Technical report G1

Factual report on geotechnical investigation

Factual Report on Geotechnical Investigation

Green Waratah 339 Wallgrove Road, Eastern Creek

Prepared for Cleanaway Operations Pty Ltd

> Project 84822.04 June 2020

Document History

Document details

Project No.	84822.04	Document No.	R.001.Rev0			
Document title	Report on Geotechnical Investigation					
	Green Waratah					
Site address	339 Wallgrove Road	, Eastern Creek				
Report prepared for	Cleanaway Operations Pty Ltd					
File name	84822.04.R.001.Rev0					

Document status and review

Status	Prepared by	Reviewed by	Date issued	
Revision 0	Gavin Boyd	Konrad Schultz	22 June 2020	
-				

Distribution of copies

Status	Electronic	Paper	Issued to
Revision 0	1	0	Nick Schutt, Cleanaway Operations Pty Ltd

The undersigned, on behalf of Douglas Partners Pty Ltd, confirm that this document and all attached drawings, logs and test results have been checked and reviewed for errors, omissions and inaccuracies.

	Signature	Date
Author	fage	22 June 2020
Reviewer	pp fage	22 June 2020

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au 43 Hobart Street Riverstone NSW 2765 PO Box 267 Riverstone NSW 2765 Phone (02) 4666 0450

Table of Contents

Page

1.	Introd	uction	1
2.	Site D	Description	1
3.	Geolo	gy and Soil Landscape	3
4.	Field	Work Methods	3
5.	Field	Work Results	5
	5.1	Subsurface Conditions	5
	5.2	Groundwater	5
6.	Labor	atory Testing	7
	6.1	Chemical Testing	7
	6.2	Acid Sulfate Soil Screening	8
	6.3	Thermal Resistivity	9
	6.4	Mechanical Testing	9
	6.5	Petrographic and X-Ray Diffraction Test	10
	6.6	Rock Testing	11
7.	Limita	tions	13

Appendix A:	About This Report
Appendix B:	Drawings
Appendix C:	Results of Field Work
Appendix D	Results of Seismic Dilatometers
Appendix E:	Results of Groundwater Monitoring
Appendix F:	Laboratory Test Results

Factual Report on Geotechnical Investigation Green Waratah 339 Wallgrove Road, Eastern Creek

1. Introduction

This interim factual report presents the results of a geotechnical investigation undertaken by Douglas Partners Pty Ltd (DP) for the Green Waratah site at 339 Wallgrove Road, Eastern Creek. The investigation was commissioned by ARUP in an email dated 17 January 2020 by Mr Attila Gubicak on behalf of Cleanaway Operations Pty Ltd and was undertaken in accordance with DPs proposal NWS190206 dated 4 December 2019.

The site located at 339 Wallgrove Road in Eastern Creek and covers an area of approximately 8.23 ha and is proposed for the proposed Western Sydney Energy and Resource Recovery Facility, a waste processing facility with possible incineration capability ('Green Waratah'). Site investigation was carried out to provide factual information on subsurface conditions.

The investigation included the drilling of nine boreholes, five push tubes, the excavation of four test pits, five seismic dilatometers and laboratory testing of samples selected by ARUP. The details of the field and laboratory work are presented in this report.

A detailed site (contamination) investigation (DSI) was carried out in conjunction with the field work described above, the results of which are reported separately dated 1 June 2020 (Project Reference 84822.03.R.00.Rev0).

2. Site Description

The site is located at 339 Wallgrove Road, Eastern Creek and comprises Lot 1 in Deposited Plan DP 1059698. The site is located immediately to the east of the M7 Motorway and approximately 2 km west of the Prospect Reservoir. The site is situated within the local government area of Blacktown City Council.

The site is rectangular and covers an area of approximately 8.23 hectares. It is currently occupied by a chicken farm, which includes a number of large sheds, ancillary buildings, with a large grassed area and a dam at the eastern boundary.

Figure 1 (following page) shows the approximate site boundaries and an east-west oriented easement running through the site.

Figure 1 – Subject site location and approximate site boundary (red)

The site slopes from a high point at the south west boundary of approximately RL 61 m to the north of the site between RL 51 m and RL 52 m. A steep embankment separates higher ground at the western hardstand areas and lower ground covered by the eastern grassed areas of the site and dam at the east.

A dam is located at the eastern boundary of the site. A tributary of the Eastern Creek is located to the north and west of the site and the Prospect Reservoir is located to the east.

Surrounding land uses adjacent to the site are identified as:

- North: Primarily grassed and sparsely vegetated areas with two ponds located to the north east, including one potential treatment pond associated with the adjoining site to the east.
- East: The Global Renewal Resources Centre at Eastern Creek, including landfill.
- South: Warragamba Pipeline which traverses an approximate east-west alignment. The pipeline is partially located within a cutting and is covered at its western end as it head beneath the Westlink M7. Further to the south is primarily grassed areas including the Austral Bricks site.

West: Westlink M7 and then an industrial business park, including Vawdrey (truck bodies sales and repair) and Bridgestone Select Tyres.

3. Geology and Soil Landscape

Reference to the Penrith 1:100 000 Geological Series Sheet indicates that the site is underlain by the Bringelly Shale Formation which comprises shale, carbonaceous claystone, claystone, laminite, fine to medium-grained lithic sandstone, rare coal and tuff.

Reference to the Penrith 1:100 000 Soil Landscape indicates that the site is underlain by soils of the Blacktown group. The soil is described as shallow to moderately deep, red and brown podzolic soils on crests, upper slopes and well drained areas and yellow podzolic soils and soloths on lower slopes and areas of poor drainage.

The soils are generally moderately reactive, have low to very low fertility and have moderate erodibility.

This soil landscape generally occurs on gently undulating rises on the Wianamatta Shales, of which Bringelly Shale is a subgroup, with local relief of 10 m to 30 m. Crests are broad and rounded with convex upper slopes grading into concave lower slope. Rock outcrops are generally absent.

Reference to the Acid Sulfate Soil (ASS) risk mapping for the area indicates that the site is located in an area of no known occurrence. ASS normally occurs at elevations less than RL 5 m AHD in alluvial and estuarine soils.

4. Field Work Methods

The field work involved the following:

- Test bores (Bore ABH01 to ABH04, ABH04A and ABH05 to ABH08) were drilled at nine locations with a track mounted auger/sonic drilling and sampling rig. Initially, the bores were either sonic or auger drilled to depths of 2.2 m to 5.5 m, followed by the installation of casing. Standard penetration tests (SPTs) were carried out within soils at regular depth intervals. Undisturbed samples (U75 tubes) were sampled at regular depth intervals. Disturbed soil samples retrieved from the cuttings returned by the auger blade or sonic tube were used for identification and classification purposes;
- A second bore was drilled immediately adjacent to ABH01 and ABH02 for the purpose of obtaining additional sample for laboratory testing. These samples, obtained from the same depth intervals, have been labelled with an "A" suffix.
- Three bores (ABH01, ABH02 and ABH08) were extended using PQ rock coring techniques to depths of 16.6 m to 25.5 m.
- Four test pits (ATP01 to ATP04) were excavated using an 8 tonne excavator to depths of 2.5 m to 2.9 m. Disturbed and undisturbed samples (U50 tubes) were sampled within the fill and natural soils.

- Five push tube boreholes (PT101 to PT105) to practical refusal at depths of 1.5 m to 2.6 m. Push tube rigs were pushed using a Geoprobe rig.
- Five seismic dilatometers (SDMT-01 to SDMT-05) were carried out by DP's nominated subcontractor, In-Situ Geotechnical Services. The seismic dilatometers involved pushing a cone above the dilatometer blade using hydraulic thrust from a truck-mounted testing rig. Measurements of cone resistance and sleeve friction are made at regular depth intervals and stored on a portable computer for subsequent interpretation.

Shear (S) waves were generated at the surface by horizontal hammer blows on each end of a \ traction beam. The vertically propagating wavefront was detected by sensors a triaxial geophone receiver in the cone tip, which was attached to steel rods pushed hydraulically to each test depth by the rig. Waveforms detected at each geophone were recorded. Direct compressional (P) waves were generated at each test depth by vertical sledgehammer blows onto a steel ground plate.

- Standpipes were installed in four Boreholes (ABH01, ABH02, ABH03 and ABH08) to depths between 4 m and 15 m. Construction details for the standpipes are shown on the relevant logs in the "remarks" section. The standpipes were initially measured and then purged of water.
- Following the initial purge of water, the recovery of the water in the standpipes was recorded using data-loggers at one minute intervals as part of a rising head permeability test. These results were recorded over a 48 hour period following the purge of water. The rising head permeability was subsequently calculated
- Downhole Rugged Troll data loggers have been placed within the standpipes and recording water level fluctuations at hourly intervals. A barometric troll has also been placed near the surface of ABH01 to allow for atmospheric pressure adjustments.

All field work was carried out under the direction of a Senior Geotechnical Engineer.

The ground surface levels (measured in 'metres above Australian Height Datum' -m AHD') together with the Eastings and Northings at the test locations were determined by using a High Precision Differential GPS which is accurate to approximately 0.1 m. The test locations are shown on Drawing 1 in Appendix B.

5. Field Work Results

5.1 Subsurface Conditions

Details of the conditions encountered in the boreholes and pit are presented in Appendix C. Explanatory Notes defining classification methods and descriptive terms used in logging the bores and pits are also given in Appendix C.

The typical material strata encountered within the bores and pits are described below:

FILL	Variable fill materials comprising surficial layers of topsoil, ripped sandstone gravel, cobbles and boulders, roadbase gravel, sand, building waste, to depths of 0.1 m to 1.5 m, except at ABH05 where fill to 3.5 m depth was encountered; overlying,
NATURAL SOILS	typically medium to high plasticity, stiff to hard, orange brown mottled grey silty clays with ironstone gravel. The lower portions of this unit were logged as extremely weathered shale in some boreholes; overlying,
VERY LOW AND LOW STRENGTH SILTSTONE	very low and low strength, moderately to slightly weathered, highly fractured to fractured, siltstone at depths of 1.6 m to 4.5 m depth in the boreholes; overlying,
MEDIUM AND HIGH STRENGTH SILTSTONE AND LAMINITY	Typically low and medium strength with some low high strength bands, highly weathered to fresh, slightly fractured to unbroken, grey siltstone and laminite (interbedded siltstone and sandstone) at depths of 3.5 m to 6.6 m. A very high strength layer was encountered in ABH01 at 19.2 m to 20.2 m depth.

The results of seismic dilatometers are included in Appendix D.

5.2 Groundwater

Groundwater levels were recorded using an electronic dip meter during DPs site visits. The results of these groundwater measurements are outlined in Table 1 (following page).

Water quality readings are included in DP's DSI report.

		0	Reading / date							
Bore	Depth	Surface	20 February 2020		27 February 2020		28 February 2020*		6 March 2020	
Bore	(m) (R.L.)		Water level	Water level	Water level	Water level	Water level	Water level	Water level	Water level
		(K.L.)	(m b.g.l.)	(R.L.)	(m b.g.l.)	(R.L.)	(m b.g.l.)	(R.L.)	(m b.g.l.)	(R.L.)
ABH01	15	58.3	3.8	54.5	3.6	54.7	3.8	54.5	3.7	54.6
ABH02	15	57.6	4.2	53.4	4.3	53.3	4.8	52.8	4.1	53.5
ABH03	5	54.4	3.1	53.3	2.6	51.8	1.3	53.1	3.2	53.6
ABH08	15	60.3	NA	NA	5.7	54.8	NR	NR	5.5	54.8

Table 1: Results of Groundwater Measurements in Groundwater Wells

Notes:

- ABH01 Installed on 3/2/2020
- ABH02 installed on 10/2/2020
- ABH03 installed on 4/2/2020
- ABH08 installed on 21/2/2020
- All wells purged on 20/2/2020
- * Heavy Rainfall preceded measurement and falling Head Tests carried out on 27 February 2020. Accordingly, given the variability in site and sampling conditions these results may not be indicative of actual groundwater measurements. An anomalous readings, particularly for ABH03 on this date, is not considered reflective of actual site groundwater levels.
- NR = Not Recorded

The results of data-logger monitoring are presented in Figure 2 (following page) and repeated in Appendix E.

The results of the rising head permeability tests indicated the following permeability's outlined in Table 2.

Well	Depth Range of Screen in (m)	Material	Estimated Permeability (m/sec)
ABH01	4.5 – 15.0	Siltstone	2.6 x 10 ⁻⁹
ABH02	6.0 - 15.0	Siltstone	6.5 x 10 ⁻⁹
ABH03	0.5 - 4.0	Clay	7.1 x 10 ⁻¹⁰
ABH08	7.0 – 14.8	Siltstone	2.3 x 10 ⁻⁹

Table 2: Permeability Estimates from Rising Head Permeability Tests

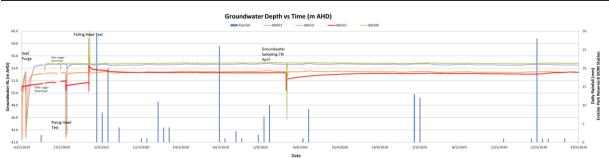


Figure 2: Results of Groundwater Measurements between 20 February 2020 and 29 May 2020 (Note: better Resolution of this graph provided in Appendix E)

6. Laboratory Testing

6.1 Chemical Testing

Selected samples collected from boreholes were tested in the laboratory to determine pH, sulfate and chloride ion concentrations as well as the electrical conductivity and textural classification for assessment of aggressivity potential of the soil. The detailed results are given in Appendix E and are summarised in Tables 3 and 4.

Sample Location	Sample Depth (m)	Material	рН	Chloride (mg/kg)	Sulfate (mg/kg)	Electrical Conductivity (µS/cm)	Textural Classification
ABH01	1.6 – 2.0	Silty Clay	5.6	350	230	440	7
ABH02	2.0 - 2.45	Silty Clay	6.7	970	350	830	7
ABH02	3.0 - 3.09	Silty Clay	6.8	730	330	720	8
ABH03	0.9 – 1.0	Silty Clay	5.5	1600	300	110	8
ABH04	1.6 – 2.0	Silty Clay	6.3	110	260	250	8.5
ABH05	0.5 – 1.6	Silty Clay	5.3	1700	380	1300	8
ABH06	1.41 – 2.0	Silty Clay	6.1	77	58	95	8
ATP02	0.3-0.4	Silty Clay	8.1	290	130	320	9

Table 3: Results of Laboratory Testing

Note: All samples mixed at a ratio of 1(soil):5(water) prior to testing.

Table 4: Results of Laboratory Testing

Sample Location	Sample Depth (m)	Material	Magnesium (mg/kg)	CEC (meq/100g)	ESP (%)
ABH01	1.6 – 2.0	Silty Clay	2300	7.1	27
ABH02	2.0 – 2.45	Silty Clay	2300	15	26
ABH02	3.0 - 3.09	Silty Clay	2500	13	25
ABH03	0.9 – 1.0	Silty Clay	2500	15	21
ABH04	1.6 – 2.0	Silty Clay	1800	13	10
ABH05	0.5 – 1.6	Silty Clay	1700	11	24
ABH06	1.41 – 2.0	Silty Clay	2500	9.7	18
ATP02	0.3-0.4	Silty Clay	1400	12	8

Notes: CEC = Cation Exchange Capacity

ESP = Sodicity

6.2 Acid Sulfate Soil Screening

Selected soil samples were tested for indicators of acid sulfate soil conditions using a calibrated pH meter to measure pH in water (H_2O) and in hydrogen peroxide (H_2O_2) in accordance with the NSW Acid Sulfate Soil Management Advisory Committee, *Acid Sulfate Soil Manual*, August 1998 (ASSMAC). The detailed results are given in Appendix E and are summarised in Table 5.

		Material	Screening Tes			Test Results	
Sample	Sample		рН				
Location	Depth (m)		рН _F	рН _{FOX} (avg)	рН _F - рН _{FOX}	Strength of Reaction	
ATP04	0.5 – 0.6	Silty Clay	6.4	4.6	1.8	Volcanic	
ABH05	0.5 – 0.6	Silty Clay	5.4	3.4	2.0	Low Reaction	

The results of the screening tests for pH in H_2O (pH_F) were in the range of 5.4 to 6.4 pH units. This usually indicates that actual acid sulfate soil conditions (AAS) are not present. This interpretation is based on the ASSMAC guidelines which suggests that oxidation of pyrite would be likely to have already occurred if pH_F is less than 4 pH units.

The results of the initial screening tests for pH following addition of hydrogen peroxide (pH_{FOX}) were in the range of 3.4 to 4.6 pH units. The ASSMAC guidelines suggest that potential acid sulfate soil (PASS) conditions may be present where pH in hydrogen peroxide solution (pH_{FOX}) is less than 3.5 pH units.

The ASSMAC guidelines also suggest that potential acid sulfate soil conditions may be present where the difference between pH in H_2O (p H_F) and pH in H_2O_2 (p H_{FOX}) is at least 1 pH unit.

Further indications of the presence of acid sulfate soils include change in colour after oxidation, and effervescence. Low and volcanic reaction rates were observed.

Based on the initial screening results, detailed ASS testing comprising the Chromium suite was carried out on the two samples collected from the boreholes.

The action criterion on which the presence of ASS is made based on detailed testing and which may trigger a requirement for an acid sulfate management plan is based on the *Soil Management Guidelines* and the Laboratory Methods Guidelines. Based on the above results, Chromium Reducible testing was carried out. The detailed results are given in Appendix E and are summarised in Table 6.

Sample Location	Sample Depth (m)	pH _{KCL} pH Units	S _{CR} (%S) % w/w S	Titratable Actual Acidity (TAA) % w/w S	Acid Neutralising Capacity (ANC) % w/w S	s-S _{NAS} (% Sulfur) % w/w S	Net Acidity Sulfur % w/w S	
ATP04	0.5 – 0.6	5.9	<0.005	<0.01	NA	NA	0.007	
ABH05	0.5 – 0.6	4.6	<0.005	0.003	NA	NA	0.035	

Table 6: Results of Chromium Suite Testing

6.3 **Thermal Resistivity**

Soil samples recovered from test bores were re-compacted to a maximum dry density of 98% relative to standard compaction at optimum moisture content and then tested for Thermal Resistivity. The samples were tested by Geotherm Australasia Pty Ltd (Geotherm) in accordance with ASTM D5334 to obtain Thermal Resistivity (TR) values from the field moisture content to the fully dried out state (zero moisture content).

The results of the laboratory testing are provided in Table 8 below. Detailed results of laboratory TR testing by Geotherm are attached in Appendix E.

Borehole	Sample Depth (m)	Material	FMC (%)	MDD (t/m ³)	TR (FMC) (°Km/W)	TR (0%) (°Km/W)
ABH01	1.3 – 1.6	Silty Clay	17.3	1.73	0.75	1.96
ABH02	2.4 – 2.8	Silty Clay	22.9	1.62	0.63	1.64

Table 8: Thermal Resistivity Results

Where

FMC = Field Moisture Content TR (FMC) = Pre-Dry out TR value at Field Moisture Content TR (0%) = Fully Dried out TR value at 0% Moisture Content MDD

= Approximate Maximum Dry Density (t/m³)

6.4 **Mechanical Testing**

Selected samples from the test pits were tested in the laboratory for measurement of plasticity, dispersion potential, shrink-swell, moisture content, compaction properties and CBR. The detailed results are given in Appendix E and summarised in Table 9.

Sample Location	Depth (m)	Material	FMC (%)	OMC (%)	MDD (t/m ³)	CBR (%)	W∟ (%)	₩ _P (%)	PI (%)	LS (%)	l _{ss} (%/ ∆pf)	ECN
ABH01	1.0 – 1.28	Clay	15.6	-	-	-	-	-	-	-	2.2	-
ABH01	1.6 – 2.0	Siltstone	8.8	11.0	1.93	-	38	17	21	10.5	2.2	2
ABH01A	1.3 – 1.6	Clayey Silt	17.0	17.5	1.73	1.0	60	23	37	14.5	-	2
ABH02	1.5 – 2.0	Silty Clay	25.7	-	-	-	-	-	-	-	3.6	-
ABH02A	1.5- 2.0	Silty Clay	28.1	25.7	1.55	6.0	-	-	-	-	-	-
ABH02A	2.4 – 2.8	Silty Clay	26.3	23.5	1.62	I	49	21	28	12.5		-
ABH03	1.0 – 1.25	Silty Clay	22.5	-	-	-	-	-	-	-	2.9	-
ABH04	1.0 – 2.0	Clay	21.0	-	-	-	-	-	-	-	3.9	-
ABH04	1.0 – 2.0	Silty Clay	23.9	21.0	1.65	-	47	20	27	12.5	-	2

Table 9: Results of Laboratory Testing – Physical

Sample Location	Depth (m)	Material	FMC (%)	ОМС (%)	MDD (t/m³)	CBR (%)	₩∟ (%)	W _P (%)	РІ (%)	LS (%)	l _{ss} (%/ ∆pf)	ECN
ABH05	0.5 – 1.5	Silty Clay	22.0	21.5	1.63	-	-	-	-	-	-	-
ABH05	1.0 – 1.31	Clay	-	-	-	-	76	17	59	17.5	3.1	-
ABH06	1.0-1.41	Silty Clay	-	-	-	-	46	17	29	13.5	-	-
ABH07	1.0 – 1.27	Silty Clay	-	-	-	-	72	25	47	19.5	-	-
ABH07	1.6 – 2.4	Silty Clay	9.1	12.0	1.92	-	-	-	-	-	-	-
ATP01	2.5 – 2.6	Siltstone	13.8	15.0	1.85	1.0	47	19	28	13.0	-	2
ATP02	0.5 – 0.6	Silty Clay	12.1	14.3	1.80	8.0	-	-	-	-	-	-
ATP02	1.5 – 1.76	Silty Clay	-	-	-	-	48	17	31	15.5	-	2
ATP03	0.9 – 1.0	Silty Clay	20.0	19.9	1.69	2.5	56	18	38	17.0	-	2
ATP04	2.4 – 2.5	Siltstone	15.5	13.9	1.78	1.0	45	21	24	12.0	-	2
Notes:	FMC	= Field M	oisture C	Content		OMC	=	Standard C	Dptimum	Moisture	Conten	t
	MDD	= Maximu	ım Dry D	ensity		CBR	=	California I	bearing r	atio		
	WL	= Liquid L	.imit			W _P	=	Plastic Limit Shrink Swell Index				
	PI	= Plasticit	ty Index			I _{SS}	=					
	ECN	= Emerso	on Crumb	number		LS	=	Linear Shri	inkage			

The results of the laboratory testing indicate the following:

- The Atterberg Limit results indicate that the silty clay samples were generally of medium or high plasticity.
- The shrink-swell results indicate the silty clays are typically highly reactive and therefore susceptible to shrink and swell movements due to changes in soil moisture content.
- The CBR values were of low remoulded strength and ranged from 1.0 % to 6.0 % for the natural silty clay samples tested.
- The field moisture contents ranged from 8.8 % to 28.1 % for the silty clay samples tested.
- The Emerson Crumb Numbers were 2, indicating the clays were highly dispersive.

Particle Size Distribution and Hydrometer tests were also carried out. The results are provided in Appendix E.

6.5 Petrographic and X-Ray Diffraction Test

A petrographic analysis was carried out on the sample obtained from ABH02 from 2.5 - 2.88m by Geochempet Services, Brisbane. The method of analysis was adapted from ASTM C295 Standard Guide for Petrographic Assessment of Aggegrates for Concrete and AS2758.1 – 2014 Aggregates and rock for engineering purposes part 1: Concrete aggregates (Appendix B). The sample was identified as a silty claystone (residual soil) with the following

The Hard, Durable Components had the following breakdown:

- 10% quartz grains
- 3 % feldspar grains
- 1% intermediate volcanic clasts
- 3% acid tuff clasts
- 3% quartzite clasts
- 5% hematite/goethite
- 1% hematized, leucoxenized of finely rutilated clasts of former detrital opaqual oxides.

The soft, weak and/or deleterious components had the following breakdown:

- 54% illitie-smecitite clay cement variably stained by secondary iron oxide and intermingled very fine quartz
- 4% kaolinite clay
- 17% earthy secondary iron oxide
- <1% carbonaceous matter
- <1% pores

The X-Ray diffraction analysis indicated the following minerals

- Quartz 28.2 %
- Goethite 3.4 %
- Smectite 8.6%
- Illite/Smectite 17.3 %
- Kaolinite 25.7%
- Amorphous/unidentified content 16.9 %

The fine faction analysis indicated the illite-smectite mixed layer and kaolinite were the major components of the sample analysed. Comments from the laboratory, Geochmept, have been included in Appendix E.

6.6 Rock Testing

Uniaxial Point Load Strength Index (Is_{50}) testing and Unconfined Compressive Strength Testing was carried out on selected rock core specimens. The results of the tests are given on the borehole logs at the appropriate depths. Figure 3 (following page) shows the range of Is_{50} results at the various depths (shown as Reduced Levels relative to AHD). The results of Unconfined Compressive Strength Testing is summarised in Table 10 and the test report sheets are provided in Appendix E.

Page 12 of 14

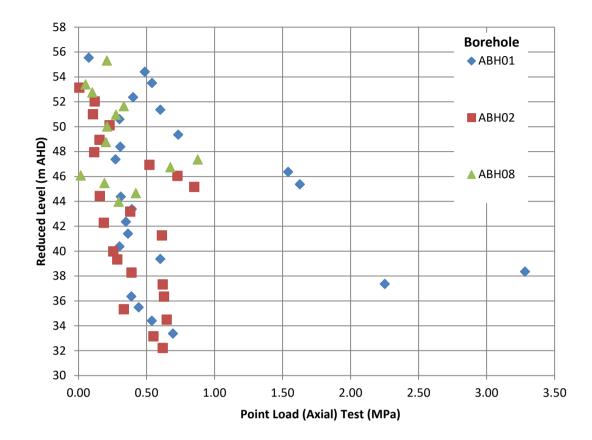


Figure 3: Point Load Test Results relative to Reduced Level (m AHD)

Diametrical Point loads were carried out at regular intervals within the rock core. The results are included on the test bore log reports. Some samples fractured along bedding planes within the siltstone bedrock and may not reflect the diametrical strength of the rock.

Bore	Depth (m)	Material Description	UCS (MPa)	Bore	Depth (m)	Material Description	UCS (MPa)
ABH01	4.24 – 4.59	Siltstone	9.5	ABH02	17.32 – 17.62	Siltstone	6.1
ABH01	9.54 – 9.94	Siltstone	4.8	ABH02	20.09 - 20.36	Siltstone	5.4
ABH01	13.42 – 13.85	Siltstone	12.3	ABH02	24.0 - 24.45	Siltstone	7.3
ABH01	18.56 – 18.91	Siltstone	6.8	ABH08	6.41 – 6.65	Siltstone	4.2
ABH01	22.13 – 22.42	Siltstone	5.8	ABH08	9.02 – 9.3	Siltstone	2.8
ABH01	23.54 – 23.78	Siltstone	8.1	ABH08	10.55 – 10.8	Siltstone	2.1

Table 10: Summary of UCS Test Results

ABH02	7.6 – 7.91	Siltstone	10.4	ABH08	12.56 - 12.89	Siltstone	6.9
ABH02	14.09 – 14.45	Siltstone	7.3	ABH08	13.2 – 13.5	Siltstone	2.6
ABH02	15.57 - 16.0	Siltstone	9.2	ABH08	15.7 – 16.0	Siltstone	3.6

7. Limitations

Douglas Partners (DP) has prepared this report for this project at 339 Wallgrove Road, Eastern Creek in accordance with DP's proposal NWS190206 dated 4 December 2019. The work was carried out under DP's Conditions of Engagement. This report is provided for the exclusive use of Cleanaway Operations Pty Ltd and Macquarie c/- Arup Pty Ltd for this project only and for the purposes as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage. In preparing this report DP has necessarily relied upon information provided by the client and/or their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and/or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after DP's field testing has been completed.

This report must be read in conjunction with all of the attached notes and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

The scope for work for this investigation/report did not include the assessment of surface or subsurface materials or groundwater for contaminants, within or adjacent to the site. Should evidence of filling of unknown origin be noted in the report, and in particular the presence of building demolition materials, it should be recognised that there may be some risk that such filling may contain contaminants and hazardous building materials.

The contents of this report do not constitute formal design components such as are required, by the Health and Safety Legislation and Regulations, to be included in a Safety Report specifying the hazards likely to be encountered during construction and the controls required to mitigate risk. This design process requires risk assessment to be undertaken, with such assessment being dependent upon factors relating to likelihood of occurrence and consequences of damage to property and to life. This, in turn, requires project data and analysis presently beyond the knowledge and project role

respectively of DP. DP may be able, however, to assist the client in carrying out a risk assessment of potential hazards contained in the Comments section of this report, as an extension to the current scope of works, if so requested, and provided that suitable additional information is made available to DP. Any such risk assessment would, however, be necessarily restricted to the geotechnical components set out in this report and to their application by the project designers to project design, construction, maintenance and demolition.

Douglas Partners Pty Ltd

Appendix A

About This Report

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report; and
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on borehole or pit spacing and sampling frequency;
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

DATA FOR DESCRIPTION AND CLASSIFICATION OF SOILS – Page 1

Ма	ajor Divis	sions			Description		Fie	eld Identification	
				Group Symbol*	Typical Name	Grading		Nature of Fines	Dry Strength
	(mm	VEL	an	GW	Well graded gravels and gravel-sand mixtures, little or no fines.	Good	Wide range in grain size	'Clean' materials (not	Nee
	r than 63	GRAVEL	e than 50% of coarse ins are greater than 2.36 mm	GP	Poorly graded gravels and gravel-sand mixtures, little or no fines.	Poor	Predominantly one size or gap graded	enough fines to bind grains)	None
OILS	(excluding that larger than 63 mm) than 0.075 mm	LS LLY	More than 50 grains are g 2.36	GM	Silty gravels, gravel-sand-silt mixtures.		'Dirty' materials with	Fines are non-plastic	None to medium
AINED S	cluding t in 0.075 i	GRAVELLY SOILS	More grair	GC	Clay gravels, gravel-sand-clay mixtures.	 Good to Fair 	excess of fines	Fines are plastic	Medium to high
COARSE-GRAINED SOILS	y mass, (ex greater tha	SAND	nse 6 mm	SW	Well graded sands and gravelly sands, little or no fines.	Good	Wide range in grain size	'Clean' materials (not	
COAF	는 는 으		% of coarse than 2.36 mm	SP	Poorly graded sands and gravelly sands, little or no fines.	Poor	Predominantly one size or gap graded	enough fines to bind grains)	None
	More than 65% by	SANDY SOILS	More than 50% of ains are less than	SM	Silty sand, sand-silt mixtures.	Cood to Foir 'Dirty' materials with	Fines are non-plastic	None to medium	
	More	SANDY	More grains	SC	Clayey sands, sand-clay mixtures.	 Good to Fair 	excess of fines	Fines are plastic	Medium to high
	or coarse g Il classifica			e fines content is between 5% and 12%, the soil shall be given a		Dry Strength		Dilatancy	Toughness
	han 63			ML	Inorganic silts, very fine sands, rock flour, silty or clayey fine sands.	None to low		Slow to rapid	Low
	mass, (excluding that larger than 63 mm		d Limit an 35%	CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays.	Medium to high		None to slow	Medium
SOILS	uding the			OL	Organic silts and organic silty clays of low plasticity	Low to medium		Slow	Low
FINE-GRAINED SOILS	ass, (exc m	35% <l< td=""><td>_L< 50%</td><td>CI</td><td>Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays.</td><td>Medium to high</td><td></td><td>None to slow</td><td>Medium</td></l<>	_L< 50%	CI	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays.	Medium to high		None to slow	Medium
FINE-G	by dry mi 0.075 m			MH	Inorganic silts, micaceous or diatomaceous fine sands or silts, elastic silts.	Low to medium		None to slow	Low to medium
	than 35% by dry is less than 0.075	great	d Limit er than 0%	СН	Inorganic clays of high plasticity, fat clays.	High to very hig	h	None	High
	More th mm) is l			ОН	Organic clays of medium to high plasticity.	Medium to high		None to very slow	Low to medium
				Pt	Peat muck and other highly organic soils.	Roadily identifie	d by colour, adour, apop	gy feel and generally fibrous text	

ORDER OF DESCRIPTION

In the soil description the terms should be given in the following order: SOIL NAME & UNIFIED CLASSIFICATION SYMBOL.

Plasticity, behavioural or particle characteristics of the primary soil component Colour

Secondary soil components' name(s), estimated proportion(s), plasticity, behavioural or particle characteristics, colour and where practical, its plasticity

Moisture Condition (disturbed or undisturbed state)

Consistency of fine-grained soils (undisturbed state only)

Relative density of coarse-grained soils (determined by in situ tests)

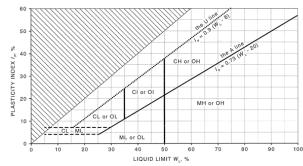
Structure of soil (in undisturbed state)

Zoning

Defects

Cementing

Origin of soil


Additional observations

EXAMPLES:

Silty SAND SM: fine to coarse grained, light brown, 15% non-plastic fines, with gravel, 20% angular particles, moist, apparently dense in place, alluvial.

SILT ML: low plasticity, brown, trace fine sand, w > PL, firm, estuarine.

PLASTICITY CHART (after AS 1726:2017)

PARTICLE SIZES

Silt and Clay

> 200 mm

< 0.075 mm

63 mm to 200 mm

2.36 mm to 63 mm 0.075 mm to 2.36 mm

The classification system excludes the boulder and cobble	Boulders
fractions of the soil and classifies only the materials less than 63 mm in size.	Cobbles
	Gravel
	Sand

	SAND		SILT
COARSE	MEDIUM	FINE	SILT
2.36-0.6 mm	0.6-0.2 mm	0.2-0.075 mm	0.075-0.002 mm

DATA FOR DESCRIPTION AND CLASSIFICATION OF SOILS – Page 2

		GRAVEL
Density	Field Test	
LOOSE	During position of voids and particle position	
DENSE	By inspection of voids and particle packing.	

	SAN	1D					
Density	Field Test	DPT Blows per 300 mm ⁽¹⁾ Dry ⁽²⁾ Wet ⁽³⁾		SPT N Blows	CPT q _c MPa	Relative Density %	Estimated Friction Angle
VERY LOOSE	Easily penetrated with 13 mm reinforcing rod pushed by hand.	< 1	0	0 - 4	0 – 2	0 – 15	25 - 30
LOOSE	Easily penetrated with 13 mm reinforcing rod pushed by hand. Can be excavated with a spade; 50 mm wooden peg can be easily driven.		< 1	4 – 10	2 – 5	15 – 35	27 - 32
MEDIUM DENSE	Penetrated 300 mm with 13 mm reinforcing rod driven by 2 kg hammer – hard shovelling.	3 - 8	1 - 6	10 – 30	5 – 15	35 – 65	30 - 35
DENSE	Penetrated 300 mm with 13 mm reinforcing rod driven with 2 kg hammer, requires pick for excavation; 50 mm wooden peg hard to drive	8 – 15	6 - 10	30 – 50	15 – 25	65 – 85	35 - 40
VERY DENSE	Penetrated only 25 – 50 mm with 13 mm reinforcing rod driven by 2 kg hammer.	> 15	> 10	> 50	> 25	85 – 100	38 - 43

-

⁽¹⁾Valid for depths up to approx 1m bgl; ⁽²⁾At a mc of approx. 3%-5%; ⁽³⁾At a mc of approx. 15%.

		CLA'	

Consistency	Field Test		DCP Blows per 150 mm	SPT N Blows	Undrained Shear Strength C _u Shear Vane (kPa)	Unconfined Compressive Strength qu PP* (kPa)	CPT q _c kPa
VERY SOFT	Easily penetrated > 40 mm by thumb. Exudes between thumb and fingers when squeezed in hand	Shear Vane Preferred	< 1	< 2	< 12	< 25	0 - 180
SOFT	Easily penetrated 10 mm by thumb. Moulded by light finger pressure.		1 – 1.5	2 – 4	12 – 25	25 – 50	180 - 375
FIRM	Impression by thumb with moderate effort. Moulded by strong finger pressure		1.5 – 3	4 – 8	25 – 50	50 – 100	375 - 750
STIFF	Slight impression by thumb cannot be moulded with finger		3-6	8 – 16	50 – 100	100 – 200	750 - 1500
VERY STIFF	Very tough. Readily indented by thumbnail.		6 – 12	16 – 32	100 – 200	200 - 400	1500 - 3000
HARD	Brittle. Indented with difficulty by thumbnail.		> 12	> 32	> 200	> 400	> 3000
FRIABLE	FRIABLE Easily crumbled or broken into small pieces by hand.						

* Pocket Penetrometer (**PP**) may overestimate q_u by a factor of 1.5 to 2.0. Note: Visual-tactile assessment is indicative only. Use in-situ testing for logging

MOISTURE OF FINE GRAINED SOILS

Moist, dry of plastic limit	w < PL	Wet, near liquid limit	w≈LL
Moist, near plastic limit	w≈PL	Wet, wet of liquid limit	w > LL
Moist, wet of plastic limit	w > PL		

DEGREE OF SATURATION OF SANDS

Condition of Sand	Criteria	Degree of Saturation (%)
Dry	Non-cohesive and free-running	0 – 25%
Moist	Feels cool, darker colour, grains tend to adhere to one another	25 – 75%
Wet	Feels cold, makes hands wet, should be close to water table	75 – 99%

FIELD IDENTIFICATION PROCEDURE FOR FINE GRAINED SOILS OR FRACTIONS

These procedures are to be performed on the minus 0.4 mm sieve size particles. For field classification purposes, screening is not intended, simply remove by hand the coarse particles that interfere with the tests.

Dilatancy (Reaction to shaking):

After removing particles larger than 0.4 mm sieve size, prepare a pat of moist soil with a volume of about 8000 mm³. Add enough water if necessary to make the soil soft but not sticky. Place the pat in the open palm of one hand and shake horizontally, striking vigorously against the other hand several times. A positive reaction consists of the appearance of water on the surface of the pat which changes to a livery consistency and becomes glossy. When the sample is squeezed between the fingers, the water and gloss disappear from the surface, the pat stiffens and finally it cracks or crumbles. The rapidity of appearance of water during shaking and of its disappearance during squeezing assist in identifying the character of the fines in a soil. Very fine clean sands give the quick eraction. Inorganic silts, such as a typical rock flour, show a moderately quick reaction.

Dry Strength (Crushing characteristics):

After removing particles larger than 0.4 mm sieve size, mould a pat of soil to the consistency of putty, adding water if necessary. Allow the pat to dry completely by oven sun or air drying, and then test its strength by breaking and crumbling between the fingers. This strength is a measure of the character and quantity of the colloidal fraction contained in the soil. The dry strength increases with increasing plasticity.

High dry strength is characteristic for clays of the CH group. A typical inorganic silt possesses only very slight dry strength. Silty fine sands and silts have about the same dry strength but can be distinguished by the feel when powdering the dried specimen. Fine sand feels gritty whereas a typical silt has the smooth feel of flour.

Toughness (Consistency near plastic limit):

After removing particles larger than the 0.4 mm sieve size, a specimen of soil about 12 mm cube in size, is moulded to the consistency of putty. If too dry, water must be added and if sticky, the specimen should be spread out in a thin layer and allowed to lose some moisture by evaporation. Then the specimen is rolled out by hand on a smooth surface or between the palms into a thread about 3 mm in diameter. The thread is then folded and re-rolled repeatedly. During this manipulation the moisture content is gradually reduced, and the specimen stiffens, finally loses its plasticity, and crumbles when the plastic limit is reached. After the thread crumbles, the pieces should be lumped together, and a slight kneading action continued until the lump crumbles. The toucher the thread near the plastic limit and the stiffer the lump when it finally crumbles, the more potent is the colloidal clay

The tougher the thread near the plastic limit and the stiffer the lump when it finally crumbles, the more potent is the colloidal clay fraction in the soil. Weakness of the thread at the plastic limit and quick loss of coherence of the lump below the plastic limit indicate either inorganic clay or low plasticity, or materials such as kaolin-type clays and organic clays which occur below the Aline.

Highly organic clays have a very weak and spongy feel at the plastic limit.

PROPORTION OF MINOR AND SECONDARY COMPONENTS

Term	Meaning	Approximate Proportion	
		Coarse Soils	Fine Soils
Trace	Just detectable by feel or eye. Soil properties of main component virtually unaffected.	< 5% fines < 15 % coarse fraction	< 15% sand / gravel
With	Easily detectable by feel or eye. Soil properties only slightly affected by minor components.	5% – 12% fines 15% – 30% coarse fraction	15% – 30% sand / gravel
Prefix	Easily detected by feel or eye. Soil properties significantly affected by secondary components.	> 12% fines > 30% coarse fraction	> 30% sand / gravel

PROPORTIONS OF SECONDARY COMPONENTS

5%	12%	35%	

DATA FOR DESCRIPTION AND CLASSIFICATION OF ROCK

SEDIMENTARY ROCK TYPE DEFINITIONS

Rock Type	Definition
Conglomerate	More than 50% of the rock consists of gravel sized (greater than 2 mm) fragments.
Sandstone More than 50% of the rock consists of sand sized (0.06 mm to 2 mm) grains.	
Siltstone	More than 50% of the rock consists of silt-sized (less than 0.06 mm) granular particles and the rock is not laminated.
Claystone	More than 50% of the rock consists of clay or sericitic material and the rock is not laminated.
Shale	More than 50% of the rock consists of silt or clay sized particles and the rock is laminated.

Rocks possessing characteristics of two groups are described by their predominant particle size with reference also to the minor constituents, e.g. Clayey SANDSTONE, Sandy SHALE.

DEGREE OF WEATHERING

Term	Abbreviation		Definition
Residual soil	RS		Material is weathered to such an extent that it has soil properties. Mass structure, material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.
Extremely Weathered	XW		Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible.
Highly Weathered	HW	DW*	The whole of the rock is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching or may be decreased due to deposition of weathering products in pores.
Moderately Weathered	MW	,	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable but shows little or no change of strength from fresh rock.
Slightly Weathered	SW		Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.
Fresh	FR		Rock shows no sign of decomposition of individual minerals or colour changes.

STRATIFICATION

Term

Thinly laminated

Thinly bedded

Medium bedded

Thickly bedded

Very thickly bedded

Very thinly bedded

Laminated

Separation of

Stratification Planes

< 6 mm

6 mm to 20 mm

20 mm to 60 mm

60 mm to 0.2 m

0.2 m to 0.6 m

0.6 m to 2 m

> 2 m

*If highly and moderately weathered rock cannot be differentiated use the term, 'Distinctly Weathered (DW)'.

ORDER OF DESCRIPTION

In the rock description the terms should be
given in the following order:
ROCK NAME
Grain size and type
Colour
Fabric and texture
Inclusions and minor components
Moisture content
Durability
Strength
Weathering and/or alteration
Defects - type, orientation, spacing, roughness
Stratigraphic unit
Geological structure

DEGREE OF FRACTURING

This classification applies to diamond drill cores and refers to the spacing of all types of natural fractures along which the core discontinuous. These include bedding plane partings, joints and other rock defects, but exclude artificial fractures such as drilling breaks.

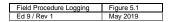
Term	Description
Fragmented	The core is comprised primarily of fragments of length less than 20 mm, and mostly of width less than the core diameter
Highly Fractured	Core lengths are generally less than 20 mm to 40 mm with occasional fragments
Fractured	Core lengths are mainly 30 mm to 100 mm with occasional shorter and longer sections
Slightly Fractured	Core lengths are generally 300 mm or longer with occasional sections of 100 mm to 300 mm
Unbroken	The core contains very few fractures

ROCK STRENGTH

Rock strength is classified using the unconfined compressive strength (UCS). Where adequate UCS data are not available then the classification may be based on the Point Load Strength (I_{s(50)}) and refers to the strength of the rock substance in the direction normal to the bedding.

Strength Term	UCS MPa	Field Guide	Approx I _{S(50)} MPa
		Material less than very low strength is to be described using soil properties	
Very Low	2	Material crumbles under firm blows with sharp end of pick; can be peeled with knife. Pieces up to 30 mm thick can be broken by finger pressure.	0.1
Low	6	Easily scored with a knife; indentations 1 mm to 3 mm show in the specimen with firm blows of the pick point; has dull sound under hammer. A piece of core 150 mm long by 50 mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.	0.3
Medium		Readily scored with a knife; a piece of core 150 mm long by 50 mm diameter can be broken by hand with difficulty.	
	20		1.0
High		A piece of core 150 mm long by 50 mm diameter cannot be broken by hand but can be broken by a pick with a single firm blow; rock rings under hammer.	
	60		3.0
Very High	7	Hand specimen breaks with pick after more than one blow; rock rings under hammer.]
	200		10.0
Extremely High]	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.	1

The approximate point load strength (I_{S(50)}) is based on an assumed ratio to UCS of 1:20. This ratio may vary widely and should be determined for each site and rock type.


DISCONTINUITIES / DEFECTS

The actual defect is described not the process which formed or may have formed it, e.g. 'sheared zone', not	Coating or Infilling:	Roughness: Very Rough
'zone of shearing'; the latter suggests a currently active process.	Clean: no visible coating or infilling. Stained: no visible coating or infilling but surfaces are	Rough
Spacing*:	discoloured by mineral staining.	Smooth Polished
A measure of the spacing of discontinuities. Measure mean and range of spacings for each set where possible (do not use descriptive terms).	Veneer: a visible coating or infilling of soil or mineral substance but usually unable to be measured (less than 1 mm).	Slickensided
Thickness, openness:	Patchy Veneer: if discontinuous over the plane.	Shape*:
Measured in millimetres normal to plane of the discontinuity.	Coating: a visible coating or infilling of soil or mineral substance, greater than 1 mm thick. Describe composition and	Planar Curved
Persistence*:	thickness.	Undulating
The areal extent of a discontinuity. Give trace lengths in metres.		Stepped Irregular
Roughness and Shape*:		
A measure of the inherent surface unevenness and waviness of the defect relative to its mean plane.	* Usually determined in field exposures	

Discontinuity Spacing in Three Dimensions:

The spacing of discontinuities in exposures may be described with reference to the size and shape of rock bounded by the discontinuities.

