

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au 96 Hermitage Road West Ryde NSW 2114 PO Box 472 West Ryde NSW 1685 Phone (02) 9809 0666

Memorandum

То	Atlassian Pty C/- Avenor Pty Ltd	Ltd,	Andrew Kyriacou Allison Mahlberg		cou@avenor.com.au erg@avenor.com.au
From	Huw Smith			Date	15 May 2020
Subject	Interim Data Release: Site Plan, Factual Data and Interpreted Cross-Sections, for a Proposed Commercial Development		Project No.	86767.00	
Site Location	8-10 Lee Street, Haymarket		Document No.	86767.00.C.004.Rev0	

Andrew, Allison,

Further to our recent discussions and correspondence, the first stage of supplementary geotechnical and environmental investigation works was recently completed for the proposed commercial development site at 8-10 Lee Street, Haymarket. Due to access and stakeholder requirements, a second stage of investigation works is to commence within the coming days, after which time the supplementary geotechnical investigation report will be prepared. An interim supplementary site investigation for contamination is also in preparation.

Please find attached to this memorandum the factual data obtained from the recent supplementary site investigations, along with an updated site plan and seven updated geotechnical cross-sections prepared for the site (draft). The geotechnical information is presented in a series of seven interpreted cross-sections, prepared with a focus on the 'Developer Works zone' and the eastern part of the 'State Works – Link Zone'. These will be further updated when the Stage 2 investigations are completed.

Boreholes drilled for the project indicate that fill materials (sand or clay) were present within most of the boreholes drilled within the 'Developer Works zone' (thicker on the Central Station side of the site), and that alluvial soils were encountered in some of the boreholes. A layer of residual clay was also encountered in some boreholes, overlying rock layers interpreted to belong to either the Mittagong Formation or the Hawkesbury Sandstone. Shale was not encountered in the boreholes.

Collection of groundwater level data is currently in progress, with the data downloaded from datalogger instruments (installed within standpipe piezometers) completed regularly in recent weeks, along with rising head testing in Borehole BH103 (screened within sandstone interpreted to belong to the Mittagong Formation), and within Borehole BH104 (screened within sandstone interpreted to belong to the Hawkesbury Sandstone Formation). Monitoring of groundwater level data from three other standpipes installed at the site has been carried out since late July 2019. The results of the groundwater level monitoring results are to be presented under separate cover (i.e. DP Report 86767.00.R.005.Rev0).

Preliminary groundwater level measurements from the standpipe piezometers installed recently indicate that a relatively shallow groundwater table is present within both sandstone units, within the footprint of the proposed basement (ie within the 'Developer Works' zone), and that perched groundwater is present within the overlying alluvial sediments.

Integrated Practical Solutions

Brisbane • Cairns • Canberra • Central Coast • Coffs Harbour • Darwin • Geelong • Gold Coast • Macarthur • Melbourne Newcastle • North West Sydney • Perth • Port Macquarie • Sunshine Coast • Sydney • Townsville • Wollongong

Page 2 of 2

Feel free to contact me if you require additional information, ahead of the finalised supplementary geotechnical investigation report.

Douglas Partners Pty Ltd

Huw Smith

Associate

Reviewed By

Brendan O'Kane Senior Associate

Limitations

Douglas Partners (DP) has prepared this interim factual data release for this project at 8-10 Lee Street, Haymarket in general accordance with DP's proposal SYD190190.P.003.Rev4 dated 4 February 2020 and the consultancy agreement dated 11 June 2019. This interim factual data release is provided for the exclusive use of Atlassian Pty Ltd or their agents for this project only and for a planning proposal submission. It should not be used by or be relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage.

The attached results are indicative of the sub-surface conditions on the site only at the specific sampling and/or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after DP's field testing has been completed.

DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this memorandum.

Elements or sections from this memorandum should not be used as part of a specification for a project, without review and agreement by DP.

Attachments: Test Location Plan Site Photographs Interpreted Geotechnical Cross-Sections (Draft) Borehole Logs and Core Photographs Site Photographs during drilling from Boreholes BH101 and BH105 Groundwater Level field sheets Groundwater Rising Head Test results Laboratory Test Report

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report; and
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

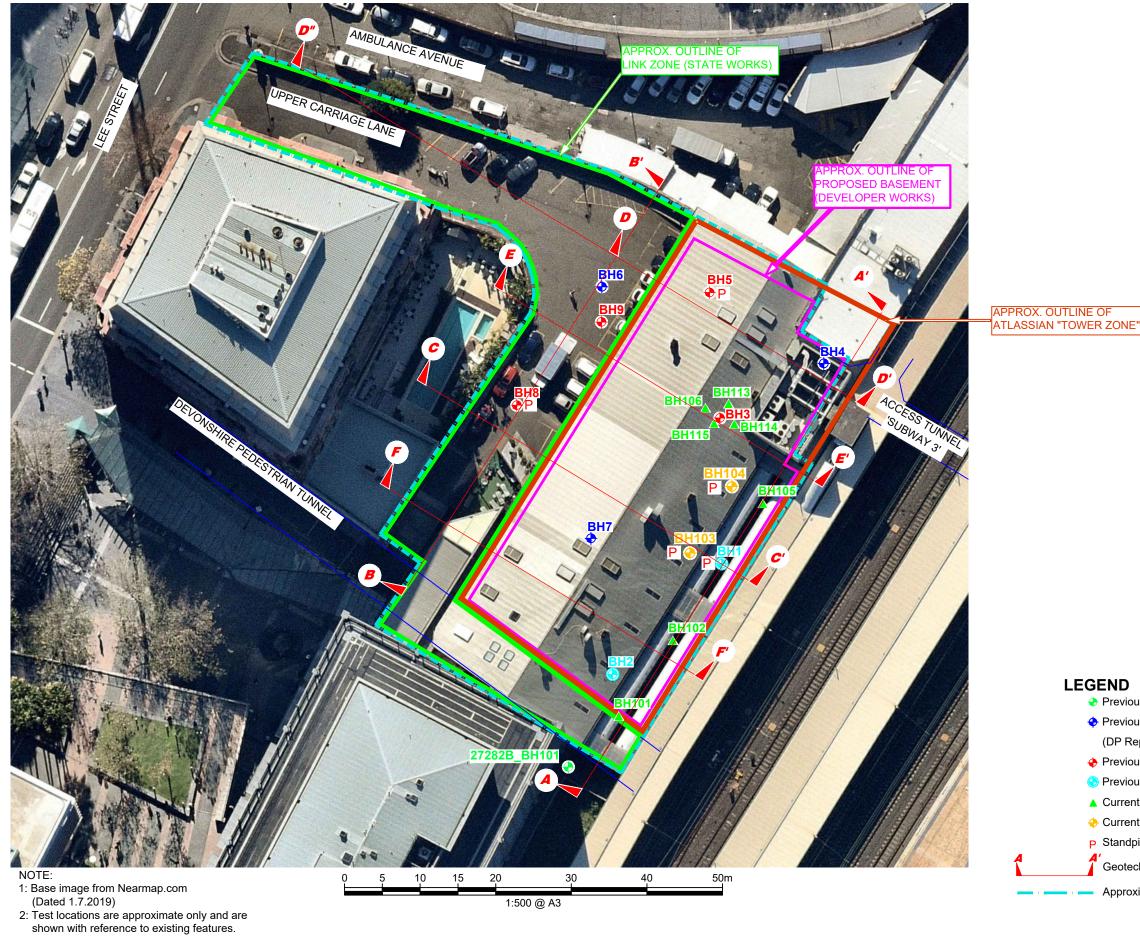
Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on borehole or pit spacing and sampling frequency;
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

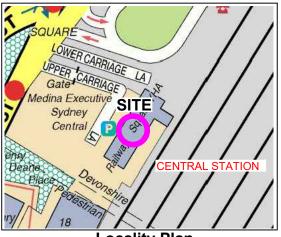

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.



3. Approximate Development Outlines are as provided by Avenor Pty Ltd on 12 August 2019.

	CLIENT: Atlassian Pty Ltd		
OFFICE: Sydney		DRAWN BY: HDS	
	SCALE: 1:500 @ A3	DATE: 15.05.2020	

TITLE: Test Location Plan Proposed Commercial Development 8-10 Lee Street, HAYMARKET

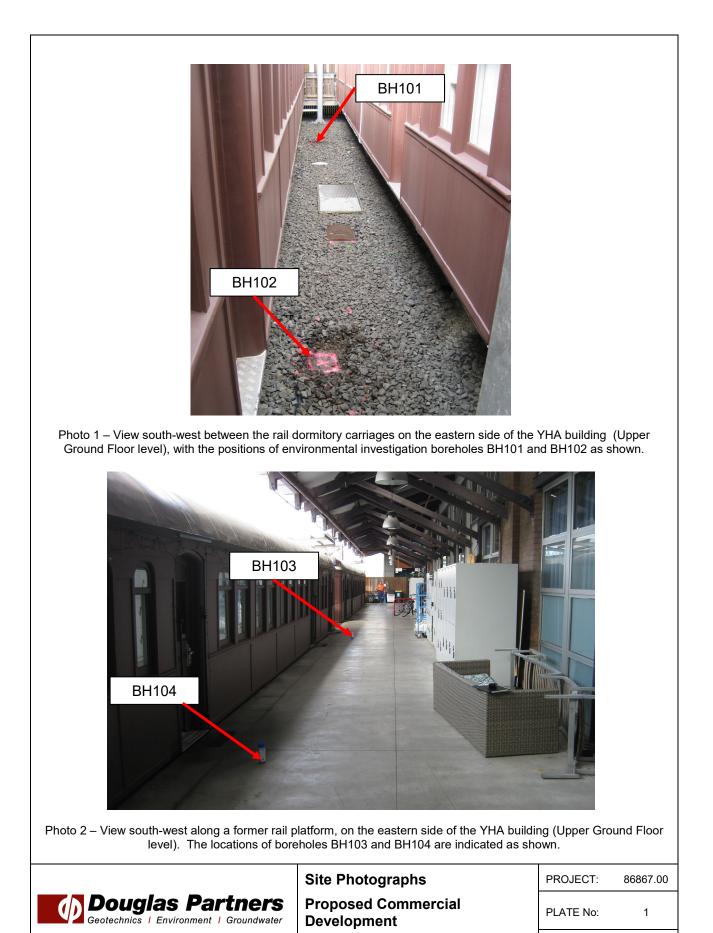
Locality Plan

 Previous geotechnical borehole (DP Project 27282B, dated 1999)
 Previous environmental borehole at Lower Ground Floor level (DP Report 86767.01, dated 2019)

Previous geotechnical & environmental borehole - Lower Ground Floor
 Previous geotechnical & environmental borehole - Upper Ground Floor
 Current environmental borehole at Lower Ground Floor level

Current geotechnical & environmental borehole - Upper Ground Floor
 P Standpipe piezometer

Geotechnical Cross Section A-A'


