

Report on Supplementary (Contamination) Site Investigation

Proposed Commercial Development 8-10 Lee Street, Haymarket

> Prepared for Atlassian Pty Ltd

Project 86767.06 September 2020

Douglas Partners Geotechnics | Environment | Groundwater

Document History

Document details

Project No.	86767.06	Document No.	R.001.Rev1	
Document title	Report on Supplementary (Contamination) Site Investigation			
	Proposed Commercial Development			
Site address	8-10 Lee Street, Hayı	market		
Report prepared for	Atlassian Pty Ltd			
File name	86767.06.R.001.Rev	1		

Document status and review

Status	Prepared by	Reviewed by	Date issued
Draft A	Alyssa Spencer	Paul Gorman	18 June 2020
Draft B	Alyssa Spencer	Paul Gorman	14 August 2020
Revision 0	Alyssa Spencer	Paul Gorman	04 September 2020
Revision 1	Alyssa Spencer	Paul Gorman	25 September 2020

Distribution of copies

Status	Electronic	Paper	Issued to
Draft A	1	0	Atlassian Pty Ltd c/o Josh Finnegan of Avenor Pty Ltd
Draft B	1	0	Atlassian Pty Ltd c/o Josh Finnegan of Avenor Pty Ltd
Revision 0	1	0	Atlassian Pty Ltd c/o Josh Finnegan of Avenor Pty Ltd
Revision 1	1	0	Atlassian Pty Ltd c/o Josh Finnegan of Avenor Pty Ltd

The undersigned, on behalf of Douglas Partners Pty Ltd, confirm that this document and all attached drawings, logs and test results have been checked and reviewed for errors, omissions and inaccuracies.

Signature		Date
Author	isa Nomeer	25 September 2020
Reviewer	orman	25 September 2020

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au 96 Hermitage Road West Ryde NSW 2114 PO Box 472 West Ryde NSW 1685 Phone (02) 9809 0666

Table of Contents

Page

1.	Intro	duction	1
	1.1	General	1
	1.2	Description of the Site	3
	1.3	Site and Surrounding Context	4
	1.4	Project Description	4
2.	Scop	e of Works	6
3.	Site	dentification and Description	7
4.	Revi	ew of DP (2019)	9
	4.1	Site History	9
	4.2	Environmental Setting	11
	4.3	Field Work Results and Conclusions	11
5.	Cond	ceptual Site Model	13
6.	Field	Rationale and Methods	14
	6.1	Data Quality Objectives	14
	6.2	Data Quality Indicators	14
	6.3	Sampling Locations and Rationale	14
	6.4	Drilling and Soil Sampling Procedure	15
	6.5	Groundwater Well Installation and Sampling	16
7.	Site	Assessment Criteria	17
	7.1	Health Investigation and Screening Levels	18
	7.2	Management Limits - Petroleum Hydrocarbons	20
	7.3	Ecological Investigation Levels and Ecological Screening Levels	21
	7.4	Asbestos	22
	7.5	Waste Classification Criteria	22
	7.6	Groundwater Investigation Levels	
		7.6.1 Health Screening Levels - Petroleum Hydrocarbons	25
8.	Field	Work Results	26
	8.1	Soil	26
	8.2	Groundwater	28
9.	Labo	ratory Results	28
	9.1	Soil	29
	9.2	Groundwater	30

	9.3		nary Waste Classification Classification of Natural Soils	
10.	Reco	mmenda	ations and Conclusion	33
11.	1. Glossary of Key Terms		35	
12.	Refe	rences		35
13.	Limita	ations		36

Appendices

Appendix A:	About This Report
Appendix B:	Site Drawing
Appendix C:	Borehole Logs
Appendix D:	Groundwater Field Sheets
Appendix E:	Calibration Records
Appendix F:	Results Tables
Appendix G:	Chain of Custody, Sample Receipt Advice and Certificate of Analysis Documentation
Appendix H:	Chromatograms
Appendix I:	Data Quality Report
Appendix J:	Environmental Risk Analysis

Report on Supplementary (Contamination) Site Investigation Proposed Commercial Development 8-10 Lee Street, Haymarket

1. Introduction

1.1 General

Douglas Partners Pty Ltd (DP) has been commissioned by Atlassian (the Applicant) to prepare this Supplementary (Contamination) Site Investigation (SSI) report in accordance with the technical requirements of the Secretary's Environmental Assessment Requirements (SEARs), and in support of the SSD-10405 for a commercial and hotel development above the Former Inwards Parcel Shed (Parcels Shed) at 8-10 Lee Street, Haymarket.

Specifically, this report addresses the following SEARs:

SEARs	Report Reference	
18. Contamination and Remediation:	Section 4.2 and Section 9.3 (Reference to Acid	
A Preliminary Site Investigation Study if needed,	Sulphate Soil)	
and/or further information as required by SEPP55	Section 4 (Reference to Preliminary Site	
including an Acid	Investigation)	
Sulphate Soils Management Plan.	Section 5-10 (Further information as required)	
Plans and Documents:	To include this SSI as part of the Environmental	
'soil and contamination report'	Impact Statement (EIS)	

In addition to the above table, the SEARS require an environmental risk analysis be included in the environmental impact statement (EIS) to identify potential environmental impacts associated with the Project. The environmental risk analysis associated with soil and groundwater contamination is attached in Appendix J.

The investigation was undertaken in accordance with the Douglas Partners Pty Ltd (DP) proposal SYD190190.P.003 dated 4 February 2020.

This report follows previous geotechnical and contamination investigations by DP at the Site (the findings of the contamination investigation are summarised in Section 4). The investigation was undertaken concurrently with a DP hazardous materials (HAZMAT) survey and a supplementary geotechnical site investigation. The resultant reports are summarised in Table 1.

Table 1: Report Sequence

Report Title	Date	DP Report
Report on Geotechnical Investigation	August 2019	86767.00.R.001
Report on Detailed Site (Contamination) Investigation	August 2019	86767.01.R.001
Reports on Groundwater Monitoring and Permeability Assessment	September 2019 to May 2020	86767.00.R.002 to 86767.00.R.005
Hazardous Building Materials (HBM) Register	July 2019	86767.02.R.001
Report on Hazardous Building Material Survey	June 2020	86767.05.R.001
Report on Supplementary Site (Geotechnical) Investigation	June 2020	86767.05
Report on Supplementary Site (Contamination) Investigation (this current report)	June 2020	86767.03.R.001
Remediation Action Plan - Proposed Commercial Development	June 2020	86767.03.R.002

It is understood that the proposed development at the Site is to be divided into a 'Developer Works zone' and a 'State Works - Link Zone'. The Developer Works are proposed to include excavation for a two-level basement on the western side of Central followed by construction of a multi-storey mixed-use tower, whereas the State Works to the west of the tower include a two-level basement with a northsouth connection to proposed future, adjoining basements. The approximate outlines of the zones are shown on Drawing 1, Appendix A. Further information about the development is provided in Section 1.4.

The objectives of the SSI are to:

- Assess the contamination status of the subsurface soil and groundwater at parts of the Site that were not investigated in the Detailed Site (Contamination) Investigation (DP, 2019);
- Assess the suitability of the Site, from a contamination perspective, for the proposed commercial development; and
- Make recommendations for further investigations and / or remediation (if required) to render the Site suitable for the intended commercial development.

The assessment process, including approval of this SSI, is subject to a Site Audit by a NSW Environment Protection Authority (EPA) accredited Site Auditor, Mr Rod Harwood of Harwood Environmental Consultants Pty Ltd, under part 4 of the Contaminated Land Management (CLM) Act 1997).

This SSI has been conducted with reference to guidelines made or endorsed by the NSW Environment Protection Authority under the Contaminated Land Management Act 1997 (NSW EPA, 1997) including in particular the National Environment Protection Council National Environment Protection (Assessment of Site Contamination) Measure 1999 (amended 2013, NEPC 2013).

1.2 Description of the Site

The Site is known as 8-10 Lee Street, Haymarket. It is an irregular-shaped allotment (refer Figure 1 below). The allotment has a small street frontage to Lee Street, however, this frontage is limited to the width of the access handle.

The Site comprises multiple parcels of land which exist at various stratums. All the lots are in the freehold ownership of Transport for NSW (TfNSW), with different leasing arrangements:

- Lot 116 in DP 1078271: YHA is currently the long-term leaseholder of the Site;
- Lot 117 in DP 1078271: This is currently in the ownership of TfNSW and the applicant is seeking the transfer of the leasehold on this land to provide for an optimised basement and servicing outcome for the Site;
- Lot 118 in DP 1078271: This is currently in the ownership of TfNSW and the applicant is seeking the transfer of the leasehold for part of the air-rights above part of this allotment to allow for an optimised building envelope for the Project. The proposal also uses a part of Lot 118 in DP 1078271 within Ambulance Avenue for Day 1 bike access, secondary pedestrian access and fire service vehicle access; and
- Lot 13 in DP 1062447: This is currently in the ownership of TfNSW, however, TOGA (who hold the lease for the Adina Hotel) have a long-term lease of this space in the lower ground area.

The Site has an area of approximately 3,764 sqm which includes 277 sqm of air rights that apply from RL40.

Figure 1: Site Location and Dimensions Image Source: BVN / SHoP

1.3 Site and Surrounding Context

The Site is directly adjacent to the Western Wing Extension of Central Station, and forms part of the 'Western Gateway Sub-precinct' of the Central Railway Station lands. It is situated between the existing 'CountryLink' and 'Intercity' railway platforms to the east and the Adina Hotel (former Parcel Post Office) to the west.

Existing vehicle access to the Site is via Lee Street, however, the Lee Street frontage of the Site is only the width of the access handle.

Current improvements on the Site include the Parcels Shed, which operated in association with the former Parcels Post Office (now the Adina Hotel). The Site is currently used as the Sydney Railway Square Youth Hostel (YHA). The Site also includes the western entryway to the Devonshire Tunnel, which runs east-west through Central Station under the existing railway lines.

As part of the SEARS requirements, SHoP BVN and Urbis Pty Ltd has requested DP to incorporate the following information:

The Site is situated in a well-connected location in Sydney, directly adjacent to Central Station Railway which provides rail connections across metropolitan Sydney, as well as regional and interstate connections and a direct rail link to Sydney Airport. The Site is also within close proximity to several educational institutions and is a city fringe location which provides access to key support services.

Central Railway Station is currently undergoing rapid transformation to allow for integration of rail, metro and light rail transport infrastructure. This will elevate the role of Central Station not only for transport but also enhance opportunities for urban renewal and revitalisation of the surrounding precinct. This is one of the key drivers for the identification of the Central Station State Significant Precinct (Central SSP) and the Western Gateway Sub-precinct, to accommodate a new innovation and technology precinct.

The proximity of the Western Gateway Sub-precinct to the city, while still being located outside the core Sydney CBD, provides opportunity for it to evolve to attract technology and innovation companies. It has access to all required services while being sufficiently separate to the CBD to establish a distinct technology industry ecosystem. Its CBD fringe location will likely provide affordable commercial rents which will support 'Startups' and entrepreneurs, which are a key component of an innovation precinct.

1.4 **Project Description**

As part of the SEARS requirements, SHoP BVN and Urbis Pty Ltd has requested DP to incorporate the following information. In DP's opinion, the non-italicised paragraphs below are relevant for the purposes of this SSI.

The proposed state significant development application will facilitate the development of a new mixed use development comprising 'tourist and visitor accommodation' (in the form of a 'backpackers') and commercial office space within the tower form. Retail, lobby and food and drink premises at the Lower Ground level and Upper Ground level.

Atlassian Central at 8-10 Lee Street will be the new gateway development at Central Station which will anchor the new 'Technology Precinct' proposed by the NSW Government. The new building will be purpose-built to accommodate the Atlassian Headquarters, a new TfNSW Pedestrian Link Zone, and the new Railway Square YHA backpacker's accommodation, in addition to commercial floorspace to support technology 'start-ups'.

The new development is to be built over the existing heritage Parcels Shed located on the western boundary of Central Station with the Adina hotel to the west. The works includes a 38-storey mixed-use tower with basement loading dock facilities accessed off Lee Street, 2 storey lobby utilising the Parcels Shed building, lower ground and upper ground retail, YHA hostel and commercial tower with staff amenities to the mid-level and roof top areas and a pedestrian Link Zone works for TfNSW.

The building design has been conceived to support the delivery of a site plan designed to connect with future developments to both the south and east, and integrate with a cohesive public realm for the broader Sydney community in accordance with NSW government strategic planning.

The tower design is a 'demonstration project' for Atlassian, representing their commitment to environmental sustainability and contemporary workplace settings through tower form and construction systems along with a set of emblematic outdoor workplaces stacked in the tower form.

The existing Parcels Shed will be adaptively re-used in accordance with current best practice heritage process and will form the upper level of a 2-storey entry volume that connects visually with the 2 level Link Zone. Over the roof of the Parcels Shed, a new privately owned but publicly assessible landscaped area will be created as the first part of a new upper level public realm that may extend to connect to a future Central Station concourse or future Over Station Development.

The proposed mixed-use tower directly adjoins a live rail environment to the east and public domain to the north, west and south. These works will consider these rail environments and have been designed to ensure that all TfNSW external development standards are achieved. This ensures there is no impact to the operation or safety of these TfNSW assets.

Interfaces from the overall site and especially the State works Link Zone have been designed in consultation with the adjoining stakeholders. These stakeholders include TfNSW to the north and south, Toga and the Adina Hotel operator to the west and the Dexus Fraser's site to the south. Connections via the Link Zone, through the basements and off the proposed new Link Zone dive ramp, will be designed to enable existing and future developments to function in both the 'Day 1 scenario' and 'end state', when all developers have completed their works.

The overall project aspiration is to create a world class tech precinct with effective pedestrian links through the Atlassian site to the Central Station western forecourt to Central Walk west and adjoining stakeholder's sites.

2. Scope of Works

The scope of works for the SSI comprised the following:

- Preparation of Safe Work Method Statements (SWMS) and Field Work Safety Environmental Plan (FWSEP);
- Completion of a Dial-Before-You-Dig (DBYD) underground services records search and scanning for underground services at sample locations;
- Drilling of 24 boreholes using a combination of drilling techniques depending on access, depth and purpose (diacore, hand auger / solid flight auger / push tube, wash bore and HQ coring / NMLC coring) to a depth of up to 20 m bgl. 19 of the boreholes were used for contamination sampling (soil, groundwater or both) and five of the boreholes for geotechnical purposes only. All borehole logs have been included in this report for reference and discussion of sub-surface conditions;
- Collection of soil samples from 17 contamination boreholes at regular intervals, changes in strata and where signs of contamination were observed;
- Screening of all samples collected with a photo-ionisation detector (PID) to assess the likely presence or absence of volatile organic compounds (VOC);
- Laboratory analysis on 37 selected soil samples at a NATA accredited laboratory for a combination the following common potential contaminants of concern:
 - o Heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc) 34 samples;
 - o Polycyclic aromatic hydrocarbons (PAH) 37 samples;
 - o BTEX (benzene, toluene, ethyl benzene, xylenes) 34 samples;
 - o Total recoverable hydrocarbons (TRH) 34 samples;
 - o Phenols 16 samples;
 - o Organochlorine pesticides (OCP) 16 samples;
 - o Organophosphorus pesticides (OPP) 16 samples;
 - o Polychlorinated biphenyl (PCB) 16 samples; and
 - o Asbestos 25 samples.
- Installation of seven groundwater monitoring wells;
- Development of groundwater wells by removing a minimum of three bore volumes or until all standing water was removed from the well. Purged water was collected in drums for disposal to a licenced waste water facility;
- Allowing the wells to stabilise for at least five days prior to sampling;
- Collection of groundwater samples from each monitoring well using a low-flow sampling pump. Physical parameters were measured and recorded prior to sampling;
- Laboratory analysis on seven groundwater samples for a combination of the following potential contaminants of concern:
 - o Heavy metals 7 samples;
 - o TRH 7 samples;
 - o BTEX 7 samples;
 - o PAH (low level) 7 samples;

- o OCP (trace level) 7 samples;
- o OPP (trace level) 7 samples;
- o PCB 7 samples;
- o Phenols 4 samples;
- o Volatile Organic Compounds (VOC) 5 samples; and
- o Cyanide 3 samples.
- Quality Assurance / Quality Control (QA / QC) sampling analysis, including inter-laboratory replicates, intra-laboratory replicates, trip spikes and trip blanks; and
- Provision of this SSI report.

3. Site Identification and Description

A summary of the site identification details is provided below.

Site Address	8-10 Lee Street, Haymarket		
Legal Description	Lot 116 in DP1078271		
	Lot 117 in DP1078271		
	Lot 118 in DP 1078271		
	Part of Lot 13 in DP1062447		
Geographic Co-ordinates	NE: Latitude: -33.88358, Longitude: 151.20496		
	NW: Latitude: -33.88333, Longitude: 151.20415		
	SE: Latitude: -33.884174, Longitude: 151.204638		
	SW: Latitude: -33.884016, Longitude: 151.204308		
Area	Overall Site (inclusive of both the 'State Works' and 'Developer Works' zones): 3,764 m ²		
	Proposed Basement (within the 'Developer Works' zone): 1800 m ²		
Zoning	Zone B8 Metropolitan Centre		
Local Government	City of Sydney Council		
Site Surroundings	North - Ambulance Avenue		
	East - Central Station		
	West - Adina Apartment Hotel		
	South - Multi-storey government office building		

The overall Site is an irregular, 'L' shape. The Site has a small street frontage to Lee Street, however, this frontage is limited to the width of the access handle. The Site boundary and different areas within the Site are shown on Drawing 1, Appendix B.

The Site is located within the Sydney Central Business District area and is surrounded by different existing structures and infrastructure including multi-storey buildings, Central Station facilities and rail corridors. the Devonshire Street pedestrian tunnel passes below the southern part of the Site and shares its southern boundary with an existing multi-storey government office building.

At the time of field investigation, the Site was divided into three main components. Detailed descriptions of the three components together with photographs are included in DP (2019). The components comprise:

1. Developers Works - the YHA (RLs between 20.1 m AHD and 21.2 m AHD)

A two-storey hostel, redeveloped from the former Inwards Parcel building in 2004 (see Section 4.1). The Site contains four plywood rail carriages along the eastern boundary which are used for accommodation.

Boreholes drilled as part of the SSI (BH101, BH102, BH103, BH104 and BH105) are included in the YHA component of the Site.

2. Developer Works - Gate Gourmet Rail Pty Ltd (or lower level of the YHA) with RL 15.5 m AHD)

Gate Gourmet Rail is located on Ambulance Lane, a narrow street between the Western Forecourt retaining wall and Railway Colonnade Drive. It is used as a catering warehouse and is situated below the YHA. It is also connected to tunnels which consist of electrical switchboards, plant rooms, a chemical storage room and waste collection rooms.

Boreholes drilled as part of the SSI (BH106, BH113, BH114, and BH115) are included in the Gate Gourmet component of the Site.

3. State Works - Link Zone with RLs between 15.3 m AHD and 18.7 m AHD

The 'Link Zone' predominately comprises the Upper Carriage Lane and a commercial storage area on the lower ground level.

The Upper Carriage Lane is an asphalt-surfaced access ramp that connects Lee Street to the YHA and the adjacent Adina hotel. The ramp is also a carpark for the adjacent Adina hotel. On the top of the ramp is the carpark for the YHA.

The ramp and the YHA carpark are on bitumen-paved surface, and the YHA carpark is located on a suspended level with a commercial storage situated below. The commercial storage area is partitioned with metal wire mesh enclosures on concrete paved floor.

Boreholes drilled as part of the SSI (BH107A, BH107B, BH108, BH109A, BH109B, BH110, BH111, BH112A, BH112B, BH116 and BH117) are included in the State Works or Link Zone part of the Site.

4. Review of DP (2019)

4.1 Site History

Historical information for the Site and nearby Sites was sourced from Rappoport (2014)¹, WP (2019)², the National Library of Australia website, historical title deeds and historical aerial imagery.

The land title information provided suggested that the Site was initially granted for use as a cemetery between 1878 and 1937. Since 1964, the Site has been owned by State Rail. Information provided in the WP (2019) and the National Library of Australia indicated that the Site was used as part of the former Sydney Benevolent Asylum (The Asylum) between c. 1820 and 1896. The Asylum served as a refuge place for the poor, abandoned, destitute and sick. The Asylum and associated outbuildings were demolished from 1901 to provide room for the Central railway station.

The Devonshire Street Cemetery (or the Old Sydney Burial Ground) was constructed in 1820 and located to the east of the subject Site (shown on Figure 2). The subject Site had been granted for use as a cemetery in the late 1870s and mid-1900s. Information from the National Library of Australia indicated that the cemetery was later moved to allow for the development of Central railway station and the remains of deceased persons were removed and relocated elsewhere.

The historical aerial photography indicated land use of the Site and the adjoining properties has been commercial / industrial since at least 1943. The Site owner and Rapporport (2014) indicated that the subject Site was previously used as the Inwards Parcel Shed for the storage of the post office's parcels transported by train. The Parcel Shed was redeveloped into a two-storey backpacker hostel (the YHA) in 2004.

A Preliminary Site (Contamination) Investigation (PSI) undertaken by Aargus (2017)³ noted that a backfilled former swimming pool was situated in the southern corner of the YHA. The potential use of uncontrolled fill to backfill the former swimming pool was identified in DP (2019), making the former swimming pool an area of potential concern. It was subsequently determined that the former swimming pool was situated on a suspended platform and was not backfilled as previously suggested. The former swimming pool was determined to no longer be an area of potential concern and further investigation of the area was not deemed necessary.

The major function of the western yard (to the south-west of the Site, depicted on Figure 3) constructed c. 1904, revolved around rail shunting, which became obsolete by the late 20th Century. The shed was also used for the cleaning of carriages and storage of coal and water for steam locomotives. The western shed was demolished in 1998 to allow for the construction of the Henry Deane Plaza. It is presumed that the redevelopment of the parcel shed into a two-storey backpacker hostel on the subject Site occurred concurrently.

¹ Rappoport Pty Ltd, *Statement of Heritage Impact on Lee Street Substation, Central Station, Sydney,* May 2014 (Project Number 2043 - D7) (Rappoport 2014)

² Weir Phillips Heritage and Planning Pty Ltd, *Letter Report on Heritage Impact Statement: Standard Exemption* s57(2) - Former Inwards Parcels Shed - No. 8-10 Lee Street, Sydney, April 2019 (WP 2019)

³ Aargus Pty Ltd, Preliminary Site Investigation: 8-10 Lee Street, Haymarket NSW, November 2017, Aargus (2017)

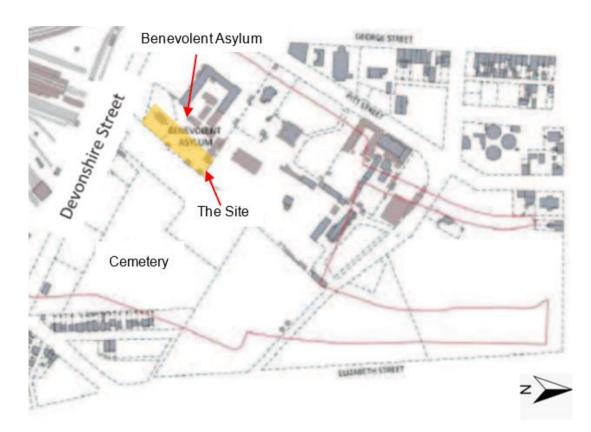


Figure 2: A Locality Map dated c. 1887, Showing Location of the Site, the Asylum and the Old Cemetery, Sourced from Rappoport (2014)

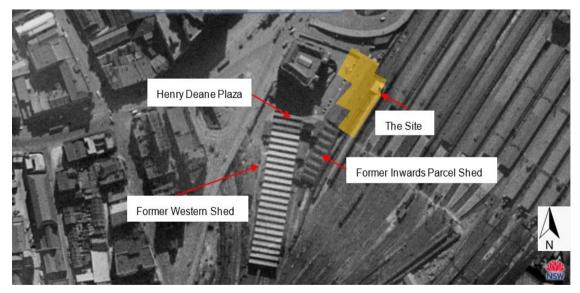


Figure 3: Aerial View of the Site, 1943, Showing the Site, Former Inwards Parcel Shed and Western Shed, Sourced from SIX Maps

4.2 Environmental Setting

Regional Topography	Sloping downwards towards the northwest.		
Site Topography	RL 21.2 m to RL 15.5 m; sloping downwards towards the northwest.		
Soil Landscape ⁴	Blacktown residual soils, characterised by shallow to moderately deep red and brown podzolic soils on crests, slopes and well drained areas and deep yellow podzolic soils and soloths on lower slopes and in areas of poor drainage.		
Geology ⁵	Ashfield Shale overlying Hawkesbury Sandstone.		
Acid Sulfate Soils ⁶	The Site is in an area of low probability of Acid Sulfate Soils (ASS) occurrence.		
Surface Water	No surface water was observed to be present on Site; surface water is expected to drain in the same direction as the regional topography.		
Groundwater	Groundwater is expected to flow in a north-westerly direction towards Darling Harbour which is located approximately 1.1 km northwest of the Site. Inferred groundwater flow direction is shown on Drawings 3 and 4, Appendix B.		

4.3 Field Work Results and Conclusions

The fieldwork for the DSI (DP, 2019) comprised the following:

- Drilling of nine boreholes (BH1-9) up to depth of 20 m bgl for environmental and geotechnical purposes;
- Soil sampling at regular intervals and analysis of samples for the contaminants of concern identified in the conceptual site model (see Section 5);
- Construction of three groundwater monitoring wells (BH1, BH5 and BH8); and
- Development and sampling from BH5 and BH8 for analysis of the contaminants of concern identified in the conceptual site model. BH1 was dry at the time of sampling and during subsequent site visits and therefore was not sampled.

Locations of the boreholes and monitoring wells installed for the DSI are shown in Drawing 1, Appendix B. Borehole logs for BH1-BH9 are included in Appendix C.

Borehole logs, included in Appendix C of this report, indicated that inclusions of ash, coal and slag were present in the fill at BH1, BH2, BH3, BH4 and BH6. It was considered that the ash, coal and slag could be associated with historic land use of adjacent sites (such as storage of coal in the western shed as discussed in section 4.1) or with the nature of the fill material that is present across the Site. The ash, coal and slag are considered likely to be the source of the elevated concentrations of B(a)P and PAH in the soil. A full discussion of sub-surface conditions at the Site is presented in DP (2019), Section 11.

⁴ Sydney 1:100 000 Soils Landscape Sheet

⁵ Sydney 1:100,000 Geological Series Sheet

⁶ NSW Acid Sulfate Soils Risk mapping data from NSW Department of Environment and Climate Change

The adopted assessment criteria for the comparison of soil and groundwater test results were based on a commercial / industrial land use scenario and are presented in detail in DP (2019), Section 12.

Analytical results for the 16 soil samples selected for analysis were within the adopted Site Assessment Criteria (SAC) for commercial land use except for benzo(a)pyrene TEQ [B(a)P TEQ] in sample BH3/0.2-0.3 (42 mg/kg), which marginally exceeded the HIL of 40 mg/kg. The recorded exceedance was, however, noted to be statistically insignificant. Furthermore, the immediate underlying fill sample, BH3/0.7-0.8, contained a much lower concentration of B(a)P TEQ of 6.3 mg/kg, which was well within the HIL, indicating that the vertical extent of B(a)P TEQ was likely limited to the overlying, near-surface fill material.

Analytical results for the two groundwater samples were within the adopted groundwater investigation levels (GIL) with the exception of copper and zinc in BH8, BH5 and its replicate sample, BD1/20190730. The elevated concentrations of metals were considered to be within the normal range of background concentrations in heavily urbanised areas of Sydney, and therefore, no further assessment of metals in groundwater in BH5 and BH8 was considered necessary.

All contaminant concentrations for the analysed fill / soil samples were within the contaminant thresholds (CT1s) for General Solid Waste (GSW), under the NSW EPA (2014) Waste Classification Guidelines, except for total PAH in BH3/0.2-0.3 and BH6/0.2-0.3, which were classified as Restricted Solid Waste (RSW) and B(a)P in soil samples BH3/0.2-0.3 which was classified as Hazardous Waste. B(a)P leachability results for all samples with exceedances was below the RSW (TCLP2) thresholds and the laboratory's practical quantitation limits, indicating low potential for leachability at those locations.

All contaminant concentrations for the analysed natural soil samples were within the published background ranges for Australian soils except for the concentrations of B(a)P and PAH in BH6/0.2-0.3, which were above the RSW thresholds (i.e., both CT2 and SCC2). Therefore, the natural material in BH6/0.2-0.3 represented RSW and should be disposed as such.

The DSI concluded that the Site could be made suitable for the proposed development subject to the following recommendations:

- Conduct additional soil sampling and testing, either using *in situ* or *ex situ* sampling methods to further characterise the Site in areas not yet tested (i.e., the Link Zone) and to confirm the waste classification for surplus soils requiring off-site disposal. This additional sampling and testing was undertaken as part of the current investigation;
- Soil investigation of the building footprints following demolition. Care should be undertaken during demolition to prevent cross-contaminating the subsurface soils with hazardous building material such as asbestos; and
- Prepare an unexpected finds procedure as part of the civil and construction site management plan, such that unexpected finds of contamination (e.g., asbestos, odorous soils or seepage water) are managed appropriately.

It was noted that If other land uses are applicable for the Site or part of the Site, particularly for a more sensitive land use, then the current and any future results will need to be evaluated in accordance with the specific type of land use.

5. Conceptual Site Model

A Conceptual Site Model (CSM) is a representation of site-related information regarding contamination sources, receptors and exposure pathways between those sources and receptors. The CSM provides the framework for identifying how the Site became contaminated and how potential receptors may be exposed to contaminants of potential concern (COPC) either in the present or the future i.e., it enables an assessment of the potential source - pathway - receptor linkages (complete pathways). A CSM was developed for DP (2019) and is summarised in Table 2, below.

Source / COPC	Transport Pathway	Receptor	Risk Management Action Recommended
S1 - Uncontrolled fill and building rubble associated with demolition of former building	 P1 - Ingestion and dermal contact P2 - Inhalation of dust and / or vapours 	R1 - Maintenance and construction workers	The potential for contamination is considered to be low to moderate.
COPC include: metals, TRH, BTEX, PAH, PCB,		R2 - Current and future users	Intrusive investigation (as undertaken for this report) along with a Remediation Action Plan
OCP, OPP, phenols, SMF, VOC and asbestos.	P2 - Inhalation of dust and / or vapours	R3 - Adjacent users (residential and commercial)	(see Section 1) is recommended
S2 - Current and historical site uses such as parcel shed and railway COPC include: metals,	P3 - Leaching of contaminants and vertical mitigation into groundwater	R4 - Groundwater R5 - Darling Harbour	
TRH, BTEX, PAH, OCP, OPP, PCB, phenols, SMF, VOC, asbestos and cyanide.	 P4 - Surface water run- off P5 - Lateral migration of groundwater. 		
S3 - Degradation of building material from existing buildings and underground tunnel structures.			
COPC include: metals, PCB, SMF and asbestos.			

Table 2: Summary of CSM

It is noted that SMF presence was analysed in the HAZMAT survey and the results have been documented separately (see Section 1).

6. Field Rationale and Methods

6.1 Data Quality Objectives

This SSI has been devised in general accordance with the seven-step Data Quality Objective (DQO) process which is provided in Appendix B, Schedule B2 of NEPC (2013). The DQO process is outlined as follows:

- State the problem;
- Identify the decision;
- Identify inputs into the decision;
- Define the boundary of the assessment;
- Develop a decision rule;
- Specify acceptable limits on decision errors; and
- Optimise the design for obtaining data.

Referenced sections for the respective DQOs listed above are provided in Appendix I.

6.2 Data Quality Indicators

The performance of the assessment in achieving the DQO was assessed through the application of Data Quality Indicators (DQI) as defined by:

Precision:	A quantitative measure of the variability (reproducibility) of data;
Accuracy:	A quantitative measure of the closeness of reported data to the "true" value;
Representativeness:	The confidence (expressed qualitatively) that data are representative of each media present on the site;
Completeness:	A measure of the useable data from a data collection activity; and
Comparability:	The confidence (expressed qualitatively) that data can be considered equivalent for each sampling and analytical event.

Further comments on the DQIs are presented in Appendix I.

6.3 Sampling Locations and Rationale

Field work was undertaken between 7 April and 26 May 2020.

The test locations were positioned to supplement the locations sampled in DP (2019), in parts of the Site that were currently accessible, and were spaced sufficiently to gain reasonable coverage of the soil profile and contamination status across the Site. Targeted sampling was also undertaken in parts of the Site that were known to contain elevated levels of contaminants based on the findings of DP (2019) (i.e., the north-east portion of the 'Developer Works' zone). Fifteen (15) of the boreholes were located in the 'State Works' zone and nine of the boreholes were located in the 'Developer Works' zone.

Environmental sampling was undertaken at 19 of the 24 boreholes, with two boreholes used for groundwater sampling only and the remaining boreholes being used for geotechnical objectives. The 19 sampling locations together with the nine sampling locations used for DP (2019) were considered adequate to characterise the contamination status of the Site, based on NSW EPA sampling guidelines and Site data obtained from previous investigations. Borehole locations are shown on Drawing 1, Appendix B.

The groundwater monitoring well network at the Site involved two hydraulically up-gradient wells (BH103 and BH104), two down-gradient wells (BH112A and BH112B) along with three mid-gradient wells (BH107A, BH107B, 109B). The up-gradient wells are most likely to be indicative of the groundwater condition in the greater surrounding area, while the down-gradient wells are most likely to pick up any contaminants leached from on-site sources. The seven groundwater monitoring well locations together with the two sampling locations used for DP (2019) were considered adequate to characterise the groundwater contamination status beneath the Site at the time of sampling. Monitoring well locations are shown on Drawing 1, Appendix B.

6.4 Drilling and Soil Sampling Procedure

Concrete coring was undertaken at all locations, followed by drilling. BH101, BH102, BH106, BH110, BH113, BH114 and BH115 were drilled using hand tools due to limited access for a drilling rig. A trackmounted rig with either 150 mm diameter solid flight auger or 50 mm diameter pushtube was used for the remaining boreholes. NMLC coring was used to reach the targeted depth for BH103, BH104, BH105, BH107B, BH109B and BH112B, predominantly for geotechnical objectives.

Environmental sampling was performed with reference to standard operating procedures outlined in the DP *Field Procedures Manual*. All sampling data was recorded on borehole logs (Appendix C) and samples selected for laboratory analysis were recorded on DP chain-of-custody (COC) sheets (Appendix G). The general soil sampling procedure comprised:

- Decontamination of re-useable sampling equipment using a 2% concentrated critical-cleaning liquid detergent (D90) and demineralised water prior to collecting each sample;
- Collection of soil samples directly from auger / push tube returns;
- Use of disposable sampling equipment including disposable nitrile gloves;
- Transfer of samples into laboratory-prepared glass jars and capping immediately with Teflon lined lids;
- Labelling of sampling containers with individual and unique identification, including project number, sample location and sample depth;
- Field screening of replicate soil samples collected in sealed plastic bags for VOC using a calibrated PID; and
- Placement of sample containers and bags into a cooled, insulated and sealed container for transport to the laboratory under chain-of-custody (COC) documentation.

Soil samples were collected from 17 boreholes, including replicates of six primary samples.

Selected samples of fill and natural soils were analysed for the chemicals of concern identified in the CSM (section 5). Samples were selected based on site observations (odour, composition, etc.) and field results.

A rinsate sample was collected from the hand auger by running demineralised water over the auger to detect any cross contamination between hand tools and samples.

Envirolab Services Pty Ltd, accredited by NATA, was employed to conduct the primary sample analysis. Eurofins, accredited by NATA, was employed to conduct the inter-laboratory analysis.

6.5 Groundwater Well Installation and Sampling

Groundwater monitoring wells were installed in BH103, BH104, BH107A, BH107B, 109B, BH112A and BH112B to enable monitoring of groundwater quality and water levels. Groundwater monitoring wells were installed to depths of between 3.9 m and 20 m bgl. The rationale behind the well placement and well depth was to evaluate the quality of groundwater from both the Mittagong and Hawksbury formations and to gain an understanding of the groundwater contamination status across the Site (i.e., at up-gradient and down-gradient parts of the Site).

The wells were constructed using 50 mm diameter, acid washed, class 18 uPVC casing and machine slotted well screens. A gravel filter pack was placed to approximately 0.5 m above the screened section of the wells followed by a hydrated bentonite seal and then concrete to the surface. The wells were topped with a cast iron gatic cover. Well details are provided in the borehole logs (Appendix C).

The standpipes were screened as follows:

- Within very low or low strength, fine to medium grained sandstone (interpreted to be the Mittagong Formation): Boreholes BH103, BH107A, and BH112A; and
- Within the underlying medium to high strength, fine to coarse grained sandstone (interpreted to be the Hawkesbury Sandstone): Boreholes BH104, BH107B, BH109B and BH112B.

Environmental sampling was performed with reference to standard operating procedures outlined in the DP *Field Procedures Manual*. All sampling data was recorded groundwater field sheets (Appendix D) and samples selected for laboratory analysis were recorded on DP COC sheets (Appendix G). The remaining samples not required for laboratory analysis were recorded on the Record of Samples register. The general soil sampling procedure comprised:

Groundwater sampling was performed in accordance with standard operating procedures outlined in the DP *Field Procedures Manual*. All sampling data was recorded on groundwater field sheets (Appendix D) and samples selected for laboratory analysis were recorded on DP chain-of-custody (COC) sheets (Appendix G). The general groundwater sampling procedure comprised:

- Decontamination of re-useable sampling equipment using a 2% concentrated critical-cleaning liquid detergent (D90) and demineralised water prior to use;
- Use of disposable sampling equipment including disposable tubing and filters;
- Measurement of the groundwater level using an interface meter;

- Development of groundwater wells by removing a minimum of three bore volumes or until all standing water was removed from the well. Purged water was collected in drums for disposal to a licenced waste water facility;
- Allowing the wells to stabilise for at least five days prior to sampling;
- Re-measurement of groundwater level including the measurement of phase separated hydrocarbons (PSH);
- Micro-purging of wells using a low-flow sampling pump until physical parameter (temperature, dissolved oxygen, electrical conductivity, turbidity, pH and oxidation / reduction potential) had stabilised;
- Collection of groundwater samples directly into appropriate sampling bottles, some of which contained preservatives, using the low-flow sampling pump;
- Labelling of sampling bottles with individual and unique identification, including project number and sample location; and
- Placement of sample bottles into a cooled, insulated and sealed container for transport to the laboratory under COC documentation.

Groundwater samples from each well were analysed for the chemicals of concern listed in the CSM (Section 5) including two replicate samples. Envirolab Services Pty Ltd, accredited by NATA, was employed to conduct the primary sample analysis.

7. Site Assessment Criteria

The Site Assessment Criteria (SAC) applied in the current investigation is informed by the CSM (Section 5) which identified human and water receptors as the primary potential receptor to potential contamination on the Site. Analytical results were assessed (as a Tier 1 assessment) against the SAC comprising the investigation and screening levels of Schedule B1, NEPC (2013).

The following guidelines were adopted for evaluation of the soil analysis results:

- NEPC (2013); and
- CRC CARE (2011) Health Screening Levels for petroleum hydrocarbons in soil and groundwater, Technical report series No. 10.

The investigation and screening levels are applicable to generic land use settings and include consideration of, where relevant, the soil type and the depth of contamination. The investigation and screening levels are not intended to be used as clean up levels. Rather, they establish concentrations above which further appropriate investigation (e.g., Tier 2 assessment) should be undertaken. They are intentionally conservative and are based on a reasonable worst-case scenario.

The SAC comprises health-based investigation levels (HIL), health screening levels (HSL), management limits (ML) and groundwater investigation levels (GIL). Given the Sites current land use and proposed development, it is considered unlikely that soil contamination poses a risk to ecological receptors (see Section 7.3). Therefore, environmental investigation levels (EIL) and environmental screening levels (ESL) have not been considered in the current assessment.

Given the known details of the proposed development, the adopted SAC is for a continued commercial / industrial land use. It is noted that if the final development design includes different land uses on portions of the Site (such as a public open space, extensive landscaping, child care) then a different and more conservative set of criteria would apply to those portions of the Site.

7.1 Health Investigation and Screening Levels

The Health Investigation Levels (HIL) and Health Screening Levels (HSL) are scientifically-based, generic assessment criteria designed to be used in the first stage (Tier 1) of an assessment of potential human health risk from chronic exposure to contaminants.

HIL are applicable to assessing health risk arising via all relevant pathways of exposure for a range of metals and organic substances. The HIL are generic to all soil types and apply generally to a depth of 3 m below the surface.

HSL are applicable to selected petroleum compounds and fractions to assess the risk to human health via the inhalation pathway. HSL have been developed for different land uses, soil types and depths to contamination.

The generic HIL and HSL are considered to be appropriate for the assessment of contamination at the Site. Given the proposed commercial land use the adopted HIL and HSL are:

- **HIL-D**: Commercial / Industrial;
- HSL-D for vapour intrusion and direct contact: Commercial / Industrial; and
- HSL Intrusive Maintenance Worker.

The HSL adopted are predicted on the inputs summarised in Table 3, below.

Variable	Input	Rationale
Potential exposure pathway	Soil vapour intrusion (inhalation) / Direct contact*	With the potential for vapour intrusion into the new building, and direct contact with soils during construction and in public areas, both pathways are considered viable.
Soil Type	Sand	In the absence of laboratory particle analysis sand HSL have been adopted as an initial conservative screen; based on the variable fill and sandy soils present.
Depth to contamination	0 m to <1 m; associated with contaminated fill; and 2 m to < 4 m & 4 m+; associated with deeper fill	0 to <1 m for shallow fill soil; 2 to <4 m for fill soils; and 4 m+ for deep fill and natural soils.

 Table 3: Inputs to the Derivation of HSL

* Developed by CRC CARE (2011)

The adopted soil HIL and HSL are shown on the following Tables 4 and 5.

Table 4: Adopted HIL and HSL (mg/kg)

	Contaminants	HIL - D	HSL-D Direct Contact	HSL-D ⁴ Vapour Intrusion
	Arsenic	3,000	-	-
	Cadmium	900	-	-
	Chromium (VI)	3,600	-	-
Matala	Copper	240,000	-	-
Metals	Lead	1,500	-	-
_	Mercury (inorganic)	730	-	-
_	Nickel	6,000	-	-
	Zinc	400,000	-	-
PAH	Benzo(a)pyrene TEQ ¹	40	-	-
РАП	Naphthalene	-	11,000	NL
	Total PAH	4,000	-	-
TRH	C6 – C10 (less BTEX) [F1]	-	26,000	260
-	>C10-C16 (less Naphthalene) [F2]	-	20,000	NL
-	>C16-C34 [F3]	-	27,000	-
	>C34-C40 [F4]	-	38,000	-
	Benzene	-	430	3
BTEX	Toluene	-	99,000	NL
DIEA	Ethylbenzene	-	27,000	NL
	Xylenes	-	81,000	230
Phenol	Phenol	240,000	-	-
	Aldrin + Dieldrin	45	-	-
	Chlordane	530	-	-
	DDT+DDE+DDD	3,600	-	-
OCP	Endosulfan	2,000	-	-
UUF	Endrin	100	-	-
	Heptachlor	50	-	-
	НСВ	80	-	-
	Methoxychlor	2,500	-	-
OPP	Chlorpyrifos	2,000	-	-
	PCB ²	7	-	-

Notes to Table 4:

1. sum of carcinogenic PAH

- 2. non dioxin-like PCBs only
- 3. NL not limiting
- 4. HSL-D for vapour intrusion, 0 m to <1 m, the most conservative values, has been adopted as an initial HSL for 2 to <4 m & 4 m+

Contaminants		HSL-Intrusive Maintenance Worker, (Direct Contact)	HSL-Intrusive Maintenance Worker, (Vapour Intrusion)	
	C6 – C10 (less BTEX) [F1]	82,000	NL	
TRH	>C10-C16 (less Naphthalene) [F2]	62,000	NL	
	>C16-C34 [F3]	85,000	-	
	>C34-C40 [F4]	120,000	-	
	Benzene	1,100	77	
BTEX	Toluene	120,000	NL	
	Ethylbenzene	85,000	NL	
	Xylenes	130,000	NL	

Table 5: Adopted HSL for Intrusive Maintenance Worker (mg/kg unless otherwise indicated)

Notes to Table 5:

3. NL – not limiting

4. HSL-D for vapour intrusion, 0 m to <1 m, the most conservative values, has been adopted as an initial HSL for 2 to <4 m & 4 m+

7.2 Management Limits - Petroleum Hydrocarbons

In addition to appropriate consideration and application of the HSL, there are additional considerations which reflect the nature and properties of petroleum hydrocarbons, including:

- Formation of observable light non-aqueous phase liquids (LNAPL);
- Fire and explosion hazards; and
- Effects on buried infrastructure e.g., penetration of, or damage to, in-ground services.

Management Limits (ML) to avoid or minimise these potential effects have been adopted in NEPC (2013) as interim Tier 1 guidance. Management Limits have been derived in NEPC (2013) for the same four petroleum fractions as the HSL (F1 to F4). The adopted ML, from Table 1B (7), Schedule B1 of NEPC (2013) are shown in the following Table 6. The following site-specific data and assumptions have been used to determine the Management Limits:

- The ML will apply to any depth within the soil profile;
- The ML for commercial land use applies; and
- A "coarse" soil texture has been adopted as a conservative parameter, based on the variable soil types encountered.

Table 6: Adopted ML (mg/kg)

	Analyte	Management Limit
TRH	$C_6 - C_{10}$ (F1) #	700
	>C ₁₀ -C ₁₆ (F2) #	1,000
	>C16-C34 (F3)	3,500
	>C34-C40 (F4)	10,000

Separate management limits for BTEX and naphthalene are not available hence these have not been subtracted from the relevant fractions to obtain F1 and F2

Management limits are applied after consideration of relevant HSL.

7.3 Ecological Investigation Levels and Ecological Screening Levels

Schedule B5A of NEPC (2013) states that the aim of the EILs is that varying levels of protection will be provided to the following ecological receptors at all sites:

- Biota supporting ecological processes, including microorganisms and soil invertebrates;
- Native flora and fauna;
- Introduced flora and fauna; and
- Transitory or permanent wildlife.

Furthermore, Schedule B5A of NEPC (2013) states that *Commercial and industrial land, particularly in long-established industrial areas, is often heavily contaminated by past activities or fill materials used to level the area. In these cases, jurisdictions may determine that HILs are the most appropriate soil quality criteria and that EILs are not applicable.*

In determining the relevance of EILs and ESLs the presence or absence of sensitive ecological receptors must be considered. In this regard both the potential ecological receptors on and off-site must be considered and the current / proposed development.

The Site is located in a commercial / retail precinct. The following potential ecological receptors were identified:

- Darling Harbour and Blackwattle Bay 1 km NNW to NW of the Site;
- Belmore Park 300 m north east of the Site; and
- Victoria Park 1,000 m west of the Site.

Based on the inferred assessment of the direction of groundwater flow (NNW) it is considered unlikely that these potential receptors would be impacted by soil contamination at the site.

The Site is currently occupied by commercial buildings with the surfaces covered with concrete or bitumen pavements. Furthermore, the proposed development will include excavation of basement levels across most of the Site footprint with minimal landscaping. Therefore, the value of the Site for soil organisms and the risk of exposure of soil contamination to transitory wildlife are very low.

Therefore, it is considered that human health risk screening levels are more appropriate and EIL and ESL are not relevant to the current assessment.

7.4 Asbestos

Bonded asbestos containing material (ACM) is the most common form of asbestos contamination across Australia, generally arising from:

- Inadequate removal and disposal practices during demolition of buildings containing asbestos products;
- Widespread dumping of asbestos products and asbestos containing fill on vacant land and development sites; and
- Historical fill containing unsorted demolition materials.

Mining, manufacturing or distribution of asbestos products may result in sites being contaminated by friable asbestos including free fibres. Severe weathering or damage to bonded ACM may also result in the formation of friable asbestos comprising fibrous asbestos (FA) and / or asbestos fines (AF).

Asbestos only poses a risk to human health when asbestos fibres are made airborne and inhaled. If asbestos is bound in a matrix such as cement or resin, it is not readily made airborne except through substantial physical damage. Bonded ACM in sound condition represents a low human health risk, whilst both FA and AF materials have the potential to generate, or be associated with, free asbestos fibres. Consequently, FA and AF must be carefully managed to prevent the release of asbestos fibres into the air.

Based on the CSM a detailed asbestos assessment was not considered to be warranted at this stage. However, due to the history of widespread use of ACM products across Australia, ACM can be encountered unexpectedly and sporadically at a site. Therefore, the presence or absence of asbestos at a limit of reporting of 0.1 g/kg (AS 4964) has been adopted for this investigation / assessment as an initial screen.

In addition, there is the potential presence of asbestos-cement service pits and underground pipes / conduits within or in proximity of the proposed development area. Uncontrolled disturbance of such items (e.g., during bulk excavation) could potentially cross-contaminate surrounding soil / fill, resulting in unnecessary waste (e.g., asbestos-contaminated soil / fill) and additional disposal costs for the project. DP has undertaken a HAZMAT Survey and a non-intrusive assessment for asbestos-cement service pits and underground pipes / conduits within the footprint of the proposed development. The results of this survey will be reported in due course as a separate document.

7.5 Waste Classification Criteria

To assess the waste classification of the material for off-site disposal purposes a preliminary waste classification assessment was undertaken in accordance with the six step process outlined in the NSW EPA *Waste Classification Guidelines, Part 1: Classifying Waste* (EPA, 2014). The soil results are assessed against the general solid waste (GSW) criteria outlined in Tables 1 and 2 of the guidelines.

With respect to the natural materials at the Site, these are also assessed for their potential classification as Virgin Excavated Natural Material (VENM). In this regard the NSW EPA defines VENM as:

- "natural material (such as clay, gravel, sand, soil or rock fines);
- that has been excavated or quarried from areas that are not contaminated with manufactured chemicals, or process residues, as a result of industrial, commercial, mining or agricultural activities;
- that does not contain any sulfidic ores or soils or any other waste; and
- includes excavated natural material that meets such criteria for virgin excavated natural material as may be approved from time to time by a notice published in the NSW Government Gazette."

For the purpose of providing screening criteria to compare laboratory results against for assessing VENM, DP have compared the results for concentrations of metals in the natural soils to the published concentrations in NSW EPA *The Excavated Natural Material Order 2014*. The concentrations of all other contaminants in natural soils have been compared against the laboratory limit of reporting (LOR).

7.6 Groundwater Investigation Levels

The Groundwater Investigation Levels (GIL) used for interpretation of the groundwater data are based on risk posed by contaminated groundwater, at or down-gradient of the Site.

The potential risk posed by contaminated groundwater, as noted in the CSM, at or down-gradient of the Site is exposure to VOC (including TRH and BTEX) via the vapour intrusion pathway, and groundwater potentially discharging to Darling Harbour.

Therefore, the concentrations of contaminants in groundwater were assessed against GIL adopted from:

- NEPC (2013) for the vapour intrusion pathway; and
- ANZG (2018) Australian and New Zealand Guidelines for Fresh & Marine Water Quality.

Given that the likely receiving water body is Darling Harbour, approximately 1.1 km NW (down-gradient) of the Site, GIL for a slightly to moderately disturbed freshwater ecosystems (95% species protection) have been adopted. Although Darling Harbour is a marine water ecosystem, given the distance between the Site and Darling Harbour, there is potential for water to intercept freshwater stygian ecosystems (GWDEs). Accordingly, GIL for freshwater ecosystems have been adopted.

GIL for cadmium, chromium, lead, nickel and zinc were corrected based on hardness of the water in each well. Hardness ranged from 71-240 mg CaCO₃/L. GIL were derived using the algorithm in ANZECC (2000). GIL are shown on Table 7a and Table 7b, below.

Table 7a: Adopted GIL (ug/L)

	Analyte	GIL – Fresh Waters	Comments
			-
PAH	Naphthalene	16	
	Anthracene	0.4	
	Fluoranthene	1.4	
	Benzo(a)pyrene	0.2	
	Phenanthrene	2.0	
BTEX	Benzene	950	
	Toluene	180	
	Ethylbenzene	80	
	Xylene (o)	350	
	Xylene (p)	200	
	Xylene (m)	75	
OCP	Aldrin	0.001*]
	Dieldrin	0.01*	
	Chlordane (gamma and alpha)	0.08	
	DDT	0.01	
	Endosulfan (I and II)	0.02	
	Endrin	0.02	
	Heptachlor	0.09	
	Methoxychlor	0.005	
	Mirex	0.04*	
OPP	Azinphos-methyl	0.02	-
	Chlorpyrifos	0.01	
	Diazinon	0.01	
	Dimethoate	0.15	
	Fenitrothion	0.2	
	Malathion	0.05	
	Parathion	0.004	
РСВ	Arochlor 1242	0.6	-
-	Arochlor 1254	0.03	
VOC			Laboratory reporting
			limits used as initial
	Chloroform	770*	screening levels for
			those VOC not listed.
			Reference to national
			or international
			standards adopted if
			concentrations exceed
			the reporting limits.
Phenols	Phenol	320	-
Other	Cyanide	7	

Notes:

^a Note: In cases where no high reliability trigger values are provided, the moderate or low reliability trigger values provided in ANZECC & ARMCANZ (2000) have been used as screening levels

* Insufficient data for reliable trigger value. Interim working value or low reliability value used for screening purposes

Monitoring Well	Hardness (mg CaCO ₃ /L)	Cadmium	Chromium (III)	Lead	Nickel	Zinc
BH103	86	0.51	7.83	12.96	26.93	19.58
BH104	110	0.64	9.58	17.71	33.19	24.14
BH107A	180	0.99	14.34	33.09	50.45	36.69
BH107B	170	0.94	13.6	30.78	48.055	34.95
BH109B	240	1.28	18.16	47.69	64.42	46.85
BH112A	71	0.43	6.69	10.15	22.88	16.64
BH112B	71	0.43	6.69	10.15	22.88	16.64

Table 7b: Adopted GIL for Metals with Hardness Modified Values (ug/L)

7.6.1 Health Screening Levels - Petroleum Hydrocarbons

The proposed development will continue to be used for commercial purposes as the 'Tech Central Development' with two to three levels of basement. Therefore, as noted in the footnotes to Table 1A (4) of NEPC (2013), the relevant and adopted HSLs for groundwater are HSL D, commercial / industrial.

In addition, the HSL adopted are predicted on the following inputs prescribed in Table 8.

Variable	Input	Comment
Potential exposure pathway	Groundwater vapour intrusion	Exposure pathway via groundwater vapour intrusion affects the adopted HSL.
Soil type	Sand	Soil properties including soil saturation porosity affect risk of exposure and are therefore factored into HSL.
		In the absence of laboratory particle analysis sand HSL have been adopted as an initial conservative screen; based on the variable fill and sandy soils present. A conservative soil type should be selected where the soil profile is not uniform (NEPC, 2013).
Depth to contamination	2 m to <4 m	Groundwater occurs at depths between 2.1 m and 8.2 m depth below current surface levels. A depth of 2 m to <4 m has been used for the HSL as a conservative value.*

Table 8: Inputs to the Derivation of HSL

NOTE: * The proposed basement excavation may intercept the groundwater in part, at which point the adopted HSLs are no longer applicable. If TRH, BTEX or PAH are present in the groundwater a site specific risk assessment may be required to determine site specific threshold levels for such contaminants in groundwater.

The adopted groundwater HSL for vapour intrusion based on the inputs listed in Table 8, from Table 1A (4), Schedule B1 of NEPC (2013) are shown in the following Table 9.

Analyte		HSL D - 2 m to <8 m (Sand)	Comments
	C6 – C10 (less BTEX) [F1]	3000	
TRH	>C10 – C16 (less naphthalene) [F2]	NL	
	Benzene	NL	Sand profile depth to
DTEV	Toluene	NL	contamination 2 m to
BTEX	Ethylbenzene	NL	<4 111
	Xylene	NL	
PAH	Naphthalene	NL	

Table 9: Groundwater Health Screening Levels (HSL) for Vapour Intrusion (ug/L)

Note:

8. Field Work Results

8.1 Soil

The conditions encountered in the boreholes drilled as part of the current assessment are summarised in Table 10 below. The borehole logs are provided in Appendix.

CONCRETE	Single or multiple concrete slabs, with or without a brick pavement, asphalt layer, or surface ballast layer (0.15-6.3 m thick).
FILL	Gravel, sand or clay fill (including silty gravel, sandy gravel, gravelly sand, clayey sand, silty sand, silty clay and sandy clay), low to high plasticity clay fines, moist to wet, to depths ranging between 4.7 m and 6.3 m on the eastern side of the YHA (8 m depth in Borehole BH2), or 0.0-2.2 m depth within the access corridor and Gate Gourmet (i.e. the Lower Ground Floor level). The fill materials were generally in a soft/very loose to medium dense condition. Anthropogenic inclusions were encountered to 0.5 m depth in four of the boreholes drilled in Gate Gourmet (i.e., coal and ceramic tile fragments: BH106, BH113, BH114 and BH115), and were also encountered in three of the boreholes drilled on the eastern part of the Site to a depth of 3.2 m below the current ground surface or rail access tunnel levels (i.e., ash, slag, glass, brick and ceramic tile fragments: Boreholes BH1, BH2 and BH4).

Table 10: Subsurface Conditions

NL – the solubility limit is defined as the groundwater concentration at which the water cannot dissolve any more of an individual chemical based on a petroleum mixture. The soil vapour which is in equilibrium with the groundwater will be at its maximum. If the derived groundwater HSL exceeds the water solubility limit, a soil-vapour source concentration for a petroleum mixture could not exceed a level that would result in the maximum allowable vapour risk for a given scenario. For these scenarios no HSL is presented for these chemicals. These are denoted as 'NL'.

ALLUVIAL SAND	Loose to medium dense, fine to medium, pale grey or pale orange alluvial sand, 0.4-1.2 m thick, moist (Boreholes BH111, BH112A and BH112B only). The alluvial sand encountered during previous investigations (BH1 and BH8 only) was yellow or orange-brown, with or without trace gravel, and up to 2 m thick.				
RESIDUAL SILTY CLAY	Soft to hard, orange, red, pale grey, grey or orange mottled red or yellow residual silty clay, with fine to medium grained sand and ironstone gravel, with or withou relict rock texture (0.75-2.2 m thick, absent in Borehole BH102, BH105, BH107A).				
RESIDUAL SANDY CLAY	Very stiff to hard, pale grey or grey mottled red residual sandy clay, fine to medium grained sand, with or without trace gravel (0.2-0.6 m thick, present in Borehole BH102, BH107A, BH107B, BH112A and BH112). The residual sandy clay encountered during previous investigations (BH2 and BH5 only) was up to 0.8 m thick.				
SANDSTONE (FINE TO MEDIUM)	Very low to low strength (with bands of medium or high strength, iron-cemented sandstone), fine to medium grained, highly or moderately weathered, fractured sandstone (0.65-1.8 m thick: absent in Borehole BH109B). Numerous clay seams (up to 250 mm thick) or zones of core loss (up to 1090 mm thick: inferred to be seams of clay or extremely low or very low strength rock) were encountered.				
SANDSTONE (FINE TO COARSE)	Medium or high strength, fine to coarse grained, moderately weathered to fresh, slightly fractured to unbroken, with widely spaced, thin (i.e., 2-5 mm) clay seams.				

The fill was deepest in BH103 and BH104 on the hostel railway platform and BH111. It is noted that these wells also have the highest surface level. The shallowest fill was in BH108, BH109A, BH109B, BH116 and BH117. It is noted that the deeper fill was generally correlated with a higher surface level.

PID readings were all below 10 ppm, suggesting a general absence of gross VOC / petroleum hydrocarbon contamination in samples recovered across the Site. Results of PID screening are shown on the borehole logs, Appendix C.

A hydrocarbon odour was detected in BH106, BH114 and BH117, all within the shallow fill material at depths below 0.5 m bgl, as noted on the relevant borehole logs in Appendix C.

The conditions encountered are generally consistent with those encountered in DP (2019). Both investigations found gravel, sand or clay fill with similar anthropogenic inclusions (ash, slag, glass and brick fragments). Borehole logs from locations investigated for DP (2019) are included in Appendix C.

8.2 Groundwater

Groundwater levels were measured at the time of micro-purging and sampling. Groundwater levels and other parameters recorded during sampling are summarised in Table 11. Groundwater field sheets and an internal calibration record of groundwater equipment is presented in Appendix D and Appendix E, respectively.

Well ID	Well depth (m bgl)	SWL (m bgl)	SWL (m AHD)	рН	Electrical Conductivity (µS/cm)	Redox (mV)	Temperature (°C)	Dissolved Oxygen (ppm)	Turbidity (NTU)
BH103	9.4	7.5	13.7	5.99	434	110	21.3	0.78	39.5
BH104	20.3	7.6	13.6	5.22	438	138	20.8	0.71	23.5
BH107A	3.9	2.1	13.4	6.78	125	67	22.1	1.68	127.1
BH107B	11.2	2.6	12.9	7.24	472	-76	22.5	0.14	16.8
BH109B	12.0	8.2	7.1	7.31	731	-42	23.1	0.55	91.0
BH112A	4.3	3.1	13.6	8.32	358	79	24.4	3.37	5.2
BH112B	10.9	5.2	11.6	5.65	279	120	24.5	1.10	626

No phase separated hydrocarbons (PSH) were detected during sampling. Groundwater was observed to be grey (BH107A, BH107B), brown and silty (BH103, BH109B, BH112) and clear (all other wells) during sampling. No odour was detected in any of the groundwater samples.

It is noted that samples were taken from well BH107A prior to stabilisation of parameters due to the low well volume and slow recharge. It is considered likely that the stabilised temperature would be higher while dissolved oxygen and electrical conductivity would be lower than the values recorded for these parameters.

The groundwater results are comparable to those in DP (2019). The monitoring wells sampled for DP (2019), BH5 and BH8, had a standing water level of 13.1 and 13.2 m AHD respectively. The temperature of the water was slightly lower (19.2 °C and 19.3 °C respectively) and pH slightly lower than all monitoring wells except BH104 (5.5 and 5.4 respectively).

Measured groundwater levels and inferred flow direction are shown on Drawings 3 and 4, Appendix B.

9. Laboratory Results

The results of laboratory testing are provided in Appendix F as follows. The results from previous investigations are also included on the tables:

Table F1 - Summary of Laboratory Soil Results;

Table F2 - Summary of Laboratory Groundwater Results; and

Table F3 - Summary of Laboratory Waste Classification Results.

9.1 Soil

Soil samples were analysed for the contaminants of concern identified by the CSM including heavy metals, TRH, PAH, BTEX, OCP, OPP, PCB, phenols and asbestos. The results of analysis are presented in Table F1 of Appendix F with the adopted SAC.

Analytical results for soil samples were within the adopted SAC for commercial land use with the following exceptions:

- TRH F3 (>C16-C34) in samples BH106/0.3-0.4 (3600 mg/kg) which marginally exceeded the management limit (ML) of 3500 mg/kg; and
- B(a)P TEQ in samples BH106/0.3-0.4 (160 mg/kg), BH114/0.15-0.2 (81 mg/kg), BH114/0.2-0.3 (43 mg/kg) and BH117/0.2-0.25 (71 mg/kg) which exceeded the HIL of 40 mg/kg.

Leachability testing, undertaken for waste classification purposes, indicated that the B(a)P in those samples with B(a)P TEQ concentrations above the HIL has low leachability potential. It is therefore considered likely that the B(a)P TEQ concentration is limited to the fill materials.

Although B(a)P TEQ concentrations above the HIL were only detected in BH106, BH114 and BH117, elevated concentrations of PAH (below the HIL) were also detected in BH113 and BH115. Therefore, it is considered likely that the significant PAH contamination is concentrated in the northwest portion of the Site, which is with the approximate outline of the proposed basement. BH106, BH114 and BH117 are within the approximate outline of the proposed basement and will likely be removed from Site under an appropriate waste classification for the final development.

It is considered likely that the B(a)P TEQ and TRH F3 (>C16-C34) contamination is from the coal observed in the fill. This is further supported by the chromatograms ordered for seven samples with elevated concentrations of TRH, provided in Appendix H.

A silica gel-clean-up was not ordered for sample BH106/0.3-0.4, as silica gel analysis is only applicable to semi-volatile fractions and would not likely result in a significant drop in TRH levels.

The source of these contaminants on site could be associated with historic land use of adjacent sites (such as storage of coal in the western shed as discussed in Section 4.1) or with the nature of the fill material that is present across the Site.

It is noted that whilst asbestos was not found in the analysed soil samples, the presence of anthropogenic materials in the fill such as brick and concrete suggests that there may be Asbestos Containing Materials (ACM) in the fill in areas not sampled. There is generally a low probability to detecting ACM in soil through small diameter bores, such as that adopted for the current investigation.

With regards to results from DP (2019), analytical results for the 16 soil samples selected for analysis were within the adopted site assessment criteria (SAC) for commercial land use except for B(a)P TEQ in sample BH3/0.2-0.3 (42 mg/kg), which marginally exceeded the HIL of 40 mg/kg. The recorded exceedance was, however, noted to be statistically insignificant. Furthermore, the immediate underlying fill sample, BH3/0.7-0.8, contained a much lower concentration of B(a)P TEQ of 6.3 mg/kg, which was

well within the HIL, indicating that the vertical extent of B(a)P TEQ was likely limited to the overlying, near-surface fill material.

The locations of boreholes with soil samples that exceeded the SAC are shown on Drawing 2, Appendix B.

9.2 Groundwater

Analytical results for groundwater were within the adopted GIL with the following exceptions:

- Copper in BH103 (3 μ g/L), its replicate sample BD1/20200424 (26 μ g/L) and BH104 (2 μ g/L) which exceeded the GIL of 1.4 μ g/L; and
- Zinc in BH107A (140 μg/L),BH107B (64 μg/L), BH112B (21 μg/L) and its replicate sample BD1/160520 (20 μg/L) which exceeded the hardness modified GILs of 36.69 μg/L, 34.94 μg/L and 16.64 respectively.

The concentrations of copper and zinc in BH103, BH104, BH107A, BH107B and 112B are considered to be within the normal range of background level in heavily urbanised areas of Sydney.

Based on the Site topography and recorded RL's, BH103 and BH104 can be considered 'up-gradient' wells which are most likely to be indicative of the groundwater condition in the greater surrounding area. PAH was detected in BH112A and BH112B, and TRH was detected in BH112A, which are considered to be 'down-gradient' wells. Furthermore, PAH and TRH were not detected in the up-gradient wells or any other wells on the Site. However, given the low concentrations of PAH in the groundwater and the low potential for leaching of contaminants, as determined by toxicity characteristic leaching procedure (TCLP) testing, it is considered unlikely that the source of PAH and TRH in the groundwater at BH112A and BH112B is from leaching of on-site fill contamination.

With regards to results from DP (2019), analytical results for the two groundwater samples were within the adopted groundwater investigation levels (GIL) with the exception of copper and zinc in BH8, BH5 and its replicate sample, BD1/20190730. Like the metals detected in the groundwater sampled for the current investigation, the elevated concentrations of metals were considered to be within the normal range of background concentrations in heavily urbanised areas of Sydney, and therefore, no further assessment of metals in groundwater in BH5 and BH8 was considered necessary.

The locations of monitoring wells with groundwater samples that exceeded the GIL are shown on Drawing 2, Appendix B.

9.3 Preliminary Waste Classification

EPA (2014) contains a six-step procedure for determining the type of waste and the waste classification of materials. The preliminary waste classification was conducted during the current investigation with reference to this procedure as detailed in Table 12.

Table 12: Six Step Classification Procedure

	Step	Comments	Rationale
	1. Is the waste special waste?	No	No asbestos containing materials (ACM), clinical or related waste, or waste tyres were observed in the boreholes.
			Asbestos was not detected by the analytical laboratory ^b .
2.	Is the waste liquid waste?	No	Material comprised a soil matrix.
3.	Is the waste "pre-classified"?	No	The fill soil is not pre-classified with reference to EPA (2014).
4.	Does the waste possess hazardous waste characteristics?	No	The waste was not observed to contain or considered at risk to contain explosives, gases, flammable solids, oxidising agents, organic peroxides, toxic substances, corrosive substances, coal tar, batteries, lead paint or dangerous goods containers.
5.	Determining a wastes classification using chemical assessment	Conducted	Refer to Table F3 (attached).
6.	Is the waste putrescible or non- putrescible?	No	The fill and natural soil does not contain materials considered to be putrescible ^a .

Note:

^a wastes that are generally not classified as putrescible include soils, timber, garden trimmings, agricultural, forest and crop materials, and natural fibrous organic and vegetative materials (EPA, 2014).

^b As noted in Section 9.1, there is a potential for ACM to be present in the fill and such finds will alter the waste classification.

Concentrations of contaminants for the analysed fill / soil samples were within the contaminant thresholds (CT1) and SCC1 (specific contaminant concentration) / TCLP1 (leachable concentration) for General Solid Waste (GSW) except for B(a)P and total PAH in some samples.

The following samples exceeded the CT1 and SCC1/TCLP1 for GSW and are classifiable as **Restricted Solid Waste** (RSW):

- B(a)P in BH113/0.15-0.25 (12 mg/kg); and
- Total PAH in BH106/0.2-0.3 (320 mg/kg), BH114/0.2-0.3 (470 mg/kg), BH115/0.23-0.3 (440 mg/kg) and BH117/0.2-0.25 (770 mg/kg).

The following samples exceeded the CT2 and SCC2/TCLP2 for RSW and are classifiable as **Hazardous Waste**:

B(a)P in the blind duplicate for BH104/1.4-1.5 (14 mg/kg), BH106/0.2-0.3 (28 mg/kg), BH106/0.3-0.4 (120 mg/kg), BH114/0.15-0.2 (67 mg/kg), BH114/0.2-0.3 (31 mg/kg), BH115/0.23-0.3 (27 mg/kg) and BH117/0.2-0.25 (39 mg/kg); and

• Total PAH in BH106/0.3-0.4 (1400 mg/kg) and BH114/0.15-0.2 (860 mg/kg).

Samples classified as RSW and Hazardous Waste are contaminated with B(a)P and PAH. Ash and coal were encountered across the Site, including in the boreholes with elevated concentrations of B(a)P and PAH, and are considered likely to be the source of the elevated concentrations of B(a)P and PAH in the soil.

With regards to results from DP (2019), the following fill / soil samples exceeded the CT1 and SCC1/TCLP1 for GSW and are classifiable as **Restricted Solid Waste** (RSW):

• Total PAH in BH3/0.2-0.3 (370 mg/kg) and BH6/0.2-0.3 (640 mg/kg).

The following samples exceeded the CT2 and SCC2/TCLP2 for RSW and are classifiable as **Hazardous Waste**:

• B(a)P in BH3/0.2-0.3 (29 mg/kg).

B(a)P leachability results for all samples with exceedances was below the RSW (TCLP2) thresholds and the laboratory's practical quantitation limits, indicating low potential for leachability at those locations.

The NSW EPA *Immobilisation of Contaminants in Waste 1999/05* is a general immobilisation approval for ash / coal-contaminated materials, which allows waste classification for such materials based on their leachability concentration (TCLP) value alone. Given the low leachability of B(a)P and PAH in the samples analysed, it is considered the immobilisation approval could be applied to the samples containing concentrations of B(a)P and PAH which exceeded the GSW and RSW criteria. Therefore, the fill in the vicinity of BH104, BH106, BH113, BH114 and BH115 where coal and ash were observed may be classifiable as GSW under the *Immobilisation of Contaminants in Waste 1999/05*.

It is noted that the information provided in this section does not constitute a final waste classification for off-site disposal purposes. Should excavated soils require off-site disposal during development further testing and a final waste classification assessment, which takes into consideration the information in this report, must be undertaken.

9.3.1 Classification of Natural Soils

Seven natural soil samples were selected for laboratory analysis. The following Table 13 presents the results of the assessment of natural soils at the Site with reference to the VENM definition and EPA advice outlined in section 7.4.

Item	Comments	Rationale
1. Is the material natural?	Yes	Natural materials were logged during the investigation.
 Is the material impacted by manufactured chemicals or process residues? 	Possibly	Elevated levels of B(a)P and PAH were detected in sample BH108/0.23-0.25. Low concentrations of B(a)P and PAH were detected in other natural samples.

Table 13: VENM Classification Procedure

Item	Comments	Rationale
3. Are the materials acid sulphate soils?	No	The Site is in an area of no known occurrences of ASS material.
4. Are there current or previous land uses that have (or may have) contaminated the materials?	Possibly	Previous land use is likely the cause of B(a)P and PAH detections in the natural material, although leachability testing indicates that the leaching potential of the contaminants is low.

Concentration of metals for the analysed natural soil samples were within the published concentrations in NSW EPA *The Excavated Natural Material Order 2014*. Concentrations of B(a)P and total PAH were above the LOR but within the published concentrations in NSW EPA *The Excavated Natural Material Order 2014* with the exception of BH108/0.23-0.25 which recorded a B(a)P concentration of 2.7 mg/kg. This sample has been given a preliminary waste classification of GSW based on TCLP results. It is noted that this sample was taken 0.03 m below a concrete slab, directly beneath a very thin layer of fill material. It is considered likely that the elevated concentration of B(a)P is limited to the near-surface material.

With regards to results from DP (2019), all contaminant concentrations for the analysed natural soil samples were within the published background ranges for Australian soils except for the concentrations of B(a)P and PAH in BH6/0.2-0.3, which were above the RSW thresholds (i.e., both CT2 and SCC2). Therefore, the natural material in BH6/0.2-0.3 represented RSW and should be disposed as such.

10. Recommendations and Conclusion

Based on the Site history the potential sources of contamination include uncontrolled fill, current and historical site uses and degradation of building material from existing buildings and underground tunnel structures. The COPC from these sources include metals, TRH, BTEX, PAH, PCB, OCP, OPP, phenols, VOC, asbestos and cyanide.

Laboratory testing results from the current investigation and DP (2019) confirms the presence of some of the COPC in the soil and groundwater. TRH and PAH were detected at concentrations above the soil SAC, while metals were detected at levels below the SAC. In groundwater, copper and zinc were detected at concentrations above the groundwater SAC, while PAH, TRH and other metals were detected at levels below the SAC. PAH was only detected in the two down-gradient wells (BH112A and BH112B), indicating that the source of the PAH could be from the fill on site. However, soil leachability (TCLP) testing results do not indicate that PAH is likely to leach from the fill into groundwater.

The elevated levels of copper and zinc in groundwater are common in heavily urbanised areas such as Haymarket. The source of copper and zinc is uncertain but could be linked to the copper and zinc concentrations in the fill layer on site, or to the services network at the Site or in proximity to the Site, as elevated levels of copper and zinc were identified in both the upgradient and downgradient groundwater wells. Considering that elevated levels of copper and zinc were not evident in the fill, the copper and zinc levels identified in the groundwater wells at the Site are likely to represent regional background levels rather than site-specific levels.

Active remediation to reduce the level of PAH detected in down-gradient groundwater wells is not considered to be necessary. The principal groundwater remediation strategy proposed for the Site is the removal of contamination source i.e., PAH exceedances / hotspot in fill at the Site. Given the concentration of PAH and TRH contamination in groundwater is marginal, the potential for off-site migration of PAH in groundwater is low.

Given dewatering is required at the Site, further groundwater sampling is likely to be requested by the City of Sydney Council to assess for the quality and suitability of groundwater prior to stormwater discharge. Alternatively, groundwater can be discharged into sewer subject to approval from Sydney Water or disposal of groundwater to a licensed liquid waste facility.

Results from the current and previous investigation (DP, 2019) indicate that fill is present across the Site at depths of between 0.22 m and 6.3 m bgl. The fill was deepest in BH103 and BH104 on the hostel railway platform and BH111. The shallowest fill was in BH108, BH109A, BH109B, BH116 and BH117. It is noted that the deeper fill was generally correlated with a higher surface level. This is likely due to fill being used across the Site historically for levelling purposes. The fill was underlain by alluvial sand, residual clay and Hawkesbury sandstone. Anthropogenic materials (typically traces of) were encountered sporadically in the fill at the majority of test locations. The anthropogenic material included brick fragments, plastic, coal, ash and ballast.

Based on the results of this SSI together with DP (2019), it is considered that the Site can be made suitable for the proposed commercial development as outlined in Section 1 subject to the following recommendations:

- Delineation of the PAH contamination in the northeast portion of the Site for waste classification purposes, particularly within the 'State Works' zone around BH106, BH114 and BH117 to the extent practical;
- Further investigation of groundwater on site, particularly to assess the presence of TRH and PAH in groundwater across the Site prior to and during dewatering. It is likely that a groundwater management plan will be required as part of the application for a dewatering license;
- Drilling of three (3) additional boreholes to 0.5 m into natural soils across the footprint of the existing cool rooms (in the vicinity of BH7 and BH5) following vacancy of the area;
- Intrusive investigation of the footprints of the existing buildings following demolition. Care should be undertaken during demolition to prevent cross-contaminating the subsurface soils with hazardous building material such as asbestos. The correct handling and removal procedures for hazardous building materials are detailed in the hazardous material building report (see Section 1);
- Preparation of a remediation action plan including an unexpected finds procedure as part of the civil and construction site management plan, such that existing contamination and unexpected finds of contamination (e.g., asbestos, odorous soils or seepage water) are managed appropriately; and
- Additional soil sampling and testing, either using *in situ* or *ex situ* sampling methods, to provide a final waste classification for surplus soils requiring off-site disposal.

Further information on additional sampling recommendations, including sampling locations and rationale, is provided in Section 8 of the Remediation Action Plan (86767.03.R.002).

11. Glossary of Key Terms

Term	Definition						
	2 Lee Street, Haymarket						
Adina Hotel	The Former Parcels Post Office						
	The Adina Apartment Hotel Sydney Central						
Atlassian Central	The Atlassian tower building (building only)						
Atlassian Central development	The whole Atlassian development within the Atlassian Site including the tower and public domain works.						
Atlassian Site	8 - 10 Lee Street, Haymarket						
Central Sydney	Land identified as Central Sydney under the Sydney LEP 2012 and includes Sydney's Central Business District (CBD)						
Central SSP	Central Station State Significant Precinct						
Central Walk West	The future western pedestrian entry to the new 19 metre-wide underground concourse customers to suburban rail and Sydney Metro platforms.						
Devonshire Tunnel	The pedestrian and cycle tunnel running between Chalmers Street and Lee Street						
"Dexus/Frasers Site"	14-30 Lee Street Haymarket. Adjoining land immediately to the south currently comprising three 8-storey commercial buildings						
Habitat Level 1	Flexibly ventilated workspace areas						
Link Zone	The publicly accessible land within the Site.						
Sub-precinct	Western Gateway Sub-precinct						
The Project	Commercial and hotel development above the Former Inwards Parcel Shed at 8-10 Lee Street, Haymarket						

12. References

- 1. NSW Acid Sulfate Soils Risk mapping data from NSW Department of Environment and Climate, Ver 2.1 (1998).
- 2. Geological Survey of NSW Sydney, 1:100 000 Geology Sheet.
- 3. NEPC (2013) National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013).
- 4. NSW EPA (2017) Guidelines for the NSW Site Auditor Scheme (3rd Edition).
- 5. NSW OEH (2011) Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites.
- 6. Soil Conservation Service of NSW, Sydney 1:100 000 Sheet.

13. Limitations

Douglas Partners (DP) has prepared this report for the site at 8-10 Lee Street, Haymarket in accordance with DP's proposal SYD190190.P.003 dated 4 February 2020 and acceptance received from Avenor Pty Ltd on behalf of Atlassian Pty Ltd. The work was carried out under agreed terms of engagement between DP and Atlassian Pty Ltd. This report is provided for the exclusive use of Atlassian Pty Ltd for the SSI only and for the purposes as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage. In preparing this report DP has necessarily relied upon information provided by the client and/or their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and / or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after DP's field testing has been completed.

DP's advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by DP in this report may be affected by undetected variations in ground conditions across the site between and beyond the sampling and/or testing locations. The advice may also be limited by site accessibility.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

Asbestos has not been detected by observation or by laboratory analysis, either on the surface of the site, or in filling materials at the test locations sampled and analysed. Building demolition materials, such as brick and ceramic tile were, however, observed in the fill profile during the current field investigation, and these are considered as indicative of the possible presence of hazardous building materials (HBM), including asbestos.

Although the sampling plan adopted for this investigation is considered appropriate to achieve the stated project objectives, there are necessarily parts of the site that have not been sampled and analysed. This is either due to undetected variations in ground conditions, or to parts of the site being inaccessible and not available for sampling. It is therefore considered possible that HBM, including asbestos, may be present in unobserved or untested parts of the site, between and beyond sampling locations, and hence no warranty can be given that asbestos is not present.

The contents of this report do not constitute formal design components such as are required, by the Health and Safety Legislation and Regulations, to be included in a Safety Report specifying the hazards likely to be encountered during construction and the controls required to mitigate risk. This design process requires risk assessment to be undertaken, with such assessment being dependent upon

factors relating to likelihood of occurrence and consequences of damage to property and to life. This, in turn, requires project data and analysis presently beyond the knowledge and project role respectively of DP. DP may be able, however, to assist the client in carrying out a risk assessment of potential hazards contained in the Comments section of this report, as an extension to the current scope of works, if so requested, and provided that suitable additional information is made available to DP. Any such risk assessment would, however, be necessarily restricted to the (geotechnical/environmental/groundwater) components set out in this report and to their application by the project designers to project design, construction, maintenance and demolition.

Douglas Partners Pty Ltd

Appendix A

About This Report

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report; and
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on borehole or pit spacing and sampling frequency;
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

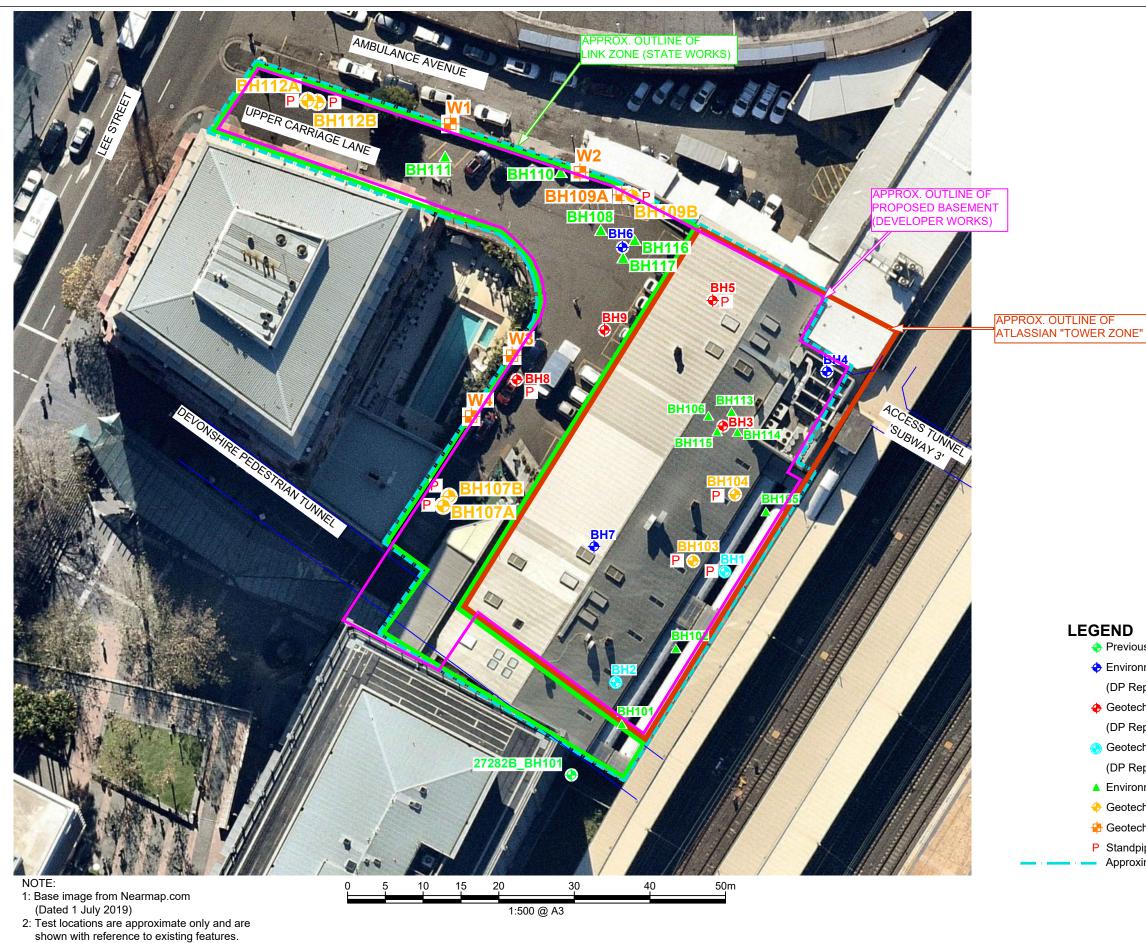
If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

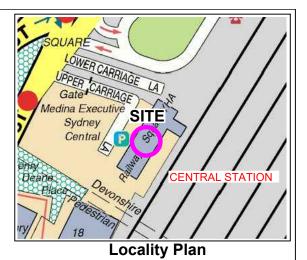

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

Appendix B

Site Drawing



- 3. Approximate Development Outlines are as provided by Avenor Pty Ltd on 12 August 2019.