Equidimensional	Same size in all directions
Tabular	Thickness much less than length or width
Columnar	Height much greater than cross section
Polyhedral	Irregular defects without obvious pattern

Sampling

Sampling is carried out during drilling or test pitting to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thinwalled sample tube into the soil and withdrawing it to obtain a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Test Pits

Test pits are usually excavated with a backhoe or an excavator, allowing close examination of the insitu soil if it is safe to enter into the pit. The depth of excavation is limited to about 3 m for a backhoe and up to 6 m for a large excavator. A potential disadvantage of this investigation method is the larger area of disturbance to the site.

Large Diameter Augers

Boreholes can be drilled using a rotating plate or short spiral auger, generally 300 mm or larger in diameter commonly mounted on a standard piling rig. The cuttings are returned to the surface at intervals (generally not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube samples.

Continuous Spiral Flight Augers

The borehole is advanced using 90-115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow sampling or in-situ testing. This is a relatively economical means of drilling in clays and sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are disturbed and may be mixed with soils from the sides of the hole. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively low reliability, due to the remoulding, possible mixing or softening of samples by groundwater.

Non-core Rotary Drilling

The borehole is advanced using a rotary bit, with water or drilling mud being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from the rate of penetration. Where drilling mud is used this can mask the cuttings and reliable identification is only possible from separate sampling such as SPTs.

Continuous Core Drilling

A continuous core sample can be obtained using a diamond tipped core barrel, usually with a 50 mm internal diameter. Provided full core recovery is achieved (which is not always possible in weak rocks and granular soils), this technique provides a very reliable method of investigation.

Standard Penetration Tests

Standard penetration tests (SPT) are used as a means of estimating the density or strength of soils and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, Methods of Testing Soils for Engineering Purposes - Test 6.3.1.

The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300 mm. In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form.

 In the case where full penetration is obtained with successive blow counts for each 150 mm of, say, 4, 6 and 7 as:

 In the case where the test is discontinued before the full penetration depth, say after 15 blows for the first 150 mm and 30 blows for the next 40 mm as:

15, 30/40 mm

Sampling Methods

The results of the SPT tests can be related empirically to the engineering properties of the soils.

Dynamic Cone Penetrometer Tests / Perth Sand Penetrometer Tests

Dynamic penetrometer tests (DCP or PSP) are carried out by driving a steel rod into the ground using a standard weight of hammer falling a specified distance. As the rod penetrates the soil the number of blows required to penetrate each successive 150 mm depth are recorded. Normally there is a depth limitation of 1.2 m, but this may be extended in certain conditions by the use of extension rods. Two types of penetrometer are commonly used.

- Perth sand penetrometer a 16 mm diameter flat ended rod is driven using a 9 kg hammer dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the density of sands and is mainly used in granular soils and filling.
- Cone penetrometer a 16 mm diameter rod with a 20 mm diameter cone end is driven using a 9 kg hammer dropping 510 mm (AS 1289, Test 6.3.2). This test was developed initially for pavement subgrade investigations, and correlations of the test results with California Bearing Ratio have been published by various road authorities.

Symbols & Abbreviations

Introduction

These notes summarise abbreviations commonly used on borehole logs and test pit reports.

Drilling or Excavation Methods

С	Core Drilling
R	Rotary drilling
SFA	Spiral flight augers
NMLC	Diamond core - 52 mm dia
NQ	Diamond core - 47 mm dia
HQ	Diamond core - 63 mm dia
PQ	Diamond core - 81 mm dia

Water

\triangleright	Water seep
\bigtriangledown	Water level

Sampling and Testing

- Auger sample А
- В Bulk sample
- D Disturbed sample Е
- Environmental sample
- U_{50} Undisturbed tube sample (50mm)
- W Water sample
- pocket penetrometer (kPa) рр
- PID Photo ionisation detector
- PL Point load strength Is(50) MPa
- S Standard Penetration Test V Shear vane (kPa)

Description of Defects in Rock

The abbreviated descriptions of the defects should be in the following order: Depth, Type, Orientation, Coating, Shape, Roughness and Other. Drilling and handling breaks are not usually included on the logs.

Defect Type

В	Bedding plane
Cs	Clay seam
Cv	Cleavage
Cz	Crushed zone
Ds	Decomposed seam
F	Fault
J	Joint
Lam	lamination
Pt	Parting
Sz	Sheared Zone
V	Vein

Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

h horizonta

21

- vertical v
- sub-horizontal sh
- sub-vertical sv

Coating or Infilling Term

cln	clean
со	coating
he	healed
inf	infilled
stn	stained
ti	tight
vn	veneer

Coating Descriptor

ca	calcite
cbs	carbonaceous
cly	clay
fe	iron oxide
mn	manganese
slt	silty

Shape

cu	curved
ir	irregular
pl	planar
st	stepped
un	undulating

Roughness

ро	polished
ro	rough
sl	slickensided
sm	smooth
vr	very rough

Other

fg	fragmented
bnd	band
qtz	quartz

Symbols & Abbreviations

Graphic Symbols for Soil and Rock

General

Asphalt Road base

Concrete

Filling

Soils

Topsoil

Peat

Clay

Silty clay

Sandy clay

Gravelly clay

Shaly clay

Silt

Clayey silt

Sandy silt

Sand

Clayey sand

Silty sand

Gravel

Sandy gravel

Cobbles, boulders

Talus

Sedimentary Rocks

Limestone

Metamorphic Rocks

Slate, phyllite, schist

Quartzite

Gneiss

Igneous Rocks

Granite

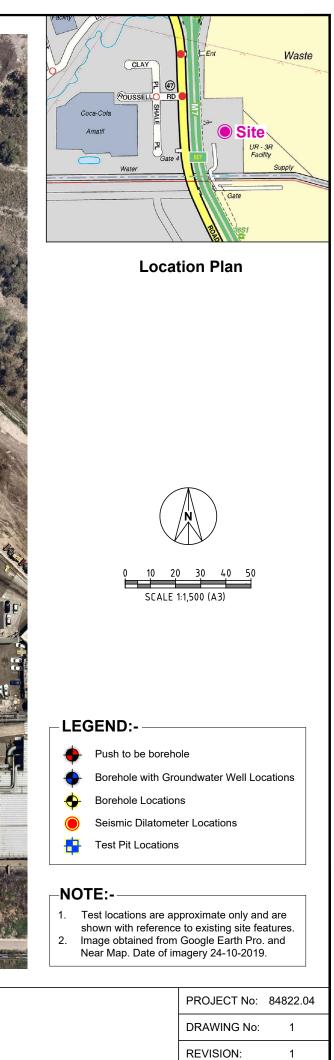
Dolerite, basalt, andesite

Dacite, epidote

Tuff, breccia

Porphyry

Appendix B


Drawing 1

dh	Doua	las Pa	rtners I Groundwater
<u>v</u> p	Geotechnics	Environment	Groundwater

CLIENT: Cleanaway Operations Pty Ltd		TITLE:
OFFICE: Riverstone	DRAWN BY: JST	
SCALE: As shown	DATE: 6 March 2020	

Site and Test Location Plan Green Waratah 339 Wallgrove Road, Eastern Creek

Appendix C

Results of Field Work

CLIENT:Cleanaway Operations Pty LtdPROJECT:Green WaratahLOCATION:339 Wallgrove Road, Eastern Creek

SURFACE LEVEL: 58.3 AHD **EASTING:** 301270.3 **NORTHING:** 6255858 **DIP/AZIMUTH:** 90°/-- BORE No: ABH01 PROJECT No: 84822.04 DATE: 3/2/2020 SHEET 1 OF 6

	D	Description	Weathering	<u>i</u>	Rock Strength ក្រ	Fracture	Discontinuities		ampli	ng & l	n Situ Testing
ะ	Depth (m)	of	Degree of Weathering	Log	Very Low Very Low Medium Nedium Very High Ex High Kater	Spacing (m)	B - Bedding J - Joint	Type	ore 3. %	RQD %	Test Results &
	()		H M M M M M M M M M M M M M M M M M M M	U	Low Very Very Very Ex High	0.05	S - Shear F - Fault	Ţ	ပိမ္ရ	Я С	Comments
80	0.4	FILL/ Sandy and Clayey GRAVEL: fine to coarse, grey, ripped siltstone, dry						D B	-		
-		Silty CLAY: medium to high plasticity, grey mottled orange and red, trace fine to medium ironstone gravel, w <pl, residual="" soil<="" stiff,="" td="" very=""><td></td><td></td><td></td><td></td><td></td><td>s</td><td>-</td><td></td><td>4,11,13 N = 24</td></pl,>						s	-		4,11,13 N = 24
	-1 1.0	Clayey SILT: high plasticity, grey mottled red, trace sand and gravel, w <pl, residual="" soil<="" td=""><td></td><td></td><td></td><td></td><td></td><td>B 1075</td><td></td><td></td><td></td></pl,>						B 1075			
/9		,		 				D B			
	1.6	SILTSTONE: grey-brown, very low and low strength, moderately to slightly weathered, with extremely weathered bands, highly fractured to fractured, Bringelly Shale		· · · · · · · · _			Unless specified otherwise all defects are healed joints dipping 20° or bedding planes	в			
	-2	(Note: Extremely weathered, extremely low stength bands		<u> </u>			dipping 0-10°, pl, sm, cly ct or fe stn	S			25/120 R refusal
		consistent with very stiff to hard clay)					2.15m: Cs, 100mm 2.36m: Cs,10mm 2.47m: Cs, 40mm 2.56m: Cs, 50mm	С	100	14	PL(A) = 0.08
	- 3			• • : • : • : • :			3.07m: Cs, 30mm 3.15m: J, 10-25°, cu, sm, he 3.33m: Cs, 20mm 3.41m: J, 80°, un, ro, fe stn 2.55m: J, 70.00°, un, ro, fe				
04 · · · · · · · · ·	-4	SILTSTONE: grey-brown, medium strength, slightly weathered, with extremely weathered bands, slightly fractured, Bringelly Shale					3.55m: J, 70-90°, un, ro, he 3.84m: 85°, pl, sm, fe stn, he 4m: J, 70°, cu, sm, fe stn 4.23m: J, 30°, un, ro, cln	С	100	66	PL(A) = 0.5
-	4.95						4.56m: J, 45°, pl, sm, cln	С	100	87	PL(A) = 0.5
			ER: Terrate	<u> </u>					1.00	- 51	I

WATER OBSERVATIONS: No free groundwater observed whilst drilling

	SAM	1PLIN	G & IN SITU TESTING	LEG	END							
	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)			-	_			
	Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)						Partnei	
1	BLK Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test ls(50) (MPa)		A 1			- I	Parinei	
- 0	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)							
	D Disturbed sample	⊳	Water seep	S	Standard penetration test		· _	O to . to . to .				- 4
16	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			Geotecnnics	S I ENV	iron	nment Groundwa	ater
						-						

CLIENT:Cleanaway Operations Pty LtdPROJECT:Green WaratahLOCATION:339 Wallgrove Road, Eastern Creek

SURFACE LEVEL: 58.3 AHD **EASTING:** 301270.3 **NORTHING:** 6255858 **DIP/AZIMUTH:** 90°/-- BORE No: ABH01 PROJECT No: 84822.04 DATE: 3/2/2020 SHEET 2 OF 6

	Donth	Description	Degree of Weathering		Rock Strength ৮	Fracture Spacing	Discontinuities		amplii	ng & I	In Situ Testing	
צ	Depth (m)	of Strata	H HW S S W FR	Grapt	Very Low Very Low Very High Kery High Kery High Kery High Kery High Kery High Kery High Kery Low Very	(m)	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. %	RQD %	Test Results & Comments	
52 53 5	6	SILTSTONE: dark grey and grey, low to medium and medium strength, moderately to slightly weathered then fresh, slightly fractured, Bringelly Shale (continued)					5.12m: J, 45°, ir, he 5.31m: J, 30°, ir, ro, cly vn 5.48m: J, 10-50°, cu, sm, cln 5.86m: J, 45°, ir, he 6.08m: J, 25°, pl, sm, fe stn 6.3m: J, 25°, pl, ro fe stn 6.4m: B, 5°, ir, ro, fe stn	С	100		PL(A) = 0.4 PL(D) = 0.25	
51 · · · · · · · · · · · · · · · · · · ·	7						6.7m: Cs, 5mm 7.22m: B, 0°, pl, sm, cly, inf 10mm	С	100	95	PL(A) = 0.6 PL(A) = 0.3	
	9							С	100	100	PL(A) = 0.7	
-		- trace sandstone laminations from 9.50 m - 9.88 m		· · · · · ·				с	100	94	PL(A) = 0.31	

WATER OBSERVATIONS: No free groundwater observed whilst drilling

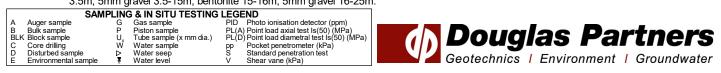
	SAN	IPLIN	3 & IN SITU TESTING	LEG	END]		
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)			
B	Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)			Douglas Partners
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(E	D) Point load diametral test ls(50) (MPa)		11.	A Douolas Parlners
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			
D	Disturbed sample	⊳	Water seep	S	Standard penetration test		12	
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			Geotechnics Environment Groundwater
						•		

CLIENT: Cleanaway Operations Pty Ltd **PROJECT:** Green Waratah 339 Wallgrove Road, Eastern Creek LOCATION:

SURFACE LEVEL: 58.3 AHD **EASTING:** 301270.3 NORTHING: 6255858 DIP/AZIMUTH: 90°/--

BORE No: ABH01 **PROJECT No: 84822.04** DATE: 3/2/2020 SHEET 3 OF 6

		Description	Degree of Weathering	Rock Strength	Fracture	Discontinuities				n Situ Testing
¥	Depth (m)	of	raph	Ex Low Very Low Nedum High Ex High Kater	Spacing (m)	B - Bedding J - Joint	Type	ore 5. %	RQD %	Test Results &
	· /	Strata	A A A A A A A A A A A A A A A A A A A	LC Ex Low Very Low Medium Very High Ex High	0.01 0.10 0.50 1.00	S - Shear F - Fault	≧	о Я	<u>ي</u> ي	Comments
48	-	SILTSTONE: dark grey and grey, low to medium and medium strength, moderately to slightly weathered then fresh, slightly fractured, Bringelly Shale (continued) - trace sandstone laminations from 10.03 m - 10.45 m - low strength band from 10.45 m - 10.7 m - low strength band from 10.77 m - 10.95 m				10.69m: J, 35°, pl, sm, cly ct	с	100		PL(A) = 0.27
-	- 11 -									
47	- - 11.32 - -	INTERBEDDED SILTSTONE AND SANDSTONE: siltstone (70%)					С	100	100	
	-	interbedded with pale grey, fine grained sandstone (30%), high strength, fresh, slightly fractured,								
46	- - 12 - - - -	Bringelly Shale					с	100	100	PL(A) = 1.5
45	- - - 13 - - - -						с	100	100	PL(A) = 1.6 PL(D) = 0.4
44	- 13.85 - 14 - - -	SILTSTONE: dark grey and grey, medium strength, fresh, slightly fractured, trace sandstone laminations, Bringelly Shale					с	100	100	PL(A) = 0.31
	-									PL(A) = 0.4


RIG: MCT 450 TYPE OF BORING: Sonic to 2.15 m depth then PQ Coring to 25.22 m

DRILLER: Terratest

LOGGED: JY

CASING: 0.0 - 2.15m

WATER OBSERVATIONS: No free groundwater observed whilst drilling

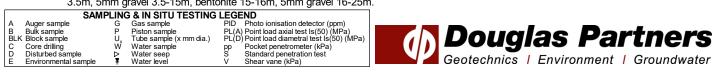
CLIENT:Cleanaway Operations Pty LtdPROJECT:Green WaratahLOCATION:339 Wallgrove Road, Eastern Creek

SURFACE LEVEL: 58.3 AHD **EASTING:** 301270.3 **NORTHING:** 6255858 **DIP/AZIMUTH:** 90°/-- BORE No: ABH01 PROJECT No: 84822.04 DATE: 3/2/2020 SHEET 4 OF 6

		Description	Degree of Weathering	<u>0</u>	Rock Strength	Fracture	Discontinuities	Sa	amplir	ng & l	n Situ Testing
RL	Depth (m)	of Strata	WH WW ST H WW WS ST H	Graphic Log	Ex Low Very Low Low Medium High Very High Ex High	Construction of the second of	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. %	RQD %	Test Results & Comments
43	-	SILTSTONE: dark grey and grey, medium strength, fresh, slightly fractured, trace sandstone laminations, Bringelly Shale (continued)		·			15m: J, 90°, ir, sm, cln 15.12m: Ds, 20mm 15.2m: J, 45°, pl, sm, cly vn 15.27m: J, 30°, cu, sm, cln	с		100	
42	- 16 - 16 						16.17m: J, 30-45°, cu, he	С	100	100	PL(A) = 0.4 PL(D) = 0.2 PL(A) = 0.4
	- - - - - - - - - - - - - - - - - - -						17.8m: J, 60-90°, pl, ro, cln 18.11m: J, 45°, pl, sm, cly vn 18.25m: J, 40°, pl, he	С	100	81	PL(A) = 0.3
	- 19 - 19 - 19.2	INTERBEDDED SILTSTONE AND SANDSTONE: siltstone (70%) interbedded with pale grey, fine grained sandstone (30%), high and very high strength, fresh, slightly fractured, Bringelly Shale					19.63-20m: J, 80-90°, cu, ro, cln	С	100	56	PL(A) = 0.6
۲١	IG: MCT YPE OF E		-	to 25	5.22 m	DGGED: JY	CASING: 0.0	- 2.1	5m		

	SA	MPLIN	G & IN SITU TESTING	LEG	END	1						
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_	_	_	-	_	
E	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)							Partners
E	LK Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test ls(50) (MPa)		11.					
	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)							
	Disturbed sample	⊳	Water seep	S	Standard penetration test		11					
E	Environmental sample	e 📱	Water level	V	Shear vane (kPa)				Geotechnics	s i Envii	ronm	nent Groundwater
-	· · ·											

CLIENT: Cleanaway Operations Pty Ltd Green Waratah PROJECT: 339 Wallgrove Road, Eastern Creek LOCATION:


SURFACE LEVEL: 58.3 AHD **EASTING:** 301270.3 NORTHING: 6255858 **DIP/AZIMUTH:** 90°/--

BORE No: ABH01 **PROJECT No: 84822.04** DATE: 3/2/2020 SHEET 5 OF 6

		Description	Degree of Weathering	jc	Rock Strength _{ចេ}	Fracture	Discontinuities	Sa	amplii	ng & I	n Situ Testing
RL	Depth (m)	of Strata	Degree of Weathering ﷺ ≩ ≩ ⊗ ∞ ∰	<u>Graph</u> Log	Very Low Needium Medium Needium High Kery High High	Spacing (m) 5000000000000000000000000000000000000	B - Bedding J - Joint S - Shear F - Fault	Type	Core lec. %	RQD %	Test Results &
		INTERBEDDED SILTSTONE AND	H H M H M H H M H H M H H M H H M H H M H H M H H M H H M H H M H H M H H M H H M H H H H H H H H H H H H H H H					c	100		Comments PL(A) = 3.3
	21 21	SANDSTONE: siltstone (70%) interbedded with pale grey, fine grained sandstone (30%), high and very high strength, fresh, slightly fractured, Bringelly Shale (continued)					20.16m: J 20.47m: J (2x), 70-90°, cu, ro, cln 21.47m: J, 70°, he	с	100		PL(A) = 2.3
	21.57 ·	SILTSTONE: dark grey and grey, medium strength, fresh, slightly fractured, trace sandstone laminations, Bringelly Shale					21.87m: J, 70°, pl, sl, cln	С	100	100	PL(A) = 0.4 PL(A) = 0.4
35	- 23										
34	- 24						24.22m: B, 5°, pl, sm, cbs inf 5mm	С	100	100	PL(A) = 0.5 PL(D) = 0.25
				· · · · · · · · · ·				с	100	100	PL(A) = 0.7

RIG: MCT 450 TYPE OF BORING: Sonic to 2.15 m depth then PQ Coring to 25.22 m

WATER OBSERVATIONS: No free groundwater observed whilst drilling

CLIENT:Cleanaway Operations Pty LtdPROJECT:Green WaratahLOCATION:339 Wallgrove Road, Eastern Creek

SURFACE LEVEL: 58.3 AHD **EASTING:** 301270.3 **NORTHING:** 6255858 **DIP/AZIMUTH:** 90°/-- BORE No: ABH01 PROJECT No: 84822.04 DATE: 3/2/2020 SHEET 6 OF 6

_	Description	N N	Jeg Jea	gree ther	ot ina	. <u>e</u>		Stre	ock engt	h	۲	Fra	actu	re	Di	scon	tinuities				In Situ Testing
Uept (m)	n) 01					Graphic			Ę	High	Vate	Sp	acin (m)	ıg			J - Joint	be l	ore %:	RQD %	Test Result &
	Śtrata	EW	NΗ	SV SV	8 1 1 1	Ű	Ex Low	§	High	Very Ex Hi	2	0.01	0.10	1.00	S - She	ar	F - Fault	È	с я	R ~	Comments
-							· ·											с	100	100	
25	5.22 Bore discontinued at 25.22m					—	·		Ļ												
-	Bore discontinued at 25.22m		i	ii			i		Ì			i i	i i								
T																					
Ī		i	i	ii	i		i					i i	i i	i i							
[
_		i	i	ii	Ï		l i					i i	i i	ii							
-																					
- 26			i	ii	i		Ιi	ii	İ			ii	i	İİ							
-																					
		i	i	ii	i		l i	ii	i	i i		ii	i i	ii							
3-																					
[i	i	ii	i		l i	ii	Ì			ii	i i	ii							
-																					
-			i	ii	Ï		l i		Ì			İİ	i i	ii							
-																					
-			i	ii	Ì		l i		Ì			i i	i i								
- 27																					
-													Ì								
5																					
°_																					
-																					
-							L i														
-													-								
-							l i														
1																					
- 28							H														
[Ì	Ì	Ì			İİ	Ì			İİ	į.	İ.							
3-							H														
-		- j	į	İ	į		1 į	İİ	į	İİ		įį	į	i i							
-																					
-		- I i	į	ij	į		l į	ii	į	İ		įį	į	i i							
ŀ																					
-		j	i	ij	j		ļį	ii	i	ii		į į	į	ii							
- 29							H														
29		i	i	ii	i		l i	ii	İ	ii		i i	i i	ii							
ŀ																					
<u>-</u>				ij				ii													
+																					
ŀ							i														
ŀ																					
t																					
[

WATER OBSERVATIONS: No free groundwater observed whilst drilling

REMARKS: Well Construction: Monument with stickup, blank PVC 0-4.5m, screen PVC 4.5-15m, with end cap. Backfill: grout 0-2.5m, bentonite 2.5-3.5m, 5mm gravel 3.5-15m, bentonite 15-16m, 5mm gravel 16-25m.

	SAN	IPLIN	IG & IN SITU TESTING	LEG	END]							
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_		_	-	_	_	
B	Bulk sample	P	Piston sample	PL(A) Point load axial test Is(50) (MPa)				Doug				
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test ls(50) (MPa)	1				125			5
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)								
D	Disturbed sample	⊳	Water seep	S	Standard penetration test			· /					
E	Environmental sample	ž	Water level	V	Shear vane (kPa)				Geotechnics	I Envir	onment	Groundwa	iter

CLIENT: Cleanaway Operations Pty Ltd PROJECT: Green Waratah LOCATION: 339 Wallgrove Road, Eastern Creek

SURFACE LEVEL: 57.6 AHD **EASTING:** 301375.8 **NORTHING:** 6255870.5 **DIP/AZIMUTH:** 90°/--

BORE No: ABH02 **PROJECT No:** 84822.04 DATE: 10/2/2020 SHEET 1 OF 6

			Description	Degree of Weathering	<u>.</u>	Rock Strength	acture	Discontinuities	Sa	amplir	ng & I	n Situ Testing
님		epth m)	of		Log		bacing (m)	B - Bedding J - Joint	Type	sre %	Q.	Test Results
	(,	Strata	E S S W W W	Ū	Very Low Medium Medium Fix High Ex High 0.01 0.01 0.01 0.01 0.01	0.10	S - Shear F - Fault	Tyl	ပိမ္စိ	RQD %	& Comments
57 · · ·	-	0.2 -	FILL / Sandy GRAVEL: dark grey, with clay, fine to coarse igneous and siltstone gravel, moist FILL / Silty CLAY: grey-brown, with fine to medium sand and fine to coarse sandstone gravel, dry FILL / Silty CLAY: dark grey, trace ironstone gravel, trace vegetation,						D D S			4,7,9 N = 16
26	- 1 - - -	1.2-	Silty CLAY: medium to high plasticity, pale brown mottled red-brown, trace ironstone gravel, w>PL stiff to very stiff, residual soil						<u>D</u>			
	- - - - - - -	2.0 -	CLAYEY SILT: medium to high plasticity, grey mottled pale brown, with sand and trace gravel, w>PL, stiff to very stiff, residual soil						B D S B U75			5,7,9 N = 16
54	- - - - - -	2.8 -	Silty CLAY: medium to high plasticity, pale grey mottled orange, very stiff, with clay seams and very low strength siltstone bands, residual soil						U75 S			8,8,12 N = 20
	- - - 4	4.0-	- possibly extremely weathered siltstone from 3.6 m SILTY CLAY: medium to high					planes dipping 0-10°, ro, pl				
	-	4.45 -	plasticity, pale grey mottled red and orange, hard, with ironstone banding, residual soil (extremely low strength siltstone) SILTSTONE: grey-brown, very low					4.47m: fg, 10-30mm	с	100	0	PL(A) = 0.01
23	-		and low strength, moderately to slightly weathered, with extremely weathered bands, fractured, Bringelly Shale					4.7m: Cs, 10mm 4.91m: Cs, 90mm	с	100	0	

RIG: MCT 450 TYPE OF BORING: Sonic to 4.0 m depth then PQ Coring to 25.5 m

DRILLER: Terratest

LOGGED: JY

CASING: 0.0 - 3.55m

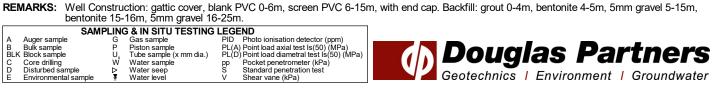
WATER OBSERVATIONS: No free groundwater observed whilst drilling

REMARKS: Well Construction: gattic cover, blank PVC 0-6m, screen PVC 6-15m, with end cap. Backfill: grout 0-4m, bentonite 4-5m, 5mm gravel 5-15m, bentonite 15-16m, 5mm gravel 16-25m.

	SAN	/IPLIN(G & IN SITU TESTING	G LEG	END		
	A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		
	Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)	Douglas Partners	
1	BLK Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test ls(50) (MPa)		<u> </u>
- 0	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		,
	Disturbed sample	⊳	Water seep	S	Standard penetration test		
1	Environmental sample	¥	Water level	V	Shear vane (kPa)	🛛 💶 🗹 🖉 Geotechnics Environment Groundwater	r
-						—	

Cleanaway Operations Pty Ltd

339 Wallgrove Road, Eastern Creek


Green Waratah

CLIENT: PROJECT:

LOCATION:

SURFACE LEVEL: 57.6 AHD **EASTING:** 301375.8 **NORTHING:** 6255870.5 **DIP/AZIMUTH:** 90°/-- BORE No: ABH02 PROJECT No: 84822.04 DATE: 10/2/2020 SHEET 2 OF 6

Γ		Description	Degree of Weathering	Rock Strength	Fracture	Discontinuities	Sa	amplir	ng & l	In Situ Testing
R	Depth (m)	of		Ex Low User Low Very Low Very Low Very Low Very Low Very High High Ex High Argenter Xater Xater Xater Xater Very High Argenter	Spacing (m)	B - Bedding J - Joint	Type	Core Rec. %	۵D %	Test Results &
		Strata SILTSTONE: grey-brown, very low	E H H H H H H H H H H H H H H H H H H H	EX L Low Fight	0.01	S - Shear F - Fault	<u>⊢</u> .	ပမ္ခ	<u>к</u> _	Comments
		and low strength, moderately to slightly weathered, with extremely weathered bands, fractured, Bringelly Shale <i>(continued)</i>				5.01m: Cs, 50mm 5.1m: Cs, 10mm 5.25m: Cs, 20mm 5.8m: B, 0-10°, cu, he 5.85m: J, 80°, pl, he	С	100	0	PL(A) = 0.12
	-	SILTSTONE: dark grey and grey,				6.03m: J, 80°, pl, sm, fe, stn 6.5m: B, 5-10°, ir, he				PL(A) = 0.11
-	- - 7 - -	low strength, fresh, slightly fractured, Bringelly Shale				7.42m: B, 0-10°, pl, sm,	С	100	76	
	8					cly vn				PL(A) = 0.23 PL(D) = 0.13
	-					8.16m: J 30°, pl, ro, cly vnr 8.67m: B, 0°, pl, ro, cln 8.83m: B, 0°, pl, ro, cly vnr	С	100	96	PL(A) = 0.15
	-9					9.20-9.45m: J, 80-90°, ir, rf, cly vnr	С	100	37	PL(A) = 0.12
L						9.90-10.08m: J, 80-90°,				
T W			er observed while	5.5 m t drilling	GED: JY with end cap.	CASING: 0.0 Backfill: grout 0-4m, bento			, 5mr	n gravel 5-15m,

CLIENT:Cleanaway Operations Pty LtdPROJECT:Green WaratahLOCATION:339 Wallgrove Road, Eastern Creek

SURFACE LEVEL: 57.6 AHD **EASTING:** 301375.8 **NORTHING:** 6255870.5 **DIP/AZIMUTH:** 90°/-- BORE No: ABH02 PROJECT No: 84822.04 DATE: 10/2/2020 SHEET 3 OF 6

Γ		Description	Degree of Weathering	<u>.</u> 0	Rock Strength _{টা}	Fracture	Discontinuities				n Situ Testing
ā	Depth (m)	of Strata	ER S WW	Graphic Log	Nate	Spacing (m)	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. %	RQD %	Test Results & Comments
-	- 10.08 	SILTSTONE: dark grey and grey, medium strength, fresh, slightly fractured, Bringelly Shale					rf, ir, cly 5mm 10.10-10.55m: J(x5), 80-90°, rf, ir, cly 5mm	С	100		PL(A) = 0.5
	- - - 11 - -						11.17m: B, 0-5°, cu, rf, cly vnr				1 2(1) = 0.0
	- 11.7 - 11.7 	Interbedded SANDSTONE and SILTSTONE: pale grey, fine to medium grained, sandstone (60 - 80%) interbedded with siltstone (20 - 40%), medium strength, fresh, slightly fractured to unbroken, Bringelly Shale									PL(A) = 0.7
-	-			: . _							PL(A) = 0.9 PL(D) = 0.75
	- - 13 - -						13.40-13.73m: J, 70°, pl, rf, cln				PL(A) = 0.16
	- 13.8 - 14 - 14 	SILTSTONE: dark grey and grey, low and medium strength, fresh, slightly fractured to unbroken, with trace sandstone laminations, Bringelly Shale					14.7m: Cs 30mm				PL(A) = 0.4
Ŀ	-			•							
	Rig: Mct Type of E		.ER: Terrates n PQ Coring to			GED: JY	CASING: 0.0	- 3.5	5m		

WATER OBSERVATIONS: No free groundwater observed whilst drilling

REMARKS: Well Construction: gattic cover, blank PVC 0-6m, screen PVC 6-15m, with end cap. Backfill: grout 0-4m, bentonite 4-5m, 5mm gravel 5-15m, bentonite 15-16m, 5mm gravel 16-25m.

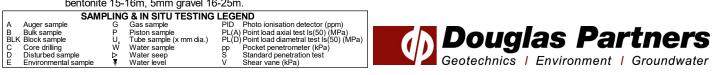
	SAM	IPLIN	G & IN SITU TESTING	LEG	END					
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_	-	— –	
E	Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)				Partne	10
E	LK Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test ls(50) (MPa)					
0	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)					
	Disturbed sample	⊳	Water seep	S	Standard penetration test		-			
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics	Enviro	onment Groundv	Nater
-						-				

Cleanaway Operations Pty Ltd

339 Wallgrove Road, Eastern Creek

Green Waratah

CLIENT: PROJECT:


LOCATION:

SURFACE LEVEL: 57.6 AHD **EASTING:** 301375.8 **NORTHING:** 6255870.5 DIP/AZIMUTH: 90°/--

BORE No: ABH02 **PROJECT No: 84822.04 DATE:** 10/2/2020 SHEET 4 OF 6

Γ		Description	Degree of Weathering .9	Rock Strength	Fracture	Discontinuities	Sa	amplii	ng & l	n Situ Testing
R	Depth (m)	of	Weathering	Strength Kerv Low Kerv High Kerv High Kerv High Kerv High Kerv High Kerv High Kerv High Kerv High Kerv K	Spacing (m)	B - Bedding J - Joint	Type	ore c. %	RQD %	Test Results &
	. ,	Strata	A A A A A A A A A A A A A A A A A A A	Ex Lo Low Very Very Very Very	0.01 0.05 0.10 1.00	S - Shear F - Fault	Ţ	ပိမ္ရွိ	°,	Comments
		SILTSTONE: dark grey and grey, low and medium strength, fresh, slightly fractured to unbroken, with trace sandstone laminations, Bringelly Shale <i>(continued)</i>				15.28m: Ds, 60mm	С	100	0	PL(A) = 0.19
	- 16						С	100	94	PL(D) = 0.32 PL(A) = 0.6
-	- 17 - 17 					17.23m: J, 30°, cu, sm, cln	с	100	100	
-9	- - - 18 -						0			PL(A) = 0.26 PL(A) = 0.29
-02	-									
	- 19 - - - - - - - - - -					19.45m: J, 10-45°, cu, sm, cln	С	100	73	PL(A) = 0.4
ł	-						С	100	100	
T W			er observed while	5.5 m t drilling	GGED: JY	CASING: 0.0 Backfill: grout 0-4m, bento			, 5mr	n gravel 5-15m,

bentonite 15-16m, 5mm gravel 16-25m.

CLIENT:Cleanaway Operations Pty LtdPROJECT:Green WaratahLOCATION:339 Wallgrove Road, Eastern Creek

SURFACE LEVEL: 57.6 AHD **EASTING:** 301375.8 **NORTHING:** 6255870.5 **DIP/AZIMUTH:** 90°/-- BORE No: ABH02 PROJECT No: 84822.04 DATE: 10/2/2020 SHEET 5 OF 6

_	Description	Degree of Weathering ﷺ ≩ ≩ ਨੇ ღ ∰	Dic	Rock Strength _{ភ្ល}	Fracture	Discontinuities	Sa	ampli	ng & I	n Situ Testing
Depth (m)	of	5	iraph Log	Extrements of the second secon	Spacing (m)	B - Bedding J - Joint	Type	ore c. %	RQD %	Test Results &
. ,		E N N N N N N N N N N N N N N N N N N N	G	Ex Lo Very Very Ex High	0.10	S - Shear F - Fault	Тy	ы К С С Я	Ж°,	Comments
37	SILTSTONE: dark grey and grey, low and medium strength, fresh, slightly fractured to unbroken, with trace sandstone laminations, Bringelly Shale <i>(continued)</i>						С	100		PL(A) = 0.6 PL(D) = 0.4
-21 - - - - - - - - - - - - -							С	100	100	PL(A) = 0.6
- 22 - -						22.34m: J, 80-90°, pl, sm, cin				PL(A) = 0.33
- 						22.66m: J, 45°, cu, he	С	100	87	PL(A) = 0.7
- 24 - 24 							С	100	100	PL(A) = 0.6 PL(A) = 0.6
			<u> </u>							
RIG: MCT	450 DRILL	.ER: Terrates	st	LOGO	GED: JY	CASING: 0.0	- 3.5	5m		

WATER OBSERVATIONS: No free groundwater observed whilst drilling

REMARKS: Well Construction: gattic cover, blank PVC 0-6m, screen PVC 6-15m, with end cap. Backfill: grout 0-4m, bentonite 4-5m, 5mm gravel 5-15m, bentonite 15-16m, 5mm gravel 16-25m.

	SAM	IPLIN	G & IN SITU TESTING	G LEG	END					
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	_		_	_	_
B	Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)					rtners
B	LK Block sample	U,	Tube sample (x mm dia.)	PL(E) Point load diametral test Is(50) (MPa)					riners
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)					
D	Disturbed sample	⊳	Water seep	S	Standard penetration test		Castashuis			1 One un deux tem
E	Environmental sample	¥	Water level	V	Shear vane (kPa)		Geotechnics	s I Env	ironment	Groundwater

CLIENT:Cleanaway Operations Pty LtdPROJECT:Green WaratahLOCATION:339 Wallgrove Road, Eastern Creek

SURFACE LEVEL: 57.6 AHD **EASTING:** 301375.8 **NORTHING:** 6255870.5 **DIP/AZIMUTH:** 90°/-- BORE No: ABH02 PROJECT No: 84822.04 DATE: 10/2/2020 SHEET 6 OF 6

es ;	ies	Sa	ampli	ing &	In Situ Testing
int g	pint	Type	ore%	RQD %	Test Results &
ult ⊨	ault	Ύ	ပိမ္ဆ		Comments
с				100	
٩G	NG	: 0.0	: 0.0 - 3.5	: 0.0 - 3.55m	: 0.0 - 3.55m

WATER OBSERVATIONS: No free groundwater observed whilst drilling

REMARKS: Well Construction: gattic cover, blank PVC 0-6m, screen PVC 6-15m, with end cap. Backfill: grout 0-4m, bentonite 4-5m, 5mm gravel 5-15m, bentonite 15-16m, 5mm gravel 16-25m.

		SAMP	LIN	G & IN SITU TESTING	LEG]										
A	Auger sample		G	Gas sample	PID	Photo ionisation detector (ppm)			_	_			_		_	_	_	
В	Bulk sample		Р	Piston sample		A) Point load axial test Is(50) (MPa)					Dou						4	-
BL	K Block sample		U,	Tube sample (x mm dia.)	PL(E	D) Point load diametral test Is(50) (MPa	a)						1 6					
C	Core drilling		Ŵ	Water sample	pp	Pocket penetrometer (kPa)												
D	Disturbed sample		⊳	Water seep	S	Standard penetration test			<u> </u>		O t t t	_		-			0	
E	Environmental sar	mple	Ŧ	Water level	V	Shear vane (kPa)					Geotechnic	cs	1	Envir	roni	ment	Grou	ndwate
-							_	-										

CLIENT:	Cleanaway Operations Pty Ltd
PROJECT:	Green Waratah
LOCATION:	339 Wallgrove Road, Eastern Creek

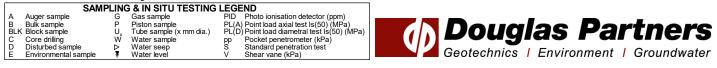
SURFACE LEVEL: 54.4 AHD **EASTING:** 301405.8 NORTHING: 6255849 **DIP/AZIMUTH:** 90°/--

BORE No: ABH03 PROJECT No: 84822.04 DATE: 4/2/2020 SHEET 1 OF 1

	_		Description	.e		San		& In Situ Testing	5	Well
RL	De (n	pth n)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction
		,	Strata	U	Ļ _	ď	San	Comments	_	Details
-	-		Topsoil/ Silty CLAY: brown, trace rootlets, surficial vegetation		D	0.1				-
54	-	0.2 -	Silty CLAY: medium to high plasticity, orange-brown mottled grey, w <pl, residual="" soil<="" stiff="" stiff,="" td="" to="" very=""><td></td><td>D</td><td>0.2 0.3</td><td></td><td></td><td></td><td>-</td></pl,>		D	0.2 0.3				-
53	- - - - - - -		- becoming pale grey mottled orange from 0.8m		S D U75	0.5 0.9 0.95 1.0 1.25		5,7,8 N = 15		- 1 - 1
	-		- becoming pale grey mottled red-brown from 1.5m		D	1.9				-
52	-2	2.0 -	Silty CLAY: medium to high plasticity, pale grey mottled red, w <pl, low="" siltstone<br="" stiff,="" strength="" very="" with="">bands, residual soil (possibly extremely weathered siltstone)</pl,>		S	2.0		7,12,19 N = 31		-2
	- 3	2.8	SILTSTONE: grey, very low strength siltstone with extremely weathered bands, Bringelly Shale		DS	2.8 2.9 3.0 3.1		30/100 (Bouncing)		-3
51	-	3.5 -	SILTSTONE: grey, low strength siltstone with very low strength bands, Bringelly Shale		В					
	-4 - -	4.0	Bore discontinued at 4.0m	<u> . </u>		-4.0-				4 - - -
20	-									

RIG: MCT 450

DRILLER: Terratest


LOGGED: JY

CASING: Uncased

TYPE OF BORING: Sonic

WATER OBSERVATIONS: No free groundwater observed whilst drilling

REMARKS: Well Construction: Monument with stickup, 0-0.5m blank PVC 0-0.5m, screen PVC 0.5-4m, with end cap. Backfill: grout 0-0.3m, bentonite 0.3-0.5m, 5mm gravel 0.5-3.9m, bentonite 3.9-4m

Cleanaway Operations Pty Ltd

339 Wallgrove Road, Eastern Creek

Green Waratah

CLIENT:

PROJECT:

LOCATION:

SURFACE LEVEL: 60.8 AHD EASTING: 301341 NORTHING: 6255740 DIP/AZIMUTH: 90°/--

BORE No: ABH04 PROJECT No: 84822.04 DATE: 4/2/2020 SHEET 1 OF 1

Sampling & In Situ Testing Well Description Graphic Log Water Depth Sample 뭅 of Construction Depth Type Results & Comments (m) Strata Details FILL/ Sandy GRAVEL: fine to coarse, grey, igneous 0.05 0.1 gravel (roadbase), dry D 0.2 FILL/ SAND: fine to medium, dark grey, with fine to coarse sandstone gravel, moist 0.5 14,8,6 s N = 14 0.95 1.0 • 1 1 1.0 Silty CLAY: medium plasticity, pale grey mottled red, w<PL, stiff, residual soil D .0 -2 - 2 2.0 U75 2.2 2.5 2.5 Silty CLAY: medium to high plasticity, pale brown, w<PL, hard, with very low strength siltstone and ironstone bands, residual soil (extremely weathered siltstone) D 2.6 28 3 3.0 -3 15/100 s (Bouncing) 3.1 3.8 3.8 2 SILTSTONE: grey-brown, very low strength, highly to moderately weathered, with extremely weathered bands and clay seams, Bringelly Shale D 4.0 4.0 4 Bore discontinued at 4.0m

RIG: MCT 450 TYPE OF BORING: **DRILLER:** Terratest

LOGGED: JY

CASING: Uncased

WATER OBSERVATIONS: Sample saturated between 2-2.5m depth **REMARKS:**

Sonic

SAN	/IPLING	G & IN SITU TESTING	LEG	END			
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	_		
B Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)		Dougl	
BLK Block sample	U,	Tube sample (x mm dia.)	PL(E	D) Point load diametral test Is(50) (MPa)	4		75 I
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			
D Disturbed sample	⊳	Water seep	S	Standard penetration test		On a tank when the	—
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics	Environi

Cleanaway Operations Pty Ltd SURFACE LEVEL: 60.8 AHD **EASTING:** 301341.2 LOCATION: 339 Wallgrove Road, Eastern Creek **NORTHING:** 6255739.1 **DIP/AZIMUTH:** 90°/--

BORE No: ABH04A **PROJECT No:** 84822.04 DATE: 13/2/2020 SHEET 1 OF 2

			Description			Sam	nolina X	& In Situ Testing		10/-11
RL	De	pth	Description	Graphic Log					Water	Well Construction
L C	(n	n)	of	Gra	Type	Depth	Sample	Results & Comments	Ň	Details
			Strata		-		Se			Details
-	-	0.05	─ FILL/ Sandy GRAVEL: fine to coarse, grey, igneous \gravel (roadbase), dry							-
-	-		FILL/ SAND: fine to medium, dark grey, with fine to coarse							-
-	-		sandstone gravel, moist							-
F	-									
F	-									
	-			\otimes						
										[
60	_									
	-1	1.0		XX						-1
	-		Silty CLAY: medium plasticity, pale grey mottled red, w <pl, residual="" soil<="" stiff,="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></pl,>							-
-	-									-
ł	-			1/1/						-
F	-									-
F	-			1/1/						
	-									
59	_									[
5	_			1/1/						
	-2									-2
-	-			1/1/						-
-	-									-
ł	-									-
ŀ	-			1/1/						
	-	2.5	Silty CLAY: medium to high plasticity, pale brown, w <pl,< td=""><td>1/1/</td><td></td><td></td><td></td><td></td><td></td><td></td></pl,<>	1/1/						
			Silty CLAY: medium to high plasticity, pale brown, w <pl, hard, with very low strength siltstone and ironstone bands, residual soil (extremely weathered siltstone)</pl, 	1/1/						[
58	_									-
-	-			1/1/						-
-	-3									-3
-	-			1/1/						-
ł	-			1/1						-
F	-									
	-			1/1/						
	_									[
	_			1/1/						
22	-	3.8		1/1/		3.8				-
-	-		SILTSTONE: grey-brown, very low strength, with extremely weathered bands and clay seams, Bringelly	· _ · ·						-
-	-4		Shale	<u> </u>	в					-4
$\left \right $	-									
	-									
	-		- extremely weathered from 4.3m and can be remoulded			4.3				
	_		into clay.							
	_			· · _						
	-			· — · ·						
56	_			$ \cdot - \cdot $						
$\left \right $	-									
				— · –						

RIG: MCT 450

TYPE OF BORING: Sonic

CLIENT:

PROJECT:

Green Waratah

DRILLER: Terratest

LOGGED: JY

CASING: Uncased

WATER OBSERVATIONS: No free groundwater observed whilst drilling **REMARKS:** Located approximately 1m south-east of ABH04

SAM	1PLIN	G & IN SITU TESTING	LEG	END								
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_		_	3	_	_	
B Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)			Doug				4	
BLK Block sample	U,	Tube sample (x mm dia.)	PL(E	0) Point load diametral test Is(50) (MPa)					5 /		INEr	5
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)								
D Disturbed sample	⊳	Water seep	S	Standard penetration test		11		-				
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			Geotechnics	s I En	viron	iment I	Groundwat	er
					-							

SURFACE LEVEL: 60.8 AHD **EASTING:** 301341.2 **NORTHING:** 6255739.1 **DIP/AZIMUTH:** 90°/-- BORE No: ABH04A PROJECT No: 84822.04 DATE: 13/2/2020 SHEET 2 OF 2

