

Report on Supplementary Geotechnical Investigation

Proposed Commercial Development 8-10 Lee Street, Haymarket

> Prepared for Vertical First Pty Ltd

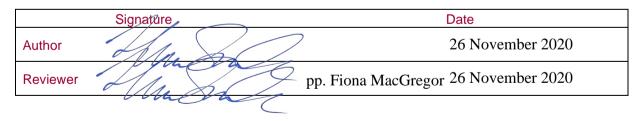
> > Project 86767.00 November 2020

Douglas Partners Geotechnics | Environment | Groundwater

Document History

Document details

Project No.	86767.00	Document No.	R.006.Rev5					
Document title	Report on Supplementary Geotechnical Investigation							
	Proposed Commercial Development							
Site address	8-10 Lee Street, Haymarket							
Report prepared for	Vertical First Pty Ltd							
File nome	86767.00.R.006.Rev5.Supplementary Geotechnical Investigation							
File name	Report							


Document status and review

Status	Prepared by	Reviewed by	Date issued
Revision 0	Huw Smith	Fiona MacGregor	24 June 2020
Revision 1	Huw Smith	Fiona MacGregor	23 July 2020
Revision 2	Huw Smith	Fiona MacGregor	1 September 2020
Revision 3	Huw Smith	Fiona MacGregor	21 September 2020
Revision 4	Huw Smith	Fiona MacGregor	18 November 2020
Revision 5	Huw Smith	Fiona MacGregor	26 November 2020

Distribution of copies

Status	Electronic	Paper	Issued to				
	4	0	Vertical First Pty Ltd, C/- Allison Mahlberg and Andrew				
Revisions 0 - 3	1		Kyriacou, Avenor Pty Ltd				
Devision 4	1	0	Vertical First Pty Ltd, C/- Allison Mahlberg and Josh				
Revision 4			Finnegan, Avenor Pty Ltd				
Devision 5	4	0	Vertical First Pty Ltd, C/- Allison Mahlberg and Josh				
Revision 5	1		Finnegan, Avenor Pty Ltd				

The undersigned, on behalf of Douglas Partners Pty Ltd, confirm that this document and all attached drawings, logs and test results have been checked and reviewed for errors, omissions and inaccuracies.

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au 96 Hermitage Road West Ryde NSW 2114 PO Box 472 West Ryde NSW 1685 Phone (02) 9809 0666 Fax (02) 9809 4095

Table of Contents

Page

1.	Introd	luction	1
2.	Desci	ription of the Site	2
	2.1	General	2
	2.2	Site and Surrounding Context (Supplied by Urbis Pty Ltd)	3
	2.3	Site Observations	3
3.	Proje	ct Description (Supplied by Urbis Pty Ltd)	4
4.	Previe	ous Investigations	6
5.	Geolo	рду	7
6.	Field	Work Methods	7
	6.1	General	7
	6.2	Boreholes	7
	6.3	Standpipes	9
7.	Field	Work Results	10
	7.1	Boreholes	10
	7.2	Standpipe Piezometers	12
	7.3	Permeability Testing	14
8.	Labor	atory Testing	15
9.	Propo	osed Development	16
10.	Geote	echnical Model	17
11.	Comr	nents	19
	11.1	Geotechnical Issues	19
	11.2	Site Preparation	19
	11.3	Excavation	21
	11.4	Vibration Control	21
	11.5	Disposal of Excavated Material	21
	11.6	Batter Slopes	22
	11.7	Groundwater	
		11.7.1 General	
		11.7.2 Seepage Rates and Groundwater Drawdown11.7.3 Disposal	
	11.8	Excavation Support	
	-	11.8.1 General	

		11.8.2	Shoring / Retaining Walls	24
		11.8.3	Design of Excavation Support	25
			Ground Anchors	
	11.9	Excava	ation-Induced Ground Movement	27
		11.9.1	RMS Infrastructure and Sydney Trains Rail Corridor	27
		11.9.2	Stress Relief	28
	11.10	Founda	ations	
	11.11	Soil Ag	gressivity to Concrete and Steel Structures	30
	11.12	Seismi	c Design	30
12.	Furth	er Geote	echnical Work	30
13.	Refer	ences		31
14.	Gloss	ary of K	ey Terms	32
15.	Gloss	ary of A	bbreviations	32
16.	Limita	ations		33

Appendix A:	About This Report
Appendix B:	Site Photographs
Appendix C:	Drawings
Appendix D:	Field Work Results
Appendix E:	Previous Investigation Field Work Results
Appendix F:	Groundwater Data
Appendix G:	Groundwater Permeability Test Results
Appendix H:	Laboratory Test Reports
Appendix I:	Groundwater Modelling Report (DP Report 86767.04.R.003.Rev1)

Report on Supplementary Geotechnical Investigation Proposed Commercial Development 8-10 Lee Street, Haymarket

1. Introduction

Douglas Partners Pty Ltd has been commissioned by Atlassian (the Applicant) to prepare this supplementary geotechnical investigation report in accordance with the technical requirements of the Secretary's Environmental Assessment Requirements (SEARs), and in support of the SSD-10405 for a commercial and hotel development above the Former Inwards Parcel Shed (Parcels Shed) at 8-10 Lee Street, Haymarket.

Specifically, this report addresses the following SEARs:

SEARs	Report Reference
 Contamination and Remediation: 'identify geotechnical issues (including Acid Sulfate Soils) associated with the construction of the development' 	Section 11.1 "Geotechnical Issues", with advice on these and construction-related matters provided in Sections 11.2 to 11.12

The investigation was commissioned in an email by Avenor Pty Ltd (Avenor) on behalf of Vertical First Pty Ltd (Vertical), and was undertaken in accordance with a consultancy agreement and our proposal SYD190190.P.003.Rev5 dated 8 May 2020.

It is understood that the proposed development at the Site is to be divided into a 'Developer Works zone' and a 'State Works – Link Zone'. The Developer Works are proposed to include excavation for a two-level basement on the western side of Central Station (i.e. to an elevation of RL5.0 m, relative to the Australian Height Datum (AHD)) followed by construction of a multi-storey commercial tower, whereas the State Works to the west of the tower include a two-level basement to a similar elevation, with a north-south connection to proposed future, adjoining basements.

The supplementary geotechnical investigation was carried out to provide additional information on the subsurface profile and groundwater levels for the assessment of excavation conditions, and to provide information for the design of the basement excavation, shoring systems and foundations. The supplementary geotechnical investigation (completed in conjunction with a supplementary environmental investigation) included drilling boreholes, installation of standpipes with data loggers, and laboratory testing of selected soil and rock samples. Details of the field work are given in this report, together with comments relevant to design and construction practice.

2. Description of the Site

2.1 General

The Site is known as 8-10 Lee Street, Haymarket. It is an irregular-shaped allotment (refer Figure 1 below). The allotment has a small street frontage to Lee Street, however, this frontage is limited to the width of the access handle.

The Site comprises multiple parcels of land which exist at various stratums. All the lots are in the freehold ownership of Transport for NSW (TfNSW), with different leasing arrangements:

- Lot 116 in DP 1078271: YHA is currently the long-term leaseholder of the Site;
- Lot 117 in DP 1078271: This is currently in the ownership of TfNSW and the applicant is seeking the transfer of the leasehold on this land to provide for an optimised basement and servicing outcome for the Site;
- Lot 118 in DP 1078271: This is currently in the ownership of TfNSW and the applicant is seeking the transfer of the leasehold for part of the air-rights above part of this allotment to allow for an optimised building envelope for the Project. The proposal also uses a part of Lot 118 in DP 1078271 within Ambulance Avenue for Day 1 bike access, secondary pedestrian access and fire service vehicle access; and
- Lot 13 in DP 1062447: This is currently in the ownership of TfNSW, however, TOGA (who hold the lease for the Adina Hotel) have a long-term lease of this space in the lower ground area.

The Site has an area of approximately $3,764 \text{ m}^2$ when measured at the Upper Ground Floor level, which includes 277 m^2 of air rights that apply from RL40 m.

The Site is bounded by Ambulance Avenue to the north (also known as Lower Carriage Lane), the Adina Hotel and Upper Carriage Lane to the west, Central Station Country Platform 0 to the east, and both the Devonshire Street Pedestrian Tunnel (Devonshire Tunnel) and Henry Deane Plaza to the south.

Figure 1: Site Location and Dimensions (supplied by Urbis Pty Ltd)

Supplementary Geotechnical Investigation, Proposed Commercial Development 8-10 Lee Street, Haymarket

2.2 Site and Surrounding Context (Supplied by Urbis Pty Ltd)

The Site is directly adjacent to the Western Wing Extension of Central Station, and forms part of the 'Western Gateway Sub-precinct' of the Central Railway Station lands. It is situated between the existing 'CountryLink' and 'Intercity' railway platforms to the east and the Adina Hotel (former Parcel Post Office) to the west.

Existing vehicle access to the Site is via Lee Street, however the Lee Street frontage of the Site is only the width of the access handle.

Current improvements on the Site include the Parcels Shed, which operated in association with the former Parcels Post Office (now the Adina Hotel). The Site is currently used as the Sydney Railway Square Youth Hostel (YHA). The Site also includes the western entryway to the Devonshire Tunnel, which runs east-west through Central Station under the existing railway lines.

The Site is situated in a well-connected location in Sydney, directly adjacent to Central Station Railway which provides rail connections across metropolitan Sydney, as well as regional and interstate connections and a direct rail link to Sydney Airport. The Site is also within close proximity to several educational institutions, and is a city fringe location which provides access to key support services.

Central Railway Station is currently undergoing rapid transformation to allow for integration of rail, metro and light rail transport infrastructure. This will elevate the role of Central Station not only for transport but also enhance opportunities for urban renewal and revitalisation of the surrounding precinct. This is one of the key drivers for the identification of the Central Station State Significant Precinct (Central SSP) and the Western Gateway Sub-precinct, to accommodate a new innovation and technology precinct.

The proximity of the Western Gateway Sub-precinct to the city, while still being located outside the core Sydney CBD, provides opportunity for it to evolve to attract technology and innovation companies. It has access to all required services while being sufficiently separate to the CBD to establish a distinct technology industry ecosystem. Its CBD fringe location will likely provide affordable commercial rents which will support 'Startups' and entrepreneurs, which are a key component of an innovation precinct.

2.3 Site Observations

The Site is divided into two areas: the 'State Works – Link Zone' to the west and the 'Developer Works Zone' to the east. With reference to Drawing 1, descriptions of the eastern and western areas of the Site are set out below. Site investigation was also carried out from within the Adina Hotel basement, however, that basement (with a floor level of RL13.4 m) does not lie within the 'site' boundaries.

- Eastern area of the Site ('Developer Works Zone'):
 - o This area is occupied by the Parcels Shed, which has both Upper Ground and Lower Ground Floor levels;
 - o The Upper Ground Floor level (approximate elevation of RL21.2 m) is accessed from Upper Carriage Lane, and is currently occupied by the YHA;
 - o Four former rail carriages are present on the eastern side of the YHA building, mounted on steel rails which are apparently supported by rail ballast and a brick pavement. These

carriages, modified to become dormitory rooms / accommodation, are accessed from a concrete-surfaced platform (refer Photos 1 to 4, in Appendix B);

- o The height difference between the platform and dormitory carriage rail / ballast level was measured to be 1.1 m;
- The Lower Ground Floor level on the eastern part of the Site is accessed from Ambulance Avenue (approximate elevation of RL15.5 m), and is currently occupied by rail catering facilities operated by Gate Gourmet Rail Pty Ltd (Gate Gourmet), including food storage areas and cool rooms / freezers (refer Photo 5); and
- o The north-eastern corner of the Gate Gourmet catering facility (i.e. at Lower Ground Floor level) is connected, via a concrete-lined rail access tunnel, to a series of other subterranean rail access tunnels which pass beneath Central Station (e.g. access tunnel 'Subway 3').
- Central and Western area of the Site ('State Works Link Zone'):
 - This area includes an asphalt-surfaced, open-air, access ramp/road (i.e. Upper Carriage Lane, at approximate Upper Ground Floor level) which connects with Lee Street to the west (refer Photo 10 and 11);
 - An access corridor connects Ambulance Avenue at Lower Ground Floor level with areas of material storage and other facilities whilst Upper Carriage Lane passes above this area: the western part of the access ramp/road is assumed to be underlain by soil fill materials;
 - The open-air ramp is supported along the northern property boundary (and adjacent to the Adina Hotel property) by a brick retaining wall (refer Photos 13 and 14), through which an access portal and driveway leads southward and into the Adina Hotel's parking basement (refer Photo 9);
 - The access corridor, aligned in an approximately north-east / south-west direction, connects Ambulance Avenue with Henry Deane Plaza (to the south). Toilet and bin room facilities were observed on the western side of the access corridor (refer Photo 7 and Photo 12);
 - o A storage area / corridor, aligned in an approximately north-east / south-west direction, connecting retail operations (adjoining the Devonshire Tunnel) with the materials storage area and access corridor described above (refer Photo 6: southern end); and
 - o The Adina Hotel basement is located west of the Site. Based on the provided drawing (prepared by Synman, Justin and Bialek Architects, Drawing WG.05, dated 21 March 1998), the basement floor level is at an elevation of RL13.4 m. A brick retaining wall is visible on the eastern side of the basement, together with a concrete underpin which extends below the brick wall to either just above or to below the basement floor. An outcrop of weathered, very low strength sandstone (with high strength iron-cemented bands) was observed beneath the concrete underpin at two locations within the basement, including west of the driveway from Ambulance Avenue (refer Photographs 15 to 18).

3. Project Description (Supplied by Urbis Pty Ltd)

The proposed state significant development application will facilitate the development of a new mixed-use development comprising 'tourist and visitor accommodation' (in the form of a 'backpackers')

and commercial office space within the tower form. Retail, lobby and food and drink premises at the Lower Ground level and Upper Ground level.

Atlassian Central at 8-10 Lee Street will be the new gateway development at Central Station which will anchor the new 'Technology Precinct' proposed by the NSW Government. The new building will be purpose-built to accommodate the Atlassian Headquarters, a new TfNSW Pedestrian Link Zone, and the new Railway Square YHA backpacker's accommodation, in addition to commercial floorspace to support technology 'start-ups'.

The new development is to be built over the existing heritage Parcels Shed located on the western boundary of Central Station with the Adina hotel to the west. The works includes a 38-storey mixed-use tower with basement loading dock facilities accessed off Lee Street, 2-storey lobby utilising the Parcels Shed building, lower ground and upper ground retail, YHA hostel and commercial tower with staff amenities to the mid-level and roof top areas and a pedestrian Link Zone works for TfNSW.

The building design has been conceived to support the delivery of a site plan designed to connect with future developments to both the south and east, and integrate with a cohesive public realm for the broader Sydney community in accordance with NSW government strategic planning.

The tower design is a 'demonstration project' for Atlassian, representing their commitment to environmental sustainability and contemporary workplace settings through tower form and construction systems along with a set of emblematic outdoor workplaces stacked in the tower form.

The existing Parcels Shed will be adaptively re-used in accordance with current best practice heritage process and will form the upper level of a 2-storey entry volume that connects visually with the 2 level Link Zone. Over the roof of the Parcels Shed, a new privately owned but publicly accessible landscaped area will be created as the first part of a new upper level public realm that may extend to connect to a future Central Station concourse or future Over Station Development.

The proposed mixed-use tower directly adjoins a live rail environment to the east and public domain to the north, west and south. These works will consider these rail environments and have been designed to ensure that all TfNSW external development standards are achieved. This ensures there is no impact to the operation or safety of these TfNSW assets.

Interfaces from the overall site and especially the State works Link Zone have been designed in consultation with the adjoining stakeholders. These stakeholders include TfNSW to the north and south, Toga and the Adina Hotel operator to the west and the Dexus Fraser's site to the south. Connections via the Link Zone, through the basements and off the proposed new Link Zone dive ramp, will be designed to enable existing and future developments to function in both the 'Day 1 scenario' and 'end state', when all developers have completed their works.

The overall project aspiration is to create a world class tech precinct with effective pedestrian links through the Atlassian site to the Central Station western forecourt to Central Walk west and adjoining stakeholder's sites.

4. Previous Investigations

Previous investigations were completed on the eastern part of the Site by Douglas Partners Pty Ltd (Douglas Partners), in conjunction with a preliminary site investigation for contamination. The information obtained from the site investigations was presented in two reports:

- Douglas Partners Report 86767.00.R.001.Rev0, dated 26 August 2019 (Geotechnical report): and
- Douglas Partners Report 86767.01.R.001.Rev1, dated 25 September 2020 (Environmental report).

These previous investigations included six rock cored boreholes to at least 4 m below the lowest basement floor level (i.e. Boreholes BH1, BH2, BH3, BH5, BH8 and BH9) and three boreholes drilled within the soil to depths of 1.3 m - 2.4 m below the existing lower ground floor level (i.e. Boreholes BH4, BH6 and BH7). Standpipe piezometers were installed in Boreholes BH1, BH5 and BH8, with the installed pipes screened within either alluvial sand (i.e. BH1) or within the underlying very low to high strength rock. Borehole logs and core photographs from the previous investigation are reproduced within Appendix E of this report.

Groundwater permeability testing and long-term monitoring of groundwater levels in standpipes has been carried out at the Site since July 2019, with the results presented in the following monitoring reports:

- Douglas Partners Report 86767.00.R.002.Rev0 (dated 4 September 2019): Monitoring period July to August 2019;
- Douglas Partners Report 86767.00.R.003.Rev0 (dated 10 December 2019): Monitoring to 26 November 2019;
- Douglas Partners Report 86767.00.R.004.Rev0 (dated 2 March 2020): Monitoring to 19 February 2020;
- Douglas Partners Report 86767.00.R.005.Rev0 (dated 26 May 2020): Monitoring to 5 May 2020; and
- Douglas Partners Report 86767.00.R.008.Rev0 (dated 22 September 2020): Monitoring to 15 September 2020.

Rising head tests were completed within Boreholes BH5 and BH8, and falling head tests were completed within Borehole BH1. The results of these tests are included in Appendix F.

A previous geotechnical investigation carried out by Douglas Partners for a neighbouring site to the south (i.e. 'Henry Deane Plaza': Douglas Partners Report 27282B, dated 1999) included the drilling of a borehole near to the southern site boundary. The position of the borehole as part of that investigation is shown on Drawing 1, with the borehole information utilised to assist with the interpretation of the sub-surface profile on Drawing 2 (the borehole is denoted as '27282B_BH101').

The results from boreholes completed for environmental purposes at the Site, and the geotechnical data obtained from previous investigations, has been considered in preparation of this supplementary report.

5. Geology

Reference to the Sydney 1:100 000 Geological Series Sheet (Geological Survey of NSW: Herbert, 1983) indicates that the Site is underlain by Triassic age Ashfield Shale overlying Hawkesbury Sandstone, and that the Site is located near Quaternary age alluvial sediments, including transgressive dune sands. Although not shown on the geological map, the Mittagong Formation is likely to be present at the transition between the Ashfield Shale and Hawkesbury Sandstone geological units.

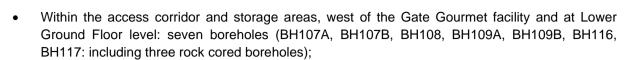
The Quaternary sediments typically comprise medium to fine grained marine sand. The Ashfield Shale typically comprises black to dark grey shales and laminite. The Mittagong Formation consists of interbedded shale, laminite and fine grained quartz sandstone, and the underlying Hawkesbury Sandstone typically comprises horizontally bedded and vertically jointed, massive and cross-bedded, medium grained quartz sandstone with a few shale interbeds.

The geological map indicates the possible presence of igneous dykes near to and north of the Site, striking in a north-westerly direction. These dykes are commonly steeply dipping (often near vertical) slabs of igneous rock which intrude through the bedrock, with measured widths in the Greater Sydney Region ranging between a centimetre or less to about 6 m (Rickwood, 1985). These dykes could be associated with zones of closely spaced fractures within high strength rock. Although no evidence of dykes was found in the investigation there is a possibility that a dyke could cross the Site.

The 1:25 000 Acid Sulfate Soil Risk map for Botany Bay (Murphy, 1997) indicates that the Site does not lie within an area known for acid sulfate soils, nor does the Site occur within areas known for soil salinity issues.

Site investigations during the present study encountered alluvial and residual soils, and sandstone bedrock consistent with the Mittagong Formation and Hawkesbury Sandstone.

6. Field Work Methods


6.1 General

The field work for the supplementary geotechnical investigation was completed in conjunction with a detailed supplementary site investigation for contamination (SSI). The site works were carried out over a five-day period in April 2020 (i.e. 7-8 April, and 14-16 April), and five days in May 2020 (i.e. 16-20 May). The supplementary geotechnical and environmental investigation work included the drilling of a total of 24 boreholes at the locations shown in Drawing 1, Appendix C.

6.2 Boreholes

The areas where boreholes were drilled included:

- Eastern side of the YHA at Upper Ground Floor level: five boreholes (Boreholes BH101 to BH105, including two rock cored boreholes drilled from the concrete platform);
- Within the Gate Gourmet catering facility at Lower Ground Floor level: four boreholes (Boreholes BH106, BH113, BH114 and BH115: all for environmental testing purposes);

- Within the Adina Hotel basement access driveway at Lower Ground Floor level: one borehole (Borehole BH110: for environmental testing purposes);
- Upper Carriage Lane / open-air access ramp: three boreholes (Boreholes BH111, BH112A and BH112B: including two rock cored boreholes);
- Ambulance Avenue footpath: two vertical boreholes drilled through the retaining wall's footing (Boreholes W1 and W2); and
- Within the Adina Hotel basement: two inclined boreholes drilled below an existing concrete underpin (Boreholes W3 and W4).

Following coring of concrete slabs and/or buried concrete or bricks, the following equipment was used to complete the drilling work:

- hand auger (e.g. Borehole BH101);
- hand tools / diatube (e.g. Borehole W1);

Douglas Partners Geotechnics | Environment | Groundwater

- push-tube sampling rig (e.g. Borehole BH111); and
- tracked drilling rig with 110 mm diameter spiral flight augers (e.g. BH107A).

Boreholes drilled into the underlying rock by the tracked drilling rig were cased, and then advanced into the underlying sandstone using NMLC-sized diamond core drilling equipment, to obtain 50 mm diameter, continuous samples of the rock for identification and strength testing purposes. Selected soil samples obtained during auger drilling were submitted to an analytical laboratory, with analysis of soil pH, electrical conductivity, sulfate and chloride ion concentrations.

Current boreholes drilled from the YHA (eastern) platform were taken to a maximum depth of 20 m, whereas the boreholes drilled from either the open-air ramp (Upper Carriage Lane) or from within the access corridor or storeroom were taken to a maximum depth of 15 m. Boreholes drilled to investigate the founding conditions of the brick retaining wall or its underpin ranged in depth between 1.2 m and 2.46 m.

All field work was carried out under the full-time supervision of a geotechnical engineer, engineering geologist or environmental scientist. Logging of the soil and rock materials within the boreholes was undertaken in general accordance with Australian Standard AS 1726 (2017).

Surface levels were obtained using either a laser level or interpolated from the provided site survey drawing prepared by LTS Lockley Pty Ltd (reference 50176, Rev E, dated 9 April 2020). Borehole co-ordinates were interpolated from known locations using tape measurements. The inferred accuracy of borehole surface levels is 0.1 m (in plan view), whereas the inferred accuracy of position co-ordinates is 3 m.

6.3 Standpipes

Seven new standpipe piezometers were installed into completed boreholes at the Site (i.e. Boreholes BH103, BH104, BH107A, BH107B, BH109B, BH112A, and BH112B), to measure groundwater levels, comprising screened PVC pipe with gravel backfill, a bentonite pellet seal and 'gatic' cover at ground level (refer to Borehole Logs in Appendix D for specific details).

The alternatives for the position of the screen within the standpipes were:

- Option A: within very low or low strength, fine to medium grained sandstone (interpreted to be the Mittagong Formation): Boreholes BH103, BH107A, and BH112A; and
- Option B: within the underlying medium to high strength, medium grained sandstone (interpreted to be the Hawkesbury Sandstone): Boreholes BH104, BH107B, BH109B and BH112B.

Following installation, the standpipes were flushed and subsequently pumped to remove drilling fluids. Data loggers were installed in each standpipe to collect groundwater measurements at pre-determined intervals, and the water level within each standpipe was measured by hand on multiple occasions between 23 July 2019 and 15 September 2020.

Following the drilling field work for the supplementary investigation, the following groundwater measurement, sampling and monitoring activities were completed:

- 16 April 2020: Purging of drilling water from Boreholes BH103 and BH104, and installation of data loggers. Rising head permeability tests were completed in both these boreholes;
- 24 April 2020: Measurement of water levels in three standpipes (BH1, BH103, BH104), and collection of data from loggers. Purging of water from Boreholes BH103 and BH104, followed by completion of a rising head permeability test in Borehole BH103;
- 5 May 2020: Measurement of water levels in five standpipes (BH1, BH5, BH8, BH103, and BH104), and collection of data from loggers;
- 17 May 2020: Measurement of water levels, purging of water from BH107A and BH107B, and installation of data loggers. Rising head permeability tests were completed in both these boreholes;
- 21 May 2020: Measurement of water levels, purging of water from BH109B, BH112A and BH112B, and installation of data loggers. Rising head permeability tests were successfully completed in BH109B and BH112B;
- 22 May 2020: Purging of water from BH104, followed by completion of a rising head permeability test;
- 26 May 2020: Measurement of water levels in five standpipes (BH107A, BH107B, BH109B, BH112A, and BH112B), and collection of data from loggers. Rising head permeability tests were completed in BH107A, BH107B, and BH109B;
- 5 June 2020: Measurement of water levels in eight standpipes (BH1, BH103, BH104, BH107A, BH107B, BH109B, BH112A, and BH112B), and collection of data from loggers. Falling head permeability tests were completed in BH109B, BH112A, and BH112B;
- 7 September 2020: measurement of water levels in nine standpipes (BH1, BH8, BH103, BH104, BH107A, BH107B, BH109B, BH112A, and BH112B), and collection of data from loggers; and

• 15 September 2020: measurement of the water level in one standpipe (BH5), and collection of data from the logger.

Further details of the methods and procedures employed during the site investigation are presented in the attached Notes About This Report.

7. Field Work Results

7.1 Boreholes

The detailed conditions encountered in the boreholes are presented on the borehole logs given in Appendix D, along with standard notes defining the descriptive terms and the classification methods used. Photographs of the rock core and selected photographs during the site work are included with the borehole logs.

The subsurface conditions encountered in the supplementary boreholes can be summarised as:

CONCRETE:	Single or multiple concrete slabs, with or without a brick pavement, asphalt layer, or surface ballast layer (0.15-6.3 m thick); over
FILL	Gravel, sand or clay fill to depths ranging between 4.7 m and 6.3 m on the eastern side of the YHA, or 0.0-2.2 m depth within the access corridor and Gate Gourmet (i.e. the Lower Ground Floor level).
ALLUVIAL SAND:	Loose to medium dense, alluvial sand, 0.4-1.2 m thick (Boreholes BH111, BH112A and BH112B only); over
RESIDUAL SILTY CLAY:	Soft to hard, residual silty clay, with some ironstone gravel (0.75-2.2 m thick, absent in Borehole BH102, BH105, BH107A); over
RESIDUAL SANDY CLAY:	Very stiff to hard, residual sandy clay (0.2-0.6 m thick, present in Borehole BH102, BH107A, BH107B, BH112A and BH112); over
SANDSTONE (FINE to MEDIUM):	Very low to low strength, fine to medium grained sandstone with some medium or high strength, iron-cemented bands (0.65-1.8 m thick: absent in Borehole BH109B). Numerous clay seams were encountered; over
SANDSTONE (MEDIUM):	Medium or high strength, medium grained sandstone

The fine to medium grained sandstone is interpreted to be part of the Mittagong Formation, and the underlying medium grained sandstone is interpreted to be Hawkesbury Sandstone.

Boreholes drilled to investigate the footings of the brick retaining wall along Ambulance Avenue (i.e. Boreholes W1 and W2) encountered stiff to very stiff, silty clay residual soil beneath the concrete footings, whereas the boreholes drilled beneath the concrete underpins along the western site boundary (i.e. from within the Adina Hotel basement: Boreholes W3 and W4) encountered medium to high strength fine grained sandstone with seams of clay and very low strength sandstone. The borehole logs are

presented in Appendix D, with cross-sections at each retaining wall borehole location presented as Drawings W1 to W4 in Appendix C.

Surface levels and depths at which various materials were encountered in the boreholes from both previous and current investigations are summarised in Table 1.

Bore	Surface	Top Alluvia		Top Residu			/ery low h Rock	Top of Medium Strength Rock	
hole	RL (m AHD)	Depth (m)	RL ²	Depth (m)	RL ²	Depth (m)	RL ²	Depth (m)	RL ²
BH101	20.1	ne	ne	ne	ne	ne	ne	ne	ne
BH102	20.1	ne	ne	4.7	15.4	>5.0	<15.1	>5.0	<15.1
BH103	21.2	6.3	14.9	7.0	14.2	8.5	5.7	9.2	5.0
BH104	21.2	5.0	16.2	ne	ne	7.6	13.6	9.4	11.8
BH105	20.1	ne	ne	ne	ne	6.3	13.8	>6.5	<13.6
BH106	15.5	ne	ne	0.8	14.7	>1.3	<14.2	>1.3	<14.2
BH107A	15.5	ne	ne	2.2	13.3	2.8	12.7	>3.9	<11.6
BH107B	15.5	ne	ne	2.2	13.3	2.8	12.7	4.0	11.5
BH108	15.5	ne	ne	0.2	15.3	1.1	14.4	<1.2	>13.8
BH109A	15.3	ne	ne	0.3	15.0	ne	ne	1.2	14.1
BH109B	15.3	ne	ne	0.3	15.0	ne	ne	1.2	14.1
BH110	15.3	ne	ne	ne	ne	ne	ne	ne	ne
BH111	18.7	2.0	16.7	3.2	15.5	>5.4	<13.3	>5.4	<13.3
BH112A	16.7	1.4	15.3	1.8	14.9	3.4	13.3	>4.5	<12.2
BH112B	16.8	1.4	15.4	1.8	15.0	3.4	13.4	5.1	11.7
BH113	15.5	ne	ne	0.8	14.7	>1.3	<14.2	>1.3	<14.2
BH114	15.5	ne	ne	ne	ne	ne	ne	ne	ne
BH115	15.5	ne	ne	0.9	14.6	>1.3	<14.2	>1.3	<14.2
BH116	15.5	ne	ne	0.2	15.3	>1.2	<14.3	>1.2	<14.3
BH117	15.5	ne	ne	0.3	15.2	>1.2	<14.3	>1.2	<14.3
W1	15.6	ne	ne	1.2	14.4	2.2	13.4	>2.5	<13.1
W2	15.4	ne	ne	1.0	14.4	1.1	14.3	>1.3	<14.1
W3	13.4	ne	ne	ne	ne	0.0	13.4	>1.23	<12.3 ³
W4	13.4	ne	ne	ne	ne	0.9	12.6 ³	2.2 ³	11.5 ³

Supplementary Geotechnical Investigation, Proposed Commercial Development 8-10 Lee Street, Haymarket

Bore hole	Surface RL (m AHD)	Top of Alluvial soil		Top of Residual soil		Top of Very low Strength Rock		Top of Medium Strength Rock	
		Depth (m)	RL ²	Depth (m)	RL ²	Depth (m)	RL ²	Depth (m)	RL ²
BH1	20.1	4.0	16.1	6.0	14.1	6.5	13.6	7.7	12.4
BH2	21.2	8.0	13.2	8.0	13.2	ne	ne	9.5	11.7
BH3	15.5	ne	ne	0.9	14.6	1.8	13.7	2.8	12.7
BH4	15.5	ne	ne	1.7	13.8	2.3	13.2	ne	ne
BH5	15.5	ne	ne	0.4	15.1	1.2	14.3	3.0	12.5
BH6	15.5	ne	ne	0.2	15.3	1.0	14.5	ne	ne
BH7	15.5	ne	ne	1.6	13.9	2.2	13.3	ne	ne
BH8	15.5	0.6	14.9	ne	ne	2.1	13.4	4.2	11.3
BH9	15.5	ne	ne	0.3	15.2	1.7	13.8	3.7	11.8

Notes: (1) "ne" indicates Not Encountered

(2) Elevation (RL) in metres AHD.

(3) Depth along the hole, elevation in metres AHD allowing for the hole inclination.

Groundwater was not observed in the boreholes during auger drilling, prior to the commencement of rotary coring. Standpipe piezometers were installed in each of the rock cored boreholes to enable groundwater observations to be made.

7.2 Standpipe Piezometers

Groundwater level observations are summarised in Table 2 and Table 3, and graphs of the groundwater levels for each data logger are presented in Appendix F (corrected for barometric pressure effects).

The graphs include rainfall record data obtained from Observatory Hill, Sydney (Bureau of Meteorology Station 066062, http://www.bom.gov.au). With the exception of Borehole BH109B, water level data affected by disturbance (such as due to rising or falling head testing) has been removed for clarity of presentation. Data is missing from short time periods from Boreholes BH103 and BH104 due to errors in placement of the logger within the borehole, or due to a very short recording interval being selected leading to the filling of the datalogger memory ahead of schedule.

As previously discussed in Douglas Partners Report 86767.00.R.004.Rev0, the water level within the alluvial sand in Borehole BH1 was measured to rise by approximately 1.4 m following four consecutive days of heavy rain (i.e. 392 mm of rainfall between 7 February and 10 February 2020: to an elevation of RL15.2 m). In contrast, water levels for piezometers screened within the underlying very low to low strength sandstone (interpreted to be the Mittagong Formation) were measured to rise by less than about 0.4 m in the same period. Water levels in piezometers screened within the underlying medium to high strength sandstone (interpreted to be the Hawkesbury Sandstone) rose / varied less than this over the same time periods (e.g. refer graphs for BH112A and BH112B in Appendix F).

Graphs of long-term groundwater level measurements from data loggers are included in Appendix F. With the exception of Borehole BH109B (very slow rate of recharge), the manual water level measurements presented in Table 2 are similar to the long-term measurements obtained from data loggers. The typical standing water levels within the sandstone on the eastern and central parts of the Site range between RL13.1 m and RL13.6 m, whereas standing water levels within the sandstone on the water levels are generally similar to the elevation of the Adina Hotel basement floor slab (i.e. RL13.4 m).

	Standing Water Level Measurements in Boreholes										
Measurement	BI	H1	Bł	H5	BI	-18	BH103		BH104		
Date	Depth (m)	RL ²	Depth (m)	RL ²	Depth (m)	RL ²	Depth (m)	RL ²	Depth (m)	RL ²	
23/07/2019	5.95	14.2	2.6	12.9	2.3	13.2	-	-	-	-	
30/07/2019	6.1	14.0	2.4	13.1	2.3	13.2	-	-	-	-	
31/07/2019	6.0	14.2	2.4	13.1	-	-	-	-	-	-	
7/08/2019	6.2	14.0	-	-	-	-	-	-	-	-	
14/08/2019	6.3 (dry)	<13.8 (dry)	2.4	13.1	2.3	13.2	-	-	-	-	
2/09/2019	6.3 (dry)	<13.8 (dry)	-	-	-	-	-	-	-	-	
26/11/2019	6.3 (dry)	<13.8 (dry)	2.4	13.1	2.3	13.2	-	-	-	-	
19/02/2020	5.8	14.3	2.1	13.4	1.9	13.6	-	-	-	-	
24/04/2020	6.3 (dry)	<13.8 (dry)	-	-	-	-	7.5	13.7	7.6	13.6	
5/05/2020	6.3 (dry)	<13.8 (dry)	2.4	13.2	2.2	13.3	7.5	13.7	7.7	13.5	
5/06/2020	6.3 (dry)	<13.8 (dry)	-	-	-	-	7.7	13.5	7.8	13.4	
7/09/2020	6.3 (dry)	<13.8 (dry)	-	-	2.3	13.2	7.6	13.6	7.7	13.5	
15/09/2020	-	-	2.4	13.2	-	-	-	-	-	-	

Table 2: Groundwater Observations	(Boreholes BH1, BH5,	BH8. BH103 and BH104).
		Biilo, Biiloo ana Biilo $+j$.

Notes: (1) "-" indicates Not Measured.

(2) Elevation (RL) in metres AHD.

BIIII	Biri 120).									
Standing Water Level Measurements in Boreholes										
Measurement	BH1	07A	BH1	07B	BH1	09B	BH1	12A	BH112B	
Date	Depth (m)	RL ²	Depth (m)	RL ²	Depth (m)	RL ²	Depth (m)	RL ²	Depth (m)	RL ²
17/05/2020	3.2	12.3	1.8	13.7	-	-	-	-	-	-
21/05/2020	-	-	-	-	7.8 ³	7.5 ³	3.5	13.2	5.1	11.7
26/05/2020	2.1	13.4	2.6	12.9	8.2 ³	7.1 ³	3.1	13.6	5.2	11.6
5/06/2020	2.0	13.5	2.2	13.3	6.6 ³	8.7 ³	3.4	13.3	5.3	11.5
7/09/2020	2.1	13.4	2.4	13.1	2.5	12.8	3.5	13.2	5.1	11.7
15/09/2020	-	-	-	-	-	-	-	-	-	-

Table 3:Groundwater Observations (Boreholes BH107A, BH107B, BH109B, BH112A and
BH112B).

Notes: (1) "-" indicates Not Measured.

(2) Elevation (RL) in metres AHD.

(3) Transient water level due to slow recharge rate - refer graphs in Appendix G.

7.3 Permeability Testing

Permeability testing was completed within each standpipe, with a total of 16 tests completed between 30 July 2019 and 5 June 2020. Rising head tests were carried out in each standpipe (with the exception of BH112A), with falling head tests completed in three standpipes (i.e. BH109B, BH112A and BH112B). The permeability of the screened interval was calculated using the Hvorslev analytical method. The results of the permeability testing are presented in Appendix G.

A summary of the calculated permeability results are presented in Table 4.

Table 4:	Calculated	permeability	results	from	rising	or	falling	head	tests	in	standpipe
	piezomete	ers.									

Borehole ID	Material Types within Screened Interval	Calculated Permeability (m/sec)
BH1 ¹	Sand	4.5 x 10 ⁻⁷ to 6.5 x 10 ⁻⁷
BH5	Sandstone: fine and medium grained with clay	6.2 x 10 ⁻⁹
BH8 ²	seams in upper metre of screened interval	1.0 x 10 ⁻⁶
BH103 ¹	Sandstone: fine grained with extremely weathered bands, fractured	1.4 x 10 ⁻⁶ to 2.3 x 10 ⁻⁶
BH104 ¹	Sandstone: fine to medium grained, slightly fractured then unbroken	2.3 x 10 ⁻⁷ to 3.5 x 10 ⁻⁷
BH107A ¹ Sandstone: fine to medium grained, high strength with very low strength bands, fractured		1.4 x 10 ⁻⁷ to 2.0 x 10 ⁻⁷
BH107B ¹ Sandstone: fine to medium grained, slightly fractured then unbroken		5.0 x 10 ⁻⁸ to 7.7 x 10 ⁻⁸

Borehole ID	Material Types within Screened Interval	Calculated Permeability (m/sec)
BH109B	Sandstone: fine to medium grained, slightly fractured then unbroken	4.7 x 10⁻ ⁸
BH112A ²	Sandstone: fine grained with very low strength bands (core loss)	4.8 x 10 ⁻⁷
BH112B ¹	Sandstone: medium grained, slightly fractured then unbroken	2.4 x 10 ⁻⁷ to 3.9 x 10 ⁻⁷

Note: (1) Two tests carried out.

(2) Well screen includes an interval of core loss and clay seams, below the top of rock.

Typical permeability values for sand, both from DP's previous experience in the area and from published values, are usually in the range 1×10^{-4} to 1×10^{-5} m/sec. The calculated permeability values for the sand encountered in Borehole BH1 are not consistent with these values and are considered to be not representative of the permeability of the sand. Borehole BH1 was positioned near to basement walls for the YHA building, as well as adjacent to deep concrete footings founded on rock. It is considered that these factors have influenced the permeability test results for the sand layer in Borehole BH1.

A slow rate of groundwater recharge was observed for standpipes screened within high strength rock with few defects (i.e. BH109B), with water levels appearing to be similar for standpipes near to each other screened within different materials (e.g. BH107A and BH107B: screened within either the fine to medium grained sandstone or the underlying medium grained Hawkesbury Sandstone). The rapid increase in water level within the standpipe screened within the alluvial sand, and the observation of groundwater near the soil-rock interface in some boreholes (e.g. BH107A) indicates that a perched water table is probably present within the soils above rock level.

8. Laboratory Testing

Sixty-one samples selected from the better quality rock core obtained from supplementary boreholes were tested for axial point load strength index ($I_{S(50)}$). The results of the point load strength testing, presented on the borehole logs, indicate I_{50} values of 0.1 MPa to 1.5 MPa in the fine to medium grained sandstone, and 0.3 MPa to 2.6 MPa in the medium grained sandstone, indicating rock ranging from low strength to high strength. To obtain inferred unconfined compressive strengths (UCS) from point load strength test results, a conversion factor of 18 is suggested, indicating a UCS of up to about 45 MPa for the rock encountered during the supplementary investigation.

Nine selected disturbed samples from the supplementary boreholes were tested in a NATA-accredited analytical laboratory to determine soil aggressivity (pH, electrical conductivity, sulfate and chloride ion concentrations), including one sample of alluvial sand, one sample of sand fill, two samples of silty clay fill, four samples of residual silty or sandy clay, and one sample of pulverised sandstone.

The soil aggressivity results for both the current and previous investigation are summarised in Table 5, with all the laboratory test reports included in Appendix H.

Sample IDSample DescriptionElevation of Sample' (RL m)PHEC2 (IS/cm)Chloride (mg/kg)Sulfate (mg/kg)BH103,2.9-3.0mFill, Silty CLAY18.34.8422<1051BH103,5.0-5.1mFill, Silty CLAY18.44.76820052BH104, 2.8-2.9mFill, Silty CLAY18.44.76820052BH104, 6.3-6.45mAlluvial SAND14.96.4111<10100BH107B, 2.4-2.5m4Residual Sandy CLAY13.15.924<1020BH108, 1.05-1.2mSANDSTONE14.85.2400<1036BH112B, 2.0-2.24mResidual Silty CLAY14.85.2400<1036BH112B, 3.0-3.2mResidual Salty CLAY13.85.4300<1025BH112B, 3.2-3.44mResidual Salty CLAY13.85.129<1025BH114B, 3.2-3.44mFill, Sandy CLAY15.86.020<1025BH1, 4.3-4.5mAlluvial SAND15.86.020<1025BH1, 4.3-4.5mFill, Sandy CLAY15.28.91002561BH5, 1.1-1.2mResidual Silty CLAY15.08.910072BH6, 0.5-0.6mFill, Silty SAND15.18.31202042BH7, 0.4-0.5mFill, Silty SAND15.18.31202042							
BH103, 5.0-5.1m Fill, Silty SAND 16.2 6.3 19 <10	Sample ID	•	of Sample ¹	рН			
BH104, 2.8-2.9m Fill, Silty CLAY 18.4 4.7 68 20 52 BH104, 6.3-6.45m Alluvial SAND 14.9 6.4 11 <10	BH103, 2.9-3.0m	Fill, Silty CLAY	18.3	4.8	42	<10	51
BH104, 6.3-6.45m Alluvial SAND 14.9 6.4 11 <10 10 BH107B, 2.4-2.5m ⁴ Residual Sandy CLAY 13.1 5.9 24 <10	BH103, 5.0-5.1m	Fill, Silty SAND	16.2	6.3	19	<10	20
BH107B, 2.4-2.5m ⁴ Residual Sandy CLAY 13.1 5.9 24 <10 20 BH108, 1.05-1.2m SANDSTONE 14.5 5.3 22 <10	BH104, 2.8-2.9m	Fill, Silty CLAY	18.4	4.7	68	20	52
BH107B, 2.4-2.5m ⁴ CLAY 13.1 5.9 24 <10 20 BH108, 1.05-1.2m SANDSTONE 14.5 5.3 22 <10	BH104, 6.3-6.45m	Alluvial SAND	14.9	6.4	11	<10	10
BH112B, 2.0-2.24m Residual Silty CLAY 14.8 5.2 40 <10 36 BH112B, 3.0-3.2m Residual Silty CLAY 13.8 4.8 30 <10	BH107B, 2.4-2.5m ⁴		13.1	5.9	24	<10	20
BH112B, 2.0-2.24m CLAY 14.8 5.2 40 <10 36 BH112B, 3.0-3.2m Residual Silty CLAY 13.8 4.8 30 <10	BH108, 1.05-1.2m	SANDSTONE	14.5	5.3	22	<10	10
BH112B, 3.0-3.2m CLAY 13.8 4.8 30 <10 25 BH112B, 3.2-3.44m Residual Sandy CLAY 13.6 5.1 29 <10	BH112B, 2.0-2.24m	•	14.8	5.2	40	<10	36
BH112B, 3.2-3.44m CLAY 13.6 5.1 29 <10 25 BH1, 4.3-4.5m Alluvial SAND 15.8 6.0 20 <10	BH112B, 3.0-3.2m		13.8	4.8	30	<10	25
BH4, 0.3-0.4m Fill, Sandy CLAY 15.2 8.9 170 25 61 BH5, 1.1-1.2m Residual Silty CLAY 14.4 4.9 92 29 42 BH6, 0.5-0.6m Residual Silty CLAY 15.0 5.1 89 10 72	BH112B, 3.2-3.44m		13.6	5.1	29	<10	25
BH5, 1.1-1.2m Residual Silty CLAY 14.4 4.9 92 29 42 BH6, 0.5-0.6m Residual Silty CLAY 15.0 5.1 89 10 72	BH1, 4.3-4.5m	Alluvial SAND	15.8	6.0	20	<10	10
BH5, 1.1-1.2m CLAY 14.4 4.9 92 29 42 BH6, 0.5-0.6m Residual Silty CLAY 15.0 5.1 89 10 72	BH4, 0.3-0.4m	Fill, Sandy CLAY	15.2	8.9	170	25	61
BH6, 0.5-0.6m CLAY 15.0 5.1 89 10 72	BH5, 1.1-1.2m		14.4	4.9	92	29	42
BH7, 0.4-0.5m Fill, Silty SAND 15.1 8.3 120 20 42	BH6, 0.5-0.6m		15.0	5.1	89	10	72
	BH7, 0.4-0.5m	Fill, Silty SAND	15.1	8.3	120	20	42

Table 5: Laboratory Test Results for Aggressivity to Buried Concrete and Steel

Notes: (1) Elevation quoted is for the 'top' of the sample.

(2) EC = Electrical Conductivity.

(3) Analysed soil was tested as a 1:5 mixture of soil:water.

(4) Sample mislabelled on Chain of Custody as 'BH107'.

9. Proposed Development

It is understood that the proposed development will include the dismantling of the Parcels Shed building (i.e. the YHA: to be re-built following construction of the Level 01 mega-floor/transfer deck), retention of the existing goods lift to Station platform level, removal of the carriage dormitories and rails, and excavation below the Lower Ground Floor level of the existing building for a two-level basement (to RL5.0 m), followed by construction of a multi-storey commercial tower.

Based on the provided drawings, it is understood that the proposed basement will extend close to the property boundaries to the north, east and west, and to the Devonshire Tunnel to the south. For

extension of the proposed basement along the eastern boundary of the Site, the existing setback of the lower ground floor of the YHA building on this side is to be removed. The drawings indicate that a basement entry ramp is to be constructed along the northern side from Lee Street, and a connection is proposed from the second basement level to potential future basements to the south of the Site (i.e. beneath the Devonshire Tunnel).

The reduced levels of the suspended slabs for the development's Upper Ground floor, Lower Ground floor and Basement 1 levels are RL21.0 m, RL15.3 m, and RL10.3 m, respectively. The lowest basement slab (i.e. Basement 2) level is proposed at RL5.0 m. This will require excavation depths of about 17 m on the eastern boundary and about 11.5 m along the other boundaries.

10. Geotechnical Model

The field work results are summarised on seven geotechnical cross-sections in Appendix C, which show the interpreted layers of filling, alluvial and residual soil and sandstone units between selected test locations. The interpreted boundaries shown on the sections are accurate only at the test locations and layers shown diagrammatically on the drawings are inferred only. Bands of lower or higher strength rock may be present within the generalised sandstone layers. Single or multiple concrete slabs were present at the surface over most of the Site, with rail ballast encountered over concrete and bricks within the rail carriage dormitory area.

The interpreted geotechnical models for the Site are:

- Eastern part of the Site (i.e. below the eastern part of the YHA building, from Upper Ground Floor level: Refer to Drawing 2):
 - o soft to firm or very loose to medium dense fill materials (clay or sand: up to 8 m thick, below the current ground surface), over
 - o a discontinuous lens of very loose sand alluvium (up to 2.0 m thick), over
 - o soft to hard silty clay or sandy clay residual soil (up to about 2.5 m thick), overlying
 - o fine to medium grained sandstone, very low strength with high strength iron-cemented bands (0.5-1.8 m thick), and then overlying
 - o medium to high strength, medium grained sandstone;
- Central and Western parts of the Site (i.e. below the western section of the YHA building and the existing asphalt-surfaced open-air ramp: refer to Drawings 3 and 5):
 - o stiff or loose to dense fill materials (clay and sand: up to 2.2 m thick, decreasing in a westerly direction), over
 - o a discontinuous lens of very loose to medium dense sand alluvium (up to 1.3 m thick: apparent dip to the south), over
 - o very stiff to hard sandy or silty clay residual soil (up to 2.2 m thick), overlying
 - o fine to medium grained sandstone (very low strength, with high strength bands: about 2 m thick), and then overlying
 - o medium to high strength, medium grained sandstone;

The rock materials encountered in the boreholes at the Site (summarised in Table 6) have been classified in accordance with the system given in Pells et. al. (1998), and Bertuzzi and Pells (2002), which grades Sydney sandstone into five classes on the basis of strength and defects from Class I (high strength with virtually no defects) to Class V (very low strength sandstone). It should be noted that the profiles are accurate at the borehole locations only, and that variations must be expected away from the boreholes.

It should be noted that bands of higher strength rock can occur within rock of lower strength. To simplify the interpreted model the classes given in Table 6 are based on the lower class applicable within a depth zone.

		Top of Stratum ¹								
Borehole	Clas	s V ²	Clas	Class IV ² Class III ²			Clas	s II ²	Class I ²	
ID	Depth (m)	Level (RL)	Depth (m)	Level (RL)	Depth (m)	Level (RL)	Depth (m)	Level (RL)	Depth (m)	Level (RL)
BH103	8.5	12.7	-	-	9.2	12.1	-	<10.4	-	<10.4
BH104	7.6	13.6	-	-	-	-	9.4	11.8	14.5	6.7
BH107B	2.8	12.7	4.1	11.5	-	-	-	-	4.9	10.6
BH109B	1.1	14.2	2.0	13.3	3.0	12.3	4.2	11.1	6.5	8.8
BH112B	3.2	13.6	5.4	11.4	7.9	8.9	-	-	8.4	8.4
BH1	6.5	13.6	-	-	7.7	12.4	8.5	11.6	9.9	10.2
BH2	9.5	11.7	-	-	10.3	10.9	11.5	9.7	12.6	8.6
BH3	1.8	13.7	-	-	3.3	12.2	-	-	5.1	10.4
BH4	2.3	13.2	-	<13.2	-	<13.2	-	<13.2	-	<13.2
BH5	1.2	14.3	1.9	13.6	2.8	12.7	-	-	6.7	8.8
BH6	1.0	14.5	-	<14.5	-	<14.5	-	<14.5	-	<14.5
BH7	2.2	13.3	-	<13.3	-	<13.3	-	<13.3	-	<13.3
BH8	2.1	13.4	3.6	11.9	4.9	10.6	-	-	7.9	7.6
BH9	1.7	13.8	2.3	13.2	3.7	11.8	-	-	5.9	9.6

Table 6: Summary of Material Strata Levels and Rock Classifications

Notes: (1)

(1) Depths and levels shown are to the top of rock classes in boreholes, with depths in metres and elevations in m AHD.

(2) Rock classifications are based on Pells et. al (1998) and Bertuzzi and Pells (2002).

(3) '-' indicates the material was not encountered within the drilled length.

11.Comments

11.1 Geotechnical Issues

Some of the geotechnical issues that need to be considered for the proposed development are:

- Maintaining the stability and integrity of adjoining structures, services and tunnels (i.e. the Adina hotel, Central Station infrastructure, Henry Deane Plaza buildings, and the existing pedestrian tunnel and buried stormwater/sewer services adjacent to the southern site boundary);
- Excavation-induced movement adjacent to Lee Street, which is a Roads and Maritime Services (RMS) asset;
- Excavation-induced movement adjacent to the eastern site boundary, which is a Sydney Trains Rail corridor;
- Groundwater is likely to be present within the basement excavation envelope, in the form of seepage within the fill and soils, at the soil-rock interface and along rock joints and bedding planes;
- Water-tight shoring walls will need to be designed around the perimeter of the site to retain fill, alluvial and residual soils, to reduce groundwater inflow, and to control drawdown of water levels on adjacent sites;
- The shoring will need to be socketed into competent rock, which may be problematic for some shoring systems;
- Design of the shoring walls (including of anchors, props or struts) on the northern, eastern and southern boundaries will need to take into consideration the positions of future proposed basement levels and connections;
- If water-tight shoring walls (cut-off walls) are constructed into rock to reduce inflow and drawdown
 of water levels, then it is technically feasible to construct a drained basement, however, this will be
 subject to review and approval by both the City of Sydney Council (Council) and by Water NSW;
 and
- Alternatively, a tanked basement could be constructed to reduce the need for long term collection, possible treatment and removal of groundwater inflows. A tanked basement would need to be designed for horizontal hydrostatic pressure behind shoring walls and hydrostatic uplift of the basement floor slab.

11.2 Site Preparation

Site preparation may require the partial demolition of portions of the existing structures to facilitate access for machinery (at Lower Ground Floor level), and removal of existing equipment (e.g. industrial freezers, rail dormitory carriages). Access tracks and ramps may be required to enable machinery (e.g. piling rigs) to access the eastern part of the Site, for which it is likely that removal and replacement of loose filling materials (e.g. including sand filling or rail ballast) and construction of working platforms will be required. Subject to confirmation testing, existing concrete slabs may be suitable as working platforms for piling rigs, prior to their removal as part of the bulk excavation works. Further geotechnical advice should be sought when further details are known.

Prior to the commencement of basement excavation works, a strategy to monitor building movement during the construction period (including the Adina Hotel swimming pool) will need to be implemented.

Based on a site inspection of the Adina Hotel basement it is likely that the foundation system of this building is shallow footings (at Lower Ground Floor level) founded on the underlying sandstone, however, this will need to be confirmed at a later stage of the Project.

Installation of water-tight shoring walls around the site perimeter will be required, prior to the commencement of the basement bulk excavation works. Low-height equipment is likely to be required, if piling works are to be carried out within indoor areas.

Loose sand and soft clay filling is likely to be exposed within the upper 4-8 m of the eastern side of the excavation which is likely to pose challenges for construction vehicles with pneumatic tyres. Some rutting and surface damage should be expected, particularly if traversed following periods of prolonged rainfall. It is anticipated that tracked machines would be able to safely traverse and work upon this material while it is exposed.

If placement of fill is required, or there is a need to improve the allowable bearing capacity of the underlying site soils, additional site preparation will be required. Typical site preparation measures could include:

- Removal of loose soil to create a level surface, to a depth to be determined on a case-by-case basis by a geotechnical professional;
- Compact the exposed material, then test roll the exposed surface using at least six passes of a minimum 12-tonne roller in non-vibration mode. The final pass should be witnessed by an experienced geotechnical engineer to detect any weak zones which would require additional rectification work, as directed by the geotechnical engineer;
- If required, replacement fill material should be free of oversize particles (>100 mm) and materials which could break down or degrade, should be placed in layers of loose thickness not greater than 200 mm (dependent upon the size of compaction machinery), and compacted to a dry density ratio of at least 98% relative to Standard compaction. Moisture contents should be maintained within 2% of Standard optimum moisture content. Compaction should be increased to a dry density ratio of 100% relative to Standard compaction for the top layer of the fill material (if the replacement filling used is sand, compact to a density index of 75%);
- Moisture conditioning (i.e. drying or wetting) of the replacement fill material may be required, to enable a greater degree of compaction to be achieved; and
- All fill materials should be placed in accordance with Australian Standard AS 3798 (2007), with earthworks quality control testing undertaken to verify that the required compaction/moisture criteria are achieved.

Stabilisation of both the brick retaining wall along the northern property boundary and the Adina Hotel basement access portal will be required if these are to be retained as part of the works, such as by underpinning of the brick retaining wall and the existing concrete underpin down to medium strength rock.

Dilapidation surveys should be carried out on adjacent properties, including structures, pathways, walls or roadways within about 30 m of the proposed excavation, prior to commencement of the works. The dilapidation survey should document existing conditions and the presence of defects, and thereby allow appropriate responses should any claims arise from construction at this site. Buildings supported on shallow foundations are especially prone to the detrimental effects of settlement and vibration.

11.3 Excavation

Following completion of the site preparation works, including the installation of the shoring walls, excavation for the basement levels is expected to be required through up to about 9.5 m of soil (including clay and sand fill, alluvial sand, and residual silty and sandy clay), then through rock of varying strength, including high strength sandstone.

The fill, alluvial and residual soils should be readily excavated using conventional earthmoving equipment. Very low to low strength rock will likely require light to medium ripping. The use of heavy ripping equipment, rock hammers or rock saws will be required to excavate medium or high strength rock.

Rippability of the sandstone is critically dependent upon the spacing of bedding and vertical joints, as well as on strength. Effective removal of the medium or higher strength sandstone within the lower levels of the excavation should be achieved by heavy bulldozers ripping in conjunction with rock hammers, however, excavation contractors should make their own assessment of likely productivity depending on their equipment capabilities and operator skills. Detailed footing excavations adjacent to boundary lines can be achieved by use of rock hammers or hydraulic rotary rock saws, or milling heads. Rock saws should also be used along the site boundaries to minimise over-break.

11.4 Vibration Control

Noise and vibration will be caused by excavation and earthworks activities at the Site. The use of rock hammers will cause vibrations which, if not controlled, could possibly result in damage to nearby structures and disturbance to occupants, and it will be necessary to use appropriate methods and equipment to keep ground vibrations at adjacent buildings and structures within acceptable limits.

Based on previous experience and with reference to Australian / International Standard AS/ISO 2631.2 (2014), an initial vibration limit of 8 mm/sec vector sum peak particle velocity (VSPPV) is suggested at the foundation level of adjacent buildings, for human comfort considerations. This initial vibration limit may need to be reduced if there are vibration-sensitive buildings or equipment in the area (e.g. Sydney Trains rail signals services). It is noted that brick buildings or structures near to the proposed excavation (e.g. the Central Station buildings, and the brick retaining wall on the northern property boundary) may be founded on pad or strip footings at shallow depths, which could be affected by ground vibration. The owners of any in-ground utilities within and around the property should also be consulted with regard to allowable vibration levels.

If generation of construction vibration is a potential problem, consideration should be given to rock sawing and rock milling methods of rock excavation. A site-specific vibration monitoring trial may be required to determine vibration attenuation, once excavation plant and methods have been finalised.

11.5 Disposal of Excavated Material

Off-site disposal of excavated material will require assessment and environmental testing for re-use or classification, in accordance with *Waste Classification Guidelines* (NSW EPA, 2014), prior to disposal to an appropriately licensed landfill or receiving site. This includes fill materials and virgin excavated natural materials (VENM), such as may be removed from this site. The type and extent of testing

undertaken will depend on the final use or destination of the spoil, and requirements of the receiving site.

11.6 Batter Slopes

Based upon the provided drawings, excavation up to the property boundaries is proposed. Although batters are not shown in the elevation drawings, it is likely that internal batters will be required during construction for temporary site access and driveways. Vertical excavations along the site boundaries in the fill, surficial soils and very low to low strength rock cannot be relied upon to remain stable and will require shoring.

The suggested maximum batter slopes for temporary batters of up to 3 m height above the water table, which are not subjected to surcharge loads, are presented in Table 7.

In the absence of specific geotechnical advice, where batters are required adjacent to existing buildings supported on high level footings, an additional 'set-back' distance of at least 1 m should be used. An assessment of stability using analytical techniques would be necessary for excavations deeper than 3 m, and flatter batters would usually be appropriate.

Excavated material	Temporary Batter	Permanent Batter
Filling	1.5H:1V	2H:1V
Residual soils	1.5H:1V	2H:1V
Extremely low to low strength sandstone	0.5H:1V	1H:1V
Medium strength sandstone (or better)	Vertical ¹	Vertical ¹

Table 7: Recommended Maximum Batter Slopes for Excavated Slopes

Note: (1) Must be inspected by an engineering geologist for unstable wedges, which should be cleared or rock bolted

Care should be taken where any surcharge loads are planned at the crest of batter slopes (e.g. placement of scaffolding sole boards). A slope stability analysis should be undertaken for batters subjected to surcharge loads on a case-by-case basis, following inspection and testing by a geotechnical engineer. Material stockpiles and machinery or equipment should not be stored at the crest of unsupported excavations.

Given the proximity of adjacent structures, Sydney Trains assets and the depth of excavation, shoring walls are likely to be required for the northern, eastern and southern excavation perimeter.

Excavation within medium to high strength sandstone can be cut vertically, provided the exposed faces are carefully inspected by a suitably qualified geotechnical engineer or engineering geologist as the excavation progresses.

Regular inspections of the rock face will be required during excavation (recommended at about every 1.5 m 'drop'), to determine whether there are any adversely oriented defects which require rectification works to maintain stability, such as rock bolts or anchors or installation of steel mesh-reinforced shotcrete. Based upon the quality of the medium to high strength sandstone encountered in boreholes

during the investigation, it is expected that there should only be a few minor beds of very low or low strength sandstone requiring shotcrete protection.

11.7 Groundwater

11.7.1 General

Groundwater measurements from standpipe piezometers indicate that the proposed design floor level of 'Basement 2' (i.e. RL5.0 m) will be below the permanent groundwater table, which has been measured at an elevation of around RL13.4 m within the sandstone. Perched groundwater is also indicated to be present, at or near the soil-rock interface and also within the alluvial sand following periods of heavy rainfall.

The measurements indicate that water inflows within the sandstone bedrock appear to be controlled by rock joints. The seams and other fractures in the weathered rock may also be acting as conduits for water flow, and temporary water storage. Minimal variability in groundwater levels was observed following rainfall periods between July 2019 and September 2020.

Previous experience indicates that the groundwater from the geological units at the Site can have moderate concentrations of dissolved solids, including iron. Once the groundwater comes into contact with the atmosphere, precipitation of iron oxides is likely to occur and provision should be made for the filtering and cleaning of this precipitate from subsoil drains, sumps, pumps and other fittings over the medium to longer term.

Groundwater modelling of the proposed basement and required dewatering (refer Groundwater Modelling Report: 86767.04.R.003.Rev1, dated 30 October 2020) indicates that potential settlements induced by the dewatering will not be noticeable beneath neighbouring structures or pavements founded on fill or alluvial soils, and will be negligible for neighbouring structures founded on medium to high strength sandstone. This report has been included in Appendix I for ready reference. The results of a groundwater contamination assessment are presented in the supplementary contamination investigation report (Douglas Partners Report 86767.06.R.001.Rev1, dated 25 September 2020), and are not further discussed within this report.

11.7.2 Seepage Rates and Groundwater Drawdown

The design of the basement had targeted a groundwater drawdown in soils or extremely low strength rock at neighbouring properties (below existing water levels) of no more than 1.5 m. To achieve this, the basement construction will need to include a relatively water-tight perimeter 'cut-off' wall. This wall could be either socketed a minimum of 2 m into competent, slightly weathered to fresh, slightly fractured and unbroken, medium to high strength sandstone, or drilled through the medium or high strength sandstone to below the base of the excavation.

Extending the cut-off wall to below the level of the basement excavation would reduce the risk of seepage occurring through fractures in the rock in the sides of the excavation and would also further reduce the inflow to the basement. If excessive water ingress becomes an issue during excavation in the case whether the walls have been terminated above the basement design floor level, then grouting of open joints and bedding partings may be necessary and will be relatively difficult and costly to achieve.

The detailed groundwater modelling (presented in DP Report 86767.04.R.003.Rev1, Appendix I) has concluded that a drained basement is feasible for the Site, provided a perimeter water-tight cut-off wall is constructed and extended at least 2 m into the slightly fractured or unbroken sandstone. The modelling for this case indicates a long-term rate of inflow into the basement of about 2.1 ML per year, although the actual seepage into the excavation may be much less than the predicted values, depending on the fractures in the rock.

If seepage flows are to be reduced below 2 ML per year then cut-off walls could be extended below the basement floor level, as the seepage would then only be able to occur up through the medium to high strength rock below the basement floor. It will be necessary to provide under-floor drainage to safeguard against uplift pressures for a slab designed for drained conditions. This could comprise a minimum 100 mm thick, durable open graded crushed rock with subsurface drains and sumps.

Approval for a drained basement will be subject to review and approval by Council and by Water NSW. If a drained basement slab is not permitted, then a water-tight 'tanked' basement will be required for the permanent basement structure. A tanked basement would need to be designed to resist uplift forces associated with hydrostatic groundwater pressures which could be in the order of 10 m of hydraulic head.

11.7.3 Disposal

It is noted that off-site disposal of collected groundwater will need to be carried out in accordance with New South Wales Government Legislation (1997), and that water to be discharged into the natural environment should comply with the relevant guidelines (e.g. Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Australian and New Zealand Environment and Conservation Council (ANZECC), Agricultural and Resource Management Council of Australia and New Zealand), and/or City of Sydney Council's local stormwater discharge conditions. It is considered that preparation of a dewatering management plan will likely be required during a later stage of the Project.

11.8 Excavation Support

11.8.1 General

Shoring will be required around the northern, eastern and southern sides of the basement excavations. As outlined above, the installation of a water-tight shoring wall will be required around the basement perimeter, socketed at least 2 m into the slightly fractured or unbroken sandstone.

11.8.2 Shoring / Retaining Walls

Shoring wall systems which could be considered include diaphragm walls and interlocking secant pile walls, as follows:

Diaphragm walls may be used as the permanent basement wall. They are usually considered to
have a reduced risk of adverse construction issues, but are relatively slow to construct and
consequently more expensive. They are constructed using a large 'grab' bucket, which excavates
the soil and rock in vertical panels which are supported by bentonite fluid. Each panel is then cast
using concrete tremmied into the bentonite-supported excavation, with steel reinforcement cages

installed prior to the concrete being tremmied. The joints between the panels are sealed with a 'waterstop', so that a completely water-tight wall is achieved; or

 Interlocking secant pile walls are typically formed by drilling alternate 'soft' grout or concrete piles and then installing 'hard' reinforced concrete piles by cutting into the previously drilled soft piles. This overlap typically ensures that piles are sealed, but some misalignment can occur even at relatively shallow depths to create minor gaps in the wall. The potential for misalignment, and therefore seepage ingress and soil loss through the wall, in deep secant pile walls is high. Drilling of piles into rock can also be problematic for secant piles, and may result in decompression or disturbance of the surrounding soils which can result in damage to adjacent buildings. The use of segmental casing through the soils would be required to avoid issues associated with decompression and hole collapse in sandy soils, and pumps may be required to remove seepage from pile excavations prior to placement of concrete.

11.8.3 Design of Excavation Support

The shoring will need to be supported by internal bracing (e.g. props or struts) or ground anchors to control deflections. It is noted that Sydney Trains do not usually allow any anchors (temporary or permanent) within their corridor, and internal bracing or props are likely to be required along the eastern and southern site boundaries (depending on the final basement configuration).

Excavation faces retained either temporarily or permanently will be subjected to earth pressures from the ground surface down to the top of medium strength rock. The values of active earth pressure coefficient (K_a) given in Table 8 may be used for a level ground surface and a 'flexible' wall which is allowed some lateral movement. 'At rest' earth pressure (K_o) values should be used where the wall movement needs to be reduced, such as next to neighbouring building footings.

Material Description	Unit Weight (kN/m ³)	Coefficient of Active Earth Pressure (K _a)	Coefficient of Earth Pressure 'at Rest' (K _o)	Effective Cohesion (c': kPa)	Effective Friction Angle (Degrees)
Sand and clay filling, very loose or loose alluvial sand, or soft clay	18	0.35	0.6	0	28
Very stiff to hard residual clay	18	0.25	0.5	3	25
Extremely low to low strength sandstone	22	0.1	0.2	100	25
Medium strength or stronger sandstone	24	0*	0*	300	40

Table 8.	Preliminary	Design	Parameters	for	Shoring	Systems
Table 0.	Fremmary	Design	r ai aiiielei S	101	Shoring	Systems

Note * subject to geotechnical inspection.

The design for lateral earth pressures of multiple anchored or propped walls may be based on a trapezoidal earth pressure distribution, with additional allowances made for surcharge loads from

adjacent buildings, sloping ground surfaces, the rail corridor, and construction machinery. Hydrostatic pressures acting on the full height of the shoring wall should also be included in the design where adequate drainage is not provided behind its full height.

The following earth pressure magnitudes are considered appropriate, where H is the height of soil and rock to be retained (in metres):

- 4H kPa, where some lateral movement is allowed; and
- 6H kPa, where lateral movements need to be minimised (e.g. next to buildings or services).

In each case the maximum pressure generally acts over the central 60% of the wall height, reducing to zero at the top and base of the wall.

If the shoring terminates in rock above the bulk excavation level then rock bolts or anchors will be required to ensure that the toe of the shoring is not undermined by further excavation of the rock below the shoring level.

Foundation Stratum	Ultimate Passive Pressure (kPa)
Extremely low to very low strength sandstone	400
Low strength sandstone	2,000
Medium strength or stronger sandstone	4,000

Table 9: Preliminary Passive Resistance Values

A preliminary geotechnical analysis of the shoring walls has been carried out (refer DP Report 86767.04.R.001.Rev1, dated 27 August 2020). Detailed design of shoring is likely to be required when further details are known, and should be carried out using WALLAP, PLAXIS or other accepted computer analysis programs capable of modelling progressive excavation and anchoring, and predicting potential lateral movements, stresses and bending moments. PLAXIS (or similar) would be required if it is necessary to assess ground movements on surrounding properties (e.g. Lee Street and Sydney Trains Rail Corridor and Tracks), as WALLAP can only assess wall movements.

11.8.4 Ground Anchors

For estimation purposes the design of temporary ground anchors for the support of shoring systems may be carried out on the basis of the maximum bond stresses given in Table 10. The anchors should preferably have their bond length within the medium strength or stronger sandstone.

Material Description	Maximum Allowable Bond Stress (kPa)	Maximum Ultimate Bond Stress (kPa)	
Very low strength sandstone	100	200	
Low strength sandstone	200	400	
Medium strength or stronger sandstone	500	1000	

To prevent excessive lateral deformation, installation of temporary ground anchors may be required below any adjoining footings (i.e. located on or close to the site boundaries), or into the toes of shoring piles installed above the basement design floor level. Additional anchors may be required if potentially unstable blocks or wedges are observed during excavation of rock.

The parameters given in Table 10 assume that the anchor holes are clean and adequately flushed, with grouting and other installation procedures carried out carefully and in accordance with good anchoring practice. Careful installation and close supervision by a geotechnical specialist may allow increased bond stresses to be adopted during construction, subject to testing. The use of permanent anchors would require careful attention to corrosion protection. Further advice on design and specification should be sought if permanent anchors are to be employed at this site.

Ground anchors should be designed to have an appropriate free length (minimum of 3 m) and have a minimum 3 m bond length. After installation they should be proof loaded to 125% of the design working load and locked-off at no higher than 80% of the working load. Periodic checks should be carried out during the construction phase to ensure that the lock-off load is maintained and not lost due to creep effects or other causes.

It will be necessary to obtain permission from neighbouring landowners prior to installing anchors that will extend beyond the site boundaries. In addition, care should be taken to avoid damaging buried services, pipes and subsurface structures (possibly including neighbouring piled footings) during anchor installation. Anchoring should only be carried out by an experienced contractor with demonstrated experience in similar ground conditions.

Vertical anchors for uplift support could also be designed using the parameters given in Table 10. The designer should check the cone pull-out failure mechanism by assuming a 90-degree cone for both the soil and rock.

11.9 Excavation-Induced Ground Movement

11.9.1 RMS Infrastructure and Sydney Trains Rail Corridor

Lee Street is an RMS asset, and Central Station is a Sydney Trains asset. Reference should be made to RMS 2012: Geotechnical Technical Direction, which outlines requirements for excavations adjacent to RMS infrastructure, and includes the level of geotechnical investigation required, dilapidation surveying, instrumentation and monitoring during construction, trigger levels and contingency plans. Sydney Trains, RMS or other local authorities may have specific requirements, which will need to be discussed and implemented before construction commences.

A Geotechnical Impact Assessment (GIA), i.e. numerical modelling, will typically be required as part of a Development Application (imposed by both RMS and Sydney Trains). The purpose of the GIA is to assess the likely amount of excavation-induced ground movement resulting from the proposed excavation.

During construction, instrumentation (e.g. inclinometers) and survey monitoring are typically required where the excavation exceeds heights of either 3 m (for cantilevered shoring walls) or 6 m (for anchored or propped shoring walls). A geotechnical monitoring plan is likely to be required by RMS prior to construction for this site.

Depending on the setback of the basement excavation from the Sydney Trains Rail corridor, a site-specific track monitoring plan may also be required. It should be noted that this will likely involve the placement of survey markers within the rail corridor and on the nearest track, which has its own complications regarding the delays and costs associated in obtaining the necessary approvals from Sydney Trains.

11.9.2 Stress Relief

For an excavation which extends to a depth of about 7 m below the top of medium or high strength sandstone, there is likely to be some inward horizontal movement due to the effects of stress relief. It is impracticable to provide restraint for the relatively high in-situ horizontal stresses present within the Hawkesbury Sandstone. Release of these stresses due to the excavation will generally cause horizontal movement along the rock bedding surfaces and partings.

Based on monitoring experience for excavations in the Sydney region, excavation to about 10 m below the top of weathered rock may give rise to lateral movements of between 0.5 mm and 1.5 mm for every 1 m depth of excavation below the top of rock (i.e. in the order of 5 - 15 mm total movement at the centre of the face, at the top of the excavation). The stress relief movements behind the top of the excavation typically reduce by 1 mm per metre of distance back from the face.

The new building structure should be designed to allow for some stress relief movements, i.e. leaving a gap between the structure and the rock face. The differences in stress relief movements behind the top of the excavation may result in cracking of adjacent brittle buildings. It is recommended that appropriate allowance also be made for the repair of pavements and public utilities, where excavations are carried out close to structures.

Regular monitoring of survey targets along the excavation perimeter during construction, such as following each successive 'drop' in excavation level, should be undertaken to monitor the effects of stress relief.

11.10 Foundations

It is anticipated that the foundations for the proposed building will be constructed within a uniform founding stratum, at or below the floor level of 'Basement 2' (i.e. RL5.0 m). As depicted in the interpreted cross-sections (Drawings 2 to 7, Appendix C), high strength, medium grained Hawkesbury Sandstone (assessed to be mostly Class I sandstone) is expected to be exposed at this level over the floor of the basement excavation.

On this basis spread footings (i.e. pad footings) should be suitable for supporting the proposed building loads within the excavation footprint. These may be designed for the support of axial compression loads using the bearing pressures, shaft adhesions and modulus values presented in Table 11, which are based on the assumption that the excavations are clean and free of loose debris, with pile sockets free of smear and adequately roughened immediately prior to concrete placement. Shaft adhesion values for uplift (tension) may be taken as being equal to 70% of the values for compression.

If allowable bearing pressures of more than 3.5 MPa are used in design, then additional testing will be required in the form of cored boreholes and spoon testing of footings, to ensure there are no defects beneath footings. Spoon testing involves drilling a 50 mm diameter hole below the base of the footing,

to a depth of 1.5 times the footing width, followed by testing to check for the presence of weak/clay bands. If weak seams are detected, then footings may need to be taken deeper to reach suitable foundation material. Alternatively, if the bearing pressures are limited to a maximum of 3.5 MPa then visual inspection of foundations during construction will be sufficient.

	Allowable Parameters		Ultimate Parameters ³		Field
Foundation Stratum ¹	End Bearing (MPa)	Shaft Adhesion (kPa) ²	End Bearing (MPa)	Shaft Adhesion (kPa) ²	Elastic Modulus (MPa)
Sandstone – Class V	1.0	75	3	150	50
Sandstone – Class IV	2.0	100	6	250	100
Sandstone – Class III	3.5	350	20	800	350
Sandstone – Class II	6.0	600	60	1500	900
Sandstone – Class I	10.0	600	120	3000	2000

Table 11: Recommended Design Parameters and Moduli for Foundation Design

Notes

(1) Rock classification based on Pells et. al (1998) and Bertuzzi and Pells (2002).

(2) Shaft adhesion applicable to the design of bored piles, uncased over the rock socket length, where adequate sidewall cleanliness and roughness are achieved.

(3) Ultimate end bearing parameters mobilized at large settlements (i.e. >5% of pile diameter).

If an allowable bearing pressure of 10 MPa is used during design then 100% of the footings should be spoon tested to a depth equivalent to 1.5 times the footing width with cored boreholes in 50% of the footings drilled to 3 m below bulk excavation level. If the bearing pressure is kept at 6 MPa or less the amount of spoon testing could be reduced to 33% of the footings.

Where footings are located within the zone of influence of adjacent excavations, drawn upward at 45 degrees from the toe of the excavation (such as lift shafts or tanks), the allowable bearing pressure should be reduced by 25% and the excavation floor carefully inspected for adversely oriented joints. Alternatively, the footings may be taken deeper, below the zone of influence.

The settlement of a spread footing is dependent on the loads applied to the footing and the foundation conditions below the footing. The total settlement of a spread footing designed using the allowable parameters provided in Table 11 should be less than 1% of the footing width upon application of the design load. Differential settlements between adjacent footings may be in the order of 50% of the value of total settlement. The design of footings is usually governed by settlement criteria and performance rather than the ultimate bearing capacity or Ultimate Limit State condition.

For limit state design, selection of the geotechnical strength reduction factor (ϕ_g) in accordance with Australian piling code AS 2159 (2009) is based on a series of individual risk ratings (IRR), which are weighted on numerous factors and lead to an average risk rating (ARR). Therefore, it is recommended that an appropriate geotechnical strength reduction factor be calculated by the pile designer. Preliminary design could be based on a ϕ_g of 0.4 (i.e. no pile testing), and refined as the design progresses. Footing settlements may be calculated for assessment of the serviceability limiting state using the elastic modulus values given in Table 11.

All spread footings should be inspected by an experienced geotechnical professional to check the adequacy of the foundation material and proof drilled or spoon tested as appropriate.

11.11 Soil Aggressivity to Concrete and Steel Structures

In accordance with Australian Standard AS 2159 (2009), the results of the chemical laboratory testing indicate that:

- all of the soils tested are non-aggressive to buried steel;
- the alluvial sand (above the water table) and the sandy clay and silty sand fill materials are non-aggressive to buried concrete;
- the silty clay fill and residual soils are mildly aggressive to buried concrete; and
- the weathered sandstone (inferred to be Hawkesbury Sandstone) is mildly aggressive to buried concrete.

It is considered that the silty clay residual soils are likely to be derived from weathering of the fine to medium grained sandstone (i.e. the Mittagong Formation), and so this sandstone is also likely to be mildly aggressive to buried concrete and non-aggressive to buried steel.

11.12 Seismic Design

In accordance with the Earthquake Loading Standard, AS 1170.4 (2007), the Site has a hazard factor (z) of 0.08. Given that most of the basement excavation is in Class V rock or better and that the building is likely to be connected to the shoring, a site sub-soil class of rock (B_e) is considered appropriate, assuming that all major structural loads are carried to rock of at least extremely low to very low strength.

12. Further Geotechnical Work

It is suggested that the following further geotechnical work, to be completed at a later stage of the Project, could include:

- Preparation of a geotechnical monitoring plan (Lee Street for RMS) and track monitoring plan (eastern site boundary for Sydney Trains). Both RMS and Sydney Trains will typically require this as part of the development application;
- Instrumentation (inclinometers and survey markers) installed during construction to monitor excavation-induced movements, and to confirm that they are within the approved / tolerable limits specified in both the geotechnical monitoring plan and track monitoring plan;
- Dilapidation surveys;
- Waste Classification of all material to be excavated and transported off site; and
- Footing inspections during construction.

It is recommended that a meeting be held after the initial design has been completed to confirm that the recommendations given in this report have been interpreted correctly.

13. References

AS 1170.4:2007, Structural design actions Part 4: Earthquake actions in Australia, Standards Australia.

AS 1726:2017, Geotechnical Site Investigations, Standards Australia.

AS 2159:2009, *Piling Design and Installation*, Standards Australia.

AS 3798:2007, *Guidelines on earthworks for commercial and residential developments*", Standards Australia.

AS/ISO 2631.2: 2014, *Mechanical vibration and shock – Evaluation of human exposure to whole-body vibration – Vibration in buildings (1 Hz to 80 Hz)*, Standards Australia / International Standards Organisation.

Bertuzzi, R. and Pells, PJN (2002), *Geotechnical parameters of Sydney Sandstone and Shale*, Australian Geomechanics Journal, Vol. 37, No. 5.

Herbert C. (1983), *Sydney 1:100 000 Geological Sheet 9130, 1st edition*. Geological Survey of New South Wales, Sydney.

Murphy C.L. (1997), *Acid Sulfate Soil Risk Map for Botany Bay, 2nd edition.* Department of Land and Water Conservation, New South Wales, Sydney.

NSW Environment Protection Authority (NSW EPA: 2014), Waste Classification Guidelines.

New South Wales Government Legislation (1997), *Protection of the Environment Operations Act* 1997 *No.* 156 (POEO Act), <u>https://www.legislation.nsw.gov.au/~/view/act/1997/156/full</u>.

Pells, P.J.N., Mostyn, G., Walker, B.F. (1998), *Foundations on Sandstone and Shale in the Sydney Region*, Australian Geomechanics Journal, December 1998.

Rickwood, P.C. (1985), Igneous intrusives in the Greater Sydney Region, in Engineering Geology of the Sydney Region, pages 215-308 (ed. Pells P.J.N), A.A Balkema, 1985.

Roads and Maritime Services (2012), RMS Geotechnical Technical Direction 2012/001, April 2012.

14. Glossary of Key Terms

Term	Definition	
Adina Hotel	2 Lee Street, Haymarket	
	The Former Parcels Post Office	
	The Adina Apartment Hotel Sydney Central	
Atlassian Central	The Atlassian tower building (building only)	
Atlassian Central development	The whole Atlassian development within the Atlassian Site including the tower and public domain works.	
Atlassian Site	8 – 10 Lee Street, Haymarket	
Central Sydney	Land identified as Central Sydney under the Sydney LEP 2012 and includes Sydney's Central Business District (CBD)	
Central SSP	Central Station State Significant Precinct	
Central Walk West	The future western pedestrian entry to the new 19 metre-wide underground concourse customers to suburban rail and Sydney Metro platforms.	
Devonshire Tunnel	The pedestrian and cycle tunnel running between Chalmers Street and Lee Street	
"Devue/Erecore	14-30 Lee Street Haymarket.	
"Dexus/Frasers Site"	Adjoining land immediately to the south currently comprising three 8-storey commercial buildings	
Habitat Level 1	Flexibly ventilated workspace areas	
Link Zone	The publicly accessible land within the Site.	
Sub-precinct	Western Gateway Sub-precinct	
The Project	Commercial and hotel development above the Former Inwards Parcel Shed at 8-10 Lee Street, Haymarket	

15. Glossary of Abbreviations

Term	Definition
ARR	Average risk rating
ANZECC	Australian and New Zealand Environment and Conservation Council
DP	Deposited Plan
GIA	Geotechnical Impact Assessment
НВМ	Hazardous building materials
IRR	Individual risk ratings

Term	Definition
kPa	Kilopascals (unit of pressure)
MPa	Megapascals (unit of pressure)
NATA	National Association of Testing Authorities, Australia
RMS	Roads and Maritime Services
RL (m AHD)	Reduced Level or Elevation in metres, relative to the Australian Height Datum
SSI	Supplementary Site Investigation for Contamination
TfNSW	Transport for New South Wales
UCS	Unconfined compressive strength
VSPPV	Vector sum peak particle velocity
VENM	Virgin excavated natural materials

16. Limitations

Douglas Partners Pty Ltd (Douglas Partners) has prepared this report for this project at 8-10 Lee Street, Haymarket, in accordance with DP's proposal SYD190190.P.003.Rev5, and acceptance received from Avenor Pty Ltd on behalf of Vertical First Pty Ltd on 7 May 2020. The work was carried out under a consultancy agreement. This report is provided for the exclusive use of Vertical First Pty Ltd or their agents, for this project only and for the purposes as described in the report. It should not be used by or be relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to Douglas Partners for any loss or damage. In preparing this report Douglas Partners has necessarily relied upon information provided by the client and/or their agents.