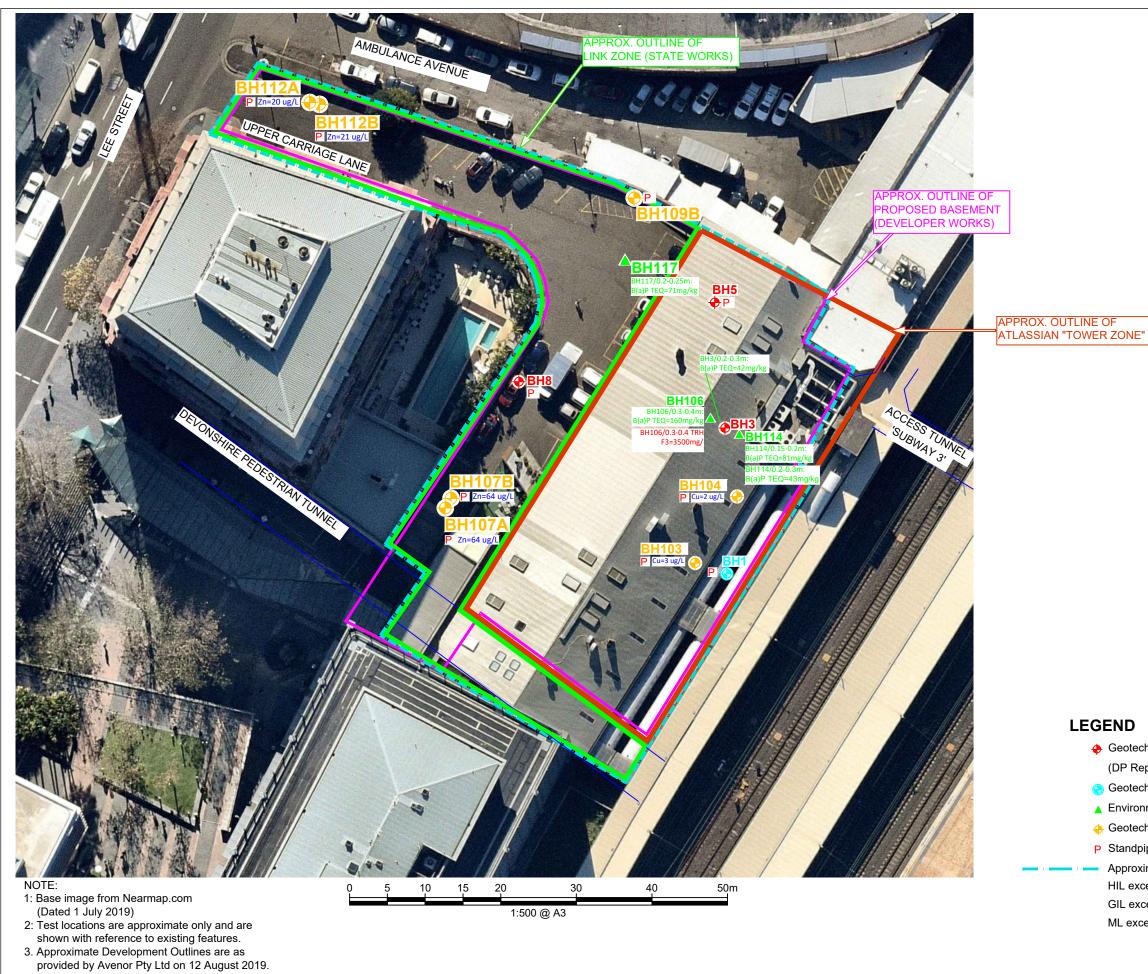
đ٨	Douglas Partners Geotechnics Environment Groundwater	
NY	Geotechnics Environment Groundwater	

CLIENT: Vertical First Pty Lt	d	Т
OFFICE: Sydney	DRAWN BY: HDS/BZ	
SCALE: 1:500 @ A3	DATE: 24.07.2020	

TITLE: Test Location Plan **Proposed Commercial Development** 8-10 Lee Street, HAYMARKET

Previous geotechnical borehole (DP Project 27282B, dated 1999) Environmental borehole - Lower Ground Floor

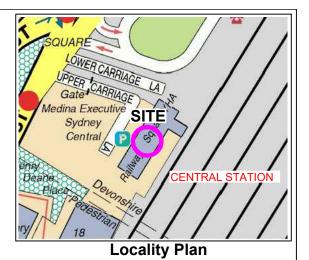
- (DP Report 86767.01.R.001.DftB, dated 29 August 2019)
- + Geotechnical & environmental borehole Lower Ground Floor
- (DP Report 86767.00.R.001.Rev0, dated 26 August 2019)
- Geotechnical & environmental borehole Upper Ground Floor
- (DP Report 86767.00.R.001.Rev0, dated 26 August 2019)
- Environmental borehole
- Geotechnical & environmental borehole
- 🖶 Geotechnical borehole
- P Standpipe piezometer
- Approximate site boundary


PROJECT No: 86767.00

DRAWING No:

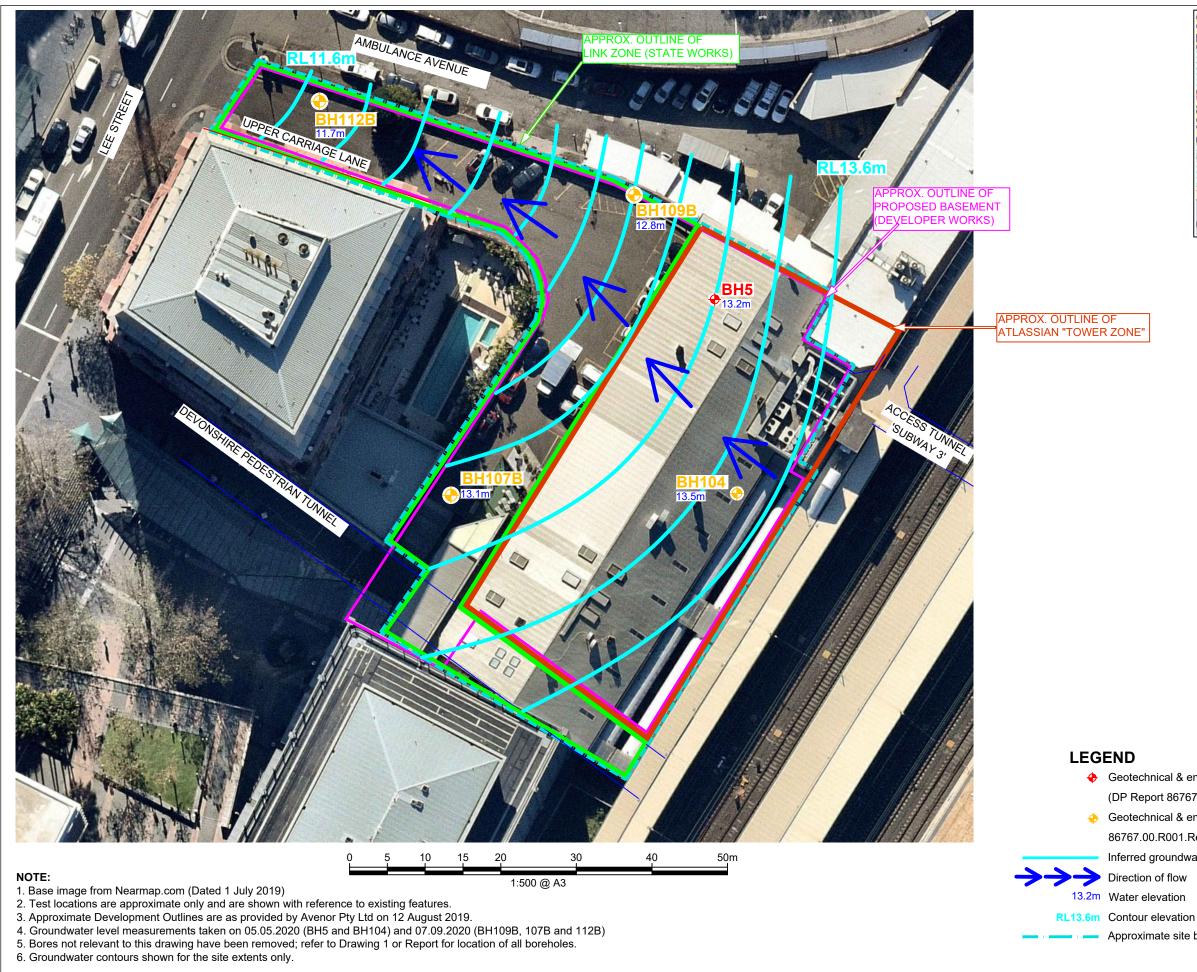
1

0


REVISION:

Douglas Partners Geotechnics | Environment | Groundwater

CLIENT: Vertical First Pty Ltd							
	OFFICE: Sydney	DRAWN BY: BZ					
	SCALE: 1:500 @ A3	DATE: 24.07.2020					


TITLE: SAC Exceedances Proposed Commercial Development 8-10 Lee Street, HAYMARKET

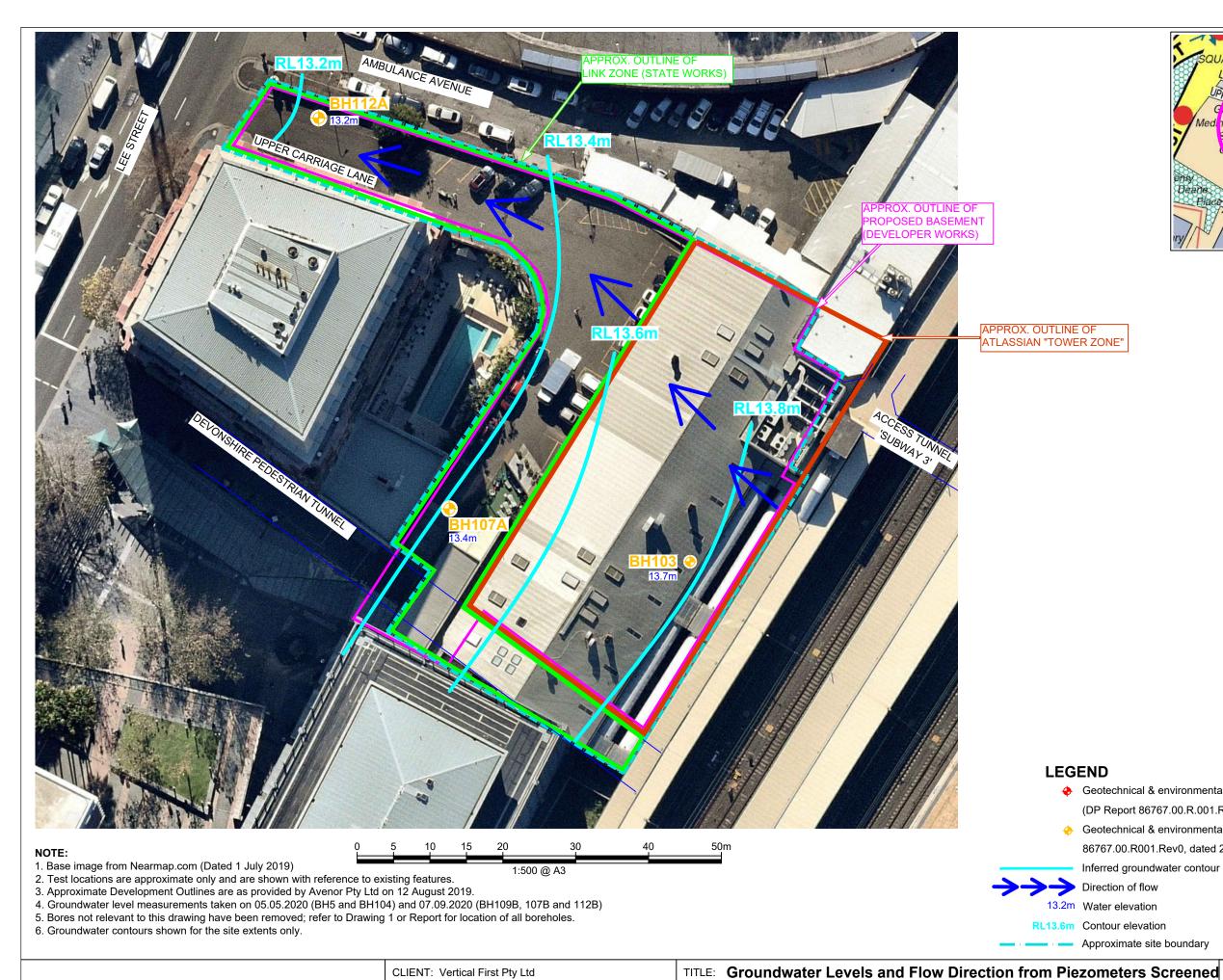
 Geotechnical & environmental borehole - Lower Ground Floor (DP Report 86767.00.R.001.Rev0, dated 26 August 2019)

- Geotechnical & environmental borehole Upper Ground Floor
- Environmental borehole
- + Geotechnical & environmental borehole
- P Standpipe piezometer
- Approximate site boundary
- HIL exceedance marked in green text
- GIL exceedance marked in blue text
- ML exceedance marked in blue text

PROJECT No:	86767.06
DRAWING No:	2
REVISION:	0

TITLE:	Groundwater Levels and Flow Direction from Piezometers Screened
	in Hawkesbury Sandstone
	Proposed Commercial Development, 8-10 Lee Street, HAYMARKET

+ Geotechnical & environmental borehole - Lower Ground Floor


- (DP Report 86767.00.R.001.Rev0, dated 26 August 2019)
- + Geotechnical & environmental borehole (DP Report
 - 86767.00.R001.Rev0, dated 26 August 2019)
 - Inferred groundwater contour (RL(m))
- Approximate site boundary

ters Screened

PROJECT No: 86767.06 DRAWING No: 3 0

REVISION:

	CLIENT: Vertical First Pty Lt	d	TITLE: Groundwater Levels and Flow Direction 1
Douglas Partners Geotechnics Environment Groundwater	OFFICE: Sydney	DRAWN BY: BZ	in Mittagong Formation
Geotechnics Environment Groundwater	SCALE: 1:500 @ A3	DATE: 21.09.2020	Proposed Commercial Development, 8-10

+ Geotechnical & environmental borehole - Lower Ground Floor (DP Report 86767.00.R.001.Rev0, dated 26 August 2019)

+ Geotechnical & environmental borehole (DP Report

86767.00.R001.Rev0, dated 26 August 2019)

Inferred groundwater contour (RL(m))

Approximate site boundary

PROJECT No: 86767.06 DRAWING No: 4 **REVISION**: 0

Appendix C

Borehole Logs

CLIENT:

PROJECT:

LOCATION:

Atlassian Pty Ltd

Proposed Commercial Development

8-10 Lee Street, Haymarket

SURFACE LEVEL: 20.1 AHD EASTING: 333983.4 NORTHING: 6249262.5 DIP/AZIMUTH: 90°/--

BORE No: BH1 PROJECT No: 86767.00 DATE: 10 - 12/7/2019 SHEET 1 OF 3

Sampling & In Situ Testing Well Description Graphic Water Depth Log Sample 뭅 Construction of Depth (m) Type Results & Comments Details Strata Gatic Cover and 0.0 BALLAST (BLUE METAL), PLASTIC -2 0.075 cap Sand Backfill and CONCRETE 0.38 Blank PVC pipe 1 Ś BRICK PAVEMENT 0.0 CONCRETE <u>.</u> 0.0 Ď.Ď At 1.3m: interface with lower concrete slab 0 0 0 0 1.8 1.8 PID<1 FILL/Sandy CLAY: low plasticity, grey mottled red-brown, F 1.9 2 ·2 fine grained sand, trace ironstone bands, slag and ash, w<PL, apparently in a very soft condition Bentonite Seal 2.2 Е PID<1 2.4 28 Е PID<1 30 3 - 3 Below 3.0m: with ash and slag, trace glass, brick and 3.2 ceramic tile fragments 3.3 Е PID<1 FILL/SAND: fine to medium grained sand, dark brown to 3.5 black, moist, apparently in a very loose condition 3.8 Е PID<1 40 4.0 Δ Δ <u>9</u>. SAND SP: fine to medium grained sand, orange brown, moist, very loose, alluvial soil 4.3 Below 4.3m: grading to pale yellow-grey Е PID<1 45 -5 5 Sand filter Slotted PVC pipe 6 6.0 6.0 6 Silty CLAY CI-CH: medium to high plasticity, orange, red and pale grey, with fine to medium grained sand, with End Cap relict rock texture, w<PL, residual soil 6.54 6.6 SANDSTONE: medium grained, orange-red, medium PL(A) = 0.97Bentonite Seal strength with very low strength bands, highly weathered, С fractured, Mittagong Formation • 7 7 <u>-</u>2 7.6 7.7 PL(A) = 0.157.74 SANDSTONE: medium grained, brown and pale yellow, medium to high strength, moderately weathered, slightly fractured, Hawkesbury Sandstone 8 - 8 8.23 SANDSTONE: medium grained, pale grey, high strength, С 8.4 PL(A) = 0.52fresh, slightly fractured, cross bedding 5°-10°, Hawkesbury Sandstone ۰q q 9.2 С PL(A) = 1.3 10. 9.95 **RIG:** Proline **DRILLER:** Tightsite LOGGED: WFY/NB CASING: HW to 6.44m

Diacore 0-1.3m; Hand auger 1.3m-5.0m; NMLC coring 5.0-20.0m

WATER OBSERVATIONS: No groundwater observed during auger drilling

TYPE OF BORING:

Groundwater well installed: 20-7.2m backfilled with sand, 7.2-6.3m bentonite, 6.3-4.3m screened PVC with sand backfill, 4.3-4.2m blank **REMARKS:** PVC with sand backfill, 4.2-0.2m blank PVC with bentonite backfill, 0.2-0m sand, gatic cover at surface

SAN	/IPLIN	G & IN SITU TESTING	LEG				
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_	
B Bulk sample	Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)			Develop Dortmore
BLK Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test ls(50) (MPa)	1		Douglas Partners
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			
D Disturbed sample	⊳	Water seep	S	Standard penetration test			Or starting 1 Environment 1 Organization
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			Geotechnics Environment Groundwater

CLIENT:

PROJECT:

Atlassian Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

SURFACE LEVEL: 20.1 AHD **EASTING:** 333983.4 **NORTHING:** 6249262.5 **DIP/AZIMUTH:** 90°/-- BORE No: BH1 PROJECT No: 86767.00 DATE: 10 - 12/7/2019 SHEET 2 OF 3

		Description	<u>.</u>		Sam	npling &	& In Situ Testing		Well	
R	Depth (m)	of		, e	th	ple	Results &	Water	Construction	
	(,	Strata	Graphic	Type	Depth	Sample	Results & Comments	>	Details	
9 10	-11	SANDSTONE: medium grained, pale grey, high strength, fresh, unbroken, cross-bedding 5°-10°, Hawkesbury Sandstone		c	- 10.72 10.95		PL(A) = 0.89		-11 -11	
8	- 12			c	11.95		PL(A) = 1.6		12	
7	- 13	Between 12.4-12.49m: with thin black carbonaceous laminations		с	12.95		PL(A) = 1.2		-13	
9	- 14				- 13.91 13.93		PL(A) = 1.5		Sand backfill	
5	- 15			с	14.95		PL(A) = 1.2		-15	
4	- 16			С	15.95		PL(A) = 1.6		-16	
3	-17	Between 17.35-14.42m: with black carbonaceous			16.95 - 17.09		PL(A) = 1.9		-17	
7	- 18	laminations		С	17.95		PL(A) = 1.9		-18	
	- 19			c	- 18.71 18.95		PL(A) = 1.9		-19	
	20.0				19.95					
RE	G: Prolin Pe of B Ater Of	BORING: Diacore 0-1.3m; Hand auger 1.3m-5.0m; NML BSERVATIONS: No groundwater observed during auger of coundwater well installed: 20-7.2m backfilled with sand PVC with sand backfill, 4.2-0.2m blank PVC with benton SAMPLING & IN SITU TESTING LEGEND ple PID Piston sample P PID Piston sample PL(A) Point load diavitatest lei PL(A) Point load diavitatest lei PL(A) Point load diavitatest lei PL(A) Point load diavitatest lei	drilling I, 7.2-6 hite bac or (ppm) 50) (MPa st Is(50) (ng 5.0- 3.3m b xfill, 0	GGED: 20.0m	e, 6.3 sand,	-4.3m screened PVC v gatic cover at surface	vith s	W to 6.44m sand backfill, 4.3-4.2m blank S Partners wironment / Groundwate	

SURFACE LEVEL: 20.1 AHD **EASTING:** 333983.4 **NORTHING:** 6249262.5 DIP/AZIMUTH: 90°/--

BORE No: BH1 **PROJECT No: 86767.00** DATE: 10 - 12/7/2019 SHEET 3 OF 3

_							H: 90 /		SHEET 3 OF 3
	_	Description	ji				& In Situ Testing	Well	
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
-0	-				20.0				
ł	-								-
È	-								-
	-21								-21
ŀ	-								-
	-								
-9	-22								-22
-	-								-
	-								
	-23								-23
-	-								-
	-								-
-4	-24								-24
-	-								-
-	-								-
	- 25								-25
ł	-								
-	-								
	-26								- 26
	-								-
ŀ	-								
	-27								- 27
-	-								-
ŀ	-								-
	-28								-28
-	-								
-	-								
	-29								-29
ŀ	-								
-	-								
Ŀ	-								

RIG: Proline

CLIENT:

PROJECT:

Atlassian Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Tightsite

LOGGED: WFY/NB TYPE OF BORING: Diacore 0-1.3m; Hand auger 1.3m-5.0m; NMLC coring 5.0-20.0m

CASING: HW to 6.44m

WATER OBSERVATIONS: No groundwater observed during auger drilling

REMARKS: Groundwater well installed: 20-7.2m backfilled with sand, 7.2-6.3m bentonite, 6.3-4.3m screened PVC with sand backfill, 4.3-4.2m blank PVC with sand backfill, 4.2-0.2m blank PVC with bentonite backfill, 0.2-0m sand, gatic cover at surface

SAM	MPLIN	G & IN SITU TESTING	LEGEND	
A Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
B Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	Nouglas Dortman
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)	A Douglas Partners
C Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	
D Disturbed sample	⊳	Water seep	S Standard penetration test	Oracterized I Freedoments I Orace devices
E Environmental sample	Ŧ	Water level	V Shear vane (kPa)	Geotecnnics Environment Groundwater
BLK Block sample C Core drilling D Disturbed sample	U× ₩ ₽	Tube sample (x mm dia.) Water sample Water seep	PL(D) Point load diametral test ls(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test	Geotechnics Environment Groundw

CLIENT:

PROJECT:

Atlassian Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

SURFACE LEVEL: 21.2 AHD **EASTING:** 333968 **NORTHING:** 6249250 **DIP/AZIMUTH:** 90°/-- BORE No: BH2 PROJECT No: 86767.00 DATE: 10 - 11/7/2019 SHEET 1 OF 3

		Description	ji L		Sam		& In Situ Testing	~	Well
	pth n)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction
		Strata	0	ŕ	ð	Sar	Comments		Details
	-	CONCRETE SLAB	<u>. 7</u> . 2						-
	0.28	-0.08m: interface with lower concrete slab		A/E*	0.28		PID<1		F
		FILL/SAND: fine to medium grained sand, brown, moist, apparently moderately compacted	\mathbb{X}	AVE	0.38 0.5		PID<1		
		apparentily moderately compacted	$ \langle \rangle \rangle$		0.6				-
1			\mathbb{K}	A/E	1.0		PID<1		-1
					1.1				E
			\otimes	<u> </u>	1.5		PID<1		-
		1.5m: trace ash and slag		A/E S	1.6		0,0,2		-
2					1.95		N = 2		-2
2		2.1m: with clay, trace shale gravel, moderately compacted		A/E	2.0 2.1		PID<1		-
	2.5	Fill/Clayey SAND: fine to coarse grained sand, brown,	\boxtimes	_A/E_	2.5 2.6		PID<1		ŧ l
		15% plastic fines, trace gravel 2-5mm, moist, apparently moderately compacted	$ \rangle\rangle$						[
3			\bigotimes	AVE	3.0 3.1		PID<1		-3
				s	0.1		0,0,0 N = 0		
			\otimes	}	3.45				
4	4.0								-4
		Fill/Silty CLAY: medium plasticity, brown-grey, trace sand, w <pl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl<>							
			\mathbb{N}		4.5				E
				<u>A/E</u> S	4.6		PID<1 2,2,2		-
_		Below 4.8m: with angular shale and ironstone gravel to	\mathbb{X}		4.95		N = 4		
5	5.2	20mm			1.00				-5 [
	5.2	Fill/Silty SAND: fine grained sand, grey and dark grey, trace gravel 2-5mm, moist, apparently variably compacted							
		trace graver 2-5mm, moist, apparently variably compacted	\otimes						
6				AVE	6.0 6.1		PID<1	-	-6
	6.2	Fill/SAND: fine grained sand, grey, with silt, wet,	1XXX	S	0.1		1,1,1 N = 2	₽ 6	
		apparently variably compacted			6.45			10-07-19	
								10	E
7									-7
			$ \rangle\rangle$;
			\bigotimes		7.5				[
				A/E S	7.6		PID<1 0,0,1		<u> </u>
~			\bigotimes		7.95		N = 1		ŧ, l
8	8.0-	Silty CLAY CI-CH: medium to high plasticity, orange	1/1/						-8
		brown, with fine to medium grained sand and ironstone gravel, w <pl, residual="" soft,="" soil<="" td=""><td></td><td>1</td><td></td><td></td><td></td><td></td><td>ţ </td></pl,>		1					ţ
			1/1/						‡
				1					E I
9	9.0	Sandy CLAY CL: low plasticity, pale grey, fine to medium	K./.						-9
		grained sand, w <pl, hard,="" residual="" soil<="" td=""><td>1.</td><td></td><td>9.35</td><td></td><td>25/100</td><td></td><td></td></pl,>	1.		9.35		25/100		
	9.47	SANDSTONE: refer following page	<u> //.</u>	s	9.45		refusal		ŧ l
				с	9.57				[
	10.0		[::::::		9.95		PL(A) = 1.4		-

 RIG: XC
 DRILLER: Terratest
 LOGGED: NB
 CASING: HQ to 8.9m

 TYPE OF BORING:
 Diacore 0-0.28m; solid flight auger (TC Bit) 0.28-7.5m; Wash bore 7.5-9.47m; NMLC coring 9.47-23.27m

 WATER OBSERVATIONS:
 Saturated sand (fill) encountered at 6.2m

 REMARKS:
 *BD1 at 0.28m

 SAMPLING & IN SITU TESTING LEGEND

 A Auger sample
 G Gas sample
 Pliston sample

 B Bulk sample
 P Piston sample
 Pliston sample

 C Core drilling
 W Water sample
 PL(A) Point load axial test ls(50) (MPa)

 D Disturbed sample
 P Water seepe
 S Standard penetration test

 E Environmental sample
 W Water level
 V Shear vane (kPa)

SURFACE LEVEL: 21.2 AHD **EASTING:** 333968 **NORTHING:** 6249250 **NORTHING:** 6249250 **DIP/AZIMUTH:** 90°/--

BORE No: BH2 **PROJECT No: 86767.00** DATE: 10 - 11/7/2019 SHEET 2 OF 3

Γ		Description	0		Sam	plina 8	& In Situ Testing		10/~11
!	Depth	Description	Graphic Log					Water	Well Construction
	(m)	of	Ga	Type	Depth	Sample	Results & Comments	Na	
		Strata	Ļ	-		Sa	e sinnionto	_	Details
-		SANDSTONE: medium grained, pale grey and brown, medium strength with some very low strength bands,							
		moderately weathered, slightly fractured, Hawkesbury							-
		Sandstone		с					-
				-					-
	11				10.92		PL(A) = 1.5		- 11
	11.12	SANDSTONE: medium grained nale grey high strength			11.17				
		SANDSTONE: medium grained, pale grey, high strength, fresh, slightly fractured, cross bedding 5°-10°, Hawkesbury Sandstone							
		Hawkesbury Sandstone							-
-									
-	12	Delaw 10mm webselver			11.93		PL(A) = 1.1		-12
		Below 12m: unbroken							
-									
Ē				с					
-	13				12.95		PL(A) = 1.3		- 13
-									-
-									
-									-
-					13.95		$DI(\Lambda) = 1.6$		-
-	14				13.95		PL(A) = 1.6		- 14
					14.23				-
-									
F									-
F					14.96		PL(A) = 1.4		
F	15				11.00				- 15
Ē									
E									
Ł				с					
Ł	16				15.95		PL(A) = 1.4		- 16
Ł									
ŧ									-
ŧ									
È									
È	17				16.95		PL(A) = 1.3		- 17
-					17.23				
F									
F									-
F									[
F	18				17.96		PL(A) = 0.96		18
E									
F									
F				С					
F					10.00				
F	19				18.96		PL(A) = 1.3		- 19
F									
F									
È		19.52m: carbonaceous laminations, dipping 25°							
F					19.95				
<u> </u>			1	L	L 19.95		PL(A) = 2.2		L

TYPE OF BORING: Diacore 0-0.28m; solid flight auger (TC Bit) 0.28-7.5m; Wash bore 7.5-9.47m; NMLC coring 9.47-23.27m WATER OBSERVATIONS: Saturated sand (fill) encountered at 6.2m

REMARKS: *BD1 at 0.28m

CLIENT:

PROJECT:

Atlassian Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

	SAM	MPLIN	3 & IN SITU TESTING	LEGI	END]	
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		
B	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)		Douglas Partners
B	K Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test ls(50) (MPa)		Douglas Pariners
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		
D	Disturbed sample	⊳	Water seep	S	Standard penetration test		Oracteritaria I Frankrammant I Oracan dan tan
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics Environment Groundwater

SURFACE LEVEL: 21.2 AHD **EASTING:** 333968 **NORTHING:** 6249250 **DIP/AZIMUTH:** 90°/--

BORE No: BH2 PROJECT No: 86767.00 **DATE:** 10 - 11/7/2019 SHEET 3 OF 3

				01			H: 90°/		SHEET 3 OF 3
		Description	ji		Sam		& In Situ Testing	Ļ	Well
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
	-	SANDSTONE: medium grained, pale grey, high strength, fresh, slightly fractured, cross bedding 5°-10°, Hawkesbury Sandstone <i>(continued)</i>		С	20.24				
- - - - -	-21				20.96		PL(A) = 1.3		-21
	-22			С	21.9		PL(A) = 1.7		-22
	-23 -23.27				22.95 -23.27-		PL(A) = 1.7		-23
	-	Bore discontinued at 23.27m							
	-24								- 24
-4	- 25								-25
- 	- 26								-26
- - - φ - -	- 27								-27
· · · · ^{L-} · · · · ·	- 28								-28
- - - - - - - -	-29								-29
Ē	-								-

RIG: XC **DRILLER:** Terratest LOGGED: NB CASING: HQ to 8.9m TYPE OF BORING: Diacore 0-0.28m; solid flight auger (TC Bit) 0.28-7.5m; Wash bore 7.5-9.47m; NMLC coring 9.47-23.27m WATER OBSERVATIONS: Saturated sand (fill) encountered at 6.2m REMARKS: *BD1 at 0.28m

SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level A Auger sample B Bulk sample BLK Block sample G P U_x W **Douglas Partners** Core drilling Disturbed sample Environmental sample CDE ₽ Geotechnics | Environment | Groundwater

Atlassian Pty Ltd **Proposed Commercial Development**

PROJECT:

CLIENT:

LOCATION: 8-10 Lee Street, Haymarket

CLIENT:

PROJECT:

Atlassian Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

SURFACE LEVEL: 15.5 AHD EASTING: 333982 NORTHING: 6249281 DIP/AZIMUTH: 90°/-- BORE No: BH3 **PROJECT No: 86767.00 DATE:** 12 - 13/7/2019 SHEET 1 OF 2

_								1 : 90 ⁻ /		SHEET TOF 2
	-	1	Description	IJ		Sam		k In Situ Testing	ř	Well
RL		n)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
	-	0.15	CONCRETE SLAB				0,			-
15	-	0.2	Fill/SAND: fine to medium grained sand, yellow-grey, moist, apparently poorly to moderately compacted		_E_	0.2 0.3		PID<1		
	- - - - 1	0.7 0.9	Sill/Silty CLAY: medium plasticity, grey and red-brown, with medium grained sand and angular basalt gravel to 70mm, w <pl< th=""><th></th><th>E</th><th>0.7 0.8</th><th></th><th>PID<1</th><th></th><th>- - - - -</th></pl<>		E	0.7 0.8		PID<1		- - - - -
	-		Fill/SAND: fine to medium grained sand, yellow, moist, apparently moderately compacted							
-4-	-	1.8 -	Silty CLAY CH: high plasticity, grey mottled red, trace ironstone gravel 2-3mm, w <pl, residual="" soil<="" stiff,="" th="" very=""><th></th><th></th><th>1.8</th><th></th><th></th><th></th><th></th></pl,>			1.8				
13	-2	1.92-	SANDSTONE: medium grained, brown and grey, medium strength, highly and moderately weathered, fractured, Hawkesbury Sandstone		С	2.37		PL(A) = 1		-2
	- 3	3.03				3.03				-3
12			SANDSTONE: medium grained, yellow-grey, high strength, moderately weathered, slightly fractured, Hawkesbury Sandstone			3.4		PL(A) = 0.92		
	- 4	3.56 -	SANDSTONE: medium grained, pale grey, high strength, slightly weathered then fresh, unbroken, Hawkesbury Sandstone		С					-4
	- 5					4.56		PL(A) = 1.6		-5
9	- 6				с	5.95		PL(A) = 1.4		-6
	-7					6.95		PL(A) = 1.3		-7
	- 8		7.35 - 7.41m: carbonaceous laminations			7.95		PL(A) = 1.1		
	- 9				С	8.95		PL(A) = 1.7		
	-		9.96-10.12m: fine grained sandstone, dark grey			9.95		PL(A) = 2		
RIC	G:)	XC	DRILLER: Terratest		LOC	GGED	: NB	CASING):⊦	HWT to 2.0m

LOGGED: NB CASING: HWT to 2.0m **DRILLER:** Terratest RIG: XC TYPE OF BORING: Diacore 0-0.15m; Hand auger 0.15-0.9m; Solid flight auger (TC Bit) 0.9-1.8m; NMLC coring 1.8-15.0m WATER OBSERVATIONS: No groundwater observed during auger drilling **REMARKS:**

	SAN	IPLING	& IN SITU TESTING	LEGEND	
A	Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
в	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)	
С	Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S Standard penetration test	
E	Environmental sample	¥	Water level	V Shear vane (kPa)	

SURFACE LEVEL: 15.5 AHD **EASTING:** 333982 **NORTHING:** 6249281 **DIP/AZIMUTH:** 90°/-- BORE No: BH3 PROJECT No: 86767.00 DATE: 12 - 13/7/2019 SHEET 2 OF 2

				DIF	P/AZII	NUT	H: 90°/		SHEET 2 OF 2
		Description	ji		Sam		& In Situ Testing	-	Well
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
2 2	-	SANDSTONE: medium grained, pale grey, high strength, slightly weathered then fresh, unbroken, Hawkesbury Sandstone <i>(continued)</i>		С	10.3				
	- 11	10.6-10.7m: carbonaceous laminations			10.95		PL(A) = 1.5		- 11
3	- 12			С	11.95		PL(A) = 1.2		-12
	- 13				12.95		PL(A) = 1.4		- 13
2					13.31				
	- 14			С	13.95		PL(A) = 0.92		- 14
	- - - 15 15.0 -	Bore discontinued at 15.0m			_14.95_ 15.0		PL(A) = 0.74		- - - - - -
. 0 	- - - -								
	- 16								- 16
	- - - - - -								- 17
	-18								- 18
	- - - - -								
	- - 19 -								- 19
-	- - -								

 RIG: XC
 DRILLER: Terratest
 LOGGED: NB
 CASING: HWT to 2.0m

 TYPE OF BORING:
 Diacore 0-0.15m; Hand auger 0.15-0.9m; Solid flight auger (TC Bit) 0.9-1.8m; NMLC coring 1.8-15.0m

 WATER OBSERVATIONS:
 No groundwater observed during auger drilling

 REMARKS:

	SAM	PLIN	3 & IN SITU TESTING	LEG	END		
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	 	
B	Bulk sample	Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)		Douglas Partner
B	K Block sample	U,	Tube sample (x mm dia.)	PL(C	0) Point load diametral test ls(50) (MPa)	11.	N DIOLIOIRS PRIME
C	Core drilling	Ŵ	Water sample	pp`	Pocket penetrometer (kPa)		Bougius i ui tiisi
D	Disturbed sample	⊳	Water seep	S	Standard penetration test		
E	Environmental sample	¥	Water level	V	Shear vane (kPa)		Geotechnics Environment Groundwat

BOREH

LOCATIC

CLIENT:

PROJECT:Proposed Commercial DevelopmentLOCATION:8-10 Lee Street, Haymarket

Atlassian Pty Ltd

SURFACE LEVEL: 15.5 AHD EASTING: 333994 NORTHING: 6249287 DIP/AZIMUTH: 90°/--

BORE No: BH4 PROJECT No: 86767.00 DATE: 12 - 13/7/2019 SHEET 1 OF 1

Sampling & In Situ Testing Description Graphic Dynamic Penetrometer Test Water Depth Log 뭅 Sample of Depth (blows per 150mm) Type Results & Comments (m) Strata 20 10 15 CONCRETE SLAB 0.15 Fill/SAND: fine to medium grained sand, moist, apparently <u>2</u>.2 0.16 loose, moderately compacted 0.3 CONCRETE SLAB 0.4 Fill/Sandy CLAY: fine to medium grained sand, with approx. 15% black ash, w<PL, generally in a stiff condition Fill/Silty CLAY: medium plasticity, brown, pale grey and red, with fine to medium grained sand and angular ironstone gravel up to 5-10mm, w<PL, generally in a firm condition 0.8-0.9m: with angular to sub-rounded ironstone gravel, 1.0 \up to 50mm FILL/Sandy CLAY: low to medium plasticity, fine to medium grained sand, brown, with 15-30mm angular to sub-angular ironstone gravel, w~PL, generally in a soft condition 14 Е PID<1 15 17 Silty CLAY CH: high plasticity, grey mottled red and yellow, w~PL, firm to stiff, residual soil - 2 2.0 Е PID<1 21 2.35 SANDSTONE: medium strength, grey, Hawkesbury Sandstone Bore discontinued at 2.35m Refusal on sandstone 3 - 3 4 - 4

RIG: Miniprobe **DRILLER:** Terratest LOGGED: NB/AS CASING: NA TYPE OF BORING: Diacore 0-0.16m; hand auger 0.16-1m; Pushtube and solid flight auger (TC Bit) 1.0-2.35m WATER OBSERVATIONS: No groundwater observed during auger drilling **REMARKS:** □ Sand Penetrometer AS1289.6.3.3

Cone Penetrometer AS1289.6.3.2 SAMPLING & IN SITU TESTING LEGEND Gas sample Piston sample Tube sample (x mm dia.) Water sample Water second LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample G P U,x W Douglas Partners Core drilling Disturbed sample Environmental sample CDF Water seen Water level ₽ Geotechnics | Environment | Groundwater

CLIENT: Atlassian Pty Ltd PROJECT: LOCATION:

Proposed Commercial Development 8-10 Lee Street, Haymarket

SURFACE LEVEL: 15.5 AHD **EASTING:** 333980 **NORTHING:** 6249298 **DIP/AZIMUTH:** 90°/-- BORE No: BH5 PROJECT No: 86767.00 DATE: 13/7/2019 SHEET 1 OF 2

							1: 90°/		SHEET 1 OF 2
		Description	lic		Sam		In Situ Testing	r	Well
R	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
E	-	CONCRETE SLAB	<u>.</u>						Gatic Cover and
15	- 0.3 - 0.4	FILL/Gravelly SAND: medium grained sand, grey, fine to medium 5-15mm sub-rounded to sub-angular gravel, dry	· · · · · · · · · · · · · · · · · · ·	E E	0.35 0.5 0.6		PID<1 PID<1		Backfill and Blank
	- - -1 1.0	Sandy CLAY CI: medium plasticity, grey mottled red, fine to medium grained sand, with fine gravel, w~PL, residual \soil	· / · / ·	_E_	0.9 1.0		PID<1		
-4	1.2 1.3 1.36	Vellow, trace fine sand, w~PL, residual soil	×	E	1.1 1.2 1.3		PID<1		Bentonite Seal
Ē		SANDSTONE: highly weathered, ironstained, Hawkesbury Sandstone							
	-2	SANDSTONE: medium grained, pale grey and orange, medium strength with bands of very low strength, highly weathered, fractured, Hawkesbury Sandstone		С	2.1		PL(A) = 0.2		
-6-	- - - 2.83				2.56 2.7		PL(A) = 0.16		
12	-3	SANDSTONE: medium grained, pale grey, medium and high strength, moderately weathered, slightly fractured, Hawkesbury Sandstone		с	3.31		PL(A) = 0.72		
	- 3.6 	SANDSTONE: medium grained, pale grey, high strength, slightly weathered then fresh, unbroken, Hawkesbury Sandstone			4.05				-4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
					4.95		PL(A) = 1.2		-5
-9-	-6			С	5.95		PL(A) = 1		
- 6	- 7	Between 6.60-6.65m: carbonaceous laminations			6.95 7.16		PL(A) = 1.2		
					7.95		PL(A) = 2.1		-8
9	-9			С	9.0		PL(A) = 1.8		Sand filter Slotted PVC pipe
	-				_10.0_		PL(A) = 1.2		

RIG: Hand tools, Miniprobe and XC DRILLE

CLIENT:

PROJECT:

Atlassian Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Terratest

LOGGED: AS/NB/KR CASING: HW to 1.1m

TYPE OF BORING: Diacore 0-0.3m; Pushtube and solid flight auger (TC Bit) 0.3-1.3m; NMLC coring 1.3-15.27m

WATER OBSERVATIONS: No groundwater observed during auger drilling

REMARKS: Groundwater well installed: 15.17-2.2m screened PVC with sand backfill, 2.2-1.8m blank PVC with sand backfill, 2.2-0m blank PVC, 1.8-0.8m bentonite backfill, 0.8-0m backfilled, gatic cover at surface. Refusal to TC-bit auger at 1.2m

SAMPLING & IN SITU TESTING LEGEND	
A Auger sample G Gas sample PID Photo ionisation detector (ppm)	
B Bulk sample P Piston sample PL(A) Point load axial test Is(50) (MPa)	las Partners
BLK Block sample U, Tube sample (x mm dia.) PL(D) Point load diametral test Is(50) (MPa)	
C Core drilling W Water sample pp Pocket penetrometer (kPa)	
D Disturbed sample D Water seep S Standard penetration test	I Fasting and I Organization
E Environmental sample Water seep O othear value de fue autor rest	Environment Groundwater

SURFACE LEVEL: 15.5 AHD **EASTING:** 333980 **NORTHING:** 6249298 **DIP/AZIMUTH:** 90°/-- BORE No: BH5 PROJECT No: 86767.00 DATE: 13/7/2019 SHEET 2 OF 2

				DIF	//AZII		H: 90°/		SHEET 2 OF 2	
	D 11	Description	jic –		Sam		& In Situ Testing	٦٢	Well	
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details	
-	-	SANDSTONE: medium grained, pale grey, high strength, slightly weathered then fresh, unbroken, Hawkesbury Sandstone <i>(continued)</i>		С	10.2				-	
4	- - - - - - - - - - - - - - -	Sandstone (continued)			11.02		PL(A) = 1.9		-11	
3	- 12	Between 12.3-12.57m: fine grained sandstone, cross-bedded at base		С	12.0		PL(A) = 1.2		-12	
2	- 13 13 				13.0 • 13.24		PL(A) = 1.5		-13	
	- - - - - - - - - - -			С	14.0		PL(A) = 1.1		- 14	
	- - 15 - 15.27	Bore discontinued at 15.27m			15.0 -15.27-		PL(A) = 1.4		- 15 - 15 End Cap	
	- 16	Bore discontinued at 15.27m							-16	
	- - 17 								-17	
-3	- - 18 - - - -								- 18	
	- 								-19	
Ŀ	-									

RIG: Hand tools, Miniprobe and XC

CLIENT:

PROJECT:

Atlassian Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Terratest

LOGGED: AS/NB/KR CASING: HW to 1.1m

TYPE OF BORING: Diacore 0-0.3m; Pushtube and solid flight auger (TC Bit) 0.3-1.3m; NMLC coring 1.3-15.27m

WATER OBSERVATIONS: No groundwater observed during auger drilling

REMARKS: Groundwater well installed: 15.17-2.2m screened PVC with sand backfill, 2.2-1.8m blank PVC with sand backfill, 2.2-0m blank PVC, 1.8-0.8m bentonite backfill, 0.8-0m backfilled, gatic cover at surface. Refusal to TC-bit auger at 1.2m

	SAM	IPLIN	3 & IN SITU TESTING	LEGEND	
A	Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
В	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	Douglas Partners
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)	A Douglas Partners
C	Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S Standard penetration test	Ocatacharia I Environment I Orangeharten
E	Environmental sample	Ŧ	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwater

SURFACE LEVEL: 15.5 AHD EASTING: 333967 NORTHING: 6249305 DIP/AZIMUTH: 90°/--

BORE No: BH6 PROJECT No: 86767.00 DATE: 14/7/2019 SHEET 1 OF 1

Sampling & In Situ Testing Graphic Description Dynamic Penetrometer Test Water Depth Log 뭅 Sample of Depth (blows per 150mm) Results & Comments (m) Type Strata 15 20 10 CONCRETE SLAB: platy aggregate to 6mm, with voids 0.06 0.09 1. Ň ASPHALT 0.2 0.23 Е PID<1 CONCRETE SLAB: fine to medium igneous aggregate to 0.3 25mm, 8mm diameter steel reinforcement bar at 0.15m, voids below 0.21m 0.5 Silty CLAY CH: high plasticity, orange-grey, with fine ironstone gravel, w<PL, residual soil А PID<1 0.6 1.0 1 1 SANDSTONE: medium strength, grey, Hawkesbury Sandstone 1.27 Bore discontinued at 1.27m Refusal on sandstone - 2 -2 3 - 3 •4 - 4

RIG: Hand tools DRILLER: NB TYPE OF BORING: Diacore 0-0.2m; hand auger 0.2-1.27m WATER OBSERVATIONS: No groundwater observed **REMARKS:**

G P U_x W

₽

A Auger sample B Bulk sample BLK Block sample

CDE

Core drilling Disturbed sample Environmental sample

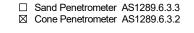
SAMPLING & IN SITU TESTING LEGEND

Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level

CLIENT:

PROJECT:

Atlassian Pty Ltd


LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

LOGGED: NB

LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa)

CASING: NA

Douglas Partners

Geotechnics | Environment | Groundwater

CLIENT:

PROJECT:

Atlassian Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

SURFACE LEVEL: 15.5 AHD **EASTING**: 333965 **NORTHING**: 6249265 **DIP/AZIMUTH**: 90°/-- BORE No: BH7 PROJECT No: 86767.00 DATE: 12 - 13/7/2019 SHEET 1 OF 1

	_		Description	lic		Sam		& In Situ Testing	Ļ	
Ч	Dej (n		of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)
	`	,	Strata	G	Тy	De	San	Comments	-	5 10 15 20
			CONCRETE SLAB, 8mm diameter reinforcement steel	0.0 .0						-
		0.2	CONCRETE SLAB, angular igneous aggregate	Q. Q. A	E	0.2 0.3		PID<1		
		0.38	Fill/Silty SAND: fine to medium grained sand, brown, 15%	4. 4. XX		0.0				
-2-		0.6	Fill/Silty SAND: fine to medium grained sand, brown, 15% non plastic fines, moist, trace of crushed brick above 0.5m							
-		0.0	Fill/SAND: fine to medium grained sand, pale grey, trace silt, moist, generally in a dense condition							
+	1				E	1.0		PID<1		-1
ļ						1.1				- - I
ł										· L
4.					E*	1.4 1.5		PID<1		
ł		1.6	Silty CLAY CH: high plasticity, grey, mottled red and yellow, trace fine to medium sandstone gravel, w~PL, very		E	1.6		PID<1		
. [1.85	$_{ m N}$ stiff, residual soil			1.7				
	2	1.00	1.80-1.85m: crushed ironstone gravel // Silty CLAY CI: medium plasticity, red mottled grey, with			2.0				-2
	2		sand and fine to medium sandstone and ironstone gravel, w~PL, hard, residual soil		E	2.0		PID<1		
		2.2	SANDSTONE: medium strength, grey, Mittagong Formation							
		2.4	Bore discontinued at 2.4m							
- 2 -			Refusal on sandstone							
-										_
F										
ŀ	3									-3
-										-
ŀ										
-12										
l										
+										-
ļ	4									-4
ł										-
ļ										-
-=-										
+										
ļ										-

 RIG:
 Hand tools and Miniprobe
 DRILLER:
 NB/Terratest
 LOGGED:
 NB/AS

 TYPE OF BORING:
 Hand auger 0.2-1.0m; Pushtube and solid flight auger (TC Bit) 1.0-2.4m

 WATER OBSERVATIONS:
 No groundwater observed

 REMARKS:
 *BD1 and BT120190713

CASING: NA

□ Sand Penetrometer AS1289.6.3.3 ⊠ Cone Penetrometer AS1289.6.3.2

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 U
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 p
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 P
 Water level
 V
 Shead van (kPa)

SURFACE LEVEL: 15.5 AHD **EASTING:** 333954 **NORTHING:** 6249289 **DIP/AZIMUTH:** 90°/-- BORE No: BH8 PROJECT No: 86767.00 DATE: 14/7/2019 SHEET 1 OF 2

Depth (m) Description of Strata Sampling & In Situ Texting Well B CONCRETE SLAB: input to submyular appreptie to tenforcommant at 0.00m and 0.10m, plastic at lower interface Concentration (Concentration) Concentration) Concentration Concentration Concentration Concentration Concentration) Concentration Concentration <th></th> <th></th> <th></th> <th>DIF</th> <th>P/AZI</th> <th>MUTI</th> <th>H: 90°/</th> <th></th> <th>SHEET 1 OF 2</th>				DIF	P/AZI	MUTI	H: 90°/		SHEET 1 OF 2
$\begin{array}{ c c c } \hline CONCRETE SLAB could and the state of the transmission of the transmission of the transmission of transmission and t$		Description	lic		San		& In Situ Testing		Well
CONCRETE SLAB: angular to subangular aggregate to form diameter steel verificorement at 0.05m and 0.10m, plastic at lower interface. 0.2			Graph Log	Type	Depth	Sample	Results & Comments	Wate	Details
Fill/Clayey SAND: The to corresponded sand, thrown and ymoderately compacted, moist increased, apparently increately compacted, moist increased, apparently increately compacted, moist increased, and yellow, with clay, trace gravel, moist, alluvial soil 19 19 2 19 19 19 19 3.07 SANDSTONE: medium grained, orange-red and grey, low to medium strength, with some very low strength bands, highly weathered, fractured, Mittagong Formation 0 2.47 PU(A) = 15 3.07 SANDSTONE: medium grained, orange and red, medium strength with some very low strength bands, highly weathered, fractured, Mittagong Formation 3.07 3.07 4 4.13 SANDSTONE: medium grained, grey, medium then high strength, moderately weathered, slightly meathered, fractured, Mittagong Formation 3.07 3.07 4 4.15 SANDSTONE: medium grained, grey, high strength, fresh, unbroken, Hawkesbury Sandstone 4.57 4.56 PL(A) = 0.60 5 SANDSTONE: medium grained, grey, high strength, fresh, unbroken, Hawkesbury Sandstone 4.57 4.57 PL(A) = 1.2 6 6 SANDSTONE: medium grained, grey, high strength, fresh, unbroken, Hawkesbury Sandstone 6.95 PL(A) = 1.2 6 7 7.89 PL(A) = 1.2 6 6 6.95 PL(A) = 1.9 6 8<		$_{\rm 15mm,\ negligible\ voids,\ 10mm\ diameter\ steel}$ $_{\rm 15mm,\ negligible\ voids,\ 10mm\ diameter\ steel}$		_A/E_			PID<1	-	
clay, trace gravel, moist, alluvial soil Image: clay, trace gravel, moist, alluvial soil Image: clay, trace gravel, moist, alluvial soil Image: clay, trace gravel, moist, alluvial soil SANDSTONE: medium grained, orange-red and grey, low to medium strength, with some very low strength bands, highly weathered, fractured, Mittagong Formation C 2.47 PL(A) = 1.5 Sand filer 3.07 SANDSTONE: medium grained, orange and red, medium strength with some very low strength bands, highly weathered, fractured, Mittagong Formation 3.07 3.66 PL(A) = 0.15 4 4 A13 SANDSTONE: medium grained, yellow-grey, medium the high strength, fractured, Hawkesbury Sandstone 4.57 PL(A) = 0.66 -5 -6 4.85 SANDSTONE: medium grained, grey, high strength, fresh, unbroken, Hawkesbury Sandstone 6.95 PL(A) = 1.2 -6 -7 -7 -7 -7 -7 -7 -8 -7 -8 -7 -8 -7 -8 -7 -8 -7 -8 -7 -8 -7 -8 -7 -8 -7 -8 -7 -8 -7 -8 -7 -8 -7 -8 -7 -8 -7 -8 -7 -8 -7 -8	-1	yellow, 15% plastic fines, with fine gravel, apparently						-	-1
² 2.12 SANDSTONE: medium grained, orange-red and grey, low to medium strength, with some very low strength bands, highly weathered, fractured, Mittagong Formation ³ 3.07 SANDSTONE: medium grained, orange and red, medium strength with some very low strength bands, highly weathered, fractured, Mittagong Formation ⁴ 4.13 SANDSTONE: medium grained, yellow-grey, medium then high strength, moderately weathered, slightly fractured, Hawkesbury Sandstone ⁶ 4.85 SANDSTONE: medium grained, grey, high strength, fresh, unbroken, Hawkesbury Sandstone ⁶ C ⁶ 5.96 PL(A) = 0.15 ⁶ 7.2 ⁶ PL(A) = 1.2 ⁶ 8.85 PL(A) = 1.2 ⁶ Slotted PVC pipe	-	SAND SW: fine to medium grained sand, yellow, with clay, trace gravel, moist, alluvial soil						-	
2-12 SANDSTONE: medium grained, orange-red and grey, low to medium strength, with some very low strength bands, highly weathered, fractured, Mittagong Formation C 2.47 PL(A) = 1.5 Sand filter 3 3.07 SANDSTONE: medium grained, orange and red, medium strength with some very low strength bands, highly weathered, fractured, Mittagong Formation 3.07 3.07 C 2.47 PL(A) = 0.15 -3 -4 4.13 SANDSTONE: medium grained, yellow-grey, medium the high strength, moderately weathered, slightly fractured, Hawkesbury Sandstone -4 4.57 4.66 PL(A) = 0.06 -5 -5 4.85 SANDSTONE: medium grained, grey, high strength, fresh, unbroken, Hawkesbury Sandstone -6 -7 -6 -7 -6 -7 -8 -7 -7 -7 -7 -8 -7 -7 -8 -7 -8 -7 -8 -7 -7 -7 -7 -7 -8 -7 </td <th>- 1.9-</th> <td></td> <td></td> <td></td> <td>1.9</td> <td></td> <td></td> <td>E</td> <td></td>	- 1.9-				1.9			E	
SANDSTONE: medium grained, orange and red, medium strength with some very low strength bands, highly wethered, fractured, Mittagong Formation 3.07 3.66 PL(A) = 0.15 4 4.13 SANDSTONE: medium grained, yellow-grey, medium fractured, Hawkesbury Sandstone 3.66 PL(A) = 0.15 5 4.85 SANDSTONE: medium grained, grey, high strength, moderately weathered, slightly fractured, Hawkesbury Sandstone 4.57 4.57 5 SANDSTONE: medium grained, grey, high strength, fresh, unbroken, Hawkesbury Sandstone 6 6.96 PL(A) = 1.2 6 -6 -7 -6 -7 -7 -7 -7 -7 -7 -8 -7 -7 -8 -7 -8 -7 -8 -9 Stotted PVC pipe -8		to medium strength, with some very low strength bands,		с	2.47		PL(A) = 1.5	-	
3.55 weathered, fractured, Mittagong Formation 3.66 PL(A) = 0.15 4 4.13 SANDSTONE: medium grained, yellow-grey, medium tractured, hawkesbury Sandstone 4.57 4.66 PL(A) = 0.66 5 SANDSTONE: medium grained, grey, high strength, fresh, unbroken, Hawkesbury Sandstone 4.57 4.66 PL(A) = 0.66 6 SANDSTONE: medium grained, grey, high strength, fresh, unbroken, Hawkesbury Sandstone 6.95 PL(A) = 1.2 -6 7 6.95 PL(A) = 1.3 -7 -7 8	-3 3.07-	SANDSTONE: medium grained, orange and red, medium			3.07			-	3
SANDSTONE: medium grained, yellow-grey, medium fractured, slightly fractured, Hawkesbury Sandstone 4.57 4.57 4.66 PL(A) = 0.66 -5 -5 SANDSTONE: medium grained, grey, high strength, fresh, unbroken, Hawkesbury Sandstone C 5.95 PL(A) = 1.2 -6 -6 -6 -7 -6 -7 -6 -6 -6 -6 -7 -7 -7 -7 -7 -7 -8 -7 -6 -7 -6 -6 -8 -9 -6 -7 -7 -6 -7 -6 -7 -7 -6 -7 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -7 -6 -7 -6 -7 -6 -7 -6 -7 -6 -7 -6 -7 -6 -7 -7 -6 -7 -7 -6 -7 -7 -7 -6 -7 -7 -7 -7 -7 -7 -7 -7 -7 <th>- </th> <td>weathered, fractured, Mittagong Formation</td> <td></td> <td>с</td> <td>3.66</td> <td></td> <td>PL(A) = 0.15</td> <td>-</td> <td>-4</td>	-	weathered, fractured, Mittagong Formation		с	3.66		PL(A) = 0.15	-	-4
SANDSTONE: medium grained, grey, high strength, fresh, unbroken, Hawkesbury Sandstone -6 -7 -7 -8 -8 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9	4.13 -	then high strength, moderately weathered, slightly					PL(A) = 0.66	-	
-6 -7 -7 -8 -9 -9 		SANDSTONE: medium grained, grey, high strength, fresh, unbroken, Hawkesbury Sandstone						-	·5 · · · · · · · · · · · · · · · · · ·
7.2 7.2 7.8 7.2 7.8 7.2 7.8 7.2 7.89 PL(A) = 1.9 8 7.2 9 Slotted PVC pipe	-6			С	5.95		PL(A) = 1.2	-	6
-8 -8 -9 -9 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8	-7						PL(A) = 1.3	-	-7
-9 Botted PVC pipe	-8				7.89		PL(A) = 1.9	-	-8
	-9			С	8.95		PL(A) = 1.2		.9 Slotted PVC pipe
9.95 PL(A) = 1.4					9.95		PI(A) = 1.4	Ę	

RIG: XC

CLIENT:

PROJECT:

Atlassian Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Terratest

LOGGED: NB

CASING: HQ to 1.9m

TYPE OF BORING: Diacore 0-0.28m; Hand auger 0.28-1.0m; solid flight auger (TC Bit) 1.0-1.9m; NMLC coring 1.9-15.0m

WATER OBSERVATIONS: No groundwater observed during auger drilling

REMARKS: Groundwater well installed: 15.0-2.9m screened PVC with sand backfill, 2.9-2.4m blank PVC with sand backfill, 2.4-0m blank PVC, 2.4-0m bentonite backfill, gatic cover at surface.

	SAM	IPLIN	G & IN SITU TESTING	LEG	END					
	A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)			-	_	_
	B Bulk sample	Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)					rtners
	3LK Block sample	U,	Tube sample (x mm dia.)	PL([D) Point load diametral test ls(50) (MPa)					
- 1	C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			7.40		
	D Disturbed sample	⊳	Water seep	S	Standard penetration test		O t t !			0
	E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnic:	s i Envir	onment	Groundwater
-										

SURFACE LEVEL: 15.5 AHD **EASTING**: 333954 **NORTHING**: 6249289 **DIP/AZIMUTH**: 90°/-- BORE No: BH8 PROJECT No: 86767.00 DATE: 14/7/2019 SHEET 2 OF 2

					Sam	nling	& In Situ Testing			
RL	Dep	Description of	phic					Water	Well Construction	n
R	(m	Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Ň	Details	ri
	-	SANDSTONE: medium grained, grey, high strength, resh, unbroken, Hawkesbury Sandstone (continued)		С	10.22				-	
- 2	-	Between 10.2-10.9m: dark grey, fine grained sandstone								
È	-								-	
E	- 11				10.95		PL(A) = 2.5		-11	
	-								-	
-4	-									
Ē	-			С	44.05					
E	- 12				11.95		PL(A) = 1.5		- 12	
-	-	Between 12.4-12.55m: carbonaceous laminations							-	
F	-									
Ē	- - 13				12.95		PL(A) = 1.1		-13	
ŀ	-				13.25					
-~	-									
ŀ	-								-	
Ē	- 14			с	13.95		PL(A) = 1.3		- 14	
È				•						
	-									
ŀ	- - -15 1				14.00		PL(A) = 1.3		- 15 End Cap -	
Ē	- 15 1 - -	Bore discontinued at 15.0m			-14.99- 15.0		FL(A) = 1.3			
-0	-									
Ē	-									
È	- 16								16	
ł	-									
	-									
Ē										
Ē	- 17								-17	
-2									ţ	
ŀ	-									
F	- - 18								- 18	
Ē	-								Ę	
-9-	-								Ę	
È									Ę	
E	- 19								-19 [
	-									
-4-										
Ē	-								-	

RIG: XC

CLIENT:

PROJECT:

Atlassian Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Terratest

LOGGED: NB

CASING: HQ to 1.9m

TYPE OF BORING: Diacore 0-0.28m; Hand auger 0.28-1.0m; solid flight auger (TC Bit) 1.0-1.9m; NMLC coring 1.9-15.0m

WATER OBSERVATIONS: No groundwater observed during auger drilling

REMARKS: Groundwater well installed: 15.0-2.9m screened PVC with sand backfill, 2.9-2.4m blank PVC with sand backfill, 2.4-0m blank PVC, 2.4-0m bentonite backfill, gatic cover at surface.

	SAN	/IPLING	G & IN SITU TESTING	G LEGEND	
A	Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
E	Bulk sample	P	Piston sample	PL(A) Point load axial test Is(50) (MPa)	Douglas Partners
E	LK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)	
	Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	
	Disturbed sample	⊳	Water seep	S Standard penetration test	
E	Environmental sample	Ŧ	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwater

CLIENT:

PROJECT:

Atlassian Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

SURFACE LEVEL: 15.5 AHD **EASTING:** 333966 **NORTHING:** 6249295 **DIP/AZIMUTH:** 90°/-- BORE No: BH9 PROJECT No: 86767.00 DATE: 11 - 12/7/2019 SHEET 1 OF 2

.	Dant	Description	- Jic		Sam		& In Situ Testing	_ <u>~</u>	Well
	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
		CONCRETE SLAB	A: A:						-
	0.33	CLAY CL Low to medium plasticity, pale grow and vallow	<u></u>	E/A	0.35		PID<1		
	0.65	CLAY CL: low to medium plasticity, pale grey and yellow, with fine to medium grained sand, trace fine ironstone	//		0.45 0.65				-
	0.05	\gravel, w>PL, residual soil	1/1/	_E/A_	0.75		PID<1		-
- 1	1	Silty CLAY CL-CI: low to medium plasticity, pale grey and red, with fine grained sand, trace fine ironstone gravel,		_E/A_	0.9 1.0		PID<1		-1
		w <pl, residual="" soil<="" td=""><td>1/1/</td><td></td><td></td><td></td><td></td><td></td><td>-</td></pl,>	1/1/						-
		└0.85-1.4m: w~PL 1.4m: fine ironstone gravel, w <pl< td=""><td></td><td>E/A</td><td>1.4 1.5</td><td></td><td>PID<1</td><td></td><td>-</td></pl<>		E/A	1.4 1.5		PID<1		-
	1.65				1.65				-
- 2	2	SANDSTONE: fine grained, orange-grey, very low to medium strength with extremely low strength bands, highly the medium strength for the strength bands,		с					-2
		highly to moderately weathered, fractured, Mittagong Formation							-
					2.43				
					2.62		PL(A) = 0.88		-
~				с					
- 3	3								-3
					3.38				-
					3.55		PL(A) = 0.28		-
	3.72	SANDSTONE: medium grained, grey, medium to high							
4	4	strength, slightly weathered then fresh, slightly fractured, Hawkesbury Sandstone							-4
				С					-
									-
- 5	5				4.94 4.95		PL(A) = 0.94		-5
					4.95				
									-
									-
- 6		Below 5.91m: unbroken			5.95		PL(A) = 1.6		-6
- 0	5	Below 5.9 m. unbloken							
					6.43				-
					6.05		D(A) = 4.2		-
- 7	7				6.95		PL(A) = 1.3		-7
				С					[
			:::::::						
- 8	в				7.95 8.0		PL(A) = 0.76		-8
									;
				с					
- 9	9				8.95		PL(A) = 1.9		-9
					9.44				[
		9.50-9.56m: with carbonaceous laminations		с					<u> </u>
					9.95		PL(A) = 0.97		
									•

 RIG: XC
 DRILLER: Terratest
 LOGGED: KR
 CASING: HW to 2.5n

 TYPE OF BORING:
 Diacore to 0.32m; hand auger 0.32-1.0m; Solid flight auger (TC Bit) 1.0-1.6m; NMLC coring 1.6-14.6m

 WATER OBSERVATIONS:
 No groundwater observed during auger drilling

 REMARKS:

	SA	AMPLIN	G & IN SITU TESTING	LEGEND	
A	Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
В	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	
B	K Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)	Douglas Partners
C	Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S Standard penetration test	
E	Environmental sampl	e 📱	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwater
-					

SURFACE LEVEL: 15.5 AHD **EASTING:** 333966 NORTHING: 6249295 **DIP/AZIMUTH:** 90°/--

BORE No: BH9 **PROJECT No: 86767.00 DATE:** 11 - 12/7/2019 SHEET 2 OF 2

							H: 90'/		SHEET 2 OF 2
	Dauth	Description	jc D		Sam		& In Situ Testing	r.	Well
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
2	-	SANDSTONE: medium grained, grey, medium to high strength, slightly weathered then fresh, slightly fractured, Hawkesbury Sandstone <i>(continued)</i>		с	10.5				
-	-11	11.17-11.30m: with carbonaceous laminations		с	10.95		PL(A) = 1.3		-11
	- 12				11.73 11.95		PL(A) = 1.5		-12
3	- 13			С	12.95		PL(A) = 3.1		-13
	- 14			c	13.33 13.95		PL(A) = 1.3		- 14
	14	Bore discontinued at 14.6m			_14.55_ 14.6		PL(A) = 1		
0	- 15								- 15
-	- 16								- 16
	- 17								- 17
	-								
	- 18								- 18
	- 19								-19
- 1	-								

CASING: HW to 2.5m RIG: XC DRILLER: Terratest LOGGED: KR TYPE OF BORING: Diacore to 0.32m; hand auger 0.32-1.0m; Solid flight auger (TC Bit) 1.0-1.6m; NMLC coring 1.6-14.6m WATER OBSERVATIONS: No groundwater observed during auger drilling **REMARKS:**

	SAMF	LING	3 & IN SITU TESTING	LEGI	END		
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		
В	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)		Rouglas Routes vo
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test Is(50) (MPa)		Dollolas Partners
C	Core drilling	Ŵ	Water sample	΄ αα	Pocket penetrometer (kPa)		Douglas Partners
Ď	Disturbed sample	⊳	Water seep	s	Standard penetration test		-
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics Environment Groundwater

CLIENT: PROJECT:

Proposed Commercial Development LOCATION: 8-10 Lee Street, Haymarket

Atlassian Pty Ltd

SURFACE LEVEL: 20.1 AHD **EASTING:** 333968 **NORTHING:** 6249242 **DIP/AZIMUTH:** 90°/-- BORE No: BH101 PROJECT No: 86767.03 DATE: 8/4/2020 SHEET 1 OF 1

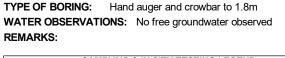
							1. 90 /		
	Derth	Description	- ic		Sam		& In Situ Testing	1	VWP
Ч	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction
	. ,	Strata	G	Ту	De	San	Comments	-	Details
50	0.1	FILL/BALLAST			0.1				-
		FILL/Silty CLAY: medium plasticity, pale brown and grey, with fine angular sandstone gravel, trace brick and organic fragments, w~PL, generally in a loose condition		A	0.2		PID=2.9 ppm		-
	- 0.4 - - -	FILL/SAND and GRAVEL: fine to medium sand, pale grey, fine to coarse angular sandstone cobbles, gravel and bricks, moist, generally in a dense condition		A	0.5 0.6		PID=1.8 ppm		-
	- 1			A	0.9 1.0		PID=1.2 ppm		-1
				A	1.4 1.5		PID=3.3 ppm		
ļļ	1.8		\bigotimes						
18	-2 -	Bore discontinued at 1.8m - Target depth reached							-2
	- 3								-3
-1-									
									-
	- - 4								-4

RIG: Hand Tools

CLIENT:

PROJECT:

Vertical First Pty Ltd


LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Tightsite

LOGGED: NB

CASING: Uncased

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 U
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 p

 D
 Disturbed sample
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 Water level
 V
 Shear vane (kPa)

SURFACE LEVEL: 20.1 AHD **EASTING:** 333976 **NORTHING:** 6249251 **DIP/AZIMUTH:** 90°/-- BORE No: BH102 PROJECT No: 86767.03 DATE: 8/4/2020 SHEET 1 OF 1

		Description	<u>.</u>		Sam	pling 8	& In Situ Testing		VWP
I	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction
		FILL/BALLAST				Ś		_	
	0.1-	FILL/Silty GRAVEL: fine to medium, dark grey, trace sand and clay, moist, generally in a loose condition	\bigotimes	A	0.1 0.2		PID=1.1 ppm		-
-	0.3 -	FILL/SAND: fine to medium, pale yellow brown and grey, with silt, trace clay lenses, moist, generally in a loose condition		A	0.5 0.6		PID=1.6 ppm		
	1			A	1.0 1.1		PID=2 ppm		- 1 - 1 -
				A	1.5 1.6		PID=1.1 ppm		
- 2	2			A	2.0 2.1		PID=1.7 ppm		-2
-	2.6 -	FILL/SAND: fine to medium, pale grey, trace silt, moist,		A	2.4 2.5		PID=2.4 ppm		
	2.9 - 3	generally in a loose condition FILL/Silty CLAY: medium plasticity, orange, pale yellow and black, trace sand and gravel, with ash, w>PL, generally in a stiff condition		A	3.1 3.2		PID=1.4 ppm		-3
-		Below 3.5m: grading to dark grey and black, with fine to medium sand and angular gravel		A	3.5 3.6		PID=4.1 ppm		
- 4	4 4.0-	FILL/Sandy GRAVEL: fine to medium gravel, dark grey and black, fine to coarse sand, trace ash, moist, generally in a medium dense condition		A	4.0 4.1		PID=3 ppm		-4
	4.5	FILL/Silty CLAY: high plasticity, orange, pale yellow and pale grey, trace ash, w <pl, a="" condition<="" firm="" generally="" in="" td=""><td></td><td>A</td><td>4.5 4.6</td><td></td><td>PID=2.2 ppm</td><td></td><td></td></pl,>		A	4.5 4.6		PID=2.2 ppm		
	4.7-	Sandy CLAY CH: high plasticity, pale grey, w <pl, appears="" firm,="" residual<="" td=""><td></td><td>A</td><td>4.7 4.8 4.9</td><td></td><td>PID=1.7 ppm</td><td></td><td></td></pl,>		A	4.7 4.8 4.9		PID=1.7 ppm		
	5.0		<u> ././</u>	A	4.9 _5.0_		PID=1.1 ppm		
		Bore discontinued at 5.0m Toolarget depth reached DRILLER: NB							

WATER OBSERVATIONS: No free groundwater observed REMARKS:

CLIENT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

PROJECT: Proposed Commercial Development

	SAM	IPLING	3 & IN SITU TESTING	LEGE	ND
А	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
	Bulk sample	Р	Piston sample		Point load axial test Is(50) (MPa)
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D)	Point load diametral test Is(50) (MPa)
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D	Disturbed sample	⊳	Water seep	S	Standard penetration test
E	Environmental sample	¥	Water level	V	Shear vane (kPa)

SURFACE LEVEL: 21.2 AHD **EASTING:** 333978 NORTHING: 6249263 **DIP/AZIMUTH:** 90°/--

BORE No: BH103 **PROJECT No: 86767.00 DATE:** 15 - 16/4/2020 SHEET 1 OF 2

Г	Depth	Description	J hic	L			& In Situ Testing	e	Well
	(m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
		FILL/ CONCRETE	Q Q	·					Gatic Cover and
	0.25 -	FILL/ SAND: fine to medium, pale brown, trace silt, moist, generally in a very loose condition		A	0.25		PID=3		
1					1.0 1.1 1.5		PID=1.3		
2	1.7 - 2	FILL/ Silty CLAY: low plasticity, pale grey-orange and dark grey, with angular sandstone, shale, ironstone gravel, w>PL, generally in a stiff to very stiff condition		A	1.6 2.0 2.1		PID-1.3		-2
	2.5	FILL/ Silty CLAY: low to medium plasticity, red brown, w <pl, a="" condition<="" firm="" generally="" in="" td=""><td>\bigotimes</td><td>A</td><td>2.5 2.6</td><td></td><td>PID=2.4</td><td></td><td></td></pl,>	\bigotimes	A	2.5 2.6		PID=2.4		
3	3			A	2.9 3.0		2,2,2 N = 4		3
				> >	3.45		IN - 4		Backfill and Blank
4				s	4.5		1,0,0 N = 0		-1 -2 -3 Backfill and Blank PVC pipe -5 -6
5	4.9-	FILL/ Silty SAND: fine to coarse, dark grey and brown, trace fine gravel, moist, generally in a very loose condition			4.95 5.0 5.1		PID=0		-5
6				s s	6.0		3,5,7 N = 12		6
	6.3 -	SAND SP: fine to medium, pale grey, moist, medium dense, alluvial			6.45		N - 12		
7	7.0-	Sandy CLAY CI-CH: medium to high plasticity, dark red-orange, w>PL, very stiff, residual			7.5				-7
8	3		· · · / ·	A	7.95		2,6,14 N = 20		8 Bentonite Seal
	8.5	SANDSTONE: fine grained, dark brown, pale grey and	·/·/·		8.5				
9	9.15	orange-grey, highly weathered with extremely weathered bands, low strength with very low strength bands, fractured, Mittagong Formation		С	9.18				Sand filter 9 Slotted PVC pipe
	10.0	SANDSTONE: refer following page		с	9.10				End Cap

TYPE OF BORING: Diatube to 0.25m, Hand tools to 2.6m, SFA (TC-bit) to 8.5m, NMLC to 10.8m

WATER OBSERVATIONS: No free groundwater observed during drilling

REMARKS: Standpipe installed: 0-8.5m Blank PVC pipe, 8.5-9.3m Slotted PVC pipe, End cap at 9.3m, Backfill 0-7.5m, Bentonite 7.5-8.5m, Sand filter 8.5-9.3m, Bentonite 9.3-10.8m, Gatic cover at surface. Hole pre-drilled 8 April 2020 to 2.6m depth

	SAM	IPLIN	3 & IN SITU TESTING	LEGE	END		
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	_	
B	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)		Douglas Partners
BL	< Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)		Doudias Pariners
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	11	
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics Environment Groundwater
-							

CLIENT: Vertical First Pty Ltd

PROJECT:

Proposed Commercial Development LOCATION: 8-10 Lee Street, Haymarket

CASING: HQ to 8.5m

SURFACE LEVEL: 21.2 AHD **EASTING**: 333978 **NORTHING**: 6249263 **DIP/AZIMUTH**: 90°/-- BORE No: BH103 PROJECT No: 86767.00 DATE: 15 - 16/4/2020 SHEET 2 OF 2

				DIP	'AZII		H: 90°/		SHEET 2 OF 2
		Description	ic		Sam		& In Situ Testing		Well
	epth m)	of Strata	Graphic Log	Type	Depth	Sample	Results & S	אימום	Construction Details
	10.8 -	SANDSTONE: fine to medium grained, pale yellow, moderately then slightly weathered, medium strength, slightly fractured, Hawkesbury Sandstone		с	9.96		PL(A) = 0.65	-	Bentonite plug
-11 ₽		Bore discontinued at 10.8m Target depth reached			_10.75_ 10.8			-	-11
- 12	:							-	-12
13 ∞								-	-13
- 14								-	-14
- 15 								-	-15
- 16 								-	- 16
- 17 								-	- 17
- 18 								-	-18
- 19								-	-19
-								-	

RIG: XC 100

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Terratest

LOGGED: NB

CASING: HQ to 8.5m

TYPE OF BORING: Diatube to 0.25m, Hand tools to 2.6m, SFA (TC-bit) to 8.5m, NMLC to 10.8m

WATER OBSERVATIONS: No free groundwater observed during drilling

REMARKS: Standpipe installed: 0-8.5m Blank PVC pipe, 8.5-9.3m Slotted PVC pipe, End cap at 9.3m, Backfill 0-7.5m, Bentonite 7.5-8.5m, Sand filter 8.5-9.3m, Bentonite 9.3-10.8m, Gatic cover at surface. Hole pre-drilled 8 April 2020 to 2.6m depth

	SAM	IPLIN	G & IN SITU TESTING	LEG							
	A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	_		-		_	
	B Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)						A HA
	BLK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)						ers
	C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		Doug				
	D Disturbed sample	⊳	Water seep	S	Standard penetration test					110	
	E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics	S Envi	ronmei	nt Grou	ndwater
•											

SURFACE LEVEL: 21.2 AHD **EASTING:** 333983 **NORTHING:** 6249272 **DIP/AZIMUTH:** 90°/-- BORE No: BH104 PROJECT No: 86767.00 DATE: 14 - 15/4/2020 SHEET 1 OF 2

			1	-					
,	Donth	Description	hic				& In Situ Testing	5	Well
	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
-		FILL/ CONCRETE	4.4.		0.05				Gatic Cover and
	0.25	FILL/ SAND: fine to medium, pale brown, trace silt, moist, generally in a very loose condition		A	0.25 0.4		PID=0.8		
-1	0.8 1 1.0	FILL/ Silty CLAY: medium plasticity, pale orange, trace fine sand, w>PL, generally in a stiff condition //	\bigotimes	A	0.8 0.9 1.0		PID=1.2 PID=5.7		
-		FILL/ Silty CLAY: low plasticity, pale grey-orange and dark grey, with angular sandstone, shale and ironstone gravel, w>PL, generally in a soft to firm condition		A*	1.1 1.4 1.5		PID=0 2,2,2		
-2	2 2.0			S	1.95		2,2,2 N = 4		2
		FILL/ Silty CLAY: medium plasticity, red-brown mottled orange, trace fine sand and gravel, w <pl, a<br="" generally="" in="">soft to firm condition</pl,>							
-3	3			A	2.8 2.9 3.0		PID=0		-3
2				s	3.45		1,2,2 N = 4		Backfill and Blank
-4	1								Backfill and Blank PVC pipe
				s	4.5		2,1,2 N = 3		
2-	5 5.0	Below 4.8m: trace ash and medium sand SAND SP: dark yellow-orange, 10% non plastic fines, moist, medium dense, alluvial			4.95				
-6	6			s	6.0		3,5,8 N = 13		6
-	,				6.45				
	7.63				7.63				
-8	3	SANDSTONE: fine grained, dark brown, pale grey and orange-grey, highly then moderately weathered with extremely weathered bands, high and medium strength with very low strength bands, fractured, Mittagong Formation		с	8.24		PL(A) = 0.84		8
-			$\left \right $		8.65				
-9				с					9
	9.42	SANDSTONE: refer following page							

RIG: XC 100

DRILLER: Terratest

LOGGED: NB

CASING: HQ to 7.63m

TYPE OF BORING: Diatube to 0.25m, Hand tools to 1.1m, SFA (TC-bit) to 7.63m, NMLC to 20m

WATER OBSERVATIONS: No free groundwater observed during drilling

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

CLIENT: PROJECT:

REMARKS: Standpipe installed: 0-14.0m Blank PVC pipe, 14.0-20m Slotted PVC pipe, End cap at 20m, Backfill 0.1-6.5m, Bentonite 6.5-13.5m, Sand filter 13.5-20m, Gatic cover at surface. Hole pre-drilled 8 April 2020 to 1.1m depth. *BD2/140420 replicate: 1.4-1.5m

SAM	IPLIN	3 & IN SITU TESTING	LEG	END							
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)			_	-	_		
B Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)						Partne	KO
BLK Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test ls(50) (MPa)							
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)					_		
D Disturbed sample	⊳	Water seep	S	Standard penetration test		_	On the last	1			
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			Geotechnics	I Envi	roni	ment Ground	water
					-						

SURFACE LEVEL: 21.2 AHD **EASTING:** 333983 **NORTHING:** 6249272 **DIP/AZIMUTH:** 90°/-- BORE No: BH104 PROJECT No: 86767.00 DATE: 14 - 15/4/2020 SHEET 2 OF 2

Dont	Description	hic		Sam		& In Situ Testing	<u>۳</u>	Well
Depti (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
-	SANDSTONE: fine to medium grained, pale grey with grey bands, fresh, medium and high strength, slightly fractured then unbroken, Hawkesbury Sandstone			9.96 10.1		PL(A) = 0.77		Bentonite Seal
-11			С	10.96		PL(A) = 0.95		-11
12			С	11.65		PL(A) = 0.94		12
- 13				12.96 13.2		PL(A) = 1.2		11
-14			С	13.96		PL(A) = 0.66		14
- 15	Between 14.52m-14.58m: band of dark grey siltstone			14.69 14.96		PL(A) = 1.5		-15
- 16			С	15.96 16.23		PL(A) = 1.2		-16
- 17			С	16.96		PL(A) = 1.3		Sand filter
- 18				17.61 17.96		PL(A) = 1.3		-18
- 19			С	18.96 19.23		PL(A) = 2.6		19
20	Bore discontinued at 20.0m Target depth reached		С	19,9		PL(A) = 1		End cap

TYPE OF BORING: Diatube to 0.25m, Hand tools to 1.1m, SFA (TC-bit) to 7.63m, NMLC to 20m

WATER OBSERVATIONS: No free groundwater observed during drilling

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

REMARKS: Standpipe installed: 0-14.0m Blank PVC pipe, 14.0-20m Slotted PVC pipe, End cap at 20m, Backfill 0.1-6.5m, Bentonite 6.5-13.5m, Sand filter 13.5-20m, Gatic cover at surface. Hole pre-drilled 8 April 2020 to 1.1m depth. *BD2/140420 replicate: 1.4-1.5m

SAM	MPLIN	G & IN SITU TESTING	LEGEND	
A Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
B Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	Nouglas Dortman
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)	A Douglas Partners
C Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	
D Disturbed sample	⊳	Water seep	S Standard penetration test	Oracterized I Freedoments I Orace devices
E Environmental sample	¥	Water level	V Shear vane (kPa)	Geotecnnics Environment Groundwater
BLK Block sample C Core drilling D Disturbed sample	U× ₩ ₽	Tube sample (x mm dia.) Water sample Water seep	PL(D) Point load diametral test ls(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test	Geotechnics Environment Groundw

SURFACE LEVEL: 20.1 AHD EASTING: 333988 **NORTHING:** 6249270 **NORTHING:** 6249270 **DIP/AZIMUTH:** 90°/--

BORE No: BH105 **PROJECT No:** 86767.03 **DATE:** 7/4/2020 SHEET 1 OF 2

							H: 90 /		
		Description	.e		Sam		& In Situ Testing	L	VWP
R	Depth (m)	of	Graphic Log	Ø	÷	ole	Deputte 9	Water	Construction
	(11)	Strata	- B	Type	Depth	Sample	Results & Comments	3	Details
\vdash	0.05	¬ FILL/BALLAST			0.05	S			
-2-	0.05			A	0.05		PID=2.5 ppm		-
		FILL/Silty CLAY: medium plasticity, dark grey, with angular gravel and organic matter and fragments of plastic, w~PL, generally in a firm condition							-
	0.37								-
	0.37		<u>.</u>						
		CONCRETE: grey, orange and yellow-brown, with inclusions of sub-angular to sub-rounded, high strength	<u>.</u>						† I
		sandstone	7: X.						1
			Q.Q.						[
			<u>۵</u> . ۵.						
	-1		44						-1
-6-			Δ. Δ. 						-
			7:14						-
			Q.Q.						-
$\left \right $			<u>۵</u> . ۵						-
$\left \right $			4.4. X.Y.						-
+ +			1 						-
			0.0						-
			$\triangleleft \neg$						-
			Δ. Δ.						
	-2		7: X.						-2
-8-			Q.Q.						[
			$\Delta \Delta$						
			Q. Q.						
									-
			1:A						-
-			Q. Q.						-
+ +			<u>۵</u> . ۵						-
+ +			4:X: X:Y:						-
+ +	-3								-3
-1-									T
									†
[]									[
			7.0						
			4.4						
			0.0						
			4.4. 						-
			1 						-
$\left \right $	-4		ă.ă.						-4
-9-			4.4						-
+ +									-
			<u>7:7</u>						- I
			Q.Q.						<u> </u>
			<u>۵</u> ۵						†
			Δ.Δ. 						
			ŢĊŢĊŢĊŢĊŢĊŢĊŢĊŢĊŢĊŢĊŢĊŢĊŢĊŢĊŢĊŢĊŢĊŢĊŢĊ						
			<u> </u>						

DRILLER: Tightsite RIG: Proline TYPE OF BORING: Diatube to 3.1m, NMLC to 6.5m WATER OBSERVATIONS: No free groundwater observed **REMARKS:** * Field replicate BD1/070420 taken from 0.05-0.1m LOGGED: NB

CASING: HW to 3.1m

SAMPLING & IN SITU TESTING LEGEND

Г

SAM	PLIN	G&INSITUTESTING	LEG	END					
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)			-		
B Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)					
BLK Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test ls(50) (MPa)				Partner	5
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)					
D Disturbed sample	⊳	Water seep	ŝ	Standard penetration test					
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics	s Enviro	onment Groundwat	er

CLIENT: PROJECT:

Proposed Commercial Development LOCATION: 8-10 Lee Street, Haymarket

Vertical First Pty Ltd

SURFACE LEVEL: 20.1 AHD **EASTING:** 333988 **NORTHING:** 6249270 **DIP/AZIMUTH:** 90°/--

BORE No: BH105 **PROJECT No: 86767.03** DATE: 7/4/2020 SHEET 2 OF 2

_								n. 90/		SHEET 2 OF 2	
,	De	epth	Description	bhic g				& In Situ Testing	er	VWP	
RL	(1	m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details	
14 1 1 15	- - - - -		CONCRETE: grey, orange and yellow-brown, with inclusions of sub-angular to sub-rounded, high strength sandstone <i>(continued)</i>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						- - - - - - - - - - - - - - - - - - -	
-	-	6.3	SANDSTONE: fine to medium grained, pale yellow, highly weathered, medium to high strength, Mittagong Formation	A A 4 4						-	
-	-	6.5-	Bore discontinued at 6.5m - Target depth reached							-	
13	- -7 -									-7	
-	-									-	
-	-										
12-										-	
-	-										
-1-	- - 9 -									- - -9 -	
-	- - -										
-	-										
L RI ^r	G:	Prolin	e DRILLER: Tightsite		LOG	GED	: NB	CASING	: H	W to 3.1m	

RIG: Proline **DRILLER:** Tightsite TYPE OF BORING: Diatube to 3.1m, NMLC to 6.5m WATER OBSERVATIONS: No free groundwater observed REMARKS: * Field replicate BD1/070420 taken from 0.05-0.1m

G P U, W

₽

A Auger sample B Bulk sample BLK Block sample

CDE

Core drilling Disturbed sample Environmental sample

SAMPLING & IN SITU TESTING LEGEND

Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

 LEGEND

 PID
 Photo ionisation detector (ppm)

 PL(A)
 Point load axial test Is(50) (MPa)

 PL(D)
 Point load diametral test Is(50) (MPa)

 pp
 Pocket penetrometer (kPa)

 S
 Standard penetration test

 V
 Shear vane (kPa)

 Douglas Partners Geotechnics | Environment | Groundwater

SURFACE LEVEL: 15.5 AHD **EASTING:** 333980 **NORTHING:** 6249282 **DIP/AZIMUTH:** 90°/--

BORE No: BH106 **PROJECT No: 86767.03** DATE: 7/4/2020 SHEET 1 OF 1

						<i>//</i>		H: 90 [°] /		SHEET TOF T
	_		Description	ic		Sam		& In Situ Testing	-	VWP
R	Dep (m	oth	of	Graphic Log	e	ţ	ple	Results &	Water	Construction
	(II	"	Strata	<u>م</u> _	Type	Depth	Sample	Results & Comments	5	Details
			CONCRETE: grey, 2-10mm igneous aggregate	0. A A						
	. (0.16	\ FILL/SAND: fine to coarse, pale brown, trace seashells,			0.16 0.2		PID=2 ppm		
-		0.2	moist		E	0.2				-
+ +		0.4	FILL/CLAY: medium plasticity, brown, red and grey, with fine to coarse sand, trace fine to medium gravel, fine to		E	0.4		PID=1 ppm PID=1 ppm		-
-15		h	medium igneous rail ballast, seashells and coal, w~PL			0.5				
			FILL/SAND: fine to coarse, dark brown, with igneous rail ballast, trace coal, dry, hydrocarbon odour							
		0.8	FILL/CLAY: medium plasticity, pale grey, red and brown, trace fine to medium gravel, w~PL	$\langle V \rangle$						
	- 1		Below 0.5m: apparently in a stiff condition		E	0.9 1.0		PID=1 ppm		-1
		h	At 0.6m: tile fragment		1					
		1.25	apparently very stiff, residual		E	1.15 -1.25-		PID<1 ppm		-
4			Below 1.1m: w <pl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl<>							
			- Target depth reached							-
+ +										-
										-
	-2									-2
										-
+ +										-
										-
13-										
[~]										
										-
+ +										-
	-3									-3
										-
										-
										-
- <u></u>										
										-
										-
-										- I
	-4									-4
										ļ
										-
-2-										- I
t										
										- I

RIG: Hand Tools DRILLER: AS/AMS TYPE OF BORING: Diatube to 0.16m, Hand auger to 1.25m WATER OBSERVATIONS: No free groundwater observed **REMARKS:**

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

LOGGED: AS

CASING: Uncased

SAMPLING & IN SITU TESTING LEGEND

SURFACE LEVEL: 15.5 AHD **EASTING:** 333945 **NORTHING:** 6249270 **DIP/AZIMUTH:** 90°/-- BORE No: BH107A PROJECT No: 86767.00 DATE: 17/5/2020 SHEET 1 OF 1

	Description	ici		San		& In Situ Testing	5	Well	
Dep	n) of	Graph Log	Type	Depth	ample	Results & Comments	Wate	Construction Details	ı
	oth	e al	Type	San		_	05-06-20 i▲ Water		
				GGED		CASIN		-5	

TYPE OF BORING: SFA (TC-bit) to 3.9m

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Standpipe installed: 0-3.4m Blank PVC pipe, 3.4-3.9m Slotted PVC pipe, End cap at 3.9m, Sand backfill 0-1.5m, Bentonite 1.5-3.2m, Sand filter 3.2-3.9m, Gatic cover at surface.

	SAM	IPLIN	G & IN SITU TESTING	LEG	END		
	A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	_	
	3 Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)		Douglas Partners
	3LK Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test Is(50) (MPa)		A Douglas Parlners
	C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		
	D Disturbed sample	⊳	Water seep	S	Standard penetration test		Or the basic of English and the Oregonal term
	E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics Environment Groundwater
-							

SURFACE LEVEL: 15.5 AHD **EASTING:** 333966 **NORTHING:** 6249307 **DIP/AZIMUTH:** 90°/-- BORE No: BH108 PROJECT No: 86767.03 DATE: 17/5/2020 SHEET 1 OF 1

					DIF			H: 90°/		SHEET 1 OF 1	
	-		Description	ic		Sam		& In Situ Testing	-	VWP	
R	Deptl (m)	h	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details	
-	_		CONCRETE: grey, 2-10mm igneous aggregate	Q.Q.						-	
-	0.:	21 23	FILL/Sandy CLAY: low plasticity, dark brown, fine to medium sand, w~PL		E	0.23 0.25		PID=2 ppm		-	
-15	-		CLAY CI: medium plasticity, pale grey mottled pale brown and red, w~PL, residual			0.6					
	-		Below 0.6m: trace fine to medium ironstone gravel		E	0.8		PID=2 ppm			
	-									- 1	
-	-	05- 1.2-	SANDSTONE: fine to medium grained, pale grey, highly weathered, very low strength, with clay and ironstone bands, Hawkesbury Sandstone		E	1.05 		PID=2 ppm		-	
-			Bore discontinued at 1.2m - Target depth reached. Auger refusal							-	
-4-	-									-	
ŀ											
	-2									-2	
-	-									-	
-13	-									-	
-	-									-	
ŀ	-										
	-3									-3	
	-									-	
-5	-									-	
-											
-	- 4									-4	
ŀ	-										
[-										
-	-										
	-										

 RIG: Miniprobe
 DRILLER: Terratest

 TYPE OF BORING:
 Pushtube to 1.2m

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

LOGGED: AS

CASING: Uncased

WATER OBSERVATIONS: No free groundwater observed REMARKS:

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 Ux
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 P
 Water level
 V
 Shard van (kPa)

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

CLIENT: PROJECT: **SURFACE LEVEL:** 15.5 AHD **EASTING:** 333945 **NORTHING:** 6249272 **DIP/AZIMI ITH:** 90°/-- BORE No: BH107B PROJECT No: 86767.00 DATE: 16/5/2020 SHEET 1 OF 2

					DIF	P/AZII	MUTH	l: 90°/		SHEET 1 OF 2	
	_		Description	ic _		Sam		In Situ Testing	ř	Well	
RL	Dep (m		of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details	
2	C).14 -	CONCRETE: grey, angular to subangular aggregate to 15mm, negligible voids, 9 mm steel reinforcement at 0.08 / m depth		A A A/E*	0.15 0.2 0.4		PID=4 PID=5		Gatic Cover and	
	- - - - - 1	_	FILL/ Sandy CLAY: low to medium plasticity, dark red and brown, fine to medium, with angular igneous and sandstone gravel, trace silt, w <pl, a="" generally="" in="" stiff<br="">condition</pl,>		A/E	0.5 0.9 1.0		PID=2		-1 Backfill and Blank PVC pipe	
-4-	-	1.6	^L Below 1.0m: grading to medium plasticity, dark grey, trace sandstone gravel, w~PL		A/E	1.4 1.5		PID=2		Backfill and Blank	
	-2		FILL/ Silty CLAY: medium to high plasticity, pale grey-yellow, with fine to medium sand, w~PL, generally in a stiff condition		A/E_	1.9 2.0		PID=2	Ţ	2	
13	- - -	2.2	Sandy CLAY CL-CI: low to medium plasticity, pale yellow, fine to medium, w~PL, apparently stiff to very stiff, residual Below 2.6m: yellow-brown	· · · · · · · · · · · · · · · · · · ·	A/E	2.4 2.5 2.65		PID=1	05-06-20		X
	- 2	2.81 -	SANDSTONE: fine to medium grained, pale grey and red-brown, high strength with very low then low strength bands, highly weathered, fractured, Mittagong Formation		A/E C	2.8 2.81 2.94		PID=2 PL(A) = 1.1		-3	
12	- - - - 3	3.92		\sim		3.57 3.62		PL(A) = 0.1		Bentonite Seal	
		1.03-	SANDSTONE: fine to medium grained, pale grey and red-brown, medium then high strength, moderately weathered, fractured, Hawkesbury Sandstone		с	4.25		PL(A) = 0.9			
	-5 4	I.94 -	SANDSTONE: fine to medium grained, pale grey, high strength, fresh, slightly fractured to unbroken, cross-bedding 5°-10°, Hawkesbury Sandstone			5.0 5.12		PL(A) = 1.5		-5 Sand filter	
	- 6				с	6.0		PL(A) = 1.1			
	- - - - 7					6.59 7.0		PL(A) = 1.3			
	- - - -				с			(,)			
			Between 7.66m-8.10m: band of fine grained sandstone			8.0 8.12		PL(A) = 1.6		8	
	-									Slotted PVC pipe	
	-9				с	9.0		PL(A) = 1.1		9	
-9-	-					_10.0_		PL(A) = 1.3			

RIG: XC

DRILLER: Terratest

LOGGED: KR

CASING: HWT to 2.8m

TYPE OF BORING: Diatube (200 mm) to 0.14m, SFA (TC-bit) to 2.81m, NMLC coring to 15.0m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: *BD1/20200516 taken at 0.4-0.5m. Standpipe installed: 0-5.5m Blank PVC pipe, 5.5-11.0m Slotted PVC pipe, End cap at 11.0m, Sand backfill 0-2.3m, Bentonite 2.3-5.0m, Sand filter 5.0-11.0m, Bentonite 11.0-12.0m, Backfill 12.0-15.0m, Gatic cover at surface.

SAMPLING & IN SITU TESTING LEGEND	
A Auger sample G Gas sample PID Photo ionisation detector (ppm)	
B Buik sample P Piston sample P L(D) Point load avial test Is(50) (MPa) BLK Block sample U Tube sample PL(D) Point load avial test Is(50) (MPa) C Core drilling W Water sample p Pcoket penetrometer (kPa)	
BLK Block sample U, Tube sample (x mm dia.) PL(D) Point load diametral test Is(50) (MPa)	Pariners.
C Core drilling W Water sample pp Pocket penetrometer (kPa)	
D Disturbed sample D Water seep S Standard penetration test	
E Environmental sample Water level V Sthear vane (kPa)	nent Groundwater

SURFACE LEVEL: 15.5 AHD **EASTING**: 333945 **NORTHING**: 6249272 **DIP/AZIMUTH**: 90°/-- BORE No: BH107B PROJECT No: 86767.00 DATE: 16/5/2020 SHEET 2 OF 2

				DIF	7/AZII	NUT	H: 90°/		SHEET 2 OF 2
\square		Description	.c.		Sam		& In Situ Testing	Ļ	Well
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
	- 11	SANDSTONE: fine to medium grained, pale grey, high strength, fresh, slightly fractured to unbroken, cross-bedding 5°-10°, Hawkesbury Sandstone (continued)		С	11.02		PL(A) = 1.1		11 End Cap
- 4	- 12				11.07		PL(A) = 1.1		Bentonite Seal
		Between 12.60m-13.78m: band of fine grained sandstone		С					
2	- 13			· • • • • • • • • • • • • • • • • • • •	13.03		PL(A) = 1		- 13 Sand Back Fill
	- 14			C	14.0 14.08		PL(A) = 1.2		-14
	-15 15.0	Bore discontinued at 15.0m - Target depth reached	<u> :::::</u>		-15.0-				
 	- 16								- 16
-2	- 17								- 17 - 17
	- 18								- 18
	- 19								- 19

RIG: XC

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Terratest

LOGGED: KR

CASING: HWT to 2.8m

TYPE OF BORING: Diatube (200 mm) to 0.14m, SFA (TC-bit) to 2.81m, NMLC coring to 15.0m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: *BD1/20200516 taken at 0.4-0.5m. Standpipe installed: 0-5.5m Blank PVC pipe, 5.5-11.0m Slotted PVC pipe, End cap at 11.0m, Sand backfill 0-2.3m, Bentonite 2.3-5.0m, Sand filter 5.0-11.0m, Bentonite 11.0-12.0m, Backfill 12.0-15.0m, Gatic cover at surface.