Г		Description	. <u>ಲ</u>		Sam	ipling &	& In Situ Testing		Well	
R	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Constructio	n
		Strata	0 	ŕ	Ğ	Sar	Comments	-	Details	
ł	-								-	
ŀ	- 5.2	SILTSTONE: grey-brown, very low strength, highly to moderately weathered, with extremely weathered bands and clay seams, Bringelly Shale	 						-	
ŀ	- 5.5		· _ · ·						-	
ŀ	-	Bore discontinued at 5.5m							-	
55	-								-	
ŀ	-6								6	
ŀ	_								-	
ŀ	-								-	
ŀ	-								-	
ŀ	-								-	
54	-								-	
ŀ	-7								-7	
ŀ	-								-	
ŀ	-								-	
	-								-	
53	-								-	
-									-	
ŀ	-8								-8	
ŀ									-	
ł	-								-	
-									-	
-62	-								-	
ŀ	-9								- 9	
ł	ŀ									
[-									
ŀ	-								-	
ŀ	-								-	
-2-	-									
Ľ	[-	

RIG: MCT 450

TYPE OF BORING: Sonic

CLIENT:

PROJECT:

LOCATION:

Cleanaway Operations Pty Ltd

339 Wallgrove Road, Eastern Creek

Green Waratah

DRILLER: Terratest

LOGGED: JY

CASING: Uncased

WATER OBSERVATIONS: No free groundwater observed whilst drilling REMARKS: Located approximately 1m south-east of ABH04

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 Planto ionisation detector (ppm)

 B
 Built sample
 Piston sample
 Planto ionisation detector (ppm)

 BLK
 Block sample
 P
 Ploto ionisation detector (ppm)

 C Core drilling
 W
 Water sample
 PL(A) Point load axial test Is(50) (MPa)

 D
 Disturbed sample
 P
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 Water level
 V
 Shear vane (kPa)
 Standard penetration test

SURFACE LEVEL: 55.1 AHD **EASTING:** 301425 **NORTHING:** 6255731 **DIP/AZIMUTH:** 90°/-- BORE No: ABH05 PROJECT No: 84822.04 DATE: 3/2/2020 SHEET 1 OF 1

Sampling & In Situ Testing Well Description Graphic Log Water Depth Sample 뭅 of Construction Depth Type Results & Comments (m) Strata Details FILL/ Silty CLAY: pale-brown, stiff, trace rootlets, surficial 55 0.1 0.1 vegetation, topsoil D 0.2 Silty CLAY: medium to high plasticity, pale brown, stiff, w<PL, residual soil 0.5 0.5 Silty CLAY: high plasticity, pale grey mottled orange, w>PL, stiff, residual soil 5,6,8 s N = 140.95 В B: 0.5-1.5m • 1 1 1.0 -2 U75 1.31 15 - becoming very stiff from 1.5m (possible extremely weathered siltstone) -2 -2 2.0 -23 2.1 SILTSTONE: grey-brown, very low strength, highly to moderately weathered, siltstone with clay seams and extremely weathered bands, Bringelly Shale s 10, 25, Bouncing 2.3 3 -3 52-4.0 -4 - 4 -<u>ال</u> D _ . 43 43 Bore discontinued at 4.3m

RIG: MCT 450

TYPE OF BORING:

CLIENT:

PROJECT:

LOCATION:

Cleanaway Operations Pty Ltd

339 Wallgrove Road, Eastern Creek

Green Waratah

DRILLER: Terratest

LOGGED: JY

CASING: Uncased

WATER OBSERVATIONS: No free groundwater observed whilst drilling REMARKS:

Sonic

	SAMP	LIN	3 & IN SITU TESTING	LEGE	END				
А	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)				
В	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)			Dougl	
BLK	K Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)				Ē
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)				-
D	Disturbed sample	⊳	Water seep	S	Standard penetration test			On a track with a l	-
Е	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			Geotechnics	E
						-			

CLIENT:Cleanaway Operations Pty LtdPROJECT:Green WaratahLOCATION:339 Wallgrove Road, Eastern Creek

SURFACE LEVEL: 56.4 AHD **EASTING:** 301264 **NORTHING:** 6255953.2 **DIP/AZIMUTH:** 90°/-- BORE No: ABH06 PROJECT No: 84822.04 DATE: 3/2/2020 SHEET 1 OF 1

			Description	.u		Sam	pling &	& In Situ Testing		Well
Ч	Dep (m	oth n)	of	Graphic Log	Type	oth	Sample	Results &	Water	Construction
	(.	Strata	Ū	Ту	Depth	Sam	Results & Comments	>	Details
		0.1	FILL/ Sandy GRAVEL: fine to coarse, grey, siltstone gravel with igneous gravel (possible recycled roadbase), dry		D	0.0 0.1				-
			FILL/ Silty CLAY: low to medium plasticity, brown, trace burnt timber, w>PL		В					-
20		0.5	Silty CLAY: medium plasticity, brown mottled grey, w <pl, firm="" residual="" rootlets,="" soil<="" stiff,="" td="" to="" trace=""><td></td><td></td><td>0.5</td><td></td><td></td><td></td><td>-</td></pl,>			0.5				-
			firm to stiff, trace rootlets, residual soil		s			1,2,3 N = 5		
	· 1					0.95 1.0				- 1
					U75	1.0				-
55						1.41				-
· •		1.7 -	Silty CLAY: medium plasticity, brown mottled grey, very stiff to hard, w <pl, (possible="" extremely<br="" residual="" soil="">weathered siltstone)</pl,>		В					-
· -	-2	2.0-	SILTSTONE: grey-brown, very low strength, with extremely weathered bands and clay seams, Bringelly Shale	· _ · ·	S	2.0 2.09		30/90 (Bouncing)		-2
54		2.4	SILTSTONE: grey, low strength, Bringelly Shale	· _ · =		2.4				-
				· · . · · .						-
				 	В					-
	3	3.0	Bore discontinued at 3.0m			—3.0—				3
										-
23										-
-										
	.1									
	4									
52										
-										-

RIG: MCT 450

TYPE OF BORING: Sonic

DRILLER: Terratest

LOGGED: JY

CASING: Uncased

WATER OBSERVATIONS: No free groundwater observed whilst drilling REMARKS:

 SAMPLING & IN SITU TESTING LEGEND

 A Auger sample
 G Gas sample
 Pliston sample

 B Buk sample
 Piston sample
 Pliston sample

 LK Block sample
 U, Tube sample (x mm dia.)
 PL(A) Point load axial test Is(50) (MPa)

 C Core drilling
 W Water sample
 Put (A) Point load diametral test Is(50) (MPa)

 D Disturbed sample
 P Water seep
 S Standard penetration test

 E Environmental sample
 W Water level
 V Shear vane (kPa)

SURFACE LEVEL: 54.7 AHD EASTING: 301315.3 NORTHING: 6256027.6 DIP/AZIMUTH: 90°/--

BORE No: ABH07 PROJECT No: 84822.04 **DATE:** 3/2/2020 SHEET 1 OF 1

Sampling & In Situ Testing Well Description Graphic Log Water Depth 뭅 Sample Construction of Depth Results & Comments (m) Type Details Strata 0.02 ASPHALT - aggregate up to 20mm 0.1 D FILL/ Clayey and Sandy GRAVEL: fine to coarse, grey 0.2 brown, ripped siltstone, dry 0.4 FILL / Clayey GRAVEL: fine to coarse, pale grey and dark 0.5 grey, ripped siltstone, dry 0.7 17,7,5 2 s Silty CLAY: high plasticity, orange-brown, trace sand, N = 12 w<PL, stiff, residual soil 0.95 D • 1 1 1.0 U75 1.27 16 1.6 Silty CLAY: high plasticity, pale-brown, with very low strength siltstone bands and extremely weathered . . . siltstone bands, w<PL, hard, residual soil (possibly extremely weathered siltstone) - 2 2.0 -2 25/100 S (Bouncing) 2.1 D 2.2 2.4 24 SILTSTONE: grey, very low strength, with extremely weathered silstone bands and clay seams, Bringelly Shale 22 2.9 Bore discontinued at 2.9m . 3 - 3 4 - 4 RIG: MCT 450 **DRILLER:** Terratest

TYPE OF BORING: Sonic

CLIENT:

PROJECT:

LOCATION:

Green Waratah


339 Wallgrove Road, Eastern Creek

LOGGED: JY

CASING: Uncased

WATER OBSERVATIONS: No free groundwater observed whilst drilling **REMARKS:**

SAMPLING & IN SITU TESTING LEGEND Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level LEGENU PID Photo ionisation detector (ppm) PL(A) Point bad axial test Is(50) (MPa) PL(D) Point bad diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample G P U,x W Douglas Partners Core drilling Disturbed sample Environmental sample CDE ₽ Geotechnics | Environment | Groundwater

Cleanaway Operations Pty Ltd SURFACE LEVEL: 60.3 AHD **EASTING:** 301387.4 339 Wallgrove Road, Eastern Creek **NORTHING:** 6255699.1 **DIP/AZIMUTH:** 90°/--

CLIENT:

PROJECT:

LOCATION:

Green Waratah

BORE No: ABH08 **PROJECT No:** 84822.04 DATE: 21/2/2020 SHEET 2 OF 4

		Description	Degree of Weathering	U	Rock Strength	Fracture	Discontinuities	Sa	ampli	ng & I	n Situ Testing
RL	Depth (m)	of		Graphic Log	Very Low Very Low Medium High Ex High Atter	Spacing (m)	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. %	RQD %	Test Results &
55	-	SILTSTONE: grey-brown, low strength with very low and medium strength bands, highly weathered with extremely weathered bands, highly fractured to fractured, trace sandstone laminations, Bringelly Shale <i>(continued)</i>					partially healed, fe 4.98 - 5.2m: B (x4), 0°, pl, cly, fe 5.33 - 5.35m & 5.55 - 5.60 m : cs, 20mm to 50 mm, fe	С	100	60	Comments PL(A) = 0.21
54	- 6 - -	(Note: Extremely weathered, extremely low stength bands consistent with very stiff to hard clay)					5.89m: J, 20° - 45°, cu, fe, tight ∖6.091m: J, 60°, pl, fe 6.1m: J, 60°, st, fe				
53	- 7						6.65 - 7.0 m, J (x4), 35-45°, pl	С	100	76	PL(A) = 0.05 PL(A) = 0.1
52	- 8.14 - 8.14 	SILTSTONE: grey, low and medium strength with extremely and very low strength bands, fresh, slightly fractured to fractured, with sandstone laminations, Bringelly Shale					7.76m: J, 45°, st, fe 7.95 - 8.04m: cs, 90mm, fe 8.09m: J, 45° & 0°, st, cly vn	с	100	93	PL(D) = 0.08 PL(A) = 0.33
51	-						9.59 - 10.99 m J (x7), 60-70°, pl	С	100	47	PL(A) = 0.28
דז W		 BORING: Sonic to 4.94 m depth the BSERVATIONS: No free groundwate Well Construction: Monument with gravel 6-14.8m, 14.8-16m bentonit SAMPLING & IN SITU TESTING L 	er observed v stickup, bla e, 16-17m b EGEND	g to 16 whilst ink P\ ackfill	6.62 m drilling /C 0-7m, screen f I	GED: RB	CASING: 0.0 with end cap. Backfill: gro			pentor	nite 5-6m, 5mm
A B B C D E	Bulk sam LK Block sar Core drill Disturbed	mple G Gas sample ple P Piston sample mple U _x Tube sample (x mm dia.)	PID Photo ionis PL(A) Point load	axial tes diametr netrome penetrat	st Is(50) (MPa) al test Is(50) (MPa) eter (kPa)	$\mathbf{\Phi}$	Douglas Geotechnics Env	S	Pa	ar nt I	tners Groundwater

ruyias rartn Point load diametral test is(3 Pocket penetrometer (kPa) Standard penetration test Shear vane (kPa) Geotechnics | Environment | Groundwater

CLIENT:Cleanaway Operations Pty LtdPROJECT:Green WaratahLOCATION:339 Wallgrove Road, Eastern Creek

SURFACE LEVEL: 60.3 AHD **EASTING:** 301387.4 **NORTHING:** 6255699.1 **DIP/AZIMUTH:** 90°/-- BORE No: ABH08 PROJECT No: 84822.04 DATE: 21/2/2020 SHEET 3 OF 4

Depth (m)	of			Strength 📊						
	Strata	Degree of Weathering	Grapt Loc	Very Low Medium Nety High Very High Very High Very High	Spacing (m)	B - Bedding J - Joint S - Shear F - Fault	Type	Core ec. %	RQD %	Test Results &
	SILTSTONE: grey, low and medium strength with extremely and very low strength bands, fresh, slightly fractured to fractured, with sandstone laminations, Bringelly Shale <i>(continued)</i>	E E E E E E E E E E E E E E E E E E E					С			Comments PL(A) = 0.21
11						10.79m: J, 85 - 90°, pl 11.85 - 11.84m: cs,	С	100	44	PL(A) = 0.2
12	CORE LOSS					20mm, fe 12m: CORE LOSS: 350mm	с	0	0	
13							С	100	90	PL(A) = 0.88
13.82 -	SILTSTONE: grey, low, low to									PL(A) = 0.68
14 -	medium and medium strength, fresh, slightly fractured, with sandstone laminations, Bringelly Shale 13.99 - 14.08 m extremely weathered band 14.1 m - sandstone laminations from 14.07 m to 14.28 m approximately 40%					13.99 - 14.09m: cs, 100mm 14.44m: J, 60°, pl	С	100	31	PL(A) = 0.02
			· ·							PL(A) = 0.19
1 1	12 12.35 13 13.82 14	 fractured to fractured, with sandstone laminations, Bringelly Shale (continued) 11 12 CORE LOSS 12.35 13 13 13 14 SILTSTONE: grey, low, low to medium and medium strength, fresh, slighty fractured, with sandstone laminations, Bringelly Shale 13.99 - 14.08 m extremely weathered band 14.1 m - sandstone laminations from 14.07 m to 14.28 m approximately 40% 	fractured to fractured, with sandstone laminations, Bringelly Shale (continued)	11 Image: continued in the image. The image in the	fractured of fractured, with shades learninations, Bringelly Shale (continued) 11 12 12 12 13 14 13.82 14 14 14 15 15 15 15 15 15 15 15 15 15	13.42 12.35 13.42 14. 14. 14. 14. 14. 14. 14. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15	13.87 SILTSTONE: grey, low, low to medium and medium strength, fresh, slightly fresh slightly 14.44m: J, 60°, pl 15.157 16.157 17.25 17.25 17.25 18.157 19.157 19.157 10.79m: J, 85 - 90°, pl 10.79m: J, 85 - 90°, pl 11.85 - 11.84m: cs, 20mm, fe 12.35 13.99 - 14.09m: cs, 13.99 - 14.09m: cs, 10.79m: J, 85 - 90°, pl 13.99 - 14.09m: cs, 10.79m: J, 85 - 90°, pl 13.99 - 14.09m: cs, 10.79m: J, 85 - 90°, pl 13.99 - 14.09m: cs, 10.79m: J, 85 - 90°, pl 13.99 - 14.09m: cs, 10.79m: J, 85 - 90°, pl 14.44m: J, 60°, pl	CORE LOSS CORE L	13.82 Shale (continued) C 100 11 C 10.79m: J. 85 - 90°, pl C 100 12 CORE LOSS C 10.79m: J. 85 - 90°, pl C 100 13 CORE LOSS C 10.79m: J. 85 - 90°, pl C 100 14 Shale (continued) C 100 C 100 14 Shale (continued) C 100 C 100 14 Shale (continued) C 100 C 100 14 Shale (continued) C 100 C 100 14 Shale (continued) C 100 C 100 14 Shale (continued) C 100 C 100 14 Shale (continued) C 100 C 100 14 Shale (continued) C 100 C 100 14 Shale (continued) C 100 C 100 14 Shale (continued) C 100 100 C 100 14 Shale (conti	13.80 SLTSTONE: grey, low, low to medium and mentations, Bringely Shale C 100 47 11.85 11.85 11.85 10.79m: J, 85 30", pl C 100 44 12 CORE LOSS C 100 44 10.79m: J, 85

WATER OBSERVATIONS: No free groundwater observed whilst drilling

REMARKS: Well Construction: Monument with stickup, blank PVC 0-7m, screen PVC 7-14.8m, with end cap. Backfill: grout 0-5m, bentonite 5-6m, 5mm gravel 6-14.8m, 14.8-16m bentonite, 16-17m backfill

SAM	PLIN	G & IN SITU TESTING	LEG	END		
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	_	
3 Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)		Douglas Partners
3LK Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test ls(50) (MPa)	(1)	A Doudias Partners
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		
D Disturbed sample	⊳	Water seep	S	Standard penetration test		
Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics Environment Groundwater

CLIENT: Cleanaway Operations Pty Ltd PROJECT: Green Waratah LOCATION: 339 Wallgrove Road, Eastern Creek SURFACE LEVEL: 60.3 AHD **EASTING:** 301387.4 **NORTHING:** 6255699.1 **DIP/AZIMUTH:** 90°/--

BORE No: ABH08 **PROJECT No:** 84822.04 DATE: 21/2/2020 SHEET 4 OF 4

Π		Description	Degree of Weathering ﷺ ≩ ≩ ଛ ଝ ଝ	<u>.</u>	Rock Strength	Fracture	Discontinuities	Sa	ampli	ng & I	n Situ Testing
R	Depth (m)	of	weathering	Log		Spacing (m)	B - Bedding J - Joint	be	see	RQD %	Test Results
	(,	Strata	FIS WW HW FIS	Ū	Ex Low Very Low Medium High Very High Ex High	0.01	S - Shear F - Fault	Type	ပိ မို	R S%	& Comments
45		SILTSTONE: grey, low, low to medium and medium strength, fresh, slightly fractured, with sandstone laminations, Bringelly Shale <i>(continued)</i>		·				с	100		
				· · _ · _ · _ · _ · _ · _ · _ · _ ·							PL(A) = 0.42 PL(D) = 0.15
44	- 16			· · · ·				С	100	53	1 2(0) = 0.10
				 							PL(A) = 0.3
$\left[\right]$	16.62	Bore discontinued at 16.62m	<u> </u>	·	┝─┼┼╇┼┼┼┼┥ ││││││	<u>⊦ ¦¦ ¦¦</u> 					
	- 17										
42	- 18										
41	- 19										
RIC	G: MCT	450 DRILI	.ER: Terrates	st	LOG	GED: RB	CASING: 0.0	- 4.9	4m		

TYPE OF BORING: Sonic to 4.94 m depth then PQ coring to 16.62 m

WATER OBSERVATIONS: No free groundwater observed whilst drilling

REMARKS: Well Construction: Monument with stickup, blank PVC 0-7m, screen PVC 7-14.8m, with end cap. Backfill: grout 0-5m, bentonite 5-6m, 5mm gravel 6-14.8m, 14.8-16m bentonite, 16-17m backfill

	SAN	IPLING	3 & IN SITU TESTING	LEGEND	
A	Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
B	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	Douglas Partners
B	K Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)	
C	Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S Standard penetration test	
E	Environmental sample	ž	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwater

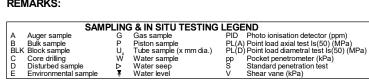
CLIENT: Cleanaway Operations Pty Ltd Green Waratah PROJECT: 339 Wallgrove Rd, Eastern Creek LOCATION:

SURFACE LEVEL: 56.0 AHD **EASTING:** 301360 NORTHING: 6255945 **DIP/AZIMUTH:** 90°/--

BORE No: PT101 **PROJECT No: 84822.04** DATE: 17/2/2020 SHEET 1 OF 1

	_		Description	Di		Sam		& In Situ Testing	5	Well
RL	Dep (n	pth n)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction
20			Strata FILL / CLAY CH: medium to high plasticity, brown and		-		Sa			Details
Ì	-		FILL / CLAY CH: medium to high plasticity, brown and red-brown and grey, with fine to medium, sub-angular gravel, w < PL, firm							-
-	-									-
Ì	-									-
-	-		0.50m: w = PL, apparently stiff							-
ţ	-									
-	-									-
55	-1		1.0m: slag							-1
-	-									-
Ì	-									-
ł	-	1.45	SILTY CLAY CH: medium to high plasticity, grey and orange-brown,w <pl, residual="" soil<="" stiff="" stiff,="" td="" to="" very=""><td>1/1</td><td></td><td></td><td></td><td></td><td></td><td>-</td></pl,>	1/1						-
ļ	-									-
-	-									
-5	-2									-2
ł	-	2.14	Bore discontinued at 2.14m						-	-
-	-		Practical refusal on Siltstone of at least very low strength							-
ŀ	-									-
-	-									-
ļ	-									-
-	-									-
-23	-3									-3
-	-									-
ļ	-									-
ŀ	-									-
F	-									
ł	-									
52	-4									-4
ŀ	_									
ł	_									
ţ	-									
ł	-									
ļ	-									
ŀ	_									
L										I

RIG: Geoprobe **DRILLER:** Terratest TYPE OF BORING: SFA to 0.7m, push tube to 2.14m WATER OBSERVATIONS: No Free Groundwater Observed **REMARKS:**


₽

LOGGED: SLB

CASING: uncased

Douglas Partners

Geotechnics | Environment | Groundwater

SURFACE LEVEL: 57.1 AHD **EASTING:** 301329 NORTHING: 6255893 **DIP/AZIMUTH:** 90°/--

BORE No: PT102 **PROJECT No: 84822.04** DATE: 17/2/2020 SHEET 1 OF 1

	Depth		Description				er	Well	
Ч	(m)	O	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction
		Strata	U	Ţ	å	Sar	Comments	-	Details
57	. 0.1	FILL / CLAY CH: medium plasticity, brown mottled orange-grey, with fine to medium sandstone gravel, w> PL, apparently poorly compacted (soft)							-
	- - -	Silty CLAY CH: medium to high plasticity, orange and yellow-brown, trace of fine sand, w < PL, with ironstone bands and gravel, firm, residual soil							-
	0.5 - -	Silty CLAY CH: medium to high plasticity, orange and yellow brown, trace fine sand, w <pl, bands<br="" ironstone="" with="">and gravel, very stiff to hard, residual soil</pl,>							-
	- - 1		1/1						-1
56									- - -
$\left \right $	· 1.	SILTSTONE: very low strength, highly weathered,	r <u>77</u>						-
t	1.5	s – siltstone, Bringelly Shale	· — · ·						-
		Bore discontinued at 1.53m Practical refusal on Siltstone of at least very low strength							-
	- -2								-2
55	-2								
-									-
	-								-
									-
\mathbf{F}	-								-
t									
	-3								-3
54-									-
t									
$\left \right $	-								
	-								
$\left \right $	- 4								-4
-23	-								
	-								
	-								
$\left \right $	-								
ţ	-								
	-								
		1					1		

LOGGED: SLB

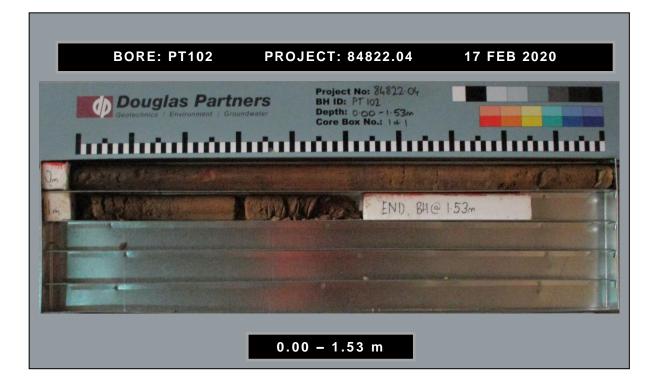
RIG: Geoprobe **DRILLER:** Terratest TYPE OF BORING: Push Tube to 1.53m WATER OBSERVATIONS: No Free Groundwater Observed

CLIENT:

PROJECT:

Cleanaway Operations Pty Ltd

Green Waratah


LOCATION: 339 Wallgrove Rd, Eastern Creek

REMARKS:

SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sample E Environmental sample Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level G P U, W ₽

CASING: uncased

Cleanaway Operations Pty Ltd Green Waratah LOCATION: 339 Wallgrove Rd, Eastern Creek

CLIENT:

PROJECT:

SURFACE LEVEL: 55.0 AHD EASTING: 301425 **NORTHING:** 6255718 **DIP/AZIMUTH:** 90°/--

BORE No: PT103 **PROJECT No:** 84822.04 DATE: 17/2/2020 SHEET 1 OF 1

								,	
.	Denth	Description of Strata					& In Situ Testing	er	Well
님	Depth (m)	of	Loc	Type	Depth	Sample	Results & Comments	Water	Construction
6	. ,	Strata	G	È	De	San	Comments	-	Details
-	-	FILL/CLAY CH: medium to high plasticity, brown and grey orange brown gravelly clay with siltstone gravel, variably compacted, dry							-
-	- 0.6 - - 0.79	FILL / CLAY: low to medium plasticity, brown mottled dark-brown and grey, trace of firm gravel, poorly	X						
53	- 1 	SILTY CLAY CH: medium to high plasticity, pale grey mottled orange-red, bands of siltstone and ironstone, w <pl, residual<="" stiff="" stiff,="" th="" to="" very=""><th></th><th></th><th></th><th></th><th></th><th></th><th>-1</th></pl,>							-1
-	- - 2.2 -	Bore discontinued at 2.2m Practical refusal on Siltstone of at least very low strength							-
52	3								3
51	- 4								-4
-	-								

DRILLER: Terratest **RIG:** Geoprobe TYPE OF BORING: Push tube to 2.20m

LOGGED: SLB

CASING: uncased

WATER OBSERVATIONS: No Free Groundwater Observed **REMARKS:**

SAMPI	LINC	3 & IN SITU TESTING	LEGE	ND
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
B Bulk sample	Р	Piston sample		Point load axial test Is(50) (MPa)
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D)) Point load diametral test Is(50) (MPa)
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D Disturbed sample	⊳	Water seep	S	Standard penetration test
E Environmental sample	ž	Water level	V	Shear vane (kPa)

BORE: PT103	PRO	JECT: 84822.04	17 FEI	3 2020
		Project No: 84822-0 BH ID: PT 103 Depth: 0.00 - 2.20 Core Box No.: 1-5 1		
5 NO RECOVE	ERY SURFACE T	0 0.60m		
M END SH	2.20m			
	0.0	0 – 2.20 m		

SURFACE LEVEL: 54.7 AHD **EASTING:** 301405 **NORTHING:** 6255842 **DIP/AZIMUTH:** 90°/-- BORE No: PT104 PROJECT No: 84822.04 DATE: 17/2/2020 SHEET 1 OF 1

								1	[]
	Derth	Description	jc –		Sam		& In Situ Testing	<u>۳</u>	Well
RL	Depth (m)	of	Graphic Log	Type	Depth	ble	Results &	Water	Construction
	()	Strata	G	Ту	Del	Sample	Results & Comments	-	Details
		FILL / Sandy CLAY: low plasticity, dark-brown, sand is	\otimes						
		fine, trace of rootlets							-
	0.25	Silty CLAY CH: medium to high plasticity, red-brown and							-
ł	-	orange, trace of silt, w < PL, stiff to very stiff, residual soil	1/1/						-
ł	-								-
İ_	-		1/1/						-
54									
			1/1/						-
-	0.95 - 1	Silty CLAY CH: medium to high plasticity, pale grey mottled red-brown, w = PL, stiff to very stiff, residual soil	1/1/						-1
ł	-	mottled red-brown, w = PL, stiff to very stiff, residual soil							-
F									-
t									
	-								
-									-
53									-
F	1.8	Silty CLAY CH: medium plasticity, orange and pale grey.							-
F		Silty CLAY CH: medium plasticity, orange and pale grey, trace of fine sand, ironstone bands, w <pl, stiff="" to<br="" very="">hard, residual soil</pl,>	1/1/						-
	-2								-2
			1/1/						-
-	-								-
ł			1/1/						-
ł	2.57								-
52		Bore discontinued at 2.57m							
- "	-								-
-									-
ł	-3								-3
F									-
									-
ł	-								
ŀ	-								
51-	-								
t									
	-4								4
ŀ	-								
ł	-								
ŀ	-								
t	-								
50	-								
$\left \right $	-								
ŀ	-								
		1					1	I	

 RIG: Geoprobe
 DRILLER: Terratest

 TYPE OF BORING:
 Push tube to 2.51m

CLIENT:

PROJECT:

Cleanaway Operations Pty Ltd

Green Waratah

LOCATION: 339 Wallgrove Rd, Eastern Creek

LOGGED: SLB

CASING: uncased

WATER OBSERVATIONS: No Free Groundwater Observed REMARKS:

	SAMP	LING	i & IN SITU TESTING I	LEGE	ND
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
	Bulk sample	Р	Piston sample	PL(A)	Point load axial test Is(50) (MPa)
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D)	Point load diametral test ls(50) (MPa)
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D	Disturbed sample	⊳	Water seep	S	Standard penetration test
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)

BOREHOLE LOG

SURFACE LEVEL: 60.7 AHD **EASTING:** 301340 **NORTHING:** 6255741 **DIP/AZIMUTH:** 90°/-- BORE No: PT105 PROJECT No: 84822.04 DATE: 17/2/2020 SHEET 1 OF 1

					~				1
	Depth	Description	Graphic Log				& In Situ Testing	e	Well
Ч	(m)	of	Lo	Type	Depth	Sample	Results & Comments	Water	Construction
		Strata	U U	ŕ	Ğ	Sar	Comments		Details
	0.06	FILL / Sandy CLAY CL: low plasticity, orange-brown mottled red, trace of ironstone gravel, w < PL, poorly compacted							
09	0.67	FILL / CLAY CL: medium to high plasticity, orange and red-brown, with sandstone gravel, w <pl, <="" compacted="" poorly="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></pl,>							-
		Silty CLAY CH: medium to high plasticity, pale grey and red-brown mottled red, w <pl, residual="" soil<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>							
	- I								
29 · · ·	. 1.38	Silty CLAY CH: medium to high plasticity, pale grey and red-brown mottled red, w <pl, residual="" soil<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>							
	1.85 -2	SILTSTONE: very low strength, highly weathered, grey, Bringelly Shale							-2
$\left \right $	2.13	Bore discontinued at 2.13m	· — · ·						-
 - 28 	- 3								-3
57									-
	- 4								-4
 - 29 									

 RIG:
 Geoprobe
 DRILLER:
 Terratest

 TYPE OF BORING:
 Push tube to 2.13m
 Push tube to 2.13m

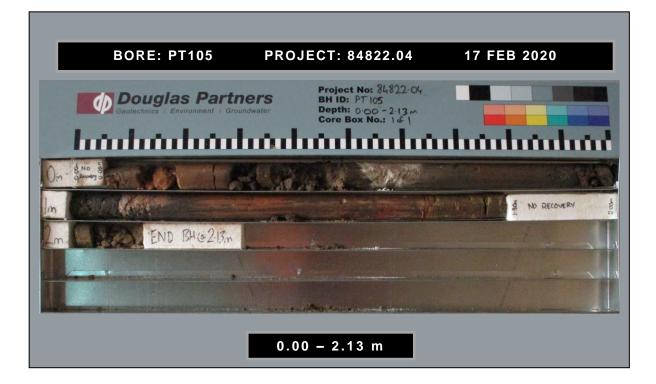
CLIENT:

PROJECT:

Cleanaway Operations Pty Ltd

Green Waratah

LOCATION: 339 Wallgrove Rd, Eastern Creek


LOGGED: SLB

CASING: uncased

WATER OBSERVATIONS: No Free Groundwater Observed REMARKS:

SAMPLING & IN SITU TESTING LEGEND										
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)						
B Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)						
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)						
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)						
D Disturbed sample	⊳	Water seep	S	Standard penetration test						
E Environmental sample	¥	Water level	V	Shear vane (kPa)						

CLIENT:Cleanaway Operations Pty LtdPROJECT:Green WaratahLOCATION:339 Wallgrove Rd, Eastern Creek

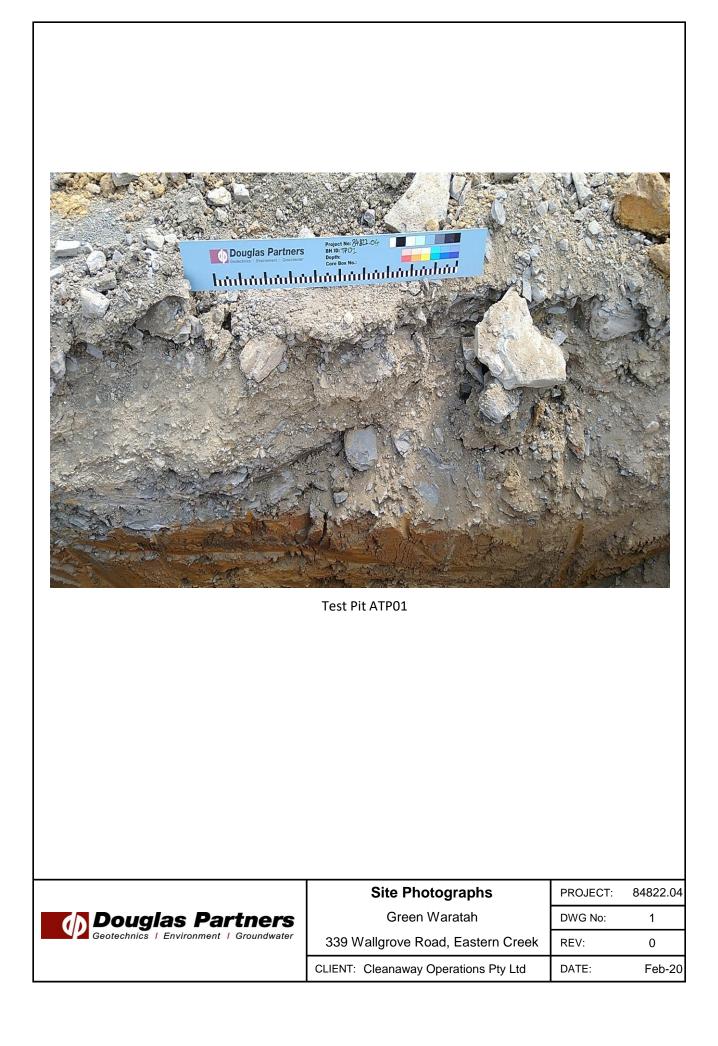
SURFACE LEVEL: 55.3 AHD **EASTING:** 301319.6 **NORTHING:** 6256008.8 PIT No: ATP01 PROJECT No: 84822.04 DATE: 4/2/2020 SHEET 1 OF 1

\square			Description	. <u>0</u>		Sam	npling a	& In Situ Testing					
R	Dep (m	oth ו)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dyn	amic Pen (blows	etromete per mm)	er Test
	,	<i>,</i>	Strata	G	Ту	De	San	Comments		5	10	15	20
	- '	0.05	FILL/ Sandy GRAVEL: grey, fine to medium igneous	\bigotimes		0.1				ļ :			
-	-		FILL/SILTSTONE: grey, fine to coarse ripped siltstone,			0.2				-			
-22	-		with boulders up to 400mm diameter, with sand, dry	\otimes	E/B					-			
	-			\bigotimes		0.5				1			
	_			\otimes	_D/B_	0.5				[
	-									ļ :			
$\left \right $	-	0.8	Silty CLAY : medium to high plasticity, orange-brown,			0.8				+ :			
	-		trace rootlets, w <pl, residual="" soil<="" stiff,="" td="" very=""><td>1/1/</td><td>D/B</td><td>0.9</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>	1/1/	D/B	0.9							
[[-1				Е	1.0		pp = 300					
	-			1/1/		1.2				ļ :			
54	-				1					+ :			
$\left \right $	-			1/1/						F :			
	-	1.6]					1			
		1.6-	Silty CLAY: medium to high plasticity, pale brown, w <pl,< td=""><td>1/1/</td><td></td><td></td><td></td><td></td><td></td><td>[</td><td></td><td>÷</td><td></td></pl,<>	1/1/						[÷	
	-		very stiff, with low strength siltstone bands and extremely weathered siltstone bands, dry, residual (possibly							- :		-	
$\left \right $	-		extremely weathered siltstone)	1/1/						+ :			
	-2				D	2.0		pp = 350		-2		÷	
										[
53	-									-			
$\left \right $	-				1					ł		-	
	-	2.5	SILTSTONE: grey-brown, very low to low strength, with	<u> </u>	D	2.5				t i			
t	_		clay seams, Bringelly Shale			2.6				[
	-				Ì					-			
$\left \right $	-	2.9	Pit discontinued at 2.9m	$ \cdot - \cdot $	1				_				
	-3		Practical refusal on Siltstone of at least low strength							-3			
tt										[÷	
52	-									ļ			
} }	-									+ :			
	-												
	-									1			
	_									[
	-									ļ		÷	
$\left \right $	-4									-4			
	-									† :			
										[
- 2-	-									ļ :			
$\left \right $	-									+ :		:	
$\left \right $	-									+ :			
	-									†	•	:	
										[

RIG: 8 Tonne Excavator

LOGGED: JY

SURVEY DATUM: MGA94


WATER OBSERVATIONS: No Free Groundwater Observed

REMARKS:

SAMPLING & IN SITU TESTING LEGEND									
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)					
B Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)					
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)					
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)					
D Disturbed sample	⊳	Water seep	S	Standard penetration test					
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)					

□ Sand Penetrometer AS1289.6.3.3□ Cone Penetrometer AS1289.6.3.2

CLIENT:Cleanaway Operations Pty LtdPROJECT:Green WaratahLOCATION:339 Wallgrove Rd, Eastern Creek

 SURFACE LEVEL:
 52.5 AHD

 EASTING:
 301427.5

 NORTHING:
 6256015

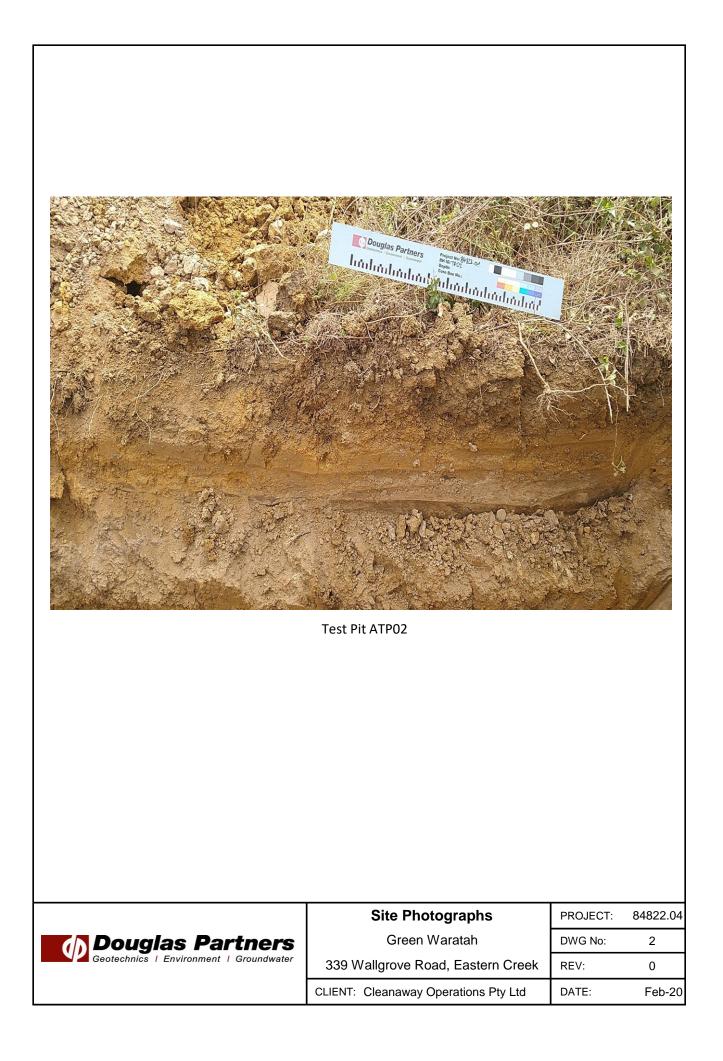
PIT No: ATP02 PROJECT No: 84822.04 DATE: 4/2/2020 SHEET 1 OF 1

Γ		Description	. <u>c</u>		Sam		& In Situ Testing	_			
Ч	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic P (blov	enetromete /s per mm)	r lest
		Strata		Ţ	De	Sar	Comments		5 10	15	20
	- 0.	Topsoil FILL/ Silty CLAY: low to medium plasticity, brown, trace charcoal, trace rootlets and roots, surficial vegetation,		D E/B-j	0.1 0.2						
	- 0.:	FILL/ Silty CLAY: low to medium plasticity, brown, trace plastic, rubber, charcoal, and rootlets		D E-7	0.3 0.4				-		
-22	- 0.	; Silty CLAY: low to medium plasticity, pale brown, w <pl, residual="" soil<="" stiff,="" td=""><td></td><td>D/B</td><td>0.5 0.6</td><td></td><td>pp >400</td><td></td><td>-</td><td></td><td></td></pl,>		D/B	0.5 0.6		pp >400		-		
	-	Silty CLAY: medium to high plasticity, pale grey, trace of sand, w <pl, hard,="" residual="" soil<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>									
-	-	- becoming very stiff from 0.8m									
ŀ	-1 -				1.0		pp = 300-350		-1		
-	- 1.: -	2 Silty CLAY: medium to high plasticity, orange-brown mottled grey, w <pl, p="" residual="" soil<="" stiff,="" very=""></pl,>							-		
51	- - 1.:	Silty CLAY: medium to high plasticity, pale grey mottled		D	1.5		pp = 350				•
ŀ	-	orange, w <pl, residual="" soil<="" stiff,="" td="" very=""><td></td><td>-U50-</td><td>1.6</td><td></td><td></td><td></td><td>-</td><td></td><td></td></pl,>		-U50-	1.6				-		
ł	-				1.75				-		
ł	-2								-2		•
ŀ	-										
ŀ	-										
-22	-										•
ł	-										•
ł	- 2.9	Pit discontinued at 2.9m									
	-3								-3		
ł	-								-		
	-										
49	-										
	-										
ŀ	- 4								-4		
ŀ											
[-										•
48	-										
ŀ	-										
ŀ	_										•
											:

RIG: 8 Tonne Excavator

LOGGED: JY

SURVEY DATUM: MGA94


WATER OBSERVATIONS: No Free Groundwater Observed

REMARKS:

SAMPLING & IN SITU TESTING LEGEND									
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)					
B Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)					
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)					
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)					
D Disturbed sample	⊳	Water seep	S	Standard penetration test					
E Environmental sample	¥	Water level	V	Shear vane (kPa)					

□ Sand Penetrometer AS1289.6.3.3□ Cone Penetrometer AS1289.6.3.2

CLIENT:Cleanaway Operations Pty LtdPROJECT:Green WaratahLOCATION:339 Wallgrove Rd, Eastern Creek

 SURFACE LEVEL:
 55.6 AHD

 EASTING:
 301421.9

 NORTHING:
 6255740.8

PIT No: ATP03 PROJECT No: 84822.04 DATE: 4/2/2020 SHEET 1 OF 1

				Description	IJ		Sam		& In Situ Testing		Dumon	nic Pene	tromoto	Toot
RL	0	epth (m)		of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water		(blows p	er mm)	
\vdash		0.1		Topsoil FILL/ Silty CLAY: low to medium plasticity, brown, \trace rootlets, surficial vegetation, dry	XX		 	ő			5	10	15	20
F	F	0.1	ſ		\bigotimes	E/B D/B	-						:	
ŀ	-	0.4	1	FILL/ Silty CLAY: low to medium plasticity, brown, trace charcoal, tile, asphaltic concrete, wood, fibre cement sheeting (possible asbestos containing materials), dry	XX		0.4				-		:	
55	-			Silty CLAY: medium to high plasticity, orange-brown mottled grey, with sand, very stiff, w <pl, residual="" soil<="" td=""><td></td><td>E</td><td>0.6</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td></pl,>		E	0.6				-			
ł													:	
ł	-					D/B	0.9				-		:	
ŀ	-1					U50	1.0 1.13		pp = 300-350		-1			
ł	-										-			
ł	-	1.5												
54	-	1.0		Silty CLAY: medium to high plasticity, pale grey mottled orange and red, with ironstone bands, w <pl, stiff="" to<br="" very="">hard, residual soil</pl,>							-			
ŀ	-			naro, residual son							-			
ļ	-2					D	1.9 2.0		pp = 300-400		-2			
ł											-		:	•
ł	-										-			
F	[2.5	5	Pit discontinued at 2.5m	////									
-23	-										-			
ł	-										-			
ł	-3										-3		:	
-	-												:	•
ŀ	-										-		:	•
52	-												:	
ł	-												:	
ł													:	
F	-4										-4		:	
ŀ	-												:	
ł	-												:	
5-	-										-			
ŀ	-													
ŀ	-													

RIG: 8 Tonne Excavator

LOGGED: JY

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No Free Groundwater Observed

REMARKS:

SAMPLING & IN SITU TESTING LEGEND										
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)						
B Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)						
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)						
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)						
D Disturbed sample	⊳	Water seep	S	Standard penetration test						
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)						

□ Sand Penetrometer AS1289.6.3.3 □ Cone Penetrometer AS1289.6.3.2

CLIENT:Cleanaway Operations Pty LtdPROJECT:Green WaratahLOCATION:339 Wallgrove Rd, Eastern Creek

SURFACE LEVEL: 55.2 AHD **EASTING:** 301412.2 **NORTHING:** 6255806.8 PIT No: ATP04 PROJECT No: 84822.04 DATE: 4/2/2020 SHEET 1 OF 1

	_		Description	ic		Sam		& In Situ Testing	<u> </u>		
Ч	Dep (n		of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetromet (blows per mm	er Lest)
			Strata			ے 0.0	Sai	Comments		5 10 15 : : :	20
ł	-	0.1	Topsoil FILL/ Silty CLAY: low to medium plasticity, brown, \trace rootlets, surficial vegetation,	\mathbb{K}	D	0.1					
-22			FILL/ Silty CLAY: low to medium plasticity, brown, trace rootlets, trace coarse ripped sandstone and brick		E/B						
ŀ	-	0.4	_ fragments, dry	XX		0.4				-	
ţ			Silty CLAY: medium to high plasticity, orange-brown mottled grey, w <pl, hard,="" rootlets,<="" stiff="" td="" to="" trace="" very=""><td></td><td>В</td><td>0.5 0.6</td><td></td><td>pp = 300-400</td><td></td><td></td><td></td></pl,>		В	0.5 0.6		pp = 300-400			
ŀ	-		residual soil		U50						
ł						0.84					
ŀ	- 1									-1	
-	-	4.0									
54	-	1.2	Silty CLAY: medium to high plasticity, pale grey mottled orange, w <pl, residual="" soil<="" stiff="" stiff,="" td="" to="" very=""><td>11</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>	11							
ł	-				D	1.4		pp = 200-300			
ļ						1.5					
-	-										
Ì											
ŀ	-2		- hard from 1.9 m (possibly extremely weathered siltstone)		D	2.0		pp >400		-2	
- 23		2.2		1/1/							
- 20	-	2.2	SILTSTONE: grey, very low to low strength, with clay seams, Bringelly Shale								
ŀ	-	2.5			D	2.4 —2.5—					
F	-	2.5	Pit discontinued at 2.5m			-2.5-				-	
ŀ	-										
-	-										
ŀ	-3									-3	
52	-										
-	-										
Ì											
ł	-										
ł											
-	-										
ŀ	-4									-4	
51-	-										
ł	-									+	
Ì	ļ										
ł	-										
ŀ											
+	-										
											:

