APPENDIXE

GKGROUND NOISE ASSESSMENT

Marshall Day Acoustics Pty Ltd
ABN: 53470077191
4/46 Balfour S
Chippendale NSW 2008
Australia
T: +612 92829422
www.marshallday.com

Project: Valley of the Winds wind farm
Prepared for: UPC\AC Renewables Australia
Attention: Jeremy Ellis
Report No.: Rp 00220191254

Disclaimer

Reports produced by Marshall Day Acoustics Limited are based on a specific scope, conditions and limitations, as agreed between Marshall Day Acoustics and the Client. Information and/or report(s) prepared by Marshall Day Acoustics may not be suitable for uses other than the specific project. No parties other than the Client should use any information and/or report(s) without first conferring with Marshall Day Acoustics.

The advice given herein is for acoustic purposes only. Relevant authorities and experts should be consulted with regard to compliance with regulations or requirements governing areas other than acoustics.

Copyright

The concepts and information contained in this document are the property of Marshall Day Acoustics Limited. Use or copying of this document in whole or in part without the written permission of Marshall Day Acoustics constitutes an infringement of copyright. Information shall not be assigned to a third party without prior consent

Document Control

Status:	Rev:	Comments	Date:	Author:	Reviewer:
Complete	-	Issued to client	23 Feb. 2022	A. Ahmadi C. Guzik	C. Delaire

TABLE OF CONTENTS

1.0 INTRODUCTION 4
2.0 BACKGROUND NOISE SURVEY \& ANALYSIS METHOD 5
2.1 Noise monitoring locations 5
2.2 Survey description 6
2.3 Data analysis 7
3.0 SURVEY \& ANALYSIS RESULTS 9
3.1 Background noise levels 9
3.2 Noise limits 9
3.3 C-Weighted background noise levels 12
4.0 SUMMARY 12
APPENDIXA GLOSSARY
APPENDIX B TURBINE COORDINATES
APPENDIX C NOISE MONITORING LOCATIONS
APPENDIXD SURVEY INSTRUMENTATION
APPENDIX E SITE WIND SPEED DATA
APPENDIX F SUMMARY OF BACKGROUND NOISE LEVEL REGRESSION COEFFICIENTS
APPENDIX G RECEIVER 5 DATA
APPENDIX H RECEIVER 25 DATA
APPENDIXI RECEIVER 77 DATA
APPENDIXJ RECEIVER 87 DATA
APPENDIX K RECEIVER 151 DATA
APPENDIX L RECEIVER 187 DATA
APPENDIX M RECEIVER 189 DATA
APPENDIX N RECEIVER 240 DATA
APPENDIX O RECEIVER 256 DATA
APPENDIX P RECEIVER 278 DATA
APPENDIX Q RECEIVER 282 DATA
APPENDIX R RECEIVER 314 DATA
APPENDIX S RECEIVER 497 DATA

MARSHALL DAY ${ }_{\text {Acoustics }}$ O

1.0 INTRODUCTION

This report presents the results of background noise monitoring undertaken for the proposed Valley of the Winds wind farm (the wind farm).

The background noise monitoring was commissioned by UPC $\backslash A C$ Renewables Australia (the proponent), as an element of the noise studies associated with the wind farm's development application. The background noise monitoring was undertaken to obtain a representation of typical baseline conditions at receivers in the vicinity of the wind farm and determine applicable noise limits.

This report documents the survey method, the results of the monitoring, and the derived noise limits that apply to the wind farm.

Acoustic terminology used throughout this report is presented in Appendix A.
Turbine coordinates and a site layout are provided detailed in Appendix B and Appendix C respectively.

Throughout this report, the term receiver is used to identify any dwelling identified by the proponent in the vicinity of the proposed wind energy facility. Receivers are grouped as associated receivers where a noise agreement is proposed between the landowners and the proponent, or nonassociated receivers which comprises the remaining receivers without an agreement with the proponent.

2.0 BACKGROUND NOISE SURVEY \& ANALYSIS METHOD

The background noise survey and analysis has been conducted in accordance with the NSW Environment Protection Authority NSW Wind Energy: Noise Assessment Bulletin, dated December 2016 (NSW Noise Assessment Bulletin).

The NSW Noise Assessment Bulletin in turn references the South Australia Environmental Protection Authority Wind Farms Environmental Noise Guidelines, dated July 2009 (SA Guideline), the requirements of which have also been considered.

This section of the report presents:

- Details of the selected noise monitoring locations;
- An overview of the survey method; and
- A summary of the data analysis procedures.

2.1 Noise monitoring locations

Noise monitoring locations were selected based on the results of the Preliminary Noise Assessment detailed in MDA report Rp 00120191254 Valley of the Winds - Preliminary noise assessment, dated 7 April 2020.

Consent to undertake background noise monitoring was not granted at all preferred receivers, however, based on the proximity to turbines and predicted noise contours and representation of receiver clusters, background noise monitoring was conducted at the thirteen (13) receivers listed in Table 1and presented in Figure 1 of Appendix C.

Table 1: Background noise monitoring locations

Receiver	Nearest turbine	Distance from nearest turbine, m	${\text { Direction to nearest turbine, }{ }^{\circ}}^{\mathbf{5}} \mathbf{\text { GR40 }}$
25	MH29	2,026	291
77	MH63	2,103	283
87	MH12	2,511	221
151	LV20	2,746	298
187	LV4	2,216	100
189	LV3	2,470	360
240	MH76	2,381	282
256	GR35	2,913	70
278	GR52	1,299	358
282	MH3	2,095	199
314	MH14	2,221	314
497	GR2	2,228	18

2.2 Survey description

The background noise survey comprised unattended monitoring over a number of weeks to measure sound levels for a range of environmental conditions. Site wind speeds and local weather conditions were simultaneously recorded during the survey, along with periodic audio samples, to enable the relationship between background noise levels and site winds to be assessed.