The results provided in the report are indicative of the sub-surface conditions on the Site only at the specific sampling and/or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after DP's field testing has been completed.

DP's advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by Douglas Partners in this report may be affected by undetected variations in ground conditions across the Site between and beyond the sampling and/or testing locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.

This report must be read in conjunction with all of the attached pages and should be kept in its entirety without separation of individual pages or sections. Douglas Partners cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

The scope for work for this investigation included the assessment of sub-surface materials for contaminants within the Site, which is presented under separate cover. Should evidence of filling of unknown origin be noted in the report, and in particular the presence of building demolition materials, it should be recognised that there may be some risk that such filling may contain contaminants and hazardous building materials.

Asbestos has not been detected by observation or by laboratory analysis of soil samples, at the test locations sampled and analysed (refer to Douglas Partners Report 86767.03.R.001.Rev1 for further details). Building demolition materials, such as glass, brick, ceramic tile and coal, were, however, located in previous below-ground filling, and these are considered as indicative of the possible presence of hazardous building materials (HBM), including asbestos.

Although the sampling plan adopted for this investigation is considered appropriate to achieve the stated project objectives, there are necessarily parts of the Site that have not been sampled and analysed. This is either due to undetected variations in ground conditions or to budget constraints (as discussed above), or to parts of the Site being inaccessible and not available for inspection/sampling. It is therefore considered possible that HBM, including asbestos, may be present in unobserved or untested parts of the Site, between and beyond sampling locations, and hence no warranty can be given that asbestos is not present.

The contents of this report do not constitute formal design components such as are required, by the Health and Safety Legislation and Regulations, to be included in a Safety Report specifying the hazards likely to be encountered during construction and the controls required to mitigate risk. This design process requires risk assessment to be undertaken, with such assessment being dependent upon factors relating to likelihood of occurrence and consequences of damage to property and to life. This, in turn, requires project data and analysis presently beyond the knowledge and project role respectively of Douglas Partners. Douglas Partners may be able, however, to assist the client in carrying out a risk assessment of potential hazards contained in the Comments section of this report, as an extension to the current scope of works, if so requested, and provided that suitable additional information is made available to Douglas Partners. Any such risk assessment would, however, be necessarily restricted to the geotechnical / groundwater components set out in this report and to their application by the Project designers to project design, construction, maintenance and demolition.

Douglas Partners Pty Ltd

Appendix A

About This Report

About this Report

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report; and
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on borehole or pit spacing and sampling frequency;
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

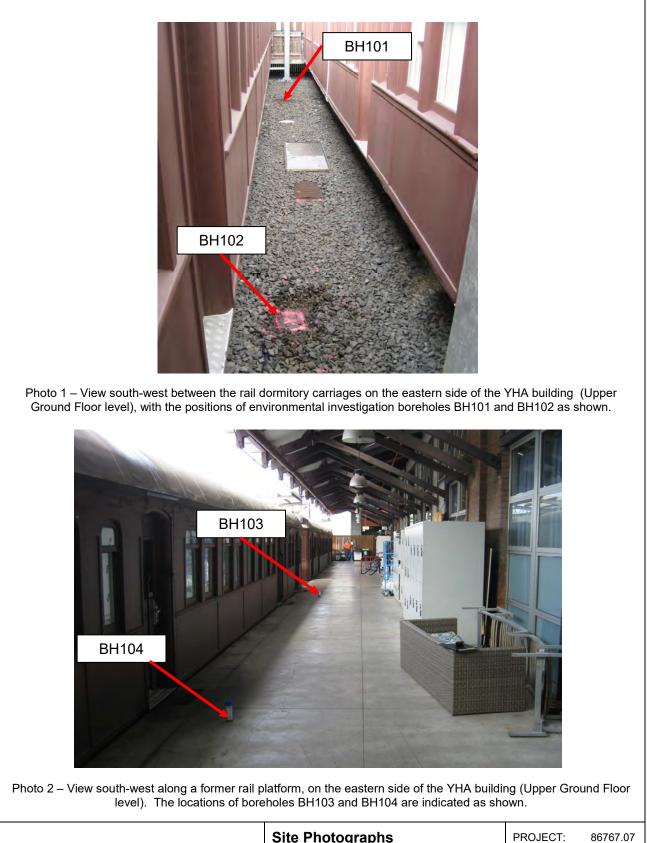
If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

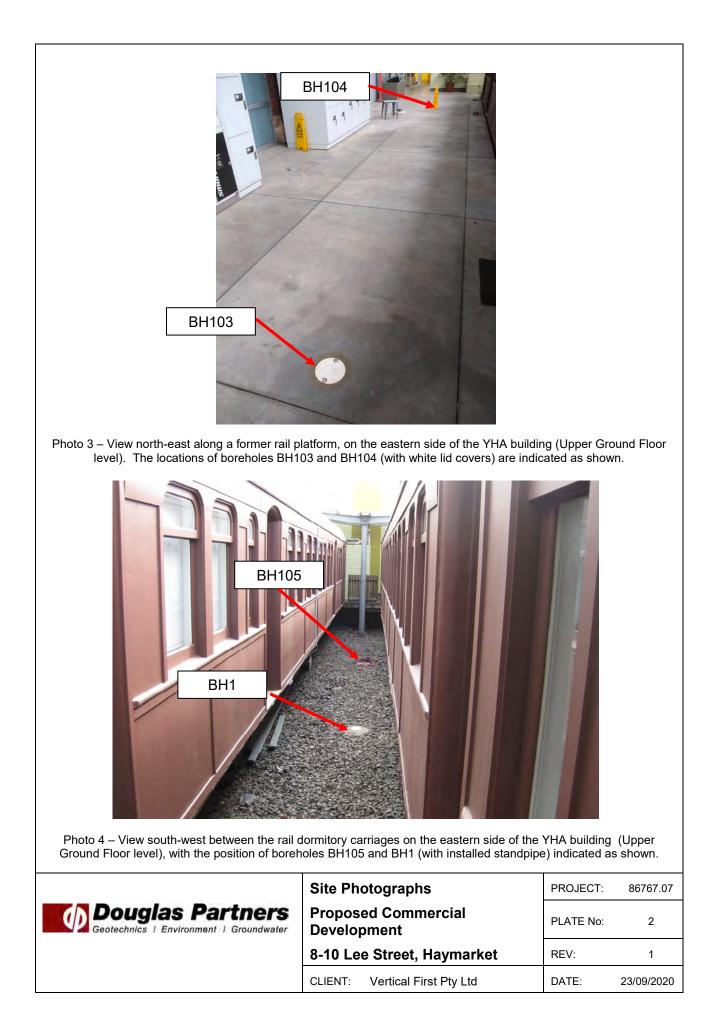
Site Anomalies

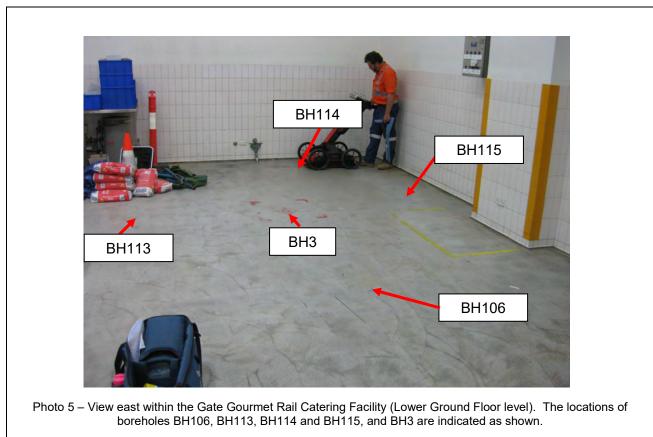
In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes


Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

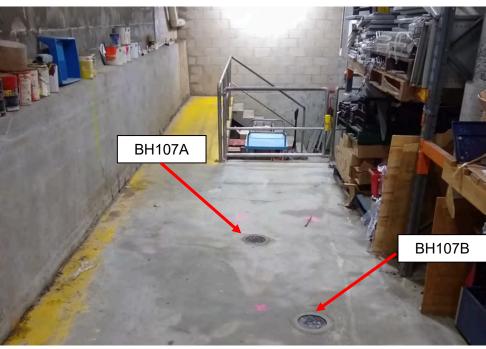
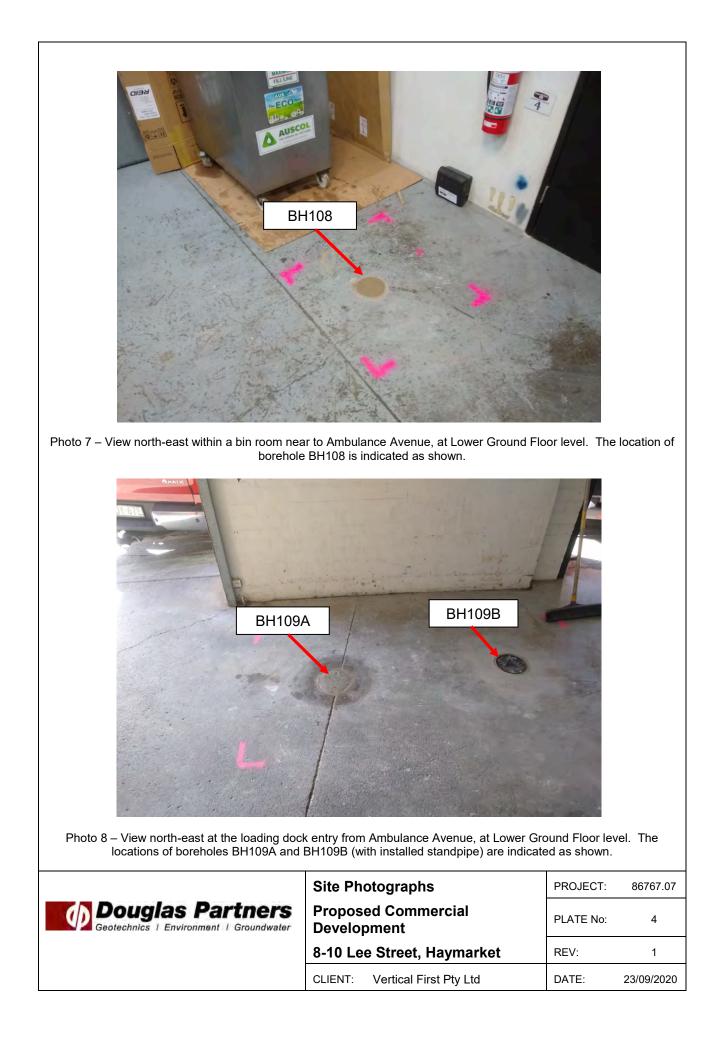
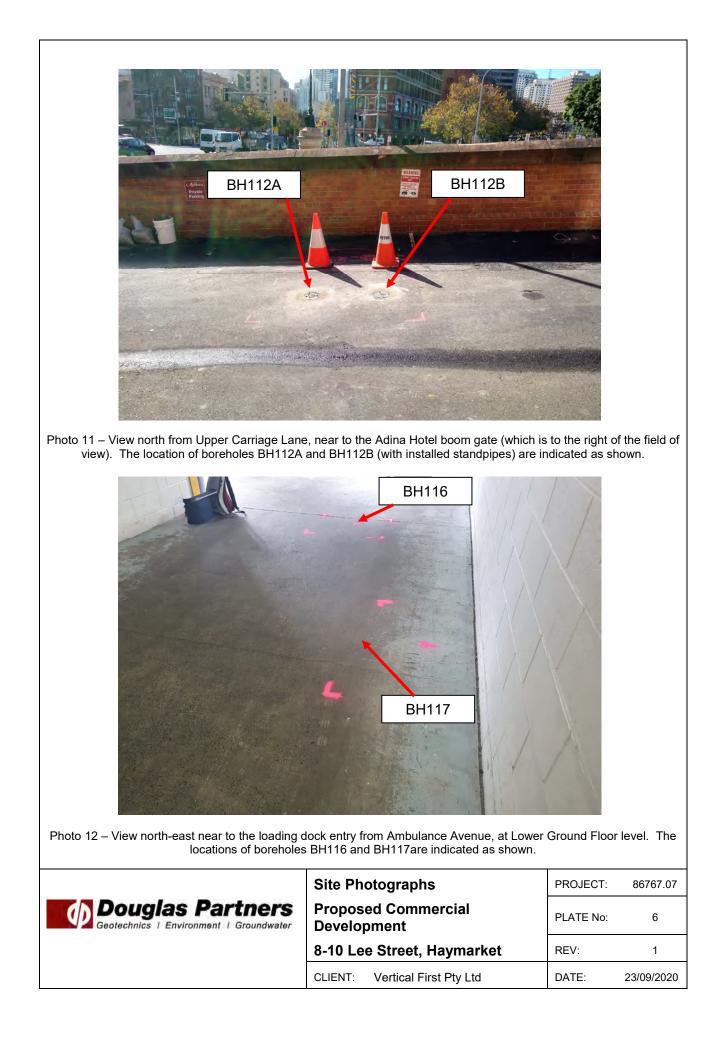
Site Inspection

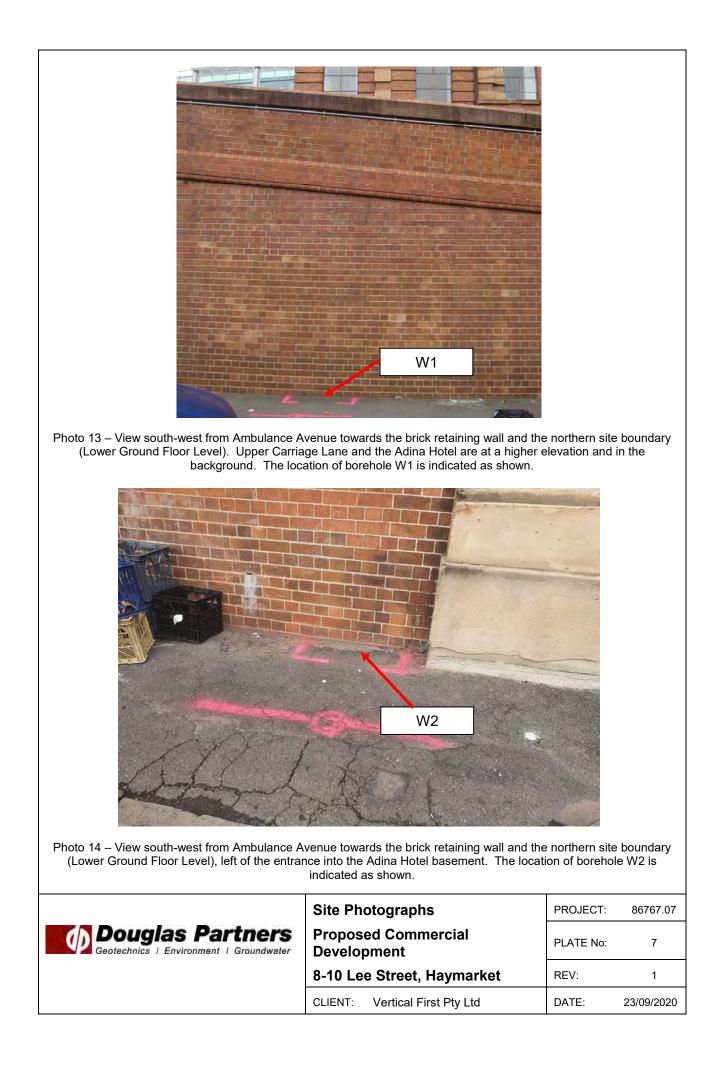

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

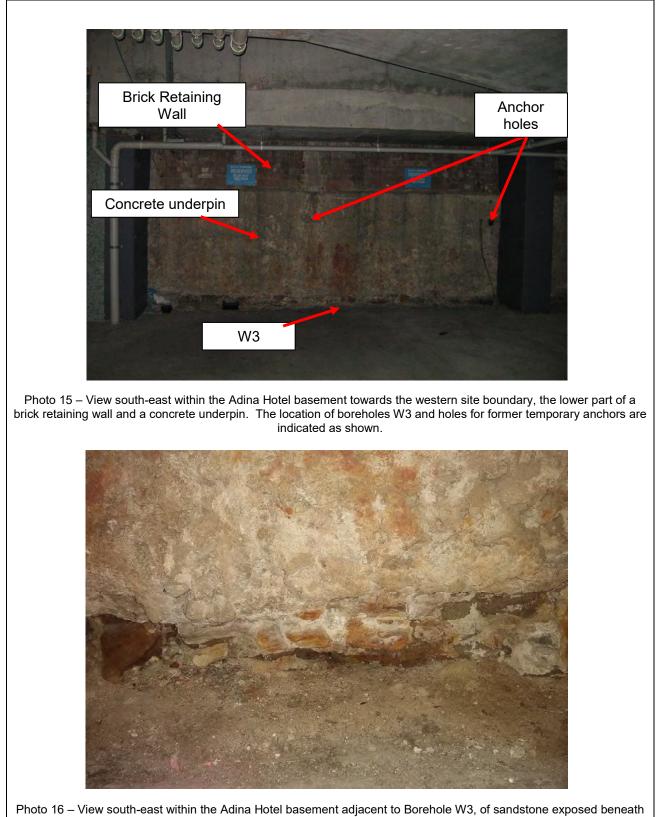

Appendix B

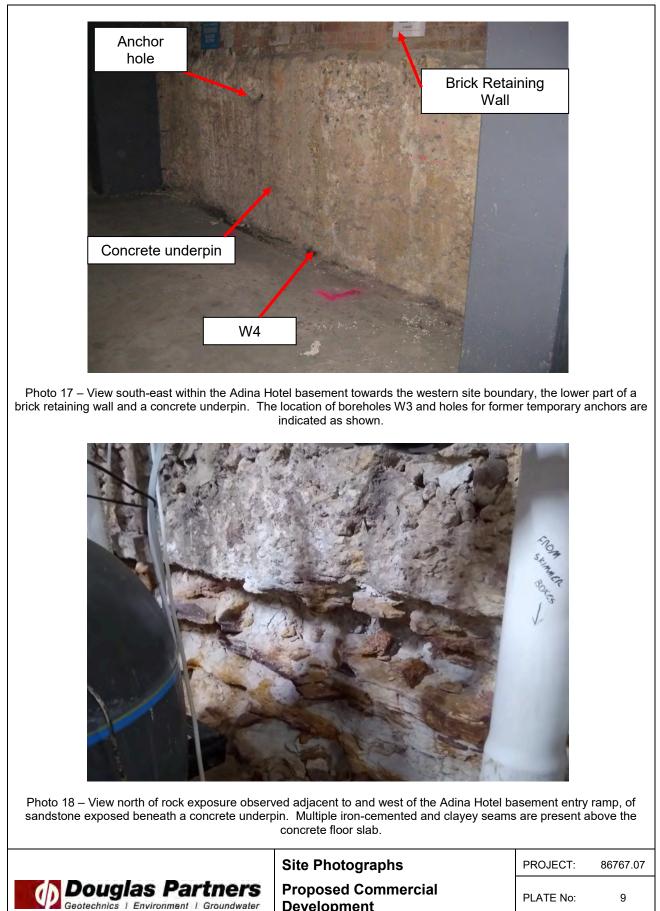
Site Photographs

	Proposed Commercial Development		PROJECT:	86767.07
Douglas Partners Geotechnics Environment Groundwater			PLATE No:	1
			REV:	1
	CLIENT:	Vertical First Pty Ltd	DATE:	23/09/2020


Photo 6 – View south-west within a concrete-walled storage area at the Lower Ground Floor Level. A set of steps leading down to the Henry Deane Plaza is present overhead. The position of boreholes BH107A and BH107B (with installed standpipes) are indicated as shown.


	Site Photographs	PROJECT:	86767.07
Douglas Partners Geotechnics Environment Groundwater	Proposed Commercial Development	PLATE No:	3
	8-10 Lee Street, Haymarket	REV:	1
	CLIENT: Vertical First Pty Ltd	DATE:	23/09/2020



the concrete underpin and just above the level of the basement floor slab.

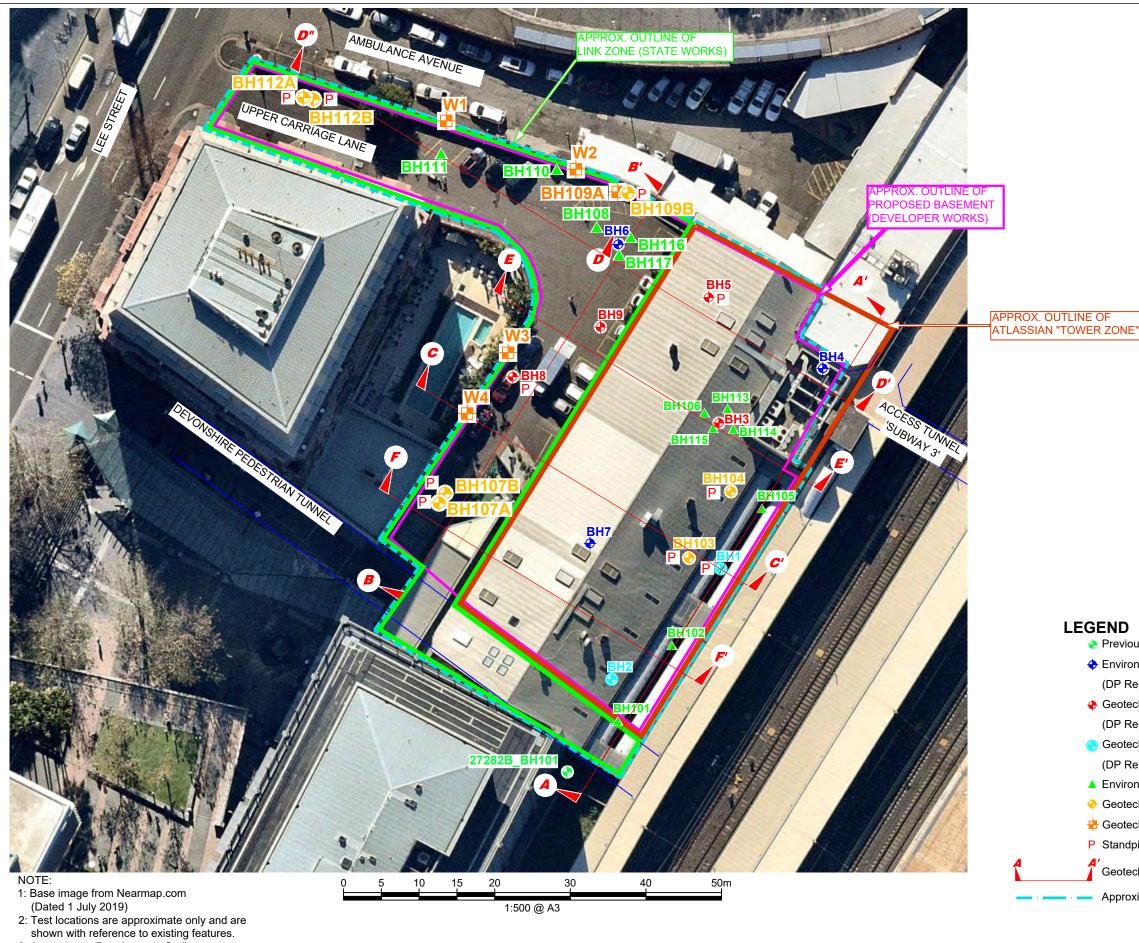
	Site Photographs	PROJECT:	86767.07
Douglas Partners	Proposed Commercial Development	PLATE No:	8
	8-10 Lee Street, Haymarket	REV:	1
	CLIENT: Vertical First Pty Ltd	DATE:	23/09/2020

Duglas Partners	Proposed Commercial Development		
	8-10 Lee Street, Haymarket		
	CLIENT: Vertical First Pty Ltd		

PLATE No:

REV:

DATE:


9

1

23/09/2020

Appendix C

Drawings

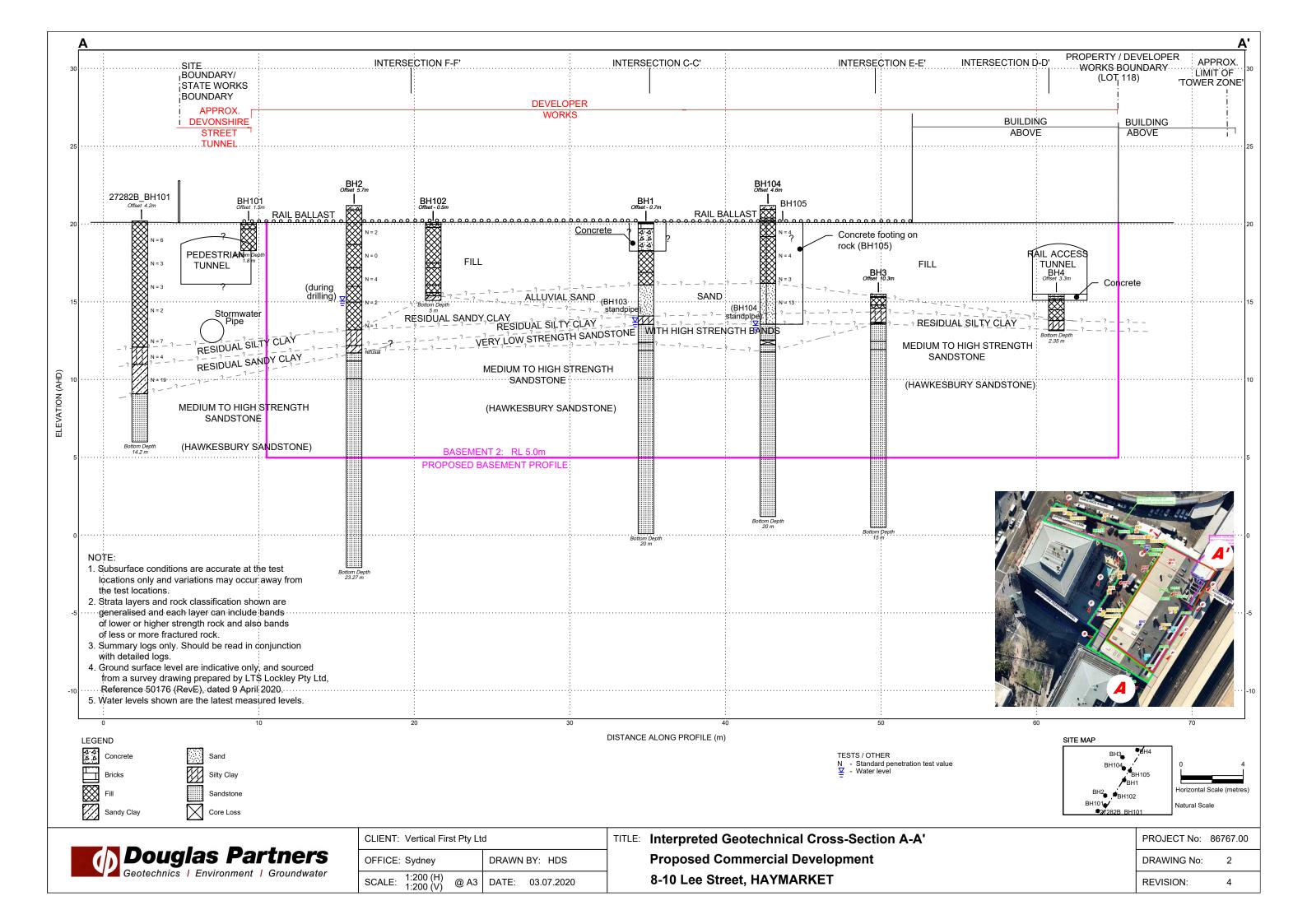
3. Approximate Development Outlines are as provided by Avenor Pty Ltd on 12 August 2019.

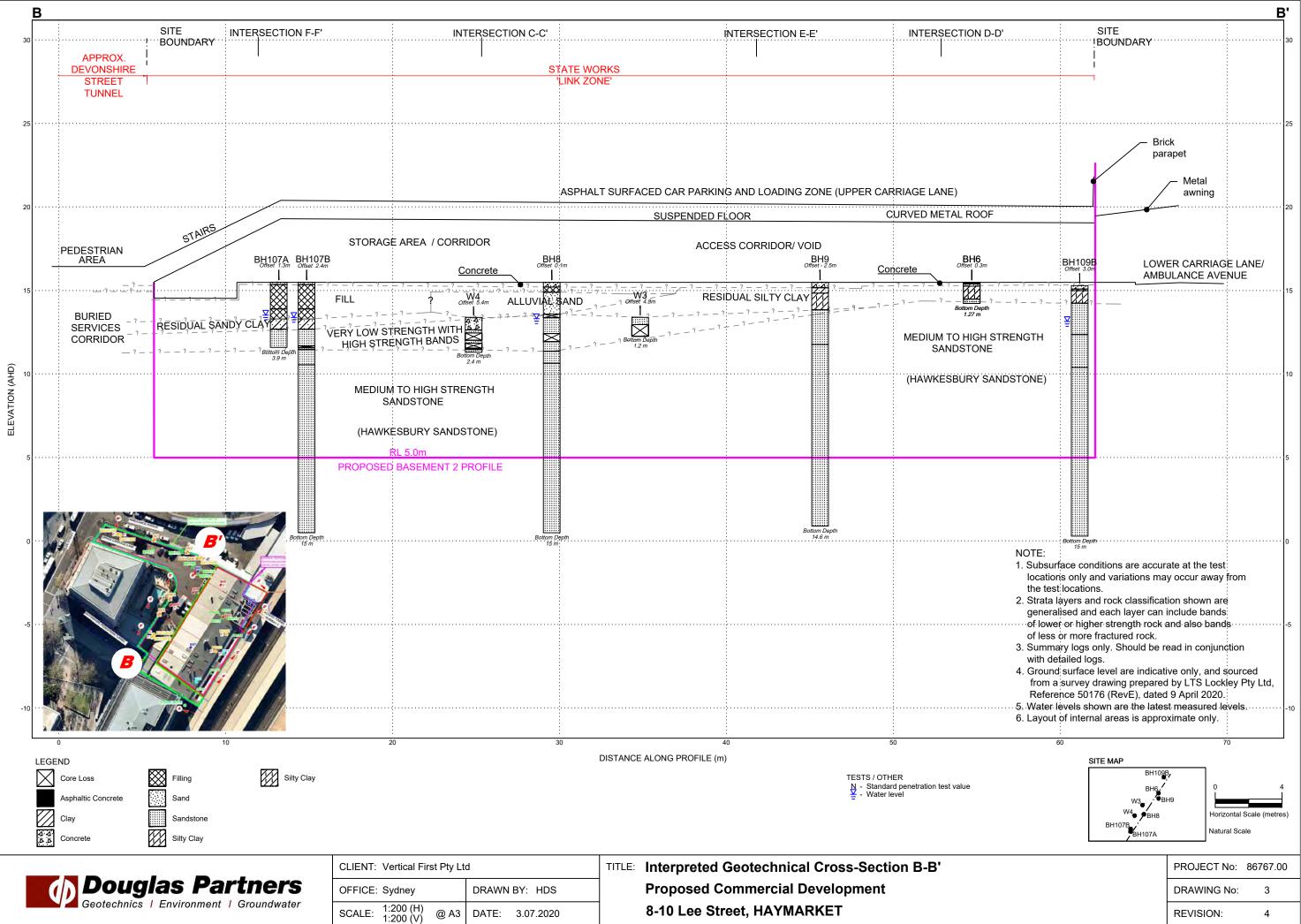
CLIENT: Vertical First Pty Ltd			
OFFICE: Sydney DRAWN BY: HDS			
SCALE: 1:500 @ A3	DATE: 03.07.2020		

TITLE: Test Location Plan Proposed Commercial Development 8-10 Lee Street, HAYMARKET

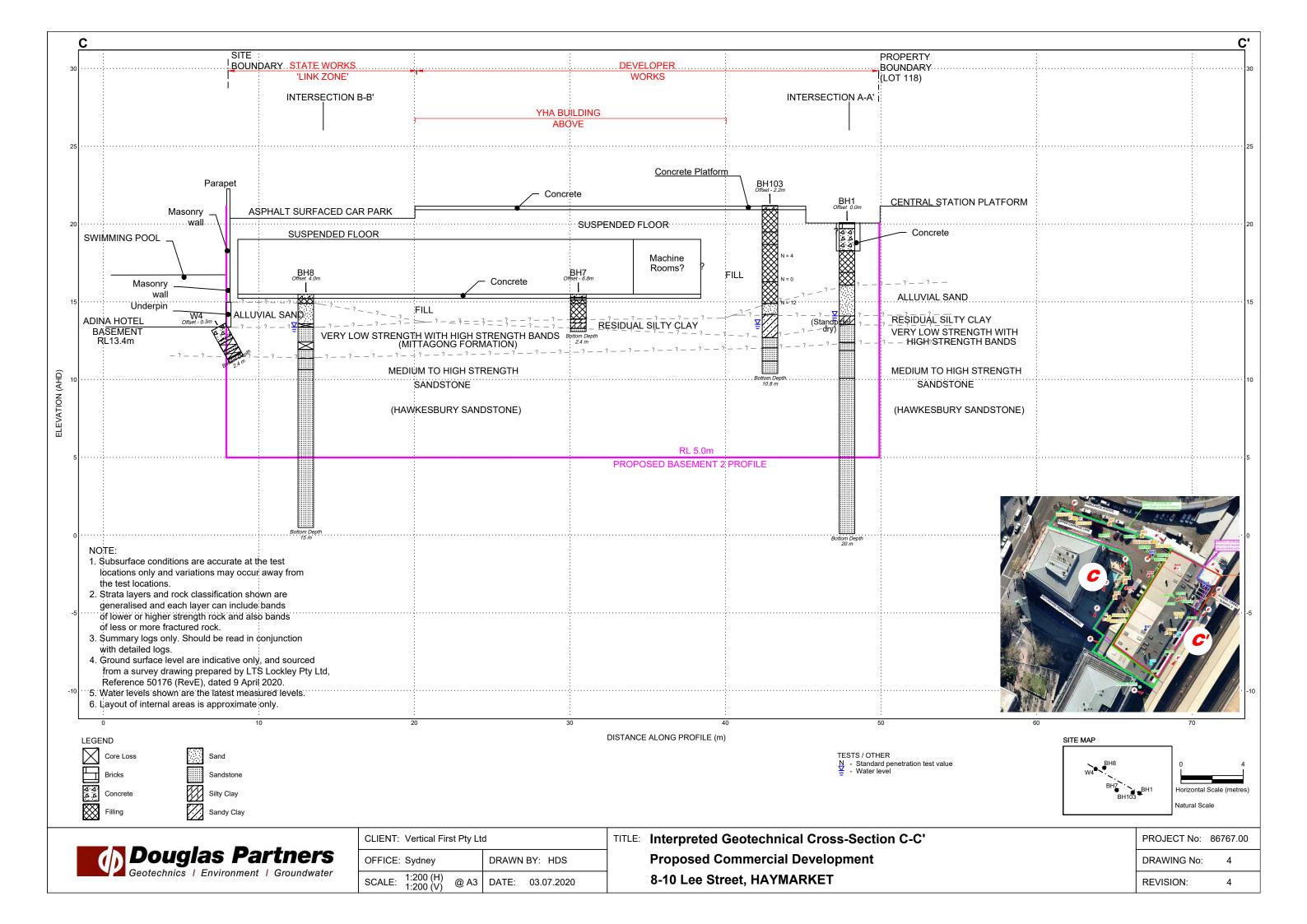
GEND
 Previous geotechnical borehole (DP Project 27282B, dated 1999)
 Environmental borehole - Lower Ground Floor

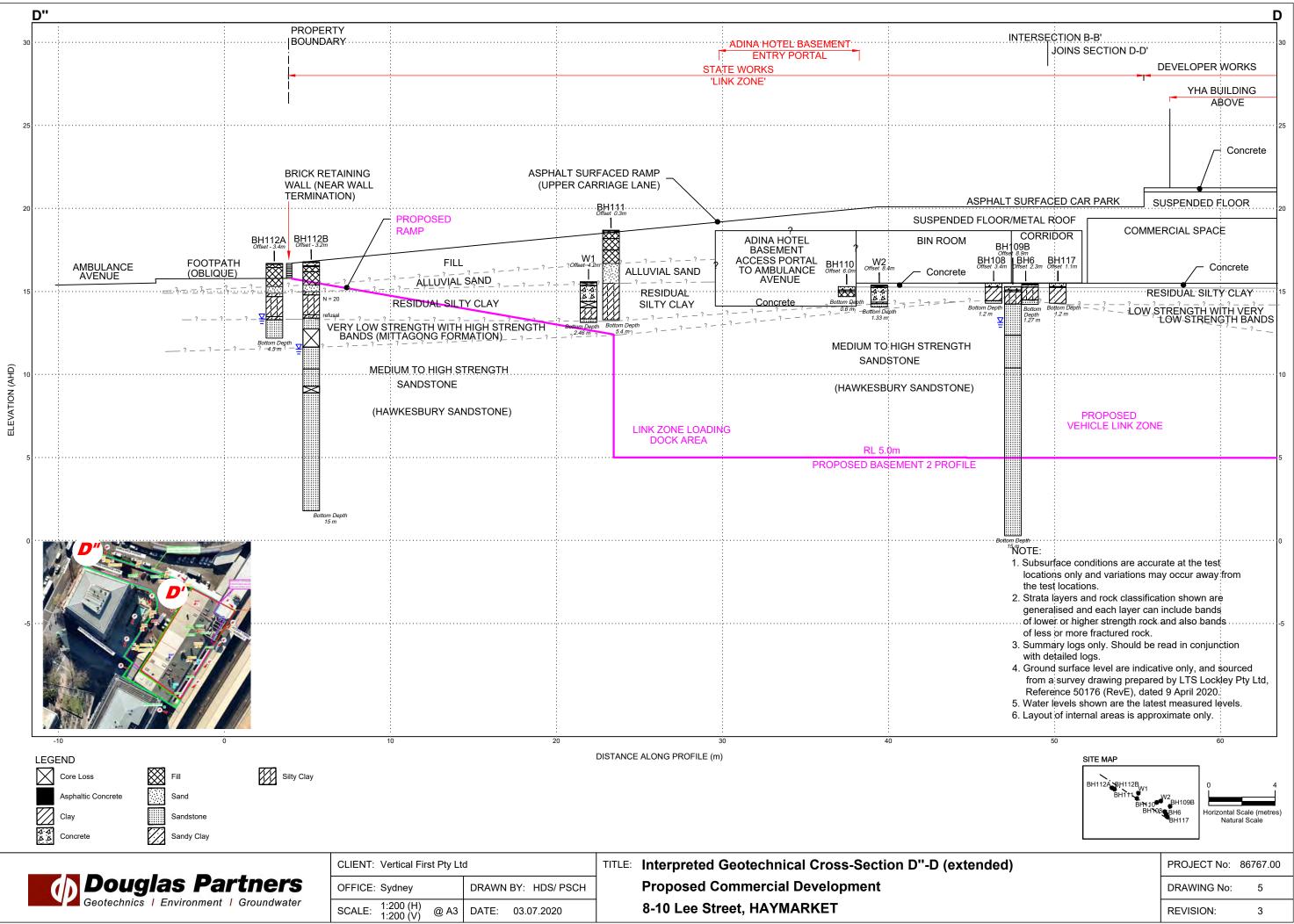
- (DP Report 86767.01.R.001.DftB, dated 29 August 2019)
- + Geotechnical & environmental borehole Lower Ground Floor
- (DP Report 86767.00.R.001.Rev0, dated 26 August 2019)
- 😔 Geotechnical & environmental borehole Upper Ground Floor
- (DP Report 86767.00.R.001.Rev0, dated 26 August 2019)
- Environmental borehole
- Geotechnical & environmental borehole
- Geotechnical borehole
- P Standpipe piezometer
- Geotechnical Cross Section A-A'
- Approximate site boundary

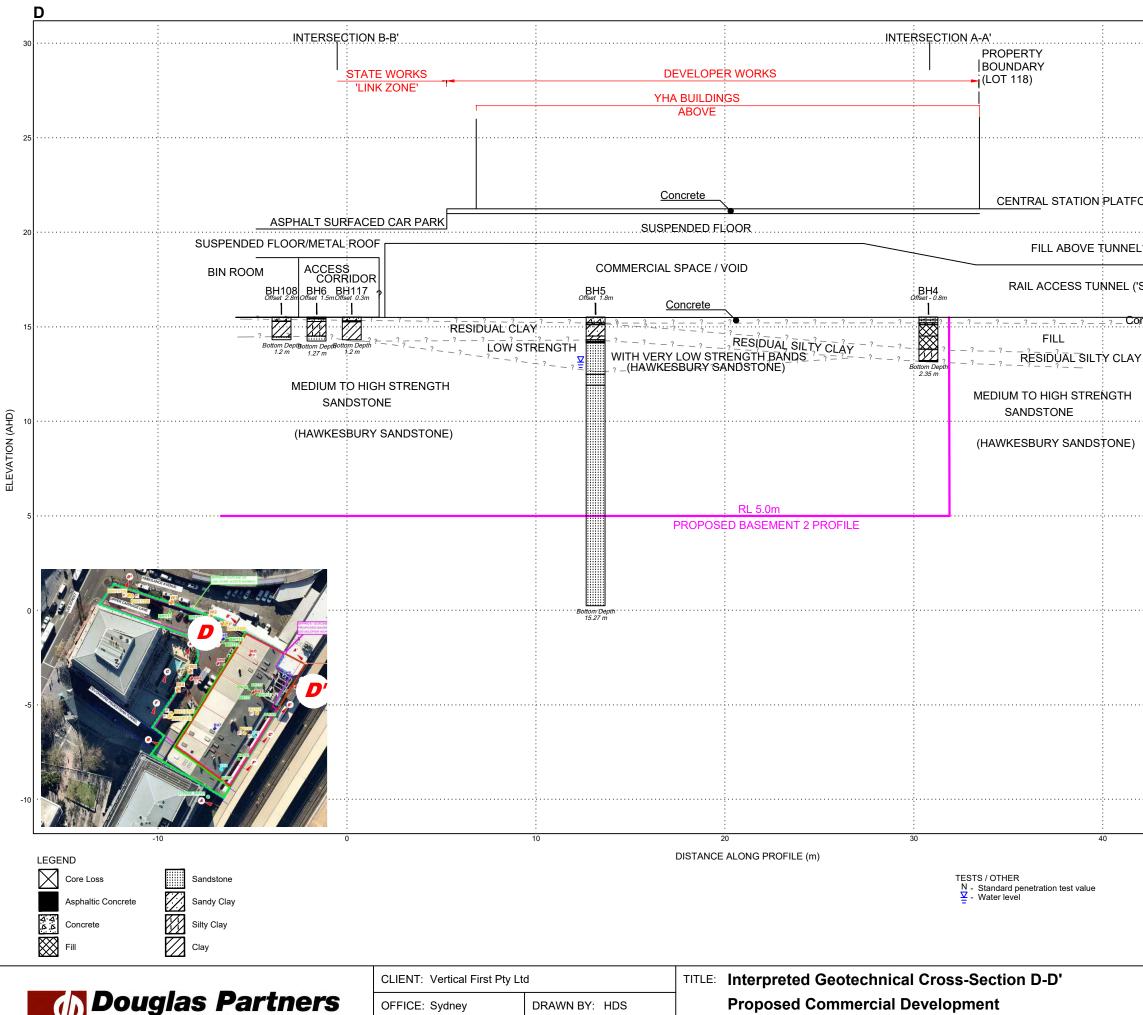

PROJECT No: 86767.00


DRAWING No:

1

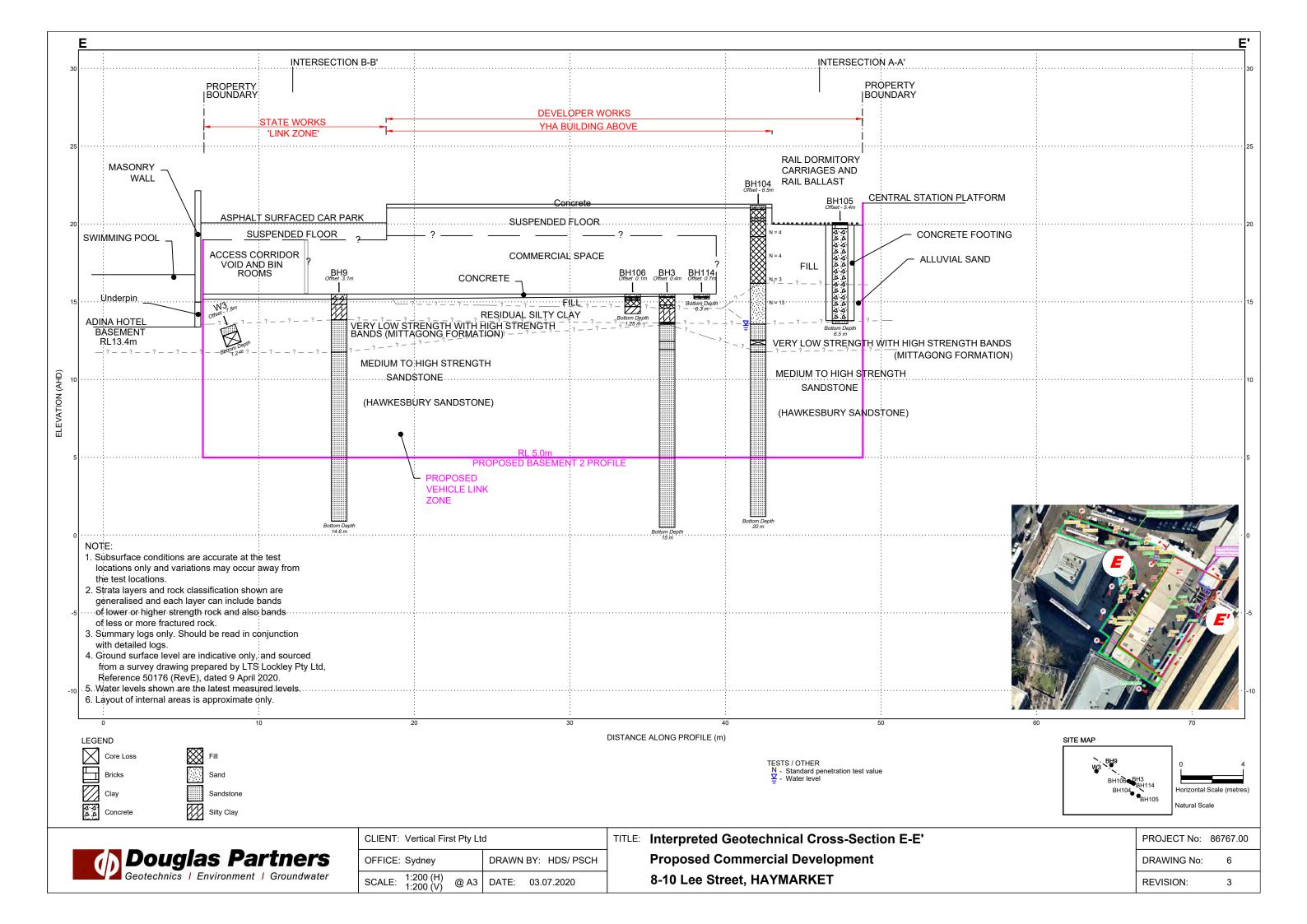

REVISION:

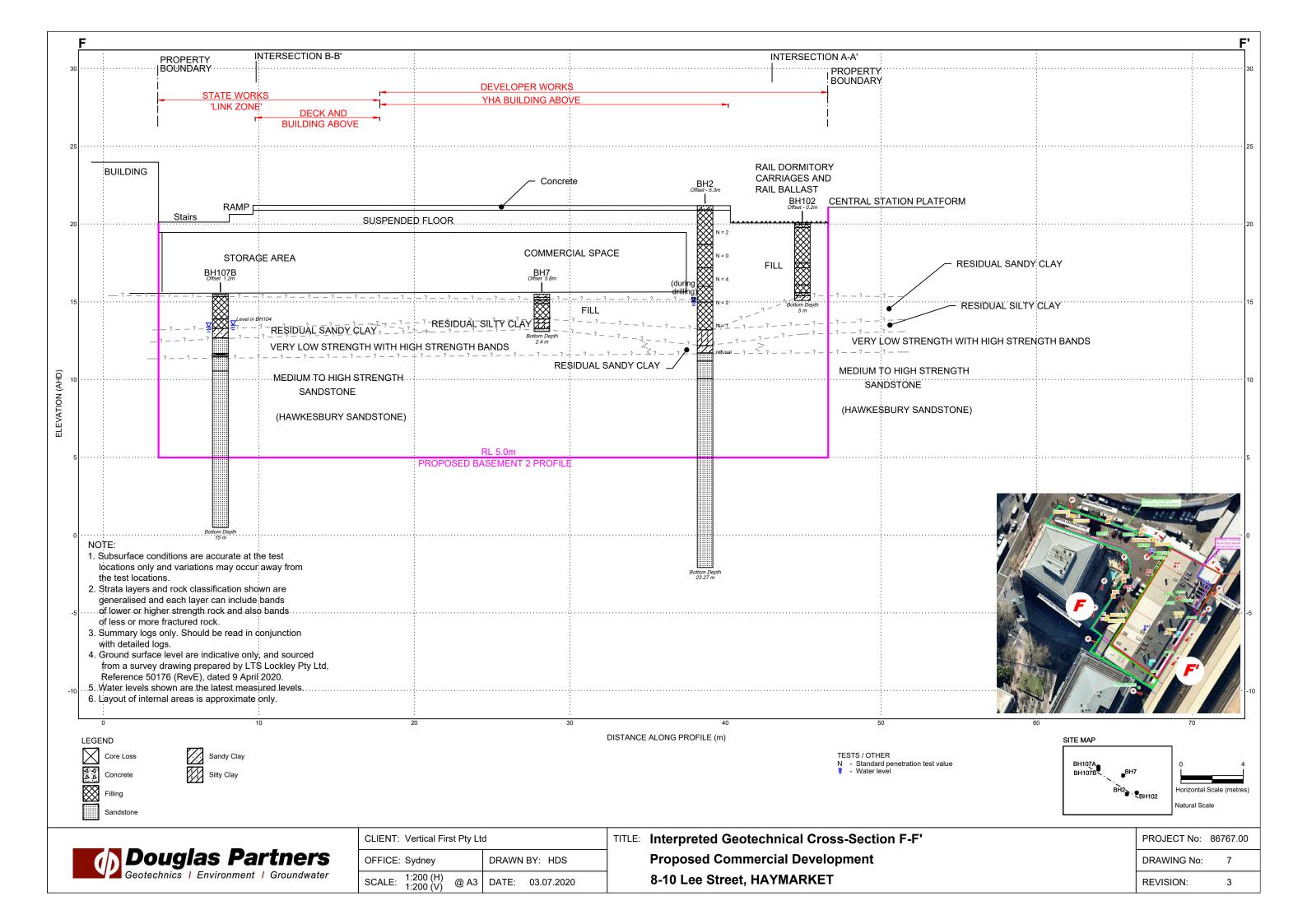

9

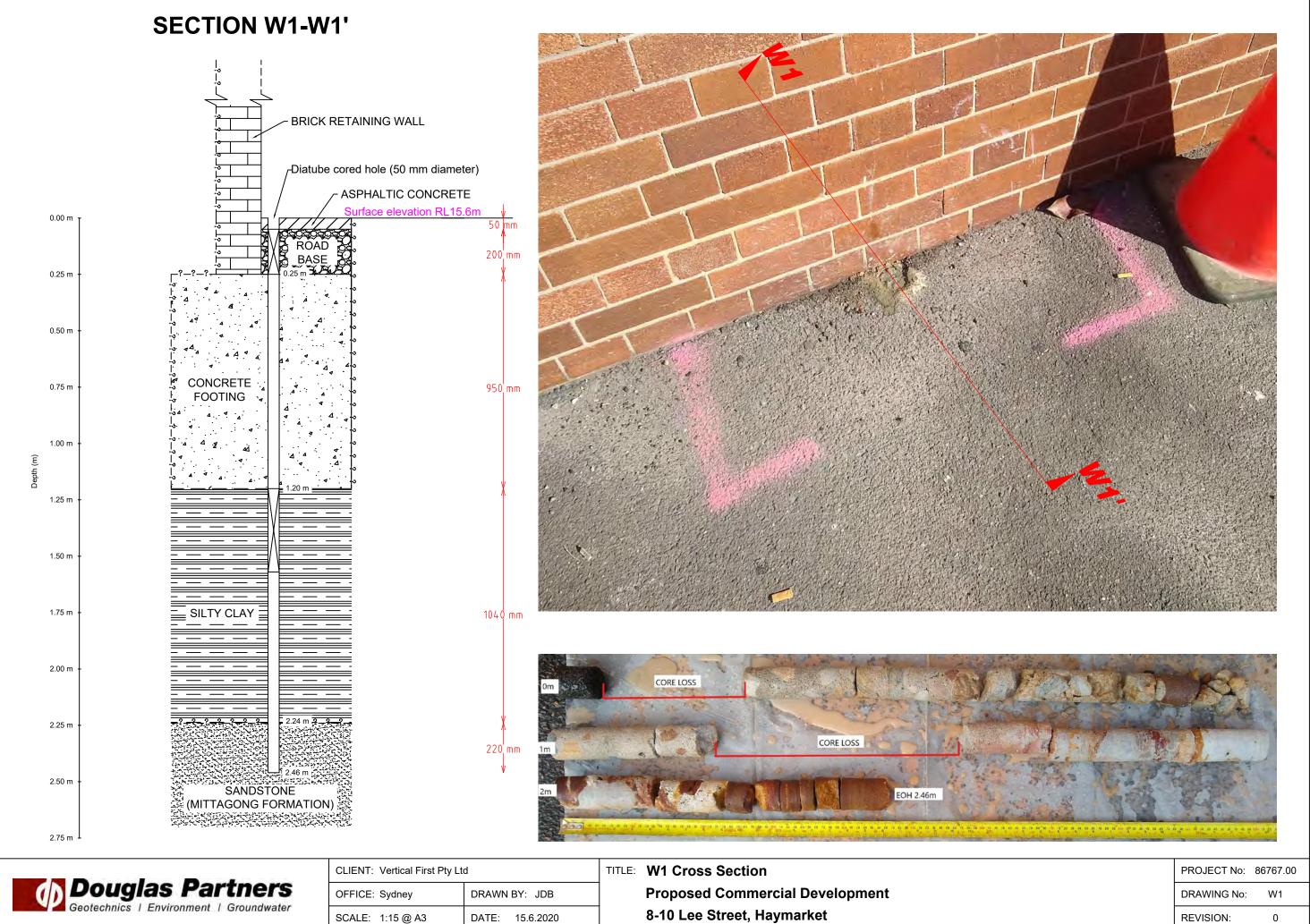

DRAWN BY: HDS	Fropose
DATE: 3.07.2020	8-10 Lee

Doug	las Partne	ers
Geotechnics	l Environment I Groun	dwater

CLIENT: Vertical First Pty Ltd				
OFFICE: Sydney		DRAWN	BY: HDS/ PSCH	
SCALE: 1:200 (H) 1:200 (V)	@ A3	DATE:	03.07.2020	

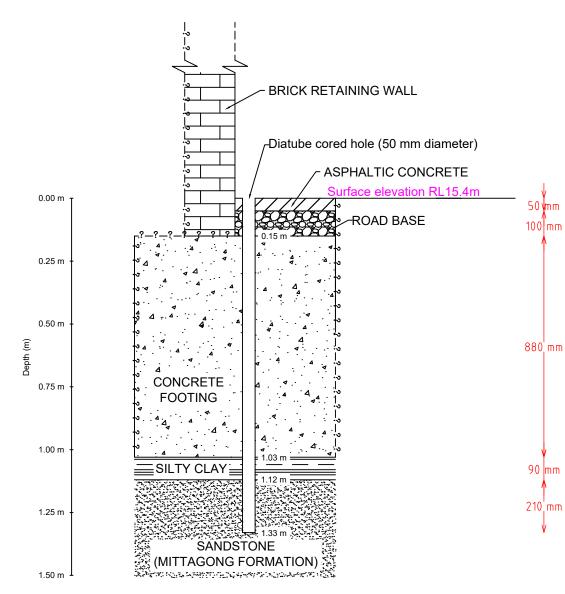



-		
OFFICE: Sydney	DRAWN BY: HDS	Proposed Co
SCALE: 1:200 (H) 1:200 (V) @ A3	DATE: 03.07.2020	8-10 Lee Stre


Geotechnics | Environment | Groundwater

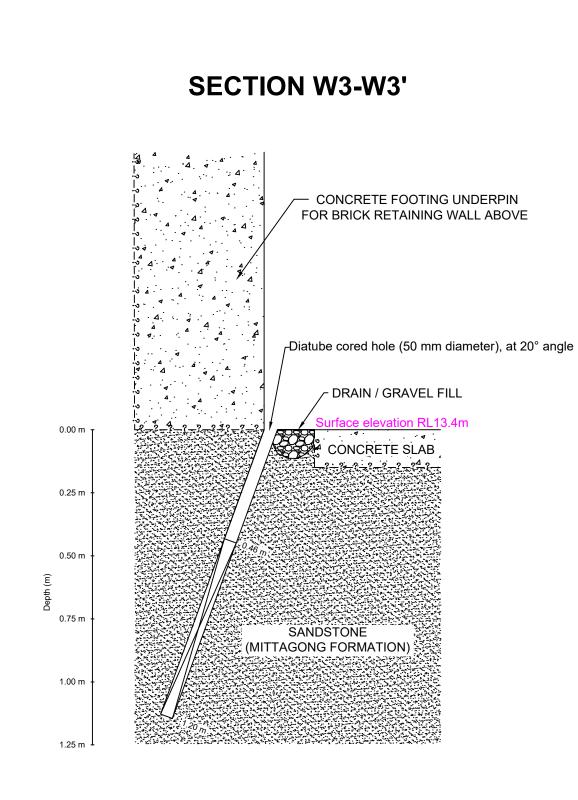
Proposed Commercial Development 8-10 Lee Street, HAYMARKET

					<u>D</u> '
ORM					
?					
SUBWAY 3')					
505WAT 5)					
ncrete ?					
					5
NOTE:					0
1. Subsurface co locations only					n
the test locati	ons.		-	-	
2. Strata layers generalised a	nd each laye	r can	include l	bands	
of lower or hig of less or mor			and also	bands	
 Summary logs with detailed 		d be	read in c	onjunctior	ו
4. Ground surfact from a surve	ce level are i				
Reference 50	0176 (RevE),	date	d 9 April	2020.	_
5Water levels s 6. Layout of inte					5. 10
	5	0			
	SITE MAP				
	BH108 BH6			0	4
	BH117	€ ^{BH5}	DUA		
		1	BH4	Horizontal S	Scale (metres) le
]	
			PROJE	CT No:	86767.00
			DRAW	ING No:	5A
			REVISI	ON:	4



CLIENT: Vertical First Pty Ltd		
OFFICE: Sydney DRAWN BY: JDB		
SCALE: 1:15 @ A3	DATE: 15.6.2020	

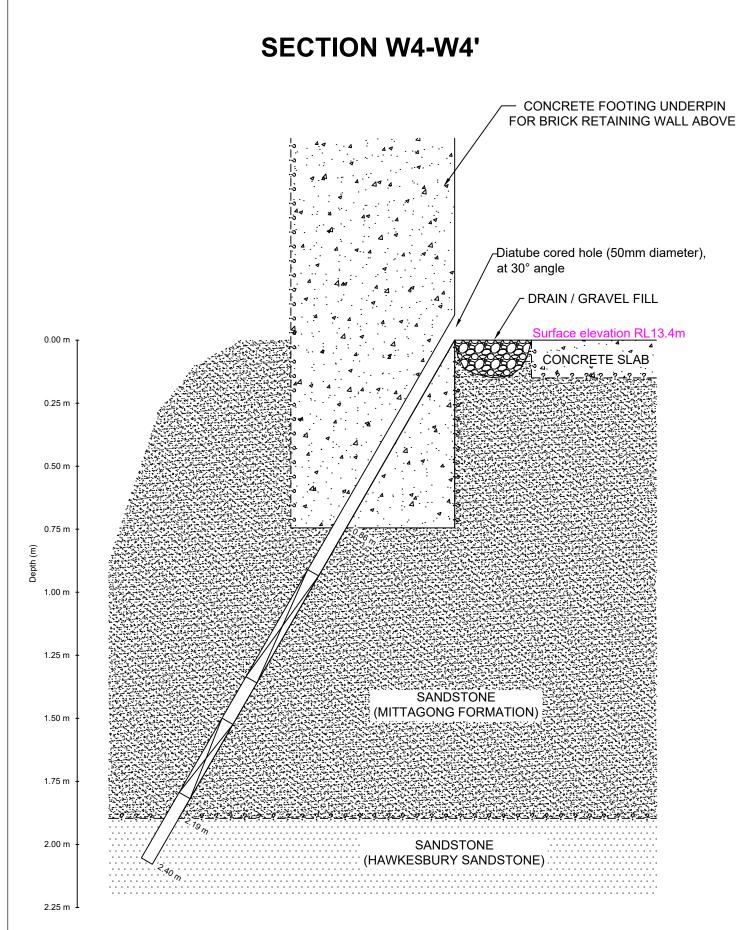
8-10 Lee Street, Haymarket



CLIENT: Vertical First Pty Ltd	
OFFICE: Sydney	DRAWN BY: JDB
SCALE: 1:15 @ A3	DATE: 15.6.2020

REVISION:

0



Note: Depth measurements are along the length of the hole.

_				
	CLIENT: Vertical First Pty Ltd		TITLE:	W3
	OFFICE: Sydney	DRAWN BY: JDB		Pro
	SCALE: 1:15 @ A3	DATE: 15.6.2020		8-1

10 Lee Street, Haymarket

Note: Depth measurements are along the length of the hole.

CLIENT: Vertical First Pty L	td	TITLE: W4 Cross Section
OFFICE: Sydney	DRAWN BY: JDB	Proposed Commerci
SCALE: 1:15 @ A3	DATE: 15.6.2020	8-10 Lee Street, Hayı

Appendix D

Field Work Results

Sampling

Sampling is carried out during drilling or test pitting to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thinwalled sample tube into the soil and withdrawing it to obtain a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Test Pits

Test pits are usually excavated with a backhoe or an excavator, allowing close examination of the insitu soil if it is safe to enter into the pit. The depth of excavation is limited to about 3 m for a backhoe and up to 6 m for a large excavator. A potential disadvantage of this investigation method is the larger area of disturbance to the site.

Large Diameter Augers

Boreholes can be drilled using a rotating plate or short spiral auger, generally 300 mm or larger in diameter commonly mounted on a standard piling rig. The cuttings are returned to the surface at intervals (generally not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube samples.

Continuous Spiral Flight Augers

The borehole is advanced using 90-115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow sampling or in-situ testing. This is a relatively economical means of drilling in clays and sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are disturbed and may be mixed with soils from the sides of the hole. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively low reliability, due to the remoulding, possible mixing or softening of samples by groundwater.

Non-core Rotary Drilling

The borehole is advanced using a rotary bit, with water or drilling mud being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from the rate of penetration. Where drilling mud is used this can mask the cuttings and reliable identification is only possible from separate sampling such as SPTs.

Continuous Core Drilling

A continuous core sample can be obtained using a diamond tipped core barrel, usually with a 50 mm internal diameter. Provided full core recovery is achieved (which is not always possible in weak rocks and granular soils), this technique provides a very reliable method of investigation.

Standard Penetration Tests

Standard penetration tests (SPT) are used as a means of estimating the density or strength of soils and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, Methods of Testing Soils for Engineering Purposes - Test 6.3.1.

The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300 mm. In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form.

 In the case where full penetration is obtained with successive blow counts for each 150 mm of, say, 4, 6 and 7 as:

 In the case where the test is discontinued before the full penetration depth, say after 15 blows for the first 150 mm and 30 blows for the next 40 mm as:

15, 30/40 mm

Sampling Methods

The results of the SPT tests can be related empirically to the engineering properties of the soils.

Dynamic Cone Penetrometer Tests / Perth Sand Penetrometer Tests

Dynamic penetrometer tests (DCP or PSP) are carried out by driving a steel rod into the ground using a standard weight of hammer falling a specified distance. As the rod penetrates the soil the number of blows required to penetrate each successive 150 mm depth are recorded. Normally there is a depth limitation of 1.2 m, but this may be extended in certain conditions by the use of extension rods. Two types of penetrometer are commonly used.

- Perth sand penetrometer a 16 mm diameter flat ended rod is driven using a 9 kg hammer dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the density of sands and is mainly used in granular soils and filling.
- Cone penetrometer a 16 mm diameter rod with a 20 mm diameter cone end is driven using a 9 kg hammer dropping 510 mm (AS 1289, Test 6.3.2). This test was developed initially for pavement subgrade investigations, and correlations of the test results with California Bearing Ratio have been published by various road authorities.

Soil Descriptions

Description and Classification Methods

The methods of description and classification of soils and rocks used in this report are based on Australian Standard AS 1726-1993, Geotechnical Site Investigations Code. In general, the descriptions include strength or density, colour, structure, soil or rock type and inclusions.

Soil Types

Soil types are described according to the predominant particle size, qualified by the grading of other particles present:

Туре	Particle size (mm)
Boulder	>200
Cobble	63 - 200
Gravel	2.36 - 63
Sand	0.075 - 2.36
Silt	0.002 - 0.075
Clay	<0.002

The sand and gravel sizes can be further subdivided as follows:

Туре	Particle size (mm)
Coarse gravel	20 - 63
Medium gravel	6 - 20
Fine gravel	2.36 - 6
Coarse sand	0.6 - 2.36
Medium sand	0.2 - 0.6
Fine sand	0.075 - 0.2

The proportions of secondary constituents of soils are described as:

Term	Proportion	Example
And	Specify	Clay (60%) and Sand (40%)
Adjective	20 - 35%	Sandy Clay
Slightly	12 - 20%	Slightly Sandy Clay
With some	5 - 12%	Clay with some sand
With a trace of	0 - 5%	Clay with a trace of sand

Definitions of grading terms used are:

- Well graded a good representation of all particle sizes
- Poorly graded an excess or deficiency of particular sizes within the specified range
- Uniformly graded an excess of a particular particle size
- Gap graded a deficiency of a particular particle size with the range

Cohesive Soils

Cohesive soils, such as clays, are classified on the basis of undrained shear strength. The strength may be measured by laboratory testing, or estimated by field tests or engineering examination. The strength terms are defined as follows:

Description	Abbreviation	Undrained shear strength (kPa)
Very soft	VS	<12
Soft	S	12 - 25
Firm	f	25 - 50
Stiff	st	50 - 100
Very stiff	vst	100 - 200
Hard	h	>200

Cohesionless Soils

Cohesionless soils, such as clean sands, are classified on the basis of relative density, generally from the results of standard penetration tests (SPT), cone penetration tests (CPT) or dynamic penetrometers (PSP). The relative density terms are given below:

Relative Density	Abbreviation	SPT N value	CPT qc value (MPa)
Very loose	vl	<4	<2
Loose		4 - 10	2 -5
Medium dense	md	10 - 30	5 - 15
Dense	d	30 - 50	15 - 25
Very dense	vd	>50	>25

Soil Descriptions

Soil Origin

It is often difficult to accurately determine the origin of a soil. Soils can generally be classified as:

- Residual soil derived from in-situ weathering of the underlying rock;
- Transported soils formed somewhere else and transported by nature to the site; or
- Filling moved by man.

Transported soils may be further subdivided into:

- Alluvium river deposits
- Lacustrine lake deposits
- Aeolian wind deposits
- Littoral beach deposits
- Estuarine tidal river deposits
- Talus scree or coarse colluvium
- Slopewash or Colluvium transported downslope by gravity assisted by water. Often includes angular rock fragments and boulders.

Rock Descriptions

Rock Strength

Rock strength is defined by the Point Load Strength Index $(Is_{(50)})$ and refers to the strength of the rock substance and not the strength of the overall rock mass, which may be considerably weaker due to defects. The test procedure is described by Australian Standard 4133.4.1 - 2007. The terms used to describe rock strength are as follows:

Term	Abbreviation	Point Load Index Is ₍₅₀₎ MPa	Approximate Unconfined Compressive Strength MPa*
Extremely low	EL	<0.03	<0.6
Very low	VL	0.03 - 0.1	0.6 - 2
Low	L	0.1 - 0.3	2 - 6
Medium	М	0.3 - 1.0	6 - 20
High	Н	1 - 3	20 - 60
Very high	VH	3 - 10	60 - 200
Extremely high	EH	>10	>200

* Assumes a ratio of 20:1 for UCS to $Is_{(50)}$. It should be noted that the UCS to $Is_{(50)}$ ratio varies significantly for different rock types and specific ratios should be determined for each site.

Degree of Weathering

The degree of weathering of rock is classified as follows:

Term	Abbreviation	Description
Extremely weathered	EW	Rock substance has soil properties, i.e. it can be remoulded and classified as a soil but the texture of the original rock is still evident.
Highly weathered	HW	Limonite staining or bleaching affects whole of rock substance and other signs of decomposition are evident. Porosity and strength may be altered as a result of iron leaching or deposition. Colour and strength of original fresh rock is not recognisable
Moderately weathered	MW	Staining and discolouration of rock substance has taken place
Slightly weathered	SW	Rock substance is slightly discoloured but shows little or no change of strength from fresh rock
Fresh stained	Fs	Rock substance unaffected by weathering but staining visible along defects
Fresh	Fr	No signs of decomposition or staining

Degree of Fracturing

The following classification applies to the spacing of natural fractures in diamond drill cores. It includes bedding plane partings, joints and other defects, but excludes drilling breaks.

Term	Description
Fragmented Fragments of <20 mm	
Highly Fractured	Core lengths of 20-40 mm with some fragments
Fractured	Core lengths of 40-200 mm with some shorter and longer sections
Slightly Fractured	Core lengths of 200-1000 mm with some shorter and longer sections
Unbroken Core lengths mostly > 1000 mm	

Rock Descriptions

Rock Quality Designation

The quality of the cored rock can be measured using the Rock Quality Designation (RQD) index, defined as:

where 'sound' rock is assessed to be rock of low strength or better. The RQD applies only to natural fractures. If the core is broken by drilling or handling (i.e. drilling breaks) then the broken pieces are fitted back together and are not included in the calculation of RQD.

Stratification Spacing

For sedimentary rocks the following terms may be used to describe the spacing of bedding partings:

Term	Separation of Stratification Planes
Thinly laminated	< 6 mm
Laminated	6 mm to 20 mm
Very thinly bedded	20 mm to 60 mm
Thinly bedded	60 mm to 0.2 m
Medium bedded	0.2 m to 0.6 m
Thickly bedded	0.6 m to 2 m
Very thickly bedded	> 2 m

Symbols & Abbreviations

Introduction

These notes summarise abbreviations commonly used on borehole logs and test pit reports.

Drilling or Excavation Methods

С	Core drilling
R	Rotary drilling
SFA	Spiral flight augers
NMLC	Diamond core - 52 mm dia
NQ	Diamond core - 47 mm dia
HQ	Diamond core - 63 mm dia
PQ	Diamond core - 81 mm dia

Water

\triangleright	Water seep
\bigtriangledown	Water level

Sampling and Testing

- A Auger sample
- B Bulk sample
- D Disturbed sample
- E Environmental sample
- U₅₀ Undisturbed tube sample (50mm)
- W Water sample
- pp Pocket penetrometer (kPa)
- PID Photo ionisation detector
- PL Point load strength Is(50) MPa
- S Standard Penetration Test V Shear vane (kPa)

Description of Defects in Rock

The abbreviated descriptions of the defects should be in the following order: Depth, Type, Orientation, Coating, Shape, Roughness and Other. Drilling and handling breaks are not usually included on the logs.

Defect Type

В	Bedding plane
Cs	Clay seam
Cv	Cleavage
Cz	Crushed zone
Ds	Decomposed seam
F	Fault
J	Joint
Lam	Lamination
Pt	Parting
Sz	Sheared Zone
V	Vein

Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

- h horizontal
- v vertical
- sh sub-horizontal
- sv sub-vertical

Coating or Infilling Term

cln	clean
со	coating
he	healed
inf	infilled
stn	stained
ti	tight
vn	veneer

Coating Descriptor

ca	calcite
cbs	carbonaceous
cly	clay
fe	iron oxide
mn	manganese
slt	silty

Shape

cu	curved
ir	irregular
pl	planar
st	stepped
un	undulating

Roughness

ро	polished
ro	rough
sl	slickensided
sm	smooth
vr	very rough

Other

fg	fragmented
bnd	band
qtz	quartz

Symbols & Abbreviations

Graphic Symbols for Soil and Rock

General

0	

Asphalt Road base

Concrete

Filling

Soils

Topsoil

Peat Clay

Silty clay

Sandy clay

Gravelly clay

Shaly clay

Silt

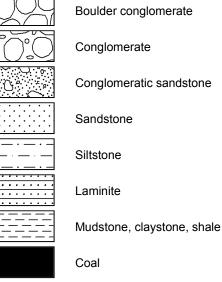
Clayey silt

Sandy silt

Sand

Clayey sand

Silty sand

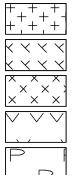

Gravel

Sandy gravel

Talus

Sedimentary Rocks

Limestone


Metamorphic Rocks

Slate, phyllite, schist

Quartzite

Gneiss

Igneous Rocks

Granite

Dolerite, basalt, andesite

Dacite, epidote

Tuff, breccia

Porphyry

SURFACE LEVEL: 20.1 AHD **EASTING:** 333968 **NORTHING:** 6249242 **DIP/AZIMUTH:** 90°/--

BORE No: BH101 **PROJECT No: 86767.03** DATE: 8/4/2020 SHEET 1 OF 1

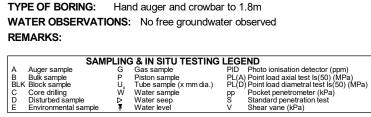
,			1				n. 90/		
		Description	.ic		Sam		& In Situ Testing	ř	VWP
님	Depth (m)	of	Graphic Log	e	oth	ple	Results &	Water	Construction
		Strata	Ū	Type	Depth	Sample	Results & Comments	>	Details
20-	- 0.1-	FILL/BALLAST	$ \rangle\rangle$		0.1			1	
Ĩ	. 0.1	FILL/Silty CLAY: medium plasticity, pale brown and grey,		А	0.1		PID=2.9 ppm		[
	.	FILL/Silty CLAY: medium plasticity, pale brown and grey, with fine angular sandstone gravel, trace brick and organic fragments, w~PL, generally in a loose condition	\mathbb{K}		0.2				
	0.4		\mathbb{X}						-
	.	FILL/SAND and GRAVEL: fine to medium sand, pale grey, fine to coarse angular sandstone cobbles gravel and	\mathbb{K}		0.5				-
-	.	fine to coarse angular sandstone cobbles, gravel and bricks, moist, generally in a dense condition	\bigotimes	A	0.6		PID=1.8 ppm		-
	-		\mathbb{X}						-
ł	-		\otimes						-
				Α	0.9		PID=1.2 ppm		
	- 1		\otimes		1.0				
	.								
	.								-
	.		\otimes	_	1.4				-
-	-			A	1.5		PID=3.3 ppm		-
	-								-
	•								F
	- 1.8-	Bore discontinued at 1.8m							
	-2	- Target depth reached							-2
-@	.								-
	.								-
	-								-
+	.								-
	.								-
	.								
Ĩ									[
	.								-
	-3								-3
-1-	.								-
	.								-
	-								-
	-								-
Ī									
	.								
	.								-
$\left \right $	-4								-4
-9	.								- I
	.								F
	.								-
[]									
	.								
	.								-
	.								-
								<u> </u>	
	7 . U.a. d	Taala DDU LED. Tinktaita					CACINI	_	

RIG: Hand Tools

A Auger sample B Bulk sample BLK Block sample

CDE

Core drilling Disturbed sample Environmental sample


DRILLER: Tightsite

LOGGED: NB

CASING: Uncased

Douglas Partners

Geotechnics | Environment | Groundwater

G P U, W

₽

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

CLIENT:

PROJECT:

Photo D1 – View within borehole BH101, showing the sand and gravel fill encountered at shallow depth below the rail ballast / ground surface level between the rail carriage dormitories.

Photo D2 – View of fill obtained from Borehole BH101.