RIG: 8 Tonne Excavator

LOGGED: JY

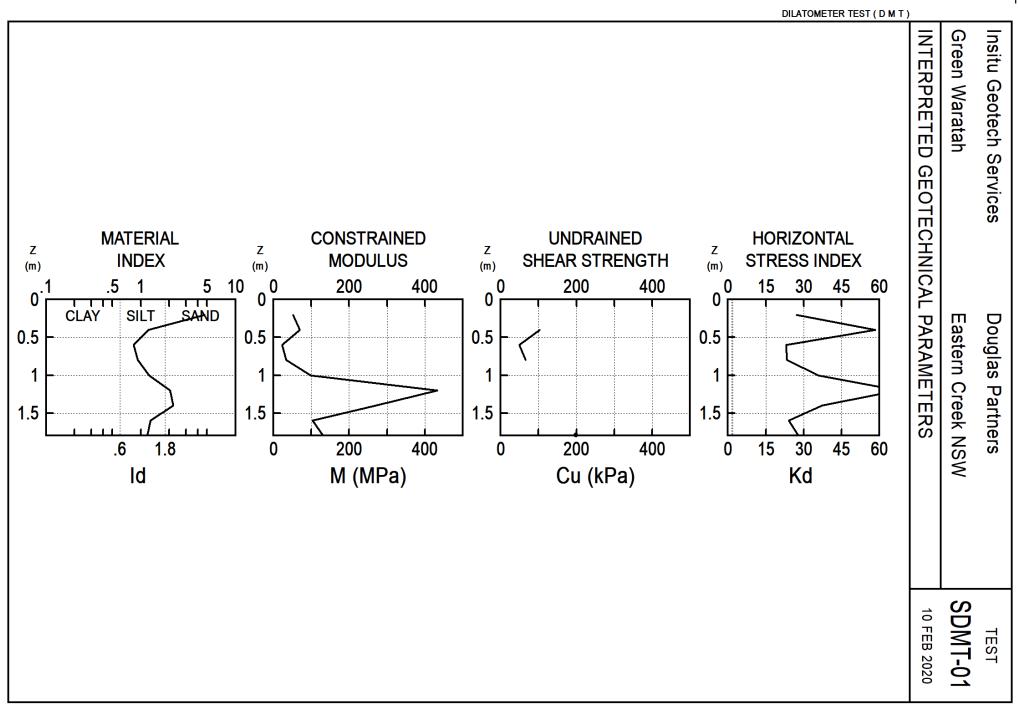
SURVEY DATUM: MGA94

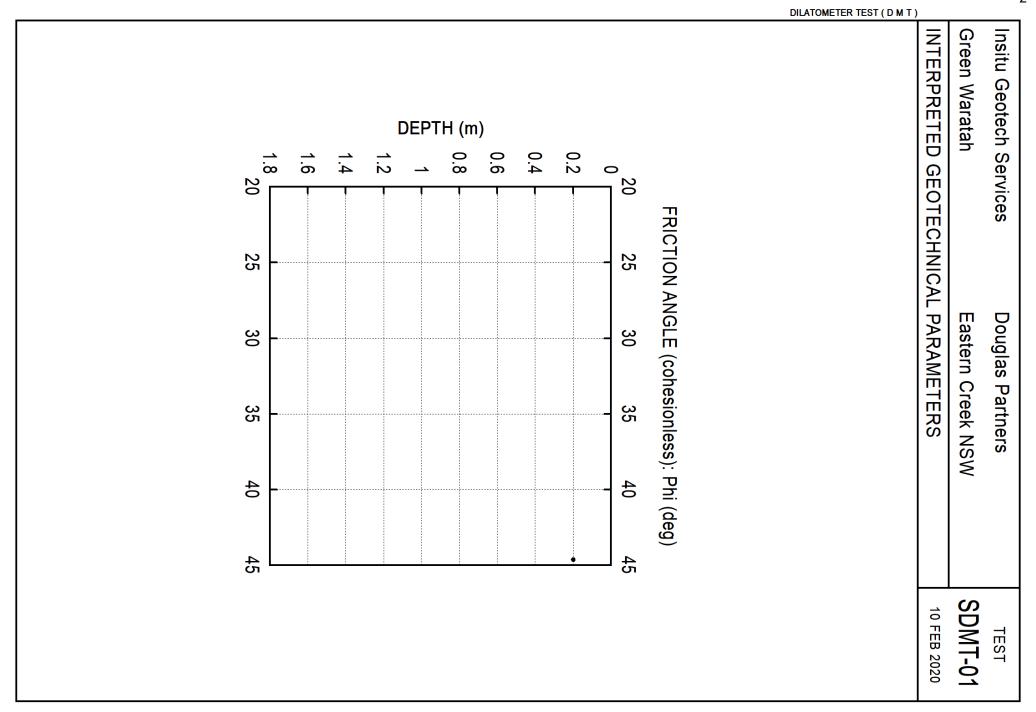
□ Sand Penetrometer AS1289.6.3.3 □ Cone Penetrometer AS1289.6.3.2

WATER OBSERVATIONS: No Free Groundwater Observed

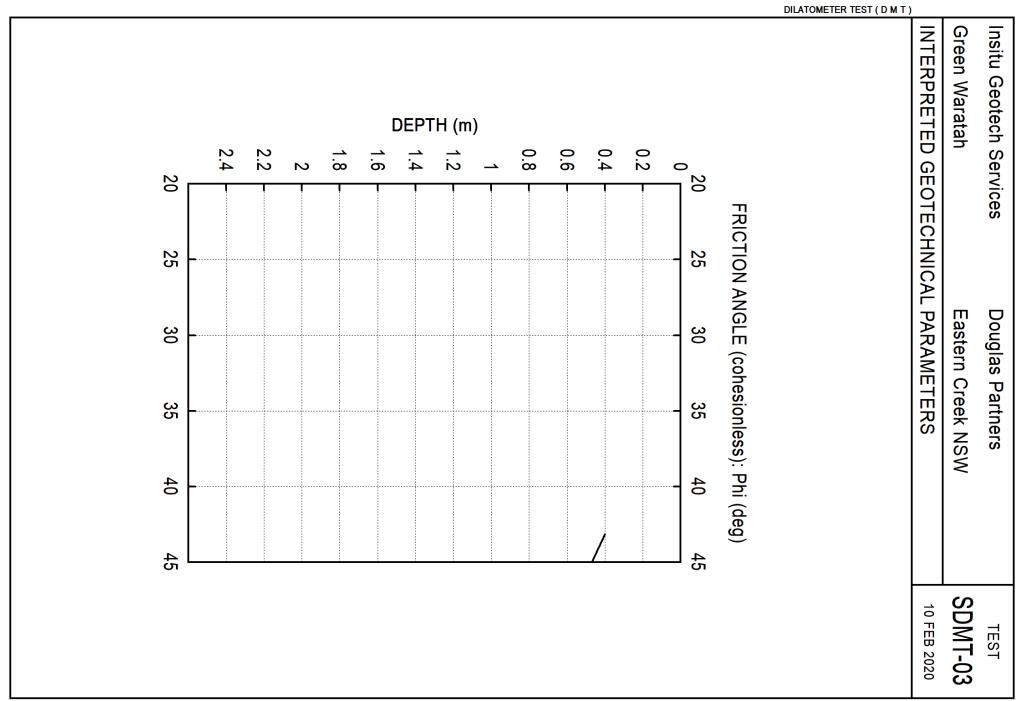
REMARKS:

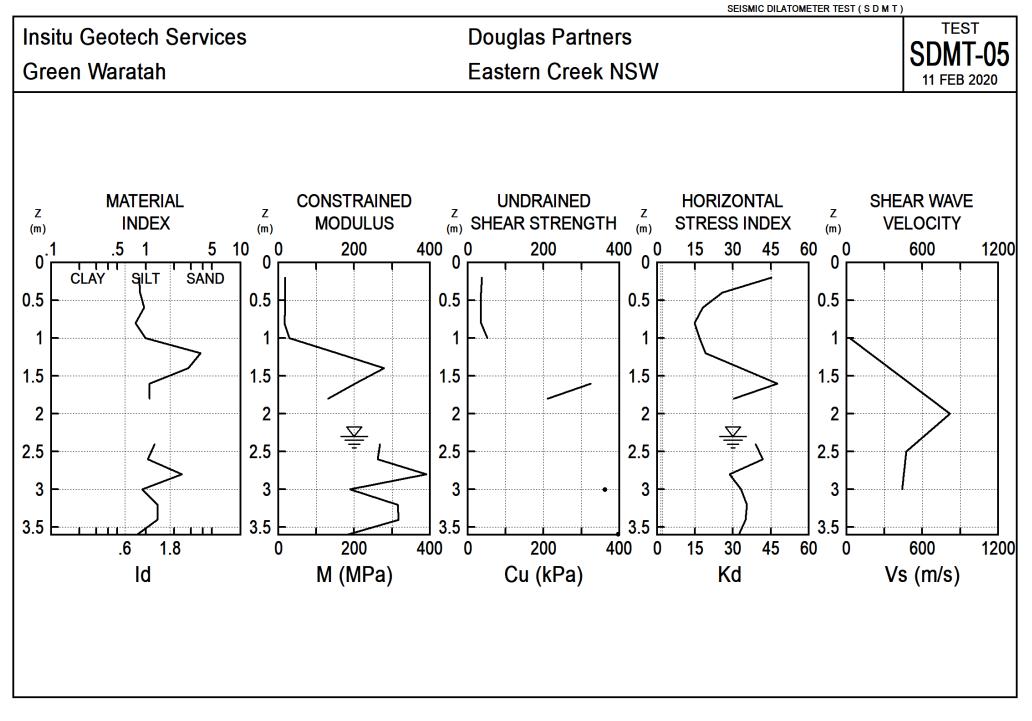
	SAMPLING & IN SITU TESTING LEGEND									
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)					
В	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)					
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)					
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)					
D	Disturbed sample	⊳	Water seep	S	Standard penetration test					
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)					

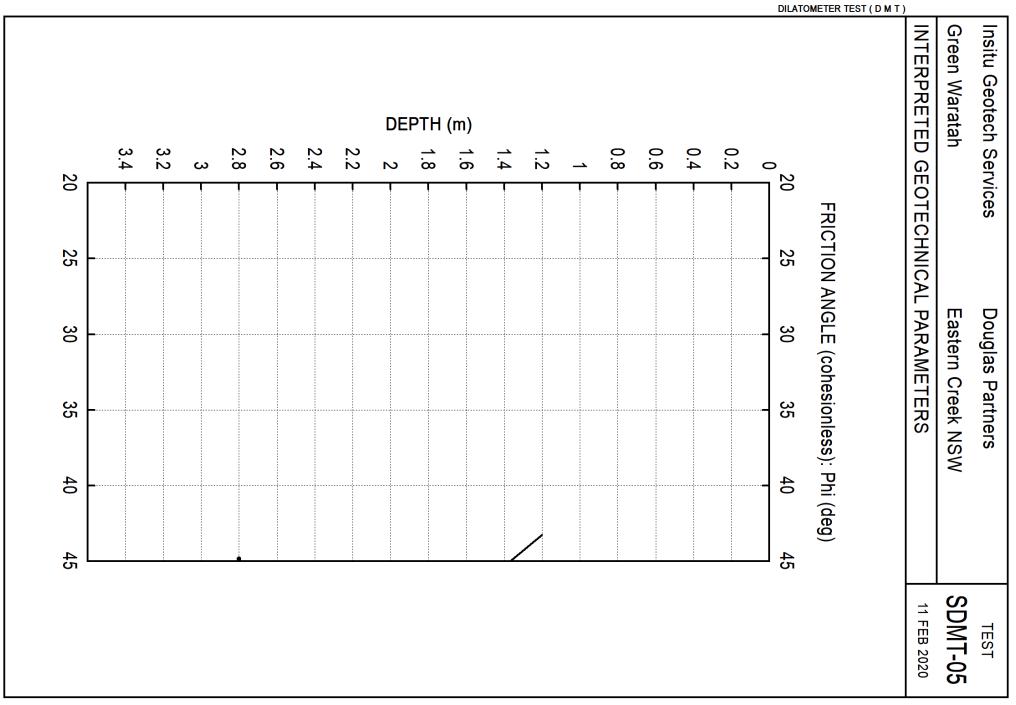


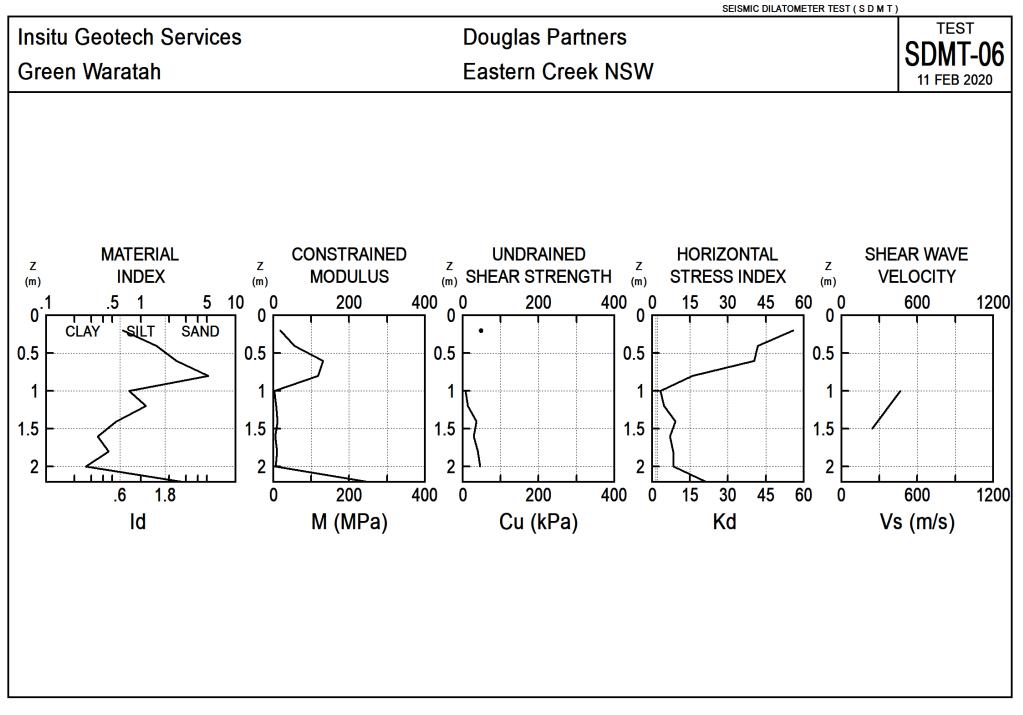


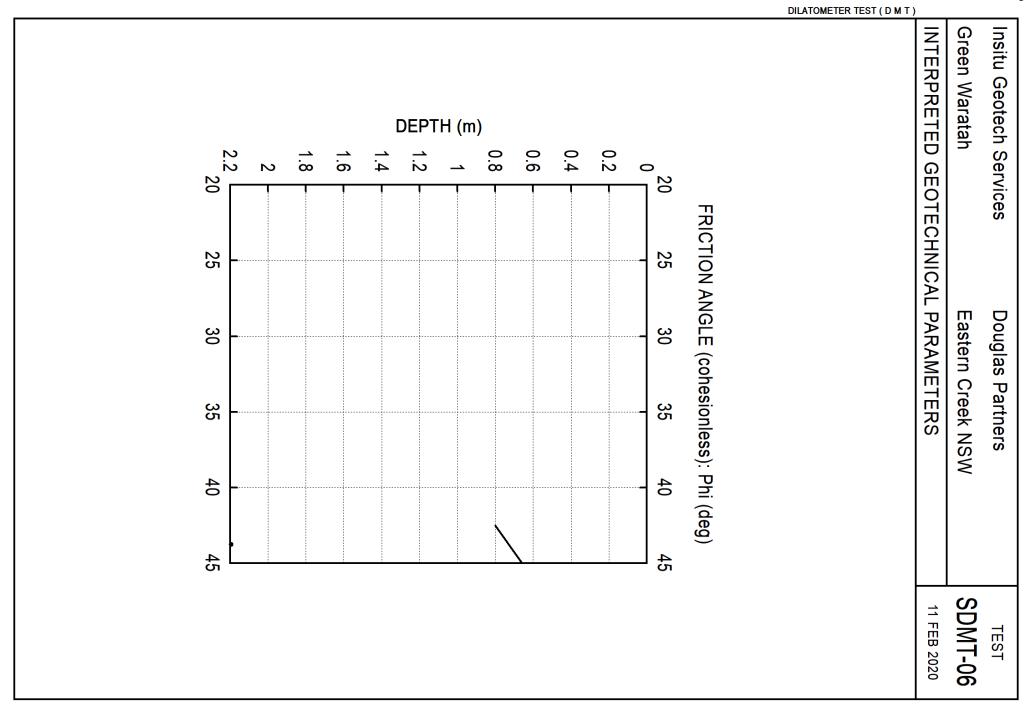

	Site Photographs	PROJECT:	84822.04
Douglas Partners	Green Waratah	DWG No:	4
Geotechnics Environment Groundwater	339 Wallgrove Road, Eastern Creek	REV:	0
	CLIENT: Cleanaway Operations Pty Ltd	DATE:	Feb-20

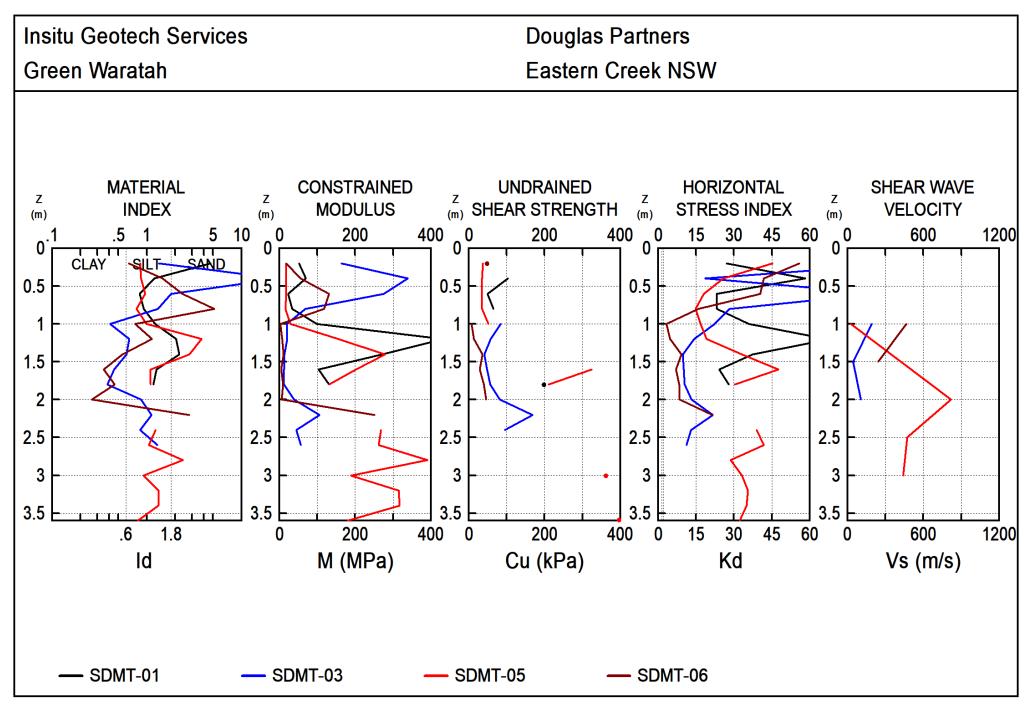

Appendix D

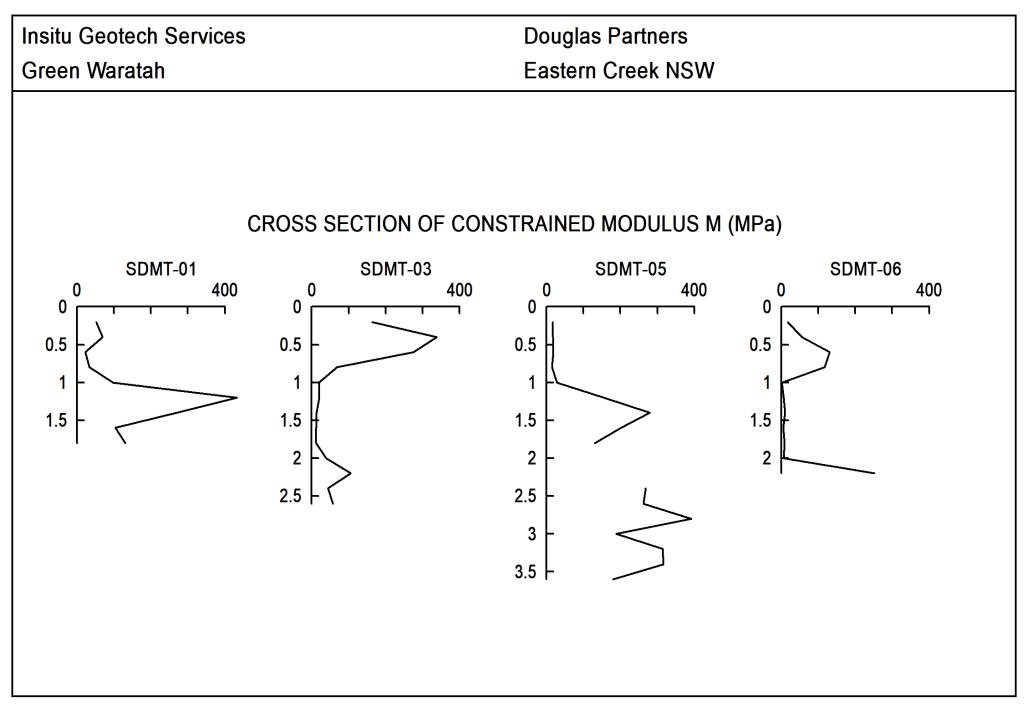

Results of Seismic Dilatometer

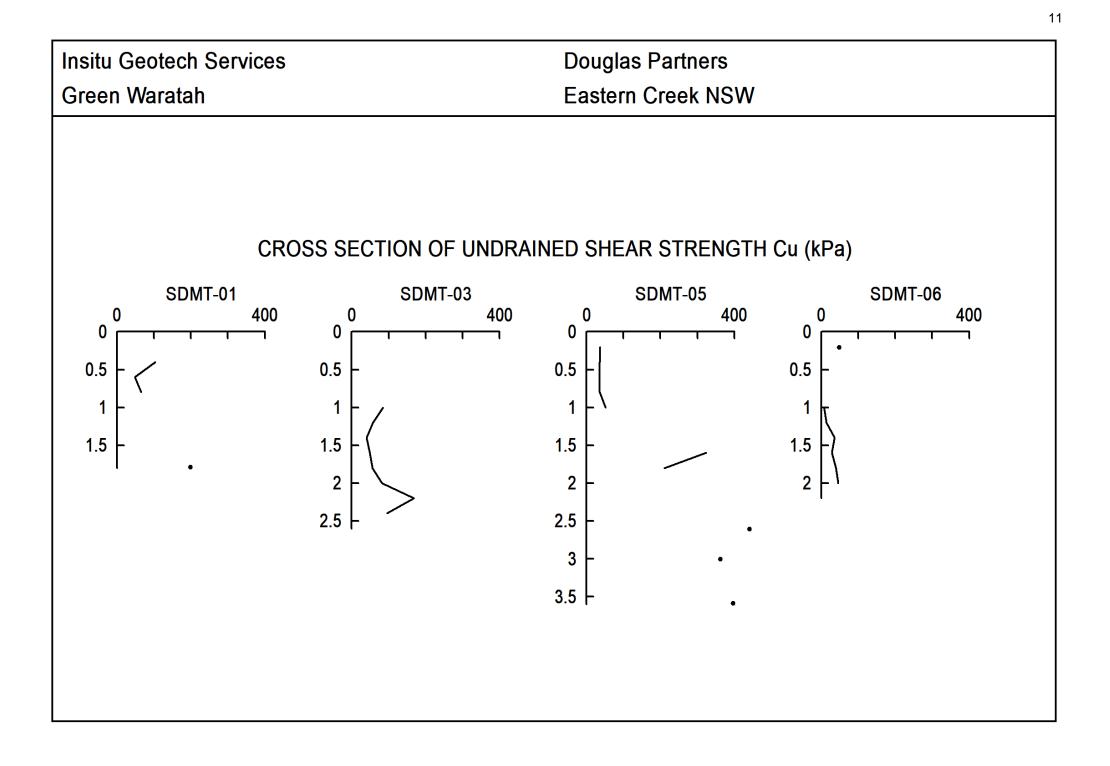


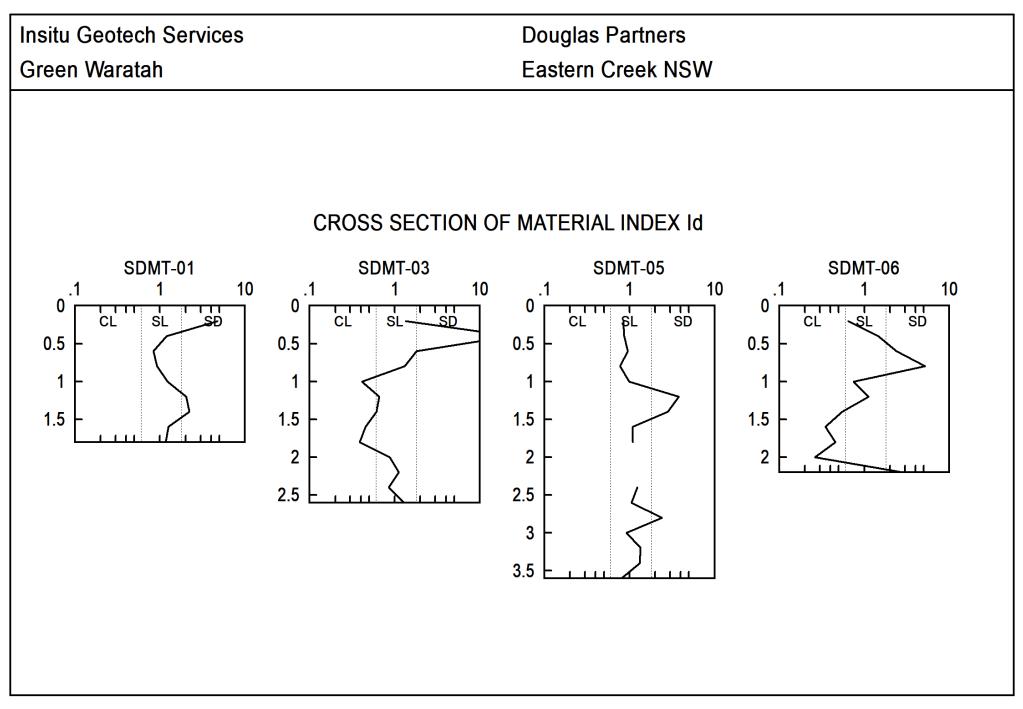


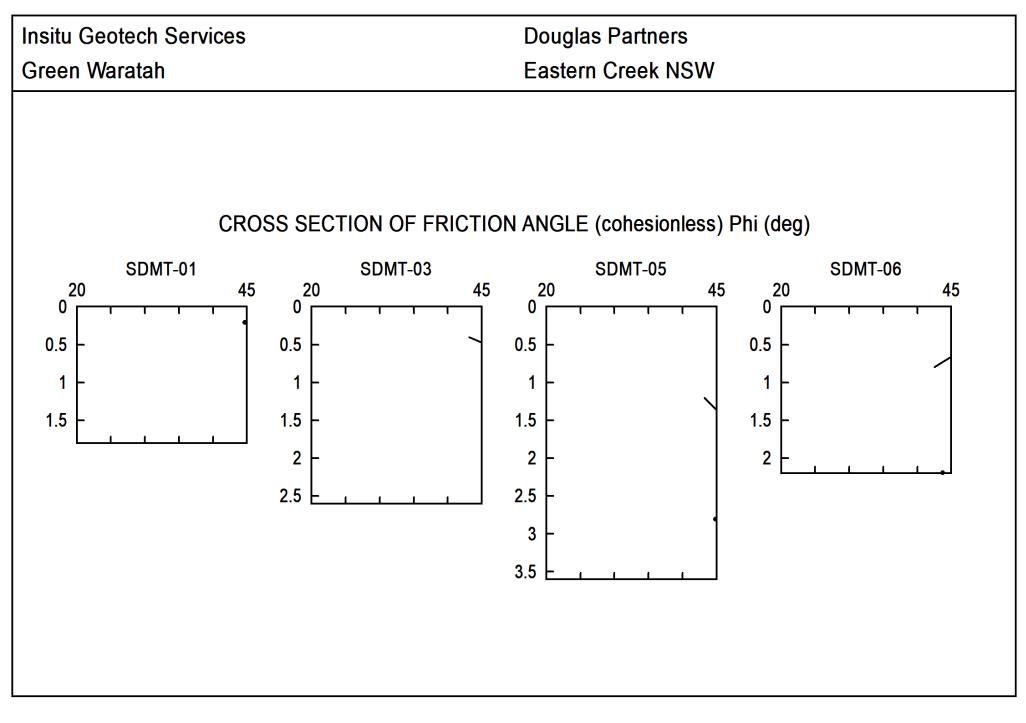


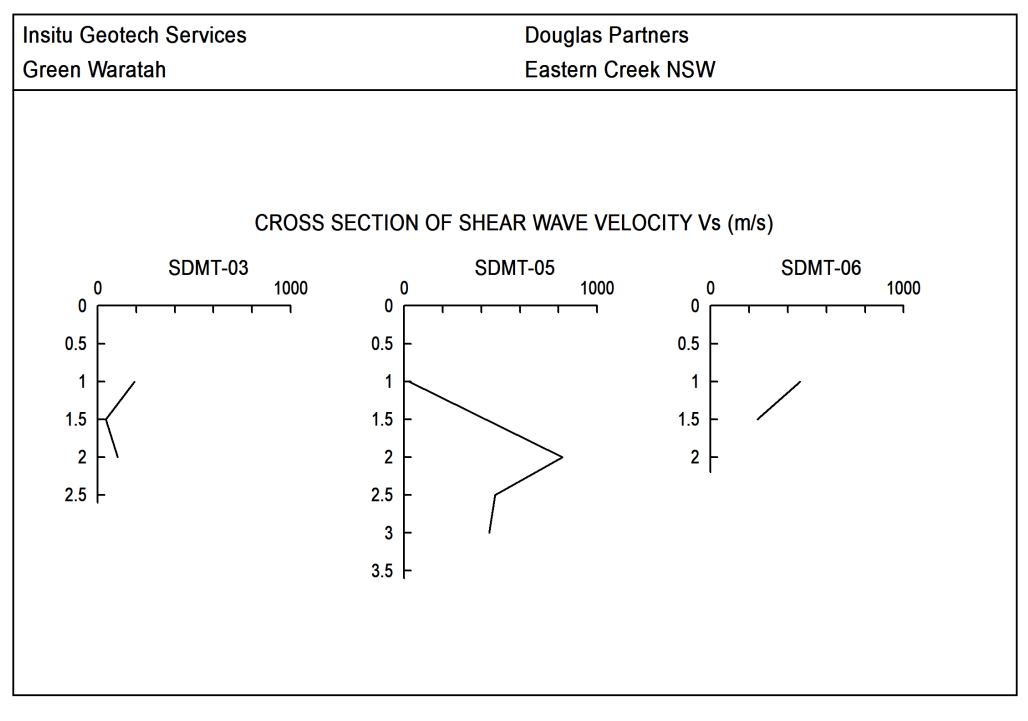


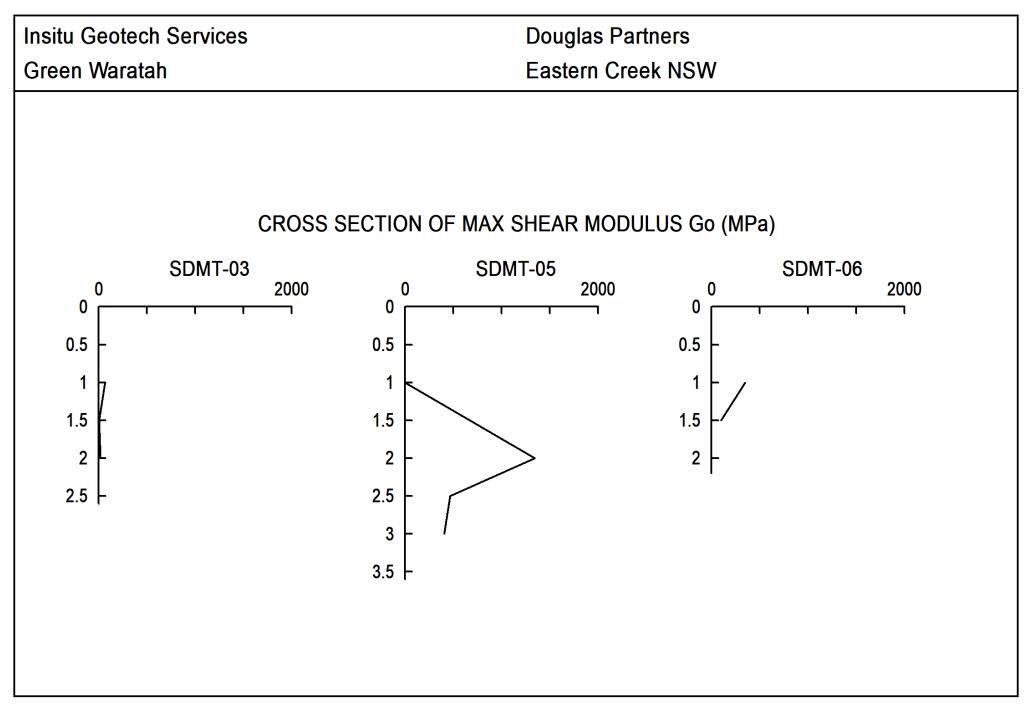


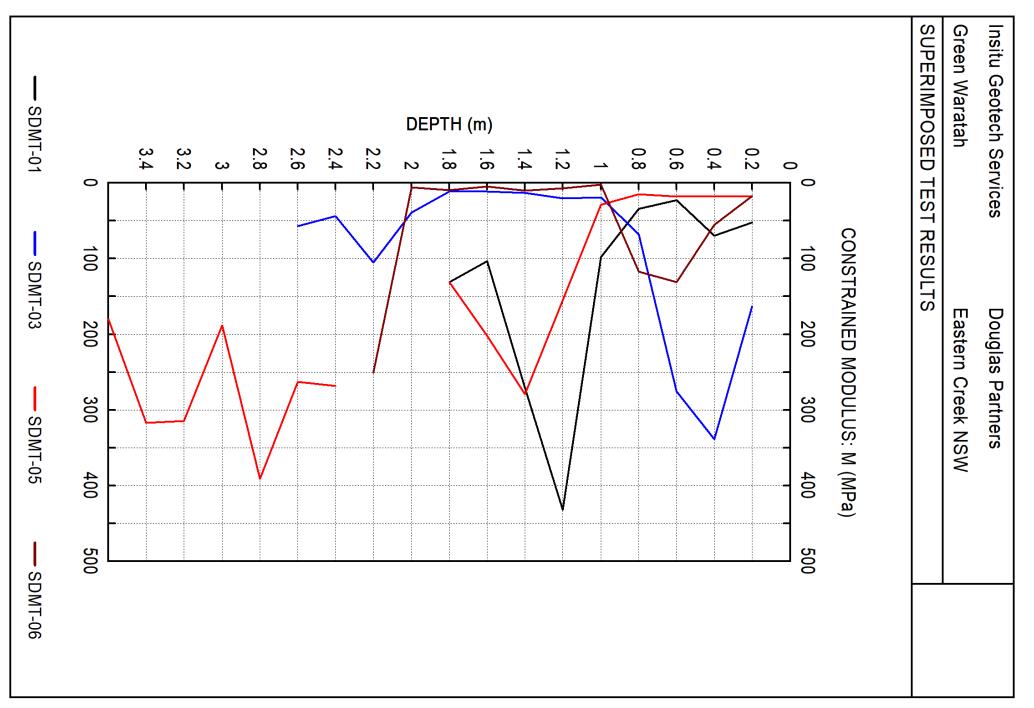


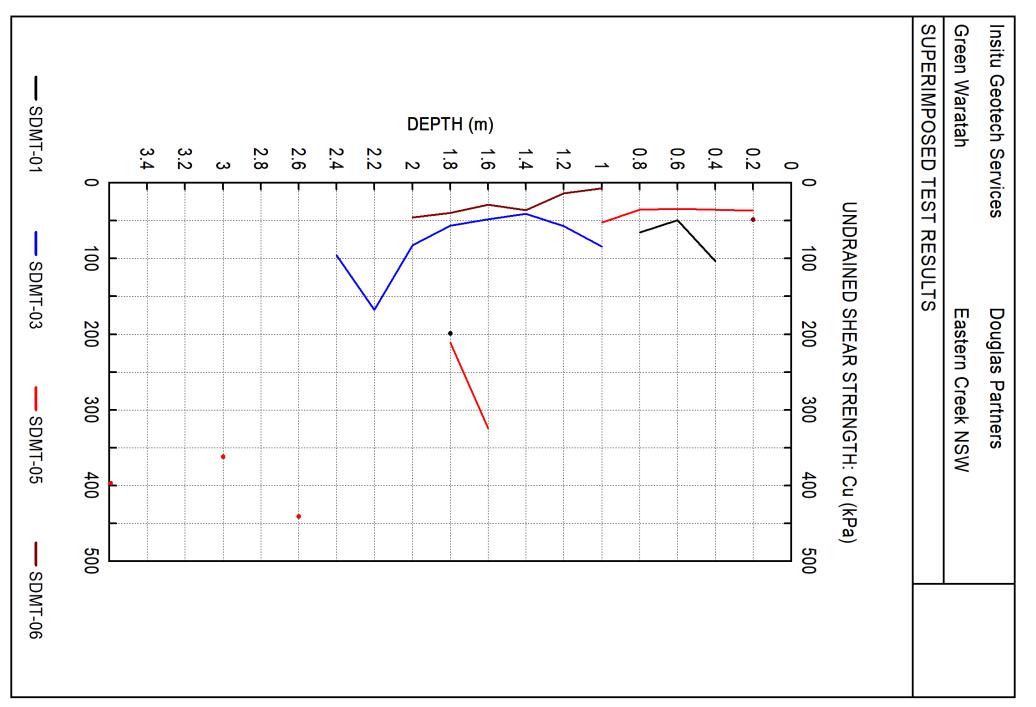


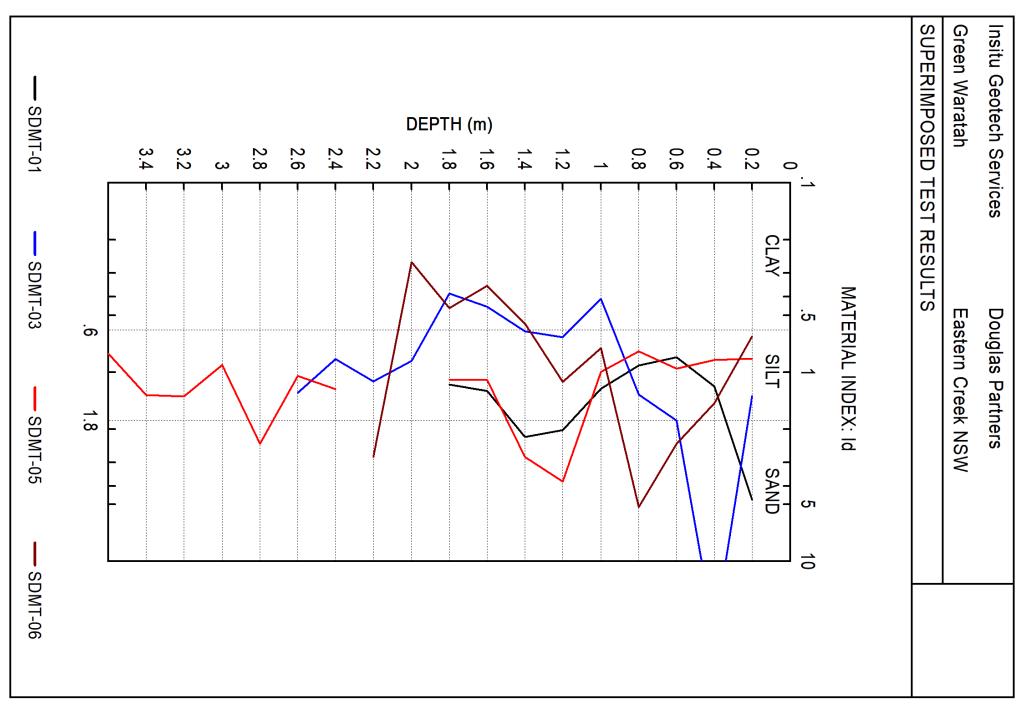


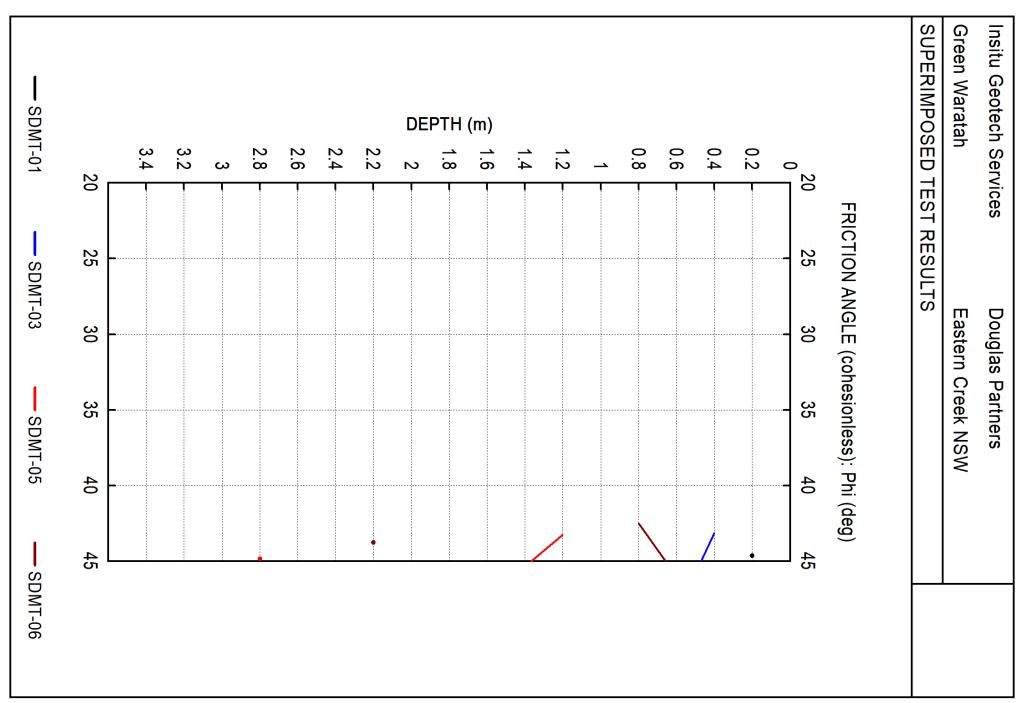


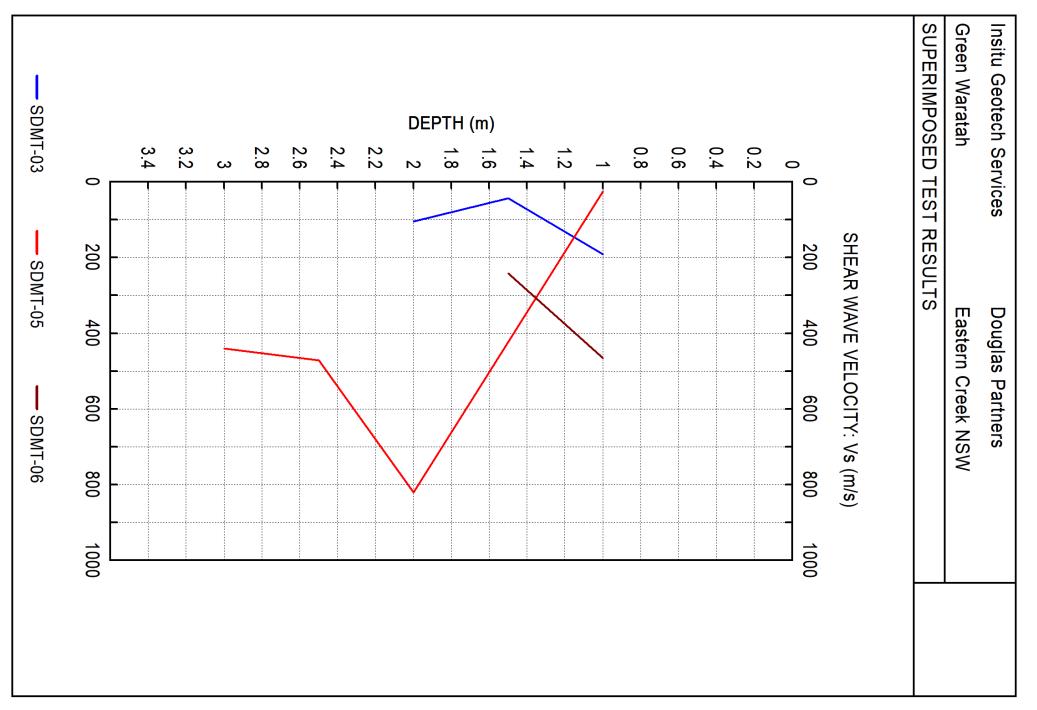


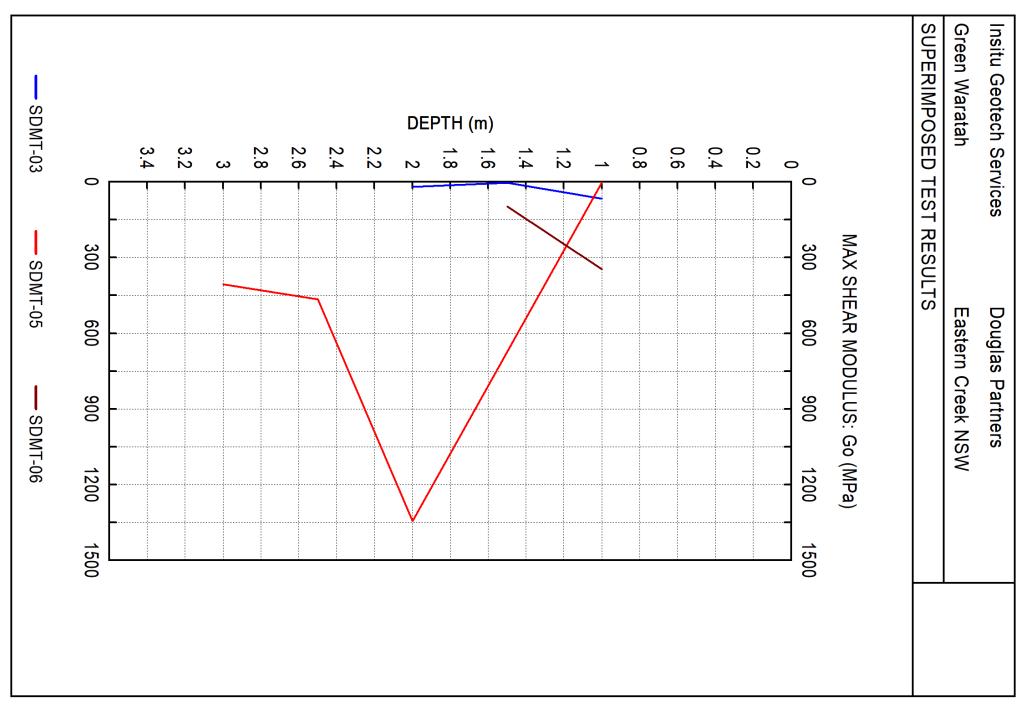












SDMT-01	LEGEND	INTERPRETED PARAMETERS	GENERAL PARAMETERS
SDMI-01	Z = Depth Below Ground Level	Phi = Safe floor value of Friction Angle	DeltaA = 14 kPa
10 FEB 2020	Po,P1,P2 = Corrected A,B,C readings	Ko = In situ earth press. coeff.	DeltaB = 26 kPa
Insitu Geotech Services	Id = Material Index	M = Constrained modulus (at Sigma')	GammaTop = 17.0 kN/m^3
	Ed = Dilatometer Modulus	Cu = Undrained shear strength	FactorEd = 34.7
Douglas Partners	Ud = Pore Press. Index = (P2-Uo)/(Po-Uo)	Ocr = Overconsolidation ratio	Zm = 0.0 kPa
Green Waratah	Gamma = Bulk unit weight	(OCR = 'relative OCR'- generally	Zabs = 0.0 m
Eastern Creek NSW	Sigma' = Effective overb. stress	realistic. If accurate independent OCR	Zw > Zfinal
	Uo = Pore pressure	available, apply suitable factor)	