The key elements of the background noise survey are summarised in Table 2 below.
Table 2: Summary of key elements of background noise survey

Item	Description
Monitoring locations	Thirteen (13) receivers as described in Section 2.1.
Monitoring Period	1 June to 2 September 2021 equating to approximately 13 weeks at receivers $5,25,151$, $187,240,278,282,314$ and 497.
	17 June to 2 September 2021 equating to approximately 11 weeks at receivers $77,57,189$ and 256 . This was due to staff becoming unwell during the first round of deployments.
	The duration of the monitoring period was chosen to satisfy the SA Guideline which requires the collection of 2,000 data points including a minimum of 500 from the worst case wind direction.
	The worst-case direction is defined in Section 4.1 of the SA Guideline as a wind direction spread of 45° on either side of the direct line between the nearest WTG and the relevant receiver.
	The NSW Noise Assessment Bulletin recognises that in NSW, the worst case wind direction rarely occurs. Therefore, if it appears impractical to collect 500 valid data points under the worst-case conditions, data collection should continue for up to six weeks.
Sound level meters	Class 1 automated sound loggers (most accurate class rating for field usage).
	Microphones mounted at approximately 1.5 m above ground level and fitted with enhanced wind shielding systems based on the design recommendations detailed in the UK Institute of Acoustics guidance ${ }^{1}$.
	See equipment specifications and calibration records in Appendix D
Noise measurement data	A-weighted and C-weighted average and statistical sound pressure levels in 100 ms intervals.
	One-third octave band frequency noise levels and two-minute audio samples every ten (10) minutes to aid the identification of extraneous noise influences.
Local wind speed and rainfall data	Weather stations were installed beside noise monitoring equipment at receivers 77 and 151 to concurrently record rainfall and wind speeds at microphone height.
	This data was recorded to identify periods when local weather conditions may have resulted in excessive extraneous noise at the microphone (i.e. rainfall).
	Local weather data was also taken from publicly available Australian Government Bureau of Meteorology (BOM) information for the corresponding survey period using data from weather stations located at Armidale Airport and Glen Innes Airport.
Site wind speed data	Hub height wind speeds for correlating background noise levels with site wind speeds sourced from two meteorological masts (the 'met mast').
	Further details with respect to the met mast and wind data analysis are provided in Appendix E.

[^0]
2.3 Data analysis

The analysis of the survey data has been conducted in accordance with the NSW Noise Assessment Bulletin, and consequently the SA Guideline.

This broadly involves:

- Collating the measured noise levels, site wind speeds and local weather data into a single dataset;
- Filtering the data set to remove measurement results affected by extraneous or atypical noise;
- Filtering the data where necessary to account for site wind directions; and
- Plotting a chart of noise levels versus wind speeds and conducting a best fit regression analysis of the filtered data.

A summary of the key steps in the analysis of the data is presented in Table 3.
Table 3: Background noise data analysis

[^1]| Process | Description |
| :---: | :---: |
| Regression analysis | Two datasets are plotted on a chart of noise levels versus wind speeds: |
| | - All data points that have been removed from the analysis using the above processes |
| | - The filtered dataset comprising all retained measurement data. |
| | The chart of filtered noise levels versus wind speed is reviewed to determine if there are any distinctive trends or gaps in the data which could warrant separation of the measurement results into subgroups (e.g. subgroups for time of day or wind direction). |
| | A line of best fit is determined for the filtered data and, where applicable, any subgroups of the filtered data. The line of best fit is determined using a regression analysis of the range of noise levels and wind speeds or, where necessary, analysis of noise levels at individual wind speeds. |
| Noise limits | Noise limits are defined at each wind speed in accordance with the NSW Noise Assessment Bulletin by a value of 35 dB or the background plus 5 dB , whichever is higher. The value of the background noise level at each integer wind speed is defined by the line of best fit to the measurement results. |

3.0 SURVEY \& ANALYSIS RESULTS

This section presents a summary of the background noise measurement results, analysed in accordance with the method described in Section 2.3.

The analysis results include the noise limits determined in accordance with the NSW Noise Assessment Bulletin.

3.1 Background noise levels

The tabulated data presented in Table 4 summarises the derived background noise levels for the surveyed wind speeds.

A summary of the background noise level regression coefficients is provided in Appendix F.
The results are illustrated in the graphical data provided for each receiver location in Appendix G to Appendix S. The background noise levels exhibit variations which are consistent with rural areas and are characterised by lower background noise levels during the night period (particularly during periods of increased wind shear which result in lower wind speeds near ground level, and consequently lower background noise levels from wind disturbance of vegetation). Consistent with the procedures detailed in the NSW Noise Assessment Bulletin, the derived background noise levels are based on analysis of the aggregated data for the day and night periods.

The background noise levels measured at Receiver 256 (associated receiver) indicate that the noise floor of the monitoring equipment at this location was higher than other similar units deployed in the vicinity of the Project. Audio recordings from this location were therefore reviewed and verified the presence of an instrument fault which caused audible electrical noise during periods of low background noise. The instrumentation checks carried out at the start and end of the survey confirmed correct calibration, and the measurement data is generally considered representative for the location. However, as a result of the elevated noise floor, the measured levels for this location are provided for reference purposes only. Accordingly, the results for Receiver 256 were not used to derive noise limits.

3.2 Noise limits

Noise limits derived considering the background noise levels detailed in Section 3.1 are provided in Table 5 for the key wind speeds relevant to the assessment of wind farm noise for non-associated receivers.

As discussed in Section 3.1, background noise levels measured at Receiver 256 (associated receiver) were not used to derive noise limits.

The derived noise limits for all surveyed wind speeds are illustrated in the graphical data provided for each non-associated receiver in Appendix G to Appendix N and Appendix P to Appendix S.

