

Mount Pleasant Operation

Geochemistry Assessment

TECHNICAL REPORT

Geochemistry Assessment

Mount Pleasant Optimisation Project

Prepared for: MACH Energy Australia Pty Ltd

MINE WASTE AND WATER MANAGEMENT

TECHNICAL REPORT

Geochemistry Assessment

Mount Pleasant Optimisation Project

Prepared for: MACH Energy Australia Pty Ltd

DOCUMENT CONTROL			
Project Title	Geochemistry Assessment for the Mount Pleasant Operation		
Project Name	Mount Pleasant		
Project Number	2019086		

DOCUMENT DISTRIBUTION			
Document File Name	Document Status	Distributed to	Date distributed
Mt Pleasant – Geochemistry Assessment R001_A (RES01038030_008)	Final	MACH Energy	03/12/2020

Limitations and disclaimer:

This report documents the work undertaken by RGS Environmental Pty Ltd (RGS).

This report should be read in full. While the findings presented in this report are based on information that RGS considers reliable unless stated otherwise, the accuracy and completeness of source information cannot be guaranteed, although RGS has taken reasonable steps to verify the accuracy of such source data. RGS has made no independent verification of this information beyond the agreed scope of works and RGS assumes no responsibility for any inaccuracies or omissions outside of RGS's direct control. Furthermore, the information compiled in this report addresses the specific needs of the Client, so may not address the needs of third parties using this report for their own purposes. Thus, RGS and their employees accept no liability for any losses or damage for any action taken or not taken on the basis of any part of the contents of this report. Those acting on information provided in this report do so entirely at their own risk.

This report does not purport to give legal advice. Legal advice can only be given by qualified legal practitioners.

Table of Contents

1	Introdue	ction	1
	1.1	Overview of the Mount Pleasant Operation	1
	1.2	Overview of the Project	1
	1.3	Regional geology	4
	1.4	Local geology	4
	1.5	Scope of work	6
	1.6	Report structure	6
2	Sources	s of potential impacts on water quality	7
	2.1	Coal and sulfur	7
	2.2	Presence of sulfur and potential impacts on water quality	7
	2.3	Neutral metalliferous drainage and saline drainage potential	8
3	Review	of existing information	9
4	Method	ology	10
	4.1	Sample selection and preparation	10
	4.1.1	Overburden and interburden	10
	4.1.2	Coarse and fine rejects samples	10
	4.2	Geochemical test program	12
	4.2.1	Static tests	. 12
	4.2.2	Kinetic tests	13
5	Geoche	mical test results	15
	5.1	Overburden and interburden	15
	5.1.1	Acid-Base Account results	15
	5.1.2	pH and EC	15
	5.1.3	Sulfur	16
	5.1.4	Sulfide sulfur	17
	5.1.5	Maximum Potential Acidity	18
	5.1.6	Acid Neutralising Capacity	18
	5.1.7	5	
	5.1.8	ANC:MPA ratio	18
	5.1.9	Geochemical classification	19
	5.2	Coal rejects	20
	5.2.1	Acid-Base Account results	20
	5.2.2	pH and EC	20
	5.2.3		
	5.2.4		
	5.2.5	Maximum Potential Acidity	22
	5.2.6		
	5.2.7	5	
	5.2.8		
	5.2.9		
	5.3	Multi-element concentration in solids	
	5.4	Geochemical abundance index	24

	5.5	Physical characterisation	25
	5.5.1	Particle size distribution	26
	5.5.2	Sodicity	26
	5.5.3	Dispersion	27
	5.5.4	Cation exchange capacity	27
	5.6	Water quality static tests	28
	5.7	Water quality kinetic tests	30
	5.7.1	Overburden and interburden	30
	5.7.2	Coal rejects	34
6	Discuss	ion	39
	6.1	Acid forming potential	39
	6.1.1	Overburden and interburden	
	6.1.2	Coal reject	39
	6.2	Physical characteristics	40
	6.2.1	Overburden and interburden	40
	6.3	Multi-element composition and enrichment	40
	6.3.1	Overburden and interburden	40
	6.3.2	Coal reject	40
	6.4	Water quality	40
	6.4.1	Overburden and interburden	40
	6.4.2	Coal reject	41
7	Conclus	ions and recommendations	43
	7.1	Conclusions	43
	7.2	Recommendations	43
8	Referen	ces	45
-			

List of Figures

Figure 1.1: Project Location	2
Figure 1.2: Project General Arrangement	
Figure 1.3: Indicative Stratigraphy of the Mount Pleasant Operation	
Figure 4.1: Drill Holes Sampled for the Geochemistry Assessment	11
Figure 5.1: pH values for overburden and interburden	
Figure 5.2: EC values for overburden and interburden	. 16
Figure 5.3: Total sulfur values for overburden and interburden	. 17
Figure 5.4: Total sulfur versus sulfide sulfur for overburden and interburden	
Figure 5.5: NAPP values for overburden and interburden	
Figure 5.6: ANC vs MPA for overburden and interburden	
Figure 5.7: pH values for coal reject	. 20
Figure 5.8: EC values for coal reject	
Figure 5.9: Total sulfur values for coal reject	. 21
Figure 5.10: Total sulfur versus sulfide sulfur for coal reject	. 22
Figure 5.11: NAPP values for coal reject samples	
Figure 5.12: ANC vs MPA for coal reject	. 23
Figure 5.13: Particle size distribution for composite samples	. 26
Figure 5.14: KLC pH results for overburden/interburden	. 31
Figure 5.15: KLC Net Alkalinity results for overburden/interburden	. 31

Figure 5.16: KLC EC results for overburden/interburden	. 32
Figure 5.17: KLC sulfate generation/release rates for overburden/interburden	. 33
Figure 5.18: KLC pH results for coal reject	
Figure 5.19: KLC EC results for coal reject	
Figure 5.20: KLC sulfate generation/release rates for coal reject	

List of Tables

Table 4.2: Coarse and fine rejects sample materials used for geochemical testing12Table 5.1: Stratigraphic description15Table 5.2: Geochemistry classification criteria for overburden and interburden19Table 5.3: Coal reject description20Table 5.4: Geochemistry classification criteria for coal reject material24Table 5.5: Geochemical abundance index values and enrichment factors25Table 5.6: Ratings for exchangeable sodium percentage27Table 5.7: Ratings for cation exchange capacity27Table 5.8: Summary of exchangeable cation levels28Table 5.9: Major ion concentrations in water extracts from overburden and interburden29Table 5.10: Major ion concentrations in water extracts from coal reject29Table 5.11: KLC material description30Table 5.12: Sulfate generation and sulfide oxidation rates for KLC tests on overburden/interburden34Table 5.13: KLC material description35	Table 4.1: Overburden and interburden sample materials used for geochemical testing	10
Table 5.1: Stratigraphic description15Table 5.2: Geochemistry classification criteria for overburden and interburden19Table 5.3: Coal reject description20Table 5.4: Geochemistry classification criteria for coal reject material24Table 5.5: Geochemical abundance index values and enrichment factors25Table 5.6: Ratings for exchangeable sodium percentage27Table 5.7: Ratings for cation exchange capacity27Table 5.8: Summary of exchangeable cation levels28Table 5.9: Major ion concentrations in water extracts from overburden and interburden29Table 5.10: Major ion concentrations in water extracts from coal reject29Table 5.11: KLC material description30Table 5.12: Sulfate generation and sulfide oxidation rates for KLC tests on overburden/interburden34		
Table 5.2: Geochemistry classification criteria for overburden and interburden19Table 5.3: Coal reject description20Table 5.4: Geochemistry classification criteria for coal reject material24Table 5.5: Geochemical abundance index values and enrichment factors25Table 5.6: Ratings for exchangeable sodium percentage27Table 5.7: Ratings for cation exchange capacity27Table 5.8: Summary of exchangeable cation levels28Table 5.9: Major ion concentrations in water extracts from overburden and interburden29Table 5.10: Major ion concentrations in water extracts from coal reject29Table 5.11: KLC material description30Table 5.12: Sulfate generation and sulfide oxidation rates for KLC tests on overburden/interburden34		
Table 5.4: Geochemistry classification criteria for coal reject material24Table 5.5: Geochemical abundance index values and enrichment factors25Table 5.6: Ratings for exchangeable sodium percentage27Table 5.7: Ratings for cation exchange capacity27Table 5.8: Summary of exchangeable cation levels28Table 5.9: Major ion concentrations in water extracts from overburden and interburden29Table 5.10: Major ion concentrations in water extracts from coal reject29Table 5.11: KLC material description30Table 5.12: Sulfate generation and sulfide oxidation rates for KLC tests on overburden/interburden34		
Table 5.5: Geochemical abundance index values and enrichment factors25Table 5.6: Ratings for exchangeable sodium percentage27Table 5.7: Ratings for cation exchange capacity27Table 5.8: Summary of exchangeable cation levels28Table 5.9: Major ion concentrations in water extracts from overburden and interburden29Table 5.10: Major ion concentrations in water extracts from coal reject29Table 5.11: KLC material description30Table 5.12: Sulfate generation and sulfide oxidation rates for KLC tests on overburden/interburden34	Table 5.3: Coal reject description	20
Table 5.6: Ratings for exchangeable sodium percentage27Table 5.7: Ratings for cation exchange capacity27Table 5.8: Summary of exchangeable cation levels28Table 5.9: Major ion concentrations in water extracts from overburden and interburden29Table 5.10: Major ion concentrations in water extracts from coal reject29Table 5.11: KLC material description30Table 5.12: Sulfate generation and sulfide oxidation rates for KLC tests on overburden/interburden34	Table 5.4: Geochemistry classification criteria for coal reject material	24
Table 5.7: Ratings for cation exchange capacity. 27 Table 5.8: Summary of exchangeable cation levels. 28 Table 5.9: Major ion concentrations in water extracts from overburden and interburden. 29 Table 5.10: Major ion concentrations in water extracts from coal reject 29 Table 5.11: KLC material description 30 Table 5.12: Sulfate generation and sulfide oxidation rates for KLC tests on overburden/interburden. 34	Table 5.5: Geochemical abundance index values and enrichment factors	25
Table 5.8: Summary of exchangeable cation levels 28 Table 5.9: Major ion concentrations in water extracts from overburden and interburden 29 Table 5.10: Major ion concentrations in water extracts from coal reject 29 Table 5.11: KLC material description 30 Table 5.12: Sulfate generation and sulfide oxidation rates for KLC tests on overburden/interburden 34	Table 5.6: Ratings for exchangeable sodium percentage	27
Table 5.9: Major ion concentrations in water extracts from overburden and interburden 29 Table 5.10: Major ion concentrations in water extracts from coal reject 29 Table 5.11: KLC material description 30 Table 5.12: Sulfate generation and sulfide oxidation rates for KLC tests on overburden/interburden 34	Table 5.7: Ratings for cation exchange capacity	27
Table 5.10: Major ion concentrations in water extracts from coal reject 29 Table 5.11: KLC material description 30 Table 5.12: Sulfate generation and sulfide oxidation rates for KLC tests on overburden/interburden 34	Table 5.8: Summary of exchangeable cation levels	28
Table 5.11: KLC material description 30 Table 5.12: Sulfate generation and sulfide oxidation rates for KLC tests on overburden/interburden	Table 5.9: Major ion concentrations in water extracts from overburden and interburden	29
Table 5.12: Sulfate generation and sulfide oxidation rates for KLC tests on overburden/interburden	Table 5.10: Major ion concentrations in water extracts from coal reject	29
•	Table 5.11: KLC material description	30
Table 5.13: KLC material description	Table 5.12: Sulfate generation and sulfide oxidation rates for KLC tests on overburden/interburden	34
	Table 5.13: KLC material description	35
Table 5.14: Sulfate generation and sulfide oxidation rates for KLC tests on coal reject	Table 5.14: Sulfate generation and sulfide oxidation rates for KLC tests on coal reject	38

List of Attachments

- Attachment A Geochemical assessment of mining waste materials
- Attachment B Static geochemical results
- Attachment C Kinetic geochemical results
- Attachment D ALS and Trilab laboratory results
- Attachment E Review of existing geochemistry information at the MPO, Bengalla and Mt Arthur Coal Mines

Glossary of Terms and Acronyms

Acidity	A measure of hydrogen ion (H+) concentration; generally expressed as pH.
Acid Base Account	Evaluation of the balance between acid generation and acid neutralisation processes. Generally, determines the Maximum Potential Acidity (MPA) and the inherent Acid Neutralising Capacity (ANC), as defined below.
AMD	Acid and metalliferous drainage caused by exposure of sulfide minerals in mine waste materials to oxygen and water. Typically characterised by low pH and elevated concentrations of salts, sulfate and metals.
ANC	Acid neutralising capacity of a sample (as kilograms [kg] of sulfuric acid $[H_2SO_4]$ per tonne of sample).
ANC:MPA Ratio	Ratio of the ANC and MPA of a sample. Used to assess the risk of a sample generating acid conditions.
Coal Rejects	Generally comprises coarse and fine rejects (waste) fractions generated from washing of coal at the Coal Handing and Processing Plant (CHPP).
EC	Electrical Conductivity, expressed as µS/cm.
eCEC	Effective cation exchange capacity provides a measure of the amount of exchangeable cations (Calcium [Ca], Magnesium [Mg], Sodium [Na] and Potassium [K]) in a sample.
ESP	Exchangeable sodium percentage provides a measure of the sodicity of a materials and propensity to erode.
Interburden	Material between coal seams at a coal resource that must be removed to mine the coal.
ICP-AES/MS	Inductively coupled plasma atomic emission spectroscopy/mass spectrometry.
KLC test	Kinetic leach column tests are procedures used to measure the geochemical/ weathering behaviour of a sample of mine material over time.
MPA	Maximum Potential Acidity calculated by multiplying the total sulfur content of a sample by 30.6 (stoichiometric factor) and expressed as kg H_2SO_4 per tonne.
NAF	Non-acid forming. Geochemical classification criterion for a sample that will not generate acid conditions.
NAPP	Net acid producing potential expressed as kg H ₂ SO ₄ per tonne. Calculated by subtracting the ANC from the MPA.
Overburden	Material that overlays a coal resource and must be removed to mine the coal.
PAF	Potentially acid forming. Geochemical classification criterion for a sample that has the potential to generate acid conditions.
рН	Measure of the hydrogen ion (H+) activity in a sample solution, expressed in pH units.
Static test	Procedure for characterising the geochemical nature of a sample at one point in time. Static tests may include measurements of mineral and chemical composition of a sample and the Acid Base Account.
Total Sulfur	Total sulfur content of a sample generally measured using a 'LECO' analyser expressed as % S.
Uncertain	Geochemical classification criterion for a sample where the potential to generate acid conditions remains uncertain and may require further analysis.
VX, VA	Vaux seam. The two codes are used interchangeably throughout the report.

1 Introduction

1.1 Overview of the Mount Pleasant Operation

The Mount Pleasant Operation Development Consent DA 92/97 was granted on 22 December 1999. The Mount Pleasant Operation was also approved under the *Environment Protection and Biodiversity Conservation Act, 1999* (EPBC Act) in 2012 (EPBC 2011/5795).

MACH Energy Australia Pty Ltd (MACH Energy) acquired the Mount Pleasant Operation from Coal & Allied Operations Pty Ltd on 4 August 2016. MACH Energy commenced construction activities at the Mount Pleasant Operation in November 2016 and commenced mining operations in October 2017, in accordance with Development Consent DA 92/97 and EPBC 2011/5795.

MACH Mount Pleasant Operations Pty Ltd manages the Mount Pleasant Operation as agent for and on behalf of the unincorporated Mount Pleasant Joint Venture between MACH Energy (95 per cent [%] owner) and J.C.D. Australia Pty Ltd (5 % owner)¹.

The approved Mount Pleasant Operation includes the construction and operation of an open cut coal mine and associated rail spur and product coal loading infrastructure located approximately 3 kilometres (km) northwest of Muswellbrook in the Upper Hunter Valley of New South Wales (NSW) (**Figures 1.1** and **1.2**).

The mine is approved to produce up to 10.5 million tonnes per annum (Mtpa) of run-of-mine (ROM) coal. Up to approximately 9 trains per day of thermal coal products from the Mount Pleasant Operation are transported by rail to the Port of Newcastle for export, or to domestic customers for use in electricity generation.

1.2 Overview of the Project

The Mount Pleasant Optimisation Project (the Project) would include the following development:

- increased open cut coal extraction within Mount Pleasant Operation Mining Leases by mining of additional coal reserves, including lower coal seams in North Pit;
- staged increase in extraction, handling and processing of ROM coal up to 21 Mtpa (i.e. progressive increase in ROM coal mining rate from 10.5 Mtpa over the Project life);
- staged upgrades to the existing Coal Handling and Preparation Plant (CHPP) and coal handling infrastructure to facilitate the handling and processing of additional coal;
- rail transport of up to approximately 17 Mtpa of product coal to domestic and export customers;
- upgrades to workshops, electricity distribution and other ancillary infrastructure;
- existing infrastructure relocations to facilitate mining extensions (e.g. local roads, powerlines and water pipelines);
- construction and operation of new water management and water storage infrastructure in support of the mine;
- additional reject dewatering facilities to allow co-disposal of fine rejects with waste rock as part of ROM waste rock operations;
- development of an integrated waste rock emplacement landform that incorporates geomorphic drainage design principles for hydrological stability, and varying topographic relief to be more natural in exterior appearance;
- construction and operation of new ancillary infrastructure in support of mining;
- extension to the time limit on mining operations to 22 December 2048;

¹ Throughout this report, MACH Mount Pleasant Operations Pty Ltd and the unincorporated Mount Pleasant Joint Venture will be referred to as MACH.

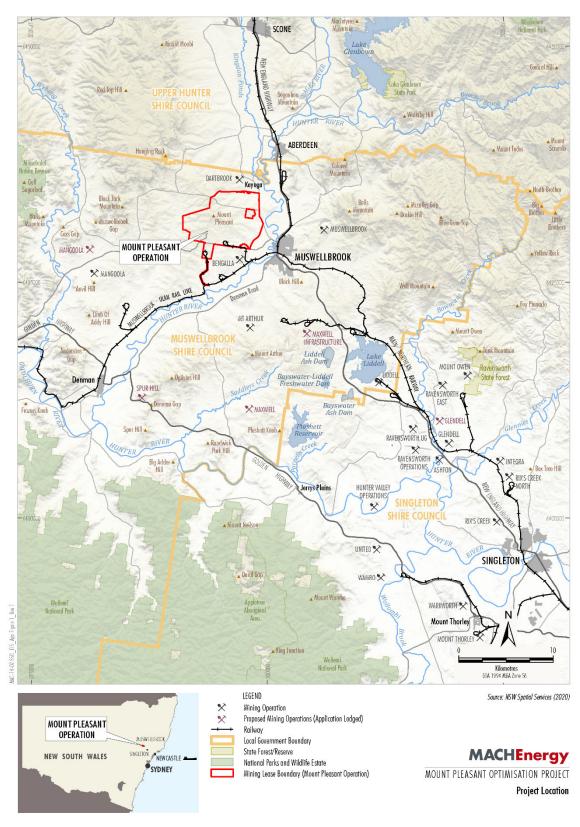
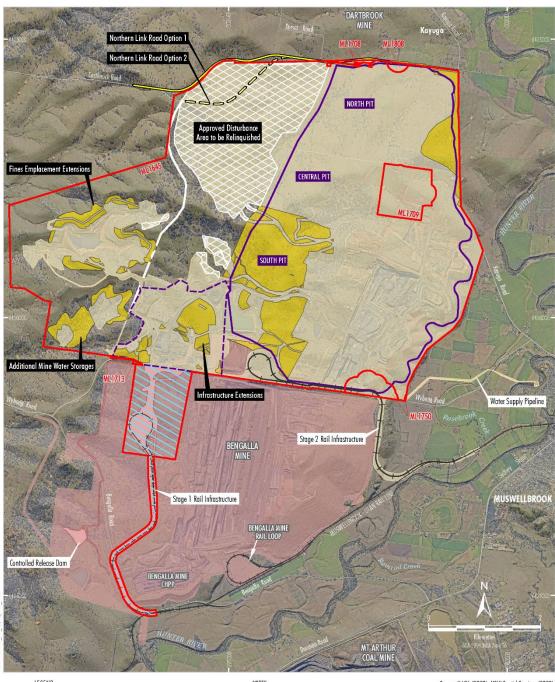



Figure 1.1

 LEGEND

 Existing Aline Elements

 Mining Lease Boundary (Mount Pleasant Operation)

 Approximate Extent of Existing/Approved Surface Development (DA92/97) 1

 Infrastructure to be removed under the Terms of Condition 37, Schedule 3 (DA92/97)

 Bengalla Mine Approved Disturbance Boundary (SSD-5170)

 Existing/Approved Mount Pleasant Operation Infrastructure

 within Bengalla Mine Approved Disturbance Boundary (SSD-5170)

 Additional/Revised Project Elements

 Approximate Additional Disturbance of Project Extensions 1

 Northern Link Road Option 1 Centreline 3

 Northern Link Road Option 2 Centreline

 Approximate Extent of Project Open Cut and Waste Rock Emplacement Landforms

 Revised Infrastructure Area Envelope

NOTES 1. Excludes some incidental Project components such as water management infrastructure, access tracks, lopsail stockgiles, power supply, temponyr offices, other ancillary warks and construction disturbance. 2. Subject to detailed design of Narthern Link Road alignment. 3. Preferred alignment subject to landholder access.

Source: MACH (2020); NSW Spatial Services (2020); Department of Planning and Environment (2016) Orthophoto: MACH (July 2020)

MACHEnergy

MOUNT PLEASANT OPTIMISATION PROJECT Project General Arrangement

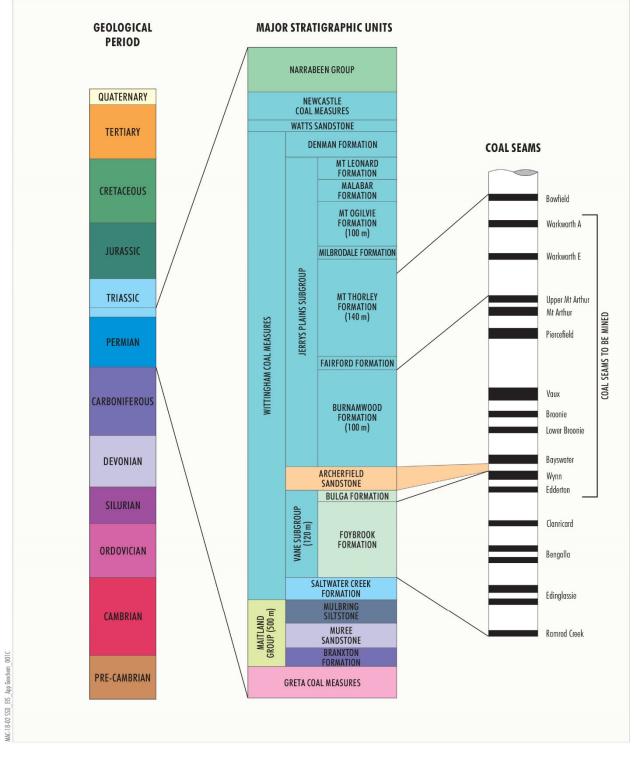
Figure 1.2

- an average operational workforce of approximately 600 people, with a peak of approximately 830 people;
- ongoing exploration activities; and
- other associated infrastructure, plant, equipment and activities.

1.3 Regional geology

The Mount Pleasant Operation is located on the western side of the Hunter Dome Belt, which is a section of the northern part of the early Permian to late Triassic aged Sydney Basin. The Hunter Dome Belt hosts north-south trending anticlines and synclines, of which one is the Muswellbrook Anticline.

The Gyarran Volcanics form the basement unit of the Sydney Basin, which outcrops in the hinge of the Muswellbrook Anticline. This is overlain by the Greta Coal Measures, the Maitland Group and the Wittingham Coal Measures. The Wittingham Coal Measures host the seams targeted at Mount Pleasant. In the east of the Project area the outcropping coal measures have been covered by alluvium deposited by the Hunter River. To the west of the Project area, the Wittingham Coal Measures are overlain by the Watts Sandstone and Newcastle Coal Measures (previously called the Wollombi Coal Measures).


1.4 Local geology

The target coal seams are hosted within the Wittingham Coal Measures on the western limb of the Muswellbrook Anticline. The topography of the Wittingham Coal Measures, the major geological unit in the Project area, rises to the west with weathering extending to a depth of 9 to 35 metres (m), averaging 20m. The stratigraphy of the Wittingham Coal Measures is shown in **Figure 1.3**. The seams within the Wittingham Coal Measures that are targeted at the Project consist of the Jerry's Plains and Vane Subgroups, which are separated stratigraphically by the Archerfield Sandstone. There is a gradational boundary between the Archerfield Sandstone and Bulga Formation. Near Muswellbrook, the Bulga Formation-Archerfield Sandstone sequence combines to form a single unit (which shall be referred to as the Bulga Formation in this report) (Sniffin and Beckett, 1995). Typically, the Archerfield Sandstone contains finely disseminated pyrite, which imparts a characteristic bronze colour to the sandstone.

The coal seams in the Mount Pleasant area are split into 71 plies ranging from 0.3 to 2.3 m thick. Partings within the coal seams are generally less than 0.3 m thick and seams are identified using coal brightness properties, marker horizons and the stratigraphic relationships between the seams. The Jerry's Plains Subgroup includes (in descending order) the Bowfield, Warkworth, Mt Arthur, Piercefield (PF), Vaux (VA), Broonie (BR) and Bayswater (BY) seams, and is typically composed of sandstone, siltstone, coal and tuffaceous claystone. The Vane Subgroup, which underlies the Archerfield Sandstone, consists of (in descending order) the Wynn, Edderton, Clanricard, Bengalla, Edinglassie and Ramrod Creek seams, and typically consists of sandstone, siltstone and coal beds. The coal in the Project area has a moderate propensity for self-heating and spontaneous combustion, which is managed in accordance with the Spontaneous Combustion Management Plan.

The overburden and interburden materials in the Project area are predominantly sandstone, with some seam roof, parting and floor materials consisting of mudstone and claystone. The sandstone frequently contains bands of siderite. The basement unit of the area is the Gyarran Volcanics, which outcrops in the hinge of the Muswellbrook Anticline.

Source: MACH (2020)

MACHEnergy

MOUNT PLEASANT OPTIMISATION PROJECT Indicative Stratigraphy of the Mount Pleasant Operation

Figure 1.3

1.5 Scope of work

RGS Environmental Pty Ltd (RGS) was commissioned by MACH to complete a geochemistry assessment for the Project. The geochemistry assessment was completed in a series of stages, as summarised below.

Stage 1 involved a review of the existing information for the site geochemistry, as well as a review of geochemical assessments completed at the nearby Bengalla Mine and Mt Arthur Coal Mine. The surface water results for the Mount Pleasant Operation, Bengalla Mine and Mt Arthur Coal Mine were reviewed, as well as the available geological mapping and drill hole logs for the Mount Pleasant Operation area.

Stage 2 involved a program of sampling and static/kinetic geochemical testing of drill core in order to confirm the geochemical nature of the overburden and interburden materials.

Stage 3 involved a program of geochemical testing of coal reject materials when these washed samples became available from the Mount Pleasant Operation CHPP.

The objective of the work program was to complete a geochemical assessment of representative samples of the overburden, interburden, and coal reject materials as part of the Environmental Impact Statement (EIS) for the Project.

The scope of work also included:

- Coordination of the material sampling and geochemical analysis programs;
- Geochemical characterisation of the samples utilising both static and kinetic testing methods; and
- Preparation of a detailed "stand-alone" technical report (this report).

The geochemical program was designed to test the acid forming potential of the mining wastes and potential coal reject materials, and to identify any potential for the mobilisation of salts and metals/metalloids, or dispersive materials in surface water runoff and seepage from mine landforms.

The work program was designed and completed in accordance with relevant industry guidelines (COA, 2016; INAP, 2009).

1.6 Report structure

Background information on the sources of potential impacts on water quality from coal mines is presented in **Section 2** and a review of existing information on the Mount Pleasant Operation and nearby coal mining operations is provided in **Section 3** and **Attachment E**.

The detailed methodology used for the geochemical and physical sampling and testing program is described in **Section 4**. The geochemical (and physical) test results obtained from the testing program on the samples are presented in **Section 5**. A discussion of the geochemical (and physical) characteristics of the materials is presented in **Section 6**.

The main conclusions and recommendations generated from the Project are presented in **Section 7**. A complete list of references relied upon to complete this report are presented in **Section 8**.

2 Sources of potential impacts on water quality

2.1 Coal and sulfur

Sulfur in coal is derived from two sources, which include the original plant materials and ambient fluids in the coal forming environment. Abundance of sulfur in coal is controlled by depositional environments and the diagenesis of the coal seams and overlying strata. Typically, low-sulfur coal seams were deposited in an alluvial environment and the peat was not influenced by seawater. The sulfur in these low-sulfur coals is derived mostly from its parent plant materials.

In contrast, high sulfur coal seams are generally associated with marine strata where sulfate in the seawater diffuses into the peat and is reduced by microorganisms to hydrogen sulfide, elemental sulfur and polysulfides. During early diagenesis in a reducing environment, ferric iron is reduced to ferrous iron, which reacts with hydrogen sulfide to form iron monosulfide. Iron monosulfide is later transformed by reaction with elemental sulfur into reactive sulfide minerals such as pyrite or marcasite.

Organic sulfur is formed by reaction of reduced sulfur species with the humic substances formed by bacterial decomposition of peat. Organic sulfur species in coals are mainly thiols, sulfides, di-sulfides, and thiophene and its derivatives. The thiophenic fraction of organic sulfur increases with the carbon content of coals. Organic sulfur compounds formed in peat are mostly thiols and sulfides, which gradually convert to thiophenes with increasing coal maturation. Thus, the organic sulfur species in coal evolve during the history of coal formation.

At coal mines, Potentially Acid Forming (PAF) materials can be associated with specific coal seams (including roof, parting and floor materials), as well as some carbonaceous materials (e.g. mudstone) and uneconomic coal seams. It should be noted that in many coal materials the total sulfur concentration is dominated by low risk organic sulfur rather than sulfur in a reactive form such as pyrite or marcasite. The reactive forms of sulfide can be determined using sulfur speciation tests.

Coal reject materials (coarse and fine rejects) generated through washing the coal can also have elevated sulfur concentration and depending upon the coal seam or blend of coal seams being washed at the time may be classified as Non-Acid Forming (NAF) or PAF. In some cases, reactive pyrite can preferentially report to either the coarse or fine rejects streams and alter the material classification.

Weathered overburden materials generally have low sulfur concentrations as any reactive sulfur has long since reacted and leached from these materials. Some interburden strata can be PAF, although again the material characteristics are generally governed by the depositional environment in which the coal seams were formed.

2.2 Presence of sulfur and potential impacts on water quality

As coal and other geological units are blasted and then extracted from the deposit, the process of chemical weathering increases. If the geological units contain sulfide minerals such as pyrite, the chemical weathering process can increase exponentially due to the oxidation of pyrite and the production of sulfuric acid. The Maximum Potential Acidity (MPA) that the material can produce is calculated by multiplying the total sulfur content in a sample by a stoichiometric factor, which assumes that all sulfur is present as pyrite and that all pyrite will oxidise to produce acidity. In cases where the materials have some Acid Neutralising Capacity (ANC) the acidity that is produced by the oxidation of pyrite can be neutralised.

If there is more MPA than ANC, the material can potentially produce acidic drainage and the presence of the acidity will increase the concentrations of salts in the form of major ions (e.g. Calcium ions $[Ca^{2+}]$, Magnesium ions $[Mg^{2+}]$, Sodium ion $[Na^{+}]$, Potassium ion $[K^{+}]$, Chloride ion $[Cl^{-}]$ and Sulfate ion $[SO_4^{2-}]$), metals (e.g. Aluminium [Al], Iron [Fe], Manganese [Mn] and Zinc [Zn]) and metalloids (e.g. Molybdenum [Mo] and Selenium [Se]). This type of drainage is referred to acid and metalliferous drainage (AMD), although it will also contain elevated concentrations of salts (COA, 2016).

If there is more ANC than MPA, the material may retain neutral (or alkaline) pH conditions. However, the acid production and neutralisation reactions may still produce elevated concentrations of salts and potentially some metals/metalloids. This type of drainage is referred to as neutral metalliferous drainage (NMD) or saline drainage (SD).

The potential for a material containing sulfide minerals to produce acidity is also influenced by the way the material is stored or contained. For example, if the material is fine-grained (e.g. fine rejects) and is contained within a saturated environment the potential for the sulfide minerals to oxidise and produce acidity is lower than if the material is stored in a free draining, oxic environment.

The classification of the samples can be derived using the Net Acid Producing Potential (NAPP) or an ANC:MPA ratio. In some instances, the classification can be confirmed using the Net Acid Generation (NAG) test, although in coal mines the standard single addition NAG test should be used with caution for carbonaceous materials, coal or coal reject, as samples with high organic carbon contents can cause interference with standard NAG tests due to partial oxidation of carbonaceous materials. This can lead to (false positive) low NAG_{pH} values and high acidities in NAG solutions unrelated to acid generation from sulfides (ACARP, 2008).

In most instances the NAPP calculation and/or ANC:MPA ratio can be used as a screening tool to provide an indication of whether a material may be classified as PAF, Uncertain or NAF. The material classification can be further confirmed by using kinetic geochemical tests on selected mine materials and/or field trials.

When sufficient information is available regarding the geochemical characteristics of the various mine materials, a smaller suite of geochemical tests/data may be used to classify a larger number of samples (e.g., total sulfur data) and improve the level of confidence in the overall classification of bulk mine materials (e.g., in coal mines a sulfur grid layer model can be used to delineate the likely location of any PAF materials) and assist in the development of mine material management strategies.

2.3 Neutral metalliferous drainage and saline drainage potential

NMD and SD can occur even if the mined materials do not produce acidic drainage. SD can occur if sodium (and other major ions such as chloride) are leached from the mined materials. In Australia the presence of sodium is from rock weathering, and the accumulation of aerosols.

Sulfate is an anion that is also common in neutral pH drainage and is typically present due to the oxidation (and subsequent in-situ neutralisation) of sulfide minerals.

3 Review of existing information

As an integral component of the design of the geochemistry assessment program for the Project, RGS completed a review of the known geochemical characteristics of, and management practices for, mine waste materials generated at nearby coal mines, including the adjacent Bengalla Mine and nearby Mt Arthur Coal Mine sites. There was also some historical information available on the Project included in the review process.

The RGS review of available information on the Mount Pleasant Operation, Mt Arthur Coal Mine and Bengalla Mine sites found that:

- Overburden and interburden materials are likely to be NAF with a low salinity risk and no specific constraints are required for the handling and storage of these materials.
- The Bayswater-Wynn (BY-WN) interburden, Wynn (WN) interburden (roof, floor and parting) and coal rejects derived from processing the WN seam are generally expected to be PAF, reactive when exposed to air and moisture, and have a relatively short lag time preceding acid generation of up to a week.
- Some overburden and interburden materials are expected to be moderately sodic and could have structural stability issues related to potential dispersion and erosion.
- The concentration of trace metals/metalloids in solid overburden, interburden and coal reject materials is expected to be low compared to applied guideline criteria for soils and median crustal abundance in un-mineralised soils and is not expected to present any environmental issues associated with revegetation and rehabilitation.
- NAF overburden, interburden and coal reject materials are generally expected to generate low to
 moderate salinity values and relatively low concentrations of trace metals/metalloids and major ions in
 surface runoff and seepage. BY-WN interburden, WN interburden (roof, floor and parting), and PAF
 coal rejects (derived from processing the WN seam) are expected to have the potential to generate
 acidic leachate, with elevated salinity and elevated concentrations of some metals/metalloids, if exposed
 to oxidising conditions.

4 Methodology

RGS personnel (Dr Alan Robertson) worked closely with MACH (geological personnel) to facilitate the development of an appropriate sampling and geochemical testing plan for obtaining representative samples of overburden and interburden materials associated with the Mount Pleasant Operation mining area.

4.1 Sample selection and preparation

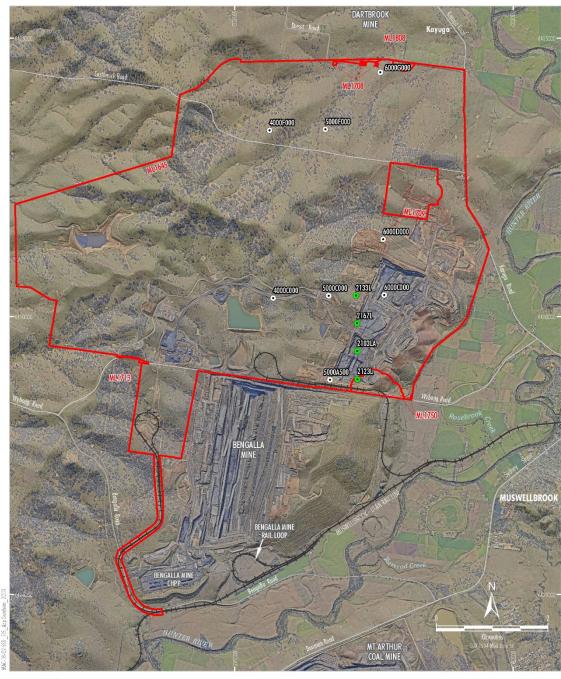
The sampling methodology used to obtain geochemical samples from the Project was undertaken in accordance with relevant guidelines documents. Whilst there are no specific regulatory requirements regarding the number of samples required, existing risk-based technical guidelines for the geochemical assessment of mine rock in Australia (AMIRA, 2002; COA, 2016) and worldwide (INAP, 2009) were used by RGS as a framework for the sampling program. Representative samples of fresh drill core and drill chips were identified and collected from overburden and interburden material from a recent exploration drilling program. Representative samples for coarse and fine rejects were also collected from processing available coal seam material at the CHPP.

4.1.1 Overburden and interburden

A total of 83 drill core samples were collected from four drill holes at Mount Pleasant Operation (12 samples from 2103LA, 11 samples from 2123L, 29 samples from 2133L and 31 samples from 2167L). The location of these drill holes with respect to the mine area is shown in **Figure 4.1**.

The samples represented the overburden and interburden (including some roof, floor and parting materials) expected to be encountered during development activities at the Mount Pleasant Operation, from the surface to a depth of approximately 120 m. This covers the entire stratigraphic profile. **Table 4.1** provides the number of samples of each type of material collected and used in the geochemical assessment. The number of samples was selected to provide a good statistical representation of the amount and types of mining materials expected to be encountered at the Project, considering the risk profile indicated from the geology at the Mount Pleasant Operation. Samples were collected by RGS personnel and dispatched to ALS Environmental Laboratory (ALS) in Stafford, Queensland for geochemical testing.

Lithology	Material type	Number of samples
Weathered claystone, sandstone and siltstones	Overburden	11
Carbonaceous claystone and coal; claystone, conglomerate, sandstone, siltstone and tuff	Interburden	44
Claystone, sandstone and siltstone	Roof, floor and parting	28
Total	83 samples	


Table 4.1: Overburden and interburden sample materials used for geochemical testing

4.1.2 Coarse and fine rejects samples

A total of 12 samples of coarse and fine rejects samples were collected from process streams generated from processing available coal seams at the CHPP.

Table 4.2 provides the number of samples of each type of material collected and used in the geochemical assessment, selected to provide a good statistical representation of amount and type of coarse and fine rejects expected to be encountered.

(.)

LECEND Mining Lease Boundary (Mount Pleasant Operation) 1995 Drill Hole Sample 2019 Drill Hole Sample

Source: MACH (2020); NSW Spatial Services (2020) Orthophoto: MACH (July 2020)

MACHEnergy

MOUNT PLEASANT OPTIMISATION PROJECT Drill Holes Sampled for the Geochemistry Assessment

Figure 4.1

Project material	Representative sample material	Number of samples
Coarse rejects	Edderton (ED) rejects, WN seams rejects, VA rejects, Broonie-Bayswater (BRBY) rejects	6
Fine rejects	ED fine rejects, WN seams fine rejects, PF fine rejects, VA fine rejects, Broonie-Bayswater (BRBY) fine rejects	6
	Total	12 samples

Table 4.2: Coarse and fine rejects sample materials used for geochemical testing

Once received, samples were prepared by crushing and pulverising to less than 75 micrometre (μ m) size. This method of sample preparation results in a homogenous sample, but also generates a large sample surface area in contact with the resultant assay solution. This provides a greater potential for dissolution and reaction and represents an assumed initial 'worst case' scenario for these materials.

4.2 Geochemical test program

A series of static geochemical and physical tests were completed on the collected Mount Pleasant Operation samples. The test program was designed to assess the degree of risk from the presence and potential oxidation of sulfides, and generation and the presence/leaching of soluble metals/metalloids and salts. The assessment also included characterisation of standard soil parameters including salinity, sodicity, cation exchange capacity, exchangeable sodium percentage (ESP), and major metal concentrations.

A summary of the parameters involved in completing a static and kinetic geochemical characterisation and assessment of mine materials is provided in **Attachment A**.

4.2.1 Static tests

Static geochemical tests provide a 'snapshot' of the characteristics of a sample material at a single point in time. These tests were staged to screen individual samples before selecting either individual and/or composite samples for more detailed static test work.

The Acid Base Account (ABA) method was used as a screening procedure whereby the acid-generating and acid-neutralising characteristics of a material are assessed. The 83 overburden and interburden samples and 12 coarse and fine rejects samples (i.e. a total of 95 samples) were screened using the ABA method. The ABA screening included static geochemical testing for the following parameters:

- pH [1:5 weight:volume (w:v), sample:deionised water];
- Electrical conductivity (EC) [1:5 w:v, sample:deionised water];
- Total sulfur [LECO method]; and
- ANC [AMIRA, 2002 method].

The results of the ABA screening assessment are discussed in **Section 5.1** and **Section 5.2**. After the results of the ABA screening test were received and interpreted, 40 of the 95 samples were also tested for sulfide sulfur, as chromium reducible sulfur (Scr), using the Australian Standard (AS 4969.7, 2008) method. From the total sulfur (or Scr where available), MPA values were calculated. Scr data was preferentially used, as it provides a more accurate representation of the potential MPA, as acid generation primarily forms from the reactive sulfide measured by this method.

After the results of the initial static geochemical tests were received and reviewed, all 83 overburden and interburden samples were used to create ten composite samples and all 12 coarse and fine rejects samples were used to create nine composite samples. The individual samples used to generate composite samples were selected based on the stratigraphic unit and the geochemical characteristics. All 19 composite samples were sent for whole rock multi-element testing at ALS. The samples were tested for:

- Paste pH and EC [1:5 w:v, sample:deionised water];
- Total and soluble major cations (Ca²⁺, Mg²⁺, Na⁺ and K⁺) [Hydrochloric acid (HCl) and Nitric acid (HNO₃) digest followed by inductively coupled plasma atomic emission spectroscopy/mass spectrometry (ICP-AES/MS)];
- Soluble major anions (Cl⁻, SO₄²⁻, Fluoride [F⁻]) [ICP-AES/MS and PC Titrator (1:5 w:v water extracts)];
- Acidity and alkalinity as calcium carbonate (CaCO₃) milligrams per litre (mg/L) [PC Titrator (1:5 w:v water extracts)];
- Total metals (Al, Arsenic [As], Boron [B], Cadmium [Cd], Cobalt [Co], Chromium [Cr], Copper [Cu], Fluoride [F], Fe, Mn, Mo, Nickel [Ni], Lead [Pb], Antimony [Sb], Se, Thorium [Th], Uranium [U] and Zn) [HCl and HNO₃ acid digest followed by Flow Injection Mercury Systems (FIMS) and/or ICP-AES/MS]; and
- Soluble metals (Al, As, B, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Sb, Se, Th, U and Zn) [ICP-AES/MS and FIMS (1:5 w:v water extracts)].

Seven of the composite samples (i.e. those not associated with the WN seam) were also tested for exchangeable cations (Ca, Mg, Na and K) [ICP-AES], which was used to calculate the effective cation exchange capacity (eCEC) and ESP. The composite samples associated with the WN seam were not tested for echangeable cations as they will not be used in any site rehabilitation activities.

These composite samples were also sent for physical tests at the Trilab Laboratory in Geebung, where they were tested for percentage dispersion (including particle size analysis) and Emerson Aggregate (EA) class using the Australian Standard (AS1289.C8.1), 1980 method.

The ALS and Trilab test results for the static geochemical test program are provided in **Attachment D**. Summary results tables are provided in **Attachment B** and discussed in **Section 5**.

4.2.2 Kinetic tests

Following the receipt and interpretation of the static geochemical test results, five kinetic leach column (KLC) tests for overburden and interburden samples and nine KLC tests for coarse and fine rejects were set up at the RGS laboratory. The KLC tests comprised composite samples representing the main stratigraphic units that will generate overburden and interburden and the available coal seams that will produce coal reject materials. The overburden and interburden KLC tests were completed over a period of six months, from 31 January to 1 August 2019 using a monthly watering and leaching cycle. The nine KLC tests for coal rejects and fine rejects commenced in April 2020 and continued until October 2020 using a monthly watering and leaching cycle.

Approximately 2 kilograms (kg) of each composite sample was accurately weighed and used in each of the fourteen KLC tests. Heat lamps were used daily to simulate sunshine and ensure that the KLC materials were unsaturated and subject to oxidising conditions between leaching events (this is essentially an assumed "worst case" scenario for sulfide oxidation and potential acid/salt generation). Further details and a schematic of the KLC test arrangement are provided in **Attachment A**.

All leachate samples collected from the KLC tests were assayed at ALS Brisbane for:

- pH and EC;
- Acidity and alkalinity as CaCO₃ (mg/L) [PC Titrator (1:5 w:v water extracts)];
- Dissolved metals/metalloids (Al, As, B, Cd, Co, Cu, Fe, Mercury [Hg], Lithium [Li], Mn, Mo, Ni, Pb, Sb, Se, Strontium [Sr], Vanadium [V] and Zn) [ICP-AES/MS];

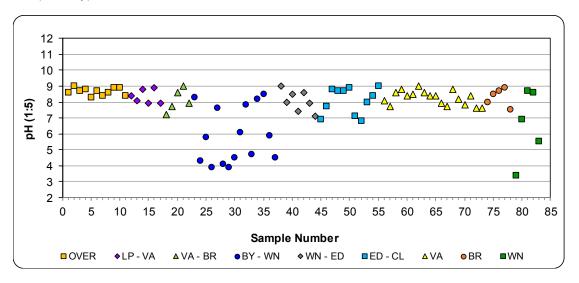
- Dissolved major cations (Ca²⁺, Mg²⁺, Na⁺ and K⁺) [ICP-AES/MS]; and
- Dissolved major anions (Cl⁻, SO₄²⁻) and F⁻ [ICP-AES/MS].

Summary KLC results tables and trends are provided in **Attachment C** and the 'as received' ALS laboratory test results for the KLC test program are provided in **Attachment D**. The KLC test results are also discussed in **Section 5.7**.

5 Geochemical test results

5.1 Overburden and interburden

5.1.1 Acid-Base Account results


Acid-Base Account results for the 83 overburden and interburden samples collected from the Project are presented in **Table B1** (Attachment B) and summarised below. Results are shown by stratigraphic unit (as described in **Table 5.1**) to facilitate interpretation.

Code	Stratigraphic Unit	Bounding coal seams
OVER	Overburden	Above the Lower Piercefield (LP) seam
LP – VA	Birnamwood Interburden	Between LP and VA seams
VA – BR	Birnamwood Interburden	Between VA and Broonie (BR) seams
BY – WN	Bulga Interburden	Between Bayswater (BY) and WN seams
WN – ED	Foybrook	Between WN and ED seams
ED – CL	Foybrook	Between ED and Clanricard (CL) seams
VX	Vaux	Roof, floor and parting from the VA seam
BR	Broonie	Roof, floor and parting from the BR seam
WN	Wynn	Roof, floor and parting within the WN seam

Table 5.1	: Stratigraphic	description
-----------	-----------------	-------------

5.1.2 **pH and EC**

The natural pH of the deionised water used in the pH tests is typically in the pH range 5.0 to 6.5. The pH_(1:5) of the 83 overburden and interburden samples lies within the range of 3.4 to 9.0 (**Figure 5.1**). Apart from samples associated with the BY-WN interburden and the WN seam interburden (roof, floor and parting), the sample pH ranges from 6.8 to 9.0, indicating that material represented by these samples adds negligible acidity and some alkalinity to initial contact water. Samples that represent the BY-WN and WN strata show a large range in pH, from 3.4 to 8.7, indicating that this material has the potential to add acidity and/or alkalinity to contact water. Other than by stratigraphic unit, there is no other correlation between sample pH and sample location, depth or type.

The current EC_(1:5) of the samples ranges from 87 to 3,970 microsiemens per centimetre (μ S/cm), with a median of 302 μ S/cm (**Figure 5.2**). Two distinct populations of EC values are apparent, with most samples having an EC below 500 μ S/cm. Approximately 60 % of the samples associated with the BY-WN and WN stratigraphic units show a distinctly higher EC population range of 2,060 to 3,970 μ S/cm. These results are generally associated with samples that returned a low pH value as discussed earlier in this section, and reflects the higher conductivity associated with acidic samples.

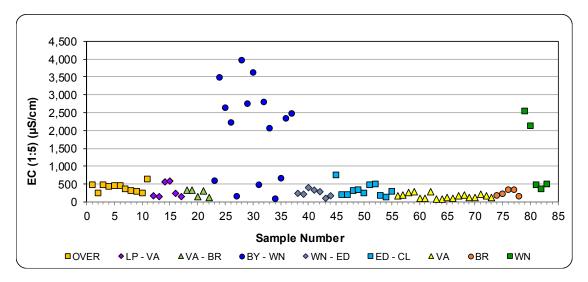


Figure 5.2: EC values for overburden and interburden

The pH and EC tests were completed on pulverised samples with a particle size of passing 75 μ m. This results in a large surface area in contact with the leaching solution, providing a greater potential for dissolution and reaction. These results therefore represent what can be assumed as a 'worst case' scenario for initial screening tests.

It is also expected that the salinity of leachate (as represented by EC) from low sulfur overburden and interburden materials will diminish with time as salts are flushed from the rock matrix and a state of equilibrium develops. At that point, the salinity of seepage/runoff should stabilise at a lower asymptotic concentration relative to the weathering/erosion of materials. In contrast, the salinity of leachate from the higher sulfur materials associated with the BY-WN and WN stratigraphic units may increase, if these materials are exposed to oxidising conditions over time.

5.1.3 **Sulfur**

The total sulfur content (%S) of the overburden and interburden samples ranges from 0.01 to 3.59 %S and has a low median value (0.05 %S), compared with the global median crustal abundance value in unmineralised soils for this element of 0.07 %S (INAP, 2009; Bowen, 1979). Materials containing less than 0.07 %S are considered to be essentially barren of sulfur, represent background concentrations and have a negligible capacity to generate additional acidity. **Figure 5.3** shows the total sulfur content of the overburden and interburden materials and illustrates that most samples have very low sulfur content. Most of the samples with elevated sulfur content in excess of the global median crustal abundance value in unmineralised soils are associated with the BY-WN and the WN.

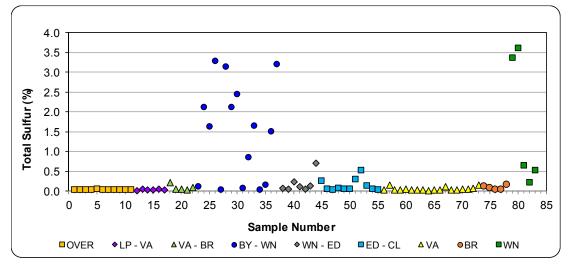


Figure 5.3: Total sulfur values for overburden and interburden

5.1.4 Sulfide sulfur

Figure 5.4 shows a plot of total sulfur versus sulfide sulfur (as Scr) for samples with a total sulfur value over 0.1 %S. The sulfide sulfur content of the 28 samples with a total sulfur content greater than 0.1 %S was tested using the Scr method. The test results show a sulfide sulfur content ranging from 0.02 to 2.57 %Scr. Samples consisting of coal and other highly carbonaceous material showed a low amount of Scr as a percentage of total S; whereas for fine-grained sediments such as claystone and sandstone, approximately 50 % of the total sulfur content appears to be present as sulfide sulfur and may have some potential to generate acidity.

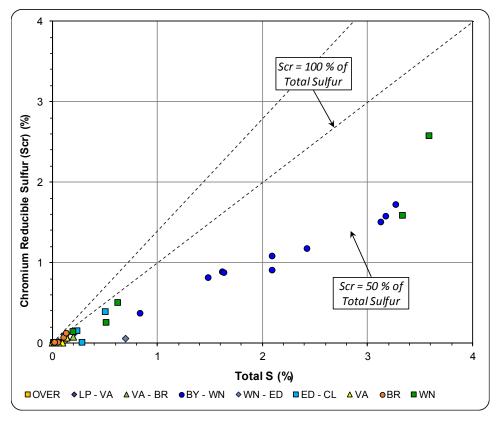


Figure 5.4: Total sulfur versus sulfide sulfur for overburden and interburden

5.1.5 Maximum Potential Acidity

The MPA for the overburden and interburden materials ranges from 0.2 to 78.7 kilograms of sulfuric acid per tonne (kg H_2SO_4/t), with a low median value of 1.5 kg H_2SO_4/t . Elevated MPA values were observed in some of the samples associated with the BY-WN and WN interburden.

5.1.6 Acid Neutralising Capacity

The ANC for the overburden and interburden samples ranges from 0.3 to 308.0 kg H_2SO_4/t , and has a median value of 19.2 kg H_2SO_4/t .

5.1.7 Net Acid Producing Potential

The NAPP is the capacity of a sample to generate acidity (MPA) minus its capacity to neutralise acidity (ANC). The calculated NAPP values for the samples range from -306.8 to 54.2 kg H_2SO_4/t , with a negative median value of -15.0 kg H_2SO_4/t . The NAPP data is presented in **Figure 5.5**. Apart from samples associated with the BY-WN and WN interburden highlighted in red, all other samples have NAPP values that are close to zero or are negative.

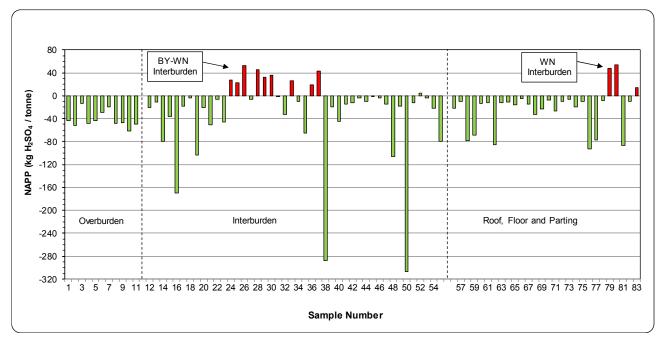


Figure 5.5: NAPP values for overburden and interburden

5.1.8 ANC:MPA ratio

The ANC:MPA ratio of the overburden and interburden samples ranges from 0.005 to 251.4 and has a median value of 13.9.

Figure 5.6 shows a plot of the ANC versus MPA values for the samples. ANC:MPA ratio lines have been plotted on the figure to illustrate the factor of safety associated with the samples in terms of potential for generation of AMD. Generally, samples with an ANC:MPA ratio of greater than 2 or a sulfide content of ≤ 0.1 %S are considered to represent material with a low to negligible risk of acid generation and a high factor of safety in terms of potential for AMD (COA, 2016; INAP, 2009).

The majority of samples (69 out of 83) plot in the negligible to low risk domains in **Figure 5.6** and are considered to have negligible risk of acid generation. Of the remaining 14 samples, 12 are associated with the BY-WN and WN seam interburden and are considered to have a reduced factor of safety and some risk of AMD.

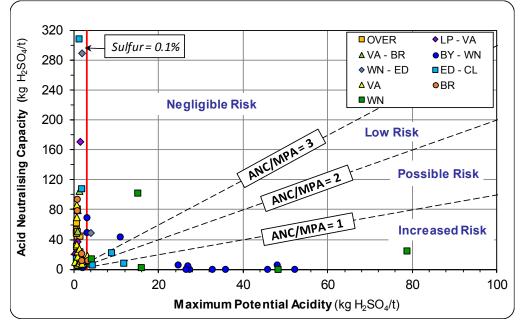


Figure 5.6: ANC vs MPA for overburden and interburden

5.1.9 Geochemical classification

The ABA test data presented in **Attachment B** and discussed in this section have been used to classify the acid forming nature of the samples. These classification criteria generally reflect Australian (COA, 2016) and international (INAP, 2009) guideline criteria for classification of mine waste materials. **Table 5.2** provides a summary of the geochemical classification criteria used by RGS to classify the acid forming nature of the 83 overburden and interburden samples from the Project, and a breakdown of the number of samples in each classification category.

Geochemical Classification	Total Sulfur ¹ (%)	ANC:MPA Ratio	NAPP (kg H ₂ SO ₄ /t)	Samples (n=83)
NAF-Barren ²	≤ 0.1	-	-	63
NAF	> 0.1	> 2	≤ -5	6
Uncertain ³	> 0.1	< 2	> -5 and ≤ +5	2
PAF	> 0.1	< 2	> 5	12

Table 5.2: Geochemistry classification criteria for overburden and interburden

1. If total sulfur is less than or equal to 0.1 %, the NAPP and ANC:MPA ratio are not required for material classification as the sample is essentially barren of oxidisable sulfur.

2. A sample classified as NAF can be further described as 'barren' if the total sulfur and/or sulfide sulfur content is less than or equal to 0.1 %, as the sample essentially has negligible acid generating capacity.

3. Samples that fall outside the stated NAF/PAF classification categories based on the criteria provided are classified as Uncertain.

The criteria presented in **Table 5.2** illustrate that most of the samples representing overburden and interburden materials are classified as NAF, as they are essentially devoid of oxidisable sulfur. For the material represented by these samples, the sulfur content and excess ANC demonstrated in the ABA results confirm a low risk of generating AMD and a high factor of safety. Two samples are classified as Uncertain and 12 samples are classified as PAF and are associated with the BY-WN and WN interburden. Material represented by these samples has a reduced factor of safety and therefore may have some risk of generating AMD.

5.2 Coal rejects

5.2.1 Acid-Base Account results

ABA results for the 12 coal reject samples (6 coarse reject and 6 fine reject samples) collected from the Project are presented in **Table B2** (Attachment B) and summarised below. Results are shown by coal reject source (as described in **Table 5.3**) to facilitate interpretation.

Code	Stratigraphic Unit	Coal Reject Source
ED	Edderton	Coarse and fine rejects from the ED seam
VX	Vaux	Coarse and fine rejects from the VA seam
WN	Wynn	Coarse and fine rejects within the WN seam
BR – BY	Broonie – Bayswater	Coarse and fine rejects from BR – BY seams
PF	Piercefield	Fine rejects from PF seam

Table 5.3: Coal reject description

5.2.2 **pH and EC**

The $pH_{(1:5)}$ of the coal reject samples ranges from 5.6 to 8.6 and has a median value of pH 7.7 (**Figure 5.7**). Generally, coarse reject has a slightly lower pH than fine reject. The natural pH of the deionised water used in the pH tests is typically in the pH range of 5.0 to 6.5. The pH results therefore indicate that some of the coal reject material represented by these samples adds some alkalinity to initial contact water.

Figure 5.7: pH values for coal reject

The current EC_(1:5) of the samples ranges from 98 to 1,590 μ S/cm, with median values of 325 μ S/cm for coarse reject and 145 μ S/cm for fine reject (**Figure 5.8**). Two distinct populations of EC values are apparent, with the majority of samples having an EC of below 500 μ S/cm. Coarse reject samples associated with the WN show a higher EC value than the other samples tested.

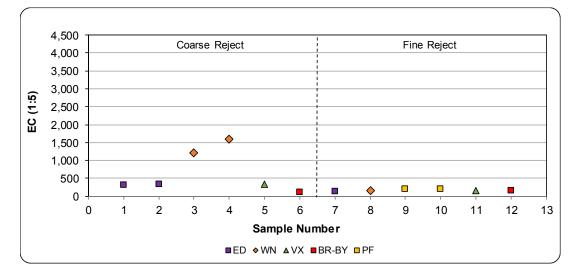


Figure 5.8: EC values for coal reject

As previously discussed, the pH and EC tests were completed on pulverised samples with a particle size of passing 75 μ m. This results in a large surface area in contact with the leaching solution, providing a greater potential for dissolution and reaction. These results therefore represent what can be assumed as a 'worst case' scenario for initial screening tests.

It is also expected that the salinity of leachate (as represented by EC) from low sulfur coal rejects will diminish with time as salts are flushed from the material matrix and a state of equilibrium develops. At that point, the salinity of seepage/runoff should stabilise at a lower asymptotic concentration relative to the weathering/ erosion of materials. In contrast, the salinity of leachate from higher sulfur coal reject materials may increase, if these materials are exposed to oxidising conditions over time.

5.2.3 **Sulfur**

The total sulfur content of the coal reject samples ranges from 0.24 to 2.8 %S (median 0.69 %S). **Figure 5.9** shows the total sulfur content of the coarse and fine reject materials and illustrates that the samples with the highest total sulfur content are generally associated with the WN, although the total sulfur values for the two coarse reject samples from the ED seam are also elevated.

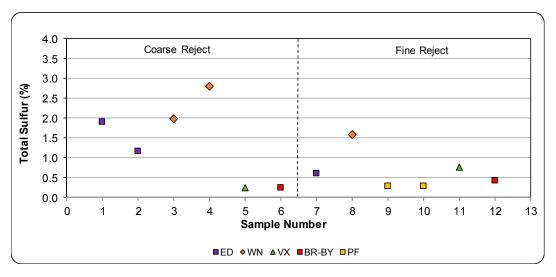


Figure 5.9: Total sulfur values for coal reject

5.2.4 Sulfide sulfur

The sulfide sulfur content of the 12 coal reject samples was tested using the Scr method. **Figure 5.10** shows a plot of the total sulfur versus sulfide sulfur (as Scr) for the samples. The test results show a sulfide sulfur content ranging from 0.09 to 2.14 %Scr. On average, approximately 57 % of the total sulfur in the coal reject samples is present as sulfide sulfur and may have the potential to oxidise and generate acidity.

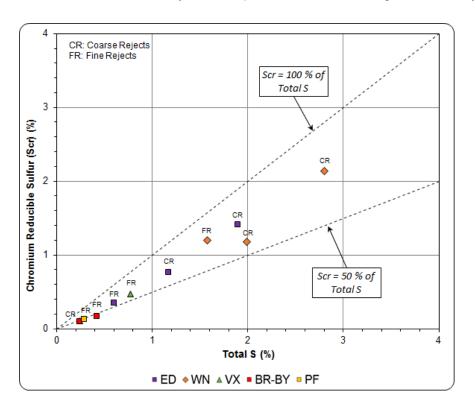


Figure 5.10: Total sulfur versus sulfide sulfur for coal reject

5.2.5 Maximum Potential Acidity

The MPA for the six coarse reject samples ranges from 2.8 to 65.5 kg H_2SO_4/t and has a median value of 29.7 kg H_2SO_4/t . In contrast, the MPA for the six fine reject samples ranges from 4.0 to 36.8 kg H_2SO_4/t , and has a lower median value of 7.9 kg H_2SO_4/t . The highest MPA values were generally related to coarse reject samples associated with the WN and ED and the fine reject sample from the WN.

5.2.6 Acid Neutralising Capacity

The ANC for the 12 coal reject samples ranges from 15.2 to 44.1 kg H_2SO_4/t and has a median value of 19.4 kg H_2SO_4/t . The ANC in the coarse and fine reject samples is similar and median values are 21.2 and 18.3 kg H_2SO_4/t for the coarse and fine reject samples, respectively.

5.2.7 Net Acid Producing Potential

The calculated NAPP values for the six coarse rejects samples ranges from -30.3 to 50.4 kg H_2SO_4/t (median 8.5 kg H_2SO_4/t) and for the six fine reject samples ranges from -15.3 to -5.3 kg H_2SO_4/t , (median -9.8 kg H_2SO_4/t). The NAPP data is presented in **Figure 5.11** and shows that the only samples with positive NAPP values are associated with the WN and ED coarse rejects (highlighted in red). All other samples have NAPP values that are close to zero or are negative.

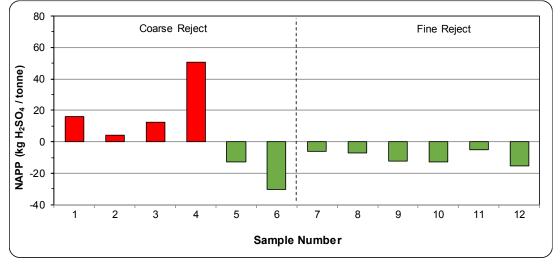


Figure 5.11: NAPP values for coal reject samples

5.2.8 ANC:MPA ratio

The ANC:MPA ratio of the six coarse reject samples ranges from 0.2 to 11.6 (median 0.7) and of the six fine reject samples ranges from 1.2 to 4.2 (median 2.8).

Figure 5.12 shows a plot of the ANC versus MPA values for the 12 coal reject samples. ANC:MPA ratio lines have been plotted on the figure to illustrate the factor of safety associated with the samples in terms of potential for generation of AMD. Generally, samples with an ANC:MPA ratio of greater than 2 or a sulfide content of ≤ 0.1 %S are considered to represent material with a low to negligible risk of acid generation and a high factor of safety in terms of potential for AMD (COA, 2016; INAP, 2009).

Based on the ANC:MPA results, the four coarse reject samples associated with the WN and ED have a reduced factor of safety and increased risk of acid generation compared to the remainder of the coarse and fine reject samples tested.

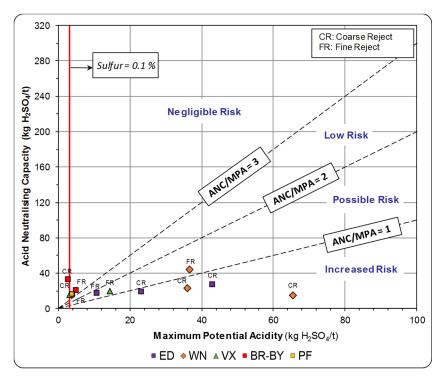


Figure 5.12: ANC vs MPA for coal reject

5.2.9 Geochemical classification

The ABA test data presented in **Attachment B** and discussed in this section has been used to classify the acid forming nature of the coal reject samples. These classification criteria generally reflect Australian (COA, 2016) and international (INAP, 2009) guideline criteria for classification of mine waste materials. **Table 5.4** provides a summary of the geochemical classification criteria used by RGS to classify the acid forming nature of the 12 samples from the Project, and a breakdown of the number of samples in each classification category.

Geochemical Classification	Total Sulfur ¹ (%)	ANC:MPA Ratio	NAPP (kg H₂SO₄/t)	Samples (n=12)
NAF-Barren ²	≤ 0.1	-	-	1
NAF	> 0.1	> 2	≤ -5	7
Uncertain ³	> 0.1	< 2	> -5 and ≤ +5	1
PAF	> 0.1	< 2	> 5	3

Table 5.4: Geochemistry classification criteria for coal reject material

1. If total sulfur is less than or equal to 0.1 %, the NAPP and ANC:MPA ratio are not required for material classification as the sample is essentially barren of oxidisable sulfur.

2. A sample classified as NAF can be further described as 'barren' if the total sulfur and/or sulfide sulfur content is less than or equal to 0.1 %, as the sample essentially has negligible acid generating capacity.

3. Samples that fall outside the stated NAF/PAF classification categories based on the criteria provided are classified as Uncertain.

The criteria presented in **Table 5.4** illustrate that all of the fine rejects samples and two of the coarse rejects samples are classified as NAF, despite some of these samples having an elevated sulfide sulfur content. One of the coarse rejects samples from the ED is classified as Uncertain, and the remaining three coarse rejects samples from the WN and ED seams are classified as PAF.

5.3 Multi-element concentration in solids

Multi-element assays were carried out on 19 composite samples described in **Section 4.2.1** to identify any elements (metals/metalloids) present in these materials at concentrations that may be of environmental concern with respect to revegetation and surface water/groundwater quality. The total metals/metalloids concentration for individual elements in these materials can be relevant for revegetation activities and/or where the potential exists for human contact (e.g. if the material was to be used off-site).

The results from the multi-element testing (for metals/metalloids in whole rock) are shown in **Table B3** (**Attachment B**) for overburden and interburden and **Table B4** (**Attachment B**) for coarse and fine rejects. For comparison, guideline values from the National Environmental Protection Measure (NEPM) (NEPC, 2013) are shown for some elements. Where no NEPM guideline values are listed, none are specified in the tables. All major, minor and trace elements tested returned values below those listed in the NEPM for Health-Based Investigation Level - HIL(C); public open spaces - recreational land use.

5.4 Geochemical abundance index

Total metal/metalloid concentrations in mining waste materials can be compared to the median crustal abundance for un-mineralised soils (Bowen, 1979; COA, 2016;INAP, 2009). The extent of enrichment is reported as the Geochemical Abundance Index (GAI), which relates the actual concentration in a sample with the median (or average) crustal abundance on a \log_{10} scale. The GAI is expressed in integer increments from 0 to 6, where a GAI value of 0 indicates that the element is present at a concentration less than, or similar to, the median crustal abundance; and a GAI value of 6 indicates approximately a 100-fold enrichment above median crustal abundance (**Table 5.5**).

GAI	Enrichment Factor	GAI	Enrichment Factor
0	Less than 3-fold enrichment	4	24 – 48 fold enrichment
1	3 – 6 fold enrichment	5	48 – 96 fold enrichment
2	6 – 12 fold enrichment	6	Greater than 96 fold enrichment
3	12 – 24 fold enrichment		

Table 5.5: Geochemical abundance index values and enrichment factors

Generally, a GAI of 3 or greater signifies enrichment that may warrant further examination. This is particularly the case with some environmentally important 'trace' elements, such as As, Cr, Cd, Cu, Pb, Se and Zn, more so than with major rock-forming elements, such as AI, Ca, Fe, Mn and Na.

Elements identified as enriched may not necessarily be a concern for revegetation, drainage water quality or public health, but their significance should still be evaluated. While the GAI provides an indication of metals/metalloids that may be enriched relative to the global average crustal abundance, the following points should also be considered:

- The median crustal abundance varies between different literature sources, therefore affecting the calculated GAI values.
- If a sample is enriched relative to the median crustal abundance, there is no direct correlation that that sample will also leach metals/metalloids at elevated concentrations. The mobility of metals/metalloids is dependent on mineralogy, adsorption/desorption and the environment in which it occurs.
- Whilst some element concentrations can be elevated relative to the median crustal abundance, the nature of an ore deposit means the background levels are generally expected to be elevated.

Similarly, because an element is not enriched does not mean it will never be a concern, because under some conditions (e.g. low pH) the solubility of common environmentally important elements such as Al, Cu, Fe and Zn can increase significantly.

Tables B3 and **B4** (Attachment B) provide total metal/metalloid concentrations for the ten overburden and interburden composite samples and nine individual/composite coal reject samples described in **Sections 4.2.1** and **4.2.2** respectively. The relative enrichment of metals/metalloids in these samples compared to median crustal abundance (GAI) is presented in **Tables B5** and **B6** (Attachment B), respectively.

The GAI results indicate that of the metals/metalloids tested, none of the ten composite overburden and interburden samples or nine composite coal rejects samples are enriched compared to median crustal abundance in un-mineralised soils (i.e. all samples have a GAI < 3). While the concentration of Se appears slightly elevated relative to median crustal abundance (GAI = 2) this is simply an artefact of the concentrations used in the GAI calculation (i.e. half the laboratory limit of reporting [LoR] of 5 milligrams per kilogram [mg/kg]). Notwithstanding, the nature of a coal deposit means that the concentration of some metals/metalloids are expected to be slightly elevated compared to background soil levels in some materials.

The potential solubility of metals/metalloids was investigated further through the use of water extract and KLC tests as presented in **Sections 5.6** and **5.7**.

5.5 Physical characterisation

To investigate the potential for the overburden/interburden materials to be dispersive, a series of physical tests were conducted on seven of the ten composite samples. Composites 4, 5 and 10 were excluded from this testing as they contained material that was classified as PAF and would therefore not be placed on the outer face of the waste emplacement. The tests included particle size distribution (PSD), dispersion percentage, EA testing, cation exchange capacity (CEC) and ESP. The results of these tests are shown in **Table B3** and **B7** (**Attachment B**) and are summarised here.

5.5.1 **Particle size distribution**

PSD describes the relative amounts of gravel, sand, silt and clay within a sample (Hazelton and Murphy, 2007). Samples with higher proportions of finer material (such as clay and silt) have higher surface areas and can have higher levels of chemical and physical activity. Coarser particles (such as sand) have smaller surface areas and are generally less chemically and physically active (Hazelton and Murphy, 2007).

PSD tests were performed on crushed material from the seven composite samples. Whilst the sample materials have therefore altered from their in-situ state (crushed), their inherent cohesive characteristics are recorded and can be used to infer the material performance in a 'real-life' setting.

The composite samples can all be described as silty gravel based on the PSD results presented in **Table B7** (Attachment B). The collective PSD results are shown below in Figure 5.13.

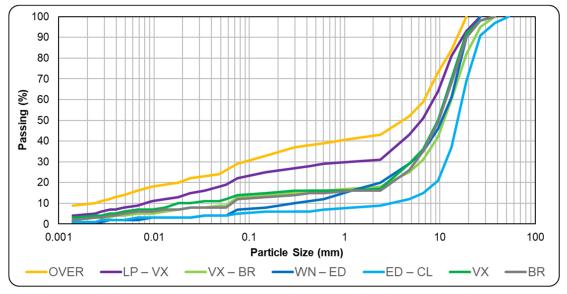


Figure 5.13: Particle size distribution for composite samples

The interburden material from between the ED to CL seams, which would form the base of the pit in areas where the ED seam is mined, has the highest proportion of coarse material, with approximately 90 % greater than 1 millimetre (mm) in grain size, and therefore this material is harder, and fractions into coarser grains when broken. In comparison, overburden materials are softer and have higher proportions of fines with approximately 40 % being less than 1 mm. Intermediate hardness is shown in the other interburden materials such as interburden material from between the LP to VA seams, which has a PSD with approximately 30 % fines (<1 mm) and 70 % coarse material (> 1 mm).

5.5.2 Sodicity

The ESP results for the seven composite samples are presented in Table B3 (Attachment B).

Sodicity occurs when exchangeable sodium on the cation-exchange complex leads to clay dispersion in the soil (Hazelton and Murphy, 2007). Sodicity is of interest as it can result in surface crusting and low infiltration and hydraulic conductivity within affected soils.

The ESP results for the samples range from 0.5 to 18.1 %, with a mean value of 8.4 %. Under the rating for Australian soils established by Isbell (2002) and Northcote and Skene (1972) shown in **Table 5.6** the samples are generally considered to be moderately sodic.

ESP Rating	ESP Percentage
Non-sodic	< 6
Moderate	6 – 14
Strong	> 14

Table 5.6: Ratings for exchangeable sodium percentage

Overall, the results of the ESP tests indicate that most of the overburden/interburden materials represented by the samples tested are likely to be moderately sodic; and consequently, may be susceptible to dispersion and erosion and should be managed appropriately.

5.5.3 **Dispersion**

The dispersion percentage and EA results for the seven selected samples are presented in **Attachment D** and summarised in **Table B7** (**Attachment B**).

The dispersion percentage estimates the percentage of clay content in the material that is dispersed in the sample. The dispersion percentage values for the seven composite samples ranges from 4 % to 30 % (with a median value of 12 %) indicating that the samples represent materials may be prone to dispersion without management.

The EA test results for the seven composite samples returned Class 2 EA results for all of the samples. Class 2 EA materials are considered to have moderate dispersibility after rainfall, irrigation or tillage. Class 2 materials are also susceptible to some degree of tunnelling, and readily form surficial crusts (Hazelton and Murphy, 2007).

The EA test results for the overburden/interburden materials align well with those described for sodicity (ESP) in **Section 5.5.2** and suggest that some of the overburden/interburden materials may be prone to dispersion and erosion. Material dispersion and erosion characteristics may be improved to some extent by the addition of gypsum and a vegetated subsoil/topsoil cover. Notwithstanding, overburden/interburden materials indicated as prone to dispersion should be managed appropriately.

5.5.4 Cation exchange capacity

The total CEC and individual exchangeable cation results for the seven composite overburden and interburden samples are presented in **Table B3** (Attachment B).

CEC measures the capacity of a soil to hold and exchange cations, which provides a buffering effect to changes in pH and available nutrient levels (Hazelton and Murphy, 2007). According to the rating established by Hazelton and Murphy (2007) shown in **Table 5.7**, the results presented in **Table B3 (Attachment B)** show that the CEC of the composite samples is generally low to moderate, ranging from 8.1 to 15.1 milli-equivalents [meq]/100g, with a mean CEC value of 10.1 meq/100g).