	SAM	PLIN	G & IN SITU TESTING	LEG	END			
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_	
В	Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)			Douglas Partners
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(E	D) Point load diametral test ls(50) (MPa)	1	1.	A Douglas Parlners
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			
D	Disturbed sample	⊳	Water seep	S	Standard penetration test			
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			Geotechnics Environment Groundwater
						-		

SURFACE LEVEL: 15.3 AHD EASTING: 333968 NORTHING: 6249312 DIP/AZIMUTH: 90°/-- BORE No: BH109A PROJECT No: 86767.00 DATE: 19/5/2020 SHEET 1 OF 1

Sampling & In Situ Testing VWP Graphic Description Water Depth Log Sample 뭅 Construction of Depth Results & Comments (m) Type Details Strata CONCRETE: grey, angular to subangular aggregate to <u>0</u>.0 0.2 0.3 15mm, negligible voids, no reinforcement steel observed FILL/ GRAVEL: coarse, black, angular igneous gravel bonded by bitumen, dry, generally in a dense condition Silty CLAY CI: medium plasticity, pale orange, w<PL, apparently stiff to very stiff, residual (possibly extremely weathered Ashfield Shale) 1 1.05 SANDSTONE: fine to medium grained, pale grey and dark orange, highly weathered, medium strength, Hawkesbury Sandstone Bore discontinued at 1.15m -2 - Refusal to TC-bit auger ·2 -3 - 3 Δ ۰4 5 -5 0 6 6 7 • 7 - 8 - 8 9 ۰q

RIG: Miniprobe

TYPE OF BORING:

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Terratest SFA (TC-bit) to 1.15m LOGGED: NB

CASING: NA

WATER OBSERVATIONS: No free groundwater observed whilst drilling **REMARKS:** Surface level taken from survey drawing provided

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PID
 Phota daxial test Is(50) (MPa)

 BCK
 Block sample
 U
 Tube sample (xmm dia.)
 PL(A) Point load axial test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 PD
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 P
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 Water level
 V
 Shear vane (kPa)

SURFACE LEVEL: 15.3 AHD EASTING: 333970 NORTHING: 6249311 **DIP/AZIMUTH:** 90°/--

BORE No: BH109B **PROJECT No: 86767.00** DATE: 17/5/2020 SHEET 1 OF 2

D	Description	. <u>9</u>		Sam	ampling & In Situ Testing			Well	
Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details	
0.2 0.3	FILL/ GRAVEL: coarse, black, angular igneous gravel		A/E	0.4		PID<1		Gatic Cover and cap	
¹ 1.05	bonded by bitumen, dry, generally in a dense condition Silty CLAY CI: medium plasticity, pale orange, w <pl, apparently stiff to very stiff, residual (possibly extremely weathered Mittagong Formation)</pl, 		A/E	· 0.9 · 1.05 1.16		PID<1 PL(A) = 1.8		Backfill and Blank PVC pipe	
	SANDSTONE: fine to medium grained, pale grey and dark orange, highly weathered, medium strength, fractured, Hawkesbury Sandstone		с	1.10					
2			с	2.11		PL(A) = 0.7	09-06-20	-2	
3 2.93	SANDSTONE: fine to coarse grained, pale grey and pale yellow, moderately weathered then slightly weathered, medium strength, slightly fractured, cross-bedding 5°-10°, Howkenbury Sandstone			3.1 3.11		PL(A) = 0.5		-3 Bentonite Seal	
4	Hawkesbury Sandstone		С	3.92		PL(A) = 0.7		-4	
4.9 5	SANDSTONE: fine to coarse grained, pale grey, fresh, medium then high strength, slightly fractured then			4.65 4.93 5.04		PL(A) = 0.9 PL(A) = 1		-5	
6	unbroken, cross-bedding 5°-10°, Hawkesbury Sandstone		С	6.0		PL(A) = 0.7		Sand filter	
			с						
7			с	7.0 7.4		PL(A) = 1.2		-7	
8				7.75 8.0		PL(A) = 1.8		-8	
9			С	9.0 9.25		PL(A) = 1.9		Slotted PVC pipe	
			с			PL(A) = 1.4			

RIG: XC **DRILLER:** Terratest TYPE OF BORING: Diatube (200mm) to 0.2m, SFA (TC-bit) to 1.05m, NMLC coring to 15m

WATER OBSERVATIONS: No free groundwater observed whilst drilling

REMARKS: Standpipe installed: 0-6.0m Blank PVC pipe, 6.0-11.6m Slotted PVC pipe, End cap at 11.6m, Sand backfill 0-1.05m, Bentonite 1.05-5.2m, Sand filter 5.2-11.6m, Bentonite 11.6-13.0m, Backfill 13.0-15.0m, Gatic cover at surface. Surface level taken from survey

SAM	IPLIN	G & IN SITU TESTING	LEG	END			
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_	
B Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)			Douglas Partners
BLK Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test ls(50) (MPa)	1	1.	Doudias Pariners
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			
D Disturbed sample	⊳	Water seep	S	Standard penetration test			
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			Geotechnics Environment Groundwater
D Disturbed sample	Þ	Water seep	S V	Standard penetration test		Ľ	Geotechnics Environment Groundwat

Proposed Commercial Development LOCATION: 8-10 Lee Street, Haymarket

Vertical First Pty Ltd

SURFACE LEVEL: 15.3 AHD **EASTING:** 333970 NORTHING: 6249311 **DIP/AZIMUTH:** 90°/--

BORE No: BH109B **PROJECT No: 86767.00** DATE: 17/5/2020 SHEET 2 OF 2

							H: 90 /			
	Denth	Description	hic				& In Situ Testing	۳	Well	
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details	
	- 11	SANDSTONE: fine to coarse grained, pale grey, fresh, medium then high strength, slightly fractured then unbroken, cross-bedding 5°-10°, Hawkesbury Sandstone (continued)		С	10.73		PL(A) = 1.8			
	-			С					End Cap	
	- 12				12.0 12.38		PL(A) = 1.2		Bentonite Seal	
2	- 13			С	13.0		PL(A) = 1.4		-13	
	- 14			с	13.88 14.0		PL(A) = 1.3		14 Sand Back Fill	
- 0	- 15 15.0 -	Bore discontinued at 15.0m - Target depth reached	<u> :::::</u>		-15.0-					
	- 16								-16	
	- 17								- 17	
	- 18 								- 18	
- 4-	- 19 								- 19	

RIG: XC

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Terratest

LOGGED: NB TYPE OF BORING: Diatube (200mm) to 0.2m, SFA (TC-bit) to 1.05m, NMLC coring to 15m CASING: HWT to 1.05m

WATER OBSERVATIONS: No free groundwater observed whilst drilling

REMARKS: Standpipe installed: 0-6.0m Blank PVC pipe, 6.0-11.6m Slotted PVC pipe, End cap at 11.6m, Sand backfill 0-1.05m, Bentonite 1.05-5.2m, Sand filter 5.2-11.6m, Bentonite 11.6-13.0m, Backfill 13.0-15.0m, Gatic cover at surface. Surface level taken from survey

	SAM	IPLINC	3 & IN SITU TESTING	LEGEND	
A	Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
B	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	Douglas Partners
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)	
C	Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S Standard penetration test	October 1 Freedoment 1 October destant
E	Environmental sample	¥	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwater

SURFACE LEVEL: 15.3 AHD EASTING: 333960 NORTHING: 6249314 DIP/AZIMUTH: 90°/-- BORE No: BH110 PROJECT No: 86767.00 DATE: 20/5/2020 SHEET 1 OF 1

Sampling & In Situ Testing VWP Graphic Description Water Depth Log 뭅 Sample Construction of Depth Type Results & Comments (m) Details Strata CONCRETE: grey, angular to subangular aggregate to 15mm, negligible voids, no reinforcement <u>له</u> ک 0.2 0.2 FILL/ SAND: fine to coarse, pale orange, moist, generally А PID<1 0.3 0.3 \in a medium dense condition FILL/ Silty CLAY: medium to high plasticity, pale grey mottled orange, with fine to coarse sand and brick, 0.5 А PID<1 concrete and asphalt fragments, w<PL, generally in a stiff 0.6 0.6 \condition Bore discontinued at 0.6m - Termination on brick and concrete fragments 1 1 -2 -2 - 3 -3 .₽ -4 - 4

 RIG:
 Hand tools
 DRILLER:
 Nick Ruha/NB

 TYPE OF BORING:
 Diatube (100mm) to 0.2m, then hand auger

 WATER OBSERVATIONS:
 No free groundwater observed whilst drilling

 REMARKS:
 Surface level taken from survey drawing provided

CLIENT:

PROJECT:

LOCATION:

Vertical First Pty Ltd

8-10 Lee Street, Haymarket

Proposed Commercial Development

LOGGED: NB

CASING: NA

ER OBSERVATIONS: No free groundwater observed whilst drilling ARKS: Surface level taken from survey drawing provided SAMPLING & IN SITU TESTING LEGEND

 SAMPLING & IN STIU 1ESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 U,
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 V
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 ¥
 Water level
 V
 Shear vane (kPa)

SURFACE LEVEL: 18.7 AHD **EASTING:** 333945 NORTHING: 6249317 **DIP/AZIMUTH:** 90°/--

BORE No: BH111 PROJECT No: 86767.00 DATE: 19/5/2020 SHEET 1 OF 2

							H: 90 /		
~		Description	- Jic		Sam		& In Situ Testing	~	VWP
De (r	epth m)	of	Log	pe	pth	nple	Results &	Nate	Construction
		Strata	G	Ţ	De	San	Comments		Details
_	0.05		$ XX\rangle$						-
-		igneous gravel, fine to coarse sand, dry, generally in a dense condition FILL/ SAND: fine to coarse, pale grey and brown, moist,		U/E	0.4		PID<1		-
-		FILL/ Silty CLAY: low to medium plasticity, dark grey and brown, w <pl, a="" condition<br="" generally="" in="" stiff="">Below 0.6m, grading to sandy clay, pale orange and dark orange, fine to medium sand</pl,>							
- 1 - -	1.2-	FILL/ SAND: fine to medium, dark brown and grey, trace		U/E	1.1 1.2		PID<1		-1
-		silt, moist, generally in a medium dense to dense condition		U/E	1.3 1.4		PID<1		
- - -2	2.0-	SAND SP: fine to medium, pale grey, moist, apparently loose, alluvial		U/E	2.0 2.1		PID<1		-2
-		Below 2.4m: grading to pale orange							
- - - 3	2.0			U/E*	3.0 3.1		PID<1		-3
-	3.2	Silty CLAY CI: medium plasticity, pale orange mottled dark red, with ironstone gravel, w <pl, apparently="" stiff="" to="" very<br="">stiff, residual (possibly extremely weathered Mittagong Formation)</pl,>							
- 4 		Below 4.4m: grading to pale grey		U/E	4.0		PID<1		
	((0.15 - 0.5 - 10.12 - 11.2 - 11	Depth (m) of 0.05 ASPHALTIC CONCRETE 0.15 FILL/ ROADBASE: fine to coarse, dark grey, angular igneous gravel, fine to coarse sand, dry, generally in a dense condition 0.15 FILL/SAND: fine to coarse, pale grey and brown, moist, generally in a loose to medium dense condition 0.16 FILL/SIV CLAY: low to medium plasticity, dark grey and brown, w <pl, a="" condition<="" generally="" in="" stiff="" td=""> Below 0.6m, grading to sandy clay, pale orange and dark orange, fine to medium sand 1 1.2 FILL/SIND: fine to medium, dark brown and grey, trace silt, moist, generally in a medium dense to dense condition 2 2.0 SAND SP: fine to medium, pale grey, moist, apparently loose, alluvial Below 2.4m: grading to pale orange 3 3.2 Silty CLAY CI: medium plasticity, pale orange mottled dark red, with ironstone gravel, w<pl, apparently="" stiff="" to="" very<br="">stiff, residual (possibly extremely weathered Mittagong Formation)</pl,></pl,>	Depth (m) of Strata 0.05 ASPHALTIC CONCRETE 0.15 FILL/ CADDASE: fine to coarse, dark grey, angular igneous gravel, fine to coarse, pale grey and brown, moist, generally in a lose to medium dense condition 0.15 FILL/SAND: fine to coarse, pale grey and brown, moist, generally in a lose to medium dense condition 0.16 FILL/SINU: CLAY: low to medium plasticity, dark grey and brown, w <pl, a="" condition<="" generally="" in="" stiff="" td=""> 1.1 FILL/SINU: fine to medium, dark brown and grey, trace sit, moist, generally in a medium dense to dense condition 1.1 FILL/SAND: fine to medium, pale grey, moist, apparently loose, alluvial 2 2.0 SAND SP: fine to medium, pale grey, moist, apparently loose, alluvial 3 3.1 3.1 Sitty CLAY CI: medium plasticity, pale orange motiled dark red, with ironstone gravel, w<pl, apparently="" stiff="" to="" very<br="">stiff, residual (possibly extremely weathered Mittagong Formation)</pl,></pl,>	0.05 ASPHALTIC CONCRETE 0.15 FILL ROADBASE: fine to coarse, dark grey, angular igneous gravel, fine to coarse sand, dry, generally in a dense condition 0.15 Generally in a loose to medium dense condition 0.15 Generally in a loose to medium dense condition 0.16 FILL SAND: fine to coarse, pale grey and brown, moist, generally in a loose to medium dense condition 0.16 FILL Sity CLAY: low to medium plasticity, dark grey and brown, wcPL, generally in a stiff condition 1.1 FILL Sity CLAY: low to medium, dark brown and grey, trace sitt, moist, generally in a medium dense to dense condition 1.1 FILL SAND: fine to medium, dark brown and grey, trace sitt, moist, generally in a medium dense to dense condition 2 2.0 SAND SP: fine to medium, pale grey, moist, apparently loose, aliuvial 2 2.0 SAND SP: fine to medium, pale grey, moist, apparently loose, aliuvial 3 U/E 3.1 Sity CLAY CI: medium plasticity, pale orange mottled dark red, with ironstone gravel, w <pl, (possibly="" apparently="" extremely="" formation)<="" mittagong="" residual="" stiff="" stiff,="" td="" to="" very="" weathered=""> 4 U/E</pl,>	Depth (m) Description of Strata End of Strata 0.05 -ASPHALTIC CONCRETE 0.15 0.15 FILL/ RADDBASE: fine to coarse, dark grey, angular igneeus gravel, fine to coarse, pale grey and brown, moist, generally in a lose to medium dense condition 0.4 0.5 generally in a lose to medium dense condition 0.4 0.5 generally in a lose to medium dense condition 0.4 0.6 generally in a lose to medium dense condition 0.4 1.1 1.2 FILL/ SIND: fine to medium, dark brown and grey, trace silt, moist, generally in a medium dense to dense condition 0.4 1.1 1.2 FILL/ SAND: fine to medium, dark brown and grey, trace silt, moist, generally in a medium dense to dense 0.4 2 2.0 SAND SP: fine to medium, pale grey, moist, apparently loose, alluvial 0.4 2 2.0 SAND SP: fine to medium, pale grey, moist, apparently loose, alluvial 0.4 3 3.1 Sitty CLAY C1: medium plasticity, pale orange motiled dark red, with ironstone gravel, w <pl, apparently="" stiff="" to="" very<br="">stiff, residual (possibly extremely weathered Mittagong Formation) 0.4</pl,>	Desch (m) Desch plot (m) End (0.66 ASPHALTIC CONCRETE 0.15 FILL ROADBASE: fine to coarse, and, grey, angular in dense to coarse sand, dry, generally in a site coarse condition 0.15 FILL SAND: fine to coarse, pale grey and brown, molst, in a fill and fill	Depth (m) Description of Strata End of Strata End of Str

RIG: Geoprobe

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Terratest TYPE OF BORING: Push tube to 5.4m

LOGGED: NB

CASING: NA

WATER OBSERVATIONS: No free groundwater observed whilst drilling

REMARKS: *BD1/190520NB taken at 3-3.1m. Surface level taken from survey drawing provided

SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level A Auger sample B Bulk sample BLK Block sample G P U, W Douglas Partners 1 Core drilling Disturbed sample Environmental sample CDE ₽ Geotechnics | Environment | Groundwater

SURFACE LEVEL: 18.7 AHD **EASTING:** 333945 NORTHING: 6249317 DIP/AZIMUTH: 90°/--

BORE No: BH111 PROJECT No: 86767.00 DATE: 19/5/2020 SHEET 2 OF 2

Sampling & In Situ Testing Graphic Log VWP Description Water Depth 뭅 Sample Construction of Depth Type Results & Comments (m) Details Strata Silty CLAY CI: medium plasticity, pale orange mottled dark red, with ironstone gravel, w<PL, apparently stiff to very stiff, residual (possibly extremely weathered Mittagong Formation) (continued) 5.4 Bore discontinued at 5.4m - Target depth reached 6 -6 - 7 - 7 8 8 9 -9

RIG: Geoprobe

TYPE OF BORING:

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Terratest Push tube to 5.4m

LOGGED: NB

CASING: NA

WATER OBSERVATIONS: No free groundwater observed whilst drilling

G P U_x W

₽

REMARKS: *BD1/190520NB taken at 3-3.1m. Surface level taken from survey drawing provided

A Auger sample B Bulk sample BLK Block sample Core drilling Disturbed sample Environmental sample CDF

SAMPLING & IN SITU TESTING LEGEND Gas sample Piston sample Tube sample Water sample Water seep Water level

LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa)

SURFACE LEVEL: 16.7 AHD **EASTING:** 333926 NORTHING: 6249325 **DIP/AZIMUTH:** 90°/--

BORE No: BH112A **PROJECT No: 86767.00** DATE: 19/5/2020 SHEET 1 OF 1

	_		Description	lic		San		& In Situ Testing	-	Well
Ч	Dept (m)		of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction
	0	05	Strata	U	ŕ	ă	Sar	Comments		Details
<u> </u>		05 25	ASPHALTIC CONCRETE	\boxtimes						Gatic Cover and
	U - -	23	FILL/ ROADBASE: fine to coarse, dark grey, angular igneous gravel, fine to coarse sand, dry, generally in a dense condition		>					
	- - 1 -	1.4	FILL/ SAND: fine to medium, dark grey-brown, moist, generally in a loose condition		> > >					1 Backfill and Blank PVC pipe
15	-	1.4	SAND SP: fine to medium, pale orange, moist, apparently medium dense, alluvial							Backfill and Blank PVC pipe
	-	2.0	Sandy CLAY CI: medium plasticity, pale grey and pale \orange, fine sand, w <pl, <="" alluvial="" apparently="" stiff,="" td=""><td>···· ·/·/</td><td></td><td></td><td></td><td></td><td></td><td>2</td></pl,>	···· ·/·/						2
14	-3		Silty CLAY CI-CH: medium to high plasticity, pale grey mottled dark red-orange and yellow, with ironstone gravel, w <pl, (possibly="" extremely="" residual="" stiff,="" very="" weathered<br="">Mittagong Formation)</pl,>							Bentonite Seal
13	-	3.2 3.4	Sandy CLAY CL: low plasticity, dark red and pale grey, fine sand, w <pl, (extremely="" hard,="" residual="" weathered<br="">Mittagong Formation)</pl,>						05-06-20 i	
	- - 4 - -		SANDSTONE: fine grained, dark brown and pale grey orange, highly weathered, medium strength, Mittagong Formation						05	⁴ Sand filter
4	- 4	1.5	Bore discontinued at 4.5m	1						End Cap
	- 5		- Target depth reached							-5
	-7									-7
										-9
	G: Ge		robe DRILLER: Terratest			GGED		CASIN		

Geoprope

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

TYPE OF BORING: SFA (TC-bit) to 4.5m

.ER: Terratest

LOGGED: NB

CASING: NA

WATER OBSERVATIONS: No free groundwater observed whilst drilling

REMARKS: Standpipe installed: 0-4.0m Blank PVC pipe, 4.0-4.5m Slotted PVC pipe, End cap at 4.5m, Sand backfill 0-2.0m, Bentonite 2.0-3.6m, Sand filter 3.6-4.5m, Gatic cover at surface. Surface level taken from survey drawing provided

SAMPLING & IN SITU TESTING LEGEND	
A Auger sample G Gas sample PID Photo ionisation detector (ppm)	
B Bulk sample P Piston sample PL(A) Point load axial test Is(50) (MPa) BLK Block sample U, Tube sample (x mm dia.) C Core drilling W Water sample (x mm dia.)	
BLK Block sample U, Tube sample (x mm dia.) PL(D) Point load diametral test Is(50) (MPa)	
C Core drilling W Water sample pp Pocket penetrometer (kPa)	
D Disturbed sample D Water seep S Standard penetration test	
E Environmental sample V Mater level V Shear vane (kPa)	nent Groundwater

SURFACE LEVEL: 16.8 AHD **EASTING**: 333928 **NORTHING**: 6249324 **DIP/AZIMUTH**: 90°/-- BORE No: BH112B PROJECT No: 86767.00 DATE: 18/5/2020 SHEET 1 OF 2

							H: 90°/		SHEET 1 OF 2		
		Description	. <u></u>		Sam	pling &	& In Situ Testing	_	Well		
	epth m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction		
		Strata	0	Ĺ _	ð	Sar	Comments		Details		
L	0.05 -	ASPHALTIC CONCRETE	4.4.						Gatic Cover and		
Ę	0.25 0.3			A/E	0.3		PID<1				
F	0.6		\bigotimes	AVE	0.6		PID<1		F 🕅		
-		FILL/ SANDSTONE: possible sandstone block	\bigotimes		0.7				F I 🕅		
-1		FILL/ SAND: fine to medium, dark grey-brown, moist,	\bigotimes						[1 X		
-		generally in a loose condition	$ \rangle\rangle$						Backfill and Blank		
F	1.4	SAND SP: fine to medium, pale orange, moist, apparently		A/E	1.4 1.5		PID<1		PVC pipe		
F	1.0	medium dense, alluvial		A/E	1.6 1.7		PID<1		F I 🕅		
-2	1.8 2.0	Sandy CLAY CI: medium plasticity, pale grey and pale	<u>. / . /</u>		2.0				2		
-	2.0	Corange, fine sand, w <pl, alluvial<="" apparently="" stiff,="" td=""><td>1/1/</td><td>s</td><td>2.0</td><td></td><td>6,9,11</td><td></td><td></td></pl,>	1/1/	s	2.0		6,9,11				
F		Silty CLAY CI-CH: medium to high plasticity, pale grey mottled dark red-orange and yellow, with ironstone gravel,			2.45		N = 20		F 🕅		
F		w <pl, (possible="" ashfield="" extremely="" residual="" shale)<="" stiff,="" td="" very="" weathered=""><td>1/1/</td><td></td><td>2.10</td><td></td><td></td><td></td><td></td></pl,>	1/1/		2.10						
		Asilieu Shale)							PVC pipe		
-3					3.0		0.0.00/140		-3		
-	3.2	Sandy CLAY CL: low plasticity, dark red and pale grey,	1.7.7	S			2,8,20/140 refusal				
-	3.4 -	fine sand, w <pl, (extremely="" <br="" hard,="" residual="" weathered="">Mittagong Formation)</pl,>			3.4 3.44						
Ē		SANDSTONE: fine grained, dark brown and pale			3.68		PL(A) = 0.4		E I A		
-4		grey-orange, highly weathered then moderately			4.0		PL(A) = 1.5		-4 Bentonite Seal		
-		weathered, medium and high strength, fractured, Mittagong Formation	/ /				1 E(A) = 1.5				
F			$ \rangle /$								
F			ΙX								
F			$ /\rangle$	С							
-5			$ \rangle$						-5		
Ę	5.14 -	SANDSTONE: fine to coarse grained, pale orange, highly			5.35		PL(A) = 0.5	Ţ			
F		weathered then moderately weathered, medium strength, fractured to slightly fractured, cross-bedding 10°-20°,			0.00		T L(A) = 0.5				
		Hawkesbury Sandstone						05-06-20	E 🔅		
-6									-6		
Ļ					6.1						
-	6.46				6.34		PL(A) = 0.3				
F	0.40	SANDSTONE: fine to coarse grained, pale grey, trace dark grey siltstone bands, slightly weathered then fresh,							ŧ k:⊧		
E		high strength, slightly fractured, cross-bedding 0°-10°,							[[:E		
-7		Hawkesbury Sandstone			7 45						
ŀ					7.15		PL(A) = 0.5		t IVE		
F											
E			$ \times $	С							
-8	7.9		<u> </u>						-8		
ţ		Between 8.02m-9.83m, cross-bedding 10°-20°			8.09		PL(A) = 1.1		‡ !∷ ≣		
F											
E									[
Ĺ									Sand filter		
-9					9.09		PL(A) = 2.1		9 Slotted PVC pipe		
ŧ					9.1		. /		ţ ∬‡		
Ē				с					ŧ lkie		
E				-					E [::=		
ŀ											

RIG: Geoprobe

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Terratest

LOGGED: NB

CASING: HWT to 3.4m

TYPE OF BORING: Diatube (200mm) to 0.6m, Hand Auger to 2m, SFA (TC-bit) to 3.4m, HQ coring to 15m

WATER OBSERVATIONS: No free groundwater observed whilst drilling

REMARKS: Rapid drilling between 4.1-4.9m & 7.5-8.0m. 20% water loss at 9m. Standpipe installed: 0-6.0m Blank PVC pipe, 6.0-12.0m Slotted PVC pipe, End cap 12.0m, Sand backfill 0-2.5m, Bentonite 2.5-5.5m, Sand filter 5.5-12.5m, Bentonite 12.5-13.0m, Backfill 13-15m

SAM	/IPLIN(G & IN SITU TESTING	LEG	END				
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)				
B Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)			Douglas Partners	
BLK Block sample	U,	Tube sample (x mm dia.)	PL(E	D) Point load diametral test ls(50) (MPa)	1	1	N Douolas Parlier	
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)				-
D Disturbed sample	⊳	Water seep	S	Standard penetration test		1.	Operations 1 Frankright 1 Operations	
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			🚄 Geotechnics Environment Groundwate	<i>эr</i>
					-			

SURFACE LEVEL: 16.8 AHD **EASTING:** 333928 **NORTHING:** 6249324 **DIP/AZIMUTH:** 90°/-- BORE No: BH112B PROJECT No: 86767.00 DATE: 18/5/2020 SHEET 2 OF 2

				DIF			H: 90°/		SHEET 2 OF 2
		Description	Dic		Sam		& In Situ Testing	ŗ	Well
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
	11	SANDSTONE: as above		С	10.12		PL(A) = 1.2 PL(A) = 1.5		
	12				12.1		PL(A) = 1.3		12 End Cap
	13			С	13.0		PL(A) = 1.3		Bentonite Seal
	14			0	14.0		PL(A) = 1.5		14 Sand Back Fill
	15 15.0 -	Bore discontinued at 15.0m - Target depth reached			-15.0-				15
	16								-16
	17								- 17
	18								- 18
	19								-19

RIG: Geoprobe

CLIENT:

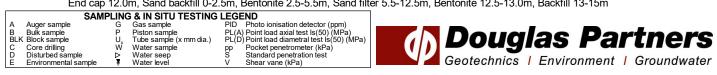
PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Terratest


TYPE OF BORING: Diatube (200mm) to 0.6m, Hand Auger to 2m, SFA (TC-bit) to 3.4m, HQ coring to 15m

LOGGED: NB

CASING: HWT to 3.4m

WATER OBSERVATIONS: No free groundwater observed whilst drilling

REMARKS: Rapid drilling between 4.1-4.9m & 7.5-8.0m. 20% water loss at 9m. Standpipe installed: 0-6.0m Blank PVC pipe, 6.0-12.0m Slotted PVC pipe, End cap 12.0m, Sand backfill 0-2.5m, Bentonite 2.5-5.5m, Sand filter 5.5-12.5m, Bentonite 12.5-13.0m, Backfill 13-15m

SURFACE LEVEL: 15.5 AHD **EASTING:** 333983 NORTHING: 6249283 DIP/AZIMUTH: 90°/--

BORE No: BH113 PROJECT No: 86767.03 DATE: 7/4/2020 SHEET 1 OF 1

Sampling & In Situ Testing VWP Graphic Description Water Depth Log 뭅 Sample Construction of Depth Results & Comments (m) Type Details Strata CONCRETE: grey, 2-10mm igneous aggregate 0.15 0.15 FILL/SAND: fine to coarse, pale brown and brown, trace E* PID=9 ppm 0.25 fine to medium igneous rail ballast, trace coal, moist 0.4 0.4 FILL/CLAY: medium plasticity, red and pale grey, trace Е PID=1 ppm 0.5 medium gravel, w~PL 0.8 CLAY CI: medium plasticity, pale grey mottled red, trace fine to medium ironstone gravel, w<PL to w~PL, 0.9 Е PID=2 ppm apparently very stiff, residual 1.0 1 • 1 1.2 Е PID=8 ppm 1.3 1.3 Bore discontinued at 1.3m - Target depth reached - 2 -2 3 -3 -4 - 4

RIG: Hand Tools DRILLER: AS/AMS TYPE OF BORING: Diatube to 0.15m, Hand auger to 1.3m WATER OBSERVATIONS: No free groundwater observed

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

LOGGED: AS

CASING: Uncased

REMARKS: * Field replicate BD2/20200407 taken from 0.15-0.25m SAMPLING & IN SITU TESTING LEGEND A Auger sample B Bulk sample BLK Block sample G P U, W

₽

Core drilling Disturbed sample Environmental sample

CDE

Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa)

SURFACE LEVEL: 15.5 AHD **EASTING:** 333984 **NORTHING:** 6249280 **DIP/AZIMUTH:** 90°/-- BORE No: BH114 PROJECT No: 86767.03 DATE: 7/4/2020 SHEET 1 OF 1

					/ ~~~ 11	1011	H: 90°/		SHEET 1 OF 1
		Description	ic.		Sam	pling &	& In Situ Testing		VWP
R	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction
		Strata		Ţ	ă	Sar	Comments		Details
-	0.15	CONCRETE: grey, 2-10mm igneous aggregate	,		0.15				-
	0.2	FILL/SAND: fine to coarse, pale brown and brown, trace	ĚŽ	E E	0.15 0.2 —0.3—		PID=10 ppm		
15		FILL/CLAY: medium plasticity, brown, pale grey and red, with fine to coarse sand, trace fine gravel, igneous rail ballast, plastic and coal, w~PL, hydrocarbon odour							-
		Bore discontinued at 0.3m - Refusal on ballast							-
	-								
	-1								- 1
									-
									-
-4									-
	-2								-2
									-
-0-									
									-
									-3
	-3								
- 2									-
									-
	- - 4								4
	-								
-=									

RIG: Hand Tools

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: AS/AMS

LOGGED: AS

CASING: Uncased

TYPE OF BORING: Diatube to 0.15m, Hand auger to 0.3m **WATER OBSERVATIONS:** No free groundwater observed **REMARKS:**

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 Piston sample
 PIL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 Ux
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 F
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 Water level
 V
 Shear vane (kPa)

SURFACE LEVEL: 15.5 AHD EASTING: 333981 NORTHING: 6249280 DIP/AZIMUTH: 90°/--

BORE No: BH115 PROJECT No: 86767.03 DATE: 7/4/2020 SHEET 1 OF 1

Sampling & In Situ Testing Graphic Log VWP Description Water Depth Ъ of Sample Construction Depth Type Results & Comments (m) Strata Details CONCRETE: grey, 2-10mm igneous aggregate ΔÀ Ľ 0.17 0.23 0.17 PID<1 ppm PID=5 ppm Е* FILL/SAND: fine to coarse, pale brown, moist 0.3 FILL/CLAY: medium plasticity, red and pale grey, with fine to coarse sand and fine gravel, trace fine to coarse igneous rail ballast and coal, w~PL 0.5 Е PID=1 ppm Below 0.5m: low plasticity, with fine to coarse ironstone 0.6 gravel 0.85 CLAY CI-CH: medium to high plasticity, pale grey mottled red, trace fine gravel, w<PL to w~PL, apparently very stiff, 0.9 Е PID=4 ppm 1.0 • 1 1 residual 1.2 Е Below 1.2m: pale grey, w<PL PID=1 ppm 1.3 1.3 Bore discontinued at 1.3m - Target depth reached -2 - 2 - 3 -3 -4 - 4

RIG: Hand Tools DRILLER: AS/AMS TYPE OF BORING: Diatube to 0.17m, Hand auger to 1.3m WATER OBSERVATIONS: No free groundwater observed

Vertical First Pty Ltd

8-10 Lee Street, Haymarket

Proposed Commercial Development

CLIENT:

PROJECT:

LOCATION:

LOGGED: AS

CASING: Uncased

REMARKS: * Field replicate BD1/20200407 taken from 0.23-0.3m

	SAM	IPLIN	G & IN SITU TESTING	LEGEND			
A	Auger sample	G	Gas sample	PID Photo ionisation	on detector (ppm)		-
B	Bulk sample	Р	Piston sample	PL(A) Point load axia	al test Is(50) (MPa)		
B	LK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diar	metral test Is(50) (MPa)		ners
C	Core drilling	Ŵ	Water sample	pp Pocket penetr	ometer (kPa)	Douglas Part	
D	Disturbed sample	⊳	Water seep	S Standard pene	etration test (
E	Environmental sample	Ŧ	Water level	V Shear vane (k	Pa)	Geotechnics Environment G	roundwater
-	· · · ·						

SURFACE LEVEL: 15.5 AHD **EASTING:** 333970 NORTHING: 6249305 **DIP/AZIMUTH:** 90°/--

BORE No: BH116 **PROJECT No: 86767.03** DATE: 17/5/2020 SHEET 1 OF 1

							h: 90 /		SHEET I OF I
	Description .9				Sam		& In Situ Testing	-	VWP
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
		CONCRETE: grey, 2-10mm igneous aggregate				0,			-
-	0.22	CLAX CL medium plasticity, pole gray mettled pole brown	.[], .[], ,,		0.22				-
		CLAY CI: medium plasticity, pale grey mottled pale brown and red, w <pl residual<="" td="" to="" w~pl,=""><td></td><td>Е</td><td>0.35</td><td></td><td>PID=2 ppm</td><td></td><td>-</td></pl>		Е	0.35		PID=2 ppm		-
15					0.5				-
				E*	0.7		PID=2 ppm		-
-		Below 0.7m: trace fine to medium ironstone gravel			0.1				-
	- 1				1.0				-
-		Below 1.0m: with medium ironstone gravel		Е			PID=2 ppm		-
	· 1.2 ·	Bore discontinued at 1.2m - Target depth reached			—1.2—				-
-									-
-1-									
-									-
									-
-	-2								-2
									-
-									-
-5									-
-									-
ŀ	- 3								- 3
									-
ŀ									
-5									
	- 4								-4
		1						I	L

RIG: Miniprobe DRILLER: Terratest TYPE OF BORING: Pushtube to 1.2m WATER OBSERVATIONS: No free groundwater observed **REMARKS:** * Field replicate BD1/20200517 taken from 0.5-0.7m LOGGED: AS

CASING: Uncased

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

	SAN	IPLIN	G & IN SITU TESTING	LEGEND	
A B BL C D	Auger sample Bulk sample K Block sample Core drilling Disturbed sample	G P U [×] ₩ Δ	Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep	PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) p Pocket penetrometer (kPa) S Standard penetration test	
E	Environmental sample	¥	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwa

SURFACE LEVEL: 15.5 AHD **EASTING:** 333968 NORTHING: 6249303 **DIP/AZIMUTH:** 90°/--

BORE No: BH117 **PROJECT No: 86767.03** DATE: 17/5/2020 SHEET 1 OF 1

				DIF			H: 90°/		SHEET 1 OF 1
	Description						& In Situ Testing	2	VWP
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
		CONCRETE: grey, 2-10mm igneous aggregate							-
15	- 0.2 0.25	FILL/Sandy CLAY: low plasticity, dark brown, fine to medium sand, with medium igneous rail ballast, w~PL, hydrocarbon odour CLAY CI: medium plasticity, pale grey mottled pale brown and red, w~PL, residual		E	0.2 0.25		PID=3 ppm		-
				E*	0.6 0.8		PID=2 ppm		-
	- 1 - 1	Below 0.9m: pale grey mottled pale brown, w <pl< td=""><td></td><td>E</td><td>1.0</td><td></td><td>PID=2 ppm</td><td></td><td>-1</td></pl<>		E	1.0		PID=2 ppm		-1
	- 1.2 - -	 Below 1.15m: with medium sand Bore discontinued at 1.2m Target depth reached 	, <u>V / /</u>		-1.2-				-
- 1-	- -								-
	-2								-2
									-
- 1-	- -								-
	- - - 3								-3
									-
12									-
	-4 - -								
- 11	- -								
-	-								-

RIG: Miniprobe **DRILLER:** Terratest TYPE OF BORING: Pushtube to 1.2m WATER OBSERVATIONS: No free groundwater observed REMARKS: * Field replicate BD2/20200517 taken from 0.6-0.8m LOGGED: AS

CASING: Uncased

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level A Auger sample B Bulk sample BLK Block sample G P U, W Douglas Partners Core drilling Disturbed sample Environmental sample CDE ₽ Geotechnics | Environment | Groundwater

SURFACE LEVEL: 15.6 AHD **EASTING:** 333946 **NORTHING:** 6249321 **DIP/AZIMUTH:** 90°/--

BORE No: W1 PROJECT No: 86767.00 DATE: 20/5/2020 SHEET 1 OF 1

Г		Description				San	npling	& In Situ Testing	Ι.	Well
RL		epth (m)	of	Graphic Log	Type	Depth	ble	Results & Comments	Water	Construction
			Strata	Ū	Тy		Sample	Comments	_	Details
ŀ	ŀ	0.05		\sim	с	0.0				-
-	-	0.25	FILL/ ROADBASE: fine to coarse, dark grey, angular igneous gravel, fine to coarse sand, dry, generally in a dense condition	4.4		0.25 0.3		PL(A) = 1.6		-
	-		CONCRETE: grey, with medium to coarse sub-rounded fragments of high strength sandstone, trace voids to 0.65m, abudant voids between 0.65m and 0.85m		С	0.6				
-	-			0 0 0 0		0.0				-
-	- 1				C					- 1
ŀ	ŀ	1.2		A. A.		1.15				-
-	-		Silty CLAY CI: medium plasticity, pale grey mottled dark red, w <pl, apparently="" relict="" rock="" stiff="" stiff,="" texture<br="" to="" very="">between 1.73-1.91m, residual (possibly extremely weathered Ashfield Shale)</pl,>		с					-
-1-	-	1.57				1.57				-
-	-				с	1.9		pp <200		-
-	-2		Below 2.0m, with irregular iron-cemented pockets and bands			2.0				-2
-	-	2.24 2.46	SANDSTONE: fine grained, orange-brown, iron-cemented, highly weathered, high strength, fractured, Mittagene formetter		С	2.4		PL(A) = 1.5		-
-6		2.40	Bore discontinued at 2.46m - Target depth reached			2.40				-
ŀ	ŀ									-
ŀ	t									-
ŀ	- 3									-3
ł	ŀ									-
ļ	ļ									
ŀ	ŀ									-
Ľ	ŀ									
ľ	-									-
ł	ŀ									-
ļ	4									-4
ŀ	ŀ									-
ŀ	t									
ŀ	ŀ									-
ŀ	ł									-
Ę	ļ									
ŀ	ŀ									
Ŀ	ŀ									

RIG: Hand Drill TYPE OF BORING:

DRILLER: Nick Ruha Diatube (50mm) to 2.46m

LOGGED: NB

CASING: NA

WATER OBSERVATIONS: No free groundwater observed whilst drilling **REMARKS:** Surface level taken from survey drawing provided

SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level A Auger sample B Bulk sample BLK Block sample G P U, W **Douglas Partners** Core drilling Disturbed sample Environmental sample CDE ₽ Geotechnics | Environment | Groundwater

PROJECT:

CLIENT:

Proposed Commercial Development LOCATION: 8-10 Lee Street, Haymarket

SURFACE LEVEL: 15.4 AHD **EASTING:** 333963 **NORTHING:** 6249315 **DIP/AZIMUTH:** 90°/-- BORE No: W2 PROJECT No: 86767.00 DATE: 20/5/2020 SHEET 1 OF 1

					DIF	'AZII		H: 90°/		SHEET 1 OF 1	
			Description	JC		Sam		& In Situ Testing	5	Well	
RL	Depti (m)	h	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details	
\vdash	0.	05	ASPHALTIC CONCRETE			0.0	0)				
15	-	15 -			c c	0.35 0.55		PL(A) = 1.6			
ł	-					0.8					
-	- 1. -	03 - 12 -	Silty CLAY CI: medium plasticity, pale grey mottled dark red, w <pl, (possibly<br="" apparently="" residual="" stiff="" stiff,="" to="" very="">extremely weathered Ashfield Shale)</pl,>		С	1.15		PL(A) = 1.5		-1	
-1-	1.: - -	33 –	SANDSTONE: fine grained, orange-brown and pale grey, iron-cemented and with thin clay bands, highly weathered, high strength, fractured, Mittagong formation Bore discontinued at 1.33m - Target depth reached			-1.33-				-	
-	- 2 - 2									-2	
	- - -									-	
-	- - - 3 -									-3	
-12-	-										
-	- - 4 -									-4	
-1-	-										
-	-										

RIG: Hand Drill

TYPE OF BORING:

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Nick Ruha Diatube (50mm) to 1.33m

LOGGED: NB

CASING: NA

WATER OBSERVATIONS: No free groundwater observed whilst drilling REMARKS: Surface level taken from survey drawing provided

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PILO
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK
 Block sample
 U,
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 C ore drilling
 W
 Water sample
 pp
 Pocket penetrometer (KPa)

 D
 Disturbed sample
 P
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 Water level
 V
 Shear vane (kPa)

SURFACE LEVEL: 13.4 AHD EASTING: 333954 NORTHING: 6249290 **DIP/AZIMUTH:** 70°/135°

BORE No: W3 PROJECT No: 86767.00 DATE: 20/5/2020 SHEET 1 OF 1

Sampling & In Situ Testing Description Well Graphic Log Water Depth Sample 뭅 Construction of Depth Results & Comments (m) Type Details Strata 0.0 SANDSTONE: fine grained, orange-brown and pale grey, iron-cemented and with thin clay bands, highly weathered, medium to high strength, fragmented, Mittagong С formation 0.46 С • 1 1 1.2 1.2 Bore discontinued at 1.2m - Target depth reached - 2 -2 3 -3 4 - 4 DRILLER: Nick Ruha

RIG: Hand Drill TYPE OF BORING:

CLIENT:

PROJECT:

LOCATION:

Vertical First Pty Ltd

Proposed Commercial Development

8-10 Lee Street, Haymarket

Diatube (50mm) to 1.2m

LOGGED: NB

CASING: NA

WATER OBSERVATIONS: No free groundwater observed whilst drilling

REMARKS: Surface level taken from architectural drawing provided, Synman Justin Bialek Architects Pty Ltd, Lower Ground Floor plan, Drawing WD05 (Rev E) dated 21 May 1998. Borehole azimuth relative to Grid North

SURFACE LEVEL: 13.4 AHD **EASTING:** 333948 **NORTHING:** 6249282 **DIP/AZIMUTH:** 60°/135° BORE No: W4 PROJECT No: 86767.00 DATE: 20/5/2020 SHEET 1 OF 1

	Depth	Description	d J				& In Situ Testing	er	Well
	(m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
-		CONCRETE: grey, with fine to coarse sub-rounded and sub-angular fragments of high strength sandstone, trace voids	0.0.0.0 0.0.0	С	0.0		PL(A) = 1.5		-
	0.86 -		0.0.0.0.0.0.0.0	С	0.4				
	1	SANDSTONE: fine grained, orange-brown, highly weathered, medium to high strength, fractured, Mittagong formation		С	0.9				-1
	1.57			С	1.5 1.7		PL(A) = 0.29		-
-	2 2.12 2.19 -			С	2.0		PL(A) = 0.99		-2
	2.4 -	SANDSTONE: fine to coarse grained, pale orange, highly weathered, medium to high strength, fractured, Hawkesbury sandstone Bore discontinued at 2.4m - Target depth reached			-2.4-		, , 0.00		
	3								-3
•	4								-4
-	: Hand	Drill DRILLER: Nick Ruha			GED		CASIN		<u> </u>

WATER OBSERVATIONS: No free groundwater observed whilst drilling

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

REMARKS: Surface level taken from architectural drawing provided, Synman Justin Bialek Architects Pty Ltd, Lower Ground Floor plan, Drawing WD05 (Rev E) dated 21 May 1998. Borehole azimuth relative to Grid North

	SAM	PLIN	G & IN SITU TESTING	LEG	END				
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_		
В	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)			Douglas Partn	0 10
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(E) Point load diametral test ls(50) (MPa)	1			IErs
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)				
D	Disturbed sample	⊳	Water seep	S	Standard penetration test			Or shark the I Frederic and I Ores	
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			Geotechnics Environment Grou	ındwater
						-			

Sampling

Sampling is carried out during drilling or test pitting to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thinwalled sample tube into the soil and withdrawing it to obtain a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Test Pits

Test pits are usually excavated with a backhoe or an excavator, allowing close examination of the insitu soil if it is safe to enter into the pit. The depth of excavation is limited to about 3 m for a backhoe and up to 6 m for a large excavator. A potential disadvantage of this investigation method is the larger area of disturbance to the site.

Large Diameter Augers

Boreholes can be drilled using a rotating plate or short spiral auger, generally 300 mm or larger in diameter commonly mounted on a standard piling rig. The cuttings are returned to the surface at intervals (generally not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube samples.

Continuous Spiral Flight Augers

The borehole is advanced using 90-115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow sampling or in-situ testing. This is a relatively economical means of drilling in clays and sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are disturbed and may be mixed with soils from the sides of the hole. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively low reliability, due to the remoulding, possible mixing or softening of samples by groundwater.

Non-core Rotary Drilling

The borehole is advanced using a rotary bit, with water or drilling mud being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from the rate of penetration. Where drilling mud is used this can mask the cuttings and reliable identification is only possible from separate sampling such as SPTs.

Continuous Core Drilling

A continuous core sample can be obtained using a diamond tipped core barrel, usually with a 50 mm internal diameter. Provided full core recovery is achieved (which is not always possible in weak rocks and granular soils), this technique provides a very reliable method of investigation.

Standard Penetration Tests

Standard penetration tests (SPT) are used as a means of estimating the density or strength of soils and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, Methods of Testing Soils for Engineering Purposes - Test 6.3.1.

The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300 mm. In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form.

 In the case where full penetration is obtained with successive blow counts for each 150 mm of, say, 4, 6 and 7 as:

 In the case where the test is discontinued before the full penetration depth, say after 15 blows for the first 150 mm and 30 blows for the next 40 mm as:

15, 30/40 mm

Sampling Methods

The results of the SPT tests can be related empirically to the engineering properties of the soils.

Dynamic Cone Penetrometer Tests / Perth Sand Penetrometer Tests

Dynamic penetrometer tests (DCP or PSP) are carried out by driving a steel rod into the ground using a standard weight of hammer falling a specified distance. As the rod penetrates the soil the number of blows required to penetrate each successive 150 mm depth are recorded. Normally there is a depth limitation of 1.2 m, but this may be extended in certain conditions by the use of extension rods. Two types of penetrometer are commonly used.

- Perth sand penetrometer a 16 mm diameter flat ended rod is driven using a 9 kg hammer dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the density of sands and is mainly used in granular soils and filling.
- Cone penetrometer a 16 mm diameter rod with a 20 mm diameter cone end is driven using a 9 kg hammer dropping 510 mm (AS 1289, Test 6.3.2). This test was developed initially for pavement subgrade investigations, and correlations of the test results with California Bearing Ratio have been published by various road authorities.

Soil Descriptions

Description and Classification Methods

The methods of description and classification of soils and rocks used in this report are generally based on Australian Standard AS1726:2017, Geotechnical Site Investigations. In general, the descriptions include strength or density, colour, structure, soil or rock type and inclusions.

Soil Types

Soil types are described according to the predominant particle size, qualified by the grading of other particles present:

Туре	Particle size (mm)			
Boulder	>200			
Cobble	63 - 200			
Gravel	2.36 - 63			
Sand	0.075 - 2.36			
Silt	0.002 - 0.075			
Clay	<0.002			

The sand and gravel sizes can be further subdivided as follows:

Туре	Particle size (mm)
Coarse gravel	19 - 63
Medium gravel	6.7 - 19
Fine gravel	2.36 - 6.7
Coarse sand	0.6 - 2.36
Medium sand	0.21 - 0.6
Fine sand	0.075 - 0.21

Definitions of grading terms used are:

- Well graded a good representation of all particle sizes
- Poorly graded an excess or deficiency of particular sizes within the specified range
- Uniformly graded an excess of a particular particle size
- Gap graded a deficiency of a particular particle size with the range

The proportions of secondary constituents of soils are described as follows:

In fine grained soils	(>35% fines)
-----------------------	--------------

Term	Proportion	Example		
	of sand or			
	gravel			
And	Specify	Clay (60%) and		
		Sand (40%)		
Adjective	>30%	Sandy Clay		
With	15 – 30%	Clay with sand		
Trace	0 - 15%	Clay with trace		
		sand		

In coarse grained soils (>65% coarse)

with	clays	or	silts	

man olaye er ena		
Term	Proportion of fines	Example
And	Specify	Sand (70%) and Clay (30%)
Adjective	>12%	Clayey Sand
With	5 - 12%	Sand with clay
Trace	0 - 5%	Sand with trace
		clay

In coarse grained soils (>65% coarse)
 with coarser fraction

Term	Proportion	Example
	of coarser	
	fraction	
And	Specify	Sand (60%) and
		Gravel (40%)
Adjective	>30%	Gravelly Sand
With	15 - 30%	Sand with gravel
Trace	0 - 15%	Sand with trace
		gravel

The presence of cobbles and boulders shall be specifically noted by beginning the description with 'Mix of Soil and Cobbles/Boulders' with the word order indicating the dominant first and the proportion of cobbles and boulders described together.

Soil Descriptions

Cohesive Soils

Cohesive soils, such as clays, are classified on the basis of undrained shear strength. The strength may be measured by laboratory testing, or estimated by field tests or engineering examination. The strength terms are defined as follows:

Description	Abbreviation	Undrained shear strength (kPa)
Very soft	VS	<12
Soft	S	12 - 25
Firm	F	25 - 50
Stiff	St	50 - 100
Very stiff	VSt	100 - 200
Hard	Н	>200
Friable	Fr	-

Cohesionless Soils

Cohesionless soils, such as clean sands, are classified on the basis of relative density, generally from the results of standard penetration tests (SPT), cone penetration tests (CPT) or dynamic penetrometers (PSP). The relative density terms are given below:

Relative Density	Abbreviation	Density Index (%)
Very loose	VL	<15
Loose	L	15-35
Medium dense	MD	35-65
Dense	D	65-85
Very dense	VD	>85

Soil Origin

It is often difficult to accurately determine the origin of a soil. Soils can generally be classified as:

- Residual soil derived from in-situ weathering of the underlying rock;
- Extremely weathered material formed from in-situ weathering of geological formations. Has soil strength but retains the structure or fabric of the parent rock;
- Alluvial soil deposited by streams and rivers;

- Estuarine soil deposited in coastal estuaries;
- Marine soil deposited in a marine environment;
- Lacustrine soil deposited in freshwater lakes;
- Aeolian soil carried and deposited by wind;
- Colluvial soil soil and rock debris transported down slopes by gravity;
- Topsoil mantle of surface soil, often with high levels of organic material.
- Fill any material which has been moved by man.

Moisture Condition – Coarse Grained Soils For coarse grained soils the moisture condition

should be described by appearance and feel using the following terms:

- Dry (D) Non-cohesive and free-running.
- Moist (M) Soil feels cool, darkened in colour.

Soil tends to stick together. Sand forms weak ball but breaks easily.

Wet (W) Soil feels cool, darkened in colour.

Soil tends to stick together, free water forms when handling.

Moisture Condition – Fine Grained Soils

For fine grained soils the assessment of moisture content is relative to their plastic limit or liquid limit, as follows:

- 'Moist, dry of plastic limit' or 'w <PL' (i.e. hard and friable or powdery).
- 'Moist, near plastic limit' or 'w ≈ PL (i.e. soil can be moulded at moisture content approximately equal to the plastic limit).
- 'Moist, wet of plastic limit' or 'w >PL' (i.e. soils usually weakened and free water forms on the hands when handling).
- 'Wet' or 'w ≈LL' (i.e. near the liquid limit).
- 'Wet' or 'w >LL' (i.e. wet of the liquid limit).

Rock Descriptions

Rock Strength

Rock strength is defined by the Unconfined Compressive Strength and it refers to the strength of the rock substance and not the strength of the overall rock mass, which may be considerably weaker due to defects.

The Point Load Strength Index $Is_{(50)}$ is commonly used to provide an estimate of the rock strength and site specific correlations should be developed to allow UCS values to be determined. The point load strength test procedure is described by Australian Standard AS4133.4.1-2007. The terms used to describe rock strength are as follows:

Strength Term	Abbreviation	Unconfined Compressive Strength MPa	Point Load Index * Is ₍₅₀₎ MPa
Very low	VL	0.6 - 2	0.03 - 0.1
Low	L	2 - 6	0.1 - 0.3
Medium	М	6 - 20	0.3 - 1.0
High	Н	20 - 60	1 - 3
Very high	VH	60 - 200	3 - 10
Extremely high	EH	>200	>10

* Assumes a ratio of 20:1 for UCS to $Is_{(50)}$. It should be noted that the UCS to $Is_{(50)}$ ratio varies significantly for different rock types and specific ratios should be determined for each site.

Degree of Weathering

The degree of weathering of rock is classified as follows:

Term	Abbreviation	Description
Residual Soil	RS	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.
Extremely weathered	XW	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible
Highly weathered	HW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.
Moderately weathered	MW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.
Slightly weathered	SW	Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.
Fresh	FR	No signs of decomposition or staining.
Note: If HW and MW cannot be differentiated use DW (see below)		
Distinctly weathered	DW	Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching or may be decreased due to deposition of weathered products in pores.

Rock Descriptions

Degree of Fracturing

The following classification applies to the spacing of natural fractures in diamond drill cores. It includes bedding plane partings, joints and other defects, but excludes drilling breaks.

Term	Description
Fragmented	Fragments of <20 mm
Highly Fractured	Core lengths of 20-40 mm with occasional fragments
Fractured	Core lengths of 30-100 mm with occasional shorter and longer sections
Slightly Fractured	Core lengths of 300 mm or longer with occasional sections of 100-300 mm
Unbroken	Core contains very few fractures

Rock Quality Designation

The quality of the cored rock can be measured using the Rock Quality Designation (RQD) index, defined as:

RQD % = <u>cumulative length of 'sound' core sections ≥ 100 mm long</u> total drilled length of section being assessed

where 'sound' rock is assessed to be rock of low strength or stronger. The RQD applies only to natural fractures. If the core is broken by drilling or handling (i.e. drilling breaks) then the broken pieces are fitted back together and are not included in the calculation of RQD.

Stratification Spacing

For sedimentary rocks the following terms may be used to describe the spacing of bedding partings:

Term	Separation of Stratification Planes	
Thinly laminated	< 6 mm	
Laminated	6 mm to 20 mm	
Very thinly bedded	20 mm to 60 mm	
Thinly bedded	60 mm to 0.2 m	
Medium bedded	0.2 m to 0.6 m	
Thickly bedded	0.6 m to 2 m	
Very thickly bedded	> 2 m	

Symbols & Abbreviations

Introduction

These notes summarise abbreviations commonly used on borehole logs and test pit reports.

Drilling or Excavation Methods

С	Core drilling
R	Rotary drilling
SFA	Spiral flight augers
NMLC	Diamond core - 52 mm dia
NQ	Diamond core - 47 mm dia
HQ	Diamond core - 63 mm dia
PQ	Diamond core - 81 mm dia

Water

\triangleright	Water seep
\bigtriangledown	Water level

Sampling and Testing

- A Auger sample
- B Bulk sample
- D Disturbed sample
- E Environmental sample
- Undisturbed tube sample (50mm)
- W Water sample
- pp Pocket penetrometer (kPa)
- PID Photo ionisation detector
- PL Point load strength Is(50) MPa
- S Standard Penetration Test V Shear vane (kPa)

Description of Defects in Rock

The abbreviated descriptions of the defects should be in the following order: Depth, Type, Orientation, Coating, Shape, Roughness and Other. Drilling and handling breaks are not usually included on the logs.

Defect Type

В	Bedding plane
Cs	Clay seam
Cv	Cleavage
Cz	Crushed zone
Ds	Decomposed seam
F	Fault
J	Joint
Lam	Lamination
Pt	Parting
Sz	Sheared Zone
V	Vein

Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

h horizontal

21

- v vertical
- sh sub-horizontal
- sv sub-vertical

Coating or Infilling Term

cln	clean
со	coating
he	healed
inf	infilled
stn	stained
ti	tight
vn	veneer

Coating Descriptor

ca	calcite
cbs	carbonaceous
cly	clay
fe	iron oxide
mn	manganese
slt	silty

Shape

cu	curved
ir	irregular
pl	planar
st	stepped
un	undulating

Roughness

ро	polished
ro	rough
sl	slickensided
sm	smooth
vr	very rough

Other

fg	fragmented
bnd	band
qtz	quartz

Symbols & Abbreviations

Graphic Symbols for Soil and Rock

General

0	

Asphalt Road base

Concrete

Filling

Soils

Topsoil

Peat Clay

Silty clay

Sandy clay

Gravelly clay

Shaly clay

Silt

Clayey silt

Sandy silt

Sand

Clayey sand

Silty sand

Gravel

Sandy gravel

Talus

Sedimentary Rocks

Limestone

·____.

Metamorphic Rocks

 >
 >

 >
 >

 +
 +

 +
 +

 +
 +

 .
 .

Slate, phyllite, schist

Quartzite

Gneiss

Igneous Rocks

Granite

Dolerite, basalt, andesite

Dacite, epidote

Tuff, breccia

Porphyry

Appendix D

Groundwater Field Sheets

Douglas Partners Geotechnics | Environment | Groundwater

Groundwater Field She				Bore	Volume = casing volu volume	me + niter pack
Project and Bore Installation)etails					$n(\pi h_1 d_1^2/4 - \pi h_2 d_2^2/4)$
Bore / Standpipe ID:	BH103			When	e: $\pi = 3.14$	
Project Name:		2.00			n = porosity (0.3 f	or most filter pack
Project Number:	86767	.03	1		material)	
Site Location:	Having	S. Sul M.			h _i = height of wate d _i = diameter of an	
Bore GPS Co-ord:	majus				$h_1 = \text{length of filter}$	
nstallation Date:					$d_2 = diameter of ca$	sing
GW Level (during drilling):	-	m bgl		Bore	e Vol Normally	: 7.2*h
Well Depth:		m bgl		1		
Screened Interval:		m bgl				
Contaminants/Comments:	-	0		L.		
Bore Development Details	For date	1 1000	er DUITDO	Ses)		a state to s
Date/Time:	24104	150 22	The party -			Section 1971 - Produce
Purged By:	AS	1 000	The second second			
GW Level (pre-purge):	7.5	m bgl				Section and
GW Level (post-purge):	8-92	m bal	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
PSH observed:	Yes / No (isual). Thicknes	s if observed:	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Observed Well Depth:	9.4	m bgl	1			
Estimated Bore Volume:	13.68	L	4.5			1
Total Volume Purged:	(target: no drill	(target: no drill mud, min 3 well vol. or dry) ~ 10 L . dry				
Equipment:	twister	DUMD.	LOF ME	11 June 1 Ar	Mer	
Micropurge and Sampling Det		FUTT	111 1110		. 11-4	
Date/Time:	24104	120				
Sampled By:	AS	1 0.0	1			
Weather Conditions:	CIEOL!	warm				
GW Level (pre-purge):	7.5	m bgl				
GW Level (post sample):	915	m bgl				
PSH observed:	Yes / (No) (isual). Thicknes	s if observed:		
Observed Well Depth:	d L	m bgl	iouur j. Thiokhou			
Estimated Bore Volume:	13.68	L	12 T			<u> </u>
Total Volume Purged:	×15	L				
Total volume r diged.	12				the second	
Equipment:	WQM,	peripur	np, int.	meter		
		1	y Parameters			
Time / Volume	Temp (°C)	DO (mg/L)	EC (µS or mS/cm)	pH	Turbidity	Redox (mV)
Stabilisation Criteria (3 readings)	0.1°C	+/- 0.3 mg/L	+/- 3%	+/- 0.1	+/- 10%	+/- 10 mV
15:43	22.3	5,14		6.05	334	119
15:44	21.7	1.77	450	5.99	239	116
15:45	31.4	2.64	444	5,99	181	IL
15:46	21.3	0.78	439	5.99	123.5	113
15:47	31.3	0.73	439	5.99	100.5	11:2
15:48	21.3	0.79	435	5 99	84.7	
15:49	21.3	0.78	434	- 599	64.9	110
				1.	1	
				-		
					V	
Additional Readings Following	DO % Sat	SPC	TDS	*	39.5	
stabilisation:						
	-		Details			
Sampling Depth (rationale):	9.0 MANNA	m bgl, m	idpoint			
	CLOQAL	orown .	odourles	S. Sligh	HU SI	ITN
Sample Appearance (e.g.	(1000-			- 1 0 11 011	1119 31	11 1
Sample Appearance (e.g. colour, siltiness, odour):	clear-	01000111		0		
Sample Appearance (e.g. colour, siltiness, odour): Sample ID:	BHIO	3		0		
Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples:	BHIO	3		0		
Sample Appearance (e.g. colour, siltiness, odour):	BHIO	3	24			
Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples: Sampling Containers and filtration:	BHIO	3202004	24			
Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples: Sampling Containers and filtration: Comments / Observations:	BHIO	3202004	24			Sampl
Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples: Sampling Containers and filtration:	BHIO BDIIS see gro	3202004	24 2t	104120) (pre	- PU FG

Douglas Partners Geotechnics | Environment | Groundwater

Groundwater Field She				Bore	Volume = casing volu volume	me + filter pack
Project and Bore Installation I					$=\pi h_1 d_2^2/4 + r$	$a(\pi h_1 d_1^2/4 - \pi h_2 d_2^2/4)$
Bore / Standpipe ID:	BHIOY			Whe	re: $\pi = 3.14$	
Project Name:	0.(<u></u>	n = porosity (0.3 fo material)	er most filter pack
Project Number:	86767.	.03	1		h _i = height of wate	r column
Site Location:	Hayma	JEKEt			d _i = diameter of an	nulus
Bore GPS Co-ord:					$h_1 = \text{length of filter}$ $d_2 = \text{diameter of ca}$	
nstallation Date:		and have been been been been been been been be		Bor	e Vol Normally:	
GW Level (during drilling):		m bgl		501	e vorivormany.	7.2 11
Well Depth: Screened Interval:		m bgl m bgl				
Contaminants/Comments:		in bgi			- in the second second	
Bore Development Details	(for de	tà logi	aet purp	20565)		
Date/Time:	AHIAU		Jer Purt	203621		
Purged By:	47104 AS	120				
GW Level (pre-purge):	775	m bgl				
GW Level (post-purge):	1115	m bgl				Program in the second second
PSH observed:	Yes / No (sual). Thickne	ss if observed:		
Observed Well Depth:	20.35	m bgl				
Estimated Bore Volume:	Q1	L				
Total Volume Purged:	(target: no drill	mud, min 3 we	ll vol. or dry)	NHOL		
Equipment:	twister			IEHER		
Micropurge and Sampling Det		Prattip		LA LA C		
Date/Time:	7410)4120				
Sampled By:	AS		1			
Weather Conditions:	Warn	n, clear				
GW Level (pre-purge):	7.6	m bgl				
GW Level (post sample):	7.75	m bgl				
PSH observed:	Yes / (No) (interface / vi	sual). Thickne	ess if observed:		
Observed Well Depth:	20.35	m bgl				
Estimated Bore Volume:	92	L	7.52. De			
Total Volume Purged:	~15	L				
Equipment:	WQM, F	peripum	P, int.	meter		
		Water Qualit	y Parameters			
Time / Volume	Temp (°C)	DO (mg/L)	EC (µS or mS/cm)	pН	Turbidity	Redox (mV)
Stabilisation Criteria (3 readings)	0.1°C	+/- 0.3 mg/L	+/- 3%	+/- 0.1	+/- 10%	+/- 10 mV
14:57	24.8	674	541	5.20	103	167
14:58	23.6	1.29	525	5.25	9.6	161
4:59	21.6	1.16	481	5.25	13.2	153
15:00	21.1	0.98	457	5.25	28.5	149
15:01	20.9.	PC.D.	445	5.24	23.6	142
15:02	20.9	0.74	439	5.23	249	140
15.03	20.8	0.71	438	5.22	23.5	138
			1			
		0.00	700			
Additional Readings Following stabilisation:	DO % Sat	SPC	TDS			
		Sample	Details			
Sampling Depth (rationale):	15	m bgl, ∾	midpoir)t		
Sample Appearance (e.g.	C1004	-, odour	1			
colour, siltiness, odour):		and the second	1000			
Sample ID:	BHIO	4				
	_					
		O Sheet				
Sampling Containers and	see gree	JI SHEET				
QA/QC Samples: Sampling Containers and filtration: Comments / Observations:	see gree	JI SHEET				
Sampling Containers and filtration: Comments / Observations:	see gree	31 311001				Same
Sampling Containers and filtration: Comments / Observations:	_				10-00	Samp
Sampling Containers and filtration: Comments / Observations:	_	1:37	241	04/20) (pre	Samp - Pure
Sampling Containers and filtration: Comments / Observations:	- at			04 20 t- samp		

Douglas Partners Geotechnics | Environment | Groundwater

Groundwater Field Sheet				Bore	Bore Volume = casing volume + filter pack volume		
Project and Bore Installation I	Details	14	1			$n(\pi h_1 d_1^2/4 - \pi h_2 d_2^2/4)$	
Bore / Standpipe ID:	BHI			When	e: π = 3.14		
Project Name:	PIII				n = porosity (0.3 f	or most filter pack	
Project Number:	01717	63	1		material)		
Site Location:	Havm	.US			$h_1 = height of wat$		
Bore GPS Co-ord:	Haym	UIKET			d ₁ = diameter of an		
					h ₂ = length of filte d ₂ = diameter of c.		
Installation Date:		ma had		Bore	Vol Normally		
GW Level (during drilling):	-	m bgl			- voritorinany		
Well Depth:		m bgl					
Screened Interval:		m bgl					
Contaminants/Comments:	-						
Bore Development Details							
Date/Time:							
Purged By:							
GW Level (pre-purge):		m bgl					
GW Level (post-purge):		m bgl					
PSH observed:	Yes / No (interface / v	isual). Thicknes	ss if observed:			
Observed Well Depth:		m bgl					
Estimated Bore Volume:		L					
Total Volume Purged:	(target: no drill	mud, min 3 we	ell vol. or dry)				
Equipment:							
Micropurge and Sampling De	tails						
Date/Time:							
Sampled By:							
Weather Conditions:							
GW Level (pre-purge):	1	m bgl					
GW Level (post sample):		m bgl					
PSH observed:	Yes / No (isual). Thicknes	ss if observed.			
Observed Well Depth:	163 / 140 (isuar j. Thiokhos	55 II 00501 VCu.			
Estimated Bore Volume:		m bgl					
		L					
Total Volume Purged:		L					
Equipment:							
		Water Qualit	y Parameters				
Time / Volume	Temp (°C)	DO (mg/L)	EC (µS or mS/cm)	pH	Turbidity	Redox (mV)	
Stabilisation Criteria (3 readings)	0.1°C/7	+/- 0.3 mg/L	A +/- 3%	+/- 0.1	+/- 10%	+/- 10 mV	
	1 24			EACH	102	1(7) 6	
		0.1-	FAF	- 2 C/1	YO'D		
WA BO //	13.6	V.29	525	B.LD	14.6	126	
MA MA	128.611	1.16	X YX	15.16	- p.a	175-	
1111115-00					P /	_/	
M.5: SM	<u> </u>	10	/ 10 /				
15:102							
15:08							
5							
Additional Readings Following	DO % Sat	SPC	TDS		1		
stabilisation:		1					
		Sample	e Details				
Sampling Depth (rationale):		m bgl,		Start - St			
Sample Appearance (e.g.							
colour, siltiness, odour):							
Sample ID:					1		
QA/QC Samples:			с. 198 П. 198		10.10	19	
Sampling Containers and				1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	4		
filtration:				2			
Commonte / Observationer							
Comments / Observations:							
GW level					6		

* 6.4mbg1 (no Gw - well depth) 1145 24104120 * MMMM

Geotechnics | Environment | Groundwater

Geotechnics / Er	nvironment I	Groundwater			-	···
Groundwater Field She	et			Bone	Volume = casung vol volume	unse + filter ;: : :k
Project and Bore Installation						n(zh:d: /4-zh:a 4)
Bore / Standpipe ID:	RLI	AOT		Witter	e: z = 3.14	
		I d D	CCI		a = poroury (0 3	for most filter pack
Project Name:	FLOY	mul KEI	03		material)	
Project Number:		86161	. 0.2		ha = height of wa	
Site Location:					d,= dimeter of a b,= length of filt	
Bore GPS Co-ord:					$d_1 = d_{22} + e_1 \circ f_2$	
Installation Date:		una la gel		Bor	Vol Normali	v: 7.2*h
GW Level (during drilling):		m bgl				
Well Depth:		m bgl				
Screened Interval:		m bgl				
Contaminants/Comments:	-					
Bore Development Details	1					
Date/Time:						and the second
Purged By:						
GW Level (pre-purge):		m bgl				
GW Level (post-purge):		m bgl				
PSH observed:	Yes / No (visual). Thickne	ess if observed	:	
Observed Well Depth:		m bgl				
Estimated Bore Volume:		L				
Total Volume Purged:	(target: no drill	mud, min 3 v	vell vol. or dry)			
Equipment:						
Micropurge and Sampling Do	etails					
Date/Time:	26	105120				
Sampled By:		AS				
Weather Conditions:	rain	N				
GW Level (pre-purge):	3.10	m bgl	9:08, 1	ita laar	JEL LEFLI	eved)
GW Level (post sample):	4.3	m bgl	0:15 100	ta logat		1)
PSH observed:	Yes / (No) (interface /	visual). Thickn	ess if observed	: 1305	
Observed Well Depth:	4.3 m bgl					
Estimated Bore Volume:	8.6	L				
Total Volume Purged:	~ 10	L				
		MOM				
Equipment:	pump,		, int met	el		
			y Parameters			Redox (mV)
Time / Volume	Temp (°C)		EC (µS or mS/cm)	pН	Turbidity	
Stabilisation Criteria (3 readings)	0.1°C	+/- 0.3 mg/L	+/- 3%	÷/- 0.1	+/- 10%	÷/- 10 mV
11.98	6.01	3.89	374	8-21	-0.5	<u>q</u>
11.29	22.3	3.05	361	8.34	4.1	90
11.30	23.9	2.83	354-	8.40	5.2	81
11-21	24.4	3.37	358	8.32	5.2	79
11-30						
welldry						
VV Set 1 Set 1	1					
					7	
Additional Readings Following	DO % Sat	SPC	TDS			
stabilisation:						
		Sampl	e Details		2	
Sampling Depth (rationale):	40	m bgl,				
Sample Appearance (e.g.	1000		-1000			
colour, siltiness, odour):	Clea	r, odau	11622			
Sample ID:	RHIG	A				
QA/QC Samples:						
Sampling Containers and	0.0	C 2 0				
filtration:	See	COU				
Comments / Observations:	Well	der af	fter 3 r	eadings	-	
			For Lr			

let recharge for 1 min. put tubing deeper then sampled.

Rev March 2012

Geotechnics | Environment | Groundwater

roundwater Field Sheet			Ba	Bore Vohme = casing volume + filter ;:: ik				
Project and Bore Installation					volume	(xh;d; /4-xh;a 4)		
	Details				$= \frac{1}{2} \sum_{n=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1$			
Bore / Standpipe ID:	BHILd		C		= a = poroury (0.3 for most filter pack			
Project Name:	Haymo	irket S	21		materia:)	-		
Project Number:	8	6761.0	2		h _q = height of wate			
Site Location:		×			d,≈ diameter of an h, = length of filter			
Bore GPS Co-ord:					$d_1 = d_{AD}$ and $d_2 = d_{AD}$			
nstallation Date:		u h al		Bo	re Vol Normally:			
GW Level (during drilling):	Contraction of the International Contractional Contrac	n bgl						
Well Depth:		n bgl						
Screened Interval:	r	n bgl						
Contaminants/Comments:	•		and the second					
Bore Development Details								
Date/Time:								
Purged By:								
GW Level (pre-purge):		n bgl	<u></u>					
GW Level (post-purge):		n bgl						
PSH observed:			/isual). Thickn	ess if observe	d:			
Observed Well Depth:	r	n bgl						
Estimated Bore Volume:	ô L	-				<u>.</u>		
Total Volume Purged:	(target: no drill n	nud, min 3 w	ell vol. or dry)					
Equipment:	to the second							
Micropurge and Sampling D	etails							
Date/Time:	36	10512	10					
Sampled By:		AS						
Weather Conditions:	COLOV							
GW Level (pre-purge):	5.2 1	m bgl (8:24)	dat		retrieved		
GW Level (post sample):	5.85	m bgl ((0019	da		putin (30		
PSH observed:	Yes / (Ng) (i	nterface / v	visual). Thickn	ess if observe	ed: JJ	1		
Observed Well Depth:	10.85 1	m bgl						
Estimated Bore Volume:	40 1	L						
Total Volume Purged:	~15	L						
	pump, W	OM in	1 motor					
Equipment:	Panipi vv	WITTIN	FILIERCI	1				
	1	Water Quality	/ Parameters					
Time / Volume	Temp (°C)	DO (mg/L)	EC (µS or mS/cm)	pН	Turbidity	Redox (mV)		
Stabilisation Criteria (3 readings)	0.1°C	∻/- 0.3 mg/L	+/- 3%	÷/- 0.1	+/- 10%	∻/- 10 mV		
		2.51	277	4.94	114	1.59		
10.51	210	177	311	5.08	10.89	145		
10:3.4	12.2	167	285	5.32	0166	134		
10:53	2111	1.20	202	5.46	933	130		
10.54	211 2	1.60	770	5.54	796	126		
10.52	Quin C	107	7790	5.62	680	121		
	44.5	1-01	219	5.65	626	120		
10:5	44.5	1.10		2.9.2	000			
		epc	TDS					
Additional Readings Following	DO % Sat	SPC	601					
stabilisation:		Comula	Detaile		1			
			Details			<u></u>		
Sampling Depth (rationale):	8.0	m bgl,						
Sample Appearance (e.g.	brown	1 Silt	1					
colour, siltiness, odour):	011100		1		4			
Sample ID:	BHILLAB	0.0.0.0	<u> </u>					
QA/QC Samples:	BDL	.90,90	05:26					
Sampling Containers and	see coc			-				
filtration:	see cou	-						
Comments / Observations:	+					and the second s		
Comments / Observations.								

Geotechnics / Environment / Groundwater

Groundwater Field She	et			Bo	re Volume = caung vol volume	iunie + filter ; 11 ik
Project and Bore Installation	Details					-n(xh.d. /4-xh.a. 4)
Bore / Standpipe ID:	- BHIC	ปิก		<u></u>	etet %=3.14	-
Project Name:		nrket	551		a = porouty (0 3	for most filter pack
Project Number:	86767	<u> </u>	<u>}</u>		materiai)	-
Site Location:	00101				h; = height of wa	
Bore GPS Co-ord:					ರೈ∓ ಮುಜುನೀತ್ ಂಗೆ ತ ಗ್ರಿ ≈ length ರ್ಡ ಗೆಗ	
Installation Date:			· · · · · · · · · · · · · · · · · · ·		ದೆ,≕ರುಸಾ∞ೀಷ ಂೇ	
GW Level (during drilling):		m bgl		Bo	re Vol Normaily	/: 7.2*h
Well Depth:		m bgi		······································		· · · · · ·
Screened Interval:		m bgl				
					·····	
Contaminants/Comments:	-					
Bore Development Details	· · · · · · · · · · · · · · · · · · ·					
Date/Time:						
Purged By:		······································	·····			
GW Level (pre-purge):		m bgl				
GW Level (post-purge):		m bgl				
PSH observed:	Yes / No (visual). Thickn	ess if observe	d:	
Observed Well Depth:		m bgl				
Estimated Bore Volume:		<u> </u>				
Total Volume Purged:	(target: no dril	l mud, min 3 v	vell vol. or dry)			
Equipment:						
Micropurge and Sampling De	etails					
Date/Time:		5120				
Sampled By:	AS					
Weather Conditions:	ΓŊ	10 M				
GW Level (pre-purge):	a.1	m bģi	data lono	aer reti	rieved L	0.30am
GW Level (post sample):	3.85	m bgl	data lab			nan
PSH observed:	Yes / (No) (interface /	visual). Thickn	ess if observe	d: /	
Observed Well Depth:	3.95	m bgl				
Estimated Bore Volume:	126	L				
Total Volume Purged:	~ 5	L				
······································	000010	NO MO	M . A1 0	VOLAC	· · ·	
Equipment:	Jeohn	nb · MO	11/1111 11	19491		
······································		Water Qualit	y Parameters			
Time / Volume	Temp (°C)	DO (mg/L)	EC (µS or mS/cm)	pH	Turbidity	Redox (mV)
Stabilisation Criteria (3 readings)	0.1°C	+/- 0.3 mg/L	*/- 3%	÷/- 0.1	+/- 10%	+/- 10 mV
12 07	18.8	3.23	<u> </u>	7.16	137,3	7.4
13:08	413	9.06	462	6.84	1271	-12
12.09	22.1	1,68	125	6.78		67
	<u> </u>		<u> </u>	<u> </u>		
		· · · · · · · · · · · · · · · · · · ·				
·····						
Additional Readings Following	DO % Sat	SPC	TDS			
stabilisation:	00 % 05.					
Stabilisation.		Sample	Details		1	
Compliant Depth (rationale):	3.0	m bgl,	Details			
Sampling Depth (rationale):						·
Sample Appearance (e.g.	Grey-	odourie	55			
colour, siltiness, odour):	0111	<u>\-11\</u>				
Sample ID:	<u>15FL1(</u>) []-				
QA/QC Samples:	·····					
Sampling Containers and	See					
filtration:	and have have.	$\sim \sim \sim$				
Comments / Observations:	0010 - CI	amples	LOVOD DE	Incto V	YOM	
	1.010 S	a dila r	taken pr		IGNI FRCH	intop
	· · · · · · · · · · · · · · · · · · ·	J., <u> </u>			· ····································	J

Welldry after 3 readings

Geotechnics / Environment / Grounawater

				Bare	Vohme = casur, voiu	nse + filter ; : : ik
Groundwater Field She					volume - rh.d.:// +	: a(#h:d; /4-#h-c=4) .
Project and Bore Installation	the second s	<u>AT 0</u>			= 74; a; 4+1 o: $x = 3.14$	3(AU2)(0) 94-920-0 497 1
Bore / Standpipe ID:	BHU	018	CC		a = potouty (0 3 h	or most filter pack
Project Name:	Have	markel	<u>SSI</u>	·······	material)	
Project Number:	<u> </u>	57.03			h _i = height of wate	a column
Site Location:					d,= diameter of an	
Bore GPS Co-ord:					$b_2 = length of filter d_1 = d_{AB} ster of C$	
Installation Date:					e Voi Normaliy	
GW Level (during drilling):		m bgl		BOL	e voi Normany	
Well Depth:		m bgl				
Screened Interval:		m bgl				
Contaminants/Comments:	-					
Bore Development Details						
Date/Time:						
Purged By:						
GW Level (pre-purge):		m bgl				
GW Level (post-purge):		m bgl				
PSH observed:	Yes / No (/isual). Thickn	ess if observed	•	
Observed Well Depth:		m bgl	<u> </u>			
Estimated Bore Volume:		1				
Total Volume Purged:	(target: no drill	L I mud, min 3 w	ell vol. or drv)		<u> </u>	
77	(target no uni					······
Equipment:						
Micropurge and Sampling De						
Date/Time:	9.610	<u>55120</u>				
Sampled By:	[]	<u> </u>				
Weather Conditions:	<u> </u>	7101	V-la la			1:11
GW Level (pre-purge):	<u>.</u> d.p			<u>ler retrie</u>		
GW Level (post sample):	5.3		<u>ata 1004</u>	ess if observed		114 11.00
PSH observed:	Yes / (No) (visual). Thickn	ess II observed		
Observed Well Depth:	11.15	m bgl			······································	
Estimated Bore Volume:	61	<u> </u>				
Total Volume Purged:	~ 15					
Equipment:	aenourn	O, WQI	Th int.	neter		
	10010			in civ-		
			/ Parameters	-11	Turbidity	Redox (mV)
<u>Time / Volume</u>	Temp (°C)	DO (mg/L)	EC (µS or mS/cm)	pН		
Stabilisation Criteria (3 readings)	0.1°C	+/- 0.3 mg/L	*/- 3%	+/- 0.1	+/- 10%	+/- 10 mV
13:07	19.3	3.47	<u> </u>	7.04	·····	12
3:28	21.3	1.09	499	7.22		- 78
13:39	22.1	0.62	ц <u>q</u> ц	7,19	82.2	-56
13:30	28.3	0.33	<u> </u>	7.18	35.5	-68
13:31	29.4	0.24	474	7.93	240	-75
13:32	29.5	0.18	474	7.97	19.6	-77
13:33	22.5	Ŏ,I4	472	7.24	16.8	-76
in the second		-				
······································	1					
Additional Readings Following	DO % Sat	SPC	TDS			
stabilisation:	·					
		Sample	Details			
Sampling Depth (rationale):	8.0	m bgl,				
Sample Appearance (e.g.				<u>^</u>		
colour, siltiness, odour):	clear	- grey, (odourles	5		
Sample ID:	REIT	NTR				
QA/QC Samples:	1 13411					
	******			<u></u>		
Sampling Containers and	See	COC				
Literation (< 1 I I				
filtration:	300	and have				
filtration: Comments / Observations:		Service Service	., · · · · · · · · · · · · · · · · · · ·			

Geotechnics | Environment | Groundwater

Geotechnics Er	ivironment i	Grounowater			. .	22 1
Groundwater Field She	et			Bore	Volume = casur, volu	mue + filter ;: 1 uk a
Project and Bore Installation	Details				••••	n(shid, /4-shis 4)
Bore / Standpipe ID:		NAB		What	x = 3.14	
Project Name:		market	551		a = porouty (3.3)	for most filter pack
Project Number:	2676			<u></u>	material)	1
Site Location:	<u> </u>				$b_q = he$; get of way	
Bore GPS Co-ord:			<u></u>		d,⇒ diameter े∫ a b, = length of file	
	· · · · · · · · · · · · · · · · · · ·				ರೆ.= ರುಸ್ರಾಗಿಡ ಂಗ ರ	
Installation Date: GW Level (during drilling):		m bgl		Bor	e Vol Normally	r: 7.2*h
Well Depth:		m bgl	······································			
Screened Interval:		m bgl				
		in bgi		······································		
Contaminants/Comments:						
Bore Development Details						
Date/Time:						
Purged By:			· · · · · · · · · · · · · · · · · · ·	·····		
GW Level (pre-purge):		m bgl				
GW Level (post-purge):	New / New /	m bgl	/isual). Thickn	ess if observed	·	
PSH observed:	Yes / No (nsuar j. micki	icas il Obselvet	4	
Observed Well Depth:		m bgl				
Estimated Bore Volume:	(target: no drill	L mud min 2 w	all vol or day)			
Total Volume Purged:	(target: no unii	mua, min 5 w	en voi. or ary)			
Equipment:	- (- () -		······································			
Micropurge and Sampling Do						
Date/Time:	961	05/20				· · · · · · · · · · · · · · · · · · ·
Sampled By:		<u>S</u>				
Weather Conditions:			Hold Losor		ed. 12:1	mgF
GW Level (pre-purge):	<u> <u> </u></u>		<u>Inta Imag</u>		(305)	12590M
GW Level (post sample):	10.9		<u>iaia tobo</u> visual). Thickr	er <u>pri 10</u> less if observed		10 STUR
PSH observed:	Yes / (No) (visual). Thicki	less il observed	1.	
Observed Well Depth:	$1^{1} a \cdot 0$	m bgl				
Estimated Bore Volume:		<u>L</u>				
Total Volume Purged:	~15	L	<u> </u>	*		<u></u>
Equipment:	geopump	i int me	ter, wat	1 ibailer		
			/ Parameters			
Time / Volume	Temp (°C)	DQ (ma/L)	EC (µS or mS/cm)	pH	Turbidity	Redox (mV)
Time / Volume Stabilisation Criteria (3 readings)	0.1°C	+/- 0.3 mg/L	+/- 3%	÷/- 0.1	÷/- 10%	+/- 10 mV
and the second			77.7	7.40		1 - 1
<u> </u>		3.16	764	720		-10
14:40	122.4	1,25		729	3.2	-21
	1 22.2			736	99.2	- 22
14:41	13.0	0.53	-71	7.42	110.5	-36
14.43	23.1	0.60	735	7.31		1-41
14:43		0,55	731	7 31	910	1-42
	- 33.1	1 0, 22		<u> Ł</u>		
			}	<u> </u>		
Additional Readings Following	DO % Sat	SPC	TDS			
stabilisation:	,		· · · · ·			
stabilisation.		Sample	e Details	<u>I</u>	<u>I.,</u>	
Campling Dopth (retionals):	1 10.5	m bgl,		<u> </u>		
Sampling Depth (rationale): Sample Appearance (e.g.					 I	1
colour, siltiness, odour):	WOrd	n - grev	1. slight	114 5111	y. oclou	irless
Sample ID:	BHIC		<u></u>			
QA/QC Samples:		/~1_/				
Sampling Containers and	+					
	see co	20				
filtration:						
Comments / Observations:						

Rev March 2012

Appendix E

Calibration Records

Calibration & Service Report Gas Monitor

Company:	Active Environmental Solutions Hire	Manufacturer:	RAE Systems	Serial #:	592-907986
Contact:	Aleks Todorovic	Instrument:	MiniRAE 3000	Asset #:	-
Address:	2 Merchant Avenue	Model:	PGM 7320	Part #:	-
	Thomastown Vic 3074	Configuration:	VOC	Sold:	-
Phone:	03 9464 2300 Fax : 03 9464 3421	Wireless:	-	Last Cal:	-
Email:	Hire@aesolutions.com.au	Network ID:	-	Job #:	-
		Unit ID:	-	Cal Spec:	Std

ltem	Test	Pass/Fail	Comments
Battery	Li Ion	✓	
Charger	Charger, Power supply	✓	
	Cradle	✓	
Pump	Flow	✓	>500 mL/min
Filter	Filter, fitting, etc	✓	
Alarms	Audible, visual, vibration	✓	
Display	Operation	✓	
PCB	Operation	✓	
Connectors	Condition	✓	
Firmware	Version	✓	2.16
Datalogger	Operation	✓	
Monitor Housing	Condition	✓	
Case	Condition/Type	✓	
Sensors			
Oxygen		-	
LEL		-	
PID	10.6eV	✓	
Toxic 1		-	
Toxic 2		-	
Toxic 3		-	
Toxic 4		-	
Toxic 5		-	

Engineer's Report

Setup, service and calibration for hire

Calibration Certificate

Sensor	Туре	Serial No:	Span	Concentration	Traceability	CF	Read	ding
			Gas		Lot #		Zero	Span
0								
Oxygen								
LEL								
PID	10.6eV	23030160P4	Isobutylene	100 PPM	2440-3-1	1	0	100 PPM
Toxic 1								
Toxic 2								
Toxic 3								
Toxic 4								
Toxic 5								

Calibrated/Repaired by: Milenko Sisic

Date: 06/04/2020

Next due: 06/10/2020

Head Office – **Melbourne** 2 Merchant Avenue Thomastown VIC 3074 Australia T: +61 3 9464 2300 NSW Office – Ashfield Level 2, Suite 14, 6 - 8 Holden Street Ashfield NSW 2131 Australia T: +61 2 9716 5966 WA Office – **Malaga** Unit 6, 41 Holder Way Malaga WA 6090 Australia T: +61 8 9249 5663 QLD Office – Banyo Unit 17, 23 Ashtan Place Banyo QLD 4014 Australia T: +61 7 3267 1433

sales@aesolutions.com.au

c:\users\milenko\desktop\2019 calibration\pid water\592-907986\592-907986

06 04 2020.docx

www.aesolutions.com.au

	Active Environmental Solutions Hire	Manufacturer:			592-915478
Contact:	William Pak/Milenko Sisic	Instrument:	MiniRAE 3000	Hire #:	1624
Address:	Unit 16, 191 Parramatta Road	Model:	PGM 7320	Client:	Wen-Fei Yuan
	AUBURN NSW 2144	Configuration:	PID (10.6eV)	Company:	Douglas Partners
Phone:	02 9716 5966 Fax : 02 9716 5988	Wireless:	-	Project #:	152403
Email:	hire@aesolutions.com.au	Network ID:	-	Notes:	

ltem	Test	Pass/Fail	Comments
Battery	Li Ion	✓	
Charger	Charger, Power supply	✓	
	Cradle	✓	
Pump	Flow	\checkmark	>500 mL/min
Filter	Filter, fitting, etc	✓	
Alarms	Audible, visual, vibration	\checkmark	
Display	Operation	\checkmark	
PCB	Operation	\checkmark	
Connectors	Condition	\checkmark	
Firmware	Version	\checkmark	2.16
Datalogger	Operation	\checkmark	
Monitor Housing	Condition	\checkmark	
Case	Condition/Type	\checkmark	
Sensors			
PID	Lamp	~	
PID	Sensor	~	
THP	Sensor	\checkmark	

Engineer's Report

Setup, service and calibration for hire

Calibration Certificate

Sensor	Туре	Serial No:	Span	Concentration	Traceability	CF	Rea	ding
			Gas		Lot #		Zero	Span
Oxygen								
LEL								
PID	10.6eV	-	Isobutylene	100ppm	A0442963	1.00	0	100ppm
Toxic 1								
Toxic 2								
Toxic 3								
Toxic 4								
Toxic 5								

Calibrated/Repaired by:	William Pak
Date:	15.05.2020
Next due:	15.11.2020

Alemir International Pty Ltd t/a Active Environmental Solutions

Head Office – Melbourne 2 Merchant Avenue Thomastown VIC 3074 Australia T: +61 3 9464 2300 NSW Office – Auburn Unit 16, 191 Parramatta Road Auburn NSW 2144 Australia T: +61 2 9716 5966

ABN 14 080 228 708

WA Office – Malaga Unit 6, 41 Holder Way Malaga WA 6090 Australia T: +61 8 9249 5663 QLD Office – **Banyo** Unit 17, 23 Ashtan Place Banyo QLD 4014 Australia T: +61 7 3267 1433

sales@aesolutions.com.au

www.aesolutions.com.au

CALIBRATION RECORD

Project: Haymarket, SSI Project Number: 86767.03

Calibrated Equipment (Hirod PID) Model: MiniRAE 3000 Serial No.: 592-907986 DP Reference: 016 Other: AES Hired PED 10.6eV Lamp