MARSHALL Acoustics

Table 4: Background noise levels, dB La90

Receiver	Hub height wind speed, m/s																	
	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
$5^{[1]}$	22.6	22.8	23.4	24.2	25.3	26.5	28.0	29.6	31.3	33.1	34.9	36.8	38.6	40.5	42.2	43.8	45.3	46.6
$25^{[2]}$	-	28.6	28.6	28.6	28.8	29.0	29.4	29.9	30.4	31.1	31.9	32.9	33.9	35.1	36.4	37.9	39.5	41.2
$77^{[2]}$	22.1	22.4	22.8	23.3	23.8	24.3	24.9	25.5	26.1	26.8	27.5	28.1	28.8	29.5	30.3	31.0	31.7	32.4
$87^{[2]}$	-	-	-	30.4	30.4	30.5	30.9	31.4	32.2	33.1	34.3	35.6	37.1	38.8	40.7	42.8	45.1	47.5
$151{ }^{[1]}$	24.8	25.8	26.7	27.5	28.3	29.2	30.0	30.9	31.9	33.1	34.4	35.9	37.6	39.6	41.8	44.4	47.3	50.6
$187^{[1]}$	-	24.0	24.0	24.1	24.5	25.2	26.0	27.0	28.2	29.6	31.1	32.8	34.6	36.6	38.6	40.7	42.9	45.2
$189{ }^{[1]}$	-	22.8	22.9	23.2	23.6	24.2	25.1	26.1	27.2	28.6	30.1	31.9	33.8	35.9	38.1	40.6	43.3	46.1
$240{ }^{[2]}$	24.4	24.6	25.0	25.6	26.4	27.3	28.4	29.7	31.1	32.5	34.0	35.6	37.2	38.8	40.4	41.9	43.4	44.8
256* ${ }^{\text {[1] }}$	-	27.1	27.2	27.6	28.3	29.1	30.2	31.5	32.9	34.6	36.3	38.2	40.3	42.4	44.6	46.9	49.3	51.7
$278{ }^{[1]}$	-	21.5	21.5	22.1	23	24.3	25.8	27.6	29.5	31.5	33.6	35.6	37.6	39.4	41.0	42.3	43.3	43.9
$282^{[2]}$	-	-	-	27.7	27.7	28.2	29.1	30.4	31.9	33.7	35.7	37.9	40.1	42.4	44.7	47.0	49.1	51.1
$314{ }^{[2]}$	-	23.6	23.6	23.9	24.5	25.4	26.5	27.9	29.5	31.3	33.1	35.2	37.2	39.4	41.5	43.7	45.8	47.8
$497{ }^{[1]}$	-	23.1	23.4	24.2	25.4	27.0	28.9	31.0	33.3	35.7	38.1	40.5	42.8	45.0	46.9	48.5	49.7	50.5
Notes: 1 GR 2 M * B	M1 me M1 me kgroun	ast at 7 mast at noise le	267 E / ,564 E / s meas	$\begin{aligned} & 60,616 \\ & 470,185 \\ & \text { ed at th } \end{aligned}$	GDA 20 (GDA 202 associ	Zone 55) Zone 5 d rece	at pr		forma	only								

MARSHALL DAY

Table 5: Operational wind farm noise limits, dB LA90

Receiver	Hub height wind speed, m/s																	
	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
$5^{[1]}$	35.0	35.0	35.0	35.0	35.0	35.0	35.0	35.0	36.3	38.1	39.9	41.8	43.6	45.5	47.2	48.8	50.3	51.6
$25^{[2]}$	35.0	35.0	35.0	35.0	35.0	35.0	35.0	35.0	35.4	36.1	36.9	37.9	38.9	40.1	41.4	42.9	44.5	46.2
$77^{[2]}$	35.0	35.0	35.0	35.0	35.0	35.0	35.0	35.0	35.0	35.0	35.0	35.0	35.0	35.0	35.3	36.0	36.7	37.4
$87^{[2]}$	35.4	35.4	35.4	35.4	35.4	35.5	35.9	36.4	37.2	38.1	39.3	40.6	42.1	43.8	45.7	47.8	50.1	52.5
$151{ }^{[1]}$	35.0	35.0	35.0	35.0	35.0	35.0	35.0	35.9	36.9	38.1	39.4	40.9	42.6	44.6	46.8	49.4	52.3	55.6
$187{ }^{[1]}$	35.0	35.0	35.0	35.0	35.0	35.0	35.0	35.0	35.0	35.0	36.1	37.8	39.6	41.6	43.6	45.7	47.9	50.2
$189{ }^{[1]}$	35.0	35.0	35.0	35.0	35.0	35.0	35.0	35.0	35.0	35.0	35.1	36.9	38.8	40.9	43.1	45.6	48.3	51.1
$240{ }^{[2]}$	35.0	35.0	35.0	35.0	35.0	35.0	35.0	35.0	36.1	37.5	39.0	40.6	42.2	43.8	45.4	46.9	48.4	49.8
$278{ }^{[1]}$	35.0	35.0	35.0	35.0	35.0	35.0	35.0	35.0	35.0	36.5	38.6	40.6	42.6	44.4	46.0	47.3	48.3	48.9
$282{ }^{[2]}$	35.0	35.0	35.0	35.0	35.0	35.0	35.0	35.4	36.9	38.7	40.7	42.9	45.1	47.4	49.7	52.0	54.1	56.1
$314{ }^{[2]}$	35.0	35.0	35.0	35.0	35.0	35.0	35.0	35.0	35.0	36.3	38.1	40.2	42.2	44.4	46.5	48.7	50.8	52.8
$497{ }^{[1]}$	35.0	35.0	35.0	35.0	35.0	35.0	35.0	36.0	38.3	40.7	43.1	45.5	47.8	50.0	51.9	53.5	54.7	55.5

Notes: 1 GR_M1 met mast at 757,267 E/ 6,460,616 N (GDA 2020 Zone 55)
2 MH _M1 met mast at $751,564 \mathrm{E} / 6,470,185 \mathrm{~N}$ (GDA 2020 Zone 55)

3.3 C-Weighted background noise levels

The NSW Noise Assessment Bulletin does not provide a specific direction to measure C-weighted background noise levels as part of pre-construction noise monitoring, noting:

Analysis of wind turbine spectra shows that low frequency noise is typically not a significant feature of modern wind turbine noise when it complies with the A-weighted criteria applied by this Bulletin.

Notwithstanding the above, the NSW Noise Assessment Bulletin does however indicate that C weighted low frequency noise should be evaluated for compliance purposes.

In order to provide clarity to the proponent and any stakeholders, with respect to any future postconstruction compliance assessment, C-weighted background noise levels have been recorded during the monitoring period for comparison to future operational C -weighted noise levels (if required). The C-weighted background noise levels are not presented in this report but are available upon request.