CEC Rating	CEC (meq/100g)
Very low	<6
Low	6 – 12
Moderate	12 – 25
High	25 – 40
Very high	>40

Table 5.7: Ratings for cation exchange capaci

Additionally, the individual exchangeable cation results show that the composite samples can be considered to be low in Ca^{2+} , but high in Mg^{2+} , K^+ and Na^+ . The exchangeable cation values in the overburden and interburden samples are summarised in **Table 5.8**. The Na⁺ and Mg²⁺ values are considered high. The Ca^{2+}/Mg^{2+} ratio ranges from 0.5 to 2.3, and the samples are considered to have a relatively low Ca^{2+} concentration (Hazelton and Murphy, 2007). This supports the finding in **Section 5.5.2** that some of the overburden and interburden materials may be prone to dispersion.

Cation	Minimum (meq/100g)	Maximum (meq/100g)	Average (meq/100g)	Rating ¹
Na⁺	<0.2	1.5	0.9	High
K⁺	<0.2	1.8	1.1	High
Ca ²⁺	<0.2	8.6	4.3	Low
Mg ²⁺	<0.2	5.9	4.0	High

Table 5.8: Summary of exchangeable cation levels

Notes: Ratings based on Hazelton and Murphy (2007).

For overburden and interburden materials with a low CEC value and low Ca²⁺ concentration, some soil, gypsum and fertiliser addition may be required to provide a reasonable growth medium for vegetation as part of planned rehabilitation/revegetation activities.

5.6 Water quality static tests

There are no specific regulatory criteria for metal/metalloid concentrations in leachate from mining waste materials on mine sites in NSW. As such, RGS has compared the multi-element results in water extracts from the ten composite overburden and interburden samples and nine individual or composite coal reject samples (as described in **Sections 5.1** to **5.4**) with the Australian guideline values for livestock drinking water and aquatic freshwater eco-systems (ANZECC and ARMCANZ, 2000). These guidelines are provided for context only and are not intended to be interpreted as "maximum permissible levels" for site water storage or discharge.

It should also be recognized that direct comparison of geochemical data with guideline values can be misleading. For the purpose of this study, guideline values are only provided for broad context and should not be interpreted as arbitrary "maximum" or "trigger" values. Using sample pulps (ground to passing 75 μ m) provides a high surface area to solution ratio, which encourages mineral reaction and dissolution of the solid phase. The results on screening tests on water extract solutions is assumed to represent a "worst case" scenario for initial surface runoff and seepage from mining waste materials.

The results from multi-element testing of water extracts (using a 1:5 sample to water ratio) from the ten composite overburden and interburden samples and nine composite coal reject samples are presented in **Table B8** and **Table B9** (Attachment B), respectively. The pH of the water extracts from overburden and interburden samples ranges from 5.9 to 7.9 (median 7.2) and from the coarse and fine reject samples ranges from 6.0 to 8.8 (median 7.7). All but one of the samples therefore currently have a pH value that is within the pH range (pH 6 to 9) for 95 % species protection in freshwater aquatic ecosystems (ANZECC & ARMCANZ, 2000).

The total alkalinity in the water extracts from overburden and interburden ranges from low to moderate (524 to 4,460 mg calcium carbonate per litre [CaCO₃/L]) and has a median value of 1,921 mg CaCO₃/L. The majority of the alkalinity is in the form of bicarbonate (HCO₃). Most of the water extracts from overburden and interburden have a relatively low acidity value (ranging from below detection to 168 mg CaCO₃/L) and excess alkalinity, leading to a positive net alkalinity value.

The total alkalinity in the water extracts from coal reject is low (<1 to 14 mg CaCO₃/L, with a median value of 4 mg CaCO₃/L). The majority of the alkalinity is again in the form of HCO₃. Most of the water extracts have a relatively low acidity value (ranging from <1 to 12 mg CaCO₃/L) and excess alkalinity, leading to a positive net alkalinity value. The exceptions are the water extracts from WN seam coarse reject and VX seam fine reject, which both have negative net alkalinity values.

The water extracts from the overburden and interburden samples have moderate EC values (ranging from 720 to 3,100 μ S/cm; median 1,565 μ S/cm), indicating moderate salinity and concentrations of dissolved solids. Water extracts from the coal reject samples have slightly lower EC values (ranging from 696 to 1,810 μ S/cm; median 1,070 μ S/cm).

The concentration of major ions in water extracts from the overburden and interburden samples is dominated by HCO_3^- and SO_4^{2-} with lower concentrations of other major ions. The range in concentrations for the major ions are listed in **Table 5.9**. Whilst most of the major ion concentrations are well below the water quality guideline parameters for livestock drinking water where these exist (ANZECC & ARMCANZ, 2000), the Fluoride (F⁻) and sulfate (SO₄²⁻) concentrations in one of the ten samples is greater than the applied livestock drinking water guideline of 2 mg/L and 1,000 mg/L for these anions, respectively.

Major Ion	Minimum (mg/L)	Maximum (mg/L)	Median (mg/L)
Ca ²⁺	2	292	27
Mg ²⁺	4	186	24
K+	4	28	15
Na⁺	10	68	46
Cl	8	46	12
F ⁻	<0.2	2.6	0.6
SO4 ²⁻	20	1,418	178
HCO3 ⁻	524	4,460	1,921

 Table 5.9: Major ion concentrations in water extracts from overburden and interburden

The concentration of major ions in water extracts from the coal reject samples is dominated by Ca^{2+} , Mg^{2+} , Na^+ , Cl^- and SO_4^{2-} with lower concentrations of other major ions. The range in concentrations for the major ions are listed in **Table 5.10**. Whilst most of the major ion concentrations are well below the water quality guideline parameters for livestock drinking water where these exist (ANZECC & ARMCANZ, 2000), the F⁻ and SO_4^{2-} concentrations in two and one of the ten samples, is greater than the applied livestock drinking water guideline of 2 mg/L and 1,000 mg/L for these anions, respectively.

Major lon	Minimum (mg/L)	Maximum (mg/L)	Median (mg/L)
Ca ²⁺	4	124	12
Mg ²⁺	6	40	16
K+	<2	4	4
Na⁺	8	48	24
CI-	<2	24	9
F ⁻	<0.2	3.0	0.8
SO4 ²⁻	80	1,338	138

The concentration of trace metals/metalloids in the water extracts from the overburden and interburden materials is typically low and predominantly below the laboratory limit of reporting (LoR). Most of the metal/metalloid concentrations tested in the water extracts are below the applied water quality guideline criteria (ANZECC & ARMCANZ, 2000), where these exist. The only exception is one of the composite samples representing BY-WN interburden material, which has elevated concentrations of Mn (24.2 mg/L), Ni (0.36 mg/L) and Zn (0.12 mg/L), compared to the applied freshwater aquatic ecosystem trigger values for these metals.

The concentration of trace metals/metalloids in the water extracts is also typically low, predominantly below the laboratory LoR and below the applied water quality guideline criteria. Exceptions include the WN coarse reject which has slightly elevated concentrations of Ni (0.05 mg/L) and Zn (0.03 mg/L) and the VX coarse reject, which has slightly elevated concentrations of Cu (0.006 mg/L), Ni (0.034 mg/L) and Zn (0.08 mg/L) compared to the applied freshwater aquatic ecosystem trigger values for these metals.

Overall, the water extract results indicate that dissolved metal/metalloid concentrations in initial surface runoff and seepage from NAF overburden/interburden and coal reject materials are unlikely to present a significant risk to the quality of surface and groundwater resources.

5.7 Water quality kinetic tests

5.7.1 Overburden and interburden

KLC tests were completed on five composite samples of overburden and interburden using the methodology described in **Section 4.2.2**. The composition of the five composite samples used in the KLC tests is summarised in **Table 5.11** and detailed in **Table B10** (Attachment B). The KLC tests on overburden and interburden materials were operated for a period of six months from 31 January to 1 August 2019 under a monthly watering and leaching regime, following mining industry guidelines for such tests (AMIRA, 2002; COA, 2016).

The leachate results from the KLC test program are presented alongside Australian water quality guideline values for livestock drinking water quality (ANZECC & ARCANZ, 2000). These guidelines are provided for context only and are not intended to be interpreted as "maximum permissible levels" for site water storage or discharge. It should be noted that the KLC samples were crushed to pass a 10 mm sieve size and therefore have a high surface area for potential geochemical reaction. The ratio of sample to water in the KLC tests was approximately 3:1 (w:v) (i.e. concentrated), whereas the ratio of sample to water generally used in tests where results can (arbitrarily) be compared against guideline concentrations to provide relevant context is over an order of magnitude more dilute at 1:5 (w:v). Whilst arbitrary comparisons against guideline concentrations can be helpful in some situations to provide relevant context, such comparisons cannot be directly extrapolated to the field situation at the Project.

KLC Sample #	Description
KLC1	Weathered overburden (NAF)
KLC2	BY-WN interburden (PAF)
KLC3	ED-CL (NAF/Uncertain)
KLC4	VA interburden (NAF)
KLC5	WN interburden (PAF)

Table 5.11	: KLC materia	l description

5.7.1.1 Leachate chemistry

The monthly leach test results for the five KLC tests are presented in **Attachment C. Figures 5.14** to **5.17** provide the KLC test data for the six months of leaching, selected components of which are also shown graphically (the first leach event is essentially month zero). The KLC test results indicate that:

Leachate from the five KLC tests has a pH value in the range 2.0 to 8.9. The lowest pH values are displayed by the BY-WN (KLC2) and WN (roof, floor and parting) (KLC 5) interburden strata. The pH of leachate from weathered overburden (KLC 1) is slightly alkaline and the pH of leachate from the VA seam interburden (roof, floor and parting strata) is typically pH neutral (KLC4). The pH of leachate from the Foybrook interburden varies from pH neutral to slightly acidic (KLC3). These KLC pH trends are illustrated in Figure 5.14.

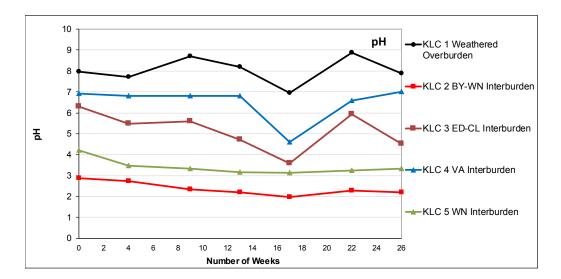
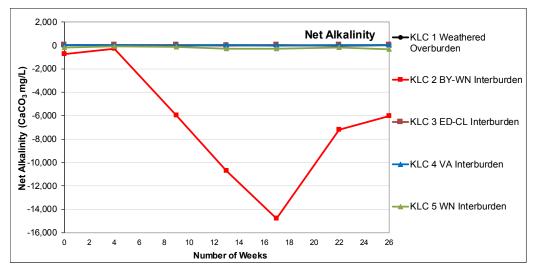



Figure 5.14: KLC pH results for overburden/interburden

• The amount of acidity and alkalinity released from the KLC tests is variable and for PAF BY-WN interburden (KLC2) results in a strongly negative net alkalinity (i.e. alkalinity minus acidity) value compared to the rest of the KLC test materials, as illustrated in **Figure 5.15**. The WN interburden material (KLC 5) also has a negative net alkalinity value and the remaining KLC test materials have net alkalinity values that are either positive or close to zero.

- The EC values for KLC leachate are variable and range from 94 to 12,560 μS/cm. The highest EC values are shown for the PAF BY-WN interburden (KLC2) and the WN interburden material (KLC5). The remainder of the KLC test materials (KLC1, KLC3 and KLC4) have lower EC results (Figure 5.16).
- The major ion concentration in the leachate collected from KLC1, KLC3 and KLC4 is dominated by Na⁺, Cl⁻ and SO₄²⁻, whereas the leachate from KLC2 and KLC5 is dominated by Ca²⁺, Mg²⁺ and SO₄²⁻.
- The SO₄²⁻ concentration in the KLC leachate for KLC1, KLC3 and KLC4 is well below the applied guideline value of 1,000 mg/L (ANZECC & ARMCANZ, 2000). The leachate for KLC2 exceeds the guideline value in every leach event, while KLC5 exceeds the guideline value after three months (i.e. after four leach events).

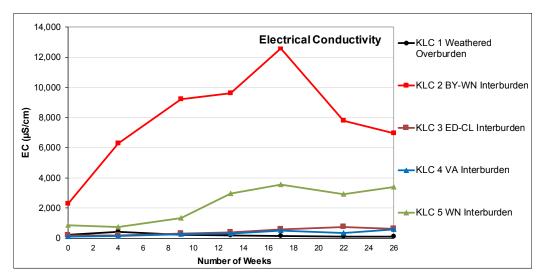


Figure 5.16: KLC EC results for overburden/interburden

- The concentrations of dissolved Ca²⁺ and Mg²⁺ in leachate from the KLC tests have been used to calculate the residual ANC remaining in the sample materials. The results indicate that for most of the KLCs, greater than 90 % of the measured ANC remains at the end of the six-month test period. The exception is the PAF BY-WN interburden (KLC2), which has only 30 % of the measured ANC remaining at the end of the test period. Note that KLC2 also contains the lowest amount of inherent ANC, with an average value of 7.7 kg H₂SO₄/t, compared to the range of average ANC values for the other KLCs (26.5 to 54.5 kg H₂SO₄/t).
- The SO₄²⁻ generation/release rate results have been used to calculate the rate of sulfide oxidation in the material represented by each KLC. Most SO₄²⁻ salts generated from sulfide reactions involving materials with a relatively low sulfide sulfur concentration are highly soluble, and therefore will be collected in column leachate. The SO₄²⁻ concentration (and hence generation/release rate) in leachate from the KLC tests is highly variable between the KLCs, however the value tends to increase for the PAF materials (KLC2 and KLC5) over the six-month test period as illustrated in Figure 5.17.

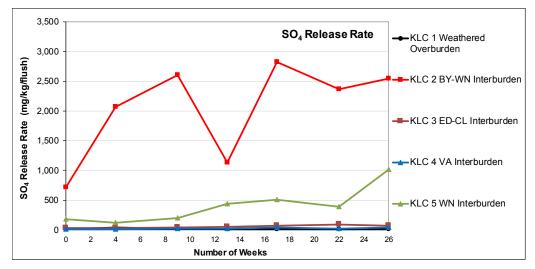


Figure 5.17: KLC sulfate generation/release rates for overburden/interburden

Mining waste materials with low rates of sulfate generation/release and low to moderate ANC levels generally have an increased factor of safety with respect to potential acid generation; and are likely to generate leachate that is pH neutral and/or has low levels of acidity (AMIRA, 1995; Bennett et al., 2000). The materials represented by KLC tests 1, 3 and 4 fall into this category, and the KLC results reflect the NAF material classification predicted from the static geochemical test results in **Section 5.1**. For these materials, the concentration of dissolved trace metals/metalloids in KLC leachate is typically very low, often below the laboratory LoR and within the applied water quality guidelines. The only exception is Se, which can exceed the applied guideline value of 0.02 mg/L in some KLC leachate samples. Slightly elevated concentrations of this metalloid are often found in (concentrated) KLC leachate from coal mine samples in Australia but are not commonly detected in water quality monitoring programs in the field. Overall, ongoing surface runoff and seepage from materials represented by the three NAF KLC materials are unlikely to present a significant risk to the quality of surface water and groundwater resources at the Project.

In comparison, PAF KLC2 and KLC5 materials exhibit higher rates of sulfide oxidation and have a lower factor of safety with respect to potential acid generation (i.e. these materials are likely to generate acidic pH leachate if left exposed to oxidising/weathering conditions). The KLC results reflect the PAF material classification predicted from the static geochemical test results in **Section 5.1**. The concentrations of AI, As, Cd, Co, Cu, Fe, Mn, Ni, Se and Zn in KLC leachate are elevated compared to applied livestock drinking water guidelines (ANZECC & ARMCANZ, 2000) for KLC2. In comparison, elevated concentrations of metals/metalloids in leachate from KLC5 is limited to AI, Fe, Mn and Ni compared to the applied livestock drinking water guidelines. These results demonstrate that if left unmanaged, dissolved metal/metalloid concentrations are likely to be elevated in surface runoff and seepage from PAF materials.

5.7.1.2 Sulfide oxidation and sulfate generation rates

The SO₄²⁻ generation/release rates obtained for the sample materials used in the KLC tests have been used to determine the rate of sulfide oxidation in these materials. Most sulfate salts generated from sulfide reaction involving materials with a relatively low sulfide sulfur concentration are highly soluble, and therefore will be collected in column leachate. The dissolved SO₄²⁻ (and Ca²⁺) concentrations in most of the KLC leachate are typically less than the solubility limit of gypsum (CaSO₄), for example, which indicates that SO₄²⁻ generation is not controlled by gypsum dissolution in the KLC test materials. Therefore, the SO₄²⁻ concentrations and oxidation rate calculations provide reasonable estimates of these parameters and the results align well with existing static and dynamic geochemical data derived from a wide range of mine waste materials (AMIRA, 1995). The SO₄²⁻ generation rate and sulfide oxidation rate for the KLC tests are shown in Table 5.12.

KLC Sample Number	Sample Description	SO4 ²⁻ Generation Rate (mg/kg/week)	Oxidation Rate (kg O₂/m³/s)
KLC1	Weathered overburden	3.6	1.49 x 10 ⁻⁹
KLC2	BY-WN interburden	473.4	1.93 x 10 ⁻⁷
KLC3	Foybrook interburden	12.1	4.91 x 10 ⁻⁹
KLC4	VA interburden	5.6	2.31 x 10 ⁻⁹
KLC5	WN interburden	97.3	4.08 x 10 ⁻⁸

Table 5.12: Sulfate generation and sulfide oxidation rates for KLC tests on overburden/interburden

Notes: The SO₄²⁻ generation rate is measured in units of milligrams of SO₄²⁻ generated per kilogram of sample material per week (mg/kg/week). The sulfide oxidation rate is measured in units of kilograms of Oxygen (O₂) per cubic metre per second (kg O₂/m³/s).

The sulfate generation rate from the KLC samples ranges from 3.6 to 473.4 mg/kg/week which is equivalent to a sulfide oxidation rate ranging from 1.49×10^{-9} to 1.93×10^{-7} kg O₂/m³/s. Mining waste materials with an oxidation rate less than 1×10^{-8} kg O₂/m³/s and a moderate ANC level have an increased factor of safety and are likely to generate leachate that is pH neutral and/or has a low level of acidity (AMIRA, 1995; Bennett et al., 2000). Hence, all of the NAF sample materials used in the KLC test program fall into this category. In comparison, the PAF sample materials have a reduced factor of safety and are likely to generate leachate that has an acidic pH and elevated levels of acidity.

Overall, the KLC results for overburden and interburden reflect the range of material characteristics predicted from the static geochemical test results presented in **Section 5.1**. Potential implications of these results with respect to the management of these materials at the Project are discussed further in **Section 6**.

5.7.2 Coal rejects

KLC tests were completed on nine composite samples of coal reject materials (four coarse reject and five fine reject samples) using the methodology described in **Section 4.2.2**. The composition of the nine coal reject samples used in the KLC tests is summarised in **Table 5.13** and detailed in **Table B11** (**Attachment B**). The KLC tests on the coal reject materials were operated for a period of six months from 8 April to 9 October 2020 under a monthly watering and leaching cycle, following mining industry guidelines for such tests (AMIRA, 2002; COA, 2016).

The leachate results from the KLC program are presented alongside the Australian water quality guideline values for livestock drinking water quality (ANZECC & ARMCANZ, 2000). These guidelines are provided for context only and are not intended to be interpreted as "maximum permissible values" for site water quality. Additionally, the KLC samples were crushed to pass a 10 mm sieve size, and therefore have a high surface area for potential geochemical reactions. The ratio of sample to water in the KLC leach tests was generally between 2:1 and 3:1 (w:v), which is an order of magnitude more concentrated than that used in the static tests (at 1:5 [w:v]), where results have been (arbitrarily) compared against guideline concentrations to provide relevant context. This difference in concentration should be considered when comparing results with the applied water quality guidelines. Whilst arbitrary comparisons against guideline concentrations are useful in some situations to provide relevant context, such comparisons cannot be directly extrapolated to the field situation at the Project.

KLC Sample #	Description
KLC6	ED Coarse Reject (PAF/ Uncertain)
KLC7	ED Fine Reject (NAF)
KLC8	WN1 Coarse Reject (PAF)
KLC9	WN1 Fine Reject (NAF)
KLC10	PF2 Fine Reject (NAF)
KLC11	VX1 Coarse Reject (NAF)
KLC12	VX1 Fine Reject (NAF)
KLC13	BRBY Fine Reject (NAF)
KLC14	BRBY Coarse Reject (NAF Barren)

Table 5.13: KLC material description

5.7.2.1 Leachate chemistry

KLC test results for the coal reject materials are present in **Attachment C** and **Figures 5.18** to **5.20** provide data for the monthly leach events over a total period of six months from 8 April to 9 October 2020 (the first leach event is essentially month zero). The KLC test results to date indicate that:

• Leachate from the nine KLC tests has a pH value in the range 2.39 to 8.21. The lowest pH values (<3) are associated with the PAF WN1 coarse reject material and to a lesser extent, the NAF VX1 coarse reject material (<5). Most coal reject samples have pH values similar to or greater than the pH of the deionised water used in the KLC tests. The KLC pH trends for coal rejects are illustrated in **Figure 5.18**.

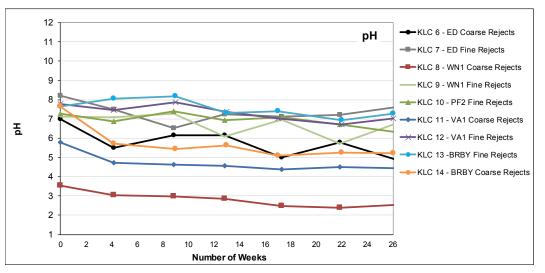


Figure 5.18: KLC pH results for coal reject

• Leachate from the KLC tests have EC values in the range 40 to 5,760 μ S/cm. The highest EC values are associated with WN coarse reject material (>3,000 μ S/cm) and ED coarse rejects (>1,000 μ S/cm). The KLC EC trends for coal rejects are illustrated in **Figure 5.19**.

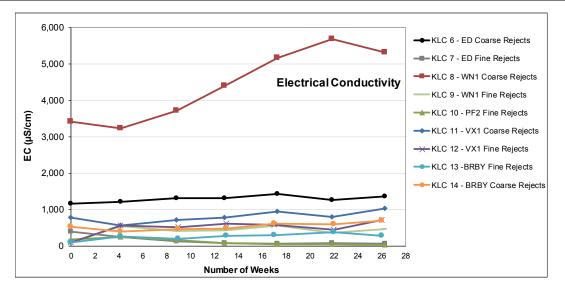


Figure 5.19: KLC EC results for coal reject

- The acidity values in leachate from the KLC tests are typically low (<30 mg/L, as CaCO₃) and in some cases, less than the laboratory LoR (<1 mg/L, as CaCO₃). The exception is the WN coarse reject (KLC8) material that has an increasing acidity level, which is greater than 5,000 mg/L (as CaCO₃), towards the end of the six month test period. The alkalinity value in KLC leachate ranges from less than the laboratory LoR (<1 mg/L, as CaCO₃) to 70 mg/L, as CaCO₃, resulting in a net alkalinity value that is either positive or relatively close to zero for all but the WN coarse reject material.
- The major ion concentration in the KLC leachate collected from the coal reject materials is generally dominated by Ca²⁺, Mg²⁺, Na⁺, Cl⁻ and SO₄²⁻.
- The SO4²⁻ concentration in KLC leachate from most of the coal reject samples is below the applied ANZECC & ARMCANZ stock water quality guideline criterion (1,000 mg/L) over the test period. The SO4²⁻ concentration is higher than this criterion in leachate from the WN coarse reject material (KLC8) and shows an increasing concentration trend.
- The concentrations of dissolved Ca²⁺ and Mg²⁺ in leachate from the KLC tests have been used to calculate the residual ANC remaining in the sample materials. The results indicate that the majority of coarse reject samples retain at least 93.8 % of their inherent ANC value after six months of exposure to oxidising conditions, which reflects the slow release of alkalinity from these materials. In contrast, the WN coal reject (KLC8) retains less (79.5 %) of the sample's inherent ANC.
- The SO₄²⁻ generation/release rate results have been used to calculate the rate of sulfide oxidation in the material represented by each KLC. Most SO₄²⁻ salts generated from sulfide reaction involving materials with a relatively low sulfide sulfur concentration are highly soluble, and therefore will be collected in column leachate. The SO₄²⁻ concentration (and hence generation/release rate) in leachate from most of the KLC tests is relatively low and shows a steady trend, however the SO₄²⁻ concentration is notably higher for leachate from the PAF WN coarse reject material (KLC8) as illustrated in **Figure 5.20**.

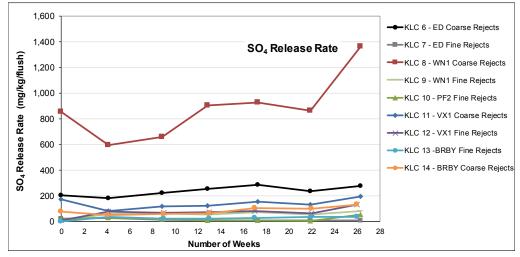


Figure 5.20: KLC sulfate generation/release rates for coal reject

Mining waste materials with low sulfate generation/release rates and low to moderate ANC levels generally have an increased factor of safety with respect to potential acid generation; and are likely to generate leachate that is pH neutral and/or has relatively low levels of acidity (AMIRA, 1995; Bennett et al., 2000). The materials represented by KLC tests 7, 9, 10, 11, 12, 13 and 14 generally fall into this category, and the KLC results reflect the NAF material classification predicted from the static geochemical test results in **Section 5.2** (although KLC leachate from the VX coarse reject has a slightly lower pH value than expected, which is probably due to the inherent ANC being unavailable to provide buffering until lower pH values are reached). For these materials, the concentration of dissolved trace metals/metalloids in KLC leachate is typically very low, often below the laboratory LoR and within the applied water quality guidelines. Overall, ongoing surface runoff and seepage from materials represented by the NAF KLC materials are unlikely to present a significant risk to the quality of surface water and groundwater resources at the Project.

In comparison, KLC8 (and to a lesser extent KLC6) materials exhibit higher rates of sulfide oxidation and have a lower factor of safety with respect to potential acid generation (i.e. materials represented by KLC8 are likely to generate acidic pH leachate if left exposed to oxidising/weathering conditions). The KLC results reflect the PAF and PAF/Uncertain material classifications for these materials, respectively, as predicted from the static geochemical test results in **Section 5.2**. The concentrations of Al, As, Cd, Co, Cu, Fe, Mn, Ni and Se in KLC leachate are elevated compared to applied livestock drinking water guidelines (ANZECC & ARMCANZ, 2000) for KLC8. These results demonstrate that if left unmanaged, some dissolved metal/metalloid concentrations are likely to be elevated in surface runoff and seepage from PAF materials.

5.7.2.2 Sulfide oxidation and sulfate generation rates

The SO₄²⁻ generation/release rate results obtained for the nine KLC tests on the coal reject samples have been used to determine the rate of sulfide oxidation in these materials. Most SO₄²⁻ salts generated from sulfide reaction involving materials with a relatively low sulfide sulfur concentration are highly soluble, and therefore will be collected in column leachate. Therefore, the SO₄²⁻ concentrations and oxidation rate calculations provide reasonable estimates of these parameters and the results align well with existing static and dynamic geochemical data derived from a wide range of mine waste materials (AMIRA, 1995). The initial SO₄²⁻ generation rate and associated sulfide oxidation rate for the nine KLC tests are shown in **Table 5.14**.

KLC Sample Number	Sample Description	Sulfate Generation Rate (mg/kg/week)	Oxidation Rate (kg O₂/m³/s)
KLC6	ED coarse reject (PAF/Uncertain)	55.3	2.2 x 10 ⁻⁸
KLC7	ED fine reject (NAF)	3.9	1.6 x 10 ⁻⁹
KLC8	WN1 coarse reject (PAF)	204.6	8.3 x 10 ⁻⁸
KLC9	WN1 fine reject (NAF)	13.3	5.3 x 10 ⁻⁹
KLC10	PF2 fine reject (NAF)	3.6	1.5 x 10 ⁻⁹
KLC11	VX1 coarse reject (NAF)	32.9	1.3 x 10⁻ ⁸
KLC12	VX1 fine reject (NAF)	17.6	7.3 x 10 ⁻⁹
KLC13	BRBY fine reject (NAF)	6.5	2.7 x 10 ⁻⁹
KLC14	BRBY coarse reject (NAF Barren)	20.1	8.3 x 10 ⁻⁹

Table 5 14: Sulfate (generation and sulfide	ovidation rates fo	r KI C tosts d	on coal reject
Table 5.14. Sullate (jeneration and Sumu	e oxidation rates to	I ALC LESIS (on coar reject

The SO₄²⁻ generation rate from the KLC samples ranges from 3.6 to 204.6 mg/kg/week which is equivalent to a sulfide oxidation rate ranging from 1.5×10^{-9} to 8.3×10^{-8} kg O₂/m³/s. Mining waste materials with an oxidation rate less than 1×10^{-8} kg O₂/m³/s and a moderate ANC level have an increased factor of safety and are likely to generate leachate that is pH neutral and/or has a low level of acidity (AMIRA, 1995; Bennett et al., 2000). While most coal reject materials used in the KLC test program generally fall into this category, the WN1 coarse reject material (KLC8) is likely to have a reduced factor of safety and generate leachate that has an acidic pH and elevated level of acidity.

Overall, the KLC results generally reflect the range of material characteristics predicted from the static geochemical test results presented in **Section 5.2**. Potential implications of these results with respect to the management of these materials at the Project are discussed further in **Section 6**.

6 Discussion

6.1 Acid forming potential

6.1.1 Overburden and interburden

The results of the ABA tests presented in **Section 5.1** and the water extract and KLC test results discussed in **Sections 5.7.1** and **5.7.2**, respectively, demonstrate that the AMD potential of the materials represented by the samples tested is closely linked to stratigraphy. The overburden and most of the interburden materials are classified as NAF, with excess ANC and generally low oxidisable sulfur content. Material represented by the samples has a low risk of acid generation and a high factor of safety with respect to potential AMD.

In contrast, BY-WN interburden in the Bulga formation (commonly known as Archerfield Sandstone) has an elevated oxidisable sulfur content, minimal ANC, and is classified as PAF. Coal seam roof, floor and parting materials (collectively called interburden) associated with the WN seam can also be classified as PAF, although based on the samples tested, may be less reactive than the BY-WN interburden.

Based on the currently available information, PAF materials appear to be confined to the BY-WN interburden materials and interburden materials (roof, floor and parting) associated with the WN seam. PAF interburden materials are generally recognizable by lithology, which can be predicted and modelled in advance of mining, so that these materials can be managed appropriately. It is recommended that PAF interburden materials be selectively handled and encapsulated within NAF materials in the overburden emplacement area as part of pit backfill. Operational sampling and geochemical testing of selected interburden materials and surface and groundwater quality monitoring should also be used throughout the mine life to verify that the adopted waste management strategy is appropriate and performing according to the design and expected outcomes.

These findings and recommended management strategy align well with the known geochemical characteristics of, and management practices for, mine waste materials generated at nearby coal mines, including the adjacent Bengalla Mine, which were reviewed by RGS as part of the development of the sampling strategy for the current Project. The RGS review findings have been summarised in **Section 3** and **Attachment E**.

6.1.2 Coal reject

The results of the ABA tests presented in **Section 5.2** and the water extract and KLC test results discussed in **Sections 5.7.1** and **5.7.2** demonstrate that the AMD potential of the coal reject materials represented by the samples tested is closely linked to the specific coal seam processed to generate these materials. Whilst the fine reject materials tested are classified as NAF and have excess ANC, those derived from the WN seam contain an elevated concentration of oxidisable sulfur which could oxidise under unsaturated conditions to produce elevated sulfate concentrations in contact water. It is recommended that the geochemical characteristics of fine reject materials are considered with respect to the management of the surface Fines Emplacement Area at the Project. In particular fine reject materials generated from processing different seams should be well mixed and exposure to prolonged unsaturated conditions for WN seam fine reject should be avoided.

On the basis of the samples tested, the oxidisable sulfur content of coarse reject materials generated from processing the WN seam and ED seam is elevated and some of these materials are classified as PAF. In particular the WN seam coarse reject rapidly generates low pH conditions (pH 3-4) and contact water (leachate) shows elevated concentrations of SO_4^{2-} , and some metals/metalloids. Material represented by these coarse reject samples has an increased risk of acid generation and a lower factor of safety with respect to potential AMD.

Based on the geochemical test results to date, PAF materials appear to be confined to coarse reject generated from processing the WN seam (and potentially the ED seam). It is recommended that any identified PAF coal reject materials be selectively handled and encapsulated within NAF materials in the overburden emplacement area as part of pit backfill. Operational sampling and geochemical testing of coal reject and surface and groundwater quality monitoring should also be used throughout the mine life to verify that the adopted waste management strategy is appropriate and performing according to the design and expected outcomes.

These findings and recommended management strategy align well with the known geochemical characteristics of, and management practices for, mine waste materials generated at nearby coal mines, including the adjacent Bengalla Mine, which were reviewed by RGS as part of the development of the sampling strategy for the current Project. The RGS review findings are summarised in **Section 3** and **Attachment E**.

6.2 Physical characteristics

6.2.1 Overburden and interburden

The interburden material appears to have a higher proportion of harder material, which fractions into coarser grains when broken, compared to softer overburden materials which have higher proportions of fines. These material characteristics may be beneficial in terms of selecting appropriate materials for landform construction and rehabilitation/revegetation activities.

Dispersive materials can impact surface water environments through increasing the sediment load present in surface waters, increasing the turbidity of surface waters. Overall, the results of the physical and exchangeable cation characterisation tests described in this report indicate that the overburden and interburden materials are moderately sodic and consequently, may be susceptible to dispersion and erosion and should be managed appropriately. At Bengalla Mine, no selective handling of moderately sodic overburden and interburden is applied and these materials are successfully managed by placement of a revegetated subsoil/topsoil layer over final landforms as part of rehabilitation.

If required, the dispersive characteristics of the overburden and interburden materials can also be improved further with the addition of gypsum to surface material below the revegetated subsoil/topsoil cover. In addition, fertiliser addition could be considered for overburden and interburden materials used in rehabilitation to provide a reasonable growth medium for revegetation and rehabilitation purposes.

6.3 Multi-element composition and enrichment

6.3.1 **Overburden and interburden**

The concentration of trace metals/metalloids in solid overburden and interburden materials is expected to be low compared to applied guideline criteria for soils median crustal abundance in un-mineralised soils and is not expected to present any environmental issues associated with revegetation and rehabilitation.

6.3.2 Coal reject

The concentration of trace metals/metalloids in solid coal reject materials (coarse and fine reject) is expected to be low compared to applied guideline criteria for soils and median crustal abundance in un-mineralised soils.

6.4 Water quality

6.4.1 Overburden and interburden

The static and kinetic geochemical test results presented in this report demonstrate that initial surface runoff and seepage from NAF materials is likely to be pH neutral to slightly alkaline and have a low to moderate salinity value. Whilst some PAF interburden materials, particularly those associated with the BY-WN and WN, are likely to generate acidic pH values, surface runoff and seepage from bulk NAF materials is likely to fall within the range for 95 % species protection in freshwater aquatic ecosystems (pH 6 to 9) as set out in ANZECC & ARMCANZ (2000).

The total concentrations of major ions in initial leachate from NAF materials are relatively low and are dominated by HCO³⁻ and SO₄²⁻, although Ca²⁺ and Mg²⁺ concentrations do tend to increase over time in leachate from PAF materials. Whilst most of the major ion concentrations in leachate from NAF overburden and interburden waste materials are within the applied water quality guidelines for livestock drinking water (ANZECC & ARMCANZ, 2000), sulfate concentrations can be elevated for PAF materials.

The initial concentration of most trace metals/metalloids tested for water in contact with most NAF overburden and interburden materials is low, predominantly below the laboratory LoR, and below the applied water quality guideline criteria. However, KLC test results show that if PAF materials are left unmanaged and exposed to prolonged oxidising conditions, these materials have the potential to generate elevated concentrations of a some metals/metalloids in contact water compared to the applied livestock drinking water guideline values including AI, As, Cd, Co, Cu, Fe, Mn, Ni, Se and Zn.

It is expected that the potential risk of any impact on the quality of surface water and groundwater water from water in contact with NAF mining waste materials at the Project will be low. For material classified as PAF, namely BY-WN interburden and WN interburden (roof, floor and parting), future weathering and oxidation of these materials may lead to acidic conditions and can significantly increase the solubility and mobility of some metals/metalloids. It is therefore important that PAF materials are managed according to the methodology in the current Mining Operation Plan and Rehabilitation Management Plan (MOP) (MACH Energy, 2020) to avoid prolonged exposure to oxidising/weathering conditions, especially as PAF materials have a short lag period preceding acid generation (most likely up to a week). It is noted that the adjacent Bengalla Mine ensures that PAF materials are covered with NAF materials within one week of exposure to oxidising/weathering conditions. Traffic compaction and application of agricultural lime (fine limestone) dosing to the surface of PAF materials could be considered to potentially extend the lag period preceding acid generation in the field prior to encapsulation with NAF materials.

Overall, dissolved metal/metalloid concentrations in surface runoff and seepage from most NAF overburden and interburden materials at the Project are unlikely to present a significant risk to surface and groundwater resources. However, if left exposed, PAF materials may have the potential to generate poor quality leachate which could present some risk to water resources.

Encapsulation of PAF materials with NAF materials either in an emplacement facility or preferably as part of pit backfill activities is recommended to prevent exposure to long-term weathering conditions and control the potential for acid generation, sulfate salt release, and mobility of trace metals/metalloids from these materials.

6.4.2 Coal reject

The static and kinetic geochemical test results presented in this report indicate that initial surface runoff and seepage from most NAF coal reject materials is likely to be pH neutral to slightly alkaline and have a low to moderate salinity value. Seepage from bulk NAF reject materials is likely to fall within the range for 95 % species protection in freshwater aquatic ecosystems (pH 6 to 9) as set out in ANZECC & ARMCANZ (2000). In contrast, some PAF coal reject materials, particularly those associated with the WN seam (and potentially the ED seam), have the potential to generate acidic pH values in surface runoff and seepage.

The total concentrations of major ions in leachate from NAF coal reject materials are relatively low and are dominated by Ca^{2+} , Mg^{2+} , Na^+ and SO_4^{2-} . Whilst most of the major ion concentrations in leachate from NAF coal reject materials are below the applied water quality guidelines for livestock drinking water (ANZECC & ARMCANZ, 2000) the sulfate concentrations can be elevated for PAF materials.

The concentration of most trace metals/metalloids tested for water in contact with most NAF coal reject materials is initially relatively low, predominantly below the laboratory LoR, and below the applied water quality guideline criteria. Exceptions include the WN1 and VX1 coarse reject materials, which can have slightly elevated concentrations of Cu, Ni and Zn in initial contact water compared to the applied freshwater aquatic ecosystem trigger values for these metals. In comparison, KLC test results show that PAF materials have the potential to generate elevated concentrations of a number of metals/metalloids in leachate over time compared to the applied livestock drinking water guideline values including AI, As, Cd, Co, Cu, Fe, Mn, Ni and Se.

It is expected that the potential risk of any impact on the quality of surface water and groundwater water from water in contact with NAF coal reject materials at the Project is relatively low. For PAF coarse reject materials, associated with the WN and potentially the ED seam, weathering and oxidation of these materials may lead to acidic conditions and can significantly increase the solubility and mobility of metals/metalloids. It is therefore important that PAF coarse reject materials are managed to avoid prolonged exposure to oxidising/weathering conditions, especially as PAF coarse reject materials are likely to have a short lag period preceding acid generation (most likely up to a week). It is noted that the adjacent Bengalla Mine ensure that PAF materials are covered with NAF materials within one week of exposure to oxidising/weathering conditions. Again, traffic compaction and application of agricultural lime (fine limestone) dosing to the surface of PAF materials could be considered to potentially extend the lag period preceding acid generation in the field prior to encapsulation with NAF materials. As stated in **Section 6.1.2**, for fine reject, it is recommended that materials generated from processing different seams be well mixed at the Fines Emplacement Area and exposure to prolonged unsaturated conditions for WN seam fine reject should be avoided.

Overall, dissolved metal/metalloid concentrations in surface runoff and seepage from most NAF coal reject materials at the Project are unlikely to present a significant risk to surface and groundwater resources. However, if left exposed, PAF materials may have the potential to generate poor quality leachate which may present some risk to water resources.

Encapsulation of any PAF coarse reject materials by NAF materials either in an emplacement facility or preferably as part of pit backfill activities is recommended to prevent exposure to long-term weathering conditions and control the potential for acid generation and mobility of trace metals/metalloids from these materials.

7 Conclusions and recommendations

7.1 Conclusions

RGS has completed a geochemistry assessment of overburden, interburden and coal reject materials at the Project. The main findings of the geochemistry assessment are:

- Most overburden and interburden materials are classified as NAF, have excess ANC and have low oxidisable sulfur content. These materials have a very low risk of acid generation and a high factor of safety with respect to potential for AMD.
- PAF material occurrence is limited to BY-WN interburden, WN interburden (roof, floor and parting) and coarse rejects derived from processing the WN seam (and possibly the ED seam).
- While fine reject materials are generally classified as NAF, those associated with the WN seam can have elevated oxidisable sulfur content, which has the potential to oxidise under unsaturated conditions and produce elevated sulfate concentrations in contact water.
- PAF interburden and coarse reject materials are reactive when exposed to air and moisture and have a relatively short lag period preceding acid generation (up to a week). PAF interburden materials are recognisable by lithology, which can be predicted prior to mining and an appropriate destination planned for these materials.
- Initial and ongoing surface runoff and seepage from NAF overburden, interburden and coal reject
 material is expected to be pH neutral to slightly alkaline and, have a low to moderate level of salinity.
 Surface runoff and seepage from PAF interburden and coal reject material has the potential to become
 progressively more acidic and saline, if left unmanaged and exposed to oxidising conditions.
- The concentration of trace metals/metalloids in solid overburden, interburden and coal reject materials is expected to be low compared to applied guideline criteria for soils and median crustal abundance in un-mineralised soils and is not expected to present any environmental issues associated with revegetation and rehabilitation.
- Metals/metalloids are sparingly soluble at the neutral to slightly alkaline pH of the leachate expected from NAF overburden, interburden and coal reject materials. Dissolved metal/metalloid concentrations in surface runoff and seepage from bulk NAF waste rock materials are expected to be low and unlikely to pose a significant risk to the quality of surface and groundwater resources at relevant storage facilities.
- PAF interburden and coarse reject materials have the potential to become acidic and mobilise some metals/metalloids over time if not managed appropriately. If left unmanaged, this characteristic could pose a risk to the quality of surface and groundwater resources at relevant storage facilities.
- NAF overburden and interburden materials should be amenable to revegetation as part of rehabilitation activities, although gypsum and fertiliser addition may need to be considered for sodic materials to limit dispersion and erosion and to provide a reasonable growth medium if these materials are used for revegetation and rehabilitation.
- At the adjacent Bengalla Mine, no selective handling of moderately sodic overburden and interburden is applied and these materials are successfully managed by placement of a revegetated subsoil/topsoil layer over final landforms as part of rehabilitation.

7.2 Recommendations

As a result of the geochemistry assessment work completed on at the Project, several recommendations are provided to minimise the risk of any significant environmental harm to the immediate and downstream environment.

• PAF interburden and coal reject materials should continue to be managed at the Project in accordance with Section 3.2.3 of the current MOP (MACH Energy, 2020).

- Selective handling and encapsulation of PAF interburden and coal reject materials at an emplacement or preferably as part of an open pit backfilling within one week of placement should be considered as this process has been successfully applied at the adjacent Bengalla Mine over many years.
- If swift encapsulation of PAF materials is not practical at the Project, some consideration of material management practices such as traffic compaction and dosing with agricultural lime (fine limestone) should be considered to extend the lag period preceding acid generation prior to encapsulation.
- PAF materials should not be placed at overburden emplacement areas or pit backfill areas that overlay or have potential connectivity with alluvial soils and/or creeks, to avoid any potential water quality impacts.
- Additional testing (e.g. pH, EC, exchangeable cations, nutrients, PSD and EA tests) and rehabilitation field trials should be considered when bulk materials become available. Such tests would help to validate the most appropriate management option for rehabilitation of these materials in final landforms progressively and at mine closure.
- Operational sampling and geochemical testing of mining waste material and water quality monitoring should be used throughout the mine life to verify the veracity and performance of the adopted mining waste management strategy.
- Surface water and seepage from the mining and mining waste storage areas should be monitored to ensure that key water quality parameters remain within appropriate licence criteria. Water quality monitoring parameters should be integrated into the current water quality monitoring program and include pH, EC and total suspended solids (TSS) on a quarterly basis and the suite of water quality analyses described in **Tables B8** and **B9** (**Attachment B**) of this report opportunistically and at least on an annual basis.

8 References

ACARP (2008). Development of ARD Assessment for Coal Process Wastes. ACARP Project C15034. Report prepared by Environmental Geochemistry International and Levay and Co. Environmental Services, ACeSSS University of South Australia, July 2008.

AMIRA (1995). Mine Waste Management: *Project P387 Prediction and Identification of Acid Forming Mine Waste*. Australian Minerals Industry Research Association, Report prepared by EGi Pty Ltd, August 1995.

AMIRA (2002). *ARD Test Handbook: Project 387A Prediction and Kinetic Control of Acid Mine Drainage*. Australian Minerals Industry Research Association, Ian Wark Research Institute and Environmental Geochemistry International Pty Ltd, May 2002.

ANZECC and ARMCANZ (2000). *Australian and New Zealand Guidelines for Fresh and Marine Water Quality*. Australian and New Zealand Environment Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, Canberra, ACT (2000). Livestock drinking water (low risk trigger levels).

ATC Williams (2017). Mount Pleasant Operations. Fines Emplacement Plan. Tailings Dam. Report MP001-2000-CIV-PLN-003-D prepared for MACH Energy Australia. May.

Australian Standard AS 1289.C8.1 (1980). *Methods of Testing Soils for Engineering Purposes – Soil Classification Tests – Dispersion – Determination of Emerson Class Number of a Soil*. Standards Australia

Australian Standard AS 4969.7 (2008). *Analysis of acid sulfate soil – Dried samples – Methods of test. Method 7: Determination of chromium reducible sulfur (Scr)*. Standards Australia, June 2008.

Bennett, J.W., Comarmond, M.J. and Jeffery, J.J. (2000). *Comparison of Oxidation Rates of Sulfidic Mine Wastes Measured in the Laboratory and Field*. Australian Centre for Mining Environmental Research, Brisbane.

BHP (2017). Mt Arthur Coal. Annual Environmental Management Review FY17. 20 September.

BMC (2009). Acid Rock Drainage and Mineral Waste Management Plan. Bengalla Mining Company Pty Limited. March 2007, Reviewed December.

Bowen, H.J.M. (1979). *Environmental Chemistry of the Elements* (pages 36-37), Academic Press. 1979, New York.

Coal & Allied (2012). Mount Pleasant Project: Mineral Waste Management Plan. Report No. 61201-000-PL-HE-0020. 26 March.

COA (2016). *Leading Practice Sustainable Development Program for the Mining Industry. Managing Acid and Metalliferous Drainage.* September 2016. Commonwealth of Australia, Canberra ACT.

Dames and Moore (2000). Mount Arthur North Coal Project Geochemical Characterisation of Overburden and Reject Coal. April, 2000.

DMR (1995). Department of Mineral Resources. Mineral Resources Development Laboratory. Characterisation of Overburden and Interburden Materials. Report R951201A prepared for Coal and Allied Operations Pty Ltd Mount Pleasant Project. Coal Authorisation Area 459. 12 January.

Eastwood B. and Carras J. (1998). *Management Plan for Spontaneous Combustion and Acid Mine Drainage at Bengalla*. Internal Management Report, Second Draft, October.

EGi (1998). Mt Pleasant Project. Coal Reject Geochemistry. *Geochemical Characterisation and Leaching Behaviour of Coal Reject*. Draft Report No. 1650/378 prepared for Rio Tinto Coal (NSW) Pty Limited. October.

GEM (2012). Mt Arthur Coal Open Cut Modification: Geochemistry Assessment of Overburden and Interburden. Prepared by Geo-Environmental Management Pty Ltd for Hunter Valley Energy Coal Pty Ltd. December.

Hansen Bailey (2018). Bengalla Mine Annual Review 2017. Report prepared for Bengalla Mining Company Pty Limited. March.

HLA Envirosciences (1992). *Environmental Impact Statement for Bengalla Coal Mine*, Document F156, Volume 4, Appendix 15 Chemical Characteristics of Overburden.

Hazelton, P. and Murphy, B. (2007). *Interpreting soil test results: What do all the numbers mean*?. CSIRO Publishing.

INAP (2009). *Global Acid Rock Drainage Guide (GARD Guide)*. Document prepared by Golder Associates on behalf of the International Network on Acid Prevention (INAP). June 2009 (<u>http://www.inap.com.au/</u>).

Isbell, R.F. (2002). The Australian Soil Classification (revised edition). CSIRO Publishing. Victoria.

MACH Energy (2017b). Mount Pleasant Operation. MOD 3 Environmental Assessment.

MACH Energy (2018a). *Mount Pleasant Operation.* 2017 Annual Review (Annual Rehabilitation Report). 28 March.

MACH Energy (2020). *Mount Pleasant Operation. Mining Operations Plan and Rehabilitation Management Plan (1 July 2020 – 30 June 2021).* Document MP001-0000-ENV-PLN-0010 prepared by MACH Energy Australia Pty Ltd. 29 July.

Matrix Plus (2005). *Bengalla Acid Mine Drainage Management Plan*. Report prepared for Bengalla Mining Company Pty Ltd. Review No. RA20030110, March.

Northcote, K.H. and Skene, J.K.M. (1972). *Australian Soils with Saline and Sodic Properties*. CSIRO Australia, Soil Publication No. 27, Canberra.

RGS (2010). Bengalla Development Consent Modification. Geochemical Assessment of Overburden. Report prepared by RGS Environmental Pty Ltd for Hansen Bailey Environmental Consultants, July.

RGS (2013). Continuation of Bengalla Mine. Geochemical Impact Assessment. Report prepared by RGS Environmental Pty Ltd for Hansen Bailey Environmental Consultants. 21 June.

RGS (2017). Dartbrook Open Cut Coal Project: Review of Existing Geochemical and Geological Data for a Pre-Feasibility Study and Design of a Sampling and Geochemical Characterisation Program as part of a Future Development Consent Application. Report prepared by RGS Environmental Pty Ltd. 11 August (Confidential).

RGS (2018). Bulga Coal Complex: PAF Desktop Study. Report prepared by RGS Environmental Pty Ltd for Bulga Coal Management Pty Limited. 25 August (Confidential).

Rio Tinto (2011). Mount Pleasant Project Feasibility Study Report. Report No. 61201-7100-RE-GE-1001-B. November.

Sniffin, M. and Beckett, J. (1995). *Sydney Basin – Hunter Coalfield*. In: Ward CR, Harrington H.J., Mallett CW and Beeston J.W. (eds). Geology of Australian Coal Basins (pages 177-195). Geological Society of Australia Incorporated, Coal Group Special Publication No. 1. Geological Society of Australia, Sydney.

Stewart, W., Miller, S., Thomas, J.E., and Smart R. (2003). Evaluation of the Effects of Organic Matter on the Net Acid Generation (NAG) Test. p. 211-222. In: Proceedings of the Sixth International Conference on Acid Rock drainage (Cairns, 12-18th July 2003).

Attachment A Geochemical assessment of mining waste materials

GEOCHEMICAL ASSESSMENT OF MINING WASTE MATERIALS

ACID GENERATION AND PREDICTION

Acid generation is caused by the exposure of sulfide minerals, most commonly pyrite (FeS₂), to atmospheric oxygen and water. Sulfur (S) assay results are used to calculate the maximum acid that could be generated by the sample by either directly determining the pyritic S content or assuming that all sulfur not present as sulfate occurs as pyrite. Pyrite reacts under oxidising conditions to generate acid according to the following overall reaction:

FeS₂ + 15/4 O₂ + 7/2 H₂O ---> Fe(OH)₃ + 2 H₂SO₄

According to this reaction, the maximum potential acidity (MPA) of a sample containing 1 per cent (%) total sulfur content (%S) as pyrite would be 30.6 kilograms sulfuric acid per tonne (kg H_2SO_4/t). The chemical components of the acid generation process consist of the above sulfide oxidation reaction and acid neutralization, which is mainly provided by inherent carbonates and to a lesser extent silicate materials. The amount and rate of acid generation is determined by the interaction and overall balance of the acid generation and neutralisation components.

Net Acid Producing Potential

The net acid producing potential (NAPP) is used as an indicator of materials that may be of concern with respect to acid generation. The NAPP calculation represents the balance between the maximum potential acidity (MPA) of a sample, which is derived from the sulfide sulfur content, and the acid neutralising capacity (ANC) of the material, which is determined experimentally. By convention, the NAPP result is expressed in units of kg H₂SO₄/t sample. If the capacity of the solids to neutralise acid (ANC) exceeds their capacity to generate acid (MPA), then the NAPP of the material is negative. Conversely, if the MPA exceeds the ANC, the NAPP of the material is positive. A NAPP assessment involves a series of analytical tests that include:

Determination of pH and EC

pH and electrical conductivity (EC) measured on 1:5 weight/water (w/w) water extract. This gives an indication of the inherent acidity and salinity of the waste material when initially exposed in a waste emplacement area.

Total sulfur content and Maximum Potential Acidity

Total sulfur content is determined by the LECO high temperature combustion method. The total sulfur content is then used to calculate the MPA, which assumes that the entire sulfur content is present as reactive pyrite. Direct determination of the pyritic sulfur content can provide a more accurate estimate of the MPA.

Acid neutralising capacity

By addition of acid to a known weight of sample, then titration with Sodium hydroxide (NaOH) to determine the amount of residual acid. The ANC measures the capacity of a sample to react with and neutralise acid. The ANC can be further evaluated by slow acid titration to a set end-point in the Acid Buffering Characteristic Curve (ABCC) test through calculation of the amount of acid consumed and evaluation of the resultant titration curve.

Net Acid Generation

The Net Acid Generation (NAG) test involves the addition of hydrogen peroxide to a sample of mine rock or process residue to oxidise reactive sulfide, then measurement of pH and titration of any net acidity produced by the acid generation and neutralisation reactions occurring in the sample. A significant NAG result (i.e. final NAG_{pH} < 4.5) indicates that the sample is potentially acid forming (PAF) and the test provides a direct measure of the net amount of acid remaining in the sample after all acid generating and acid neutralising reactions have taken place. A NAG_{pH} > 4.5 indicates that the sample is non-acid forming (NAF). The NAG test can provide a direct assessment of the potential for a material to produce acid after a period of exposure and weathering and is used to refine the results of the theoretical NAPP predictions. The NAG test can be used as a standalone test but is recommended that this only be considered after site specific calibration work is carried out.

The standard NAG test is unsuitable for coal mining projects as the high organic content of some materials can cause erroneous results (Stewart et al., 2003; ACARP, 2008).

ASSESSMENT OF ELEMENT ENRICHMENT AND SOLUBILITY

In mineralised areas it is common to find a suite of enriched elements that have resulted from natural geological processes. Multi-element scans are carried out to identify any elements that are present in a material (or readily leachable from a material) at concentrations that may be of environmental concern with respect to surface water quality, revegetation and public health. The samples are generally analysed for the following elements:

- Major elements Aluminium (AI), Calcium (Ca), Iron (Fe), Potassium (K), Magnesium (Mg), Sodium (Na) and S.
- Minor elements Arsenic (As), Boron (B), Cadmium (Cd), Cobalt (Co), Chromium (Cr), Copper (Cu), Fluorine (F), Mercury (Hg), Manganese (Mn), Molybdenum (Mo), Nickle (Ni), Lead (Pb), Antimony (Sb), Selenium (Se) and Zinc (Zn).

The concentration of these elements in samples can be directly compared with relevant state or national environmental and health-based concentration guideline criteria to determine the level of significance. Water extracts are used to determine the immediate element solubilities under the existing sample pH conditions of the sample. The following tests are normally carried out:

Multi-element composition of solids.

Multi-element composition of solid samples determined using a combination of ICP-mass spectroscopy (ICP-MS), ICP-optical emission spectroscopy (ICP-OES), and atomic absorption spectrometry (AAS).

Multi-element composition of water extracts (1:5 sample:deionised water).

Multi-element composition of water extracts from solid samples determined using a combination of ICP-MS, ICP-OES, and AAS.

Under some conditions (e.g. low pH) the solubility and mobility of common environmentally important elements can increase significantly. If element mobility under initial pH conditions is deemed likely and/or subsequent low pH conditions may occur, kinetic leach column test work may be completed on representative samples.

KINETIC LEACH COLUMN TESTS

Kinetic leach column (KLC) tests can be used to provide information on the reaction kinetics of mine waste materials. The major objectives of kinetics tests are to:

- Provide time-dependent data on the kinetics and rate of acid generation and acid neutralising reactions under laboratory controlled (or onsite conditions);
- Investigate metal release and drainage/seepage quality; and
- Assess treatment options such as addition of alkaline materials.

The KLC tests simulate the weathering process that leads to acid and base generation and reaction under laboratory controlled or site conditions. The kinetic tests allow an assessment of the acid forming characteristics and indicate the rate of acid generation, over what period it will occur, and what management controls may be required.

In KLC tests, water is added to a sample and the mixture allowed to leach products and by-products of acid producing and consuming reactions. Samples of leachate are then collected and analysed. Intermittent water application is applied to simulate rainfall and heat lamps are used to simulate sunshine. These tests provide real-time information and may have to continue for months or years. Monitoring includes trends in pH, sulfate, acidity or alkalinity, and metals, for example. The pH of the collected leachate simulates the acid drainage process, acidity or alkalinity levels indicate the rate of acid production and acid neutralisation, and sulfate production can be related to the rate of sulfide oxidation. Metal concentration data provides an assessment of metal solubility and leaching behaviour.

Figure A1 shows the kinetic leach column set up typically used by RGS Environmental Pty Ltd (RGS) adapted from *AMIRA, 2002*. The columns are placed under heat lamps to allow the sample to dry between water additions to ensure adequate oxygen ingress into the sample material.

Approximately 2 kilograms (kg) of sample is accurately weighed and used in the leach columns and depending on the physical nature of the material and particle size can be used on an as-received basis (i.e. no crushing as with process residues) or crushed to nominal 5-10 millimetres (mm) particle size (as with waste rock). The sample in the column is initially leached with deionised water at a rate of about 400 millilitres per kilogram (mL/kg) of sample and the initial leachate from the columns collected and analysed. Subsequent column leaching is carried out at a rate of about 400 ml/kg per month and again collected and analysed. The leaching rate can be varied to better simulate expected site conditions or satisfy test program data requirements. The column must be exposed to drying conditions in between watering events. The residual water content and air void content in the column can be determined by comparing the wet and dry column weights. A heat lamp is generally used above the sample during daylight hours to maintain the leach column surface temperature at about 30° C.

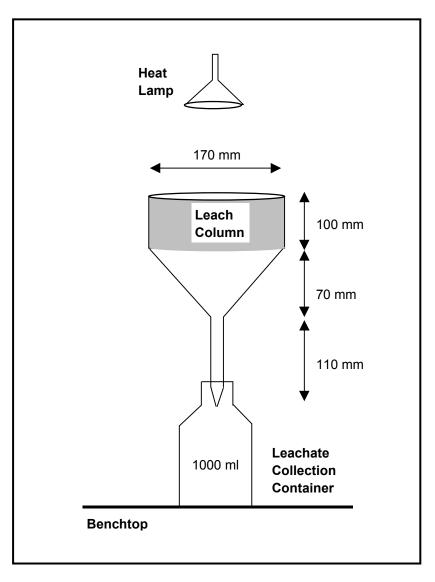


Figure A1: Kinetic leach column setup

Attachment B Static geochemical results

Sample	Drill Hole				Bounding	From	То	Interval	1	EC ¹	Total S*	Scr	MPA ²	ANC ²	NAPP ²	ANC:	3
No.	ID	Sample ID	Sample Lithology	Stratigraphy	coal seams		(m)		pH ¹	(µS/cm)	(%)	(%)	(kgH₂SO₄/t	t)	MPA Ratio	Sample Classification ³
								Overburde	n								• •
1	2103LA	AMD001	Weathered Claystone	Overburden	OVER	1.00	7.00	6.00	8.6	478	0.03	-	0.9	44.7	-43.8	48.7	Non-Acid Forming (Barren)
2	2103LA	AMD002	Weathered Sandstone	Overburden	OVER	7.00	12.00	5.00	9.0	255	0.02	-	0.6	52.8	-52.2	86.2	Non-Acid Forming (Barren)
3	2123L	AMD013	Weathered Claystone	Overburden	OVER	0.00	8.00	8.00	8.7	484	0.02	-	0.6	13.9	-13.3	22.7	Non-Acid Forming (Barren)
4	2123L	AMD014	Weathered Sandstone	Overburden	OVER	8.00	14.00	6.00	8.8	430	0.02	-	0.6	49.2	-48.6	80.3	Non-Acid Forming (Barren)
5	2123L	AMD015	Weathered Siltstone	Overburden	OVER	14.00	17.70	3.70	8.3	444	0.05	-	1.5	44.5	-43.0	29.1	Non-Acid Forming (Barren)
6	2133L	AMD026	Weathered Claystone	Overburden	OVER	0.00	4.00	4.00	8.7	447	0.02	-	0.6	29.8	-29.2	48.7	Non-Acid Forming (Barren)
7	2133L	AMD027	Weathered Claystone	Overburden	OVER	4.00	10.00	6.00	8.4	366	0.02	-	0.6	20.0	-19.4	32.7	Non-Acid Forming (Barren)
8	2133L	AMD028	Weathered Carbonaceous Siltstone	Overburden	OVER	10.00	15.00	5.00	8.6	321	0.02	-	0.6	48.6	-48.0	79.3	Non-Acid Forming (Barren)
9	2133L	AMD029	Weathered Siltstone	Overburden	OVER	15.00	21.00	6.00	8.9	283	0.02	-	0.6	48.3	-47.7	78.9	Non-Acid Forming (Barren)
10	2133L	AMD030	Weathered Siltstone	Overburden	OVER	21.00	29.00	8.00	8.9	255	0.02	-	0.6	61.6	-61.0	100.6	Non-Acid Forming (Barren)
11	2167L	AMD063	Clay	Overburden	OVER	0.00	2.00	2.00	8.4	634	0.03	-	0.9	50.4	-49.5	54.9	Non-Acid Forming (Barren)
								Interburder	n								
12	2133L	AMD035	Sandstone/Siltstone	Birnamwood	LP - VA	28.75	29.44	0.69	8.4	174	0.01	-	0.2	20.4	-20.2	133.2	Non-Acid Forming (Barren)
13	2133L	AMD036	Claystone	Birnamwood	LP - VA	29.67	30.10	0.43	8.1	155	0.04	-	1.2	12.5	-11.3	10.2	Non-Acid Forming (Barren)
14	2167L	AMD064	Carbonaceous Claystone	Birnamwood	LP - VA	2.00	8.00	6.00	8.8	567	0.02	-	0.6	80.5	-79.9	131.4	Non-Acid Forming (Barren)
15	2167L	AMD065	Claystone	Birnamwood	LP - VA	8.00	15.00	7.00	7.9	590	0.03	-	0.9	37.6	-36.7	40.9	Non-Acid Forming (Barren)
16	2167L	AMD068	Sandstone	Birnamwood	LP - VA	15.97	16.21	0.24	8.9	247	0.05	-	1.5	171.0	-169.5	111.7	Non-Acid Forming (Barren)
17	2167L	AMD069	Claystone	Birnamwood	LP - VA	18.11	18.20	0.09	7.9	164	0.03	-	0.9	19.2	-18.3	20.9	Non-Acid Forming (Barren)
18	2103LA	AMD003	Claystone/Carbonaceous Claystone	Birnamwood	VA - BR	15.01	15.24	0.23	7.2	349	0.20	0.07	2.2	6.5	-4.3	2.9	Non-Acid Forming (Barren)
19	2123L	AMD016	Siltstone/Claystone	Birnamwood	VA - BR	17.70	17.97	0.27	7.7	337	0.04	-	1.2	105.0	-103.8	85.7	Non-Acid Forming (Barren)
20	2133L	AMD049	Siltstone	Birnamwood	VA - BR	69.77	70.70	0.93	8.6	148	0.04	-	1.2	21.7	-20.5	17.7	Non-Acid Forming (Barren)
21	2133L	AMD050	Sandstone	Birnamwood	VA - BR	70.70	81.50	10.80	9.0	322	0.03	-	0.9	51.6	-50.7	56.2	Non-Acid Forming (Barren)
22	2133L	AMD052	Claystone	Birnamwood	VA - BR	82.12	82.52	0.40	7.9	138	0.08	-	2.5	8.6	-6.2	3.5	Non-Acid Forming (Barren)
23	2103LA	AMD004	Sandstone	Bulga	BY - WN	25.87	28.02	2.15	8.3	597	0.10	-	3.1	48.4	-45.3	15.8	Non-Acid Forming (Barren)
24	2103LA	AMD005	Sandstone	Bulga	BY - WN	28.61	29.25	0.64	4.3	3490	2.10	0.90	27.4	0.3	27.2	0.01	Potentially Acid Forming
25	2103LA	AMD006	Sandstone/Siltstone	Bulga	BY - WN	29.33	29.46	0.13	5.8	2630	1.62	0.88	26.9	4.7	22.2	0.17	Potentially Acid Forming
26	2103LA	AMD007	Sandstone	Bulga	BY - WN	31.19	31.39	0.20	3.9	2230	3.27	1.71	52.4	0.3	52.1	0.005	Potentially Acid Forming
27	2123L	AMD017	Sandstone	Bulga	BY - WN	30.46	31.15	0.69	7.6	156	0.02	-	0.6	6.9	-6.3	11.3	Non-Acid Forming (Barren)
28	2123L	AMD018	Sandstone	Bulga	BY - WN	33.77	34.95	1.18	4.1	3970	3.13	1.50	45.9	0.3	45.7	0.01	Potentially Acid Forming
29	2123L	AMD019	Sandstone	Bulga	BY - WN	35.17	35.47	0.30	3.9	2760	2.10	1.07	32.8	0.3	32.5	0.01	Potentially Acid Forming
30	2123L	AMD020	Sandstone	Bulga	BY - WN	35.64	36.52	0.88	4.5	3630	2.43	1.17	35.8	0.3	35.6	0.01	Potentially Acid Forming
31	2133L	AMD053	Conglomerate	Bulga	BY - WN	93.99	94.06	0.07	6.1	484	0.07	-	2.1	2.5	-0.4	1.2	Non-Acid Forming (Barren)
32	2133L	AMD054	Conglomerate	Bulga	BY - WN	98.20	100.50	2.30	7.8	2810	0.84	0.36	11.0	43.2	-32.2	3.9	Non-Acid Forming
33	2133L	AMD056	Sandstone/Siltstone	Bulga	BY - WN	100.50	100.84	0.34	4.7	2060	1.64	0.87	26.5	0.3	26.3	0.01	Potentially Acid Forming
34	2167L	AMD084	Sandstone	Bulga	BY - WN	61.48	62.87	1.39	8.2	94	0.02	-	0.6	10.0	-9.4	16.3	Non-Acid Forming (Barren)
35	2167L	AMD085	Sandstone	Bulga	BY - WN	62.87	68.00	5.13	8.5	663	0.14	0.10	3.1	68.8	-65.7	22.5	Non-Acid Forming (Barren)
36	2167L	AMD086	Sandstone	Bulga	BY - WN	68.92	69.07	0.15	5.9	2350	1.49	0.81	24.7	6.0	18.7	0.2	Potentially Acid Forming
37	2167L	AMD087	Sandstone	Bulga	BY - WN	69.20	69.30	0.10	4.5	2480	3.18	1.57	48.1	5.4	42.7	0.1	Potentially Acid Forming
38	2103LA	AMD008	Claystone	Foybrook	WN - ED	37.10	37.48	0.38	9.0	251	0.06	-	1.8	289.0	-287.2	157.3	Non-Acid Forming (Barren)
39	2103LA	AMD009	Claystone	Foybrook	WN - ED	38.10	38.36	0.26	8.0	228	0.05	-	1.5	20.8	-19.3	13.6	Non-Acid Forming (Barren)
40	2133L	AMD061	Claystone	Foybrook	WN - ED	113.86	114.51	0.65	8.5	405	0.22	0.13	3.9	49.2	-45.3	12.6	Non-Acid Forming
41	2167L	AMD089	Sandstone	Foybrook	WN - ED	76.29	76.45	0.16	7.4	331	0.11	0.05	1.5	16.1	-14.6	11.0	Non-Acid Forming (Barren)
42	2167L	AMD090	Sandstone	Foybrook	WN - ED	78.44	79.04	0.60	8.6	294	0.05	-	1.5	13.5	-12.0	8.8	Non-Acid Forming (Barren)

Table B1: Acid Base Account Results for Overburden and Interburden

					Bounding	From	Та	Interval		F 0 ¹	Total	Car		41102		ANC:		
Sample No.	Drill Hole ID	Sample ID	Sample Lithology	Stratigraphy	Bounding coal	From	То	Interval	pH ¹	EC ¹	S*	Scr	MPA ²	ANC ²	NAPP ²	MPA	Sample Classification ³	
					seams		(m)			(µS/cm)	(%)	(%)		(kgH₂SO₄/I	t)	Ratio		
43	2167L	AMD091	Stony Coal/Carbonaceous Claystone	Foybrook	WN - ED	79.88	80.00	0.12	7.9	109	0.12	0.02	0.7	4.5	-3.8	6.4	Non-Acid Forming (Barren)	
44	2167L	AMD096	Coal	Foybrook	WN - ED	76.04	76.29	0.25	7.1	170	0.70	0.06	1.7	12.0	-10.3	6.9	Non-Acid Forming (Barren)	
45	2103LA	AMD010	Claystone	Foybrook	ED - CL	42.90	43.00	0.10	6.9	751	0.24	0.15	4.5	5.4	-0.9	1.2	Uncertain	
46	2103LA	AMD011	Sandstone	Foybrook	ED - CL	43.35	43.81	0.46	7.7	204	0.04	-	1.2	4.9	-3.7	4.0	Non-Acid Forming (Barren)	
47	2103LA	AMD012	Siltstone/Claystone	Foybrook	ED - CL	47.28	48.18	0.90	8.8	208	0.02	-	0.6	15.3	-14.7	25.0	Non-Acid Forming (Barren)	
48	2123L	AMD023	Sandstone	Foybrook	ED - CL	48.61	48.68	0.07	8.7	317	0.06	-	1.8	108.0	-106.2	58.8	Non-Acid Forming (Barren)	
49	2123L	AMD024	Claystone	Foybrook	ED - CL	51.72	51.99	0.27	8.7	330	0.04	-	1.2	19.4	-18.2	15.8	Non-Acid Forming (Barren)	
50	2123L	AMD025	Sandstone/Siltstone	Foybrook	ED - CL	52.36	52.79	0.43	8.9	237	0.04	-	1.2	308.0	-306.8	251.4	Non-Acid Forming (Barren)	
51	2133L	AMD062	Sandstone	Foybrook	ED - CL	118.92	120.14	1.22	7.1	487	0.29	-	8.9	21.7	-12.8	2.4	Non-Acid Forming	
52	2167L	AMD092	Claystone	Foybrook	ED - CL	84.19	84.37	0.18	6.8	506	0.51	0.39	11.8	7.4	4.4	0.6	Uncertain	
53	2167L	AMD093	Tuff	Foybrook	ED - CL	84.37	84.85	0.48	8.0	184	0.12	0.07	2.2	5.9	-3.7	2.6	Non-Acid Forming (Barren)	
54	2167L	AMD094	Sandstone	Foybrook	ED - CL	85.07	85.28	0.21	8.4	133	0.05	-	1.5	23.2	-21.7	15.2	Non-Acid Forming (Barren)	
55	2167L	AMD095	Sandstone	Foybrook	ED - CL	85.80	90.00	4.20	9.0	305	0.03	-	0.9	80.8	-79.9	87.9	Non-Acid Forming (Barren)	
							Roof,	, Floor and	Parting	ļ								
56	2133L	AMD037	Claystone	Vaux	VA	39.33	39.74	0.41	8.1	174	0.03	-	0.9	22.6	-21.7	24.6	Non-Acid Forming (Barren)	
57	2133L	AMD038	Claystone	Vaux	VA	40.18	40.84	0.66	7.7	206	0.14	0.08	2.4	12.4	-10.0	5.3	Non-Acid Forming (Barren)	
58	2133L	AMD039	Siltstone	Vaux	VA	42.00	48.00	6.00	8.6	279	0.03	-	0.9	79.0	-78.1	86.0	Non-Acid Forming (Barren)	
59	2133L	AMD040	Siltstone	Vaux	VA	48.00	51.50	3.50	8.8	295	0.02	-	0.6	69.5	-68.9	113.5	Non-Acid Forming (Barren)	
60	2133L	AMD042	Sandstone	Vaux	VA	51.97	52.32	0.35	8.4	110	0.05	-	1.5	15.2	-13.7	9.9	Non-Acid Forming (Barren)	
61	2133L	AMD043	Sandstone/Siltstone	Vaux	VA	54.69	55.00	0.31	8.5	106	0.03	-	0.9	12.8	-11.9	13.9	Non-Acid Forming (Barren)	
62	2133L	AMD044	Siltstone	Vaux	VA	55.00	61.50	6.50	9.0	302	0.02	-	0.6	86.1	-85.5	140.6	Non-Acid Forming (Barren)	
63	2133L	AMD046	Claystone	Vaux	VA	62.29	62.37	0.08	8.6	87	0.02	-	0.6	13.4	-12.8	21.9	Non-Acid Forming (Barren)	
64	2133L	AMD047	Siderite/Sandstone	Vaux	VA	63.11	63.24	0.13	8.4	92	0.01	-	0.2	10.8	-10.6	70.5	Non-Acid Forming (Barren)	
65	2133L	AMD048	Claystone	Vaux	VA	67.72	68.29	0.57	8.4	134	0.03	-	0.9	17.2	-16.3	18.7	Non-Acid Forming (Barren)	
66	2167L	AMD070	Sandstone	Vaux	VA	19.35	19.40	0.05	7.9	121	0.03	-	0.9	6.2	-5.3	6.7	Non-Acid Forming (Barren)	
67	2167L	AMD071	Claystone	Vaux	VA	19.79	20.00	0.21	7.7	171	0.10	-	3.1	18.1	-15.0	5.9	Non-Acid Forming (Barren)	
68	2167L	AMD072	Sandstone	Vaux	VA	23.65	23.96	0.31	8.8	205	0.02	-	0.6	33.2	-32.6	54.2	Non-Acid Forming (Barren)	
69	2167L	AMD073	Claystone	Vaux	VA	25.19	25.35	0.16	8.2	124	0.03	-	0.9	23.9	-23.0	26.0	Non-Acid Forming (Barren)	
70	2167L	AMD074	Claystone/Carbonaceous Claystone	Vaux	VA	25.88	25.96	0.08	7.8	144	0.04	-	1.2	9.1	-7.9	7.4	Non-Acid Forming (Barren)	
71	2167L	AMD075	Sandstone	Vaux	VA	26.65	26.83	0.18	8.4	218	0.04	-	1.2	28.2	-27.0	23.0	Non-Acid Forming (Barren)	
72	2167L	AMD076	Claystone	Vaux	VA	27.48	27.68	0.20	7.6	184	0.06	-	1.8	12.0	-10.2	6.5	Non-Acid Forming (Barren)	
73	2167L	AMD077	Claystone	Vaux	VA	27.94	28.06	0.12	7.6	123	0.14	0.06	2.0	8.1	-6.1	4.1	Non-Acid Forming (Barren)	
74	2167L	AMD079	Claystone/Carbonaceous Claystone	Broonie	BR	30.22	30.38	0.16	8.0	173	0.11	0.06	1.9	20.9	-19.0	10.8	Non-Acid Forming (Barren)	
75	2167L	AMD080	Sandstone/Siltstone	Broonie	BR	30.81	31.08	0.27	8.5	236	0.06	-	1.8	11.2	-9.4	6.1	Non-Acid Forming (Barren)	
76	2167L	AMD081	Sandstone	Broonie	BR	34.00	40.00	6.00	8.7	346	0.03	-	0.9	93.4	-92.5	101.7	Non-Acid Forming (Barren)	
77	2167L	AMD082	Sandstone	Broonie	BR	40.00	47.00	7.00	8.9	350	0.03	-	0.9	78.1	-77.2	85.0	Non-Acid Forming (Barren)	
78	2167L	AMD083	Claystone	Broonie	BR	48.95	49.09	0.14	7.5	167	0.14	0.11	3.4	11.5	-8.1	3.4	Non-Acid Forming	
79	2133L	AMD057	Claystone	Wynn	WN	103.24	103.38	0.14	3.4	2540	3.34	1.58	48.4	0.3	48.1	0.01	Potentially Acid Forming	
80	2133L	AMD058	Sandstone	Wynn	WN	103.93	104.29	0.36	6.9	2130	3.59	2.57	78.7	24.5	54.2	0.3	Potentially Acid Forming	
81	2133L	AMD059	Sandstone/Siltstone	Wynn	WN	106.14	107.50	1.36	8.7	482	0.63	0.49	15.1	102.0	-86.9	6.8	Non-Acid Forming	
82	2133L	AMD060	Siltstone	Wynn	WN	109.56	109.78	0.22	8.6	352	0.20	0.14	4.3	14.2	-9.9	3.3	Non-Acid Forming	
83	2167L	AMD088	Sandstone	Wynn (floor)	WN	74.72	75.00	0.28	5.5	501	0.52	0.25	15.9	2.3	13.6	0.1	Potentially Acid Forming	

Table B1: Acid Base Account Results for Overburden and Interburden

1. Current pH, EC provided for 1:5 sample:water slurry.

2. Scr = Chromium Reducible Sulfur; MPA = Maximum Potential Acidity; ANC = Acid Neutralising Capacity; and NAPP = Net Acid Producing Potential.