Calibration

Date(s): 15	104/20	050								
Operator(s): L										
Zero Gas:	0.3.70	C	ambient air							
Span Gas:	91-713	0.6	isobutylene							
Span Gas Con			100							
Response Fac	tor:		1.0							
Pre-calibration	Reading	91								
Post-calibration Reading										

Approved: tJFY m Date: 15/04/2020

	rmo Fisher		Electrochemical Instrument Maintenance Calibration Report									
		Customer:	Douglas Partne	ers Pty Ltd								
AE 5	er Scientific Australia Pty Ltd 8N 52 058 390 917 Caribbean Drive coresby VIC 3179	Address:										
	one: 1 300 735 292 Fax:1 800 067 639	Attention:	Matthew Hyde									
Make:	TPS	Lab.ID/Asset No.	WQM 02	Calibration Date:	13/05/							
Model:	90FL-T	Customer O/No.	140461	Next Calibration:		5/2020						
Serial No	: 474853	Location:	As above	Call Number:	SV190	04230001						
Item		D	Description			Pass/Fail						
Gene	ral Assessment		_									
1.	Consult operator r	egarding performa	nce/problems			See Job						
2.	Check general ope	0 01	.			As below						
			tinuity, if applicable,	AS/NZS 3760 (if	mains	Adaptor is						
3.	powered)	aloty and cartin con	initially, if appliedole,	110/1120 5700 (II	mams	not tagged.						
Charal												
Check	k and Adjust											
4.	Probes, leads and	connectors				OK						
5.	Keypad/user controls Ok											
6.	Power supply/ <u>battery</u> voltage and condition Replaced											

- 7. Probe performance *(slow, acceptable)*
- 8. Internal and external cleaning

This equipment has been calibrated to the manufacturer's specifications and instructions, using the traceable standard
shown below:

PARAMETER	STANDARD	TRACEABILITY LOT NO.	PRE CALIBRATION READING	POST CALIBRATION READING
TEMPERATURE	22.8° C	s/n: 181088298	22.5°C	22.8 °C
рН	7.00	Lot 488/01	7.36	7.01 @23 ^o C
рп	4.01	Lot 468/01	4.4	4.0@23 ^o C
CONDUCTIVITY	$0 \ \mu S/cm$	Air	12880µS/cm	mS/cm
K=10 Range 0-20mS/cm	128800uS/cm	Lot 357/01	Uncalibrated	12.80mS/cm@23 ^o C
TDS as SAL is derived	-	As Above	N/A	0
form a conductivity calibration.	-	As above	N/A	0.77%
	0 % SAT	0% DO Solution	-0.2 % SAT	0 % SAT
DISSOLVED OXYGEN	100 % SAT	Air saturated membrane procedure	97 % SAT	100 % SAT
TURBIDITY	0 NTU	RO water	+1.4 NTU	0 NTU
IUKBIDITI	90 NTU	Lot325326	9.4 NTU	90 NTU
	360 NTU	Lot 330055	300 NTU	360 NTU
ORP	700 mV	3347	702mV	check only: pass Y

COMMENTS/ADDITIONAL REPAIRS/SERVICES PERFORMED

GENERAL COMMENTS ON INSTRUMENT CONDITION AND LOCATION:

Engineer's Name

Sean Gannon

Engineer's Signature

Date 14 May 2019

OK

OK

TPS FLT90 CALIBRATION RECORD

Serial Number: 428561

DP Identification No. **DP595**

86767.00 Project:

Project Number: Haymarket

PARAMETER	STANDARD	PRE CAL	IBRATION READING	POST CALIBR	ATION READING
Temperature	* 23.0 22.6	22.5	degrees C	22.6	degrees C
	10:03	9.83	pH units	10.04	pH units
рН	7.02	7:30	pH units	7.02	pH units
	4	3.83	pH units	3,99	pH units
	0.0** uS/cm	-0.5	μS/cm	0.0	μS/cm
Conductivity	2.76 mS/cm	2.89	mS/cm	2.75	mS/cm
	0.0** ppm	-	ppm	-	ppm
TDS	36.0 ppk	-	ppk	-	ppk
		0.03	ppm	0.0	
Dissolved	0.0% sat	-	%	-	%
Oxygen	100.0**%	9.51	ppm		
	sat	-	%	8.56	%
	0*** NTU	-0.1	NTU	0.0	NTU
Turbidity	90 NTU	85.7	NTU	89.8	NTU
ORP #	240 mV	240	mV	-	mV

Calibrat	ted by:	AS	
		04/20	

* use NATA certified reference thermometer from soils clean lab

** air

*** distilled water # factory calibrated - do a bump test

NOTES:

Form Updated 21Mar2011

TPS FLT90 CALIBRATION RECORD

Serial Number: 428561

DP Identification No. DP595

Project: Haymarket SSI Project Number: 86767.03

PARAMETER	STANDARD	PRE CALI	BRATION READING	POST CALIBRAT	ION READING
Temperature	* 23.0	19.7	degrees C	22.4	degrees C
	10,03	9.77	pH units	10.03	pH units
рН	7.01	6.97	pH units	7.02	pH units
	4	3.87	pH units	3.99	pH units
~ · · · ·	0.0** uS/cm	8.6	μS/cm	G.1	μS/cm
Conductivity	2.76 mS/cm	3.33	mS/cm	2.74	mS/cm
	0.0** ppm	/	ppm	1	ррт
TDS	36.0 ppk	1	ppk	· /	ppk
	0.004	THREAM	ppm		
Dissolved	0.0% sat	0.13	%	-0.01	%
Oxygen	100.0**%	7.86	ppm	8.61	
	sat		%		%
	0*** NTU	-05	NTU	-01	NTU
Turbidity	90 NTU	67.7	NTU	90.4	NTU
ORP #	240 mV	239	mV		mV

Calibrated by: Alyssa Spencer Date: <u>25105120</u>

* use NATA certified reference thermometer from soils clean lab

** air

*** distilled water

factory calibrated - do a bump test

NOTES:

Form Updated 21Mar2011 . 🐵

Appendix F

Results Tables

Table F1: Summary of Laboratory Results – Metals, TRH, BTEX, PAH

No. No. <th></th> <th></th> <th></th> <th>1</th> <th></th> <th></th> <th>Mo</th> <th>tals</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>т</th> <th>RH</th> <th></th> <th></th> <th></th> <th>BI</th> <th>EX</th> <th></th> <th></th> <th>P.</th> <th>AH</th> <th></th>				1			Mo	tals						т	RH				BI	EX			P.	AH	
resultresul				Arsenic	Cadmium	Total Chromium	Copper	Lead	Mercury (inorganic)	Nickel	Zinc	ТКН С6 - С10	TRH>C10-C16	F1 ((C6-C10)- BTEX)	F2 (>C10-C16 less Naphthalene)	F3 (>C16-C34)	F4 (>C34-C40)	Berzene	Toluene	Ethylbenzene	Total Xylenes	Naphthalene ^b	Benzo(a)pyre ne (BaP)	Benzo(a)pyre ne TEQ	Total PAHs
B B							1	1		1	1										1	1			
	Sample ID	Depth	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg				mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Image Image <th></th> <th>1</th> <th>DP (20</th> <th>20)</th> <th></th>											1	DP (20	20)												
Dimente Biole Biole </td <td>BH101</td> <td>0.1 - 0.2 m</td> <td>08/04/2020</td> <td>4</td> <td><0.4</td> <td>10</td> <td>89</td> <td>150</td> <td>0.3</td> <td>6</td> <td>96</td> <td><25</td> <td><50</td> <td><25</td> <td><50</td> <td>210</td> <td><100</td> <td><0.2</td> <td><0.5</td> <td><1</td> <td>-3</td> <td><1</td> <td>0.73</td> <td>1.2</td> <td>8.6</td>	BH101	0.1 - 0.2 m	08/04/2020	4	<0.4	10	89	150	0.3	6	96	<25	<50	<25	<50	210	<100	<0.2	<0.5	<1	-3	<1	0.73	1.2	8.6
bi 1.4.0 061.000 10.1 10.0 10.0 10.0	BH101/0.1-0.2 -	0.1 - 0.2 m	08/04/2020	<4	<0.4	8	56	160	0.3	6	120	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Image Image <t< td=""><td>-</td><td>0.9 - 1.0 m</td><td>08/04/2020</td><td>5</td><td>0.4</td><td>9</td><td>93</td><td>250</td><td>0.3</td><td>9</td><td>210</td><td><25</td><td><50</td><td><25</td><td><50</td><td>870</td><td>280</td><td><0.2</td><td><0.5</td><td><1</td><td><3</td><td><1</td><td>2.5</td><td>3.5</td><td>20</td></t<>	-	0.9 - 1.0 m	08/04/2020	5	0.4	9	93	250	0.3	9	210	<25	<50	<25	<50	870	280	<0.2	<0.5	<1	<3	<1	2.5	3.5	20
11.14 11.4 14.1 14.1 14.1 14.0 <	BH102	1.5 - 1.6 m	07/04/2020	<4	<0.4	4	62	68	0.1	4	100	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	-3	<1	0.1	<0.5	1.2
Image Image <t< td=""><td>BH102</td><td>3.1 - 3.2 m</td><td>07/04/2020</td><td>5</td><td>1</td><td>10</td><td>180</td><td>160</td><td>0.4</td><td>6</td><td>160</td><td><25</td><td><50</td><td><25</td><td><50</td><td><100</td><td><100</td><td><0.2</td><td><0.5</td><td><1</td><td>-3</td><td><1</td><td>0.1</td><td><0.5</td><td>1.8</td></t<>	BH102	3.1 - 3.2 m	07/04/2020	5	1	10	180	160	0.4	6	160	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	-3	<1	0.1	<0.5	1.8
Norm Norm Norm Norm	BH102	4.0 - 4.1 m	07/04/2020	5	<0.4	16	86	1500	1.3	23	540	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	-3	<1	0.05	<0.5	1
No.10 No.10 <th< td=""><td>BH102</td><td>4.9 - 5.0 m</td><td>07/04/2020</td><td><4</td><td><0.4</td><td>8</td><td>7</td><td>20</td><td>0.4</td><td>4</td><td>26</td><td><25</td><td><50</td><td><25</td><td><50</td><td><100</td><td><100</td><td><0.2</td><td><0.5</td><td><1</td><td>-3</td><td><1</td><td>0.08</td><td><0.5</td><td>0.3</td></th<>	BH102	4.9 - 5.0 m	07/04/2020	<4	<0.4	8	7	20	0.4	4	26	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	-3	<1	0.08	<0.5	0.3
10 10 10 10 10 </td <td>BH103</td> <td>1.0 - 1.1 m</td> <td>08/04/2020</td> <td><4</td> <td><0.4</td> <td>2</td> <td>5</td> <td>1500 57</td> <td>730 <0.1</td> <td>1</td> <td>14</td> <td><25</td> <td><50</td> <td>260 <25</td> <td><50</td> <td><100</td> <td><100</td> <td>3 <0.2</td> <td><0.5</td> <td><1</td> <td><3</td> <td><1</td> <td>0.08</td> <td><0.5</td> <td>0.3</td>	BH103	1.0 - 1.1 m	08/04/2020	<4	<0.4	2	5	1500 57	730 <0.1	1	14	<25	<50	260 <25	<50	<100	<100	3 <0.2	<0.5	<1	<3	<1	0.08	<0.5	0.3
a b	BH103	2.0 - 2.1 m	08/04/2020	9	<0.4	8	37	28	<0.1	6	39	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	-3	<1	<0.05	<0.5	<0.05
Image Image Image <				12	<0.4	8	31	1500	/30 <0.1	2	400000	×25	<50	<260 <25	<50	<100	<100	3 <0.2	<0.5	NL <1	<3	<1	<0.05	<0.5	4000
Inter Inter Inter Inter Inter Inter Inter Inter Inter Inter Inter Inter Inter Inter Inter Inter< Inter Inter Inter Inter< Inter Inter< Inter< Inter< Inter< Inter< Inter Inter Inter <td>BH103</td> <td>5.1 - 5.2 m</td> <td>16/04/2020</td> <td>3000 <4</td> <td>900 <0.4</td> <td>3600</td> <td>240000</td> <td>43</td> <td>0.4</td> <td>2</td> <td>400000</td> <td><25</td> <td><50</td> <td>630 <25</td> <td><50</td> <td><100</td> <td><100</td> <td>3</td> <td><0.5</td> <td>NL <1</td> <td><3</td> <td><1</td> <td>0.2</td> <td>40 <0.5</td> <td>2.2</td>	BH103	5.1 - 5.2 m	16/04/2020	3000 <4	900 <0.4	3600	240000	43	0.4	2	400000	<25	<50	630 <25	<50	<100	<100	3	<0.5	NL <1	<3	<1	0.2	40 <0.5	2.2
bit bit <td>BH103</td> <td>6.3 - 6.45 m</td> <td>16/04/2020</td> <td><4</td> <td><0.4</td> <td>3600</td> <td><1</td> <td><1</td> <td><0.1</td> <td><1</td> <td><1</td> <td><25</td> <td><50</td> <td><25</td> <td><50</td> <td><100</td> <td><100</td> <td>3 <0.2</td> <td><0.5</td> <td>NL <1</td> <td><3</td> <td><1</td> <td>×C ⊲0.05</td> <td><0.5</td> <td>4000</td>	BH103	6.3 - 6.45 m	16/04/2020	<4	<0.4	3600	<1	<1	<0.1	<1	<1	<25	<50	<25	<50	<100	<100	3 <0.2	<0.5	NL <1	<3	<1	×C ⊲0.05	<0.5	4000
Image Line Line <thlin< th=""> Line <thline< th=""> <thl< td=""><td>BH104</td><td></td><td></td><td>5</td><td><0.4</td><td>3600</td><td>33</td><td>45</td><td>/30 <0.1</td><td>11</td><td>61</td><td><25</td><td><50</td><td><25</td><td><50</td><td><100</td><td><100</td><td>3 <0.2</td><td><0.5</td><td>NL <1</td><td><3</td><td><1</td><td><0.05</td><td><0.5</td><td>0.52</td></thl<></thline<></thlin<>	BH104			5	<0.4	3600	33	45	/30 <0.1	11	61	<25	<50	<25	<50	<100	<100	3 <0.2	<0.5	NL <1	<3	<1	<0.05	<0.5	0.52
bit bit bit bit bit	BH104	1.4 - 1.5 m	14/04/2020	<4	<0.4	6	240000	1500	730 <0.1	7	400000	<25	<50	260 <25	<50	<100	<100	3 <0.2	<0.5	<1	<3	<1	0.53	40	6.1
Image Image Image <	BD2/140420	1.4 - 1.5 m	14/04/2020	8.3	<0.4	11	32	23	730 <0.1	9.9	400000 56	<20	<50	370 <20	<50	<100	<100	3 <0.1	<0.1	<0.1	<0.3	<0.5	×0.5	<0.5	3
Image Image <	BH104	2.8 - 2.9 m	14/04/2020	11	<0.4	7	240000	1500	<0.1	3	21	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	0.09	<0.5	0.56
bit bit bit bit bit bit bit bit	BH105	0.05 - 0.1 m	08/04/2020	8	0.6	13	93	280	1	14	240	<25	<50	<25	<50	330	<100	<0.2	<0.5	<1	-3	<1	2	2.9	17
boltomic	BD1/070420	0.23 - 0.3 m	08/04/2020	9	0.7	14	240000 99	300	0.8	11	260	<25	<50	260 <25	<50	170	<100	3 <0.2	<0.5	NL <1	<3	NL <1	NC 1.8	2.5	17
Image Image <th< td=""><td>BD1/070420b</td><td></td><td>08/04/2020</td><td>10</td><td>0.8</td><td>20</td><td>110</td><td>460</td><td>1.3</td><td>17</td><td>400000</td><td>NC</td><td>NC</td><td>260 NT</td><td>NT</td><td>NT</td><td>NT</td><td>3 NT</td><td>NT</td><td>NT</td><td>230 NT</td><td>NT</td><td>NT</td><td>40 NT</td><td>4000 NT</td></th<>	BD1/070420b		08/04/2020	10	0.8	20	110	460	1.3	17	400000	NC	NC	260 NT	NT	NT	NT	3 NT	NT	NT	230 NT	NT	NT	40 NT	4000 NT
Image Image <th< td=""><td>BH106</td><td>0.2 - 0.3 m</td><td>07/04/2020</td><td>25</td><td><0.4</td><td>14</td><td>240000 74</td><td>1500</td><td>0.2</td><td>4</td><td>780</td><td><25</td><td>87</td><td>260 <25</td><td>87</td><td>1600</td><td>380</td><td>3 <0.2</td><td><0.5</td><td><1</td><td><3</td><td><1</td><td>28</td><td>40</td><td>320</td></th<>	BH106	0.2 - 0.3 m	07/04/2020	25	<0.4	14	240000 74	1500	0.2	4	780	<25	87	260 <25	87	1600	380	3 <0.2	<0.5	<1	<3	<1	28	40	320
Image: Protectione Image:	BH106	0.3 - 0.4 m	07/04/2020	6	<0.4	43	43	1500 610	0.7	10	74	<25	240	260 <25	230	3600	NC 790	3 <0.2	<0.5	NL <1	<3	2	120	40 160	1400
Binol O N M <td>BH106/0.304 -</td> <td>0.3 - 0.4 m</td> <td>07/04/2020</td> <td>3000</td> <td><0.4</td> <td>24</td> <td>240000</td> <td>350</td> <td>0.7</td> <td>8</td> <td>110</td> <td>NC</td> <td>NC</td> <td>260 NT</td> <td>NT</td> <td>NC</td> <td>NT</td> <td>3 NT</td> <td>NT</td> <td>NT</td> <td>230 NT</td> <td>NT</td> <td>NT</td> <td>40 NT</td> <td>4000 NT</td>	BH106/0.304 -	0.3 - 0.4 m	07/04/2020	3000	<0.4	24	240000	350	0.7	8	110	NC	NC	260 NT	NT	NC	NT	3 NT	NT	NT	230 NT	NT	NT	40 NT	4000 NT
Bitton Air and	[0.9 - 1.0 m	07/04/2020	NT	NT	NT	240000 NT	1500 NT	NT	NT	NT	NT	NC	260 NT	NT	NT	NT	NT	NT	NT	NT	<1	0.1	<0.5	0.88
BUILONDOM BUILONDOM <t< td=""><td>BH107B</td><td>0.4 - 0.5 m</td><td>16/05/2020</td><td><4</td><td><0.4</td><td>8</td><td>240000</td><td>54</td><td>0.2</td><td>4</td><td>49</td><td><25</td><td><50</td><td><25</td><td><50</td><td><100</td><td><100</td><td><0.2</td><td><0.5</td><td><1</td><td><3</td><td><1</td><td>1.3</td><td>2</td><td>14</td></t<>	BH107B	0.4 - 0.5 m	16/05/2020	<4	<0.4	8	240000	54	0.2	4	49	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	1.3	2	14
BH10 L1.1.4m B109220 No No No No No	BD1/20200516	0.4 - 0.5 m	16/05/2020	<4	<0.4	12	46	52	0.2	7	81	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	-3	<1	1.8	2.7	18
Image Description Descripic interaction Description	BH107B	1.4 - 1.5 m	16/05/2020	<4	<0.4	7	11	1500	730 <0.1	6000	400000	<25	<50	260 <25	<50	<100	<100	3 <0.2	<0.5	NL <1	230	<1	0.3	<0.5	2.8
BH100 0.4 - 0.5m 11092202 No. No. No.	BH108	0.23 - 0.25 m	17/05/2020	5	<0.4	14	11	1500	<0.1	<1	400000	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	2.7	3.8	23
BH110 0.6.0 0.6.4 <th< td=""><td>BH109B</td><td>0.4 - 0.5 m</td><td>17/05/2020</td><td><4</td><td><0.4</td><td>9</td><td>9</td><td>1500</td><td>730 <0.1</td><td><1</td><td>2</td><td><25</td><td><50</td><td>260 <25</td><td><50</td><td><100</td><td><100</td><td>3 <0.2</td><td><0.5</td><td><1</td><td><3</td><td><1</td><td>0.4</td><td><0.5</td><td>4000</td></th<>	BH109B	0.4 - 0.5 m	17/05/2020	<4	<0.4	9	9	1500	730 <0.1	<1	2	<25	<50	260 <25	<50	<100	<100	3 <0.2	<0.5	<1	<3	<1	0.4	<0.5	4000
bit1 0.4.0.30 0.99.000 0.9 0.0 0.0 0.0 <t< td=""><td>BH110</td><td></td><td>5/21/2020</td><td>43</td><td><0.4</td><td>10</td><td>9</td><td>30</td><td>730 <0.1</td><td>3</td><td>400000</td><td><25</td><td><50</td><td>260 <25</td><td><50</td><td><100</td><td><100</td><td>3 <0.2</td><td><0.5</td><td>NL <1</td><td><3</td><td>NL <1</td><td>NC 1.1</td><td>40 2.1</td><td>13</td></t<>	BH110		5/21/2020	43	<0.4	10	9	30	730 <0.1	3	400000	<25	<50	260 <25	<50	<100	<100	3 <0.2	<0.5	NL <1	<3	NL <1	NC 1.1	40 2.1	13
Image: bit in the state in the sta	BH111	0.4 - 0.5 m	5/19/2020	<4	<0.4	5	6	1500	730 <0.1	3	12	<25	<50	260 <25	<50	<100	<100	3 <0.2	<0.5	<1	<3	<1	0.2	40 <0.5	<0.5
Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>	BH111	1.3 · 1.4 m	5/19/2020	<4	<0.4	16	60	330	1	16	180	<25	<50	<25	<50	220	<100	<0.2	<0.5	<1	-3	<1	5.7	8.4	8.4
$ \begin{array}{ $	BH112B	0.6 - 0.7 m	18/05/2020	<4	<0.4	11	15	21	0.3	3	12	<25	<50	<25	<50	650	310	<0.2	<0.5	4	-3	1	5.1	7.5	85
BH110 0.15 0.2 m 00944200 90 00 000 00 10 10 100 100 100 1	BH112B	1.2 · 1.4 m	13/05/2020	<4	<0.4	3	16	5	<0.1	3	11	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1 1	-3	<1	2.5	3.5	36
Baltis Object Object<	BH113	0.15 - 0.25 m	07/04/2020	26	<0.4	6	40	44	<0.1	4	310	<25	<50	<25	<50	790	220	<0.2	<0.5	۰۹ ۲	-3	<1	12	17	150
BH110 0.4 - 0.5m 00%4220 No No <td>BD2/070420</td> <td>0.05 - 0.1 m</td> <td>07/04/2020</td> <td>10</td> <td><0.4</td> <td>9</td> <td>43</td> <td>69</td> <td>0.1</td> <td>4</td> <td>500</td> <td>-25</td> <td><50</td> <td><25</td> <td><50</td> <td>760</td> <td>180</td> <td><0.2</td> <td><0.5</td> <td><1</td> <td>-3</td> <td><1</td> <td>14</td> <td>20</td> <td>180</td>	BD2/070420	0.05 - 0.1 m	07/04/2020	10	<0.4	9	43	69	0.1	4	500	-25	<50	<25	<50	760	180	<0.2	<0.5	<1	-3	<1	14	20	180
BH114 0.3 - 1.0m 00%4200 No. No. No. No.	BH113	0.4 - 0.5 m	07/04/2020	6	<0.4	18	19	23	<0.1	<1	8	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1 1	<3	<1	1.2	1.7	15
BH114 0.5 - 0.2 m 0704/2020 No 0.6 dot 0.1 /bit 0.0 dot 0.0 dot <t< td=""><td>BH113</td><td>0.9 - 1.0 m</td><td>07/04/2020</td><td>NT 3000</td><td>NT 900</td><td>NT</td><td>NT 240000</td><td>NT 1500</td><td>NT 730</td><td>NT</td><td>NT 400000</td><td>NT</td><td>NT</td><td>NT 260</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>230 NT 230</td><td>NT</td><td>0.3</td><td><0.5</td><td>3.8</td></t<>	BH113	0.9 - 1.0 m	07/04/2020	NT 3000	NT 900	NT	NT 240000	NT 1500	NT 730	NT	NT 400000	NT	NT	NT 260	NT	NT	NT	NT	NT	NT	230 NT 230	NT	0.3	<0.5	3.8
BH110 0.2 0.3 0.0 0.00 0.0<	BH114	0.15 - 0.2 m	07/04/2020	14	<0.4	11	59	93	<0.1	14	510	<25	220	<25	220	1900	330	<0.2	<0.5	<1	-3 230	1	67	81 40	860
minima bias bias model	BH114	0.2 - 0.3 m	07/04/2020	52	<0.4	21	120	260	0.1	5	1800	-25	120	<25	120	1400	310	<0.2	<0.5	<1	-3	<1	31	43	470
International line Operational lin	BH115	0.23 - 0.3 m	07/04/2020	6	<0.4	12	14	24	<0.1	1	21	<25	110	<25	110	1300	280	<0.2	<0.5	4	<3	<1	27	38	440
BH115 0.5 - 0.6 m 0704/2200 Via	BH115/0.23-0.3	0.23 - 0.3 m	07/04/2020	100	<0.4	14	85	38	<0.1	3	110	NU	NU	260 NT	NT	NU	NU	NT	NT	NT	230 NT	NT	NU	AU NT	NT
BH115 0.9-1.0 0.70-02200 0.00 2.000 0.00		0.5 - 0.6 m	07/04/2020	11	<0.4	21	16	20	<0.1	2	11	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	-3	<1	1.8	2.5	22
BH16 0.5 0.7 m 17050200 x00	BH115		07/04/2020	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	0.05	<0.5	0.4
10 1 10 1 10 1 10 1 10 1 10 1 10 1 10	BH116	0.5 - 0.7 m	17/05/2020	3000 <4 3000	<0.4	3800 6 3600	240000 5	12	730 <0.1 730	<1	400000	<25 NC	<50	<25 260	<50 N	<100	<100	<0.2	<0.5	NL <1	230 <3 230	<1 N	<0.05	<0.5	+000 <0.05
	BD1/20200517	0.5 - 0.7 m	17/05/2020	3.6	<0.4	8.2	9.9	16	<0.1 730	<5	<5 400000	<20 NC	<50 NC	<20 260	<50	<100	<100	<0.1 3	<0.1	<0.1	<0.3 230	<0.5	<0.5	<0.5	<0.5
BH117 0.2-0.25 m 17052020 v v v v v v v v v v v v v v v v v v	BH117	0.2 · 0.25 m	17/05/2020	8 3000	<0.4 900	20 3600	15 240000	16 1500	<0.1 730	2 6000	7	<25 NC	140 NC	<25 260	120 NL	1700 NC	340 NC	<0.2 3	<0.5 NL	<1 NL	<3 230	16 NL	49 NC	71 40	770 4000

						Me	tals						TI	RH				BT	'EX				AH	
			Arsenic	Cadmium	Total Chromium	Copper	Lead	Mercury (inorganic)	Nickel	Zinc	TRH C6 - C10	TRH >C10-C16	F1 ((C6-C10)- BTEX)	F2 (>C10-C16 less Naphthalene)	F3 (>C16-C34)	F4 (>C34-C40)	Benzene	Toluene	Ethylbenzene	Total Xylenes	Naphthalene ^b	Benzo(a)pyrene (BaP)	Benzo(a)pyrene TEQ	Total P AHs
		PQL	4	0.4	1	1	1	0.1	1	1	25	50	25	50	100	100	0.2	0.5	1	1	1	0.05	0.5	0.05
Sample ID	Depth	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
			-						-		0P (20						-			-				
BH1	3 - 3.5 m	10/07/2019	<4 3000	<0.4 900	2 3600	8 240000	90 1500	0.9 730	3 6000	140	<25 NC	<50 NC	<25 260	<50 NL	<100 NC	<100 NC	<0.2 3	<0.5	<1 NL	<1 230	<1 NL	<0.05	<0.5 40	<0.05 4000
BH1	3.8 - 4 m	10/07/2019	<4 3000	<0.4 900	<1 3600	<1 240000	1 1500	<0.1 730	<1 6000	23 400000	<25 NC	<50 NC	<25 260	<50	<100 NC	<100 NC	<0.2 3	<0.5	<1 NL	<1 230	<1 NL	<0.05	<0.5 40	<0.05 4000
BH2	1.5 - 1.6 m	10/07/2019	<4 3000	<0.4 900	5 3600	3 240000	24 1500	<0.1 730	1 6000	4	<25 NC	<50 NC	<25 260	<50	<100 NC	<100 NC	<0.2 3	<0.5	<1 NL	<1 230	<1 NL	0.1	<0.5 40	1.6 4000
BH2	4.5 - 4.6 m	10/07/2019	12	<0.4	8	29	24 1500	<0.1 730	2	29 400000	<25	<50	<25 260	<50	<100	<100	<0.2	<0.5	<1 N.	<1 230	<1 N.	0.2	<0.5	1.6
BH3	0.2 · 0.3 m	12/07/2019	6	<0.4	10	11	48	0.1	2	55	<25	75 NC	<25 260	75	1200	220	<0.2	<0.5	<1	<1 230	1.2	29	42	370
BH3	0.7 - 0.8 m	12/07/2019	9	<0.4	9	9	45	<0.1 730	2	35	<25	<50	<25	<50	200	<100	<0.2	<0.5	<1	<1	<1	4.5	6.3	53
BH3/0.7-0.8 - ITRIPLICATEI	0.7 - 0.8 m	12/07/2019	10	<0.4	10	10	16	<0.1	2	23	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH4	0.3 · 0.4 m	12/07/2019	8	<0.4	4	9	33	<0.1	1	29	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.1	<0.5	0.57
BH4	1.0 - 1.1 m	12/07/2019	10	<0.4	9	12	49	0.1	1	8	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.06	<0.5	0.06
BH5	0.35 - 0.4 m	13/07/2019	<4	<0.4	5	76	8	0.1	4	35	<25	<50	<25	<50	1200	320	<0.2	<0.5	<1	<1	<1	10	14	100
BH6	0.2 · 0.3 m	14/07/2019	7	<0.4	17	17	30	0.2	2	15	<25	360	<25	280	1400	200	<0.2	<0.5	<1	<1	87	23	34	640
BH7	1.0 - 1.1 m	12/07/2019	<4	<0.4	2	2	4	<0.1	1	30	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	0.1
BH7	1.4 · 1.5 m	13/07/2019	<4	<0.4	3	240000	2	<0.1	1	11	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05
BD/120719	1.4 - 1.5 m	12/07/2019	<4	<0.4	8	13	21	<0.1	5	21	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	1.6	2.3	16
BT1/2090713	1.4 · 1.5 m	12/07/2019	<2	<0.4	5.5	<5	5.1	<0.1	<5	30	<20	<50	<20	<50	<100	<100	<0.1	<0.1	<0.1	<0.3	<0.5	<0.5	<0.5	<0.5
BH7	2.0 · 2.1 m	13/07/2019	<4	<0.4	8	7	7	<0.1	3	16	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05
BH8	0.2 - 0.3 m	14/07/2019	4	<0.4 900	9 3600	240000 55 240000	33 1500	0.1	12	33 400000	<25 NC	<50 NC	<25 280	<50 NL	<100 NC	<100 NC	3 <0.2 3	<0.5	<1 NL	<1 230	<1 NL	1.2 NC	40 1.7 40	11 4000
BH9	0.35 · 0.45 m	12/07/2019	c4	<0.4	8	3	8	<0.1	2	6	<25	<50	<25 260	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.2	<0.5	2.6
BH9	0.65 · 0.75 m	12/07/2019	18	<0.4	23	9	15	0.2	1	7	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05
			3000	900	3600	240000	1500	730	6000	400000	NC	NC	260	NL	NC	NC	3	NL	NL	230	NL	NC	40	4000

Lab result HIL/HSL value EIL/ESL value

HIL/HSL exceedance 📕 EIL/ESL exceedance 📕 HIL/HSL and EIL/ESL exceedance 📕 ML exceedance

Indicates that asbestos has been detected by the lab below the PQL, refer to the lab report Blue = DC exceen

Bold = Lab detections NT = Not tested NL = Non limiting NC = No criteria NA = Not applicable NAD = No asbestos detected

Notes:	
HIL/HSL/DC	NEPC, Schedule B1 - HIL D, HSL D, DC HSL D
ML	NEPC, Schedule B1 - ML C/Ind
a	QA/QC replicate of sample listed directly below the primary sample
ь	reported naphthalene laboratory result obtained from BTEXN suite

Table F1: Summary of Laboratory Results - Phenol, OCP, OPP, PCB, Asbestos

			Phenol						OCP						OPP	PCB		Asbestos	
			Phenol	DDT+DDE+DDD c	aaa	DDE	DOT	Aldrin & Dieldrin	Total Chiordane	Total Endosultan	Endrin	Heptachl or	Hexachioroben zene	Methoxychlor	Chior pyriphos	Total PCB	Asbestos ID in soli >0.1g/kg	Trace Analysis	Asbestos (50 g)
Sample ID	Depth	PQL Sample Date	5 mg/kg	0.1 mg/kg	0.1 mg/kg	0.1 mg/kg	0.1 mg/kg	0.1 mg/kg	0.1 mg/kg	0.1 mg/kg	0.1 mg/kg	0.1 mg/kg	0.1 mg/kg	0.1 mg/kg	0.1 mg/kg	0.1 mg/kg			<u> </u>
Gumpie ib	Dopar	oumple bate							P (2020										
BH101	0.1 - 0.2 m	08/04/2020	-6	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD
BH101/0.1-0.2 -	0.1 - 0.2 m	08/04/2020	660 NA NT	3600 NA NT	NC NA NT	NC NA	NC NA	45 NA NT	530 NA NT	2000 NA NT	100 NA NT	50 NA NT	80 NA NT	2500 NA NT	2000 NA NT	7 NA NT	NT	NT	NT
[TRIPLICATE] BH101	0.9 - 1.0 m	08/04/2020	660 NA	3600 NA <0.1	NC NA <0.1	NC NA <0.1	NC NA <0.1	45 NA <0.1	530 NA <0.1	2000 NA <0.1	100 NA <0.1	50 NA <0.1	80 NA <0.1	2500 NA <0.1	2000 NA <0.1	7 NA <0.1	NAD	NAD	NAD
BH101 BH102	0.9 - 1.0 m	08/04/2020	660 NA	3500 NA <0.1	NC NA <0.1	NC NA <0.1	NC NA <0.1	45 NA <0.1	530 NA <0.1	2000 NA <0.1	100 NA <0.1	50 NA <0.1	80 NA <0.1	2500 NA <0.1	2000 NA <0.1	7 NA <0.1	NAD	NAD	NAD
BH102 BH102	1.5-1.6 m	07/04/2020	660 NA	3600 NA	NC NA	NC NA	NC NA	45 NA NT	530 NA	2000 NA NT	100 NA NT	50 NA	80 NA NT	2500 NA NT	2000 NA NT	7 NA	NAD	NAD	NAD
			660 NA	3600 NA	NC NA	NC NA	NC NA	45 NA	530 NA NT	2000 NA	100 NA	50 NA	80 NA	2500 NA	2000 NA	7 NA	NAD	NAD	NAD
BH102 BH102	4.0 - 4.1 m 4.9 - 5.0 m	07/04/2020	660 NA NT	3600 NA NT	NC NA	NC NA	NC NA	45 NA NT	530 NA NT	2000 NA NT	100 NA NT	50 NA NT	80 NA NT	2500 NA NT	2000 NA NT	7 NA NT	NAD	NAD	
			660 NA	3600 NA <0.1	NC NA <0.1	NC NA <0.1	NC NA <0.1	45 NA <0.1	530 NA <0.1	2000 NA <0.1	100 NA <0.1	50 NA <0.1	80 NA <0.1	2500 NA <0.1	2000 NA <0.1	7 NA <0.1			NT
BH103	1.0 - 1.1 m	08/04/2020	660 NA NT	3600 NA	NC NA	NC NA	NC NA	45 NA NT	530 NA	2000 NA NT	100 NA NT	50 NA	80 NA NT	2500 NA NT	2000 NA NT	7 NA NT	NAD	NAD	NAD
BH103	2.0 - 2.1 m	08/04/2020	660 <5	3600 <0.1	NC <0.1	NC <0.1	NC <0.1	45 <0.1	530 <0.1	2000 <0.1	100 <0.1	50 <0.1	80 <0.1	2500 <0.1	2000 <0.1	7 <0.1	NAD	NAD	NAD
BH103 BH103	2.9 - 3 m 5.1 - 5.2 m	16/04/2020 16/04/2020	660 NT	3600 NT	NC	NC	NC	45 NT	530 NT	2000 NT	100 NT	50 NT	80 NT	2500 NT	2000 NT	7 NT	NAD NAD	NAD NAD	NAD
BH103 BH103	6.3 - 6.45 m	16/04/2020	660 NT	3600 NT	NC NT	NC NT	NC NT	45 NT	530 NT	2000 NT	100 NT	50 NT	80 NT	2500 NT	2000 NT	7 NT	NAD	NAD	NAD
BH103 BH104	6.3 - 6.45 m	08/04/2020	660 <5	3600 <0.1	NC <0.1	NC <0.1	NC <0.1	45 <0.1	530 <0.1	2000 <0.1	100 ⊲0.1	50 <0.1	80 <0.1	2500 <0.1	2000 <0.1	7 <0.1	NAD	NAD	NAD
BH104	1.4 - 1.5 m	14/04/2020	660 NT	3600 NT	NC NT	NC NT	NC NT	45 NT	530 NT	2000 NT	100 NT	50 NT	80 NT	2500 NT	2000 NT	7 NT	NAD	NAD	NAD
BH104 BD2/140420	1.4 - 1.5 m	14/04/2020	660 NT	3600 NT	NC NT	NC NT	NC NT	45 NT	530 NT	2000 NT	100 NT	50 NT	80 NT	2500 NT	2000 NT	7 NT	NT	NT	NT
		14/04/2020	660 <5	3600 ≪0.1	NC <0.1	NC <0.1	NC <0.1	45 <0.1	530 <0.1	2000 <0.1	100 ⊲0.1	50 <0.1	80 <0.1	2500 ⊲0.1	2000 <0.1	7 <0.1	NAD	NAD	NAD
BH104 BH105	2.8 - 2.9 m 0.05 - 0.1 m	14/04/2020	660 NT	3600 NT	NC NT	NC NT	NC NT	45 NT	530 NT	2000 NT	100 NT	50 NT	80 NT	2500 NT	2000 NT	7 NT	NAD	NAD	NAD
BH105 BD1/070420			660 NT	3600 NT	NC NT	NC NT	NC NT	45 NT	530 NT	2000 NT	100 NT	50 NT	80 NT	2500 NT	2000 NT	7 NT			
	0.05 - 0.1 m	08/04/2020	660 NT	3600 NT	NC NT	NC NT	NC NT	45 NT	530 NT	2000 NT	100 NT	50 NT	80 NT	2500 NT	2000 NT	7 NT	NT NT	NT NT	NT NT
BD1/070420b BH106	0.05 - 0.1 m 0.2 - 0.3 m	08/04/2020	660 NT	3600 NT	NC NT	NC NT	NC NT	45 NT	530 NT	2000 NT	100 NT	50 NT	80 NT	2500 NT	2000 NT	7 NT	NT	NT	NT
BH106 BH106	0.2 - 0.3 m	07/04/2020	660 45	3600 <0.1	NC <0.1	NC <0.1	NC <0.1	45 <0.1	530 <0.1	2000 <0.1	100 ⊲0.1	50 ⊲0.1	80 <0.1	2500 <0.1	2000 <0.1	7 <0.1	NAD	NAD	NAD
BH106/0.304 -	0.3 - 0.4 m	07/04/2020	660 NT	3600 NT	NC NT	NC NT	NC NT	45 NT	530 NT	2000 NT	100 NT	50 NT	80 NT	2500 NT	2000 NT	7 NT	NT	NT	NT
[TRIPLICATE] BH106	0.9 - 1.0 m	07/04/2020	660 NT	3600 NT	NC NT	NC NT	NC NT	45 NT	530 NT	2000 NT	100 NT	50 NT	80 NT	2500 NT	2000 NT	7 NT	NT	NT	NT
BH107B	0.4 - 0.5 m	16/05/2020	660 <5	3600 <0.1	NC <0.1	NC <0.1	NC <0.1	45 <0.1	530 <0.1	2000 <0.1	100 ⊲0.1	50 <0.1	80 <0.1	2500 <0.1	2000 <0.1	7 <0.1	NAD	NAD	NAD
BD1/20200516	0.4 - 0.5 m	16/05/2020	660 NT	3600 NT	NC NT	NC NT	NC NT	45 NT	530 NT	2000 NT	100 NT	50 NT	80 NT	2500 NT	2000 NT	7 NT	NT	NT	NT
BH107B	1.4 - 1.5 m	16/05/2020	660 NT	3600 NT	NC NT	NC NT	NC NT	45 NT	530 NT	2000 NT	100 NT	50 NT	80 NT	2500 NT	2000 NT	7 NT	NAD	NAD	NAD
BH10/B	0.23 - 0.25 m	17/05/2020	660 NT	3600 NT	NC NT	NC NT	NC NT	45 NT	530 NT	2000 NT	100 NT	50 NT	80 NT	2500 NT	2000 NT	7 NT	NT	NT	NT
BH109B	0.4 - 0.5 m	17/05/2020	660 <5	3600 ≪0.1	NC <0.1	NC <0.1	NC <0.1	45 <0.1	530 <0.1	2000 <0.1	100 ⊲0.1	50 <0.1	80 <0.1	2500 ⊲0.1	2000 <0.1	7 <0.1	NT	NT	NT
BH109B BH110	0.5 - 0.5 m	5/21/2020	660 <5	3600 <0.1	NC <0.1	NC <0.1	NC <0.1	45 <0.1	530 <0.1	2000 <0.1	100 ⊲0.1	50 <0.1	80 <0.1	2500 ⊲0.1	2000 <0.1	7 <0.1	NT	NT	NT
BH110 BH111	0.5 - 0.5 m	5/19/2020	660 <5	3600 <0.1	NC <0.1	NC <0.1	NC <0.1	45 <0.1	530 <0.1	2000 <0.1	100 ⊲0.1	50 <0.1	80 <0.1	2500 <0.1	2000 <0.1	7 <0.1	NT		NI
BH111 BH111	0.4 - 0.5 m	5/19/2020	660 NT	3600 NT	NC NT	NC NT	NC NT	45 NT	530 NT	2000 NT	100 NT	50 NT	80 NT	2500 NT	2000 NT	7 NT	NAD	NT NAD	NAD
BH111 BH112B	0.6 - 0.7 m	18/05/2020	660 NT	3600 NT	NC NT	NC NT	NC NT	45 NT	530 NT	2000 NT	100 NT	50 NT	80 NT	2500 NT	2000 NT	7 NT	NAD	NAD	NAD
BH112B BH112B	1.2 - 1.4 m	13/05/2020	660 NT	3600 NT	NC NT	NC NT	NC NT	45 NT	530 NT	2000 NT	100 NT	50 NT	80 NT	2500 NT	2000 NT	7 NT	NT	NT	NT
BH112B BH113	0.15 - 0.25 m	07/04/2020	660 NT	3600 NT	NC NT	NC NT	NC NT	45 NT	530 NT	2000 NT	100 NT	50 NT	80 NT	2500 NT	2000 NT	7 NT	NAD	NAD	NAD
BH113 BD2/070420	0.15 - 0.25 m	07/04/2020	660 NT	3600 NT	NC NT	NC NT	NC NT	45 NT	530 NT	2000 NT	100 NT	50 NT	80 NT	2500 NT	2000 NT	7 NT	NAD		
			660 <5	3600 <0.1	NC <0.1	NC <0.1	NC <0.1	45 <0.1	530 <0.1	2000 <0.1	100 <0.1	50 <0.1	80 <0.1	2500 <0.1	2000 <0.1	7 <0.1	NT	NT NAD	NT NAD
BH113 BH113	0.4 - 0.5 m 0.9 - 1.0 m	07/04/2020	660 NT	3600 NT	NC NT	NC NT	NC NT	45 NT	530 NT	2000 NT	100 NT	50 NT	80 NT	2500 NT	2000 NT	7 NT			
		07/04/2020	660 NT	3600 NT	NC NT	NC NT	NC NT	45 NT	530 NT	2000 NT	100 NT	50 NT	80 NT	2500 NT	2000 NT	7 NT	NT	NT	NT
BH114	0.15 - 0.2 m	07/04/2020	660 <5	3600 <0.1	NC <0.1	NC <0.1	NC <0.1	45 <0.1	530 <0.1	2000 <0.1	100 <0.1	50 <0.1	80 <0.1	2500 <0.1	2000 <0.1	7 <0.1	NAD	NAD	NAD
BH114	0.2 - 0.3 m	07/04/2020	660 45	3600	NC <0.1	NC <0.1	NC <0.1	45	530 <0.1	2000	100 <0.1	50 <0.1	80 <0.1	2500 <0.1	2000	7 <0.1	NAD	NAD	NAD
BH115 BH115/0.23-0.3	0.23 - 0.3 m	07/04/2020	660 NT	3600 NT	NC NT	NC NT	NC NT	45 NT	530 NT	2000 NT	100 NT	50 NT	80 NT	2500 NT	2000 NT	7 NT	NAD	NAD	NAD
 [TRIPLICATE] 	0.23 - 0.3 m	07/04/2020	660 NT	3600 NT	NC NT	NC NT	NC NT	45 NT	530 NT	2000 NT	100 NT	50 NT	80 NT	2500 NT	2000 NT	7 NT	NT	NT	NT
BH115	0.5 - 0.6 m	07/04/2020	660 NT	3600 NT	NC NT	NC NT	NC NT	45 NT	530 NT	2000 NT	100 NT	50 NT	80 NT	2500 NT	2000 NT	7 NT	NAD	NAD	NAD
BH115	0.9 - 1.0 m	07/04/2020	660 NT	3600 NT	NC NT	NC NT	NC NT	45 NT	530 NT	2000 NT	100 NT	50 NT	80 NT	2500 NT	2000 NT	7 NT	NT	NT	NT
BH116 BD1/20200517	0.5 - 0.7 m 0.5 - 0.7 m	17/05/2020	660 NT	3600 NT	NC NT	NC NT	NC NT	45 NT	530 NT	2000 NT	100 NT	50 NT	80 NT	2500 NT	2000 NT	7 NT	NT NT	NT NT	NT NT
BD1/20200517 BH117	0.5 - 0.7 m	17/05/2020	660 <5	3600 ⊲0.1	NC <0.1	NC <0.1	NC <0.1	45 <0.1	530 <0.1	2000 ⊲0.1	100 ⊲0.1	50 ⊲0.1	80 <0.1	2500 <0.1	2000 <0.1	7 <0.1	NAD	NT	NT NAD
BHIII	0.2 ° 0.20 M	.7/03/2020	660	3600	NC	NC	NC	45	530	2000	100	50	80	2500	2000	7	INALD	INPAD	NPL/

			Phenol	1					OCP						OPP	PCB	1	Asbestos	
			Phenol	DDT+DDE+DDD	QQQ	DDE	DDT	Aldrin & Dieldrin	Total Chlordane	Total Endosultan	Endrin	Heptachior	Hexachloroben zene	Methoxychlor	Chlorpyriphos	Total PCB	Asbestos ID in soll >0.1g/kg	Trace Analysis	Asbestos (50 g)
		PQL	5	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1			
Sample ID	Depth	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	-	-	-
								DF	P (2019))									
BH1	3 - 3.5 m	10/07/2019	<5 660	<0.1 3600	<0.1 NC	<0.1	<0.1	<0.1 45	<0.1 530	<0.1 2000	<0.1 100	<0.1 50	<0.1 80	<0.1 2500	<0.1 2000	<0.1 7	NAD	NAD	NAD
BH1	3.8 - 4 m	10/07/2019	NT 660	NT 3600	NT NC	NT NC	NT NC	NT 45	NT 530	NT 2000	NT 100	NT 50	NT 80	NT 2500	NT 2000	NT 7	NAD	NAD	NAD
BH2	1.5 - 1.6 m	10/07/2019	<5 660	<0.1 3600	<0.1 NC	<0.1 NC	<0.1 NC	<0.1 45	<0.1 530	<0.1 2000	<0.1 100	<0.1 50	<0.1 80	<0.1 2500	<0.1 2000	<0.1 7	NAD	NAD	NAD
BH2	4.5 - 4.6 m	10/07/2019	NT 660	NT 3500	NT NC	NT NC	NT NC	NT 45	NT 530	NT 2000	NT 100	NT 50	NT 80	NT 2500	NT 2000	NT 7	NAD	NAD	NAD
BH3	0.2 - 0.3 m	12/07/2019	NT 660	NT 3600	NT NC	NT NC	NT NC	NT 45	NT 530	NT 2000	NT 100	NT 50	NT 80	NT 2500	NT 2000	NT 7	NAD	NAD	NAD
BH3	0.7 - 0.8 m	12/07/2019	¢ 60	<0.1 3600	<0.1 NC	<0.1	<0.1 NC	<0.1 45	<0.1 530	<0.1 2000	<0.1 100	<0.1 50	<0.1 80	<0.1 2500	<0.1 2000	<0.5 7	NAD	NAD	NAD
BH3/0.7-0.8 - [TRIPLICATE]	0.7 - 0.8 m	12/07/2019	NT 660	NT 3600	NT NC	NT NC	NT NC	NT 45	NT 530	NT 2000	NT 100	NT 50	NT 80	NT 2500	NT 2000	NT 7	NT	NT	NT
BH4	0.3 - 0.4 m	12/07/2019	49 660	<0.1 3600	<0.1 NC	<0.1 NC	<0.1	<0.1 45	<0.1 530	<0.1 2000	<0.1 100	<0.1 50	<0.1 80	<0.1 2500	<0.1 2000	<0.1 7	NAD	NAD	NAD
BH4	1.0 - 1.1 m	12/07/2019	NT 660	NT 3600	NT NC	NT NC	NT NC	NT 45	NT 530	NT 2000	NT 100	NT 50	NT 80	NT 2500	NT 2000	NT 7	NAD	NAD	NAD
BH5	0.35 - 0.4 m	13/07/2019	-\$ 660	<0.1 3600	<0.1 NC	<0.1	<0.1	<0.1 45	<0.1 530	<0.1 2000	<0.1 100	<0.1 50	<0.1 80	<0.1 2500	<0.1 2000	<0.5 7	NAD	NAD	NAD
BH6	0.2 - 0.3 m	14/07/2019	NT 660	NT 3600	NT NC	NT NC	NT NC	NT 45	NT 530	NT 2000	NT 100	NT 50	NT 80	NT 2500	NT 2000	NT 7	NAD	NAD	NAD
BH7	1.0 - 1.1 m	12/07/2019	¢	<0.1 3600	<0.1	<0.1	<0.1	<0.1 45	<0.1 530	<0.1 2000	<0.1 100	<0.1 50	<0.1 80	<0.1 2500	<0.1 2000	<0.1 7	NAD	NAD	NAD
BH7	1.4 - 1.5 m	13/07/2019	45 660	<0.1 3600	<0.1 NC	<0.1	<0.1	<0.1 45	<0.1 530	<0.1 2000	<0.1 100	<0.1 50	<0.1 80	<0.1 2500	<0.1 2000	<0.1 7	NAD	NAD	NAD
BD/120719	1.4 - 1.5 m	12/07/2019	NT 660	NT 3600	NT NC	NT NC	NT NC	NT 45	NT 530	NT 2000	NT 100	NT 50	NT 80	NT 2500	NT 2000	NT 7	NAD	NAD	NAD
BT1/2090713	1.4 - 1.5 m	12/07/2019	NT 660	NT 3600	NT NC	NT NC	NT NC	NT 45	NT 530	NT 2000	NT 100	NT 50	NT 80	NT 2500	NT 2000	NT 7	NT	NT	NT
BH7	2.0 - 2.1 m	13/07/2019	NT 660	NT 3500	NT NC	NT NC	NT NC	NT 45	NT 530	NT 2000	NT 100	NT 50	NT 80	NT 2500	NT 2000	NT 7	NAD	NAD	NAD
BH8	0.2 - 0.3 m	14/07/2019	4 60	<0.1 3600	<0.1	<0.1	<0.1	<0.1 45	<0.1	<0.1 2000	<0.1	<0.1	<0.1 80	<0.1 2500	<0.1 2000	<0.1	NAD	NAD	NAD
BH9	0.35 - 0.45 m	12/07/2019	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NAD	NAD	NAD
BH9	0.65 - 0.75 m	12/07/2019	660 NT	3600 NT	NC NT	NC NT	NC NT	45 NT	530 NT	2000 NT	100 NT	50 NT	80 NT	2500 NT	2000 NT	7 NT	NAD	NAD	NAD
			660	3600	NC	NC	NC	45	530	2000	100	50	80	2500	2000	7			
		1		l		l	I	I	I	I	I	ı	ı	J		I	J		
Lab	result		HIL/HS	iL exceedan	ce 📕 EIL/E	ESL exceeda	ance 📒 Hil	L/HSL and E	IL/ESL exce	edance 🔳	ML exceed	lance 📕 M	IL and HIL/H	ISL or EIL/E	SL exceedar	nce			
HIL/HSL value	EIL/ESL value		Indicat	es that asbe	stos has ber	en detected	by the lab be	elow the PQ	L. refer to th	e lab report	Blue - DO	exceedanc	e						

-

 SL value
 EL/ESL value

 Indicates that absetsos has been detected by the lab below the POL, refer to the lab report
 Blue = DC exceedance

 Bold = Lab detections
 NT = Not tested
 NL = Non limiting
 NC = No criteria
 NA = Not applicable
 NAD = No absetsos detected

Notes:	
HIL/HSL/DC	NEPC, Schedule B1 - HIL D, HSL D, DC HSL D
ML	NEPC, Schedule B1 - ML C/Ind
а	QA/QC replicate of sample listed directly below the primary sample
b	reported naphthalene laboratory result obtained from BTEXN suite

Table F3: Summary of Laboratory Results - VOC

																																												voc																																										
		PQL	1.0.2- Marah keceta	1.1.1.	1,1,2,2- Merseb broethe	1.1.2-	-174	a a a a a a a	Dichloroethere	- dichloropropen	234	au	123- trichl oropropan	421	- Vich kirobenze ne	1,2, 4 trimethy		1,2-dtrono-3- chi oropropan e	1.2- directosthere	41	 d drivoberzen e 	41	dich loroethere	- dichloropropan	•	1,3, 5 trivetbyt benzane	42	- d dh krobenzen e	4	- dicteoropropen	1,4- didnbroberzen	 d driordenzen e 	2.2- dictions reaso	- dicterropropen	2-drimmedanne		- 4-dh for of othern e		4-isopro.py/ tokume	Recercion		b in model or on	ethine	bio modi chloro methane		- tronotre	Aron orestrano		artio n intrachioride	Monoch or obe	12.696	- Chicrosthere		- Chiroform	- Charamethene		cis-1.2- dich kroethere	die1.3- dichloropropen	•	- Cyclobecare	d bromochiero	rethere	decoration	And a second second	orreture	hexaction take		Isopropytism as no (jurmene)	nteret	berane	n-propy	0.07100	sectury/ berane		(vinyth m arro)	terrbudy benzine		Netradh Arrolethe	time1.2		dichloropropen	4	 Increationingen 0 	TricHorofhano	1 recthana	- Vinyi Chioride
Sample D	Depth.	Sample Date	ta mgi	e mak	i maka	ngk	2 mg	aka .	ng/kg	maka	i ng	ykp .	maka		aka .	mgk	2 F	noko .	mgk	g r	roko -	mg/	ska –	ngk	íkg .	ngkg		ngka .	m	oka –	ngi	aka .	mg	oko .	mg	ska .	mgk	40 U	maka	ng	kp .	mgA	ka .	ngko		oko .	mg	kg	mgkp	m	aka .	mgka	9 A	iaka	ng	íkg .	mgkg.	ng	íkg	mgkg	-	aka .	ngko		iaka	ngk	g .	mgkg		oko .	mg/k	kg	mgk	2 0	naka	mgk	9	ngkg_	no	9	maka		aka .	mai	JAG .	mgk
																																							D	P (2	019))					_																						_															_		
BH1																																																																																						
aren	2.8-4 m	93/07/2019	a 1			~	~		<u> </u>	*	-		~	-		8			NC.					N		NC	×		-		*		-		~		×.		<u>.</u>			NC		~		••	~	· .	<u>, </u>	~			~		HC.	· .		NC.		NC .	NC		-	~		-		×	-		*		HC	~		NC.			NC		NC .			-		-
BHG		12/07/2019	NC					a	-1		*	a	*1 *1		4	** *1		-1	41 14		*1	** **	a	*1 *1	,	** *1		-1		•1	~	-1		•1	~		***			-	1	41 10			**	e1	*		-	*	-1	41 41	~	-1			4	10	'		-	-1		~	*1	-1 -1		-1 -1	*	-1			10 10	~	*1	** *1		-1		+	41 14	-	4	<u>~</u>		*1
			9 41 NC	10 10 10 10 10 10 10 10 10 10 10 10 10 1	NC		~	a .	41 41	41 41 41	*	a	*1 *1 *1		5 5	*1 *1 *1	~	4	ж м м		41 41	9 9 9	a	1 1 1 1 1	1		**	त त	-	el el	** ** **	4	-	41 41	*	a			* a *	*	1	10 10 10 10 10			*	4 4	*		-	*	4	*1 *1 *1	~	a a	*	1	4	**	1	нс •1 •1 •1	***	a	<u>یں</u> دا دا بر	~	d d	2 2 2 2 2 2		41 41 41	*	4	× 4 ×		10 10 10 10 10 10 10	~	ન ન	ж - 4 - 4 - 4 - 4		d d	**		е а а	**	a	** **	a a	

Notes: Origiumgins angles for VCC Instanti in table H&HGLDC MSPC, Schedule Fr. HL, O, HCL, D, CH, DL ML MSPC, Schedule Fr. HL, Chol a CMCC reprised a range lineal designation for prim b reporter specificanti based prima strategiments.

mary sample

Table F2: Summary of Results of Groundwater Analysis (All results in µg/L)

				Me	tals (diss	olved)						PA	Н					TRH					BTE	X			PCB								00	P											OPP				
Sample ID	Sample Date	Arsenic	Cadmium	Chromium (III + VI)	Copper	Lead	Mercury	Nickel	Zinc	Napthalene	Anthracene	Fluoranthene	Benzo(a) pyrene	Phenanthrene Total Positive PAH	TRH C6-C10 less BTEX	Ģ	TRH C6-C9	TRH C6-C10	TRH > C10-C16	TRH > C16-C34 TBH > C24 C40	Benzene	Toulene	H	o-xylene	m+p-xylene	Aroclor 1242	Aroclor 1254	Other PCB	Aldrin	Dieldrin	gamma-Chlordane	alpha-Chlordane	pp-DDE	pp-DDT	Endosulfan I	Endosulfan II	Endrin	Heptachlor	Heptachlor Epoxide	Methoxychlor	Mirex	Other OCP	Azinphos-methyl	Bromophos-etnyi Chlornurifoe	Cniorpyriuus Diazinon	Dichlorovos	Dimethoate	Fenitrothion	Malathion	Parathion	Metthyl Parathion Other OPP
			1					1		-					_		_						A	ssessme	ent Crite	eria														1	-	, ,									
	It Guideline Values species protection ¹	24 as As (III) 13 as As(V)		6.7-18.1 as Cr (III) ^a ; 1.0 as Cr(VI)	1.4 1	0.2-47.7 [°]	^a 0.60	22.9- 64.4 ^a	16.6-46.9 a	9 16	0.4*	1.4*	0.2	2.0 -							· 95	0 180*	80*	75 as 350 (m); 2 Xylen		0.6	0.03		0.001*	0.01*	0	0.08		0.01	O	.2	0.02	0.09		0.005	0.04*		0.02	- 0.0	.01 0.01	-	0.15 -	0.2	2 0.05	0.004	
	Level (HSL) - sand, ter 2 m-<4 m	-	-												6000) NL			-		- 500	0 NL	NL	NL				-			-							-				-				-				-	
Health Screening groundwater 2 n	Level (HSL) - clay, n-<4 m / 4 m-<8 m	-	-		-	-	-	-	-			-	-		3000	0 NL	-		-		- NL	NL	NL	NL		-	-	-	-		-				-	-	-	-	-	-	-	-	-			-		-	-	-	
																								DP (2020)																										
BH103	4/30/2020	<1	<0.1	<1	3	<1	<0.05	6	12	<0.2	<0.1	<0.1	<0.1 <	0.1 <pc< th=""><th>QL <10</th><th><50</th><th><10</th><th><10</th><th><50 <</th><th>100 <1</th><th>00 <1</th><th><1</th><th><1</th><th><1</th><th><2</th><th><0.01</th><th><0.01</th><th><pql< th=""><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.002</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><pql< th=""><th><0.02 <</th><th><0.2 <0.0</th><th>.009 <0.01</th><th><0.2</th><th><0.15 <0</th><th>0.2 <0.1</th><th>.2 <0.0</th><th>05 <0.004</th><th><0.2 <pql< th=""></pql<></th></pql<></th></pql<></th></pc<>	QL <10	<50	<10	<10	<50 <	100 <1	00 <1	<1	<1	<1	<2	<0.01	<0.01	<pql< th=""><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.002</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><pql< th=""><th><0.02 <</th><th><0.2 <0.0</th><th>.009 <0.01</th><th><0.2</th><th><0.15 <0</th><th>0.2 <0.1</th><th>.2 <0.0</th><th>05 <0.004</th><th><0.2 <pql< th=""></pql<></th></pql<></th></pql<>	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<pql< th=""><th><0.02 <</th><th><0.2 <0.0</th><th>.009 <0.01</th><th><0.2</th><th><0.15 <0</th><th>0.2 <0.1</th><th>.2 <0.0</th><th>05 <0.004</th><th><0.2 <pql< th=""></pql<></th></pql<>	<0.02 <	<0.2 <0.0	.009 <0.01	<0.2	<0.15 <0	0.2 <0.1	.2 <0.0	05 <0.004	<0.2 <pql< th=""></pql<>
BD1/20200424	4/30/2020	<1	<0.1	<1	26	<1	<0.05	8	21	<1	<1	<1	<1	<1 <pc< th=""><th>€L <10</th><th><50</th><th><10</th><th><10</th><th><50 <</th><th>100 <1</th><th>00 <1</th><th><1</th><th><1</th><th><1</th><th><2</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th></th><th></th><th>-</th><th></th><th></th><th>-</th><th>-</th><th></th></pc<>	€L <10	<50	<10	<10	<50 <	100 <1	00 <1	<1	<1	<1	<2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-			-	-	
BH104	4/30/2020	<1	<0.1	<1	2	<1	<0.05	7	15	<0.2	<0.1	<0.1	<0.1 <	0.1 <pc< th=""><th>€L <10</th><th><50</th><th><10</th><th><10</th><th><50 <</th><th>100 <1</th><th>00 <1</th><th><1</th><th><1</th><th><1</th><th><2</th><th><0.01</th><th><0.01</th><th><pql< th=""><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.002</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><pql< th=""><th><0.02 <</th><th><0.2 <0.0</th><th>.009 <0.01</th><th><0.2</th><th><0.15 <0</th><th>0.2 <0.2</th><th>.2 <0.0</th><th>05 <0.004</th><th><0.2 <pql< th=""></pql<></th></pql<></th></pql<></th></pc<>	€L <10	<50	<10	<10	<50 <	100 <1	00 <1	<1	<1	<1	<2	<0.01	<0.01	<pql< th=""><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.002</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><pql< th=""><th><0.02 <</th><th><0.2 <0.0</th><th>.009 <0.01</th><th><0.2</th><th><0.15 <0</th><th>0.2 <0.2</th><th>.2 <0.0</th><th>05 <0.004</th><th><0.2 <pql< th=""></pql<></th></pql<></th></pql<>	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<pql< th=""><th><0.02 <</th><th><0.2 <0.0</th><th>.009 <0.01</th><th><0.2</th><th><0.15 <0</th><th>0.2 <0.2</th><th>.2 <0.0</th><th>05 <0.004</th><th><0.2 <pql< th=""></pql<></th></pql<>	<0.02 <	<0.2 <0.0	.009 <0.01	<0.2	<0.15 <0	0.2 <0.2	.2 <0.0	05 <0.004	<0.2 <pql< th=""></pql<>
BH107A	5/26/2020	<1	<0.1	<1	<1	<1	<0.05	5	140	<0.2	<0.1	<0.1	<0.1 <	0.1 <0.	1 <10	110	<10	<10	110 6	650 <1	00 <1	<1	<1	<1	<2	<0.01	<0.01	<pql< th=""><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.002</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><pql< th=""><th><0.02 <</th><th><0.2 <0.0</th><th>.009 <0.01</th><th><0.2</th><th><0.15 <0</th><th>0.2 <0.1</th><th>.2 <0.0</th><th>05 <0.004</th><th><0.2 <pql< th=""></pql<></th></pql<></th></pql<>	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<pql< th=""><th><0.02 <</th><th><0.2 <0.0</th><th>.009 <0.01</th><th><0.2</th><th><0.15 <0</th><th>0.2 <0.1</th><th>.2 <0.0</th><th>05 <0.004</th><th><0.2 <pql< th=""></pql<></th></pql<>	<0.02 <	<0.2 <0.0	.009 <0.01	<0.2	<0.15 <0	0.2 <0.1	.2 <0.0	05 <0.004	<0.2 <pql< th=""></pql<>
BH107B	5/26/2020	<1	<0.1	<1	<1	<1	<0.05	6	64	<0.2	<0.1	<0.1	<0.1 <	0.1 <0.	1 <10	210	<10	<10	210 5	i00 <1	00 <1	<1	<1	<1	<2	<0.01	<0.01	<pql< th=""><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.002</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><pql< th=""><th><0.02 <</th><th><0.2 <0.0</th><th>.009 <0.01</th><th><0.2</th><th><0.15 <0</th><th>0.2 <0.1</th><th>.2 <0.0</th><th>05 <0.004</th><th><0.2 <pql< th=""></pql<></th></pql<></th></pql<>	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<pql< th=""><th><0.02 <</th><th><0.2 <0.0</th><th>.009 <0.01</th><th><0.2</th><th><0.15 <0</th><th>0.2 <0.1</th><th>.2 <0.0</th><th>05 <0.004</th><th><0.2 <pql< th=""></pql<></th></pql<>	<0.02 <	<0.2 <0.0	.009 <0.01	<0.2	<0.15 <0	0.2 <0.1	.2 <0.0	05 <0.004	<0.2 <pql< th=""></pql<>
BH109B	5/26/2020	6	<0.1	<1	1	<1	<0.05	12	11	<0.2	<0.1	<0.1	<0.1 <	0.1 <0.	1 <10	<50	<10	<10	<50 <	100 <1	00 <1	1	<1	<1	<2	<0.01	<0.01	<pql< th=""><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.002</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><pql< th=""><th><0.02 <</th><th><0.2 <0.0</th><th>.009 <0.01</th><th><0.2</th><th><0.15 <0</th><th>0.2 <0.2</th><th>.2 <0.0</th><th>05 <0.004</th><th><0.2 <pql< th=""></pql<></th></pql<></th></pql<>	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<pql< th=""><th><0.02 <</th><th><0.2 <0.0</th><th>.009 <0.01</th><th><0.2</th><th><0.15 <0</th><th>0.2 <0.2</th><th>.2 <0.0</th><th>05 <0.004</th><th><0.2 <pql< th=""></pql<></th></pql<>	<0.02 <	<0.2 <0.0	.009 <0.01	<0.2	<0.15 <0	0.2 <0.2	.2 <0.0	05 <0.004	<0.2 <pql< th=""></pql<>
BH112A	5/26/2020	<1	<0.1	3	<1	<1	<0.05	<1	4	<0.2	0.3	0.7	<0.1 ().3 3.5	i <10	110	<10	11	110 1	40 <1	00 <1	<1	1	1	<2	<0.01	<0.01	<pql< th=""><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.002</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><pql< th=""><th><0.02 <</th><th><0.2 <0.0</th><th>.009 <0.01</th><th><0.2</th><th><0.15 <0</th><th>0.2 <0.1</th><th>.2 <0.0</th><th>05 <0.004</th><th><0.2 <pql< th=""></pql<></th></pql<></th></pql<>	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<pql< th=""><th><0.02 <</th><th><0.2 <0.0</th><th>.009 <0.01</th><th><0.2</th><th><0.15 <0</th><th>0.2 <0.1</th><th>.2 <0.0</th><th>05 <0.004</th><th><0.2 <pql< th=""></pql<></th></pql<>	<0.02 <	<0.2 <0.0	.009 <0.01	<0.2	<0.15 <0	0.2 <0.1	.2 <0.0	05 <0.004	<0.2 <pql< th=""></pql<>
BH112B	5/26/2020	<1	<0.1	<1	1	<1	<0.05	7	21	<0.2	<0.1	<0.1	<0.1 (0.2 0.1	7 <10	<50	<10	<10	<50 <	100 <1	00 <1	<1	<1	<1	<2	<0.01	<0.01	<pql< th=""><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.002</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><pql< th=""><th><0.02 <</th><th><0.2 <0.0</th><th>.009 <0.01</th><th><0.2</th><th><0.15 <0</th><th>0.2 <0.1</th><th>.2 <0.0</th><th>05 <0.004</th><th><0.2 <pql< th=""></pql<></th></pql<></th></pql<>	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<pql< th=""><th><0.02 <</th><th><0.2 <0.0</th><th>.009 <0.01</th><th><0.2</th><th><0.15 <0</th><th>0.2 <0.1</th><th>.2 <0.0</th><th>05 <0.004</th><th><0.2 <pql< th=""></pql<></th></pql<>	<0.02 <	<0.2 <0.0	.009 <0.01	<0.2	<0.15 <0	0.2 <0.1	.2 <0.0	05 <0.004	<0.2 <pql< th=""></pql<>
BD1/160520	5/26/2020	<1	<0.1	<1	<1	<1	<0.05	7	20	<0.2	<0.1	<0.1	<0.1 (0.2 0.1	8 <10	<50	<10	<10	<50 <	100 <1	00 <1	<1	<1	<1	<2	<0.01	<0.01	<pql< th=""><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.002</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><pql< th=""><th><0.02 <</th><th><0.2 <0.0</th><th>.009 <0.01</th><th><0.2</th><th><0.15 <0</th><th>.2 <0.</th><th>2 <0.0</th><th>05 <0.004</th><th><0.2 <pql< th=""></pql<></th></pql<></th></pql<>	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<pql< th=""><th><0.02 <</th><th><0.2 <0.0</th><th>.009 <0.01</th><th><0.2</th><th><0.15 <0</th><th>.2 <0.</th><th>2 <0.0</th><th>05 <0.004</th><th><0.2 <pql< th=""></pql<></th></pql<>	<0.02 <	<0.2 <0.0	.009 <0.01	<0.2	<0.15 <0	.2 <0.	2 <0.0	05 <0.004	<0.2 <pql< th=""></pql<>
																								DP (2019)																										
BH5	7/30/2019	<1	<0.1	<1	6	<1	<0.05	9	30	<0.2	<0.1	<0.1	<0.1 <	0.1 <pc< th=""><th>QL <10</th><th><50</th><th><10</th><th><10</th><th><50 <</th><th>100 <1</th><th>00 <1</th><th><1</th><th><1</th><th><1</th><th><2</th><th><2</th><th><2</th><th><2</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.002</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><pql< th=""><th><0.02 <</th><th><0.2 <0.0</th><th>.009 <0.01</th><th><0.2</th><th><0.15 <0</th><th>0.2 <0.1</th><th>.2 <0.0</th><th>05 <0.004</th><th><0.2 <pql< th=""></pql<></th></pql<></th></pc<>	QL <10	<50	<10	<10	<50 <	100 <1	00 <1	<1	<1	<1	<2	<2	<2	<2	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<pql< th=""><th><0.02 <</th><th><0.2 <0.0</th><th>.009 <0.01</th><th><0.2</th><th><0.15 <0</th><th>0.2 <0.1</th><th>.2 <0.0</th><th>05 <0.004</th><th><0.2 <pql< th=""></pql<></th></pql<>	<0.02 <	<0.2 <0.0	.009 <0.01	<0.2	<0.15 <0	0.2 <0.1	.2 <0.0	05 <0.004	<0.2 <pql< th=""></pql<>
BD1/20190730	7/30/2019	<1	<0.1	<1	7	<1	<0.05	10	31	<1	<1	<1	<1	<1 <pc< th=""><th>QL <10</th><th><50</th><th><10</th><th><10</th><th><50 <</th><th>100 <1</th><th>00 <1</th><th><1</th><th><1</th><th><1</th><th><2</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th></th><th></th><th>-</th><th></th><th></th><th>-</th><th>-</th><th></th></pc<>	QL <10	<50	<10	<10	<50 <	100 <1	00 <1	<1	<1	<1	<2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-			-	-	
BH8	7/30/2019	<1	<0.1	<1	2	<1	<0.05	2	11	<0.2	<0.1	<0.1	<0.1 <	0.1 <pc< th=""><th>NL <10</th><th><50</th><th><10</th><th><10</th><th><50 <</th><th>100 <1</th><th>00 <1</th><th><1</th><th><1</th><th><1</th><th><2</th><th><2</th><th>\$</th><th><2</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.002</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><0.001</th><th><pql< th=""><th><0.02 <</th><th><0.2 <0.0</th><th>.009 <0.01</th><th><0.2</th><th><0.15 <0</th><th>0.2 <0.1</th><th>.2 <0.0</th><th>05 <0.004</th><th><0.2 <pql< th=""></pql<></th></pql<></th></pc<>	NL <10	<50	<10	<10	<50 <	100 <1	00 <1	<1	<1	<1	<2	<2	\$	<2	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<pql< th=""><th><0.02 <</th><th><0.2 <0.0</th><th>.009 <0.01</th><th><0.2</th><th><0.15 <0</th><th>0.2 <0.1</th><th>.2 <0.0</th><th>05 <0.004</th><th><0.2 <pql< th=""></pql<></th></pql<>	<0.02 <	<0.2 <0.0	.009 <0.01	<0.2	<0.15 <0	0.2 <0.1	.2 <0.0	05 <0.004	<0.2 <pql< th=""></pql<>

Notes: PQL Practical Quantitation Limit NL Not Limiting BOLD Exceeds DGV

Supplementary Environmental Site Investigation, Proposed Commercial Development 8-10 Lee Street, Haymarket

Table F2: Summary of Results of Groundwater Analysis (All results in $\mu\text{g/L})$

															٧	00														Other
Sample ID	Sample Date	Phenois	lsopropylbenzene	1,1-Dichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	trans-1,3-Dichloropropene	cis-1,3-Dichloropropene	Vinyl chloride	Tetrachloroethene	Trichloroethene	1,2,3-Trichlorobenzene	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	Chlorobenzene	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,2-Dichloroethane	1,1,2,2-Tetrachloroethane	Carbon tetrachloride	Chloroform	Bromodichloromethane	Dibromochloromethane	Bromoform	1,2-Dichloropropane	1,3-Dichloropropane	Other VOC	Cyanide
												Assess	ment C	riteria																
	ult Guideline Values species protection ¹	320	30	-	-	-		-	-	-	-	10	170	160	260	60	-	270*	6500	1900*	400*	240*	770*		-	-	900*	1100*	-	7
	∣ Level (HSL) - sand, iter 2 m-≺4 m	-	-	-		-		-	-	-	-			-	-	-	-	-	-	-		-			-		-	-	-	-
	g Level (HSL) - clay, m-<4 m / 4 m-<8 m	-	-	-		-		-	-	-	-			-	-	-	-	-	-	-		-			-		-	-	-	-
												DF	P (2020)																
BH103	4/30/2020	<50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
BD1/20200424	4/30/2020	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH104	4/30/2020	<50	<1	<1	<1	<1	<1	<1	<10	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	2	<1	<1	<1	<1	<1	<pql< td=""><td><0.004</td></pql<>	<0.004
BH107A	5/26/2020	-	<1	<1	<1	<1	<1	<1	<10	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<pql< td=""><td><0.004</td></pql<>	<0.004
BH107B	5/26/2020	-	-	•				-	-	-	-	-	-	-	-		-	-	-		-	-	-	-	-	-	-	-	-	
BH109B	5/26/2020	-	<1	<1	<1	<1	<1	<1	<10	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	3	<1	<1	<1	<1	<1	<pql< td=""><td><0.004</td></pql<>	<0.004
BH112A	5/26/2020	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
BH112B	5/26/2020	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	
BD1/260520	5/26/2020	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
												DF	P (2019)																
BH5	7/30/2019	<50	<1	<1	<1	<1	<1	<1	<10	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<pql< td=""><td>-</td></pql<>	-
BH8	7/30/2019	<50	<1	<1	<1	<1	<1	<1	<10	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<pql< td=""><td>-</td></pql<>	-
BD1/20190730	7/30/2019	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	

Notes:

PQL NL Practical Quantitation Limit

Not Limiting

BOLD Exceeds DGV

not defined/not analysed/not applicable

86767.06.R.001.DftB August 2020

Table F3: Summary of Laboratory Results – Metals, TRH, BTEX, PAH, Phenol, OCP, OPP, PCB, Asbestos, VOC

				Me	tals				TF	н			BTEX																				PAH		—
		ş				2	. 0		8	36 able bons			8	(Jess	8	or o	910	8	8	rlen	rlen	8	8	the state	that	š.,	ŝ.	Dec	Der		8		and a	8	8
	serie	Arso	dmice	Total	Pad	CLP Let	r gan	lokel	8	0-C3(werat	100	Mank	perz	2) 500	8	X(a) py (BaP)	CLP (a) py	5	aphth	- the	a big	hrace.	LCLP Mage		a see	ht-officer of the second secon	CLP ofb.j+i	olg.h.J	(gh)	u) sen	Chey	zo(a)	CLP acent	andre	TCLP Campbe
	*	TCLE	S	6	- T	10	Mer (inor)	1	твн	rec C	8	Ť	Ethyl	Xytee	Xyle	Senac	- Dane	Aon	- Web	Acen	Acen	And	- Puł	Benz	1	ora	Gra	Benz	Benz	Cheys	G	P P	L nd	- Bu	Blue
PQL	4	0.05	0.4	1	1	0.03	0.1	1	25	50	0.2	0.5	1	3	1		0.001		0.001	0.1	0.001	0.1	0.001			0.2	0.002		0.001	0.1	0.001	0.1	0.001		0.001
Sample ID Depth Sample Date	mg/kg	ngL	mg/kg	mg/kg	mg/kg	mg/L	mgikg	mgikg	mg/kg	mg/kg	mg/kg	mg/kg	mg%g	mgikg	mgikg	mg/kg	mg1L	mg/kg	mg/L	mg/kg	mgiL.	mgikg	rgL	mg/kg	mg/L	mg/kg	mg/L	mg/kg	ngL	mg/kg	mg/L	mg/kg	mgL	mgikg	mg1.
CT1		N/A		100	100	N/A	4	40	650	10000	10	288	600	1000	NA	0.8	NA	N/A	N/A	NA	N/A	NA	NA	NA		N/A	N/A	N/A	NA	N/A	NA	NA	N/A		NA
SCC1 TCLP1	500 N/A	N/A 5	100 N/A	1900 N/A	1500 N/A	N/A 5	50 N/A	1050 N/A	650 650	10000	18 18	518 518	1080	1800 1800	N/A N/A	10 N/A	N/A 0.04	N/A N/A	N/A N/A	N/A N/A	N/A N/A	NA	N/A N/A	NA	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A		N/A N/A
CT2	400	NA	80	400	400	NA	16	160	2600	40000	40	1152	2400	4000	NA	3.2	NA	N/A	N/A	NA	N/A	NA	NA	NA	NA	N/A	NA	N/A	NA	NA	NA	NA	NA	NA	NA
SCC2 TCLP2	2000 N/A	N/A 20	400 N/A	7600 N/A	6000 N/A	N/A 20	200 N/A	4200 N/A	2600 2600		72 72	2073 2073	4320 4320	7200 7200	N/A N/A	23 N/A	N/A 0.16	N/A N/A	N/A N/A	N/A N/A	N/A N/A	NA	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A		N/A N/A
NEPC (1999) ⁴	N/A 1-50.	20 N/A	N/A 1	N/A 5-1000	N/A 2-200	20 N/A	0.03	N/A 1-517	2600 N/A	40000	N/A	2073 N/A	4320 N/A	7200 N/A	NA	NA	0.16 N/A	N/A N/A	N/A N/A	NA	N/A N/A	NA	NA	NA	N/A N/A	N/A N/A	N/A N/A	N/A N/A	NA	N/A N/A	NIA	N/A N/A	N/A N/A		NA
ENM Maximum Average Concentration h	20	NA	0.5	75	100	NA	0.5	30	NA	250	NA	NA	NA	N/A	NA	0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	N/A	NA	NA	NA	NA	NA	NA	NA		NA
ENM Absolute Maximum Concentration h	40	NA	1	150	200	NA	1	60	NA	500	0.5	65	25	15	15		NA	NA	NA	NA	N/A	NA	NA	NA	NA	N/A	NA	N/A	NA	NA		NA	NA		NA
DP (2020)	-10	160		1.00	200	190	•	00	100	300	0.0				13	·	165	110	100	100	180	in the	190	1405	100	100	100	180	180	180	1605	100	180	100	100
BH101 0.1 - 0.2 m 08/04/2020	4	NT	<0.4	10	150	0.1	0.3	6	-25	230	<0.2	<0.5	<1	a	<1	0.73	NT	<0.1	NT	0.1	NT	0.3	NT	0.6	NT	1	NT	0.7	NT	0.8	NT	0.2	NT	1.3	NT
BH101/0.1-0.2 - [TRIPLICATE] 0.1 - 0.2 m 08/04/2020	<4	NT	<0.4		150	NT	0.3		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT		NT
								-																											
BH101 0.9 - 1.0 m 08/04/2020	5	NT	0.4	9	250	0.34	0.3	9	-25	970	<0.2	<0.5	<1	a	<1	2.5	<0.001	<0.1	<0.001	0.4	<0.001	0.1	<0.001	1.9	<0.001	3.6	<0.002	1.7	<0.001	1.2	<0.001	0.3	<0.001		<0.001
BH102 1.5 - 1.6 m 07/04/2020	<4	NT	<0.4	4	68	NT	0.1	4	-25	<50	-0.2	<0.5	<1	a	<1	0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT	0.1	NT	0.2	NT	0.1	NT	0.1	NT	<0.1	NT		NT
BH102 3.1 - 3.2 m 07/04/2020	5	NT	1	10	160	0.04	0.4	5	-25	<50	<0.2	<0.5	<1	а	<1	0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT	0.2	NT	0.3	NT	<0.1	NT	0.2	NT	<0.1	NT		NT
BH102 4.0 - 4.1 m 07/04/2020	5	NT	<0.4	16	170	<0.03	1.3	23	-25	<50	<0.2	<0.5	<1	a	<1	0.05	NT	<0.1	NT	<0.1	NT	<0.1	NT	0.1	NT	<0.2	NT	<0.1	NT	0.1	NT	<0.1	NT		NT
BH102 4.9 - 5.0 m 07/04/2020	-04	NT	<0.4	8	20	NT	0.4	4	ß	<50	<0.2	<0.5	<1	D	<1	0.08	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.2	NT	<0.1	NT	<0.1	NT	<0.1	NT	0.1	NT
BH103 1.0 - 1.1 m 08/04/2020	-04	NT	<0.4	2	57	NT	<0.1	1	-25	<50	<0.2	<0.5	<1	a	<1	0.08	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.2	NT	<0.1	NT	<0.1	NT	<0.1	NT	0.1	NT
BH103 2.0 - 2.1 m 08/04/2020	9	NT	<0.4	8	28	NT	<0.1	б	-25	<50	<0.2	<0.5	<1	a	<1	<0.05	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.2	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT
BH103 2.9 - 3 m 16/04/2020	12	NT	<0.4	8	19	0.2	<0.1	2	-25	<50	<0.2	<0.5	<1	a	<1	<0.05	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.2	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT
BH103 5.1 - 5.2 m 16/04/2020	-04	NT	<0.4	5	43	NT	0.4	2	-25	<50	-0.2	<0.5	<1	a	<1	0.2	NT	<0.1	NT	<0.1	NT	<0.1	NT	0.2	NT	0.3	NT	0.1	NT	0.2	NT	<0.1	NT	0.4	NT
BH103 6.3 - 6.45 m 16/04/2020	4	NT	<0.4		<1	NT	<0.1	<1	-25	<50	-0.2	<0.5	<1	a	<1	<0.05	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.2	NT	<0.1	NT	<0.1	NT	<0.1	NT		NT
BH104 1.0 - 1.1 m 08/04/2020		NT	c0.4	7	45	NT	<0.1	11	3	<50	-0.2	<0.5	<1	a	4	<0.05	NT	<0.1	NT	<0.1	NT	<0.1	NT	0.1	NT	<0.2	NT	<0.1	NT	<0.1	NT	<0.1	NT		NT
BH104 1.4 - 1.5 m 14/04/2020		NT	<0.4 <0.4		~	NI	<0.1		3	<50	-0.2	<0.5	<1	a a	<1 <1	0.53	NT	40.1	NT	0.1	NT	0.2	NT	0.1	NT	0.9	NT	0.3	NI	0.6	NT	40.1	NT		NT
	-			6	14			7																											
BD2/140420 1.4 - 1.5 m 14/04/2020	10	NT	<0.4	9	63	NT	0.1	4	-25	860	<0.2	<0.5	<1	-3	<1	14	NT	0.5	NT	5.1	NT	6.7	NT	14	NT	19	NT	8.2	NT	13	NT	1.6	NT	31	NT
BH104 2.8 - 2.9 m 14/04/2020	11	NT	<0.4	τ	17	NT	<0.1	3	-25	<50	<0.2	<0.5	<1	а	<1	0.09	NT	<0.1	NT	<0.1	NT	<0.1	NT	0.1	NT	<0.2	NT	<0.1	NT	<0.1	NT	<0.1	NT	0.2	NT
BH105 0.05 - 0.1 m 08/04/2020	8	NT	0.5	13	280	0.1	1	14	-25	360	<0.2	<0.5	<1	а	<1	2	<0.001	<0.1	<0.001	0.3	<0.001	0.5	<0.001	1.6	<0.001	3.2	<0.002	<0.1	<0.001	1.3	<0.001	0.2	<0.001	2.6	<0.001
BD1/070420 0.05 - 0.1 m 08/04/2020	9	NT	0.7	14	300	NT	0.8	11	-25	120	<0.2	<0.5	<1	-3	<1	1.8	NT	<0.1	NT	0.3	NT	0.5	NT	1.4	NT	2.7	NT	1.3	NT	1.1	NT	0.2	NT	2.6	NT
BD1/070420b 0.05 - 0.1 m 08/04/2020	10	NT	0.5	20	450	NT	1.3	17	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH106 0.2 - 0.3 m 07/04/2020	25	NT	<0.4	14	100	0.04	0.2	4	-25	1780	<0.2	<0.5	<1	a	<1	25	<0.001	0.9	<0.001	8.5	0.002	25	<0.001	27	<0.001	39	<0.002	17	<0.001	24	<0.001	3.6	<0.001		<0.001
BH106 0.3 - 0.4 m 07/04/2020		NT	<0.4	43	610	0.74	0.7	10	3	4090	-0.2	-0.5	<1	a	-	120	<0.001	2.1	0.005	13	0.003	50	0.002	160	<0.001	110	<0.002	41	<0.001	120	<0.001	9.1	<0.001		0.003
	- ·																																		
[TRIPLICATE] 0.3 - 0.4 m 07/04/2020	7	NT	<0.4	24	350	NT	0.7	8	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT		NT
BH106 0.9 - 1.0 m 07/04/2020	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT	0.1	NT	<0.2	NT	<0.1	NT	0.1	NT	<0.1	NT	0.2	NT
BH107B 0.4 - 0.5 m 16/05/2020	<4	NT	<0.4	8	54	NT	0.2	4	-25	<50	<0.2	<0.5	<1	-3	<1	1.3	NT	<0.1	NT	0.3	NT	0.4	NT	1.4	NT	2	NT	0.8	NT	1.3	NT	0.2	NT	2.2	NT
BD1/20200516 0.4 - 0.5 m 16/05/2020	<4	NT	<0.4	12	52	NT	0.2	7	-25	<50	<0.2	<0.5	<1	-3	<1	1.8	<0.001	<0.1	<0.001	0.4	<0.001	0.5	<0.001	1.7	<0.001	2.7	<0.002	1.2	<0.001	1.7	<0.001	0.3	<0.001	2.6	c0.001
BH107B 1.4 - 1.5 m 16/05/2020	<4	NT	<0.4	7	11	NT	<0.1	5	-25	<50	<0.2	<0.5	<1	-3	<1	0.3	NT	<0.1	NT	<0.1	NT	<0.1	NT	0.3	NT	0.4	NT	0.2	NT	0.3	NT	<0.1	NT	0.5	NT
BH108 0.23 - 0.25 m 17/05/2020	5	NT	<0.4	14	15	NT	<0.1	<1	-25	<50	<0.2	<0.5	<1	a	<1	2.7	<0.001	<0.1	<0.001	0.2	<0.001	0.2	<0.001	2.7	<0.001	3.6	<0.002	1.5	<0.001	2.6	<0.001	0.3	<0.001	3.1	<0.001
BH109B 0.4 - 0.5 m 17/05/2020	4	NT	<0.4	2	19	NT	<0.1	d		<50	<0.2	<0.5	<1	a	<1	0.4	NT	<0.1	NT	0.1	NT	0.2	NT	0.4	NT	0.5	NT	0.2	NT	0.4	NT	<0.1	NT		NT
BH108 0.5 - 0.6 m 5/21/2020	43	NT	c0.4	10	30	NT	<0.1	3	3	NT	-0.2	<0.5	<1	a	<1	1.1	<0.001	<0.1	<0.001	<0.1	<0.001	<0.1	<0.001	1.5	<0.001	2	<0.002	0.5	<0.001	1.1	<0.001	0.5	<0.001		<0.001
BH110 0.5 - 0.6 m 5/21/2020 BH111 0.4 - 0.5 m 5/19/2020	43	NT			30 10	NT	<0.1	3		NT			ব			0.2	<0.001	<0.1 <0.1	<0.001 NT		<0.001	-0.1	<0.001		<0.001		<0.002	0.6	<0.001		<0.001		<0.001 NT		<0.001 NT
			<0.4	5			<0.1		-25		-0.2	<0.5		a	<1					<0.1				0.2		0.3				0.2		<0.1			
BH111 1.3 - 1.4 m 5/19/2020	-04	NT	<0.4	16	330	0.09	1	16	-25	NT	<0.2	<0.5	<1	a	<1	5.7	<0.001	<0.1	<0.001	<0.1	<0.001	0.9	<0.001	5	<0.001	12	<0.002	2.7	<0.001	6.9	<0.001	0.7	<0.001		<0.001
BH112B 0.6 - 0.7 m 18/05/2020	-04	NT	<0.4	11	21	NT	0.3	3	-25	860	<0.2	<0.5	<1	-3	<1	5.1	<0.001	1.6	<0.001	0.9	<0.001	3.9	<0.001	6	<0.001	7.2	<0.002	2.9	<0.001	5.9	<0.001	0.7	<0.001		<0.001
BH112B 1.2 - 1.4 m 13/05/2020	-04	NT	<0.4	3	5	NT	<0.1	з	-25	<50	<0.2	<0.5	<1	a	<1	2.5	<0.001	0.5	<0.001	0.4	<0.001	1.5	<0.001	2.8	<0.001	3.5	<0.002	1.3	<0.001	2.8	<0.001	0.3	<0.001		<0.001
BH113 0.15 - 0.25 m 07/04/2020	25	NT	<0.4	ε	44	NT	<0.1	4	-25	880	<0.2	<0.5	<1	-3	<1	12	<0.001	0.4	<0.001	4.9	0.008	4.5	0.003	12	<0.001	17	<0.002	7.5	<0.001	11	<0.001	1.4	<0.001	26	0.005
BD2/140420 0.15 - 0.25 m 07/04/2020	8.3	<0.4	11	32	23	<0.1	9.9	55	<20	<50	<0.1	<0.1	<0.1	<0.3	<0.1	-0.5	NT	-0.5	NT	<0.5	NT	<0.5	NT	0.6	NT	<0.5	NT	<0.5	NT	<0.5	NT	-0.5	NT	0.9	0.001
BH113 0.4 - 0.5 m 07/04/2020	в	NT	<0.4	18	23	NT	<0.1	<1	-25	<50	<0.2	<0.5	<1	а	<1	1.2	<0.001	<0.1	<0.001	<0.1	<0.001	0.6	<0.001	1.2	<0.001	2	<0.002	0.7	<0.001	1	<0.001	0.1	<0.001	2.7	NT
BH113 0.9 - 1.0 m 07/04/2020	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	0.3	NT	<0.1	NT	<0.1	NT	0.4	NT	0.3	NT	0.4	NT	0.2	NT	0.3	NT	<0.1	NT	0.7	NT
BH114 0.15 - 0.2 m 07/04/2020	14	NT	<0.4	11	93	NT	<0.1	14	-25	2199	-0.2	<0.5	<1	a	<1	67	<0.001	2.4	0.003	35	0.025	44	0.005	40	<0.001	52	<0.002	20	<0.001	34	<0.001	3.1	<0.001		0.005
BH114 0.2 - 0.3 m 07/04/2020	52	NT	<0.4	21	260	0.85	0.1	5	-25	1540	-0.2	<0.5	<1	a	<1	31	<0.001	1.3	0.002	16	0.039	18	0.01	45	<0.001	32	<0.002	14	<0.001	34	<0.001	3	<0.001		0.009
BH115 0.23 - 0.3 m 07/04/2020	6	<0.05	<0.4	12	24	NT	<0.1			1500	-0.2	<0.5		a		27	<0.001	0.8	0.001	16	0.009	19	0.004	37	<0.001	30	<0.002	10	<0.001	32	<0.001	2.8	<0.001		0.005
PD1120120								1																				10 NT							
0.3 - 0.23 - 0.3 m 07/04/2020 ITRIPLICATEL	100	NT	<0.4	14	38	NT	<0.1	3	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT		NT	NT	NT	NT	NT		NT
BH115 0.5 - 0.6 m 07/04/2020	11	NT	<0.4	21	20	NT	<0.1	2	-25	<50	<0.2	<0.5	<1	a	<1	1.8	<0.001	<0.1	<0.001	0.6	0.002	0.6	<0.001	1.8	<0.001	2.6	<0.002	1.1	<0.001	1.5	<0.001	0.2	<0.001		0.002
BH115 0.9 - 1.0 m 07/04/2020	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	0.05	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.2	NT	<0.1	NT	<0.1	NT	<0.1	NT		NT
BH116 0.5 - 0.7 m 17/05/2020	-04	NT	<0.4	6	12	NT	<0.1	<1	ß	<50	<0.2	<0.5	<1	а	<1	40.05	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.2	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT
BD1/20200517 0.5 - 0.7 m 17/05/2020	3.6	NT	<0.4	8.2	16	NT	<0.1	đ	-20	<50	-0.1	<0.1	<0.1	<0.3	<0.1	-0.5	NT	-0.5	NT	<0.5	NT	<0.5	NT	<0.5	NT	<0.5	NT	<0.5	NT	<0.5		-0.5	NT	<0.5	NT
BH117 0.2 - 0.25 m 17/05/2020	8	NT	<0.4	20	16	NT	<0.1	2	-25	2021	-0.2	<0.5	<1	a	<1	49	<0.001	1.6	0.009	24	0.016	32	0.002	67	<0.001	70	<0.002	59	<0.001	63	<0.001	42	<0.001	130	0.003
· · · ·	-	•		•														•																	