	Borehole Photographs	PROJECT:	86867.00
Douglas Partners Geotechnics Environment Groundwater	Proposed Commercial Development	PLATE No:	D1
	8-10 Lee Street, Haymarket	REV:	0
	CLIENT: Vertical First Pty Ltd	DATE:	13/05/2020

SURFACE LEVEL: 20.1 AHD **EASTING:** 333976 **NORTHING:** 6249251 **DIP/AZIMUTH:** 90°/-- BORE No: BH102 PROJECT No: 86767.03 DATE: 8/4/2020 SHEET 1 OF 1

							H: 90°/	-	SHEET 1 OF 1
Da	pth	Description	hic				& In Situ Testing		; VWP
	n)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
	-+	FILL/BALLAST		•		ö		_	
	0.1	FILL/Silty GRAVEL: fine to medium, dark grey, trace sand	\mathbb{X}	A	0.1		PID=1.1 ppm		-
		and clay, moist, generally in a loose condition			0.2				
	0.3	FILL/SAND: fine to medium, pale yellow brown and grey,	\mathbb{X}						
		with silt, trace clay lenses, moist, generally in a loose condition	\mathbb{K}		0.5				-
				A	0.6		PID=1.6 ppm		-
									-
. 1					1.0				
1				А	1.0		PID=2 ppm		
									-
									-
									-
				А	1.5 1.6		PID=1.1 ppm		
					1.0				-
									-
•			\otimes						-
-2				А	2.0		PID=1.7 ppm		-2
					2.1				
									-
-				A	2.4		PID=2.4 ppm		-
•					2.5		1 ID-2.4 ppm		-
	2.6	FILL/SAND: fine to medium, pale grey, trace silt, moist,	\bigotimes						
-		generally in a loose condition							-
	2.9	FILL/Silty CLAY: medium plasticity, orange, pale yellow	\bigotimes						-
- 3		and black, trace sand and gravel, with ash, w>PL,	\otimes						-3
		generally in a stiff condition		А	3.1		PID=1.4 ppm		-
			\bigotimes		3.2				
									-
		Below 3.5m: grading to dark grey and black, with fine to		A	3.5		PID=4.1 ppm		-
		medium sand and angular gravel			3.6		1 ib=4.1 ppiii		-
									-
-4	4.0	FILL/Sandy GRAVEL: fine to medium gravel, dark grey	\bigotimes	A	4.0		PID=3 ppm		-4
		and black, fine to coarse sand, trace ash, moist, generally			4.1		PID=3 ppm		
		in a medium dense condition							
			\bigotimes						
	4.5	FILL (Silt) CLAV, high plasticity arease releval	\bigotimes		4.5				-
		FILL/Silty CLAY: high plasticity, orange, pale yellow and pale grey, trace ash, w <pl, a="" condition<="" firm="" generally="" in="" td=""><td></td><td>A</td><td>4.6</td><td></td><td>PID=2.2 ppm</td><td></td><td> </td></pl,>		A	4.6		PID=2.2 ppm		
	4.7	Sandy CLAY CH: high plasticity, pale grey, w <pl,< td=""><td>1.7.7</td><td>A</td><td>4.7</td><td></td><td>PID=1.7 ppm</td><td></td><td>† </td></pl,<>	1.7.7	A	4.7		PID=1.7 ppm		†
		appears firm, residual	\. <u>/</u> ./		4.8 4.9				
	5.0	Bore discontinued at 5.0m	<u> / . /</u>	A	5.0		PID=1.1 ppm		
		Bore discontinued at 5.0m Toolsarget depth reached DRILLER: NB							

WATER OBSERVATIONS: No free groundwater observed REMARKS:

	SAM	PLINC	3 & IN SITU TESTING	LEGE	ND
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
	Bulk sample	Р	Piston sample	PL(A)	Point load axial test Is(50) (MPa)
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D)	Point load diametral test ls(50) (MPa)
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D	Disturbed sample	⊳	Water seep	S	Standard penetration test
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)

SURF

PROJECT:Proposed Commercial Development**LOCATION:**8-10 Lee Street, Haymarket

CLIENT:

Vertical First Pty Ltd

SURFACE LEVEL: 21.2 AHD **EASTING:** 333978 **NORTHING:** 6249263 **DIP/AZIMUTH:** 90°/-- BORE No: BH103 PROJECT No: 86767.00 DATE: 15 - 16/4/2020 SHEET 1 OF 2

-		Description	Degree of Weathering	je.	Rock Strength	Fracture	Discontinuities			-	n Situ Testin
De (n		of		Graphic Log		Spacing (m)	B - Bedding J - Joint	Type	Core Rec. %	ac %	Test Resul &
	<i>`</i>	Strata	HW HW SW FR SW	G	Very Low Low Medium Very High Ex High		S - Shear F - Fault	Ţ	ပိမ္မ	Я Х	∝ Comment
	0.0-	FILL/ CONCRETE		$Q \cdot Q$							
1	0.25 -	FILL/ SAND: fine to medium, pale brown, trace silt, moist, generally in a very loose condition						A			PID=3
	1.7	FILL/ Silty CLAY: low plasticity, pale		$\overset{\times}{\times}$				<u> </u>			PID=1.3
2		grey-orange and dark grey, with angular sandstone, shale, ironstone gravel, w>PL, generally in a stiff to very stiff condition		\bigotimes				<u> </u>			
	2.5	FILL/ Silty CLAY: low to medium plasticity, red brown, w <pl, generally in a firm condition</pl, 		\bigotimes							PID=2.4
3		5		\bigotimes				A			2,2,2
				\bigotimes				S	-		N = 4
4								S			1,0,0 N = 0
5	4.9-	FILL/ Silty SAND: fine to coarse, dark grey and brown, trace fine gravel, moist, generally in a very loose condition						_ A			PID=0
6				\times							257
	6.3 -	SAND SP: fine to medium, pale grey, moist, medium dense, alluvial		\times				S	-		3,5,7 N = 12
7	7.0 -	Sandy CLAY CI-CH: medium to high plasticity, dark red-orange, w>PL, very stiff, residual									2,6,14
8				·/·/· ·/·/·				A	-		N = 20
				./.							
9	8.5	SANDSTONE: fine grained, dark brown, pale grey and orange-grey, highly weathered with extremely weathered bands, low strength with		· · · · · · · · · · · · · · · · · · ·			8.5m-8.85m: fractured 8.85m: Ds 250mm	с	100	0	
	9.15-	Very low strength bands, fractured, Mittagong Formation					9.12m: Ds 10mm 9.19m: Ds 20mm 9.28m: J90°, st, ro, fe stn 9.52m: B0°, pl, ro, fe co 9.67m: Ds 20mm	с	100	100	

TYPE OF BORING: Diatube to 0.25m, Hand tools to 2.6m, SFA (TC-bit) to 8.5m, NMLC to 10.8m

WATER OBSERVATIONS: No free groundwater observed during drilling

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

REMARKS: Standpipe installed: 0-8.5m Blank PVC pipe, 8.5-9.3m Slotted PVC pipe, End cap at 9.3m, Backfill 0-7.5m, Bentonite 7.5-8.5m, Sand filter 8.5-9.3m, Bentonite 9.3-10.8m, Gatic cover at surface. Hole pre-drilled 8 April 2020 to 2.6m depth

	SAMP	PLIN	3 & IN SITU TESTING	LEG	END				
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)				
B	Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)		Doualo	-	Partners
BI	K Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test Is(50) (MPa)	1.1		A	Parlners
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)				
D	Disturbed sample	⊳	Water seep	S	Standard penetration test		Oration Later 1 Fr		and at 1 And the state
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics Er	nviro	nment Groundwater

SURFACE LEVEL: 21.2 AHD **EASTING:** 333978 **NORTHING:** 6249263 **DIP/AZIMUTH:** 90°/-- BORE No: BH103 PROJECT No: 86767.00 DATE: 15 - 16/4/2020 SHEET 2 OF 2

\square		Description	De	gree o	f d L	R	Medium Medium Very High Ex High		Fracture	е	Discontinuities	Sa	amplii	ng & I	n Situ Testing
RL	Depth (m)	of			a pl a			/ate	Spacing (m)	3	B - Bedding J - Joint	e	e%	Δ	Test Results
	(11)	Strata	≥ ≥	≧≷ø	_م]	× Lov	Figh High High		0.10	0.	S - Shear F - Fault	Type	S S	RQD %	& Comments
\vdash	.	SANDSTONE: fine to medium		201							[֊] 9.86m: Ds 30mm				PL(A) = 0.65
	- - - -	grained, pale yellow, moderately then slightly weathered, medium strength, slightly fractured, Hawkesbury Sandstone							 		10.25m: B5°, pl, ro, fe co	с	100	100	PL(A) = 0.49
	10.8	Bore discontinued at 10.8m					┹┼╌┼╌┼	1	╞──┼┼──╄						FL(A) = 0.49
- F	-11	Target depth reached		ii						i					
-9	-									1					
E										¦					
	:		l i i	İİ		1 i				İ					
	- 12														
	:		l i i	ii		l i i				i					
È Ì	.														
E															
			į į	ļ											
ŀ	-13														
	:		į į	İİ						i					
	.														
Ē	.		i i	Ϊİ		l i i	İİİ		i ii i	i					
E	-14														
E	- 14			i i						i					
	:			11						1					
	:														
	:		i i	ii		ii	iii		i ii i	i					
F F	- 15														
-0	-			ii						i					
[
[:														
<u> </u>	.		[]	İİ						İ					
	- 16														
-0-	:		i i												
E															
	:														
ţ ļ	- 17														
4	:														
 	.		į į	ΪÌ		lii	İİİ		i ii i	İ					
Ē	.														
[i i			İİ				1					
ŀ	-18														
-~	.														
<u> </u>	:														
	:														
E	- 19		l i i	1 I		i i	i i i			İ.					
E	- 19														
	.		ii					1 1	i ii i	1					
ţ !	.														
	.														
Ŀ	-		LLİ	<u> i i </u>											

RIG: XC 100

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Terratest

LOGGED: NB

CASING: HQ to 8.5m

TYPE OF BORING: Diatube to 0.25m, Hand tools to 2.6m, SFA (TC-bit) to 8.5m, NMLC to 10.8m

WATER OBSERVATIONS: No free groundwater observed during drilling

REMARKS: Standpipe installed: 0-8.5m Blank PVC pipe, 8.5-9.3m Slotted PVC pipe, End cap at 9.3m, Backfill 0-7.5m, Bentonite 7.5-8.5m, Sand filter 8.5-9.3m, Bentonite 9.3-10.8m, Gatic cover at surface. Hole pre-drilled 8 April 2020 to 2.6m depth

	SAMPLIN	IG & IN SITU TESTIN	IG LEGEND	
A Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
B Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	Douglas Partners
BLK Block sample	U,	Tube sample (x mm dia.)) PL(D) Point load diametral test ls(50) (MPa)	A Douglas Partners
C Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	
D Disturbed sampl	> ⊳	Water seep	S Standard penetration test	Oratistaine Fredering at 1 Oracin durates
E Environmental s	imple 📱	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwater

SURFACE LEVEL: 21.2 AHD **EASTING:** 333983 **NORTHING:** 6249272 **DIP/AZIMUTH:** 90°/-- BORE No: BH104 PROJECT No: 86767.00 DATE: 14 - 15/4/2020 SHEET 1 OF 2

		Description	Degree of Weathering	<u>.</u>	Rock Strength	Fracture	Discontinuities			-	n Situ Testing
צ	Depth (m)	of		Graphic Log		Spacing (m)	B - Bedding J - Joint	Type	Core Rec. %	۵°	Test Results &
	(,	Strata	FIS W W W	Ū			S - Shear F - Fault	⊨≻	ပို ပိ	8~	∝ Comments
21		FILL/ CONCRETE		<u>A</u> 2							
	0.25	FILL/ SAND: fine to medium, pale brown, trace silt, moist, generally in a very loose condition		X				A			PID=0.8
20	0.8 1 1.0	FILL/ Silty CLAY: medium plasticity, pale orange, trace fine sand, w>PL, generally in a stiff condition		X				A			PID=1.2 PID=5.7
	2 2.0 -	FILL/ Silty CLAY: low plasticity, pale grey-orange and dark grey, with angular sandstone, shale and ironstone gravel, w>PL, generally in a soft to firm condition									PID=0 2,2,2 N = 4
19		FILL/ Silty CLAY: medium plasticity, red-brown mottled orange, trace fine sand and gravel, w <pl, generally="" in<br="">a soft to firm condition</pl,>		\bigotimes							PID=0
ŧ	3			\bigotimes				<u> </u>			
₽ - - -				\bigotimes				s			1,2,2 N = 4
17	4							s			2,1,2
° • • • • • •	5 5.0 -	Below 4.8m: trace ash and medium sand SAND SP: dark yellow-orange, 10% non plastic fines, moist, medium dense, alluvial									N = 3
GL	6							s			3,5,8 N = 13
14	7										
	7.63 - 8	SANDSTONE: fine grained, dark brown, pale grey and orange-grey, highly then moderately weathered with extremely weathered bands, high and medium strength with very low strength bands, fractured, Mittagong Formation					7.73m: Ds 70mm 7.8m: Ds 40mm 8.08m: Ds 30mm	с	100	60	PL(A) = 0.84
	9 8.95						8.65m: CORE LOSS: 300mm				
	9.42	SANDSTONE: refer following page					9.65m: Ds 10mm	С	80	50	

RIG: XC 100

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Terratest

LOGGED: NB

CASING: HQ to 7.63m

TYPE OF BORING: Diatube to 0.25m, Hand tools to 1.1m, SFA (TC-bit) to 7.63m, NMLC to 20m

WATER OBSERVATIONS: No free groundwater observed during drilling

REMARKS: Standpipe installed: 0-14.0m Blank PVC pipe, 14.0-20m Slotted PVC pipe, End cap at 20m, Backfill 0.1-6.5m, Bentonite 6.5-13.5m, Sand filter 13.5-20m, Gatic cover at surface. Hole pre-drilled 8 April 2020 to 1.1m depth. *BD2/140420 replicate: 1.4-1.5m

SAMPLING & IN SITU TESTING LEGEND	
A Auger sample G Gas sample PID Photo ionisation detector (ppm)	
B Bulk sample P Piston sample PL(A) Point load axial test Is(50) (MPa)	glas Partners
BLK Block sample U, Tube sample (x mm dia.) PL(D) Point load diametral test Is(50) (MPa)	lias Pariners
C Core drilling W Water sample pp Pocket penetrometer (kPa)	JING I WI CITOLO
D Disturbed sample D Water seep S Standard penetration test	I Frankright I Commenter
E Environmental sample 📱 Water level V Shear vane (kPa)	s Environment Groundwater

SURFACE LEVEL: 21.2 AHD **EASTING:** 333983 **NORTHING:** 6249272 **DIP/AZIMUTH:** 90°/-- BORE No: BH104 PROJECT No: 86767.00 DATE: 14 - 15/4/2020 SHEET 2 OF 2

		Description	Degree of Weathering	jc	Rock Strength		Sa	amplii	ng & I	n Situ Testing
Ł	Depth (m)	of	Degree of Weathering ﷺ ≩ ≩ ਨੇ ღ ∰	iraph Log	Strength Mean Space Space (m) Space	B - Bedding J - Joint	Type). %	RQD %	Test Results &
		Strata	W H M S S H H	G		S - Shear F - Fault	♪	ы С Я	Я°	Comments
10	- 11	SANDSTONE: fine to medium grained, pale grey with grey bands, fresh, medium and high strength, slightly fractured then unbroken, Hawkesbury Sandstone				↓ 1 ↓ 1 ↓ 1 ↓ 11.06m: Cs 2mm ↓ 11.09m: Cs 2mm	с	100		PL(A) = 0.77 PL(A) = 0.95
6	-12					1 12m: Cs 4mm	с	100	100	PL(A) = 0.94
8	- 13					13.37m: J60°, pl, he				PL(A) = 1.2
2	- 14	Between 14.52m-14.58m: band of				13.77m-13.84m: B5° (x3), st, ro, cbs co 	с	100	95	PL(A) = 0.66
9 1 1 1	- 15	dark grey siltstone					с	100	100	PL(A) = 1.5
5	- 16					 >>				PL(A) = 1.2
4	- 17						с	100	100	PL(A) = 1.3
3	- 18						с	100	100	PL(A) = 1.3
2	- 19									PL(A) = 2.6
		Bore discontinued at 20.0m Target depth reached					с	100	100	PL(A) = 1

RIG: XC 100

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

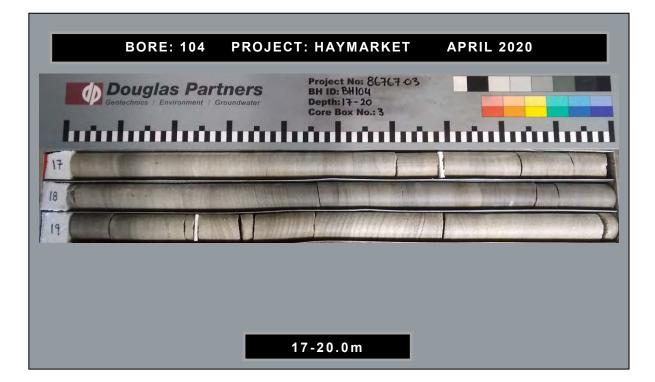
Proposed Commercial Development

DRILLER: Terratest

LOGGED: NB

CASING: HQ to 7.63m

TYPE OF BORING: Diatube to 0.25m, Hand tools to 1.1m, SFA (TC-bit) to 7.63m, NMLC to 20m


WATER OBSERVATIONS: No free groundwater observed during drilling

REMARKS: Standpipe installed: 0-14.0m Blank PVC pipe, 14.0-20m Slotted PVC pipe, End cap at 20m, Backfill 0.1-6.5m, Bentonite 6.5-13.5m, Sand filter 13.5-20m, Gatic cover at surface. Hole pre-drilled 8 April 2020 to 1.1m depth. *BD2/140420 replicate: 1.4-1.5m

	SAN	IPLING	3 & IN SITU TESTING	LEGEND	
A	Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
B	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	Douglas Partners
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)	A Douglas Partners
C	Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	Deugiae i ai citore
D	Disturbed sample	⊳	Water seep	S Standard penetration test	Oratistics Englanding 1 Oracin the local
E	Environmental sample	¥	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwater

SURFACE LEVEL: 21.2 AHD **EASTING:** 333978 **NORTHING:** 6249263 **DIP/AZIMUTH:** 90°/-- BORE No: BH103 PROJECT No: 86767.00 DATE: 15 - 16/4/2020 SHEET 1 OF 2

_	41-	Description	.e _		Sam		& In Situ Testing	_ <u>~</u>	Well		
	epth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details		
		FILL/ CONCRETE	44	·					Gatic Cover and		
	0.25 -	FILL/ SAND: fine to medium, pale brown, trace silt, moist, generally in a very loose condition		A	0.25		PID=3				
1				A	1.0 1.1 1.5				-1		
2	1.7	FILL/ Silty CLAY: low plasticity, pale grey-orange and dark grey, with angular sandstone, shale, ironstone gravel,			1.6		PID=1.3		-2		
2	2.5 -	w>PL, generally in a stiff to very stiff condition		<u>A</u>	2.0						
3	2.0	FILL/ Silty CLAY: low to medium plasticity, red brown, w <pl, a="" condition<="" firm="" generally="" in="" td=""><td></td><td>A</td><td>2.5 2.6 2.9 3.0</td><td></td><td>PID=2.4</td><td></td><td>-3</td></pl,>		A	2.5 2.6 2.9 3.0		PID=2.4		-3		
5				s	3.45		2,2,2 N = 4				
4					• 4.5		1,0,0		-1 -2 -3 Backfill and Blank PVC pipe -5 -5		
5	4.9 -	FILL/ Silty SAND: fine to coarse, dark grey and brown, trace fine gravel, moist, generally in a very loose condition		S A	4.95 5.0 5.1		N = 0 PID=0		-5		
6				s	6.0		3,5,7		6		
	6.3 -	SAND SP: fine to medium, pale grey, moist, medium dense, alluvial			6.45		N = 12				
7	7.0 -	Sandy CLAY CI-CH: medium to high plasticity, dark red-orange, w>PL, very stiff, residual							7		
8				A	7.5		2,6,14 N = 20		-8 Bentonite Seal		
	8.5 -				8.5						
9		SANDSTONE: fine grained, dark brown, pale grey and orange-grey, highly weathered with extremely weathered bands, low strength with very low strength bands, fractured, Mittagong Formation		С					Sand filter		
	9.15	SANDSTONE: refer following page		с	9.18				End Cap		

TYPE OF BORING: Diatube to 0.25m, Hand tools to 2.6m, SFA (TC-bit) to 8.5m, NMLC to 10.8m

WATER OBSERVATIONS: No free groundwater observed during drilling

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

REMARKS: Standpipe installed: 0-8.5m Blank PVC pipe, 8.5-9.3m Slotted PVC pipe, End cap at 9.3m, Backfill 0-7.5m, Bentonite 7.5-8.5m, Sand filter 8.5-9.3m, Bentonite 9.3-10.8m, Gatic cover at surface. Hole pre-drilled 8 April 2020 to 2.6m depth

	SAM	PLIN	G & IN SITU TESTING	LEG	END								
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)							-	
E	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)		Doug		-		0		-
E	LK Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test ls(50) (MPa)							LNE	
	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)								
10	Disturbed sample	⊳	Water seep	S	Standard penetration test		Orstanbaire	1 5-				0	
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics	I En	viro	nme	ent i	Ground	vater

SURFACE LEVEL: 21.2 AHD **EASTING**: 333978 **NORTHING**: 6249263 **DIP/AZIMUTH**: 90°/-- BORE No: BH103 PROJECT No: 86767.00 DATE: 15 - 16/4/2020 SHEET 2 OF 2

				DIF	P/AZII		H: 90°/		SHEET 2 OF 2
	_	Description	ic		Sam		& In Situ Testing	L	Well
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
11		SANDSTONE: fine to medium grained, pale yellow, moderately then slightly weathered, medium strength, slightly fractured, Hawkesbury Sandstone		С	9.96		PL(A) = 0.65		Bentonite plug
10	- 11	Bore discontinued at 10.8m Target depth reached			_10.75_ 10.8				-11
- - - - - - - -	- 12								- 12
	- 13								- 13
	- 14								- 14
- 9	- 15								- 15
	- 16								- 16
- +	- 17								- 17
	- 18								- 18
2	- 19								- 19
-	-								
	o . VO 4						CACING		

RIG: XC 100

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Terratest

LOGGED: NB

CASING: HQ to 8.5m

TYPE OF BORING: Diatube to 0.25m, Hand tools to 2.6m, SFA (TC-bit) to 8.5m, NMLC to 10.8m

WATER OBSERVATIONS: No free groundwater observed during drilling

REMARKS: Standpipe installed: 0-8.5m Blank PVC pipe, 8.5-9.3m Slotted PVC pipe, End cap at 9.3m, Backfill 0-7.5m, Bentonite 7.5-8.5m, Sand filter 8.5-9.3m, Bentonite 9.3-10.8m, Gatic cover at surface. Hole pre-drilled 8 April 2020 to 2.6m depth

	SAN	IPLIN	3 & IN SITU TESTING	LEG	END		
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		
B	Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)	Douglas Partners	
BLI	K Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test Is(50) (MPa)		
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	October 1 Fredering at 1 Organization	1
E	Environmental sample	¥	Water level	V	Shear vane (kPa)	Geotechnics Environment Groundwate	r
· · · · ·					()		

SURFACE LEVEL: 21.2 AHD EASTING: 333983 **NORTHING:** 6249272 **DIP/AZIMUTH:** 90°/--

BORE No: BH104 **PROJECT No: 86767.00** DATE: 14 - 15/4/2020 SHEET 1 OF 2

					Sam		g & In Situ Testing		SHEET I OF 2		
	epth	Description of	Graphic Log	e				Water	Well Construction		
((m)	Strata	5	Type	Depth	Sample	Results & Comments	3	Details		
-	0.25 -	FILL/ CONCRETE	4.4		0.25				Gatic Cover and		
_	0.25	FILL/ SAND: fine to medium, pale brown, trace silt, moist, generally in a very loose condition		A	0.25		PID=0.8		Backfill and Blank PVC pipe		
-	0.8-				0.0				ŧ I 🕅		
-1	1.0	FILL/ Silty CLAY: medium plasticity, pale orange, trace ∖fine sand, w>PL, generally in a stiff condition //		A	0.8 0.9 1.0		PID=1.2 PID=5.7				
-		FILL/ Silty CLAY: low plasticity, pale grey-orange and dark		A	1.0		FID-3.7		E I 🕅		
-		grey, with angular sandstone, shale and ironstone gravel, w>PL, generally in a soft to firm condition		A*	1.4 1.5		PID=0				
-				s			2,2,2 N = 4		F 🕅		
-2	2.0	FILL/ Silty CLAY: medium plasticity, red-brown mottled	\bigotimes		1.95				2		
		orange, trace fine sand and gravel, w <pl, a="" condition<="" firm="" generally="" in="" soft="" td="" to=""><td></td><td></td><td></td><td></td><td></td><td></td><td>ŧ I 🕅</td></pl,>							ŧ I 🕅		
				A	2.8 2.9		PID=0		E I 🛛		
3					3.0		1,2,2				
				s	3.45		N = 4		Backfill and Blank		
					0.10						
- 4									E, I 🕅		
4									*		
					4.5				ŧ I 🕅		
				s			2,1,2 N = 3		ŧ I 🕅		
-5	5.0	Below 4.8m: trace ash and medium sand			4.95		N=3		-5		
		SAND SP: dark yellow-orange, 10% non plastic fines, moist, medium dense, alluvial							ŧ I 🕅		
									E I 🕅		
6					6.0		2 5 9		F6		
				s	0.45		3,5,8 N = 13		E I 🕅		
					6.45						
•7											
	7.63	SANDSTONE: fine grained, dark brown, pale grey and			7.63						
8		orange-grey, highly then moderately weathered with extremely weathered bands, high and medium strength							-8		
		with very low strength bands, fractured, Mittagong Formation		С	8.24		PL(A) = 0.84				
			$\overline{\mathbf{X}}$		8.65						
9	8.95								9		
				с							
	9.42	SANDSTONE: refer following page									

RIG: XC 100

DRILLER: Terratest

LOGGED: NB

CASING: HQ to 7.63m

TYPE OF BORING: Diatube to 0.25m, Hand tools to 1.1m, SFA (TC-bit) to 7.63m, NMLC to 20m

WATER OBSERVATIONS: No free groundwater observed during drilling

REMARKS: Standpipe installed: 0-14.0m Blank PVC pipe, 14.0-20m Slotted PVC pipe, End cap at 20m, Backfill 0.1-6.5m, Bentonite 6.5-13.5m, Sand filter 13.5-20m, Gatic cover at surface. Hole pre-drilled 8 April 2020 to 1.1m depth. *BD2/140420 replicate: 1.4-1.5m

SAMPLING & IN SITU TESTING LEGEND	
A Auger sample G Gas sample PID Photo ionisation detector (ppm)	
B Bulk sample P Piston sample PL(A) Point load axial test Is(50) (MPa)	Douglas Partners
BLK Block sample U, Tube sample (x mm dia.) PL(D) Point load diametral test ls(50) (M	
C Core drilling W Water sample pp Pocket penetrometer (kPa)	Deugiae : ai there
D Disturbed sample D Water seep S Standard penetration test	October 1 Frankranski 1 Organista
E Environmental sample 📱 Water level V Shear vane (kPa)	Geotechnics Environment Groundwater

Vertical First Pty Ltd Proposed Commercial Development LOCATION: 8-10 Lee Street, Haymarket

SURFACE LEVEL: 21.2 AHD **EASTING:** 333983 **NORTHING:** 6249272 **DIP/AZIMUTH:** 90°/-- BORE No: BH104 PROJECT No: 86767.00 DATE: 14 - 15/4/2020 SHEET 2 OF 2

Description	ic		Sam		& In Situ Testing	Ļ.	Well		
of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details		
SANDSTONE: fine to medium grained, pale grey with grey bands, fresh, medium and high strength, slightly fractured then unbroken, Hawkesbury Sandstone		с	9.96 10.1		PL(A) = 0.77 PL(A) = 0.95		Bentonite Seal		
		с	· 11.65 11.96		PL(A) = 0.94		12		
			12.96 • 13.2		PL(A) = 1.2		- 13		
Potucon 14 50m 14 50m; band of dade area of the		с	13.96		PL(A) = 0.66		-14		
Between 14.52m-14.58m: band of dark grey siltstone		с	14.69 14.96		PL(A) = 1.5		-15		
			15.96 • 16.23		PL(A) = 1.2		- 16 Sand filter		
		С	16.96 17.61		PL(A) = 1.3		17 Slotted PVC pipe		
		с	17.96		PL(A) = 1.3		-18		
Bore discontinued at 20.0m		с	18.96 19.23		PL(A) = 2.6		-19		
0 Target depth reached			19,9		PL(A) = 1		End cap		

RIG: XC 100

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

TYPE OF BORING: Diatube to 0.25m, Hand tools to 1.1m, SFA (TC-bit) to 7.63m, NMLC to 20m

WATER OBSERVATIONS: No free groundwater observed during drilling

REMARKS: Standpipe installed: 0-14.0m Blank PVC pipe, 14.0-20m Slotted PVC pipe, End cap at 20m, Backfill 0.1-6.5m, Bentonite 6.5-13.5m, Sand filter 13.5-20m, Gatic cover at surface. Hole pre-drilled 8 April 2020 to 1.1m depth. *BD2/140420 replicate: 1.4-1.5m

SAMPLING & IN SITU TESTING LEGEND	
A Auger sample G Gas sample PID Photo ionisation detector (ppm)	
B Bulk sample P Piston sample PL(A) Point load axial test ls(50) (MPa)	Douglas Partners
BLK Block sample U, Tube sample (x mm dia.) PL(D) Point load diametral test Is(50) (MPa)	N Douglas Partners
C Core drilling W Water sample pp Pocket penetrometer (kPa)	Douglao i ai thoio
D Disturbed sample D Water seep S Standard penetration test	Contractoria) Francisco et 1 Consumption
E Environmental sample 📱 Water level V Shear vane (kPa)	Geotechnics Environment Groundwater

 SURFACE LEVEL:
 20.1 AHD

 EASTING:
 333988

 NORTHING:
 6249270

 DIP/AZIMUTH:
 90°/-

BORE No: BH105 PROJECT No: 86767.03 DATE: 7/4/2020 SHEET 1 OF 2

		Description	je		Sam		& In Situ Testing	5	VWP	
R	Depth (m)	of	Graphic Log	ЭС	oth	ple	Results &	Water	Construction	
	(,	Strata	Ū_	Type	Depth	Sample	Results & Comments	>	Details	
	0.05	¬_FILL/BALLAST		A	0.05		PID=2.5 ppm			
-2-	0.1			<u> </u>	0.1		Pid=2.5 ppm		-	
T I		FILL/Silty CLAY: medium plasticity, dark grey, with angular gravel and organic matter and fragments of plastic, w~PL, generally in a firm condition							Ť l	
	0.37	BRICK PAVEMENT	/ 						[
			, <u>, , ,</u> , , , , , , , , , , , , , , ,						-	
		CONCRETE: grey, orange and yellow-brown, with inclusions of sub-angular to sub-rounded, high strength	Q.Q.						-	
		sandstone	12.12						-	
-			4:×						-	
-			4.4.						-	
	-1		<u></u>						-1	
-1-			Q Q							
									[
			1.:A							
	.		4.4						ļ	
-			A. A.						-	
-			7.4						-	
			4.4						F	
			Δ Δ							
-@	-2		4:X: A:Y:						-2	
[=]			4.4						[
			\square							
			4:× 4:×						-	
									-	
-			<u>ک</u> ک						-	
			4. A.						F	
			1 						F	
	-3		ά. ά.						-3	
[~]	- 3		4.4							
			A. A.							
			7:4						-	
-			4.4						-	
+ +			<u>.</u>						-	
	.		7.A						F	
			4.4						†	
									[
	-4		4:4: ** *						4	
-9-			1.							
	.		<u>۵</u> ۵						-	
	.								- I	
+ +									-	
	.								F	
			4.4						F	
	.								†	
			ੑਖ਼੶ਖ਼੶ਖ਼੶ਖ਼੶ਖ਼੶ਖ਼੶ਖ਼੶ਖ਼੶ਖ਼੶ਖ਼੶ਖ਼੶ਖ਼੶ਖ਼੶ਖ਼੶ਖ਼੶ਖ਼੶ਖ਼੶ਖ਼੶ਖ਼੶							
			<u>A</u> . <u>A</u> .							

 RIG:
 Proline
 DRILLER:
 Tightsite

 TYPE OF BORING:
 Diatube to 3.1m, NMLC to 6.5m

 WATER OBSERVATIONS:
 No free groundwater observed

 REMARKS:
 * Field replicate BD1/070420 taken from 0.05-0.1m

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

LOGGED: NB

CASING: HW to 3.1m

I Groundwater

RKS: * Field replicate BD1/070420 taken from 0.05-0.1

SAN	VIPLING	G&INSITUTESTIN	EEG و	END					
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)					
B Bulk sample	P	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)			Dou		Do
BLK Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test ls(50) (MPa)		1.			Pa
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)				71000	
D Disturbed sample	⊳	Water seep	S	Standard penetration test		1.	O to to	D. Frankland	and and
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			Geotechnic	s i Enviro	onment
					-				

SURFACE LEVEL: 20.1 AHD **EASTING:** 333988 **NORTHING:** 6249270 **DIP/AZIMUTH:** 90°/--

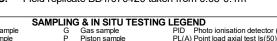
BORE No: BH105 **PROJECT No: 86767.03** DATE: 7/4/2020 SHEET 2 OF 2

_								n. 90 /		SHEET 2 OF 2
	-		th	Description	hic			& In Situ Testing	er	VWP
RL		Dep (m))	of Strata	Graphic Log	Depth	Sample	Results & Comments	Water	Construction Details
14	-		6.3 -	CONCRETE: grey, orange and yellow-brown, with inclusions of sub-angular to sub-rounded, high strength sandstone <i>(continued)</i>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
ł	ŀ		0.5	SANDSTONE: fine to medium grained, pale yellow, highly weathered, medium to high strength, Mittagong Formation						-
13	- 7		6.5 -	Bore discontinued at 6.5m - Target depth reached						- 7 - 7 7 7
-	-									
12	- 8	5								-8 - - - -
	- -9 -	9								- -9 - - -
	-					CED		CASING		- - -

RIG: Proline **DRILLER:** Tightsite TYPE OF BORING: Diatube to 3.1m, NMLC to 6.5m WATER OBSERVATIONS: No free groundwater observed REMARKS: * Field replicate BD1/070420 taken from 0.05-0.1m

CLIENT:

PROJECT:


Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

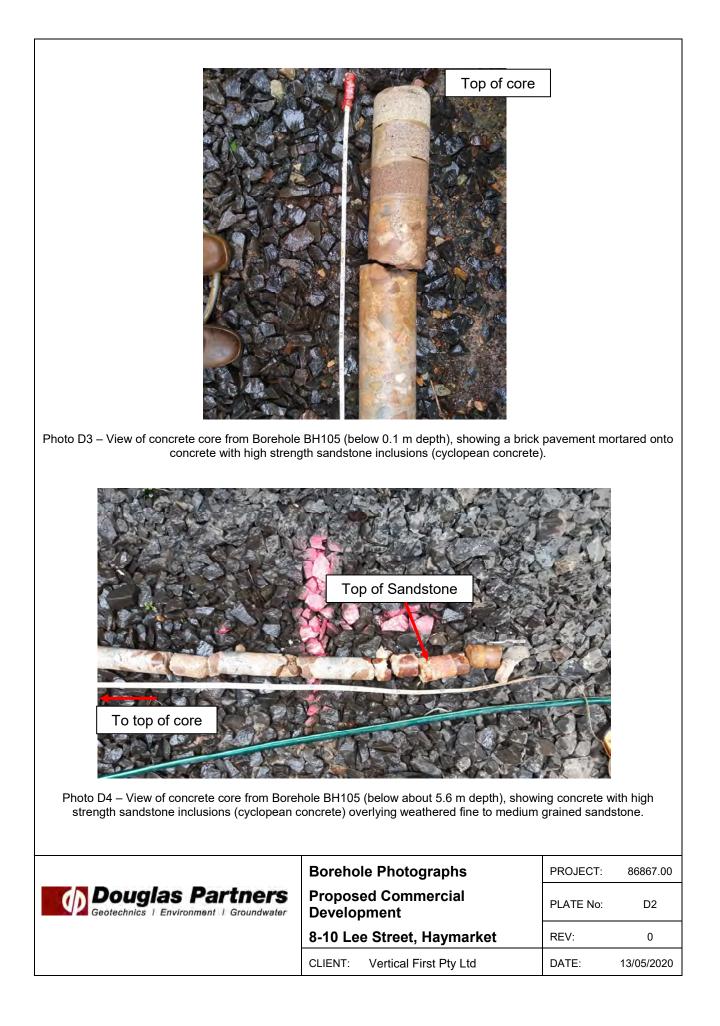
LOGGED: NB

CASING: HW to 3.1m

 LEGEND

 PID
 Photo ionisation detector (ppm)

 PL(A)
 Point load axial test Is(50) (MPa)


 PL(D)
 Point load diametral test Is(50) (MPa)

 pp
 Pocket penetrometer (kPa)

 S
 Standard penetration test

 V
 Shear vane (kPa)

 Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level A Auger sample B Bulk sample BLK Block sample G P U, W Douglas Partners Core drilling Disturbed sample Environmental sample CDE ₽ Geotechnics | Environment | Groundwater

SURFACE LEVEL: 15.5 AHD **EASTING:** 333980 **NORTHING:** 6249282 **DIP/AZIMUTH:** 90°/-- BORE No: BH106 PROJECT No: 86767.03 DATE: 7/4/2020 SHEET 1 OF 1

								H: 90 ^{*/}		SHEET TOF T
	Dant		Description	hic		Sam		& In Situ Testing	er -	VWP
RL	Dept (m)		of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
			CONCRETE: grey, 2-10mm igneous aggregate	A A A						-
-	- (FILL/SAND: fine to coarse, pale brown, trace seashells, moist		E E	0.16		PID=2 ppm		-
		0.3	FILL/CLAY: medium plasticity, brown, red and grey, with fine to coarse sand, trace fine to medium gravel, fine to		E E	0.3 0.4		PID=1 ppm PID=1 ppm		-
	-		medium igneous rail ballast, seashells and coal, w~PL FILL/SAND: fine to coarse, dark brown, with igneous rail			0.5				-
	- (0.8	ballast, trace coal, dry, hydrocarbon odour FILL/CLAY: medium plasticity, pale grey, red and brown, trace fine to medium gravel, w~PL							
	- - 1		Below 0.5m: apparently in a stiff condition		E	0.9 1.0		PID=1 ppm		- 1
		h	At 0.6m: tile fragment			1.15				
-	- 1.	.25	apparently very stiff, residual	_ <u> </u>	E	-1.25-		PID<1 ppm		-
4			Below 1.1m: w <pl Bore discontinued at 1.25m</pl 							
-	-		- Target depth reached							-
										-
	-									
-	-2									-2
	-									
-										-
-2										
										-
										-
-										-
	-3									-3
-										-
-5										-
	-									-
-										-
	-4									
$\left \right $	-									
ţ										[
-7-	-									-
ł	-									t l
	-									
	-									F
									•	

LOGGED: AS

 RIG: Hand Tools
 DRILLER: AS/AMS

 TYPE OF BORING:
 Diatube to 0.16m, Hand auger to 1.25m

 WATER OBSERVATIONS:
 No free groundwater observed

 REMARKS:

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 Piston sample
 PIL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 Ux
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 F
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 Water level
 V
 Shear vane (kPa)

CASING: Uncased

SURFACE LEVEL: 15.5 AHD **EASTING:** 333945 **NORTHING:** 6249270 **DIP/AZIMUTH:** 90°/-- BORE No: BH107A PROJECT No: 86767.00 DATE: 17/5/2020 SHEET 1 OF 1

Г		Description	ic		San		& In Situ Testing	5	Well	
RL	Depth (m)	of Strata	Graph Log	Type	Depth	ample	Results & Comments	Wate	Construction	ı
14 14 14 14 14 14 14 14 14 14 14 14 14 1	Depth (m) 0.14 -1 -1 -2 -2 -2 -2.81 -3 -3 -4 -5	of Strata CONCRETE: grey, angular to subangular aggregate to 15mm, negligible voids, 9 mm steel reinforcement at 0.08 m depth FILL/ Sandy CLAY: low to medium plasticity, dark red and brown, fine to medium, with angular igneous and sandstone gravel, trace silt, w <pl, a="" generally="" in="" stiff<br="">condition Below 1.0m: grading to medium plasticity, dark grey, trace sandstone gravel, w~PL FILL/ Silty CLAY: medium to high plasticity, pale grey-yellow, with fine to medium sand, w~PL, generally in a stiff condition Sandy CLAY CL: low to medium plasticity, pale yellow, fine to medium, w~PL, apparently stiff to very stiff, residual Below 2.6m: yellow-brown SANDSTONE: fine to medium grained, pale grey and red-brown, high strength with very low then low strength bands, highly weathered, fractured, Mittagong Formation</pl,>	Graphic Craphic Log	Type	San	Sample	_	05-06-20 i▲ Water		
	-6 -7 -99								-6 -7 -7 -9 -9	
RI	G: Mini	brobe DRILLER: Terratest		LOC	GGED	: NB	CASIN	G: N	Α	

TYPE OF BORING: SFA (TC-bit) to 3.9m

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Standpipe installed: 0-3.4m Blank PVC pipe, 3.4-3.9m Slotted PVC pipe, End cap at 3.9m, Sand backfill 0-1.5m, Bentonite 1.5-3.2m, Sand filter 3.2-3.9m, Gatic cover at surface.

	SAM	PLIN	3 & IN SITU TESTING	LEG	END			
	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)			
	Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)	Doug	100	Partners
	BLK Block sample	U,	Tube sample (x mm dia.)	PL(E	0) Point load diametral test ls(50) (MPa)		1125	Parlners
- 1	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		1000	
	Disturbed sample	⊳	Water seep	S	Standard penetration test	O to a built) Franker	and I American developed
	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)	Geotechnics	Enviro	onment / Groundwater
-								

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

CLIENT: PROJECT: **SURFACE LEVEL:** 15.5 AHD **EASTING:** 333945 **NORTHING:** 6249272 **DIP/AZIMUTH:** 90°/-- BORE No: BH107B PROJECT No: 86767.00 DATE: 16/5/2020 SHEET 1 OF 2

		Description	Degree of Weathering	ic.	Rock Strength ត្រ	Fracture	Discontinuities			-	n Situ Testing
Ч	Depth (m)	of	,	Graphic Log		Spacing (m)	B - Bedding J - Joint	g	e%.	Q.,	Test Results
	()	Strata	FIS & W A	Ū	Strength Neature Very Low Very High High Very High Kater	0.01	S - Shear F - Fault	Type	ပိမ္စ	RQD %	& Comments
	0.14	CONCRETE: grey, angular to subangular aggregate to 15mm, negligible voids, 9 mm steel						_ A _	/		PID=4
-5		reinforcement at 0.08 m depth		\bigotimes				A/E*			PID=5
	- 1	FILL/ Sandy CLAY: low to medium plasticity, dark red and brown, fine to medium, with angular igneous and sandstone gravel, trace silt, w <pl, generally in a stiff condition</pl, 		\bigotimes				<u>A/E</u>			PID=2
4	1.6	gravel, w~PL		\bigotimes				A/E			PID=2
	-2 2.2			X				A/E			PID=2
- 6		a stiff condition Sandy CLAY CL-CI: low to medium			02-0			A/E			PID=1
	2.81	plasticity, pale yellow, fine to medium, w~PL, apparently stiff to				 .		A/E			PID=2
	-3	very stiff, residual									PL(A) = 1.1
Ē		Below 2.6m: yellow-brown						с	100	10	
-₽		SANDSTONE: fine to medium grained, pale grey and red-brown,			╎╙┲╤╸╎╎││	╎╎╏┛╎╎					$\mathbf{D}(\mathbf{A}) = 0.4$
FF		high strength with very low then low strength bands, highly weathered,									PL(A) = 0.1
E	3.92	fractured, Mittagong Formation		X			3.81m: CORE LOSS: 110mm				
	4 4.03	SANDSTONE: fine to medium grained, pale grey and red-brown,					3.92m: Ds 80mm				PL(A) = 0.9
F_		medium then high strength,				╎╎┍┛╎	¹ 4m: Cs 30mm	С	93	75	FL(A) = 0.5
Ē		moderately weathered, fractured, Hawkesbury Sandstone				i ii i ii	4.44m: J40°, pl, ro, fe ∖ stn				
	. 4.94	-			╎┿┿┿┫╎╎││	┍═╃┽┛╎╷	4.6m: B5°, pl, ro, cly co ∫5mm				
F F	-5 4.54	SANDSTONE: fine to medium grained, pale grey, high strength,				i ii ii	4.78m: B0°, pl, ro, cly co 5mm				PL(A) = 1.5
E		fresh, slightly fractured to unbroken,					4.83m: Ds 10mm				
-9		cross-bedding 5°-10°, Hawkesbury Sandstone					^L 4.86m: B0°, ir, ro, cly co 5mm				
F F								с	100	100	
ĒĒ	-6									100	PL(A) = 1.1
Ē											
E	-7										PL(A) = 1.3
											1 2(77) 1.0
Ē								С	100	99	
		Between 7.66m-8.10m: band of fine					7.66m: Cz 10mm				
		grained sandstone									
Į į	-8										PL(A) = 1.6
	-9							с	100	100	PL(A) = 1.1
-9							>>				
E											
Ŀ				•••••							

RIG: XC

DRILLER: Terratest

LOGGED: KR

CASING: HWT to 2.8m

TYPE OF BORING: Diatube (200 mm) to 0.14m, SFA (TC-bit) to 2.81m, NMLC coring to 15.0m

WATER OBSERVATIONS: No free groundwater observed whilst augering

SAN	IPLING & IN SITU TESTING	G LEGEND	
A Auger sample	G Gas sample	PID Photo ionisation detector (ppm)	
B Bulk sample	P Piston sample	PL(A) Point load axial test Is(50) (MPa)	Douglas Partners
BLK Block sample	U _x Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)	A Douglas Partners
C Core drilling	W Water sample	pp Pocket penetrometer (kPa)	Douglas i ai chois
D Disturbed sample	Water seep	S Standard penetration test	Ocatestation 1 Environment 1 Ocasestation
E Environmental sample	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwater

SURFACE LEVEL: 15.5 AHD **EASTING:** 333945 **NORTHING:** 6249272 **DIP/AZIMUTH:** 90°/-- BORE No: BH107B PROJECT No: 86767.00 DATE: 16/5/2020 SHEET 2 OF 2

_											
		Description	Degree of Weathering ﷺ ≩ ≩ ≶ ഇ ഇ	U	Rock Strength ৮	Fracture	Discontinuities				n Situ Testing
R	Depth (m)	of	11 outlothing	aph Log	Strength Very Low High Very High Very High Strength Vater	Spacing (m)	B - Bedding J - Joint	эе	re . %	RQD %	Test Results
	(,	Strata	E S S M M M	Ō		0.01 0.05 0.05 0.01 0.01 0.01 0.01 0.01	S - Shear F - Fault	Type	ပိမ္မ	R 08%	& Comments
	- - - - - - - - - - - - - - - -	SANDSTONE: fine to medium grained, pale grey, high strength, fresh, slightly fractured to unbroken, cross-bedding 5°-10°, Hawkesbury Sandstone <i>(continued)</i>						с	100		PL(A) = 1.3 PL(A) = 1.1
3	- 12	Between 12.60m-13.78m: band of fine grained sandstone					11.3m: B0°, pl, ro, cbs co	С	100	100	PL(A) = 1.1
	- 13 - 13 						13.74m: B5°, pl, ro, cly co 5mm				PL(A) = 1 PL(A) = 1.2
-	- 15 15.0	Bore discontinued at 15.0m						с	100	100	
	- 16	- Target depth reached									
	- - - - - - - - - - - - - - - - - - -										
-3	- - - - - - - - - - - - - - - - - - -										
	- 19										

RIG: XC

CLIENT:

PROJECT:

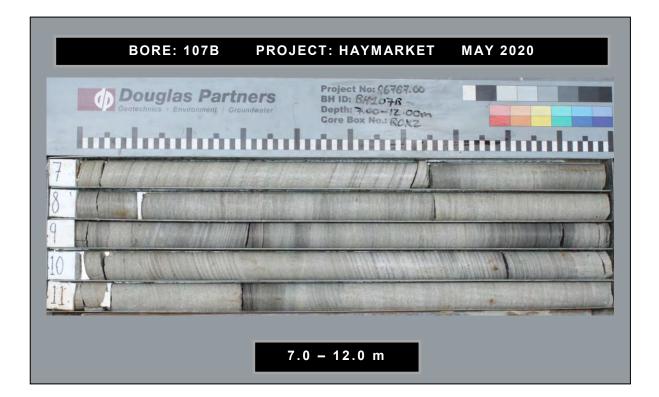
Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Terratest

LOGGED: KR


CASING: HWT to 2.8m

TYPE OF BORING: Diatube (200 mm) to 0.14m, SFA (TC-bit) to 2.81m, NMLC coring to 15.0m

WATER OBSERVATIONS: No free groundwater observed whilst augering

	SAM	PLIN	G & IN SITU TESTING	LEG	END		
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	_	
B	Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)	N	Douglas Partners
BLI	K Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test Is(50) (MPa)		Douglas Partners
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		
D	Disturbed sample	⊳	Water seep	S	Standard penetration test		Oratestation / Frankrans at / Oracestation
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics Environment Groundwater

	BORE: 10	7B PR	OJECT: H	AYMARKET	MAY 2	020
Ф Р	ouglas H	Partner	S BH	Dject No: 86767.00 ID: BH1078 pth: 2.81-7.00 re Box No.: Rox1		
hứu	հահ	ndu	nduñ	duinhu	uhund	mhm
86767.00	HAYMARKET	16.5.20	BH107B	START 2.81		SUPPORT
3 1 1/2	(Englished)	in all	j.	1)	IK I	CORE LOSS HOMM
4					141.11.)	
5			And the same of		ana manana manana manana manana manana manana manana manana manana manana manana manana manana manana manana m	
6 (//	and the second					
		_				
			2.81 -	7.0 m		

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

CLIENT: PROJECT: **SURFACE LEVEL:** 15.5 AHD **EASTING:** 333945 **NORTHING:** 6249272 **DIP/AZIMUTH:** 90°/-- BORE No: BH107B PROJECT No: 86767.00 DATE: 16/5/2020 SHEET 1 OF 2

					DIF	/AZII	NUT	H: 90°/		SHEET 1 OF 2	
	_		Description	.ci		Sam		& In Situ Testing	<u> </u>	Well	
!	De (n	pth n)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details	
		0.14 -	CONCRETE: grey, angular to subangular aggregate to 15mm, negligible voids, 9 mm steel reinforcement at 0.08 m depth		A A/E*	0.15 0.2 0.4 0.5		PID=4 PID=5		Gatic Cover and Cap	
	- 1	-	FILL/ Sandy CLAY: low to medium plasticity, dark red and brown, fine to medium, with angular igneous and sandstone gravel, trace silt, w <pl, a="" generally="" in="" stiff<br="">condition</pl,>		_A/E_	0.9		PID=2		- 1	
		1.6 -	^L Below 1.0m: grading to medium plasticity, dark grey, trace sandstone gravel, w~PL		A/E	1.4 1.5		PID=2		Backfill and Blank	
	-2		FILL/ Silty CLAY: medium to high plasticity, pale grey-yellow, with fine to medium sand, w~PL, generally in a stiff condition		_A/E_	1.9 2.0		PID=2	₹ ₀	2	
		2.2 -	Sandy CLAY CL-CI: low to medium plasticity, pale yellow, fine to medium, w~PL, apparently stiff to very stiff, residual Below 2.6m: yellow-brown		A/E	2.4 2.5 2.65		PID=1	05-06-20		
	- 3	2.81 -	SANDSTONE: fine to medium grained, pale grey and red-brown, high strength with very low then low strength bands, highly weathered, fractured, Mittagong Formation		A/E C	2.8 2.81 2.94		PID=2 PL(A) = 1.1		-3	
		3.92		\sim		3.57 3.62		PL(A) = 0.1		Bentonite Seal	
	-4	4.03	SANDSTONE: fine to medium grained, pale grey and red-brown, medium then high strength, moderately weathered, fractured, Hawkesbury Sandstone		С	4.25		PL(A) = 0.9			
	- 5	4.94 -	SANDSTONE: fine to medium grained, pale grey, high strength, fresh, slightly fractured to unbroken, cross-bedding 5°-10°, Hawkesbury Sandstone			5.0 5.12		PL(A) = 1.5		-5 Sand filter	
	-6				с	6.0		PL(A) = 1.1		6	
	-7					6.59 7.0		PL(A) = 1.3			
					с						
	-8		Between 7.66m-8.10m: band of fine grained sandstone			8.0 8.12		PL(A) = 1.6		-8	
										Slotted PVC pipe	
	9				с	9.0		PL(A) = 1.1		-9	
						10.0		PL(A) = 1.3			

RIG: XC

DRILLER: Terratest

LOGGED: KR

CASING: HWT to 2.8m

TYPE OF BORING: Diatube (200 mm) to 0.14m, SFA (TC-bit) to 2.81m, NMLC coring to 15.0m

WATER OBSERVATIONS: No free groundwater observed whilst augering

	SAN	IPLIN	3 & IN SITU TESTING	i LEG	END		
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		
E	Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)	Douglas Partners	i i
E	ILK Block sample	U,	Tube sample (x mm dia.)	PL(E	0) Point load diametral test ls(50) (MPa)	I Douglas Partners	í.
0	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		÷
	Disturbed sample	⊳	Water seep	S	Standard penetration test	Contractoria / Environment / Converting	1
E	Environmental sample	ž	Water level	V	Shear vane (kPa)	Geotechnics Environment Groundwater	
_							

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

CLIENT: PROJECT: **SURFACE LEVEL:** 15.5 AHD **EASTING:** 333945 **NORTHING:** 6249272 **DIP/AZIMUTH:** 90°/-- BORE No: BH107B PROJECT No: 86767.00 DATE: 16/5/2020 SHEET 2 OF 2

			DIF	7/AZII	NUT	H: 90°/		SHEET 2 OF 2
	Description	jc		Sam		& In Situ Testing	L.	Well
교 Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
	SANDSTONE: fine to medium grained, pale grey, high strength, fresh, slightly fractured to unbroken, cross-bedding 5°-10°, Hawkesbury Sandstone (continued)		С	11.02		PL(A) = 1.1		-11 End Cap
				11.07		PL(A) = 1.1		Bentonite Seal
	Between 12.60m-13.78m: band of fine grained sandstone		С	13.03		PL(A) = 1		-13 Sand Back Fill
			с	14.0 14.08		PL(A) = 1.2		-14
	Bore discontinued at 15.0m - Target depth reached			-15.0-				15 15
16 16 								-16
17 17 								-17
18 18 18 								-18
								- 19

RIG: XC

DRILLER: Terratest

LOGGED: KR

CASING: HWT to 2.8m

TYPE OF BORING: Diatube (200 mm) to 0.14m, SFA (TC-bit) to 2.81m, NMLC coring to 15.0m

WATER OBSERVATIONS: No free groundwater observed whilst augering

	SAM	PLIN	G & IN SITU TESTING	G LEG	END	
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	
B	Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)	Douglas Partners
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(E	0) Point load diametral test ls(50) (MPa)	A Douglas Partners
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	Deugiae i ai titere
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	Oratestation 1 Environment 1 Oracestation
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)	Geotechnics Environment Groundwater
E	Environmental sample	ŧ	vvater level	V	Shear vane (KPa)	

SURFACE LEVEL: 15.5 AHD **EASTING:** 333966 **NORTHING:** 6249307 **DIP/AZIMUTH:** 90°/-- BORE No: BH108 PROJECT No: 86767.03 DATE: 17/5/2020 SHEET 1 OF 1

							H: 90°/		SHEET 1 OF 1
		Description	ji		Sam		& In Situ Testing	5	VWP
교 Dep (m	pth n)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
		CONCRETE: grey, 2-10mm igneous aggregate	0.D						-
	0.21 0.23	FILL/Sandy CLAY: low plasticity, dark brown, fine to medium sand, w~PL		<u>E</u> _/	0.23 0.25		PID=2 ppm		-
- 1 6-		CLAY CI: medium plasticity, pale grey mottled pale brown and red, w~PL, residual			0.6				-
		Below 0.6m: trace fine to medium ironstone gravel		E	0.8		PID=2 ppm		-
1	1.05	SANDSTONE: fine to medium grained, pale grey, highly			1.05				-1
	1.2-	weathered, very low strength, with clay and ironstone bands, Hawkesbury Sandstone		E	-1.2-		PID=2 ppm		-
-4-		- Target depth reached. Auger refusal							
2									-2
									-
-13-									
									-
									-
3									-3
									-
-9-									-
-4									-4
 -≂-									

RIG: Miniprobe DRILLER: Terratest

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

CLIENT:

PROJECT:

LOGGED: AS

CASING: Uncased

TYPE OF BORING: Pushtube to 1.2m WATER OBSERVATIONS: No free groundwater observed REMARKS:

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PILO
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 U
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 p
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 P
 Water level
 V
 Shadr vane (kPa)

SURFACE LEVEL: 15.3 AHD **EASTING:** 333968 **NORTHING:** 6249312 **DIP/AZIMUTH:** 90°/--

BORE No: BH109A PROJECT No: 86767.00 DATE: 19/5/2020 SHEET 1 OF 1

				DIF		NOT	H: 90°/		SHEET 1 OF 1
		Description	lic		Sam		& In Situ Testing	L.	VWP
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.2 0.3 1 1.05 1.15	FILL/ GRAVEL: coarse, black, angular igneous gravel bonded by bitumen, dry, generally in a dense condition Silty CLAY CI: medium plasticity, pale orange, w <pl, apparently stiff to very stiff, residual (possibly extremely weathered Ashfield Shale)</pl, 	$\dot{\nabla}$						-1
	2	SANDSTONE: fine to medium grained, pale grey and dark orange, highly weathered, medium strength, Hawkesbury Sandstone Bore discontinued at 1.15m - Refusal to TC-bit auger							2
13									
12	3								-3
	4								4
	5								-5
	6								6
-6-									
	7								7
	8								-8
	9								-9
9	Ŭ								
									-

RIG: Miniprobe

DRILLER: Terratest TYPE OF BORING: SFA (TC-bit) to 1.15m

LOGGED: NB

CASING: NA

WATER OBSERVATIONS: No free groundwater observed whilst drilling **REMARKS:** Surface level taken from survey drawing provided

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

CLIENT:

PROJECT:

SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level A Auger sample B Bulk sample BLK Block sample G P U, W Core drilling Disturbed sample Environmental sample CDE ₽

SURFACE LEVEL: 15.3 AHD **EASTING:** 333970 **NORTHING:** 6249311 **DIP/AZIMUTH:** 90°/-- BORE No: BH109B PROJECT No: 86767.00 DATE: 17/5/2020 SHEET 1 OF 2

\square		Degree of Rock Fracture Discontinuities					Sampling & In Situ Testing				
님	Depth	of	Weathering	Graphic Log		Spacing (m)	B - Bedding J - Joint	Ð	• %		Test Results
	(m)	_	H M M M M M M M M M M M M M M M M M M M	5	Ex Low Very Low High Very High Ex High		S - Shear F - Fault	Type	Core Rec. %	RQI %	& Comments
14 1 15 1	0.2- 0.3 1 1.05	CONCRETE: grey, angular to subangular aggregate to 15mm, negligible voids, no reinforcement steel observed FILL/ GRAVEL: coarse, black, angular igneous gravel bonded by bitumen, dry, generally in a dense condition Silty CLAY CI: medium plasticity,					1.05m: Ds 50mm ∖1.17m: B0°, un, ro, fe co	A/E A/E C	100	20	PID<1 PID<1 PL(A) = 1.8
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 3 2.93	pale orange, w <pl, apparently="" stiff<br="">to very stiff, residual (possibly extremely weathered Mittagong Formation) SANDSTONE: fine to medium grained, pale grey and dark orange, highly weathered, medium strength, fractured, Hawkesbury Sandstone SANDSTONE: fine to coarse</pl,>			₩ 02-90-60		1.23m-1.25m: B0° (x3), pl, ro, fe stn 1.29m & 1.37m: B0°, pl, ro, fe stn 1.55m: J80°, pl, ro, op 1.73m & 1.81m: B0°, pl, ro, fe co 1.92m: Cs 5mm 2.02m & 2.25m: J60°, pl, he 2.3m: Cs 10mm 2.4m; 2.45m; B0° (x2)	с	100	40	PL(A) = 0.7
	4	grained, pale grey and pale yellow, moderately weathered then slightly weathered, medium strength, slightly fractured, cross-bedding 5°-10°, Hawkesbury Sandstone					2.4m-2.45m: B0° (x3), un, ro, fe co 2.56m: Ds 20mm 2.61m: B2°, un, ro, fe co 2.64m: B0°, un, ro, fe co 2.72m: Ds 10mm 2.79m: Ds 5mm 2.84m: Ds 2mm 2.9m: B2°, pl, ro, fe co 3.1m: Cs 2mm 3.16m: B0°, pl, ro, fe co 4.02m: J45°, pl, ro, fe co	С	100	90	PL(A) = 0.5 PL(A) = 0.7
	4.9 - 5	SANDSTONE: fine to coarse grained, pale grey, fresh, medium then high strength, slightly fractured then unbroken, cross-bedding 5°-10°, Hawkesbury Sandstone					4.2m: Ds 20mm	с	100	100	PL(A) = 0.9 PL(A) = 1
	7						>>	с	100	100	PL(A) = 0.7 PL(A) = 1.2
ĒĒ								с	100	100	
	8			· · · · · · · · · · · · · · · · · · ·			7.86m - 7.89m: Cs 2mm (x2)				PL(A) = 1.8
	9							с	100	100	PL(A) = 1.9
				· · · · · · · · · · · · · · · · · · ·				с	100	100	

RIG: XC

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Terratest

LOGGED: NB

CASING: HWT to 1.05m

TYPE OF BORING: Diatube (200mm) to 0.2m, SFA (TC-bit) to 1.05m, NMLC coring to 15m **WATER OBSERVATIONS:** No free groundwater observed whilst drilling

REMARKS: Standpipe installed: 0-6.0m Blank PVC pipe, 6.0-11.6m Slotted PVC pipe, End cap at 11.6m, Sand backfill 0-1.05m, Bentonite 1.05-5.2m, Sand filter 5.2-11.6m, Bentonite 11.6-13.0m, Backfill 13.0-15.0m, Gatic cover at surface. Surface level taken from survey

	SAM	PLIN	3 & IN SITU TESTING	LEGEND	
A	Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	Douglas Partners
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)	A Douglas Partners
C	Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	Bougiao i ai citoro
D	Disturbed sample	⊳	Water seep	S Standard penetration test	Contractoria I Environment I Communication
E	Environmental sample	¥	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwater

SURFACE LEVEL: 15.3 AHD **EASTING:** 333970 **NORTHING:** 6249311 **DIP/AZIMUTH:** 90°/-- BORE No: BH109B PROJECT No: 86767.00 DATE: 17/5/2020 SHEET 2 OF 2

_											
		Description	Degree of Weathering	<u>.0</u>	Rock Strength Indiana Strength Indiana Spacin Spacin Spacin Spacin Spacin Spacin (m) Spa		Discontinuities				n Situ Testing
RL	Depth (m)	of	- Vocationing	aph		ng	B - Bedding J - Joint	ЭС	e %	D	Test Results
	(11)	Strata	a ≩ ≹ ≳ o ⊭	ତ_		.00	S - Shear F - Fault	Type	S S	RQD %	& Comments
F	-					11			-		PL(A) = 1.4
-0	-	grained, pale grey, fresh, medium then high strength, slightly fractured						с	100	100	
F	-	then unbroken, cross-bedding	i i i i i			ii I		C	100	100	
E		5°-10°, Hawkesbury Sandstone (continued)									
Ł	- 11	(continued)				ii I					PL(A) = 1.8
Ł											1 2(7) 1.0
-4	-					P					
Ē								С	100	100	
E											
ł	- 12										PL(A) = 1.2
-0											
ŀ	-					i i 🗌					
E											
ł	- 13		i i i i i			ii I					PL(A) = 1.4
ŀ								С	100	100	(.)
-~	-		i i i i i			ii I					
Ē											
-						ii I					
-	- 14										PL(A) = 1.3
	-					ii I					
Ē	-							С	100	100	
ŀ	_					; ;) ; ;)	14.6m: Ds 10mm 14.62m: J45°, st, he				
ŀ	- -15 15.0	Data discontinued at 15 Ora									
÷	-	Bore discontinued at 15.0m - Target depth reached									
Ē	_	5									
ł											
È	_					i i					
Ē	- 16										
-											
ŧ											
ŧ	-					ļi					
Ē	- 17										
Ę						ii					
[-										
ŧ											
Ē	- 18										
E	10					11					
÷٩	-										
ŧ	-										
Ē											
E	-19										
4	-										
ŧ											
Ē											
-	-										

RIG: XC

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Terratest

LOGGED: NB


CASING: HWT to 1.05m

TYPE OF BORING: Diatube (200mm) to 0.2m, SFA (TC-bit) to 1.05m, NMLC coring to 15m **WATER OBSERVATIONS:** No free groundwater observed whilst drilling

REMARKS: Standpipe installed: 0-6.0m Blank PVC pipe, 6.0-11.6m Slotted PVC pipe, End cap at 11.6m, Sand backfill 0-1.05m, Bentonite 1.05-5.2m, Sand filter 5.2-11.6m, Bentonite 11.6-13.0m, Backfill 13.0-15.0m, Gatic cover at surface. Surface level taken from survey

	SAM	PLINC	3 & IN SITU TESTING	LEGEND	
A	Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
B	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	Douglas Partners
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)	A Douglas Partners
C	Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	Douglao i ai choro
D	Disturbed sample	⊳	Water seep	S Standard penetration test	Contractoria I Francisco et al Consumatoria
E	Environmental sample	ž	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwater

SURFACE LEVEL: 15.3 AHD EASTING: 333970 NORTHING: 6249311 **DIP/AZIMUTH:** 90°/--

BORE No: BH109B **PROJECT No: 86767.00 DATE:** 17/5/2020 **SHEET** 1 OF 2

D.a	Description	. <u> </u>		Sam		In Situ Testing	<u>~</u>	Well		
Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details		
0.2 0.3	\FILL/ GRAVEL: coarse, black, angular igneous gravel		A/E	0.4 0.5		PID<1		Gatic Cover and cap		
¹ 1.05	bonded by bitumen, dry, generally in a dense condition Silty CLAY CI: medium plasticity, pale orange, w <pl, apparently stiff to very stiff, residual (possibly extremely weathered Mittagong Formation)</pl, 		A/E	0.9 1.05 1.16		PID<1 PL(A) = 1.8		PVC pipe		
	SANDSTONE: fine to medium grained, pale grey and dark orange, highly weathered, medium strength, fractured, Hawkesbury Sandstone		с	1.65						
2			с	2.11		PL(A) = 0.7	09-06-20 I	-2		
3 2.93	SANDSTONE: fine to coarse grained, pale grey and pale yellow, moderately weathered then slightly weathered, medium strength, slightly fractured, cross-bedding 5°-10°, Hawkesbury Sandstone			3.1 3.11		PL(A) = 0.5		-3 Bentonite Seal		
4			С	3.92		PL(A) = 0.7		-4		
4.9 5	SANDSTONE: fine to coarse grained, pale grey, fresh, medium then high strength, slightly fractured then			4.65 4.93 5.04		PL(A) = 0.9 PL(A) = 1		-5		
6	unbroken, cross-bedding 5°-10°, Hawkesbury Sandstone		С	6.0		PL(A) = 0.7		Sand filter		
			с							
7			с	7.0 7.4		PL(A) = 1.2				
8				7.75 8.0		PL(A) = 1.8		8		
9			С	9.0		PL(A) = 1.9		Slotted PVC pipe		
			с	_10.0_		PL(A) = 1.4				

TYPE OF BORING: Diatube (200mm) to 0.2m, SFA (TC-bit) to 1.05m, NMLC coring to 15m

WATER OBSERVATIONS: No free groundwater observed whilst drilling

REMARKS: Standpipe installed: 0-6.0m Blank PVC pipe, 6.0-11.6m Slotted PVC pipe, End cap at 11.6m, Sand backfill 0-1.05m, Bentonite 1.05-5.2m, Sand filter 5.2-11.6m, Bentonite 11.6-13.0m, Backfill 13.0-15.0m, Gatic cover at surface. Surface level taken from survey

SAMPI	LING 8	& IN SITU TESTING	LEGE	END							
A Auger sample	GO	Gas sample	PID	Photo ionisation detector (ppm)							
B Bulk sample	P P	Piston sample) Point load axial test Is(50) (MPa)		Dou	-	00	Dos	at man	-
BLK Block sample	U, T	Гube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)				0.5	Par		
C Core drilling	W W	Vater sample	pp	Pocket penetrometer (kPa)			-				
D Disturbed sample	⊳ V	Vater seep	S	Standard penetration test		O tracher		Francisco	anna at 1	Our construction	
E Environmental sample	¥ V	Vater level	V	Shear vane (kPa)		Geotechn	ICS	Enviro	nment I	Grounaw	/ater
D Disturbed sample	⊵ V	Vater seep	pp S V	Standard penetration test	V V	Geotechn			COLUMN TO A	Groundw	

Proposed Commercial Development LOCATION: 8-10 Lee Street, Haymarket

Vertical First Pty Ltd

SURFACE LEVEL: 15.3 AHD **EASTING:** 333970 NORTHING: 6249311 **DIP/AZIMUTH:** 90°/--

BORE No: BH109B **PROJECT No: 86767.00** DATE: 17/5/2020 SHEET 2 OF 2

				DIF			-: 90°/		SHEET 2 OF 2
	_	Description	jc		Sam		& In Situ Testing	ř	Well
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
4	11	SANDSTONE: fine to coarse grained, pale grey, fresh, medium then high strength, slightly fractured then unbroken, cross-bedding 5°-10°, Hawkesbury Sandstone (continued)		с	10.73		PL(A) = 1.8		
	12			с	12.0 • 12.38		PL(A) = 1.2		End Cap
	13			С	13.0		PL(A) = 1.4		-13
	14			с	13.88 14.0		PL(A) = 1.3		- 14 Sand Back Fill
	15 15.0 -	Bore discontinued at 15.0m - Target depth reached	<u> :::::</u>		-15.0-				
	16								16
	17								- 17
ε. 	18								- 18
- +	19								- 19

RIG: XC

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Terratest

LOGGED: NB TYPE OF BORING: Diatube (200mm) to 0.2m, SFA (TC-bit) to 1.05m, NMLC coring to 15m CASING: HWT to 1.05m

WATER OBSERVATIONS: No free groundwater observed whilst drilling

REMARKS: Standpipe installed: 0-6.0m Blank PVC pipe, 6.0-11.6m Slotted PVC pipe, End cap at 11.6m, Sand backfill 0-1.05m, Bentonite 1.05-5.2m, Sand filter 5.2-11.6m, Bentonite 11.6-13.0m, Backfill 13.0-15.0m, Gatic cover at surface. Surface level taken from survey

	SAN	IPLINC	3 & IN SITU TESTING	LEGEND	
A	Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
B	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	Douglas Partners
BLI	K Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)	A Douglas Partners
C	Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	Dougido i di titoro
D	Disturbed sample	⊳	Water seep	S Standard penetration test	Contractoria I Frankrament I Commenter
E	Environmental sample	¥	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwater

SURFACE LEVEL: 15.3 AHD **EASTING:** 333960 NORTHING: 6249314 DIP/AZIMUTH: 90°/--

BORE No: BH110 PROJECT No: 86767.00 DATE: 20/5/2020 SHEET 1 OF 1

Sampling & In Situ Testing VWP Graphic Description Water Depth Log 뭅 Sample Construction of Depth Results & Comments (m) Type Details Strata CONCRETE: grey, angular to subangular aggregate to 15mm, negligible voids, no reinforcement <u>له</u> ک 0.2 0.2 FILL/ SAND: fine to coarse, pale orange, moist, generally А PID<1 0.3 0.3 \in a medium dense condition FILL/ Silty CLAY: medium to high plasticity, pale grey mottled orange, with fine to coarse sand and brick, 0.5 А PID<1 concrete and asphalt fragments, w<PL, generally in a stiff 0.6 0.6 \condition Bore discontinued at 0.6m - Termination on brick and concrete fragments 1 1 -2 -2 e - 3 -3 .₽ -4 - 4

RIG: Hand tools DRILLER: Nick Ruha/NB TYPE OF BORING: Diatube (100mm) to 0.2m, then hand auger **REMARKS:** Surface level taken from survey drawing provided

CLIENT:

PROJECT:

LOCATION:

Vertical First Pty Ltd

8-10 Lee Street, Haymarket

Proposed Commercial Development

LOGGED: NB

CASING: NA

WATER OBSERVATIONS: No free groundwater observed whilst drilling

SAMPLING & IN SITU TESTING LEGEND Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample G P U,x W Core drilling Disturbed sample Environmental sample CDE ₽

SURFACE LEVEL: 18.7 AHD **EASTING:** 333945 **NORTHING:** 6249317 **DIP/AZIMUTH:** 90°/--

BORE No: BH111 **PROJECT No: 86767.00 DATE:** 19/5/2020 SHEET 1 OF 2

_								H: 90 /		
	_		Description	. <u>.</u>		Sam		& In Situ Testing	r.	VWP
Ъ	De (n	pth n)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction
	,	,	Strata	G	Ţ	De	San	Comments		Details
		0.05	ASPHALTIC CONCRETE	$ XX\rangle$						-
			FILL/ ROADBASE: fine to coarse, dark grey, angular igneous gravel, fine to coarse sand, dry, generally in a dense condition FILL/ SAND: fine to coarse, pale grey and brown, moist, generally in a loose to medium dense condition		U/E	0.4		PID<1		- - -
- 6			FILL/ Silty CLAY: low to medium plasticity, dark grey and brown, w <pl, a="" condition<br="" generally="" in="" stiff="">Below 0.6m, grading to sandy clay, pale orange and dark orange, fine to medium sand</pl,>							-
		1.2-	FILL/ SAND: fine to medium, dark brown and grey, trace		U/E	1.1 1.2		PID<1		-
			silt, moist, generally in a medium dense to dense condition		U/E	1.3 1.4		PID<1		
	-2	2.0				2.0				-2
	- 2	2.0-	SAND SP: fine to medium, pale grey, moist, apparently loose, alluvial		U/E	2.0		PID<1		-2
	-3	3.2 -	Below 2.4m: grading to pale orange		U/E*	3.0 3.1		PID<1		-3
		0.2	Silty CLAY CI: medium plasticity, pale orange mottled dark red, with ironstone gravel, w <pl, apparently="" stiff="" to="" very<br="">stiff, residual (possibly extremely weathered Mittagong Formation)</pl,>							- - - - - -
	- 4		Below 4.4m: grading to pale grey		U/E	4.0		PID<1		

RIG: Geoprobe

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Terratest TYPE OF BORING: Push tube to 5.4m

LOGGED: NB

CASING: NA

WATER OBSERVATIONS: No free groundwater observed whilst drilling

REMARKS: *BD1/190520NB taken at 3-3.1m. Surface level taken from survey drawing provided

S	AMPLIN	IG & IN SITU TESTING	LEG	END		
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		
B Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)	Douglas Part	MA NO
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)		ners
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		
D Disturbed sample	⊳	Water seep	S	Standard penetration test	Out the later of Freedoments of C	and a second second second second second second second second second second second second second second second
E Environmental samp	e 📱	Water level	V	Shear vane (kPa)	Geotechnics Environment G	roundwater

SURFACE LEVEL: 18.7 AHD **EASTING:** 333945 NORTHING: 6249317 DIP/AZIMUTH: 90°/--

BORE No: BH111 PROJECT No: 86767.00 DATE: 19/5/2020 SHEET 2 OF 2

Sampling & In Situ Testing Graphic Log VWP Description Water Depth 뭅 Sample Construction of Depth Type Results & Comments (m) Details Strata Silty CLAY CI: medium plasticity, pale orange mottled dark red, with ironstone gravel, w<PL, apparently stiff to very stiff, residual (possibly extremely weathered Mittagong Formation) (continued) 5.4 Bore discontinued at 5.4m - Target depth reached 6 -6 .7 - 7 8 8 9 -9

RIG: Geoprobe

TYPE OF BORING:

CLIENT:

PROJECT:

LOCATION:

Vertical First Pty Ltd

8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Terratest Push tube to 5.4m

LOGGED: NB

CASING: NA

WATER OBSERVATIONS: No free groundwater observed whilst drilling

REMARKS: *BD1/190520NB taken at 3-3.1m. Surface level taken from survey drawing provided

A Auger sample B Bulk sample BLK Block sample Core drilling Disturbed sample Environmental sample CDF

G P U_x W

₽

SAMPLING & IN SITU TESTING LEGEND Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level

LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa)

Top of hole			
	Mark Mark Street Street Street		
Im			
Zm 200	ALCONTRO DE	110	
3m	The second second second second second second second second second second second second second second second se	Real and	
4m		N ALL	
Photo D1 – View of	samples obtained from Borehole BH111		
	Borehole Photographs	PROJECT:	86867.00
Douglas Partners	Proposed Commercial Development	PLATE No:	D1
	8-10 Lee Street, Haymarket	REV:	0
	CLIENT: Vertical First Pty Ltd	DATE:	15/06/2020

SURFACE LEVEL: 16.7 AHD **EASTING:** 333926 NORTHING: 6249325 **DIP/AZIMUTH:** 90°/--

BORE No: BH112A **PROJECT No: 86767.00** DATE: 19/5/2020 SHEET 1 OF 1

Γ			Description	Dic _		San		& In Situ Testing		Well
R		epth m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction
			Strata	G	Ţ	De	San	Comments		Details
E		0.05		\boxtimes						Gatic Cover and
16	-	0.25	FILL/ ROADBASE: fine to coarse, dark grey, angular igneous gravel, fine to coarse sand, dry, generally in a dense condition							
-	- 1	1.4	FILL/ SAND: fine to medium, dark grey-brown, moist, generally in a loose condition							Backfill and Blank PVC pipe
15	-	1.8	SAND SP: fine to medium, pale orange, moist, apparently medium dense, alluvial							PVC pipe
È	-2	2.0	Sandy CLAY CI: medium plasticity, pale grey and pale orange, fine sand, w <pl, alluvial<="" apparently="" stiff,="" td=""><td>·/·/ ////</td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>	·/·/ ////						
14			Silty CLAY CI-CH: medium to high plasticity, pale grey mottled dark red-orange and yellow, with ironstone gravel, w <pl, (possibly="" extremely="" residual="" stiff,="" very="" weathered<br="">Mittagong Formation)</pl,>							Bentonite Seal
-	-	3.2 3.4	Sandy CLAY CL: low plasticity, dark red and pale grey,						20 i	
13	-4		SANDSTONE: fine grained, dark brown and pale grey orange, highly weathered, medium strength, Mittagong Formation						05-06-20	4 Sand filter
ł.	F	4.5	Bore discontinued at 4.5m	1::::::						End Cap
	- 5		- Target depth reached							-5
· · · · · · · · · · · · · · · · · · ·	- - - - - - - 7 - - 7 -									-7
	- 8									
	ţ									
	-9									
R	G:	Geo	probe DRILLER: Terratest		LOC	GGED	: NB	CASIN	G : N	A

TYPE OF BORING: SFA (TC-bit) to 4.5m

LOGGED: NB

CASING: NA

WATER OBSERVATIONS: No free groundwater observed whilst drilling

REMARKS: Standpipe installed: 0-4.0m Blank PVC pipe, 4.0-4.5m Slotted PVC pipe, End cap at 4.5m, Sand backfill 0-2.0m, Bentonite 2.0-3.6m, Sand filter 3.6-4.5m, Gatic cover at surface. Surface level taken from survey drawing provided

	SAMP	LING	& IN SITU TESTING	LEG	END						
A Aug	er sample	G	Gas sample	PID	Photo ionisation detector (ppm)	_				-	
	sample	Р	Piston sample) Point load axial test Is(50) (MPa)		0110	100	Do	rtner	100
BLK Bloc	ck sample	U,	Tube sample (x mm dia.)	PL(E) Point load diametral test ls(50) (MPa)						
C Cor	e drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)						-
D Dist	turbed sample	⊳	Water seep	S	Standard penetration test	0.	- to - to - to -) Frank	- to the start of	1 Owner days	11.4
E Envi	ironmental sample	Ŧ	Water level	V	Shear vane (kPa)	Ge	otechnics	I Envir	onment	Groundwa	ater

Vertical First Pty Ltd Proposed Commercial Development LOCATION: 8-10 Lee Street, Haymarket

SURFACE LEVEL: 16.8 AHD **EASTING:** 333928 NORTHING: 6249324 **DIP/AZIMUTH:** 90°/--

BORE No: BH112B **PROJECT No: 86767.00** DATE: 18/5/2020 SHEET 1 OF 2

	D -		Description		eg eat	ree ther	of	ie _			Rocl		٦ ا	F		ture cing	Discontinuities			-	n Situ Testing
2	Dep (m		of				5	Graphic	, ∑	Low	1	High	Water		(n	າ) ັ	B - Bedding J - Joint	Type	ore 2. %	RQD %	Test Result &
			Strata			SW	εË	U	E L	Low L	Med			0.01	0.05	0.50	S - Shear F - Fault	Ē	ŭ õ	Я,	Comments
ŀ								Δ.	.												
ł	(0.25 ± 0.3	CONCRETE	ŧ i	i.	ii	i	$\overline{\times}$			Ϊİ	Ϊİ		i	ii	ii					
t		0.6			1		-	\bigotimes	4									A/E			PID<1
<u>-</u>		0.0	FILL/ SANDSTONE: possible					\bigotimes										A/E			PID<1
	1	1.4	FILL/ SAND: fine to medium, dark grey-brown, moist, generally in a loose condition					\bigotimes													
			SAND SP: fine to medium, pale orange, moist, apparently medium dense, alluvial															A/E A/E			PID<1 PID<1
-	2	2.0	Sandy CLAY CI: medium plasticity, pale grey and pale orange, fine sand, w <pl, alluvial<="" apparently="" stiff,="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>s</td><td></td><td></td><td>6,9,11 N = 20</td></pl,>															s			6,9,11 N = 20
	3		Silty CLAY CI-CH: medium to high plasticity, pale grey mottled dark red-orange and yellow, with ironstone gravel, w <pl, stiff,<br="" very="">residual (possible extremely</pl,>																		
Ē		3.2	weathered Ashfield Shale)					¥.,										s			2,8,20/140 refusal
-		3.4 -	Sandy CLAY CL: low plasticity, dark red and pale grey, fine sand, w <pl, hard, residual (extremely weathered</pl, 		╎	 															PL(A) = 0.4
Ē	4		Mittagong Formation) SANDSTONE: fine grained, dark													_ <u> </u>					PL(A) = 1.5
	-		brown and pale grey-orange, highly weathered then moderately weathered, medium and high strength, fractured, Mittagong Formation														3.98m: B2°, pl, ro, fe stn 4.05m: CORE LOSS: 1090mm	с	60	0	FL(A) - 1.
-	5	5.14	SANDSTONE: fine to coarse grained, pale orange, highly	/i !			<u> </u> 	/ ::::	V				⊥ ¥								PL(A) = 0.5
	6		weathered then moderately weathered, medium strength, fractured to slightly fractured, cross-bedding 10°-20°, Hawkesbury Sandstone										05-06-20				5.44m: Cs 2mm 5.63m: J20°, pl, ro, fe stn				(, , , , , , , , , , , , , , , , , , ,
E		- 40																			PL(A) = 0.3
2	7	6.46 -	SANDSTONE: fine to coarse grained, pale grey, trace dark grey siltstone bands, slightly weathered then fresh, high strength, slightly														6.51m: Cs 10mm				
-			fractured, cross-bedding 0°-10°, Hawkesbury Sandstone													┓╢	7.14m: B0°, pl, ro, fe stn 7.2m: J20°, pl, ro, cly co				PL(A) = 0.8
,-		7.0				K	\geq										7.5m: CORE LOSS: 400mm	С	84	72	
	8	7.9	Between 8.02m-9.83m, cross-bedding 10°-20°					· · · · · · · · · · · · · · · · · · ·]				• 8 22m; 120° at ra at-				PL(A) = 1.
	9							· · · · · · · · · · · · · · · · · · ·									8.33m: J30°, pl, ro, cln 8.36m: B10°, pl, ro, cly co 2mm				
Ē					Ì	įį	i					ļ		i		İ					PL(A) = 2.
-																		с	100	100	

RIG: Geoprobe TYPE OF BORING: Diatube (200mm) to 0.6m, Hand Auger to 2m, SFA (TC-bit) to 3.4m, HQ coring to 15m

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Terratest

LOGGED: NB

CASING: HWT to 3.4m

WATER OBSERVATIONS: No free groundwater observed whilst drilling

	SAN	IPLINC	3 & IN SITU TESTING	LEGEND	
A	Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
В	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	Douglas Partners
BLI	K Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)	A Douglas Partners
C	Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	Douglas i ai choro
D	Disturbed sample	⊳	Water seep	S Standard penetration test	Contradición à Environment à Orange duration
E	Environmental sample	¥	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwater

SURFACE LEVEL: 16.8 AHD **EASTING:** 333928 NORTHING: 6249324 **DIP/AZIMUTH:** 90°/--

BORE No: BH112B **PROJECT No: 86767.00** DATE: 18/5/2020 SHEET 2 OF 2

_			1									
		Description	Degree of Weathering ﷺ ≩ ≩ ፩ ፼ 땵	<u>.0</u>	Rock Strength	5	Fracture	Discontinuities			-	n Situ Testing
Ч	Depth (m)	of	liteationing	aph		/ate	Spacing (m)	B - Bedding J - Joint	e	e %	0	Test Results
	(11)	Strata	EW MW FS SW FR	ତ_	Strength Very Low High High Very High		0.10	S - Shear F - Fault	Type	ပို့ပို	RQD %	& Comments
	-	SANDSTONE: as above						>>				PL(A) = 1.2
Ł	-											1 L(A) = 1.2
ţ	-											
ŧ	-					l li						
-9	-											
F	-11								С	100	100	PL(A) = 1.5
F	-					!						
E												
5	-		i i i i i		iiiii	li	ii ii					
Ē	- - 12							11.79m: J70°, pl, he				
ţ	-					l li						PL(A) = 1.3
ţ	-					!						
F	-											
-4	-		iiii		iiiii	i	ii ii					
F	- 13											PL(A) = 1.3
E						i						
Ł	_					!				100	100	
ł	-								С	100	100	
-~~	-		iiii		iiii	li	ii ii					
ŧ	- 14											PL(A) = 1.5
F	-							14.14m: Fragmented 10mm				
F	-					!						
E												
Ē	- -15 15.0			:::::		i	ii ii					
ţ		Bore discontinued at 15.0m - Target depth reached										
ŧ	-	- Taiget deptilleached			i i i i i i	i	ii ii					
F	-											
	-					i						
E	- 16					!						
Ł	_											
ł	-				i i i i i i	li	ii ii					
È	-											
-0	-					li						
F	- 17											
E												
ŧ	-					I.						
	-											
ŧ	- - 18					İ						
ŧ	-											
F												
E	[ļļ						
-?-												
ŧ	- 19					I.						
ŧ	-											
ŧ	-											
-	-											
-??	-											
				-				-				

RIG: Geoprobe

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Terratest

LOGGED: NB

CASING: HWT to 3.4m

TYPE OF BORING: Diatube (200mm) to 0.6m, Hand Auger to 2m, SFA (TC-bit) to 3.4m, HQ coring to 15m WATER OBSERVATIONS: No free groundwater observed whilst drilling

	SAN	IPLINC	S & IN SITU TESTING		
A	Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
B	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	Douglas Partners
BLI	K Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)	I Douglas Partners
C	Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	Dougido i di titoro
D	Disturbed sample	⊳	Water seep	S Standard penetration test	Contractoria I Frankranski I Orana danska
E	Environmental sample	ž	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwater

SURFACE LEVEL: 16.8 AHD **EASTING**: 333928 **NORTHING**: 6249324 **DIP/AZIMUTH**: 90°/-- BORE No: BH112B PROJECT No: 86767.00 DATE: 18/5/2020 SHEET 1 OF 2