Approximate site boundary

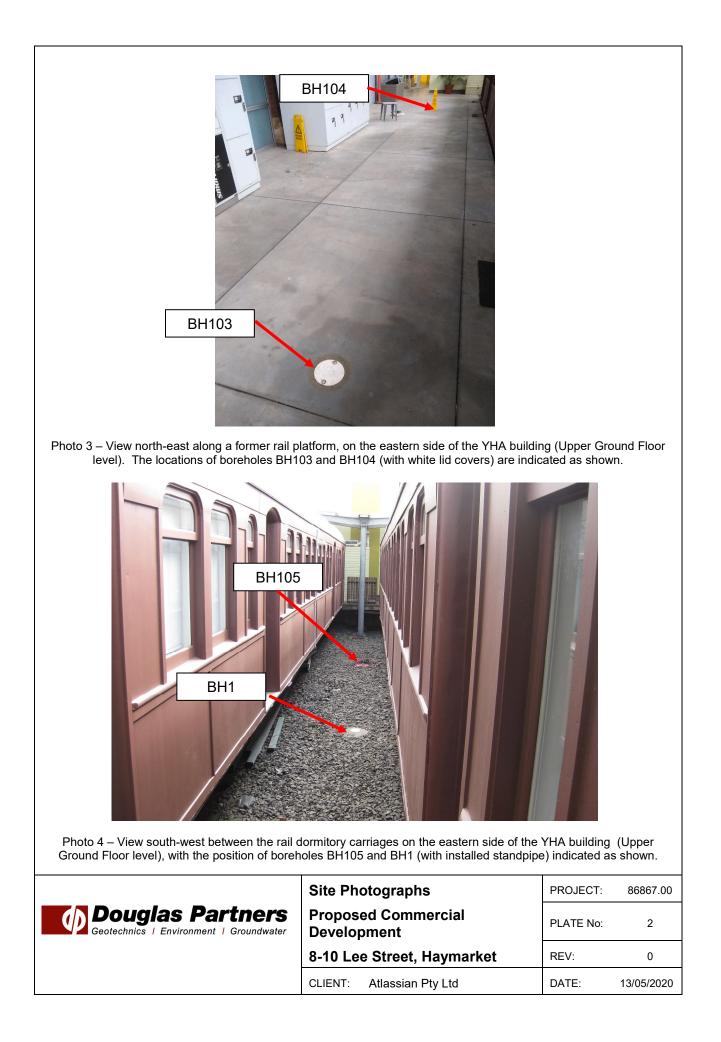
PROJECT No: 86767.00
DRAWING No: 1

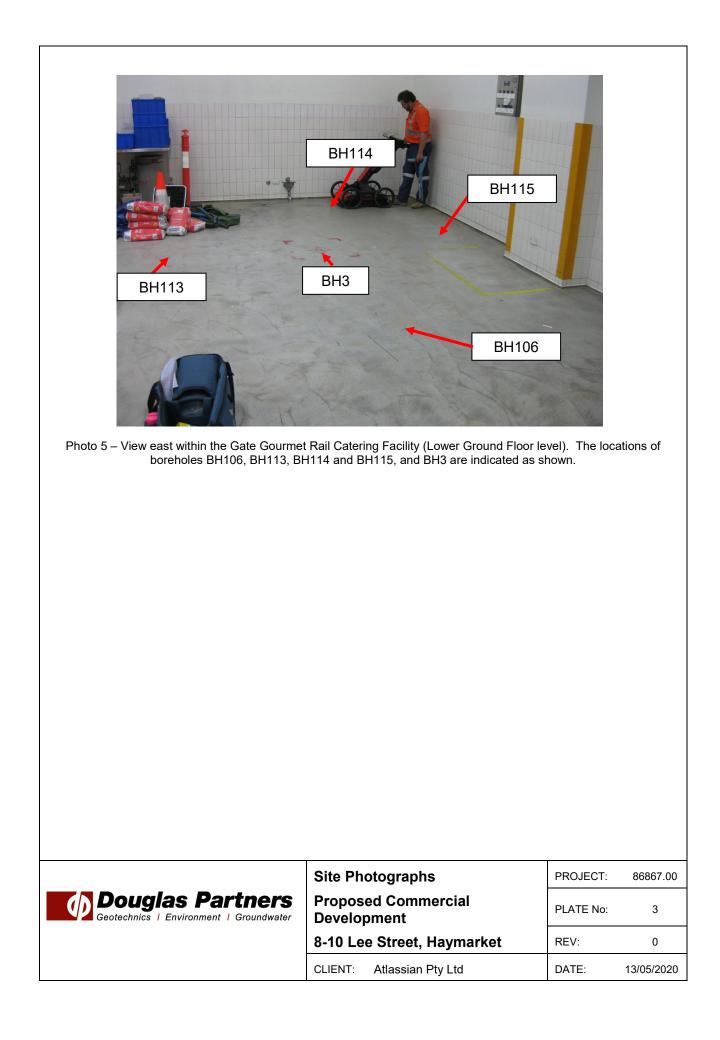
7

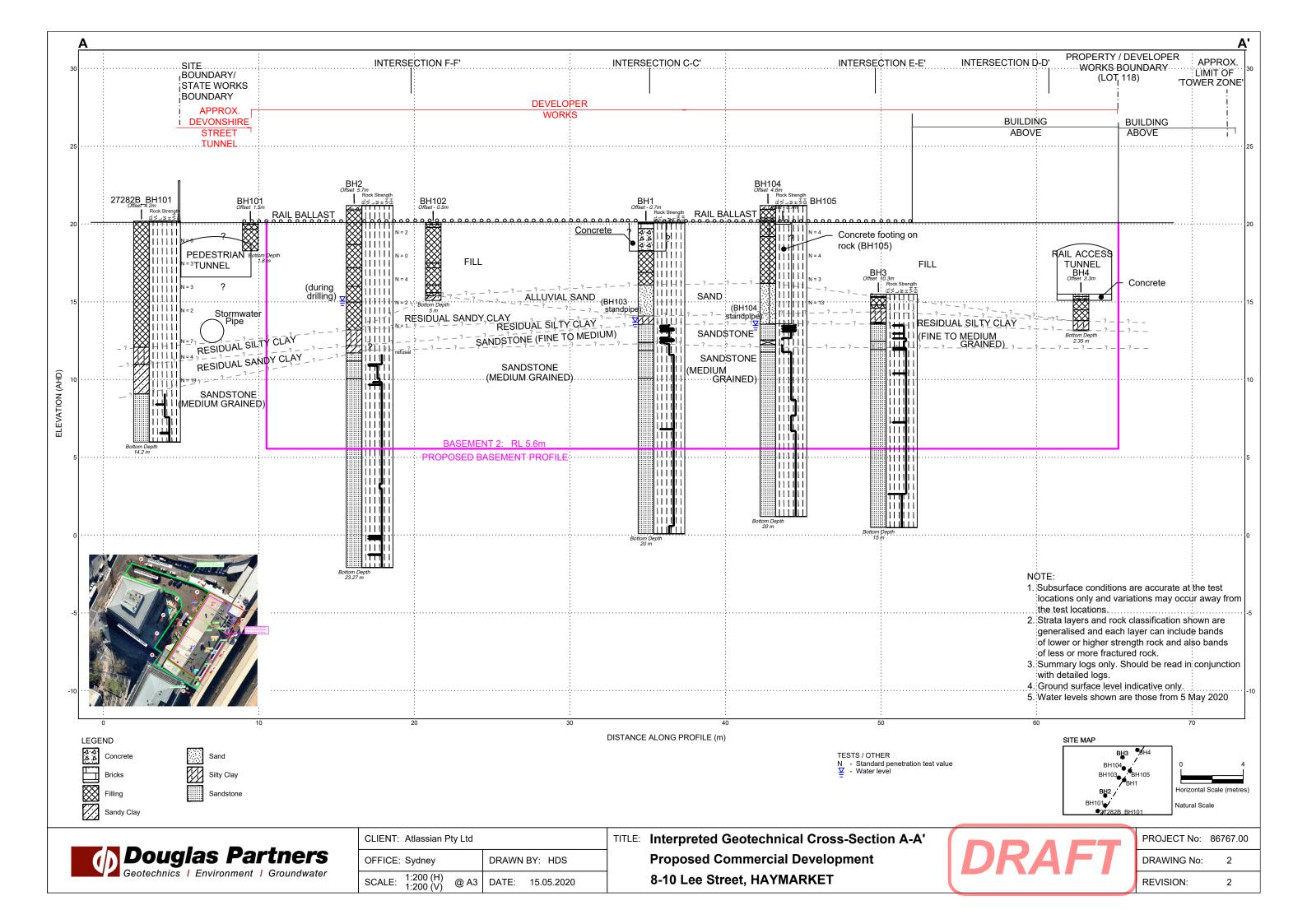
REVISION:

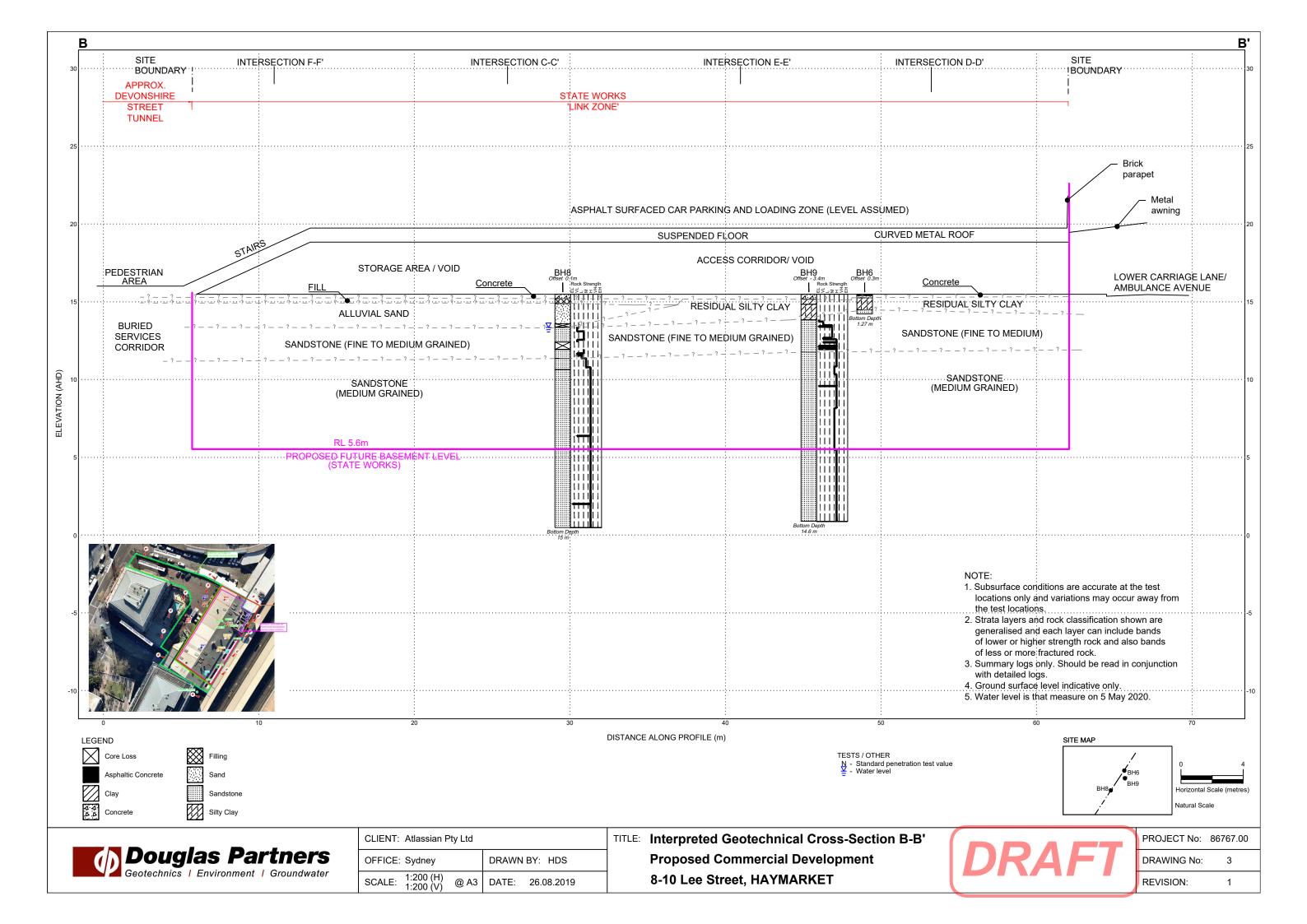
8-10 Lee Street, Haymarket

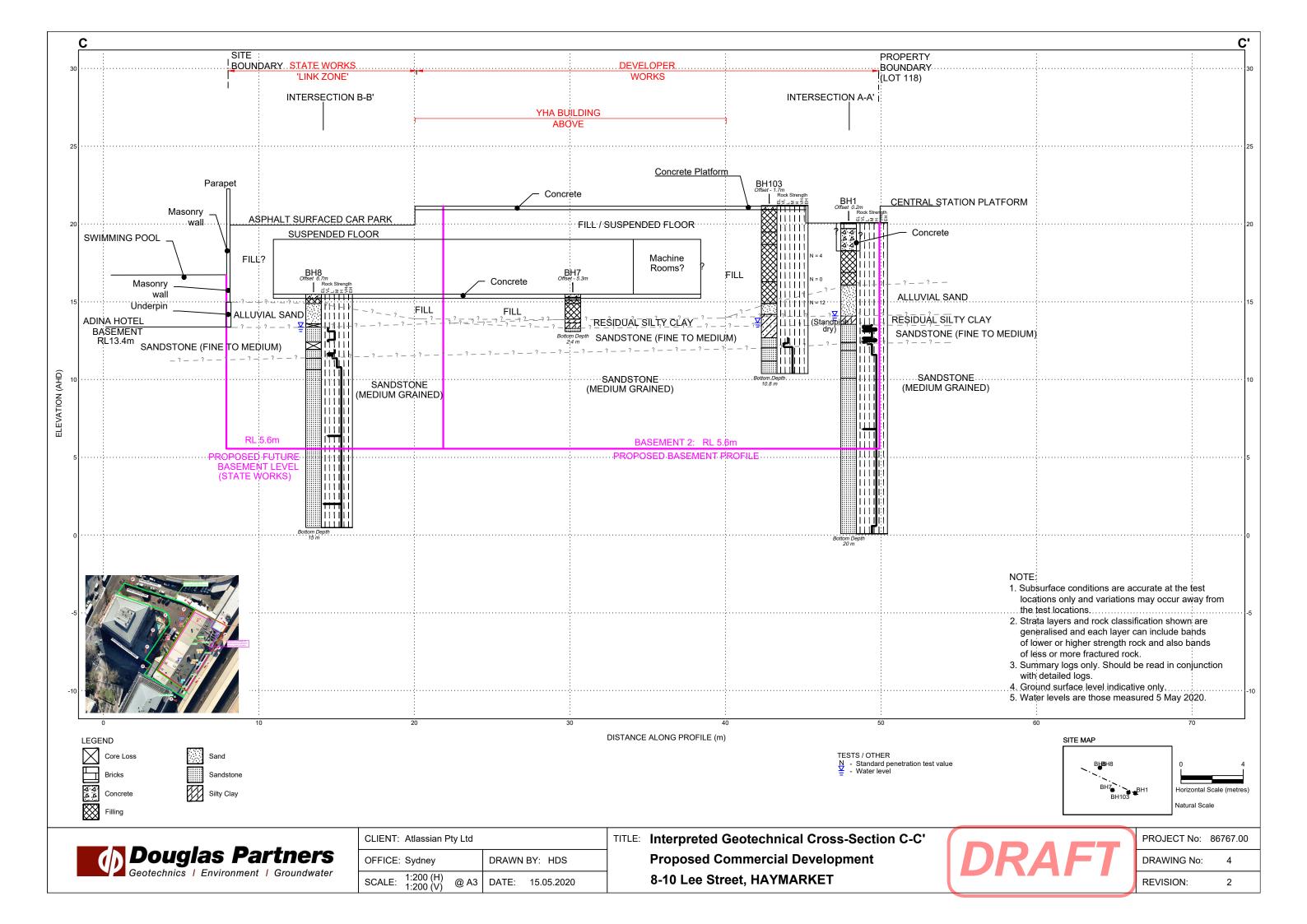
Atlassian Pty Ltd

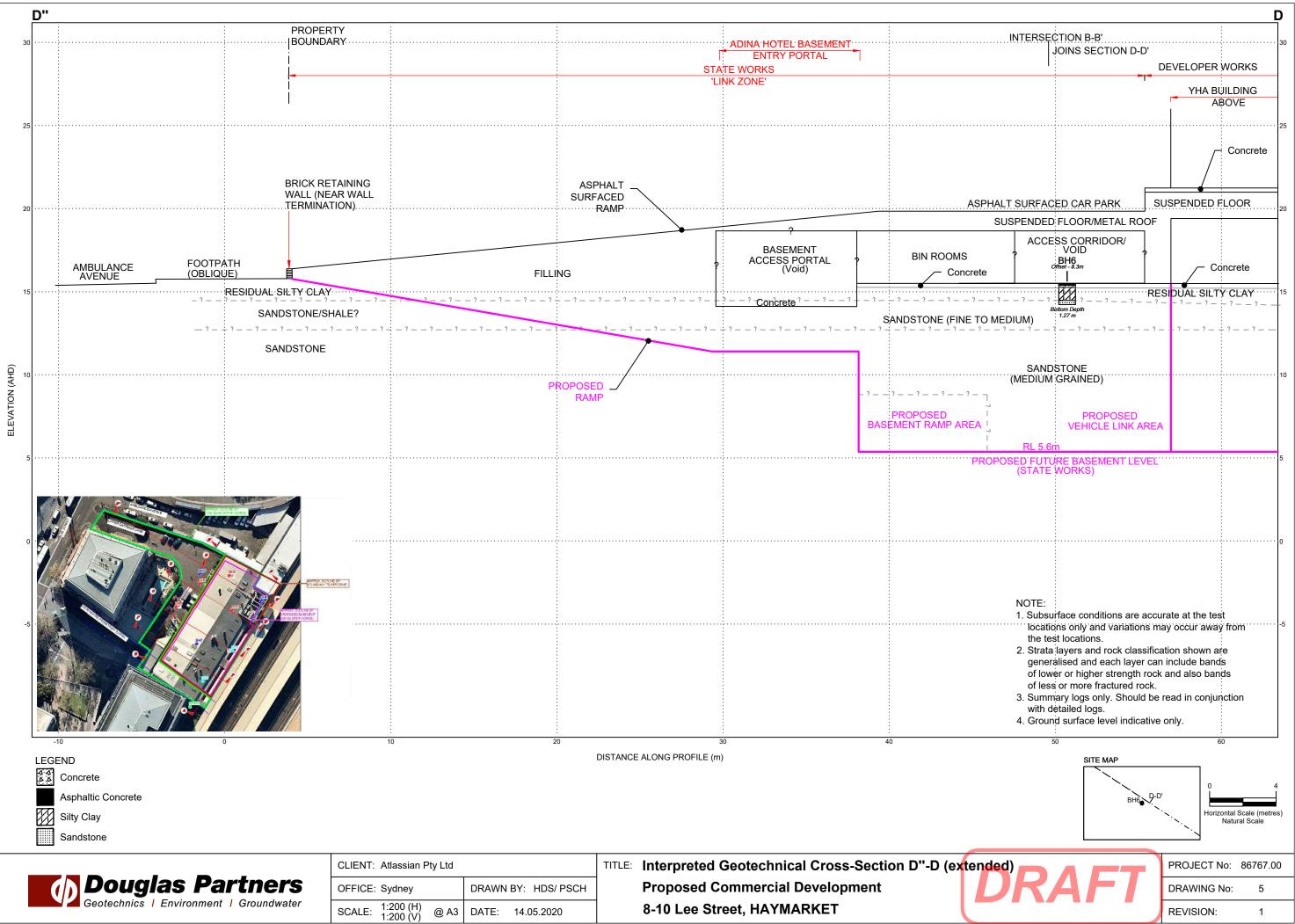

CLIENT:

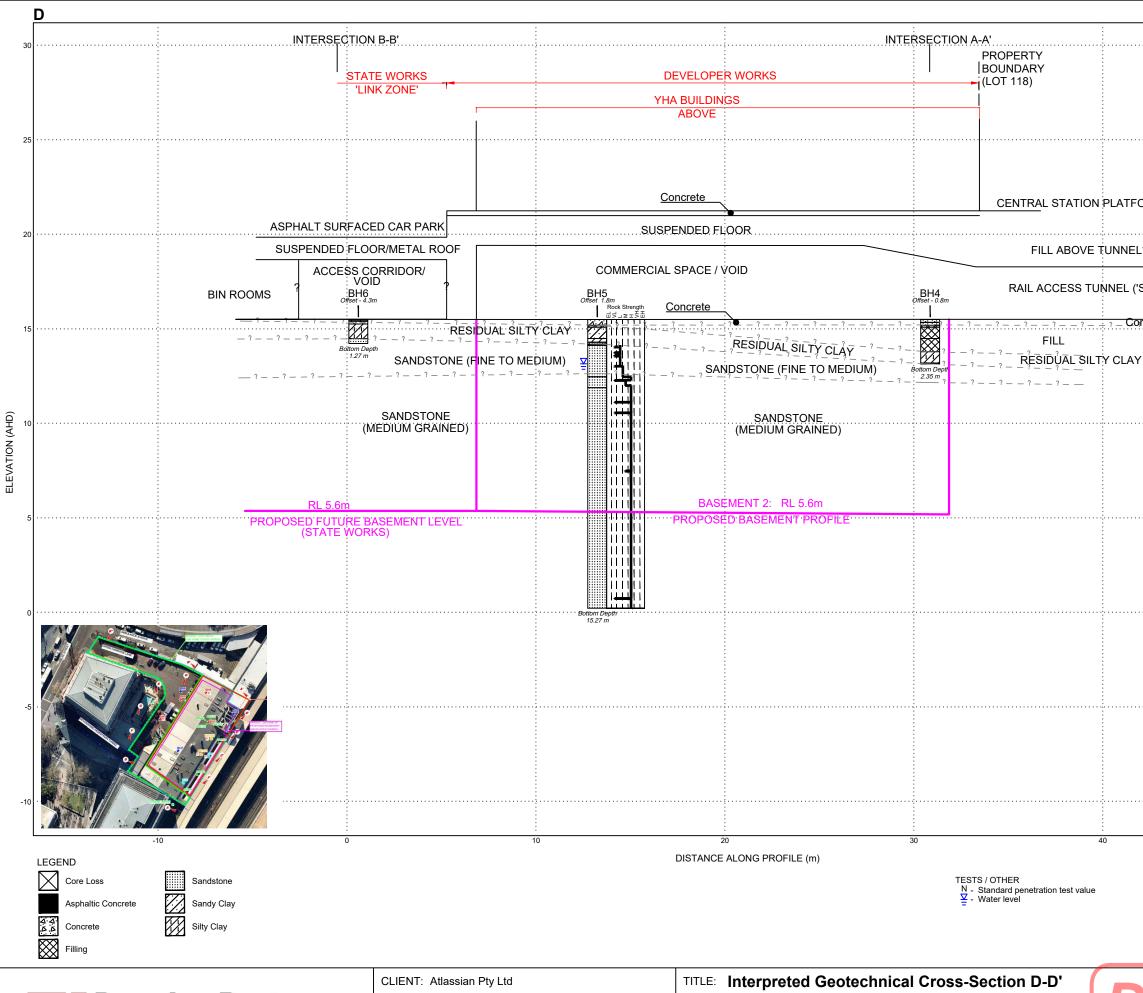

REV:


DATE:


0

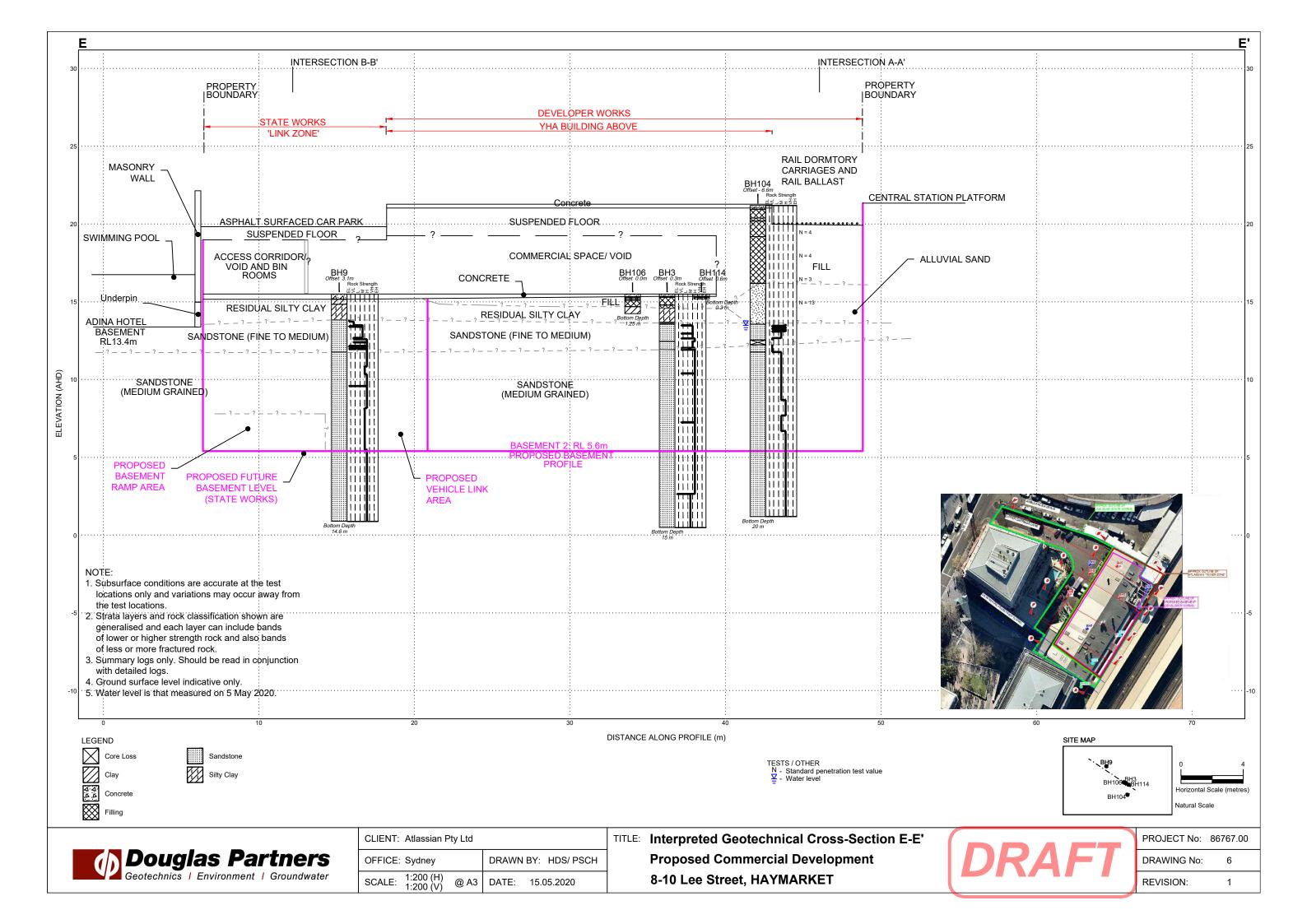

13/05/2020

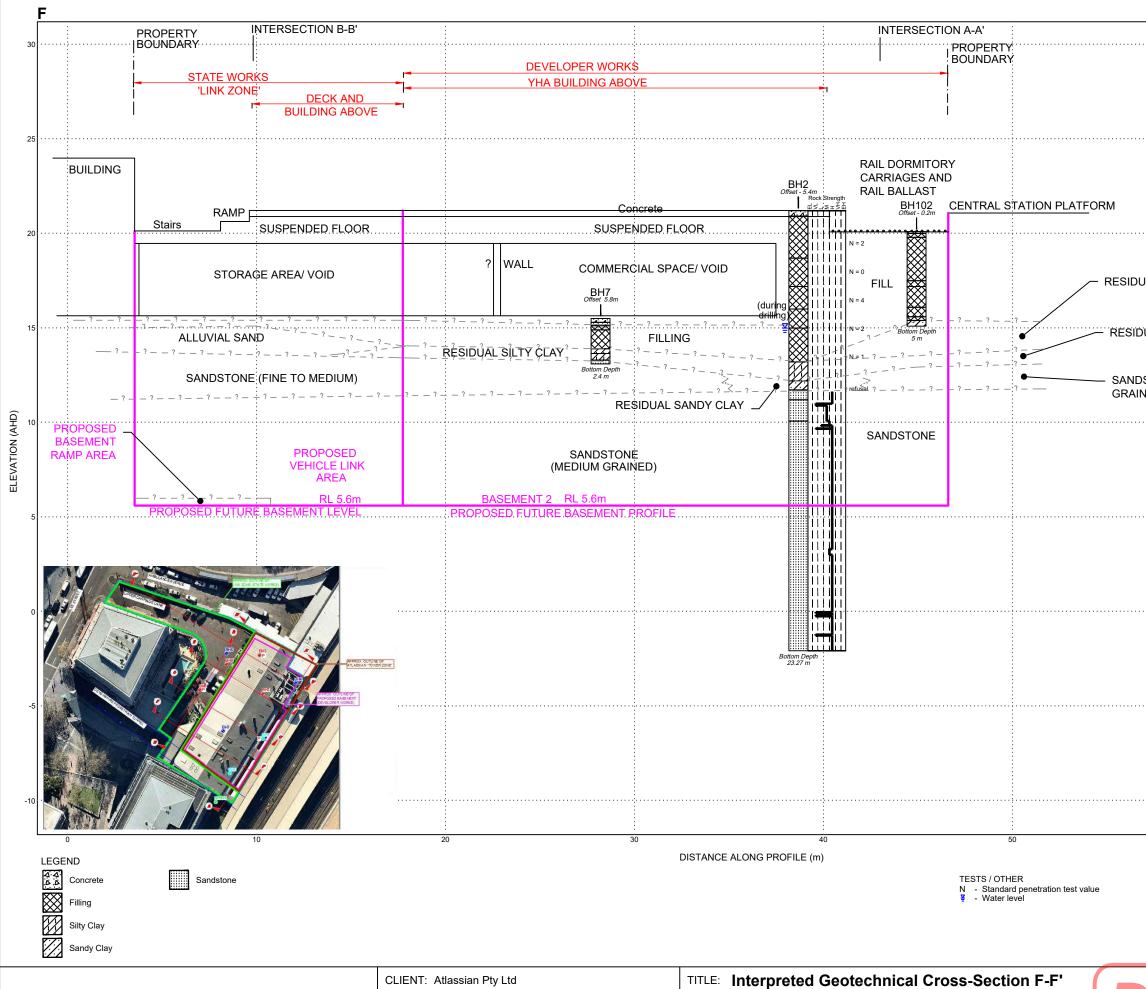




()	Douglas Partners Geotechnics Environment Groundwater
NP NP	Geotechnics Environment Groundwater

CLIENT: Atlassian Pty Ltd				
OFFICE: Sydney	DRAWN BY: HDS/ PSCH			
SCALE: 1:200 (H) 1:200 (V) @ A3	DATE: 14.05.2020			




Douglas Partners Geotechnics Environment Groundwater	
Geotechnics Environment Groundwater	

CLIENT: Atlassian Pty Ltd		
OFFICE: Sydney	DRAWN BY: HDS	
SCALE: 1:200 (H) @ A3	DATE: 15.05.2020	

Interpreted Geotechnical Cross-Section D-Proposed Commercial Development 8-10 Lee Street, HAYMARKET

					<u>D</u> '
		•			
		• • • •			
		•			
		•			
ORM		- - - -			
_?		•			
		•			
SUBWAY 3')		•			
ncrete ?					
		• • • •			
, ,		•			
		•			
		• • •			
		•			
		•			
					5
		•			
		•			
		• • •			
					0
NOTE:		•			
1. Subsurface cor locations only a		•			
the test location	ns.	-		-	
2. Strata layers an generalised an	d each layer	can ir	hclude ba	ands	-5
of lower or high of less or more			nd also b	ands	
Summary logs with detailed lo		be re	ad in cor	njunction	
4. Ground surface 5. Water level is t	e level indica			20	
6. Internal wall an					-10
	F	0			
	SITE MAP				
				0	4
	BH6	3H5	и		
			5		cale (metres)
				Natural Scale	5
			PROJE	CT No: 8	86767.00
IRΔ	-		DRAW	NG No:	5A
			REVISI	ON:	2

Douglas Partners Geotechnics | Environment | Groundwater
 OFFICE:
 Sydney
 DRAWN BY:
 HDS
 Pro

 SCALE:
 1:200 (V)
 @ A3
 DATE:
 14.05.2020
 8-10

Interpreted Geotechnical Cross-Section F-Proposed Commercial Development 8-10 Lee Street, HAYMARKET

			F'
JAL SANDY CLAY			
UAL SILTY CLAY			
STONE (FINE ANI	D MEDIUM		
NED)	-		
· · · · · · · · · · · · · · · · · · ·			
			5
			0
NOTĖ:			
	e conditions are a		
	only and variations	s may occur a	way from -5
the test lo 2 Strata lay	ers and rock class	ification show	h are
	ed and each layer		
	or higher strength r		
	more fractured roo		
3. Summary with detai	logs only. Should	be read in col	-10
	urface level indicat	ive only.	
		-	
60		7	0
	SITE MAP		
	B <u>H</u> 7	0	4
	BH2 BH1	02	
		Horiz	ontal Scale (metres)
		Natur	al Scale
		PROJECT	lo: 86767.00
KA		DRAWING N	No: 7
		REVISION:	1

Sampling

Sampling is carried out during drilling or test pitting to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thinwalled sample tube into the soil and withdrawing it to obtain a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Test Pits

Test pits are usually excavated with a backhoe or an excavator, allowing close examination of the insitu soil if it is safe to enter into the pit. The depth of excavation is limited to about 3 m for a backhoe and up to 6 m for a large excavator. A potential disadvantage of this investigation method is the larger area of disturbance to the site.

Large Diameter Augers

Boreholes can be drilled using a rotating plate or short spiral auger, generally 300 mm or larger in diameter commonly mounted on a standard piling rig. The cuttings are returned to the surface at intervals (generally not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube samples.

Continuous Spiral Flight Augers

The borehole is advanced using 90-115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow sampling or in-situ testing. This is a relatively economical means of drilling in clays and sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are disturbed and may be mixed with soils from the sides of the hole. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively low reliability, due to the remoulding, possible mixing or softening of samples by groundwater.

Non-core Rotary Drilling

The borehole is advanced using a rotary bit, with water or drilling mud being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from the rate of penetration. Where drilling mud is used this can mask the cuttings and reliable identification is only possible from separate sampling such as SPTs.

Continuous Core Drilling

A continuous core sample can be obtained using a diamond tipped core barrel, usually with a 50 mm internal diameter. Provided full core recovery is achieved (which is not always possible in weak rocks and granular soils), this technique provides a very reliable method of investigation.

Standard Penetration Tests

Standard penetration tests (SPT) are used as a means of estimating the density or strength of soils and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, Methods of Testing Soils for Engineering Purposes - Test 6.3.1.

The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300 mm. In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form.

 In the case where full penetration is obtained with successive blow counts for each 150 mm of, say, 4, 6 and 7 as:

4,6,7 N=13

In the case where the test is discontinued before the full penetration depth, say after 15 blows for the first 150 mm and 30 blows for the next 40 mm as:

15, 30/40 mm

Sampling Methods

The results of the SPT tests can be related empirically to the engineering properties of the soils.

Dynamic Cone Penetrometer Tests / Perth Sand Penetrometer Tests

Dynamic penetrometer tests (DCP or PSP) are carried out by driving a steel rod into the ground using a standard weight of hammer falling a specified distance. As the rod penetrates the soil the number of blows required to penetrate each successive 150 mm depth are recorded. Normally there is a depth limitation of 1.2 m, but this may be extended in certain conditions by the use of extension rods. Two types of penetrometer are commonly used.

- Perth sand penetrometer a 16 mm diameter flat ended rod is driven using a 9 kg hammer dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the density of sands and is mainly used in granular soils and filling.
- Cone penetrometer a 16 mm diameter rod with a 20 mm diameter cone end is driven using a 9 kg hammer dropping 510 mm (AS 1289, Test 6.3.2). This test was developed initially for pavement subgrade investigations, and correlations of the test results with California Bearing Ratio have been published by various road authorities.

Soil Descriptions

Description and Classification Methods

The methods of description and classification of soils and rocks used in this report are generally based on Australian Standard AS1726:2017, Geotechnical Site Investigations. In general, the descriptions include strength or density, colour, structure, soil or rock type and inclusions.