3. Sample classification criteria detail provided in report text.

Sample	Sample ID	Sample Lithology	Sample Type	Coal Seam	pH ¹	EC ¹	Total Sulfur	Scr	MPA ²	ANC ²	NAPP ²	ANC: MPA	Sample Classification ³		
No.	Cumpic 12		eample type	Source		(µS/cm)	(%	6)	(kg H₂SO₄/	t)	Ratio	oumple of assincation		
	•					Coarse	Reject								
1 REJ001 ED Reject 1 of 2 Coarse Reject ED 7.40 316 1.90 1.410 43.2 27.2 16.0 0.6 Potentially Acid Forming															
2	REJ002	ED Reject 2 of 2	Coarse Reject	ED	7.10	323	1.17	0.762	23.3	19.0	4.3	0.8	Uncertain		
3	REJ004	WN1 Reject 1 of 2	Coarse Reject	WN	6.40	1,200	1.99	1.180	36.1	23.4	12.7	0.6	Potentially Acid Forming		
4	REJ005	WN1 Reject 2 of 2	Coarse Reject	WN	5.60	1,590	2.80	2.140	65.5	15.2	50.4	0.2	Potentially Acid Forming		
5	REJ009	VA1 Reject	Coarse Reject	VX	5.90	326	0.24	0.109	3.3	16.0	-12.6	4.8	Non-Acid Forming		
6	REJ012	BRBY Reject	Coarse Reject	BRBY	7.80	98	0.24	0.093	2.8	33.2	.2 -30.3 11.6		Non-Acid Forming (Barren)		
						Fine R	eject								
7	REJ003	ED Tailing	Fine Reject	ED	8.40	125	0.60	0.352	10.8	17.0	-6.2	1.6	Non-Acid Forming		
8	REJ006	WN1 Tailing	Fine Reject	WN	8.60	141	1.58	1.200	36.8	44.1	-7.3	1.2	Non-Acid Forming		
9	REJ007	PF2 Tailing 1 of 2	Fine Reject	PF	7.70	186	0.29	0.130	4.0	16.2	-12.2	4.1	Non-Acid Forming		
10	REJ008	PF2 Tailing 2 of 2	Fine Reject	PF	7.60	185	0.29	0.129	4.0	16.7	-12.7	4.2	Non-Acid Forming		
11	REJ010	VA1 Tailing	Fine Reject	VX	8.60	149	0.77 0.471 14.4		14.4	19.7	-5.3	1.4	Non-Acid Forming		
12	REJ011	BRBY Tailing	Fine Reject	BRBY	8.30	141	0.42	0.42 0.165 5.1 20.4 -15.3 4.0		4.0	Non-Acid Forming				

Table B2: Acid Base Account Results for Coal Reject

1. Current pH, EC provided for 1:5 sample:water slurry.

2. Scr = Chromium Reducible Sulfur; MPA = Maximum Potential Acidity; ANC = Acid Neutralising Capacity; and NAPP = Net Acid Producing Potential.

3. Sample classification criteria detail provided in report text.

		Composite Sample Number →	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10
		ALS Laboratory ID →	-	-		-			-			
	L	Sample Description →	EB1905293029	EB1905293030	EB1905293031	EB1905293032	EB1905293033	EB1905293034	EB1905293035	EB1905293036	EB1905293037	EB1905293038
	Limit of	NEPC ¹ Health-Based	Overburden	LP to VA seam	VA to DD coom	DV to WN coom	BY to WN seam	WN to ED	ED to CL	Within VA seam	Within BR	Within WN
Parameters	Reporting	Investigation Level (HILs)-C	Overbuiden	LF to VA seam	VA IU DR Sealli	DT to Win Seam	DT to Win Seam	seam	seams	WILLIN VA Seall	seam	seam
Major Elements	Reporting	Investigation Level (HILS)-C		ļ		All units mg/					ļ	
Aluminium (Al)	50	-	5,100	6,880	4,710	7,840	6,970	5,530	7,000	4,800	5,120	4,930
Calcium (Ca)	50	-	10.200	5,240	7,250	16,100	9,270	4,930	8.880	5,000	1,570	12,900
Iron (Fe)	50	-	18,100	28,000	24,900	29,800	34,500	19,200	30,900	21,300	12,600	32,600
Potassium (K)	50	-	1,380	1,600	1,680	1,680	1,620	1,610	1,550	1,450	1,570	1,250
	50	-	4,640	2,960	3,300	7,470	6,200	2,930	4,660	3,450	2,290	7,110
Magnesium (Mg)	50		380	470	270	630	610	2,930 590	530	3,450	520	460
Sodium (Na) Minor Elements	50	-	380	470	270	All units mg/		590	530	390	520	460
			-	-		*	<u> </u>				-	
Arsenic (As)	5	300	7	7	15	7	6	6	8	6	<5	8
Boron (B)	50	20,000	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
Cadmium (Cd)	1	90	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cobalt (Co)	2	300	10	10	10	9	12	9	11	10	13	7
Chromium (Cr)	2	300 **	6	7	6	8	8	5	6	5	3	6
Copper (Cu)	5	17,000	16	23	17	21	30	25	23	25	43	26
Fluoride (F)	40	-	170	210	190	220	230	190	200	180	190	190
Manganese (Mn)	5	19,000	230	416	356	432	543	285	276	266	91	527
Molybdenum (Mo)	2	-	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Nickel (Ni)	2	1,200	15	13	12	11	14	11	20	12	15	11
Lead (Pb)	2	600	17	12	13	13	12	12	13	13	14	10
Antimony (Sb)	5	-	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Selenium (Se)	5	700	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Thorium (Th)	0.1	-	4.8	3.4	3.9	6.0	5.7	5.2	5.5	5.1	6.4	4.8
Uranium (U)	0.1	-	0.6	0.8	0.6	1.1	0.7	0.7	0.9	0.6	0.8	0.7
Zinc (Zn)	5	30,000	90	81	76	86	87	80	87	88	105	78
Exchangable Cations				1	All units meg/1	00g (except Exch	angable Sodium	(%))	1			
Exch. Calcium	0.2	-	5.4	3.7	8.6	-	-	<0.2	6.6	3.7	1.8	-
Exch. Magnesium	0.2	-	5.9	3.3	3.8	-	-	<0.2	5.9	5.3	3.4	-
Exch. Potassium	0.2	-	1.1	1.8	0.4	-	-	<0.2	1.4	1.2	1.5	-
Exch. Sodium	0.2	-	0.8	1.0	<0.1	-	-	<0.2	1.1	0.9	1.5	-
Cation Exchange Capacity	0.2	-	13.2	9.8	13.2	-	-	<0.2	15.1	11.1	8.1	-
Calcium:Magnesium Ratio	0.2	-	0.9	1.1	2.3	-	-	-	1.1	0.7	0.5	-
Magnesium:Potassium Ratio	0.2	-	5.5	1.9	10.6	-	-	-	4.2	4.4	2.2	-
Exchangable Sodium Percentage	0.2%	-	6.0	10.1	<0.8	-	-	-	7.5	8.0	18.1	-

Table B3: Multi-Element Composition for Overburden and Interburden

Notes: < indicates less than the laboratory limit of reporting. Shaded cells exceed applied guideline limit.

** Guideline level for Cr(VI) = 300 mg/kg. Guideline level for Cr(III) = 24% of total Cr.

1. NEPC (2013). National Environmental Protection Council (NEPC). National Environmental Protection (Assessment of Site Contamination) Measure (NEPM), Amendment of Schedule B1-B7 of 1999 version. Guideline on Investigation Levels for Soil and Groundwater. Health-Based Investigation Level - HIL(C); public open spaces - recreational use.

	-		1			1			1	1	
		Composite Sample Number \rightarrow	R1	R2	R3	R4	R5	R6	R7	R8	R9
		ALS Laboratory ID \rightarrow	EB2010009013	EB2010009014	EB2010009015	EB2010009016	EB2010009017	EB2010009018	EB2010009019	EB2010009020	EB2010009021
		Sample Description →	ED Coarse		WN1 Coarse	WN1 Fine		VA1 Coarse	VA1 Fine	BRBY Fine	BRBY Coarse
Parameters	Limit of Reporting	NEPC ¹ Health-Based Investigation Level (HILs)-C	Reject	ED Fine Reject	Reject	Reject	PF2 Fine Reject	Reject	Reject	Reject	Reject
Major Elements	g	involugation Eover (meo) e			All u	inits mg/kg					
Aluminium (Al)	50	-	1,550	2,040	1,240	2,560	1,890	1,590	1,750	1,870	1,260
Calcium (Ca)	50	-	3,620	3,000	6,170	11,100	4,580	5,620	4,390	4,710	6,640
Iron (Fe)	50	-	38,700	17,300	39,200	63,200	12,900	64,300	18,900	16,900	13,800
Potassium (K)	50	-	430	820	400	950	870	600	610	560	230
Magnesium (Mg)	50	-	2,660	2,410	2,310	5,530	2,200	5,570	3,170	2,320	2,840
Sodium (Na)	50	-	320	270	260	230	500	220	270	300	260
Minor Elements					All u	units mg/kg					
Arsenic (As)	5	300	7	<5	23	12	<5	<5	6	<5	<5
Boron (B)	50	20,000	<50	<50	<50	<50	<50	<50	<50	<50	<50
Cadmium (Cd)	1	90	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cobalt (Co)	2	300	6	6	5	8	4	<2	4	6	<2
Chromium (Cr)	2	300 **	<2	<2	<2	4	<2	<2	3	4	<2
Copper (Cu)	5	17,000	12	18	32	26	23	24	21	23	11
Fluoride (F)	40	-	160	240	120	190	230	250	200	200	150
Manganese (Mn)	5	19,000	658	222	531	881	140	875	194	205	260
Molybdenum (Mo)	2	-	<2	<2	<2	<2	<2	<2	<2	<2	<2
Nickel (Ni)	2	1,200	9	9	8	13	6	6	8	12	<2
Antimony (Sb)	5	-	<5	<5	<5	<5	<5	<5	<5	<5	<5
Selenium (Se)	5	700	<5	<5	<5	<5	<5	<5	<5	<5	<5
Thorium (Th)	0.1	-	5.6	7.7	6.8	6.5	4.2	6.5	5.8	6.5	6.7
Uranium (U)	0.1	-	2.5	2.8	1.8	1.5	2.6	1	1.8	1.2	1
Zinc (Zn)	5	30,000	37	47	38	70	51	42	40	38	14

Table B4: Multi-Element Composition for Coal Reject

Notes: < indicates less than the laboratory limit of reporting. Shaded cells exceed applied guideline limit.

** Guideline level for Cr(VI) = 300 mg/kg. Guideline level for Cr(III) = 24% of total Cr.

1. NEPC (2013). National Environmental Protection Council (NEPC). National Environmental Protection (Assessment of Site Contamination) Measure (NEPM), Amendment of Schedule B1-B7 of 1999 version. Guideline on Investigation Levels for Soil and Groundwater. Health-Based Investigation Level - HIL(C); public open spaces - recreational use.

		I able E	55: Geochem	ical Abunuar	ice index Res	suits for Over	burden and i	nterburgen				
	RGS Sa	ample Number \rightarrow	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10
	ALS	Laboratory ID \rightarrow	EB1905293029	EB1905293030	EB1905293031	EB1905293032	EB1905293033	EB1905293034	EB1905293035	EB1905293036	EB1905293037	EB190529303
Parameters	Limit of Reporting	Median Crustal Abundance ¹	Overburden	LP to VA seam	VA to BR seam	BY to WN seam	BY to WN seam	WN to ED seam	ED to CL seams	Within VA seam	Within BR seam	Within WN seam
Major Elements	all units	in mg/kg					Geochemical A	bundance Index				
Aluminium (AI)	50	71,000	0	0	0	0	0	0	0	0	0	0
Calcium (Ca)	50	15,000	0	0	0	0	0	0	0	0	0	0
Iron (Fe)	50	40,000	0	0	0	0	0	0	0	0	0	0
Potassium (K)	50	14,000	0	0	0	0	0	0	0	0	0	0
Magnesium (Mg)	50	5,000	0	0	0	0	0	0	0	0	0	0
Sodium (Na)	50	5,000	0	0	0	0	0	0	0	0	0	0
Major, Minor and Trace Elements	all units	in mg/kg		•	•	•	Geochemical A	bundance Index	•	•	•	•
Arsenic (As)	5	6	0	0	1	0	0	0	0	0	0	0
Boron (B)	50	20	0	0	0	0	0	0	0	0	0	0
Cadmium (Cd)	1	0.35	0	0	0	0	0	0	0	0	0	0
Cobalt (Co)	2	8	0	0	0	0	0	0	0	0	0	0
Chromium (Cr)	2	70	0	0	0	0	0	0	0	0	0	0
Copper (Cu)	5	30	0	0	0	0	0	0	0	0	0	0
Fluoride (F)	40	200	0	0	0	0	0	0	0	0	0	0
Manganese (Mn)	5	1,000	0	0	0	0	0	0	0	0	0	0
Molybdenum (Mo)	2	1.2	0	0	0	0	0	0	0	0	0	0
Nickel (Ni)	2	50	0	0	0	0	0	0	0	0	0	0
Lead (Pb)	0.2	35	0	0	0	0	0	0	0	0	0	
Antimony (Sb)	5	1.0	1	1	1	1	1	1	1	1	1	1
Selenium (Se)	5	0.4	2	2	2	2	2	2	2	2	2	2
Thorium (Th)	0.1	9	0	0	0	0	0	0	0	0	0	0
Uranium (U)	0.1	2	0	0	0	0	0	0	0	0	0	0
Zinc (Zn)	5	90	0	0	0	0	0	0	0	0	0	0

Table B5: Geochemical Abundance Index Results for Overburden and Interburden

Notes: GAI's greater than or equal to 3 are highlighted.

1. Median Crustal Abundance values sourced from the "GARD Guide", Chapter 5 (INAP, 2009). When no GARD Guide value is available for a particular element, then values are taken from Bowen H.J.M.(1979) Environmental Chemistry of the Elements, pages 60-61.

		Tubic					ai Rojoot		1		
	RGS Sa	ample Number \rightarrow	R1	R2	R3	R4	R5	R6	R7	R8	R9
	ALS	Laboratory ID \rightarrow	EB2010009013	EB2010009014	EB2010009015	EB2010009016	EB2010009017	EB2010009018	EB2010009019	EB2010009020	EB2010009021
Parameters	Limit of Reporting	Median Crustal Abundance ¹	ED Coarse Reject	ED Fine Reject	WN1 Coarse Reject	WN1 Fine Reject	PF2 Fine Reject	VX1 Coarse Reject	VX1 Fine Reject	BRBY Fine Reject	BRBY Coarse Reject
Major Elements	all units	in mg/kg				Geoche	emical Abundanc	e Index	•	•	
Aluminium (AI)	50	71,000	0	0	0	0	0	0	0	0	0
Calcium (Ca)	50	15,000	0	0	0	0	0	0	0	0	0
Iron (Fe)	50	40,000	0	0	0	0	0	0	0	0	0
Potassium (K)	50	14,000	0	0	0	0	0	0	0	0	0
Magnesium (Mg)	50	5,000	0	0	0	0	0	0	0	0	0
Sodium (Na)	50	5,000	0	0	0	0	0	0	0	0	0
Major, Minor and Trace Elements	all units	in mg/kg				Geoche	emical Abundanc	e Index			
Arsenic (As)	5	6	0	0	1	0	0	0	0	0	0
Boron (B)	50	20	0	0	0	0	0	0	0	0	0
Cadmium (Cd)	1	0.35	0	0	0	0	0	0	0	0	0
Cobalt (Co)	2	8	0	0	0	0	0	0	0	0	0
Chromium (Cr)	2	70	0	0	0	0	0	0	0	0	0
Copper (Cu)	5	30	0	0	0	0	0	0	0	0	0
Fluorine (F)	40	200	0	0	0	0	0	0	0	0	0
Manganese (Mn)	5	1,000	0	0	0	0	0	0	0	0	0
Molybdenum (Mo)	2	1.2	0	0	0	0	0	0	0	0	0
Nickel (Ni)	2	50	0	0	0	0	0	0	0	0	0
Antimony (Sb)	5	1.0	1	1	1	1	1	1	1	1	1
Selenium (Se)	5	0.4	2	2	2	2	2	2	2	2	2
Thorium (Th)	0.1	9	0	0	0	0	0	0	0	0	0
Uranium (U)	0.1	2	0	0	0	0	0	0	0	0	0
Zinc (Zn)	5	90	0	0	0	0	0	0	0	0	0

Table B6: Geochemical Abundance Index Results for Coal Reject

Notes: GAI's greater than or equal to 3 are highlighted.

1. Median Crustal Abundance values sourced from the "GARD Guide", Chapter 5 (INAP, 2009). When no GARD Guide value is available for a particular element, then values are taken from Bowen H.J.M.(1979) Environmental Chemistry of the Elements, pages 60-61.

RGS Sampl			C1	C2	C3	C6	C7	C8	C9
Trilab Lab	oratory	$^{\prime}$ ID \rightarrow	19020143	19020144	19020145	19020146	19020147	19020148	19020149
:	Sample	e ID →	Overburden	Between LP and VA seams	Between VA and BR seams	Between WN and ED seams	Between ED to CL seams	Within VA seam	Within BR seam
Emerson Aggregate	Units	LOR			•	•			•
Color (Munsell)	-	-	Grey	Grey	Grey	Grey	Grey	Grey	Grey
Texture	-	-	Silty gravel	Silty gravel	Silty gravel	Silty gravel	Silty gravel	Silty gravel	Silty gravel
Emerson Class Number	-	-	2	2	2	2	2	2	2
Particle Sizing	Units	LOR							
+1.4 μm	%	1	9	4	2	1	1	3	2
+2.4 μm	%	1	10	5	3	1	1	4	3
+2.8 μm	%	1	11	6	3	1	2	4	3
+3.4 μm	%	1	12	7	3	2	2	5	4
+3.9 µm	%	1	13	7	4	2	2	5	4
+4.8 μm	%	1	14	8	4	2	2	6	5
+6.7 μm	%	1	16	9	5	2	3	7	6
+9.5 μm	%	1	18	11	5	3	3	7	6
+13 µm	%	1	19	12	6	3	3	8	7
+18 µm	%	1	20	13	7	3	3	10	7
+24 μm	%	1	22	15	8	3	3	10	8
+34 μm	%	1	23	16	8	4	4	11	8
+48 μm	%	1	24	18	9	4	4	11	8
+57 μm	%	1	26	19	9	4	4	12	8
+75 μm	%	1	29	22	13	7	5	14	12
+150 µm	%	1	33	25	14	8	6	15	13
+300 µm	%	1	37	27	15	10	6	16	14
+425 µm	%	1	38	28	15	11	6	16	15
+600 µm	%	1	39	29	16	12	7	16	15
+1180 µm	%	1	41	30	17	16	8	16	16
+2.36 mm	%	1	43	31	18	20	9	17	16
+4.75 mm	%	1	52	43	25	29	12	29	26
+6.7 mm	%	1	59	51	31	35	15	36	35
+9.5 mm	%	1	73	64	42	46	21	50	49
+13.2 mm	%	1	84	81	60	61	37	70	68
+19 mm	%	1	100	93	82	90	69	92	90
+26.5 mm	%	1		100	95	100	91	98	98
+37.5 mm	%	1			100		97	100	100
+53 mm	%	1					100		
Physical Tests	Units	LOR							
Dispersion (%)	%	1	9	10	30	25	12	4	15
Soil Particle Density	g/cm ³		2.54	2.63	2.42	2.25	2.46	2.47	2.27

Table B7: Particle Size Distribution, Emerson Class and Soil Classification Results for Overburden and Interburden

Notes: LOR - Laboratory Limit of Reporting Hydrometer used to measure down to percentage passing 2µm (ALS code EA150-H). Hydrometer type ASTM E100. Test Method AS1289.3.6.3.

							n Overburde						
			ple Number \rightarrow	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10
		ALS L	aboratory ID \rightarrow	EB1905293029	EB1905293030	EB1905293031	EB1905293032	EB1905293033	EB1905293034	EB1905293035	EB1905293036	EB1905293037	EB1905293038
		Clier	It Sample ID \rightarrow	Overburden	LP to VA seam	VA to BR	BY to WN	BY to WN	WN to ED	ED to CL	Within VA	Within BR	Within WN
		Cilei		Overbuiden	LF to VA Seam	seam	seam	seam	seam	seams	seam	seam	seam
		Water Quality	Guidelines:										
	Limit of	Aquatic	Livestock										
Parameters	Reporting	Ecosystems	Drinking										
		(freshwater) ¹	Water ²										
рН	0.01 pH unit	6 to 9	-	6.9	7.8	7.7	5.9	7.8	6.8	7.0	7.1	7.2	7.9
Electrical Conductivity	1 µS/cm	<1,000 [#]	3,580^	2,660	1,140	720	3,100	803	2,810	2,660	1,990	967	756
Carbonate Alkalinity (mgCaCO ₃ /L)	1 mg/L	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bicarbonate Alkalinity (mgCaCO ₃ /L)	1 mg/L	-	-	2,880	1,822	4,460	968	2,020	958	2,440	1,568	524	2,880
Total Alkalinity (mgCaCO ₃ /L)	1 mg/L	-	-	2,880	1,822	4,460	968	2,020	958	2,440	1,568	524	2,880
Acidity (mgCaCO ₃ /L)	1 mg/L	-	-	95	4	<1	168	<1	64	40	23	13	<1
Net Alkalinity (mgCaCO ₃ /L)	1 mg/L	-	-	2,785	1,818	4,460	800	2,020	894	2,400	1,545	511	2,880
Major lons		All units mg/L						All uni	ts mg/L				
Calcium (Ca)	2	-	1,000	138	10	8	292	4	132	90	44	2	6
Magnesium (Mg)	2	-	-	94	6	8	186	6	72	54	40	4	6
Potassium (K)	2	-	-	18	16	14	4	10	28	22	22	14	14
Sodium (Na)	2	-	-	40	46	50	10	48	68	56	40	46	42
Chloride (CI)	2	-	-	24	46	22	8	8	10	42	14	8	10
Fluoride (F)	0.2	-	2	0.4	1.4	2.6	<0.2	1.6	0.4	0.6	0.6	0.6	1.0
Sulfate (SO ₄)	2	-	1,000	730	32	20	1,418	32	706	426	278	78	24
Trace Metals/Metalloids		All units mg/L						All uni	ts mg/L				
Aluminium (Al)	0.2	0.055	5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Antimony (Sb)	0.02	-	-	<0.02	<0.02	< 0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Arsenic (As) - trivalent	0.02	0.024 **	0.5	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Boron (B)	0.2	0.37	5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Cadmium (Cd)	0.02	0.0002	0.01	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Chromium (Cr) - total	0.02	0.001 (hex)*	1 (total)	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Cobalt (Co)	0.02	-	1	<0.02	<0.02	< 0.02	0.24	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Copper (Cu)	0.02	0.0014	1	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Iron (Fe)	0.2	-	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Manganese (Mn)	0.02	1.90	-	1.36	<0.02	<0.02	24.20	<0.02	0.68	0.10	0.12	<0.02	<0.02
Molybdenum (Mo)	0.02	-	0.15	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.04	<0.02
Nickel (Ni)	0.02	0.011	1	<0.02	<0.02	<0.02	0.36	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Selenium (Se)	0.02	0.011	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.02	0.02	<0.02	<0.02	<0.02
Thorium (Th)	0.002	-	-	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Uranium (U)	0.002	-	0.2	<0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	0.00	< 0.002	< 0.002	< 0.002
Zinc (Zn)	0.02	0.008	20	<0.02	<0.02	<0.02	0.12	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Notes: < indicates concentration less than the de													

Table B8: Multi-Element Test Results for Water Extracts from Overburden and Interburden

Notes: < indicates concentration less than the detection limit. Shaded cells exceed applied guideline values.

for still water bodies only, moving rivers at low flow rates should not exceed 2,200µS/cm. * Cr (VI) = hexavalent. ** 0.013 mg/L for pentavalent Arsenic (V).

^ calculated based on total dissolved solids (TDS) conversion rate of 0.67% of EC. TDS is an approximate measure of inorganic dissolved salts and should not exceed 2,400mg/L for livestock drinking water.

ANZECC & ARMCANZ (2000). 1. Trigger values for aquatic ecosystems (95% species protection level). 2. Recommended guideline limits for Livestock Drinking Water.

			ple Number \rightarrow	R1	R2	R3	R4	R5	R6	R7	R8	R9
		ALS La	aboratory ID \rightarrow	EB2010009013	EB2010009014	EB2010009015	EB2010009016	EB2010009017	EB2010009018	EB2010009019	EB2010009020	EB2010009021
		Clien	t Sample ID \rightarrow	ED Coarse	ED Fine Reject	WN1 Coarse	WN1 Fine	PF2 Fine	VX1 Coarse	VX1 Fine	BRBY Fine	BRBY Coarse
		Water Quality		Reject		Reject	Reject	Reject	Reject	Reject	Reject	Reject
	ſ	Aquatic	Livestock			[1
Parameters	Limit of	Ecosystems	Drinking									
	Reporting	(freshwater) ¹	Water ²									
pH	0.01 pH unit	6 to 9	-	7.4	8.0	6.0	7.7	7.3	6.5	8.8	7.9	7.8
Electrical Conductivity	1 µS/cm	<1,000 [#]	3,580^	1,810	737	1,400	1,020	1,180	1,300	1,000	1,070	696
Carbonate Alkalinity (mgCaCO ₃ /L)	1 mg/L	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bicarbonate Alkalinity (mgCaCO ₃ /L)	1 mg/L	-	-	2	14	<1	3	6	1	2	4	6
Total Alkalinity (mgCaCO ₃ /L)	1 mg/L	-	-	2	14	<1	3	6	1	2	4	6
Acidity (mgCaCO ₃ /L)	1 mg/L	-	-	1	0	12	1	6	1	4	1	1
Net Alkalinity (mgCaCO ₃ /L)	1 mg/L	-	-	2	14	-12	3	6	0	-2	4	5
Major lons	Ŭ	All units mg/L						All units mg/L				
Calcium (Ca)	2	-	1,000	16	12	124	8	12	18	10	18	4
Magnesium (Mg)	2	-	-	20	16	40	8	14	20	22	16	6
Potassium (K)	2	-	-	4	4	<2	2	4	4	4	4	<2
Sodium (Na)	2	-	-	34	28	12	8	48	10	24	32	20
Chloride (Cl)	2	-	-	8	10	2	24	22	<2	8	12	6
Fluoride (F)	0.2	-	2	0.6	1.2	<0.2	0.4	1.8	<0.2	3.0	2.4	0.8
Sulfate (SO ₄)	2	-	1,000	240	96	1,338	114	138	264	170	128	80
Trace Metals/Metalloids		All units mg/L			•	•		All units mg/L		•	•	•
Aluminium (Al)	0.02	0.055	5	<0.02	<0.02	<0.02	<0.02	<0.02	0.020	<0.02	<0.02	<0.02
Antimony (Sb)	0.002	-	-	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Arsenic (As) - trivalent	0.002	0.024 **	0.5	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Boron (B)	0.2	0.37	5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Cadmium (Cd)	0.002	0.0002	0.01	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Chromium (Cr) - total	0.002	0.001 (hex)*	1 (total)	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Cobalt (Co)	0.002	-	1	0.004	0.004	0.04	<0.002	<0.002	0.008	<0.002	<0.002	<0.002
Copper (Cu)	0.002	0.0014	1	<0.002	<0.002	<0.002	<0.002	<0.002	0.006	<0.002	<0.002	<0.002
Iron (Fe)	0.2	-	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Manganese (Mn)	0.002	1.90	-	0.02	0.058	1.72	0.020	0.026	0.19	0.01	0.04	0.02
Molybdenum (Mo)	0.002	-	0.15	0.004	0.028	<0.002	0.004	0.002	<0.002	0.020	0.030	0.004
Nickel (Ni)	0.002	0.011	1	0.008	0.004	0.05	<0.002	<0.002	0.034	<0.002	0.002	<0.002
Selenium (Se)	0.02	0.011	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Thorium (Th)	0.002	-	-	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Uranium (U)	0.002	-	0.2	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Zinc (Zn)	0.01	0.008	20	<0.01	<0.01	0.03	<0.01	<0.01	0.08	<0.01	<0.01	<0.01

Table B9: Multi-Element Test Results for Water Extracts from Coal Reject

Notes: < indicates concentration less than the detection limit. Shaded cells exceed applied guideline values.

for still water bodies only, moving rivers at low flow rates should not exceed 2,200µS/cm. * Cr (VI) = hexavalent. ** 0.013 mg/L for pentavalent Arsenic (V).

^ calculated based on total dissolved solids (TDS) conversion rate of 0.67% of EC. TDS is an approximate measure of inorganic dissolved salts and should not exceed 2,400mg/L for livestock drinking water.

ANZECC & ARMCANZ (2000). 1. Trigger values for aquatic ecosystems (95% species protection level). 2. Recommended guideline limits for Livestock Drinking Water.

RGS Sample	RGS	Drill Hole	Sample ID	Sample Lithology	Sample	From	То	Interval	pH ¹	EC ¹	Total S	Scr	MPA ²	ANC ²	NAPP ²	ANC: MPA	Sample Classification ³
No.	KLC No.	ID		,	Stratigraphy		(m)			(µS/cm)	(%)		kg H ₂ SO	₄/t	Ratio	
1		2103LA	AMD001	Weathered Claystone	Overburden	1	7	6	8.6	478	0.03	-	0.9	44.7	-43.8	48.7	Non-Acid Forming (Barren)
2		2103LA	AMD002	Weathered Sandstone	Overburden	7	12	5	9	255	0.02		0.6	52.8	-52.2	86.2	Non-Acid Forming (Barren)
3		2123L	AMD013	Weathered Claystone	Overburden	0	8	8	8.7	484	0.02		0.6	13.9	-13.3	22.7	Non-Acid Forming (Barren)
4		2123L	AMD014	Weathered Sandstone	Overburden	8	14	6	8.8	430	0.02		0.6	49.2	-48.6	80.3	Non-Acid Forming (Barren)
5		2123L	AMD015	Weathered Siltstone	Overburden	14	17.7	3.7	8.3	444	0.05		1.5	44.5	-43.0	29.1	Non-Acid Forming (Barren)
6	KLC1	2133L	AMD026	Weathered Claystone	Overburden	0	4	4	8.7	447	0.02		0.6	29.8	-29.2	48.7	Non-Acid Forming (Barren)
7		2133L	AMD027	Weathered Claystone	Overburden	4	10	6	8.4	366	0.02		0.6	20.0	-19.4	32.7	Non-Acid Forming (Barren)
8		2133L	AMD028	Weathered Carbonaceous Siltstone	Overburden	10	15	5	8.6	321	0.02		0.6	48.6	-48.0	79.3	Non-Acid Forming (Barren)
9		2133L	AMD029	Weathered Siltstone	Overburden	15	21	6	8.9	283	0.02		0.6	48.3	-47.7	78.9	Non-Acid Forming (Barren)
10		2133L	AMD030	Weathered Siltstone	Overburden	21	29	8	8.9	255	0.02		0.6	61.6	-61.0	100.6	Non-Acid Forming (Barren)
11		2167L	AMD063	Clay	Overburden	0	2	2	8.4	634	0.03		0.9	50.4	-49.5	54.9	Non-Acid Forming (Barren)
23		2103LA	AMD004	Sandstone	BY - WN	25.87	28.02	2.15	8.3	597	0.10		3.1	48.4	-45.3	15.8	Non-Acid Forming (Barren)
24		2103LA	AMD005	Sandstone	BY - WN	28.61	29.25	0.64	4.3	3490	2.10	0.90	27.4	0.3	27.2	0.0	Potentially Acid Forming
25		2103LA	AMD006	Sandstone/Siltstone	BY - WN	29.33	29.46	0.13	5.8	2630	1.62	0.88	26.9	4.7	22.2	0.2	Potentially Acid Forming
26	KLC2	2103LA	AMD007	Sandstone	BY - WN	31.19	31.39	0.2	3.9	2230	3.27	1.71	52.4	0.3	52.1	0.0	Potentially Acid Forming
27	KLU2	2123L	AMD017	Sandstone	BY - WN	30.46	31.15	0.69	7.6	156	0.02		0.6	6.9	-6.3	11.3	Non-Acid Forming (Barren)
28		2123L	AMD018	Sandstone	BY - WN	33.77	34.95	1.18	4.1	3970	3.13	1.50	45.9	0.3	45.7	0.01	Potentially Acid Forming
29		2123L	AMD019	Sandstone	BY - WN	35.17	35.47	0.3	3.9	2760	2.10	1.07	32.8	0.3	32.5	0.01	Potentially Acid Forming
30		2123L	AMD020	Sandstone	BY - WN	35.64	36.52	0.88	4.5	3630	2.43	1.17	35.8	0.3	35.6	0.01	Potentially Acid Forming
45		2103LA	AMD010	Claystone	ED - CL	42.90	43.00	0.10	6.9	751	0.24	0.15	4.5	5.4	-0.9	1.2	Uncertain
46		2103LA	AMD011	Sandstone	ED - CL	43.35	43.81	0.46	7.7	204	0.04		1.2	4.9	-3.7	4.0	Non-Acid Forming (Barren)
47		2103LA	AMD012	Siltstone/Claystone	ED - CL	47.28	48.18	0.90	8.8	208	0.02		0.6	15.3	-14.7	25.0	Non-Acid Forming (Barren)
48		2123L	AMD023	Sandstone	ED - CL	48.61	48.68	0.07	8.7	317	0.06		1.8	108.0	-106.2	58.8	Non-Acid Forming (Barren)
49		2123L	AMD024	Claystone	ED - CL	51.72	51.99	0.27	8.7	330	0.04		1.2	19.4	-18.2	15.8	Non-Acid Forming (Barren)
50	KLC3	2123L	AMD025	Sandstone/Siltstone	ED - CL	52.36	52.79	0.43	8.9	237	0.04		1.2	308.0	-306.8	251.4	Non-Acid Forming (Barren)
51		2133L	AMD062	Sandstone	ED - CL	118.92	120.14	1.22	7.1	487	0.29		8.9	21.7	-12.8	2.4	Non-Acid Forming
52		2167L	AMD092	Claystone	ED - CL	84.19	84.37	0.18	6.8	506	0.51	0.39	11.8	7.4	4.4	0.6	Uncertain
53		2167L	AMD093	Tuff	ED - CL	84.37	84.85	0.48	8	184	0.12	0.07	2.1	5.9	-3.7	2.8	Non-Acid Forming (Barren)
54		2167L	AMD094	Sandstone	ED - CL	85.07	85.28	0.21	8.4	133	0.05		1.5	23.2	-21.7	15.2	Non-Acid Forming (Barren)
55		2167L	AMD095	Sandstone	ED - CL	85.80	90.00	4.20	9	305	0.03		0.9	80.8	-79.9	87.9	Non-Acid Forming (Barren)
56		2133L	AMD037	Claystone	VA	39.33	39.74	0.41	8.1	174	0.03		0.9	22.6	-21.7	24.6	Non-Acid Forming (Barren)
57		2133L	AMD038	Claystone	VA	40.18	40.84	0.66	7.7	206	0.14	0.08	2.4	12.4	-10.0	5.2	Non-Acid Forming (Barren)
58		2133L	AMD039	Siltstone	VA	42.00	48.00	6.00	8.6	279	0.03		0.9	79.0	-78.1	86.0	Non-Acid Forming (Barren)
59		2133L	AMD040	Siltstone	VA	48.00	51.50	3.50	8.8	295	0.02		0.6	69.5	-68.9	113.5	Non-Acid Forming (Barren)
60		2133L	AMD042	Sandstone	VA	51.97	52.32	0.35	8.4	110	0.05	-	1.5	15.2	-13.7	9.9	Non-Acid Forming (Barren)
61		2133L	AMD043	Sandstone/Siltstone	VA	54.69	55.00	0.31	8.5	106	0.03		0.9	12.8	-11.9	13.9	Non-Acid Forming (Barren)
62		2133L	AMD044 AMD046	Siltstone	VA VA	55.00 62.29	61.50	6.50 0.08	9	302	0.02		0.6	86.1	-85.5	140.6	Non-Acid Forming (Barren)
63 64		2133L 2133L	AMD046 AMD047	Claystone Siderite/Sandstone	VA VA	63.11	62.37 63.24	0.08	8.6 8.4	87 92	0.02		0.6	13.4 10.8	-12.8 -10.6	21.9 70.5	Non-Acid Forming (Barren) Non-Acid Forming (Barren)
65	KLC4	2133L	AMD047 AMD048	Claystone	VA VA	67.72	68.29	0.13	8.4	134	0.01		0.2	17.2	-16.3	18.7	Non-Acid Forming (Barren)
66		2167L	AMD040	Sandstone	VA	19.35	19.40	0.05	7.9	134	0.03		0.9	6.2	-10.3	6.7	Non-Acid Forming (Barren)
67		2167L	AMD070	Claystone	VA	19.79	20.00	0.00	7.7	171	0.00		3.1	18.1	-15.0	5.9	Non-Acid Forming (Barren)
68		2167L	AMD072	Sandstone	VA	23.65	23.96	0.21	8.8	205	0.02		0.6	33.2	-32.6	54.2	Non-Acid Forming (Barren)
69		2167L	AMD073	Claystone	VA	25.19	25.35	0.16	8.2	124	0.02		0.9	23.9	-23.0	26.0	Non-Acid Forming (Barren)
70		2167L	AMD074	Claystone/Carbonaceous Claystone	VA	25.88	25.96	0.08	7.8	144	0.04		1.2	9.1	-7.9	7.4	Non-Acid Forming (Barren)
71		2167L	AMD075	Sandstone	VA	26.65	26.83	0.18	8.4	218	0.04		1.2	28.2	-27.0	23.0	Non-Acid Forming (Barren)
72	I İ	2167L	AMD076	Claystone	VA	27.48	27.68	0.20	7.6	184	0.06		1.8	12.0	-10.2	6.5	Non-Acid Forming (Barren)
73		2167L	AMD077	Claystone	VA	27.94	28.06	0.12	7.6	123	0.14	0.06	2.0	8.1	-6.1	4.1	Non-Acid Forming (Barren)
79	2133L		AMD057	Claystone	WN	103.24	103.38	0.14	3.4	2540	3.34	1.58	48.4	0.3	48.1	0.0	Potentially Acid Forming
80		2133L	AMD058	Sandstone	WN	103.93	104.29	0.36	6.9	2130	3.59	2.57	78.7	24.5	54.2	0.3	Potentially Acid Forming
81	KLC5	2133L	AMD059	Sandstone/Siltstone	WN	106.14	107.50	1.36	8.7	482	0.63	0.49	15.1	102.0	-86.9	6.8	Non-Acid Forming
82		2133L	AMD060	Siltstone	WN	109.56	109.78	0.22	8.6	352	0.20	0.14	4.3	14.2	-9.9	3.3	Non-Acid Forming
83		2167L	AMD088	Sandstone	WN	74.72	75.00	0.28	5.5	501	0.52	0.25	7.7	2.3	5.5	0.3	Potentially Acid Forming

Table B10: Makeup of Composite Overburden and Interburden Samples Selected for KLC Test Program

Notes

Current pH and EC provided for 1:5 sample:water extracts
 Scr = Chromium Reducible Sulfur; MPA = Maximum Potential Acidity; ANC = Acid Neutralising Capacity; and NAPP = Net Acid Producing Potential

3. Sample classification criteria detail provided in report text.

RGS Sample	RGS	Drill Hole ID	Sample ID	Sample Lithology	Sample Stratigraphy	pH ¹	EC ¹	Total S	Scr	MPA ²	ANC ²	NAPP ²	ANC: MPA	Sample Classification ³
No.					otratigraphy		(µS/cm)	(%	5)	kg H₂SO₄/t		µ∕t	Ratio	
1	KLC6	-	REJ001	ED Reject 1 of 2	Coarse Reject	7.4	316	1.90	1.410	43.2	27.1	16.1	0.6	Potentially Acid Forming
2	KLC0	-	REJ002	ED Reject 2 of 2	Coarse Reject	7.1	323	1.17	0.762	23.3	19.0	4.3	0.8	Uncertain
23	KLC7	-	REJ003	ED Tailing	Fine Reject	8.4	125	0.60	0.352	10.8	17.0	-6.2	1.6	Non-Acid Forming
45	KLC8	-	REJ004	WN1 Reject 1 of 2	Coarse Reject	6.4	1200	1.99	1.180	36.1	23.4	12.7	0.6	Potentially Acid Forming
46	KLC0	-	REJ005	WN1 Rejects 2 of 2	Coarse Reject	5.6	1590	2.80	2.140	65.5	15.1	50.4	0.2	Potentially Acid Forming
56	KLC9	-	REJ006	WN1 Tailing	Fine Reject	8.6	141	1.58	1.200	36.8	44.0	-7.3	1.2	Non-Acid Forming
79	KLC10	-	REJ007	PF2 Tailing 1 of 2	Fine Reject	7.7	186	0.29	0.130	4.0	16.2	-12.2	4.1	Non-Acid Forming
80	KLC IU	-	REJ008	PF2 Tailing 2 of 2	Fine Reject	7.6	185	0.29	0.129	4.0	16.7	-12.7	4.2	Non-Acid Forming
79	KLC11	-	REJ009	VA1 Reject	Coarse Reject	5.9	326	0.24	0.109	3.3	16.0	-12.7	4.8	Non-Acid Forming
79	KLC12	-	REJ010	VA1 Tailing	Fine Reject	8.6	149	0.77	0.471	14.4	19.7	-5.3	1.4	Non-Acid Forming
79	KLC13	-	REJ011	BRBY Tailing	Fine Reject	8.3	141	0.42	0.165	5.1	20.4	-15.3	4.0	Non-Acid Forming
79	KLC14	-	REJ012	BRBY Reject	Coarse Reject	7.8	98	0.24	0.093	2.8	33.1	-30.3	11.6	Non-Acid Forming (Barren)

Table B11: Makeup of Composite and Individual Coal Reject Samples Selected for KLC Test Program

Notes

1. Current pH and EC provided for 1:5 sample:water extracts

2. Scr = Chromium Reducible Sulfur; MPA = Maximum Potential Acidity; ANC = Acid Neutralising Capacity; and NAPP = Net Acid Producing Potential

3. Sample classification criteria detail provided in report text.

Attachment C Kinetic geochemical results

					KLC 1 W	/eathered Ove	rburden		
	Γ	Weight (kg)	1.30	Total S (%)	0.02	ANC	42.2		
		pH (1:5)	8.70	Scr (%)	0.02	NAPP	-41.6		
		EC (µS/cm)	400	MPA	0.6	ANC:MPA	68.9		
Date			31-Jan-19	26-Feb-19	26-Mar-19	30/04/2019	28/05/2019	25-Jun-19	31-Jul-19
Number of Weeks			0	4	9	13	17	22	26
Leach Number			1	2	3	4	5	6	7
ALS Laboratory Number			EB1902439001	EB1904857001	EB1907715001	EB1910914001	EB1913624001	EB1916406001	EB1919939001
Volume On (L)			1.0	1.0	1.0	1.0	1.0	1.0	1.0
Volume Off (L)			0.622	0.942	0.609	0.509	0.606	0.666	0.642
Cum. Volume (L)			0.62	1.56	2.17	2.68	3.29	3.95	4.60
Pore Volumes			0.5	1.2	1.6	2.0	2.4	2.9	3.4
pH (RGS Measurement)			7.98	7.72	8.71	8.20	6.94	8.88	7.89
pH (ALS Measurement)			7.06	7.42	7.92	7.50	7.12	6.85	7.66
pH (deionised water used in te			5.98	6.45	5.53	5.53	6.31	5.45	5.47
EC (RGS Measurement) (μS/cm			215	414	247	179	133	105	94
EC (ALS Measurement) (µS/cm)		229	454	261	185	152	114	99
Acidity (mg/L)*			1	1	<1	2	<1	1	<1
Alkalinity (mg/L)*			20	23	17	14	9	9	13
Net Alkalinity (mg/L)*			19	22	17	12	9	8	13
Major lons (mg/L)	LoR	WQ Guidelines [#]				All units mg/L			
Calcium (Ca)	1	1.000	4	5	3	2	1	0.5	0.5
Potassium (K)	1	-	2	4	3	2	2	2	2
Magnesium (Mg)	1	-	3	6	4	2	2	1	0.5
Sodium (Na)	1	-	35	69	40	32	24	20	17
Chloride (Cl)	1	-	39	82	43	25	18	11	10
Fluoride (F)	0.1	2	0.7	1.3	0.9	0.6	0.5	0.5	0.4
Sulfate (SO₄)	1	1,000	20	55	35	27	24	19	17
Trace metals/ metalloids (mg/L)	LoR	mg/L	20	00	00	All units mg/L	24	10	
Aluminium (Al)	0.01	5	0.67	0.10	0.18	0.72	0.65	1.28	0.48
Arsenic (As)	0.001	0.5	0.002	0.004	0.004	0.004	0.004	0.004	0.003
Boron (B)	0.05	5	< 0.05	< 0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.05
Cadmium (Cd)	0.0001	0.01	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Cobalt (Co)	0.001	1	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Copper (Cu)	0.001	1	0.006	0.006	0.003	0.002	0.002	0.003	0.0005
Iron (Fe)	0.05	1	0.15	< 0.05	< 0.05	0.13	0.13	0.16	0.07
Lithium (Li)	0.002	-	-	-	-	0.002	0.002	0.002	0.0005
Mercury (Hg)	0.0001	-	-	-	-	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Manganese (Mn)	0.001	2	0.006	0.007	0.005	0.003	0.003	0.002	0.001
Molybdenum (Mo)	0.001	0.15	0.002	0.014	0.010	0.008	0.006	0.006	0.002
Nickel (Ni)	0.001	1	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Lead (Pb)	0.001	0.1	0.003	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Antimony (Sb)	0.001	-	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Selenium (Se)	0.01	0.02	<0.01	0.04	0.02	0.02	0.01	<0.01	<0.01
Strontium (Sr)	0.001	-	-	-	-	0.058	0.045	0.020	0.008
Vanadium (V)	0.01	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Zinc (Zn)	0.005	20	< 0.005	<0.005	0.011	<0.005	<0.005	<0.005	<0.005
Calculations**									
SO₄ Release Rate			10	40	16	11	11	10	8
Cumulative SO₄ Release			10	49	66	76	88	97	106
Ca Release Rate			1.9	3.6	1.4	0.8	0.5	0.3	0.2
Cumulative Ca Release			1.9	5.5	6.9	7.7	8.2	8.4	8.7
Mg Release Rate			1.4	4.3	1.9	0.8	0.9	0.5	0.2
Cumulative Mg Release			1.4	5.8	7.7	8.4	9.4	9.9	10.1
Residual ANC (%)			100.0	99.9	99.9	99.9	99.9	99.9	99.9
Residual Sulfur (%)			98.4	91.8	89.0	87.3	85.4	83.8	82.4
SO ₄ /(Ca+Mg) molar ratio			0.9	1.5	1.5	2.1	2.3	3.7	5.4
4.1-2			< indicates less			* Acidity and alkal			U.T

 $\label{eq:constraint} \begin{array}{|c|c|c|c|c|} \hline 0.9 & 1.5 & 1.5 & 2.1 & 2.3 & 3.7 & 5.4 \\ \hline < indicates less than the limit of reporting (LoR). * Acidity and alkalinity data calculated in mg CaCO_3/L. \\ \hline ** SO_4, Ca and Mg release rates calculated in mg/kg/flush. Low Ca and Mg concentrations recorded as half the LoR. \\ \hline Total S = Total Sulfur; Scr = Chromium Reducible Sulfur; and ANC = Acid Neutralising Capacity. \\ MPA = Maximum Potential Acidity, and NAPP = Net Acid Producing Potential. \\ \hline \end{array}$

ANZECC & ARMCANZ (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality, National Water Quality Management Strategy, 2000, ANZECC (Australian and New Zealand Environment Conservation Council) and ARMCANZ (Agriculture and Resource Management Council of Australia and New Zealand). Livestock Drinking Water Levels (Irrigation Levels used for Fe and Mn).

	KLC 2 Bulga Sandstone Interburden									
		Weight (kg)	1.30	Total S (%)	1.85	ANC	7.7			
		pH (1:5)	5.30	Scr (%)	0.92	NAPP	20.5			
		EC (µS/cm)	2,433	MPA	28.2	ANC:MPA	0.3			
Date			31-Jan-19	26-Feb-19	26-Mar-19	30/04/419	28-May-19	25-Jun-19	31-Jul-19	
Number of Weeks			0	20-Feb-19 4	20-iviar-19 9	13	20-iiiay-19 17	23-3011-19	26	
Leach Number			1	2	3	4	5	6	20	
ALS Laboratory Number			-	_	EB1907715002	-	EB1913624002	EB1916406002	-	
Volume On (L)			<u>ЕВ 1902439002</u> 1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Volume Off (L)			0.665	0.445	0.412	0.352	0.457	0.423	0.428	
Cum. Volume (L)			0.67	1.11	1.52	1.87	2.33	2.75	3.18	
Pore Volumes			0.5	0.8	1.1	1.4	1.7	2.75	2.4	
pH (RGS Measurement)			2.88	2.74	2.33	2.20	1.96	2.28	2.19	
pH (ALS Measurement)			2.78	2.74	2.33	2.20	2.02	2.19	2.19	
pH (deionised water used in te	et)		5.98	6.45	5.53	5.53	6.31	5.45	5.47	
EC (RGS Measurement) (μS/cn			2,291	6,270	9210	9,630	12,560	7,800	6,950	
EC (ALS Measurement) (µS/cm			2,320	6,940	9480	9,730	13,300	8,220	7,170	
Acidity (mg/L)*	"		748	306	6,000	10,700	14,800	7,200	6,060	
Alkalinity (mg/L)*			<1	<1	<1	<1	<1	<1	<1	
Net Alkalinity (mg/L)*			-748	-306	-6,000	-10,700	-14,800	-7,200	-6,060	
not Airannity (ing/E)			-740	-300	-0,000	-10,700	-14,000	-1,200	-0,000	
Major lons (mg/L)	LoR	WQ Guidelines [#]								
Calcium (Ca)	1	1,000	61	81	118	118	160	144	189	
Potassium (K)	1	-	3	<1	<1	<1	<1	<1	<1	
Magnesium (Mg)	1	-	114	474	693	750	629	482	411	
Sodium (Na)	1	-	6	0.5	0.5	0.5	0.5	1	0.5	
Chloride (Cl)	1	-	9	4	17	12	1	5	5	
Fluoride (F)	0.1	2	0.5	<0.1	4.4	3.0	2.5	<0.1	<0.1	
Sulfate (SO ₄)	1	1,000	1,400	6,030	8,230	4,170	8,020	7,290	7,730	
Trace metals/ metalloids (mg/L)	LoR	mg/L	1,100	0,000	0,200	All units mg/L	0,020	1,200	1,100	
Aluminium (Al)	0.01	5	18.8	70.4	167	177	381	214	161	
Arsenic (As)	0.001	0.5	0.008	0.069	0.378	1.57	1.64	1.17	0.66	
Boron (B)	0.05	5	< 0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	
Cadmium (Cd)	0.0001	0.01	0.0033	0.0151	0.0283	0.0253	0.0384	0.0176	0.0102	
Cobalt (Co)	0.001	1	0.421	2.25	3.13	2.53	3.26	1.73	0.874	
Copper (Cu)	0.001	1	0.205	0.209	1.15	1.61	2.88	1.36	0.726	
Iron (Fe)	0.05	1	247	1,360	1,780	2,500	4,030	2,150	1,470	
Lithium (Li)	0.002	-	-	-	-	0.096	0.212	0.084	0.046	
Mercury (Hg)	0.0001	-	-	-	-	0.0001	0.0003	<0.0001	<0.0001	
Manganese (Mn)	0.001	2	16.7	85.5	165.0	122.0	172.0	85.3	42.4	
Molybdenum (Mo)	0.001	0.15	<0.001	0.001	0.002	0.010	0.022	0.015	0.009	
Nickel (Ni)	0.001	1	0.676	2.800	4.560	3.630	5.310	2.650	1.420	
Lead (Pb)	0.001	0.1	0.056	0.004	<0.001	0.003	0.002	0.0025	<0.001	
Antimony (Sb)	0.001	-	<0.001	<0.001	<0.001	0.003	<0.001	<0.001	<0.001	
Selenium (Se)	0.01	0.02	<0.01	0.01	0.03	0.03	0.05	0.03	0.02	
Strontium (Sr)	0.001	-	-	-	-	0.279	0.441	0.357	0.235	
Vanadium (V)	0.01	-	0.01	0.5	1.06	0.75	0.42	0.35	0.12	
Zinc (Zn)	0.005	20	2.11	11.40	28.30	22.00	31.20	15.30	7.78	
Calculations**										
SO ₄ Release Rate			716	2064	2608	1129	2819	2370	2545	
Cumulative SO ₄ Release			716	2780	5389	6518	9337	11707	14252	
Ca Release Rate			31.2	27.7	37.4	32.0	56.2	46.8	62.2	
cumulative Ca Release		31.2	58.9	96.3	128.3	184.5	231.3	293.6		
Mg Release Rate			58.3	162.3	219.6	203.1	221.1	156.7	135.3	
Cumulative Mg Release			58.3	220.6	440.2	643.3	864.4	1021.1	1156.4	
Residual ANC (%)			96.0	86.6	73.9	62.2	48.9	39.2	30.1	
Residual Sulfur (%)			98.7	95.0	90.3	88.2	83.2	78.9	74.3	
SO ₄ /(Ca+Mg) molar ratio			2.3	2.9	2.7	1.3	2.8	3.2	3.7	
41 0/						Acidity and alkal			0.1	

KLC 2 Bulga Sandstone Interburden

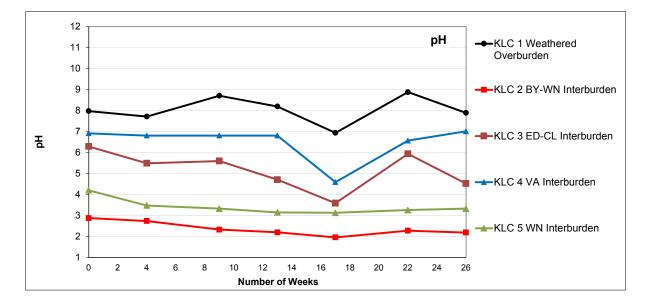
 indicates less than the limit of reporting (LoR). * Acidity and alkalinity data calculated in mg CaCO₃/L.
 ** SO₄, Ca and Mg release rates calculated in mg/kg/flush. Low Ca and Mg concentrations recorded as half the LoR. Total S = Total Sulfur; Scr = Chromium Reducible Sulfur; and ANC = Acid Neutralising Capacity.

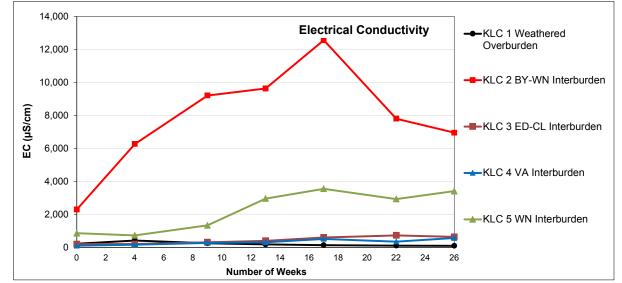
MPA = Maximum Potential Acidity, and NAPP = Net Acid Producing Potential.

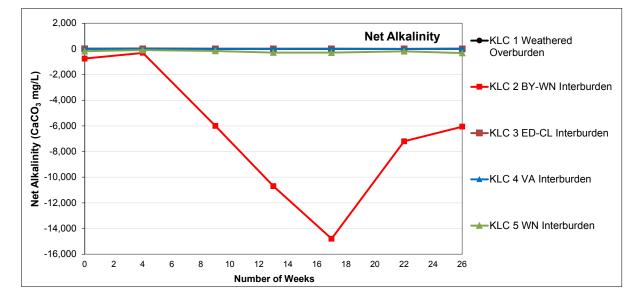
Date Number of Weeks Leach Number ALS Laboratory Number Volume On (L) Volume Off (L) Cum. Volume (L) Pore Volumes pH (RGS Measurement) pH (ALS Measurement)		Weight (kg) pH (1:5) EC (μS/cm)	2.00 8.10 333 31-Jan-19 0	Total S (%) Scr (%) MPA 26-Feb-19	0.13 0.11 3.4	ANC NAPP ANC:MPA	54.5 -51.1		
Number of Weeks Leach Number ALS Laboratory Number Volume On (L) Volume Off (L) Cum. Volume (L) Pore Volumes pH (RGS Measurement) pH (ALS Measurement)		pH (1:5)	333 31-Jan-19	Scr (%) MPA					
Number of Weeks Leach Number ALS Laboratory Number Volume On (L) Volume Off (L) Cum. Volume (L) Pore Volumes pH (RGS Measurement) pH (ALS Measurement)			333 31-Jan-19	MPA					
Number of Weeks Leach Number ALS Laboratory Number Volume On (L) Volume Off (L) Cum. Volume (L) Pore Volumes pH (RGS Measurement) pH (ALS Measurement)				26 Eab 40		ANC:MPA	16.2		
Leach Number ALS Laboratory Number Volume On (L) Volume Off (L) Cum. Volume (L) Pore Volumes pH (RGS Measurement) pH (ALS Measurement)				20-Feb-19	26-Mar-19	30-Apr-19	28-May-19	25-Jun-19	31-Jul-19
ALS Laboratory Number Volume On (L) Volume Off (L) Cum. Volume (L) Pore Volumes pH (RGS Measurement) pH (ALS Measurement)				4	9	13	17	22	26
Volume On (L) Volume Off (L) Cum. Volume (L) Pore Volumes pH (RGS Measurement) pH (ALS Measurement)			1	2	3	4	5	6	7
Volume Off (L) Cum. Volume (L) Pore Volumes pH (RGS Measurement) pH (ALS Measurement)			EB1902439003	EB1904857003	EB1907715003	EB1910914003	EB1913624003	EB1916406003	EB1919939003
Cum. Volume (L) Pore Volumes pH (RGS Measurement) pH (ALS Measurement)			1.0	1.0	1.0	1.0	1.0	1.0	1.0
Pore Volumes pH (RGS Measurement) pH (ALS Measurement)			0.744	0.610	0.680	0.593	0.582	0.579	0.559
pH (RGS Measurement) pH (ALS Measurement)			0.74	1.35	2.03	2.63	3.21	3.79	4.35
pH (ALS Measurement)			0.6	1.0	1.5	1.9	2.4	2.8	3.2
· · · /			6.29	5.49	5.60	4.71	3.59	5.94	4.52
			6.28	6.19	5.96	4.31	6.08	5.64	5.70
pH (deionised water used in tes			5.98	6.45	5.53	5.53	6.31	5.45	5.47
EC (RGS Measurement) (µS/cm)			196	197	309	396	600	728	633
EC (ALS Measurement) (µS/cm)			194	210	298	415	589	769	622
Acidity (mg/L)*			1	1	4	7	3	2	<1
Alkalinity (mg/L)*			10	3	2	<1	3	2	1
Net Alkalinity (mg/L)*			9	2	-2	-7	0	0	1
Major lons (mg/L)	LoR	WQ Guidelines [#]							
Calcium (Ca)	1	1,000	8	6	7	10	15	22	22
Potassium (K)	1	-	2	2	3	3	5	5	5
Magnesium (Mg)	1	-	3	5	6	9	19	24	18
Sodium (Na)	1	-	22	27	38	59	74	100	77
Chloride (Cl)	1	-	6	6	10	11	16	12	14
Fluoride (F)	0.1	2	0.2	0.2	0.3	0.2	0.3	0.3	0.4
Sulfate (SO ₄)	1	1.000	71	92	109	159	228	314	240
Trace metals/ metalloids (mg/L)	LoR	mg/L				All units mg/L	-		-
Aluminium (Al)	0.01	5	0.02	0.01	0.06	0.01	0.03	0.03	0.005
Arsenic (As)	0.001	0.5	<0.001	<0.001	<0.001	0.001	0.002	<0.001	0.001
Boron (B)	0.05	5	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05
Cadmium (Cd)	0.0001	0.01	<0.0001	< 0.0001	<0.0001	0.0001	0.0001	<0.0001	0.0001
Cobalt (Co)	0.001	1	0.015	0.006	0.006	0.013	0.010	0.010	0.004
Copper (Cu)	0.001	1	<0.001	<0.001	0.002	0.002	0.003	0.002	0.001
Iron (Fe)	0.05	1	0.03	0.12	0.07	0.11	0.10	0.03	0.03
Lithium (Li)	0.002	-	-	-	-	0.011	0.015	0.015	0.009
Mercury (Hg)	0.0001	-	-	-	-	<0.0001	<0.0001	<0.0001	<0.0001
Manganese (Mn)	0.001	2	0.023	0.020	0.022	0.021	0.030	0.027	0.006
Molybdenum (Mo)	0.001	0.15	0.002	0.002	0.003	0.003	0.003	0.004	0.003
Nickel (Ni)	0.001	1	0.016	0.006	0.008	0.016	0.011	0.011	0.005
Lead (Pb)	0.001	0.1	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Antimony (Sb)	0.001	-	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Selenium (Se)	0.01	0.02	<0.01	<0.01	0.01	0.02	0.03	0.03	0.02
Strontium (Sr)	0.001	-	-	-	-	0.706	1.020	1.230	0.834
Vanadium (V)	0.01	-	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Zinc (Zn)	0.005	20	0.019	0.023	0.028	0.052	0.055	0.057	0.040
Calculations**									
SO ₄ Release Rate			26	28	37	47	66	91	67
Cumulative SO ₄ Release			14279	14307	14344	14391	14457	14548	14615
Ca Release Rate			3.0	1.8	2.4	3.0	4.4	6.4	6.1
Cumulative Ca Release			296.5	298.4	300.8	303.7	308.1	314.5	320.6
Mg Release Rate			1.1	1.5	2.0	2.7	5.5	7.0	5.0
Cumulative Mg Release			1157.5	1159.1	1161.1	1163.8	1169.3	1176.3	1181.3
Residual ANC (%)			100.0	100.0	99.9	99.9	99.8	99.8	99.7
Residual Sulfur (%)			99.3	98.6	97.7	96.4	94.7	92.4	90.7
SO ₄ /(Ca+Mg) molar ratio			2.3	2.7	2.7	2.7	2.1	2.1	1.9

 c.i dicates less than the limit of reporting (LoR). * Acidity and alkalinity data calculated in mg CaCO₃/L.
 ** SO₄, Ca and Mg release rates calculated in mg/kg/flush. Low Ca and Mg concentrations recorded as half the LoR. Total S = Total Sulfur; Scr = Chromium Reducible Sulfur; and ANC = Acid Neutralising Capacity. MPA = Maximum Potential Acidity, and NAPP = Net Acid Producing Potential.

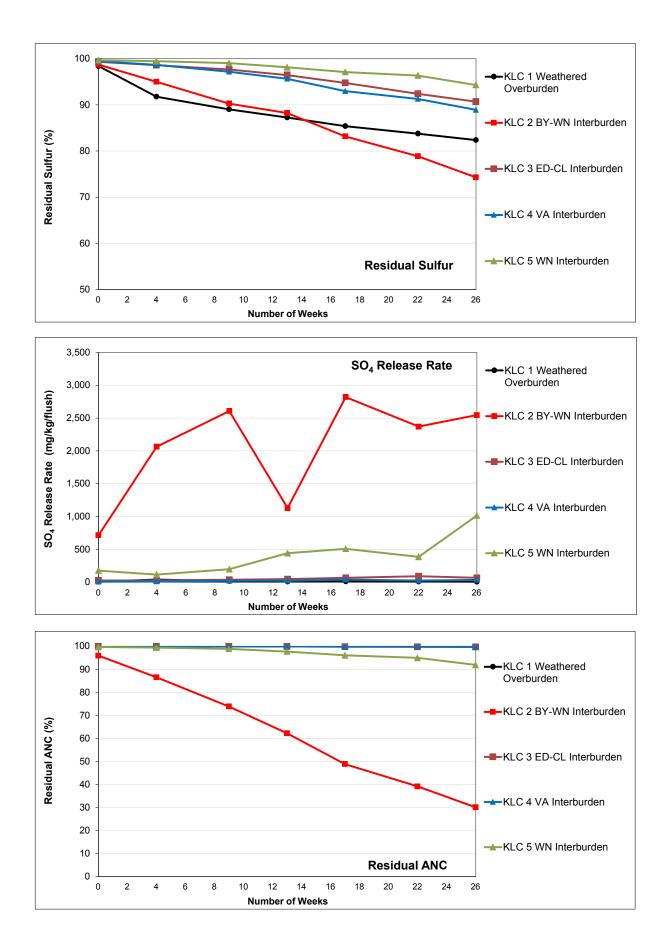
					KLC	4 Vaux Interbu	ırden		
		Weight (kg)	2.00	Total S (%)	0.05	ANC	26.5		
		pH (1:5)	8.30	Scr (%)	0.05	NAPP	-25.0		
		EC (µS/cm)	171	MPA	1.5	ANC:MPA	17.3		
Date			31-Jan-19	26-Feb-19	26-Mar-19	30-Apr-19	28-May-19	25-Jun-19	01-Aug-19
Number of Weeks			0	4	9	13	17	22	26
Leach Number			1	2	3	4	5	6	7
ALS Laboratory Number			EB1902439004	EB1904857004	EB1907715004	EB1910914004	EB1913624004	EB1916406004	EB1919939004
Volume On (L)			1.0	1.0	1.0	1.0	1.0	1.0	1.0
Volume Off (L)			0.654	0.510	0.483	0.474	0.437	0.419	0.351
Cum. Volume (L)			0.65	1.16	1.65	2.12	2.56	2.98	3.33
Pore Volumes			0.5	0.9	1.2	1.6	1.9	2.2	2.5
pH (RGS Measurement)			6.92	6.81	6.81	6.81	4.59	6.57	7.01
pH (ALS Measurement)			6.60	6.73	6.73	6.71	6.49	6.53	7.03
pH (deionised water used in te	est)		5.98	6.45	5.53	5.53	6.31	5.45	6.11
EC (RGS Measurement) (µS/cr	n)		98	165	271	304	511	349	568
EC (ALS Measurement) (µS/cn	n)		104	180	280	310	530	393	596
Acidity (mg/L)*			2	1	2	1	2	1	<1
Alkalinity (mg/L)*			11	6	6	6	6	7	14
Net Alkalinity (mg/L)*			9	5	4	5	4	6	14
Majar Jana (mr/l.)	LoR	WQ Guidelines [#]							
Major lons (mg/L)	-		0.5	4	0	0	0	4	4.4
Calcium (Ca) Potassium (K)	1	1,000	0.5	1 2	2 4	3 4	6	4	14 8
	1	-	0.5	2	3	5	10	7	15
Magnesium (Mg)	1		0.5	27	46	56	91	57	83
Sodium (Na) Chloride (Cl)	1	-	7	12	21	21	32	17	20
		2	0.4						
Fluoride (F) Sulfate (SO₄)	0.1	1,000	26	0.6 46	1.2 91	0.9 98	1.1 182	0.8	1.4 204
Trace metals/ metalloids (mg/L)	LoR	1,000 mg/L	20	40	91	All units mg/L	162	121	204
Aluminium (Al)	0.01	5	0.63	0.05	0.20	0.74	0.04	0.19	0.005
Arsenic (As)	0.001	0.5	0.007	0.005	0.007	0.006	0.004	0.004	0.009
Boron (B)	0.05	5	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.05
Cadmium (Cd)	0.0001	0.01	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Cobalt (Co)	0.001	1	<0.0001	<0.0001	<0.0001	0.001	0.001	0.001	0.002
Copper (Cu)	0.001	1	0.002	0.001	0.002	0.003	0.003	0.002	0.002
Iron (Fe)	0.05	1	0.08	0.03	0.03	0.03	0.15	0.03	0.03
Lithium (Li)	0.002	-	-	-	-	0.012	0.02	0.014	0.028
Mercury (Hg)	0.0001	-	-	-	-	< 0.0001	<0.0001	<0.0001	<0.0001
Manganese (Mn)	0.0001	2	0.002	0.002	0.003	0.004	0.008	0.004	0.008
Molybdenum (Mo)	0.001	0.15	0.007	0.007	0.012	0.011	0.017	0.016	0.042
Nickel (Ni)	0.001	1	0.0005	0.001	0.001	0.002	0.002	< 0.001	0.003
Lead (Pb)	0.001	0.1	<0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001	< 0.001
Antimony (Sb)	0.001	-	<0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001	0.002
Selenium (Se)	0.001	0.02	0.01	0.03	0.05	0.06	0.10	0.06	0.08
Strontium (Sr)	0.001	-	-	-	-	0.269	0.641	0.388	1.07
Vanadium (V)	0.01	-	<0.01	<0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01
Zinc (Zn)	0.005	20	<0.005	< 0.005	0.013	< 0.005	<0.005	< 0.005	0.009
<u> </u>	•								
Calculations** SO₄ Release Rate			0.5	11 7	22.0	23.2	40	25	26
Cumulative SO₄ Release			8.5	11.7 20.2	42.2	65.4	40	25 131	36
Cumulative SO ₄ Release			8.5 0.2	0.3	42.2	0.7	1.3	0.8	166 2.5
	a Release Rate imulative Ca Release								
				0.4	0.9	1.6	2.9	3.8	6.2
	lg Release Rate umulative Mg Release				0.7	1.2 2.6	2.2	1.5	2.6
			0.2	0.7	1.4		4.8	6.2	8.9
Residual ANC (%)			100.0	100.0	100.0	99.9	99.9	99.9	99.8
Residual Sulfur (%)			99.4	98.6	97.2	95.6	93.0	91.3	88.9
SO ₄ /(Ca+Mg) molar ratio			8.2	4.5	5.5 eporting (LoR)	3.6	3.4	3.2	2.2

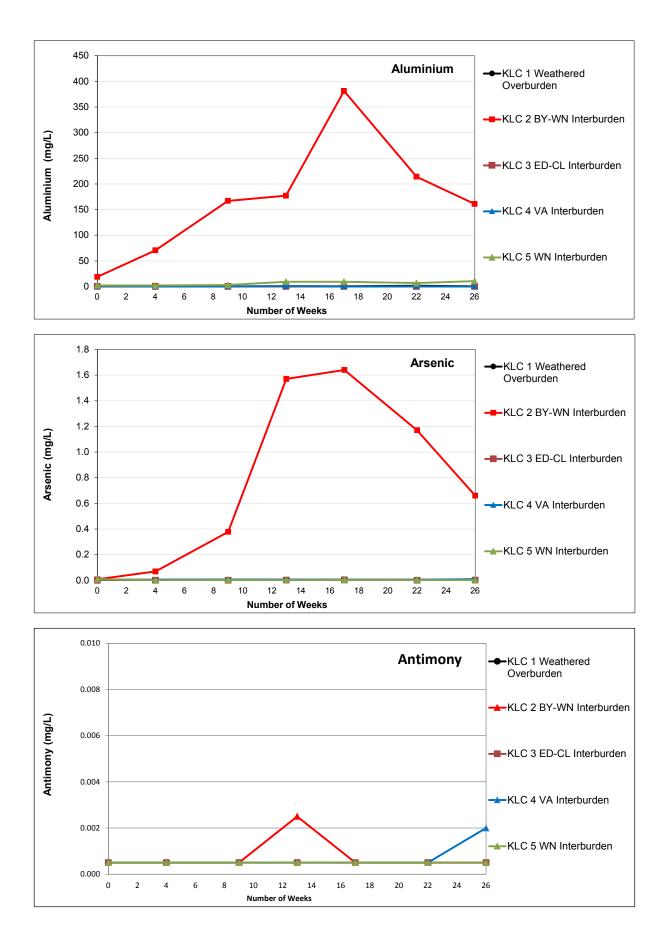

 indicates less than the limit of reporting (LoR). * Acidity and alkalinity data calculated in mg CaCO₃/L.
 ** SO₄, Ca and Mg release rates calculated in mg/kg/flush. Low Ca and Mg concentrations recorded as half the LoR. Total S = Total Sulfur; Scr = Chromium Reducible Sulfur; and ANC = Acid Neutralising Capacity. MPA = Maximum Potential Acidity, and NAPP = Net Acid Producing Potential.

