vo	iumes pui	rged, unle	ess well purged	until it i	s effectively dry

y.

Client:	Woolworths, c/- Net	tletontribe			Job No		E	33191B
Project:	Proposed Commerc	ial Development	*************		Well No	D.;	······	121
Location:	74 Edinburgh Road	MARRICKVIIIE	NSW		Depth	(m):		
		in a contribute,			Deptil	anyo		6m
		11-01-01				1		
	Gatic C	over 🗵	Stand	lpipe		Other (de	scribe)	
WELL DEV	ELOPMENT DETAIL	s						
Method:		Parchop	ment	SWL – Be	fore (m):		2.80	า
Date:		14/8/	ରେ	Time – Be	efore:		7:30	
Undertaker	ı By:	AM		SWL – Af	ter (m):			
Total Vol. F	Removed:	10		Time – Af	ter:		3:15	
PID Readin	g (ppm):	118						
Comments		170						
DEVELOP				DO	EC.	-		
VOIL	(L)	Temp (°C)		(mg/L)	(uS/cm)	pl	-	Eh (m\
	T	20.2		7.2	2224	5.7		147.4
••••••	8	20.5		c.7	2282	2	19	/ 29 /
	10	20.9		6.2	2777	6-		12/ 0
Comments:	Odours (YES / (NC		res / MO)	Sheen (YES /	NO), Steady Sta	te Achieved (YE9 / NO)	
YSI Used: <	ury	lou s	narks:	J				
	14/	- Ste	eady state c	onditions	0.2 upita differenz	o in the cond	uctivoity loss	then 10%

 \bigcirc

WATER QUALITY METER CALIBRATION FORM

Client: Woolwor	ths, c/- Nettletontribe
Project: Proposed	Commercial Development
Location: 74 Edinb	urgh Road, MARRICKVILLE, NSW
Job Number: E33191B	
	DISSOLVED OXYGEN
Make:	Model:
Date of calibration: 14/8/20	Name of Calibrator: AM
Span value: 70% to 130%	
Measured value: 96%	
Measured reading Acceptable (
	рН
Make:	Model:
Date of calibration: $14 k/20$	Name of Calibrator: Am
Buffer 1: Theoretical pH = 7.01± 0.01	Expiry date: 1/20 Lot No: 34 920 8
Buffer 2: Theoretical pH = 4.01± 0.01	Expiry date: 12/20 Lot No: 346922
Measured reading of Buffer 1: 706	
Measured reading of Buffer 2: 4 10	
Slope:	Measured reading Acceptable (Yes/No):
	EC
Make:	Model:
Date: If /2/20 Name of	Calibrator: Am Temperature: /9 °C
Calibration solution: Conductivity Standa	Lot No: 344907
Theoretical conductivity at temperature (see s	olution container): 1251 µS/cm
Measured conductivity: 130% µS/cm	Measured reading Acceptable (Yes/No):
	REDOX
Make:	Model:
Date of calibration: $14 k/20$	Name of Calibrator: A
Calibration solution: ORP Test Solution	Expiry date: 1/25 Lot No: 4923
Theoretical redox value: 2	40mV
Measured redox reading: 228 7 mV	Measured reading Acceptable (Yes/No):