Soil Types

Soil types are described according to the predominant particle size, qualified by the grading of other particles present:

Туре	Particle size (mm)	
Boulder	>200	
Cobble	63 - 200	
Gravel	2.36 - 63	
Sand	0.075 - 2.36	
Silt	0.002 - 0.075	
Clay	<0.002	

The sand and gravel sizes can be further subdivided as follows:

Туре	Particle size (mm)	
Coarse gravel	19 - 63	
Medium gravel	6.7 - 19	
Fine gravel	2.36 - 6.7	
Coarse sand	0.6 - 2.36	
Medium sand	0.21 - 0.6	
Fine sand	0.075 - 0.21	

Definitions of grading terms used are:

- Well graded a good representation of all particle sizes
- Poorly graded an excess or deficiency of particular sizes within the specified range
- Uniformly graded an excess of a particular particle size
- Gap graded a deficiency of a particular particle size with the range

The proportions of secondary constituents of soils are described as follows:

In fine grained soils	(>35% fines)
-----------------------	--------------

Term	Proportion	Example
	of sand or	
	gravel	
And	Specify	Clay (60%) and
		Sand (40%)
Adjective	>30%	Sandy Clay
With	15 – 30%	Clay with sand
Trace	0 - 15%	Clay with trace
		sand

In coarse grained soils (>65% coarse)

with	clays	or	silts	

Term	Proportion of fines	Example
And	Specify	Sand (70%) and Clay (30%)
Adjective	>12%	Clayey Sand
With	5 - 12%	Sand with clay
Trace	0 - 5%	Sand with trace
		clay

In coarse grained soils (>65% coarse)
 with coarser fraction

Term	Proportion	Example
	of coarser	
	fraction	
And	Specify	Sand (60%) and
		Gravel (40%)
Adjective	>30%	Gravelly Sand
With	15 - 30%	Sand with gravel
Trace	0 - 15%	Sand with trace
		gravel

The presence of cobbles and boulders shall be specifically noted by beginning the description with 'Mix of Soil and Cobbles/Boulders' with the word order indicating the dominant first and the proportion of cobbles and boulders described together.

Soil Descriptions

Cohesive Soils

Cohesive soils, such as clays, are classified on the basis of undrained shear strength. The strength may be measured by laboratory testing, or estimated by field tests or engineering examination. The strength terms are defined as follows:

Description	Abbreviation	Undrained shear strength (kPa)
Very soft	VS	<12
Soft	S	12 - 25
Firm	F	25 - 50
Stiff	St	50 - 100
Very stiff	VSt	100 - 200
Hard	Н	>200
Friable	Fr	-

Cohesionless Soils

Cohesionless soils, such as clean sands, are classified on the basis of relative density, generally from the results of standard penetration tests (SPT), cone penetration tests (CPT) or dynamic penetrometers (PSP). The relative density terms are given below:

Relative Density	Abbreviation	Density Index (%)
Very loose	VL	<15
Loose	L	15-35
Medium dense	MD	35-65
Dense	D	65-85
Very dense	VD	>85

Soil Origin

It is often difficult to accurately determine the origin of a soil. Soils can generally be classified as:

- Residual soil derived from in-situ weathering of the underlying rock;
- Extremely weathered material formed from in-situ weathering of geological formations. Has soil strength but retains the structure or fabric of the parent rock;
- Alluvial soil deposited by streams and rivers;

- Estuarine soil deposited in coastal estuaries;
- Marine soil deposited in a marine environment;
- Lacustrine soil deposited in freshwater lakes;
- Aeolian soil carried and deposited by wind;
- Colluvial soil soil and rock debris transported down slopes by gravity;
- Topsoil mantle of surface soil, often with high levels of organic material.
- Fill any material which has been moved by man.

Moisture Condition – Coarse Grained Soils For coarse grained soils the moisture condition

should be described by appearance and feel using the following terms:

- Dry (D) Non-cohesive and free-running.
- Moist (M) Soil feels cool, darkened in colour.

Soil tends to stick together. Sand forms weak ball but breaks easily.

Wet (W) Soil feels cool, darkened in colour.

Soil tends to stick together, free water forms when handling.

Moisture Condition – Fine Grained Soils

For fine grained soils the assessment of moisture content is relative to their plastic limit or liquid limit, as follows:

- 'Moist, dry of plastic limit' or 'w <PL' (i.e. hard and friable or powdery).
- 'Moist, near plastic limit' or 'w ≈ PL (i.e. soil can be moulded at moisture content approximately equal to the plastic limit).
- 'Moist, wet of plastic limit' or 'w >PL' (i.e. soils usually weakened and free water forms on the hands when handling).
- 'Wet' or 'w ≈LL' (i.e. near the liquid limit).
- 'Wet' or 'w >LL' (i.e. wet of the liquid limit).

Rock Descriptions

Rock Strength

Rock strength is defined by the Unconfined Compressive Strength and it refers to the strength of the rock substance and not the strength of the overall rock mass, which may be considerably weaker due to defects.

The Point Load Strength Index $Is_{(50)}$ is commonly used to provide an estimate of the rock strength and site specific correlations should be developed to allow UCS values to be determined. The point load strength test procedure is described by Australian Standard AS4133.4.1-2007. The terms used to describe rock strength are as follows:

Strength Term	Abbreviation	Unconfined Compressive Strength MPa	Point Load Index * Is ₍₅₀₎ MPa
Very low	VL	0.6 - 2	0.03 - 0.1
Low	L	2 - 6	0.1 - 0.3
Medium	М	6 - 20	0.3 - 1.0
High	Н	20 - 60	1 - 3
Very high	VH	60 - 200	3 - 10
Extremely high	EH	>200	>10

* Assumes a ratio of 20:1 for UCS to $Is_{(50)}$. It should be noted that the UCS to $Is_{(50)}$ ratio varies significantly for different rock types and specific ratios should be determined for each site.

Degree of Weathering

The degree of weathering of rock is classified as follows:

Term	Abbreviation	Description
Residual Soil	RS	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.
Extremely weathered	XW	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible
Highly weathered	HW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.
Moderately weathered	MW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.
Slightly weathered	SW	Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.
Fresh	FR	No signs of decomposition or staining.
Note: If HW and MW of	cannot be differentia	ted use DW (see below)
Distinctly weathered	DW	Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching or may be decreased due to deposition of weathered products in pores.

Rock Descriptions

Degree of Fracturing

The following classification applies to the spacing of natural fractures in diamond drill cores. It includes bedding plane partings, joints and other defects, but excludes drilling breaks.

Term	Description
Fragmented	Fragments of <20 mm
Highly Fractured	Core lengths of 20-40 mm with occasional fragments
Fractured	Core lengths of 30-100 mm with occasional shorter and longer sections
Slightly Fractured	Core lengths of 300 mm or longer with occasional sections of 100-300 mm
Unbroken	Core contains very few fractures

Rock Quality Designation

The quality of the cored rock can be measured using the Rock Quality Designation (RQD) index, defined as:

RQD % = <u>cumulative length of 'sound' core sections ≥ 100 mm long</u> total drilled length of section being assessed

where 'sound' rock is assessed to be rock of low strength or stronger. The RQD applies only to natural fractures. If the core is broken by drilling or handling (i.e. drilling breaks) then the broken pieces are fitted back together and are not included in the calculation of RQD.

Stratification Spacing

For sedimentary rocks the following terms may be used to describe the spacing of bedding partings:

Term	Separation of Stratification Planes	
Thinly laminated	< 6 mm	
Laminated	6 mm to 20 mm	
Very thinly bedded	20 mm to 60 mm	
Thinly bedded	60 mm to 0.2 m	
Medium bedded	0.2 m to 0.6 m	
Thickly bedded	0.6 m to 2 m	
Very thickly bedded	> 2 m	

Symbols & Abbreviations

Introduction

These notes summarise abbreviations commonly used on borehole logs and test pit reports.

Drilling or Excavation Methods

С	Core drilling
R	Rotary drilling
SFA	Spiral flight augers
NMLC	Diamond core - 52 mm dia
NQ	Diamond core - 47 mm dia
HQ	Diamond core - 63 mm dia
PQ	Diamond core - 81 mm dia

Water

\triangleright	Water seep
\bigtriangledown	Water level

Sampling and Testing

- A Auger sample
- B Bulk sample
- D Disturbed sample
- E Environmental sample
- U₅₀ Undisturbed tube sample (50mm)
- W Water sample
- pp Pocket penetrometer (kPa)
- PID Photo ionisation detector
- PL Point load strength Is(50) MPa
- S Standard Penetration Test V Shear vane (kPa)

Description of Defects in Rock

The abbreviated descriptions of the defects should be in the following order: Depth, Type, Orientation, Coating, Shape, Roughness and Other. Drilling and handling breaks are not usually included on the logs.

Defect Type

Bedding plane
Clay seam
Cleavage
Crushed zone
Decomposed seam
Fault
Joint
Lamination
Parting
Sheared Zone
Vein

Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

- h horizontal
- v vertical
- sh sub-horizontal

art

sv sub-vertical

Coating or Infilling Term

clean
coating
healed
infilled
stained
tight
veneer

Coating Descriptor

ca	calcite
cbs	carbonaceous
cly	clay
fe	iron oxide
mn	manganese
slt	silty

Shape

cu	curved
ir	irregular
pl	planar
st	stepped
un	undulating

Roughness

ро	polished
ro	rough
sl	slickensided
sm	smooth
vr	very rough

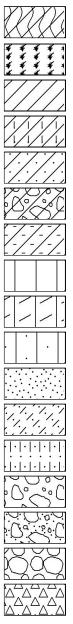
Other

fg	fragmented
bnd	band
qtz	quartz

Symbols & Abbreviations

Graphic Symbols for Soil and Rock

General


A. A. A. Z	

Asphalt Road base

Concrete

Filling

Soils

Topsoil

Peat

Clay

Silty clay

Sandy clay

Gravelly clay

Shaly clay

Silt

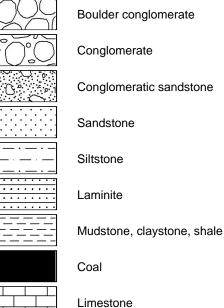
Clayey silt

Sandy silt

Sand

Clayey sand

Silty sand


Gravel

Sandy gravel

Cobbles, boulders

Talus

Sedimentary Rocks

Metamorphic Rocks

Slate, phyllite, schist

Quartzite

Gneiss

Igneous Rocks

Granite

Dolerite, basalt, andesite

Dacite, epidote

Tuff, breccia

Porphyry

SURFACE LEVEL: 20.1 AHD **EASTING:** 333968 NORTHING: 6249242 **DIP/AZIMUTH:** 90°/--

BORE No: BH101 **PROJECT No: 86767.03** DATE: 8/4/2020 SHEET 1 OF 1

		Description	. <u>0</u>		Sam	pling	& In Situ Testing	L	Well			
Ч	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction			
		Strata	0	тy	De	San	Comments	_	Details			
-8	- 0.1	FILL/ BALLAST FILL/ Silty CLAY: medium plasticity, pale brown and grey,	\bigotimes	A	0.1				-			
ŀ	-	with fine angular sandstone gravel, trace brick and organic	\bigotimes		0.2				-			
ţ	- 0.4	fragments, moist, generally in a loose condition	\bigotimes									
ŀ	-	FILL/ SAND and GRAVEL: fine to medium sand, pale grey, fine to coarse angular sandstone cobbles, gravel	\bigotimes	A	0.5				-			
ł	-	and bricks, moist, generally in a dense condition	\bigotimes	~	0.6				-			
Ē	-		\bigotimes									
ŀ	-		\bigotimes	•	0.9				-			
ŀ	-1		\bigotimes	A	1.0				-1			
-6	-		\bigotimes									
ŀ	-		\bigotimes						-			
ł	-		\bigotimes	A	1.4				-			
t	-		\bigotimes		1.5							
Į.	-		\bigotimes						-			
ŀ	- 1.8	Bore discontinued at 1.8m	KXX									
ŀ	-2	- Target depth reached							-2			
_∞	- 2											
ŀ	-								-			
t	-											
ŀ	-								-			
ŀ	-								-			
t	-											
[-											
ŀ	-3								-3			
4	-											
ŀ	-								-			
ŀ	-								-			
t	-											
ŀ	-								-			
ŀ	-											
t	- 4								- 4			
16	-								-			
ŀ	-								-			
t	-											
ŀ	-								-			
ŀ	-								-			
ţ	-											
ŀ	-											
L		1										
	G: Han	5		LOG	GED	NB	CASING	6: N	A			
		BORING: Hand auger and crowbar to 1.8m DBSERVATIONS: No free groundwater observed during drill	lina					F	RAFT			
		S: Location coordinates are in MGA94 Zone 56.										
		SAMPLING & IN SITU TESTING LEGEND										
A B BL	Augers Bulksa K Blocks	ample G Gas sample PID Photo ionisation detecto mple P Piston sample PL(A) Point load axial test Is(5	or (ppm) 0) (MPa) t Is(50) (M	Pa			Doual	2	s Partnors			
CD	Core dr Disturb	illing W Water sample pp Pocket penetrometer (kl ed sample ▷ Water seep S Standard penetration tes	Pa)			9	Geotochnics	đ	J F al LICIJ			
E	Environ	Auger sample G Gas sample FID Proto ionstation detector (ppm) Bulk sample P Piston sample PL(A) Point load axial test (s(50) (MPa) SLK Block sample U Tube sample (x mm dia.) PL(D) Point load axial test (s(50) (MPa) Core drilling W Water sample p Pocket penetrometer (kPa) Disturbed sample P Water seep S Standard penetration test Environmental sample ¥ Water level V Shear vane (kPa)										

CLIENT:

PROJECT:

Proposed Commercial Development LOCATION: 8-10 Lee Street, Haymarket

Atlassian Pty Ltd

Photo D1 – View within borehole BH101, showing the sand and gravel fill encountered at shallow depth below the rail ballast / ground surface level between the rail carriage dormitories.

Photo D2 – View of fill obtained from Borehole BH101.

	Borehole Photographs	PROJECT:	86867.00	
Douglas Partners Geotechnics Environment Groundwater	Proposed Commercial Development	PLATE No:	D1	
	8-10 Lee Street, Haymarket	REV:	0	
	CLIENT: Atlassian Pty Ltd	DATE:	13/05/2020	

CLIENT:

PROJECT:

LOCATION:

Atlassian Pty Ltd

Proposed Commercial Development

8-10 Lee Street, Haymarket

SURFACE LEVEL: 20.1 AHD EASTING: 333976 NORTHING: 6249251 DIP/AZIMUTH: 90°/-- BORE No: BH102 PROJECT No: 86767.03 DATE: 8/4/2020 SHEET 1 OF 1

Sampling & In Situ Testing Well Description Graphic Log Water Depth Sample 뭅 Construction of Depth Results & Comments (m) Type Details Strata FILL/ BALLAST 0.1 0.1 FILL/ Silty GRAVEL: fine to medium, dark grey, trace sand and clay, moist, generally in a loose condition А 0.2 0.3 FILL/ SAND: fine to medium, pale yellow brown and grey, with silt, trace clay lenses, moist, generally in a loose condition 0.5 А 0.6 1.0 - 1 1 А 1.1 15 A 16 .2 2.0 -2 А 21 .∞ 2.4 А 2.5 2.6 FILL/ SAND: fine to medium, pale grey, trace silt, moist, generally in a loose condition 2.9 FILL/ Silty CLAY: medium plasticity, orange, pale yellow 3 - 3 and black, trace sand and gravel, with ash, w>PL, generally in a stiff condition 3.1 А 3.2 3.5 Below 3.5m: grading to dark grey and black, with fine to А 3.6 medium sand and angular gravel 4.0 4.0 - 4 4 FILL/ Sandy GRAVEL: fine to medium gravel, dark grey А 4.1 and black, fine to coarse sand, trace ash, moist, generally in a medium dense condition 4.5 4 5 FILL/ Silty CLAY: high plasticity, orange, pale yellow and А 4.6 pale grey, trace ash, w<PL, generally in a firm condition 47 4.7 Sandy CLAY CH: high plasticity, pale grey, w<PL, А 4.8 appears firm, residual soil 4.9 A 5.0 Bore discontinued at 5.0m RIG: Hand Toolsarget depth reached DRILLER: NB LOGGED: NB CASING: NA TYPE OF BORING: Hand Auger to 5m WATER OBSERVATIONS: No free groundwater observed during drilling REMARKS: Location coordinates are in MGA94 Zone 56.