DP (2019)																																					
BH1	3 - 3.5 m	10/07/2019	-04	NT	<0.4	2	90	NT	0.9	3	-25	<50	<0.2	<0.5	<1	a	<1	<0.05	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.2	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT
BH1	3.8 - 4 m	10/07/2019	-04	NT	<0.4	<1	1	NT	<0.1	<1	35	<50	<0.2	<0.5	<1	ů	<1	<0.05	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.2	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT
BH2	1.5 - 1.6 m	10/07/2019	-04	NT	<0.4	5	24	NT	<0.1	1	5	<50	<0.2	<0.5	<1	۵	<1	0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT	0.2	NT	0.2	NT	<0.1	NT	0.2	NT	<0.1	NT	0.3	NT
BH2	4.5 - 4.6 m	10/07/2019	12	NT	<0.4	8	24	NT	<0.1	2	-25	<50	<0.2	<0.5	<1	a	<1	0.2	NT	<0.1	NT	<0.1	NT	<0.1	NT	0.1	NT	0.3	NT	0.2	NT	0.2	NT	<0.1	NT	0.2	NT
BH3	0.2 - 0.3 m	12/07/2019	6	NT	<0.4	10	45	NT	0.1	2	-25	1320	<0.2	<0.5	<1	a	<1	29	<0.001	1.6	NT	11	NT	11	NT	29	NT	35	NT	17	NT	28	NT	3.8	NT	85	NT
BH3	0.7 - 0.8 m	12/07/2019	9	NT	<0.4	9	45	NT	<0.1	2	-25	140	<0.2	<0.5	<1	a	<1	4.5	<0.001	<0.1	NT	1.2	NT	1.7	NT	42	NT	6	NT	2.6	NT	3.8	NT	0.5	NT	9	NT
BH3/0.7-0.8 - [TRIPLICATE]	0.7 - 0.8 m	12/07/2019	10	NT	<0.4	10	16	NT	<0.1	2	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH4	0.3 - 0.4 m	12/07/2019	8	NT	<0.4	4	33	NT	<0.1	1	-25	<50	<0.2	<0.5	<1	a	<1	0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT	0.1	NT	<0.2	NT	<0.1	NT	<0.1	NT	<0.1	NT	0.2	NT
BH4	1.0 - 1.1 m	12/07/2019	10	NT	<0.4	9	40	NT	0.1	1	-25	<50	<0.2	<0.5	<1	a	<1	0.05	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.2	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT
BH5	0.35 - 0.4 m	13/07/2019	-04	NT	<0.4	5	8	NT	0.1	4	-25	1370	<0.2	<0.5	<1	d	<1	10	<0.001	0.1	NT	1.4	NT	1.8	NT	9.2	NT	13	NT	6	NT	8.1	NT	1	NT	15	NT
BH6	0.2 - 0.3 m	14/07/2019	7	NT	<0.4	17	30	NT	0.2	2	-25	1840	<0.2	<0.5	<1	a	<1	23	<0.001	42	NT	36	NT	23	NT	28	NT	32	NT	14	NT	23	NT	2.8	NT	94	NT
BH7	1.0 - 1.1 m	12/07/2019	-04	NT	<0.4	2	4	NT	<0.1	1	-25	<50	<0.2	<0.5	<1	a	<1	<0.05	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.2	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT
BH7	1.4 - 1.5 m	13/07/2019	-04	NT	<0.4	3	2	NT	<0.1	1	-25	<50	<0.2	<0.5	<1	a	<1	<0.05	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.2	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT
BD/120719	1.4 - 1.5 m	12/07/2019	-04	NT	<0.4	8	21	NT	<0.1	5	-25	<50	<0.2	<0.5	<1	4	<1	1.6	<0.001	<0.1	NT	0.3	NT	0.3	NT	1.4	NT	2.4	NT	1	NT	1.3	NT	0.2	NT	2.7	NT
BT1/2090713	1.4 - 1.5 m	12/07/2019	4	NT	<0.4	5.5	5.1	NT	<0.1	<1	<20	<50	<0.1	<0.1	<0.1	<0.3	<0.1	<0.5	<0.5	-0.5	NT	<0.5	NT	-0.5	NT	<0.5	NT	<0.5	NT								
BH7	2.0 - 2.1 m	13/07/2019	-04	NT	<0.4	8	7	NT	<0.1	3	-25	<50	<0.2	<0.5	<1	a	<1	<0.05	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.2	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT
BH8	0.2 - 0.3 m	14/07/2019	4	NT	<0.4	9	33	NT	0.1	12	-25	<50	<0.2	<0.5	<1	d	<1	1.2	<0.001	<0.1	NT	0.1	NT	0.2	NT	1	NT	2	NT	0.8	NT	0.8	NT	0.2	NT	1.7	NT
BH9	0.35 - 0.45 m	12/07/2019	-04	NT	<0.4	8	8	NT	<0.1	2	-25	<50	<0.2	<0.5	<1	4	<1	0.2	NT	<0.1	NT	<0.1	NT	<0.1	NT	0.2	NT	0.3	NT	0.1	NT	0.2	NT	<0.1	NT	0.5	NT
BH9	0.65 - 0.75 m	12/07/2019	18	NT	<0.4	23	15	NT	0.2	1	ŝ	<50	<0.2	<0.5	<1	۵	<1	<0.05	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.2	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT

CT1 exceedance TCLP1 and/or SCC1 exceedance TCLP2 and/or SCC2 exceedance Asbestos detection
NT = Not tested NC = No criteria AD = Asbestos detected NAD = No asbestos detected

Notes:

a	QA/QC replicate of sample listed direct	y below the primary samp
---	---	--------------------------

- b c d
- e f
- 9

- h PQL CT1 SCC1 TCLP1 CT2 SCC2 TCLP2
- OVOC reploce of surges load decity below the periors assign Total concents balance on the character(N) Total concents balance on the character(N) Total concents balance on the character(N) Crites to character of character on the periors on the periors on the periors on the periors A character as in the same with as a register on sub-constant to character of the character on the periors on the periors on the periors of the character on the periors A character as in the same with as a register on sub-A character as in the same with as a register on sub-A character as in the same with as a register on sub-A character as in the same with as a register on sub-A character as in the same with as a register on sub-Perior of the character on the same with the same

														Phenol	00	P	OPP	PCB		Asbestos									VOC							
			enen ou	Fluoren e	ind en o(1,2,3- c.d)p yr ene	TCLP no(1,2,3-)pyrene	Malere	TCLP	andh rene	TCLP anthrene	yrene	al PAHs	HV an	them of	Total dosultan	Analysed DCP ⁴	Analysed OPP	tal PCB	stos ID in >0.1g%g	Analysis	Asbestos	arbo n ichloride	chloroben zene	or of or m	1,2- xobenzen e	1,4- xobenzen e	1,2- proethane	1,1- oroethene	tyrene lbenzene)	3,1,2- hioroetha ne	3,2,2- Moroetha ne	hioroethe n e	(,1,1- croethane	1,1,2- occethane	1,1,2- broethylen e	I Ch loride
			e	TCLP	-	. B 2	Nap	Nap	Phys	Page	•	1ª	TC	•	â	Tota	Total	۹ ۲	Ashe soll	Trace	Total	o tetra	Mono	N	dichle	dichle	dich	Dichi	s (viny	1 06680	1 betac	M440	rich.	richi	trich	Viny
Sample ID	Dogth	PQL Sample Date	0.1 maika			0.001 mod		0.001	0.1 molika	0.001 mg/L	0.1 maika	0.05 malka	mol	5 mg/kg	0.1 moliun	0.1	0.1 mg/kg	0.1 maka	0.1		aka	1 mg/kg	1 00560	1 malka	1 maika	1 mg/kg	1	1 mg/kg	1 ma/ka	1 malkg	1 malkg	1 maka	1 malka	1 mg/kg	1	1 ma/ka
Garipe in		Cample Date																																		
	CT1 SCC1		N/A N/A		N/A N/A		N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	200	N/A N/A	288 518	60 108	<50 <50	4	<50	N/A N/A	N/A N/A	N/A N/A	10	2000 3600	120 126	86 4.3	150 7.5	10	14	60 108	200 360	26 46.8	14 25.2	600 1080	24 43.2	10	4
	TCLP1 CT2		N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A 800	N/A N/A	518 1152	108 240	<50 <50	7.5	<50	N/A N/A	N/A N/A	N/A N/A	18 40	3600 8000	126 480	4.3 344	7.5	0.5 40	0.7	108 240	360 800	46.8 104	25.2 56	1080	43.2 96	18	7.2
	SCC2		NA	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	NA	NA NA	N/A N/A	800	NA	2073	432	<50	16 30	<50	NA	NA	NA	40	14400	480 864	344 620	1080	40	100	240 432	1440	104 187.2	100.8	4320	96 172.8	40 72	16 28.8
	TCLP2		NA	N/A	N/A	NA	N/A	NA	NA	NA	N/A	800	NA	2073	432	<50	30	<50	NA	NA	NA	72	14400	864	620	1080	72	100	432	1440	187.2	100.8	4320	172.8		28.8
	NEPC (1999) ⁴ rum Average Cor	accentration ^b	N/A	N/A	NA		NA	NA	NA	NA	N/A	NA	N/A	NA	NA	NA	NA	N/A	NA	NA	NA	NA	NA	NA	N/A	NA	NA	NA	NA	N/A	NA	N/A	NA	NA		NA
	te Maximum Cor		NA	NA	NA	NA	NA	NA	NA	NA	N/A	20	NA	NA	NA	NA	NA	N/A	NA	NA	NA	NA	NA	NA	N/A	NA	NA	NA	NA	N/A	NA	N/A	NA	NA	NA	NA
DP (2020)			N/A	NA	NA	NA	N/A	N/A	NA	NA	N/A	40	N/A	NA	NA	NA	NA	N/A	NA	NA	NA	NA	NA	NA	N/A	NA	NA	NA	NA	N/A	N/A	N/A	NA	N/A	NA	NA
BH101	0.1 - 0.2 m	08/04/2020	<0.1	NT	0.5	NT	<0.1	NT	0.5	NT	1.5	8.6	NT	в	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH101/0 1-0 2 -	0.1 - 0.2 m	08/04/2020	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
[TRIPLICATE] BH101	0.1 - 0.2 m	08/04/2020	0.1	<0.001	1.3	<0.001	<0.1	<0.001	14	<0.001	3	20	NL (+IVE			<0.1	<0.1	<0.1	NAD	NAD	NAD	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH101 BH102	0.9 - 1.0 m	08/04/2020	48.1	<0.001	1.3 0.1	<0.001	<0.1	<0.001 NT	1.4	<0.001	3	20	NL (+)VE	0		<0.1	<0.1 <0.1	<0.1	NAD	NAD	NAD	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	
															<0.1																					NT
BH102	3.1 - 3.2 m	07/04/2020	<0.1	NT	0.2	NT	<0.1	NT	0.2	NT	0.4	1.8	NT	NT	NT	NT	NT	NT	NAD	NAD	NAD	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH102	4.0 - 4.1 m	07/04/2020	<0.1	NT	0.1	NT	<0.1	NT	0.2	NT	0.2	1	NT	NT	NT	NT	NT	NT	NAD	NAD	NAD	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH102	4.9 - 5.0 m	07/04/2020	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT	0.1	0.3	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH103	1.0 - 1.1 m	08/04/2020	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT	0.1	0.3	NT	8	d0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH103	2.0 - 2.1 m	08/04/2020	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	<0.05	NT	NT	NT	NT	NT	NT	NAD	NAD	NAD	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH103	2.9 - 3 m	16/04/2020	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	<0.05	NT	a	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH103	5.1 - 5.2 m	16/04/2020	<0.1	NT	0.1	NT	<0.1	NT	0.1	NT	0.4	2.2	NT	NT	NT	NT	NT	NT	NAD	NAD	NAD	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH103	6.3 - 6.45 m	16/04/2020	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	<0.05	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH104	1.0 - 1.1 m	08/04/2020	<0.1	NT	<0.1	NT	<0.1	NT	0.1	NT	0.2	0.52	NT	0	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH104	1.4 - 1.5 m	14/04/2020	<0.1	NT	0.3	NT	<0.1	NT	0.5	NT	1.1	6.1	NT	NT	NT	NT	NT	NT	NAD	NAD	NAD	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BD2/140420	1.4 - 1.5 m	14/04/2020	1.5	NT	6.4	NT	0.4	NT	27	NT	31	180	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH104	2.8 - 2.9 m	14/04/2020	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT	0.2	0.56	NT	6	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH105	0.05 - 0.1 m	08/04/2020	0.1	<0.001	1	<0.001	<0.1	<0.001	13	<0.001	2.9	17	NL (+)VE	NT	NT	NT	NT	NT	NAD	NAD	NAD	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BD1/070420	0.05 - 0.1 m	08/04/2020	<0.1	NT	0.8	NT	<0.1	NT	1.2	NT	2.7	17	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BD1/070420b	0.05 - 0.1 m	08/04/2020	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH106	0.2 - 0.3 m	07/04/2020	2.8	<0.001	13	<0.001	0.8	<0.001	41	0.004	54	320	0.0061	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH106	0.3 - 0.4 m	07/04/2020	15	0.003	27	<0.001	1.1	0.003	150	0.015	280	1400	0.037	а а	d0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH106/0.304 -	0.3 - 0.4 m	07/04/2020	15 NT	NT	27 NT	NT	1.1 NT	NT	150 NT	NT	NT	NT	NT	NT	NT	NT	NT	<0.1	NT	NU	NFL	NT	NT	NT	NT	NT		N	N	NT	NI	NT	NT	NI	NT	NT
[TRIPLICATE]																											NT									
BH106	0.9 - 1.0 m	07/04/2020	<0.1	NT	<0.1	NT	<0.1	NT	0.2	NT	0.2	0.58	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH107B	0.4 - 0.5 m	16/05/2020	0.1	NT	0.5	NT	<0.1	NT	1.2	NT	2.3	14	NT	6	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BD1/20200516	0.4 - 0.5 m	16/05/2020	0.2	<0.001	0.9	<0.001	<0.1	<0.001	13	<0.001	2.8	18	NL (+)VE	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH107B	1.4 - 1.5 m	16/05/2020	<0.1	NT	0.1	NT	<0.1	NT	0.2	NT	0.5	2.8	NT	NT	NT	NT	NT	NT	NAD	NAD	NAD	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH108	0.23 - 0.25 m	17/05/2020	<0.1	<0.001	1.2	<0.001	<0.1	<0.001	0.4	<0.001	4.3	23	NL (+)VE	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH109B	0.4 - 0.5 m	17/05/2020	<0.1	NT	0.2	NT	<0.1	NT	0.9	NT	0.8	4.9	NT	0	d0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH110	0.5 - 0.6 m	5/21/2020	0.2	0.001	0.5	<0.001	<0.1	<0.001	0.6	<0.001	2.2	13	0.001	9	<0.1	<0.1	<0.1	<0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH111	0.4 - 0.5 m	5/19/2020	<0.1	NT	<0.1	NT	<0.1	NT	0.2	NT	0.3	1.9	NT	٥	<0.1	<0.1	<0.1	<0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH111	1.3 - 1.4 m	5/19/2020	0.2	<0.001	2.4	<0.001	0.2	<0.001	4	<0.001	7.8	57	NL (+)VE	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH112B	0.6 - 0.7 m	18/05/2020	2.4	<0.001	2.6	<0.001	2.1	0.01	16	0.01	14	85	0.02	NT	NT	NT	NT	NT	NAD	NAD	NAD	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH112B	1.2 - 1.4 m	13/05/2020	0.8	<0.001	1	<0.001	0.5	<0.001	5.9	0.01	6.1	36	0.01	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH113	0.15 - 0.25 m	07/04/2020	1	0.003	5.6	<0.001	<0.1	<0.001	21	0.022	26	150	0.044	NT	NT	NT	NT	NT	NAD	NAD	NAD	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BD2/140420	0.15 - 0.25 m	07/04/2020	<0.5	NT	<0.5	NT	<0.5	NT	<0.5	NT	0.9	3	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH113	0.4 - 0.5 m	07/04/2020	0.1	<0.001	0.6	<0.001	<0.1	<0.001	2.2	0.004	2.7	15	0.0053	0	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH113	0.9 - 1.0 m	07/04/2020	<0.1	NT	0.1	NT	<0.1	NT	0.5	NT	0.7	3.8	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH114	0.15 - 0.2 m	07/04/2020	13	0.005	16	<0.001	5	0.007	160	0.033	170	850	0.091	NT	NT	NT	NT	NT	NAD	NAD	NAD	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH114	0.2 - 0.3 m	07/04/2020	6.6	0.01	11	<0.001	1.6	0.01	70	0.055	96	470	0.14	0	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH115	0.23 - 0.3 m	07/04/2020	4.7	0.005	9.4	<0.001	0.8	0.001	75	0.027	55	440	0.058	6	d0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BHT150.23- 0.3 -	0.23 - 0.3 m	07/04/2020	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
0.3 - ITRIPLICATEL BH115	0.23 - 0.3 m	07/04/2020	NT 0.2	NT <0.001	NT 0.9	NT <0.001	-0.1	NT <0.001	NT 2.6	0.005	NT	NT 22	0.011	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH115	0.9 - 1.0 m	07/04/2020	<0.1	NT	<0.1	NT	<0.1	NT	0.1	NT	0.1	0.4	NT	NT NT	NT	NT	NT NT	NT	NT	NT	NT	NT	NT	NT	NT	NT NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH116	0.5 - 0.7 m	17/05/2020	<0.1	NT	<0.1		<0.1		<0.1	NT	<0.1	<0.05			NT	NT				NT				NT									NT	NT		NT
BD1/20200517	0.5 - 0.7 m	17/05/2020	-0.5	NT	<0.5	NT	<0.5	NT	-0.5	NT	<0.5	<0.5	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH117	0.2 · 0.25 m	17/05/2020	8.3	0.007	22	<0.001	13	0.067	95	0.021	130	770	0.13	9	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT

DP (2019)																																				
BH1	3 - 3.5 m	10/07/2019	40.1	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	<0.05	NT	đ	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD	NT														
BH1	3.8 - 4 m	10/07/2019	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	<0.05	NT	NT	NT	NT	NT	NT	NAD	NAD	NAD	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	d	<1
BH2	1.5 - 1.6 m	10/07/2019	<0.1	NT	<0.1	NT	<0.1	NT	0.2	NT	0.4	1.6	NT	0	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD	NT														
BH2	4.5 - 4.6 m	10/07/2019	<0.1	NT	0.1	NT	<0.1	NT	<0.1	NT	0.3	1.6	NT	NT	NT	NT	NT	NT	NAD	NAD	NAD	NT														
BH3	0.2 - 0.3 m	12/07/2019	3.6	NT	12	NT	1.2	NT	50	NT	73	370	0.014	NT	NT	NT	NT	NT	NAD	NAD	NAD	NT														
BH3	0.7 - 0.8 m	12/07/2019	0.4	NT	2	NT	0.1	NT	6.8	NT	9.8	53	0.0016	0	<0.1	<0.1	<0.1	<0.5	NAD	NAD	NAD	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
BH3/0.7-0.8 - [TRIPLICATE]	0.7 - 0.8 m	12/07/2019	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT								
BH4	0.3 - 0.4 m	12/07/2019	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT	0.2	0.57	NT	0	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD	NT														
BH4	1.0 - 1.1 m	12/07/2019	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	0.05	NT	NT	NT	NT	NT	NT	NAD	NAD	NAD	NT														
BH5	0.35 - 0.4 m	13/07/2019	0.6	NT	43	NT	0.3	NT	10	NT	18	100	0.004	8	<0.1	<0.1	<0.1	<0.5	NAD	NAD	NAD	NT														
BH6	0.2 - 0.3 m	14/07/2019	13	NT	11	NT	60	NT	180	NT	91	640	0.18	NT	NT	NT	NT	NT	NAD	NAD	NAD	NT														
BH7	1.0 - 1.1 m	12/07/2019	<0.1	NT	<0.1	NT	<0.1	NT	0.1	NT	<0.1	0.1	NT	8	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD	NT														
BH7	1.4 - 1.5 m	13/07/2019	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	<0.05	NT	6	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD	NT														
BD/120719	1.4 - 1.5 m	12/07/2019	<0.1	NT	0.8	NT	<0.1	NT	1.4	NT	2.8	15	NL (+)VE	NT	NT	NT	NT	NT	NAD	NAD	NAD	NT														
BT1/2090713	1.4 - 1.5 m	12/07/2019	⊲0.5	NT	<0.5	NT	<0.5	NT	<0.5	NT	<0.5	<0.5	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH7	2.0 - 2.1 m	13/07/2019	49.1	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	<0.05	NT	NT	NT	NT	NT	NT	NAD	NAD	NAD	NT														
BHB	0.2 - 0.3 m	14/07/2019	<0.1	NT	0.6	NT	<0.1	NT	0.5	NT	1.7	11	NL (+)VE	6	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD	<1	<1	et	<1	d	<1	d	<1	<1	<1	<1	<1	<1	d	<1
BH9	0.35 - 0.45 m	12/07/2019	<0.1	NT	0.1	NT	<0.1	NT	0.3	NT	0.6	2.6	NT	NT	NT	NT	NT	NT	NAD	NAD	NAD	NT														
BH9	0.65 - 0.75 m	12/07/2019	40.1	NT	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	<0.05	NT	NT	NT	NT	NT	NT	NAD	NAD	NAD	NT														

CT1 exceedance
TCLP1 and/or SCC1 exceedance
TCLP1 and/or SCC2 exceedance
Abelation
T=Not tested
NC=No c NT = Not tested
NC=No cnT = Not teste
NC=No cnT = Not tested
NC=No cnT = Not tested
NC=No cnT = Not t

Notes:

a	QA/QC replicate of sample listed directly below the primary sample
ь	Total chromium used as initial screen for chromium(VI)
c	Total recoverable hydrocarbons (TRH) used as an initial screen fo
d	Criteria for scheduled chemicals used as an initial screen

- e f
- 9

- h PQL CT1 SCC1 TCLP1 CT2 SCC2 TCLP2

- OVCC replices of sample tase directly taken the primary sample
 Taul chroman used a killed accent for chroman values
 Taul chroman used a killed accent for chroman values
 Taul chroman used a killed accent for chroman values
 Taul chroman used a killed accent for chroman values
 Taul chroman used a killed accent for chroman values
 Taul chroman used a killed accent for chroman values
 Taul chroman values
 Taul

Appendix G

Chain of Custody, Sample Receipt Advice

and Certificate of Analysis Documentation

CHAIN OF CUSTODY DESPATCH SHEET

Project No:	86767	.03		<u>a</u>	Suburt):	Hayma	arket		To:	Eurofins Mgt	
Project Name:		ARKET, SS				Number	15206			10.		
Project Manager:	WFY				Sample		WFY	-		Attn:		
Emails:	wen	fei.yuan@d	louglaspart	ners.com.au						Phone:		
Date Required:	Same	day 🗆 🏾 🏾 🏾	24 hours	48 hours	72 h	ours 🗆	Stand	lard 🗆		Email:		
Prior Storage:	Esky		Shelved		Do samp	oles contair	i 'potentia	al' HBM?	/es 🛛 No 🗆 (If YE		transport and store in accordan	ce with FPM HAZID)
Sample Lab E Sample Container									Analyte			
ID	ID	Date Sampled	S - soil W - wate	G - glass P - plast	MH						Notes	
BD1/070420		08/04/20	S	G	Х							
PQL (S) mg/kg										ANZECC	PQLs req'd for all water	analytes
PQL = practical qu Metals to Analyse:	8HM un	less specifi	ed here:								oort/Reference No:	
Total number of sa				Relinquis			VFY	Transport	ed to laboratory by:			
Send Results to:	L	ouglas Partr	hers Pty Ltd	Address:				Vest Ryde			Phone: 9809 (
Signed:	_			Received by:	Anson	n Le	e ,	Ane	Acces	D	Date & Time: 3/6/20	1:05PM
relinquished	by EU C-	ncienz	\sim								3.90°C	#72346
Send Results to: Signed:	2	10/20 11 U	M		ş							

Login

From:	Andrew (Fitzy) Fitzsimons
Sent:	Tuesday, 2 June 2020 6:25 PM
То:	Login
Subject:	FW: Extra Soil Sample
Attachments:	Chain of Custody Despatch Sheet_YHA_inter-lab.xlsm

Can we send sample 240692-11 to Eurofins with this COC please.

Cheers,

Kind Regards,

Andrew (Fitzy) Fitzsimons | Customer Service | Envirolab Services Pty Ltd

Celebrating 15 years of Great Science. Great Service. 12 Ashley Street Chatswood NSW 2067 T 612 9910 6200 F 612 9910 6201 E afitzsimons@envirolab.com.au | W www.envirolab.com.au

View reduced sampling bottle provision for PFAS in water | COVID-19 Update

<u>Please note that all samples submitted to the Envirolab Group laboratories will be analysed under the Envirolab Group Terms and Conditions. The Terms and Conditions are accessible by clicking this link</u>

From: Wen-Fei Yuan <WenFei.Yuan@douglaspartners.com.au>
Sent: Tuesday, 2 June 2020 3:44 PM
To: Andrew (Fitzy) Fitzsimons <AFitzsimons@envirolab.com.au>; Nancy Zhang <NZhang@envirolab.com.au>
Cc: Alyssa Spencer <Alyssa.Spencer@douglaspartners.com.au>; Customer Service
<customerservice@envirolab.com.au>
Subject: RE: Extra Soil Sample

Hi Andrew,

In that case, please submit soil sample BD1/070420 to Eurofins Mgt for analysis of heavy metals. An electronic copy of the COC is attached.

Regards

Wen-Fei Yuan | Environmental Scientist Douglas Partners Pty Ltd | ABN 75 053 980 117 | www.douglaspartners.com.au 96 Hermitage Road West Ryde NSW 2114 | PO Box 472 West Ryde NSW 1685 P: 02 8878 0693 | M: 0448 280 782 | E: WenFei.Yuan@douglaspartners.com.au

CLIENT CHO 2020 WINNE

To find information on our COVID-19 preparations, please visit douglaspartners.com.au/news/covid-19

Environment TestingMelbourne
6 Monterey Road
Dandenong South Vic 3175 16 Mars Road
Phone : +61 3 8564 5000
NATA # 1261
Site # 1254 & 14271Sydney
Unit F3, Building F
Lane Cove West NSW 2066
Phone : +61 2 9900 8400
NATA # 1261 Site # 122794Brisbane
1/21 Smallwood Place
Murarie QLD 4172
Phone : +61 7 3902 4600
NATA # 1261 Site # 122794

web : www.eurofins.com.au

Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

e.mail : EnviroSales@eurofins.com ABN - 50 005 085 521

Sample Receipt Advice

Company name:	Douglas Partners (Syd)
Contact name:	Wen-Fei Yuan
Project name:	HAYMARKET SSI
Project ID:	86767.03
COC number:	Not provided
Turn around time:	5 Day
Date/Time received:	Jun 3, 2020 1:05 PM
Eurofins reference:	723460

Sample information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- \boxtimes Split sample sent to requested external lab.
- \times Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Ursula Long on Phone : or by e.mail: UrsulaLong@eurofins.com

Results will be delivered electronically via e.mail to Wen-Fei Yuan - wenfei.yuan@douglaspartners.com.au.

Douglas Partners (Syd) 96 Hermitage Road West Ryde **NSW 2114**

Wen-Fei Yuan

Report Project name Project ID **Received Date** 723460-S HAYMARKET SSI 86767.03 Jun 03, 2020

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			BD1/070420 Soil S20-Jn05470 Apr 08, 2020
Test/Reference	LOR	Unit	
Heavy Metals			
Arsenic	2	mg/kg	10
Cadmium	0.4	mg/kg	0.8
Chromium	5	mg/kg	20
Copper	5	mg/kg	110
Lead	5	mg/kg	460
Mercury	0.1	mg/kg	1.3
Nickel	5	mg/kg	17
Zinc	5	mg/kg	400
% Moisture	1	%	10

עיוייא

duta

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Metals M8	Sydney	Jun 04, 2020	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
% Moisture	Sydney	Jun 03, 2020	14 Days
- Method: LTM-GEN-7080 Moisture			

	euro	fine 1			1	Austral	lia					New Zealand	
	50 005 085 521	web : www.eurofin		nment Te	esting		rey Roa ong Sou +61 3 8 1261	VIC 3175 64 5000 71	Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch Phone : 0800 856 450 IANZ # 1290
	mpany Name: dress:	Douglas Par 96 Hermitag West Ryde NSW 2114					R	der No.: port #: one: x:	152065 723460 02 9809 0666		Received: Due: Priority: Contact Name:	Jun 3, 2020 1:05 PM Jun 11, 2020 5 Day Wen-Fei Yuan	Л
	oject Name: oject ID:	HAYMARKE 86767.03	T SSI								Eurofins Analytica	l Services Manager : U	rsula Long
		Sa	mple Detail			Metals M8	Moisture Set						
	ourne Laborato			271									
	ney Laboratory					X	X						
	bane Laboratory h Laboratory - N												
	rnal Laboratory - N		30										
No	Sample ID	Sample Date	Sampling	Matrix	LAB ID								
1	BD1/070420	Apr 08, 2020	Time	Soil	S20-Jn05470	X	X						
	Counts	7.01.00, 2020	1		020 01100 110	1	1						

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
QSM	US Department of Defense Quality Systems Manual Version 5.3
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

		mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 2 < 0.4 < 5 < 5 < 5 < 0.1 < 5 < 5 < 5 < 5			2 0.4 5 5 5 0.1 5 5 5 5	Pass Pass Pass Pass Pass Pass Pass Pass	
		mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.4 < 5 < 5 < 5 < 0.1 < 5			0.4 5 5 0.1 5	Pass Pass Pass Pass Pass Pass	
		mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.4 < 5 < 5 < 5 < 0.1 < 5			0.4 5 5 0.1 5	Pass Pass Pass Pass Pass Pass	
		mg/kg mg/kg mg/kg mg/kg mg/kg	< 5 < 5 < 5 < 0.1 < 5			5 5 0.1 5	Pass Pass Pass Pass Pass	
		mg/kg mg/kg mg/kg mg/kg mg/kg	< 5 < 5 < 0.1 < 5			5 5 0.1 5	Pass Pass Pass Pass	
		mg/kg mg/kg mg/kg mg/kg	< 5 < 0.1 < 5			5 0.1 5	Pass Pass Pass	
		mg/kg mg/kg mg/kg mg/kg	< 0.1 < 5			0.1 5	Pass Pass	
		mg/kg mg/kg mg/kg	< 5			5	Pass	
		mg/kg mg/kg	< 5			5	Pass	
		mg/kg						
		%						
		%		1				
			100			70-130	Pass	
		%	103			70-130	Pass	
		%	105			70-130	Pass	
Mercury								
Nickel Zinc								
		%	102					- ··· ·
Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
			1			1		
	r							
N20-Jn05338			108			70-130	Pass	
N20-Jn05338	NCP		109			70-130	Pass	
N20-Jn05338	NCP	%	103			70-130	Pass	
N20-Jn05338	NCP	%	107			70-130	Pass	
N20-Jn05338	NCP	%	106			70-130	Pass	
N20-Jn05338	NCP	%	107			70-130	Pass	
N20-Jn05338	NCP	%	101			70-130	Pass	
Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
			Result 1	Result 2	RPD			
S20-Jn06217	NCP	mg/kg	3.3	6.2	61	30%	Fail	Q15
S20-Jn06217	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
S20-Jn06217	NCP	mg/kg	9.9	13	29	30%	Pass	
S20-Jn06217	NCP	mg/kg	130	120	6.0	30%	Pass	
S20-Jn06217	NCP	mg/kg	16	17	11	30%	Pass	
		mg/kg						
		00						
			1 12		0.0	0070	1 400	
			Result 1	Result 2	RPD			
R20 1005522	NCD	0/				20%	Baaa	
	N20-Jn05338 N20-Jn05338 N20-Jn05338 N20-Jn05338 N20-Jn05338 N20-Jn05338 N20-Jn05338 N20-Jn05338 Lab Sample ID S20-Jn06217 S20-Jn06217 S20-Jn06217 S20-Jn06217	N20-Jn05338 NCP S20-Jn05338 NCP S20-Jn06217 NCP	Lab Sample ID Source Onks N20-Jn05338 NCP % Lab Sample ID QA Source Units S20-Jn06217 NCP mg/kg S20-Jn06217 NC	% 109 % 97 % 106 % 102 Lab Sample ID QA Source Units Result 1 N20-Jn05338 NCP % 105 N20-Jn05338 NCP % 109 N20-Jn05338 NCP % 103 N20-Jn05338 NCP % 103 N20-Jn05338 NCP % 107 N20-Jn05338 NCP % 101 Lab Sample ID QA Source Units Result 1 S20-Jn06217 NCP mg/kg 3.3 S20-Jn06217 NCP mg/kg 9.9 S20-Jn06217 NCP mg/kg 10 <td< td=""><td>% 109 % 97 % 106 % 102 % 102 % 102 % 102 % 102 % 102 % 102 % 102 % 102 % 102 % 102 % 102 % 105 N20-Jn05338 NCP % 103 N20-Jn05338 NCP % 103 N20-Jn05338 NCP % 107 N20-Jn05338 NCP % 106 N20-Jn05338 NCP % 101 Lab Sample ID QA Source Units Result 1 Result 2 \$20-Jn06217 NCP mg/kg \$20-Jn06217 NCP mg/kg \$20-Jn06217 NCP mg/kg</td><td>% 109 </td><td>% 109 70-130 % 97 70-130 % 106 70-130 % 102 70-130 % 102 70-130 % 102 70-130 % 102 70-130 % 102 70-130 Lab Sample ID QA Source Units Result 1 Acceptance Limits N20-Jn05338 NCP % 105 70-130 N20-Jn05338 NCP % 103 70-130 N20-Jn05338 NCP % 103 70-130 N20-Jn05338 NCP % 107 70-130 S2</td><td>Victor % 109 70-130 Pass % 97 70-130 Pass % 106 70-130 Pass % 102 70-130 Pass % 105 8 Pass N20-Jn05338 NCP % 105 70-130 Pass N20-Jn05338 NCP % 108 70-130 Pass N20-Jn05338 NCP % 103 70-130 Pass N20-Jn05338 NCP % 107 70-130 Pass <!--</td--></td></td<>	% 109 % 97 % 106 % 102 % 102 % 102 % 102 % 102 % 102 % 102 % 102 % 102 % 102 % 102 % 102 % 105 N20-Jn05338 NCP % 103 N20-Jn05338 NCP % 103 N20-Jn05338 NCP % 107 N20-Jn05338 NCP % 106 N20-Jn05338 NCP % 101 Lab Sample ID QA Source Units Result 1 Result 2 \$20-Jn06217 NCP mg/kg \$20-Jn06217 NCP mg/kg \$20-Jn06217 NCP mg/kg	% 109	% 109 70-130 % 97 70-130 % 106 70-130 % 102 70-130 % 102 70-130 % 102 70-130 % 102 70-130 % 102 70-130 Lab Sample ID QA Source Units Result 1 Acceptance Limits N20-Jn05338 NCP % 105 70-130 N20-Jn05338 NCP % 103 70-130 N20-Jn05338 NCP % 103 70-130 N20-Jn05338 NCP % 107 70-130 S2	Victor % 109 70-130 Pass % 97 70-130 Pass % 106 70-130 Pass % 102 70-130 Pass % 105 8 Pass N20-Jn05338 NCP % 105 70-130 Pass N20-Jn05338 NCP % 108 70-130 Pass N20-Jn05338 NCP % 103 70-130 Pass N20-Jn05338 NCP % 107 70-130 Pass </td

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised By

Ursula Long Gabriele Cordero Analytical Services Manager Senior Analyst-Metal (NSW)

Glenn Jackson General Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profils, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Environment TestingMelbourne
6 Monterey Road
Dandenong South Vic 3175 16 Mars Road
Phone : +61 3 8564 5000
NATA # 1261
Site # 1254 & 14271Sydney
Unit F3, Building F
Lane Cove West NSW 2066
Phone : +61 2 9900 8400
NATA # 1261 Site # 122794Brisbane
1/21 Smallwood Place
Murarie QLD 4172
Phone : +61 7 3902 4600
NATA # 1261 Site # 122794

web : www.eurofins.com.au

Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

e.mail : EnviroSales@eurofins.com ABN - 50 005 085 521

Sample Receipt Advice

Company name.	
Contact name:	Wen-Fei Yuan
Project name:	HAYMARKET 810 LEE STREET SSI
Project ID:	86767.03
COC number:	Not provided
Turn around time:	5 Day
Date/Time received:	May 21, 2020 1:25 PM
Eurofins reference:	720825

Douglas Partners (Svd)

Sample information

Company name:

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- \boxtimes Split sample sent to requested external lab.
- \times Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Ursula Long on Phone : or by e.mail: UrsulaLong@eurofins.com

Results will be delivered electronically via e.mail to Wen-Fei Yuan - wenfei.yuan@douglaspartners.com.au.

••••	01140	fine			٩	ustral	lia					New Zealand	
BN – 50 00	euro [.]	web : www.eurofin		nment T	esting	andeno hone : - IATA #	rey Roa ong Sou +61 3 8	Sydney Unit F3, Buildin 8175 16 Mars Road 0 Lane Cove We Phone : +61 2 : NATA # 1261 5	st NSW 2066 9900 8400	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch Phone : 0800 856 450 IANZ # 1290
Compa Addres	any Name: ss:	Douglas Part 96 Hermitage West Ryde NSW 2114					-	No.: #: 72082 02 980	5)9 0666		Received: Due: Priority: Contact Name:	May 21, 2020 1:25 May 28, 2020 5 Day Wen-Fei Yuan	РМ
Project Project	et Name: et ID:	HAYMARKE 86767.03	T 810 LEE S	TREET SSI							Eurofins Analytica	l Services Manager : L	rsula Long
		Sa	mple Detail			Moisture Set	Eurofins mgt Suite B7						
		ry - NATA Site		271									
		NATA Site # 1				Х	X						
		/ - NATA Site #											
		ATA Site # 237	36										
	I Laboratory Sample ID	Sample Date	Sampling	Matrix	LAB ID								
	-		Time	0	000 14 00075	V							
1 IBD	7/20200517	May 17, 2020		Soil	S20-My30275	X	X						

Douglas Partners (Syd) 96 Hermitage Road West Ryde NSW 2114

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:

Wen-Fei Yuan

Report Project name Project ID Received Date **720825-S** HAYMARKET 810 LEE STREET SSI 86767.03 May 21, 2020

Client Sample ID			BD1/20200517
Sample Matrix			Soil
Eurofins Sample No.			S20-My30275
Date Sampled			May 17, 2020
Test/Reference	LOR	Unit	
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions		
TRH C6-C9	20	mg/kg	< 20
TRH C10-C14	20	mg/kg	< 20
TRH C15-C28	50	mg/kg	< 50
TRH C29-C36	50	mg/kg	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50
BTEX			
Benzene	0.1	mg/kg	< 0.1
Toluene	0.1	mg/kg	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2
o-Xylene	0.1	mg/kg	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3
4-Bromofluorobenzene (surr.)	1	%	104
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions		
Naphthalene ^{N02}	0.5	mg/kg	< 0.5
TRH C6-C10	20	mg/kg	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20
TRH >C10-C16	50	mg/kg	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50
TRH >C16-C34	100	mg/kg	< 100
TRH >C34-C40	100	mg/kg	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100
Polycyclic Aromatic Hydrocarbons		-	
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2
Acenaphthene	0.5	mg/kg	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5
Anthracene	0.5	mg/kg	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5
Chrysene	0.5	mg/kg	< 0.5

Client Sample ID Sample Matrix			BD1/20200517 Soil
Eurofins Sample No.			S20-My30275
Date Sampled			May 17, 2020
Test/Reference	LOR	Unit	
Polycyclic Aromatic Hydrocarbons			
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5
Fluorene	0.5	mg/kg	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5
Naphthalene	0.5	mg/kg	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5
Pyrene	0.5	mg/kg	< 0.5
Total PAH*	0.5	mg/kg	< 0.5
2-Fluorobiphenyl (surr.)	1	%	93
p-Terphenyl-d14 (surr.)	1	%	102
Heavy Metals			
Arsenic	2	mg/kg	3.6
Cadmium	0.4	mg/kg	< 0.4
Chromium	5	mg/kg	8.2
Copper	5	mg/kg	9.9
Lead	5	mg/kg	16
Mercury	0.1	mg/kg	< 0.1
Nickel	5	mg/kg	< 5
Zinc	5	mg/kg	< 5
% Moisture	1	%	16

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	May 25, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	May 25, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	May 25, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	May 25, 2020	
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Sydney	May 25, 2020	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Metals M8	Sydney	May 25, 2020	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
% Moisture	Sydney	May 21, 2020	14 Days
- Method: LTM-GEN-7080 Moisture			

	euro	fine			Α	ustral	lia					New Zealand	
	50 005 085 521	web : www.eurofin		nment To	esting	andeno hone : - ATA #	rey Roa ong Sou +61 3 8		Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurcl Phone : 0800 856 450 IANZ # 1290
	ompany Name: Idress:	Douglas Par 96 Hermitag West Ryde NSW 2114	,				R	er No.: ort #: ne:	720825 02 9809 0666		Received: Due: Priority: Contact Name:	May 21, 2020 1:25 May 28, 2020 5 Day Wen-Fei Yuan	РМ
	oject Name: oject ID:	HAYMARKE 86767.03	T 810 LEE S ⁻	TREET SSI							Eurofins Analytica	I Services Manager : U	rsula Long
			mple Detail			Moisture Set	Eurofins mgt Suite B7						
	ourne Laborato			271									
	ney Laboratory					X	X						
	bane Laboratory												
	h Laboratory - N ernal Laboratory	IATA Site # 237	30										
No	Sample ID	Sample Date	Sampling	Matrix	LAB ID								
1	BD1/20200517	May 17, 2020	Time	Soil	S20-My30275	x	x						
<u> </u>	Counts	Way 17, 2020			020 101930213	1	1						

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
QSM	US Department of Defense Quality Systems Manual Version 5.3
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank						
Total Recoverable Hydrocarbons - 1999 NEPM Fractions						
TRH C6-C9	mg/kg	< 20		20	Pass	
TRH C10-C14	mg/kg	< 20		20	Pass	
TRH C15-C28	mg/kg	< 50		50	Pass	
TRH C29-C36	mg/kg	< 50		50	Pass	
Method Blank				•		
BTEX						
Benzene	mg/kg	< 0.1		0.1	Pass	
Toluene	mg/kg	< 0.1		0.1	Pass	
Ethylbenzene	mg/kg	< 0.1		0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2		0.2	Pass	
o-Xylene	mg/kg	< 0.1		0.1	Pass	
Xylenes - Total*	mg/kg	< 0.3		0.3	Pass	
Method Blank						
Total Recoverable Hydrocarbons - 2013 NEPM Fractions						
Naphthalene	mg/kg	< 0.5		0.5	Pass	
TRH C6-C10	mg/kg	< 20		20	Pass	
TRH >C10-C16	mg/kg	< 50		50	Pass	
TRH >C16-C34	mg/kg	< 100		100	Pass	
TRH >C34-C40	mg/kg	< 100		100	Pass	
Method Blank	ing/itg	100		100	1 400	
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	mg/kg	< 0.5		0.5	Pass	
Acenaphthylene	mg/kg	< 0.5		0.5	Pass	
Anthracene	mg/kg	< 0.5		0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5		0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5		0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5		0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Chrysene	mg/kg	< 0.5		0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5		0.5	Pass	
Fluoranthene	mg/kg	< 0.5		0.5	Pass	
Fluorene	mg/kg	< 0.5		0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5		0.5	Pass	
Naphthalene	mg/kg	< 0.5		0.5	Pass	
Phenanthrene	mg/kg	< 0.5		0.5	Pass	
Pyrene	mg/kg	< 0.5		0.5	Pass	
Method Blank	nig/kg	< 0.5		0.5	газэ	
Heavy Metals		[[
Arsenic	ma/ka	< 2		2	Pass	
Cadmium	mg/kg	< 0.4		0.4	Pass	
Chromium	mg/kg			0.4 5	Pass	
	mg/kg	< 5				
	mg/kg	< 5		5	Pass	
Lead	mg/kg	< 5		5	Pass	
Mercury	mg/kg	< 0.1		0.1	Pass	
Nickel	mg/kg	< 5		5	Pass	
	mg/kg	< 5		5	Pass	
LCS - % Recovery						
Heavy Metals			<u> </u>	70.400		
Arsenic	%	96		70-130	Pass	

т	est		Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Cadmium			%	97	70-130	Pass	
Chromium			%	100	70-130	Pass	
Copper			%	103	70-130	Pass	
Lead			%	101	70-130	Pass	
Mercury			%	98	70-130	Pass	
Nickel			%	102	70-130	Pass	
Zinc			%	98	70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery						-	
Total Recoverable Hydrocarb	ons - 1999 NEPM Fract	ions		Result 1			
TRH C6-C9	S20-My35836	NCP	%	78	70-130	Pass	
TRH C10-C14	S20-My38776	NCP	%	126	70-130	Pass	
Spike - % Recovery						1	
BTEX				Result 1			
Benzene	S20-My32603	NCP	%	88	70-130	Pass	
Toluene	S20-My32603	NCP	%	91	70-130	Pass	
Ethylbenzene	S20-My32603	NCP	%	97	70-130	Pass	
m&p-Xylenes	S20-My32603	NCP	%	102	70-130	Pass	
o-Xylene	S20-My32603	NCP	%	106	70-130	Pass	
Xylenes - Total*	S20-My32603	NCP	%	103	70-130	Pass	
Spike - % Recovery						1	
Total Recoverable Hydrocarb	ons - 2013 NEPM Fract	ions		Result 1			
Naphthalene	S20-My32603	NCP	%	95	70-130	Pass	
TRH C6-C10	S20-My35836	NCP	%	84	70-130	Pass	
TRH >C10-C16	S20-My38776	NCP	%	130	70-130	Pass	
Spike - % Recovery						1	
Polycyclic Aromatic Hydroca	rbons			Result 1			
Acenaphthene	S20-My29854	NCP	%	98	70-130	Pass	
Acenaphthylene	S20-My29854	NCP	%	98	70-130	Pass	
Anthracene	S20-My29854	NCP	%	96	70-130	Pass	
Benz(a)anthracene	S20-My29854	NCP	%	101	70-130	Pass	
Benzo(a)pyrene	S20-My29854	NCP	%	96	70-130	Pass	
Benzo(b&j)fluoranthene	S20-My29854	NCP	%	97	70-130	Pass	
Benzo(g.h.i)perylene	S20-My29854	NCP	%	103	70-130	Pass	
Benzo(k)fluoranthene	S20-My29854	NCP	%	95	70-130	Pass	
Chrysene	S20-My29854	NCP	%	103	70-130	Pass	
Dibenz(a.h)anthracene	S20-My29854	NCP	%	99	70-130	Pass	
Fluoranthene	S20-My29854	NCP	%	106	70-130	Pass	
Fluorene	S20-My29854	NCP	%	98	70-130	Pass	
Indeno(1.2.3-cd)pyrene	S20-My29854	NCP	%	95	70-130	Pass	
Naphthalene	S20-My29854	NCP	%	95	70-130	Pass	
Phenanthrene	S20-My29854	NCP	%	98	70-130	Pass	
Pyrene	S20-My29854	NCP	%	106	70-130	Pass	
Spike - % Recovery							
Heavy Metals				Result 1			
Arsenic	S20-My30399	NCP	%	103	70-130	Pass	
Cadmium	S20-My30399	NCP	%	103	70-130	Pass	
Chromium	S20-My30399	NCP	%	106	70-130	Pass	
Copper	S20-My30399	NCP	%	107	70-130	Pass	
Lead	S20-My30399	NCP	%	102	70-130	Pass	
Mercury	S20-My30399	NCP	%	107	70-130	Pass	
Nickel	S20-My30399	NCP	%	109	70-130	Pass	
Zinc	S20-My30399	NCP	%	96	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbo	ns - 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S20-My30098	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S20-My33188	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S20-My33188	NCP	mg/kg	77	74	5.0	30%	Pass	
TRH C29-C36	S20-My33188	NCP	mg/kg	77	60	24	30%	Pass	
Duplicate	· ·								
BTEX				Result 1	Result 2	RPD			
Benzene	S20-My30098	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S20-My30098	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S20-My30098	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S20-My30098	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S20-My30098	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total*	S20-My30098	NCP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate		1101	iiig/itg	1 0.0	¥ 0.0		0070	1 400	
Total Recoverable Hydrocarbo	ns - 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S20-My30098	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S20-My30098	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	S20-My30038	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S20-My33188	NCP	mg/kg	110	< 100	13	30%	Pass	
TRH >C10-C34				1		<1			
	S20-My33188	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate Polycyclic Aromatic Hydrocarb	ons			Result 1	Result 2	RPD			
	S20-My34573	NCP	ma/ka	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthene		NCP	mg/kg	1		<1			
Acenaphthylene	S20-My34573		mg/kg	< 0.5	< 0.5		30%	Pass	
Anthracene	S20-My34573	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S20-My34573	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S20-My34573	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S20-My34573	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S20-My34573	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S20-My34573	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S20-My34573	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S20-My34573	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S20-My34573	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S20-My34573	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S20-My34573	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S20-My34573	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S20-My34573	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S20-My34573	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate				1			-	1	
Heavy Metals	-			Result 1	Result 2	RPD			
Arsenic	S20-My30425	NCP	mg/kg	3.0	2.7	11	30%	Pass	
Cadmium	S20-My30425	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S20-My30425	NCP	mg/kg	9.6	8.2	16	30%	Pass	
Copper	S20-My30425	NCP	mg/kg	6.3	5.4	16	30%	Pass	
Lead	S20-My30425	NCP	mg/kg	11	12	9.0	30%	Pass	
Mercury	S20-My30425	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S20-My30425	NCP	mg/kg	11	9.5	18	30%	Pass	
Zinc	S20-My30425	NCP	mg/kg	56	51	8.0	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S20-My30258	NCP	%	7.0	7.6	9.0	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
N07	Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Authorised By

Ursula Long Andrew Sullivan Gabriele Cordero Analytical Services Manager Senior Analyst-Organic (NSW) Senior Analyst-Metal (NSW)

Glenn Jackson General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Environment TestingMelbourne
6 Monterey RoadSydney
Unit F3, Building F
Lane Cove West NSW 2060Brisbane
1/21 Smallwood Place
Murarrie QLD 4172Phone : +61 3 8564 5000
NATA # 1261Lane Cove West NSW 2060
Phone : +61 2 9900 8400
NATA # 1261 Site # 18217Brisbane
1/21 Smallwood Place
Murarrie QLD 4172
Phone : +61 2 9900 8400
NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Sample Receipt Advice

Company name:	Douglas Partners (Syd)
Contact name:	Wen-Fei Yuan
Project name:	HAYMARKET SSI
Project ID:	86767.03
COC number:	Not provided
Turn around time:	5 Day
Date/Time received:	Apr 21, 2020 11:15 AM
Eurofins reference:	714766

Sample information

Compony nome

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- All samples have been received as described on the above COC.

Dougloo Dortnoro (Cud)

- COC has been completed correctly.
- \mathbf{V} Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- \boxtimes Split sample sent to requested external lab.
- \times Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

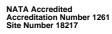
If you have any questions with respect to these samples please contact:

Ursula Long on Phone : or by e.mail: UrsulaLong@eurofins.com

Results will be delivered electronically via e.mail to Wen-Fei Yuan - wenfei.yuan@douglaspartners.com.au.

•		fine			4	Austral	lia					New Zealand	
	50 005 085 521	web : www.eurofin		nment Te ail : EnviroSales@eu	esting	Melbour Monter Dandence Phone : - IATA # Site # 12	rey Roa ong Sou +61 3 8 1261		Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch Phone : 0800 856 450 IANZ # 1290
	mpany Name: dress:	Douglas Part 96 Hermitage West Ryde NSW 2114					R	er No.: ort #: ne:	714766 02 9809 0666		Received: Due: Priority: Contact Name:	Apr 21, 2020 11:15 Apr 28, 2020 5 Day Wen-Fei Yuan	AM
	oject Name: oject ID:	HAYMARKE 86767.03	T SSI								Eurofins Analytica	l Services Manager : L	rsula Long
			mple Detail			Moisture Set	Eurofins mgt Suite B7						
	ourne Laborato			271									
	ey Laboratory					X	X						
	bane Laboratory h Laboratory - N												
	rnal Laboratory - N		30				+						
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID								
1	BD2/140420	Apr 14, 2020		Soil	S20-Ap28975	Х	x						
	Counts			•		1	1						

Douglas Partners (Syd) 96 Hermitage Road West Ryde NSW 2114


Attention:

Wen-Fei Yuan

Report Project name Project ID Received Date **714766-S** HAYMARKET SSI 86767.03 Apr 21, 2020

Client Sample ID			BD2/140420
Sample Matrix			Soil
Eurofins Sample No.			S20-Ap28975
Date Sampled			Apr 14, 2020
Test/Reference	LOR	Unit	
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions		
TRH C6-C9	20	mg/kg	< 20
TRH C10-C14	20	mg/kg	< 20
TRH C15-C28	50	mg/kg	< 50
TRH C29-C36	50	mg/kg	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50
BTEX	·		
Benzene	0.1	mg/kg	< 0.1
Toluene	0.1	mg/kg	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2
o-Xylene	0.1	mg/kg	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3
4-Bromofluorobenzene (surr.)	1	%	120
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions		
Naphthalene ^{N02}	0.5	mg/kg	< 0.5
TRH C6-C10	20	mg/kg	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20
TRH >C10-C16	50	mg/kg	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50
TRH >C16-C34	100	mg/kg	< 100
TRH >C34-C40	100	mg/kg	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100
Polycyclic Aromatic Hydrocarbons			
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.7
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2
Acenaphthene	0.5	mg/kg	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5
Anthracene	0.5	mg/kg	< 0.5
Benz(a)anthracene	0.5	mg/kg	0.6
Benzo(a)pyrene	0.5	mg/kg	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	0.6
Chrysene	0.5	mg/kg	< 0.5

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID Sample Matrix			BD2/140420 Soil
Eurofins Sample No.			S20-Ap28975
Date Sampled			Apr 14, 2020
Test/Reference	LOR	Unit	
Polycyclic Aromatic Hydrocarbons			
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5
Fluoranthene	0.5	mg/kg	0.9
Fluorene	0.5	mg/kg	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5
Naphthalene	0.5	mg/kg	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5
Pyrene	0.5	mg/kg	0.9
Total PAH*	0.5	mg/kg	3
2-Fluorobiphenyl (surr.)	1	%	100
p-Terphenyl-d14 (surr.)	1	%	114
Heavy Metals			
Arsenic	2	mg/kg	8.3
Cadmium	0.4	mg/kg	< 0.4
Chromium	5	mg/kg	11
Copper	5	mg/kg	32
Lead	5	mg/kg	23
Mercury	0.1	mg/kg	< 0.1
Nickel	5	mg/kg	9.9
Zinc	5	mg/kg	56
% Moisture	1	%	13

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Apr 27, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Apr 27, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Apr 27, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Apr 27, 2020	
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Sydney	Apr 27, 2020	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Metals M8	Sydney	Apr 27, 2020	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
% Moisture	Sydney	Apr 21, 2020	14 Days
- Method: LTM-GEN-7080 Moisture			

	euro	fine 1			l l	ustra	lia					New Zealand	
	50 005 085 521	web : www.eurofin		nment Te	esting	andenc hone : · IATA #	rey Roa ong Sou +61 3 8		Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch Phone : 0800 856 450 IANZ # 1290
	ompany Name: Idress:	Douglas Par 96 Hermitag West Ryde NSW 2114					R	er No.: ort #: ne:	714766 02 9809 0666		Received: Due: Priority: Contact Name:	Apr 21, 2020 11:15 Apr 28, 2020 5 Day Wen-Fei Yuan	AM
	oject Name: oject ID:	HAYMARKE 86767.03	T SSI								Eurofins Analytica	I Services Manager : U	Irsula Long
			mple Detail			Moisture Set	Eurofins mgt Suite B7						
	ourne Laborato			271									
-	ney Laboratory					Х	X						
	bane Laboratory												
	h Laboratory - N		36										
No	rnal Laboratory Sample ID	Sample Date	Sampling Time	Matrix	LAB ID								
1	BD2/140420	Apr 14, 2020		Soil	S20-Ap28975	х	X						
	Counts			•		1	1						

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Limit of Reporting.
Addition of the analyte to the sample and reported as percentage recovery.
Relative Percent Difference between two Duplicate pieces of analysis.
Laboratory Control Sample - reported as percent recovery.
Certified Reference Material - reported as percent recovery.
In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
The addition of a like compound to the analyte target and reported as percentage recovery.
A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
United States Environmental Protection Agency
American Public Health Association
Toxicity Characteristic Leaching Procedure
Chain of Custody
Sample Receipt Advice
US Department of Defense Quality Systems Manual Version 5.3
Client Parent - QC was performed on samples pertaining to this report
Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acc	eptance .imits	Pass Limits	Qualifying Code
Method Blank						
Total Recoverable Hydrocarbons - 1999 NEPM Fractions						
TRH C6-C9	mg/kg	< 20		20	Pass	
TRH C10-C14	mg/kg	< 20		20	Pass	
TRH C15-C28	mg/kg	< 50		50	Pass	
TRH C29-C36	mg/kg	< 50		50	Pass	
Method Blank		•		I		
BTEX						
Benzene	mg/kg	< 0.1		0.1	Pass	
Toluene	mg/kg	< 0.1		0.1	Pass	
Ethylbenzene	mg/kg	< 0.1		0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2		0.2	Pass	
o-Xylene	mg/kg	< 0.1		0.1	Pass	
Xylenes - Total*	mg/kg	< 0.3		0.3	Pass	
Method Blank				<u> </u>		
Total Recoverable Hydrocarbons - 2013 NEPM Fractions						
Naphthalene	mg/kg	< 0.5		0.5	Pass	
TRH C6-C10	mg/kg	< 20		20	Pass	
TRH >C10-C16	mg/kg	< 50		50	Pass	
TRH >C16-C34	mg/kg	< 100		100	Pass	
TRH >C34-C40	mg/kg	< 100		100	Pass	
Method Blank	ing/kg	100		100	1 400	
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	mg/kg	< 0.5		0.5	Pass	
Acenaphthylene	mg/kg	< 0.5		0.5	Pass	
Anthracene	mg/kg	< 0.5		0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5		0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5		0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5		0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Chrysene	mg/kg	< 0.5		0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5		0.5	Pass	
Fluoranthene	mg/kg	< 0.5		0.5	Pass	
Fluorene	mg/kg	< 0.5		0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5		0.5	Pass	
Naphthalene	mg/kg	< 0.5		0.5	Pass	
Phenanthrene	mg/kg	< 0.5		0.5	Pass	
Pyrene	mg/kg	< 0.5		0.5	Pass	
Method Blank	Під/ку	< 0.5		0.5	1 455	
Heavy Metals						
Arsenic	mg/kg	< 2		2	Pass	
Cadmium	mg/kg	< 0.4		0.4	Pass	
Chromium	mg/kg	< 0.4		5	Pass	
Copper	mg/kg	< 5		5	Pass	
Lead	mg/kg	< 5		5	Pass	
Mercury	mg/kg	< 0.1		0.1	Pass	
Nickel	-	< 0.1		5	Pass	
	mg/kg			5 5		
	mg/kg	< 5		5	Pass	
LCS - % Recovery				1		
Total Recoverable Hydrocarbons - 1999 NEPM Fractions TRH C6-C9	%	107		0-130	Pass	

٢	est		Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
TRH C10-C14			%	98		70-130	Pass	
LCS - % Recovery							•	
BTEX								
Benzene			%	109		70-130	Pass	
Toluene			%	109		70-130	Pass	
Ethylbenzene			%	116		70-130	Pass	
m&p-Xylenes			%	123		70-130	Pass	
o-Xylene			%	127		70-130	Pass	
Xylenes - Total*			%	124		70-130	Pass	
LCS - % Recovery				4				
Total Recoverable Hydrocarb	oons - 2013 NEPM Fract	ions						
Naphthalene			%	122		70-130	Pass	
TRH C6-C10			%	112		70-130	Pass	
TRH >C10-C16			%	95		70-130	Pass	
LCS - % Recovery								
Polycyclic Aromatic Hydroca	rbons							
Acenaphthene			%	100		70-130	Pass	
Acenaphthylene			%	93		70-130	Pass	
Anthracene			%	91		70-130	Pass	
Benz(a)anthracene			%	95		70-130	Pass	
Benzo(a)pyrene			%	94		70-130	Pass	
Benzo(b&j)fluoranthene			%	95		70-130	Pass	
Benzo(g.h.i)perylene			%	89		70-130	Pass	
Benzo(k)fluoranthene			%	108		70-130	Pass	
Chrysene			%	103		70-130	Pass	
Dibenz(a.h)anthracene			%	96		70-130	Pass	
Fluoranthene			%	88		70-130	Pass	
Fluorene			%	102		70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	86		70-130	Pass	
Naphthalene			%	105		70-130	Pass	
Phenanthrene			%	100		70-130	Pass	
Pyrene			%	88		70-130	Pass	
LCS - % Recovery							•	
Heavy Metals								
Arsenic			%	97		70-130	Pass	
Cadmium			%	95		70-130	Pass	
Chromium			%	93		70-130	Pass	
Copper			%	93		70-130	Pass	
Lead			%	94		70-130	Pass	
Mercury			%	96		70-130	Pass	
Nickel			%	93		70-130	Pass	
Zinc			%	91		70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery				1	· · ·			
Total Recoverable Hydrocarb				Result 1				
TRH C6-C9	S20-Ap29035	NCP	%	99		70-130	Pass	
TRH C10-C14	S20-Ap29035	NCP	%	80		70-130	Pass	
Spike - % Recovery				1	1	T	1	
втех				Result 1				
Benzene	S20-Ap29035	NCP	%	113		70-130	Pass	
Toluene	S20-Ap29035	NCP	%	114		70-130	Pass	
Ethylbenzene	S20-Ap29035	NCP	%	118		70-130	Pass	
m&p-Xylenes	S20-Ap29035	NCP	%	122		70-130	Pass	
o-Xylene	S20-Ap29035	NCP	%	124		70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Xylenes - Total*	S20-Ap29035	NCP	%	123			70-130	Pass	
Spike - % Recovery	• •								
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1					
Naphthalene	S20-Ap29035	NCP	%	114			70-130	Pass	
TRH C6-C10	S20-Ap29035	NCP	%	102			70-130	Pass	
TRH >C10-C16	S20-Ap29035	NCP	%	83			70-130	Pass	
Spike - % Recovery				•				•	
Heavy Metals				Result 1					
Arsenic	S20-Ap29035	NCP	%	97			70-130	Pass	
Cadmium	S20-Ap29035	NCP	%	99			70-130	Pass	
Chromium	S20-Ap29035	NCP	%	108			70-130	Pass	
Copper	S20-Ap29035	NCP	%	87			70-130	Pass	
Lead	S20-Ap29965	NCP	%	97			70-130	Pass	
Mercury	S20-Ap29035	NCP	%	104			70-130	Pass	
Nickel	S20-Ap29035	NCP	%	97			70-130	Pass	
Zinc	S20-Ap29279	NCP	%	120			70-130	Pass	
Test	Lab Sample ID	QA	Units	Result 1			Acceptance	Pass	Qualifying
		Source	Units	Result 1			Limits	Limits	Code
Duplicate Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S20-Ap28975	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S20-Ap30188	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S20-Ap30188	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S20-Ap30188	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate	020-Ap30100	INCI	ilig/kg		< 50		5078	1 855	
BTEX				Result 1	Result 2	RPD	1		
Benzene	S20-Ap28975	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S20-Ap28975	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S20-Ap28975	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S20-Ap28975	CP	mg/kg	< 0.2	< 0.1	<1	30%	Pass	
o-Xylene	S20-Ap28975	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Xylenes - Total*	S20-Ap28975	CP	mg/kg	< 0.3	< 0.1	<1	30%	Pass	
Duplicate	320-Ap26975		nig/kg	< 0.5	< 0.5	<1	30 %	газэ	
	2012 NEDM Freed	lene		Deput 1	Deput 2	RPD			
Total Recoverable Hydrocarbons -			mallea	Result 1	Result 2		200/	Deee	
Naphthalene	S20-Ap28975	CP CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S20-Ap28975		mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	S20-Ap30188	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate Polycyclic Aromatic Hydrocarbons				Result 1	Result 2	RPD			
Acenaphthene	S20-Ap28975	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S20-Ap28975	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S20-Ap28975	CP		< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene		CP	mg/kg				30%		
	S20-Ap28975 S20-Ap28975	CP CP	mg/kg	0.6	< 0.5	15 <1	30%	Pass	
Benzo(a)pyrene		CP CP	mg/kg	< 0.5	< 0.5			Pass	
Benzo(b&j)fluoranthene	S20-Ap28975	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S20-Ap28975	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S20-Ap28975	CP	mg/kg	0.6	< 0.5	20	30%	Pass	
Chrysene Dibonz(a b)anthracono	S20-Ap28975	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S20-Ap28975		mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S20-Ap28975	CP	mg/kg	0.9	0.8	19	30%	Pass	
Fluorene	S20-Ap28975	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S20-Ap28975	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S20-Ap28975	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S20-Ap28975	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S20-Ap28975	CP	mg/kg	0.9	0.8	19	30%	Pass	

Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S20-Ap30039	NCP	mg/kg	16	14	13	30%	Pass	
Cadmium	S20-Ap30039	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S20-Ap30039	NCP	mg/kg	21	21	<1	30%	Pass	
Copper	S20-Ap30039	NCP	mg/kg	35	35	1.0	30%	Pass	
Lead	S20-Ap30039	NCP	mg/kg	20	19	5.0	30%	Pass	
Mercury	S20-Ap30039	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S20-Ap30039	NCP	mg/kg	27	25	8.0	30%	Pass	
Zinc	S20-Ap30039	NCP	mg/kg	110	100	11	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S20-Ap28975	CP	%	13	11	16	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
N07	Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Authorised By

Ursula Long Andrew Sullivan Gabriele Cordero Analytical Services Manager Senior Analyst-Organic (NSW) Senior Analyst-Metal (NSW)

Glenn Jackson General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 240692

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Wen-Fei Yuan
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	<u>86767.03, Haymarket, SSI</u>
Number of Samples	11 Soil, 1 Water
Date samples received	08/04/2020
Date completed instructions received	09/04/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details

Date results requested by Date of Issue

20/04/2020 20/04/2020

NATA Accreditation Number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Panika Wongchanda Authorised by Asbestos Approved Signatory: Lucy Zhu <u>Results Approved By</u>

Diego Bigolin, Team Leader, Inorganics Hannah Nguyen, Senior Chemist Josh Williams, Senior Chemist Loren Bardwell, Senior Chemist Lucy Zhu, Asbestos Supervisor Ridwan Wijaya, Lab Team Leader Authorised By

Nancy Zhang, Laboratory Manager

Client Reference: 86767.03, Haymarket, SSI

Our Reference		240692-1	240692-2	240692-3	240692-4	240692-5
Your Reference	UNITS	BH101/0.1-0.2	BH101/0.9-1.0	BH102/1.5-1.6	BH102/3.1-3.2	BH102/4-4.1
Date Sampled		08/04/2020	08/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	15/04/2020	15/04/2020	15/04/2020	15/04/2020	15/04/2020
TRH C6 - C9	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	98	98	106	101	96

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		240692-6	240692-7	240692-8	240692-9	240692-10
Your Reference	UNITS	BH102/4.9-5.0	BH103/1-1.1	BH103/2-2.1	BH104/1-1.1	BH105/0.05-0.1
Date Sampled		07/04/2020	08/04/2020	08/04/2020	08/04/2020	08/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	15/04/2020	15/04/2020	15/04/2020	15/04/2020	15/04/2020
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	101	103	102	103	95

Client Reference: 86767.03, Haymarket, SSI

vTRH(C6-C10)/BTEXN in Soil		
Our Reference		240692-11
Your Reference	UNITS	BD1/070420
Date Sampled		08/04/2020
Type of sample		Soil
Date extracted	-	14/04/2020
Date analysed	-	15/04/2020
TRH C ₆ - C ₉	mg/kg	<25
TRH C ₆ - C ₁₀	mg/kg	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
naphthalene	mg/kg	<1
Total +ve Xylenes	mg/kg	<3
Surrogate aaa-Trifluorotoluene	%	95

svTRH (C10-C40) in Soil						
Our Reference		240692-1	240692-2	240692-3	240692-4	240692-5
Your Reference	UNITS	BH101/0.1-0.2	BH101/0.9-1.0	BH102/1.5-1.6	BH102/3.1-3.2	BH102/4-4.1
Date Sampled		08/04/2020	08/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C15 - C28	mg/kg	110	330	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	120	640	<100	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	210	870	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	280	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	210	1,100	<50	<50	<50
Surrogate o-Terphenyl	%	71	70	104	98	110

svTRH (C10-C40) in Soil						
Our Reference		240692-6	240692-7	240692-8	240692-9	240692-10
Your Reference	UNITS	BH102/4.9-5.0	BH103/1-1.1	BH103/2-2.1	BH104/1-1.1	BH105/0.05-0.1
Date Sampled		07/04/2020	08/04/2020	08/04/2020	08/04/2020	08/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	110
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	250
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	330
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	330
Surrogate o-Terphenyl	%	102	104	100	94	108

Client Reference: 86767.03, Haymarket, SSI

svTRH (C10-C40) in Soil		
Our Reference		240692-11
Your Reference	UNITS	BD1/070420
Date Sampled		08/04/2020
Type of sample		Soil
Date extracted	-	14/04/2020
Date analysed	-	14/04/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50
TRH C15 - C28	mg/kg	<100
TRH C ₂₉ - C ₃₆	mg/kg	120
TRH >C ₁₀ -C ₁₆	mg/kg	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50
TRH >C ₁₆ -C ₃₄	mg/kg	170
TRH >C ₃₄ -C ₄₀	mg/kg	<100
Total +ve TRH (>C10-C40)	mg/kg	170
Surrogate o-Terphenyl	%	100

PAHs in Soil						
Our Reference		240692-1	240692-2	240692-3	240692-4	240692-5
Your Reference	UNITS	BH101/0.1-0.2	BH101/0.9-1.0	BH102/1.5-1.6	BH102/3.1-3.2	BH102/4-4.1
Date Sampled		08/04/2020	08/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	0.4	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.5	1.4	0.1	0.2	0.2
Anthracene	mg/kg	0.3	0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	1.3	2.8	0.2	0.3	0.2
Pyrene	mg/kg	1.5	3.0	0.2	0.4	0.2
Benzo(a)anthracene	mg/kg	0.6	1.9	0.1	0.2	0.1
Chrysene	mg/kg	0.8	1.2	0.1	0.2	0.1
Benzo(b,j+k)fluoranthene	mg/kg	1	3.6	0.2	0.3	<0.2
Benzo(a)pyrene	mg/kg	0.73	2.5	0.1	0.1	0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	0.5	1.3	0.1	0.2	0.1
Dibenzo(a,h)anthracene	mg/kg	0.2	0.3	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.7	1.7	0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	8.6	20	1.2	1.8	1.0
Benzo(a)pyrene TEQ calc (zero)	mg/kg	1.2	3.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	1.2	3.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	1.2	3.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	78	84	88	80	92

PAHs in Soil						
Our Reference		240692-6	240692-7	240692-8	240692-9	240692-10
Your Reference	UNITS	BH102/4.9-5.0	BH103/1-1.1	BH103/2-2.1	BH104/1-1.1	BH105/0.05-0.1
Date Sampled		07/04/2020	08/04/2020	08/04/2020	08/04/2020	08/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.3
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	0.1	1.3
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.5
Fluoranthene	mg/kg	0.1	0.1	<0.1	0.1	2.6
Pyrene	mg/kg	0.1	0.1	<0.1	0.2	2.9
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	0.1	1.6
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	1.3
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	3.2
Benzo(a)pyrene	mg/kg	0.08	0.08	<0.05	<0.05	2.0
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.2
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	0.3	0.3	<0.05	0.52	17
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	2.9
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	2.9
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	2.9
Surrogate p-Terphenyl-d14	%	84	77	94	87	84

PAHs in Soil		
Our Reference		240692-11
Your Reference	UNITS	BD1/070420
Date Sampled		08/04/2020
Type of sample		Soil
Date extracted	-	14/04/2020
Date analysed	-	14/04/2020
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	0.3
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	1.2
Anthracene	mg/kg	0.5
Fluoranthene	mg/kg	2.6
Pyrene	mg/kg	2.7
Benzo(a)anthracene	mg/kg	1.4
Chrysene	mg/kg	1.1
Benzo(b,j+k)fluoranthene	mg/kg	2.7
Benzo(a)pyrene	mg/kg	1.8
Indeno(1,2,3-c,d)pyrene	mg/kg	0.8
Dibenzo(a,h)anthracene	mg/kg	0.2
Benzo(g,h,i)perylene	mg/kg	1.3
Total +ve PAH's	mg/kg	17
Benzo(a)pyrene TEQ calc (zero)	mg/kg	2.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	2.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	2.5
Surrogate p-Terphenyl-d14	%	101

Organochlorine Pesticides in soil						
Our Reference		240692-1	240692-2	240692-3	240692-7	240692-9
Your Reference	UNITS	BH101/0.1-0.2	BH101/0.9-1.0	BH102/1.5-1.6	BH103/1-1.1	BH104/1-1.1
Date Sampled		08/04/2020	08/04/2020	07/04/2020	08/04/2020	08/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	84	92	80	83	82

Organophosphorus Pesticides in Soil						
Our Reference		240692-1	240692-2	240692-3	240692-7	240692-9
Your Reference	UNITS	BH101/0.1-0.2	BH101/0.9-1.0	BH102/1.5-1.6	BH103/1-1.1	BH104/1-1.1
Date Sampled		08/04/2020	08/04/2020	07/04/2020	08/04/2020	08/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	84	92	80	83	82

PCBs in Soil						
Our Reference		240692-1	240692-2	240692-3	240692-7	240692-9
Your Reference	UNITS	BH101/0.1-0.2	BH101/0.9-1.0	BH102/1.5-1.6	BH103/1-1.1	BH104/1-1.1
Date Sampled		08/04/2020	08/04/2020	07/04/2020	08/04/2020	08/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	84	92	80	83	82

Acid Extractable metals in soil				_		
Our Reference		240692-1	240692-2	240692-3	240692-4	240692-5
Your Reference	UNITS	BH101/0.1-0.2	BH101/0.9-1.0	BH102/1.5-1.6	BH102/3.1-3.2	BH102/4-4.1
Date Sampled		08/04/2020	08/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	15/04/2020	15/04/2020	15/04/2020	15/04/2020	15/04/2020
Arsenic	mg/kg	4	5	<4	5	5
Cadmium	mg/kg	<0.4	0.4	<0.4	1	<0.4
Chromium	mg/kg	10	9	4	10	16
Copper	mg/kg	89	93	62	180	86
Lead	mg/kg	150	250	68	160	170
Mercury	mg/kg	0.3	0.3	0.1	0.4	1.3
Nickel	mg/kg	6	9	4	6	23
Zinc	mg/kg	96	210	100	160	540

Acid Extractable metals in soil						
Our Reference		240692-6	240692-7	240692-8	240692-9	240692-10
Your Reference	UNITS	BH102/4.9-5.0	BH103/1-1.1	BH103/2-2.1	BH104/1-1.1	BH105/0.05-0.1
Date Sampled		07/04/2020	08/04/2020	08/04/2020	08/04/2020	08/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	15/04/2020	15/04/2020	15/04/2020	15/04/2020	15/04/2020
Arsenic	mg/kg	<4	<4	9	5	8
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	0.6
Chromium	mg/kg	8	2	8	7	13
Copper	mg/kg	7	5	37	33	93
Lead	mg/kg	20	57	28	45	280
Mercury	mg/kg	0.4	<0.1	<0.1	<0.1	1
Nickel	mg/kg	4	1	6	11	14
Zinc	mg/kg	26	14	39	61	240

Acid Extractable metals in soil			
Our Reference		240692-11	240692-13
Your Reference	UNITS	BD1/070420	BH101/0.1-0.2 - [TRIPLICATE]
Date Sampled		08/04/2020	08/04/2020
Type of sample		Soil	Soil
Date prepared	-	14/04/2020	14/04/2020
Date analysed	-	15/04/2020	15/04/2020
Arsenic	mg/kg	9	<4
Cadmium	mg/kg	0.7	<0.4
Chromium	mg/kg	14	8
Copper	mg/kg	99	56
Lead	mg/kg	300	160
Mercury	mg/kg	0.8	0.3
Nickel	mg/kg	11	6
Zinc	mg/kg	260	120

Misc Soil - Inorg						
Our Reference		240692-1	240692-2	240692-3	240692-7	240692-9
Your Reference	UNITS	BH101/0.1-0.2	BH101/0.9-1.0	BH102/1.5-1.6	BH103/1-1.1	BH104/1-1.1
Date Sampled		08/04/2020	08/04/2020	07/04/2020	08/04/2020	08/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5

Moisture						
Our Reference		240692-1	240692-2	240692-3	240692-4	240692-5
Your Reference	UNITS	BH101/0.1-0.2	BH101/0.9-1.0	BH102/1.5-1.6	BH102/3.1-3.2	BH102/4-4.1
Date Sampled		08/04/2020	08/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	15/04/2020	15/04/2020	15/04/2020	15/04/2020	15/04/2020
Moisture	%	12	13	8.7	17	31
Moisture						
Our Reference		240692-6	240692-7	240692-8	240692-9	240692-10
Your Reference	UNITS	BH102/4.9-5.0	BH103/1-1.1	BH103/2-2.1	BH104/1-1.1	BH105/0.05-0.1
Date Sampled		07/04/2020	08/04/2020	08/04/2020	08/04/2020	08/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	15/04/2020	15/04/2020	15/04/2020	15/04/2020	15/04/2020
Moisture	%	12	5.2	12	5.6	11
Moisture						
Our Reference		240692-11				
Your Reference	UNITS	BD1/070420				
Date Sampled		08/04/2020				

Soil

14/04/2020 15/04/2020

11

-

-

%

Type of sample

Date prepared

Date analysed

Moisture

Asbestos ID - soils					_	
Our Reference		240692-1	240692-2	240692-3	240692-4	240692-5
Your Reference	UNITS	BH101/0.1-0.2	BH101/0.9-1.0	BH102/1.5-1.6	BH102/3.1-3.2	BH102/4-4.1
Date Sampled		08/04/2020	08/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	16/04/2020	16/04/2020	16/04/2020	16/04/2020	16/04/2020
Sample mass tested	g	Approx. 35g	Approx. 30g	Approx. 30g	Approx. 30g	Approx. 20g
Sample Description	-	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks	Brown sandy soil & rocks	Brown clayey soil & rocks	Brown coarse- grained soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected				
Asbestos comments	-	NO	NO	NO	NO	NO
Trace Analysis	-	No asbestos detected				

Asbestos ID - soils					
Our Reference		240692-7	240692-8	240692-9	240692-10
Your Reference	UNITS	BH103/1-1.1	BH103/2-2.1	BH104/1-1.1	BH105/0.05-0.1
Date Sampled		08/04/2020	08/04/2020	08/04/2020	08/04/2020
Type of sample		Soil	Soil	Soil	Soil
Date analysed	-	16/04/2020	16/04/2020	16/04/2020	16/04/2020
Sample mass tested	g	Approx. 30g	Approx. 30g	Approx. 25g	Approx. 30g
Sample Description	-	Brown sandy soil & rocks			
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres			
		detected	detected	detected	detected
Asbestos comments	-	NO	NO	NO	NO
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected

vTRH(C6-C10)/BTEXN in Water		
Our Reference		240692-12
Your Reference	UNITS	Rinsate
Date Sampled		08/04/2020
Type of sample		Water
Date extracted	-	17/04/2020
Date analysed	-	17/04/2020
TRH C ₆ - C ₉	µg/L	<10
TRH C ₆ - C ₁₀	µg/L	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	µg/L	<10
Benzene	µg/L	<1
Toluene	µg/L	<1
Ethylbenzene	µg/L	<1
m+p-xylene	µg/L	<2
o-xylene	µg/L	<1
Naphthalene	µg/L	<1
Surrogate Dibromofluoromethane	%	96
Surrogate toluene-d8	%	99
Surrogate 4-BFB	%	92

svTRH (C10-C40) in Water		
Our Reference		240692-12
Your Reference	UNITS	Rinsate
Date Sampled		08/04/2020
Type of sample		Water
Date extracted	-	14/04/2020
Date analysed	-	15/04/2020
TRH C ₁₀ - C ₁₄	µg/L	<50
TRH C ₁₅ - C ₂₈	µg/L	<100
TRH C ₂₉ - C ₃₆	μg/L	<100
TRH >C ₁₀ - C ₁₆	µg/L	<50
TRH >C10 - C16 less Naphthalene (F2)	µg/L	<50
TRH >C ₁₆ - C ₃₄	µg/L	<100
TRH >C ₃₄ - C ₄₀	µg/L	<100
Surrogate o-Terphenyl	%	127

PAHs in Water		
Our Reference		240692-12
Your Reference	UNITS	Rinsate
Date Sampled		08/04/2020
Type of sample		Water
Date extracted	-	14/04/2020
Date analysed	-	14/04/2020
Naphthalene	μg/L	<1
Acenaphthylene	μg/L	<1
Acenaphthene	μg/L	<1
Fluorene	μg/L	<1
Phenanthrene	μg/L	<1
Anthracene	μg/L	<1
Fluoranthene	μg/L	<1
Pyrene	μg/L	<1
Benzo(a)anthracene	μg/L	<1
Chrysene	μg/L	<1
Benzo(b,j+k)fluoranthene	μg/L	<2
Benzo(a)pyrene	μg/L	<1
Indeno(1,2,3-c,d)pyrene	μg/L	<1
Dibenzo(a,h)anthracene	μg/L	<1
Benzo(g,h,i)perylene	μg/L	<1
Benzo(a)pyrene TEQ	μg/L	<5
Total +ve PAH's	μg/L	NIL (+)VE
Surrogate p-Terphenyl-d14	%	99

Metals in Water - Dissolved		
Our Reference		240692-12
Your Reference	UNITS	Rinsate
Date Sampled		08/04/2020
Type of sample		Water
Date digested	-	15/04/2020
Date analysed	-	15/04/2020
Arsenic - Dissolved	mg/L	<0.05
Cadmium - Dissolved	mg/L	<0.01
Chromium - Dissolved	mg/L	<0.01
Copper - Dissolved	mg/L	<0.01
Lead - Dissolved	mg/L	<0.03
Mercury - Dissolved	mg/L	<0.0005
Nickel - Dissolved	mg/L	<0.02
Zinc - Dissolved	mg/L	<0.02

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
AT-008	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-012/017	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS.
Org-012/017	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS and/or GC-MS/MS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-012/017	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.