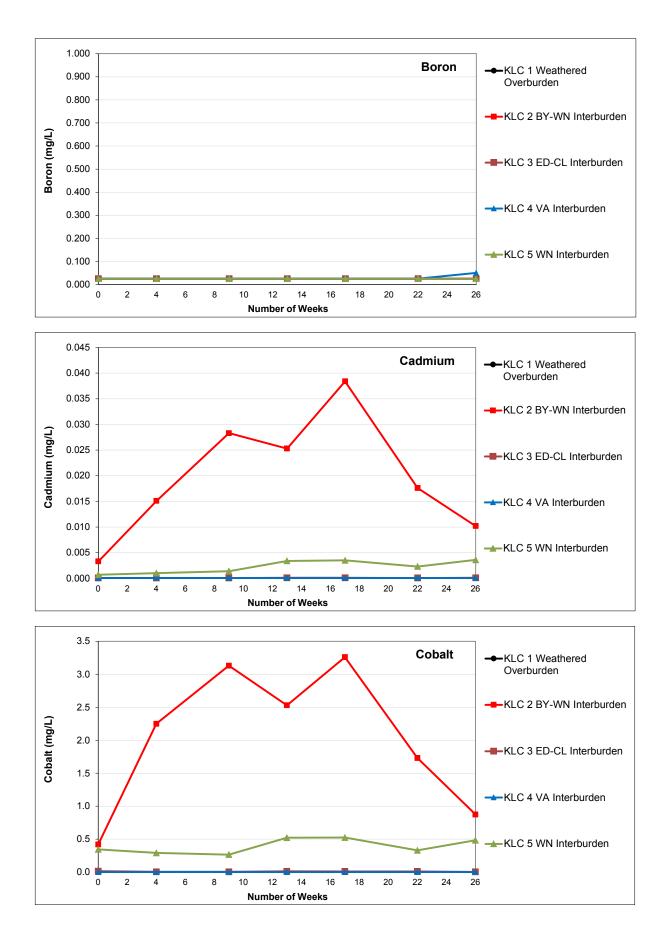


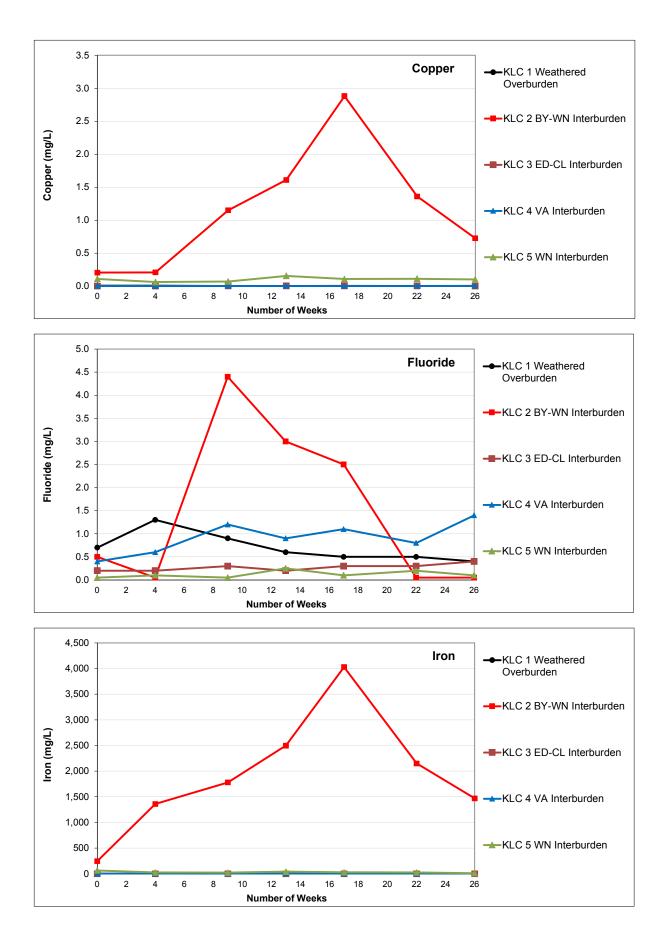

Potassium (K) 1 - 4 2 3 3 3 3 2 Magnesium (Mg) 1 - 31 46 106 306 457 335 417 Sodium (Na) 1 - 24 26 39 84 81 50 50 Chloride (C) 1 - 3 5 4 7 6 4 6 Sulfate (SO_1) 1 1,000 478 396 755 2,030 2,550 2,090 2,600 Trace metals/ metalloids (mg/L) LoR mg/L Mulnits mg/L Mulnits mg/L Aluminium (Al) 0.01 5 2.12 2.00 2.92 9.36 9.46 6.66 10.6 Arsenic (As) 0.001 0.5 0.005 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05						KLC 5	Wynne Interb	urden		
ph (1:5) 6.00 Ser (%) 1.01 NMPA 2.2 Date		Ī	Weight (kg)	2.00	Total S (%)	1.66	ANC	28.7		
Defa EC (µSCm) 1,201 № № 2 24.Mar.19 20.Apr.19 28.Mar.19 20.Apr.19 22.Apr.19 20.Apr.19 20.Apr.19 20.Apr.19 20.Apr.19 20.Apr.19 20.Apr.19 20.Apr.19 20.Apr.19 20.Apr.11<		ľ								
Number of Weeks In 0 A 9 0 1 0 1 2 2 3 4 5 6 7 ALS Laboratory Number 10 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1										
Leach Number I 2 3 4 5 6 7 ASL SLobrat/ONUmber EB19020005 EB190710005 EB191702005 EB1918				31-Jan-19	26-Feb-19	26-Mar-19	30-Apr-19	28-May-19	25-Jun-19	01-Aug-19
ALS Laboratory Number EB1902430005 EB1902430005 EB1902430005 EB190243005 EB19024302 O.389 O.380 O.380 <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>										
Volume On (L) 10 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.0 1.1 1.0 <	Leach Number			1	2					
Volume Off (i)				EB1902439005			EB1910914005			
Cum. Volume (L) 0.74 1.33 1.85 2.28 2.86 3.05 3.83 pH (GS Measurement) 4.20 3.48 3.33 3.15 3.13 3.26 3.33 pH (GS Measurement) (seconsent) (s										
Pore Volumes 0.5 1.0 1.4 1.7 2.0 2.3 2.8 pH (GK) Measurement) 4.37 3.47 3.3 3.15 3.18 3.24 3.33 pH (GK) Measurement) (jsCm) 5.96 6.45 5.53 5.53 5.51 7.81										
pH (635 Measurement) 4.20 3.48 3.33 3.15 3.13 3.26 3.33 pH (delonised water used in test) 5.98 6.45 5.53 6.31 5.45 6.11 EC (ROS Measurement) (µS(rm) 866 7.28 1331 2.960 3.550 2.930 3.410 EC (ALS Measurement) (µS(rm) 846 821 1430 3.070 3.820 3.130 3.540 Acidity (mg/L)" 11 1 41 41 1.55 281 286 181 321 Akalinity (mg/L)" -178 84 155 281 286 181 -322 Major chang/L) LOR WO cuustament -178 -84 155 281 -286 183 229 Potassium (Mg) 1 - 24 26 3 3 3 3 2 Solitan (SO) 1 - 24 26 39 84 81 60 50 50 50 10<										
pH (Jell 4.37 3.47 3.3 3.15 3.18 3.24 3.28 PH (delonised water used in LipSicm) 5.89 6.45 5.53 5.53 6.31 5.45 6.31 5.45 6.31 5.45 6.31 5.45 6.31 5.53 5.31 5.35 6.31 5.45 6.31 3.54 6.31 3.54 6.31 3.54 6.35 3.53 2.350 2.330 3.410 3.54 3.54 6.35 3.51 3.54 6.35 3.51 3.54 3.54 3.54 3.54 3.54 3.54 3.54 3.54 3.54 3.54 3.54 3.54 3.54 3.54 1.81 3.321 3.35 4.71 4.1 <1										
pH (den)sed water used in test) 5.98 6.45 5.53 6.31 5.45 6.11 EC (RS Measurement) (µS(rm) 846 821 1430 3.070 3.820 3.130 3.540 Acidity (mg/L)* 7178 844 155 281 286 181 321 Atkalinty (mg/L)* -178 84 155 281 286 181 321 Mator (ng/L) LOR WQ Guademax* -178 -84 -155 281 -286 -181 -322 Major chong(µL) 1 - 4 2 3 3 3 229 Porassium (Ng) 1 - 31 46 106 306 457 335 417 Solum (Na) 1 - 3 5 4 7 6 4 6 Porassium (Ng) 1 1.000 478 396 755 2.030 2.550 2.090 2.600 Tace matalar macholods (mg/L)										
EC (ROS Measurement) (µS/cm) 886 728 1331 2.060 3.550 2.930 3.410 Acidity (mg/L)* 778 840 821 11430 3.070 3.820 5.130 3.540 Akialinity (mg/L)* 778 840 155 281 286 181 321 Met Akialinity (mg/L)* - 41 430 305 33 32 229 335 417 336 417 336 417 336 417 336 417 36 41 76 61 46 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66										
EC (ALS Massurement) (sScm) 846 821 1430 3,070 3,820 3,130 3,540 Alcidity (mg/L)* 178 84 155 281 286 181 321 Alkalinity (mg/L)* -178 84 -155 -281 -286 -181 -321 Magnesium (N) 1 1.000 53 28 67 123 206 153 229 Calcium (Ca) 1 1.000 53 28 67 123 206 153 229 Potassium (N) 1 - 31 46 106 306 457 335 417 Sodium (Na) 1 - 31 46 106 306 457 335 417 Sodium (Na) 1 - 3 5 4 7 6 4 6 Fluoride (F) 0.1 2 <0.1 86 755 2.030 2.500 2.000 2.600 Trace metals/ metalloid s(mg/L) LoR mg/L										
Aciding (mg/L)* 178 84 155 281 286 181 321 Net Akalinity (mg/L)* -178 -41 -286 -181 -321 Major ions (mg/L) LOR W0 Outsetmes* -										
Alkalinity (mg/L)* <1		ı)								
Net Akalinity (mg/L)* LoR WQ Guidelines* -178 -84 -155 -281 -286 -181 -321 Major ions (mg/L) LoR WQ Guidelines*										
Major lons (mg/L) LoR wQ Guidelines* Catcium (Ga) 1 1,000 53 28 67 123 206 153 229 Potassium (K) 1 - 44 2 3 3 3 3 2 Magnesium (Mg) 1 - 31 46 106 306 457 335 417 Sofium (Na) 1 - 24 26 39 84 81 50 50 Choride (C) 0.1 2 <0.1										
Catclum (Ca) 1 1.000 53 28 67 123 206 153 229 Potassium (K) 1 - 4 2 3 3 3 3 2 Magnesium (Mg) 1 - 31 46 106 306 457 335 417 Sodium (Ma) 1 - 24 26 39 84 81 50 50 Sodium (Ma) 1 - 24 26 39 84 81 50 50 State (SO) 1 1.000 478 386 755 2.030 2.55 2.090 2.600 Trace metals/ metaloids (mg/L) LoR mg/L Auminium (A) 0.01 5 2.12 2.00 2.92 9.36 9.46 6.66 10.6 Arsenic (As) 0.001 0.5 0.003 0.002 0.003 0.002 0.003 0.002 0.003 0.0023 0.0023 0.0023	Net Alkalinity (mg/L)*			-178	-84	-155	-281	-286	-181	-321
Potassium (K) 1 - 4 2 3 <	Major lons (mg/L)	LoR	WQ Guidelines [#]							
Magnesium (Mg) 1 - 31 46 106 306 457 335 417 Sodium (Na) 1 - 24 26 39 64 81 50 50 Chioride (C) 1 - 3 5 4 7 6 4 6 Viriate (SO) 0.1 2 <0.1	Calcium (Ca)	1	1,000	53	28	67	123	206	153	229
Magnesium (Mg) 1 · 31 46 106 306 457 335 417 Chloride (C) 1 - 24 26 39 84 81 50 50 Chloride (C) 1 - 3 5 4 7 6 4 6 Solfart (SO) 1 1.000 478 386 755 2.030 2.500 2.000 2.600 Trace metals/ metalloids (mg/L) LoR mg/L - All units mg/L - All units mg/L - All units mg/L - - All units mg/L - - All units mg/L - - 0.005 <0.05	Potassium (K)	1	-				3	3	3	2
Sodium (Na) 1 - 24 26 39 84 81 50 50 Fluoride (F) 0.1 2 <0.1	Magnesium (Mg)	1	-	31	46	106	306	457	335	417
Fluoride (F) 0.1 2 <0.1 0.1 0.2 0.1 Sulfate (SO ₄) 1 1,000 478 396 755 2,030 2,550 2,090 2,600 Trace metals/ metalloids (mg/L) LoR mg/L	Sodium (Na)	1	-	24	26	39	84	81	50	50
Sulfate (SO ₄) 1 1.000 478 396 755 2.030 2.550 2.090 2.600 Trace metals/ metalloids (mg/L) LoR mg/L - All units mg/L - - - - - - - - - - All units mg/L - - - - - - - - - - - - - - - - - - - 0.001 - 0.002 0.003 0.002 0.003 0.002 0.003 0.002 - - - - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.022 0.022 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.003 0.001 - 0.034 - - - - - -	Chloride (CI)	1	-	3	5	4	7	6	4	6
Trace metals/ metalloids (mg/L) LoR mg/L All unitis mg/L Aluminium (A) 0.01 5 2.12 2.00 2.92 9.36 9.46 6.66 10.6 Aluminium (A) 0.05 5 40.05 <0.05	Fluoride (F)	0.1	2	<0.1	0.1	<0.1	0.25	0.1	0.2	0.1
Aluminum (A) 0.01 5 2.12 2.00 2.92 9.36 9.46 6.66 10.6 Arsenic (As) 0.001 0.5 0.009 <0.001 0.003 0.002 0.003 0.002 0.003 Boron (B) 0.05 5 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.02 0.022 0.022 0.022 0.022 0.033 0.484 Copper (Cu) 0.001 1 0.11 0.062 0.071 0.155 0.108 0.111 0.101 Irinhim (Li) 0.002 - - - 0.031 0.027 0.02 0.034 Marganese (Mn) 0.001 0.15 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <td>Sulfate (SO₄)</td> <td>1</td> <td>1,000</td> <td>478</td> <td>396</td> <td>755</td> <td>2,030</td> <td>2,550</td> <td>2,090</td> <td>2,600</td>	Sulfate (SO ₄)	1	1,000	478	396	755	2,030	2,550	2,090	2,600
Arsenic (As) 0.001 0.5 0.009 <0.001 0.003 0.002 0.003 0.002 0.003 Boron (B) 0.05 5 <0.05	Trace metals/ metalloids (mg/L)	LoR	mg/L				All units mg/L			
Boron (B) 0.05 5 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.055 <0.05 <0.055 <0.05 <0.055 <0.055 <0.055 <0.055 <0.055 <0.055 <0.055 <0.055 <0.055 <0.055 <0.055 <0.055 <0.055 <0.055 <0.055 <0.055 <0.055 <0.055 <0.055 <0.052 <0.555 <0.034 <0.022 <0.27 <0.2 <0.034 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	Aluminium (Al)	0.01	5	2.12	2.00	2.92	9.36	9.46	6.66	10.6
Cadmiun (Cd) 0.001 0.01 0.001 0.001 0.0014 0.0034 0.0035 0.0023 0.0036 Cobait (Co) 0.001 1 0.345 0.292 0.267 0.522 0.525 0.33 0.484 Copper (Cu) 0.001 1 0.11 0.062 0.071 0.155 0.108 0.111 0.101 Iron (Fe) 0.05 1 65.3 26.4 22.0 41.2 29.8 24.3 12.1 Lithium (Li) 0.002 - - - - 0.031 0.027 0.02 0.034 Mercury (Hg) 0.001 2 0.556 0.697 1.420 3.610 6.660 4.400 7.130 Molybdenum (Mo) 0.001 0.15 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <	Arsenic (As)	0.001			<0.001	0.003	0.002		0.002	0.002
Cobalt (Co) 0.001 1 0.345 0.292 0.267 0.522 0.525 0.33 0.484 Copper (Cu) 0.001 1 0.11 0.062 0.071 0.155 0.108 0.111 0.101 Lithium (Li) 0.005 1 65.3 26.4 22.0 41.2 29.8 24.3 12.1 Lithium (Li) 0.002 - - - 0.03 0.027 0.02 0.03 Manganese (Mn) 0.001 2 0.556 0.697 1.420 3.610 6.660 4.400 7.130 Molybdenum (Mo) 0.001 0.15 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 </td <td>Boron (B)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Boron (B)									
Copper (Cu) 0.001 1 0.11 0.062 0.071 0.155 0.108 0.111 0.101 Iron (Fe) 0.05 1 65.3 26.4 22.0 41.2 29.8 24.3 12.1 Lithium (Li) 0.002 - - - 0.03 0.027 0.02 0.034 Mercury (Hg) 0.001 - - - - 0.001 <0.001										
Iron (Fe) 0.05 1 65.3 26.4 22.0 41.2 29.8 24.3 12.1 Lithium (Li) 0.002 - - - 0.03 0.027 0.02 0.034 Marcury (Hg) 0.0001 - - - - - 0.0001 <0.0001										
Lithium (Li) 0.002 - - - 0.03 0.027 0.02 0.034 Mercury (Hg) 0.0001 - - - - 0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01<				-						
Mercury (Hg) 0.0001 - - - <th></th> <th></th> <th></th> <th></th> <th>26.4</th> <th></th> <th></th> <th></th> <th></th> <th></th>					26.4					
Manganese (Mn) 0.001 2 0.556 0.697 1.420 3.610 6.660 4.400 7.130 Molybdenum (Mo) 0.001 0.15 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001										
Molybdenum (Mo) 0.001 0.15 <0.001										
Nickel (N) 0.001 1 0.903 0.682 0.718 1.350 1.200 0.870 1.260 Lead (Pb) 0.001 0.1 0.003 0.002 <0.001										
Lead (Pb) 0.001 0.1 0.003 0.002 <0.001 0.001 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001										
Antimony (Sb) 0.001 - <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.001 <0.001 0.001 <0.001 0.002 0.002 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 </td <td></td>										
Selenium (Se) 0.01 0.02 <0.01 <0.01 <0.01 0.02 0.02 0.01 0.01 Strontium (Sr) 0.001 - - - - 1.660 2.840 1.730 3.630 Vanadium (V) 0.01 - - - - 1.660 2.840 1.730 3.630 Zinc (Zn) 0.005 20 0.832 0.739 1.09 2.48 2.31 1.51 1.94 Zinc (Zn) 0.005 20 0.832 0.739 1.09 2.48 2.31 1.51 1.94 Calculations** -										
Strontium (Sr) 0.001 - - - 1.660 2.840 1.730 3.630 Vanadium (V) 0.01 - - - - 1.660 2.840 1.730 3.630 Vanadium (V) 0.01 - < < < < < <										
Vanadium (V) 0.01 - <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01										
Zinc (Zn) 0.005 20 0.832 0.739 1.09 2.48 2.31 1.51 1.94 Calculations** SQ4 Release Rate 176.9 116.0 197.4 441.5 509 386 1015 Cumulative SQ4 Release 176.9 292.9 490.3 931.8 1441 1827 2842 Ca Release Rate 19.6 8.2 17.5 26.8 41.1 28.3 89.4 Cumulative Ca Release 19.6 27.7 66.6 91.2 61.9 162.8 Cumulative Ga Release 11.5 13.5 27.7 66.6 91.2 61.9 61.8 Cumulative Mg Release 11.5 24.9 52.7 119.2 210.4 272.3 435.1 Ga mulative Mg Release 11.5 24.9										
Calculations** Calculations SO ₄ Release Rate 176.9 116.0 197.4 441.5 509 386 1015 Cumulative SO ₄ Release 176.9 292.9 490.3 931.8 1441 1827 2842 Ca Release Rate 19.6 8.2 17.5 26.8 41.1 28.3 89.4 Cumulative Ca Release 19.6 27.8 45.3 72.1 113.2 141.4 230.9 Mg Release Rate 11.5 13.5 27.7 66.6 91.2 61.9 162.8 Cumulative Mg Release 11.5 24.9 52.7 119.2 210.4 272.3 435.1 Residual ANC (%) 99.7 99.4 98.9 97.7 96.1 95.0 91.9 Residual Sulfur (%) 99.6 99.4 99.0 98.1 97.1 96.3 94.3										
SO ₄ Release Rate 176.9 116.0 197.4 441.5 509 386 1015 Cumulative SO ₄ Release 176.9 292.9 490.3 931.8 1441 1827 2842 Ca Release Rate 19.6 8.2 17.5 26.8 41.1 28.3 89.4 Cumulative Ca Release 19.6 27.8 45.3 72.1 113.2 141.4 230.9 Mg Release Rate 11.5 13.5 27.7 66.6 91.2 61.9 162.8 Cumulative Mg Release 11.5 24.9 52.7 119.2 210.4 272.3 435.1 Residual ANC (%) 99.7 99.4 98.9 97.7 96.1 95.0 91.9 Residual Sulfur (%) 99.6 99.4 99.0 98.1 97.1 96.3 94.3		0.005	20	0.832	0.739	1.09	2.40	2.31	1.51	1.94
Cumulative SO ₄ Release 176.9 292.9 490.3 931.8 1441 1827 2842 Ca Release Rate 19.6 8.2 17.5 26.8 41.1 28.3 89.4 Cumulative Ca Release 19.6 27.8 45.3 72.1 113.2 141.4 230.9 Mg Release Rate 11.5 13.5 27.7 66.6 91.2 61.9 162.8 Cumulative Mg Release 11.5 24.9 52.7 119.2 210.4 272.3 435.1 Residual ANC (%) 99.7 99.4 98.9 97.7 96.1 95.0 91.9 Residual Sulfur (%) 99.6 99.4 99.0 98.1 97.1 96.3 94.3	Calculations**									
Ca Release Rate 19.6 8.2 17.5 26.8 41.1 28.3 89.4 Cumulative Ca Release 19.6 27.8 45.3 72.1 113.2 141.4 230.9 Mg Release Rate 11.5 13.5 27.7 66.6 91.2 61.9 162.8 Cumulative Mg Release 11.5 24.9 52.7 119.2 210.4 272.3 435.1 Residual ANC (%) 99.7 99.4 98.9 97.7 96.1 95.0 91.9 Residual Sulfur (%) 99.6 99.4 99.0 98.1 97.1 96.3 94.3										
Cumulative Ca Release 19.6 27.8 45.3 72.1 113.2 141.4 230.9 Mg Release Rate 11.5 13.5 27.7 66.6 91.2 61.9 162.8 Cumulative Mg Release 11.5 24.9 52.7 119.2 210.4 272.3 435.1 Residual ANC (%) 99.7 99.4 98.9 97.7 96.1 95.0 91.9 Residual Sulfur (%) 99.6 99.4 99.0 98.1 97.1 96.3 94.3										
Mg Release Rate 11.5 13.5 27.7 66.6 91.2 61.9 162.8 Cumulative Mg Release 11.5 24.9 52.7 119.2 210.4 272.3 435.1 Residual ANC (%) 99.7 99.4 98.9 97.7 96.1 95.0 91.9 Residual Sulfur (%) 99.6 99.4 99.0 98.1 97.1 96.3 94.3										
Cumulative Mg Release 11.5 24.9 52.7 119.2 210.4 272.3 435.1 Residual ANC (%) 99.7 99.4 98.9 97.7 96.1 95.0 91.9 Residual Sulfur (%) 99.6 99.4 99.0 98.1 97.1 96.3 94.3										
Residual ANC (%) 99.7 99.4 98.9 97.7 96.1 95.0 91.9 Residual Sulfur (%) 99.6 99.4 99.0 98.1 97.1 96.3 94.3										
Residual Sulfur (%) 99.6 99.4 99.0 98.1 97.1 96.3 94.3										
SO ₄ /(Ca+Mg) molar ratio 1.9 1.6 1.3 1.3 1.1 1.2 1.2										
 indicates less than the limit of reporting (LoR) * Acidity and alkalinity data calculated in mg CaCO./l 	SO₄/(Ca+Mg) molar ratio									1.2

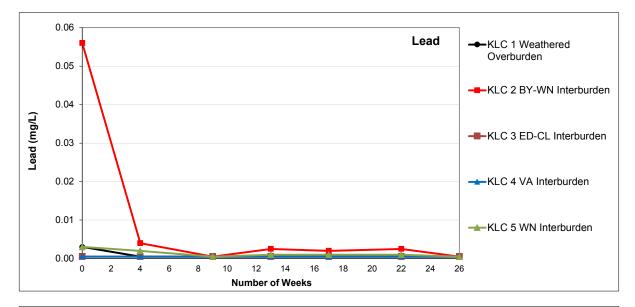
Total S = Total Sulfur; Scr = Chromium Reducible Sulfur; and ANC = Acid Neutralising Capacity. MPA = Maximum Potential Acidity, and NAPP = Net Acid Producing Potential.

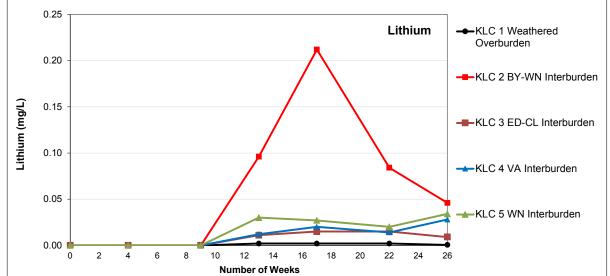


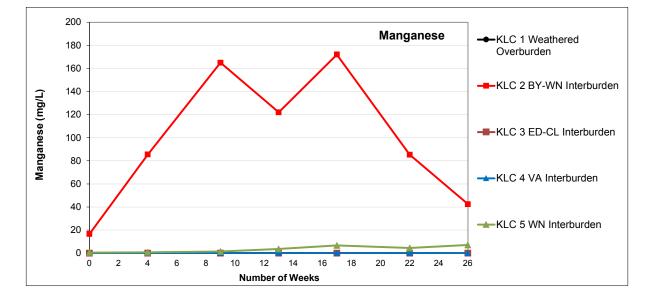


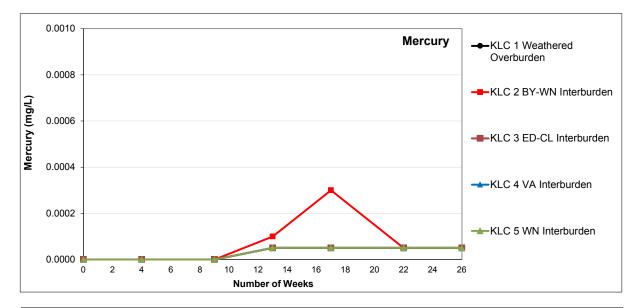


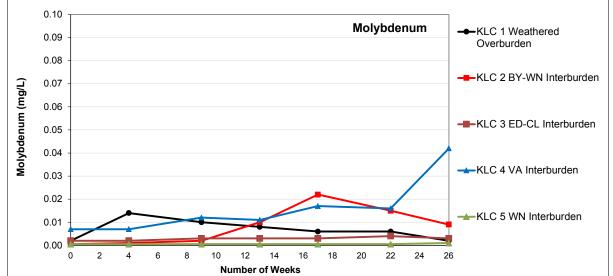


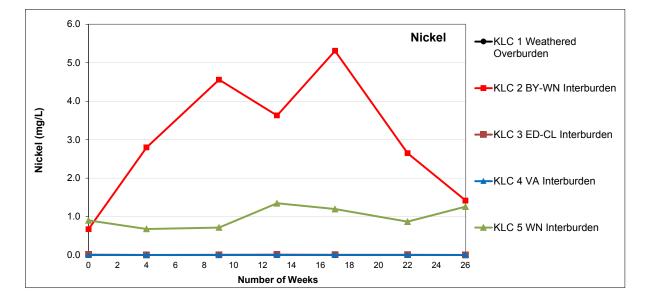


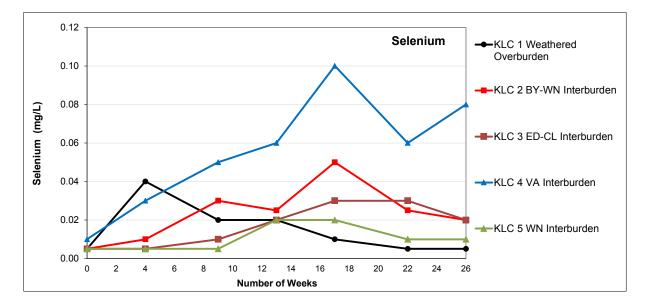


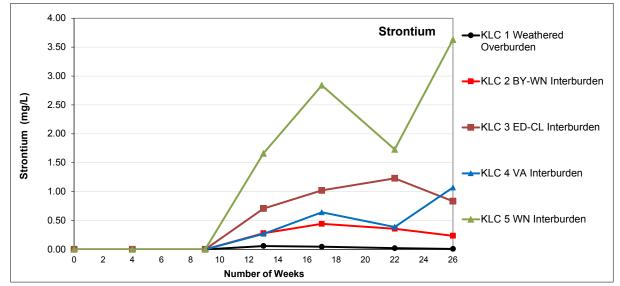


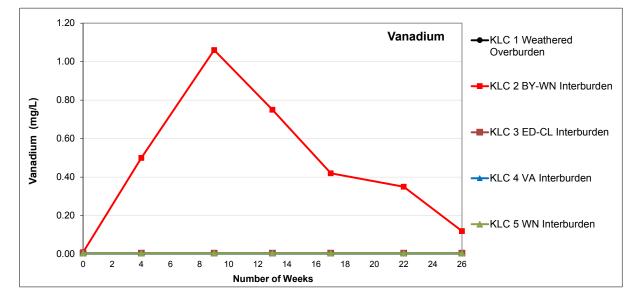


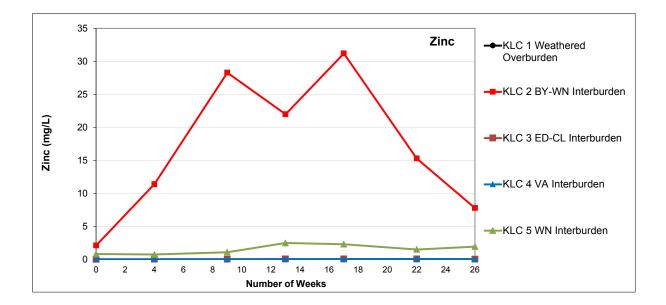












	-					- LD COal Se		-	
	ļ	Weight (kg)	2.00	Total S (%)	1.50	ANC	24	-	
		pH (1:5)	7.20	Scr (%)	1.08	NAPP	23.0	-	
		EC (µS/cm)	320	MPA	45.9	ANC:MPA	0.5		
Date			08-Apr-20	07-May-20	09-Jun-20	07-Jul-20	07-Aug-20	08-Sep-20	09-Oct-20
Number of Weeks			Ö	4	9	13	17	22	26
Leach Number			1	2	3	4	5	6	7
ALS Laborate	ory Numbe	er	EB2009898001	EB2009898002	EB2015249001	EB2017807001	EB2020923001	EB2023744001	EB2026635001
Volume On (L)			1.0	1.0	1.0	1.0	1.0	1.0	1.0
Volume Off (L)			0.732	0.558	0.558	0.615	0.682	0.643	0.626
Cum. Volume (L)			0.73	1.29	1.85	2.46	3.15	3.79	4.41
Pore Volumes			0.5	1.4	2.4	3.4	4.4	5.4	6.4
pH (RGS Measurement)			7.00	5.51	6.17	6.15	5.01	5.79	4.89
pH (ALS Measurement)			7.03	5.38	5.12	5.21	4.78	5.49	5.30
pH (deionised water used in te	,		6.01	6.10	6.75	6.73	6.68	5.98	6.43
EC (RGS Measurement) (μS/cn	/		1,173	1,218	1,314	1,321	1,429	1,273	1,366
EC (ALS Measurement) (µS/cm	ו)		1,240	1,250	1,470	1,420	1,550	1,300	1,600
Acidity (mg/L)*			4	15	22	10	14	19	16
Alkalinity (mg/L)*			12	4	3	9	<1	<1	<1
Net Alkalinity (mg/L)*			8	-11	-19	-1	-14	-19	-16
			[
Major lons (mg/L)	LoR	WQ Guidelines [#]	= 0	=0	100	100	100	105	105
Calcium (Ca)	1	1,000	53	72	100	108	132	105	125
Potassium (K)	1	-	6	9	8	6	7	6	7
Magnesium (Mg)	1	-	62	85	109 72	121	133	110 31	130
Sodium (Na)	1 1	-	108	80 8	72	53	42	6	26
Chloride (CI)	0.1	2	39 1.1	0.4	0.2	5 0.2	5 0.2	0.2	4 0.2
Fluoride (F) Sulfate (SO ₄)	0.1	1,000	564	652	805	836	840	741	892
Trace metals/ metalloids (mg/L)	LoR	WQ Guidelines [#]	504	052	605	030	040	741	092
Aluminium (Al)	0.01	5	<0.01	0.04	0.08	0.06	0.08	0.07	0.1
Arsenic (As)	0.001	0.5	<0.001	< 0.001	<0.001	< 0.001	< 0.001	< 0.001	<0.001
Boron (B)	0.001	5	<0.001	<0.001	<0.001	< 0.05	<0.001	0.1	< 0.05
Cadmium (Cd)	0.0001	0.01	<0.0001	< 0.001	0.0007	0.0007	0.0008	0.0007	0.0008
Cobalt (Co)	0.001	1	0.012	0.091	0.12	0.087	0.07	0.045	0.039
Copper (Cu)	0.001	1	< 0.001	0.006	0.011	0.007	0.012	0.008	0.01
Iron (Fe)	0.05	1	< 0.05	2.52	5.67	5.71	5.23	4.16	4.06
Mercury (Hg)	0.0001	0.02	< 0.0001	< 0.0001	< 0.0001	-	-	-	-
Lithium (Li)	0.001	-	0.015	0.014	0.02	0.015	0.018	0.018	0.02
Manganese (Mn)	0.001	2	0.112	1.07	1.97	2.31	2.07	1.61	2.14
Molybdenum (Mo)	0.001	0.15	0.008	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Nickel (Ni)	0.001	1	0.011	0.093	0.118	0.089	0.073	0.050	0.044
Lead (Pb)	0.001	0.1	< 0.001	< 0.001	<0.001	< 0.001	0.001	< 0.001	0.001
Antimony (Sb)	0.001	-	<0.001	< 0.001	<0.001	<0.001	<0.001	< 0.001	<0.001
Selenium (Se)	0.01	0.02	<0.01	0.01	0.02	0.02	0.02	0.01	0.01
Strontium (Sr)	0.01	-	1.48	1.46	1.95	2.27	2.08	1.75	2.14
Vanadium	0.01	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Zinc (Zn)	0.005	20	<0.01	0.092	0.157	0.122	0.126	0.097	0.106
Calculations**									
SO ₄ Release Rate			206.4	181.9	224.6	257.1	286.4	238.2	279.2
Cumulative SO ₄ Release			206.4	388.3	612.9	870.0	1,156.4	1,394.7	1,673.9
Ca Release Rate			19.4	20.1	27.9	33.2	45.0	33.8	39.1
Cumulative Ca Release			19.4	39.5	67.4	100.6	145.6	179.4	218.5
Mg Release Rate			22.7	23.7	30.4	37.2	45.4	35.4	40.7
Cumulative Mg Release			22.7	46.4	76.8	114.0	159.4	194.7	235.4
Residual ANC (%)			99.4	98.8	98.0	97.1	95.8	94.9	93.8
Residual Sulfur (%)			99.5	99.1	98.6	98.1	97.4	96.9	96.3
SO₄/(Ca+Mg) molar ratio			1.5	1.3	1.2	1.1	1.0	1.1	1.1

KLC 6 - ED Coarse Rejects

< indicates less than the analytical detection limit. * Acidity and alkalinity data calculated in mg CaCO₃/L.

** SO₄, Ca and Mg release rates calculated in mg/kg/flush.

Total S = Total Sulfur; Scr = Chromium Reducible Sulfur; and ANC = Acid Neutralising Capacity. MPA = Maximum Potential Acidity, and NAPP = Net Acid Producing Potential.

ANZECC & ARMCANZ (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality, National Water Quality Management Strategy, 2000, ANZECC (Australian and New Zealand Environment Conservation Council) and ARMCANZ (Agriculture and Resource Management Council of Australia and New Zealand). Livestock Drinking Water Levels (Irrigation Levels used for Fe and Mn).

Weight (tg) pH (15) 2:00 3:5 Total 5 (%) 3:5 0.8APC AMPAP 1.4 4 Date 08.4/7.00 07.402.00 08.5/7.00 07.402.00 08.56/7.00 07.402.00 08.56/7.00 09.400.00 07.402.00 08.56/7.00 09.400.00 07.402.00 08.56/7.00 09.400.00 07.402.00 08.56/7.00 09.400.00 07.402.00 08.56/7.00 09.57/7.00 09.56/7.00 09.57/7.00 09.57/7.00 09.57/7.00 09.57/7.00 09.57/7.00 09.57/7.00 09.57/7.00 09.57/7.00 09.5 09.57/7.00 00.							- ED Fille K	ejecta	-	
Date 125 Mir A 1.9 A MCMAD 0.9 Number of Weeks 9										
Data Number of Weeks 0										
Number of Weeks i j <thj< th=""> j j</thj<>			EC (µS/cm)	125	MPA	18.4	ANC:MPA	0.9		
Leach Number 1 2 3 4 5 6 7 Valume On (L) 10	Date			08-Apr-20	07-May-20	09-Jun-20	07-Jul-20	07-Aug-20	08-Sep-20	09-Oct-20
ALS Laboratory Number EB20122000 EB20122000 EB20122000 EB20122000 EB20221400 EB20221400 <theb201400< th=""> EB2021400 <th< th=""><th>Number of Weeks</th><th></th><th></th><th>Ó</th><th>4</th><th>9</th><th>13</th><th>17</th><th>22</th><th>26</th></th<></theb201400<>	Number of Weeks			Ó	4	9	13	17	22	26
Volume On (L) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Cum. Volume (L) 0.883 0.846 0.865 0.845 0.857 0.877 0.870 0.850 6.811 6.517 6.73 6.68 5.58 6.63 6.64 7.62 PH (Als Measurement) (pS/cm) 373 180 107 80 72 87 81 Acidity (mg/L)* 1 1 1 1 1 1 1 2 2 1 3 Acidity (mg/L)* 1 0 4 5 10 5 4 4 4 4 2 2 2 2 1 3 3 3 4	Leach Number			1	2	3	4	5	6	7
Volume Of (L) 10 10 10 10 10 10 10 Cum. Volume (L) 0.88 0.88 0.88 0.88 0.88 0.83 0.84 4.33 5.20 6.11 Pore Volumes 0.6 1.4 2.47 3.48 4.43 5.20 6.11 Ph (GS Measurement) 8.21 7.48 6.54 7.23 7.11 7.20 7.62 Ph (GS Measurement) (s)Cm) 8.64 6.77 6.58 6.41 6.68 5.98 6.43 EC (RS Measurement) (s)Cm) 373 1.80 107 80 72 81 Acidity (mg/L)* 1 1 1 1 1 2 2 1 3 Acidity (mg/L)* 1 0.00 11 1.41 1 1 1 2 2 1 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ALS Laborat	tory Numbe	er	EB2009898002	EB2012205002	EB2015249002	EB2017807002	EB2020923002	EB2023744002	EB2026635002
Volume Off (L) 0.863 0.845 0.857 0.872 0.972 0.972 0.974 Pore Volumes 0.68 1.4 2.4 3.45 4.43 5.40 6.11 Pore Volumes 0.6 1.4 2.4 3.45 4.43 5.20 6.11 Ph (RoS Measurement) (ISCm) 8.21 7.48 6.54 7.23 7.11 7.20 7.82 Ph (delonised vater used in test) 6.01 6.01 6.75 6.73 6.58 6.43 EC (AS Measurement) (ISCm) 399 257 128 88 68.0 86 74 Acidity (mgL)* 1 <1 <1 1 5 10 5 6 7 Net Alkalinity (mgL)* 1 1 4 5 10 5 4 4 4 2 Socium (Mg) 1 - 13 8 5 4 4 2 2 Socium (Mg) 1 - 32				1.0	1.0	1.0	1.0	1.0	1.0	1.0
Curn. Volume (L) 0.68 1.71 2.57 3.45 4.33 5.20 6.11 Ph (ROS Measurement) 0.6 1.4 2.4 3.4 4.44 5.4 6.4 pH (ROS Measurement) 6.21 7.48 6.54 7.23 7.11 7.20 7.62 pH (Alc Measurement) (µSicm) 6.01 6.10 6.75 6.73 6.80 86 7.4 EC (ROS Measurement) (µSicm) 373 180 107 8.0 7.2 87 81 Acidity (mg)L)* 1 1 1 1.0 5 6 7 Atalinity (mg/L)* 70 4 5 8 3 3 4 Vatalisity (mg/L)* 1 1.4 1 1 1 1 2 2 2 Atalinity (mg/L)* 1 1.000 11 1 1 1 2 2 2 Atalinity (mg/L) 1 - 38 4 4 3										
Pore Volumes 0.6 1.4 2.4 3.4 4.4 5.4 6.4 pH (RS Measurement) 8.04 6.77 6.58 6.41 6.87 6.59 6.63 pH (debinised water used in text) 6.01 6.77 6.58 6.73 6.68 5.98 6.43 EC (RS Measurement) (µS/cm) 399 257 128 88 680 86 74 EC (RS Measurement) (µS/cm) 1 4.1 5.10 5.6 7 7 Net Alkalinity (mgL)* 70 4 5 8 3 3 4 Major Ions (mgL) LoR Wo Guidelins.* 69 4 5 8 3 3 4 Major Ions (mgL) 1 - 4 1 1 1 1 2 2 2 1 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2										
pH (RS Measurement) 8.21 7.48 6.54 6.72 7.11 7.20 7.62 pH (ALS Measurement) (sc)(m) 6.01 6.07 6.58 6.41 6.87 6.58 6.41 6.87 6.58 6.41 6.87 6.58 6.61 6.97 6.58 6.61 6.87 6.58 6.73 6.68 5.98 7.42 EC (ALS Measurement) (s)(S(m) 399 257 128 86 6.80 5.8 7.4 Atkalinty (mg/L)* 1 1 1 1 2 2 1 3 Atkalinty (mg/L)* 69 4 5 8 3 3 4 4 4 Calcum (c) 1 - 41 1 1 1 2 2 2 Atagenesium (Mg) 1 - 38 4 4 3 2 4 2	Pore Volumes									
pH (Jab. Measurement) 8.04 6.77 6.58 6.41 6.87 6.95 6.91 PH (delonised water used in test) 6.01 6.17 6.75 6.73 6.68 5.98 6.43 EC (RSS Measurement) (µS/cm) 399 257 128 86 68.0 98 74 Acidity (mg/L)* 1 41 -1 2 2 1 3 Acidity (mg/L)* 70 4 5 10 5 6 7 Net Alkalinity (mg/L)* 69 4 5 8 3 3 4 Calcium (Ca) 1 -4 4 5 8 3 3 4 Adaptarization (Ga) 1 -1 1 1 1 1 2 2 2 Adaptarization (Ga) 1 -2 3 1 2 1 2	pH (RGS Measurement)									
pH (denoised water used in test) 6.01 6.10 6.75 6.73 6.68 5.98 6.43 EC (RSS Measurement) (µS/cm) 373 180 107 80 72 87 81 Alcidity (mg/L)* 1 1 1 2 2 1 3 Alkalinity (mg/L)* 69 4 5 10 5 6 7 Net Alkalinity (mg/L)* 69 4 5 8 3 3 4 Magnetium (Mg) 1 - 44 1 1 1 2 2 Scitum (R) 1 - 4 1 1 1 2 2 Scitum (Mg) 1 - 33 4 4 4 2 2 Scitum (Na) 1 - 32 3 1 2 1 2 2 Scitum (Na) 1 - 32 3 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2										
EC (RGS Measurement) (µS/cm) 399 257 128 86 68.0 74 EC (ALS Measurement) (µS/cm) 773 180 107 80 72 87 81 Alkelinity (mg/L)* 70 4 5 10 5 6 7 Malinity (mg/L)* 69 4 5 8 3 4 Major lons (mg/L) LOR WQ Gudelmes* 5 8 3 4 4 4 Atalisity (mg/L)* 69 4 5 3 4 4 4 4 Solution (Ra) 1 - 4 1 1 1 2 2 Valasium (Mg) 1 - 38 4 4 3 2 4 2 Solution (G) 1 1.000 54 74 39 30 23 27 24 Tace metal'inetalloids (mg/L) Uon 1 1.000 5 7001 70.01 70.01		est)								
EC (ALS Messurement) (µS/cm) 373 180 107 80 72 87 81 Alcidity (mg/L)* 1 1 1 1 2 2 1 3 Alkalinity (mg/L)* 69 4 5 8 3 3 4 Major Ions (mg/L) LOR WG Guidelines* - </th <th></th>										
Acidity (mg/L)* 1 <1					-					
Alkalinity (mg/L)* 70 4 5 10 5 6 7 Net Alkalinity (mg/L)* 69 4 5 8 3 3 4 Major lons (mg/L) LoR WQ Guidelines ⁴ 5 8 3 3 4 Załcium (G) 1 1.000 11 14 5 3 4 4 4 Sodium (Ma) 1 - 44 1 1 1 2 2 Sodium (Na) 1 - 38 4 4 3 2 4 2 Sodium (Na) 1 - 38 4 4 3 2 2 2 Sodium (Na) 0.1 2 0.9 0.2 0.1 0.1 0.2 0.2 2		"'								
Net Atkalinity (mg/L)* 69 4 5 8 3 3 4 Major lons (mg/L) LoR WQ Guidelines* Zatcium (Ca) 1 1.000 11 14 5 3 4 4 4 Magnesium (Mg) 1 - 44 1 1 1 1 2 2 Magnesium (Mg) 1 - 38 4 4 3 2 4 2 2 Condition (Gi) 1 - 38 4 4 3 2 4 2 <th2< th=""> 2 <th2< th=""></th2<></th2<>										
Major Lons (mg/L) LoR Wa Guidelines* Calcium (Ca) 1 1.000 11 14 5 3 4 4 4 Otassium (K) 1 - 4 1 1 1 1 2 Magnesium (Mg) 1 - 4 1 1 1 2 2 Sodium (Na) 1 - 38 4 4 3 2 4 2 2 Sodium (Na) 1 - 38 4 4 3 2 4 2 2 2 1 2 2 2 2 1 1 2 2 2 2 1 1 0 2										
DateLium (Ca) 1 1,000 11 14 5 3 4 4 4 Potassium (K) 1 - 4 1 1 1 1 2 Magnesium (Mg) 1 - 4 1 1 1 2 2 Sodium (Ma) 1 - 38 4 4 3 2 4 2 Sodium (Ma) 1 - 38 4 4 3 2 4 2 Sodium (Ma) 1 - 38 4 4 3 2 4 2 Sodium (Ma) 0.1 2 0.9 0.2 0.1 0.1 0.0 2 2 Suffate (SO) 1 1000 5 74 39 30 23 27 24 Strate (As) 0.001 0.5 <0.05 <0.05 <0.05 <0.05 <0.05 <0.001 <0.001 <0.001 <0.001	Net Aikalinity (Ing/L)			69	4	5	ŏ	3	<u> </u>	4
DateLium (Ca) 1 1,000 11 14 5 3 4 4 4 Potassium (K) 1 - 4 1 1 1 1 2 Magnesium (Mg) 1 - 4 1 1 1 2 2 Sodium (Ma) 1 - 38 4 4 3 2 4 2 Sodium (Ma) 1 - 38 4 4 3 2 4 2 Sodium (Ma) 1 - 38 4 4 3 2 4 2 Sodium (Ma) 0.1 2 0.9 0.2 0.1 0.1 0.0 2 2 Suffate (SO) 1 1000 5 74 39 30 23 27 24 Strate (As) 0.001 0.5 <0.05 <0.05 <0.05 <0.05 <0.05 <0.001 <0.001 <0.001 <0.001	Maior lons (mg/L)	LoR	WQ Guidelines [#]							
Optassium (K) 1 - 4 1 1 1 1 1 2 2 Magnesium (Mg) 1 - 13 8 5 4 4 5 4 Solium (Ka) 1 - 38 4 4 3 2 4 2 2 Solium (K) 1 - 38 4 4 3 2 1 2 2 2 Solium (K) 1 - 32 3 1 2 1 0 2 2 2 Suminium (A) 0.01 5 <0.01 0.02 0.17 0.17 0.14 0.06 0.13 Trace metals/ metal/metal/metal/metal/metal/metal/ 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001				11	14	5	3	4	4	4
Magnesium (Mg) 1 . 13 8 5 4 4 5 4 Sodium (Na) 1 . 38 4 4 3 2 4 2 Floride (G) 1 . 38 4 4 3 2 4 2 Floride (G) 0.1 2 0.9 0.2 0.1 0.1 0.1 0.2 0.2 Virace metals/ metalloids (mg/L) LoR Wo audabines" .		-	-				-			
Sodium (Na) 1 - 38 4 4 3 2 4 2 Chloride (Cl) 1 - 32 3 1 2 1 2 2 Sulfate (SO,) 1 1.000 54 74 39 30 23 27 24 Tace metals/ metalloids (mgL) LOR Woodudemes* Woodudemes* Woodudemes* Woodudemes* Woodudemes* Auminium (A) 0.01 5 <0.01 0.02 0.17 0.17 0.14 0.06 0.13 Arsenic (AS) 0.001 0.5 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.051 <0.051 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001			-							
Chloride (C) 1 - 32 3 1 2 1 2 2 Fluoride (F) 0.1 2 0.9 0.2 0.1 0.1 0.1 0.2 0.2 Suffate (SO ₄) 1 1.000 54 74 39 30 23 27 24 Trace metals/ metalloids (mg/L) LOR WQ Guidelines*										
Fluoride (F) 0.1 2 0.9 0.2 0.1 0.1 0.1 0.2 0.2 Suifate (SQ ₄) 1 1,000 54 74 39 30 23 27 24 Suifate (SQ ₄) 0.01 5 <0.01 0.02 0.17 0.17 0.14 0.06 0.13 Avenic (As) 0.001 0.5 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 </th <th></th> <th>-</th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th></th> <th></th> <th></th>		-					-			
Sulfate (SO ₂) 1 1,000 54 74 39 30 23 27 24 Trace metals/ metalloids (mg/L) LOR Wo Guidelines"				-						
Trace metals/ metalloids (mg/L) LOR WQ Guidelines* Numinium (A) 0.01 5 <0.01 0.02 0.17 0.14 0.06 0.13 Arsenic (As) 0.001 0.5 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.0001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001										
Aluminium (A) 0.01 5 <0.01				- 54	74	39	30	23	21	24
Arsenic (As) 0.001 0.5 <0.001				<0.01	0.02	0.17	0.17	0.14	0.06	0.12
Boron (B) 0.05 5 <0.05										
Cadmium (Cd) 0.001 0.01 <0.0001										
Cobalt (Co) 0.001 1 0.001 <0.001										
Copper (Cu) 0.001 1 <0.001										
Display 0.05 1 <0.05										
Mercury (Hg) 0.0001 0.02 <0.0001										
Lithium (Li) 0.001 - 0.008 <0.001										
Manganese (Mn) 0.001 2 0.044 0.010 0.020 0.007 0.006 0.010 0.011 Molybdenum (Mo) 0.001 0.15 0.022 <0.01										
Molybdenum (Mo) 0.001 0.15 0.022 <0.01										
Nickel (Ni) 0.001 1 <0.001										
Lead (Pb) 0.001 0.1 <0.001										
Antimony (Sb) 0.001 - 0.001 <0.001										
Selenium (Se) 0.01 0.02 <0.01			0.1							
Strontium (Sr) 0.01 - 0.278 0.325 0.128 0.088 0.081 0.097 0.086 /anadium 0.01 - <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005			-							
Vanadium 0.01 - <0.01										
Zinc (Zn) 0.005 20 <0.005										
Calculations** Calculations SO ₄ Release Rate 23.3 31.3 16.8 13.3 10.1 11.8 10.8 Cumulative SO ₄ Release 23.3 54.6 71.3 84.6 94.7 106.5 117.3 Ca Release Rate 4.7 5.9 2.2 1.3 1.8 1.7 1.8 Cumulative Ca Release 4.7 10.7 12.8 14.1 15.9 17.6 19.4 Mg Release Rate 5.6 3.4 2.2 1.8 1.8 2.2 1.8 Cumulative Mg Release 5.6 9.0 11.1 12.9 14.7 16.8 18.7 Residual ANC (%) 99.8 99.6 99.5 99.4 99.3 99.3 Residual Sulfur (%) 99.9 99.7 99.6 99.5 99.4 99.3										
SO ₄ Release Rate 23.3 31.3 16.8 13.3 10.1 11.8 10.8 Cumulative SO ₄ Release 23.3 54.6 71.3 84.6 94.7 106.5 117.3 Ca Release Rate 4.7 5.9 2.2 1.3 1.8 1.7 1.8 Cumulative Ca Release 4.7 10.7 12.8 14.1 15.9 17.6 19.4 Mg Release Rate 5.6 3.4 2.2 1.8 1.8 2.2 1.8 Cumulative Mg Release 5.6 9.0 11.1 12.9 14.7 16.8 18.7 Residual ANC (%) 99.8 99.6 99.6 99.5 99.4 99.3 99.3	Zinc (Zn)	0.005	20	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
SO ₄ Release Rate 23.3 31.3 16.8 13.3 10.1 11.8 10.8 Cumulative SO ₄ Release 23.3 54.6 71.3 84.6 94.7 106.5 117.3 Ca Release Rate 4.7 5.9 2.2 1.3 1.8 1.7 1.8 Cumulative Ca Release 4.7 10.7 12.8 14.1 15.9 17.6 19.4 Mg Release Rate 5.6 3.4 2.2 1.8 1.8 2.2 1.8 Cumulative Mg Release 5.6 9.0 11.1 12.9 14.7 16.8 18.7 Residual ANC (%) 99.8 99.6 99.6 99.5 99.4 99.3 99.3	Calculations**									
Cumulative SO ₄ Release 23.3 54.6 71.3 84.6 94.7 106.5 117.3 Ca Release Rate 4.7 5.9 2.2 1.3 1.8 1.7 1.8 Cumulative Ca Release 4.7 10.7 12.8 14.1 15.9 17.6 19.4 Mg Release Rate 5.6 3.4 2.2 1.8 1.8 2.2 1.8 Cumulative Mg Release 5.6 9.0 11.1 12.9 14.7 16.8 18.7 Residual ANC (%) 99.8 99.6 99.5 99.4 99.3 99.3 Residual Sulfur (%) 99.9 99.7 99.6 99.5 99.4 99.3				22.2	21.2	16.9	12.2	10.1	11.0	10.9
Ca Release Rate 4.7 5.9 2.2 1.3 1.8 1.7 1.8 Cumulative Ca Release 4.7 10.7 12.8 14.1 15.9 17.6 19.4 Mg Release Rate 5.6 3.4 2.2 1.8 1.8 2.2 1.8 Cumulative Mg Release 5.6 9.0 11.1 12.9 14.7 16.8 18.7 Residual ANC (%) 99.8 99.6 99.5 99.4 99.3 99.3 Residual Sulfur (%) 99.9 99.7 99.6 99.5 99.4 99.3										
Cumulative Ca Release 4.7 10.7 12.8 14.1 15.9 17.6 19.4 Mg Release Rate 5.6 3.4 2.2 1.8 1.8 2.2 1.8 Cumulative Mg Release 5.6 9.0 11.1 12.9 14.7 16.8 18.7 Residual ANC (%) 99.8 99.6 99.6 99.5 99.4 99.3 99.3 Residual Sulfur (%) 99.9 99.7 99.6 99.5 99.5 99.4 99.3										
Mg Release Rate 5.6 3.4 2.2 1.8 1.8 2.2 1.8 Cumulative Mg Release 5.6 9.0 11.1 12.9 14.7 16.8 18.7 Residual ANC (%) 99.8 99.6 99.6 99.5 99.4 99.3 99.3 Residual Sulfur (%) 99.9 99.7 99.6 99.5 99.5 99.4 99.3										
Cumulative Mg Release 5.6 9.0 11.1 12.9 14.7 16.8 18.7 Residual ANC (%) 99.8 99.6 99.6 99.5 99.4 99.3 99.3 Residual Sulfur (%) 99.9 99.7 99.6 99.5 99.5 99.4 99.3										
Residual ANC (%) 99.8 99.6 99.6 99.5 99.4 99.3 99.3 Residual Sulfur (%) 99.9 99.7 99.6 99.5 99.4 99.3 99.3										
Residual Sulfur (%) 99.9 99.7 99.6 99.5 99.4 99.3										-
SO ₄ /(Ca+Mg) molar ratio 0.7 1.1 1.2 1.3 0.9 0.9 0.9										
	SO₄/(Ca+Mg) molar ratio			0.7	1.1	1.2	1.3	0.9	0.9	0.9

KLC 7 - ED Fine Rejects

indicates less than the analytical detection limit. * Acidity and alkalinity data calculated in mg CaCO₃/L.

** SO₄, Ca and Mg release rates calculated in mg/kg/flush.

Total S = Total Sulfur; Scr = Chromium Reducible Sulfur; and ANC = Acid Neutralising Capacity.

MPA = Maximum Potential Acidity, and NAPP = Net Acid Producing Potential. # ANZECC & ARMCANZ (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality, National Water Quality Management Strategy, 2000, ANZECC (Australian and New Zealand Environment Conservation Council) and ARMCANZ (Agriculture and Resource Management Council of Australia and New Zealand). Livestock Drinking Water Levels (Irrigation Levels used for Fe and Mn).

	r						, Rejecto		
		Weight (kg)	2.00	Total S (%)	2.40	ANC	19.0		
		рН (1:5)	6.00	Scr (%)	1.66	NAPP	55.0		
		EC (µS/cm)	1,400	MPA	73.5	ANC:MPA	0.3		
Date			08-Apr-20	07-May-20	09-Jun-20	07-Jul-20	07-Aug-20	08-Sep-20	09-Oct-20
Number of Weeks			0	4	9	13	17	22	26
Leach Number			1	2	3	4	5	6	7
ALS Laborate	orv Numbe	r	EB2009898003	EB2012205003	EB2015249003	EB2017807003	EB2020923003	EB2023744003	EB2026635003
Volume On (L)	ory Numbe		1.0	1.0	1.0	1.0	1.0	1.0	1.0
Volume Off (L)			0.686	0.514	0.494	0.531	0.545	0.535	0.554
Cum. Volume (L)			0.69	1.20	1.69	2.23	2.77	3.31	3.86
Pore Volumes			0.09	1.4	2.4	3.4	4.4	5.4	6.4
pH (RGS Measurement)			3.55	3.03	2.4	2.85	2.48	2.39	2.54
pH (ALS Measurement)			3.55	2.96	2.97	2.65	2.40	2.39	2.54
			6.01	2.96	6.75	6.73	6.68	5.98	6.43
pH (deionised water used in te									
EC (RGS Measurement) (μS/cm			3,410	3,230	3,710	4,400	5,160	5,670	5,310
EC (ALS Measurement) (μS/cm	1)		3650	3,430	4,050	4,590	5,600	5,870	6,090
Acidity (mg/L)*			62	538	1,060	1,250	1,760	2,220	5,500
Alkalinity (mg/L)*			<1	<1	<1	<1	<1	<1	<1
Net Alkalinity (mg/L)*			-62	-538	-1,060	-1250	-1760	-2220	-5500
Major lons (mg/L)	LoR	WQ Guidelines [#]							
Calcium (Ca)	1	1,000	318	157	196	234	248	134	261
Potassium (K)	1	-	4	3	2	<1	<1	1	<1
Magnesium (Mg)	1	-	304	210	312	449	474	258	531
Sodium (Na)	1	-	120	42	37	23	11	5	<1
Chloride (Cl)	1	-	3	1	<1	<1	<1	<1	<1
Fluoride (F)	0.1	2	0.4	0.3	1.2	<0.1	<0.1	0.1	<0.1
Sulfate (SO ₄)	1	1,000	2,500	2,330	2,680	3,410	3,410	3,230	4920
Trace metals/ metalloids (mg/L)	LoR	WQ Guidelines [#]	1	,					
Aluminium (Al)	0.01	5	2.39	3.18	10.8	24.9	38.1	27.6	94.8
Arsenic (As)	0.001	0.5	0.002	0.121	0.52	0.86	1.10	0.54	1.35
Boron (B)	0.05	5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Cadmium (Cd)	0.0001	0.01	0.0177	0.0201	0.0200	0.0297	0.0394	0.0260	0.055
Cobalt (Co)	0.001	1	0.599	0.583	0.730	0.959	1.050	0.49	1.08
Copper (Cu)	0.001	1	0.375	0.834	1.20	1.52	2.00	1.14	3.62
Iron (Fe)	0.05	1	0.8	93	250	380	515	310	945
Mercury (Hg)	0.0001	0.02	<0.0001	0.0002	<0.0001	-	-	-	-
Lithium (Li)	0.001	-	0.061	0.031	0.07	0.073	0.106	0.058	0.126
Manganese (Mn)	0.001	2	19.6	13.1	33.6	56.3	66.6	40.3	103
Molybdenum (Mo)	0.001	0.15	< 0.001	0.001	0.002	0.003	0.003	0.001	< 0.001
Nickel (Ni)	0.001	1	0.698	0.734	0.954	1.240	1.500	0.752	1.580
Lead (Pb)	0.001	0.1	0.009	0.022	0.010	0.003	0.002	0.001	< 0.005
Antimony (Sb)	0.001	-	< 0.001	< 0.001	<0.001	< 0.001	<0.002	< 0.001	< 0.005
Selenium (Se)	0.001	0.02	0.02	0.03	0.04	0.02	0.04	0.03	<0.005
Strontium (Sr)	0.01	-	4.31	2.32	2.08	1.62	1.32	0.639	0.804
Vanadium	0.01	-	<0.01	<0.01	0.02	0.02	0.03	0.039	< 0.05
Zinc (Zn)	0.005	20	1.86	1.68	2.27	3.43	4.81	3.18	7.65
	0.005	20	1.00	1.00	2.21	3.43	4.01	5.10	7.05
Calculations**									
SO₄ Release Rate			858	599	662	905	929	864	1,363
Cumulative SO ₄ Release			858	1,456	2,118	3,024	3,953	4,817	6,180
Ca Release Rate			109	40	48	62	68	36	72
Cumulative Ca Release			109	149	198	260	328	363	436
Mg Release Rate			109	54	77	119	129	69	147
Cumulative Mg Release			104	54 158	235	355	484	553	700
Residual ANC (%)			96.4	94.7	92.5	300 89.1	85.5	83.6	700
Residual Sulfur (%)			98.8 1.3	98.0 1.9	97.1	95.8	94.5	93.3	91.4
SU₄/(Ca+Mg) molar ratio	4/(Ca+Mg) molar ratio				1.6	1.5	1.4	2.4	1.8

KLC 8 - WN1 Coarse Rejects

indicates less than the analytical detection limit. * Acidity and alkalinity data calculated in mg CaCO₃/L.

** SO₄, Ca and Mg release rates calculated in mg/kg/flush.

Total S = Total Sulfur; Scr = Chromium Reducible Sulfur; and ANC = Acid Neutralising Capacity.

MPA = Maximum Potential Acidity, and NAPP = Net Acid Producing Potential.

ANZECC & ARMCANZ (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality, National Water Quality Management Strategy, 2000, ANZECC (Australian and New Zealand Environment Conservation Council) and ARMCANZ (Agriculture and Resource Management Council of Australia and New Zealand). Livestock Drinking Water Levels (Irrigation Levels used for Fe and Mn).

					KLC 9	- WIN'T FINE I	Vejecis	_	
	[Weight (kg)	2.00	Total S (%)	1.58	ANC	44		
		рН (1:5)	8.60	Scr (%)	1.2	NAPP	4.3		
		EC (µS/cm)	141	MPA	48.4	ANC:MPA	0.9		
Date			08-Apr-20	07-May-20	09-Jun-20	07-Jul-20	07-Aug-20	08-Sep-20	09-Oct-20
Number of Weeks			0	4	9	13	17	22	26
Leach Number			1	2	3	4	5	6	7
ALS Laborate	orv Numbe	r	EB2009898004	EB2012205004	EB2015249004	EB2017807004	EB2020923004	EB2023744004	EB2026635004
Volume On (L)		-	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Volume Off (L)			0.945	0.737	0.709	0.635	0.715	0.775	0.782
Cum. Volume (L)			0.95	1.68	2.39	3.03	3.74	4.52	5.30
Pore Volumes			0.7	1.4	2.4	3.4	4.4	5.4	6.4
pH (RGS Measurement)			7.12	7.09	7.27	6.10	6.95	5.71	6.79
pH (ALS Measurement)			6.91	6.85	6.66	6.29	6.74	6.46	6.35
pH (deionised water used in te	est)		6.01	6.10	6.75	6.73	6.68	5.98	6.43
EC (RGS Measurement) (µS/cr	,		97	550	421	436	573	361	464
EC (ALS Measurement) (μS/cn			98	392	415	373	501	325	459
Acidity (mg/L)*	·)		6	2	<1	4	3	2	10
Alkalinity (mg/L)*			13	6	6	6	7	4	4
Net Alkalinity (mg/L)*			7	4	6	2	4	2	-6
· · · · · · · · · · · · · · · · · · ·			-	· ·		. – 1	·	. –	-
Major lons (mg/L)	LoR	WQ Guidelines [#]							
Calcium (Ca)	1	1,000	4	24	22	24	17	14	18
Potassium (K)	1	-	<1	4	3	3	3	2	3
Magnesium (Mg)	1	-	4	25	26	30	35	18	36
Sodium (Na)	1	-	7	12	12	11	11	6	7
Chloride (CI)	1	-	6	6	6	5	5	3	4
Fluoride (F)	0.1	2	0.1	0.2	0.1	0.1	0.1	<0.1	<0.1
Sulfate (SO ₄)	1	1,000	22	164	187	176	203	144	216
Trace metals/ metalloids (mg/L)	LoR	WQ Guidelines [#]							
Aluminium (Al)	0.01	5	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Arsenic (As)	0.001	0.5	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.001
Boron (B)	0.05	5	<0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	<0.05
Cadmium (Cd)	0.0001	0.01	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001
Cobalt (Co)	0.001	1	<0.001	0.001	0.0020	0.002	0.002	0.001	0.002
Copper (Cu)	0.001	1	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Iron (Fe)	0.05	1	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05
Mercury (Hg)	0.0001	0.02	<0.0001	<0.0001	<0.0001	-	-	-	-
Lithium (Li)	0.001	-	0.002	0.003	0.003	0.002	0.003	0.003	0.002
Manganese (Mn)	0.001	2	0.016	0.03	0.05	0.041	0.048	0.042	0.066
Molybdenum (Mo)	0.001	0.15	0.002	0.002	0.001	<0.001	0.001	<0.001	<0.001
Nickel (Ni)	0.001	1	<0.001	0.002	0.002	0.002	0.002	0.002	0.002
Lead (Pb)	0.001	0.1	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Antimony (Sb)	0.001	-	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Selenium (Se)	0.01	0.02	<0.01	<0.01	<0.01	<0.01	0.01	<0.01	0.01
Strontium (Sr)	0.01	-	0.088	0.561	0.526	0.384	0.418	0.36	0.443
Vanadium	0.01	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Zinc (Zn)	0.005	20	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Calculations**									
SO₄ Release Rate			10.4	60.4	66.3	55.9	72.6	55.8	84.5
Cumulative SO ₄ Release			10.4	70.8	137.1	193.0	265.6	321.4	405.8
Ca Release Rate			1.9	8.8	7.8	7.6	6.1	5.4	7.0
Cumulative Ca Release			1.9	10.7	18.5	26.2	32.2	37.7	44.7
Mg Release Rate			1.9	9.2	9.2	9.5	12.5	7.0	14.1
Cumulative Mg Release			1.9	11.1	20.3	29.8	42.4	49.3	63.4
Residual ANC (%)			99.9	99.6	99.4	99.1	98.7	98.5	98.1
Residual Sulfur (%)			100.0	99.7	99.4	99.2	98.8	98.6	98.2
SO₄/(Ca+Mg) molar ratio			0.9	1.0	1.2	1.0	1.1	1.4	1.2

KLC 9 - WN1 Fine Rejects

< indicates less than the analytical detection limit. * Acidity and alkalinity data calculated in mg CaCO₃/L.

** SO₄, Ca and Mg release rates calculated in mg/kg/flush.

Total S = Total Sulfur; Scr = Chromium Reducible Sulfur; and ANC = Acid Neutralising Capacity.

MPA = Maximum Potential Acidity, and NAPP = Net Acid Producing Potential.

ANZECC & ARMCANZ (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality, National Water Quality Management Strategy, 2000, ANZECC (Australian and New Zealand Environment Conservation Council) and ARMCANZ (Agriculture and Resource Management Council of Australia and New Zealand). Livestock Drinking Water Levels (Irrigation Levels used for Fe and Mn).

						- FFZ Fille I	,		
		Weight (kg)	2.00	Total S (%)	0.29	ANC	16.2		
		pH (1:5)	7.70	Scr (%)	0.129	NAPP	-7.5		
		EC (µS/cm)	185	MPA	8.9	ANC:MPA	1.8	l	
Date			08-Apr-20	07-May-20	09-Jun-20	07-Jul-20	07-Aug-20	08-Sep-20	09-Oct-20
Number of Weeks			0	4	9	13	17	22	26
Leach Number			1	2	3	4	5	6	7
ALS Laborat	ory Numbe	r	EB2009898005	EB2012205005	EB2015249005	EB2017807005	EB2020923005	EB2023744005	EB2026635004
Volume On (L)			1.0	1.0	1.0	1.0	1.0	1.0	1.0
Volume Off (L)			0.984	0.878	0.899	0.878	0.880	0.892	0.919
Cum. Volume (L)			0.98	1.86	2.76	3.64	4.52	5.41	6.33
Pore Volumes			0.7	1.4	2.4	3.4	4.4	5.4	6.4
pH (RGS Measurement)			7.27	6.87	7.39	6.94	7.10	6.72	6.30
pH (ALS Measurement)			7.28	6.73	6.58	6.56	6.79	6.81	6.65
pH (deionised water used in te			6.01	6.10	6.75	6.73	6.68	5.98	6.43
EC (RGS Measurement) (μS/cr			191	250	170	86	60	56	40
EC (ALS Measurement) (µS/cn	n)		199	214	153	76	59	55	40
Acidity (mg/L)*			29	1	<1	2	2	2	4
Alkalinity (mg/L)*			31	4	3	9	5	5	6
Net Alkalinity (mg/L)*			2	3	3	7	3	3	2
Major lons (mg/L)	LoR	WQ Guidelines [#]							
Calcium (Ca)	1	1.000	6	13	4	2	2	2	1
Potassium (K)	1	-	1	1	1	<1	<1	<1	<1
Magnesium (Mg)	1	-	6	12	7	3	3	2	2
Sodium (Na)	1	-	22	8	11	5	4	3	3
Chloride (Cl)	1	-	16	6	5	2	1	1	<1
Fluoride (F)	0.1	2	0.3	0.2	0.2	0.2	0.1	0.1	0.1
Sulfate (SO ₄)	1	1,000	40	81	48	26	20	15	10
Trace metals/ metalloids (mg/L)	LoR	WQ Guidelines [#]		0.		20	20		10
Aluminium (Al)	0.01	5	<0.01	0.03	0.26	0.35	0.34	0.10	0.35
Arsenic (As)	0.001	0.5	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Boron (B)	0.05	5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Cadmium (Cd)	0.0001	0.01	<0.0001	<0.0001	< 0.0001	<0.0001	< 0.0001	< 0.0001	< 0.0001
Cobalt (Co)	0.001	1	<0.001	< 0.001	<0.001	< 0.001	<0.001	< 0.001	<0.001
Copper (Cu)	0.001	1	0.001	<0.001	<0.001	<0.001	<0.001	< 0.001	<0.001
Iron (Fe)	0.05	1	<0.05	< 0.05	0.08	0.08	0.10	< 0.05	0.08
Mercury (Hg)	0.0001	0.02	<0.0001	<0.0001	< 0.0001	-	-	-	-
Lithium (Li)	0.001	-	0.003	0.001	0.001	<0.001	<0.001	0.001	<0.001
Manganese (Mn)	0.001	2	0.023	0.011	0.006	0.006	0.004	0.006	0.005
Molybdenum (Mo)	0.001	0.15	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Nickel (Ni)	0.001	1	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Lead (Pb)	0.001	0.1	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Antimony (Sb)	0.001	-	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Selenium (Se)	0.01	0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Strontium (Sr)	0.01	-	0.11	0.238	0.077	0.043	0.041	0.036	0.023
Vanadium	0.01	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Zinc (Zn)	0.005	20	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Oslavlationst									
Calculations**			10 7	05.0	01.0				
SO ₄ Release Rate			19.7	35.6	21.6	11.4	8.8	6.7	4.6
Cumulative SO ₄ Release			19.7	55.2	76.8	88.2	97.0	103.7	108.3
Ca Release Rate			3.0	5.7	1.8	0.9	0.9	0.9	0.5
Cumulative Ca Release Mg Release Rate			3.0	8.7	10.5	11.3	12.2	13.1	13.6
0			3.0	5.3	3.1	1.3	1.3	0.9	0.9
Cumulative Mg Release			3.0	8.2	11.4	12.7	14.0	14.9	15.8
Residual ANC (%)			99.9	99.7	99.6	99.6	99.6	99.5	99.5
Residual Sulfur (%)			99.9 1.1	99.8 1.0	99.7	99.6	99.6	99.6	99.5
SU ₄ /(Ca+Mg) molar ratio	4/(Ca+Mg) molar ratio				1.3	1.6	1.2	1.2	1.0

KLC 10 - PF2 Fine Rejects

indicates less than the analytical detection limit. * Acidity and alkalinity data calculated in mg CaCO₃/L.

** SO₄, Ca and Mg release rates calculated in mg/kg/flush.

Total S = Total Sulfur; Scr = Chromium Reducible Sulfur; and ANC = Acid Neutralising Capacity.

MPA = Maximum Potential Acidity, and NAPP = Net Acid Producing Potential.

ANZECC & ARMCANZ (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality, National Water Quality Management Strategy, 2000, ANZECC (Australian and New Zealand Environment Conservation Council) and ARMCANZ (Agriculture and Resource Management Council of Australia and New Zealand). Livestock Drinking Water Levels (Irrigation Levels used for Fe and Mn).

	-					VAT COarse		-	
		Weight (kg)	2.00	Total S (%)	0.24	ANC	16		
		pH (1:5)	5.90	Scr (%)	0.109	NAPP	-8.6		
		EC (µS/cm)	326	MPA	7.4	ANC:MPA	2.2		
Date			08-Apr-20	07-May-20	09-Jun-20	07-Jul-20	07-Aug-20	08-Sep-20	09-Oct-20
Number of Weeks			Ö	4	9	13	17	22	26
Leach Number			1	2	3	4	5	6	7
ALS Laborat	ory Numbe	ər	EB2009898006	EB2012205006	EB2015249006	EB2017807006	EB2020923006	EB2023744006	EB2026635005
Volume On (L)			1.0	1.0	1.0	1.0	1.0	1.0	1.0
Volume Off (L)			0.827	0.643	0.629	0.593	0.599	0.620	0.643
Cum. Volume (L)			0.83	1.47	2.10	2.69	3.29	3.91	4.55
Pore Volumes			0.6	1.4	2.4	3.4	4.4	5.4	6.4
pH (RGS Measurement)			5.77	4.72	4.64	4.56	4.37	4.50	4.44
pH (ALS Measurement)			5.80	4.81	4.51	4.57	4.30	4.66	4.55
pH (deionised water used in te			6.01	6.10	6.75	6.73	6.68	5.98	6.43
EC (RGS Measurement) (μS/cr			788	560	715	782	954	803	1,030
EC (ALS Measurement) (µS/cn	n)		850	559	753	797	995	811	1,150
Acidity (mg/L)*			4	15	5	12	22	14	14
Alkalinity (mg/L)*			4	1	<1	<1	<1	<1	<1
Net Alkalinity (mg/L)*			0	-14	-5	-12	-22	-14	-14
	r – – – – – – – – – – – – – – – – – – –								
Major lons (mg/L)	LoR	WQ Guidelines [#]							
Calcium (Ca)	1	1,000	59	37	48	48	59	48	62
Potassium (K)	1	-	5	7	6	6	7	6	7
Magnesium (Mg)	1	-	53	38	55	70	91	65	109
Sodium (Na)	1	-	25	12	14	15	18	14	21
Chloride (CI)	1	-	5	1	2	2	2	2	3
Fluoride (F)	0.1	2	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Sulfate (SO ₄)	1	1,000	425	261	388	423	522	434	611
Trace metals/ metalloids (mg/L)	LoR	WQ Guidelines [#]						0.40	0.40
Aluminium (Al)	0.01	5	0.02	0.06	0.09	0.11	0.11	0.10	0.16
Arsenic (As)	0.001	0.5	<0.001 <0.05	< 0.001	<0.001 <0.05	<0.001 <0.05	< 0.001	<0.001 <0.05	< 0.001
Boron (B) Cadmium (Cd)	0.05	<u> </u>	<0.05	<0.05 0.0002	<0.05	<0.05	<0.05	<0.05	<0.05 0.0007
Cobalt (Co)	0.0001	1	0.0003	0.0002	0.0003	0.0004	0.0004	0.0004	0.0007
Copper (Cu)	0.001	1	0.003	0.013	0.013	0.013	0.014	0.010	0.063
Iron (Fe)	0.001	1	< 0.005	3.79	4.62	3.68	2.59	1.76	1.72
Mercury (Hg)	0.0001	0.02	<0.0001	<0.0001	<0.0001	-	- 2.09	-	-
Lithium (Li)	0.0001	-	0.013	0.007	0.011	0.012	0.015	0.016	0.018
Manganese (Mn)	0.001	2	0.404	0.399	0.558	0.643	0.786	0.572	0.939
Molybdenum (Mo)	0.001	0.15	<0.001	< 0.001	<0.001	< 0.001	<0.001	< 0.001	< 0.001
Nickel (Ni)	0.001	1	0.02	0.019	0.024	0.023	0.028	0.022	0.033
Lead (Pb)	0.001	0.1	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001	< 0.001
Antimony (Sb)	0.001	-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Selenium (Se)	0.01	0.02	<0.01	< 0.01	< 0.01	0.01	0.01	0.01	0.02
Strontium (Sr)	0.01	-	0.642	0.425	0.534	0.58	0.679	0.581	0.802
Vanadium	0.01	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Zinc (Zn)	0.005	20	0.063	0.043	0.061	0.072	0.091	0.077	0.113
Calculations**									
SO₄ Release Rate			175.7	83.9	122.0	125.4	156.3	134.5	196.4
Cumulative SO ₄ Release			175.7	259.6	381.7	507.1	663.4	798.0	994.4
Ca Release Rate			24.4	11.9	15.1	14.2	17.7	14.9	19.9
Cumulative Ca Release			24.4	36.3	51.4	65.6	83.3	98.2	118.1
Mg Release Rate			21.9	12.2	17.3	20.8	27.3	20.2	35.0
Cumulative Mg Release			21.9	34.1	51.4	72.2	99.4	119.6	154.6
Residual ANC (%)			99.2	98.9	98.3	97.7	96.9	96.3	95.4
Residual Sulfur (%)			99.2	98.9	98.3	97.8	97.1	96.5	95.7
SO₄/(Ca+Mg) molar ratio			1.2	1.1	1.2	1.1	1.0	1.2	1.1

KLC 11 - VX1 Coarse Rejects

< indicates less than the analytical detection limit. * Acidity and alkalinity data calculated in mg CaCO₃/L.

** SO₄, Ca and Mg release rates calculated in mg/kg/flush.

Total S = Total Sulfur; Scr = Chromium Reducible Sulfur; and ANC = Acid Neutralising Capacity.

MPA = Maximum Potential Acidity, and NAPP = Net Acid Producing Potential.

ANZECC & ARMCANZ (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality, National Water Quality Management Strategy, 2000, ANZECC (Australian and New Zealand Environment Conservation Council) and ARMCANZ (Agriculture and Resource Management Council of Australia and New Zealand). Livestock Drinking Water Levels (Irrigation Levels used for Fe and Mn).