	SAMPLING & IN SITU TESTING LEGEND										
А	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)						
	Bulk sample	Р	Piston sample		Point load axial test Is(50) (MPa)						
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D)	Point load diametral test Is(50) (MPa)						
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)						
D	Disturbed sample	⊳	Water seep	S	Standard penetration test						
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)						

SURFACE LEVEL: 21.2 AHD **EASTING:** 333978 **NORTHING:** 6249263 **DIP/AZIMUTH:** 90°/-- BORE No: BH103 PROJECT No: 86767.00 DATE: 15 - 16/4/2020 SHEET 1 OF 2

-		Description	Degree of Weathering	<u>.</u>	Rock Strength	등 Fra	cture	Discontinuities	Sa	amplii	ng & I	n Situ Testin
	epth m)	of	Weathering	Log	Ex Low Very Low Low Medium Very High Ex High	Vate) Vate	acing m)	B - Bedding J - Joint	be	re .%	RQD %	Test Resul
(,	Strata	FR S W W W	Ū	Ex Lov Very L Mediu Very F Very F	0.01		S - Shear F - Fault	Type	ပိမ္စ	R S S S	& Comment
		FILL/ CONCRETE		<u>À</u> 2								
1	0.25 -	FILL/ SAND: fine to medium, pale brown, trace silt, moist, generally in a very loose condition						AFT	A 			
	1.7 -	FILL/ Silty CLAY: low plasticity, pale		\bigotimes					_ <u>A</u> _			
2		grey-orange and dark grey, with angular sandstone, shale, ironstone gravel, w>PL, generally in a stiff to very stiff condition		\bigotimes					_A_			
~	2.5 -	FILL/ Silty CLAY: low to medium plasticity, red brown, w <pl, generally in a firm condition</pl, 		\bigotimes					A			
3									s			2,2,2 N = 4
4									s			1,0,0
5	4.9 -	FILL/ Silty SAND: fine to coarse, dark grey and brown, trace fine gravel, moist, generally in a very loose condition										N = 0
6				\bigotimes								3,5,7
	6.3 -	SAND SP: fine to medium, pale grey, moist, medium dense, alluvial							S	-		N = 12
7	7.0-	Sandy CLAY CI-CH: medium to high plasticity, dark red-orange, w>PL, very stiff, residual										2,6,14
8										-		N = 20
	8.5 -	SANDSTONE: fine grained, dark brown, pale grey and orange-grey, highly weathered with extremely						8.5m-8.85m: fractured 8.85m: Ds 250mm	с	100	0	
9	9.15-	weathered bands, low strength with very low strength bands, fractured, Mittagong Formation SANDSTONE: refer following page						9.12m: Ds 250mm 9.12m: Ds 10mm 9.19m: Ds 20mm 9.28m: J90°, st, ro, fe				
	10.0							stn 9.52m: B0°, pl, ro, fe co 9.6m: Ds 20mm	С	100	100	

TYPE OF BORING: Diatube to 0.25m, Hand tools to 2.6m, SFA (TC-bit) to 8.5m, NMLC to 10.8m

WATER OBSERVATIONS: No free groundwater observed during drilling

CLIENT:

PROJECT:

Atlassian Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

REMARKS: Location coordinates are in MGA94 Zone 56. Standpipe installed: 0-8.5m Blank PVC pipe, 8.5-9.3m Slotted PVC pipe, End cap at 9.3m, Backfill 0-7.5m, Bentonite 7.5-8.5m, Sand filter 8.5-9.3m, Bentonite 9.3-10.8m, Gatic cover at surface. Hole pre-drilled 8 April 2020 to 2.6m

	depsame	PLIN	G & IN SITU TESTING	LEG	END							
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_		-			_
E	Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)			Doug		20		
E	ILK Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test Is(50) (MPa)	1	1.					
0	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)				/= •			
	Disturbed sample	⊳	Water seep	S	Standard penetration test		1	O to the im		-		 • • • • • • • • • • • • • • • • • • •
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			Geotechnics	11	Enviro	nment	Groundwater
-						-						

SURFACE LEVEL: 21.2 AHD **EASTING:** 333978 **NORTHING:** 6249263 **DIP/AZIMUTH:** 90°/-- BORE No: BH103 PROJECT No: 86767.00 DATE: 15 - 16/4/2020 SHEET 2 OF 2

	Description		Degr /eatł	ee heri	of ina	ji c	5	Rc Stre	ock ngt	h	r	F	ract	ure		Discontinuities			-	In Situ Testing
Depth (m)	of				.9	Graphic Log	Ex Low Very Low			HgH f	Vate	5	Spaci (m)		B - Bedding J - Joint	Type	ore : %	RQD %	Test Result &
	Strata	N	Å₽	S N	2 8	G	Very 1		High	Very FX His		0.01	0.05	0.50		S - Shear F - Fault	≻	ပိမ္စ	RC %	Comments
	SANDSTONE: fine to medium grained, pale yellow, moderately then slightly weathered, medium strength, slightly fractured, Hawkesbury Sandstone															⁹ .86m: Ds 30mm 10.25m: B5°, pl, ro, fe co	с		100	PL(A) = 0.6
10.8	Bore discontinued at 10.8m		++	┝┺┼╴ │ │				-' 	╹┼╌┤				++-	- P -	T					<u> </u>
11	Target depth reached	li	i		į		ļ		ii			į	ij	ij						
					i		l i							ii						
12		ļ			İ		Ì		İ			Ì								
					į		ļ													
												Ì								
13												ļ								
		ļ	İ	İİ	İ		ļ	İİ	İ			İ	İİ.	ij.						
14					ļ															
		ļ			į		ļ		ii			į	ij.	ij						
15																				
		ļį	i	İİ	į		ļ		ii			į	ii.	ii						
16																				
		ļį	i	İİ	i		ļ		ii			İ	ii.	ii						
17									ÌÌ											
18																				
10					i		ļ					İ								
19																				
																		Λ		
																		M		
				ii	i		l ¦		ii			li –		ii						

TYPE OF BORING: Diatube to 0.25m, Hand tools to 2.6m, SFA (TC-bit) to 8.5m, NMLC to 10.8m

WATER OBSERVATIONS: No free groundwater observed during drilling

CLIENT:

PROJECT:

Atlassian Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

REMARKS: Location coordinates are in MGA94 Zone 56. Standpipe installed: 0-8.5m Blank PVC pipe, 8.5-9.3m Slotted PVC pipe, End cap at 9.3m, Backfill 0-7.5m, Bentonite 7.5-8.5m, Sand filter 8.5-9.3m, Bentonite 9.3-10.8m, Gatic cover at surface. Hole pre-drilled 8 April 2020 to 2.6m

A Auger sample G Gas sample PID Photo ionisation detector (ppm) B Luk sample P, Fiston sample VL(A) Point load axial test Is(50) (MPa) BLK Block sample U, Tube sample (x mm dia.) D Disturbed sample P Water seep S Standard penetration test		depsAMP	LIN	G & IN SITU TESTIN	G LEG	END					
D Disturbed sample D water seep S Standard penetration test	A A		G			Photo ionisation detector (ppm)	 _		-	_	
D Disturbed sample D water seep S Standard penetration test	B B	ulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)					4
D Disturbed sample D water seep S Standard penetration test	BLK BI	lock sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test ls(50) (MPa)					
D Disturbed sample D water seep S Standard penetration test	C C	ore drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)					1.1
E Environmental sample I Water level V Shear vane (kPa)	D D	isturbed sample	⊳	Water seep	S	Standard penetration test					
	E EI	nvironmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics	I Envir	onment	1

SURFACE LEVEL: 21.2 AHD **EASTING:** 333978 **NORTHING:** 6249263 **DIP/AZIMUTH:** 90°/-- BORE No: BH103 PROJECT No: 86767.00 DATE: 15 - 16/4/2020 SHEET 1 OF 2

~		Description	- Lic		Sam		& In Situ Testing	٣	Well
	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
		FILL/ CONCRETE	Q Q						Gatic Cover and
	0.25 -	FILL/ SAND: fine to medium, pale brown, trace silt, moist, generally in a very loose condition		A	0.25 0.4				
1				_A	1.0 1.1 1.5		DR		F7
2	1.7 -	FILL/ Silty CLAY: low plasticity, pale grey-orange and dark grey, with angular sandstone, shale, ironstone gravel, w>PL, generally in a stiff to very stiff condition		A	1.6 2.0				2
	2.5 -				2.1 2.5				
- 3		FILL/ Silty CLAY: low to medium plasticity, red brown, w <pl, a="" condition<="" firm="" generally="" in="" td=""><td></td><td></td><td>2.6 2.9 3.0</td><td></td><td></td><td></td><td>-3</td></pl,>			2.6 2.9 3.0				-3
				S	3.45		2,2,2 N = 4		
- 4	4.9 -	FILL/ Silty SAND: fine to coarse, dark grey and brown, trace fine gravel, moist, generally in a very loose condition		S	4.5 4.95 5.0 5.1		1,0,0 N = 0		Backfill and Blank PVC pipe
6	6.3 -	SAND SP: fine to medium, pale grey, moist, medium		S	6.0		3,5,7 N = 12		6
_	7.0	dense, alluvial			0.45				
.7	7.0 -	Sandy CLAY CI-CH: medium to high plasticity, dark red-orange, w>PL, very stiff, residual		A	7.5		2,6,14		
8					7.95		N = 20		8 Bentonite Seal
9	8.5	SANDSTONE: fine grained, dark brown, pale grey and orange-grey, highly weathered with extremely weathered bands, low strength with very low strength bands, fractured, Mittagong Formation		с	8.5				Sand filter
	9.15 -	SANDSTONE: refer following page		с	9.18				End Cap
	10.0		::::::		,				†

TYPE OF BORING: Diatube to 0.25m, Hand tools to 2.6m, SFA (TC-bit) to 8.5m, NMLC to 10.8m

WATER OBSERVATIONS: No free groundwater observed during drilling

CLIENT:

PROJECT:

Atlassian Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

REMARKS: Location coordinates are in MGA94 Zone 56. Standpipe installed: 0-8.5m Blank PVC pipe, 8.5-9.3m Slotted PVC pipe, End cap at 9.3m, Backfill 0-7.5m, Bentonite 7.5-8.5m, Sand filter 8.5-9.3m, Bentonite 9.3-10.8m, Gatic cover at surface. Hole pre-drilled 8 April 2020 to 2.6m

	depsamp	LING	3 & IN SITU TESTING	LEGI	END				
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_		
В	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)				Douglas Partners
BLI	K Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test ls(50) (MPa)	7			1 Douolas Parmers
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)				
D	Disturbed sample	⊳	Water seep	S	Standard penetration test			· /	Oraclash also I Frankramman I Oracin days to
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)				📕 Geotechnics Environment Groundwater
•									

_							1. 30 /				
		Description	<u>.</u>		Sam	pling &	& In Situ Testin	ig j	_	Well	
Ч	Depth (m)	of	Graphic Log	ð	д.	ble	Populta	, e	waler	Construction	n
	(11)	Strata	Ğ	Type	Depth	Sample	Results Comme	ents s	5	Details	
┢	-				9.96	0	PL(A) = 0	0.65		Bentonite plug -	•
- -		SANDSTONE: fine to medium grained, pale yellow, moderately then slightly weathered, medium strength, slightly fractured, Hawkesbury Sandstone							ł		
Ł		slightly fractured, Hawkesbury Sandstone		С					ł		
ŧ					10.75			. 40	ł		
ŧ	- 10.8	Bore discontinued at 10.8m			_10.75_ 10.8		PL(A) = 0	J.49		-	
L	-11	Target depth reached							ļ	-11	
-ę									ļ	-	
ŧ	-								ŀ		
Ē	-								F		
Ē									F	10	
F	- 12								F	- 12	
-0 -	[F		
Ł									ł		
Ł									ł		
Ł	-13								ł	- 13	
									þ		
ŧ											
ŧ									ļ		
ŧ									ļ		
ŧ	-14								ŀ	- 14	
Ē	-								F		
F	-								F		
F	-								F		
E											
E	- 15								-	-15	
-0									ł		
Ł									ł		
ŧ									ł		
ŧ									ļ		
ŀ	- 16								þ	- 16	
-00 -	.								ļ		
ŧ	-								ŀ		
Ē	-								Ē		
E									E	- 17	
Ē.	-17								E	- 17	
-4									ł		
Ł									ł		
ŧ									þ		
ŧ	- 18								þ	- 18	
									ļ	-	
ŧ	F								ŀ		
F	F								F		
E	E								ļ		
E	19										
-~	t										
ŀ	<u> </u>										
ŧ	t										
ŧ	t l								ł		

RIG: XC 100

DRILLER: Terratest

LOGGED: NB

CASING: HQ to 8.5m

TYPE OF BORING: Diatube to 0.25m, Hand tools to 2.6m, SFA (TC-bit) to 8.5m, NMLC to 10.8m

WATER OBSERVATIONS: No free groundwater observed during drilling

REMARKS: Location coordinates are in MGA94 Zone 56. Standpipe installed: 0-8.5m Blank PVC pipe, 8.5-9.3m Slotted PVC pipe, End cap at 9.3m, Backfill 0-7.5m, Bentonite 7.5-8.5m, Sand filter 8.5-9.3m, Bentonite 9.3-10.8m, Gatic cover at surface. Hole pre-drilled 8 April 2020 to 2.6m

	dep \$ AM	PLIN	3 & IN SITU TESTING	LEGEND										
A	Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)			_	_		-	_		_	
В	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)						00			tner	10
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa	I)					125			пег	
C	Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	´						-			
D	Disturbed sample	⊳	Water seep	S Standard penetration test				~					~ '	
E	Environmental sample	Ŧ	Water level	V Shear vane (kPa)			- (·	Geotechi	nics	I Envir	roni	ment I (Groundwa	ater
					_									

BOREHOLE LOG

SURFACE LEVEL: 21.2 AHD **EASTING:** 333978 NORTHING: 6249263 DIP/AZIMUTH: 90°/-

BORE No: BH103 **PROJECT No: 86767.00 DATE:** 15 - 16/4/2020 **SHEET** 2 OF 2

CLIENT: PROJECT:

Proposed Commercial Development LOCATION: 8-10 Lee Street, Haymarket

Atlassian Pty Ltd

SURFACE LEVEL: 21.2 AHD **EASTING:** 333983 **NORTHING:** 6249272 **DIP/AZIMUTH:** 90°/-- BORE No: BH104 PROJECT No: 86767.00 DATE: 14 - 15/4/2020 SHEET 1 OF 2