PID FIELD CALIBRATION FORM

Client:	Woolworths, c/- Nettletont	ribe	
Project:	Proposed Commercial Deve	lopment	
Location:	74 Edinburgh Road, MARRI	CKVILLE, NSW	
Job Number:	E33191B		
	Р	ID	
			Date of last factory
Make: RAE	Model: Mihi RAE Lite	Unit: Green	calibration:
Date of calibration: 19/	8/20	Name of Calibrator: HW	
Calibration gas: Iso-butylen	e	Calibration Gas Concentrati	on: 100.0 ppm
Measured reading:	/00 ppm	Error in measured reading:	± 🗢 ppm
Measured reading Acceptab	ole (Yes/No):		
	Р	ID	
ai			Date of last factory
Make: Luc	Model: Mini Rue lite	Unit: LEL-PGM6208	calibration: $64/8/20$
Date of calibration:	19/8/20	Name of Calibrator:	AM
Calibration gas: Iso-butylen	e	Calibration Gas Concentration	on: 100.0 ppm
Measured reading: /0	/ ppm	Error in measured reading:	± ppm
Measured reading Acceptab	le (Yés/No):		
	Р	ID	
<i>\$</i>		1	Date of last factory
Make:	Model: Masin like like	Unit: Canada Canada	calibration:
Date of calibration:		Name of Calibrator:	
Calibration gas: Iso-butylen	e	Calibration Gas Concentration	on: 100.0 ppm
Measured reading:	ppm	Error in measured reading:	± ppm
Measured reading Acceptab	le (Yes/No):		
	Р	ID	
			Date of last factory
Make:	Model:	Unit:	calibration:
Date of calibration:		Name of Calibrator:	
Calibration gas: Iso-butylen	e	Calibration Gas Concentration	on: 100.0 ppm
Measured reading:	ppm	Error in measured reading:	± ppm
Measured reading Acceptab	le (Yes/No):		
	P	ID	
	a)		Date of last factory
Make:	Model:	Unit:	calibration:
Date of calibration:		Name of Calibrator:	
Calibration gas: Iso-butylen	e	Calibration Gas Concentration	on: 100.0 ppm
Measured reading:	ppm	Error in measured reading:	± ppm
Measured reading Acceptab	le (Yes/No):		

Project:	1					500 NO	LUUI	510
and the lot of the lot of the lot and the set of the lot of the	Proposed	Commerc	ial Development			Well No.:	N	w118
Location:	74 Edinbu	rgh Road,	MARRICKVILLE, NSW			Depth (m):		910
NELL FINISH	1							/
Gatic Co	over 🏑		Standpi	90			Other (descr	ibe)
	AILS:							_
Nethod:		Low Fla	IN Perstaltic pum	P	SWL - Be	rore:	2.83n	1
Jale.		1918	120		Total Val	Pomovod:	11:004	m
Dump Brogram No:		HW				Kemoved:	~3.5L	
PURGING / SAMPLI		S 6	1		(ppm)		0.6	
Time (min)	SWL (m)	Vol (L)	Notes	Temp (°C)	DO (mg/L)	EC (µS/cm)	рН	Eh (mV)
5	2.83	0.5	Shightin Citty	19.6	2.2	14388	5.81	213.0
10	2.84	1.0	dear	20.0	1.9	14911	5.83	187.0
14	2.88	1.5	11	20.1	1.4	15052	5.83	165.8
17	2.88	2.0	t E	20.2	1.2	15120	5.84	155.8
20	2.88	2.5	<i>i</i> (20.1	11	15150	5.84	150.4
24	2.88	3.0	и	20.2	0.9	15240	5.84	131.8
28	2.58	3.5	<i>.</i>	20.2	0.8	15274	5.84	127.2
			Stort Sampling		I			
			J		1			
					1		**********	
*********					1	************		
		****			_			
					1			
					1			F
					1			
					1			
					T			
					T			
					I			
					T			
					1			
					1			
				-	1			1
Comments: Odours SigAHY SHY W Sampling Contain 'Si used: 5 ested By: V <u>ittal Bog</u>	(YES / NO Ider, ma ners Used:4)) NAPL/I oclero-ft x glass an	PSH (YES / (NO), Sheen rockarg& obsern nber, /2 x BTEX vials, 2 Remarks:	(YES / (10) CC . k HNO3 plas) Steady St stic, — x H2	ate Achieved (いのび SO4 plastic, ー	YES// NO) P/ x unpreserve	d plastic