						- VAT Fille	,	-	
		Weight (kg)	2.00	Total S (%)	0.77	ANC	19.7		
		pH (1:5)	8.60	Scr (%)	0.471	NAPP	3.9		
		EC (µS/cm)	149	MPA	23.6	ANC:MPA	0.8		
Date			08-Apr-20	07-May-20	09-Jun-20	07-Jul-20	07-Aug-20	08-Sep-20	09-Oct-20
Number of Weeks			0	4	9	13	17	22	26
Leach Number			1	2	3	4	5	6	7
ALS Laborat	ory Numbe	ər	EB2009898007	EB2012205007	EB2015249007	EB2017807007	EB2020923007	EB2023744007	EB2026635005
Volume On (L)			1.0	1.0	1.0	1.0	1.0	1.0	1.0
Volume Off (L)			0.897	0.648	0.678	0.707	0.725	0.725	0.782
Cum. Volume (L)			0.90	1.55	2.22	2.93	3.66	4.38	5.16
Pore Volumes			0.7	1.4	2.4	3.4	4.4	5.4	6.4
pH (RGS Measurement)			7.76	7.46	7.86	7.37	7.04	6.73	7.03
pH (ALS Measurement)			7.05	7.19	7.04	6.53	6.98	6.92	6.85
pH (deionised water used in to			6.01	6.10	6.75	6.73	6.68	5.98	6.43
EC (RGS Measurement) (μS/ci			97	576	521	615	581	449	713
EC (ALS Measurement) (μS/cr	n)		101	576	487	508	556	432	710
Acidity (mg/L)*			21	2	1	2	1	2	6
Alkalinity (mg/L)*			11	11	11	12	7	8	9
Net Alkalinity (mg/L)*			-10	9	10	10	6	6	3
Major lons (mg/L)	LoR	WQ Guidelines [#]							
Calcium (Ca)	1	1,000	3	29	15	21	16	14	16
Potassium (K)	1	-	<1	3	3	3	2	2	2
Magnesium (Mg)	1	-	4	46	35	47	46	33	64
Sodium (Na)	1	-	7	22	19	16	15	10	14
Chloride (CI)	1	-	6	10	9	7	7	4	6
Fluoride (F)	0.1	2	0.4	1	0.7	0.5	0.4	0.3	0.3
Sulfate (SO ₄)	1	1,000	25	246	204	216	236	180	342
Trace metals/ metalloids (mg/L)	LoR	WQ Guidelines [#]							
Aluminium (Al)	0.01	5	0.02	<0.01	0.01	<0.01	<0.01	<0.01	<0.01
Arsenic (As)	0.001	0.5	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Boron (B)	0.05	5	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Cadmium (Cd)	0.0001	0.01	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Cobalt (Co)	0.001	1	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Copper (Cu)	0.001	1	<0.001	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Iron (Fe)	0.05	1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Mercury (Hg)	0.0001	0.02	<0.0001	<0.0001	<0.0001	-	-	-	-
Lithium (Li)	0.001	-	<0.001	0.002	0.002	0.001	0.001	0.002	0.002
Manganese (Mn)	0.001	2	0.004	0.017	0.017	0.018	0.024	0.023	0.038
Molybdenum (Mo)	0.001	0.15	0.007	0.015	0.006	0.003	0.002	0.001	0.001
Nickel (Ni)	0.001	1	< 0.001	0.001	0.001	< 0.001	< 0.001	< 0.001	< 0.001
Lead (Pb)	0.001	0.1	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Antimony (Sb)	0.001	-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Selenium (Se)	0.01	0.02	< 0.01	< 0.01	< 0.01	0.01	0.01	< 0.01	0.01
Strontium (Sr) Vanadium	0.01 0.01	-	0.07	0.72 <0.01	0.374 <0.01	0.358 <0.01	0.41	0.38	0.455 <0.01
Zinc (Zn)	0.001	20	<0.001	<0.001	<0.001	< 0.001	<0.001	<0.01	< 0.001
	0.005	20	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Calculations**									
SO ₄ Release Rate			11.2	79.7	69.2	76.4	85.6	65.3	133.7
Cumulative SO ₄ Release			11.2	90.9	160.1	236.4	322.0	387.2	521.0
Ca Release Rate			1.3	9.4	5.1	7.4	5.8	5.1	6.3
Cumulative Ca Release			1.3	10.7	15.8	23.3	29.1	34.1	40.4
Mg Release Rate			1.8	14.9	11.9	16.6	16.7	12.0	25.0
Cumulative Mg Release			1.8	16.7	28.6	45.2	61.9	73.8	98.8
Residual ANC (%)			99.9	99.5	99.2	98.8	98.4	98.1	97.5
Residual Sulfur (%)			100.0	99.6	99.3	99.0	98.6	98.3	97.7
SO ₄ /(Ca+Mg) molar ratio			1.1	1.0	1.2	0.9	1.1	1.1	1.2

KLC 12 - VX1 Fine Rejects

indicates less than the analytical detection limit. * Acidity and alkalinity data calculated in mg CaCO₃/L.

** SO₄, Ca and Mg release rates calculated in mg/kg/flush.

Total S = Total Sulfur; Scr = Chromium Reducible Sulfur; and ANC = Acid Neutralising Capacity.

MPA = Maximum Potential Acidity, and NAPP = Net Acid Producing Potential.

ANZECC & ARMCANZ (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality, National Water Quality Management Strategy, 2000, ANZECC (Australian and New Zealand Environment Conservation Council) and ARMCANZ (Agriculture and Resource Management Council of Australia and New Zealand). Livestock Drinking Water Levels (Irrigation Levels used for Fe and Mn).

	-		-	-		- DKDT FIIIe			
		Weight (kg)	2.00	Total S (%)	0.42	ANC	20.4		
		pH (1:5)	8.30	Scr (%)	0.165	NAPP	-7.5		
		EC (µS/cm)	141	MPA	12.9	ANC:MPA	1.6		
Date			08-Apr-20	07-May-20	09-Jun-20	07-Jul-20	07-Aug-20	08-Sep-20	09-Oct-20
Number of Weeks			Ó	4	9	13	17	22	26
Leach Number			1	2	3	4	5	6	7
ALS Laborat	ory Numbe	r	EB2009898008	EB2012205008	EB2015249008	EB2017807008	EB2020923008	EB2023744008	EB2026635006
Volume On (L)			1.0	1.0	1.0	1.0	1.0	1.0	1.0
Volume Off (L)			0.673	0.803	0.725	0.661	0.580	0.604	0.763
Cum. Volume (L)			0.67	1.48	2.20	2.86	3.44	4.05	4.81
Pore Volumes			0.5	1.4	2.4	3.4	4.4	5.4	6.4
pH (RGS Measurement)			7.64	8.06	8.17	7.31	7.41	6.93	7.27
pH (ALS Measurement)			7.30	7.34	7.26	6.52	7.22	7.11	7.02
pH (deionised water used in to	est)		6.01	6.10	6.75	6.73	6.68	5.98	6.43
EC (RGS Measurement) (µS/ci	m)		94	265	195	289	305	381	285
EC (ALS Measurement) (µS/cr	n)		98	248	198	216	310	324	295
Acidity (mg/L)*			4	1	<1	1	1	2	3
Alkalinity (mg/L)*			22	9	15	11	8	9	10
Net Alkalinity (mg/L)*			18	8	15	10	7	7	7
Major lons (mg/L)	LoR	WQ Guidelines [#]							
Calcium (Ca)	1	1,000	3	16	8	13	15	15	8
Potassium (K)	1	-	<1	2	2	2	2	2	2
Magnesium (Mg)	1	-	3	12	8	12	16	16	16
Sodium (Na)	1	-	10	13	14	12	19	13	13
Chloride (CI)	1	-	9	8	9	9	16	11	10
Fluoride (F)	0.1	2	0.2	0.4	0.4	0.3	0.4	0.4	0.3
Sulfate (SO ₄)	1	1,000	11	94	64	81	102	120	100
Trace metals/ metalloids (mg/L)	LoR	WQ Guidelines [#]						•	
Aluminium (Al)	0.01	5	0.01	0.02	0.12	0.06	0.02	0.01	0.01
Arsenic (As)	0.001	0.5	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.001	<0.001
Boron (B)	0.05	5	< 0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	<0.05
Cadmium (Cd)	0.0001	0.01	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.0003	<0.0001
Cobalt (Co)	0.001	1	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Copper (Cu)	0.001	1	<0.001	<0.001	<0.001	<0.001	<0.001	0.002	<0.001
Iron (Fe)	0.05	1	0.06	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Mercury (Hg)	0.0001	0.02	<0.0001	<0.0001	<0.0001	-	-	-	-
Lithium (Li)	0.001	-	0.002	0.002	0.002	<0.001	0.002	0.002	0.002
Manganese (Mn)	0.001	2	0.015	0.009	0.012	0.014	0.013	0.014	0.012
Molybdenum (Mo)	0.001	0.15	0.004	0.014	0.012	0.007	0.013	0.010	0.011
Nickel (Ni)	0.001	1	<0.001	<0.001	0.001	<0.001	0.001	0.001	0.001
Lead (Pb)	0.001	0.1	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Antimony (Sb)	0.001	-	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Selenium (Se)	0.01	0.02	<0.01	<0.01	<0.01	0.01	0.03	0.02	0.02
Strontium (Sr)	0.01	-	0.063	0.314	0.156	0.179	0.26	0.269	0.179
Vanadium	0.01	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Zinc (Zn)	0.005	20	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Calculations**									
SO₄ Release Rate			3.7	37.7	23.2	26.8	29.6	36.2	38.2
Cumulative SO₄ Release			3.7	41.4	64.6	91.4	121.0	157.2	195.4
Ca Release Rate			1.0	6.4	2.9	4.3	4.4	4.5	3.1
Cumulative Ca Release			1.0	7.4	10.3	14.6	19.0	23.5	26.6
Mg Release Rate			1.0	4.8	2.9	4.0	4.6	4.8	6.1
Cumulative Mg Release			1.0	5.8	8.7	12.7	17.3	22.2	28.3
Residual ANC (%)			100.0	99.8	99.7	99.6	99.4	99.3	99.1
Residual Sulfur (%)			100.0	99.8	99.7	99.6	99.5	99.3	99.2
SO ₄ /(Ca+Mg) molar ratio			0.6	1.1	1.3	1.0	1.0	1.2	1.2
	/(Ca+Mg) molar ratio								

KLC 13 - BRBY Fine Rejects

indicates less than the analytical detection limit. * Acidity and alkalinity data calculated in mg CaCO₃/L.

** SO₄, Ca and Mg release rates calculated in mg/kg/flush.

Total S = Total Sulfur; Scr = Chromium Reducible Sulfur; and ANC = Acid Neutralising Capacity.

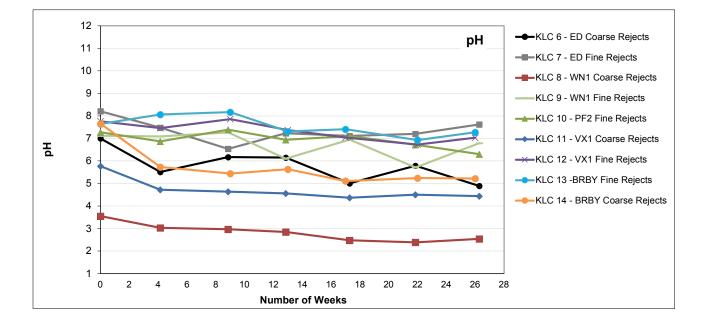
MPA = Maximum Potential Acidity, and NAPP = Net Acid Producing Potential.

ANZECC & ARMCANZ (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality, National Water Quality Management Strategy, 2000, ANZECC (Australian and New Zealand Environment Conservation Council) and ARMCANZ (Agriculture and Resource Management Council of Australia and New Zealand). Livestock Drinking Water Levels (Irrigation Levels used for Fe and Mn).

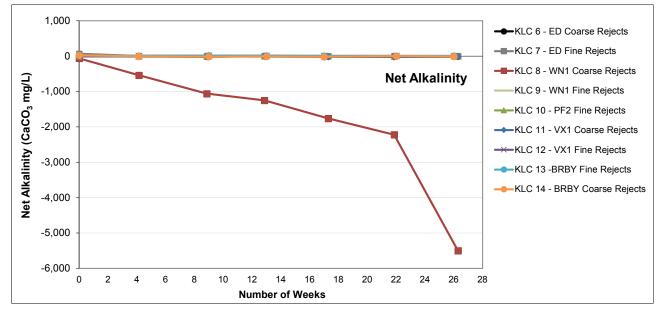
	r		0.55					1	
		Weight (kg)	2.00	Total S (%)	0.24	ANC	33.1		
		pH (1:5) EC (μS/cm)	7.80 98	Scr (%) MPA	0.093 7.4	NAPP ANC:MPA	25.8 4.5		
		EC (µ3/cm)							
Date			08-Apr-20	07-May-20	09-Jun-20	07-Jul-20	07-Aug-20	08-Sep-20	09-Oct-20
Number of Weeks			0	4	9	13	17	22	26
Leach Number			1	2	3	4	5	6	7
ALS Laborato	ory Numbe	er	EB2009898009	EB2012205009	EB2015249009	EB2017807009	EB2020923009	EB2023744009	EB2026635007
Volume On (L) Volume Off (L)			1.0	1.0	1.0	1.0	1.0	1.0	1.0
			0.934	0.557	0.595	0.620	0.671	0.681	0.663
Cum. Volume (L) Pore Volumes		0.93	1.49	2.09	2.71	3.38	4.06	4.72	
pH (RGS Measurement)		0.7	1.4	2.4 5.44	3.4	4.4	5.4	6.4	
pH (ALS Measurement)			7.66	5.73	5.98	5.63	5.11	5.24	5.22
pH (deionised water used in te	at)		7.39 6.01	5.71 6.10	6.75	5.05 6.73	4.90	5.33 5.98	5.37 6.43
EC (RGS Measurement) (µS/cn			538	406	462	491	619	5.98	699
EC (ALS Measurement) (μS/cm			538	408	402	491	650	595	786
Acidity (mg/L)*	')		4	8	22	12	21	2	12
Alkalinity (mg/L)*			29	0 4	5	3	21	<1	12
Net Alkalinity (mg/L)*			29	-4	-17	-9	-19	-1	-11
			23		-17	-3	-13	- 1	- (1
Major lons (mg/L)	LoR	WQ Guidelines [#]							
Calcium (Ca)	1	1,000	14	20	29	33	47	43	50
Potassium (K)	1	-	3	4	3	3	3	3	3
Magnesium (Mg)	1	-	17	22	29	36	49	42	66
Sodium (Na)	1	-	64	23	15	10	10	7	9
Chloride (Cl)	1	-	35	4	3	2	2	2	2
Fluoride (F)	0.1	2	1.8	0.5	0.3	0.3	0.3	0.2	0.3
Sulfate (SO ₄)	1	1,000	170	179	207	209	315	293	404
Trace metals/ metalloids (mg/L)	LoR	WQ Guidelines [#]							
Aluminium (Al)	0.01	5	<0.01	0.01	0.04	0.02	0.03	0.03	0.03
Arsenic (As)	0.001	0.5	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Boron (B)	0.05	5	< 0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	<0.05
Cadmium (Cd)	0.0001	0.01	< 0.0001	0.0002	0.0003	0.0002	0.0003	0.0002	0.0002
Cobalt (Co)	0.001	1	< 0.001	0.006	0.005	0.003	0.003	0.002	0.002
Copper (Cu)	0.001	1	< 0.001	0.001	0.005	0.004	0.005	0.004	0.003
Iron (Fe)	0.05	1	< 0.05	2.46	5.80	5.98	6.08	4.13	3.4
Mercury (Hg)	0.0001	0.02	< 0.0001	< 0.0001	< 0.0001	-	-	-	-
Lithium (Li)	0.001	- 2	0.01 0.018	< 0.01	0.007 0.548	0.005 0.497	0.007	0.007	0.007
Manganese (Mn) Molybdenum (Mo)	0.001 0.001	0.15	0.018	0.382	<0.001	<0.001	<0.001	<0.001	<0.001
Nickel (Ni)	0.001	1	< 0.001	0.006	0.006	0.005	0.005	0.004	0.004
Lead (Pb)	0.001	0.1	< 0.001	< 0.000	< 0.000	< 0.005	<0.005	< 0.004	<0.004
Antimony (Sb)	0.001	-	<0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Selenium (Se)	0.001	0.02	< 0.001	<0.001	<0.001	<0.01	0.01	0.01	0.02
Strontium (Sr)	0.01	-	0.339	0.384	0.503	0.541	0.66	0.614	0.721
Vanadium	0.01	-	< 0.01	< 0.01	<0.01	< 0.01	<0.01	<0.01	<0.01
Zinc (Zn)	0.005	20	< 0.005	0.013	0.022	0.02	0.023	0.019	0.017
			-						
Calculations**									
SO₄ Release Rate			79.4	49.9	61.6	64.8	105.7	99.8	133.9
Cumulative SO ₄ Release			79.4	129.2	190.8	255.6	361.3	461.1	595.0
Ca Release Rate			6.5	5.6	8.6	10.2	15.8	14.6	16.6
Cumulative Ca Release			6.5	12.1	20.7	31.0	46.7	61.4	78.0
Mg Release Rate			7.9	6.1	8.6	11.2	16.4	14.3	21.9
Cumulative Mg Release			7.9	14.1	22.7	33.9	50.3	64.6	86.5
Residual ANC (%)			99.8	99.6	99.3	98.9	98.4	97.9	97.3
Residual Sulfur (%)			99.7	99.4	99.2	98.9	98.4	98.0	97.4
SO ₄ /(Ca+Mg) molar ratio			1.7	1.3	1.1	0.9	1.0	1.1	1.1

KLC 14 - BRBY Coarse Rejects

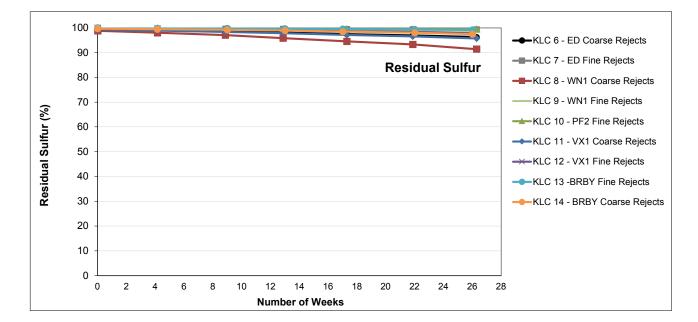
< indicates less than the analytical detection limit. * Acidity and alkalinity data calculated in mg CaCO₃/L.

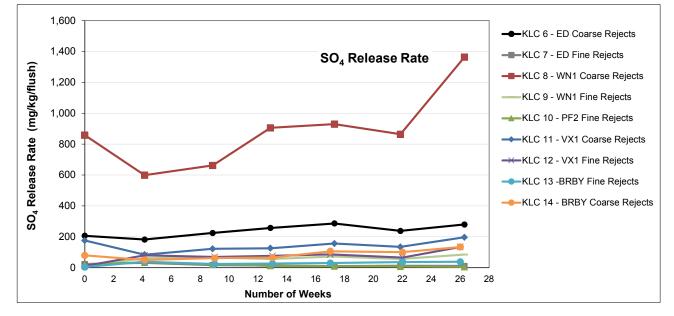

** SO₄, Ca and Mg release rates calculated in mg/kg/flush.

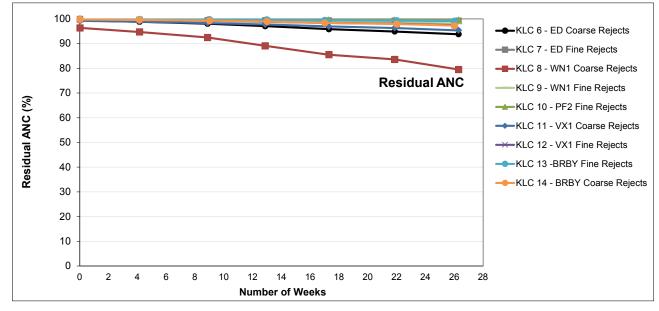
Total S = Total Sulfur; Scr = Chromium Reducible Sulfur; and ANC = Acid Neutralising Capacity.

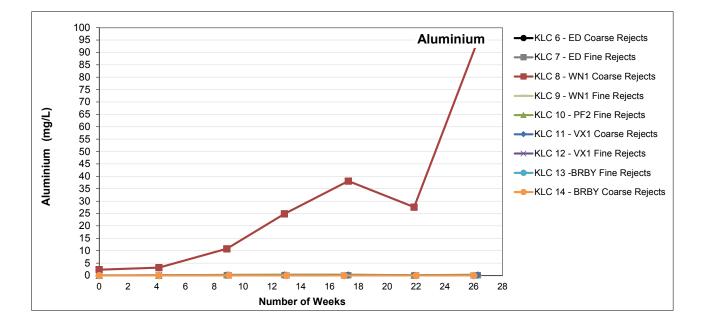

MPA = Maximum Potential Acidity, and NAPP = Net Acid Producing Potential.

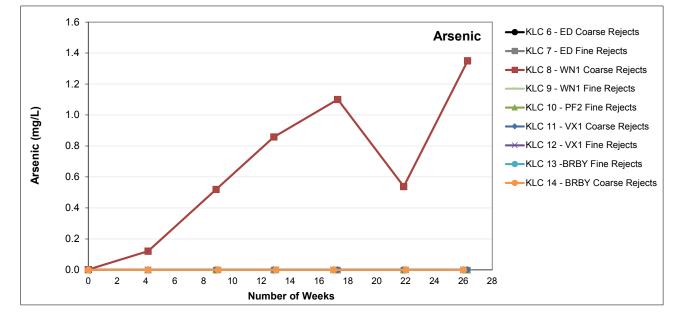
ANZECC & ARMCANZ (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality, National Water Quality Management Strategy, 2000, ANZECC (Australian and New Zealand Environment Conservation Council) and ARMCANZ (Agriculture and Resource Management Council of Australia and New Zealand). Livestock Drinking Water Levels (Irrigation Levels used for Fe and Mn).

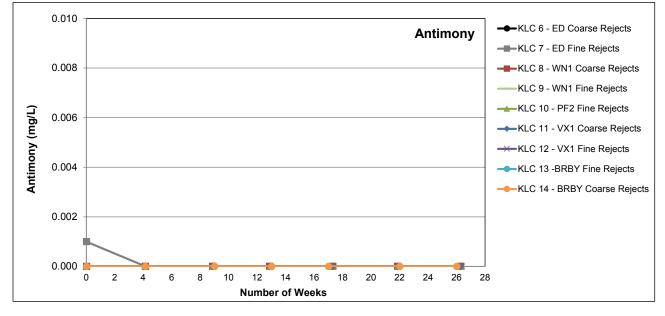


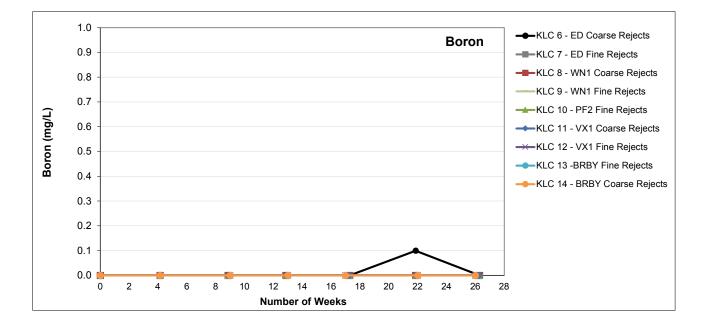


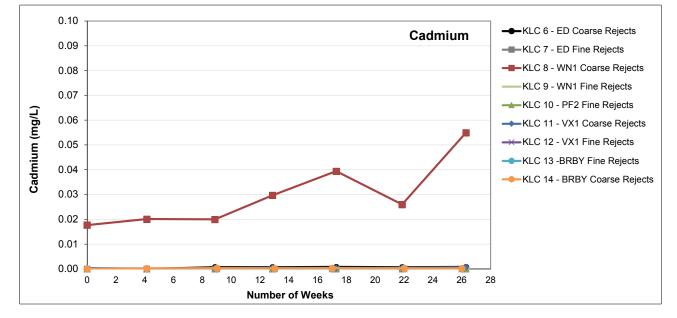


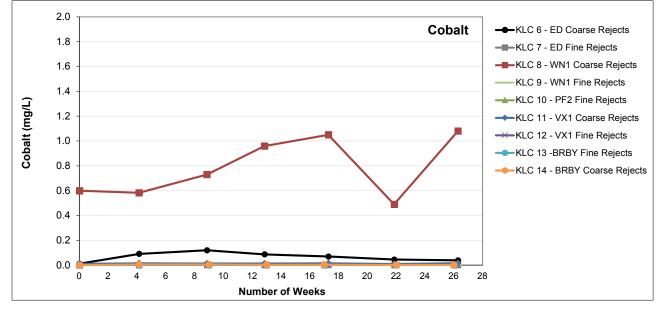


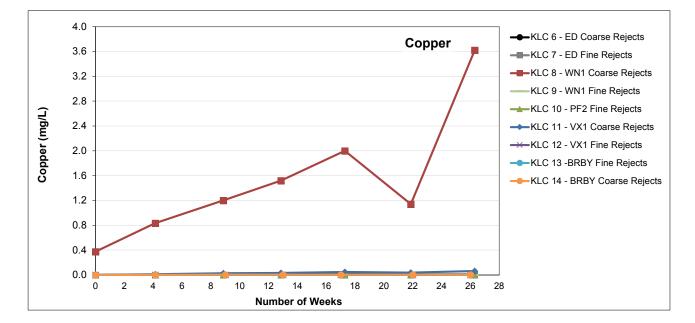


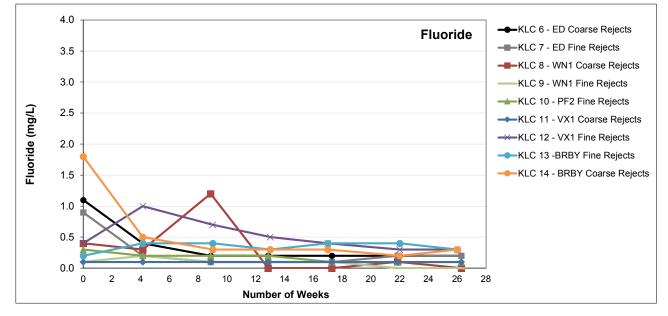


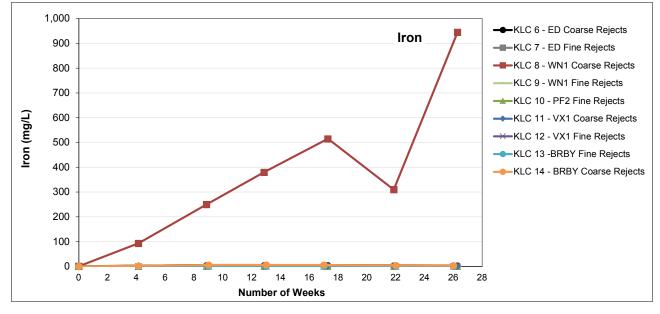


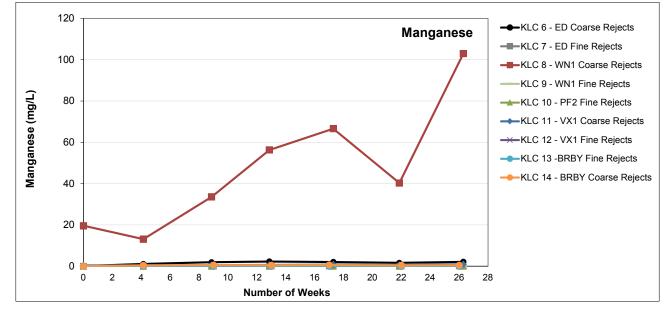


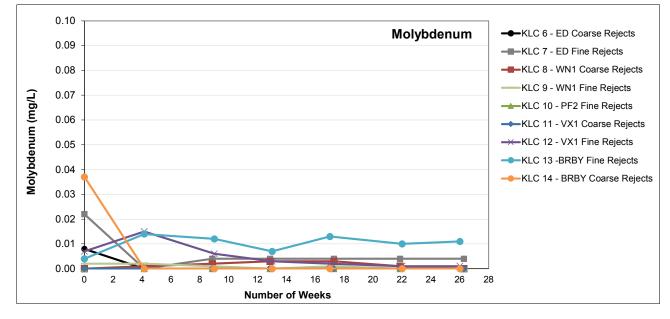


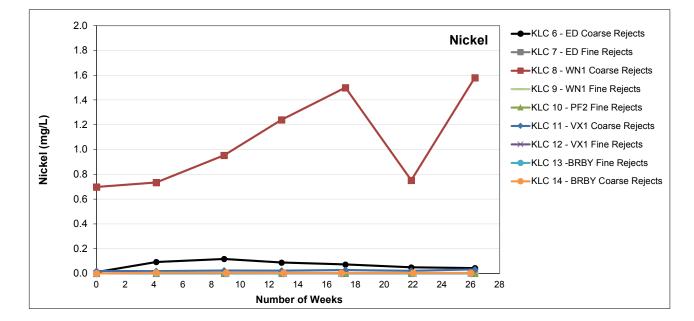


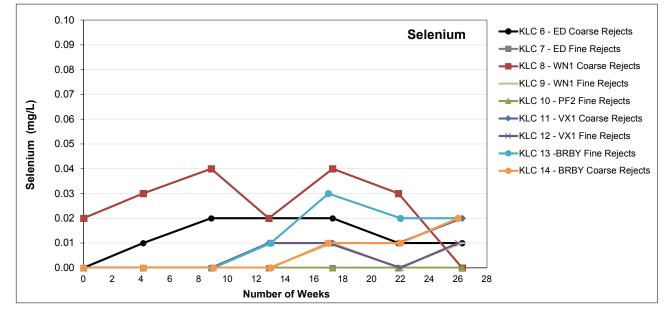


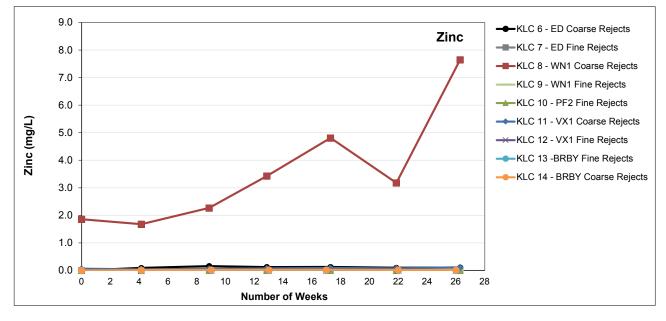












Attachment D ALS and Trilab laboratory results (certificates of analysis)

CERTIFICATE OF ANALYSIS

Work Order	EB1831663	Page	: 1 of 19	
Client	RGS ENVIRONMENTAL PTY LTD	Laboratory	Environmental Division Brisbane	
Contact	: MR ALAN ROBERTSON	Contact	: Customer Services EB	
Address	:	Address	: 2 Byth Street Stafford QLD Australia 40	53
Telephone	: +61 07 3344 1222	Telephone	+61-7-3243 7222	
Project	: 2018030 Mach Energy	Date Samples Received	: 20-Dec-2018 11:30	
Order number	:	Date Analysis Commenced	: 15-Jan-2019	
C-O-C number	:	Issue Date	: 22-Jan-2019 17:59	
Sampler	:			MRA NATA
Site	:			
Quote number	: EN/222		and the second se	Annual
No. of samples received	: 83			Accreditation No. 825 Accredited for compliance with
No. of samples analysed	: 83			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Satishkumar Trivedi	Senior Acid Sulfate Soil Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

 \emptyset = ALS is not NATA accredited for these tests.

 \sim = Indicates an estimated value.

• ASS: EA013 (ANC) Fizz Rating: 0- None; 1- Slight; 2- Moderate; 3- Strong; 4- Very Strong; 5- Lime.

Page : 3 of 19 Work Order : EB1831663 Client : RGS ENVIRONMENTAL PTY LTD Project : 2018030 Mach Energy

Sub-Matrix: SOLID (Matrix: SOIL)	Client sample ID Client sampling date / time			AMD001	AMD002	AMD003	AMD004	AMD005
				12-Dec-2018 00:00				
Compound	CAS Number	LOR	Unit	EB1831663-001	EB1831663-002	EB1831663-003	EB1831663-004	EB1831663-005
				Result	Result	Result	Result	Result
EA002: pH 1:5 (Soils)								
pH Value		0.1	pH Unit	8.6	9.0	7.2	8.3	4.3
EA009: Nett Acid Production Potential								
Net Acid Production Potential		0.5	kg H2SO4/t	-43.8	-52.2	-0.4	-45.3	64.3
EA010: Conductivity (1:5)								
Electrical Conductivity @ 25°C		1	µS/cm	478	255	349	597	3490
EA013: Acid Neutralising Capacity								
ANC as H2SO4		0.5	kg H2SO4	44.7	52.8	6.5	48.4	<0.5
			equiv./t					
ANC as CaCO3		0.1	% CaCO3	4.6	5.4	0.7	4.9	<0.1
Fizz Rating		0	Fizz Unit	2	2	0	2	0
ED042T: Total Sulfur by LECO								
Sulfur - Total as S (LECO)		0.01	%	0.03	0.02	0.20	0.10	2.10

Page : 4 of 19 Work Order : EB1831663 Client : RGS ENVIRONMENTAL PTY LTD Project : 2018030 Mach Energy

Sub-Matrix: SOLID (Matrix: SOIL)	Client sample ID Client sampling date / time			AMD006	AMD007	AMD008	AMD009	AMD010
				12-Dec-2018 00:00				
Compound	CAS Number LOR Unit		EB1831663-006	EB1831663-007	EB1831663-008	EB1831663-009	EB1831663-010	
				Result	Result	Result	Result	Result
EA002: pH 1:5 (Soils)								
pH Value		0.1	pH Unit	5.8	3.9	9.0	8.0	6.9
EA009: Nett Acid Production Potential								
Net Acid Production Potential		0.5	kg H2SO4/t	44.9	100	-287	-19.3	1.9
EA010: Conductivity (1:5)								
Electrical Conductivity @ 25°C		1	µS/cm	2630	2230	251	228	751
EA013: Acid Neutralising Capacity								
ANC as H2SO4		0.5	kg H2SO4	4.7	<0.5	289	20.8	5.4
			equiv./t					
ANC as CaCO3		0.1	% CaCO3	0.5	<0.1	29.5	2.1	0.6
Fizz Rating		0	Fizz Unit	0	0	3	1	1
ED042T: Total Sulfur by LECO								
Sulfur - Total as S (LECO)		0.01	%	1.62	3.27	0.06	0.05	0.24

Page : 5 of 19 Work Order : EB1831663 Client : RGS ENVIRONMENTAL PTY LTD Project : 2018030 Mach Energy

Sub-Matrix: SOLID (Matrix: SOIL)	Client sample ID Client sampling date / time			AMD011	AMD012	AMD013	AMD014	AMD015
				12-Dec-2018 00:00				
Compound	CAS Number	LOR	Unit	EB1831663-011	EB1831663-012	EB1831663-013	EB1831663-014	EB1831663-015
				Result	Result	Result	Result	Result
EA002: pH 1:5 (Soils)								
pH Value		0.1	pH Unit	7.7	8.8	8.7	8.8	8.3
EA009: Nett Acid Production Potential								
Net Acid Production Potential		0.5	kg H2SO4/t	-3.7	-14.7	-13.3	-48.6	-43.0
EA010: Conductivity (1:5)								
Electrical Conductivity @ 25°C		1	µS/cm	204	208	484	430	444
EA013: Acid Neutralising Capacity								
ANC as H2SO4		0.5	kg H2SO4	4.9	15.3	13.9	49.2	44.5
			equiv./t					
ANC as CaCO3		0.1	% CaCO3	0.5	1.6	1.4	5.0	4.5
Fizz Rating		0	Fizz Unit	0	1	1	2	2
ED042T: Total Sulfur by LECO								
Sulfur - Total as S (LECO)		0.01	%	0.04	0.02	0.02	0.02	0.05

Page : 6 of 19 Work Order : EB1831663 Client : RGS ENVIRONMENTAL PTY LTD Project : 2018030 Mach Energy

Sub-Matrix: SOLID (Matrix: SOIL)	Client sample ID Client sampling date / time			AMD016	AMD017	AMD018	AMD019	AMD020
				12-Dec-2018 00:00				
Compound	CAS Number	LOR	Unit	EB1831663-016	EB1831663-017	EB1831663-018	EB1831663-019	EB1831663-020
				Result	Result	Result	Result	Result
EA002: pH 1:5 (Soils)								
pH Value		0.1	pH Unit	7.7	7.6	4.1	3.9	4.5
EA009: Nett Acid Production Potential								
Net Acid Production Potential		0.5	kg H2SO4/t	-104	-6.3	95.8	64.3	74.4
EA010: Conductivity (1:5)								
Electrical Conductivity @ 25°C		1	µS/cm	337	156	3970	2760	3630
EA013: Acid Neutralising Capacity								
ANC as H2SO4		0.5	kg H2SO4	105	6.9	<0.5	<0.5	<0.5
			equiv./t					
ANC as CaCO3		0.1	% CaCO3	10.7	0.7	<0.1	<0.1	<0.1
Fizz Rating		0	Fizz Unit	2	1	0	0	0
ED042T: Total Sulfur by LECO								
Sulfur - Total as S (LECO)		0.01	%	0.04	0.02	3.13	2.10	2.43

Page : 7 of 19 Work Order : EB1831663 Client : RGS ENVIRONMENTAL PTY LTD Project : 2018030 Mach Energy

Sub-Matrix: SOLID (Matrix: SOIL)	Client sample ID			AMD023	AMD024	AMD025	AMD026	AMD027
	Cl	ient sampl	ing date / time	12-Dec-2018 00:00				
Compound	CAS Number	LOR	Unit	EB1831663-021	EB1831663-022	EB1831663-023	EB1831663-024	EB1831663-025
				Result	Result	Result	Result	Result
EA002: pH 1:5 (Soils)								
pH Value		0.1	pH Unit	8.7	8.7	8.9	8.7	8.4
EA009: Nett Acid Production Potential								
Net Acid Production Potential		0.5	kg H2SO4/t	-106	-18.2	-307	-29.2	-19.4
EA010: Conductivity (1:5)								
Electrical Conductivity @ 25°C		1	µS/cm	317	330	237	447	366
EA013: Acid Neutralising Capacity								
ANC as H2SO4		0.5	kg H2SO4	108	19.4	308	29.8	20.0
			equiv./t					
ANC as CaCO3		0.1	% CaCO3	11.1	2.0	31.4	3.0	2.0
Fizz Rating		0	Fizz Unit	3	1	4	1	1
ED042T: Total Sulfur by LECO								
Sulfur - Total as S (LECO)		0.01	%	0.06	0.04	0.04	0.02	0.02

Page : 8 of 19 Work Order : EB1831663 Client : RGS ENVIRONMENTAL PTY LTD Project : 2018030 Mach Energy

Sub-Matrix: SOLID (Matrix: SOIL)	Client sample ID			AMD028	AMD029	AMD030	AMD035	AMD036
	Cli	ient sampl	ing date / time	12-Dec-2018 00:00				
Compound	CAS Number	LOR	Unit	EB1831663-026	EB1831663-027	EB1831663-028	EB1831663-029	EB1831663-030
				Result	Result	Result	Result	Result
EA002: pH 1:5 (Soils)								
pH Value		0.1	pH Unit	8.6	8.9	8.9	8.4	8.1
EA009: Nett Acid Production Potential								
Net Acid Production Potential		0.5	kg H2SO4/t	-48.0	-47.7	-61.0	-20.4	-11.3
EA010: Conductivity (1:5)								
Electrical Conductivity @ 25°C		1	µS/cm	321	283	255	174	155
EA013: Acid Neutralising Capacity								
ANC as H2SO4		0.5	kg H2SO4	48.6	48.3	61.6	20.4	12.5
			equiv./t					
ANC as CaCO3		0.1	% CaCO3	5.0	4.9	6.3	2.1	1.3
Fizz Rating		0	Fizz Unit	2	2	2	1	1
ED042T: Total Sulfur by LECO								
Sulfur - Total as S (LECO)		0.01	%	0.02	0.02	0.02	<0.01	0.04

Page : 9 of 19 Work Order : EB1831663 Client : RGS ENVIRONMENTAL PTY LTD Project : 2018030 Mach Energy

Sub-Matrix: SOLID (Matrix: SOIL)	Client sample ID Client sampling date / time			AMD037	AMD038	AMD039	AMD040	AMD043
				12-Dec-2018 00:00				
Compound	CAS Number	LOR	Unit	EB1831663-031	EB1831663-032	EB1831663-033	EB1831663-034	EB1831663-035
				Result	Result	Result	Result	Result
EA002: pH 1:5 (Soils)								
pH Value		0.1	pH Unit	8.1	7.7	8.6	8.8	8.5
EA009: Nett Acid Production Potential								
Net Acid Production Potential		0.5	kg H2SO4/t	-21.7	-8.1	-78.1	-68.9	-11.9
EA010: Conductivity (1:5)								
Electrical Conductivity @ 25°C		1	µS/cm	174	206	279	295	106
EA013: Acid Neutralising Capacity								
ANC as H2SO4		0.5	kg H2SO4	22.6	12.4	79.0	69.5	12.8
			equiv./t					
ANC as CaCO3		0.1	% CaCO3	2.3	1.3	8.1	7.1	1.3
Fizz Rating		0	Fizz Unit	1	1	2	2	1
ED042T: Total Sulfur by LECO								
Sulfur - Total as S (LECO)		0.01	%	0.03	0.14	0.03	0.02	0.03

Page : 10 of 19 Work Order : EB1831663 Client : RGS ENVIRONMENTAL PTY LTD Project : 2018030 Mach Energy

Sub-Matrix: SOLID (Matrix: SOIL)	Client sample ID			AMD044	AMD046	AMD047	AMD048	AMD050
	Cli	ient sampli	ing date / time	12-Dec-2018 00:00				
Compound	CAS Number	LOR	Unit	EB1831663-036	EB1831663-037	EB1831663-038	EB1831663-039	EB1831663-040
				Result	Result	Result	Result	Result
EA002: pH 1:5 (Soils)								
pH Value		0.1	pH Unit	9.0	8.6	8.4	8.4	9.0
EA009: Nett Acid Production Potential								
Net Acid Production Potential		0.5	kg H2SO4/t	-85.5	-12.8	-10.8	-16.3	-50.7
EA010: Conductivity (1:5)								
Electrical Conductivity @ 25°C		1	µS/cm	302	87	92	134	322
EA013: Acid Neutralising Capacity								
ANC as H2SO4		0.5	kg H2SO4	86.1	13.4	10.8	17.2	51.6
			equiv./t					
ANC as CaCO3		0.1	% CaCO3	8.8	1.4	1.1	1.8	5.3
Fizz Rating		0	Fizz Unit	2	1	1	1	2
ED042T: Total Sulfur by LECO								
Sulfur - Total as S (LECO)		0.01	%	0.02	0.02	<0.01	0.03	0.03

Page : 11 of 19 Work Order : EB1831663 Client : RGS ENVIRONMENTAL PTY LTD Project : 2018030 Mach Energy

Sub-Matrix: SOLID (Matrix: SOIL)		Cli	ent sample ID	AMD052	AMD053	AMD054	AMD056	AMD057
	Cl	ient sampl	ing date / time	12-Dec-2018 00:00				
Compound	CAS Number	LOR	Unit	EB1831663-041	EB1831663-042	EB1831663-043	EB1831663-044	EB1831663-045
				Result	Result	Result	Result	Result
EA002: pH 1:5 (Soils)								
pH Value		0.1	pH Unit	7.9	6.1	7.8	4.7	3.4
EA009: Nett Acid Production Potential								
Net Acid Production Potential		0.5	kg H2SO4/t	-6.2	-0.4	-17.5	50.2	102
EA010: Conductivity (1:5)								
Electrical Conductivity @ 25°C		1	µS/cm	138	484	2810	2060	2540
EA013: Acid Neutralising Capacity								
ANC as H2SO4		0.5	kg H2SO4	8.6	2.5	43.2	<0.5	<0.5
			equiv./t					
ANC as CaCO3		0.1	% CaCO3	0.9	0.2	4.4	<0.1	<0.1
Fizz Rating		0	Fizz Unit	0	0	2	0	0
ED042T: Total Sulfur by LECO								
Sulfur - Total as S (LECO)		0.01	%	0.08	0.07	0.84	1.64	3.34

Page : 12 of 19 Work Order : EB1831663 Client : RGS ENVIRONMENTAL PTY LTD Project : 2018030 Mach Energy

Sub-Matrix: SOLID (Matrix: SOIL)	Client sample ID Client sampling date / time			AMD058	AMD059	AMD060	AMD061	AMD062
				12-Dec-2018 00:00				
Compound	CAS Number	LOR	Unit	EB1831663-046	EB1831663-047	EB1831663-048	EB1831663-049	EB1831663-050
				Result	Result	Result	Result	Result
EA002: pH 1:5 (Soils)								
pH Value		0.1	pH Unit	6.9	8.7	8.6	8.5	7.1
EA009: Nett Acid Production Potential								
Net Acid Production Potential		0.5	kg H2SO4/t	85.4	-82.7	-8.1	-42.5	-12.8
EA010: Conductivity (1:5)								
Electrical Conductivity @ 25°C		1	µS/cm	2130	482	352	405	487
EA013: Acid Neutralising Capacity								
ANC as H2SO4		0.5	kg H2SO4	24.5	102	14.2	49.2	21.7
			equiv./t					
ANC as CaCO3		0.1	% CaCO3	2.5	10.4	1.4	5.0	2.2
Fizz Rating		0	Fizz Unit	1	3	1	2	1
ED042T: Total Sulfur by LECO								
Sulfur - Total as S (LECO)		0.01	%	3.59	0.63	0.20	0.22	0.29

Page : 13 of 19 Work Order : EB1831663 Client : RGS ENVIRONMENTAL PTY LTD Project : 2018030 Mach Energy

Sub-Matrix: SOLID (Matrix: SOIL)	Client sample ID Client sampling date / time			AMD063	AMD064	AMD065	AMD069	AMD070
				12-Dec-2018 00:00				
Compound	CAS Number	LOR	Unit	EB1831663-051	EB1831663-052	EB1831663-053	EB1831663-054	EB1831663-055
				Result	Result	Result	Result	Result
EA002: pH 1:5 (Soils)								
pH Value		0.1	pH Unit	8.4	8.8	7.9	7.9	7.9
EA009: Nett Acid Production Potential								
Net Acid Production Potential		0.5	kg H2SO4/t	-49.5	-79.9	-36.7	-18.3	-5.3
EA010: Conductivity (1:5)								
Electrical Conductivity @ 25°C		1	µS/cm	634	567	590	164	121
EA013: Acid Neutralising Capacity								
ANC as H2SO4		0.5	kg H2SO4	50.4	80.5	37.6	19.2	6.2
			equiv./t					
ANC as CaCO3		0.1	% CaCO3	5.1	8.2	3.8	2.0	0.6
Fizz Rating		0	Fizz Unit	2	2	2	1	0
ED042T: Total Sulfur by LECO								
Sulfur - Total as S (LECO)		0.01	%	0.03	0.02	0.03	0.03	0.03

Page : 14 of 19 Work Order : EB1831663 Client : RGS ENVIRONMENTAL PTY LTD Project : 2018030 Mach Energy

Sub-Matrix: SOLID (Matrix: SOIL)		Cli	ent sample ID	AMD071	AMD072	AMD073	AMD074	AMD075
	Client sampling date / time			12-Dec-2018 00:00				
Compound	CAS Number	LOR	Unit	EB1831663-056	EB1831663-057	EB1831663-058	EB1831663-059	EB1831663-060
				Result	Result	Result	Result	Result
EA002: pH 1:5 (Soils)								
pH Value		0.1	pH Unit	7.7	8.8	8.2	7.8	8.4
EA009: Nett Acid Production Potential								
Net Acid Production Potential		0.5	kg H2SO4/t	-15.0	-32.6	-23.0	-7.9	-27.0
EA010: Conductivity (1:5)								
Electrical Conductivity @ 25°C		1	µS/cm	171	205	124	144	218
EA013: Acid Neutralising Capacity								
ANC as H2SO4		0.5	kg H2SO4	18.1	33.2	23.9	9.1	28.2
			equiv./t					
ANC as CaCO3		0.1	% CaCO3	1.8	3.4	2.4	0.9	2.9
Fizz Rating		0	Fizz Unit	1	2	1	0	1
ED042T: Total Sulfur by LECO								
Sulfur - Total as S (LECO)		0.01	%	0.10	0.02	0.03	0.04	0.04

Page : 15 of 19 Work Order : EB1831663 Client : RGS ENVIRONMENTAL PTY LTD Project : 2018030 Mach Energy

Sub-Matrix: SOLID (Matrix: SOIL)		Cli	ent sample ID	AMD076	AMD077	AMD079	AMD080	AMD081
	Client sampling date / time			12-Dec-2018 00:00				
Compound	CAS Number	LOR	Unit	EB1831663-061	EB1831663-062	EB1831663-063	EB1831663-064	EB1831663-065
				Result	Result	Result	Result	Result
EA002: pH 1:5 (Soils)								
pH Value		0.1	pH Unit	7.6	7.6	8.0	8.5	8.7
EA009: Nett Acid Production Potential								
Net Acid Production Potential		0.5	kg H2SO4/t	-10.2	-3.8	-17.5	-9.4	-92.5
EA010: Conductivity (1:5)								
Electrical Conductivity @ 25°C		1	µS/cm	184	123	173	236	346
EA013: Acid Neutralising Capacity								
ANC as H2SO4		0.5	kg H2SO4	12.0	8.1	20.9	11.2	93.4
			equiv./t					
ANC as CaCO3		0.1	% CaCO3	1.2	0.8	2.1	1.1	9.5
Fizz Rating		0	Fizz Unit	1	0	1	1	2
ED042T: Total Sulfur by LECO								
Sulfur - Total as S (LECO)		0.01	%	0.06	0.14	0.11	0.06	0.03

Page : 16 of 19 Work Order : EB1831663 Client : RGS ENVIRONMENTAL PTY LTD Project : 2018030 Mach Energy

Sub-Matrix: SOLID (Matrix: SOIL)	Client sample ID Client sampling date / time			AMD082	AMD083	AMD084	AMD085	AMD086
				12-Dec-2018 00:00				
Compound	CAS Number	LOR	Unit	EB1831663-066	EB1831663-067	EB1831663-068	EB1831663-069	EB1831663-070
				Result	Result	Result	Result	Result
EA002: pH 1:5 (Soils)								
pH Value		0.1	pH Unit	8.9	7.5	8.2	8.5	5.9
EA009: Nett Acid Production Potential								
Net Acid Production Potential		0.5	kg H2SO4/t	-77.2	-7.2	-9.4	-64.5	39.6
EA010: Conductivity (1:5)								
Electrical Conductivity @ 25°C		1	µS/cm	350	167	94	663	2350
EA013: Acid Neutralising Capacity								
ANC as H2SO4		0.5	kg H2SO4	78.1	11.5	10.0	68.8	6.0
			equiv./t					
ANC as CaCO3		0.1	% CaCO3	8.0	1.2	1.0	7.0	0.6
Fizz Rating		0	Fizz Unit	2	1	1	2	0
ED042T: Total Sulfur by LECO								
Sulfur - Total as S (LECO)		0.01	%	0.03	0.14	0.02	0.14	1.49

Page : 17 of 19 Work Order : EB1831663 Client : RGS ENVIRONMENTAL PTY LTD Project : 2018030 Mach Energy

Sub-Matrix: SOLID (Matrix: SOIL)		Cli	ent sample ID	AMD087	AMD088	AMD089	AMD090	AMD091
	Client sampling date / time			12-Dec-2018 00:00				
Compound	CAS Number	LOR	Unit	EB1831663-071	EB1831663-072	EB1831663-073	EB1831663-074	EB1831663-075
				Result	Result	Result	Result	Result
EA002: pH 1:5 (Soils)								
pH Value		0.1	pH Unit	4.5	5.5	7.4	8.6	7.9
EA009: Nett Acid Production Potential								
Net Acid Production Potential		0.5	kg H2SO4/t	91.9	13.6	-12.7	-12.0	-0.8
EA010: Conductivity (1:5)								
Electrical Conductivity @ 25°C		1	µS/cm	2480	501	331	294	109
EA013: Acid Neutralising Capacity								
ANC as H2SO4		0.5	kg H2SO4	5.4	2.3	16.1	13.5	4.5
			equiv./t					
ANC as CaCO3		0.1	% CaCO3	0.6	0.2	1.6	1.4	0.4
Fizz Rating		0	Fizz Unit	0	0	1	1	0
ED042T: Total Sulfur by LECO								
Sulfur - Total as S (LECO)		0.01	%	3.18	0.52	0.11	0.05	0.12

Page : 18 of 19 Work Order : EB1831663 Client : RGS ENVIRONMENTAL PTY LTD Project : 2018030 Mach Energy

Sub-Matrix: SOLID (Matrix: SOIL)	Client sample ID Client sampling date / time			AMD092	AMD093	AMD094	AMD095	AMD096
				12-Dec-2018 00:00				
Compound	CAS Number	LOR	Unit	EB1831663-076	EB1831663-077	EB1831663-078	EB1831663-079	EB1831663-080
				Result	Result	Result	Result	Result
EA002: pH 1:5 (Soils)								
pH Value		0.1	pH Unit	6.8	8.0	8.4	9.0	7.1
EA009: Nett Acid Production Potential								
Net Acid Production Potential		0.5	kg H2SO4/t	8.2	-2.2	-21.7	-79.9	9.4
EA010: Conductivity (1:5)								
Electrical Conductivity @ 25°C		1	µS/cm	506	184	133	305	170
EA013: Acid Neutralising Capacity								
ANC as H2SO4		0.5	kg H2SO4	7.4	5.9	23.2	80.8	12.0
			equiv./t					
ANC as CaCO3		0.1	% CaCO3	0.8	0.6	2.4	8.2	1.2
Fizz Rating		0	Fizz Unit	1	0	1	2	1
ED042T: Total Sulfur by LECO								
Sulfur - Total as S (LECO)		0.01	%	0.51	0.12	0.05	0.03	0.70

Sub-Matrix: SOLID (Matrix: SOIL)		Cli	ent sample ID	AMD042	AMD049	AMD068	
	Cl	ient sampl	ing date / time	12-Dec-2018 00:00	12-Dec-2018 00:00	12-Dec-2018 00:00	
Compound	CAS Number	LOR	Unit	EB1831663-081	EB1831663-082	EB1831663-083	
				Result	Result	Result	
EA002: pH 1:5 (Soils)							
pH Value		0.1	pH Unit	8.4	8.6	8.9	
EA009: Nett Acid Production Potential							
Net Acid Production Potential		0.5	kg H2SO4/t	-13.7	-20.5	-169	
EA010: Conductivity (1:5)							
Electrical Conductivity @ 25°C		1	µS/cm	110	148	247	
EA013: Acid Neutralising Capacity							
ANC as H2SO4		0.5	kg H2SO4	15.2	21.7	171	
			equiv./t				
ANC as CaCO3		0.1	% CaCO3	1.6	2.2	17.4	
Fizz Rating		0	Fizz Unit	1	1	3	
ED042T: Total Sulfur by LECO							
Sulfur - Total as S (LECO)		0.01	%	0.05	0.04	0.05	

CERTIFICATE OF ANALYSIS

Work Order	EB1905293	Page	: 1 of 17	
Client	RGS ENVIRONMENTAL PTY LTD	Laboratory	: Environmental Division Br	isbane
Contact	: MS AMANDA CLEMENTS	Contact	: Customer Services EB	
Address	: PO Box 3091	Address	: 2 Byth Street Stafford QLD	D Australia 4053
	SUNNYBANK SOUTH QLD, AUSTRALIA 4109			
Telephone	:	Telephone	: +61-7-3243 7222	
Project	: 2018030 Mach Energy	Date Samples Received	: 28-Feb-2019 17:14	ANUTUR.
Order number	:	Date Analysis Commenced	: 04-Mar-2019	
C-O-C number	:	Issue Date	: 18-Mar-2019 08:51	
Sampler	: LAURA JACKSON			Hac-MRA NATA
Site	:			
Quote number	: EN/222			Accreditation No. 825
No. of samples received	: 38			Accredited for compliance with
No. of samples analysed	: 38			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ben Felgendrejeris	Senior Acid Sulfate Soil Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD
Kim McCabe	Senior Inorganic Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD
Merrin Avery	Supervisor - Inorganic	Newcastle - Inorganics, Mayfield West, NSW

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- ED006 (Exchangeable Cations on Alkaline Soils): Unable to calculate Calcium/Magnesium Ratio for sample EB1905293-034 (Composite 6 as the required results for Calcium/Magnesium are below LOR.
- ED006 (Exchangeable Cations on Alkaline Soils): Unable to calculate Magnesium/Potassium Ratio for sample EB1905293-034 (Composite 6) as the required results for Magnesium/Potassium are below LOR.
- ED037 (Alkalinity): NATA accreditation does not cover the performance of this service.
- ED038 (Acidity): NATA accreditation does not cover the performance of this service.
- EA031 (Saturated Paste pH): NATA accreditation does not cover the performance of this service.
- EA032 (Saturated Paste EC): NATA accreditation does not cover the performance of this service.
- ALS is not NATA accredited for the analysis of Exchangeable Aluminium and Exchange Acidity in soils when performed under ALS Method ED005.
- ALS is not NATA accredited for the analysis of Exchangeable Cations on Alkaline Soils when performed under ALS Method ED006.
- ASS: EA033 (CRS Suite):Retained Acidity not required because pH KCl greater than or equal to 4.5
- ASS: EA033 (CRS Suite): Liming rate is calculated and reported on a dry weight basis assuming use of fine agricultural lime (CaCO3) and using a safety factor of 1.5 to allow for non-homogeneous mixing and poor reactivity of lime. For conversion of Liming Rate from 'kg/t dry weight' to 'kg/m3 in-situ soil', multiply 'reported results' x 'wet bulk density of soil in t/m3'.
- ED007 and ED008: When Exchangeable AI is reported from these methods, it should be noted that Rayment & Lyons (2011) suggests Exchange Acidity by 1M KCI Method 15G1 (ED005) is a more suitable method for the determination of exchange acidity (H+ + AI3+).

Sub-Matrix: PULP (Matrix: SOIL)		Clie	ent sample ID	AMD003	AMD005	AMD006	AMD007	AMD018
	Cl	lient sampliı	ng date / time	12-Dec-2018 00:00				
Compound	CAS Number	LOR	Unit	EB1905293-001	EB1905293-002	EB1905293-003	EB1905293-004	EB1905293-005
				Result	Result	Result	Result	Result
EA026 : Chromium Reducible Sulfur								
Chromium Reducible Sulphur		0.005	%	0.072	0.896	0.879	1.71	1.50

Sub-Matrix: PULP (Matrix: SOIL)		Clie	ent sample ID	AMD019	AMD020	AMD054	AMD056	AMD085
	CI	ient samplii	ng date / time	12-Dec-2018 00:00				
Compound	CAS Number	LOR	Unit	EB1905293-006	EB1905293-007	EB1905293-008	EB1905293-009	EB1905293-010
				Result	Result	Result	Result	Result
EA026 : Chromium Reducible Sulfur								
Chromium Reducible Sulphur		0.005	%	1.07	1.17	0.360	0.866	0.106

Sub-Matrix: PULP (Matrix: SOIL)		Clie	ent sample ID	AMD086	AMD087	AMD061	AMD089	AMD091
	CI	ient samplir	ng date / time	12-Dec-2018 00:00				
Compound	CAS Number	LOR	Unit	EB1905293-011	EB1905293-012	EB1905293-013	EB1905293-014	EB1905293-015
				Result	Result	Result	Result	Result
EA026 : Chromium Reducible Sulfur								
Chromium Reducible Sulphur		0.005	%	0.807	1.57	0.128	0.048	0.023

Sub-Matrix: PULP (Matrix: SOIL)		Clie	ent sample ID	AMD096	AMD010	AMD092	AMD093	AMD038
	Cl	lient sampliı	ng date / time	12-Dec-2018 00:00				
Compound	CAS Number	LOR	Unit	EB1905293-016	EB1905293-017	EB1905293-018	EB1905293-019	EB1905293-020
				Result	Result	Result	Result	Result
EA026 : Chromium Reducible Sulfur								
Chromium Reducible Sulphur		0.005	%	0.057	0.146	0.385	0.073	0.077

Sub-Matrix: PULP (Matrix: SOIL)		Clie	ent sample ID	AMD077	AMD079	AMD083	AMD057	AMD058
	CI	ient sampliı	ng date / time	12-Dec-2018 00:00				
Compound	CAS Number	LOR	Unit	EB1905293-021	EB1905293-022	EB1905293-023	EB1905293-024	EB1905293-025
				Result	Result	Result	Result	Result
EA026 : Chromium Reducible Sulfur								
Chromium Reducible Sulphur		0.005	%	0.064	0.063	0.110	1.58	2.57

Sub-Matrix: PULP (Matrix: SOIL)		Clie	ent sample ID	AMD059	AMD060	AMD088	Composite 1	Composite 2
	Cli	ent samplii	ng date / time	12-Dec-2018 00:00				
Compound	CAS Number	LOR	Unit	EB1905293-026	EB1905293-027	EB1905293-028	EB1905293-029	EB1905293-030
				Result	Result	Result	Result	Result
EA002: pH 1:5 (Soils)								
pH Value		0.1	pH Unit				7.4	8.7
EA010: Conductivity (1:5)								
Electrical Conductivity @ 25°C		1	µS/cm				1270	379
EA026 : Chromium Reducible Sulfur								
Chromium Reducible Sulphur		0.005	%	0.493	0.140	0.254		
EA031: pH (saturated paste)								
Ø pH (Saturated Paste)		0.1	pH Unit				6.9	7.8
EA032: Electrical Conductivity (saturated	paste)							
Ø Electrical Conductivity (Saturated Paste)		1	µS/cm				2660	1140
EA033-A: Actual Acidity								
pH KCI (23A)		0.1	pH Unit				8.1	9.0
Titratable Actual Acidity (23F)		2	mole H+ / t				<2	<2
sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S				<0.02	<0.02
EA033-B: Potential Acidity								1
Chromium Reducible Sulfur (22B)		0.005	% S				0.365	0.016
acidity - Chromium Reducible Sulfur		10	mole H+ / t				228	<10
(a-22B)								
EA033-C: Acid Neutralising Capacity								
Acid Neutralising Capacity (19A2)		0.01	% CaCO3				3.85	3.26
acidity - Acid Neutralising Capacity		10	mole H+ / t				770	651
(a-19A2)								
sulfidic - Acid Neutralising Capacity		0.01	% pyrite S				1.23	1.04
(s-19A2)								
EA033-E: Acid Base Accounting								
ANC Fineness Factor		0.5	-				1.5	1.5
Net Acidity (sulfur units)		0.02	% S				<0.02	<0.02
Net Acidity (acidity units)		10	mole H+ / t				<10	<10
Liming Rate		1	kg CaCO3/t				<1	<1
Net Acidity excluding ANC (sulfur units)		0.02	% S				0.36	<0.02
Net Acidity excluding ANC (acidity units)		10	mole H+ / t				228	<10
Liming Rate excluding ANC		1	kg CaCO3/t				17	<1
ED006: Exchangeable Cations on Alkaline	Soils							
ø Exchangeable Calcium		0.2	meq/100g				5.4	3.7
ø Exchangeable Magnesium		0.2	meq/100g				5.9	3.3

Page : 9 of 17 Work Order : EB1905293 Client : RGS ENVIRONMENTAL PTY LTD Project : 2018030 Mach Energy

Sub-Matrix: PULP (Matrix: SOIL)		Clie	ent sample ID	AMD059	AMD060	AMD088	Composite 1	Composite 2
	Clie	ent sampli	ng date / time	12-Dec-2018 00:00				
Compound	CAS Number	LOR	Unit	EB1905293-026	EB1905293-027	EB1905293-028	EB1905293-029	EB1905293-030
			-	Result	Result	Result	Result	Result
ED006: Exchangeable Cations on Alka	line Soils - Continue	ed						
Ø Exchangeable Potassium		0.2	meq/100g				1.1	1.8
Ø Exchangeable Sodium		0.2	meq/100g				0.8	1.0
Ø Cation Exchange Capacity		0.2	meq/100g				13.2	9.8
Ø Exchangeable Sodium Percent		0.2	%				6.0	10.1
Ø Calcium/Magnesium Ratio		0.2	-				0.9	1.1
ø Magnesium/Potassium Ratio		0.2	-				5.5	1.9
ED037: Alkalinity								
Total Alkalinity as CaCO3		1	mg/kg				14400	9110
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/kg				14400	9110
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/kg				<5	<5
ED038A: Acidity								
Acidity		1	mg/kg				474	20
ED040S : Soluble Sulfate by ICPAES								
Sulfate as SO4 2-	14808-79-8	10	mg/kg				3650	160
ED045G: Chloride by Discrete Analyse	r		1 1 1					
Chloride	16887-00-6	10	mg/kg				120	230
ED093S: Soluble Major Cations								1
Calcium	7440-70-2	10	mg/kg				690	50
Magnesium	7439-95-4	10	mg/kg				470	30
Sodium	7440-23-5	10	mg/kg				200	230
Potassium	7440-09-7	10	mg/kg				90	80
ED093T: Total Major Cations								
Sodium	7440-23-5	50	mg/kg				380	470
Potassium	7440-09-7	50	mg/kg				1380	1600
Calcium	7440-70-2	50	mg/kg				10200	5240
Magnesium	7439-95-4	50	mg/kg				4640	2960
EG005(ED093)S : Soluble Metals by IC								
Aluminium	7429-90-5	1	mg/kg				<1	<1
Antimony	7440-36-0	0.1	mg/kg				<0.1	<0.1
Arsenic	7440-38-2	0.1	mg/kg				<0.1	<0.1
Boron	7440-42-8	1	mg/kg				<1	<1
Cadmium	7440-43-9	0.1	mg/kg				<0.1	<0.1
Chromium	7440-47-3	0.1	mg/kg				<0.1	<0.1
Cobalt	7440-48-4	0.1	mg/kg				<0.1	<0.1

Page : 10 of 17 Work Order : EB1905293 Client : RGS ENVIRONMENTAL PTY LTD Project : 2018030 Mach Energy

Sub-Matrix: PULP (Matrix: SOIL)		Clie	ent sample ID	AMD059	AMD060	AMD088	Composite 1	Composite 2
	Cl	ient sampli	ng date / time	12-Dec-2018 00:00				
Compound	CAS Number	LOR	Unit	EB1905293-026	EB1905293-027	EB1905293-028	EB1905293-029	EB1905293-030
				Result	Result	Result	Result	Result
EG005(ED093)S : Soluble Meta	als by ICPAES - Continued							
Copper	7440-50-8	0.1	mg/kg				<0.1	<0.1
Iron	7439-89-6	1	mg/kg				<1	<1
Manganese	7439-96-5	0.1	mg/kg				6.8	<0.1
Molybdenum	7439-98-7	0.1	mg/kg				<0.1	<0.1
Nickel	7440-02-0	0.1	mg/kg				<0.1	<0.1
Selenium	7782-49-2	0.1	mg/kg				<0.1	<0.1
Zinc	7440-66-6	0.1	mg/kg				<0.1	<0.1
EG005(ED093)T: Total Metals I	by ICP-AES							
Aluminium	7429-90-5	50	mg/kg				5100	6880
Antimony	7440-36-0	5	mg/kg				<5	<5
Arsenic	7440-38-2	5	mg/kg				7	7
Boron	7440-42-8	50	mg/kg				<50	<50
Cadmium	7440-43-9	1	mg/kg				<1	<1
Chromium	7440-47-3	2	mg/kg				6	7
Cobalt	7440-48-4	2	mg/kg				10	10
Copper	7440-50-8	5	mg/kg				16	23
Iron	7439-89-6	50	mg/kg				18100	28000
Manganese	7439-96-5	5	mg/kg				230	416
Molybdenum	7439-98-7	2	mg/kg				<2	<2
Nickel	7440-02-0	2	mg/kg				15	13
Selenium	7782-49-2	5	mg/kg				<5	<5
Zinc	7440-66-6	5	mg/kg				90	81
EG020S: Soluble Metals by ICI	PMS							
Uranium	7440-61-1	0.01	mg/kg				<0.01	<0.01
Thorium	7440-29-1	0.01	mg/kg				<0.01	<0.01
EG020T: Total Metals by ICP-N	лs							
Thorium	7440-29-1	0.1	mg/kg				4.8	3.4
Uranium	7440-61-1	0.1	mg/kg				0.6	0.8
EK040S: Fluoride Soluble								
Fluoride	16984-48-8	1	mg/kg				2	7
EK040T: Fluoride Total			-					
Fluoride	16984-48-8	40	mg/kg				170	210

Page : 11 of 17 Work Order : EB1905293 Client : RGS ENVIRONMENTAL PTY LTD Project : 2018030 Mach Energy

Sub-Matrix: PULP (Matrix: SOIL)		Clie	ent sample ID	Composite 3	Composite 4	Composite 5	Composite 6	Composite 7
	Clie	ent samplii	ng date / time	12-Dec-2018 00:00	12-Dec-2018 00:00	12-Dec-2018 00:00	12-Dec-2018 00:00	12-Dec-2018 00:0
Compound	CAS Number	LOR	Unit	EB1905293-031	EB1905293-032	EB1905293-033	EB1905293-034	EB1905293-035
				Result	Result	Result	Result	Result
EA002: pH 1:5 (Soils)								
pH Value		0.1	pH Unit	5.9			7.5	7.6
EA010: Conductivity (1:5)								
Electrical Conductivity @ 25°C		1	µS/cm	2060			1230	1030
EA031: pH (saturated paste)								
Ø pH (Saturated Paste)		0.1	pH Unit	6.0	7.7	7.8	6.8	7.0
EA032: Electrical Conductivity (saturated	d naste)		·					
Ø Electrical Conductivity (Saturated Paste)		1	µS/cm	3100	720	803	2810	2660
EA033-A: Actual Acidity			P					
pH KCI (23A)		0.1	pH Unit	7.0	8.9	8.7	7.9	8.4
Titratable Actual Acidity (23F)		2	mole H+ / t	<2	<2	<2	<2	<2
sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	<0.02	<0.02	<0.02	<0.02	<0.02
<u> </u>		0.02	% pyne o	-0.02	10.02	-0.02	-0.02	-0.02
EA033-B: Potential Acidity		0.005	% S	0.740	0.040	0.004	0.404	0.450
Chromium Reducible Sulfur (22B)		10	mole H+/t	0.713	0.012	0.021	0.194	0.459 286
acidity - Chromium Reducible Sulfur (a-22B)		10	mole H+/t	444	<10	13	121	286
EA033-C: Acid Neutralising Capacity		0.01	% C=CO2	4 70	0.00	E 00	4.07	3.88
Acid Neutralising Capacity (19A2)		0.01	% CaCO3	1.72	6.68	5.62	1.87	
acidity - Acid Neutralising Capacity		10	mole H+ / t	344	1330	1120	374	774
(a-19A2)		0.01	% pyrite S	0.55	2.14	1.80	0.60	1.24
sulfidic - Acid Neutralising Capacity (s-19A2)		0.01	70 pyrite O	0.55	2.14	1.00	0.00	1.24
EA033-E: Acid Base Accounting ANC Fineness Factor		0.5	-	1.5	1.5	1.5	1.5	1.5
Net Acidity (sulfur units)		0.02	- % S	0.34	<0.02	<0.02	<0.02	<0.02
Net Acidity (scility units)		10	mole H+/t	215	<10	<10	<10	<10
Liming Rate		10	kg CaCO3/t	16	<10	<1	<1	<10
Net Acidity excluding ANC (sulfur units)		0.02	% S	0.71	<0.02	0.02	0.19	0.46
Net Acidity excluding ANC (suith units)		10	mole H+ / t	444	<10	13	121	286
Liming Rate excluding ANC		10	kg CaCO3/t	33	<1	1	9	200
		•	Ng Ou000/1			•	3	<u> </u>
ED005: Exchange Acidity	1	0.1	mog/100g	0.4				
Ø Exchange Acidity		0.1	meq/100g	<0.1				
Ø Exchangeable Aluminium		0.1	meq/100g	NU. I				
ED006: Exchangeable Cations on Alkalin							0.0	
ø Exchangeable Calcium		0.2	meq/100g				<0.2	6.6

Page : 12 of 17 Work Order : EB1905293 Client : RGS ENVIRONMENTAL PTY LTD Project : 2018030 Mach Energy

Sub-Matrix: PULP (Matrix: SOIL)		Cli	ent sample ID	Composite 3	Composite 4	Composite 5	Composite 6	Composite 7
	Clie	ent sampli	ng date / time	12-Dec-2018 00:00				
Compound	CAS Number	LOR	Unit	EB1905293-031	EB1905293-032	EB1905293-033	EB1905293-034	EB1905293-035
				Result	Result	Result	Result	Result
D006: Exchangeable Cations on Alkal	ine Soils - Continue	ed						
Ø Exchangeable Magnesium		0.2	meq/100g				<0.2	5.9
Ø Exchangeable Potassium		0.2	meq/100g				<0.2	1.4
Ø Exchangeable Sodium		0.2	meq/100g				<0.2	1.1
Ø Cation Exchange Capacity		0.2	meq/100g				<0.2	15.1
Ø Exchangeable Sodium Percent		0.2	%					7.5
ø Calcium/Magnesium Ratio		0.2	-					1.1
Ø Magnesium/Potassium Ratio		0.2	-					4.2
ED008: Exchangeable Cations								
Exchangeable Calcium		0.1	meq/100g	8.6				
Exchangeable Magnesium		0.1	meq/100g	3.8				
Exchangeable Potassium		0.1	meq/100g	0.4				
Exchangeable Sodium		0.1	meq/100g	<0.1				
Cation Exchange Capacity		0.1	meq/100g	13.2				
Exchangeable Sodium Percent		0.1	%	0.5				
Calcium/Magnesium Ratio		0.1	-	2.3				
Magnesium/Potassium Ratio		0.1	-	10.6				
ED037: Alkalinity								
Total Alkalinity as CaCO3		1	mg/kg	4840	22300	10100	4790	12200
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/kg	4840	22300	10100	4790	12200
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/kg	<5	<5	<5	<5	<5
ED038A: Acidity								
Acidity		1	mg/kg	838	<5	<5	318	202
ED040S : Soluble Sulfate by ICPAES								
Sulfate as SO4 2-	14808-79-8	10	mg/kg	7090	100	160	3530	2130
ED045G: Chloride by Discrete Analyser								
Chloride	16887-00-6	10	mg/kg	40	110	40	50	210
	10007-00-0	10						210
ED093S: Soluble Major Cations Calcium	7440 70 0	10	ma/ka	1460	40	20	660	450
Magnesium	7440-70-2	10	mg/kg mg/kg	930	40	30	360	270
Sodium	7439-95-4 7440-23-5	10	mg/kg	50	250	240	340	270
Potassium		10	mg/kg	20	70	50	140	110
	7440-09-7	10	ing/Kg	20	10	50	140	110
ED093T: Total Major Cations		50	mallin	070		040	500	5 00
Sodium	7440-23-5	50	mg/kg	270	630	610	590	530
Potassium	7440-09-7	50	mg/kg	1680	1680	1620	1610	1550

Page : 13 of 17 Work Order : EB1905293 Client : RGS ENVIRONMENTAL PTY LTD Project : 2018030 Mach Energy