Water Level below end of sounding Reduction formulae according to Marchetti, ASCE Geot.Jnl.Mar. 1980, Vol.109, 299-321; Phi according to TC16 ISSMGE, 2001

Z (m)	A (kPa)	B (kPa)	C (kPa)	Po (kPa)	Pl (kPa)	P2 (kPa)	Gamma (kN/m^3)	Sigma' (kPa)	Uo (kPa)	Id	Kd	Ed (MPa)	Ud	Ko	Ocr	Phi (Deg)	M (MPa)	Cu (kPa)	SDMT-01 DESCRIPTION
0.2	99	555		92	529		17.7	3	0	4.74	27.1	15.2				45	52.2		SAND
0.4	413	912		404	886		17.7	7	0	1.19	58.3	16.7		5.0	>99.9		69.7	103	SILT
0.6	237	469		241	443		16.7	10	0	0.84	23.1	7.0		3.0	45.5		23.0	49	SILT
0.8	322	645		322	619		17.7	14	0	0.92	23.3	10.3		3.0	46.3		34.0	65	SILT
1.0	644	1409		622	1383		19.1	17	0	1.22	35.9	26.4					98.0		SANDY SILT
1.2	1550	4344		1426	4318		21.1	21	0	2.03	67.4	100.3				48	432.2		SILTY SAND
1.4	1030	3052		945	3026		21.1	25	0	2.20	37.2	72.2				46	270.4		SILTY SAND
1.6	741	1634		712	1608		19.1	30	0	1.26	24.1	31.1					103.5		SANDY SILT
1.8	971	2046		933	2020		19.1	33	0	1.16	27.9	37.7		3.4	61.3		130.9	198	SILT

SDMT-03	LEGEND	INTERPRETED PARAMETERS	GENERAL PARAMETERS
SDMI-03	Z = Depth Below Ground Level	Phi = Safe floor value of Friction Angle	DeltaA = 10 kPa
10 FEB 2020	Po,P1,P2 = Corrected A,B,C readings	Ko = In situ earth press. coeff.	DeltaB = 26 kPa
Insitu Geotech Services	Id = Material Index	M = Constrained modulus (at Sigma')	GammaTop = 17.0 kN/m^3
	Ed = Dilatometer Modulus	Cu = Undrained shear strength	FactorEd = 34.7
Douglas Partners	Ud = Pore Press. Index = (P2-Uo)/(Po-Uo)	Ocr = Overconsolidation ratio	Zm = 0.0 kPa
Green Waratah	Gamma = Bulk unit weight	(OCR = 'relative OCR'- generally	Zabs = 0.0 m
Eastern Creek NSW	Sigma' = Effective overb. stress	realistic. If accurate independent OCR	Zw = 2.3 m
	Uo = Pore pressure	available, apply suitable factor)	

WaterTable at 2.30 m

Reduction formulae according to Marchetti, ASCE Geot.Jnl.Mar. 1980, Vol.109, 299-321; Phi according to TC16 ISSMGE, 2001

Z (m)	A (kPa)	B (kPa)	C (kPa)	Po (kPa)	P1 (kPa)	P2 (kPa)	Gamma. (kN/m^3)	Sigma' (kPa)	Uo (kPa)	Id	Kd	Ed (MPa)	Ud	Ко	Ocr	Phi (Deg)	M (MPa)	Cu (kPa)	SDMT-03 DESCRIPTION
0.2	790	1782		752	1756		19.1	3	0		>99.9	34.8					163.0		SANDY SILT
0.4	213	3325		134	3299		18.6	7	0	23.66	18.5	109.8				43	338.6		SAND
0.6	1040	2734		967	2708		21.1	11	0	1.80	88.3	60.4				48	275.6		SILTY SAND
0.8	446	1019		429	993		17.7	15	0	1.31	28.3	19.6					68.2		SANDY SILT
1.0	416	615		418	589		17.7	19	0	0.41	22.3	5.9		3.0	43.3		19.4	84	SILTY CLAY
1.2	318	552		318	526		16.7	22	0	0.65	14.3	7.2		2.3	21.6		20.5	57	CLAYEY SILT
1.4	246	426		249	400		16.7	26	0	0.61	9.7	5.2		1.8	11.8		13.0	41	CLAYEY SILT
1.6	289	451		293	425		16.7	29	0	0.45	10.1	4.6		1.9	12.6		11.5	48	SILTY CLAY
1.8	335	495		339	469		16.7	32	0	0.38	10.5	4.5		1.9	13.3		11.5	56	SILTY CLAY
2.0	476	899		467	873		17.7	36	0	0.87	13.1	14.1		2.2	18.8		38.9	82	SILT
2.2	878	1811		843	1785		19.1	39	0	1.12	21.6	32.7		2.9	40.9		105.5	168	SILT
2.4	556	1032		544	1006		17.7	42	1	0.85	12.9	16.0		2.2	18.5		44.0	95	SILT
2.6	511	1146		491	1120		17.7	44	3	1.29	11.2	21.8					56.9		SANDY SILT

SDMT-05	LEGEND	INTERPRETED PARAMETERS	GENERAL PARAMETERS
SDMI-05	Z = Depth Below Ground Level	Phi = Safe floor value of Friction Angle	DeltaA = 10 kPa
11 FEB 2020	Po,P1,P2 = Corrected A,B,C readings	Ko = In situ earth press. coeff.	DeltaB = 20 kPa
Insitu Geotech Services	Id = Material Index	M = Constrained modulus (at Sigma')	GammaTop = 17.0 kN/m^3
	Ed = Dilatometer Modulus	Cu = Undrained shear strength	FactorEd = 34.7
Douglas Partners	Ud = Pore Press. Index = (P2-Uo)/(Po-Uo)	Ocr = Overconsolidation ratio	Zm = 0.0 kPa
Green Waratah	Gamma = Bulk unit weight	(OCR = 'relative OCR'- generally	Zabs = 0.0 m
Eastern Creek NSW	Sigma' = Effective overb. stress	realistic. If accurate independent OCR	Zw = 2.3 m
	Uo = Pore pressure	available, apply suitable factor)	

WaterTable at 2.30 m

Reduction formulae according to Marchetti, ASCE Geot.Jnl.Mar. 1980, Vol.109, 299-321; Phi according to TC16 ISSMGE, 2001

Z (m)	A (kPa)	B (kPa)	C (kPa)	Po (kPa)	P1 (kPa)	P2 (kPa)	Gamma. (kN/m^3)	Sigma' (kPa)	Uo (kPa)	Id	Kd	Ed (MPa)	Ud	Ko	Ocr	Phi (Deg)	M (MPa)	Cu (kPa)	SDMT-05 DESCRIPTION
0.2	150	304		154	284		15.7	3	0	0.85	45.2	4.5		4.4	>99.9		17.8	37	SILT
0.4	166	335		169	315		16.7	7	õ	0.86	25.9	5.1		3.2	54.3		17.2	35	SILT
0.6	176	368		178	348		16.7	10	ŏ	0.96	18.0	5.9		2.6	30.9		18.0	34	SILT
0.8	192	366		195	346		16.7	13	ŏ	0.78	14.7	5.2		2.3	22.6		15.0	35	CLAYEY SILT
1.0	281	574		278	554		16.7	17	ŏ	0.99	16.8	9.6		2.5	27.7		28.7	52	SILT
1.2	437	1834		379	1814		19.6	20	ŏ	3.79	19.0	49.8		2.5	27.7	43	154.9	52	SAND
1.4	884	3022		789	3002		21.1	24	ŏ	2.81	33.1	76.8				45	279.1		SILTY SAND
1.6	1394	2819		1334	2799		20.6	28	õ	1.10	47.6	50.8		4.5	>99.9	10	202.2	324	SILT
1.8	1013	2057		972	2037		19.1	32	ŏ	1.10	30.2	36.9		3.5	69.4		131.1	211	SILT
2.4	1747	3720		1660	3700		20.6	43	ĩ	1.23	38.9	70.8		5.5	05.1		268.0		SANDY SILT
2.6	1958	3858		1875	3838		20.6	45	3	1.05	41.8	68.1		4 2	>99.9		262.6	440	SILT
2.8	1496	4593		1353	4573		20.0	47	5	2.39	28.7	111.7		1.2	/ / / /	45	390.9	110	SILTY SAND
3.0	1697	3149		1636	3129		20.6	49	7	0.92	33.1	51.8		3.7	79.9	-10	188.2	361	SILT
3.2	1942	4304		1835	4284		20.6	51	9	1.34	35.6	85.0		5.7	12.5		314.5	301	SANDY SILT
3.4	1993	4382		1885	4362		20.0	54	11	1.32	35.0	86.0					316.9		SANDY SILT
3.6	1870	3268		1812	3248		20.6	56	13	0.80	32.3	49.8		3.6	76.9		179.9	397	CLAYEY SILT

SDMT-06	LEGEND	INTERPRETED PARAMETERS	GENERAL PARAMETERS
SDMI-06	Z = Depth Below Ground Level	Phi = Safe floor value of Friction Angle	DeltaA = 10 kPa
11 FEB 2020	Po,P1,P2 = Corrected A,B,C readings	Ko = In situ earth press. coeff.	DeltaB = 70 kPa
Insitu Geotech Services	Id = Material Index	M = Constrained modulus (at Sigma')	GammaTop = 17.0 kN/m^3
	Ed = Dilatometer Modulus	Cu = Undrained shear strength	FactorEd = 34.7
Douglas Partners	Ud = Pore Press. Index = (P2-Uo)/(Po-Uo)	Ocr = Overconsolidation ratio	Zm = 0.0 kPa
Green Waratah	Gamma = Bulk unit weight	(OCR = 'relative OCR'- generally	Zabs = 0.0 m
Eastern Creek NSW	Sigma' = Effective overb. stress	realistic. If accurate independent OCR	Zw > Zfinal
	Uo = Pore pressure	available, apply suitable factor)	

Water Level below end of sounding Reduction formulae according to Marchetti, ASCE Geot.Jnl.Mar. 1980, Vol.109, 299-321; Phi according to TC16 ISSMGE, 2001

Z (m)	A (kPa)	B (kPa)	C (kPa)	Po (kPa)	P1 (kPa)	Gamma. cN/m^3)	Sigma' (kPa)	Uo (kPa)	Id	Kd	Ed (MPa)	Ud	Ko	Ocr	Phi (Deg)	M (MPa)	Cu (kPa)	SDMT-06 DESCRIPTION
0.2	186 292	383		190	313	16.7	3	0	0.65	55.9 41.9	4.3		4.9	>99.9		17.6	48	CLAYEY SILT
0.4 0.6	292 451	765 1472		282 414	695 1402	17.7 18.6	10	0	1.46	41.9 40.3	14.3 34.3				46	55.2 131.0		SANDY SILT SILTY SAND
0.8	267	1443		222	1373	18.6	14	ŏ	5.18	15.9	39.9				43	117.3		SAND
1.0	51	173		59	103	15.7	18	0	0.75	3.3	1.5		0.85	2.2		2.1	7	CLAYEY SILT
1.2	95	282		100	212	15.7	21	0	1.13	4.8	3.9		1.1	3.9		6.9	14	SILT
1.4	218	415		222	345	16.7	24	0	0.55	9.3	4.3		1.8	10.9		10.3	36	SILTY CLAY
1.6	185	329		192	259	15.7	27	0	0.35	7.0	2.3		1.5	7.1		5.0	29	SILTY CLAY
1.8	248	438		253	368	16.7	30	0	0.46	8.3	4.0		1.6	9.2		9.2	40	SILTY CLAY
2.0	282	434		288	364	16.7	34	0	0.26	8.5	2.6		1.7	9.6		6.1	46	CLAY
2.2	895	3111		798	3041	21.1	37	0	2.81	21.5	77.8				44	250.9		SILTY SAND

SDMT-03 - Tabular data: Vs, Go, Vs Repeatability

Each Vs value in the 'Vs Repeatability' column corresponds to a distinct energization.

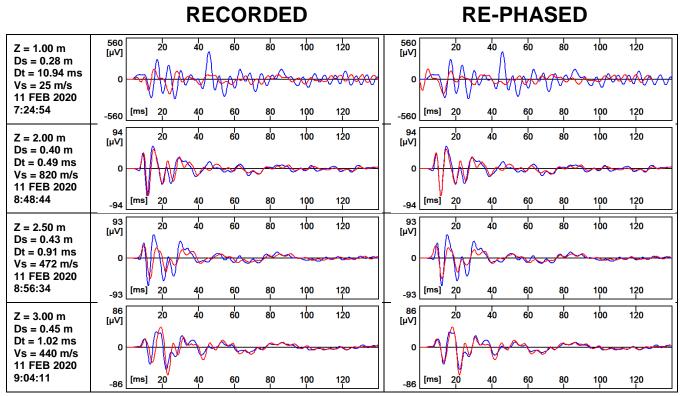
Z	Vs	/s Go Rho Vs Repeatability		Var Coeff.	
[m]	[m/s]	[MPa]	[kg/m^3]	[m/s]	[%]
1.00	191	65.7	1800	189,191,193	1.05
1.50	43	3.1	1700	44,42,42	2.85
2.00	104	19.5	1800	105,102,105	1.67

SDMT-05 - Tabular data: Vs, Go, Vs Repeatability

Each Vs value in the 'Vs Repeatability' column corresponds to a distinct energization.

Z	Vs	Go	Rho	Vs Repeatability	Var Coeff.	
[m]	[m/s]	[MPa]	[kg/m^3]	[m/s]	[%]	
1.00	25	1.1	1700	26,25,25	2.83	
2.00	820	1345	2000	823,817,820	0.37	
2.50	471	466	2100	474,472,466	0.89	
3.00	440	407	2100	438,442,440	0.45	

SDMT-06 - Tabular data: Vs, Go, Vs Repeatability

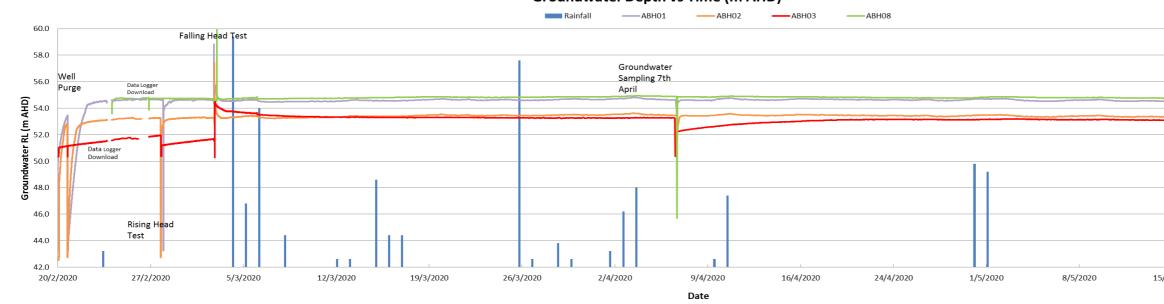

Each Vs value in the 'Vs Repeatability' column corresponds to a distinct energization.

Z	Vs	Go	Rho	Vs Repeatability	Var Coeff.
[m]	[m/s]	[MPa]	[kg/m^3]	[m/s]	[%]
1.00	465	346	1600	469,465,462	0.76
1.50	242	96.6	1650	237,247,241	2.09

SDMT-03 - Vs

	RECORDED	RE-PHASED
Z = 1.00 m Ds = 0.28 m Dt = 1.44 ms Vs = 191 m/s 10 FEB 2020	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	610 [µV] 0 0 0 0 0 0 0 0
14:26:07	-610 [ms] 20 40 60 80 100 120	-610 [ms] 20 40 60 80 100 120
Z = 1.50 m Ds = 0.35 m	180 20 40 60 80 100 120	180 [μV] 20 40 60 80 100 120
Dt = 8.38 ms Vs = 42 m/s 10 FEB 2020	· AMAXA mana	• MANY ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
14:31:09	-180 [ms] 20 40 60 80 100 120	-180 [ms] 20 40 60 80 100 120
Z = 2.00 m Ds = 0.40 m	240 20 40 60 80 100 120 [μV]	240 [μ ^V] 20 40 60 80 100 120
Dt = 3.81 ms Vs = 105 m/s 10 FEB 2020	· M Marine	· management
14:38:30	-240 [ms] 20 40 60 80 100 120	-240 [ms] 20 40 60 80 100 120

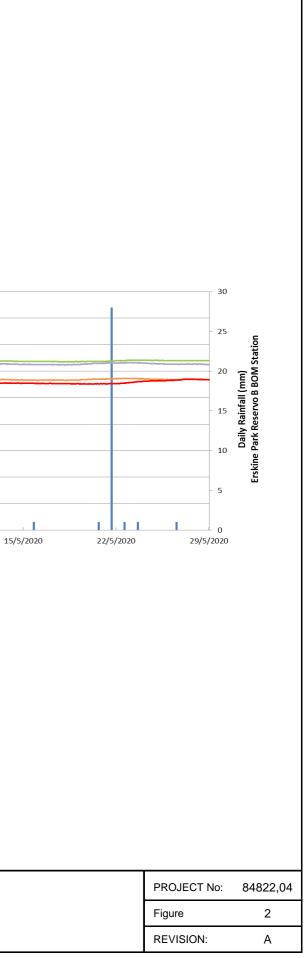
SDMT-05 - Vs



SDMT-06 - Vs

	RE	CORDE	ED	RE-PHASED
Z = 1.00 m Ds = 0.28 m Dt = 0.59 ms	450 [μV] 20 40	60 80	100 120	
Vs = 465 m/s 11 FEB 2020 11:06:14	0 ////////////////////////////////////	60 80	100 120	0 0
Z = 1.50 m Ds = 0.35 m	710 20 40 [μV]	60 80	100 120	
Dt = 1.46 ms Vs = 241 m/s 11 FEB 2020	• MAAA	the second	v~~~~ ~~	o white of the o
11:12:13	-710 [ms] 20 40	60 80	100 120	-710 [ms] 20 40 60 80 100 120

Appendix E


Results of Groundwater Testing

Groundwater Depth vs Time (m AHD)

Figure 2:

	CLIENT: Cleanaway			Figure 2: Groundwater Depth vs Time
Douglas Partners Geotechnics Environment Groundwater	OFFICE: Riverston	DRAWN BY: GRB		Report on Geotechnical Investigation
	SCALE: NTS	DATE: 29 May 2020]	339 Wallgrove Road, Eastern Creek

Appendix F

Laboratory Test Results

Douglas Partners Pty Ltd Newcastle Laboratory 15 Callistemon Close Warabrook Newcastle NSW 2310 Phone: (02) 4960 9600 Email: peter.gorseski@douglaspartners.com.au

Accredited for Compliance with ISOIEC 17025 - Testing

Approved Signatory: Peter Go Accreditation NATA Accredited Laboratory Number: 828

Uniaxial Compressive Strength of Roc	k Core AS 4133.4.2, AS 4133	.1.1.1
Sample Number	NC-4598A	
Sample Location	ABH01	
Depth (m)	4.24 - 4.59	
Rock Description	Siltstone	
Storage History and Environment	Tested as Received	
Orientation to Bedding	-	
Compression Machine	Automax Multitest	
Date of Testing	24.02.2020	
Duration of Test (seconds)	136	
Average Diameter (mm)	82.8	
Average Height (mm)	209	
Height to Diameter Ratio	2.5 : 1	
Moisture Content (%)	4.7	
Wet Mass / Unit Volume (t/m ³)	2.47	
Dry Mass / Unit Volume (t/m ³)	2.36	
Uniaxial Compressive Strength (MPa)	9.5	
Comments		
		a market

Douglas Partners Pty Ltd Newcastle Laboratory 15 Callistemon Close Warabrook Newcastle NSW 2310 Phone: (02) 4960 9600 Email: peter.gorseski@douglaspartners.com.au

Accredited for Compliance with ISOIEC 17025 - Testing

Approved Signatory: Peter Gorseski

Height to Diameter Ratio	2.5 : 1	
Average Height (mm)	211	
Average Diameter (mm)	82.8	
Duration of Test (seconds)	64	
Date of Testing	24.02.2020	
Compression Machine	Automax Multitest	and the second
Orientation to Bedding	-	
closed and Environment		
Storage History and Environment	Tested as Received	
	Siltstone	
Rock Description		
Depth (m)	9.54 - 9.94	
Sample Number Sample Location	NC-4598B ABH01	A CALLER AND AND AND AND AND AND AND AND AND AND

84822.04_1 Report Number: Issue Number: 1 Date Issued: 26.02.2020 Client: Cleanaway Operations Pty Ltd Level 4, 441 St Kilda Road, Melbourne 3004 Project Number: 84822.04 Project Name: Green Waratah 339 Wallgrove Rd, Eastern Creek NSW 2766 Project Location: Work Request: 4598 Date Sampled: 20.02.2020 Sampling Method: Sampled by Others

Douglas Partners Pty Ltd Newcastle Laboratory 15 Callistemon Close Warabrook Newcastle NSW 2310 Phone: (02) 4960 9600 Email: peter.gorseski@douglaspartners.com.au

Accredited for Compliance with ISOIEC 17025 - Testing

Approved Signatory:

Peter Gorseski NATA Accredited Laboratory Number: 828

Uniaxial Compressive Strength of Roo	ck Core AS 4133.4.2, AS 41	33.1.1.1
Sample Number	NC-4598C	
Sample Location	ABH01	
Depth (m)	13.42 - 13.85	
Rock Description		
	Siltstone	
Storage History and Environment	Tested as Received	
Orientation to Bedding	-	
Compression Machine	Automax Multitest	
Date of Testing	24.02.2020	
Duration of Test (seconds)	194	
Average Diameter (mm)	82.8	
Average Height (mm)	210	
Height to Diameter Ratio	2.5 : 1	
Moisture Content (%)	3.0	
Wet Mass / Unit Volume (t/m ³)	2.54	
Dry Mass / Unit Volume (t/m ³)	2.47	
Uniaxial Compressive Strength (MPa)	12.3	
Comments		

Report Number: 84822.04_1 Issue Number: 1 Date Issued: 26.02.2020 Client: Cleanaway Operations Pty Ltd Level 4, 441 St Kilda Road, Melbourne 3004 Project Number: 84822.04 Project Name: Green Waratah **Project Location:** 339 Wallgrove Rd, Eastern Creek NSW 2766 Work Request: 4598 Date Sampled: 20.02.2020 Sampling Method: Sampled by Others

Douglas Partners Pty Ltd Newcastle Laboratory 15 Callistemon Close Warabrook Newcastle NSW 2310 Phone: (02) 4960 9600 Email: peter.gorseski@douglaspartners.com.au

Accredited for Compliance with ISOIEC 17025 - Testing

Approved Signatory:

Peter Gorseski NATA Accredited Laboratory Number: 828

Uniaxial Compressive Strength of Rock Core AS 4133.4.2, AS 4133.1.1.1 Sample Number NC-4598D ABH01 Sample Location Depth (m) 18.56 - 18.91 Rock Description Siltstone Storage History and Environment Tested as Received Orientation to Bedding **Compression Machine** Automax Multitest Date of Testing 24.02.2020 Duration of Test (seconds) 91 Average Diameter (mm) 82.8 Average Height (mm) 207 2.5:1 Height to Diameter Ratio Moisture Content (%) 3.4 Wet Mass / Unit Volume (t/m³) 2.59 Dry Mass / Unit Volume (t/m³) 2.51 Uniaxial Compressive Strength (MPa) 6.8 Comments

Douglas Partners Pty Ltd Newcastle Laboratory 15 Callistemon Close Warabrook Newcastle NSW 2310 Phone: (02) 4960 9600 Email: peter.gorseski@douglaspartners.com.au

Accredited for Compliance with ISOIEC 17025 - Testing

Peter Gorseski

Approved Signatory: ACCREDITATION NATA Accredited Laboratory Number: 828

Uniaxial Compressive Strength of Roc	ck Core AS 4133.4.2, AS 4133.1.1.1	1
Sample Number	NC-4598E	
Sample Location	ABH01	
Depth (m)	22.13 - 22.42	
Rock Description		
	Siltstone	
Storage History and Environment	Tested as Received	
Orientation to Bedding	-	
Compression Machine	Automax Multitest	
Date of Testing	24.02.2020	
Duration of Test (seconds)	78	
Average Diameter (mm)	207.0	
Average Height (mm)	82.8	
Height to Diameter Ratio	2.5 : 1	
Moisture Content (%)	6.7	
Wet Mass / Unit Volume (t/m ³)	2.55	
Dry Mass / Unit Volume (t/m ³)	2.38	
Uniaxial Compressive Strength (MPa)	5.8	
Comments		

Page 5 of 6

84822.04_1 Report Number: Issue Number: 1 Date Issued: 26.02.2020 Client: Cleanaway Operations Pty Ltd Level 4, 441 St Kilda Road, Melbourne 3004 Project Number: 84822.04 Project Name: Green Waratah 339 Wallgrove Rd, Eastern Creek NSW 2766 Project Location: Work Request: 4598 Date Sampled: 20.02.2020 Sampling Method: Sampled by Others

Douglas Partners Pty Ltd Newcastle Laboratory 15 Callistemon Close Warabrook Newcastle NSW 2310 Phone: (02) 4960 9600 Email: peter.gorseski@douglaspartners.com.au

Accredited for Compliance with ISOIEC 17025 - Testing

Peter Gorseski

Approved Signatory: Peter Gors

Sample Number	NC-4598F
Sample Location	ABH01
Depth (m)	23.54 - 23.78
Rock Description	
	Siltstone
Storage History and Environment	Tested as Received
Orientation to Bedding	-
Compression Machine	Automax Multitest
Date of Testing	24.02.2020
Duration of Test (seconds)	126
Average Diameter (mm)	82.8
Average Height (mm)	210
Height to Diameter Ratio	2.5 : 1
Moisture Content (%)	3.1
Wet Mass / Unit Volume (t/m ³)	2.54
Dry Mass / Unit Volume (t/m ³)	2.46
Uniaxial Compressive Strength (MPa)	8.1
Comments	

Report Number:	84822.04_3
Issue Number:	1
Date Issued:	28.02.2020
Client:	Cleanaway Operations Pty Ltd
	Level 4, 441 St Kilda Road, Melbourne 3004
Project Number:	84822.04
Project Name:	Green Waratah
Project Location:	339 Wallgrove Rd, Eastern Creek NSW 2766
Work Request:	4599
Date Sampled:	20.02.2020
Sampling Method:	Sampled by Others

Douglas Partners Pty Ltd Newcastle Laboratory 15 Callistemon Close Warabrook Newcastle NSW 2310 Phone: (02) 4960 9600 Email: peter.gorseski@douglaspartners.com.au

Accredited for Compliance with ISOIEC 17025 - Testing

NATA

Peter Gorseski

.

Approved Signatory: Peter Generative NATA Accredited Laboratory Number: 828

Uniaxial Compressive Strength of Rock Core AS 4133.4.2, AS 4133.1.1.1

Sample Number	NC-4633A	
Sample Location	ABH08	
Depth (m)	6.41 - 6.65	
Rock Description		
	Siltstone	11 + 11
Storage History and Environment	Tested as Received	The state
Orientation to Bedding	-	Prove the
Compression Machine	Automax Multitest	
Date of Testing	28.02.2020	
Duration of Test (seconds)	27	
Average Diameter (mm)	82.3	
Average Height (mm)	178	
Height to Diameter Ratio	2.2 : 1	
Moisture Content (%)	6.0	and the second second second second second second second second second second second second second second second
Wet Mass / Unit Volume (t/m ³)	2.44	the second second second
Dry Mass / Unit Volume (t/m ³)	2.30	a mile the second second second
Uniaxial Compressive Strength (MPa)	4.2	
Comments		
		and the second se
		Constant and Constant of the

Page 1 of 6

Report Number:	84822.04_3
Issue Number:	1
Date Issued:	28.02.2020
Client:	Cleanaway Operations Pty Ltd
	Level 4, 441 St Kilda Road, Melbourne 3004
Project Number:	84822.04
Project Name:	Green Waratah
Project Location:	339 Wallgrove Rd, Eastern Creek NSW 2766
Work Request:	4599
Date Sampled:	20.02.2020
Sampling Method:	Sampled by Others

Douglas Partners Pty Ltd Newcastle Laboratory 15 Callistemon Close Warabrook Newcastle NSW 2310 Phone: (02) 4960 9600 Email: peter.gorseski@douglaspartners.com.au

Accredited for Compliance with ISOIEC 17025 - Testing

Approved Signatory:

Peter Gorseski	

ACCREDITATION NATA Accredited Laboratory Number: 828

Uniaxial Compressive Strength of Rock Core AS 4133.4.2, AS 4133.1.1.1

Sample Number	NC-4633B	
Sample Location	ABH08	
Depth (m)	9.02 - 9.3	
Rock Description	Siltstone	
Storage History and Environment	Tested as Received	the start of
Orientation to Bedding	-	
Compression Machine	Automax Multitest	
Date of Testing	28.02.2020	
Duration of Test (seconds)	28	
Average Diameter (mm)	82.5	
Average Height (mm)	213	
Height to Diameter Ratio	2.6 : 1	
Moisture Content (%)	3.8	A CONTRACTOR OF A CONTRACTOR OFTA CONTRACTOR O
Wet Mass / Unit Volume (t/m ³)	2.48	Section 1
Dry Mass / Unit Volume (t/m ³)	2.39	
Uniaxial Compressive Strength (MPa)	2.8	
Comments		

NATA

Page 2 of 6

Report Number: 84822.04_3 Issue Number: 1 Date Issued: 28.02.2020 Client: Cleanaway Operations Pty Ltd Level 4, 441 St Kilda Road, Melbourne 3004 Project Number: 84822.04 Project Name: Green Waratah Project Location: 339 Wallgrove Rd, Eastern Creek NSW 2766 Work Request: 4599 Date Sampled: 20.02.2020 Sampled by Others Sampling Method:

Douglas Partners Pty Ltd Newcastle Laboratory 15 Callistemon Close Warabrook Newcastle NSW 2310 Phone: (02) 4960 9600 Email: peter.gorseski@douglaspartners.com.au

Accredited for Compliance with ISOIEC 17025 - Testing

ACCREDITATION NATA Accredited Laboratory Number: 828

Approved Signatory:

Uniaxial Compressive Strength of Rock Core AS 4133.4.2, AS 4133.1.1.1

Sample Number	NC-4633C	
Sample Location	ABH08	
Depth (m)	10.55 - 10.8	
Rock Description	Siltstone	
Storage History and Environment	Tested as Received	
Orientation to Bedding	-	-
Compression Machine	Automax Multitest	1
Date of Testing	28.02.2020	1
Duration of Test (seconds)	17	
Average Diameter (mm)	82.0	
Average Height (mm)	217	6
Height to Diameter Ratio	2.6 : 1	
Moisture Content (%)	3.4	
Wet Mass / Unit Volume (t/m ³)	2.48	
Dry Mass / Unit Volume (t/m ³)	2.39	
Uniaxial Compressive Strength (MPa)	2.1	
Comments		

ABHOB

Page 3 of 6

Report Number: 84822.04_3 Issue Number: 1 Date Issued: 28.02.2020 Client: Cleanaway Operations Pty Ltd Level 4, 441 St Kilda Road, Melbourne 3004 Project Number: 84822.04 Project Name: Green Waratah Project Location: 339 Wallgrove Rd, Eastern Creek NSW 2766 Work Request: 4599 Date Sampled: 20.02.2020 Sampling Method: Sampled by Others

Douglas Partners Pty Ltd Newcastle Laboratory 15 Callistemon Close Warabrook Newcastle NSW 2310 Phone: (02) 4960 9600 Email: peter.gorseski@douglaspartners.com.au

Accredited for Compliance with ISOIEC 17025 - Testing

Peter Gorseski

ACCREDITATION NATA Accredited Laboratory Number: 828

Approved Signatory:

Uniaxial Compressive Strength of Rock Core AS 4133.4.2, AS 4133.1.1.1

Sample Number	NC-4633D	
Sample Location	ABH08	September 1
Depth (m)	12.56 - 12.89	
Rock Description	Siltstone	
Storage History and Environment	Tested as Received	
Orientation to Bedding	-	
Compression Machine	Automax Multitest	3 52
Date of Testing	28.02.2020	at the second
Duration of Test (seconds)	76	30100
Average Diameter (mm)	82.7	1
Average Height (mm)	212	
Height to Diameter Ratio	2.6 : 1	P L
Moisture Content (%)	3.1	
Wet Mass / Unit Volume (t/m ³)	2.61	
Dry Mass / Unit Volume (t/m ³)	2.53	5.2
Uniaxial Compressive Strength (MPa)	6.9	and the second second
Comments		
		and the second s

Page 4 of 6

Report Number: 84822.04_3 Issue Number: 1 Date Issued: 28.02.2020 Client: Cleanaway Operations Pty Ltd Level 4, 441 St Kilda Road, Melbourne 3004 Project Number: 84822.04 Project Name: Green Waratah 339 Wallgrove Rd, Eastern Creek NSW 2766 Project Location: Work Request: 4599 Date Sampled: 20.02.2020 Sampling Method: Sampled by Others

Douglas Partners Pty Ltd Newcastle Laboratory 15 Callistemon Close Warabrook Newcastle NSW 2310 Phone: (02) 4960 9600 Email: peter.gorseski@douglaspartners.com.au

Accredited for Compliance with ISOIEC 17025 - Testing

NATA

Peter Gorseski

Approved Signatory: Peter Go Accredited Laboratory Number: 828

Uniaxial Compressive Strength of Rock Core AS 4133.4.2, AS 4133.1.1.1

Sample Number	NC-4633E	
Sample Location	ABH08	A A SIL
Depth (m)	13.2 - 13.5	
Rock Description	Siltstone	
Storage History and Environment	Tested as Received	
Orientation to Bedding	-	
Compression Machine	Automax Multitest	AT .
Date of Testing	28.02.2020	
Duration of Test (seconds)	29	
Average Diameter (mm)	82.6	
Average Height (mm)	198	
Height to Diameter Ratio	2.4 : 1	
Moisture Content (%)	3.0	set of a set of a set of a set
Wet Mass / Unit Volume (t/m ³)	2.53	and the second s
Dry Mass / Unit Volume (t/m ³)	2.45	2- 10-00
Uniaxial Compressive Strength (MPa)	2.6	
Comments		

Page 5 of 6

Report Number:	84822.04_3
Issue Number:	1
Date Issued:	28.02.2020
Client:	Cleanaway Operations Pty Ltd
	Level 4, 441 St Kilda Road, Melbourne 3004
Project Number:	84822.04
Project Name:	Green Waratah
Project Location:	339 Wallgrove Rd, Eastern Creek NSW 2766
Work Request:	4599
Date Sampled:	20.02.2020
Sampling Method:	Sampled by Others

Douglas Partners Pty Ltd Newcastle Laboratory 15 Callistemon Close Warabrook Newcastle NSW 2310 Phone: (02) 4960 9600 Email: peter.gorseski@douglaspartners.com.au

Accredited for Compliance with ISOIEC 17025 - Testing

Peter Gorseski

ACCREDITATION NATA Accredited Laboratory Number: 828

Uniaxial Compressive Strength of Rock Core AS 4133.4.2, AS 4133.1.1.1

Sample Number	NC-4633F	
Sample Location	ABH08	and a second and a second as
Depth (m)	15.7 - 16.0	
Rock Description	Siltstone	The second secon
Storage History and Environment	Tested as Received	
Orientation to Bedding	-	
Compression Machine	Automax Multitest	And And
Date of Testing	28.02.2020	
Duration of Test (seconds)	34	Contraction of the
Average Diameter (mm)	82.6	
Average Height (mm)	207	
Height to Diameter Ratio	2.5 : 1	
Moisture Content (%)	3.1	
Wet Mass / Unit Volume (t/m ³)	2.52	
Dry Mass / Unit Volume (t/m³)	2.45	
Uniaxial Compressive Strength (MPa)	3.6	
Comments		
		- Jones

Page 6 of 6

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 238561

Client Details	
Client	Douglas Partners Pty Ltd (Riverstone)
Attention	Gavin Boyd
Address	43 Hobart St, Riverstone, NSW, 2765

Sample Details	
Your Reference	84822.04, Eastern Creek
Number of Samples	10 Soil
Date samples received	10/03/2020
Date completed instructions received	10/03/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details	
Date results requested by	17/03/2020
Date of Issue	17/03/2020
NATA Accreditation Number 2901. This document shall not be reproduced except in full.	
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *	

Results Approved By

Diego Bigolin, Team Leader, Inorganics Ken Nguyen, Reporting Supervisor Loren Bardwell, Senior Chemist Priya Samarawickrama, Senior Chemist Ridwan Wijaya, Lab Team Leader Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 238561 Revision No: R00

Page | 1 of 14

Acid Extractable Cations in Soil						
Our Reference		238561-3	238561-4	238561-5	238561-6	238561-7
Your Reference	UNITS	ABH01/1.6-2m	ABH02/2-2.45m	ABH02/3-3.09m	ABH03/0.9-1.0m	ABH04/1.6-2m
Depth		1.6-2	2-2.45	3-3.09	0.9-1.0	1.6-2
Date Sampled		03/02/2020	10/02/2020	10/02/2020	04/02/2020	03/03/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	16/03/2020	16/03/2020	16/03/2020	16/03/2020	16/03/2020
Date analysed	-	17/03/2020	17/03/2020	17/03/2020	17/03/2020	17/03/2020
Magnesium	mg/kg	2,300	2,300	2,500	2,500	1,800

Acid Extractable Cations in Soli				
Our Reference		238561-8	238561-9	238561-10
Your Reference	UNITS	ABH05/0.5-1.5m	ABH06/1.41-2m	ATP02/0.3-0.4m
Depth		0.5-1.5	1.41-2	0.3-0.4
Date Sampled		03/02/2020	03/02/2020	04/02/2020
Type of sample		Soil	Soil	Soil
Date prepared	-	16/03/2020	16/03/2020	16/03/2020
Date analysed	-	17/03/2020	17/03/2020	17/03/2020
Magnesium	mg/kg	1,700	2,500	1,400

Moisture						
Our Reference		238561-3	238561-4	238561-5	238561-6	238561-7
Your Reference	UNITS	ABH01/1.6-2m	ABH02/2-2.45m	ABH02/3-3.09m	ABH03/0.9-1.0m	ABH04/1.6-2m
Depth		1.6-2	2-2.45	3-3.09	0.9-1.0	1.6-2
Date Sampled		03/02/2020	10/02/2020	10/02/2020	04/02/2020	03/03/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	12/03/2020	12/03/2020	12/03/2020	12/03/2020	12/03/2020
Date analysed	-	13/03/2020	13/03/2020	13/03/2020	13/03/2020	13/03/2020
Moisture	%	8.6	15	14	19	23
Moisture						
Our Reference		238561-8	238561-9	238561-10		
Your Reference	UNITS	ABH05/0.5-1.5m	ABH06/1.41-2m	ATP02/0.3-0.4m		
Depth		0.5-1.5	1.41-2	0.3-0.4		
Date Sampled		03/02/2020	03/02/2020	04/02/2020		
Type of sample		Soil	Soil	Soil		
Date prepared	-	12/03/2020	12/03/2020	12/03/2020		
Date analysed	-	13/03/2020	13/03/2020	13/03/2020		
Moisture	%	18	15	16		

Soil Aggressivity						_
Our Reference		238561-3	238561-4	238561-5	238561-6	238561-7
Your Reference	UNITS	ABH01/1.6-2m	ABH02/2-2.45m	ABH02/3-3.09m	ABH03/0.9-1.0m	ABH04/1.6-2m
Depth		1.6-2	2-2.45	3-3.09	0.9-1.0	1.6-2
Date Sampled		03/02/2020	10/02/2020	10/02/2020	04/02/2020	03/03/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
pH 1:5 soil:water	pH Units	5.6	6.7	6.8	5.5	6.3
Chloride, Cl 1:5 soil:water	mg/kg	350	970	730	1,600	110
Sulphate, SO4 1:5 soil:water	mg/kg	230	350	330	300	260
Soil Aggressivity						
Our Reference		238561-8	238561-9	238561-10		

Our Reference		238561-8	238561-9	238561-10
Your Reference	UNITS	ABH05/0.5-1.5m	ABH06/1.41-2m	ATP02/0.3-0.4m
Depth		0.5-1.5	1.41-2	0.3-0.4
Date Sampled		03/02/2020	03/02/2020	04/02/2020
Type of sample		Soil	Soil	Soil
pH 1:5 soil:water	pH Units	5.3	6.1	8.1
Chloride, Cl 1:5 soil:water	mg/kg	1,700	77	290
Sulphate, SO4 1:5 soil:water	mg/kg	380	58	130

Texture and Salinity*						
Our Reference		238561-3	238561-4	238561-5	238561-6	238561-7
Your Reference	UNITS	ABH01/1.6-2m	ABH02/2-2.45m	ABH02/3-3.09m	ABH03/0.9-1.0m	ABH04/1.6-2m
Depth		1.6-2	2-2.45	3-3.09	0.9-1.0	1.6-2
Date Sampled		03/02/2020	10/02/2020	10/02/2020	04/02/2020	03/03/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	13/03/2020	13/03/2020	13/03/2020	13/03/2020	13/03/2020
Date analysed	-	13/03/2020	13/03/2020	13/03/2020	13/03/2020	13/03/2020
Electrical Conductivity 1:5 soil:water	µS/cm	440	830	720	1,100	250
Texture Value	-	7.0	7.0	8.0	8.0	8.5
Texture		MEDIUM CLAY	MEDIUM CLAY	LIGHT MEDIUM CLAY	LIGHT MEDIUM CLAY	LIGHT CLAY
ECe	dS/m	3.1	5.8	5.7	9.1	2.1
Class		SLIGHTLY SALINE	MODERATELY SALINE	MODERATELY SALINE	VERY SALINE	SLIGHTLY SALINE

Texture and Salinity*				
Our Reference		238561-8	238561-9	238561-10
Your Reference	UNITS	ABH05/0.5-1.5m	ABH06/1.41-2m	ATP02/0.3-0.4m
Depth		0.5-1.5	1.41-2	0.3-0.4
Date Sampled		03/02/2020	03/02/2020	04/02/2020
Type of sample		Soil	Soil	Soil
Date prepared	-	13/03/2020	13/03/2020	13/03/2020
Date analysed	-	13/03/2020	13/03/2020	13/03/2020
Electrical Conductivity 1:5 soil:water	µS/cm	1,300	95	320
Texture Value	-	8.0	8.0	9.0
Texture		LIGHT MEDIUM CLAY	LIGHT MEDIUM CLAY	CLAY LOAM
ECe	dS/m	10	<2	2.9
Class		VERY SALINE	NON SALINE	SLIGHTLY SALINE

ESP/CEC				_		
Our Reference		238561-3	238561-4	238561-5	238561-6	238561-7
Your Reference	UNITS	ABH01/1.6-2m	ABH02/2-2.45m	ABH02/3-3.09m	ABH03/0.9-1.0m	ABH04/1.6-2m
Depth		1.6-2	2-2.45	3-3.09	0.9-1.0	1.6-2
Date Sampled		03/02/2020	10/02/2020	10/02/2020	04/02/2020	03/03/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	13/03/2020	13/03/2020	13/03/2020	13/03/2020	13/03/2020
Date analysed	-	13/03/2020	13/03/2020	13/03/2020	13/03/2020	13/03/2020
Exchangeable Ca	meq/100g	0.1	0.1	0.1	0.3	3.0
Exchangeable K	meq/100g	0.2	0.1	<0.1	<0.1	0.2
Exchangeable Mg	meq/100g	4.9	11	9.6	12	8.5
Exchangeable Na	meq/100g	1.9	4.0	3.2	3.3	1.2
Cation Exchange Capacity	meq/100g	7.1	15	13	15	13
ESP	%	27	26	25	21	10

ESP/CEC				
Our Reference		238561-8	238561-9	238561-10
Your Reference	UNITS	ABH05/0.5-1.5m	ABH06/1.41-2m	ATP02/0.3-0.4m
Depth		0.5-1.5	1.41-2	0.3-0.4
Date Sampled		03/02/2020	03/02/2020	04/02/2020
Type of sample		Soil	Soil	Soil
Date prepared	-	13/03/2020	13/03/2020	13/03/2020
Date analysed	-	13/03/2020	13/03/2020	13/03/2020
Exchangeable Ca	meq/100g	<0.1	0.1	4.6
Exchangeable K	meq/100g	0.1	0.1	<0.1
Exchangeable Mg	meq/100g	8.1	7.7	5.9
Exchangeable Na	meq/100g	2.6	1.7	0.97
Cation Exchange Capacity	meq/100g	11	9.7	12
ESP	%	24	18	8

sPOCAS field test			
Our Reference		238561-1	238561-2
Your Reference	UNITS	ABH05/0.5-0.6m	ATP04/0.5-0.6m
Depth		0.5-0.6	0.5-0.6
Date Sampled		03/03/2020	03/03/2020
Type of sample		Soil	Soil
Date prepared	-	11/03/2020	11/03/2020
Date analysed	-	11/03/2020	11/03/2020
pH⊧ (field pH test)*	pH Units	5.4	6.4
pHFOX (field peroxide test)*	pH Units	3.4	4.6
Reaction Rate*	-	Low reaction	Volcanic reaction

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Inorg-063	pH- measured using pH meter and electrode. Soil is oxidised with Hydrogen Peroxide or extracted with water. Based on section H, Acid Sulfate Soils Laboratory Methods Guidelines, Version 2.1 - June 2004. To ensure accurate results these tests are recommended to be done in the field as pH may change with time thus these results may not be representative of true field conditions.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.
INORG-123	Determined using a "Texture by Feel" method.
Metals-009	Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-AES analytical finish.
Metals-020	Determination of various metals by ICP-AES.