		Description	Degree of Weathering	ic	Rock Strength	2	Fracture	Discontinuities	Sa	ampli	ng & I	n Situ Testing
	Depth (m)	of	Weathering	Log	Ex Low Very Low Medium High Very High Ex High	Water	Spacing (m)	B - Bedding J - Joint	Type	ore . %	RQD %	Test Results &
	(,	Strata	FIS W W W	Ū	Ex Lo Very Low Very F Ex High			S - Shear F - Fault	∣♪	ပိမ္မိ	R0%	∝ Comments
-		FILL/ CONCRETE		<u>ج</u> ، ک								
	0.25	FILL/ SAND: fine to medium, pale brown, trace silt, moist, generally in a very loose condition					R	4 <i>FT</i>	A			
-1	0.8 1.0	FILL/ Silty CLAY: medium plasticity, pale orange, trace fine sand, w>PL, generally in a stiff condition							A			
-2	2 2.0	FILL/ Silty CLAY: low plasticity, pale grey-orange and dark grey, with angular sandstone, shale and ironstone gravel, w>PL, generally in a soft to firm condition		\bigotimes					A S			2,2,2 N = 4
-	- 2.0	FILL/ Silty CLAY: medium plasticity, red-brown mottled orange, trace fine sand and gravel, w <pl, generally="" in<br="">a soft to firm condition</pl,>										
-3				\bigotimes		ľ			A			
F	,			\bigotimes					s			1,2,2
-												N = 4
-4	Ļ			\bigotimes								
F				\bigotimes					s			2,1,2
-5	5 5.0	Below 4.8m: trace ash and medium		\bigotimes		l				-		N = 3
ļ	, 0.0	∖sand/ SAND SP: dark yellow-orange, 10%										
		non plastic fines, moist, medium dense, alluvial										
-6	5									-		3,5,8
									S			N = 13
-7	,											
	7.63	SANDSTONE: fine grained, dark	┝┍╧┛┊╴┊╴┊					√ 7.73m: Ds 70mm				
-8	3	brown, pale grey and orange-grey, highly then moderately weathered with extremely weathered bands, high and medium strength with very low strength bands, fractured,						7.8m: Ds 40mm 8.08m: Ds 30mm	с	100	60	PL(A) = 0.8
ŀ	8.65	Mittagong Formation Between 8.52m-9.42m: very low		\sim				8.65m: CORE LOSS: 300mm				
- 9 - 9	8.95	strength										
-	9.42	SANDSTONE: refer following page							с	80	50	
ţ		01-0-				li		9.65m: Ds 10mm				

RIG: XC 100

CLIENT:

PROJECT:

Atlassian Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Terratest

LOGGED: NB

CASING: HQ to 7.63m

TYPE OF BORING: Diatube to 0.25m, Hand tools to 1.1m, SFA (TC-bit) to 7.63m, NMLC to 20m

WATER OBSERVATIONS: No free groundwater observed during drilling

REMARKS: Location coordinates are in MGA94 Zone 56. Standpipe installed: 0-14.0m Blank PVC pipe, 14.0-20m Slotted PVC pipe, End cap at 20m, Backfill 0.1-6.5m, Bentonite 6.5-13.5m, Sand filter 13.5-20m, Gatic cover at surface. Hole pre-drilled 8 April 2020 to 1.1m depth

	SAMP	LING	3 & IN SITU TESTING	LEGI	END			
Α	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_	
	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)			Douglas Partners
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(C	0) Point load diametral test ls(50) (MPa)	1	1.	A Doudlas Pariners
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			
D	Disturbed sample	⊳	Water seep	S	Standard penetration test		12	Or the hule of English and the Original desides
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			Geotechnics Environment Groundwater

SURFACE LEVEL: 21.2 AHD **EASTING:** 333983 **NORTHING:** 6249272 **DIP/AZIMUTH:** 90°/-- BORE No: BH104 PROJECT No: 86767.00 DATE: 14 - 15/4/2020 SHEET 2 OF 2

	Donth	Description	Degree of Weathering	hic	Rock Strength	Fracture Spacing	Discontinuities				n Situ Testing
	Depth (m)	of Strata	Degree of Weathering ﷺ ≩ ≩ ⊗ ∞ ײַ	Grapt	Strength Very Low High High Kery High Kery High Kery High Kery High Kery High Kery High Kery High Kery Kery Kery Kery Kery Kery Kery Kery Low Kery	(m)	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. %	RQD %	Test Results & Comments
	-11	SANDSTONE: fine to medium grained, pale grey with grey bands, fresh, medium and high strength, slightly fractured then unbroken, Hawkesbury Sandstone					∖ 11.06m: Cs 2mm 11.09m: Cs 2mm	с	100		PL(A) = 0.77
	- 12						12m: Cs 4mm	с	100	100	PL(A) = 0.94
,	- 13						13.37m: J60°, pl, he				PL(A) = 1.2
	- 14						13.77m-13.84m: B5° (x3), st, ro, cbs co	с	100	95	PL(A) = 0.6
	- 15	Between 14.52m-14.58m: band of dark grey siltstone						с	100	100	PL(A) = 1.5
	- 16						>>				PL(A) = 1.2
	- 17						ΛΕΤ	с	100	100	PL(A) = 1.3
	- 18							с	100	100	PL(A) = 1.3
	- 19						18.95m: Cs 2mm				PL(A) = 2.6
	20.0	Bore discontinued at 20.0m Target depth reached						с	100	100	PL(A) = 1

WATER OBSERVATIONS: No free groundwater observed during drilling

CLIENT:

PROJECT:

Atlassian Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

REMARKS: Location coordinates are in MGA94 Zone 56. Standpipe installed: 0-14.0m Blank PVC pipe, 14.0-20m Slotted PVC pipe, End cap at 20m, Backfill 0.1-6.5m, Bentonite 6.5-13.5m, Sand filter 13.5-20m, Gatic cover at surface. Hole pre-drilled 8 April 2020 to 1.1m depth

	SAMPL	ING	& IN SITU TESTING	EGI	END			
A Auç	ger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_	
B Bul	lk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)			Douglas Partners
BLK Blo	ock sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test ls(50) (MPa)	1	1.	Loudias Partners
C Cor	ore drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			
D Dis	sturbed sample	⊳	Water seep	S	Standard penetration test			
E Env	vironmental sample	Ŧ	Water level	V	Shear vane (kPa)			Geotechnics Environment Groundwater

SURFACE LEVEL: 21.2 AHD **EASTING:** 333983 **NORTHING:** 6249272 **DIP/AZIMUTH:** 90°/-- BORE No: BH104 PROJECT No: 86767.00 DATE: 14 - 15/4/2020 SHEET 1 OF 2

	Description	Dic		Sam		& In Situ Testing	<u> </u>	Well
Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
	FILL/ CONCRETE	4.4.						Gatic Cover and cap
0.25	FILL/ SAND: fine to medium, pale brown, trace silt, moist, generally in a very loose condition		A	0.25 0.4				
0.8 1.0	FILL/ Silty CLAY: medium plasticity, pale orange, trace fine sand, w>PL, generally in a stiff condition /	×	_A_ _A_	0.8 0.9 1.0				-1
	FILL/ Silty CLAY: low plasticity, pale grey-orange and dark grey, with angular sandstone, shale and ironstone gravel, w>PL, generally in a soft to firm condition		<u> </u>	1.1 1.4 1.5		2,2,2		
2.0	FILL/ Silty CLAY: medium plasticity, red-brown mottled		S	1.95		N = 4		2
	orange, trace fine sand and gravel, w <pl, a="" condition<="" firm="" generally="" in="" soft="" td="" to=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>							
			A	2.8 2.9				3
			s	3.0 3.45		1,2,2 N = 4		Backfill and Blank
								-4
	Below 4.8m: trace ash and medium sand		s	4.5		2,1,2 N = 3		
5.0	SAND SP: dark yellow-orange, 10% non plastic fines, moist, medium dense, alluvial			4.95				-5
			s	6.0		3,5,8 N = 13		-6
				6.45				
								-7
7.63	SANDSTONE: fine grained, dark brown, pale grey and orange-grey, highly then moderately weathered with extremely weathered bands, high and medium strength with very low strength bands, fractured, Mittagong		с	7.63				-8
	Formation			8.24		PL(A) = 0.84		
8.65	Between 8.52m-9.42m: very low strength			8.65				
8.95			С			ND	Λ	
9.42	SANDSTONE: refer following page							

TYPE OF BORING: Diatube to 0.25m, Hand tools to 1.1m, SFA (TC-bit) to 7.63m, NMLC to 20m

WATER OBSERVATIONS: No free groundwater observed during drilling

CLIENT:

PROJECT:

Atlassian Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

REMARKS: Location coordinates are in MGA94 Zone 56. Standpipe installed: 0-14.0m Blank PVC pipe, 14.0-20m Slotted PVC pipe, End cap at 20m, Backfill 0.1-6.5m, Bentonite 6.5-13.5m, Sand filter 13.5-20m, Gatic cover at surface. Hole pre-drilled 8 April 2020 to 1.1m depth

	SAMP	LIN	3 & IN SITU TESTING	LEGI						
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	_	_	_		
В	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)				-	Partners
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test ls(50) (MPa)	11.			5	Partners
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)					
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	11	O to . to . i .	1 -		
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics	s I En	ivirc	onment Groundwater

SURFACE LEVEL: 21.2 AHD **EASTING:** 333983 **NORTHING:** 6249272 **DIP/AZIMUTH:** 90°/-- BORE No: BH104 PROJECT No: 86767.00 DATE: 14 - 15/4/2020 SHEET 2 OF 2

						I: 90°/		SHEET 2 OF 2
Depth	Description	Graphic Log				In Situ Testing	Water	Well
(m)	of Strata	Gra Lc	Type	Depth	Sample	Results & Comments	We	Details
-	SANDSTONE: fine to medium grained, pale grey with grey bands, fresh, medium and high strength, slightly			9.96 10.1		PL(A) = 0.77		Bentonite Seal
.	fractured then unbroken, Hawkesbury Sandstone							
-11			С	10.96		PL(A) = 0.95		-11
-								
				11.65				
- 12				11.96		PL(A) = 0.94		- 12
.			с					
-13				12.96		PL(A) = 1.2		-13
				13.2				
								11
14			С	13.96		PL(A) = 0.66		-14
	Between 14.52m-14.58m: band of dark grey siltstone			14.69				
15				14.09		PL(A) = 1.5		
15						1 200 - 1.0		- 15
			с					
- 16				15.96		PL(A) = 1.2		-16
				16.23				
			с	10.00				Sand filter
- 17				16.96		PL(A) = 1.3		- 17 Slotted PVC pipe
.				17.61				
-18				17.96		PL(A) = 1.3		-18
			С					
19				18.96		PL(A) = 2.6		- 19
				19.23				
	Bore discontinued at 20.0m		с					
20.0	Target depth reached			19.96		PL(A) = 1		End cap

WATER OBSERVATIONS: No free groundwater observed during drilling

REMARKS: Location coordinates are in MGA94 Zone 56. Standpipe installed: 0-14.0m Blank PVC pipe, 14.0-20m Slotted PVC pipe, End cap at 20m, Backfill 0.1-6.5m, Bentonite 6.5-13.5m, Sand filter 13.5-20m, Gatic cover at surface. Hole pre-drilled 8 April 2020 to 1.1m depth

	SAMP	LING	3 & IN SITU TESTING	LEGE	END		
Α	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	_	
	Bulk sample	Ρ	Piston sample) Point load axial test Is(50) (MPa)		Douglas Partners
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)	1.	Douglas Parlners
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	1	
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics Environment Groundwater

CLIENT: Atlassian Pty Ltd PROJECT: Proposed Commercial Development

LOCATION: 8-10 Lee Street, Haymarket

SURFACE LEVEL: 20.1 AHD EASTING: 333988 NORTHING: 6249270 DIP/AZIMUTH: 90°/--

BORE No: BH105 PROJECT No: 86767.03 DATE: 7/4/2020 SHEET 1 OF 2

Sampling & In Situ Testing Well Graphic Description Water Depth Log 뭅 Sample Construction of Depth Results & Comments (m) Type Details Strata FILL/ BALLAST 0.05 0.05 А 5-0.1 0.1 FILL/ Silty CLAY: medium plasticity, dark grey, with angular gravel and organic matter and fragments of plastic, moist, generally in a firm condition 0.37 BRICK PAVEMENT Ä 7. 0.0 CONCRETE: grey, orange and yellow-brown, with 0 0 0 inclusions of sub-angular to sub-rounded, high strength sandstone 0.0 0.0 A A A A 1 • 1 <u>_</u>_ 0 - 2 -2 _∞ 0 0 0 7 A A A 44 . A. A. 0.0 0.0 À À 3 - 3 0 0 0 0 0 -1-0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 •4 - 4 0 0 0 0 -9 0 0 0 0 0 0 0 0 0 0 0 0 ġ.ġ. 0.0 2

RIG: Proline **DRILLER:** Tightsite TYPE OF BORING: Diatube to 3.1m, NMLC to 6.5m

CLIENT:

PROJECT:

LOCATION:

Atlassian Pty Ltd

Proposed Commercial Development

8-10 Lee Street, Haymarket

LOGGED: NB

WATER OBSERVATIONS: No free groundwater observed during drilling **REMARKS:** Location coordinates are in MGA94 Zone 56.

SAMPLING & IN SITU TESTING LEGEND Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level
 LECETNU

 PID
 Photo ionisation detector (ppm)

 PL(A) Point load axial test Is(50) (MPa)

 PL(D) Point load diametral test Is(50) (MPa)

 pp
 Pocket penetrometer (kPa)

 Standard penetration test

 V
 Shear vane (kPa)
 A Auger sample B Bulk sample BLK Block sample G P U_x W Core drilling Disturbed sample Environmental sample CDE ₽

CASING: HW to 3.1m

SURFACE LEVEL: 20.1 AHD EASTING: 333988 NORTHING: 6249270 DIP/AZIMUTH: 90°/-- BORE No: BH105 PROJECT No: 86767.03 DATE: 7/4/2020 SHEET 2 OF 2

Sampling & In Situ Testing Graphic Well Description Water Depth Log 뭅 Sample Construction of Depth Results & Comments (m) Type Details Strata CONCRETE: grey, orange and yellow-brown, with <u>A</u> A inclusions of sub-angular to sub-rounded, high strength 0.0 sandstone (continued) 0 0 0 4.4 0.0 0.0 0.0 0 0 0 0 0 0 0 0 6 -6 0 0 0 0 7 6.3 SANDSTONE: fine to medium grained, pale yellow, highly weathered, medium to high strength, Mittagong Formation 6.5 Bore discontinued at 6.5m - Target depth reached - 7 - 7 <u>-</u> 8 8 -61 9 -9 **RIG:** Proline **DRILLER:** Tightsite LOGGED: NB CASING: HW to 3.1m TYPE OF BORING: Diatube to 3.1m, NMLC to 6.5m

WATER OBSERVATIONS: No free groundwater observed during drilling **REMARKS:** Location coordinates are in MGA94 Zone 56.