4.0 SUMMARY

Background noise monitoring has been conducted at thirteen (13) receivers across the proposed Valley of the Winds Wind Farm.

The survey and analysis have been carried out on the basis of the NSW Noise Assessment Bulletin, which in turn references the SA Guideline.

The results have been analysed to derive noise limits for surrounding receivers at integer hub height wind speeds as the greater of a $35 \mathrm{~dB} \mathrm{~L}_{\text {A90 }}$ base level and the background level ($\mathrm{L}_{\text {A90 }}$) plus 5 dB .
The background noise levels and derived noise limits have been documented for the purposes of the environmental noise assessment accompanying the development application for the project.

APPENDIX A GLOSSARY

The basic quantities used within this document to describe noise adopt the conventions outlined in ISO 1996-1:2016 Acoustics - Description measurement and assessment of environmental noise - Basic quantities and assessment procedures. Accordingly, all frequency weighted sound pressure levels are expressed as decibels (dB) in this report.

For example, sound pressure levels measured using an " A " frequency weighting are expressed as $d B L_{A}$.
Alternative ways of expressing A-weighted decibels such as dBA or $\mathrm{dB}(\mathrm{A})$ are therefore not used within this report.

Term	Definition	Abbreviation
A-weighting	A method of adjusting sound levels to reflect the human ear's varied sensitivity to different frequencies of sound.	--
A-weighted $90^{\text {th }}$ centile	The A-weighted pressure level that is exceeded for 90% of a defined measurement period. It is used to describe the underlying background sound level in the absence of a source of sound that is being investigated, as well as the sound level of steady, or semi steady, sound sources.	La90
C-weighting	The C-weighted pressure level that is exceeded for 90% of a defined measurement period. It is used to describe the underlying background sound level in the absence of a source of sound that is being investigated, as well as the sound level of steady, or semi steady, sound sources.	Lc90
Decibel	The unit of sound level.	dB
Hertz	The unit for describing the frequency of a sound in terms of the number of cycles per second.	Hz
Octave Band	A range of frequencies. Octave bands are referred to by their logarithmic centre frequencies, these being $31.5 \mathrm{~Hz}, 63 \mathrm{~Hz}, 125 \mathrm{~Hz}, 250 \mathrm{~Hz}, 500 \mathrm{~Hz}$, $1 \mathrm{kHz}, 2 \mathrm{kHz}, 4 \mathrm{kHz}, 8 \mathrm{kHz}$, and 16 kHz for the audible range of sound.	-
Sound pressure level	A measure of the level of sound expressed in decibels.	L_{p}

APPENDIX B TURBINE COORDINATES

Table 6 sets out the coordinates of the proposed turbine layout.
(Layout dated 5 November 2021 as supplied by the proponent).
Table 6: Proposed wind turbine coordinates - GDA 2020 Zone 55

Turbine	Easting, m	Northing, m	Terrain elevation, m
GR2	759,945	6,458,232	719
GR3	760,267	6,458,557	729
GR4	760,587	6,458,894	729
GR5	760,345	6,459,441	718
GR6	760,398	6,460,059	729
GR7	760,674	6,460,478	739
GR8	760,633	6,461,526	729
GR9	760,499	6,462,088	737
GR10	760,559	6,462,572	740
GR11	760,663	6,463,035	749
GR12	760,733	6,463,509	749
GR13	758,438	6,459,581	739
GR14	758,775	6,460,045	739
GR15	758,711	6,460,550	749
GR16	758,513	6,461,087	744
GR17	758,101	6,461,652	779
GR18	758,392	6,462,051	799
GR19	758,581	6,462,466	809
GR20	758,622	6,462,951	814
GR21	759,036	6,463,236	790
GR22	758,870	6,463,773	763
GR23	757,524	6,459,697	750
GR24	757,475	6,460,158	759
GR25	757,356	6,460,645	785
GR26	757,170	6,461,574	799
GR27	757,371	6,461,984	791
GR28	756,639	6,458,842	735
GR29	756,257	6,459,395	748
GR30	756,756	6,459,623	764

MARSHALL DAY ${ }_{\text {Acoustics }}$ O

Turbine	Easting, m	Northing, m	Terrain elevation, m
GR31	756,561	6,460,198	759
GR32	756,394	6,461,194	749
GR33	756,157	6,462,109	729
GR34	756,642	6,462,426	739
GR35	755,094	6,459,083	729
GR36	755,296	6,459,452	738
GR37	755,282	6,460,073	759
GR38	755,578	6,460,433	759
GR40	753,535	6,457,743	741
GR41	753,568	6,458,121	739
GR42	753,648	6,458,775	739
GR43	754,027	6,459,161	739
GR44	754,338	6,459,538	739
GR45	754,591	6,459,956	754
GR46	754,528	6,460,559	729
GR47	754,418	6,461,745	719
GR48	754,829	6,462,101	719
GR49	755,071	6,462,557	729
GR50	755,294	6,462,994	719
GR51	756,547	6,462,873	712
GR52	756,616	6,463,255	709
GR53	760,537	6,461,040	719
LV3	750,413	6,451,624	699
LV4	749,149	6,450,441	679
LV5	748,725	6,450,997	689
LV6	749,248	6,451,227	709
LV7	749,743	6,451,476	719
LV8	749,804	6,452,596	717
LV9	743,857	6,450,601	678
LV10	744,180	6,451,055	707
LV11	744,639	6,451,296	703
LV12	745,108	6,451,518	718
LV13	745,623	6,451,741	712

MARSHALL DAY ${ }_{\text {Acoustics }}$ O

Turbine	Easting, m	Northing, m	Terrain elevation, m
LV14	746,242	6,452,428	709
LV15	746,104	6,453,165	725
LV16	746,353	6,453,549	709
LV17	746,047	6,454,131	687
LV18	745,568	6,452,958	729
LV19	745,296	6,453,566	729
LV20	744,079	6,453,843	724
LV21	744,651	6,454,155	739
LV22	745,062	6,454,505	694
LV23	746,111	6,451,980	696
MH3	749,310	6,466,082	763
MH4	750,188	6,467,172	811
MH5	749,563	6,466,461	784
MH6	749,886	6,466,815	799
MH7	750,476	6,467,537	828
MH8	750,973	6,467,766	809
MH9	751,254	6,468,130	809
MH10	751,504	6,468,529	835
MH11	751,806	6,468,890	858
MH12	752,151	6,469,642	857
MH13	752,361	6,470,113	879
MH14	747,817	6,466,698	776
MH15	747,065	6,467,378	799
MH16	747,931	6,467,309	802
MH17	748,267	6,467,739	809
MH18	748,696	6,468,097	789
MH19	748,878	6,468,598	781
MH2O	749,287	6,468,979	772
MH21	747,908	6,469,081	768
MH22	749,924	6,469,164	799
MH23	750,527	6,469,695	834
MH24	751,233	6,469,728	872
MH25	751,472	6,470,237	889