QUALITY CONTROL: Acid Extractable Cations in Soil				Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			16/03/2020	5	16/03/2020	16/03/2020		16/03/2020	
Date analysed	-			17/03/2020	5	17/03/2020	17/03/2020		17/03/2020	
Magnesium	mg/kg	10	Metals-020	<10	5	2500	2600	4	107	[NT]

QUALITY CONTROL: Soil Aggressivity				Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	[NT]		[NT]	[NT]	101	[NT]
Chloride, Cl 1:5 soil:water	mg/kg	10	Inorg-081	<10	[NT]		[NT]	[NT]	105	[NT]
Sulphate, SO4 1:5 soil:water	mg/kg	10	Inorg-081	<10	[NT]		[NT]	[NT]	112	[NT]

QUALITY CONTROL: Texture and Salinity*				Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			13/03/2020	[NT]	[NT]	[NT]	[NT]	13/03/2020	
Date analysed	-			13/03/2020	[NT]	[NT]	[NT]	[NT]	13/03/2020	
Electrical Conductivity 1:5 soil:water	μS/cm	1	Inorg-002	<1	[NT]	[NT]	[NT]	[NT]	105	

QUAL	ITY CONTR	OL: ESP/	CEC			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			13/03/2020	3	13/03/2020	13/03/2020		13/03/2020	
Date analysed	-			13/03/2020	3	13/03/2020	13/03/2020		13/03/2020	
Exchangeable Ca	meq/100g	0.1	Metals-009	<0.1	3	0.1	0.1	0	98	
Exchangeable K	meq/100g	0.1	Metals-009	<0.1	3	0.2	0.3	40	101	
Exchangeable Mg	meq/100g	0.1	Metals-009	<0.1	3	4.9	6.0	20	94	
Exchangeable Na	meq/100g	0.1	Metals-009	<0.1	3	1.9	1.9	0	93	
ESP	%	1	Metals-009	[NT]	3	27	23	16	[NT]	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 238561-A

Client Details	
Client	Douglas Partners Pty Ltd (Riverstone)
Attention	Gavin Boyd
Address	43 Hobart St, Riverstone, NSW, 2765

Sample Details	
Your Reference	84822.04, Eastern Creek
Number of Samples	10 Soil
Date samples received	10/03/2020
Date completed instructions received	17/03/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details	
Date results requested by	24/03/2020
Date of Issue	19/03/2020
NATA Accreditation Number 29	1. This document shall not be reproduced except in full.
Accredited for compliance with	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

<u>Results Approved By</u> Priya Samarawickrama, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager

Chromium Suite			
Our Reference		238561-A-1	238561-A-2
Your Reference	UNITS	ABH05/0.5-0.6m	ATP04/0.5-0.6m
Depth		0.5-0.6	0.5-0.6
Date Sampled		03/03/2020	03/03/2020
Type of sample		Soil	Soil
Date prepared	-	18/03/2020	18/03/2020
Date analysed	-	18/03/2020	18/03/2020
pH _{kcl}	pH units	4.6	5.9
s-TAA pH 6.5	%w/w S	0.03	<0.01
TAA pH 6.5	moles H+ /t	20	<5
Chromium Reducible Sulfur	%w/w	<0.005	<0.005
a-Chromium Reducible Sulfur	moles H+ /t	<3	<3
Shci	%w/w S	NA	NA
Skci	%w/w S	0.023	0.014
Snas	%w/w S	NA	NA
ANC _{BT}	% CaCO ₃	NA	NA
s-ANC _{BT}	%w/w S	NA	NA
s-Net Acidity	%w/w S	0.035	0.0070
a-Net Acidity	moles H+ /t	22	<5
Liming rate	kg CaCO₃ /t	2	<0.75
a-Net Acidity without ANCE	moles H+ /t	22	<5
Liming rate without ANCE	kg CaCO₃ /t	1.7	<0.75
s-Net Acidity without ANCE	%w/w S	0.035	0.0070

Method ID	Methodology Summary
Inorg-068	Chromium Reducible Sulfur - Hydrogen Sulfide is quantified by iodometric titration after distillation to determine potential acidity.
	Based on Acid Sulfate Soils Laboratory Methods Guidelines, Version 2.1 - June 2004.

QUALITY	CONTROL:	Chromiu	m Suite			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			18/03/2020	[NT]		[NT]	[NT]	18/03/2020	
Date analysed	-			18/03/2020	[NT]		[NT]	[NT]	18/03/2020	
pH _{kcl}	pH units		Inorg-068	[NT]	[NT]		[NT]	[NT]	92	
s-TAA pH 6.5	%w/w S	0.01	Inorg-068	<0.01	[NT]		[NT]	[NT]	[NT]	
ТАА рН 6.5	moles H+/t	5	Inorg-068	<5	[NT]		[NT]	[NT]	85	
Chromium Reducible Sulfur	%w/w	0.005	Inorg-068	<0.005	[NT]		[NT]	[NT]	[NT]	
a-Chromium Reducible Sulfur	moles H+/t	3	Inorg-068	<3	[NT]		[NT]	[NT]	115	
S _{HCI}	%w/w S	0.005	Inorg-068	<0.005	[NT]		[NT]	[NT]	[NT]	
S _{KCI}	%w/w S	0.005	Inorg-068	<0.005	[NT]		[NT]	[NT]	[NT]	
S _{NAS}	%w/w S	0.005	Inorg-068	<0.005	[NT]		[NT]	[NT]	[NT]	
ANC _{BT}	% CaCO ₃	0.05	Inorg-068	<0.05	[NT]		[NT]	[NT]	[NT]	
s-ANC _{BT}	%w/w S	0.05	Inorg-068	<0.05	[NT]		[NT]	[NT]	[NT]	
s-Net Acidity	%w/w S	0.005	Inorg-068	<0.005	[NT]		[NT]	[NT]	[NT]	
a-Net Acidity	moles H ⁺ /t	5	Inorg-068	<5	[NT]		[NT]	[NT]	[NT]	
Liming rate	kg CaCO₃/t	0.75	Inorg-068	<0.75	[NT]		[NT]	[NT]	[NT]	
a-Net Acidity without ANCE	moles H ⁺ /t	5	Inorg-068	<5	[NT]		[NT]	[NT]	[NT]	
Liming rate without ANCE	kg CaCO₃/t	0.75	Inorg-068	<0.75	[NT]		[NT]	[NT]	[NT]	
s-Net Acidity without ANCE	%w/w S	0.005	Inorg-068	<0.005	[NT]		[NT]	[NT]	[NT]	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 238561

Client Details	
Client	Douglas Partners Pty Ltd (Riverstone)
Attention	Gavin Boyd
Address	43 Hobart St, Riverstone, NSW, 2765

Sample Details	
Your Reference	84822.04, Eastern Creek
Number of Samples	10 Soil
Date samples received	10/03/2020
Date completed instructions received	10/03/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details	
Date results requested by	17/03/2020
Date of Issue	17/03/2020
NATA Accreditation Number 29	01. This document shall not be reproduced except in full.
Accredited for compliance with	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Results Approved By

Diego Bigolin, Team Leader, Inorganics Ken Nguyen, Reporting Supervisor Loren Bardwell, Senior Chemist Priya Samarawickrama, Senior Chemist Ridwan Wijaya, Lab Team Leader Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 238561 Revision No: R00

Page | 1 of 14

Acid Extractable Cations in Soil						
Our Reference		238561-3	238561-4	238561-5	238561-6	238561-7
Your Reference	UNITS	ABH01/1.6-2m	ABH02/2-2.45m	ABH02/3-3.09m	ABH03/0.9-1.0m	ABH04/1.6-2m
Depth		1.6-2	2-2.45	3-3.09	0.9-1.0	1.6-2
Date Sampled		03/02/2020	10/02/2020	10/02/2020	04/02/2020	03/03/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	16/03/2020	16/03/2020	16/03/2020	16/03/2020	16/03/2020
Date analysed	-	17/03/2020	17/03/2020	17/03/2020	17/03/2020	17/03/2020
Magnesium	mg/kg	2,300	2,300	2,500	2,500	1,800

Acid Extractable Cations in Soli				
Our Reference		238561-8	238561-9	238561-10
Your Reference	UNITS	ABH05/0.5-1.5m	ABH06/1.41-2m	ATP02/0.3-0.4m
Depth		0.5-1.5	1.41-2	0.3-0.4
Date Sampled		03/02/2020	03/02/2020	04/02/2020
Type of sample		Soil	Soil	Soil
Date prepared	-	16/03/2020	16/03/2020	16/03/2020
Date analysed	-	17/03/2020	17/03/2020	17/03/2020
Magnesium	mg/kg	1,700	2,500	1,400

Moisture						
Our Reference		238561-3	238561-4	238561-5	238561-6	238561-7
Your Reference	UNITS	ABH01/1.6-2m	ABH02/2-2.45m	ABH02/3-3.09m	ABH03/0.9-1.0m	ABH04/1.6-2m
Depth		1.6-2	2-2.45	3-3.09	0.9-1.0	1.6-2
Date Sampled		03/02/2020	10/02/2020	10/02/2020	04/02/2020	03/03/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	12/03/2020	12/03/2020	12/03/2020	12/03/2020	12/03/2020
Date analysed	-	13/03/2020	13/03/2020	13/03/2020	13/03/2020	13/03/2020
Moisture	%	8.6	15	14	19	23
Moisture						
Our Reference		238561-8	238561-9	238561-10		
Your Reference	UNITS	ABH05/0.5-1.5m	ABH06/1.41-2m	ATP02/0.3-0.4m		
Depth		0.5-1.5	1.41-2	0.3-0.4		
Date Sampled		03/02/2020	03/02/2020	04/02/2020		
Type of sample		Soil	Soil	Soil		
Date prepared	-	12/03/2020	12/03/2020	12/03/2020		
Date analysed	-	13/03/2020	13/03/2020	13/03/2020		
Moisture	%	18	15	16		

Soil Aggressivity						_
Our Reference		238561-3	238561-4	238561-5	238561-6	238561-7
Your Reference	UNITS	ABH01/1.6-2m	ABH02/2-2.45m	ABH02/3-3.09m	ABH03/0.9-1.0m	ABH04/1.6-2m
Depth		1.6-2	2-2.45	3-3.09	0.9-1.0	1.6-2
Date Sampled		03/02/2020	10/02/2020	10/02/2020	04/02/2020	03/03/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
pH 1:5 soil:water	pH Units	5.6	6.7	6.8	5.5	6.3
Chloride, Cl 1:5 soil:water	mg/kg	350	970	730	1,600	110
Sulphate, SO4 1:5 soil:water	mg/kg	230	350	330	300	260
Soil Aggressivity						
Our Reference		238561-8	238561-9	238561-10		

Our Reference		238561-8	238561-9	238561-10
Your Reference	UNITS	ABH05/0.5-1.5m	ABH06/1.41-2m	ATP02/0.3-0.4m
Depth		0.5-1.5	1.41-2	0.3-0.4
Date Sampled		03/02/2020	03/02/2020	04/02/2020
Type of sample		Soil	Soil	Soil
pH 1:5 soil:water	pH Units	5.3	6.1	8.1
Chloride, Cl 1:5 soil:water	mg/kg	1,700	77	290
Sulphate, SO4 1:5 soil:water	mg/kg	380	58	130

Texture and Salinity*						
Our Reference		238561-3	238561-4	238561-5	238561-6	238561-7
Your Reference	UNITS	ABH01/1.6-2m	ABH02/2-2.45m	ABH02/3-3.09m	ABH03/0.9-1.0m	ABH04/1.6-2m
Depth		1.6-2	2-2.45	3-3.09	0.9-1.0	1.6-2
Date Sampled		03/02/2020	10/02/2020	10/02/2020	04/02/2020	03/03/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	13/03/2020	13/03/2020	13/03/2020	13/03/2020	13/03/2020
Date analysed	-	13/03/2020	13/03/2020	13/03/2020	13/03/2020	13/03/2020
Electrical Conductivity 1:5 soil:water	µS/cm	440	830	720	1,100	250
Texture Value	-	7.0	7.0	8.0	8.0	8.5
Texture		MEDIUM CLAY	MEDIUM CLAY	LIGHT MEDIUM CLAY	LIGHT MEDIUM CLAY	LIGHT CLAY
ECe	dS/m	3.1	5.8	5.7	9.1	2.1
Class		SLIGHTLY SALINE	MODERATELY SALINE	MODERATELY SALINE	VERY SALINE	SLIGHTLY SALINE

Texture and Salinity*				
Our Reference		238561-8	238561-9	238561-10
Your Reference	UNITS	ABH05/0.5-1.5m	ABH06/1.41-2m	ATP02/0.3-0.4m
Depth		0.5-1.5	1.41-2	0.3-0.4
Date Sampled		03/02/2020	03/02/2020	04/02/2020
Type of sample		Soil	Soil	Soil
Date prepared	-	13/03/2020	13/03/2020	13/03/2020
Date analysed	-	13/03/2020	13/03/2020	13/03/2020
Electrical Conductivity 1:5 soil:water	µS/cm	1,300	95	320
Texture Value	-	8.0	8.0	9.0
Texture		LIGHT MEDIUM CLAY	LIGHT MEDIUM CLAY	CLAY LOAM
ECe	dS/m	10	<2	2.9
Class		VERY SALINE	NON SALINE	SLIGHTLY SALINE

ESP/CEC				_		
Our Reference		238561-3	238561-4	238561-5	238561-6	238561-7
Your Reference	UNITS	ABH01/1.6-2m	ABH02/2-2.45m	ABH02/3-3.09m	ABH03/0.9-1.0m	ABH04/1.6-2m
Depth		1.6-2	2-2.45	3-3.09	0.9-1.0	1.6-2
Date Sampled		03/02/2020	10/02/2020	10/02/2020	04/02/2020	03/03/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	13/03/2020	13/03/2020	13/03/2020	13/03/2020	13/03/2020
Date analysed	-	13/03/2020	13/03/2020	13/03/2020	13/03/2020	13/03/2020
Exchangeable Ca	meq/100g	0.1	0.1	0.1	0.3	3.0
Exchangeable K	meq/100g	0.2	0.1	<0.1	<0.1	0.2
Exchangeable Mg	meq/100g	4.9	11	9.6	12	8.5
Exchangeable Na	meq/100g	1.9	4.0	3.2	3.3	1.2
Cation Exchange Capacity	meq/100g	7.1	15	13	15	13
ESP	%	27	26	25	21	10

ESP/CEC				
Our Reference		238561-8	238561-9	238561-10
Your Reference	UNITS	ABH05/0.5-1.5m	ABH06/1.41-2m	ATP02/0.3-0.4m
Depth		0.5-1.5	1.41-2	0.3-0.4
Date Sampled		03/02/2020	03/02/2020	04/02/2020
Type of sample		Soil	Soil	Soil
Date prepared	-	13/03/2020	13/03/2020	13/03/2020
Date analysed	-	13/03/2020	13/03/2020	13/03/2020
Exchangeable Ca	meq/100g	<0.1	0.1	4.6
Exchangeable K	meq/100g	0.1	0.1	<0.1
Exchangeable Mg	meq/100g	8.1	7.7	5.9
Exchangeable Na	meq/100g	2.6	1.7	0.97
Cation Exchange Capacity	meq/100g	11	9.7	12
ESP	%	24	18	8

sPOCAS field test			
Our Reference		238561-1	238561-2
Your Reference	UNITS	ABH05/0.5-0.6m	ATP04/0.5-0.6m
Depth		0.5-0.6	0.5-0.6
Date Sampled		03/03/2020	03/03/2020
Type of sample		Soil	Soil
Date prepared	-	11/03/2020	11/03/2020
Date analysed	-	11/03/2020	11/03/2020
pH⊧ (field pH test)*	pH Units	5.4	6.4
pHFOX (field peroxide test)*	pH Units	3.4	4.6
Reaction Rate*	-	Low reaction	Volcanic reaction

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Inorg-063	pH- measured using pH meter and electrode. Soil is oxidised with Hydrogen Peroxide or extracted with water. Based on section H, Acid Sulfate Soils Laboratory Methods Guidelines, Version 2.1 - June 2004. To ensure accurate results these tests are recommended to be done in the field as pH may change with time thus these results may not be representative of true field conditions.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.
INORG-123	Determined using a "Texture by Feel" method.
Metals-009	Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-AES analytical finish.
Metals-020	Determination of various metals by ICP-AES.

QUALITY CONTROL: Acid Extractable Cations in Soil						Duj	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			16/03/2020	5	16/03/2020	16/03/2020		16/03/2020	
Date analysed	-			17/03/2020	5	17/03/2020	17/03/2020		17/03/2020	
Magnesium	mg/kg	10	Metals-020	<10	5	2500	2600	4	107	[NT]

QUALITY	Duplicate				Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	[NT]		[NT]	[NT]	101	[NT]
Chloride, Cl 1:5 soil:water	mg/kg	10	Inorg-081	<10	[NT]		[NT]	[NT]	105	[NT]
Sulphate, SO4 1:5 soil:water	mg/kg	10	Inorg-081	<10	[NT]		[NT]	[NT]	112	[NT]

QUALITY C	Duplicate				Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			13/03/2020	[NT]	[NT]	[NT]	[NT]	13/03/2020	
Date analysed	-			13/03/2020	[NT]	[NT]	[NT]	[NT]	13/03/2020	
Electrical Conductivity 1:5 soil:water	μS/cm	1	Inorg-002	<1	[NT]	[NT]	[NT]	[NT]	105	

QUAL	QUALITY CONTROL: ESP/CEC							Duplicate		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			13/03/2020	3	13/03/2020	13/03/2020		13/03/2020	
Date analysed	-			13/03/2020	3	13/03/2020	13/03/2020		13/03/2020	
Exchangeable Ca	meq/100g	0.1	Metals-009	<0.1	3	0.1	0.1	0	98	
Exchangeable K	meq/100g	0.1	Metals-009	<0.1	3	0.2	0.3	40	101	
Exchangeable Mg	meq/100g	0.1	Metals-009	<0.1	3	4.9	6.0	20	94	
Exchangeable Na	meq/100g	0.1	Metals-009	<0.1	3	1.9	1.9	0	93	
ESP	%	1	Metals-009	[NT]	3	27	23	16	[NT]	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

ABN 25 065 630 506 PETROGRAPHIC, GEOLOGICAL & GEOCHEMICAL CONSULTANTS

28 Cameron Clontarf Q 4019 Telephone: (07) 3284 0020

Email: info@geochempet.com www.geochempet.com

PETROGRAPHIC REPORT ON A DRILL CORE SAMPLE (20040496) FROM EASTERN CREEK PROJECT

prepared for

DOUGLAS PARTNERS PTY LTD RIVERSTONE, NSW

Order Number:

Invoice Number:

Client Ref:

Gavin Boyd

Issued by

E. Spri B.Sc.(Hons), MAppSc 15 May 2020

MAY, 2020 Dp200501 Page 1 of 5 The material contained within this report may not be quoted other than in full. Extracts may be used only with expressed prior written approval of Geochempet Services

<u>TriLab #</u> :	20040496	Date Sampled:	Unknown
Sample Type:	Drill Core	Date Received:	23/04/2020
Borehole No.:	ABH02	Depth:	2.5 - 2.88 m
Project:	Eastern Creek		
Work Requested	Petrographic analysis		
<u>Methods</u>	Adapted from ASTM C295 Standard Guide for <i>Petrographic Assessment of Aggregates for Concrete</i> and the AS2758.1 – 2014 Aggregates and rock for engineering purposes part 1; Concrete aggregates (Appendix B)		
Identification	Silty claystone (residual soil)		

Description

The drill core specimen consists of light reddish to light yellowish-grey, soft, stiff, argillic material interpreted to be silty claystone. The rock carries disrupted lenses of reddish secondary iron oxides along undulating bedding surfaces and small disrupted patches of carbonaceous matter.

Plate 1: Photograph of the supplied drill core.

MAY, 2020 Dp200501 Page 2 of 5 The material contained within this report may not be quoted other than in full. Extracts may be used only with expressed prior written approval of Geochempet Services

In order to permit detailed microscopic examination in transmitted polarised light, a thin section was prepared using impregnation with a blue dyed epoxy to stabilise existing clays. An approximate composition of the claystone, expressed in volume percent and based on a brief count of 100 widely spaced points in thin section, is:

Hard, Durable Components

- 10% quartz grains
- 3% feldspar grains
- 1% intermediate volcanic clasts
- 3% acid tuff clasts
- 3% quartzite clasts
- 5% hematite/goethite
- 1% hematized, leucoxenized or finely rutilated clasts of former detrital opaque oxides

Soft, Weak &/Or Deleterious Components

- 53% illite-smectite clay cement variably stained by secondary iron oxide and intermingled very fine quartz
 4% kaolinite clay
 17% earthy secondary iron oxide
 <1% carbonaceous matter
- <1% pores

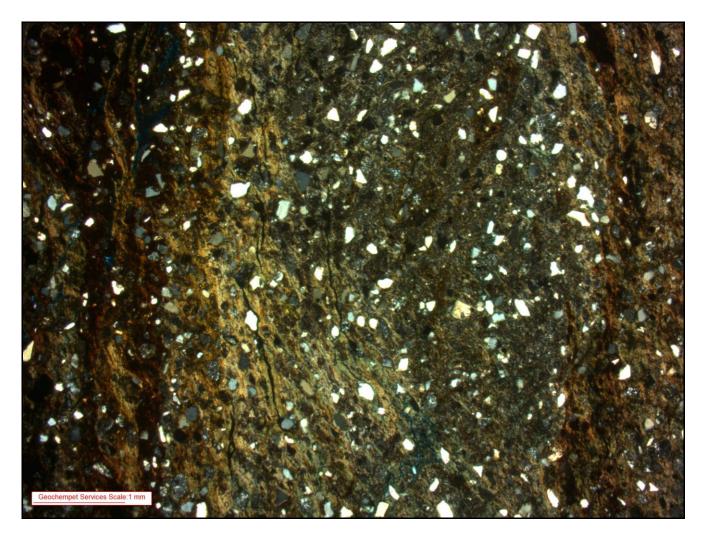
In thin section the rock displays primary textures of silty to finely sandy claystone style. It consists of scattered sub-rounded to angular sand grains which are mainly from to 0.05 mm to 0.2 mm in size.

A tenth of the rock consists of simple quartz along with 3% feldspar grains. Other robust mineral grains comprise lithic clasts of acid and intermediate tuffaceous/volcanic clasts, quartzite, hematized, leucoxenized or finely rutilated clasts of former detrital opaque oxides) and hematite/goethite in minor amounts.

The cement matrix is dominated by illite/smectite and earthy secondary iron oxide finely intermingled with quartz along with minor kaolinite. Carbonaceous material occurs as thin streaks scattered along bedding planes.

Comments and Interpretations

The rock represented by supplied drill core sample (labelled 20040496) from ABH02 at 2.5 - 2.88 m depth is interpreted to have originated as a claystone; carrying about 21% silt and fine sand grains as quartz, feldspar and lithic clasts of quartzite and volcanics, with some secondary iron oxide and carbonaceous matter in the clayey matrix. It is apparent that the material has experienced weathering, resulting in the development of pigmentation by secondary iron oxides (goethite and hematite).


For engineering purposes, the rock in the supplied drill core sample may be summarised as:

- silty claystone (a sedimentary rock type)
- apparently quite weathered
- containing about 36% of robust, durable components (various mineral grains)
- containing about 64% of weak, soft or otherwise non-durable components (clay as well as earthy secondary iron oxide)
- soft
- weak

The rock is predicted to be **non-durable**.

Free silica content

About 24% in the form of quartz grains and in lithic clasts of acid tuff and quartzite and finely intermingled with clayey matrix.

Plate 2: Micrograph taken at low magnification in transmitted, cross polarised light of part of the silty claystone, showing minor quartz grains, along with minor secondary iron oxide replacement of the matrix and thin streaks of carbonaceous matter along bedding.

ABN 25 065 630 506 PETROGRAPHIC, GEOLOGICAL & GEOCHEMICAL CONSULTANTS

28 Cameron St Clontarf Q 4019 Telephone: (07) 3284 0020

Email: <u>info@geochempet.com</u> www.geochempet.com

XRD ANALYSIS ON A DRILL CORE SAMPLE (20040496) FROM EASTERN CREEK PROJECT

prepared for

DOUGLAS PARTNERS PTY LTD RIVERSTONE, NSW

Order Number: Invoice Number: Client Ref:

Gavin Boyd

Issued by

K. E. Spring B.Sc. (Hons), MAppSc 15 May 2020

MAY, 2020 Dp200502xrd Page 1 of 5 The material contained within this report may not be quoted other than in full. Extracts may be used only with expressed prior written approval of Geochempet Services

QUANTITATIVE XRD ANALYSIS ON A DRILL CORE SAMPLE (20040496) FROM EASTERN CREEK PROJECT

<u>TriLab #</u> :	20040496	Date Sampled:	Unknown
<u>Sample Type</u> :	Drill Core	Date Received:	23/04/2020
Borehole No.:	ABH02	<u>Depth</u> :	2.5 – 2.88 m

Project: Eastern Creek

Work Requested Qualitative X-ray diffraction analysis of the drill core sample for mineralogy.

Plate 1: Photograph of the supplied drill core.

Method

A sub-sample of the drill core sample was despatched to QUT. The sample was crushed in a RockLabs Swing Mill in repeated short bursts until the entirety of the sample passed a 355 micron

MAY, 2020 Dp200502xrd Page 2 of 5 The material contained within this report may not be quoted other than in full. Extracts may be used only with expressed prior written approval of Geochempet Services

sieve. A sub-sample of the crushed material were accurately weighed and a specimen prepared for X-ray diffraction analysis by the addition of a corundum (Al_2O_3) internal standard at 20wt%. The specimen was micronised in a McCrone mill using zirconia beads and ethanol, then dried in an oven overnight at 40°C. The resultant homogenous powder was back-pressed into a sample holder.

A small portion of the sample was disaggregated by hand and dispersed in water. After sonication (5 min) and settling for 5 min, the fine fraction (nominally < 5 μ m in suspension) was transferred via pipette to a low background plate and allowed to settle and dry (these samples have the label N in this report). This preparation is used to concentrate the fine (clay dominant) fraction and aids identification of the clays present. This means ratios of the clays and other phases present in this extract may vary from the bulk sample: the fine fraction results are qualitative. The air-dried slide was further treated in an ethylene glycol atmosphere (60 °C) for several hours, then immediately re-examined.

Step scanned X-ray diffraction pattern was collected for half an hour using a PANalytical X'Pert Pro powder diffractometer and cobalt Ka radiation operating in Bragg-Brentano geometry. The collected data was analysed using JADE (V2010, Materials Data Inc.) and X'Pert Highscore Plus (V4, PANalytical) with various reference databases (PDF4+, AMCSD, COD) for phase identification. Rietveld refinement was performed using TOPAS (V5, Bruker) for quantitative phase analysis. The known concentration of added corundum facilitates reporting of absolute phase concentrations for the modelled phases. The sum of the absolute concentrations is subtracted from 100wt% to obtain a residual (called non-diffracting/unidentified, also known as "amorphous"). The residual represents the unexplained portion of the pattern: it may be non-diffracting content but will also contain unidentified phases or poorly modelled phases. It is not an accurate measure as its error is the sum of the errors of the modelled phases. An absorption contrast correction (Brindley) was made on the basis that the average size of the particles in the specimens is approximately 5 µm. The more absorbing phases will be under estimated if their actual average particle size is greater than 5 µm. The estimated uncertainties in the reported phase abundances are 20wt% relative or better for every modelled phase. Due to propagation of errors the uncertainty in the amorphous (non-diffracting/unidentified) content is higher at approximately 30wt% relative. The detection limit and limit of quantification using our method is approximately 1wt% or less depending on the phase in question and sample matrix.

Powder X-ray diffraction analysis is phase analysis, it is not chemical analysis. Phase concentrations may be poorly estimated if an incorrect chemical formula is assigned to a phase. Therefore, the closest matches in the reference phase identification database were used for modelling in the quantitative phase analysis, but other members of the identified mineral groups may be present.

Results

The powder X-ray diffraction pattern show the presence of crystalline phases. Graphics of the collected diffraction patterns along with the phases identified are included at the end of this report. Below is a table of phase concentration estimates. The estimated normalised concentration of the corundum internal standard in the sample is higher than 20wt%. This means there is an unaccounted component in the sample (i.e., the sample contain non-diffracting/unidentified material).

Two expandable clay phases are required for accurate modelling in the bulk sample, but the clay specific analysis patterns are not definitive for either smectite or illite-smectite based on the glycol peak position shifts. Nevertheless, there is an expandable clay present in this sample, which was modelled as smectite and illite-smectite.

The minerals identified by XRD analysis (in weight percent) are:

	quartz goethite	28.2% 3.4%
	smectite illite/smectite kaolinite	8.6% 17.3% 25.7%
	amorphous/unidentified content	16.9%
The fine fraction analysis re	esults indicated:	

illite-smectite mixed layer	major
kaolinite	major

Comments

The quartz content (as quartz grains) of the drill core sample (20040496) is 28.2% along with 3.4% goethite. The remainder of the rock is composed of a clay cement totalling 51.6% containing 17.3% illite-smectite, 25.7% kaolinite and 8.6% smectite. The 16.9% amorphous content is interpreted to be largely composed of disordered clays of mixed type (probably illite-smectite from fine fraction analysis) mingled with carbonaceous matter along with unidentified mineral and component in minor amounts.

The rock type in the supplied drill core sample is interpreted to be a silty claystone (residual soil) containing an abundance of moderate to high swelling illite-smectite clay types. The claystone is most likely from an acid igneous source due to the reasonably high quartz content identified.

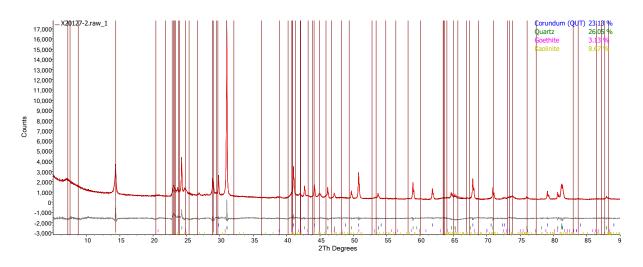


Figure 1. Powder XRD pattern.

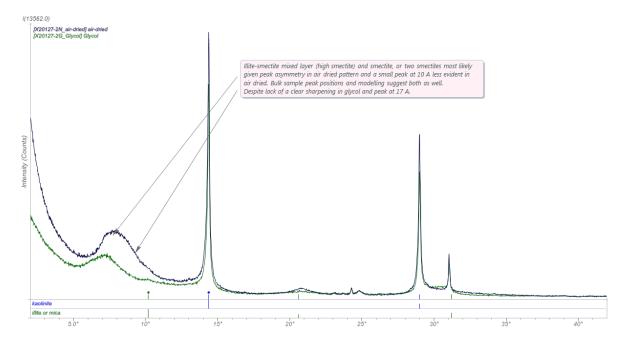


Figure 2. Clay XRD pattern.

Gavin Boyd

From:	thom@geochempet.com
Sent:	Thursday, 18 June 2020 8:14 AM
То:	Gavin Boyd
Cc:	'Chris Park'
Subject:	RE: Eastern Creek

Hey Gavin,

Sorry this slipped passed me.

Your spot on with you description.

Regards
Thomas Spring
Petrologist and Geologist
BAppSc MAppSc MAusIMM

28 Cameron Street Clontarf QLD 4019 P (07) 3284 0020 W www.geochempet.com

Please note that there will be a price increase effective from 1st July 2020.

Please contact myself or your regular Geochempet Services contact for a new price list.

Keep up with Geochempet Services by following us on social media

The content of this communication is confidential and is protected by professional privilege. If you receive this in error, please notify us and delete the email.

From: Gavin Boyd <Gavin.Boyd@douglaspartners.com.au>
Sent: Monday, 15 June 2020 3:55 PM
To: thom@geochempet.com
Cc: Chris Park <chris.park@trilab.com.au>
Subject: FW: Eastern Creek

Hi Thom,

Thanks for your time before. As discussed, the client has made the following comment with respect to the XRD

• The X-ray diffraction test report states that smectite/illite-smectite clay behaviour was not definitive but nevertheless they have analysed assuming this anyway. Can you please explain why they have proceeded this way.

My understanding is as follows (from discussions with yourself and review of the report):

- 1. The smectite/illite-smectite minerals are intermingled or mixed.
- 2. An attempt by the laboratory technician was made to determine the smectite/illite-smectite using the glycol peak position shift method was made but it was unsuccessful due to the inter-mingled nature of the clays as the glycol treatment shifts both peaks to a common position making it difficult to delineate.
- 3. There was enough evidence through the peak asymmetry in air dried pattern together with an associated graph (small peak at 10A less evident in air dried position) of the expandable clay to estimate the smectite/illite-smectite mineral proportions. These positions are likely despite the lack of clarity in the glycol peak position. Figure 2 of your report.
- 4. The above is relatively common scenario for clay soils.

If you could confirm and/or clarify the above so I can respond to my client with the correct terminology that would be helpful. Any references would be helpful.

Gavin Boyd | Senior Associate / Geotechnical Engineer Douglas Partners Pty Ltd | ABN 75 053 980 117 | www.douglaspartners.com.au 43 Hobart Street Riverstone NSW 2765 | PO Box 267 Riverstone NSW 2765 P: 02 4666 0450 | M: 0431 496 721 | E: <u>Gavin.Boyd@douglaspartners.com.au</u>

To find information on our COVID-19 measures, please visit douglaspartners.com.au/news/covid-19

This email is confidential. If you are not the intended recipient, please notify us immediately and be aware that any disclosure, copying, distribution or use of the contents of this information is prohibited. Please note that the company does not make any commitment through emails not confirmed by fax or letter.

From: Chris Park [mailto:chris.park@trilab.com.au] Sent: Friday, 15 May 2020 10:25 AM To: Gavin Boyd Subject: RE: Eastern Creek

Good Morning Gavin

Sorry for the slight delay and please see attached XRD and Petrographic test results just in from Geochempet

Have a good weekend

Regards

Chris Park Laboratory Manager

For & on behalf of Trilab Pty Ltd 346A Bilsen Road GEEBUNG QLD 4034

p 07 3265 5656

e <u>chris.park@trilab.com.au</u>

www.trilab.com.au

Please take the time to complete our feedback form below so you can help us improve our service.

Brisbane 346A Bilsen Road, Geebung QLD 4034 Ph: +61 7 3265 5656

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

	SHRINK SWEL	L INDEX TES Method AS 1289 7.1.1	TREPORT	
Client	Douglas Partners Pty Ltd		Report No.	20040495-ISS
			Workorder No.	
Address	43 Hobart Street, Riverstone NS	SW 2765	Test Date	22/4/20-8/5/20
			Report Date	11/05/2020
Project	Eastern Creek			
Description	CLAY - red / brown / grey			
Sample No.			20040495	
Client ID			ABH01	
Depth (m)			1.00-1.28	
	RESUL	TS OF TESTI	NG	
	SWE	ELL SPECIMEN		
Swell Press	sure (kPa) *		-	
Wet Densit	y (t/m³)		2.20	
Initial Mois	ture Content (%)		15.6	
Final Moist	ure Content (%)		19.5	
	Swell (%)		3.2	
Estimated	SHRIN Inert Inclusions (%)	NKAGE SPECIMEN	0	
Extent of C			Nil	
Extent of C			Nil	
Moisture (%			16.5	
	Shrinkage (%)		2.4	
SHRINK	SWELL INDEX (Iss) (%)		2.2	
Notes/Remarks:				
Sample/s supplied b		s received		Page: 1 of 1 REP02304
	d for compliance with ISO/IEC 17025 - Testing. tests, calibrations, and/or measurements included in	n this	Authorised Signatory	
	t are traceable to Australian/National Standards.		Cean	
	Tested at Trilab Brisbane Laboratory		C. Park	TECHNICAL COMPETENCE Laboratory No. 9926

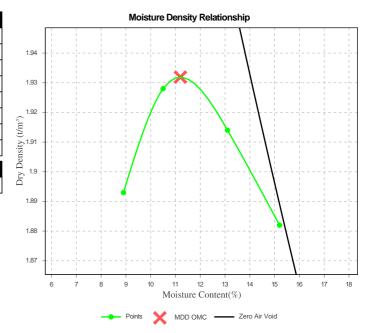
The results of calibrations and tests performed apply only to the specific instrument or sample at the time of test unless otherwise clearly stated. Reference should be made to Trilab's "Standard Terms and Conditions of Business" for further details. Trilab Pty Ltd ABN 25 065 630 506

Material Test Report

Report Number: Issue Number: Date Issued: Client:	84822.04-4B 1 17/04/2020
Chent.	Cleanaway Operations Pty Ltd Level 4, 441 St Kilda Road, Melbourne 3004
Contact:	Nick Schutt
Project Number:	84822.04
Project Name:	Green Waratah
Project Location:	339 Wallgrove Road, Eastern Creek
Work Request:	5759
Sample Number:	SY-5759B
Date Sampled:	21/02/2020
Dates Tested:	18/03/2020 - 25/03/2020
Sampling Method:	Sampled by Engineering Department
	The results apply to the sample as received
Sample Location:	ABH01 (1.6-2m)
Material:	SILTSTONE

Dry Density - Moisture Relationship (AS 1289 5.1.1 & 2.1.1)		
Mould Type	1 LITRE MOULD A	
Compaction	Standard	
Maximum Dry Density (t/m ³)	1.93	
Optimum Moisture Content (%)	11.0	
Oversize Sieve (mm)	19	
Oversize Material Wet (%)	8	
Method used to Determine Plasticity	Visual Assessment	
Curing Hours	2	
Moisture Content (AS 1289 2.1.1)		
Moisture Content (%)		

Douglas Partners Geotechnics | Environment | Groundwater


Geotechnics I Environment I Groundwater Douglas Partners Pty Ltd Sydney Laboratory 96 Hermitage Road West Ryde NSW 2114 Phone: (02) 9809 0666 Fax: (02) 9809 0666 Email: andrew.hutchings@douglaspartners.com.au

Accredited for compliance with ISO/IEC 17025 - Testing

WORLD RECOGNISED

Approved Signatory: Andrew Hutchings Laboratory Manager NATA Accredited Laboratory Number: 828

Material Test Report

Report Number:	84822.04-5a
Issue Number:	1
Date Issued:	21/04/2020
Client:	Cleanaway Operations Pty Ltd
	Level 4, 441 St Kilda Road, Melbourne 3004
Contact:	Nick Schutt
Project Number:	84822.04
Project Name:	Green Waratah
Project Location:	339 Wallgrove Road, Eastern Creek
Work Request:	2429
Sample Number:	CC-2429A
Date Sampled:	21/02/2020
Dates Tested:	06/04/2020 - 14/04/2020
Sampling Method:	Sampled by Engineering Department
	The results apply to the sample as received
Sample Location:	ABH01, Depth: 1.6-2.0m

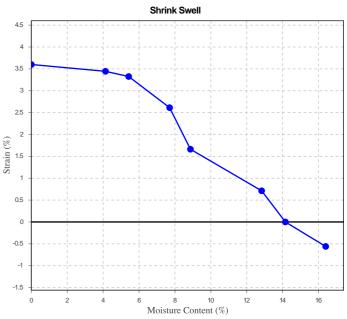
Shrink Swell Index (AS 1289 7.1.1 & 2.1.1)

lss (%) 2.2 Visual Description Silty clay with trace gravel * Shrink Swell Index (Iss) reported as the percentage vertical strain per pF change in suction

Core Shrinkage Test	
Shrinkage Strain - Oven Dried (%)	3.6
Estimated % by volume of significant inert inclusions	10
Cracking	Slightly Cracked
Crumbling	No
Moisture Content (%)	14.2
Swell Test	
Initial Pocket Penetrometer (kPa)	300
Final Pocket Penetrometer (kPa)	280
Initial Moisture Content (%)	14.2
Final Moisture Content (%)	16.4
Swell (%)	0.6
* NATA Accreditation does not cover the performance of pocket penetrometer readings.	