					7/AZI		H: 90°/		SHEET 1 OF 2	
	T	Description	jc		San		& In Situ Testing	-	Well	
Uepth (m)	ן י	of	Graphic Log	Type	ţ	Sample	Results &	Water	Constructi	on
(,		Strata	ō	Ţ	Depth	Sam	Results & Comments	>	Details	
0.0	05 -	ASPHALTIC CONCRETE	<u>A</u> A						Gatic Cover and · cap	
0.2	25 = .3	CONCRETE	XXX		0.3					
- 0.	.6-		\bigotimes	AVE	0.6		PID<1 PID<1		-	
2		FILL/ SANDSTONE: possible sandstone block	\mathbb{K}	A/E_	0.7		PID~1		-	
-1		FILL/ SAND: fine to medium, dark grey-brown, moist,	\mathbb{K}						-1	
[generally in a loose condition	\mathbb{X}						Backfill and Blank	
- 1.	.4	SAND SP: fine to medium, pale orange, moist, apparently	\bigwedge	A/E	1.4 1.5		PID<1		PVC pipe	
		medium dense, alluvial		A/E	1.6		PID<1		-	
2 1. -2 2.	-8. -0.	Sandy CLAY CI: medium plasticity, pale grey and pale	<u> ./.</u> /		2.0				-2	
		orange, fine sand, w <pl, alluvial<="" apparently="" stiff,="" td=""><td>1/1/</td><td>s</td><td>2.0</td><td></td><td>6,9,11</td><td></td><td>-</td><td></td></pl,>	1/1/	s	2.0		6,9,11		-	
-		Silty CLAY CI-CH: medium to high plasticity, pale grey mottled dark red-orange and yellow, with ironstone gravel,			2.45		N = 20		-	
F		w <pl, (possible="" ashfield="" extremely="" residual="" shale)<="" stiff,="" td="" very="" weathered=""><td>1/1/</td><td>{</td><td>2.40</td><td></td><td></td><td></td><td>-</td><td></td></pl,>	1/1/	{	2.40				-	
:[Asilieu Shale)	KV/	1					[
-3			1/1/		3.0		2,8,20/140		-3	
ŀ	.2-	Sandy CLAY CL: low plasticity, dark red and pale grey,	1.7.7	s			refusal		-	
- 3.	.4-	\fine sand, w <pl, (extremely="" <br="" hard,="" residual="" weathered="">Mittagong Formation)</pl,>			3.4 3.44				Ē	
2		SANDSTONE: fine grained, dark brown and pale			3.68		PL(A) = 0.4		-	
-4		grey-orange, highly weathered then moderately			4.02		PL(A) = 1.5		- -4 Bentonite Seal ·	
F		weathered, medium and high strength, fractured, Mittagong Formation	Λ /	1			(.)		-	
E		5 5	$ \rangle /$							
È.			ΙX							
!- -			$ / \rangle$	С					-	
-5	14		<u> </u>						-5	
E		SANDSTONE: fine to coarse grained, pale orange, highly weathered then moderately weathered, medium strength,			5.35		PL(A) = 0.5	Ţ		
-		fractured to slightly fractured, cross-bedding 10°-20°,						05-06-20	-	
-		Hawkesbury Sandstone						05-0	-	
-6					6.1				-6	
Ł							$DI(\Lambda) = 0.2$		-	
6.4	46	SANDSTONE: fine to coarse grained, pale grey, trace			6.34		PL(A) = 0.3		-	腔目
,E		dark grey siltstone bands, slightly weathered then fresh,							-	
- - -		high strength, slightly fractured, cross-bedding 0°-10°, Hawkesbury Sandstone							-7	
È.					7.15		PL(A) = 0.5		-	
F									-	
E			\square	С					t L	
7	.9									
-8 '.		Between 8.02m-9.83m, cross-bedding 10°-20°			8.09		PL(A) = 1.1		-8	
F							-		F	
E										:目
,‡									Sand filter	┾╢
-9					0.00				- - 9 Slotted PVC pipe	┼┾目
Ē					9.09 9.1		PL(A) = 2.1		Ę	[:]目
E									[!目
ŀ				С					Ļ	:目
-									F F	:目
								-1	1	

RIG: Geoprobe

DRILLER: Terratest

LOGGED: NB

CASING: HWT to 3.4m

TYPE OF BORING: Diatube (200mm) to 0.6m, Hand Auger to 2m, SFA (TC-bit) to 3.4m, HQ coring to 15m

WATER OBSERVATIONS: No free groundwater observed whilst drilling

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

CLIENT: PROJECT:

A Auger sample G Gas sample PID Photo ionisation detector (ppm)	
B Bulk sample P iston sample PL(A) Point load axial test Is(50) (MPa) BLK Block sample U Tube sample (V mm dia.) C Core drilling W Water sample p Pocket penetrometer (kPa)	Doutrono
BLK Block sample U, Tube sample (x mm dia.) PL(D) Point load diametral test Is(50) (MPa)	Parlners
C Core drilling W Water sample pp Pocket penetrometer (kPa)	
D Disturbed sample D Water seep S Standard penetration test	anna at 1 Quandurates
E Environmental sample Water level V Shear vane (kPa)	onment Groundwater

SURFACE LEVEL: 16.8 AHD **EASTING**: 333928 **NORTHING**: 6249324 **DIP/AZIMUTH**: 90°/-- BORE No: BH112B PROJECT No: 86767.00 DATE: 18/5/2020 SHEET 2 OF 2

				DIP	'AZII		H: 90°/		SHEET 2 OF 2	
\square		Description	.c		Sam		& In Situ Testing	_	Well	
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details	
	11	SANDSTONE: as above		С	10.12		PL(A) = 1.2 PL(A) = 1.5			
+ +	12				12.1		PL(A) = 1.3		12 End Cap	
	13			С	13.0		PL(A) = 1.3		Bentonite Seal	
	14				14.0		PL(A) = 1.5		14 Sand Back Fill	
	15 15.0 -	Bore discontinued at 15.0m - Target depth reached	<u></u>		-15.0-				15 15	
	16								- 16	
	17								- 17	
	18								- 18	
	19								-19	

RIG: Geoprobe

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Terratest

LOGGED: NB

CASING: HWT to 3.4m

TYPE OF BORING: Diatube (200mm) to 0.6m, Hand Auger to 2m, SFA (TC-bit) to 3.4m, HQ coring to 15m

WATER OBSERVATIONS: No free groundwater observed whilst drilling

	SAN	IPLINC	3 & IN SITU TESTING		
A	Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
В	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	Douglas Partners
BL	< Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)	A Douglas Parmers
C	Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	Dougido i di titoro
D	Disturbed sample	⊳	Water seep	S Standard penetration test	
E	Environmental sample	¥	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwater

SURFACE LEVEL: 15.5 AHD EASTING: 333983 NORTHING: 6249283 DIP/AZIMUTH: 90°/-- BORE No: BH113 PROJECT No: 86767.03 DATE: 7/4/2020 SHEET 1 OF 1

Sampling & In Situ Testing VWP Graphic Description Water Depth Log Sample 뭅 Construction of Depth Results & Comments (m) Type Details Strata CONCRETE: grey, 2-10mm igneous aggregate 0.15 0.15 FILL/SAND: fine to coarse, pale brown and brown, trace E* PID=9 ppm 0.25 fine to medium igneous rail ballast, trace coal, moist 0.4 0.4 FILL/CLAY: medium plasticity, red and pale grey, trace Е PID=1 ppm 0.5 medium gravel, w~PL 0.8 CLAY CI: medium plasticity, pale grey mottled red, trace fine to medium ironstone gravel, w<PL to w~PL, 0.9 Е PID=2 ppm apparently very stiff, residual 1.0 1 • 1 1.2 Е PID=8 ppm 1.3 1.3 Bore discontinued at 1.3m - Target depth reached - 2 -2 3 - 3 -4 - 4

 RIG: Hand Tools
 DRILLER: AS/AMS

 TYPE OF BORING:
 Diatube to 0.15m, Hand auger to 1.3m

 WATER OBSERVATIONS:
 No free groundwater observed

 REMARKS:
 * Field replicate BD2/20200407 taken from 0.15-0.25m

CLIENT:

PROJECT:

LOCATION:

Vertical First Pty Ltd

8-10 Lee Street, Haymarket

Proposed Commercial Development

LOGGED: AS

CASING: Uncased

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK
 Block sample
 U
 Tube sample (x mm dia.)
 PL(D) Point load axial test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 p
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 F
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 F
 Water level
 V
 Shear vane (kPa)

SURFACE LEVEL: 15.5 AHD EASTING: 333984 NORTHING: 6249280 DIP/AZIMUTH: 90°/-- BORE No: BH114 PROJECT No: 86767.03 DATE: 7/4/2020 SHEET 1 OF 1

Sampling & In Situ Testing VWP Description Graphic Water Depth Log Sample 뭅 Construction of Depth Results & Comments (m) Type Details Strata CONCRETE: grey, 2-10mm igneous aggregate 0.0 0.15 0.15 PID=10 ppm E FILL/SAND: fine to coarse, pale brown and brown, trace 0.2 0.2 ∖fine gravel and coal, moist 0.3 -0.3 FILL/CLAY: medium plasticity, brown, pale grey and red, with fine to coarse sand, trace fine gravel, igneous rail ballast, plastic and coal, w~PL, hydrocarbon odour Bore discontinued at 0.3m - Refusal on ballast 1 • 1 - 2 -2 3 - 3 •4 - 4

RIG: Hand Tools

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: AS/AMS

LOGGED: AS

CASING: Uncased

TYPE OF BORING: Diatube to 0.15m, Hand auger to 0.3m WATER OBSERVATIONS: No free groundwater observed REMARKS:

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 Piston sample
 PIL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 Ux
 Tube sample (x mm dia.)
 PL(D) Point load axial test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 F
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 F
 Water level
 V
 Shear vane (kPa)

SURFACE LEVEL: 15.5 AHD EASTING: 333981 NORTHING: 6249280 DIP/AZIMUTH: 90°/--

BORE No: BH115 PROJECT No: 86767.03 DATE: 7/4/2020 SHEET 1 OF 1

Sampling & In Situ Testing VWP Description Graphic Water Depth Log Ъ Sample Construction of Depth Type Results & Comments (m) Strata Details <u>À</u> À CONCRETE: grey, 2-10mm igneous aggregate Ľ 0.17 0.23 0.17 PID<1 ppm PID=5 ppm Е* FILL/SAND: fine to coarse, pale brown, moist 0.3 FILL/CLAY: medium plasticity, red and pale grey, with fine to coarse sand and fine gravel, trace fine to coarse igneous rail ballast and coal, w~PL 0.5 Е PID=1 ppm Below 0.5m: low plasticity, with fine to coarse ironstone 0.6 gravel 0.85 CLAY CI-CH: medium to high plasticity, pale grey mottled red, trace fine gravel, w<PL to w~PL, apparently very stiff, 0.9 Е PID=4 ppm 1.0 • 1 1 residual 1.2 Е Below 1.2m: pale grey, w<PL PID=1 ppm 1.3 1.3 Bore discontinued at 1.3m - Target depth reached - 2 -2 3 - 3 -4 - 4

RIG: Hand Tools DRILLER: AS/AMS TYPE OF BORING: Diatube to 0.17m, Hand auger to 1.3m WATER OBSERVATIONS: No free groundwater observed REMARKS: * Field replicate BD1/20200407 taken from 0.23-0.3m

₽

Core drilling Disturbed sample Environmental sample

CDE

Vertical First Pty Ltd

8-10 Lee Street, Haymarket

Proposed Commercial Development

CLIENT:

PROJECT:

LOCATION:

LOGGED: AS

CASING: Uncased

SAMPLING & IN SITU TESTING LEGEND Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level A Auger sample B Bulk sample BLK Block sample G P U, W

SURFACE LEVEL: 15.5 AHD **EASTING**: 333970 **NORTHING**: 6249305 **DIP/AZIMUTH**: 90°/-- BORE No: BH116 PROJECT No: 86767.03 DATE: 17/5/2020 SHEET 1 OF 1

								H: 90'/		SHEET 1 OF 1
	_		Description	lic		Sam		& In Situ Testing	r	VWP
RL	Dep (m	th)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
-			CONCRETE: grey, 2-10mm igneous aggregate	Q. Q. V		0.00				-
-).22	CLAY CI: medium plasticity, pale grey mottled pale brown and red, w <pl residual<="" td="" to="" w~pl,=""><td></td><td>E</td><td>0.22 0.35</td><td></td><td>PID=2 ppm</td><td></td><td>-</td></pl>		E	0.22 0.35		PID=2 ppm		-
15					E*	0.5		PID=2 ppm		-
-			Below 0.7m: trace fine to medium ironstone gravel			0.7				-
-	- - 1 -		Below 1.0m: with medium ironstone gravel		E	1.0		PID=2 ppm		-1
-		1.2	Bore discontinued at 1.2m - Target depth reached	<u> </u>		-1.2-				-
14	- -									
-										-
-	- -2									-2
-										
13										-
-										-
-	- - - 3									-3
-										-
-										-
-										
-										
-	-4									-4
-										
-1-										
-										
-	-									

 RIG:
 Miniprobe
 DRILLER:
 Terratest

 TYPE OF BORING:
 Pushtube to 1.2m

 WATER OBSERVATIONS:
 No free groundwater observed

 REMARKS:
 * Field replicate BD1/20200517 taken from 0.5-0.7m

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

CLIENT:

PROJECT:

LOGGED: AS

CASING: Uncased

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 Pl
 Pl
 Photo ionisation detector (ppm)

 B
 Built sample
 P
 Piston sample
 Pl
 Pl
 Photo ionisation detector (ppm)

 BLK
 Block sample
 U
 Tube sample (x mm dia.)
 PL(A) Point load axial test Is(50) (MPa)
 PL(D) Point load axial test Is(50) (MPa)

 D
 Disturbed sample
 P
 Water seep
 S
 Standard penetration test

 D
 Disturbed sample
 P
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 Water level
 V
 Shear vane (kPa)
 Standard penetration test

SURFACE LEVEL: 15.5 AHD **EASTING:** 333968 **NORTHING:** 6249303 **DIP/AZIMUTH:** 90°/--

BORE No: BH117 **PROJECT No: 86767.03** DATE: 17/5/2020 SHEET 1 OF 1

				DIF	'AZI		H: 90°/		SHEET 1 OF 1
		Description	<u>.0</u>		Sam	pling a	& In Situ Testing		VWP
RL	Depth (m)	of	Graphic Log	e	ţ	ple	Resulte &	Water	Construction
	(11)	Strata	_Ω_	Type	Depth	Sample	Results & Comments	5	Details
		CONCRETE: grey, 2-10mm igneous aggregate	0.0 V D						
-	0.2		.A. A.	E	0.2 0.25		PID=3 ppm		-
ł	. 0.25	☐ FILL/Sandy CLAY: low plasticity, dark brown, fine to medium sand, with medium igneous rail ballast, w~PL, hvdrocarbon odour	\overline{V}		0.25		. 12 o pp		-
2									-
Ē		CLAY CI: medium plasticity, pale grey mottled pale brown and red, w~PL, residual			0.6				[
-				E*			PID=2 ppm		-
ł					0.8				-
	-1	Below 0.9m: pale grey mottled pale brown, w <pl< td=""><td></td><td></td><td>1.0</td><td></td><td></td><td></td><td>-1</td></pl<>			1.0				-1
-				Е			PID=2 ppm		-
ł	- 1.2	Below 1.15m: with medium sand			-1.2-			-	
t		Bore discontinued at 1.2m - Target depth reached							[
-4-									-
ł									-
ł									
[
-	-2								-2
ł									-
									[
-									-
-13-									-
Ì									
-									-
-									-
Ì	-3								-3
-									-
ł									-
-5									
-									-
ł									-
ŀ									
ļ	-4								4
ł									-
ŀ									- I
ļ									[
-5									- I
ŀ									- I
t									
ŀ									-

RIG: Miniprobe **DRILLER:** Terratest TYPE OF BORING: Pushtube to 1.2m WATER OBSERVATIONS: No free groundwater observed REMARKS: * Field replicate BD2/20200517 taken from 0.6-0.8m LOGGED: AS

CASING: Uncased

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level A Auger sample B Bulk sample BLK Block sample G P U, W Douglas Partners Core drilling Disturbed sample Environmental sample CDE ₽ Geotechnics | Environment | Groundwater

SURFACE LEVEL: 15.6 AHD **EASTING:** 333946 **NORTHING:** 6249321 **DIP/AZIMUTH:** 90°/--

BORE No: W1 PROJECT No: 86767.00 DATE: 20/5/2020 SHEET 1 OF 1

Γ			Description	. <u>ט</u>		San	npling	& In Situ Testing	Ι.	Well
Я		epth m)	of	Graphic Log	Type	oth	ble	Results &	Water	Construction
		,	Strata	Ū	Tyl	Depth	Sample	Results & Comments		Details
-	-	0.05		\wedge	с	0.0				-
-	-	0.25	FILL/ ROADBASE: fine to coarse, dark grey, angular igneous gravel, fine to coarse sand, dry, generally in a dense condition	4.4		0.25 0.3		PL(A) = 1.6		-
-	-		CONCRETE: grey, with medium to coarse sub-rounded fragments of high strength sandstone, trace voids to 0.65m, abudant voids between 0.65m and 0.85m		с					-
15	-			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.6				-
	- 1				С					-
-	-	1.2		10 10 10 10		1.15				-
-	-		Silty CLAY CI: medium plasticity, pale grey mottled dark red, w <pl, apparently="" relict="" rock="" stiff="" stiff,="" texture<br="" to="" very="">between 1.73-1.91m, residual (possibly extremely weathered Ashfield Shale)</pl,>		с					-
-1-	-	1.57				1.57				-
	2				С	1.9		pp <200		2
-	-	2.24	Below 2.0m, with irregular iron-cemented pockets and bands		с	2.0				-
-	-	2.46	SANDSTONE: fine grained, orange-brown, iron-cemented, highly weathered, high strength, fractured, Mittagong formation			2.4 2.46-		PL(A) = 1.5		-
13	ļ		Bore discontinued at 2.46m - Target depth reached							-
ł	ŀ									-
ľ										
ŀ	-3									-3
ŀ	ŀ									-
ļ	[
ŀ	-									-
	ŀ									-
Ē										-
ŀ	ŀ									-
ŀ	ŀ,									
ļ	[4									
ŀ	ŀ									-
ŀ	ŀ									
F	ļ									
⊧=	ŀ									
ŀ	ŀ									
F	ļ									
L			1							

RIG: Hand Drill TYPE OF BORING:

DRILLER: Nick Ruha Diatube (50mm) to 2.46m

LOGGED: NB

CASING: NA

WATER OBSERVATIONS: No free groundwater observed whilst drilling **REMARKS:** Surface level taken from survey drawing provided

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

CLIENT:

PROJECT:

SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level A Auger sample B Bulk sample BLK Block sample G P U, W Core drilling Disturbed sample Environmental sample CDE ₽

	Borehole Photographs	PROJECT:	86867.00
Douglas Partners Geotechnics Environment Groundwater	Proposed Commercial Development	PLATE No:	W1
	8-10 Lee Street, Haymarket	REV:	0
	CLIENT: Vertical First Pty Ltd	DATE:	15/06/2020

SURFACE LEVEL: 15.4 AHD **EASTING:** 333963 **NORTHING:** 6249315 **DIP/AZIMUTH:** 90°/-- BORE No: W2 PROJECT No: 86767.00 DATE: 20/5/2020 SHEET 1 OF 1

					DIF			H: 90°/		SHEET 1 OF 1
	D		Description	jc D		Sam		& In Situ Testing	ř	Well
RL		pth n)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
\vdash		0.05	ASPHALTIC CONCRETE			0.0	0			
-	-	0.15 -	FILL/ ROADBASE: fine to coarse, dark grey, angular igneous gravel, fine to coarse sand, dry, generally in a dense condition		С	0.35				-
15	-		CONCRETE: grey, with medium to coarse sub-rounded fragments of high strength sandstone, trace voids	0,0,0,0,0,0,0,0,0	С	0.55		PL(A) = 1.6		-
-	-			<u></u>		0.8				-
-	- 1 - -	1.03 - 1.12 -	Silty CLAY CI: medium plasticity, pale grey mottled dark red, w <pl, (possibly<br="" apparently="" residual="" stiff="" stiff,="" to="" very="">extremely weathered Ashfield Shale)</pl,>		С	1.15		PL(A) = 1.5		-1
14	-	1.33 -	SANDSTONE: fine grained, orange-brown and pale grey, iron-cemented and with thin clay bands, highly weathered, high strength, fractured, Mittagong formation Bore discontinued at 1.33m	1		-1.33-				
-	-		- Target depth reached							
-	-2									-2
13	-									-
-	-									
-	- - -3									-3
	-									-
12-	-									-
-	-									
-	-4 - -									-4
-11-	-									
	-									
ŀ	-									

RIG: Hand Drill

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Nick Ruha Diatube (50mm) to 1.33m

LOGGED: NB

CASING: NA

 TYPE OF BORING:
 Diatube (50mm) to 1.33m

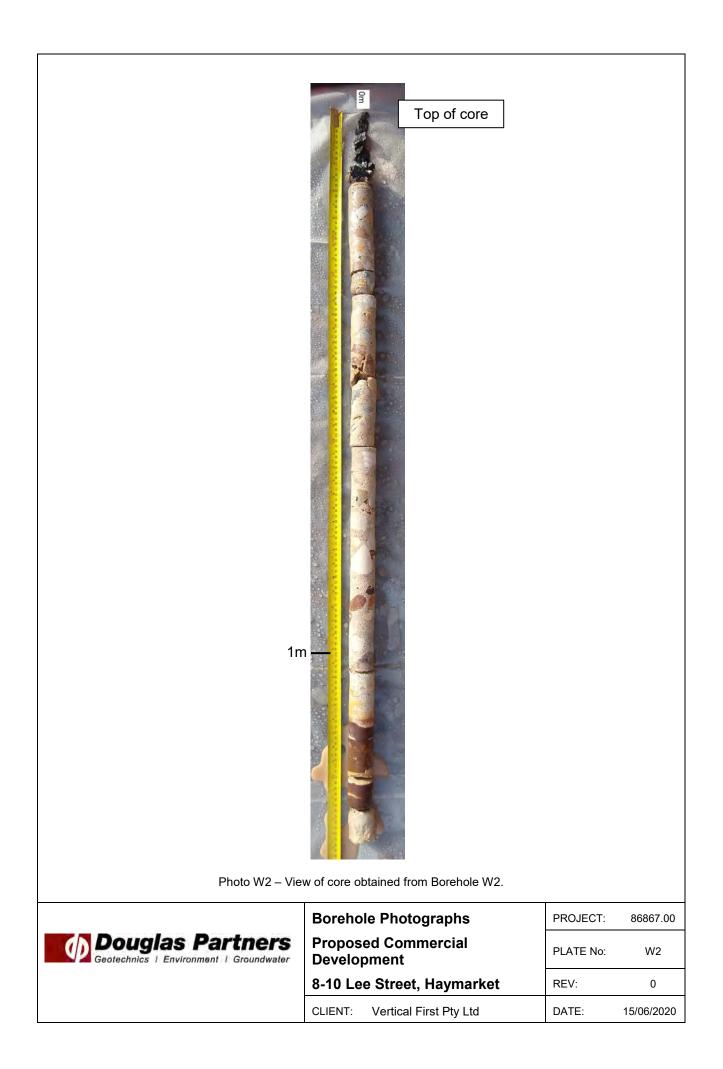
 WATER OBSERVATIONS:
 No free groundwater observed whilst drilling

 REMARKS:
 Surface level taken from survey drawing provided

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PIL(A) Point load axial test is (50) (MPa)


 BLK Block sample
 U
 Tube sample (xmm dia.)
 PL(D) Point load diametral test is (50) (MPa)

 C
 Core drilling
 W
 Water sample
 Put Photo ionisation test

 D
 Disturbed sample
 P
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 Water level
 V
 Shear vane (kPa)
 For the sample (kPa)

SURFACE LEVEL: 13.4 AHD **EASTING:** 333954 **NORTHING:** 6249290 **DIP/AZIMUTH:** 70°/135°

BORE No: W3 PROJECT No: 86767.00 DATE: 20/5/2020 SHEET 1 OF 1

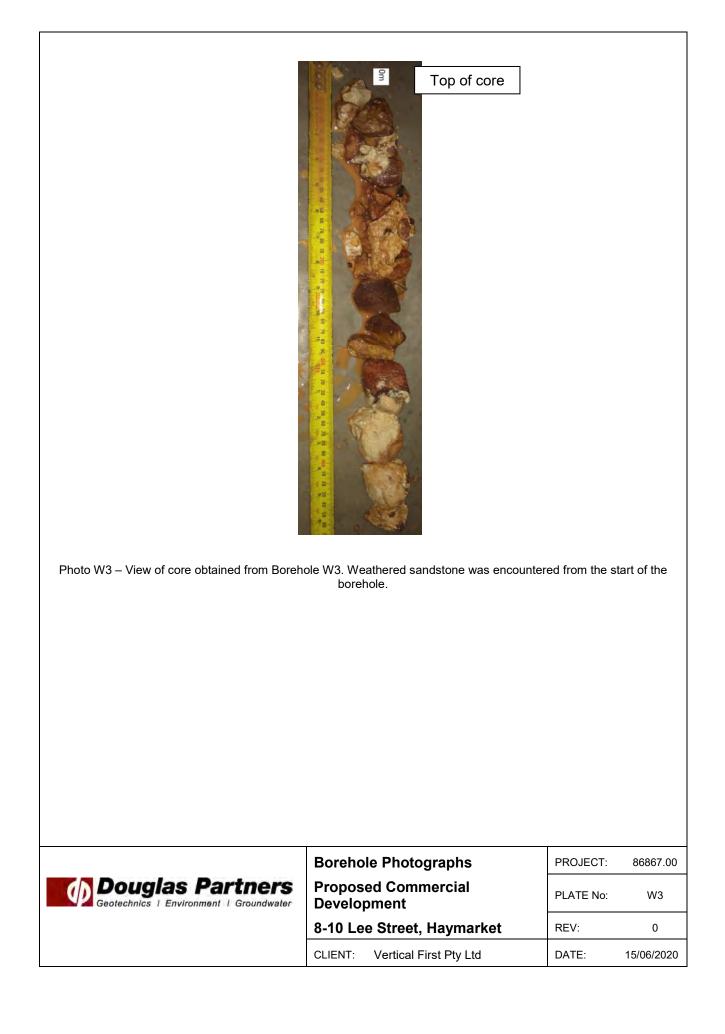
							H. 70/135		
	Donth	Description	hic				& In Situ Testing	ы Б	Well
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
-		SANDSTONE: fine grained, orange-brown and pale grey, iron-cemented and with thin clay bands, highly weathered, medium to high strength, fragmented, Mittagong formation		С	0.0				-
13					0.46				-
-	- 1 - 1 - 1.2			С	-1.2-				-1
12		Bore discontinued at 1.2m - Target depth reached							-
-	-2								2
-									-
. 11 .									-
-	- 3								-3
-									-
10									
	- 4								-4
6									-
-									
RI	G: Hand	d Drill DRILLER: Nick Ruha		LOC	GED	NB	CASING	: N	A

RIG: Hand Drill TYPE OF BORING:

Diatube (50mm) to 1.2m

WATER OBSERVATIONS: No free groundwater observed whilst drilling

Vertical First Pty Ltd


LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

CLIENT: **PROJECT:**

REMARKS: Surface level taken from architectural drawing provided, Synman Justin Bialek Architects Pty Ltd, Lower Ground Floor plan, Drawing WD05 (Rev E) dated 21 May 1998. Borehole azimuth relative to Grid North

SURFACE LEVEL: 13.4 AHD **EASTING:** 333948 **NORTHING:** 6249282 **DIP/AZIMUTH:** 60°/135°

BORE No: W4 PROJECT No: 86767.00 DATE: 20/5/2020 SHEET 1 OF 1

		Description	.u		Sam	npling &	& In Situ Testing		Well
ź	Depth (m)	of	Graphic Log	e				Water	Construction
	()	Strata		Type	Depth	Sample	Results & Comments	5	Details
-		CONCRETE: grey, with fine to coarse sub-rounded and sub-angular fragments of high strength sandstone, trace	<u>, </u>		0.0				-
-		voids	4.4.	с	0.22		PL(A) = 1.5		-
ľ					0.4				
2			1. A		0.4				-
-			Q.A.Q.A.Q.A.Q.A.Q.A	с					-
ľ			4.4	-					-
-	0.86	SANDSTONE: fine grained, orange-brown, highly weathered, medium to high strength, fractured, Mittagong			0.9				-
ŀ	1	weathered, medium to high strength, fractured, Mittagong formation							-1
			Λ /	с					
ł			$ \rangle$	-					-
ŀ			$ /\rangle$						-
2	1.57		<u> </u>		1.5				
-				с	1.7		PL(A) = 0.29		
t			\square	-					
+	2		X		2.0				-2
ŀ	2.12		<u> </u>						-
	2.19	SANDSTONE: fine to coarse grained, pale orange, highly weathered, medium to high strength, fractured,		С	2.2		PL(A) = 0.99		
-	2.4	_ Hawkesbury sandstone			-2.4-			-	
-		Bore discontinued at 2.4m - Target depth reached							-
ļ									
-									-
ŀ	2								-
F	3								-3
-									-
ľ									
-									-
-									-
l									
2									
$\left \right $	4								-4
ļ									
+									
ł									
ļ									
+									-
ŀ									
		Drill DRILLER: Nick Ruha				: NB	CASIN		

WATER OBSERVATIONS: No free groundwater observed whilst drilling

CLIENT:

PROJECT:

Vertical First Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

REMARKS: Surface level taken from architectural drawing provided, Synman Justin Bialek Architects Pty Ltd, Lower Ground Floor plan, Drawing WD05 (Rev E) dated 21 May 1998. Borehole azimuth relative to Grid North

Appendix E

Previous Investigation Field Work Results

CLIENT:

PROJECT:

Atlassian Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

SURFACE LEVEL: 20.1 AHD **EASTING:** 333983.4 **NORTHING:** 6249262.5 **DIP/AZIMUTH:** 90°/-- BORE No: BH1 PROJECT No: 86767.00 DATE: 10 - 12/7/2019 SHEET 1 OF 2

	_	.	Description		egi eat	ree o herii	DT Na	<u>ic</u>	S	Rock trength	1 4		Fracture		Discontinuities			-	n Situ Testing
	Dept (m)		of				.9	Graphic Log		High High	<u>High</u>	אמוב	Spacing (m)		- Bedding J - Joint	Type	Core Rec. %	a S S	Test Result &
	. ,		Strata	N N H	Ŵ	S N	2 12	G	Ver Lo	High High		0.01	0.05 0.10 0.50 1.00	S	- Shear F - Fault	Ţ	ပိမ္ရွိ	Ж.,	Comments
3	0. 0.0	.03 175	BALLAST (BLUE METAL), PLASTIC																
F	0.	.38		-	1		1	·											
E			BRICK PAVEMENT				i	4:4 .4				l							
Ę			CONCRETE				-	Q 4											
<u>₽</u> -1				li				. <u>.</u>			i	l							
E			At 1.3m: interface with lower																
F			concrete slab	li	į	İİ	į	$\dot{\dot{A}}$	ij	İİİ	i	ļ							
Ē	1	1.8	FILL/Sandy CLAY: low plasticity,					. <i>1</i> 2.1 XX								E			PID<1
2	2		grey mottled red-brown, fine grained sand, trace ironstone bands, slag					\bigotimes											
Ē			and ash, w <pl, a="" apparently="" in="" td="" very<=""><td></td><td></td><td></td><td></td><td>\bigotimes</td><td></td><td></td><td></td><td>i</td><td></td><td></td><td></td><td>Е</td><td>]</td><td></td><td>PID<1</td></pl,>					\bigotimes				i				Е]		PID<1
Ę			soft condition					\bigotimes											
F				li	i			\bigotimes			i I	l					-		
-3			Below 3.0m: with ash and slag, trace glass, brick and ceramic tile					\bigotimes								E	-		PID<1
F	3	3.2	\fragments /	11	į	ļļ	į	ŔŔ	į		i I					<u> </u>	-		
Ē			FILL/SAND: fine to medium grained sand, dark brown to black, moist,					\bigotimes								E	-		PID<1
Ę			apparently in a very loose condition					\bigotimes											
-4	Ļ 4	4.0	SAND SP: fine to medium grained				1	XX								E	-		PID<1
=			sand, orange brown, moist, very																
-			loose, alluvial soil Below 4.3m: grading to pale	li	İ		i.		ii		i	i				E			PID<1
Ē			yellow-grey																
Ę	5			ļį	į	i i	į		ij	iii	i	ļ	ii ii						
2-`																			
E																			
F				li	Ì		i				i	i							
Ē	5 F	6.0																	
<u>*</u> - `		0.0	Silty CLAY CI-CH: medium to high plasticity, orange, red and pale grey,	li.	į	İİ.	į.	1/1	ij	iii	i	ļ	ii ii						
Ē			with fine to medium grained sand, with relict rock texture, w <pl,< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,<>																
E	6.	.54 -	residual soil					· · · · · · · ·	¦ F				 	6.	63m: B 0°, pl, ro, fe				PL(A) = 0.9
÷.			SANDSTONE: medium grained, orange-red, medium strength with					:::::	∣≊ ∔_		i	li		<u>}</u> 6.	63 to 6.76m: Ds 20mm	C	100	10	
₽Ē ′			very low strength bands, highly					::::: ::::::	1					6.	78 to 6.8m: Ds 20mm				
ţ			weathered, fractured, Mittagong Formation		Ì		į.		į		i I	l	5	6.	88m: B 2°, un, ro, fe 93 to 7.0m: Ds 70mm				
Ē	-	7.7							4 F				╎┛╵╵	ro		<u> </u>			
ŧ		```[SANDSTONE: medium grained, brown and pale yellow, medium to				Ì			Ъį į		ļ		-7. -7	1m: B 0°, pl, ro 12m: B 30°, pl, ro, fe				PL(A) = 0.1
²-8			high strength, moderately		1									7.	24m: B 20°, st, ro 28 to 7.38m: J 85°, st,				
Ē	8.	.23	weathered, slightly fractured, Hawkesbury Sandstone	11										ro	, he	с	100	95	PL(A) = 0.5
ţ			SANDSTONE: medium grained,		1		1			╎┖┓╎				 ¹ 7.	39 to 7.5m: Ds 110mm 62 to 7.7m: Ds 80mm			55	(, ,) = 0.0
Ē			pale grey, high strength, fresh, slightly fractured, cross bedding										╎╎┏┛╎╎		41m: B 0°, pl, ro, fe 81 to 8.84m: (x4) B 5°,				
-9)		5°-10°, Hawkesbury Sandstone		į		į							\ pl	, ro 97m: B 0°, un, ro,				
ŧ															mm cly				
Ē					ļ		į		į		i	ļ				с	100	100	
ţ					1		1											.00	
t	1(0.0												h					PL(A) = 1.3
iG:	Pro	olin	e DRILL	.ER	: т	ïght	tsite	е			LO	GG	ED: WFY/I	NB	CASING: HV	/ to 6	.44m		
-		FR	ORING: Diacore 0-1.3m; Hand au			•			мι с	coring	a 5.0-	20	0m						

EMARKS: Groundwater well installed: 20-7.2m backfilled with sand, 7.2-6.3m bentonite, 6.3-4.3m screened PVC with sand backfill, 4.3-4.2m blank PVC with sand backfill, 4.2-0.2m blank PVC with bentonite backfill, 0.2-0m sand, gatic cover at surface

	SAN	IPLINC	3 & IN SITU TESTING						
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)				
B	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)		Douglas	Douteo	-
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)	1.	LOUGIAS	Parlne	15
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)				
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	1.	Orative house 1 Front	and and it out the	. And
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics Envir	ronment Groundw	vater

CLIENT:

PROJECT:

Atlassian Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

 SURFACE LEVEL:
 20.1 AHD

 EASTING:
 333983.4

 NORTHING:
 6249262.5

 DIP/AZIMUTH:
 90°/-

BORE No: BH1 PROJECT No: 86767.00 DATE: 10 - 12/7/2019 SHEET 2 OF 2

	Description	Degree of Weathering	<u>.</u>	Rock Strength _ច	Fracture	Discontinuities	Sa		-	n Situ Testing
Dej (n	pth		Graphic Log	Vat Nat	Spacing (m)	B - Bedding J - Joint S - Shear F - Fault	Type	Core ec. %	RQD %	Test Results &
2	SANDSTONE: medium grained,	EV M S S S S S S S S S S S S S S S S S S			0.05	└9.91m: B 2°, un, ro, clay		- 22	-	Comments
- - - -	pale grey, high strength, fresh, unbroken, cross-bedding 5°-10°, Hawkesbury Sandstone					1mm	С	100	100	
-11										PL(A) = 0.89
							с	100	100	
-										PL(A) = 1.6
- 12			· · · · · · · · · · · · · · · · · · ·							1 2(7) - 1.0
-	Between 12.4-12.49m: with thin black carbonaceous					12.44m: B 0°, pl, sm, cbs				
- 13	laminations					^L 12.47m: B 1°, ro, pl	с	100	100	PL(A) = 1.2
-						13.16m: B 0°, pl, sm 13.27m: Ds 2mm			100	
										PL(A) = 1.5
- 14										FL(A) = 1.5
-							с	100	100	
- 15									100	PL(A) = 1.2
-										
-										
+ 16							с	100	100	PL(A) = 1.6
-						>>			100	
- 17										PL(A) = 1.9
-	Between 17.35-14.42m:									
-	with black carbonaceous laminations							100	100	
18							С	100	100	PL(A) = 1.9
-										
- 19										PL(A) = 1.9
							с	100	100	
	Bore discontinued at 20.0m		<u> ::::</u>					<u> </u>		PL(A) = 0.9
YPE (OF BORING: Diacore 0-1.3m; Hand au	-	Dm; N	IMLC coring 5.0-20	3ED: WFY/N).0m	NB CASING: HW	to 6	.44m		
	RKS: Groundwater well installed: 20-7.2 RKS: Groundwater well installed: 20-7.2	m backfilled v	with s	and, 7.2-6.3m ben	tonite, 6.3-4.	3m screened PVC with sa	nd ba	ackfill	, 4.3-	4.2m blank
	PVC with sand backfill, 4.2-0.2m b SAMPLING & IN SITU TESTING I ger sample Is sample Beiton sample	EGEND PID Photo ionis	sation d	etector (ppm)						
LK Blo	lik sample P Piston sample ock sample U, Tube sample (x mm dia.) ore drilling W Water sample sturbed sample P Water seep ivronmental sample ▼ Water level	PL(A) Point load PL(D) Point load pp Pocket per S Standard p	diametr netrome	al test Is(50) (MPa) eter (kPa)		Douglas	5 /	Pa	ar	tner

_	BORE: BH1	PROJECT	: HAYMARKET	AUGUST 2019	
Geo	ouglas Part	oundwater	Project No: 86767.00 BH ID: 841 Depth: 10-15m Core Box No.: 8x 2,45		
10					
11					
12		TAN	THE PARTY AND AND ADDRESS OF		
13					
14					
		1 0 n	ı — 15m		

CLIENT:

PROJECT:

LOCATION:

Atlassian Pty Ltd

Proposed Commercial Development

8-10 Lee Street, Haymarket

SURFACE LEVEL: 20.1 AHD EASTING: 333983.4 NORTHING: 6249262.5 DIP/AZIMUTH: 90°/--

BORE No: BH1 PROJECT No: 86767.00 DATE: 10 - 12/7/2019 SHEET 1 OF 2

Sampling & In Situ Testing Well Description Graphic Water Depth Log Sample 뭅 Construction of Depth (m) Type Results & Comments Details Strata Gatic Cover and 0.0 BALLAST (BLUE METAL), PLASTIC -2 0.075 cap Sand Backfill and CONCRETE 0.38 Blank PVC pipe 1 Ś BRICK PAVEMENT 0.0 CONCRETE <u>.</u> 0.0 Ď.Ď At 1.3m: interface with lower concrete slab 0 0 0 0 1.8 1.8 PID<1 FILL/Sandy CLAY: low plasticity, grey mottled red-brown, F 1.9 2 ·2 fine grained sand, trace ironstone bands, slag and ash, w<PL, apparently in a very soft condition Bentonite Seal 2.2 Е PID<1 2.4 28 Е PID<1 30 3 - 3 Below 3.0m: with ash and slag, trace glass, brick and 3.2 ceramic tile fragments 3.3 Е PID<1 FILL/SAND: fine to medium grained sand, dark brown to 3.5 black, moist, apparently in a very loose condition 3.8 Е PID<1 40 4.0 Δ Δ <u>9</u>. SAND SP: fine to medium grained sand, orange brown, moist, very loose, alluvial soil 4.3 Below 4.3m: grading to pale yellow-grey Е PID<1 45 -5 5 Sand filter Slotted PVC pipe 6 6.0 6.0 6 Silty CLAY CI-CH: medium to high plasticity, orange, red and pale grey, with fine to medium grained sand, with End Cap relict rock texture, w<PL, residual soil 6.54 6.6 SANDSTONE: medium grained, orange-red, medium PL(A) = 0.97Bentonite Seal strength with very low strength bands, highly weathered, С fractured, Mittagong Formation • 7 7 <u>-</u>2 7.6 7.7 PL(A) = 0.157.74 SANDSTONE: medium grained, brown and pale yellow, medium to high strength, moderately weathered, slightly fractured, Hawkesbury Sandstone 8 - 8 8.23 SANDSTONE: medium grained, pale grey, high strength, С 8.4 PL(A) = 0.52fresh, slightly fractured, cross bedding 5°-10°, Hawkesbury Sandstone ۰q q 9.2 С PL(A) = 1.3 10. 9.95 **RIG:** Proline **DRILLER:** Tightsite LOGGED: WFY/NB CASING: HW to 6.44m

Diacore 0-1.3m; Hand auger 1.3m-5.0m; NMLC coring 5.0-20.0m

WATER OBSERVATIONS: No groundwater observed during auger drilling

TYPE OF BORING:

Groundwater well installed: 20-7.2m backfilled with sand, 7.2-6.3m bentonite, 6.3-4.3m screened PVC with sand backfill, 4.3-4.2m blank **REMARKS:** PVC with sand backfill, 4.2-0.2m blank PVC with bentonite backfill, 0.2-0m sand, gatic cover at surface

	SAN	NPLIN	G & IN SITU TESTING	6 LEG	END		
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		
E	Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)	Douglas Partners	
E	LK Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test ls(50) (MPa)		5
0	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		· .
	Disturbed sample	⊳	Water seep	S	Standard penetration test	Contratation / Environment / Crowndwater	5
E	Environmental sample	¥	Water level	V	Shear vane (kPa)	Geotechnics Environment Groundwater	ε.
-							

CLIENT:

PROJECT:

Atlassian Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

SURFACE LEVEL: 20.1 AHD **EASTING:** 333983.4 **NORTHING:** 6249262.5 **DIP/AZIMUTH:** 90°/-- BORE No: BH1 PROJECT No: 86767.00 DATE: 10 - 12/7/2019 SHEET 2 OF 2

Damit	Description	hic –		Sam		k In Situ Testing	٦٢.	Well		
Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details		
- - - - -	SANDSTONE: medium grained, pale grey, high strength, fresh, unbroken, cross-bedding 5°-10°, Hawkesbury Sandstone		С	10.72						
- 11			С	10.95		PL(A) = 0.89				
·12			-	11.95 12.33		PL(A) = 1.6		12		
- 13	Between 12.4-12.49m: with thin black carbonaceous laminations		С	12.95		PL(A) = 1.2		-13		
- 14				13.91 13.93		PL(A) = 1.5		Sand backfill		
- 15			С	14.95		PL(A) = 1.2		-15		
- 16			С	15.47 15.95		PL(A) = 1.6		-16		
- 17				16.95 17.09		PL(A) = 1.9		- 17 - 17		
-18	Between 17.35-14.42m: with black carbonaceous laminations		С	17.95		PL(A) = 1.9		- 18		
· 19			с	18.71 18.95		PL(A) = 1.9		-19		
20.0	Bore discontinued at 20.0m			19.95		PL(A) = 0.9				

WATER OBSERVATIONS: No groundwater observed during auger drilling

REMARKS: Groundwater well installed: 20-7.2m backfilled with sand, 7.2-6.3m bentonite, 6.3-4.3m screened PVC with sand backfill, 4.3-4.2m blank PVC with sand backfill, 4.2-0.2m blank PVC with bentonite backfill, 0.2-0m sand, gatic cover at surface

	SAM	IPLINC	3 & IN SITU TESTING	LEG	END					
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)					-
B	Bulk sample	P	Piston sample	PL(A) Point load axial test Is(50) (MPa)		Doug	100	Dow	- mono
BLł	K Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test ls(50) (MPa)	1.		IEL	Par	Iners
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)					
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	11	Or a track when) Freed	ton town and I	Owner warden warden warden war
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics	I ENV	ronment I	Groundwater

 SURFACE LEVEL:
 21.2 AHD

 EASTING:
 333968

 NORTHING:
 6249250

 DIP/AZIMUTH:
 90°/-

BORE No: BH2 PROJECT No: 86767.00 DATE: 10 - 11/7/2019 SHEET 1 OF 3

		Description	Degree of Weathering	<u>ie</u>	Rock Strength ৮	Fracture	Discontinuities				n Situ Testing
	Depth (m)	of	Weathering	Log	Very Low Very Low Medium High Ex High Atter	Spacing (m)	B - Bedding J - Joint	Type	sre : %	RQD %	Test Results &
	` `	Strata	H M M M M M M M M M M M M M M M M M M M	U		0.01 0.10 0.50 1.00	S - Shear F - Fault	Γ	ပိမ္စ	8	∝ Comments
				4.7							
1	0.28	∖θ.08m: interface with lower concrete ∖slab		Ŕ				A/E*			PID<1
	1	FILL/SAND: fine to medium grained sand, brown, moist, apparently moderately compacted						A/E			PID<1 PID<1
		Below 1.5m: trace ash and slag		\bigotimes				A/E			PID<1
	2	_		\bigotimes				S A/E			0,0,2 N = 2 PID<1
	2.5	Below 2.1m: with clay, trace shale gravel, moderately compacted									PID<1
	3	Fill/Clayey SAND: fine to coarse grained sand, brown, 15% plastic fines, trace gravel 2-5mm, moist, apparently moderately compacted		\bigotimes				A/E			
• • • • •	•			\bigotimes				A/E S			PID<1 0,0,0 N = 0
	4 4.0	Fill/Silty CLAY: medium plasticity, brown-grey, trace sand, w <pl< td=""><td></td><td></td><td></td><td></td><td></td><td>A/E</td><td>-</td><td></td><td>PID<1</td></pl<>						A/E	-		PID<1
Ł	5	Below 4.8m: with angular shale and ironstone gravel to 20mm		\bigotimes				S			2,2,2 N = 4
	5.2	Fill/Silty SAND: fine grained sand, grey and dark grey, trace gravel 2-5mm, moist, apparently variably compacted		X							
Ł	6			\bigotimes	 			A/E			PID<1
	6.2	Fill/SAND: fine grained sand, grey, with silt, wet, apparently variably compacted			10-07-19			S	-		1,1,1 N = 2
F	7			\bigotimes							
				\bigotimes							
Ē				\bigotimes				A/E			PID<1 0,0,1
F				\bowtie				S			N = 1
2	8 8.0	Silty CLAY CI-CH: medium to high plasticity, orange brown, with fine to medium grained sand and ironstone gravel, w <pl, residual="" soft,="" soil<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>									
-	9 9.0	Sandy CLAY CL: low plasticity, pale grey, fine to medium grained sand, w <pl, hard,="" residual="" soil<="" td=""><td></td><td></td><td></td><td></td><td></td><td>S</td><td></td><td></td><td>25/100</td></pl,>						S			25/100
ŧ	9.47	SANDSTONE: refer following page							1		refusal
F	10.0						9.74 to 9.80m: J 65°, st, ro	С	100	95	PL(A) = 1.4

 TYPE OF BORING:
 Diacore 0-0.28m; solid flight auger (TC Bit) 0.28-7.5m; Wash bore 7.5-9.47m; NMLC coring 9.47-23.27m

 WATER OBSERVATIONS:
 Saturated sand (fill) encountered at 6.2m

REMARKS: *BD1 at 0.28m

CLIENT:

PROJECT:

Atlassian Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

	SAN	IPLING	3 & IN SITU TESTING	LEGEND	
A	Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
в	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	Douglas Dorthone
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)	A Douglas Partners
С	Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	Douglas Partners
D	Disturbed sample	⊳	Water seep	S Standard penetration test	
E	Environmental sample	Ŧ	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwater

 SURFACE LEVEL:
 21.2 AHD

 EASTING:
 333968

 NORTHING:
 6249250

 DIP/AZIMUTH:
 90°/-

BORE No: BH2 PROJECT No: 86767.00 DATE: 10 - 11/7/2019 SHEET 2 OF 3

	D	Description	Degree of Weathering ·은	Rock Strength	Fracture	Discontinuities				n Situ Testing
R	Depth (m)	of Strata			Spacing (m) 5000 0000 5000 0000	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. %	RQD %	Test Results
	-11 11.12-	SANDSTONE: medium grained, pale grey and brown, medium strength with some very low strength bands, moderately weathered, slightly fractured, Hawkesbury Sandstone				10.2 to 10.3m: Ds 100mm 10.82m: B 15°, pl, sm, fe	С	100	95	Comments PL(A) = 1.5
	- 12	SANDSTONE: medium grained, pale grey, high strength, fresh, slightly fractured, cross bedding 5°-10°, Hawkesbury Sandstone Below 12m: unbroken				11.08m: Cs 10mm 11.35m: B 5°, fe, pl, ro 11.52m: Ds 10mm				PL(A) = 1.1
8	- 13					12.27m: B 5°, pl, ro 12.56m: B 5°, pl, sm	С	100	100	PL(A) = 1.3
	- 14					14.09m: B 2°, un, sm clay 2mm				PL(A) = 1.6
	- 15					14.88m: B 5°, st, sm cly 2mm				PL(A) = 1.4
	- 16					16.31m: B 20°, pl, sm	С	100	100	PL(A) = 1.4
	- 17									PL(A) = 1.3
	- 18					>>				PL(A) = 0.96
	- 19						С	100	100	PL(A) = 1.3
-		At 19.52m: carbonaceous laminations, dipping 25°				19.75m: B 5°, un, ro, cly 1mm				PL(A) = 2.2

RIG: XCDRILLER: TerratestLOGGED: NBCASING: HQ to 8.9mTYPE OF BORING:Diacore 0-0.28m; solid flight auger (TC Bit) 0.28-7.5m; Wash bore 7.5-9.47m; NMLC coring 9.47-23.27mWATER OBSERVATIONS:Saturated sand (fill) encountered at 6.2m

REMARKS: *BD1 at 0.28m

CLIENT:

PROJECT:

Atlassian Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

	SAM	PLIN	3 & IN SITU TESTING	LEGEND	
A	Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
B	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	Douglas Partners
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)	A Douglas Partners
C	Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	Douglao i ai tiloio
D	Disturbed sample	⊳	Water seep	S Standard penetration test	
E	Environmental sample	¥	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwater

SURFACE LEVEL: 21.2 AHD **EASTING:** 333968 **NORTHING:** 6249250 **DIP/AZIMUTH:** 90°/-- BORE No: BH2 PROJECT No: 86767.00 DATE: 10 - 11/7/2019 SHEET 3 OF 3

\square		Description	Degree of Weathering ﷺ ≩ ≩ ଛ ଝ ଝ	<u>io</u>	Rock Strength ់ត្	Fracture	Discontinuities	Sa	ampli	ng & I	n Situ Testing
씸	Depth (m)	of	roanoning	raph Log	Strength Very Low Medium High Very High Ex High Ex High	Spacing (m)	B - Bedding J - Joint	Type	ore S. %	ROD %	Test Results &
	()		HW HW SW SW	G	Ex Low Very Very Ex High		S - Shear F - Fault	Γ	ပိမ္မ	Я С	Comments
	-21	SANDSTONE: medium grained, pale grey, high strength, fresh, slightly fractured, cross bedding 5°-10°, Hawkesbury Sandstone (continued)					21.24m: Ds 5mm 21.4m: Ds 5mm	СС	100	100	PL(A) = 1.3
	-22						22.42m: Ds 5mm		100	100	PL(A) = 1.7
	-23										PL(A) = 1.7
-?-	23.27	Bore discontinued at 23.27m						-			
	-24										
	-25										
	- 26										
	-27										
L L-	- 28										
	- 29										

RIG: XCDRILLER: TerratestLOGGED: NBCASING: HQ to 8.9mTYPE OF BORING:Diacore 0-0.28m; solid flight auger (TC Bit) 0.28-7.5m; Wash bore 7.5-9.47m; NMLC coring 9.47-23.27mWATER OBSERVATIONS:Saturated sand (fill) encountered at 6.2m

REMARKS: *BD1 at 0.28m

CLIENT:

PROJECT:

Atlassian Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

	SAM	IPLING	3 & IN SITU TESTING									
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	_						-
В	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)			-	100		100	and an on the
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)				IER		-	
С	Core drilling	Ŵ	Water sample	`qq	Pocket penetrometer (kPa)							tners
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	11	0.1.1		A	120.00		A
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotech	nics	I Envi	ronn	nent I	Groundwate
•												

BORE: BH2 PROJE	CT: HAYMARKET	AUGUST 2019
Ceotechnics Environment Groundwater	Project No: 86767.00 BH ID: 8H2 Depth: 9.57 - 14M Core Box No.: 1 of 3	
86767:00 BH2 10.7.19 B	9.57	1
13	9.57 – 14m	

	BORE: BH2	PROJECT: HAYMARKET	AUGUST 2019
		ers newater Project No: 86767-00 BH ID: 842 Depth: 14-18m Core Box No.: 2 of 3	diam'r a land
14			
15	in the second second	Stiff) and Stands and	
16			
17			
18		i de temperature () el mande en al la se	
		14m - 19m	

 SURFACE LEVEL:
 15.5 AHD

 EASTING:
 333982

 NORTHING:
 6249281

 DIP/AZIMUTH:
 90°/-

BORE No: BH3 PROJECT No: 86767.00 DATE: 12 - 13/7/2019 SHEET 1 OF 2

				1			~~INIO 111.					
	-	.	Description	Degree of Weathering	je	Rock Strength	Fracture	Discontinuities			-	n Situ Testing
RL		epth m)	of		Graphic Log	Ex Low Very Low Low Medium High Ex High Ex High Ex High Ex High	Spacing (m)	B - Bedding J - Joint	Type	sre %	RQD %	Test Results
	(.	,	Strata	E S W W W	Ū			S - Shear F - Fault	μ	ပိမ္မ	R 08%	& Comments
	-	0.15	CONCRETE SLAB		<u> </u>							-
-	F	0.2	Fill/SAND: fine to medium grained		\bowtie				E			PID<1
15	F		sand, yellow-grey, moist, apparently poorly to moderately compacted	liiii	\mathbb{X}	iiiiii	ii ii					
		0.7	Fill/Silty CLAY: medium plasticity,		\bigotimes				E			PID<1
	-1	0.9	grey and red-brown, with medium grained sand and angular basalt									
	-		gravel to 70mm, w <pl< td=""><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl<>		1							
F	-		Fill/SAND: fine to medium grained					Unless otherwise				
-7-	-		sand, yellow, moist, apparently moderately compacted					specified, defects are B 0-5°, pl, sm				
	[1.8 1.92-	Silty CLAY CH: high plasticity, grey		\bowtie			1.8m: CORE LOSS:				
	-2	1.92	mottled red, trace ironstone gravel 2-3mm, w <pl, residual<="" stiff,="" td="" very=""><td></td><td></td><td>│ · • • • 4 · · │ </td><td></td><td>120mm</td><td></td><td></td><td></td><td></td></pl,>			│ · • • • 4 · · │		120mm				
-	-		soil					∖ 2.18m: B 2°, st, ro				DL(A) = 4
13-	F		SANDSTONE: medium grained,	iiii				² 2.22m: B 5°, un, ro	С	66	33	PL(A) = 1
-	F		brown and grey, medium strength, highly and moderately weathered,					2.52m: Cs 0°, 5mm, white				
E	-3	3.03	fractured, Hawkesbury Sandstone					2.6m: Cs, 2mm, grey 2.7m: B 2°, st, ro, fe				
-	-	3.03	SANDSTONE: medium grained, yellow-grey, high strength,					2.72m: B 0°. st. ro. fe				
Ę	-		moderately weathered, slightly					2.79m: B 0°, pl, ro, fe 2.84m: Cs 10mm				PL(A) = 0.92
-11	F	3.56	fractured, Hawkesbury Sandstone	┤╎╎┗┪╎╎		· │ · · · · · │ │ │ │		- 2.85 to 3.21m: B 0° (x10), pl, ro, fe				
[E		SANDSTONE: medium grained, pale grey, high strength, slightly					2.97m; B 2°, pl. ro, fe	С	100	95	
	-4		weathered then fresh, unbroken,					2.99m: B 1°, pl, ro, fe 3.07m: J 20°, pl, ro				
-	-		Hawkesbury Sandstone					3.25m: B 2°, un, ro 3.27 to 3.61m: B 0° (x3),				
-1-	-						11 11	ro, pl, fe				
-	F							3.45m: Cs, 2mm 3.56m: Cs, 4mm				
[-5			iiiii		i i i i i i i		∖ 4.89m: J 15°, pl, ro,				PL(A) = 1.6
						│ │ ┽ ┽ ┥ │ │ │ │		open 4.9m: J 15°, pl, ro, open				
-	-						ii ii	5.09m: Ds 5mm				
-6	-											
-	-								с	100	100	
	-6									100	100	PL(A) = 1.4
	-											
- -0	-											
ŀ	F											
E	Ę											PL(A) = 1.3
ŀ	- '											
ŀ	-		Between 7.35 - 7.41m:				ii ii	7.35m: B 5°, un,				
-∞	-		carbonaceous laminations					carbonaceous clay				
ţ	-							15mm				
E	-8											PL(A) = 1.1
6	ŀ					╽╎┽┽┽╣╎╎│║		8.23m: Ds, 20mm				
	ŀ							5.20m. 20, 20mm				
ŀ	-								С	100	100	
ŀ	Ę											PL(A) = 1.7
E	-9											· -(/ ·) - 1./
E	Ē											
-9	ŀ		Between 9.96-10.12m:									
ŀ	-		fine grained sandstone, dark grey					9.63m: B 0°, pl, sm, carbonaceous clay 1mm				
Ľ	<u> </u>		aan groy		<u> ::::</u>							PL(A) = 2

RIG: XC

CLIENT:

PROJECT:

Atlassian Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Terratest

LOGGED: NB

CASING: HWT to 2.0m

TYPE OF BORING:Diacore 0-0.15m; Hand auger 0.15-0.9m; Solid flight auger (TC Bit) 0.9-1.8m; NMLC coring 1.8-15.0mWATER OBSERVATIONS:No groundwater observed during auger drilling

REMARKS:

	SAM	PLIN	G & IN SITU TESTING	LEG	END	
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	
В	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	Nous of Douteous
BLH	Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test ls(50) (MPa)	A Douglas Parmers
С	Core drilling	Ŵ	Water sample	`qq	Pocket penetrometer (kPa)	Douglas Partners
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)	Geotechnics Environment Groundwater

SURFACE LEVEL: 15.5 AHD EASTING: 333982 **NORTHING:** 6249281 **DIP/AZIMUTH:** 90°/-- BORE No: BH3 **PROJECT No: 86767.00 DATE:** 12 - 13/7/2019 SHEET 2 OF 2

Π		Description Degree of Weathering of Strata			Rock Strength	Fracture	Discontinuities	Sampling & In Situ Testing			
님	Depth	of	vveathering	aphi		Spacing (m)	B - Bedding J - Joint				Test Results
	(m)	Strata	H M M M M M M M M M M M M M M M M M M M	ΰ	Ex Low Very Low High Ex High Ex High Ex High	0.10	S - Shear F - Fault	Type	Rec.	RQD %	& Comments
	-11	SANDSTONE: medium grained, pale grey, high strength, slightly weathered then fresh, unbroken, Hawkesbury Sandstone <i>(continued)</i> Between 10.6-10.7m: carbonaceous laminations						С	100		PL(A) = 1.5
	- 12 - 13						12.5m: B 0°, st, ro 12.84m: Ds 5mm	С	100	100	PL(A) = 1.2 PL(A) = 1.4
	- 14							с	100	100	PL(A) = 0.92
	- 15 15.0	Bore discontinued at 15.0m									PL(A) = 0.74
	- 16	bore discontinued at 13.0m									
	- 17 - 18										
	- 19										

RIG: XC

CLIENT:

PROJECT:

Atlassian Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Terratest

LOGGED: NB

CASING: HWT to 2.0m

TYPE OF BORING: Diacore 0-0.15m; Hand auger 0.15-0.9m; Solid flight auger (TC Bit) 0.9-1.8m; NMLC coring 1.8-15.0m WATER OBSERVATIONS: No groundwater observed during auger drilling

REMARKS:

SURFACE LEVEL: 15.5 AHD EASTING: 333994 NORTHING: 6249287 DIP/AZIMUTH: 90°/--

BORE No: BH4 PROJECT No: 86767.00 DATE: 12 - 13/7/2019 SHEET 1 OF 1

Sampling & In Situ Testing Description Graphic Dynamic Penetrometer Test Water Depth Log Sample 뭅 of Depth (blows per 150mm) (m) Type Results & Comments Strata 20 10 15 CONCRETE SLAB 0.1 Fill/SAND: fine to medium grained sand, moist, apparently <u>2</u>.2 0.16 loose, moderately compacted 0.3 CONCRETE SLAB 0.4 Fill/Sandy CLAY: fine to medium grained sand, with approx. 15% black ash, w<PL, generally in a stiff condition Fill/Silty CLAY: medium plasticity, brown, pale grey and red, with fine to medium grained sand and angular ironstone gravel up to 5-10mm, w<PL, generally in a firm condition 0.8-0.9m: with angular to sub-rounded ironstone gravel, 1.0 up to 50mm FILL/Sandy CLAY: low to medium plasticity, fine to medium grained sand, brown, with 15-30mm angular to sub-angular ironstone gravel, w~PL, generally in a soft condition 14 Е PID<1 15 17 Silty CLAY CH: high plasticity, grey mottled red and yellow, w~PL, firm to stiff, residual soil - 2 2.0 Е PID<1 21 2.35 SANDSTONE: medium strength, grey, Hawkesbury Sandstone Bore discontinued at 2.35m Refusal on sandstone 3 - 3 4 - 4

RIG: Miniprobe **DRILLER:** Terratest LOGGED: NB/AS CASING: NA TYPE OF BORING: Diacore 0-0.16m; hand auger 0.16-1m; Pushtube and solid flight auger (TC Bit) 1.0-2.35m WATER OBSERVATIONS: No groundwater observed during auger drilling **REMARKS:** □ Sand Penetrometer AS1289.6.3.3

 \boxtimes Cone Penetrometer AS1289.6.3.2 SAMPLING & IN SITU TESTING LEGEND Gas sample Piston sample Tube sample (x mm dia.) Water sample Water second LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample G P U,x W Douglas Partn Core drilling Disturbed sample Environmental sample CDF Water seen Water level ₽ Geotechnics | Environment | Groundwater

CLIENT:

Atlassian Pty Ltd

PROJECT: LOCATION:

Proposed Commercial Development 8-10 Lee Street, Haymarket

SURFACE LEVEL: 15.5 AHD **EASTING:** 333980 **NORTHING:** 6249298 **DIP/AZIMUTH:** 90°/-- BORE No: BH5 PROJECT No: 86767.00 DATE: 13/7/2019 SHEET 1 OF 2

$\left[\right]$		Description	Degree of Weathering	<u>.</u>	Rock Strength	Fracture	Discontinuities	Sa	amplii	ng & I	n Situ Testing
R	Depth (m)	of		Graphic Log	Ex Low Very Low Medium High Ex High Ex High	Spacing (m)	B - Bedding J - Joint	e	Core Rec. %	۵	Test Results
	()	Strata	FIS N M M M M M M M M M M M M M M M M M M	Ū			S - Shear F - Fault	Type	ပိမ္မိ	RC %	& Comments
H		CONCRETE SLAB									0000000
	0.3 0.4	FILL/Gravelly SAND: medium grained sand, grey, fine to medium 5-15mm sub-rounded to sub-angular gravel, dry						E			PID<1 PID<1 PID<1
	-1 1.0	Sandy CLAY CI: medium plasticity, grey mottled red, fine to medium grained sand, with fine gravel,		/1/1			Unless otherwise specified, defects are <u>B 0-5°, pl, ro, fe</u>	E E			PID<1
13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.36 [/] 1.36 [/] -2	w~PL, residual soil SILTY CLAY CI: medium plasticity, grey mottled red and yellow, trace fine sand, w~PL, residual soil SANDSTONE: highly weathered, ironstained, Hawkesbury Sandstone SANDSTONE: medium grained, pale grey and orange, medium		X		الے۔۔۔۔۔ 1	1.3m: CORE LOSS: 60mm 1.44m: Ds 20mm 1.74m: Ds 10mm 1.89m: Ds 50mm 2.1m: B 0°, st, ro 2.21m: B 0°, st, ro	С	95	60	PL(A) = 0.2
	2.83 - 3	strength with bands of very low strength, highly weathered, fractured, Hawkesbury Sandstone SANDSTONE: medium grained,					2.51m: B 0°, pl, ro 2.64m: B 10°, un, ro, fe				PL(A) = 0.16
12	3.6	pale grey, medium and high strength, moderately weathered, slightly fractured, Hawkesbury Sandstone SANDSTONE: medium grained,					3.21m: Cs, 20mm, dark grey 3.45m: J 25°, pl, ro, open	С	100	85	PL(A) = 0.72
	*	pale grey, high strength, slightly weathered then fresh, unbroken, Hawkesbury Sandstone		· · · · · · · · · · · · · · · · · · ·			4.27m: B 0°, pl, ro, cly √n 4.37m: Cs 10mm				
 	-5			· · · · · · · · · · · · · · · · · · ·			4.93m: Cs 10mm				PL(A) = 1.2
	-6						6.13m: B 5°, pl, ro, clay co 1mm €6.39m: B 5°, ir, ro, cln	С	100	98	PL(A) = 1
	-7	Between 6.60-6.65m: carbonaceous laminations		· · · · · · · · · · · · · · · · · · ·			6.44m: B 0°, pl, ro, st 6.6m: B 2°, pl, cly co 1mm				PL(A) = 1.2
	- 8						8.03m: Cs 10mm				PL(A) = 2.1
	-9							с	100	100	PL(A) = 1.8
							9.31m: B 0°, pl, sm, ∖mica 9.48m: B 5°, pl, sm, cly vn				

RIG: Hand tools, Miniprobe and XC **DRILL**

CLIENT:

PROJECT:

Atlassian Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Terratest

LOGGED: AS/NB/KR CASING: HW to 1.1m

TYPE OF BORING: Diacore 0-0.3m; Pushtube and solid flight auger (TC Bit) 0.3-1.3m; NMLC coring 1.3-15.27m

WATER OBSERVATIONS: No groundwater observed during auger drilling

REMARKS: Groundwater well installed: 15.17-2.2m screened PVC with sand backfill, 2.2-1.8m blank PVC with sand backfill, 2.2-0m blank PVC, 1.8-0.8m bentonite backfill, 0.8-0m backfilled, gatic cover at surface. Refusal to TC-bit auger at 1.2m

	SAN	IPLINC	3 & IN SITU TESTING	LEGEND	
A	Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
В	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	Douglas Partners
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)	A Douglas Partners
C	Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	Deugiae i ai titere
D	Disturbed sample	⊳	Water seep	S Standard penetration test	Contratation 1 Fredering at 1 Consumption
E	Environmental sample	Ŧ	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwater

SURFACE LEVEL: 15.5 AHD **EASTING:** 333980 **NORTHING:** 6249298 **DIP/AZIMUTH:** 90°/-- BORE No: BH5 PROJECT No: 86767.00 DATE: 13/7/2019 SHEET 2 OF 2

		Description	Degree of Weathering	<u>.0</u>	Rock Strength	Fracture	Discontinuities	Sa	amplir	ng & l	In Situ Testing
RL	Depth (m)	of Strata		Graph Log	Very Low Very Low High Kery High Ex High Ex High	Spacing (m)	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. %	RQD %	Test Results &
		SANDSTONE: medium grained,	H H H H H H H H H H H H H H H H H H H	:::::	Very Very Low Very Very Very Very	0.05		c	100 m		Comments PL(A) = 1.2
4	- - - - - - - - - - - - - - - - - - -	pale grey, high strength, slightly weathered then fresh, unbroken, Hawkesbury Sandstone <i>(continued)</i>					10.7m: B 10°, pl, sm, mica				PL(A) = 1.9
	- 12	Between 12.3-12.57m: fine grained sandstone, cross-bedded at base					11.77m: B 20°, pl, sm, mica	С	100	100	PL(A) = 1.2
2	- 13 - 13 										PL(A) = 1.5
-	- - - 14 - - -							с	100	100	PL(A) = 1.1
	- - 15 - 15.2	Bore discontinued at 15.27m					14.57m: B 5°, ir, sm, cly ∖vn 14.75m: Cs 20mm				PL(A) = 1.4
	- - - - - - - 16 -										
	- - - - - - - - - 17										
	- - - - - - - - - - - - - -										
- 4	- 19 - - - - - - -										

RIG: Hand tools, Miniprobe and XC **DF**

CLIENT:

PROJECT:

Atlassian Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Terratest

LOGGED: AS/NB/KR CASING: HW to 1.1m

TYPE OF BORING: Diacore 0-0.3m; Pushtube and solid flight auger (TC Bit) 0.3-1.3m; NMLC coring 1.3-15.27m

WATER OBSERVATIONS: No groundwater observed during auger drilling

REMARKS: Groundwater well installed: 15.17-2.2m screened PVC with sand backfill, 2.2-1.8m blank PVC with sand backfill, 2.2-0m blank PVC, 1.8-0.8m bentonite backfill, 0.8-0m backfilled, gatic cover at surface. Refusal to TC-bit auger at 1.2m

	SAMPLIN	IG & IN SITU TESTIN	IG LEGEND	
A Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
B Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	Douglas Partners
BLK Block sample	U,	, Tube sample (x mm dia.)) PL(D) Point load diametral test ls(50) (MPa)	A Douglas Partners
C Core drilling	W	Water sample	pp Pocket penetrometer (kPa)	
D Disturbed sample	⊳	Water seep	S Standard penetration test	Contratation 1 Environment 1 Comparison
E Environmental sa	nple 📱	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwater

SURFACE LEVEL: 15.5 AHD **EASTING:** 333980 **NORTHING:** 6249298 **DIP/AZIMUTH:** 90°/-- BORE No: BH5 PROJECT No: 86767.00 DATE: 13/7/2019 SHEET 1 OF 2

_,							H: 90°/		SHEET 1 OF 2
-	Donth	Description	hic		Sam		& In Situ Testing	ř	Well
	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
E		CONCRETE SLAB	Q Q						Gatic Cover and cap
<u></u>	0.3 0.4	FILL/Gravelly SAND: medium grained sand, grey, fine to medium 5-15mm sub-rounded to sub-angular gravel, dry		E E	0.35 0.5 0.6		PID<1 PID<1		Backfill and Blank
-1	1 1.0-	Sandy CLAY CI: medium plasticity, grey mottled red, fine to medium grained sand, with fine gravel, w~PL, residual \soil	· / · / ·	_E_	0.9 1.0		PID<1		
- - - -	1.2 1.3 1.36	SILTY CLAY CI: medium plasticity, grey mottled red and velocity, grey mottled red and		E	1.1 1.2 1.3		PID<1		Bentonite Seal
È		SANDSTONE: highly weathered, ironstained, Hawkesbury Sandstone							
-2	2	SANDSTONE: medium grained, pale grey and orange, medium strength with bands of very low strength, highly weathered, fractured, Hawkesbury Sandstone		С	2.1		PL(A) = 0.2		-2
2	2.83-		· · · · · · · · · · · · · · · · · · ·		2.56 2.7		PL(A) = 0.16		
-3		SANDSTONE: medium grained, pale grey, medium and high strength, moderately weathered, slightly fractured, Hawkesbury Sandstone		0	0.04				
:	3.6			С	3.31		PL(A) = 0.72		
4	1	SANDSTONE: medium grained, pale grey, high strength, slightly weathered then fresh, unbroken, Hawkesbury Sandstone	· · · · · · · · · · · · · · · · · · ·		4.05				-4
					4.00				
-									
-5	5				4.95		PL(A) = 1.2		-5
-				с					
-6	6				5.95		PL(A) = 1		-6
		Between 6.60-6.65m: carbonaceous laminations							
-7	7				6.95 7.16		PL(A) = 1.2		
- - -									
-8	3				7.95		PL(A) = 2.1		
				С					Sand filter
-9	9				9.0		PL(A) = 1.8		-9 [
,									
ŀ					_10.0_		PL(A) = 1.2		

RIG: Hand tools, Miniprobe and XC **DRILLER:** Terratest

CLIENT:

PROJECT:

Atlassian Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

LOGGED: AS/NB/KR CASING: HW to 1.1m

TYPE OF BORING: Diacore 0-0.3m; Pushtube and solid flight auger (TC Bit) 0.3-1.3m; NMLC coring 1.3-15.27m

WATER OBSERVATIONS: No groundwater observed during auger drilling

REMARKS: Groundwater well installed: 15.17-2.2m screened PVC with sand backfill, 2.2-1.8m blank PVC with sand backfill, 2.2-0m blank PVC, 1.8-0.8m bentonite backfill, 0.8-0m backfilled, gatic cover at surface. Refusal to TC-bit auger at 1.2m

	SAMPL	ING	6 & IN SITU TESTING	LEGI	END							
A A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)					_		
	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)		Doug		20	Dow		-
BLK B	Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test Is(50) (MPa)					Par	LNEI	
C C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)							
DC	Disturbed sample	⊳	Water seep	S	Standard penetration test	4 0	No a day when the stars	1.0		harves 4	O	1.1.4
EE	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)	G	Geotechnics	5 I E	Enviro	nment	Grounawa	ater

SURFACE LEVEL: 15.5 AHD EASTING: 333980 NORTHING: 6249298 **DIP/AZIMUTH:** 90°/--

BORE No: BH5 **PROJECT No: 86767.00** DATE: 13/7/2019 SHEET 2 OF 2

				DIF	'/AZII	NUT	H: 90°/		SHEET 2 OF 2		
		Description	lic		Sam		& In Situ Testing	5	Well		
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details		
-	-	SANDSTONE: medium grained, pale grey, high strength, slightly weathered then fresh, unbroken, Hawkesbury Sandstone <i>(continued)</i>		С	10.2						
4	- - - - - - - - - - - - - - - - - - -	Sandstone (continued)			11.02		PL(A) = 1.9		-11		
- - - - -	- 12	Between 12.3-12.57m: fine grained sandstone, cross-bedded at base		С	12.0		PL(A) = 1.2		-12		
-	- - - 13 - -				13.0 13.24		PL(A) = 1.5		13		
	- - - - - - - - - - - - -			с	14.0		PL(A) = 1.1		-14		
-	- - - 15 - - 15.27				15.0 -15.27-		PL(A) = 1.4		- 15 - End Cap		
	- - - - 16 -	Bore discontinued at 15.27m							- 16		
	- - - 17 -								- 17		
	- - - - 18 - -								- 18		
	- 19										
	- - -										

RIG: Hand tools, Miniprobe and XC

DRILLER: Terratest

LOGGED: AS/NB/KR CASING: HW to 1.1m

TYPE OF BORING: Diacore 0-0.3m; Pushtube and solid flight auger (TC Bit) 0.3-1.3m; NMLC coring 1.3-15.27m

WATER OBSERVATIONS: No groundwater observed during auger drilling

REMARKS: Groundwater well installed: 15.17-2.2m screened PVC with sand backfill, 2.2-1.8m blank PVC with sand backfill, 2.2-0m blank PVC, 1.8-0.8m bentonite backfill, 0.8-0m backfilled, gatic cover at surface. Refusal to TC-bit auger at 1.2m

	SAM	IPLIN	3 & IN SITU TESTING	LEGEND	
A	Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
B	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	Douglas Partners
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)	A Douglas Partners
C	Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	Deugiae i ai tirere
D	Disturbed sample	⊳	Water seep	S Standard penetration test	Oratistics Environment Oracid destate
E	Environmental sample	Ŧ	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwater

Atlassian Pty Ltd Proposed Commercial Development LOCATION: 8-10 Lee Street, Haymarket

SURFACE LEVEL: 15.5 AHD EASTING: 333967 NORTHING: 6249305 DIP/AZIMUTH: 90°/--

BORE No: BH6 PROJECT No: 86767.00 DATE: 14/7/2019 SHEET 1 OF 1

Sampling & In Situ Testing Description Graphic Dynamic Penetrometer Test Water Depth Log Ъ Sample of Depth (blows per 150mm) Type Results & Comments (m) Strata 10 15 20 CONCRETE SLAB: platy aggregate to 6mm, with voids 0.06 0.09 ن. ا 1 ASPHALT 0.2 0.23 Е PID<1 CONCRETE SLAB: fine to medium igneous aggregate to 0.3 25mm, 8mm diameter steel reinforcement bar at 0.15m, voids below 0.21m 0.5 Silty CLAY CH: high plasticity, orange-grey, with fine ironstone gravel, w<PL, residual soil А PID<1 0.6 1.0 1 1 SANDSTONE: medium strength, grey, Hawkesbury Sandstone 1.27 Bore discontinued at 1.27m Refusal on sandstone - 2 -2 3 - 3 •4 4

RIG: Hand tools DRILLER: NB TYPE OF BORING: Diacore 0-0.2m; hand auger 0.2-1.27m WATER OBSERVATIONS: No groundwater observed **REMARKS:**

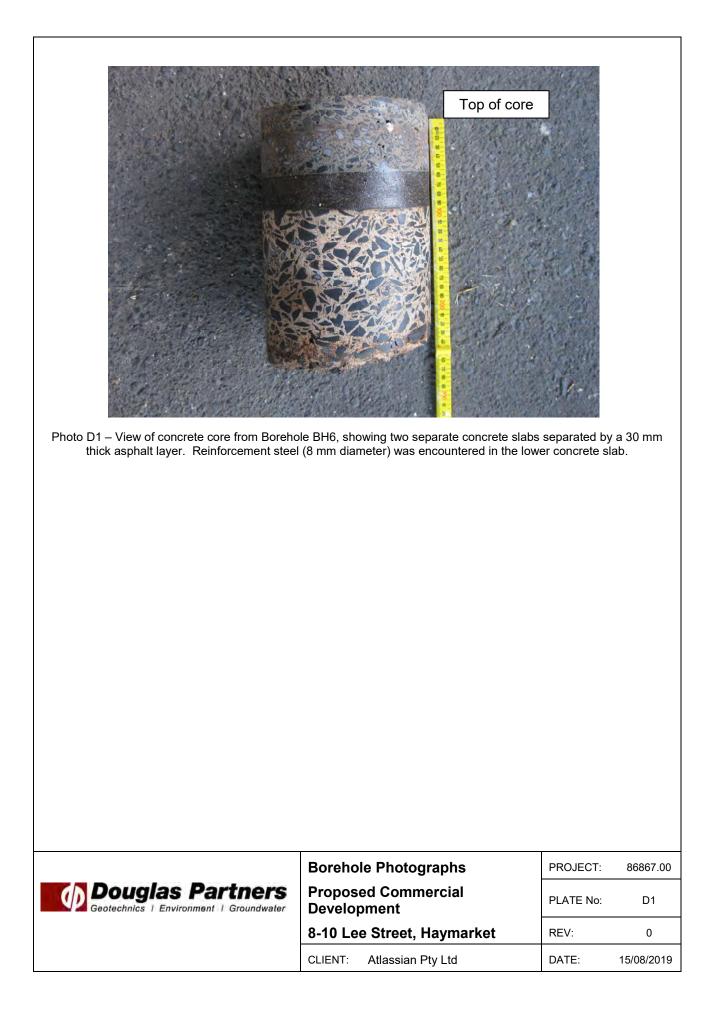
CLIENT:

PROJECT:

Atlassian Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development


LOGGED: NB

CASING: NA

□ Sand Penetrometer AS1289.6.3.3 ☑ Cone Penetrometer AS1289.6.3.2

	SA	MPLING	5 & IN SITU TESTING	3 LEGE	END	
А	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	
В	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	
BLK	Block sample	U,	Tube sample (x mm dia.)) Point load diametral test ls(50) (MPa)	
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	
Е	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)	

CLIENT:

PROJECT:

Atlassian Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

SURFACE LEVEL: 15.5 AHD **EASTING:** 333965 **NORTHING:** 6249265 **DIP/AZIMUTH:** 90°/-- BORE No: BH7 PROJECT No: 86767.00 DATE: 12 - 13/7/2019 SHEET 1 OF 1

			Description	Graphic Log		Sam		& In Situ Testing	<u> </u>	Dynamic Penetrometer Test				
Ч	Depth (m)	1	of	Log	Type	Depth	Sample	Results & Comments	Water	(blows per 150mm)				
	()		Strata	G	Тy	De	San	Comments	-	5 10 15 20				
			CONCRETE SLAB, 8mm diameter reinforcement steel	0.0 .0						-				
	0.		CONCRETE SLAB, angular igneous aggregate	Q.Q.	E	0.2 0.3		PID<1						
15	0.3	88-	Fill/Silty SAND: fine to medium grained sand, brown, 15% non plastic fines, moist, trace of crushed brick above 0.5m							· · · · · · · · · · · · · · · · · · ·				
	0.	.6-	Fill/SAND: fine to medium grained sand, pale grey, trace silt, moist, generally in a dense condition	X										
	1				E	1.0 1.1		PID<1		-1				
14					E*	1.4 1.5		PID<1						
	1. 1.8		Silty CLAY CH: high plasticity, grey, mottled red and yellow, trace fine to medium sandstone gravel, w~PL, very stiff, residual soil 1.80-1.85m: crushed ironstone gravel		E	1.6 1.7		PID<1						
	2		Silty CLAY CI: medium plasticity, red mottled grey, with sand and fine to medium sandstone and ironstone gravel, w~PL, hard, residual soil		E	2.0 2.1		PID<1		-2				
	2.		SANDSTONE: medium strength, grey, Mittagong Formation							-				
	3	-4	Bore discontinued at 2.4m Refusal on sandstone											
	4									-4				
· - - - - - - - - - - - - - - - - - - -														

 RIG:
 Hand tools and Miniprobe
 DRILLER:
 NB/Terratest
 LOGGED:
 NB/AS

 TYPE OF BORING:
 Hand auger 0.2-1.0m; Pushtube and solid flight auger (TC Bit) 1.0-2.4m

 WATER OBSERVATIONS:
 No groundwater observed

 REMARKS:
 *BD1 and BT120190713

CASING: NA

□ Sand Penetrometer AS1289.6.3.3 ⊠ Cone Penetrometer AS1289.6.3.2

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 U
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 p
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 P
 Water level
 V
 Shandard penetration test

 E
 Environmental sample
 ¥
 Water level
 V
 Shear vane (kPa)

SURFACE LEVEL: 15.5 AHD **EASTING:** 333954 **NORTHING:** 6249289 **DIP/AZIMUTH:** 90°/-- BORE No: BH8 PROJECT No: 86767.00 DATE: 14/7/2019 SHEET 1 OF 2

\prod		Description	Degree of Weathering	.e	Rock Strength	Fracture	Discontinuities	Sa		-	n Situ Testing
Ч	Depth (m)	of		Graphic Log	Very Low Very Low Medium Medium Very High High Kery High	Spacing (m)	B - Bedding J - Joint	Type	ore :. %	RQD %	Test Results &
		Strata	H M M M M M M M M M M M M M M M M M M M	G		0.01 0.10 0.50	S - Shear F - Fault	Γ	ပိမ္မိ	R ~	∝ Comments
	0.28 - 0.6 -	CONCRETE SLAB: angular to subangular aggregate to 15mm, negligible voids, 10mm diameter steel reinforcement at 0.09m and 0.10m, plastic at lower interface Fill/Clayey SAND: fine to coarse						A/E			PID<1
14	-1	grained sand, brown and yellow, 15% plastic fines, with fine gravel, apparently moderately compacted, moist SAND SW: fine to medium grained					Unless otherwise				
ŧ ŧ		sand, yellow, with clay, trace gravel,					specified, defects are B 0°, pl, ro				
ĒĒ	-2	moist, alluvial soil		\bowtie			1.9m: CORE LOSS:		1		
1 1 1	2.12	SANDSTONE: medium grained, orange-red and grey, low to medium strength, with some very low strength bands, highly weathered, fractured, Mittagong Formation					2.12m: Ds 270mm 2.49m: B 4°, st, ro 2.6m: B 0°, st, ro 2.61m: B 0°, st, sm -2.83m: B 0°, st, ro	с	82	20	PL(A) = 1.5
	3.07 -	SANDSTONE: medium grained, orange and red, medium strength with some very low strength bands, highly weathered, fractured, Mittagong Formation					2.93m: Ds 140mm 3.07m: CORE LOSS: 480mm				PL(A) = 0.15
	-4 4.13-	SANDSTONE: medium grained, yellow-grey, medium then high					3.8m: Ds 60mm 3.92m: Cs 20mm 4.29m: J 30°, pl, ro,	С	66	33	
	4.85 - - 5	strength, moderately weathered, slightly fractured, Hawkesbury Sandstone SANDSTONE: medium grained,				┆╶╷╴ <mark>╴</mark> ┆╺╪┛╴┼╴ ╷╷╷╷╷	open 4.37m: J 30°, pl, ro, open 4.79m: J 15°, pl, ro, clay 1mm				PL(A) = 0.66
	- 6	grey, high strength, fresh, unbroken, Hawkesbury Sandstone					4.82m: B 10°, pl, ro, fe stn 4.84m: B 5°, un, ro	С	100	100	PL(A) = 1.2
	-7										PL(A) = 1.3
	- 8						∑7.45m: B 0°, pl, sm 7.46m: B 0°, pl, sm ∑7.88m: B 0°, pl, sm 7.89m: B 0°, pl, sm				PL(A) = 1.9
	-9						9.1m: Ds 20mm	С	100	100	PL(A) = 1.2
											PL(A) = 1.4

RIG: XC

CLIENT:

PROJECT:

Atlassian Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Terratest

LOGGED: NB

CASING: HQ to 1.9m

TYPE OF BORING: Diacore 0-0.28m; Hand auger 0.28-1.0m; solid flight auger (TC Bit) 1.0-1.9m; NMLC coring 1.9-15.0m

WATER OBSERVATIONS: No groundwater observed during auger drilling

REMARKS: Groundwater well installed: 15.0-2.9m screened PVC with sand backfill, 2.9-2.4m blank PVC with sand backfill, 2.4-0m blank PVC, 2.4-0m bentonite backfill, gatic cover at surface.