MARSHALL DAY ${ }_{\text {Acoustics }}$ O

Turbine	Easting, m	Northing, m	Terrain elevation, m
MH26	750,576	6,470,263	849
MH27	751,772	6,470,723	852
MH28	751,977	6,471,225	828
MH29	752,311	6,471,722	792
MH30	751,131	6,472,105	838
MH31	751,344	6,472,531	839
MH32	751,417	6,472,993	849
MH33	751,276	6,473,502	852
MH34	751,106	6,474,247	860
MH35	751,406	6,474,747	843
MH36	751,671	6,475,203	871
MH37	751,352	6,475,975	849
MH38	750,845	6,475,562	839
MH39	750,101	6,475,563	839
MH41	749,651	6,471,622	769
MH42	749,585	6,472,140	811
MH43	749,773	6,472,587	839
MH44	750,116	6,472,965	840
MH45	750,306	6,473,747	858
MH46	747,638	6,471,923	801
MH47	747,721	6,472,511	829
MH48	748,002	6,472,993	862
MH49	748,343	6,473,899	826
MH50	745,939	6,471,612	834
MH51	746,166	6,472,195	839
MH52	746,507	6,472,634	844
MH53	747,056	6,473,147	833
MH54	747,268	6,474,011	839
MH55	744,419	6,471,709	817
MH56	744,718	6,472,071	839
MH57	744,783	6,472,678	849
MH58	744,861	6,473,223	849
MH59	745,929	6,473,660	839

MARSHALL DAY ${ }_{\text {Acoustics }}$ O

Turbine	Easting, m	Northing, m	Terrain elevation, m
MH60	745,097	6,473,851	842
MH61	745,041	6,474,392	838
MH62	745,051	6,475,077	817
MH63	745,247	6,475,482	799
MH64	742,133	6,469,995	849
MH65	742,319	6,470,443	838
MH66	742,474	6,470,870	782
MH67	742,564	6,471,442	829
MH68	742,903	6,471,899	839
MH69	743,646	6,472,241	819
MH70	743,673	6,473,041	842
MH71	744,029	6,473,892	836
MH72	744,138	6,474,344	834
MH73	743,784	6,474,856	839
MH74	742,160	6,472,561	795
MH75	742,831	6,472,640	849
MH76	741,505	6,473,174	811
MH77	742,548	6,473,402	809
MH78	743,053	6,474,077	826
MH79	742,833	6,474,787	817

MARSHALL DAY ${ }_{\text {Acoustics }}$ O

APPENDIX C NOISE MONITORING LOCATIONS

The background noise monitoring locations were proposed based on proximity to turbines, the location of receivers and the predicted noise contours detailed in MDA report Rp 00120191254 Valley of the Winds Preliminary noise assessment, dated 7 April 2020.

The background noise monitoring locations in relation to the updated proposed turbine layout and associated predicted noise contours detailed in the MDA report Rp 00320191254 Valley of the Winds EIS noise assessment, dated 23 February 2022, is illustrated in Figure 1.

As noted in Section 2.1, consent to undertake background noise monitoring was not granted at all preferred receivers. Prior to construction of the wind farm, background noise monitoring may be undertaken at additional receivers, should consent be provided.

Figure 1: Background noise monitoring locations relative to the proposed EIS layout

APPENDIX D SURVEY INSTRUMENTATION

Table 7: Sound level measurement instrumentation summary

Item	Description
Equipment type	Automated/unattended integrating sound levels
Make \& model	01dB CUBE and 01dB DUO
Instrumentation class	Certified to Type 1/ Class 1 (precision grade) standards in accordance with AS/IEC 61672.1:20194
Instrumentation noise floor	Less than 20 dB
Time synchronisation	Internal GPS clocks
Wind shielding	Enhanced wind shielding system based on the design recommendations detailed in the UK Institute of Acoustics guidance. The system comprises an inner solid primary wind shield and an outer secondary large diameter hollow wind shield

Table 8: Equipment details

Receiver	Make \& model	Serial number	Microphone serial number	Independent calibration date ${ }^{1}$	Calibration drift ${ }^{2,3}$
Noise monitoring equipment					
5	01dB DUO	10497	144850	$17 / 08 / 2020$	-0.04
25	01dB CUBE	10520	224328	$4 / 02 / 2021$	-0.14
77	01dB DUO	10496	141230	$31 / 07 / 2020$	-0.24
87	01dB DUO	12633	331552	$26 / 11 / 2020$	-0.18
151	01dB CUBE	10512	255851	$24 / 02 / 2021$	0.03
187	01dB DUO	10498	207226	$17 / 08 / 2020$	0.00
189	01dB DUO	10344	144885	$13 / 07 / 2020$	-0.33
240	01dB DUO	10770	162058	$17 / 09 / 2019$	-0.23
256	01dB CUBE	10521	207208	$29 / 05 / 2021$	-0.10
278	01dB DUO	10193	288097	$29 / 05 / 2021$	-0.06
282	01dB DUO	12691	331937	$5 / 09 / 2019$	-0.19
314	01dB DUO	10339	144938	$13 / 07 / 2020$	-0.08
497	01dB CUBE	10518	207205	$24 / 05 / 2021$	-0.34

Notes: ${ }^{1}$ Independent (laboratory) calibration date to be within 2 years of measurement period as per AS 1055:2018
${ }^{2}$ Difference between reference level checks during deployment and collection of instruments
${ }^{3}$ Calibration drift should not be greater than 1 dB as specified in AS 1055:2018