Douglas Partners Geotechnics | Environment | Groundwater

Douglas Partners Pty Ltd Central Coast Laboratory Unit 5/3 Teamster Close Tuggerah NSW 2259 Phone: (02) 4351 1422 Fax: (02) 4351 1422 Email: dan.byrnes@douglaspartners.com.au Accredited for compliance with ISO/IEC 17025 - Testing


NATA

WORLD RECOGNISED

Approved Signatory:

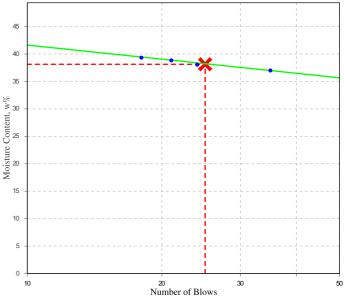
Dan Byrnes Laboratory Manager NATA Accredited Laboratory Number: 828

Material Test Report

Report Number:	84822.04-4
Issue Number:	1
Date Issued:	27/04/2020
Client:	Cleanaway Operations Pty Ltd
	Level 4, 441 St Kilda Road, Melbourne 3004
Contact:	Nick Schutt
Project Number:	84822.04
Project Name:	Green Waratah
Project Location:	339 Wallgrove Road, Eastern Creek
Work Request:	5759
Sample Number:	SY-5759B
Date Sampled:	21/02/2020
Dates Tested:	18/03/2020 - 21/04/2020
Sampling Method:	Sampled by Client
	The results apply to the sample as received
Sample Location:	ABH01 (1.6-2m)
Material:	SILTSTONE

Atterberg Limit (AS1289 3.1.1 & 3.2	Min	Max	
Sample History	Oven Dried / Air Dried / Natural / Unknown		
Preparation Method	Wet Sieve / Dry Sieve / Both Sieves		_
Liquid Limit (%)	38		
Plastic Limit (%)	17		
Plasticity Index (%)	21		
Linear Shrinkage (AS1289 3.4.1)			Max
Linear Shrinkage (%)	10.5		
Cracking Crumbling Curling None			
Emerson Class Number of a Soil (AS 1289 3.8.1)			Max
Emerson Class	2		
Soil Description	SILTSTONE		
Nature of Water	Distilled		
Temperature of Water (^o C)	23		

Douglas Partners Geotechnics | Environment | Groundwater


Geotechnics I Environment I Groundwater Douglas Partners Pty Ltd Sydney Laboratory 96 Hermitage Road West Ryde NSW 2114 Phone: (02) 9809 0666 Fax: (02) 9809 0666 Email: andrew.hutchings@douglaspartners.com.au Accredited for compliance with ISO/IEC 17025 - Testing

WORLD RECOGNISED

Approved Signatory: Andrew Hutchings Laboratory Manager NATA Accredited Laboratory Number: 828

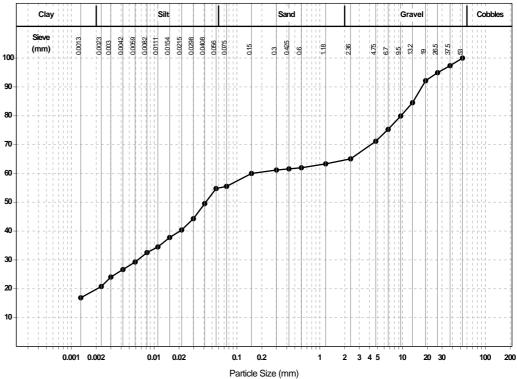
Liquid Limit

Report Number:	84822.04-4B
Issue Number:	1
Date Issued:	17/04/2020
Client:	Cleanaway Operations Pty Ltd
	Level 4, 441 St Kilda Road, Melbourne 3004
Contact:	Nick Schutt
Project Number:	84822.04
Project Name:	Green Waratah
Project Location:	339 Wallgrove Road, Eastern Creek
Work Request:	5759
Sample Number:	SY-5759B
Date Sampled:	21/02/2020
Dates Tested:	18/03/2020 - 25/03/2020
Sampling Method:	Sampled by Engineering Department
	The results apply to the sample as received
Sample Location:	ABH01 (1.6-2m)
Material:	SILTSTONE

Fine Analysis using a Hydrometer (AS 1289 3.6.3) Method of Dispersion Mechanical Device Loss in Pretreatment Particle Size Distribution (AS 1289 3.6.1) Passing Passed % Sieve Limits 53 mm 100 37.5 mm 97 26.5 mm 95 Percent Passing 19 mm 92 13.2 mm 85 9.5 mm 80 6.7 mm 75 4.75 mm 71 2.36 mm 65 1.18 mm 63 0.6 mm 62 0.425 mm 62 0.3 mm 61 0.15 mm 60 0.075 mm 56

Fine Analys (AS 1289 3	sis Using a F .6.3)	lydrometer
Particle Size (mm)	Passed %	
0.0560	54.7	
0.0408	49.5	
0.0298	44.3	
0.0215	40.4	
0.0154	37.8	
0.0111	34.5	
0.0082	32.5	
0.0059	29.3	
0.0042	26.7	
0.0030	24.0	
0.0023	20.8	
0.0013	16.9	

Sydney Laboratory 96 Hermitage Road West Ryde NSW 2114 Phone: (02) 9809 0666 Fax: (02) 9809 0666 Email: andrew.hutchings@douglaspartners.com.au Accredited for compliance with ISO/IEC 17025 - Testing


WORLD RECOGNISED

Approved Signatory: Andrew Hutchings Laboratory Manager NATA Accredited Laboratory Number: 828

Douglas Partners Geotechnics | Environment | Groundwater

Douglas Partners Pty Ltd

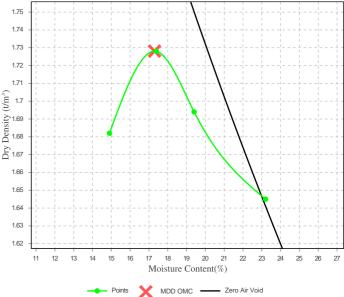
Particle Size Distribution

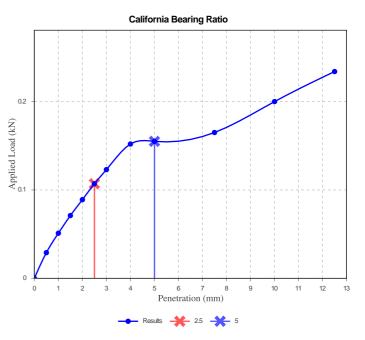
Report Number:	84822.04-4B
Issue Number:	1
Date Issued:	17/04/2020
Client:	Cleanaway Operations Pty Ltd
	Level 4, 441 St Kilda Road, Melbourne 3004
Contact:	Nick Schutt
Project Number:	84822.04
Project Name:	Green Waratah
Project Location:	339 Wallgrove Road, Eastern Creek
Work Request:	5759
Sample Number:	SY-5759A
Date Sampled:	21/02/2020
Dates Tested:	18/03/2020 - 16/04/2020
Sampling Method:	Sampled by Engineering Department
	The results apply to the sample as received
Sample Location:	ABH01A (1.3-1.6m)
Material:	SILTY CLAY trace ironstone gravel

Dr. Density Maisture Deletionship (AC 42		4)	
Dry Density - Moisture Relationship (AS 12			
Mould Type 1 LITRE MOULD			
Compaction		ndard	
Maximum Dry Density (t/m ³)		73	
Optimum Moisture Content (%)		7.5	
Oversize Sieve (mm)		19	
Oversize Material Wet (%)		0	
Method used to Determine Plasticity		sessment	
Curing Hours	2	18	
Moisture Content (AS 1289 2.1.1)			
Moisture Content (%)		17.0	
California Bearing Ratio (RMS T117 & T12	20)	Min Max	
CBR taken at	2.5 mm		
CBR %	1.0		
Method of Compactive Effort	Standard		
Method used to Determine MDD	AS 1289 5.1.1 & 2.1.1		
Maximum Dry Density (t/m ³)	1.728		
Optimum Moisture Content (%)	17.3	1	
Target Laboratory Density Ratio (%)	100	1	
Laboratory Density Ratio (%)	100	1	
Target Laboratory Moisture Ratio (%)	100	1	
Laboratory Moisture Ratio (%)	98	1	
Dry Density after Soaking (t/m ³)	1.590	1	
Field Moisture Content (%)	17.0	1	
Moisture Content Top 30mm (%)	29.1		
Moisture Content Full Depth (%)			
Mass Surcharge (kg)	4.5		
Soaking Period (days)	10		
Swell (%)	8.4		
Material Retained on 19mm (%)	1		
Oversize Material (mm)	19]	
Oversize Material Included	Excluded]	
Oversize Material (%)	0]	

Douglas Partners Geotechnics | Environment | Groundwater

Geotechnics I Environment I Groundwater Douglas Partners Pty Ltd Sydney Laboratory 96 Hermitage Road West Ryde NSW 2114 Phone: (02) 9809 0666 Fax: (02) 9809 0666 Email: andrew.hutchings@douglaspartners.com.au


Accredited for compliance with ISO/IEC 17025 - Testing



WORLD RECOGNISED

Approved Signatory: Andrew Hutchings Laboratory Manager NATA Accredited Laboratory Number: 828

Moisture Density Relationship

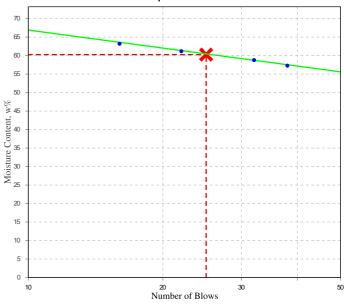
Report Number: 84822.04-4B

Report Number:	84822.04-4B
Issue Number:	1
Date Issued:	17/04/2020
Client:	Cleanaway Operations Pty Ltd
	Level 4, 441 St Kilda Road, Melbourne 3004
Contact:	Nick Schutt
Project Number:	84822.04
Project Name:	Green Waratah
Project Location:	339 Wallgrove Road, Eastern Creek
Work Request:	5759
Sample Number:	SY-5759A
Date Sampled:	21/02/2020
Dates Tested:	18/03/2020 - 07/04/2020
Sampling Method:	Sampled by Engineering Department
	The results apply to the sample as received
Sample Location:	ABH01A (1.3-1.6m)
Material:	SILTY CLAY trace ironstone gravel

Atterberg Limit (AS1289 3.1.1 & 3.2.1 & 3.3.1)		Min	Max
Sample History	Oven Dried		
Preparation Method	Dry Sieve		
Liquid Limit (%)	60		
Plastic Limit (%)	23		
Plasticity Index (%)	37		
Linear Shrinkage (AS1289 3.4.1)		Min	Max
Linear Shrinkage (%)	14.5		
Cracking Crumbling Curling	Curling		
Emerson Class Number of a Soil (AS 1289 3.8.1)		Min	Max
Emerson Class	2		
Soil Description	SILTY CLAY trace ironstone gravel		
Nature of Water	Distilled		
Temperature of Water (°C)	20		

Douglas Partners Geotechnics | Environment | Groundwater

Geotechnics I Environment I Groundwater Douglas Partners Pty Ltd Sydney Laboratory 96 Hermitage Road West Ryde NSW 2114 Phone: (02) 9809 0666 Fax: (02) 9809 0666 Email: andrew.hutchings@douglaspartners.com.au


Accredited for compliance with ISO/IEC 17025 - Testing

WORLD RECOGNISED

Approved Signatory: Andrew Hutchings Laboratory Manager NATA Accredited Laboratory Number: 828

Liquid Limit

Report Number:	84822.04-4B
Issue Number:	1
Date Issued:	17/04/2020
Client:	Cleanaway Operations Pty Ltd
	Level 4, 441 St Kilda Road, Melbourne 3004
Contact:	Nick Schutt
Project Number:	84822.04
Project Name:	Green Waratah
Project Location:	339 Wallgrove Road, Eastern Creek
Work Request:	5759
Sample Number:	SY-5759A
Date Sampled:	21/02/2020
Dates Tested:	18/03/2020 - 26/03/2020
Sampling Method:	Sampled by Engineering Department
	The results apply to the sample as received
Sample Location:	ABH01A (1.3-1.6m)
Material:	SILTY CLAY trace ironstone gravel

Fine Analysis using a Hydrometer (AS 1289 3.6.3) Method of Dispersion Mechanical Device Loss in Pretreatment Particle Size Distribution (AS 1289 3.6.1) Passed % Sieve Passing Limits 37.5 mm 100 26.5 mm 100 19 mm 99 13.2 mm 99 9.5 mm 98 6.7 mm 98 4.75 mm 97 2.36 mm 96 1.18 mm 95 0.6 mm 95 0.425 mm 94 0.3 mm 94 0.15 mm 94

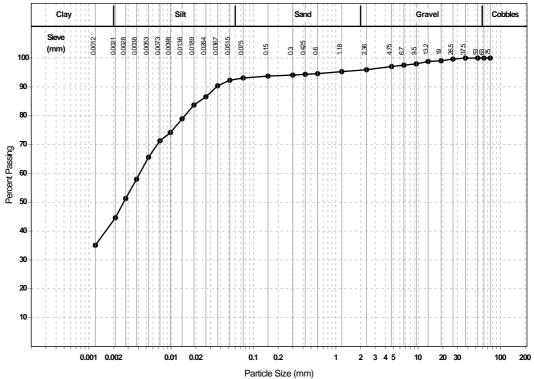
Fine Analys (AS 1289 3	sis Using a H .6.3)	lydrometer
Particle Size (mm)	Passed %	
0.0515	92.3	
0.0367	90.4	
0.0264	86.6	
0.0189	83.7	
0.0136	79.0	
0.0098	74.2	
0.0073	71.3	
0.0053	65.6	
0.0038	58.0	
0.0028	51.3	
0.0021	44.6	
0.0012	35.1	

93

0.075 mm

Douglas Partners Geotechnics | Environment | Groundwater

Geotechnics | Environment | Groundwater Douglas Partners Pty Ltd Sydney Laboratory 96 Hermitage Road West Ryde NSW 2114 Phone: (02) 9809 0666 Fax: (02) 9809 0666 Email: andrew.hutchings@douglaspartners.com.au Accredited for compliance with ISO/IEC 17025 - Testing



Approv world recognised accreditation

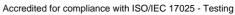
Approved Signatory: Andrew Hutchings Laboratory Manager NATA Accredited Laboratory Number: 828

Particle Size Distribution

Report Number:	84822.04-5a
Issue Number:	1
Date Issued:	21/04/2020
Client:	Cleanaway Operations Pty Ltd
	Level 4, 441 St Kilda Road, Melbourne 3004
Contact:	Nick Schutt
Project Number:	84822.04
Project Name:	Green Waratah
Project Location:	339 Wallgrove Road, Eastern Creek
Work Request:	2429
Sample Number:	CC-2429B
Date Sampled:	21/02/2020
Dates Tested:	06/04/2020 - 14/04/2020
Sampling Method:	Sampled by Engineering Department
	The results apply to the sample as received
Sample Location:	ABH02, Depth: 1.5-2.0m

Shrink Swell Index (AS 1289 7.1.1 & 2.1.1)

 Iss (%)
 3.6

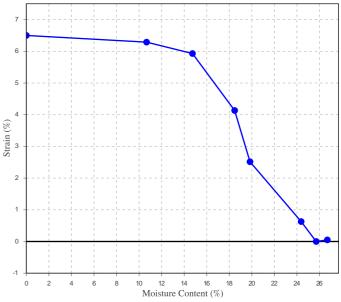

 Visual Description
 Silty clay with trace gravel

 * Shrink Swell Index (Iss) reported as the percentage vertical strain per pF change in suction.

Core Shrinkage Test			
Shrinkage Strain - Oven Dried (%)	6.5		
Estimated % by volume of significant inert inclusions	0		
Cracking	Slightly Cracked		
Crumbling	No		
Moisture Content (%)	25.7		
Swell Test			
Initial Pocket Penetrometer (kPa)	170		
Final Pocket Penetrometer (kPa)	160		
Initial Moisture Content (%)	26.0		
Final Moisture Content (%)	26.7		
Swell (%)	-0.0		
* NATA Accreditation does not cover the performance of pocket penetrometer readings.			

Douglas Partners Geotechnics | Environment | Groundwater

Geotechnics I Environment I Groundwater Douglas Partners Pty Ltd Central Coast Laboratory Unit 5/3 Teamster Close Tuggerah NSW 2259 Phone: (02) 4351 1422 Fax: (02) 4351 1422 Email: dan.byrnes@douglaspartners.com.au



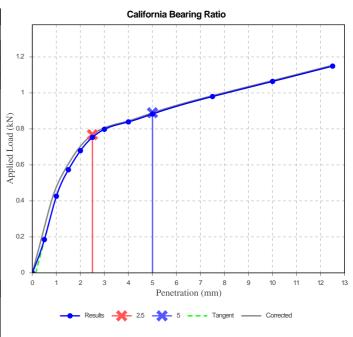
Approved Si

Approved Signatory: Dan Byrnes Laboratory Manager NATA Accredited Laboratory Number: 828

Shrink Swell

Report Number:	84822.04-4B
Issue Number:	1
Date Issued:	17/04/2020
Client:	Cleanaway Operations Pty Ltd
	Level 4, 441 St Kilda Road, Melbourne 3004
Contact:	Nick Schutt
Project Number:	84822.04
Project Name:	Green Waratah
Project Location:	339 Wallgrove Road, Eastern Creek
Work Request:	5759
Sample Number:	SY-5759C
Date Sampled:	21/02/2020
Dates Tested:	18/03/2020 - 16/04/2020
Sampling Method:	Sampled by Engineering Department
	The results apply to the sample as received
Sample Location:	ABH02A (1.5-2m)
Material:	SILTY CLAY trace ironstone gravel

California Bearing Ratio (RMS T117 & T120)	Min	Max
CBR taken at	2.5 mm		
CBR %	6		
Method of Compactive Effort	Stan	dard	
Method used to Determine MDD	AS 1289 5.	1.1 & 2	.1.1
Maximum Dry Density (t/m ³)	1.551		
Optimum Moisture Content (%)	25.7		
Target Laboratory Density Ratio (%)	100		
Laboratory Density Ratio (%)	100		
Target Laboratory Moisture Ratio (%)	100		
Laboratory Moisture Ratio (%)	99		
Dry Density after Soaking (t/m ³)	1.547		
Field Moisture Content (%)	28.1		
Moisture Content Top 30mm (%)	27.1		
Moisture Content Full Depth (%)	27.4		
Mass Surcharge (kg)	4.5		
Soaking Period (days)	10		
Swell (%)	0.2		
Material Retained on 19mm (%)	0		
Oversize Material (mm)	19		
Oversize Material Included	Excluded		
Oversize Material (%)	0		


Douglas Partners Geotechnics | Environment | Groundwater

Geotechnics I Environment I Groundwater Douglas Partners Pty Ltd Sydney Laboratory 96 Hermitage Road West Ryde NSW 2114 Phone: (02) 9809 0666 Fax: (02) 9809 0666 Email: andrew.hutchings@douglaspartners.com.au

Accredited for compliance with ISO/IEC 17025 - Testing

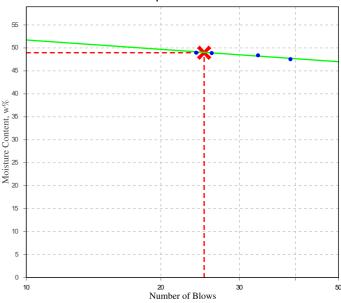
WORLD RECOGNISED

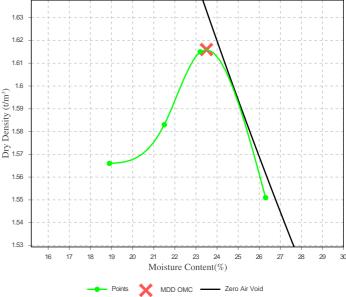
Report Number:	84822.04-4B
Issue Number:	1
Date Issued:	17/04/2020
Client:	Cleanaway Operations Pty Ltd
	Level 4, 441 St Kilda Road, Melbourne 3004
Contact:	Nick Schutt
Project Number:	84822.04
Project Name:	Green Waratah
Project Location:	339 Wallgrove Road, Eastern Creek
Work Request:	5759
Sample Number:	SY-5759D
Date Sampled:	21/02/2020
Dates Tested:	18/03/2020 - 14/04/2020
Sampling Method:	Sampled by Engineering Department
	The results apply to the sample as received
Sample Location:	ABH02A (2.4-2.8m)
Material:	SILTY CLAY

Atterberg Limit (AS1289 3.1.1 & 3.2.1 & 3.3		3.1)	Min	Max	
Sample History	0	ven Dried			
Preparation Method	C	ory Sieve		_	
Liquid Limit (%)		49			
Plastic Limit (%)		21			
Plasticity Index (%)		28			
Linear Shrinkage (AS1289 3.4.1)			Min	Max	
Linear Shrinkage (%)		12.5			
Cracking Crumbling Curling	None				
Dry Density - Moisture Relationship	(AS 12	289 5.1.1 & 2.1	.1)		
Mould Type		1 LITRE I	1 LITRE MOULD A		
Compaction		Star	Standard		
Maximum Dry Density (t/m ³)		1.62			
Optimum Moisture Content (%)		23.5			
Oversize Sieve (mm)		19			
Oversize Material Wet (%)		0			
Method used to Determine Plasticity		Visual Assessment			
Curing Hours		96			
Moisture Content (AS 1289 2.1.1)					
Moisture Content (%)			2	6.3	

Douglas Partners Geotechnics | Environment | Groundwater

Douglas Partners Pty Ltd Sydney Laboratory 96 Hermitage Road West Ryde NSW 2114 Phone: (02) 9809 0666 Fax: (02) 9809 0666 Email: andrew.hutchings@douglaspartners.com.au


Accredited for compliance with ISO/IEC 17025 - Testing


WORLD RECOGNISED

Approved Signatory: Andrew Hutchings Laboratory Manager NATA Accredited Laboratory Number: 828

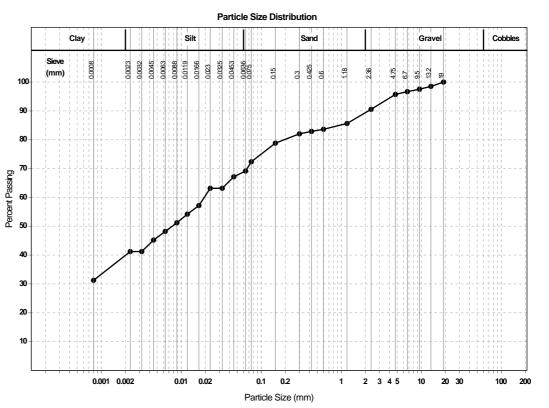
Liquid Limit

Report Number:	84822.04-4
Issue Number:	1
Date Issued:	27/04/2020
Client:	Cleanaway Operations Pty Ltd
	Level 4, 441 St Kilda Road, Melbourne 3004
Contact:	Nick Schutt
Project Number:	84822.04
Project Name:	Green Waratah
Project Location:	339 Wallgrove Road, Eastern Creek
Work Request:	5759
Sample Number:	SY-5759D
Date Sampled:	21/02/2020
Dates Tested:	18/03/2020 - 26/03/2020
Sampling Method:	Sampled by Client
	The results apply to the sample as received
Sample Location:	ABH02A (2.4-2.8m)
Material:	SILTY CLAY

Douglas Partners Geotechnics | Environment | Groundwater

Geotechnics I Environment I Groundwater Douglas Partners Pty Ltd Sydney Laboratory 96 Hermitage Road West Ryde NSW 2114 Phone: (02) 9809 0666 Fax: (02) 9809 0666 Email: andrew.hutchings@douglaspartners.com.au Accredited for compliance with ISO/IEC 17025 - Testing

NATA


WORLD RECOGNISED

Approved Signatory: Andrew Hutchings Laboratory Manager NATA Accredited Laboratory Number: 828

using a Hydrometer

(AS 1289 3.6.3)				
Method of Dispersion		Mechanical Device		
Loss in Pretreatment				
Particle Size Distribution (AS 1289 3.6.1)				
Sieve	Passed %	Passing	g Limits	
19 mm	100			
13.2 mm	99			
9.5 mm	98			
6.7 mm	97			
4.75 mm	96			
2.36 mm	91			
1.18 mm	86			
0.6 mm	84			
0.425 mm	83			
0.3 mm	82			
0.15 mm	79			
0.075 mm	72			

Fine Analysis Using a Hydrometer (AS 1289 3.6.3)			
Particle Size (mm)	Passed %		
0.0636	69.1		
0.0453	67.2		
0.0325	63.2		
0.0230	63.2		
0.0166	57.2		
0.0119	54.2		
0.0088	51.2		
0.0063	48.2		
0.0045	45.2		
0.0032	41.2		
0.0023	41.2		
0.0008	31.2		

Report Number:	84822.04-5a
Issue Number:	1
Date Issued:	21/04/2020
Client:	Cleanaway Operations Pty Ltd
	Level 4, 441 St Kilda Road, Melbourne 3004
Contact:	Nick Schutt
Project Number:	84822.04
Project Name:	Green Waratah
Project Location:	339 Wallgrove Road, Eastern Creek
Work Request:	2429
Sample Number:	CC-2429C
Date Sampled:	21/02/2020
Dates Tested:	06/04/2020 - 14/04/2020
Sampling Method:	Sampled by Engineering Department
	The results apply to the sample as received
Sample Location:	ABH03, Depth: 1.0-1.25m

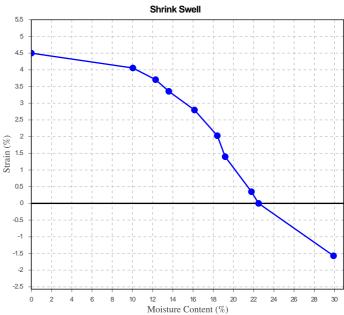
Shrink Swell Index (AS 1289 7.1.1 & 2.1.1)

 Iss (%)
 2.9

 Visual Description
 Silty clay

 * Shrink Swell Index (Iss) reported as the percentage vertical strain per pF change in suction.

Core Shrinkage Test	
Shrinkage Strain - Oven Dried (%)	4.5
Estimated % by volume of significant inert inclusions	5
Cracking	Slightly Cracked
Crumbling	No
Moisture Content (%)	22.5
Swell Test	
Initial Pocket Penetrometer (kPa)	360
Final Pocket Penetrometer (kPa)	200
Initial Moisture Content (%)	24.4
Final Moisture Content (%)	29.9
Swell (%)	1.6
* NATA Accreditation does not cover the performance of p penetrometer readings.	ocket


Douglas Partners Geotechnics | Environment | Groundwater

Geotechnics I Environment I Groundwater Douglas Partners Pty Ltd Central Coast Laboratory Unit 5/3 Teamster Close Tuggerah NSW 2259 Phone: (02) 4351 1422 Fax: (02) 4351 1422 Email: dan.byrnes@douglaspartners.com.au Accredited for compliance with ISO/IEC 17025 - Testing

WORLD RECOGNISED

Approved Signatory: Dan Byrnes Laboratory Manager NATA Accredited Laboratory Number: 828

Sample Location:

Report Number:	84822.04-4
Issue Number:	1
Date Issued:	27/04/2020
Client:	Cleanaway Operations Pty Ltd
	Level 4, 441 St Kilda Road, Melbourne 3004
Contact:	Nick Schutt
Project Number:	84822.04
Project Name:	Green Waratah
Project Location:	339 Wallgrove Road, Eastern Creek
Work Request:	5759
Sample Number:	SY-5759G
Date Sampled:	21/02/2020
Dates Tested:	18/03/2020 - 08/04/2020
Sampling Method:	Sampled by Client
	The results apply to the sample as received
Sample Location:	ABH04 (2.0-2.2m)
Material:	SILTY CLAY

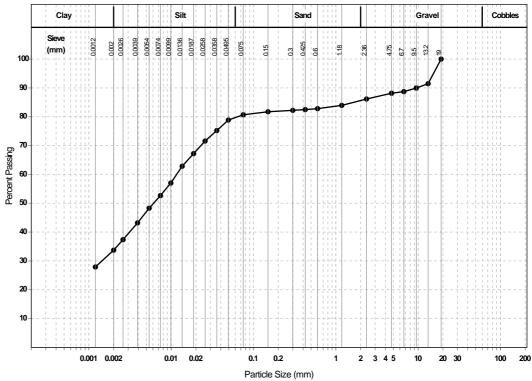
Fine Analysis using a Hydrometer (AS 1289 3.6.3)

Method of Dispersion		l	Mechanical Device	
Loss in Pretr	eatment			
Particle Size (AS 1289 3.6		า		
Sieve	Passed %		Passing Limits	
19 mm	100			
13.2 mm	91			
9.5 mm	90			
6.7 mm	89			
4.75 mm	88			
2.36 mm	86			
1.18 mm	84			
0.6 mm	83			
0.425 mm	82			
0.3 mm	82			
0.15 mm	82			
0.075 mm	81			

Fine Analysis Using a Hydrometer (AS 1289 3.6.3)		
Particle Size (mm)	Passed %	
0.0495	78.9	
0.0358	75.2	
0.0258	71.6	
0.0187	67.2	
0.0136	62.8	
0.0099	57.0	
0.0074	52.6	
0.0054	48.3	
0.0039	43.2	
0.0026	37.4	
0.0020	33.7	
0.0012	27.9	

Douglas Partners Geotechnics | Environment | Groundwater

Geotechnics I Environment I Groundwater Douglas Partners Pty Ltd Sydney Laboratory 96 Hermitage Road West Ryde NSW 2114 Phone: (02) 9809 0666 Fax: (02) 9809 0666 Email: andrew.hutchings@douglaspartners.com.au


Accredited for compliance with ISO/IEC 17025 - Testing

WORLD RECOGNISED

Approved Signatory: Andrew Hutchings Laboratory Manager NATA Accredited Laboratory Number: 828

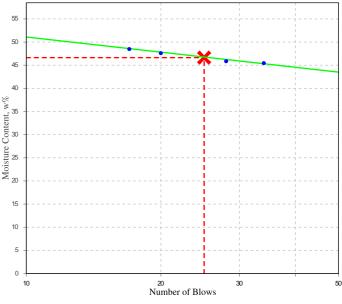
Particle Size Distribution

Report Number:	84822.04-4
Issue Number:	1
Date Issued:	27/04/2020
Client:	Cleanaway Operations Pty Ltd
	Level 4, 441 St Kilda Road, Melbourne 3004
Contact:	Nick Schutt
Project Number:	84822.04
Project Name:	Green Waratah
Project Location:	339 Wallgrove Road, Eastern Creek
Work Request:	5759
Sample Number:	SY-5759G
Date Sampled:	21/02/2020
Dates Tested:	18/03/2020 - 22/04/2020
Sampling Method:	Sampled by Client
	The results apply to the sample as received
Sample Location:	ABH04 (2.0-2.2m)
Material:	SILTY CLAY

Atterberg Limit (AS1289 3.1.1 & 3	.2.1 & 3.3.1)	Min	Max	
Sample History	Oven Dried			
Preparation Method	Dry Sieve			
Liquid Limit (%)	47			
Plastic Limit (%)	20			
Plasticity Index (%)	27			
Linear Shrinkage (AS1289 3.4.1) Min Ma				
Linear Shrinkage (%)	12.5			
Cracking Crumbling Curling	None)		
Emerson Class Number of a Soil	Min	Max		
Emerson Class	2			
Soil Description	Silty CLAY			
Nature of Water	Distilled			
Temperature of Water (°C)	23			

Douglas Partners Geotechnics | Environment | Groundwater

Geotechnics | Environment | Groundwater Douglas Partners Pty Ltd Sydney Laboratory 96 Hermitage Road West Ryde NSW 2114 Phone: (02) 9809 0666 Fax: (02) 9809 0666 Email: andrew.hutchings@douglaspartners.com.au


Accredited for compliance with ISO/IEC 17025 - Testing

A WORLD RECOGNISED

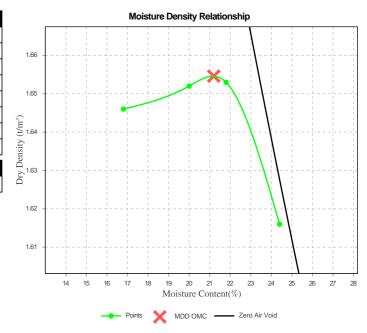
Approved Signatory: Andrew Hutchings Laboratory Manager NATA Accredited Laboratory Number: 828

Liquid Limit

Report Number: 84822.04-4

Report Number: Issue Number:	84822.04-4B 1
Date Issued:	17/04/2020
Client:	Cleanaway Operations Pty Ltd
	Level 4, 441 St Kilda Road, Melbourne 3004
Contact:	Nick Schutt
Project Number:	84822.04
Project Name:	Green Waratah
Project Location:	339 Wallgrove Road, Eastern Creek
Work Request:	5759
Sample Number:	SY-5759F
Date Sampled:	21/02/2020
Dates Tested:	18/03/2020 - 30/03/2020
Sampling Method:	Sampled by Engineering Department
	The results apply to the sample as received
Sample Location:	ABH04 (1-2m)
Material:	SILTY CLAY

Dry Density - Moisture Relationship (AS 1289 5.1.1 & 2.1.1)		
Mould Type	1 LITRE MC	OULD A
Compaction	Standa	rd
Maximum Dry Density (t/m ³)	1.65	
Optimum Moisture Content (%)	21.0	
Oversize Sieve (mm)	19	
Oversize Material Wet (%)	0	
Method used to Determine Plasticity	Visual Asse	ssment
Curing Hours 120		
Moisture Content (AS 1289 2.1.1)		
Moisture Content (%)		23.9


Douglas Partners Geotechnics | Environment | Groundwater

Geotechnics | Environment | Groundwater Douglas Partners Pty Ltd Sydney Laboratory 96 Hermitage Road West Ryde NSW 2114 Phone: (02) 9809 0666 Fax: (02) 9809 0666 Email: andrew.hutchings@douglaspartners.com.au

Accredited for compliance with ISO/IEC 17025 - Testing

WORLD RECOGNISED

Report Number:	84822.04-5a
Issue Number:	1
Date Issued:	21/04/2020
Client:	Cleanaway Operations Pty Ltd
	Level 4, 441 St Kilda Road, Melbourne 3004
Contact:	Nick Schutt
Project Number:	84822.04
Project Name:	Green Waratah
Project Location:	339 Wallgrove Road, Eastern Creek
Work Request:	2429
Sample Number:	CC-2429D
Date Sampled:	21/02/2020
Dates Tested:	06/04/2020 - 14/04/2020
Sampling Method:	Sampled by Engineering Department
	The results apply to the sample as received
Sample Location:	ABH04, Depth: 1.0-2.0m

Shrink Swell Index (AS 1289 7.1.1 & 2.1.1)

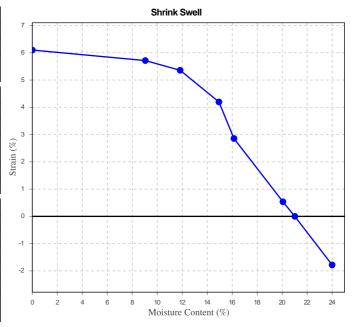
 Iss (%)
 3.9

 Visual Description
 Clay

 * Shrink Swell Index (Iss) reported as the percentage vertical strain per pF change in suction.

Core Shrinkage Test	
Shrinkage Strain - Oven Dried (%)	6.1
Estimated % by volume of significant inert inclusions	0
Cracking	Slightly Cracked
Crumbling	No
Moisture Content (%)	21.0
Swell Test	
Initial Pocket Penetrometer (kPa)	240
Final Pocket Penetrometer (kPa)	150
Initial Moisture Content (%)	22.2
Final Moisture Content (%)	24.0
Swell (%)	1.8
* NATA Accreditation does not cover the performance of p penetrometer readings.	ocket

Douglas Partners Geotechnics | Environment | Groundwater


eotechnics I Environment I Groundwater Douglas Partners Pty Ltd Central Coast Laboratory Unit 5/3 Teamster Close Tuggerah NSW 2259 Phone: (02) 4351 1422 Fax: (02) 4351 1422 Email: dan.byrnes@douglaspartners.com.au

Accredited for compliance with ISO/IEC 17025 - Testing

WORLD RECOGNISED

Approved Signatory: Dan Byrnes Laboratory Manager NATA Accredited Laboratory Number: 828

Report Number:	84822.04-4B
Issue Number:	1
Date Issued:	17/04/2020
Client:	Cleanaway Operations Pty Ltd
	Level 4, 441 St Kilda Road, Melbourne 3004
Contact:	Nick Schutt
Project Number:	84822.04
Project Name:	Green Waratah
Project Location:	339 Wallgrove Road, Eastern Creek
Work Request:	5759
Sample Number:	SY-5759H
Date Sampled:	21/02/2020
Dates Tested:	18/03/2020 - 25/03/2020
Sampling Method:	Sampled by Engineering Department
	The results apply to the sample as received
Sample Location:	ABH05 (0.5-1.5m)
Material:	SILTY CLAY

Dry Density - Moisture Relationship (AS 1289 5.1.1 & 2.1.1)		
Mould Type	1 LITRE MOULD A	
Compaction	Standard	
Maximum Dry Density (t/m ³)	1.63	
Optimum Moisture Content (%)	21.5	
Oversize Sieve (mm)	19	
Oversize Material Wet (%)	0	
Method used to Determine Plasticity	Visual Assessment	
Curing Hours 2		
Moisture Content (AS 1289 2.1.1)		
Moisture Content (%)	22.0	

Douglas Partners Geotechnics | Environment | Groundwater

Geotechnics | Environment | Groundwater Douglas Partners Pty Ltd Sydney Laboratory 96 Hermitage Road West Ryde NSW 2114 Phone: (02) 9809 0666 Fax: (02) 9809 0666 Email: andrew.hutchings@douglaspartners.com.au

Accredited for compliance with ISO/IEC 17025 - Testing

WORLD RECOGNISED

Report Number:	84822.04-5B
Issue Number:	1
Date Issued:	24/04/2020
Client:	Cleanaway Operations Pty Ltd
	Level 4, 441 St Kilda Road, Melbourne 3004
Contact:	Nick Schutt
Project Number:	84822.04
Project Name:	Green Waratah
Project Location:	339 Wallgrove Road, Eastern Creek
Work Request:	2429
Sample Number:	CC-2429E
Date Sampled:	21/02/2020
Dates Tested:	06/04/2020 - 15/04/2020
Sampling Method:	Sampled by Engineering Department
	The results apply to the sample as received
Sample Location:	ABH05, Depth: 1.0-1.31m

100

90

80

70

50

40

30

20

10

0.001 0.002

0.01 0.02

Percent Passing 60

Fine Analysis using a Hydrometer

(AS 1289 3.6	0.3)			
Method of Dispersion		Mortar and Pestle		
Loss in Pretr	eatment		0	
Particle Size (AS 1289 3.6		١		
Sieve	Passed %		Passing Limits	
13.2 mm	100			
9.5 mm	99			
6.7 mm	98			
4.75 mm	97			
2.36 mm	96			
1.18 mm	96			
0.6 mm	95			
0.425 mm	94			
0.3 mm	94			
0.15 mm	93			
0.075 mm	92			

Fine Analys (AS 1289 3	sis Using a ⊦ .6.3)	lydrometer
Particle Size (mm)	Passed %	
0.0624	91.6	
0.0439	90.4	
0.0309	89.2	
0.0217	86.8	
0.0152	84.4	
0.0106	82.0	
0.0077	79.6	
0.0053	74.9	
0.0037	67.7	
0.0025	60.5	
0.0009	34.3	

Particle Size Distribution Clay Silt Gravel Cobbles Sand Sieve 6000.C 0.0025 0.0037 0.0063 0.0077 3.0106 0.0152 3.0217 0.0309 0.0439 0.0624 0.425 0.15 2.36 4.75 (mm) 0.6 100 9.5 13.2 33 6.7

0.1 0.2

Particle Size (mm)

Douglas Partners Geotechnics | Environment | Groundwater

Douglas Partners Pty Ltd Newcastle Laboratory 15 Callistemon Close Warabrook Newcastle NSW 2310 Phone: (02) 4960 9600 Fax: (02) 4960 9601 Email: Peter.Gorseski@douglaspartners.com.au

Accredited for compliance with ISO/IEC 17025 - Testing

WORLD RECOGNISED

Approved Signatory: Peter Gorseski

Laboratory Manager NATA Accredited Laboratory Number: 828

2 3 4 5

1

20 30

10

100 200

Report Number: 84822.04-5B

Report Number:	84822.04-5a
Issue Number:	1
Date Issued:	21/04/2020
Client:	Cleanaway Operations Pty Ltd
	Level 4, 441 St Kilda Road, Melbourne 3004
Contact:	Nick Schutt
Project Number:	84822.04
Project Name:	Green Waratah
Project Location:	339 Wallgrove Road, Eastern Creek
Work Request:	2429
Sample Number:	CC-2429E
Date Sampled:	21/02/2020
Dates Tested:	06/04/2020 - 15/04/2020
Sampling Method:	Sampled by Engineering Department
	The results apply to the sample as received
Sample Location:	ABH05, Depth: 1.0-1.31m

Atterberg Limit (AS1289 3.1.1 &	3.2.1 & 3.3.1)	Min	Max
Sample History	Oven Dried		
Preparation Method	Dry Sieve		_
Liquid Limit (%)	76		
Plastic Limit (%)	17		
Plasticity Index (%)	59		
Linear Shrinkage (AS1289 3.4.1)		Min	Max
Linear Shrinkage (%)	17.5		
Cracking Crumbling Curling	None		
Shrink Swell Index (AS 1289 7.1.	1 & 2.1.1)		
lss (%)	3.1		
Visual Description	Clay		
* Shrink Swell Index (Iss) reported as the percentage vertical strain per pF change in suction.			
Core Shrinkage Test			
Shrinkage Strain - Oven Dried	(%)	4	1.5
Estimated % by volume of signific	cant inert inclusions		0
Cracking		Sli Cra	ghtly icked
Crumbling			No
Moisture Content (%) 20.7		0.7	
Swell Test			
Initial Pocket Penetrometer (kPa) 380			80
Final Pocket Penetrometer (kPa)		1	80
Initial Moisture Content (%) 21.		1.3	
Final Moisture Content (%) 24.		4.3	
Swell (%)		2	2.0
* NATA Accreditation does not co penetrometer readings.	over the performance of	pocket	

Douglas Partners Geotechnics | Environment | Groundwater

Douglas Partners Pty Ltd Central Coast Laboratory Unit 5/3 Teamster Close Tuggerah NSW 2259 Phone: (02) 4351 1422 Fax: (02) 4351 1422 Email: dan.byrnes@douglaspartners.com.au

Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory: Dan Byrnes Laboratory Manager NATA Accredited Laboratory Number: 828

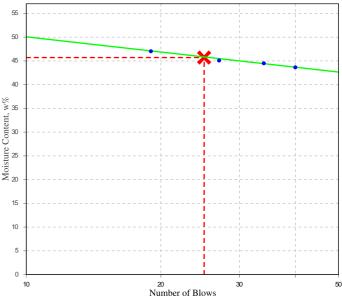
Shrink Swell

Report Number:	84822.04-4
Issue Number:	1
Date Issued:	27/04/2020
Client:	Cleanaway Operations Pty Ltd
	Level 4, 441 St Kilda Road, Melbourne 3004
Contact:	Nick Schutt
Project Number:	84822.04
Project Name:	Green Waratah
Project Location:	339 Wallgrove Road, Eastern Creek
Work Request:	5759
Sample Number:	SY-5759J
Date Sampled:	21/02/2020
Dates Tested:	18/03/2020 - 20/04/2020
Sampling Method:	Sampled by Client
	The results apply to the sample as received
Sample Location:	ABH06 (1-1.41m)
Material:	SILTY CLAY

Atterberg Limit (AS1289 3.1.1 & 3.2.1 & 3.3.1)		Min	Max
Sample History	Oven Dried		
Preparation Method	Dry Sieve		
Liquid Limit (%)	46		
Plastic Limit (%)	17		
Plasticity Index (%)	29		
Linear Shrinkage (AS1289 3.4.1)		Min	Max
Linear Shrinkage (%)	13.5		

Linear Shrinkage (%)	13.5	
Cracking Crumbling Curling	Curling	

Douglas Partners Geotechnics | Environment | Groundwater


Geotechnics I Environment I Groundwater Douglas Partners Pty Ltd Sydney Laboratory 96 Hermitage Road West Ryde NSW 2114 Phone: (02) 9809 0666 Fax: (02) 9809 0666 Email: andrew.hutchings@douglaspartners.com.au

Accredited for compliance with ISO/IEC 17025 - Testing

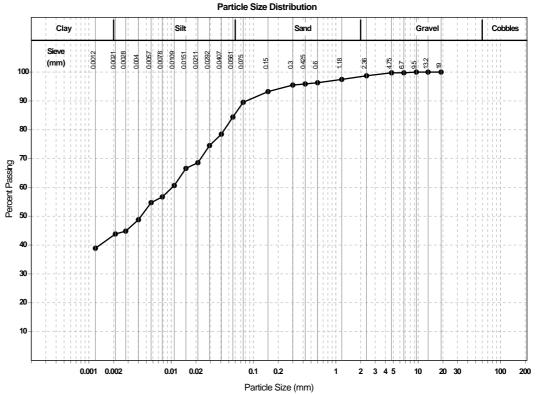
Approved Signatory: Andrew Hutchings Laboratory Manager NATA Accredited Laboratory Number: 828

Liquid Limit

Report Number:	84822.04-4
Issue Number:	1
Date Issued:	27/04/2020
Client:	Cleanaway Operations Pty Ltd
	Level 4, 441 St Kilda Road, Melbourne 3004
Contact:	Nick Schutt
Project Number:	84822.04
Project Name:	Green Waratah
Project Location:	339 Wallgrove Road, Eastern Creek
Work Request:	5759
Sample Number:	SY-5759J
Date Sampled:	21/02/2020
Dates Tested:	18/03/2020 - 08/04/2020
Sampling Method:	Sampled by Client
	The results apply to the sample as received
Sample Location:	ABH06 (1-1.41m)
Material:	SILTY CLAY

Douglas Partners Geotechnics | Environment | Groundwater

Douglas Partners Pty Ltd Sydney Laboratory 96 Hermitage Road West Ryde NSW 2114 Phone: (02) 9809 0666 Fax: (02) 9809 0666 Email: andrew.hutchings@douglaspartners.com.au Accredited for compliance with ISO/IEC 17025 - Testing


NATA

Approved Signatory: Andrew Hutchings Laboratory Manager NATA Accredited Laboratory Number: 828

Fine Analysis using a Hydrometer

(AS 1289 3.6.3)				
Method of Dispersion		Mechanical Device		
Loss in Pretr	eatment			
Particle Size (AS 1289 3.6		า		
Sieve	Passed %	,	Passir Limits	ng
19 mm	100			
13.2 mm	100			
9.5 mm	100			
6.7 mm	100			
4.75 mm	100			
2.36 mm	99			
1.18 mm	97			
0.6 mm	96			
0.425 mm	96			
0.3 mm	96			
0.15 mm	93			
0.075 mm	90			

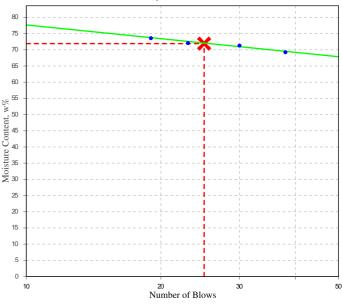
Fine Analys (AS 1289 3	sis Using a H .6.3)	lydrometer
Particle Size (mm)	Passed %	
0.0561	84.4	
0.0407	78.5	
0.0292	74.5	
0.0211	68.6	
0.0151	66.6	
0.0109	60.7	
0.0078	56.7	
0.0057	54.7	
0.0040	48.8	
0.0028	44.8	
0.0021	43.8	
0.0012	38.9	

Report Number:	84822.04-4
Issue Number:	1
Date Issued:	27/04/2020
Client:	Cleanaway Operations Pty Ltd
	Level 4, 441 St Kilda Road, Melbourne 3004
Contact:	Nick Schutt
Project Number:	84822.04
Project Name:	Green Waratah
Project Location:	339 Wallgrove Road, Eastern Creek
Work Request:	5759
Sample Number:	SY-5759K
Date Sampled:	21/02/2020
Dates Tested:	18/03/2020 - 21/04/2020
Sampling Method:	Sampled by Client
	The results apply to the sample as received
Sample Location:	ABH07 (1-1.27m)
Material:	SILTY CLAY with trace of sand

Atterberg Limit (AS1289 3.1.1 & 3.2	2.1 & 3.3.1)	Min	Max
Sample History	Oven Dried		
Preparation Method	Dry Sieve		
Liquid Limit (%)	72		
Plastic Limit (%)	25		
Plasticity Index (%)	47		
Linear Shrinkage (AS1289 3.4.1)		Min	Max
Linear Shrinkage (%)	19.5		
Cracking Crumbling Curling	Curling		
Emerson Class Number of a Soil (AS 1289 3.8.1)			Max
Emerson Class	2		
Soil Description	silty CLAY		
Nature of Water	Distilled		
Temperature of Water (°C)	23		

Douglas Partners Geotechnics | Environment | Groundwater

Geotechnics | Environment | Groundwater Douglas Partners Pty Ltd Sydney Laboratory 96 Hermitage Road West Ryde NSW 2114 Phone: (02) 9809 0666 Fax: (02) 9809 0666 Email: andrew.hutchings@douglaspartners.com.au


Accredited for compliance with ISO/IEC 17025 - Testing

WORLD RECOGNISED

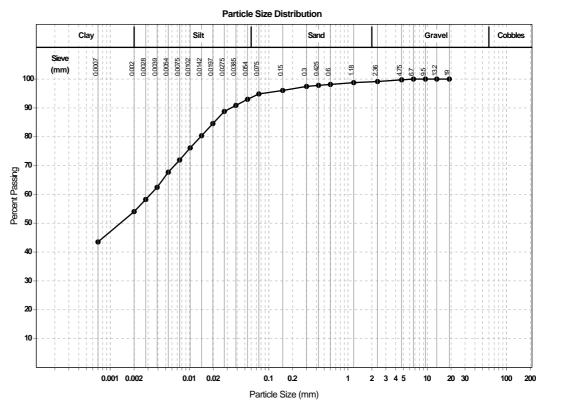
Approved Signatory: Andrew Hutchings Laboratory Manager NATA Accredited Laboratory Number: 828