	SAM	PLIN	3 & IN SITU TESTING	LEGEND	
A	Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	Douglas Partners
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)	A Douglas Partners
C	Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	Bougiao i ai citoro
D	Disturbed sample	⊳	Water seep	S Standard penetration test	Contractoria I Environment I Communication
E	Environmental sample	¥	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwater

SURFACE LEVEL: 15.5 AHD **EASTING:** 333954 **NORTHING:** 6249289 **DIP/AZIMUTH:** 90°/-- BORE No: BH8 PROJECT No: 86767.00 DATE: 14/7/2019 SHEET 2 OF 2

\square		Description	Degree of Weathering ≧ ≩ ≩ § ∞ ଝ	o	Rock Strength	Fracture	Discontinuities	Sa	amplii	ng & I	n Situ Testing
RL	Depth	of	weathening	aphi og	Strength Neery Low High Neery High Ex High Neery High Ex High Neery Low Very Jon Neery Low	Spacing (m)	B - Bedding J - Joint				Test Results
	(m)	Strata	EW MW FR SW	ΰ	Ex Low Very Lr Mediur Very H Very H Ex Hig	0.10	S - Shear F - Fault	Type	Re C	RQD %	& Comments
	-	SANDSTONE: medium grained,				1 1		С	100		Commonto
4	- 11	grey, high strength, fresh, unbroken, Hawkesbury Sandstone <i>(continued)</i> Between 10.2-10.9m: dark grey, fine grained sandstone					~>				PL(A) = 2.5
	- 12	Between 12.4-12.55m:						С	100	100	PL(A) = 1.5
	- 13	carbonaceous laminations									PL(A) = 1.1
	- 14						13.48m: Ds 20mm 13.77m: B 20°, pl, sm, cbs	С	100	100	PL(A) = 1.3
	- 15 15.0	Bore discontinued at 15.0m					14.55m: B 0°, pl, sm, clay co 2mm				PL(A) = 1.3
	- 16										
	- 17					ii ii					
	- 18 										
- 4-	-										

RIG: XC

CLIENT:

PROJECT:

Atlassian Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Terratest

LOGGED: NB

CASING: HQ to 1.9m

TYPE OF BORING: Diacore 0-0.28m; Hand auger 0.28-1.0m; solid flight auger (TC Bit) 1.0-1.9m; NMLC coring 1.9-15.0m

WATER OBSERVATIONS: No groundwater observed during auger drilling

REMARKS: Groundwater well installed: 15.0-2.9m screened PVC with sand backfill, 2.9-2.4m blank PVC with sand backfill, 2.4-0m blank PVC, 2.4-0m bentonite backfill, gatic cover at surface.

A Auger sample G Gas sample PID Photo ionisation detector (ppm)	
B Buik sample P Piston sample PL(A) Point load axial test Is(50) (MPa) BLK Block sample U Tube sample (x mm dia.) C Core drilling W Water sample (x mm dia.)	A HA
BLK Block sample U, Tube sample (x mm dia.) PL(D) Point load diametral test Is(50) (MPa)	
C Core drilling W Water sample pp Pocket penetrometer (kPa)	
D Disturbed sample D Water seep S Standard penetration test	Acres 644
E Environmental sample V Water level V Shear vane (KPa)	dwater

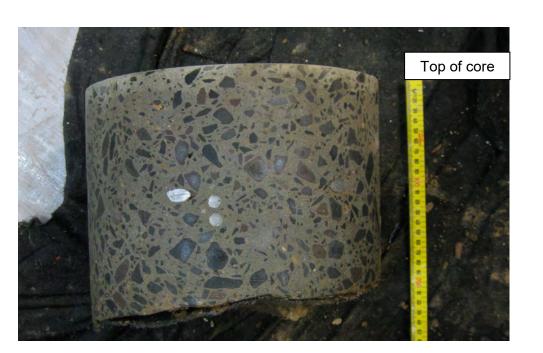


Photo D2 – View of concrete core from Borehole BH8. Two layers of reinforcement steel (10 mm diameter) were encountered at 0.09 m and 0.10 m depth, with a layer of plastic at the underside of the slab.

	Borehole Photographs	PROJECT:	86867.00
Geotechnics Environment Groundwater	Proposed Commercial Development	PLATE No:	D2
	8-10 Lee Street, Haymarket	REV:	0
	CLIENT: Atlassian Pty Ltd	DATE:	15/08/2019

SURFACE LEVEL: 15.5 AHD **EASTING:** 333954 **NORTHING:** 6249289 **DIP/AZIMUTH:** 90°/-- BORE No: BH8 PROJECT No: 86767.00 DATE: 14/7/2019 SHEET 1 OF 2

				DIF	'AZI		 H: 90°/		SHEET 1 OF 2	
-		Description	jc		Sam		& In Situ Testing		Well	
Dep (n		of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details	
-	0.28 -	CONCRETE SLAB: angular to subangular aggregate to 15mm, negligible voids, 10mm diameter steel reinforcement at 0.09m and 0.10m, plastic at lower interface		_A/E_	0.2 0.3		PID<1	-	Gatic Cover and	
- - - 1		Fill/Clayey SAND: fine to coarse grained sand, brown and yellow, 15% plastic fines, with fine gravel, apparently moderately compacted, moist						-	-1	
-		SAND SW: fine to medium grained sand, yellow, with clay, trace gravel, moist, alluvial soil						-	Bentonite Seal and Blank PVC pipe	
-2	1.9-		\sim		1.9				-2	V
-	2.12	SANDSTONE: medium grained, orange-red and grey, low to medium strength, with some very low strength bands, highly weathered, fractured, Mittagong Formation		С	2.47		PL(A) = 1.5	-	Sand filter	
- 3								ļ	-3	<u> </u> .
-	3.07 -	SANDSTONE: medium grained, orange and red, medium strength with some very low strength bands, highly weathered, fractured, Mittagong Formation			3.07			-		
-4	4.13-			С	3.66		PL(A) = 0.15	-	-4	
		SANDSTONE: medium grained, yellow-grey, medium then high strength, moderately weathered, slightly fractured, Hawkesbury Sandstone			4.57 4.66		PL(A) = 0.66	-		
5	4.85 -	SANDSTONE: medium grained, grey, high strength, fresh, unbroken, Hawkesbury Sandstone						-	-5	
6				С	5.95		PL(A) = 1.2	-	-6	
7					6.95		PL(A) = 1.3	-	-7	
- 8					7.89		PL(A) = 1.9	-	-8	
				С				-		
-9					8.95		PL(A) = 1.2	-	9 Slotted PVC pipe	
Ē					_9.95_		PL(A) = 1.4	ţ		<u>]</u> .:

RIG: XC

CLIENT:

PROJECT:

Atlassian Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Terratest

LOGGED: NB

CASING: HQ to 1.9m

TYPE OF BORING: Diacore 0-0.28m; Hand auger 0.28-1.0m; solid flight auger (TC Bit) 1.0-1.9m; NMLC coring 1.9-15.0m

WATER OBSERVATIONS: No groundwater observed during auger drilling

REMARKS: Groundwater well installed: 15.0-2.9m screened PVC with sand backfill, 2.9-2.4m blank PVC with sand backfill, 2.4-0m blank PVC, 2.4-0m bentonite backfill, gatic cover at surface.

	SAM	IPLIN	G & IN SITU TESTING	6 LEG	END		
	A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		
	B Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	Douglas Partner	-
	BLK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)		
	C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		-
	D Disturbed sample	⊳	Water seep	S	Standard penetration test		1.1.
	E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)	Geotechnics Environment Groundwa	ter
-						—	

SURFACE LEVEL: 15.5 AHD **EASTING:** 333954 NORTHING: 6249289 **DIP/AZIMUTH:** 90°/--

BORE No: BH8 **PROJECT No: 86767.00** DATE: 14/7/2019 SHEET 2 OF 2

					Sam	nling	& In Situ Testing			
RL	Dep	h Description	phic og					Water	Well Construction	n
Ĕ	(m)	Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Ň	Details	n
		SANDSTONE: medium grained, grey, high strength, \ fresh, unbroken, Hawkesbury Sandstone (continued)		С	10.22				-	
		Between 10.2-10.9m: dark grey, fine grained sandstone			10.22					
	-									
	- - - 11				10.95		PL(A) = 2.5		-11	
	-									
-4	-								-	
				С						
	- 12				11.95		PL(A) = 1.5		-12	
	-									
-0		Between 12.4-12.55m: carbonaceous laminations							-	
	-				12.95		PL(A) = 1.1			
	- 13								-13	
-	-				13.25					
									-	
Ē	- - - 14				13.95		PL(A) = 1.3		[- 14	
	-			С						
	-									
	-								-	
	-15 1 -	5.0 Bore discontinued at 15.0m			-14.99- 15.0		PL(A) = 1.3		_ ₁₅ End Cap	
-0	-									
	- - - 16								- 16	
	-									
	-									
	- 17								- 17	
	-									
-7-									Ę	
Ē	-								Ę	
ŧ	- 18								- 18	
Ę	-								Ę	
	-								Ę	
Ē	- - -19								- 19	
È	-								Ę	
-4	-									
Ē	-								Ę	
Ŀ	-								t	

RIG: XC

CLIENT:

PROJECT:

Atlassian Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Terratest

LOGGED: NB

CASING: HQ to 1.9m

TYPE OF BORING: Diacore 0-0.28m; Hand auger 0.28-1.0m; solid flight auger (TC Bit) 1.0-1.9m; NMLC coring 1.9-15.0m

WATER OBSERVATIONS: No groundwater observed during auger drilling

REMARKS: Groundwater well installed: 15.0-2.9m screened PVC with sand backfill, 2.9-2.4m blank PVC with sand backfill, 2.4-0m blank PVC, 2.4-0m bentonite backfill, gatic cover at surface.

	SAM	IPLIN	G & IN SITU TESTING	LEG	END		
	A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		
	B Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)	Douglas Partners	
	BLK Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test ls(50) (MPa)		
	C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		
	D Disturbed sample	⊳	Water seep	S	Standard penetration test		ú –
	E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)	Geotechnics Environment Groundwater	£.,
-						—	

SURFACE LEVEL: 15.5 AHD **EASTING:** 333966 **NORTHING:** 6249295 **DIP/AZIMUTH:** 90°/-- BORE No: BH9 PROJECT No: 86767.00 DATE: 11 - 12/7/2019 SHEET 1 OF 2

Π		Description	Degree of Weathering	U	Rock Strength	Fracture	Discontinuities	Sa	amplir	ng & l	n Situ Testing
님	Depth	of	weathening	Graphic Log		Spacing (m)	B - Bedding J - Joint	ø	e%	Δ	Test Results
	(m)	Strata	H M M M M M M M M M M M M M M M M M M M	Ğ _	Ex Low Very Low Medium Very High Ex High	· · /	S - Shear F - Fault	Type	Core Rec. %	å%	& Comments
H		CONCRETE SLAB		<u>ج</u> . ک					-		Commenta
15	0.33	CLAY CL: low to medium plasticity, pale grey and yellow, with fine to						E/A			PID<1
ĒĒ	0.65	\ medium grained sand, trace fine						E/A			PID<1
	-1	ironstone gravel, w>PL, residual soil		1/1				E/A			PID<1
		plasticity, pale grey and red, with fine grained sand, trace fine ironstone gravel, w <pl, residual="" soil<="" td=""><td></td><td></td><td></td><td></td><td>Unless otherwise specified, defects are</td><td>E/A</td><td>-</td><td></td><td>PID<1</td></pl,>					Unless otherwise specified, defects are	E/A	-		PID<1
[]]	1.65	0.85-1.4m: w~PL		<u> </u>			B 0-5°, pl, ro, cly vn		1		
	-2	4.4m: fine ironstone gravel, w <pl <br="">SANDSTONE: fine grained, orange-grey, very low to medium strength with extremely low strength</pl>					1.71m: Cs 40mm 1.82m: B 0°, pl, ro, cly co 1mm 1.82-1.85m: J 80°, pl, ro,	с	100	44	
13		bands, highly to moderately weathered, fractured, Mittagong Formation					cly co 1mm 1.85m: B 0°, pl, ro, cly co 1mm 1.85-1.89m: J 80°, pl, ro,				PL(A) = 0.88
	- 3						cly co 1mm 1.89m: B 0°, pl, ro, cly co 1mm 1.89-1.94m: J 80°, pl, ro,	С	100	53	
12	3.72	SANDSTONE: medium grained,	┥╵┖┿┿┓╎╴╎				cly co 1mm 1.94m: B 5°, pl, ro, cbs 1.94-1.97m: J 80°, pl, ro, cbs				PL(A) = 0.28
	- 4	grey, medium to high strength, slightly weathered then fresh, slightly fractured, Hawkesbury Sandstone					⁻ B 10°, pl, ro, cbs 1.9-2.0m: J 80°, pl, ro, cbs ⁻ 2m: B 0°, pl, ro, cbs	с	100	87	
							2.06m: Cs 30mm 2.2m: B 0°, ir, ro, cly vn 2.83-3.03m: B0-2° (x5), pl, ro, cbs				PL(A) = 0.94
-1	-5						3.08m: B 0°, pl, ro, clay co 1mm 3.16m: B 10°, pl, ro, cbs 3.21m: B 0°, ir, ro, cbs				T L(A) = 0.34
	- 6	Below 5.91m: unbroken					3.31m: B 0°, pl, ro, cly co 2mm 3.34m: B 0°, pl, ro, cly co 1mm 3.39m: Ds 30mm 3.43m: B 0°, pl, ro, cbs 3.47m: B 5°, pl, ro, cly		100	100	PL(A) = 1.6
	-7			· · · · · · · · · · · · · · · · · · ·			co 1mm 3.51-3.53m: Fg 5.43m: B 10°, pl, ro, cly vn 5.9m: Cs 10mm				PL(A) = 1.3
							7.33m: B 0°, pl, ro, cly co 1mm	С	100	100	
	- 8										PL(A) = 0.76
	- 9			· · · · · · · · · · · · · · · · · · ·			8.68m: B 0°, pl, ro, cly co 1mm	С	100	100	PL(A) = 1.9
-9-		Between 9.50-9.56m: with carbonaceous laminations					9.79m: B 0°, pl, ro, cbs	С	100	100	PL(A) = 0.97

RIG: XC

CLIENT:

PROJECT:

Atlassian Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Terratest

LOGGED: KR

CASING: HW to 2.5m

TYPE OF BORING: Diacore to 0.32m; hand auger 0.32-1.0m; Solid flight auger (TC Bit) 1.0-1.6m; NMLC coring 1.6-14.6m

WATER OBSERVATIONS: No groundwater observed during auger drilling REMARKS:

	SAN	IPLINC	3 & IN SITU TESTING						
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)				
B	Bulk sample	P	Piston sample) Point load axial test Is(50) (MPa)		Douglas	Douteo	-
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)	1.	LOUGIAS	Parlne	15
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)				
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	1.	Orative house 1 Front	and and it out the	. And
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics Envir	ronment Groundw	vater

SURFACE LEVEL: 15.5 AHD **EASTING:** 333966 NORTHING: 6249295 **DIP/AZIMUTH:** 90°/--

BORE No: BH9 PROJECT No: 86767.00 DATE: 11 - 12/7/2019 SHEET 2 OF 2

Π		Description	Degree of		Rock	Fracture	Discontinuities	Sa	ampli	na &	In Situ Testing
RL	Depth	of	Weathering	ogo.	Strength	Spacing	B - Bedding J - Joint	υ	08		Test Results
	(m)	Strata	Degree of Weathering ﷺ ≩ ≩ ਨੇ № ੴ	5	Strendth High Ex Low Low Very High Ex High Mater	(m)	S - Shear F - Fault	Type	Re C	RQD %	& Comments
	-	SANDSTONE: medium grained, grey, medium to high strength, slightly weathered then fresh, slightly fractured, Hawkesbury						с	100		
	- 11	Sandstone <i>(continued)</i> Between 11.17-11.30m: with carbonaceous laminations					11.27m: B 0°, pl, ro, cbs	с	100	100	PL(A) = 1.3
	- 12			· · · · · · · · · · · · · · · · · · ·							PL(A) = 1.5
	- 13						12.29m: B 0°, pl, sm, cbs 12.62m: B 0°, pl, sm, cbs 13.1m: B 0°, pl, sm, cbs	с	100	100	PL(A) = 3.1
	- 14						13.56m: B 0°, pl, sm, cbs 13.63m: B 0°, pl, sm, clay vn	с	100	100	PL(A) = 1.3
	14.6	Bore discontinued at 14.6m									PL(A) = 1
	- 15 - 16										
	- 17					 					
	- 18										
	- 19										

RIG: XC

CLIENT:

PROJECT:

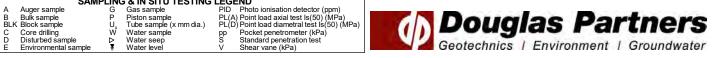
Atlassian Pty Ltd

LOCATION: 8-10 Lee Street, Haymarket

Proposed Commercial Development

DRILLER: Terratest

LOGGED: KR


CASING: HW to 2.5m

TYPE OF BORING: Diacore to 0.32m; hand auger 0.32-1.0m; Solid flight auger (TC Bit) 1.0-1.6m; NMLC coring 1.6-14.6m WATER OBSERVATIONS: No groundwater observed during auger drilling

REMARKS:

CDE

SAMPLING & IN SITU TESTING LEGEND

Appendix F

Groundwater Data

YAA Well water level: 5.95m well depth: 6.3m 23/07/19 14:30

.

÷., /

÷

Douglas Partmers

BH3

Geotechnics Er	nvironment i	Groundwate	r			
Groundwater Field She	et			Be	ne Volume = casing vo	iume + filter pack
Project and Bore Installation	Details				volume == 7b_d;~4 -	+ 6(zh:d:/4-zh:d:/4)
Bore / Standpipe ID:	BH3 (G(- \			here: x = 3.14	
Project Name:		KET DSI			ם = porouty (0 3	for most filter pack
Project Number:	86767.0				nisteral)	
Site Location:) [$b_z = height of w$	
Bore GPS Co-ord:					ರೆ,≃ ಮುಲಾಗಲ್ of b, ∞ ;ength of fil	
Installation Date:			······		d = diameter of	•
GW Level (during drilling):		m bgl		Bo	ore Voi Normail	y: 7.2*h
Well Depth:		m bgl	Wield			···.
Screened Interval:		m bgl	·			
Contaminants/Comments:					· · · · · · · · · · · · · · · · · · ·	
Bore Development Details						
Date/Time:	23107/1	0 10	00		· · · · · · · · · · · · · · · · · · ·	
	AS	<u> </u>				
Purged By:		m bgl				
GW Level (pre-purge):	2.6	m bgl				
GW Level (post-purge):	<u>14.4</u> Yes / (No) (interface /	visual). Thickne	ess if observe		
PSH observed:		m bgl	Visual J. HICKIN	ess il observe	<i>.</i>	<u></u>
Observed Well Depth:	15.2 90		Khai - i maa	A		1.5. N
Estimated Bore Volume:	(torget: po dri		* Actual DOF well vol. or (dry))	<u>e voltime</u>	<u>~ ~ 4() L</u>	(dry)
Total Volume Purged:	· · ·	and the second second second second second second second second second second second second second second second				-)
Equipment:	pump , hai	HERMINER	Face metre	DONELIN	<u>ne, water</u>	CUDES
Micropurge and Sampling De						
Date/Time:						
Sampled By:						
Weather Conditions:						
GW Level (pre-purge):		m bgl				
GW Level (post sample):		m bgl	visual). Thickne	and if abaans		
PSH observed:	Yes / No (interface /	visual). Thickne	ess il observe	;u.	
Observed Well Depth:		m bgl				
Estimated Bore Volume:		<u> </u>		· · · · · · · · · · · · · · · · · · ·		
Total Volume Purged:		<u>L</u>				
Equipment:						
		Water Quali	ty Parameters		·	
Time / Volume	Temp (°C)	DO (mg/L)	EC (µS or mS/cm)	ρH	Turbidity	Redox (mV)
Stabilisation Criteria (3 readings)	0.1°C	+/- 0.3 mg/L	+/- 3%	+/- 0.1	+/- 10%	+/- 10 mV
Stabilisation Chiena (Steadings)	0.7 0	in the training in			1	
<u> </u>						
	. <u> </u>					
						·······
					<u> </u>	+
Additional Readings Following	DO % Sat	SPC	TDS			1
stabilisation:	00 % Gal					
Stabilisation.		Samn	e Details		I	
Sampling Depth (rationale):	l	m bgl,	<u></u>		· · · · · · · · · · ·	
Sample Appearance (e.g.						
colour, siltiness, odour):	Clear -	brown,	still, odo	ur less		
Sample ID:						·····
QA/QC Samples:						
Sampling Containers and						
filtration:						
Comments / Observations:						

BHB

Douglas Partners

Groundwater Field Sheet

Bore Volume = caung volume + filter park volume

and Geores Field Sheet	.4			Bore V	volume = caung volume volume	1							
oundwater Field Sheet					$= \pi \mathbf{h} \cdot \mathbf{d} \cdot 4 + \mathbf{c} 0$	(
eject and Bore Installation D	etans	· ^)		Where	n z=3.14	-							
re / Standpipe ID:	BHB (TOF				n = poroury (0.3 for	most filter pack							
oject Name:	HAYMARK	FT DSI			natenal)]							
bject Number:	86767.01				$\mathbf{h}_i = \text{height of writer}$ $\mathbf{d}_i = dimpiser of and$	colurus							
e Location:				¥	h, = les gilt of filter ;	pack							
re GPS Co-ord:					d = danster of car	ung							
stallation Date:		n bal		Bore	e Voi Normaliy:	7.2*h							
V Level (during drilling):		n bgi n bgi											
ell Depth:		n bgi n bgi	······	······································									
reened Interval:													
ontaminants/Comments: -													
ore Development Details		15:00	~										
	23107/19	<u> </u>	<u></u>										
urged By:	AS	m bgl											
W Level (pre-purge):	<u> </u>	m bgl		·									
W Level (post-purge):			isual). Thickness	s if observed	1:								
	100 1 (110)	m bgl	<u>Suur /</u>										
bserved Well Depth:	62 1	1 * 0		e voluo	ne ~40L	lacy Islow							
stimated Bore Volume:	(3 L 1 ((())) (()) (())												
	nume, battery, interface metre, batter line, wither cars												
quipment:	<u>pump, parr</u>	<u></u>	<u>111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </u>		······································								
licropurge and Sampling De													
ate/Time:			<u> </u>										
ampled By:	<u> </u>	<u></u>											
Veather Conditions:	<u> </u>	m bgl	<u></u>										
W Level (pre-purge):		m hal	<u> </u>										
SW Level (post sample):		interface / v	visual). Thicknes	ss if observer	d:								
SH observed:	100 1 11	m bgl	//ouci /-										
Observed Well Depth:													
stimated Bore Volume:	4	<u> </u>	<u> </u>										
Total Volume Purged:	<u></u>	<u> </u>	<u> </u>										
Equipment:						<u></u>							
.quipinen.		Water Qualit	y Parameters										
······	Temp (°C)	DO (mg/L)	EC (µS or mS/cm)	рН	Turbidity	Redox (mV)							
Time / Volume	0.1°C	+/- 0.3 mg/L	+/- 3%	+/- 0.1	+/- 10%	+/- 10 mV							
Stabilisation Criteria (3 readings)		<u> ,,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,</u>	<u>+</u>		T								
			+										
	<u> </u>	+	+										
			+			T							
			+										
		+											
-													
			TDS										
Additional Readings Followin	1g DO % Sat												
stabilisation:		Samr	le Details		<u></u>	······································							
	— <u> </u>												
Sampling Depth (rationale):		m bgl,											
Sample Appearance (e.g. colour, siltiness, odour):	Yellow	-prowu	, still, odo	ULLESS									
Sample ID:													
QA/QC Samples:													
Sampling Containers and filtration:						1							
Comments / Observations:	actual '	Well V W	5 40 (7)L	SIOW WITH	HIRD AAM	X.A							

18 J

31

Groundwater Field She				Bos	e Volume = casing w	ohume + filter pack	
Project and Bore Installation	Details				volume = $\pi h_1 d_2^2/4$	$+ n(\pi h_1 d_1^{-1}/4 - \pi h_2 d_2^{-1}/4)$	
Bore / Standpipe ID:	ISH I			Wh	bere: π = 3.14		
Project Name:	Mayn	what D	SI		n = porosity (0.3	for most filter pack	
Project Number:	867	67.00			material)		
Site Location:					h _i = height of w		
Bore GPS Co-ord:					d _i = drameter of h _i = length of fil		
Installation Date:					d ₁ = diameter of		
GW Level (during drilling):	-	m bgl		Во	re Vol Normall	y: 7.2*h	
Well Depth:		m bgl					
Screened Interval:		m bgl					
Contaminants/Comments:	-	in ogi					
Bore Development Details							
Date/Time:	1400	20	7.19				
Purged By:	1400	-10-	4.10				
GW Level (pre-purge):	6.07	mhal					
GW Level (post-purge):	Poor	m bgl	NR. ~ 15		1	1 16	
PSH observed:	Yes / No	in ogi	10. 12	L 04 0	en wo	E adde	
1	Yes / No		visual). Thicknes	s if observed:	ilittle dec	linet reme	
Observed Well Depth:		m bgl					
Estimated Bore Volume:	10	L			0		
Total Volume Purged:	C	I mud, min 3 w		12001	dry		
Equipment:	1wish	spup,	interface	- neter	- /		
Micropurge and Sampling De	tails	1 17					
Date/Time:							
Sampled By:							
Weather Conditions:							
GW Level (pre-purge):		m bgl					
GW Level (post sample):		m bgl					
PSH observed:	Yes / No (interface / visual). Thickness if observed:						
Observed Well Depth:	m bgl						
Estimated Bore Volume:							
Total Volume Purged:		NL.					
Time / Volume	Temp (°C)	Water Qualit DO (mg/L)	EC (µS or mS/cm)	pН	Turbidity	Redox (mV)	
Stabilisation Criteria (3 readings)	0.1°C	+/- 0.3 mg/L	+/- 3%	+/- 0.1	+/- 10%	+/- 10 mV	
			· · · · · · · · · · · · · · · · · · ·		1.		
	1				1		
			·				
		1			-10		
						-	
		1	-				
		1					
Additional Readings Following	DO % Sat	SPC	TDS				
stabilisation:			100				
		Sample	Details				
Sampling Depth (rationale):	S	m bgl,	Detans				
Sample Appearance (e.g.		in bgi,					
colour, siltiness, odour):							
Sample ID:							
and the second sec							
A/QC Samples							
ampling Containers and							
Campling Containers and Itration:							
Sampling Containers and Itration:	21 1	0000 /0		1		_/	
Sampling Containers and Itration:	Level 15	gger (S	N) (stalled	at	
Sampling Containers and Itration:	Level 10	zer (s	N	127	-stalled	at	
QA/QC Samples: Sampling Containers and iltration: Comments / Observations:	Level 18 b. (m	ger (S		127	-stalled	at	
Sampling Containers and iltration:	Level le 6.1 p	ger (S	N at 1445	127	-stalled	at	
Sampling Containers and Itration:	Level 15 6.1 m Levet	ger (S	N at 1445	127	-stalled	art	
ampling Containers and Itration:	Level 15 6. (p test ;	ger (S , gprox au les	N at 1445 J 5.93	127	-stalled to fill	at Rev March 2011	
ampling Containers and Itration:	Level lé 6. (p test ; el to	ger (S gprox Gul leu Gul leu	N at 1445 J 5.95	127	-stalled to fill	at Rev March 2012	
Sampling Containers and iltration:	Level le 6. (m test ; d to !	ger (S , gprox Gul leu Cil leu	N at 1445 J 5.95 . US mins	127	-stalled to fill	at Rev March 2012	

Groundwater Field Sheet

Bore Volume = caung volume + filter pack
 volume
 $= \pi h_{d_2}/4 + n(\pi h_{d_1}/4 - \pi h_{d_2})$

Project and Bore Installation					volume = $\tau h d \cdot 4$	+ n(zh d /4-zh d -
Bore / Standpipe ID:	BH5 (GC	1		W3	xere: π = 3.14	
Project Name:	HAYMAR				n = poroury (0 3	for most filter pack
Project Number:	86767.0	for a second second second second second second second second second second second second second second second			minternal)	
Site Location:	20101.0				h, = height of w	
Bore GPS Co-ord:					d = drameter of h = length of fil	
Installation Date:					d = diameter of	
GW Level (during drilling):	-	m bgl		Во	re Vol Normall	y: 7.2*h
Well Depth:		m bgl				
Screened Interval:		m bgl				
Contaminants/Comments:	1	in bgi				
Bore Development Details						
Date/Time:	0210211	9 12	00			
	23107/1 AS	4 1.4	-00			
Purged By:	15	m bgl				
GW Level (pre-purge):	14.4	m bgl				
GW Level (post-purge):	Yes / (No) (visual). Thickne	es if observe	d.	
PSH observed:			visual). Thickne	SS II ODSEIVE	u.	
Observed Well Depth:	15.2	m bgl				1
Estimated Bore Volume:	<u>90</u>	L 🕅	Actual por	e volume	:~40L	(dry)
Total Volume Purged:			vell vol. or (dry)			
Equipment:		teryinter	ince metre ,	Dailer III	Ne, WOHER	CUDES
Micropurge and Sampling De	etails					
Date/Time:						
Sampled By:						
Weather Conditions:	1					
GW Level (pre-purge):	1	m bgl				
GW Level (post sample):		m bgl				
PSH observed:	Yes / No (interface /	visual). Thickne	ess if observe	d:	
Observed Well Depth:		m bgl				
Estimated Bore Volume:		L				
Total Volume Purged:		L				
Equipment:						
Equipment:						
			y Parameters			D
Time / Volume	Temp (°C)	DO (mg/L)	EC (µS or mS/cm)	pH	Turbidity	Redox (mV)
Stabilisation Criteria (3 readings)	0.1°C	+/- 0.3 mg/L	+/- 3%	+/- 0.1	+/- 10%	+/- 10 mV
lin.			1			
	1					
-		1				
					1	
	1		-			
Additional Readings Following	DO % Sat	SPC	TDS			
stabilisation:						
stabiliouton.		Sample	e Details			1
Sampling Depth (rationale):		m bgl,				
Sample Appearance (e.g.				and the second sec		
	clear-	brown,	still, odou	1 LIESS		
colour, siltiness, odour):						
Sample ID:						
ONIOC Carrielant						
QA/QC Samples:						
Sampling Containers and						
Sampling Containers and						

Geotechnics | Environment | Groundwater

Groundwater Field She					volume	
Project and Bore Installation	BH5 (G	C)		115	$= \pi h_1 d_2^2 / 4 +$ re: $\pi = 3.14$	n(\pi h, d, 3/4-\pi h; d)
Bore / Standpipe ID:				Whe	n = porosity (0.3	for most filter na
Project Name:	Maynerl				material)	to more more pe
Project Number:	180	761.01			h _i = height of wa	ter column
Site Location:					d ₁ = diameter of a	anulus
Bore GPS Co-ord:					$h_2 = \text{length of filt}$ $d_2 = \text{diameter of } d_2$	
Installation Date:		m hel		Bor	e Vol Normally	
GW Level (during drilling):	-	m bgl		501	e rentennen)	
Well Depth:		m bgl				
Screened Interval:		m bgl				
Contaminants/Comments:	<u>.</u>					
Bore Development Details						
Date/Time:						
Purged By:		m hal				
GW Level (pre-purge):		m bgl				
GW Level (post-purge):	Yes / No (m bgl interface / vis	sual). Thickne	ss if observed:		
PSH observed: Observed Well Depth:	105 / 140 (sual J. THICKIE	sa il observed.		
		m bgl				
Estimated Bore Volume:	(target: no drill	L mud, min 3 wel	lvol or dry \			
Total Volume Purged:	tranger. no unii	muu, min 5 wei	vol. of dry j			
Equipment:	aile					
Micropurge and Sampling Det		~				
Date/Time:	30.7.1	-1				
Sampled By:	Din	111 -	1			
Weather Conditions:	1.44	m bgl	,	_		
GW Level (pre-purge):	4.2	m bgl				
GW Level (post sample): PSH observed:	Yes / No)(sual)). Thickne	ss if observed		
Observed Well Depth:	15-1	m bgl	Julie J. Thickne	os il observed.		
Estimated Bore Volume:	1.3.1	L				
Total Volume Purged:	-3		(C) purger)			
Total volume Purged:		- (mal		1	٥	
Equipment:	Peripun	Water Quality	1, Baul	er, he	rece re	the
Time / Volume	T. (00)	DO (mg/L)	EC (µS or mS/cm)	/ pH	Turbidity	Redox (m
Time / Volume Stabilisation Criteria (3 readings)	Temp (°C)		+/- 3%	p⊓ +/- 0.1	+/- 10%	+/- 10 m
	0.1°C	+/- 0.3 mg/L	- Chine and Party	5.44	+/- 10%	187
13/4	17.4	1.94	460	5.43	21.1	187
13 20	1 405-1		420	5.43	25-1	182
7321	19.1	1.24	428	5.49	22.3	176
1522	19.2	0.87	428	5.49	19.7	174
13.23	Inc	5.84	408	147	1.1.4	1/4
6		1				
7		1 1				
		-			-	
1			10-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-			
Additional Poodings Following	DO % Sat	SPC	TDS			
Additional Readings Following stabilisation:	DU % Sat	SPU .	103	-		
รเฉษาเธลนบาเ.		Sample	Detaile -	L		1
Sampling Dopth (rotionala):	~ 8		Jole of	weter	column	
Sampling Depth (rationale): Sample Appearance (e.g.	-0	mugi, /-u	our of	Cett	count	
colour, siltiness, odour):	clear	to Dale	Gren			
Sample ID:	RHS	1- 1.	01			
QA/QC Samples:	RAITA	219073	<u> </u>			
Sampling Containers and	DUY U	1 - A	1 C 1	0 ()	1111	(la
filtration:	14 Ambes	- (+ Jaun	LUIT	Inchr 1x	reex 1 till	ints
Comments / Observations:	Level 1	logger /s	50 420	5 7242	-1 inst	allect
Comments / Observations:	Level 1	logger (S	i at 1	5 7242	-1 inst	alled

21 (2)

7

BHS

roundwater Field She	et			Bone	Volume = casing vol	iunse + filter puck			
roject and Bore Installation						n(zh.d. /4-zh.d. 4)			
ore / Standpipe ID:		(GA)		When	e: z = 3.14				
roject Name:	HAYMAR				E = poroury (0 3	for most filter pack			
roject Number:	86767.0				material)				
ite Location:	20101.5				$h_i = height of ward d = diameter of a$				
ore GPS Co-ord:					h, = length of filt				
Istallation Date:					d = diameter of	caung			
W Level (during drilling):		m bgl		Bor	e Vol Normall	y: 7.2*h			
		m bgl							
/ell Depth: creened Interval:		m bgl							
		in bgi							
ontaminants/Comments:	-								
ore Development Details	00107110	15:0	20						
ate/Time:	23107119	12.0	30						
Purged By:	AS	we had							
W Level (pre-purge):	2.3	m bgl							
GW Level (post-purge):	8.9	m bgl							
SH observed:	Yes / (No) (A1 100 10 10 10 10 10 10 10 10 10 10 10 1	visual). Thickne	ess if observed	:				
Observed Well Depth:	15.2	m bgl				1.1.1			
stimated Bore Volume:	93	L *	actualba	nce volur	pe ~ 401	- Lary / Slowr			
otal Volume Purged:			vell vol. or (dry)	100L					
Equipment:	nump, bat	teru, inter	Face metre	, MURFILL	re. water	cubes			
licropurge and Sampling De									
Date/Time:	1500	30.3	2.19						
	TOM	70.							
Sampled By:	Overa.	st lindo	1625						
Veather Conditions:			9.21						
GW Level (pre-purge):		2.0.3 m bgl							
GW Level (post sample):									
PSH observed:	Yes / No (Y I							
Observed Well Depth:	15.2	m bgl							
Estimated Bore Volume:	93	L							
Fotal Volume Purged:	3	L							
	0		a 1 1 1	1	or B	185			
Equipment:	Peripy	, was	1, Intert	ace not		410			
			y Parameters		Trank Littles -	Bodoy (mV)			
Time / Volume	Temp (°C)	DO (mg/L)	EC (µS or mS/cm)	pН	Turbidity	Redox (mV)			
Stabilisation Criteria (3 readings)	0.1°C	+/- 0.3 mg/L	+/- 3%	÷/- 0.1	+/- 10%	+/- 10 mV			
1515	180	3.51	329	54	41	189			
1516	18.8	2097	327	5.4	28	184			
1517	19.1	2.53	315	5.4	28	160			
1717	19.2	2.28	313	5.4	7.9	157			
1519	19.2	1.94	3/1	5.4	29	154			
1017		1.62			24	1-1			
1520	19.2			3.4	28	150			
1521	14.5	1.43		5-7	20	140			
1522	19.3	1036	310	5.4		48			
				1					
Additional Readings Following	DO % Sat	SPC	TDS	· · · · · · · · · · · · · · · · · · ·					
stabilisation:									
		Sampl	e Details						
Sampling Depth (rationale):	1	m bgl,							
Sample Appearance (e.g.			21. A.A. 1. A.A.						
	VELLOW	- prown	, still, odc	ULTIESS					
colour, siltiness, odour):									
Sample ID:									
QA/QC Samples:									
Sampling Containers and									
filtration:									
Commente / Obconvetions:	actual M	VEIL VS	40 (7)1 -	STOW PUMP	non . wate	5			
Comments / Observations:		1011	CC.	mining housing	Di main				
	coming	outonle	IFF I	TL O	,	I CIT			
Port Engle Aut	and in	01	dont	11. an	to wa	te dinnal			
1024 Sucher houd	10	OL	Chapt	ele tu	0.01	1 11			
			3 11		2	- /			
		I Me	V 1/01-		1				
1- stalled level	logger	ot all	In ISN	>)	Rev March 2012			
1-stelled level	logger	ot All	Im (Sh	>)	Rev March 2012			

TPS FLT90 CALIBRATION RECORD

Serial Number: 428561

DP Identification No.

DP595

Project: Hagneslet. Project Number: 8 18 76 7.01

PARAMETER STANDARD		PRE CALIB	RATION READING	POST CALIBRATION READING		
Temperature	* 23.0 20.0	70.6	degrees C	20.6	degrees C	
60 - 1 - 1	10	9.070	pH units	10.0	pH units	
pН	7	6.89	pH units	7.0	pH units	
	4	4.65	pH units	4.0	pH units	
0	0.0** uS/cm		μS/cm		μS/cm	
Conductivity	2.76 mS/cm	2475	/bn/S/cm	2711	JAS/cm	
TDO	0.0** ppm		ppm		ppm	
TDS	36.0 ppk		ppk		ppk	
	0.00/		ppm			
Dissolved	0.0% sat		%		%	
Oxygen	100.0**%	7	ppm	3		
sat			%		%	
-	0*** NTU		NTU		NTU	
Turbidity	90 NTU	87	NTU	90-1	NTU	
ORP #	240 mV	253	mV	-	mV	

5n Calibrated by: 29.7.19 Date:

* use NATA certified reference thermometer from soils clean lab

- ** air
- *** distilled water

factory calibrated - do a bump test

NOTES:

Form Updated 21Mar2011

31

Groundwater Field She				Bos	e Volume = casing w	ohume + filter pack	
Project and Bore Installation	Details				volume = $\pi h_1 d_2^2/4$	$+ n(\pi h_1 d_1^{-1}/4 - \pi h_2 d_2^{-1}/4)$	
Bore / Standpipe ID:	ISH I			Wh	bere: π = 3.14		
Project Name:	Mayn	what D	SI		n = porosity (0.3	for most filter pack	
Project Number:	867	67.00			material)		
Site Location:					h _i = height of w		
Bore GPS Co-ord:					d _i = drameter of h _i = length of fil		
Installation Date:					d ₁ = diameter of		
GW Level (during drilling):	-	m bgl		Во	re Vol Normall	y: 7.2*h	
Well Depth:		m bgl					
Screened Interval:		m bgl					
Contaminants/Comments:	-	in ogi					
Bore Development Details							
Date/Time:	1400	20	7.19				
Purged By:	1400	-10-	4.10				
GW Level (pre-purge):	6.07	mhal					
GW Level (post-purge):	Poor	m bgl	NR. ~ 15		1	1 16	
PSH observed:	Yes / No	in ogi	10. 12	L 04 0	en wo	E adde	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Yes / No		visual). Thicknes	s if observed:	ilittle dec	linet reme	
Observed Well Depth:		m bgl					
Estimated Bore Volume:	10	L			0		
Total Volume Purged:	C	I mud, min 3 w		12001	dry		
Equipment:	1wish	spup,	interface	- neter	- /		
Micropurge and Sampling De	tails	1 17					
Date/Time:							
Sampled By:							
Weather Conditions:							
GW Level (pre-purge):		m bgl					
GW Level (post sample):		m bgl					
PSH observed:	Yes / No (interface / visual). Thickness if observed:						
Observed Well Depth:	m bgl						
Estimated Bore Volume:							
Total Volume Purged:		NL.					
Time / Volume	Temp (°C)	Water Qualit DO (mg/L)	EC (µS or mS/cm)	pН	Turbidity	Redox (mV)	
Stabilisation Criteria (3 readings)	0.1°C	+/- 0.3 mg/L	+/- 3%	+/- 0.1	+/- 10%	+/- 10 mV	
			· · · · · · · · · · · · · · · · · · ·		1.		
	1				1		
			·				
		1			-10		
						-	
		1	-				
		1					
Additional Readings Following	DO % Sat	SPC	TDS				
stabilisation:			100				
		Sample	Details				
Sampling Depth (rationale):	S	m bgl,	Detans				
Sample Appearance (e.g.		in bgi,					
colour, siltiness, odour):							
Sample ID:							
and the second sec							
A/QC Samples							
ampling Containers and							
Campling Containers and Itration:							
Sampling Containers and Itration:	21 1	0000 /0		1		_/	
Sampling Containers and Itration:	Level 15	gger (S	N) (stalled	at	
Sampling Containers and Itration:	Level 10	zer (s	N	127	-stalled	at	
QA/QC Samples: Sampling Containers and iltration: Comments / Observations:	Level 18 b. (m	ger (S		127	-stalled	at	
Sampling Containers and iltration:	Level le 6.1 p	ger (S	N at 1445	127	-stalled	at	
Sampling Containers and Itration:	Level 15 6. (m Levet	ger (S	N at 1445	127	-stalled	art	
ampling Containers and Itration:	Level 15 6. (p test ;	ger (S , gprox au les	N at 1445 J 5.93	127	-stalled to fill	at Rev March 2011	
ampling Containers and Itration:	Level lé 6. (p test ; el to	ger (S gprox Gul leu Gul leu	N at 1445 J 5.95	127	-stalled to fill	at Rev March 2012	
Sampling Containers and iltration:	Level le 6. (m test ; d to !	ger (S , gprox Gul leu Cil leu	N at 1445 J 5.95 . US mins	127	-stalled to fill	at Rev March 2012	

Groundwater Field Sheet

Bore Volume = caung volume + filter pack
 volume
 $= \pi h_{d_2}/4 + n(\pi h_{d_1}/4 - \pi h_{d_2})$

Project and Bore Installation					volume = $\tau h d \cdot 4$	+ n(zh d /4-zh d -
Bore / Standpipe ID:	BH5 (GC	1		W3	xere: π = 3.14	
Project Name:	HAYMAR				n = poroury (0 3	for most filter pack
Project Number:	86767.0	for a second second second second second second second second second second second second second second second			minternal)	
Site Location:	20101.0				h = height of w	
Bore GPS Co-ord:					d = drameter of h = length of fil	
Installation Date:					d = diameter of	
GW Level (during drilling):	-	m bgl		Во	re Vol Normall	y: 7.2*h
Well Depth:		m bgl				
Screened Interval:		m bgl				
Contaminants/Comments:	1	in bgi				
Bore Development Details						
Date/Time:	0010011	9 12	00			
	23107/1 AS	4 1.4	-00			
Purged By:	15	m bgl				
GW Level (pre-purge):	14.4	m bgl				
GW Level (post-purge):	Yes / (No) (visual). Thickne	es if observe	d.	
PSH observed:			visual). Thickne	SS II ODSEIVE	u.	
Observed Well Depth:	15.2	m bgl				1
Estimated Bore Volume:	<u>90</u>	L 🕅	Actual por	e volume	:~40L	(dry)
Total Volume Purged:			vell vol. or (dry)			
Equipment:		teryinter	ince metre ,	Dailer III	Ne, WOHER	CUDES
Micropurge and Sampling De	etails					
Date/Time:						
Sampled By:						
Weather Conditions:	1					
GW Level (pre-purge):	1	m bgl				
GW Level (post sample):		m bgl				
PSH observed:	Yes / No (interface /	visual). Thickne	ess if observe	d:	
Observed Well Depth:		m bgl				
Estimated Bore Volume:		L				
Total Volume Purged:		L				
Equipment:						
Equipment:						
			y Parameters			D
Time / Volume	Temp (°C)	DO (mg/L)	EC (µS or mS/cm)	pH	Turbidity	Redox (mV)
Stabilisation Criteria (3 readings)	0.1°C	+/- 0.3 mg/L	+/- 3%	+/- 0.1	+/- 10%	+/- 10 mV
lin.						
	1					
-		1				
					1	
	1		-			
Additional Readings Following	DO % Sat	SPC	TDS			
stabilisation:						
stabiliouton.		Sample	e Details			1
Sampling Depth (rationale):		m bgl,				
Sample Appearance (e.g.				and the second sec		
	clear-	brown,	still, odou	1 LIESS		
colour, siltiness, odour):						
Sample ID:						
ONIOC Carrielant						
QA/QC Samples:						
Sampling Containers and						
Sampling Containers and						

Geotechnics | Environment | Groundwater

Groundwater Field She					volume	
Project and Bore Installation	BH5 (G	C)		115	$= \pi h_1 d_2^2 / 4 +$ re: $\pi = 3.14$	n(\pi h, d, 3/4-\pi h; d)
Bore / Standpipe ID:				Whe	n = porosity (0.3	for most filter na
Project Name:	Maynerl				material)	to more more pe
Project Number:	180	761.01			h _i = height of wa	ter column
Site Location:					d ₁ = diameter of a	anulus
Bore GPS Co-ord:					$h_2 = \text{length of filt}$ $d_2 = \text{diameter of } d_2$	
Installation Date:		m hel		Bor	e Vol Normally	
GW Level (during drilling):	-	m bgl		501	e rentennen)	
Well Depth:		m bgl				
Screened Interval:		m bgl				
Contaminants/Comments:	<u>.</u>					_
Bore Development Details						
Date/Time:						
Purged By:		m hal				
GW Level (pre-purge):		m bgl				
GW Level (post-purge):	Yes / No (m bgl interface / vis	sual). Thickne	ss if observed:		
PSH observed: Observed Well Depth:	105 / 140 (sual J. THICKIE	sa il observed.		
		m bgl				
Estimated Bore Volume:	(target: no drill	L mud, min 3 wel	lvol or dry \			
Total Volume Purged:	tranger. no unii	muu, min 5 wei	vol. of dry j			
Equipment:	aile					
Micropurge and Sampling Det		~				
Date/Time:	30.7.1	-1				
Sampled By:	1220	111 -	1			
Weather Conditions:	1.44	m bgl	,	_		
GW Level (pre-purge):	4.2	m bgl				
GW Level (post sample): PSH observed:	Yes / No)(sual)). Thickne	ss if observed		
Observed Well Depth:	15-1	m bgl	Julie J. Thickne	os il observed.		
Estimated Bore Volume:	1.3.1	L				
Total Volume Purged:	-3		(C) purger)			
Total volume Purged:		- (mal		1	٥	
Equipment:	Peripun	Water Quality	1, Baul	er, he	rece re	the
Time / Volume	T. (00)	DO (mg/L)	EC (µS or mS/cm)	/ pH	Turbidity	Redox (m
Time / Volume Stabilisation Criteria (3 readings)	Temp (°C)		+/- 3%	p⊓ +/- 0.1	+/- 10%	+/- 10 m
	0.1°C	+/- 0.3 mg/L	- Chine and Party	5.44	+/- 10%	187
13/4	17.4	1.94	460	5.43	21.1	187
13 20	1 405-1		420	5.43	25-1	182
7321	19.1	1.24	428	5.49	22.3	176
1522	19.2	0.87	428	5.49	19.7	174
13.23	Inc	5.84	408	147	1.1.4	1/4
6		1				
7		1 1				
		-			-	
1			10-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-			
Additional Poodings Following	DO % Sat	SPC	TDS			
Additional Readings Following stabilisation:	DU % Sat	550	103	-		
รเฉษาเธลนปา.		Sample	Detaile -			1
Sampling Dopth (rotionale):	~ 8		Jole of	weter	column	
Sampling Depth (rationale): Sample Appearance (e.g.	-0	mugi, /-u	our of	Cett	Coloma	
colour, siltiness, odour):	clear	to Dale	Gren			
Sample ID:	RHS	1- 1.	01			
QA/QC Samples:	RAITA	219073	<u> </u>			
Sampling Containers and	DUY U	1 - A	1 C 1	0 ()	1111	(la
filtration:	14 Ambes	- (+ Jaun	LUIT	Incher 1x	reex 1 till	ints
Comments / Observations:	Level 1	logger /s	50 420	5 7242	-1 inst	allect
Comments / Observations:	Level 1	logger (S	i at 1	5 7242	-1 inst	alled

JV (2)

7

BHS

roundwater Field She	et			Bone	Volume = casing vol	iunse + filter puck			
roject and Bore Installation						n(zh.d. /4-zh.d. 4)			
ore / Standpipe ID:		(GA)		When	e: z = 3.14				
roject Name:	HAYMAR				E = poroury (0 3	for most filter pack			
roject Number:	86767.0				material)				
ite Location:	20101.5				$h_i = height of ward d = diameter of a$				
ore GPS Co-ord:					h, = length of filt				
Istallation Date:					d = diameter of	caung			
W Level (during drilling):		m bgl		Bor	e Vol Normall	y: 7.2*h			
		m bgl							
/ell Depth: creened Interval:		m bgl							
		in bgi							
ontaminants/Comments:	-								
ore Development Details	00107110	15:0	20						
ate/Time:	23107119	12.0	30						
Purged By:	AS	we had							
W Level (pre-purge):	2.3	m bgl							
GW Level (post-purge):	8.9	m bgl							
SH observed:	Yes / (No) (A	visual). Thickne	ess if observed	:				
Observed Well Depth:	15.2	m bgl				1.1.1			
stimated Bore Volume:	93	L *	actualba	nce volur	pe ~ 401	- Lary / Slowr			
otal Volume Purged:			vell vol. or (dry)	100 L					
Equipment:	nump, bat	teru, inter	Face metre	, MURFILL	re. water	cubes			
licropurge and Sampling De									
Date/Time:	1500	30.3	2.19						
	TOM	70.							
Sampled By:	Overa.	st lindo	1625						
Veather Conditions:			9.21						
GW Level (pre-purge):		2.0.3 m bgl							
GW Level (post sample):									
PSH observed:	Yes / No (Y I							
Observed Well Depth:	15.2	m bgl							
Estimated Bore Volume:	93	L							
Fotal Volume Purged:	3	L							
	0		a 1 1 1	1	or B	185			
Equipment:	Peripy	, was	1, Intert	ace not		410			
			y Parameters		Trank Littles -	Bodoy (mV)			
Time / Volume	Temp (°C)	DO (mg/L)	EC (µS or mS/cm)	pН	Turbidity	Redox (mV)			
Stabilisation Criteria (3 readings)	0.1°C	+/- 0.3 mg/L	+/- 3%	÷/- 0.1	+/- 10%	+/- 10 mV			
1515	180	3.51	329	54	41	189			
1516	18.8	2097	327	5.4	28	184			
1517	19.1	2.53	315	5.4	28	160			
1717	19.2	2.28	313	5.4	7.9	157			
1519	19.2	1.94	3/1	5.4	29	154			
1017		1.62			24	1-1			
1520	19.2			3.4	28	150			
1521	14.5	1.43		5-7	20	140			
1522	19.3	1036	310	5.4		48			
				1					
Additional Readings Following	DO % Sat	SPC	TDS	· · · · · · · · · · · · · · · · · · ·					
stabilisation:									
		Sampl	e Details						
Sampling Depth (rationale):	1	m bgl,							
Sample Appearance (e.g.			21. A.A. 1. A.A.						
	VELLOW	- prown	, still, odc	ULTIESS					
colour, siltiness, odour):									
Sample ID:									
QA/QC Samples:									
Sampling Containers and									
filtration:									
Commente / Obconvetions:	actual M	VEIL VS	40 (7)1 -	STOW PUMP	non . wate	5			
Comments / Observations:		1011	CC.	mining housing	Di main				
	coming	outonle	IFF I	TL O	,	I CIT			
Port Engle Aut	and in	01	dont	11. an	to wa	te dinnal			
1024 Sucher houd	10	OL	Chapt	ele tu	0.01	1 11			
			3 11		2	• /			
	1	I Me	V VICI-		1				
1- stalled level	logger	ot all	In ISN	>)	Rev March 2012			
1-stelled level	logger	ot All	Im (Sh	>)	Rev March 2012			

TPS FLT90 CALIBRATION RECORD

Serial Number: 428561

DP Identification No.

DP595

Project: Hagneslet. Project Number: 8 18 76 7.01

PARAMETER	STANDARD	PRE CALIB	PRE CALIBRATION READING		ION READING
Temperature	* 23.0 20.0	70.6	degrees C	20.6	degrees C
60 - 1 - 1	10	9.070	pH units	10.0	pH units
рН	7	6.89	pH units	7.0	pH units
	4	4.65	pH units	4.0	pH units
0	0.0** uS/cm		μS/cm		μS/cm
Conductivity 2.76 mS/cr		2475	/bn/S/cm	2711	JAS/cm
TDO	0.0** ppm		ppm		ppm
TDS	36.0 ppk		ppk		ppk
	0.00/		ppm		
Dissolved	0.0% sat		%		%
Oxygen	100.0**%	7	ppm	3	
	sat		%		%
-	0*** NTU		NTU		NTU
Turbidity	90 NTU	87	NTU	90-1	NTU
ORP #	240 mV	253	mV	-	mV

51 Calibrated by: 29.7.19 Date:

* use NATA certified reference thermometer from soils clean lab

- ** air
- *** distilled water

factory calibrated - do a bump test

NOTES:

Form Updated 21Mar2011

Groundwater Field Sheet

Sore Volume = caung volume + filter park
volume

Groundwater Field She					volume volume	: :
Project and Bore Installation	Details					n(nh.d. /4-nh.d. 4)
Bore / Standpipe ID:	BHI			11.2:0	:e: x=3,14	:
Project Name:	Havmar	Ket DSI			•	for most filter pack
Project Number:	86767	.00			material)	• • • • • • • • • • • • • • • • • •
Site Location:	<u></u>				h, = height of wa d = diameter of a	
Bore GPS Co-ord:					h, = length of ≦l:	et pack
Installation Date:					ರೆ = ರುಖಾಜೀವರ್ (
GW Level (during drilling):		m bgl		Bor	e Voi Normally	r: 7.2*h
Well Depth:	· · · · · · · · · · · · · · · · · · ·	m bgl				
Screened Interval:		m bgl				
Contaminants/Comments:	-					
Bore Development Details						
Date/Time:	07/081	2019	14.30			
Purged By:	AS					
GW Level (pre-purge):	6.15	m bgl				
GW Level (post-purge):	6.35	m bgl				
PSH observed:	Yes / (No) (interface /	visual). Thickne	ss if observed	1:	
Observed Well Depth:	6.35	m bgl				
Estimated Bore Volume:	144	L				
Total Volume Purged:		mud, min 3 w	ell vol. or dry)	~1.51	(day, no a	echarge)
Equipment:	Interface	p metre			1	J
Micropurge and Sampling D						
Date/Time:						
Sampled By:						
Weather Conditions:						
GW Level (pre-purge):		m bgl				
GW Level (post sample):		m bgl				<u> </u>
PSH observed:	Yes / No (interface /	visual). Thickne	ss if observed	1:	
Observed Well Depth:		m bgl				
Estimated Bore Volume:		<u> </u>				
Total Volume Purged:		L				
Equipment:						
	<u> </u>					
			<u>y Parameters</u>			
Time / Volume	Temp (°C)	DO (mg/L)	EC (µS or mS/cm)	pН	Turbidity	Redox (mV)
Time / Volume Stabilisation Criteria (3 readings)	Temp (°C) 0.1 ° C		···· · · · · · · · · · · · · · · · · ·	рН +/- 0.1	Turbidity +/- 10%	Redox (mV) +/- 10 mV
	and the second second second second second second second second second second second second second second second	DO (mg/L)	EC (µS or mS/cm)			1
	and the second second second second second second second second second second second second second second second	DO (mg/L)	EC (µS or mS/cm)			1
	and the second second second second second second second second second second second second second second second	DO (mg/L)	EC (µS or mS/cm)			1
	and the second second second second second second second second second second second second second second second	DO (mg/L)	EC (µS or mS/cm)			1
	and the second second second second second second second second second second second second second second second	DO (mg/L)	EC (µS or mS/cm)			1
	and the second second second second second second second second second second second second second second second	DO (mg/L)	EC (µS or mS/cm)			1
	and the second second second second second second second second second second second second second second second	DO (mg/L)	EC (µS or mS/cm)			1
	and the second second second second second second second second second second second second second second second	DO (mg/L)	EC (µS or mS/cm)			1
	and the second second second second second second second second second second second second second second second	DO (mg/L)	EC (µS or mS/cm)			1
		DO (mg/L)	EC (µS or mS/cm) +/- 3%			1
Stabilisation Criteria (3 readings)	0.1°C	DO (mg/L)	EC (µS or mS/cm)			1
Stabilisation Criteria (3 readings)	0.1°C	DO (mg/L) +/- 0.3 mg/L	EC (µS or mS/cm) +/- 3%			1
Stabilisation Criteria (3 readings)	0.1°C	DO (mg/L) +/- 0.3 mg/L	EC (µS or mS/cm) +/- 3%	+/- 0.1	÷/- 10%	+/- 10 mV
Stabilisation Criteria (3 readings) Additional Readings Following stabilisation: Sampling Depth (rationale):	0.1°C	DO (mg/L) +/- 0.3 mg/L	EC (µS or mS/cm) +/- 3%	+/- 0.1	÷/- 10%	+/- 10 mV
Stabilisation Criteria (3 readings) Additional Readings Following stabilisation: Sampling Depth (rationale): Sample Appearance (e.g.	0.1°C	DO (mg/L) +/- 0.3 mg/L +/- 0.3 mg/L SPC SPC Sample m bgl,	EC (µS or mS/cm) +/- 3%	+/- 0.1	*/- 10%	+/- 10 mV
Stabilisation Criteria (3 readings) Additional Readings Following stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour):	0.1°C	DO (mg/L) +/- 0.3 mg/L +/- 0.3 mg/L SPC SPC Sample m bgl,	EC (µS or mS/cm) +/- 3%	+/- 0.1	*/- 10%	+/- 10 mV
Stabilisation Criteria (3 readings) Additional Readings Following stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID:	0.1°C	DO (mg/L) +/- 0.3 mg/L +/- 0.3 mg/L SPC SPC Sample m bgl,	EC (µS or mS/cm) +/- 3%	+/- 0.1	*/- 10%	+/- 10 mV
Stabilisation Criteria (3 readings) Additional Readings Following stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples:	0.1°C	DO (mg/L) +/- 0.3 mg/L +/- 0.3 mg/L SPC SPC Sample m bgl,	EC (µS or mS/cm) +/- 3%	+/- 0.1	*/- 10%	+/- 10 mV
Stabilisation Criteria (3 readings) Additional Readings Following stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples: Sampling Containers and	0.1°C	DO (mg/L) +/- 0.3 mg/L +/- 0.3 mg/L SPC SPC Sample m bgl,	EC (µS or mS/cm) +/- 3%	+/- 0.1	*/- 10%	+/- 10 mV
Stabilisation Criteria (3 readings) Additional Readings Following stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples:	0.1°C	DO (mg/L) +/- 0.3 mg/L +/- 0.3 mg/L SPC SPC Sample m bgl,	EC (µS or mS/cm) +/- 3%	+/- 0.1	*/- 10%	+/- 10 mV
Stabilisation Criteria (3 readings) Additional Readings Following stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples: Sampling Containers and	0.1°C	DO (mg/L) +/- 0.3 mg/L +/- 0.3 mg/L SPC SPC Sample m bgl,	EC (µS or mS/cm) +/- 3%	+/- 0.1	*/- 10%	+/- 10 mV

•

ect and Bore Installation E	Details				volume = $\pi h_2 d_2^2/4 + i$	n(Thid,2/4-Thid,2/4
U Standnine II.	RU102			When	e: π = 3.14	referenting of the president of
ect Name:	DELLUD				n = porosity (0.3 f	or most filter pack
ect Number:	01-11-	03			material)	
Location:	86161				h ₁ = height of wate	
GPS Co-ord:	Hayma	arket			d _i = diameter of an	
Illation Date:					$h_0 = \text{length of filter}$ $d_1 = \text{diameter of calls}$	
	-	mhal		Bor	Vol Normally	
Level (during drilling):	-	m bgl m bgl			,	
Depth: ened Interval:		m bgl				
		in by				
taminants/Comments:	Can dal	1000		3000)		
e Development Details	For date			25651		
e/Time:	24104	150 11				
ed By:	45	an hal				
Level (pre-purge):	7.5	m bgl	8			
Level (post-purge):	8.48	m bgl	ioual) Thickney	a if abaan od:		
observed:	Yes / No (visual). Thicknes	ss il observed.		
erved Well Depth:	9.9	m bgl				
mated Bore Volume:	13.68	L	all wal an deal	101		
I Volume Purged:	(target: no drill			10L dr		
pment:	twister	pump.	int m	eter, ba	iler	
ropurge and Sampling Det	ails	10.1				
e/Time:	24104	1,90				
pled By:	AS					
ther Conditions:	riegri	Marm				
Level (pre-purge):	7.5	m bgl				
Level (post sample):	8.7	m bgl				
observed:	Yes / No (interface / v	/isual). Thickne	ss if observed:		
erved Well Depth:	9,4	m bgl				
mated Bore Volume:	13.68	L				
I Volume Purged:	~15	L				
	14/0 04	ancial	101	malaci		
ipment:	WQPT,	peripu	mp, int.	MERT		
		Water Quality	ty Parameters			
e / Volume	Temp (°C)	DO (mg/L)	EC (µS or mS/cm)	pН	Turbidity	Redox (mV)
ilisation Criteria (3 readings)	0.1°C	+/- 0.3 mg/L	+/- 3%	+/- 0.1	+/- 10%	+/- 10 mV
15:43	22.3	5,14	172.9	6,05	334	119
15:44	21.7	1.77	450	5.99	239	116
15:45	21.4	2.64	444	5.99	181	114
15:46	21.3	0.78	439	5.99	1233	113
15:47	21.3	0.73	439	5.60	100.5	112
15:48	213	0.79	435	5 99	84.7	111
15-119	213	0 78	434	- 599	64.9	110
12.51		10	101			
				-		-
					V	
ditional Readings Following	DO % Sat	SPC	TDS		39.5	
stabilisation:						
alian Death (anti- 1.)	O O MALLER		e Details			
pling Depth (rationale):	9.0 ANNAS		idpoint			
ple Appearance (e.g.	clear-1	brown,	odourles	S, Sligh	HIN SI	HV
ur, siltiness, odour):	DUID	2		0.		
nple ID:	BUIL	202004	74			
QC Samples:						
	see gri	een she	et			
npling Containers and ition:						-
tion: nments / Observations:						Sampl
tion: nments / Observations:						
nments / Observations:				1011120	1 LOCP	- PHED
tion: nments / Observations:	1 at	11:40) 24	104120) (pre	- bard
tion: nments / Observations:						

Details				$\frac{\text{volume}}{=\pi h_1 d_2^2/4} + $	n(\pi h1 d12/4-\pi h2 d22/4
BHIOH			When	e: π = 3.14	
				n = porosity (0.3	for most filter pack
86767.	03			material)	
Havma	FKPt				
. teryme	11 Date:			h ₂ = length of filte	
				$d_2 = diameter of c$	asing
12.1	m bgl		Bore	e Vol Normally	r: 7.2*h
	m bgl				
-					
I for de	to logo	JOF DUCE	0565)		
24104			0,0001		
AG	20				
775	m bal				
1115					
Ves / No (sual) Thicknes	s if observed.		
01		sual J. Thicknes	ss il observeu.		
ell'a de					
		Used an day)	AL) 1() 1		
			IUL		
	pump	I INT IN	6 46 1		
alls	11100				
2410	4120				
AS					
Warn					
7.6	m bgl				
7.75	m bgl				
	interface / vi	sual). Thicknes	ss if observed:		
20.35	m bgl				
92	L		L		
~15	L			4	
WQM, F	Deripum	P, int.	meter		
	Water Quality	y Parameters			
Temp (°C)	DO (mg/L)	EC (µS or mS/cm)	pН	Turbidity	Redox (mV)
0.1°C	+/- 0.3 mg/L	+/- 3%	+/- 0.1	+/- 10%	+/- 10 mV
	674	541	520	103	167
	1.29	525	2.60		161
216	1.16	LISI	525		153
211	0.00	165	505	28.5	ILIQ
200	11-10	LIIE	574	226	1112
200				<u> </u>	140
			y had	6	138
20.8	0.11	438	2.11	63.3	128
		14			
					6
DO % Sat	SPC	TDS			
DO % Sat					
DO % Sat	Sample	Details			
DO % Sat	Sample) t		
15	<u>Sample</u> m bgl, ∾	<u>Details</u> midpoin) t		
15 Clear	<u>Sample</u> m bgl, ∾ -, odour	<u>Details</u> midpoin) t		
15	<u>Sample</u> m bgl, ∾ -, odour	<u>Details</u> midpoin) t		
15 Clear	<u>Sample</u> m bgl, ∾ -, odour	<u>Details</u> midpoin) t		
15 Clear BHIOU	<u>Sample</u> m bgl, ∼ , odour	<u>Details</u> midpoin) t		
15 Clear	<u>Sample</u> m bgl, ∼ , odour	<u>Details</u> midpoin			
15 Clear BHIOU	<u>Sample</u> m bgl, ∼ , odour	<u>Details</u> midpoin	1t		
15 Clear BHIOU	<u>Sample</u> m bgl, ∼ , odour	<u>Details</u> midpoin) t		
15 Clear BHIOU	<u>Sample</u> m bgl, ∼ , odour	<u>Details</u> midpoin) ł		Some
15 Clear BHIOU See gree	<u>Sample</u> mbgl, ~ , Odour -	<u>Details</u> <u>MIDPOIN</u> IESS			
15 Clear BHIOU See gree	<u>Sample</u> mbgl, ~ , Odour -	<u>Details</u> <u>MIDPOIN</u> IESS	04/20	(pre	
15 Clear BHIOL see gree -	<u>Sample</u> m bgl, ~ 1 Odour 1 n sheet	Details MIDPOIN IESS	04/20		2 - Pur
15 Clear BHIOL see gree -	<u>Sample</u> mbgl, ~ , Odour -	Details MIDPOIN IESS	04/20		2 - Pur
15 Clear BHIOU see gree - I at l at l	<u>Sample</u> m bgl, ~ 1 Odour 1 	Details MIDPOIN IESS	04 20 t- samp'	(pnil	Samp 2 - PUFC Rev March 2
	BHIO4 86767. Hayma - - (For da 2404 AS 7.75 No (1 20.35 91 (target: no drill twister ails 2410 AS Warma 7.75 Yes / (No) (20.35 91 (target: no drill twister 2410 AS Warma 7.75 Yes / (No) (20.35 91 (target: no drill twister 7.75 Yes / (No) (20.35 91 (target: no drill twister 7.75 Yes / (No) (20.35 91 (target: no drill twister 7.75 Yes / (No) (20.35 91 (target: no drill twister 7.75 Warma 7.75 Yes / (No) (20.35 91 (target: no drill twister 7.75 Yes / (No) (20.35 91 (target: no drill twister 7.75 Yes / (No) (20.35 91 (target: no drill twister 7.75 Yes / (No) (20.35 91 (target: no drill twister 7.75 Yes / (No) (20.35 91 (target: no drill twister 7.75 Yes / (No) (20.35 91 (target: no drill twister 7.75 Yes / (No) (20.35 91 (target: no drill twister (target: n	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BHIOH When 86767.03 Haymarket - m bgl m bgl m bgl - m bgl - (Por data logger purposes) 24104120 As 7.75 m bgl Yes / No (interface / visual). Thickness if observed: 20.35 m bgl Yes / No (interface / visual). Thickness if observed: 20.35 m bgl 41 L (target: no drill mud, min 3 well vol. or dry) ~40L 4 Wister pump + int meter ails - 24104120 AS 4 Warm, clean - AS - Warm, clean - - AS - Warm, clean - - AS - Warm, clean -	Details = $xb_1d_1^{1/4} + \frac{BHIOH}{BHIOH}$ BHIOH Where: $x = 3.14$ BG767.03 material Haymarket Bore vol Normally Haymarket Bore vol Normally m bgl Bore vol Normally m bgl Bore vol Normally m bgl Bore vol Normally m bgl Bore vol Normally m bgl Servet AS Servet 7.75 m bgl 11.15 m bgl Yes / Ng (interface / visual). Thickness if observed: 20.35 m bgl 11.15 m bgl Yes / Ng (interface / visual). Thickness if observed: 20.35 m bgl Yes / Ng (interface / visual). Thickness if observed: 20.35 m bgl 7.75 m bgl 7.75 m bgl 7.75 m bgl 7.75 m bgl 7.75 m bgl 7.75 m bgl 7.75 m bgl 7.75 m bgl 7.75 m bgl 7.75 m bgl

Groundwater Field Shee	et			Bo	re Volume = casing volu	me + filter pack
Project and Bore Installation D)etails	- 1 C			volume = $\pi h_1 d_2^2/4 +$	$n(\pi h_1 d_1^2/4 - \pi h_2 d_2^2/4)$
Bore / Standpipe ID:	BHI			W	pere: π = 3.14	
Project Name:					n = porosity (0.3 f	or most filter pack
Project Number:	86767	.03			material)	
Site Location:	Havme	arket			h _i = height of wat d _i = diameter of a	
Bore GPS Co-ord:	1				h ₂ = length of filte	r pack
nstallation Date:					$d_2 = diameter of c$	
GW Level (during drilling):	-	m bgl		Bo	re Vol Normally	: 7.2*h
Vell Depth:		m bgl				
Screened Interval:		m bgl				
Contaminants/Comments:	-					
Bore Development Details						
Date/Time:						
Purged By:						
GW Level (pre-purge):		m bgl				
GW Level (post-purge):		m bgl				
			isual). Thicknes	s if observed:		
Observed Well Depth:		m bgl				
Estimated Bore Volume:		L				
	(target: no drill r	mud, min 3 we	ell vol. or dry)			
Equipment:						
Micropurge and Sampling Det	ails					
Date/Time:						
Sampled By:						
Weather Conditions:						
GW Level (pre-purge):		m bgl				
GW Level (post sample):		m bgl				
	Yes / No (i		isual). Thicknes	s if observed:		
Observed Well Depth:		m bgl				
Estimated Bore Volume:		L				
Total Volume Purged:		L				
Equipment:						
			1			
			ty Parameters		Turbidity	Redox (mV)
Time / Volume	Temp (°C)	DO (mg/L)	EC (µS or mS/cm)	pH	+/- 10%	+/- 10 mV
Stabilisation Criteria (3 readings)	0.1°,C	+/- 0.3 mg/L	+/- 3%	+/-,0.1		+/= 10 mV
14.50	1249/	0.74	245	5/20/1	10.3	16
MA DO M	10 10 10	V.29	2/12/	B.LD	19.6	150
MA MA	122.611	1.16	1 4	15.146	pia 1	173
15.00			1 11	AL 1	1 /	/
	- //	10	/ 10 /		/	
1.5.104						
I F AL						
15:08						
1 5:08						
1 5:08						
	DO % Sat	SPC	TDS			
Additional Readings Following stabilisation:	DO % Sat					
	DO % Sat	Sample	TDS Details			
stabilisation: Sampling Depth (rationale):	DO % Sat					
stabilisation: Sampling Depth (rationale): Sample Appearance (e.g.	DO % Sat	Sample				
stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour):	DO % Sat	Sample				
stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID:	DO % Sat	Sample				
stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples:	DO % Sat	Sample			·	
stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples: Sampling Containers and	DO % Sat	Sample			· · · · · · · · · · · · · · · · · · ·	
stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples: Sampling Containers and filtration:	DO % Sat	Sample				
stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples: Sampling Containers and filtration:	DO % Sat	Sample				
stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples: Sampling Containers and filtration:	DO % Sat	Sample		-	*	
stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples: Sampling Containers and filtration: Comments / Observations:	DO % Sat	Sample		-		
		<u>Sample</u> m bgl,	e Details	-	-	
stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples: Sampling Containers and filtration: Comments / Observations:		<u>Sample</u> m bgl,	e Details	depth	-	2.4.10
stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples: Sampling Containers and filtration: Comments / Observations:		<u>Sample</u> m bgl,		depth	-	2.4.1(Rev March 20)

ВНІОТЬ		710	0517	20		
depth:11m		A S	5			
WL: pre purge 1.85m (volume	= 9.15× 7. MI31L C			3L)		
WL: post purge 10.6m						
clata logger installed to 10.5m pos	st purge	ał	10	51	an	0
v purged: ~30L 7 well dry						
www.equipment:twister pump						
BH1070						
depth: 4m						-
WL prepurge 3.2m (volume= 5	.76L)		# 		
WL post purge 4m (ary)	151, ordr	Y		•		
data logger installed to 3.5m post p	urge (II:	30	(mo			
v purged: V3L	>					•
equipment: baller			*			

et				
eer				
		the second second second second second second second second second second second second second second second s	the second second second second second second second second second second second second second second second s	

Groundwater Field She	et			Bar	e Volume = casing vo	unw + filter pack
Project and Bore Installation					volume = zh-d- ¹ /4 +	n(zh.d. 4-zh.d. 4)
Bore / Standpipe ID:	BHIOAB			ur	e:e: x = 3.14	
Project Name:		<u> </u>			n=poroticy (0.3	for most filter pack
Project Number:					materral)	
Site Location:					$\mathbf{b}_{i} = \text{height of } \mathbf{w}_{i}$	
Bore GPS Co-ord:					d = diameter of : h = length of file	
Installation Date:					d = dranseter of	•
GW Level (during drilling):	A (A-	m bgl			re Vol Normall	∕: 7.2*h
Well Depth:	NA	m bgl			· · · · · · · · · · · · · · · · · · ·	·
Screened Interval:		m bgl				
Contaminants/Comments:		in by			<u></u>	
Bore Development Details						
Date/Time:	21.05.202	20		60]		
	21.03.20	20		go vit	res empl	1. QEN
Purged By:	7 70			Sluw Re	charge.	
GW Level (pre-purge):	7.78	m bgl				
GW Level (post-purge):	11.4m.	m bgl	······································	and if all and an in		
PSH observed:	Yes / No (visual). Thickne	ess if observe	u.	
Observed Well Depth:		bgl		Date	100	Q + (a)
Estimated Bore Volume:	<u></u>			0770	- inger	
Total Volume-Purged:	(target: no dril	i mud, min 3 v	vell vol. or dry)	······		
Equipment:				//n	<u>и</u>	
Micropurge and Sampling Do	etails					
Date/Time:						
Sampled By:						
Weather Conditions:						
GW Level (pre-purge):		m bgl				
GW Level (post sample):		m bgl				
PSH observed:	Yes / No (interface /	visual). Thickne	ess if observe	d:	
Observed Well Depth:		m bgl				
Estimated Bore Volume:		L				
Total Volume Purged:		L				
Equipment:						
		Water Qualit	y Parameters			· · · · · · · · · · · · · · · · · · ·
Time / Volume	Temp (°C)	DO (mg/L)	EC (µS or mS/cm)	pH	Turbidity	Redox (mV)
Stabilisation Criteria (3 readings)	0.1°C	+/- 0.3 mg/L	+/- 3%		+/- 10%	+/- 10 mV
				+/- 0.1		
				+/- 0.1		
				+/- 0.1		
				+/- 0.1		· · · · · · · · · · · · · · · · · · ·
				+/- 0.1		· · · · · · · · · · · · · · · · · · ·
				+/- 0.1		· · · · · · · · · · · · · · · · · · ·
				+/- 0.1		
				+/- 0.1		
				+/- 0.1		
				+/- 0.1		
				+/- 0.1		
Additional Readings Following		SPC	TDS	+/- 0.1		
Additional Readings Following		SPC	TDS	+/- 0.1		
Additional Readings Following stabilisation:				+/- 0.1		
stabilisation:		Sample	TDS Petails	+/- 0.1		
stabilisation: Sampling Depth (rationale):				+/- 0.1		
stabilisation: Sampling Depth (rationale): Sample Appearance (e.g.		Sample		+/- 0.1		
stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour):		Sample		+/- 0.1		
stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID:		Sample		+/- 0.1		
stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples:		Sample		+/- 0.1		
stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples: Sampling Containers and		Sample		+/- 0.1		
stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples:		Sample		+/- 0.1		
stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples: Sampling Containers and		Sample		+/- 0.1		

Groundwater Field She	et			Ba	re Volume = casing vo	lunse + filter pack
Project and Bore Installation					$\frac{voinns}{zh_{1}d_{2}} = zh_{2}d_{2}^{-1}/4 - $	+n(zh:d:`4-zh:d:)4)
Bore / Standpipe ID:	BH112A			c.v	uere: π=3.14	
Project Name:	<u>Ours</u>				n ≈ perotsty (0 3	for most filter pack
Project Number:					material)	1
Site Location:		<u></u>			$\mathbf{b}_0 = \text{height of } \mathbf{w}_1$ $\mathbf{d} = \text{diameter of }$.	1
Bore GPS Co-ord:					h _i = length of fil	
Installation Date:				<u> </u>	d = drameter of	cating
GW Level (during drilling):	NA · -	m bgl		Bc	ire Vol Normali	y: 7.2*h
Well Depth:		m bgl				
Screened Interval:		m bgl				
Contaminants/Comments:					<u></u>	
Bore Development Details						
Date/Time:	21.5.20	2				
Purged By:	R	4		301	ibal	
GW Level (pre-purge):	3.45	m bgl			ow Roch	-CO9
GW Level (post-purge):	4.4	m bal		very si		-g-
PSH observed:	Yes / No (visual). Thickne	ss if observe	d: RH W	sis avriced
Observed Well Depth:	100 / 110 (m bgl		Na	drillion	water
Estimated Bore Volume:		 L			tro duced	X
Total Volume Purged:	(target: no drill	 I mud. min 3 v	vell vol. or dry)		11000000	
Equipment:				Date	a logar	set a 4n
Micropurge and Sampling De	, etails		<u></u>	<u></u>		
Date/Time:						
Sampled By:						
Weather Conditions:						
GW Level (pre-purge):		m bgl				
GW Level (post sample):		m bgl				
PSH observed:	Yes / No (visual). Thickne	ss if observe	ed:	
Observed Well Depth:	100 / 110 (m bgl	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Estimated Bore Volume:						
Total Volume Purged:		L				
Equipment:						
	L	Water Qualit	y Parameters		9	
Time / Volume	Temp (°C)	DO (mg/L)	EC (µS or mS/cm)	pН	Turbidity	Redox (mV)
Stabilisation Criteria (3 readings)	0.1°C	+/- 0.3 mg/L	+/- 3%	+/- 0.1	+/- 10%	+/- 10 mV
			T			
				·		
					-	
			-			
· ·					-	
······································						+1
			++		1	
Additional Readings Following	DO % Sat	SPC	TDS			
stabilisation:						
Gradmidation,	L	Sample	e Details			
Sampling Depth (rationale):	r	m bgl,	<u> </u>			
Sample Appearance (e.g.	<u> </u>	11 091				
colour, siltiness, odour):						
Sample ID:						
QA/QC Samples:	<u> </u>					
Sampling Containers and		<u>, , , , , , , , , , , , , , , , , ,</u>				
filtration:						
Comments / Observations:						

Groundwater Field \$ Project and Bore Installa

Groundwater Field SI	neet	Bore Volume = casing volume + filter pack
Project and Bore Installation	on Details	$= \pi h_1 d_2^{1/4} + n(\pi h_1 d_2^{1/4} + \pi h_2 d_2^{1/4})$
Bore / Standpipe ID:	BH112B	Where: x = 3.14
Project Name:		n ≈ porotity (0.3 for most filter pick
Project Number:		nisteria)
Site Location:		$\mathbf{b}_{i} = \text{height of water column}$ $\mathbf{d} = \text{diameter of annulus}$
Bore GPS Co-ord:		$\mathbf{h}_i = \mathrm{length}$ of films pack
Installation Date:		$d_i = d_{i}$ ansater of caung
GW Level (during drilling):	5.05 - m bgl	Bore Vol Normaily: 7.2*h
Well Depth:	11.4m m bgl	
Screened Interval:	11.4 - 5.5 m .m bgl	
Contaminants/Comments:		
Bore Development Details		
Date/Time:	21.5.20.	
Purged By:	R.	Remarcel 150 Litros
	S S m hal	shill Quantum Dicha

GW Level (pre-purge):	5.05	m bgl			still	RUNNING	Dicty	.
GW Level (post-purge):	8.1	m bgl				J	<u> </u>	
PSH observed:	Yes / No	o (interface	/ visual)	. Thickness if	observed	1: Fast	Rechard	વર
Observed Well Depth:		m bgl						/- ·
Estimated Bore Volume:		L - ·			Pata	logaer	. Set	(ω)
Total Volume Purged:	(target: no	drill mud, min	3 well vol. o	or dry)	ilm	Reibbl	grown	1 Tun
Equipment:			·				v	
Micropurge and Sampling	Details							
Date/Time:								
Sampled By:								
Weather Conditions:								
GW Level (pre-purge):		m bal						

Gvv Level (pre-purge):	in bgi	
GW Level (post sample):	m bgl	
PSH observed:	Yes / No (interface / visual). Thickness if observed:	
Observed Well Depth:	m bgl	·
Estimated Bore Volume:	L.	
Total Volume Purged:		
Equipment:		