CLIENT:

PROJECT:

LOCATION:

Atlassian Pty Ltd

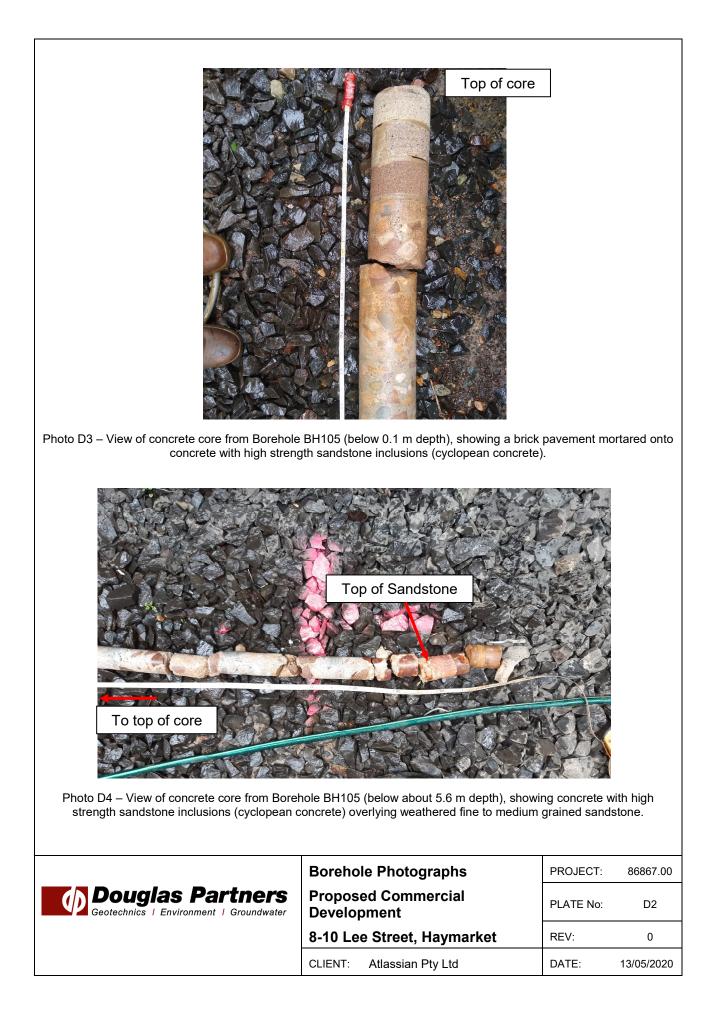
Proposed Commercial Development

8-10 Lee Street, Haymarket

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PIL
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PIL
 Photo ionisation detector (ppm)


 BLK Block sample
 U,
 Tube sample (x mm dia.)
 PL(A) Point load axial test Is(50) (MPa)
 PL(D) Point load diametral test Is(50) (MPa)

 D
 Disturbed sample
 V
 Water seep
 S
 Standard penetration test

 D
 Disturbed sample
 Water seep
 S
 Standard penetration test
 Ceotechnit

 E
 Environmental sample
 Water level
 V
 Shear vane (kPa)
 Ceotechnit

SURFACE LEVEL: 15.5 AHD EASTING: 333980 NORTHING: 6249282 DIP/AZIMUTH: 90°/-- BORE No: BH106 PROJECT No: 86767.03 DATE: 7/4/2020 SHEET 1 OF 1

Sampling & In Situ Testing Well Description Graphic Water Depth Log Sample 뭅 Construction of Depth Results & Comments (m) Type Details Strata CONCRETE: grey, 2-10mm igneous aggregate 0.16 0.16 PID=1.9 ppm FILL/ SAND: fine to coarse, pale brown, trace seashells, F 0.2 0.2 E \moist 0.3 0.3 Е PID=1.3 ppm 0.4 FILL/ CLAY: medium plasticity, brown, red and grey, with 0.4 Е PID=1.4 ppm fine to coarse sand, trace fine to medium gravel, fine to medium igneous rail ballast and seashells, w~PL 0.5 FILL/ SAND: fine to coarse, dark brown, with igneous rail ballast, dry 0.8 FILL/ CLAY: medium plasticity, pale grey, red and brown, trace fine to medium gravel, w~PL 0.9 Е PID=1.4 ppm Below 0.5m: apparently in a stiff condition 1.0 - 1 1 At 0.6m: tile fragment 1.15 CLAY CI-CH: medium to high plasticity, pale grey mottled Е PID=0.6 ppm red, trace fine to medium ironstone gravel, w<PL to w~PL, 1.25 ·1.25 apparently very stiff, residual Below 1.1m: w<PL Bore discontinued at 1.25m - Target depth reached - 2 -2 3 - 3 •4 4 RIG: Hand Tools DRILLER: AS/AMS LOGGED: AS CASING: N/A TYPE OF BORING: Diatube to 0.16m, Hand auger to 1.25m

WATER OBSERVATIONS: No free groundwater observed whilst augering REMARKS: Location coordinates are in MGA94 Zone 56.

CLIENT:

PROJECT:

LOCATION:

Atlassian Pty Ltd

Proposed Commercial Development

8-10 Lee Street, Haymarket

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PIL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 U,
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 P
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 Water level
 V
 Shear vane (kPa)

SURFACE LEVEL: 15.5 AHD EASTING: 333983 NORTHING: 6249283 DIP/AZIMUTH: 90°/--

BORE No: BH113 **PROJECT No: 86767.03** DATE: 7/4/2020 SHEET 1 OF 1

Sampling & In Situ Testing Graphic Log Well Description Water Depth Ъ Construction of Sample Depth Type Results & Comments (m) Strata Details CONCRETE: grey, 2-10mm igneous aggregate <u>`</u>.`.\ 0.15 0.15 FILL/ SAND: fine to coarse, pale brown and brown, trace E* PID=9.4 ppm 0.25 fine to medium igneous rail ballast, moist 0.4 0.4 FILL/ CLAY: medium plasticity, red and pale grey, trace Е PID=1.2 ppm 0.5 medium gravel, w~PL 0.8 CLAY CI: medium plasticity, pale grey mottled red, trace fine to medium ironstone gravel, w<PL to w~PL, 0.9 Е PID=2.0 ppm apparently very stiff, residual 1.0 1 • 1 1.2 Е PID=7.8 ppm 1.3 1.3 Bore discontinued at 1.3m - Target depth reached - 2 -2 - 3 •3 -4 4 DRILLER: AS/AMS LOGGED: AS CASING: N/A RIG: Hand Tools

TYPE OF BORING: Diatube to 0.15m, Hand auger to 1.3m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates are in MGA94 Zone 56. * Field replicate BD2/20200407 taken at 0.15-0.25m

SAMPLING & IN SITU TESTING LEGEND	
A Auger sample G Gas sample PID Photo ionisation detector (ppm)	
B Bulk sample P Piston sample PL(A) Point load axial test Is(50) (MPa) BLK Block sample U, Tube sample (x mm dia.) PL(D) Point load diametral test Is(50) (MPa)	Douglas Partners
	Duyias Partiers
D Disturbed sample D Water seep S Standard penetration test	Or the bailer of English and the Original devices
E Environmental sample 📱 Water level V Shear vane (kPa)	Geotechnics Environment Groundwater

Proposed Commercial Development LOCATION:

8-10 Lee Street, Haymarket

CLIENT:

PROJECT:

LOCATION:

Atlassian Pty Ltd

Proposed Commercial Development

8-10 Lee Street, Haymarket

SURFACE LEVEL: 15.5 AHD EASTING: 333984 NORTHING: 6249280 DIP/AZIMUTH: 90°/-- BORE No: BH114 PROJECT No: 86767.03 DATE: 7/4/2020 SHEET 1 OF 1

Sampling & In Situ Testing Well Description Graphic Water Depth Log Sample 뭅 Construction of Depth Results & Comments (m) Type Details Strata CONCRETE: grey, 2-10mm igneous aggregate 0.0 0.15 0.15 PIDPID = 9.8 ppm E \ FILL/ SAND: fine to coarse, pale brown and brown, trace 0.2 0.2 PIDjar sample only \fine gravel, moist 0.3 -0.3 FILL/ CLAY: medium plasticity, brown, pale grey and red, with fine to coarse sand, trace fine gravel, igneous rail ballast and plastic, w~PL Bore discontinued at 0.3m - Refusal on ballast 1 • 1 - 2 -2 3 -3 •4 - 4 RIG: Hand Tools DRILLER: AS/AMS LOGGED: AS CASING: N/A TYPE OF BORING: Diatube to 0.15m, Hand auger to 0.3m WATER OBSERVATIONS: No free groundwater observed whilst augering **REMARKS:** Location coordinates are in MGA94 Zone 56.

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PIL
 Photo ionisation detector (ppm)

 BLK
 Block sample
 U
 Tube sample (x mm dia.)
 PL(A) Point load axial test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 P
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 ¥
 Water level
 V
 Shear vane (kPa)

SURFACE LEVEL: 15.5 AHD **EASTING:** 333981 **NORTHING:** 6249280 **DIP/AZIMUTH:** 90°/-- BORE No: BH115 PROJECT No: 86767.03 DATE: 7/4/2020 SHEET 1 OF 1

				DIP	/AZII	MUTH	l: 90°/		SHEET 1 OF 1
Ţ		Description	jc		Sam		k In Situ Testing	Ļ	Well
Ż	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
		CONCRETE: grey, 2-10mm igneous aggregate	<u>.</u>						
-	0.17 0.23-	FILL/ SAND: fine to coarse, pale brown, moist		_E	0.17 0.23		PID=0.8 ppm PID=5.2 ppm		-
-		FILL/ CLAY: medium plasticity, red and pale grey, with fine to coarse sand and fine gravel, trace fine to coarse igneous rail ballast, moist	\bigotimes	<u> </u>	0.3		PID=5.2 ppm		-
		Below 0.5m: low plasticity, with fine to coarse red gravel	\bigotimes	E	0.5 0.6		PID=1.1 ppm		-
-	0.85	CLAY CI-CH: medium to high plasticity, pale grey mottled	\sum	E	0.9		PID=4.2 ppm		-
-	· 1	red, trace fine gravel, w <pl apparently="" residual<="" stiff,="" td="" to="" very="" w~pl,=""><td></td><td></td><td>1.0</td><td></td><td>ни–4.2 ррп</td><td></td><td>-1</td></pl>			1.0		ни–4.2 ррп		-1
Į	1.3	Below 1.2m: pale grey, w <pl< td=""><td></td><td>Е</td><td>1.2</td><td></td><td>PID1.4 ppm</td><td></td><td></td></pl<>		Е	1.2		PID1.4 ppm		
	1.3	Bore discontinued at 1.3m - Target depth reached			-1.3-				-
-									-
	2								-2
									-
Ē									-
-									-
-									
ļ	3								-3
									-
-									-
- 1									-
-									-
	-4								- 4
								F	RAFT

TYPE OF BORING: Diatube to 0.17m, Hand auger to 1.3m **WATER OBSERVATIONS:** No free groundwater observed whilst augering

CLIENT:

PROJECT:

Atlassian Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

REMARKS: Location coordinates are in MGA94 Zone 56. * Field replicate BD1/20200408 taken from 0.23-0.3m

 SAMPLING & IN SITU TESTING LEGEND

 A Auger sample
 G Gas sample
 PILO
 Photo ionisation detector (ppm)

 B Buik sample
 Piston sample
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 U, Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C Core drilling
 W Water sample
 p
 Pocket penetrometer (KPa)

 D Disturbed sample
 V Water seep
 S Standard penetration test

 E Environmental sample
 W Water level
 V Shear vane (kPa)

Groundwater Field She				Bore	Volume = casing volu volume	me + niter pack
Project and Bore Installation)etails					$n(\pi h_1 d_1^2/4 - \pi h_2 d_2^2/4)$
Bore / Standpipe ID:	BH103			Whe	re: $\pi = 3.14$	
Project Name:		2.00			n = porosity (0.3 f	or most filter pack
Project Number:	86767	.03	P ×		material)	
Site Location:	Having	S. Sul M.			h; = height of wat d = diameter of an	
Bore GPS Co-ord:	- mayne				$d_1 = diameter of anh_2 = length of filte$	
nstallation Date:					$d_2 = diameter of ca$	asing
GW Level (during drilling):	-	m bgl		Bor	e Vo <mark>l N</mark> ormally	: 7.2*h
Well Depth:		m bgl		<i>i</i>		
Screened Interval:		m bgl				
Contaminants/Comments:	-			l.		
Bore Development Details	For date	1 1000	er DUITDO	SPS)		
Date/Time:	24104	130 33	- parp			Section 1. Constant
Purged By:	AS	1 110				
GW Level (pre-purge):	7.5	m bgl				
GW Level (post-purge):	0-00	m bal	<u> </u>			
PSH observed:	0110		isual). Thicknes	s if observed:		
Observed Well Depth:	9 4	m bgl	isual j. Thicknes	5 11 0D301 VCu.		
Estimated Bore Volume:	13 68		4			1
	(target: no drill	mud min 3 wo	ll vol. or dry) ~	101 2-	21	
Total Volume Purged:			I VOI. OF UTY)	1 m la	TIPE	
Equipment:	twister	brimb'	INF ING	ter, no	11151	
Micropurge and Sampling Det		100				
Date/Time:	24104	130				
Sampled By:	AS					
Weather Conditions:	clear	Warm	and the second			
GW Level (pre-purge):	7.5	m bgl				
GW Level (post sample):	8.7	m bgl				
PSH observed:	Yes / No (interface / v	isual). Thicknes	s if observed:	a. 194	
Observed Well Depth:	9.4	m bgl				
Estimated Bore Volume:	13.68	L			Sec. Sec.	
Total Volume Purged:	~15	L				
Equipment:	WOM.	periplu	np, int.	MEHEL		
			y Parameters			
Time / Volume	Temp (°C)	DO (mg/L)	EC (µS or mS/cm)	рH	Turbidity	Redox (mV)
Stabilisation Criteria (3 readings)	0.1°C	+/- 0.3 mg/L	+/- 3%	+/- 0.1	+/- 10%	+/- 10 mV
5 . 42	77 2	5,14		6 05	334	119
12.43	24.5	2,17	450	6 99	129	
12.44	àl.1		450	2.11	121	
15.45	31.4	2.64		5.99	1802	112
15.46	21.3	0.18	439	5.99	123.5	110
15:47	31.3	0.73	439	5.69	100.5	11'd
15:48	21.3	0.74	435	5 99	84.1	
15:49	21.3	0.78	434	- 599	64.9	110
				1.2		<u></u>
				-		
					V	
		SPC	TDO		39.5	
Additional Readings Following	DO % Sat	SPC	TDS	AND A STREET		
Additional Readings Following stabilisation:	DO % Sat	5PC	IDS			
	DO % Sat		Details			
stabilisation:	DO % Sat	Sample	e Details			
stabilisation: Sampling Depth (rationale):	9.0 PAWWEA	<u>Sample</u> m bgl,	<u>Details</u>			
stabilisation: Sampling Depth (rationale): Sample Appearance (e.g.	9.0 PAWWEA	<u>Sample</u> m bgl,	e Details		nthy si	Ity.
stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour):	9.0 PAWWEA	<u>Sample</u> m bgl,	<u>Details</u>		ntly si	ITN/
stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID:	9.0 PAWWEA	<u>Sample</u> m bgl,	<u>Details</u> idpoint Odourles		ntly si	1+1/
stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples:	9.0 MWM Clear-1 BH10 BD112	Sample m bgl, m prown, 3 202004	<u>Details</u> idpoint Odourles 24		ntly Si	1+1
stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples: Sampling Containers and	9.0 MWM Clear-1 BH10 BD112	<u>Sample</u> m bgl, m prown ,	<u>Details</u> idpoint Odourles 24		ntly Si	111
stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples: Sampling Containers and filtration:	9.0 MWM Clear-1 BH10 BD112	Sample m bgl, m prown, 3 202004	<u>Details</u> idpoint Odourles 24		ntly Si	11.7
stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples: Sampling Containers and filtration:	9.0 MWM Clear-1 BH10 BD112	Sample m bgl, m prown, 3 202004	<u>Details</u> idpoint Odourles 24		nthy Si	111
stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples: Sampling Containers and filtration: Comments / Observations:	9.0 MWM Clear-1 BH10 BD112	Sample m bgl, m prown, 3 202004	<u>Details</u> idpoint Odourles 24		ntly Si	
stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples: Sampling Containers and filtration: Comments / Observations:	9.0 MMB Clear-1 BH10 BD112 See gro	Sample m bgl, m prown, 3 202004	<u>e Details</u> idpoint Odourles 24 27	s , slig)		Sampi
stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples: Sampling Containers and filtration: Comments / Observations:	9.0 MMB Clear-1 BH10 BD112 See gro	Sample m bgl, m prown, 3 202004 cen shee	<u>e Details</u> idpoint Odourles 24 27	s , slig)	ntly si	Sampi
stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples: Sampling Containers and filtration: Comments / Observations:	9.0 MMB Clear-1 BH10 BD112 See gro	Sample m bgl, m prown, 3 202004) 24	s , slig)) (pre	Samp