Client:	Woolworth	Woolworths, c/- Nettletontribe				Job No.: E33191B			
Project:	Proposed Commercial Development					Well No.: Mw/0/		nw101	
Location:	74 Edinbu	rgh Road,	MARRICKVILLE, NSW		Depth (m):		\$06.0		
WELL FINISH									
Gatic C	over V		Standpi	pe			Other (desc	ribe)	
Method:	AILS.	1 1	1 . Co-blattle -		SWL - Be	fore:	200		
Date:		Low the	low resistantic po	Time - Before:		3.08m			
Jais. Lindertaken Rv [.]		17/5	12	Total Vol Removed:		12-18 pm			
Pump Program No-		A CLO			PID (nnm)		JOL		
PURGING / SAMPL	ING MEASUR	REMENTS					0.6		
Time (min)	SWL (m)	Vol (L)	Notes	Temp (°C)	DO (mg/L)	EC (µS/cm)	рН	Eh (mV)	
5	3.09	0.5	dear	19.2	1.1	1260	6.86	-67.1	
10	3.09	1.0	11	19.3	0.6	1195	6.80	-70.6	
14	3.09	1.5	e t	19.4	0.5	1181	6.79	-71.9	
18	3.09	2.0	(1	19.3	0.4	1154	6.76	-72.3	
22	3.09	2.5	21	19:3	0.3	1100	6.72	-25.7	
25	3.09	2.8	()	19:3	0.3	1029	6.71	-127.4	
29	2.09	3.0	<i>t</i> (19,2	0.7	1003	6.72	-96.6	
73	7.09	3.2	e t	19.4	0.3	991	6.78	-101.6	
26	7.09	2.5	((19.4	0.3	977	6.73	-105.7	
4n	7.09	3.8	//	19,4	0.3	967	6.74	-108.7	
		~ ~ ~	Start Campling		+				
Comments: Odours	(YES / NO modero), NAPL/ // // // // // // // // // // // // //	PSH (YES / (10), Sheen	(YES / (NO) 1/341 57 11	Steady St	ate Achieve	YES NO)		
Sampling Contai	ners Used:4	x glass an	nber, $2 \times BTEX vials, 2$	x HNO3 plas	stic, x H2	SO4 plastic,	x unpreserve	d plastic	
YSI used: 5			-						
Tested By: Vittal Bo Date Tested: / /// Checked By: Date:	99aram HW 8/20	¥	Remarks: - Steady state condition - difference in the pH I 10% and SWL stable/	ons less than 0. not in drawo	2 units, diff down	erence in con	ductivity less	than 10%	

Client:	Woolworths, c/- Nettletontribe					Job No.: E33191B		
Project:	Proposed	Proposed Commercial Development					Well No.: Mw/2	
Location:	74 Edinburgh Road, MARRICKVILLE, NSW					Depth (m):		6.0
WELL FINISH	- /							
Gatic C	over V		Standpip	e			Other (desci	ibe)
WELL PURGE DET	AILS:		10 S. 4 A IN			£		
Internod:		Low flo	Spenstaltic pump	?	SWL - Be	nore:	2.77	
Date:	*******	19/8/20			Tatal Val Barrand		9:40am	
Undertaken By:		HW				Kemoved:	~2.0L	
PURGING / SAMPI	ING MEASUE	DEMENTS			(ppm):		1.4	
Time (min)	SWL (m)	Vol (L)	Notes	Temp (°C)	DO (mg/L)	EC (µS/cm)	рН	Eh (mV)
4	2.95	0.5	clear	18.7	4.6	2266	4.54	208.3
8	3.06	0.8	((18.9	3.9	2280	4.52	237.2
12	3.13	1.0	((18.9	3.7	2280	4.52	249.6
16	3.18	1.4	1	18.8	3.7	2276	4.53	262.2
20	3.23	1.6		18.8	3.5	2280	4.52	275.2
24	3.27	1.8	R	18.8	3.5	2286	4.52	283.0
28	3.31	2.0	LC.	18.8	3.5	2290	4.52	288.1
			start sampling		1			
			<i>,</i>		1			
					1			
		**********		1				1
	************		***************************************	1	1	*********		
******	************				1			
	***********				1			
		***********			1			
			*******************************	**********				
			************************************	********				

			*********************************	**********	1			***********
**********************			***************************************					
			***************************************		1			
				*********		******************		
	11		***************************************	********		************************		
				*********		***************		

Comments: Odours <i>Clear Woder</i> , Sampling Contai YSI used: 5	sku rech), NAPL/I ネイろピュ x glass an	PSH (YES /(NO), Sheen (YES (NO) HNO3 plas	, Steady St stic,—x H2	ate Achieved (SO4 plastic,—	YES (NO) x unpreserve	d plastic
Tested By: Vittal Bo	ggaram Hi	1	Remarks:					
Date Tested: 191	18/20	12	- Steady state condition - difference in the pH le	ns ess than 0.1	2 units, diff	erence in con	ductivity less	than 10%
Unecked By:		R	10% and SWL stable/n	ot in drawo	nwot			