		Water Qualit	y Parameters			
Time / Volume	Temp (°C)	DO (mg/L)	EC (µS or mS/cm)	pН	Turbidity	Redox (mV)
Stabilisation Criteria (3 readings)	0.1°C	+/- 0.3 mg/L	+/- 3%	+/- 0.1	+/- 10%	+/- 10 mV
·						
Additional Readings Following	DO % Sat	SPC	TDS			
stabilisation:					<u> </u>	
			e Details			
Sampling Depth (rationale):		m bgl,				
Sample Appearance (e.g.						
colour, siltiness, odour):						
Sample ID:			*			
QA/QC Samples:						
Sampling Containers and						
filtration:						

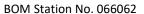
Comments / Observations:

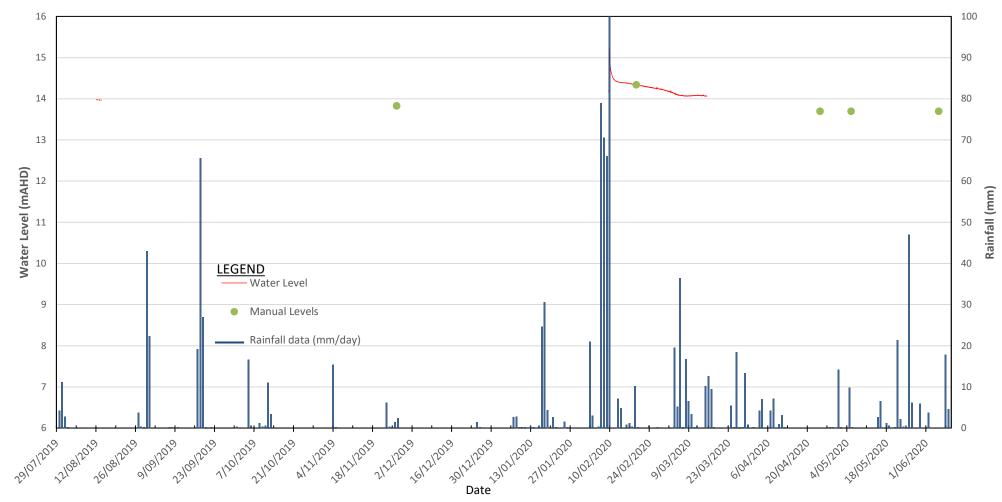
Geotechnics I En	vironment l	Groundwater				
Groundwater Field She	et			Bone	Volume = caung volu	1014
Project and Bore Installation					volume = 7.b.d; '4 + :	r \
Bore / Standpipe ID:	BH10	70		W.	te: π = 3.14	
Project Name:	Haun	ACKPT	55		E = porouty (0 ?	
Project Number:	86767	03	-3-3-1		materal)	
Site Location:					$h_s = height of way d = ciameter of ar$	
Bore GPS Co-ord:					h; = length of file	r pack
Installation Date:					d = danster of c.	
GW Level (during drilling):	e.	m bgl		Bor	e Vol Normally	: 7.2*h
Well Depth:		m bgl				
Screened Interval:		m bgl				
Contaminants/Comments:	-					
Bore Development Details						
Date/Time:						
Purged By:						
GW Level (pre-purge):		m bgl				
GW Level (post-purge):		m bgl				
PSH observed:	Yes / No (visual). Thickr	ess if observed	1:	
Observed Well Depth:	100 / 110 1	m bgl				
Estimated Bore Volume:		1				
Total Volume Purged:	(target: no dril	I mud. min 3 w	vell vol. or dry)			
Equipment:	(target no an					
Micropurge and Sampling De	tails					
Date/Time:	0/16	5100				
	A610	1) 21				
Sampled By: Weather Conditions:	15	ION				
	2.1	m bgl	data loa	aer retr	ieved 1	0.30nm
GW Level (pre-purge): GW Level (post sample):	3.95	m bgl	data las	her nut	10 11:0	lam
PSH observed:	Yes / No) (visual). Thickr	ness if observe	d:	21.0/1.1
Observed Well Depth:	3.85	m bgl				
Estimated Bore Volume:	12.6	L				
Total Volume Purged:	~ 5	L				
Total volume i diged.			- 101 C	20100		
Equipment:	Jeobru	ub , wa	M, INt r	neter		
		Water Qualit	y Parameters		1	
Time / Volume	Temp (°C)	DO (mg/L)	EC (µS or mS/cm)	pН	Turbidity	Redox (mV)
Stabilisation Criteria (3 readings)	0.1°C	*/- 0.3 mg/L	+/- 3%	÷/- 0.1	+/- 10%	∻/- 10 mV
3:07	18.8	3.23	494	7.16	137,3	74
13.08	21.3	2.06	462	6.84	127.1	72
12.09	22.1	1,68	125	6.78		67
12.01	-01-01-					
			· · · · · · · ·			1
			1			
Additional Readings Following	DO % Sat	SPC	TDS			
stabilisation:						
	1	Sample	e Details			
Sampling Depth (rationale):	3.2	m bgl,				
Sample Appearance (e.g.						
colour, siltiness, odour):	grey,	- odour	255			
Sample ID:	BHI	OTA				
QA/QC Samples:		<u></u>				
Sampling Containers and						
filtration:	See	COC				
					- A NA	
Comments / Observations:	VOIG- 2	amples	taken pr	ior to V	VWM	0000
	Icadip	ys aue	TO IOW	VOL S	tow icci	unde-

welldry after 3 readings

Groundwater Field She	of			Bone	Vohume = casung volu	nue + filter ;: : :k
					volume	a(th:d: /4-th:a 4)
Project and Bore Installation	Detalls	010			$= \pi E(a)^{-4} + E$ e: $\pi = 3.14$	3(84)(4) (4+84)(4 +9)
Bore / Standpipe ID:	BHI	DIB	661	19.045	m = porouty (0 3 fo	r most filter pack
Project Name:	Hay	markel	551	0.000	material)	
Project Number:	867	67.03			ha = height of wate	a column
Site Location:					d = dissister of in	milus
Bore GPS Co-ord:					$b_i = iength of filter d_i = dhan ever of call$	
nstallation Date:						
GW Level (during drilling):		m bgl		Bore	Vol Normally:	7.2.11
Vell Depth:		m bgl				
Screened Interval:	1	m bgl				
Contaminants/Comments:	-					
Bore Development Details						
Date/Time:	10-00 mm					
Purged By:	1	Sec. 1.				
GW Level (pre-purge):		m bgl				
GW Level (post-purge):		m bal				
PSH observed:	Yes / No (visual). Thickne	ess if observed		
Observed Well Depth:		m bgl				
Estimated Bore Volume:		L				
Total Volume Purged:	(target: no dri	ll mud, min 3 w	vell vol. or dry)			
Equipment:	I Congott no din					
Equipment: Micropurge and Sampling Do	etaile					
	261	05120				
Date/Time:	001	05140				
Sampled By:	1	DIAN				
Weather Conditions:	D C	m bgl (tata laar	ier retrie	1 Dave	1:11
GW Level (pre-purge):	d.6		ILITE LOOK	Jer Dul	200	ot. 11:2
GW Level (post sample):	5.3 Yes / No) (m bgl	visual). Thickn	ess if observed	H Manda	LIF I I I I
PSH observed:	Yes / No) (VISUAL J. THICKI	00001100001100		
Observed Well Depth:	11.15	m bgl				
Estimated Bore Volume:	61	L				
Total Volume Purged:	v 15	L				
Equipment:	geopum	P, WQI	Ti int.	meter		
	0	and the second se	y Parameters			
Time / Volume	Temp (°C)		EC (µS or mS/cm)	pН	Turbidity	Redox (mV)
Stabilisation Criteria (3 readings)	0.1°C	+/- 0.3 mg/L	+/- 3%	+/- 0.1	+/- 10%	∻/- 10 mV
		3.47	E GU	7.04	_	12
13:27	19.3		499	7,22		-28
13:28	21.2	1.09	909	1.0.0.1		do
	- 613-	0.00			001	
13:29	22.1	0.62	494	7.19	82.2	-56
13:30	22.1	0.33	494	7.19	955	-56
13:30	23.1	0.33	494 492 474	7,19 7,18 7,33	35.5	-56 -68 -75
13:30	29.4	0.33	494 492 474 474	1.18 1.18 1.18 1.18 1.19 1.19	35.5	-68 -75 -77
13:30		0.33	494 492 474	7,19 7,18 7,33	35.5	-56 -68 -75 -77 -76
13:30	29.4	0.33	494 492 474 474	1.18 1.18 1.18 1.18 1.19 1.19	35.5	-68 -75 -77
13:30	29.4	0.33	494 492 474 474	1.18 1.18 1.18 1.18 1.19 1.19	35.5	-68 -75 -77
13:30 13:31 13:32 13:33	28.5	0.33 0.04 0.18 0.14	494 492 474 474 474	1.18 1.18 1.18 1.18 1.19 1.19	35.5	-68 -75 -77
13:30 13:31 13:32 13:33 Additional Readings Following	28.5	0.33	494 492 474 474	1.18 1.18 1.18 1.18 1.19 1.19	35.5	-68 -75 -77
13:30 13:31 13:32 13:33	28.5	0.33 0.04 0.18 0.14 spc	494 474 474 474 474	1.18 1.18 1.18 1.18 1.19 1.19	35.5	-68 -75 -77
Additional Readings Following stabilisation:	2 2 4 . 5 2 3 . 5 DO % Sat	0,33 0,34 0,14 0,14 SPC <u>SPC</u> <u>Sample</u>	494 492 474 474 474	1.18 1.18 1.18 1.18 1.19 1.19	35.5	-68 -75 -77
Additional Readings Following stabilisation: Sampling Depth (rationale):	28.5	0.33 0.04 0.18 0.14 spc	494 474 474 474 474	1.18 1.18 1.18 1.18 1.19 1.19	35.5	-68 -75 -77
Additional Readings Following stabilisation: Sampling Depth (rationale): Sample Appearance (e.g.	22.4 22.5 22.5 DO%Sat	0,33 0,14 0,14 spc <u>Sample</u> m bgl,	<u>цац</u> <u>цац</u> <u>ца</u> <u>ца</u> <u>ца</u> <u>ца</u> <u>ца</u> <u>ца</u>	7.19 7.18 7.27 7.27 7.24	35.5	-68 -75 -77
Additional Readings Following stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour):	22.4 22.5 22.5 DO%Sat	0,33 0,14 0,14 spc <u>Sample</u> m bgl,	494 474 474 474 474	7.19 7.18 7.27 7.27 7.24	35.5	-68 -75 -77
Additional Readings Following stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour):	22.4 22.5 22.5 DO%Sat	0,33 0,14 0,14 spc <u>Sample</u> m bgl,	<u>цац</u> <u>цац</u> <u>ца</u> <u>ца</u> <u>ца</u> <u>ца</u> <u>ца</u> <u>ца</u>	7.19 7.18 7.27 7.27 7.24	35.5	-68 -75 -77
13:30 13:31 13:33 13:33 Additional Readings Following stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour):	22.4 22.5 22.5 DO%Sat	0,33 0,14 0,14 spc <u>Sample</u> m bgl,	<u>цац</u> <u>цац</u> <u>ца</u> <u>ца</u> <u>ца</u> <u>ца</u> <u>ца</u> <u>ца</u>	7.19 7.18 7.27 7.27 7.24	35.5	-68 -75 -77
Additional Readings Following stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID:	22.4 22.5 22.5 DO%Sat	0.33 0.14 0.14 0.14 0.14 spc <u>Sample</u> m bgl, - grey 1 07B	<u>цац</u> <u>цац</u> <u>ца</u> <u>ца</u> <u>ца</u> <u>ца</u> <u>ца</u> <u>ца</u>	7.19 7.18 7.27 7.27 7.24	35.5	-68 -75 -77
Additional Readings Following stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples:	22.4 22.5 22.5 DO%Sat	0,33 0,14 0,14 spc <u>Sample</u> m bgl,	<u>цац</u> <u>цац</u> <u>ца</u> <u>ца</u> <u>ца</u> <u>ца</u> <u>ца</u> <u>ца</u>	7.19 7.18 7.27 7.27 7.24	35.5	-68 -75 -77
Additional Readings Following stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples: Sampling Containers and	22.4 22.5 22.5 DO%Sat	0.33 0.14 0.14 0.14 0.14 spc <u>Sample</u> m bgl, - grey 1 07B	<u>цац</u> <u>цац</u> <u>ца</u> <u>ца</u> <u>ца</u> <u>ца</u> <u>ца</u> <u>ца</u>	7.19 7.18 7.27 7.27 7.24	35.5	-68 -75 -77

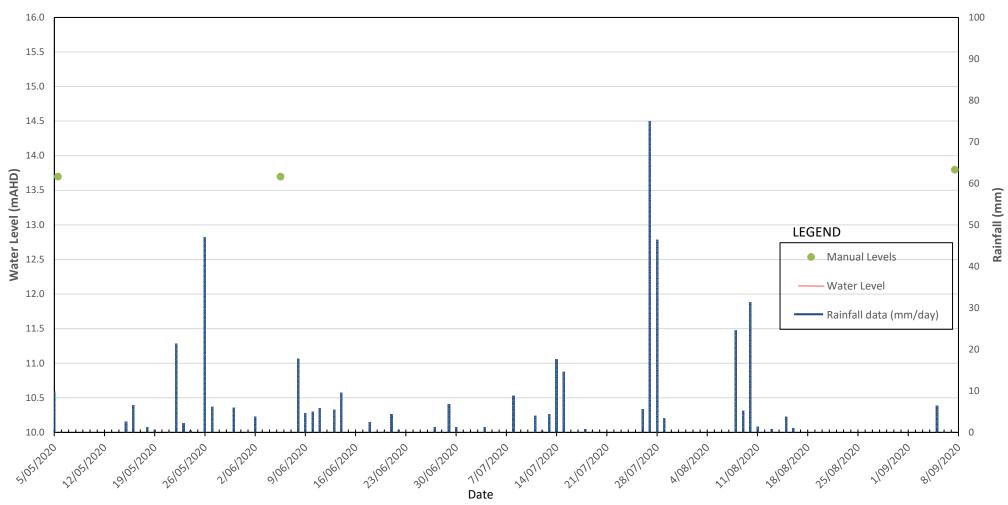
Groundwater Field She	et			Bone	Bore Volume = casing volume + filter ; : :k		
Project and Bore Installation					volume = $\pi h d_{1}^{-1}/4 +$	n(zh:d: /4-zh:a 4)	
	RUIC	NAR		Whe	:e: x = 3.14		
Bore / Standpipe ID:	<u> </u>	14D	CC		a = porouty (0 3 :	or most filter pack	
Project Name:	Hay	market	351		material)		
Project Number:	8671	57,03			ba = height of wat	er column	
Site Location:	100 million -				d,= danster ∫a		
Bore GPS Co-ord:					$h_i = length of filts$ $d_i = dhan ster of c$	T Pack	
nstallation Date:				D	e Vol Normally		
GW Level (during drilling):	a	m bgl		BUI	evonvormany	· / · ·	
Well Depth:		m bgl					
Screened Interval:	1	m bgl					
Contaminants/Comments:	-						
Bore Development Details							
Date/Time:							
Purged By:							
GW Level (pre-purge):		m bgl					
GW Level (post-purge):		m bgl		· · · · · · · · · · · · · · · · · · ·			
PSH observed:	Yes / No (visual). Thickn	ess if observed	1:		
Observed Well Depth:	1.00 / 110 (m bgl	,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,				
Estimated Bore Volume:		1					
	(target: no dril	Il mud, min 3 w	(ell vol or dry)				
Total Volume Purged:	(raiger. no uni	i inda, inin o w	(an vol. of dry)				
Equipment:	toile						
Micropurge and Sampling De	stans	OF IOM					
Date/Time:	261	05120					
Sampled By:	A	15					
Weather Conditions:	C	laudy	della		ed, 12:1	-1000	
GW Level (pre-purge):	8.9	m bgl	data lodde	rretriev	en ia	1259pm	
GW Level (post sample):	10.9	m bgl	tata logg	er put in	1.3051.	12.29pm	
PSH observed:	Yes / No) (1	visual). Thickn	ess if observe	d:		
Observed Well Depth:	12.0	m bgl					
Estimated Bore Volume:	21	L					
Total Volume Purged:	~15	L					
Equipment:	geopums	s, int me	HEFI WOM	1 , bailer	-		
	0		y Parameters				
Time / Volume	Temp (°C)	DO (mg/L)	EC (µS or mS/cm)	pН	Turbidity	Redox (mV)	
Stabilisation Criteria (3 readings)		+/- 0.3 mg/L	÷/- 3%	÷/- 0.1	+/- 10%	+/- 10 mV	
Stabilisation Criteria (5 readings)	0100						
111.20	0.1°C	1 2 1 (760	740			
14:39	19.9	3.16	760	7.42	-	-10	
14:40	19.9	3.16	760	7.38	1 10		
14:40 [4:4]	19.9	3.16	760	7.38	13.0	-10	
14:40 14:41	19.9	3.16	769	7.399	J . 6	-10	
	19.9 19.0 19.0 19.0 19.0 19.0 19.0 19.0	3.16	735	7.39	J . 6	-10	
	19.9 19.9 19.9 19.9 19.9 19.9 19.9 19.9	3.16 7.10 1.25 0.71 0.53 0.60	735	7.300	J . 6	-10 -24 -36 -4	
14:40 14:41 14:41 14:42	19.9 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3	3.16 3.16 1.25 0.71 0.53 0.60 0.55	735	7.39	J . 6	-10 -24 -36	
14:40 14:41 14:41 14:42 14:43	19.9 19.0 19.0 19.0 19.0 19.0 19.0 19.0	3.16 7.10 1.25 0.71 0.53 0.60	735	7.300	J . 6	-10 -24 -36 -4	
14:40 14:41 14:41 14:42 14:43	19.9 19.0 19.0 19.0 19.0 19.0 19.0 19.0	3.16 7.10 1.25 0.71 0.53 0.60	735	7.300	J . 6	-10 -24 -36 -4	
	19.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 7	3.16 7.10 1.25 0.71 0.53 0.60	735	7.300	J . 6	-10 -24 -36 -4	
14:40 14:41 14:41 14:42 14:43 14:44 14:44 14:44 14:44 14:44	19.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 7	3.16 7.10 1.25 0.71 0.53 0.60	735	7.300	J . 6	-10 -24 -36 -4	
	19.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 7	3.16 1.10 1.25 0.71 0.53 0.60 0.55 	735 119 711 735 731	7.300	J . 6	-10 -24 -36 -4	
14:40 14:41 14:41 14:41 14:42 14:43 14:43 14:43 14:43 14:43 14:43 14:43 14:43 14:43 14:43 14:43 14:43 14:43 14:43 14:43 14:43 14:43 14:44 14:44 14:44 14:44 14:44	19.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 7	3.16 3.10 1.25 0.71 0.53 0.60 0.55 spc <u>Sample</u>	735	7.300	J . 6	-10 -24 -36 -4	
14:40 14:41 14:41 14:41 14:42 14:43 14:44 14:44 14:44	19.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 7	3.16 1.10 1.25 0.71 0.53 0.60 0.55 	735 119 711 735 731	7.300	J . 6	-10 -24 -36 -4	
Additional Readings Following stabilisation:	19.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 7	3.16 3.10 1.25 0.71 0.53 0.60 0.55 spc <u>Sample</u> m bgl,	735 719 711 735 731 731	7.36 7.36 7.36 7.36 7.31	99.2 10.5 114.1 97.0	-10 -24 -36 -41 -42	
Additional Readings Following stabilisation:	19.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 7	3.16 3.10 1.25 0.71 0.53 0.60 0.55 spc <u>Sample</u> m bgl,	735 119 711 735 731	7.36 7.36 7.36 7.36 7.31	99.2 10.5 114.1 97.0	-10 -24 -33 -36 -41 -42	
Additional Readings Following stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour):	19.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 7	3.16 3.10 1.25 0.71 0.53 0.60 0.55 spc <u>Sample</u> m bgl,	735 719 711 735 731 731	7.36 7.36 7.36 7.36 7.31	99.2 10.5 114.1 97.0	-10 -24 -33 -36 -41 -42	
Additional Readings Following stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID:	19.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 7	3.16 3.10 1.25 0.71 0.53 0.60 0.55 spc <u>Sample</u> m bgl,	735 719 711 735 731 731	7.36 7.36 7.36 7.36 7.31	99.2 10.5 114.1 97.0	-10 -24 -33 -36 -41 -42	
Additional Readings Following stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples:	19.9 20.9 23.0 23.1 23.1 23.1 D0%Sat	3.16 3.10 1.25 0.71 0.53 0.60 0.55 spc <u>Sample</u> m bgl, 10 - Grev	735 719 711 735 731 731	7.36 7.36 7.36 7.36 7.31	99.2 10.5 114.1 97.0	-10 -24 -33 -36 -41 -42	
Additional Readings Following stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples: Sampling Containers and	19.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 7	3.16 3.10 1.25 0.71 0.53 0.60 0.55 spc <u>Sample</u> m bgl, 10 - Grev	735 719 711 735 731 731	7.36 7.36 7.36 7.36 7.31	99.2 10.5 114.1 97.0	-10 -24 -36 -41 -42	
Additional Readings Following stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples:	19.9 20.9 23.0 23.1 23.1 23.1 D0%Sat	3.16 3.10 1.25 0.71 0.53 0.60 0.55 spc <u>Sample</u> m bgl, 10 - Grev	735 719 711 735 731 731	7.36 7.36 7.36 7.36 7.31	99.2 10.5 114.1 97.0	-10 -24 -36 -41 -42	

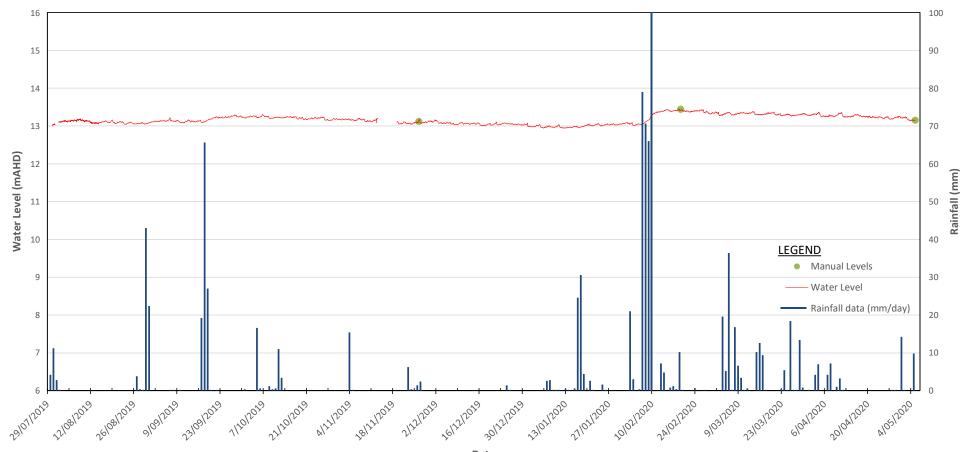

Groundwater Field She			T.		$\frac{\text{volume}}{= \pi b \cdot d \cdot 4 + 4}$	- n(zh:d: /4-zh:c 4
Project and Bore Installation	Details	ΠΟΑ			$= \pi h_{1}d_{1}^{1/4} + x = 3.14$	· solitida ; vali / martila · a
Bore / Standpipe ID:	13 EL	I'd A	CCI	4410014		for most filter pack
Project Name:	Hay	MOLKE	551		materal)	
Project Number:	-1	86767	. () 3		ha = height of wa	ter column
Site Location:					d,= diameter of a	
Bore GPS Co-ord:					$h_1 = length of filt d_2 = d_{222} at of d_3$	
nstallation Date:				Bore	Vol Normali	
GW Level (during drilling):	a	m bgl		BUIE	e ou vorman	y. 7.2 11
Well Depth:		m bgl				
Screened Interval:		m bgl				
Contaminants/Comments:	• · · · · · · · · · · · · · · · · · · ·					
Bore Development Details						
Date/Time:	1					
Purged By:						
GW Level (pre-purge):		m bgl				
GW Level (post-purge):		m bgl				
PSH observed:	Yes / No (visual). Thickne	ss if observed:		
Observed Well Depth:		m bgl				
Estimated Bore Volume:		L				
	(target: no dril	l mud, min 3 v	vell vol. or dry)			
Equipment:	Contraction of the second					
Micropurge and Sampling De	tails					
Date/Time:	76	105100				
	0.0	AC				
Sampled By: Weather Conditions:	HOIS	ED IN				~
	210	m bgl	9.08 de	ita laar	PET TETT	PVED1
GW Level (pre-purge): GW Level (post sample):	42	m bgl	0.15, dat	0 10000	Folitic	1)
PSH observed:	Yes / (No) (visual). Thickne	ss if observed	1395	101
Observed Well Depth:	1237 (110) (m bgl	Trouch J. Thiothe		200	here
Estimated Bore Volume:	2.6	L				
Total Volume Purged:	~10	L				
Total Volume Purgeu.	10	L				
the second second second second second second second second second second second second second second second se						
Equipment:	PUMP.	WQM	, int met	15		
Equipment:	pump		, Int met	27		
		Water Qualit	y Parameters		Turbidity	Redox (mV
Time / Volume	Temp (°C)	Water Qualit	EC (µS or mS/cm)	pН		
		Water Qualit	y Parameters	рН ÷/- 0.1	+/- 10%	+/- 10 mV
Time / Volume	Temp (°C) 0.1° C	Water Qualit DO (mg/L) */- 0.3 mg/L	EC (µS or mS/cm)	рН +/- 0.1 8-21	+/- 10%	Redox (mV) +/- 10 mV
Time / Volume	Temp (°C)	Water Qualit DO (mg/L) */- 0.3 mg/L 3 3 3	EC (µS or mS/cm)	рН +/- 0.1 8_21 8_34	+/- 10% -0.5 4.1	+/- 10 mV
Time / Volume Stabilisation Criteria (3 readings)	Temp (°C) 0.1° C	Water Qualit DO (mg/L) */- 0.3 mg/L 3 3 3 3 3	EC (µS or mS/cm)	рН +/-0.1 8-21 8-34 8-40	*/- 10% -0.5 -4.1 5:3	+/- 10 mV
Time / Volume Stabilisation Criteria (3 readings)	Temp (°C) 0.1° C	Water Qualit DO (mg/L) */- 0.3 mg/L 3 3 3	EC (µS or mS/cm)	рН +/- 0.1 8_21 8_34	+/- 10% -0.5 4.1	+/- 10 mV
Time / Volume Stabilisation Criteria (3 readings)	Temp (°C) 0.1° C	Water Qualit DO (mg/L) */- 0.3 mg/L 3 3 3 3 3	EC (µS or mS/cm)	рН +/-0.1 8-21 8-34 8-40	*/- 10% -0.5 -4.1 5:3	+/- 10 mV
Time / Volume Stabilisation Criteria (3 readings)	Temp (°C) 0.1° C	Water Qualit DO (mg/L) */- 0.3 mg/L 3 3 3 3 3	EC (µS or mS/cm)	рН +/-0.1 8-21 8-34 8-40	*/- 10% -0.5 -4.1 5:3	+/- 10 mV
Time / Volume Stabilisation Criteria (3 readings)	Temp (°C) 0.1° C	Water Qualit DO (mg/L) */- 0.3 mg/L 3 3 3 3 3	EC (µS or mS/cm)	рН +/-0.1 8-21 8-34 8-40	*/- 10% -0.5 -4.1 5:3	+/- 10 mV
Time / Volume Stabilisation Criteria (3 readings)	Temp (°C) 0.1° C	Water Qualit DO (mg/L) */- 0.3 mg/L 3 3 3 3 3	EC (µS or mS/cm)	рН +/-0.1 8-21 8-34 8-40	*/- 10% -0.5 -4.1 5:3	+/- 10 mV
Time / Volume Stabilisation Criteria (3 readings)	Temp (°C) 0.1° C	Water Qualit DO (mg/L) */- 0.3 mg/L 3 3 3 3 3	EC (µS or mS/cm)	рН +/-0.1 8-21 8-34 8-40	*/- 10% -0.5 -4.1 5:3	+/- 10 mV
Time / Volume Stabilisation Criteria (3 readings) 11-38 11-30 11-30 11-30 11-30 WELL dry	Temp (°C) 0.1°C	Water Qualit DO (mg/L) */- 0.3 mg/L 3	Y Parameters EC (µS or mS/cm) +/- 3% 374 354 354	рН +/-0.1 8-21 8-34 8-34	*/- 10% -0.5 -4.1 5:3	+/- 10 mV
Time / Volume Stabilisation Criteria (3 readings)	Temp (°C) 0.1°C	Water Qualit DO (mg/L) */- 0.3 mg/L 3 3 3 3 3	EC (µS or mS/cm)	рН +/-0.1 8-21 8-34 8-34	*/- 10% -0.5 -4.1 5:3	+/- 10 mV
Time / Volume Stabilisation Criteria (3 readings) 11-38 11-30 11-30 11-30 11-30 WELLdry	Temp (°C) 0.1°C	Water Qualit DO (mg/L) */- 0.3 mg/L 3	Y Parameters EC (µS or mS/cm) +/- 3% 374 354 354 355 TDS	рН +/-0.1 8-21 8-34 8-34	*/- 10% -0.5 -4.1 5:3	+/- 10 mV
Time / Volume Stabilisation Criteria (3 readings)	Temp (°C) 0.1°C	Water Qualit DO (mg/L) */- 0.3 mg/L 3	Y Parameters EC (µS or mS/cm) +/- 3% 374 354 354	рН +/-0.1 8-21 8-34 8-34	*/- 10% -0.5 -4.1 5:3	+/- 10 mV
Time / Volume Stabilisation Criteria (3 readings)	Temp (°C) 0.1°C	Water Qualit DO (mg/L) */- 0.3 mg/L 3	Y Parameters EC (µS or mS/cm) +/- 3% 374 354 354 355 TDS	рН +/-0.1 8-21 8-34 8-34	*/- 10% -0.5 -4.1 5:3	+/- 10 mV
Time / Volume Stabilisation Criteria (3 readings)	Temp (°C) 0.1 °C	Water Qualit DO (mg/L) */- 0.3 mg/L 3.05	Y Parameters EC (µS or mS/cm) +/- 3% 374 354 354 358 TDS e Details	рН +/-0.1 8-21 8-34 8-34	*/- 10% -0.5 -4.1 5:3	+/- 10 mV
Time / Volume Stabilisation Criteria (3 readings)	Temp (°C) 0.1°C 19.3 3.9 3.1.4 2.1.4 D0 % Sat	Water Quality DO (mg/L) */- 0.3 mg/L 3	Y Parameters EC (µS or mS/cm) +/- 3% 374 354 354 358 TDS e Details	рН +/-0.1 8-21 8-34 8-34	*/- 10% -0.5 	+/- 10 mV
Time / Volume Stabilisation Criteria (3 readings) Image: Color Criteria (3 readings) Image: Color Criteria (3 readings) Image: Color Criteria (3 readings) Image: Color Criteria (3 readings) Image: Color Criteria (3 readings) Image: Color Criteria (3 readings) Image: Color Criteria (3 readings) Image: Color Criteria (3 readings) Image: Color Criteria (3 readings) Image: Color Criteria (3 readings) Image: Color Criteria (3 readings) Image: Color Criteria (3 readings) Image: Color Criteria (3 readings) Image: Color Criteria (3 readings) Image: Criteria (3 readings) Image: Criteria (3 readings) Image: Criteria (3 readings) Image: Criteria (3 readings) Image: Criteria (3 readings) Image: Criteria (3 readings) Image: Criteria (3 readings) Image: Criteria (3 readings) Image: Criteria (3 readings) Image: Criteria (3 readings) Image: Criteria (3 readings) Image: Criteria (3 readings) Image: Criteria (3 readings) Image: Criteria (3 readings) Image: Criteria (3 readings) Image: Criteria (3 readings) Image: Criteria (3 readings) Image: Criteria (3 readings) Image: Criteria (3 readings) Image: Criteria (3 readings	Temp (°C) 0.1 °C	Water Quality DO (mg/L) */- 0.3 mg/L 3	Y Parameters EC (µS or mS/cm) +/- 3% 374 354 354 358 TDS e Details	рН +/-0.1 8-21 8-34 8-34	*/- 10% -0.5 	+/- 10 mV
Time / Volume Stabilisation Criteria (3 readings)	Temp (°C) 0.1°C 19.3 3.9 3.1.4 2.1.4 D0 % Sat	Water Quality DO (mg/L) */- 0.3 mg/L 3	Y Parameters EC (µS or mS/cm) +/- 3% 374 354 354 358 TDS e Details	рН +/-0.1 8-21 8-34 8-34	*/- 10% -0.5 	+/- 10 mV
Time / Volume Stabilisation Criteria (3 readings) 11.30 Well.dth Well.dth Well.dth Sampling Depth (rationale): Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples:	Temp (°C) 0.1°C 19.3 23.9 24.4 DO % Sat DO % Sat	Water Qualit DO (mg/L) */- 0.3 mg/L 3	Y Parameters EC (µS or mS/cm) +/- 3% 374 354 354 358 TDS e Details	рН +/-0.1 8-21 8-34 8-34	*/- 10% -0.5 	+/- 10 mV
Time / Volume Stabilisation Criteria (3 readings)	Temp (°C) 0.1°C 19.3 3.9 3.1.4 2.1.4 D0 % Sat	Water Qualit DO (mg/L) */- 0.3 mg/L 3	Y Parameters EC (µS or mS/cm) +/- 3% 374 354 354 358 TDS e Details	рН +/-0.1 8-21 8-34 8-34	*/- 10% -0.5 	+/- 10 mV
Time / Volume Stabilisation Criteria (3 readings) II II 30 WEIL 40 Sampling Depth (rationale): Sample ID: 30 QA/QC Samples: 30 Sampling Containers and 40 filtration: 30	Temp (°C) 0.1°C 19.3 3.9 3.1.4 DO % Sat DO % Sat 4.0 CIEO B.HIII S.EE	Water Qualit DO (mg/L) */- 0.3 mg/L 3	Parameters EC (µS or mS/cm) +/- 3% 37 Ц 3.54 3.58	рН */- 0.1 8- 2.1 8- 3.4 9- 40 8- 3.4 8- 3.4	+/- 10% 0.5 	+/- 10 mV
Time / Volume Stabilisation Criteria (3 readings)	Temp (°C) 0.1°C 19.3 3.9 3.1.4 DO % Sat DO % Sat 4.0 CIEO B.HIII S.EE	Water Qualit DO (mg/L) */- 0.3 mg/L 3	Y Parameters EC (µS or mS/cm) +/- 3% 374 354 354 358 TDS e Details	рН */- 0.1 8- 2.1 8- 3.4 9- 40 8- 3.4 8- 3.4	+/- 10% 0.5 	+/- 10 mV


tubing deeper then sampled.

Groundwater Field She	et			Bot	e Volume = caung volu volume	m>
Project and Bore Installation					$= \pi h \cdot d_{2}^{-1/4} + \tau$	
Bore / Standpipe ID:	BHI	2B		KJ:	ne: z=3.14	
Project Name:	Have	arket c	S		a = porouty (0 ?	
Project Number:	Fluyer	26767.0	3		material)	
Site Location:		20101:1	phane		ha = height of a d = ciameter of an	
Bore GPS Co-ord:					h, = length of filter	
Installation Date:					$d_j = d_{AD}$ and of c_{AD}	ame
GW Level (during drilling):		m bgl		Bo	re Vol Normally:	: 7.2*h
Well Depth:		m bgl				
Screened Interval:		m bgl				
Contaminants/Comments:	-					
Bore Development Details						
Date/Time:						
Purged By:						
GW Level (pre-purge):		m bgl				
GW Level (post-purge):		m bgl				
PSH observed:	Yes / No (/isual). Thickn	ess if observe	d:	
Observed Well Depth:		m bgl				
Estimated Bore Volume:		L				
Total Volume Purged:	(target: no drill	mud, min 3 w	ell vol. or dry)			
Equipment:						
Micropurge and Sampling De	ails					
Date/Time:	3	610513	10			
Sampled By:		AS				
Weather Conditions:	raia					
GW Level (pre-purge):	5.2	m bgl	8:34)	dat	alogger	retriev
GW Level (post sample):	5.85	m bgl	9:001	da	plogder	put in 13
PSH observed:	Yes / (No) (visual). Thickr	less if observe	id: 🤍 🗸	
Observed Well Depth:	10.85	m bgl				
Estimated Bore Volume:	40_	<u> </u>				
Total Volume Purged:	~15	L				
Equipment:	pump, v	VOM. IN	t meter			
		Water Quality	/ Parameters			
Time / Volume	Temp (°C)	DO (mg/L)	EC (µS or mS/cm)	pН	Turbidity	Redox (mV)
Stabilisation Criteria (3 readings)	0.1°C	+/- 0.3 mg/L	÷/- 3%	÷/- 0.1	+/- 10%	∻/- 10 mV
10.51	170	12.51	377	4.94	114	1.59
10:50	21.0	1.77	311	5.08	10.89	145
10 62	23 6	1.52	285	5.32	0166	134
10.54	24.1	1.20	282	5.46	933	130
16.55	24.3	1.14	278	5.54	796	126
10.56	24.5	1.07	279	5.62	680	121
10:57	24.5	1.10	279	5.65	626	120
A AND A AND A		1.1.5				
Additional Readings Following	DO % Sat	SPC	TDS			
stabilisation:						
			e Details		and the second second second second second second second second second second second second second second second	
Sampling Depth (rationale):	8.0	m bgl,	Sector Sector			
Sample Appearance (e.g.	brow	n i silti	1			
colour, siltiness, odour):	DULLO	2				
Sample ID:	BHILY	00000	OFOG			
QA/QC Samples:	BDI	- 40 4C	UDIAN			
Sampling Containers and filtration:	See CC	C		÷.		
Comments / Observations:						

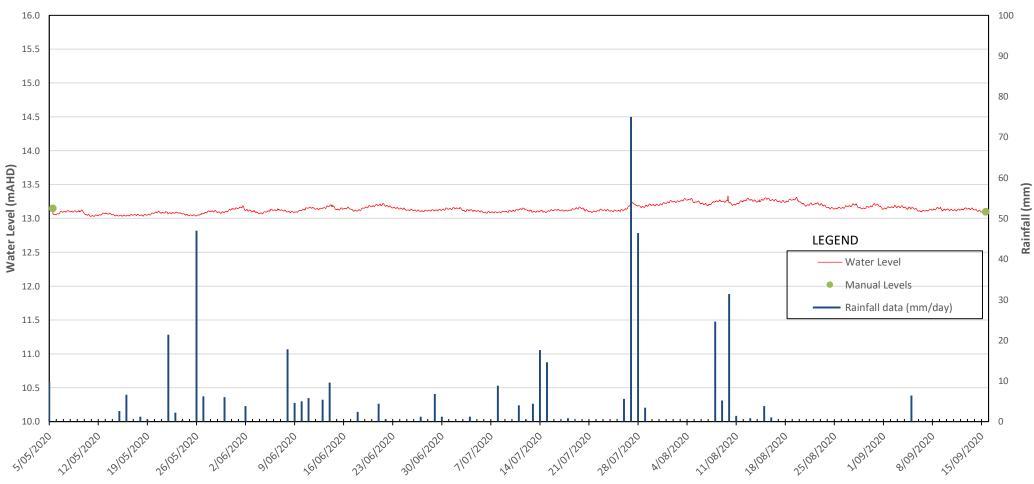
int


BH1 Groundwater Levels

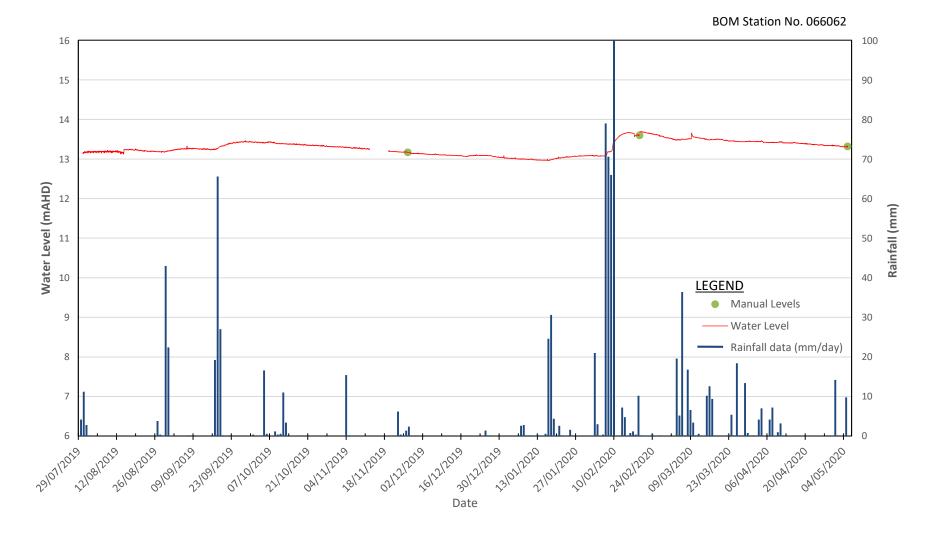


BH1 Groundwater Levels

BOM Station No. 066062 & 066214



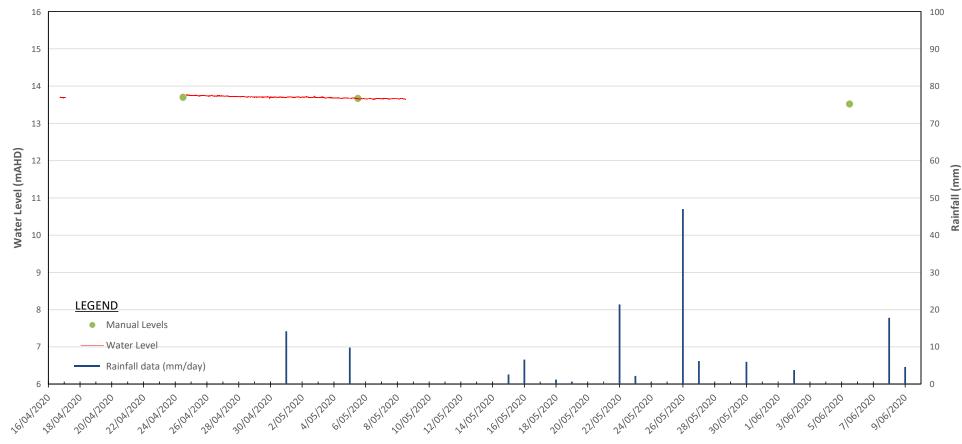
BH5 Groundwater Levels


BOM Station No. 066062

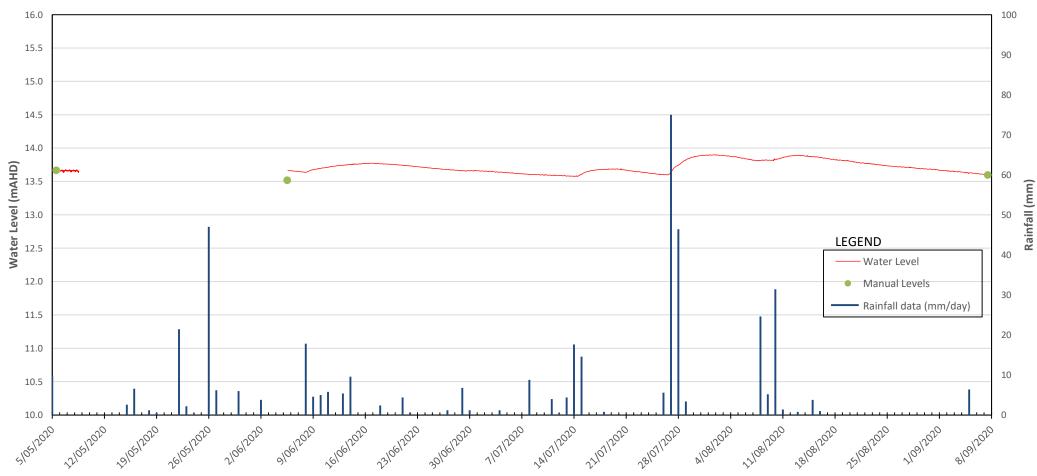
BH5 Groundwater Levels

BOM Station No. 066062

BH8 Groundwater Levels

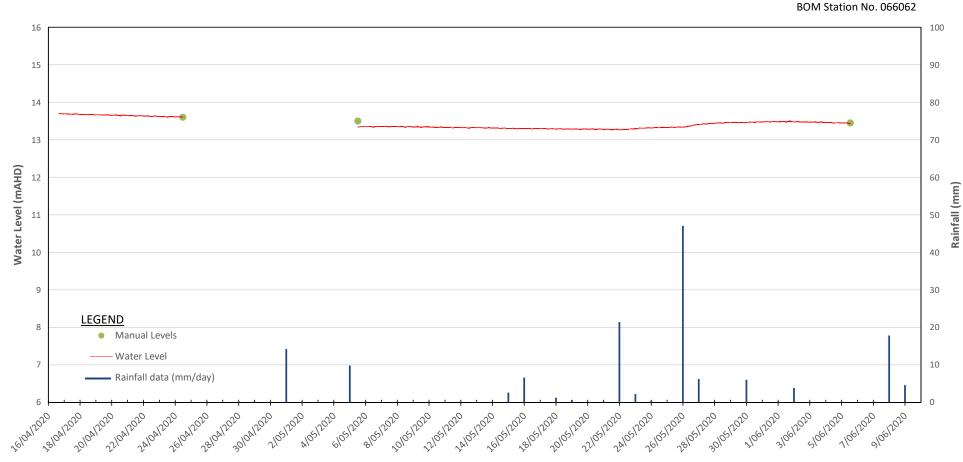

BH8 Groundwater Levels

16.0 100 15.5 90 15.0 80 14.5 70 14.0 Water Level (mAHD) 60 13.5 Rainfall (mm) LEGEND 13.0 50 - Water Level Manual Levels 12.5 40 - Rainfall data (mm/day) 12.0 30 11.5 20 11.0 10 10.5 12020 2110712020 2810712020 0410872020 1210872020 2510872020 0210972020 Date 10.0 0 0510512020 20 12/05/2020 13/05/2020 16/05/2020 03/06/2020 05/06/2020 16/06/2020 30/06/2020 07/07/2020

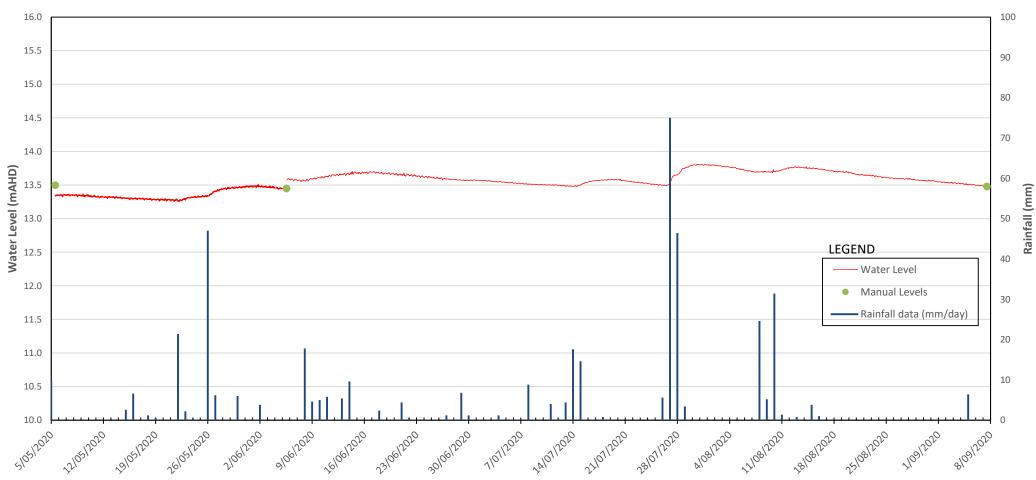

BOM Station No. 066062

BH103 Groundwater Levels

BOM Station No. 066062

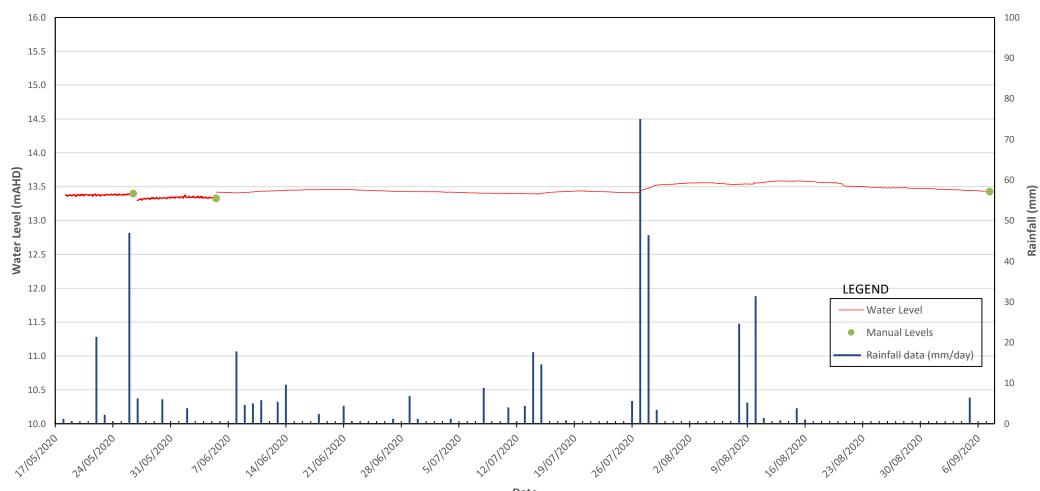


BH103 Groundwater Levels

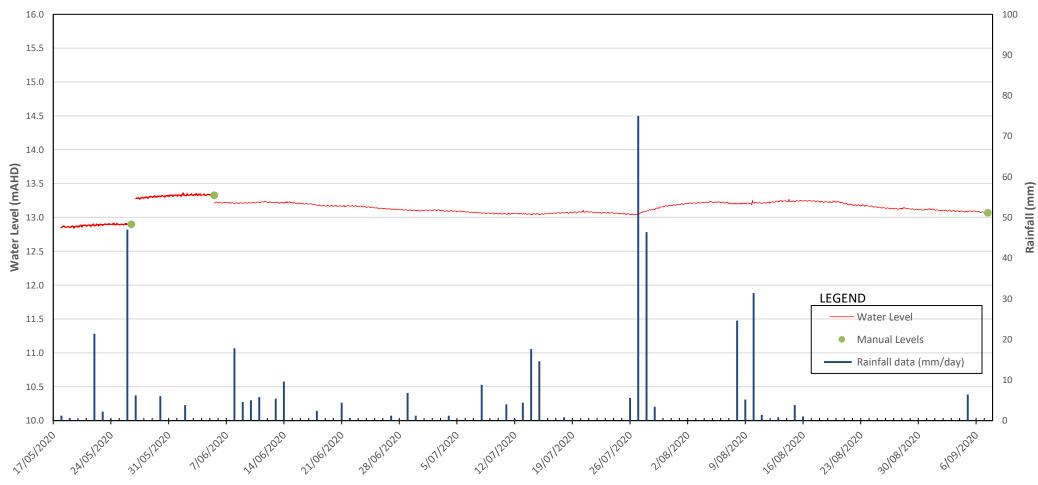


BOM Station No. 066062

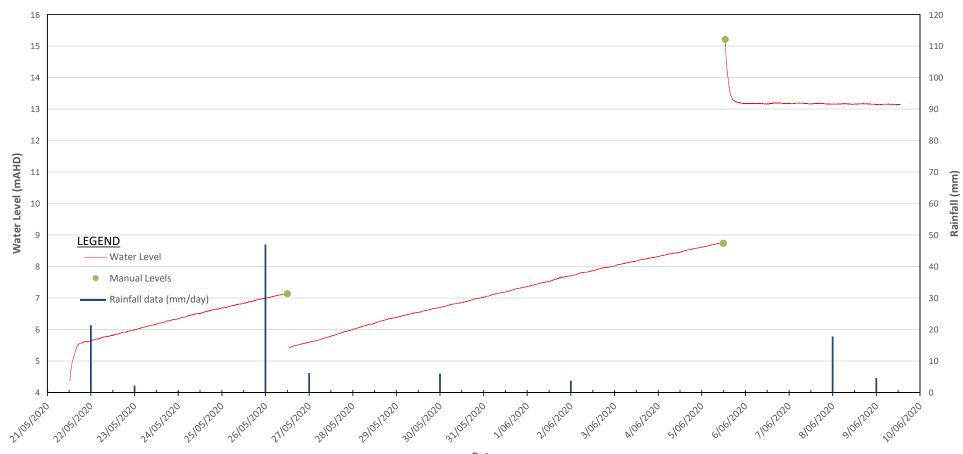
BH104 Groundwater Levels



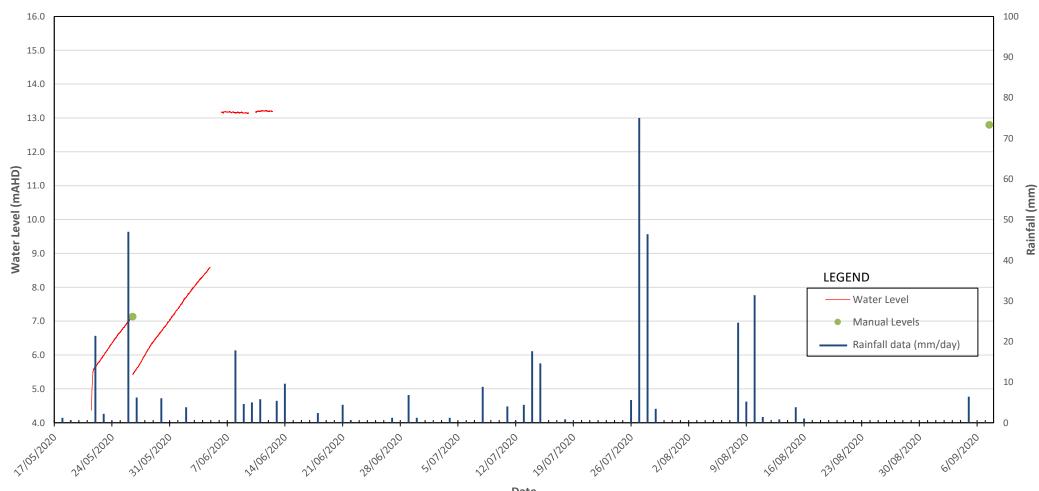
BH104 Groundwater Levels


BOM Station No. 066062

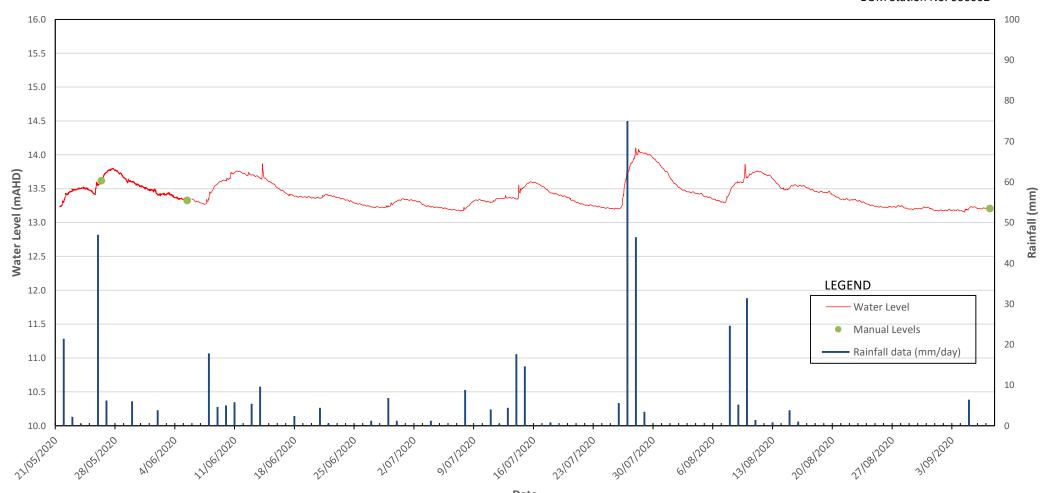
BH107A Groundwater Levels


BOM Station No. 066062

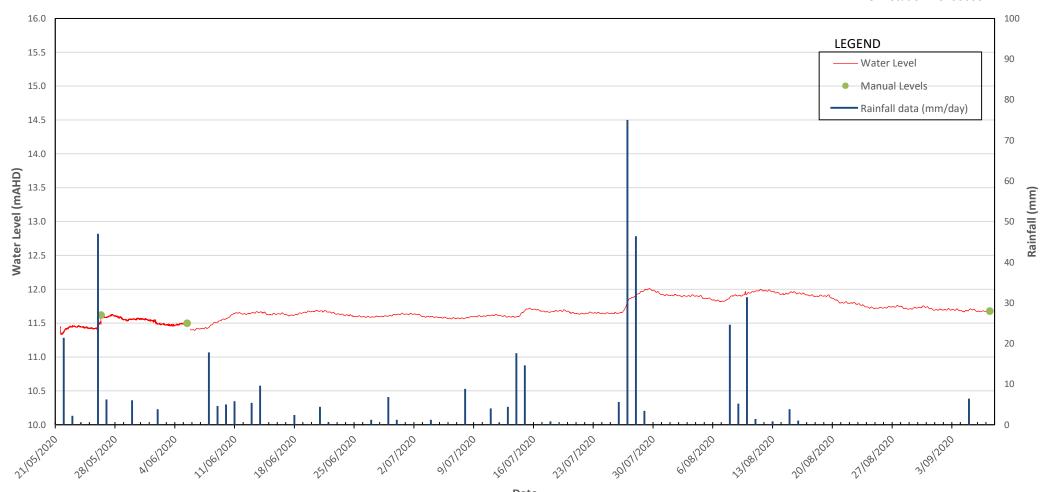
BH107B Groundwater Levels


BOM Station No. 066062

BH109B Groundwater Levels


BOM Station No. 066062

BH109B Groundwater Levels


BOM Station No. 066062

BH112A Groundwater Levels

BOM Station No. 066062

BH112B Groundwater Levels

BOM Station No. 066062

Appendix G

Groundwater Permeability Test Results

Permeability Testing - Falling Head Test Report

Client: Project: Location:		Pty Ltd Commerical Street, Haym		Project No Test date: Tested by	31-Jul-19		
Test Locatio Description: Material type:	Standpipe	in borehole y CLAY, then S	AND		Test No. Easting: Northing Surface Le	BH1 333983.4 6249262.5 vel: 20.1	m m m AHD
	liameter (2) diameter (2 Il screen (L 6.3m-4.3m,	^r) R) e)	114.3 114.3 2 n; blank fror	mm mm m 14.3m onwa	Depth to water befo Depth to water at st ds, bentonite from 4.	art of test 0.00	m m
Test Results	i			7			
Time (sec)	Depth (m)	Change in Head: δH (m)	δH/Ho				
0.1	0	5.95	1.000	1			
180.0	1.03	4.92	0.827	-1			
480.0	1.84	4.11	0.691	-1			
780.0	2.23	3.72	0.625	-			
1080.0	2.51	3.44	0.578				
1380.0	2.74	3.21	0.539	1.00			
1680.0	2.93	3.02	0.508				
1980.0	3.05	2.90	0.487				
2280.0	3.18	2.77	0.466			X_	
2580.0	3.28	2.67	0.448			\ \	
2880.0	3.38	2.57	0.432	l ho			×
3180.0	3.46	2.49	0.418	Head Ratio dh/ho			
4380.0	3.72	2.23	0.374	Zati			
4680.0	3.78	2.17	0.364	ad			X
6480.0	3.99	1.96	0.329	Ц Н			
9780.0	4.28	1.67	0.281				
				0.10	1 1 10) 100 1000	10000
						me (seconds)	10000
					To =	4500 seconds	
Theory:		d Permeability c e/R)]/2Le To	alculated us	where r = ra R = radius o Le = length	Hvorslev dius of casing f well screen of well screen ken to rise or fall to 37 ⁴	% of initial change	
Hydrau	ulic Cond	uctivity	k = =	6.5E 0.2			

Permeability Testing - Falling Head Test Report

Client: Project: Location:		Pty Ltd I Commerical Street, Hayma			Project No: Test date: Tested by:	86767.00 14-Aug-1 KR		
Test Locatic Description: Material type	Standpipe	in borehole y CLAY, then S	AND			Test No. Easting: Northing Surface Level:	BH1 333983.4 6249262.5 20.1	m m m AHD
	diameter (2) diameter (2 Il screen (L 6.3m-4.3m,	r) R) e)	114.3 114.3 2 ; blank fror	mm mm m 14.3m onwa	Depth to	water before test water at start of test nite from 4.2m onwa		m m
Test Results	Depth (m)	Change in Head: δH (m)	δH/Ho					
0.1 1.0 10.0 60.0 120.0 300.0 600.0 900.0 1200	0.36 0.36 0.43 0.74 1.03 1.59 2.15 2.52 2.80 3.17 3.41 3.57 3.70 3.80 3.89 3.94 4.07 4.11 4.14 4.16 4.19 4.22 4.25	5.91 5.91 5.84 5.53 5.24 4.68 4.12 3.75 3.47 3.10 2.86 2.70 2.57 2.47 2.38 2.33 2.20 2.17 2.13 2.11 2.09 2.05 2.02	1.000 0.999 0.988 0.935 0.886 0.791 0.697 0.633 0.587 0.525 0.484 0.457 0.435 0.417 0.403 0.394 0.372 0.366 0.360 0.357 0.353 0.347 0.342	Head Ratio		.0 10.0 10 Time (second	0.0 1000.0 s)	10000.0
Theory:		d Permeability c e/R)]/2Le To	alculated us	where r = ra R = radius c Le = length	adius of cas of well scre of well scre	en		
Hydra	ulic Cond	uctivity	k = =	4.5E 0.1		m/sec cm/hour		

Permeability Testing - Rising or Falling Head Test Report

Client: Project: Location:	Propose	n Pty Ltd ed Commercia e Street, Hayn		ment	Project No:86767.00Test date:31-Jul-19Tested by:JJH
Test Locatio Description: Material type:	Standpip	e in borehole ne			Test No.BH5Easting:333980mNorthing6249298mSurface Level:15.5m AHD
Details of We Well casing d Well screen d Length of wel	liameter (2r) liameter (2R))	76 76 12.97	mm mm m	Depth to water before test2.44mDepth to water at start of test14.48m
Test Results		Change in	-11.1/1.1		
Time (min)	Depth (m)	Head: dH (m)	dH/Ho	_	
0	14.48	12.04	1.000	-	
5	14.36	11.92	0.990	-	
10	14.14	11.70	0.972		
60	13.12	10.68	0.887		
100	12.77	10.33	0.858	1.0	
200	11.99	9.55	0.793		
500	9.69	7.25	0.602		
800	7.41	4.97	0.413		
1000	5.9	3.46	0.287	0	
1300	3.78	1.34	0.111	Head Ratio dh/ho	
				.0 Katio	10
				ad Fi	
				He	
				_	
				0.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
				_	Time (minutes)
				_	
					To = 868 mins 52080 secs
Theory:	-	ead Permeability (Le/R)]/2Le To	calculated	where r = R = radiu Le = leng	ion by Hvorslev = radius of casing us of well screen gth of well screen e taken to rise or fall to 37% of initial change
Hydra	ulic Condu	ictivity	k = =		2E-09 m/sec 0.002 cm/hour

Permeability Testing - Rising Head Test Report

Client: Project: Location:	Propose	n Pty Ltd d Commercial e Street, Haym		ment	Project No: Test date: Tested by:	86767.00 30-Jul-19 JJH	
Test Location Description: Material type:	Standpip	e in borehole ne			Test No. Easting: Northing Surface Level:	BH8 333954 6249289 15.5	m m m AHD
Details of We Well casing d Well screen d Length of wel	liameter (2r) liameter (2R l screen (Le))	76 76 12.1	mm mm m	Depth to water before test Depth to water at start of test	2.3 14.8	m m
Test Results Time (min)	Depth (m)	Change in Head: dH (m)	d H/Ho]			
	14.80 7.95 3.71 2.45 2.36	12.50 5.65 1.41 0.15 0.06	1.000 0.452 0.113 0.012 0.005	1.00 Head Ratio Head R			100
Theory:	-	ead Permeability [Le/R)]/2Le To	calculated	where r = R = radius Le = lengtl	To = 5.5 mins 330 secs a by Hvorslev radius of casing of well screen a of well screen aken to rise or fall to 37% of initial		
Hydra	ulic Condu	ctivity	k = =		E-06 m/sec 875 cm/hour		

Permeability Testing - Rising or Falling Head Test Report

Client: Project: Location:	Propose	n Pty Ltd ed Commercia e Street, Hayr		ment	Project No:86767.00Test date:16-Apr-20Tested by:NB
Test Locatio Description: Material type:	Standpip	e in borehole ne			Test No.BH103Easting:333978mNorthing6249263mSurface Level:21.2m AHD
Details of We Well casing d Well screen c Length of wel	liameter (2r) liameter (2R))	70 76 0.8	mm mm m	Depth to water before test7.5mDepth to water at start of test9.27m
Test Results					
Time (min)	Depth (m)	Change in Head: dH (m)	d H/Ho]	
0 1 2 3 4 5 6 7 8 9 10 17 20 30 40 50 60 70 80 82	9.27 8.76 8.71 8.67 8.64 8.61 8.57 8.52 8.48 8.44 8.44 8.4 8.45 8.07 7.84 7.7 7.61 7.56 7.53 7.51 7.5	1.77 1.26 1.21 1.17 1.14 1.11 1.07 1.02 0.98 0.94 0.90 0.65 0.57 0.34 0.2 0.11 0.06 0.03 0.01	1.000 0.712 0.684 0.661 0.644 0.627 0.605 0.576 0.554 0.531 0.508 0.367 0.322 0.192 0.113 0.062 0.034 0.017 0.006 0.000	1.00 Head Hand Hand Hand Hand Hand Hand Hand Ha	
					Time (minutes) To = 17 mins 1020 secs
Theory:	-	ead Permeability (Le/R)]/2Le To	calculated	where r = R = radius Le = lengt	ion by Hvorslev = radius of casing us of well screen gth of well screen e taken to rise or fall to 37% of initial change
Hydra	ulic Condu	ctivity	k = =		3E-06 m/sec 0.823 cm/hour

Permeability Testing - Rising or Falling Head Test Report

Client:	Vertical	First Pty Ltd				Project N	lo:	86767.00	
Project:		ed Commercia	I Develop	ment		Test date		24-Apr-20	
_ocation:		e Street, Hayn				Tested b		AS	
								-	
Fest Location	า					Test No.		BH103	
Description:	Standpip	e in borehole				Easting:		333978	m
Aaterial type:	Sandstor	ne				Northing		6249263	m
						Surface L	evel:	21.2	m AHD
Details of We	ell Installatio	on							
Vell casing di			50	mm	Depth to	o water bei	ore test	7.44	m
Vell screen d)	76	mm	Depth to	o water at	start of test	8.63	m
ength of well			0.8	m	·				
est Results									
Time (min)	Depth (m)	Change in	d H/Ho	1					
	Deptil (III)	Head: dH (m)	un/nu	_					
0	8.63	1.19	1.000	-					
1	8.52	1.08	0.908						
2	8.44	1.00	0.840						
3	8.39	0.95	0.798						
4	8.34	0.90	0.756	1.00					
5	8.28	0.84	0.706			+++++++			+++++
6	8.22	0.78	0.655	4					
7	8.17	0.73	0.613	4					
8	8.12	0.68	0.571	<u>o</u>					
9	8.08	0.64	0.538	Head Ratio dh/ho					
10	8.04	0.60	0.504	ti -				🗎	
14.5	7.89	0.45	0.378						
20	7.75	0.31	0.261	- Fea					
30	7.6	0.16	0.134						
40	7.53	0.09	0.076	-					
50 60	7.49	0.05	0.042	-					\
70	7.47	0.03	0.023	-					↓
80	7.40	0.02	0.008	-					
88	7.44	0.01	0.000	0.01)			10	100
00	1		0.000	-	,	I		10	100
							Time (minutes)		
						To =			
							870 secs		
1				·					
heory:		ead Permeability (Le/R)]/2Le To	calculated l		-				
	K = [r IN(Le/R)]/2Le 10		where r = ra		•			
				R = radius					
				Le = length			70/ - (h	
				To = time ta	ken to rise	e or fall to 3	7% of initial c	hange	
Hydra	ulic Condu	ictivity	k =	1.4E	-06	m/sec			

Permeability Testing - Rising or Falling Head Test Report

Client: Project: Location:	Propose	n Pty Ltd ed Commercia e Street, Hayn		ment	Project No:86767.00Test date:16-Apr-20Tested by:NB
Test Locatio Description: Material type:	Standpip	e in borehole ne			Test No.BH104Easting:333983mNorthing6249272mSurface Level:21.2m AHD
Details of We Well casing d Well screen c Length of wel	liameter (2r) liameter (2R))	70 76 6	mm mm m	Depth to water before test7.5mDepth to water at start of test18.8m
Test Results Time (min)	Depth (m)	Change in Head: dH (m)	d H/Ho	1	
0 1 2 3 4 5 6 7 8 9 10 20 30 37 40 50 60 70 80 90 100	18.80 18.57 18.39 18.21 18.04 17.84 17.66 17.48 17.3 17.11 16.93 15.31 13.19 11.72 11.08 8.99 7.58 7.52 7.51	11.30 11.07 10.89 10.71 10.54 10.34 10.16 9.98 9.80 9.61 9.43 7.81 5.69 4.22 3.58 1.49 0.08 0.02 0.01	1.000 0.980 0.964 0.933 0.915 0.899 0.883 0.867 0.850 0.835 0.691 0.504 0.373 0.317 0.132 0.007 0.002 0.002 0.002 0.001 0.001	1.00 Head Ratio PHONE 0.10 Head Ratio PHONE 0.01	Image: constrained of the second of the s
Theory:	-	ead Permeability [Le/R)]/2Le To	calculated	where r = r R = radius Le = length	To = 37 mins 2220 secs by Hvorslev adius of casing of well screen of well screen aken to rise or fall to 37% of initial change
Hydra	ulic Condu	ctivity	k = =		

Permeability Testing - Rising Head Test Report

Client: Project: Location:	Propose	First Pty Ltd ed Commercia e Street, Haym		oment		Project Test da Tested	ate:	86767.00 22-May-2 NB	
Test Locatio Description: Material type:	Standpip	e in borehole ne				Test No Easting Northing Surface	: g	BH104 333983 6249272 21.2	m m m AHD
Details of We Well casing d Well screen c Length of wel	iameter (2r) liameter (2R))	50 76 6	mm mm m			efore test t start of test	7.91 10.95	m m
Test Results									
Time (min)	Depth (m)	Change in Head: δH (m)	δH/Ho						
0	10.95	3.04	1.000	1					
1	10.78	2.87	0.944						
2	10.62	2.71	0.891						
3	10.47	2.56	0.842						
4	10.32	2.41	0.793	1.00					
5	10.17	2.26	0.743	1.00		*			
6	10.02	2.11	0.694				24	x	
7	9.87	1.96	0.645						
8	9.72	1.81	0.595					4	
9	9.57	1.66	0.546	•				11 \	
10	9.43	1.52	0.500	Head Ratio					
12	9.13	1.22	0.401	io d					
13	8.98	1.07	0.352	0.10 Gat					
15	8.69	0.78	0.257	ead					
20	8.07	0.16	0.053	エ					
25	7.95	0.04	0.013						
30	7.93	0.02	0.007						
35	7.92	0.01	0.003						
62	7.91	0	0.000						
				0.01					
					D	1		10	100
							Time (minutes)		
						То	o = 12.5 mins 750 secs		
Theory:	-	ead Permeability Le/R)]/2Le To	calculated	where r = ra R = radius o Le = length	dius of ca of well scre of well scr	sing een een	37% of initial c	hange	
Hydra	ulic Condu	ctivity	k = =			m/sec cm/hou	Ir		

Permeability Testing - Rising or Falling Head Test Report

Client: Project: Location:	Propose	First Pty Ltd d Commercia e Street, Hayr		ment			Test	ect No: date: ed by:	86767.00 17-May-2 NB	
Test Locatio Description: Material type:	Standpip	e in borehole ne					Test Easti North Surfa	ng:	BH107A 333945 6249270 15.5	m m m AHD
Details of We Well casing d Well screen d Length of wel	liameter (2r) liameter (2R))	50 76 0.5	mm mm m		-		er before test er at start of test	2.13 3.75	m m
Test Results	i									
Time (min)	Depth (m)	Change in Head: δH (m)	δH/Ho							
0	3.75	1.62	1.000	_						
5	3.72	1.59	0.981	_						
10	3.69	1.56	0.963							
20	3.63	1.50	0.926							
30	3.58	1.45	0.895	1.	.00 –			÷ • • •		
40	3.52	1.39	0.858		_					
50	3.46	1.33	0.821		-					
60	3.39	1.26	0.778						7	
70	3.33	1.20	0.741	•						
80	3.27	1.14	0.704		_				<u> </u>	
90	3.22	1.09	0.673	tio						\mathbf{N}
100	3.15	1.02	0.630	82 0.	.10					\
150	2.9	0.77	0.475	Head Ratio dh/ho						
190.5 200	2.73 2.7	0.6 0.57	0.370							
300	2.43	0.3	0.352	-						
400	2.43	0.16	0.099	-						A
500	2.23	0.08	0.049	-	_					
600	2.17	0.04	0.025	-						↓ ↓
700	2.15	0.02	0.012	- 0.	.01 + 0		1	10	100	1000
800	2.14	0.01	0.006	1						
936	2.13	0	0.000					Time (minutes)	
								To = 190.5 min 11430 sec		
Theory:	-	ead Permeability [Le/R)]/2Le To	calculated	where r R = radi Le = len	= rad us of gth o	ius of well so f well s	casing creen screen	ll to 37% of initial	change	
Hydra	ulic Condu	ctivity	k = =		1.4E-07 m/sec 0.051 cm/hour					

Permeability Testing - Rising Head Test Report

Client: Project: Location:	Propose	First Pty Ltd d Commercia e Street, Hayn		ment		Proje Test o Teste		86767.00 26-May-2 AS	
Test Location Description: Material type:		e in borehole ne				Test N Eastin Northi Surfac	g:	BH107A 333945 6249270 15.5	m m m AHD
Details of We Well casing di Well screen d Length of well	iameter (2r) iameter (2R))	50 76 0.5	mm mm m			before test at start of test	2.2 3.8	m m
Test Results									
Time (min)	Depth (m)	Change in Head: δH (m)	δH/Ho]					
0	3.8	1.60	1.000	1					
5	3.72	1.52	0.950	_					
10	3.66	1.46	0.913	_					
20	3.56	1.36	0.850	1]
30	3.46	1.26	0.788						
40	3.37	1.17	0.731	1.00 -					
50	3.29	1.09	0.681	_					
60	3.22	1.02	0.638	-				- 14	
70	3.15	0.95	0.594					A 	
80	3.08	0.88	0.550						
90	3.03	0.83	0.519	Head Head					
100	2.97	0.77	0.481	o d					
120	2.87	0.67	0.419	- 0.10 -					1
137	2.79	0.59	0.369	ad					
150	2.74	0.54	0.338	Ť					À
200	2.59	0.39	0.244						
300	2.39	0.19	0.119						
400	2.29	0.09	0.056						1
500	2.24	0.04	0.025						
600	2.22	0.02	0.013	0.01 -					A
650	2.21	0.01	0.006)	1	10	100	1000
687	2.2	0	0.000	-			Time (minutes)		
							To = 137 mins 8220 secs		
Theory:	-	ead Permeability Le/R)]/2Le To	calculated u	where r = ra R = radius c Le = length	dius of cas of well scre of well scre	sing en een	to 37% of initial o	change	
Hydra	ulic Condu	ctivity	k =	2.0E		m/sec			
			=	0.0	71	cm/ho	bur		

Permeability Testing - Rising or Falling Head Test Report

Client: Project: Location:	Propose	First Pty Ltd d Commercia e Street, Hayr		ment		Project Test da Tested	ate:	86767.00 17-May-2 NB	
Test Location Description: Material type:	Standpip	e in borehole ne				Test No Easting Northin Surface	: g	BH107B 333945 6249272 15.5	m m m AHD
Details of We	ell Installatio	on							
Well casing d	• • •		50	mm		epth to water b		2.65	m
Well screen d	· · ·		76	mm	D	epth to water a	at start of test	10.72	m
Length of wel	l screen (Le)		5.5	m					
Test Results									
		Change in	011/11	7					
Time (min)	Depth (m)	Head: δH (m)	δH/Ho						
0	10.72	8.07	1.000						
1	10.63	7.98	0.989						
2	10.53	7.88	0.976	1					
3	10.44	7.79	0.965						
4	10.34	7.69	0.953	- 1	.00				
5	10.25	7.60	0.942	4 '					
6	10.16	7.51	0.931	4					
7	10.07	7.42	0.919	-					
8	9.98 9.89	7.33 7.24	0.908	-					
9 10	9.89 9.8	7.24	0.897	<u> </u>					
20	9.0 8.98	6.33	0.880	Head Ratio dh/ho					
30	8.16	5.51	0.683	∩	.10 —				
40	7.36	4.71	0.584	ad R					
50	6.56	3.91	0.485	Ë					
60	5.76	3.11	0.385	1					
61.5	5.64	2.99	0.371	1		+ + + + + + + + + + + + + + + + + + + +			
70	4.87	2.22	0.275	1					
80	4.22	1.57	0.195						
90	3.73	1.08	0.134	n	.01			<u> </u>	
100	3.4	0.75	0.093	_	0	1	10	100	1000
150	2.75	0.1	0.012	4			Time (minutes)		
200	2.71	0.06	0.007	4			inite (initiates)		
300	2.69	0.04	0.005	╡└──					
400	2.68	0.03	0.004	4		-	о — С4 Г ·		
500	2.66	0.01	0.001			1	0 = 61.5 mins		
636	2.65	0	0.000				3690 secs	5	
Theory:	-	ad Permeability [Le/R)]/2Le To	calculated	where r R = radi Le = len	= radiu ius of w	Hvorslev is of casing vell screen well screen n to rise or fall to	o 37% of initial o	change	
Hydra	ulic Condu	ctivity	k = =		.7E-08	3 m/sec cm/hou	ır		

Permeability Testing - Rising Head Test Report

Client:	Vertical	First Pty Ltd				Projec	ct No:	86767.00)
Project:		d Commercia	l Develop	ment		Test c		26-May-2	
Location:		e Street, Hayn				Teste		AS	
Location.		ourcet, mayn	nantot			10310	a by.	NO	
Test Locatio	n					Test N	lo.	BH107B	
Description:		e in borehole				Eastin		333945	m
Material type:						Northi		6249272	m
51							e Level:	15.5	m AHD
Details of We		on	50		D <i>U U</i>			0.00	
Well casing d	• • •	,	50	mm	-		before test	2.22	m
Well screen d			76	mm	Depth to	water	at start of test	5.15	m
Length of wel	l screen (Le)		5.5	m					
Test Results									
		Change in	SI 1/1 -	7					
Time (min)	Depth (m)	Head: δH (m)	δH/Ho						
0	5.15	2.93	1.000	1					
1	5.10	2.88	0.983	1					
2	5.06	2.84	0.969	_					
3	5.03	2.81	0.959	1]
4	5.00	2.78	0.949						
5	4.97	2.75	0.939	1.00 -		^	A A A A A A		
6	4.95	2.73	0.932						
7	4.92	2.70	0.922						
8	4.89	2.67	0.911					4	
9	4.86	2.64	0.901						
10	4.84	2.62	0.894	h/ho				↓	
20	4.58	2.36	0.805	Head Ratio				X	
30	4.35	2.13	0.727	0.10 -				· · · · · · · · · · · · · · · · · · ·	
40	4.14	1.92	0.655	ad					
50	3.94	1.72	0.587	Ť					1
60	3.77	1.55	0.529						\
70	3.61	1.39	0.474						- \
80	3.47	1.25	0.427						
90	3.35	1.13	0.386						N N
95	3.30	1.08	0.369	0.01 -					Ĩ
100	3.25	1.03	0.352)	1	10	100	1000
150	2.87	0.65	0.222	1			The state of the state		
200	2.65	0.43	0.147				Time (minutes)	1	
300	2.41	0.19	0.065						
400	2.31	0.09	0.031						
500	2.26	0.04	0.014			-	To = 95 mins	6	
600	2.24	0.02	0.007				5700 secs	6	
Theory:	-	ead Permeability Le/R)]/2Le To	calculated u	where r = ra R = radius c Le = length	dius of cas of well scre of well scre	sing en een	o 37% of initial o	change	
Hydra	ulic Condu	ctivity	k = =	5.0E 0.0 [,]	-08	m/sec cm/hc	;		

Permeability Testing - Falling Head Test Report

Client:	Vertical	First Pty Ltd			Project No: 86767.00
Project:		ed Commercia		oment	Test date: 5-Jun-20
Location:		e Street, Hayn			Tested by: NB
Location.	0-10 200	o offeet, hayn	lance		rested by.
Test Locatio	n				Test No. BH109B
Description:		e in borehole			Easting: <u>333970</u> m
Material type:					Northing 6249311 m
51					Surface Level: 15.3 m AF
Details of We Well casing d		n	50	mm	Depth to water at end of test 2.17 m
Nell screen d	• • •)	76	mm	Depth to water at start of test 0.13 m
Length of wel			5.6	m	
Fest Results					
		Change in		7	
Time (min)	Depth (m)	Head: δH (m)	δH/Ho		
0	0.13	2.04	1.000		
1	0.27	1.90	0.931		
2	0.29	1.88	0.922		
3	0.31	1.86	0.912		
4	0.31	1.86	0.912		
5	0.33	1.84	0.902	1.00	
6	0.35	1.82	0.892		
7	0.37	1.80	0.882		
8	0.39	1.78	0.873		
9	0.41	1.76	0.863		
10	0.43	1.74	0.853	h/hc	
20	0.61	1.56	0.765	o d	
30	0.8	1.37	0.672	Head Ratio	
40	0.95	1.22	0.598	ead	
50	1.05	1.12	0.549	Ť	
60	1.14	1.03	0.505		
70	1.21	0.96	0.471		
80	1.28	0.89	0.436		
90	1.36	0.81	0.397		
98.5	1.42	0.75	0.368	0.01	
100	1.43	0.74	0.363		0 1 10 100 100
200	1.96	0.21	0.103		Time (minutes)
300	2.08	0.09	0.044		Time (minutes)
400	2.12	0.05	0.025		
500	2.15	0.02	0.010		
600	2.17	0	0.000	_	To = 98.5 mins
					5910 secs
Theory:	-	ead Permeability Le/R)]/2Le To	calculated	where r = ra R = radius o Le = length	by Hvorslev adius of casing of well screen of well screen aken to rise or fall to 37% of initial change
Hydra	ulic Condu	ctivity	k =	= 4.7E	E-08 m/sec
				- 0.0	17 cm/hour

Permeability Testing - Falling Head Test Report

Hydrau	ulic Condu	ictivity	k = =			m/sec cm/hour			
Theory:	-	ead Permeability (Le/R)]/2Le To	calculated ι	where r = ra R = radius o Le = length	dius of ca f well scre of well scr	ising een reen	7% of initial c	change	
	2.10		0.001				3336 secs		
60	2.14	1.25	0.354	_		To =	55.6 mins	5	
55.6	2.00	1.31	0.369						
50	2.08	1.41	0.386						
40	1.98	1.34	0.434			٦	'ime (minutes)		
30	1.85	1.62	0.478	-	,	I		10	100
20	1.77	1.63	0.478	0.01)			10	100
10	1.56	1.83	0.540						
9	1.44	1.95	0.558	-					
7 8	1.37	1.95	0.596 0.575	-					
6 7	1.29 1.37	2.1 2.02	0.619	-					
5	1.18	2.21	0.652	- -					
4	1.06	2.33	0.687	Head Ratio					
3	0.9	2.49	0.735	20.10 10					
2	0.7	2.69	0.794	l i					
1.00	0.42	2.97	0.876	dh,t					
0.90	0.38	3.01	0.888	2					
0.80	0.35	3.04	0.897	_					** *
0.70	0.31	3.08	0.909					-	
0.60	0.27	3.12	0.920						+++++
0.50	0.23	3.16	0.932	1.00	• • • •	A A A A A A A A			
0.40	0.19	3.20	0.944	1.00					
0.30	0.15	3.24	0.956	_					
0.20	0.1	3.29	0.971	_					
0.10	0.05	3.34	0.985	_					
0	0.00	3.39	1.000	_					
Time (min)	Depth (m)	Change in Head: δH (m)	δH/Ho						
est Results									
ength of well.			0.5	m	•				
Vell screen di)	76	mm	•	o water at s		0.00	m
Details of We Vell casing di		on	50	mm	Depth to	o water bef	ore test	3.39	m
/aterial type:	Sandstor	ne				Northing Surface L	evel:	6249325 16.7	m m AHD
escription:		e in borehole				Easting:		333926	m
est Locatior	<u> </u>					Test No.		BH112A	
ocation:	8-10 Lee	e Street, Hayn	narket			Tested by	y:	NB	
Project:	Propose	ed Commercia	l Develop	ment		Test date	:	5-Jun-20	
		First Pty Ltd				Project N	0.	86767.00	

Permeability Testing - Rising or Falling Head Test Report

Client: Project: Location:	Propose	First Pty Ltd ed Commercia e Street, Hayr		ment		Project No: Test date: Tested by:		86767.00 21-May-2 NB	
Test Locatio Description: Material type:	Standpip	e in borehole ne				Test No. Easting: Northing Surface Leve	91:	BH112B 333928 6249324 16.8	m m m AHD
Details of We Well casing d Well screen d Length of wel	liameter (2r) liameter (2R)	50 76 6	mm mm m		to water before to water at sta		5.37 5.75	m m
Test Results	;								
Time (min)	Depth (m)	Change in Head: δH (m)	δH/Ho						
0	5.75	0.38	1.000						
1	5.74	0.37	0.974						
2	5.69	0.32	0.842	_					
3	5.67	0.30	0.789	_					
4	5.66	0.29	0.763	1.00)				
5	5.65	0.28	0.737		,				
6	5.64	0.27	0.711	_					
7	5.63	0.26	0.684	_				× ×	
8	5.63 5.61	0.26	0.684	_					
9 10	5.6	0.24	0.632	2					
10	5.55	0.23	0.805	Head Batio dh/ho					
18	5.51	0.18	0.368	Gatio				1	
20	5.49	0.14	0.306	2					
30	5.42	0.05	0.132	He					
40	5.4	0.03	0.079	-					
50	5.38	0.01	0.026						
50.5	5.37	0	0.000	_					▲
				_					
				0.0*	1				
				0.0	0	1		10	100
				-		Time	e (minutes)		
						To =	18 mins	;	
							1080 secs	i	
Theory:	-	ead Permeability (Le/R)]/2Le To	calculated	where r = R = radius Le = lengt	radius of c s of well sc h of well s	asing reen	of initial c	change	
Hydra	ulic Condu	ictivity	k =		E-07	m/sec			
			=	0.	088	cm/hour			

Permeability Testing - Falling Head Test Report

Hydra	ulic Condu	ctivity	k = =	3.9E 0.1		m/sec cm/hour			
Theory:	k = [r ² ln(ead Permeability Le/R)]/2Le To	calculated u	where r = ra R = radius o Le = length To = time ta	adius of ca of well scru of well sc aken to rise	asing een reen e or fall to 37	7% of initial o	change	
						To =	11.2 mins 672 secs		
30	4.6	0.72	0.135			1	'ime (minutes)		
20	4.13	1.19	0.224			-	'imo (mint)		
11.2	3.35	1.97	0.370		.1	1.0		10.0	100.0
10	3.20	2.12	0.398	0.01					
9	3.06	2.26	0.425						
8	2.89	2.43	0.457						
7	2.71	2.61	0.491						+++++
6	2.52	2.8	0.526						-+-++++
5	2.29	3.03	0.570	μ					
4	2.04	3.28	0.617	Head Ratio					
3	1.74	3.58	0.673	0.10					
2	1.36	3.96	0.744	o de l					
1	0.82	4.50	0.846	h/hc				│ 	-+++++
0.9	0.76	4.56	0.857						+++++
0.8	0.68	4.64	0.872	1				A	+++++
0.7	0.61	4.71	0.885	1					++++
0.6	0.53	4.79	0.900	1			the second secon		
0.5	0.45	4.87	0.915	1.00	<u> </u>	+ + + + + + + + + + + + + + + + + + +			
0.4	0.36	4.96	0.932						
0.3	0.26	5.06	0.951						
0.2	0.17	5.15	0.968						
0.0	0.06	5.26	0.989						
Time (min)	Depth (m)	Head: δ H (m)	δH/Ho 1.000	-					
Test Results		Change in		 T					
_ength of wel	l screen (Le)		6	m					
Vell screen d	liameter (2R)	76	mm	Depth t	o water at s	tart of test	0.00	m
Details of We Well casing d		on	50	mm	Depth t	o water bef	ore test	5.32	m
Aaterial type:						Northing Surface Le	evel:	6249324 16.8	m m AHD
escription:	Standpip	e in borehole				Easting:		333928	m
Fest Locatio	-					Test No.		BH112B	
ocation:		e Street, Hayn				Tested by	/ :	NB	
roject:	Propose	d Commercia	I Develop	ment		Test date		5-Jun-20	
)rojact:						Project N			

Appendix H

Laboratory Test Reports

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 221523-A

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Huw Smith
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	<u>86767.01, DSI</u>
Number of Samples	19 Soil
Date samples received	12/07/2019
Date completed instructions received	23/07/2019

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details					
Date results requested by	30/07/2019				
Date of Issue	15/08/2019				
Reissue Details	This report replaces R00 created on 30/07/2019 due to: revised report with additional pH results.				
NATA Accreditation Number 2901. This document shall not be reproduced except in full.					
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *					

<u>Results Approved By</u> Nick Sarlamis, Inorganics Supervisor Authorised By

Nancy Zhang, Laboratory Manager

Client Reference: 86767.01, DSI

Misc Inorg - Soil		
Our Reference		221523-A-3
Your Reference	UNITS	BH1/4.3-4.5
Date Sampled		10/07/2019
Type of sample		Soil
Date prepared	-	26/07/2019
Date analysed	-	26/07/2019
Electrical Conductivity 1:5 soil:water	μS/cm	20
Sulphate, SO4 1:5 soil:water	mg/kg	10
pH 1:5 soil:water	pH Units	6.0
Chloride, Cl 1:5 soil:water	mg/kg	<10

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.