[^2]Table 9: Calibrator details

	Make \& model	Serial number	${\text { Independent calibration date }{ }^{1}}^{\text {During installation }}$
Brüel \& Kjær 4230	752491	$30 / 07 / 2019$	
During collection	Brüel \& Kjær 4231	3027268	$28 / 07 / 2021$

Note: ${ }^{1}$ Independent (laboratory) calibration date to be within 2 years of measurement period as per AS 1055:2018 ${ }^{6}$
Table 10: Local weather data measurement instrumentation

Receiver	Make \& model	Serial number
77^{2}	Vaisala WXT520	K3630005
151^{1}	Vaisala WXT520	H5020012

Note: ${ }^{1}$ Between 1 June and 2 September 2021
${ }^{2}$ Between 17 June and 2 September 2021

[^3]
APPENDIX E SITE WIND SPEED DATA

E1 Wind monitoring location

Wind monitoring was carried out by the proponent at two (2) met masts during the noise monitoring survey. The wind monitoring locations are detailed in Table 11 and Appendix C.

Table 11: Wind monitoring locations

Receiver	Wind monitoring reference	Location within the wind farm	Distance to monitoring location, \mathbf{m}
5	GR_M1	Girragulang Rd cluster	4,029
25	MH_M1	Mount Hope cluster	2,990
77	MH_M1	Mount Hope cluster	8,555
87	MH_M1	Mount Hope cluster	3,503
151	GR_M1	Girragulang Rd cluster	16,640
187	GR_M1	Girragulang Rd cluster	15,012
189	GR_M1	Girragulang Rd cluster	10,534
240	GR_M1	Mount Hope cluster	12,941
256	GR_M1	Girragulang Rd cluster	3,529
278	MH_M1	Girragulang Rd cluster	4,604
282	MH_M1	Mount Hope cluster	5,662
314	GR_M1	Mount Hope cluster	7,125
497	Girragulang Rd cluster	3,728	

Coordinates for the wind monitoring locations are detailed in Table 12.
Table 12: Wind monitoring location coordinates - GDA 2020 Zone 55

Reference	Easting, m	Northing, m
GR_M1	757,267	$6,460,616$
MH_M1	751,564	$6,470,185$

E2 Wind speed data derivation

Hub height wind speed and direction data (119 m above ground level) for the duration of the background noise monitoring periods has been provided by the proponent.

The process for generating the wind data set for this project was provided to MDA by the proponent in an email dated 13 December 2021. The relevant extract is reproduced below.

The wind data set provided by UPC/AC was created from the raw data files from the meteorological masts at Girragulang Road and Mt Hope for the required period. These files were then processed using the program Windographer and data affected by tower shading was removed. The data was checked, including for consistency between all anemometers and wind vanes. The wind speed data for each measurement height was combined through averaging using the two anemometers at each measurement height. This data was then vertically extrapolated to the considered $119 m$ hub height using the power law for wind shear in each 10 minute period.

APPENDIX F SUMMARY OF BACKGROUND NOISE LEVEL REGRESSION COEFFICIENTS

Table 13: Regression equation coefficients

Location	Regression equation coefficients for background noise equation of best fit $L_{\text {A } 90}=a x^{3}+b x^{2}+c x+d$, where $x=$ windspeed in m / s					
	a	b	c	d	R^{2}	Valid wind speed range
5	-0.005240	0.2143	-1.057	23.97	0.5271	3 to $20 \mathrm{~m} / \mathrm{s}$
25	0.0006500	0.03565	-0.3885	29.54	0.1502	4 to $20 \mathrm{~m} / \mathrm{s}$
77	-0.0006700	0.03380	0.1426	21.36	0.0701	3 to $20 \mathrm{~m} / \mathrm{s}$
87	-0.0001200	0.1011	-1.341	34.87	0.1731	6 to $20 \mathrm{~m} / \mathrm{s}$
151	-	0.05082	0.1095	24.81	0.2656	3 to $20 \mathrm{~m} / \mathrm{s}$
187	-0.002160	0.1563	-1.355	27.10	0.1938	4 to $20 \mathrm{~m} / \mathrm{s}$
189	0.0001500	0.08631	-0.6866	24.14	0.2515	4 to $20 \mathrm{~m} / \mathrm{s}$
240	-0.003410	0.1569	-0.8083	25.50	0.3521	3 to $20 \mathrm{~m} / \mathrm{s}$
256	-0.002410	0.1623	-1.159	29.26	0.4399	4 to $20 \mathrm{~m} / \mathrm{s}$
278	-0.01003	0.3788	-2.713	26.90	0.3386	4 to $20 \mathrm{~m} / \mathrm{s}$
282	-0.008520	0.4066	-4.161	39.83	0.1966	6 to $20 \mathrm{~m} / \mathrm{s}$
314	-0.004950	0.2482	-1.989	27.93	0.3924	4 to $20 \mathrm{~m} / \mathrm{s}$
497	-0.01114	0.4186	-2.810	28.40	0.4735	4 to $20 \mathrm{~m} / \mathrm{s}$

MARSHALL DAY ${ }_{\text {Acoustics }}$ O

APPENDIX G RECEIVER 5 DATA

G1 Receiver 5 location data

Table 14: Receiver 5 dwelling and noise monitor coordinates - GDA 2020 Zone 55

Location	Easting, \mathbf{m}	Northing, \mathbf{m}
Dwelling location	755,422	$6,457,014$
Background noise monitoring location	755,418	$6,457,032$

Table 15: Receiver 5 monitor installation photos

MARSHALLDAY Acosics
Table 16: Receiver 5 aerial view - dwelling and noise monitor location

G2 Receiver 5 measurement data summary

Table 17: Receiver 5 background noise level analysis summary

Item	Data point count
Number of data points collected	12,937
Number of data points removed	4,966
Number of data points for analysis (worst case wind direction)	$7,971(3,411)$

Figure 2: Receiver 5 background noise level and wind speed time history

Figure 3: Receiver 5 - derived background noise levels and noise limits

MARSHALL DAY ${ }_{\text {Acoustics }}$ O)