Methodology Summary
Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<br="" teq="" teqs="" that="" the="" this="" to="">2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<br="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.="">3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<br="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" the="">Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>
Water samples are analysed directly by purge and trap GC-MS.
Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil						Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	240692-2
Date extracted	-			14/04/2020	1	14/04/2020	14/04/2020		14/04/2020	14/04/2020
Date analysed	-			15/04/2020	1	15/04/2020	15/04/2020		15/04/2020	15/04/2020
TRH C ₆ - C ₉	mg/kg	25	Org-016	<25	1	<25	<25	0	83	82
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	<25	1	<25	<25	0	83	82
Benzene	mg/kg	0.2	Org-016	<0.2	1	<0.2	<0.2	0	70	70
Toluene	mg/kg	0.5	Org-016	<0.5	1	<0.5	<0.5	0	83	82
Ethylbenzene	mg/kg	1	Org-016	<1	1	<1	<1	0	89	89
m+p-xylene	mg/kg	2	Org-016	<2	1	<2	<2	0	86	85
o-Xylene	mg/kg	1	Org-016	<1	1	<1	<1	0	82	81
naphthalene	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-016	98	1	98	100	2	101	97

QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil					Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
Date extracted	-			[NT]	11	14/04/2020	14/04/2020			[NT]	
Date analysed	-			[NT]	11	15/04/2020	15/04/2020			[NT]	
TRH C ₆ - C ₉	mg/kg	25	Org-016	[NT]	11	<25	<25	0		[NT]	
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	[NT]	11	<25	<25	0		[NT]	
Benzene	mg/kg	0.2	Org-016	[NT]	11	<0.2	<0.2	0		[NT]	
Toluene	mg/kg	0.5	Org-016	[NT]	11	<0.5	<0.5	0		[NT]	
Ethylbenzene	mg/kg	1	Org-016	[NT]	11	<1	<1	0		[NT]	
m+p-xylene	mg/kg	2	Org-016	[NT]	11	<2	<2	0		[NT]	
o-Xylene	mg/kg	1	Org-016	[NT]	11	<1	<1	0		[NT]	
naphthalene	mg/kg	1	Org-014	[NT]	11	<1	<1	0		[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-016	[NT]	11	95	97	2		[NT]	

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	240692-2
Date extracted	-			14/04/2020	1	14/04/2020	14/04/2020		14/04/2020	14/04/2020
Date analysed	-			14/04/2020	1	14/04/2020	14/04/2020		14/04/2020	14/04/2020
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	<50	1	<50	<50	0	115	103
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	<100	1	110	<100	10	83	109
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	<100	1	120	<100	18	92	#
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	<50	1	<50	<50	0	115	103
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	<100	1	210	110	62	83	109
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	<100	1	<100	<100	0	92	#
Surrogate o-Terphenyl	%		Org-003	100	1	71	115	47	101	70

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				11	14/04/2020	14/04/2020			[NT]
Date analysed	-				11	14/04/2020	14/04/2020			[NT]
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003		11	<50	<50	0		[NT]
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003		11	<100	<100	0		[NT]
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003		11	120	120	0		[NT]
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003		11	<50	<50	0		[NT]
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003		11	170	160	6		[NT]
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003		11	<100	<100	0		[NT]
Surrogate o-Terphenyl	%		Org-003		11	100	100	0		[NT]

QUAL	TY CONTRC	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	240692-2
Date extracted	-			14/04/2020	1	14/04/2020	14/04/2020		14/04/2020	14/04/2020
Date analysed	-			14/04/2020	1	14/04/2020	14/04/2020		14/04/2020	14/04/2020
Naphthalene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	78	79
Acenaphthylene	mg/kg	0.1	Org-012/017	<0.1	1	0.1	0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fluorene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	72	84
Phenanthrene	mg/kg	0.1	Org-012/017	<0.1	1	0.5	0.4	22	114	113
Anthracene	mg/kg	0.1	Org-012/017	<0.1	1	0.3	0.2	40	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-012/017	<0.1	1	1.3	0.9	36	114	73
Pyrene	mg/kg	0.1	Org-012/017	<0.1	1	1.5	1.0	40	108	76
Benzo(a)anthracene	mg/kg	0.1	Org-012/017	<0.1	1	0.6	0.6	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-012/017	<0.1	1	0.8	0.5	46	86	117
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012/017	<0.2	1	1	1	0	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-012/017	<0.05	1	0.73	0.5	37	70	79
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012/017	<0.1	1	0.5	0.4	22	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012/017	<0.1	1	0.2	<0.1	67	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012/017	<0.1	1	0.7	0.5	33	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-012/017	118	1	78	82	5	95	79

QUALI	TY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				11	14/04/2020	14/04/2020			[NT]
Date analysed	-				11	14/04/2020	14/04/2020			[NT]
Naphthalene	mg/kg	0.1	Org-012/017		11	<0.1	<0.1	0		[NT]
Acenaphthylene	mg/kg	0.1	Org-012/017		11	0.3	0.3	0		[NT]
Acenaphthene	mg/kg	0.1	Org-012/017		11	<0.1	<0.1	0		[NT]
Fluorene	mg/kg	0.1	Org-012/017		11	<0.1	<0.1	0		[NT]
Phenanthrene	mg/kg	0.1	Org-012/017		11	1.2	1.1	9		[NT]
Anthracene	mg/kg	0.1	Org-012/017		11	0.5	0.4	22		[NT]
Fluoranthene	mg/kg	0.1	Org-012/017		11	2.6	2.2	17		[NT]
Pyrene	mg/kg	0.1	Org-012/017		11	2.7	1.9	35		[NT]
Benzo(a)anthracene	mg/kg	0.1	Org-012/017		11	1.4	1.3	7		[NT]
Chrysene	mg/kg	0.1	Org-012/017		11	1.1	1.5	31		[NT]
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012/017		11	2.7	2.6	4		[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-012/017		11	1.8	1.7	6		[NT]
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012/017		11	0.8	0.9	12		[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012/017		11	0.2	<0.1	67		[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012/017		11	1.3	<0.1	171		[NT]
Surrogate p-Terphenyl-d14	%		Org-012/017		11	101	87	15		[NT]

QUALITY CONT	ROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	240692-2
Date extracted	-			14/04/2020	1	14/04/2020	14/04/2020		14/04/2020	14/04/2020
Date analysed	-			14/04/2020	1	14/04/2020	14/04/2020		14/04/2020	14/04/2020
alpha-BHC	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	90	82
НСВ	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	86	92
gamma-BHC	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	124	64
delta-BHC	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	92	92
Heptachlor Epoxide	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	76	68
gamma-Chlordane	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	120	82
Dieldrin	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	110	82
Endrin	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	68	102
Endosulfan II	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	114	77
Endrin Aldehyde	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	120	72
Methoxychlor	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-012/017	81	1	84	83	1	80	74

QUALITY CONTRO	L: Organoph	osphorus	Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	240692-2
Date extracted	-			14/04/2020	1	14/04/2020	14/04/2020		14/04/2020	14/04/2020
Date analysed	-			14/04/2020	1	14/04/2020	14/04/2020		14/04/2020	14/04/2020
Dichlorvos	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	80	118
Dimethoate	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	108	104
Fenitrothion	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	114	98
Malathion	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	116	114
Chlorpyriphos	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	112	104
Parathion	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	94	93
Bromophos-ethyl	mg/kg	0.1	AT-008	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	104	87
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-012/017	81	1	84	83	1	80	74

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	240692-2
Date extracted	-			14/04/2020	1	14/04/2020	14/04/2020		14/04/2020	14/04/2020
Date analysed	-			14/04/2020	1	14/04/2020	14/04/2020		14/04/2020	14/04/2020
Aroclor 1016	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0		
Aroclor 1221	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0		
Aroclor 1232	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0		
Aroclor 1242	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0		
Aroclor 1248	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0		
Aroclor 1254	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	89	97
Aroclor 1260	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0		
Surrogate TCMX	%		Org-006	81	1	84	83	1	80	74

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	240692-2
Date prepared	-			14/04/2020	1	14/04/2020	14/04/2020		14/04/2020	14/04/2020
Date analysed	-			15/04/2020	1	15/04/2020	15/04/2020		15/04/2020	15/04/2020
Arsenic	mg/kg	4	Metals-020	<4	1	4	4	0	102	100
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	<0.4	<0.4	0	96	89
Chromium	mg/kg	1	Metals-020	<1	1	10	8	22	107	96
Copper	mg/kg	1	Metals-020	<1	1	89	61	37	101	127
Lead	mg/kg	1	Metals-020	<1	1	150	180	18	111	##
Mercury	mg/kg	0.1	Metals-021	<0.1	1	0.3	0.3	0	92	#
Nickel	mg/kg	1	Metals-020	<1	1	6	7	15	101	93
Zinc	mg/kg	1	Metals-020	<1	1	96	150	44	107	99

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	11	14/04/2020	14/04/2020			[NT]
Date analysed	-			[NT]	11	15/04/2020	15/04/2020			[NT]
Arsenic	mg/kg	4	Metals-020	[NT]	11	9	9	0		[NT]
Cadmium	mg/kg	0.4	Metals-020	[NT]	11	0.7	0.9	25		[NT]
Chromium	mg/kg	1	Metals-020	[NT]	11	14	16	13		[NT]
Copper	mg/kg	1	Metals-020	[NT]	11	99	110	11		[NT]
Lead	mg/kg	1	Metals-020	[NT]	11	300	300	0		[NT]
Mercury	mg/kg	0.1	Metals-021	[NT]	11	0.8	1	22		[NT]
Nickel	mg/kg	1	Metals-020	[NT]	11	11	14	24		[NT]
Zinc	mg/kg	1	Metals-020	[NT]	11	260	300	14	[NT]	[NT]

QUALITY	CONTROL	Misc Soi	il - Inorg			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	240692-2
Date prepared	-			14/04/2020	1	14/04/2020	14/04/2020		14/04/2020	14/04/2020
Date analysed	-			14/04/2020	1	14/04/2020	14/04/2020		14/04/2020	14/04/2020
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	<5	1	<5	<5	0	100	101

QUALITY CONT	ROL: vTRH(C6-C10)/E	3TEXN in Water			Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			17/04/2020	[NT]		[NT]	[NT]	17/04/2020	
Date analysed	-			17/04/2020	[NT]		[NT]	[NT]	17/04/2020	
TRH C ₆ - C ₉	μg/L	10	Org-016	<10	[NT]		[NT]	[NT]	103	
TRH C ₆ - C ₁₀	μg/L	10	Org-016	<10	[NT]		[NT]	[NT]	103	
Benzene	μg/L	1	Org-016	<1	[NT]		[NT]	[NT]	97	
Toluene	μg/L	1	Org-016	<1	[NT]		[NT]	[NT]	106	
Ethylbenzene	μg/L	1	Org-016	<1	[NT]		[NT]	[NT]	107	
m+p-xylene	μg/L	2	Org-016	<2	[NT]		[NT]	[NT]	102	
o-xylene	μg/L	1	Org-016	<1	[NT]		[NT]	[NT]	103	
Naphthalene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate Dibromofluoromethane	%		Org-016	97	[NT]		[NT]	[NT]	120	
Surrogate toluene-d8	%		Org-016	99	[NT]		[NT]	[NT]	116	
Surrogate 4-BFB	%		Org-016	96	[NT]		[NT]	[NT]	109	

QUALITY CON	TROL: svTF	RH (C10-0	C40) in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W4	[NT]
Date extracted	-			14/04/2020	[NT]		[NT]	[NT]	14/04/2020	
Date analysed	-			15/04/2020	[NT]		[NT]	[NT]	15/04/2020	
TRH C ₁₀ - C ₁₄	µg/L	50	Org-003	<50	[NT]		[NT]	[NT]	129	
TRH C ₁₅ - C ₂₈	µg/L	100	Org-003	<100	[NT]		[NT]	[NT]	108	
TRH C ₂₉ - C ₃₆	µg/L	100	Org-003	<100	[NT]		[NT]	[NT]	103	
TRH >C ₁₀ - C ₁₆	µg/L	50	Org-003	<50	[NT]		[NT]	[NT]	129	
TRH >C ₁₆ - C ₃₄	µg/L	100	Org-003	<100	[NT]		[NT]	[NT]	108	
TRH >C ₃₄ - C ₄₀	µg/L	100	Org-003	<100	[NT]		[NT]	[NT]	103	
Surrogate o-Terphenyl	%		Org-003	109	[NT]	[NT]	[NT]	[NT]	81	[NT]

QUALIT	Y CONTROL	.: PAHs ir	n Water			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W4	[NT]
Date extracted	-			14/04/2020	[NT]		[NT]	[NT]	14/04/2020	
Date analysed	-			14/04/2020	[NT]		[NT]	[NT]	14/04/2020	
Naphthalene	μg/L	1	Org-012/017	<1	[NT]		[NT]	[NT]	82	
Acenaphthylene	µg/L	1	Org-012/017	<1	[NT]		[NT]	[NT]	[NT]	
Acenaphthene	µg/L	1	Org-012/017	<1	[NT]		[NT]	[NT]	[NT]	
Fluorene	µg/L	1	Org-012/017	<1	[NT]		[NT]	[NT]	86	
Phenanthrene	μg/L	1	Org-012/017	<1	[NT]		[NT]	[NT]	80	
Anthracene	µg/L	1	Org-012/017	<1	[NT]		[NT]	[NT]	[NT]	
Fluoranthene	μg/L	1	Org-012/017	<1	[NT]		[NT]	[NT]	76	
Pyrene	μg/L	1	Org-012/017	<1	[NT]		[NT]	[NT]	82	
Benzo(a)anthracene	μg/L	1	Org-012/017	<1	[NT]		[NT]	[NT]	[NT]	
Chrysene	µg/L	1	Org-012/017	<1	[NT]		[NT]	[NT]	92	
Benzo(b,j+k)fluoranthene	μg/L	2	Org-012/017	<2	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene	μg/L	1	Org-012/017	<1	[NT]		[NT]	[NT]	86	
Indeno(1,2,3-c,d)pyrene	μg/L	1	Org-012/017	<1	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene	µg/L	1	Org-012/017	<1	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene	μg/L	1	Org-012/017	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-012/017	91	[NT]		[NT]	[NT]	80	

QUALITY CONTROL: Metals in Water - Dissolved						Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date digested	-			15/04/2020	[NT]		[NT]	[NT]	15/04/2020	
Date analysed	-			15/04/2020	[NT]		[NT]	[NT]	15/04/2020	
Arsenic - Dissolved	mg/L	0.05	Metals-020	<0.05	[NT]		[NT]	[NT]	96	
Cadmium - Dissolved	mg/L	0.01	Metals-020	<0.01	[NT]		[NT]	[NT]	100	
Chromium - Dissolved	mg/L	0.01	Metals-020	<0.01	[NT]		[NT]	[NT]	98	
Copper - Dissolved	mg/L	0.01	Metals-020	<0.01	[NT]		[NT]	[NT]	96	
Lead - Dissolved	mg/L	0.03	Metals-020	<0.03	[NT]		[NT]	[NT]	98	
Mercury - Dissolved	mg/L	0.0005	Metals-021	<0.0005	[NT]		[NT]	[NT]	99	
Nickel - Dissolved	mg/L	0.02	Metals-020	<0.02	[NT]		[NT]	[NT]	102	
Zinc - Dissolved	mg/L	0.02	Metals-020	<0.02	[NT]		[NT]	[NT]	106	

Result Definiti	Result Definitions					
NT	Not tested					
NA	Test not required					
INS	Insufficient sample for this test					
PQL	Practical Quantitation Limit					
<	Less than					
>	Greater than					
RPD	Relative Percent Difference					
LCS	Laboratory Control Sample					
NS	Not specified					
NEPM	National Environmental Protection Measure					
NR	Not Reported					

Quality Contro	Quality Control Definitions					
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.					
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.					
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.					
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.					
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.					

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Dissolved Metals: no filtered, preserved sample was received, therefore the unpreserved sample was filtered through 0.45µm filter at the lab. Note: there is a possibility some elements may be underestimated.

Acid Extractable Metals in Soil:

-The laboratory RPD acceptance criteria has been exceeded for 240692-1 for Zn. Therefore a triplicate result has been issued as laboratory sample number 240692-13.

-# Percent recovery is not possible to report due to the inhomogeneous nature of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

-## Percent recovery is not possible to report due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

Asbestos: A portion of the supplied samples were sub-sampled for asbestos analysis according to Envirolab procedures. We cannot guarantee that these sub-samples are indicative of the entire sample. Envirolab recommends supplying 40-50g of sample in its own container. Note: Samples requested for asbestos testing were sub-sampled from jars provided by the client.

TRH Soil C10-C40 NEPM - # Percent recovery for the matrix spike is not possible to report due to interference from analytes (other than those being tested) in sample240692-2ms.

- ---- --

.

CHAIN OF CUSTODY DESPATCH SHEET

Project No:	8676	7.03			Subur	<u> </u>	Hayma	rket		· · · · · · ·	To:	Envirolab Services		
Project Name:		MARKET, SSI			Order	Number	152065							
Project Manager:	WFY				Sample	er:	WFY				Attn:	Simon Song		
Emails:				tners.com.au							Phone:			
Date Required:			4 hours	48 hours 🛛	72 h	ours 🗆	Stand	ard 🛛			Email:			
Prior Storage:	Esky		□ Shelved		Do sam	oles contair	i 'potentia	I' HBM?	Yes 🛛		S, then handle	e, transport and store in accordance with FPM HAZID)		
Sample	Lab	Sampled	Sample Type	Container Type	R	- 5				Analyte				
<u></u>	ID	Date S	S - soil W - wate	G - glass P - plasti	Combo84	Combo3	Combo 3					Notes		
BH101/0.1-0.2		08/04/20	S	G/P	X						Please st	ore extra samples until further notice.		
BH101/0.9-1.0	2	08/04/20	s	G/P	X							samples will be despatched on 14/04/2020		
BH102/1.5-1.6	3	7-8/04/2020	S	G/P	X									
BH102/3.1-3.2	4	7-8/04/2020	S	G/P		x						Envirolab Services 12 Ashley St		
BH102/4-4.1	5	7-8/04/2020	S	G/P		х					1	ENVIROLAB Chatsweed NSW 2067 Ph: (02) 9910 6200		
BH102/4.9-5.0	6	7-8/04/2020	S	G/P			Х				1	Job No: 2 40692		
BH103/1-1.1	7	08/04/20	S	G/P	X							Date Received: _8/-4/20 Time Received: _17-00		
BH103/2-2.1	8	08/04/20	S	G/P		_ X					Time Received: 1700			
BH104/1-1.1	.9	08/04/20	S	G/P	X						· ·	Received By: The Temp: 2007/Ambient		
BH105/0.05-0.1	10	08/04/20	S	G/P		x					1	Cooling: Ice/Icepack Security Intact/Broken/None		
BD1/070420	1	08/04/20	S	G			Х					Security in contraction		
Rinsate	17	08/04/20	w	G/P			X			*	Please filt	ter HM for rinsate.		
	•													
PQL (S) mg/kg											ANZECO	PQLs req'd for all water analytes		
PQL = practical qua				lefault to Laborat	ory Meth	od Detect	ion Limit				1			
Metals to Analyse: Total number of sa			ed here:	Relinquis	and hur		/FYT	7				port/Reference No: 240692		
Send Results to:		Douglas Partn	ers Ptv i td	Address:		v Iermitage				boratory by:		Bhamay 0000 0000		
Signed:				Received by:	Jason	Day	ELS	si Kyue		<i>Dp</i>		Phone: 9809 0999 Date & Time: 8/4/20 1700		
									rc'd	2 9/4, 1545	20 2	077		

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 240692-A

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Wen-Fei Yuan
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	<u>86767.03, Haymarket, SSI</u>
Number of Samples	11 Soil, 1 Water
Date samples received	08/04/2020
Date completed instructions received	20/04/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details				
Date results requested by	27/04/2020			
Date of Issue	27/04/2020			
NATA Accreditation Number 2901. This document shall not be reproduced except in full.				
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *				

Results Approved By Loren Bardwell, Senior Chemist Steven Luong, Organics Supervisor

Authorised By

Nancy Zhang, Laboratory Manager

Metals in TCLP USEPA1311						
Our Reference		240692-A-1	240692-A-2	240692-A-4	240692-A-5	240692-A-10
Your Reference	UNITS	BH101/0.1-0.2	BH101/0.9-1.0	BH102/3.1-3.2	BH102/4-4.1	BH105/0.05-0.1
Date Sampled		08/04/2020	08/04/2020	07/04/2020	07/04/2020	08/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	23/04/2020	23/04/2020	23/04/2020	23/04/2020	23/04/2020
Date analysed	-	23/04/2020	23/04/2020	23/04/2020	23/04/2020	23/04/2020
pH of soil for fluid# determ.	pH units	9.1	9.2	6.2	6.0	9.3
pH of soil TCLP (after HCl)	pH units	1.7	1.7	1.7	1.7	1.7
Extraction fluid used	-	1	1	1	1	1
pH of final Leachate	pH units	5.1	5.0	4.9	4.9	5.1
Lead in TCLP	mg/L	0.1	0.34	0.04	<0.03	0.1

Metals in TCLP USEPA1311		
Our Reference		240692-A-11
Your Reference	UNITS	BD1/070420
Date Sampled		08/04/2020
Type of sample		Soil
Date extracted	-	23/04/2020
Date analysed	-	23/04/2020
pH of soil for fluid# determ.	pH units	9.4
pH of soil TCLP (after HCl)	pH units	1.8
Extraction fluid used	-	1
pH of final Leachate	pH units	5.1
Lead in TCLP	mg/L	0.2

PAHs in TCLP (USEPA 1311)			
Our Reference		240692-A-2	240692-A-10
Your Reference	UNITS	BH101/0.9-1.0	BH105/0.05-0.1
Date Sampled		08/04/2020	08/04/2020
Type of sample		Soil	Soil
Date extracted	-	23/04/2020	23/04/2020
Date analysed	-	23/04/2020	23/04/2020
Naphthalene in TCLP	mg/L	<0.001	<0.001
Acenaphthylene in TCLP	mg/L	<0.001	<0.001
Acenaphthene in TCLP	mg/L	<0.001	<0.001
Fluorene in TCLP	mg/L	<0.001	<0.001
Phenanthrene in TCLP	mg/L	<0.001	<0.001
Anthracene in TCLP	mg/L	<0.001	<0.001
Fluoranthene in TCLP	mg/L	<0.001	<0.001
Pyrene in TCLP	mg/L	<0.001	<0.001
Benzo(a)anthracene in TCLP	mg/L	<0.001	<0.001
Chrysene in TCLP	mg/L	<0.001	<0.001
Benzo(bjk)fluoranthene in TCLP	mg/L	<0.002	<0.002
Benzo(a)pyrene in TCLP	mg/L	<0.001	<0.001
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	<0.001	<0.001
Dibenzo(a,h)anthracene in TCLP	mg/L	<0.001	<0.001
Benzo(g,h,i)perylene in TCLP	mg/L	<0.001	<0.001
Total +ve PAH's	mg/L	NIL (+)VE	NIL (+)VE
Surrogate p-Terphenyl-d14	%	92	100

Method ID	Methodology Summary
EXTRACT.7	Toxicity Characteristic Leaching Procedure (TCLP) using Zero Headspace Extraction (zHE) using AS4439 and USEPA 1311.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-004	Toxicity Characteristic Leaching Procedure (TCLP) using in house method INORG-004. Please note that the mass used may be scaled down from the default based on sample mass available.
Metals-020 ICP-AES	Determination of various metals by ICP-AES.
Org-022/025	Leachates are extracted with Dichloromethane and analysed by GC-MS/GC-MSMS.

QUALITY CONTROL: Metals in TCLP USEPA1311				Duplicate			Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			23/04/2020	[NT]	[NT]	[NT]	[NT]	23/04/2020	
Date analysed	-			23/04/2020	[NT]	[NT]	[NT]	[NT]	23/04/2020	
Lead in TCLP	mg/L	0.03	Metals-020 ICP- AES	<0.03	[NT]	[NT]	[NT]	[NT]	89	[NT]

QUALITY CONTROL: PAHs in TCLP (USEPA 1311)						Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			23/04/2020	[NT]		[NT]	[NT]	23/04/2020	
Date analysed	-			23/04/2020	[NT]		[NT]	[NT]	23/04/2020	
Naphthalene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	128	
Acenaphthylene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Acenaphthene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Fluorene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	122	
Phenanthrene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	108	
Anthracene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Fluoranthene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	124	
Pyrene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	126	
Benzo(a)anthracene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Chrysene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	116	
Benzo(bjk)fluoranthene in TCLP	mg/L	0.002	Org-022/025	<0.002	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	94	
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	77	[NT]		[NT]	[NT]	103	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control Definitions							
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.						
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.						
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.						
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.						
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.						

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 241179

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Wen-Fei Yuan
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	<u>86767.03, Haymarket</u>
Number of Samples	7 SOIL
Date samples received	16/04/2020
Date completed instructions received	20/04/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details

 Date results requested by
 27/04/2020

 Date of Issue
 27/04/2020

 NATA Accreditation Number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Lucy Zhu Authorised by Asbestos Approved Signatory: Lucy Zhu

Results Approved By

Diego Bigolin, Team Leader, Inorganics Hannah Nguyen, Senior Chemist Josh Williams, Senior Chemist Lucy Zhu, Asbestos Supervisor Authorised By

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		241179-1	241179-2	241179-3	241179-4	241179-5
Your Reference	UNITS	BH103	BH103	BH103	BH104	BH104
Depth		2.9-3.0	5.1-5.2	6.3-6.45	1.4-1.5	2.8-2.9
Date Sampled		16/04/2020	16/04/2020	16/04/2020	14/04/2020	14/04/2020
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date extracted	-	21/04/2020	21/04/2020	21/04/2020	21/04/2020	21/04/2020
Date analysed	-	23/04/2020	23/04/2020	23/04/2020	23/04/2020	23/04/2020
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	102	105	105	104	105

vTRH(C6-C10)/BTEXN in Soil			
Our Reference		241179-6	241179-7
Your Reference	UNITS	ТВ	TS
Depth		-	-
Date Sampled		14/04/2020	14/04/2020
Type of sample		SOIL	SOIL
Date extracted	-	21/04/2020	21/04/2020
Date analysed	-	23/04/2020	23/04/2020
TRH C6 - C9	mg/kg	<25	[NA]
TRH C ₆ - C ₁₀	mg/kg	<25	[NA]
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	[NA]
Benzene	mg/kg	<0.2	97%
Toluene	mg/kg	<0.5	98%
Ethylbenzene	mg/kg	<1	94%
m+p-xylene	mg/kg	<2	95%
o-Xylene	mg/kg	<1	93%
naphthalene	mg/kg	<1	[NA]
Total +ve Xylenes	mg/kg	<3	[NA]
Surrogate aaa-Trifluorotoluene	%	109	95

svTRH (C10-C40) in Soil						
Our Reference		241179-1	241179-2	241179-3	241179-4	241179-5
Your Reference	UNITS	BH103	BH103	BH103	BH104	BH104
Depth		2.9-3.0	5.1-5.2	6.3-6.45	1.4-1.5	2.8-2.9
Date Sampled		16/04/2020	16/04/2020	16/04/2020	14/04/2020	14/04/2020
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date extracted	-	21/04/2020	21/04/2020	21/04/2020	21/04/2020	21/04/2020
Date analysed	-	22/04/2020	22/04/2020	22/04/2020	22/04/2020	22/04/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C10 -C16	mg/kg	<50	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	83	70	74	76	73

PAHs in Soil						
Our Reference		241179-1	241179-2	241179-3	241179-4	241179-5
Your Reference	UNITS	BH103	BH103	BH103	BH104	BH104
Depth		2.9-3.0	5.1-5.2	6.3-6.45	1.4-1.5	2.8-2.9
Date Sampled		16/04/2020	16/04/2020	16/04/2020	14/04/2020	14/04/2020
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date extracted	-	21/04/2020	21/04/2020	21/04/2020	21/04/2020	21/04/2020
Date analysed	-	21/04/2020	21/04/2020	21/04/2020	21/04/2020	21/04/2020
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	0.1	<0.1	0.5	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	0.2	<0.1
Fluoranthene	mg/kg	<0.1	0.4	<0.1	1.1	0.2
Pyrene	mg/kg	<0.1	0.4	<0.1	1.1	0.2
Benzo(a)anthracene	mg/kg	<0.1	0.2	<0.1	0.6	0.1
Chrysene	mg/kg	<0.1	0.2	<0.1	0.6	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	0.3	<0.2	0.9	<0.2
Benzo(a)pyrene	mg/kg	<0.05	0.2	<0.05	0.53	0.09
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	0.1	<0.1	0.3	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	0.1	<0.1	0.3	<0.1
Total +ve PAH's	mg/kg	<0.05	2.2	<0.05	6.1	0.56
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	0.7	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	0.8	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	0.8	<0.5
Surrogate p-Terphenyl-d14	%	102	101	104	103	102

Organochlorine Pesticides in soil			
Our Reference		241179-1	241179-5
Your Reference	UNITS	BH103	BH104
Depth		2.9-3.0	2.8-2.9
Date Sampled		16/04/2020	14/04/2020
Type of sample		SOIL	SOIL
Date extracted	-	21/04/2020	21/04/2020
Date analysed	-	21/04/2020	21/04/2020
alpha-BHC	mg/kg	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1
Surrogate TCMX	%	91	98

Organophosphorus Pesticides in Soi	I		
Our Reference		241179-1	241179-5
Your Reference	UNITS	BH103	BH104
Depth		2.9-3.0	2.8-2.9
Date Sampled		16/04/2020	14/04/2020
Type of sample		SOIL	SOIL
Date extracted	-	21/04/2020	21/04/2020
Date analysed	-	21/04/2020	21/04/2020
Dichlorvos	mg/kg	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1
Surrogate TCMX	%	91	98

PCBs in Soil			
Our Reference		241179-1	241179-5
Your Reference	UNITS	BH103	BH104
Depth		2.9-3.0	2.8-2.9
Date Sampled		16/04/2020	14/04/2020
Type of sample		SOIL	SOIL
Date extracted	-	21/04/2020	21/04/2020
Date analysed	-	21/04/2020	21/04/2020
Aroclor 1016	mg/kg	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1
Surrogate TCMX	%	91	98

Acid Extractable metals in soil						
Our Reference		241179-1	241179-2	241179-3	241179-4	241179-5
Your Reference	UNITS	BH103	BH103	BH103	BH104	BH104
Depth		2.9-3.0	5.1-5.2	6.3-6.45	1.4-1.5	2.8-2.9
Date Sampled		16/04/2020	16/04/2020	16/04/2020	14/04/2020	14/04/2020
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date prepared	-	21/04/2020	21/04/2020	21/04/2020	21/04/2020	21/04/2020
Date analysed	-	21/04/2020	21/04/2020	21/04/2020	21/04/2020	21/04/2020
Arsenic	mg/kg	12	<4	<4	<4	11
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	8	5	1	6	7
Copper	mg/kg	31	13	<1	28	27
Lead	mg/kg	19	43	<1	14	17
Mercury	mg/kg	<0.1	0.4	<0.1	<0.1	<0.1
Nickel	mg/kg	2	2	<1	7	3
Zinc	mg/kg	16	17	<1	42	21

Misc Soil - Inorg			
Our Reference		241179-1	241179-5
Your Reference	UNITS	BH103	BH104
Depth		2.9-3.0	2.8-2.9
Date Sampled		16/04/2020	14/04/2020
Type of sample		SOIL	SOIL
Date prepared	-	21/04/2020	21/04/2020
Date analysed	-	21/04/2020	21/04/2020
Total Phenolics (as Phenol)	mg/kg	<5	<5

Moisture						
Our Reference		241179-1	241179-2	241179-3	241179-4	241179-5
Your Reference	UNITS	BH103	BH103	BH103	BH104	BH104
Depth		2.9-3.0	5.1-5.2	6.3-6.45	1.4-1.5	2.8-2.9
Date Sampled		16/04/2020	16/04/2020	16/04/2020	14/04/2020	14/04/2020
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date prepared	-	21/04/2020	21/04/2020	21/04/2020	21/04/2020	21/04/2020
Date analysed	-	22/04/2020	22/04/2020	22/04/2020	22/04/2020	22/04/2020
Moisture	%	16	11	4.7	31	12

Asbestos ID - soils				_	
Our Reference		241179-1	241179-2	241179-4	241179-5
Your Reference	UNITS	BH103	BH103	BH104	BH104
Depth		2.9-3.0	5.1-5.2	1.4-1.5	2.8-2.9
Date Sampled		16/04/2020	16/04/2020	14/04/2020	14/04/2020
Type of sample		SOIL	SOIL	SOIL	SOIL
Date analysed	-	22/04/2020	22/04/2020	22/04/2020	22/04/2020
Sample mass tested	g	Approx. 35g	Approx. 35g	Approx. 40g	Approx. 35g
Sample Description	-	Beige clay soil & rocks			
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg			
		Organic fibres detected	Organic fibres detected	Organic fibres detected	Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.

Method ID	Methodology Summary
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<br="" teq="" teqs="" that="" the="" this="" to="">2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<br="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.="">3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<br="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" the="">Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil						Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]		
Date extracted	-			21/04/2020	[NT]		[NT]	[NT]	21/04/2020			
Date analysed	-			23/04/2020	[NT]		[NT]	[NT]	23/04/2020			
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	101			
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	101			
Benzene	mg/kg	0.2	Org-023	<0.2	[NT]		[NT]	[NT]	88			
Toluene	mg/kg	0.5	Org-023	<0.5	[NT]		[NT]	[NT]	98			
Ethylbenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	110			
m+p-xylene	mg/kg	2	Org-023	<2	[NT]		[NT]	[NT]	104			
o-Xylene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	101			
naphthalene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]			
Surrogate aaa-Trifluorotoluene	%		Org-023	110	[NT]		[NT]	[NT]	114			

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date extracted	-			21/04/2020	[NT]		[NT]	[NT]	21/04/2020	
Date analysed	-			21/04/2020	[NT]		[NT]	[NT]	21/04/2020	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	92	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	87	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	119	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	92	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	87	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	119	
Surrogate o-Terphenyl	%		Org-020	77	[NT]		[NT]	[NT]	117	

QUAL	ITY CONTRC	L: PAHs	in Soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]	
Date extracted	-			21/04/2020	[NT]		[NT]	[NT]	21/04/2020		
Date analysed	-			21/04/2020	[NT]		[NT]	[NT]	21/04/2020		
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	106		
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Fluorene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	104		
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	112		
Anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	110		
Pyrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	112		
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Chrysene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	122		
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]		
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	102		
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Surrogate p-Terphenyl-d14	%		Org-022/025	98	[NT]		[NT]	[NT]	112		

QUALITY CON	NTROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]	
Date extracted	-			21/04/2020	[NT]		[NT]	[NT]	21/04/2020		
Date analysed	-			21/04/2020	[NT]		[NT]	[NT]	21/04/2020		
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	100		
НСВ	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	92		
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	76		
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Aldrin	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	112		
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	106		
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	106		
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	112		
Endrin	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	76		
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	98		
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	86		
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Surrogate TCMX	%		Org-022/025	114	[NT]		[NT]	[NT]	100		

QUALITY CONTRO	L: Organoph	osphorus	Pesticides in Soil			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date extracted	-			21/04/2020	[NT]		[NT]	[NT]	21/04/2020	
Date analysed	-			21/04/2020	[NT]		[NT]	[NT]	21/04/2020	
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	92	
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Diazinon	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Ronnel	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	98	
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	76	
Malathion	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	90	
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	108	
Parathion	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	76	
Bromophos-ethyl	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	
Ethion	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	78	
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-022/025	114	[NT]		[NT]	[NT]	100	

QUALIT	Y CONTRO	L: PCBs i	in Soil			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date extracted	-			21/04/2020	[NT]		[NT]	[NT]	21/04/2020	
Date analysed	-			21/04/2020	[NT]		[NT]	[NT]	21/04/2020	
Aroclor 1016	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1221	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1232	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1242	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1248	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1254	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	84	
Aroclor 1260	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-021	114	[NT]		[NT]	[NT]	100	

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Duj	plicate		Spike Red	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date prepared	-			21/04/2020	[NT]	[NT]	[NT]	[NT]	21/04/2020	
Date analysed	-			21/04/2020	[NT]	[NT]	[NT]	[NT]	21/04/2020	
Arsenic	mg/kg	4	Metals-020	<4	[NT]	[NT]	[NT]	[NT]	103	
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]	[NT]	[NT]	[NT]	97	
Chromium	mg/kg	1	Metals-020	<1	[NT]	[NT]	[NT]	[NT]	110	
Copper	mg/kg	1	Metals-020	<1	[NT]	[NT]	[NT]	[NT]	107	
Lead	mg/kg	1	Metals-020	<1	[NT]	[NT]	[NT]	[NT]	108	
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]	[NT]	[NT]	[NT]	95	
Nickel	mg/kg	1	Metals-020	<1	[NT]	[NT]	[NT]	[NT]	99	
Zinc	mg/kg	1	Metals-020	<1	[NT]	[NT]	[NT]	[NT]	104	

QUALITY	QUALITY CONTROL: Misc Soil - Inorg								Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	241179-5
Date prepared	-			21/04/2020	1	21/04/2020	21/04/2020		21/04/2020	21/04/2020
Date analysed	-			21/04/2020	1	21/04/2020	21/04/2020		21/04/2020	21/04/2020
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	<5	1	<5	<5	0	101	100

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Asbestos: A portion of the supplied sample was sub-sampled for asbestos analysis according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g of sample in its own container.

Note: Samples were sub-sampled from jars provided by the client.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 240556

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Wen-Fei Yuan
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	<u>86767.03, Haymarket, SSI</u>
Number of Samples	14 Soil, 1 Water
Date samples received	07/04/2020
Date completed instructions received	08/04/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details

Date results requested by Date of Issue

17/04/2020 17/04/2020

NATA Accreditation Number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Panika Wongchanda Authorised by Asbestos Approved Signatory: Lucy Zhu

Results Approved By

Hannah Nguyen, Senior Chemist Josh Williams, Senior Chemist Lucy Zhu, Asbestos Supervisor Priya Samarawickrama, Senior Chemist Ridwan Wijaya, Lab Team Leader Steven Luong, Organics Supervisor Authorised By

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		240556-1	240556-2	240556-4	240556-5	240556-7
Your Reference	UNITS	BH106/0.2-0.3	BH106/0.304	BH113/0.15-0.25	BH113/0.4-0.5	BH114/0.15-0.2
Date Sampled		07/04/20	07/04/20	07/04/20	07/04/20	07/04/20
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	09/04/2020	09/04/2020	09/04/2020	09/04/2020	09/04/2020
Date analysed	-	11/04/2020	11/04/2020	11/04/2020	11/04/2020	11/04/2020
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	2	<1	<1	1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	103	92	103	95	102

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		240556-8	240556-9	240556-10	240556-12	240556-14
Your Reference	UNITS	BH114/0.2-0.3	BH115/0.23-0.3	BH115/0.5-0.6	BD2	TS
Date Sampled		07/04/20	07/04/20	07/04/20	07/04/20	07/04/20
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	09/04/2020	09/04/2020	09/04/2020	09/04/2020	09/04/2020
Date analysed	-	11/04/2020	11/04/2020	11/04/2020	11/04/2020	11/04/2020
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	[NA]
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	[NA]
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	[NA]
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	117%
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	123%
Ethylbenzene	mg/kg	<1	<1	<1	<1	119%
m+p-xylene	mg/kg	<2	<2	<2	<2	120%
o-Xylene	mg/kg	<1	<1	<1	<1	122%
naphthalene	mg/kg	<1	<1	<1	<1	[NA]
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	[NA]
Surrogate aaa-Trifluorotoluene	%	103	99	101	101	103

vTRH(C6-C10)/BTEXN in Soil		
Our Reference		240556-15
Your Reference	UNITS	ТВ
Date Sampled		07/04/20
Type of sample		Soil
Date extracted	-	09/04/2020
Date analysed	-	11/04/2020
TRH C ₆ - C ₉	mg/kg	<25
TRH C ₆ - C ₁₀	mg/kg	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
naphthalene	mg/kg	<1
Total +ve Xylenes	mg/kg	<3
Surrogate aaa-Trifluorotoluene	%	106

svTRH (C10-C40) in Soil						
Our Reference		240556-1	240556-2	240556-4	240556-5	240556-7
Your Reference	UNITS	BH106/0.2-0.3	BH106/0.304	BH113/0.15-0.25	BH113/0.4-0.5	BH114/0.15-0.2
Date Sampled		07/04/20	07/04/20	07/04/20	07/04/20	07/04/20
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	09/04/2020	09/04/2020	09/04/2020	09/04/2020	09/04/2020
Date analysed	-	09/04/2020	09/04/2020	09/04/2020	09/04/2020	09/04/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50	90	<50	<50	69
TRH C15 - C28	mg/kg	1,100	2,500	540	<100	1,500
TRH C ₂₉ - C ₃₆	mg/kg	680	1,500	340	<100	630
TRH >C ₁₀ -C ₁₆	mg/kg	87	240	<50	<50	220
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	87	230	<50	<50	220
TRH >C ₁₆ -C ₃₄	mg/kg	1,600	3,600	790	<100	1,900
TRH >C ₃₄ -C ₄₀	mg/kg	380	790	220	<100	330
Total +ve TRH (>C10-C40)	mg/kg	2,000	4,600	1,000	<50	2,500
Surrogate o-Terphenyl	%	#	#	136	103	#

svTRH (C10-C40) in Soil					
Our Reference		240556-8	240556-9	240556-10	240556-12
Your Reference	UNITS	BH114/0.2-0.3	BH115/0.23-0.3	BH115/0.5-0.6	BD2
Date Sampled		07/04/20	07/04/20	07/04/20	07/04/20
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	09/04/2020	09/04/2020	09/04/2020	09/04/2020
Date analysed	-	09/04/2020	10/04/2020	10/04/2020	10/04/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	1,000	1,000	<100	540
TRH C ₂₉ - C ₃₆	mg/kg	540	500	<100	320
TRH >C ₁₀ -C ₁₆	mg/kg	120	110	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	120	110	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	1,400	1,300	<100	760
TRH >C ₃₄ -C ₄₀	mg/kg	310	280	<100	180
Total +ve TRH (>C10-C40)	mg/kg	1,800	1,700	<50	940
Surrogate o-Terphenyl	%	135	134	97	124

PAHs in Soil						
Our Reference		240556-1	240556-2	240556-3	240556-4	240556-5
Your Reference	UNITS	BH106/0.2-0.3	BH106/0.304	BH106/0.9-1.0	BH113/0.15-0.25	BH113/0.4-0.5
Date Sampled		07/04/20	07/04/20	07/04/20	07/04/20	07/04/20
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	09/04/2020	09/04/2020	09/04/2020	09/04/2020	09/04/2020
Date analysed	-	09/04/2020	09/04/2020	09/04/2020	09/04/2020	09/04/2020
Naphthalene	mg/kg	0.8	1.1	<0.1	0.5	<0.1
Acenaphthylene	mg/kg	8.5	13	<0.1	4.9	<0.1
Acenaphthene	mg/kg	0.9	2.1	<0.1	0.4	<0.1
Fluorene	mg/kg	2.8	15	<0.1	1	0.1
Phenanthrene	mg/kg	41	150	0.2	21	2.2
Anthracene	mg/kg	9.5	50	<0.1	4.6	0.6
Fluoranthene	mg/kg	53	280	0.2	26	2.7
Pyrene	mg/kg	54	280	0.2	26	2.7
Benzo(a)anthracene	mg/kg	27	160	0.1	12	1.2
Chrysene	mg/kg	24	120	0.1	11	1
Benzo(b,j+k)fluoranthene	mg/kg	39	110	<0.2	17	2
Benzo(a)pyrene	mg/kg	28	120	0.1	12	1.2
Indeno(1,2,3-c,d)pyrene	mg/kg	13	27	<0.1	5.6	0.6
Dibenzo(a,h)anthracene	mg/kg	3.6	9.1	<0.1	1.4	0.1
Benzo(g,h,i)perylene	mg/kg	17	41	<0.1	7.5	0.7
Total +ve PAH's	mg/kg	320	1,400	0.88	150	15
Benzo(a)pyrene TEQ calc (zero)	mg/kg	40	160	<0.5	17	1.7
Benzo(a)pyrene TEQ calc(half)	mg/kg	40	160	<0.5	17	1.7
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	40	160	<0.5	17	1.7
Surrogate p-Terphenyl-d14	%	84	97	80	78	78

PAHs in Soil						
Our Reference		240556-6	240556-7	240556-8	240556-9	240556-10
Your Reference	UNITS	BH113.0.9-1.0	BH114/0.15-0.2	BH114/0.2-0.3	BH115/0.23-0.3	BH115/0.5-0.6
Date Sampled		07/04/20	07/04/20	07/04/20	07/04/20	07/04/20
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	09/04/2020	09/04/2020	09/04/2020	09/04/2020	09/04/2020
Date analysed	-	09/04/2020	09/04/2020	09/04/2020	09/04/2020	09/04/2020
Naphthalene	mg/kg	<0.1	8.0	1.6	0.8	<0.1
Acenaphthylene	mg/kg	<0.1	36	16	16	0.6
Acenaphthene	mg/kg	<0.1	2.4	1.3	0.8	<0.1
Fluorene	mg/kg	<0.1	13	6.6	4.7	0.2
Phenanthrene	mg/kg	0.5	160	70	75	2.6
Anthracene	mg/kg	0.4	44	18	19	0.6
Fluoranthene	mg/kg	0.7	190	94	85	4.0
Pyrene	mg/kg	0.7	170	96	88	4.0
Benzo(a)anthracene	mg/kg	0.3	40	45	37	1.8
Chrysene	mg/kg	0.3	34	34	32	1.5
Benzo(b,j+k)fluoranthene	mg/kg	0.4	52	32	30	2.6
Benzo(a)pyrene	mg/kg	0.3	67	31	27	1.8
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	16	11	9.4	0.9
Dibenzo(a,h)anthracene	mg/kg	<0.1	3.1	3.0	2.8	0.2
Benzo(g,h,i)perylene	mg/kg	0.2	20	14	10	1.1
Total +ve PAH's	mg/kg	3.8	860	470	440	22
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	81	43	38	2.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	81	43	38	2.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	81	43	38	2.5
Surrogate p-Terphenyl-d14	%	80	85	82	86	79

PAHs in Soil			
Our Reference		240556-11	240556-12
Your Reference	UNITS	BH115/0.9-1.0	BD2
Date Sampled		07/04/20	07/04/20
Type of sample		Soil	Soil
Date extracted	-	09/04/2020	09/04/2020
Date analysed	-	09/04/2020	09/04/2020
Naphthalene	mg/kg	<0.1	0.4
Acenaphthylene	mg/kg	<0.1	5.1
Acenaphthene	mg/kg	<0.1	0.5
Fluorene	mg/kg	<0.1	1.5
Phenanthrene	mg/kg	0.1	27
Anthracene	mg/kg	<0.1	6.7
Fluoranthene	mg/kg	0.1	31
Pyrene	mg/kg	0.1	31
Benzo(a)anthracene	mg/kg	<0.1	14
Chrysene	mg/kg	<0.1	13
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	19
Benzo(a)pyrene	mg/kg	0.05	14
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	6.4
Dibenzo(a,h)anthracene	mg/kg	<0.1	1.6
Benzo(g,h,i)perylene	mg/kg	<0.1	8.2
Total +ve PAH's	mg/kg	0.4	180
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	20
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	20
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	20
Surrogate p-Terphenyl-d14	%	84	82

Organochlorine Pesticides in soil					
Our Reference		240556-2	240556-5	240556-8	240556-9
Your Reference	UNITS	BH106/0.304	BH113/0.4-0.5	BH114/0.2-0.3	BH115/0.23-0.3
Date Sampled		07/04/20	07/04/20	07/04/20	07/04/20
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	09/04/2020	09/04/2020	09/04/2020	09/04/2020
Date analysed	-	09/04/2020	09/04/2020	09/04/2020	09/04/2020
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	81	89	90	80

Organophosphorus Pesticides in Soil					
Our Reference		240556-2	240556-5	240556-8	240556-9
Your Reference	UNITS	BH106/0.304	BH113/0.4-0.5	BH114/0.2-0.3	BH115/0.23-0.3
Date Sampled		07/04/20	07/04/20	07/04/20	07/04/20
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	09/04/2020	09/04/2020	09/04/2020	09/04/2020
Date analysed	-	09/04/2020	09/04/2020	09/04/2020	09/04/2020
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	81	89	90	80

PCBs in Soil					
Our Reference		240556-2	240556-5	240556-8	240556-9
Your Reference	UNITS	BH106/0.304	BH113/0.4-0.5	BH114/0.2-0.3	BH115/0.23-0.3
Date Sampled		07/04/20	07/04/20	07/04/20	07/04/20
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	09/04/2020	09/04/2020	09/04/2020	09/04/2020
Date analysed	-	09/04/2020	09/04/2020	09/04/2020	09/04/2020
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	81	89	90	80

Acid Extractable metals in soil						
Our Reference		240556-1	240556-2	240556-4	240556-5	240556-7
Your Reference	UNITS	BH106/0.2-0.3	BH106/0.304	BH113/0.15-0.25	BH113/0.4-0.5	BH114/0.15-0.2
Date Sampled		07/04/20	07/04/20	07/04/20	07/04/20	07/04/20
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	09/04/2020	09/04/2020	09/04/2020	09/04/2020	09/04/2020
Date analysed	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Arsenic	mg/kg	25	6	26	6	14
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	14	43	6	18	11
Copper	mg/kg	74	43	40	19	59
Lead	mg/kg	100	610	44	23	93
Mercury	mg/kg	0.2	0.7	<0.1	<0.1	<0.1
Nickel	mg/kg	4	10	4	<1	14
Zinc	mg/kg	780	74	310	8	510

Acid Extractable metals in soil						
Our Reference		240556-8	240556-9	240556-10	240556-12	240556-16
Your Reference	UNITS	BH114/0.2-0.3	BH115/0.23-0.3	BH115/0.5-0.6	BD2	BH106/0.304 - [TRIPLICATE]
Date Sampled		07/04/20	07/04/20	07/04/20	07/04/20	07/04/20
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	09/04/2020	09/04/2020	09/04/2020	09/04/2020	09/04/2020
Date analysed	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Arsenic	mg/kg	52	6	11	10	7
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	21	12	21	9	24
Copper	mg/kg	120	14	16	43	23
Lead	mg/kg	260	24	20	69	350
Mercury	mg/kg	0.1	<0.1	<0.1	0.1	0.7
Nickel	mg/kg	5	1	2	4	8
Zinc	mg/kg	1,800	21	11	500	110

Acid Extractable metals in soil		
Our Reference		240556-17
Your Reference	UNITS	BH115/0.23-0.3 - [TRIPLICATE]
Date Sampled		07/04/20
Type of sample		Soil
Date prepared	-	09/04/2020
Date analysed	-	14/04/2020
Arsenic	mg/kg	100
Cadmium	mg/kg	<0.4
Chromium	mg/kg	14
Copper	mg/kg	85
Lead	mg/kg	38
Mercury	mg/kg	<0.1
Nickel	mg/kg	3
Zinc	mg/kg	110

Misc Soil - Inorg					
Our Reference		240556-2	240556-5	240556-8	240556-9
Your Reference	UNITS	BH106/0.304	BH113/0.4-0.5	BH114/0.2-0.3	BH115/0.23-0.3
Date Sampled		07/04/20	07/04/20	07/04/20	07/04/20
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	9/04/2020	9/04/2020	9/04/2020	9/04/2020
Date analysed	-	9/04/2020	9/04/2020	9/04/2020	9/04/2020
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5

Moisture						
Our Reference		240556-1	240556-2	240556-3	240556-4	240556-5
Your Reference	UNITS	BH106/0.2-0.3	BH106/0.304	BH106/0.9-1.0	BH113/0.15-0.25	BH113/0.4-0.5
Date Sampled		07/04/20	07/04/20	07/04/20	07/04/20	07/04/20
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	09/04/2020	09/04/2020	09/04/2020	09/04/2020	09/04/2020
Date analysed	-	13/04/2020	13/04/2020	13/04/2020	13/04/2020	13/04/2020
Moisture	%	12	7.6	18	5.5	24
Moisture						
Our Reference		240556-6	240556-7	240556-8	240556-9	240556-10
Your Reference	UNITS	BH113.0.9-1.0	BH114/0.15-0.2	BH114/0.2-0.3	BH115/0.23-0.3	BH115/0.5-0.6
Date Sampled		07/04/20	07/04/20	07/04/20	07/04/20	07/04/20
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	09/04/2020	09/04/2020	09/04/2020	09/04/2020	09/04/2020
Date analysed	-	13/04/2020	13/04/2020	13/04/2020	13/04/2020	13/04/2020

16

8.1

13

16

16

Moisture			
Our Reference		240556-11	240556-12
Your Reference	UNITS	BH115/0.9-1.0	BD2
Date Sampled		07/04/20	07/04/20
Type of sample		Soil	Soil
Date prepared	-	09/04/2020	09/04/2020
Date analysed	-	13/04/2020	13/04/2020
Moisture	%	18	5.6

%

Moisture

Asbestos ID - soils						
Our Reference		240556-2	240556-4	240556-5	240556-7	240556-8
Your Reference	UNITS	BH106/0.304	BH113/0.15-0.25	BH113/0.4-0.5	BH114/0.15-0.2	BH114/0.2-0.3
Date Sampled		07/04/20	07/04/20	07/04/20	07/04/20	07/04/20
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Sample mass tested	g	Approx. 50g	Approx. 50g	Approx. 65g	Approx. 50g	Approx. 110g
Sample Description	-	Brown sandy soil & rocks	Brown sandy soil & rocks	Red clayey soil & rocks	Brown sandy soil & rocks	Grey rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres				
		detected	detected	detected	detected	detected
Asbestos comments	-	NO	NO	NO	NO	NO
Trace Analysis	-	No asbestos detected				

Asbestos ID - soils			
Our Reference		240556-9	240556-10
Your Reference	UNITS	BH115/0.23-0.3	BH115/0.5-0.6
Date Sampled		07/04/20	07/04/20
Type of sample		Soil	Soil
Date analysed	-	14/04/2020	14/04/2020
Sample mass tested	g	Approx. 50g	Approx. 50g
Sample Description	-	Black clayey soil & rocks	Black clayey soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres	No asbestos detected at reporting limit of 0.1g/kg Organic fibres
		detected	detected
Asbestos comments	-	NO	NO
Trace Analysis	-	No asbestos detected	No asbestos detected

vTRH(C6-C10)/BTEXN in Water		
Our Reference		240556-13
Your Reference	UNITS	Rinsate
Date Sampled		07/04/20
Type of sample		Water
Date extracted	-	09/04/2020
Date analysed	-	09/04/2020
TRH C ₆ - C ₉	µg/L	<10
TRH C ₆ - C ₁₀	µg/L	<10
TRH C_6 - C_{10} less BTEX (F1)	µg/L	<10
Benzene	µg/L	<1
Toluene	μg/L	<1
Ethylbenzene	µg/L	<1
m+p-xylene	μg/L	<2
o-xylene	µg/L	<1
Naphthalene	µg/L	<1
Surrogate Dibromofluoromethane	%	108
Surrogate toluene-d8	%	97
Surrogate 4-BFB	%	106

svTRH (C10-C40) in Water		
Our Reference		240556-13
Your Reference	UNITS	Rinsate
Date Sampled		07/04/20
Type of sample		Water
Date extracted	-	09/04/2020
Date analysed	-	10/04/2020
TRH C ₁₀ - C ₁₄	µg/L	<50
TRH C ₁₅ - C ₂₈	µg/L	<100
TRH C ₂₉ - C ₃₆	μg/L	<100
TRH >C ₁₀ - C ₁₆	µg/L	<50
TRH >C10 - C16 less Naphthalene (F2)	µg/L	<50
TRH >C ₁₆ - C ₃₄	µg/L	<100
TRH >C ₃₄ - C ₄₀	µg/L	<100
Surrogate o-Terphenyl	%	113

PAHs in Water		
Our Reference		240556-13
Your Reference	UNITS	Rinsate
Date Sampled		07/04/20
Type of sample		Water
Date extracted	-	09/04/2020
Date analysed	-	09/04/2020
Naphthalene	µg/L	<1
Acenaphthylene	µg/L	<1
Acenaphthene	µg/L	<1
Fluorene	µg/L	<1
Phenanthrene	µg/L	<1
Anthracene	µg/L	<1
Fluoranthene	µg/L	<1
Pyrene	µg/L	<1
Benzo(a)anthracene	µg/L	<1
Chrysene	µg/L	<1
Benzo(b,j+k)fluoranthene	µg/L	<2
Benzo(a)pyrene	µg/L	<1
Indeno(1,2,3-c,d)pyrene	µg/L	<1
Dibenzo(a,h)anthracene	µg/L	<1
Benzo(g,h,i)perylene	µg/L	<1
Benzo(a)pyrene TEQ	µg/L	<5
Total +ve PAH's	µg/L	NIL (+)VE
Surrogate p-Terphenyl-d14	%	86

Metals in Water - Dissolved		
Our Reference		240556-13
Your Reference	UNITS	Rinsate
Date Sampled		07/04/20
Type of sample		Water
Date digested	-	09/04/2020
Date analysed	-	15/04/2020
Arsenic - Dissolved	mg/L	<0.05
Cadmium - Dissolved	mg/L	<0.01
Chromium - Dissolved	mg/L	<0.01
Copper - Dissolved	mg/L	<0.01
Lead - Dissolved	mg/L	<0.03
Mercury - Dissolved	mg/L	<0.0005
Nickel - Dissolved	mg/L	<0.02
Zinc - Dissolved	mg/L	<0.02

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
AT-008	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-012/017	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS.
Org-012/017	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS and/or GC-MS/MS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-012/017	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.

Method ID	Methodology Summary
Org-012/017	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<br="" teq="" teqs="" that="" the="" this="" to="">2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<br="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.="">3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<br="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" the="">Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>
Org-013	Water samples are analysed directly by purge and trap GC-MS.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil					Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	240556-5
Date extracted	-			09/04/2020	2	09/04/2020	09/04/2020		09/04/2020	09/04/2020
Date analysed	-			11/04/2020	2	11/04/2020	11/04/2020		11/04/2020	11/04/2020
TRH C ₆ - C ₉	mg/kg	25	Org-016	<25	2	<25	<25	0	85	80
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	<25	2	<25	<25	0	85	80
Benzene	mg/kg	0.2	Org-016	<0.2	2	<0.2	<0.2	0	74	69
Toluene	mg/kg	0.5	Org-016	<0.5	2	<0.5	<0.5	0	85	79
Ethylbenzene	mg/kg	1	Org-016	<1	2	<1	<1	0	90	86
m+p-xylene	mg/kg	2	Org-016	<2	2	<2	<2	0	87	83
o-Xylene	mg/kg	1	Org-016	<1	2	<1	<1	0	83	79
naphthalene	mg/kg	1	Org-014	<1	2	2	1	67	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-016	105	2	92	97	5	100	93

р [NT] [ТИ] [ТИ]	[NT] [NT] [NT]
[NT]	
	[NT]
[NT]	[NT]
	[NT] [NT] [NT] [NT]

QUALITY CO	QUALITY CONTROL: svTRH (C10-C40) in Soil						plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	240556-5
Date extracted	-			09/04/2020	9	09/04/2020	09/04/2020		09/04/2020	09/04/2020
Date analysed	-			09/04/2020	9	10/04/2020	10/04/2020		09/04/2020	09/04/2020
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	<50	9	<50	<50	0	94	72
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	<100	9	1000	670	40	86	71
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	<100	9	500	380	27	106	98
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	<50	9	110	67	49	94	72
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	<100	9	1300	930	33	86	71
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	<100	9	280	230	20	106	98
Surrogate o-Terphenyl	%		Org-003	109	9	134	121	10	118	98

QUAL	ITY CONTRC	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	240556-5
Date extracted	-			09/04/2020	2	09/04/2020	09/04/2020		09/04/2020	14/04/2020
Date analysed	-			09/04/2020	2	09/04/2020	09/04/2020		09/04/2020	14/04/2020
Naphthalene	mg/kg	0.1	Org-012/017	<0.1	2	1.1	1.1	0	74	80
Acenaphthylene	mg/kg	0.1	Org-012/017	<0.1	2	13	14	7	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-012/017	<0.1	2	2.1	2.2	5	[NT]	[NT]
Fluorene	mg/kg	0.1	Org-012/017	<0.1	2	15	6.4	80	84	78
Phenanthrene	mg/kg	0.1	Org-012/017	<0.1	2	150	180	18	78	#
Anthracene	mg/kg	0.1	Org-012/017	<0.1	2	50	60	18	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-012/017	<0.1	2	280	310	10	78	#
Pyrene	mg/kg	0.1	Org-012/017	<0.1	2	280	300	7	70	#
Benzo(a)anthracene	mg/kg	0.1	Org-012/017	<0.1	2	160	210	27	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-012/017	<0.1	2	120	110	9	92	#
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012/017	<0.2	2	110	140	24	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-012/017	<0.05	2	120	160	29	78	#
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012/017	<0.1	2	27	31	14	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012/017	<0.1	2	9.1	0.3	187	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012/017	<0.1	2	41	49	18	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-012/017	83	2	97	91	6	82	82

QUALI	TY CONTRC	L: PAHs	in Soil			Du	plicate		Spike Re	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	9	09/04/2020	09/04/2020			[NT]
Date analysed	-			[NT]	9	09/04/2020	09/04/2020			[NT]
Naphthalene	mg/kg	0.1	Org-012/017	[NT]	9	0.8	0.1	156		[NT]
Acenaphthylene	mg/kg	0.1	Org-012/017	[NT]	9	16	<0.1	198		[NT]
Acenaphthene	mg/kg	0.1	Org-012/017	[NT]	9	0.8	<0.1	156		[NT]
Fluorene	mg/kg	0.1	Org-012/017	[NT]	9	4.7	0.8	142		[NT]
Phenanthrene	mg/kg	0.1	Org-012/017	[NT]	9	75	9.0	157		[NT]
Anthracene	mg/kg	0.1	Org-012/017	[NT]	9	19	2.8	149		[NT]
Fluoranthene	mg/kg	0.1	Org-012/017	[NT]	9	85	14	143		[NT]
Pyrene	mg/kg	0.1	Org-012/017	[NT]	9	88	14	145		[NT]
Benzo(a)anthracene	mg/kg	0.1	Org-012/017	[NT]	9	37	6.9	137		[NT]
Chrysene	mg/kg	0.1	Org-012/017	[NT]	9	32	5.8	139		[NT]
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012/017	[NT]	9	30	8.9	108		[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-012/017	[NT]	9	27	6.5	122		[NT]
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012/017	[NT]	9	9.4	2.9	106		[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012/017	[NT]	9	2.8	0.9	103		[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012/017	[NT]	9	10	3.6	94		[NT]
Surrogate p-Terphenyl-d14	%		Org-012/017	[NT]	9	86	86	0		[NT]

QUALITY CON	TROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	240556-5
Date extracted	-			09/04/2020	2	09/04/2020	09/04/2020		09/04/2020	14/04/2020
Date analysed	-			09/04/2020	2	09/04/2020	09/04/2020		09/04/2020	14/04/2020
alpha-BHC	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	84	70
НСВ	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	88	74
gamma-BHC	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	74	72
delta-BHC	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	88	74
Heptachlor Epoxide	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	92	76
gamma-Chlordane	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	86	72
Dieldrin	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	94	76
Endrin	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	81	87
Endosulfan II	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	68	70
Endrin Aldehyde	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	64	68
Methoxychlor	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-012/017	83	2	81	82	1	84	91

QUALITY CO	ONTROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	9	09/04/2020	09/04/2020			[NT]
Date analysed	-			[NT]	9	09/04/2020	09/04/2020			[NT]
alpha-BHC	mg/kg	0.1	Org-012/017	[NT]	9	<0.1	<0.1	0		[NT]
НСВ	mg/kg	0.1	Org-012/017	[NT]	9	<0.1	<0.1	0		[NT]
beta-BHC	mg/kg	0.1	Org-012/017	[NT]	9	<0.1	<0.1	0		[NT]
gamma-BHC	mg/kg	0.1	Org-012/017	[NT]	9	<0.1	<0.1	0		[NT]
Heptachlor	mg/kg	0.1	Org-012/017	[NT]	9	<0.1	<0.1	0		[NT]
delta-BHC	mg/kg	0.1	Org-012/017	[NT]	9	<0.1	<0.1	0		[NT]
Aldrin	mg/kg	0.1	Org-012/017	[NT]	9	<0.1	<0.1	0		[NT]
Heptachlor Epoxide	mg/kg	0.1	Org-012/017	[NT]	9	<0.1	<0.1	0		[NT]
gamma-Chlordane	mg/kg	0.1	Org-012/017	[NT]	9	<0.1	<0.1	0		[NT]
alpha-chlordane	mg/kg	0.1	Org-012/017	[NT]	9	<0.1	<0.1	0		[NT]
Endosulfan I	mg/kg	0.1	Org-012/017	[NT]	9	<0.1	<0.1	0		[NT]
pp-DDE	mg/kg	0.1	Org-012/017	[NT]	9	<0.1	<0.1	0		[NT]
Dieldrin	mg/kg	0.1	Org-012/017	[NT]	9	<0.1	<0.1	0		[NT]
Endrin	mg/kg	0.1	Org-012/017	[NT]	9	<0.1	<0.1	0		[NT]
Endosulfan II	mg/kg	0.1	Org-012/017	[NT]	9	<0.1	<0.1	0		[NT]
pp-DDD	mg/kg	0.1	Org-012/017	[NT]	9	<0.1	<0.1	0		[NT]
Endrin Aldehyde	mg/kg	0.1	Org-012/017	[NT]	9	<0.1	<0.1	0		[NT]
pp-DDT	mg/kg	0.1	Org-012/017	[NT]	9	<0.1	<0.1	0		[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-012/017	[NT]	9	<0.1	<0.1	0		[NT]
Methoxychlor	mg/kg	0.1	Org-012/017	[NT]	9	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-012/017	[NT]	9	80	89	11		[NT]

QUALITY CONTRO	L: Organoph	osphorus	s Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	240556-5
Date extracted	-			09/04/2020	2	09/04/2020	09/04/2020		09/04/2020	14/04/2020
Date analysed	-			09/04/2020	2	09/04/2020	09/04/2020		09/04/2020	14/04/2020
Dichlorvos	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	70	74
Dimethoate	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	82	70
Fenitrothion	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	66	82
Malathion	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	64	78
Chlorpyriphos	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	90	78
Parathion	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	62	72
Bromophos-ethyl	mg/kg	0.1	AT-008	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	82	72
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-012/017	83	2	81	82	1	84	91

QUALITY CONTRC	L: Organopł	nosphorus	s Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	9	09/04/2020	09/04/2020			[NT]
Date analysed	-			[NT]	9	09/04/2020	09/04/2020			[NT]
Dichlorvos	mg/kg	0.1	Org-012/017	[NT]	9	<0.1	<0.1	0		[NT]
Dimethoate	mg/kg	0.1	Org-012/017	[NT]	9	<0.1	<0.1	0		[NT]
Diazinon	mg/kg	0.1	Org-012/017	[NT]	9	<0.1	<0.1	0		[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-012/017	[NT]	9	<0.1	<0.1	0		[NT]
Ronnel	mg/kg	0.1	Org-012/017	[NT]	9	<0.1	<0.1	0		[NT]
Fenitrothion	mg/kg	0.1	Org-012/017	[NT]	9	<0.1	<0.1	0		[NT]
Malathion	mg/kg	0.1	Org-012/017	[NT]	9	<0.1	<0.1	0		[NT]
Chlorpyriphos	mg/kg	0.1	Org-012/017	[NT]	9	<0.1	<0.1	0		[NT]
Parathion	mg/kg	0.1	Org-012/017	[NT]	9	<0.1	<0.1	0		[NT]
Bromophos-ethyl	mg/kg	0.1	AT-008	[NT]	9	<0.1	<0.1	0		[NT]
Ethion	mg/kg	0.1	Org-012/017	[NT]	9	<0.1	<0.1	0		[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-012/017	[NT]	9	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-012/017	[NT]	9	80	89	11		[NT]

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	240556-5
Date extracted	-			09/04/2020	2	09/04/2020	09/04/2020		09/04/2020	09/04/2020
Date analysed	-			09/04/2020	2	09/04/2020	09/04/2020		09/04/2020	09/04/2020
Aroclor 1016	mg/kg	0.1	Org-006	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-006	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-006	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-006	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-006	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-006	<0.1	2	<0.1	<0.1	0	110	90
Aroclor 1260	mg/kg	0.1	Org-006	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-006	83	2	81	82	1	84	91

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	9	09/04/2020	09/04/2020		[NT]	[NT]
Date analysed	-			[NT]	9	09/04/2020	09/04/2020		[NT]	[NT]
Aroclor 1016	mg/kg	0.1	Org-006	[NT]	9	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-006	[NT]	9	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-006	[NT]	9	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-006	[NT]	9	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-006	[NT]	9	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-006	[NT]	9	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1260	mg/kg	0.1	Org-006	[NT]	9	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-006	[NT]	9	80	89	11	[NT]	[NT]

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	240556-5
Date prepared	-			09/04/2020	2	09/04/2020	09/04/2020		09/04/2020	09/04/2020
Date analysed	-			14/04/2020	2	14/04/2020	14/04/2020		14/04/2020	14/04/2020
Arsenic	mg/kg	4	Metals-020	<4	2	6	12	67	109	74
Cadmium	mg/kg	0.4	Metals-020	<0.4	2	<0.4	<0.4	0	103	81
Chromium	mg/kg	1	Metals-020	<1	2	43	60	33	114	78
Copper	mg/kg	1	Metals-020	<1	2	43	26	49	110	89
Lead	mg/kg	1	Metals-020	<1	2	610	440	32	117	67
Mercury	mg/kg	0.1	Metals-021	<0.1	2	0.7	1.4	67	95	102
Nickel	mg/kg	1	Metals-020	<1	2	10	7	35	109	74
Zinc	mg/kg	1	Metals-020	<1	2	74	93	23	111	71

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	9	09/04/2020	09/04/2020			[NT]
Date analysed	-			[NT]	9	14/04/2020	14/04/2020			[NT]
Arsenic	mg/kg	4	Metals-020	[NT]	9	6	9	40		[NT]
Cadmium	mg/kg	0.4	Metals-020	[NT]	9	<0.4	<0.4	0		[NT]
Chromium	mg/kg	1	Metals-020	[NT]	9	12	17	34		[NT]
Copper	mg/kg	1	Metals-020	[NT]	9	14	18	25		[NT]
Lead	mg/kg	1	Metals-020	[NT]	9	24	33	32		[NT]
Mercury	mg/kg	0.1	Metals-021	[NT]	9	<0.1	<0.1	0		[NT]
Nickel	mg/kg	1	Metals-020	[NT]	9	1	2	67		[NT]
Zinc	mg/kg	1	Metals-020	[NT]	9	21	100	131	[NT]	[NT]

QUALITY	CONTROL	Misc Soi	l - Inorg			Duj	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]
Date prepared	-			09/04/2020	[NT]		[NT]	[NT]	09/04/2020	[NT]
Date analysed	-			09/04/2020	[NT]		[NT]	[NT]	09/04/2020	[NT]
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	<5	[NT]	[NT]	[NT]	[NT]	103	[NT]

QUALITY CONT	ROL: vTRH(C6-C10)/E	BTEXN in Water			Du	ıplicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			09/04/2020	[NT]		[NT]	[NT]	[NT]	
Date analysed	-			11/04/2020	[NT]		[NT]	[NT]	[NT]	
TRH C ₆ - C ₉	μg/L	10	Org-016	<10	[NT]		[NT]	[NT]	[NT]	
TRH C ₆ - C ₁₀	µg/L	10	Org-016	<10	[NT]		[NT]	[NT]	[NT]	
Benzene	µg/L	1	Org-016	<1	[NT]		[NT]	[NT]	[NT]	
Toluene	µg/L	1	Org-016	<1	[NT]		[NT]	[NT]	[NT]	
Ethylbenzene	µg/L	1	Org-016	<1	[NT]		[NT]	[NT]	[NT]	
m+p-xylene	µg/L	2	Org-016	<2	[NT]		[NT]	[NT]	[NT]	
o-xylene	µg/L	1	Org-016	<1	[NT]		[NT]	[NT]	[NT]	
Naphthalene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate Dibromofluoromethane	%		Org-016	102	[NT]		[NT]	[NT]	[NT]	
Surrogate toluene-d8	%		Org-016	98	[NT]		[NT]	[NT]	[NT]	
Surrogate 4-BFB	%		Org-016	101	[NT]		[NT]	[NT]	[NT]	

QUALITY CON	ITROL: svTF	RH (C10-0	C40) in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			09/04/2020	[NT]		[NT]	[NT]	09/04/2020	
Date analysed	-			10/04/2020	[NT]		[NT]	[NT]	10/04/2020	
TRH C ₁₀ - C ₁₄	µg/L	50	Org-003	<50	[NT]		[NT]	[NT]	126	
TRH C ₁₅ - C ₂₈	µg/L	100	Org-003	<100	[NT]		[NT]	[NT]	106	
TRH C ₂₉ - C ₃₆	µg/L	100	Org-003	<100	[NT]		[NT]	[NT]	108	
TRH >C ₁₀ - C ₁₆	µg/L	50	Org-003	<50	[NT]		[NT]	[NT]	126	
TRH >C ₁₆ - C ₃₄	µg/L	100	Org-003	<100	[NT]		[NT]	[NT]	106	
TRH >C ₃₄ - C ₄₀	µg/L	100	Org-003	<100	[NT]		[NT]	[NT]	108	
Surrogate o-Terphenyl	%		Org-003	103	[NT]		[NT]	[NT]	83	

QUALIT	Y CONTROL	.: PAHs ir	n Water			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			09/04/2020	[NT]		[NT]	[NT]	09/04/2020	
Date analysed	-			09/04/2020	[NT]		[NT]	[NT]	09/04/2020	
Naphthalene	μg/L	1	Org-012/017	<1	[NT]		[NT]	[NT]	88	
Acenaphthylene	μg/L	1	Org-012/017	<1	[NT]		[NT]	[NT]	[NT]	
Acenaphthene	μg/L	1	Org-012/017	<1	[NT]		[NT]	[NT]	[NT]	
Fluorene	μg/L	1	Org-012/017	<1	[NT]		[NT]	[NT]	78	
Phenanthrene	μg/L	1	Org-012/017	<1	[NT]		[NT]	[NT]	92	
Anthracene	μg/L	1	Org-012/017	<1	[NT]		[NT]	[NT]	[NT]	
Fluoranthene	μg/L	1	Org-012/017	<1	[NT]		[NT]	[NT]	72	
Pyrene	μg/L	1	Org-012/017	<1	[NT]		[NT]	[NT]	76	
Benzo(a)anthracene	μg/L	1	Org-012/017	<1	[NT]		[NT]	[NT]	[NT]	
Chrysene	μg/L	1	Org-012/017	<1	[NT]		[NT]	[NT]	106	
Benzo(b,j+k)fluoranthene	μg/L	2	Org-012/017	<2	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene	μg/L	1	Org-012/017	<1	[NT]		[NT]	[NT]	84	
Indeno(1,2,3-c,d)pyrene	μg/L	1	Org-012/017	<1	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene	μg/L	1	Org-012/017	<1	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene	μg/L	1	Org-012/017	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-012/017	70	[NT]		[NT]	[NT]	72	

QUALITY CON	Duplicate				Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	[NT]
Date digested	-			09/04/2020	[NT]		[NT]	[NT]	09/04/2020	
Date analysed	-			15/04/2020	[NT]		[NT]	[NT]	15/04/2020	
Arsenic - Dissolved	mg/L	0.05	Metals-020	<0.05	[NT]		[NT]	[NT]	105	
Cadmium - Dissolved	mg/L	0.01	Metals-020	<0.01	[NT]		[NT]	[NT]	103	
Chromium - Dissolved	mg/L	0.01	Metals-020	<0.01	[NT]		[NT]	[NT]	102	
Copper - Dissolved	mg/L	0.01	Metals-020	<0.01	[NT]		[NT]	[NT]	100	
Lead - Dissolved	mg/L	0.03	Metals-020	<0.03	[NT]		[NT]	[NT]	104	
Mercury - Dissolved	mg/L	0.0005	Metals-021	<0.0005	[NT]		[NT]	[NT]	94	
Nickel - Dissolved	mg/L	0.02	Metals-020	<0.02	[NT]		[NT]	[NT]	107	
Zinc - Dissolved	mg/L	0.02	Metals-020	<0.02	[NT]		[NT]	[NT]	111	

Result Definiti	ons					
NT	Not tested					
NA	Test not required					
INS	nsufficient sample for this test					
PQL	Practical Quantitation Limit					
<	Less than					
>	Greater than					
RPD	Relative Percent Difference					
LCS	Laboratory Control Sample					
NS	Not specified					
NEPM	National Environmental Protection Measure					
NR	Not Reported					

Quality Control Definitions									
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.								
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.								
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.								
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.								
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.								

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

TRH Soil C10-C40 NEPM - # Percent recovery for the surrogate is not possible to report as the high concentration of analytes in samples 240556-1 and 7 have caused interference.

Asbestos: Excessive sample volume was provided for asbestos analysis. A portion of the supplied sample was sub-sampled according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g (50mL) of sample in its own container as per AS4964-2004. Note: Samples were sub-sampled from bags provided by the client.

Acid Extractable Metals in Soil:

-The laboratory RPD acceptance criteria has been exceeded for 240556-2 for Cu and Hg. Therefore a triplicate result has been issued as laboratory sample number 240556-16.

-The laboratory RPD acceptance criteria has been exceeded for 240556-9 for Zn. Therefore a triplicate result has been issued as laboratory sample number 240556-17.

-Spike recovery for Pb in sample 240556-5 at 67% which is outside lab acceptance criteria (70-130%), however, the LCS recovery is acceptable at 117%. Sample heterogeneity suspected.

PAHs in Soil - # Percent recovery for the matrix spike is not possible to report due to interference from analytes (other than those being tested) in sample 240556-5ms.

The RPD for duplicate results is accepted due to the non homogenous nature of samples 240556-2 and 9.

CHAIN OF CUSTODY DESPATCH SHEET

										COC RELAVED	
Project No:	86767	7.03			Suburb):	Haymar	ket		To: Env	virolab Services
Project Name:	HAYN	HAYMARKET, SSI			Örder I	lumber	152065		_		
Project Manager:	WFY				Sample	er:	WFY			Attn: Sin	non Song
Emails:	we	nfei.yuan@c	louglaspart	ners.com.au		_				Phone:	
Date Required:	Same		24 hours 🛛	48 hours 🛛	72 h	ours 🗆	Standa	ard 🛛	_	Email:	
Prior Storage: 🛛	Esky	🗆 Fridge 🛛	Shelved		Do sam	oles contair	n 'potential'	' HBM?	Yes 🛛 No 🗆	(If YES, then handle, transpor	t and store in accordance with FPM HAZID
Oceania	1-6	Sampled	Sample Type	Container Type						nalytes	
Sample ID	Lab ID	Date Sa	S - soil W - wate	G - glass P - plast	Combo8/	Combo3,	Combo 3	РАН			Notes
BH106/0.2-0.3	ł	07/04/20	S	G/P			Х				
BH106/0.304	2	07/04/20	s	G/P	Х						Envirolas Services
BH106/0.9-1.0	3	07/04/20	s	G/P				x		ENVIROLAS	12 Ashley St Chatswood NSW 2857
BH113/0.15-0.25	4	07/04/20	S	G/P		х				Job No:	Ph: (02) 9910 6200 200556
BH113/0.4-0.5	5	07/04/20	S	G/P	х						ved: 7-4-20
BH113.0.9-1.0	6	07/04/20	S	G/P				x		Time Recei	ved: (/ ()
BH114/0.15-0.2	ſ	07/04/20	S	G/P		x				Received B	y: Heren)
BH114/0.2-0.3	8	07/04/20	S	G/P	X					Temp Cooling: Ice	(cepack
BH115/0.23-0.3	9	07/04/20	S	G/P	X.		- A-			Security: Int	act/Broken/None
BH115/0.5-0.6	w	07/04/20	S	G/P		x					
BH115/0.9-1.0	11	07/04/20	s	G/P				x			
BD2	で	07/04/20	S	G	_		X			Please store	extra samples until further notice
Rinsate (#3-2020 0407)	13	07/04/20	w	G/P			x			Please fill	er HM for the rinsate sample
PQL (S) mg/kg [/] L									1	ANZECC PQLs	req'd for all-water analytes
PQL = practical qua Metals to Analyse:	8HM u	nless specifi	ed here:	efault to Labora	tory Meth	od Detec	tion Limit			Lab Report/Re	ference No:
Total number of sa	mples i	in container:		Relinquis					orted to laborate	y by:	
Send Results to:	<u> </u>	Douglas Partr		Address:		lermitage	Road, W	est Ryde			Phone: 9809 0999
Signed: The			٦	Received by: 7	<u>iklen</u>					Date &	Time: 7-4-20

TS = 14 exta. P2

COC 8/4/2020 11.00 PL Samples 7/4/2020 1700 Ph.

đĩ,

17:10

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 240556-A

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Wen-Fei Yuan
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	<u>86767.03, Haymarket, SSI</u>
Number of Samples	14 Soil, 1 Water
Date samples received	07/04/2020
Date completed instructions received	20/04/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details									
Date results requested by	27/04/2020								
Date of Issue	27/04/2020								
NATA Accreditation Number 29	01. This document shall not be reproduced except in full.								
Accredited for compliance with	Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *								

Results Approved By Hannah Nguyen, Senior Chemist Steven Luong, Organics Supervisor

Authorised By

Nancy Zhang, Laboratory Manager

PAHs in TCLP (USEPA 1311)						
Our Reference		240556-A-1	240556-A-2	240556-A-4	240556-A-5	240556-A-7
Your Reference	UNITS	BH106/0.2-0.3	BH106/0.304	BH113/0.15-0.25	BH113/0.4-0.5	BH114/0.15-0.2
Date Sampled		07/04/20	07/04/20	07/04/20	07/04/20	07/04/20
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/04/2020	22/04/2020	22/04/2020	22/04/2020	22/04/2020
Date analysed	-	22/04/2020	22/04/2020	22/04/2020	22/04/2020	22/04/2020
Naphthalene in TCLP	mg/L	<0.001	0.003	<0.001	<0.001	0.007
Acenaphthylene in TCLP	mg/L	0.002	0.006	0.008	<0.001	0.025
Acenaphthene in TCLP	mg/L	<0.001	0.003	<0.001	<0.001	0.003
Fluorene in TCLP	mg/L	<0.001	0.003	0.003	<0.001	0.008
Phenanthrene in TCLP	mg/L	0.004	0.015	0.022	0.004	0.033
Anthracene in TCLP	mg/L	<0.001	0.002	0.003	<0.001	0.005
Fluoranthene in TCLP	mg/L	<0.001	0.003	0.005	0.001	0.006
Pyrene in TCLP	mg/L	<0.001	0.002	0.004	<0.001	0.004
Benzo(a)anthracene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Chrysene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Benzo(bjk)fluoranthene in TCLP	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002
Benzo(a)pyrene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Dibenzo(a,h)anthracene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Benzo(g,h,i)perylene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Total +ve PAH's	mg/L	0.0061	0.037	0.044	0.0053	0.091
Surrogate p-Terphenyl-d14	%	91	97	94	104	94

PAHs in TCLP (USEPA 1311)				
Our Reference		240556-A-8	240556-A-9	240556-A-10
Your Reference	UNITS	BH114/0.2-0.3	BH115/0.23-0.3	BH115/0.5-0.6
Date Sampled		07/04/20	07/04/20	07/04/20
Type of sample		Soil	Soil	Soil
Date extracted	-	22/04/2020	22/04/2020	22/04/2020
Date analysed	-	22/04/2020	22/04/2020	22/04/2020
Naphthalene in TCLP	mg/L	0.010	0.001	<0.001
Acenaphthylene in TCLP	mg/L	0.039	0.009	0.002
Acenaphthene in TCLP	mg/L	0.002	0.001	<0.001
Fluorene in TCLP	mg/L	0.01	0.006	<0.001
Phenanthrene in TCLP	mg/L	0.056	0.027	0.006
Anthracene in TCLP	mg/L	0.01	0.004	<0.001
Fluoranthene in TCLP	mg/L	0.009	0.006	0.002
Pyrene in TCLP	mg/L	0.008	0.005	0.001
Benzo(a)anthracene in TCLP	mg/L	<0.001	<0.001	<0.001
Chrysene in TCLP	mg/L	<0.001	<0.001	<0.001
Benzo(bjk)fluoranthene in TCLP	mg/L	<0.002	<0.002	<0.002
Benzo(a)pyrene in TCLP	mg/L	<0.001	<0.001	<0.001
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	<0.001	<0.001	<0.001
Dibenzo(a,h)anthracene in TCLP	mg/L	<0.001	<0.001	<0.001
Benzo(g,h,i)perylene in TCLP	mg/L	<0.001	<0.001	<0.001
Total +ve PAH's	mg/L	0.14	0.058	0.011
Surrogate p-Terphenyl-d14	%	100	94	97

Metals in TCLP USEPA1311						
Our Reference		240556-A-1	240556-A-2	240556-A-4	240556-A-5	240556-A-7
Your Reference	UNITS	BH106/0.2-0.3	BH106/0.304	BH113/0.15-0.25	BH113/0.4-0.5	BH114/0.15-0.2
Date Sampled		07/04/20	07/04/20	07/04/20	07/04/20	07/04/20
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/04/2020	22/04/2020	22/04/2020	22/04/2020	22/04/2020
Date analysed	-	22/04/2020	22/04/2020	22/04/2020	22/04/2020	22/04/2020
pH of soil for fluid# determ.	pH units	8.4	9.7	9.7	7.0	9.7
pH of soil TCLP (after HCl)	pH units	1.8	1.8	2.2	1.7	2.0
Extraction fluid used	-	1	1	1	1	1
pH of final Leachate	pH units	5.1	5.4	5.3	5.0	6.2
Lead in TCLP	mg/L	0.04	0.74	[NA]		[NA]

Metals in TCLP USEPA1311				
Our Reference		240556-A-8	240556-A-9	240556-A-10
Your Reference	UNITS	BH114/0.2-0.3	BH115/0.23-0.3	BH115/0.5-0.6
Date Sampled		07/04/20	07/04/20	07/04/20
Type of sample		Soil	Soil	Soil
Date extracted	-	22/04/2020	22/04/2020	22/04/2020
Date analysed	-	22/04/2020	22/04/2020	22/04/2020
pH of soil for fluid# determ.	pH units	9.5	9.2	9.3
pH of soil TCLP (after HCl)	pH units	1.8	1.8	1.9
Extraction fluid used	-	1	1	1
pH of final Leachate	pH units	5.4	5.1	5.3
Arsenic in TCLP	mg/L	[NA]	<0.05	[NA]
Lead in TCLP	mg/L	0.86	[NA]	[NA]

Method ID	Methodology Summary
EXTRACT.7	Toxicity Characteristic Leaching Procedure (TCLP) using Zero Headspace Extraction (zHE) using AS4439 and USEPA 1311.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-004	Toxicity Characteristic Leaching Procedure (TCLP) using in house method INORG-004. Please note that the mass used may be scaled down from the default based on sample mass available.
Metals-020 ICP-AES	Determination of various metals by ICP-AES.
Org-022/025	Leachates are extracted with Dichloromethane and analysed by GC-MS/GC-MSMS.