Sub-Matrix: PULP (Matrix: SOIL)		Clie	ent sample ID	Composite 3	Composite 4	Composite 5	Composite 6	Composite 7
	Cli	ent samplii	ng date / time	12-Dec-2018 00:00				
Compound	CAS Number	LOR	Unit	EB1905293-031	EB1905293-032	EB1905293-033	EB1905293-034	EB1905293-035
			-	Result	Result	Result	Result	Result
ED093T: Total Major Cations -	Continued							
Calcium	7440-70-2	50	mg/kg	7250	16100	9270	4930	8880
Magnesium	7439-95-4	50	mg/kg	3300	7470	6200	2930	4660
EG005(ED093)S : Soluble Meta	als by ICPAES							
Aluminium	7429-90-5	1	mg/kg	<1	<1	<1	<1	<1
Antimony	7440-36-0	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arsenic	7440-38-2	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Boron	7440-42-8	1	mg/kg	<1	<1	<1	<1	<1
Cadmium	7440-43-9	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium	7440-47-3	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Cobalt	7440-48-4	0.1	mg/kg	1.2	<0.1	<0.1	<0.1	<0.1
Copper	7440-50-8	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Iron	7439-89-6	1	mg/kg	<1	<1	<1	<1	<1
Manganese	7439-96-5	0.1	mg/kg	121	<0.1	<0.1	3.4	0.5
Molybdenum	7439-98-7	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	7440-02-0	0.1	mg/kg	1.8	<0.1	<0.1	<0.1	<0.1
Selenium	7782-49-2	0.1	mg/kg	<0.1	<0.1	<0.1	0.1	0.1
Zinc	7440-66-6	0.1	mg/kg	0.6	<0.1	<0.1	<0.1	<0.1
G005(ED093)T: Total Metals I	by ICP-AES							
Aluminium	7429-90-5	50	mg/kg	4710	7840	6970	5530	7000
Antimony	7440-36-0	5	mg/kg	<5	<5	<5	<5	<5
Arsenic	7440-38-2	5	mg/kg	15	7	6	6	8
Boron	7440-42-8	50	mg/kg	<50	<50	<50	<50	<50
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	<1
Chromium	7440-47-3	2	mg/kg	6	8	8	5	6
Cobalt	7440-48-4	2	mg/kg	10	9	12	9	11
Copper	7440-50-8	5	mg/kg	17	21	30	25	23
Iron	7439-89-6	50	mg/kg	24900	29800	34500	19200	30900
Manganese	7439-96-5	5	mg/kg	356	432	543	285	276
Molybdenum	7439-98-7	2	mg/kg	<2	<2	<2	<2	<2
Nickel	7440-02-0	2	mg/kg	12	11	14	11	20
Selenium	7782-49-2	5	mg/kg	<5	<5	<5	<5	<5
Zinc	7440-66-6	5	mg/kg	76	86	87	80	87
EG020S: Soluble Metals by ICI	PMS							
Uranium	7440-61-1	0.01	mg/kg	<0.01	<0.01	<0.01	<0.01	0.01

Page	: 14 of 17
Work Order	: EB1905293
Client	: RGS ENVIRONMENTAL PTY LTD
Project	2018030 Mach Energy

Sub-Matrix: PULP (Matrix: SOIL)		Clie	ent sample ID	Composite 3	Composite 4	Composite 5	Composite 6	Composite 7
	Cli	ient sampli	ng date / time	12-Dec-2018 00:00				
Compound	CAS Number	LOR	Unit	EB1905293-031	EB1905293-032	EB1905293-033	EB1905293-034	EB1905293-035
				Result	Result	Result	Result	Result
EG020S: Soluble Metals by ICPMS - Con	ntinued							
Thorium	7440-29-1	0.01	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01
EG020T: Total Metals by ICP-MS								
Thorium	7440-29-1	0.1	mg/kg	3.9	6.0	5.7	5.2	5.5
Uranium	7440-61-1	0.1	mg/kg	0.6	1.1	0.7	0.7	0.9
EK040S: Fluoride Soluble								
Fluoride	16984-48-8	1	mg/kg	<1	13	8	2	3
EK040T: Fluoride Total								
Fluoride	16984-48-8	40	mg/kg	190	220	230	190	200

Sub-Matrix: PULP (Matrix: SOIL)		Clie	ent sample ID	Composite 8	Composite 9	Composite 10		
	Cli	ent samplii	ng date / time	12-Dec-2018 00:00	12-Dec-2018 00:00	12-Dec-2018 00:00		
Compound	CAS Number	LOR	Unit	EB1905293-036	EB1905293-037	EB1905293-038		
			-	Result	Result	Result		
EA002: pH 1:5 (Soils)								
pH Value		0.1	pH Unit	7.8	8.0			
EA010: Conductivity (1:5)								
Electrical Conductivity @ 25°C		1	µS/cm	768	286			
EA031: pH (saturated paste)								
Ø pH (Saturated Paste)		0.1	pH Unit	7.1	7.2	7.9		
EA032: Electrical Conductivity (saturated	l naste)							
Electrical Conductivity (Saturated Paste)		1	µS/cm	1990	967	756		
EA033-A: Actual Acidity								
pH KCI (23A)		0.1	pH Unit	8.2	6.8	8.7		
Titratable Actual Acidity (23F)		2	mole H+ / t	<2	<2	<2		
sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	<0.02	<0.02	<0.02		
EA033-B: Potential Acidity							1	
Chromium Reducible Sulfur (22B)		0.005	% S	0.233	0.118	0.033		
acidity - Chromium Reducible Sulfur		10	mole H+ / t	145	74	20		
(a-22B)								
EA033-C: Acid Neutralising Capacity								
Acid Neutralising Capacity (19A2)		0.01	% CaCO3	2.98	1.31	6.54		
acidity - Acid Neutralising Capacity		10	mole H+ / t	595	262	1310		
(a-19A2)								
sulfidic - Acid Neutralising Capacity		0.01	% pyrite S	0.95	0.42	2.10		
(s-19A2)								
EA033-E: Acid Base Accounting								
ANC Fineness Factor		0.5	-	1.5	1.5	1.5		
Net Acidity (sulfur units)		0.02	% S	<0.02	<0.02	<0.02		
Net Acidity (acidity units)		10	mole H+ / t	<10	<10	<10		
Liming Rate		1	kg CaCO3/t	<1	<1	<1		
Net Acidity excluding ANC (sulfur units)		0.02	% S	0.23	0.12	0.03		
Net Acidity excluding ANC (acidity units)		10	mole H+ / t	145	74	20		
Liming Rate excluding ANC		1	kg CaCO3/t	11	6	2		
ED006: Exchangeable Cations on Alkalin	e Soils							
Ø Exchangeable Calcium		0.2	meq/100g	3.7	1.8			
Ø Exchangeable Magnesium		0.2	meq/100g	5.3	3.4			
Ø Exchangeable Potassium		0.2	meq/100g	1.2	1.5			
Ø Exchangeable Sodium		0.2	meg/100g	0.9	1.5			

Page : 16 of 17 Work Order : EB1905293 Client : RGS ENVIRONMENTAL PTY LTD Project : 2018030 Mach Energy

Sub-Matrix: PULP (Matrix: SOIL)		Clie	ent sample ID	Composite 8	Composite 9	Composite 10	
(Cli	ent sampli	ng date / time	12-Dec-2018 00:00	12-Dec-2018 00:00	12-Dec-2018 00:00	
Compound	CAS Number	LOR	Unit	EB1905293-036	EB1905293-037	EB1905293-038	
				Result	Result	Result	
ED006: Exchangeable Cations on Alkal	ine Soils - Continue	∋d					
Ø Cation Exchange Capacity		0.2	meq/100g	11.1	8.1		
Ø Exchangeable Sodium Percent		0.2	%	8.0	18.1		
ø Calcium/Magnesium Ratio		0.2	-	0.7	0.5		
Ø Magnesium/Potassium Ratio		0.2	-	4.4	2.2		
ED037: Alkalinity							
Total Alkalinity as CaCO3		1	mg/kg	7840	2620	14400	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/kg	7840	2620	14400	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/kg	<5	<5	<5	
ED038A: Acidity							
Acidity		1	mg/kg	116	66	<5	
ED040S : Soluble Sulfate by ICPAES							
Sulfate as SO4 2-	14808-79-8	10	mg/kg	1390	390	120	
ED045G: Chloride by Discrete Analyse		-	3 3				
Chloride	16887-00-6	10	mg/kg	70	40	50	
ED093S: Soluble Major Cations			0.0				
Calcium	7440-70-2	10	mg/kg	220	10	30	
Magnesium	7439-95-4	10	mg/kg	200	20	30	
Sodium	7440-23-5	10	mg/kg	200	230	210	
Potassium	7440-09-7	10	mg/kg	110	70	70	
ED093T: Total Major Cations		-	5 5				
Sodium	7440-23-5	50	mg/kg	390	520	460	
Potassium	7440-23-3	50	mg/kg	1450	1570	1250	
Calcium	7440-70-2	50	mg/kg	5000	1570	12900	
Magnesium	7439-95-4	50	mg/kg	3450	2290	7110	
-		00	mg/kg	0400	2230	7110	
EG005(ED093)S : Soluble Metals by ICF Aluminium	7429-90-5	1	mg/kg	<1	<1	<1	
Antimony	7429-90-5	0.1	mg/kg	<0.1	<0.1	<0.1	
Arsenic	7440-36-0	0.1	mg/kg	<0.1	<0.1	<0.1	
Boron	7440-38-2	1	mg/kg	<1	<1	<1	
Cadmium	7440-42-8	0.1	mg/kg	<0.1	<0.1	<0.1	
Chromium	7440-43-9	0.1	mg/kg	<0.1	<0.1	<0.1	
Cobalt	7440-47-3	0.1	mg/kg	<0.1	<0.1	<0.1	
Copper	7440-48-4	0.1	mg/kg	<0.1	<0.1	<0.1	
Iron	7439-89-6	1	mg/kg	<1	<1	<1	

Page : 17 of 17 Work Order : EB1905293 Client : RGS ENVIRONMENTAL PTY LTD Project : 2018030 Mach Energy

Sub-Matrix: PULP (Matrix: SOIL)		Clie	ent sample ID	Composite 8	Composite 9	Composite 10	
	Cli	ient sampli	ng date / time	12-Dec-2018 00:00	12-Dec-2018 00:00	12-Dec-2018 00:00	
Compound	CAS Number	LOR	Unit	EB1905293-036	EB1905293-037	EB1905293-038	
				Result	Result	Result	
EG005(ED093)S : Soluble Metals I	by ICPAES - Continued						
Manganese	7439-96-5	0.1	mg/kg	0.6	<0.1	<0.1	
Molybdenum	7439-98-7	0.1	mg/kg	<0.1	0.2	<0.1	
Nickel	7440-02-0	0.1	mg/kg	<0.1	<0.1	<0.1	
Selenium	7782-49-2	0.1	mg/kg	<0.1	<0.1	<0.1	
Zinc	7440-66-6	0.1	mg/kg	<0.1	<0.1	<0.1	
EG005(ED093)T: Total Metals by I	CP-AES						
Aluminium	7429-90-5	50	mg/kg	4800	5120	4930	
Antimony	7440-36-0	5	mg/kg	<5	<5	<5	
Arsenic	7440-38-2	5	mg/kg	6	<5	8	
Boron	7440-42-8	50	mg/kg	<50	<50	<50	
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	
Chromium	7440-47-3	2	mg/kg	5	3	6	
Cobalt	7440-48-4	2	mg/kg	10	13	7	
Copper	7440-50-8	5	mg/kg	25	43	26	
Iron	7439-89-6	50	mg/kg	21300	12600	32600	
Manganese	7439-96-5	5	mg/kg	266	91	527	
Molybdenum	7439-98-7	2	mg/kg	<2	<2	<2	
Nickel	7440-02-0	2	mg/kg	12	15	11	
Selenium	7782-49-2	5	mg/kg	<5	<5	<5	
Zinc	7440-66-6	5	mg/kg	88	105	78	
EG020S: Soluble Metals by ICPMS	S						
Uranium	7440-61-1	0.01	mg/kg	<0.01	<0.01	<0.01	
Thorium	7440-29-1	0.01	mg/kg	<0.01	<0.01	<0.01	
EG020T: Total Metals by ICP-MS							
Thorium	7440-29-1	0.1	mg/kg	5.1	6.4	4.8	
Uranium	7440-61-1	0.1	mg/kg	0.6	0.8	0.7	
EK040S: Fluoride Soluble							
Fluoride	16984-48-8	1	mg/kg	3	3	5	
EK040T: Fluoride Total							
Fluoride	16984-48-8	40	mg/kg	180	190	190	

CERTIFICATE OF ANALYSIS

Work Order	EB2010009	Page	: 1 of 10	
Client	: RGS ENVIRONMENTAL PTY LTD	Laboratory	: Environmental Division Bri	sbane
Contact	: MS VERONICA CANALES	Contact	: Carsten Emrich	
Address	: PO BOX 3091	Address	: 2 Byth Street Stafford QLD) Australia 4053
	SUNNYBANK SOUTH QLD, AUSTRALIA 4109			
Telephone	: +61 07 3344 1222	Telephone	: +61 7 3552 8616	
Project	: 2019086 - MACH-Mt Pleasant	Date Samples Received	: 08-Apr-2020 14:44	AMILIU.
Order number	:	Date Analysis Commenced	15-Apr-2020	
C-O-C number	:	Issue Date	: 30-Apr-2020 14:13	
Sampler	:			HAC-MRA NATA
Site	:			
Quote number	: EN/222			Accreditation No. 825
No. of samples received	: 21			Accredited for compliance with
No. of samples analysed	: 21			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ben Felgendrejeris	Senior Acid Sulfate Soil Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD
Joel Mullarvey	Laboratory Technician	Newcastle - Inorganics, Mayfield West, NSW
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD
Mark Hallas	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

* = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- Samples 18 & 21 were required to go for crushing before fluoride analysis (EK040T) could be done
- EA031 (Saturated Paste pH): NATA accreditation does not cover the performance of this service.
- EA032 (Saturated Paste EC): NATA accreditation does not cover the performance of this service.
- ED093T (Major Cations Total): Sample BRBY Rejects-KLC 14 (EB2010009-021) shows poor duplicate results due to sample heterogeneity. Confirmed by visual inspection.

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	ED Rejects 1 of 2	ED Rejects 2 of 2	ED Tailings	WN1 Rejects 1 of 2	WN1 Rejects 2 of 2
	Client sampling date / time				31-Mar-2020 00:00	31-Mar-2020 00:00	31-Mar-2020 00:00	31-Mar-2020 00:00
Compound	CAS Number	LOR	Unit	EB2010009-001	EB2010009-002	EB2010009-003	EB2010009-004	EB2010009-005
				Result	Result	Result	Result	Result
EA026 : Chromium Reducible Sulfur								
Chromium Reducible Sulphur		0.005	%	1.41	0.762	0.352	1.18	2.14

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	WN1 Tailings	PF2 Tailings 1 of 2	PF2 Tailings 2 of 2	VA1 Rejects	VA1 Tailings
	Client sampling date / time				31-Mar-2020 00:00	31-Mar-2020 00:00	31-Mar-2020 00:00	31-Mar-2020 00:00
Compound	CAS Number	LOR	Unit	EB2010009-006	EB2010009-007	EB2010009-008	EB2010009-009	EB2010009-010
				Result	Result	Result	Result	Result
EA026 : Chromium Reducible Sulfur								
Chromium Reducible Sulphur		0.005	%	1.20	0.130	0.129	0.109	0.471

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	BRBY Tailings	BRBY Rejects	ED Rejects - KLC 6	ED tailings - KLC 7	WN1 Rejects - KLC 8
	Cli	ient sampli	ng date / time	31-Mar-2020 00:00	31-Mar-2020 00:00	31-Mar-2020 00:00	31-Mar-2020 00:00	31-Mar-2020 00:00
Compound	CAS Number	LOR	Unit	EB2010009-011	EB2010009-012	EB2010009-013	EB2010009-014	EB2010009-015
			-	Result	Result	Result	Result	Result
EA026 : Chromium Reducible Sulfur								
Chromium Reducible Sulphur		0.005	%	0.165	0.093			
EA031: pH (saturated paste)								
ø pH (Saturated Paste)		0.1	pH Unit			7.4	8.0	7.1
EA032: Electrical Conductivity (saturate	d naste)		·					
Ø Electrical Conductivity (Saturated Paste)		1	µS/cm			1810	737	1400
EA055: Moisture Content (Dried @ 105-1			P 0. 0					
Moisture Content		1.0	%			16.6	44.7	12.7
		1.0	70			10.0		12.7
ED093S: Soluble Major Cations		10	malka			00	<u></u>	COO
Calcium	7440-70-2	10	mg/kg			80	60	620
Magnesium	7439-95-4	10	mg/kg			100	80	200
Sodium	7440-23-5	10	mg/kg			170	140	60
Potassium	7440-09-7	10	mg/kg			20	20	<10
ED093T: Total Major Cations								
Sodium	7440-23-5	50	mg/kg			320	270	260
Potassium	7440-09-7	50	mg/kg			430	820	400
Calcium	7440-70-2	50	mg/kg			3620	3000	6170
Magnesium	7439-95-4	50	mg/kg			2660	2410	2310
EG005(ED093)S : Soluble Metals by ICPA	AES							
Boron	7440-42-8	1	mg/kg			<1	<1	<1
Iron	7439-89-6	1	mg/kg			<1	<1	<1
EG005(ED093)T: Total Metals by ICP-AES	S							
Aluminium	7429-90-5	50	mg/kg			1550	2040	1240
Antimony	7440-36-0	5	mg/kg			<5	<5	<5
Arsenic	7440-38-2	5	mg/kg			7	<5	23
Boron	7440-42-8	50	mg/kg			<50	<50	<50
Cadmium	7440-43-9	1	mg/kg			<1	<1	<1
Chromium	7440-47-3	2	mg/kg			<2	<2	<2
Cobalt	7440-48-4	2	mg/kg			6	6	5
Copper	7440-50-8	5	mg/kg			12	18	32
Iron	7439-89-6	50	mg/kg			38700	17300	39200
Manganese	7439-96-5	5	mg/kg			658	222	531
Molybdenum	7439-98-7	2	mg/kg			<2	<2	<2
Nickel	7440-02-0	2	mg/kg			9	9	8
Selenium	7782-49-2	5	mg/kg			<5	<5	<5

Page : 6 of 10 Work Order : EB2010009 Client : RGS ENVIRONMENTAL PTY LTD Project : 2019086 - MACH-Mt Pleasant

Sub-Matrix: SOIL (Matrix: SOIL)				BRBY Tailings	BRBY Rejects	ED Rejects - KLC 6	ED tailings - KLC 7	WN1 Rejects - KLC 8
	Cli	ent sampli	ng date / time	31-Mar-2020 00:00	31-Mar-2020 00:00	31-Mar-2020 00:00	31-Mar-2020 00:00	31-Mar-2020 00:00
Compound	CAS Number	LOR	Unit	EB2010009-011	EB2010009-012	EB2010009-013	EB2010009-014	EB2010009-015
				Result	Result	Result	Result	Result
EG005(ED093)T: Total Metals by ICP	-AES - Continued							
Zinc	7440-66-6	5	mg/kg			37	47	38
EG020S: Soluble Metals by ICPMS								
Arsenic	7440-38-2	0.01	mg/kg			<0.01	<0.01	<0.01
Selenium	7782-49-2	0.1	mg/kg			<0.1	<0.1	<0.1
Cadmium	7440-43-9	0.01	mg/kg			<0.01	<0.01	<0.01
Cobalt	7440-48-4	0.01	mg/kg			0.02	0.02	0.19
Chromium	7440-47-3	0.01	mg/kg			<0.01	<0.01	<0.01
Thorium	7440-29-1	0.01	mg/kg			<0.01	<0.01	<0.01
Copper	7440-50-8	0.01	mg/kg			<0.01	<0.01	<0.01
Manganese	7439-96-5	0.01	mg/kg			0.09	0.29	8.61
Molybdenum	7439-98-7	0.01	mg/kg			0.02	0.14	<0.01
Nickel	7440-02-0	0.01	mg/kg			0.04	0.02	0.26
Antimony	7440-36-0	0.01	mg/kg			<0.01	<0.01	<0.01
Uranium	7440-61-1	0.01	mg/kg			<0.01	<0.01	<0.01
Zinc	7440-66-6	0.05	mg/kg			<0.05	<0.05	0.16
Aluminium	7429-90-5	0.1	mg/kg			<0.1	<0.1	<0.1
EG020T: Total Metals by ICP-MS								
Thorium	7440-29-1	0.1	mg/kg			5.6	7.7	6.8
Uranium	7440-61-1	0.1	mg/kg			2.5	2.8	1.8
EK040S: Fluoride Soluble								
Fluoride	16984-48-8	1	mg/kg			3	6	<1
EK040T: Fluoride Total								
Fluoride	16984-48-8	40	mg/kg			160	240	120

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	WN1 Tailings-KLC 9	PF2 Tailings-KLC 10	VA1 Rejects-KLC 11	VA1 Tailings-KLC 12	BRBY Tailings-KLC 1
(Cli	ient sampli	ng date / time	31-Mar-2020 00:00	31-Mar-2020 00:00	31-Mar-2020 00:00	31-Mar-2020 00:00	31-Mar-2020 00:00
Compound	CAS Number	LOR	Unit	EB2010009-016	EB2010009-017	EB2010009-018	EB2010009-019	EB2010009-020
				Result	Result	Result	Result	Result
EA031: pH (saturated paste)								
ø pH (Saturated Paste)		0.1	pH Unit	7.7	7.3	6.5	8.8	7.9
EA032: Electrical Conductivity (saturated	d paste)							
Electrical Conductivity (Saturated Paste)		1	μS/cm	1020	1180	1300	1000	1070
EA055: Moisture Content (Dried @ 105-11	10°C)							
Moisture Content		1.0	%	39.6	51.4	7.9	47.8	53.5
ED093S: Soluble Major Cations							1	1
Calcium	7440-70-2	10	mg/kg	40	60	90	50	90
Magnesium	7439-95-4	10	mg/kg	40	70	100	110	80
Sodium	7440-23-5	10	mg/kg	40	240	50	120	160
Potassium	7440-09-7	10	mg/kg	10	20	20	20	20
ED093T: Total Major Cations	1110 00 1		3 3					
Sodium	7440-23-5	50	mg/kg	230	500	220	270	300
Potassium	7440-23-3	50	mg/kg	950	870	600	610	560
Calcium	7440-09-7	50	mg/kg	11100	4580	5620	4390	4710
Magnesium	7439-95-4	50	mg/kg	5530	2200	5570	3170	2320
EG005(ED093)S : Soluble Metals by ICPA						0010	0110	1010
Boron	7440-42-8	1	mg/kg	<1	<1	<1	<1	<1
Iron	7439-89-6	1	mg/kg	<1	<1	<1	<1	<1
		•	ilig/itg					
EG005(ED093)T: Total Metals by ICP-AES		50	ma/ka	2560	1890	1590	1750	1870
Aluminium	7429-90-5	5	mg/kg	<5	<5	<5	<5	<5
Antimony Arsenic	7440-36-0	5	mg/kg	12	<5	<5	6	<5
Boron	7440-38-2	50	mg/kg	<50	<50	<50	<50	<50
Cadmium	7440-42-8	1	mg/kg mg/kg	<1	<1	<1	<1	<1
Chromium	7440-43-9	2	mg/kg	4	<2	<2	3	4
Cobalt	7440-47-3	2		8	4	<2	4	6
	7440-48-4	5	mg/kg	26	23	24	21	23
Copper Iron	7440-50-8	50	mg/kg mg/kg	63200	12900	64300	18900	16900
Manganese	7439-89-6 7439-96-5	5	mg/kg	881	140	875	194	205
Molybdenum		2	mg/kg	<2	<2	<2	<2	<205
Nickel	7439-98-7	2		13	6	6	8	12
Selenium	7440-02-0	5	mg/kg	<5	<5	<5	<5	<5
Zinc	7782-49-2	5	mg/kg		51	<5 42	<5 40	38
	7440-66-6	5	mg/kg	70	51	42	40	30

Page: 8 of 10Work Order: EB2010009Client: RGS ENVIRONMENTAL PTY LTDProject: 2019086 - MACH-Mt Pleasant

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	WN1 Tailings-KLC 9	PF2 Tailings-KLC 10	VA1 Rejects-KLC 11	VA1 Tailings-KLC 12	BRBY Tailings-KLC 13
	Cli	ent sampli	ng date / time	31-Mar-2020 00:00	31-Mar-2020 00:00	31-Mar-2020 00:00	31-Mar-2020 00:00	31-Mar-2020 00:00
Compound	CAS Number	LOR	Unit	EB2010009-016	EB2010009-017	EB2010009-018	EB2010009-019	EB2010009-020
				Result	Result	Result	Result	Result
EG020S: Soluble Metals by ICPMS -	Continued							
Arsenic	7440-38-2	0.01	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01
Selenium	7782-49-2	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Cadmium	7440-43-9	0.01	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01
Cobalt	7440-48-4	0.01	mg/kg	<0.01	<0.01	0.04	<0.01	<0.01
Chromium	7440-47-3	0.01	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01
Thorium	7440-29-1	0.01	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01
Copper	7440-50-8	0.01	mg/kg	<0.01	<0.01	0.03	<0.01	<0.01
Manganese	7439-96-5	0.01	mg/kg	0.10	0.13	0.96	0.07	0.19
Molybdenum	7439-98-7	0.01	mg/kg	0.02	0.01	<0.01	0.10	0.15
Nickel	7440-02-0	0.01	mg/kg	<0.01	<0.01	0.17	<0.01	0.01
Antimony	7440-36-0	0.01	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01
Uranium	7440-61-1	0.01	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01
Zinc	7440-66-6	0.05	mg/kg	<0.05	<0.05	0.40	<0.05	<0.05
Aluminium	7429-90-5	0.1	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
EG020T: Total Metals by ICP-MS								
Thorium	7440-29-1	0.1	mg/kg	6.5	4.2	6.5	5.8	6.5
Uranium	7440-61-1	0.1	mg/kg	1.5	2.6	1.0	1.8	1.2
EK040S: Fluoride Soluble								
Fluoride	16984-48-8	1	mg/kg	2	9	<1	15	12
EK040T: Fluoride Total								
Fluoride	16984-48-8	40	mg/kg	190	230	250	200	200

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	BRBY Rejects-KLC 14	 	
	Cli	ent sampli	ng date / time	31-Mar-2020 00:00	 	
Compound	CAS Number	LOR	Unit	EB2010009-021	 	
				Result	 	
EA031: pH (saturated paste)						
ø pH (Saturated Paste)		0.1	pH Unit	7.8	 	
EA032: Electrical Conductivity (saturate	d paste)					
ø Electrical Conductivity (Saturated Paste)		1	µS/cm	696	 	
EA055: Moisture Content (Dried @ 105-1	10°C)					
Moisture Content		1.0	%	8.2	 	
ED093S: Soluble Major Cations						
Calcium	7440-70-2	10	mg/kg	20	 	
Magnesium	7439-95-4	10	mg/kg	30	 	
Sodium	7440-23-5	10	mg/kg	100	 	
Potassium	7440-09-7	10	mg/kg	<10	 	
ED093T: Total Major Cations						
Sodium	7440-23-5	50	mg/kg	260	 	
Potassium	7440-09-7	50	mg/kg	230	 	
Calcium	7440-09-7	50	mg/kg	6640	 	
Magnesium	7439-95-4	50	mg/kg	2840	 	
-				2040		
EG005(ED093)S : Soluble Metals by ICPA Boron		1	malka	<1	 	
	7440-42-8 7439-89-6	1	mg/kg	<1	 	
Iron		I	mg/kg		 	
EG005(ED093)T: Total Metals by ICP-AES		= 0		1000		
Aluminium	7429-90-5	50	mg/kg	1260	 	
Antimony	7440-36-0	5	mg/kg	<5	 	
Arsenic	7440-38-2	5	mg/kg	<5	 	
Boron	7440-42-8	50	mg/kg	<50	 	
Cadmium	7440-43-9	1	mg/kg	<1	 	
Chromium	7440-47-3	2	mg/kg	<2	 	
Cobalt	7440-48-4	2	mg/kg	<2	 	
Copper	7440-50-8	5	mg/kg	11	 	
Iron	7439-89-6	50	mg/kg	13800	 	
Manganese	7439-96-5	5	mg/kg	260	 	
Molybdenum	7439-98-7	2	mg/kg	<2	 	
Nickel	7440-02-0	2	mg/kg	<2	 	
Selenium	7782-49-2	5	mg/kg	<5	 	
Zinc	7440-66-6	5	mg/kg	14	 	

Page : 10 of 10 Work Order : EB2010009 Client : RGS ENVIRONMENTAL PTY LTD Project : 2019086 - MACH-Mt Pleasant

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	BRBY Rejects-KLC 14	 	
	Cli	ient sampli	ng date / time	31-Mar-2020 00:00	 	
Compound	CAS Number	LOR	Unit	EB2010009-021	 	
				Result	 	
EG020S: Soluble Metals by ICPMS	S - Continued					
Arsenic	7440-38-2	0.01	mg/kg	<0.01	 	
Selenium	7782-49-2	0.1	mg/kg	<0.1	 	
Cadmium	7440-43-9	0.01	mg/kg	<0.01	 	
Cobalt	7440-48-4	0.01	mg/kg	<0.01	 	
Chromium	7440-47-3	0.01	mg/kg	<0.01	 	
Thorium	7440-29-1	0.01	mg/kg	<0.01	 	
Copper	7440-50-8	0.01	mg/kg	<0.01	 	
Manganese	7439-96-5	0.01	mg/kg	0.09	 	
Molybdenum	7439-98-7	0.01	mg/kg	0.02	 	
Nickel	7440-02-0	0.01	mg/kg	<0.01	 	
Antimony	7440-36-0	0.01	mg/kg	<0.01	 	
Uranium	7440-61-1	0.01	mg/kg	<0.01	 	
Zinc	7440-66-6	0.05	mg/kg	<0.05	 	
Aluminium	7429-90-5	0.1	mg/kg	<0.1	 	
EG020T: Total Metals by ICP-MS						
Thorium	7440-29-1	0.1	mg/kg	6.7	 	
Uranium	7440-61-1	0.1	mg/kg	1.0	 	
EK040S: Fluoride Soluble						
Fluoride	16984-48-8	1	mg/kg	4	 	
EK040T: Fluoride Total						
Fluoride	16984-48-8	40	mg/kg	150	 	

Brisbane 346A Bilsen Road, Geebung QLD 4034 Ph: +61 7 3265 5656 Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

Client	RGS Enviro	onmental Pty	Test Method: Ltd		Report N	0.	19020143-	EM
					Workorde	er No.	5513	
Address	PO Box 309	91, Sunnyba	nk South Q	LD 4109	Test Date	•	11/02/2019	
					Report Da	ate	13/02/2019	
Project	2018030 - N	ACH Energ	ју					
Sample No.	19020143	19020144	19020145	19020146	19020147	19020148	19020149	
Client ID	Composite 1	Composite 2	Composite 3	Composite 6	Composite 7	Composite 8	Composite 9	
Depth (m)	Not Supplied							
Description	Silty GRAVEL - grey							
Emerson Class Number	2	2	2	2	2	2	2	
Samula Na	_	-	_	-	_	-	_	
Sample No.	-	-						
Client ID	-	-	-	-	-	-	-	
Depth (m)	-	-	-	-	-	-	-	
Description	-	-	-	-	-	-	-	
Emerson Class Number	-	-	-	-	-	-	-	
Sample No.	-	-	-	-	-	-	-	
Client ID	-	-	-	-	-	-	-	
Depth (m)	-	-	-	-	-	-	-	
Description	-	-	-	-	-	-	-	
Emerson Class Number	-	-	-	-	-	-	-	
TES/REMARKS:								
mple/s supplied by the	e client		Tested with D	istilled water at	22°C		Page 1 of 1	REP
Accredited for comp The results of the tests, ca this document are trac	librations, and/or r	measurements inc	luded in	Authorise	d Signatory		N	
Tested at Trilab Brisbane Lat				C.Pa	ark			CHNICAL
							Laboratory	<u>No</u> .

	7	Tr	71/2	346	A Bilsen Road, 2	erth Kimmer Place, ueens Park
		oil R	Rock Calib	QLI	D 4034 W	/A 6107 h: +61 8 9258 8323
						11. +01 0 9230 0323
		P	PARTICLE SIZ		BUTION	
			NTAGE DISP Test Method: AS 1			Т
Client	RGS En	vironment	al Pty Ltd		Report No.	19020143-%D
					Workorder No.	0005513
Address	PO Box	3091, Sur	nnybank South Q	LD 4109	Test Date	7/2/19-12/2/19
					Report Date	12/02/2019
Project	2018030	0 - MACH	Energy			
Client ID	Compos	site 1			Depth (m)	Not Supplied
Sieve Size	Passing	100 -				
(mm)	%	100 -				
150.0						
75.0		90 -				
63.0	_					
53.0						
37.5		80 -				
26.5						
19.0	100	70 -				
13.2	84					
9.5 6.7	73 59					
4.75	59	60 -				
2.36	43	(%)				
1.18	41	Passing (%)				
0.600	39	Ба				1
0.425	38					
0.300	37	40 -				
0.150	33					
0.075	29	- 30 -				
0.057	26					
0.048	24					
0.034	23	20 -		┍╶┼┼┼╢╢		
0.024	22					
0.018	20	10 -				
0.013	19					
0.0095	18 16					
0.0067	16	0 -				
0.0048	14	0.0	001 0.01	0.1 Particl	1 e Size (mm)	10 100
0.0039	13	1		+ Dispersa	nt —— - Dispersant	
0.0028	11			-	-	
0.0024	10			(0/), 00		
0.0014	9	1	DISPERSION	(%): 9.0		
IOTES/REMAR	KS:		ontent 0.1% upplied by the client	-2.36mm Soil F	Particle Density (t/m ³)	2.54
		Janihic/9 21				Page 1 of 1 REP0380
The results of	the tests, calib	rations, and/or	EC 17025 - Testing. measurements included in in/National Standards.		Authorised Signatory	
		b Brisbane Labora			C. Park	ACONDUTED FOR TECHNICAL COMPETENCE

 Laboratory No. 9926

 The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated.

 Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details.

 Trilab Pty Ltd
 ABN 25 065 630 506

	7			-Ma		// 346	A Bilsen Road,	Perth 2 Kimmer Place,
			_				D 4034	Queens Park NA 6107
		oil			libratio			Ph: +61 8 9258 8323
			Ρ	ARTICLE		ISTRI	BUTION	
		PER	CE	NTAGE DIS			EST REPOR	Т
Client	RGS En	nvironr	nent	al Pty Ltd			Report No.	19020144-%D
							Workorder No.	0005513
Address	PO Box	3091	, Sun	nybank South	QLD 4	109	Test Date	6/2/19-11/2/19
							Report Date	13/02/2019
Project	201803	0 - MA	CH	Energy			Roport Duto	10/02/2010
Client ID	Compos			Lifergy			Depth (m)	Not Supplied
Sieve Size	Passing	1						
(mm)	rassing %		100 T					
150.0	70	1						
75.0	1	1	90 -					
63.0	1	1	30					
53.0		1						
37.5]	80 -			++++++-		
26.5	100]						
19.0	93]	_					
13.2	81		70 -					
9.5	64							
6.7	51		60 -					
4.75	43	(%						
2.36	31	Passing (%)						
1.18	30	assi	50 -					
0.600	29	-						
0.425	28		40					
0.300	27							
0.150	25 22							
0.073	19		30 -					
0.045	18							
0.033	16	1	20 -					
0.023	15	1				1 -		
0.018	13]						
0.013	12	l	10 -			+		
0.0092	11					1		
0.0066	9	l	0					
0.0047	8		0.0	01 0.0	1	0.1	1	10 100
0.0038	7	ł					e Size (mm)	
0.0034	7	-				- + Dispersa	nt —— - Dispersant	
0.0028	6							
0.0024	5	-		DISPERSI	ON (%) :	10.0		
0.0014 NOTES/REMARK	4	Moiet		ontent 0.1%	-0.50	Smm Soil E	Particle Density (t/m ³)	2.63
	<u></u>			upplied by the clier		5000 F		2.00
								Page 1 of 1 REP0380
The results of t	he tests, calib	rations, a	and/or I	EC 17025 - Testing. measurements include n/National Standards.	ed in		Authorised Signatory	
	Tested at Trila	b Brisbane	Laborat	ory			C. Park	COMPETENCE Laboratory No. 992

		oil		ock ART	CL		alibi SIZ		DI		RIE	3U	TIC	٦N	1								
		PER	CE				ISP : AS 12	EF	٢S					RE	EPC	DR.	Т						
Client	RGS Er	vironr	nenta	al Pty L	td									ort	t No.	I		190)20)14	5-%	5D	
												v	Vor	kor	rder I	No.	0	00	551	3			
Address	PO Box	3091,	Sun	nyban	k So	out	h Ql	LD	4′	109)	ר	Tes	t D	ate		6	6/2/	′19·	-11/	/2/1	9	
												F	Rep	ort	t Dat	e	1	3/0)2/2	201	9		
Project	201803	0 - MA	CHI	Energy																			
Client ID	Compos	site 3											De	ept	:h (m)	Ν	lot	Su	Iqqi	ied		
Sieve Size	Passing		100 т																				
(mm)	%				$\left[\right]$	$ \top$			\square			$ \top$								T			
150.0																							
75.0			90 -		+	+++		\vdash	+	+++		+	+			$\left \right $	+			+		+ +	
63.0		-																					
53.0	400	4																					
37.5	100	-	80 -														\square			1			
26.5	95	1																					
<u>19.0</u> 13.2	82 60	1	70 -		+	$\parallel \mid$			+	$\parallel \mid$			++				++	\square		\parallel	+		
9.5	42	1																					
6.7	31																		$\parallel \mid$				
4.75	25		60 -																	-	-		Ш
2.36	18	(%) B																					
1.18	17	Passing (%)	50 -																	_	_		
0.600	16	Ра																	$\ $				
0.425	15																		I				
0.300	15		40 -														++	$\parallel \! /$	\square	-	-		
0.150	14																						
0.075	13		30 -															Д		\square	_		
0.062	9																						
0.052	9																\mathbb{X}						
0.037	8	1	20		+			\vdash	+	\parallel			+			┢	+			+	+	+ +	
0.027	8	1										\vdash	+	$\parallel \parallel$	T.								
0.02	6	1	10 -							\mathbf{A}			\parallel				\parallel			\downarrow	\downarrow		Щ
0.014	5	1						\vdash	11														
0.0073	5	1			-/†	\prod			\downarrow	4													
0.0052	4]	0 0.0	01		<u>ا ت ا</u>).01				0.1				1				ц 10				ШЦ 10
0.0042	4										Particl	e Size	e (mr	n)									
0.0037	3							_		+ Di	spersa	nt		D	Dispers	ant							
0.003	3																						
0.0026	3	4		DI	SPE	ER	SION	(%):	3	0.0												
0.0015	2	M-1 1							-)o "') c :-	oit ///			40					
DTES/REMARI	<u> </u>			ntent 0 pplied b		<u>ا</u> م م	ient	-2	.361	mm	Soil F	artic	cie Ľ	ens	sity (t/	m~)	2	.42					
		Sample	ะ/จรเ	ippilea C	y th	e Ul	i c i Il													Page	1 of	1 F	REPO
Accredi	ted for complia	ance with	ISO/IF	C 17025	- Tee	tina														<u></u>	$\overline{\boldsymbol{\wedge}}$	<u> </u>	
The results of	the tests, calib	rations, a	nd/or i	neasurem	ents	inclu						Aut	hori	sed	Signat	tory				Ń		À	
this docun	nent are tracea	able to Au	stralia	n/National	Stan	dar	ne or					_	0								-		

-

		oil		ock ART	IC		ialii S	ZE				h: +6				6	P	h: +(51 8	925	58 83	323			
		PER	CEN					PE	RS)N				E	PC	R	Т							
Client	RGS En	vironn	nenta	l Pty	Ltd										rt I	No.			19	020	014	6-9	%D	1	
													Wo	ork	ord	er I	No.	(000	55	13				
Address	PO Box	3091,	Sunr	nybar	ık S	ou	th	QLD) 4	110	9		Те	st	Dat	te		6	6/2/	/19	-11	/2/	19		
													Re	po	rt [Dat	е		3/	02/	′20 <i>′</i>	19			
Project	201803	0 - MA	CH E	nerg	y																				
Client ID	Compos	site 6											[Dep	oth	(m)	1	Vot	S	Jpp	lie	b		
Sieve Size	Passing		100 —																						_
(mm)	%																								
150.0		l																				/			
75.0			90 -	-+	++	\mathbb{H}		+	+	++		+	+		$\parallel \mid$		\vdash	+		\parallel	+	+	++	+++	╢
63.0																									
53.0			80 -																						
37.5	400		" T								\prod			\prod		_					\prod		\square		
26.5 19.0	100 90																								
19.0	90 61		70 -		+				$\left \right $	$\left \right $		_	+	$\left \right $				+	$\left \right $		\vdash	+	++	+++	╢
9.5	46																								
6.7	35																			$\ $					
4.75	29		60 +																	11		-	Ħ	##	t
2.36	20	(%) E																							
1.18	16	Passing (%)	50																					Ш	
0.600	12	Ъа																							
0.425	11																			1					
0.300	10		40 -									-							1/				+	+++	+
0.150	8																								
0.075	7		30																1				\square	Ш	
0.07	4																	$\boldsymbol{\lambda}$							
0.059	4																$ \rangle$								
0.042	4		20		+		$\parallel \mid$		+	++	$\parallel \mid$	+	+		$\parallel \mid$		$ \neq$	+		\parallel	+	+	++	+++	╢
0.03	3														\mathbb{H}										
0.022	3		10											\mathbb{H}	11									Ш	
0.016	3										#	1													
0.0079	2						Ш—		\vdash	++															
0.0079	2	1	0 ↓ 0.00				0.01			+1	0.1				 1					10				<u> </u>	Щ 100
0.0046	2	1	0.00	•			0.01					cle S	ize (ı	nm)						10					100
0.004	2	1								- + C	ispers	sant	_		Dis	pers	ant								
0.0032	1	1																							
0.0028	1			_	ICD	EP	.	N /0	<u>/</u>).		25.0														
0.0016	1			<u> </u>	137		SIO	1N (7	<i>'</i> 0):		20.0	'													
DTES/REMAR	<u>(S:</u>	Moistu						-	2.36	3mr	n Soi	Par	ticle	De	nsit	y (t/	m ³)	2	2.25						
		Sample	e/s sup	oplied	by th	ne c	lient														-				
																					Page	e 1 o	<u>r1</u>	RE	:P0
Accredit	ted for complia											А	utho	rise	d Si	gnat	ory				Ń				
The results of t	the tests nalih	rations a	nd/or m	easure	mente	sinc	hahul	in								•						ΙΑΤ	A		

-

	7	$\overline{\Box}$		7	12		$\sqrt{1}$	5	$\overline{)}$	346		Perth 2 Kimmer Place	9,	
		oil	Ro			Salil		tio	n	QLI	D 4034	Queens Park WA 6107		
		011										Ph: +61 8 9258	8323	
			PA	RH	CL	E SI			SI	RIE	BUTION			
		PER	CEN				PEF	٢S			EST REPOF 39.2.1.1	RT		
Client	RGS Er	nvironn	nental								Report No.	19020	147-%D	
											Workorder No	. 0005513	3	
Address	PO Box	3091,	Sunn	ybank	So	uth (QLD	4	109		Test Date	6/2/19-	11/2/19	
											Report Date	13/02/2		
Project	201803	0 - MA	CH Er	nerav								,		
Client ID	Compos		011 21	loigy							Depth (m)	Not Su	onlied	
Sieve Size	Passing													
(mm)	%		100		Π									
150.0		1											$ $	
75.0		1	90		$\parallel \mid$								\downarrow \downarrow \downarrow \downarrow \downarrow	
63.0]												
53.0	100													
37.5	97		80 -	+	+++				+++			+ + + + + + + + + + + + + + + + + + +		+++
26.5	91													
19.0	69		70											
13.2	37		70											
9.5	21													
6.7	15		60 -											
4.75	12	(%												
2.36	9	Passing (%)												
1.18	8	Pass	50											
0.600	7													
0.425	6		40											
0.300	6	-												
0.150	5													
0.073	4		30											
0.052	4													
0.037	4	1	20		$\parallel \mid$									
0.026	3]												
0.019	3]												
0.014	3		10 -	+	+++	$\left \right \left \right $			+++		╞┼┼┼╫╫ _┻ ┶		++++	+++
0.01	3								╜					
0.0071	3	4	۰L											
0.005	2	4	0.001			0.01				0.1	1	10		100
0.0041	2										e Size (mm)			
0.0036	2	4					-		+ Dis	persa	nt —— - Dispersant			
0.0029	2													
0.0026	1	4		DIS	PE	RSIO	N (%	5):	1	2.0				
0.0015	1	Moistur	ra Cont				-		mm	Soil	Particle Density (t/m ³) 2.46		
OTES/REMAR	<u> </u>	Moistui				client	-2	2.30	m	SOILE	and Density (t/m) 2.46		
		Cample	"o ouh	Silou by		SHOTH						P	age 1 of 1	REP0380
The results of	ted for complia the tests, calib nent are tracea	rations, a	nd/or me	asureme	ents in	cluded	in				Authorised Signatory			
						- 1					C. Park	•	ACCREDITED FOR TECHNICAL COMPETENCE	
	Tested at Trila	id Brisbane l	Laboratory								C. Faik	L	aboratory	No. 992

	S	oil	Roc PAI				libr SIZ		-		Ph: ·		3265	5 5656 N			610 +61		58 8	323			
		PER	CENT	TAG			SP							REF	o	RT							
Client	RGS Er	nvironn	nental F	Pty L	td							R	ерс	ort N orde			19 000			48-9	%D)	
Address	PO Box	3091,	Sunny	bank	So	uth	QL	D	41()9		Т	est	Date ort D	9		6/2	2/19		1/2/)19	/19		
Project	201803	0 - MA	CH Ene	erav											<u>u.u</u>		10,	02	120				
Client ID	Compos												De	pth (m)		No	t S		plie	d		
Sieve Size	Passing	1											00		,		110				<u> </u>		
(mm)	%		100																	\square	\square		Π
150.0	70																						
75.0	1	1	90																_/				
63.0	1	1																	1				
53.0																							
37.5	100	1	80		++								\square			++			\perp	\square	\parallel	$\parallel \mid$	H
26.5	98	1																					
19.0	92	1																					
13.2	70		70	+ +	+++	++++										++	+++		\vdash	\vdash	++		Η
9.5	50																						
6.7	36																						
4.75	29		60																				Ī
2.36	17	Passing (%)																					
1.18	16	ssing	50																	\square	\parallel		
0.600	16	- Dai																					
0.425	16																						
0.300	16		40													++	+			\vdash	++		Η
0.150	15																						
0.075	14																						
0.067	12		30														111						T
0.048	11																						
0.034	11]	20													\parallel				\square	\parallel	$\parallel \mid$	ļ
0.024	10											\square			\dashv								
0.018	10									h													
0.013	8	_	10	+	+++	+++		+	Ħ	╢╢			$\left \right \right $		-+	+	+++			\vdash	++	+++	H
0.0096	7				$\downarrow \downarrow \downarrow$	1111	-																
0.0069	7	4	0	T				_															
0.0049	6	4	0.001			0.0	01			0.1		_		1				10				1	100
0.004	5	4								Pa	article	Size	(mm))									
0.0035	5	4							-+	Disp	ersan	t -		- Disp	ersan	nt							
0.0029	4																						_
0.0025	4	-		DIS	SPE	RS	ION	(%)	:	4.0)												
0.0014	3	<u> </u>						• •					-			3,							
DTES/REMARI	<u> </u>		e Conte /s suppl			clie	nt	-2.:	36m	m S	oil P	articl	e De	ensity	(t/m	~)	2.4	1	Paç	ge 1 c	of 1	RE	P0
The results of	ted for complia the tests, calib nent are tracea	rations, a	nd/or meas	sureme	ents ir	nclud						Auth	orise	ed Sig	nator	Ŷ			Ň				_

 Laboratory No. 9926

 The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated.

 Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details.

 Trilab Pty Ltd
 ABN 25 065 630 506

	7		า๊กลา	346	A Bilsen Road, 2	'erth Kimmer Place, Jueens Park
		oil R	Rock Calib	QLI	D 4034 W	VA 6107 'h: +61 8 9258 8323
						11. +01 8 9238 8323
		F	PARTICLE SIZ		SUTION	
			Test Method: AS 1	ERSION T		Т
Client	RGS Er	nvironment	tal Pty Ltd		Report No.	19020149-%D
					Workorder No.	0005513
Address	PO Box	3091, Sur	nnybank South Q	LD 4109	Test Date	6/2/19-11/2/19
					Report Date	13/02/2019
Project	201803	0 - MACH	Energy			
Client ID	Compos	site 9			Depth (m)	Not Supplied
Sieve Size	Passing				• • • •	••
(mm)	%	100 -				
150.0]				
75.0		90 -	+ + + + + + + + + + + + + + + + + + +			
63.0						
53.0		J				
37.5	100	80 -	┨──┼┼┼┼┼┼┼┼	+ + + + + + + + + + + + + + + + + + +		
26.5	98	4				
19.0	90	70 -				
13.2	68	/0 -				
9.5	49	4				
6.7	35	60 -	┫──┤┤┤┤┤┤┤┤			
4.75	26	(%				
2.36	16) gui				
1.18	16	Passing (%)				
0.600	15					
0.425	15	40 -				
0.300	14					
0.150	13 12					
0.075	8	- 30 -				
0.053	8					
0.037	8	20 -				
0.027	8	20 -				
0.02	7	1				
0.014	7	10 -	+ + + + + + + + + + + + + + + + + + +			
0.0103	6]		+++++		
0.0074	6	_		<u>↓</u> ↓↓↓↓		
0.0052	5	0 - 0.0	+ 001 0.01	0.1	<u> </u>	10 100
0.0043	4			Particl	e Size (mm)	
0.0038	4	1		+ Dispersa	nt —— Dispersant	
0.0031	3					
0.0027	3	4	DISPERSION	(%): 15.0		
0.0016	2					
NOTES/REMARI	<u> </u>		ontent 0.1% upplied by the client	-2.36mm Soil F	Particle Density (t/m ³)	2.27 Page 1 of 1 REP0380
The results of	the tests, calib	orations, and/or	EC 17025 - Testing. measurements included in an/National Standards.		Authorised Signatory	
	Tested at Trila	ab Brisbane Labora	itory		C. Park	

 Laboratory No. 9926

 The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated.

 Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details.

 Trilab Pty Ltd
 ABN 25 065 630 506

CERTIFICATE OF ANALYSIS

Work Order	EB1902439	Page	∶ 1 of 4	
Client	RGS ENVIRONMENTAL PTY LTD	Laboratory	Environmental Division Br	risbane
Contact	: MR ALAN ROBERTSON	Contact	: Customer Services EB	
Address	: PO Box 3091	Address	: 2 Byth Street Stafford QLI	D Australia 4053
	SUNNYBANK SOUTH QLD, AUSTRALIA 4109			
Telephone	: +61 07 3344 1222	Telephone	: +61-7-3243 7222	
Project	: 2018030 Mach Energy	Date Samples Received	: 31-Jan-2019 16:45	SWIIII.
Order number	:	Date Analysis Commenced	: 31-Jan-2019	
C-O-C number	:	Issue Date	: 08-Feb-2019 09:34	
Sampler	: MARY MACELROY			Hac-MRA NATA
Site	:			
Quote number	: EN/222			Accreditation No. 825
No. of samples received	: 5			Accreditation No. 825
No. of samples analysed	: 5			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

* = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Page: 3 of 4Work Order: EB1902439Client: RGS ENVIRONMENTAL PTY LTDProject: 2018030 Mach Energy

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	KLC 1	KLC 2	KLC 3	KLC 4	KLC 5
	Cli	ient samplir	ng date / time	31-Jan-2019 00:00				
Compound	CAS Number	LOR	Unit	EB1902439-001	EB1902439-002	EB1902439-003	EB1902439-004	EB1902439-005
				Result	Result	Result	Result	Result
A005P: pH by PC Titrator								
pH Value		0.01	pH Unit	7.06	2.78	6.28	6.60	4.37
EA010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	µS/cm	229	2320	194	104	846
D037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	20	<1	10	11	<1
Total Alkalinity as CaCO3		1	mg/L	20	<1	10	11	<1
ED038A: Acidity								
Acidity as CaCO3		1	mg/L	1	748	1	2	178
ED041G: Sulfate (Turbidimetric) as SC)4 2- by DA							1
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	20	1400	71	26	478
ED045G: Chloride by Discrete Analys								
Chloride	16887-00-6	1	mg/L	39	9	6	7	3
ED093F: Dissolved Major Cations			5					
Calcium	7440-70-2	1	mg/L	4	61	8	<1	53
Magnesium	7439-95-4	. 1	mg/L	3	114	3	<1	31
Sodium	7440-23-5	. 1	mg/L	35	6	22	17	24
Potassium	7440-09-7	1	mg/L	2	3	2	2	4
G020F: Dissolved Metals by ICP-MS			5					
Aluminium	7429-90-5	0.01	mg/L	0.67	18.8	0.02	0.63	2.12
Antimony	7440-36-0	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Arsenic	7440-38-2	0.001	mg/L	0.002	0.008	<0.001	0.007	0.009
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.0033	<0.0001	<0.0001	0.0007
Cobalt	7440-48-4	0.001	mg/L	<0.001	0.421	0.015	<0.001	0.345
Copper	7440-50-8	0.001	mg/L	0.006	0.205	<0.001	0.002	0.110
Lead	7439-92-1	0.001	mg/L	0.003	0.056	<0.001	<0.001	0.003
Lithium	7439-93-2	0.001	mg/L	0.002	0.021	0.002	0.002	0.013
Manganese	7439-96-5	0.001	mg/L	0.006	16.7	0.023	0.002	0.556
Molybdenum	7439-98-7	0.001	mg/L	0.002	<0.001	0.002	0.007	<0.001
Nickel	7440-02-0	0.001	mg/L	0.001	0.676	0.016	<0.001	0.903
Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	<0.01	0.01	<0.01
Strontium	7440-24-6	0.001	mg/L	0.080	0.546	0.378	0.091	0.994
Vanadium	7440-62-2	0.01	mg/L	<0.01	0.01	<0.01	<0.01	<0.01

Page: 4 of 4Work Order: EB1902439Client: RGS ENVIRONMENTAL PTY LTDProject: 2018030 Mach Energy

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	KLC 1	KLC 2	KLC 3	KLC 4	KLC 5
	Cl	ient samplii	ng date / time	31-Jan-2019 00:00				
Compound	CAS Number	LOR	Unit	EB1902439-001	EB1902439-002	EB1902439-003	EB1902439-004	EB1902439-005
				Result	Result	Result	Result	Result
EG020F: Dissolved Metals by ICP-MS - C	Continued							
Zinc	7440-66-6	0.005	mg/L	<0.005	2.11	0.019	<0.005	0.832
Boron	7440-42-8	0.05	mg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Iron	7439-89-6	0.05	mg/L	0.15	247	<0.05	0.08	65.3
EG035F: Dissolved Mercury by FIMS								
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.7	0.5	0.2	0.4	<0.1
EN055: Ionic Balance								
Total Anions		0.01	meq/L	1.92	29.4	1.85	0.96	10.0
Total Cations		0.01	meq/L		24.4			8.99
Total Cations		0.01	meq/L	2.02		1.65	0.79	
Ionic Balance		0.01	%		9.29			5.46

CERTIFICATE OF ANALYSIS

Work Order	: EB1904857	Page	: 1 of 4	
Client	RGS ENVIRONMENTAL PTY LTD	Laboratory	Environmental Division Brisl	bane
Contact	: MR ALAN ROBERTSON	Contact	: Customer Services EB	
Address	: PO Box 3091	Address	: 2 Byth Street Stafford QLD	Australia 4053
	SUNNYBANK SOUTH QLD, AUSTRALIA 4109			
Telephone	: +61 07 3344 1222	Telephone	: +61-7-3243 7222	
Project	: 2018030 Mach Energy	Date Samples Received	: 26-Feb-2019 16:10	AMUUD.
Order number	:	Date Analysis Commenced	: 26-Feb-2019	
C-O-C number	:	Issue Date	: 05-Mar-2019 10:33	
Sampler	: MARY MACELROY			Iac-MRA NATA
Site	:			
Quote number	: EN/222			
No. of samples received	: 5			Accredited for compliance wi
No. of samples analysed	: 5			ISO/IEC 17025 - Testir

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- EG020-F (Dissolved Metals by ICP-MS): Limit of reporting raised for some samples due to matrix interference.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Page : 3 of 4 Work Order : EB1904857 Client : RGS ENVIRONMENTAL PTY LTD Project : 2018030 Mach Energy

Gub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	KLC 1	KLC 2	KLC 3	KLC 4	KLC 5
	Cl	lient samplii	ng date / time	26-Feb-2019 00:00				
Compound	CAS Number	LOR	Unit	EB1904857-001	EB1904857-002	EB1904857-003	EB1904857-004	EB1904857-005
				Result	Result	Result	Result	Result
A005P: pH by PC Titrator								
pH Value		0.01	pH Unit	7.42	2.76	6.19	6.73	3.47
EA010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	µS/cm	454	6940	210	180	821
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	23	<1	3	6	<1
Total Alkalinity as CaCO3		1	mg/L	23	<1	3	6	<1
ED038A: Acidity								
Acidity as CaCO3		1	mg/L	1	306	1	1	84
ED041G: Sulfate (Turbidimetric) as SC	4 2- hv DA						1	1
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	55	6030	92	46	396
ED045G: Chloride by Discrete Analyse								
Chloride	16887-00-6	1	mg/L	82	4	6	12	5
ED093F: Dissolved Major Cations		-	<u>9</u> .2			_		-
Calcium	7440-70-2	1	mg/L	5	81	6	1	28
Magnesium	7439-95-4	1	mg/L	6	474	5	2	46
Sodium	7439-93-4	1	mg/L	69	<1	27	27	26
Potassium	7440-09-7	1	mg/L	4	<1	2	2	2
	7440-09-7	•	ing/2	-		-	-	_
G020F: Dissolved Metals by ICP-MS Aluminium	7429-90-5	0.01	mg/L	0.10	70.4	0.01	0.05	2.00
Antimony	7429-90-5	0.001	mg/L	<0.001	<0.001	<0.001	< 0.001	< 0.001
Arsenic	7440-38-2	0.001	mg/L	0.004	0.069	<0.001	0.005	< 0.001
Barium	7440-38-2	0.001	mg/L	0.008	0.004	0.015	0.031	0.006
Cadmium	7440-39-3	0.0001	mg/L	<0.0001	0.0151	< 0.0001	<0.001	0.0010
Cobalt	7440-43-9	0.0001	mg/L	<0.001	2.25	0.006	<0.001	0.292
Copper	7440-48-4	0.001	mg/L	0.006	0.209	<0.001	0.001	0.062
Lead	7439-92-1	0.001	mg/L	<0.001	0.004	<0.001	< 0.001	0.002
Lithium	7439-92-1	0.001	mg/L	0.005	0.054	0.005	0.006	0.017
Manganese	7439-96-5	0.001	mg/L	0.007	85.5	0.020	0.002	0.697
Molybdenum	7439-98-7	0.001	mg/L	0.014	0.001	0.002	0.002	< 0.001
Nickel	7440-02-0	0.001	mg/L	<0.001	2.80	0.006	0.001	0.682
Selenium	7782-49-2	0.001	mg/L	0.04	0.01	< 0.01	0.03	<0.01
Strontium	7440-24-6	0.001	mg/L	0.158	0.353	0.544	0.182	0.566

Page: 4 of 4Work Order: EB1904857Client: RGS ENVIRONMENTAL PTY LTDProject: 2018030 Mach Energy

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	KLC 1	KLC 2	KLC 3	KLC 4	KLC 5
	Cl	ient sampli	ng date / time	26-Feb-2019 00:00				
Compound	CAS Number	LOR	Unit	EB1904857-001	EB1904857-002	EB1904857-003	EB1904857-004	EB1904857-005
				Result	Result	Result	Result	Result
EG020F: Dissolved Metals by ICP-MS - C	ontinued							
Vanadium	7440-62-2	0.01	mg/L	<0.01	0.50	<0.01	<0.01	<0.01
Zinc	7440-66-6	0.005	mg/L	<0.005	11.4	0.023	<0.005	0.739
Iron	7439-89-6	0.05	mg/L	<0.05	1360	0.12	<0.05	26.4
EG035F: Dissolved Mercury by FIMS								
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	1.3	<0.1	0.2	0.6	0.1
EN055: Ionic Balance								
Total Anions		0.01	meq/L	3.92	126	2.14	1.42	8.38
Total Cations		0.01	meq/L		103			7.60
Total Cations		0.01	meq/L	3.85		1.94	1.44	
Ionic Balance		0.01	%		9.83			4.87
Ionic Balance		0.01	%	0.91				

CERTIFICATE OF ANALYSIS

Work Order	EB1907715	Page	: 1 of 4
Client	RGS ENVIRONMENTAL PTY LTD	Laboratory	Environmental Division Brisbane
Contact	: MR ALAN ROBERTSON	Contact	: Customer Services EB
Address	: PO Box 3091	Address	: 2 Byth Street Stafford QLD Australia 4053
	SUNNYBANK SOUTH QLD, AUSTRALIA 4109		
Telephone	: +61 07 3344 1222	Telephone	: +61-7-3243 7222
Project	: 2018030 Mach Energy	Date Samples Received	: 26-Mar-2019 16:51
Order number	: 2018030	Date Analysis Commenced	: 27-Mar-2019
C-O-C number	:	Issue Date	: 02-Apr-2019 11:53
Sampler	: VERONICA CANALES		
Site	:		
Quote number	: EN/222		Accreditation No. 82
No. of samples received	: 5		Accredited for compliance with
No. of samples analysed	: 5		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

 \sim = Indicates an estimated value.

- EG035F (Dissolved Mercury): Positive mercury results have been confirmed by re-extraction and re-analysis.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	KLC 1 Leachate	KLC 2 Leachate	KLC 3 Leachate	KLC 4 Leachate	KLC 5 Leachate
	Cl	ient sampli	ng date / time	26-Mar-2019 00:00				
Compound	CAS Number	LOR	Unit	EB1907715-001	EB1907715-002	EB1907715-003	EB1907715-004	EB1907715-005
				Result	Result	Result	Result	Result
EA005P: pH by PC Titrator								
pH Value		0.01	pH Unit	7.92	2.37	5.96	6.73	3.30
EA010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	µS/cm	261	9480	298	280	1430
D037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	17	<1	2	6	<1
Total Alkalinity as CaCO3		1	mg/L	17	<1	2	6	<1
D038A: Acidity								
Acidity as CaCO3		1	mg/L	<1	6000	4	2	155
ED041G: Sulfate (Turbidimetric) as S			U U					
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	35	8230	109	91	755
		-					••	
D045G: Chloride by Discrete Analys Chloride	er 16887-00-6	1	mg/L	43	17	10	21	4
	10007-00-0	I Contraction	mg/L	+5	17	10	21	-
ED093F: Dissolved Major Cations	7440 70 0	1		2	449	7	2	67
Calcium	7440-70-2	1	mg/L	3 4	118	7 6	2 3	-
Magnesium	7439-95-4		mg/L		693 <1		-	106
Sodium	7440-23-5	1	mg/L	40	<1	38	46	39 3
Potassium	7440-09-7	1	mg/L	3	<1	3	4	3
G020F: Dissolved Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	0.18	167	0.06	0.20	2.92
Antimony	7440-36-0	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Arsenic	7440-38-2	0.001	mg/L	0.004	0.378	<0.001	0.007	0.003
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.0283	<0.0001	<0.0001	0.0014
Cobalt	7440-48-4	0.001	mg/L	<0.001	3.13	0.006	<0.001	0.267
Copper	7440-50-8	0.001	mg/L	0.003	1.15	0.002	0.002	0.071
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Lithium	7439-93-2	0.001	mg/L	0.003	0.117	0.008	0.012	0.019
Manganese	7439-96-5	0.001	mg/L	0.005	165	0.022	0.003	1.42
Molybdenum	7439-98-7	0.001	mg/L	0.010	0.002	0.003	0.012	<0.001
Nickel	7440-02-0	0.001	mg/L	<0.001	4.56	0.008	0.001	0.718
Selenium	7782-49-2	0.01	mg/L	0.02	0.03	0.01	0.05	<0.01
Strontium	7440-24-6	0.001	mg/L	0.101	0.414	0.528	0.216	0.946
Vanadium	7440-62-2	0.01	mg/L	<0.01	1.06	<0.01	<0.01	<0.01

Page : 4 of 4 Work Order : EB1907715 Client : RGS ENVIRONMENTAL PTY LTD Project : 2018030 Mach Energy

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	KLC 1 Leachate	KLC 2 Leachate	KLC 3 Leachate	KLC 4 Leachate	KLC 5 Leachate
	Cl	ient sampli	ng date / time	26-Mar-2019 00:00				
Compound	CAS Number	LOR	Unit	EB1907715-001	EB1907715-002	EB1907715-003	EB1907715-004	EB1907715-005
				Result	Result	Result	Result	Result
EG020F: Dissolved Metals by ICP-MS - Co	ontinued							
Zinc	7440-66-6	0.005	mg/L	0.011	28.3	0.028	0.013	1.09
Boron	7440-42-8	0.05	mg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Iron	7439-89-6	0.05	mg/L	<0.05	1780	0.07	<0.05	22.0
EG035F: Dissolved Mercury by FIMS								
Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.0003	<0.0001	<0.0001	<0.0001
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.9	4.4	0.3	1.2	<0.1
EN055: Ionic Balance								
Total Anions		0.01	meq/L	2.28	172	2.59	2.61	15.8
Total Cations		0.01	meq/L		152			
Total Cations		0.01	meq/L	2.30		2.57	2.45	13.8
Ionic Balance		0.01	%		6.02			
Ionic Balance		0.01	%					6.71

CERTIFICATE OF ANALYSIS

Work Order	EB1910914	Page	: 1 of 4
Client	RGS ENVIRONMENTAL PTY LTD	Laboratory	: Environmental Division Brisbane
Contact	: MR ALAN ROBERTSON	Contact	: Customer Services EB
Address	: PO Box 3091	Address	: 2 Byth Street Stafford QLD Australia 4053
	SUNNYBANK SOUTH QLD, AUSTRALIA 4109		
Telephone	: +61 07 3344 1222	Telephone	: +61-7-3243 7222
Project	: 2018030 Mach Energy	Date Samples Received	: 30-Apr-2019 15:40
Order number	: 2018039	Date Analysis Commenced	: 01-May-2019
C-O-C number	:	Issue Date	09-May-2019 11:57
Sampler	: VERONICA CANALES		
Site	:		
Quote number	: EN/222		Accreditation No. 825
No. of samples received	: 5		Accredited for compliance with
No. of samples analysed	: 5		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD
Mark Hallas	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- EG020F (Dissolved Metals by ICP-MS): Limit of reporting raised due to matrix interference.
- Ionic Balance out of acceptable limits due to analytes not quantified in this report.
- EK040P (Fluoride) Particular samples required dilution due to matrix interferences. LOR values have been adjusted accordingly.
- EG035F (Dissolved Mercury): Positive mercury result has been confirmed by re-extraction and re-analysis.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Page : 3 of 4 Work Order : EB1910914 Client : RGS ENVIRONMENTAL PTY LTD Project : 2018030 Mach Energy

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	KLC 1	KLC 2	KLC 3	KLC 4	KLC 5
	Cli	ent samplii	ng date / time	30-Apr-2019 00:00				
Compound	CAS Number	LOR	Unit	EB1910914-001	EB1910914-002	EB1910914-003	EB1910914-004	EB1910914-005
				Result	Result	Result	Result	Result
EA005P: pH by PC Titrator								
pH Value		0.01	pH Unit	7.50	2.22	4.31	6.71	3.15
EA010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	μS/cm	185	9730	415	310	3070
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	14	<1	<1	6	<1
Total Alkalinity as CaCO3		1	mg/L	14	<1	<1	6	<1
ED038A: Acidity								
Acidity as CaCO3		1	mg/L	2	10700	7	1	281
ED041G: Sulfate (Turbidimetric) as S	04 2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	27	4170	159	98	2030
ED045G: Chloride by Discrete Analys								
Chloride	16887-00-6	1	mg/L	25	12	11	21	7
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L	2	118	10	3	123
Magnesium	7439-95-4	1	mg/L	2	750	9	5	306
Sodium	7440-23-5	1	mg/L	32	<1	59	56	84
Potassium	7440-09-7	1	mg/L	2	<1	3	4	3
G020F: Dissolved Metals by ICP-MS								1
Aluminium	7429-90-5	0.01	mg/L	0.72	177	0.01	0.74	9.36
Antimony	7440-36-0	0.001	mg/L	<0.001	<0.005	<0.001	<0.001	<0.001
Arsenic	7440-38-2	0.001	mg/L	0.004	1.57	0.001	0.006	0.002
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.0253	0.0001	<0.0001	0.0034
Cobalt	7440-48-4	0.001	mg/L	<0.001	2.53	0.013	0.001	0.522
Copper	7440-50-8	0.001	mg/L	0.002	1.61	0.002	0.003	0.155
Lead	7439-92-1	0.001	mg/L	<0.001	<0.005	<0.001	<0.001	0.001
Lithium	7439-93-2	0.001	mg/L	0.002	0.096	0.011	0.012	0.030
Manganese	7439-96-5	0.001	mg/L	0.003	122	0.021	0.004	3.61
Molybdenum	7439-98-7	0.001	mg/L	0.008	0.010	0.003	0.011	<0.001
Nickel	7440-02-0	0.001	mg/L	<0.001	3.63	0.016	0.002	1.35
Selenium	7782-49-2	0.01	mg/L	0.02	<0.05	0.02	0.06	0.02
Strontium	7440-24-6	0.001	mg/L	0.058	0.279	0.706	0.269	1.66
Vanadium	7440-62-2	0.01	mg/L	<0.01	0.75	<0.01	<0.01	<0.01

Page: 4 of 4Work Order: EB1910914Client: RGS ENVIRONMENTAL PTY LTDProject: 2018030 Mach Energy

Sub-Matrix: WATER (Matrix: WATER)		Client sample ID			KLC 2	KLC 3	KLC 4	KLC 5
	Cl	ient samplii	ng date / time	30-Apr-2019 00:00				
Compound	CAS Number	LOR	Unit	EB1910914-001	EB1910914-002	EB1910914-003	EB1910914-004	EB1910914-005
				Result	Result	Result	Result	Result
EG020F: Dissolved Metals by ICP-MS	- Continued							
Zinc	7440-66-6	0.005	mg/L	<0.005	22.0	0.052	<0.005	2.48
Boron	7440-42-8	0.05	mg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Iron	7439-89-6	0.05	mg/L	0.13	2500	0.11	<0.05	41.2
EG035F: Dissolved Mercury by FIMS								
Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.0001	<0.0001	<0.0001	<0.0001
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.6	3.0	0.2	0.9	<0.5
EN055: Ionic Balance								
Total Anions		0.01	meq/L	1.55	87.2	3.62	2.75	42.5
Total Cations		0.01	meq/L		92.6			
Total Cations		0.01	meq/L	1.71		3.88	3.10	35.0
Ionic Balance		0.01	%		3.01			
Ionic Balance		0.01	%			3.49	5.92	9.56

CERTIFICATE OF ANALYSIS

Wards Orden	EB4040004	Paga		
Work Order	EB1913624	Page	: 1 of 4	
Client	: RGS ENVIRONMENTAL PTY LTD	Laboratory	: Environmental Division Brisbane	
Contact	: MR ALAN ROBERTSON	Contact	: Customer Services EB	
Address	: PO Box 3091	Address	: 2 Byth Street Stafford QLD Australia	4053
	SUNNYBANK SOUTH QLD, AUSTRALIA 4109			
Telephone	: +61 07 3344 1222	Telephone	: +61-7-3243 7222	
Project	: 2018030 Mach Energy	Date Samples Received	: 28-May-2019 17:05	willin.
Order number	: 2018030	Date Analysis Commenced	: 28-May-2019	
C-O-C number	:	Issue Date	07-Jun-2019 14:02	
Sampler	: VERONICA CANALES			C-MRA NATA
Site	:		E.	
Quote number	: EN/222		in the second	Accreditation No. 825
No. of samples received	: 5			Accredited for compliance with
No. of samples analysed	: 5			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Mark Hallas	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD
Tom Maloney	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- Ionic Balance out of acceptable limits due to analytes not quantified in this report.
- EG035F (Dissolved Mercury): Positive mercury results have been confirmed by re-extraction and re-analysis.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	KLC 1	KLC 2	KLC 3	KLC 4	KLC 5
	Client sampling date / tir			28-May-2019 00:00				
Compound	CAS Number	LOR	Unit	EB1913624-001	EB1913624-002	EB1913624-003	EB1913624-004	EB1913624-005
				Result	Result	Result	Result	Result
A005P: pH by PC Titrator								
pH Value		0.01	pH Unit	7.12	2.02	6.08	6.49	3.18
EA010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	µS/cm	152	13300	589	530	3820
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	9	<1	3	6	<1
Total Alkalinity as CaCO3		1	mg/L	9	<1	3	6	<1
ED038A: Acidity								
Acidity as CaCO3		1	mg/L	<1	14800	3	2	286
ED041G: Sulfate (Turbidimetric) as SC	04 2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	24	8020	228	182	2550
ED045G: Chloride by Discrete Analyse			_					
Chloride	16887-00-6	1	mg/L	18	1	16	32	6
ED093F: Dissolved Major Cations		•			-			-
Calcium	7440-70-2	1	mg/L	1	160	15	6	206
Magnesium	7439-95-4	1	mg/L	2	629	19	10	457
Sodium	7440-23-5	1	mg/L	24	<1	74	91	81
Potassium	7440-09-7	1	mg/L	2	<1	5	6	3
EG020F: Dissolved Metals by ICP-MS	1440-03-1	·	<u>9</u> /2	-	·		-	
Aluminium	7429-90-5	0.01	mg/L	0.65	381	0.03	0.04	9.46
Antimony	7429-90-5	0.001	mg/L	<0.001	<0.001	<0.001	< 0.001	<0.001
Arsenic	7440-38-2	0.001	mg/L	0.004	1.64	0.002	0.006	0.003
Cadmium	7440-38-2	0.0001	mg/L	<0.0001	0.0384	0.0001	< 0.0001	0.0035
Cobalt	7440-43-9	0.001	mg/L	<0.001	3.26	0.010	0.001	0.525
Copper	7440-48-4	0.001	mg/L	0.002	2.88	0.003	0.003	0.108
Lead	7439-92-1	0.001	mg/L	<0.001	0.002	<0.001	<0.001	0.001
Lithium	7439-92-1	0.001	mg/L	0.002	0.212	0.015	0.020	0.027
Manganese	7439-96-5	0.001	mg/L	0.003	172	0.030	0.008	6.66
Molybdenum	7439-98-7	0.001	mg/L	0.006	0.022	0.003	0.017	< 0.001
Nickel	7440-02-0	0.001	mg/L	<0.001	5.31	0.011	0.002	1.20
Selenium	7782-49-2	0.01	mg/L	0.01	0.05	0.03	0.10	0.02
Strontium	7440-24-6	0.001	mg/L	0.045	0.441	1.02	0.641	2.84
Vanadium	7440-62-2	0.01	mg/L	<0.01	0.42	<0.01	<0.01	<0.01

Page: 4 of 4Work Order: EB1913624Client: RGS ENVIRONMENTAL PTY LTDProject: 2018030 Mach Energy

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	KLC 1	KLC 2	KLC 3	KLC 4	KLC 5
	Cl	ient sampli	ng date / time	28-May-2019 00:00				
Compound	CAS Number	LOR	Unit	EB1913624-001	EB1913624-002	EB1913624-003	EB1913624-004	EB1913624-005
				Result	Result	Result	Result	Result
EG020F: Dissolved Metals by ICP-MS - C	ontinued							
Zinc	7440-66-6	0.005	mg/L	<0.005	31.2	0.055	<0.005	2.31
Boron	7440-42-8	0.05	mg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Iron	7439-89-6	0.05	mg/L	0.13	4030	0.10	0.15	29.8
EG035F: Dissolved Mercury by FIMS								
Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.0003	<0.0001	<0.0001	<0.0001
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.5	<5.0	0.3	1.1	0.1
EN055: Ionic Balance								
ø Total Anions		0.01	meq/L	1.19	167	5.26	4.81	53.3
Ø Total Cations		0.01	meq/L		391			
ø Total Cations		0.01	meq/L	1.31		5.66	5.23	51.5
ø lonic Balance		0.01	%		40.1			
ø lonic Balance		0.01	%			3.67	4.20	1.69

CERTIFICATE OF ANALYSIS

Work Order	EB1916406	Page	: 1 of 4	
Client	RGS ENVIRONMENTAL PTY LTD	Laboratory	Environmental Division Br	risbane
Contact	: MR ALAN ROBERTSON	Contact	: Customer Services EB	
Address	: PO Box 3091	Address	: 2 Byth Street Stafford QLI	D Australia 4053
	SUNNYBANK SOUTH QLD, AUSTRALIA 4109			
Telephone	: +61 07 3344 1222	Telephone	: +61-7-3243 7222	
Project	: 2018030 Mach Energy	Date Samples Received	: 25-Jun-2019 14:50	
Order number	: 2018030	Date Analysis Commenced	: 26-Jun-2019	
C-O-C number	:	Issue Date	: 02-Jul-2019 14:52	
Sampler	: MARY MACILROY			Hac-MRA NATA
Site	:			
Quote number	: EN/222			Accreditation No. 825
No. of samples received	: 5			Accredited for compliance with
No. of samples analysed	: 5			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

* = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

• EG020F (Dissolved Metals by ICP-MS): Limit of reporting raised due to matrix interference.

Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	KLC 1	KLC 2	KLC 3	KLC 4	KLC 5
	Ci	ient samplii	ng date / time	25-Jun-2019 00:00				
Compound	CAS Number	LOR	Unit	EB1916406-001	EB1916406-002	EB1916406-003	EB1916406-004	EB1916406-005
			-	Result	Result	Result	Result	Result
EA005P: pH by PC Titrator								
pH Value		0.01	pH Unit	6.85	2.19	5.64	6.53	3.24
EA010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	µS/cm	114	8220	769	393	3130
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	9	<1	2	7	<1
Total Alkalinity as CaCO3		1	mg/L	9	<1	2	7	<1
ED038A: Acidity								
Acidity as CaCO3		1	mg/L	1	7200	2	1	181
ED041G: Sulfate (Turbidimetric) as S0	O4 2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	19	7290	314	121	2090
ED045G: Chloride by Discrete Analys	er							
Chloride	16887-00-6	1	mg/L	11	<10	12	17	4
ED093F: Dissolved Major Cations			J. J					
Calcium	7440-70-2	1	mg/L	<1	144	22	4	153
Magnesium	7439-95-4	1	mg/L	1	482	24	7	335
Sodium	7440-23-5	1	mg/L	20	1	100	57	50
Potassium	7440-09-7	1	mg/L	2	<1	5	4	3
EG020F: Dissolved Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	1.28	214	0.03	0.19	6.66
Antimony	7440-36-0	0.001	mg/L	<0.001	<0.005	<0.001	<0.001	<0.001
Arsenic	7440-38-2	0.001	mg/L	0.004	1.17	<0.001	0.004	0.002
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.0176	<0.0001	<0.0001	0.0023
Cobalt	7440-48-4	0.001	mg/L	<0.001	1.73	0.010	0.001	0.330
Copper	7440-50-8	0.001	mg/L	0.003	1.36	0.002	0.002	0.111
Lead	7439-92-1	0.001	mg/L	<0.001	<0.005	<0.001	<0.001	0.001
Lithium	7439-93-2	0.001	mg/L	0.002	0.084	0.015	0.014	0.020
Manganese	7439-96-5	0.001	mg/L	0.002	85.3	0.027	0.004	4.40
Molybdenum	7439-98-7	0.001	mg/L	0.006	0.015	0.004	0.016	<0.001
Nickel	7440-02-0	0.001	mg/L	<0.001	2.65	0.011	<0.001	0.870
Selenium	7782-49-2	0.01	mg/L	<0.01	<0.05	0.03	0.06	0.01
Strontium	7440-24-6	0.001	mg/L	0.020	0.357	1.23	0.388	1.73
Vanadium	7440-62-2	0.01	mg/L	<0.01	0.35	<0.01	<0.01	<0.01

Page : 4 of 4 Work Order : EB1916406 Client : RGS ENVIRONMENTAL PTY LTD Project : 2018030 Mach Energy

Sub-Matrix: WATER (Matrix: WATER)	Client sample ID			KLC 1	KLC 2	KLC 3	KLC 4	KLC 5
	Cl	ient sampli	ng date / time	25-Jun-2019 00:00				
Compound	CAS Number	LOR	Unit	EB1916406-001	EB1916406-002	EB1916406-003	EB1916406-004	EB1916406-005
				Result	Result	Result	Result	Result
EG020F: Dissolved Metals by ICP-MS - (Continued							
Zinc	7440-66-6	0.005	mg/L	<0.005	15.3	0.057	<0.005	1.51
Boron	7440-42-8	0.05	mg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Iron	7439-89-6	0.05	mg/L	0.16	2150	<0.05	<0.05	24.3
EG035F: Dissolved Mercury by FIMS								
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.5	<0.1	0.3	0.8	0.2
EN055: Ionic Balance								
ø Total Anions		0.01	meq/L	0.88	152	6.92	3.14	43.6
Ø Total Cations		0.01	meq/L		154			
Ø Total Cations		0.01	meq/L	1.00		7.55	3.36	37.4
ø lonic Balance		0.01	%		0.65			
ø lonic Balance		0.01	%			4.39	3.37	7.61

CERTIFICATE OF ANALYSIS

Work Order	EB1919939	Page	: 1 of 3	
Client	RGS ENVIRONMENTAL PTY LTD	Laboratory	Environmental Division Brisbane	
Contact	: MR ALAN ROBERTSON	Contact	: Customer Services EB	
Address	: PO Box 3091	Address	: 2 Byth Street Stafford QLD Australia	4053
	SUNNYBANK SOUTH QLD, AUSTRALIA 4109			
Telephone	: +61 07 3344 1222	Telephone	: +61-7-3243 7222	
Project	: 2018030 Mach Energy	Date Samples Received	: 01-Aug-2019 15:39	
Order number	:-	Date Analysis Commenced	: 02-Aug-2019	
C-O-C number	: 2897	Issue Date	: 07-Aug-2019 11:59	
Sampler	: MARY MACELROY		i i i i i i i i i i i i i i i i i i i	C-MRA NATA
Site	: Mach Energy		E.	
Quote number	: BN/1234/19		all in the second s	Accreditation No. 825
No. of samples received	: 5			Accredited for compliance with
No. of samples analysed	: 5			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- ED045G (Chloride): Sample EB1919939_002 (KLC-2) was diluted due to matrix interference. LOR adjusted accordingly.
- Ionic Balance out of acceptable limits for sample EB1919939-002 (KLC-2) due to analytes not quantified in this report.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Page : 3 of 3 Work Order : EB1919939 Client : RGS ENVIRONMENTAL PTY LTD Project : 2018030 Mach Energy

Sub-Matrix: WASTEWATER (Matrix: WATER)		Clie	ent sample ID	KLC-1	KLC-2	KLC-3	KLC-4	KLC-5
	Cl	ient sampli	ng date / time	01-Aug-2019 10:37	01-Aug-2019 10:37	01-Aug-2019 10:38	01-Aug-2019 10:39	01-Aug-2019 10:39
Compound	CAS Number	LOR	Unit	EB1919939-001	EB1919939-002	EB1919939-003	EB1919939-004	EB1919939-005
				Result	Result	Result	Result	Result
EA005P: pH by PC Titrator								
pH Value		0.01	pH Unit	7.66	2.31	5.70	7.03	3.28
EA010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	µS/cm	99	7170	622	596	3540
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	13	<1	1	14	<1
Total Alkalinity as CaCO3		1	mg/L	13	<1	1	14	<1
ED038A: Acidity								
Acidity as CaCO3		1	mg/L	<1	6060	<1	<1	321
ED041G: Sulfate (Turbidimetric) as S0	O4 2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	17	7730	240	204	2600
ED045G: Chloride by Discrete Analys	er							
Chloride	16887-00-6	1	mg/L	10	<10	14	20	6
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L	<1	189	22	14	229
Magnesium	7439-95-4	1	mg/L	<1	411	18	15	417
Sodium	7440-23-5	1	mg/L	17	<1	77	83	50
Potassium	7440-09-7	1	mg/L	2	<1	5	8	2
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.4	<0.1	0.4	1.4	0.1
EN055: Ionic Balance								
Ø Total Anions		0.01	meq/L	0.90	161	5.41	5.09	54.3
Ø Total Cations		0.01	meq/L	0.79	43.2	6.06	5.75	48.0
ø Ionic Balance		0.01	%		57.6	5.62	6.06	6.19

CERTIFICATE OF ANALYSIS

Work Order	: EB2009898	Page	: 1 of 6	
Client	RGS ENVIRONMENTAL PTY LTD	Laboratory	Environmental Division Brisbane	
Contact	: MR ALAN ROBERTSON	Contact	: Carsten Emrich	
Address	: PO BOX 3091	Address	: 2 Byth Street Stafford QLD Australia 4053	
	SUNNYBANK SOUTH QLD, AUSTRALIA 4109			
Telephone	: +61 07 3344 1222	Telephone	: +61 7 3552 8616	
Project	: 2019086 - MACH-Mt Pleasant	Date Samples Received	: 08-Apr-2020 16:03	
Order number	:	Date Analysis Commenced	: 14-Apr-2020	
C-O-C number	:	Issue Date	20-Apr-2020 17:43	
Sampler	: LEXI K NG		Hac-MRA	NATA
Site	:			
Quote number	: EN/222			Accreditation No. 825
No. of samples received	: 9		Accred	dited for compliance with
No. of samples analysed	: 9			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD
Santusha Pandra	Senior Chemist	Brisbane Inorganics, Stafford, QLD

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

• Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Gub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	KLC 6	KLC 7	KLC 8	KLC 9	KLC 10
	Cl	ient samplii	ng date / time	08-Apr-2020 00:00				
Compound	CAS Number	LOR	Unit	EB2009898-001	EB2009898-002	EB2009898-003	EB2009898-004	EB2009898-005
				Result	Result	Result	Result	Result
A005P: pH by PC Titrator								
pH Value		0.01	pH Unit	7.03	8.04	3.57	6.91	7.28
EA010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	µS/cm	1240	373	3650	98	199
D037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	12	70	<1	13	31
Total Alkalinity as CaCO3		1	mg/L	12	70	<1	13	31
D038A: Acidity								
Acidity as CaCO3		1	mg/L	4	1	62	6	29
ED041G: Sulfate (Turbidimetric) as SC	04 2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	564	54	2500	22	40
D045G: Chloride by Discrete Analyse			, i i i i i i i i i i i i i i i i i i i					
Chloride	16887-00-6	1	mg/L	39	32	3	6	16
ED093F: Dissolved Major Cations		-				-	-	
Calcium	7440-70-2	1	mg/L	53	11	318	4	6
Magnesium	7439-95-4	1	mg/L	62	13	304	4	6
Sodium	7440-23-5	1	mg/L	108	38	120	7	22
Potassium	7440-09-7	1	mg/L	6	4	4	<1	1
G020F: Dissolved Metals by ICP-MS	1440-03-1	•	<u>9</u> /2	-	· ·	· ·	· ·	· ·
Aluminium	7429-90-5	0.01	mg/L	<0.01	<0.01	2.39	0.01	<0.01
Antimony	7429-90-5	0.001	mg/L	<0.01	0.001	<0.001	< 0.001	<0.001
Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.002	<0.001	< 0.001
Cadmium	7440-38-2	0.0001	mg/L	<0.0001	<0.0001	0.0177	<0.0001	< 0.0001
Cobalt	7440-43-9	0.001	mg/L	0.012	0.001	0.599	<0.001	< 0.001
Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.375	<0.001	0.001
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.009	<0.001	<0.001
Lithium	7439-93-2	0.001	mg/L	0.015	0.008	0.061	0.002	0.003
Manganese	7439-96-5	0.001	mg/L	0.112	0.044	19.6	0.016	0.023
Molybdenum	7439-98-7	0.001	mg/L	0.008	0.022	<0.001	0.002	<0.001
Nickel	7440-02-0	0.001	mg/L	0.011	<0.001	0.698	<0.001	<0.001
Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	0.02	<0.01	<0.01
Strontium	7440-24-6	0.001	mg/L	1.48	0.278	4.31	0.088	0.110
Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01

Page	: 4 of 6
Work Order	: EB2009898
Client	: RGS ENVIRONMENTAL PTY LTD
Project	2019086 - MACH-Mt Pleasant

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	KLC 6	KLC 7	KLC 8	KLC 9	KLC 10
	Cli	ent samplii	ng date / time	08-Apr-2020 00:00				
Compound	CAS Number	LOR	Unit	EB2009898-001	EB2009898-002	EB2009898-003	EB2009898-004	EB2009898-005
				Result	Result	Result	Result	Result
EG020F: Dissolved Metals by ICP-MS - C	ontinued							
Zinc	7440-66-6	0.005	mg/L	0.005	<0.005	1.86	<0.005	<0.005
Boron	7440-42-8	0.05	mg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Iron	7439-89-6	0.05	mg/L	<0.05	<0.05	0.80	<0.05	<0.05
EG035F: Dissolved Mercury by FIMS								
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	1.1	0.9	0.4	0.1	0.3
EN055: Ionic Balance								
ø Total Anions		0.01	meq/L	13.1	3.42	52.1	0.89	1.90
Ø Total Cations		0.01	meq/L	12.6	3.37	46.2	0.83	1.78
ø Ionic Balance		0.01	%	1.88	0.76	6.02		

ub-Matrix: WATER Matrix: WATER)		Clie	ent sample ID	KLC 11	KLC 12	KLC 13	KLC 14	
	Cl	ient sampli	ng date / time	08-Apr-2020 00:00	08-Apr-2020 00:00	08-Apr-2020 00:00	08-Apr-2020 00:00	
Compound	CAS Number	LOR	Unit	EB2009898-006	EB2009898-007	EB2009898-008	EB2009898-009	
				Result	Result	Result	Result	
A005P: pH by PC Titrator								
pH Value		0.01	pH Unit	5.80	7.05	7.30	7.39	
A010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	µS/cm	850	101	98	560	
D037P: Alkalinity by PC Titrator			·····				<u>г </u>	
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	4	11	22	29	
Total Alkalinity as CaCO3		1	mg/L	4	11	22	29	
D038A: Acidity			-					
Acidity as CaCO3		1	mg/L	4	21	4	4	
ED041G: Sulfate (Turbidimetric) as SO4								
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	425	25	11	170	
D045G: Chloride by Discrete Analyser Chloride	16887-00-6	1	mg/L	5	6	9	35	
	10007-00-0	1	ilig/L	,	U	3	33	
D093F: Dissolved Major Cations	7440 70 0	1	mg/L	59	3	3	14	
Magnesium	7440-70-2	1	-	53	4	3	14	
Sodium	7439-95-4	1	mg/L mg/L	25	7	10	64	
Potassium	7440-23-5 7440-09-7	1	mg/L	5	<1	<1	3	
	7440-09-7	I	ilig/L	5		~1	3	
G020F: Dissolved Metals by ICP-MS		0.01			0.00	0.01	10.01	
Aluminium	7429-90-5	0.01	mg/L	0.02	0.02	0.01	<0.01	
Antimony	7440-36-0	0.001	mg/L	<0.001	<0.001	<0.001	<0.001 <0.001	
Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Cadmium Cobalt	7440-43-9	0.0001	mg/L	0.0003	<0.0001	<0.0001	<0.0001	
	7440-48-4	0.001	mg/L mg/L	0.003	<0.001	<0.001	<0.001	
Copper Lead	7440-50-8	0.001	mg/L	<0.003	<0.001	<0.001	<0.001	
Lithium	7439-92-1	0.001	mg/L	0.013	<0.001	0.002	0.010	
Manganese	7439-93-2 7439-96-5	0.001	mg/L	0.404	0.001	0.002	0.018	
Molybdenum	7439-96-5	0.001	mg/L	<0.001	0.004	0.015	0.018	
Nickel		0.001	mg/L	0.020	<0.007	<0.004	<0.001	
Selenium	7440-02-0	0.001		<0.01	<0.001	<0.001	<0.001	
Strontium	7782-49-2	0.01	mg/L mg/L	<0.01 0.642	<0.01 0.069	<0.01 0.063	<0.01 0.339	
Suonuum	7440-24-6	0.001	mg/L	<0.01	<0.01	<0.01	<0.01	

Page	: 6 of 6
Work Order	: EB2009898
Client	: RGS ENVIRONMENTAL PTY LTD
Project	2019086 - MACH-Mt Pleasant

Sub-Matrix: WATER (Matrix: WATER)	Client sample ID		KLC 11	KLC 12	KLC 13	KLC 14		
	Cli	ent samplii	ng date / time	08-Apr-2020 00:00	08-Apr-2020 00:00	08-Apr-2020 00:00	08-Apr-2020 00:00	
Compound	CAS Number	LOR	Unit	EB2009898-006	EB2009898-007	EB2009898-008	EB2009898-009	
				Result	Result	Result	Result	
EG020F: Dissolved Metals by ICP-MS - 0	Continued							
Zinc	7440-66-6	0.005	mg/L	0.063	<0.005	<0.005	<0.005	
Boron	7440-42-8	0.05	mg/L	<0.05	<0.05	<0.05	<0.05	
Iron	7439-89-6	0.05	mg/L	<0.05	<0.05	0.06	<0.05	
EG035F: Dissolved Mercury by FIMS								
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.1	0.4	0.2	1.8	
EN055: Ionic Balance								
ø Total Anions		0.01	meq/L	9.07	0.91	0.92	5.11	
Ø Total Cations		0.01	meq/L	8.52	0.78	0.83	4.96	
ø lonic Balance		0.01	%	3.12			1.47	

CERTIFICATE OF ANALYSIS

Work Order	EB2012205	Page	: 1 of 6
Client	RGS ENVIRONMENTAL PTY LTD	Laboratory	: Environmental Division Brisbane
Contact	: MR ALAN ROBERTSON	Contact	: Carsten Emrich
Address	: PO BOX 3091	Address	: 2 Byth Street Stafford QLD Australia 4053
	SUNNYBANK SOUTH QLD, AUSTRALIA 4109		
Telephone	: +61 07 3344 1222	Telephone	: +61 7 3552 8616
Project	: 2019086	Date Samples Received	: 07-May-2020 16:20
Order number	:-	Date Analysis Commenced	: 08-May-2020
C-O-C number	: 10854	Issue Date	12-May-2020 10:56
Sampler	: ALAN ROBERTSON, VERONICA CANALES		
Site	2019086- MACH Mt Pleasant_L2		
Quote number	: BN/1234/19		
No. of samples received	: 9		Accreditation No. 8 Accredited for compliance wi
No. of samples analysed	: 9		ISO/IEC 17025 - Testi

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- Ionic Balance out of acceptable limits due to analytes not quantified in this report.
- EG035F (Dissolved Mercury): Positive mercury result has been confirmed by re-extraction and re-analysis.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Page : 3 of 6 Work Order : EB2012205 Client : RGS ENVIRONMENTAL PTY LTD Project : 2019086

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	KLC-6	KLC-7	KLC-8	KLC-9	KLC-10
	Ci	lient samplii	ng date / time	07-May-2020 12:23	07-May-2020 13:10	07-May-2020 13:10	07-May-2020 13:11	07-May-2020 13:11
Compound	CAS Number	LOR	Unit	EB2012205-001 Result	EB2012205-002	EB2012205-003 Result	EB2012205-004 Result	EB2012205-005 Result
EA005P: pH by PC Titrator								
pH Value		0.01	pH Unit	5.38	6.77	2.96	6.85	6.73
EA010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	µS/cm	1250	180	3430	392	214
ED037P: Alkalinity by PC Titrator			· · · · · · · · · · · · · · · · · · ·					
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	4	4	<1	6	4
Total Alkalinity as CaCO3		1	mg/L	4	4	<1	6	4
ED038A: Acidity								
Acidity as CaCO3		1	mg/L	15	<1	538	2	1
ED041G: Sulfate (Turbidimetric) as S	04 2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	652	74	2330	164	81
ED045G: Chloride by Discrete Analys			, , , , , , , , , , , , , , , , , , ,					
Chloride	16887-00-6	1	mg/L	8	3	1	6	6
ED093F: Dissolved Major Cations			3	-				
Calcium	7440-70-2	1	mg/L	72	14	157	24	13
Magnesium	7439-95-4	1	mg/L	85	8	210	25	12
Sodium	7440-23-5	1	mg/L	80	4	42	12	8
Potassium	7440-09-7	1	mg/L	9	1	3	4	1
EG020F: Dissolved Metals by ICP-MS			0					
Aluminium	7429-90-5	0.01	mg/L	0.04	0.02	3.18	<0.01	0.03
Antimony	7440-36-0	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	< 0.001
Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.121	<0.001	<0.001
Cadmium	7440-43-9	0.0001	mg/L	0.0005	<0.0001	0.0201	<0.0001	<0.0001
Cobalt	7440-48-4	0.001	mg/L	0.091	<0.001	0.583	0.001	<0.001
Copper	7440-50-8	0.001	mg/L	0.006	<0.001	0.834	<0.001	<0.001
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.022	<0.001	<0.001
Lithium	7439-93-2	0.001	mg/L	0.014	<0.001	0.031	0.003	0.001
Manganese	7439-96-5	0.001	mg/L	1.07	0.010	13.1	0.030	0.011
Molybdenum	7439-98-7	0.001	mg/L	<0.001	0.005	0.001	0.002	<0.001
Nickel	7440-02-0	0.001	mg/L	0.093	0.001	0.734	0.002	<0.001
Selenium	7782-49-2	0.01	mg/L	0.01	<0.01	0.03	<0.01	<0.01
Strontium	7440-24-6	0.001	mg/L	1.46	0.325	2.32	0.561	0.238
Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01

Page : 4 of 6 Work Order : EB2012205 Client : RGS ENVIRONMENTAL PTY LTD Project : 2019086

Sub-Matrix: WATER (Matrix: WATER)	Client sample ID			KLC-6	KLC-7	KLC-8	KLC-9	KLC-10
	Cl	ient sampli	ng date / time	07-May-2020 12:23	07-May-2020 13:10	07-May-2020 13:10	07-May-2020 13:11	07-May-2020 13:11
Compound	CAS Number	LOR	Unit	EB2012205-001	EB2012205-002	EB2012205-003	EB2012205-004	EB2012205-005
				Result	Result	Result	Result	Result
EG020F: Dissolved Metals by ICP-MS - C	Continued							
Zinc	7440-66-6	0.005	mg/L	0.092	<0.005	1.68	<0.005	<0.005
Boron	7440-42-8	0.05	mg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Iron	7439-89-6	0.05	mg/L	2.52	<0.05	93.4	<0.05	<0.05
EG035F: Dissolved Mercury by FIMS								
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0002	<0.0001	<0.0001
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.4	0.2	0.3	0.2	0.2
EN055: Ionic Balance								
Ø Total Anions		0.01	meq/L	13.9	1.70	48.5	3.70	1.94
Ø Total Cations		0.01	meq/L			31.2		
ø Total Cations		0.01	meq/L	14.3	1.56		3.88	2.01
ø lonic Balance		0.01	%			21.7		
ø lonic Balance		0.01	%	1.48			2.32	

Page : 5 of 6 Work Order : EB2012205 Client : RGS ENVIRONMENTAL PTY LTD Project : 2019086

Sub-Matrix: WATER Matrix: WATER)		Clie	ent sample ID	KLC-11	KLC-12	KLC-13	KLC-14	
	Cl	ient samplii	ng date / time	07-May-2020 13:12	07-May-2020 13:12	07-May-2020 13:13	07-May-2020 13:13	
Compound	CAS Number	LOR	Unit	EB2012205-006	EB2012205-007	EB2012205-008	EB2012205-009	
				Result	Result	Result	Result	
EA005P: pH by PC Titrator								
pH Value		0.01	pH Unit	4.81	7.19	7.34	5.71	
EA010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	µS/cm	559	576	248	408	
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	1	11	9	4	
Total Alkalinity as CaCO3		1	mg/L	1	11	9	4	
ED038A: Acidity								
Acidity as CaCO3		1	mg/L	15	2	1	8	
ED041G: Sulfate (Turbidimetric) as SO	4 2- by DA		-					
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	261	246	94	179	
ED045G: Chloride by Discrete Analyse								
Chloride	16887-00-6	1	mg/L	1	10	8	4	
	10007-00-0	·	ing/E	•	10	•	-	
ED093F: Dissolved Major Cations Calcium	7440-70-2	1	mg/L	37	29	16	20	
Magnesium	7439-95-4	1	mg/L	38	46	12	20	
Sodium	7439-95-4	1	mg/L	12	22	12	22	
Potassium	7440-23-5	1	mg/L	7	3	2	4	
	7440-09-7		ing/E			-	-	
G020F: Dissolved Metals by ICP-MS Aluminium	7400.00 5	0.01	mg/L	0.06	<0.01	0.02	0.01	
Antimony	7429-90-5	0.01	mg/L	<0.001	<0.01	<0.001	<0.001	
Anumony	7440-36-0 7440-38-2	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Cadmium	7440-38-2	0.0001	mg/L	0.0002	<0.001	<0.001	0.0002	
Cobalt		0.0001	mg/L	0.0002	<0.0001	<0.001	0.0002	
Copper	7440-48-4 7440-50-8	0.001	mg/L	0.013	0.001	<0.001	0.000	
Lead	7440-50-8	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Lithium	7439-92-1	0.001	mg/L	0.007	0.002	0.002	0.005	
Manganese	7439-95-2	0.001	mg/L	0.399	0.017	0.002	0.382	
Molybdenum	7439-96-5	0.001	mg/L	<0.001	0.015	0.003	<0.001	
Nickel	7439-98-7	0.001	mg/L	0.019	0.001	<0.001	0.006	
Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	
Strontium	7440-24-6	0.001	mg/L	0.425	0.720	0.314	0.384	
Vanadium	7440-24-0	0.001	mg/L	<0.01	<0.01	<0.01	<0.01	

Page : 6 of 6 Work Order : EB2012205 Client : RGS ENVIRONMENTAL PTY LTD Project : 2019086

Sub-Matrix: WATER (Matrix: WATER)	Client sample ID		KLC-11	KLC-12	KLC-13	KLC-14		
	Cli	ent samplii	ng date / time	07-May-2020 13:12	07-May-2020 13:12	07-May-2020 13:13	07-May-2020 13:13	
Compound	CAS Number	LOR	Unit	EB2012205-006	EB2012205-007	EB2012205-008	EB2012205-009	
				Result	Result	Result	Result	
EG020F: Dissolved Metals by ICP-MS - 0	Continued							
Zinc	7440-66-6	0.005	mg/L	0.043	<0.005	<0.005	0.013	
Boron	7440-42-8	0.05	mg/L	<0.05	<0.05	<0.05	<0.05	
Iron	7439-89-6	0.05	mg/L	3.79	<0.05	<0.05	2.46	
EG035F: Dissolved Mercury by FIMS								
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.1	1.0	0.4	0.5	
EN055: Ionic Balance								
ø Total Anions		0.01	meq/L	5.48	5.62	2.36	3.92	
Ø Total Cations		0.01	meq/L	5.67	6.27	2.40	3.91	
ø lonic Balance		0.01	%	1.73	5.41		0.10	

CERTIFICATE OF ANALYSIS

Work Order	EB2015249	Page	: 1 of 6	
Client	RGS ENVIRONMENTAL PTY LTD	Laboratory	Environmental Division Brisbane	
Contact	: MR ALAN ROBERTSON	Contact	: Carsten Emrich	
Address	: PO BOX 3091	Address	: 2 Byth Street Stafford QLD Australia 4053	
	SUNNYBANK SOUTH QLD, AUSTRALIA 4109			
Telephone	: +61 07 3344 1222	Telephone	: +61 7 3552 8616	
Project	: 2019086 - MACH Mt Pleasant	Date Samples Received	: 09-Jun-2020 17:30	
Order number	:-	Date Analysis Commenced	: 10-Jun-2020	
C-O-C number	: 11691	Issue Date	: 15-Jun-2020 10:39	
Sampler	: ALAN ROBERTSON, VERONICA CANALES		Hac-mra	NATA
Site	2019086- MACH Mt Pleasant_L3			
Quote number	: BN/1234/19		The Automation	Accuration No. 025
No. of samples received	: 9		Accre	Accreditation No. 825 dited for compliance with
No. of samples analysed	: 9			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

• Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Page : 3 of 6 Work Order : EB2015249 Client : RGS ENVIRONMENTAL PTY LTD Project : 2019086 - MACH Mt Pleasant

Gub-Matrix: WATER Matrix: WATER)		Clie	ent sample ID	KLC-6	KLC-7	KLC-8	KLC-9	KLC-10
	Cl	ient samplii	ng date / time	09-Jun-2020 11:01	09-Jun-2020 11:01	09-Jun-2020 11:03	09-Jun-2020 11:03	09-Jun-2020 11:04
Compound	CAS Number	LOR	Unit	EB2015249-001	EB2015249-002	EB2015249-003	EB2015249-004	EB2015249-005
				Result	Result	Result	Result	Result
A005P: pH by PC Titrator								
pH Value		0.01	pH Unit	5.12	6.58	2.83	6.66	6.58
EA010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	µS/cm	1470	107	4050	415	153
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	3	5	<1	6	3
Total Alkalinity as CaCO3		1	mg/L	3	5	<1	6	3
ED038A: Acidity								
Acidity as CaCO3		1	mg/L	22	<1	1060	<1	<1
ED041G: Sulfate (Turbidimetric) as SC	4 2- by DA		_					1
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	805	39	2680	187	48
D045G: Chloride by Discrete Analyse			3					
Chloride	16887-00-6	1	mg/L	7	1	<1	6	5
	10007-00-0	•	ing/2		-		•	•
ED093F: Dissolved Major Cations	7440-70-2	1	mg/L	100	5	196	22	4
Magnesium	7440-70-2	1	mg/L	109	5	312	26	7
Sodium	7439-95-4	1	mg/L	72	4	37	12	11
Potassium	7440-23-3	1	mg/L	8	1	2	3	1
	7440-09-7		ilig/E	J. J	•	-	Ŭ	•
G020F: Dissolved Metals by ICP-MS	7400.00.5	0.01	mg/l	0.08	0.17	10.8	<0.01	0.26
	7429-90-5	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Antimony Arsenic	7440-36-0	0.001	mg/L mg/L	<0.001	<0.001	0.518	<0.001	<0.001
Cadmium	7440-38-2	0.0001	mg/L	0.007	<0.001	0.0221	<0.001	<0.001
Cobalt	7440-43-9	0.0001	mg/L	0.121	0.001	0.726	0.002	<0.0001
Copper	7440-48-4 7440-50-8	0.001	mg/L	0.011	0.002	1.20	<0.002	<0.001
Lead	7440-50-8	0.001	mg/L	<0.001	<0.002	0.009	<0.001	<0.001
Lithium	7439-92-1	0.001	mg/L	0.017	0.001	0.066	0.003	0.001
Manganese	7439-93-2	0.001	mg/L	1.97	0.024	33.6	0.045	0.006
Molybdenum	7439-98-7	0.001	mg/L	<0.001	0.004	0.002	0.001	< 0.001
Nickel	7439-98-7	0.001	mg/L	0.118	0.002	0.954	0.002	< 0.001
Selenium	7782-49-2	0.001	mg/L	0.02	<0.01	0.04	<0.01	<0.01
Strontium	7440-24-6	0.001	mg/L	1.95	0.128	2.08	0.526	0.077
Vanadium	7440-24-0	0.001	mg/L	<0.01	<0.01	0.02	<0.01	<0.01

Page : 4 of 6 Work Order : EB2015249 Client : RGS ENVIRONMENTAL PTY LTD Project : 2019086 - MACH Mt Pleasant

Sub-Matrix: WATER (Matrix: WATER)	Client sample ID			KLC-6	KLC-7	KLC-8	KLC-9	KLC-10
	Cl	ient sampli	ng date / time	09-Jun-2020 11:01	09-Jun-2020 11:01	09-Jun-2020 11:03	09-Jun-2020 11:03	09-Jun-2020 11:04
Compound	CAS Number	LOR	Unit	EB2015249-001	EB2015249-002	EB2015249-003	EB2015249-004	EB2015249-005
				Result	Result	Result	Result	Result
EG020F: Dissolved Metals by ICP-MS - C	ontinued							
Zinc	7440-66-6	0.005	mg/L	0.157	<0.005	2.27	<0.005	<0.005
Boron	7440-42-8	0.05	mg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Iron	7439-89-6	0.05	mg/L	5.67	0.07	250	<0.05	0.08
EG035F: Dissolved Mercury by FIMS								
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.2	0.1	1.2	0.1	0.2
EN055: Ionic Balance								
Ø Total Anions		0.01	meq/L	17.0	0.94	55.8	4.18	1.20
Ø Total Cations		0.01	meq/L			48.6		
ø Total Cations		0.01	meq/L	17.3	0.86		3.84	1.28
ø lonic Balance		0.01	%			7.10		
ø lonic Balance		0.01	%	0.82			4.32	

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	KLC-11	KLC-12	KLC-13	KLC-14	
	Cl	ient sampli	ng date / time	09-Jun-2020 11:04	09-Jun-2020 11:05	09-Jun-2020 11:05	09-Jun-2020 11:05	
Compound	CAS Number	LOR	Unit	EB2015249-006	EB2015249-007	EB2015249-008	EB2015249-009	
			-	Result	Result	Result	Result	
EA005P: pH by PC Titrator								
pH Value		0.01	pH Unit	4.51	7.04	7.26	5.98	
EA010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	µS/cm	753	487	198	494	
D037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	<1	11	15	5	
Total Alkalinity as CaCO3		1	mg/L	<1	11	15	5	
D038A: Acidity								
Acidity as CaCO3		1	mg/L	5	1	<1	22	
ED041G: Sulfate (Turbidimetric) as SC)4 2- hy DA		-				I	
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	388	204	64	207	
ED045G: Chloride by Discrete Analyse			<u> </u>					
Chloride	16887-00-6	1	mg/L	2	9	9	3	
ED093F: Dissolved Major Cations	10007 00 0	•		-	-			
Calcium	7440-70-2	1	mg/L	48	15	8	29	
Magnesium	7440-70-2	1	mg/L	55	35	8	29	
Sodium	7439-93-4	1	mg/L	14	19	14	15	
Potassium	7440-23-3	1	mg/L	6	3	2	3	
	7440-05-7	•	ing/E	U U		-		
G020F: Dissolved Metals by ICP-MS Aluminium	7429-90-5	0.01	mg/L	0.09	0.01	0.12	0.04	
Antimony	7429-90-5	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Arsenic	7440-36-0	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Cadmium	7440-38-2	0.0001	mg/L	0.0003	<0.001	<0.001	0.0003	
Cobalt	7440-43-9	0.0001	mg/L	0.013	<0.0001	<0.001	0.005	
Copper	7440-48-4	0.001	mg/L	0.027	<0.001	<0.001	0.005	
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Lithium	7439-93-2	0.001	mg/L	0.011	0.002	0.002	0.007	
Manganese	7439-96-5	0.001	mg/L	0.558	0.017	0.012	0.548	
Molybdenum	7439-98-7	0.001	mg/L	<0.001	0.006	0.012	<0.001	
Nickel	7440-02-0	0.001	mg/L	0.024	0.001	0.001	0.006	
Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	
Strontium	7440-24-6	0.001	mg/L	0.534	0.374	0.156	0.503	
Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	

Page : 6 of 6 Work Order : EB2015249 Client : RGS ENVIRONMENTAL PTY LTD Project : 2019086 - MACH Mt Pleasant

Sub-Matrix: WATER (Matrix: WATER)	Client sample ID		KLC-11	KLC-12	KLC-13	KLC-14		
	Cli	ent samplir	ng date / time	09-Jun-2020 11:04	09-Jun-2020 11:05	09-Jun-2020 11:05	09-Jun-2020 11:05	
Compound	CAS Number	LOR	Unit	EB2015249-006	EB2015249-007	EB2015249-008	EB2015249-009	
				Result	Result	Result	Result	
EG020F: Dissolved Metals by ICP-MS -	Continued							
Zinc	7440-66-6	0.005	mg/L	0.061	<0.005	<0.005	0.022	
Boron	7440-42-8	0.05	mg/L	<0.05	<0.05	<0.05	<0.05	
Iron	7439-89-6	0.05	mg/L	4.62	<0.05	<0.05	5.80	
EG035F: Dissolved Mercury by FIMS								
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.1	0.7	0.4	0.3	
EN055: Ionic Balance								
ø Total Anions		0.01	meq/L	8.13	4.72	1.89	4.49	
Ø Total Cations		0.01	meq/L	7.68	4.53	1.72	4.56	
ø lonic Balance		0.01	%	2.85	2.04		0.76	

CERTIFICATE OF ANALYSIS

Work Order	ED2047907	Page	1 1 1 1	
WOIK Older	EB2017807	1 890	: 1 of 6	
Client	: RGS ENVIRONMENTAL PTY LTD	Laboratory	Environmental Division Bris	sbane
Contact	: MR ALAN ROBERTSON	Contact	: Carsten Emrich	
Address	: PO BOX 3091	Address	: 2 Byth Street Stafford QLD	Australia 4053
	SUNNYBANK SOUTH QLD, AUSTRALIA 4109			
Telephone	: +61 07 3344 1222	Telephone	: +61 7 3552 8616	
Project	: 2019086 - MACH Mt Pleasant	Date Samples Received	: 07-Jul-2020 16:09	SWIIIII.
Order number	:-	Date Analysis Commenced	: 08-Jul-2020	
C-O-C number	: 12389	Issue Date	: 13-Jul-2020 15:30	
Sampler	: ALAN ROBERTSON, VERONICA CANALES			HAC-MRA NATA
Site	: 2019086- MACH Mt Pleasant L4			
Quote number	: BN/1234/19			Accreditation No. 825
No. of samples received	: 9			Accredited for compliance with
No. of samples analysed	: 9			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Dave Gitsham	Metals Instrument Chemist	Brisbane Inorganics, Stafford, QLD
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

• Ionic Balance out of acceptable limits due to analytes not quantified in this report.

Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Page : 3 of 6 Work Order : EB2017807 Client : RGS ENVIRONMENTAL PTY LTD Project : 2019086 - MACH Mt Pleasant

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	KLC-6	KLC-7	KLC-8	KLC-9	KLC-10
	Cl	lient samplii	ng date / time	07-Jul-2020 10:23	07-Jul-2020 10:24	07-Jul-2020 10:25	07-Jul-2020 10:26	07-Jul-2020 10:26
Compound	CAS Number	LOR	Unit	EB2017807-001	EB2017807-002	EB2017807-003	EB2017807-004	EB2017807-005
				Result	Result	Result	Result	Result
EA005P: pH by PC Titrator								
pH Value		0.01	pH Unit	5.21	6.41	2.73	6.29	6.56
EA010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	μS/cm	1420	80	4590	373	76
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	9	10	<1	6	9
Total Alkalinity as CaCO3		1	mg/L	9	10	<1	6	9
ED038A: Acidity								
Acidity as CaCO3		1	mg/L	10	2	1250	4	2
ED041G: Sulfate (Turbidimetric) as S0	04 2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	836	30	3410	176	26
ED045G: Chloride by Discrete Analys	er							
Chloride	16887-00-6	1	mg/L	5	2	<1	5	2
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L	108	3	234	24	2
Magnesium	7439-95-4	1	mg/L	121	4	449	30	3
Sodium	7440-23-5	1	mg/L	53	3	23	11	5
Potassium	7440-09-7	1	mg/L	6	1	<1	3	<1
EG020F: Dissolved Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	0.06	0.17	24.9	<0.01	0.35
Antimony	7440-36-0	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.858	<0.001	<0.001
Cadmium	7440-43-9	0.0001	mg/L	0.0007	<0.0001	0.0297	<0.0001	<0.0001
Cobalt	7440-48-4	0.001	mg/L	0.087	<0.001	0.959	0.002	<0.001
Copper	7440-50-8	0.001	mg/L	0.007	<0.001	1.52	<0.001	<0.001
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.003	<0.001	<0.001
Lithium	7439-93-2	0.001	mg/L	0.015	<0.001	0.073	0.002	<0.001
Manganese	7439-96-5	0.001	mg/L	2.31	0.007	56.3	0.041	0.006
Molybdenum	7439-98-7	0.001	mg/L	<0.001	0.004	0.003	<0.001	<0.001
Nickel	7440-02-0	0.001	mg/L	0.089	0.001	1.24	0.002	<0.001
Selenium	7782-49-2	0.01	mg/L	0.02	<0.01	0.02	<0.01	<0.01
Strontium	7440-24-6	0.001	mg/L	2.27	0.088	1.62	0.384	0.043
Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	0.02	<0.01	<0.01

Page : 4 of 6 Work Order : EB2017807 Client : RGS ENVIRONMENTAL PTY LTD Project : 2019086 - MACH Mt Pleasant

Sub-Matrix: WATER (Matrix: WATER)		Client sample ID		KLC-6	KLC-7	KLC-8	KLC-9	KLC-10
	Cl	ient sampli	ng date / time	07-Jul-2020 10:23	07-Jul-2020 10:24	07-Jul-2020 10:25	07-Jul-2020 10:26	07-Jul-2020 10:26
Compound	CAS Number	LOR	Unit	EB2017807-001	EB2017807-002	EB2017807-003	EB2017807-004	EB2017807-005
				Result	Result	Result	Result	Result
EG020F: Dissolved Metals by IC	P-MS - Continued							
Zinc	7440-66-6	0.005	mg/L	0.122	<0.005	3.43	<0.005	<0.005
Boron	7440-42-8	0.05	mg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Iron	7439-89-6	0.05	mg/L	5.71	<0.05	380	<0.05	0.08
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.2	0.1	<0.1	0.1	0.2
EN055: Ionic Balance								
Ø Total Anions		0.01	meq/L	17.7	0.88	71.0	3.92	0.78
Ø Total Cations		0.01	meq/L		0.68	68.2		0.60
ø Total Cations		0.01	meq/L	17.8			4.22	
ø lonic Balance		0.01	%			1.96		
ø lonic Balance		0.01	%	0.22			3.64	

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	KLC-11	KLC-12	KLC-13	KLC-14	
	Cl	ient sampli	ng date / time	07-Jul-2020 10:27	07-Jul-2020 10:27	07-Jul-2020 10:28	07-Jul-2020 10:28	
Compound	CAS Number	LOR	Unit	EB2017807-006	EB2017807-007	EB2017807-008	EB2017807-009	
			-	Result	Result	Result	Result	
EA005P: pH by PC Titrator								
pH Value		0.01	pH Unit	4.57	6.53	6.52	5.05	
EA010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	µS/cm	797	508	216	495	
D037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	<1	12	11	3	
Total Alkalinity as CaCO3		1	mg/L	<1	12	11	3	
D038A: Acidity								
Acidity as CaCO3		1	mg/L	12	2	1	12	
D041G: Sulfate (Turbidimetric) as S0	04 2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	423	216	81	209	
D045G: Chloride by Discrete Analys								
Chloride	16887-00-6	1	mg/L	2	7	9	2	
D093F: Dissolved Major Cations			5					
Calcium	7440-70-2	1	mg/L	48	21	13	33	
Magnesium	7439-95-4	1	mg/L	70	47	12	36	
Sodium	7440-23-5	1	mg/L	15	16	12	10	
Potassium	7440-09-7	1	mg/L	6	3	2	3	
G020F: Dissolved Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	0.11	<0.01	0.06	0.02	
Antimony	7440-36-0	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Cadmium	7440-43-9	0.0001	mg/L	0.0004	<0.0001	<0.0001	0.0002	
Cobalt	7440-48-4	0.001	mg/L	0.013	<0.001	<0.001	0.003	
Copper	7440-50-8	0.001	mg/L	0.032	<0.001	<0.001	0.004	
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Lithium	7439-93-2	0.001	mg/L	0.012	0.001	<0.001	0.005	
Manganese	7439-96-5	0.001	mg/L	0.643	0.018	0.014	0.497	
Molybdenum	7439-98-7	0.001	mg/L	<0.001	0.003	0.007	<0.001	
Nickel	7440-02-0	0.001	mg/L	0.023	<0.001	<0.001	0.005	
Selenium	7782-49-2	0.01	mg/L	0.01	0.01	0.01	<0.01	
Strontium	7440-24-6	0.001	mg/L	0.580	0.358	0.179	0.541	
Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	

Page	: 6 of 6
Work Order	: EB2017807
Client	: RGS ENVIRONMENTAL PTY LTD
Project	2019086 - MACH Mt Pleasant

Sub-Matrix: WATER (Matrix: WATER)	Client sample ID			KLC-11	KLC-12	KLC-13	KLC-14	
	Cli	ent sampli	ng date / time	07-Jul-2020 10:27	07-Jul-2020 10:27	07-Jul-2020 10:28	07-Jul-2020 10:28	
Compound	CAS Number	LOR	Unit	EB2017807-006	EB2017807-007	EB2017807-008	EB2017807-009	
				Result	Result	Result	Result	
EG020F: Dissolved Metals by ICP-I	MS - Continued							
Zinc	7440-66-6	0.005	mg/L	0.072	<0.005	<0.005	0.020	
Boron	7440-42-8	0.05	mg/L	<0.05	<0.05	<0.05	<0.05	
Iron	7439-89-6	0.05	mg/L	3.68	<0.05	<0.05	5.98	
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.1	0.5	0.3	0.3	
EN055: Ionic Balance								
Ø Total Anions		0.01	meq/L	8.86	4.93	2.16	4.47	
Ø Total Cations		0.01	meq/L	8.96	5.69	2.21	5.12	
ø lonic Balance		0.01	%	0.56	7.10		6.82	

CERTIFICATE OF ANALYSIS

Work Order	EB2020923	Page	: 1 of 6	
Client	RGS ENVIRONMENTAL PTY LTD	Laboratory	Environmental Division Brisbane	
Contact	: MR ALAN ROBERTSON	Contact	: Carsten Emrich	
Address	: PO BOX 3091	Address	: 2 Byth Street Stafford QLD Australia 4053	
	SUNNYBANK SOUTH QLD, AUSTRALIA 4109			
Telephone	: +61 07 3344 1222	Telephone	: +61 7 3552 8616	
Project	: 2019086 - MACH Mt Pleasant	Date Samples Received	: 07-Aug-2020 17:10	
Order number	:	Date Analysis Commenced	: 12-Aug-2020	
C-O-C number	: 13193	Issue Date	: 18-Aug-2020 08:44	
Sampler	: ALAN ROBERTSON, VERONICA CANALES		Hac-MRA N	ΑΤΑ
Site	2019086_MACH Mt Pleasant-L5			
Quote number	: BN/1234/19			
No. of samples received	: 9		Accredited for com	litation No. 825 npliance with
No. of samples analysed	: 9		ISO/IEC 17	7025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Dave Gitsham	Metals Instrument Chemist	Brisbane Inorganics, Stafford, QLD
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD
Santusha Pandra	Senior Chemist	Brisbane Inorganics, Stafford, QLD

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

* = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

• Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Page : 3 of 6 Work Order : EB2020923 Client : RGS ENVIRONMENTAL PTY LTD Project : 2019086 - MACH Mt Pleasant

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	KLC-6	KLC-7	KLC-8	KLC-9	KLC-10
	C	lient samplii	ng date / time	07-Aug-2020 12:21	07-Aug-2020 12:21	07-Aug-2020 12:22	07-Aug-2020 12:22	07-Aug-2020 12:22
Compound	CAS Number	LOR	Unit	EB2020923-001	EB2020923-002	EB2020923-003	EB2020923-004	EB2020923-005
				Result	Result	Result	Result	Result
EA005P: pH by PC Titrator								
pH Value		0.01	pH Unit	4.78	6.87	2.53	6.74	6.79
EA010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	µS/cm	1550	72	5600	501	59
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	<1	5	<1	7	5
Total Alkalinity as CaCO3		1	mg/L	<1	5	<1	7	5
ED038A: Acidity			_				1	1
Acidity as CaCO3		1	mg/L	14	2	1760	3	2
ED041G: Sulfate (Turbidimetric) as S	O(1.2) by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	840	23	3410	203	20
		-						
ED045G: Chloride by Discrete Analys Chloride	16887-00-6	1	mg/L	5	1	<1	5	1
	10007-00-0	I	ilig/L	5			3	
ED093F: Dissolved Major Cations	7440 70 0	1	mg/l	132	4	248	17	2
	7440-70-2	1	mg/L	132	4	474	35	3
Magnesium Sodium	7439-95-4	1	mg/L mg/L	42	2	11	11	4
Potassium	7440-23-5	1	mg/L	7	1	<1	3	4
	7440-09-7	I	IIIg/L	I			3	
EG020F: Dissolved Metals by ICP-MS		0.04			A 11		10.01	•••
Aluminium	7429-90-5	0.01	mg/L	0.08	0.14	38.1	<0.01	0.34
Antimony	7440-36-0	0.001	mg/L	<0.001	<0.001	<0.001	< 0.001	< 0.001
Arsenic	7440-38-2	0.001	mg/L	<0.001	< 0.001	1.10	< 0.001	< 0.001
Cadmium	7440-43-9	0.0001	mg/L	0.0008	<0.0001	0.0394	< 0.0001	< 0.0001
Cobalt	7440-48-4	0.001	mg/L	0.070	< 0.001	1.05	0.002 <0.001	<0.001 <0.001
Copper	7440-50-8	0.001	mg/L	0.012	0.001 <0.001	2.00	<0.001	<0.001
Lead	7439-92-1	0.001	mg/L	0.001		0.002		
Lithium	7439-93-2	0.001	mg/L	0.018	< 0.001	0.106	0.003	< 0.001
Manganese	7439-96-5	0.001	mg/L	2.07 <0.001	0.006	66.6	0.048	0.004 <0.001
Molybdenum Nickel	7439-98-7	0.001	mg/L	0.073	0.004	0.003	0.001	<0.001
	7440-02-0	0.001	mg/L					
Selenium	7782-49-2	0.01	mg/L	0.02	<0.01	0.04	0.01	< 0.01
Strontium	7440-24-6	0.001	mg/L	2.08	0.081	1.32	0.418	0.041
Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	0.03	<0.01	<0.01

Page : 4 of 6 Work Order : EB2020923 Client : RGS ENVIRONMENTAL PTY LTD Project : 2019086 - MACH Mt Pleasant

Sub-Matrix: WATER (Matrix: WATER)		Client sample ID		KLC-6	KLC-7	KLC-8	KLC-9	KLC-10
	Cli	ent sampli	ng date / time	07-Aug-2020 12:21	07-Aug-2020 12:21	07-Aug-2020 12:22	07-Aug-2020 12:22	07-Aug-2020 12:22
Compound	CAS Number	LOR	Unit	EB2020923-001	EB2020923-002	EB2020923-003	EB2020923-004	EB2020923-005
				Result	Result	Result	Result	Result
EG020F: Dissolved Metals by I	CP-MS - Continued							
Zinc	7440-66-6	0.005	mg/L	0.126	<0.005	4.81	<0.005	<0.005
Boron	7440-42-8	0.05	mg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Iron	7439-89-6	0.05	mg/L	5.23	<0.05	515	<0.05	0.10
EK040P: Fluoride by PC Titrato	pr							
Fluoride	16984-48-8	0.1	mg/L	0.2	0.1	<0.1	0.1	0.1
EN055: Ionic Balance								
Ø Total Anions		0.01	meq/L	17.6	0.61	71.0	4.51	0.54
Ø Total Cations		0.01	meq/L			82.0		
ø Total Cations		0.01	meq/L	19.5	0.64		4.28	0.52
ø lonic Balance		0.01	%			7.20		
ø lonic Balance		0.01	%	5.14			2.54	

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	KLC-11	KLC-12	KLC-13	KLC-14	
	Cl	ient sampli	ng date / time	07-Aug-2020 12:23	07-Aug-2020 12:23	07-Aug-2020 12:23	07-Aug-2020 12:24	
Compound	CAS Number	LOR	Unit	EB2020923-006	EB2020923-007	EB2020923-008	EB2020923-009	
				Result	Result	Result	Result	
EA005P: pH by PC Titrator								
pH Value		0.01	pH Unit	4.30	6.98	7.22	4.90	
EA010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	µS/cm	995	556	310	650	
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	<1	7	8	2	
Total Alkalinity as CaCO3		1	mg/L	<1	7	8	2	
ED038A: Acidity			-					
Acidity as CaCO3		1	mg/L	22	1	1	21	
ED041G: Sulfate (Turbidimetric) as S								
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	522	236	102	315	
		-						
ED045G: Chloride by Discrete Analys Chloride	16887-00-6	1	mg/L	2	7	16	2	
	10887-00-0	I	ilig/E	2	,	10	2	
ED093F: Dissolved Major Cations		1	ma # //	50	40	45	47	
Calcium	7440-70-2	1	mg/L	59	16	15	47	
Magnesium	7439-95-4	1 1	mg/L	91	46	16	49	
Sodium	7440-23-5		mg/L	18	15	19	10 3	
Potassium	7440-09-7	1	mg/L	7	2	2	3	
EG020F: Dissolved Metals by ICP-MS						1		
Aluminium	7429-90-5	0.01	mg/L	0.11	<0.01	0.02	0.03	
Antimony	7440-36-0	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Cadmium	7440-43-9	0.0001	mg/L	0.0004	<0.0001	<0.0001	0.0003	
Cobalt	7440-48-4	0.001	mg/L	0.014	<0.001	<0.001	0.003	
Copper	7440-50-8	0.001	mg/L	0.047	<0.001	<0.001	0.005	
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Lithium	7439-93-2	0.001	mg/L	0.015	0.001	0.002	0.007	
Manganese	7439-96-5	0.001	mg/L	0.786	0.024	0.013	0.582	
Molybdenum	7439-98-7	0.001	mg/L	<0.001	0.002	0.013	<0.001	
Nickel	7440-02-0	0.001	mg/L	0.028	<0.001	0.001	0.005	
Selenium	7782-49-2	0.01	mg/L	0.01	0.01	0.03	0.01	
Strontium	7440-24-6	0.001	mg/L	0.679	0.410	0.260	0.660	
Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	

Page	5 6 of 6
Work Order	: EB2020923
Client	: RGS ENVIRONMENTAL PTY LTD
Project	2019086 - MACH Mt Pleasant

Sub-Matrix: WATER (Matrix: WATER)		Client sample ID			KLC-12	KLC-13	KLC-14	
	Client sampling date / time			07-Aug-2020 12:23	07-Aug-2020 12:23	07-Aug-2020 12:23	07-Aug-2020 12:24	
Compound	CAS Number	LOR	Unit	EB2020923-006	EB2020923-007	EB2020923-008	EB2020923-009	
				Result	Result	Result	Result	
EG020F: Dissolved Metals by ICP-I	MS - Continued							
Zinc	7440-66-6	0.005	mg/L	0.091	<0.005	<0.005	0.023	
Boron	7440-42-8	0.05	mg/L	<0.05	<0.05	<0.05	<0.05	
Iron	7439-89-6	0.05	mg/L	2.59	<0.05	<0.05	6.08	
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.1	0.4	0.4	0.3	
EN055: Ionic Balance								
Ø Total Anions		0.01	meq/L	10.9	5.25	2.73	6.65	
Ø Total Cations		0.01	meq/L	11.4	5.29	2.94	6.89	
ø lonic Balance		0.01	%	2.11	0.35		1.74	

CERTIFICATE OF ANALYSIS

Work Order	EB2023744	Page	: 1 of 6
Client	RGS ENVIRONMENTAL PTY LTD	Laboratory	Environmental Division Brisbane
Contact	: MR ALAN ROBERTSON	Contact	: Carsten Emrich
Address	: PO BOX 3091	Address	: 2 Byth Street Stafford QLD Australia 4053
	SUNNYBANK SOUTH QLD, AUSTRALIA 4109		
Telephone	: +61 07 3344 1222	Telephone	: +61 7 3552 8616
Project	: 2019086 - MACH Mt Pleasant	Date Samples Received	: 08-Sep-2020 17:30
Order number	:-	Date Analysis Commenced	11-Sep-2020
C-O-C number	: 13839	Issue Date	16-Sep-2020 15:56
Sampler	: ALAN ROBERTSON, VERONICA CANALES		Iac-MRA NATA
Site	: 2019086_MACH Mt Pleasant L6		
Quote number	: BN/1234/19		
No. of samples received	: 9		Accreditation No. 825 Accredited for compliance with
No. of samples analysed	: 9		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

* = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- Ionic Balance out of acceptable limits for some samples due to analytes not quantified in this report.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Page : 3 of 6 Work Order : EB2023744 Client : RGS ENVIRONMENTAL PTY LTD Project : 2019086 - MACH Mt Pleasant

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	KLC-6	KLC-7	KLC-8	KLC-9	KLC-10
	Ci	ient sampliı	ng date / time	08-Sep-2020 10:12	08-Sep-2020 10:12	08-Sep-2020 10:13	08-Sep-2020 10:14	08-Sep-2020 10:14
Compound	CAS Number	LOR	Unit	EB2023744-001	EB2023744-002	EB2023744-003	EB2023744-004	EB2023744-005
			-	Result	Result	Result	Result	Result
EA005P: pH by PC Titrator								
pH Value		0.01	pH Unit	5.49	6.95	2.47	6.46	6.81
EA010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	µS/cm	1300	87	5870	325	55
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	<1	6	<1	4	5
Total Alkalinity as CaCO3		1	mg/L	<1	6	<1	4	5
ED038: Acidity								
Acidity as CaCO3		1	mg/L	19	1	2220	2	2
ED041G: Sulfate (Turbidimetric) as SC	04 2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	741	27	3230	144	15
ED045G: Chloride by Discrete Analys								
Chloride	16887-00-6	1	mg/L	6	2	<1	3	1
ED093F: Dissolved Major Cations			3					
Calcium	7440-70-2	1	mg/L	105	4	134	14	2
Magnesium	7439-95-4	1	mg/L	110	5	258	18	2
Sodium	7440-23-5	1	mg/L	31	4	5	6	3
Potassium	7440-09-7	1	mg/L	6	2	1	2	<1
EG020F: Dissolved Metals by ICP-MS			J. J					
Aluminium	7429-90-5	0.01	mg/L	0.07	0.06	27.6	<0.01	0.10
Antimony	7440-36-0	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.538	<0.001	<0.001
Cadmium	7440-43-9	0.0001	mg/L	0.0007	<0.0001	0.0260	<0.0001	<0.0001
Cobalt	7440-48-4	0.001	mg/L	0.045	<0.001	0.490	0.001	<0.001
Copper	7440-50-8	0.001	mg/L	0.008	0.001	1.14	<0.001	<0.001
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.001	<0.001	<0.001
Lithium	7439-93-2	0.001	mg/L	0.018	0.001	0.058	0.003	0.001
Manganese	7439-96-5	0.001	mg/L	1.61	0.010	40.3	0.042	0.006
Molybdenum	7439-98-7	0.001	mg/L	<0.001	0.004	0.001	<0.001	<0.001
Nickel	7440-02-0	0.001	mg/L	0.050	0.002	0.752	0.002	<0.001
Selenium	7782-49-2	0.01	mg/L	0.01	<0.01	0.03	<0.01	<0.01
Strontium	7440-24-6	0.001	mg/L	1.75	0.097	0.639	0.360	0.036
Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	0.02	<0.01	<0.01

Page: 4 of 6Work Order: EB2023744Client: RGS ENVIRONMENTAL PTY LTDProject: 2019086 - MACH Mt Pleasant

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	KLC-6	KLC-7	KLC-8	KLC-9	KLC-10
	Cli	ent sampli	ng date / time	08-Sep-2020 10:12	08-Sep-2020 10:12	08-Sep-2020 10:13	08-Sep-2020 10:14	08-Sep-2020 10:14
Compound	CAS Number	LOR	Unit	EB2023744-001	EB2023744-002	EB2023744-003	EB2023744-004	EB2023744-005
				Result	Result	Result	Result	Result
EG020F: Dissolved Metals by ICF	P-MS - Continued							
Zinc	7440-66-6	0.005	mg/L	0.097	<0.005	3.18	<0.005	<0.005
Boron	7440-42-8	0.05	mg/L	0.10	<0.05	<0.05	<0.05	<0.05
Iron	7439-89-6	0.05	mg/L	4.16	<0.05	310	<0.05	<0.05
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.2	0.2	0.1	<0.1	0.1
EN055: Ionic Balance								
Ø Total Anions		0.01	meq/L	15.6	0.74	67.2	3.16	0.44
Ø Total Cations		0.01	meq/L			50.9		
ø Total Cations		0.01	meq/L	15.8	0.84		2.49	0.39
ø lonic Balance		0.01	%			13.8		
ø lonic Balance		0.01	%	0.63				

Analytical Results

Sub-Matrix: WATER Matrix: WATER)		Clie	ent sample ID	KLC-11	KLC-12	KLC-13	KLC-14	
	Cl	ient sampli	ng date / time	08-Sep-2020 10:15	08-Sep-2020 10:15	08-Sep-2020 10:15	08-Sep-2020 10:16	
Compound	CAS Number	LOR	Unit	EB2023744-006	EB2023744-007	EB2023744-008	EB2023744-009	
				Result	Result	Result	Result	
EA005P: pH by PC Titrator								
pH Value		0.01	pH Unit	4.66	6.92	7.11	5.33	
EA010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	µS/cm	811	432	324	596	
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	<1	8	9	<1	
Total Alkalinity as CaCO3		1	mg/L	<1	8	9	<1	
ED038: Acidity								
Acidity as CaCO3		1	mg/L	14	2	2	2	
ED041G: Sulfate (Turbidimetric) as SO	4 2- by DA		-					
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	434	180	120	293	
ED045G: Chloride by Discrete Analyse			5					
Chloride	16887-00-6	1	mg/L	2	4	11	2	
	10007-00-0	I.	ing/E	-	-		-	
ED093F: Dissolved Major Cations	7440-70-2	1	mg/L	48	14	15	43	
Magnesium	7439-95-4	1	mg/L	65	33	16	43	
Sodium	7439-95-4	1	mg/L	14	10	13	42 7	
Potassium	7440-23-3	1	mg/L	6	2	2	3	
	7440-09-7	-	ilig/E	U U U U U U U U U U U U U U U U U U U		2	3	
EG020F: Dissolved Metals by ICP-MS	7400.00 5	0.01	mg/l	0.10	<0.01	0.01	0.03	
Aluminium Antimony	7429-90-5	0.01	mg/L mg/L	<0.001	<0.001	<0.001	<0.001	
Anumony	7440-36-0 7440-38-2	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Cadmium	7440-38-2	0.0001	mg/L	0.0004	<0.001	0.0003	0.0002	
Cobalt		0.0001	mg/L	0.0004	<0.001	<0.001	0.002	
Copper	7440-48-4 7440-50-8	0.001	mg/L	0.038	<0.001	0.001	0.002	
Lead	7440-50-8	0.001	mg/L	<0.001	<0.001	<0.002	<0.004	
Lithium	7439-92-1	0.001	mg/L	0.016	0.002	0.002	0.007	
Manganese	7439-93-2	0.001	mg/L	0.572	0.023	0.002	0.432	
Molybdenum	7439-98-5	0.001	mg/L	<0.001	0.023	0.014	<0.001	
Nickel	7439-98-7	0.001	mg/L	0.022	<0.001	0.001	0.004	
Selenium	7782-49-2	0.001	mg/L	0.01	<0.001	0.02	0.01	
Strontium	7440-24-6	0.001	mg/L	0.581	0.380	0.269	0.614	
Vanadium	7440-24-0	0.001	mg/L	<0.01	<0.01	< 0.01	<0.01	

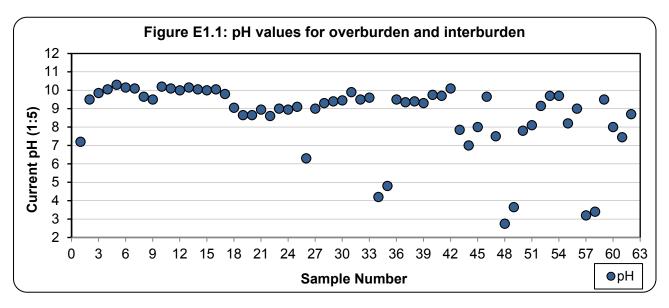
Page	5 6 of 6
Work Order	: EB2023744
Client	: RGS ENVIRONMENTAL PTY LTD
Project	2019086 - MACH Mt Pleasant

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	KLC-11	KLC-12	KLC-13	KLC-14	
	Cli	ent sampli	ng date / time	08-Sep-2020 10:15	08-Sep-2020 10:15	08-Sep-2020 10:15	08-Sep-2020 10:16	
Compound	CAS Number	LOR	Unit	EB2023744-006	EB2023744-007	EB2023744-008	EB2023744-009	
				Result	Result	Result	Result	
EG020F: Dissolved Metals by ICP-MS - Continued								
Zinc	7440-66-6	0.005	mg/L	0.077	<0.005	<0.005	0.019	
Boron	7440-42-8	0.05	mg/L	<0.05	<0.05	<0.05	<0.05	
Iron	7439-89-6	0.05	mg/L	1.76	<0.05	<0.05	4.13	
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.1	0.3	0.4	0.2	
EN055: Ionic Balance								
Ø Total Anions		0.01	meq/L	9.09	4.02	2.99	6.16	
Ø Total Cations		0.01	meq/L	8.51	3.90	2.68	5.98	
ø lonic Balance		0.01	%	3.32	1.51		1.42	

Attachment E Review of existing geochemistry information at the MPO, Bengalla and Mt Arthur Coal Mines

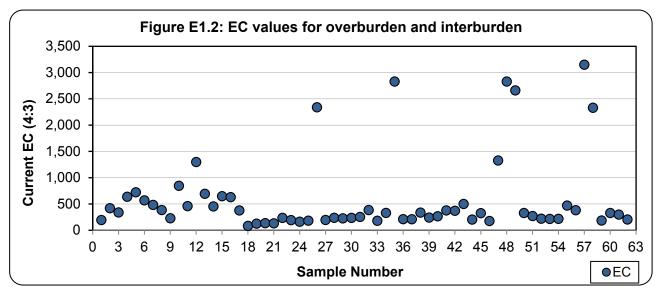
E1 Department of Mineral Resources (1995)


Preliminary geochemical characterisation of overburden and interburden materials from the Project was completed by the Department of Mineral Resources Mineral Resources (DMR) Development Laboratory in 1995 (DMR, 1995). A total of 62 drill core samples from eight bore holes were prepared and subjected to a range of geochemical tests including pH, electrical conductivity (EC), total sulfur, total carbon, calculated net acid producing potential (NAPP), short term weathering/leach tests (bicarbonate, alkalinity, major ions). The sodicity/dispersivity of the samples was determined from the major cation results (Calcium ions [Ca²⁺], Potassium ions [K⁺], Magnesium ions [Mg²⁺] and Sodium ions [Na⁺]) and used to calculate the Sodium Adsorption Ration (SAR) and Exchangeable Sodium Percentage (ESP), respectively. The EC test results were used to indicate the salinity of the samples.

The report identified a few samples that have the potential to produce leachate that is acidic, saline or sodic/dispersive on weathering. The authors suggested that for material represented by the specific samples under a 'worst case scenario', these chemical conditions could have an adverse effect on vegetation growth and water quality draining from spoil at an overburden/interburden emplacement.

E1.1 Acid Base Account

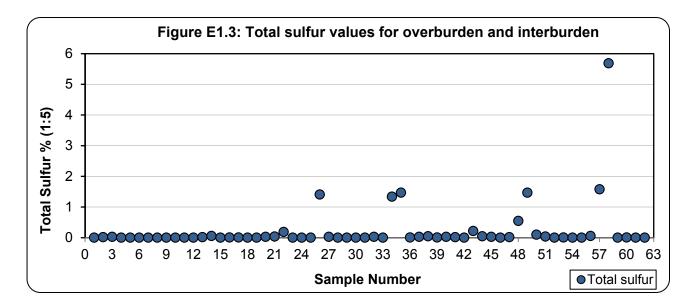
The Acid Base Account (ABA) data for the 62 overburden/interburden samples from the Project contained in the 1995 DMR report has been reviewed by RGS Environmental Pty Ltd (RGS) and an overview is presented in **Table E1 (Appendix 1)** and summarised below.


• **pH**: The pH of the 62 samples ranges from 2.75 to 10.30 and has a median value of 9.33 (**Figure E1.1**). The pH range of the deionised water used in these tests is typically pH 5 to 6.5 therefore only those samples with a pH value less than 5 are considered acidic. Six samples have a pH value less than pH 5 and these all represent interburden materials associated with the Wynn (WN) seam. A total of 14 interburden samples are associated with the WN seam and the remaining eight samples have pH values in the range 6.3 to 9.6 (median 9.2). Three of the four drill holes where interburden associated with the WN seam has been sampled, contain samples that would be considered acidic.

There is no indication in the 1995 DMR report as to how old the drill core was before sampling and how long the samples had been stored in the laboratory prior to testing. This information is key to understanding the potential lag period preceding acid generation for materials represented by selected WN seam interburden. RGS completed additional static and kinetic testing on fresh drill core samples in the current report to address this issue and better understand the lag period preceding acid generation in potentially acid forming (PAF) materials.

EC: The current EC for the 62 samples ranges from 84 to 3,150 microsiemens per centimetre (μS/cm) (Figure E1.2) and is typically low (median 329 μS/cm). Six samples with EC values greater than 1,500 μS/cm have been classified as saline and again these samples mostly represent acidic interburden materials associated with the WN seam. The elevated salinity in these samples is mainly due to increased sulfate concentrations, most likely generated through sulfide oxidation (e.g. pyrite or marcasite).

It should be noted that the pH and EC values provided in the 1995 DMR report were for a sample particle size less than 2 millimetres (mm); and therefore, samples have a large surface area in contact with the test water. This situation provides a greater potential for dissolution and reaction than may occur in the field, and therefore represents an assumed 'worst case' scenario.


In addition, the ratio of sample to contact water was 4 to 3 (i.e. 20 grams [g] to 15 millilitres [mL]), which is concentrated and is essentially similar to a saturated paste. However, the ratio of sample to water generally used in tests where results are (arbitrarily) compared against guideline concentrations only to provide relevant context, is typically almost an order of magnitude more dilute at 1:5 (weight/volume [w/v]). Whilst arbitrary comparisons against guideline concentrations can be helpful in some situations to provide relevant context, such comparisons cannot be directly extrapolated to the field situation at the Project.

It is also expected that the salinity of leachate from most low sulfur mining waste materials (i.e. overburden/interburden not associated with the WN seam) will diminish with time as salts are flushed from the rock matrix and a state of equilibrium develops. At that point, the salinity of seepage/runoff should stabilise at a lower asymptotic concentration relative to the weathering/erosion of the materials.

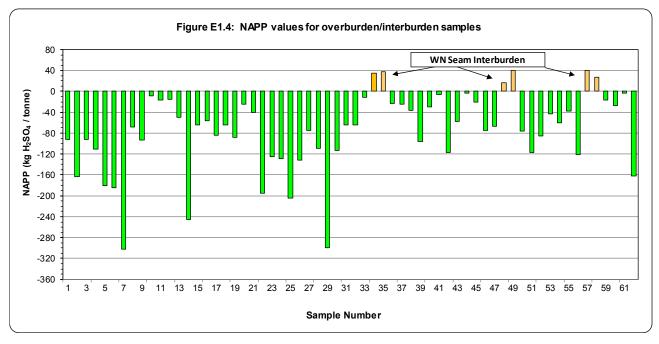
<u>RGS completed additional EC testing on relatively fresh drill core samples at a ratio of 1:5 w/v in the current study to allow comparison with EC results for nearby mines (e.g. Bengalla Mine and Mt Arthur Coal Mine).</u>

Total sulfur: The total sulfur content (%S) of the samples ranges from <0.01 %S to 5.69 %S (median 0.01 %S) (Figure E1.3). Compared to the median crustal abundance of sulfur (0.07 per cent [%]) (INAP, 2009) the median values of the overburden and interburden materials is generally quite low. Materials with a total sulfur content less than or equal to 0.1 %S are essentially barren of sulfur, generally represent background concentrations, and have negligible capacity to generate acidity². The sulfur content of seven of the 14 samples representing interburden materials associated with the WN seam is greater than 0.22 %S and six of these seven samples have been indicated as having the potential to generate acidic pH values through sulfide oxidation.

• **Sulfide Sulfur:** The reactive sulfide sulfur content of the seven samples with elevated total sulfur content was not determined by DMR. However, given RGS' experience of interburden associated with the WN seam at the adjacent Bengalla Mine (where these strata are generally called Archerfield Sandstone), it is expected that most of the total sulfur content in these materials will be present as reactive pyrite, which have the potential to react and become acidic upon exposure to oxidising conditions.

It should be noted that in general, some coal seam materials (including roof and floor materials) can also have elevated total sulfur content at coal mines. This can be related to the presence of sulfide sulfur but may also be associated with non-acid generating forms of sulfur, such as organic sulfur or secondary mineral sulfates e.g. gypsum.

RGS completed sulfur speciation testing (Chromium Reducible Sulfur test (AS 4969.7, 2008)) on fresh drill core samples in the current study to facilitate a more accurate assessment of the acid generating capacity and risk associated with the Mount Pleasant Operation (MPO) mine materials which have elevated total sulfur content.


- Maximum Potential Activity (MPA): Based on the total sulfur content, the MPA that could be generated by the overburden and interburden samples ranges from < 0.15 (below laboratory limit of reporting - LoR) to 174.3 kilogram of Sulfuric Acid per tonne (kg H₂SO₄/t) and has a low median value of 0.3 kg H₂SO₄/t.
- Acid Neutralising Capacity (ANC): The ANC for the overburden and interburden samples ranges from 0.18 to 302 kg H₂SO₄/t and has an elevated median value of 66 kg H₂SO₄/t. The fresh samples typically have higher ANC values compared to the weathered material. The ANC is relatively low in some of the acidic interburden materials associated with the WN seam (i.e. five of the six samples had ANC values less than 10 kg H₂SO₄/t).

² The median crustal abundance of sulfur (0.07 %S) has been rounded up to 0.1 %S (INAP, 2009).

The ANC value used by DMR in 1995 was calculated using sample pre-treatment and total carbonate and carbonate carbon assay with a LECO analyser to allow a 'crude' NAPP value to be calculated (see below). RGS completed additional ANC tests on fresh drill core samples in the current study to validate the veracity of the 1995 ANC results.

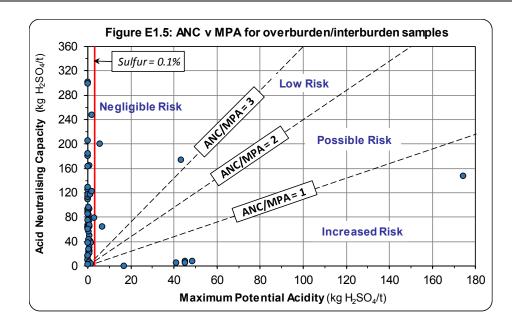

- **ANC:MPA ratio**: The ANC:MPA ratio for the samples ranges from 0.01 to 1,972 and has a high median value of 106.6. In simplistic terms, this means that most samples have significant excess ANC over MPA. (i.e. only the six acidic overburden/interburden samples associated with the WN seam have low ANC:MPA ratios less than 2.9).
- NAPP: The calculated NAPP value for the overburden and interburden samples is calculated by subtracting the ANC from the MPA and ranges from -301.8 to +40.2 kg H₂SO₄/t and has a median value of -64.2 kg H₂SO₄/t. Figure E1.4 illustrates that all samples have a negative NAPP value, except for the six acidic interburden samples associated with the WN seam.

Figure E1.5 shows a plot of ANC versus MPA for the 62 overburden and interburden samples). ANC:MPA ratio lines have been plotted on the graph to illustrate the factor of safety associated with the samples. Generally, those samples with an ANC:MPA ratio greater than 2 (or with a total or sulfide sulfur content $\leq 0.1 \%$ S) are considered to have a low to negligible risk of acid generation and a high factor of safety in terms of potential for acid and metalliferous drainage (AMD) (INAP, 2009³; COA, 2016).

³ INAP considers that mine materials with an ANC/MPA ratio greater than 2 are likely to be NAF unless significant preferential exposure of sulfides along fracture planes occurs in combination with insufficiently reactive ANC.

The results indicate that all of the overburden and interburden samples tested, not associated with the WN seam, plot in the low to negligible risk domains shown in the figure and represent materials with a very low risk of acid generation and a high factor of safety with respect to potential AMD. In contrast, the six acidic interburden sample associated with the WN seam plot in the increased risk domain and represent materials with an increased risk of acid generation and a low factor of safety with respect to potential AMD.

Table E1.1 provides a summary of the geochemical classification criteria used by RGS to classify the acid forming nature of the 62 overburden and interburden samples, and a breakdown of the number of samples in each classification category.

Geochemical Classification	Total Sulfur ¹ (%)	ANC: MPA Ratio	NAPP (kg H₂SO₄/t)	Number of Samples (n=62)	Percentage of Samples (%)
Acid Consuming (AC)	≤ 0.1	-	≤ -50	37	59.7
Non-Acid Forming (NAF)	< 0.1	≥ 2	≤ 0	19	30.6
Potentially Acid Forming (PAF)	> 0.1	< 2	> 5	6	9.7

Table E1.1: Geochemical classification criteria for overburden and interburden

Notes: 1. Sulfide sulfur data (obtained using the Chromium Reducible Sulfur [Scr] test) can also be used in place of total sulfur to calculate MPA and as part of sample classification.

The Acid Base Account (ABA) test data presented in **Table E1 (Appendix 1)** and discussed in this section have been used to classify the acid forming nature of the 62 overburden and interburden samples from the Project. The results indicate that of the 62 samples tested, 90.3 % are classified as either AC or NAF; and 9.7 % are classified as PAF. All of the PAF samples are from interburden associated with the WN seam.

Overall, the ABA results confirm that most of the overburden and interburden materials have low sulfur content, excess ANC, a high factor of safety and a low risk of generating AMD. Approximately half of the 14 samples representing interburden associated with the WN seam have elevated sulfur content, low ANC, an increased risk of acid generation, and a low factor of safety with respect to potential AMD.

E1.2 Sodicity and dispersion

The 62 samples described in **Section E1.1** were tested for exchangeable cations and the (SAR) and (ESP) values calculated to provide information on the likelihood of the overburden and interburden materials to be sodic and/or prone to dispersion.

Seven of the 62 samples were classified as highly sodic and six samples were classified as moderately sodic based on SAR results being initially greater than 15 and 9, respectively as shown in **Table E1.2**. Most of the remaining (49) overburden and interburden samples had relatively low SAR values and low sodicity values.