APPENDIX H RECEIVER 25 DATA

H1 Receiver 25 location data

Table 18: Receiver 25 dwelling and noise monitor coordinates - GDA 2020 Zone 55

Location	Easting, \boldsymbol{m}	Northing, \mathbf{m}
Dwelling location	$7,543,56$	$6,471,246$
Background noise monitoring location	$7,54,352$	$6,471,266$

Table 19: Receiver 25 monitor installation photos

MARSHALL Acoustics ${ }^{\text {O }}$ O
Table 20: Receiver 25 aerial view - dwelling and noise monitor location

H2 Receiver 25 measurement data summary

Table 21: Receiver 25 background noise level analysis summary

Item	Data point count
Number of data points collected	12,876
Number of data points removed	2,798
Number of data points for analysis (worst case wind direction)	$10,078(3,969)$

Figure 4: Receiver 25 background noise level and wind speed time history

Figure 5: Receiver 25 - derived background noise levels and noise limits

MARSHALL DAY ${ }_{\text {Acoustics }}$ O)

APPENDIX I RECEIVER 77 DATA

I1 Receiver 77 location data

Table 22: Receiver 77 dwelling and noise monitor coordinates - GDA 2020 Zone 55

Location	Easting, \mathbf{m}	Northing, \mathbf{m}
Dwelling location	746,882	$6,477,385$
Background noise monitoring location	746,913	$6,477,365$

Table 23: Receiver 77 monitor installation photos

MARSHALLDAY Acosics
Table 24: Receiver 77 aerial view - dwelling and noise monitor location

I2 Receiver 77 measurement data summary

Table 25: Receiver 77 background noise level analysis summary

Item	Data point count
Number of data points collected	10,668
Number of data points removed	1,417
Number of data points for analysis (worst case wind direction)	$9,251(2,453)$

Figure 6: Receiver 77 background noise level and wind speed time history

Figure 7: Receiver 77 - derived background noise levels and noise limits

MARSHALL DAY ${ }_{\text {Acoustics }}$ O

APPENDIX J RECEIVER 87 DATA

J1 Receiver 87 location data

Table 26: Receiver 87 dwelling and noise monitor coordinates - GDA 2020 Zone 55

Location	Easting, m	Northing, m
Dwelling location	754,583	$6,468,372$
Background noise monitoring location	754,558	$6,468,367$

Table 27: Receiver 87 monitor installation photos

MARSHALL Acoustics ${ }^{\text {O }}$ O
Table 28: Receiver 87 aerial view - dwelling and noise monitor location

J2 Receiver 87 measurement data summary

Table 29: Receiver 87 background noise level analysis summary

Item	Data point count
Number of data points collected	10,682
Number of data points removed	1,640
Number of data points for analysis (worst case wind direction)	$9,042(3,029)$

Figure 8: Receiver 87 background noise level and wind speed time history

Figure 9: Receiver 87 - derived background noise levels and noise limits

MARSHALL DAY ${ }_{\text {Acoustics }}$ O)

APPENDIX K RECEIVER 151 DATA

K1 Receiver 151 location data

Table 30: Receiver 151 dwelling and noise monitor coordinates - GDA 2020 Zone 55

Location	Easting, \mathbf{m}	Northing, \mathbf{m}
Dwelling location	741,898	$6,454,218$
Background noise monitoring location	741,915	$6,454,196$

Table 31: Receiver 151 monitor installation photos

Table 32: Receiver 151 aerial view - dwelling and noise monitor location

K2 Receiver 151 measurement data summary

Table 33: Receiver 151 background noise level analysis summary

Item	Data point count
Number of data points collected	12,703
Number of data points removed	2,608
Number of data points for analysis (worst case wind direction)	$10,09(1,780)$

Figure 10: Receiver 151 background noise level and wind speed time history

Figure 11: Receiver 151 - derived background noise levels and noise limits

MARSHALL DAY ${ }_{\text {Acoustics }}$ O

APPENDIX L RECEIVER 187 DATA

L1 Receiver 187 location data

Table 34: Receiver 187 dwelling and noise monitor coordinates - GDA 2020 Zone 55

Location	Easting, m	Northing, m
Dwelling location	749,161	$6,447,974$
Background noise monitoring location	749,148	$6,447,989$

Table 35: Receiver 187 monitor installation photos

Table 36: Receiver 187 aerial view - dwelling and noise monitor location

L2 Receiver 187 measurement data summary

Table 37: Receiver 187 background noise level analysis summary

Item	Data point count
Number of data points collected	12,787
Number of data points removed	2,674
Number of data points for analysis (worst case wind direction)	$10,113(3,728)$

Figure 12: Receiver 187 background noise level and wind speed time history

Figure 13: Receiver 187 - derived background noise levels and noise limits

MARSHALL DAY ${ }_{\text {Acoustics }}$ O)

APPENDIX M RECEIVER 189 DATA

M1 Receiver 189 location data

Table 38: Receiver 189 dwelling and noise monitor coordinates - GDA 2020 Zone 55

Location	Easting, m	Northing, \mathbf{m}
Dwelling location	752,739	$6,451,131$
Background noise monitoring location	752,732	$6,451,107$

Table 39: Receiver 189 monitor installation photos

Table 40: Receiver 189 aerial view - dwelling and noise monitor location

M2 Receiver 189 measurement data summary

Table 41: Receiver 189 background noise level analysis summary

Item	Data point count
Number of data points collected	10,915
Number of data points removed	1,696
Number of data points for analysis (worst case wind direction)	$9,219(3,970)$

Figure 14: Receiver 189 background noise level and wind speed time history

Figure 15: Receiver 189 - derived background noise levels and noise limits

MARSHALL DAY ${ }_{\text {Acoustics }}$ O)

APPENDIX N RECEIVER 240 DATA

N1 Receiver 240 location data

Table 42: Receiver 240 dwelling and noise monitor coordinates - GDA 2020 Zone 55

Location	Easting, m	Northing, m
Dwelling location	738,763	$6,472,198$
Background noise monitoring location	738,771	$6,472,199$

Table 43: Receiver 240 monitor installation photos

MARSHALLDAY Acosics
Table 44: Receiver 240 aerial view - dwelling and noise monitor location