QUALITY CON	ROL: PAHs	in TCLP	(USEPA 1311)			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			22/04/2020	[NT]		[NT]	[NT]	22/04/2020	
Date analysed	-			22/04/2020	[NT]		[NT]	[NT]	22/04/2020	
Naphthalene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	72	
Acenaphthylene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Acenaphthene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Fluorene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	76	
Phenanthrene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	81	
Anthracene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Fluoranthene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	80	
Pyrene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	78	
Benzo(a)anthracene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Chrysene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	111	
Benzo(bjk)fluoranthene in TCLP	mg/L	0.002	Org-022/025	<0.002	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	71	
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	115	[NT]		[NT]	[NT]	110	

QUALITY CONTROL: Metals in TCLP USEPA1311				Duplicate			Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			22/04/2020	[NT]		[NT]	[NT]	22/04/2020	
Date analysed	-			22/04/2020	[NT]		[NT]	[NT]	22/04/2020	
Arsenic in TCLP	mg/L	0.05	Metals-020 ICP- AES	<0.05	[NT]		[NT]	[NT]	102	
Lead in TCLP	mg/L	0.03	Metals-020 ICP- AES	<0.03	[NT]	[NT]	[NT]	[NT]	92	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 243218

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Wen-Fei Yuan
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	<u>86767.03, Haymarket</u>
Number of Samples	15 SOIL
Date samples received	18/05/2020
Date completed instructions received	18/05/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details

 Date results requested by
 27/05/2020

 Date of Issue
 27/05/2020

 NATA Accreditation Number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Lucy Zhu Authorised by Asbestos Approved Signatory: Lucy Zhu

Results Approved By

Diego Bigolin, Team Leader, Inorganics Dragana Tomas, Senior Chemist Hannah Nguyen, Senior Chemist Lucy Zhu, Asbestos Supervisor Authorised By

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		243218-1	243218-2	243218-3	243218-4	243218-5
Your Reference	UNITS	BH107B	BD1/20200516	BH107B	BH108	BH109B
Depth		0.4-0.5	-	1.4-1.5	0.23-0.25	0.4-0.5
Date Sampled		16/05/2020	16/05/2020	16/05/2020	17/05/2020	17/05/2020
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date extracted	-	21/05/2020	21/05/2020	21/05/2020	21/05/2020	21/05/2020
Date analysed	-	22/05/2020	22/05/2020	22/05/2020	22/05/2020	22/05/2020
TRH C6 - C9	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	88	106	71	100	101
vTRH(C6-C10)/BTEXN in Soil						
Our Reference		243218-6	243218-7	243218-8	243218-9	243218-10
Vour Poforonco						
Your Reference	UNITS	BH112B	BH116	BH117	Trip Spike	Trip Blank
Depth	UNITS	BH112B 0.6-0.7	BH116 0.5-0.7	BH117 0.2-0.25	Trip Spike -	Trip Blank -
	UNITS				Trip Spike - 12/05/2020	Trip Blank - 12/05/2020
Depth	UNITS	0.6-0.7	0.5-0.7	0.2-0.25	-	-
Depth Date Sampled	UNITS -	0.6-0.7 18/05/2020	0.5-0.7 17/05/2020	0.2-0.25 17/05/2020	- 12/05/2020	- 12/05/2020
Depth Date Sampled Type of sample	UNITS - -	0.6-0.7 18/05/2020 SOIL	0.5-0.7 17/05/2020 SOIL	0.2-0.25 17/05/2020 SOIL	- 12/05/2020 SOIL	- 12/05/2020 SOIL
Depth Date Sampled Type of sample Date extracted	UNITS - - mg/kg	0.6-0.7 18/05/2020 SOIL 21/05/2020	0.5-0.7 17/05/2020 SOIL 21/05/2020	0.2-0.25 17/05/2020 SOIL 21/05/2020	- 12/05/2020 SOIL 21/05/2020	- 12/05/2020 SOIL 21/05/2020
Depth Date Sampled Type of sample Date extracted Date analysed	-	0.6-0.7 18/05/2020 SOIL 21/05/2020 22/05/2020	0.5-0.7 17/05/2020 SOIL 21/05/2020 22/05/2020	0.2-0.25 17/05/2020 SOIL 21/05/2020 22/05/2020	- 12/05/2020 SOIL 21/05/2020 22/05/2020	- 12/05/2020 SOIL 21/05/2020 22/05/2020
Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₆ - C ₉	- - mg/kg	0.6-0.7 18/05/2020 SOIL 21/05/2020 22/05/2020 <25	0.5-0.7 17/05/2020 SOIL 21/05/2020 22/05/2020 <25	0.2-0.25 17/05/2020 SOIL 21/05/2020 22/05/2020 <25	- 12/05/2020 SOIL 21/05/2020 22/05/2020 [NA]	12/05/2020 SOIL 21/05/2020 22/05/2020 <25
Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₆ - C ₉ TRH C ₆ - C ₁₀	- - mg/kg mg/kg	0.6-0.7 18/05/2020 SOIL 21/05/2020 22/05/2020 <25 <25	0.5-0.7 17/05/2020 SOIL 21/05/2020 22/05/2020 <25 <25	0.2-0.25 17/05/2020 SOIL 21/05/2020 22/05/2020 <25 <25	- 12/05/2020 SOIL 21/05/2020 22/05/2020 [NA] [NA]	- 12/05/2020 SOIL 21/05/2020 22/05/2020 <25 <25
Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₆ - C ₉ TRH C ₆ - C ₁₀ vTPH C ₆ - C ₁₀ less BTEX (F1)	- - mg/kg mg/kg mg/kg	0.6-0.7 18/05/2020 SOIL 21/05/2020 22/05/2020 <25 <25 <25	0.5-0.7 17/05/2020 SOIL 21/05/2020 22/05/2020 <25 <25 <25	0.2-0.25 17/05/2020 SOIL 21/05/2020 22/05/2020 <25 <25 <25	- 12/05/2020 SOIL 21/05/2020 22/05/2020 [NA] [NA]	- 12/05/2020 SOIL 21/05/2020 22/05/2020 <25 <25 <25
Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₆ - C ₉ TRH C ₆ - C ₁₀ vTPH C ₆ - C ₁₀ less BTEX (F1) Benzene	- - mg/kg mg/kg mg/kg mg/kg	0.6-0.7 18/05/2020 SOIL 21/05/2020 22/05/2020 <25 <25 <25 <25 <0.2	0.5-0.7 17/05/2020 SOIL 21/05/2020 22/05/2020 <25 <25 <25 <25 <0.2	0.2-0.25 17/05/2020 SOIL 21/05/2020 22/05/2020 <25 <25 <25 <25 <0.2	- 12/05/2020 SOIL 21/05/2020 22/05/2020 [NA] [NA] [NA] 100%	- 12/05/2020 SOIL 21/05/2020 22/05/2020 <25 <25 <25 <25 <0.2
Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 vTPH C6 - C10 less BTEX (F1) Benzene Toluene	- - mg/kg mg/kg mg/kg mg/kg mg/kg	0.6-0.7 18/05/2020 SOIL 21/05/2020 22/05/2020 <25 <25 <25 <25 <0.2 <0.2	0.5-0.7 17/05/2020 SOIL 21/05/2020 22/05/2020 <25 <25 <25 <25 <0.2 <0.2	0.2-0.25 17/05/2020 SOIL 21/05/2020 <225 <25 <25 <25 <0.2 <0.2	- 12/05/2020 SOIL 21/05/2020 22/05/2020 [NA] [NA] [NA] 100% 101%	- 12/05/2020 SOIL 21/05/2020 22/05/2020 <25 <25 <25 <0.2 <0.2
Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 vTPH C6 - C10 less BTEX (F1) Benzene Toluene Ethylbenzene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.6-0.7 18/05/2020 SOIL 21/05/2020 22/05/2020 <25 <25 <25 <0.2 <0.2 <0.5	0.5-0.7 17/05/2020 SOIL 21/05/2020 22/05/2020 <25 <25 <25 <25 <0.2 <0.2 <0.5	0.2-0.25 17/05/2020 SOIL 21/05/2020 22/05/2020 <25 <25 <25 <0.2 <0.2 <0.5	- 12/05/2020 SOIL 21/05/2020 22/05/2020 [NA] [NA] [NA] 100% 101% 102%	12/05/2020 SOIL 21/05/2020 22/05/2020 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1
Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 vTPH C6 - C10 less BTEX (F1) Benzene Toluene Ethylbenzene m+p-xylene	- - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.6-0.7 18/05/2020 SOIL 21/05/2020 22/05/2020 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	0.5-0.7 17/05/2020 SOIL 21/05/2020 22/05/2020 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	0.2-0.25 17/05/2020 SOIL 21/05/2020 <225 <25 <25 <0.2 <0.2 <0.5 <1 <2	- 12/05/2020 SOIL 21/05/2020 (NA) (NA) (NA) 100% 101% 102% 103%	- 12/05/2020 SOIL 21/05/2020 22/05/2020 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2
Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 VTPH C6 - C10 less BTEX (F1) Benzene Toluene Ethylbenzene m+p-xylene o-Xylene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.6-0.7 18/05/2020 SOIL 21/05/2020 22/05/2020 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1	0.5-0.7 17/05/2020 SOIL 21/05/2020 22/05/2020 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1	0.2-0.25 17/05/2020 SOIL 21/05/2020 22/05/2020 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1	12/05/2020 SOIL 21/05/2020 22/05/2020 (NA) (NA) (NA) 100% 101% 102% 103%	12/05/2020 SOIL 21/05/2020 22/05/2020 <25

vTRH(C6-C10)/BTEXN in Soil		
Our Reference		243218-13
Your Reference	UNITS	BH112B
Depth		1.2-1.4
Date Sampled		13/05/2020
Type of sample		SOIL
Date extracted	-	21/05/2020
Date analysed	-	22/05/2020
TRH C6 - C9	mg/kg	<25
TRH C6 - C10	mg/kg	<25
vTPH C_6 - C_{10} less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
naphthalene	mg/kg	<1
Total +ve Xylenes	mg/kg	<3
Surrogate aaa-Trifluorotoluene	%	93

svTRH (C10-C40) in Soil						
Our Reference		243218-1	243218-2	243218-3	243218-4	243218-5
Your Reference	UNITS	BH107B	BD1/20200516	BH107B	BH108	BH109B
Depth		0.4-0.5	-	1.4-1.5	0.23-0.25	0.4-0.5
Date Sampled		16/05/2020	16/05/2020	16/05/2020	17/05/2020	17/05/2020
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date extracted	-	21/05/2020	21/05/2020	21/05/2020	21/05/2020	21/05/2020
Date analysed	-	21/05/2020	21/05/2020	21/05/2020	21/05/2020	21/05/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C10 -C16	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	90	91	90	83	90
svTRH (C10-C40) in Soil	1	'				
Our Reference		243218-6	243218-7	243218-8	243218-13	

Our Reference		243218-6	243218-7	243218-8	243218-13
Your Reference	UNITS	BH112B	BH116	BH117	BH112B
Depth		0.6-0.7	0.5-0.7	0.2-0.25	1.2-1.4
Date Sampled		18/05/2020	17/05/2020	17/05/2020	13/05/2020
Type of sample		SOIL	SOIL	SOIL	SOIL
Date extracted	-	21/05/2020	21/05/2020	21/05/2020	21/05/2020
Date analysed	-	22/05/2020	21/05/2020	22/05/2020	21/05/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	51	<50
TRH C ₁₅ - C ₂₈	mg/kg	210	<100	1,300	<100
TRH C ₂₉ - C ₃₆	mg/kg	650	<100	670	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	140	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	120	<50
TRH >C ₁₆ -C ₃₄	mg/kg	650	<100	1,700	<100
TRH >C ₃₄ -C ₄₀	mg/kg	310	<100	340	<100
Total +ve TRH (>C10-C40)	mg/kg	960	<50	2,200	<50
Surrogate o-Terphenyl	%	102	88	138	82

PAHs in Soil						
Our Reference		243218-1	243218-2	243218-3	243218-4	243218-5
Your Reference	UNITS	BH107B	BD1/20200516	BH107B	BH108	BH109B
Depth		0.4-0.5	-	1.4-1.5	0.23-0.25	0.4-0.5
Date Sampled		16/05/2020	16/05/2020	16/05/2020	17/05/2020	17/05/2020
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date extracted	-	21/05/2020	21/05/2020	21/05/2020	21/05/2020	21/05/2020
Date analysed	-	21/05/2020	21/05/2020	21/05/2020	21/05/2020	21/05/2020
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.3	0.4	<0.1	0.2	0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	0.2	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	1.2	1.3	0.2	0.4	0.9
Anthracene	mg/kg	0.4	0.5	<0.1	0.2	0.2
Fluoranthene	mg/kg	2.2	2.6	0.5	3.1	0.8
Pyrene	mg/kg	2.3	2.8	0.5	4.3	0.8
Benzo(a)anthracene	mg/kg	1.4	1.7	0.3	2.7	0.4
Chrysene	mg/kg	1.3	1.7	0.3	2.6	0.4
Benzo(b,j+k)fluoranthene	mg/kg	2.0	2.7	0.4	3.6	0.5
Benzo(a)pyrene	mg/kg	1.3	1.8	0.3	2.7	0.4
Indeno(1,2,3-c,d)pyrene	mg/kg	0.6	0.9	0.1	1.2	0.2
Dibenzo(a,h)anthracene	mg/kg	0.2	0.3	<0.1	0.3	<0.1
Benzo(g,h,i)perylene	mg/kg	0.8	1.2	0.2	1.5	0.2
Total +ve PAH's	mg/kg	14	18	2.8	23	4.9
Benzo(a)pyrene TEQ calc (zero)	mg/kg	2.0	2.7	<0.5	3.8	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	2.0	2.7	<0.5	3.8	0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	2.0	2.7	<0.5	3.8	0.6
Surrogate p-Terphenyl-d14	%	98	100	94	104	97

PAHs in Soil					
Our Reference		243218-6	243218-7	243218-8	243218-13
Your Reference	UNITS	BH112B	BH116	BH117	BH112B
Depth		0.6-0.7	0.5-0.7	0.2-0.25	1.2-1.4
Date Sampled		18/05/2020	17/05/2020	17/05/2020	13/05/2020
Type of sample		SOIL	SOIL	SOIL	SOIL
Date extracted	-	21/05/2020	21/05/2020	21/05/2020	21/05/2020
Date analysed	-	21/05/2020	21/05/2020	21/05/2020	21/05/2020
Naphthalene	mg/kg	2.1	<0.1	13	0.5
Acenaphthylene	mg/kg	0.9	<0.1	24	0.4
Acenaphthene	mg/kg	1.6	<0.1	1.6	0.5
Fluorene	mg/kg	2.4	<0.1	8.3	0.8
Phenanthrene	mg/kg	16	<0.1	95	5.9
Anthracene	mg/kg	3.9	<0.1	32	1.6
Fluoranthene	mg/kg	14	<0.1	130	5.8
Pyrene	mg/kg	14	<0.1	130	6.1
Benzo(a)anthracene	mg/kg	6.0	<0.1	67	2.8
Chrysene	mg/kg	5.9	<0.1	63	2.8
Benzo(b,j+k)fluoranthene	mg/kg	7.2	<0.2	70	3.5
Benzo(a)pyrene	mg/kg	5.1	<0.05	49	2.5
Indeno(1,2,3-c,d)pyrene	mg/kg	2.6	<0.1	22	1.0
Dibenzo(a,h)anthracene	mg/kg	0.7	<0.1	4.2	0.3
Benzo(g,h,i)perylene	mg/kg	2.9	<0.1	59	1.3
Total +ve PAH's	mg/kg	85	<0.05	770	36
Benzo(a)pyrene TEQ calc (zero)	mg/kg	7.5	<0.5	71	3.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	7.5	<0.5	71	3.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	7.5	<0.5	71	3.5
Surrogate p-Terphenyl-d14	%	100	101	94	98

Organochlorine Pesticides in soil				
Our Reference		243218-1	243218-5	243218-8
Your Reference	UNITS	BH107B	BH109B	BH117
Depth		0.4-0.5	0.4-0.5	0.2-0.25
Date Sampled		16/05/2020	17/05/2020	17/05/2020
Type of sample		SOIL	SOIL	SOIL
Date extracted	-	21/05/2020	21/05/2020	21/05/2020
Date analysed	-	21/05/2020	21/05/2020	21/05/2020
alpha-BHC	mg/kg	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1
Surrogate TCMX	%	93	94	94

Organophosphorus Pesticides in Soil				
Our Reference		243218-1	243218-5	243218-8
Your Reference	UNITS	BH107B	BH109B	BH117
Depth		0.4-0.5	0.4-0.5	0.2-0.25
Date Sampled		16/05/2020	17/05/2020	17/05/2020
Type of sample		SOIL	SOIL	SOIL
Date extracted	-	21/05/2020	21/05/2020	21/05/2020
Date analysed	-	21/05/2020	21/05/2020	21/05/2020
Dichlorvos	mg/kg	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1
Surrogate TCMX	%	93	94	94

PCBs in Soil				
Our Reference		243218-1	243218-5	243218-8
Your Reference	UNITS	BH107B	BH109B	BH117
Depth		0.4-0.5	0.4-0.5	0.2-0.25
Date Sampled		16/05/2020	17/05/2020	17/05/2020
Type of sample		SOIL	SOIL	SOIL
Date extracted	-	21/05/2020	21/05/2020	21/05/2020
Date analysed	-	21/05/2020	21/05/2020	21/05/2020
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1
Surrogate TCMX	%	93	94	94

Acid Extractable metals in soil						
Our Reference		243218-1	243218-2	243218-3	243218-4	243218-5
Your Reference	UNITS	BH107B	BD1/20200516	BH107B	BH108	BH109B
Depth		0.4-0.5	-	1.4-1.5	0.23-0.25	0.4-0.5
Date Sampled		16/05/2020	16/05/2020	16/05/2020	17/05/2020	17/05/2020
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date prepared	-	21/05/2020	21/05/2020	21/05/2020	21/05/2020	21/05/2020
Date analysed	-	22/05/2020	22/05/2020	22/05/2020	22/05/2020	22/05/2020
Arsenic	mg/kg	<4	<4	<4	5	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	8	12	7	14	9
Copper	mg/kg	25	46	11	11	9
Lead	mg/kg	54	52	11	15	19
Mercury	mg/kg	0.2	0.2	<0.1	<0.1	<0.1
Nickel	mg/kg	4	7	6	<1	<1
Zinc	mg/kg	49	81	15	4	2

Acid Extractable metals in soil					
Our Reference		243218-6	243218-7	243218-8	243218-13
Your Reference	UNITS	BH112B	BH116	BH117	BH112B
Depth		0.6-0.7	0.5-0.7	0.2-0.25	1.2-1.4
Date Sampled		18/05/2020	17/05/2020	17/05/2020	13/05/2020
Type of sample		SOIL	SOIL	SOIL	SOIL
Date prepared	-	21/05/2020	21/05/2020	21/05/2020	21/05/2020
Date analysed	-	22/05/2020	22/05/2020	22/05/2020	22/05/2020
Arsenic	mg/kg	<4	<4	8	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	11	6	20	3
Copper	mg/kg	15	5	15	16
Lead	mg/kg	21	12	16	5
Mercury	mg/kg	0.3	<0.1	<0.1	<0.1
Nickel	mg/kg	3	<1	2	3
Zinc	mg/kg	12	1	7	11

Misc Soil - Inorg				
Our Reference		243218-1	243218-5	243218-8
Your Reference	UNITS	BH107B	BH109B	BH117
Depth		0.4-0.5	0.4-0.5	0.2-0.25
Date Sampled		16/05/2020	17/05/2020	17/05/2020
Type of sample		SOIL	SOIL	SOIL
Date prepared	-	21/05/2020	21/05/2020	21/05/2020
Date analysed	-	21/05/2020	21/05/2020	21/05/2020
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5

Moisture						
Our Reference		243218-1	243218-2	243218-3	243218-4	243218-5
Your Reference	UNITS	BH107B	BD1/20200516	BH107B	BH108	BH109B
Depth		0.4-0.5	-	1.4-1.5	0.23-0.25	0.4-0.5
Date Sampled		16/05/2020	16/05/2020	16/05/2020	17/05/2020	17/05/2020
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date prepared	-	21/05/2020	21/05/2020	21/05/2020	21/05/2020	21/05/2020
Date analysed	-	22/05/2020	22/05/2020	22/05/2020	22/05/2020	22/05/2020
Moisture	%	9.1	9.8	13	22	16
Moisture						
Our Reference		243218-6	243218-7	243218-8	243218-13	
Your Reference	UNITS	BH112B	BH116	BH117	BH112B	
Depth		0.6-0.7	0.5-0.7	0.2-0.25	1.2-1.4	
Date Sampled		18/05/2020	17/05/2020	17/05/2020	13/05/2020	
Type of sample		SOIL	SOIL	SOIL	SOIL	
Date prepared	-	21/05/2020	21/05/2020	21/05/2020	21/05/2020	
Date analysed	-	22/05/2020	22/05/2020	22/05/2020	22/05/2020	
Moisture	%	5.4	14	20	5.0	

Asbestos ID - soils						
Our Reference		243218-1	243218-3	243218-5	243218-6	243218-8
Your Reference	UNITS	BH107B	BH107B	BH109B	BH112B	BH117
Depth		0.4-0.5	1.4-1.5	0.4-0.5	0.6-0.7	0.2-0.25
Date Sampled		16/05/2020	16/05/2020	17/05/2020	18/05/2020	17/05/2020
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date analysed	-	27/05/2020	27/05/2020	27/05/2020	27/05/2020	27/05/2020
Sample mass tested	g	Approx. 40g	Approx. 45g	Approx. 45g	Approx. 40g	Approx. 60g
Sample Description	-	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks	Beige clayey soil & rocks	Beige sandy soil & rocks	Brown clayey soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg				
		Organic fibres detected				
Trace Analysis	-	No asbestos detected				

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.

Method ID	Methodology Summary
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<br="" teq="" teqs="" that="" the="" this="" to="">2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<br="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.="">3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<br="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" the="">Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	ROL: vTRH	(C6-C10)	BTEXN in Soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	243218-5	
Date extracted	-			21/05/2020	1	21/05/2020	21/05/2020		21/05/2020	21/05/2020	
Date analysed	-			22/05/2020	1	22/05/2020	22/05/2020		22/05/2020	22/05/2020	
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	1	<25	<25	0	109	93	
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	1	<25	<25	0	109	93	
Benzene	mg/kg	0.2	Org-023	<0.2	1	<0.2	<0.2	0	111	98	
Toluene	mg/kg	0.5	Org-023	<0.5	1	<0.5	<0.5	0	102	87	
Ethylbenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	100	84	
m+p-xylene	mg/kg	2	Org-023	<2	1	<2	<2	0	116	97	
o-Xylene	mg/kg	1	Org-023	<1	1	<1	<1	0	103	87	
naphthalene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-023	92	1	88	102	15	102	93	

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	243218-5
Date extracted	-			21/05/2020	1	21/05/2020	21/05/2020		21/05/2020	21/05/2020
Date analysed	-			21/05/2020	1	21/05/2020	21/05/2020		21/05/2020	21/05/2020
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	1	<50	<50	0	85	83
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	1	<100	<100	0	74	77
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	1	<100	<100	0	92	119
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	1	<50	<50	0	85	83
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	1	<100	<100	0	74	77
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	1	<100	<100	0	92	119
Surrogate o-Terphenyl	%		Org-020	71	1	90	90	0	111	90

QUAL	ITY CONTRC	L: PAHs	in Soil			Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	243218-5
Date extracted	-			21/05/2020	1	21/05/2020	21/05/2020		21/05/2020	21/05/2020
Date analysed	-			21/05/2020	1	21/05/2020	21/05/2020		21/05/2020	21/05/2020
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	98	98
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	1	0.3	0.4	29	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fluorene	mg/kg	0.1	Org-022/025	<0.1	1	0.1	0.2	67	100	104
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	1	1.2	1.8	40	98	134
Anthracene	mg/kg	0.1	Org-022/025	<0.1	1	0.4	0.5	22	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	1	2.2	2.9	27	98	132
Pyrene	mg/kg	0.1	Org-022/025	<0.1	1	2.3	3.0	26	98	137
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	1.4	1.8	25	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-022/025	<0.1	1	1.3	1.7	27	90	110
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	1	2.0	2.5	22	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	1	1.3	1.6	21	104	119
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	1	0.6	0.7	15	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	0.2	0.2	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	1	0.8	0.9	12	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	93	1	98	96	2	89	95

QUALITY CONT	ROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	243218-5	
Date extracted	-			21/05/2020	1	21/05/2020	21/05/2020		21/05/2020	21/05/2020	
Date analysed	-			21/05/2020	1	21/05/2020	21/05/2020		21/05/2020	21/05/2020	
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	102	106	
НСВ	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	116	116	
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	90	94	
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Aldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	118	122	
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	118	118	
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	114	120	
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	98	122	
Endrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	108	106	
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	106	106	
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	84	96	
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Surrogate TCMX	%		Org-022/025	95	1	93	92	1	91	92	

QUALITY CONTRO	L: Organoph	nosphorus	Pesticides in Soil	Duplicate					Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	243218-5		
Date extracted	-			21/05/2020	1	21/05/2020	21/05/2020		21/05/2020	21/05/2020		
Date analysed	-			21/05/2020	1	21/05/2020	21/05/2020		21/05/2020	21/05/2020		
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	94	70		
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]		
Diazinon	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]		
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]		
Ronnel	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	88	84		
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	78	70		
Malathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	72	78		
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	92	94		
Parathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	96	90		
Bromophos-ethyl	mg/kg	0.1	Org-022	<0.1	1	<0.1	<0.1	0	[NT]	[NT]		
Ethion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	90	88		
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]		
Surrogate TCMX	%		Org-022/025	95	1	93	92	1	91	92		

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	243218-5
Date extracted	-			21/05/2020	1	21/05/2020	21/05/2020		21/05/2020	21/05/2020
Date analysed	-			21/05/2020	1	21/05/2020	21/05/2020		21/05/2020	21/05/2020
Aroclor 1016	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	110	110
Aroclor 1260	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-021	95	1	93	92	1	91	92

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	243218-5
Date prepared	-			21/05/2020	1	21/05/2020	21/05/2020		21/05/2020	21/05/2020
Date analysed	-			22/05/2020	1	22/05/2020	22/05/2020		22/05/2020	22/05/2020
Arsenic	mg/kg	4	Metals-020	<4	1	<4	<4	0	120	88
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	<0.4	<0.4	0	116	87
Chromium	mg/kg	1	Metals-020	<1	1	8	10	22	119	88
Copper	mg/kg	1	Metals-020	<1	1	25	19	27	121	92
Lead	mg/kg	1	Metals-020	<1	1	54	62	14	117	87
Mercury	mg/kg	0.1	Metals-021	<0.1	1	0.2	0.3	40	95	83
Nickel	mg/kg	1	Metals-020	<1	1	4	4	0	116	86
Zinc	mg/kg	1	Metals-020	<1	1	49	48	2	120	86

QUALITY	CONTROL	Misc Soi	l - Inorg			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]	
Date prepared	-			21/05/2020	[NT]		[NT]	[NT]	21/05/2020	[NT]	
Date analysed	-			21/05/2020	[NT]		[NT]	[NT]	21/05/2020	[NT]	
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	<5	[NT]	[NT]	[NT]	[NT]	100	[NT]	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	Quality Control Definitions							
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.							
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.							
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.							
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.							
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.							

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Asbestos: A portion of the supplied sample was sub-sampled for asbestos analysis according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g of sample in its own container.

Note: Sample 243218-6 was sub-sampled from a jar provided by the client.

1520

Douglas Partners Geotechnics | Environment | Groundwater

CHAIN OF CUSTODY DESPATCH SHEET

Project No:	86767	7.03			Suburt):	Hayma	rket		To:	Env	virolab Ser	vices
Project Name:		IARKET, 81	0 Lee Stre	et, SSI		Number							
Project Manager:	WFY Sampler: AMS/NB/KR				Attn:		en Hie						
Emails:				<u>tners.com.au ai</u>					<u>m.au</u>	Phone:		-	
Date Required:		day 🗆	24 hours			hours 🛛		dard 🗆		Email:	_		
Prior Storage:	Esky		□ Shelve		Do sam	oles conta	in 'potentia	l' HBM? Yes		, then handl	e, transpoi	rt and store in	n accordance with FPM HA
Comple	Lab	Sampled	Sample Type	Container Type		- <		· ·	Analyte	s 		· ·	
Sample ID	Lab ID		- soil water	glass	Combo8,	Combo3	Combo3	TRH/BT EX			у." Т		
		Date	ν γ	<u>ה</u> ה	Co	U C C	Ŝ	TR		Envirolab S	ervices		
BH107B/0.4-0.5		16/05/20	S	G/P	Х		τ		ENVIROLAB	12 As atswood NS	hley St W 2067		
BD1/20200516	ع	16/05/20	S	G			x		41007	Ph: (02) 99			Notes
BH107B/1.5-1.6	3	16/05/20	S	G/P		х		· · · · · · ·	Job No:	243	1-1-	18 ks/c	2
BH108/0.23-0.25	φ	17/05/20	S	G/P	Ň		X		Date Received	<u> </u>	020		
BH109B/0.4-0.5	5	17/05/20	s	G/P	x	r	X.		Time Received Received By: (jur.			·
BH112B/0.6-0.7	b	18/05/20	S	G/P		X			Temp: Cool/Ar Cooling Toolt			7	BH112B samples
BH112B/1.4-1.5	NR	18/05/20	S	G/P			X		Security: Intac	/Broken/No	ne		have been despat
BH116/0.5-0.7	لب	17/05/20	S	G/P			X						On 18/05/2020
BD1/20200517	;		S	G .	•		X						
BH117/0.2-0.25	8	17/05/20	s	G/P	x								Please despatch inter replicate (BD1/20200
Trip Spike	9	1250	S	G				BTEX					to Eurofins Mgt
Trip Blank	0	12/5/20	S	G				TRH/BTEX		· · · · · · · · · · · · · · · · · · ·			
Trip spite	[]	13/5/2	$\overline{ \mathbf{x}}$					-			-		
Trip Hum	12	12/5/2	/ EXh	rus received	•		-	•			91 94		
BH112B 1.2-1.4	13	1 1	5										
H11215 1.6-1-7	14		\leq										· · · · · ·
301807202012	.15								•		_	5	
PQL (S) mg/kg				·			<u> </u>	·	- <u>-</u> –	ANZEC	C PQLs	reg'd for a	all water analytes 🏾
PQL = practical qua	antitatiç	on limit. If	none giver	n, default to Labo	ratory Me	thod Dete	ection Lim	it	·		•	eference N	
Metals to Analyse:								<u>.</u>					
Total number of sa				Relinquis			NFY		to laboratory by:			Dham	0800.0000
Send Results to: Signed:		ouglas Part		d Address: Received by: 🖯			Road, W	MURNZ	<u></u>	······	Date &		9809 0999
<u></u>				Countred by	10401			INTONCATO	<u> </u>		Dure of	11101. 1	1 10 7 10 100

CHAIN OF CUSTODY DESPATCH SHEET

Project No:	8676				Subur):	Haym	narket		To:	Env	virolab Sei	rvices
Project Name:		narket, DSI			Order	Number							
Project Manager:	WFY				Sample	er:	NB			Attn:	Aile	en Hie	
Emails:				rtners.com.au						Phone:			
Date Required:		eday 🗆	24 hours		D 72	hours 🛛	Sta	ndard 🗆		Email:			
Prior Storage:	Esky		Shelve		Do sam	olės conta	in 'potent	ial' HBM?	Yes I No I (If Y	ES, then handl	le, transpoi	rt and store i	n accordance with FPM HAZID)
Sample	Lab	Sampled	Sample Type	Container Type					Anal	/tes			
iD	ID	Date Se	S - soil W - wate	- plast	Combo8	Combo3							
<u> </u>	+	<u> </u>		<u>О</u> L	0	Ŭ	+						800 Y 100 - Y 1 - Y
BH110/0.5-0.6	NR3	21/05/20	S	G/P	X								
BH111/0.4-0.5		19/05/20	S	G/P	X	L							
BH111/1.3-1.4	2	19/05/20	s	G/P		x					:		10
BH 110 10.25-0	-35	ALKA											
												1	
							_						
				-					5. SF				
#3 + ex	ra.	sample	recid	22/5/2020	1500				Ň			· ·	· · · · · · · · · · · · · · · · · · ·
•					· · · · · · · · · · · · · · · · · · ·	R.			- 29*			,	
												Mile	Fevilation Services
									·····			Job (<u>Ph: (02) 9910 6200</u>
							1	-				Date i	received: 19572020 22
												Time	Received: 12-15 10.
											· .	Tem	CoolAmbient 100.2
												Coolir	g: Icencepecs
				-									
PQL (S) mg/kg		á							<u> </u>		C PQLs I	l reg'd for a	all water analytes
PQL = practical qu				n, default to Labo	ratory Me	thod Dete	ection Lin	mit				ference N	
Metals to Analyse: Total number of sa				Relinquis	hed by		NFY	Trapence	ted to laboratory by	· · · · · · · · · · · · · · · · · · ·	·		
Send Results to:		ouglas Parti						Vest Ryde	Leu lo laboratory Dy			Phone:	9809 0999
Signed:				Received by:		<u>onnage</u>	10000,1	- Soc Ttydo	· · · · · · · · · · · · · · · · · · ·	· - · · · · · · · · · · · · · · · · · ·	Date & 1		

.

.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 243428

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Wen-Fei Yuan
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	86767.03/Haymarket,DSI
Number of Samples	4 Soil
Date samples received	19/05/2020
Date completed instructions received	22/05/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details

 Date results requested by
 29/05/2020

 Date of Issue
 29/05/2020

 NATA Accreditation Number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Lucy Zhu Authorised by Asbestos Approved Signatory: Lucy Zhu **Results Approved By** Diego Bigolin, Team Leader, Inorganics Dragana Tomas, Senior Chemist Hannah Nguyen, Senior Chemist Josh Williams, Senior Chemist Lucy Zhu, Asbestos Supervisor Authorised By

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil				
Our Reference		243428-1	243428-2	243428-3
Your Reference	UNITS	BH111	BH111	BH110
Depth		0.4-0.5	1.3-1.4	0.5-0.6
Date Sampled		19/05/2020	19/05/2020	21/05/2020
Type of sample		Soil	Soil	Soil
Date extracted	-	25/05/2020	25/05/2020	25/05/2020
Date analysed	-	26/05/2020	26/05/2020	26/05/2020
TRH C ₆ - C ₉	mg/kg	<25	<25	<25
TRH C6 - C10	mg/kg	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	110	110	105

svTRH (C10-C40) in Soil				
Our Reference		243428-1	243428-2	243428-3
Your Reference	UNITS	BH111	BH111	BH110
Depth		0.4-0.5	1.3-1.4	0.5-0.6
Date Sampled		19/05/2020	19/05/2020	21/05/2020
Type of sample		Soil	Soil	Soil
Date extracted	-	25/05/2020	25/05/2020	25/05/2020
Date analysed	-	25/05/2020	25/05/2020	25/05/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	130	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	110	<100
TRH >C10 -C16	mg/kg	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	220	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	220	<50
Surrogate o-Terphenyl	%	66	83	75

PAHs in Soil				
Our Reference		243428-1	243428-2	243428-3
Your Reference	UNITS	BH111	BH111	BH110
Depth		0.4-0.5	1.3-1.4	0.5-0.6
Date Sampled		19/05/2020	19/05/2020	21/05/2020
Type of sample		Soil	Soil	Soil
Date extracted	-	25/05/2020	25/05/2020	25/05/2020
Date analysed	-	25/05/2020	25/05/2020	25/05/2020
Naphthalene	mg/kg	<0.1	0.2	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	0.2	0.2
Phenanthrene	mg/kg	0.2	4.0	0.6
Anthracene	mg/kg	<0.1	0.9	0.4
Fluoranthene	mg/kg	0.3	8.0	1.8
Pyrene	mg/kg	0.3	7.8	2.2
Benzo(a)anthracene	mg/kg	0.2	5.0	1.5
Chrysene	mg/kg	0.2	6.9	1.1
Benzo(b,j+k)fluoranthene	mg/kg	0.3	12	2
Benzo(a)pyrene	mg/kg	0.2	5.7	1.1
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	2.4	0.5
Dibenzo(a,h)anthracene	mg/kg	<0.1	0.7	0.6
Benzo(g,h,i)perylene	mg/kg	0.1	2.7	0.6
Total +ve PAH's	mg/kg	1.9	57	13
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	8.4	2.1
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	8.4	2.1
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	8.4	2.1
Surrogate p-Terphenyl-d14	%	81	105	87

Organochlorine Pesticides in soil			
Our Reference		243428-1	243428-3
Your Reference	UNITS	BH111	BH110
Depth		0.4-0.5	0.5-0.6
Date Sampled		19/05/2020	21/05/2020
Type of sample		Soil	Soil
Date extracted	-	25/05/2020	25/05/2020
Date analysed	-	25/05/2020	25/05/2020
alpha-BHC	mg/kg	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1
Surrogate TCMX	%	98	102

Organophosphorus Pesticides in Soi	1		
Our Reference		243428-1	243428-3
Your Reference	UNITS	BH111	BH110
Depth		0.4-0.5	0.5-0.6
Date Sampled		19/05/2020	21/05/2020
Type of sample		Soil	Soil
Date extracted	-	25/05/2020	25/05/2020
Date analysed	-	25/05/2020	25/05/2020
Dichlorvos	mg/kg	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1
Surrogate TCMX	%	98	102

PCBs in Soil			
Our Reference		243428-1	243428-3
Your Reference	UNITS	BH111	BH110
Depth		0.4-0.5	0.5-0.6
Date Sampled		19/05/2020	21/05/2020
Type of sample		Soil	Soil
Date extracted	-	25/05/2020	25/05/2020
Date analysed	-	25/05/2020	25/05/2020
Aroclor 1016	mg/kg	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1
Surrogate TCMX	%	98	102

Acid Extractable metals in soil				
Our Reference		243428-1	243428-2	243428-3
Your Reference	UNITS	BH111	BH111	BH110
Depth		0.4-0.5	1.3-1.4	0.5-0.6
Date Sampled		19/05/2020	19/05/2020	21/05/2020
Type of sample		Soil	Soil	Soil
Date prepared	-	25/05/2020	25/05/2020	25/05/2020
Date analysed	-	26/05/2020	26/05/2020	26/05/2020
Arsenic	mg/kg	<4	<4	43
Cadmium	mg/kg	<0.4	<0.4	<0.4
Chromium	mg/kg	5	16	10
Copper	mg/kg	6	60	9
Lead	mg/kg	10	330	30
Mercury	mg/kg	<0.1	1.0	<0.1
Nickel	mg/kg	3	16	3
Zinc	mg/kg	12	180	19

Misc Soil - Inorg			
Our Reference		243428-1	243428-3
Your Reference	UNITS	BH111	BH110
Depth		0.4-0.5	0.5-0.6
Date Sampled		19/05/2020	21/05/2020
Type of sample		Soil	Soil
Date prepared	-	25/05/2020	25/05/2020
Date analysed	-	25/05/2020	25/05/2020
Total Phenolics (as Phenol)	mg/kg	<5	<5

Moisture				
Our Reference		243428-1	243428-2	243428-3
Your Reference	UNITS	BH111	BH111	BH110
Depth		0.4-0.5	1.3-1.4	0.5-0.6
Date Sampled		19/05/2020	19/05/2020	21/05/2020
Type of sample		Soil	Soil	Soil
Date prepared	-	25/05/2020	25/05/2020	25/05/2020
Date analysed	-	26/05/2020	26/05/2020	26/05/2020
Moisture	%	7.0	13	14

Asbestos ID - soils				
Our Reference		243428-1	243428-2	243428-3
Your Reference	UNITS	BH111	BH111	BH110
Depth		0.4-0.5	1.3-1.4	0.5-0.6
Date Sampled		19/05/2020	19/05/2020	21/05/2020
Type of sample		Soil	Soil	Soil
Date analysed	-	28/05/2020	28/05/2020	28/05/2020
Sample mass tested	g	Approx. 25g	Approx. 35g	Approx. 30g
Sample Description	-	Brown sandy soil & rocks	Brown coarse- grained soil & rocks	Beige clayey soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg
		Organic fibres detected	Organic fibres detected	Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.

Method ID	Methodology Summary
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<br="" teq="" teqs="" that="" the="" this="" to="">2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<br="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.="">3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<br="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" the="">Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	Duplicate Spike Re					covery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]
Date extracted	-			25/05/2020	[NT]		[NT]	[NT]	25/05/2020	
Date analysed	-			26/05/2020	[NT]		[NT]	[NT]	26/05/2020	
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	99	
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	99	
Benzene	mg/kg	0.2	Org-023	<0.2	[NT]		[NT]	[NT]	112	
Toluene	mg/kg	0.5	Org-023	<0.5	[NT]		[NT]	[NT]	93	
Ethylbenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	103	
m+p-xylene	mg/kg	2	Org-023	<2	[NT]		[NT]	[NT]	93	
o-Xylene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	84	
naphthalene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-023	101	[NT]		[NT]	[NT]	101	

QUALITY CO	QUALITY CONTROL: svTRH (C10-C40) in Soil								Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]
Date extracted	-			25/05/2020	[NT]		[NT]	[NT]	25/05/2020	
Date analysed	-			25/05/2020	[NT]		[NT]	[NT]	25/05/2020	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	93	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	84	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	92	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	93	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	84	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	92	
Surrogate o-Terphenyl	%		Org-020	73	[NT]	[NT]	[NT]	[NT]	94	[NT]

QUALI		Du	plicate		Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]
Date extracted	-			25/05/2020	[NT]		[NT]	[NT]	25/05/2020	
Date analysed	-			25/05/2020	[NT]		[NT]	[NT]	25/05/2020	
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	98	
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluorene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	102	
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	122	
Anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	98	
Pyrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	114	
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Chrysene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	124	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	112	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	111	[NT]		[NT]	[NT]	109	

QUALITY CONT	ROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]	
Date extracted	-			25/05/2020	[NT]		[NT]	[NT]	25/05/2020		
Date analysed	-			25/05/2020	[NT]		[NT]	[NT]	25/05/2020		
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	120		
НСВ	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	128		
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	128		
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Aldrin	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	76		
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	122		
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	128		
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	88		
Endrin	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	80		
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	108		
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	110		
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Surrogate TCMX	%		Org-022/025	109	[NT]		[NT]	[NT]	104		

QUALITY CONTRO	L: Organoph	nosphorus	Pesticides in Soil			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]
Date extracted	-			25/05/2020	[NT]		[NT]	[NT]	25/05/2020	
Date analysed	-			25/05/2020	[NT]		[NT]	[NT]	25/05/2020	
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	102	
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Diazinon	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Ronnel	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	100	
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	108	
Malathion	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	101	
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	120	
Parathion	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	86	
Bromophos-ethyl	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	
Ethion	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	108	
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-022/025	109	[NT]		[NT]	[NT]	104	

QUALIT	Duplicate Spike I					overy %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]
Date extracted	-			25/05/2020	[NT]		[NT]	[NT]	25/05/2020	
Date analysed	-			25/05/2020	[NT]		[NT]	[NT]	25/05/2020	
Aroclor 1016	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1221	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1232	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1242	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1248	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1254	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	74	
Aroclor 1260	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-021	109	[NT]	[NT]	[NT]	[NT]	104	[NT]

QUALITY CONT		Du	plicate		Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]
Date prepared	-			25/05/2020	[NT]		[NT]	[NT]	25/05/2020	
Date analysed	-			26/05/2020	[NT]		[NT]	[NT]	26/05/2020	
Arsenic	mg/kg	4	Metals-020	<4	[NT]		[NT]	[NT]	102	
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]		[NT]	[NT]	99	
Chromium	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	98	
Copper	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	98	
Lead	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	98	
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]		[NT]	[NT]	86	
Nickel	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	104	
Zinc	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	111	

QUALITY	Duplicate				Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			25/05/2020	[NT]		[NT]	[NT]	25/05/2020	[NT]
Date analysed	-			25/05/2020	[NT]		[NT]	[NT]	25/05/2020	[NT]
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	<5	[NT]	[NT]	[NT]	[NT]	100	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Asbestos: A portion of the supplied sample was sub-sampled for asbestos analysis according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g of sample in its own container.

Note: Samples 243428-1 to 3 were sub-sampled from jars provided by the client.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 241579

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Wen-Fei Yuan
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	<u>86767.03, Haymarket</u>
Number of Samples	5 water
Date samples received	24/04/2020
Date completed instructions received	24/04/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details		
Date results requested by	01/05/2020	
Date of Issue	01/05/2020	
NATA Accreditation Number 2901	. This document shall not be reproduced except in full.	
Accredited for compliance with IS	O/IEC 17025 - Testing. Tests not covered by NATA are denoted with *	

Results Approved By Diego Bigolin, Team Leader, Inorganics Hannah Nguyen, Senior Chemist Josh Williams, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 241579 Revision No: R00

Page | 1 of 30

VOCs in water		
Our Reference		241579-2
Your Reference	UNITS	BH104
Date Sampled		24/04/2020
Type of sample		water
Date extracted	-	30/04/2020
Date analysed	-	30/04/2020
Dichlorodifluoromethane	μg/L	<10
Chloromethane	µg/L	<10
Vinyl Chloride	μg/L	<10
Bromomethane	µg/L	<10
Chloroethane	μg/L	<10
Trichlorofluoromethane	µg/L	<10
1,1-Dichloroethene	μg/L	<1
Trans-1,2-dichloroethene	µg/L	<1
1,1-dichloroethane	µg/L	<1
Cis-1,2-dichloroethene	µg/L	<1
Bromochloromethane	µg/L	<1
Chloroform	µg/L	2
2,2-dichloropropane	µg/L	<1
1,2-dichloroethane	µg/L	<1
1,1,1-trichloroethane	µg/L	<1
1,1-dichloropropene	µg/L	<1
Cyclohexane	µg/L	<1
Carbon tetrachloride	µg/L	<1
Benzene	µg/L	<1
Dibromomethane	μg/L	<1
1,2-dichloropropane	µg/L	<1
Trichloroethene	µg/L	<1
Bromodichloromethane	µg/L	<1
trans-1,3-dichloropropene	µg/L	<1
cis-1,3-dichloropropene	µg/L	<1
1,1,2-trichloroethane	µg/L	<1
Toluene	µg/L	<1
1,3-dichloropropane	µg/L	<1
Dibromochloromethane	µg/L	<1
1,2-dibromoethane	µg/L	<1
Tetrachloroethene	µg/L	<1
1,1,1,2-tetrachloroethane	µg/L	<1
Chlorobenzene	µg/L	<1
Ethylbenzene	μg/L	<1

VOCs in water		
Our Reference		241579-2
Your Reference	UNITS	BH104
Date Sampled		24/04/2020
Type of sample		water
Bromoform	µg/L	<1
m+p-xylene	µg/L	<2
Styrene	µg/L	<1
1,1,2,2-tetrachloroethane	µg/L	<1
o-xylene	µg/L	<1
1,2,3-trichloropropane	µg/L	<1
Isopropylbenzene	µg/L	<1
Bromobenzene	µg/L	<1
n-propyl benzene	µg/L	<1
2-chlorotoluene	µg/L	<1
4-chlorotoluene	µg/L	<1
1,3,5-trimethyl benzene	µg/L	<1
Tert-butyl benzene	µg/L	<1
1,2,4-trimethyl benzene	µg/L	<1
1,3-dichlorobenzene	µg/L	<1
Sec-butyl benzene	µg/L	<1
1,4-dichlorobenzene	µg/L	<1
4-isopropyl toluene	µg/L	<1
1,2-dichlorobenzene	µg/L	<1
n-butyl benzene	µg/L	<1
1,2-dibromo-3-chloropropane	µg/L	<1
1,2,4-trichlorobenzene	µg/L	<1
Hexachlorobutadiene	µg/L	<1
1,2,3-trichlorobenzene	µg/L	<1
Surrogate Dibromofluoromethane	%	108
Surrogate toluene-d8	%	98
Surrogate 4-BFB	%	106

vTRH(C6-C10)/BTEXN in Water						
Our Reference		241579-1	241579-2	241579-3	241579-4	241579-5
Your Reference	UNITS	BH103	BH104	BD1/20200424	TS	ТВ
Date Sampled		24/04/2020	24/04/2020	24/04/2020	24/04/2020	24/04/2020
Type of sample		water	water	water	water	water
Date extracted	-	30/04/2020	30/04/2020	30/04/2020	30/04/2020	30/04/2020
Date analysed	-	30/04/2020	30/04/2020	30/04/2020	30/04/2020	30/04/2020
TRH C ₆ - C ₉	µg/L	<10	<10	<10		<10
TRH C ₆ - C ₁₀	µg/L	<10	<10	<10		<10
TRH C ₆ - C ₁₀ less BTEX (F1)	µg/L	<10	<10	<10		<10
Benzene	µg/L	<1	<1	<1	111%	<1
Toluene	µg/L	<1	<1	<1	108%	<1
Ethylbenzene	µg/L	<1	<1	<1	108%	<1
m+p-xylene	µg/L	<2	<2	<2	99%	<2
o-xylene	µg/L	<1	<1	<1	112%	<1
Naphthalene	µg/L	<1	<1	<1		<1
Surrogate Dibromofluoromethane	%	106	108	106	106	106
Surrogate toluene-d8	%	98	98	98	103	99
Surrogate 4-BFB	%	106	106	106	110	109

svTRH (C10-C40) in Water				
Our Reference		241579-1	241579-2	241579-3
Your Reference	UNITS	BH103	BH104	BD1/20200424
Date Sampled		24/04/2020	24/04/2020	24/04/2020
Type of sample		water	water	water
Date extracted	-	28/04/2020	28/04/2020	28/04/2020
Date analysed	-	28/04/2020	28/04/2020	28/04/2020
TRH C ₁₀ - C ₁₄	µg/L	<50	<50	<50
TRH C ₁₅ - C ₂₈	µg/L	<100	<100	<100
TRH C ₂₉ - C ₃₆	µg/L	<100	<100	<100
TRH >C ₁₀ - C ₁₆	µg/L	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	µg/L	<50	<50	<50
TRH >C ₁₆ - C ₃₄	µg/L	<100	<100	<100
TRH >C ₃₄ - C ₄₀	µg/L	<100	<100	<100
Surrogate o-Terphenyl	%	93	100	82

PAHs in Water - Low Level			
Our Reference		241579-1	241579-2
Your Reference	UNITS	BH103	BH104
Date Sampled		24/04/2020	24/04/2020
Type of sample		water	water
Date extracted	-	28/04/2020	28/04/2020
Date analysed	-	28/04/2020	28/04/2020
Naphthalene	µg/L	<0.2	<0.2
Acenaphthylene	µg/L	<0.1	<0.1
Acenaphthene	µg/L	<0.1	<0.1
Fluorene	µg/L	<0.1	<0.1
Phenanthrene	µg/L	<0.1	<0.1
Anthracene	µg/L	<0.1	<0.1
Fluoranthene	µg/L	<0.1	<0.1
Pyrene	µg/L	<0.1	<0.1
Benzo(a)anthracene	µg/L	<0.1	<0.1
Chrysene	µg/L	<0.1	<0.1
Benzo(b,j+k)fluoranthene	µg/L	<0.2	<0.2
Benzo(a)pyrene	µg/L	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	µg/L	<0.1	<0.1
Dibenzo(a,h)anthracene	µg/L	<0.1	<0.1
Benzo(g,h,i)perylene	µg/L	<0.1	<0.1
Benzo(a)pyrene TEQ	µg/L	<0.5	<0.5
Total +ve PAH's	µg/L	<0.1	<0.1
Surrogate p-Terphenyl-d14	%	86	109

PAHs in Water		
Our Reference		241579-3
Your Reference	UNITS	BD1/20200424
Date Sampled		24/04/2020
Type of sample		water
Date extracted	-	28/04/2020
Date analysed	-	28/04/2020
Naphthalene	µg/L	<1
Acenaphthylene	µg/L	<1
Acenaphthene	µg/L	<1
Fluorene	µg/L	<1
Phenanthrene	µg/L	<1
Anthracene	µg/L	<1
Fluoranthene	µg/L	<1
Pyrene	µg/L	<1
Benzo(a)anthracene	µg/L	<1
Chrysene	µg/L	<1
Benzo(b,j+k)fluoranthene	µg/L	<2
Benzo(a)pyrene	µg/L	<1
Indeno(1,2,3-c,d)pyrene	µg/L	<1
Dibenzo(a,h)anthracene	µg/L	<1
Benzo(g,h,i)perylene	µg/L	<1
Benzo(a)pyrene TEQ	µg/L	<5
Total +ve PAH's	µg/L	NIL (+)VE
Surrogate p-Terphenyl-d14	%	93

OCPs in Water - Trace Level			
Our Reference		241579-1	241579-2
Your Reference	UNITS	BH103	BH104
Date Sampled		24/04/2020	24/04/2020
Type of sample		water	water
Date extracted	-	28/04/2020	28/04/2020
Date analysed	-	28/04/2020	28/04/2020
alpha-BHC	µg/L	<0.001	<0.001
нсв	µg/L	<0.001	<0.001
beta-BHC	µg/L	<0.001	<0.001
gamma-BHC	µg/L	<0.001	<0.001
Heptachlor	µg/L	<0.001	<0.001
delta-BHC	µg/L	<0.001	<0.001
Aldrin	μg/L	<0.001	<0.001
Heptachlor Epoxide	µg/L	<0.001	<0.001
gamma-Chlordane	µg/L	<0.001	<0.001
alpha-Chlordane	µg/L	<0.001	<0.001
Endosulfan I	μg/L	<0.002	<0.002
pp-DDE	µg/L	<0.001	<0.001
Dieldrin	μg/L	<0.001	<0.001
Endrin	µg/L	<0.001	<0.001
Endosulfan II	μg/L	<0.002	<0.002
pp-DDD	µg/L	<0.001	<0.001
Endrin Aldehyde	µg/L	<0.001	<0.001
pp-DDT	µg/L	<0.001	<0.001
Endosulfan Sulphate	µg/L	<0.001	<0.001
Methoxychlor	µg/L	<0.001	<0.001
Surrogate TCMX	%	88	109

OP in water Trace ANZECCF/ADWG			
Our Reference		241579-1	241579-2
Your Reference	UNITS	BH103	BH104
Date Sampled		24/04/2020	24/04/2020
Type of sample		water	water
Date extracted	-	28/04/2020	28/04/2020
Date analysed	-	28/04/2020	28/04/2020
Dichlorovos	μg/L	<0.2	<0.2
Dimethoate	µg/L	<0.15	<0.15
Diazinon	μg/L	<0.01	<0.01
Chlorpyriphos-methyl	µg/L	<0.2	<0.2
Methyl Parathion	μg/L	<0.2	<0.2
Ronnel	µg/L	<0.2	<0.2
Fenitrothion	μg/L	<0.2	<0.2
Malathion	µg/L	<0.05	<0.05
Chlorpyriphos	µg/L	<0.009	<0.009
Parathion	µg/L	<0.004	<0.004
Bromophos ethyl	µg/L	<0.2	<0.2
Ethion	µg/L	<0.2	<0.2
Azinphos-methyl (Guthion)	µg/L	<0.02	<0.02
Surrogate TCMX	%	88	109

PCBs in Water - Trace Level			
Our Reference		241579-1	241579-2
Your Reference	UNITS	BH103	BH104
Date Sampled		24/04/2020	24/04/2020
Type of sample		water	water
Date extracted	-	28/04/2020	28/04/2020
Date analysed	-	28/04/2020	28/04/2020
Aroclor 1016	µg/L	<0.01	<0.01
Aroclor 1221	µg/L	<0.01	<0.01
Aroclor 1232	µg/L	<0.01	<0.01
Aroclor 1242	µg/L	<0.01	<0.01
Aroclor 1248	µg/L	<0.01	<0.01
Aroclor 1254	µg/L	<0.01	<0.01
Aroclor 1260	µg/L	<0.01	<0.01
Surrogate TCMX	%	88	109

HM in water - dissolved				
Our Reference		241579-1	241579-2	241579-3
Your Reference	UNITS	BH103	BH104	BD1/20200424
Date Sampled		24/04/2020	24/04/2020	24/04/2020
Type of sample		water	water	water
Date prepared	-	28/04/2020	28/04/2020	28/04/2020
Date analysed	-	28/04/2020	28/04/2020	28/04/2020
Arsenic-Dissolved	μg/L	<1	<1	<1
Cadmium-Dissolved	µg/L	<0.1	<0.1	<0.1
Chromium-Dissolved	μg/L	<1	<1	<1
Copper-Dissolved	µg/L	3	2	26
Lead-Dissolved	µg/L	<1	<1	<1
Mercury-Dissolved	µg/L	<0.05	<0.05	<0.05
Nickel-Dissolved	µg/L	6	7	9
Zinc-Dissolved	µg/L	12	15	21

Cations in water Dissolved			
Our Reference		241579-1	241579-2
Your Reference	UNITS	BH103	BH104
Date Sampled		24/04/2020	24/04/2020
Type of sample		water	water
Date digested	-	29/04/2020	29/04/2020
Date analysed	-	29/04/2020	29/04/2020
Calcium - Dissolved	mg/L	24	34
Magnesium - Dissolved	mg/L	6.3	6.1
Hardness	mgCaCO 3 /L	86	110

Miscellaneous Inorganics		
Our Reference		241579-2
Your Reference	UNITS	BH104
Date Sampled		24/04/2020
Type of sample		water
Date prepared	-	29/04/2020
Date analysed	-	29/04/2020
Total Cyanide	mg/L	<0.004

Total Phenolics in Water			
Our Reference		241579-1	241579-2
Your Reference	UNITS	BH103	BH104
Date Sampled		24/04/2020	24/04/2020
Type of sample		water	water
Date extracted	-	29/04/2020	29/04/2020
Date analysed	-	29/04/2020	29/04/2020
Total Phenolics (as Phenol)	mg/L	<0.05	<0.05

Made at ID	
Method ID	Methodology Summary
Inorg-014	Cyanide - free, total, weak acid dissociable by segmented flow analyser (in line dialysis with colourimetric finish).
	Solids/Filters and sorbents are extracted in a caustic media prior to analysis. Impingers are pH adjsuted as required prior to analysis.
	Cyanides amenable to Chlorination - samples are analysed untreated and treated with hyperchlorite to assess the potential for chlorination of cyanide forms. Based on APHA latest edition, 4500-CN_G,H.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

QUALI	TY CONTROL	.: VOCs i	n water			Dı	uplicate		Spike Re	coverv %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			30/04/2020	[NT]		[NT]	[NT]	30/04/2020	
Date analysed	-			30/04/2020	[NT]		[NT]	[NT]	30/04/2020	
Dichlorodifluoromethane	µg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Chloromethane	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Vinyl Chloride	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Bromomethane	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Chloroethane	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Trichlorofluoromethane	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
1,1-Dichloroethene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	90	
Trans-1,2-dichloroethene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,1-dichloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Cis-1,2-dichloroethene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Bromochloromethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Chloroform	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	92	
2,2-dichloropropane	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,2-dichloroethane	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	89	
1,1,1-trichloroethane	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	101	
1,1-dichloropropene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Cyclohexane	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Carbon tetrachloride	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Dibromomethane	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,2-dichloropropane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Trichloroethene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	114	
Bromodichloromethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	88	
trans-1,3-dichloropropene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
cis-1,3-dichloropropene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,1,2-trichloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Toluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,3-dichloropropane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Dibromochloromethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	105	
1,2-dibromoethane	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Tetrachloroethene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	110	
1,1,1,2-tetrachloroethane	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Chlorobenzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Ethylbenzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Bromoform	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
m+p-xylene	µg/L	2	Org-023	<2	[NT]		[NT]	[NT]	[NT]	
Styrene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,1,2,2-tetrachloroethane	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	

QUALIT	Y CONTROI	L: VOCs i	n water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
o-xylene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,2,3-trichloropropane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Isopropylbenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Bromobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
n-propyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
2-chlorotoluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
4-chlorotoluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,3,5-trimethyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Tert-butyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,2,4-trimethyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,3-dichlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Sec-butyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,4-dichlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
4-isopropyl toluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,2-dichlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
n-butyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,2-dibromo-3-chloropropane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,2,4-trichlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Hexachlorobutadiene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,2,3-trichlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	102	[NT]		[NT]	[NT]	116	
Surrogate toluene-d8	%		Org-023	99	[NT]		[NT]	[NT]	113	
Surrogate 4-BFB	%		Org-023	105	[NT]		[NT]	[NT]	115	

QUALITY CONT	ROL: vTRH(C6-C10)/E	BTEXN in Water		Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			30/04/2020	[NT]		[NT]	[NT]	30/04/2020	
Date analysed	-			30/04/2020	[NT]		[NT]	[NT]	30/04/2020	
TRH C ₆ - C ₉	µg/L	10	Org-023	<10	[NT]		[NT]	[NT]	94	
TRH C ₆ - C ₁₀	µg/L	10	Org-023	<10	[NT]		[NT]	[NT]	94	
Benzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	80	
Toluene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	83	
Ethylbenzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	104	
m+p-xylene	µg/L	2	Org-023	<2	[NT]		[NT]	[NT]	102	
o-xylene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	120	
Naphthalene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	102	[NT]		[NT]	[NT]	102	
Surrogate toluene-d8	%		Org-023	99	[NT]		[NT]	[NT]	100	
Surrogate 4-BFB	%		Org-023	105	[NT]		[NT]	[NT]	101	

QUALITY CON	TROL: svTF	RH (C10-0	C40) in Water			Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			28/04/2020	[NT]		[NT]	[NT]	28/04/2020	
Date analysed	-			28/04/2020	[NT]		[NT]	[NT]	28/04/2020	
TRH C ₁₀ - C ₁₄	µg/L	50	Org-020	<50	[NT]		[NT]	[NT]	78	
TRH C ₁₅ - C ₂₈	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	85	
TRH C ₂₉ - C ₃₆	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	85	
TRH >C ₁₀ - C ₁₆	µg/L	50	Org-020	<50	[NT]		[NT]	[NT]	78	
TRH >C ₁₆ - C ₃₄	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	85	
TRH >C ₃₄ - C ₄₀	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	85	
Surrogate o-Terphenyl	%		Org-020	93	[NT]	[NT]	[NT]	[NT]	87	[NT]

QUALITY CO	NTROL: PAF	ls in Wate	r - Low Level			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]	
Date extracted	-			28/04/2020	[NT]		[NT]	[NT]	28/04/2020		
Date analysed	-			28/04/2020	[NT]		[NT]	[NT]	28/04/2020		
Naphthalene	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	75		
Acenaphthylene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Acenaphthene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Fluorene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	76		
Phenanthrene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	80		
Anthracene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Fluoranthene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	75		
Pyrene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	79		
Benzo(a)anthracene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Chrysene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	111		
Benzo(b,j+k)fluoranthene	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]		
Benzo(a)pyrene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	72		
Indeno(1,2,3-c,d)pyrene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Dibenzo(a,h)anthracene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Benzo(g,h,i)perylene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Surrogate p-Terphenyl-d14	%		Org-022/025	103	[NT]		[NT]	[NT]	109		

QUALIT	Y CONTROL	.: PAHs ir	n Water			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]	
Date extracted	-			28/04/2020	[NT]		[NT]	[NT]	28/04/2020		
Date analysed	-			28/04/2020	[NT]		[NT]	[NT]	28/04/2020		
Naphthalene	μg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	75		
Acenaphthylene	µg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	[NT]		
Acenaphthene	µg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	[NT]		
Fluorene	µg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	76		
Phenanthrene	μg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	80		
Anthracene	µg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	[NT]		
Fluoranthene	μg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	75		
Pyrene	μg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	79		
Benzo(a)anthracene	μg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	[NT]		
Chrysene	µg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	111		
Benzo(b,j+k)fluoranthene	μg/L	2	Org-022/025	<2	[NT]		[NT]	[NT]	[NT]		
Benzo(a)pyrene	µg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	72		
Indeno(1,2,3-c,d)pyrene	μg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	[NT]		
Dibenzo(a,h)anthracene	µg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	[NT]		
Benzo(g,h,i)perylene	µg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	[NT]		
Surrogate p-Terphenyl-d14	%		Org-022/025	113	[NT]		[NT]	[NT]	95		

QUALITY CONTROL: OCPs in Water - Trace Level						Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]	
Date extracted	-			28/04/2020	[NT]		[NT]	[NT]	28/04/2020		
Date analysed	-			28/04/2020	[NT]		[NT]	[NT]	28/04/2020		
alpha-BHC	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	98		
НСВ	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]		
beta-BHC	μg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	97		
gamma-BHC	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]		
Heptachlor	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	64		
delta-BHC	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]		
Aldrin	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	67		
Heptachlor Epoxide	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	109		
gamma-Chlordane	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]		
alpha-Chlordane	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]		
Endosulfan I	µg/L	0.002	Org-022/025	<0.002	[NT]		[NT]	[NT]	[NT]		
pp-DDE	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	103		
Dieldrin	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	115		
Endrin	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	100		
Endosulfan II	µg/L	0.002	Org-022/025	<0.002	[NT]		[NT]	[NT]	[NT]		
pp-DDD	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	99		
Endrin Aldehyde	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]		
pp-DDT	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]		
Endosulfan Sulphate	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	102		
Methoxychlor	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]		
Surrogate TCMX	%		Org-022/025	102	[NT]		[NT]	[NT]	104		

QUALITY CONTRO	L: OP in wat	er Trace	ANZECCF/ADWG			Duj	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			28/04/2020	[NT]		[NT]	[NT]	28/04/2020	
Date analysed	-			28/04/2020	[NT]		[NT]	[NT]	28/04/2020	
Dichlorovos	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	112	
Dimethoate	µg/L	0.15	Org-022/025	<0.15	[NT]		[NT]	[NT]	[NT]	
Diazinon	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	[NT]	
Chlorpyriphos-methyl	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Methyl Parathion	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Ronnel	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	116	
Fenitrothion	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	104	
Malathion	µg/L	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	111	
Chlorpyriphos	µg/L	0.009	Org-022/025	<0.009	[NT]		[NT]	[NT]	118	
Parathion	µg/L	0.004	Org-022/025	<0.004	[NT]		[NT]	[NT]	106	
Bromophos ethyl	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Ethion	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	108	
Azinphos-methyl (Guthion)	µg/L	0.02	Org-022/025	<0.02	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-022/025	101	[NT]		[NT]	[NT]	103	

QUALITY CON	TROL: PCBs	in Water	- Trace Level			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			28/04/2020	[NT]		[NT]	[NT]	28/04/2020	
Date analysed	-			28/04/2020	[NT]		[NT]	[NT]	28/04/2020	
Aroclor 1016	µg/L	0.01	Org-021	<0.01	[NT]		[NT]	[NT]	[NT]	
Aroclor 1221	µg/L	0.01	Org-021	<0.01	[NT]		[NT]	[NT]	[NT]	
Aroclor 1232	µg/L	0.01	Org-021	<0.01	[NT]		[NT]	[NT]	[NT]	
Aroclor 1242	µg/L	0.01	Org-021	<0.01	[NT]		[NT]	[NT]	[NT]	
Aroclor 1248	µg/L	0.01	Org-021	<0.01	[NT]		[NT]	[NT]	[NT]	
Aroclor 1254	µg/L	0.01	Org-021	<0.01	[NT]		[NT]	[NT]	99	
Aroclor 1260	µg/L	0.01	Org-021	<0.01	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-021	114	[NT]		[NT]	[NT]	106	

QUALITY CC	NTROL: HN	1 in water	- dissolved			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	241579-2
Date prepared	-			28/04/2020	1	28/04/2020	28/04/2020		28/04/2020	28/04/2020
Date analysed	-			28/04/2020	1	28/04/2020	28/04/2020		28/04/2020	28/04/2020
Arsenic-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	94	99
Cadmium-Dissolved	µg/L	0.1	Metals-022	<0.1	1	<0.1	<0.1	0	90	96
Chromium-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	107	107
Copper-Dissolved	µg/L	1	Metals-022	<1	1	3	2	40	107	102
Lead-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	100	95
Mercury-Dissolved	µg/L	0.05	Metals-021	<0.05	1	<0.05	<0.05	0	95	95
Nickel-Dissolved	µg/L	1	Metals-022	<1	1	6	5	18	97	94
Zinc-Dissolved	µg/L	1	Metals-022	<1	1	12	11	9	94	95

QUALITY CON	Duplicate				Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date digested	-			29/04/2020	[NT]			[NT]	29/04/2020	
Date analysed	-			29/04/2020	[NT]			[NT]	29/04/2020	
Calcium - Dissolved	mg/L	0.5	Metals-020	<0.5	[NT]			[NT]	90	
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	[NT]			[NT]	95	

QUALITY CO	Duplicate				Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			29/04/2020	[NT]		[NT]	[NT]	29/04/2020	[NT]
Date analysed	-			29/04/2020	[NT]		[NT]	[NT]	29/04/2020	[NT]
Total Cyanide	mg/L	0.004	Inorg-014	<0.004	[NT]	[NT]	[NT]	[NT]	102	[NT]

QUALITY CO	Duplicate				Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			29/04/2020	[NT]		[NT]	[NT]	29/04/2020	[NT]
Date analysed	-			29/04/2020	[NT]		[NT]	[NT]	29/04/2020	[NT]
Total Phenolics (as Phenol)	mg/L	0.05	Inorg-031	<0.05	[NT]	[NT]	[NT]	[NT]	102	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

CHAIN OF CUSTODY DESPATCH SHEET

Project No:	86767	.03			Suburb):	Haymai	rket		To:	Env	iroLab		
Project Name:	HAYN	IARKET, 8-	10 Lee St	SSI	Order N	lumber					12 A	shley Str	et, Chats	wood 2067
Project Manage	r:Wen-	ei Yuan			Sample	er:	AS			Attn: Aileen Hie				
Emails:	Wen	Fei.Yuan@d	ouglaspartr		Alyssa.Spencer@douglaspartners.com.au				Phone: (02) 9910 6200					
Date Required:		day 🗆	24 hours		ours 🛛	72 hou		Standard		Email: Ahie@envirolab.com.au				au
Prior Storage:	🗆 Esk	y 🗆 Fridg	ge 🗆 Sh		Do samp	oles contai	n 'potentia	I' HBM?	Yes 🛛	No 🗆	(If YES, the	en handle, tr	ansport and	store in accordance with FPM HAZID)
		pled	Sample Type	Container Type					Analytes					
Sample ID	Lab ID	Date Sampled	S - soil W - water	G - glass P - plastic	Combo 4L	РСВ	Trace OCP/OPP	Hardness	VOC	Cyanid	Combo 3	BTEX		Notes/preservation
BH103	Ι	24/04/20	W	G/P	Х	x	x	X	x	X				· · ·
BH104	2	24/04/20	w	G/P	Х,	Х	Х	X						
BD1/20200424	ζ	24/04/20	W	G/P		1 8.					Х			
TS	4	24/04/20	w	G/P								X		
ТВ	5	24/04/20	Ŵ	G/P		_						X		
												· · · ·	Time R	$\frac{Ph: (02) 9910 6209}{2 2 4 970}$
													Tempa	g: IcoHcepack
PQL (S) mg/kg												ANZEC	C PQLs r	eq'd for all water analytes 🛛
PQL = practical					t to Labor	atory Met	hod Deteo	ction Limit	t	Lab Re	port/Re	ference N	o: `	
Metals to Analy					nquished	by:	AS	Transpo	rted to la	boratory	by:			Dropped off
Send Results to		ouglas Part		d Add	ress						<u>.</u>	Phone:		Fax:
Signed:				Received b	iy: 74	Coe	<u> </u>				Date & 7	Time: 7	-4-4-7	0 16:55

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 243633

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Ayla Sorensen, Wen-Fei Yuan
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	<u>86767.03, Haymarket, SSI</u>
Number of Samples	8 Water
Date samples received	26/05/2020
Date completed instructions received	26/05/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details						
Date results requested by	02/06/2020					
Date of Issue	01/06/2020					
NATA Accreditation Number 2901. This document shall not be reproduced except in full.						
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *						

Results Approved By

Diego Bigolin, Team Leader, Inorganics Dragana Tomas, Senior Chemist Hannah Nguyen, Senior Chemist Ken Nguyen, Reporting Supervisor Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 243633 Revision No: R00

Page | 1 of 29

VOCs in water			
Our Reference		243633-1	243633-3
Your Reference	UNITS	BH107A	BH109B
Date Sampled		26/05/2020	26/05/2020
Type of sample		Water	Water
Date extracted	-	27/05/2020	27/05/2020
Date analysed	-	28/05/2020	28/05/2020
Dichlorodifluoromethane	μg/L	<10	<10
Chloromethane	μg/L	<10	<10
Vinyl Chloride	μg/L	<10	<10
Bromomethane	μg/L	<10	<10
Chloroethane	μg/L	<10	<10
Trichlorofluoromethane	μg/L	<10	<10
1,1-Dichloroethene	µg/L	<1	<1
Trans-1,2-dichloroethene	µg/L	<1	<1
1,1-dichloroethane	μg/L	<1	<1
Cis-1,2-dichloroethene	μg/L	<1	<1
Bromochloromethane	μg/L	<1	<1
Chloroform	μg/L	<1	3
2,2-dichloropropane	μg/L	<1	<1
1,2-dichloroethane	μg/L	<1	<1
1,1,1-trichloroethane	μg/L	<1	<1
1,1-dichloropropene	μg/L	<1	<1
Cyclohexane	μg/L	<1	<1
Carbon tetrachloride	μg/L	<1	<1
Benzene	μg/L	<1	<1
Dibromomethane	μg/L	<1	<1
1,2-dichloropropane	μg/L	<1	<1
Trichloroethene	μg/L	<1	<1
Bromodichloromethane	μg/L	<1	<1
trans-1,3-dichloropropene	μg/L	<1	<1
cis-1,3-dichloropropene	μg/L	<1	<1
1,1,2-trichloroethane	μg/L	<1	<1
Toluene	µg/L	<1	1
1,3-dichloropropane	µg/L	<1	<1
Dibromochloromethane	µg/L	<1	<1
1,2-dibromoethane	µg/L	<1	<1
Tetrachloroethene	µg/L	<1	<1
1,1,1,2-tetrachloroethane	µg/L	<1	<1
Chlorobenzene	µg/L	<1	<1
Ethylbenzene	μg/L	<1	<1

VOCs in water			
Our Reference		243633-1	243633-3
Your Reference	UNITS	BH107A	BH109B
Date Sampled		26/05/2020	26/05/2020
Type of sample		Water	Water
Bromoform	μg/L	<1	<1
m+p-xylene	μg/L	<2	<2
Styrene	μg/L	<1	<1
1,1,2,2-tetrachloroethane	μg/L	<1	<1
o-xylene	μg/L	<1	<1
1,2,3-trichloropropane	µg/L	<1	<1
Isopropylbenzene	μg/L	<1	<1
Bromobenzene	µg/L	<1	<1
n-propyl benzene	µg/L	<1	<1
2-chlorotoluene	µg/L	<1	<1
4-chlorotoluene	µg/L	<1	<1
1,3,5-trimethyl benzene	µg/L	<1	<1
Tert-butyl benzene	µg/L	<1	<1
1,2,4-trimethyl benzene	µg/L	<1	<1
1,3-dichlorobenzene	µg/L	<1	<1
Sec-butyl benzene	µg/L	<1	<1
1,4-dichlorobenzene	µg/L	<1	<1
4-isopropyl toluene	μg/L	<1	<1
1,2-dichlorobenzene	μg/L	<1	<1
n-butyl benzene	μg/L	<1	<1
1,2-dibromo-3-chloropropane	μg/L	<1	<1
1,2,4-trichlorobenzene	μg/L	<1	<1
Hexachlorobutadiene	μg/L	<1	<1
1,2,3-trichlorobenzene	μg/L	<1	<1
Surrogate Dibromofluoromethane	%	106	107
Surrogate toluene-d8	%	96	97
Surrogate 4-BFB	%	103	102

vTRH(C6-C10)/BTEXN in Water						_
Our Reference		243633-1	243633-2	243633-3	243633-4	243633-5
Your Reference	UNITS	BH107A	BH107B	BH109B	BH112A	BH112B
Date Sampled		26/05/2020	26/05/2020	26/05/2020	26/05/2020	26/05/2020
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	27/05/2020	27/05/2020	27/05/2020	27/05/2020	27/05/2020
Date analysed	-	28/05/2020	28/05/2020	28/05/2020	28/05/2020	28/05/2020
TRH C ₆ - C ₉	μg/L	<10	<10	<10	<10	<10
TRH C ₆ - C ₁₀	μg/L	<10	<10	<10	11	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10	<10	<10	<10	<10
Benzene	µg/L	<1	<1	<1	<1	<1
Toluene	μg/L	<1	<1	1	<1	<1
Ethylbenzene	µg/L	<1	<1	<1	1	<1
m+p-xylene	μg/L	<2	<2	<2	<2	<2
o-xylene	μg/L	<1	<1	<1	1	<1
Naphthalene	μg/L	<1	<1	<1	2	<1
Surrogate Dibromofluoromethane	%	106	106	107	107	109
Surrogate toluene-d8	%	96	98	97	97	97
Surrogate 4-BFB	%	103	104	102	102	102

vTRH(C6-C10)/BTEXN in Water				
Our Reference		243633-6	243633-7	243633-8
Your Reference	UNITS	BD1/260520	TS	ТВ
Date Sampled		26/05/2020	26/05/2020	26/05/2020
Type of sample		Water	Water	Water
Date extracted	-	27/05/2020	27/05/2020	27/05/2020
Date analysed	-	28/05/2020	28/05/2020	28/05/2020
TRH C ₆ - C ₉	µg/L	<10	[NA]	<10
TRH C ₆ - C ₁₀	µg/L	<10	[NA]	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	µg/L	<10	[NA]	<10
Benzene	µg/L	<1	116%	<1
Toluene	µg/L	<1	115%	<1
Ethylbenzene	µg/L	<1	105%	<1
m+p-xylene	µg/L	<2	105%	<2
o-xylene	µg/L	<1	108%	<1
Naphthalene	µg/L	<1	[NA]	1
Surrogate Dibromofluoromethane	%	110	108	106
Surrogate toluene-d8	%	96	100	97
Surrogate 4-BFB	%	102	104	100

svTRH (C10-C40) in Water						
Our Reference		243633-1	243633-2	243633-3	243633-4	243633-5
Your Reference	UNITS	BH107A	BH107B	BH109B	BH112A	BH112B
Date Sampled		26/05/2020	26/05/2020	26/05/2020	26/05/2020	26/05/2020
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	27/05/2020	27/05/2020	27/05/2020	27/05/2020	27/05/2020
Date analysed	-	28/05/2020	28/05/2020	28/05/2020	28/05/2020	28/05/2020
TRH C ₁₀ - C ₁₄	μg/L	110	210	<50	77	<50
TRH C ₁₅ - C ₂₈	µg/L	660	500	<100	170	<100
TRH C ₂₉ - C ₃₆	µg/L	<100	<100	<100	<100	<100
TRH >C ₁₀ - C ₁₆	µg/L	110	210	<50	110	<50
TRH >C10 - C16 less Naphthalene (F2)	µg/L	110	210	<50	110	<50
TRH >C ₁₆ - C ₃₄	µg/L	650	500	<100	140	<100
TRH >C ₃₄ - C ₄₀	µg/L	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	96	108	94	104	103

svTRH (C10-C40) in Water		
Our Reference		243633-6
Your Reference	UNITS	BD1/260520
Date Sampled		26/05/2020
Type of sample		Water
Date extracted	-	27/05/2020
Date analysed	-	28/05/2020
TRH C ₁₀ - C ₁₄	µg/L	<50
TRH C15 - C28	µg/L	<100
TRH C ₂₉ - C ₃₆	µg/L	<100
TRH >C ₁₀ - C ₁₆	µg/L	<50
TRH >C10 - C16 less Naphthalene (F2)	µg/L	<50
TRH >C ₁₆ - C ₃₄	µg/L	<100
TRH >C ₃₄ - C ₄₀	µg/L	<100
Surrogate o-Terphenyl	%	102

PAHs in Water - Low Level						
Our Reference		243633-1	243633-2	243633-3	243633-4	243633-5
Your Reference	UNITS	BH107A	BH107B	BH109B	BH112A	BH112B
Date Sampled		26/05/2020	26/05/2020	26/05/2020	26/05/2020	26/05/2020
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	27/05/2020	27/05/2020	27/05/2020	27/05/2020	27/05/2020
Date analysed	-	28/05/2020	28/05/2020	28/05/2020	28/05/2020	28/05/2020
Naphthalene	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Acenaphthylene	μg/L	<0.1	<0.1	<0.1	0.1	<0.1
Acenaphthene	μg/L	<0.1	<0.1	<0.1	0.7	<0.1
Fluorene	μg/L	<0.1	<0.1	<0.1	0.7	<0.1
Phenanthrene	μg/L	<0.1	<0.1	<0.1	0.3	0.2
Anthracene	μg/L	<0.1	<0.1	<0.1	0.3	<0.1
Fluoranthene	μg/L	<0.1	<0.1	<0.1	0.7	<0.1
Pyrene	μg/L	<0.1	<0.1	<0.1	0.6	<0.1
Benzo(a)anthracene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	μg/L	<0.1	<0.1	<0.1	3.5	0.17
Surrogate p-Terphenyl-d14	%	83	75	76	88	90

PAHs in Water - Low Level		
Our Reference		243633-6
Your Reference	UNITS	BD1/260520
Date Sampled		26/05/2020
Type of sample		Water
Date extracted	-	Date extracted
Date analysed	-	Date analysed
Naphthalene	µg/L	<0.2
Acenaphthylene	µg/L	<0.1
Acenaphthene	µg/L	<0.1
Fluorene	µg/L	<0.1
Phenanthrene	µg/L	0.2
Anthracene	µg/L	<0.1
Fluoranthene	µg/L	<0.1
Pyrene	µg/L	<0.1
Benzo(a)anthracene	µg/L	<0.1
Chrysene	µg/L	<0.1
Benzo(b,j+k)fluoranthene	µg/L	<0.2
Benzo(a)pyrene	µg/L	<0.1
Indeno(1,2,3-c,d)pyrene	µg/L	<0.1
Dibenzo(a,h)anthracene	µg/L	<0.1
Benzo(g,h,i)perylene	µg/L	<0.1
Benzo(a)pyrene TEQ	µg/L	<0.5
Total +ve PAH's	µg/L	0.18
Surrogate p-Terphenyl-d14	%	78

OCPs in Water - Trace Level						
Our Reference		243633-1	243633-2	243633-3	243633-4	243633-5
Your Reference	UNITS	BH107A	BH107B	BH109B	BH112A	BH112B
Date Sampled		26/05/2020	26/05/2020	26/05/2020	26/05/2020	26/05/2020
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	27/05/2020	27/05/2020	27/05/2020	27/05/2020	27/05/2020
Date analysed	-	28/05/2020	28/05/2020	28/05/2020	28/05/2020	28/05/2020
alpha-BHC	μg/L	<0.001	<0.001	<0.001	<0.001	<0.001
НСВ	μg/L	<0.001	<0.001	<0.001	<0.001	<0.001
beta-BHC	μg/L	<0.001	<0.001	<0.001	<0.001	<0.001
gamma-BHC	µg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Heptachlor	μg/L	<0.001	<0.001	<0.001	<0.001	<0.001
delta-BHC	μg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Aldrin	μg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Heptachlor Epoxide	μg/L	<0.001	<0.001	<0.001	<0.001	<0.001
gamma-Chlordane	μg/L	<0.001	<0.001	<0.001	<0.001	<0.001
alpha-Chlordane	μg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Endosulfan I	μg/L	<0.002	<0.002	<0.002	<0.002	<0.002
pp-DDE	μg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Dieldrin	μg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Endrin	μg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Endosulfan II	μg/L	<0.002	<0.002	<0.002	<0.002	<0.002
pp-DDD	μg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Endrin Aldehyde	μg/L	<0.001	<0.001	<0.001	<0.001	<0.001
pp-DDT	μg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Endosulfan Sulphate	μg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Methoxychlor	µg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Surrogate TCMX	%	74	72	73	77	82

OP in water Trace ANZECCF/ADWG						
Our Reference		243633-1	243633-2	243633-3	243633-4	243633-5
Your Reference	UNITS	BH107A	BH107B	BH109B	BH112A	BH112B
Date Sampled		26/05/2020	26/05/2020	26/05/2020	26/05/2020	26/05/2020
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	27/05/2020	27/05/2020	27/05/2020	27/05/2020	27/05/2020
Date analysed	-	28/05/2020	28/05/2020	28/05/2020	28/05/2020	28/05/2020
Dichlorovos	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Dimethoate	µg/L	<0.15	<0.15	<0.15	<0.15	<0.15
Diazinon	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Chlorpyriphos-methyl	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Methyl Parathion	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Ronnel	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Fenitrothion	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Chlorpyriphos	μg/L	<0.009	<0.009	<0.009	<0.009	<0.009
Parathion	µg/L	<0.004	<0.004	<0.004	<0.004	<0.004
Bromophos ethyl	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Ethion	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	μg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Surrogate TCMX	%	74	72	73	77	82

PCBs in Water - Trace Level						
Our Reference		243633-1	243633-2	243633-3	243633-4	243633-5
Your Reference	UNITS	BH107A	BH107B	BH109B	BH112A	BH112B
Date Sampled		26/05/2020	26/05/2020	26/05/2020	26/05/2020	26/05/2020
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	27/05/2020	27/05/2020	27/05/2020	27/05/2020	27/05/2020
Date analysed	-	28/05/2020	28/05/2020	28/05/2020	28/05/2020	28/05/2020
Aroclor 1016	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Aroclor 1221	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Aroclor 1232	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Aroclor 1242	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Aroclor 1248	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Aroclor 1254	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Aroclor 1260	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Surrogate TCMX	%	74	72	73	77	82

Total Phenolics in Water						
Our Reference		243633-1	243633-2	243633-3	243633-4	243633-5
Your Reference	UNITS	BH107A	BH107B	BH109B	BH112A	BH112B
Date Sampled		26/05/2020	26/05/2020	26/05/2020	26/05/2020	26/05/2020
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	27/05/2020	27/05/2020	27/05/2020	27/05/2020	27/05/2020
Date analysed	-	27/05/2020	27/05/2020	27/05/2020	27/05/2020	27/05/2020
Total Phenolics (as Phenol)	mg/L	<0.05	<0.05	<0.05	<0.05	<0.05

HM in water - dissolved				_	_	
Our Reference		243633-1	243633-2	243633-3	243633-4	243633-5
Your Reference	UNITS	BH107A	BH107B	BH109B	BH112A	BH112B
Date Sampled		26/05/2020	26/05/2020	26/05/2020	26/05/2020	26/05/2020
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	27/05/2020	27/05/2020	27/05/2020	27/05/2020	27/05/2020
Date analysed	-	27/05/2020	27/05/2020	27/05/2020	27/05/2020	27/05/2020
Arsenic-Dissolved	μg/L	<1	<1	6	<1	<1
Cadmium-Dissolved	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium-Dissolved	μg/L	<1	<1	<1	3	<1
Copper-Dissolved	µg/L	<1	<1	1	<1	1
Lead-Dissolved	μg/L	<1	<1	<1	<1	<1
Mercury-Dissolved	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel-Dissolved	μg/L	5	6	12	<1	7
Zinc-Dissolved	μg/L	140	64	11	4	21

HM in water - dissolved		
Our Reference		243633-6
Your Reference	UNITS	BD1/260520
Date Sampled		26/05/2020
Type of sample		Water
Date prepared	-	27/05/2020
Date analysed	-	27/05/2020
Arsenic-Dissolved	μg/L	<1
Cadmium-Dissolved	μg/L	<0.1
Chromium-Dissolved	μg/L	<1
Copper-Dissolved	μg/L	<1
Lead-Dissolved	μg/L	<1
Mercury-Dissolved	μg/L	<0.05
Nickel-Dissolved	μg/L	7
Zinc-Dissolved	μg/L	20

Miscellaneous Inorganics			
Our Reference		243633-1	243633-3
Your Reference	UNITS	BH107A	BH109B
Date Sampled		26/05/2020	26/05/2020
Type of sample		Water	Water
Date prepared	-	27/05/2020	27/05/2020
Date analysed	-	27/05/2020	27/05/2020
Total Cyanide	mg/L	<0.004	<0.004

Cations in water Dissolved						
Our Reference		243633-1	243633-2	243633-3	243633-4	243633-5
Your Reference	UNITS	BH107A	BH107B	BH109B	BH112A	BH112B
Date Sampled		26/05/2020	26/05/2020	26/05/2020	26/05/2020	26/05/2020
Type of sample		Water	Water	Water	Water	Water
Date digested	-	27/05/2020	27/05/2020	27/05/2020	27/05/2020	27/05/2020
Date analysed	-	27/05/2020	27/05/2020	27/05/2020	27/05/2020	27/05/2020
Calcium - Dissolved	mg/L	48	47	40	23	10
Magnesium - Dissolved	mg/L	14	12	34	3.4	11
Hardness	mgCaCO 3 /L	180	170	240	71	71

Method ID	Methodology Summary
Inorg-014	Cyanide - free, total, weak acid dissociable by segmented flow analyser (in line dialysis with colourimetric finish).
	Solids/Filters and sorbents are extracted in a caustic media prior to analysis. Impingers are pH adjsuted as required prior to analysis.
	Cyanides amenable to Chlorination - samples are analysed untreated and treated with hyperchlorite to assess the potential for chlorination of cyanide forms. Based on APHA latest edition, 4500-CN_G,H.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

QUALI	TY CONTROL	: VOCs i	n water			Du	plicate		Spike Re	coverv %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			27/05/2020	[NT]		[NT]	[NT]	27/05/2020	
Date analysed	-			28/05/2020	[NT]		[NT]	[NT]	28/05/2020	
Dichlorodifluoromethane	µg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Chloromethane	µg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Vinyl Chloride	µg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Bromomethane	µg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Chloroethane	µg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Trichlorofluoromethane	µg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
1,1-Dichloroethene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Trans-1,2-dichloroethene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,1-dichloroethane	μg/L	1	Org-023	<1	INT]		[NT]	[NT]	94	
Cis-1,2-dichloroethene	μg/L	1	Org-023	<1	INT		[NT]	[NT]	[NT]	
Bromochloromethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Chloroform	μg/L	1	Org-023	<1	INTI		[NT]	[NT]	98	
2,2-dichloropropane	μg/L	1	Org-023	<1	INT		[NT]	[NT]	[NT]	
1,2-dichloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	100	
1,1,1-trichloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	94	
1,1-dichloropropene	μg/L	1	Org-023	<1				[NT]	[NT]	
Cyclohexane	μg/L	1	Org-023	<1			[NT]	[NT]	[NT]	
Carbon tetrachloride	μg/L	1	Org-023	<1			[NT]	[NT]	[NT]	
Benzene	μg/L	1	Org-023	<1			[NT]	[NT]	[NT]	
Dibromomethane	μg/L	1	Org-023	<1				[NT]	[NT]	
		1	Org-023	<1						
1,2-dichloropropane	µg/L		-		1 1		[NT]	[NT]	[NT]	
Trichloroethene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	98	
Bromodichloromethane	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	85	
trans-1,3-dichloropropene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
cis-1,3-dichloropropene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,1,2-trichloroethane	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Toluene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,3-dichloropropane	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Dibromochloromethane	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	87	
1,2-dibromoethane	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Tetrachloroethene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	100	
1,1,1,2-tetrachloroethane	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Chlorobenzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Ethylbenzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Bromoform	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
m+p-xylene	µg/L	2	Org-023	<2	[NT]		[NT]	[NT]	[NT]	
Styrene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,1,2,2-tetrachloroethane	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	

QUALIT	QUALITY CONTROL: VOCs in water								Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]	
o-xylene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,2,3-trichloropropane	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
Isopropylbenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
Bromobenzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
n-propyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
2-chlorotoluene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
4-chlorotoluene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,3,5-trimethyl benzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
Tert-butyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,2,4-trimethyl benzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,3-dichlorobenzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
Sec-butyl benzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,4-dichlorobenzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
4-isopropyl toluene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,2-dichlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
n-butyl benzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,2-dibromo-3-chloropropane	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,2,4-trichlorobenzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
Hexachlorobutadiene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
1,2,3-trichlorobenzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
Surrogate Dibromofluoromethane	%		Org-023	103	[NT]		[NT]	[NT]	95		
Surrogate toluene-d8	%		Org-023	98	[NT]		[NT]	[NT]	99		
Surrogate 4-BFB	%		Org-023	103	[NT]		[NT]	[NT]	101		

QUALITY CONT	ROL: vTRH((C6-C10)/E	BTEXN in Water			Du	plicate	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]	
Date extracted	-			27/05/2020	4	27/05/2020	28/05/2020		27/05/2020		
Date analysed	-			28/05/2020	4	28/05/2020	29/05/2020		28/05/2020		
TRH C ₆ - C ₉	μg/L	10	Org-023	<10	4	<10	<10	0	99		
TRH C ₆ - C ₁₀	μg/L	10	Org-023	<10	4	11	<10	10	99		
Benzene	μg/L	1	Org-023	<1	4	<1	<1	0	98		
Toluene	μg/L	1	Org-023	<1	4	<1	<1	0	101		
Ethylbenzene	μg/L	1	Org-023	<1	4	1	1	0	96		
m+p-xylene	μg/L	2	Org-023	<2	4	<2	<2	0	100		
o-xylene	μg/L	1	Org-023	<1	4	1	1	0	96		
Naphthalene	μg/L	1	Org-023	<1	4	2	2	0	[NT]		
Surrogate Dibromofluoromethane	%		Org-023	103	4	107	109	2	95		
Surrogate toluene-d8	%		Org-023	98	4	97	100	3	99		
Surrogate 4-BFB	%		Org-023	103	4	102	99	3	101		

QUALITY CON	TROL: svTF	RH (C10-0	C40) in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			27/05/2020	[NT]		[NT]	[NT]	27/05/2020	
Date analysed	-			28/05/2020	[NT]		[NT]	[NT]	28/05/2020	
TRH C ₁₀ - C ₁₄	µg/L	50	Org-020	<50	[NT]		[NT]	[NT]	94	
TRH C ₁₅ - C ₂₈	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	85	
TRH C ₂₉ - C ₃₆	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	82	
TRH >C ₁₀ - C ₁₆	µg/L	50	Org-020	<50	[NT]		[NT]	[NT]	94	
TRH >C ₁₆ - C ₃₄	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	85	
TRH >C ₃₄ - C ₄₀	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	82	
Surrogate o-Terphenyl	%		Org-020	98	[NT]		[NT]	[NT]	91	

QUALITY CO	NTROL: PAF	ls in Wate	r - Low Level			Du	Duplicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W5	[NT]
Date extracted	-			27/05/2020	[NT]		[NT]	[NT]	27/05/2020	
Date analysed	-			28/05/2020	[NT]		[NT]	[NT]	28/05/2020	
Naphthalene	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	96	
Acenaphthylene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Acenaphthene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluorene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	74	
Phenanthrene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	82	
Anthracene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluoranthene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	98	
Pyrene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	104	
Benzo(a)anthracene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Chrysene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	72	
Benzo(b,j+k)fluoranthene	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	118	
Indeno(1,2,3-c,d)pyrene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	97	[NT]		[NT]	[NT]	104	

QUALITY	QUALITY CONTROL: OCPs in Water - Trace Level								Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W5	[NT]	
Date extracted	-			27/05/2020	[NT]		[NT]	[NT]	27/05/2020		
Date analysed	-			28/05/2020	[NT]		[NT]	[NT]	28/05/2020		
alpha-BHC	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	90		
НСВ	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]		
beta-BHC	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	100		
gamma-BHC	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]		
Heptachlor	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	82		
delta-BHC	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]		
Aldrin	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	74		
Heptachlor Epoxide	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	128		
gamma-Chlordane	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]		
alpha-Chlordane	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]		
Endosulfan I	µg/L	0.002	Org-022/025	<0.002	[NT]		[NT]	[NT]	[NT]		
pp-DDE	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	106		
Dieldrin	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	90		
Endrin	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	88		
Endosulfan II	µg/L	0.002	Org-022/025	<0.002	[NT]		[NT]	[NT]	[NT]		
pp-DDD	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	108		
Endrin Aldehyde	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]		
pp-DDT	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]		
Endosulfan Sulphate	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	96		
Methoxychlor	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]		
Surrogate TCMX	%		Org-022/025	89	[NT]		[NT]	[NT]	108		

QUALITY CONTRO	QUALITY CONTROL: OP in water Trace ANZECCF/ADWG								Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W5	[NT]
Date extracted	-			27/05/2020	[NT]		[NT]	[NT]	27/05/2020	
Date analysed	-			28/05/2020	[NT]		[NT]	[NT]	28/05/2020	
Dichlorovos	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	126	
Dimethoate	µg/L	0.15	Org-022/025	<0.15	[NT]		[NT]	[NT]	[NT]	
Diazinon	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	[NT]	
Chlorpyriphos-methyl	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Methyl Parathion	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Ronnel	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	108	
Fenitrothion	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	126	
Malathion	µg/L	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	96	
Chlorpyriphos	µg/L	0.009	Org-022/025	<0.009	[NT]		[NT]	[NT]	122	
Parathion	µg/L	0.004	Org-022/025	<0.004	[NT]		[NT]	[NT]	120	
Bromophos ethyl	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Ethion	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	122	
Azinphos-methyl (Guthion)	µg/L	0.02	Org-022/025	<0.02	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-022/025	89	[NT]		[NT]	[NT]	108	

QUALITY CONTROL: PCBs in Water - Trace Level						Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W5	[NT]
Date extracted	-			27/05/2020	[NT]		[NT]	[NT]	27/05/2020	
Date analysed	-			28/05/2020	[NT]		[NT]	[NT]	28/05/2020	
Aroclor 1016	µg/L	0.01	Org-021	<0.01	[NT]		[NT]	[NT]	[NT]	
Aroclor 1221	µg/L	0.01	Org-021	<0.01	[NT]		[NT]	[NT]	[NT]	
Aroclor 1232	µg/L	0.01	Org-021	<0.01	[NT]		[NT]	[NT]	[NT]	
Aroclor 1242	µg/L	0.01	Org-021	<0.01	[NT]		[NT]	[NT]	[NT]	
Aroclor 1248	µg/L	0.01	Org-021	<0.01	[NT]		[NT]	[NT]	[NT]	
Aroclor 1254	µg/L	0.01	Org-021	<0.01	[NT]		[NT]	[NT]	89	
Aroclor 1260	µg/L	0.01	Org-021	<0.01	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-021	89	[NT]	[NT]	[NT]	[NT]	108	[NT]

QUALITY CONTROL: Total Phenolics in Water						Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	243633-2
Date extracted	-			27/05/2020	1	27/05/2020	27/05/2020		27/05/2020	27/05/2020
Date analysed	-			27/05/2020	1	27/05/2020	27/05/2020		27/05/2020	27/05/2020
Total Phenolics (as Phenol)	mg/L	0.05	Inorg-031	<0.05	1	<0.05	<0.05	0	101	99

QUALITY CONTROL: HM in water - dissolved						Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			27/05/2020	1	27/05/2020	27/05/2020		27/05/2020	
Date analysed	-			27/05/2020	1	27/05/2020	27/05/2020		27/05/2020	
Arsenic-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	94	
Cadmium-Dissolved	µg/L	0.1	Metals-022	<0.1	1	<0.1	<0.1	0	94	
Chromium-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	106	
Copper-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	105	
Lead-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	101	
Mercury-Dissolved	µg/L	0.05	Metals-021	<0.05	1	<0.05	<0.05	0	101	
Nickel-Dissolved	µg/L	1	Metals-022	<1	1	5	5	0	96	
Zinc-Dissolved	µg/L	1	Metals-022	<1	1	140	140	0	98	

QUALITY CONTROL: Miscellaneous Inorganics						Du	plicate	Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			27/05/2020	[NT]		[NT]	[NT]	27/05/2020	
Date analysed	-			27/05/2020	[NT]		[NT]	[NT]	27/05/2020	
Total Cyanide	mg/L	0.004	Inorg-014	<0.004	[NT]	[NT]	[NT]	[NT]	101	[NT]

QUALITY CONTROL: Cations in water Dissolved						Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date digested	-			27/05/2020	1	27/05/2020	27/05/2020		27/05/2020	[NT]
Date analysed	-			27/05/2020	1	27/05/2020	27/05/2020		27/05/2020	[NT]
Calcium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	48	47	2	100	[NT]
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	14	14	0	99	[NT]
Hardness	mgCaCO 3 /L	3		<3	1	180	180	0	[NT]	[NT]

Result Definiti	Result Definitions							
NT	Not tested							
NA	Test not required							
INS	Insufficient sample for this test							
PQL	Practical Quantitation Limit							
<	Less than							
>	Greater than							
RPD	Relative Percent Difference							
LCS	Laboratory Control Sample							
NS	Not specified							
NEPM	National Environmental Protection Measure							
NR	Not Reported							

Quality Control Definitions								
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.							
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.							
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.							
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.							
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.							

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

CHAIN OF CUSTODY DESPATCH SHEET

	Project No:	86767	.03			Suburb	:	Hayma	rket	· · ·	То:	Envirolab	Services	S	
	Project Name:	Haym	arket, SSI			Order Number								·	
	Project Manage	r WFY			<u> </u>	Sample	r:	WFY	<u> </u>		Attn:	Aileen Hie			
	Emails:	wenfe	ei.yuan@d	ouglaspar	tners.com.au_ar	nd ayla s	orenser	n@dougl	aspartners.co	om.au	Phone:				
	Date Required:	day 🗆	24 hours	□ 48 hours	□ 7 2	hours [Star	ndard 🛛		Email:	·				
	Prior Storage:	🗆 Esk	y 🗆 Frid	ge/Freezer	□ Shelved	Do samp	les conta	in 'potentia	l' HBM? Yes	s □ No □ (If	YES, then handle, trar	dle, transport and store in accordance with FPM HAZID)			
			pled	Sample Type	Container Type						Analytes	tes			
	Sample ID	Lab ID	Date Sampled	S - soil W - water	G - glass P - plastic	Combos ⁴	Combo3	Hardness	Cyanide	VOC	TRH/BTE X			Notes	
ſ	BH107A	·{	26/05/20	w	G/P	×	I	X	X	Χ -				* Low level PAH	
	BH107B	2	26/05/20	w	G/P			X			,			*Trace level for OCP/OPP	
، چ	BH109B	3	26/05/20	w	G/P	- X:	`~	X	Х	X					
	BH112A	4	26/05/20	W.	G/P	- X		X						۰	
	BH112B	5	26/05/20	w	G/P	X		x					-envia	Envirolab Services	
ſ	BD1/260520	6	26/05/20	Ŵ	G/P		Χ.						EININ	0199 12 Ashley St Chatswood NSW 2057 Ph: (02) 3910 6200	
	ŤŠ	7		W	G	•	-				BTEX		Job I	No: 242633	
-	ŤВ	8	-	w	G						TRH/BTEX		Date	Received: 26/5/20	
							Ó				,		Time	Received: 14220	
		<u>++++</u> ++									;		Recei	Ved By: 52 Cool/Ambient	
┢									<u>↓</u>				Coolir	g: Ice/Icepack	
┢					<u>_</u>									iv: intact/Broken/None	
┢							••••••••		·.			·			
┝	PQL (S) mg/kg			·								Ls req'd for al	water	anaivtes □	
	PQL = practical	quanti	tation limit	I If none of	iven, default to L	aborator	/ Method	Detection	n Limit						
	Metals to Analy	<u> </u>										t/Reference No):		
	Total number of	fsampl	es in conta	ainer:	Relinquis			WFY [Transported	to laboratory b	y: dropped	OFF			
	Send Results to		ouglas Part						Vest Ryde		۱۲			9809 0999	
	Signed: ())	linn	<u>ng (J</u>	NCON	Received by:	Ľ	<u>enn</u>	L	┢╼───			Date & Time:	_26	5/20	
		0	١			•			0				,	1 .	