Client Reference: 86767.01, DSI

QUALITY	CONTROL:	Misc Ino		Du	Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			26/07/2019	3	26/07/2019	26/07/2019		26/07/2019	
Date analysed	-			26/07/2019	3	26/07/2019	26/07/2019		26/07/2019	
Electrical Conductivity 1:5 soil:water	µS/cm	1	Inorg-002	<1	3	20			106	
Sulphate, SO4 1:5 soil:water	mg/kg	10	Inorg-081	<10	3	10			101	
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	3	6.0	5.9	2	102	
Chloride, Cl 1:5 soil:water	mg/kg	10	Inorg-081	<10	3	<10	[NT]		97	[NT]

Client Reference: 86767.01, DSI

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control Definitions						
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.					
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.					
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.					
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.					
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.					
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform Eaecal Enterococci & E Coli levels are less than					

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Douglas Partners Geotechnics / Environment / Groundwater

CHAIN OF CUSTODY DESPATCH SHEET

Project No:	86767.00 Suburb: Haymarket						To: Envirolab Services								
Project Name:	Haymarket, 8-10 Lee Street, Geo				Order Number										
Project Manage	er: Huw Smith Sampler: NB/AS A						Attn:	Sime	on Song						
Emails:	huw.smith@douglaspartners.com.au						Phone:								
Date Required:	Same	day 🗆	24 hours	□ 48 hc	ours 🗆	72 ho	urs 🛛	Standard	x	Email:			5.	A	
Prior Storage:	D Esk	y x Fridg	e x She	lved	Do sam	ples cont	ain 'potentia	I' HBM?	Yes 🛛	No x	(If YES, the	n handle, transp	ort and	store in accordance with FPM HAZID)	
		pled	Sample Type	Container Type					Analytes						
Sample ID	Lab ID	Date Sampled	S - soil W - water	G - glass P - plastic	Aggressivity	(pH, EC, SO4, CI)								Notes/preservation	
BH1, 4.3-4.5m	G	10/07/19	S	Р	X									Aiready at laboratory, previou	
BH4, 0.3-0.4m	Ð	13/07/19	S	Р	X			1					-	Job No. 86767.01. Previous	
BH5, 1.1-1.2m	1	13/07/19	S	G	X									testing completed for separate	
BH6, 0.5-0.6m	2	14/07/19	S	Р	X	+		il						DP job (enviro)	
BH7, 0.4-0.5m	3	13/07/19	S	Р	X			1			1.5				
									ENVIRO	0B	12 Ashley	St			
	- 1 - 1		1						(ar	Ph	(02) 9910 64	00		Ref: 221523-A	
					1				Job N	-222	+6			TAT: Stol,	
									Date R	eccived: 2	307	2019		Dre: 30/7/191	
	1.00		le contra						Receiv	ed by:	D				
		1		-			1		Temp	Loonembie	the lac			Et2	
		-							Coolin	: ice/icepa	ken/None		-		
						-	-		0000						
	672.2	1. 1.	11			1				1			_		
										1	1.1.1	1			
	1.0														
PQL (S) mg/kg					1							ANZECC	PQLs	req'd for all water analytes	
PQL = practica	-				It to Labo	ratory M	ethod Dete	ction Limit		Lab R	eport/Ref	ference No:			
Metals to Analy Total number of				Reli	nauicho	d by: i	tur Smith	Transno	rted to la	Less stars			-		
Send Results t		Jouglas Par					tage Rom			aboratory	any. Col	Phone:	-	Fax:	
Signed:				Received					. 7000		Data 2	Fime: 231	63		

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 221667-A

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Huw Smith
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	<u>86767.01, DSI, Haymarket</u>
Number of Samples	18 Soil, 1 Water
Date samples received	17/07/2019
Date completed instructions received	23/07/2019

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details	
Date results requested by	30/07/2019
Date of Issue	29/07/2019
NATA Accreditation Number 290	1. This document shall not be reproduced except in full.
Accredited for compliance with I	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Results Approved By Nancy Zhang, Laboratory Manager, Sydney Authorised By

Nancy Zhang, Laboratory Manager

Client Reference: 86767.01, DSI, Haymarket

Misc Inorg - Soil		
Our Reference		221667-A-3
Your Reference	UNITS	BH4/0.3-0.4
Date Sampled		12/07/2019
Type of sample		Soil
Date prepared	-	26/07/2019
Date analysed	-	26/07/2019
pH 1:5 soil:water	pH Units	8.9
Electrical Conductivity 1:5 soil:water	µS/cm	170
Sulphate, SO4 1:5 soil:water	mg/kg	61
Chloride, Cl 1:5 soil:water	mg/kg	25

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.

Client Reference: 86767.01, DSI, Haymarket

QUALITY	CONTROL:	Misc Ino		Du	Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			26/07/2019	[NT]	[NT]	[NT]	[NT]	26/07/2019	
Date analysed	-			26/07/2019	[NT]	[NT]	[NT]	[NT]	26/07/2019	
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	[NT]	[NT]	[NT]	[NT]	102	
Electrical Conductivity 1:5 soil:water	μS/cm	1	Inorg-002	<1	[NT]	[NT]	[NT]	[NT]	106	
Sulphate, SO4 1:5 soil:water	mg/kg	10	Inorg-081	<10	[NT]	[NT]	[NT]	[NT]	104	
Chloride, Cl 1:5 soil:water	mg/kg	10	Inorg-081	<10	[NT]	[NT]	[NT]	[NT]	98	[NT]

Client Reference: 86767.01, DSI, Haymarket

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform Eaecal Enterococci. & E Coli levels are less than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Report Comments

pH - out of recommended holding time

Douglas Partners Geotechnics 1 Environment 1 Groundwater

CHAIN OF CUSTODY DESPATCH SHEET

Project No:	86767				Suburb:	-	Haymar	ket		To:	Env	rirolab Services			
Project Name:	Hayma	arket, 8-10	ee Street	Geo	Order Nu	umber				1					
	er: Huw Smith Sampler: NB/AS						Attn: Simon Song								
Emails:	huw.s	mith@dou	glaspartn	ers.com.au			·		Phone:						
Date Required:	Same	day D	24 hours	□ 48 hc	ours 🗆	72 ho		Standard x		Email:					
Prior Storage:		x Fridg	e x She	lved	Do sampl	es conta	ain 'potential	HBM? Y	′es 🛛	No x (If YES, the	in handle, transport	and store in accordance with FPM HAZID)		
			Sample Type	Container Type				Ar	nalytes			1 1	_		
Sample ID	Lab ID	Date Sampled	S - soil W - water	G - glass P - plastic	Aggressivity (pH_EC.	S04, CI)							Notes/preservation		
BH1, 4.3-4.5m	Q	10/07/19	S	Р	X						1		Aiready at iaboratory, previou		
BH4, 0.3-0.4m	Ð	13/07/19	S	P	X		1 2 1						Job No. 86767.01. Previous		
BH5, 1.1-1.2m	1	13/07/19	S	G	X								testing completed for separat		
BH6, 0.5-0.6m	2	14/07/19	S	P	X								DP job (enviro)		
	-		S	P	X										
BH7, 0.4-0.5m	3	13/07/19	5	P		-			ENVIRO	Env	12 Ashle	ves			
				-			-		ELIVIRO	12 1 1 211	(02) 9910 (197	Ref: 22/667-A		
	-								JOBN	-222					
	1.1		0.211									Inaiat	TAT: stol		
		1.1.1.1	8					1	Date P	eceived: 2	SIUT	2019	Due: 30/7/18		
									Receiv	ed by:	Die				
	1	-		1		1.			Temp:	: Ice/Icepa	t lore		fit		
									Secur	. Intact/Bp	ken/None		1000		
	1.1.1	1	2				-		ocour			-			
			1	1			1			Q					
1				1.1.1.1.1.1.1		(1.27		1.00						
N															
PQL (S) mg/kg	1		-		1							ANZECC PO	QLs req'd for all water analytes		
PQL = practica	l quanti				It to Labor	atory N	lethod Dete	ction Limit		Lab R	eport/R	eference No:			
Metals to Anal Total number of				ere:	inquisher	by.	iku Sur H	Transport	ed to l	aborator	by: C	BURIER			
Send Results t	o' I	Douglas Par	amers Ptv I		dress: 44	Hermi	tage Ros	d. West	Ryde			Phone:	Fax:		
		mil		Received				- ha		_	Date &	Time: 2310	7/2019		

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 222176

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Huw Smith
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	<u>86768.00, Haymarket</u>
Number of Samples	3 SOIL
Date samples received	23/07/2019
Date completed instructions received	23/07/2019

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details							
Date results requested by	30/07/2019						
Date of Issue	26/07/2019						
NATA Accreditation Number 2901. This document shall not be reproduced except in full.							
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *							

<u>Results Approved By</u> Nick Sarlamis, Inorganics Supervisor Authorised By

Nancy Zhang, Laboratory Manager

Client Reference: 86768.00, Haymarket

Soil Aggressivity				
Our Reference		222176-1	222176-2	222176-3
Your Reference	UNITS	BH5	BH6	BH7
Depth		1.1-1.2	0.5-0.6	0.4-0.5
Date Sampled		13/07/2019	14/07/2019	13/07/2019
Type of sample		SOIL	SOIL	SOIL
pH 1:5 soil:water	pH Units	4.9	5.1	8.3
Electrical Conductivity 1:5 soil:water	µS/cm	92	89	120
Chloride, Cl 1:5 soil:water	mg/kg	29	10	20
Sulphate, SO4 1:5 soil:water	mg/kg	42	72	42

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.

Client Reference: 86768.00, Haymarket

QUALITY		Du	Spike Recovery %							
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	[NT]		[NT]	[NT]	102	[NT]
Electrical Conductivity 1:5 soil:water	μS/cm	1	Inorg-002	<1	[NT]		[NT]	[NT]	101	[NT]
Chloride, Cl 1:5 soil:water	mg/kg	10	Inorg-081	<10	[NT]		[NT]	[NT]	83	[NT]
Sulphate, SO4 1:5 soil:water	mg/kg	10	Inorg-081	<10	[NT]	[NT]	[NT]	[NT]	84	[NT]

Client Reference: 86768.00, Haymarket

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control Definitions						
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.					
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.					
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.					
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.					
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.					
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform Eaecal Enterococci. & E Coli levels are less than					

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

CHAIN OF CUSTODY DESPATCH SHEET

Project No: Project Name:	86767.00 Haymarket, 8-10 Lee Street, Geo				Suburb: Haymarket Order Number				To: Envirolab Services					
Project Manager: Huw Smith				Sampler: NB/AS				Attn: Simon Song						
Emails:	huw.smith@douglaspartners.com.au					51.	ND/A3	_		Phone:		on song		
Date Required:			24 hours		urs 🗆	72 hou		Standard		Email:				
Prior Storage:		y x Fridge							Yes 🗆			n handla, fran	sport and store in accordance with FF	
i noi otorage.			Sample	Container						(ITTES, ING	n nancie, tran	Isport and store in accordance with PF	'M'HAZ	
		pled	Туре	Туре		Analytes					1	· · · - · · -		
Sample ID	Lab ID	Date Sampled	S - soil W - water	G - glass P - plastic	Aggressivity	(pr., EC, SO4, CI)							Notes/preserva	ation
BH1, 4.3-4.5m	Ð	10/07/19	S	Р	х								Aiready at laborator	y, prev
BH4, 0.3-0.4m	Ð	13/07/19	S	Р	x								Job No. 86767.01. P	
BH5, 1.1-1.2m	1	13/07/19	S	G	x								testing completed for	r sepa
BH6, 0.5-0.6m	2	14/07/19	S	Р	x								DP job (enviro)	
BH7, 0.4-0.5m	3	13/07/19	S	Р	х									
									ENVIRO	(ÀB	12 Ashley	St		
							<u> </u>		aw	Chaus Ph	000 <u>0 NSW 24</u> (02) 9910 64	67 00		
									<u>- job N</u>	2221	76			
							,		Date R	eccived: 2	307	2019)
									Receiv	eceived 9 ed by:				•
							·		Temp:	Looi/ mble : ice/icepac	$h h \in C$			
							<u> </u>		Securi	Intact/Bo	ken/None			
						_								
<u></u>					<u></u>								<u> </u>	
			-								<u> </u>			
PQL (S) mg/kg							<u> </u>					ANZECC	PQLs req'd for all water ana	alytes
PQL = practical Metals to Analy	se: 8km	-unless sp	ecified he	f0 ;				-			-	erence No	×	
Total number of Send Results to		ouglas Partr			nquished		W.Smith ye Rong		-Ryde	boratory	by: Co	Phone:	Fax:	
Signed:		Fred /		Received b			Dohe		1-7000-		-D-6x-0-7		107/2019	

. .

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 241152

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Huw Smith
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	86767.00, Haymarket, 8-10 Lee Street, Geo
Number of Samples	4 Soil
Date samples received	20/04/2020
Date completed instructions received	20/04/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details					
Date results requested by	27/04/2020				
Date of Issue	27/04/2020				
NATA Accreditation Number 2901. This document shall not be reproduced except in full.					
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *					

<u>Results Approved By</u> Priya Samarawickrama, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager

Client Reference: 86767.00, Haymarket, 8-10 Lee Street, Geo

Soil Aggressivity					
Our Reference		241152-1	241152-2	241152-3	241152-4
Your Reference	UNITS	BH103	BH103	BH104	BH104
Depth		2.9-3	5-5.1	2.8-2.9	6.3-6.45
Date Sampled		16/04/2020	16/04/2020	16/04/2020	16/04/2020
Type of sample		Soil	Soil	Soil	Soil
pH 1:5 soil:water	pH Units	4.8	6.3	4.7	6.4
Electrical Conductivity 1:5 soil:water	μS/cm	42	19	68	11
Chloride, Cl 1:5 soil:water	mg/kg	<10	<10	20	<10
Sulphate, SO4 1:5 soil:water	mg/kg	51	20	52	10

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.

QUALITY	QUALITY CONTROL: Soil Aggressivity								Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	2	6.3	6.3	0	101	[NT]
Electrical Conductivity 1:5 soil:water	µS/cm	1	Inorg-002	<1	2	19	20	5	99	[NT]
Chloride, Cl 1:5 soil:water	mg/kg	10	Inorg-081	<10	2	<10	<10	0	91	[NT]
Sulphate, SO4 1:5 soil:water	mg/kg	10	Inorg-081	<10	2	20	20	0	95	[NT]

Result Definiti	Result Definitions								
NT	Not tested								
NA	Test not required								
INS	Insufficient sample for this test								
PQL	Practical Quantitation Limit								
<	Less than								
>	Greater than								
RPD	Relative Percent Difference								
LCS	Laboratory Control Sample								
NS	Not specified								
NEPM	National Environmental Protection Measure								
NR	Not Reported								

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

are similar to the analyte of interest, however are not expected to be found in real samples.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Douglas Partners Geotechnics | Environment | Groundwater

CHAIN OF CUSTODY DESPATCH SHEET

[Project No:	86767.00			Suburb: Haymarket					To: Envirolab Services							
	Project Name:		arket, 8-10	Lee Street	, Geo	Order N	lumber						·				
	Project Manage					Sample	er:	NB			Attn: Simon Song						
	Emails:	<u>huw.s</u>	mith@dou	iglaspartn	ers.com.au	<u> </u>					Phone	:					
	Date Required:		day⊭⊟	24 hours		ours 🛛	72 hou	irs 🗆	Standard	l x	Email:						
	Prior Storage:	🗆 Esk	<u>y x Fridg</u>	je x She	lved	Do samp	o samples contain 'potential' HBM? Yes 🗆 No					(If YES, ther	n handle, tr	store in accordance with FPM HAZID)			
			pled	Sample Type	Container Type			1	-	Analytes		·		·			
	Sample ID	Lab ID	Date Sampled	S - soil	P - plastic	Aggressivity	(pri, EC, SO4, CI)								Notes/preservation		
1	BH103 2.9-	5	16.4	. ♥													
2	5-5	.\	ष														
													E	WIROLAB	Envirolab Services 12 Ashley St		
7	84104 2.8	-29	•										٩		Chatswood NSW 2067 Ph: (02) 9910 6200		
4		-64												ob No:	q1152		
														bate Receive	1: 20-4-60		
												-		The Receive	ه: ((کې ۵		
	· · · · · ·													Temp: Cool/A	mbient		
	_													Cooling Ice/I	cepack		
	,							• ·						Security: Inta	ct/Broken/None		
				1													
										1							
							÷ .	ر		· · · ·				<u> </u>			
	-,	· · ·								<u> </u>				<u> </u>			
														<u> </u>			
	PQL (S) mg/kg			<u> </u>				<u>+</u>					ANZEC	C PQLs	req'd for all water analytes 🛛		
	PQL = practical	quantit	tation limit	If none g	iven, defauli	t to Labor	atory Met	thod Dete	ction Limi	it	Lab R	eport/Ref					
	Total number of	fsampl	es in conta	ainer:	Reli	nquished	by:	T	Transpo	orted to la	boratory	/ by:					
	Send Results to): D	ouglas Parl										Phone		Fax:		
	Signed:	taer			Received b	y: flelt	2					Date & T	ime:	20-4			

. ____

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 243755

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Huw Smith
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	<u>86767.00, Haymarket</u>
Number of Samples	5 SOIL
Date samples received	28/05/2020
Date completed instructions received	28/05/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details							
Date results requested by	04/06/2020						
Date of Issue	01/06/2020						
NATA Accreditation Number 2901. This document shall not be reproduced except in full.							
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *							

<u>Results Approved By</u> Priya Samarawickrama, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager

Soil Aggressivity						
Our Reference		243755-1	243755-2	243755-3	243755-4	243755-5
Your Reference	UNITS	BH108	BH107	BH112B	BH112B	BH112B
Depth		1.05-1.2	2.4-2.5	2-2.24	3-3.2	3.2-3.44
Date Sampled		18/05/2020	18/05/2020	18/05/2020	18/05/2020	18/05/2020
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
pH 1:5 soil:water	pH Units	5.3	5.9	5.2	4.8	5.1
Electrical Conductivity 1:5 soil:water	µS/cm	22	24	40	30	29
Chloride, Cl 1:5 soil:water	mg/kg	<10	<10	<10	<10	<10
Sulphate, SO4 1:5 soil:water	mg/kg	10	20	36	25	25

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.

QUALITY	ressivity		Du	Spike Recovery %						
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	243755-3
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	2	5.9	5.9	0	101	[NT]
Electrical Conductivity 1:5 soil:water	μS/cm	1	Inorg-002	<1	2	24	24	0	97	[NT]
Chloride, Cl 1:5 soil:water	mg/kg	10	Inorg-081	<10	2	<10	<10	0	91	79
Sulphate, SO4 1:5 soil:water	mg/kg	10	Inorg-081	<10	2	20	20	0	102	94

Result Definiti	Result Definitions								
NT	Not tested								
NA	Test not required								
INS	Insufficient sample for this test								
PQL	Practical Quantitation Limit								
<	Less than								
>	Greater than								
RPD	Relative Percent Difference								
LCS	Laboratory Control Sample								
NS	Not specified								
NEPM	National Environmental Protection Measure								
NR	Not Reported								

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

pH/EC: Samples were out of the recommended holding time for this analysis.

F.14 - CHAIN OF CUSTODY DESPATCH SHEET

Project No:		86767	7.00			Subu	rb:	;	Hayma	rket		To:	Env	virolab			
Project Name	9:	Haym	arket			Order	Numb	er					12	Ashbery Str	, Chatswo	bd	
Project Mana	iger:	Huw S	Smith			Samp	ler:	-	NB			Attn:	Aile	en Hie			
Emails:		Huw.S	mith@doug	laspartn	ers.com.a							Phone:				-	
Date Require	d:			24 hours	□ 4 8	nours [1 7 2	2 hours	s 🗆 🔆 S	Standard		Email:					
Prior Storage	e: 🗆 Esky	🗆 🗆 Fri	dge 🗆 Sh			Do san	nples co	ntain 'po	otential' HE	3M? Y	∕es □ N	No 🗆 (IfY	ES, then h	andle, transpo	rt and store in	accordance w	ith FPM HA
			pə	Sample Type	Containe r		1			Analy	/tes			1		·	
Sample ID	Depth Range	Lab ID	Date Sampled	S - soil W - water	G - glass P - plastic	Agressivity	Ph,EC,SO4,CL								Note	s/preservati	on
BH108	1.05-1.2m	1	18.05.20	5	9	>								AL	L: 1.5 Soi	to water rat	tio
BH107	2.4-2.5m	2	18.05.20	S	P			<u> </u>	,					6.			
BH112B	2-2.24m	3	18.05.20	S				• • • •									
BH112B	3-3.2m	Ý	18.05.20	S	e		<u> </u>							. en	VIROLAS	Envholab Servi 12 Ashley	-61
BH112B	3.23.44m	5	18.05.20	S	. 7											atswood NSW 2 Ph: (02) 9910 62	067 [:] 200
															<u>b No:</u> 24;		
		<u>_</u>						3						Tin	ne Received:		
· · ·										1				Re	ceived by: 37	2	·.
														Cor	oling: Ice/Icer	ack	
												ļ		Sec	curity: macive	roken/Nene	
					· · · · · ·												
			·			·						+					
								<u>. </u>							_		
PQL (S) mg/i														ANZECC	PQLs red	'd for all w	ater ana
PQL = practi	cal quantitat				ult to Labo	oratory N	lethod	Detecti	on Limit	· · · · · · · · · · · · · · · · · · ·	_1	Lab R	eport/Re	ference			
Metals to Ana Total number				re:		nquishe	ed by:		LT I	Transr	orted to	laboratory					· ;
Send Results			ouglas Partne	ers Ptv I to			<u>, , , , , , , , , , , , , , , , , , , </u>		<u> </u>			aboratory	~ .	Phone	Fax:		

1

.

· ``

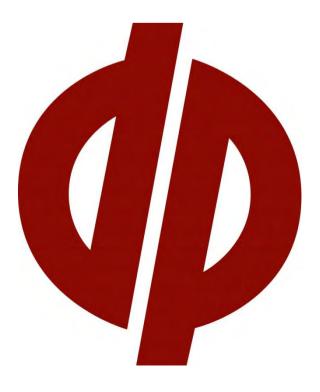
۰

F.14 - CHAIN OF CUSTODY DESPATCH SHEET

Project No:	86767.00	Suburb: Haymarket	То:	Envirolab
Project Name:	Haymarket	Order Number		12 Ashbery Str, Chatswood
Project Manager:	Huw Smith	Sampler: NB	Attn:	Aileen Hie
Emails:	luw.Smith@douglaspartners.com.a		Phone:	
Date Required:	Same day 24 hours 48	hours 72 hours Standard X	Email:	
Prior Storage: Esky	□ Fridge □ Shelved	• • • • • • • • • • • • • • • • • • • •		S, then handle, transport and store in accordance with FPM HAZ
Signed:	Received	by: Sasan Day ELS Sto	THAT D	ate & Time: $\frac{2}{5}\frac{5}{20}$ $\frac{1150}{150}$

Appendix I

Groundwater Modelling Report



Report on Groundwater Modelling

Proposed Commercial Development 8-10 Lee Street, Haymarket

> Prepared for Vertical First Pty Ltd

> > Project 86767.04 October 2020

Document History

Document details

Project No.	86767.04	Document No.	R.003.Rev1
Document title	Report on Groundwa	ter Modelling	
	Proposed Commercia	al Development	
Site address	8-10 Lee Street, Hay	market	
Report prepared for	Vertical First Pty Ltd		
File name	86767.04.R.003.Rev	1	

Document status and review

Status	Prepared by	Reviewed by	Date issued
Revision 0	Joel Huang	Fiona MacGregor	6 October 2020
Revision 1	Joel Huang	Fiona MacGregor	30 October 2020

Distribution of copies

Status	Electronic	Paper	Issued to	
Revision 1	1		Josh Finnegan, Avenor Pty Ltd	

The undersigned, on behalf of Douglas Partners Pty Ltd, confirm that this document and all attached drawings, logs and test results have been checked and reviewed for errors, omissions and inaccuracies.

Signature	Date
Author Anance	30 October 2020
Reviewer Augurt pp. Fiona MacGregor	30 October 2020

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au 96 Hermitage Road West Ryde NSW 2114 PO Box 472 West Ryde NSW 1685 Phone (02) 9809 0666

Table of Contents

Page

1.	Introduction1								
2.	Previ	ous Work	2						
	2.1	Boreholes	2						
	2.2	Standpipes and Permeability Testing	3						
3.	Field	Work Results	3						
	3.1	Boreholes	3						
	3.2	Groundwater Levels	4						
	3.3	Results of Permeability Testing	6						
4.	Prop	osed Development	7						
5.	Geot	echnical and Hydrogeological Model	8						
6.	Groundwater Modelling								
	6.1	Methodology	9						
	6.2	Numerical Model Geometry	9						
	6.3	Boundary Conditions and Aquifer Parameters	9						
	6.4	Basement Dewatering – Drain Cells1	1						
	6.5	Cut-off Walls1	1						
	6.6	Groundwater Modelling Simulations1	1						
7.	Grou	ndwater Modelling Results1	2						
	7.1	Groundwater Inflow1	2						
	7.2	Predicted Groundwater Drawdown1	3						
	7.3	Drawdown Induced Settlement1	3						
8.	Pote	ntial Impact on Neighbouring Properties1	4						
9.	Aquif	er Interference Policy Considerations1	4						
10.	Dispo	osal of Groundwater Contaminants1	5						
11.	Conc	lusions1	7						
12.	Limit	ations1	8						

Appendix A:	About This Report
Appendix B:	Drawings
Appendix C:	Results of Groundwater Level Monitoring
Appendix D:	Results of In-situ Permeability Testing
Appendix E:	Modelling Results – Estimated Groundwater Table and Drawdown Contour

Report on Groundwater Modelling Proposed Commercial Development 8-10 Lee Street, Haymarket

1. Introduction

This report presents the results of groundwater modelling undertaken for a proposed commercial development at 8-10 Lee Street, Haymarket. The assessment was commissioned in an email by Avenor Pty Ltd (Avenor) on behalf of Vertical First Pty Ltd (Vertical), and was undertaken in accordance with a consultancy agreement and our proposal dated 8 May 2020.

This groundwater modelling follows on from a previous preliminary groundwater assessment undertaken by DP (Ref: 86767.04.R.002.Rev0, dated 28 July 2020), which used a simple analytical method and was based on a simplified hydrogeological environment. This groundwater modelling supersedes the previous preliminary assessment and used more sophisticated 3-dimensional (3D) Finite Difference Modelling (FDM) techniques to provide more accurate estimates of groundwater inflow and the extent of groundwater table drawdown due to the proposed basement excavation. The development of the groundwater model also considers the most recent groundwater monitoring results from the period between 5 May 2020 and 15 September 2020.

It is understood that the proposed development at the site is to be divided into a 'Developer Works zone' and a 'State Works – Link zone'. The Developer Works are to include excavation for a two-level basement on the western side of Central Station (i.e. to an elevation of RL 5.0 m) followed by construction of a multi-storey commercial tower, whereas the State Works to the west of the tower include a two-level basement to a similar elevation, with a north-south connection to proposed future, adjoining basements.

The basement excavation within the Developer Works zone is expected to intersect the natural groundwater table. It is understood that the basement is currently designed as a 'drained' basement in both the construction phase and the full operational phase of the building (i.e. for the long-term), to eliminate the need for the provision of water-proof basement walls and a hydrostatic slab.

Under the NSW Aquifer Interference Policy, the project has been deemed to be an aquifer interference activity requiring an authorisation from an approval body (for State Significant Developments) under water management legislation. This groundwater assessment has been prepared to evaluate the feasibility of adopting a 'drained' basement for this project and includes:

- A summary of the geotechnical and hydrogeological investigations undertaken on site;
- Development of a conceptual hydrogeological model;
- Development of a 3D numerical groundwater model and calibrations to match the groundwater monitoring data;
- Estimation of transient groundwater inflow into a drained basement during and after the construction;
- Estimation of drawdown of the groundwater table caused by the drained basement.
- Estimation of settlements at adjacent key structures due to the drained basement.

- Considerations of the NSW Aquifer Interference Policy; and
- Comments on groundwater contaminants for disposal options.

2. Previous Work

Two rounds of combined geotechnical, environmental and hydrogeological investigations have been completed by Douglas Partners Pty Ltd (DP). The information obtained from the site investigations was presented in the following four reports:

- DP Report 86767.00.R.001.Rev0, dated August 2019 (Geotechnical Investigation);
- DP Report 86767.00.R.006.Rev3, dated September 2020 (Supplementary Geotechnical Investigation);
- DP Report 86767.01.R.001.DftB, dated 29 August 2019 (Preliminary Contamination Site Investigation); and
- DP Report 86767.03.R.001.DftA, dated 18 June 2020 (Supplementary Contamination Site Investigation).

2.1 Boreholes

The boreholes drilled on the site included:

- On eastern side of YHA: six cored boreholes below the lowest basement floor level (i.e. Boreholes BH1, BH2, BH3, BH5, BH8 and BH9), five cored boreholes at upper ground floor level (i.e. Boreholes BH101 to BH105, including two cored boreholes drilled from the concrete platform); and three boreholes drilled within the soil to depths of 1.3 m 2.4 m below the existing lower ground floor level (i.e. Boreholes BH4, BH6 and BH7);
- Within the Gate Gourmet catering facility at Lower Ground Floor level: four boreholes (Boreholes BH106, BH113, BH114 and BH115: all for environmental testing purposes);
- Within the access corridor and storage areas, west of the Gate Gourmet facility and at Lower Ground Floor level: seven boreholes (BH107A, BH107B, BH108, BH109A, BH109B, BH116, BH117: including three cored boreholes);
- Within the Adina Hotel basement access driveway at Lower Ground Floor level: one borehole (Borehole BH110: for environmental testing purposes);
- Upper Carriage Lane / open-air access ramp: three boreholes (Boreholes BH111, BH112A and BH112B: including two cored boreholes);
- Ambulance Avenue footpath: two vertical boreholes drilled through the retaining wall footing (Boreholes W1 and W2); and
- Within the Adina Hotel basement: two inclined boreholes drilled below an existing concrete underpin (Boreholes W3 and W4).

A previous geotechnical investigation carried out by DP for a neighbouring site to the south (i.e. 'Henry Deane Plaza': DP Report 27282B, dated 1999) included the drilling of a borehole near to the southern site boundary.

2.2 Standpipes and Permeability Testing

Standpipe piezometers were installed into ten of the boreholes at the site (i.e. BH1, BH5, BH8, BH103, BH104, BH107A, BH107B, BH109B, BH112A, and BH112B) to measure groundwater levels. The standpipes comprised screened PVC pipe with gravel backfill, a bentonite pellet seal and a 'gatic' cover at ground level. The installed pipes are screened within either alluvial sand (i.e. BH1) or within the underlying very low to high strength rock. The suffix in the numbering of some boreholes indicates the alternatives for the position of the well screen as:

- Option A: within very low or low strength, fine to medium grained sandstone (interpreted to be Mittagong Formation): Boreholes BH103, BH107A, and BH112A; and
- Option B: within the underlying medium to high strength, medium grained sandstone (interpreted to be Hawkesbury Sandstone): Boreholes BH104, BH107B, BH109B and BH112B.

Groundwater permeability testing and long-term monitoring of groundwater levels in standpipes has been carried out at the site since July 2019, with the results presented in the following monitoring reports:

- DP Report 86767.00.R.002.Rev0 (dated 4 September 2019): Monitoring period July to August 2019;
- DP Report 86767.00.R.003.Rev0 (dated 10 December 2019): Monitoring to 26 November 2019;
- DP Report 86767.00.R.004.Rev0 (dated 2 March 2020): Monitoring to 19 February 2020;
- DP Report 86767.00.R.005.Rev0 (dated 26 May 2020): Monitoring to 5 May 2020; and
- DP Report 86767.00.R.008.Rev0 (dated 22 September 2020): Monitoring to 15 September 2020.

Either rising head or falling head permeability tests were completed within the installed standpipes.

3. Field Work Results

3.1 Boreholes

The locations of the boreholes and groundwater monitoring wells are shown on Drawing 1 (extract from Ref: 86767.00.R.006.Rev3) in Appendix B.

Six geotechnical cross-sections (Sections A-A to F-F) showing the interpreted subsurface profile are presented as Drawings 2 to 7 (extract from Ref: 86767.00.R.006.Rev3) in Appendix B. The sections show interpreted geotechnical divisions of underlying soil and rock together with the proposed basement floor level.

The subsurface conditions encountered on the site can be summarised as:

CONCRETE:	Single or multiple concrete slabs, with or without a brick pavement, asphalt layer, or surface ballast layer over
FILL	Gravel, sand or clay fill to depths ranging between 4.7 m and 6.3 m on the eastern side of the YHA, or 0.0-2.2 m depth within the access corridor and Gate Gourmet (i.e. the Lower Ground Floor level).
ALLUVIAL SAND:	Loose to medium dense, alluvial sand, 0.4-1.2 m thick; over
RESIDUAL SILTY CLAY:	Soft to hard, residual silty clay, with some ironstone gravel (0.75-2.2 m thick); over
RESIDUAL SANDY CLAY:	Very stiff to hard, residual sandy clay (0.2-0.6 m thick); over
SANDSTONE (FINE to MEDIUM):	Very low to low strength, fine to medium grained sandstone with some medium or high strength, iron-cemented bands (0.65-1.8 m thick). Numerous clay seams were encountered; over
SANDSTONE (MEDIUM):	Medium or high strength, medium grained sandstone

The upper fine to medium grained sandstone is interpreted to be part of the Mittagong Formation, and the underlying medium grained sandstone is interpreted to be Hawkesbury Sandstone.

3.2 Groundwater Levels

Groundwater level observations are summarised in Tables 1 and 2, and graphs of the groundwater levels for each data logger (corrected for barometric pressure effects) are included in Appendix C. The graphs include rainfall record data obtained from Observatory Hill, Sydney (Bureau of Meteorology Station 066062, http://www.bom.gov.au).

With the exception of Borehole BH109B, water level data affected by disturbance (such as due to rising or falling head testing) has been removed for clarity of presentation. Data is missing from short time periods from Boreholes BH103 and BH104 due to errors in placement of the logger within the borehole, or due to a very short recording interval being selected leading to the filling of the datalogger memory ahead of schedule.

The water level within the alluvial sand, as measured in Borehole BH1, rose by approximately 1.4 m following four consecutive days of heavy rain (i.e. 392 mm of rainfall between 7 February and 10 February 2020: to an elevation of RL15.2 m). In contrast, water levels for piezometers screened within the underlying very low to low strength sandstone (interpreted to be Mittagong Formation) were measured to rise by less than about 0.4 m in the same period. Water levels in piezometers screened within the underlying medium to high strength sandstone (interpreted to be Hawkesbury Sandstone) varied less than this over the same time period (e.g. refer graphs for BH112A and BH112B in Appendix C).

With the exception of Borehole BH109B (which had a very slow rate of recharge), the manual water level measurements presented in Tables 1 and 2 are similar to the long-term measurements obtained from data loggers. The typical standing water levels within the sandstone on the eastern and central parts of the site range between RL13.1 m and RL13.6 m, whereas standing water levels within the sandstone on the western part of the site range between RL11.5 m and RL13.3 m. It is noted that the measured water levels are generally similar to the elevation of the adjacent Adina Hotel basement floor slab (i.e. RL13.4 m).

		S	tanding	Water L	evel Me	asurem	ents in E	Borehole	es	
Measurement	B	BH1 BH5		-15	BI	H8	BH	103	BH	104
Date	Depth (m)	RL ²	Depth (m)	RL ²	Depth (m)	RL ²	Depth (m)	RL ²	Depth (m)	RL ²
23/07/2019	5.95	14.2	2.6	12.9	2.3	13.2	-	-	-	-
30/07/2019	6.1	14.0	2.4	13.1	2.3	13.2	-	-	-	-
31/07/2019	6.0	14.2	2.4	13.1	-	-	-	-	-	-
7/08/2019	6.2	14.0	-	-	-	-	-	-	-	-
14/08/2019	6.3 (dry)	<13.8 (dry)	2.4	13.1	2.3	13.2	-	-	-	-
2/09/2019	6.3 (dry)	<13.8 (dry)	-	-	-	-	-	-	-	-
26/11/2019	6.3 (dry)	<13.8 (dry)	2.4	13.1	2.3	13.2	-	-	-	-
19/02/2020	5.8	14.3	2.1	13.4	1.9	13.6	-	-	-	-
24/04/2020	6.3 (dry)	<13.8 (dry)	-	-	-	-	7.5	13.7	7.6	13.6
5/05/2020	6.3 (dry)	<13.8 (dry)	2.4	13.2	2.2	13.3	7.5	13.7	7.7	13.5
5/06/2020	6.3 (dry)	<13.8 (dry)	-	-	-	-	7.7	13.5	7.8	13.4
7/09/2020	6.3 (dry)	<13.8 (dry)	-	-	2.3	13.2	7.6	13.6	7.7	13.5
15/09/2020	-	-	2.4	13.2	-	-	-	-	-	-

Table 1: Groundwater Observations (Boreholes BH1, BH5, BH8, BH103 and BH104).

Notes: (1) "-" indicates Not Measured.

(2) Elevation (RL) in metres AHD.

DITT	20).									
		S	tanding	Water L	evel Me	asurem	ents in E	Borehole	s	
Measurement Date	BH107A		BH107B		BH109B		BH112A		BH112B	
	Depth (m)	RL ²	Depth (m)	RL ²	Depth (m)	RL ²	Depth (m)	RL ²	Depth (m)	RL ²
17/05/2020	3.2	12.3	1.8	13.7	-	-	-	-	-	-
21/05/2020	-	-	-	-	7.8 ³	7.5 ³	3.5	13.2	5.1	11.7
26/05/2020	2.1	13.4	2.6	12.9	8.2 ³	7.1 ³	3.1	13.6	5.2	11.6
5/06/2020	2.0	13.5	2.2	13.3	6.6 ³	8.7 ³	3.4	13.3	5.3	11.5
7/09/2020	2.1	13.4	2.4	13.1	2.5	12.8	3.5	13.2	5.1	11.7
15/09/2020	-	-	-	-	-	-	-	-	-	-

Table 2: Groundwater Observations (Boreholes BH107A, BH107B, BH109B, BH112A and
BH112B).

Notes: (1) "-" indicates Not Measured.

(2) Elevation (RL) in metres AHD.

(3) Transient water level due to slow recharge rate - refer graphs attached

3.3 Results of Permeability Testing

Permeability testing was completed within each standpipe, with a total of 16 tests completed between 30 July 2019 and 5 June 2020. Rising head tests were carried out in each standpipe (with the exception of BH112A), with falling head tests completed in three standpipes (i.e. BH109B, BH112A and BH112B). The permeability of the screened interval was calculated using the Hvorslev analytical method. The results of the permeability testing are presented in Appendix D.

A summary of the calculated permeability results is presented in Table 3.

Borehole ID	Material Types within Screened Interval	Calculated Permeability (m/sec)
BH1 ¹	Sand	4.5 x 10 ⁻⁷ to 6.5 x 10 ⁻⁷
BH5	Sandstone: fine and medium grained with clay	6.2 x 10 ⁻⁹
BH8 ²	seams in upper metre of screened interval	1.0 x 10 ⁻⁶
BH103 ¹	Sandstone: fine grained with extremely weathered bands, fractured	1.4 x 10 ⁻⁶ to 2.3 x 10 ⁻⁶
BH104 ¹	Sandstone: fine to medium grained, slightly fractured then unbroken	2.3 x 10 ⁻⁷ to 3.5 x 10 ⁻⁷
BH107A ¹	Sandstone: fine to medium grained, high strength with very low strength bands, fractured	1.4 x 10 ⁻⁷ to 2.0 x 10 ⁻⁷
BH107B ¹	Sandstone: fine to medium grained, slightly fractured then unbroken	5.0 x 10 ⁻⁸ to 7.7 x 10 ⁻⁸

Table 3: Calculated Permeability Results

Borehole ID	Material Types within Screened Interval	Calculated Permeability (m/sec)
BH109B	Sandstone: fine to medium grained, slightly fractured then unbroken	4.7 x 10 ⁻⁸
BH112A ²	Sandstone: fine grained with very low strength bands (core loss)	4.8 x 10 ⁻⁷
BH112B ¹	Sandstone: medium grained, slightly fractured then unbroken	2.4 x 10 ⁻⁷ to 3.9 x 10 ⁻⁷

Note: (1) Two tests carried out.

(2) Well screen includes an interval of core loss and clay seams, below the top of rock.

Typical permeability values for sand, both from our previous experience in the area and from published values, are usually in the range 1×10^{-4} m/sec to 1×10^{-5} m/sec. The calculated permeability values for the sand encountered in Borehole BH1 are not consistent with these values and are considered to be not representative of the permeability of the sand. Borehole BH1 was positioned near to basement walls for the YHA building, as well as adjacent to deep concrete footings founded on rock. It is considered that these factors have influenced the permeability test results for the sand layer in Borehole BH1.

A slow rate of groundwater recharge was observed for standpipes screened within high strength rock with few defects (i.e. BH109B), with water levels appearing to be similar for standpipes near to each other screened within different materials (e.g. BH107A and BH107B: screened within either the fine to medium grained sandstone or the underlying medium grained Hawkesbury Sandstone). The rapid increase in water level within the standpipe screened within the alluvial sand, and the observation of groundwater near the soil-rock interface in some boreholes (e.g. BH107A) indicates that a perched water table is probably present within the soils above rock level.

4. Proposed Development

It is understood that the proposed development will include the dismantling of the former 'Inward Parcels Shed' building (i.e. the YHA: to be re-built following construction of the Level 01 mega-floor/transfer deck), retention of the existing goods lift to Station platform level, removal of the carriage dormitories and rails, and excavation below the Lower Ground Floor level of the existing building for a two-level basement (to RL5.0 m), followed by construction of a multi-storey commercial tower.

Based on the preliminary drawings provided, it is understood that the proposed 2-level basement will extend close to the property boundaries to the north, east and west, and to the Devonshire Street Pedestrian Tunnel to the south. For extension of the proposed basement along the eastern boundary of the site, the existing setback of the lower ground floor of the YHA building on this side is to be removed. The drawings indicate that a basement entry ramp is to be constructed along the northern side from Lee Street, and a connection is proposed from the second basement level to potential future basements to the south of the site (i.e. beneath the pedestrian tunnel).

This will require excavation depths of about 17 m on the eastern boundary and about 11.5 m along the other boundaries to below the proposed two-level basement (FFL at RL5.0 m).

It is understood that the detailed design of the shoring system for the 'drained' basement is yet to be decided, however, it is anticipated that a relatively water-tight perimeter 'cut-off' wall socketed a minimum of 2 m into competent, slightly fractured to unbroken sandstone, will be required to prevent any direct inflow from high permeability fill, alluvial soils and upper fractured rock.

5. Geotechnical and Hydrogeological Model

The field work results are summarised on six geotechnical cross-sections (in Appendix B), which show the interpreted layers of fill, alluvial and residual soil and sandstone units between selected test locations. The interpreted boundaries shown on the sections are accurate only at the test locations and layers shown diagrammatically on the drawings are inferred only. Bands of lower or higher strength rock may be present within the generalised sandstone layers. Single or multiple concrete slabs were present at the surface over most of the site, with rail ballast encountered over concrete and bricks within the rail carriage dormitory area.

The interpreted geotechnical model for the site is:

- soft to stiff or very loose to dense fill materials (clay or sand: up to 8 m thick, below the current ground surface), over
- a discontinuous lens of very loose to medium dense sand alluvium (up to 2.0 m thick), over
- soft to hard silty clay or sandy clay residual soil (up to about 2.5 m thick), overlying
- fine to medium grained sandstone, very low strength with high strength iron-cemented bands (0.5- 2 m thick), and then overlying
- medium to high strength, medium grained sandstone;

Groundwater measurements from standpipe piezometers on site indicate that there is a relative consistent permanent (perennial) groundwater table within the residual soils and upper, fine grained, fractured sandstone (Mittagong Formation) that flows in the north westerly direction towards Lee Street, with an average level of around RL13.7 m in the centre of the site. The measured groundwater levels in piezometers screened in the lower, medium grained, less fractured sandstone (Hawkesbury Sandstone) were generally lower, by approximately 0.3 m in the centre of the site, increasing to 2 m towards Lee Street. The interpreted groundwater contours and flow directions are illustrated in Drawings 3 and 4 in Appendix C.

An intermittent perched groundwater table is also indicated to be present, near the soil-rock interface and also within the alluvial sand. The upper perched groundwater table is likely to be recharged by surface infiltration into sandy layers following periods of heavy rainfall. The groundwater tables in alluvium and in sandstone appeared to be relatively independent, separated by low permeable residual clay, as there was minimal variability in groundwater levels observed in the sandstone even after some heavy rainfall periods between July 2019 and June 2020.

The seepage within the sandstone bedrock is likely to be controlled by discontinuities in the rock such as the spacing, continuity and aperture of the bedding planes, faults and joints. The seams and other fractures in the weathered rock may also be acting as temporary water storage. Therefore, groundwater inflow is not expected to be uniform around the site and is probably concentrated around localised

fracture zones. The regional groundwater flow is also expected to be affected by the nearby basements, pedestrian tunnels and new Sydney Metro underground station.

6. Groundwater Modelling

6.1 Methodology

Groundwater modelling was undertaken to assess the potential inflow rates into the proposed basements and the long term drawdown, or cone of depression, which could be induced by the construction of the basement.

Groundwater model simulations were conducted using MODFLOW (McDonald & Harbaugh, 1988) developed by the United States Geological Survey. Modflow is a three-dimensional groundwater head and flow model, which is widely used and accepted as an industry standard. The model was based on site-specific data where possible, as well as estimates of unknown parameters based on experience in similar environments. The model was developed using the pre-processor or graphical interface program Visual MODFLOW Flex V4.1 by Schlumberger Water Services.

6.2 Numerical Model Geometry

The aquifer surrounding the proposed development was simulated as a multi-layered numerical model to represent the subsurface conditions surrounding the site and to allow the vertical flow components to be simulated more accurately.

The aquifer boundaries of the model were extended approximately 200 m from the site boundaries in all directions to simulate the estimated groundwater catchment domain.

For the numerical model the geological units were subdivided into four layers corresponding to the main soil and rock units. The top of the model, i.e. top of Layer 1, was set to approximate the average ground surface across the site at RL 20.0 m. For simplicity, the conceptual model did not incorporate topography or variations in layer thickness. All layers were assigned as MODFLOW (Type 3) layers (confined / unconfined). Details of the model layers, together with the assigned hydraulic parameters for each layer are provided in Table 4.

6.3 Boundary Conditions and Aquifer Parameters

The northern and southern boundaries of the model were set as no-flow boundaries. Constant head conditions were applied to the eastern and western model boundaries.

The constant head 'far-end' boundary conditions were calibrated to generate a hydraulic gradient in the north westerly direction, while matching the measured groundwater levels at various monitoring points on site. For simplicity, the groundwater model was calibrated against the groundwater table of the upper fractured sandstone layer (Mittagong), as it gives higher results for predictions of groundwater inflow and drawdown, compared to the results if the lower groundwater table in Hawkesbury Sandstone is adopted.

Aquifer parameters required for the model included horizontal (K_h) and vertical (K_v) hydraulic conductivity or permeability, as well as specific yield or storage coefficient. Natural variations in the permeability of the sediments around the site are likely to occur due to the variations in the silt or clay content, and grain size of the sand.

Typical permeability values for sand, both from our previous experience in the area and from published values, are usually in the range 1×10^{-4} m/sec to 1×10^{-5} m/sec. The calculated values from the in-situ permeability testing for the sand encountered in Borehole BH1 are not consistent with these values and are considered to be not representative of the permeability of the sandy soils. Therefore, a typical permeability value of 5×10^{-5} m/sec was adopted for Layer 1 (fill and alluvium) in the model. In order to ensure that the modelling is not too optimistic, the vertical conductivity was set as equal to the horizontal hydraulic conductivity for this layer.

The hydraulic conductivity of the residual clay (Layer 2) was assumed to be 5×10^{-8} m/sec, with an assumed horizontal to vertical hydraulic conductivity ratio of 3.

The permeability or hydraulic conductivity of the rock units (Layers 3 & 4) will vary according to changes in the secondary structural features, such as joints and fractures, along which groundwater will flow. Whether the fractures have been filled by clay, as well as the orientation and interconnection of fractures will also cause changes in the rock mass permeability.

The modelling was carried out adopting mean (geometric) values of all the in-situ permeability test results in the fine grained, fractured sandstone (Mittagong Formation) and in the medium grained, slightly fractured to unbroken sandstone (Hawkesbury Sandstone). A horizontal to vertical hydraulic conductivity ratio of 3 has been assumed for each of these layers.

The adopted hydraulic conductivity or permeability values for all four layers are summarised in Table 4.

Model Layer	Top of Layer (RL m AHD	Layer Represents	Horizontal Hydraulic Conductivity (m/sec)	Vertical Hydraulic Conductivity (m/sec)
1	20.0	Fill and Alluvium	5 x 10⁻⁵	5 x 10 ⁻⁵
2	13.4	Residual Clay	5 x 10⁻ ⁸	1.7 x 10 ⁻⁸
3	11.9	Fractured Sandstone (Mittagong)	5.3 x 10 ⁻⁷	1.8 x 10 ⁻⁷
4	10.6	Slightly Fractured to Unbroken Sandstone (Hawkesbury)	1.3 x 10 ⁻⁷	4.3 x 10 ⁻⁸

Table 4: Model Layer Summary

The initial model, including the existing basement drainage in the adjacent Adina Hotel basement, was calibrated to match the existing water levels on the site with the groundwater level (or potentiometric head) ranging from about RL 13.8 m to RL 13.3 m. This calibration confirmed that the bedrock parameters chosen for the model appeared to be realistic. The calibrated initial (existing) groundwater levels are illustrated in Drawing M1 in Appendix D.

6.4 Basement Dewatering – Drain Cells

The MODFLOW drain package can be used to simulate water loss from the groundwater system which occurs due to dewatering operations. Drain cells set with a high conductance of 2,000 m/day simulated the dewatering during and post construction of the basements. The drain cells represent the sub-floor drainage and sumps/pumps located within the basement to dewater the site during construction and then to provide permanent drainage in the long term.

To simulate basement drainage in both the existing drained basement of Adina Hotel immediately adjacent to the site to the west and the proposed new basement, drain cells were set at the existing basement level of Adina Hotel and at the proposed new basement bulk excavation levels.

•	Proposed New Basement	Drain Cells @ RL 4.7 m AHD;

• Existing Basement of Adina Hotel Drain Cells @ RL 13.3 m AHD;

The predicted inflows into the drain cells, representing the basement dewatering system, were monitored throughout the model simulation using the zone budget module of MODFLOW.

6.5 Cut-off Walls

To reduce direct inflow through the sides of the excavation from the high permeability fill, alluvial soils and upper fractured rock, it is understood that relatively impermeable walls are to be installed around the basement excavation, except for the western boundary where the thickness of highly permeable soils is minimal.

Design of the cut-off walls is yet to be finalised, but they are envisaged to comprise contiguous piles with the gaps between piles sealed during construction by water-proof linings. The proposed cut-off walls were included in the numerical model by applying a horizontal flow barrier (HFB) to the cells at the excavation faces, which was assigned a nominal 0.5 m thickness with a hydraulic conductivity of 1 x 10⁻⁸ m. The wall was simulated to extend down to RL 8.6 m (i.e. at least 2 m cut-off into the slightly fractured and unbroken sandstone layer).

6.6 Groundwater Modelling Simulations

The model was initially run under a steady state flow condition with the Adina Hotel basement drain cell activated. Following calibration of the boundary conditions to match the existing groundwater measurement data, the cut-off walls and the drain cells for the proposed new basement were then activated and the model was run under transient flow conditions for a period of 5 years and then switched to long-term steady state flow conditions to assess the groundwater inflow rates into the basement during construction and then in the long-term.

7. Groundwater Modelling Results

7.1 Groundwater Inflow

Groundwater inflow into the drain cells representing the excavation dewatering system was monitored throughout the model simulations using the 'zone budget' module of MODFLOW. The inflow rates represent the estimated total rate of groundwater flowing into the excavation and the volume (per unit time) requiring extraction via the dewatering system (sump-and-pump) in order to dewater the basement excavation during construction and for the long-term case.

Simulated results are summarised in Table 5. During the early stages of construction, inflow rates will be higher and will then gradually decrease as the groundwater storage in the aquifer around the excavation decreases and the cone of depression in the potentiometric surface expands out from the basement.

The cumulative inflows during the first year of basement construction are predicted to be about 5.2 ML. In the long-term, inflows are predicted to be less than 2.1 ML per year.

Elenced Time		Dewatering Inflow R	ate
Elapsed Time	m³ / day	L / min	ML / year
1 Day	22.5	15.6	
5 Days	21.8	15.1	
14 Days	20.4	14.2	
30 Days	18.7	13.0	5.2
90 Days	15.6	10.8	(Cumulative during 1 st Year)
180 Days	13.7	9.5	,
300 Days	11.7	8.1	
1 Year	11.2	7.8	
2 Years	9.9	6.9	3.6
3 Years	9.3	6.5	3.4
5 Years	8.6	6.0	3.1
Long-term	5.7	4.0	2.1

Table 5: Predictive Model Simulated Inflow Results (i.e. Dewatering pumping rates)

It should be noted that these volumes are best estimates of the average inflows. It is entirely possible that there could be local zones of higher permeability which could increase the inflows significantly. Accordingly, it is recommended that a 'factor of safety' of at least 2 be applied to these numbers for design purposes and that these flow rates be monitored during excavation and construction.

It should be noted that the simulated dewatering rates and drawdown are dependent on the dewatering scheme adopted for the site as included in the numerical models. If the depth of the basement drainage

and sumps or cut-off walls change then the currently predicted dewatering rates may change and further modelling will be required.

7.2 Predicted Groundwater Drawdown

Drawing M2 in Appendix D shows the predicted long-term groundwater table following the completion of the proposed 'drained' basement. The long-term drawdown contours were produced by subtracting the predicted water levels from the initial groundwater levels and are illustrated on Drawing M3 in Appendix D.

The model results indicate that the potential drawdown or impact on the water table may extend up to 50 m from the site boundaries on the upstream side and 110 m on the downstream side, as shown by the 0.5 m drawdown contour in Drawing M3.

The predicted drawdowns below key structures around the site are:

Central Station - Regional Line Tracks and Platforms	Drawdown 0.5-2.5 m
Adina Hotel	Drawdown 1.5-2.5 m
Existing Devonshire Street Tunnel	Drawdown 0.5-2.5 m
Office Complex at 8A, 12-30 Lee Street	Drawdown 0.5-2.5 m
Railway Square	Drawdown 0.5-1.0 m
	Adina Hotel Existing Devonshire Street Tunnel Office Complex at 8A, 12-30 Lee Street

7.3 Drawdown Induced Settlement

The upper perched water table within the fill and alluvial soils is expected to be governed by rainfall infiltration. Assuming that perimeter cut-off walls are constructed down into the sandstone, this perched water table is expected to continue fluctuating above and below the soil-rock interface, even after the construction of the 'drained' basement. The neighbouring structures and pavement founded on fill or alluvial soils are therefore not expected to experience noticeable dewatering induced settlement.

The lower groundwater table in the sandstone, following the construction of the 'drained' basement, is expected to be close to the bulk excavation level immediately behind the excavation faces of the basement, corresponding a maximum drawdown of approximately 9 m, gradually reducing to less than 0.5 m drawdown at distances of about 50 m - 110 m away from the basement boundaries.

The maximum drawdowns below the adjacent key structures are predicted to be up to 2.5 m. Despite these relatively high levels of local drawdown, the drawdown is expected to occur mostly within sandstone. There should be minimal impact of this drawdown on adjacent structures founded on sandstone (i.e. total additional settlements or differential settlements < 5 mm), due to the high deformation modulus of the sandstone bedrock.

8. Potential Impact on Neighbouring Properties

An assessment of the potential effects of dewatering on neighbouring properties and groundwater dependent ecosystems has been summarised in Table 6.

Table 6: Assessment of Potential Effects of Dewatering.

Item	Comment		
Proximity of Groundwater Dependent Ecosystems (GDEs)	No known groundwater dependent ecosystems within 1-kilometre radius of the site ⁽¹⁾ .		
Water supply losses by neighbouring groundwater users	A review of registered bores within a 500 m radius to the surrounding site was undertaken. The search ⁽²⁾ identified no extraction bores within the search area. 43 monitoring bores were identified, with the nearest one located approximately 260 m from the site. All of the groundwater bores are located beyond the assessed zone-of-influence from the anticipated drawdown.		
Potential subsidence of neighbouring structures	It is considered that the local lowering of the water levels within the sandstone will have no significant impact on the surrounding properties or structures.		
Mounding of water upgradient of structure	Significant mounding of groundwater is not expected. A drained basement would eliminate potential mounding.		

Note: (1) Based on the search results undertaken in Groundwater Dependent Ecosystem (GDE) Altas on the Bureau of Meteorology's (BoM) website

(2) Based on the search results undertaken in Australian Groundwater Explorer on the BoM's website.

9. Aquifer Interference Policy Considerations

The NSW Aquifer Interference Policy (AIP) indicates that the term "aquifer" is commonly understood to mean a groundwater system that is sufficiently permeable to allow water to move within it, and which can yield productive volumes of groundwater. A groundwater system is defined as any type of saturated geological formation that can yield low or high volumes of water. However, for the purpose of the AIP, the term aquifer has the same meaning as groundwater system and includes low yielding and saline systems.

The basement dewatering on site is expected to occur in the sandstone profile of relatively low permeability with low yield, and is considered to be a "less productive groundwater source" as outlined in the AIP.

It is expected that the measured water levels within the rock on the site are probably associated with seepage flowing through bedding planes, fractures and joints in the rock. Once the groundwater level stabilises following initial excavation, these seepage flows are likely to be relatively minor during periods of dry weather and may increase slightly following periods of wet weather.

Table 1 in Section 3.2.1 of the AIP outlines minimal impact considerations. The AIP indicates that *"if predicted impacts are less than the Level 1 minimal impact considerations, then these impacts will be considered as acceptable"*. The following minimal impact considerations are outlined for less productive groundwater sources;

- less than or equal to 10% cumulative variation in water table 40 m from any high priority groundwater dependant ecosystem, high priority culturally significant site, or less than a 2 m decline at any water supply work;
- a cumulative pressure head decline of not more than a 2 m at any water supply work;
- any change in groundwater quality should not lower the beneficial use category of the groundwater source beyond 40 m from the activity.

The minimal consideration impacts relate to impacts on groundwater dependant ecosystems and groundwater users. The proposed excavation on the site is considered to comply with the AIP minimal consideration requirements for the following reasons:

- the water take for the basement does not involve pumping or extraction of large volumes of groundwater. Water seepage through the rock is to be collected in subfloor drainage and directed to the stormwater or sewer system (subject to approval by Council or by Sydney Water);
- there are no registered groundwater users within 500 m of the site;
- DP is not aware of any groundwater dependant ecosystems within one-kilometre radius of the site;
- DP is not aware of any water sharing agreements in the area; and
- the water take can be easily measured during the construction period and in the long term, if required.

10. Disposal of Groundwater Contaminants

Selected groundwater samples were tested for common contaminants during the contamination site investigations in order to assess potential disposal options. The results are presented in the following DP Reports and summarised below:

- Report on Detailed Site (Contamination) Investigation, ref: 86767.01.R.001, dated August 2019 (DP 2019); and
- Report on Supplementary Site (Contamination) Investigation, ref: 86767.03.R.001, dated June 2020 (DP 2020).

DP has installed a total of five groundwater wells screened in Hawkesbury Sandstone include:

- an upgradient groundwater well (BH104);
- a downgradient groundwater well (BH112B) and
- three groundwater wells within the northern central (BH5), south-western portion (BH107B) and close to the northern boundary (BH112B) of the site.

DP has installed a total of three groundwater wells screened in Mittagong Formation include:

- an upgradient groundwater well (BH103);
- a downgradient groundwater well (BH112A) and
- a groundwater well in the south-western portion of the site (BH107A).

The location of the above groundwater wells is depicted on Drawings of DP (2020) report. The nested wells including BH107A / BH107B and BH112A / BH112B were installed to target different rock strata. The sampling design of the well locations/rock stratum was reviewed and approved by an NSW EPA accredited Auditor, Rod Harwood of Harwood Environmental Consultant on 3 September 2020. In addition, an upgradient well was installed in the sand profile (denoted as BH1) during the DP(2019) investigation located near the south-eastern boundary of the site.

No obvious signs of environmental concern (i.e. light nonaqueous phase liquids (LNAPLs) or odour) were noticed during field investigation. There were, however, detectable concentrations of total recoverable hydrocarbon (TRH) in groundwater wells: BH107A and BH107B and BH112A which may exhibit minor hydrocarbon odour.

In summary, laboratory test results confirmed the presence of some contaminants of potential concern (COPC) in the groundwater. Copper and zinc were detected at concentrations above the groundwater site assessment criteria (SAC), while polycyclic aromatic hydrocarbons (PAH), total recoverable hydrocarbons (TRH) and other metals were detected at levels below the SAC. PAH was only detected in the two down-gradient wells (BH112A and BH112B), indicating that the source of the PAH could be from the fill on site. However, soil leachability (TCLP) testing results do not indicate that PAH is likely to leach from the fill into the groundwater.

The elevated levels of copper and zinc in groundwater are common in heavily urbanised areas. Elevated levels of copper and zinc were identified in both the up-gradient and down-gradient groundwater wells. The source of the copper and zinc is uncertain but could be linked to the copper and zinc concentrations in the fill layer on site, or to the services network at or in proximity to the site. However, considering that elevated levels of copper and zinc were not evident in the fill, the copper and zinc levels identified in the groundwater wells at the site are likely to represent regional background levels rather than site-specific levels.

DP has carried out extensive groundwater contamination assessments across the site including two upgradient groundwater wells to determine the quality of groundwater flowing into the site. Given that bulk of the fill material will be removed as part of the basement excavation, any on-site source (e.g. primarily from historical fill material) of existing groundwater contamination would be removed. The overall risk of encountering (existing) groundwater contamination (if any) from on-site and off-site sources based on the recent groundwater investigations (DP 2019 and DP2020) appears to be low. There is, however, a risk of encountering groundwater contamination via the rock joints from future off-site sources or plumes (e.g. accidental chemical spill near the site) which occur within approximately a 110 m radius from the site, based on the drawdown modelling.

Further sampling and testing of the groundwater are likely to be required by the City of Sydney Council to assess the quality and suitability of the groundwater prior to discharge to the stormwater system. Alternatively, groundwater could be discharged into sewers, subject to approval from Sydney Water, or to a licensed liquid waste facility. No disposal of groundwater to stormwater or sewer can be carried out until a permit is issued by Council (for stormwater disposal) or Sydney Water (sewer disposal). It is likely that a groundwater management plan will be required as part of the application for a dewatering license.

On the basis of the current information, any water collected on site should be stored in a holding tank for further assessment of contaminants (including iron), pH, oil and grease, suspended solids, volatile

organic compounds (VOC) and hardness prior to disposal. It is anticipated that the groundwater will be suitable for disposal following appropriate treatment (subject to monitoring results).

If treatment of contaminants is required by Council (stormwater discharge) or Sydney Water (sewer discharge), a remediation contractor can be engaged to devise a concept and/or detailed design of the treatment system. This would generally involve the following (or similar):

- Settlement tanks, to remove suspended solids from the dewatered excavation;
- Oil-water separator vessels, to recover floating product and separate sinking product (if any);
- Sand filtration, to remove fine sediment from the water stream,
- Aeration, to remove BOD; and
- Granular activated carbon (GAC) filtration and resultant filtration to adsorb contaminants.

11.Conclusions

The site investigations have identified fill and alluvial soils over residual clay and weak sandstone rock grading medium to high strength sandstone. A perennial groundwater level has been measured at about RL 13.7 m in standpipes on the site within the medium to high strength rock. A perched, intermittent groundwater table is present within the near surface fill and alluvial soils, but is not expected to be impacted by the proposed excavation provided that perimeter water-tight cut-off walls are constructed and extended 2 m into the slightly fractured or unbroken sandstone.

The proposed excavation is expected to extend to approximately 9 m below the measured groundwater level in medium to high strength sandstone.

An estimate of groundwater inflow into the new basement has been undertaken using 3D Finite Difference modelling techniques. The annual inflow rates have been estimated to be in the order of 5.2 ML for the first year of basement construction, gradually decreasing to 2.1 ML per year for the long term. However, based on our experience in other deep excavations into sandstone bedrock in the area, DP expects that the actual seepage into the excavation will be much lower than these predicted values due to the low volumes of water contained within the joints and defects in the rock.

If the predicted annual inflow is more than 3 ML/year, the proposed basement, if constructed as a 'drained' basement, will generally require a Water Access License and a Water Supply Approval for construction and long-term dewatering from the relevant approval bodies such as NRAR (DPIE) or Water NSW. On-going groundwater contamination testing and long-term on-site treatment may be required prior to discharge.

Due to the high deformation modulus (compressibility) of the sandstone, any long-term drawdown of the groundwater level is not expected to cause any significant settlement of the neighbouring structures.

In conclusion, it is considered, from a hydrogeological point of view, that a 'drained' basement is feasible without any significant impact to surrounding groundwater systems or property. This will be subject to review and approval from Council and relevant authorities

12. Limitations

Douglas Partners (DP) has prepared this report for this project at 8-10 Lee Street, Haymarket, in accordance with DP's proposal SYD190190.P.003.Rev5, and acceptance received from Avenor Pty Ltd on behalf of Vertical First Pty Ltd on 7 May 2020. The work was carried out under a consultancy agreement. This report is provided for the exclusive use of Vertical First Pty Ltd or their agents, for this project only and for the purposes as described in the report. It should not be used by or be relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage. In preparing this report DP has necessarily relied upon information provided by the client and/or their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and/or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after DP's field testing has been completed.

DP's advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by DP in this report may be affected by undetected variations in ground conditions across the site between and beyond the sampling and/or testing locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.

This report must be read in conjunction with all of the attached pages and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

The contents of this report do not constitute formal design components such as are required, by the Health and Safety Legislation and Regulations, to be included in a Safety Report specifying the hazards likely to be encountered during construction and the controls required to mitigate risk. This design process requires risk assessment to be undertaken, with such assessment being dependent upon factors relating to likelihood of occurrence and consequences of damage to property and to life. This, in turn, requires project data and analysis presently beyond the knowledge and project role respectively of DP. DP may be able, however, to assist the client in carrying out a risk assessment of potential hazards contained in the Comments section of this report, as an extension to the current scope of works, if so requested, and provided that suitable additional information is made available to DP. Any such risk assessment would, however, be necessarily restricted to the groundwater components set out in this report and to their application by the project designers to project design, construction, maintenance and demolition.

Douglas Partners Pty Ltd

Appendix A

About This Report

About this Report

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report; and
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on borehole or pit spacing and sampling frequency;
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

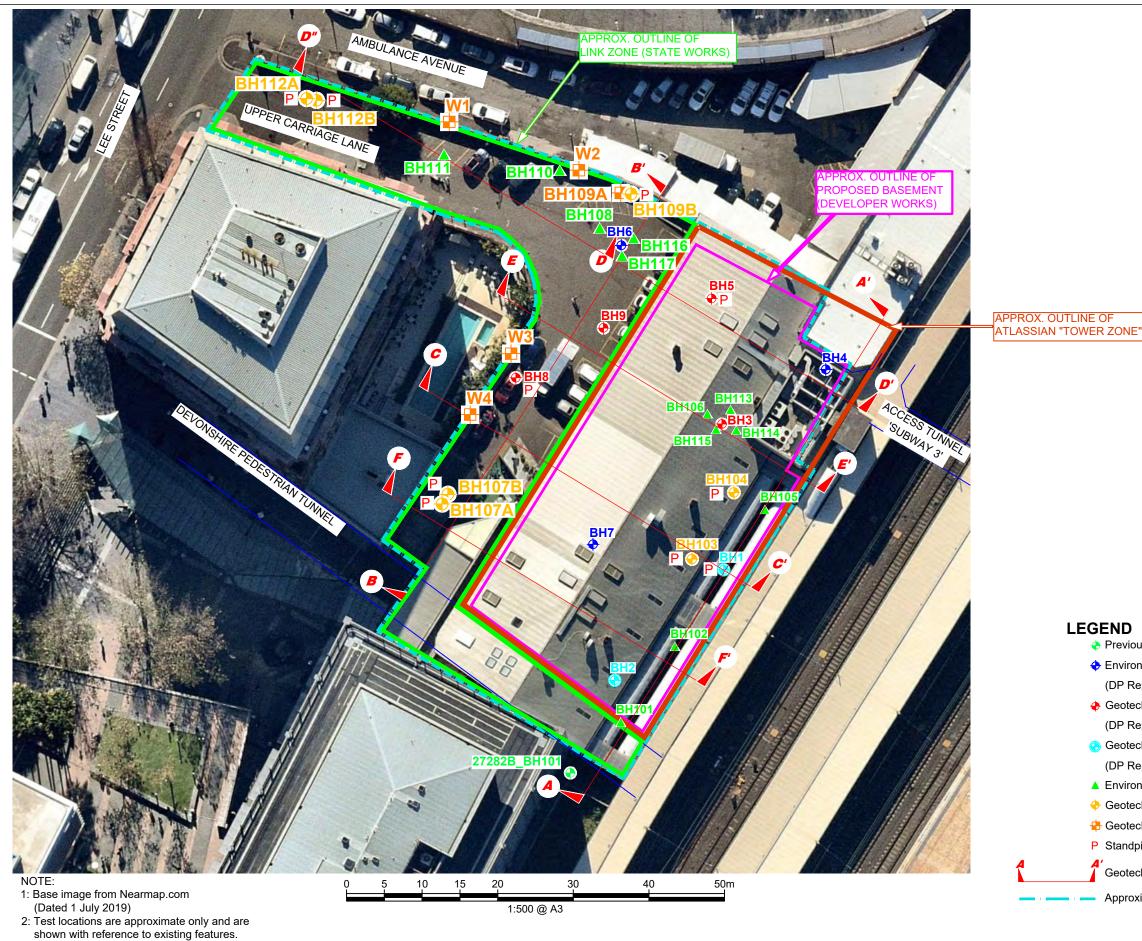
If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes


Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

Appendix B

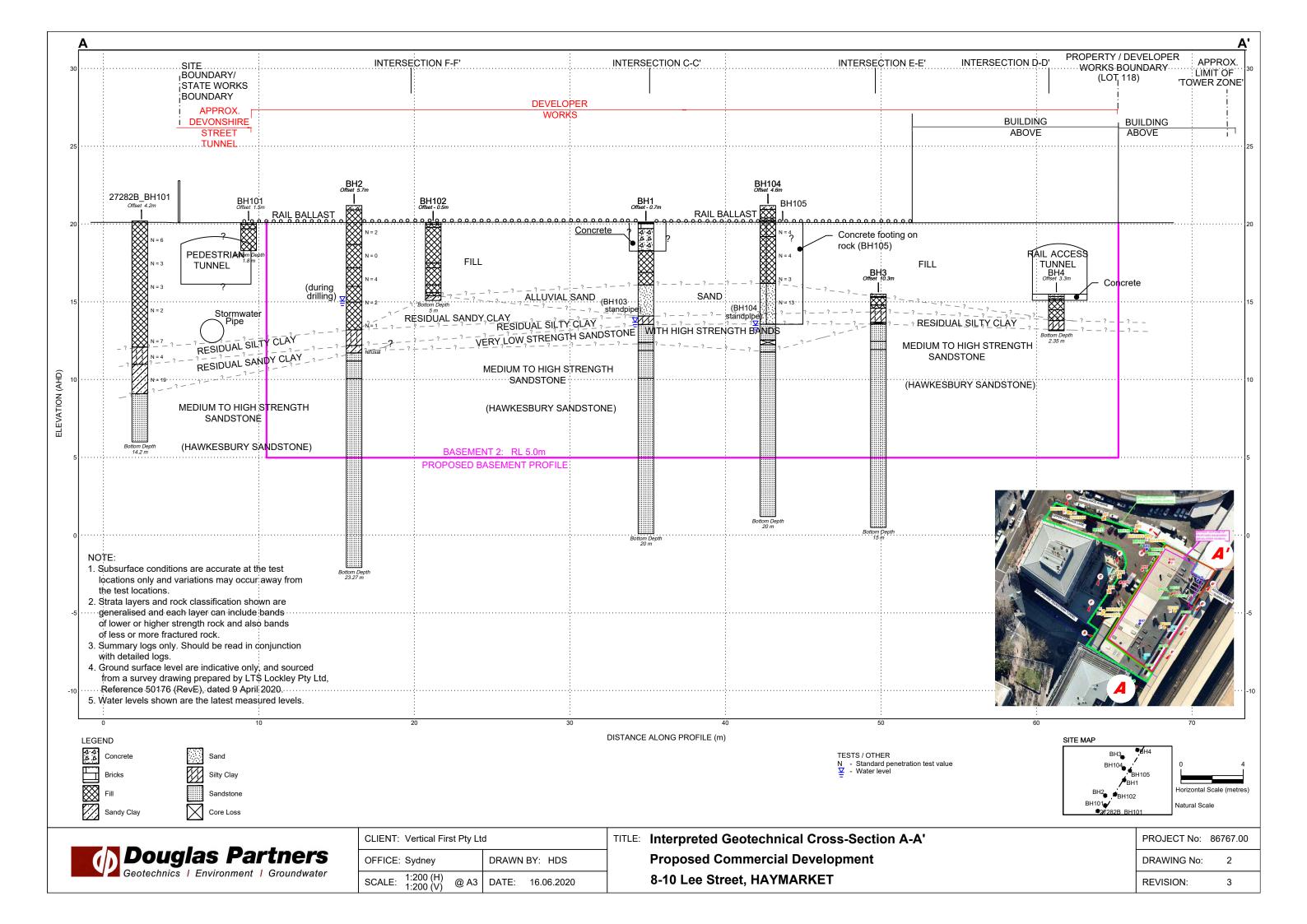
Drawings

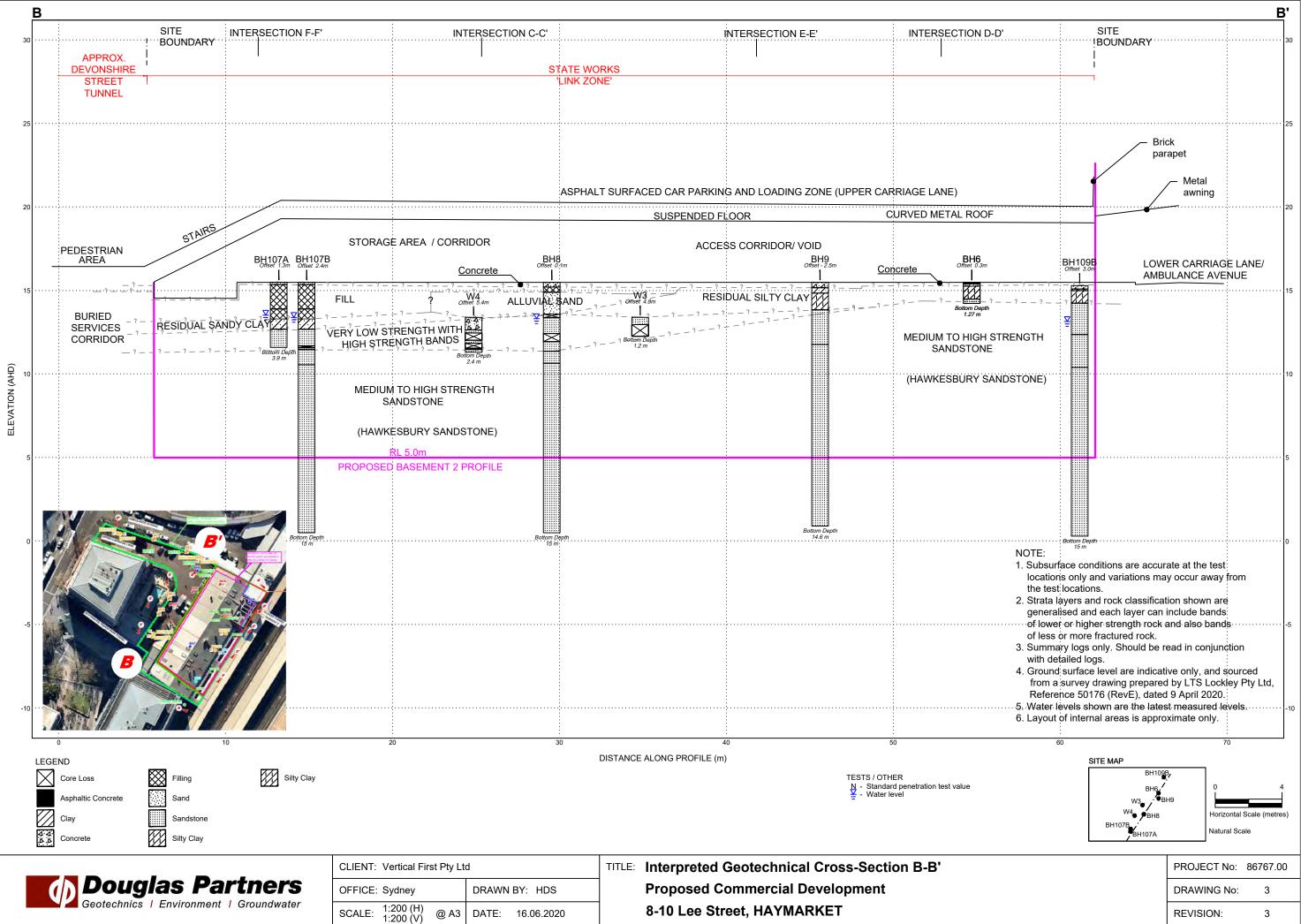
3. Approximate Development Outlines are as provided by Avenor Pty Ltd on 12 August 2019.