N2 Receiver 240 measurement data summary

Table 45: Receiver 240 background noise level analysis summary

Item	Data point count
Number of data points collected	12,708
Number of data points removed	2,529
Number of data points for analysis (worst case wind direction)	10,179 (982)

Figure 16: Receiver 240 background noise level and wind speed time history

Figure 17: Receiver 240 - derived background noise levels and noise limits

MARSHALL DAY ${ }_{\text {Acoustics }}$ O

APPENDIX O RECEIVER 256 DATA

01 Receiver 256 location data

Table 46: Receiver 256 dwelling and noise monitor coordinates - GDA 2020 Zone 55

Location	Easting, m	Northing, m
Dwelling location	755,133	$64,57,790$
Background noise monitoring location	755,131	$6,457,807$

Table 47: Receiver 256 monitor installation photos

MARSHALLDAY Acosics
Table 48: Receiver 256 aerial view - dwelling and noise monitor location

02 Receiver 256 measurement data summary

Table 49: Receiver 256 background noise level analysis summary

Item	Data point count
Number of data points collected	10,563
Number of data points removed	1,399
Number of data points for analysis (worst case wind direction)	$9,164(3,253)$

Figure 18: Receiver 256 background noise level and wind speed time history

Figure 19: Receiver 256 - derived background noise levels

MARSHALL DAY ${ }_{\text {Acoustics }}$ O

APPENDIX P RECEIVER 278 DATA

P1 Receiver 278 location data

Table 50: Receiver 278 dwelling and noise monitor coordinates - GDA 2020 Zone 55

Location	Easting, m	Northing, m
Dwelling location	757,286	$6,465,236$
Background noise monitoring location	757,302	$6,465,220$

Table 51: Receiver 278 monitor installation photos

MARSHALL Acoustics ${ }^{\text {O }}$ O
Table 52: Receiver 278 aerial view - dwelling and noise monitor location

P2 Receiver 278 measurement data summary

Table 53: Receiver 278 background noise level analysis summary

Item	Data point count
Number of data points collected	12,944
Number of data points removed	2,810
Number of data points for analysis (worst case wind direction)	$10,134(662)$

Figure 20: Receiver 278 background noise level and wind speed time history

Figure 21: Receiver 278 - derived background noise levels and noise limits

MARSHALL DAY ${ }_{\text {Acoustics }}$ O

APPENDIX Q RECEIVER 282 DATA

Q1 Receiver 282 location data

Table 54: Receiver 282 dwelling and noise monitor coordinates - GDA 2020 Zone 55

Location	Easting, m	Northing, m
Dwelling location	$7,50,906$	$6,464,542$
Background noise monitoring location	$7,50,920$	$6,464,560$

Table 55: Receiver 282 monitor installation photos

MARSHALL Acoustics ${ }^{\text {O }}$ O
Table 56: Receiver 282 aerial view - dwelling and noise monitor location

Q2 Receiver 282 measurement data summary

Table 57: Receiver 282 background noise level analysis summary

Item	Data point count
Number of data points collected	12,901
Number of data points removed	2,697
Number of data points for analysis (worst case wind direction)	$10,204(3,292)$

Figure 22: Receiver 282 background noise level and wind speed time history

MARSHALL DAY ${ }_{\text {Acoustics }}$ O

Figure 23: Receiver 282 - derived background noise levels and noise limits

MARSHAL ${ }_{\text {Acoustics }}$ O]

APPENDIX R RECEIVER 314 DATA

R1 Receiver 314 location data

Table 58: Receiver 314 dwelling and noise monitor coordinates - GDA 2020 Zone 55

Location	Easting, \mathbf{m}	Northing, \mathbf{m}
Dwelling location	747,146	$6,464,576$
Background noise monitoring location	747,157	$6,464,586$

Table 59: Receiver 314 monitor installation photos

MARSHALL Acoustics ${ }^{\text {O }}$ O
Table 60: Receiver 314 aerial view - dwelling and noise monitor location

R2 Receiver 314 measurement data summary
Table 61: Receiver 314 background noise level analysis summary

Item	Data point count
Number of data points collected	12,622
Number of data points removed	2,713
Number of data points for analysis (worst case wind direction)	$9,909(3,398)$

Figure 24: Receiver 314 background noise level and wind speed time history

Figure 25: Receiver 314 - derived background noise levels and noise limits

MARSHALL DAY ${ }_{\text {Acoustics }}$ O

APPENDIX S RECEIVER 497 DATA

S1 Receiver 497 location data

Table 62: Receiver 497 dwelling and noise monitor coordinates - GDA 2020 Zone 55

Location	Easting, \mathbf{m}	Northing, \mathbf{m}
Dwelling location	758,215	$6,457,021$
Background noise monitoring location	758,231	$6,457,015$

Table 63: Receiver 497 monitor installation photos

MARSHALLDAY Acosics
Table 64: Receiver 497 aerial view - dwelling and noise monitor location

S2 Receiver 497 measurement data summary

Table 65: Receiver 497 background noise level analysis summary

Item	Data point count
Number of data points collected	12,831
Number of data points removed	2,673
Number of data points for analysis (worst case wind direction)	$10,158(1,027)$

Figure 26: Receiver 497 background noise level and wind speed time history

Figure 27: Receiver 497 - derived background noise levels and noise limits

[^0]: 1 UK Institute of Acoustics A Good Practice Guide to the Application of ETSU-R-97 for the Assessment and Rating of Wind Turbine Noise, dated May 2013

[^1]: 2 Griffin, D., Delaire, C., \& Pischedda, P. (2013). Methods of identifying extraneous noise during unattended noise measurements. 20th International Congress of Sound \& Vibration.
 3 ISO 1996-2:2017 Acoustics - Description, measurement and assessment of environmental noise -, Part 2: Determination of sound pressure levels

[^2]: 4 AS/IEC 61672.1-2019 Electroacoustics - Sound level meters - Specifications
 which is identical to IEC 61672.1:2.0 Electroacoustics - Sound Level Meters - Part 1: Specifications published in 2013
 5 AS 1055:2018 Acoustics - Description and measurement of environmental noise

[^3]: ${ }^{6}$ AS 1055:2018 Acoustics - Description and measurement of environmental noise