Groundwater Field She				Bore	Volume = casing volu volume	me + filter pack			
Project and Bore Installation I					$=\pi h_1 d_2^2/4 + r$	$a(\pi h_1 d_1^2/4 - \pi h_2 d_2^2/4)$			
Bore / Standpipe ID:	BHIOY			Whe	re: $\pi = 3.14$				
Project Name:	0.(<u></u>	n = porosity (0.3 fo material)	er most filter pack			
Project Number:	86767.	.03	1		h _i = height of wate	r column			
Site Location:	Hayma	JEKEt			d _i = diameter of an	nulus			
Bore GPS Co-ord:					$h_1 = \text{length of filter}$ $d_2 = \text{diameter of ca}$				
nstallation Date:		and have been been been been been been been be		Bor	e Vol Normally:				
GW Level (during drilling):		m bgl		501	e vorivormany.	7.2 11			
Well Depth: Screened Interval:		m bgl m bgl							
Contaminants/Comments:		in bgi			- in the second second				
Bore Development Details	(for de	tà logi	aet purp	20565)					
Date/Time:	AHIAU		Jer Purt	203621					
Purged By:	47104 AS	120							
GW Level (pre-purge):	775	m bgl							
GW Level (post-purge):	1115	m bgl				Program in the second second			
PSH observed:	Yes / No (sual). Thickne	ss if observed:					
Observed Well Depth:	20.35	m bgl							
Estimated Bore Volume:	Q1	L							
Total Volume Purged:	(target: no drill	mud, min 3 we	ll vol. or dry)	NHOL					
Equipment:	twister			IEHER					
Micropurge and Sampling Det		Prattip		LA LA C					
Date/Time:	7410)4120							
Sampled By:	AS		1						
Weather Conditions:	Warn	n, clear							
GW Level (pre-purge):	7.6	m bgl							
GW Level (post sample):	7.75 m bgl								
PSH observed:	Yes / (No) (interface / vi	sual). Thickne	ess if observed:					
Observed Well Depth:	20.35	m bgl							
Estimated Bore Volume:	92	L	7.52. De						
Total Volume Purged:	~15	L							
Equipment:	WQM, F	peripum	P, int.	meter					
		Water Qualit	y Parameters						
Time / Volume	Temp (°C)	DO (mg/L)	EC (µS or mS/cm)	pН	Turbidity	Redox (mV)			
Stabilisation Criteria (3 readings)	0.1°C	+/- 0.3 mg/L	+/- 3%	+/- 0.1	+/- 10%	+/- 10 mV			
14:57	24.8	674	541	5.20	103	167			
14:58	23.6	1.29	525	5.25	9.6	161			
4:59	21.6	1.16	481	5.25	13.2	153			
15:00	21.1	0.98	457	5.25	28.5	149			
15:01	20.9.	PC.D.	445	5.24	23.6	142			
15:02	20.9	0.74	439	5.23	249	140			
15.03	20.8	0.71	438	5.22	23.5	138			
			1						
		0.00	700						
Additional Readings Following stabilisation:	DO % Sat	SPC	TDS						
		Sample	Details						
Sampling Depth (rationale):	15	m bgl, ∾	midpoir)t					
Sample Appearance (e.g.	C1004	-, odour	1						
colour, siltiness, odour):		and the second second second second second second second second second second second second second second second	1000						
Sample ID:	BHIO	4							
	_								
		O Sheet							
Sampling Containers and	see gree	JI SHEET							
QA/QC Samples: Sampling Containers and filtration: Comments / Observations:	see gree	JI SHEET							
Sampling Containers and filtration: Comments / Observations:	see gree	31 311001				Same			
Sampling Containers and filtration: Comments / Observations:	_				10-55	Samp			
Sampling Containers and filtration: Comments / Observations:	_	1:37	241	04/20) (pre	Samp - Pure			
Sampling Containers and filtration: Comments / Observations:	- at			04 20 t- samp					

Groundwater Field She	et			Bore	Volume = casing volu	me + filter pack		
Project and Bore Installation I	Details	14	1		volume = $\pi h_1 d_2^2/4 + i$	$n(\pi h_1 d_1^2/4 - \pi h_2 d_2^2/4)$		
Bore / Standpipe ID:	BHI			When	e: π = 3.14			
Project Name:	PIII				n = porosity (0.3 f	or most filter pack		
Project Number:	01717	63	1		material)			
Site Location:	Havm	.US			$h_1 = height of wat$			
Bore GPS Co-ord:	Haym	UIKET			d ₁ = diameter of an			
					h ₂ = length of filte d ₂ = diameter of c.			
Installation Date:		ma had		Bore	Vol Normally			
GW Level (during drilling):	-	m bgl			- voritorinany			
Well Depth:		m bgl						
Screened Interval:		m bgl						
Contaminants/Comments:	-							
Bore Development Details								
Date/Time:								
Purged By:								
GW Level (pre-purge):		m bgl						
GW Level (post-purge):		m bgl						
PSH observed:	Yes / No (interface / v	isual). Thicknes	ss if observed:				
Observed Well Depth:		m bgl						
Estimated Bore Volume:		L						
Total Volume Purged:	(target: no drill	mud, min 3 we	ell vol. or dry)					
Equipment:								
Micropurge and Sampling De	tails							
Date/Time:								
Sampled By:								
Weather Conditions:								
GW Level (pre-purge):	1	m bgl						
GW Level (post sample):		m bgl						
PSH observed:	Yes / No (interface / visual). Thickness if observed:							
Observed Well Depth:								
Estimated Bore Volume:		m bgl						
		L						
Total Volume Purged:		L						
Equipment:								
	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	Water Qualit	y Parameters					
Time / Volume	Temp (°C)	DO (mg/L)	EC (µS or mS/cm)	pH	Turbidity	Redox (mV)		
Stabilisation Criteria (3 readings)	0.1°C/7	+/- 0.3 mg/L	A +/- 3%	+/- 0.1	+/- 10%	+/- 10 mV		
	1 24			EACH	102	1(7) 6		
		0.1-	FAF	- 2 C/1	YO'D			
MA BO //	13.6	V.29	525	B.LD	14.6	126		
MA MA	128.6	1.16	X YX	15.16	- p.a	175-		
1111115-00					P /	_/		
M.5: SM	<u> </u>	10	/ 10 /					
15:102								
15:08								
5								
Additional Readings Following	DO % Sat	SPC	TDS		1			
stabilisation:		1						
		Sample	e Details					
Sampling Depth (rationale):		m bgl,		Start - St				
Sample Appearance (e.g.								
colour, siltiness, odour):								
Sample ID:					1			
QA/QC Samples:			с. 198 П. 198		10.10	19		
Sampling Containers and				1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	4			
filtration:				2				
Commonte / Observationer								
Comments / Observations:								
GW level					6			

* 6.4mbg1 (no Gw - well depth) 1145 24104120 * MMMM

Permeability Testing - Rising or Falling Head Test Report

Client: Project:	Propose	n Pty Ltd d Commercia		oment	Project No:86767.00Test date:16-Apr-20
Location:	8-10 Lee	e Street, Hayn	narket		Tested by: NB
Test Locatio Description: Material type:	Standpip	e in borehole ne			Test No.BH103Easting:333978mNorthing6249263mSurface Level:21.2m AHD
Details of We Well casing d Well screen c Length of wel	liameter (2r) diameter (2R))	50 76 0.8	mm mm m	Depth to water before test7.5mDepth to water at start of test9.27m
Test Results	5	, , , , , , , , , , , , , , , , , , ,		_	
Time (min)	Depth (m)	Change in Head: dH (m)	d H/Ho		DRAFT
0	9.27	1.77	1.000	-	
1	8.76	1.26	0.712	1	
2	8.71	1.21	0.684	1	
3	8.67	1.17	0.661		
4	8.64	1.14	0.644	1.00	
5	8.61	1.11	0.627		
6	8.57	1.07	0.605		
7	8.52	1.02	0.576		
8	8.48	0.98	0.554	•	
9	8.44	0.94	0.531	Head Ratio dh/ho	
10	8.4	0.90	0.508	tio	
17	8.15	0.65	0.367	1 0.10	
20	8.07	0.57	0.322	lead	
30	7.84	0.34	0.192		
40	7.7	0.2	0.113	_	
50	7.61	0.11	0.062	_	
60	7.56	0.06	0.034	_	
70	7.53	0.03	0.017	_	
80	7.51	0.01	0.006	0.01	
82	7.5	0	0.000	-	0 1 10 100 Time (minutes)
					To = 17 mins 1020 secs
Theory:		ead Permeability Le/R)]/2Le To	calculated	where r = r R = radius Le = length	by Hvorslev adius of casing of well screen of well screen aken to rise or fall to 37% of initial change
Hydra	ulic Condu	ctivity	k = =		E-06 m/sec 120 cm/hour

Permeability Testing - Rising or Falling Head Test Report

Client:		n Pty Ltd			Project No:	86767.00	
Project:	Propose	ed Commercia	I Develop	oment	Test date:	24-Apr-20	
_ocation:		e Street, Hayn			Tested by:	AS	
Fest Location	n				Test No.	BH103	
Description:	Standpip	e in borehole			Easting:	333978	m
Material type:	Sandstor	ne			Northing	6249263	m
					Surface Level:	21.2	m AHD
Details of We	ell Installatio	on					
Vell casing di			50	mm	Depth to water before test	7.44	m
Vell screen d)	76	mm	Depth to water at start of test	8.63	m
ength of well	• •		0.8	m			
est Results							
Time (min)	Depth (m)	Change in	d H/Ho	7			
	Deptil (III)	Head: dH (m)	UH/HU	_		YAF	•
0	8.63	1.19	1.000	1			-
1	8.52	1.08	0.908				
2	8.44	1.00	0.840				
3	8.39	0.95	0.798				
4	8.34	0.90	0.756	1.00			
5	8.28	0.84	0.706				
6	8.22	0.78	0.655				
7	8.17	0.73	0.613				
8	8.12	0.68	0.571				
9	8.08	0.64	0.538	Head Ratio dh/ho			
10	8.04	0.60	0.504				
14.5	7.89	0.45	0.378	ឆ្ 0.10			
20	7.75	0.31	0.261	ead			
30	7.6	0.16	0.134				
40	7.53	0.09	0.076				
50	7.49	0.05	0.042				X III
60	7.47	0.03	0.025				
70	7.46	0.02	0.017	_			ĵ
80	7.45	0.01	0.008	0.01			
88	7.44	0	0.000	_	0 1	10	100
				-	Time (minutes	5)	
		† †		1	To = 14.5 mir	าร	
					870 sec	S	
boong	Eallis - L	ad Dormoskilli	ooloulated				
heory:		ead Permeability [Le/R)]/2Le To	calculated				
	к = [r in(radius of casing		
					of well screen		
					h of well screen		
				To = time	taken to rise or fall to 37% of initial	change	
Hydra	ulic Condu	ctivity	k =	1.4	E-06 m/sec		
		•		. 0.4			

Permeability Testing - Rising or Falling Head Test Report

Client:		n Pty Ltd			Project No: 86767.00
Project:		ed Commercia		oment	Test date: 16-Apr-20
Location:	8-10 Lee	e Street, Hayn	narket		Tested by: NB
Test Locatio Description: Material type:	Standpip	e in borehole ne			Test No.BH104Easting:333983mNorthing6249272mSurface Level:21.2m AHD
Details of We	ell Installatio	on			
Well casing d	liameter (2r)		50	mm	Depth to water before test 7.5 m
Well screen c	liameter (2R))	76	mm	Depth to water at start of test 18.8 m
Length of wel	l screen (Le)		6	m	
Test Results	i				
Time (min)	Depth (m)	Change in Head: dH (m)	d H/Ho		
0	18.80	11.30	1.000	1	
1	18.57	11.07	0.980		
2	18.39	10.89	0.964		
3	18.21	10.71	0.948		
4	18.04	10.54	0.933	1.00	
5	17.84	10.34	0.915		
6	17.66	10.16	0.899		
7	17.48	9.98	0.883		
8	17.3	9.80	0.867		
9	17.11	9.61	0.850	Head Ratio dh/ho	
10	16.93	9.43	0.835	io d	
20	15.31	7.81	0.691	0.10 ga	
30	13.19	5.69	0.504	ead	
37	11.72	4.22	0.373	Ť	
40	11.08	3.58	0.317		
50	8.99	1.49	0.132		
60	7.58	0.08	0.007		
70	7.52	0.02	0.002		
80	7.52	0.02	0.002	0.01	
90	7.51	0.01	0.001	_	0 1 10 100
100	7.51	0.01	0.001		Time (minutes)
					To = 37 mins 2220 secs
Гheory:		ead Permeability Le/R)]/2Le To	calculated	where r = r R = radius Le = length	
Hydra	ulic Condu	ctivity	k = =		E-07 m/sec 43 cm/hour

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 241152

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Huw Smith
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	86767.00, Haymarket, 8-10 Lee Street, Geo
Number of Samples	4 Soil
Date samples received	20/04/2020
Date completed instructions received	20/04/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details								
Date results requested by	27/04/2020							
Date of Issue	27/04/2020							
NATA Accreditation Number 2901. This document shall not be reproduced except in full.								
Accredited for compliance with IS	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *							

<u>Results Approved By</u> Priya Samarawickrama, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager

Soil Aggressivity					
Our Reference		241152-1	241152-2	241152-3	241152-4
Your Reference	UNITS	BH103	BH103	BH104	BH104
Depth		2.9-3	5-5.1	2.8-2.9	6.3-6.45
Date Sampled		16/04/2020	16/04/2020	16/04/2020	16/04/2020
Type of sample		Soil	Soil	Soil	Soil
pH 1:5 soil:water	pH Units	4.8	6.3	4.7	6.4
Electrical Conductivity 1:5 soil:water	μS/cm	42	19	68	11
Chloride, Cl 1:5 soil:water	mg/kg	<10	<10	20	<10
Sulphate, SO4 1:5 soil:water	mg/kg	51	20	52	10

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.

QUALITY	CONTROL:	Soil Agg		Du	Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	2	6.3	6.3	0	101	[NT]
Electrical Conductivity 1:5 soil:water	µS/cm	1	Inorg-002	<1	2	19	20	5	99	[NT]
Chloride, Cl 1:5 soil:water	mg/kg	10	Inorg-081	<10	2	<10	<10	0	91	[NT]
Sulphate, SO4 1:5 soil:water	mg/kg	10	Inorg-081	<10	2	20	20	0	95	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control Definitions									
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.								
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.								
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.								
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.								
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which								

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

are similar to the analyte of interest, however are not expected to be found in real samples.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

CHAIN OF CUSTODY DESPATCH SHEET

															_
Project No:	86767.00			Suburb: Haymarket Order Number Image: Content of the second sec					To: Envirolab Services						
Project Name:	Name: Haymarket, 8-10 Lee Street, Geo														
Project Manage	er: Huw S	Smith			Sampler: NB					Attn: Simon Song					
Emails:	huw.s	mith@dou	ıglaspartr	<u>,</u>									·		
Date Required:	Same	day⊬□	24 hours	□ 48 ho	ours 🗆	72 hou	urs □	Standard	d x	Email:					
Prior Storage:	Esky	x Fridg	je x She	Do samples contain 'potential' HBM? Yes D N						(If YES, ther	handle,	transport and	store in accordance	e with FPM HAZID)	
		pled	Sample Type	Container Type	Analytes										
Sample Lab Jose No Dia Complete Coordinate		P - plastic	Aggressivity	(pH, EC, SO4, CI)								Notes/preservation			
84103 2.9-	B	16.4	. 🗸		~									· · · · · · · · · · · · · · · · · · ·	····
5-5	-	4													
					-								FILVIROLAB	Envirolab Services 12 Ashley St Chatswood NSW 2007	·
<u> 34104 2.8</u>	-29	9										*		Ph: (02) 9910 6200	I
	-64	- 11			1							۰.	Job No:	41152	
		·		· · · · ·									Date Receive	1: 20-4-C	0
													Time Receive Received by:	neren	
					-	-	,						Temp: Cool/A	mbient	
							- ·						Cooling: Ice/I Security: Inta	ct/Broken/None	
			1												
		_			<u></u>										
· · · · · · · · · · · ·	<u> </u>														
			·												
														· · · · ·	·
PQL (S) mg/kg			<u> </u>			1						ANZE	CC PQLs	req'd for all wa	ter analytes 🛛
PQL = practical		ation limit	. If none g	given, defaul	t to Labor	ratory Me	thod Dete	ction Lim	it	Lab R	eport/Ref				
Total number o	fsample	es in conta	ainer:	Reli	nquished	d by:	T	Transpo	orted to la	borator	/ by:	_			
Send Results to	b: D	ouglas Par	tners Pty L	td Add	ress	-						Phon		Fax:	
Signed:	Taer	i		Received b	y: <i>f/e.l.</i>	en					Date & T	ime:	20-4	11 00	