		_
CLIENT: Atlassian Pty Ltd		Т
OFFICE: Sydney	DRAWN BY: HDS	
SCALE: 1:500 @ A3	DATE: 16.06.2020	

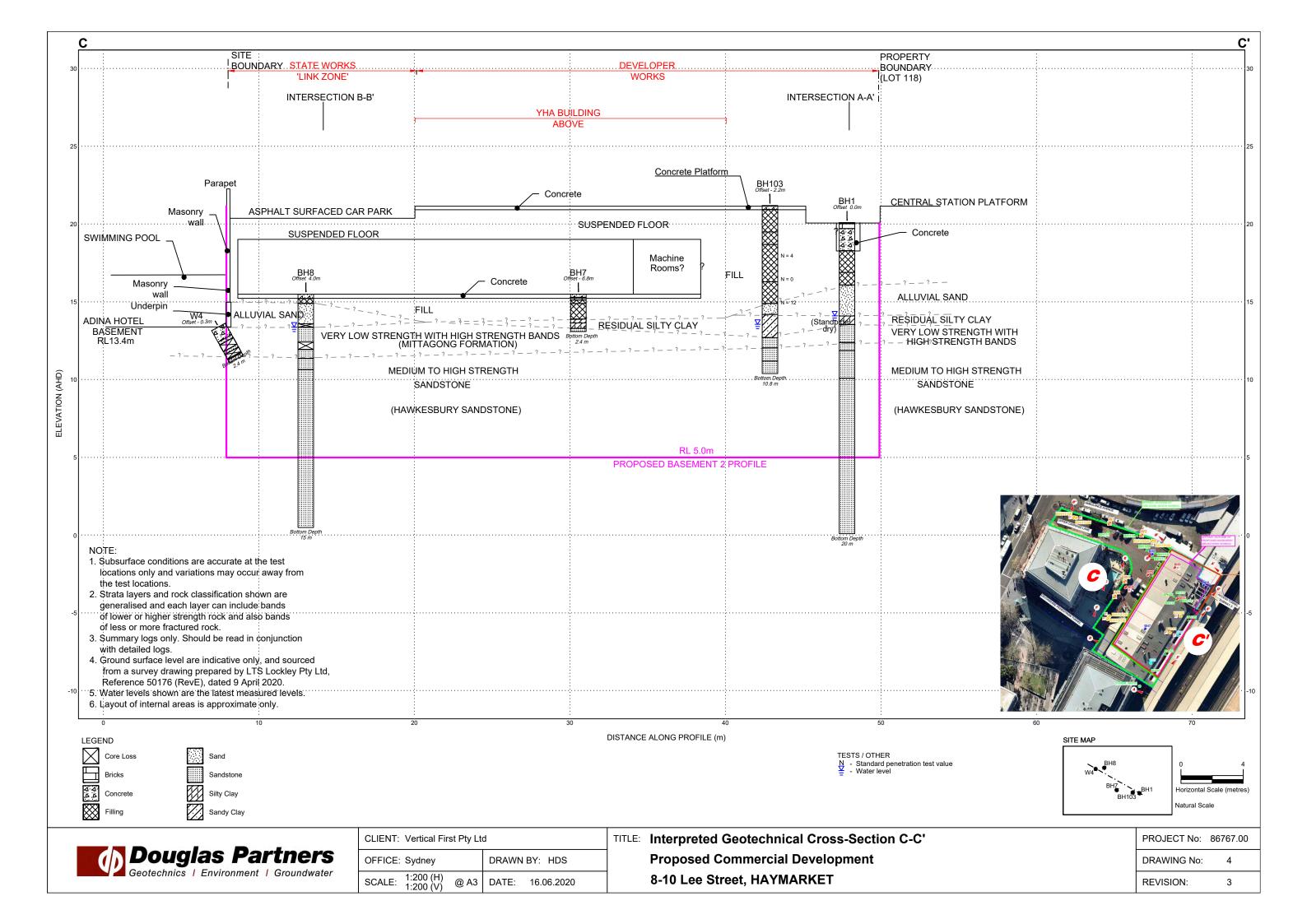
TITLE: Test Location Plan Proposed Commercial Development 8-10 Lee Street, HAYMARKET

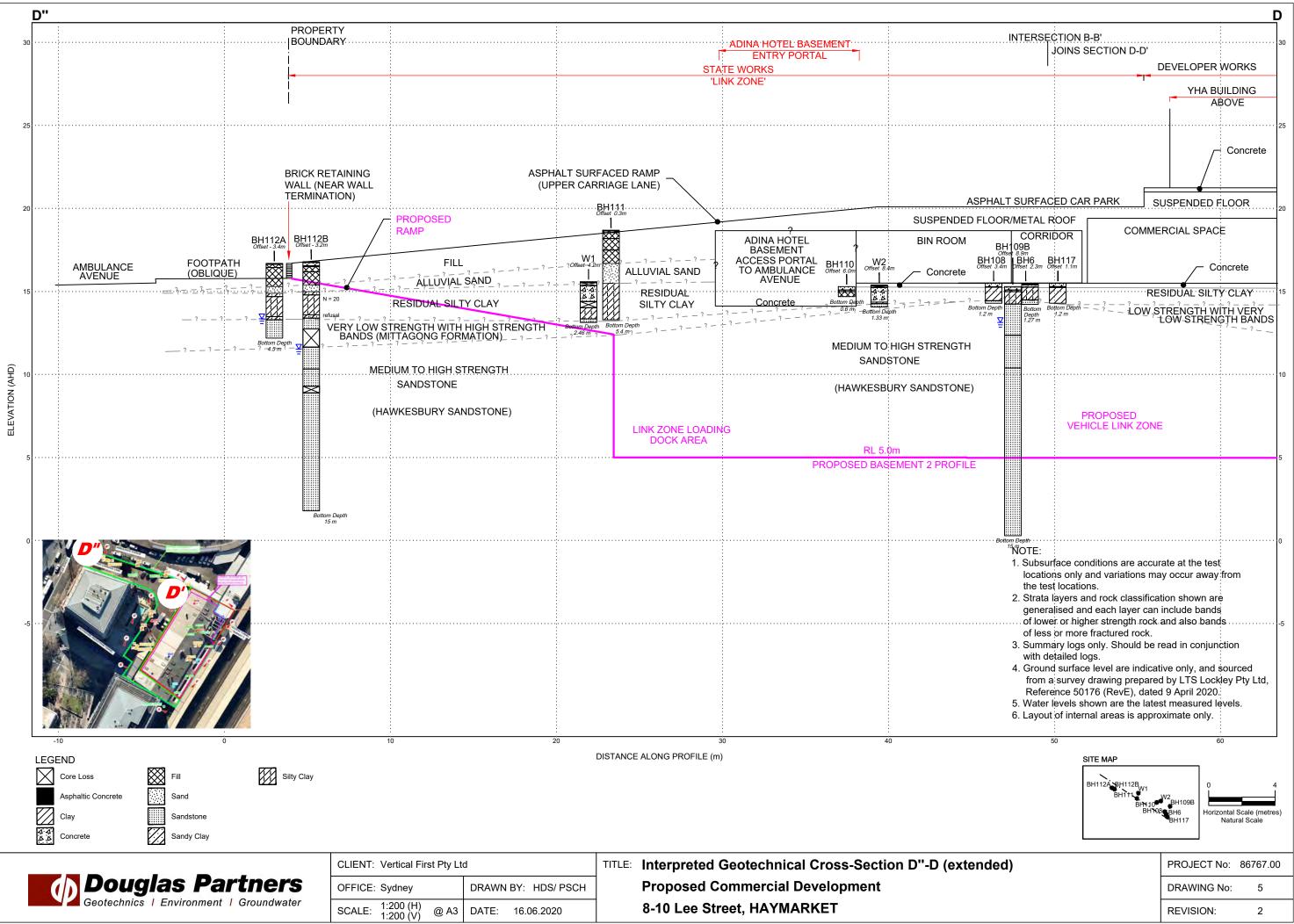
Previous geotechnical borehole (DP Project 27282B, dated 1999)
 Environmental borehole - Lower Ground Floor

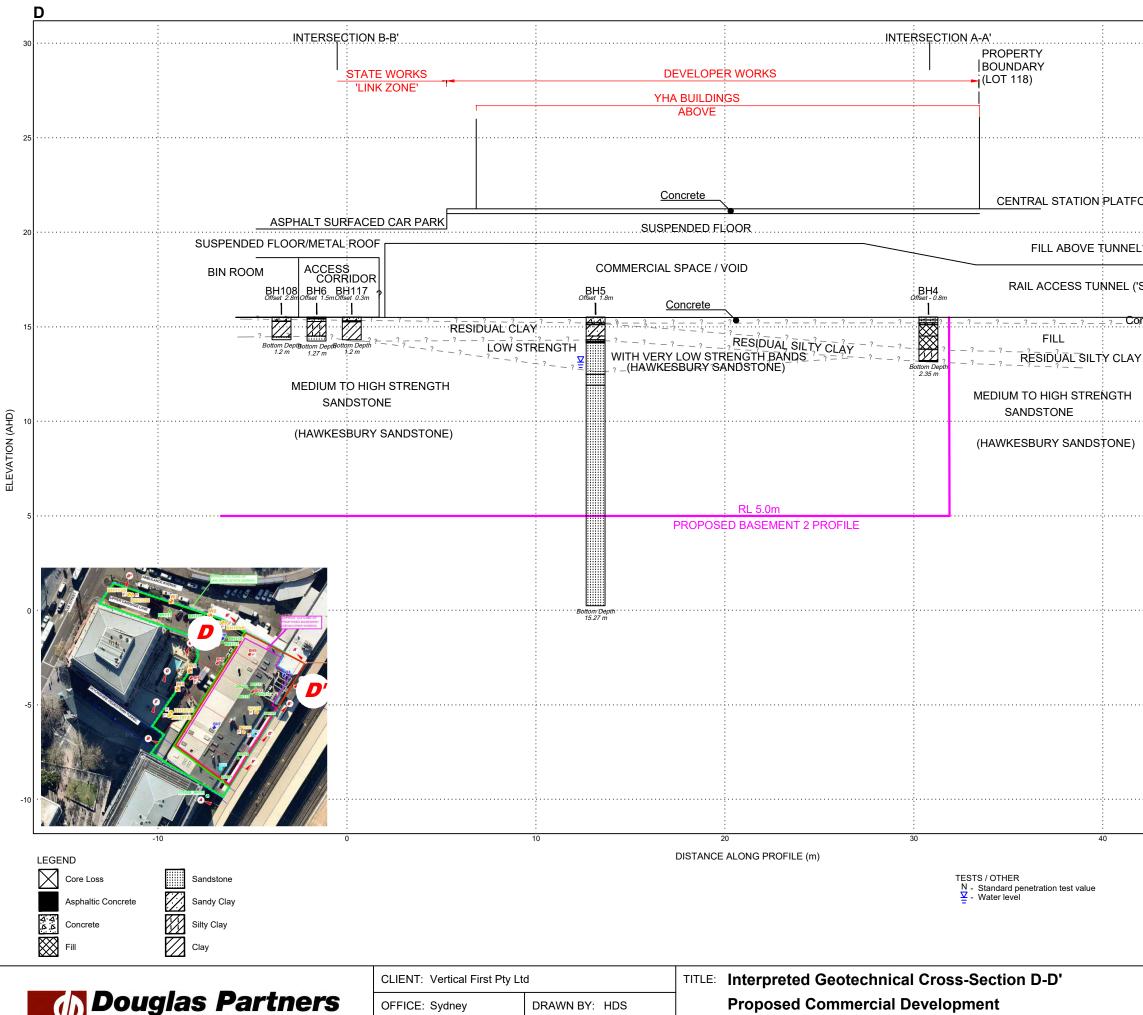

- (DP Report 86767.01.R.001.DftB, dated 29 August 2019)
- Geotechnical & environmental borehole Lower Ground Floor
- (DP Report 86767.00.R.001.Rev0, dated 26 August 2019)
- 😔 Geotechnical & environmental borehole Upper Ground Floor
- (DP Report 86767.00.R.001.Rev0, dated 26 August 2019)
- Environmental borehole
- Geotechnical & environmental borehole
- Geotechnical borehole
- P Standpipe piezometer
- Geotechnical Cross Section A-A'
- Approximate site boundary



PROJECT No: 86767.00

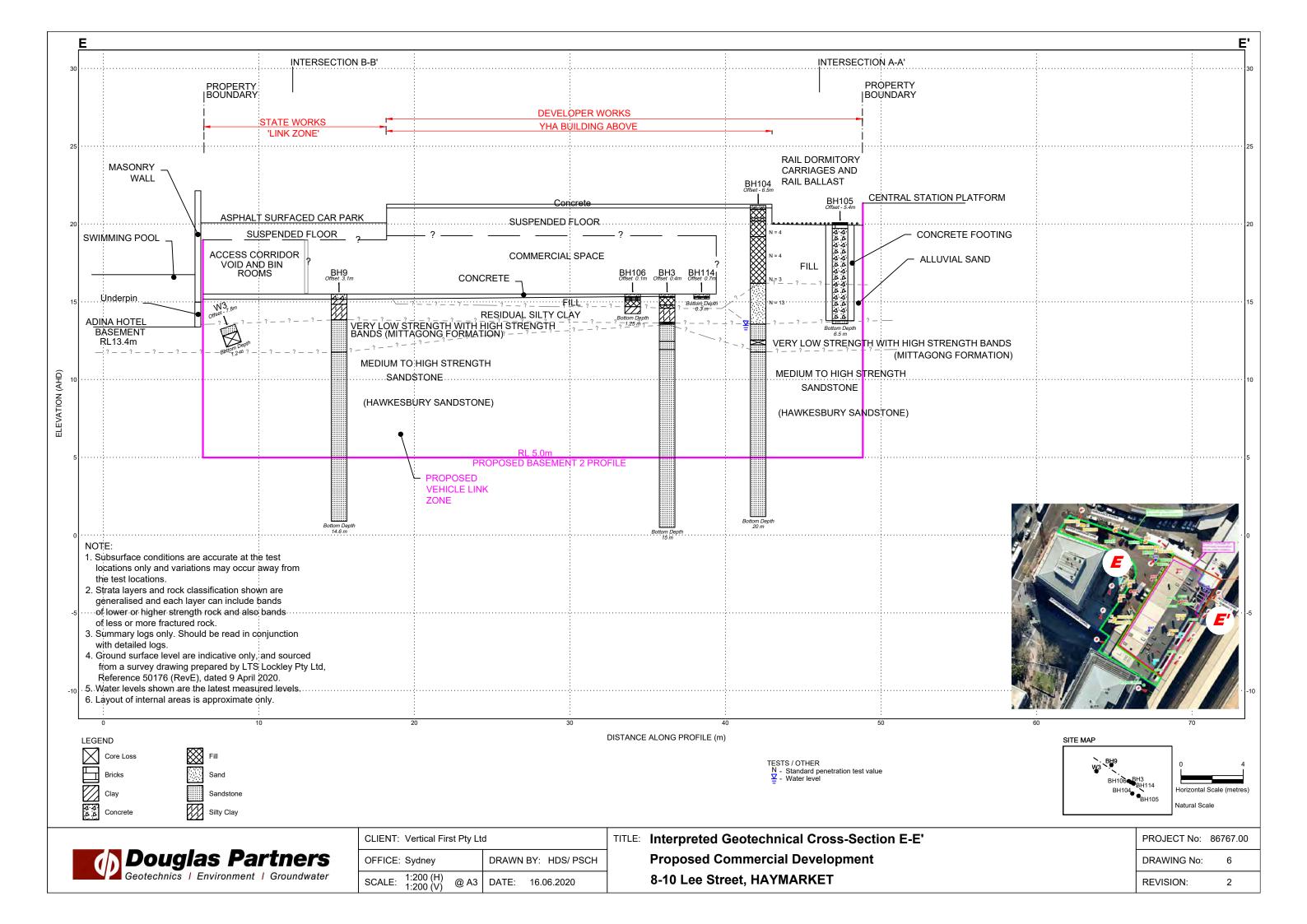

36767.00

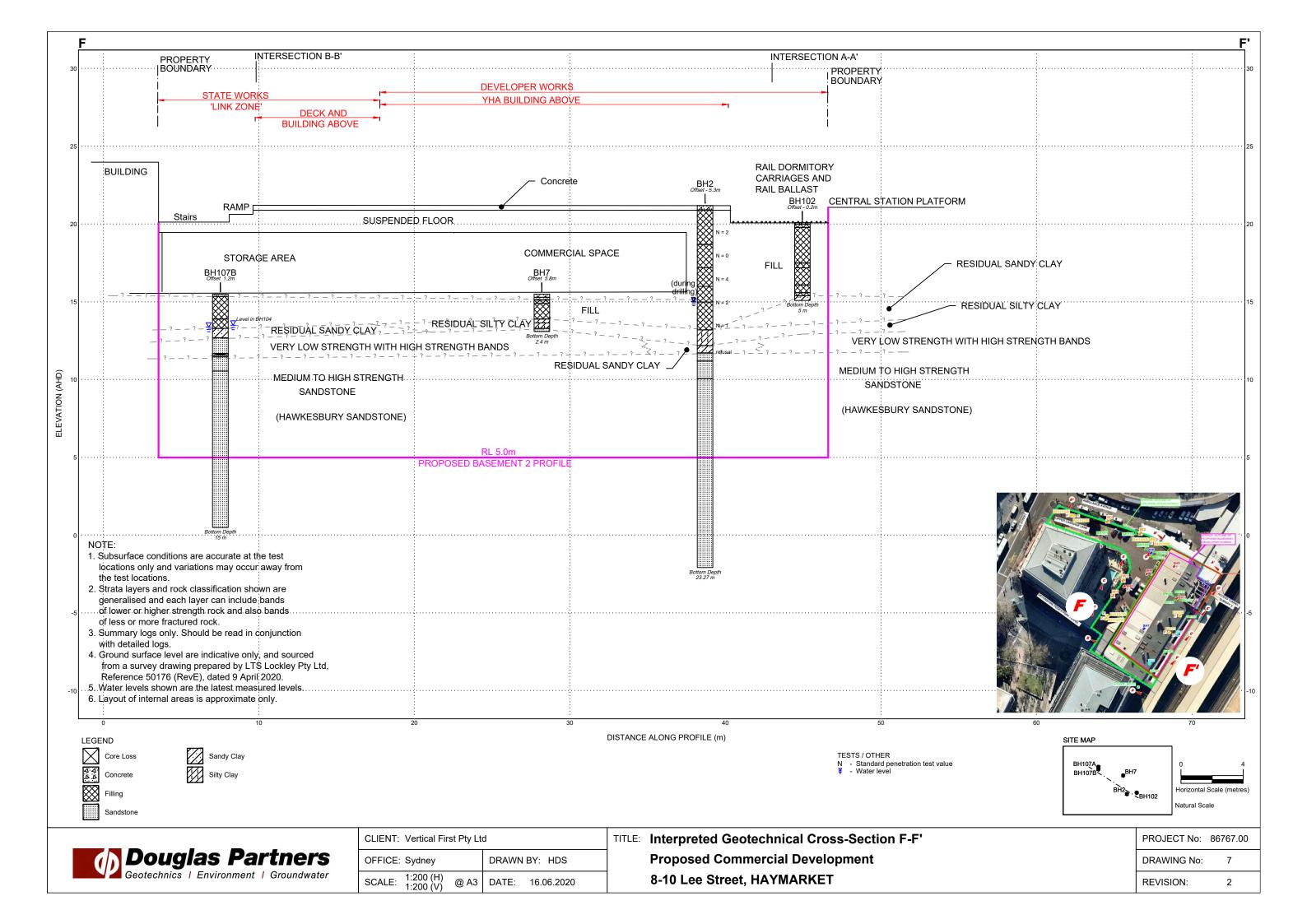

DRAWING No: REVISION: 1


DRAWN	BY: HDS	Propos
DATE:	16.06.2020	8-10 Le

Douglas Pa	ortners
Geotechnics Environment	t I Groundwater

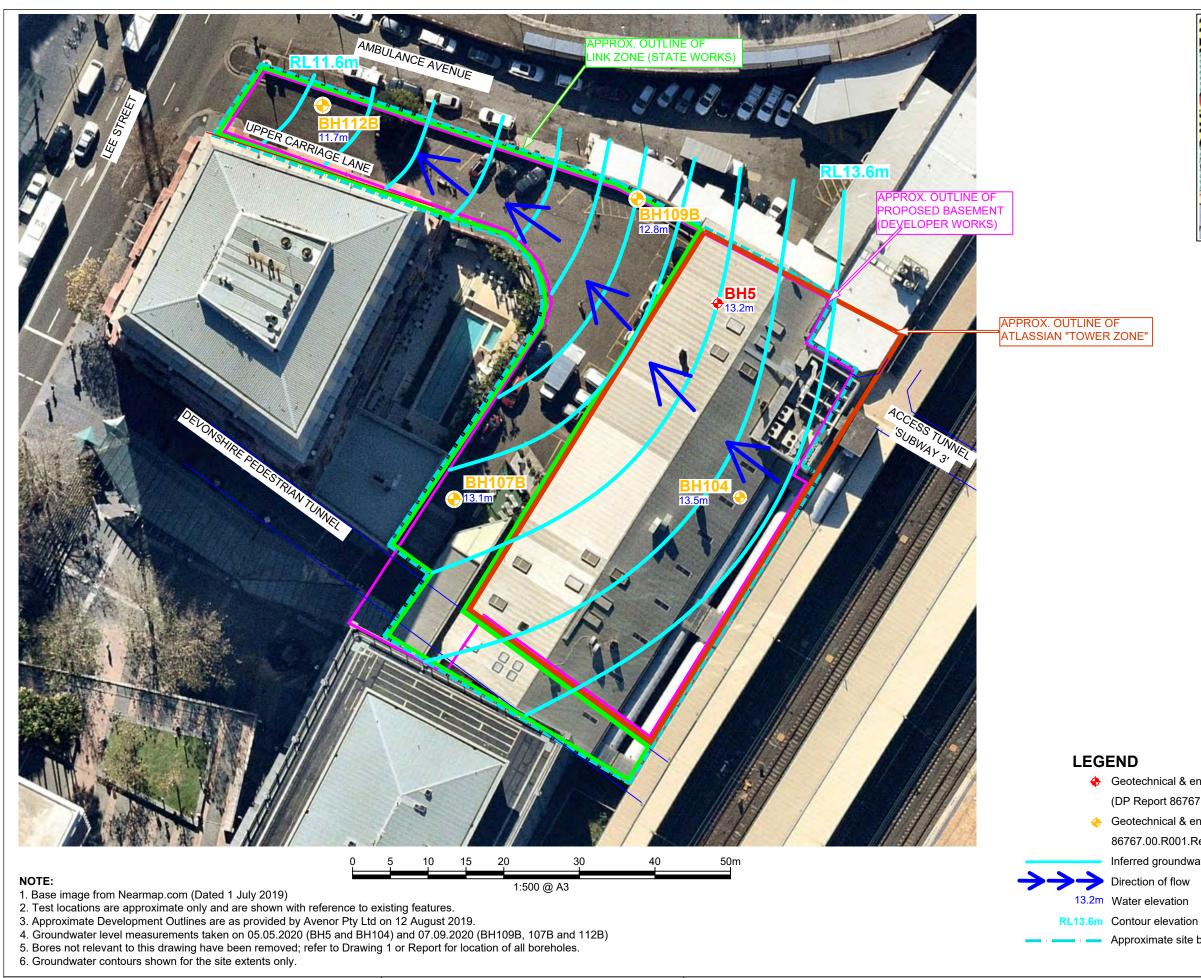
CLIENT: Vertical First Pty	Ltd
OFFICE: Sydney	DRAWN BY: HDS/ PSCH
SCALE: 1:200 (H) @ A	3 DATE: 16.06.2020




		•
OFFICE: Sydney	DRAWN BY: HDS	Proposed Co
SCALE: 1:200 (H) @ A3	DATE: 16.06.2020	8-10 Lee Stre

Geotechnics | Environment | Groundwater

Proposed Commercial Development 8-10 Lee Street, HAYMARKET


					<u>D</u> '
ORM					
?					
SUBWAY 3')					
ncrete ?					
					5
					0
NOTE: 1. Subsurface c	onditions are	accui	rate at th	e test	
locations only the test locati	/ and variatio				n
2. Strata layers generalised a	and rock clas				
of lower or high	gher strength	rock			
of less or mo 3. Summary log	s only. Shoul		read in co	onjunctio	n
with detailed 4. Ground surfa		ndicat	tive only,	and sou	rced
from a surve	y drawing pré 0176 (RevE),	epare	d by LTS	Lockley	
6. Layout of inte	shown are th	e late	st measu	ired level	s. 10
0. Layout of fille	iiidi dieds is	appro		nny.	
	5	0			
	SITE MAP				
	BH108 BH6 BH117	BH5		0 L	4
	51117	×.	BH4	Horizontal	Scale (metres)
				Natural Sca	ale
				CT No:	86767.00
					86767.00
				ING No:	5A
			REVISI	UN:	3

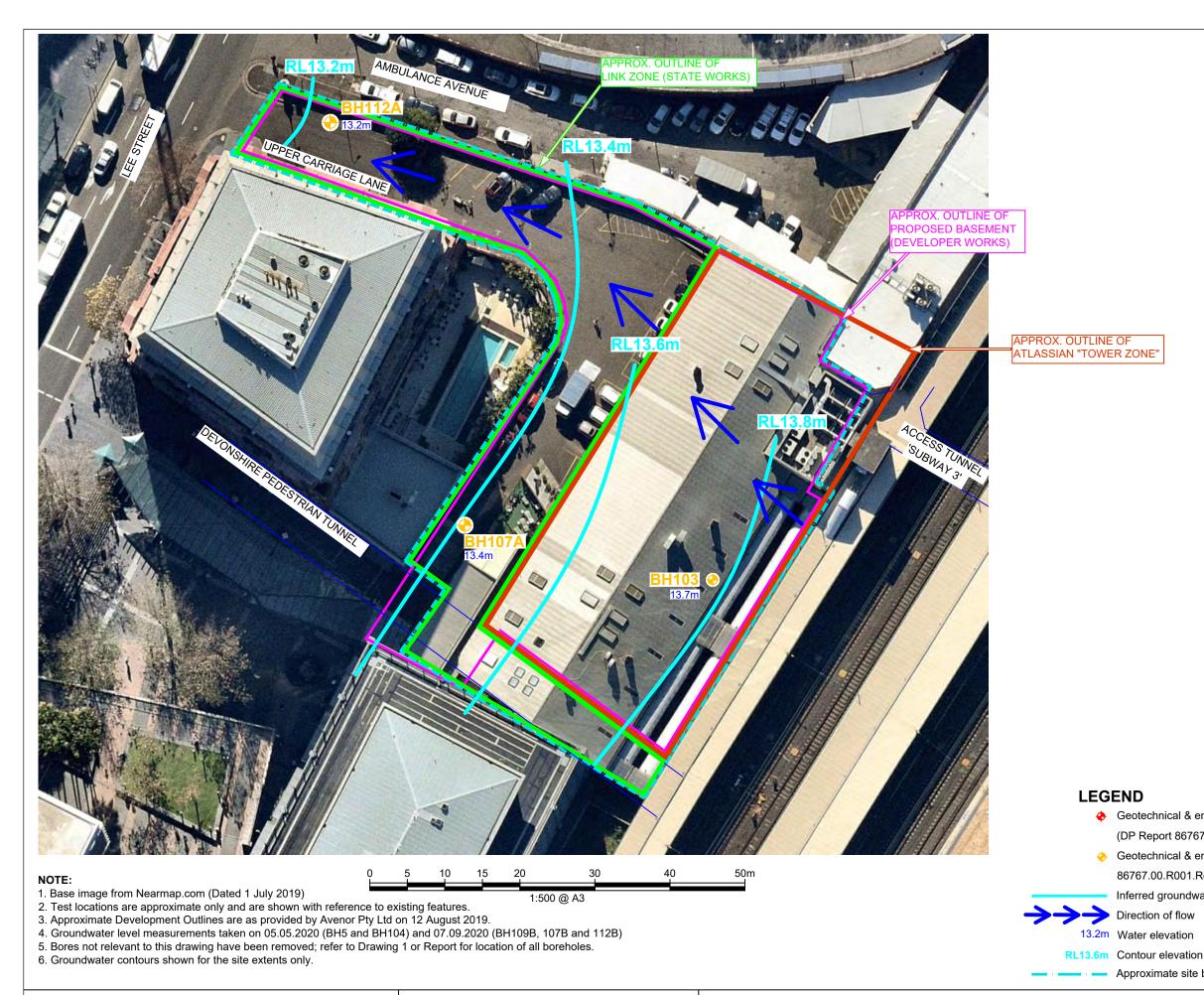
Appendix C

Results of Groundwater Level Monitoring

DRAWN BY: BZ

DATE: 21.09.2020

TITLE:	Groundwater Levels and Flow Direction from Piezometers Screened
	in Hawkesbury Sandstone
	Proposed Commercial Development, 8-10 Lee Street, HAYMARKET


+ Geotechnical & environmental borehole - Lower Ground Floor (DP Report 86767.00.R.001.Rev0, dated 26 August 2019)

- Geotechnical & environmental borehole (DP Report
 - 86767.00.R001.Rev0, dated 26 August 2019)
 - Inferred groundwater contour (RL(m))
- Approximate site boundary

ters Screened

PROJECT No: 86767.06 DRAWING No: 3 **REVISION**: 0

DRAWN BY: BZ

DATE: 21.09.2020

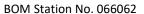
CLIENT: Vertical First Pty Ltd **Douglas Partners** Geotechnics | Environment | Groundwater OFFICE: Sydney SCALE: 1:500 @ A3

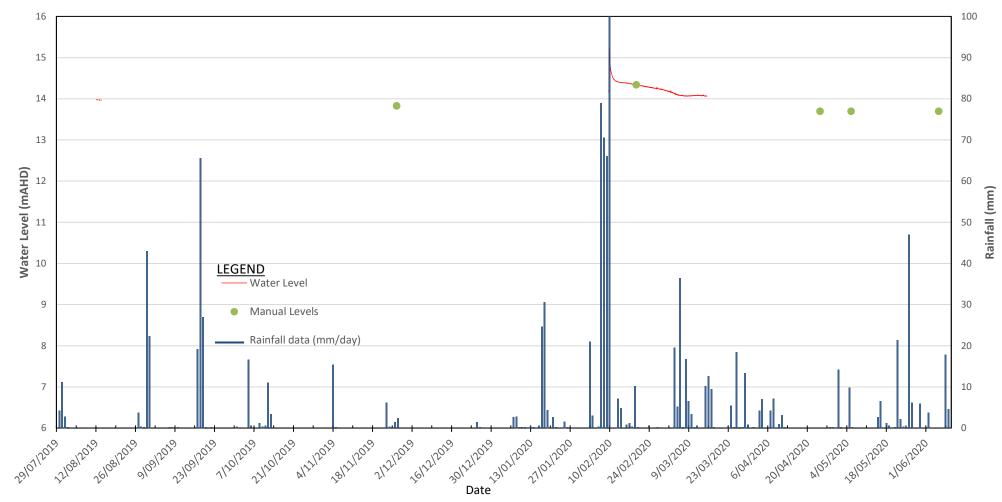
TITLE:	Groundwater Levels and Flow Direction from Piezometers Screened	
	in Mittagong Formation	
	Proposed Commercial Development, 8-10 Lee Street, HAYMARKET	

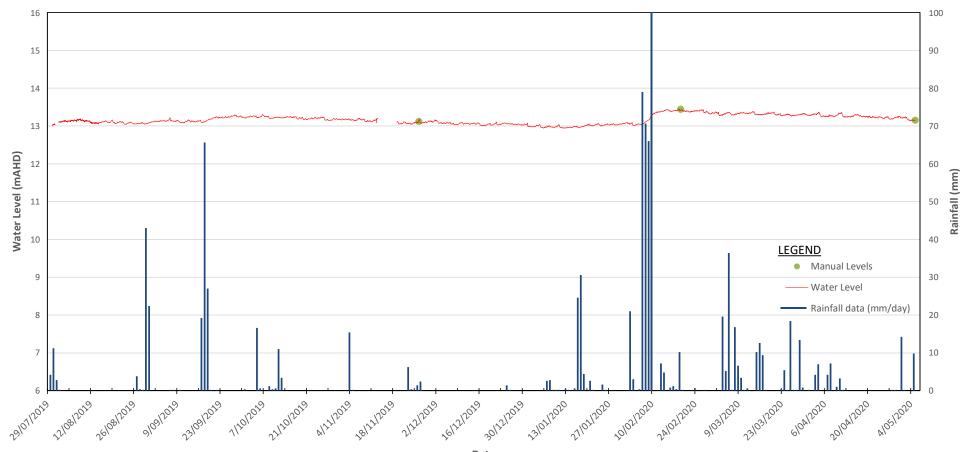
+ Geotechnical & environmental borehole - Lower Ground Floor (DP Report 86767.00.R.001.Rev0, dated 26 August 2019)

+ Geotechnical & environmental borehole (DP Report

86767.00.R001.Rev0, dated 26 August 2019)

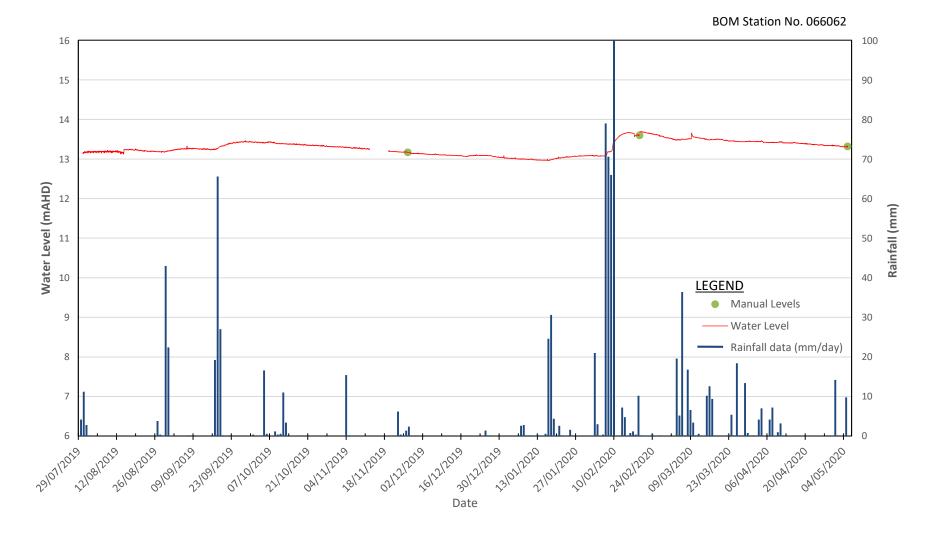

Inferred groundwater contour (RL(m))


- Approximate site boundary

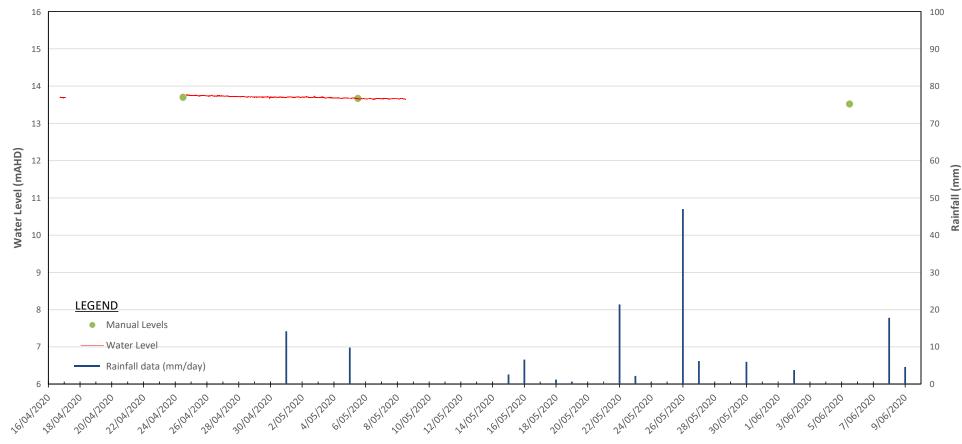


PROJECT No: 86767.06 DRAWING No: 4 **REVISION**: 0

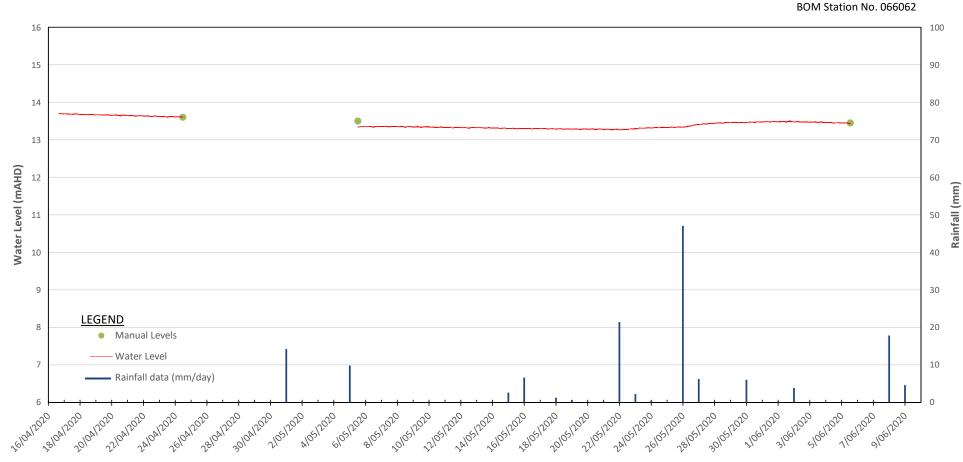
BH1 Groundwater Levels



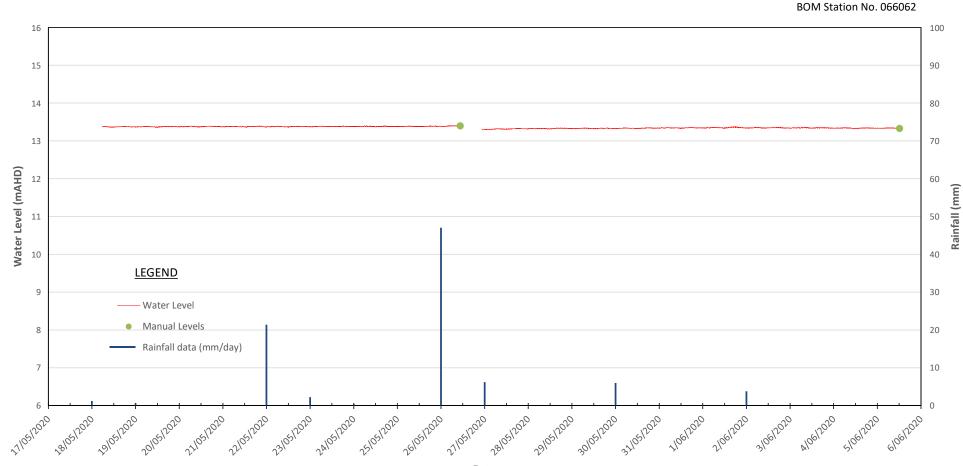
BH5 Groundwater Levels

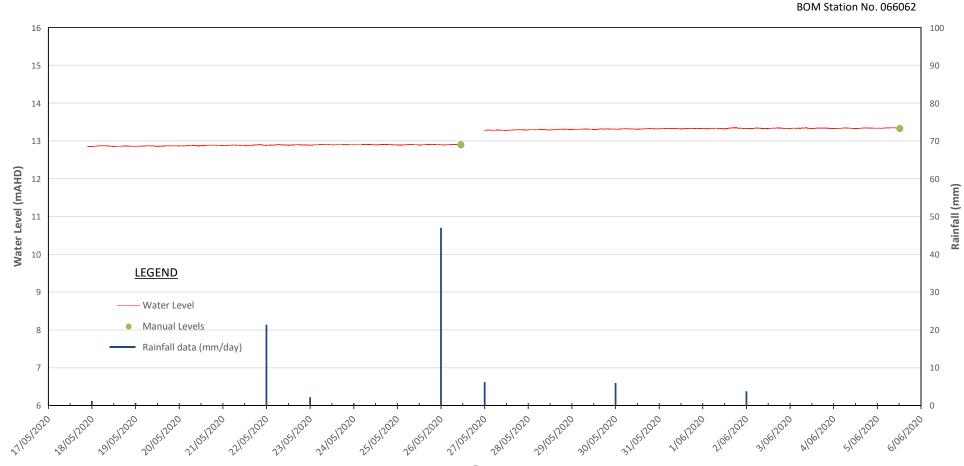

BOM Station No. 066062

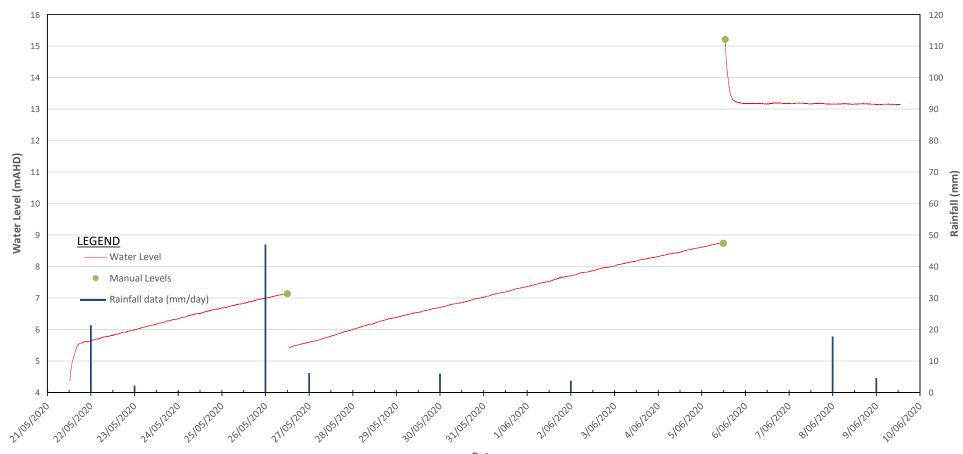
BH8 Groundwater Levels



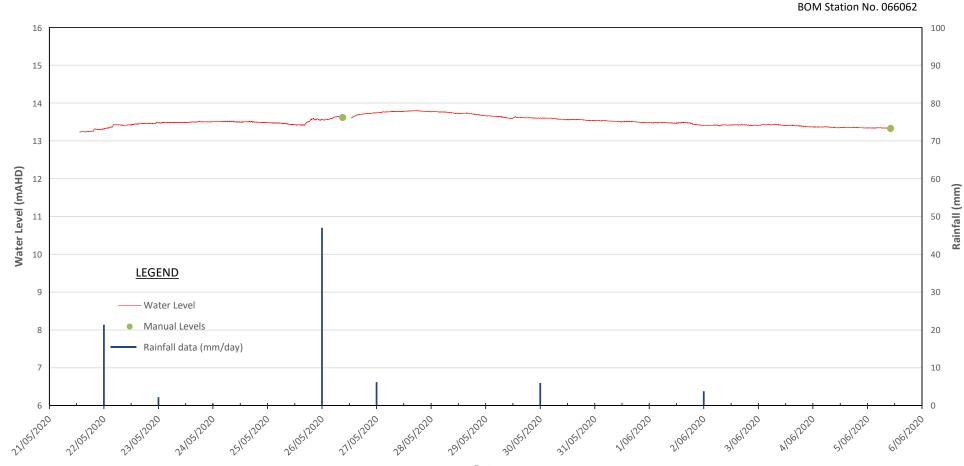
BH103 Groundwater Levels


BOM Station No. 066062

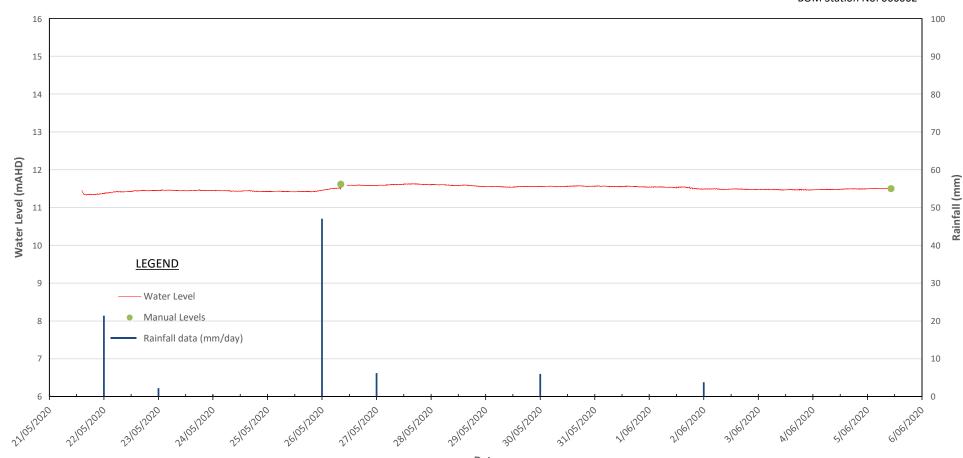

BH104 Groundwater Levels


BH107A Groundwater Levels

BH107B Groundwater Levels



BH109B Groundwater Levels



BOM Station No. 066062

BH112A Groundwater Levels

BH112B Groundwater Levels

BOM Station No. 066062

Appendix D

Results of In-situ Permeability Testing

Client: Project: Location:		Pty Ltd Commerical Street, Haym		nent	Project No Test date: Tested by	31-Jul-19	
Test Locatio Description: Material type:	Standpipe	in borehole y CLAY, then S	AND		Test No. Easting: Northing Surface Le	BH1 333983.4 6249262.5 vel: 20.1	m m m AHD
	liameter (2) diameter (2 Il screen (L 6.3m-4.3m,	^r) R) e)	114.3 114.3 2 n; blank fror	mm mm m 14.3m onwa	Depth to water befo Depth to water at st ds, bentonite from 4.	art of test 0.00	m m
Test Results	;			7			
Time (sec)	Depth (m)	Change in Head: δH (m)	δH/Ho				
0.1	0	5.95	1.000	1			
180.0	1.03	4.92	0.827	-1			
480.0	1.84	4.11	0.691	-1			
780.0	2.23	3.72	0.625	-			
1080.0	2.51	3.44	0.578				
1380.0	2.74	3.21	0.539	1.00			
1680.0	2.93	3.02	0.508				
1980.0	3.05	2.90	0.487				
2280.0	3.18	2.77	0.466			X_	
2580.0	3.28	2.67	0.448			\ \	
2880.0	3.38	2.57	0.432	l ho			×
3180.0	3.46	2.49	0.418	Head Ratio dh/ho			
4380.0	3.72	2.23	0.374	Zati			
4680.0	3.78	2.17	0.364	ad			X
6480.0	3.99	1.96	0.329	Ц Н			
9780.0	4.28	1.67	0.281				
				0.10	1 1 10) 100 1000	10000
						me (seconds)	10000
					To =	4500 seconds	
Theory:		d Permeability c e/R)]/2Le To	alculated us	where r = ra R = radius o Le = length	Hvorslev dius of casing f well screen of well screen ken to rise or fall to 37 ⁴	% of initial change	
Hydrau	ulic Cond	uctivity	k = =	6.5E 0.2			

Client: Project: Location:		Pty Ltd I Commerical Street, Hayma		ient	Project No: Test date: Tested by:		86767.00 14-Aug-19 KR	
Test Locatic Description: Material type	Standpipe	in borehole y CLAY, then S	AND			Test No. Easting: Northing Surface Level:	BH1 333983.4 6249262.5 20.1	m m m AHD
	diameter (2) diameter (2 Il screen (L 6.3m-4.3m,	r) R) e)	114.3 114.3 2 ; blank fror	mm mm m 14.3m onwa	Depth to	water before test water at start of test nite from 4.2m onwa		m m
Test Results	Depth (m)	Change in Head: δH (m)	δH/Ho					
0.1 1.0 10.0 60.0 120.0 300.0 600.0 900.0 1200	0.36 0.36 0.43 0.74 1.03 1.59 2.15 2.52 2.80 3.17 3.41 3.57 3.70 3.80 3.89 3.94 4.07 4.11 4.14 4.16 4.19 4.22 4.25	5.91 5.91 5.84 5.53 5.24 4.68 4.12 3.75 3.47 3.10 2.86 2.70 2.57 2.47 2.38 2.33 2.20 2.17 2.13 2.11 2.09 2.05 2.02	1.000 0.999 0.988 0.935 0.886 0.791 0.697 0.633 0.587 0.525 0.484 0.457 0.435 0.417 0.403 0.394 0.372 0.366 0.360 0.357 0.353 0.347 0.342	Head Ratio		.0 10.0 10 Time (second	0.0 1000.0 s)	10000.0
Theory:		d Permeability c e/R)]/2Le To	alculated us	where r = ra R = radius c Le = length	adius of cas of well scre of well scre	en		
Hydra	ulic Cond	uctivity	k = =	4.5E 0.1		m/sec cm/hour		

Client:Atlassian Pty LtdProject:Proposed CommercialLocation:8-10 Lee Street, Hayman				ment	Project No:86767.00Test date:31-Jul-19Tested by:JJH
Test LocationDescription:Standpipe in boreholeMaterial type:Sandstone				Test No.BH5Easting:333980mNorthing6249298mSurface Level:15.5m AHD	
Details of We Well casing d Well screen d Length of wel	liameter (2r) liameter (2R))	76 76 12.97	mm mm m	Depth to water before test2.44mDepth to water at start of test14.48m
Test Results		Change in	-11.1/1.1		
Time (min)	Depth (m)	Head: dH (m)	dH/Ho	_	
0	14.48	12.04	1.000	-	
5	14.36	11.92	0.990	-	
10	14.14	11.70	0.972		
60	13.12	10.68	0.887		
100	12.77	10.33	0.858	1.0	
200	11.99	9.55	0.793		
500	9.69	7.25	0.602		
800	7.41	4.97	0.413		
1000	5.9	3.46	0.287	0	
1300	3.78	1.34	0.111	Head Ratio dh/ho	
				.0 Katio	
				ad Fi	
				He	
				_	
				0.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
				_	Time (minutes)
				_	
					To = 868 mins 52080 secs
Theory: Falling Head Permeability calculate k = [r² ln(Le/R)]/2Le To				where r = R = radiu Le = leng	ion by Hvorslev = radius of casing us of well screen gth of well screen e taken to rise or fall to 37% of initial change
Hydra	ulic Condu	ictivity	k = =		2E-09 m/sec 0.002 cm/hour

Permeability Testing - Rising Head Test Report

Client:Atlassian Pty LtdProject:Proposed CommercialLocation:8-10 Lee Street, Haym				ment	Project No: Test date: Tested by:	86767.00 30-Jul-19 JJH	
Test LocationDescription:Standpipe in boreholeMaterial type:Sandstone					Test No. Easting: Northing Surface Level:	BH8 333954 6249289 15.5	m m m AHD
Details of We Well casing d Well screen d Length of wel	liameter (2r) liameter (2R l screen (Le))	76 76 12.1	mm mm m	Depth to water before test Depth to water at start of test	2.3 14.8	m m
Test Results Time (min)	Depth (m)	Change in Head: dH (m)	d H/Ho]			
	14.80 7.95 3.71 2.45 2.36	12.50 5.65 1.41 0.15 0.06	1.000 0.452 0.113 0.012 0.005	1.00 Head Ratio Head R			100
Theory:	-	ead Permeability [Le/R)]/2Le To	calculated	where r = R = radius Le = lengtl	To = 5.5 mins 330 secs a by Hvorslev radius of casing of well screen a of well screen aken to rise or fall to 37% of initial		
Hydraulic Conductivity k =					E-06 m/sec 875 cm/hour		

Client: Project: Location:	Propose	n Pty Ltd ed Commercia e Street, Hayr		ment	Project No:86767.00Test date:16-Apr-20Tested by:NB
Test Locatio Description: Material type:	Description: Standpipe in borehole Material type: Sandstone				Test No.BH103Easting:333978mNorthing6249263mSurface Level:21.2m AHD
Details of We Well casing d Well screen c Length of wel	liameter (2r) liameter (2R))	70 76 0.8	mm mm m	Depth to water before test7.5mDepth to water at start of test9.27m
Test Results					
Time (min)	Depth (m)	Change in Head: dH (m)	d H/Ho]	
0 1 2 3 4 5 6 7 8 9 10 17 20 30 40 50 60 70 80 82	9.27 8.76 8.71 8.67 8.64 8.61 8.57 8.52 8.48 8.44 8.44 8.4 8.45 8.07 7.84 7.7 7.61 7.56 7.53 7.51 7.5	1.77 1.26 1.21 1.17 1.14 1.11 1.07 1.02 0.98 0.94 0.90 0.65 0.57 0.34 0.2 0.11 0.06 0.03 0.01	1.000 0.712 0.684 0.661 0.644 0.627 0.605 0.576 0.554 0.531 0.508 0.367 0.322 0.192 0.113 0.062 0.034 0.017 0.006 0.000	1.00 Head Hand Hand Hand Hand Hand Hand Hand Ha	
					Time (minutes) To = 17 mins 1020 secs
Theory:	-	ead Permeability (Le/R)]/2Le To	calculated	where r = R = radius Le = lengt	ion by Hvorslev = radius of casing us of well screen gth of well screen e taken to rise or fall to 37% of initial change
Hydraulic Conductivity k = =					3E-06 m/sec 0.823 cm/hour

Client:	Vertical	First Pty Ltd				Project N	lo:	86767.00	
Project:		ed Commercia	I Develop	ment		Test date		24-Apr-20	
_ocation:		e Street, Hayn				Tested b		AS	
								-	
Fest Location	า					Test No.		BH103	
Description:	Standpip	e in borehole				Easting:		333978	m
Aaterial type:	Sandstor	ne				Northing		6249263	m
						Surface L	evel:	21.2	m AHD
Details of We	ell Installatio	on							
Vell casing di			50	mm	Depth to	o water bei	ore test	7.44	m
Vell screen d)	76	mm	Depth to	o water at	start of test	8.63	m
ength of well			0.8	m	·				
est Results									
Time (min)	Depth (m)	Change in	d H/Ho	1					
	Deptil (III)	Head: dH (m)	un/nu	_					
0	8.63	1.19	1.000	-					
1	8.52	1.08	0.908						
2	8.44	1.00	0.840						
3	8.39	0.95	0.798						
4	8.34	0.90	0.756	1.00					
5	8.28	0.84	0.706			+++++++			+++++
6	8.22	0.78	0.655	4					
7	8.17	0.73	0.613	4					
8	8.12	0.68	0.571	<u>o</u>					
9	8.08	0.64	0.538	Head Ratio dh/ho					
10	8.04	0.60	0.504	ti -				🗎	
14.5	7.89	0.45	0.378						
20	7.75	0.31	0.261	- Fea					
30	7.6	0.16	0.134						
40	7.53	0.09	0.076	-					
50 60	7.49	0.05	0.042	-					\
70	7.47	0.03	0.023	-					↓
80	7.40	0.02	0.008	-					
88	7.44	0.01	0.000	0.01)			10	100
00	1.11		0.000	-	,	I		10	100
							Time (minutes)		
						To =			
							870 secs		
1				·					
heory:		ead Permeability (Le/R)]/2Le To	calculated l		-				
	K = [r IN(Le/R)]/2Le 10		where r = ra		•			
				R = radius					
				Le = length			70/ - (h	
				To = time ta	ken to rise	e or fall to 3	7% of initial c	hange	
Hydra	ulic Condu	ictivity	k =	1.4E	-06	m/sec			

Client: Project: Location:	Propose	n Pty Ltd ed Commercia e Street, Hayn		ment	Project No:86767.00Test date:16-Apr-20Tested by:NB
Test Locatio Description: Material type:	Description: Standpipe in borehole				Test No.BH104Easting:333983mNorthing6249272mSurface Level:21.2m AHD
Details of We Well casing d Well screen c Length of wel	liameter (2r) liameter (2R))	70 76 6	mm mm m	Depth to water before test7.5mDepth to water at start of test18.8m
Test Results Time (min)	Depth (m)	Change in Head: dH (m)	d H/Ho	1	
0 1 2 3 4 5 6 7 8 9 10 20 30 37 40 50 60 70 80 90 100	18.80 18.57 18.39 18.21 18.04 17.84 17.66 17.48 17.3 17.11 16.93 15.31 13.19 11.72 11.08 8.99 7.58 7.52 7.51	11.30 11.07 10.89 10.71 10.54 10.34 10.16 9.98 9.80 9.61 9.43 7.81 5.69 4.22 3.58 1.49 0.08 0.02 0.01	1.000 0.980 0.964 0.933 0.915 0.899 0.883 0.867 0.850 0.835 0.691 0.504 0.373 0.317 0.132 0.007 0.002 0.002 0.002 0.001 0.001	1.00 Head Ratio PHONE 0.10 Head Ratio PHONE 0.01	Image: constrained of the second of the s
Theory:	-	ead Permeability [Le/R)]/2Le To	calculated	where r = r R = radius Le = length	To = 37 mins 2220 secs by Hvorslev adius of casing of well screen of well screen aken to rise or fall to 37% of initial change
Hydra	ulic Condu	ctivity	k = =		

Permeability Testing - Rising Head Test Report

Client: Project: Location:	Propose		Pty Ltd ommercial Development reet, Haymarket			Project Test da Tested	ate:	86767.00 22-May-2 NB	
Test Locatio Description: Material type:	Standpip	e in borehole ne				Test No Easting Northing Surface	: g	BH104 333983 6249272 21.2	m m m AHD
Details of We Well casing d Well screen c Length of wel	iameter (2r) liameter (2R))	50 76 6	mm mm m			efore test t start of test	7.91 10.95	m m
Test Results									
Time (min)	Depth (m)	Change in Head: δH (m)	δH/Ho						
0	10.95	3.04	1.000	1					
1	10.78	2.87	0.944						
2	10.62	2.71	0.891						
3	10.47	2.56	0.842						
4	10.32	2.41	0.793	1.00					
5	10.17	2.26	0.743	1.00		*			
6	10.02	2.11	0.694				24	x	
7	9.87	1.96	0.645						
8	9.72	1.81	0.595					4	
9	9.57	1.66	0.546	•				11 \	
10	9.43	1.52	0.500	Head Ratio					
12	9.13	1.22	0.401	io d					
13	8.98	1.07	0.352	0.10 Gat					
15	8.69	0.78	0.257	ead					
20	8.07	0.16	0.053	エ					
25	7.95	0.04	0.013						
30	7.93	0.02	0.007						
35	7.92	0.01	0.003						
62	7.91	0	0.000						
				0.01					
					D	1		10	100
							Time (minutes)		
						То	o = 12.5 mins 750 secs		
Theory:	-	ead Permeability Le/R)]/2Le To	calculated	where r = ra R = radius o Le = length	dius of ca of well scre of well scr	sing een een	37% of initial c	hange	
Hydra	ulic Condu	ctivity	k = =			m/sec cm/hou	Ir		

Client: Project: Location:	Propose	First Pty Ltd d Commercia e Street, Hayr		ment		Project No: Test date: Tested by:			86767.00 17-May-2 NB	
Test Locatio Description: Material type:	Standpip	e in borehole ne					Test Easti North Surfa	ng:	BH107A 333945 6249270 15.5	m m m AHD
Details of We Well casing d Well screen d Length of wel	liameter (2r) liameter (2R))	50 76 0.5	mm mm m		-		er before test er at start of test	2.13 3.75	m m
Test Results	i									
Time (min)	Depth (m)	Change in Head: δH (m)	δH/Ho							
0	3.75	1.62	1.000	_						
5	3.72	1.59	0.981	_						
10	3.69	1.56	0.963							
20	3.63	1.50	0.926							
30	3.58	1.45	0.895	1.	.00 –			÷ • • •		
40	3.52	1.39	0.858		_					
50	3.46	1.33	0.821		-					
60	3.39	1.26	0.778						7	
70	3.33	1.20	0.741	•						
80	3.27	1.14	0.704		_				<u> </u>	
90	3.22	1.09	0.673	tio						\mathbf{N}
100	3.15	1.02	0.630	82 0.	.10					\
150	2.9	0.77	0.475	Head Ratio dh/ho	_					
190.5 200	2.73 2.7	0.6 0.57	0.370							
300	2.43	0.3	0.352	-						
400	2.43	0.16	0.099	-						A
500	2.23	0.08	0.049	-	_					
600	2.17	0.04	0.025	-						↓ ↓
700	2.15	0.02	0.012	- 0.	.01 + 0		1	10	100	1000
800	2.14	0.01	0.006	1						
936	2.13	0	0.000					Time (minutes)	
								To = 190.5 min 11430 sec		
Theory:	-	ead Permeability [Le/R)]/2Le To	calculated	where r R = radi Le = len	= rad us of gth o	ius of well so f well s	casing creen screen	ll to 37% of initial	change	
Hydraulic Conductivity k = =					.4E-(IE-07 m/sec .051 cm/hour				

Permeability Testing - Rising Head Test Report

Client: Project: Location:	Propose	First Pty Ltd d Commercia e Street, Hayn		ment		Proje Test o Teste		86767.00 26-May-2 AS	
Test Location Description: Material type:		e in borehole ne				Test N Eastin Northi Surfac	g:	BH107A 333945 6249270 15.5	m m m AHD
Details of We Well casing di Well screen d Length of well	iameter (2r) iameter (2R))	50 76 0.5	mm mm m			before test at start of test	2.2 3.8	m m
Test Results									
Time (min)	Depth (m)	Change in Head: δH (m)	δH/Ho]					
0	3.8	1.60	1.000	1					
5	3.72	1.52	0.950	_					
10	3.66	1.46	0.913	_					
20	3.56	1.36	0.850	1]
30	3.46	1.26	0.788						
40	3.37	1.17	0.731	1.00 -					
50	3.29	1.09	0.681	_					
60	3.22	1.02	0.638	-				- 14	
70	3.15	0.95	0.594					A 	
80	3.08	0.88	0.550						
90	3.03	0.83	0.519	Head Head					
100	2.97	0.77	0.481	o d					
120	2.87	0.67	0.419	- 0.10 -					1
137	2.79	0.59	0.369	ad					
150	2.74	0.54	0.338	Ť					À
200	2.59	0.39	0.244						
300	2.39	0.19	0.119						
400	2.29	0.09	0.056						1
500	2.24	0.04	0.025						
600	2.22	0.02	0.013	0.01 -					A
650	2.21	0.01	0.006)	1	10	100	1000
687	2.2	0	0.000	-			Time (minutes)		
							To = 137 mins 8220 secs		
Theory:	-	ead Permeability Le/R)]/2Le To	calculated u	where r = ra R = radius c Le = length	dius of cas of well scre of well scre	sing en een	to 37% of initial o	change	
Hydra	ulic Condu	ctivity	k =	2.0E		m/sec			
			=	0.0	71	cm/ho	bur		

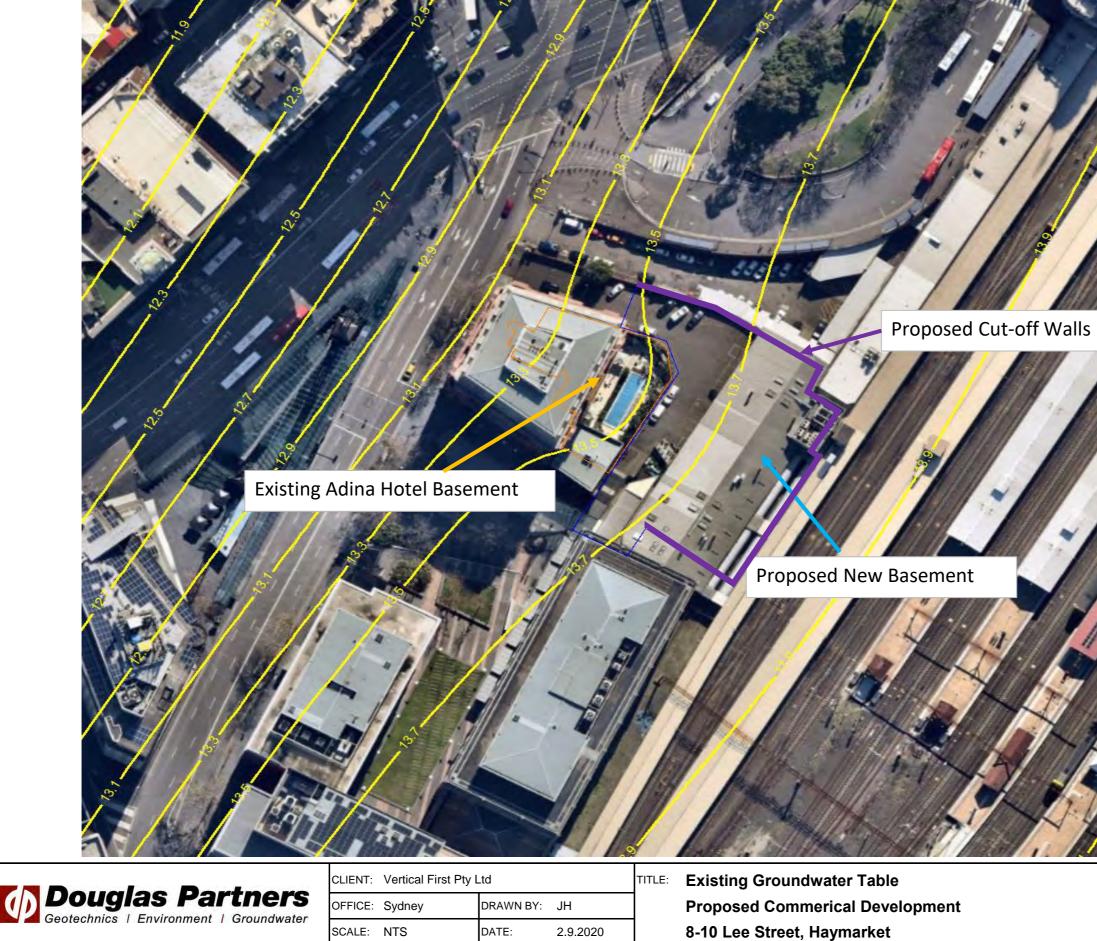
Client: Project: Location:	Propose	First Pty Ltd d Commercia e Street, Hayr		ment		Project Test da Tested	ate:	86767.00 17-May-2 NB	
Test Location Description: Material type:	Standpip	e in borehole ne				Test No Easting Northin Surface	: g	BH107B 333945 6249272 15.5	m m m AHD
Details of We	ell Installatio	on							
Well casing d	• •		50	mm		epth to water b		2.65	m
Well screen d	· · ·		76	mm	D	epth to water a	at start of test	10.72	m
Length of wel	l screen (Le)		5.5	m					
Test Results									
		Change in	011/11	7					
Time (min)	Depth (m)	Head: δH (m)	δH/Ho						
0	10.72	8.07	1.000						
1	10.63	7.98	0.989						
2	10.53	7.88	0.976	1					
3	10.44	7.79	0.965						
4	10.34	7.69	0.953	- 1	.00				
5	10.25	7.60	0.942	4 '					
6	10.16	7.51	0.931	4					
7	10.07	7.42	0.919	-					
8	9.98 9.89	7.33 7.24	0.908	-					
9 10	9.89 9.8	7.24	0.897	<u> </u>					
20	9.0 8.98	6.33	0.880	Head Ratio dh/ho					
30	8.16	5.51	0.683	∩	.10 —				
40	7.36	4.71	0.584	ad R					
50	6.56	3.91	0.485	Ë					
60	5.76	3.11	0.385	1					
61.5	5.64	2.99	0.371	1		+ + + + + + + + + + + + + + + + + + + +			
70	4.87	2.22	0.275	1					
80	4.22	1.57	0.195						
90	3.73	1.08	0.134	n	.01			<u> </u>	
100	3.4	0.75	0.093	_	0	1	10	100	1000
150	2.75	0.1	0.012	4			Time (minutes)		
200	2.71	0.06	0.007	4			inite (initiates)		
300	2.69	0.04	0.005	╡└──					
400	2.68	0.03	0.004	4		-	о — С4 Г ·		
500	2.66	0.01	0.001			1	0 = 61.5 mins		
636	2.65	0	0.000				3690 secs	5	
Theory:	-	ad Permeability [Le/R)]/2Le To	calculated	where r R = radi Le = len	= radiu ius of w	Hvorslev is of casing vell screen well screen n to rise or fall to	o 37% of initial o	change	
Hydraulic Conductivity k = =					.7E-08	3 m/sec cm/hou	ır		

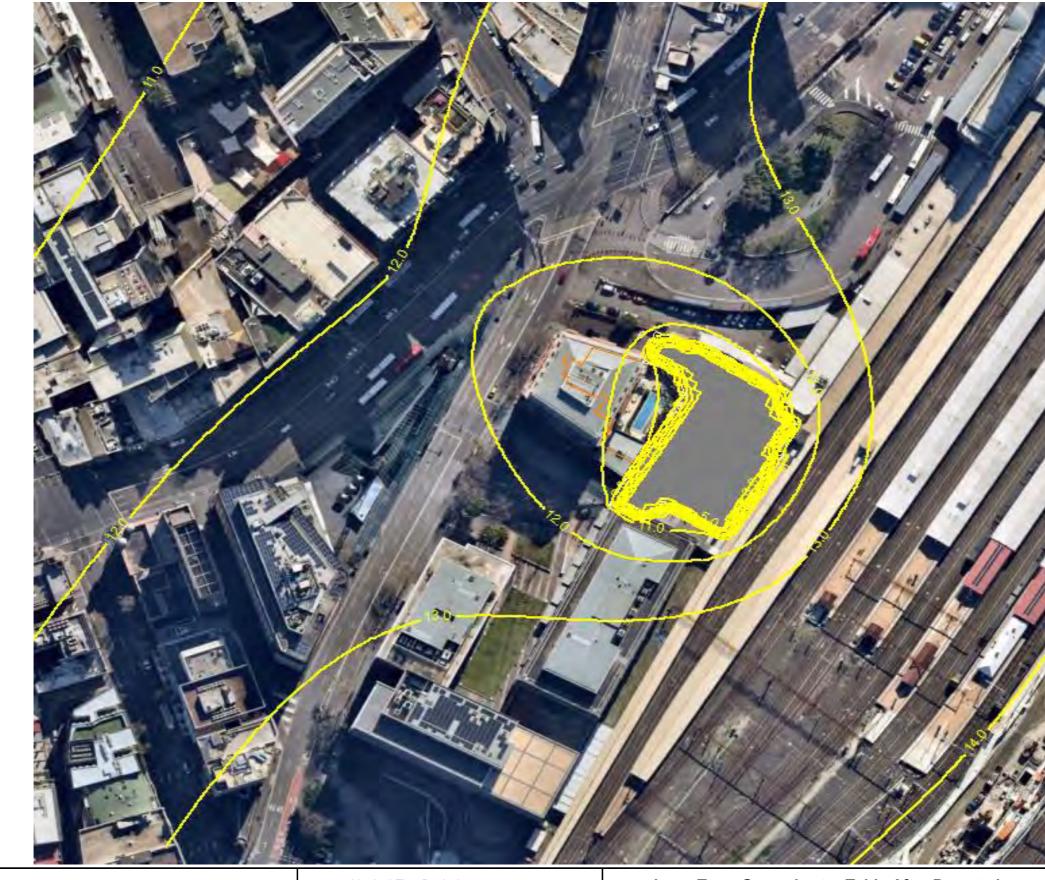
Permeability Testing - Rising Head Test Report

Client:	Vertical	First Pty Ltd			Project No: 8676)
Project:		d Commercia	l Develop	ment		Test c		26-May-2	
Location:		e Street, Hayn				Teste		AS	
Location.		ourcet, mayn	nantot			10310	a by.	NO	
Test Locatio	n					Test N	lo.	BH107B	
Description:		e in borehole				Eastin		333945	m
Material type:						Northi		6249272	m
51							e Level:	15.5	m AHD
Details of We		on	50		D <i>U U</i>			0.00	
Well casing d	• • •	,	50	mm	-		before test	2.22	m
Well screen d			76	mm	Depth to	water	at start of test	5.15	m
Length of wel	l screen (Le)		5.5	m					
Test Results									
		Change in	SI 1/1 -	7					
Time (min)	Depth (m)	Head: δH (m)	δH/Ho						
0	5.15	2.93	1.000	1					
1	5.10	2.88	0.983	1					
2	5.06	2.84	0.969	_					
3	5.03	2.81	0.959	1]
4	5.00	2.78	0.949						
5	4.97	2.75	0.939	1.00 -		A	A A A A A A		
6	4.95	2.73	0.932						
7	4.92	2.70	0.922						
8	4.89	2.67	0.911					4	
9	4.86	2.64	0.901						
10	4.84	2.62	0.894	h/ho				↓	
20	4.58	2.36	0.805	Head Ratio				X	
30	4.35	2.13	0.727	0.10 -				· · · · · · · · · · · · · · · · · · ·	
40	4.14	1.92	0.655	ad					
50	3.94	1.72	0.587	Ť					1
60	3.77	1.55	0.529						\
70	3.61	1.39	0.474						- \
80	3.47	1.25	0.427						
90	3.35	1.13	0.386						N N
95	3.30	1.08	0.369	0.01 -					Ĩ
100	3.25	1.03	0.352)	1	10	100	1000
150	2.87	0.65	0.222	1			The state of the state		
200	2.65	0.43	0.147				Time (minutes)	1	
300	2.41	0.19	0.065						
400	2.31	0.09	0.031						
500	2.26	0.04	0.014			-	To = 95 mins	6	
600	2.24	0.02	0.007				5700 secs	6	
Theory:	-	ead Permeability Le/R)]/2Le To	calculated u	where r = ra R = radius c Le = length	dius of cas of well scre of well scre	sing en een	o 37% of initial o	change	
Hydraulic Conductivity k = =				5.0E 0.0 [,]	-08	m/sec cm/hc	;		

Client:	Vertical	First Pty Ltd			Project No: 86767.00
Project:		ed Commercia		oment	Test date: 5-Jun-20
Location:		e Street, Hayn			Tested by: NB
Location.	0-10 200	o offeet, hayn	lance		rested by.
Test Locatio	n				Test No. BH109B
Description:		e in borehole			Easting: <u>333970</u> m
Material type:					Northing 6249311 m
51					Surface Level: 15.3 m AF
Details of We Well casing d		n	50	mm	Depth to water at end of test 2.17 m
•	• • •)	76	mm	Depth to water at start of test 0.13 m
Well screen diameter (2R) Length of well screen (Le)			5.6	m	
Fest Results					
		Change in		7	
Time (min)	Depth (m)	Head: δH (m)	δH/Ho		
0	0.13	2.04	1.000		
1	0.27	1.90	0.931		
2	0.29	1.88	0.922		
3	0.31	1.86	0.912		
4	0.31	1.86	0.912		
5	0.33	1.84	0.902	1.00	
6	0.35	1.82	0.892		
7	0.37	1.80	0.882		
8	0.39	1.78	0.873		
9	0.41	1.76	0.863		
10	0.43	1.74	0.853	h/hc	
20	0.61	1.56	0.765	o d	
30	0.8	1.37	0.672	Head Ratio	
40	0.95	1.22	0.598	ead	
50	1.05	1.12	0.549	Ť	
60	1.14	1.03	0.505		
70	1.21	0.96	0.471		
80	1.28	0.89	0.436		
90	1.36	0.81	0.397		
98.5	1.42	0.75	0.368	0.01	
100	1.43	0.74	0.363		0 1 10 100 100
200	1.96	0.21	0.103		Time (minutes)
300	2.08	0.09	0.044		Time (minutes)
400	2.12	0.05	0.025		
500	2.15	0.02	0.010		
600	2.17	0	0.000	_	To = 98.5 mins
					5910 secs
Theory:	-	ead Permeability Le/R)]/2Le To	calculated	where r = ra R = radius o Le = length	by Hvorslev adius of casing of well screen of well screen aken to rise or fall to 37% of initial change
Hydraulic Conductivity k =					E-08 m/sec
				- 0.0	17 cm/hour

Hydraulic Conductivity k = =						m/sec cm/hour			
Theory:	-	ead Permeability (Le/R)]/2Le To	calculated ι	where r = ra R = radius o Le = length	dius of ca f well scre of well scr	ising een reen	7% of initial c	change	
	2.10		0.001				3336 secs		
60	2.14	1.25	0.354	_		To =	55.6 mins	5	
55.6	2.00	1.31	0.369						
50	2.08	1.41	0.386						
40	1.98	1.34	0.434			٦	'ime (minutes)		
30	1.77	1.62	0.478	-	,	I		10	100
20	1.77	1.63	0.478	0.01)			10	100
10	1.56	1.83	0.540						
9	1.44	1.95	0.558	-					
7 8	1.37	1.95	0.596 0.575	-					
6 7	1.29 1.37	2.1 2.02	0.619	-					
5	1.18	2.21	0.652	- -					
4	1.06	2.33	0.687	Head Ratio					
3	0.9	2.49	0.735	20.10 10					
2	0.7	2.69	0.794	tion in the second seco					
1.00	0.42	2.97	0.876	dh,t					
0.90	0.38	3.01	0.888	2					
0.80	0.35	3.04	0.897	_					** *
0.70	0.31	3.08	0.909					-	
0.60	0.27	3.12	0.920						+++++
0.50	0.23	3.16	0.932	1.00	• • • •	A A A A A A A A			
0.40	0.19	3.20	0.944	1.00					
0.30	0.15	3.24	0.956	_					
0.20	0.1	3.29	0.971	_					
0.10	0.05	3.34	0.985	_					
0	0.00	3.39	1.000	_					
Time (min)	Depth (m)	Change in Head: δH (m)	δH/Ho						
est Results									
ength of well.			0.5	m	•				
Vell screen di)	76	mm	•	o water at s		0.00	m
Details of We Vell casing di		on	50	mm	Depth to	o water bef	ore test	3.39	m
/aterial type:	Sandstor	ne				Northing Surface L	evel:	6249325 16.7	m m AHD
escription:		e in borehole				Easting:		333926	m
est Locatior	<u> </u>					Test No.		BH112A	
ocation:	8-10 Lee	e Street, Hayn	narket			Tested by	y:	NB	
Project:	Propose	ed Commercia	l Develop	ment		Test date	:	5-Jun-20	
		First Pty Ltd			Project No:			86767.00	


Client: Project: Location:	Propose	First Pty Ltd ed Commercia e Street, Hayr		ment		Project No: Test date: Tested by:		86767.00 21-May-2 NB	
Test Locatio Description: Material type:	Standpip	e in borehole ne				Test No. Easting: Northing Surface Leve	91:	BH112B 333928 6249324 16.8	m m m AHD
Details of We Well casing d Well screen d Length of wel	liameter (2r) liameter (2R)	50 76 6	mm mm m		to water before to water at sta		5.37 5.75	m m
Test Results	;								
Time (min)	Depth (m)	Change in Head: δH (m)	δH/Ho						
0	5.75	0.38	1.000						
1	5.74	0.37	0.974						
2	5.69	0.32	0.842	_					
3	5.67	0.30	0.789	_					
4	5.66	0.29	0.763	1.00)				
5	5.65	0.28	0.737		,				
6	5.64	0.27	0.711	_					
7	5.63	0.26	0.684	_				× ×	
8	5.63 5.61	0.26	0.684	_					
9 10	5.6	0.24	0.632	2					
10	5.55	0.23	0.805	Head Batio dh/ho					
18	5.51	0.18	0.368	Gatio				1	
20	5.49	0.14	0.306	2					
30	5.42	0.05	0.132	He					
40	5.4	0.03	0.079	-					
50	5.38	0.01	0.026						
50.5	5.37	0	0.000	_					▲
				_					
				0.0*	1				
				0.0	0	1		10	100
				-		Time	e (minutes)		
						To =	18 mins	;	
							1080 secs	i	
Theory:	-	ead Permeability (Le/R)]/2Le To	calculated	where r = R = radius Le = lengt	radius of c s of well sc h of well s	asing reen	of initial c	change	
Hydra	ulic Condu	ıctivity	k =		E-07	m/sec			
	=				088	cm/hour			



Hydraulic Conductivity k = =				3.9E 0.1		m/sec cm/hour				
Theory:	k = [r ² ln(ead Permeability Le/R)]/2Le To	calculated u	where r = ra R = radius o Le = length To = time ta	adius of ca of well scru of well sc aken to rise	asing een reen e or fall to 37	7% of initial o	change		
						To =	11.2 mins 672 secs			
30	4.6	0.72	0.135			1	'ime (minutes)			
20	4.13	1.19	0.224			-	'imo (mint)			
11.2	3.35	1.97	0.370		.1	1.0		10.0	100.0	
10	3.20	2.12	0.398	0.01						
9	3.06	2.26	0.425							
8	2.89	2.43	0.457							
7	2.71	2.61	0.491						+++++	
6	2.52	2.8	0.526						-+-++++	
5	2.29	3.03	0.570	μ						
4	2.04	3.28	0.617	Head Ratio						
3	1.74	3.58	0.673	0.10						
2	1.36	3.96	0.744	o de l						
1	0.82	4.50	0.846	h/hc				│ 	-+++++	
0.9	0.76	4.56	0.857						+++++	
0.8	0.68	4.64	0.872	1				A	+++++	
0.7	0.61	4.71	0.885	1					++++	
0.6	0.53	4.79	0.900	1			to and			
0.5	0.45	4.87	0.915	1.00	<u> </u>	+ + + + + + + + + + + + + + + + + + +				
0.4	0.36	4.96	0.932							
0.3	0.26	5.06	0.951	1						
0.2	0.17	5.15	0.968							
0.0	0.06	5.26	0.989							
Time (min)	Depth (m)	Head: δ H (m)	δH/Ho 1.000	-						
Test Results		Change in		 T						
_ength of wel	l screen (Le)		6	m						
Vell screen d	liameter (2R)	76	mm	Depth t	o water at s	tart of test	0.00	m	
Details of We Well casing d		on	50	mm	Depth t	o water bef	ore test	5.32	m	
Aaterial type:						Northing Surface Le	evel:	6249324 16.8	m m AHD	
escription:	Standpip	e in borehole				Easting:		333928	m	
Fest Locatio	-					Test No.		BH112B		
ocation:		e Street, Hayn				Tested by	/ :	NB		
roject:	Propose	d Commercia	I Develop	ment		Test date		5-Jun-20		
)rojact:						Project N		86767.00		

Appendix E

Modelling Results Estimated Groundwater Table and Drawdown Contours

CLIENT:	T: Vertical First Pty Ltd			
OFFICE:	Sydney	DRAWN BY:	JH	
SCALE:	NTS	DATE:	2.9.2020	

TITLE: Long Term Groundwater Table After Dewatering Proposed Commerical Development 8-10 Lee Street, Haymarket

1 May	15	
alah sa katalah sa katalah sa katalah sa katalah sa katalah sa katalah sa katalah sa katalah sa katalah sa kat Katalah sa katalah sa katalah sa katalah sa katalah sa katalah sa katalah sa katalah sa katalah sa katalah sa ka	PROJECT No:	86767 04
	PROJECT No: DRAWING No:	86767.04 M2
	REVISION:	A
		A

CLIENT: Vertical First Pty Ltd			
OFFICE:	Sydney	DRAWN BY:	JH
SCALE:	NTS	DATE:	2.9.2020

TITLE: Long Term Drawdown Contour Proposed Commerical Development 8-10 Lee Street, Haymarket

PROJECT No:	86767.04
DRAWING No:	M3
REVISION:	A