Liquid Limit

Report Number:	84822.04-4
Issue Number:	1
Date Issued:	27/04/2020
Client:	Cleanaway Operations Pty Ltd
	Level 4, 441 St Kilda Road, Melbourne 3004
Contact:	Nick Schutt
Project Number:	84822.04
Project Name:	Green Waratah
Project Location:	339 Wallgrove Road, Eastern Creek
Work Request:	5759
Sample Number:	SY-5759K
Date Sampled:	21/02/2020
Dates Tested:	18/03/2020 - 08/04/2020
Sampling Method:	Sampled by Client
	The results apply to the sample as received
Sample Location:	ABH07 (1-1.27m)
Material:	SILTY CLAY with trace of sand

Douglas Partners Geotechnics | Environment | Groundwater

Douglas Partners Pty Ltd Sydney Laboratory 96 Hermitage Road West Ryde NSW 2114 Phone: (02) 9809 0666 Fax: (02) 9809 0666 Email: andrew.hutchings@douglaspartners.com.au Accredited for compliance with ISO/IEC 17025 - Testing


NATA

Approved Signatory: Andrew Hutchings Laboratory Manager NATA Accredited Laboratory Number: 828

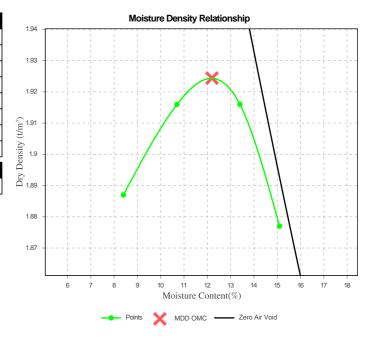
Fine Analysis using a Hydrometer (AS 1289 3.6.3) Method of Dispersion Mechanical

Method of Dispersion		Device	
Loss in Pretr	eatment		
Particle Size (AS 1289 3.6		n	
Sieve	Passed %	Passing Limits	
19 mm	100		
13.2 mm	100		
9.5 mm	100		
6.7 mm	100		
4.75 mm	100		
2.36 mm	99		
1.18 mm	99		
0.6 mm	98		
0.425 mm	98		
0.3 mm	97		
0.15 mm	96		
0.075 mm	95		

Fine Analys (AS 1289 3	sis Using a F .6.3)	lydrometer
Particle Size (mm)	Passed %	
0.0540	93.0	
0.0385	90.9	
0.0275	88.8	
0.0197	84.6	
0.0142	80.4	
0.0102	76.1	
0.0075	71.9	
0.0054	67.7	
0.0039	62.5	
0.0028	58.2	
0.0020	54.0	
0.0007	43.5	

Report Number:	84822.04-4B
Issue Number:	1
Date Issued:	17/04/2020
Client:	Cleanaway Operations Pty Ltd
	Level 4, 441 St Kilda Road, Melbourne 3004
Contact:	Nick Schutt
Project Number:	84822.04
Project Name:	Green Waratah
Project Location:	339 Wallgrove Road, Eastern Creek
Work Request:	5759
Sample Number:	SY-5759L
Date Sampled:	21/02/2020
Dates Tested:	18/03/2020 - 30/03/2020
Sampling Method:	Sampled by Engineering Department
	The results apply to the sample as received
Sample Location:	ABH07 (1.6-2.4m)
Material:	SILTY CLAY (EW SILTSTONE)

Dry Density - Moisture Relationship (AS 1289 5.1.1 & 2.1.1)		
Mould Type	1 LITRE MOULD A	
Compaction	Standard	
Maximum Dry Density (t/m ³)	1.92	
Optimum Moisture Content (%)	12.0	
Oversize Sieve (mm)	19	
Oversize Material Wet (%)	11	
Method used to Determine Plasticity	Visual Assessment	
Curing Hours	96	
Moisture Content (AS 1289 2.1.1)		
Moisture Content (%)	9.1	


Douglas Partners Geotechnics | Environment | Groundwater

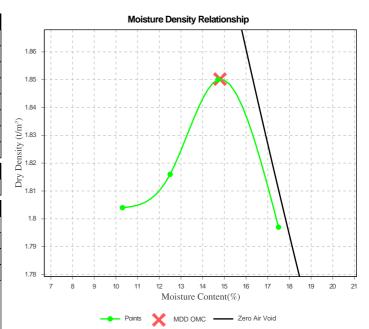
Geotechnics I Environment I Groundwater Douglas Partners Pty Ltd Sydney Laboratory 96 Hermitage Road West Ryde NSW 2114 Phone: (02) 9809 0666 Fax: (02) 9809 0666 Email: andrew.hutchings@douglaspartners.com.au

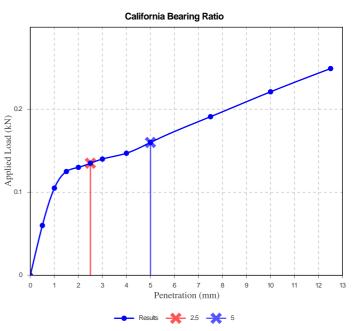
Accredited for compliance with ISO/IEC 17025 - Testing

WORLD RECOGNISED

Report Number: Issue Number:	84822.04-4B 1
Date Issued:	17/04/2020
Client:	Cleanaway Operations Pty Ltd
	Level 4, 441 St Kilda Road, Melbourne 3004
Contact:	Nick Schutt
Project Number:	84822.04
Project Name:	Green Waratah
Project Location:	339 Wallgrove Road, Eastern Creek
Work Request:	5759
Sample Number:	SY-5759M
Date Sampled:	21/02/2020
Dates Tested:	18/03/2020 - 16/04/2020
Sampling Method:	Sampled by Engineering Department
	The results apply to the sample as received
Sample Location:	ATP01 (2.5-2.6m)
Material:	SILTSTONE

Dry Density - Moisture Relationship (AS 12	289 5.1.1 & 2.1	.1)
Mould Type	1 LITRE I	MOULD A
Compaction	Stan	Idard
Maximum Dry Density (t/m ³)	1.	85
Optimum Moisture Content (%)	15	5.0
Oversize Sieve (mm)	1	9
Oversize Material Wet (%)		1
Method used to Determine Plasticity	Visual As	sessment
Curing Hours		2
Moisture Content (AS 1289 2.1.1)		
Moisture Content (%)		13.8
California Bearing Ratio (RMS T117 & T12	0)	Min Max
CBR taken at	2.5 mm	
CBR %	1.0	
Method of Compactive Effort	Stan	dard
Method used to Determine MDD	AS 1289 5	1.1 & 2.1.1
Maximum Dry Density (t/m ³)	1.850	
Optimum Moisture Content (%)	14.8	
Target Laboratory Density Ratio (%)	100	
Laboratory Density Ratio (%)	100	
Target Laboratory Moisture Ratio (%)	100	
Laboratory Moisture Ratio (%)	98	
Dry Density after Soaking (t/m ³)	1.738	
Field Moisture Content (%)	13.8	
Moisture Content Top 30mm (%)	25.2	
Moisture Content Full Depth (%)	22.4	
Mass Surcharge (kg)	4.5	
Soaking Period (days)	10	
Swell (%)	6.5	
Material Retained on 19mm (%)	1	
Oversize Material (mm)	19	
Oversize Material Included	Excluded	
Oversize Material (%)	1.3	


Douglas Partners Geotechnics | Environment | Groundwater


Geotechnics I Environment I Groundwater Douglas Partners Pty Ltd Sydney Laboratory 96 Hermitage Road West Ryde NSW 2114 Phone: (02) 9809 0666 Fax: (02) 9809 0666 Email: andrew.hutchings@douglaspartners.com.au

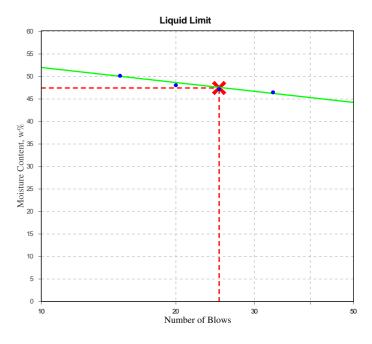
Accredited for compliance with ISO/IEC 17025 - Testing

WORLD RECOGNISED

Cracking Crumbling Curling

Report Number: Issue Number:	84822.04-4B 1
Date Issued:	17/04/2020
Client:	Cleanaway Operations Pty Ltd
	Level 4, 441 St Kilda Road, Melbourne 3004
Contact:	Nick Schutt
Project Number:	84822.04
Project Name:	Green Waratah
Project Location:	339 Wallgrove Road, Eastern Creek
Work Request:	5759
Sample Number:	SY-5759M
Date Sampled:	21/02/2020
Dates Tested:	18/03/2020 - 07/04/2020
Sampling Method:	Sampled by Engineering Department
	The results apply to the sample as received
Sample Location:	ATP01 (2.5-2.6m)
Material:	SILTSTONE

Atterberg Limit (AS1289 3.1.1 & 3.2	2.1 & 3.3.1)	Min	Max
Sample History	Oven Dried		
Preparation Method	Dry Sieve		
Liquid Limit (%)	47		
Plastic Limit (%)	19		
Plasticity Index (%)	28		
Linear Shrinkage (AS1289 3.4.1)		Min	Max
Linear Shrinkage (%)	13.0		


Curling

Douglas Partners Geotechnics | Environment | Groundwater

Geotechnics | Environment | Groundwater Douglas Partners Pty Ltd Sydney Laboratory 96 Hermitage Road West Ryde NSW 2114 Phone: (02) 9809 0666 Fax: (02) 9809 0666 Email: andrew.hutchings@douglaspartners.com.au Accredited for compliance with ISO/IEC 17025 - Testing

WORLD RECOGNISED

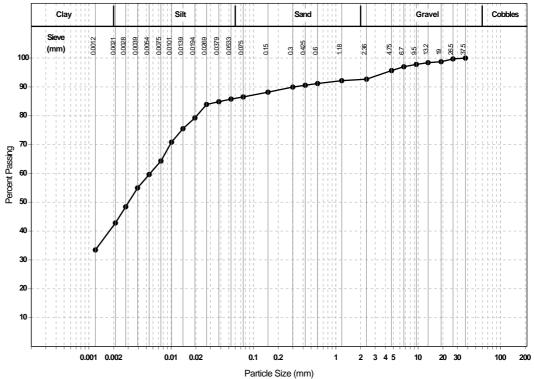
Report Number:	84822.04-4B
Issue Number:	1
Date Issued:	17/04/2020
Client:	Cleanaway Operations Pty Ltd
	Level 4, 441 St Kilda Road, Melbourne 3004
Contact:	Nick Schutt
Project Number:	84822.04
Project Name:	Green Waratah
Project Location:	339 Wallgrove Road, Eastern Creek
Work Request:	5759
Sample Number:	SY-5759M
Date Sampled:	21/02/2020
Dates Tested:	18/03/2020 - 31/03/2020
Sampling Method:	Sampled by Engineering Department
	The results apply to the sample as received
Sample Location:	ATP01 (2.5-2.6m)
Material:	SILTSTONE

Fine Analysis using a Hydrometer (AS 1289 3.6.3) Method of Dispersion Mechanical Device Loss in Pretreatment Particle Size Distribution (AS 1289 3.6.1) Passing Passed % Sieve Limits 37.5 mm 100 26.5 mm 100 19 mm 99 13.2 mm 98 9.5 mm 98 6.7 mm 97 4.75 mm 96 2.36 mm 93 1.18 mm 92 0.6 mm 91 0.425 mm 91 0.3 mm 90 0.15 mm 88 0.075 mm 87

Fine Analys (AS 1289 3	sis Using a F .6.3)	lydromete
Particle Size (mm)	Passed %	
0.0533	85.8	
0.0379	84.9	
0.0269	83.9	
0.0194	79.3	
0.0139	75.5	
0.0101	70.8	
0.0075	64.3	
0.0054	59.6	
0.0039	55.0	
0.0028	48.4	
0.0021	42.8	
0.0012	33.5	

Douglas Partners Geotechnics | Environment | Groundwater

Geotechnics I Environment I Groundwater Douglas Partners Pty Ltd Sydney Laboratory 96 Hermitage Road West Ryde NSW 2114 Phone: (02) 9809 0666 Fax: (02) 9809 0666 Email: andrew.hutchings@douglaspartners.com.au


Accredited for compliance with ISO/IEC 17025 - Testing

WORLD RECOGNISED

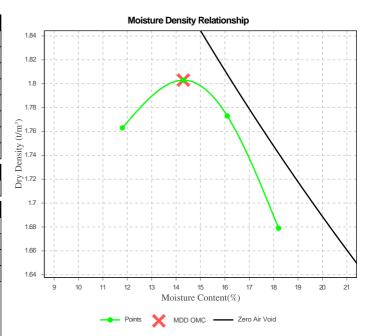
Approved Signatory: Andrew Hutchings Laboratory Manager NATA Accredited Laboratory Number: 828

Particle Size Distribution

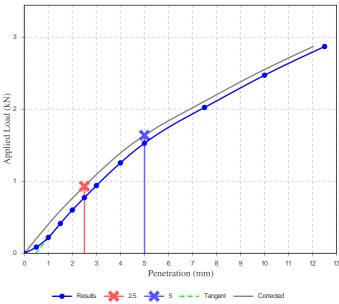
Report Number:	84822.04-4B
Issue Number:	1
Date Issued:	17/04/2020
Client:	Cleanaway Operations Pty Ltd
	Level 4, 441 St Kilda Road, Melbourne 3004
Contact:	Nick Schutt
Project Number:	84822.04
Project Name:	Green Waratah
Project Location:	339 Wallgrove Road, Eastern Creek
Work Request:	5759
Sample Number:	SY-5759N
Date Sampled:	21/02/2020
Dates Tested:	18/03/2020 - 16/04/2020
Sampling Method:	Sampled by Engineering Department
	The results apply to the sample as received
Sample Location:	ATP02 (0.5-0.6m)
Material:	SILTY CLAY

Dry Density - Moisture Relationship (AS 12	289 5.1.1 & 2.1	.1)
Mould Type	1 LITRE I	MOULD A
Compaction	Stan	Idard
Maximum Dry Density (t/m ³)	1.	80
Optimum Moisture Content (%)	14	1.5
Oversize Sieve (mm)	1	9
Oversize Material Wet (%)	(D
Method used to Determine Plasticity	Visual As	sessment
Curing Hours	1:	20
Moisture Content (AS 1289 2.1.1)		
Moisture Content (%)		12.1
California Bearing Ratio (RMS T117 & T12	(0)	Min Max
CBR taken at	5 mm	
CBR %	8	
Method of Compactive Effort	Stan	Idard
Method used to Determine MDD	AS 1289 5	1.1 & 2.1.1
Maximum Dry Density (t/m ³)	1.803	
Optimum Moisture Content (%)	14.3	
Target Laboratory Density Ratio (%)	100	
Laboratory Density Ratio (%)	101	
Target Laboratory Moisture Ratio (%)	100	
Laboratory Moisture Ratio (%)	101	
Dry Density after Soaking (t/m ³)	1.813	
Field Moisture Content (%)	12.1	
Moisture Content Top 30mm (%)	16.3	
Moisture Content Full Depth (%)	16.2	
Mass Surcharge (kg)	4.5	
Soaking Period (days)	10	
Swell (%)	0.2	
Material Retained on 19mm (%)	0	
Oversize Material (mm)	19	
Oversize Material Included	Excluded	
	0	1

Douglas Partners Geotechnics | Environment | Groundwater


Geotechnics I Environment I Groundwater Douglas Partners Pty Ltd Sydney Laboratory 96 Hermitage Road West Ryde NSW 2114 Phone: (02) 9809 0666 Fax: (02) 9809 0666 Email: andrew.hutchings@douglaspartners.com.au

Accredited for compliance with ISO/IEC 17025 - Testing



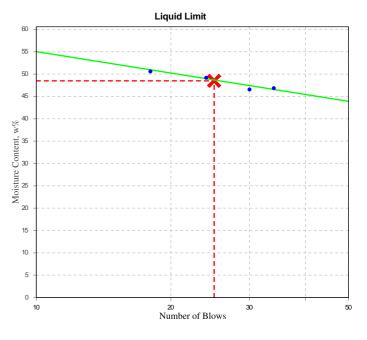
WORLD RECOGNISED

Approved Signatory: Andrew Hutchings Laboratory Manager NATA Accredited Laboratory Number: 828

Report Number: 84822.04-4B

Report Number:	84822.04-4
Issue Number:	1
Date Issued:	27/04/2020
Client:	Cleanaway Operations Pty Ltd
	Level 4, 441 St Kilda Road, Melbourne 3004
Contact:	Nick Schutt
Project Number:	84822.04
Project Name:	Green Waratah
Project Location:	339 Wallgrove Road, Eastern Creek
Work Request:	5759
Sample Number:	SY-5759O
Date Sampled:	21/02/2020
Dates Tested:	18/03/2020 - 21/04/2020
Sampling Method:	Sampled by Client
	The results apply to the sample as received
Sample Location:	ATP02 (1.5-1.75m)
Material:	SILTY CLAY

Atterberg Limit (AS1289 3.1.1 & 3.2	2.1 & 3.3.1)	Min	Max
Sample History	Oven Dried		
Preparation Method	Dry Sieve		
Liquid Limit (%)	48		
Plastic Limit (%)	17		
Plasticity Index (%)	31		
Linear Shrinkage (AS1289 3.4.1)		Min	Max
Linear Shrinkage (%)	15.5		
Cracking Crumbling Curling	Curling]	
Emerson Class Number of a Soil (A	S 1289 3.8.1)	Min	Max
Emerson Class	2		
Soil Description	Silty CLAY		
Nature of Water	Distilled		
Temperature of Water (°C)	23		


Douglas Partners Geotechnics | Environment | Groundwater

Geotechnics | Environment | Groundwater Douglas Partners Pty Ltd Sydney Laboratory 96 Hermitage Road West Ryde NSW 2114 Phone: (02) 9809 0666 Fax: (02) 9809 0666 Email: andrew.hutchings@douglaspartners.com.au

Accredited for compliance with ISO/IEC 17025 - Testing

A WORLD RECOGNISED

Report Number:	84822.04-4
Issue Number:	1
Date Issued:	27/04/2020
Client:	Cleanaway Operations Pty Ltd
	Level 4, 441 St Kilda Road, Melbourne 3004
Contact:	Nick Schutt
Project Number:	84822.04
Project Name:	Green Waratah
Project Location:	339 Wallgrove Road, Eastern Creek
Work Request:	5759
Sample Number:	SY-5759O
Date Sampled:	21/02/2020
Dates Tested:	18/03/2020 - 16/04/2020
Sampling Method:	Sampled by Client
	The results apply to the sample as received
Sample Location:	ATP02 (1.5-1.75m)
Material:	SILTY CLAY

Douglas Partners Geotechnics | Environment | Groundwater

Geotechnics | Environment | Groundwater Douglas Partners Pty Ltd Sydney Laboratory 96 Hermitage Road West Ryde NSW 2114 Phone: (02) 9809 0666 Fax: (02) 9809 0666 Email: andrew.hutchings@douglaspartners.com.au Accredited for compliance with ISO/IEC 17025 - Testing

WORLD RECOGNISED ACCREDITATION

Approved Signatory: Andrew Hutchings Laboratory Manager NATA Accredited Laboratory Number: 828

erial: SILTY C

(AS 1289 3	sis using a H .6.3)	yarome	ICI
Method of [Dispersion		anical /ice
Loss in Pre	treatment		
Particle Size Distribution (AS 1289 3.6.1)			
Sieve	Passed %	Passin	g Limits
2.36 mm	100		
1.18 mm	100		
0.6 mm	100		
0.425 mm	99		
0.3 mm	99		
0.15 mm	98		
0.075 mm	92		
Fine Analysis Using a Hydrometer (AS 1289 3.6.3)			
(AS 1289 3			
(AS 1289 3 Particle Size (mm)			
Particle	.6.3)		
Particle Size (mm)	.6.3) Passed %		
Particle Size (mm) 0.0567	.6.3) Passed % 85.4		
Particle Size (mm) 0.0567 0.0409	.6.3) Passed % 85.4 80.2		
Particle Size (mm) 0.0567 0.0409 0.0295	.6.3) Passed % 85.4 80.2 75.0		
Particle Size (mm) 0.0567 0.0409 0.0295 0.0211	.6.3) Passed % 85.4 80.2 75.0 71.9		
Particle Size (mm) 0.0567 0.0409 0.0295 0.0211 0.0151	.6.3) Passed % 85.4 80.2 75.0 71.9 67.8		
Particle Size (mm) 0.0567 0.0409 0.0295 0.0211 0.0151 0.0108	6.3) Passed % 85.4 80.2 75.0 71.9 67.8 64.7		
Particle Size (mm) 0.0567 0.0409 0.0295 0.0211 0.0151 0.0108 0.0080	6.3) Passed % 85.4 80.2 75.0 71.9 67.8 64.7 60.5		
Particle Size (mm) 0.0567 0.0409 0.0295 0.0211 0.0151 0.0108 0.0080 0.0054	6.3) Passed % 85.4 80.2 75.0 71.9 67.8 64.7 60.5 56.4		
Particle Size (mm) 0.0567 0.0409 0.0295 0.0211 0.0151 0.0108 0.0080 0.0054 0.0041	6.3) Passed % 85.4 80.2 75.0 71.9 67.8 64.7 60.5 56.4 51.2		
Particle Size (mm) 0.0567 0.0409 0.0295 0.0211 0.0151 0.0108 0.0080 0.0054 0.0041 0.0029	6.3) Passed % 85.4 80.2 75.0 71.9 67.8 64.7 60.5 56.4 51.2 46.0		

_									1 a		e 01	e Distr	but													
	С	lay				S	ilt						Sar	nd							Grav	el			c	obbles
100-	Siev (mn	ne	0.0013	0.0029 0.0041		+++	- 0.0151 - 0.0211	0.0295		- 9500		0.15	0.425	0.6			236						- + -			
90 -	- + + + -					4-		-		1	[]			4		41.	¦-			÷	+ + + +					
80 -	-+-+-				- +	+			ø	- + +	 - - - ·				- - -	+++			-1 - +	$\stackrel{1}{\rightarrow} \stackrel{1}{\rightarrow}$	+++		- + -	+ -1-	 - - -	
								×																		
70-	- + - + -				- + + + +		×	-		1 1				÷							+ + +					
60-						ľ				1.1																
0	- + - + -				1					i i			1		- 1 - 1 - 1				-1 - †- 		++			+		
50		 - - - - -			/		_				 LUL.			1							 L L					;
				×																						
40	- + - + -					Ц.		_						4						븙				14		¦
			•							1.1						1 I I I										
30 -	- + - + -				- 4		!-							4	-1-1-1						1 4					
20-	- + + + +									$-\frac{1}{1}\frac{1}{1}$						H -	·				+ +					
10-	-+-+-				- +	+ -				- + +	- - - ·				- 1 - 1 -				+		++			+	F F FI	
										1.1																
L			1 0.00			0.01	0.02	+	-1-1	44	0.1	0.2	+ +		+++		2	3	45	++	10	20	30	++		00

Particle Size (mm)

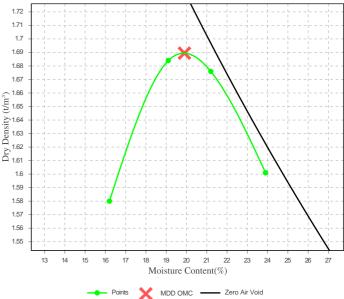
Particle Size Distribution

Report Number:	84822.04-4B
Issue Number:	1
Date Issued:	17/04/2020
Client:	Cleanaway Operations Pty Ltd
	Level 4, 441 St Kilda Road, Melbourne 3004
Contact:	Nick Schutt
Project Number:	84822.04
Project Name:	Green Waratah
Project Location:	339 Wallgrove Road, Eastern Creek
Work Request:	5759
Sample Number:	SY-5759P
Date Sampled:	21/02/2020
Dates Tested:	18/03/2020 - 16/04/2020
Sampling Method:	Sampled by Engineering Department
	The results apply to the sample as received
Sample Location:	ATP03 (0.9-1m)
Material:	SILTY CLAY

Dry Density - Moisture Relationship (AS 1289 5.1.1 & 2.1.1)							
Mould Type	1 LITRE MOULD A						
Compaction		Stan	dard				
Maximum Dry Density (t/m ³)		1.	69				
Optimum Moisture Content (%)		20	0.0				
Oversize Sieve (mm)		1	9				
Oversize Material Wet (%)	· · · · · · · · · · · · · · · · · · ·						
Method used to Determine Plasticit	у	Visual Assessment					
Curing Hours	48						
Moisture Content (AS 1289 2.1.1)							
Moisture Content (%)			1	9.1			
Emerson Class Number of a Soil (A	S 1289	3.8.1)	Min	Max			
Emerson Class		2					
Soil Description S		TY CLAY					
Nature of Water		Distilled					
Temperature of Water (°C)							

California Bearing Ratio (RMS T117 & T12	:0)	Min	Max
CBR taken at	5 mm		
CBR %	2.5		
Method of Compactive Effort	Stan	ndard	
Method used to Determine MDD	AS 1289 5	.1.1 & 2	2.1.1
Maximum Dry Density (t/m ³)	1.690		
Optimum Moisture Content (%)	19.9		
Target Laboratory Density Ratio (%)	100		
Laboratory Density Ratio (%)	100		
Target Laboratory Moisture Ratio (%)	100		
Laboratory Moisture Ratio (%)	98		
Moisture Content Top 30mm (%)	21.1		
Moisture Content Full Depth (%)	20.0		
Mass Surcharge (kg)	4.5		
Soaking Period (days)	10		
Swell (%)	0.5		
Material Retained on 19mm (%)	0		
Oversize Material (mm)	19		
Oversize Material Included	Excluded		
Oversize Material (%)	0		

Douglas Partners Geotechnics | Environment | Groundwater


Geotechnics | Environment | Groundwater Douglas Partners Pty Ltd Sydney Laboratory 96 Hermitage Road West Ryde NSW 2114 Phone: (02) 9809 0666 Fax: (02) 9809 0666 Email: andrew.hutchings@douglaspartners.com.au

Accredited for compliance with ISO/IEC 17025 - Testing

WORLD RECOGNISED

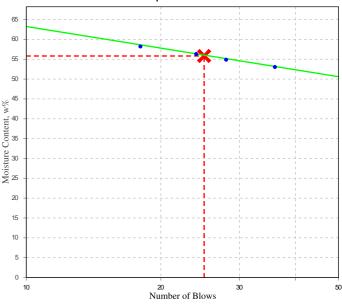
Moisture Density Relationship

Report Number:	84822.04-4
Issue Number:	1
Date Issued:	27/04/2020
Client:	Cleanaway Operations Pty Ltd
	Level 4, 441 St Kilda Road, Melbourne 3004
Contact:	Nick Schutt
Project Number:	84822.04
Project Name:	Green Waratah
Project Location:	339 Wallgrove Road, Eastern Creek
Work Request:	5759
Sample Number:	SY-5759P
Date Sampled:	21/02/2020
Dates Tested:	18/03/2020 - 16/04/2020
Sampling Method:	Sampled by Client
	The results apply to the sample as received
Sample Location:	ATP03 (0.9-1m)
Material:	SILTY CLAY with some sand and trace of gravel

Atterberg Limit (AS1289 3.1.1 & 3.2	2.1 & 3.3.1)	Min	Max
Sample History	Oven Dried		
Preparation Method	Dry Sieve		
Liquid Limit (%)	56		
Plastic Limit (%)	18		
Plasticity Index (%)	38		
Linear Shrinkage (AS1289 3.4.1)		Min	Max
Linear Shrinkage (%)	17.0		
Cracking Crumbling Curling	Curling]	
Emerson Class Number of a Soil (A	S 1289 3.8.1)	Min	Max
Emerson Class	2		
Soil Description	SILTY CLAY		
Nature of Water	Distilled		
Temperature of Water (°C)	22]	

Douglas Partners Geotechnics | Environment | Groundwater

Geotechnics I Environment I Groundwater Douglas Partners Pty Ltd Sydney Laboratory 96 Hermitage Road West Ryde NSW 2114 Phone: (02) 9809 0666 Fax: (02) 9809 0666 Email: andrew.hutchings@douglaspartners.com.au


Accredited for compliance with ISO/IEC 17025 - Testing

WORLD RECOGNISED

Approved Signatory: Andrew Hutchings Laboratory Manager NATA Accredited Laboratory Number: 828

Liquid Limit

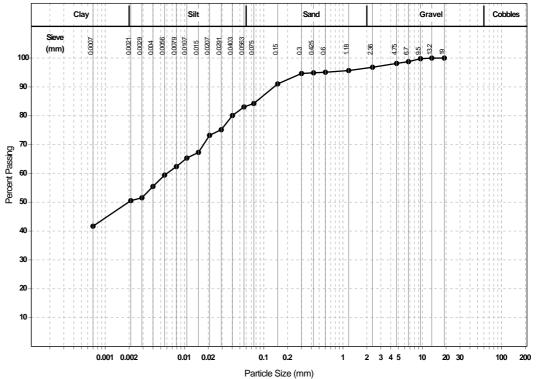
Report Number:	84822.04-4
Issue Number:	1
Date Issued:	27/04/2020
Client:	Cleanaway Operations Pty Ltd
	Level 4, 441 St Kilda Road, Melbourne 3004
Contact:	Nick Schutt
Project Number:	84822.04
Project Name:	Green Waratah
Project Location:	339 Wallgrove Road, Eastern Creek
Work Request:	5759
Sample Number:	SY-5759P
Date Sampled:	21/02/2020
Dates Tested:	18/03/2020 - 01/04/2020
Sampling Method:	Sampled by Client
	The results apply to the sample as received
Sample Location:	ATP03 (0.9-1m)
Material:	SILTY CLAY with some sand and trace of gravel

Fine Analysis using a Hydrometer (AS 1289 3.6.3) Method of Dispersion Mechanical Device Loss in Pretreatment Particle Size Distribution (AS 1289 3.6.1) Passing Passed % Sieve Limits 19 mm 100 13.2 mm 100 9.5 mm 100 6.7 mm 99 4.75 mm 98 2.36 mm 97 1.1<u>8 mm</u> 96 0.6 mm 95 0.425 mm 95 0.3 mm 95 0.15 mm 91 0.075 mm 84

Fine Analysis Using a Hydrometer (AS 1289 3.6.3)							
Particle Size (mm)	Passed %						
0.0563	83.0						
0.0403	80.1						
0.0291	75.2						
0.0207	73.2						
0.0150	67.3						
0.0107	65.3						
0.0079	62.4						
0.0056	59.4						
0.0040	55.5						
0.0029	51.5						
0.0021	50.5						
0.0007	41.7						

Douglas Partners Geotechnics | Environment | Groundwater

Geotechnics I Environment I Groundwater Douglas Partners Pty Ltd Sydney Laboratory 96 Hermitage Road West Ryde NSW 2114 Phone: (02) 9809 0666 Fax: (02) 9809 0666 Email: andrew.hutchings@douglaspartners.com.au


Accredited for compliance with ISO/IEC 17025 - Testing

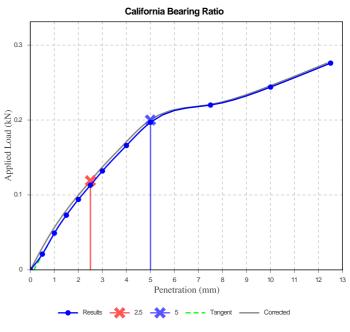
WORLD RECOGNISED

Approved Signatory: Andrew Hutchings Laboratory Manager NATA Accredited Laboratory Number: 828

Particle Size Distribution

Report Number: Issue Number:	84822.04-4B 1
Date Issued:	17/04/2020
Client:	Cleanaway Operations Pty Ltd
	Level 4, 441 St Kilda Road, Melbourne 3004
Contact:	Nick Schutt
Project Number:	84822.04
Project Name:	Green Waratah
Project Location:	339 Wallgrove Road, Eastern Creek
Work Request:	5759
Sample Number:	SY-5759R
Date Sampled:	21/02/2020
Dates Tested:	18/03/2020 - 16/04/2020
Sampling Method:	Sampled by Engineering Department
	The results apply to the sample as received
Sample Location:	ATP04 (2.4-2.5m)
Material:	SILTSTONE

California Bearing Ratio (RMS T117 & T120)	Min	Max
CBR taken at	5 mm		
CBR %	1.0		
Method of Compactive Effort	Star	ndard	
Method used to Determine MDD	AS 1289 5	.1.1 &	2.1.1
Maximum Dry Density (t/m ³)	1.784		
Optimum Moisture Content (%)	13.9		
Target Laboratory Density Ratio (%)	100		
Laboratory Density Ratio (%)	100		
Target Laboratory Moisture Ratio (%)	100		
Laboratory Moisture Ratio (%)	100		
Dry Density after Soaking (t/m ³)	1.683		
Field Moisture Content (%)	15.5		
Moisture Content Top 30mm (%)	27.0		
Moisture Content Full Depth (%)	22.2		
Mass Surcharge (kg)	4.5		
Soaking Period (days)	10		
Swell (%)	6.6		
Material Retained on 19mm (%)	0		
Oversize Material (mm)	19		
Oversize Material Included	Excluded		
Oversize Material (%)	0		


Douglas Partners Geotechnics | Environment | Groundwater

Geotechnics I Environment I Groundwater Douglas Partners Pty Ltd Sydney Laboratory 96 Hermitage Road West Ryde NSW 2114 Phone: (02) 9809 0666 Fax: (02) 9809 0666 Email: andrew.hutchings@douglaspartners.com.au

Accredited for compliance with ISO/IEC 17025 - Testing

WORLD RECOGNISED

Report Number:	84822.04-4B
Issue Number:	1
Date Issued:	17/04/2020
Client:	Cleanaway Operations Pty Ltd
	Level 4, 441 St Kilda Road, Melbourne 3004
Contact:	Nick Schutt
Project Number:	84822.04
Project Name:	Green Waratah
Project Location:	339 Wallgrove Road, Eastern Creek
Work Request:	5759
Sample Number:	SY-5759R
Date Sampled:	21/02/2020
Dates Tested:	18/03/2020 - 07/04/2020
Sampling Method:	Sampled by Engineering Department
	The results apply to the sample as received
Sample Location:	ATP04 (2.4-2.5m)
Material:	SILTSTONE

Atterberg Limit (AS1289 3.1.1 & 3.2	2.1 & 3.3.1)	Min	Max
Sample History	Oven Dried		
Preparation Method	Dry Sieve		
Liquid Limit (%)	45		
Plastic Limit (%)	21		
Plasticity Index (%)	24		
Linear Shrinkage (AS1289 3.4.1)		Min	Max
Linear Shrinkage (%)	12.0		
Cracking Crumbling Curling	None		
Emerson Class Number of a Soil (A	AS 1289 3.8.1)	Min	Max
Emerson Class	2		
Soil Description	SILTSTONE		
Nature of Water	Distilled		
Temperature of Water (°C)	20		

Douglas Partners Geotechnics | Environment | Groundwater

Geotechnics | Environment | Groundwater Douglas Partners Pty Ltd Sydney Laboratory 96 Hermitage Road West Ryde NSW 2114 Phone: (02) 9809 0666 Fax: (02) 9809 0666 Email: andrew.hutchings@douglaspartners.com.au

Accredited for compliance with ISO/IEC 17025 - Testing

WORLD RECOGNISED

Approved Signatory: Andrew Hutchings Laboratory Manager NATA Accredited Laboratory Number: 828

Liquid Limit

Report Number:	84822.04-4
Issue Number:	1
Date Issued:	27/04/2020
Client:	Cleanaway Operations Pty Ltd
	Level 4, 441 St Kilda Road, Melbourne 3004
Contact:	Nick Schutt
Project Number:	84822.04
Project Name:	Green Waratah
Project Location:	339 Wallgrove Road, Eastern Creek
Work Request:	5759
Sample Number:	SY-5759R
Date Sampled:	21/02/2020
Dates Tested:	18/03/2020 - 30/03/2020
Sampling Method:	Sampled by Client
	The results apply to the sample as received
Sample Location:	ATP04 (2.4-2.5m)
Material:	SILTSTONE

Douglas Partners Geotechnics | Environment | Groundwater

Geotechnics | Environment | Groundwater Douglas Partners Pty Ltd Sydney Laboratory 96 Hermitage Road West Ryde NSW 2114 Phone: (02) 9809 0666 Fax: (02) 9809 0666 Email: andrew.hutchings@douglaspartners.com.au Accredited for compliance with ISO/IEC 17025 - Testing

NATA

WORLD RECOGNISED

Particle Size Distribution

Approved Signatory: Andrew Hutchings Laboratory Manager NATA Accredited Laboratory Number: 828

Fine Analysis using a Hydrometer (AS 1289 3.6.3) Method of Dispersion Mechanical Device Loss in Pretreatment Particle Size Distribution (AS 1289 3.6.1) Passing Sieve Passed % Limits 19 mm 100 13.2 mm 100 9.5 mm 100 Percent Passing 6.7 mm 99 4.75 mm 98 2.36 mm 96 1.18 mm 96 0.6 mm 95 0.425 mm 95 0.3 mm 95 0.15 mm 94 0.075 mm 92

Fine Analysis Using a Hydrometer (AS 1289 3.6.3)							
Particle Size (mm)	Passed %						
0.0539	91.1						
0.0390	85.3						
0.0281	81.5						
0.0202	76.7						
0.0147	70.1						
0.0106	65.3						
0.0079	60.5						
0.0057	55.7						
0.0041	49.0						
0.0030	43.3						
0.0021	39.5						
0.0007	25.1						

Clay Silt Cobbles Sand Gravel Sio 0.0007 0.0041 0.0079 3.0106 0.0147 0.0202 0.0281 3.0539 0.0021 0.003 0.039 0.75 0.425 95 132 0.15 118 4.75 (mm) 36 6.7 53 0.6 100 90 80 70 60 50 40 30 20 10 0.001 0.002 0.02 0.2 2 345 20 30 200 0.01 0.1 10 100 1

Particle Size (mm)

Test Report				
Client : Douglas Partners	Project Number: 1725			
	Project Details : Eastern Creek (Project 84822.04)			
	Order/Request Number :			
Report Date : 24th April 2020	Report Number: 172502 rev1			

Sample Details

Sample ID / Name / Number	ABH02 2.4-2.8m		
Sample Description			
Sampled by	Client		
Sample Type	Loose Bulk		
Date Sampled	21/2/2020		

Dry Density / Moisture Relationship (AS 1289.5.1.1) - As provided by Douglas Partners .

Maximum Dry Density (t/m ³)	1.616	
Optimum Moisture Content (% Dry Weight)	23.5	

Thermal Conductivity (ASTM D5334)

Test Date	Preparation Method	Specimen	Moisture Content (%)	Test Time (s)	Initial Temp. (^o C)	Thermal Conductivity (W/m.K)	Thermal Resistivity (Km/W) *
9/04/2020	Compacted. 98% of MDD at OMC	А	23.24%	600	20.5	1.59	0.63
9/04/2020	Compacted. 98% of MDD at OMC	В	22.96%	600	20.5	1.56	0.64
16/04/2020	Compacted. 98% of MDD. Partially dry.	А	13.77%	600	20.7	1.43	0.70
17/04/2020	Compacted. 98% of MDD. Partially dry.	В	5.21%	600	20.4	0.88	1.13
20/04/2020	Compacted. 98% of MDD. Partially dry.	А	9.53%	600	19.3	1.16	0.86
20/04/2020	Compacted. 98% of MDD. Partially dry.	В	2.78%	600	19.5	0.76	1.32
24/04/2020	Compacted. 98% of MDD. Fully dry.	В	0.00%	500	21.2	0.61	1.64

Specimen	Length (mm)	Diameter (mm)	Mass (g)	Dry Density (t/m ³⁾
A	177	73	1175.80	1.59
В	177	73	1178.31	1.59

Notes

- 2 specimens from this sample were prepared and tested as part of this report.
- All testing undertaken at Geotherm's Hornsby Laboratory, unless noted.

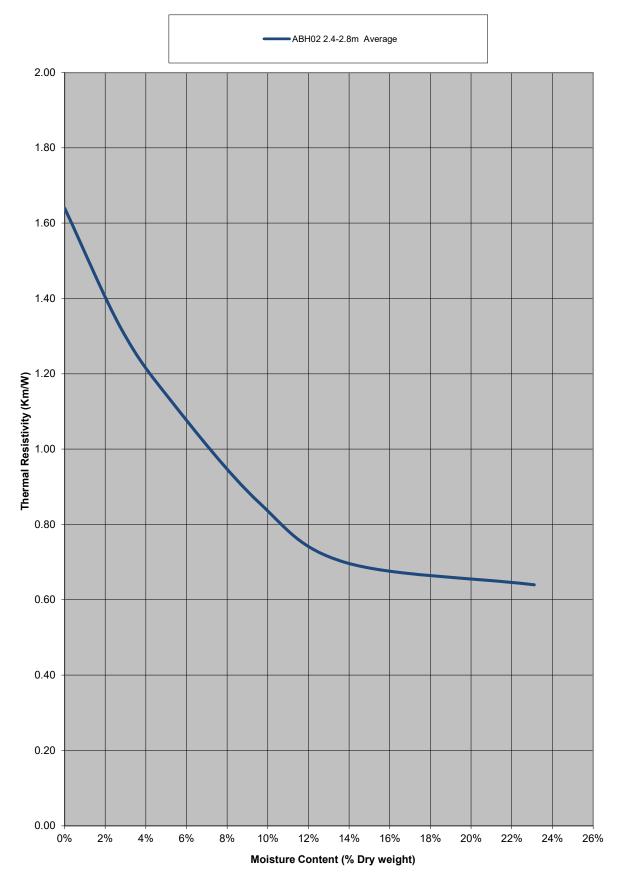
ALL

- Specimens prepared by BH. Wet specimens tested by BH. Dry and partially dry specimens tested by PV, BL, BH
- The above samples will be discarded after 2 weeks.

Brett Hobson

Approved Signatory

Geotherm Australasia Pty Ltd


Unit 9, 35 Leighton Place, Hornsby, NSW, 2077 Phone: 02 **9482 9839** Email: brett@geothermaust.com.au Website: www.geothermaust.com.au ABN 35 097 576 611

^{- *}Thermal resistivity calculation = 1 / Thermal Conductivity.

Dry-out Curve

Test Report				
Client : Douglas Partners	Project Number: 1725			
	Project Details : Eastern Creek (Project 84822.04)			
	Order/Request Number :			
Report Date : 23rd April 2020	Report Number: 172501			

Sample Details

Sample ID / Name / Number	ABH01 1.3-1.6m
Sample Description	
Sampled by	Client
Sample Type	Loose Bulk
Date Sampled	21/2/2020

Dry Density / Moisture Relationship (AS 1289.5.1.1) - As provided by Douglas Partners.

Maximum Dry Density (t/m ³)	1.728	
Optimum Moisture Content (% Dry Weight)	17.3	

Thermal Conductivity (ASTM D5334)

Test Date	Preparation Method	Specimen	Moisture Content (%)	Test Time (s)	Initial Temp. (^o C)	Thermal Conductivity (W/m.K)	Thermal Resistivity (Km/W) *
7/04/2020	Compacted. 98% of MDD at OMC	А	17.54%	600	20.2	1.28	0.78
7/04/2020	Compacted. 98% of MDD at OMC	В	17.37%	600	20.7	1.37	0.73
14/04/2020	Compacted. 98% of MDD. Partially dry.	А	10.45%	400	18.4	0.92	1.09
11/04/2020	Compacted. 98% of MDD. Partially dry.	В	3.66%	500	19.4	0.68	1.48
16/04/2020	Compacted. 98% of MDD. Partially dry.	А	6.76%	600	20.0	0.76	1.32
23/04/2020	Compacted. 98% of MDD. Fully dry.	В	0.00%	600	20.3	0.53	1.89
23/04/2020	Compacted. 98% of MDD. Fully dry.	А	0.00%	600	20.0	0.49	2.03

Specimen	Length (mm)	Diameter (mm)	Mass (g)	Dry Density (t/m ³⁾
A	177	73	1251.56	1.69
В	177	73	1252.76	1.69

Notes

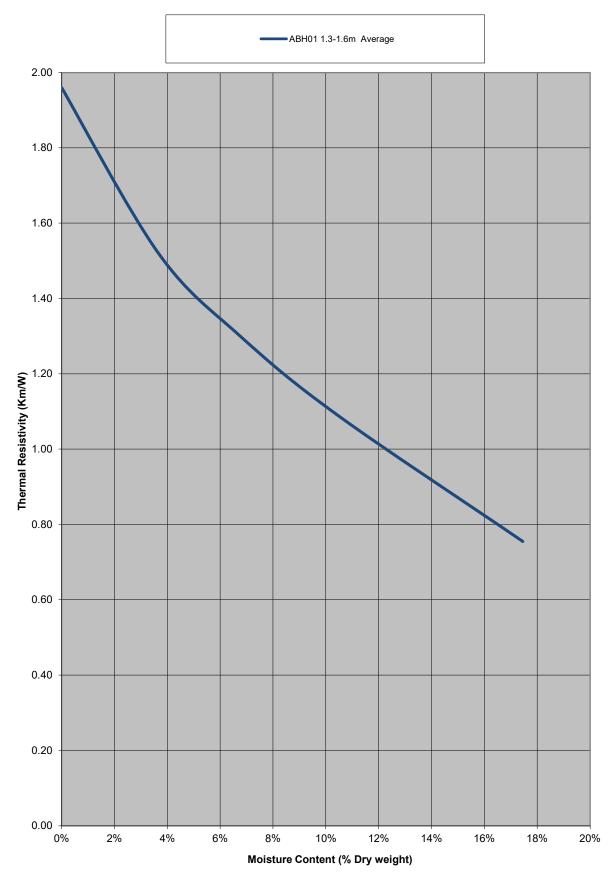
- 2 specimens from this sample were prepared and tested as part of this report.
- All testing undertaken at Geotherm's Hornsby Laboratory, unless noted.
- Specimens prepared by PV. Wet specimens tested by BL. Dry and partially dry specimens tested by PV, BL, BH
- The above samples will be discarded after 2 weeks.

Brett Hobson

Approved Signatory

fthe

Geotherm Australasia Pty Ltd


Unit 9, 35 Leighton Place, Hornsby, NSW, 2077 Phone: 02 **9482 9839** Email: brett@geothermaust.com.au Website: www.geothermaust.com.au ABN 35 097 576 611

^{- *}Thermal resistivity calculation = 1 / Thermal Conductivity.

Dry-out Curve