1

₫.

:

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Ayla Sorensen, Wen-Fei Yuan

Sample Login Details	
Your reference	86767.03, Haymarket, SSI
Envirolab Reference	243633
Date Sample Received	26/05/2020
Date Instructions Received	26/05/2020
Date Results Expected to be Reported	02/06/2020

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	8 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	11.2
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments

#6 labelled as "BD1/20200526"

Please direct any queries to:

Aileen Hie	Jacinta Hurst					
Phone: 02 9910 6200	Phone: 02 9910 6200					
Fax: 02 9910 6201	Fax: 02 9910 6201					
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au					

Analysis Underway, details on the following page:

Sample ID	VOCs in water	vTRH(C6-C10)/BTEXN in Water	svTRH (C10-C40) in Water	PAHs in Water - Low Level	OCPs in Water - Trace Level	OP in water Trace ANZECCF/ADWG	PCBs in Water - Trace Level	Total Phenolicsin Water	HM in water - dissolved	Total Cyanide	Cations in water Dissolved
BH107A	\checkmark	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark
BH107B		✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		✓
BH109B	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark
BH112A		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
BH112B		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
BD1/260520		✓	\checkmark	\checkmark					\checkmark		
TS		\checkmark									
ТВ		\checkmark									

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

CERTIFICATE OF ANALYSIS 243218-A

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Wen-Fei Yuan
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	<u>86767.03, Haymarket</u>
Number of Samples	15 SOIL
Date samples received	18/05/2020
Date completed instructions received	29/06/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details	
Date results requested by	05/06/2020
Date of Issue	05/06/2020
NATA Accreditation Number 2901. 7	his document shall not be reproduced except in full.
Accredited for compliance with ISO/	EC 17025 - Testing. Tests not covered by NATA are denoted with *

Results Approved By Josh Williams, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager

PAHs in TCLP (USEPA 1311)						
Our Reference		243218-A-2	243218-A-4	243218-A-6	243218-A-8	243218-A-13
Your Reference	UNITS	BD1/20200516	BH108	BH112B	BH117	BH112B
Depth		-	0.23-0.25	0.6-0.7	0.2-0.25	1.2-1.4
Date Sampled		16/05/2020	17/05/2020	18/05/2020	17/05/2020	13/05/2020
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
pH of soil for fluid# determ.	pH units	9.6	7.9	7.4	8.6	7.3
pH of soil TCLP (after HCl)	pH units	1.8	1.7	1.7	1.7	1.7
Extraction fluid used	-	1	1	1	1	1
pH of final Leachate	pH units	5.3	5.0	5.1	5.0	5.0
Date extracted	-	02/06/2020	02/06/2020	02/06/2020	02/06/2020	02/06/2020
Date analysed	-	02/06/2020	02/06/2020	02/06/2020	02/06/2020	02/06/2020
Naphthalene in TCLP	mg/L	<0.001	<0.001	0.010	0.067	<0.001
Acenaphthylene in TCLP	mg/L	<0.001	<0.001	<0.001	0.016	<0.001
Acenaphthene in TCLP	mg/L	<0.001	<0.001	<0.001	0.009	<0.001
Fluorene in TCLP	mg/L	<0.001	<0.001	<0.001	0.007	<0.001
Phenanthrene in TCLP	mg/L	<0.001	<0.001	0.010	0.021	0.010
Anthracene in TCLP	mg/L	<0.001	<0.001	<0.001	0.002	<0.001
Fluoranthene in TCLP	mg/L	<0.001	<0.001	<0.001	0.003	<0.001
Pyrene in TCLP	mg/L	<0.001	<0.001	<0.001	0.002	<0.001
Benzo(a)anthracene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Chrysene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Benzo(bjk)fluoranthene in TCLP	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002
Benzo(a)pyrene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Dibenzo(a,h)anthracene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Benzo(g,h,i)perylene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Total +ve PAH's	mg/L	NIL (+)VE	NIL (+)VE	0.020	0.13	0.010
Surrogate p-Terphenyl-d14	%	80	72	71	76	72

Method ID	Methodology Summary
EXTRACT.7	Toxicity Characteristic Leaching Procedure (TCLP) using Zero Headspace Extraction (zHE) using AS4439 and USEPA 1311.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-004	Toxicity Characteristic Leaching Procedure (TCLP) using in house method INORG-004. Please note that the mass used may be scaled down from the default based on sample mass available.
Org-022/025	Leachates are extracted with Dichloromethane and analysed by GC-MS/GC-MSMS.

QUALITY CON	QUALITY CONTROL: PAHs in TCLP (USEPA 1311)					Du	ıplicate	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]	
Date extracted	-			02/06/2020	[NT]		[NT]	[NT]	02/06/2020		
Date analysed	-			02/06/2020	[NT]		[NT]	[NT]	02/06/2020		
Naphthalene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	114		
Acenaphthylene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]		
Acenaphthene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]		
Fluorene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	96		
Phenanthrene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	94		
Anthracene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]		
Fluoranthene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	94		
Pyrene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	100		
Benzo(a)anthracene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]		
Chrysene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	78		
Benzo(bjk)fluoranthene in TCLP	mg/L	0.002	Org-022/025	<0.002	[NT]		[NT]	[NT]	[NT]		
Benzo(a)pyrene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	98		
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]		
Dibenzo(a,h)anthracene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]		
Benzo(g,h,i)perylene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]		
Surrogate p-Terphenyl-d14	%		Org-022/025	86	[NT]		[NT]	[NT]	81		

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Andrew (Fitzy) Fitzsimons

From:Andrew (Fitzy) FitzsimonsSent:Monday, 1 June 2020 12:55 PMTo:Andrew (Fitzy) FitzsimonsSubject:FW: Results for Registration 243218 86767.03, Haymarket

243218-A Due: 5/e/20

Kind Regards,

Andrew (Fitzy) Fitzsimons | Customer Service | Envirolab Services Pty Ltd

Celebrating 15 years of Great Science. Great Service. 12 Ashley Street Chatswood NSW 2067 T 612 9910 6200 F 612 9910 6201 E afitzsimons@envirolab.com.au | W www.envirolab.com.au

View reduced sampling bottle provision for PFAS in water | COVID-19 Update

<u>Please note that all samples submitted to the Envirolab Group laboratories will be analysed under the Envirolab Group Terms and Conditions. The Terms and Conditions are accessible by clicking this link</u>

From: Wen-Fei Yuan <<u>WenFei.Yuan@douglaspartners.com.au</u>> Sent: Friday, 29 May 2020 4:34 PM To: Ken Nguyen <<u>KNguyen@envirolab.com.au</u>> Cc: Alyssa Spencer <<u>Alyssa.Spencer@douglaspartners.com.au</u>> Subject: RE: Results for Registration 243218 86767.03, Haymarket

Hi Ken,

Please conduct TCLP on the following samples for PAH:

BD1/20200516; - 2 BH108/0.23-0.25; - 4 BH112B/0.6-0.7; - 6 BH117/0.2-0.25; and - 8 BH112B/1.2-1.4. - 13

Standard TAT.

Regards

Wen-Fei Yuan | Environmental Scientist Douglas Partners Pty Ltd | ABN 75 053 980 117 | www.douglaspartners.com.au 96 Hermitage Road West Ryde NSW 2114 | PO Box 472 West Ryde NSW 1685 P: 02 8878 0693 | M: 0448 280 782 | E: <u>WenFei.Yuan@douglaspartners.com.au</u>

To find information on our COVID-19 preparations, please visit douglaspartners.com.au/news/covid-19

CLIENT CH

2020 WINN

Jessica Hie

From: Sent: To: Cc: Subject: Nick Sarlamis Friday, 29 May 2020 4:40 PM Wen-Fei Yuan Alyssa Spencer; Joshua Williams; Jessica Hie RE: Results for Registration 243428 86767.03/Haymarket,DSI

Hi Wen

No worries, Have a good weekend

243428-A Due: 5/6/20. Std TAT

CLIENT CHO

2020 WINNE

Kind Regards,

Nick Sarlamis | Inorganics Supervisor | Envirolab Services Pty Ltd

Celebrating 15 years of Great Science. Great Service.

12 Ashley Street Chatswood NSW 2067 T 612 9910 6200 F 612 9910 6201 E <u>nsarlamis@envirolab.com.au</u> | W <u>www.envirolab.com.au</u>

View reduced sampling bottle provision for PFAS in water | COVID-19 Update

<u>Please note that all samples submitted to the Envirolab Group laboratories will be analysed under the</u> <u>Envirolab Group Terms and Conditions. The Terms and Conditions are accessible by clicking this link</u>

From: Wen-Fei Yuan <WenFei.Yuan@douglaspartners.com.au> Sent: Friday, 29 May 2020 4:21 PM To: Nick Sarlamis <NSarlamis@envirolab.com.au> Cc: Alyssa Spencer <Alyssa.Spencer@douglaspartners.com.au> Subject: RE: Results for Registration 243428 86767.03/Haymarket,DSI

Hi Nick,

Please perform TCLP on:

- BH111/1.3-1.4 PAH and lead; and 2
- BH110/0.5-0.6 PAH

Regards

Wen-Fei Yuan | Environmental Scientist

Douglas Partners Pty Ltd | ABN 75 053 980 117 | www.douglaspartners.com.au 96 Hermitage Road West Ryde NSW 2114 | PO Box 472 West Ryde NSW 1685 P: 02 8878 0693 | M: 0448 280 782 | E: <u>WenFei.Yuan@douglaspartners.com.au</u>

To find information on our COVD-19 preparations, please visit douglaspartners.com.au/news/covid-19

CERTIFICATE OF ANALYSIS 243428-A

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Alyssa Spencer, Wen-Fei Yuan
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	86767.03/Haymarket,DSI
Number of Samples	4 Soil
Date samples received	19/05/2020
Date completed instructions received	29/05/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details	
Date results requested by	05/06/2020
Date of Issue	05/06/2020
NATA Accreditation Number 2901. This	s document shall not be reproduced except in full.
Accredited for compliance with ISO/IEC	217025 - Testing. Tests not covered by NATA are denoted with *

Results Approved By Jaimie Loa-Kum-Cheung, Metals Supervisor Josh Williams, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 243428-A Revision No: R00

Page | 1 of 8

Metals in TCLP USEPA1311			
Our Reference		243428-A-2	243428-A-3
Your Reference	UNITS	BH111	BH110
Depth		1.3-1.4	0.5-0.6
Date Sampled		19/05/2020	21/05/2020
Type of sample		Soil	Soil
Date extracted	-	05/06/2020	05/06/2020
Date analysed	-	05/06/2020	05/06/2020
pH of soil for fluid# determ.	pH units	7.5	9.7
pH of soil TCLP (after HCl)	pH units	1.7	1.9
Extraction fluid used	-	1	1
pH of final Leachate	pH units	5.0	5.3
Lead in TCLP	mg/L	0.09	[NA]

PAHs in TCLP (USEPA 1311)			
Our Reference		243428-A-2	243428-A-3
Your Reference	UNITS	BH111	BH110
Depth		1.3-1.4	0.5-0.6
Date Sampled		19/05/2020	21/05/2020
Type of sample		Soil	Soil
Date extracted	-	01/06/2020	01/06/2020
Date analysed	-	01/06/2020	01/06/2020
Naphthalene in TCLP	mg/L	<0.001	<0.001
Acenaphthylene in TCLP	mg/L	<0.001	<0.001
Acenaphthene in TCLP	mg/L	<0.001	<0.001
Fluorene in TCLP	mg/L	<0.001	0.001
Phenanthrene in TCLP	mg/L	<0.001	<0.001
Anthracene in TCLP	mg/L	<0.001	<0.001
Fluoranthene in TCLP	mg/L	<0.001	<0.001
Pyrene in TCLP	mg/L	<0.001	<0.001
Benzo(a)anthracene in TCLP	mg/L	<0.001	<0.001
Chrysene in TCLP	mg/L	<0.001	<0.001
Benzo(bjk)fluoranthene in TCLP	mg/L	<0.002	<0.002
Benzo(a)pyrene in TCLP	mg/L	<0.001	<0.001
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	<0.001	<0.001
Dibenzo(a,h)anthracene in TCLP	mg/L	<0.001	<0.001
Benzo(g,h,i)perylene in TCLP	mg/L	<0.001	<0.001
Total +ve PAH's	mg/L	NIL (+)VE	0.001
Surrogate p-Terphenyl-d14	%	75	71

Method ID	Methodology Summary
EXTRACT.7	Toxicity Characteristic Leaching Procedure (TCLP) using Zero Headspace Extraction (zHE) using AS4439 and USEPA 1311.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-004	Toxicity Characteristic Leaching Procedure (TCLP) using in house method INORG-004. Please note that the mass used may be scaled down from the default based on sample mass available.
Metals-020 ICP-AES	Determination of various metals by ICP-AES.
Org-022/025	Leachates are extracted with Dichloromethane and analysed by GC-MS/GC-MSMS.

QUALITY CONTROL: Metals in TCLP USEPA1311					Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			05/06/2020	[NT]	[NT]		[NT]	05/06/2020	
Date analysed	-			05/06/2020	[NT]	[NT]		[NT]	05/06/2020	
Lead in TCLP	mg/L	0.03	Metals-020 ICP- AES	<0.03	[NT]	[NT]	[NT]	[NT]	86	[NT]

QUALITY CON	QUALITY CONTROL: PAHs in TCLP (USEPA 1311)								Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]	
Date extracted	-			01/06/2020	[NT]		[NT]	[NT]	01/06/2020		
Date analysed	-			01/06/2020	[NT]		[NT]	[NT]	01/06/2020		
Naphthalene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	87		
Acenaphthylene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]		
Acenaphthene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]		
Fluorene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	87		
Phenanthrene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	78		
Anthracene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]		
Fluoranthene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	74		
Pyrene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	84		
Benzo(a)anthracene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]		
Chrysene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	71		
Benzo(bjk)fluoranthene in TCLP	mg/L	0.002	Org-022/025	<0.002	[NT]		[NT]	[NT]	[NT]		
Benzo(a)pyrene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	88		
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]		
Dibenzo(a,h)anthracene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]		
Benzo(g,h,i)perylene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]		
Surrogate p-Terphenyl-d14	%		Org-022/025	85	[NT]		[NT]	[NT]	105		

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

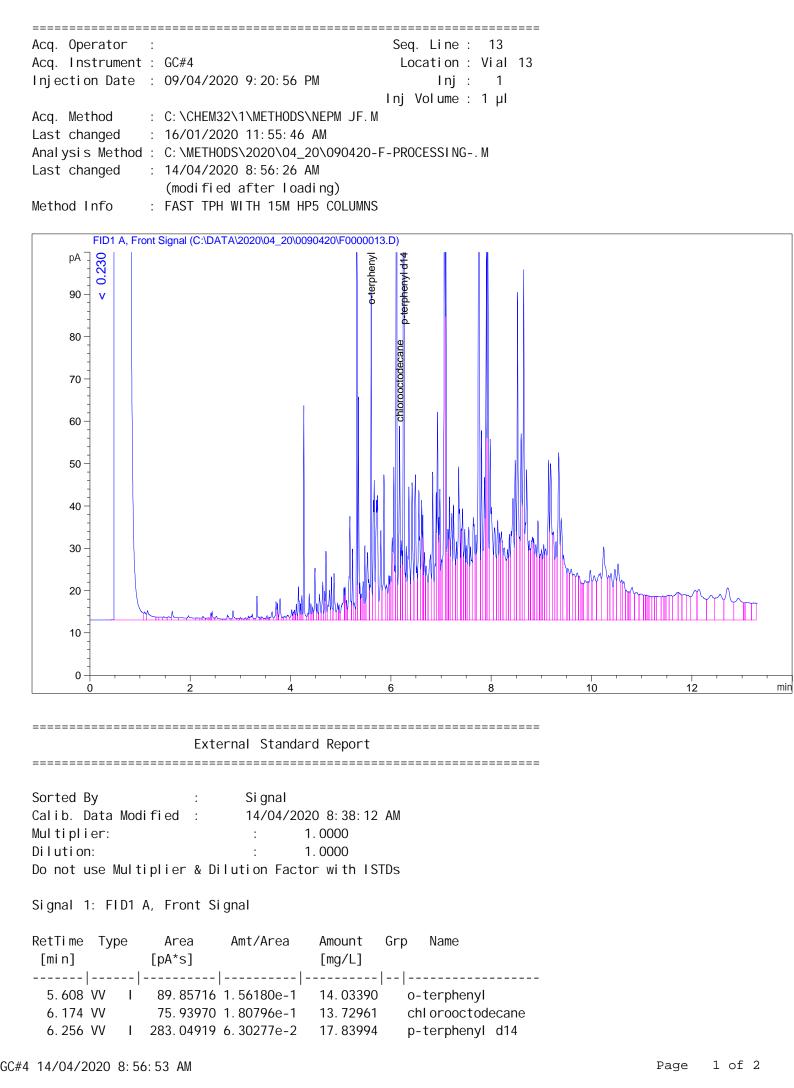
Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

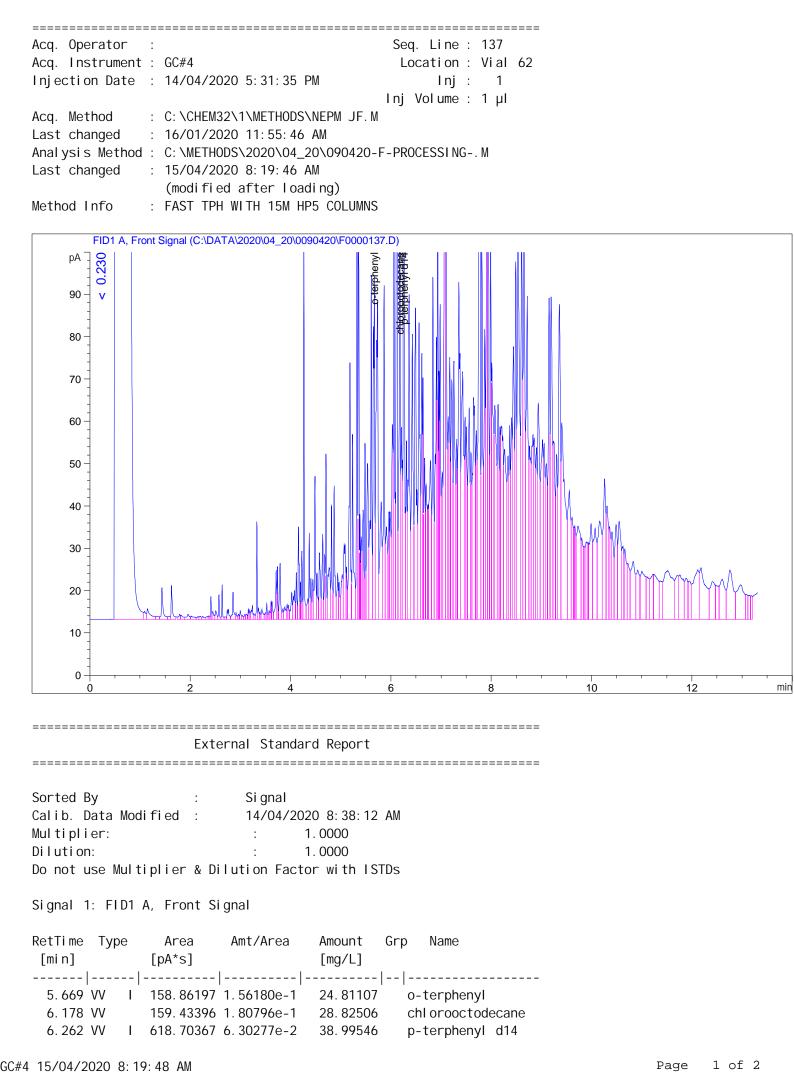
Measurement Uncertainty estimates are available for most tests upon request.


Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

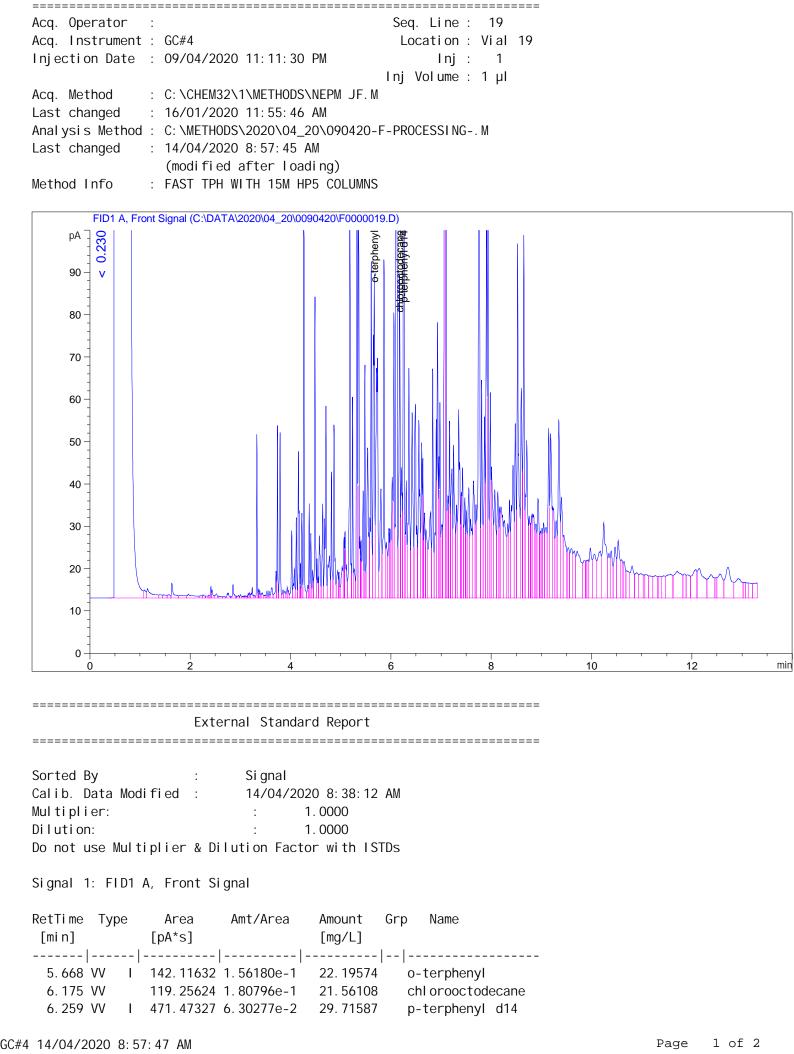
Appendix H

Chromatograms


Data File C:\DATA\2020\04_20\0090420\F0000013.D Sample Name: s240556-1

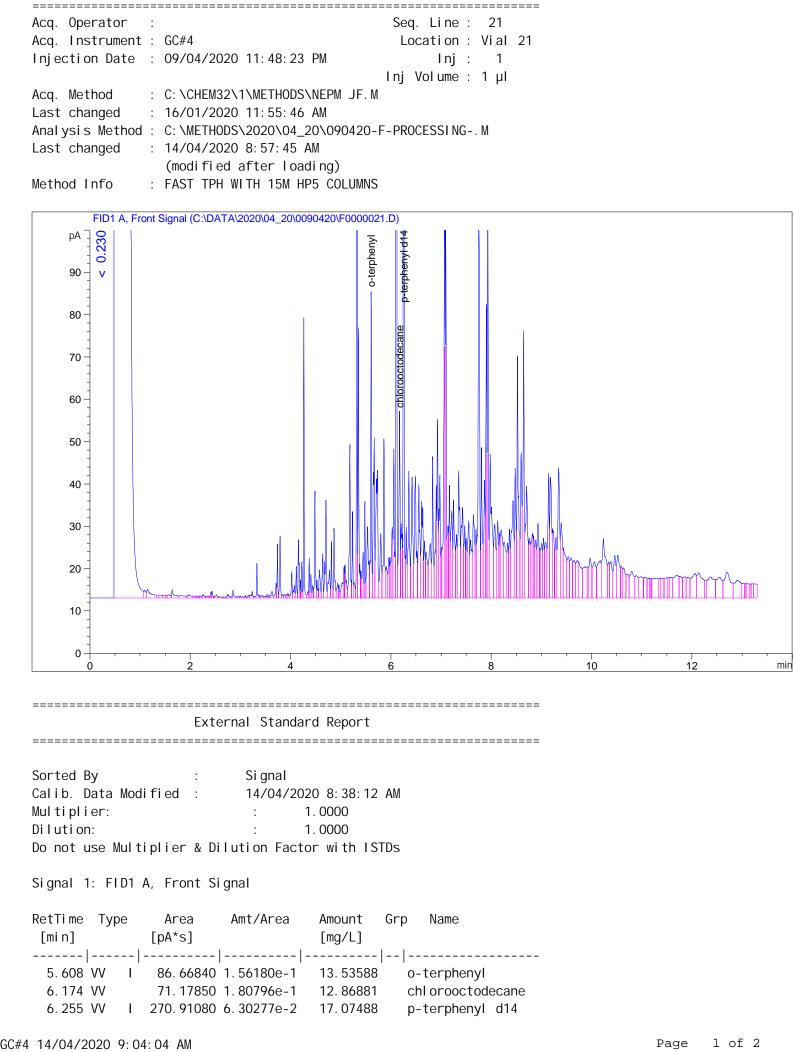
Data File C:\DATA\2020\04_20\0090420\F0000013.D Sample Name: s240556-1

RetTime Type [min]	[nA*s]		[ma/l]	-	Name
Totals :			45.60345		
1 Warnings or I	Errors :				
Warning : Calil	bration warni	ings (see ca	alibration	tabl e	listing)
		ummed Peaks		=====	
==============	============	===========		=====	
Signal 1: FID1 Name	Start Time [min]	End Time [min]	[pA*s]	[mg/L]
TRH C10-C14 NEPM >C10-C16 TRH C15-C28 NEPM >C16-C34 TRH C29-C36 NEPM >C34-C40	2.040 2.551 4.106 4.771 7.841	4. 105 4. 770 7. 840 8. 951 9. 310	87. 47794 236. 85195 3371. 38792 4910. 49732 2117. 13193	13. 36. 452. 659. 284.	5076 5728 9965 7990 6865
Totals :				1605.	9538
		summed Pea			
Signal 1: FID1 Name	A, Front Sig Total Area [pA*s]	gnal Amount [mg/L]			
NEPM >C10-C16 TRH C15-C28 NEPM >C16-C34 TRH C29-C36 NEPM >C34-C40	87. 47794 236. 85195 3371. 38792 4910. 49732 2117. 13193 1177. 91111 89. 85716 n 75. 93970	13. 5076 36. 5728 452. 9965 659. 7990 284. 6865 158. 3914 14. 0339 13. 7296			
Total s :		1651. 5572			
		*** End of F	Report ***		


Data File C:\DATA\2020\04_20\0090420\F0000137.D Sample Name: s240556-2 rr

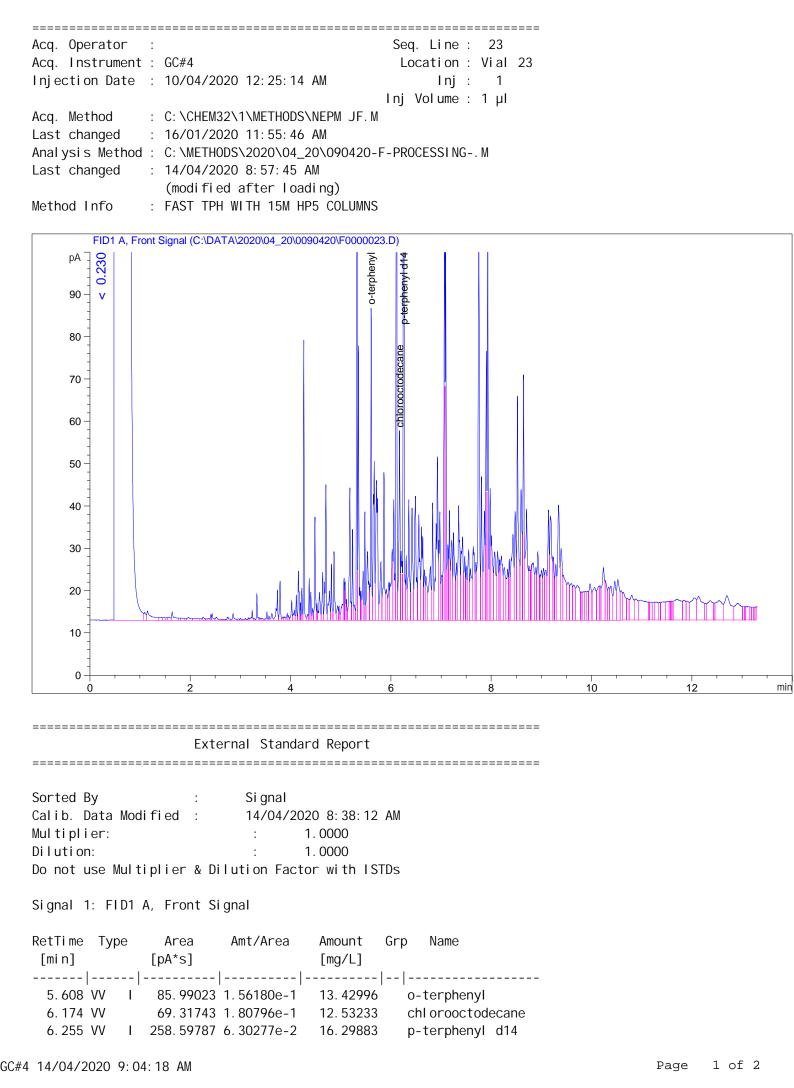
Data File C:\DATA\2020\04_20\0090420\F0000137.D Sample Name: s240556-2 rr

RetTime Type [min] -	[··· A * -]		[-	
Totals :		-	92. 63160		
1 Warnings or Ei	rors :				
Warning : Calibu	ration warni	ngs (see ca	alibration	tabl e	listing)
	Su	ummed Peaks	Report		
Signal 1: FID1 / Name	Start Time [min]	End Time [min]	[pA*s]	[1	mg/L]
TRH C10-C14 NEPM >C10-C16 TRH C15-C28 NEPM >C16-C34 TRH C29-C36 NEPM >C34-C40	2.040 2.551 4.106 4.771 7.841	4. 105 4. 770 7. 840 8. 951 9. 310	245. 72722 640. 55721 7863. 15939 1. 11825e4 4660. 53757	98.9 98.9 1.05 1.50	9432 9097 7e3 3e3 6932
Totals :				3654.3	3016
	Final	Summed Pea	aks Report		
Signal 1: FID1 / Name	A, Front Sig Total Area [pA*s]	gnal Amount [mg/L]			
TRH C10-C14 NEPM >C10-C16 TRH C15-C28 NEPM >C16-C34 TRH C29-C36 NEPM >C34-C40 o-terphenyl chlorooctodecan p-terphenyl d14	245. 72722 640. 55721 7863. 15939 1. 11825e4 4660. 53757 2466. 63420 158. 86197 159. 43396	37. 9432 98. 9097 1. 057e3 1. 503e3 626. 6932 331. 6834 24. 8111 28. 8251			
Totals :		3746. 9332			
	,	*** End of F	Report ***		


Data File C:\DATA\2020\04_20\0090420\F0000019.D Sample Name: s240556-7

Data File C:\DATA\2020\04_20\0090420\F0000019.D Sample Name: s240556-7

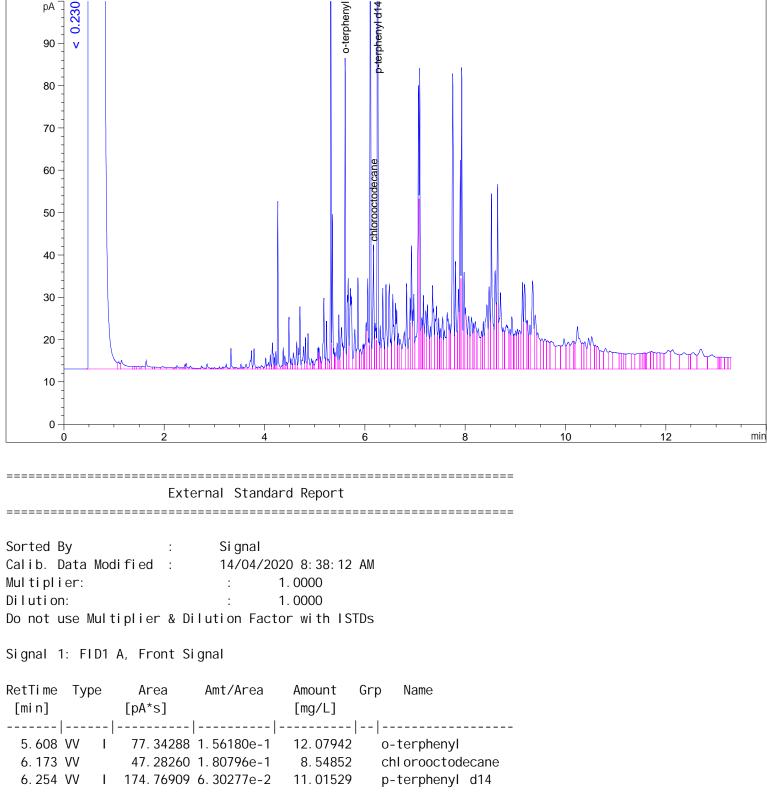
RetTime Type [min]	[pA*s]		[mg/L]	-	Name
Totals :			73. 47269		
1 Warnings or E Warning : Calib		ings (soo c	alibration	tablo	Listing)
======================================		0	===========	:=====	=======================================
		ummed Peaks	•		
Signal 1: FID1 Name	A, Front Sig Start Time [min]	gnal End Time [min]	Total Area [pA*s]	ı Am	ount mg/L]
TRH C10-C14 NEPM >C10-C16 TRH C15-C28 NEPM >C16-C34 TRH C29-C36 NEPM >C34-C40	2.040 2.551 4.106 4.771 7.841	4. 105 4. 770 7. 840 8. 951 9. 310	215. 49837 686. 22606 5550. 54606 6913. 22482 2272. 69348	33. 105. 745. 928. 305.	2755 9615 7991 8955 6045
Totals :				2279.	3245
		summed Pea		=====	
signal 1: FID1 Name	A, Front Sig Total Area [pA*s]	gnal Amount [mg/L]			
TRH C10-C14 NEPM >C10-C16 TRH C15-C28 NEPM >C16-C34 TRH C29-C36 NEPM >C34-C40	215. 49837 686. 22606 5550. 54606 6913. 22482 2272. 69348 1188. 29961 142. 11632 119. 25624	33. 2755 105. 9615 745. 7991 928. 8955 305. 6045 159. 7883 22. 1957 21. 5611			
Totals :	:	2352. 7972			
		*** End of P	Report ***		


Data File C:\DATA\2020\04_20\0090420\F0000021.D Sample Name: s246556-8

Data File C:\DATA\2020\04_20\0090420\F0000021.D Sample Name: s246556-8

RetTime Type [min]	[[]]		[ma /1]	-	Name
Totals :			43. 47956		
1 Warnings or En	rors :				
Warning : Calibr	ration warni	ngs (see ca	alibration	tabl e	listing)
				=====	
			•	=====	
Signal 1: FID1 / Name	Start Time [min]	End Time [min]	[pA*s]	[mg/L]
TRH C10-C14 NEPM >C10-C16 TRH C15-C28 NEPM >C16-C34 TRH C29-C36 NEPM >C34-C40	2.040 2.551 4.106 4.771 7.841	4. 105 4. 770 7. 840 8. 951 9. 310	105. 13381 310. 45435 3174. 68882 4277. 81376 1644. 77239	16. 47. 426. 574. 221.	2339 9379 5671 7884 1693
Totals :				1411.	9039
	Fi nal	Summed Pea	aks Report		
Signal 1: FID1 A Name	A, Front Sig Total Area [pA*s]	gnal Amount [mg/L]			
NEPM >C10-C16 TRH C15-C28 NEPM >C16-C34 TRH C29-C36 NEPM >C34-C40	105. 13381 310. 45435 3174. 68882 4277. 81376 1644. 77239 931. 13076 86. 66840 71. 17850	16. 2339 47. 9379 426. 5671 574. 7884 221. 1693 125. 2073 13. 5359 12. 8688			
Totals :		1455. 3834			
	7	*** End of F	Report ***		

Data File C:\DATA\2020\04_20\0090420\F0000023.D Sample Name: s240556-9

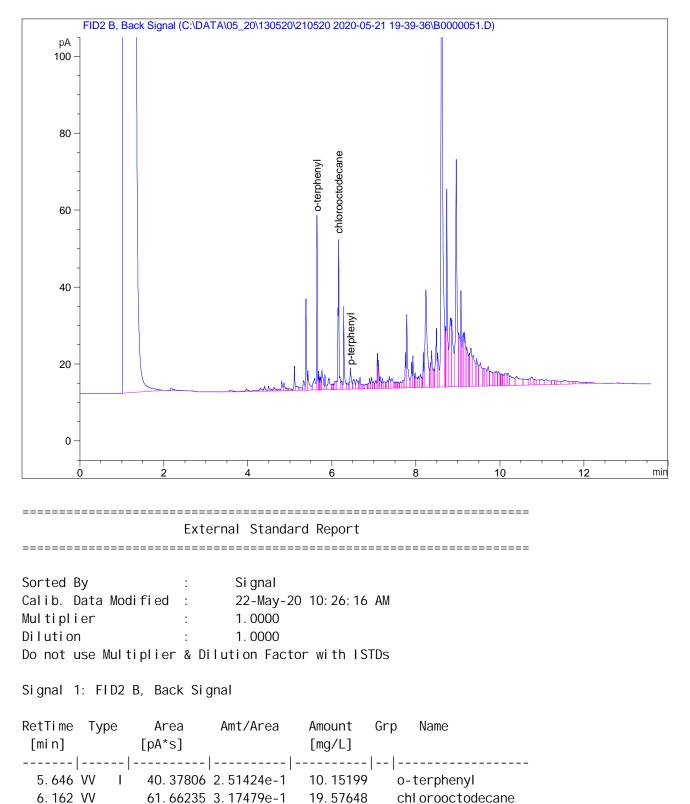


Data File C:\DATA\2020\04_20\0090420\F0000023.D Sample Name: s240556-9

RetTime Type [min]					Name
Totals :	·		42. 26112		
1 Warnings or E	rrors :				
Warning : Calib	ration warni	ngs (see ca	alibration	tabl e	listing)
	Su	ummed Peaks	Report		
	=========				
Signal 1: FID1 . Name	Start Time	gnal End Time [min]			
				-	
TRH C10-C14		4.105			
NEPM >C10-C16					
	4.106				
NEPM >C16-C34 TRH C29-C36		9. 310			
NEPM >C34-C40					
NEFM 2034-040	0. 752	10. 300	054.0050	5 114.	0409
Totals :				1319.	8219
		Summed Pea			
================					
Signal 1: FID1	A Eront Sid	Ind			
Name		-			
Name	[pA*s]				
TRH C10-C14					
NEPM >C10-C16	292. 48265	45.1628			
TRH C15-C28					
NEPM >C16-C34					
TRH C29-C36					
NEPM >C34-C40					
	85.99023				
chlorooctodecan p-terphenyl d14					
Totals :		1362.0830			
	2	*** End of F	Report ***		
			•		

Data File C:\DATA\2020\04_20\0090420\F0000025.D Sample Name: s240556-9d

=================	==		===		
Acq. Operator	:		S	Seq.Line: 25	
Acq. Instrument	:	GC#4		Location : Vial 25	
Injection Date	:	10/04/2020 1:02:17 AM		Inj: 1	
			١n	nj Volume : 1 μl	
Acq. Method	:	C: \CHEM32\1\METHODS\NEPM JF.M			
Last changed	:	16/01/2020 11:55:46 AM			
Analysis Method	:	C: \METHODS\2020\04_20\090420-F	F-P	PROCESSINGM	
Last changed	:	14/04/2020 8:57:45 AM			
		(modified after loading)			
Method Info	:	FAST TPH WITH 15M HP5 COLUMNS			
FID1 A, Fro	ont	Signal (C:\DATA\2020\04_20\0090420\F000002	5.D)		
pA 🗌 🔗 🛛		<u>T</u> e		4	


Data File C:\DATA\2020\04_20\0090420\F0000025.D Sample Name: s240556-9d

RetTime Type [min]				-	Name
Totals :			31. 64323		
1 Warnings or Er	rors :				
Warning : Calibr		0			
	Su	ummed Peaks	Report		
Signal 1: FID1 A Name	A, Front Sig Start Time [min]	gnal End Time [min]	Total Area [pA*s]	a Am	ount mg/L]
TRH C10-C14 NEPM >C10-C16 TRH C15-C28 NEPM >C16-C34 TRH C29-C36 NEPM >C34-C40	2.040 2.551 4.106 4.771 7.841	4. 105 4. 770 7. 840 8. 951 9. 310	63. 51051 175. 18078 1999. 31191 2781. 05172 1129. 93935	9.8 27.0 268.0 2373.0 5151.0	8068 0500 6375 6760 9407
Totals :				921.	9095
	Final	Summed Pea	aks Report		
Signal 1: FID1 / Name	A, Front Sig Total Area [pA*s]	gnal Amount [ma/L]			
TRH C10-C14 NEPM >C10-C16 TRH C15-C28 NEPM >C16-C34 TRH C29-C36 NEPM >C34-C40 o-terphenyl chlorooctodecan p-terphenyl d14	63. 51051 175. 18078 1999. 31191 2781. 05172 1129. 93935 675. 24207 77. 34288 47. 28260	9. 8068 27. 0500 268. 6375 373. 6760 151. 9407 90. 7985 12. 0794 8. 5485	1		
Totals :		953. 5527			
	•	*** End of P	Report ***		

Data File C:\DATA\05_20\130520\210520 2020-05-21 19-39-36\B0000051.D Sample Name: w

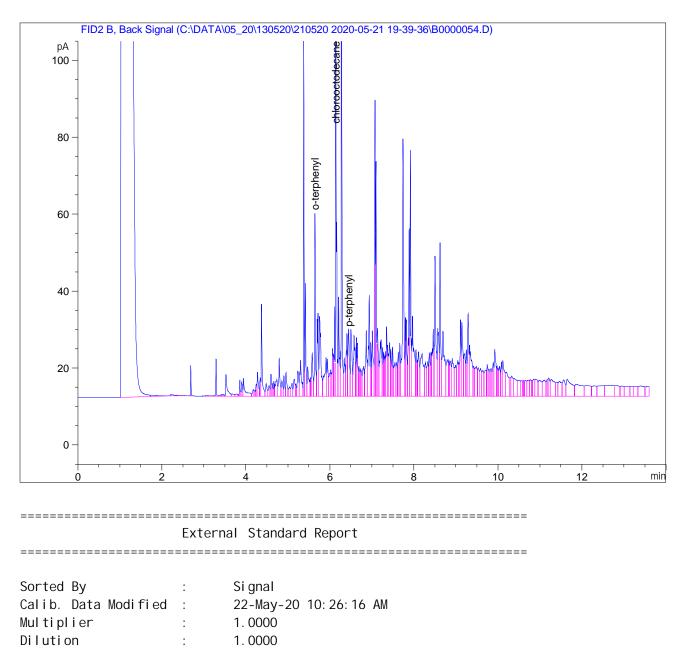
Acq. Operator :	SYSTEM	Seq. Line : 51
Sample Operator :	SYSTEM	
Acq. Instrument :	GC6	Location : 126 (B)
Injection Date :	22-May-20 8:29:09 AM	Inj: 1
		Inj Volume : 1 μl
Acq. Method :	C: \DATA\05_20\130520\2	210520 2020-05-21 19-39-36\NEPM JF.M
Last changed :	20-Mar-20 10:48:26 AM	by SYSTEM
Analysis Method :	C: \00 METHODS\2020\05_	_20\210520-B-Processing.M
Last changed :	22-May-20 10:26:33 AM	by SYSTEM
Method Info :	FAST TPH WITH 15M HP5	COLUMNS

1.87423

p-terphenyl

13.01526 1.44002e-1

6.441 VV


Data File C:\DATA\05_20\130520\210520 2020-05-21 19-39-36\B0000051.D Sample Name: w

RetTime Type Area Amt/Area Amount Grp Name [min] [pA*s] [mg/L] 31.60270 Totals : _____ _____ Summed Peaks Report _____ Signal 1: FID2 B, Back Signal Signal 1: FID2 B, Back Signal Name Start Time End Time Total Area Amount [min] [min] [pA*s] [mg/L] -----|-----|-----| TRH C10-C14 2. 350 4. 215 7. 72807 2. 1918 2. 8104. 84027. 626127. 83504. 2157. 790382. 15653100. 60694. 8418. 8501207. 91010317. 99567. 7919. 1701190. 85612315. 71148. 8519. 810573. 02189151. 9156 NEPM >C10-C16 TRH C15-C28 NEPM >C16-C34 TRH C29-C36 NEPM >C34-C40 Totals : 896.2563 _____ Final Summed Peaks Report _____ Signal 1: FID2 B, Back Signal Name Total Area Amount [pA*s] [mg/L] -----|-----|------| TRH C10-C14 7. 72807 2. TRH C15-C28 382. 15653 100. 6069 NEPM >C16-C34 1207.91010 317.9956 TRH C29-C36 1190. 85612 315. 7114 NEPM >C34-C40 573.02189 151.9156 o-terphenyl 40. 37806 10. 1520 chlorooctodecan 61.66235 19.5765 p-terphenyl 13.01526 1.8742 Totals : 927.8590 *** End of Report ***

Data File C:\DATA\05_20\130520\210520 2020-05-21 19-39-36\B0000054.D Sample Name: s242711-5 x10

Acq. Operator :	SYSTEM	Seq. Line: 54
Sample Operator :	SYSTEM	
Acq. Instrument :	GC6	Location : 129 (B)
Injection Date :	22-May-20 9:26:50 AM	Inj: 1
		Inj Volume : 1 μl
Acq. Method :	C: \DATA\05_20\130520\2	210520 2020-05-21 19-39-36\NEPM JF.M
Last changed :	20-Mar-20 10:48:26 AM	by SYSTEM
Analysis Method :	C: \00 METHODS\2020\05	_20\210520-B-Processing.M
Last changed :	22-May-20 10:26:33 AM	by SYSTEM
Method Info :	FAST TPH WITH 15M HP5	COLUMNS

Do not use Multiplier & Dilution Factor with ISTDs

Signal 1: FID2 B, Back Signal

RetTime Type Area Amt/Area Amount Grp Name [min] [pA*s] [mg/L] 5.646 VV I 55.05894 2.51424e-1 13.84311 o-terphenyl 6.142 VV 182.50238 3.17479e-1 57.94060 chl orooctodecane 6.446 VV 42.54058 1.44002e-1 6.12594 p-terphenyl

Data File C:\DATA\05_20\130520\210520 2020-05-21 19-39-36\B0000054.D Sample Name: s242711-5 x10

RetTime Type [min] Totals :	[pA*s]		[mg/L]	-	Name
		ummed Peaks	•		
Signal 1: FID2					
Signal 1: FID2 Name	Start Time [min]	End Time [min]	[pA*s]	[m	ng/L]
TRH C10-C14 NEPM >C10-C16	2.350 2.810 4.215 4.841 7.791	4.215 4.840 7.790 8.850 9.170	72. 36561 199. 69376 1945. 22793 2633. 04318 1018. 48623	20.5 56.6 512.1 693.1 270.0	5236 5351 027 776 0139
Totals :				1688. 8	8026
		Summed Pea	•	=====	
Signal 1: FID2 Name	Total Area [pA*s]	Amount [mg/L]			
TRH C10-C14 NEPM >C10-C16 TRH C15-C28 NEPM >C16-C34 TRH C29-C36 NEPM >C34-C40 o-terphenyl chlorooctodecan	72. 36561 199. 69376 1945. 22793 2633. 04318 1018. 48623 514. 30768 55. 05894	20. 5236 56. 6351 512. 1027 693. 1776 270. 0139 136. 3497 13. 8431 57. 9406	I		
Totals :		1766. 7122			
		*** End of F	Report ***		

Appendix I

Data Quality Report

Q1. Data Quality Objectives

This SSI has been devised in general accordance with the seven-step Data Quality Objective (DQO) process which is provided in Appendix B, Schedule B2 of NEPC (2013). The DQO process is outlined as follows:

- State the problem;
- Identify the decision;
- Identify inputs into the decision;
- Define the boundary of the assessment;
- Develop a decision rule;
- Specify acceptable limits on decision errors; and
- Optimise the design for obtaining data.

The DQOs have been addressed within this report as shown below:

(1) State the Problem

The "problem" to be addressed is whether there is potential soil and groundwater contamination at the site that could impact the proposed commercial development. The investigation was conducted to supplement the findings of the previous DSI (DP, 2019).

(2) Identify the Decision/Goal of the Study

The following specific decisions are required to be made from the investigation:

- Is the site suitable, or can it be made suitable, for the proposed development?
- Is remediation required in relation to soil and groundwater contaminants?

(3) Identifying the information Inputs

Inputs into the decision will be as follows:

- Available site information regarding previous and current activities undertaken on the site and the surrounding area;
- Details of the proposed development, as known at the time of preparing the report;
- Previous investigation findings and results;
- The local geology, topography and hydrology;
- Field results from the current investigation;
- Analytical results from the current investigation; and
- Field and laboratory QA/QC data to assess the suitability of the environmental data for the assessment.

(4) Define the Boundary of the Study

The site with the address of 8-10 Lee Street, Haymarket NSW, comprises Lot 116 in DP1078271 and Lot 117 in DP1078271 and part of Lot 13 in DP1062447. The site boundary is shown on Drawing 1, Appendix B.

The overall site (i.e. inclusive of both the 'State Works' and 'Developer Works' zones) is an irregular, 'L'-shaped site with an approximate area of 3400 m^2 . The area of the proposed basement within the Developer Works zone has an approximate area of 1800 m^2 . The site is bounded by Ambulance Avenue to the north, Central Station to the east, Adina Apartment Hotel to the west and a multi-storey government office building to the south.

(5) Develop an Analytical Approach (or decision rule)

The soil and groundwater will not be considered significantly impacted by a contaminant if there is no significant detection relative to the adopted SAC (Section 7).

Laboratory test results will only be accepted and considered useable for the assessment under the following conditions:

- All laboratories used must accredited by NATA for the analyses undertaken;
- All practical quantitation limits (PQL) set by the laboratories must be below the investigation levels adopted;
- The differences between the reported concentrations of analytes in the intra and inter-laboratory replicate samples and the corresponding original samples are within adopted acceptance limits (with the exception of those that are not considered to be significant as discussed in Section Q2.7); and
- The quality assurance/quality control (QA / QC) protocols and results reported by the laboratories comply with the requirements of NEPM (2013) and ANZECC (1996) 'Guidelines for the Laboratory Analysis of Contaminated Soils'.

The limits on decision errors are as follows:

- Sampling locations are based on areas / sources of potential contamination and the locations of potential receptors;
- The analyte selection is based on the results of previous soil and groundwater testing, and the previous identified contaminants of concern and data gaps;
- The investigation / screening levels adopted were from NSW EPA produced and/or endorsed guidelines. The adopted investigation/screening levels have risk probabilities already incorporated; and
- The acceptance limits for laboratory QA / QC parameters are based on the laboratory reported acceptance limits, which comply with current national standards.

(6) Optimising the Design for Obtaining Data

Sampling locations have been selected for both geotechnical and environmental purposes. The locations were located in parts of the site that were accessible and were spaced out to gain

reasonable coverage of the soil profile and site contamination status, as well as in parts of the site that were known to contain elevated levels of contaminants based on the findings of DP (2019).

Due to the sites current land use there were parts of the site that could not be accessed.

It is recommended that intrusive investigation of the footprints of the existing buildings is undertaken following demolition.

Q2. Data Quality Indicators

The reliability of field procedures and analytical results was assessed against the following data quality indicators (DQIs):

- Completeness a measure of the amount of usable data from a data collection activity;
- Comparability the confidence (qualitative) that data may be considered to be equivalent for each sampling and analytical event;
- Representativeness the confidence (qualitative) of data representativeness of media present on-site;
- Precision a measure of variability or reproducibility of data; and
- Accuracy a measure of closeness of the data to the 'true' value.

The DQIs were assessed as outlined in the following Table Q1.

Table	Q1:	Data	Quality	Indicators
-------	-----	------	---------	------------

DQI	Considerations as specified in NEPM Schedule B2	Comment
Completeness		
Field Considerations	All critical locations sampled	All critical locations were sampled in accordance with the proposal. Borehole locations were selected for both geotechnical and environmental purposes and were based on accessibility.
	All samples collected (from grid and at depth)	Soil and groundwater samples have been used to provide coverage of the site in accordance with the proposal.
	Standard operating practices (SOPs) appropriate and complied with	Field staff followed SOPs as defined in the DP Field Procedures Manual.
	Experienced sampler	A DP environmental scientist with ten years' experience led the field team.
	Documentation correct	Field staff followed SOPs as defined in the DP Field Procedures Manual/SWMS. Documentation was reviewed and signed off by the project manager.
Laboratory	All critical samples analysed according to	The proposal was followed. Any

DQI	Considerations as specified in NEPM Schedule B2	Comment
Considerations	the proposal	variation to the proposal has been recorded in the report.
	All analytes analysed according to proposal	All analytes have been analysed according to the proposal. Any variation has been recorded in the report.
	Appropriate methods and PQLs/LORs	NATA approved methods have been adopted. Limits of reporting (LORs) and practical quantitation limits (PQLs) in accordance with the method have been used by the contract laboratory.
	Sample Documentation complete	Chain-of-custody (COC) was maintained and appended to the Certificates of Analysis. All Certificates of Analysis are complete and appended to the report.
	Sample holding times complied with	Sample holding times complied with the NATA accredited Laboratory.
Comparability		
Field Considerations	Same SOPs used on each occasion	Field staff followed SOPs for each day of sampling as defined in the DP Field procedures Manual
	Experienced sampler	A DP environmental scientist with ten years' experience led the field team.
	Climatic conditions	Field staff recorded the climatic conditions at the time of sampling on field sheets, provided in Appendix D.
	Same types of samples collected	Field staff followed SOPs as defined in the DP Field Procedures Manual and sampling regime defined in the proposal.
Laboratory Considerations	Sample analytical methods used	The laboratories used are accredited by NATA for the analyses undertaken. Laboratory methods are as stated on the Certificates of Analysis
	Sample PQLs / LORs	PQLs or LORs set by the laboratories are below the adopted site criteria or indicate across-the-board lack of detection.
	Same laboratories	Envirolab Services Pty Ltd was used for primary sample analysis. Eurofins Mgt Pty Ltd was used for inter-laboratory duplicate sample analysis.
	Same units	All laboratory results are expressed in consistent units for each media type.
Representativeness		
Field Considerations	Appropriate media sampled according to SAQP.	Appropriate media were sampled in accordance with the proposal.
	All media identified in SAQP sampled.	All media identified in the proposal were sampled.

DQI	Considerations as specified in NEPM Schedule B2	Comment
Laboratory Considerations	All samples analysed according to SAQP.	All samples analysed according to proposal.
Precision		
Field Considerations	SOPs appropriate and complied with	Field staff followed SOPs as defined in the DP Field procedures Manual.
Laboratory Considerations	Analysis of:	Envirolab Services - Laboratory acceptance limits of soil matrix are:
	- intra-laboratory field duplicates	 & 2) Average relative percentage difference (RPD) result <10 times PQL, no limit; results >10 times PQL, 0% - 50% 3) Recovery of 70-130%
	- inter-laboratory field duplicates	Eurofins Mgt Pty Ltd - Laboratory acceptance limits of soil matrix are: 1 & 2) RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following guidelines are equally applicable:
		1 & 2) Result <10 times the LOR: No Limit; Results between 10-20 times the LOR; RPD must lie between 0-50%; Results >20 times the LOR: RPD must lie between 0-30%.
		3) Surrogate Recoveries: Recoveries must lie between 50-150%; Phenols 20-130%.
	- laboratory-prepared volatile trip spikes and trip blanks	
Accuracy (bias)		
Field Considerations	SOPs Appropriate and complied with	Field staff to follow SOPs as defined in the DP Field procedures Manual.
Laboratory Considerations	Analysis of:	Laboratory acceptance limits are:
	field blanks	Concentrations of analytes are <pql lor<="" td=""></pql>
	rinsate blank	Concentrations of analytes are <pql lor<="" td=""></pql>
	reagent blank/method blank	Results are within acceptance limits as specified by the laboratory (recovery usually within 60-140%).
	matrix spike	Results are within acceptance limits as specified by the laboratory (recovery within 70-130% for inorganics and 60-140% for organics).

DQI	Considerations as specified in NEPM Schedule B2	Comment
	surrogate spike	Results are within acceptance limits as specified by the laboratory (recovery within 70-130% for inorganics and 60-140% for organics).
	reference material	Analysis within the acceptable limits of the Certificate of Analysis for the reference material. These results are generally not contained in the Certificate of Analysis.
	laboratory control sample	Results are within acceptance limits as specified by the laboratory (recovery within 70-130% for inorganics and 60-140% for organics).
		Results are within acceptance limits as specified by the laboratory (recovery within 60-140%).
	laboratory-prepared spikes	Discussion of the results outside the targets and/or with different acceptance limits for inter-laboratories discussed in s. Q3.

Based on the above, the current assessment has generally complied with the quality assurance and quality control data quality indicators. As such, it is concluded that the laboratory test data obtained are reliable and useable for this assessment. Reference should be made to Section Q2 for a full analysis of the QA/QC protocols and outcomes.

Q3. Field Quality Assurance and Quality Control

The field QC procedures for sampling as prescribed in Douglas Partners' *Field Procedures Manual* were followed at all times during the assessment.

Q3.1 Sampling Team

Soil and groundwater sampling were undertaken by site engineers/geologists, Nick Burrows, Alyssa Spencer, Kritik Reddy and Joel James-Hall under the supervision of project manager, Wen-Fei Yuan. Site works were undertaken between 07 April and 26 May 2020. Sampling was not affected by weather conditions.

Q3.2 Sample Collection

Q3.2.1 Soil

Soil samples were collected from pushtube and / or solid flight auger from a track-mounted drilling rig and hand tools due to access restriction. Further details of the drilling and sampling methodology are presented in Section 6.4 of the report. The QA / QC samples collected during the course of soil sampling comprised the following:

- Collection of a minimum of 10% replicate samples (10% intra-laboratory replicates and 10% interlaboratory replicates);
- Collection of a minimum one trip spike and one trip blank per round of sampling; and
- Collection of one rinsate sample on each day of sampling where decontamination procedures were undertaken.

Q3.2.2 Groundwater

The groundwater sampling procedures are outlined in Section 6.5 of the report. The QA / QC samples collected during the course of groundwater sampling comprised:

- Collection of a minimum of 10% replicate samples (10% intra-laboratory replicates and 10% interlaboratory replicates) for QA / QC purposes, with a minimum of one replicate sample collected for each day of sampling;
- Collection of a minimum of one trip spike and one trip blank per day of sampling; and
- Collection of one rinsate sample per day, where decontamination procedures were undertaken.

Q3.3 Logs and Field Sheets

Logs for each soil sampling location were recorded in the field. The individual samples were recorded on the field logs along with the sample identity, location, depth, initials of sampler, replicate locations, replicate type and additional observations. Analysis to be performed on each sample and the dispatch courier were recorded on the COC in Appendix G. Logs are presented in Appendix C.

Field sheets of groundwater sampling and development were maintained including records of micropurging and field parameters. The field sheets are presented in Appendix D.

Q3.4 Decontamination Procedure

All samples were taken with decontaminated re-useable sampling equipment or disposable sampling equipment.

Decontamination was undertaken by rinsing equipment with demineralised water to remove soil / sediment, spraying equipment with a 2% concentrated critical-cleaning liquid detergent (D90), rinsing equipment with demineralised water and finally allowing equipment to air dry.

Where re-useable sampling equipment was applied, a rinsate sample was collected to confirm adequate decontamination between samples. Rinsate samples were collected by running distilled water over the decontaminated sampling equipment directly into sampling bottles provided by the laboratory.

Q3.4.1 Chain of Custody

Chain-of-custody information was recorded on Chain-of-Custody (COC) sheets and accompanied samples to the analytical laboratory. Signed copies of COCs are presented in Appendix G, following the laboratory certificates of analysis.

Q3.4.2 Sample Splitting Techniques

Replicate samples were collected in the field as a measure of accuracy, precision and repeatability of the results.

Field replicate samples for soil were collected from the same location and an identical depth to the primary sample. Equal portions of the primary sample were placed into the sampling jars and sealed. The sample was split to prevent the loss of volatiles from the soil but not homogenised in a bowl. Replicate samples were labelled with a DP identification number and recorded on DP's borehole logs, so as to conceal their relationship to their primary sample from the analytical laboratory.

Groundwater replicate sample were collected by decanting equal portions of groundwater into separately and uniquely labelled groundwater bottles. Sample bottles were filled directly from the pump outlet to minimise disturbance.

Q3.4.3 Replicate Frequency

Field sampling included collection of a minimum of 10% replicate samples (10% intra- and 10% interlaboratory replicates) for QA / QC purposes.

Q3.4.4 Field Blank

A field blank is a sample taken as an indication to demonstrate correct field handling. Field blank samples were collected at least once per round during soil and groundwater sampling.

Q2.5 Trip Spike

In accordance with the *NSW EPA Guidelines for Consultants Reporting on Contaminated Sites* (2011), laboratory prepared trip spike results for volatile analytes are included in this report. The purpose of a trip spike is to assess the potential loss of volatile analytes that may have occurred between the time of collection and transfer of the sample to the laboratory. For the current investigation, a trip spike was taken into the field on each day of sampling with BTEX being the volatile assessed.

For soils, laboratory preparation of the trip spike involved putting 1mL of BTEX (using a 1500 ppm BTEX trip spike standard) into two jars which are cross referenced and labelled 'trip spike' and 'control'. Both jars were sealed with electrical tape. The trip spike was taken onto site and subject to

the same jar storage and transfer as the field samples. The control stayed refrigerated in the laboratory. Following receipt of the trip spike and field samples, the trip spike and corresponding control are both analysed with results of the trip spike being expressed as the % difference from the control sample.

A similar procedure is used for water trip spikes by injecting 220uL of BTEX into the trip spike. Results are then analysed and expressed as % of theoretical value of a 50ppb standard.

The acceptance limit for trip spikes is 60-140% in difference compared to the control or standard.

A trip spike was taken into the field on each soil and groundwater sampling round and dispatched with the batch sampling run.

Q2.6 Background Sample

A background sample is representative of natural, ambient background conditions. Background soil samples were collected from the natural soils (seven natural samples were selected for laboratory analysis) and background groundwater samples were collected from up-gradient groundwater monitoring well (BH103 and BH104).

Q2.7 Relative Percentage Difference

A measure of the consistency of results for field samples is derived by the calculation of relative percentage differences (RPDs) for replicate samples. A RPD of +/- 30% is generally considered typically acceptable for inorganic analytes by NSW EPA, although in general a wider RPD range (50%) may be acceptable for organic analytes. RPDs have only been considered where a concentration is greater than five times the PQL. High RPDs (if applicable) are shown in **bold and shaded** on the relevant tables below.

Replicate samples were collected at a rate of approximately one replicate sample for every ten original samples collected and also analysed at a rate of 10% of primary samples analysed (10% intra- and 10% inter-laboratory replicates), generally with a minimum of one replicate sample collected for each round of sampling.

Q2.7.1 Intra-Laboratory Analysis

Intra-laboratory replicates were analysed as an internal check of the reproducibility within the primary laboratory (Envirolab Pty Ltd) and as a measure of consistency of sampling techniques.

A total of 3 primary soil samples and 2 primary groundwater samples had intra-laboratory replicates analysed. Therefore, the intra-laboratory replicate sampling requirement was met.

The comparative results of analysis between primary and replicate samples are summarised in Tables Q2 and Q3.

Table Q2: Intra-laboratory Results - Soils (mg/kg)

Analyte	BH107B/0.4-0.5	BD1/20200516	Difference	RPD (%)
Arsenic	<4	<4	0	0
Cadmium	<0.4	<0.4	0	0
Chromium	8	12	4	40
Copper	25	46	21	59
Lead	54	52	2	4
Mercury	0.2	0.2	0	0
Nickel	4	7	3	55
Zinc	49	81	32	49
Benzene	<0.2	<0.2	0	0
Toluene	<0.5	<0.5	0	0
Ethylbenzene	<1	<1	0	0
Total Xylenes	<3	<3	0	0
Naphthalene	<1	<1	0	0
TRHC ₆ -C ₁₀ (less BTEX)	<25	<25	0	0
TRH >C10-C16 (less Naphthalene)	<50	<50	0	0
TRHC ₁₆ -C ₃₄	<100	<100	0	0
TRHC ₃₄ -C ₄₀	<100	<100	0	0
B(a)P	1.3	1.8	0.5	32
B(a)P TEQ	2.0	2.7	0.7	30
Naphthalene as PAH	<0.1	<0.1	0	0
Total +ve PAH	14	18	4	25

Analyte	BH113/0.15-0.25	BD2/070420	Difference	RPD (%)
Arsenic	26	10	16	89
Cadmium	<0.4	<0.4	0	0
Chromium	6	9	3	40
Copper	40	43	3	7
Lead	44	69	25	44
Mercury	<0.1	0.1	0	0
Nickel	4	4	0	0
Zinc	310	500	190	47
Benzene	<0.2	<0.2	0	0
Toluene	<0.5	<0.5	0	0
Ethylbenzene	<1	<1	0	0
Total Xylenes	<3	<3	0	0
Naphthalene	<1	<1	0	0
TRHC6-C10 (less BTEX)	<25	<25	0	0
TRH >C10-C16 (less Naphthalene)	<50	<50	0	0
TRHC ₁₆ -C ₃₄	790	760	30	4
TRHC ₃₄ -C ₄₀	220	180	40	20
B(a)P	12	14	2	15
B(a)P TEQ	17	20	3	16

				•
Naphthalene as PAH	0.5	0.4	0.4	22
Total +ve PAH	150	180	30	18
Analyte	BH105/0.05-0.1	BD1/070420	Difference	RPD (%)
Arsenic	8	9	1	12
Cadmium	0.6	0.7	0.1	15
Chromium	13	14	1	7
Copper	93	99	6	6
Lead	280	300	20	7
Mercury	1	0.8	0.2	22
Nickel	14	11	3	24
Zinc	240	260	20	8
Benzene	<0.2	<0.2	0	0
Toluene	<0.5	<0.5	0	0
Ethylbenzene	<1	<1	0	0
Total Xylenes	<3	<3	0	0
Naphthalene	<1	<1	0	0
TRHC ₆ -C ₁₀ (less BTEX)	<25	<25	0	0
TRH >C10-C16 (less	-50	-50	0	
Naphthalene)	<50	<50	0	0
TRHC ₁₆ -C ₃₄	330	170	160	64
TRHC ₃₄ -C ₄₀	<100	<100	0	0
B(a)P	2	1.8	0.2	11

The calculated RPD values were within the acceptable range of \pm 30 for inorganic analytes and \pm 50% for organics apart from those shaded. However, this is not considered to be significant because:

2.5

<0.1

17

0.4

0

0

15

0

0

- The typically low actual differences in the concentrations of the replicate pairs where some RPD exceedances occurred;
- A number of replicate pairs being collected from fill soils which by its nature is heterogeneous;
- Replicates, rather than homogenised replicates were used to avoid volatile loss, hence greater variability can be expected;
- The majority of RPDs within a replicate pair being within the acceptable limits; and

2.9

<0.1

17

• All other QA / QC parameters met the DQIs.

Douglas Partners

Geotechnics | Environment | Groundwater

It is noted that the large RPD's between BH115/0.23 and BD1/070420 are considered likely to be from the presence of coal or ash in the parent sample that were not in the duplicate sample. This likely occurred since the parent same and duplicate were not homogenised in a bowl.

B(a)P TEQ

Total +ve PAH

Naphthalene as PAH

Table Q3: Intra-laboratory Results - Groundwater (µg/L)

Analyte	BH112B	BD1/20200526	Difference	RPD (%)
Arsenic	<1	<1	0	0
Cadmium	<0.1	<0.1	0	0
Chromium	<1	<1	0	0
Copper	1	<1	0	0
Lead	<1	<1	0	0
Mercury	<0.05	<0.05	0	0
Nickel	7	7	0	0
Zinc	21	20	1	5
Benzene	<1	<1	0	0
Toluene	<1	<1	0	0
Ethylbenzene	<1	<1	0	0
Total Xylenes	<3	<3	0	0
Naphthalene	<1	<1	0	0
TRHC6-C10 (less BTEX)	<10	<10	0	0
TRH >C10-C16 (less Naphthalene)	<50	<50	0	0
TRHC16-C34	<100	<100	0	0
TRHC34-C40	<100	<100	0	0
B(a)P	<0.1	<0.1	0	0
Naphthalene as PAH	<0.2	<0.2	0	0
Total PAH	0.17	0.18	0.1	6

Analyte	BH103	BD1/20200424	Difference	RPD (%)
Arsenic	<1	<1	0	0
Cadmium	<0.1	<0.1	0	0
Chromium	<1	<1	0	0
Copper	3	26	23	158
Lead	<1	<1	0	0
Mercury	<0.05	<0.05	0	0
Nickel	6	9	3	40
Zinc	12	21	9	55
Benzene	<1	<1	0	0
Toluene	<1	<1	0	0
Ethylbenzene	<1	<1	0	0
Total Xylenes	<3	<3	0	0
Naphthalene	<1	<1	0	0
TRHC6-C10 (less BTEX)	<10	<10	0	0
TRH >C10-C16 (less			0	0
Naphthalene)	<50	<50	0	0
TRHC16-C34	<100	<100	0	0
TRHC34-C40	<100	<100	0	0

The calculated RPD values were within the acceptable range of \pm 30 for inorganic analytes and \pm 50% for organics apart from those shaded. However, this is not considered to be significant because:

- The typically low actual differences in the concentrations of the replicate pairs where some RPD exceedances occurred;
- The majority of RPDs within a replicate pair being within the acceptable limits; and
- All other QA/QC parameters met the DQIs.

Overall, the intra-laboratory comparisons indicate that the sampling technique was consistent and repeatable and therefore the results are useable and representative of the conditions encountered.

Q2.7.2 Inter-Laboratory Analysis

Inter-laboratory replicates were conducted as a check of the reproducibility of results between the primary laboratory (Envirolab Services Pty Ltd) and the secondary laboratory (Eurofins Mgt Pty Ltd) and as a measure of consistency of sampling techniques.

A total of 3 soil samples had inter-laboratory replicates analysed.

The comparative results of analysis between original and inter-laboratory replicate samples are summarised in Table Q4.

Note that, where the laboratory PQL are different and both samples are below PQL (or one sample is below PQL and other has a recorded detection below the other lab PQL), the difference and RPD has been given as zero.

Analyte	BH104/1.4-1.5	BD2/140420	Difference	RPD (%)
Arsenic	<4	8.3	4.3	70
Cadmium	<0.4	<0.4	0	0
Chromium	6	11	5	59
Copper	28	32	4	13
Lead	14	23	9	48
Mercury	<0.1	<0.1	0	0
Nickel	7	9.9	2.9	34
Zinc	42	56	14	29
Benzene	<0.2	<0.1	0	0
Toluene	<0.5	<0.1	0	0
Ethylbenzene	<3	<0.1	0	0
Total Xylenes	<3	<0.3	0	0
Naphthalene	<1	<0.5	0	0
TRHC6-C10 (less BTEX)	<25	<20	0	0
TRH >C10-C16 (less Naphthalene)	<50	<50	0	0
TRHC ₁₆ -C ₃₄	<100	<100	0	0
TRHC34-C40	<100	<100	0	0
B(a)P	0.53	<0.5	0.03	6
B(a)P TEQ	0.7	<0.5	0.2	33

Table Q4: Inter-laboratory Results - Soils (mg/kg)

Analyte	BH104/1.4-1.5	BD2/140420	Difference	RPD (%)
Naphthalene as PAH	<0.1	<0.5	0	0
Total PAH	6.1	3	3.1	68

Analyte	BH116/0.5-0.7	BD1/20200517	Difference	RPD (%)
Arsenic	<4	3.6	0.4	11
Cadmium	<0.4	<0.4	0	0
Chromium	6	8.2	2.2	31
Copper	5	9.9	4.9	66
Lead	12	16	4	29
Mercury	<0.1	<0.1	0	0
Nickel	<1	<5	0	0
Zinc	1	<5	4	133
Benzene	<0.2	<0.1	0	0
Toluene	<0.5	<0.1	0	0
Ethylbenzene	<1	<0.1	0	0
Total Xylenes	<3	<0.3	0	0
Naphthalene	<1	<0.5	0	0
TRHC6-C10 (less BTEX)	<25	<20	0	0
TRH >C10-C16 (less Naphthalene)	<50	<50	0	0
TRHC ₁₆ -C ₃₄	<100	<100	0	0
TRHC ₃₄ -C ₄₀	<100	<100	0	0
B(a)P	<0.05	<0.5	0	0
B(a)P TEQ	<0.5	<0.5	0	0
Naphthalene as PAH	<0.1	<0.5	0	0
Total PAH	<0.05	<0.5	0	0

Analyte	BH105/0.05-0.1	BD1/070420	Difference	RPD (%)
Arsenic	8	10	2	22
Cadmium	0.6	0.8	0.2	29
Chromium	13	20	7	42
Copper	93	110	17	17
Lead	280	460	180	49
Mercury	1	1.3	0.3	26
Nickel	14	17	3	19
Zinc	240	400	160	50

The RPD values were within the acceptable range of \pm 30 for inorganic analytes (\pm 50% for organic) with the exception of one shaded RPD. However, this is not considered to be significant because:

- The typically low actual differences in the concentrations of the replicate pairs where some RPD exceedances occurred;
- Replicates, rather than homogenised soil duplicates were used to avoid volatile loss, hence greater variability can be expected;
- Most of the recorded concentrations being at / close to the practical quantitation limit;
- The majority of RPDs within a replicate pair being within the acceptable limits;

- The testing methods between two laboratories may result in the differences; and
- All other QA / QC parameters met the DQIs.

Overall, the inter-laboratory comparisons indicate that the sampling technique was consistent and repeatable and therefore the results are useable and representative of the conditions encountered.

Q2.8 Field Blanks

Laboratory prepared soil and groundwater field blanks were taken out to the site unopened on each day of sampling, subjected to the same preservation methods as the field samples, then analysed for the purposes of determining whether transfer of contaminants into the blank sample had occurred prior to reaching the laboratory. If this is confirmed, then there is also a potential for other samples in the batch to have been impacted. The results of the laboratory analysis for the field blanks is shown in Tables Q5 and Q6. A total of three soil blanks and two water blanks were analysed over the course of the investigation.

Sample ID	TB 07/04/2020	TB 14/04/2020	TB 12/05/2020
Benzene	<0.2	<0.2	<0.2
Toluene	<0.5	<0.5	<0.5
Ethylbenzene	<1	<1	<1
M + P Xylene	<2	<2	<2
O Xylene	<1	<1	<1
TRH C6 - C9	<25	<25	<25
TRH C6 - C10	<25	<25	<25
vTPH C6 - C10 less BTEX (F1)	<25	<25	<25

Table	Q5·	Trin	Blank	Results -	Soils	(ma/ka)
Table	QU.	1 I I P	Dialin	Negung -	00113	(iiig/kg/

Table wo. The blank Results - Oroundwate				
Sample ID	TB 24/04/2020	TB 26/05/2020		
Benzene	<1	<1		
Toluene	<1	<1		
Ethylbenzene	<1	<1		
M + P Xylene	<2	<2		
O Xylene	<1	<1		
Naphthalene	<1	<1		
TRH C6 - C9	<10	<10		
TRH C6 - C10	<10	<10		
vTPH C6 - C10				
less	<10	<10		
BTEX (F1)				

Levels of analytes were all below detection limits indicating that significant cross contamination had not occurred during transportation of samples from the site to the laboratory.

Q2.9 Trip Spikes

Laboratory prepared trip spikes were taken to the site on each day of sampling, subjected to the same preservation methods as the field samples, and dispatched with the batch sampling run. The results of the laboratory analysis for the field blanks is shown in Tables Q7 and Q8. A total of three soil blanks and two water blanks were analysed over the course of the investigation.

	-	•	• •
Sample ID	TS 07/04/2020	TS 14/04/2020	TS 12/05/2020
Benzene	117	97	100
Toluene	123	98	101
Ethylbenzene	119	94	102
M + P Xylene	120	95	103
O Xylene	122	93	103

Table Q7: Trip Spike Results - Soils (% Recovery)

Table Q8: Trip Spike Results - Groundwater (% Recovery)

Sample ID	TS 24/04/2020	TS 26/05/2020
Benzene	111	116
Toluene	108	115
Ethylbenzene	108	105
M + P Xylene	99	105
O Xylene	112	108

Results indicate that the percentage loss for BTEX during the trip was minimal and therefore appropriate preservation techniques were employed.

Q2.10 Rinsate Sample Results

Rinsate samples were taken by running rinsate water over reusable sampling equipment then collecting that water in sampling containers for analysis. If contaminants are present in the rinsate water, it indicates that contaminants from the sampling-equipment could have cross-contaminated samples. The results of analysis from two rinsate samples are shown in Table Q9.

Table Q9: Rinsate Results (µg/L)

Sample ID	Rinsate 07/04/2020	Rinsate 08/04/2020
Arsenic	<0.05	<0.05
Cadmium	<0.01	<0.01
Chromium	<0.01	<0.01
Copper	<0.01	<0.01
Lead	<0.03	<0.03
Mercury	<0.0005	<0.0005
Nickel	<0.02	<0.02
Zinc	<0.02	<0.02
TRHC ₆ -C ₁₀ (less BTEX)	<10	<10
TRHC10-C16	<50	<50
TRHC ₁₆ -C ₃₄	<100	<100
TRHC ₃₄ -C ₄₀	<100	<100
B(a)P	<1	<1
B(a)P TEQ	<5	<5
Naphthalene	<1	<1
Total PAH	NIL(+)VE	NIL(+)VE

The concentrations of the analytes recorded in the rinsate sample was below the laboratory detection limits except for those in bold.

It is considered that the decontamination techniques employed during groundwater sampling were adequate and that the risk of cross-contamination was low.

Q2.11 Field Instrument Calibration

The photoionisation detector (PID) fitted with a 10.6 eV lamp was calibrated and serviced at Active Environmental Solutions Pty Ltd on 06/04/2020 and 15/05/2020 and in the field with isobutylene gas prior to field investigation. Calibration records are presented in Appendix E.

The water quality meter was calibrated by Thermo Fisher Scientific Pty Ltd on 14/05/2019 and internally calibrated prior to its use. Calibration records are presented in Appendix E.

Q4. Laboratory Quality Assurance and Quality Control

Q4.1 Chain of Custody

Chains-of-custody documentation for all samples is presented in Appendix G.

Q4.1.1 Holding Times

A review of the laboratory certificates of analysis and chain-of-custody documentation indicated that holding times were met.

Q4.2 Analytical Laboratories

Samples were submitted to the following laboratories for analysis:

- Primary Laboratory: Envirolab Services Pty Ltd (Envirolab); and
- Secondary Laboratory: Eurofins Mgt Pty Ltd (Eurofins).

The laboratories are all NATA accredited for the analysis undertaken. Envirolab's accreditation number is 2901 and is accredited for compliance with ISO/IEC 17025. Envirolab's tests comply with NATA and NEPC (2013). In-house procedures are employed by Envirolab in the absence of documented standards.

Eurofin's NATA accreditation number is 1261 and is accredited for compliance with ISO/IEC 17025. Eurofin's in-house laboratory methods are referenced from NEPC, ASTM and modified USEPA/ APHA documents.

It is noted that some of the test methods adopted are not NATA accredited where no NATA accredited method exists. The best international practices were adopted in the analytical methods for these tests. It is not considered that this will affect the validity of the results for this assessment.

Q4.3 Analytical Methods

The laboratory analytical methods are provided on the laboratory certificates of analysis in Appendix G.

Q4.4 Results of Laboratory QA/QC Procedures

The following QA/QC procedures were conducted by the laboratories. The results are included in the laboratory certificates of analysis in Appendix G.

Q3.4.1 Surrogate Spike

This sample is prepared by adding a known amount of surrogate, which behaves similarly to the analyte, prior to analysis to each sample. The recovery result indicates the proportion of the known

concentration of the surrogate that is detected during analysis. These results are within acceptance limits as specified by Envirolab Services Pty Ltd, indicating that the extraction technique was effective.

The laboratory acceptance criteria for surrogate samples is generally 60-140% for organics; and 10-140% for SVOC and speciated phenols. Percent recovery for the surrogate samples was within the acceptable standards with the exception of TRH C10-C40 in sample 240556-1 and 240556-7. Percent recovery for these samples was not possible to report as the high concentration of analytes in the samples have caused interference.

Q3.4.2 Practical Quantitation Limits - PQLs

The PQL is the lowest concentration of an analyte which can be measured with a high degree of confidence. PQLs at different analytical laboratories can differ based on the particular laboratories analytical techniques.

Q3.4.3 Reference and Daily Check Sample Results - Laboratory Control Sample (LCS)

This sample comprises spiking either a standard reference material or a control matrix (such as a blank of sand or water) with a known concentration of specific analytes. The analytical results of the LCS and the standard reference material are then compared against each other to determine how the laboratory has performed with regard to sample preparation and analytical procedure. LCSs are analysed at a frequency of 1 in 20, with a minimum of one analysed per batch.

The laboratory acceptance criteria for LCS samples are generally 70-130% for inorganic/ metals, 60-140% for organics, and 10-140% for SVOC and speciated phenols.

The laboratory QC for LCS was within the acceptance standards.

Q3.4.4 Laboratory Replicate Results

These are additional portions of a sample which are analysed in exactly the same manner as all other samples. The laboratory acceptance criteria for replicate samples are:

- In cases where the level is <5xPQL any RPD is acceptable; and
- In cases where the level is >5xPQL 0-50% RPD is acceptable.

The laboratory QC for laboratory replicate results was within the acceptance standards with the exception of the following samples. Triplicate results have been issued for all laboratory replicate RPD samples that exceeded the criteria listed above.

- Zn in 240692-1, triplicate 240692-13 (in ELS 240692);
- Hg and Cu in 240556-2, triplicate 240556-16 (in ELS 240556); and
- Zn in 240556-9, triplicate 240556-17 (in ELS 240556).

Q3.4.5 Laboratory Blank Results

The laboratory blank, sometimes referred to as the method blank or reagent blank is the sample prepared and analysed at the beginning of every analytical run, following calibration of the analytical apparatus. This is the component of the analytical signal which is not derived from the sample but from reagents, glassware, etc. It can be determined by processing solvents and reagents in exactly the same manner as for samples. Laboratory blanks are analysed at a frequency of 1 in 20, with a minimum of one per batch.

The laboratory QC for method blanks was within the acceptance standards.

Q3.4.6 Matrix Spike

This is a sample replicate prepared by adding a known amount of analyte prior to analysis, and then treated exactly the same as all other samples. The recovery result indicates the proportion of the known concentration of the analyte that is detected during analysis. The laboratory acceptance criteria for matrix spike sample is generally 70-130% for inorganic/metals, 60-140% for organics, and 10-140% for SVOC and speciated phenols.

The laboratory QC for matrix spikes was within the acceptance standards with the exception of sample 2406092-2ms in ELS 240692 and 240556-5ms in ELS 240556. The percent recovery for the matrix spike in those samples was not possible due to interface from analytes (other than those being tested).

Q3.5 Laboratory Comments

Comments made in the laboratory certificates of analysis are summarised in Table Q10 below, along with the results of the review of the laboratory QC by DP.

Laboratory Certificate of Analysis	Laboratory Comment	DP Comment
243428	Asbestos: A portion of the supplied sample was sub-sampled for asbestos analysis according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g of sample in its own container. Note: Samples 243428-1 to 3 were sub-sampled from jars provided by the client.	Acknowledged
243428-A	No comments	-
243218	Asbestos: A portion of the supplied sample was sub-sampled for asbestos analysis according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g of sample in its own container. Note: Sample 243218-6 was sub-sampled from a jar provided by the client.	Acknowledged
243218-A	No comments	-

Table Q10: Laboratory QA Comments

Laboratory Comment	DP Comment
Asbestos: A portion of the supplied sample was sub-sampled for asbestos analysis according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g of sample in its own container. Note: Samples were sub- sampled from jars provided by the client.	Acknowledged
 unpreserved sample was filtered through 0.45µm filter at the lab. Note: there is a possibility some elements may be underestimated. Acid Extractable Metals in Soil: The laboratory RPD acceptance criteria has been exceeded for 240692-1 for Zn. Therefore, a triplicate result has been issued as laboratory sample number 240692-13. # Percent recovery is not possible to report due to the inhomogeneous nature of the element/s in the sample/s. However, an acceptable recovery was obtained for the LCS. ## Percent recovery is not possible to report due to the high concentration of the element/s in the sample/s. However, an acceptable recovery was obtained for the LCS. ## Percent recovery is not possible to report due to the high concentration of the element/s in the sample/s. However, an acceptable recovery was obtained for the LCS. ## Percent recovery is not possible to report due to the high concentration of the element/s in the sample/s. However, an acceptable recovery was obtained for the LCS. Asbestos: A portion of the supplied samples were sub-sampled for asbestos analysis according to Envirolab procedures. We cannot guarantee that these sub-samples are indicative of the entire sample. Envirolab recommends supplying 40-50g of sample in its own container. Note: Samples requested for asbestos testing were sub-sampled from jars provided by the client. TRH Soil C10-C40 NEPM (#) Percent recovery for the matrix spike is not	The unfiltered dissolved metals were from the rinsate sample; it is considered that rinsate filtration by the laboratory is most practical.
tested) in sample 240692-2ms. No comments	n/a
 TRH Soil C10-C40 NEPM (#) Percent recovery for the surrogate is not possible to report as the high concentration of analytes in samples 240556-1 and 7 have caused interference. Asbestos: Excessive sample volume was provided for asbestos analysis. A portion of the supplied sample was sub-sampled according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g (50mL) of sample in its own container as per AS4964-2004. Note: Samples were sub-sampled from bags provided by the client. Acid Extractable Metals in Soil: The laboratory RPD acceptance criteria has been exceeded for 240556-2 for Cu and Hg. Therefore, a triplicate result has been issued as laboratory sample number 240556-16. The laboratory RPD acceptance criteria has been exceeded for 240556-9 for Zn. Therefore, a triplicate result has been issued as laboratory sample number 240556-17. Spike recovery for Pb in sample 240556-5 at 67% which is outside lab acceptance criteria (70-130%), however, the LCS recovery is acceptable at 117%. Sample heterogeneity suspected. 	All sample integrity criteria were met
	 Asbestos: A portion of the supplied sample was sub-sampled for asbestos analysis according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g of sample in its own container. Note: Samples were sub-sampled form jars provided by the client. Dissolved Metals: no filtered, preserved sample was received, therefore the unpreserved sample was filtered through 0.45µm filter at the lab. Note: there is a possibility some elements may be underestimated. Acid Extractable Metals in Soli: The laboratory RPD acceptance criteria has been exceeded for 240692-1 for Zn. Therefore, a triplicate result has been issued as laboratory sample number 240682-13. # Percent recovery is not possible to report due to the inhomogeneous nature of the element/s in the sample/s. However, an acceptable recovery was obtained for the LCS. ## Percent recovery is not possible to report due to the high concentration of the element/s in the sample/s. However, an acceptable recovery was obtained for the LCS. Asbestos: A portion of the supplied samples were sub-sampled for asbestos analysis according to Envirolab procedures. We cannot guarantee that these sup-samples are indicative of the entire sample. Envirolab recommends supplying 40-50g of sample in its own container. Note: Samples requested for asbestos testing were sub-sampled from jars provided by the client. TRH Soil C10-C40 NEPM (#) Percent recovery for the matrix spike is not possible to report due to interference from analytes (other than those being tested) in sample 240592-2ms. No comments TRH Soil C10-C40 NEPM (#) Percent recovery for the surrogate is not possible to report due to interference from analytes (other than those being tested) in sample 240566-1 and 7 have caused interference. Asbestos: Excessive sample volume was provided for asbestos analysis. A portion of the supplied sample w

Laboratory Certificate of Analysis	Laboratory Comment	DP Comment
	240556-5ms. The RPD for duplicate results is accepted due to the non-homogenous nature of samples 240556-2 and 9.	
240556-A	No comments	n/a
241579	No comments	n/a
243633	No comments	n/a
714766-S	Custody Seals Intact (if used): N/A Attempt to Chill was evident: Yes Sample correctly preserved: Yes Appropriate sample containers have been used: Yes Sample containers for volatile analysis received with minimal headspace: Yes Samples received within Holding Time: Yes Some samples have been subcontracted: No	All sample integrity criteria were met
720825-S	Custody Seals Intact (if used): N/A Attempt to Chill was evident: Yes Sample correctly preserved: Yes Appropriate sample containers have been used: Yes Sample containers for volatile analysis received with minimal headspace: Yes Samples received within Holding Time: Yes Some samples have been subcontracted: No	All sample integrity criteria were met
723460-S	Custody Seals Intact (if used): N/A Attempt to Chill was evident: Yes Sample correctly preserved: Yes Appropriate sample containers have been used: Yes Sample containers for volatile analysis received with minimal headspace: Yes Samples received within Holding Time: Yes Some samples have been subcontracted: No	All sample integrity criteria were met

The majority of the laboratory quality control samples were within the laboratory acceptance criteria, with the exception of those identified in Table Q10. The QC failures, where they occurred, are considered to have been adequately addressed by the laboratories and not considered to have significantly impacted the quality of the results overall. It is considered that an acceptable level of laboratory precision and consistency was achieved and that surrogate spikes, LCS, laboratory replicate results, method blanks and matrix spike results were of an acceptable level overall. On the basis of this assessment, the laboratory data sets are considered to be reliable and useable for this assessment.

Appendix J

Environmental Risk Analysis

Appendix J: Standard Approach to Environmental Risk Assessment

The SEARs require an environmental risk analysis be included in the EIS to identify potential environmental impacts associated with the Project.

The following represents the standard way in which the environmental risk assessment can be undertaken in the RAP that can then inform the overall risk assessment which will be included in the overarching EIS document. This standard approach is outlined in the in the SSDA¹.

Risk comprises the likelihood of an event occurring and the consequences of that event. For the Project, the following descriptors were adopted for 'likelihood' and 'consequence'.

Table C1: Risk Descriptors and Risk Matrix

Contamination	Likelihood	Consequence	Risk Matrix
Soil	Almost Certain (A)	3	Medium
Groundwater	Unlikely (D)	3	Low

It should be noted that the above risk assessment is based on historical and current contamination data findings. The unexpected finds protocol in Section 14 of the RAP provides a procedure to be followed in the event of encountering an unexpected finds of contamination during the site preparation and construction work.

¹ Atlassian SSDA – Standard Text for Technical Reports, 5 August 2020.