Determination of ESP provides a measure of the proportion of sodium adsorbed on the sample material and is one of the most widely used tests to assist in the assessment of dispersibility. Generally, samples with ESP values less than 6 are considered non-sodic, whereas greater than 6 are considered moderately sodic and may be prone to dispersion, and greater than 14 are considered strongly sodic and may be susceptible to dispersion and can have adverse effects on plants (Isbell, 2002; and Northcote and Skene, 1972), although these characteristics may be improved to some extent by the addition of gypsum.

ESP is a function of SAR and therefore the ESP values for the overburden and interburden samples provided in **Table E1.2** support and parallel the SAR values. Essentially, the samples listed in the table can be considered moderately to strongly sodic and prone to dispersion, whereas the remaining (49) samples have lower ESP values and can be considered less sodic and less prone to dispersion.

Sample ID	Drill Hole	From	То	Sample Description	Sodium (meq/L)		Sodium rption (SAR)	-	Exchangeable Sodium Percentage (ESP)
					(16 hour	10 day	20 day	16 hour
	Highly Sodic Samples								
E94/1405	4000C000	60.59	60.89	MTA A Interburden	9.4	23.5	7.9	2.7	25.1
E94/1412	4000F000	60.50	60.80	MTA Midburden	35.8	23.1	8.0	2.5	24.7
E94/1414	4000F000	74.10	74.40	MTA Midburden	62.7	42.1	6.3	5.2	37.8
E94/1415	4000F000	90.53	90.83	MTA A Midburden	23.7	22.3	26.2	6.3	24.0
E94/1417	4000F000	110.10	110.40	MTA A Midburden	25.7	20.5	-	7.7	22.5
E94/1418	4000F000	134.20	134.50	MTA C Midburden	18.7	15.6	18.5	4.7	17.8
E94/1433	5000C000	90.20	90.50	BRN A Midburden	9.8	19.1	8.5	2.7	21.2
				Moderately Sodic	Samples				
E94/1404	4000C000	52.20	52.50	MTA A Interburden	10.9	9.2	12.5	3.8	11.0
E94/1407	4000C000	88.20	88.50	PFD A Interburden	13.4	12.1	13.3	6.5	14.2
E94/1408	4000C000	104.20	104.50	VAUX A Interburden	7.5	9.2	5.5	1.6	11.0
E94/1413	4000F000	68.5	68.80	MTA Midburden	17.4	14.6	7.6	2.2	16.8
E94/1416	4000F000	99.10	99.40	PFD A Midburden	12.2	11.7	18.5	6.9	13.8
E94/1419	4000F000	162.20	162.50	PFD C Midburden	9.6	9.4	8.9	3.4	11.2

Table E1.2: SAR and ESP results for selected overburden/Interburden samples

E2 EGi (1998)

The geochemistry work completed in 1998 for simulated MPO coal reject materials was based on a proposed multi-seam operation comprising of eight main coal seams with a total reject production schedule (coarse and fine rejects) of about 48 million tonnes over 20 years (EGi, 1998). The contribution of each of the coal seams to the proposed total reject production in 1998 is shown in **Table E2.1**.

Coal Seam	Total Reject (tonnes)	Percentage of Total (%)
Warkworth	7,432,303	15.5
Mt Arthur	5,242,362	10.9
Piercefield	11,029,320	23.0
Vaux	7,317,784	15.3
Broonie	2,486,709	5.2
Bayswater	4,745,866	9.9
Wynn	4,827,088	10.1
Edderton	4,812,694	10.0
TOTAL	47,894,126	100.0

Table E2.1: Total Reject Production for the 20-year MPO proposed in 1998

E2.1 Acid Base Account

The 1998 ABA results for representative rejects samples from washing the eight main coal seams are presented in **Table E2** (**Appendix 1**). The results were interpreted to indicate that coal rejects derived from processing the WN and Broonie seams was PAF (due to elevated total sulfur concentrations), whilst coal reject from the Warkworth, Mt Arthur, Piercefield, Vaux, Bayswater and Edderton seams was indicated to be NAF, although most reject samples contained elevated total sulfur content.

It is noted that no sulfur speciation tests were completed on the reject samples in 1998 and therefore some of the total sulfur content may have been present as low risk organic sulfur. Similarly, the availability of the ANC was not confirmed. RGS has addressed this in the current study by completing static and kinetic tests on representative coal reject samples.

Two composite reject samples were prepared in 1998 to represent washery reject from Years 2 to 3 and Years 10 to 14 of the planned 20-year MPO operation, at that time. The two composite reject samples were classified as NAF based on NAPP and Net Acid Generation (NAG) test data (**Table E2**, **Appendix 1**) even though both samples were estimated to contain more than 1 % total sulfur (%S). The two composite reject samples were subjected to (KLC) tests and results are presented in **Table E3(i)** and **E3(ii)** (**Appendix 1**). The KLC test results were interpreted to indicate that that Run-of-mine (ROM) coal rejects from the multi-seam operation was likely to be NAF but would contain reactive sulfides and would generate elevated levels of sulfate in pore water. The results were also interpreted to suggest that oxidation of sulfides could potentially result in the release of elevated concentrations of arsenic (As) within pore water.

The initial leachate Total Dissolved Solids (TDS) concentration in KLC leachate was saline, and was expected to decrease in the longer term and be dominated by sulfate salts of calcium (Ca) and magnesium (Mg).

It is noted that the concentration of As in KLC leachate reduced significantly from Week 1 to Week 6. In addition, the sample:water ratio in column leachate was in the order of 5:1 to 10:1 in weeks 1 and 6 respectively (i.e. concentrated). However, the ratio of sample to water generally used in tests where results are (arbitrarily) compared against guideline concentrations to provide relevant context is typically more than an order of magnitude more dilute at 1:5 (w/v). Whilst arbitrary comparisons against guideline concentrations can be helpful in some situations to provide relevant context, such comparisons cannot be directly extrapolated to the field situation at the MPO.

The KLC test were operated for three months and two water quality measurements were made for soluble metals/metalloids (Week 1 and Week 6). KLC tests on coal rejects are being completed by RGS over a period of six months in the current study with monthly leaching in line with Australian (COA, 2016) and international (INAP, 2009) technical guidelines.

E2.2 Multi-Element Concentrations in Solids

Multi-element scans were carried out on the two composite reject samples described in **Section E2.1** to identify any elements (particularly metals/metalloids) present in the reject materials at concentrations that may be of environmental concern with respect to reject disposal (e.g. for revegetation, surface water/groundwater quality and/or where the potential exists for human contact). The results from multi-element testing (total metals/metalloids) of the two composite reject samples are presented in **Table E3 (Appendix 1)**.

E2.3 Geochemical Abundance Index

Total metal/metalloid concentrations in mining waste materials can be compared to the median crustal abundance for unmineralised soils (Bowen, 1979, INAP, 2009). The extent of enrichment is reported as the Geochemical Abundance Index (GAI), which relates the actual concentration in a sample with the median (or average) crustal abundance on a log₁₀ scale. The GAI is expressed in integer increments from 0 to 6, where a GAI value of 0 indicates that the element is present at a concentration less than, or similar to, the median crustal abundance; and a GAI value of 6 indicates approximately a 100-fold enrichment above median crustal abundance **(Table E2.2)**.

The main purpose of the GAI is to identify any elements (particularly metals/metalloids) that are present at concentrations well above normal background values and which may warrant further examination to assess their environmental significance (EGi, 1998). As a general rule, a GAI of 3 or greater signifies enrichment that may warrant further examination. This is particularly the case with some environmentally important 'trace' elements, such as As, Chromium (Cr), Cadmium (Cd), Copper (Cu), Lead (Pb), Selenium (Se) and Zinc (Zn), more so than with major rock-forming elements, such as Aluminium (AI), Ca, Iron (Fe), Mg and Sodium (Na).

GAI	Enrichment Factor	GAI	Enrichment Factor
0	Less than 3-fold enrichment	4	24 – 48 fold enrichment
1	3 – 6 fold enrichment	5	48 – 96 fold enrichment
2	6 – 12 fold enrichment	6	Greater than 96 fold enrichment
3	12 – 24 fold enrichment		

Table E2.2: Geochemical Abundance Index (GAI) values and Enrichment Factors

Elements identified as enriched may not necessarily be a concern for revegetation, drainage water quality or public health, but their significance should still be evaluated. The GAI provides an indication of metals/metalloids that may be enriched relative to the global average crustal abundance, however the following points should also be considered:

- The median crustal abundance varies between different literature sources, therefore affecting the calculated GAI values.
- If a sample is enriched relative to median crustal abundance, there is no direct correlation that the sample will also leach metals/metalloids at elevated concentrations. The mobility of metals/metalloids is dependent on mineralogy, adsorption/desorption and the environment in which it occurs.
- Whilst some element concentrations can be elevated relative to the median crustal abundance, the nature of an ore deposit means the background levels are generally expected to be elevated.
- Because an element is not enriched does not mean it will never be a concern, because under some conditions (e.g. low pH) the solubility of common environmentally important elements such as AI, Cu, Cd, Fe and Zn increases significantly.

The relative enrichment of metals/metalloids in the two composite reject samples from the Project described in **Section E2.2** has been compared to median crustal abundance (GAI) in **Table E4 (Appendix 1)**.

The GAI results were interpreted by EGi in 1998 to indicate that the two composite reject samples were relatively free of enrichment by metals/metalloids, although Bismuth (Bi) and Se were indicated as being enriched compared to <u>average</u> crustal abundance in igneous rocks. The non-metal element S was indicated as being enriched, although the significance of S enrichment has already been discussed in **Section E2.1**. In 1998, the elevated concentrations of Bi and Se were compared to typical concentrations in Australian steaming black coal and shale by EGi and unlikely to be of environmental concern.

A reinterpretation of the 1998 data by RGS in the current study and comparison against median crustal abundance in soils (Bowen, 1979) confirms that two composite reject samples were relatively free of enrichment by metals/metalloids however, the GAI values suggest that no metals/metalloids are significantly enriched (S was indicated as being enriched and is discussed above). Hence, for reject materials, it is unlikely that the concentration of metals/metalloids will be of environmental concern.

It is noted that total metal/metalloid and leachable metal/metalloid testing (i.e. in KLC tests) was completed on two composite samples of coal reject materials prepared to address the mine plan in 1998. This has been addressed in the current RGS study for representative samples of coal reject materials.

E3 Rio Tinto (2011)

E3.1 Sulfur Distribution in Coal

A Feasibility Study for the MPO was completed in 2011 (Rio Tinto, 2011) and RGS was supplied with the Geology section (Section 6) of the Feasibility Study Report and associated appendices (Appendix 6.1, Geology and Coal Resources; and Appendix 6.2, Coal Quality) as part of the geochemistry assessment process. Appendix 6.2 of the Feasibility Study Report provided the weighted average total sulfur concentration for coal seams identified at the MPO; and the proportion of total sulfur present as organic sulfur.

The weighted average total sulfur in raw coal from the Bowfield to the Edderton seams (refer to the stratigraphic profile provided earlier in **Section 1.4** of this report) ranges from 0.33 % in the Bayswater seam to 1.43 % in the WN seam (**Table E3.1**). The elevated total sulfur concentration in the WN seam is expected given the historical geochemistry work completed on simulated coal reject materials described in **Section E2** (EGi, 1998). However, it is noted that the total sulfur concentrations in coal reject materials were generally higher than for raw coal, suggesting that the coal washing process may concentrate sulfur to some extent in the coal reject materials.

Coal Seam	Total Sulfur (%)			
Bowfield	0.48			
Warkworth	0.44			
Mt Arthur	0.39			
Piercefield	0.42			
Vaux	0.43			
Broonie	0.42			
Bayswater	0.33			
Wynn	1.43			
Edderton	0.59			
Clanricard	0.66			
Bengalla	-			
Edinglassie	0.52			
Ramrod Creek	-			

Table E3.1: Total Sulfur by Coal Seam for Raw Coal

Data on the forms of sulfur present in each of the coal seams is available in the Feasibility Study Report, however the forms of sulfur data is sparse and is generally only widely available and statistically valid for <u>washed coal</u> samples taken from the WN, Edderton and Bengalla seams (**Table E3.2**).

Seam	Number of samples collected	Number of samples used to determine forms of sulfur	% of samples tested	
WN	335	136	41%	
Edderton	285	36	13%	
Bengalla	114	44	39%	

Table E2 2:	Washed Coal Sam	nlos Subiod	tod to Earme	of Sulfur Testing
I able E3.2.	Washed Coal Sam	ipies Subject		or Sunur resung

Figure E3.1 illustrates the weighted average concentrations of total sulfur and organic sulfur present in the four seams. The results indicate that just over half of the total sulfur in the (elevated sulfur) WN seam is present as low risk organic sulfur, whereas most of the total sulfur in the (lower sulfur) Edderton and Bengalla seams is present as low risk organic sulfur. This means that the WN seam not only contains higher total sulfur concentrations than most of the other lower sulfur coal seams, but has a higher proportion of potentially reactive sulfur (most likely present as pyrite or marcasite).

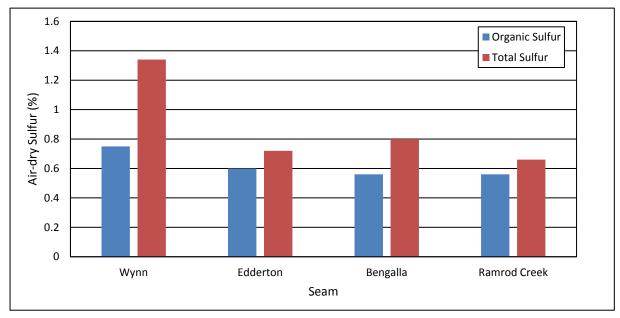


Figure E3.1: Total and Organic Sulfur Content of Washed Coal from Individual Coal Seams

E4 GEM (2012)

E4.1 Study Overview

A Geochemistry Study for a Modification to Mt Arthur Coal Mine was completed in 2012 (GEM, 2012) and the study report was supplied to RGS to include in the MPO geochemistry assessment process. Mt Arthur Coal Mine is located in close proximity to the MPO (south of Bengalla Mine) and targets similar seams from the Wittingham Coal Measures. The local and regional geological features of the Mt Arthur Coal Mine are also very similar to those described for the MPO.

The 2012 study focussed on confirmation testing (137 samples from 2 drill holes within the proposed pit extension area at that time as well as 60 drill core sample from 2 drill holes located in an already approved area to the west of the pit at that time) of the geochemical characteristics of overburden and interburden materials. The intent was to confirm that the geochemical characteristics of these materials were consistent with those from a previous geochemical assessment conducted for the Mt Arthur North EIS (Dames and Moore, 2000). The 2000 study was completed on 99 drill hole samples of overburden and interburden from the proposed open cut pit and 10 bulk samples representing coal rejects from individual coal seams. The 2012 report presented the results and findings of the geochemical assessment and the identified geochemical implications for the Modification and provided recommendations for environmental management and any required additional or future geochemical testing.

E4.2 Study Findings

The 2012 assessment confirmed that the bulk of the overburden and interburden materials were likely to be NAF with a low salinity risk and no specific constraints were required for the handling and storage of these materials. However, due to the sporadic occurrence of reactive PAF materials associated with some of the coal seams, it was recommended that the uneconomic coal seams, partings, roof and floor strata be selectively mined and buried at a depth greater than 5 metre (m) within the overburden emplacement to reduce the risk of AMD. The materials earmarked for selective mining and burial represented approximately 5 % of the total annual overburden produced and coal-associated overburden was readily identifiable in the field. In addition, moderate to highly sodic overburden and interburden materials were identified and were to be managed using gypsum amendment prior to topdressing, if exposed within the final surfaces of the emplacements. This process was expected to minimise the risk of potential issues associated with dispersion, emplacement stability, increased erosion potential and increased Total Suspended Solids (TSS) in surface drainage water.

In 2012, some of the overburden and interburden materials from the Modification area was indicated as being likely to contain significantly enriched concentrations of As, Sb and Se with more sporadic (and slight) enrichment of Mercury (Hg) compared to average crustal abundance. Whilst Hg and Sb were expected to be sparingly soluble, As, Molybdenum (Mo) and Se were expected to be more soluble at the prevailing near-neutral pH of these materials.

Due to these findings, it was recommended that pH, EC, TSS, total alkalinity/Acidity, sulfate, As, Hg, Mo, Se and Sb be included in the surface water quality monitoring program for emplacement areas, with periodic data review. It was also recommended that additional geochemical investigations be completed for overburden and interburden in future if the mining operations were to expand or move into new areas not covered by data from existing investigations.

E4.3 RGS Comment

RGS generally agrees with the overall findings and recommendations in the 2012 Mt Arthur Coal Mine geochemical assessment. However, it is noted that only six of the 137 overburden and interburden samples were classified as PAF and most of the overburden and interburden samples contain significant excess ANC. Based on the data presented in Table 3 and B1/B2 of the report, RGS concludes that only three of the six samples are actually PAF and represent Archerfield Sandstone (termed 'Bayswater (lower) floor' in the report even although it covers a 5.25 m depth interval of strata) and the WN seam (Upper) roof and (Lower) floor.

The 2012 classification of the three remaining samples associated with the Bowfield (parting), Warkworth (roof) and Ramrod Creek (floor) seams appears to have been influenced by potentially erroneous standard NAG test data, which contradicts the NAPP data. As stated in **Attachment A**, the standard single addition NAG test should be used with caution at coal mines for carbonaceous materials, coal or coal reject, as samples with elevated organic carbon contents can cause interference with standard NAG tests due to partial oxidation of carbonaceous materials. This can lead to (false positive) low NAG_{DH} values and high acidities in NAG solutions unrelated to acid generation from sulfides (Stewart et al., 2003; ACARP, 2008). Based on the more reliable NAPP data, the three samples should be reclassified as Uncertain or NAF.

Similarly, the 2012 assessment relied upon comparisons against average crustal abundance in igneous rocks to indicate that whilst most overburden and interburden materials were relatively free of enrichment by metals/metalloids, some materials could contain enriched concentrations of As, Sb and Se with more sporadic (and slight) enrichment of Hg (Table 4). Coal is hosted in sedimentary rocks, potentially with minor igneous intrusions in the forms of dykes or sills. A comparison against median crustal abundances of sedimentary rocks or soils is therefore more appropriate.

A reinterpretation of the 2012 metal/metalloid concentration data by RGS and comparison against median crustal abundance in soils (Bowen, 1979) confirms that the selected samples are relatively free of enrichment by metals/metalloids, i.e. the GAI values suggest that no metals/metalloids are significantly enriched. The highest metal/metalloid concentration values presented in Table 4 are generally within the range of elemental compositions in soils (Bowen, 1979)

Hence, for reject materials, it is unlikely that the concentration of metals/metalloids will be of environmental concern. However, if acid conditions occur in rejects, elevated concentrations of metals/metalloids such as Al, Fe, Mn and Ni may occur. As part of the current RGS study, KLC tests are being completed on coal reject materials which represent those likely to be generated by the current mine plan.

E5 RGS (2013)

A Geochemistry Study for a Modification to Bengalla Mine was completed in 2013 (RGS, 2013) and is included in the current MPO geochemistry assessment process. Bengalla Mine is located immediately south of the MPO and targets similar seams from the Wittingham Coal Measures. The local and regional geological features of Bengalla Mine are also very similar to those described for the MPO.

The 2013 study focussed on confirmation testing (105 samples from eight drill holes within an area to the west of the existing operations at that time) as well as nine coal reject samples with varying geochemical characteristics generated from processing the Vaux, Bayswater and WN coal seams. The intent was to confirm that the geochemical characteristics of these materials were consistent with those from several previous geochemistry studies (HLA Envirosciences, 1992; Eastwood and Carras, 1998; Matrix Plus, 2005; BMC, 2009; and RGS, 2010) and suitable for use in the development of an additional overburden emplacement area to the west of Dry Creek. The RGS report reviewed the previous geochemical studies and presented the results and findings of the 2013 geochemistry study and the identified geochemical implications for the Modification; and provided recommendations for environmental management and monitoring.

The 2013 geochemistry study confirmed that all overburden and interburden materials (apart from the Archerfield Sandstone (ASS) located above the WN seam) had negligible total sulfur (<0.1 %S), excess ANC and was classified as NAF. Bulk overburden and interburden materials reporting to the emplacement areas therefore had a high factor of safety with respect to potential acid generation. The ASS interburden (equivalent to the Bayswater-Wynn [BY-WN] interburden at MPO) was generally classified as PAF, although test results indicated that the ASS was not uniformly PAF and could also be NAF. Geochemical kinetic testing of ASS indicated a short lag time preceding acid generation of several weeks to months and confirmed that this material is likely to be reactive when exposed to air and moisture.

Coal reject materials were found to contain elevated total sulfur content however, the only coal reject material that was classified as PAF was derived from processing the WN seam. Some overburden and interburden materials were found to be sodic and could have structural stability issues related to potential dispersion and erosion.

The concentration of trace metals/metalloids in solid overburden/interburden and coal reject materials was found to be low compared to applied guideline criteria for soils and was unlikely to present any environmental issues associated with revegetation and rehabilitation.

Water extract and KLC test results from NAF overburden, interburden and coal reject materials indicated low levels of salinity and low concentrations of trace metals and major ions (including sulfate) in surface runoff and seepage from these materials (within applied water quality guideline criteria). However, PAF ASS interburden and PAF coal rejects (derived from processing the WN seam) if left unmanaged, were expected to generate acidic leachate, with elevated salinity and elevated concentrations of some metals (AI, As, Cd, Co, Cu, Ni, Se and Zn) if exposed to oxidising conditions.

The 2013 report indicated that the ASS material at Bengalla Mine was dumped in the open pit by dragline and then covered with acid neutralising and inert overburden to a depth of at least 60 m. Drainage from the ASS was contained within the mine water management system and local groundwater flows were directed into the pit. Coal reject materials were co-disposed with overburden (and interburden) at the overburden emplacement area and make up approximately 5 % of the total overburden mass. The combined overburden and coal reject in the mine spoils was estimated to be NAF with a high factor of safety and excess ANC and it was concluded that these measures would result in a very low risk of AMD at the site.

The RGS report recommended that the management methods implemented for ASS overburden and coal reject materials of deep burial under NAF overburden in the backfilled open cut pit continue as described in the Acid Rock Drainage Management Plan (BMC, 2009). However, it was recommended that the proponent not dispose of ASS or coal reject materials within overburden emplacement areas that overlay or had potential connectivity with alluvial soils and/or Dry Creek, to avoid any potential water quality impacts.

The practice of pre-stripping topsoil from areas to be disturbed for use in final rehabilitation activities (surface cover or growth medium) was recommended to continue along with successful site rehabilitation practices for potentially sodic overburden by ensuring that a topsoil cover was utilised as part of final rehabilitation. These practices were expected to continue to limit the risk of dispersion and erosion of surface materials at the site.

Water quality monitoring for surface water and collected water in the pit was recommended to continue to ensure that key water quality parameters remained within licence limit criteria.

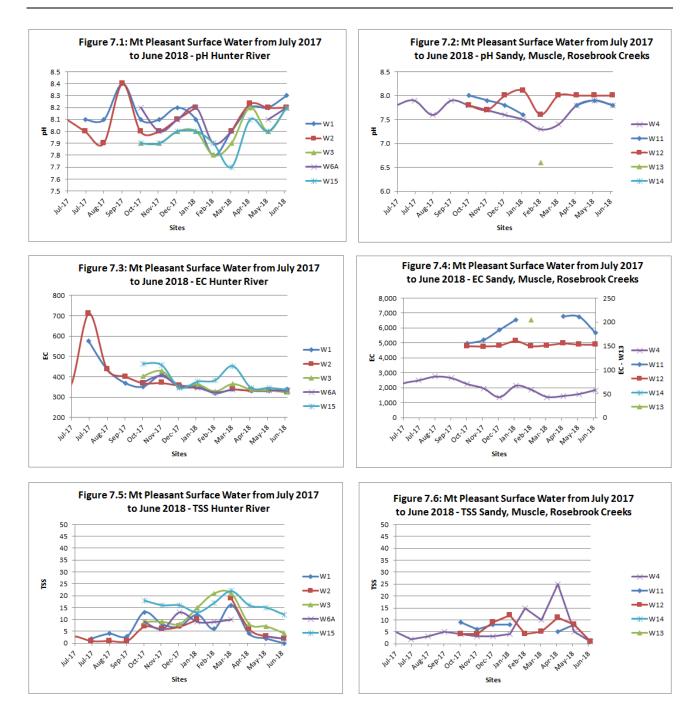
E6 RGS (2017) and RGS (2018)

In recent years, RGS has completed several additional geochemistry studies at various existing and proposed open cut coal mines in the Hunter Valley (e.g. Dartbrook Mine and Bulga Coal), which target similar seams from the Wittingham Coal Measures as those being targeted at the MPO. The local and regional geological features of these coal mines are also similar to those described for the MPO (RGS, 2017; RGS 2018).

The general findings are similar to the findings of the MPO, Mt Arthur Coal Mine and Bengalla Mine reports described earlier in this section in that:

- Overburden and interburden materials are expected to be NAF with a low salinity risk and no specific constraints are required for the handling and storage of these materials.
- The ASS interburden and coal rejects derived from processing the WN seam are generally expected to be PAF, reactive when exposed to air and moisture, and have a relatively short lag time preceding acid generation of several weeks to months.
- Some overburden and interburden materials are expected to be sodic and could have structural stability issues related to potential dispersion and erosion.
- The concentration of trace metals/metalloids in solid overburden/interburden and coal reject materials is
 expected to be low compared to median crustal abundance in soils and applied guideline criteria for soils
 and is not expected to present any environmental issues associated with revegetation and rehabilitation.
- NAF overburden, interburden and coal reject materials are typically expected to generate low salinity
 values and relatively low concentrations of trace metals/metalloids and major ions in surface runoff and
 seepage. However, PAF ASS interburden and PAF coal rejects (derived from processing the WN seam)
 are expected to have the potential to generate acidic leachate, with elevated salinity and elevated
 concentrations of some metals/metalloids, if exposed to oxidising conditions.

E7 Surface water and groundwater quality


E7.1 MPO surface water and groundwater quality

E7.1.1 Surface water monitoring

Surface water quality monitoring data for the Hunter River and various creeks in the vicinity of the MPO (MACH Energy, 2018), over a 12-month period from July 2017 to June 2018, is provided in **Figures E7.1** and **E7.2** for pH, **Figures E7.3** and **E7.4** for EC; and **Figures E7.5** and **E-7.6** for Total Suspended Solids (TSS), respectively. Surface water quality monitoring locations are provided in **Figure E1** (**Appendix 2**). The pH data confirm that surface water has naturally fluctuated within the neutral to slightly alkaline pH range over the test period. Despite an initial fluctuation in July 2017, the EC data indicate that the salinity of surface waters monitored at the Hunter River is relatively low (and has generally remained at a value of less than 500 μ S/cm over the remainder of the test period). The EC of surface water measured at various creeks (Sandy, Muscle and Rosebrook) at the MPO is naturally more saline. The TSS data indicate that the TSS values in the Hunter River and various creeks under normal climatic conditions is typically less than 25 mg/L.

These more recent findings align well with the findings of the 2017 Annual Review for the MPO (MACH Energy,2017) which was completed before coal extraction commenced and surface disturbance was limited to construction activities primarily restricted to works in the catchment of the unnamed tributary, commonly referred to as Dry Creek.

If any mine water is discharged from the MPO in the future, it will be undertaken in accordance with Development Consent DA 92/97 (Condition 26, Schedule 3), Development Consent SSD-5170 (i.e. Bengalla Mine's Development Consent) and Environmental Protection Licence (EPL) 20850.

Site specific water quality trigger values for pH, EC and TSS have been developed for various downstream monitoring sites. Default water quality trigger levels have been adopted for other sites based on ANZECC guideline values (ANZECC & ARMCANZ, 2000) as an interim measure until sufficient data is available to develop site specific values. The majority of monitoring sites are located on ephemeral drainage lines and therefore do not regularly experience flow for sampling.

E7.1.2 Groundwater monitoring

The most recent Annual Review for the MPO (MACH Energy, 2018) indicates that groundwater monitoring is undertaken at a network of bores which are broadly distributed across the MPO area and which cover all major hydrological units (**Figure E2**, **Appendix 2**). Groundwater quality monitoring includes quarterly sampling of pH and EC and annual sampling and analysis of a broader suite of analytical parameters.

Groundwater trigger levels for pH and EC have been developed for the MPO based on the NSW Aquifer Interference Policy and ANZECC water quality guidelines (ANZECC & ARMCANZ, 2000). At any bore where a monitored pH is outside the applicable baseline range (20th to 80th percentile), at three successive monitoring rounds, a groundwater investigation protocol would be initiated. Beneficial use categories have been assigned to each monitoring bore based on its 80th percentile baseline EC and the EC ranges specified in the Water Management Plan (WMP). Should a measured EC value exceed the beneficial use quality range EC for a particular bore at three successive monitoring rounds (as defined in the WMP), the groundwater investigation protocol, as detailed in the Surface and Ground Water Response Plan, would be initiated.

The groundwater monitoring bores are split into three categories; i.e.:

- Groundwater Central Bores representative of the hard rock aquifer
- Groundwater Eastern Bores representative of the alluvial aquifer; and
- Groundwater Western Bores representative of the hard rock aquifer in, or in the vicinity of, the Fines Emplacement Area.

Groundwater results for samples collected from these monitoring bores from March 2014 to December 2017 are indicative of baseline conditions as no coal extraction was undertaken at the MPO during this period.

The majority of EC values for the Central bores trended slightly upwards (range 500 to almost 10,000 μ S/cm) but generally remained relatively stable for the Eastern (range 500 to almost 50,000 μ S/cm) and Western bore (range 2,000 to over 16,000 μ S/cm) sites. pH values for most of the monitoring sites remained within the range 6.5 to 8.0 during the reporting period.

E7.2 Bengalla Mine surface and groundwater quality

The latest publicly available information on surface and groundwater quality at the Bengalla Mine adjacent to the MPO is contained in the 2017 Annual Review report for the site (Hansen Bailey, 2018). The Annual Review indicates that Bengalla Mining Company (BMC) has developed and implemented a WMP in accordance with the requirements of its modified Development Consent. The surface water monitoring data indicates that during 2017, pH, EC and TSS results at sites potentially impacted by surface operations were within applied water quality guideline criteria (ANZECC and ARMCANZ, 2000). BMC did not discharge under the Hunter River Salinity Trading Scheme (HRSTS) from its licensed discharge site during the reporting period

Groundwater monitoring data from the alluvium and Permian aquifer systems at Bengalla Mine indicated that most monitoring bores recorded groundwater pH values within triggers and shared similar pH trends. Isolated outlying pH values at specific bores were generally slightly more alkaline than expected. EC values in alluvium bores were typically less than 1,500 μ S/cm and any exceedances were attributed to a natural phenomenon associated with proximity to coal seam outcrop and their influence on the water quality locally. Permian bores showed higher EC values and the EC data within the coal measures and interburden typically ranged from 2,500 to 9,000 μ S/cm. Groundwater quality in the bores to the northwest of the active mining area showed little change in pH (6.9 – 7.8) and EC (5,460 to 8,640 μ S/cm) over the reporting period.

Bengalla Mine co-disposes overburden and coal reject materials within the main overburden emplacement area in accordance with the Mining Operations Plan and Rehabilitation Management Plan (MOP) and the Acid Rock Drainage (ARD) and Mineral Waste Management Plan. These documents consider the geochemistry of the materials with respect to their potential to cause environmental harm and its suitability in construction and rehabilitation. BMC maintains a mineral waste inventory of the volumes of NAF and PAF waste disposed on site and disposal locations. Sampling locations for ARD monitoring purposes include:

- Water sampling form Endwall Dam; and
- Analysis of water quality from groundwater bores.

The results from Bengalla Mine's surface water and groundwater monitoring programs are used to determine if mineral waste at Bengalla Mine is being managed appropriately.

In 2017, approximately 5.5 % of the total material volume reporting to the main overburden emplacement area comprised WN interburden (ASS) and coal rejects. Hence the pH and EC monitoring results described above indicate that mineral waste at Bengalla Mine is being managed appropriately with no recorded impacts on surface or groundwater quality at the site. No monitoring data for dissolved metal/metalloid concentrations in surface waters at Bengalla Mine was reported by BMC in 2017. However, previous investigations (RGS, 2013) has demonstrated that the risk of elevated concentrations of dissolved metals/metalloids in surface water and groundwater at Bengalla Mine (from contact with managed overburden, interburden and coal reject materials) is very low.

E7.3 Mt Arthur Coal Mine surface and ground water quality

The latest publicly available information on surface and groundwater quality at the Mt Arthur Coal Mine adjacent to the MPO is contained in the 2017 Annual Review report for the site (BHP, 2017). The Annual Review indicates that surface water is managed in accordance with various documents including the Site Water Management Plan and, Surface Water Monitoring Program. These documents outline measures for managing water on site and establishes impact assessment criteria (trigger values) against which monitoring results are compared. Downstream water quality is monitored by an independent consultant at five statutory monitoring sites as well as a licenced discharge point.

Water quality parameters in natural watercourses surrounding the mine were subject to normal variations in response to the ephemeral nature of the creeks, local geology and weather conditions. Water quality parameters are only recorded at the HRSTS discharge point and no HRSTS discharge occurred during the reporting period. Surface water pH measured at the statutory monitoring sites remained relatively constant during the reporting period, and within the impact assessment trigger levels of 6.5 - 9.0 at all times. Surface water EC and TSS measured at statutory sites remained below impact assessment trigger levels during the reporting period.

Groundwater at the site is also managed in accordance with various documents including the Site Water Management Plan and Site Water Monitoring Plan. These documents aim to minimise any adverse impacts on aquifers in proximity to the operation, including the two major aquifer areas, the hard rock coal measures and the shallow alluvial deposits associated with the Hunter River; and outline program requirements for monitoring of potential groundwater impacts from mining operations. Assessment criteria for groundwater monitoring results consist of a two-stage trigger process for EC, and pH results outside the trigger criteria range of 6.5 to 9.0 over three consecutive months.

Groundwater pH results were within the impact assessment criteria of 6.5 to 9.0 for the reporting period. There was one anomalous exceedance of the EC trigger value during the reporting period, which was not representative of the overall groundwater quality trends for the reporting year.

Mt Arthur Coal Mine co-disposes overburden and coal reject materials (and any readily identifiable PAF uneconomic coal seams, partings, roof and floor strata) within overburden emplacement areas in accordance with the MOP (i.e. burial at a depth greater than 5 m within the overburden emplacement to reduce the risk of AMD). The materials selectively mined and buried represent approximately 5 % of the total annual overburden produced.

The results from Mt Arthur Coal Mine's surface water and groundwater monitoring programs indicate that overburden, interburden and coal reject materials are being managed appropriately with no recorded impacts on surface or groundwater quality at the site. No monitoring data for dissolved metal/metalloid concentrations in surface waters at Mt Arthur Coal Mine was reported by BHP in 2017. However, previous investigations (GEM, 2012) have demonstrated that the risk of elevated concentrations of dissolved metals/metalloids in surface water and groundwater at Mt Arthur Coal Mine (from contact with managed overburden, interburden and coal reject materials) is low. However, GEM recommended that BHP include the analysis of pH, EC, TSS, total alkalinity/acidity, sulfate, As, Hg, Mo, Se and Sb in the surface water quality monitoring program for emplacement areas, with periodic data review.

E8 Geological mapping and drill hole data for the MPO

E8.1 Geological mapping

The geology of the MPO is described in some detail in **Section 1.3** and **Section 1.4** and in the Feasibility Study (Rio Tinto, 2011). According to the Geology Section of the Feasibility Study, 64 coal plies have been identified in the Wittingham Coal Measures at the MPO. These plies are commonly separated by partings less than 0.3 m thick to form working sections suitable for bulk mining. The seams are recognised by a combination of their stratigraphic location relative to each other and key marker horizons, and certain brightness characteristics.

The key marker horizons include the Fairford Formation, which consists of light-coloured tuffaceous claystone at the top of the Mt Arthur Coal Seam, and the Archerfield Sandstone, which is a bronze-coloured sandstone, immediately below the Bayswater seam. The latter unit is a thick dull coal, with characteristically lower volatile matter content, and non-caking properties. **Table E8.1** presents summarises the make-up of the seams, their average ply thickness and geometry.

Sandstone is the predominant lithology in the non-coal strata occurring at the MPO. Mudstone and claystone mainly occur in the immediate roof and floor strata of the coal seams.

The geological database and model for the MPO is largely based on borehole data collected during various campaigns. The resource knowledge is also supported by knowledge of the adjacent Bengalla Mine and from airborne geophysical survey data.

Seam	Number of Plies	Ply Thickness (m)	Geometry
Bowfield	2	0.6 – 0.8	Occurs in 2 main seams
Warkworth	10	0.3 – 2.3	Splits southwards into multiple plies
Mt Arthur	4	0.4 – 1.7	Consistent seam
Piercefield	7	0.3 – 1.1	Consists of upper and lower seams, subject to complex splitting
Vaux	10	0.4 – 1.5	Consists of upper and lower seams, split in central part of deposit
Broonie	7	0.3 – 1.2	Consists of upper and lower seams, with splitting and coalescing
Bayswater	6	0.8 – 1.3	Splits northwards and coalesced in south with lower Broonie split
		Ar	cherfield Sandstone
Wynn	7	0.5 – 1.3	Consists of upper and lower seams
Edderton	4	0.5 – 1.4	Consistent seam, top plies split in the north
Clanricard	2	0.3 – 1.2	-
Bengalla	4	0.5 – 1.1	-
Edinglassie	5	0.7 – 2.3	Structurally consistent
Ramrod Creek	3	0.6 – 1.3	-

Table E8.1: Summary of MPO seams, plies, thickness and geometry

E8.2 Drill hole data

There has been a significant amount of drilling and testing of drill core and drill chips at the MPO since the 1970s. In the 1970s and 1980s 40 drill holes were completed and resulted in the direct allocation of the MPO to Coal & Allied, which completed progressive drilling on a 1,000 m to 250 m spacing. The drilling on the 1990s resulted in approximately 400 drill holes; 113 of which were cored holes with coal quality information. In 2006, 21 core and 41 open holes were drilled for a feasibility study and in 2010, 7 drill additional holes were drilled. Hence, a total of approximately 508 drill holes have been drilled at the MPO and this information was used in the Feasibility Study to develop the geological model for the site (Rio Tinto, 2011).

In 2018, a further four cored holes were drilled at the MPO by MACH Energy and the drill core from some of these holes was viewed by RGS during the site visit on 26 July 2018. Given that the most recent (pre-2018) drill holes were drilled in 2010, this drill core would be too old for sampling and geochemical testing.

<u>RGS has coordinated the sampling and geochemical testing of drill core from four holes drilled in 2019. This</u> has been augmented by geochemical sampling and testing of representative samples of MPO coal reject materials of the target coal seams from the Coal Handling and Preparation Plant (CHPP) in 2020.

E9 Environmental management of MPO mine waste materials

E9.1 Current strategy

The current strategy for managing overburden, interburden and coal reject materials at the MPO is described in the MOP (MACH Energy, 2020), Mineral Waste Management Plan (Coal & Allied, 2012), Fines Emplacement Plan (ATC Williams, 2017) and the MPO Mine Optimisation Modification (MOD 3) Environmental Assessment (MACH Energy, 2017).

The 2012 Mineral Waste Management Plan indicates that overburden/interburden and coal reject materials with PAF properties are located well below the first coal and will not be an issue in the construction phase. The plan indicates that a detailed mining plan would be developed prior to mining overburden/interburden horizons identified as PAF, highly saline or highly sodic to ensure that these materials are adequately managed. All coal reject materials identified as having high sulfide content or as PAF would be disposed of in the mined pit whilst fine reject would be placed in a purpose-built storage facility.

The MOP (MACH Energy, 2020) states that overburden will initially be placed in an Overburden Emplacement to the east of the open cuts. As part of the planned routine mining operations, overburden will then also be placed behind the advancing mining operation to permit the extraction of coal using truck and shovel methods. The MOP states that course reject materials will consist predominantly of sedimentary rock types with minimal quantities of carbonaceous material and a low propensity for spontaneous combustion.

Fine rejects are thickened to a solids density of approximately 20 % to 30 % by weight and will predominantly be fine rock and clay with some coal and flocculent. The fine reject storage facility has been constructed according to a detailed design and is clay lined with an underdrainage system and lower sediment/seepage collection pond (ATC Williams, 2017).

Coarse reject materials are conveyed from the CHPP to a 550 tonne (t) bin located northwest of this facility (MACH Energy, 2020). The coarse rejects are then hauled by truck to the waste emplacements for disposal as a component of the general ROM waste emplacement operations. Coarse rejects are placed beneath at least 10 m of NAF waste material to reduce oxygen movement through the rehabilitated profile and manage its geochemical characteristics (i.e. acid generation potential). This also assists to minimise any potential for spontaneous combustion within the rehabilitated waste emplacements.

Appendix 1

Tables of Historic Results

Tables E1 to E4

Sample	•	Sample	Sample Lithology	From	То	Interval	Original Sample	pH ¹	EC ¹	Total S*	MPA ²	Total Carbon	Carbonate Carbon	ANC ²	Crude NAPP	NAPP ²	ANC: MPA	Sample Classification ³	
No.	ID	ID	Sample Entiology		(m)		Description	рп	(µS/cm)	(%)	(kgH ₂ SO ₄ /t)	(%CO ₂)	(%CO ₂)	(kgH ₂ SO ₄ /t)	(Equiv. %CaCO ₃)	(kgH₂SO₄/t)	Ratio		
1	4000C000	E94/1403	Sandstone/Siltstone 90:10	36.70	37.00	0.30	WKH A Overburden	7.20	195	0.005	0.2	7.0	4.1	92.3	-9.4	-92.1	92.1	Acid Consuming	
2	4000C000	E94/1404	Siltstone	52.20	52.50	0.30	MTA A Interburden	9.50	420	0.020	0.6	11.6	7.4	164.3	-16.7	-163.7	268.2	Acid Consuming	
3	4000C000	E94/1405	Siltstone	60.59	60.89	0.30	MTA A Interburden	9.85	340	0.030	0.9	22.6	4.2	93.0	-9.4	-92.1	101.3	Acid Consuming	
4	4000C000	E94/1406	Sandstone/Siltstone 60:40	73.57	73.87	0.30	PFD A Interburden	10.05	637	0.005	0.2	8.4	5.0	110.9	-11.3	-110.7	724.2	Acid Consuming	
5	4000C000	E94/1407	Sandstone/Siltstone 80:20	88.20	88.50	0.30	PFD A Interburden	10.30	723	0.005	0.2	10.1	8.1	180.5	-18.4	-180.3	1178.6	Acid Consuming	
6	4000C000	E94/1408	Sandstone/Siltstone 90:10	104.20	104.50	0.30	Vaux A Interburden	10.15	569	0.005	0.2	10.0	8.3	184.4	-18.8	-184.2	1204.2	Acid Consuming	
7	4000C000	E94/1409	Sandstone	122.30	122.50	0.20	Vaux A Interburden	10.10	482	0.005	0.2	19.2	13.6	302.0	-30.8	-301.8	1972.2	Acid Consuming	
8	4000F000	E94/1410	Siltstone	17.20	17.50	0.30	WKH A Overburden	9.65	385	0.005	0.2	4.2	3.0	67.8	-6.9	-67.6	442.6	Acid Consuming	
9	4000F000	E94/1411	Sandstone/Siltstone 70:30	33.20	33.50	0.30	WKH Overburden	9.50	229	0.005	0.2	7.5	4.2	93.3	-9.5	-93.1	609.0	Acid Consuming	
10	4000F000	E94/1412	Tuff	60.50	60.80	0.30	MTA Midburden	10.20	846	0.005	0.2	0.5	0.4	9.0	-0.9	-8.8	58.6	Non-Acid Forming	
11	4000F000	E94/1413	Sandstone	68.50	68.80	0.30	MTA Midburden	10.10	460	0.005	0.2	2.2	0.7	16.8	-1.7	-16.7	109.8	Non-Acid Forming	
12	4000F000	E94/1414	Tuff (Fairford Claystone)	74.10	74.40	0.30	MTA Midburden	10.00	1299	0.005	0.2	1.1	0.7	15.8	-1.6	-15.7	103.4	Non-Acid Forming	
13	4000F000	E94/1415	Sandstone (Silty)	90.53	90.83	0.30	PFD A Midburden	10.15	694	0.020	0.6	6.1	2.3	50.6	-5.1	-50.0	82.6	Acid Consuming	
14	4000F000	E94/1416	Siltstone (Muddy, laminated)	99.10	99.40	0.30	PFD A Midburden	10.05	454	0.060	1.8	42.8	11.1	247.8	-25.1	-246.0	134.9	Acid Consuming	
15	4000F000	E94/1417	Sandstone/Siltstone	110.10	110.40	0.30	PFD A Midburden	10.00	648	0.005	0.2	7.4	2.9	63.9	-6.5	-63.7	417.0	Acid Consuming	
16	4000F000	E94/1418	Sandstone/Siltstone 70:30	134.20	134.50	0.30	PFD C Midburden	10.05	630	0.010	0.3	5.3	2.5	56.2	-5.7	-55.9	183.4	Acid Consuming	
17	4000F000	E94/1419	Sandstone/Siltstone 50:50	162.20	162.50	0.30	PFD C Midburden	9.80	377	0.010	0.3	6.0	3.8	84.6	-8.6	-84.3	276.2	Acid Consuming	
18	5000A500	E94/1420	SandstoneWeathered	24.89	25.19	0.30	PFD B Overburden	9.05	84	0.005	0.2	3.2	2.9	64.8	-6.6	-64.7	423.4	Acid Consuming	
19	5000A500	E94/1421	Sandstone	40.20	40.50	0.30	PFD B Overburden	8.65	126	0.005	0.2	4.6	4.0	88.4	-9.0	-88.2	577.0	Acid Consuming	
20	5000A500	E94/1422	Siltstone	51.10	51.40	0.30	PFD B Overburden	8.65	136	0.030	0.9	4.8	1.2	25.4	-2.5	-24.5	27.7	Non-Acid Forming	
21	5000A500	E94/1423	Siltstone	67.56	67.86	0.30	VAUX E Midburden	8.95	132	0.040	1.2	6.0	1.8	41.4	-4.1	-40.2	33.8	Non-Acid Forming	
22	5000A500	E94/1424	Siltstone/Sandstone 60:40	77.52	77.82	0.30	VAUX E Midburden	8.60	236	0.190	5.8	11.9	9.0	200.8	-19.9	-195.0	34.5	Acid Consuming	
23	5000A500	E94/1425	Sandstone/Siltstone 70:30	83.07	83.37	0.30	BRN B Midburden	9.00	194	0.005	0.2	8.2	5.6	124.6	-12.7	-124.5	813.8	Acid Consuming	
24	5000A500	E94/1426	Siltstone/Sandstone 60:40	86.97	87.27	0.30	BRN B Midburden	8.95	163	0.005	0.2	10.6	5.8	128.5	-13.1	-128.4	839.4	Acid Consuming	
25	5000A500	E94/1427	Sandstone	105.70	106.00	0.30	WYNN EF Midburden	9.10	183	0.005	0.2	9.5	9.2	205.0	-20.9	-204.8	1338.6	Acid Consuming	
26	5000A500	E94/1428	Conglomerate	110.20	110.50	0.30	WYNN EF Midburden	6.30	2340	1.410	43.2	8.8	7.8	174.5	-13.4	-131.3	4.0	Non-Acid Forming [#]	
27	5000C000	E94/1429	Sandstone	19.46	19.76	0.30	PFD A Midburden	9.00	196	0.030	0.9	7.2	3.4	75.4	-7.6	-74.5	82.1	Acid Consuming	
28	5000C000	E94/1430	Sandstone/Siltstone 70:30	24.70	25.00	0.30	PFD A Midburden	9.30	238	0.005	0.2	8.0	4.9	108.9	-11.1	-108.8	711.4	Acid Consuming	
29	5000C000	E94/1431	Sandstone	34.70	35.00	0.30	PFD A Midburden	9.40	227	0.005	0.2	16.7	13.4	299.1	-30.5	-298.9	1953.0	Acid Consuming	
30	5000C000	E94/1432	Sandstone/Siltstone 70:30	56.20	56.50	0.30	VAUX A Midburden	9.45	236	0.005	0.2	9.6	5.1	112.9	-11.5	-112.7	737.0	Acid Consuming	
31	5000C000	E94/1433	Sandstone/Siltstone 90:10	90.20	90.50	0.30	BRN A Midburden	9.90	254	0.005	0.2	6.6	2.9	63.9	-6.5	-63.7	417.0	Acid Consuming	
32	5000C000	E94/1434	Siltstone	105.95	106.25	0.30	BRN B Midburden	9.50	385	0.030	0.9	11.6	2.9	64.6	-6.5	-63.7	70.3	Acid Consuming	
33	5000C000	E94/1435	Sandstone	128.50	128.80	0.30	WYNN EF Midburden	9.60	181	0.005	0.2	1.0	0.5	10.9	-1.1	-10.8	71.4	Non-Acid Forming	
34	5000C000	E94/1436	Sandstone	133.40	133.70	0.30	WYNN EF Midburden	4.20	330	1.340	41.0	1.0	0.3	5.8	3.6	35.3	0.1	Potentially Acid Forming	
35	5000C000	E94/1437	Sandstone	134.90	135.20	0.30	WYNN EF Interburden	4.80	2830	1.470	45.0	1.7	0.4	7.8	3.8	37.2	0.2	Potentially Acid Forming	
36	5000C000	E94/1438	Sandstone/Siltstone 70:30	140.20	140.50	0.30	WYNN I Midburden	9.50	211	0.010	0.3	5.4	1.1	23.8	-2.4	-23.5	77.8	Non-Acid Forming	
37	5000C000	E94/1439	Sandstone/Siltstone 60:40	152.00	152.30	0.30	WYNN I Interburden	9.35	210	0.030	0.9	6.7	1.2	25.4	-2.5	-24.5	27.7	Non-Acid Forming	
38	5000C000	E94/1440	Sandstone	157.10	157.40	0.30	EDDERTON B Midburden	9.40	337	0.050	1.5	8.4	1.7	37.8	-3.7	-36.3	24.7	Non-Acid Forming	

Table E1: Acid Base Account Test Results for 1995 overburden and interburden samples

	Drill Hole	Commis		From	То	Interval	Original Samula		EC ¹	Total S*	MPA ²	Total Carbon	Carbonate Carbon	ANC ²	Crude NAPP	NAPP ²	ANC: MPA	
Sample No.	ID	Sample ID	Sample Lithology		(m)		Original Sample Description	рН¹	(µS/cm)	(%)	(kgH ₂ SO ₄ /t)	(%CO ₂)	(%CO ₂)	(kgH ₂ SO ₄ /t)	(Equiv. %CaCO ₃)	(kgH ₂ SO ₄ /t)	Ratio	Sample Classification ³
39	5000F000	E94/1441	Conglomerate /sandstone 80:20	16.70	17.00	0.30	MTA Overburden	9.30	242	0.010	0.3	5.50	4.3	96.3	-9.8	-96.0	314.6	Acid Consuming
40	5000F000	E94/1442	Siltstone	34.20	34.50	0.30	MTA Overburden	9.75	267	0.030	0.9	7.70	1.4	30.3	-3.0	-29.4	33.0	Non-Acid Forming
41	5000F000	E94/1443	Mudstone	42.20	42.50	0.30	PFD C Midburden	9.70	377	0.020	0.6	4.00	0.3	6.5	-0.6	-5.9	10.6	Non-Acid Forming
42	5000F000	E94/1444	Sandstone	60.20	60.50	0.30	PFD C Midburden	10.10	371	0.005	0.2	8.30	5.3	116.8	-11.9	-116.6	762.6	Acid Consuming
43	5000F000	E94/1445	Siltstone	83.45	83.75	0.30	PFD C Midburden	7.85	500	0.220	6.7	52.50	2.9	64.6	-5.9	-57.8	9.6	Acid Consuming
44	6000C000	E94/1446	Sandstone Course weathered	17.20	19.59	2.39	BRN B Overburden	7.00	204	0.050	1.5	0.80	0.2	4.5	-0.3	-2.9	2.9	Non-Acid Forming
45	6000C000	E94/1447	Mudstone- Grey, soft Fissile	20.45	20.75	0.30	BRN B Overburden	8.00	325	0.030	0.9	6.80	1.0	21.5	-2.1	-20.6	23.4	Non-Acid Forming
46	6000C000	E94/1448	Sandstone	24.79	25.09	0.30	BRN B Overburden	9.65	176	0.005	0.2	5.60	3.3	74.6	-7.6	-74.5	487.4	Acid Consuming
47	6000C000	E94/1449	Sandstone Conglomerate 80:20	41.37	41.67	0.30	WYNN EF Midburden	7.50	1328	0.020	0.6	4.30	3.0	67.3	-6.8	-66.6	109.8	Acid Consuming
48	6000C000	E94/1450	Sandstone Conglomerate	45.00	45.30	0.30	WYNN EF Midburden	2.75	2830	0.550	16.8	0.40	0.1	0.2	1.7	16.7	0.01	Potentially Acid Forming
49	6000C000	E94/1451	Sandstone Conglomerate	48.00	48.30	0.30	WYNN EF Midburden	3.65	2660	1.470	45.0	1.30	0.2	4.8	4.1	40.2	0.1	Potentially Acid Forming
50	6000C000	E94/1452	Mudstone	55.21	55.41	0.20	EDDERTON Midburden	7.80	328	0.100	3.1	22.40	3.6	79.5	-7.8	-76.4	26.0	Acid Consuming
51	6000C000	E94/1453	Sandstone/siltstone 50:50	56.05	56.34	0.29	EDDERTON Midburden	8.10	271	0.040	1.2	11.10	5.3	117.8	-11.9	-116.6	96.2	Acid Consuming
52	6000D000	E94/1454	Sandstone weathered	16.90	17.20	0.30	Vaux Overburden	9.15	221	0.005	0.2	4.90	3.8	85.4	-8.7	-85.3	557.8	Acid Consuming
53	6000D000	E94/1455	Siltstone/Sandstone 80:20	40.14	40.44	0.30	BRN A Midburden	9.70	216	0.010	0.3	5.80	2.0	43.4	-4.4	-43.1	141.8	Non-Acid Forming
54	6000D000	E94/1456	Sandstone/Siltstone 80:20	59.84	60.14	0.30	BRN B Midburden	9.70	218	0.005	0.2	7.30	2.7	60.9	-6.2	-60.8	397.8	Acid Consuming
55	6000D000	E94/1457	Conglomerate/Sandstone 70:30	68.70	69.00	0.30	BAY midburden	8.20	470	0.005	0.2	9.10	1.7	38.4	-3.9	-38.2	250.6	Non-Acid Forming
56	6000D000	E94/1458	Sandstone	87.53	87.83	0.30	WYNN EF Midburden	9.00	382	0.060	1.8	8.70	5.5	122.4	-12.3	-120.5	66.6	Acid Consuming
57	6000D000	E94/1459	Sandstone/Conglomerate 80:20	90.20	90.50	0.30	WYNN EF Midburden	3.20	3150	1.580	48.4	2.90	0.3	8.2	4.1	40.2	0.2	Potentially Acid Forming
58	6000D000	E94/1460	Siltstone	92.90	93.20	0.30	WYNN I Midburden	3.40	2330	5.690	174.3	24.80	3.6	147.8	2.7	26.5	0.8	Potentially Acid Forming
59	6000D000	E94/1461	Sandstone	100.82	101.12	0.30	WYNN I Midburden	9.50	185	0.005	0.2	3.00	0.8	16.8	-1.7	-16.7	109.8	Non-Acid Forming
60	6000D000	E94/1462	Siltstone	114.69	114.99	0.30	EDDERTON B Midburden	8.00	329	0.010	0.3	8.10	1.4	27.7	-2.8	-27.4	90.6	Non-Acid Forming
61	6000G000	E94/1463	Sandstone/ Weathered	10.50	10.80	0.30	PFD C Overburden	7.45	298	0.005	0.2	0.60	0.1	3.1	-0.3	-2.9	20.2	Non-Acid Forming
62	6000G000	E94/1464	Siltstone/Siltstone 60:40	25.85	26.15	0.30	PFD C Overburden	8.70	205	0.005	0.2	11.60	7.3	162.8	-16.6	-162.7	1063.4	Acid Consuming

Table E1: Acid Base Account Test Results for 1995 overburden and interburden samples

1. Current pH, EC provided for 4:3 sample:water slurry (essentially a saturated paste).

2. MPA = Maximum Potential Acidity; ANC = Acid Neutralising Capacity; and NAPP = Net Acid Producing Potential.

3. Sample classification criteria detail provided in report text.

* Where total sulfur or ANC results are less than the laboratory LoR a value of half of the LoR is used in this table. # This interburden sample associated with the Wynn seam has an elevated total sulfur content and has the potential to generate neutral mine drainage with elevated concentrations of major ions.

Sample ID	Sample Description	Sample Description	pH ¹	EC ¹	Total S	MPA ²	ANC ²	NAPP ²	NAG _{pH}	EGi Sample	RGS Sample	
				(µS/cm)	(%)	(kg H2SO4	/t)	-	Classification ³	Classification ³	
MTP/11699	WKHR1 + WKHR2	Warkworth Seam Composite	7.8	870	0.37	11	44	-33	nd	Non-Acid Forming	Non-Acid Forming	
11700	MTAR1 + MTAR2	Mt Arthur Seam Composite	7.0	1210	1.20	38	92	-54	nd	Non-Acid Forming	Acid Consuming	
11701	PFDR1 + PFDR2	Piercefield Seam Composite	6.8	1290	1.70	53	51	2	nd	Non-Acid Forming	Uncertain	
11702	WYNNR1 + WYNNR2	Wynn Seam Composite	5.1	1560	1.80	54	17	37	nd	Potentially Acid Forming	Potentially Acid Forming	
11703	EDDR1 + EDDT2	Edderton Seam Composite	6.8	1080	0.64	20	21	-1	nd	Non-Acid Forming	Uncertain	
11704	BRNR1 + BRNR2	Broonie Seam Composite	6.6	950	0.61	19	12	7	nd	Potentially Acid Forming	Potentially Acid Forming (low capacity)	
11705	BAYR1 + BAYR2	Bayswater Seam Composite	6.6	930	0.66	20	41	-21	nd	Non-Acid Forming	Non-Acid Forming	
11706	VAUR1 +VAUR2	Vaux Seam Composite	6.7	1090	1.30	39	72	-33	nd	Non-Acid Forming	Non-Acid Forming	
11707	Leach Column	Column representing bulk tailings for years 2 to 3	-	-	#1.15	#35	#45	-10	5.2	Non-Acid Forming	Non-Acid Forming	
11708	Leach Column	Column representing bulk tailingsfor years 10 to 14	-	-	#1.08	#33	#51	-18	7.0	Non-Acid Forming	Non-Acid Forming	

Table E2: Acid Base Account Test Results for 1998 coal reject samples

1. Current pH, EC provided for 1:2 sample:deionised water mix.

2. MPA = Maximum Potential Acidity; ANC = Acid Neutralising Capacity; NAPP = Net Acid Producing Potential and NAG = Net Acid Generation nd = Not determined; # = Calculated

TABLE E3(i): COAL REJECT SAMPLE KLC 1 - 11707

	Weight (kg)	2.50	TS (%)	1.15	ANC	45							
	pH (1:5)	5.20	Scr (%)	-	NAPP	-9.8							
	EC (µS/cm)	9,600	MPA	35.2	ANC:MPA	1.3							
Week Number	1	2	3	4	5	6	7	8	9	10	11	12	13
Volume Leached (L)	0.458	0.451	0.386	0.210	0.217	0.221	0.221	0.224	0.224	0.226	0.225	0.221	0.220
Cum. Volume (L) Pore Volumes	0.46 0.3	0.91	1.30 1.0	1.51 1.1	1.72 1.3	1.94 1.4	2.16 1.6	0.22	0.45 0.3	0.67 0.5	0.90	1.12 0.8	1.34 1.0
pH	7.50	7.30	8.00	7.80	7.30	7.60	7.30	7.50	7.50	7.20	7.50	7.50	7.60
EC	9,600	2,300	4,800	2,900	3,700	2900	2,500	2,600	1900	1,400	1,300	1200	1,200
Alkalinity (mgCaCO3/L)*	202	28	69	46	45	54	49	60	47	43	55	56	61
Major Elements (mg/L)						All ur	nits mg/L						
Calcium (Ca)	800	290	500	460	440	450	-	-	-	-	-	-	-
Chloride (Cl)	1770	270	600	880	330	370	-	-	-	-	-	-	-
Fluoride (F)	0.4	-	-	-	-	0.6	-	-	-	-	-	-	-
Iron (Fe)	< 0.01	-	-	-	-	<0.01	-	-	-	-	-	-	-
Potassium (K)	36	11.8	21	17	15.5	15	-	-	-	-	-	-	-
Magnesium (Mg)	800	180	370	310	275	275	-	-	-	-	-	-	-
Manganese (Mn)	12.5	-	-	-	-	2.7	-	-	-	-	-	-	-
Sodium (Na)	380	27	80	58	46	41	-	-	-	-	-	-	-
Sulfate (SO ₄)	3,176	1,108	1,917	1,797	1,678	1,618	-	-	-	-	-	-	-
Minor Elements (mg/L)							nits mg/L						
Aluminium (Al)	<0.01	-	-	-	-	<0.01	-	-	-	-	-	-	-
Arsenic (As)	5.6	-	-	-	-	1.3	-	-	-	-	-	-	-
Boron (B)	0.18	-	-	-	-	0.03	-	-	-	-	-	-	-
Barium (Ba)	0.1	-	-	-	-	0.04	-	-	-	-	-	-	-
Cobalt (Co)	2.5	-	-	-	-	0.034	-	-	-	-	-	-	-
Chromium (Cr)	0.01	-	-	-	-	< 0.01	-	-	-	-	-	-	-
Copper (Cu)	0.01	-	-	-	-	<0.005	-	-	-	-	-	-	-
Nickel (Ni)	1.5	-	-	-	-	0.07	-	-	-	-	-	-	-
Phosphorus (P)	<0.1	-	-	-	-	0.1	-	-	-	-	-	-	-
Selenium (Se)	<0.2 4.7	-	-	-	-	< 0.02	-	-	-	-	-	-	-
Silicon (Si) Strontium (Sr)	4.7	-	-	-	-	1.4 8.8	-	-	-	-	-	-	-
Vanadium	<0.01	-	-	-	-	0.0 <0.01	-	-	-	-	-	-	-
Zinc (Zn)	1.1	-	-	-	-	0.01	-	-	-	-	-	-	-
Trace Elements (µg/L)	1.1	-	-	-	-		- nits μg/L	-	-	-	-	-	-
Silver (Ag)	0.44		1			<0.01	πo μg/∟						1
Beryllium (Be)	<0.1					<0.01							
Bismuth (Bi)	0.12					0.055							-
Cadmium (Cd)	27					1.4							
Cerium (Ce)	0.13					0.088							-
Mercury (Hg)	<0.1					<0.1							
Lead (Pb)	0.5					12							
Molybdenum (Mo)	9					13.5							
Antimony (Sb)	0.41					0.6							
Tin (Sn)	0.4					0.2							
Thorium (Th)	0.03					<0.005							
Titanium (TI)	1.5					0.12							
Uranium (U)	26.5					4.5							
Tungsten (W)	0.04					<0.02							
Calculations**													
SO₄ Release Rate	582	200	296	151	146	143	-	-	-	-	-	-	-
Cumulative SO ₄ Release	582	782	1078	1229	1374	1517	-	-	-	-	-	-	-
Ca Release Rate	147	52	77	39	38	40	-	-	-	-	-	-	-
Cumulative Ca Release	147	199	276	315	353	393	-	-	-	-	-	-	-
Mg Release Rate	6.6	2.1	3.2	1.4	1.3	1.3	-	-	-	-	-	-	-
Cumulative Mg Release	6.6	8.7	12.0	13.4	14.7	16.1	-	-	-	-	-	-	-
Residual ANC (%)	99.1	98.8	98.4	98.2	97.9	97.7	-	-	-	-	-	-	-
Residual Sulfur (%)	98.3	97.7	96.9	96.4	96.0	95.6	-	-	-	-	-	-	-
SO ₄ /(Ca+Mg) molar ratio	< indicates les	1.5	1.5 analytical de	1.5	1.5	1.4	-	- ulated in mo	- 1 CaCO "/I	-	-	-	-

 1.5
 1.5
 1.5
 1.6
 1.7
 1.6
 1.7
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6

TABLE E3(ii): COAL REJECT SAMPLE KLC 2 - 11708

	Weight (kg)	2.50	Total S (%)	1.08	ANC	51							
	pH (1:5)	7.00	Scr (%)	-	NAPP	-17.9							
	EC (µS/cm)	8,700	MPA	33.1	ANC:MPA	1.5							
Week Number	1	2	3	4	5	6	7	8	9	10	11	12	13
Volume Leached (L)	0.463	0.431	0.382	0.204	0.221	0.224	0.221	0.229	0.231	0.240	0.246	0.254	0.256
Cum. Volume (L)	0.46	0.89	1.28	1.48	1.70	1.93	2.15	0.23	0.46	0.70	0.95	1.20	1.46
Pore Volumes	0.3	0.7	0.9	1.1	1.3	1.4	1.6	0.2	0.3	0.5	0.7	0.9	1.1
pH	7.70	7.10	7.70	7.80	7.50	7.80	7.50	7.70	7.70	7.60	7.80	7.80	7.80
EC	8,700	2,900	4,400	2,800	3,600	2,800	2,400	2,200	1,900	1,300	1,200	1,200	1,300
Alkalinity (mgCaCO3/L)*	194	7	38	42	40	39	38	49	43	44	47	51	47
Major Elements (mg/L)						All u	nits mg/L						
Calcium (Ca)	780	380	470	420	500	460	-	-	-	-	-	-	-
Chloride (CI)	1750	450	600	390	410	260	-	-	-	-	-	-	-
Fluoride (F)	0.5	-	-	-	-	1	-	-	-	-	-	-	-
Iron (Fe)	<0.01	-	-	-	-	0.02	-	-	-	-	-	-	-
Potassium (K)	35	16	19	15	15	13	-	-	-	-	-	-	-
Magnesium (Mg)	740	260	330	270	295	265	-	-	-	-	-	-	-
Manganese (Mn)	9.2	-	-	-	-	1.3	-	-	-	-	-	-	-
Sodium (Na)	400	90	80	56	52	42	-	-	-	-	-	-	-
Sulfate (SO ₄)	2,936	1,158	1,738	1,618	1,857	1,797	-	-	-	-	-	-	-
Minor Elements (mg/L)							nits mg/L						
Aluminium (Al)	<0.01	-	-	-	-	<0.01	-	-	-	-	-	-	-
Arsenic (As)	5.2	-	-	-	-	0.76	-	-	-	-	-	-	-
Boron (B)	0.13	-	-	-	-	<0.01	-	-	-	-	-	-	-
Barium (Ba)	0.09	-	-	-	-	0.05	-	-	-	-	-	-	-
Cobalt (Co)	1	-	-	-	-	0.023	-	-	-	-	-	-	-
Chromium (Cr)	<0.01	-	-	-	-	<0.01	-	-	-	-	-	-	-
Copper (Cu)	<0.01	-	-	-	-	<0.005	-	-	-	-	-	-	-
Nickel (Ni)	0.72	-	-	-	-	0.02	-	-	-	-	-	-	-
Phosphorus (P)	<0.1	-	-	-	-	<0.1	-	-	-	-	-	-	-
Selenium (Se)	<0.2	-	-	-	-	<0.02	-	-	-	-	-	-	-
Silicon (Si)	4.5	-	-	-	-	1.1	-	-	-	-	-	-	-
Strontium (Sr)	19	-	-	-	-	7.6	-	-	-	-	-	-	-
Vanadium	<0.01	-	-	-	-	<0.01	-	-	-	-	-	-	-
Zinc (Zn)	0.52	-	-	-	-	0.03	-	-	-	-	-	-	-
Trace Elements (µg/L)						All u	inits μg/L						
Silver (Ag)	0.32					<0.01							
Beryllium (Be)	0.1					<0.1							
Bismuth (Bi)	0.14					0.035							
Cadmium (Cd)	16					0.62							
Cerium (Ce)	0.54					0.04							
Mercury (Hg)	<0.1					<0.1							
Lead (Pb)	11					15							
Molybdenum (Mo)	<0.5					2							
Antimony (Sb)	0.4					0.46							
Tin (Sn)	0.5					<0.1							
Thorium (Th)	0.06					<0.005							
Titanium (TI)	0.76					0.1							
Uranium (U)	43					0.5							
Tungsten (W)	0.04					<0.02							
Calculations**													
SO₄ Release Rate	544	200	266	132	164	161	-	-	-	-	-	-	-
Cumulative SO ₄ Release	544	744	1009	1141	1306	1467	-	-	-	-	-	-	-
Ca Release Rate	145	66	72	34	44	41	-	-	-	-	-	-	-
Cumulative Ca Release	145	210	282	316	360	402	-	-	-	-	-	-	-
Mg Release Rate	6.5	2.8	2.9	1.2	1.3	1.2	-	-	-	-	-	-	-
Cumulative Mg Release	6.5	9.2	12.1	13.4	14.7	15.9	-	-	-	-	-	-	-
Residual ANC (%)	99.3	98.9	98.6	98.4	98.2	97.9	-	-	-	-	-	-	-
Residual Sulfur (%)	98.3	97.7	96.9	96.5	96.0	95.5	-	-	-	-	-	-	-
SO₄/(Ca+Mg) molar ratio	1.5	1.2	1.4	1.5	1.5	1.6	-	-	-	-	-	-	-
	< indicates le	ee than the	analytical de	tection limit	t * Acidity a	and alkalinit	v data calc	ulated in ma	CaCO /L				

 1.5
 1.2
 1.4
 1.5
 1.5
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6
 1.6

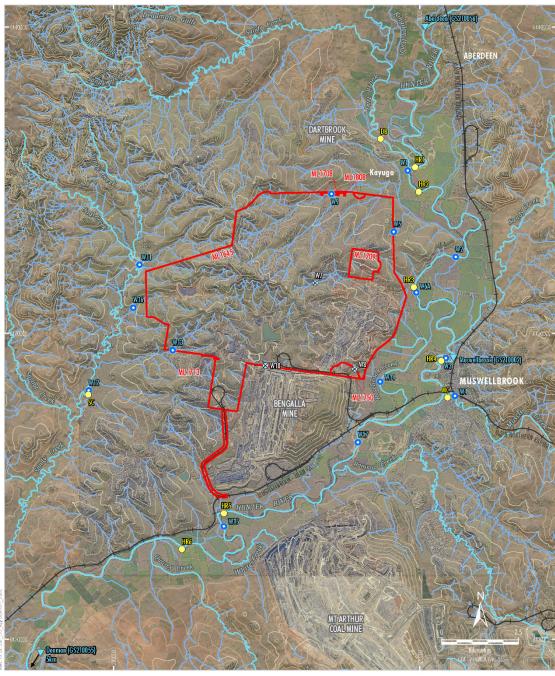
	Reject Sample Number $ ightarrow$	1	2	Madian	1	2	1	2
	ALS Laboratory ID \rightarrow	Coal Reject	Coal Reject	Median Crustal	Coal Reject	Coal Reject	Coal Reject	Coal Reject
	Sample ID $ ightarrow$	MTP/11707	MTP/11708	Abundance	MTP/11707	MTP/11708	MTP/11707	MTP/11708
Parameters	Detection Limit	WITP/11/0/	WITP/11/08	Abunuance	RGS Calcu	lated Value	EGi Calcu	ated Value
Major Elements		All units (%)				Geochemical A	bundance Index	
Aluminium (Al)	0.002	9.4	8.8	7.1	0	0	0	0
Calcium (Ca)	0.001	1.14	1.18	1.5	0	0	0	0
Iron (Fe)	0.01	3.9	3.8	4.0	0	0	0	0
Potassium (K)	0.002	0.98	0.9	1.4	0	0	0	0
Magnesium (Mg)	0.002	0.78	0.8	0.5	0	0	0	0
Sodium (Na)	0.002	0.094	0.1	0.5	0	0	0	0
Sulfur (S)	0.005	1.15	1.08	0.07	3	3	3	3
Silicon (Si)	0.1	19	19	33	0	0	0	0
Minor Elements	/	All units mg/kg				Geochemical A	bundance Index	
Silver (Ag)	0.1	0.4	0.1	0.05	2	0	2	0
Arsenic (As)	1	9	6	6	0	0	2	1
Boron (B)	50	<50	<50	20	<1	<1	<2	<2
Barium (Ba)	0.1	430	380	500	0	0	0	0
Beryllium (Be)	0.1	1.3	1.4	0.3	2	2	0	0
Bismuth (Bi)	0.01	0.52	0.49	0.2	1	1	3	3
Cadmium (Cd)	0.1	0.3	0.3	0.35	0	0	1	1
Cerium (Ce)	0.01	68	62	50	0	0	0	0
Cobalt (Co)	0.1	10	8.4	8	0	0	0	0
Chromium (Cr)	2	16	16	70	0	0	0	0
Copper (Cu)	1	31	28	30	0	0	0	0
Fluorine (F)	50	450	450	200	1	1	0	0
Mercury (Hg)	0.01	0.08	0.02	0.06	0	0	0	0
Manganese (Mn)	1	640	540	1000	0	0	0	0
Molybdenum (Mo)	0.01	2.1	1.8	1.2	0	0	0	0
Nickel (Ni)	1	15	14	50	0	0	0	0
Phosphorus (P)	20	580	540	800	0	0	0	0
Lead (Pb)	2	26	28	35	0	0	0	0
Antimony (Sb)	0.1	0.70	0.65	1.0	0	0	1	1
Selenium (Se)	0.01	0.82	0.64	0.4	0	0	3	3
Tin (Sn)	0.1	8.2	6.8	4.0	0	0	1	1
Strontium (Sr)	0.1	270	285	250	0	0	0	0
Titanium (TI)	0.02	0.84	0.8	0.2	1	1	0	0
Vanadium (V)	0.01	4.2	4.1	90	0	0	0	0
Tungsten (W)	0.1	1.4	1.2	1.5	0	0	0	0
Zinc (Zn)	1.0	76	72	90	0	0	0	0

Table E4: Multi-Element Composition and Geochemical Abundance Index for Reject Samples

Notes: GAI's greater than or equal to 3 are highlighted. 0 = not enriched; 6 = highly enriched,

1. Average Crustal Abundance values sourced from the "GARD Guide", Chapter 5 (INAP, 2009).

1. When no GARD Guide value is available for particular element, then values are taken from Bowen H.J.M.(1979) Environmental Chemistry of the Elements, pages 60-61.



Appendix 2

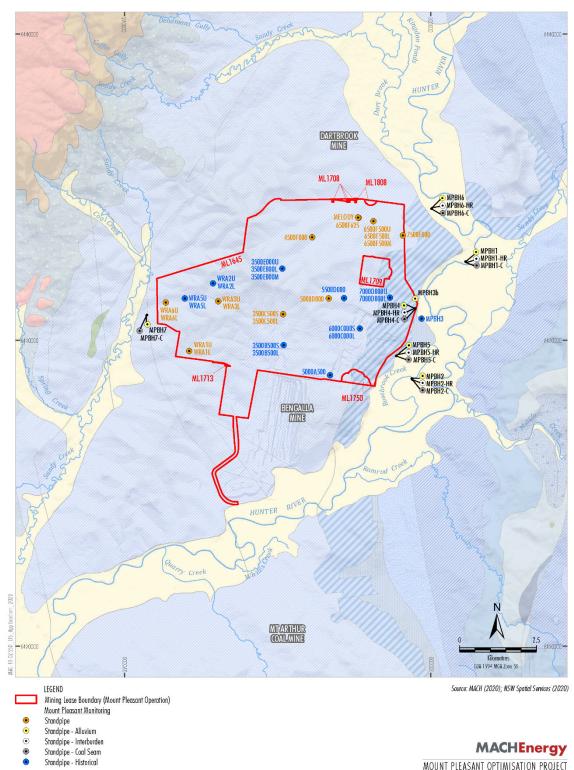
Surface Water and Groundwater Monitoring Locations

Figures E1 and E2

0

LEGEND Mining Lease Boundary (Mount Pleasant Operation) DPI Water Gauging Station Mt Pleasant Monitoring Surface Water Monitoring Site

8 Historical Surface Water Monitoring Site Stream Health Monitoring Site


Source: MACH (2020); BaM Atlas (2019); NSW Spatial Services (2020) Orthophato: MACH (July 2020)

MACHEnergy

MOUNT PLEASANT OPTIMISATION PROJECT Surface Water and Stream Health **Monitoring Locations**

Figure E1

MACHEnergy MOUNT PLEASANT OPTIMISATION PROJECT Groundwater Monitoring Locations

Figure E2

•

MINE WASTE AND WATER MANAGEMENT