 βs^2

WATER QUALITY METER CALIBRATION FORM

Client: Woolwor	Woolworths, c/- Nettletontribe					
Project: Proposed	Proposed Commercial Development					
Location: 74 Edinbu	ation: 74 Edinburgh Road, MARRICKVILLE, NSW					
Job Number: E33191B						
	DISSOLVED OXYGEN					
Make: YST	Model: Professione	Model: Professional plus				
Date of calibration: 19/8/20	Name of Calibrator:	Name of Calibrator: HN				
Span value: 70% to 130%		4				
Measured value: 113%						
Measured reading Acceptable (res No):						
-	рН					
Make: /SI	Model: Professiona	Model: Professional plus				
Date of calibration: 19/18/20	Name of Calibrator:	Name of Calibrator: $\mu \omega$				
Buffer 1: Theoretical pH = 7.01± 0.01	Expiry date: 06/2/	Lot No: 349208				
Buffer 2: Theoretical pH = 4.01± 0.01	Expiry date: 03/21	Lot No: 343262				
Measured reading of Buffer 1: 7,13						
Measured reading of Buffer 2: 3.98						
ope: Measured reading Acceptable (Yes/No):						
	EC					
Make: Ys1	SI Model: profeesional plus					
Date: 19/8/20 Name of	Calibrator: HW	Temperature: 14.7 °C				
Calibration solution: Conductivity Standar.	d Expiry date: 04/21	Lot No: 344907				
Theoretical conductivity at temperature (see solution container): 1143 µS/cm						
Measured conductivity: 1275 µS/cm Measured reading Acceptable (Yes/No):						
	REDOX					
Make: ŸSI	Model: Pro fession	Model: professional plus				
Date of calibration: 19/8/20	Name of Calibrator:	Name of Calibrator: Hw				
Calibration solution: ORP Test Solution	Expiry date: 01/25	Expiry date: 01/25 Lot No: 4923				
Theoretical redox value: 2	40mV	<u> </u>				
Measured reading: 247.6 mV Measured reading Acceptable (Yes) No):						

07:40

14.39

Appendix I: Guidelines and Reference Documents

Acid Sulfate Soils Management Advisory Committee (ASSMAC), (1998). Acid Sulfate Soils Manual

Australian and New Zealand Environment Conservation Council (ANZECC), (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality

Canadian Council of Ministers of the Environment, (1999). Canadian soil quality guidelines for the protection of environmental and human health: Benzo(a)Pyrene (1997)

CRC Care, (2011). Technical Report No. 10 – Health screening levels for hydrocarbons in soil and groundwater Part 1: Technical development document

Contaminated Land Management Act 1997 (NSW)

Department of Land and Water Conservation, (1997). 1:25,000 Acid Sulfate Soil Risk Map Series

Managing Land Contamination, Planning Guidelines SEPP55 – Remediation of Land (1998)

National Health and Medical Research Council (NHMRC), (2018). National Water Quality Management Strategy, Australian Drinking Water Guidelines 2011

NSW Department of Environment and Conservation, (2007). Guidelines for the Assessment and Management of Groundwater Contamination

NSW EPA, (1995). Contaminated Sites Sampling Design Guidelines

NSW EPA, (2014). Waste Classification Guidelines - Part 1: Classifying Waste

NSW EPA, (2015). Guidelines on the Duty to Report Contamination under Section 60 of the CLM Act 1997

NSW EPA, (2017). Guidelines for the NSW Site Auditor Scheme, 3rd Edition

NSW EPA, (2020). Consultants Reporting on Contaminated Land, Contaminated Land Guidelines

National Environment Protection Council (NEPC), (2013). National Environmental Protection (Assessment of Site Contamination) Measure 1999 as amended (2013)

Olszowy, H., Torr, P., and Imray, P., (1995). Trace Element Concentrations in Soils from Rural and Urban Areas of Australia. Contaminated Sites Monograph Series No. 4. Department of Human Services and Health, Environment Protection Agency, and South Australian Health Commission

Protection of the Environment Operations Act 1997 (NSW)

State Environmental Planning Policy No.55 – Remediation of Land 1998 (NSW)

World Health Organisation (WHO), (2008). Petroleum Products in Drinking-water, Background document for the development of WHO Guidelines for Drinking Water Quality

Western Australia Department of Health, (2009). Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia

E33191Brpt

